@aztec/protocol-contracts 3.0.0-nightly.20251212 → 3.0.0-nightly.20251213
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/artifacts/AuthRegistry.json +29 -29
- package/artifacts/ContractClassRegistry.json +24 -24
- package/artifacts/ContractInstanceRegistry.json +35 -35
- package/artifacts/FeeJuice.json +28 -28
- package/artifacts/MultiCallEntrypoint.json +20 -20
- package/artifacts/Router.json +22 -22
- package/package.json +4 -4
|
@@ -1878,7 +1878,7 @@
|
|
|
1878
1878
|
}
|
|
1879
1879
|
},
|
|
1880
1880
|
"bytecode": "H4sIAAAAAAAA/+z9CZzN5f8//r9msQ0xlpDQSZI9+57s+77v+77v+9IkSZItlKRJkiRJEpIkSZIkSZKQJEkSksT/emimmeY93/+8rstnHqfH79a53S6m6Ryv63k/r/M657xe1/W4Qry/boGYvzt37jpuRM/unQcN69x30IiewwZ1HTC8c+eeg0YMGztksPlN7zs9b1muv+4bYlpYzN+hMf9G/N/F/h3/54yJ3C+zaVUS/C6raQ8k+F22RH6XM5F/L1civ8udyO/uSOR3gUS2cWciv8uTyO/uSuR3eRPZRr5Efpc/EasCifyuYCK/K5zIv1c0kfvdm8jviiXyuxKJ/HulErlf6UR+VyaR35VL5N+rkMj9Kibyu0qJ/K5yIv9elUTuVzWR31WL+Tvc83ELifk7EPN3sR6Nhh0rHl1gQ5Oa66Oi2nTMX/JUnbEbh8ypfuzivHPm/+8Ki7tvErfCN7Odj5LeTiD+v53Oiys4JKaf+PtuL26HDIn5d2Pvt9v8/LFpe0z7JOyf/3hYwo38/7+F3GNx391h/h32+vf+x822//kt7vuxRf8/JfW/gMV991j0f59F/xPbD/fG7Iefxvy9L+bvT+Lth5+Zn/eb9rlpB25yPyxocd/PLBy+ID2PhSzuu9+i/wdJ/S9scd/PLfr/5U3uh1/E7HcHY/7+MubvA/H2w0Pm569MO2za1ze5HxaxuO8hC4cjpOexqMV9v7Lo/zek/t9rcd/DFv0/epP74ZGY/e6bmL+Pxvz9dbz98Jj5+bhp35p24ib3w2IW9z1m4fAd6XksbnHf4xb9P0nqfwmL+35r0f/vb3I//C5mvzsZ8/f3MX+fiLcfnjI//2DaadN+vMn9sKTFfU9ZOJwhPY+lLO77g0X/fyL1v7TFfU9b9P/sTe6HZ2L2u59i/j4b8/eP8fbDn83P50z7xbTzN7kflrG4788WDr+SnseyFvc9Z9H/C6T+l7O47y8W/b94k/vhrzH73YWYvy/G/H0+3n54yfz8m2mXTfv9JvfD8hb3vWThcIX0PFawuO9vFv3/g9T/ihb3vWzR/6s3uR9eidnv/oj5+2rM37/H2w//ND9fM+16mPc/Z7lsHSpZ3PdPC4eQcM7zeJ/Ffa9Z9D+U1P/KFve9btH/sPCb2w/x/OHv0Ji/w2L+xp1i7xdufkhhWkrTUt3kfni/xX3Dw/07pCY9j1Us7pvCov9pSP2vanHflBb9j7jJ/TB1zH6XJubviJi/U8XbD9OaH9KZdotp6W9yP6xmcd+0Fg4ZSM9jdYv7prPof+RNPo8ZYp63yJi/b4n5O3285zGj+SGTaZlNy5LgeQyN+Tvg+etCZs9/bbf6rS2k6QM3joUxNeFxVbyb62dei35m9f8chMTvZ+zjwuP97n8eYNlvi+s9/9hetvCb2GC2cPvHZbfYyV37lT3ezhrw7G+2O01Wi5pus9hp/v7D8//v48IZ6retIb/FNnJYHjxtn0MY5Qi3r/12y4Ni7Ivv9ngvyBAv8SvVyfmCvJnt3O1xtpP1Jp/zpJ47XCjE82G734ZZ3NfiYmTcgxL+EPD1MC8kRzKD4QpzDocXeg6Lg1VOyxps+xKSYBt+a7a1ypXMzwV2wtgdOP7jktqM686bVH9yJ/MBOvZNJmG9ft6c/N7X5oPCHTf5pprUYwrEbMOze9yNNxK8JlIk9o9a9oH1hpLP42zn3/rG5bodm9dcaLyfAzH71Z3hN/Fmc4fjJ59AvMc5bdPhDegOixd2Hse6Entcwn7aHFSSuu9dlgcg275kDbf61H3jTf728OT9JpM3md9kUEMuhzf7u5O5XzgQu3wIyUfwyu3Qr3uSuV840Lt45U/mfmV1/JZZwKJf/5eneCyGsP1jewVdT/EUiXmw7eMKJfMpHvSrkOMpHpc3uTwuO0mu5O0X3nDyOvSroGW/Ym+2n/QLW7xZWViFWPQ/0U/6SfUb4ywLObxxFrXYRpFkPrDBvojDvlHU8cNW0f+DD1tFLI4Z91p+2Iq92e7DxYK/D//1AO+f/U7q7jhm3ZXMH8yLEz7M3OWwD5ewfHMO8f5vTvfavDnfzHYs5iPc1HaK3eTzm+Rry0v+070WY63jHpTwh4Cvh5kdIJnBMIC+iMOL2ubAWtLyxRN7eiup2pLqo98X7fXr148m9vuAl/Q28Ef8vpaKedWXjj0KxL6blYo56sT/XelEOmg98tzfEzHXPBEhpSyetNKWeLY7HnagUqRP2zji3+1w1C8Tnvz9yufQr7KEft3j0K9yhH7ld+hXeUK/Cjj0q4Jlv/5f/UtqOxUttoPjzy2mRcf8N14D2N/w3MIRfa74X/uvkdr/a59P4pYC7y94b7R9rVQK9/9aCY15rSS8BTy7m+3xxqaPrtu4z3IbLtfo438w9PtB1fb5rBxud+xL7/137Puv/Tva/+u15eeztcXr98aXObxObF/D8beRVJ/uD7c7rqZP5PcBz1+/Ev4Q8PUwznH1fsttuL7vJecX+iq85zKug3aPC6lCeC6rCjhUJDhUc9hGYttJar+rbnFMC5Z3dYJ3DZJ3Tf/bCQ2Wd02Cdy2Sd23/2wkLlndtgncdkndd/9sJD5Z3XYJ3PZJ3ff/bSREs7/oE7wYk74b+t5MyWN4NCd6NSN6N/W8nVbC8GxO8m5C8m/rfTupgeTcleDcjeTf3v500wfJuTvBuQfJu6X87EcHybknwbkXybu1/O2mD5d2a4N2G5N3W/3bSBcu7LcG7Hcm7vf/t3BIs7/YE7w4k747+t5M+WN4dCd6dSN6d/W8nQ7C8OxO8u5C8u/rfTmSwvLsSvLuRvLv7307GYHl3J3j3IHn39L+dTMHy7knw7kXy7u1/O5mD5d2b4N2H5N3X/3ayBMu7L8G7H8m7v//t3Bos7/4E7wEk74H+t5M1WN4DCd6DSN6D/W8nW7C8BxO8h5C8h/rfTvZgeQ8leA8jeQ/3v53bguU9nOA9guQ90v92cgTLeyTBexTJe7T/7dweLO/RBO8xJO+x/reTM1jeYwne40je4/1vJ1ewvMcTvCeQvCf6307uYHlPJHhPInlP9r+dO4LlPZng/QDJO8r/dgLB8o4ieD9I8p7ifzt3Bst7CsH7IZL3VP/byRMs76kE74dJ3tP8b+euYHlPI3g/QvKe7n87eYPlPZ3g/SjJe4b/7dwdLO8ZBO/HSN4z/W8nX7C8ZxK8Hyd5z/K/nXuC5T2L4D2b5D3H/3byB8t7DsF7Lsl7nv/tFAiW9zyC9xMk7/n+t1MwWN7zCd4LSN4L/W+nULC8FxK8n7TYRrAcdoUl/zaeIu13i/xvp0iwvBcR9runSd6L/W+naLC8FxO8nyF5L/G/nXuD5b2E4P0syTva/3aKBcs7muD9HMl7qf/tFA+W91KC9/Mk72X+t1MiWN7LCN4vkLyX+99OyWB5Lyd4v0jyXuF/O6WC5b2C4P0SyXul/+2UDpb3SoL3yyTvVf63UyZY3qsI3q+QvFf7307ZYHmvJni/SvJe43875YLlvYbg/RrJe63/7ZQPlvdagvfrJO91/rdTIVje6wjeb5C81/vfTsVgea8neL9J8t7gfzuVguW9geC9keS9yf927guW9yaC91sk783+t1M5WN6bCd5vk7y3+N/O/cHy3kLwfofkvdX/dqoEy3srwftdkvc2/9upGizvbQTv90je2/1vp1qwvLcTvN8nee/wv53qwfLeQfD+gOS90/92agTLeyfB+0OS9y7/26kZtPE+BO+PSN67/W+nVrC8dxO8PyZ57/G/ndrB8t5D8P6E5L3X/3bqBMt7L8H7U5L3Pv/bqRss730E789I3vv9b6desLz3E7w/J3kf8L+d+sHyPkDw/oLkfdD/dhoEy/sgwftLkvch/9tpGCzvQwTvr0jeh/1vp1GwvA8TvL8meR/xv53GwfI+QvD+huR91P92mgTL+yjB+xjJ+7j/7TQNlvdxgve3JO8T/rfTLFjeJwje35G8T/rfTvNgeZ8keH9P8j7lfzstguV9iuD9A8n7tP/ttAyW92mC948k7zP+t9MqWN5nCN4/kbzP+t9O62B5nyV4/0zyPud/O22C5X2O4P0Lyfu8/+20DZb3eYL3ryTvC/630y5Y3hcI3hdJ3pf8b6d9sLwvEbx/I3lf9r+dDsHyvkzw/p3kfcX/djoGy/sKwfsPkvdV/9vpFCzvqwTvP0ne1/xvp3OwvK8RvK+TvL0UvrfTJVjeFn2M9yC7bYSk4HiH+t9O12B5hxK8w0je4f630y1Y3uEE7xQk75T+t9M9WN4pCd6pSN6p/W+nR7C8UxO805C8I/xvp2ewvCMI3mlJ3un8b6dXsLzTEbxvIXmn97+d3sHyTk/wzkDyjvS/nT7B8o4keGckeWfyv52+wfLORPDOTPLO4n87/YLlnYXgfSvJO6v/7fQPlndWgnc2knd2/9sZECzv7ATv20jeOfxvZ2CwvHMQvG8neef0v51BwfLOSfDORfLO7X87g4PlnZvgfQfJO+B/O0OC5R0geN9J8s7jfztDg+Wdh+B9F8k7r//tDAuWd16C990k73z+tzM8WN75CN73kLzz+9/OiGB55yd4FyB5F/S/nZHB8i5I8C5E8i7sfzujguVdmOBdhORd1P92RgfLuyjB+16SdzH/2xkTLO9iBO/iJO8S/rczNljeJQjeJUnepfxvZ1ywvEsRvEuTvMv43874YHmXIXiXJXmX87+dCcHyLkfwLk/yruB/OxOD5V2B4F2R5F3J/3YmBcu7EsH7PpJ3Zf/bmRws78oE7/tJ3lX8b+eBYHlXIXhXJXlX87+dqGB5VyN4Vyd51/C/nQeD5V2D4F2T5F3L/3amBMu7FsG7Nsm7jv/tPBQs7zoE77ok73r+tzM1WN71CN71Sd4N/G/n4WB5NyB4NyR5N/K/nWnB8m5E8G5M8m7ifzuPBMu7CcG7Kcm7mf/tTA+WdzOCd3OSdwv/23k0WN4tCN4tSd6t/G9nRrC8WxG8W5O82/jfzmPB8m5D8G5L8m7nfzszg+XdjuDdnuTdwf92Hg+WdweCd0eSdyf/25kVLO9OBO/OJO8u/rczO1jeXQjeXUne3fxvZ06wvLsRvLuTvHv4387cYHn3IHj3JHn38r+decHy7kXw7k3y7uN/O08Ey7sPwbsvybuf/+3MD5Z3P4J3f5L3AP/bWRAs7wEE74Ek70H+t7MwWN6DCN6DSd5D/G/nyWB5DyF4DyV5D/O/naeC5T2M4D2c5D3C/3YWBct7BMF7JMl7lP/tPB0s71EE79Ek7zH+t7M4WN5jCN5jSd7j/G/nmWB5jyN4jyd5T/C/nSXB8p5A8J5I8p7kfzvPBst7EsF7ssU2wkzLYFp0zH9XC/e8GqbVMq2OafVMa2BaI9OamNbMtBamtTKtjWntTOtgWifTupjWzbQepvUyrY9p/UwbYNog04aYNsy0EaaNMm2MaeNMm2DaJNMeMO1B0x4y7WHTHjHtUdMeM+1x02abNte0J0xbYNqTpj1l2tOmPWPas6Y9Z9rzpr1g2oumvWTay6a9Ytqrpr1m2uumvWHam6ZtNO0t09427R3T3jXtPdPeN+0D0z407SPTPjbtE9Ow1jzWP8ea3FgnGmsXYz1drPGKdUexFibWZ8SagVjHDmurYb0vrEGFdZGwVg/Wj8GaJlhnA2s/YD0CZOQjtx1Z4si3RuYycoCRTYu8VGR4IlcSWYfI30MmHHLKkJ2FPCdkDCH3BlksyAdBZgVyFDC3H/PNMQca83IxVxTzFzGnDvO8MPcI82EwRwPzBjCWHeOrMeYX41AxNhLj9TCGDOOaMNYG4z8wJgHXyXHtFtcTcY0L111wLQDnp3HOFOfxcG4J5zvwHRzfC/FdBZ+f8ZkOnzPw3ofjMY4R2G9jb6GW+3wR80eRcP/HCty3arj9dqpabOMBi9ch+pEhkd8HPH/9SvhDwNfDvJAqhPUIbBwc/v0UeC5L2D+XoTb7SxTvufz7ZusclSL5t/HgTT6XSTnj/ahYzN/xH5fUZsIs7lvMoj9TBJ73ioTX8EMCDtUJDlMFHGoSHB4WcKhNcJgm4FCX4PCIgEN9gsN0AYeGBIdHBRwaExxmCDg0JTg8JuDQnOAwU8ChJcHhcQGH1gSHWQIObQkOswUc2hMc5gg4dCQ4zBVw6ExwmCfg0JXg8ISAQ3eCw3wBh54EhwUCDr0JDgsFHPoSHJ4UcOhPcHhKwGEgwWGRgMNggsPTAg5DCQ6LBRyGExyeEXAYSXBYIuAwmuDwrIDDWIJDtIDDeILDcwIOEwkOSwUcJhMcnlcY90JwWCbgMIXg8IKAw1SCw3IBh2kEhxcFHKYTHFYIOMwgOLwk4DCT4LBSwGEWweFlAYc5BIdVAg7zCA6vCDjMJzisFnBYSHB4VcBhV1jyb2ONgMMiwv7wmoDDYoLDWgGHJQSH1wUcogkO6wQclhIc3hBwWEZwWC/gsJzg8KaAwwqCwwYBh5UEh40CDqsIDpsEHFYTHN4ScFhDcNgs4LCW4PC2gMM6gsMWAYf1BId3BBw2EBy2CjhsIji8K+CwmeCwTcBhC8HhPQGHrQSH7QIO2wgO7ws4bCc47BBw2EFw+EDAYSfBYafCdRyCw4cCDrsJDrsEHPYQHD4ScNhLcNgt4LCP4PCxgMN+gsMeAYcDBIdPBBwOEhz2CjgcIjh8KuBwmOCwT8DhCMHhMwGHowSH/QIOxwkOnws4nCA4HBBwOElw+ELA4RTB4aCAw2mCw5cCDmcIDocEHM4SHL4ScDhHcDgs4HCe4PC1gMMFgsMRAYdLBIdvBBwuExyOCjhcITgcE3C4SnA4LuBwjeDwrYCDR1j35ISAQyjB4TsBh3CCw0kBh5QEh+8FHFITHE4JOEQQHH4QcEhHcDgt4JCe4PCjgEMkweGMgEMmgsNPAg5ZCA5nBRyyEhx+FnDITnA4J+CQg+Dwi4BDToLDeQGH3ASHXwUcAgSHCwIOeQgOFwUc8hIcLgk45CM4/CbgkJ/gcFnAoSDB4XcBh8IEhysCDkUJDn8IOBQjOFwVcChBcPhTwKEUweGagEMZgsN1AYdyBAcv5b/foQLBIUTAoRLBIVTAoTLBIUzAoQrBIVzAoRrBIYWAQw2CQ0oBh1oEh1QCDnUIDqkFHOoRHNIIODQgOEQIODQiOKQVcGhCcEgn4NCM4HCLgEMLgkN6AYdWBIcMAg5tCA6RAg7tCA4ZBRw6EBwyCTh0IjhkFnDoQnDIIuDQjeBwq4BDD4JDVgGHXgSHbAIOfQgO2QUc+hEcbhNwGEBwyCHgMIjgcLuAwxCCQ04Bh2EEh1wCDiMIDrkFHEYRHO4QcBhDcAgIOIwjONwp4DCB4JBHwGESweEuC4cw0yJNi47574dM/6aa9rBp00x7xLTppj1q2gzTHjNtpmmPmzbLtNmmzTFtrmnzTHvCtPmmLTBtoWlPmvaUaYtMe9q0xaY9Y9oS0541Ldq050xbatrzpi0z7QXTlpv2omkrTMP69FibHeuSY01urEeNtZixDjHW4MX6s1h7FeuOYs1NrDeJtRaxziDW2MP6clhbDeuKYU0trCeFtZSwjhDW0MH6MVg7BeuGYM0MrBeBtRKwTgAy8pEPj2x05IIjExt50MhCRg4wMnCR/4rsU+R+IvMSeY/IOkTOHzLukO+GbDPkeiHTCnlOyDJCjg8ybJDfguwS5HYgswJ5DcgqwDx9zFHH/GzMTca8XMxJxXxMzEXEPDzMQcP8K8w9wrwbzDnBfAvMNcA4e4wxx/hqjC3GuFqMKcV4SowlxDg6jCHD+CmMHcK4GYwZwXgJjBXAdXJcI8b1UVwbxHUxXBPC9RBcC8B5cJwDxvlPnPvDeS+c88H5DnzXx/dcfMfD9xt8tsfnWnymw+cZvJffeB8zDccvvHax38beQhPs88V6NBp2rHh0gQ1Naq6PimrTMX/JU3XGbhwyp/qxi/POmf9fJNzzHvT/2grB/aek+N/tJPW4+NtIqk95LY9HkYn8PuD561fCHwK+HuaFRKVI/uORjYPDv58Cz2WJcOvnMqxIuP/n8m7ec/n3zdb57pTJv418Ag4VCRlL9wg4VCc45BdwqElwKCDgUJvgUFDAoS7BoZCAQ32CQ2EBh4YEhyICDo0JDkUFHJoSHO4VcGhOcCgm4NCS4FBcwKE1waGEgENbgkNJAYf2BIdSAg4dCQ6lBRw6ExzKCDh0JTiUFXDoTnAoJ+DQk+BQXsChN8GhgoBDX4JDRQGH/gSHSgIOAwkO9wk4DCY4VBZwGEpwuF/AYTjBoYqAw0iCQ1UBh9EEh2oCDmMJDtUFHMYTHGoIOEwkONQUcJhMcKgl4BBFcKgt4DCF4FBHwGEqwaGugMM0gkM9AYfpBIf6Ag4zCA4NBBxmEhwaCjjMIjg0EnCYQ3BoLOAwj+DQRMBhPsGhqYDDQoJDMwGHXWHJv43mAg6LCPtDCwGHxQSHlgIOSwgOrQQcogkOrQUclhIc2gg4LCM4tBVwWE5waCfgsILg0F7AYSXBoYOAwyqCQ0cBh9UEh04CDmsIDp0FHNYSHLoIOKwjOHQVcFhPcOgm4LCB4NBdwGETwaGHgMNmgkNPAYctBIdeAg5bCQ69BRy2ERz6CDhsJzj0FXDYQXDoJ+Cwk+DQX+E6DsFhgIDDboLDQAGHPQSHQQIOewkOgwUc9hEchgg47Cc4DBVwOEBwGCbgcJDgMFzA4RDBYYSAw2GCw0gBhyMEh1ECDkcJDqMFHI4THMYIOJwgOIwVcDhJcBgn4HCK4DBewOE0wWGCgMMZgsNEAYezBIdJAg7nCA6TBRzOExweEHC4QHCIEnC4RHB4UMDhMsFhioDDFYLDQwIOVwkOUwUcrhEcHhZw8AhrukwTcAglODwi4BBOcJgu4JCS4PCogENqgsMMAYcIgsNjAg7pCA4zBRzSExweF3CIJDjMEnDIRHCYLeCQheAwR8AhK8FhroBDdoLDPAGHHASHJwQcchIc5gs45CY4LBBwCBAcFgo45CE4PCngkJfg8JSAQz6CwyIBh/wEh6cFHAoSHBYLOBQmODwj4FCU4LBEwKEYweFZAYcSBIdoAYdSBIfnBBzKEByWCjiUIzg8L+BQgeCwTMChEsHhBQGHygSH5QIOVQgOLwo4VCM4rBBwqEFweEnAoRbBYaWAQx2Cw8sCDvUIDqsEHBoQHF4RcGhEcFgt4NCE4PCqgEMzgsMaAYcWBIfXBBxaERzWCji0ITi8LuDQjuCwTsChA8HhDQGHTgSH9QIOXQgObwo4dCM4bBBw6EFw2Cjg0IvgsEnAoQ/B4S0Bh34Eh80CDgMIDm8LOAwiOGwRcBhCcHhHwGEYwWGrgMMIgsO7Ag6jCA7bBBzGEBzeE3AYR3DYLuAwgeDwvoDDJILDDguHMNMymhYd89/3mMfmN62AaQVNK2RaYdOKmFbUtHtNK2ZacdNKmFbStFKmlTatjGllTStnWnnTKphW0bRKpt1nWmXT7jetimlVTatmWnXTaphW07RaptU2rY5pdU2rZ1p907A+PdZmx7rkWJMb61FjLWasQ4w1eLH+LNZexbqjWHMT601irUWsM4g19rC+HNZWw7piWFML60lhLSWsI4Q1dLB+DNZOwbohWDMD60VgrQSsE4CMfOTDIxsdueDIxEYeNLKQkQOMDFzkvyL7FLmfyLxE3iOyDpHzh4w75Lsh2wy5Xsi0Qp4TsoyQ44MMG+S3ILsEuR3IrEBeA7IKME8fc9QxPxtzkzEvF3NSMR8TcxExDw9z0DD/CnOPMO8Gc04w3wJzDTDOHmPMMb4aY4sxrhZjSjGeEmMJMY4OY8gwfgpjhzBuBmNGMF4CYwVwnRzXiHF9FNcGcV0M14RwPQTXAnAeHOeAcf4T5/5w3gvnfHC+A9/18T0X3/Hw/Qaf7fG5Fp/p8HkG7+V4H8MxHMcvvHax38beQi33+ULmjyLxslWK9Wg07Fjx6AIbmtRcHxXVpmP+kqfqjN04ZE71YxfnnYu5b76U9tvBY/xu44OUdsejjIn8PuD561fCHwK+HuaF3J0y+Y9HH1huw/LfT4HnskS49XMZbrO/7OQ9l3/fbJ13Ep7LDwUcKhIylnYJOFQnOHwk4FCT4LBbwKE2weFjAYe6BIc9Ag71CQ6fCDg0JDjsFXBoTHD4VMChKcFhn4BDc4LDZwIOLQkO+wUcWhMcPhdwaEtwOCDg0J7g8IWAQ0eCw0EBh84Ehy8FHLoSHA4JOHQnOHwl4NCT4HBYwKE3weFrAYe+BIcjAg79CQ7fCDgMJDgcFXAYTHA4JuAwlOBwXMBhOMHhWwGHkQSHEwIOowkO3wk4jCU4nBRwGE9w+F7AYSLB4ZSAw2SCww8CDlEEh9MCDlMIDj8KOEwlOJwRcJhGcPhJwGE6weGsgMMMgsPPAg4zCQ7nBBxmERx+EXCYQ3A4L+Awj+Dwq4DDfILDBQGHhQSHiwIOu8KSfxuXBBwWEfaH3wQcFhMcLgs4LCE4/C7gEE1wuCLgsJTg8IeAwzKCw1UBh+UEhz8FHFYQHK4JOKwkOFwXcFhFcPBS/fsdVhMcQgQc1hAcQgUc1hIcwgQc1hEcwgUc1hMcUgg4bCA4pBRw2ERwSCXgsJngkFrAYQvBIY2Aw1aCQ4SAwzaCQ1oBh+0Eh3QCDjsIDrcIOOwkOKQXcNhFcMgg4LCb4BAp4LCH4JBRwGEvwSGTgMM+gkNmAYf9BIcsAg4HCA63CjgcJDhkFXA4RHDIJuBwmOCQXcDhCMHhNgGHowSHHAIOxwkOtws4nCA45BRwOElwyCXgcIrgkFvA4TTB4Q4BhzMEh4CAw1mCw50CDucIDnkEHM4THO4ScLhAcMgr4HCJ4HC3gMNlgkM+AYcrBId7BByuEhzyCzhcIzgUEHDwCGtMFRRwCCU4FBJwCCc4FBZwSElwKCLgkJrgUFTAIYLgcK+AQzqCQzEBh/QEh+ICDpEEhxICDpkIDiUFHLIQHEoJOGQlOJQWcMhOcCgj4JCD4FBWwCEnwaGcgENugkN5AYcAwaGCgEMegkNFAYe8BIdKAg75CA73CTjkJzhUFnAoSHC4X8ChMMGhioBDUYJDVQGHYgSHagIOJQgO1QUcShEcagg4lCE41BRwKEdwqCXgUIHgUFvAoRLBoY6AQ2WCQ10BhyoEh3oCDtUIDvUFHGoQHBoIONQiODQUcKhDcGgk4FCP4NBYwKEBwaGJgEMjgkNTAYcmBIdmAg7NCA7NBRxaEBxaCDi0Iji0FHBoQ3BoJeDQjuDQWsChA8GhjYBDJ4JDWwGHLgSHdgIO3QgO7QUcehAcOgg49CI4dBRw6ENw6CTg0I/g0FnAYQDBoYuAwyCCQ1cBhyEEh24CDsMIDt0FHEYQHHoIOIwiOPQUcBhDcOgl4DCO4NBbwGECwaGPgMMkgkNfC4cw0zKZFh3z37tSet5Hpu027WPT9pj2iWl7TfvUtH2mfWbaftM+N+2AaV+YdtC0L007ZNpXph027WvTjpj2jWlHTTtm2nHTvjXthGnfmXbStO9NO2XaD6adNu1H086Y9pNpZ03D+vRYmx3rkmNNbqxHjbWYsQ4x1uDF+rNYexXrjmLNTaw3ibUWsc4g1tjD+nJYWw3rimFNLawnhbWUsI4Q1tDB+jFYOwXrhmDNDKwXgbUSsE4AMvKRD49sdOSCIxMbedDIQkYOMDJwkf+K7FPkfiLzEnmPyDpEzh8y7m7ku5mGXC9kWiHPCVlGyPFBhg3yW5BdgtwOZFYgrwFZBZinjznqmJ+NucmYl4s5qZiPibmImIeHOWiYf4W5R5h3gzknmG+BuQYYZ48x5hhfjbHFGFeLMaUYT4mxhBhHhzFkGD+FsUMYN4MxIxgvgbECuE6Oa8S4Poprg7guhmtCuB6CawE4D45zwDj/iXN/OO+Fcz4434Hv+viei+94+H6Dz/b4XIvPdPg8g/dyvI/hGI7jF1672G9jb6GW+3yRcGMUL1ulWI9Gw44Vjy6woUnN9VFRbTrmL3mqztiNQ+ZUP3Zx3jnz/3H/D1Pab+fDlP630c/yeJQpkd8HPH/9SvhDwNfDvJCdKZP/eER0iNuo3eNCKhJyefoLOFQnOAwQcKhJcBgo4FCb4DBIwKEuwWGwgEN9gsMQAYeGBIehAg6NCQ7DBByaEhyGCzg0JziMEHBoSXAYKeDQmuAwSsChLcFhtIBDe4LDGAGHjgSHsQIOnQkO4wQcuhIcxgs4dCc4TBBw6ElwmCjg0JvgMEnAoS/BYbKAQ3+CwwMCDgMJDlECDoMJDg8KOAwlOEwRcBhOcHhIwGEkwWGqgMNogsPDAg5jCQ7TBBzGExweEXCYSHCYLuAwmeDwqIBDFMFhhoDDFILDYwIOUwkOMwUcphEcHhdwmE5wmCXgMIPgMFvAYSbBYY6AwyyCw1wBhzkEh3kCDvMIDk8IOMwnOMwXcFhIcFgg4LArjGAt4LCIsD88KeCwmODwlIDDEoLDIgGHaILD0wIOSwkOiwUclhEcnhFwWE5wWCLgsILg8KyAw0qCQ7SAwyqCw3MCDqsJDksFHNYQHJ4XcFhLcFgm4LCO4PCCgMN6gsNyAYcNBIcXBRw2ERxWCDhsJji8JOCwheCwUsBhK8HhZQGHbQSHVQIO2wkOrwg47CA4rBZw2ElweFXhOg7BYY2Aw26Cw2sCDnsIDmsFHPYSHF4XcNhHcFgn4LCf4PCGgMMBgsN6AYeDBIc3BRwOERw2CDgcJjhsFHA4QnDYJOBwlODwloDDcYLDZgGHEwSHtwUcThIctgg4nCI4vCPgcJrgsFXA4QzB4V0Bh7MEh20CDucIDu8JOJwnOGwXcLhAcHhfwOESwWGHgMNlgsMHAg5XCA47BRyuEhw+FHC4RnDYJeDgEdYl+kjAIZTgsFvAIZzg8LGAQ0qCwx4Bh9QEh08EHCIIDnsFHNIRHD4VcEhPcNgn4BBJcPhMwCETwWG/gEMWgsPnAg5ZCQ4HBByyExy+EHDIQXA4KOCQk+DwpYBDboLDIQGHAMHhKwGHPASHwwIOeQkOXws45CM4HBFwyE9w+EbAoSDB4aiAQ2GCwzEBh6IEh+MCDsUIDt8KOJQgOJwQcChFcPhOwKEMweGkgEM5gsP3Ag4VCA6nBBwqERx+EHCoTHA4LeBQheDwo4BDNYLDGQGHGgSHnwQcahEczgo41CE4/CzgUI/gcE7AoQHB4RcBh0YEh/MCDk0IDr8KODQjOFwQcGhBcLgo4NCK4HBJwKENweE3AYd2BIfLAg4dCA6/Czh0IjhcEXDoQnD4Q8ChG8HhqoBDD4LDnwIOvQgO1wQc+hAcrgs49CM4eKn//Q4DCA4hAg6DCA6hAg5DCA5hAg7DCA7hAg4jCA4pBBxGERxSCjiMITikEnAYR3BILeAwgeCQRsBhEsEhIrXdNmz//SLhnlci/H8fV6xHo2HHikcX2NCk5vqoqDYd85c8VWfsxiFzqh+7OO+c+f9lcyVvv+6N6VeoZb/S+vcKSe4aipo/CpkawhI8Lqkailrct1C4//ums7D5+w/P4jmL2YZn9zjPlHDjeU6R2D9q2Ycinmf9mnTZTmGPs51Cnt12Er5ekvr38fovGm73uiwWHveLgGd/szWYYnGcDY338y0x+2L61HHbtN64xYvmxr8dFvP3LTGPC/fidvCEnQx4vm43nqTilk9Sccsn6fr165cT+33AS3p7+CN+fRli4CNTe/9EyRDzTMT/XWQ8YJd3r+IO717lCe9eLv2qYNmv2Fu4/+3MNdsJyZDaf58iLd41LFxD/NYau2PaWuKFm8Hh3SixbSV1d9z/DofnO2Myf7q7x7FfmZK5X/kc+5U5mfuVO9ytX1mSuV93e279ujWZ+4U+3enQr6zJ3K+sjs9jNoJXwKFf2S36hffVzKZViflvHGPwesZrB/sp9gn4o1b8uxXD/7/dEvOxsb/Nv31qi/e/1BWS+TMI3v9uS22/r+WwPPOSOZHfBzy7m21tOVIn/zZut3zNZfH+e80lfM3ZftHBc5TO4rMp7ovnyXY7t1tsI6fl6yFLIr8PeP76lfCHgK+HcV4POR22gZvt8TZX8I+3IX//4dkdb3M5HG9z8/avuM7aPS4kN2H/ukPAAcc2n/d13kZAwKE6weFOAYeaBIc8Ag61CQ53CTjUJTjkFXCoT3C4W8ChIcEhn4BDY4LDPQIOTQkO+QUcmhMcCgg4tCQ4FBRwaE1wKCTg0JbgUFjAoT3BoYiAQ0eCQ1EBh84Eh3sFHLoSHIoJOHQnOBQXcOhJcCgh4NCb4FBSwKEvwaGUgEN/gkNpAYeBBIcyAg6DCQ5lBRyGEhzKCTgMJziUF3AYSXCoIOAwmuBQUcBhLMGhkoDDeILDfQIOEwkOlQUcJhMc7hdwiCI4VBFwmEJwqCrgMJXgUE3AYRrBobqAw3SCQw0BhxkEh5oCDjMJDrUEHGYRHGoLOMwhONQRcJhHcKgr4DCf4FBPwGEhwaG+gMOusOTfRgMBh0WE/aGhgMNigkMjAYclBIfGAg7RBIcmAg5LCQ5NBRyWERyaCTgsJzg0F3BYQXBoIeCwkuDQUsBhFcGhlYDDaoJDawGHNQSHNgIOawkObQUc1hEc2gk4rCc4tBdw2EBw6CDgsIng0FHAYTPBoZOAwxaCQ2fLvJ1bvbi8HWQmIC8Ac+UxTxxzpDE/GHNjMS8UcyIxHxBz4TAPDHOgMP8Hc18w7wNzHjDeH2PdMc4bY5wxvhdjWzGuE2MaMZ4PY9kwjgtjmDB+B2NXMG4DYxZwvR7XqnGdFtcocX0O16ZwXQbXJHA+HueicR4W5yBx/g3nnnDeBecc8H0b3zXxPQvfMfD5Gp8t8bkKnynwfor3EhxHcQzB6wf7Dtxib9bBop593g5yOmy3c4fFNrpYvh5uTeT3Ac9fvxL+EPD1ME4eSheHbeBmm7fT1f92kitv58buZOuDfRF9T/i4pOrtxtu/4jpr97iQboT9q7uAAyNvp4eAAyNvp6eAAyNvp5eAAyNvp7eAAyNvp4+AAyNvp6+AAyNvp5+AAyNvp7+AAyNvZ4CAAyNvZ6CAAyNvZ5CAAyNvZ7CAAyNvZ4iAAyNvZ6iAAyNvZ5iAAyNvZ7iAAyNvZ4SAAyNvZ6SAAyNvZ5SAAyNvZ7SAAyNvZ4yAAyNvZ6yAAyNvZ5yAAyNvZ7yAAyNvZ4KAAyNvZ6KAAyNvZ5KAAyNvZ7KAAyNv5wEBB0beTpSAAyNv50EBB0bezhQBB0bezkMCDoy8nakCDoy8nYcFHBh5O9MEHBh5O48IODDydqYLODDydh4VcGDk7cwQcGDk7Twm4MDI25kp4MDI23lcwIGRtzNLwIGRtzNbwIGRtzNHwIGRtzNXwIGRtzNPwIGRt/OEgAMjb2e+gAMjb2eBgAMjb2ehgAMjb+dJAQdG3s5TAg6MvJ1FAg6MvJ2nBRwYeTuLBRwYeTvPCDgw8naWCDgw8naeFXBg5O1ECzgw8naeE3Bg5O0sFXBg5O08b+GATJGsXlzeDjITkBeAufKYJ4450pgfjLmxmBeKOZGYD4i5cJgHhjlQmP+DuS+Y94E5Dxjvj7HuGOeNMc4Y34uxrRjXiTGNGM+HsWwYx4UxTBi/g7ErGLeBMQu4Xo9r1bhOi2uUuD6Ha1O4LoNrEjgfj3PROA+Lc5A4/4ZzTzjvgnMO+L6N75r4noXvGPh8jc+W+FyFzxR4P8V7CY6jOIbg9YN9B26xN9scnMKefd4Ocjpst9PdYhvLLF8PWRP5fcDz16+EPwR8PYyTh7LMYRu42ebtvOB/O8mVt3Ojy7Y+2BfR94SPS6re5bz9K66zdo8LWU7Yv14UcGDk7awQcGDk7bwk4MDI21kp4MDI23lZwIGRt7NKwIGRt/OKgAMjb2e1gAMjb+dVAQdG3s4aAQdG3s5rAg6MvJ21Ag6MvJ3XBRwYeTvrBBwYeTtvCDgw8nbWCzgw8nbeFHBg5O1sEHBg5O1sFHBg5O1sEnBg5O28JeDAyNvZLODAyNt5W8CBkbezRcCBkbfzjoADI29nq4ADI2/nXQEHRt7ONgEHRt7OewIOjLyd7QIOjLyd9wUcGHk7OwQcGHk7Hwg4MPJ2dgo4MPJ2PhRwYOTt7BJwYOTtfCTgwMjb2S3gwMjb+VjAgZG3s0fAgZG384mAAyNvZ6+AAyNv51MBB0bezj4BB0bezmcCDoy8nf0CDoy8nc8FHBh5OwcEHBh5O18IODDydg4KODDydr4UcGDk7RxSmJ9FcPhKwIGRt3NYwIGRt/O1gAMjb+eIgAMjb+cbAQdG3s5RAQdG3s4xAQdG3s5xAQdG3s63Ag6MvJ0TAg6MvJ3vBBwYeTsnBRwYeTvfWzggoCObF5e3g8wE5AVgrjzmiWOONOYHY24s5oViTiTmA2IuHOaBYQ4U5v9g7gvmfWDOA8b7Y6w7xnljjDPG92JsK8Z1YkwjxvNhLBvGcWEME8bvYOwKxm1gzAKu1+NaNa7T4holrs/h2hSuy+CaBM7H41w0zsPiHCTOv+HcE8674JwDvm/juya+Z+E7Bj5f47MlPlfhMwXeT/FeguMojiF4/WDfgVvszTYHZ0oK+7wd5HTYbudFi22csnw9ZEvk9wHPX78S/hDw9TBOHsoph23gZpu384P/7SRX3k44/rD1wb6Ivid8XFL1nubtX3GdtXtcyGnC/vWjgAMjb+eMgAMjb+cnAQdG3s5ZAQdG3s7PAg6MvJ1zAg6MvJ1fBBwYeTvnBRwYeTu/Cjgw8nYuCDgw8nYuCjgw8nYuCTgw8nZ+E3Bg5O1cFnBg5O38LuDAyNu5IuDAyNv5Q8CBkbdzVcCBkbfzp4ADI2/nmoADI2/nuoADI2/HS/Pvd2Dk7YQIODDydkIFHBh5O2ECDoy8nXABB0beTgoBB0beTkoBB0beTioBB0beTmoBB0beThoBB0beToSAAyNvJ62AAyNvJ52AAyNv5xYBB0beTnoBB0beTgYBB0beTqSAAyNvJ6OAAyNvJ5OAAyNvJ7OAAyNvJ4uAAyNv51YBB0beTlYBB0beTjYBB0beTnYBB0bezm0CDoy8nRwCDoy8ndsFHBh5OzkFHBh5O7kEHBh5O7kFHBh5O3cIODDydgICDoy8nTsFHBh5O3kEHBh5O3cJODDydvIKODDydu4WcGDk7eQTcGDk7dwj4MDI28kv4MDI2ykg4MDI2yko4MDI2ylk4YBMkexeXN4OMhOQF4C58pgnjjnSmB+MubGYF4o5kZgPiLlwmAeGOVCY/4O5L5j3gTkPGO+Pse4Y540xzhjfi7GtGNeJMY0Yz4exbBjHhTFMGL+DsSsYt4ExC7hej2vVuE6La5S4PodrU7gug2sSOB+Pc9E4D4tzkDj/hnNPOO+Ccw74vo3vmje+Z5mGz9f4bInPVfhMgfdTvJfgOIpjCF4/2HfgFnuzzcEp5Nnn7fzokLfzo8U2Clu+HrIn8vuA569fCX8I+HoYJw/FxiH+zTZvp4j/7SRX3k4K/GHrg30RfU/4uKTqLcrbv+I6a/e4kKJpkn8b9wo4MPJ2igk4MPJ2igs4MPJ2Sgg4MPJ2Sgo4MPJ2Sgk4MPJ2Sgs4MPJ2ygg4MPJ2ygo4MPJ2ygk4MPJ2ygs4MPJ2Kgg4MPJ2Kgo4MPJ2Kgk4MPJ27hNwYOTtVBZwYOTt3C/gwMjbqSLgwMjbqSrgwMjbqSbgwMjbqS7gwMjbqSHgwMjbqSngwMjbqSXgwMjbqS3gwMjbqSPgwMjbqSvgwMjbqSfgwMjbqS/gwMjbaSDgwMjbaSjgwMjbaSTgwMjbaSzgwMjbaSLgwMjbaSrgwMjbaSbgwMjbaS7gwMjbaSHgwMjbaSngwMjbaSXgwMjbaS3gwMjbaSPgwMjbaSvgwMjbaSfgwMjbaS/gwMjb6SDgwMjb6SjgwMjb6STgwMjb6SzgwMjb6SLgwMjb6SrgwMjb6SbgwMjb6S7gwMjb6SHgwMjb6SngwMjb6SXgwMjb6S3gwMjb6SPgwMjb6SvgwMjb6SfgwMjb6S/gwMjbGSDgwMjbGSjgwMjbGSTgwMjbGWyZt3ObF5e3g8wE5AVgrjzmiWOONOYHY24s5oViTiTmA2IuHOaBYQ4U5v9g7gvmfWDOA8b7Y6w7xnljjDPG92JsK8Z1YkwjxvNhLBvGcWEME8bvYOwKxm1gzAKu1+NaNa7T4holrs/h2hSuy+CaBM7H41w0zsPiHCTOv+HcE8674JwDvm/juya+Z+E7Bj5f47MlPlfhMwXeT/FeguMojiF4/WDfgVvszTYHB5kl6S3zdpDTYbud+NkeSW1jiOXr4bZEfh/w/PUr4Q8BXw/j5KEMcdgGbrZ5O0P9bye58nZS4g9bH+yL6HvCxyVV7zDe/hXXWbvHhQwj7F/DLbdh+5ovYt4zioZbHCPMfYuF2z+fIwSeT0Zu0EgBB0Zu0CgBB0Zu0GgBB0Zu0BgBB0Zu0FgBB0Zu0DgBB0Zu0HgBB0Zu0AQBB0Zu0EQBB0Zu0CQBB0Zu0GQBB0Zu0AMCDozcoCgBB0Zu0IMCDozcoCkCDozcoIcEHBi5QVMFHBi5QQ8LODByg6YJODBygx4RcGDkBk0XcGDkBj0q4MDIDZoh4MDIDXpMwIGRGzRTwIGRG/S4gAMjN2iWgAMjN2i2gAMjN2iOgAMjN2iugAMjN2iegAMjN+gJAQdGbtB8AQdGbtACAQdGbtBCAQdGbtCTAg6M3KCnBBwYuUGLBBwYuUFPCzgwcoMWCzgwcoOeEXBg5AYtEXBg5AY9K+DAyA2KFnBg5AY9J+DAyA1aKuDAyA16XsCBkRu0TMCBkRv0goADIzdouYADIzfoRQEHRm7QCgEHRm7QSwIOjNyglQIOjNyglwUcGLlBqwQcGLlBrwg4MHKDVgs4MHKDXhVwYOQGrRFwYOQGvSbgwMgNWivgwMgNel3AgZEbtM7CAdkoOby43CBkJiAvAHPlMU8cc6QxPxhzYzEvFHMiMR8Qc+EwDwxzoDD/B3NfMO8Dcx4w3h9j3THOG2OcMb4XY1sxrhNjGjGeD2PZMI4LY5gwfgdjVzBuA2MWcL0e16pxnRbXKHF9DtemcF0G1yRwPh7nonEeFucgcf4N555w3gXnHPB9G9818T0L3zHw+RqfLfG5Cp8p8H6K9xIcR3EMwesH+w7cYm8Jsz385ABZ5IfcyGpBTkfC7ST1uPjbSKpPb6Sxez3kSOT3Ac9fvxL+EPD1ME6uyxsO28DNNjdovf/tJFduUCr8YeuDfRF9T/i4pOp9k7d/xXXW7nEhbxL2rw0CDoy8nY0CDoy8nU0CDoy8nbcEHBh5O5sFHBh5O28LODDydrYIODDydt4RcGDk7WwVcGDk7bwr4MDI29km4MDI23lPwIGRt7NdwIGRt/O+gAMjb2eHgAMjb+cDAQdG3s5OAQdG3s6HAg6MvJ1dAg6MvJ2PBBwYeTu7BRwYeTsfCzgw8nb2CDgw8nY+EXBg5O3sFXBg5O18KuDAyNvZJ+DAyNv5TMCBkbezX8CBkbfzuYADI2/ngIADI2/nCwEHRt7OQQEHRt7OlwIOjLydQwIOjLydrwQcGHk7hwUcGHk7Xws4MPJ2jgg4MPJ2vhFwYOTtHBVwYOTtHBNwYOTtHBdwYOTtfCvgwMjbOSHgwMjb+U7AgZG3c1LAgZG3872AAyNv55SAAyNv5wcBB0bezmkBB0bezo8CDoy8nTMCDoy8nZ8EHBh5O2cFHBh5Oz8LODDyds4JODDydn4RcGDk7ZwXcGDk7fwq4MDI27kg4MDI27ko4MDI27kk4MDI2/lNwIGRt3PZwgGZIrd7cXk7yExAXgDmymOeOOZIY34w5sZiXijmRGI+IObCYR4Y5kBh/g/mvmDeB+Y8YLw/xrpjnDfGOGN8L8a2YlwnxjRiPB/GsmEcF8YwYfwOxq5g3AbGLOB6Pa5V4zotrlHi+hyuTeG6DK5J4Hw8zkXjPCzOQeL8G8494bwLzjng+za+a+J7Fr5j4PM1PlvicxU+U+D9FO8lOI7iGILXD/YduMXebHNwkFlyS+q4+/vJ50FOh+124md7JLWN3y1fD7cn8vuA569fCX8I+HoYJw/ld4dt4Gabt3PF/3ZCLPJ2QizydkL+/sOz23fR94SPS6rePyxc8W+Hxfyd2ONc8q383vdqGju/2Jvt8/9n8J//vx7g/bPfSd099tjlcsyLvW9SNtcc95XYx93k8ekf/7bF4yg5Rdd5x+m4jdo9jpJT5EX8+x0YOUUhAg6MnKJQAQdGTlGYgAMjpyhcwIGRU5RCwIGRU5RSwIGRU5RKwIGRU5RawIGRU5RGwIGRUxQh4MDIKUor4MDIKUon4MDIKbpFwIGRU5RewIGRU5RBwIGRUxQp4MDIKcoo4MDIKcok4MDIKcos4MDIKcoi4MDIKbpVwIGRU5RVwIGRU5RNwIGRU5RdwIGRU3SbgAMjpyiHgAMjp+h2AQdGTlFOAQdGTlEuAQdGTlFuAQdGTtEdAg6MnKKAgAMjp+hOAQdGTlEeAQdGTtFdAg6MnKK8Ag6MnKK7BRwYOUX5BBwYOUX3CDgwcoryCzgwcooKCDgwcooKCjgwcooKCTgwcooKCzgwcoqKCDgwcoqKCjgwcoruFXBg5BQVE3Bg5BQVF3Bg5BSVEHBg5BSVFHBg5BSVEnBg5BSVFnBg5BSVEXBg5BSVFXBg5BSVE3Bg5BSVF3Bg5BRVEHBg5BRVFHBg5BRVEnBg5BTdJ+DAyCmqHGG3Ddt/H/kUfzjkmjRM5rwN5JH8mcY+8+R+/14hyV3DvWb/SJv6fzNSknpckXD/9VaxqLesRb2mC3/ni/zPPxTzd8Dzt92S/u/7j+1VjbiJDeLBto+rFuEf3rVf1SLifhHw/N9cXtjXHF7YTZL5RTEizV9hQ7b9amrZr9ibbUBRdYsXlIVVSNObDKhKqt+lvL/2rYQHzKS2VcpiGzWS+c0I9jUi7GuvadEv/NuxB7bEHmf7hlPD4phRK8JuH4i92e7DtYO/D//1AO+f/U7q7jgu3B9h/xzUScY3fZfAL5s3ZdRcxWGfr2uxz+PNPCTm7//pQILtJtVfmzfzm9lOcY+zndo3eUxL6nkq4/31+rXdj8Is7lvGs7cKSfhDwNfDvJAayQxW2vvroGoLZnMgrmf54kELTWyjln30+6K9fv360cR+H/CS3gb+iN/X+jEfOBtEeP9896sfc9SJ/7sGiXTQ9utLXX9PxFzzRITUt3jSGlji2e542IHqO346t91Z8RWvfyq7r5Jlwh2+pkckfx0DLOso61BHI0IdAy3rKOdQR2NCHYMs6yjvUEcTQh2DLeuo4FBH02T+RoM6hqSy71czQr+GOvSrOaFfwxz61YLQr+EO/WpJ6NcIh361IvRrpEO/WhP6NcqhX20I/Rrt0K+2hH6NcehXO0K/xjr0qz2hX+Mc+tWB0K/xDv3qSOjXBId+dSL0a6JDvzoT+jXJoV9dCP2a7NCvroR+PeDQr26EfkU59Ks7oV8POvSrB6FfUxz61ZPQr4cc+tWL0K+pDv3qTejXww796kPo1zSHfvUl9OsRh371I/RrukO/+hP69ahDvwYQ+jXDoV8DCf16zKFfgwj9munQr8GEfj3u0K8hhH7NcujXUEK/Zjv0axihX3Mc+jWc0K+5Dv0aQejXPId+jST06wmHfo0i9Gu+Q79GE/q1wKFfYwj9WujQr7GEfj3p0K9xhH495dCv8YR+LXLo1wRCv5526NdEQr8WO/RrEqFfzzj0azKhX0sc+vUAoV/POvQritCvaId+PUjo13MO/ZpC6NdSh349ROjX8w79mkro1zKHfj1M6NcLDv2aRujXcod+PULo14sO/ZpO6NcKh349SujXSw79mkHo10qHfj1G6NfLDv2aSejXKod+PU7o1ysO/ZpF6Ndqh37NJvTrVYd+zSH0a41Dv+YS+vWaQ7/mEfq11qFfTxD69bpDv+YT+rXOoV8LCP16w6FfCwn9Wu/QrycJ/XrToV9PEfq1waFfiwj92ujQr6cJ/drk0K/FhH695dCvZwj92uzQryWEfr3t0K9nCf3a4tCvaEK/3nHo13OEfm116NdSQr/edejX84R+bXPo1zJCv95z6NcLhH5td+jXckK/3nfo14uEfu1w6NcKQr8+cOjXS4R+7XTo10pCvz506NfLhH7tcujXKkK/PnLo1yuEfu126NdqQr8+dujXq4R+7XHo1xpCvz5x6NdrhH7tdejXWkK/PnXo1+uEfu1z6Nc6Qr8+c+jXG4R+7Xfo13pCvz536NebhH4dcOjXBkK/vnDo10ZCvw469GsToV9fOvTrLUK/Djn0azOhX1859OttQr8OO/RrC6FfXzv06x1Cv4449GsroV/fOPTrXUK/jjr0axuhX8cc+vUeoV/HHfq1ndCvbx369T6hXycc+rWD0K/vHPr1AaFfJx36tZPQr+8d+vUhoV+nHPq1i9CvHxz69RGhX6cd+rWb0K8fHfr1MaFfZxz6tYfQr58c+vUJoV9nHfq1l9Cvnx369SmhX+cc+rWP0K9fHPr1GaFf5x36tZ/Qr18d+vU5oV8XHPp1gNCviw79+oLQr0sO/TpI6NdvDv36ktCvyw79OkTo1+8O/fqK0K8rDv06TOjXHw79+prQr6sO/TpC6NefDv36htCvaw79Okro13WHfh0j9MtLbd+v44R+hTj061tCv0Id+nWC0K8wh359R+hXuEO/ThL6lcKhX98T+pXSoV+nCP1K5dCvHwj9Su3Qr9OEfqVx6NePhH5FOPTrjEW/sB5CTtOiY/4bGfvIp0e2O3LRkSmO/G5kZSOXGhnQyFtGtjFyhJHZi3xcZNEi9xUZq8gzRXYocjqRiYn8SWQ9IlcRGYbIC0Q2H3LwkDmHfDdkqSG3DBlhyONC9hVyppDphPwkZBUhFwgZPMi7QbYMclyQmYJ8EmSBIHcDGRfIk0B2A3ISkEmA+f+Ya4957ZhDjvnamBuNeciY84v5tZjLinmjmKOJ+ZCYe4h5fphTh/lrmCuGeVmYA4X5Rpjbg3k0mLOC+SGYi4F5D5hjgPH8GDuPceoYE47x1xjrjHHFGMOL8bIYm4pxoBhzifGNGEuIcXsYI4fxaBj7hXFWGNOE8UMYq4NxMRiDgvEeGFuBcQwYM4Dr87gWjuvOuMaL66m4donrhLgmh+tfuNaE6zq4hoLrFbg2gPPwOOeN88s4l4vzpjhHifOBOPeG81w4p4TzNzhXgvMSOAeA79v4bovvkfjOhu9H+C6Cz/34jI3Ps/jsiM9p+EyEzx94r8f7Kt7D8H6BYzOOgzjm4PWN1xL2W8fXSgqsd4G1OmxfKz9F+H+thMa8VhLeAp7dzfY4YNNH122ctdyG7RoI6E/8hWqSel5iF86xfT5/jrA79uXy/jv2/Xfs+3cd+1xW7bN4/d5YXAqvE9vXcPxtJNWncxF2x9Vcifw+4PnrV8IfAr4exjmunrPchuv7XnIuMPYL77mM66Dd40J+ITyX5wUcKoYn/zZ+FXCoTnC4IOBQk+BwUcChNsHhkoBDXYLDbwIO9QkOlwUcGhIcfhdwaExwuCLg0JTg8IeAQ3OCw1UBh5YEhz8FHFoTHK4JOLQlOFwXcGhPcPDS/vsdOhIcQgQcOhMcQgUcuhIcwgQcuhMcwgUcehIcUgg49CY4pBRw6EtwSCXg0J/gkFrAYSDBIY2Aw2CCQ4SAw1CCQ1oBh+EEh3QCDiMJDrcIOIwmOKQXcBhLcMgg4DCe4BAp4DCR4JBRwGEywSGTgEMUwSGzgMMUgkMWAYepBIdbBRymERyyCjhMJzhkE3CYQXDILuAwk+Bwm4DDLIJDDgGHOQSH2wUc5hEccgo4zCc45BJwWEhwyC3gsCss+bdxh4DDIsL+EBBwWExwuFPAYQnBIY+AQzTB4S4Bh6UEh7wCDssIDncLOCwnOOQTcFhBcLhHwGElwSG/gMMqgkMBAYfVBIeCAg5rCA6FBBzWEhwKCzisIzgUEXBYT3AoKuCwgeBwr4DDJoJDMQGHzQSH4gIOWwgOJQQcthIcSgo4bCM4lBJw2E5wKC3gsIPgUEbAYSfBoazCdRyCQzkBh90Eh/ICDnsIDhUEHPYSHCoKOOwjOFQScNhPcLhPwOEAwaGygMNBgsP9Ag6HCA5VBBwOExyqCjgcIThUE3A4SnCoLuBwnOBQQ8DhBMGhpoDDSYJDLQGHUwSH2gIOpwkOdQQczhAc6go4nCU41BNwOEdwqC/gcJ7g0EDA4QLBoaGAwyWCQyMBh8sEh8YCDlcIDk0EHK4SHJoKOFwjODQTcPBSJP82mgs4hBIcWgg4hBMcWgo4pCQ4tBJwSE1waC3gEEFwaCPgkI7g0FbAIT3BoZ2AQyTBob2AQyaCQwcBhywEh44CDlkJDp0EHLITHDoLOOQgOHQRcMhJcOgq4JCb4NBNwCFAcOgu4JCH4NBDwCEvwaGngEM+gkMvAYf8BIfeAg4FCQ59BBwKExz6CjgUJTj0E3AoRnDoL+BQguAwQMChFMFhoIBDGYLDIAGHcgSHwQIOFQgOQwQcKhEchgo4VCY4DBNwqEJwGC7gUI3gMELAoQbBYaSAQy2CwygBhzoEh9ECDvUIDmMEHBoQHMYKODQiOIwTcGhCcBgv4NCM4DBBwKEFwWGigEMrgsMkAYc2BIfJAg7tCA4PCDh0IDhECTh0Ijg8KODQheAwRcChG8HhIQGHHgSHqQIOvQgODws49CE4TBNw6EdweETAYQDBYbqAwyCCw6MCDkMIDjMEHIYRHB4TcBhBcJgp4DCK4PC4gMMYgsMsAYdxBIfZAg4TCA5zBBwmERzmWjiEmZbbtOiY//41wvMumHbRtEum/WbaZdN+N+2KaX+YdtW0P027Ztp10zyzvRDTQk0LMy3ctBSmpTQtlWmpTUtjWoRpaU1LZ9otpqU3LYNpkaZlNC2TaZlNy2LaraZlNS2baVifHmuzY11yrMmN9aixFjPWIb6xBq9pWHsV645izU2sN4m1FrHOINbYw/pyWFsN64phTS2sJ4W1lLCOENbQwfoxWDsF64ZgzQysF4G1ErBOADLykQ+PbHTkgiMTG3nQyEJGDjAycJH/iuxT5H4i8xJ5j8g6RM4fMu6Q74ZsM+R6IdMKeU7IMkKODzJskN+C7BLkdiCzAnkNyCrAPH3MUcf8bMxNxrxczEnFfEzMRcQ8PMxBw/wrzD3CvBvMOcF8C8w1wDh7jDHH+GqMLca4WowpxXhKjCXEODqMIcP4KYwdwrgZjBnBeAmMFcB1clwjxvVRXBvEdTFcE8L1EFwLwHlwnAPG+U+c+8N5L5zzwfkOfNfH91x8x8P3G3y2x+dafKbD5xm8l+N9DMdwHL/w2sV+G3sLtdznS5o/akTE3b9Yj0bDjhWPLrChSc31UVFtOuYvearO2I1D5lQ/dnHeuZj7no+w3855i23MS2t3PMqdyO8Dnr9+Jfwh4OthXsgvEcl/PLJxcPj3U+C5rGv/XIba7C9P8J7Lv2+2zk+kTf5tzL/J5zIpZ7wflYn5O/7jktpMmMV9y1j0Z4HA816RkCm1UMChOsHhSQGHmgSHpwQcahMcFgk41CU4PC3gUJ/gsFjAoSHB4RkBh8YEhyUCDk0JDs8KODQnOEQLOLQkODwn4NCa4LBUwKEtweF5AYf2BIdlAg4dCQ4vCDh0JjgsF3DoSnB4UcChO8FhhYBDT4LDSwIOvQkOKwUc+hIcXhZw6E9wWCXgMJDg8IqAw2CCw2oBh6EEh1cFHIYTHNYIOIwkOLwm4DCa4LBWwGEsweF1AYfxBId1Ag4TCQ5vCDhMJjisF3CIIji8KeAwheCwQcBhKsFho4DDNILDJgGH6QSHtwQcZhAcNgs4zCQ4vC3gMIvgsEXAYQ7B4R0Bh3kEh60CDvMJDu8KOCwkOGwTcNgVlvzbeE/AYRFhf9gu4LCY4PC+gMMSgsMOAYdogsMHAg5LCQ47BRyWERw+FHBYTnDYJeCwguDwkYDDSoLDbgGHVQSHjwUcVhMc9gg4rCE4fCLgsJbgsFfAYR3B4VMBh/UEh30CDhsIDp8JOGwiOOwXcNhMcPhcwGELweGAgMNWgsMXAg7bCA4HBRy2Exy+FHDYQXA4JOCwk+DwlcJ1HILDYQGH3QSHrwUc9hAcjgg47CU4fCPgsI/gcFTAYT/B4ZiAwwGCw3EBh4MEh28FHA4RHE4IOBwmOHwn4HCE4HBSwOEoweF7AYfjBIdTAg4nCA4/CDicJDicFnA4RXD4UcDhNMHhjIDDGYLDTwIOZwkOZwUczhEcfhZwOE9wOCfgcIHg8IuAwyWCw3kBh8sEh18FHK4QHC4IOFwlOFwUcLhGcLgk4OAR1tT6TcAhlOBwWcAhnODwu4BDSoLDFQGH1ASHPwQcIggOVwUc0hEc/hRwSE9wuCbgEElwuC7gkIng4KX79ztkITiECDhkJTiECjhkJziECTjkIDiECzjkJDikEHDITXBIKeAQIDikEnDIQ3BILeCQl+CQRsAhH8EhQsAhP8EhrYBDQYJDOgGHwgSHWwQcihIc0gs4FCM4ZBBwKEFwiBRwKEVwyCjgUIbgkEnAoRzBIbOAQwWCQxYBh0oEh1sFHCoTHLIKOFQhOGQTcKhGcMgu4FCD4HCbgEMtgkMOAYc6BIfbBRzqERxyCjg0IDjkEnBoRHDILeDQhOBwh4BDM4JDQMChBcHhTgGHVgSHPAIObQgOdwk4tCM45BVw6EBwuFvAoRPBIZ+AQxeCwz0CDt0IDvkFHHoQHAoIOPQiOBQUcOhDcCgk4NCP4FBYwGEAwaGIgMMggkNRAYchBId7BRyGERyKCTiMIDgUF3AYRXAoIeAwhuBQUsBhHMGhlIDDBIJDaQGHSQSHMhYOYabdYVp0zH8vTOt5T5r2lGmLTHvatMWmPWPaEtOeNS3atOdMW2ra86YtM+0F05ab9qJpK0x7ybSVpr1s2irTXjFttWmvmrbGtNdMW2va66atM+0N09ab9qZpG0zbaNom094yDevTY212rEuONbmxHjXWYsY6xFiDF+vPYu1VrDuKNTex3iTWWsQ6g1hjD+vLYW01rCuGNbWwnhTWUsI6QlhDB+vHYO0UrBuCNTOwXgTWSsA6AcjIRz48stGRC45MbORBIwsZOcDIwEX+K7JPkfuJzEvkPSLrEDl/yLhDvhuyzZDrhUwr5Dkhywg5PsiwQX4LskuQ24HMCuQ1IKsA8/QxRx3zszE3GfNyMScV8zExFxHz8DAHDfOvMPcI824w5wTzLTDXAOPsMcYc46sxthjjajGmFOMpMZYQ4+gwhgzjpzB2CONmMGYE4yUwVgDXyXGNGNdHcW0Q18VuXBMyDdcCcB4c54Bx/hPn/nDeC+d8cL4D3/XxPRff8fD9Bp/t8bkWn+nweQbv5XgfwzEcxy+8drHfxt5CE+zzxXo0GnaseHSBDU1qro+KatMxf8lTdcZuHDKn+rGL886Z/18jwvPm+5+vG4L7L0j7v9tJ6nHxt5FUn8paHo/uSOT3Ac9fvxL+EPD1MC/kibTJfzyycXD491PguawbYf1chuFxsfdN6rksx3su/77ZOpdLl/zbKC/gUJGQsVRBwKE6waGigENNgkMlAYfaBIf7BBzqEhwqCzjUJzjcL+DQkOBQRcChMcGhqoBDU4JDNQGH5gSH6gIOLQkONQQcWhMcago4tCU41BJwaE9wqC3g0JHgUEfAoTPBoa6AQ1eCQz0Bh+4Eh/oCDj0JDg0EHHoTHBoKOPQlODQScOhPcGgs4DCQ4NBEwGEwwaGpgMNQgkMzAYfhBIfmAg4jCQ4tBBxGExxaCjiMJTi0EnAYT3BoLeAwkeDQRsBhMsGhrYBDFMGhnYDDFIJDewGHqQSHDgIO0wgOHQUcphMcOgk4zCA4dBZwmElw6CLgMIvg0FXAYQ7BoZuAwzyCQ3cBh/kEhx4CDgsJDj0FHHaFJf82egk4LCLsD70FHBYTHPoIOCwhOPQVcIgmOPQTcFhKcOgv4LCM4DBAwGE5wWGggMMKgsMgAYeVBIfBAg6rCA5DBBxWExyGCjisITgME3BYS3AYLuCwjuAwQsBhPcFhpIDDBoLDKAGHTQSH0QIOmwkOYwQcthAcxgo4bCU4jBNw2EZwGC/gsJ3gMEHAYQfBYaKAw06CwySF6zgEh8kCDrsJDg8IOOwhOEQJOOwlODwo4LCP4DBFwGE/weEhAYcDBIepAg4HCQ4PCzgcIjhME3A4THB4RMDhCMFhuoDDUYLDowIOxwkOMwQcThAcHhNwOElwmCngcIrg8LiAw2mCwywBhzMEh9kCDmcJDnMEHM4RHOYKOJwnOMwTcLhAcHhCwOESwWG+gMNlgsMCAYcrBIeFAg5XCQ5PCjhcIzg8JeDgEdaYWiTgEEpweFrAIZzgsFjAISXB4RkBh9QEhyUCDhEEh2cFHNIRHKIFHNITHJ4TcIgkOCwVcMhEcHhewCELwWGZgENWgsMLAg7ZCQ7LBRxyEBxeFHDISXBYIeCQm+DwkoBDgOCwUsAhD8HhZQGHvASHVQIO+QgOrwg45Cc4rBZwKEhweFXAoTDBYY2AQ1GCw2sCDsUIDmsFHEoQHF4XcChFcFgn4FCG4PCGgEM5gsN6AYcKBIc3BRwqERw2CDhUJjhsFHCoQnDYJOBQjeDwloBDDYLDZgGHWgSHtwUc6hActgg41CM4vCPg0IDgsFXAoRHB4V0BhyYEh20CDs0IDu8JOLQgOGwXcGhFcHhfwKENwWGHgEM7gsMHAg4dCA47BRw6ERw+FHDoQnDYJeDQjeDwkYBDD4LDbgGHXgSHjwUc+hAc9gg49CM4fCLgMIDgsFfAYRDB4VMBhyEEh30CDsMIDp8JOIwgOOwXcBhFcPhcwGEMweGAgMM4gsMXAg4TCA4HBRwmERy+tHAIi/l3o2P+u4J5bEXTKpl2n2mVTbvftCqmVTWtmmnVTathWk3TaplW27Q6ptU1rZ5p9U1rYFpD0xqZ1ti0JqY1Na2Zac1Na2FaS9NamdbatDamtTWtnWntTetgWkfTOpmG9emxNjvWJcea3FiPGmsxYx1irMGL9Wex9irWHcWam1hvEmstYp1BrLGH9eWwthrWFcOaWlhPCmspYR0hrKGD9WOwdgrWDcGaGVgvAmslYJ0AZOQjHx7Z6MgFRyY28qCRhYwcYGTgIv8V2afI/UTmJfIekXWInD9k3CHfDdlmyPVCphXynJBlhBwfZNggvwXZJcjtQGYF8hqQVYB5+pijjvnZmJuMebmYk4r5mJiLiHl4mIOG+VeYe4R5N5hzgvkWmGuAcfYYY47x1RhbjHG1GFOK8ZQYS4hxdBhDhvFTGDuEcTMYM4LxEhgrgOvkuEaM66O4NojrYrgmhOshuBaA8+A4B4zznzj3h/NeOOeD8x34ro/vufiOh+83+GyPz7X4TIfPM3gvx/sYjuE4fuG1i/029hZquc8XN3/UiIi7f7EejYYdKx5dYEOTmuujotp0zF/yVJ2xG4fMqX7s4rxzMfctn85+O3iM320cSmd3PErsvgHPX78S/hDw9TAvpFy65D8eHbLchuW/nwLPZd0I6+cy3GZ/+Yr3XP59s3X+ivBcHhZwqEjIWPpawKE6weGIgENNgsM3Ag61CQ5HBRzqEhyOCTjUJzgcF3BoSHD4VsChMcHhhIBDU4LDdwIOzQkOJwUcWhIcvhdwaE1wOCXg0Jbg8IOAQ3uCw2kBh44Ehx8FHDoTHM4IOHQlOPwk4NCd4HBWwKEnweFnAYfeBIdzAg59CQ6/CDj0JzicF3AYSHD4VcBhMMHhgoDDUILDRQGH4QSHSwIOIwkOvwk4jCY4XBZwGEtw+F3AYTzB4YqAw0SCwx8CDpMJDlcFHKIIDn8KOEwhOFwTcJhKcLgu4DCN4ODd8u93mE5wCBFwmEFwCBVwmElwCBNwmEVwCBdwmENwSCHgMI/gkFLAYT7BIZWAw0KCQ2oBh11hyb+NNAIOiwj7Q4SAw2KCQ1oBhyUEh3QCDtEEh1sEHJYSHNILOCwjOGQQcFhOcIgUcFhBcMgo4LCS4JBJwGEVwSGzgMNqgkMWAYc1BIdbBRzWEhyyCjisIzhkE3BYT3DILuCwgeBwm4DDJoJDDgGHzQSH2wUcthAccgo4bCU45BJw2EZwyC3gsJ3gcIeAww6CQ0DAYSfB4U6F6zgEhzwCDrsJDncJOOwhOOQVcNhLcLhbwGEfwSGfgMN+gsM9Ag4HCA75BRwOEhwKCDgcIjgUFHA4THAoJOBwhOBQWMDhKMGhiIDDcYJDUQGHEwSHewUcThIcigk4nCI4FBdwOE1wKCHgcIbgUFLA4SzBoZSAwzmCQ2kBh/MEhzICDhcIDmUFHC4RHMoJOFwmOJQXcLhCcKgg4HCV4FBRwOEawaGSgINHWGPqPgGHUIJDZQGHcILD/QIOKQkOVQQcUhMcqgo4RBAcqgk4pCM4VBdwSE9wqCHgEElwqCngkIngUEvAIQvBobaAQ1aCQx0Bh+wEh7oCDjkIDvUEHHISHOoLOOQmODQQcAgQHBoKOOQhODQScMhLcGgs4JCP4NBEwCE/waGpgENBgkMzAYfCBIfmAg5FCQ4tBByKERxaCjiUIDi0EnAoRXBoLeBQhuDQRsChHMGhrYBDBYJDOwGHSgSH9gIOlQkOHQQcqhAcOgo4VCM4dBJwqEFw6CzgUIvg0EXAoQ7BoauAQz2CQzcBhwYEh+4CDo0IDj0EHJoQHHoKODQjOPQScGhBcOgt4NCK4NBHwKENwaGvgEM7gkM/AYcOBIf+Ag6dCA4DBBy6EBwGCjh0IzgMEnDoQXAYLODQi+AwRMChD8FhqIBDP4LDMAGHAQSH4QIOgwgOIwQchhAcRgo4DCM4jBJwGEFwGC3gMIrgMEbAYQzBYayAwziCwzgBhwkEh/ECDpMIDhMsHMJMu9O06Jj//jqd5x0x7RvTjpp2zLTjpn1r2gnTvjPtpGnfm3bKtB9MO23aj6adMe0n086a9rNp50z7xbTzpv1q2gXTLpp2ybTfTLts2u+mXTHtD9OumvanaddMu26aZ+oIMQ3r02NtdqxLjjW5sR411mLGOsRYgxfrz2LtVaw7ijU3sd4k1lrEOoNYYw/ry2FtNawrhjW1sJ4U1lLCOkJYQwfrx2DtFKwbgjUzsF7EjbUSTENGPvLhkY2OXHBkYiMPGlnIyAFGBi7yX5F9itxPZF4i7xFZh8j5Q8Yd8t2QbYZcL2RaIc8JWUbI8UGGDfJbkF2C3A5kViCvAVkFmKePOeqYn425yZiXizmpmI+JuYiYh4c5aJh/hblHmHeDOSeYb4G5BhhnjzHmGF+NscUYV4sxpRhPibGEGEeHMWQYP4WxQxg3gzEjGC+BsQK4To5rxLg+imuDuC6Ga0K4HoJrATgPjnPAOP+Jc38474VzPjjfge/6+J6L73j4foPP9vhci890+DyD93K8j+EYjuMXXrvYb2NvoZb7fI0IYxIRd/9iPRoNO1Y8usCGJjXXR0W16Zi/5Kk6YzcOmVP92MV558z/x/0Pp7PfDh7jdxsTb7E7Ht2ZyO8Dnr9+Jfwh4OthXshX6ZL/eGTj4PLv47msG+G2z8TeN6nncpJFDeh/WMzfsY+7yef3H/+2xeNCKhLyhibz9vO4jdo9LqQ6weEBAYeaBIcoAYfaBIcHBRzqEhymCDjUJzg8JODQkOAwVcChMcHhYQGHpgSHaQIOzQkOjwg4tCQ4TBdwaE1weFTAoS3BYYaAQ3uCw2MCDh0JDjMFHDoTHB4XcOhKcJgl4NCd4DBbwKEnwWGOgENvgsNcAYe+BId5Ag79CQ5PCDgMJDjMF3AYTHBYIOAwlOCwUMBhOMHhSQGHkQSHpwQcRhMcFgk4jCU4PC3gMJ7gsFjAYSLB4RkBh8kEhyUCDlEEh2cFHKYQHKIFHKYSHJ4TcJhGcFgq4DCd4PC8gMMMgsMyAYeZBIcXBBxmERyWCzjMITi8KOAwj+CwQsBhPsHhJQGHhQSHlQIOu8KSfxsvCzgsIuwPqwQcFhMcXhFwWEJwWC3gEE1weFXAYSnBYY2AwzKCw2sCDssJDmsFHFYQHF4XcFhJcFgn4LCK4PCGgMNqgsN6AYc1BIc3BRzWEhw2CDisIzhsFHBYT3DYJOCwgeDwloDDJoLDZgGHzQSHtwUcthActgg4bCU4vCPgsI3gsFXAYTvB4V0Bhx0Eh20CDjsJDu8pXMchOGwXcNhNcHhfwGEPwWGHgMNegsMHAg77CA47BRz2Exw+FHA4QHDYJeBwkODwkYDDIYLDbgGHwwSHjwUcjhAc9gg4HCU4fCLgcJzgsFfA4QTB4VMBh5MEh30CDqcIDp8JOJwmOOwXcDhDcPhcwOEsweGAgMM5gsMXAg7nCQ4HBRwuEBy+FHC4RHA4JOBwmeDwlYDDFYLDYQGHqwSHrwUcrhEcjgg4eIT1lr4RcAglOBwVcAgnOBwTcEhJcDgu4JCa4PCtgEMEweGEgEM6gsN3Ag7pCQ4nBRwiCQ7fCzhkIjicEnDIQnD4QcAhK8HhtIBDdoLDjwIOOQgOZwQcchIcfhJwyE1wOCvgECA4/CzgkIfgcE7AIS/B4RcBh3wEh/MCDvkJDr8KOBQkOFwQcChMcLgo4FCU4HBJwKEYweE3AYcSBIfLAg6lCA6/CziUIThcEXAoR3D4Q8ChAsHhqoBDJYLDnwIOlQkO1wQcqhAcrgs4VCM4eOn//Q41CA4hAg61CA6hAg51CA5hAg71CA7hAg4NCA4pBBwaERxSCjg0ITikEnBoRnBILeDQguCQRsChFcEhQsChDcEhrYBDO4JDOgGHDgSHWwQcOhEc0gs4dCE4ZBBw6EZwiBRw6EFwyCjg0IvgkEnAoQ/BIbOAQz+CQxYBhwEEh1sFHAYRHLIKOAwhOGQTcBhGcMgu4DCC4HCbgMMogkMOAYcxBIfbBRzGERxyCjhMIDjkEnCYRHDInd5uG6GW/36NCM+rG+H//rVi7p+wjmI9Gg07Vjy6wIYmNddHRbXpmL/kqTpjNw6ZU/3YxXnnzP+/w7IOW6dS5o9qpl9hlv0qZXHfahH+7xvwX2/I3394/h9TOmYbnt3jvHDvr30kRWL/qGUfSnqe9f7vsp0SHmc7xb3kf63VtHyt1Y6I+0XAs7/ZGixIa3fcjb3dGbMv5kkft03rjVu8aG7822Exf98Z87hwL24HT9jJgOfrduNJqmP5JNWxfJKuX79+ObHfB7ykt4c/4td3Vwx83vTeP1Huinkm4v8ubzxg2ycnFsb2yD8wV/Ie+Ws59muQZb9ib+H+tzPXbCfkrvT++5TX4l3DwjXEb62xO6atJV64dzm8G+Fm+wJNl9r0M43/+2c097+axr6mu9Mnfx2exYEmk2Md+Qh1hFjUkdmxjnsIdYRa1JHFsY78hDrCLOq41bGOAoQ6wi3qyOpYR0FCHSks6sjmWEchQh0pLerI7lhH4WT+pog6Ujl8XihC6Fdqh34VJfQrjUO/7iX0K8KhX8UI/Urr0K/ihH6lc+hXCUK/bnHoV0lCv9I79KsUoV8ZHPpVmtCvSId+lSH0K6NDv8oS+pXJoV/lCP3K7NCv8oR+ZXHoVwVCv2516FdFQr+yOvSrEqFf2Rz6dR+hX9kd+lWZ0K/bHPp1P6FfORz6VYXQr9sd+lWV0K+cDv2qRuhXLod+VSf0K7dDv2oQ+nWHQ79qEvoVcOhXLUK/7nToV21Cv/I49KsOoV93OfSrLqFfeR36VY/Qr7sd+lWf0K98Dv1qQOjXPQ79akjoV36HfjUi9KuAQ78aE/pV0KFfTQj9KuTQr6aEfhV26FczQr+KOPSrOaFfRR361YLQr3sd+tWS0K9iDv1qRehXcYd+tSb0q4RDv9oQ+lXSoV9tCf0q5dCvdoR+lXboV3tCv8o49KsDoV9lHfrVkdCvcg796kToV3mHfnUm9KuCQ7+6EPpV0aFfXQn9quTQr26Eft3n0K/uhH5VduhXD4t+YVxoHtOqxPw3xrxhvBjGWmGcEsb4YHwMxpZgXAbGQGC8Aa7t4zo6rlnj+jCuxeK6J64x4noerp3hOhWuCeH6C6514LoCzuHjfDnOTeM8MM654vwmziXivB3OkeF8FM794DwLzmng/AG+q+N7Mb6D4vsevlvhewy+M+DzOT4L43MnPuPh8xQ+u+BzAt6T8f6H9xoc13EMxfEKxwa8DrHPY//Cc9kjfeI+NvY9/dunthi/mXpQMo+hxfhN9N12X+vlv94b443yJPL7gGd3s63Npo+u2+ht+Zq7y/vvNZfwNWc7Hg3PUfwJA37GKON5st1Ob4tt9LF8PdyVyO8Dnr9+Jfwh4OthnNdDH4dt4GZ7vO0b/ONtyN9/eHbH274Ox9t+vP0rrrN2jwvpR9i/+gs4VCSsDj5AwKE6wWGggENNgsMgAYfaBIfBAg51CQ5DBBzqExyGCjg0JDgME3BoTHAYLuDQlOAwQsChOcFhpIBDS4LDKAGH1gSH0QIObQkOYwQc2hMcxgo4dCQ4jBNw6ExwGC/g0JXgMEHAoTvBYaKAQ0+CwyQBh94Eh8kCDn0JDg8IOPQnOEQJOAwkODwo4DCY4DBFwGEoweEhAYfhBIepAg4jCQ4PCziMJjhME3AYS3B4RMBhPMFhuoDDRILDowIOkwkOMwQcoggOjwk4TCE4zBRwmEpweFzAYRrBYZaAw3SCw2wBhxkEhzkCDjMJDnMFHGYRHOYJOMwhODwh4DCP4DBfwGE+wWGBgMNCgsNCAYddYcm/jScFHBYR9oenBBwWExwWCTgsITg8LeAQTXBYLOCwlODwjIDDMoLDEgGH5QSHZwUcVhAcogUcVhIcnhNwWEVwWCrgsJrg8LyAwxqCwzIBh7UEhxcEHNYRHJYLOKwnOLwo4LCB4LBCwGETweElAYfNBIeVAg5bCA4vWziY04ReXi8ubweZCcgLwFx5zBPHHGnMD8bcWMwLxZxIzAfEXDjMA8McKMz/wdwXzPvAnAeM98dYd4zzxhhnjO/F2FaM68SYRoznw1g2jOPCGCaM38HYFYzbwJgFXK/HtWpcp8U1Slyfw7UpXJfBNQmcj8e5aJyHxTlInH/DuSecd8E5B3zfxndNfM/Cdwx8vsZnS3yuwmcKvJ/ivQTHURxD8PrBvgO32JttDs6N1Z7jufvJ20FOh+12+ltsY5Xl6yFvIr8PeP76lfCHgK+HcfJQVjlsA7ewBNtJyvsV/9tJrrydG7uTrQ/2RfQ94eOSqnc1b/+K66zd40JWE/avVwUcGHk7awQcGHk7rwk4MPJ21go4MPJ2XhdwYOTtrBNwYOTtvCHgwMjbWS/gwMjbeVPAgZG3s0HAgZG3s1HAgZG3s0nAgZG385aAAyNvZ7OAAyNv520BB0bezhYBB0bezjsCDoy8na0CDoy8nXcFHBh5O9sEHBh5O+8JODDydrYLODDydt4XcGDk7ewQcGDk7Xwg4MDI29kp4MDI2/lQwIGRt7NLwIGRt/ORgAMjb2e3gAMjb+djAQdG3s4eAQdG3s4nAg6MvJ29Ag6MvJ1PBRwYeTv7BBwYeTufCTgw8nb2Czgw8nY+F3Bg5O0cEHBg5O18IeDAyNs5KODAyNv5UsCBkbdzSMCBkbfzlYADI2/nsIADI2/nawEHRt7OEQEHRt7ONwIOjLydowIOjLydYwIOjLyd4wIOjLydbwUcGHk7JwQcGHk73wk4MPJ2TirM3yQ4fC/gwMjbOSXgwMjb+UHAgZG3c1rAgZG386OAAyNv54yAAyNv5ycBB0bezlkBB0bezs8WDsgUuduLy9tBZgLyAjBXHvPEMUca84MxNxbzQjEnEvMBMRcO88AwBwrzfzD3BfM+MOcB4/0x1h3jvDHGGeN7MbYV4zoxphHj+TCWDeO4MIYJ43cwdgXjNjBmAdfrca0a12lxjRLX53BtCtdlcE0C5+NxLhrnYXEOEuffcO4J511wzgHft/FdE9+z8B0Dn6/x2RKfq/CZAu+neC/BcRTHELx+sO/ALfZmm4NTAveN5+4nbwc5HbbbedViG+csXw93J/L7gOevXwl/CPh6GCcP5ZzDNnCzzdv5xf92kitv50aXbX2wL6LvCR+XVL3neftXXGftHhdynrB//SrgwMjbuSDgwMjbuSjgwMjbuSTgwMjb+U3AgZG3c1nAgZG387uAAyNv54qAAyNv5w8BB0bezlUBB0bezp8CDoy8nWsCDoy8nesCDoy8HS/Dv9+BkbcTIuDAyNsJFXBg5O2ECTgw8nbCBRwYeTspBBwYeTspBRwYeTupBBwYeTupBRwYeTtpBBwYeTsRAg6MvJ20Ag6MvJ10Ag6MvJ1bBBwYeTvpBRwYeTsZBBwYeTuRAg6MvJ2MAg6MvJ1MAg6MvJ3MAg6MvJ0sAg6MvJ1bBRwYeTtZBRwYeTvZBBwYeTvZBRwYeTu3CTgw8nZyCDgw8nZuF3Bg5O3kFHBg5O3kEnBg5O3kFnBg5O3cIeDAyNsJCDgw8nbuFHBg5O3kEXBg5O3cJeDAyNvJK+DAyNu5W8CBkbeTT8CBkbdzj4ADI28nv4ADI2+ngIADI2+noIADI2+nkIADI2+nsIADI2+niIADI2+nqIADI2/nXgEHRt5OMQEHRt5OcQEHRt5OCQEHRt5OSQsHBHTk8+LydpCZgLwAzJXHPHHMkcb8YMyNxbxQzInEfEDMhcM8MMyBwvwfzH3BvA/MecB4f4x1xzhvjHHG+F6MbcW4ToxpxHg+jGXDOC6MYcL4HYxdwbgNjFnA9Xpcq8Z1WlyjxPU5XJvCdRlck8D5eJyLvnEe1jScf8O5J5x3wTkHfN/Gd018z8J3DHy+xmdLfK7CZwq8n+K9BMdRHEPw+sG+A7fYm20OzoK0nnXezq8OeTu/WmyjlOXrIV8ivw94/vqV8IeAr4dx8lBsHOLfbPN2SvvfTnLl7YTjD1sf7Ivoe8LHJVVvGd7+FddZu8eFlMmQ/NsoK+DAyNspJ+DAyNspL+DAyNupIODAyNupKODAyNupJODAyNu5T8CBkbdTWcCBkbdzv4ADI2+nioADI2+nqoADI2+nmoADI2+nuoADI2+nhoADI2+npoADI2+nloADI2+ntoADI2+njoADI2+nroADI2+nnoADI2+nvoADI2+ngYADI2+noYADI2+nkYADI2+nsYADI2+niYADI2+nqYADI2+nmYADI2+nuYADI2+nhYADI2+npYADI2+nlYADI2+ntYADI2+njYADI2+nrYADI2+nnYADI2+nvYADI2+ng4ADI2+no4ADI2+nk4ADI2+ns4ADI2+ni4ADI2+nq4ADI2+nm4ADI2+nu4ADI2+nh4ADI2+np4ADI2+nl4ADI2+nt4ADI2+nj4ADI2+nr4ADI2+nn4ADI2+nv4ADI29ngIADI29noIADI29nkIADI29nsIADI29niIADI29nqIADI29nmIADI29nuIADI29nhIADI29npIADI29nlIADI29ntGXezj1eXN4OMhOQF4C58pgnjjnSmB+MubGYF4o5kZgPiLlwmAeGOVCY/4O5L5j3gTkPGO+Pse4Y540xzhjfi7GtGNeJMY0Yz4exbBjHhTFMGL+DsSsYt4ExC7hej2vVuE6La5S4PodrU7gug2sSOB+Pc9E4D4tzkDj/hnNPOO+Ccw74vo3vmviehe8Y+HyNz5b4XIXPFHg/xXsJjqM4huD1g30HbrE32xyc4rivZd4OcjpstxM/2yOpbYyxfD3ck8jvA56/fiX8IeDrYZw8lDEO28DNNm9nrP/tJFfeTgr8YeuDfRF9T/i4pOodx9u/4jpr97iQcYT9a7yAAyNvZ4KAAyNvZ6KAAyNvZ5KAAyNvZ7KAAyNv5wEBB0beTpSAAyNv50EBB0bezhQBB0bezkMCDoy8nakCDoy8nYcFHBh5O9MEHBh5O48IODDydqYLODDydh4VcGDk7cwQcGDk7Twm4MDI25kp4MDI23lcwIGRtzNLwIGRtzNbwIGRtzNHwIGRtzNXwIGRtzNPwIGRt/OEgAMjb2e+gAMjb2eBgAMjb2ehgAMjb+dJAQdG3s5TAg6MvJ1FAg6MvJ2nBRwYeTuLBRwYeTvPCDgw8naWCDgw8naeFXBg5O1ECzgw8naeE3Bg5O0sFXBg5O08L+DAyNtZJuDAyNt5QcCBkbezXMCBkbfzooADI29nhYADI2/nJQEHRt7OSgEHRt7OywIOjLydVQIOjLydVwQcGHk7qwUcGHk7rwo4MPJ21gg4MPJ2XhNwYOTtrBVwYOTtvC7gwMjbWSfgwMjbeUPAgZG3s17AgZG386aAAyNvZ4OAAyNvZ6OAAyNvZ5OAAyNv5y0LB2SK5Pfi8naQmYC8AMyVxzxxzJHG/GDMjcW8UMyJxHxAzIXDPDDMgcL8H8x9wbwPzHnAeH+Mdcc4b4xxxvhejG3FuE6MacR4PoxlwzgujGHC+B2MXcG4DYxZwPV6XKvGdVpco8T1OVybwnUZXJPA+Xici8Z5WJyDxPk3nHvCeRecc8D3bXzXxPcsfMfA52t8tsTnKnymwPsp3ktwHMUxBK8f7Dtwi73Z5uAgsySPZd4OcjpstxM/2yOpbWy2fD3kT+T3Ac9fvxL+EPD1ME4eymaHbeBmm7fztv/tJFfeTkr8YeuDfRF9T/i4pOrdwtu/4jpr97iQLYT96x3Lbdi+5mtEeF7NCP/3r2XuWzvC/vncKvB8MnKD3hVwYOQGbRNwYOQGvSfgwMgN2i7gwMgNel/AgZEbtEPAgZEb9IGAAyM3aKeAAyM36EMBB0Zu0C4BB0Zu0EcCDozcoN0CDozcoI8FHBi5QXsEHBi5QZ8IODByg/YKODBygz4VcGDkBu0TcGDkBn0m4MDIDdov4MDIDfpcwIGRG3RAwIGRG/SFgAMjN+iggAMjN+hLAQdGbtAhAQdGbtBXAg6M3KDDAg6M3KCvBRwYuUFHBBwYuUHfCDgwcoOOCjgwcoOOCTgwcoOOCzgwcoO+FXBg5AadEHBg5AZ9J+DAyA06KeDAyA36XsCBkRt0SsCBkRv0g4ADIzfotIADIzfoRwEHRm7QGQEHRm7QTwIOjNygswIOjNygnwUcGLlB5wQcGLlBvwg4MHKDzgs4MHKDfhVwYOQGXRBwYOQGXRRwYOQGXRJwYOQG/SbgwMgNuizgwMgN+l3AgZEbdEXAgZEb9IeAAyM36KqAAyM36E8BB0Zu0DUBB0Zu0HWFHAuCgxfpfxvIRingxeUGITMBeQGYK4954pgjjfnBmBuLeaGYE4n5gJgLh3lgmAOF+T+Y+4J5H5jzgPH+GOuOcd4Y44zxvRjbinGdGNOI8XwYy4ZxXBjDhPE7GLuCcRsYs4Dr9bhWjeu0uEaJ63O4NoXrMrgmgfPxOBeN87A4B4nzbzj3hPMuOOeA79v4ronvWfiOgc/X+GyJz1X4TIH3U7yX4DiKYwheP9h34BZ7S5jt4ScHyCI/5EZWC3I6Em4nqcfF30ZSfQqJtHs9FEjk9wHPX78S/hDw9TBOrouNQ/ybbW5QqP/tJFduUCr8YeuDfRF9T/i4pOoN4+1fcZ21e1xIWGTybyNcwIGRt5NCwIGRt5NSwIGRt5NKwIGRt5NawIGRt5NGwIGRtxMh4MDI20kr4MDI20kn4MDI27lFwIGRt5NewIGRt5NBwIGRtxMp4MDI28ko4MDI28kk4MDI28ks4MDI28ki4MDI27lVwIGRt5NVwIGRt5NNwIGRt5NdwIGRt3ObgAMjbyeHgAMjb+d2AQdG3k5OAQdG3k4uAQdG3k5uAQdG3s4dAg6MvJ2AgAMjb+dOAQdG3k4eAQdG3s5dAg6MvJ28Ag6MvJ27BRwYeTv5BBwYeTv3CDgw8nbyCzgw8nYKCDgw8nYKCjgw8nYKCTgw8nYKCzgw8naKCDgw8naKCjgw8nbuFXBg5O0UE3Bg5O0UF3Bg5O2UEHBg5O2UFHBg5O2UEnBg5O2UFnBg5O2UEXBg5O2UFXBg5O2UE3Bg5O2UF3Bg5O1UEHBg5O1UFHBg5O1UEnBg5O3cJ+DAyNupLODAyNu5X8CBkbdTRcCBkbdTVcCBkbdTTcCBkbdTXcCBkbdTwzJvp6AXl7eDzATkBWCuPOaJY4405gdjbizmhWJOJOYDYi4c5oFhDhTm/2DuC+Z9YM4DxvtjrDvGeWOMM8b3YmwrxnViTCPG890Yy2YaxjBh/A7GrmDcBsYs4Ho9rlXjOi2uUeL6HK5N4boMrkngfDzOReM8LM5B4vwbzj3hvAvOOeD7Nr5r4nsWvmPg8zU+W+JzFT5T4P0U7yU4juIYgtcP9h24xd5sc3CQWXJn+rj7+8nnQU6H7XbiZ3sktY2alq+Hgon8PuD561fCHwK+HsbJQ6npsA3cbPN2avnfTohF3k6IRd5OyN9/eHb7Lvqe8HFJ1VvbwhX/dljM34k9ziXfyu9960Ta+cXebJ//usF//v96gPfPfid199hjl8sxL/a+SdnUc9xXYh93k8enf/zbFo+j5BTV5x2n4zZq9zhKTlEDAQdGTlFDAQdGTlEjAQdGTlFjAQdGTlETAQdGTlFTAQdGTlEzAQdGTlFzAQdGTlELAQdGTlFLAQdGTlErAQdGTlFrAQdGTlEbAQdGTlFbAQdGTlE7AQdGTlF7AQdGTlEHAQdGTlFHAQdGTlEnAQdGTlFnAQdGTlEXAQdGTlFXAQdGTlE3AQdGTlF3AQdGTlEPAQdGTlFPAQdGTlEvAQdGTlFvAQdGTlEfAQdGTlFfAQdGTlE/AQdGTlF/AQdGTtEAAQdGTtFAAQdGTtEgAQdGTtFgAQdGTtEQAQdGTtFQAQdGTtEwAQdGTtFwAQdGTtEIAQdGTtFIAQdGTtEoAQdGTtFoAQdGTtEYAQdGTtFYAQdGTtE4AQdGTtF4AQdGTtEEAQdGTtFEAQdGTtEkAQdGTtFkAQdGTtEDAg6MnKIoAQdGTtGDAg6MnKIpAg6MnKKHBBwYOUVTBRwYOUUPCzgwcoqmCTgwcooeEXBg5BRNF3Bg5BQ9apnLYvvvI5+itkOuyZxkzttAHkndSPvMkxkW+SK2NSTsS1L/fo0Iz5t0i//71zL3vyO9/XPxmMU+YnbZv3ND/qcDCbabVH/L+7/vP7Y3M/ImNjgz0v5xj1sEQrn26/HIuF8EPP83lxdsPYcX7PxkfsFuzfBXiJBtvxZY9iv2Zhs8NMviwGBhFbLgJoOnkup3Be+vfcv24FPBYhuzk/lNBvazXd5kHAOR5vwfhGfNtjhmzCWFZ80L/j781wO8f/Y7qbvjuDDD4c38iX/RmzmOuxZvtDdqfszlOG35Zh4S8/f/dCDBdpPqr82b+c1sp6zH2c68mzymJfU8VfL+ev3a7kdhFvet5NlbhST8IeDrYV7I7GQGq+j9dVC1BbM5EC+wfPGghSa2Ucs++n3RXr9+/Whivw94SW8Df8Tv68KYD5xPRnr/fPdbGHPUif+7JxPpYMJ3n6Q6MN/fEzHXPBEhCy2etCct8Wx3POxACx0/nbt85Zts+ZWvYYR9TU9FJn8dD1jW0cihjkWEOqIs62jsUMfThDoetKyjiUMdiwl1TLGso6lDHc8Q6njIso5mDnUsIdQx1bKO5g51PEuo42HLOlo41BFNqGOaZR0tHep4jlDHI5Z1tHKoYymhjumWdbR2qON5Qh2PWtbRxqGOZYQ6ZljW0dahjhcIdTxmWUc7hzqWE+qYaVlHe4c6XiTU8bhlHR0c6lhBqGOWZR0dHep4iVDHbMs6OjnUsZJQxxzLOjo71PEyoY65lnV0cahjFaGOeZZ1dHWo4xVCHU9Y1tHNoY7VhDrmW9bR3aGOVwl1LLCso4dDHWsIdSy0rKOnQx2vEep40rKOXg51rCXU8ZRlHb0d6nidUMciyzr6ONSxjlDH05Z19HWo4w1CHYst6+jnUMd6Qh3PWNbR36GONwl1LLGsY4BDHRsIdTxrWcdAhzo2EuqItqxjkEMdmwh1PGdZx2CHOt4i1LHUso4hDnVsJtTxvGUdQx3qeJtQxzLLOoY51LGFUMcLlnUMd6jjHUIdyy3rGOFQx1ZCHS9a1jHSoY53CXWssKxjlEMd2wh1vGRZx2iHOt4j1LHSso4xDnVsJ9TxsmUdYx3qeJ9QxyrLOsY51LGDUMcrlnWMd6jjA0Idqy3rmOBQx05CHa9a1jHRoY4PCXWssaxjkkMduwh1vGZZx2SHOj4i1LHWso4HHOrYTajjdcs6ohzq+JhQxzrLOh50qGMPoY43LOuY4lDHJ4Q61lvW8ZBDHXsJdbxpWcdUhzo+JdSxwbKOhx3q2EeoY6NlHdMc6viMUMcmyzoecahjP6GOtyzrmO5Qx+eEOjZb1vGoQx0HCHW8bVnHDIc6viDUscWyjscc6jhIqOMdyzpmOtTxJaGOrZZ1PO5QxyFCHe9a1jHLoY6vCHVss6xjtkMdhwl1vGdZxxyHOr4m1LHdso65DnUcIdTxvmUd8xzq+IZQxw7LOp5wqOMooY4PLOuY71DHMUIdOy3rWOBQx3FCHR9a1rHQoY5vCXXssqzjSYc6ThDq+Miyjqcc6viOUMduyzoWOdRxklDHx5Z1PO1Qx/eEOvZY1rHYoY5ThDo+sazjGYc6fiDUsdeyjiUOdZwm1PGpZR3POtTxI6GOfZZ1RDvUcYZQx2eWdTznUMdPhDr2W9ax1KGOs4Q6Pres43mHOn4m1HHAso5lDnWcI9TxhWUdLzjU8QuhjoOWdSx3qOM8oY4vLet40aGOXwl1HLKsY4VDHRcIdXxlWcdLDnVcJNRx2LKOlQ51XCLU8bVlHS871PEboY4jlnWscqjjMqGObyzreMWhjt8JdRy1rGO1Qx1XCHUcs6zjVYc6/iDUcdyyjjUOdVwl1PGtZR2vOdTxJ6GOE5Z1rHWo4xqhju8s63jdoY7rhDpOWtaxzqEOL2Py1/G9ZR1vONQRQqjjlGUd6x3qCCXU8YNlHW861BFGqOO0ZR0bHOoIJ9Txo2UdGx3qSEGo44xlHZsc6khJqOMnyzrecqgjFaGOs5Z1bHaoIzWhjp8t63jboY40hDrOWdaxxaGOCEIdv1jW8Y5DHWkJdZy3rGOrQx3pCHX8alnHuw513EKo44JlHdsc6khPqOOiZR3vOdSRgVDHJcs6tjvUEUmo4zfLOt53qCMjoY7LlnXscKgjE6GO3y3r+MChjsyEOq5Y1rHToY4shDr+sKzjQ4c6biXUcdWyjl0OdWQl1PGnZR0fOdSRjVDHNcs6djvUkZ1Qx3XLOj52qOM2Qh1eers69jjUkYNQR4hlHZ841HE7oY5Qyzr2OtSRk1BHmGUdnzrUkYtQR7hlHfsc6shNqCOFZR2fOdRxB6GOlJZ17HeoI0CoI5VlHZ871HEnoY7UlnUccKgjD6GONJZ1fOFQx12EOiIs6zjoUEdeQh1pLev40qGOuwl1pLOs45BDHfkIddxiWcdXDnXcQ6gjvWUdhx3qyE+oI4NlHV871FGAUEekZR1HHOooSKgjo2Ud3zjUUYhQRybLOo461FGYUEdmyzqOOdRRhFBHFss6jjvUUZRQx62WdXzrUMe9hDqyWtZxwqGOYoQ6slnW8Z1DHcUJdWS3rOOkQx0lCHXcZlnH9w51lCTUkcOyjlMOdZQi1HG7ZR0/ONRRmlBHTss6TjvUUYZQRy7LOn50qKMsoY7clnWccaijnEUdWB++kGnRMf+NNcexXjfWusY60VhjGesTY21frIuLNWWxHivWMsU6oFhDE+tPYu1GrHuINQOx3h7WqsM6b1gjDeuLYW0urGuFNaGwnhLWIloX+dcaOFg/BmuvYN0SrPmB9TKw1gTWacAaB1gfANn6yKVHpjvy0JEljhxuZFgj/xnZycgdRmYv8m6RFYucVWSUIt8T2ZjIlUQmI/IMkQWIHD1k0CG/DdlnyA1D5hbyqpD1hJwkZAwhnwfZNsiFQaYK8kiQ5YEcDGRIIH8B2QWY948585hvjrnamOeMOcKYX4u5qZjXiTmRmE+IuXiYx4Y5YJg/hblHmLeDOS+YL4K5FpingDH+GB+PseUYl40xzRgPjLG0GIeKMZwY/4ixgxh3hzFrGO+FsVIYZ4QxOhjfgrEhGFeBMQm4no9r4biOjGuwuH6Ja3+4boZrTrheg2sduE6Ac+w4P33j3G7Gv84p4nwczmXhPBDOoeD8A76743svvjPi+xa+q+BzPj4j4/MlPpvhcw0+E+D9FO9FOI7jGIjjB1572G//3vkT7PNJ3FLMNj7zI+1fK+UtXiuhMa+VhLeAZ3ezrC3Epo+u26iQzMc+9GdBpP/npaJpsx2ez4qWx77C3n/Hvv+Off+uY1+o5T6P14nF6zcE98frxPY1HH8bSfWpUka742rhRH4f8Pz1K+EPAV8P4xxXK1luw/V9z/a5nG1xLL6P91zGddDucSH3EZ7LygIOFcOTfxv3CzhUJzhUEXCoSXCoKuBQm+BQTcChLsGhuoBDfYJDDQGHhgSHmgIOjQkOtQQcmhIcags4NCc41BFwaElwqCvg0JrgUE/AoS3Bob6AQ3uCQwMBh44Eh4YCDp0JDo0EHLoSHBoLOHQnODQRcOhJcGgq4NCb4NBMwKEvwaG5gEN/gkMLAYeBBIeWAg6DCQ6tBByGEhxaCzgMJzi0EXAYSXBoK+AwmuDQTsBhLMGhvYDDeIJDBwGHiQSHjgIOkwkOnQQcoggOnQUcphAcugg4TCU4dBVwmEZw6CbgMJ3g0F3AYQbBoYeAw0yCQ08Bh1kEh14CDnMIDr0FHOYRHPoIOMwnOPQVcFhIcOgn4LArLPm30V/AYRFhfxgg4LCY4DBQwGEJwWGQgEM0wWGwgMNSgsMQAYdlBIehAg7LCQ7DBBxWEByGCzisJDiMEHBYRXAYKeCwmuAwSsBhDcFhtIDDWoLDGAGHdQSHsQIO6wkO4wQcNhAcxgs4bCI4TBBw2ExwmCjgsIXgMEnAYSvBYbKAwzaCwwMCDtsJDlECDjsIDg8KOOwkOExRuI5DcHhIwGE3wWGqgMMegsPDAg57CQ7TBBz2ERweEXDYT3CYLuBwgODwqIDDQYLDDAGHQwSHxwQcDhMcZgo4HCE4PC7gcJTgMEvA4TjBYbaAwwmCwxwBh5MEh7kCDqcIDvMEHE4THJ4QcDhDcJgv4HCW4LBAwOEcwWGhgMN5gsOTAg4XCA5PCThcIjgsEnC4THB4WsDhCsFhsYDDVYLDMwIO1wgOSwQcvBTJv41nBRxCCQ7RAg7hBIfnBBxSEhyWCjikJjg8L+AQQXBYJuCQjuDwgoBDeoLDcgGHSILDiwIOmQgOKwQcshAcXhJwyEpwWCngkJ3g8LKAQw6CwyoBh5wEh1cEHHITHFYLOAQIDq8KOOQhOKwRcMhLcHhNwCEfwWGtgEN+gsPrAg4FCQ7rBBwKExzeEHAoSnBYL+BQjODwpoBDCYLDBgGHUgSHjQIOZQgOmwQcyhEc3hJwqEBw2CzgUIng8LaAQ2WCwxYBhyoEh3cEHKoRHLYKONQgOLwr4FCL4LBNwKEOweE9AYd6BIftAg4NCA7vCzg0IjjsEHBoQnD4QMChGcFhp4BDC4LDhwIOrQgOuwQc2hAcPhJwaEdw2C3g0IHg8LGAQyeCwx4Bhy4Eh08EHLoRHPYKOPQgOHwq4NCL4LBPwKEPweEzAYd+BIf9Ag4DCA6fCzgMIjgcEHAYQnD4QsBhGMHhoIDDCILDlwIOowgOhwQcxhAcvhJwGEdwOCzgMIHg8LWAwySCwxELhzDTipgWHfPf95vHVjGtqmnVTKtuWg3TappWy7TaptUxra5p9Uyrb1oD0xqa1si0xqY1Ma2pac1Ma25aC9NamtbKtNamtTGtrWntTGtvWgfTOprWybTOpnUxratp3UzrbhrWp8fa7FiXHGtyYz1qrMWMdYixBi/Wn8Xaq1h3FGtuYr1JrLWIdQaxxh7Wl8PaalhXDGtqYT0prKWEdYSwhg7Wj8HaKVg3BGtmYL0IrJWAdQKQkY98eGSjIxccmdjIg0YWMnKAkYGL/FdknyL3E5mXyHtE1iFy/pBxh3w3ZJsh1wuZVshzQpYRcnyQYYP8FmSXILcDmRXIa0BWAebpY4465mdjbjLm5WJOKuZjYi4i5uFhDhrmX2HuEebdYM4J5ltgrgHG2WOMOcZXY2wxxtViTCnGU2IsIcbRYQwZxk9h7BDGzWDMCMZLYKwArpPjGjGuj+LaIK6L4ZoQrofgWgDOg+McMM5/4twfznvhnA/Od+C7Pr7n4jsevt/gsz0+1+IzHT7P4L0c72M4huP4hdcu9tvYW6jlPl/e/DE7Mu7+xXo0GnaseHSBDU1qro+KatMxf8lTdcZuHDKn+rGL887F3LdyRvvt4DF+t/FNRrvjUZFEfh/w/PUr4Q8BXw/zQu7LmPzHo28st2H576fAczk/0vq5DLXZX47ynsu/b7bORwnP5bGbfC6Tcsb7UaWYv+M/LqnNhFnct5JFf44LPO8VCZlS3wo4VCc4nBBwqElw+E7AoTbB4aSAQ12Cw/cCDvUJDqcEHBoSHH4QcGhMcDgt4NCU4PCjgENzgsMZAYeWBIefBBxaExzOCji0JTj8LODQnuBwTsChI8HhFwGHzgSH8wIOXQkOvwo4dCc4XBBw6ElwuCjg0JvgcEnAoS/B4TcBh/4Eh8sCDgMJDr8LOAwmOFwRcBhKcPhDwGE4weGqgMNIgsOfAg6jCQ7XBBzGEhyuCziMJzh4mf79DhMJDiECDpMJDqECDlEEhzABhykEh3ABh6kEhxQCDtMIDikFHKYTHFIJOMwgOKQWcJhJcEgj4DCL4BAh4DCH4JBWwGEewSGdgMN8gsMtAg4LCQ7pBRx2hSX/NjIIOCwi7A+RAg6LCQ4ZBRyWEBwyCThEExwyCzgsJThkEXBYRnC4VcBhOcEhq4DDCoJDNgGHlQSH7AIOqwgOtwk4rCY45BBwWENwuF3AYS3BIaeAwzqCQy4Bh/UEh9wCDhsIDncIOGwiOAQEHDYTHO4UcNhCcMgj4LCV4HCXgMM2gkNeAYftBIe7BRx2EBzyCTjsJDjco3Adh+CQX8BhN8GhgIDDHoJDQQGHvQSHQgIO+wgOhQUc9hMcigg4HCA4FBVwOEhwuFfA4RDBoZiAw2GCQ3EBhyMEhxICDkcJDiUFHI4THEoJOJwgOJQWcDhJcCgj4HCK4FBWwOE0waGcgMMZgkN5AYezBIcKAg7nCA4VBRzOExwqCThcIDjcJ+BwieBQWcDhMsHhfgGHKwSHKgIOVwkOVQUcrhEcqgk4eIQ1taoLOIQSHGoIOIQTHGoKOKQkONQScEhNcKgt4BBBcKgj4JCO4FBXwCE9waGegEMkwaG+gEMmgkMDAYcsBIeGAg5ZCQ6NBByyExwaCzjkIDg0EXDISXBoKuCQm+DQTMAhQHBoLuCQh+DQQsAhL8GhpYBDPoJDKwGH/ASH1gIOBQkObQQcChMc2go4FCU4tBNwKEZwaC/gUILg0EHAoRTBoaOAQxmCQycBh3IEh84CDhUIDl0EHCoRHLoKOFQmOHQTcKhCcOgu4FCN4NBDwKEGwaGngEMtgkMvAYc6BIfeAg71CA59BBwaEBz6Cjg0Ijj0E3BoQnDoL+DQjOAwQMChBcFhoIBDK4LDIAGHNgSHwQIO7QgOQwQcOhAchgo4dCI4DBNw6EJwGC7g0I3gMELAoQfBYaSAQy+CwygBhz4Eh9ECDv0IDmMEHAYQHMYKOAwiOIwTcBhCcBgv4DCM4DBBwGEEwWGigMMogsMkAYcxBIfJAg7jCA4PCDhMIDhECThMIjg8aOEQZlpR06Jj/vvbjJ53wrTvTDtp2vemnTLtB9NOm/ajaWdM+8m0s6b9bNo5034x7bxpv5p2wbSLpl0y7TfTLpv2u2lXTPvDtKum/WnaNdOum+aZ/oaYFmpamGnhpqUwLaVpqUzD+vRYmx3rkmNNbqxHjbWYsQ4x1uDF+rNYexXrjmLNTaw3ibUWsc4g1tjD+nJYWw3rimFNLawnhbWUsI7QjTV0TMPaKVg3BGtmYL0IrJWAdQKQkY98eGSjIxccmdjIg0YWMnKAkYGL/FdknyL3E5mXyHtE1iFy/pBxh3w3ZJsh1wuZVshzQpYRcnyQYYP8FmSXILcDmRXIa0BWAebpY4465mdjbjLm5WJOKuZjYi4i5uFhDhrmX2HuEebdYM4J5ltgrgHG2WOMOcZXY2wxxtViTCnGU2IsIcbRYQwZxk9h7BDGzWDMCMZLYKwArpPjGjGuj+LaIK6L4ZoQrofgWgDOg+McMM5/4twfznvhnA/Od+C7Pr7n4jsevt/gsz0+1+IzHT7P4L0c72M4huP4hdcu9tvYW2iCfb5Yj0bDjhWPLrChSc31UVFtOuYvearO2I1D5lQ/dnHeOfP/Z0d63rGM/l8juP/xjP+7naQeF38bSfVpSia741HRRH4f8Pz1K+EPAV8P80KOZkz+45GNg8O/nwLP5fxI6+cyDI+LvW9Sz+VDvOfy75ut80OZkn8bUwUcKhIylh4WcKhOcJgm4FCT4PCIgENtgsN0AYe6BIdHBRzqExxmCDg0JDg8JuDQmOAwU8ChKcHhcQGH5gSHWQIOLQkOswUcWhMc5gg4tCU4zBVwaE9wmCfg0JHg8ISAQ2eCw3wBh64EhwUCDt0JDgsFHHoSHJ4UcOhNcHhKwKEvwWGRgEN/gsPTAg4DCQ6LBRwGExyeEXAYSnBYIuAwnODwrIDDSIJDtIDDaILDcwIOYwkOSwUcxhMcnhdwmEhwWCbgMJng8IKAQxTBYbmAwxSCw4sCDlMJDisEHKYRHF4ScJhOcFgp4DCD4PCygMNMgsMqAYdZBIdXBBzmEBxWCzjMIzi8KuAwn+CwRsBhIcHhNQGHXWHJv421Ag6LCPvD6wIOiwkO6wQclhAc3hBwiCY4rBdwWEpweFPAYRnBYYOAw3KCw0YBhxUEh00CDisJDm8JOKwiOGwWcFhNcHhbwGENwWGLgMNagsM7Ag7rCA5bBRzWExzeFXDYQHDYJuCwieDwnoDDZoLDdgGHLQSH9wUcthIcdgg4bCM4fCDgsJ3gsFPAYQfB4UMBh50Eh10K13EIDh8JOOwmOOwWcNhDcPhYwGEvwWGPgMM+gsMnAg77CQ57BRwOEBw+FXA4SHDYJ+BwiODwmYDDYYLDfgGHIwSHzwUcjhIcDgg4HCc4fCHgcILgcFDA4STB4UsBh1MEh0MCDqcJDl8JOJwhOBwWcDhLcPhawOEcweGIgMN5gsM3Ag4XCA5HBRwuERyOCThcJjgcF3C4QnD4VsDhKsHhhIDDNYLDdwIOHmGNqZMCDqEEh+8FHMIJDqcEHFISHH4QcEhNcDgt4BBBcPhRwCEdweGMgEN6gsNPAg6RBIezAg6ZCA4/CzhkITicE3DISnD4RcAhO8HhvIBDDoLDrwIOOQkOFwQcchMcLgo4BAgOlwQc8hAcfhNwyEtwuCzgkI/g8LuAQ36CwxUBh4IEhz8EHAoTHK4KOBQlOPwp4FCM4HBNwKEEweG6gEMpgoOX+d/vUIbgECLgUI7gECrgUIHgECbgUIngEC7gUJngkELAoQrBIaWAQzWCQyoBhxoEh9QCDrUIDmkEHOoQHCIEHOoRHNIKODQgOKQTcGhEcLhFwKEJwSG9gEMzgkMGAYcWBIdIAYdWBIeMAg5tCA6ZBBzaERwyCzh0IDhkEXDoRHC4VcChC8Ehq4BDN4JDNgGHHgSH7AIOvQgOtwk49CE45BBw6EdwuF3AYQDBIaeAwyCCQy4BhyEEh9wCDsMIDncIOIwgOAQEHEYRHO4UcBhDcMgj4DCO4HCXgMMEgkNeAYdJBIe7LRzCTLvXtOiY/344k+dNM+0R06ab9qhpM0x7zLSZpj1u2izTZps2x7S5ps0z7QnT5pu2wLSFpj1p2lOmLTLtadMWm/aMaUtMe9a0aNOeM22pac+btsy0F0xbbtqLpq0w7SXTVpqG9emxNjvWJcea3FiPGmsxYx1irMGL9Wex9irWHcWam1hvEmstYp1BrLGH9eWwthrWFcOaWlhPCmspYR0hrKGD9WOwdgrWDcGaGVgvAmslYJ0AZOQjHx7Z6MgFRyY28qCRhYwcYGTgIv8V2afI/UTmJfIekXWInD9k3CHfDdlmyPVCphXynJBlhBwfZNggvwXZJcjtQGYF8hqQVYB5+pijjvnZmJuMebmYk4r5mJiLiHl4mIOG+VeYe4R5N5hzgvkWmGuAcfYYY47x1RhbjHG1GFOK8ZQYS4hxdBhDhvFTGDuEcTMYM4LxEhgrgOvkuEaM66O4NojrYrgmhOshuBaA8+A4B4zznzj3h/NeOOeD8x34ro/vufiOh+83+GyPz7X4THfj84xpeB/DMRzHL7x2sd/G3kIt9/my5o/ZkXH3L9aj0bBjxaMLbGhSc31UVJuO+UueqjN245A51Y9dnHcu5r5TM9lvZ2om/9vIZ3k8ujeR3wc8f/1K+EPA18O8kIcyJf/xyMbB4d9PgedyfqT1cxlus7/cw3su/77ZOt+TOfm3kV/AoSIhY6mAgEN1gkNBAYeaBIdCAg61CQ6FBRzqEhyKCDjUJzgUFXBoSHC4V8ChMcGhmIBDU4JDcQGH5gSHEgIOLQkOJQUcWhMcSgk4tCU4lBZwaE9wKCPg0JHgUFbAoTPBoZyAQ1eCQ3kBh+4EhwoCDj0JDhUFHHoTHCoJOPQlONwn4NCf4FBZwGEgweF+AYfBBIcqAg5DCQ5VBRyGExyqCTiMJDhUF3AYTXCoIeAwluBQU8BhPMGhloDDRIJDbQGHyQSHOgIOUQSHugIOUwgO9QQcphIc6gs4TCM4NBBwmE5waCjgMIPg0EjAYSbBobGAwyyCQxMBhzkEh6YCDvMIDs0EHOYTHJoLOCwkOLQQcNgVlvzbaCngsIiwP7QScFhMcGgt4LCE4NBGwCGa4NBWwGEpwaGdgMMygkN7AYflBIcOAg4rCA4dBRxWEhw6CTisIjh0FnBYTXDoIuCwhuDQVcBhLcGhm4DDOoJDdwGH9QSHHgIOGwgOPQUcNhEcegk4bCY49BZw2EJw6CPgsJXg0FfAYRvBoZ+Aw3aCQ38Bhx0EhwECDjsJDgMVruMQHAYJOOwmOAwWcNhDcBgi4LCX4DBUwGEfwWGYgMN+gsNwAYcDBIcRAg4HCQ4jBRwOERxGCTgcJjiMFnA4QnAYI+BwlOAwVsDhOMFhnIDDCYLDeAGHkwSHCQIOpwgOEwUcThMcJgk4nCE4TBZwOEtweEDA4RzBIUrA4TzB4UEBhwsEhykCDpcIDg8JOFwmOEwVcLhCcHhYwOEqwWGagMM1gsMjAg4eYY2p6QIOoQSHRwUcwgkOMwQcUhIcHhNwSE1wmCngEEFweFzAIR3BYZaAQ3qCw2wBh0iCwxwBh0wEh7kCDlkIDvMEHLISHJ4QcMhOcJgv4JCD4LBAwCEnwWGhgENugsOTAg4BgsNTAg55CA6LBBzyEhyeFnDIR3BYLOCQn+DwjIBDQYLDEgGHwgSHZwUcihIcogUcihEcnhNwKEFwWCrgUIrg8LyAQxmCwzIBh3IEhxcEHCoQHJYLOFQiOLwo4FCZ4LBCwKEKweElAYdqBIeVAg41CA4vCzjUIjisEnCoQ3B4RcChHsFhtYBDA4LDqwIOjQgOawQcmhAcXhNwaEZwWCvg0ILg8LqAQyuCwzoBhzYEhzcEHNoRHNYLOHQgOLwp4NCJ4LBBwKELwWGjgEM3gsMmAYceBIe3BBx6ERw2Czj0ITi8LeDQj+CwRcBhAMHhHQGHQQSHrQIOQwgO7wo4DCM4bBNwGEFweE/AYRTBYbuAwxiCw/sCDuMIDjsEHCYQHD4QcJhEcNhp4RBmWjHTomP+u4B5bEHTCplW2LQiphU17V7TiplW3LQSppU0rZRppU0rY1pZ08qZVt60CqZVNK2SafeZVtm0+02rYlpV06qZVt20GqbVNK2WabVNq2NaXdPqmVbftAamNTQN69NjbXasS441ubEeNdZixjrEWIMX689i7VWsO4o1N7HeJNZaxDqDWGMP68thbTWsK4Y1tbCeFNZSwjpCWEMH68dg7RSsG4I1M7BeBNZKwDoByMhHPjyy0ZELjkxs5EEjCxk5wMjARf4rsk+R+4nMS+Q9IusQOX/IuEO+G7LNkOuFTCvkOSHLCDk+yLBBfguyS5DbgcwK5DUgqwDz9DFHHfOzMTcZ83IxJxXzMTEXEfPwMAcN868w9wjzbjDnBPMtMNcA4+wxxhzjqzG2GONqMaYU4ykxlhDj6DCGDOOnMHYI42YwZgTjJTBWANfJcY0Y10dxbRDXxXBNCNdDcC0A58FxDhjnP3HuD+e9cM4H5zvwXR/fc/EdD99v8Nken2vxmQ6fZ/BejvcxHMNx/MJrF/tt7C3Ucp+fHWlMIuPuX6xHo2HHikcX2NCk5vqoqDYd85c8VWfsxiFzqh+7OO+c+f+4f/7M9tvBY/xu48PMdsejYon8PuD561fCHwK+HuaF3JM5+Y9HH1puw/bfx3M5P9Jtn4m9b1LP5S6LGtD/sJi/Yx93k8/vP/5ti8eFVCTkDX3E28/jNmr3uJDqBIfdAg41CQ4fCzjUJjjsEXCoS3D4RMChPsFhr4BDQ4LDpwIOjQkO+wQcmhIcPhNwaE5w2C/g0JLg8LmAQ2uCwwEBh7YEhy8EHNoTHA4KOHQkOHwp4NCZ4HBIwKErweErAYfuBIfDAg49CQ5fCzj0JjgcEXDoS3D4RsChP8HhqIDDQILDMQGHwQSH4wIOQwkO3wo4DCc4nBBwGElw+E7AYTTB4aSAw1iCw/cCDuMJDqcEHCYSHH4QcJhMcDgt4BBFcPhRwGEKweGMgMNUgsNPAg7TCA5nBRymExx+FnCYQXA4J+Awk+Dwi4DDLILDeQGHOQSHXwUc5hEcLgg4zCc4XBRwWEhwuCTgsCss+bfxm4DDIsL+cFnAYTHB4XcBhyUEhysCDtEEhz8EHJYSHK4KOCwjOPwp4LCc4HBNwGEFweG6gMNKgoOX5d/vsIrgECLgsJrgECrgsIbgECbgsJbgEC7gsI7gkELAYT3BIaWAwwaCQyoBh00Eh9QCDpsJDmkEHLYQHCIEHLYSHNIKOGwjOKQTcNhOcLhFwGEHwSG9gMNOgkMGAYddBIdIAYfdBIeMAg57CA6ZBBz2EhwyCzjsIzhkEXDYT3C4VcDhAMEhq4DDQYJDNgGHQwSH7AIOhwkOtwk4HCE45BBwOEpwuF3A4TjBIaeAwwmCQy4Bh5MEh9wCDqcIDncIOJwmOAQEHM4QHO4UcDhLcMgj4HCO4HCXgMN5gkNeAYcLBIe7BRwuERzyCThcJjjcI+BwheCQX8DhKsGhgIDDNYJDQQEHj7DeUiEBh1CCQ2EBh3CCQxEBh5QEh6ICDqkJDvcKOEQQHIoJOKQjOBQXcEhPcCgh4BBJcCgp4JCJ4FBKwCELwaG0gENWgkMZAYfsBIeyAg45CA7lBBxyEhzKCzjkJjhUEHAIEBwqCjjkIThUEnDIS3C4T8AhH8GhsoBDfoLD/QIOBQkOVQQcChMcqgo4FCU4VBNwKEZwqC7gUILgUEPAoRTBoaaAQxmCQy0Bh3IEh9oCDhUIDnUEHCoRHOoKOFQmONQTcKhCcKgv4FCN4NBAwKEGwaGhgEMtgkMjAYc6BIfGAg71CA5NBBwaEByaCjg0Ijg0E3BoQnBoLuDQjODQQsChBcGhpYBDK4JDKwGHNgSH1gIO7QgObQQcOhAc2go4dCI4tBNw6EJwaC/g0I3g0EHAoQfBoaOAQy+CQycBhz4Eh84CDv0IDl0EHAYQHLoKOAwiOHQTcBhCcOgu4DCM4NBDwGEEwaGngMMogkMvAYcxBIfeAg7jCA59BBwmEBz6CjhMIjj0y2K3jVDLf392pOfNj/R//7kx909YR7EejYYdKx5dYEOTmuujotp0zF/yVJ2xG4fMqX7s4rxz5v/3t6zD1qmC+eNx068wy35VsLjv45H+7zvAf70hf//h+X9MxZhteHaP88K9v/aRFIn9o5Z9KO/Z7/8u2ynncbZT1kv+19ocy9favMi4XwQ8+5utwfGMdsfd2NvAmH1xUJa4bdp/MbU4SODfDov5e2DM48K9uB08YScDnq/bjSfpCcsn6QnLJ+n69euXE/t9wEt6e/gjfn2DY+CHZPH+iTI45pmI/7sh8YBtn5xYGNsj/6ncyXvkn+vYrx8s+xV7C/e/nblmOyGDs/jv0xCLdw0L1xC/tcbumLaWeOEOdng3ws32BRpI73n1LV6gd5v713HYP4ZmSf46GljUkc+xjmGEOhpa1HGPYx3DCXU0sqgjv2MdIwh1NLaoo4BjHSMJdTSxqKOgYx2jCHU0taijkGMdowl1NLOoo7BjHWMIdTS3qKOIYx1jCXW0sKijqGMd4wh1tLSo417HOsYT6mhlUUcxxzomEOpobVFHccc6JhLqaGNRRwnHOiYR6mhrUUdJxzomE+poZ1FHKcc6HiDU0d6ijtKOdUQR6uhgUUcZxzoeJNTR0aKOso51TCHU0cmijnKOdTxEqKOzRR3lHeuYSqiji0UdFRzreJhQR1eLOio61jGNUEc3izoqOdbxCKGO7hZ13OdYx3RCHT0s6qjsWMejhDp6WtRxv2MdMwh19LKoo4pjHY8R6uhtUUdVxzpmEuroY1FHNcc6HifU0deijuqOdcwi1NHPoo4ajnXMJtTR36KOmo51zCHUMcCijlqOdcwl1DHQoo7ajnXMI9QxyKKOOo51PEGoY7BFHXUd65hPqGOIRR31HOtYQKhjqEUd9R3rWEioY5hFHQ0c63iSUMdwizoaOtbxFKGOERZ1NHKsYxGhjpEWdTR2rONpQh2jLOpo4ljHYkIdoy3qaOpYxzOEOsZY1NHMsY4lhDrGWtTR3LGOZwl1jLOoo4VjHdGEOsZb1NHSsY7nCHVMsKijlWMdSwl1TLSoo7VjHc8T6phkUUcbxzqWEeqYbFFHW8c6XiDU8YBFHe0c61hOqCPKoo72jnW8SKjjQYs6OjjWsYJQxxSLOjo61vESoY6HLOro5FjHSkIdUy3q6OxYx8uEOh62qKOLYx2rCHVMs6ijq2MdrxDqeMSijm6Odawm1DHdoo7ujnW8SqjjUYs6ejjWscaiDsxLKm5alZj/xpwLzFfAWH+Mk8cYc4zPxthmjAvGmFqMR8VYToyDxBhCjL/D2DWM+8KYKYw3wlgdjHPBGBGMr8DYBFzXxzVxXE/GtVhcx8Q1QFw/w7UnXLfBNQ9cL8C5dpynxjlenB/FuUWcl8M5LZwPwrkUnIfAd3h8/8V3R3zvwncWfN7HZ2V8zsRnNHy+wWcDvK/iPQnHcxwLcRzBaxD7L577NVkS97Gxf82/fWqL+UOpf0jmOVyYP4S+2+5ra/3Xe+P1UjyR3wc8u5ttbTZ9dN3G65avuRLef6+5hK852+MpnqP4E1b9zJHD82S7ndcttrHO8vVQIpHfBzx//Ur4Q8DXwzivh3UO28DN9nj7RvCPtyF//+HZHW/fcDjeruftX3GdtXtcyHrC/vWmgEPF8OTfxgYBh+oEh40CDjUJDpsEHGoTHN4ScKhLcNgs4FCf4PC2gENDgsMWAYfGBId3BByaEhy2Cjg0Jzi8K+DQkuCwTcChNcHhPQGHtgSH7QIO7QkO7ws4dCQ47BBw6Exw+EDAoSvBYaeAQ3eCw4cCDj0JDrsEHHoTHD4ScOhLcNgt4NCf4PCxgMNAgsMeAYfBBIdPBByGEhz2CjgMJzh8KuAwkuCwT8BhNMHhMwGHsQSH/QIO4wkOnws4TCQ4HBBwmExw+ELAIYrgcFDAYQrB4UsBh6kEh0MCDtMIDl8JOEwnOBwWcJhBcPhawGEmweGIgMMsgsM3Ag5zCA5HBRzmERyOCTjMJzgcF3BYSHD4VsBhV1jyb+OEgMMiwv7wnYDDYoLDSQGHJQSH7wUcogkOpwQclhIcfhBwWEZwOC3gsJzg8KOAwwqCwxkBh5UEh58EHFYRHM4KOKwmOPws4LCG4HBOwGEtweEXAYd1BIfzCvO7CQ6/CjhsIDhcEHDYRHC4KOCwmeBwScBhC8HhNwsHZIqU9OLydpCZgLwAzJXHPHHMkcb8YMyNxbxQzInEfEDMhcM8MMyBwvwfzH3BvA/MecB4f4x1xzhvjHHG+F6MbcW4ToxpxHg+jGXDOC6MYcL4HYxdwbgNjFnA9Xpcq8Z1WlyjxPU5XJvCdRlck8D5eJyLxnlYnIPE+Tece8J5F5xzwPdtfNfE9yx8x8Dna3y2xOcqfKbA+yneS3AcxTEErx/sO3CLvdnm4JT37PN2kNNhu503LbZx2fL1UDKR3wc8f/1K+EPA18M4eSiXHbaBm23ezu/+t5NceTs3didbH+yL6HvCxyVV7xXe/hXXWbvHhVwh7F9/CDgw8nauCjgw8nb+FHBg5O1cE3Bg5O1cF3Bg5O14t/77HRh5OyECDoy8nVABB0beTpiAAyNvJ1zAgZG3k0LAgZG3k1LAgZG3k0rAgZG3k1rAgZG3k0bAgZG3EyHgwMjbSSvgwMjbSSfgwMjbuUXAgZG3k17AgZG3k0HAgZG3EyngwMjbySjgwMjbySTgwMjbySzgwMjbySLgwMjbuVXAgZG3k1XAgZG3k03AgZG3k13AgZG3c5uAAyNvJ4eAAyNv53YBB0beTk4BB0beTi4BB0beTm4BB0bezh0CDoy8nYCAAyNv504BB0beTh4BB0bezl0CDoy8nbwCDoy8nbsFHBh5O/kEHBh5O/cIODDydvILODDydgoIODDydgoKODDydgoJODDydgoLODDydooIODDydooKODDydu4VcGDk7RQTcGDk7RQXcGDk7ZQQcGDk7ZQUcGDk7ZQScGDk7ZQWcGDk7ZQRcGDk7ZQVcGDk7ZQTcGDk7ZQXcGDk7VQQcGDk7VS0cECmSCkvLm8HmQnIC8BcecwTxxxpzA/G3FjMC8WcSMwHxFw4zAPDHCjM/8HcF8z7wJwHjPfHWHeM88YYZ4zvxdhWjOvEmEaM58NYNozjwhgmjN/B2BWM28CYBVyvx7XqG9dpTcP1OVybwnUZXJPA+Xici8Z5WJyDxPk3nHvCeRecc8D3bXzXxPcsfMfA52t8tsTnKnymwPsp3ktwHMUxBK8f7Dtwi73Z5uCU8+zzdv5wyNv5w2IblSxfD6US+X3A89evhD8EfD2Mk4di4xD/Zpu3c5//7SRX3s6NLtv6YF9E3xM+Lql6K/P2r7jO2j0upPKtyb+N+wUcGHk7VQQcGHk7VQUcGHk71QQcGHk71QUcGHk7NQQcGHk7NQUcGHk7tQQcGHk7tQUcGHk7dQQcGHk7dQUcGHk79QQcGHk79QUcGHk7DQQcGHk7DQUcGHk7jQQcGHk7jQUcGHk7TQQcGHk7TQUcGHk7zQQcGHk7zQUcGHk7LQQcGHk7LQUcGHk7rQQcGHk7rQUcGHk7bQQcGHk7bQUcGHk77QQcGHk77QUcGHk7HQQcGHk7HQUcGHk7nQQcGHk7nQUcGHk7XQQcGHk7XQUcGHk73QQcGHk73QUcGHk7PQQcGHk7PQUcGHk7vQQcGHk7vQUcGHk7fQQcGHk7fQUcGHk7/QQcGHk7/QUcGHk7AwQcGHk7AwUcGHk7gwQcGHk7gwUcGHk7QwQcGHk7QwUcGHk7wwQcGHk7wwUcGHk7IwQcGHk7IwUcGHk7owQcGHk7owUcGHk7YwQcGHk7YwUcGHk74wQcGHk74wUcGHk7EwQcGHk7EwUcGHk7kwQcGHk7ky0cENBR2ovL20FmAvICMFce88QxRxrzgzE3FvNCMScS8wExFw7zwDAHCvN/MPcF8z4w5wHj/THWHeO8McYZ43sxthXjOjGmEeP5MJYN47gwhgnjdzB2BeM2MGYB1+txrRrXaXGNEtfncG0K12VwTQLn43EuGudhcQ4S599w7gnnXXDOAd+38V0T37PwHQOfr/HZEp+r8JkC76d4L8FxFMcQvH6w78At9mabg3M8o33eDnI6bLcTP9sjqW08YPl6KJ3I7wOev34l/CHg62GcPJQHHLaBm23eTpT/7SRX3k44/rD1wb6Ivid8XFL1Psjbv+I6a/e4kAcJ+9cUAQdG3s5DAg6MvJ2pAg6MvJ2HBRwYeTvTBBwYeTuPCDgw8namCzgw8nYeFXBg5O3MEHBg5O08JuDAyNuZKeDAyNt5XMCBkbczS8CBkbczW8CBkbczR8CBkbczV8CBkbczT8CBkbfzhIADI29nvoADI29ngYADI29noYADI2/nSQEHRt7OUwIOjLydRQIOjLydpwUcGHk7iwUcGHk7zwg4MPJ2lgg4MPJ2nhVwYOTtRAs4MPJ2nhNwYOTtLBVwYOTtPC/gwMjbWSbgwMjbeUHAgZG3s1zAgZG386KAAyNvZ4WAAyNv5yUBB0bezkoBB0bezssCDoy8nVUCDoy8nVcEHBh5O6sFHBh5O68KODDydtYIODDydl4TcGDk7awVcGDk7bwu4MDI21kn4MDI23lDwIGRt7NewIGRt/OmgAMjb2eDgAMjb2ejgAMjb2eTgAMjb+ctAQdG3s5mAQdG3s7bAg6MvJ0tAg6MvJ13BBwYeTtbBRwYeTvvCjgw8na2CTgw8nbes3BApkgZLy5vB5kJyAvAXHnME8ccacwPxtxYzAvFnEjMB8RcOMwDwxwozP/B3BfM+8CcB4z3x1h3jPPGGGeM78XYVozrxJhGjOfDWDaM48IYJozfwdgVjNvAmAVcr8e1alynxTVKXJ/DtSlcl8E1CZyPx7lonIfFOUicf8O5J5x3wTkHfN/Gd018z8J3DHy+xmdLfK7CZwq8n+K9BMdRHEPw+sG+A7fYm20OTlnPPm8HOR2224mf7ZHUNrZbvh7KJPL7gOevXwl/CPh6GCcPZbvDNnCzzdt53/92kitvJwX+sPXBvoi+J3xcUvXu4O1fcZ21e1zIDsL+9YGAAyNvZ6eAAyNv50MBB0bezi4BB0bezkcCDoy8nd0CDoy8nY8FHBh5O3sEHBh5O58IODDydvYKODDydj4VcGDk7ewTcGDk7Xwm4MDI29kv4MDI2/lcwIGRt3NAwIGRt/OFgAMjb+eggAMjb+dLAQdG3s4hAQdG3s5XAg6MvJ3DAg6MvJ2vBRwYeTtHBBwYeTvfCDgw8naOCjgw8naOCTgw8naOCzgw8na+FXBg5O2cEHBg5O18J+DAyNs5KeDAyNv5XsCBkbdzSsCBkbfzg4ADI2/ntIADI2/nRwEHRt7OGQEHRt7OTwIOjLydswIOjLydnwUcGHk75wQcGHk7vwg4MPJ2zgs4MPJ2fhVwYOTtXBBwYOTtXBRwYOTtXBJwYOTt/CbgwMjbuSzgwMjb+V3AgZG3c0XAgZG384eAAyNv56qAAyNv508BB0bezjUBB0beznUBB0bejpf13+/AyNsJEXBg5O2ECjgw8nbCBBwYeTvhAg6MvJ0UAg6MvJ2UAg6MvJ1UFg7IFEFWTJWY/0ZmAvICMFce88QxRxrzgzE3FvNCMScS8wExFw7zwDAHCvN/MPcF8z4w5wHj/THWHeO8McYZ43sxthXjOjGmEeP5MJYN47gwhgnjdzB2BeM2MGYB1+txrRrXaXGNEtfncG0K12VwTQLn43EuGudhcQ4S599w7gnnXXDOAd+38V0T37PwHQOfr/HZEp+r8JkC76d4L8FxFMcQvH6w78At9mabg4PMkkGWeTsfOOTtfGCRt5Pa8vVQNpHfBzx//Ur4Q8DXwzh5KDYO8W+2eTtp/G8nufJ2UuIPWx/si+h7wsclVW8Eb/+K66zd40Iisib/NtJabsP2NT870vPmRPq//1xz33mR9s9nOoHnk5EbdIuAAyM3KL2AAyM3KIOAAyM3KFLAgZEblFHAgZEblEnAgZEblFnAgZEblEXAgZEbdKuAAyM3KKuAAyM3KJuAAyM3KLuAAyM36DYBB0ZuUA4BB0Zu0O0CDozcoJwCDozcoFwCDozcoNwCDozcoDsEHBi5QQEBB0Zu0J0CDozcoDwCDozcoLsEHBi5QXkFHBi5QXcLODByg/IJODByg+4RcGDkBuUXcGDkBhUQcGDkBhUUcGDkBhUScGDkBhUWcGDkBhURcGDkBhUVcGDkBt0r4MDIDSom4MDIDSou4MDIDSoh4MDIDSop4MDIDSol4MDIDSot4MDIDSoj4MDIDSor4MDIDSon4MDIDSov4MDIDaog4MDIDaoo4MDIDaok4MDIDbpPwIGRG1RZwIGRG3S/gAMjN6iKgAMjN6iqgAMjN6iagAMjN6i6gAMjN6iGgAMjN6imgAMjN6iWgAMjN6i2gAMjN6iOgAMjN6iugAMjN6iegAMjN6i+gAMjN6iBZW5QOS8uNwiZCcgLwFx5zBPHHGnMD8bcWMwLxZxIzAfEXDjMA8McKMz/wdwXzPvAnAeM978x1t00jHHG+F6MbcW4ToxpxHg+jGXDOC6MYcL4HYxdwbgNjFnA9Xpcq8Z1WlyjxPU5XJvCdRlck8D5eJyLxnlYnIPE+Tece8J5F5xzwPdtfNfE9yx8x8Dna3y2xOcqfKbA+yneS3AcxTEErx/sO3CLvSXM9vCTA2SRH3IjqwU5HQm3k9Tj4m8jqT41zGr3eiiXyO8Dnr9+Jfwh4OthnFyXhg7bwM02N6iR/+0kV25QKvxh64N9EX1P+Lik6m3M27/iOmv3uJDGhP2riYADI2+nqYADI2+nmYADI2+nuYADI2+nhYADI2+npYADI2+nlYADI2+ntcLnB4JDGwEHRt5OWwEHRt5OOwEHRt5OewEHRt5OBwEHRt5ORwEHRt5OJwEHRt5OZwEHRt5OFwEHRt5OVwEHRt5ONwEHRt5OdwEHRt5ODwEHRt5OTwEHRt5OLwEHRt5ObwEHRt5OHwEHRt5OXwEHRt5OPwEHRt5OfwEHRt7OAAEHRt7OQAEHRt7OIAEHRt7OYAEHRt7OEAEHRt7OUAEHRt7OMAEHRt7OcAEHRt7OCAEHRt7OSAEHRt7OKAEHRt7OaAEHRt7OGAEHRt7OWAEHRt7OOAEHRt7OeAEHRt7OBAEHRt7ORAEHRt7OJAEHRt7OZAEHRt7OAwIOjLydKAEHRt7OgwIOjLydKQIOjLydhwQcGHk7UwUcGHk7Dws4MPJ2pgk4MPJ2HhFwYOTtTBdwYOTtPCrgwMjbmSHgwMjbeUzAgZG3M1PAgZG387iAAyNvZ5aAAyNvZ7aFAzJFyntxeTvITEBeAObKY5445khjfjDmxmJeKOZEYj4g5sJhHhjmQGH+D+a+YN4H5jxgvD/GumOcN8Y4Y3wvxrZiXCfGNGI8H8ayYRwXxjBh/A7GrmDcBsYs4Ho9rlXjOi2uUeL6HK5N4boMrkngfDzOReM8LM5B4vwbzj3hvAvOOeD7Nr5r4nsWvmPg8zU+W+JzFT5T4P0U7yU4juIYgtcP9h24xd5sc3CQWTIwS9z9/eTzIKfDdjvxsz2S2sYcy9dD+UR+H/D89SvhDwFfD+Pkocxx2AZutnk7c/1vJ8QibyfEIm8n5O8/PLt9F31P+Lik6p1n4Yp/Oyzm78Qe55Jv5fe+T2S184u92T7/84P//P/1AO+f/U7q7rHHLpdjXux9k7JZ4LivxD7uJo9P//i3LR5HySlayDtOx23U7nGUnKInBRwYOUVPCTgwcooWCTgwcoqeFnBg5BQtFnBg5BQ9I+DAyClaIuDAyCl6VsCBkVMULeDAyCl6TsCBkVO0VMCBkVP0vIADI6domYADI6foBQEHRk7RcgEHRk7RiwIOjJyiFQIOjJyilwQcGDlFKwUcGDlFLws4MHKKVgk4MHKKXhFwYOQUrRZwYOQUvSrgwMgpWiPgwMgpek3AgZFTtFbAgZFT9LqAAyOnaJ2AAyOn6A0BB0ZO0XoBB0ZO0ZsCDoycog0CDoycoo0CDoycok0CDoycorcEHBg5RZsFHBg5RW8LODByirYIODByit4RcGDkFG0VcGDkFL0r4MDIKdom4MDIKXpPwIGRU7RdwIGRU/S+gAMjp2iHgAMjp+gDAQdGTtFOAQdGTtGHAg6MnKJdAg6MnKKPBBwYOUW7BRwYOUUfCzgwcor2CDgwcoo+EXBg5BTtFXBg5BR9KuDAyCnaJ+DAyCn6TMCBkVO0X8CBkVP0uYADI6fogGUui+2/j3yKeQ65JhPuSN5+IY9kflb7zJMvLPJFbGtI2Jek/v3ZkZ63K7P/+8819++fxf65OGixj5hd9u/ckP/pQILtJtXf+/3f9x/b+zLrTWzwy6z2jztkEQjl2q9DWeN+EfD831xesAscXrAPJPMLNl3Wv0KEbPsVZdmv2Jtt8NBXFgcGC6sQi/6H/P2HRb+reH/tW7YHnyoW2ziczG8ysD/ssG987RiI9PX/QXjWYYtjxhFSeNY3wd+H/3qA989+J3V3HBe+cHgzP/ovejPHcdfijfZGzQcd9vljlm/mITF//08HEmw3qf7avJnfzHbu8zjb+eYmj2lJPU/VvL9ev7b7UZjFfat59lYhCX8I+HqYF3I4mcGqen8dVG3BbA7Exy1fPGihiW3Uso9+X7TXr18/mtjvA17S28Af8fv6bcwHzhNZvX+++30bc9SJ/7sTiXQw4btPUh045u+JmGueiJBvLZ60E5Z4tjsedqBvHT+du3zl+8jyK99TkfY1fZc1+evYbVnHIoc6ThLq+Niyjqcd6vieUMceyzoWO9RxilDHJ5Z1PONQxw+EOvZa1rHEoY7ThDo+tazjWYc6fiTUsc+yjmiHOs4Q6vjMso7nHOr4iVDHfss6ljrUcZZQx+eWdTzvUMfPhDoOWNaxzKGOc4Q6vrCs4wWHOn4h1HHQso7lDnWcJ9TxpWUdLzrU8SuhjkOWdaxwqOMCoY6vLOt4yaGOi4Q6DlvWsdKhjkuEOr62rONlhzp+I9RxxLKOVQ51XCbU8Y1lHa841PE7oY6jlnWsdqjjCqGOY5Z1vOpQxx+EOo5b1rHGoY6rhDq+tazjNYc6/iTUccKyjrUOdVwj1PGdZR2vO9RxnVDHScs61jnU4WVL/jq+t6zjDYc6Qgh1nLKsY71DHaGEOn6wrONNhzrCCHWctqxjg0Md4YQ6frSsY6NDHSkIdZyxrGOTQx0pCXX8ZFnHWw51pCLUcdayjs0OdaQm1PGzZR1vO9SRhlDHOcs6tjjUEUGo4xfLOt5xqCMtoY7zlnVsdagjHaGOXy3reNehjlsIdVywrGObQx3pCXVctKzjPYc6MhDquGRZx3aHOiIJdfxmWcf7DnVkJNRx2bKOHQ51ZCLU8btlHR841JGZUMcVyzp2OtSRhVDHH5Z1fOhQx62EOq5a1rHLoY6shDr+tKzjI4c6shHquGZZx26HOrIT6rhuWcfHDnXcRqjDy2JXxx6HOnIQ6gixrOMThzpuJ9QRalnHXoc6chLqCLOs41OHOnIR6gi3rGOfQx25CXWksKzjM4c67iDUkdKyjv0OdQQIdaSyrONzhzruJNSR2rKOAw515CHUkcayji8c6riLUEeEZR0HHerIS6gjrWUdXzrUcTehjnSWdRxyqCMfoY5bLOv4yqGOewh1pLes47BDHfkJdWSwrONrhzoKEOqItKzjiEMdBQl1ZLSs4xuHOgoR6shkWcdRhzoKE+rIbFnHMYc6ihDqyGJZx3GHOooS6rjVso5vHeq4l1BHVss6TjjUUYxQRzbLOr5zqKM4oY7slnWcdKijBKGO2yzr+N6hjpKEOnJY1nHKoY5ShDput6zjB4c6ShPqyGlZx2mHOsoQ6shlWcePDnWUJdSR27KOMw51lCPUcYdlHT851FGeUEfAso6zDnVUINRxp2UdPzvUUZFQRx7LOs451FGJUMddlnX84lDHfYQ68lrWcd6hjsqEOu62rONXhzruJ9SRz7KOCw51VCHUcY9lHRcd6qhKqCO/ZR2XHOqoRqijgGUdvznUUZ1QR0HLOi471FGDUEchyzp+d6ijJqGOwpZ1XHGooxahjiKWdfzhUEdtQh1FLeu46lBHHUId91rW8adDHXUJdRSzrOOaQx31CHUUt6zjukMd9Ql1lLCsw8toX0cDQh0lLesIcaijIaGOUpZ1hDrU0YhQR2nLOsIc6mhMqKOMZR3hDnU0IdRR1rKOFA51NCXUUc6yjpQOdTQj1FHeso5UDnU0J9RRwbKO1A51tCDUUdGyjjQOdbQk1FHJso4IhzpaEeq4z7KOtA51tCbUUdmyjnQOdbQh1HG/ZR23ONTRllBHFcs60jvU0Y5QR1XLOjI41NGeUEc1yzoiHeroQKijumUdGR3q6Eioo4ZlHZkc6uhEqKOmZR2ZHeroTKijlmUdWRzq6EKoo7ZlHbc61NGVUEcdyzqyOtTRjVBHXcs6sjnU0Z1QRz3LOrI71NGDUEd9yzpuc6ijJ6GOBpZ15HCooxehjoaWddzuUEdvQh2NLOvI6VBHH0IdjS3ryOVQR19CHU0s68jtUEc/Qh1NLeu4w6GO/oQ6mlnWEXCoYwChjuaWddzpUMdAQh0tLOvI41DHIEIdLS3ruMuhjsGEOlpZ1pHXoY4hhDpaW9Zxt0MdQwl1tLGsI59DHcMIdbS1rOMehzqGE+poZ1lHfoc6RhDqaG9ZRwGHOkYS6uhgWUdBhzpGEeroaFlHIYc6RhPq6GRZR2GHOsYQ6uhsWUcRhzrGEuroYllHUYc6xhHq6GpZx70OdYwn1NHNso5iDnVMINTR3bKO4g51TCTU0cOyjhIOdUwi1NHTso6SDnVMJtTRy7KOUg51PECoo7dlHaUd6ogi1NHHso4yDnU8SKijr2UdZR3qmEKoo59lHeUc6njIog6sD1/BtOiY/8aa41ivG2tdY51orLGM9Ymxti/WxcWasliPFWuZYh1QrKGJ9SexdiPWPcSagVhvD2vVYZ03rJGG9cWwNhfWtcKaUFhPCWsRYR0frIGD9WOw9grWLcGaH1gvA2tNYJ0GrHGA9QGQrY9cemS6Iw8dWeLI4UaGNfKfkZ2M3GFk9iLvFlmxyFlFRinyPZGNiVxJZDIiz/BGFmC2vzLokN+G7DPkhiFzC3lVyHpCThIyhpDPg2wb5MIgUwV5JMjyQA4GMiSQv4DsAsz7x5x5zDfHXG3Mc8YcYcyvxdxUzOvEnEjMJ8RcPMxjwxwwzJ/C3CPM28GcF8wXwVwLzFPAGH+Mj8fYcozLxphmjAfGWFqMQ8UYTox/xNhBjLvDmDWM98JYKYwzwhgdjG/B2BCMq8CYBFzPx7VwXEfGNVhcv8S1P1w3wzUnXK/BtQ5cJ8A5dpyfxrldnBfFOUWcj8O5LJwHwjkUnH/Ad3d878V3RnzfwncVfM7HZ2R8vsRnM3yuwWcCvJ/ivQjHcRwDcfzAaw/77d87f4J9PolbisNmfzqW1f61MjWb/9dKaMxrJeEt4NndLGsLsemj6zYezpa8xz7053hW/89LVdMOOzyf07LZHfsqev8d+/479v27jn2hlvs8XicWr98Q3B+vE9vXcPxtJNWnR7LZHVcrJvL7gOevXwl/CPh6GOe4+ojlNlzf92yfy8MWx+LpvOcyroN2jwuZTnguHxVwqBie/NuYIeBQneDwmIBDTYLDTAGH2gSHxwUc6hIcZgk41Cc4zBZwaEhwmCPg0JjgMFfAoSnBYZ6AQ3OCwxMCDi0JDvMFHFoTHBYIOLQlOCwUcGhPcHhSwKEjweEpAYfOBIdFAg5dCQ5PCzh0JzgsFnDoSXB4RsChN8FhiYBDX4LDswIO/QkO0QIOAwkOzwk4DCY4LBVwGEpweF7AYTjBYZmAw0iCwwsCDqMJDssFHMYSHF4UcBhPcFgh4DCR4PCSgMNkgsNKAYcogsPLAg5TCA6rBBymEhxeEXCYRnBYrTBOjODwqoDDDILDGgGHmQSH1wQcZhEc1go4zCE4vC7gMI/gsE7AYT7B4Q0Bh4UEh/UCDrvCkn8bbwo4LCLsDxsEHBYTHDYKOCwhOGwScIgmOLwl4LCU4LBZwGEZweFtAYflBIctAg4rCA7vCDisJDhsFXBYRXB4V8BhNcFhm4DDGoLDewIOawkO2wUc1hEc3hdwWE9w2CHgsIHg8IGAwyaCw04Bh80Ehw8FHLYQHHYJOGwlOHwk4LCN4LBbwGE7weFjAYcdBIc9Ag47CQ6fKFzHITjsFXDYTXD4VMBhD8Fhn4DDXoLDZwIO+wgO+wUc9hMcPhdwOEBwOCDgcJDg8IWAwyGCw0EBh8MEhy8FHI4QHA4JOBwlOHwl4HCc4HBYwOEEweFrAYeTBIcjAg6nCA7fCDicJjgcFXA4Q3A4JuBwluBwXMDhHMHhWwGH8wSHEwIOFwgO3wk4XCI4nBRwuExw+F7A4QrB4ZSAw1WCww8CDtcIDqcFHLwUyb+NHwUcQgkOZwQcwgkOPwk4pCQ4nBVwSE1w+FnAIYLgcE7AIR3B4RcBh/QEh/MCDpEEh18FHDIRHC4IOGQhOFwUcMhKcLgk4JCd4PCbgEMOgsNlAYecBIffBRxyExyuCDgECA5/CDjkIThcFXDIS3D4U8AhH8HhmoBDfoLDdQGHggQHL/u/36EwwSFEwKEowSFUwKEYwSFMwKEEwSFcwKEUwSGFgEMZgkNKAYdyBIdUAg4VCA6pBRwqERzSCDhUJjhECDhUITikFXCoRnBIJ+BQg+Bwi4BDLYJDegGHOgSHDAIO9QgOkQIODQgOGQUcGhEcMgk4NCE4ZBZwaEZwyCLg0ILgcKuAQyuCQ1YBhzYEh2wCDu0IDtkFHDoQHG4TcOhEcMgh4NCF4HC7gEM3gkNOAYceBIdcAg69CA65BRz6EBzuEHDoR3AICDgMIDjcKeAwiOCQR8BhCMHhLgGHYQSHvAIOIwgOdws4jCI45BNwGENwuEfAYRzBIb+AwwSCQwEBh0kEh4IWDmGmVTItOua/Z2TzvMdMm2na46bNMm22aXNMm2vaPNOeMG2+aQtMW2jak6Y9Zdoi0542bbFpz5i2xLRnTYs27TnTlpr2vGnLTHvBtOWmvWjaCtNeMm2laS+btsq0V0xbbdqrpmF9eqzNjnXJsSY31qPGWsxYhxhr8GL9Way9inVHseYm1pvEWotYZxBr7GF9OaythnXFsKYW1pPCWkpYRwhr6GD9GKydgnVDsGYG1ovAWglYJwAZ+ciHRzY6csGRiY08aGQhIwcYGbjIf0X2KXI/kXmJvEdkHSLnDxl3yHdDthlyvZBphTwnZBkhxwcZNshvQXYJcjuQWYG8BmQVYJ4+5qhjfjbmJmNeLuakYj4m5iJiHh7moGH+FeYeYd4N5pxgvgXmGmCcPcaYY3w1xhZjXC3GlGI8JcYSYhwdxpBh/BTGDmHcDMaMYLwExgrgOjmuEeP6KK4N4roYrgnhegiuBeA8OM4B4/wnzv3hvBfO+eB8B77r43vuje94puGzPT7X4jMdPs/gvRzvYziG4/iF1y7229hbqOU+f7/543DWuPsX69Fo2LHi0QU2NKm5PiqqTcf8JU/VGbtxyJzqxy7OOxdz30ez2W/n0Wz+t1HI8nhUKZHfBzx//Ur4Q8DXw7yQ6dmS/3hk4+Dw76fAc3ksq/VzGWqzvxTmPZd/32ydC2dP/m0UucnnMilnvB9Vi/k7/uOS2kyYxX2rWfSnqMDzXpGQKXWvgEN1gkMxAYeaBIfiAg61CQ4lBBzqEhxKCjjUJziUEnBoSHAoLeDQmOBQRsChKcGhrIBDc4JDOQGHlgSH8gIOrQkOFQQc2hIcKgo4tCc4VBJw6EhwuE/AoTPBobKAQ1eCw/0CDt0JDlUEHHoSHKoKOPQmOFQTcOhLcKgu4NCf4FBDwGEgwaGmgMNggkMtAYehBIfaAg7DCQ51BBxGEhzqCjiMJjjUE3AYS3CoL+AwnuDQQMBhIsGhoYDDZIJDIwGHKIJDYwGHKQSHJgIOUwkOTQUcphEcmgk4TCc4NBdwmEFwaCHgMJPg0FLAYRbBoZWAwxyCQ2sBh3kEhzYCDvMJDm0FHBYSHNoJOOwKS/5ttBdwWETYHzoIOCwmOHQUcFhCcOgk4BBNcOgs4LCU4NBFwGEZwaGrgMNygkO3/197bwJuY/l//9/HlCQhnTiGTpIoydAg8zzP8zzP8zyPIUmSJJEkSZIkSUiSJEmSpJKEJEmSkKT6v5fO+dif8yX7vvtZ3++6rv++rpXTOfs561mvvfdz9n6e+163AIeFBA7tBDgsInBoL8BhMYFDBwEOSwgcOgpwWErg0EmAwzICh84CHJYTOHQR4LCCwKGrAIeVBA7dBDisJnDoLsBhDYFDDwEOawkcegpwWEfg0EuAw3oCh94CHDYQOPQR4LCRwKGvAIdNBA79FK7jEDj0F+CwhcBhgACHrQQOAwU4bCNwGCTAYTuBw2ABDjsIHIYIcNhJ4DBUgMPnBA7DBDjsInAYLsBhN4HDCAEOewgcRgpw2EvgMEqAw34Ch9ECHA4QOIwR4HCQwOE+AQ6HCBzGCnA4TOAwToDDEQKH8QIcjhI43C/A4RiBwwQBDscJHB4Q4HCCwGGiAIdTBA4PCnA4TeAwSYDDGQKHhwQ4nCVwmCzA4U8Ch4cFODjCmlpTBDgkI3B4RIBDCgKHqQIcUhE4PCrAITWBwzQBDmkIHB4T4JCWwGG6AId0BA6PC3BIT+AwQ4BDRgKHJwQ4ZCJwmCnAIZbAYZYAh8wEDk8KcIgjcJgtwCEbgcNTAhxyEDjMEeAQT+DwtACHnAQOcwU45CJweEaAQ24Ch3kCHPIQODwrwOFWAof5Cut0Ezg8J8AhP4HDAgEOBQgcnhfgUIjAYaEAhzsJHF4Q4HA3gcMiAQ5FCBxeFOBQlMBhsQCH4gQOLwlwKEngsESAQ2kCh5cFOJQlcFgqwKE8gcMrAhwqEjgsE+BQmcDhVQEOVQkclgtwqE7g8JoAh5oEDisEONQmcHhdgENdAoeVAhzqEzisEuDQkMBhtQCHxgQObwhwaErgsEaAQ3MChzcFOLQkcFgrwKE1gcNbAhzaEjisE+DQnsDhbQEOHQkc1gtw6Ezg8I4Ah64EDhsEOHQncHhXgENPAoeNAhx6Ezi8J8ChL4HDJgEO/Qkc3hfgMJDAYbMAh8EEDh8IcBhK4LBFgMNwAocPBTiMJHDY6sEhuamEaW7C/99h2xYwFTQVMhU23Wm6y3S36R5TEdO9pqKmYqbiphKmkqZSptKmMqaypnKm8qYKpoqmSqbKpiqmqqZqpuqmGqaaplqm2qY6prqmeiasT4+12bEuOdbkxnrUWIsZ6xBjDV6sP4u1V7HuKNbcxHqTWGsR6wxijT2sL4e11bCuGNbUwnpSWEsJ6whhDR2sH4O1U7BuCNbMwHoRWCsB6wSgIx/98OhGRy84OrHRB40uZPQAowMX/a/oPkXvJzov0feIrkP0/KHjDv1u6DZDrxc6rdDnhC4j9Pigwwb9LeguQW8HOivQ14CuAszTxxx1zM/G3GTMy8WcVMzHxFxEzMPDHDTMv8LcI8y7wZwTzLfAXAOMs8cYc4yvxthijKvFmFKMp8RYQoyjwxgyjJ/C2CGMm8GYEYyXwFgBXCfHNWJcH8W1QVwXwzUhXA/BtQCcB8c5YJz/xLk/nPfCOR+c78BnfXzOxWc8fL7Be3u8r8V7Oryfwd9y/B3DMRzHL7x28bxNvCVL8pwv0L5m330F5+ZdWbvCijFjGrfIU/hQ5SGrek8tt+/ktGP2892xzt2eOfrXCO6fP/P/9LnUdpEel9qnjzL7HY9KXOD78S66/Ur6RXxUm7mYfJkv//HoI08Pz9+fEo/lvljvxzI5tku876Uey228x/I/N1/O2wiP5ccCHIoROpa2C3AoR+DwiQCHCgQOOwQ4VCJw+FSAQxUCh50CHKoROHwmwKEGgcPnAhxqETh8IcChDoHDLgEO9QgcvhTg0IDAYbcAh0YEDl8JcGhC4LBHgEMzAoevBTi0IHDYK8ChFYHDPgEObQgc9gtwaEfg8I0Ahw4EDgcEOHQicPhWgEMXAoeDAhy6ETh8J8ChB4HDIQEOvQgcvhfg0IfA4bAAh34EDj8IcBhA4HBEgMMgAocfBTgMIXA4KsBhGIHDTwIcRhA4HBPgMIrA4WcBDmMIHI4LcBhL4PCLAIfxBA4nBDhMIHA4KcBhIoHDKQEOkwgcfhXgMJnA4bQAhykEDr8JcJhK4HBGgMM0AoffBThMJ3A4K8BhBoHDHwIcNie//B5/CnCYRXg+/CXAYTaBg8vyf5/DHAKHGAEOcwkckglwmEfgkFyAw3wChxQCHBYQOKQU4LCQwCGVAIdFBA5XCHBYTOCQWoDDEgKHKwU4LCVwSCPAYRmBw1UCHJYTOKQV4LCCwOFqAQ4rCRzSCXBYTeBwjQCHNQQO6QU4rCVwyCDAYR2BQ0YBDusJHK4V4LCBwCGTAIeNBA7XCXDYROAQK8BhM4HD9QIcthA4ZBbgsJXAIYsAh20EDnECHLYTOGQV4LCDwCGbAIedBA7ZBTh8TuCQQ4DDLgKHGwQ47CZwiBfgsIfA4UYBDnsJHHIKcNhP4HCTAIcDBA65BDgcJHC4WYDDIQKH3AIcDhM43CLA4QiBQx4BDkcJHPIKcDhG4HCrAIfjBA63CXA4QeCQT4DDKQKH2wU4nCZwyC/A4QyBwx0CHM4SOBQQ4PAngUNBAQ6OsMZUIQEOyQgcCgtwSEHgcKcAh1QEDncJcEhN4HC3AIc0BA73CHBIS+BQRIBDOgKHewU4pCdwKCrAISOBQzEBDpkIHIoLcIglcCghwCEzgUNJAQ5xBA6lBDhkI3AoLcAhB4FDGQEO8QQOZQU45CRwKCfAIReBQ3kBDrkJHCoIcMhD4FBRgMOtBA6VBDjkI3CoLMAhP4FDFQEOBQgcqgpwKETgUE2Aw50EDtUFONxN4FBDgEMRAoeaAhyKEjjUEuBQnMChtgCHkgQOdQQ4lCZwqCvAoSyBQz0BDuUJHOoLcKhI4NBAgENlAoeGAhyqEjg0EuBQncChsQCHmgQOTQQ41CZwaCrAoS6BQzMBDvUJHJoLcGhI4NBCgENjAoeWAhyaEji0EuDQnMChtQCHlgQObQQ4tCZwaCvAoS2BQzsBDu0JHNoLcOhI4NBBgENnAoeOAhy6Ejh0EuDQncChswCHngQOXQQ49CZw6CrAoS+BQzcBDv0JHLoLcBhI4NBDgMNgAoeeAhyGEjj0EuAwnMChtwCHkQQOfTw4JDeVNM1N+P/tmZ37xLTD9Klpp+kz0+emL0y7TF+adpu+Mu0xfW3aa9pn2m/6xnTA9K3poOk70yHT96bDph9MR0w/mo6afjIdM/1sOm76xXTCdNJ0yoT16bE2O9Ylx5rcWI8aazFjHWKswYv1Z7H2KtYdxZqbWG8Say1inUGssYf15bC2GtYVw5paWE8KaylhHSGsoYP1Y7B2CtYNwZoZWC8CayVgnQB05KMfHt3o6AVHJzb6oNGFjB5gdOCe6381ofcTnZfoe0TXIXr+0HGHfjd0m6HXC51W6HNClxF6fNBhg/4WdJegtwOdFehrQFcB5uljjjrmZ2NuMublYk4q5mNiLiLm4WEOGuZfYe4R5t1gzgnmW2CuAcbZY4w5xldjbDHG1WJMKcZTYiwhxtFhDBnGT2HsEMbNYMwIxktgrACuk+MaMa6P4togrovhmhCuh+BaAM6D4xwwzn/i3B/Oe+GcD8534LM+PufiMx4+3+C9Pd7X4j0d3s/gbzn+juEYjuMXXrt43ibeknk+5/Fa3h17/v4F2tfsu6/g3Lwra1dYMWZM4xZ5Ch+qPGRV76nl9p2cdizhvh9n9vf5OHP0Hn09j0clL/D9eBfdfiX9Ij6qzVzMtsyX/3jkwyHg96fEY7kv1vuxTOHzfOnHeyz/c/Pl3C/L5ffoL8ChGKFjaYAAh3IEDgMFOFQgcBgkwKESgcNgAQ5VCByGCHCoRuAwVIBDDQKHYQIcahE4DBfgUIfAYYQAh3oEDiMFODQgcBglwKERgcNoAQ5NCBzGCHBoRuBwnwCHFgQOYwU4tCJwGCfAoQ2Bw3gBDu0IHO4X4NCBwGGCAIdOBA4PCHDoQuAwUYBDNwKHBwU49CBwmCTAoReBw0MCHPoQOExWuJ5F4PCwAIcBBA5TBDgMInB4RIDDEAKHqQIchhE4PCrAYQSBwzQBDqMIHB4T4DCGwGG6AIexBA6PC3AYT+AwQ4DDBAKHJwQ4TCRwmCnAYRKBwywBDpMJHJ4U4DCFwGG2AIepBA5PCXCYRuAwR4DDdAKHpwU4zCBwmCvAYXPyy+/xjACHWYTnwzwBDrMJHJ4V4DCHwGG+AIe5BA7PCXCYR+CwQIDDfAKH5wU4LCBwWCjAYSGBwwsCHBYROCwS4LCYwOFFAQ5LCBwWC3BYSuDwkgCHZQQOSwQ4LCdweFmAwwoCh6UCHFYSOLwiwGE1gcMyAQ5rCBxeFeCwlsBhuQCHdQQOrwlwWE/gsEKAwwYCh9cFOGwkcFgpwGETgcMqhes4BA6rBThsIXB4Q4DDVgKHNQIcthE4vCnAYTuBw1oBDjsIHN4S4LCTwGGdAIfPCRzeFuCwi8BhvQCH3QQO7whw2EPgsEGAw14Ch3cFOOwncNgowOEAgcN7AhwOEjhsEuBwiMDhfQEOhwkcNgtwOELg8IEAh6MEDlsEOBwjcPhQgMNxAoetAhxOEDh8JMDhFIHDNgEOpwkcPhbgcIbAYbsAh7MEDp8IcPiTwGGHAAdHWGPqUwEOyQgcdgpwSEHg8JkAh1QEDp8LcEhN4PCFAIc0BA67BDikJXD4UoBDOgKH3QIc0hM4fCXAISOBwx4BDpkIHL4W4BBL4LBXgENmAod9AhziCBz2C3DIRuDwjQCHHAQOBwQ4xBM4fCvAISeBw0EBDrkIHL4T4JCbwOGQAIc8BA7fC3C4lcDhsACHfAQOPwhwyE/gcESAQwEChx8FOBQicDgqwOFOAoefBDjcTeBwTIBDEQKHnwU4FCVwOC7AoTiBwy8CHEoSOJwQ4FCawOGkAIeyBA6nBDiUJ3D4VYBDRQKH0wIcKhM4/CbAoSqBwxkBDtUJHH4X4FCTwOGsAIfaBA5/CHCoS+DwpwCH+gQOfwlwaEjg4OL+73NoTOAQI8ChKYFDMgEOzQkckgtwaEngkEKAQ2sCh5QCHNoSOKQS4NCewOEKAQ4dCRxSC3DoTOBwpQCHrgQOaQQ4dCdwuEqAQ08Ch7QCHHoTOFwtwKEvgUM6AQ79CRyuEeAwkMAhvQCHwQQOGQQ4DCVwyCjAYTiBw7UCHEYSOGTy4JDcVMo0N+H/B9g53oGmQabBpiGmoaZhpuGmEaaRplGm0aYxpvtMY03jTONN95smmB4wTTQ9aJpkesg02fSwaYrpEdNU06OmaabHTNNNj5tmmJ4wzTRhfXqszY51ybEmN9ajxlrMWIcYa/Bi/VmsvYp1R7HmJtabxFqLWGcQa+xhfTmsrYZ1xbCmFtaTwlpKWEcIa+hg/RisnYJ1Q7BmBtaLwFoJWCcAHfnoh0c3OnrB0YmNPmh0IaMHGB246H9F9yl6P9F5ib5HdB2i5w8dd+h3Q7cZer3QaYU+J3QZoccHHTbob0F3CXo70FmBvgZ0FWCePuaoY3425iZjXi7mpGI+JuYiYh4e5qBh/hXmHmHeDeacYL4F5hpgnD3GmGN8NcYWY1wtxpRiPCXGEmIcHcaQYfwUxg5h3AzGjGC8BMYK4Do5rhHj+iiuDeK6GK4J4XoIrgXgPDjOAeP8J8794bwXzvngfAc+6+NzLj7j4fMN3tvjfS3e0+H9DP6W4+8YjuE4fuG1i+dt4i2Z53N+d6wxiT1//wLta/bdV3Bu3pW1K6wYM6ZxizyFD1Uesqr31HL7Tk47Zj/H/ftn8ffBNtF6XOd5PCp1ge/Hu+j2K+kX8VFt5mL6Zbn8xyMfDiG/H4/lvtiw50zifS/1WMZ6ZMD+J0/4N3G7f/n4/tfv9tguphihb+h63vP8vKnfdjHlCBwyC3CoQOCQRYBDJQKHOAEOVQgcsgpwqEbgkE2AQw0Ch+wCHGoROOQQ4FCHwOEGAQ71CBziBTg0IHC4UYBDIwKHnAIcmhA43CTAoRmBQy4BDi0IHG4W4NCKwCG3AIc2BA63CHBoR+CQR4BDBwKHvAIcOhE43CrAoQuBw20CHLoROOQT4NCDwOF2AQ69CBzyC3DoQ+BwhwCHfgQOBQQ4DCBwKCjAYRCBQyEBDkMIHAoLcBhG4HCnAIcRBA53CXAYReBwtwCHMQQO9whwGEvgUESAw3gCh3sFOEwgcCgqwGEigUMxAQ6TCByKC3CYTOBQQoDDFAKHkgIcphI4lBLgMI3AobQAh+kEDmUEOMwgcCgrwGFz8svvUU6AwyzC86G8AIfZBA4VBDjMIXCoKMBhLoFDJQEO8wgcKgtwmE/gUEWAwwICh6oCHBYSOFQT4LCIwKG6AIfFBA41BDgsIXCoKcBhKYFDLQEOywgcagtwWE7gUEeAwwoCh7oCHFYSONQT4LCawKG+AIc1BA4NBDisJXBoKMBhHYFDIwEO6wkcGgtw2EDg0ESAw0YCh6YCHDYRODRTuI5D4NBcgMMWAocWAhy2Eji0FOCwjcChlQCH7QQOrQU47CBwaCPAYSeBQ1sBDp8TOLQT4LCLwKG9AIfdBA4dBDjsIXDoKMBhL4FDJwEO+wkcOgtwOEDg0EWAw0ECh64CHA4ROHQT4HCYwKG7AIcjBA49BDgcJXDoKcDhGIFDLwEOxwkcegtwOEHg0EeAwykCh74CHE4TOPQT4HCGwKG/AIezBA4DBDj8SeAwUICDI6y3NEiAQzICh8ECHFIQOAwR4JCKwGGoAIfUBA7DBDikIXAYLsAhLYHDCAEO6QgcRgpwSE/gMEqAQ0YCh9ECHDIROIwR4BBL4HCfAIfMBA5jBTjEETiME+CQjcBhvACHHAQO9wtwiCdwmCDAISeBwwMCHHIROEwU4JCbwOFBAQ55CBwmCXC4lcDhIQEO+QgcJgtwyE/g8LAAhwIEDlMEOBQicHhEgMOdBA5TBTjcTeDwqACHIgQO0wQ4FCVweEyAQ3ECh+kCHEoSODwuwKE0gcMMAQ5lCRyeEOBQnsBhpgCHigQOswQ4VCZweFKAQ1UCh9kCHKoTODwlwKEmgcMcAQ61CRyeFuBQl8BhrgCH+gQOzwhwaEjgME+AQ2MCh2cFODQlcJgvwKE5gcNzAhxaEjgsEODQmsDheQEObQkcFgpwaE/g8IIAh44EDosEOHQmcHhRgENXAofFAhy6Ezi8JMChJ4HDEgEOvQkcXhbg0JfAYakAh/4EDq8IcBhI4LBMgMNgAodXBTgMJXBYLsBhOIHDawIcRhI4rIjz80jm+ft3xzq3Lzb6++9JuH/SHAXa1+y7r+DcvCtrV1gxZkzjFnkKH6o8ZFXvqeX2nZx2zH7+umcOX06l7T+7bL+Se+5XaY/77oqN/r4ro88b85//uOi3KZPg4fy2cync38+RlBf6pZ77UMr5P/9DfEo6jk8Jd/lfa195vta+jj3/jXjnf/NlkD+z33E38bYq4bm4Ou68p7e5x4vm3O9OnvDvqoTtUrjzT/CkOxnvorqde5D2ej5Iez0fpL/++uv0hb4f7y7th/9E5nsjAfyaOPffUN5IeCQiv7cmArDvg5MIxvfI/0n85T3y7wncrx2e+5V4SxG9z6PmE/NGXPT7tMbjr4YH15hosyY+MX1Z4oX7RsBfI9x8X6DdMzk3w+MF2sfu/1jA8+PNuMuf4wmPHH0Dc6wl5JjpkaNfYI63CDlmeeToH5hjHSHHkx45BgTmeJuQY7ZHjoGBOdYTcjzlkWNQYI53CDnmeOQYHJhjAyHH0x45hgTmeJeQY65HjqGBOTYScjzjkWNYYI73CDnmeeQYHphjEyHHsx45RgTmeJ+QY75HjpGBOTYTcjznkWNUYI4PCDkWeOQYHZhjCyHH8x45xgTm+JCQY6FHjvsCc2wl5HjBI8fYwBwfEXIs8sgxLjDHNkKOFz1yjA/M8TEhx2KPHPcH5thOyPGSR44JgTk+IeRY4pHjgcAcOwg5XvbIMTEwx6eEHEs9cjwYmGMnIccrHjkmBeb4jJBjmUeOhwJzfE7I8apHjsmBOb4g5FjukePhwBy7CDle88gxJTDHl4QcKzxyPBKYYzchx+seOaYG5viKkGOlR45HA3PsIeRY5ZFjWmCOrwk5VnvkeCwwx15Cjjc8ckwPzLGPkGONR47HA3PsJ+R40yPHjMAc3xByrPXI8URgjgOEHG955JgZmONbQo51HjlmBeY4SMjxtkeOJwNzfEfIsd4jx+zAHIcIOd7xyPFUYI7vCTk2eOSYE5jjMCHHux45ng7M8QMhx0aPHHMDcxwh5HjPI8czgTl+JOTY5JFjXmCOo4Qc73vkeDYwx0+EHJs9cswPzHGMkOMDjxzPBeb4mZBji0eOBYE5jhNyfOiR4/nAHL8Qcmz1yLEwMMcJQo6PPHK8EJjjJCHHNo8ciwJznCLk+Ngjx4uBOX4l5NjukWNxYI7ThByfeOR4KTDHb4QcOzxyLAnMcYaQ41OPHC8H5vidkGOnR46lgTnOeuTAvKTSCcINcy4wXwFj/TFOHmPMMT4bY5sxLhhjajEeFWM5MQ4SYwgx/g5j1zDuC2OmMN4IY3UwzgVjRDC+AmMTcF0f18RxPRnXYnEdE9cAcf0M155w3QbXPHC9AOfacZ4a53hxfhTnFnFeDue0cD4I51JwHgKf4fH5F58d8bkLn1nwfh/vlfE+E+/R8P4G7w3wdxV/k3A8x7EQxxG8BvH8xWN/Nu7CfHzY/xE9+9Qe84dS+86VSvqcudTdMX8I++77XPsz+rznXi+lL/D9eOd3883ms4+hHn95vubKuP//NZf0Ned7PMVjFDlhNZo5cnicfH3+8vBwWf1eD2Uu8P14F91+Jf0iPqrNOK8HHw6RN9/jbUzW//Xjbcx//uP8jrfYd9/jbTLe8+v8zvptF5Ms6+X3SC7AoViKy++RQoBDOQKHlAIcKhA4pBLgUInA4QoBDlUIHFILcKhG4HClAIcaBA5pBDjUInC4SoBDHQKHtAIc6hE4XC3AoQGBQzoBDo0IHK4R4NCEwCG9AIdmBA4ZBDi0IHDIKMChFYHDtQIc2hA4ZBLg0I7A4ToBDh0IHGIFOHQicLhegEMXAofMAhy6EThkEeDQg8AhToBDLwKHrAIc+hA4ZBPg0I/AIbsAhwEEDjkEOAwicLhBgMMQAod4AQ7DCBxuFOAwgsAhpwCHUQQONwlwGEPgkEuAw1gCh5sFOIwncMgtwGECgcMtAhwmEjjkEeAwicAhrwCHyQQOtwpwmELgcJsAh6kEDvkEOEwjcLhdgMN0Aof8AhxmEDjcIcBhc/LL71FAgMMswvOhoACH2QQOhQQ4zCFwKCzAYS6Bw50CHOYRONwlwGE+gcPdAhwWEDjcI8BhIYFDEQEOiwgc7hXgsJjAoagAhyUEDsUEOCwlcCguwGEZgUMJAQ7LCRxKCnBYQeBQSoDDSgKH0gIcVhM4lBHgsIbAoawAh7UEDuU8OKBTpKw737eDzgT0BWCuPOaJY4405gdjbizmhWJOJOYDYi4c5oFhDhTm/2DuC+Z9YM4DxvtjrDvGeWOMM8b3YmwrxnViTCPG82Es27lxXCaM38HYFYzbwJgFXK/HtWpcp8U1Slyfw7UpXJfBNQmcj8e5aJyHxTlInH/DuSecd8E5B3zexmdNfM7CZwy8v8Z7S7yvwnsK/D3F3xIcR3EMwesHzx1wS7z59uCUcv59O+jp8PWJ7Pa4lEd5z9dD2Qt8P95Ft19Jv4iPajNOH0r5AA/cfPt2KkTvc7n6ds49nbz/Vsf9ve9Jt7tU3oq859f5nfXbLqYi4flVSYADo2+nsgAHRt9OFQEOjL6dqgIcGH071QQ4MPp2qgtwYPTt1BDgwOjbqSnAgdG3U0uAA6Nvp7YAB0bfTh0BDoy+nboCHBh9O/UEODD6duoLcGD07TQQ4MDo22kowIHRt9NIgAOjb6exAAdG304TAQ6Mvp2mAhwYfTvNBDgw+naaC3Bg9O20EODA6NtpKcCB0bfTSoADo2+ntQAHRt9OGwEOjL6dtgIcGH077QQ4MPp22gtwYPTtdBDgwOjb6SjAgdG300mAA6Nvp7MAB0bfThcBDoy+na4CHBh9O90EODD6droLcGD07fQQ4MDo2+kpwIHRt9NLgAOjb6e3AAdG304fAQ6Mvp2+AhwYfTv9BDgw+nb6C3Bg9O0MEODA6NsZKMCB0bczSIADo29nsAAHRt/OEAEOjL6doQIcGH07wwQ4MPp2hgtwYPTtjBDgwOjbGSnAgdG3M0qAA6NvZ7QAB0bfzhgBDoy+nfsEODD6dsYKcGD07YwT4MDo2xkvwIHRt3O/AAdG384EDw7oFCnnzvftoDMBfQGYK4954pgjjfnBmBuLeaGYE4n5gJgLh3lgmAOF+T+Y+4J5H5jzgPH+GOuOcd4Y44zxvRjbinGdGNOI8XwYy4ZxXBjDhPE7GLuCcRsYs4Dr9bhWjeu0uEaJ63O4NoXrMrgmgfPxOBeN87A4B4nzbzj3hPMuOOeAz9v4rInPWfiMgffXeG+J91V4T4G/p/hbguMojiF4/eC5A26Jt2SezEs6/74d9HT4+kR2e1zK4wHP10O5C3w/3kW3X0m/iI9qM04fygMBHrj59u1MjN7ncvXtnNtl77/VcX/ve9LtLpX3Qd7z6/zO+m0X8yDh+TVJgAOjb+chAQ6Mvp3JAhwYfTsPC3Bg9O1MEeDA6Nt5RIADo29nqgAHRt/OowIcGH070wQ4MPp2HhPgwOjbmS7AgdG387gAB0bfzgwBDoy+nScEODD6dmYKcGD07cwS4MDo23lSgAOjb2e2AAdG385TAhwYfTtzBDgw+naeFuDA6NuZK8CB0bfzjAAHRt/OPAEOjL6dZwU4MPp25gtwYPTtPCfAgdG3s0CAA6Nv53kBDoy+nYUCHBh9Oy8IcGD07SwS4MDo23lRgAOjb2exAAdG385LAhwYfTtLBDgw+nZeFuDA6NtZKsCB0bfzigAHRt/OMgEOjL6dVwU4MPp2lgtwYPTtvCbAgdG3s0KAA6Nv53UBDoy+nZUCHBh9O6sEODD6dlYLcGD07bwhwIHRt7NGgAOjb+dNAQ6Mvp21AhwYfTtvCXBg9O2sE+DA6Nt5W4ADo29nvQAHRt/OOwIcGH07GwQ4MPp23hXgwOjb2SjAgdG3854AB0bfziYBDoy+nfcFODD6djYLcGD07XzgwcFOE7ry7nzfDjoT0BeAufKYJ4450pgfjLmxmBeKOZGYD4i5cJgHhjlQmP+DuS+Y94E5Dxjvj7HuGOeNMc4Y34uxrRjXiTGNGM+HsWwYx4UxTBi/g7ErGLeBMQu4Xo9r1bhOi2uUuD6Ha1O4LoNrEjgfj3PROA+Lc5A4/4ZzTzjvgnMO+LyNz5r4nIXPGHh/jfeWeF+F9xT4e4q/JTiO4hiC1w+eO+CWePPtwcmf2b9vBz0dvj6R3R6X8tji+Xoof4Hvx7vo9ivpF/FRbcbpQ9kS4IFb8iQ+l+L9YfQ+l6tvJwX+4/23Ou7vfU+63aXybuU9v87vrN92MVsJz6+PBDgw+na2CXBg9O18LMCB0bezXYADo2/nEwEOjL6dHQIcGH07nwpwYPTt7BTgwOjb+UyAA6Nv53MBDoy+nS8EODD6dnYJcGD07XwpwIHRt7NbgAOjb+crAQ6Mvp09AhwYfTtfC3Bg9O3sFeDA6NvZJ8CB0bezX4ADo2/nGwEOjL6dAwIcGH073wpwYPTtHBTgwOjb+U6AA6Nv55AAB0bfzvcCHBh9O4cFODD6dn4Q4MDo2zkiwIHRt/OjAAdG385RAQ6Mvp2fBDgw+naOCXBg9O38LMCB0bdzXIADo2/nFwEOjL6dEwIcGH07JwU4MPp2TglwYPTt/CrAgdG3c1qAA6Nv5zcBDoy+nTMCHBh9O78LcGD07ZwV4MDo2/lDgAOjb+dPAQ6Mvp2/BDgw+nZctv/7HBh9OzECHBh9O8kEODD6dpILcGD07aQQ4MDo20kpwIHRt5NKgAOjb+cKAQ6Mvp3UAhwYfTtXCnBg9O2kEeDA6Nu5SoADo28nrQAHRt/O1QIcGH076QQ4MPp2rvHggE6RCu583w46E9AXgLnymCeOOdKYH4y5sZgXijmRmA+IuXCYB4Y5UJj/g7kvmPeBOQ8Y74+x7hjnjTHOGN+Lsa0Y14kxjRjPh7FsGMeFMUwYv4OxKxi3gTELuF6Pa9W4TotrlLg+h2tTuC6DaxI4H49z0TgPi3OQOP+Gc08474JzDvi8jc+a+JyFzxh4f433lnhfhfcU+HuKvyU4juIYgtcPnjvglnjz7cEp4fz7dj4K6Nv5yKNvJ73n66HCBb4f76Lbr6RfxEe1GacPxYdD5M23bydD9D6Xq28nJf7j/bc67u99T7rdpfJm5D2/zu+s33YxGbNdfo9rBTgw+nYyCXBg9O1cJ8CB0bcTK8CB0bdzvQAHRt9OZgEOjL6dLAIcGH07cQIcGH07WQU4MPp2sglwYPTtZBfgwOjbySHAgdG3c4MAB0bfTrwAB0bfzo0CHBh9OzkFODD6dm4S4MDo28klwIHRt3OzAAdG305uAQ6Mvp1bBDgw+nbyCHBg9O3kFeDA6Nu5VYADo2/nNgEOjL6dfAIcGH07twtwYPTt5BfgwOjbuUOAA6Nvp4AAB0bfTkEBDoy+nUICHBh9O4UFODD6du4U4MDo27lLgAOjb+duAQ6Mvp17BDgw+naKCHBg9O3cK8CB0bdTVIADo2+nmAAHRt9OcQEOjL6dEgIcGH07JQU4MPp2SglwYPTtlBbgwOjbKSPAgdG3U1aAA6Nvp5wAB0bfTnkBDoy+nQoCHBh9OxUFODD6dioJcGD07VQW4MDo26kiwIHRt1NVgAOjb6eaAAdG3051AQ6Mvp0aAhwYfTs1BTgw+nZqCXBg9O3UFuDA6NupI8CB0bdTV4ADo2+nnmffTkV3vm8HnQnoC8BcecwTxxxpzA/G3FjMC8WcSMwHxFy4c/PATJj/g7kvmPeBOQ8Y74+x7hjnjTHOGN+Lsa0Y14kxjRjPh7FsGMeFMUwYv4OxKxi3gTELuF6Pa9W4TotrlLg+h2tTuC6DaxI4H49z0TgPi3OQOP+Gc08474JzDvi8jc+a+JyFzxh4f433lnhfhfcU+HuKvyU4juIYgtcPnjvglnjz7cFBZ8lqz74d9HT4+kR2e1zKo77n66HiBb4f76Lbr6RfxEe1GacPpX6AB26+fTsNove5XH07qfAf77/VcX/ve9LtLpW3Ie/5dX5n/baLaUh4fjXy9PB9ze+Ode6r2Ojvv8fu+3Ws/+PZWODxZPQGNRHgwOgNairAgdEb1EyAA6M3qLkAB0ZvUAsBDozeoJYCHBi9Qa0EODB6g1oLcGD0BrUR4MDoDWorwIHRG9ROgAOjN6i9AAdGb1AHAQ6M3qCOAhwYvUGdBDgweoM6C3Bg9AZ1EeDA6A3qKsCB0RvUTYADozeouwAHRm9QDwEOjN6gngIcGL1BvQQ4MHqDegtwYPQG9RHgwOgN6ivAgdEb1E+AA6M3qL8AB0Zv0AABDozeoIECHBi9QYMEODB6gwYLcGD0Bg0R4MDoDRoqwIHRGzRMgAOjN2i4AAdGb9AIAQ6M3qCRAhwYvUGjBDgweoNGC3Bg9AaNEeDA6A26T4ADozdorAAHRm/QOAEOjN6g8QIcGL1B9wtwYPQGTRDgwOgNekCAA6M3aKIAB0Zv0IMCHBi9QZMEODB6gx4S4MDoDZoswIHRG/SwAAdGb9AUAQ6M3qBHBDgweoOmCnBg9AY9KsCB0Rs0TYADozfoMQEOjN6g6QIcGL1BjwtwYPQGzRDgwOgNesKDA7pRKrnzvUHoTEBfAObKY5445khjfjDmxmJeKOZEYj4g5sJhHhjmQGH+D+a+YN4H5jxgvD/GumOcN8Y4Y3wvxrZiXCfGNGI8H8ayYRwXxjBh/A7GrmDcBsYs4Ho9rlXjOi2uUeL6HK5N4boMrkngfDzOReM8LM5B4vwbzj3hvAvOOeDzNj5r4nMWPmPg/TXeW+J9Fd5T4O8p/pbgOIpjCF4/eO6AW+ItabdHND1AHv0h57pa0NOR1OdS20V6XGqfZmbzez1UusD34110+5X0i/ioNuP0uswM8MDNtzdoVvQ+l6s36Ar8x/tvddzf+550u0vlfZL3/Dq/s37bxTxJeH7NFuDA6Nt5SoADo29njgAHRt/O0wIcGH07cwU4MPp2nhHgwOjbmSfAgdG386wAB0bfznwBDoy+necEODD6dhYIcGD07TwvwIHRt7NQgAOjb+cFAQ6Mvp1FAhwYfTsvCnBg9O0sFuDA6Nt5SYADo29niQAHRt/OywIcGH07SwU4MPp2XhHgwOjbWSbAgdG386oAB0bfznIBDoy+ndcEODD6dlYIcGD07bwuwIHRt7NSgAOjb2eVAAdG385qAQ6Mvp03BDgw+nbWCHBg9O28KcCB0bezVoADo2/nLQEOjL6ddQIcGH07bwtwYPTtrBfgwOjbeUeAA6NvZ4MAB0bfzrsCHBh9OxsFODD6dt4T4MDo29kkwIHRt/O+AAdG385mAQ6Mvp0PBDgw+na2CHBg9O18KMCB0bezVYADo2/nIwEOjL6dbQIcGH07HwtwYPTtbBfgwOjb+USAA6NvZ4cAB0bfzqcCHBh9OzsFODD6dj4T4MDo2/lcgAOjb+cLAQ6Mvp1dAhwYfTtfCnBg9O3s9uCATpHK7nzfDjoT0BeAufKYJ4450pgfjLmxmBeKOZGYD4i5cJgHhjlQmP+DuS+Y94E5Dxjvj7HuGOeNMc4Y34uxrRjXiTGNGM+HsWwYx4UxTBi/g7ErGLeBMQu4Xo9r1bhOi2uUuD6Ha1O4LoNrEjgfj3PROA+Lc5A4/4ZzTzjvgnMO+LyNz5r4nIXPGHh/jfeWeF+F9xT4e4q/JTiO4hiC1w+eO+CWePPtwUFnyaq48/ePpp8HPR2+PpHdHpfy+Mrz9VD5At+Pd9HtV9Iv4qPajNOH8lWAB26+fTt7oveJ8ejbifHo24n5z3+c33MX+550u0vl/dqDK3538oR/L7RdSL9VtPfdm82PX+LN9/Hf97//+P+9QcK/8VHePfHYFXLMS7zvpdjsD3yuJG73L49P//W7Pbaj9BR9wztOnzf1247SU3RAgAOjp+hbAQ6MnqKDAhwYPUXfCXBg9BQdEuDA6Cn6XoADo6fosAAHRk/RDwIcGD1FRwQ4MHqKfhTgwOgpOirAgdFT9JMAB0ZP0TEBDoyeop8FODB6io4LcGD0FP0iwIHRU3RCgAOjp+ikAAdGT9EpAQ6MnqJfBTgweopOC3Bg9BT9JsCB0VN0RoADo6fodwEOjJ6iswIcGD1FfwhwYPQU/SnAgdFT9JcAB0ZPkcv+f58Do6coRoADo6comQAHRk9RcgEOjJ6iFAIcGD1FKQU4MHqKUglwYPQUXSHAgdFTlFqAA6On6EoBDoyeojQCHBg9RVcJcGD0FKUV4MDoKbpagAOjpyidAAdGT9E1AhwYPUXpBTgweooyCHBg9BRlFODA6Cm6VoADo6cokwAHRk/RdQIcGD1FsQIcGD1F1wtwYPQUZRbgwOgpyiLAgdFTFCfAgdFTlFWAA6OnKJsAB0ZPUXYBDoyeohwCHBg9RTcIcGD0FMULcGD0FN0owIHRU5Qzu5+H92s77u+ukaTbXaqrotONl3e/0EeyL5t/58lN0fOK8c2QdF8u9ft3xzoXGxf9/ffY/V+P838scmX3fx7i5ss28r6XylLecfYpxkW/TxUcZ5+Suej3qaLj7FNyF/0+VXL/b/bpUj6VXfT7nyFF2D75HneqOI5PVcfxqeY4j2V1F/1jeR3psazhOD41HcenluP41HYcnzqO41PXcXzqOY5PfcfxaeA4Pg0dx6eR4/g0dhyfJo7j09RxfJo5jk9zx/Fp4Tg+LR3Hp5Xj+LR2HJ82juPT1nF82jmOT3vH8engOD4dHcenk+P4dHYcny6O49PVcXy6OY5Pd8fx6eE4Pj0dx6eX4/j0dhyfPo7j09dxfPo5jk9/x/EZ4Dg+Ax3HZ5Dj+Ax2HJ8hjuMz1HF8hjmOz3DH8RnhOD4jHcdnlOP4jHYcnzGO43Of4/iMdRyfcY7jM95xfO53HJ8JjuPzgOP4THQcnwcdx2eS4/g85Dg+kx3H52HH8ZniOD6POI7PVMfxedRxfKY5js9jjuMz3XF8HnccnxmO4/OE4/jMdByfWY7j86Tj+Mx2HJ+nHMdnjuP4PO04PnMdx+cZx/GZ5zg+zzqOz3zH8XnOcXwWOI7P847js9BxfF5wHJ9FjuPzouP4LHYcn5ccx2eJ4/i87Dg+Sx3H5xXH8VnmOD6vOo7Pcsfxec1xfFY4js/rjuOz0nF8VjmOz2rH8XnDcXzWOI7Pm47js9ZxfN5yHJ91juPztuP4rHccn3ccx2eD4/i86zg+Gx3H5z3H8dnkOD7vO47PZsfx+cBxfLY4js+HjuOz1XF8PnIcn22O4/Ox4/hsdxyfTxzHZ4fj+HzqOD47HcfnM8fx+dxxfL5wHJ9djuPzpeP47HYcn68cx2eP4/h87Tg+ex3HZ5/j+Ox3HJ9vHMfngOP4fOs4Pgcdx+c7x/E55Dg+3zuOz2HH8fnBcXyOOI7Pj47jc9RxfH5yHJ9jjuPzs+P4HHccn18cx+eE4/icdByfU47j86vj+Jx2HJ/fHMfnjOP4/O44Pmcdx+cPx/H503F8/nIcH2wQ5X2TbOjnE0PySUbySU7ySUHySUnySUXyuYLkk5rkcyXJJw3J5yqST1qSz9Ukn3Qkn2tIPulJPhlIPhlJPteSfDKRfK4j+cSSfK4n+WQm+WQh+cSRfLKSfLKRfLKTfHKQfG4g+cSTfG4k+eQk+dxE8slF8rmZ5JOb5HMLyScPyScvyedWks9tJJ98JJ/bST75ST53kHwKkHwKknwKkXwKk3zuJPncRfK5m+RzD8mnCMnnXpJPUZJPMZJPcZJPCZJPSZJPKZJPaZJPGZJPWZJPOZJPeZJPBZJPRZJPJZJPZZJPFZJPVZJPNZJPdZJPDZJPTZJPLZJPbZJPHU8f3zXPsLbhN9miv/+bdv+92fxz1CXkOOCRY21gjnqEHN965HgrMEd9Qo6DHjnWBeZoQMjxnUeOtwNzNCTkOOSRY31gjkaEHN975HgnMEdjQo7DHjk2BOZoQsjxg0eOdwNzNCXkOOKRY2NgjmaEHD965HgvMEdzQo6jHjk2BeZoQcjxk0eO9wNztCTkOOaRY3NgjlaEHD975PggMEdrQo7jHjm2BOZoQ8jxi0eODwNztCXkOOGRY2tgjnaEHCc9cnwUmKM9IccpjxzbAnN0IOT41SPHx4E5OhJynPbIsT0wRydCjt88cnwSmKMzIccZjxw7AnN0IeT43SPHp4E5uhJynPXIsTMwRzdCjj88cnwWmKM7IcefHjk+D8zRg5DjL48cXwTm6EnI4bJHf/9dgTl6EXLEeOT4MjBHb0KOZB45dgfm6EPIkdwjx1eBOfoScqTwyLEnMEc/Qo6UHjm+DszRn5AjlUeOvYE5BhByXOGRY19gjoGEHKk9cuwPzDGIkONKjxzfBOYYTMiRxiPHgcAcQwg5rvLI8W1gjqGEHGk9chwMzDGMkONqjxzfBeYYTsiRziPHocAcIwg5rvHI8X1gjpGEHOk9chwOzDGKkCODR44fAnOMJuTI6JHjSGCOMYQc13rk+DEwx32EHJk8chwNzDGWkOM6jxw/BeYYR8gR65HjWGCO8YQc13vk+Dkwx/2EHJk9chwPzDGBkCOLR45fAnM8QMgR55HjRGCOiYQcWT1ynAzM8SAhRzaPHKcCc0wi5MjukePXwBwPEXLk8MhxOjDHZEKOGzxy/BaY42FCjniPHGcCc0wh5LjRI8fvgTkeIeTI6ZHjbGCOqZ45YjxzYJ9uyv4/81/K5tGY6D063Xh5H4vdsfYeMS76+++x+38b6/9YTIu5/Dkye+Y4GJDjMUKOLJ45vgvIMZ2QI84zx6GAHI8TcmT1zPF9QI4ZhBzZPHMcDsjxBCFHds8cPwTkmEnIkcMzx5GAHLMIOW7wzPFjQI4nCTniPXMcDcgxm5DjRs8cPwXkeIqQI6dnjmMBOeYQctzkmePngBxPE3Lk8sxxPCDHXEKOmz1z/BKQ4xlCjtyeOU4E5JhHyHGLZ46TATmeJeTI45njVECO+YQceT1z/BqQ4zlCjls9c5wOyLGAkOM2zxy/BeR4npAjn2eOMwE5FhJy3O6Z4/eAHC8QcuT3zHE2IMciQo47PHP8EZDjRUKOAp45/gzIsZiQo6Bnjr8CcrxEyFHIM4e73j/HEkKOwp45YgJyvEzIcadnjmQBOZYSctzlmSN5QI5XCDnu9syRIiDHMkKOezxzpAzI8SohRxHPHKkCciwn5LjXM8cVATleI+Qo6pkjdUCOFYQcxTxzXBmQ43VCjuKeOdIE5FhJyFHCM8dVATlWEXKU9MyRNiDHakKOUp45rg7I8QYhR2nPHOkCcqwh5CjjmeOagBxvEnKU9cyRPiDHWkKOcp45MgTkeIuQo7xnjowBOdYRclTwzHFtQI63CTkqeubIFJBjPSFHJc8c1wXkeIeQo7JnjtiAHBsIOap45rg+IMe7hBxVPXNkDsixkZCjmmeOLAE53iPkqO6ZIy4gxyZCjhqeObIG5HifkKOmZ45sATk2E3LU8syRPSDHB4QctT1z5AjIsYWQo45njhsCcnxIyFHXM0d8QI6thBz1PHPcGJDjI0KO+p45cgbk2EbI0cAzx00BOT4m5GjomSNXQI7thByNPHPcHJDjE0KOxp45cgfk2EHI0cQzxy0BOT4l5GjqmSNPQI6dhBzNPHPkDcjxGSFHc88ctwbk+JyQo4VnjtsCcnxByNHSM0e+gBy7CDlaeea4PSDHl4QcrT1z5A/IsZuQo41njjsCcnxFyNHWM0eBgBx7CDnaeeYoGJDja0KO9p45CgXk2EvI0cEzR+GAHPsIOTp65rgzIMd+Qo5OnjnuCsjxDSFHZ88cdwfkOEDI0cUzxz0BOb4l5OjqmaNIQI6DhBzdPHPcG5DjO0KO7p45igbkOETI0cMzR7GAHN8TcvT0zFE8IMdhQo5enjlKBOT4gZCjt2eOkgE5jhBy9PHMUSogx4+EHH09c5QOyHGUkKOfZ44yATl+IuTo75mjbECOY4QcAzxzlAvI8TMhx0DPHOUDchwn5BjkmaNCQI5fCDkGe+aoGJDjBCHHEM8clQJynCTkGOqZo3JAjlOEHMM8c1QJyPErIcdwzxxVA3KcJuQY4ZmjWkCO3wg5RnrmqB6Q4wwhxyjPHDUCcvxOyDHaM0fNgBxnCTnGeOaoFZDjD0KO+zxz1A7I8Schx1jPHHUCcvxFyDHOM0fdgBzYsSjvG5xjvGeOegE5Ygg57vfMUT8gRzJCjgmeORoE5EhOyPGAZ46GATlSEHJM9MzRKCBHSkKOBz1zNA7IkYqQY5JnjiYBOa4g5HjIM0fTgBypCTkme+ZoFpDjSkKOhz1zNA/IkYaQY4pnjhYBOa4i5HjEM0fLgBxpCTmmeuZoFZDjakKORz1ztA7IkY6QY5pnjjYBOa4h5HjMM0fbgBzpCTmme+ZoF5AjAyHH45452gfkyEjIMcMzR4eAHNcScjzhmaNjQI5MhBwzPXN0CshxHSHHLM8cnQNyxBJyPOmZo0tAjusJOWZ75ugakCMzIcdTnjm6BeTIQsgxxzNH94AccYQcT3vm6BGQIyshx1zPHD0DcmQj5HjGM0evgBzZCTnmeeboHZAjByHHs545+gTkuIGQY75njr4BOeIJOZ7zzNEvIMeNhBwLPHP0D8iRk5Djec8cAwJy3ETIsdAzx8CAHLkIOV7wzDEoIMfNhByLPHMMDsiRm5DjRc8cQwJy3ELIsdgzx9CAHHkIOV7yzDEsIEdeQo4lnjmGB+S4lZDjZc8cIwJy3EbIsdQzx8iAHPkIOV7xzDEqIMfthBzLPHOMDsiRn5DjVc8cYwJy3EHIsdwzx30BOQoQcrzmmWNsQI6ChBwrPHOMC8hR6DLnwFr0uTzWosea77i/b47Cnjn+s6Gnz50kn7tIPneTfO4h+RQh+dxL8ilK8ilG8ilO8ilB8ilJ8ilF8ilN8ilD8ilL8ilH8ilP8qlA8qlI8qlE8qlM8qlC8qlK8qlG8qlO8qlB8qlJ8qlF8qlN8qlD8qlL8qlH8qlP8mlA8mlI8mlE8mlM8mlC8mlK8mlG8mlO8mlB8mlJ8mlF8mlN8mlD8mlL8mlH8mlP8ulA8ulI8ulE8ulM8ulC8ulK8ulG8ulO8ulB8ulJ8ulF8ulN8ulD8ulL8ulH8ulP8hlA8hlI8hlE8hlM8hlC8hlK8hlG8hlO8hlB8hlJ8hlF8hlN8hlD8rmP5DOW5DOO5DOe5HM/yWcCyecBks9Eks+DJJ9JJJ+HSD6TST4Pk3ymkHweIflMJfk8SvKZRvJ5jOQzneTzOMlnBsnnCZLPTJLPLJLPkySf2SSfp0g+c0g+T5N85pJ8niH5zCP5PEvymU/yeY7ks4Dk8zzJZyHJ5wWSzyKSz4skn8Ukn5dIPktIPi+TfJaSfF4h+Swj+bxK8llO8nmN5LOC5PM6yWclyWcVyWc1yecNks8aks+bJJ+1JJ+3SD7rSD5vk3zWk3zeIflsIPm8S/LZSPJ5j+SzieTzPslnM8nnA5LPFpLPhySfrSSfj0g+20g+H5N8tpN8PiH57CD5fEry2Uny+Yzk8znJ5wuSzy6Sz5ckn90kn69IPntIPl+TfPaSfPaRfPaTfL4h+Rwg+XxL8jlI8vmO5HOI5PM9yecwyecHks8Rks+PJJ+jJJ+fSD7HSD4/k3yOk3x+IfmcIPmcJPmcIvn8SvI5TfL5jeRzhuTzO8nnLMnnD5LPnySfv0g+LjnHJ4bkk4zkk5zkk4Lkk5Lkk4rkcwXJJzXJ50qSTxqSz1Ukn7Qkn6tJPulIPteQfNKTfDKQfDKSfK4l+WQi+VxH8okl+VxP8slM8slC8okj+WQl+WQj+WQn+eQg+dxA8okn+dxI8slJ8rmJ5JOL5HMzySc3yecWkk8ekk9eks+tJJ/bSD75SD63k3zyk3zuIPkUIPkUJPkUIvkUJvncSfK5i+RzN8nnHpJPEZLPvSSfoiSfYiSf4iSfEiSfkiSfUiSf0iSfMiSfsiSfciSf8iSfCiSfiiSfSiSfyiSfKiSfqiSfaiSf6iSfGiSfmiSfWiSf2iSfOiSfuiSfeiSf+iSfBiSfhiSfRiSfxiSfJiSfpiSfZiSf5iSfFiSfliSfViSf1iSfNiSftiSfdiSf9iSfDiSfjiSfTiSfziSfLiSfriSfbiSf7iSfHiSfniSfXiSf3iSfPiSfviSffiSf/iSfASSfgSSfQSSfwSSfISSfoSSfYSSf4SSfESSfkSSfUSSf0SSfMSSf+0g+Y0k+40g+40k+95N8JpB8HiD5TCT5PEjymUTyeYjkM5nk8zDJZwrJ5xGSz1SSz6Mkn2kkn8dIPtNJPo+TfGaQfJ4g+cwk+cwi+TxJ8plN8nmK5DOH5PM0yWcuyecZks88ks+zJJ/5JJ/nAn2SJfEp0L5m330F5+ZdWbvCijFjGrfIU/hQ5SGrek8tt+/ktGP281wu+n1a4LlPvvuyMs65/dmiv39ju+/ebP5snyc9hgtJPi+QnispXPT7tIi0Tyld9Pv0ImmfUrno92kxaZ+ucNHv00ukfUrtot+nJaR9utJFv08vk/YpjYt+n5aS9ukqF/0+vULap7Qu+n1aRtqnq130+/QqaZ/Suej3aTlpn65x0e/Ta6R9Su+i36cVpH3K4KLfp9dJ+5TRRb9PK0n7dK2Lfp9WkfYpk4t+n1aT9uk6F/0+vUHap1gX/T6tIe3T9S76fXqTtE+ZXfT7tJa0T1lc9Pv0Fmmf4lz0+7SOtE9ZXfT79DZpn7K56PdpPWmfsrvo9+kd0j7lcNHv0wbSPt3got+nd0n7FO+i36eNpH260UW/T++R9imni36fNpH26SYX/T6977FPyRP2BeMucCtvqmCqaKpkqmyqYqpqqmaqbqphqmmqZaptqmOqa6pnqm9qYGpoamRqbGpiampqZmpuamFqaWplam1qY2pramdqb+pg6mjqZOps6mLqaupm6m7qYepp6mXqbepj6mvqZ+pvGmAaaBpkGmwaYhpqGmYabhphGmkaZRptGmO6zzTWNM40HjxME0wPmCaaHjRNMj1kmmx62DTF9IhpqulR0zTTY6bppsdNM0xPmGaaZpmeNM02PWWaY3raNNf0jGme6VnTfNNzpgWm500LTS+YFpleNC02vWRaYnrZtNT0immZ6VXTctNrphWm100rTatMq01vmNaY3jStNb1lWmd627Te9I5pg+ld00bTe6ZNpvdNm00fmLaYPjRtNX1k2mb62LTd9Ilph+lT007TZ6bPTV+Ydpm+NO02fWXaY/ratNe0z7Tf9I3pgOlb00HTd6ZDpu9Nh00/mI6YfjQdNf1kwmvjZ9Nx0y+mE6aTplOmX02nTb+Zzph+N501/WH60/SXCSd3Y0zJTMlNKUwpTalMV5hSm640pTFdZUprutqUznSNKb0pgymj6VpTJtN1pljT9abMpiymOFNWUzZTdlMO0w2meNONppymm0y5TDebcptuMeUx5TXdarrNlM90uym/6Q5TAVNBUyFTYdOdprtMd5vuMRUx3WsqaipmKm4qYSppKmUqbSpjKmsqZypvqmCqaKpkqmyqYqpqqmaqbqphqmmqZaptqmOqa6pnqm9qYGpoamRqbGpiampqZmpuamFqaWplam1qY2pramdqb+pg6mjqZOps6mLqaupm6m7qYepp6mXqbepj6mvqZ+pvGmAaaBpkGmwaYhpqGmYabhphGmkaZRptGmO6zzTWNM403nS/aYLpAdNE04OmSaaHTJNND5ummB4xTTU9appmesw03fS4aYbpCdNM0yzTk6bZpqdMc0xPm+aanjHNMz1rmm96zrTA9LxpoekF0yLTi6bFppdMS0wvm5aaXjEtM71qWm56zbTC9LpppWmVabXpDdMa05umtaa3TOtMb5vWm94xbTC9a9poes+0yfS+abPpA9MW04emraaPTNtMH5u2mz4x7TB9atpp+sz0uekL0y7Tl6bdpq9Me0xfm/aa9pn2m74xHTB9azpo+s50yPS96bDpB9MR04+mo6afTMdMP5uOm34xnTCdNJ0y/Wo6bfrNdMb0u+ms6Q/Tn6a/TPjjF2NKZkpuSmFKaUplusKU2nSlKY3pKlNa09WmdKZrTOlNGUwZTdeaMpmuM8WarjdlNmUxxZmymrKZsptymG5Ah7/pRlNO002mXKabTblNt5jymPKabjXdZspnut2U33SHqYCpoKmQqbDpTtNdprtN95iKmO41FTUVMxU3lTCVNJUylTaVMZU1lTOVN1UwVTRVMlU2VTFVNVUzVTfVMNU01TLVNtUx1TXVM9U3NTA1NDUyNTY1MTU1NTM1N7UwtTS1MrU2tTG1NbUztTd1MHU0dTJ1NnUxdTV1M3U39TD1NPUy9Tb1MfU19TP1Nw0wDTQNMg02DTENNQ0zDTeNMI00jTKNNo0x3WcaaxpnGm+63zTB9IBpoulB0yTTQ6bJpodNU0yPmKaaHjVNMz1mmm563DTD9IRppmmW6UnTbNNTpjmmp01zTc+Y5pmeNc03PWdaYHretND0gmmR6UXTYtNLpiWml01LTa+YlpleNS03vWZaYXrdtNKEtemxbjzWdMd661gLHeuUYw1xrO+NtbexLjbWrMZ60ljrGeswY41krF+MtYWx7i/W5MV6uVjLFuvMYg1YrM+KtVOxrinWHMV6oFirE+toYo1LrD+JtSGxbiPWVMR6h1iLEOsEYg0/rK+Hte+wLh3WjMN6blhrDeugYY0yrB+Gtb2w7hbWxMJ6VVhLCus8YQ0mrI+EtYuwrhDW/MF6PFgrB+vYYI0ZrP+CtVmwbgrWNMF6I1gLBOt0YA0NvAHG2hNYFwJrNmA9Bax1gHUIsEYA+vvRrY/ee3TSoy8eXe7oWUcHOvrJ0R2OXm90bqMPG13V6JFGxzP6l9GNjN5idAqj7xddvOjJPddha0L3K3pZ0ZmKPlN0jaIHFB2d6M9EtyV6J9EJib5GdCmi5xAdhOgHRHcfevXQeYc+OnTFoccNHWvoP0M3GXrD0OmFvi10YaGnCh1S6HdC9xJ6kdBZhD4hdP2ghwcdOeivQbcMel/QyYK+FHSZoGcEHSDo50B3Bnot0DmBPgh0NaBHAR0H6B9ANwDm7WNOPea7Yy465oljDjfmV2PuM+YlY84w5vNiri3mwWKOKuaPYm4n5l1iTiTmK2IuIeb5YQ4e5sdh7hrmlWHOF+ZjYa4U5jFhjhHm/2BuDubNYE4L5ptgLgjmaWAOBeY3YO4B5gVgzD7G02OsOz4PYYw4xm9jbDXGPWNMMsYLYywvxtliDCzGp2LsKMZ1YswlxkNirCLGEWKMH8bfYWwcxq1hTBnGe2EsFsZJYQwTxhdh7A/G5WDMDMazYKwJxnZgXATGLGA8Aa7f43o5rk/jejCuv+J6J64v4noerp/hehWuD+F6DK5/4HoDzu/jfDrOX+N8Mc7P4nwozj/ifB/Or+F8Fs4f4XwNzo/gfAQ+/+PzNj7f4vMkXir4bJh4S/jTee7zI8Yh4Lo/rrPjujauI+O6La6T4rokrgPiuhuuc+G6Eq7j4LoJrlPgugDOw+O8N84z47wuzqPivCXOE+K8HM6D4bwTzvMknle50f39Of0m9/eYmZtNuU23mPKY8ppuNd1myme63ZTfdIepgKmgqZCpsOlO012mu033mIqY7jUVNRUzFTeVMJU0lTKVNpUxlTWVc//zFh/xda2Efx/ptPGDEz9csS3yfnX+4WeN/+FnLRP+PfpwmnF7ftg1JfJnbf9hu77/8LMRCf+Ozt346qL57no18mdtUlzcr2uKi2/XKdXF/br9w89e/4efrU91cb9zT7iLbPdsmotnWJzm4r9zX9qL/85v/+FnBa+++M+KX31xv6HpL75d9gwXz5A7w8V/Z7NrL/47W/3Dz178h5+tuPbifidiL77djOsvnmHu9Rf/nZ9mufjv/OIiP0uZ8G+ehH/b9OvXoW//Vu169ejdpn+Xtt07tOrVt007+2dgh779uvTq2WpQ3za9e3fom7D7545juCVL+BfHPBzv4l1Ut5jUEdv5bz+6fOqkv9Bre3du+xgX6v93/sTjfMj2qRJ3JGL7yH1J/L34m3FVxNdXJ/EP3P/y/3b/M/7DPic+NpHH/3gX1S0lDjfImfBSP5c9V8LXA/p36d6l/5Ay556q5f7zTK117ona8O/nadJfGJPk/8td5PtpIvY7RcR9omcyuHzi70yeGCbi68hbiiT/Jt7nuoR/r4zwT/w3mvGMu949uXN51UI9MiTZHrfExwY58yV83bNX/y4dh7Tq0LPPgA4DOrRv1XtA2+5d2rXqOKBnu/54ybdr07174us+a8I2/8uv+8r/8nVfOfF5nzJs+xSJ26cK2/6Cr/vIfUn8eeJzomLEthWTeCbep1LEfSpF3Ae3tO6/X6eR3ok/SxbxswpJfpb8Av6JP0txAV+8djNEfJ0x4et/ebyqfDmPV4nHnMTXH445tyR83btvl4Ft+neoee6lUiHhlVL73AulYsLrpJy9TJLaRaJJij8p8qSYI9GmcBe/RW4XExHlXx7GKv/bw1hcwr+X+zCWI+Hrc4ephMfp/MGrS8/+Hfr2bNP9joR7/S8fuKr9ywNXtX954EmZuP0VYdtf8MAVuS+JvzfxWVAhYtsKSTwvdeCKvE/liPtUjrgPbuyDW+LPUl5gnyIPIPg6NmIb3KpE7HtMkp9VjfhZ5JuopK9wj8erSuokOTy3T5bR/U//xN+VeMDM687niHw+JN7fReQIfN4lj3y9/eebSb4X+fuvdP/qdRITk+T3JfolzZf4OOGPReIRL+EghD8Itf/+MvFvROSeRv72yKNR5M/dBZwin3X/5m9K4v+nvMDvvdj2Sb+X9NENOyqepx3plZR25O9P5y78NiByu8h9THq/5BfZ36TeyS7gnXjff5k5WeK2KS7g+0+ZL/RKTOsu/rYm6REw8nf8P3ifUO3fvk/In/Dv5X6fkPhRsn2Xvh3sxTiwg703sLMa/RN9EzlcF/F7Qt4ZZArb/r+OKi7JvkT+3qTvYJyHR+It8rFKekv8vUkfp9RJ/o3x94+52H7EXODOiR8ZMkV8L5FH4pE28rHs36FTh76t+gywt+gdevZPurdpIpx8XqWJ218Vtv0FH9U0EV9fldQw4d8LveOPucj/J0vy7z/dN+Yffm/aC/ws8XcmPhqR+5uY4/8DaO2FyqUpGwA=",
|
|
1881
|
-
"debug_symbols": "rd3fjl1bea39e1nHHMze3z9j9NzKVhSRhERICCJCtvQp4t4/V9V8f8Mg2SJknzD7WuDeylXzscumjaf99y//+pt//q9//6ff/v7f/vCfv/zD//nvX/75j7/93e9+++//9Ls//Muv//TbP/z+27/9719eH/+x8pd/OH/+1S/r8x/OL/9wf/uH/fEPO375h/XtnF8v9fXSXy/X18v99fLth+WvfonX18v6evl2SX17ia+X/Hr5dsv17aW/Xr7dcv35W958WP/0pz/+5jcf2d99nN8++v/49R9/8/s//fIPv/+v3/3uV7/831//7r8+/0f/+R+//v3n659+/cdv/+3rV7/85vf/+u3124X/9tvf/ebj9OdfPT/69eMf2tnvH3yv7Yevvv/WC+6z3hecV//wgv3jC6LrfUFc6YI48RcXxI8v2DkX7L5+eMHf9hHc8cMLfvI5OBHzOcj84eeg/7c/hZ98BHmd9wUd6/kIrr/5fbBea76O69XffSHvv/2dUFfOe6nj+WmslX9xxfrpu2nPZzLy7/kgVp/5Wqyrvns/1frLD+In74e919yx9/WTO37ypsw75yuSdz2fz7jz77ujf3JH/T/4ufT/g8/p9ZM7Tt1zx7nWj38uP/k4er+8yeOHN7x+htmaD2Jnxw/fofund7yeO65yx3X+8or1kzf5K+Yncr++5z2uv7zjJ+/R6+r5MK571Y/v+Mn7K2pgy/W8u3b+1S/d+bN31z3v0B2v/eM7fvIOXavnw1jrrr/vjnjNx7Fi3z++4yfv0OPX4G9v1b/rhvXa+/k19Cc/k/Mz5lc9v2589zvy+Xt+Ilf9fV/Wa813BfuK1w/viJ+8Qdd1Pb9onB+/NSL+t1+Sv/GGn3wufnbD3/pFjf5ff1F/+uk8zzv87B9/On/6K9fxXUZ9/1v8X/3qF+dnn41C/LdPx3neG33+B5dc18sl93ffNv7VJT/7hudc7xvqu8/GX/2GlD/7hO7r8kvG6/lN7dvv1X9xxU/eGvX8ylXf3u7Pr8Gv/h98GOHzub97k9f/4Irn+9eV330T/9dX/OQNelXHEP/tXPGjr0heP/v+r/cg/+383fv8ry/5+UfiDxTXt28or7/vkst3G1edtX50Sf3sm/rvfluK+uH31D/9yvTtK3N99zb/n3xx78uHcdYPr6ifvE372mDpq9YPv7g/v6Qin0u++4Xwry/5yW/Tfa75svQ5331V/vYP4+57Ph99X6/zd/1c+tubbC7p3vX3vNv/tj9x/fRd2svX5epv353/6MPon/35/b6fT+mrfvAp/ekNx69AfXr9XTf8TV/W+t/+LH7+1vpbfhY/+5Pnvv3pNV5/9WeDf/z2j7/+l9/+8S//Funjr3Q+/tT88Xc6H9/Rf/ylzufr/X49X6/5er+u9+t+v8b7Nd+v9X5935fv+/J9X77vq/d99b6v3vfV+75631fv++p9X73vq/d99b6v3/f1+75+39fv+/p9X7/v6/d9/b6v3/f1+77rfd/1vu9633e977ve910f930j4Or36/V+/XZffvz35+v1/vjbtW+f53u9X7/dl9++WHe8X/P9Wh/fX3177ffr9X6936/n4zfqX/1yPn78t3fL+fgLum+/mpx8v3778fXtntPv128/vr59POd+v56v1/V6zeHjpvo4xNeV65Xzb+rrg/32XdLXR/ftu5453HM4Xx/YWq85rDnsOcQccg41h57Dxwf6kb7uObx/qmt/u7A/D3sOMYecQ82hP/6Q/XG45nDP4bwPH3/V+XVYc9hziDnkHGoOc3PMzTE3x9ycc3POzTk359ycc3POzTk359ycc3POzTU319xcc3PNzTU319xcc3PNzTU319zcc3PPzT0399zcc3PPzT0399zcc3PPzdfcfM3N19x8zc3X3HzNzdfcfM3N19x8zc333HzPzffcfM/N99x8z8333HzPzffcfM/NZ24+c/OZm8/cfObmMzefufnMzWduPu+b9+s1hzWHPYeYQ86h5tBzuOZwz2FuXnPzmpvX3Lzm5jU3r7l5zc1rbl5z85qb99y85+Y9N++5ec/Ne24eBvcwuIfBPQzuYXAPg3sY3MPgHgb3MLiHwT0M7mFwD4N7GNzD4B4G9zC4h8E9DO5hcA+Dexjcw+AeBvcwuIfBPQzuYXAPg3sY3MPgHgb3MLiHwT0M7mFwD4N7GNzD4B4G9zC4h8E9DO5hcA+Dexjcw+AeBvcwuIfBPQzuYXAPg3sY3MPgHgb3MLiHwT0M7mFwD4N7GNzD4B4G9zC4h8E9DO5hcA+Dexjcw+AeBvcwGMNgDIMxDMYwGMNgDIMxDMYwGMNgDIMxDMYwGMNgDIMxDMYwGMNgDIMxDMYwGMNgDIMxDMYwGMNgDIMxDMYwGMNgDIMxDMYwGMNgDIMxDMYwGMNgDIMxDMYwGMNgDIMxDMYwGMNgDIMxDMYwGMNgDIMxDMYwGMNgDIMxDMYwGMNgDIMxDMYwGMNgDIMxDMYwGMNgDIMxDMYwGMNgDIMxDMYwGMNgDIMxDMYwGMNgDIMxDMYwGMNgDIMxDMYwGMNgDIMxDMYwGMNgDIMxDMYwGMNgDIMxDMYwGMNgDIMxDMYwmMNgDoM5DOYwmMNgDoM5DOYwmMNgDoM5DOYwmMNgDoM5DOYwmMNgDoM5DOYwmMNgDoM5DOYwmMNgDoM5DOYwmMNgDoM5DOYwmMNgDoM5DOYwmMNgDoM5DOYwmMNgDoM5DOYwmMNgDoM5DOYwmMNgDoM5DOYwmMNgDoM5DOYwmMNgDoM5DOYwmMNgDoM5DOYwmMNgDoM5DOYwmMNgDoM5DOYwmMNgDoM5DOYwmMNgDoM5DOYwmMNgDoM5DOYwmMNgDoM5DOYwmMNgDoM5DOYwmMNgDoM5DOYwmMNgDoM5DOYwWMNgDYM1DNYwWMNgDYM1DNYwWMNgDYM1DNYwWMNgDYM1DNYwWMNgDYM1DNYwWMNgDYM1DNYwWMNgDYM1DNYwWMNgDYM1DNYwWMNgDYM1DNYwWMNgDYM1DNYwWMNgDYM1DNYwWMNgDYM1DNYwWMNgDYM1DNYwWMNgDYM1DNYwWMNgDYM1DNYwWMNgDYM1DNYwWMNgDYM1DNYwWMNgDYM1DNYwWMNgDYM1DNYwWMNgDYM1DNYwWMNgDYM1DNYwWMNgDYM1DNYwWMNgDYM1DNYwWMNgDYM1DNYwWMNgDYM1DNYw2MNgD4M9DPYw2MNgD4M9DPYw2MNgD4M9DPYw2MNgD4M9DPYw2MNgD4M9DPYw2MNgD4M9DPYw2MNgD4M9DPYw2MNgD4M9DPYw2MNgD4M9DPYw2MNgD4M9DPYw2MNgD4M9DPYw2MNgD4M9DPYw2MNgD4M9DPYw2MNgD4M9DPYw2MNgD4M9DPYw2MNgD4M9DPYw2MNgD4M9DPYw2MNgD4M9DPYw2MNgD4M9DPYw2MNgD4M9DPYw2MNgD4M9DPYw2MNgD4M9DPYw2MNgD4M9DPYw2MNgD4M9DPYw2MNgD4M9DPYweA2D1zB4DYPXMHgNg9cweA2D1zB4DYPXMHgNg9cweA2D1zB4DYPXMHgNg9cweA2D1zB4DYPXMHgNg9cweA2D1zB4DYPXMHgNg9cweA2D1zB4DYPXMHgNg9cweA2D1zB4DYPXMHgNg9cweA2D1zB4DYPXMHgNg9cweA2D1zB4DYPXMHgNg9cweA2D1zB4DYPXMHgNg9cweA2D1zB4DYPXMHgNg9cweA2D1zB4DYPXMHgNg9cweA2D1zB4DYPXMHgNg9cweA2D1zB4DYPXMHgNg9cweA2D1zB4DYPXMHgNg9cweA2D1zB4DYPXMHgNg9cweA2D1zB4DYPXMHgPg/cweA+D9zB4D4P3MHgPg/cweA+D9zB4D4P3MHgPg/cweA+D9zB4D4P3MHgPg/cweA+D9zB4D4P3MHgPg/cweA+D9zB4D4P3MHgPg/cweA+D9zB4D4P3MHgPg/cweA+D9zB4D4P3MHgPg/cweA+D9zB4D4P3MHgPg/cweA+D9zB4D4P3MHgPg/cweA+D9zB4D4P3MHgPg/cweA+D9zB4D4P3MHgPg/cweA+D9zB4D4P3MHgPg/cweA+D9zB4D4P3MHgPg/cweA+D9zB4D4P3MHgPg/cweA+D9zB4D4P3MHgPg/cweA+D9zB4D4P3MHgPg/cweA+D9zB4hsEzDJ5h8AyDZxg8w+AZBs8weIbBMwyeYfAMg2cYPMPgGQbPMHiGwTMMnmHwDINnGDzD4BkGzzB4hsEzDJ5h8AyDZxg8w+AZBs8weIbBMwyeYfAMg2cYPMPgGQbPMHiGwTMMnmHwDINnGDzD4BkGzzB4hsEzDJ5h8AyDZxg8w+AZBs8weIbBMwyeTwbj43Deh08GPw9rDnsOMYecQ82h53DNYW7uufmam6+5+Zqbr7n5mpuvufmam6+5+Zqbr7n5npvvufmem++5+Z6b77n5npvvufmem++5+czNZ24+c/OZm8/cfObmMzefufnMzed987f/R/7ltJy2UzilUzm10+V0O8lYMpaMJWPJWDKWjCVjyVgylowtY8vYMraMLWPL2DK2jC1jywgZISNkhIyQETJCRsgIGSEjZaSMlJEyUkbKSBkpI2WkjJJRMkpGySgZJaNklIySUTJaRstoGS2jZbSMltEyWkbLuGRcMi4Zl4xLxiXjknHJuGRcMm4Zt4xbxi3jlnHLuGXcMm4Zt4wj48g4Mo6MI+PIODKOjCMD5wvnC+cL5wvnC+cL5wvnC+cL5wvnC+cL5wvnC+cL5wvnC+cL5wvnC+frg/OPztH6bOi8T/urd7Q+Ozrv00fG16mc2ulyup3OnD45/zp9/Dzq87SdwimdyqmdLqfb6czpk/Ovk4yUkTJSRspIGSkjZaSMklEySkbJKBklo2SUjJJRMlpGy2gZLaNltIyW0TJaRsu4ZFwyLhmXjEvGJeOSccm4ZFwybhm3jFvGLeOWccu4Zdwybhm3jCPjyDgyjowj48g4Mo6MI+NMxlfh5+u0nLZTOKVTObXT5XQ7yVgylowlY8lYMpaMJWPJWDKWjC1jy9gytowtY8vYMraMLWPLCBk43zjfON843zjfON843zjfON843zjfON843zjfON843zjfON843zjfON843zjfON843zjfON843zjfON843zjfON843zjfON843zjfON843zjfON843zjfON843zjfON843zjfON843zjfON843zjfON843zjfON843zjfON843zjfON843zjfOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54HzxHniPHGeOE+cJ84T54nzxHniPHGeOE+cJ84T54nzxHniPHGeOE+cJ84T54nzxHniPHGeOE+cJ84T54nzxHniPHGeOE+cJ84T54nzxHniPHGeOE+cJ84T54nzxHniPHGeOE+cJ84T54nzxHniPHGeOE+cJ84T54nzxHniPHGeOE+cJ84T54nzxHniPHGeOE+cJ84T54nzxHniPHGeOE+cJ84T54nzxHniPHGeOE+cJ84T54nzxHniPHGeOC+cF84L54XzwnnhvHBeOC+cF84L54XzwnnhvHBeOC+cF84L54XzwnnhvHBeOC+cF84L54XzwnnhvHBeOC+cF84L54XzwnnhvHBeOC+cF84L54XzwnnhvHBeOC+cF84L54XzwnnhvHBeOC+cF84L54XzwnnhvHBeOC+cF84L54XzwnnhvHBeOC+cF84L54XzwnnhvHBeOC+cF84L54XzwnnhvHBeOC+cF84L54XzwnnhvHBeOC+cF84L54XzxnnjvHHeOG+cN84b543zxnnjvHHeOG+cN84b543zxnnjvHHeOG+cN84b543zxnnjvHHeOG+cN84b543zxnnjvHHeOG+cf7a0qj9Pt9OZ0wfn79Ny2u/HFD+7Wu9TOpVTO11Ot9OZ0wfn79NyklEySkbJKBklo2SUjJbRMlpGy2gZLaNltIyW0TIuGZeMS8Yl45JxybhkXDIuGZeMW8Yt45Zxy7hl3DJuGbeMW8Yt48g4Mo6MI+PIODKOjCPjyPCk6+VR18+W1/u0ncIpncqpnS6nee9+tr2+TkvG5+Ov+XnaTuGU7+ddL4/AXp6B/Wx9vU+305nTB+fv03La76dlP7tf71O+H5z9Kn19nS6n2+nM6ZPur9P7/z1eql9L92spfy3tr6X+tfS/lgLY0gBbKmBLB2wpgS0tsKUGtvTAliLY0gRbqmBLF2wpgy1tsKUOtvTBlkLY0ghbKmFLJ2wphS2tsKUWtvTClmLY0gxbqmFLN2wphy3tsKUetq7nudnnwdnnydnn0dnn2dnn4dnn6dnvHp+V8TxA6wlaVbGlK7aUxZa22FIXW/piS2FsaYwtlbGlM7aUxpbW2FIbW3pjS3FsaY4t1bGlO7aUx5b22FIfW/pjS4FsaZAtFbKlQ7aUyJYW2VIjW3pkS5FsaZItVbKlS7aUyZY22VInW/pkS6FsaZQtlbKlU7aUypZW2VIrW3plS7FsaZYt1bKlW7aUy5Z22VIvW/plS8FsaZgtFbOlY7aUzJaW2VIzW3pmS9FsaZotVbOla7aUzZa22VI3W/pmS+FsaZwtlbOlc7aUzpbW2VI7W3pnS/FsaZ4t1bOle7aUz5b22VI/W/pnSwFtaaAtFbSlg7aU0JYW2lJDW3poSxFtaaItVbSli7aU0db9PCn/PCr/PCv/PCz/PC3/PC7/PC//PDD/3RPzMnCumLY005Zq2tJNW8ppSzttqact/bSloLY01JaK2tJRW0pqS0ttqaktPbWlqLY01Zaq2tJVW8pqS1ttqastfbWlsLY01pbK2tJZW0prS2ttqa0tvbWluLY015bq2tJdW8prS3ttqa8t/bWlwLY02JYK29JhW0psS4ttqbEtPbalyLY02ZYq29JlW8psS5ttqbMtfbal0LY02pZK29JpW0ptS6ttqbUtvbal2LY025Zq29JtWwfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfn53FjPHKMx47x6DEeP8YjyHgMGY8i43FkfCfJeGfs16PJeDwZjyjjMWU8qozHlfHIMh5bxqPL4Mt4EWa8GDNelBkvzowXacaLNeNFm/HizXgRZ7yYM17UGS/ujBd5xos940Wf8eLPeBFovBg0XhQaLw6NF4nGi0XjRaPx4tF4EWm8mDReVBovLo0XmcaLTeNFp/Hi03gRarwYNV6UGi9OjRepxotV40Wr8eLVeBFrvJg1XtQaL26NF7nGi13jRa/x4td4EWy8GDZeFBsvjo0XycaLZeNFs/Hi2XgRbbyYNl5UGy+ujRfZxott40W38eLbeBFuvBg3XpQbL86NF+nGi3XjRbvx4t14EW+8mDde1Bsv7o0X+caLfeNFv/Hi33gRcLwYOF4UHC8OjhcJx4uF40XD8eLheBFxvHC+cL5wvnC+cL5wvnC+cL5wvnC+Hi/Od2IcGY8a53HjPHKcx47z6HEeP84jyMH5wvnC+cL5wvnC+cI5WdVmq9p0VZuvahNWbcaqTVm1Oas2adVmrdq0VZu3ahNXbeaqTV21uas2edVmr9r0VZu/ahNYbQarTWG1Oaw2idVmsdo0VpvHahNZbSarTWW1uaw2mdVms9p0VpvPahNabUarTWm1Oa02qdVmtdq0VpvXahNbbWarTW21ua02udVmt9r0VpvfahNcbYarTXG1Oa42ydVmudo0V5vnahNdbaarTXW1ua422dVmu9p0V5vvahNebcarTXm1Oa826dV+rFeP9urxXj3iq8d89aivHvfVI7967FeP/urxXz0CrMeA9SiwHgfWI8F6LFiPBuvxYD0irO9MWI8K6zsXlozHhvXosB4f1iPEeoxYjxIL548U67FiPVqsx4v1iLEeM9ajxnrcWI8c67FjPXqsx4/1CLIeQ9ajyHocWY8k67FkPZqsx5P1iLIeU9ajynpcWY8s67FlPbqsx5f1CLMeY9ajzHqcWY8067FmPdqsx5v1iLMec9ajznrcWY8867FnPfqsx5/1CLQeg9aj0HocWo9E67FoPRqtx6P1iLQek9aj0npcWo9M67FpPTqtx6f1CLUeo9aj1HqcWo9U67FqPVqtx6v1iLWYtTa11ubW2uRam11r02ttfq1NsLUZtjbF1ubY2iRbm2Vr02xtnq1NtLWZtjbV1uba2mRbm21r021tvq1NuLUZtzbl1ubc2qRbm3Vr027teNx3j/zusd99p7+T8QjwHgPeo8B7HHiPBA/nFFybg2uTcG0Wrk3DtXm4NhHXZuLaVFybi2uTcW02rk3Htfm4NiHXZuTalFybk2uTcm1Wrk3LtXm5NjHXZuba1Fybm2uTc212rk3Ptfm5NkHXZujaFF2bo2uTdG2Wrk3TtXm6NlHXZuraVF2bq2uTdW22rk3Xtfm6NmHXZuzalF2bs2uTdm3Wrk3btXm7NnHXZu7a1F2bu2uTd232rk3ftfm7NoHXZvDaFF6bw2uTeG0Wr03jtXm8NpHXZvLaVF6by2uTeW02r03ntfm8NqHXZvTalF6b02uTem1Wr03rtXm9NrHXZvba1F6b22uTe212r03vtfm9NsHXZvjaFF+b42uTfO18bJeP7vLxXT7Cy++MlzIe5+UjvXysl4/2EueEX5vxa1N+bc6vTfq1Wb827dfm/drEX5v5a1N/be6vTf612b82/dfm/9oEYJsBbFOAbQ6wTQK2WcA2DdjmAdtEYJsJbFOBbS6wTQa22cA2HdjmA9uEYJsRbFOCbU6wTQq2WcE2LdjmBdvEYJsZbFODbW6wTQ622cE2PdjmB9sEYZshbFOEbY6wTRK2WcI2TdjmCdtEYZspbFOFba6wTRa22cI2XdjmC9uEYZsxbFOGbc6wTRq2WcM2bdjmDdvEYZs5bFOHbe6wTR622cM2fdjmD9sEYptBbFOIbQ6xTSK2WcQ2jdjmEdtEYptJbFOJbS6xTSa22cQ2ndjmE9uEYptRbFOK7Xr8to/g9jHcPorbx3H7neRWxqO5fTy3j+h2nkbdNU+j7pqnUXfN06i75mnUXfM06q55GnXXPI26a55G3TVPo+5qGZeMS8Yl45JxybhkXDIuGZeMS8Yt45Zxy7hl3DJuGbeMW8Yt45ZxZBwZR8aRcWQcGUfGkXFkzNOou+dp1N3zNOrueRp19zyNunueRt09T6PunqdRd8/TqLvnadTdLxlLxpKxZCwZS8aSsWQsGUvGkrFlbBlbxpaxZWwZW8aWsWVsGSEjZISMkBEyQkbICBkhI2SkjJSRMlJGykgZKSNlpIyUUTJKRskoGSWjZJSMklEycN44b5w3zhvnjfPGeeO8cd44b5w3zhvnjfPGeeO8cd44b5w3zhvnjfPGeeO8cd44b5w3zhvnjfPGeeO8cd44b5w3zhvnjfPGeeO8cX7h/ML5hfML5xfOL5xfOL9wfuH8wvmF8wvnF84vnF84v3B+4fzC+YXzC+cXzi+cf7Xg9ucpnPLr+fP96UB7nz4yvk6X0+105jRPne+vPtzXaTu92677mrbrvqbtuq9pu+5rWu37mlb7vqbVvq9pte9rWu37mlb7vlJGykgZKSNlpIyUUTJKRskoGSWjZJSMklEySkbLaBkto2W0jJbRMlpGy2gZl4xLxiXjknHJuGRcMi4Zl4xLxi3jlnHLuGXcMm4Zt4xbxi3jlnFkHBlHxpFxZBwZR8aRcWRMq33f02rf97Ta9z2t9n1Pq33f02rf97Ta9z2t9n1Pq33f02rf90vGkrFkLBlLxpKxZCwZS8aSsWRsGVvGlrFlbBlbxpaxZWwZW0bICBkhA+c3zm+c3zi/cX7j/Mb5jfMb5zfOb5zfOL9xfuP8xvmN8xvnN85vnN84v3F+4/zG+Y3zG+c3zm+c3zi/cX7j/Mb5jfMb5zfOb5zfOL9xfuP8xvmN8xvnN85vnN84v3F+4/zG+Y3zG+c3zm+c3zi/cX7j/Mb5jfMb5zfOb5zfOL9xfuP8xvmN8xvnN85vnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnJ/hPF7DebyG83gN5/EazuM1nMdrOI/XcB6v4Txew3m8XjKWjCVjyVgylowlY8lYMpaMJWPL2DK2jC1jy9gytowtY8vYMkJGyAgZISNkhIyQETJCRshIGSkjZaSMlJEyUkbKSBkpo2SUjJJRMkpGySgZJaNklIyW0TJaRstoGS2jZbSMltEyLhmXjEvGJeOSccm4ZFwyLhmXjFvGLeOWccu4Zdwybhm3jFvGLePIODKOjCPjyDgyjowj48jA+cL5wvnC+cL5wvnC+cL5wvnC+cL5wvnC+cL5wvnC+cL5wvnC+cL5wvnC+cL5wvnC+cL5wvnC+cL5wvnC+cI5K1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwsVnH+7jSe/47MO9T5fT7XTep5inziPmqfOIeeo8Yp46j5inziPmqfOIeeo8Yp46j88+3Pt05rRkLBlLxpKxZCwZS8aSsWQsGVvGlrFlbBlbxpaxZWwZW8aWETJCRsgIGSEjZISMkBEyQkbKSBkpI2WkjJSRMlJGykgZJaNklIySUTJKRskoGSWjZLSMltEyWkbLaBk9793PPtz7JOOD8w9LQXz24d6n5bS/nAPx2Yd7n9KpnNrpcrqdzpw+7RLn87Sc9pe5IL5acF+ncmqny+l2ercY4pmufLYrn/HKZ73yma989iufActnwfKZsNSCCy240IILLbjQggstuNCCCy240IILLbjQggstuNCCCy240IILLbjQggstuNCCCy240IILLbjQggstuNCCCy240IILLbjQggstuNCCCy240IILLbjQggstuNCCCy240IILLbjIZ2/2GZx9FmefydnvNmdlPKuzz+zsszv7DM9antWCCy240IILLbjQggstuNCCCy240IILLbjQggstuNCCCy240IILLbjQggstuNCCCy240IILLbjQggstuNCCCy240IILLbjQggstuNCCCy240IILLbjQggstuNCCCy240IILLbjQggstuNCCCy240IILLbjQggstuNCCCy240IILLbjQggstuNCCCy240IILLbjQggstuNCCCy240IILLbjQggstuNCCCy240IILLbjQggstuNCCCy240IILLbjQggstuNCCCy240IILLbjQggstuNCCCy240IILLbjQggstuNCCCy240IILLbjQggstuNCCCy240IKLehamn4npZ2P6GZl+Vqa/m5mW8QxNP0vTz9Q0zo1shpXNMLMZdjbD0GZY2gxTm2FrM4xthrXNMLcZ9jbD4GZY3AyTm2FzM4xuhtXNMLsZdjfD8GZY3gzTm2F7M4xvhvXNML8Z9jfDAGdY4AwTnGGDM4xwhhXOMMMZdjjDEGdY4gxTnGGLM4xxhjXOMMcZ9jjDIGdY5AyTnGGTM4xyhlXOMMsZdjnDMGdY5gzTnGGbM4xzhnXOMM8Z9jnDQGdY6AwTnWGjM4x0hpXOMNMZdjrDUGdY6gxTnWGrM4x1hrXOMNcZ9jrDYGdY7AyTnWGzM4x2htXOMNsZdjvDcGdY7gzTnWG7M4x3hvXOMN8Z9jvDgGdY8AwTnmHDM4x4hhXPMOMZ/WzKP6Pyz6r8Myv/7Mo/w/LfLcvLeLbln3F5nJv0DJueYdQzrHqGWc+w6xmGPcOyZ5j2DNueYdwzrHuGec+w7xkGPsPCZ5j4DBufYeQzrHyGmc+w8xmGPsPSZ5j6DFufYewzrH2Guc+w9xkGP8PiZ5j8DJufYfQzrH6G2c+w+xmGP8PyZ5j+DNufYfwzrH+G+c+w/xkGQMMCaJgADRugYQQ0rICGGdCwAxqGQMMSaJgCDVugYQw0rIGGOdBghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrjc8zRq7nkaNfc8jZp7nkbNPU+j5p6nznPPU+e556nz3PPUee556jz3lrFlbBkhI2SEjJARMkJGyAgZISNkpIyUkTJSRspIGSkjZaSMlFEySkbJKBklo2SUjJJRMkpGy2gZLaNltIyW0TJaRstoGZeMS8Yl45JxybhkXDIuGZeMS8Yt45Zxy7hl3DJuGbeMW8Yt45ZxZBwZR8aRcWQcGUfGkXFkzFPnGfPUecY8dZ4xT51nzFPnGfPUecY8dZ4xT51nzFPnGfPUecZLxpKxZCwZS8aSsWQsGTgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54PyrBbc/T8tpf/kK8tMK9z59ZHydyqmdLqfb6czpk/Ov07vtmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzUb543zxnnjvHHeOG+cN84b543zxnnjvHHeOG+cN84b543zxnnjvHHeOG+cN84b543zxnnjvHHeOG+cN84b543zxnnjvHHeOG+cN84b543zxnnjvHHeOG+cN84b543zxnnjvHHeOG+cN84b543zxnnjvHHeOG+cXzi/cH7h/ML5hfML5xfOL5xfOL9wfuH8wvmF8wvnF84vnF84v3B+4fzC+YXzC+cXzi+cXzi/cH7h/ML5hfML5xfOL5xfOGeFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrhkhUtWuGSFS1a4ZIVLVrj87MN9POmdn32496mc2ulyur+eCM8zT53nmafO88xT53nmqfM889R5nnnqPM88dZ6ffbj36XKS0TIuGZeMS8Yl45JxybhkXDIuGZeMW8Yt45Zxy7hl3DJuGbeMW8Yt48g4Mo6MI+PIODKOjCPjyDjvjHqNXaJeY5eo19gl6jV2iXqNXaJeY5eo19gl6jV2iXqNXaJeLxlLxpKxZCwZS8aSsWQsGUvGkrFlbBlbxpax3+/d+uzDvU8yPjj/sBTUZx/ufTpz+uD8wzlQn32492k7hVM6lVM7XU73l6+gPvtwX6dPu8T6PH2Q93UKp3Qqp3Z6txhKC6604EoLrrTgSguutOBKC6604EoLrrTgSguutOBKC6604EoLrrTgSguutOBKC6604EoLrrTgSguutOBKC6604EoLrrTgSguutOBKC6604EoLrrTgSguutOBKC6604EoLrrTgSguutOBKC6604EoLrrTgSguutOBKC6604EoLrrTgSguutOBKC6604EoLrrTgSguutOBKC6604EoLrrTgSguutOBKC6604EoLrrTgSguutOBKC6604EoLrrTgSguutOBKC6604EoLrrTgSguutOBKC6604EoLrrTgSguutOBKC6604EoLrrTgSguutOBKC6604EoLrrTgSguutOBKC6604EoLrrTgSguutOBKC6604EoLrrTgSguutOBKC6604EoLrrTgSguutOBKC6604EoLrrTgSguutOBKC6604EoLrrTgSguutOBKC6604EoLrrTgSguutOBKC6604EoLrrTgSguutOBKC6604EoLrrTgSguutOBKC6604EoLrrTgSguutOBKC6604EoLrrTgSguutOBKC6604EoLrrTgSguutOBKC65so5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRixWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljhihWuWOGKFa5Y4YoVrljh6p6nUeuep1HrnqdR656nUeuep1HrnqfO656nzuuep87rnqfO656nzuu+Zdwybhm3jFvGkXFkHBlHxpFxZBwZR8aRMU+d15mnzuvMU+d15qnzOvPUeZ156rzOPHVeZ546rzNPndeZp87rvGQsGUvGkrFkLBlLxpKxZCwZS8aWsWVsGVvGlrFlbBlbxpaxZYSMkBEyQkbICBkhI2SEjJCRMlJGykgZKSNlpIyUkTJSRskoGSWjZJSMklEySkbJKBkto2W0jJbRMlpGy2gZLaNlXDIuGZeMS8YlA+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnB+cH5wfnZzjv13Der+G8X8N5v4bzfg3n/RrO+zWc92s479dw3q+XjCVjyVgylowlY8lYMpaMJWPJ2DK2jC1jy9gytowtY8vYMraMkBEyQkbICBkhI2SEjM8W3P48nTl9tuDy87ScPjK+TuGUTuXUTpfT7fRuu7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20btjfON843zjfON88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwzgrXrHDNCtescM0K16xwzQrXrHDNCtescM0K16xwzQrXrHDNCtescM0K16xwzQrXrHDNCtescM0K16xwzQrXrHDNCtescM0K16xwzQrXrHDNCtescM0K16xwzQrXrHDNCtescM0K16xwzQrXrHDNCtescM0K16xwzQrXrHDNCtescM0K16xwzQrXrHDNCtescM0K16xwzQrXrHDNCtescM0K16xwzQrXrHDNCtescM0K16xwzQrXrHDNCtescM0K16xwzQrXrHDNCtescM0K16xwzQrXrHDNCtescM0K16xwzQrXrHDNCtescM0K16xwzQrXrHDNCtescM0K16xwzQrXrHDNCtescM0K16xwzQrXrHDNCtescM0K16xwzQrXrHDNCtescM0K16xwzQrXrHDNCtescM0K16xwzQrXrHDNCtescM0K16xwzQrXrHDNCtescM0K16xwzQrXrHDNCtescM0K16xwzQrXrHDNCtescM0K16xwzQrXrHDNCtescM0K16xwzQrXrHDNCtescM0K16xwzQrXrHDNCtescM0K16xwzQrXrHDNCtescM0K16xwzQrXrHDNCtescM0K16xwzQrXrHDNCtescM0K16xwzQrXrHDNCtescM0K16xwzQrXrHDNCtescM0K16xwzQrXrHDNCtescM0K16xwzQrXrHDNCtescM0K16xwzQrXrHDNCtescM0K16xwzQrXrHDNCtescP3Zh/t40rs/+3DvUzilUzn11xPh3fPUefc8dd49T513z1Pn3fPUefc8dd49T533Zx/ufSonGVvGlrFlhIyQETJCRsgIGSEjZISMkJEyUkbKSBkpI2WkjJSRMlJGySgZJaNklIySUTJKRskoGS2jZbSMltEyWkbLaBkto2VcMi4Zl4xLxiXjknHJuGRcMi4Zt4xbxu29e3vvftkl/vyrX/7vr//421//8+9+85+//MN/f/vHf/uv3//Ln377h9+///FP/99/zH/zz3/87e9+99t//6f/+OMf/uU3//pff/zNP/3uD//y8d/98vr4jw9o/s/qX+31j9/+x8u/2utXuz/+1favcv0qv/2rP//5H//8/wM=",
|
|
1881
|
+
"debug_symbols": "rd3fjl1bea39e1nHHMze3z9j9NzKVhSRhERICCJCtvQp4t4/V9V8f8Mg2SJknzD7WuDeylXzscumjaf99y//+pt//q9//6ff/v7f/vCfv/zD//nvX/75j7/93e9+++//9Ls//Muv//TbP/z+27/9719eH/+x8pd/OH/+1S/r8x/OL/9wf/uH/fEPO375h/XtnF8v9fXSXy/X18v99fLth+WvfonX18v6evl2SX17ia+X/Hr5dsv17aW/Xr7dcv35W958WP/0pz/+5jcf2d99nN8++v/49R9/8/s//fIPv/+v3/3uV7/831//7r8+/0f/+R+//v3n659+/cdv/+3rV7/85vf/+u3124X/9tvf/ebj9OdfPT/69eMf2tnvH3yv7Yevvv/WC+6z3hecV//wgv3jC6LrfUFc6YI49RcXxI8v2DkX7L5+eMHf9hHc8cMLfvI5OBHzOcj84eeg/7c/hZ98BHmd9wUd6/kIrr/5fbBea76O69XffSHvv/2dUFfOe6nj+WmslX9xxfrpu2nPZzLy7/kgVp/5Wqyrvns/VfzlB/GT98Pea+7Y+/rJHT95U+ad8xXJu57PZ9z9993RP7mj/h/8XPr/wef0+skdp+6541zrxz+Xn3wcvV/e5PHDG14/w2zNB7Gz44fv0P3TO17PHVe54zp/ecX6yZv8FfMTuV/f8x5/dcdP3qPX1fNhXPeqH9/xk/dX1MCW63l37frLXzR2/uzddc87dMdr//iOn7xD1+r5MNa66++7I17zcazY94/v+Mk79Pg1+Ntb9e+6Yb32fn4N/cnP5PyM+VXPrxvf/Y58/p6fyFV/35f1WvNdwb7i9cM74idv0HVdzy8a58dvjYj/7Zfkb7zhJ5+Ln93wt35Ro//XX9SffjrP8w4/+8efzp/+ynV8l1Hf/xb/V7/6xfnZZ6MQ/+3TcZ73Rp//wSXX9XLJ/d23jX91yc++4TnX+4b67rNR6y9+fP7sE7qvyy8Zr+c3tfrL303yJ2+Nen7lqm9v9+fX4Nf9P/gwwudzf/cm/+sP42dXPN+/rvzum/i/vuInb9CrOob4b+eKH31F8vrZ93+9B/lv5+/e5399yc8/En+guL59Q3n9fZdcvtu46qz1o0vqZ9/Uf/fbUtQPv6f+6Vemb1+Z67u3+f/ki3tfPoyzfnhF/eRt2tcGS1+1fvjF/fklFflc8t0vhH99yU9+m+5zzZelz/nuq/K3fxh33/P56Pt6nb/r59Lf3mRzSfeuv+fd/rf9ieun79Jevi5Xf/vu/EcfRv/sz+/3/XxKX/WDT+lPbzh+BerT6++64W/6stb/9mfx87fW3/Kz+NmfPPftT6/x+qs/G/zjt3/89b/89o9/+bdIH3+l8/Gn5o+/0/n4jv7jL3U+X+/36/l6zdf7db1f9/s13q/5fq336/u+fN+X7/vyfV+976v3ffW+r9731fu+et9X7/vqfV+976v3ff2+r9/39fu+ft/X7/v6fV+/7+v3ff2+r9/3Xe/7rvd91/u+633f9b7v+rjvGwFXv1+v9+u3+/Ljvz9fr/fH3659+zzf6/367b789sW64/2a79f6+P7q22u/X6/36/1+PR+/Uf/ql/Px47+9W87HX9B9+9Xk5Pv124+vb/ecfr9++/H17eM59/v1fL2u12sOHzfVxyG+rlyvnH9TXx/st++Svj66b9/1zOGew/n6wNZ6zWHNYc8h5pBzqDn0HD4+0I/0dc/h/VNd+9uF/XnYc4g55BxqDv3xh+yPwzWHew7nffj4q86vw5rDnkPMIedQc5ibY26OuTnm5pybc27OuTnn5pybc27OuTnn5pybc26uubnm5pqba26uubnm5pqba26uubnm5p6be27uubnn5p6be27uubnn5p6be26+5uZrbr7m5mtuvubma26+5uZrbr7m5mtuvufme26+5+Z7br7n5ntuvufme26+5+Z7bj5z85mbz9x85uYzN5+5+czNZ24+c/N537xfrzmsOew5xBxyDjWHnsM1h3sOc/Oam9fcvObmNTevuXnNzWtuXnPzmpvX3Lzn5j0377l5z817bt5z8zC4h8E9DO5hcA+Dexjcw+AeBvcwuIfBPQzuYXAPg3sY3MPgHgb3MLiHwT0M7mFwD4N7GNzD4B4G9zC4h8E9DO5hcA+Dexjcw+AeBvcwuIfBPQzuYXAPg3sY3MPgHgb3MLiHwT0M7mFwD4N7GNzD4B4G9zC4h8E9DO5hcA+Dexjcw+AeBvcwuIfBPQzuYXAPg3sY3MPgHgb3MLiHwT0M7mFwD4N7GNzD4B4G9zC4h8EYBmMYjGEwhsEYBmMYjGEwhsEYBmMYjGEwhsEYBmMYjGEwhsEYBmMYjGEwhsEYBmMYjGEwhsEYBmMYjGEwhsEYBmMYjGEwhsEYBmMYjGEwhsEYBmMYjGEwhsEYBmMYjGEwhsEYBmMYjGEwhsEYBmMYjGEwhsEYBmMYjGEwhsEYBmMYjGEwhsEYBmMYjGEwhsEYBmMYjGEwhsEYBmMYjGEwhsEYBmMYjGEwhsEYBmMYjGEwhsEYBmMYjGEwhsEYBmMYjGEwhsEYBmMYjGEwhsEYBmMYjGEwhsEYBmMYjGEwhsEcBnMYzGEwh8EcBnMYzGEwh8EcBnMYzGEwh8EcBnMYzGEwh8EcBnMYzGEwh8EcBnMYzGEwh8EcBnMYzGEwh8EcBnMYzGEwh8EcBnMYzGEwh8EcBnMYzGEwh8EcBnMYzGEwh8EcBnMYzGEwh8EcBnMYzGEwh8EcBnMYzGEwh8EcBnMYzGEwh8EcBnMYzGEwh8EcBnMYzGEwh8EcBnMYzGEwh8EcBnMYzGEwh8EcBnMYzGEwh8EcBnMYzGEwh8EcBnMYzGEwh8EcBnMYzGEwh8EcBnMYzGEwh8EcBnMYzGEwh8EaBmsYrGGwhsEaBmsYrGGwhsEaBmsYrGGwhsEaBmsYrGGwhsEaBmsYrGGwhsEaBmsYrGGwhsEaBmsYrGGwhsEaBmsYrGGwhsEaBmsYrGGwhsEaBmsYrGGwhsEaBmsYrGGwhsEaBmsYrGGwhsEaBmsYrGGwhsEaBmsYrGGwhsEaBmsYrGGwhsEaBmsYrGGwhsEaBmsYrGGwhsEaBmsYrGGwhsEaBmsYrGGwhsEaBmsYrGGwhsEaBmsYrGGwhsEaBmsYrGGwhsEaBmsYrGGwhsEaBmsYrGGwhsEaBmsYrGGwhsEeBnsY7GGwh8EeBnsY7GGwh8EeBnsY7GGwh8EeBnsY7GGwh8EeBnsY7GGwh8EeBnsY7GGwh8EeBnsY7GGwh8EeBnsY7GGwh8EeBnsY7GGwh8EeBnsY7GGwh8EeBnsY7GGwh8EeBnsY7GGwh8EeBnsY7GGwh8EeBnsY7GGwh8EeBnsY7GGwh8EeBnsY7GGwh8EeBnsY7GGwh8EeBnsY7GGwh8EeBnsY7GGwh8EeBnsY7GGwh8EeBnsY7GGwh8EeBnsY7GGwh8EeBnsY7GGwh8EeBnsY7GGwh8EeBnsY7GGwh8FrGLyGwWsYvIbBaxi8hsFrGLyGwWsYvIbBaxi8hsFrGLyGwWsYvIbBaxi8hsFrGLyGwWsYvIbBaxi8hsFrGLyGwWsYvIbBaxi8hsFrGLyGwWsYvIbBaxi8hsFrGLyGwWsYvIbBaxi8hsFrGLyGwWsYvIbBaxi8hsFrGLyGwWsYvIbBaxi8hsFrGLyGwWsYvIbBaxi8hsFrGLyGwWsYvIbBaxi8hsFrGLyGwWsYvIbBaxi8hsFrGLyGwWsYvIbBaxi8hsFrGLyGwWsYvIbBaxi8hsFrGLyGwWsYvIbBaxi8hsFrGLyGwWsYvIbBaxi8hsFrGLyGwWsYvIbBexi8h8F7GLyHwXsYvIfBexi8h8F7GLyHwXsYvIfBexi8h8F7GLyHwXsYvIfBexi8h8F7GLyHwXsYvIfBexi8h8F7GLyHwXsYvIfBexi8h8F7GLyHwXsYvIfBexi8h8F7GLyHwXsYvIfBexi8h8F7GLyHwXsYvIfBexi8h8F7GLyHwXsYvIfBexi8h8F7GLyHwXsYvIfBexi8h8F7GLyHwXsYvIfBexi8h8F7GLyHwXsYvIfBexi8h8F7GLyHwXsYvIfBexi8h8F7GLyHwXsYvIfBexi8h8F7GLyHwXsYvIfBexi8h8F7GLyHwXsYvIfBexi8h8F7GLyHwTMMnmHwDINnGDzD4BkGzzB4hsEzDJ5h8AyDZxg8w+AZBs8weIbBMwyeYfAMg2cYPMPgGQbPMHiGwTMMnmHwDINnGDzD4BkGzzB4hsEzDJ5h8AyDZxg8w+AZBs8weIbBMwyeYfAMg2cYPMPgGQbPMHiGwTMMnmHwDINnGDzD4BkGzzB4hsEzDJ5h8HwyGB+H8z58Mvh5WHPYc4g55BxqDj2Haw5zc8/N19x8zc3X3HzNzdfcfM3N19x8zc3X3HzNzffcfM/N99x8z8333HzPzffcfM/N99x8z81nbj5z85mbz9x85uYzN5+5+czNZ24+75u//T/yL6fltJ3CKZ3KqZ0up9tJxpKxZCwZS8aSsWQsGUvGkrFkbBlbxpaxZWwZW8aWsWVsGVtGyAgZISNkhIyQETJCRsgIGSkjZaSMlJEyUkbKSBkpI2WUjJJRMkpGySgZJaNklIyS0TJaRstoGS2jZbSMltEyWsYl45JxybhkXDIuGZeMS8Yl45Jxy7hl3DJuGbeMW8Yt45Zxy7hlHBlHxpFxZBwZR8aRcWQcGThfOF84XzhfOF84XzhfOF84XzhfOF84XzhfOF84XzhfOF84XzhfOF84Xx+cf3SO1mdD533aX72j9dnReZ8+Mr5O5dROl9PtdOb0yfnX6ePnUZ+n7RRO6VRO7XQ53U5nTp+cf51kpIyUkTJSRspIGSkjZZSMklEySkbJKBklo2SUjJLRMlpGy2gZLaNltIyW0TJaxiXjknHJuGRcMi4Zl4xLxiXjknHLuGXcMm4Zt4xbxi3jlnHLuGUcGUfGkXFkHBlHxpFxZBwZZzK+Cj9fp+W0ncIpncqpnS6n20nGkrFkLBlLxpKxZCwZS8aSsWRsGVvGlrFlbBlbxpaxZWwZW0bIwPnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cZ54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnCfOE+eJ88R54jxxnjhPnCfOE+eJ88R54jxxnjhPnCfOE+eJ88R54jxxnjhPnCfOE+eJ88R54jxxnjhPnCfOE+eJ88R54jxxnjhPnCfOE+eJ88R54jxxnjhPnCfOE+eJ88R54jxxnjhPnCfOE+eJ88R54jxxnjhPnCfOE+eJ88R54jxxnjhPnCfOE+eJ88R54jxxnjhPnCfOE+eJ88R54jxxnjhPnCfOE+eJ88R54jxxnjhPnCfOE+eJ88R54bxwXjgvnBfOC+eF88J54bxwXjgvnBfOC+eF88J54bxwXjgvnBfOC+eF88J54bxwXjgvnBfOC+eF88J54bxwXjgvnBfOC+eF88J54bxwXjgvnBfOC+eF88J54bxwXjgvnBfOC+eF88J54bxwXjgvnBfOC+eF88J54bxwXjgvnBfOC+eF88J54bxwXjgvnBfOC+eF88J54bxwXjgvnBfOC+eF88J54bxwXjgvnBfOC+eF88J54bxwXjgvnDfOG+eN88Z547xx3jhvnDfOG+eN88Z547xx3jhvnDfOG+eN88Z547xx3jhvnDfOG+eN88Z547xx3jhvnDfOG+eN88Z54/yzpVX9ebqdzpw+OH+fltN+P6b42dV6n9KpnNrpcrqdzpw+OH+flpOMklEySkbJKBklo2S0jJbRMlpGy2gZLaNltIyWccm4ZFwyLhmXjEvGJeOSccm4ZNwybhm3jFvGLeOWccu4ZdwybhlHxpFxZBwZR8aRcWQcGUeGJ10vj7p+trzep+0UTulUTu10Oc1797Pt9XVaMj4ff83P03YKp3w/73p5BPbyDOxn6+t9up3OnD44f5+W034/LfvZ/Xqf8v3g7Ffp6+t0Od1OZ06fdH+d3v/v8VL9WrpfS/lraX8t9a+l/7UUwJYG2FIBWzpgSwlsaYEtNbClB7YUwZYm2FIFW7pgSxlsaYMtdbClD7YUwpZG2FIJWzphSylsaYUttbClF7YUw5Zm2FINW7phSzlsaYct9bB1Pc/NPg/OPk/OPo/OPs/OPg/PPk/Pfvf4rIznAVpP0KqKLV2xpSy2tMWWutjSF1sKY0tjbKmMLZ2xpTS2tMaW2tjSG1uKY0tzbKmOLd2xpTy2tMeW+tjSH1sKZEuDbKmQLR2ypUS2tMiWGtnSI1uKZEuTbKmSLV2ypUy2tMmWOtnSJ1sKZUujbKmULZ2ypVS2tMqWWtnSK1uKZUuzbKmWLd2ypVy2tMuWetnSL1sKZkvDbKmYLR2zpWS2tMyWmtnSM1uKZkvTbKmaLV2zpWy2tM2WutnSN1sKZ0vjbKmcLZ2zpXS2tM6W2tnSO1uKZ0vzbKmeLd2zpXy2tM+W+tnSP1sKaEsDbamgLR20pYS2tNCWGtrSQ1uKaEsTbamiLV20pYy27udJ+edR+edZ+edh+edp+edx+ed5+eeB+e+emJeBc8W0pZm2VNOWbtpSTlvaaUs9bemnLQW1paG2VNSWjtpSUltaaktNbempLUW1pam2VNWWrtpSVlvaaktdbemrLYW1pbG2VNaWztpSWltaa0ttbemtLcW1pbm2VNeW7tpSXlvaa0t9bemvLQW2pcG2VNiWDttSYltabEuNbemxLUW2pcm2VNmWLttSZlvabEudbemzLYW2pdG2VNqWTttSaltabUutbem1LcW2pdm2VNuWbts6OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD+PG+ORYzx2jEeP8fgxHkHGY8h4FBmPI+M7ScY7Y78eTcbjyXhEGY8p41FlPK6MR5bx2DIeXQZfxosw48WY8aLMeHFmvEgzXqwZL9qMF2/GizjjxZzxos54cWe8yDNe7Bkv+owXf8aLQOPFoPGi0HhxaLxINF4sGi8ajRePxotI48Wk8aLSeHFpvMg0XmwaLzqNF5/Gi1DjxajxotR4cWq8SDVerBovWo0Xr8aLWOPFrPGi1nhxa7zINV7sGi96jRe/xotg48Ww8aLYeHFsvEg2XiwbL5qNF8/Gi2jjxbTxotp4cW28yDZebBsvuo0X38aLcOPFuPGi3HhxbrxIN16sGy/ajRfvxot448W88aLeeHFvvMg3XuwbL/qNF//Gi4DjxcDxouB4cXC8SDheLBwvGo4XD8eLiOOF84XzhfOF84XzhfOF84XzhfOF8/V4cb4T48h41DiPG+eR4zx2nEeP8/hxHkEOzhfOF84XzhfOF84XzsmqNlvVpqvafFWbsGozVm3Kqs1ZtUmrNmvVpq3avFWbuGozV23qqs1dtcmrNnvVpq/a/FWbwGozWG0Kq81htUmsNovVprHaPFabyGozWW0qq81ltcmsNpvVprPafFab0GozWm1Kq81ptUmtNqvVprXavFab2GozW21qq81ttcmtNrvVprfa/Fab4GozXG2Kq81xtUmuNsvVprnaPFeb6GozXW2qq811tcmuNtvVprvafFeb8GozXm3Kq815tUmv9mO9erRXj/fqEV895qtHffW4rx751WO/evRXj//qEWA9BqxHgfU4sB4J1mPBejRYjwfrEWF9Z8J6VFjfubBkPDasR4f1+LAeIdZjxHqUWDh/pFiPFevRYj1erEeM9ZixHjXW48Z65FiPHevRYz1+rEeQ9RiyHkXW48h6JFmPJevRZD2erEeU9ZiyHlXW48p6ZFmPLevRZT2+rEeY9RizHmXW48x6pFmPNevRZj3erEec9ZizHnXW48565FmPPevRZz3+rEeg9Ri0HoXW49B6JFqPRevRaD0erUek9Zi0HpXW49J6ZFqPTevRaT0+rUeo9Ri1HqXW49R6pFqPVevRaj1erUesxay1qbU2t9Ym19rsWptea/NrbYKtzbC1KbY2x9Ym2dosW5tma/NsbaKtzbS1qbY219Ym29psW5tua/NtbcKtzbi1Kbc259Ym3dqsW5t2a8fjvnvkd4/97jv9nYxHgPcY8B4F3uPAeyR4OKfg2hxcm4Rrs3BtGq7Nw7WJuDYT16bi2lxcm4xrs3FtOq7Nx7UJuTYj16bk2pxcm5Rrs3JtWq7Ny7WJuTYz16bm2txcm5xrs3Nteq7Nz7UJujZD16bo2hxdm6Rrs3Rtmq7N07WJujZT16bq2lxdm6xrs3Vtuq7N17UJuzZj16bs2pxdm7Rrs3Zt2q7N27WJuzZz16bu2txdm7xrs3dt+q7N37UJvDaD16bw2hxem8Rrs3htGq/N47WJvDaT16by2lxem8xrs3ltOq/N57UJvTaj16b02pxem9Rrs3ptWq/N67WJvTaz16b22txem9xrs3tteq/N77UJvjbD16b42hxfm+Rr52O7fHSXj+/yEV5+Z7yU8TgvH+nlY718tJc4J/zajF+b8mtzfm3Sr836tWm/Nu/XJv7azF+b+mtzf23yr83+tem/Nv/XJgDbDGCbAmxzgG0SsM0CtmnANg/YJgLbTGCbCmxzgW0ysM0GtunANh/YJgTbjGCbEmxzgm1SsM0KtmnBNi/YJgbbzGCbGmxzg21ysM0OtunBNj/YJgjbDGGbImxzhG2SsM0StmnCNk/YJgrbTGGbKmxzhW2ysM0WtunCNl/YJgzbjGGbMmxzhm3SsM0atmnDNm/YJg7bzGGbOmxzh23ysM0etunDNn/YJhDbDGKbQmxziG0Ssc0itmnENo/YJhLbTGKbSmxziW0ysc0mtunENp/YJhTbjGKbUmzX47d9BLeP4fZR3D6O2+8ktzIeze3juX1Et/M06q55GnXXPI26a55G3TVPo+6ap1F3zdOou+Zp1F3zNOqueRp1V8u4ZFwyLhmXjEvGJeOSccm4ZFwybhm3jFvGLeOWccu4Zdwybhm3jCPjyDgyjowj48g4Mo6MI2OeRt09T6PunqdRd8/TqLvnadTd8zTq7nkadfc8jbp7nkbdPU+j7n7JWDKWjCVjyVgylowlY8lYMpaMLWPL2DK2jC1jy9gytowtY8sIGSEjZISMkBEyQkbICBkhI2WkjJSRMlJGykgZKSNlpIySUTJKRskoGSWjZJSMkoHzxnnjvHHeOG+cN84b543zxnnjvHHeOG+cN84b543zxnnjvHHeOG+cN84b543zxnnjvHHeOG+cN84b543zxnnjvHHeOG+cN84b543zC+cXzi+cXzi/cH7h/ML5hfML5xfOL5xfOL9wfuH8wvmF8wvnF84vnF84v3B+4fyrBbc/T+GUX8+f708H2vv0kfF1upxupzOneep8f/Xhvk7b6d123de0Xfc1bdd9Tdt1X9Nq39e02vc1rfZ9Tat9X9Nq39e02veVMlJGykgZKSNlpIySUTJKRskoGSWjZJSMklEyWkbLaBkto2W0jJbRMlpGy7hkXDIuGZeMS8Yl45JxybhkXDJuGbeMW8Yt45Zxy7hl3DJuGbeMI+PIODKOjCPjyDgyjowjY1rt+55W+76n1b7vabXve1rt+55W+76n1b7vabXve1rt+55W+75fMpaMJWPJWDKWjCVjyVgylowlY8vYMraMLWPL2DK2jC1jy9gyQkbICBk4v3F+4/zG+Y3zG+c3zm+c3zi/cX7j/Mb5jfMb5zfOb5zfOL9xfuP8xvmN8xvnN85vnN84v3F+4/zG+Y3zG+c3zm+c3zi/cX7j/Mb5jfMb5zfOb5zfOL9xfuP8xvmN8xvnN85vnN84v3F+4/zG+Y3zG+c3zm+c3zi/cX7j/Mb5jfMb5zfOb5zfOL9xfuP84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD8DOfxGs7jNZzHaziP13Aer+E8XsN5vIbzeA3n8RrO4/WSsWQsGUvGkrFkLBlLxpKxZCwZW8aWsWVsGVvGlrFlbBlbxpYRMkJGyAgZISNkhIyQETJCRspIGSkjZaSMlJEyUkbKSBklo2SUjJJRMkpGySgZJaNktIyW0TJaRstoGS2jZbSMlnHJuGRcMi4Zl4xLxiXjknHJuGTcMm4Zt4xbxi3jlnHLuGXcMm4ZR8aRcWQcGUfGkXFkHBlHBs4XzhfOF84XzhfOF84XzhfOF84XzhfOF84XzhfOF84XzhfOF84XzhfOF84XzhfOF84XzhfOF84XzhfOF84XzlnhghUuWOGCFS5Y4YIVLljhghUuWOGCFS5Y4YIVLljhghUuWOGCFS5Y4YIVLljhghUuWOGCFS5Y4YIVLljhghUuWOGCFS5Y4YIVLljhghUuWOGCFS5Y4YIVLljhghUuWOGCFS5Y4YIVLljhghUuWOGCFS5Y4YIVLljhghUuWOGCFS5Y4YIVLljhghUuWOGCFS5Y4YIVLljhghUuWOGCFS5Y4YIVLljhghUuWOGCFS5Y4YIVLljhghUuWOGCFS5Y4YIVLljhghUuWOGCFS5Y4YIVLljhghUuWOGCFS5Y4YIVLljhghUuWOGCFS5Y4YIVLljhghUuWOGCFS5Y4YIVLljhghUuWOGCFS5Y4YIVLljhghUuWOGCFS5Y4YIVLljhghUuWOGCFS5Y4YIVLljhghUuWOGCFS5Y4YIVLljhghUuWOGCFS5Y4YIVLljhghUuWOGCFS5Y4YIVLljhghUuWOGCFS5Y4YIVLljhghUuWOGCFS5Y4YIVLljhghUuWOGCFS5Y4YIVLljhghUuWOGCFS5Y4YIVLljhghUuPvtwH096x2cf7n26nG6n8z7FPHUeMU+dR8xT5xHz1HnEPHUeMU+dR8xT5xHz1Hl89uHepzOnJWPJWDKWjCVjyVgylowlY8nYMraMLWPL2DK2jC1jy9gytoyQETJCRsgIGSEjZISMkBEyUkbKSBkpI2WkjJSRMlJGyigZJaNklIySUTJKRskoGSWjZbSMltEyWkbL6Hnvfvbh3icZH5x/WArisw/3Pi2n/eUciM8+3PuUTuXUTpfT7XTm9GmXOJ+n5bS/zAXx1YL7OpVTO11Ot9O7xRDPdOWzXfmMVz7rlc985bNf+QxYPguWz4SlFlxowYUWXGjBhRZcaMGFFlxowYUWXGjBhRZcaMGFFlxowYUWXGjBhRZcaMGFFlxowYUWXGjBhRZcaMGFFlxowYUWXGjBhRZcaMGFFlxowYUWXGjBhRZcaMGFFlxowYUWXGjBRT57s8/g7LM4+0zOfrc5K+NZnX1mZ5/d2Wd41vKsFlxowYUWXGjBhRZcaMGFFlxowYUWXGjBhRZcaMGFFlxowYUWXGjBhRZcaMGFFlxowYUWXGjBhRZcaMGFFlxowYUWXGjBhRZcaMGFFlxowYUWXGjBhRZcaMGFFlxowYUWXGjBhRZcaMGFFlxowYUWXGjBhRZcaMGFFlxowYUWXGjBhRZcaMGFFlxowYUWXGjBhRZcaMGFFlxowYUWXGjBhRZcaMGFFlxowYUWXGjBhRZcaMGFFlxowYUWXGjBhRZcaMGFFlxowYUWXGjBhRZcaMGFFlxowYUWXGjBhRZcaMGFFlxowYUWXGjBhRZcaMGFFlxowYUWXNSzMP1MTD8b08/I9LMy/d3MtIxnaPpZmn6mpnFuZDOsbIaZzbCzGYY2w9JmmNoMW5thbDOsbYa5zbC3GQY3w+JmmNwMm5thdDOsbobZzbC7GYY3w/JmmN4M25thfDOsb4b5zbC/GQY4wwJnmOAMG5xhhDOscIYZzrDDGYY4wxJnmOIMW5xhjDOscYY5zrDHGQY5wyJnmOQMm5xhlDOscoZZzrDLGYY5wzJnmOYM25xhnDOsc4Z5zrDPGQY6w0JnmOgMG51hpDOsdIaZzrDTGYY6w1JnmOoMW51hrDOsdYa5zrDXGQY7w2JnmOwMm51htDOsdobZzrDbGYY7w3JnmO4M251hvDOsd4b5zrDfGQY8w4JnmPAMG55hxDOseIYZz+hnU/4ZlX9W5Z9Z+WdX/hmW/25ZXsazLf+My+PcpGfY9AyjnmHVM8x6hl3PMOwZlj3DtGfY9gzjnmHdM8x7hn3PMPAZFj7DxGfY+Awjn2HlM8x8hp3PMPQZlj7D1GfY+gxjn2HtM8x9hr3PMPgZFj/D5GfY/Ayjn2H1M8x+ht3PMPwZlj/D9GfY/gzjn2H9M8x/hv3PMAAaFkDDBGjYAA0joGEFNMyAhh3QMAQalkDDFGjYAg1joGENNMyBBitcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLDCBStcsMIFK1ywwgUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLC5Z6nUXPP06i552nU3PM0au55GjX3PHWee546zz1Pneeep85zz1PnubeMLWPLCBkhI2SEjJARMkJGyAgZISNlpIyUkTJSRspIGSkjZaSMklEySkbJKBklo2SUjJJRMlpGy2gZLaNltIyW0TJaRsu4ZFwyLhmXjEvGJeOSccm4ZFwybhm3jFvGLeOWccu4Zdwybhm3jCPjyDgyjowj48g4Mo6MI2OeOs+Yp84z5qnzjHnqPGOeOs+Yp84z5qnzjHnqPGOeOs+Yp84zXjKWjCVjyVgylowlY8nAeeA8cB44D5wHzgPngfPAeeA8cB44D5wHzgPngfPAeeA8cB44D5wHzgPngfPAeeA8cB44D5wHzgPngfPAeeA8cB44D5wHzgPngfPAeeA8cB44D5wHzgPngfPAeeA8cB44D5wHzgPngfPAeeA8cB44D5wHzgPnXy24/XlaTvvLV5CfVrj36SPj61RO7XQ53U5nTp+cf53ebde0jZq2UdM2atpGTduoaRs1baOmbdS0jZq2UdM2atpGTduoaRs1baOmbdS0jZq2UdM2atpGTduoaRs1baOmbdS0jZq2UdM2atpGTduoaRs1baOmbdS0jZq2UdM2atpGTduoaRs1baOmbdS0jZq2UdM2atpGTduoaRs1baOmbdS0jZq2UdM2atpGTduoaRs1baOmbdS0jZq2UdM2atpGTduoaRs1baOmbdS0jZq2UdM2atpGTduoaRs1baOmbdS0jZq2UdM2atpGTduoaRs1baOmbdS0jZq2UdM2atpGTduoaRs1baOmbdS0jZq2UdM2atpGTduoaRs1baOmbdS0jZq2UdM2atpGTduoaRs1baOmbdS0jZq2UdM2atpGTduoaRs1baOmbdS0jZq2UdM2atpGTduoaRs1baOmbdS0jZq2UdM2atpGTduoaRs1baOmbdS0jZq2UdM2atpGTduoaRs1baOmbdS0jZq2UdM2atpGTduoaRs1baOmbdS0jZq2UdM2atpGTduoaRs1baOmbdS0jZq2UdM2atpGTduoaRs1baOmbdS0jZq2UdM2atpGTduoaRs1baOmbdS0jZq2UdM2atpGTduoaRs1baOmbdS0jZq2UdM2atpGTduoaRs1baOmbdS0jZq2UdM2atpGTduoaRs1baOmbdS0jZq2UdM2atpGTduoaRs1baOmbdS0jZq2UdM2atpGTduoaRs1baOmbdS0jZq2UdM2atpGTduoaRs1baOmbdS0jZq2UdM2atpGTduoaRs1baOmbdS0jZq2UdM2atpGTduoaRs1baOmbdS0jZq2UdM2atpGTduoaRs1baOmbdS0jZq2UdM2atpGTduo2ThvnDfOG+eN88Z547xx3jhvnDfOG+eN88Z547xx3jhvnDfOG+eN88Z547xx3jhvnDfOG+eN88Z547xx3jhvnDfOG+eN88Z547xx3jhvnDfOG+eN88Z547xx3jhvnDfOG+eN88Z547xx3jhvnDfOG+eN88Z54/zC+YXzC+cXzi+cXzi/cH7h/ML5hfML5xfOL5xfOL9wfuH8wvmF8wvnF84vnF84v3B+4fzC+YXzC+cXzi+cXzi/cH7h/MI5K1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLCJStcssIlK1yywiUrXLLC5Wcf7uNJ7/zsw71P5dROl9P99UR4nnnqPM88dZ5nnjrPM0+d55mnzvPMU+d55qnz/OzDvU+Xk4yWccm4ZFwyLhmXjEvGJeOSccm4ZNwybhm3jFvGLeOWccu4ZdwybhlHxpFxZBwZR8aRcWQcGUfGeWfUa+wS9Rq7RL3GLlGvsUvUa+wS9Rq7RL3GLlGvsUvUa+wS9XrJWDKWjCVjyVgylowlY8lYMpaMLWPL2DK2jP1+79ZnH+59kvHB+YeloD77cO/TmdMH5x/Ogfrsw71P2ymc0qmc2ulyur98BfXZh/s6fdol1ufpg7yvUzilUzm107vFUFpwpQVXWnClBVdacKUFV1pwpQVXWnClBVdacKUFV1pwpQVXWnClBVdacKUFV1pwpQVXWnClBVdacKUFV1pwpQVXWnClBVdacKUFV1pwpQVXWnClBVdacKUFV1pwpQVXWnClBVdacKUFV1pwpQVXWnClBVdacKUFV1pwpQVXWnClBVdacKUFV1pwpQVXWnClBVdacKUFV1pwpQVXWnClBVdacKUFV1pwpQVXWnClBVdacKUFV1pwpQVXWnClBVdacKUFV1pwpQVXWnClBVdacKUFV1pwpQVXWnClBVdacKUFV1pwpQVXWnClBVdacKUFV1pwpQVXWnClBVdacKUFV1pwpQVXWnClBVdacKUFV1pwpQVXWnClBVdacKUFV1pwpQVXWnClBVdacKUFV1pwpQVXWnClBVdacKUFV1pwpQVXWnClBVdacKUFV1pwpQVXWnClBVdacKUFV1pwpQVXWnClBVdacKUFV1pwpQVXWnClBVdacKUFV1pwpQVXWnClBVdacKUFV1pwpQVXWnClBVdacKUFV1pwpQVXWnClBVdacKUFV1pwZRu1bKOWbdSyjVq2Ucs2atlGLduoZRu1bKOWbdSyjVq2Ucs2atlGLduoZRu1bKOWbdSyjVq2Ucs2atlGLduoZRu1bKOWbdSyjVq2Ucs2atlGLduoZRu1bKOWbdSyjVq2Ucs2atlGLduoZRu1bKOWbdSyjVq2Ucs2atlGLduoZRu1bKOWbdSyjVq2Ucs2atlGLduoZRu1bKOWbdSyjVq2Ucs2atlGLduoZRu1bKOWbdSyjVq2Ucs2atlGLduoZRu1bKOWbdSyjVq2Ucs2atlGLduoZRu1bKOWbdSyjVq2Ucs2atlGLduoZRu1bKOWbdSyjVq2Ucs2atlGLduoZRu1bKOWbdSyjVq2Ucs2atlGLduoZRu1bKOWbdSyjVq2Ucs2atlGLduoZRu1bKOWbdSyjVq2Ucs2atlGLduoZRu1bKOWbdSyjVq2Ucs2atlGLduoZRu1bKOWbdSyjVq2Ucs2atlGLduoZRu1bKOWbdSyjVq2Ucs2atlGLduoZRu1bKOWbdSyjVq2Ucs2atlGLduoZRu1bKOWbdSyjVq2Ucs2atlGLduoZRu1bKOWbdSyjVq2Ucs2atlGLduoZRu1bKOWbdSyjVqscMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClescMUKV6xwxQpXrHDFClf3PI1a9zyNWvc8jVr3PI1a9zyNWvc8dV73PHVe9zx1Xvc8dV73PHVe9y3jlnHLuGXcMo6MI+PIODKOjCPjyDgyjox56rzOPHVeZ546rzNPndeZp87rzFPndeap8zrz1Hmdeeq8zjx1XuclY8lYMpaMJWPJWDKWjCVjyVgytowtY8vYMraMLWPL2DK2jC0jZISMkBEyQkbICBkhI2SEjJSRMlJGykgZKSNlpIyUkTJKRskoGSWjZJSMklEySkbJaBkto2W0jJbRMlpGy2gZLeOSccm4ZFwyLhk4Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD/Deb+G834N5/0azvs1nPdrOO/XcN6v4bxfw3m/hvN+vWQsGUvGkrFkLBlLxpKxZCwZS8aWsWVsGVvGlrFlbBlbxpaxZYSMkBEyQkbICBkhI2R8tuD25+nM6bMFl5+n5fSR8XUKp3Qqp3a6nG6nd9u1baO2bdS2jdq2Uds2attGbduobRu1baO2bdS2jdq2Uds2attGbduobRu1baO2bdS2jdq2Uds2attGbduobRu1baO2bdS2jdq2Uds2attGbduobRu1baO2bdS2jdq2Uds2attGbduobRu1baO2bdS2jdq2Uds2attGbduobRu1baO2bdS2jdq2Uds2attGbduobRu1baO2bdS2jdq2Uds2attGbduobRu1baO2bdS2jdq2Uds2attGbduobRu1baO2bdS2jdq2Uds2attGbduobRu1baO2bdS2jdq2Uds2attGbduobRu1baO2bdS2jdq2Uds2attGbduobRu1baO2bdS2jdq2Uds2attGbduobRu1baO2bdS2jdq2Uds2attGbduobRu1baO2bdS2jdq2Uds2attGbduobRu1baO2bdS2jdq2Uds2attGbduobRu1baO2bdS2jdq2Uds2attGbduobRu1baO2bdS2jdq2Uds2attGbduobRu1baO2bdS2jdq2Uds2attGbduobRu1baO2bdS2jdq2Uds2attGbduobRu1baO2bdS2jdq2Uds2attGbduobRu1baO2bdS2jdq2Uds2attGbduobRu1baO2bdS2jdq2Uds2attGbduobRu1baO2bdS2jdq2Uds2attGbduobRu1baO2bdS2jdq2Uds2attGbduobRu1baO2bdS2jdq2Uds2attGbduobRu1baO2bdS2jdq2Uds2attGbduobRu1baO2bdS2jdq2Uds2attGbduobRu1baO2bdS2jdq2Uds2attGbduobRu1baO2bdS2jdq2Uds2attGbduobRu1baO2bdS2jdq2Uds2am+cb5xvnG+cb5wHzgPngfPAeeA8cB44D5wHzgPngfPAeeA8cB44D5wHzgPngfPAeeA8cB44D5wHzgPngfPAeeA8cB44D5wHzgPngfPAeeA8cB44D5wHzgPngfPAeeA8cB44D5wHzgPngfPAeeA8cB44D5wHzgPngfPAeeA8cB44D5wHzgPngfPAeeA8cB44D5wHzgPngfPAeeA8cB44D5wHzgPngfPAeeA8cB44D5wHzgPngXNWuGaFa1a4ZoVrVrhmhWtWuGaFa1a4ZoVrVrhmhWtWuGaFa1a4ZoVrVrhmhWtWuGaFa1a4ZoVrVrhmhWtWuGaFa1a4ZoVrVrhmhWtWuGaFa1a4ZoVrVrhmhWtWuGaFa1a4ZoVrVrhmhWtWuGaFa1a4ZoVrVrhmhWtWuGaFa1a4ZoVrVrhmhWtWuGaFa1a4ZoVrVrhmhWtWuGaFa1a4ZoVrVrhmhWtWuGaFa1a4ZoVrVrhmhWtWuGaFa1a4ZoVrVrhmhWtWuGaFa1a4ZoVrVrhmhWtWuGaFa1a4ZoVrVrhmhWtWuGaFa1a4ZoVrVrhmhWtWuGaFa1a4ZoVrVrhmhWtWuGaFa1a4ZoVrVrhmhWtWuGaFa1a4ZoVrVrhmhWtWuGaFa1a4ZoVrVrhmhWtWuGaFa1a4ZoVrVrhmhWtWuGaFa1a4ZoVrVrhmhWtWuGaFa1a4ZoVrVrhmhWtWuGaFa1a4ZoVrVrhmhWtWuGaFa1a4ZoVrVrhmhWtWuGaFa1a4ZoVrVrhmhWtWuGaFa1a4ZoVrVrhmhWtWuGaFa1a4ZoVrVrhmhWtWuGaFa1a4ZoVrVrhmhWtWuGaFa1a4ZoVrVrhmhWtWuGaFa1a4ZoVrVrhmhWtWuGaFa1a4ZoVrVrhmhWtWuGaFa1a4ZoVrVrhmhWtWuGaFa1a4ZoVrVrhmhWtWuGaFa1a4ZoVrVrhmhWtWuGaFa1a4ZoVrVrhmhWtWuGaFa1a4ZoXrzz7cx5Pe/dmHe5/CKZ3Kqb+eCO+ep86756nz7nnqvHueOu+ep86756nz7nnqvD/7cO9TOcnYMraMLSNkhIyQETJCRsgIGSEjZISMlJEyUkbKSBkpI2WkjJSRMkpGySgZJaNklIySUTJKRsloGS2jZbSMltEyWkbLaBkt45JxybhkXDIuGZeMS8Yl45Jxybhl3DJu793be/fLLvHnX/3yf3/9x9/++p9/95v//OUf/vvbP/7bf/3+X/702z/8/v2Pf/r//mP+m3/+429/97vf/vs//ccf//Avv/nX//rjb/7pd3/4l4//7pfXx398QPN/Vv9qr3/89j9e/tVev9r98a+2f5XrV/ntX/35z//45/8f",
|
|
1882
1882
|
"verification_key": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOQAAAAAAAAAAAAAAAAAAAATUiD6rF1GoioxneipVJZiT0AAAAAAAAAAAAAAAAAAAAAAAQLXRmUujJfGSnn5WBmMAAAAAAAAAAAAAAAAAAAACZfY0YvPFUftV5jEK/gLhFPAAAAAAAAAAAAAAAAAAAAAAAaVSpWwiDrYHjB7aXizBwAAAAAAAAAAAAAAAAAAABPLVEmuUMaMf8tbORvEWWW4AAAAAAAAAAAAAAAAAAAAAAAEnOk8m2ucOrlalBbChTSAAAAAAAAAAAAAAAAAAAAdabd4Av+nZ8EAEU83H+H8ucAAAAAAAAAAAAAAAAAAAAAABI6LJ6X+H8TujewDg7TWAAAAAAAAAAAAAAAAAAAAB7PxjTUJGm32XVytGUni9PpAAAAAAAAAAAAAAAAAAAAAAAo51PZQLEovXKAkNS2dWkAAAAAAAAAAAAAAAAAAAAn2P8pYQH9CRw9lTxV3vnPUQAAAAAAAAAAAAAAAAAAAAAAB/y0N3JG0IBiPyIgsiYcAAAAAAAAAAAAAAAAAAAAr3clChMN6L6EYBvtx+2E9zoAAAAAAAAAAAAAAAAAAAAAACKHzM1DiQ7mWU9FlYVklQAAAAAAAAAAAAAAAAAAAGA7hp6XmZnFnGLLKZfvaDpuAAAAAAAAAAAAAAAAAAAAAAAd2Nb7NA0IHuW5oSbhhu8AAAAAAAAAAAAAAAAAAAClToxMv/ogrljQgcOWBWrZlgAAAAAAAAAAAAAAAAAAAAAAE8TN0ZqWHJsdO4T8T0JcAAAAAAAAAAAAAAAAAAAAx2IHIgwknMFr/yrYJdUhRTMAAAAAAAAAAAAAAAAAAAAAAAmo+zlguwLyT5CdlaPlHQAAAAAAAAAAAAAAAAAAABXKzefMl8+Oo0YfeX1z0JvdAAAAAAAAAAAAAAAAAAAAAAAnZI9Cwnk0X41sL5LDzVAAAAAAAAAAAAAAAAAAAABwwQhwemUvkQC5t1EeFh1iXgAAAAAAAAAAAAAAAAAAAAAAFtfGaeFSpSHcMnasTEzoAAAAAAAAAAAAAAAAAAAAJzF9LwqADNbKcfUoT8KtTa8AAAAAAAAAAAAAAAAAAAAAAA518y3hD5iLVkztpJIXywAAAAAAAAAAAAAAAAAAAB5J8PjTkTM7ZuCKjl4o1N0dAAAAAAAAAAAAAAAAAAAAAAAGAYYZQRXqMgE23QeNvXEAAAAAAAAAAAAAAAAAAACDqQDTFOp4DIDArZuFIzoM8wAAAAAAAAAAAAAAAAAAAAAACWWBWtbJb0b3DJB/sUm/AAAAAAAAAAAAAAAAAAAAzddxH9m3Wxos0sgmUx2zSUoAAAAAAAAAAAAAAAAAAAAAACslai25UE7q+UTCKPoK+AAAAAAAAAAAAAAAAAAAAHM1aKnqJyJ+N9Jj3r7o/xhWAAAAAAAAAAAAAAAAAAAAAAAfkdHgtJC4yI5oeoLuXjMAAAAAAAAAAAAAAAAAAAAxAS0ZCrxv0U0x/h8lRV6mEgAAAAAAAAAAAAAAAAAAAAAAHcYuSfB9m6v8yRm0osl3AAAAAAAAAAAAAAAAAAAAPFVFOO73n+NuQ/x5iC+ITrwAAAAAAAAAAAAAAAAAAAAAABf4eQU4+WLhHW7IX34NcwAAAAAAAAAAAAAAAAAAALpOBlbrAgGbjNDJntSA/FkzAAAAAAAAAAAAAAAAAAAAAAAlEgajx5Dh/zvV9joj3BoAAAAAAAAAAAAAAAAAAACv9QEDS+OBfwK23MZtDdpwYAAAAAAAAAAAAAAAAAAAAAAAIB79wawABJOXvTqwzZBfAAAAAAAAAAAAAAAAAAAAmn03XbBnCX34MCqiiKuTXGoAAAAAAAAAAAAAAAAAAAAAAC+IxtPvPZef5V0EDr8XlgAAAAAAAAAAAAAAAAAAAKdo9T3kRhOWwNKjuXi72wjcAAAAAAAAAAAAAAAAAAAAAAAZD5IPKu+/E4bP2TYXun0AAAAAAAAAAAAAAAAAAAApHyIIzQc5hcCEpp8jFyMoDwAAAAAAAAAAAAAAAAAAAAAAHztzZaX8XyVz+XYZgQ8OAAAAAAAAAAAAAAAAAAAAsGUfagzDvBIIJEvQo543RaMAAAAAAAAAAAAAAAAAAAAAAAZZnuDBdXVAL3rhWyysCgAAAAAAAAAAAAAAAAAAAD46YaUYIWJw5yVmhaf6o/emAAAAAAAAAAAAAAAAAAAAAAAISgfz+gAWpI/Sez7EksgAAAAAAAAAAAAAAAAAAADzH6ZzemaOpbklKPIiggQK0AAAAAAAAAAAAAAAAAAAAAAALNgqnyQ1J0Bm6eTiguFhAAAAAAAAAAAAAAAAAAAAw+4K8nhp3pVV8i7t+kZrIE8AAAAAAAAAAAAAAAAAAAAAAB3Q0dkdIVGMUkAEcYzGPQAAAAAAAAAAAAAAAAAAANhrcfME7GI5AweLR0R+PYyTAAAAAAAAAAAAAAAAAAAAAAAef+WV4vZlHwa3nUrH+UUAAAAAAAAAAAAAAAAAAACQ4fDOGz3mM79CYedNEet82QAAAAAAAAAAAAAAAAAAAAAAGSlogqaBQ/18FDUy5CwNAAAAAAAAAAAAAAAAAAAAhLIW5lrmDyFuvNhQB2Z0r08AAAAAAAAAAAAAAAAAAAAAACOG3B5CN5z+d9TonjtW3gAAAAAAAAAAAAAAAAAAADtXKZLdHuv9YcVhnEZ/M6wJAAAAAAAAAAAAAAAAAAAAAAAg1Z8e/1SUSsJKEBb6UjwAAAAAAAAAAAAAAAAAAADwjRth7LTfioA5OblpawqcaAAAAAAAAAAAAAAAAAAAAAAAGSqWue7akIUYNAFWvfwVAAAAAAAAAAAAAAAAAAAA2Xm3HyG+pUbRnnjxrDFOIs0AAAAAAAAAAAAAAAAAAAAAACeONkKnQjj9f2/shkxggwAAAAAAAAAAAAAAAAAAAE/K3n3As5ptnsXdPIWfNiDeAAAAAAAAAAAAAAAAAAAAAAADGUH7x1WNJu+OAE2D8GYAAAAAAAAAAAAAAAAAAAA5BVPfFvW1BT6+NU8dtbeh4gAAAAAAAAAAAAAAAAAAAAAAFENmlQfcfMM1WqCG1DeoAAAAAAAAAAAAAAAAAAAAzVxVqB8NLAHHJRvYeXjw+DAAAAAAAAAAAAAAAAAAAAAAACGaY6AJfMdysRQYb07WEQAAAAAAAAAAAAAAAAAAAFlkhroEL9k3hvdCdluMelMmAAAAAAAAAAAAAAAAAAAAAAAvKg6VnXHkKYJTRXX6gygAAAAAAAAAAAAAAAAAAADTno5N4NeKRvWZT6OiA7gQoAAAAAAAAAAAAAAAAAAAAAAAH0HEuBWQD3sSxoOnAfocAAAAAAAAAAAAAAAAAAAAoTxfmNROYw6SlDhE2yV1MpsAAAAAAAAAAAAAAAAAAAAAAC/i7S9P9B9QwnBJq/8yxwAAAAAAAAAAAAAAAAAAABy03T+xVpSkU/biY4Gums09AAAAAAAAAAAAAAAAAAAAAAADwFQHAIclbgXy8yERsGoAAAAAAAAAAAAAAAAAAADn4bL1s4d63fM+B89hNoZTHQAAAAAAAAAAAAAAAAAAAAAAGodS/AK1n0yt5FhD7aTXAAAAAAAAAAAAAAAAAAAAVDiFkkDSZch5/N4a/FUy+78AAAAAAAAAAAAAAAAAAAAAACRcJWsHz1p0Eg/HLRDvBAAAAAAAAAAAAAAAAAAAAD1E17e+Y9+CiE0CZgExFc0uAAAAAAAAAAAAAAAAAAAAAAAMNHrg1LZPbpg/rWYYrpIAAAAAAAAAAAAAAAAAAAAjrVAtQee2NudKp5zgZi+MLAAAAAAAAAAAAAAAAAAAAAAALymiDk423gX4RDqjbomuAAAAAAAAAAAAAAAAAAAAD0fs0vCdFkH0jRlwUOOm8FMAAAAAAAAAAAAAAAAAAAAAAAt9f9Ie59EOTPQlXNJBuwAAAAAAAAAAAAAAAAAAAJW12Le0pjsF32UrDRDvFG0mAAAAAAAAAAAAAAAAAAAAAAAJnjvVoKAKt/4YBAEFubMAAAAAAAAAAAAAAAAAAAAhKa86Y39aYioyRA+GDR4qfwAAAAAAAAAAAAAAAAAAAAAAABW40lFdduLM7Jnc0ZRZAAAAAAAAAAAAAAAAAAAAIiuIgQjcJdGqRQ4LS8ISw34AAAAAAAAAAAAAAAAAAAAAABuRdReSC609i8AclZUJKgAAAAAAAAAAAAAAAAAAAEghQcfr5CAAodWMy3Q4H20ZAAAAAAAAAAAAAAAAAAAAAAAwXomSsUju2yLm6ZIHeoQAAAAAAAAAAAAAAAAAAAA47Y2iN1GGtRjHNFxgsRNLLQAAAAAAAAAAAAAAAAAAAAAABh9kSXmW6JFXIlAenjZ5AAAAAAAAAAAAAAAAAAAAKtPXy1l5LhHA0mkfMX/VDm4AAAAAAAAAAAAAAAAAAAAAABuE04M5Mh9AXrr2ovgwhAAAAAAAAAAAAAAAAAAAACjt0afkbIQNnJQ/30VSHGTOAAAAAAAAAAAAAAAAAAAAAAAEPQY7Ewrfs3NCr0XQFVoAAAAAAAAAAAAAAAAAAACTMJUq50xXPRaG2ctKAHM4VAAAAAAAAAAAAAAAAAAAAAAAJhUixAiTMGRq/5ZzYZSUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABiCnpVZLxDte4B38lz2I/emwAAAAAAAAAAAAAAAAAAAAAALVp9rujKzsbPYdmbQNNPAAAAAAAAAAAAAAAAAAAAMqcLEj2vbnKoJlsvyPJB+sAAAAAAAAAAAAAAAAAAAAAAAAE6WkTujFYKcUEqUKqh4gAAAAAAAAAAAAAAAAAAAGvMegX/lalrKJQkxfczZw2WAAAAAAAAAAAAAAAAAAAAAAAAxDcm91tv2g3iLODg36sAAAAAAAAAAAAAAAAAAAAdCgnXF47JO614WPluZPC0jQAAAAAAAAAAAAAAAAAAAAAAL5tuC04sAZaN5cMkgqp9AAAAAAAAAAAAAAAAAAAAFLmaKhz1vbFNGPy31tW7G0MAAAAAAAAAAAAAAAAAAAAAABibwBFKqYLGRXSxHbsAPgAAAAAAAAAAAAAAAAAAAIFYESpGMQpiuEn23VYsLIaUAAAAAAAAAAAAAAAAAAAAAAASkF6WwsjbCGXWk491oyQ="
|
|
1883
1883
|
},
|
|
1884
1884
|
{
|
|
@@ -2130,7 +2130,7 @@
|
|
|
2130
2130
|
}
|
|
2131
2131
|
},
|
|
2132
2132
|
"bytecode": "H4sIAAAAAAAA/+29CZRdR3UuXKfvVatvd6tvt2QNllrWbU0eZBOGZ0IC4WFsY9mxjWdjm4CFJDxKrdGSJdlgEzLwAoSYkIGfhEwvLBLgQcgj85+fhGQRfhb5IQsIj0ACyR9IHDBjsvJIeBScrf766+/UPefcfaWL3bWWdE+f2vXtXbt27RpPVRa+E9r5774Dszt3Hzz44j3f+m/HHbtv/NarLI9q5r9L89/4firMD0bbCaVCVoF2fqIKPLLQfx5Dof88GqH/PJqh/zyWhP7zGA7957E09J/HSOg/j1boP4/R0H8eY6H/PMZD/3ksC/3nMRH6z6Md+s9jMlTnUYfPVDg1fJaXp/029nPEuyr8VoT+l9EZof88Vob+81gV+s9jdeg/jzWh/zzODP3nsTb0n8e60H8e06H/PNaH/vM4K/Sfx4bQfx6d0H8eM6H/PDaG/vPYFPrPY3PoP48tof88tob+8zg79J/HOaH/PM4N/edxXug/j22h/zzOD/3ncUHoP48nhf7z+J7Qfx5PDv3n8ZTQfx5PDf3n8bTQfx7/JfSfx4Wh/zyeHvrP43tD/3k8I/Sfx/eF/vP4/tB/Hs8M/efxrNB/Hj8Q+s/j2aH/PP5r6D+P54T+87go9J/Hc0P/eVwc+s/jktB/HpeG/vN4Xug/j8tC/3lsD/3ncXnoP48rQv95/GDoP48rQ/95XBX6z+Pq0H8ezw/953FN6D+Pa0P/eVwXqvOow+f6cGr43BBODZ8bQw0+NxHDuKEhbjiIGwLign1cUI8L3nFBOi4YxwXduOAaF0TjgmVcUIwLfnFBLi6WxYWsuLgUF3/i4kxcPImLG3HxIS4OxMn7OLkeJ7/j5HScPLbJ3Zlv/YuTl3FyMU7+xcm5OHkWJ7fi5FOcHIqTN3FyJU5+xMmJOHkQB/dx8B0Hx3HwGgeXcfAXB2dx8BQHN3HwEQcHsfMeO9ex8xs7p7HzGDt3z/nWv9g5ip2X2LmIjX9snGPjGRu32PjExiE67+hco/OLzik6j1i5Y+WLlSMabzSsWOg3huJghVuw/+aD67/zeiSPHoJkFfaDZCPErlr6l//1CANWSh++nT6mGamX/iZL36qX/tvmG8MrID3KYriN/Pf1kPb1xNNoPgo0HyUak7eevsMreszv1HiYn0fDCCDbaD3s5ZgnCw16h/it0FPZZxnhGT/On9WNcaAxfhnFNYWcFrcE4kz/0fWdB3RctiMUZ7LE8HqKa0DcT+e/ViYoVwUdvaFHe3lOH+3lou9Ge2lSnIe9IAbbi2HE8FGKG4a4j1HcUoj7OPC+EJ7vy5979EknfXjNNujbXQLmj1gmr4UG/cZgejLdjwh6i2tBHOo+hlF43xBYSymd0f+X/Hci/8WysfRtwX+Y+Cu5lW1mAqsh3hl91M8FILNhXgy0HXv46sGP/fcPvPq3/vQth379194w9YllPzd2/ujLXvnKL677wvTPP/bKX7G0l4AsWShd3sOW/lLF+9nvadx65zv/fXbssle848gn/vrqw8umd7x3w4/92q3ve92Gz7/4Ryzt81Taz/3EG1/WfsdPvbmz7YNfG77stY+++CuXL3nGJz544sw/efgbn3/sEUt7mUr74Vu/8Tfvbj9y7Oirf/f4M85ZseM3H/nYl/7pzz/w9vZX/u5t+z92oaXdDnmu08+6vF76SUt/BaSvsifX0v9gvfQn5b+yXvohS38VvOzYw0O/+pa/uejVH3zyZ78x+qqrdvzw0af9t4/c/C/H1vz6ln+4+23Tvzllaa9WaT9z6OLXHVq95+n/MvKhVz/ll9at//RXf/3d//j1+3c/49F//Nz/nPmKpX2+SLvmqWd/376f/cszPnnOxv/1nD/+zSe9/syvbn7WJ39n+y899u/v/7cwp7NrIM8Vyuxknq+tl75p6a+rl75h6a+Hl510mpNNsaW9oR7vk+lvLM/bwhJLe5NOm71i48Gfab06u+q9D1/w7vHR937+ol987sUf/MAPv2pD+zd/0dLeLNKe96zWY7/2qgdfGf721//5NV8/7w+ec8HUWRdNPemv3vjRdXsP3HbmY5b2BcYoVMrztKW/BdKT7Mlg6W8NC2Uvm/a2erxP1u8XVud9Mu0PVU97so68yMBCJZ2ftJUX10vfsvS310s/aul31Et/0re9pF765ZZ+J6Sv0BZ3LP2ueumfbOl310v/FEv/UkhfZXxi6e+ox/8iS39nvfQXW/q76qW/xNLfXS/98yz9PfXSX2Pp762X/gZLv6de+h2Wfm+99Dst/Wy99Lss/b566Xdb+v310r/U0h+ol/4OS3+wXvo7Lf2heunvsvSH66W/19LfVy/9Hkt/pF76vZb+aL30s5b+/nrp91n6Y/XSH7D0x+ulP2jpT9RLf8jSP1Av/WFL/2C99PdZ+pfVS3/E0r+8Xvr7Lf1D9dIft/QP10v/QBzLxzmJS/JBf1x6WZNHHj501713Hbr/st2HbvzO08Wzew/tPnoI55QiL57ba9Hfo/T3GP3N8132Xs2blQk2h7WM8EKYm6uaID6dUCqszwgvBD3naPgtkqUiv5NzjhPEj/OHc44xri1kaVNcDNzutwWftuCjsPY5Yh1zxNrviHXUEcszj/c5Yh1yxDriiHXAEWunI5an7j3r0PEBxdrjiOVpE56697SvWUcsz7rtaRN7HbE8ffSDjliD2j6+PP+1vgP2NbKCX+PD74xPK/TUz8pS+ZoQ/FL0yxL0kyXxxwA77xdfsvslh++4cvaOQIG7qpcUiDhNdDckRGPcjP7x+2l61xC0GGL2VuXPefaet/vQzjtv2HHHHbt3fSuTBzkFI11c8D5lVNYZb5OknVAqDJUxSsQ/1UYZtbo8f861euXsjl0X79h38PC9u3ErB5opc8kIFd+pMs1AMnw3SnQX09/bRbogsHEb0hS974RSYblZxXIRaXErAHsZxZ0BcViaHBpCfpM5DnuvaM3hMh3Lg+WxguImIe4M4M3l2hZ8TP4hQT9JWGpYZ7rvxq8h0vGwNDV0LlPbLB8hzDU1y4TMffQKZwy6V7D8TdbjtyLVdCGmyWO6nhJxhmX1cLgAy9I2if7v8t820cVwK/GYEvLiO9xq8kmSHXXLdtKLHhHP5MJ3iN8KPdlllio31VXr1ceW0TvKwz6ZdYt+b7gAy9I2if4L+W87LPT7bCfLhbz4Du3k8yQ76pbtpKYeS28zNPxW6Mkus1S5Yf7YTpbX4/ecMnpHeVT7jLrFNnC4AMvSNon+f+e/baKLge1khZAX36GdfJ1kR92yndTU43RZOzH8VujJLrNUuSm/qsrN0ip989RwWX0rrGOOWEcdsfY6Yu1zxDo+oFiHHLGOOGIdcMTa6Yh12BHL0+4HVV8vc8TytNUTjlgHHbE8de+Zxz2OWINqqw85Yu1yxHo4/1VzLNzXwb5A1bEF4pmc+A7xW6GnvlWW0osaG1j+zqjHbyqj9MgPMXkeaKWIMyybXx0uwLK0TaK/OFdom+hi4D7xSiEvvsM+8bNz3AkhL88PVLXH1FwZpmN7rFlel5a1R8NvhZ7sP0vZh9KL5W9lPX6XlClflMd0vUrEGdbq/O/hAixL2yT668keV4FMbI+rhLz4Du3x6my+7KhbtpOaenxuWTsx/FboyS6zVLlh/thOVtXjd1EZvaM8puvVIs6wbDvYcAGWpW0S/e1kJ6tBJraT1UJefId2chv5LZSX56vK+sO2SG90IyJdxx7Sn7r9ao/lebOlX10v/QpLv6Ze+kss/Zn10l8Uy+suKi/8/JbXvGzr4JIwVy9xXdTSNon++NK5dHvIj/D2xBDmyrTmZ81nlvUjhu/16TF/rsn547meMSFLm+JieAjoOK4h3g0lsB52xNrpiHW/I9Y+R6wjjlizjliHHLE883jAEWtQ7WuPI9YxR6wTjlie9uWpr8OOWJ725VmHjjpiedqEp1+1ee9xEcf9gHF4X6FdLr0DCY+O4Ha5Tj9gnPgV6aXaDiTsDbFWEBXfZWF+7jGuQe94B9Kl9HedHUg1d22sNatYKyItbh1gtyhuGuKwNDk0hPwmc9UdSFge6ygOe9LTwJvLVfEx+YcE/TLCGhfpTPfd+D2Ra6IqJ0urdkpxXSzb86/jIZw2tpqIa4hue4FomcDN6B+/X0PvGiHtglKDwDImEwM3Moh1A/FZbGQWG5mTYbGREfL3u5FpiHQ8zcPTPzF07CF9mtDyOMX08VxxE0JenOLBvC3pkr8m0X8vTGl9MucXaW0qMK9pzz187z3X7T504K7d9+1W+/S7VY+r6O+rRToVzCT4Y98YRkJPDqi0wzP8VtDF3AmlwkmHp0Yb6jC0ag6PDYIrsrfDu5r+ruPwan6uXNnh8XGF6PCwNDkoh2cyV3V4WB7s8LCissPDch0TfEz+IUE/TlgpZ9WN32LX4zthsesBYbHrIeTvd9eD0y0JC2uupW0S7dLc+HqssfN2E7OMi232d8Jimw1hsc0W8ve7zVaehNeG+zl1gbyTg6H08ahf7dFr3NSjt7sxetiNeSZtMIb1gOuxtUxF+wssbZPoLxyaS7c1f4553pLH5x7lph333rVrx6Hdl+7df3j34d27rp49tPvgRXt3XXrf7r2HKg/Nnkd/XybSqWBKrbnZYEx1KC2oSjZKcbypA+OwO8NTo/xhHcbhxpwmxWGTt4TicMPpMMXh5r+l8MxBOS7TbUx3bQnHNRrm9IHO1BwBfnDL86XmxGwDFtOw0Rr99w3NyTidT5wqR8AOlA8PCGHOptaT7J1QKpTuHhh+KyxsXOp0D9YTP86fz6f6qBVExXdYGzjuVHQPNtD7TigVOmYVit7iZgCbP9XfCHFYmhxULTOZq3YPsDxmKO4siNsIvLlc1ws+Jr/6VP8swlov0nH3oIhfQ6Tj7l1G73F+cZ3gzfOL14J32LCmWA/rQrEe7G81oGJ9W3wMPdrkzWW9ieG3wsKyr+NNNhA/zl89b4KWglxuIlSjQVoMN4FkSM/nL3LpjYl0HExjTZL5bugY3UYdMczXcpJbWTu+444rpjc6xWeyRz6Tgg/3XWK4heKmEnHqg1v+YCQGXktUG+vVhm3+gH9NAnOtwIxl12rM4cV/W4FOWbq1QFYGW0AeTIt/LyHaGOy8+CbRPgB2NUt2hbWY7eqsLnKn7OqsUMxnskc+k4IPt1YxsO1sEHlVLTKX8wzEse1sFPmyuE0JzM0C89v97cZ8Oi7/GMzjnw3vqwwUy3p8w2+RLHU9/tnEj/PHH26cU4/fjRmlR36IafKYrs8VcYZl90QNF2BZ2ibRvyrPVJvoYuAPN84V8uI7/HDjlUPzZUfdZgW/hsvvuH5h3q18jA/6mxtAntcOzc8L+qlGWOjXrOfJvmozrNT+FPkqTM9lp+pJ3fxvFXmcCAt1wx/2Kfs+O8GnnchPv8qTDzJCP4vl+QtUnudAnPLRL8l/m0S/DMrzl6g8VV1UeuZ2qaqelws+/dYzty/nOvJBLD7ocBthsR+0cjI9nwfpt1G68yEO6XDUtQ3eny94K3zD6GaD7xrSeVM2iLyaRP/l4bl0v13TBs+lOGwrsF1EOVAPWGYvCTpfw4I+la8/gFHnxjXzMS096grLgv2v0f/fgLlljZYT84XtAW+bVPawTeRL6fT80J036nl7Ae/hkLbFJtH/mdAptwuYXtUj/jj4vC6yc/3G9Hw/Jabr1Y8ombvVyQ9VrJP2sSPb7v+COvlhqpMpG0GZeRxRVc+Tgk+/9cxjhPMd+SAWtwtPIizWs5WT6fkCiHsSpfseiEM6bBeeBO+/R/BW+GXbhc8O6bwV2aDxahL9H4MN/v+JcXHKBs+nONQptwvd/OGZRG9yD4d0e9sk+n9JtAuqvqKv5XbB6B9LtAvGF/OVaheULV4g8qV0+iTC2iKwUM/cLiidYv63UP6N/l9LtguWXs1H3EZxOB9xDsV1II77rDMQdy7F4XwEz41sgjj2d5shDm2E5yMmEvnBtUOe78N5uw0Uh4cOdCgOP/afoTict9tIcfiR/iaKWwtxmyGvNm/HC9bj+fse1+3kdqLUvGhW8BtCufYA14d5XXm9Ix/EupT4nOXI56xEfjqCj5UX1pd+rLMafissrLt15slmiB/nr97KCHob1gqi4rsszM89xvVzndX4boQ4pQmeOcc8bSxIh7oI4t2QoJ8hrBmRzmRvJNIjBqbrEEZG74vWIw2jSfRbciXH1uocaq0VL9QHt5gme9GOCZbB6M8FGabXaMxmQb46BZjPaszp4/yGxgwCU+VrI+WLZZghGYz+yZCvjbTWu1GkDwXv4t+41ruxQD5VTixr/LepS364nIz+6Yly2iBkwDq5vYsMTLOxQIbvFzII73bx7L77c+8WKPB3j7xOy5rnddsNAqcomDaiFZpFql0GHZFuA/3dEjLFnNt4/ORnpPfuPrS7IO/suUcLeA4FHbg/auliGAk9tWml29BO/twK2vI6oVTI2MsZP84f75ebEbK0RRyWL9tRik8sU+sD52V6/aHZA0VFWrZxzYRYnD4QVibexWBFXXOZ72w1pW7B4nC6lbtwOEXK3UgccqNT48D5xvxE57JtzRwu07GsqFMenqF58hCsA3E8zEJT2kZx6PDPpzgcul1AcTh0exLF4ZKZTcNYZwnLmc/XVFsW1FJtW6TfmuCzukc+qwWfPi6Vl3Zfp2upXNUrS9sWcbyBzYakfwMdqztoyN+Hq1+fXlavp/vq1ykhi7qf5W6g47iGeDeUwDrqiPWAI9YRR6xZR6ydjlieefQsR8887nXE8szjfY5Y9ztiHXbE2ueIdcIR65AjlqdNeNZHzzrkaROe+jrgiHXcEctT9/sdsTx1f8wRy1Nfnr5wjyOWp74G1Rd66svT5zwR+kyeNuHZbnvq/mWOWJ5276n7g45Ynrr3zKOnn/DsA3jq6yFHrIfzX5tjwnkI3najxvwTCT6YfqIEVupKdJVHNY/jeHLkyc/siW57gWiZwM3oH7+/kN41BC1i49ECqZ3XPX758dSM8ELQ00qG3yJZKvI7Oa2kvjRRO9LVlyaWVu3uvhPoOK4h3qV2ih91xLrPEet+R6zDjlj7HLFOOGIdcsTytIkjjlg7HbE8bcJTXwccsTz1td8Ry1NfDzhiedrqrCPWE6EcjzlieerLsx3a44jlqa9BbYc89eXp7z3ty9PneNZHT5vw7DN56v5ljliedu+p+4OOWJ6698yjp58Y1P7XQ45YD+e/6mtXniZJnZag+GD6c0pgqfFwKo99niYxEZ9CdNsLRMsEbkb/+P1T6F23aRLelXNVzqzHnXkLpnoQa4J4xudNYX4+qs7UYfqpBJ8VPfJZIfiMi3SW7x71OIb6QznxHeK3wsI815leUrvklF54ag3TtsPCasgHkFQ9WGERaxHrVGP188CXsn6kLh/ESh0sw/63qt4w/dkFWHhq7+1As5norZ1sCswYboF4pL8/T7A05jH/spl3OseAH3Yfb6ZlxbQoa5Pofxk+7H4wx1R6Zt+4VeSRyw75Kkxu06qW3QohQwoLy4tvG7eyGC6gNzwuux+DsuMPyPGDWWU/ZxfIgPaDh58V2c9P1LCf1zTTsrL9rCTeRv/DYD+vI/tBHafsZyXFof3wQTMYxzvkq/aJMH2q75U6oI/tqOoBfSsFH+t7of1V6AudwzvdMahltdUUh1+QrKE4PGBgLcXh4QDcNuChBR2Kw4MKUB8cGvQ36ija/hTYPtMF4olleC7Fod3zgRb4sTxiYJzJyu+47DH9mgIs/OxT1eUm0f9qfhJ5/Hl7c36+8BBO00mPtva0Mu074rdIlor8MvZXxo/zx/38rUIW9kUx3AV0HJcabiusQ45Yxx2x9jpiHXXEetARa58j1rEBlWvWEWunI9ZDjli7HLEedsTy1NcRRyzP+njCEcvT7j19oWc57nfE8ixHT//lqa/7HbH2OGJ56suzDnn2Jzz1ddgRa9Gvnj6/6qn7lzliedq9p+4POmJ56t4zj55+4oAj1qD2V3c7Yll/1eYecIzOcw9qPLw5wQfTby5IF583AkaZ0yNqbkdvZIRn8uA7xG+RLBX5Jbejq/Kpsh2ddYhxyKfM1oT4XOYgHTX3kbINlUfHLQMm4lOJ7poC0YYEbkb/+P1T6V3RlgHDtmqEU0+bCBPVmFKtWj5am+Czskc+K0vyWdEjnxUl+azukc/qknzO6pHPWYIPn3saAy6NPGOJ5olLIzhday6ySfQHYSr2mUvm5xGXFyYo//ghFZ95ivc2sevF818ruMLSB/cYfisstMk6rncV8eP8oVsqf3Yn1wDUCqLiuyws9BoZSIbveJF7gtLVObtzNcQpTfDZnZin1QXpUBdBvBsS9KsIa5VIZ7I3EukRA9OxxWT0vujsTsNoEv1Vea1SZ3cqXqgP3rxmsg+HubLbnpDB6K8FGfhMyFWQRuWLa/Nq+htt64UF/F8KXubGJZp/EPw5f+jVhgvkXUUyGP0toAM+53ONSB8K3nHLsIbi1iRo+W5UdW8l2iKfCbq2S965/I3+9kT5rxAypG7cZRmYZlmBDLuEDL2dCcpejkuJS2KFwCkKpo0otFkva4drB/Oxv5UF9HomKOd9haDDwOe2W7oYrG2u2VaWbpsNvxW05XVCqZCx9zR+nD8eFq0SsrRFXFEt7canxzNBixpt5Sw4faC0mXgXg7oTfnGoUczniTDUYCw1hIjhpfkvO/ZXgmPnq0TWghwK8zqSQc0CqJ1JRq9mrjaLPJoucZZiawneqEtuCM+pKKuaXcGZKN6FiPKdW1HWa06xrGuFrKd6hxjv5sIdYnxFCe4Q61Ac7hCboTjcITZNcWqHmMV9D8Tx9S9PhritFPcUiOOpgadC3CqKexrE4ZnBHLgNwfKK9fnRtXO4TIfPRb4I6/p2knGNyBtObYwANvLphFLhbEs/VC/9Syx9o176Cyyf3G2NwbCXwPsKdWMn6sSC6nIZfotkqcjvZJdrCfHj/HGXa1jI0qa4GO4AOo5riHdDCaydjlj3O2LtccQ65oh1whHrkCOWp74OO2J52tcRR6yjjlieNrHPCcvSe8l13BHL0yb2OmJ52sR9jlieftWzbnvZagyD6lc9bcLTf3nWIU+b8NTXAUcsT33NOmJ52qqnXIvt9unTl2d/1dNHe/YBHnDE8vRfg2oTnn5iUNshzzGMZx5f7oi16FcfH/7LqxyzsHDObVD0Nag+Z1D7hfsdsTzro2db61mOg9hfzcLCOexBsS9Pv3rQEcvTTwzqPJOnXJ66H1Q/4dknH0Q/EYOnL/Rstx8cULk8x7We5ehZHz3HMJ7zvp5YnjbBdSjL/8Z10lvg+TaIR3o7tUitY1dYu901DmkCYCB2zXXoXRnhhTC/rxEIf7yAXwwtEdcsIctvP+eH7vlU52tnZZTeZOF3ZcYmak3bdLWUZO+EUuEl48AjEG+Lw/X5JRSHejEZ4u95JN9wTfnK6A/x24L+VqCrUhZTYb4toL2rLwu3UhzuTZoiGbrtZdpI9KbP4QJ6w2sS/atyxeAG8wmiic8rCvihfPgutSfxvAIsdUJaDDsKZP9JkJ338G0T8qntr0Z/vqDH/VYmj9LN+UHzxvxged5O+TH6N4j8qPpnNjUCOBZXoe6MRT4fXzfHh/WG9aebjmJgnV4g6FFXppM20aN++etd5GlxWHf4EGi15xBti/d3Yb3Ck/teU+IEx0Gq128pWa83FfBD+VL1GtNXrdcvLpD97RXr9SYh3yDV63eXrNdmU4v1unu9VqeQlq3XeKIrn/b6JIgzXNx/nh+EeLKMjf5PEjb7PULWlH6fLOhxLy6fmol7eJ9McZiOT1zEPbxs608RekC5Xpr/Non+A6CHR8EGLS+B5OrR1i9Sto4n3rOt46ftDUHPZfE0QY97mE0nbaLncsG/EQt1ynv1TUfDgh7xmkT/UeH7TT70b08h2c+vKPtZQnZ1CijWqc/mCjYbRF+8lXien+DJadHPDBfQG16T6P9W6Cvl81FP44Rp9J9N+APlP7fAO7ZBpfsLRL6UTp9EcSi72YKqn0bXY/18rqqfmH+un6m8xsC6Ub4VbdfKvx0W+kNub7BuXEB8VL+jrP2jDX1oSOMuKcB9Sf7L9vW1hH2peqMuUSnbnnN7g/Z1AcVhOj5hGnXK3wapdhfl2pH/crv7HyXbGyd7Xq7sGW2W7TllnzFUbftNJ+2wsD1gf6hsFnXK7Y3paDhoP2N4TaIfySd2VHuD46QnkeznVpS9Tn17F7U3qcuHzk3w5LToL4ram6Kx2XKhr4x4qDGGam+MfiVgsj9QY7pUe6N0f57Il9LpNopD2fEbMsNmzB7r5wpVPzH/XD9TeY2h6niS2xv0h3yqFdYNHjt3+/YxZf9oQ79A7c1WwkUstIuUPWK9Gcuf2R7PSdhjqp7FwDpX9ot2lZp/4TEPyp6yR6Pr0R5vUvaI+Wd7TOU1hqp11cqzHRbaasoeuX3eKvigD2F7RDvaCnl9bZ4Bm/eveVr9OuOzTkRaHH43PUpx64H+UorDujQOzxwa9DfmJ5b7NprrCQLLeOI5CfyNburYKnWbBh+bEZ/5W2I8i6BDcXisxAzF4Tf/GykOv43dRHFYTpb/kbCwnCrYQOkjPAy/RbJU5Hfye1J1SiDmz+poteO1+GQD1Aqi4rssLLTMDCTDd6NEdxX9XeV4LSu5s+h9J5QKG8wqNohIi+sANn9FPgNxWJocVA01mWMNvaI1h8t0LA+WR4fi1kPcDPDmcp0WfEz+IUG/nrCmRTrTfTd+DZGOva9KF/9uiTRl7j5ZT/idUCqUPrPU8L3uPllP/Dh/VgdVS2Fp2yJuFJ4xDvmk7jJCrDIH/SiZezzoZ5T+ni4QY0ikD5SWq+pQAZbhsIPtdroXm3nR6V73iIGYqkYoz7h4x2Zfs4Ep3aAZfissNIk6Zr+O+HH+2OyVG2qLuKLDerrxcTTVGK4qEEO1lIGwMvEO45SpYmtSxlSxj1lkqvcn5lhGRPrY1/54Np/3BqBrUFola4dkZZoRktXoXwayTpOsaKrcJ+3MibKgSs2Q7EibCKWrlOG3SJa6VWqG+HH+6vURsaRZK4iK71JW3K3mXEx/1+kjbqL3nVAqbDar2Cwi1ShzhOJwpN+BZw6qj2gyV+0jYnlsoThcgd4KvLlcZwSfTv48JOg3EtaMSGe678avIdKNEEZG73FmaIPg3ST6nwHvsIEaXeTFYwPlIVYKOVnfFh9Czzb5grLexPBbYWHZ1/Emm4gf56+eN0FLQS43E6rRIC2Gm0EypOcuY4f+XiXScTCNNUnm/5FbUbS+X8qfJ8JC622T3B3ATvnltkhvdIrPZI98JgUfs+QWpLuF4sbCwrxaHHqsGygOu2K3Utw6kS/u+inM9QnMs0RcLLsLR+bTzQBdVvAbQ0O8Y53OCFmt7NAD8JmlqrZtSvDB9Dzvhel6zY+SWfWd8Mj93186lyb+U7cRdwDX5vf4NuILWnPp/ojqG+5xNhmVnrkuVtVzW/Dpt565Tm1x5INYNwB9/Kf2t6GerZxS6xq89s902CPAuf/UzS1MG+O72eCHluq8Fdmg8eIb1ZeDDX64pg1uoTjsQc6E+XKm1jywDDhfwwX0Rfn668TYbkakV7Lz/vwtCdljSO3P555rP2weeXazn8+Q/eB6krIfvOEZ6f/3yFy6fyD7wR5aP/Kfqtdq32qqXiv/wemwjp5RQoazhcxtkZ7PgcV0vdqGkrmbbXyFbEOtV3cAl/fvGv3fg218nWwD/SfvaUKZuQ9YVc+Tgk+/9cz9u3Md+SAWt29q3Rr1bOWk9uVvo3TnQxzSYfuG695qD4fCL9u+LR3ReSuyQePFe/reDzY4OjI//5g+ZYOpvTm8t6PbtyhnEn3db1Gm8rzU2e/EvtzozwDMMvud1Gg5ZYtV9zuleKOetxfwHg46/0W2si6hU0u/pCA/rFOjPyuhU6WjlE677ZPifTmYZ/4WYaPAQj2X0SnmfyPl3+i3CJ2qfgt/M4R9hxmSRfXDkH4N0as6pvomXMe2JWSfEenV3MJtFIdzC5spDtcseCyG6ytbKQ7nFjoUh0tH3P7hSvI5FKf2XOLcQpPy+oz8fY9rC/P23gTCUvrNCn5DKNee4io872eaceQzk+Cz0ZEPYl2c/6oxG39DWXXeANOnxoZjPfIZE3wYy3xyDNgn4n29Rn8F1OsvrpuPqb5tHYN32xN55fqMWFZmVj/Q9/Vj7c3wWyRLRX5ZyueqG3vVShHvl8S4ojJFPlOCT1W5HG+LNRF5m+T2AtEygZvRP37PW/saghaxT1XVO518lvfIZ7ng0++pzuXEpwPpcLizi4Y7qSnlGHbkvzyl/B4Y7txBw52UK+3A38YvteXC0hdtYyhyvfeC6+X7B8cpz5hPlhExm4JvDLcUyLCfuio1XaPsqvB1SNils67GCP1dke8mZbMWuOlBGdQC/xjFqQV+ni6Jz7xhEYdv6yhOXQ7On5HEZ96GrT4BwXpnoUF/o26jnV1bYrPBRFhYJjMUh/WHt2mnNmye6p1rvW7YVDvXijY/ll8Yx5rAWkFUfJeFhSWegWT4jgcFY5SuyjYb49vt6nruDGKepgvSsZfid2rL8jrCWifSmeyNRHrEwHRsMRm9L9qOwl7e6F8HXv6cgosAy7Y0JnvZlsbofzrR0qyDNCpfXJt56zba1gsL+L8VWuKfG9H8g+DP+UPPOFwg7zqSwejfJCYwGkTD8qh3qANMW/Q30vL2OrX1CW1xA9Gf1SXvXP5G/6slehooQ2rTJsvANCMFMrxFyNDbTcfs5biUuCTGBU5RMG1EizXrZe1w7WA+9reygF5vOm4V8BwKOowXyBZCz5/KlW6bDb8VtOV1QqmQsfc0fpw/HoarD1PaIq6olnbj0+Ou8qJGWzkLTh8obSbexRDN+a5sPp2a5enAu6KhPDaEiPGS/LdJ9L+fmP1XOyGwYSmzyo3ddR56YDefV7fUDEwfv9iVJzxgfpYAbvx3DsSlVnmNvtuqWyd/Vqck8OwUDo15xrwDcThE31VxtZJXzI3+/03Yy/mhOI8xVD2BpJM/n84TSF6a//IJJH8FejgFJ5BctHgCycITSD6dWP3yPIGkI2RX9Q3r1FKa2qq6Io+45xC9Wi1E+qIV+c/3YUX+0QFbkT9NJ5A893SfQNLJn/txAkkH3qXsH23oK7SbCtvzGeJ5doInp0U+RfZveGyr1plT9q92F6KeVhHmyW95AHNLQZ3CfKXsv1sfIdVH4rqBsuPqv2EzZo/2f6myf8w/238qrzFUPQ2mkz+rU922Uhz6X/atqs/bgXcp+0cb+kzF3c+8A9/oV1a0L7WyWNa+Ovlz1R1mmyhO9V25HFU7EwOPU4x+Pegh1d8yuXq059N+ohSfpqv6tyn/mdp9pvynai8XnO4k/GfqRGhV38rI3hGyq/qGdepDiS8DZojnlgRPTov1uqi94d1ZRv/URHujlk9RT9zeGP2FCX+gfFeqvek2XuevJlAv3Bah7KnxutH1WD/PUPUT88/1M5XXGFg3qfG9am/QH26mOKwb3JcpO8/TbXxvX3z1ptejf52BLIat5rSa9Gs0l+f2icuU9lvmhpRPvO9rH333FU/dw0vXMVgZxd1pMbuXtOZoDD+APFmYP/XKi2ENkk2ly0gGph8S9IY7LuKaBXkwmfDMGJZhVOQP3/E2D0w/WoBVtDPN3jWJ/gXgf3hn2piQL6V/lGmM4nCelfWg+Kh5SaUH3k6A6aycbeq95lT4FNo8yonvEL8VFua5ztT7OPEr0ovlr+YBMpMZpUd+iMnbOiZEnGHZzrfhAixL2yT6u3N75K9yY+AbfiaEvPjO9BPrxO7WfNnVEk2ZckbcdliYd7ZHXG/A7Vez5OvGIK4h0l6e/zaJfnTNXLoD5HvQZ3P5sG3arwXuY1r6ogVJ9i9GfwT8Cy+KqjbpcsAcK5ChKfjGcEuBDCdyGXqsJ3L7lWGNhIVtELf9qVBm6bCe3NmXyvovw/daOux2qhL7r4la/LLHyvgDlMd03RZxhmVf1A0XYFnaJtG/ivxXm/KEPCwO5cV36L9eSf5LHVxW13+lfHw//GQMfJID6hb9VrdyVXwwvdH1aGMn07drpQ8bLP1kPf6Pcd8zBmxPfpbakymIU31gPvHZ6D+8ei7dG6k9QX9sNjMRim1IbUkt8ukhpH2E2ro9XoBV1AfmU9mM/lcSfWDlw1JfZ4wLflkBf+VjLc9FWEG8M3rsf/OpPW2iXSZoRwSvTigVpgyLv/JRPrbHurTc6sJyEWlxeBLCFMWdAfTPBzoOPE5GmaOtfJnmLYPAYn+NsjGmsrkXEq3lWZVjm2jxFEHW160FMhgufgFzY/7bJNw/gZM8fpf6WPjpQ5V5Wi4/DFx+rDsOqvxMrlh+nek5XKZjnqhnPtUAfTKf7IRtEZbHB0+TvtQ8jIXToS/+WrWbvizO8jsk0vFnD3xyRieUCi+29Cvrpd9v6VfVS3/U6pvpa3/uqKM+PkL6wL4i118eN+PaFKePgcdRRv8xaCfvAVvg9GYPI5S+om0/OyO8EPS4xfBbJEtFfhnrx/hx/njL4xohS5viYrgX6DiuId4NJbAOOmLtc8Ta6YjlmcdDjlhHHLFOOGJ56v4hR6zFcqyG9bAjlqdNzDpiHXXE8vRfxx2xPHXvaaueuh9U/+Vpq572dZ8jlmc5etqXZx3ytK9jjlh7HLE88ziofTnPPHr2Jwa1HAexLxefVzlhxTCo/RzPPuZif+LxUYc8/YSnXF72FZ9XOmHF8IAjlqfuPfsA++AZ9WdzcLgGwevFRrs3n9Prca7sIp6LMgzEPrMmdkZ4Ieh5OMMfF/xMrpaIK7OPcO+/7njajuFj788ovcnC73iPmfqMWc3p9XiEyg+oPbJ4dE0MOO96JsXhPleTIc63nkfy1fyM/AfK6A/x24L+h4CuSlm0BZ+WI9ZUTaypsNAXWj1U+y14jUetq8Vy/NLofDq0N66bNddCn1K2bhq+1xy52ruSmiNfLWRpU1wMPEeu5uJXCz4K66Aj1j5HrJ2OWHsdsQ47Yu1xxDrkiHWfI5anTcw6YcXnM5ywYjjuKNdKJ6wYjjlinXDE8qzbDzliefpCz/p4xBHLsxwfdsTytAlP3XvV7eCcR0+bOOqINah+wlOuJ0KfabFNO32696yP+x2xvPIYn1c5YXnKFcNDTljeeXwYnrMwNz5U82g2xufvxr5A82hYLyuMb/8Lj1cNA7HX1MTOCC8EPVY3/NT+spaIKzOPduc3Ltr33us+sj6j9CYLv+N5NDWnkppHqzlP9WQ1j8ZzZTiPtobicB7NZFDzaDXnRJ9cRn+Ir+aPeR6tl7n7liPWVE0sm0dT7aOaR+O9v8tFfnAejfef/xvsh/1KYq6taE92DHzDbTsRNyUwv302GHwQgv5qOP99PsTx/v2VIp39je/Q1jEN1oV5GGNz8v3H6Hxc/K4E84nyqX3cWLeGxorplifosFxSe7/5xhqcH+Xv+LqVy0RYaF/8HRLO4TbEO64vYyK/aj6Y2w5syyr4m3bZtsPwW2FhnuvM864gfkV66bHdncgoPfJTdUTNK/PtqeajhguwLG2T6Ffnhav6KkV76VFe1e+J9rg8xx0pkLcTSoVLe/wu4QVqrbFC+qt77AdN8HcNm8FXrac6i/0Pvo4FfUmqL9IW6Xl9Ar+X4/ZiXMig2jP8HvNXxufTYb8pK/i1fPC71JqX+aH4a33y/Fjky3Yfuv7OHQd277p+984Duw81SAI+KYOPoMcrAIqCScmHho/Q33zqcpv+nhI43XiOF2CH0POq2kxZb8urajUvWEmuqmH+2NtO1ePXySg98kNMk8d0PS3iDEtdGYBYlpavDLiQvO005Ql5qOsx8B162yeTJ0F5ubes9N4WuG2RnnXEth1Dj+XVKGuPht8KPdl/lrIPpRdlH5ZWlSvrv2y5prBS/qCM/hSfU1zOM4Nezpa/6Xr8OmXKG+UxXa8XcYalrutQV4fwVRnXkt9ZT3lCHuuFvPgO/c6V1MtDeSNdJ5QKI0rXFdI/fSQszFeF9N9r6fEirCpl3e3EipvH5nCxv6FOrIjhmvyXr715/uq5dLeSz8dRWhk/0dspIeVPCjN8r36DOiEl1W+o6S8my7SXKA+P0Fm38Z/1O4cLsHjG1+jvpPrLPhd5pPo5MWD93Uk21O+TaR5vfMZFOq5fNe1vSdn6xf3ymvU52S9XelH2zrvdMI71X9ZOvxux+t0/OwX2V9q/ny7767H/OVmmvFEe0/VaEcftetG40NJyu/4a8u+8koQ81O5udYFk9O8/nhgXcttUdVyoTojr1g96ZEzzLNsPMvoh6Ae9oUQ/KJXH1AlXakyUspsxIbvS/RTFefqjVkk+ZfKT4nM685OqC1gG1yXkWktY67pgXUtY6gpQZYMsc9UTgDF96qThtT3yWVuSz6nKz5kUh1+psO9SZbcuIQOm5wuV+dJH9Wt8+B3zUTJ385G/Rz5yAuKUj7w8/20S/WOr5tL9YcJHcv5TfYmaXwqV7kvwZcu99iWUXaT6EjXnek72JbrN9bCu1TWxhmXXsJad6zH6D/RprufPaHX7VNWTCUc+iHUD8Smqjx+h+jgNcWXqo9F/HOrjR0vUR6WbsUR+8DRpjkv55VRdWZugV7au2nG2dcOIweodXjncD79i+K2g60QnlAon/UqH+BXVG3Ep70W7Dz7lqc+45FvLlPfvO8Q6NdxJZAryM32gvzldlK1JNBOCRwxsP+uIjsvd3jN+GZm60XaLV/VmPdFW7Zdg+rECrKLTdq18+MT6z+UP6rRdVT/RhrYn8jpB6SYKZI/xIwXvO6FUGDF5rW6PluBbpDM8Rb9IZ4/1oDMec9XVGedhJOjxfGq+kb8QR9/I/q/ezszsb8v6P8NviTzU8X9qZ6zy/b3tjM0+nVF65IeYrOt1Io7913ABlqXl9nso3+Wi2mXuV5Udj3x7xyL1q/q1e8bKp7d5s+zT3fpLI+NzuKjbotPZi9Y83gf9pbEcs0w94/ZG/YZQTn/YHvGYU43L1NiW60xTYMbAJ9Ea/Rl53nvcZS5v9MDTGrhc0H+vojJNjUlVmRr9e6BMz0yUKfcDsExT47iUf2on6JV/UWuKqbFPb2PI8r7c8FtB+6FOKMfQ8q7GgMpXVe3LGu6nIUPz/CnRB/qb06m+7GQBj6K6x3a1lt5368sqmYpoq/ZlcZ6T5wLQFlP2qdomPiG8Zj+ww3W/EfS8BOv+5Jx9KNdv5P0BjM/z1ni7h9LNDRCP9Bfk/if2M/fmDFRZLC+QL4RyZaG+9Oj3+iDv3B1z5INYplu1lyT+64RS4e/UWmWF9G9WN85USH+uupmgQvrfUf34Cun/p2rbK6R/SO1/qpD+h9Q8TIX054wQfcX0T7P0M/XSf87Sb6yXfrul31Qv/e9a+s310r/O0m+pl/5rln5rvfSPWPqz66V/zNKfUy99Zunx5vMqbZOlP79e+obJuw1fCpkM3/zquUBfxa8irxZhVZQ9S8mO8rEf3wb8MI9FWNsqYo2IuDplcl4ozhfijydkYTlj2AV0veQ5hlknrPi82gkrhmOOck04YcWw21GutiPWpCPWciesGO5xlGuFI9aZjlhrBxRrpSPWekesDY5YHUesGUesjU5YMbzcUa5NTlgx3O8o12YnrBjudJTLq+2Iz1scsbY6Yp3tiNUYUCzr308IbJ6zagg+jQSf1HpKA3DUnJB9t8PzEDF0QpmQdd0H8vM0B57au4oy897VO2AO/E00B47pbT5H6Xosf1ZfdPNJE/hFN89j8y3bJtevJOTim2irfpmu5GlSPtrL5mR5C61/ZMS/E0qF88ucTIw6rjBWOR9lstCgd4jvdTKxqmNK95b3JUKWNsXFcDfQcVxDvBtKYB11xHrAEeuII9asI9ZOR6xDjlie+nrQEWuPI9ZhRyxP3Q+qfd3niLXPEev4gGJ52uoBRyxP3Xva135HrGOOWJ5tmmcd8tT9CSes+LzKCcs7jw85Yu1yxHrYCcvSe8k1qH0TT1/o2c/x9BOe/mtQ+4VWjuNhvu0GeO5xrDaE9QHlxHeI3woL65HXWA1lqDNWi8+8Z0nxUWPCjNJ3k2sszM1h5Pu/Ltn9ksN3XDl7R6DAR5tdUiDiNqLbXiBaJnAz+sfvt9E7lTXEjio9c9Ucn/jepiOW59MRPZqe3IJpWGqah6daqk6pjQs+jIXbptQBf5Zn/oy3E0qFyy39aL3036+2rVVIf1WPW5Ou73Fr0mU9bk26ssznAzUPPr26rCs0fK/PB9QBtKlPx1YJWdoijm10leCzSvBpi7gjjlgPOmLtccQ67Ih1yBFr1hFrpyPWfY5Y+xyxjg8olqetHnDE8tK9atcGxVY96+MJR6xBrY8POGJ51qFB1f1BRyxPP+HZ1nr6aE/de+prUO3Ls2/iWY6eun8i+ImHnLDi85gj1gpHrIkBxIrhDke52o5Ynro/Y0DlWumEFcM9jlieNrHaCSuGuxzl8ipHb7k8bXUQfWEM9zpiedlqDF7l6C3XIOrL21YnHbE8fbSn/3rYEcuz/7XfEctzTsGzT+45Vph1xOL+vc1d47oWrt/wESBG///R+lPNi8eu4fl0w0DsmpdEXpMRXgh6LYGPa0F+JldLxJW58PPzrWf9xT//1hs/lFF6k4Xf8VKoOgYkdaxRzaM3rlIXfuJRLDGgjfBloLj8azKoCz9rHhVzVRn9IX5b0L8Q6KqUhcLaXhPLLulU/fLTtd66BJ7xCDlbe20S/cfyCHUcmjpKeRzebU/kdYrSqSslYuA1xhg6QYdvUjA80/lSwQt9ItJ+CvK9f3q+rLzeac/NgvwsJzkZo0g3vN6Ped/80d9b+q9vfW3zXR9/bPbI18575C8ue/Uf/cazfuqDFzz75dd/9g1fuIrzPpSQXeVrZUG+GgX5KqObCYHNNp+6lNLyEYOyeb4AF9NxO7OK5OyEUmGibDvDbUnNNjNL9QOUXnpsR5eV9b0mj7qWAHWLbcRwSPtxvpbg63kdbBNdDHw5aJVrCb60bL7sqj9SppwRNzUH02O/aVm3T8O+sWwOF3Vrvh7Tohx81NuNq+bSfTPHVJ9gcflyu4PtSQzcflp6swem4bbI6Jv55GT0ydNr5mMuE3lO+ZlVwIP5xnBLgQytXIYeL2aVe7HWBJ2nZljYJ4/hivzX045boSf/eNJfqYvM1biF6bF/ch3QcPmdKehvSNCrIzGxPnFfRR3JyVjIe3uC9/ouvPnYWHXMOmMh72sSvDd04c1XVOAVdJa2x+OZruvxeKabejye6fl8mf3X80mcqMP1E/MxbWxTVOd+MP81fQ2DTOwXhyFdQ7xLtR3DIAfKdfXUnOybKsp+ZQHmSyfmMLeSf8soT51QKtxo6Yfqpb/HfBrvuUXZeItyJ5QKazBPFlQfzvBbJEtdn6i2pmP+eN/hsJClLeK4jKraHcYdccJSZT8IcsVw1BHrZY5Ynnnc6Yh1nyPWcUesA45Ynvo64Yj1ckes+x2x9jlieer+kCPWrCOWZx4fcsTa5Yj1cP5b5vMpbBsqtKWlP5/i8UxWj9/JtnuI+HH+uO1eImRRn0/xPK3io/oIGaXvJpfj51MGuZrotheIlgncjP7x+9X0TmUNsfHzKS4CpDPzGybsTigV1pc1P8NvBV3knVAqZKlqqb5qtLwvFbK0KS4G3tqzVPBZKvgorGOOWEcdsfY6Yu1zxDo+oFiHHLGOOGIdcMTa6Yh1vyOWZx3yLMcHHbH2OGKdcMTyrNue9uUpl2c5esrl6Sc8bcKzHO9zxPL09+ZXT9WUZtU+TSqPaknBsatrIk4T3Q0J0Rg3o3/8fpreFXV1LbDa4zPvnmB1srpVUfc6WzckeI2LdJYv64ovJdk7oVR4ZUZ4Jie+Q/xWWJjnOl1xZYZKL+qQS0vbFnH89fgywWeZ4NMWcUccsR50xNrjiHXYEeuQI9asI9ZOR6z7HbGOOWJ56n5QbfWEI9Y+RyxP+/KUy7McPeXy9KueNuFZjvc5Ynnq/viAYnn6iQOOWF66j8+jTlgxeNrqoPYnPLEW+wCLfYB++tXFPsBiH2CxD7DYB+iG5amvQbXVBxyxPPU1qH7ioCOWZx0a1LZjUPu+g2pfnv1oz3L01P0TwU885Ih1jxNWfN7giOU1fx+fO05YMdzhiHWvE1Z8XuGIdcaAytUZULlWO2HF4GkTnuU45og14YjVdsTy0lcMdzrKNeOINai2ulgfT08eB9W+FtuhRbtXct3tKJdnH9OzHCedsGK4y1Euz3bbs2576WuQ6+PDjlg7HbH2O2J5rlt5zk94zpvMOmLZXAef9PKXeae4xz2BP2p77lrwMgvzsUdrYmeEF/L0+A7xxwU/k6sl4sqcMHfeHz3wy8/cdOfzM0pvsvC7IcCP/8YEvdq7aLpC31BBVz+sTpjDS8NjwK/pRykO962aDOqEubGa8pXRH+K3BT2fMFe2LBTW9ppYdsIc9gus7pyqPb6nik8KS506Z/Smj2FBj3hNov9E7pPi3xvXzOenPq8L4t0Q0cdwff47LuLYV2G5VrDvZllfxf6opt89uTe6Rfw4f1auKd+o6gef9tVLXesHVh/bnSVV251W6Ml2spReMH9clmNCljbFxcD6V23SmODz3YKF9T/1/UOZclV80B8uJT5LHfmgL2gRn5YjH8S6gfiMOvJBLDvdjfsRMXRCqfDMHvtIq9SpbRYsDsdjbFN4WhzbAZ6uyGWHJ5txXxVPOkN75tCgv1EPUZZD03O4TGdhQvAp019N1cEhIb/lDWXG0xMnJzVPPEkQ7Qv7r0j/dDiZa8VkcR6L9tI2hewx8EmERr8m56FuGK1gh/IkQsPqsZ89UDZe1o4tr5Hfb9S0Y+4bLxP5sLgJkQ/l63ksgv55GcVh2z9BcegHbwM6xIxBje35lMThRL5QvqESfFKfqw4JPn3sPy8r08Yg/qnuP/fYpxzPwkJbUONfrldjIo792HBIj6XZj31/7sc8+2TRB184OV/2fvRZsHx6nLsa79ZOPYfaqVGIU+2UycG3iW+GdupiaqcwPZcv1yVsC2MomsMYBlx1SirLtz2XSZ3yq/K8NCEz2lwIC22e21ajv4raVj7huBPKBdW2GhbXKaTrkW/pU7IMvxUW1u86/muc+BXVz/jOTibNP9G/cnbHrot37Dt4+N7dQwgdFvaYUCuIiu+yMD/3GNegd0x3Gf29XaQLAjvG99gbq9xj4h489piq9uBN5lijrmjN4TIdy4PlsZrisOezBnhzuSo+Jv+QoF9GWOMinem+G7+GSMct64hI17GHD9/6jb95d/uRY0df/bvHn3HOih2/+cjHvvRPf/6Bt7e/8ndv2/+xp7PMQchctGpg8erXZOd3PDMz7og1IbBMN214X8HmV5T1VobfCj3VsZPeqk38OH+c90khS1vEsQ+aFHwmBR+FtcQJK4ZbF7EWsRaxFrFOAxbPPqCvtThsp67Jf21kkjozVZ2rviQhH6Y3ujKHhtZsb0rfGWT4XoeGThC/Ir302H4vS7WniGnyqPaUd2rZyGm4AMvSNon+l2k2wcOuo87eRLMJqh9UppwRtx0W5t3K51TbPY6hcNbhrZOaZ9HdQjzrYPQrYdbhbZPzZVazDqFAB2hDIeg8jYAMIVSvrzEPH183xwfzZXkwXJZZzUrYPURq9qhBcWgLPNNZVEa/Q2XUgDhVRnz/k9H/5+Rcut+nmSFMX+aeQsWPbWi4gL5B8hn9H8PMkO3IUPKNFvBTM2UxvKSA358Cvy05P2V36EcNB/PSCaXCCmV3WJ/Z7tQseuoAxW52yraIdsq7cIYEFuqUZwMt/XDQ9d7wmkT/IVHmZew8Bi5Xo/9wyXJ18ieyXFFXXK5qhxPSl1lNUbux1MpRk7CaAgt1yuXarS4bHtetv0mUK7a7DSEXl6vR/23JcrXnfpQr6orLVbXXSF9m1xximtxqtXCE4tAnMh/lv1HfZcpc3SnNZf6oKHPu+7Nf6Na+hDB/Vtl2w+ezytcfmj2wO59WDhRS08DxeVmBGMtF+pDAwjQp94kT5UV3KQwHPV3J7tPovyJUnnK/MShTtvzYUKFmlSm9MGH4raC7B51QKmRl3RpP9aWqWapLfhpMNYbLCsTIRPrQBcv+xis1ytxWnfJuSlXWuyhqOfA2O6Rv5CMJ1XKUXT83ejVCxl6P0av8T1Acphst4IMtGuqLWzSjH4W8plo0492PFg11xC1a2Rl0o1cjbhzV8y13k5QPjFMzSWWroblXdnWYVo2sVH4bPeSX7Qv1O0lxRTMpIcy3BaPrxygY88O2oG6DV7MpRq9uD8f1cu61YhPKdoLlzysx3XpdKVvAkeNbC/ZfIG5qBKT2FaIN86jc6M8RPsAwl3XJWxl/h90ck0ftaWN/p75LVfZodD3a47LT7ZvY/6Cd8d48tf+OR36ob9zfo/TLslb9Bg/T435TlP2ZYGdfXDefX7c9sUW2++xTaLsmT8p2F/dszwXUQ9k922wPhlvk+5TNoy1N0qx6H2773ZwRnsmM7xB/kG/7jeEeoOO4hng3lMA65ojleavuXkesfY5YnrfXemJ53nrqeQvxoN7Q63kT7h5HLM/66HkLsad9eerrsCOWp30N6m3lnjYxqDdAe9Ztz/roWYcedMTyrI9PBPu6zxHLsw/A1/hhf5mv8au6cwTTl1nVSt1YrfLY52v8TMRNRHdDQjTGzegfv99E7xqCFoMVEw4zWFVq1UKpVg3zixZ2cQiPQ71r898+3p79uozwQtBDMcMf5Nuzs7Dwc6NBuQF1UG/rPeyI5Xm78awj1k5HrMWbpU+frT4Rbpb29DlHHbGeCLr3vA3aM4+eN0t7YnnW7QOOWF66j8+jTlgxeNrqoPYBPLEGtd321L1nH8DTR3v2JwbVVhfb7dPXpi32yathLfbJT599LfYLT599DWK/MAZPfQ2qrT7giOWpL0+f46n7g45YnnXIs+0YVB89qG2aZx49+76e5eip+yeCn3jIEeseR6w7nLDi8wYnrBjudZTLc33IU1+TjlhnOGKtdsSaccKKwdMmVjhieek+Bq+67VkfPetQfO44YcXgVR9jeLzbV3wec8SacMRqO2J51sc7HeWaccTy8tExDKrdD2oeH+9trbdci32T7/62I4a7HeXy7E946surTx7DXY5yeba1nvXRcwwzqG3Hw45YOx2x9jtiea5bec4zec5/zTpiFW0Zx/2+uEeYj7g3+k/l39P3eG3BI328+uyRjPBCnh7fIf644NfrlZu/95Zrl33kvc8odWVkDEOAH/+pT2VTh3DW/DT5Jwf8ys2fLKM/xG8Les8rN6+tiVXmys1+7+m3umyfjH82r8tRDvt0/1TLYp+hf24AZFmf//0vAyCLffL/ZSGL8et2RInZqpI9dWAs56vqZz9Dgk8fvw8ZLevvvxu+D4mBDxzupd1fxFrEKsLiIyQMX/0aH37HfNRxFN2uqFqxYi4Npis6ePfF+S8fFPnZFXPpVuXP6gg2lFH5gSzob9y43g8DLtLwFVVGvy6XKZYFX1E1THnGfLKMWJ5Nka8YuP9u9J1chh6vupNXVPHxM2hz7Otr8i19EuTpumKv2hVVbImoFUTFd1mYn3uMa9A7pruU/q5zRVXNnvwGs4oNItLiOoDNhyDNQByWJoeGkB8v56xyRRWWR4ficPQxA7y5XFuCj8k/JOhHCUuNGEz33fg1QnHPg8sV03Xs4dnvadx65zv/fXbssle848gn/vrqw8umd7x3w4/92q3ve92Gz7/4R1nmIGTmcvRobTwvZ+zjhXpTZb3V6bpQT123ZmnbIo6/Dq96oBxirXXEmnbEOssRa8oJK4ZbF7EWsZ7AWGqEUXSAZgwvyn/V7EeD5Ks6c4Ppja7MYYQ1/fpY2XbE8L0OI1Sz0KnDCNV1mm2Ki4HtQ7VX44LPItYi1unCSvUTy9RPxQf9gdWrU+2vcIyJszKvXKF5Fl2bw7MyRv9XMCvzYyvmy4xy4cyp0gGvSqk89XhY9FgcJ1W5SknZFdLfnv+yXWHelS2UvWbtESqjBsSpMro9/+X7Pv4QyugNNHOGs/m8CwbH2il+bEPDgh7x2IbeCDNnqSu8hgv4Fc0kXl7A7xeB3ym4wmtK2R3W514PT0utJnezRb4SCHXM48EhwQf1XeZKIKVfnun9DWEP3Adk2yiST+nN+Uqg0QIxJkX6kMDCNKks4cRkmSuBcHqIVW707xIqTxVZDItXAn3XXQl0aYEYmUgfumDZ392uBOJWJaVipSrzVkWtCq+tG/17hUmX8ZghLPQsqRk3lCd1JZK6gmC4gE/RJXfcohn9+0u2aMa7Hy0a6ohbNDVDoHroRt/tWgeuanwJM8ahjvl6qm7VsOyVQNxTU/bSSOQ3pR9lX1huyyhOjdKVLdi7fvSqMT9sC6myjYF10xb0WN48GsJvd9hOsO7xTX5lL7lUtoA90VcWrHcjLtoCrz8vBSzVm+NrVYz+H4UPMMxWl7yxztW+N/TjvL8Iuxh8XRDKjqtFhs2YPdrjqLJHzD/bYyqvMZTpbfNe1hiUzS2lOLWyV9ZuUtep4B4L23+h6qa14dZdm6J8dEKpMJ0RnsmM7xC/FRbWwTrdNXW9mPIllvflQpY2xcXA372qa8mWCz4K65gj1lFHrL2OWPscsY4PKNYhR6wjjlgHHLF2OmLd74jlWYc8y/FBR6w9jlgnHLE867anfXnWIU+/+kTQ/X2OWJ4++kD+a31P7M/wdReq7zCV4IPpp0pgpcY0Ko99vu7CRFxHdDckRGPcjP7x+3X0riFoMahbLctMHaQ2F6hPlk7V7Zl97GI/lBGeyYnvEH+Qu9hZWDjcGZSmYFCb9MOOWJ5doFlHrMXu5+PDVhe7n9WwFruf1bA8u59PhKkLz7p9wBHLS/fxedQJKwZPWx3UPoAn1mK7vdhuf7e0HYvt9mK7vdhuPz51P6i2+oAjlqe+PH2Op+4POmJ51iHPdntQffSg9ic88+jZ9/UsR0/dPxH8xEOOWF5bPuLzBkcsr3ny+NxxworhDkese52w4vMKR6wzHLFWO2LNOGHF8ETQ/Zgj1oQjVtsRy0tfMdzpKNeMI5ZXHYphUO1+UPP4ePeF3nItth3f/W1HDHc7yuXZl/PU16QTVgx3Ocrl2dZ61kcvfQ1y2/GwI9ZOR6z9jlieazqe8wCe8xOzjlg2p8DHGN+cf5PU4/GPr+DD9wwDsWsesvOKjPBCnh7fIf644GdyqYPcyhwb/4X2je+796v//a0ZpTdZ+N0Q4KM/RHq1F890heOLCrp6ufo8y3irY+P5M0Pcg2kyqGPjJ2rKV0Z/iN8W9HxsfNmyUFjX1cSyY+PV1QQTYWFdYntQn/W1EjIPCT58bPwL87qsjkc/VbLYPuIdAyCLHRv/0tMoSx+v0yh9+Bj7vpo+/uS+4rKfXab8sKqLfDhUL/V6EWsR61Rgpfo9Zeqn4qPaFP5UOAY8cOpHV86lwXRFByzdnv82if65q+bSvSrHVEdj8J499ilZmH+UArezlh6PakcaPqrd6F8LvpyPah+lPGM+WUYsT3WNTgx8VLvRv576zDUPIZZHtfORI+rz9JQfTl2Xo8qvxzxUPjycD1CbgTg+kHojxC2luE0Ql1HcZoibprgtEKfqooUG/Y06irJMnTmHy3SBeGIZdigO28YZiuvDlSznl/FJiD/oV7LwnNWgXF133BFrryPWUUesBx2xPK/6Ozagcs06Yu10xHrIEWuXI9bDjlie+jriiOVZH084Ynnavacv9CxHz2tPPX2Op03c54jlqfs9AyrX/Y5Ynjbh2TfxbLc9y3FQ/ZenfXnWx0H10Z5YnvZ1wBHLdG/jdHVRVEZxyGc4wQfTDxeki884H8XjJqOJoccxfukTffmypKX1+CUvS1LlU/WyJD66tezYtKpcjkfAmIjbiG57gWiZwM3oH7/fRu8aghax1SmRPEVV9YZaTJ+6CXe0Rz6jgk+3M/1XrtI81Zn+WD35jPS1MMW6Bp7tJObR8PjTbRmdxfDS/Jd1tinXTaxmfELqEpBDYfLUs3L7qRvfU9Vd6TJ1arHijbrk+rysoqzdTl9eSrKifBMVZb3mFMu6RMg6EnpqaipPX2cUNwNxayluI8TxNPQmiDuL4nD6mqfE1fS1xW2FOF42OhvixinuHIhjX3guxPH9NOdB3Ag8c1BT6VZe8ffRtXO4TIfPRb4I63rqpGf0PezL1VI/yl20TQT9GC4v8UnPRv+8hB9b1iVvVesPb0dR22vUNgirs2orkdF9t588bnlqEz3qSbVnfPJ4N7tJnfSMS7S8fHumwFV2bvRrAatBGPHZtvs1if6WhD2uEzKkTv6fFvTrgMbkmSAZMO2ESGenKyp7NLoe7XFC2SPmh+1xPcQ1BD3r5ixBvx5ouA+Fd52upTg8zZLbFeR7Jsj+jWXz6SZBnqzg12TldywrYvG2iOWOfBDrFuKD9R377LPk51EnjbCw7pveeWvdf4N++gG6MQXTL6f0J4d/UM8+M12c3nQ5QX8rf47bx/kzOZVPpF9TkM/jIOejUB9CmF9GJleP9a6t6h36Pq53ayGuIei53ql6in7HdNIOC+skf+Kn2hS0SfbJpqPhoMvA8JpE/yNQBqk7tM4k2ccqyl6232RpY1n8fG4ME2FhG7OOeKo2TJVVOxS3FYylxnjsL7EcG0G3h0xvNtEMaf/M7ecjUFb/MK0xQ4EM7QKZhwvo15IMRv8zwl5SfkC1u+wHfh4wbctsWcypAsw3Jfoaqp5i/4Pr9QZBj+Vl8ig73UBxKDu3i+uBP9NOEH+MQztnviEhL7ep3eTl9sbi3g3t1Vvy5xHCq+irG6myOlfIW7as2on8MZala4aF9piqI6iPd6zSmEsqYr5LtOmqr3Ib4L+7oD8SA/dHYmC/jD4D6+Es9UlQ/kmS3+z290R9VG29YfXW1md/q9p6HNeVaeuRnn2CGq+gLaXaGx4PYv3jeTE1Fi3blk5AXleNd88v4u4IOr9FfpjL3ejfn/DDagyX0nlqHKT8MOp8PcUp/6ns0ej6YY+eY75ufo/tEX3dOorD+jxNfLrZTcoecd5ghPp200KeCZGPiZr5NvpO/vdwAb3hNYn+U4l+z4yQIfV53kZBPyNkniAZMC3zxnqJOrmc8mP0f1/SH1u59OMmSNQb239KRzGwTjcJetSV6aRN9Khf5atnKA7tbz3JoPxZ2bphaaMePjI2H7dsG5AJLDUfyb7a6L9asc+csvFu9ZLnhLH+cx8U01nZKFs1un7YKuaHbbUDcaoOsm5mBH0HaNhXo2+Ypji0VePZrS/we2RfyqenyrZs30fdrsO+XY3lUnKtFXK1Rfq1CT4TPfKZEHzGRbqs4Nf48Dvmo2RWfRvOjyqfdSXzs47yw1f1qF/j0y0/SuZuc6qrVs+lKfJtmJbbO6N/8uq5dGfmz2pOlO2mrO3y517rQAfKZ18D+Q+hH33OsOR09zm5X4l9zjJzhmh72HYaTSAZ+6EvrM+sr5QfjKHM+AXrhOlAzQ/zFUlob2uJj9f86yNj3eVXN6GVtQ+eiynbB0Cfa9ghPL76AGwLMxDHfYDUHJbqkyp/yWWM/hXLhdesjP45uU9VfUdlBym76Qh6zBev36JtdChOjStP9ThnUOxmPcWpvmNZu0nNFWIbbe13qp9rz6qskb5RgLOBcNjuRuE9puP+psUFoFd2x2UxXEBveDz2vhnqSmouQWHymHNjFxlmSAajv03IkNJ/DOPiXZb/jhB+xXrTzAjP5MF3iN8K2j46oVTIWH/GT9lBDGovnaVVcwpcn9T8xCbBR2GNOWJh37KH8trE+sCg9hZ2KG4L0F9HcVsh7hbA4NCgvzE/0a4/Nz2Hy3QsK5bXZsBnG5sRaWcE9umqDzP1+CXrA/ukGKrWhw48L9aHhccvDFp96ECcya10FEJpHZWqL1g2FfQ/U7a+GL5XfVG2p+qL5W9zPX6dOGc7Ghb6Kpy7Qd0hn40kQ6/lx3sLEPtUl1/N/QXJ8lP9b8/y6wBGlfJT60E8j9IJC/PTEflRe5GNLtXPK1NOik9HyKzmGHHu700097cR4tQcEc/9Gf3bYO7vzTT3h2OgTpgfh7aF3zhwno2ux7FjQ40dO0DAY8cZTByKy5r1h/To/7jM0E/wXB7OP3WIj5oXKzv/hPsMbh7T8meAe5ZIy3Ub6TcKOYze6hweE4Y0lrZJ9O+CsRQfE6ZsFuXi+RSj/+3EfIrxDSGUWhvdIujRv5g8E2GhnrdQXFGf3rBDWNhnsPxZXJV2QdUJzA/XCewrNQQ96+ZsQY/fNrHd47dNGwmL61cMlwuslKwbepCVyxHL6mzCMlq0S8wP26XR/7mwS1X+pvN+lD+22WXKX40FyuqUxzSox80U14G4TcRH+d6i9Q22FfQhb6L2C4+F5zWoFYInvmN/j+mNzsrf5so+BuXPe3WnQE7l9y8vwPxEwtepPKjjX43+jFCcZ5RHre+dkUiH89UjglfHHr6ZDoZn3+wtFbwMt0m0nwE97Z/WsmQsT5cwHhbqOaN8roT3Vfq8GeGFoPv0ht8KC3VRp0+/kvgV2b3lb1U9fhuwT492hH161B3ysfJS3y5hH/hR6gOrOpb6zsPovwx94C8WYIZQvb+G8vxsaz5uqi6GsLDuqnJDu7Z8qrq7kuIw3TKKwzLhb+ZXQX4agp73Thn9v0PdTH3LZHL1uJ/0S6pdXAUU3C6uhriGoOeyWCPo8doQ00mb6LlciuwLy5r74aaj4aDLgL/5MPoluRDqWyb8lnYVyT5eUXb1HRbXY64bXI/VcdAtgZuR/GiXiLEj/20S/QTohNvWbvsK2Sa6feds8kyEhTrntX5Mh2cEGHYgun6sy2J+uL7gtzlq/ZN1o+xEfU+p9qotozi0R54rwT4angswm0dgvP2WuXJk3R/s/sv/+sl/+iQfEx0gr6M94P/4U5tTr7nlqu39wv/Lpf/81Q/82R0/2S/8vx+55tKh3/6JDf3C/9mvXn3hK9Zs+mI3/GjHl+RM1Hctlq7Hq11KH8Nl+K2wsF7X6bulfMy3Bct/o+2br82Pu7pydseui3fsO3j43t3oxdgTsVYQFd9lYX7uMa5B7zL6e4jSbRfpgsCO8VZyU/S+E0qF5apHaYF7+6gbi8OeE5YmB7XaZDJHK70CrJTpWB4sjxUUh16UR2iqhQlC/iFBP0lYbZHOdN+Nn2oNlxFGqiVXLR635BdDS75hzfx8LqN8o/29kGQcIrkCpWXbXiZwxwv4xtDjpU1TZT2P4beC1ncnlApZqjekTn2p5nm4n2BcJgnVaJAWA1prKKBTJXq5SMfB0o0XYMYwEhZaagUtj5YtVXvXIlnqlmqD+HH+2KJT5/aghdwKdEXWo9qtRaxFrCpY1goY7YHc88fWY3f+PBG0r8HnISHLUEIWTM91BM/55LNxlog8WNxwIm5pIm4kEddKxPHZkhiHY+cbKG5cYMZ8/eWa+XTsi9VvCAv9XAxlxtbY+lgPUo2feQ/AZBesawhLnQlkWFNdsK4jLEzPcynLu2BdS1iYfjlhreiC9SLCUlfp8lmlmK7MvDj2lCu0TaWv0jN8r3nxsvOxlveVQpY2xcXAfk/N464UfBaxFrFOFxaPdg1f/Roffsd80B/wKBbb2nl7nArWO4vWUG/Pf5tE/6/QL3gz9QvU2qJaJ8noWfkLfJfqM/D6Vr/0zO165sgH424gnqsIC/Ucw+35r1pzWkXp1LqK+Xheq0F6xChaZ8RxXZENvnONzlvRWeN83qzRfxJs8N2JvinbIF9tj3EZ5QXplH1imd1O9Cb3sKBHPF53/32xrpRRetQVysV7Hoz+jxLrMsq/pc6fVbao2m6l01WEpc4FxvzwupTSqVp7ZZ2+L7FW1xDp1djjNopTZ3bz2CMLC9dU8DzvSYrDs6anKA7n+pdTHI49uF+F3y9wO8Hr0SHMH3s0SQ8fyd+PBF1fOqFcUNeDFvlW1LXSPZ8HjvbKZ4yrq0x4fIVlpMpsjOJwjXCE4rA8TdejoZzvi+H2/Jd936cT9Vn569Q+iG5r77yHCevwGorDdOwH1hBffFbnLqJcL85/+dzFfwQ9pPZBmFw9ruuO9vtM125nnZhO1De17FuVn0adsm81HQ0LesRrEv2XE74VfTOf6ZpVlL3sHiGsU+9M9E25fV+Z4Mlpkc9wqNZv+UaifVf9cZSL23ej/2bCHyhdptr31N4dlEfpdDXFqX6Bqp9G14+z90/lPiXu02P94XkgrBts/2q+qaz9ow3ZeK/uPoGf/tMLtn/x2n85q84+AZxHtXTWb+Ar1TuhVPh/UH4Lai7L8FskS0V+J+ey1F0ImD/e4zlaj98fZ5Qe+SFmi/iN1ePX4JVVLpv4z/q2wwWycJ/b6LfANeJZmN/XLNqDFAPPv2BcQ7wbOk1YauyCesT9UutyXSj7j/86oVR4Kvf3DQOxa9rCzWXrluG3Qk+2frJuqb2J6m4lZUd8nwmW1x1A12vZnxhQrH2OWPc5Yt3viOWpr0OOWEccsQ44Yu10xPLM49EBlWuvI5ZnffQsx1lHLM86dNwRy7McPW31QUcsT/s65oj1ckcsT7sfVJ/jmceHHLF2OWI97IjlqS/PvomnfQ1qv9DT7ge1L7fHEeuwI9YToS83qHbv2TdZbNOqYQ1qX25QfaFnX87TF3qWo6e+BrX/tdsRa1D7X/sdsTzrtmcd8tSXZzvkWYcGVfee/stzXm5Q54Y87cuz7zuofcxBbDvic8sJKwZrOyYKsPFZrY22EnwyIXND8MH17vH8Ha4VGc5IWKiLCutQpc8+NvwWyVKRX5YqH3UPkuV9mZClLeK4rFLrlMhHYTUdsXjvRVNgqXW/jNIjvdLXWJjbc5l/MXvJ7pccvuPK2TsChSb9fUmBiDcR3XUFojUEbkb/+P1N9K4haBF7IiwsmuECuQPg4TsuJkzfTPDJeuSTCT7jIh1XbTSdClXt3LJV2/BbYWGe61RtZapKL5b3lpClTXEx3At0dVwvxh10xDrkiHXcEWunI9ZeR6yjjlhHHLFOOGIdc8Ta44jlWY6e+vK01VlHLE9b3eeINah+wrM+eup+UG31AUcsT5vwtFVPfd3viOXpoz37AA86Ynm2HZ51aFDt64ngv/rRDllfHo8Wwc9en7d2Ps8lENegtBnwbBL9e9bOpbt87XzeGfC25xHCy0KlMc35GeGFoMdQht8iWSryOzmGGiJ+nD8eQzWELG2Ki+FuoOO4hniXwjrqiPWAI9YRR6xZR6ydjlgPOmLtccQ67Ih1yBFrUMvR01Y966OnXHsdsfY5Yh13xPK0if2OWJ42ccwRy1Nfnv7LU64Tjlie5egp16C2HZ7l6Kl7z7rtmceHHLF2OWI97Ijlqa9Bbbc963Y/2lp1RNEI8VFjn6EEH0zP4yJMl+W/PR6vW/q4dnvXCgvzXIFf8nhdpRdeU8S0bYqLgT/tVXwywScTWCm5HJemTcRtRLe9QLRM4Gb0j99vo3dKFYitTnwaEbwspFTbLkgfw3iCjzJ7m4YZDbr68fJ51eqH6S3uVJ2Sy3pV00kxvDT/5ZPB/jifQsKTQxqCH2KVcS01l+xL78bhJfteXYtask+5lmEhC9tDDD8EdBzXEO9SttVwxHJqCpaYPpaISKUr1iPaFd9EjidsVL2J3N5VvYkcbczkVnWZt8VUrcuYfqgAS518HcNtEI/0j+Z1uccyPU+VKdvLcE3ssvU7dXIb133evtQJ6XDrpSc+8gtv+dR5VeuR0S8V9Gp7j+mq5ukz54wDj0C8LU5tA7M49MEmQ0x/Hsm3tKZ8ZfSH+Mo/cterbFlMBd3OhLB4axF2Nwfz1qIYnkd/L95aNJ+O5cHyeLzeWjQi0nXs4XM/8caXtd/xU2/ubPvg14Yve+2jL/7K5Uue8YkPnjjzTx7+xucfez3LHITMXI7qRqEytToG7sm0HbGmBJbpBu8WqGDzK8t6K8NvhZ7q2Elvpe5hwPxx3lcIWdoijn1Q1fun1T3NHlgNR6ymI9YSJ6wYbl3EWsRaxFrEKollcdjeT1Ectp98n06/Z+v6OFk+XrbdPV2T5Za/umfuZpQe+akJeJ5dUG2m2cZwAZal5Xvnn5ef/dsmuhjYrtWMH74z/cR3F9GZwjy2Ub8hpPt6vEiE5XOq7R7HH7hp8ep1mifOMmPa2/Nfnpl6/7q5dNeumy8zlivOrJgOlJ30OAs1pmZWlgC25aEG9rg6gxrzxf0w9R0ozshYHttEj7pTtrQU8tOD/zojtaIS8/IispEmxLFdYn74bol3gY3syJ9VPcDxXJHfSdUb03/Rue1Nks/oX5rLhOe2K/mWFfBDfSi/yPzuBn5b4C7AELTP6NFuVyq7RX/Idqtm6pT/NHo1a6o+PG2HhXWgzAI52sH2AlmL2hOccUf6w6LMy9o5l6vRHy1Zrk7+SJYr6qpMuarZ7bLlyu0QlmuLsLqtwpUpV5SP+wlG/4pEuao2TrVB3Mb9SMlyNV32o1xRV2XKVfUXypYrr3piufJdqMpHY1mXKVfMD/too39dolzr+uHXD4Afxv4ml6uqM0jP5Zry28oPY5nzees8f4t8qvpo1S6nfLTRv1mUOY8p2S8Uyaf0FvNsY9p8FeX6Q7MHdufLKIFCatkjPk8WiHGGSB8SWJgmlSVcGGKVG6/hoKfnWeVG/+tC5axClqfMELtmlSm9EGf4XkPssvu+1JCXq1lqOFx2KO9oqjE8r0CMTKQPXbDsb9yDhcXNvfpUT4DTxn/mkcv2BIz+PYkWIzUyC2GhR1G3V+NojUf3mIcpisN0ywr4lO2hGP0flWzJ7F0/WjLUEbdkZVeKjF7NTOLqGPdQ1MpKamaybDVP3caEo4SikTLipvadpI6VwXJTo9IlFFc0MxdCX3qr41VHl6oupUaXKdtB3bTDQjtJzcixXKqJRT/BtqDqP86s4e1KiGtpYjCf0wzzm2wLvF/M6D8JMyqfotsR2Zbs3T8n6LKCXyUzymPvWoK+IeiN96igtzg8+QvLCGlQX4jVgnik/ycqE9x/aOnbgj/OToQCuYtONmOshniHdvPZdfPzUHOfbTYa5o++7bfM/rnfuvD871/2gq0v73YrXF38Ze/7nef/3b/t21rn1jl1jFhZey3aoxnDC/PfHmeeh9Seu1A+fVZmb2bN/YbfLKMnxG8F3ffohFLhZDd6hPgV+foebw/8zzj0stt3i2aIUXfIh/ddNkQa9DuMEdNftX5+PmoOP/6zRxv8DzWrgDP6w9NzuJh37G+qYV6T6Mem59K18mf1jYjpC8cGS0W8/W36HhK0+Mx/q1ksHmpZeQ0X5JVXL4x+Ks9f5De9RmOWPerD6M8ATL7VVd0QmeofpW7ZQ3nUia9jlE7N4AbxTpVPRrQoQwwvFDIV/d0SOEUyjAgctRefZ6TVLCjWG+7vqRU4rFPYZvU47VH524uM4jBvNwEdhwb9jTJHjC9TnzEILKUf3uPv0Xbb+yXwnvnyvMcw0XKfH2XspT/M/YslQgb7e2lC/oxw1Ap66kiguvJmQt5+7oiI4eb8t8c2b123VexnlmjzUqvYRv8caPOeXbLNszjut8XwAnjHPp37QYgRA0/3mo8cBnykGaE8Gf2lom1TPsSwYt4vI32OQFyqHWkS/W7Q5xWkT9QXH1vMfjzA36MgC9LG8MICHVwHcjx/upgXjlOL8hgxbpjWdCgD0jFG3XZN9a+47pbpX6m5kpEED/bHRW232cZYl3h1G3YQ74YE/UhBfoPg3eqCq3YpKP/eorhMxLHvwfyWnW9Ev/XMRH3Jwvx8jVK+RhL5ykQ6ruco+9KE7Ep/6D/qziH86Ge++fGfOH7mF/o1R/EDv3jkx8cvfMc7+4X/trEPP/cPf3HkRVXmQKyc1a4ati313WAMt0A80h/Ly6PHOYbA+VF+IzU+47lQlv+6AvkfAf/9INULNT5Rdaao/V1SUhajf4UY16W+9exx7r2p5t7Rr3F/V/lbdRym0XcbW/IORvSvZXYzoE65T2M6Gg4huUuF7eE1UAa8a0D5ZovDvLNfVOsGai7R6likeSvVq5r926WqH2GBv6fHPLI9YB4tbpRkwjgsS57vx6DGkJbXKPNvlPhGX/kHrq9qXiXVX1T1zvAHrd6Z7bfDwnJheytrw0X9OcUP9YBttdlw0Zw81mkcc72dxgjDEKfmtNifGv37wLe/k3w76pjtQfkJliWE9Npsaiw/LtJZufT47f0SLF+UE98hvjoroc5cveqbpubqa/YTmtzGIj9VDpNB61TN5/NYUc33pMZJKX+i6h/XTTWPkNrBn6p/OGdept9UtGekaD7j/VC3Pp3oNxX1jUIot3cm5ftQVqX7UYpTY397HkvwUXKlbulScqFPxrTMu1seyrZVTn3EJaqtwjIp89VK6vYudXMY7o3gOoL7cXjXadm2bZTiVBvfrW37dEEbhflQO5nVlj9s397e4/j2mVtes2bd+/eP92v8uaS57uc677j9yirjT+VXhggX9cDz7TFcn/+WWeeu2XaWPmOM285e17nLtp2qv85tAc6z8JeNag5mRPA5VVhqbMJlWbOfULofxHsWatpOcs+Cat/U+IrHjdj+sP57uZpiELGw/qf6x2XKVfFRffp+r93xmttSRz6IdQPx4Xlr9VuWjzprT63L4vhtav0cLpax+sImhqL5sO9bP5fujPXzaUz2VUAzQ/toMM8V6nJLjcktqLkPtlvVD1T7Ptk+sG8zQnH4uQbuheCg5lOMLvJ78fo5XKazgLosc3Yr7zPNCI/njo1+K5UXr8V3Qrmg5o4N6/FkC3XK+w0lyluVceqMSx7bpMamak5O+coi/4b4yifdRvioj9QamcqzpcW195TvYttH+meBX7qC/KEa0yofbO+7zaOn1rgt7YhIV6EejLE9Y1D2zPVA3fjMvk3VA/z+h30ifjLH4xkMqo6YHqr4xCsK2jXjgWURA4/51Lo7tpeWv7p7iDPANJks7ygXnweK9Ym/66i5p/ak7tTeEuxv8dyb0b9o/XwctQdGjTeMXu2dbwi+6juLsYpYI4S1tAcsnLdg+qU15VJYw4TVEliq3x7L7tq8bE7lOvNu6ivUHBeetnXmB6E9uIv6Vqd6nXlvzn9xnfn0rTPfD2VwOteZf5rq1RN1nblKP3lxnXlhuZzOdeafLmiPuq0z/xz15+quM/8P8O3/F/n2xXXm74TFdebFdeYQqq8zvxvq1l8k+k2L68wLffLiOvMc/XfrOvNfFLRRmI8668zW9v0f+0x0XOKPBAA=",
|
|
2133
|
-
"debug_symbols": "tb3djvW4dW59L33sA5Hzj8ytbASB4ziBgYYdOM4HfAhy73txSuRY79u7WKq1qk/cw3bXHPrjI4ma0vqfX/7tz//63//xL3/567//7b9++af/8z+//Ovf//Lrr3/5j3/59W9/+uM//vK3vz7+1//55Rj/UUr/5Z/kD7+U+vivNv5Zrn/W659y/VOvf9r1T7/+Gdc/2/XPfv5Trnpy1ZOrnlz15KonVz256slVT656ctXTq55e9fSqp1c9verpVU+venrV06ueXvXsqmdXPbvq2VXPrnp21bOrnl317KpnVz2/6vlVz696ftXzq55f9fyq51c9v+r5VS+uenHVi6teXPXiqhdXvbjqxVUvrnpx1WtXvfaoF+Of9fqnXP/U65+PeuUY4BNiwqNkGcdKe9Qs41/ux4QyoU6QCTphVG4DfEJMaBP6CfU4JpQJdYJM0Ak2YVTuA2JCmzAqPzZALceEMuFRuSbIBJ1gE3xCTGgT+gVjCJ1QJszKdVaus/IYRzUG+ISY0Cb0C8ZgOqFMqBNkgk6YlWVWlllZZmWZlXVW1llZZ2WdlXVW1llZZ2WdlXVW1lnZZuUxwurYBWOInSATdIJN8AkxoU3oF4yhdsKs7LOyz8o+K/us7LOyz8o+K/usHLNyzMoxK8esHLNyzMoxK8esHLNyzMptVm6zcpuV26zcZuU2K7dZuc3KbVZus3Kflfus3GflPiv3WbnPyn1W7rNyn5X7VVmOY0KZUCfIBJ1gE3xCTGgTZuUxBqUOKBPqBJmgE2yCT4gJbUK/oM7KdVaus/IYg2IDdIJNuEa31JjQJlyjW+SYUCbUCTJBJ9iEWVlmZZmVxxgUf8AYgyeUCXWCTNAJNsEnxIQ2YVa2Wdlm5TEGZeyCMQZP0Av8ykMZo0mPAQ+Xjk03xs4JMaFN6BeMsXNCmVAnyASdMCvHrByzcszKMSu3WbnNym1WbrNym5XbrNxm5TYrt1m5zcp9Vu6zcp+V+6zcZ+U+K/dZuc/KfVbuV2U9jgllQp0gE3SCTfAJMaFNmJXLrFxm5TIrl1m5zMplVi6zcpmVx9hRG9AvGGPnhDKhTpAJo7IPsAk+ISa0Cf2CMXZOKBPqBJkwK4+xozHAJ4zKbUCb0C8YY+eEMqFOkAnjUqkMsAk+YVwtyYA2oV+QF4hjefIKMaFOkAk6wSaMymOZ8zoxoU3oF+SlYkKZUCfIBJ1gE2blvGIc65WXjAn9grxI1AGjTh/w+CsfazrGl+f/1Sb0C8b4OqFMqBMedXzs9zG+TrAJPiEmtAn9gjG+TigT6oRZeYwvH5tujK8TRuWx8GN8ndAm9BNsjK8TyoRxQXsMkAk6wSb4hJjQJvQLxvg6oUyYlcf4ijJAJ4zKdYBPiAltwqj8WC8b4+uEMqFOkAk6YVSOAT4hJrQJ/YIxvk4oE+oEmaATZuUxvqINiAltwqj8OABsjK8TygSfMP5qbPkxUtpY0zFSmgyoE2SCTrAJPiEmtAn9gjFSTpiVfVb2WXkMkDaWZwyQE2JCm9AvGCepNlZwnKROqBNkgk6wCaPyWNMxiE5oE/oFYxCdUCbUCTJBJ9iEWXkMoj6OsTGITugXjEHUx8E2BtEJdcKjch8bYQyiPlZwDKI+jp8xiE6ICW1CP8HHIDph1OkDdIJN8AkxoV0wjvBy1EF90jjGyyGDxm3aYYN0kS3yRbGoTZL838aSSVvUJ+mxqCyqi2SRLrJFvmg5dDl0OWw5bDlsOSzrxaD82zZo/O24T/Zx1F5UFo2/LWWQLNJFtsgXxaTIemPrRv7t2LqRfzuWJWyRL8q/HVtyHKgX9UntWFQW1UXpGOvWdFE6xlrmrMBJMSlnAcZNtudNfx3rm3f9J+Xf6qDxt3WsUd74n9QW9Ysi7/1rHVQW1UXpkEG6yBb5qhKL2qLlyFmAk8q1naPURbJIF9kiX9SvPRO1Xnsm8rgfeyGqLrJFfm3nqLGoLZr7KORYVBbVa3+EyCK99kKILfJF/dozkeNj7I9QWaTXnokcH7k1dG0/XdtP1/bL8ZF7wdY+srWPcnzkXrC1j2ztI1sOWw5bDlsOW/soj+JxqxR5FJ/UJ+VRPCYYIo/ik+oiWaSLbJEvikVt0XDIWII8sk8qi+oiWaSLhmPcU0Ye7SfForYoHY8jouXRflJZlI4YJIt0UTraIF8Ui9qidDz2fssje9zStTyyT9JFtmjUG3cHbVzGPOZWB416qoP6pEz5k8qidNggWaSLbFE6xnrkca9j+fK4t7EEedzbWII87m38RR73J8kiXWSLfFEsGo5xZd5yLCTl+WNcSrc8f5xUF8kiXWSLfFEsaov6JFsOWw5bDlsOWw5bDlsOWw5bDlsOXw5fjjzPjHuBlueZk3SRLfJFsahNiqw39kzURbJIF9kiXxSL2qI+KUftScvRlqMtR1uOthxtOdpytOVoy9GXoy9HX46+HH05+nL05ejL0ZejT0c/jkVlUV0ki3SRLfJFsagtWo6yHGU5ynKU5SjLUZajLEdZjrIcZTnqctTlqMtRl6MuR12Ouhx1Oepy1OWQ5ZDlkOWQ5ZDlkOWQ5ZDlkOWQ5dDl0OXQ5dDl0OXQ5dDl0OXQ5dDlsOWw5bDlsOWw5bDlsOWw5bDlsOXw5fDl8OXw5fDl8OXw5fDl8OXw5YjlWOO8r3He1zjva5z3Nc77Gud9jfO+xnlf47yvcd7XOO9rnPc1zvsa5z3H+Ziq6DnOT4pF/cqmfo7upLKoLpJFusgW+aJY1BZNRzmOAyxgBQVU0EAHA2wgtoKtYCvYCraCrWAr2Aq2gq1gq9gqtoqtYqvYKraKrWKr2Co2wSbYBJtgE2yCTbAJNsEm2BSbYlNsik2xKTbFptgUm2IzbIbNsBk2w2bYDJthM2yGzbE5Nsfm2BybY3Nsjs2xObbAFtgCW2ALbIEtsAW2wBbYGraGrWFr2Bq2hq1ha9gatoatY+vYOraOrWPLHBnTog90MMBhG1OYD+wTS2bJhcM2Zj0fWEEBFTTQwbT1xAb2hZklFxawggIqaKCD2Aq2gq1iq9gqtoqtYqvYKraKrWKr2ASbYMss8ZYooIIGOhjgsI353JLtJhdmllyY7Q01sYICKjjqxmiTyB6Tq0Lmw4UVzAq5YzMfLjRwLG/ksZP5cGED+8LMhzGxW7IJZWIFBcy6ufI55iO3ZI75CwuY2zf/LMf8hQoa6GCADcwGj9FNkh0pEwtYQQEVNNDBABuIrWPr2Dq2jq1jO5tWcmedTSq5j882lYFXo8qJBayggAoa6GCADcRWsBVsBVvBVrAVbAVbwVawFWwVW8VWsVVsFVvFVrFVbBVbxSbYBJtgE2yCTbAJNsEm2ASbYlNsik2xKTbFptgUm2JTbIbNsBk2w2bYDJthM2yGzbA5Nsfm2BybY3Nsjs2xOTbHFtgCW2ALbIEtsAW2wBbYAlvD1rA1bA1bw9awNWwNW8PWsHVsHVvH1rF1bB1bx9axkSWVLBGyRMgSIUuELBGyRMgSObNEEgNsYF94ZsmJBayggAoamDZPDLCBaRvXRnJmyYkFrKCAChroYIANxCbYzixpiRUU0MGsME5UcubDiaNCz+2b+XChgAoa6GC2I+YmyXy4sC/MfLgwbSnOfLhQwLTl8mY+XOhg2npiA/vCzIcLRzPTcSSOdqYjlzeb5o7cx9k2d2GADRwNUuOpXckWoHrkWmQD3ZGLky10R9qyie5CBQ0ctmw2zYagiQ3sC7OlruTyZi9dtqZmR1Atueezn67k4mRHXUlF9tRdGGAD+8LsrbuwgMNWcxmyw+5CW4dR54g6x/yJDewT9RzzJxawggIqaKCDATYQ2xjzdTysKdk+NLGCuUKSqKCBDgbYwL4wG2IvLGAFsVVs2Rpbs1k7G/MuDLCBfWE26F1YwAoKqCA2wSbYBJtgU2zZOls1MfdQSTTQwQAb2BeeVwonFrCCAmIzbIbNsBk2w+bYHJtjc2yOzbE5Nsfm2BxbYAtsgS2wBbbAFtgCW2ALbA1bw9awNWwNW8PWsDVsDVvD1rF1bB1bx9axcX+hHVvH1rH1ZbPjAAtYQQEVNNDBABuIrWAr2Aq2gq1gK9gKtoKtYCvYKraKrWKr2Cq2iq1iq9gqtopNsAk2wSbYBJtgE2yCTbAJNsWm2BSbYiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJkmyHe0zcJPaF+TrPhQWsoIAKGuhggNgMm2NzbI7NsTk2x+bYHFtmSc57+jnvmZj3LaP154EFrKCAChroYNp6YgP7wrxvkSOxgBVMWy5Z3sJcaGDO3p7FAmzgmtM9m/MuLGAFBVTQwKwriX1iNunV0fJUsktvYgUFVNBAB8c2k7NuA/vCvG8RTSxgBdNWExU0MLdZ2jI1LmzgmvmPeoAFrKCAChqYa3G+t9kX5h3KhbkWnlhBAXMtItHA3GYtMcAGpm3st8g7lAsLWEEBFTRw2EZjWMluwIkN7AszHy4s4Gw7LGf/X96uXw2AJwbYwL7QD7CAFZy9hg9U0EAHs+fyxAb2hWer7YkFrKCAChrIng/2fGPPN/Z8Y8839nxjzzf2fGPPN/Z8Y8839nxnz3f2fGfPd/Z8Z8939nxnz3f2fGfP97Xns4FxYgHXnj/7FXPPnw2L9cQAG7j2fCsHWMAKrj1/NjNeaKCDa8+fDY0Xrj1/tjReWMAKCqiggbl1SmJfmGP+wgKOfaG5FjnmL1TQwGxZb4kBNrAvPFvjTyxgBQVUMPdxrsU5uk/sC8/RfWIBKyigggY6iM2wGTbH5tgcW579NV9Xz7P/hQY6GGAD05Yrn2f/CwtYQQEVNNDBABuILZNgNL2W7ICcWMFhszxKMgnG+1wluyAnOhhgA/vCTIILC1jBtOWHATIJLkybJzoYYAPTNhY9myInFrCCAipooIPD5kdiA4dtdISVbI+cWMAKCjgUXhMdDLCBfWFOYGbjRbZHTqyggAoamDZPDLCBfWFGxYUFrKCAChqILS8P/PwSQwP7wrw8yP6HbJmcWMFhi9zq5xcAckue3wDIrXN+BeDEABvYF55fAzgx6ybpIlvki2JRm5QjOC9As5/xwhzBF+Zxl1QXySJdZIt8UVYcwyJbFWu2YGSvopyki2zR46/l/JNY1Bb1SWMgXlQWpST3Vg7DC3Oj5NrmMLzQwVzMlh/JyAo9UcCxnJI0CoxGhpr9iBMDbGBfmCPLksqiukgW6SJb1K6NWLO7MDdize7COm4va3YXThx/Px5c1uwunJhLmss/hsy4KKrZXHhRnzTGy0VlUV2UFXNBcgC0XJB86T63Ur51f1JZNP46t2y+eH+SLrJFvigWpSTVedyfmMf9eIxYs0VwYgVzMbNCHuYtFyRPhieOk6Hkv5rnwnPD5LnwQgEVHGV77s3zwxcnBtjWBs+RdGKOpAuxBbbAFtgCW2ALbIEtsDVsDVvD1rA1bHkuvNDnod44qBsHdeOgzlPhhWViOT9tURMrKODw9iRb5ItiUVvUJ+U4Oqksqotk0XKU5SjLUZajLEeeo8YLnzVb8CYWMDWeKGCKJNFABwNsYF+Y56gL05aLk+eoCwVMWyQa6OAYPEfuhzFEJ/aFOUZzN+QYPakukkW6yBZlxZEz2XwnR/6v+f2LI5c/v4BxoYIGjoNrPNmu2Xw3sYF9YY7SC9OWlLLc8i6gggY6GGAD+8I4wAJiC2yBLbAFtjFKpeTyjlE6sS8co3RiASs4bCUPuzxFXmigg2nL7ZSnyQv7wjxRllyyPFNeWMG05fHTFTTQwbS1xGEb96M1+/RkvGFYs09vooAK5vEkiaPueMxbs09PxoxizT49Ob/WNAb+hecHbk4sYNpaooAKGpjJlsubX7mRXJz8zk0e39mcJ5KLk9+6yXNENudNFFBBAx0MMG25DHmqPTHPsHmSzI68iQIqOBSaiy4OBtjAPodmduRNLGAFBVTQQAfzyiu3WX4E58ICjrqa/24GwYUK5lrkns8guDDXIrd6BsGFfWEGwXjRsWbv3cQKCqiggQ6mLY+zTIIL+8JMggsLWEGZFxLnZ6rygqhyZr4+VXViX3h+rurEAlZQwHUVd3646kIHA1xXYucHrE48T80nFrCCAipooIPzKr5mP52M+/2a/XQTKyigggY6mPuiJTawL8wxf+G68s1+uokCKmiggwE2sC/MgT5mDOr5YasLFcx7lCPRwQDHWoyJhpqdcxfmRfV4Abdm59zECub9kCQqaKCDATawL8wxb7mzcsxfWEEBFTQwt1musbLnjT1v7Hljzxt73tjzxp439ryx5409b+x5Z887e97Z886ed/a8s+edPe/seWfPO3t+DNPIcZwtcBMLWMHcF54YYANzX+Si55n3wgLmDVUeMHnmvXBsM8/jIc+8FzqYd265DHnmvbBPzL63iQWsoIAKGuhggA3EVrAVbAVbnnnHlE3NXjYZkyg1e9lkTJfU7GWbWMAK5vL2RAUNdDDAYRsTIzV72S7MUXhhASsooIIGOhggNsGm2BRbjsIx6VPzU1oTFTTQwQDTJol9YY7NCx3MfyH3xXnHe2IuzpFYQQFzcXJn5Sn0QgdzcVpiA9OWOyBPoRcOW05NZFOa5Dkrm9IkbzezKW1iTgbkns+L6QsDbGBfmBfTFxawgmnLhcyL6Tx3Z1Oa5Ok2m9Ik702z/UzyZizbzyYWsIICKmhgFhtbPbvLJhawggIqaGAWGzsgu8Ak7/eyC2xigA3MPxsrn11gEwtYQQEVNNDBABuITbAJNsEm2ASbYBNsgk2wCTbFptgUm2JTbIpNsSk2xabYDJthM2yGzbAZNsNm2AybYXNsjs2xOTbH5tgcm2NzbI4tsAW2wBbYAltgC2yBLbAFtoatYWvYGraGrWFr2Bq2hq1h69g6to6tY+vYOraOrWPr2Pqy+XGABayggAoa6GCADcRWsBVsBVvBVrAVbAVbwVawkSVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mdU9EQFDXQwwAb2hWdUnFjACmJr2Bq2hq1ha9gato6tY+vYOraOrWPr2Dq2jq0vWxwHWMAKCqiggQ4G2EBsBVvBVrAVbAVbwVawFWwFW8FWsVVsFVvFVrFVbBVbxVaxVWyCTbAJNsEm2ASbYBNsgk2wKTbFptgUm2JTbIpNsSk2xWbYDJthM2yGzbAZNsNm2AybY3Nsjs2xOTbH5tgcm2NzbIEtsAU2siTIkiBLgiwJsiTIkiBLgiwJsiTIkiBLgiwJsiTIkiBLgiwJsiTIkiBLgiwJsiTIkiBLgiwJsiSbvDQfOWSTl+Y8bTZ56fiSZs12Lh39SDV7rSQf0GWv1UQDHwodbVcPDLCBfWF+fPrCAlZQQAUNxCbYBJvmv2uJDsZCS1uuvAmoYFbIlR+HvebTh+yUmtjAvnAc9hMLWEEBFTQQm2NzbI4tsAW2wBbYAltgC2yBLbAFtoatYWvYGrbz8+95RJ0fgD/RwQAb2Been4I/sYAVFBBbx9aXrZ+feJfE/F81MZfBExvYF56fdj+xgBUUUEEDHcRWsBVsFVvFVrFVbBVbxVaxVWwVW8Um2ASbYBNsgk2wCTbBJtgEm2JTbIpNsSm2HMf5rC6bmyYG2MC+0A6wgBUUUEFshs2wnWO+JfaF55g/Mev2xFEhnxfm1980nxdmv9TEvjDH8YUFrKCAChroILbAFthyHOczy/wW3MQKCqiggQ4G2MC+sGPr2Dq2ji3HcT5CzVariQ4G2MB+oWQDluZPiGSvleZvbGSvleZvamSv1cQG9oU55i8sYAUFVNBAbAVbwZZjfjzGlfz228QCVlBABUfd8dxUsulK87cusutqYgVHhfGwVPJ7bhMNdDDABvaFOY4vLGAFsSm2HMeauyXH8YUBpi0S+8Icx5prnONYc/PlOL5w2Cy3Q47jCw0cNstlyHF84bBZHjA5ji2XIcex5QGT525LcZ67LxRQQQMdDLCBfWGO+QuxBbbAFtgCW2DLIW25SXLwjodCki1a6nkQ5OC90MGxkJ6bJAfvhX1hDt4LC5h1c/PlgPTcfDkgPTdfDsjE/NjaxAJWUEAFDXQwbZHYwL4wB+/olpXs8JpYQQHT1hMNdHBeWko2ek3sC3PwjvcoJDu9JlZQQAUNHLbx4ESy02tiA/vCHOgXFrCCAipoIDbBJtgEm2JTbIpNsSk2xabYFJtiU2yGzbAZNsNm2AybYTNshs2wOTbH5tgcm2NzbI7NsTk2xxbYAltgC2yBLbAFtsAW2AJbw9awNWwNW8PWsDVsDVvD1rB1bB1bx9axdWwdW8fWsXVsfdny024TC1hBARU00MEAG4itYCvYCraCrWAr2Aq2gq1gyywZj2Ylu8cmFrCCDuafjQCpZyicmD0YluhgLDyHtCQWsIICKmiggwE2sC80bIbNsBk2w2bYDJthM2yGzbE5Nsfm2BybY3Nsjs2xObbAFtgCW2ALbIEtsAW2wBbYGraGrWFr2Bq2hq1ha9gatoatY+vYOraOrWPr2Dq2jq1j68smxwEWsIICKmiggwE2EFvBVrAVbAVbwVawFWwFW8FWsFVsFVvFVrFVbBVbxVaxVWwVm2ATbIJNsAk2wSbYBJtgOy8PxpWYnFlyYgFT0RIVNHAoxoyh5CfYJjZwKEbHh2TL2MQCVlBABQ10MMAGYnNsjs2xOTbH5tgcm2NzbI4tsAW2wBbYAltgC2yBLbAFtoatYWvYGraGrWFr2Bq2hq1h69g6to6tY+vYOraOrWPr2Pqynb/reGEBKyigggY6GGADsRVsBVvBVrAVbAVbwVawFWwFW8VWsVVsFVvFVrFVbBVbxVaxCTbBJtgEm2ATbIJNsAk2wabYFJtiU2yKTbEpNsWm2MgSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxM4sqYkN7AvPLNHEAlYwbZ6oYNp6ooMBNrAvzCwZrZ+S7XsTh63n8maW9FyyzJILh210dkq2700McNi6JfaFmSUXpi0SKyigggY6GGAD+8LMkguxBbbAFtgCW2DLqBitPJJ9eNpz841QsCO32QiFiQ4G2Abm5huhcOEIhYkFrKAMzI3a05abrxvoYIBpy+UdoWDjZTrJPjzL2brsw5s4bOMNOsk+PBsPjSX78CYO23h+LNmHZ/UsFgvH6LbxsFSyoc7G00nJhrqJDo7FqWkbI9by58qzSW6iggY6GGAD+8IxYicWEJtgE2yCTbAJNsEm2BSbYlNsik2xKTbFptgUm2IzbIbNsBk2w2bYDJthM2yGzbE5Nsfm2BybY3Nsjs2xObbAFtgCW2ALbJG2PFLDwQAb2Be2Ayxg2nqigAr6On5zdF/YQA7wHN0XFrCCAipoILaOrWPry5atcxMLWEEBFTTQwQAbiK1gK9gKtoKtYCvYCraCrWAjKrJ1biK2iq1iq9gqtoqtYqvYKjbBJtgEm2ATbIJNsAk2wSbYFJtiU2yKTbEpNsV2/uh8SWxgX5gBkg+Ys3VuYgWHLZ81Z+vcxGHLh9HZOjcxwLRFYl+YAXJhASsooIIGOhggNscW2AJbYAtsgS2wBbbAFtgCW8PWsDVsDVvD1rA1bA1bw9awdWwdW8fWsXVsHVvH1rF1bH3Z8rtrEwtYQQEVNNDBABuIrWAr2Aq2gq1gK9gKtoKtYCvYKraKrWKr2Cq2iq1iq9gqtopNsAk2wSbYBJtgE2yCTbAJNsWm2BSbYlNsik2xKTbFptgMm2EzbIbNsBk2w2bYyJJGljSypJEljSxpZEkjSxpZ0siSRpY0sqSRJY0saWRJI0saWdLIkkaWNLKkkSWNLGlkSSNLGlnSyJJGljSypJEljSxpZEkjSxpZ0siSRpY0sqSRJY0saWRJI0saWdLIkkaWdLKkkyWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOkrS/RYWaLHyhI9VpbosbJEj5Uleqws0WNliR4rS/RYWaLHga1gK9gKtoKtYCvYCraCrWAr2Cq2iq1iq9gqtoqtYqvYKraKTbAJNsEm2ASbYBNsgk2wCTbFptgUm2JTbIpNsSm2M0taYl94ZsmJwzY+B6TZazlRwGEb7aeavZYTHQxw2EYnqmavpY2GUM1eSxutn5q9lhMrKKCCBjoYYAP7wsCWWTI+xaPZazlRQAUNdDDABvaFmSUXYmvYGrbMkvGhIs0WzYkOBtjAvjCz5MICVlBAbB1bZonmoZFZcmED+8Rs55xYwAoKqKCBDqatJTawL8zUuHBUGN/J0WzRtNHeq9miObGBfWHmw/hOjmaL5sQKCqiggQ4G2MC+ULAJNsEm2ASbYMt8GE3Kmi2aE9NmiX1h5sOFacuNmvlwoYAKGuhggA3sCzMfLsRm2AybYTNshi2Hv+WOzYE+Wpc1ey3Ncx/nQL/QwQDHQnpusxzoJ+ZAv7CAFRw2z2XIgX6hgQ4G2MC05aLnQL+wgBUUUEEDHQywgdhyoHtuqBzoF1Zw2CIP+xzoFw7b+HiLZq/lxGGLPHZyoF84bKOVR7PXcmIBKyigggY6GGADsRVsBVvBVrAVbAVbwVawFWwFW8VWsVVsFVvFVrFVbBVbxVaxCTbBJtgEm2ATbIJNsAk2wabYMhTGJ4o1mzwnCqhg2nqigwE2sC/MULiwgBUUUEFshs2wGTbD5tgcm2NzbJkao6dMs3HTxqNkzcbNiaPCeH6s2bg5UUAFDXQwFmYSjO8QaTZjXjugsX1zzF/oYIBjjcfTas1mzAtzzF9YQI6djq1z7HSOnc6x0zl2OsfOOebHMsg55k8sYAVlLkM2Y040cNmEMS+MeWHMC2NeGPPCmJeyjlQpChroYKxlKA1cW1IY88KYF8a8MOaFMS+MeWHMC2NezjGfy1DZksKWFLaksCVzzI/vI2o2Y07MLZl1c8xfGGADc93GsZ7NmBMLWEEBFTTQwWEbPQ2afZkX2jrAsxnTRqeDZjPmRAEV5NDIgX4hO8vYWcbO8gMsIDvL2VnOznJ2lrOznJ3lHIjOgRgcGjn8R7+GZtvlRANH3Z7bIYd/zyXLy4ML+8IMhQsLWEEBFTQw6+ahkaFwYobChQXMurkWGQoXKmhgXonl7s5QuLCBfWI2WE4sYAUFzGv7lhhgA3MtEnP4X/io66PjQ7OVcqKAOrAkGuhgDKyJDewLx/CfWMAKCqiggQ5iO5965jKcTz1PrKCAChroYIAN7AsVm2JTbIpNsSk2xabYFJtiM2yGzbAZNsNm2AybYTNshs2xOTbH5tgcm2NzbI7NsTm2wBbYAltgC2yBLbAFtsAW2Bq2hq1ha9gatoatYWvYGraGrWPr2Dq2jq1j69g6to6tY+vLZscBFrCCAio4G53UDgcDzHFsiX1hOcAcxy2xggLmOO6JBjoYYAP7wjM1TixgBQXEVrFVbBVbxVaxCTbBJtgEm2ATbIJNsAk2wabYFJtiU2yKTbEpNsWm2BSbYTNshs2wGTbDZtgMm2EzbI7NsTk2x+bYHJtjc2yOzbEFtsAW2AJbYAtsgS2wBbbA1rA1bA1bw9awNWwNW8PWsDVsHVvH1rF1bB1bx9axdWwdW1+27LWcWMAKCqiggQ4G2EBsBVvBVrAVbGSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCWNLGlkSSNLGlnSyJJGljSypJEljSxpZEkjSxpZ0siSRpY0sqSRJY0saWRJI0saWdLIkkaWNLKkkSWNLGlkSSNLGlnSyJJGlmRnp48XazQ7OydWcNjGOzaanZ0Th218dEezs3NigMM2Pu2o2dl5YWbJeEtHs7NzYgXTFokKps0THQwwbblCmSUnZpbk3W12dk4ctrylzc7OiQoOW83lzSy5MMAG9oWZJRcWsIICKojNsTk2x+bYAltgC2yBLbAFtsAW2AJbYGvYMjVqbvXMh5p7KPNhfHJPs1tzYl+Y+XDhWF7Jgyvz4UIBFTRw2CSPksyHCxvYJ2a35sQCps0SBVTQQAcDbGBfmPlwYQGxZT6MVxA0uzUnGpi2lhjgsGXTTnZrXpj5kP072a05cdiylSe7NScqaKCDATawL8x8uLCA2ASbYBNsgk2wCTbBptgUm2JTbIpNsSk2xabYFJthM2yGzbAZNsNm2AybYTNsmQ/Z4JPdmhMrKGDa8tDIfLjQwQAb2BdmPlxYwAoKiC2wBbbAFtgCW8PWsDVsDVvD1rA1bA1bw9awdWwdW8fWsXVsmRqj0cmyA9PHExDLDsyJWaEnCqiggQ4G2BZmEoz+KMuuyjwILLsqcx9bdlVODLCBY41H15RlV+XEAlZQlqJiW2PejjXm7Vhj3o415u1YY96ONebtkLIWRyoooIKsW4750UBl2VU5cdjsrNsX5pi/sIC5bp4ooIIGOhhgA/vCHPOWB0GO+Qtl7awc6JbHQw70Cx0MsK0dYOwsZ2c5O8vZWTnQL1SQneXsLGdnOTvL2VnBzooCVpBDI4e05eGZQ/rCBo66ntshh7TnkuWQvrCCAipooIMBtoU5eD0PjRy8FwqoYNbNtcgLgQsDbGBedowdm+2REwtYQQEVNNDBWJgPS8cb7ZbftZxYQQEVNNDBABvYF1ZsFVvFVrFVbBVbxVaxVWwVm2ATbIJNsAk2wSbYBJtgE2yKTbEpNsWm2BSbYlNsik2xGTbDZtgMm2EzbIbNsBk2w+bYHJtjc2yOzbE5Nsfm2PIR6nj+Zmev5YUFzJHliQIqmDZNdDDAHFl52J/5kHjmw4lpa4kVFFBBAx0MsIF94fmJiROxdWwdW8fWsXVsHVvH1pft7LW8sIAVFFBBAx0MsIHYCraCrWAr2Aq2gq1gK9gKtoKtYqvYKraKrWKr2Cq2iq1iq9gEm2ATbIJNsAk2wSbYBJtgU2yKTbEpNsWm2BSbYlNsis2wGTbDZtgMm2EzbIbNsBk2x+bYHJtjc2yOzbE5Nsfm2AJbYAtsgS2wBbbAFtgCW2Br2MiSSpZUsqSSJZUsqWRJJUsqWVLJkkqWVLKkkiWVLKlkSSVLKllSyZJKllSyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULMk2UfcTFTRw2MbDJjvbRC/Mu46e2BfmbMeFwzaeGtnZJnrhWLfxCMrONtELDUxbijNLLhy28X6WZZvohXmPc+GYPYiskHMgFwqooIEOBtjAvjCnNS/E1rF1bB1bx9axdWwdW1+2bBOdWMAKCqiggQ4GuGxnQ+h4vc3O1s/xTpudrZ+ju9/O1s8LA2xgLu/YQ2fr54UFrKCAwzbeNbKz9fNCB4dtvHZkZ+vnhX1hToFeWMAKCqiggQ5iE2yCTbEpNsWm2BSbYlNsik2xKTbDZtgMm2EzbIbNsBk2w2bYHJtjc2yOzbE5Nsfm2BybYwtsgS2wBbbAFtgCW2ALbIGtYWvYGraGrWFr2Bq2hq1ha9g6to6tY+vYOraOrWPr2Dq2vmxn6+eFBayggAoa6GCADcRWsBVsBVvBVrAVbAVbwVawFWwVW8VWsVVsFVvFVrGRJU6WOFniZImTJU6WOFlytn6OVxjtbP280MEAG9gXnllyYgHTZokCKpg2SXQwwLRFYl94ZsmJAvLvGv+u8++eSXBiBalwJkFPNNDBsWTjVTg7Gzcv7AszCS4sYAUFVNBAB7EFtkyCnts3k+DCAlZQQAUNdDDABmLr2Dq2jq1j69gyCXoeZznme+7YHPOJZ4vmhQXMupoooIIG5hndEgNsYF+YY/7CAlZQQAVz65zYwL4wR/eFuRaeWEEBFbTrk8iWzZgTA2xgX5hf1r6wgBXMrROJDgbYwL4wx/GFubwtMStk3TE2Y7yOZ9lKObEvHGMzxut4lq2UE+vAmiiggjYw9/w4z08MsIF9oR9gAdOWh4YLqKCBDgY4tnrkkp3jOLfDOY5PZOtE1s09HwY6GGADcy3yIGgHWMAK5lqkrSlo4LDlLUw2TU5s4LCV3BdjHE8sYNpyz49xHCVXfozjyFuYbJqMvN3JpsmJMTHbI2N03Fm2R06soIBZ1xNjHlxnI+SFfWGO2AsrOAaOp/j8sb4TAxy70NOWH8A/MT+Af2EBKyigggY6mBt1bLPsaJxYwArmyrdEBQ10MNfiSGxgX5ifur+wgBUUUEEDR93R2mXt/KXNxBy8JbdvDt4LKyjgWIuaxXLwXuhggA3sC/Oj9qORzM5fyb6wggIqaKCDATawLxyDN2qu5hi8ExU0MNfi/LMAG9gXnr+jm4fy+Tu6J1ZQQAUNdDAW5jAdvaGWvYsTKyigggaOutk5kL2LExvYJ2bv4sQCjrUY/ZN2/Xb2iQoa6GAsLLkWmpjLa4kKGpjb4UgMsIF94fmLuScWsIICKmggtoqtYqvYBJtgE2yCLcfxaFW17Dyc2MC+UHPr5KbWAlZQQAUNdDDAtOUOyFPziTm6Lyxg2nqigAoa6GtnnaP7xAb2hXlqvrCAFeR4cI6HPAmfW3KM44l94bjEjvFBbssewxi/GW3ZYzhRQAXHWogkOhhgA9OWeyhPzZIbKk/NF1ZQQAUNdDDABvaFHVuO+Uzl7DGcKKCCBjoYYAP7hZ79iDFa5zz7EWM0LHr2I04UUEEDHQywgX1hJsGF2EraeqKAChroYIAN7AvrAQ7b6AX07F2cKKCCBjoYYAOHbXx4zbN3cWIBKyigggY6mOmZijz7X9gX5tn/wgJWMOvm9s0kGO2Gnv2IF+aP19Tc8/njNRdWUEAFDXQwwLYwx/xoWPRsQgzLfZFj/kIFDXQwwAaOtRjXMJ5NiBMLWMFh8zzWMwkuNNDBABvYF2YSeG7fTILR9efZmjhRQAUNdDDWvmjsocYeyiS4sIAVFFBBAx91JdI2xvyJ2Zo4MdfCEiuYaxGJChqYa9ESA2zgWIvxy7aeDYsTC1hBAYftXLIc8xc6GGAD+8Ic8xcWMOtqYoyVT8wRG7nGOWIvrGAumScqmEuW2yFH7IUB5pLldsjz/Il5nr+wgBUUUMG09UQHA2xgX5jn+QvLWuM8o7fc1HlGv9DBAEfdMTfo2Vh4YZ7RLyzgYy3Ec+uM0T1RQQMdDLCBfeEYF73kvhjj4sIxLiYWsIIC6sAsNsbFRAcDbGCfmC15EwtYQQEVTFskOhhg2lpiX1gOcNjGXZJnS14ftyWeLXk9Iz5b8nombbbkTXQwwAb2hWO0dEnFGC0TKyigggY6GGAD+0LBJtgEm2ATbIJNsAk2wSbYFJtiU2yadXNLqoOx0LKuJPaFnnVz83kBKyigggY6GGAD+8JImyWmLQ+uqKCAChroYIAN7AvbAWJr2Bq2hq1ha9gatoatYevYOraOrWPr2Dq2jq1j68uWjW99fOvas8Wtj+tqzxa38yDIFreJAeZo6Yl9YY7NCwtYQQHTdqKBw6apyLF5YVuYozCvzLNtrY9pC8+2tYk5unMtzvFmiQ3sC+UAs64kVlDAdaSKGOggNsEm2BTbOd4SLW0nCqgLc4jkfUB2eU10MDdU7sIcIhf2hTlENDdJDpELU5xbPYfIhQoOm+VWzyFyYYAN7AtziFxYwGGz3G85RC5U0EAHA2xrH3cO2s7O6uysHAwXGuhggA1csZL9XBMLWEGZo0UZOHoOnBMdDLCBfWEOnAsL+Ph323g04NmNdeE4JU0sYAUFVNBABwPEVrEJNsEm2ASbYBNsgk3SdiQ2sC/UAyxgBQVU0EAHsSk2xWbYDJthM2yGzbAZNsNm2AybY3Nsjs2xOTbH5tgcm2NzbIEtsAW2wBbYAltgC2yBLbA1bA1bw9awNWwNW8PWsDVsDVvH1rF1bB1bx9axdWwdW8fWly27sSYWsIICKmiggwE2EFvBVrAVbAVbwVawFWwFW8FWsFVsFVvFVrFVbBVbxVaxVWwVm2ATbIJNsAk2wSbYyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wscbLEyRInS5wscbLEyRInS5wscbLEyRInS5wscbLEyRInS5wscbLEyRI/s6Qmpm1cPPmZJScWsIICKmiggwE2ENuZJZ5YwAqmTRMVNDBtLTHABg7beO7v2bk1sYAVFFBBAx0MsIHYDJthM2yGzbAZNsNm2AybYXNsjs2xOTbH5tgcm2NzbI4tsAW2wBbYAltgC2yBLbAFtoatYWvYGraGrWFr2Bq2hq1h69g6to6tY+vYOraOrWPr2PqyZUfYxAJWUEAFDXQwwAZiK9gKtoKtYCvYCraCrWAr2Aq2iq1iq9gqtrrGcZz5MO4L48yHEwtYQQEVNNDBABuITbEpNsWm2BSbYlNsik2xKTbDZtgMm2EzbIbNsBk2w2bYHJtjc2yOzbE5Nsfm2BybYwtsgS2wBbbAFtgCW2ALbIGtYWvYGraGrWFr2Bq2hq1ha9g6to6tY+vYOraOrWPr2Dq2vmztOMACVlBABQ10MMAGYivYCraCrWAr2Aq2gq1gK9gKtoqtYqvYznyoiQoa6GCADewLM0vyaUm2rU2sYNokUUED+8yodkbFiQWsoIAKZrFct/NS4sQAc9F74rDlE5DsVZtYwAoKqKCBDgbYQGwZFTU3SUbFhRUUUEEDHQywgesk0biUaFxKZAdbq7lJMiouVNBABwNsYF+YUXFhAbE1bA1bw9awNWwNW8PWsXVsmQ+Sq5n5cKGBDgbYwKHIhzfZzDaxgBUUUEEDHQywgdgyH/L5UH6Ib2IF02aJCqatJTqYtp7YwGHLpwTZ+DaxgBUUUEEDHQywgdgEm2ATbIJNsAk2wSbYBJtgU2yKTbEpNsWm2BSbYlNsis2wGTbDZtgMm2EzbIbNsBk2x+bYHJtjc2wZIPlQKD/ENzHABqYtD7kMkAsLWEEBFTTQwQAbiK1ha9gatoatYWvYGraGLaMiG9Sy8a3lU6NsfJuYFTzRwQAb2C+MbHybWMAKZrFInLswsoMtN3VkB9vECgqYC9kSDXQwwIYC2xrocayBHsca6HGsgR7HGuhxVFvLUB0MsIF9LcM50E8sIDbBJtjWQI9jDfQ41kCPQ1i3c6CnWNmSypZUtuQ50HMZlC2pbEnFptgUm7IljS1pbElj3Yz9dg70E9mSxpY09ts50E9kSzo2x+bYnC3pbElnSzrr5qybs9+cLRlsyWBLBlvyHOg9UcFhs6ybA/3CABs4bOP7iJE9cBMLWEEBFTTQwbRpYlt4jvkcenl5MHoiIxvfJgqoIIdGZ5B1dlZnZ/W1s8pxgAVcOyvb4SYqaKCDATZwHYilHGCuhScqaGBuqEjMDZVLllFxYV+YUXFhASsooIK2cBzrfTzJjOwImxjgeLg75icjO8IuzH6YCwtYQQEVNNDBALE5tnyAP2Y4Iz8U18d7VJFfh7v+13w+f+Tmy+fzR26+fD5/oYAKGuhggLk4uaGyheXEbGG5MG09MZvDch+frWi5+c5WtJpoa9Hzqf2Fa4Wy0+xx7ZxYQQEVNNDBABvYF+aBeGHaeuKwjZdMIzvNJipo4LCNtzojO80mNrAvzMPzwgJWUMAsNjZUtoy18TJoZJ9YG+96RvaJtZ4bKs9DFxroYF+Y55bxymXk59gmZoVITHFukjwz9NwkeWa4UMHchbkdztFyYoBt1T1HS/6v52g5sYAVlLXGeWa40EAHWbc8B5wrlOeAC1nj7EFu+e9mD3I7/9cAG9gXZg/yhdnvmSuU3cbnsZPdxhc6GGADs+7YfPlxsokFrKCACho4bHkgZufWxAb2hdmDfGEBKyjgUOSBmO1aEwNsYF+YjccXFrCCAiqIrWLLlw1yBGRr18S+MFuXLyxgBWVu9Wztmmjg2ln5abHIIyo/IhY5yPIjYhMDbGAuzjg08iNiEwtYQQEVNNDBtFliA/vC7EG+sIAVFNDWuuVrBTkgs3vswnyB4FyhfIHgwgoKmIue2yxfILjQwVz0PDzzBYIL+6rQsDVsDVvDli8QXMhuaeyWxm5p7JaGrS9Fdnm18fZEZJdXGy9HRHZ5tfE+Q2SX10QDHQywgX1hnlAuLGAFseUJZbwGEfnVrokOBtjAvjBPKBcWsIICYqvYKrY844xXPOLsE7uwL8zz0IUFrKCAChroIDbBljdBnjsrb2zGqxhxdnld2MC+MG9sLixgBQVU0MBURGIqWmJfmHczFxYwFXlE5TnrQgUNdDDABvaFeSa7sIDYAltgC2yBLbDl3UzkYZ93MyfmLUzkDsiblcjDM29WLnRwFIs8YPJm5cK+MO9bLixgBQVU0EAHl+LsYxpvcMTZxzTeTomzj+lCARU0MOt6Yi7v2N1nx9KFBayggFm3JRroYIAN7Avzhv/CtPXECgqooIEOBtgW5mAYr6/E2aZ0YQUFVNBABwNsYF/o2BxbjovxWkycbUoXKmiggwG2tdWdnRXsrGBn5QE+vrQTZ2dRywMmj+oLKyhgLk4eUXmsX+hggA3sC/NYv7CAdR2p57F+ooIGOhhgm3i2E+W6ne1EefV6Ng5daHOFzsahCwNsYC76GAFn49CFBcwNFYkC6qpQsBVsBVvBlieqE+sBFrCCAmKrp+J///cPv/z6tz/98R9/+dtf/+Uff//zn3/5p/9Z/8N//fJP/+d/fvnPP/79z3/9xy//9Nf//vXXP/zy//3x1//Of+m//vOPf81//uOPf3/8v49j889//bfHPx8F//0vv/550P/+gb8+Pv7T8rhK9evPy+N6kxKPuZMfipSPi+iYrc0Sj7PBKhD1h7+vH/+9jFNj/r30ygJEub8Wosdai8e5+8O10I+LjCvJs0KR9fcqd/9c8o3ycy0ej+9Zgmo/lPBNiZER13ZgER61bv59/rha/r2Lrb9/3HH8UKBttmN+PeTcCFbahyX6bl/WtRk85MMSuy2ZL15c26Hph1uybA7JWsdL3FnjMaXAYhTtP9bYHZZiazHYnI+pp/sr0ueK6HHIxyuyqWH5Q2VZY3ycbdXwn0an7fbquFe59qrVD0tsjqx8PTYrNHnaId5vV2hrgD6uiT+ucHc14uPV2G3M/FzVuTEf88QflaibqKnaZk48pozKhyXKu5uibo7Mx1zfOrofM9Sk1U+RK5uFGFf650L0+HghdnlZ69wSD+SoeMwY3F+RMt6FulbEyocrsjmwKqF5fFhgP8K6r4PiKfp/3qPt/dDb1XjcfM4aj3vLj88fcmzzu64h8rQ1qvyYWbI5Oq3NPfK4BnuqcNw/MNTWgWFPo+znA0M2h+fjgXtfNTpHuPyUvrJZjsoZuT4ut9mx95fi5iG+rXF3a8Q3bI327tbYD5R1qTg+tvnRQNlU0PwI0HmMP6apPjzGdXN8PuZo19XiY6r5qUbcryGxrjB+OLf/XEPePquqvntW3VW4dyq5vRofn1Xvbk19Oht9bY8csWoU/bhGf//q1Y5vuHwt2zuBmcKPAfrxutjmxNhqnUf5A+3D69d9DbdVox8f19C3j3Kzd4/yXYV7R/nt1fj4KN9uTTnWHhF5cY/4utx5zAd9fFfiu3O86bxyK/F8U/Hzfcnuhr2UlcNFP85Qr28fGS7vHhm7CveOjNur8Vr+PTahrq3p/eOtGe9vzfb21mxvb834nbfm07EZ5aWzyeMP52I8HiZ9vEdC3r7xjvfDM94Oz3g7POP98NxvzHcvHcdPrc4KxT6eS2mb6Byv3c17mxYfx2/bHFp9HZ3leD6nti9MVqqVNVnprXw4WbnfosEWba/tlHuzIc12syHHuql4vmz7uYS/PUhavDtIdhXuDZLbq/HxINluTOmNjekvlbBa1uyUfDiX0TcnxPFB2HlUdO+vlRC9UWJ/YN2aZutvR2d/Ozp7vD2/1dub81vbZbg3WViO493Zwozojx9OyFwRf77mlMcM/4tF7MUiuu41x4eINkX03WnH/bqsiYwHvroudc3qeH1Kzy8WCVtF+qu7RtZ9yfjq1qbI7hb+8Zhk3cM/uHw4XbYtc3fe7pMife6fLqW/WETWs6wuTw9Hv1bk5hRi2c3e3Z1DLLtnMDcnEbfL0eraIu3pQu63y3G3iB+vFlnnmAf6a0UeY4IH6EeJTZntLrYVbP358uGLB1vjYHsex18r4p0iHw/A+2fvjx9a7p4i5JeUs0TEhyet/RXyrec6Zfdw6e6N5L6IrlVR7WVTZD99b2vk6WZt+vsPgnePmG4+Cd6VuPkoWN5/AFrk7SegZfeESYqu2eLHFv34nHd7r2yea++PjvXgr0bTl2oIx/rjdBev1jjervHUBvOcYl+rsXbuo9zHNXaTSDdvhD6pcetOaL8uykGm3t6v8eIxJrXziKZ9vG91d5fs65FEiboZddsFiTV/8rjQ/DgKtX3Dzm2/887Nn+e61mUzcK3sLkFiPRF4XL29ulHX1a60zVFmm0SVFcqPO6yPF2P7oKbbWpcem3uz3XIoM8hPh8dvN8funG3rGZ7aD90YXznx+zFXRp8vYr5WxGI9XbDd1YN9Q2Nf8W94Nrpdned53MfzyY9XZ//Q5u7qyO+9OrXNk6bJsVsde/NSd78Yvg7X8fuJm8WI3bBZh3ylRP1NifebTLZLsSo8D97fLEXsZtgfx5iuRDyeJpv8C0WOfHHmurFrz9n8lSK9PT0veGo1+coWibVf+ma/hP6uJR7boHa2h328UfU7Nqp+w0bdFrl7jGyHXaxLovGbE68F/A/TkaKvFllTRONbrS8WiXVBM76C92IRX4fJ+EDZx0WafkPA72YhviXgxwfO1ur4bnV2j8UtfyTiWp+u/ZWDLXzdW4X3tlmS/v40Qj/en0bo5e1phP52G3Xp8v40Qte3pxF2z5luTyPc3iubW7z90XFvGmFX4+40wic1jrdr3LtLrMfd23d7bZvenc7Y17g1nVF3D6xu3vF+UuPeHe92XfRYx8fz07ffLEf83stxb1rldo0Xx9zNaZW6e9vp7rTKJwf7zQOk/M475t6USN2+K3R3SmS/ILemRGqJd6dEamnvT4lsl+PmlMgnFzHBRdnjidkHFzF19+5TGT/7S5Gn1z2/UEQrkzP1qavCv7QyN5djE4feV0vw+H7F5opsM5ex7sye3hn96a3Tz25kanAjI/3FuyHl9dfDjw83x3aS+ZD/Z7LfL3Fzz35y839zexzfsD12D6nu3mJui9zcIvtH1E8rcxzPT5e/9qT7EH8qs3l0X49veWC+K+P5fbPzvqwfH04BbEtwUzY+2vpaiWAp+ocl9n0zB29tHy+3Aa2318fvHn5YZP+CQ8i6J3u+v/zKCw66zt1N5eMadfdSU8nfL7+uZvTjCxF9/53nqm+/9LwtcfNV39trEps12T5VWfcgpfeP74V2b0bdvLT7ZDnWZMrjMvLja93dIXbzimr3fOiRXmsSROO5PazcX457V1TbzfGYfjiYfmgvbdLHfcFqGi6bq2V7/yLVvuMi1d6+SN2/YLW2RvOnxr/ffPZh+5rrrc76/UcCbrXFV3///dLqb79gui1xM8H8/VdMtxv0Xmv8tsS91vjq/f1b5H2Nezla3j8x7a/l7vXZ7r8Aca9DdlvjZoPs9hX7my2lt2tsOkr3Ne41lIp8x+XxdqvebCfdL8ndY2S7TW62k+4/BvH+2tw9VvfrcvNYjW84VuMbjtX4hmM1vuNY3W/Ve13L97/K8/GV1PaR1J0ujO3kRVnj5XEl89zuYz8txa4rRfh4gOiHc2zbEvfmYXZPpO7NOmw3xrEOjZ9e4/15Y8T7j4Fr/4aP88j7D9dk/6bOahV4asGQL1RYl2Ku/nGF7bcD1pFRrNanGuULm4I2EKuyqbG9ESRKH/z8eO7+EcZDMX2+QP7NEbarYU6bX3z8VrHsnkbdfKYuR3v7al92b27cuyzclrh3tS/bL+/de6Yupb77TF2KvP9M/f5e2Qz7/dFx65n6tsbNZ+qf1TjernHvmbqUu/c/9to2vflM/ZMat56pS33/XelPaty6H9yvy71n6lLt916OW8/U79d4cczdfKYu29dybj5T/+Rgv3eAlP4775h7z9Rlfz9475n6Jwty65l6fnr1velKEX9/unK7HPemK7dXdE9Nm/LiNeF6hOX6cYX4jqeDn1S5+XCwtv4tsx+7MvceDu5L3Ho4+EmJOw8H95NjN2+N9fedgPnCMSLfcozE9xwj8f4xEu8fI/H2MbK7HYs18/F4/POUyj9HgL19u78tUdzWFwsf/PzsV3668t8+iro1/bEvcWv6Q6z/3tuDD8qPH53/eHv47m6qrRP3Az/qUtqWuP1R4N0znHtfBd6WuDkBsi1xbwZkuzXuToHsN+nNORBv78+BfHKY9fXR/zJ+ZPjjw2zX71RLcNPenveO/FSkbOdB7nxvebscdb0xWR+8WY7tk751mFSzTZHtho2ny93xK5+bDWtv59m2xL08i/h98+zH7fHUvPHbfN+Wyey+ymjZxOLuS36P2R0mROz5wjdeLdK+ocgPF/FfKvI0NxN9U2TXCfJ4JDUP+8cB9XRV9NMNyfadqSbcn6lviuw+yc9NXm1PfS1fK9JKX0Wev+H0xSIsSbVvKCLHpshu75jRfvB8Gf5zkd0jKvN122r+dJx8aRcr8fiY826vHidt5Vo/9MVtoutgq+q7bbJbHV9ti48pJ31tw2rnOz+92WtFvMZTE6Z9x+rsdvHdPGkfh5Luvvl3cyJfj/1n3Zmorb5ZkF2HvMUsMn5vjDNG+6nG9pkoE2A/tOr/vBy7r/0cnIiP5+ayn2vszn/lWC2Qo7HcPl6b7WZdd8AiT+8N/Hazbov0p0n0zZnrK+dz//B8rrvnTnePtbK7E+593WE82D6+QtHt8ytZ1zn1+bchquhPReq7l8L7TXLv06Fa3v1I5X6j3t+/+zJ2UMZUNmV2TSvBFwieB3HzrywKX2UpEdo2i7KbuKmrndDlh3mXn4rs2lYex9AK+/L0ldsvFbGyEuWB8uKSPH12QyVeXBJZXzQ16f7ihpX1y23+WKjNkuweZrlzodReLRKrPfuB5cUi9Go98NUisV40e6C9WKT7+vJOf+p6/+JAjpXUj6nH5y9NfK1Me/oVi2avxsrj7oLZz+eU/E0ZeXtya1vi3uTWvsStya1PtocxpdRcNntn+zCntMYrdM+X9z/l7Pu/N/XJcvSnF+i6fDRJr7rZJr2uCbJeP5w++aTEWpVe/aNJ2E/2TLAqLdrLB3xfLzg8eDPLrruXRu7NSu1L3JqV0t3LUfdmpb6yPbYn80/KBGVMXy5jnTLx8Zyhbn+D6t7e2Za4t3es/t5753l7tP763nHK9FfPOf3g8rGXaq+WEX4C5DECN9dKu6dUN885uxI3zznbEt9wzul8oLB0183eef9B17bE49rk4MXRKPpaEeYdH1ztxSLrJ6HG5c1rp4wevH/R96eM8vvfFtc1W/A4PGJzW3y3SKkvFtF1Qq+qx4tFbP1meTUvrxV5bIcV1McP02x6+/F9X29/Px59Pe+b426JWtgeVT7uAND4hg+uaXzDB9e2k47MtR+6W5nd7wHdeZNDd9+Of8zzr/mo5rvF+I6fQt8Vsbqu6K3+cE9dvlCEiP7p/vErRUK5Hf7hVuunIu3t11v2Je5d27S3+10+2RrrGZc16ZutsT39ruc5rk02RXafoeapQzk+nE7eLoati2i3H24av7IuZuvjkdbs5SJPn7HsLxdZM0j+w4PqrxztbYXI43Hdpsju24DfUuRu/452f/tyc1fi5uVm97cvN7db42b/zieb9F7/jh3bC6t7/TufnGjWTy89ro10c6LZFemVIpuzlX3HK1mfLEnwYKq0zZJsfyRgnTdH5xxF6k8fgtg3mss6S8TzS0RfKaK6JrT1+cPJvy3S3z3l7UvcOuVZefubafutYfyOzXPjwG+2Rnn7AmBf4ubWsN93a7jyofLnl+V+szXi/a0R72+Nt9tdtwP/sSKrb0ief9L0KzkmvNkh+sNEwk/psXuf6ltyTPjx38el+/Hi6jxFUK/+YpG+rjMfT/P11SKrSe1RxDcb9htexrb6DS9jf7J3eK4dtX68Orv3mJ9eIXxqfoi4X8ELH26zjzeHfMMPWZh8ww9ZWN02pqzjrFR9fpu6/bQk9u423S5G5a07kfLxYtR9U7TxFOx4sUjXYGZmU0T6+2G0LdI5744fcWT/SnyhiB8zW/vzTdFXi6wPsfjzB2G+VmTdKHZ/7j/8ucju8VNfl839+QUgk/slnj/xeTx3H/5cZL8yjZXpr27WkLbW5qlh/WtFGju4PWX8bzfr713kh0/SyW7v7IrU9c2fWp+3yZeKyPq1kfr8jvdviuyC4DFpveYCH9PBHweBvduJta1wdxrA7O1pgG2Je9MA+xK3pgH2W+PmNMAnm/TmNIB/wzTA/hhThoz1zclm/44WTU/9acj85gOu/v7HV83f//iq+dsfX92WuPcxk/trEps1ef/jqxbvf3z1k+W49fFVi7c/vmrbKSJf793WHxrcf/r46r4IzyIeWF4rcvczsPslMeHLY/5qkVpWkbpdkt37hOUoT98sL8+vQnytTHPKPD2T/GIZ4yePHinQXi6zdtIo6Zsyuw0snV39fF3zpb2UDx2vIs/Xer8p8vZng7cD+eZng/c17n022Nrbnw229g2fDd4ux81Nut+16xbrsZfl1QFYeAW+FHl5AFZl5FR/eQDW1VEzSm5GzvZa7dYnSj653LvzjZJP7pCe7vee38/6+b6kvz/Z2t+fbO39dy1xc/Z6v0FXM/hj2+rHG3Q31XpvAswPeX8CzLcvZn3LpKLybTPfTLT67tFVtaeLm83PBvvuyUL0desb/YcPG36hSJP1a65Nmr1YJFbfSOtWXivSy3pVtJe+2SbbVqtbY/eT5VhvMj2el/YXV6Yy31P7pkjR33dlhECUfmyWw3/f5dD1U6yPW87dcrS3l6O8/dtDvn0F6laq7reGP6Xq5gdUfZeq31Lk7myRV313tmhb4t5s0b7Erdmi/da4OVv0ySa9N1vk9RseCOzPMu6rSTL6x78Y7FLenujx/eOrWxM9vnt6dW+iZ1vi3kTP/TWJzZqUtyd6XN7/ZctPluPWRI/vrg/v3dv57q2puxM9+yI3J3q2Re5O9OyX5OZEz77IzYkeV/uOiZ7Pytyc6PmkzN2Jns/K3Jzo2W/gmxM9+yI3J3q2I+jerMR2IN+c6NnXuDfR47vnJDfDYPudiJsTPdvluLlJ97v23kTPJ8fq3YmeT8rcnej5rMzNiZ79ZdatiZ5PrtRuTfTsbuVvTin4N7zK4v4Nr7Lse1B9nYjleaN+rQe1rHYJlefPLn+tkXW9iKk/fJvzS0Wirh9caMfHHY++e5L1LUVu393sZuJv3t3sSty8u9mWuHd3E9/wqx6fbNKbdze7F69uPwvft3/zTYf+Q+PVz0dI/52LVKevvvX6YpH+3PrxapG2bk/kqJvVad8x19q+Ya51uzrCTzTLYZttsvssXzE+v/xg/eiHnj8rcutHzX37FOvmj4lvi9ycfvpkZe4tR9++1NqevpS2C+j69sXEPhjvXEzsXze6tRSfvLF0ayn2rxpzH2w/fFv3K+8rO29Oe5cXi7S2PqnZD3utyA9jt25WZ9tHcvPN6W2Re19w35e49QX3T0rc+YL7fr8E38GMl99o/6GIvlqkUkQ+3i9xvP2cNY63n7PG++9MbUvc/QTKdoPSgRrRXt0rK5If872vJsjzkrxcpBlXRPZyEeYnt0W2Xy65l+37j5/cyvb9l6FWjV79xY9LrTceeo0P31bafjns3rbYf3zs1rbYf6RudbFb+Mufy1vfhbNmx4tF+Cb+A1/9XF4LlqS/+gnBtnbuo97LH+57eiagr28TmoNf/dSkGu/DWq/fUeTFT00qtyH6fBvytSJ8L0hje7BtizA72uLjInl6/vAhWF+XMu04Pn7vIra/R+Wr0UK924fTgJ8tSawlKbsl2T3F8nVZZf50fyf3l6Px49Pt8Ngsx/4XMedmfZxCP24bi11A8z3S5wcKVdsXjpG+Zmh19xm00PoNx4jKNxwjnyzJvWNE7e1jZLcct48Rje84RtrveozYsSZG7dh8UDh23/2z2v7fXwtqP9XYfcY+6vp8yg+fR/7Syqy2ICtH3ayMfMPK6O+8MnxN/4EvnvVM1uNjE/UXi1SWpMZ3FGnHq6uzntaalP7qkvANJTle37CdDWuvFlGKvPwjSlV5uG/PF+I/ZZq/3Ru4L3Hvznf36tQ3lLj5m0PbDSp8pE/i2GzQ7Ye6bnwea78Yyu334/T98WLsfhzrbphtp5ruhdknP45VaWOp9uHKfFLk6cdsvG2KbH8R5+bPdO2K3JsD3Je4NQf4SYk7c4D7n7a791Ow/vY9/Pu/+BLt7Z9uj/YNP92+vSlbM92Pp8wf/1zp9qlq4/csn0v89O74roTz3WKX/lKJtkZaef6O7FdK9OCTmkd5pUQ9CI1D5aWl4KOc47O6r5XofOu7vLQi48v2s0Tpry0FP5tT9PmXr75QQp8e0z3fcvxUIrY/FNXohno+Mkq/vyYrc4rEaxtD+S2V5+uEV7fniyXawffB63OfzY8B3LY/d3Xr9wr2H8Lmu+A/dGV/oURfy3A8/1jIF0o04YPCz5fDv9kW39BC1Y7f+WvAlWda1dtmZXZNKR769Eu89tEU+2dF1hPLB/f+YZF9F8e6qi7l4yOklbdfU9lPWHJufP7aa/1CifVzCY8Sm/1SvqEdpZVvaEf5dOfG08796DKyFf+9jxC+f1ufLzp+u2Hb9jKOtuHNjNYnRSo/P+abIrvb6rsTha2WdycKt8txd6KwVXl/orDtWmTvTRRuA6AUzlQPfv5dgOP4aUl2H1iZC/L0+4F6+5T7GLudeeSPvzXTdh8DvPkKUtu+UHXvFaS2+5DfvVeQtiXuvYJ0f00+fgVpv0XvvYLUdk9ebr6C9Mly3HoFqcluDurWWwdt9xzq7itI+yI3X0HaFrn7CtJ+SW6+grQvcvMVpLZ78nL/FaTPytx8BemTMndfQfqszM1XkPYb+OYrSPsiN19B2o6ge+/LbAfyzVeQ9jXuvYLUdg+lboaBbT8MfO8VpO1y3Nyk+1177xWkT47Vu68gfVLm7itIn5W5+QrS9ndsZI2b8jwf/NPF0b7Eul8sz3OgXylBo219+gWK31yi+Xayn6dJx4sl+no75ela8ysr8vwBzacP+n6lhK9nFj82HX+hRBRmVbbbwn/nIsW53Xz+7OzXikQwi9nri0X6we/Q1df2TF0r8ziJvzZWZD3iexwp5bWloJ/8+fntF0qUYz3S+uHX0L9SovAzaUXbayV4n6y015ZC1oB94GtLYZUJEY3XSjj3EK2/tiIcnVJfWxHh1+/EXlqRWPcPof5Kga58l2Yz2HdP9d6fYe8HXxx6bS3WcdnD3twMrxWQygRb/eGSuN8vsd5glecPL71a4unC60sl1tB4TA7aSyWef+TiqRH3KyV0PSkWO17bFuL8xs7zY5tXS7y2U59+q+M57760LXiTSOW1ncrP1svzz9Z/qcT6vU9Re3GnOq/M+UtLMX4xlAsLfanE0w+XtueP8/9Uoh+7K/lKdD//1HW5H/5tTXGOnyN/bU1Wk2p5/k3nL5VwHgm+NkhK67zLfJQXV4RbzqO+XaK8uhRBiZdG++M6lW2h8fZSvLZTq67nvI+ZlQ8nEvr+qdOt+eK+e+h0b754W+LefPH9Nfl4vnh7C7AaKn6YqfpCBas0gol8vDX7zfnm3R7Z1ljP3ndz1veX4+Ma+0ZB5mefZop/Xor69ufQtiVuHlvb3yO41wnWdw+Y7nWC9br9uqTxyzfPV0v28xbdTD+O38xZRfrHU1N993DmXnfIfpsW4YmqffgjIF32v5I+LzQ+/hmR7SZ9PIjgdvnBZbNRt98fXVfTXfqrRWxNUXX7oQHpK0Xq6k17oL5aZHWi9+d29i9uk/Xxk8fm8ReP1rbOtL2ZbI7Wu0X8eLXISrMH+mtFHs+GbF2IPZ4E7spsN21j0/bjw017O5w/fJLRdz8ZdeuHxT/ZHs+/OnVEfXWzHvQAPMpsjpPtvP39vaNvf4hhX+JWE/YnJT5swv7nx3/545/+8vd/+fVvf/rjP/7yt7/+1+Pv/neU+vtf/vivv/75+q///t9//dPT//uP//8/5//zr3//y6+//uU//uU///63P/353/77738elcb/98tx/cf/ifLYYVE0/vkPv5Tx38ePB4eV9vjv8vjvj0W3Ov6/8S/Xx437Hx7/kf9y/tuPmcvHX9vxz/87Fvf/Ag=="
|
|
2133
|
+
"debug_symbols": "tb3druy6daZ9Lz7OgcjxR+ZWGo3ASbsbBgw7cJwP+BDk3rs4JPKptXYXp2bV2ifej+09x6M/vpKoIdV//eF//elf//P//Muf//q///Yff/jn//Fff/jXv//5L3/58//5l7/87d/++I8//+2vj//1v/5wjP8opf/hn+Wf/lDq47/a+Ge5/lmvf8r1T73+adc//fpnXP9s1z/7+U+56slVT656ctWTq55c9eSqJ1c9uerJVU+venrV06ueXvX0qqdXPb3q6VVPr3p61bOrnl317KpnVz276tlVz656dtWzq55d9fyq51c9v+r5Vc+ven7V86ueX/X8qudXvbjqxVUvrnpx1YurXlz14qoXV7246sVVr1312qNejH/W659y/VOvfz7qlWOAT4gJj5JlHCvtUbOMf7kfE8qEOkEm6IRRuQ3wCTGhTegn1OOYUCbUCTJBJ9iEUbkPiAltwqj82AC1HBPKhEflmiATdIJN8AkxoU3oF4whdEKZMCvXWbnOymMc1RjgE2JCm9AvGIPphDKhTpAJOmFWlllZZmWZlWVW1llZZ2WdlXVW1llZZ2WdlXVW1llZZ2WblccIq2MXjCF2gkzQCTbBJ8SENqFfMIbaCbOyz8o+K/us7LOyz8o+K/us7LNyzMoxK8esHLNyzMoxK8esHLNyzMoxK7dZuc3KbVZus3Kbldus3GblNiu3WbnNyn1W7rNyn5X7rNxn5T4r91m5z8p9Vu5XZTmOCWVCnSATdIJN8AkxoU2YlccYlDqgTKgTZIJOsAk+ISa0Cf2COivXWbnOymMMig3QCTbhGt1SY0KbcI1ukWNCmVAnyASdYBNmZZmVZVYeY1D8AWMMnlAm1AkyQSfYBJ8QE9qEWdlmZZuVxxiUsQvGGDxBL/ArD2WMJj0GPFw6Nt0YOyfEhDahXzDGzgllQp0gE3TCrByzcszKMSvHrNxm5TYrt1m5zcptVm6zcpuV26zcZuU2K/dZuc/KfVbus3Kflfus3GflPiv3WblflfU4JpQJdYJM0Ak2wSfEhDZhVi6zcpmVy6xcZuUyK5dZuczKZVYeY0dtQL9gjJ0TyoQ6QSaMyj7AJviEmNAm9AvG2DmhTKgTZMKsPMaOxgCfMCq3AW1Cv2CMnRPKhDpBJoxLpTLAJviEcbUkA9qEfkFeII7lySvEhDpBJugEmzAqj2XO68SENqFfkJeKCWVCnSATdIJNmJXzinGsV14yJvQL8iJRB4w6fcDjr3ys6Rhfnv9Xm9AvGOPrhDKhTnjU8bHfx/g6wSb4hJjQJvQLxvg6oUyoE2blMb58bLoxvk4YlcfCj/F1QpvQT7Axvk4oE8YF7TFAJugEm+ATYkKb0C8Y4+uEMmFWHuMrygCdMCrXAT4hJrQJo/JjvWyMrxPKhDpBJuiEUTkG+ISY0Cb0C8b4OqFMqBNkgk6Ylcf4ijYgJrQJo/LjALAxvk4oE3zC+Kux5cdIaWNNx0hpMqBOkAk6wSb4hJjQJvQLxkg5YVb2Wdln5TFA2lieMUBOiAltQr9gnKTaWMFxkjqhTpAJOsEmjMpjTccgOqFN6BeMQXRCmVAnyASdYBNm5TGI+jjGxiA6oV8wBlEfB9sYRCfUCY/KfWyEMYj6WMExiPo4fsYgOiEmtAn9BB+D6IRRpw/QCTbBJ8SEdsE4wstRB/VJ4xgvhwwat2mHDdJFtsgXxaI2SfJ/G0smbVGfpMeisqgukkW6yBb5ouXQ5dDlsOWw5bDlsKwXg/Jv26Dxt+M+2cdRe1FZNP62lEGySBfZIl8UkyLrja0b+bdj60b+7ViWsEW+KP92bMlxoF7UJ7VjUVlUF6VjrFvTRekYa5mzAifFpJwFGDfZnjf9daxv3vWflH+rg8bf1rFGeeN/UlvUL4q89691UFlUF6VDBukiW+SrSixqi5YjZwFOKtd2jlIXySJdZIt8Ub/2TNR67ZnI437shai6yBb5tZ2jxqK2aO6jkGNRWVSv/REii/TaCyG2yBf1a89Ejo+xP0JlkV57JnJ85NbQtf10bT9d2y/HR+4FW/vI1j7K8ZF7wdY+srWPbDlsOWw5bDls7aM8isetUuRRfFKflEfxmGCIPIpPqotkkS6yRb4oFrVFwyFjCfLIPqksqotkkS4ajnFPGXm0nxSL2qJ0PI6Ilkf7SWVROmKQLNJF6WiDfFEsaovS8dj7LY/scUvX8sg+SRfZolFv3B20cRnzmFsdNOqpDuqTMuVPKovSYYNkkS6yRekY65HHvY7ly+PexhLkcW9jCfK4t/EXedyfJIt0kS3yRbFoOMaVecuxkJTnj3Ep3fL8cVJdJIt0kS3yRbGoLeqTbDlsOWw5bDlsOWw5bDlsOWw5bDl8OXw58jwz7gVanmdO0kW2yBfFojYpst7YM1EXySJdZIt8USxqi/qkHLUnLUdbjrYcbTnacrTlaMvRlqMtR1+Ovhx9Ofpy9OXoy9GXoy9HX44+Hf04FpVFdZEs0kW2yBfForZoOcpylOUoy1GWoyxHWY6yHGU5ynKU5ajLUZejLkddjrocdTnqctTlqMtRl0OWQ5ZDlkOWQ5ZDlkOWQ5ZDlkOWQ5dDl0OXQ5dDl0OXQ5dDl0OXQ5fDlsOWw5bDlsOWw5bDlsOWw5bDlsOXw5fDl8OXw5fDl8OXw5fDl8OXI5ZjjfO+xnlf47yvcd7XOO9rnPc1zvsa532N877GeV/jvK9x3tc472uc9xznY6qi5zg/KRb1K5v6ObqTyqK6SBbpIlvki2JRWzQd5TgOsIAVFFBBAx0MsIHYCraCrWAr2Aq2gq1gK9gKtoKtYqvYKraKrWKr2Cq2iq1iq9gEm2ATbIJNsAk2wSbYBJtgU2yKTbEpNsWm2BSbYlNsis2wGTbDZtgMm2EzbIbNsBk2x+bYHJtjc2yOzbE5Nsfm2AJbYAtsgS2wBbbAFtgCW2Br2Bq2hq1ha9gatoatYWvYGraOrWPr2Dq2ji1zZEyLPtDBAIdtTGE+sE8smSUXDtuY9XxgBQVU0EAH09YTG9gXZpZcWMAKCqiggQ5iK9gKtoqtYqvYKraKrWKr2Cq2iq1iE2yCLbPEW6KAChroYIDDNuZzS7abXJhZcmG2N9TECgqo4Kgbo00ie0yuCpkPF1YwK+SOzXy40MCxvJHHTubDhQ3sCzMfxsRuySaUiRUUMOvmyueYj9ySOeYvLGBu3/yzHPMXKmiggwE2MBs8RjdJdqRMLGAFBVTQQAcDbCC2jq1j69g6to7tbFrJnXU2qeQ+PttUBl6NKicWsIICKmiggwE2EFvBVrAVbAVbwVawFWwFW8FWsFVsFVvFVrFVbBVbxVaxVWwVm2ATbIJNsAk2wSbYBJtgE2yKTbEpNsWm2BSbYlNsik2xGTbDZtgMm2EzbIbNsBk2w+bYHJtjc2yOzbE5Nsfm2BxbYAtsgS2wBbbAFtgCW2ALbA1bw9awNWwNW8PWsDVsDVvD1rF1bB1bx9axdWwdW8dGllSyRMgSIUuELBGyRMgSIUvkzBJJDLCBfeGZJScWsIICKmhg2jwxwAambVwbyZklJxawggIqaKCDATYQm2A7s6QlVlBAB7PCOFHJmQ8njgo9t2/mw4UCKmigg9mOmJsk8+HCvjDz4cK0pTjz4UIB05bLm/lwoYNp64kN7AszHy4czUzHkTjamY5c3myaO3IfZ9vchQE2cDRIjad2JVuA6pFrkQ10Ry5OttAdacsmugsVNHDYstk0G4ImNrAvzJa6ksubvXTZmpodQbXkns9+upKLkx11JRXZU3dhgA3sC7O37sICDlvNZcgOuwttHUadI+oc8yc2sE/Uc8yfWMAKCqiggQ4G2EBsY8zX8bCmZPvQxArmCkmiggY6GGAD+8JsiL2wgBXEVrFla2zNZu1szLswwAb2hdmgd2EBKyiggtgEm2ATbIJNsWXrbNXE3EMl0UAHA2xgX3heKZxYwAoKiM2wGTbDZtgMm2NzbI7NsTk2x+bYHJtjc2yBLbAFtsAW2AJbYAtsgS2wNWwNW8PWsDVsDVvD1rA1bA1bx9axdWwdW8fG/YV2bB1bx9aXzY4DLGAFBVTQQAcDbCC2gq1gK9gKtoKtYCvYCraCrWCr2Cq2iq1iq9gqtoqtYqvYKjbBJtgEm2ATbIJNsAk2wSbYFJtiU2yKjSwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLsh3uMXGT2Bfm6zwXFrCCAipooIMBYjNsjs2xOTbH5tgcm2NzbJklOe/p57xnYt63jNafBxawggIqaKCDaeuJDewL875FjsQCVjBtuWR5C3OhgTl7exYLsIFrTvdszruwgBUUUEEDs64k9onZpFdHy1PJLr2JFRRQQQMdHNtMzroN7AvzvkU0sYAVTFtNVNDA3GZpy9S4sIFr5j/qARawggIqaGCuxfneZl+YdygX5lp4YgUFzLWIRANzm7XEABuYtrHfIu9QLixgBQVU0MBhG41hJbsBJzawL8x8uLCAs+2wnP1/ebt+NQCeGGAD+0I/wAJWcPYaPlBBAx3MnssTG9gXnq22JxawggIqaCB7PtjzjT3f2PONPd/Y840939jzjT3f2PONPd/Y850939nznT3f2fOdPd/Z850939nznT3f157PBsaJBVx7/uxXzD1/NizWEwNs4NrzrRxgASu49vzZzHihgQ6uPX82NF649vzZ0nhhASsooIIG5tYpiX1hjvkLCzj2heZa5Ji/UEEDs2W9JQbYwL7wbI0/sYAVFFDB3Me5FufoPrEvPEf3iQWsoIAKGuggNsNm2BybY3NsefbXfF09z/4XGuhggA1MW658nv0vLGAFBVTQQAcDbCC2TILR9FqyA3JiBYfN8ijJJBjvc5XsgpzoYIAN7AszCS4sYAXTlh8GyCS4MG2e6GCADUzbWPRsipxYwAoKqKCBDg6bH4kNHLbREVayPXJiASso4FB4TXQwwAb2hTmBmY0X2R45sYICKmhg2jwxwAb2hRkVFxawggIqaCC2vDzw80sMDewL8/Ig+x+yZXJiBYctcqufXwDILXl+AyC3zvkVgBMDbGBfeH4N4MSsm6SLbJEvikVtUo7gvADNfsYLcwRfmMddUl0ki3SRLfJFWXEMi2xVrNmCkb2KcpIuskWPv5bzT2JRW9QnjYF4UVmUktxbOQwvzI2Sa5vD8EIHczFbfiQjK/REAcdyStIoMBoZavYjTgywgX1hjixLKovqIlmki2xRuzZize7C3Ig1uwvruL2s2V04cfz9eHBZs7twYi5pLv8YMuOiqGZz4UV90hgvF5VFdVFWzAXJAdByQfKl+9xK+db9SWXR+Ovcsvni/Um6yBb5oliUklTncX9iHvfjMWLNFsGJFczFzAp5mLdckDwZnjhOhpL/ap4Lzw2T58ILBVRwlO25N88PX5wYYFsbPEfSiTmSLsQW2AJbYAtsgS2wBbbA1rA1bA1bw9aw5bnwQp+HeuOgbhzUjYM6T4UXlonl/LRFTayggMPbk2yRL4pFbVGflOPopLKoLpJFy1GWoyxHWY6yHHmOGi981mzBm1jA1HiigCmSRAMdDLCBfWGeoy5MWy5OnqMuFDBtkWigg2PwHLkfxhCd2BfmGM3dkGP0pLpIFukiW5QVR85k850c+b/m9y+OXP78AsaFCho4Dq7xZLtm893EBvaFOUovTFtSynLLu4AKGuhggA3sC+MAC4gtsAW2wBbYxiiVkss7RunEvnCM0okFrOCwlTzs8hR5oYEOpi23U54mL+wL80RZcsnyTHlhBdOWx09X0EAH09YSh23cj9bs05PxhmHNPr2JAiqYx5MkjrrjMW/NPj0ZM4o1+/Tk/FrTGPgXnh+4ObGAaWuJAipoYCZbLm9+5UZycfI7N3l8Z3OeSC5OfusmzxHZnDdRQAUNdDDAtOUy5Kn2xDzD5kkyO/ImCqjgUGguujgYYAP7HJrZkTexgBUUUEEDHcwrr9xm+RGcCws46mr+uxkEFyqYa5F7PoPgwlyL3OoZBBf2hRkE40XHmr13EysooIIGOpi2PM4yCS7sCzMJLixgBWVeSJyfqcoLosqZ+fpU1Yl94fm5qhMLWEEB11Xc+eGqCx0McF2JnR+wOvE8NZ9YwAoKqKCBDs6r+Jr9dDLu92v2002soIAKGuhg7ouW2MC+MMf8hevKN/vpJgqooIEOBtjAvjAH+pgxqOeHrS5UMO9RjkQHAxxrMSYaanbOXZgX1eMF3JqdcxMrmPdDkqiggQ4G2MC+MMe85c7KMX9hBQVU0MDcZrnGyp439ryx5409b+x5Y88be97Y88aeN/a8seedPe/seWfPO3ve2fPOnnf2vLPnnT3v7PkxTCPHcbbATSxgBXNfeGKADcx9kYueZ94LC5g3VHnA5Jn3wrHNPI+HPPNe6GDeueUy5Jn3wj4x+94mFrCCAipooIMBNhBbwVawFWx55h1TNjV72WRMotTsZZMxXVKzl21iASuYy9sTFTTQwQCHbUyM1OxluzBH4YUFrKCAChroYIDYBJtiU2w5CsekT81PaU1U0EAHA0ybJPaFOTYvdDD/hdwX5x3vibk4R2IFBczFyZ2Vp9ALHczFaYkNTFvugDyFXjhsOTWRTWmS56xsSpO83cymtIk5GZB7Pi+mLwywgX1hXkxfWMAKpi0XMi+m89ydTWmSp9tsSpO8N832M8mbsWw/m1jACgqooIFZbGz17C6bWMAKCqiggVls7IDsApO838susIkBNjD/bKx8doFNLGAFBVTQQAcDbCA2wSbYBJtgE2yCTbAJNsEm2BSbYlNsik2xKTbFptgUm2IzbIbNsBk2w2bYDJthM2yGzbE5Nsfm2BybY3Nsjs2xObbAFtgCW2ALbIEtsAW2wBbYGraGrWFr2Bq2hq1ha9gatoatY+vYOraOrWPr2Dq2jq1j68vmxwEWsIICKmiggwE2EFvBVrAVbAVbwVawFWwFW8FGljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJn1HRExU00MEAG9gXnlFxYgEriK1ha9gatoatYWvYOraOrWPr2Dq2jq1j69g6tr5scRxgASsooIIGOhhgA7EVbAVbwVawFWwFW8FWsBVsBVvFVrFVbBVbxVaxVWwVW8VWsQk2wSbYBJtgE2yCTbAJNsGm2BSbYlNsik2xKTbFptgUm2EzbIbNsBk2w2bYDJthM2yOzbE5Nsfm2BybY3Nsjs2xBbbAFtjIkiBLgiwJsiTIkiBLgiwJsiTIkiBLgiwJsiTIkiBLgiwJsiTIkiBLgiwJsiTIkiBLgiwJsiTIkmzy0nzkkE1emvO02eSl40uaNdu5dPQj1ey1knxAl71WEw18KHS0XT0wwAb2hfnx6QsLWEEBFTQQm2ATbJr/riU6GAstbbnyJqCCWSFXfhz2mk8fslNqYgP7wnHYTyxgBQVU0EBsjs2xObbAFtgCW2ALbIEtsAW2wBbYGraGrWFr2M7Pv+cRdX4A/kQHA2xgX3h+Cv7EAlZQQGwdW1+2fn7iXRLzf9XEXAZPbGBfeH7a/cQCVlBABQ10EFvBVrBVbBVbxVaxVWwVW8VWsVVsFZtgE2yCTbAJNsEm2ASbYBNsik2xKTbFpthyHOezumxumhhgA/tCO8ACVlBABbEZNsN2jvmW2BeeY/7ErNsTR4V8Xphff9N8Xpj9UhP7whzHFxawggIqaKCD2AJbYMtxnM8s81twEysooIIGOhhgA/vCjq1j69g6thzH+Qg1W60mOhhgA/uFkg1Ymj8hkr1Wmr+xkb1Wmr+pkb1WExvYF+aYv7CAFRRQQQOxFWwFW4758RhX8ttvEwtYQQEVHHXHc1PJpivN37rIrquJFRwVxsNSye+5TTTQwQAb2BfmOL6wgBXEpthyHGvulhzHFwaYtkjsC3Mca65xjmPNzZfj+MJhs9wOOY4vNHDYLJchx/GFw2Z5wOQ4tlyGHMeWB0yeuy3Fee6+UEAFDXQwwAb2hTnmL8QW2AJbYAtsgS2HtOUmycE7HgpJtmip50GQg/dCB8dCem6SHLwX9oU5eC8sYNbNzZcD0nPz5YD03Hw5IBPzY2sTC1hBARU00MG0RWID+8IcvKNbVrLDa2IFBUxbTzTQwXlpKdnoNbEvzME73qOQ7PSaWEEBFTRw2MaDE8lOr4kN7AtzoF9YwAoKqKCB2ASbYBNsik2xKTbFptgUm2JTbIpNsRk2w2bYDJthM2yGzbAZNsPm2BybY3Nsjs2xOTbH5tgcW2ALbIEtsAW2wBbYAltgC2wNW8PWsDVsDVvD1rA1bA1bw9axdWwdW8fWsXVsHVvH1rH1ZctPu00sYAUFVNBABwNsILaCrWAr2Aq2gq1gK9gKtoIts2Q8mpXsHptYwAo6mH82AqSeoXBi9mBYooOx8BzSkljACgqooIEOBtjAvtCwGTbDZtgMm2EzbIbNsBk2x+bYHJtjc2yOzbE5Nsfm2AJbYAtsgS2wBbbAFtgCW2Br2Bq2hq1ha9gatoatYWvYGraOrWPr2Dq2jq1j69g6to6tL5scB1jACgqooIEOBthAbAVbwVawFWwFW8FWsBVsBVvBVrFVbBVbxVaxVWwVW8VWsVVsgk2wCTbBJtgEm2ATbILtvDwYV2JyZsmJBUxFS1TQwKEYM4aSn2Cb2MChGB0fki1jEwtYQQEVNNDBABuIzbE5Nsfm2BybY3Nsjs2xObbAFtgCW2ALbIEtsAW2wBbYGraGrWFr2Bq2hq1ha9gatoatY+vYOraOrWPr2Dq2jq1j68t2/q7jhQWsoIAKGuhggA3EVrAVbAVbwVawFWwFW8FWsBVsFVvFVrFVbBVbxVaxVWwVW8Um2ASbYBNsgk2wCTbBJtgEm2JTbIpNsSk2xabYFJtiI0uULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSO7OkJjawLzyzRBMLWMG0eaKCaeuJDgbYwL4ws2S0fkq2700ctp7Lm1nSc8kySy4cttHZKdm+NzHAYeuW2BdmllyYtkisoIAKGuhggA3sCzNLLsQW2AJbYAtsgS2jYrTySPbhac/NN0LBjtxmIxQmOhhgG5ibb4TChSMUJhawgjIwN2pPW26+bqCDAaYtl3eEgo2X6ST78Cxn67IPb+KwjTfoJPvwbDw0luzDmzhs4/mxZB+e1bNYLByj28bDUsmGOhtPJyUb6iY6OBanpm2MWMufK88muYkKGuhggA3sC8eInVhAbIJNsAk2wSbYBJtgU2yKTbEpNsWm2BSbYlNsis2wGTbDZtgMm2EzbIbNsBk2x+bYHJtjc2yOzbE5Nsfm2AJbYAtsgS2wRdrySA0HA2xgX9gOsIBp64kCKujr+M3RfWEDOcBzdF9YwAoKqKCB2Dq2jq0vW7bOTSxgBQVU0EAHA2wgtoKtYCvYCraCrWAr2Aq2go2oyNa5idgqtoqtYqvYKraKrWKr2ASbYBNsgk2wCTbBJtgEm2BTbIpNsSk2xabYFNv5o/MlsYF9YQZIPmDO1rmJFRy2fNacrXMThy0fRmfr3MQA0xaJfWEGyIUFrKCAChroYIDYHFtgC2yBLbAFtsAW2AJbYAtsDVvD1rA1bA1bw9awNWwNW8PWsXVsHVvH1rF1bB1bx9ax9WXL765NLGAFBVTQQAcDbCC2gq1gK9gKtoKtYCvYCraCrWCr2Cq2iq1iq9gqtoqtYqvYKjbBJtgEm2ATbIJNsAk2wSbYFJtiU2yKTbEpNsWm2BSbYjNshs2wGTbDZtgMm2EjSxpZ0siSRpY0sqSRJY0saWRJI0saWdLIkkaWNLKkkSWNLGlkSSNLGlnSyJJGljSypJEljSxpZEkjSxpZ0siSRpY0sqSRJY0saWRJI0saWdLIkkaWNLKkkSWNLGlkSSNLGlnSyZJOlnSypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlnSypK8s0WNliR4rS/RYWaLHyhI9VpbosbJEj5Uleqws0WNliR4HtoKtYCvYCraCrWAr2Aq2gq1gq9gqtoqtYqvYKraKrWKr2Co2wSbYBJtgE2yCTbAJNsEm2BSbYlNsik2xKTbFptjOLGmJfeGZJScO2/gckGav5UQBh220n2r2Wk50MMBhG52omr2WNhpCNXstbbR+avZaTqyggAoa6GCADewLA1tmyfgUj2av5UQBFTTQwQAb2BdmllyIrWFr2DJLxoeKNFs0JzoYYAP7wsySCwtYQQGxdWyZJZqHRmbJhQ3sE7Odc2IBKyigggY6mLaW2MC+MFPjwlFhfCdHs0XTRnuvZovmxAb2hZkP4zs5mi2aEysooIIGOhhgA/tCwSbYBJtgE2yCLfNhNClrtmhOTJsl9oWZDxemLTdq5sOFAipooIMBNrAvzHy4EJthM2yGzbAZthz+ljs2B/poXdbstTTPfZwD/UIHAxwL6bnNcqCfmAP9wgJWcNg8lyEH+oUGOhhgA9OWi54D/cICVlBABQ10MMAGYsuB7rmhcqBfWMFhizzsc6BfOGzj4y2avZYThy3y2MmBfuGwjVYezV7LiQWsoIAKGuhggA3EVrAVbAVbwVawFWwFW8FWsBVsFVvFVrFVbBVbxVaxVWwVW8Um2ASbYBNsgk2wCTbBJtgEm2LLUBifKNZs8pwooIJp64kOBtjAvjBD4cICVlBABbEZNsNm2AybY3Nsjs2xZWqMnjLNxk0bj5I1Gzcnjgrj+bFm4+ZEARU00MFYmEkwvkOk2Yx57YDG9s0xf6GDAY41Hk+rNZsxL8wxf2EBOXY6ts6x0zl2OsdO59jpHDvnmB/LIOeYP7GAFZS5DNmMOdHAZRPGvDDmhTEvjHlhzAtjXso6UqUoaKCDsZahNHBtSWHMC2NeGPPCmBfGvDDmhTEvjHk5x3wuQ2VLCltS2JLClswxP76PqNmMOTG3ZNbNMX9hgA3MdRvHejZjTixgBQVU0EAHh230NGj2ZV5o6wDPZkwbnQ6azZgTBVSQQyMH+oXsLGNnGTvLD7CA7CxnZzk7y9lZzs5ydpZzIDoHYnBo5PAf/RqabZcTDRx1e26HHP49lywvDy7sCzMULixgBQVU0MCsm4dGhsKJGQoXFjDr5lpkKFyooIF5JZa7O0Phwgb2idlgObGAFRQwr+1bYoANzLVIzOF/4aOuj44PzVbKiQLqwJJooIMxsCY2sC8cw39iASsooIIGOojtfOqZy3A+9TyxggIqaKCDATawL1Rsik2xKTbFptgUm2JTbIrNsBk2w2bYDJthM2yGzbAZNsfm2BybY3Nsjs2xOTbH5tgCW2ALbIEtsAW2wBbYAltga9gatoatYWvYGraGrWFr2Bq2jq1j69g6to6tY+vYOraOrS+bHQdYwAoKqOBsdFI7HAwwx7El9oXlAHMct8QKCpjjuCca6GCADewLz9Q4sYAVFBBbxVaxVWwVW8Um2ASbYBNsgk2wCTbBJtgEm2JTbIpNsSk2xabYFJtiU2yGzbAZNsNm2AybYTNshs2wOTbH5tgcm2NzbI7NsTk2xxbYAltgC2yBLbAFtsAW2AJbw9awNWwNW8PWsDVsDVvD1rB1bB1bx9axdWwdW8fWsXVsfdmy13JiASsooIIGOhhgA7EVbAVbwVawkSVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBljSypJEljSxpZEkjSxpZ0siSRpY0sqSRJY0saWRJI0saWdLIkkaWNLKkkSWNLGlkSSNLGlnSyJJGljSypJEljSxpZEkjSxpZkp2dPl6s0ezsnFjBYRvv2Gh2dk4ctvHRHc3OzokBDtv4tKNmZ+eFmSXjLR3Nzs6JFUxbJCqYNk90MMC05QpllpyYWZJ3t9nZOXHY8pY2OzsnKjhsNZc3s+TCABvYF2aWXFjACgqoIDbH5tgcm2MLbIEtsAW2wBbYAltgC2yBrWHL1Ki51TMfau6hzIfxyT3Nbs2JfWHmw4VjeSUPrsyHCwVU0MBhkzxKMh8ubGCfmN2aEwuYNksUUEEDHQywgX1h5sOFBcSW+TBeQdDs1pxoYNpaYoDDlk072a15YeZD9u9kt+bEYctWnuzWnKiggQ4G2MC+MPPhwgJiE2yCTbAJNsEm2ASbYlNsik2xKTbFptgUm2JTbIbNsBk2w2bYDJthM2yGzbBlPmSDT3ZrTqyggGnLQyPz4UIHA2xgX5j5cGEBKyggtsAW2AJbYAtsDVvD1rA1bA1bw9awNWwNW8PWsXVsHVvH1rFlaoxGJ8sOTB9PQCw7MCdmhZ4ooIIGOhhgW5hJMPqjLLsq8yCw7KrMfWzZVTkxwAaONR5dU5ZdlRMLWEFZioptjXk71pi3Y415O9aYt2ONeTvWmLdDylocqaCACrJuOeZHA5VlV+XEYbOzbl+YY/7CAua6eaKAChroYIAN7AtzzFseBDnmL5S1s3KgWx4POdAvdDDAtnaAsbOcneXsLGdn5UC/UEF2lrOznJ3l7CxnZwU7KwpYQQ6NHNKWh2cO6QsbOOp6bocc0p5LlkP6wgoKqKCBDgbYFubg9Tw0cvBeKKCCWTfXIi8ELgywgXnZMXZstkdOLGAFBVTQQAdjYT4sHW+0W37XcmIFBVTQQAcDbGBfWLFVbBVbxVaxVWwVW8VWsVVsgk2wCTbBJtgEm2ATbIJNsCk2xabYFJtiU2yKTbEpNsVm2AybYTNshs2wGTbDZtgMm2NzbI7NsTk2x+bYHJtjy0eo4/mbnb2WFxYwR5YnCqhg2jTRwQBzZOVhf+ZD4pkPJ6atJVZQQAUNdDDABvaF5ycmTsTWsXVsHVvH1rF1bB1bX7az1/LCAlZQQAUNdDDABmIr2Aq2gq1gK9gKtoKtYCvYCraKrWKr2Cq2iq1iq9gqtoqtYhNsgk2wCTbBJtgEm2ATbIJNsSk2xabYFJtiU2yKTbEpNsNm2AybYTNshs2wGTbDZtgcm2NzbI7NsTk2x+bYHJtjC2yBLbAFtsAW2AJbYAtsga1hI0sqWVLJkkqWVLKkkiWVLKlkSSVLKllSyZJKllSypJIllSypZEklSypZUskSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyJNtE3U9U0MBhGw+b7GwTvTDvOnpiX5izHRcO23hqZGeb6IVj3cYjKDvbRC80MG0pziy5cNjG+1mWbaIX5j3OhWP2ILJCzoFcKKCCBjoYYAP7wpzWvBBbx9axdWwdW8fWsXVsfdmyTXRiASsooIIGOhjgsp0NoeP1NjtbP8c7bXa2fo7ufjtbPy8MsIG5vGMPna2fFxawggIO23jXyM7WzwsdHLbx2pGdrZ8X9oU5BXphASsooIIGOohNsAk2xabYFJtiU2yKTbEpNsWm2AybYTNshs2wGTbDZtgMm2FzbI7NsTk2x+bYHJtjc2yOLbAFtsAW2AJbYAtsgS2wBbaGrWFr2Bq2hq1ha9gatoatYevYOraOrWPr2Dq2jq1j69j6sp2tnxcWsIICKmiggwE2EFvBVrAVbAVbwVawFWwFW8FWsFVsFVvFVrFVbBVbxUaWOFniZImTJU6WOFniZMnZ+jleYbSz9fNCBwNsYF94ZsmJBUybJQqoYNok0cEA0xaJfeGZJScKyL9r/LvOv3smwYkVpMKZBD3RQAfHko1X4exs3LywL8wkuLCAFRRQQQMdxBbYMgl6bt9MggsLWEEBFTTQwQAbiK1j69g6to6tY8sk6Hmc5ZjvuWNzzCeeLZoXFjDraqKAChqYZ3RLDLCBfWGO+QsLWEEBFcytc2ID+8Ic3RfmWnhiBQVU0K5PIls2Y04MsIF9YX5Z+8ICVjC3TiQ6GGAD+8Icxxfm8rbErJB1x9iM8TqeZSvlxL5wjM0Yr+NZtlJOrANrooAK2sDc8+M8PzHABvaFfoAFTFseGi6gggY6GODY6pFLdo7j3A7nOD6RrRNZN/d8GOhggA3MtciDoB1gASuYa5G2pqCBw5a3MNk0ObGBw1ZyX4xxPLGAacs9P8ZxlFz5MY4jb2GyaTLydiebJifGxGyPjNFxZ9keObGCAmZdT4x5cJ2NkBf2hTliL6zgGDie4vPH+k4McOxCT1t+AP/E/AD+hQWsoIAKGuhgbtSxzbKjcWIBK5gr3xIVNNDBXIsjsYF9YX7q/sICVlBABQ0cdUdrl7XzlzYTc/CW3L45eC+soIBjLWoWy8F7oYMBNrAvzI/aj0YyO38l+8IKCqiggQ4G2MC+cAzeqLmaY/BOVNDAXIvzzwJsYF94/o5uHsrn7+ieWEEBFTTQwViYw3T0hlr2Lk6soIAKGjjqZudA9i5ObGCfmL2LEws41mL0T9r129knKmigg7Gw5FpoYi6vJSpoYG6HIzHABvaF5y/mnljACgqooIHYKraKrWITbIJNsAm2HMejVdWy83BiA/tCza2Tm1oLWEEBFTTQwQDTljsgT80n5ui+sIBp64kCKmigr511ju4TG9gX5qn5wgJWkOPBOR7yJHxuyTGOJ/aF4xI7xge5LXsMY/xmtGWP4UQBFRxrIZLoYIANTFvuoTw1S26oPDVfWEEBFTTQwQAb2Bd2bDnmM5Wzx3CigAoa6GCADewXevYjxmid8+xHjNGw6NmPOFFABQ10MMAG9oWZBBdiK2nriQIqaKCDATawL6wHOGyjF9Czd3GigAoa6GCADRy28eE1z97FiQWsoIAKGuhgpmcq8ux/YV+YZ/8LC1jBrJvbN5NgtBt69iNemD9eU3PP54/XXFhBARU00MEA28Ic86Nh0bMJMSz3RY75CxU00MEAGzjWYlzDeDYhTixgBYfN81jPJLjQQAcDbGBfmEnguX0zCUbXn2dr4kQBFTTQwVj7orGHGnsok+DCAlZQQAUNfNSVSNsY8ydma+LEXAtLrGCuRSQqaGCuRUsMsIFjLcYv23o2LE4sYAUFHLZzyXLMX+hggA3sC3PMX1jArKuJMVY+MUds5BrniL2wgrlknqhgLlluhxyxFwaYS5bbIc/zJ+Z5/sICVlBABdPWEx0MsIF9YZ7nLyxrjfOM3nJT5xn9QgcDHHXH3KBnY+GFeUa/sICPtRDPrTNG90QFDXQwwAb2hWNc9JL7YoyLC8e4mFjACgqoA7PYGBcTHQywgX1ituRNLGAFBVQwbZHoYIBpa4l9YTnAYRt3SZ4teX3clni25PWM+GzJ65m02ZI30cEAG9gXjtHSJRVjtEysoIAKGuhggA3sCwWbYBNsgk2wCTbBJtgEm2BTbIpNsWnWzS2pDsZCy7qS2Bd61s3N5wWsoIAKGuhggA3sCyNtlpi2PLiiggIqaKCDATawL2wHiK1ha9gatoatYWvYGraGrWPr2Dq2jq1j69g6to6tL1s2vvXxrWvPFrc+rqs9W9zOgyBb3CYGmKOlJ/aFOTYvLGAFBUzbiQYOm6Yix+aFbWGOwrwyz7a1PqYtPNvWJubozrU4x5slNrAvlAPMupJYQQHXkSpioIPYBJtgU2zneEu0tJ0ooC7MIZL3AdnlNdHB3FC5C3OIXNgX5hDR3CQ5RC5McW71HCIXKjhslls9h8iFATawL8whcmEBh81yv+UQuVBBAx0MsK193DloOzurs7NyMFxooIMBNnDFSvZzTSxgBWWOFmXg6DlwTnQwwAb2hTlwLizg499t49GAZzfWheOUNLGAFRRQQQMdDBBbxSbYBJtgE2yCTbAJNknbkdjAvlAPsIAVFFBBAx3EptgUm2EzbIbNsBk2w2bYDJthM2yOzbE5Nsfm2BybY3Nsjs2xBbbAFtgCW2ALbIEtsAW2wNawNWwNW8PWsDVsDVvD1rA1bB1bx9axdWwdW8fWsXVsHVtftuzGmljACgqooIEOBthAbAVbwVawFWwFW8FWsBVsBVvBVrFVbBVbxVaxVWwVW8VWsVVsgk2wCTbBJtgEm2AjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyRInS5wscbLEyRInS5wscbLEyRInS5wscbLEyRInS5wscbLEyRInS/zMkpqYtnHx5GeWnFjACgqooIEOBthAbGeWeGIBK5g2TVTQwLS1xAAbOGzjub9n59bEAlZQQAUNdDDABmIzbIbNsBk2w2bYDJthM2yGzbE5Nsfm2BybY3Nsjs2xObbAFtgCW2ALbIEtsAW2wBbYGraGrWFr2Bq2hq1ha9gatoatY+vYOraOrWPr2Dq2jq1j68uWHWETC1hBARU00MEAG4itYCvYCraCrWAr2Aq2gq1gK9gqtoqtYqvY6hrHcebDuC+MMx9OLGAFBVTQQAcDbCA2xabYFJtiU2yKTbEpNsWm2AybYTNshs2wGTbDZtgMm2FzbI7NsTk2x+bYHJtjc2yOLbAFtsAW2AJbYAtsgS2wBbaGrWFr2Bq2hq1ha9gatoatYevYOraOrWPr2Dq2jq1j69j6srXjAAtYQQEVNNDBABuIrWAr2Aq2gq1gK9gKtoKtYCvYKraKrWI786EmKmiggwE2sC/MLMmnJdm2NrGCaZNEBQ3sM6PaGRUnFrCCAiqYxXLdzkuJEwPMRe+Jw5ZPQLJXbWIBKyigggY6GGADsWVU1NwkGRUXVlBABQ10MMAGrpNE41KicSmRHWyt5ibJqLhQQQMdDLCBfWFGxYUFxNawNWwNW8PWsDVsDVvH1rFlPkiuZubDhQY6GGADhyIf3mQz28QCVlBABQ10MMAGYst8yOdD+SG+iRVMmyUqmLaW6GDaemIDhy2fEmTj28QCVlBABQ10MMAGYhNsgk2wCTbBJtgEm2ATbIJNsSk2xabYFJtiU2yKTbEpNsNm2AybYTNshs2wGTbDZtgcm2NzbI7NsWWA5EOh/BDfxAAbmLY85DJALixgBQVU0EAHA2wgtoatYWvYGraGrWFr2Bq2jIpsUMvGt5ZPjbLxbWJW8EQHA2xgvzCy8W1iASuYxSJx7sLIDrbc1JEdbBMrKGAuZEs00MEAGwpsa6DHsQZ6HGugx7EGehxroMdRbS1DdTDABva1DOdAP7GA2ASbYFsDPY410ONYAz0OYd3OgZ5iZUsqW1LZkudAz2VQtqSyJRWbYlNsypY0tqSxJY11M/bbOdBPZEsaW9LYb+dAP5Et6dgcm2NztqSzJZ0t6aybs27OfnO2ZLAlgy0ZbMlzoPdEBYfNsm4O9AsDbOCwje8jRvbATSxgBQVU0EAH06aJbeE55nPo5eXB6ImMbHybKKCCHBqdQdbZWZ2d1dfOKscBFnDtrGyHm6iggQ4G2MB1IJZygLkWnqiggbmhIjE3VC5ZRsWFfWFGxYUFrKCACtrCcaz38SQzsiNsYoDj4e6Yn4zsCLsw+2EuLGAFBVTQQAcDxObY8gH+mOGM/FBcH+9RRX4d7vpf8/n8kZsvn88fufny+fyFAipooIMB5uLkhsoWlhOzheXCtPXEbA7LfXy2ouXmO1vRaqKtRc+n9heuFcpOs8e1c2IFBVTQQAcDbGBfmAfihWnricM2XjKN7DSbqKCBwzbe6ozsNJvYwL4wD88LC1hBAbPY2FDZMtbGy6CRfWJtvOsZ2SfWem6oPA9daKCDfWGeW8Yrl5GfY5uYFSIxxblJ8szQc5PkmeFCBXMX5nY4R8uJAbZV9xwt+b+eo+XEAlZQ1hrnmeFCAx1k3fIccK5QngMuZI2zB7nlv5s9yO38XwNsYF+YPcgXZr9nrlB2G5/HTnYbX+hggA3MumPz5cfJJhawggIqaOCw5YGYnVsTG9gXZg/yhQWsoIBDkQditmtNDLCBfWE2Hl9YwAoKqCC2ii1fNsgRkK1dE/vCbF2+sIAVlLnVs7VrooFrZ+WnxSKPqPyIWOQgy4+ITQywgbk449DIj4hNLGAFBVTQQAfTZokN7AuzB/nCAlZQQFvrlq8V5IDM7rEL8wWCc4XyBYILKyhgLnpus3yB4EIHc9Hz8MwXCC7sq0LD1rA1bA1bvkBwIbulsVsau6WxWxq2vhTZ5dXG2xORXV5tvBwR2eXVxvsMkV1eEw10MMAG9oV5QrmwgBXElieU8RpE5Fe7JjoYYAP7wjyhXFjACgqIrWKr2PKMM17xiLNP7MK+MM9DFxawggIqaKCD2ARb3gR57qy8sRmvYsTZ5XVhA/vCvLG5sIAVFFBBA1MRialoiX1h3s1cWMBU5BGV56wLFTTQwQAb2BfmmezCAmILbIEtsAW2wJZ3M5GHfd7NnJi3MJE7IG9WIg/PvFm50MFRLPKAyZuVC/vCvG+5sIAVFFBBAx1cirOPabzBEWcf03g7Jc4+pgsFVNDArOuJubxjd58dSxcWsIICZt2WaKCDATawL8wb/gvT1hMrKKCCBjoYYFuYg2G8vhJnm9KFFRRQQQMdDLCBfaFjc2w5LsZrMXG2KV2ooIEOBtjWVnd2VrCzgp2VB/j40k6cnUUtD5g8qi+soIC5OHlE5bF+oYMBNrAvzGP9wgLWdaSex/qJChroYIBt4tlOlOt2thPl1evZOHShzRU6G4cuDLCBuehjBJyNQxcWMDdUJAqoq0LBVrAVbAVbnqhOrAdYwAoKiK2eiv/+73/6w1/+9m9//Mef//bXf/nH3//0pz/883+t/+E//vDP/+O//vDvf/z7n/76jz/881//8y9/+ac//H9//Mt/5r/0H//+x7/mP//xx78//t/Hsfmnv/6vxz8fBf/3n//yp0H//U/89fH6T8vjKtWvPy+P601KPOZOfihSXhfRMVubJR5ng1Ug6g9/X1//vYxTY/699MoCRLm/FqLHWovHufvlWujrIuNK8qxQZP29yt0/l3yj/FyLx+N7lqDaDyV8U2JkxLUdWIRHrZt/nz+uln/vYuvvH/cWPxRom+2YXw85N4KV9rJE3+3LujaDh7wssduS+eLFtR2avtySZXNI1jpe4s4ajykFFqPoj4tRdoel2FoMNudj6un+ivS5Inoc8npFNjUsf6gsa4yPs60a/tPotN1eHfcq1161+rLE5sjK12OzQpOnHeL9doW2Bujjmvh1hburEa9XY7cx83NV58Z8zBO/KlE3UVO1zZx4TBmVlyXKp5uibo7Mx1zfOrofM9Sk1U+RK5uFGFf650L0eL0Qu7ysdW6JB3JUPOYG7q9IGe9CXSti5eWKbA6sSmgeLwvsR1j3dVA8Rf/Pe7R9Hnq7Go+bz1njcW/5+vwhxza/6xoiT1vjEYE/1tgcndbmHnlcgz1VqPcPDLV1YNjTKPv5wJDN4fl44N5Xjc4RLu2nNdksR+WMXB+X2+zY+0tx8xDf1ri7NeIXbI326dbYD5R1qTg+tvlqoGwqaH4E6DzGH9NUL49x3RyfjznadbX4mGp+qhH3a0isK4wfzu0/15CPz6qqn55VdxXunUpur8brs+rdralPZ6Pv7ZEjVo2ir2v0z69e7fgFl69leycwU/hxRf96XWxzYmy1zqP8gfby+nVfw23V6MfrGvrxUW726VG+q3DvKL+9Gq+P8u3WlGPtEZE394ivy53HfNDruxLfneNN55Vbieebip/vS3Y37KWsHC76OkO9fnxkuHx6ZOwq3Dsybq/Ge/n32IS6tqb311szPt+a7eOt2T7emvE7b82nYzPKW2eTxx/OxXg8THq9R0I+vvGOz8MzPg7P+Dg84/Pw3G/MTy8dx0+tzgrFXs+ltE10jtfu5r1Ni9fx2zaHVl9HZzmez6ntG5OVamVNVnorLycr91s02KLtvZ1ybzak2W425Fg3Fc+XbT+X8I8HSYtPB8muwr1Bcns1Xg+S7caU3tiY/lYJq2XNTsnLuYy+OSGOD8LOo6J7f6+E6I0S+wPr1jRb/zg6+8fR2ePj+a3ePpzf2i7DvcnCchyfzhZmRL9+OCFzRfz5mlOav1vE3iyi615zfIhoU0Q/nXbcr8uayHjgu+tS16yO16f0/GaRsFWkv7trZN2XjK9ubYrsbuEfj0nWPfyDy8vpsm2Zu/N2XxTpc/90Kf3NIrKeZXV5ejj6vSI3pxDLbvbu7hxi2T2DuTmJuF2OVtcWaU8Xcr9djrtF/Hi3yDrHPNDfK/IYEzxAP0psymx3sa1g68+XD9882BoH2/M4/l4R7xR5PQDvn71fP7TcPUXILylniYiXJ639FfKt5zpl93Dp7o3kvoiuVVHtZVNkP31va+TpZm365w+Cd4+Ybj4J3pW4+ShYPn8AWuTjJ6Bl94RJiq7Z4scWfX3Ou71XNs+190fHevBXo+lbNYRj/XG6i3drHB/XeGqDeU6x79VYO/dR7nWN3STSzRuhL2rcuhPar4tykKm3z2u8eYw9HoHwiKa93re6u0v29UiiRN2Muu2CxJo/eVxovo5Cbb9g57bfeefmz3Nd67IZuFZ2lyCxngg8rt7e3ajraveRXps+o02iygrlxx3W68XYPqjpttalx+bebLccygzy0+Hx282xO2fbeoan9kM3xndO/H7MldHni5jvFbFYTxdsd/Vgv6Cxr/gveDa6XZ3nedzH88nXq7N/aHN3deT3Xp3a5knT5Nitjn14qbtfDF+H6/j9xM1ixG7YrEO+UqL+Zpt+3mSyXYpV4Xnw/mYpYjfD/jjGdCXi8TTZ5N8ocuSLM9eNXXvO5u8U6e3pecFTq8l3tkis/dI3+yX0dy3x2Aa1sz3s9UbVX7FR9Rds1G2Ru8fIdtjFuiQavznxXsD/MB0p+m6RNUU0vtX6ZpFYFzTjK3hvFvF1mIwPlL0u0vQXBPxuFuKXBPz4wNlaHd+tzu6xuOWPRFzr07W/c7CFr3ur8N42S9I/n0box+fTCL18PI3QP26jLl0+n0bo+vE0wu450+1phNt7ZXOLtz867k0j7GrcnUb4osbxcY17d4n1uHv7bu9t07vTGfsat6Yz6u6B1c073i9q3Lvj3a6LHuv4eH769pvliN97Oe5Nq9yu8eaYuzmtUndvO92dVvniYL95gJTfecfcmxKp23eF7k6J7Bfk1pRILfHplEgt7fMpke1y3JwS+eIiJrgoezwxe3ERU3fvPpXxs78UeXrd8xtFtDI5U5+6KvxbK3NzOTZx6H21BI/vV2yuyDZzGevO7Omd0Z/eOv3qRqYGNzLS37wbUl5/Pfx4uTm2k8yH/D+T/X6Jm3v2i5v/m9vj+AXbY/eQ6u4t5rbIzS2yf0T9tDLH8fx0+XtPug/xpzKbR/f1+CUPzHdlPL9vdt6X9ePlFMC2BDdl46Ot75UIlqK/LLHvmzl4a/t4uw1ovb0+fvfwZZH9Cw4h657s+f7yOy846Dp3N5XXNerupaaSv19+Xc3o6wsR/fyd56ofv/S8LXHzVd/baxKbNdk+VVn3IKX31/dCuzejbl7afbEcazLlcRn5+lp3d4jdvKLaPR96pNeaBNF4bg+T+8tx74pquzke0w8H0w/trU36uC9YTcNlc7Vsn1+k2q+4SLWPL1L3L1itrdH8qfHvN5992L7mequzfv+RgFtt8dU/f7+0+scvmG5L3Eww//wV0+0Gvdcavy1xrzW+ev/8Fnlf416Ols9PTPtruXt9tvsvQNzrkN3WuNkgu33F/mZL6e0am47SfY17DaUiv+LyeLtVb7aT7pfk7jGy3SY320n3H4P4fG3uHqv7dbl5rMYvOFbjFxyr8QuO1fgVx+p+q97rWr7/VZ7XV1LbR1J3ujC2kxdljZfHlcxzu4/9tBS7rhTh4wGiL+fYtiXuzcPsnkjdm3XYboxjHRo/vcb788aIzx8D1/4LPs4jnz9ck/2bOqtV4KkF46fv6sj+vaXVJ+CvK2y/HbCOjGK1PtWQb2wK2kCsyqbG9kaQKH3w8+O5+0cYD8X0+QL5N0fYroY5bX7x+q1i2T2NuvlMXY728dW+7N7cuHdZuC1x72pftl/eu/dMXUr99Jm6FPn8mfr9vbIZ9vuj49Yz9W2Nm8/Uv6pxfFzj3jN1KXfvf+y9bXrzmfoXNW49U5f6+bvSX9S4dT+4X5d7z9Sl2u+9HLeeqd+v8eaYu/lMXbav5dx8pv7FwX7vACn9d94x956py/5+8N4z9S8W5NYz9fz06mfTlSL++XTldjnuTVdur+iemjblzWvC9QjL9XWF+BVPB7+ocvPhYG39l8x+7Mrcezi4L3Hr4eAXJe48HNxPjt28NdbfdwLmG8eI/JJjJH7NMRKfHyPx+TESHx8ju9uxWDMfj8c/T6ksPyWqfXy7vy1R3NYXCx/8/Oz35zDaPoq6Nf2xL3Fr+kOs/97bgw/Kjx+df709fHc31daJ+4GvupS2JW5/FHj3DOfeV4G3JW5OgGxL3JsB2W6Nu1Mg+016cw7E2+dzIF8cZn199L+MHxl+fZjt+p1qCW7a2/Pe+WkeJMp2HuTO95a3y1HXG5P1wZvl2D7pW4dJNdsU2W7YeLrcHb/yudmw9nGebUvcy7OI3zfPftweT80bv833bZnM7quMlk0s7r7k95jdYULEni98+7tF2i8o8sNF/LeKPM3NRN8U2XWCPB5JzcP+cUBxVdTLT0V2B1sT7s+eMva3RXaf5Ocmr7anvpbvFWmlryLP33D6ZhGWpNovKCLHpshu75jRfvB8Gf5zkd0jKvN122r+dJx8axcr8fiY827vHidt5Vo/9M1toutgq+q7bbJbHV9ti48pJ31vw2rnOz+92XtFvMZTE6b9itXZ7eK7edJeh5Luvvl3cyJfj/1n3Zmorb5ZkF2HvMUsMn5vjDNG+6nG9pkoE2A/tOr/9FHh3UMrOTgRH8/NZT/X2J3/yrFaIEdjub1em+1mXXfAIk/vDfx2s26L9KdJ9M2Z6zvnc395Ptfdc6e7x1rZ3Qn3vu4wHmyvr1B0+/xK1nVOff5tiMfp9aci9dNL4f0muffpUC2ffqRyv1Hv7999GTsoYyqbMrumleALBM+DuPl3FoWvspQIbZtF2U3c1NVO6PLDvMtPRXZtK49jaIV9efrK7beKWFmJ8kB5c0mePruhEm8uiawvmpp0f3PDyvrlNn8s1GZJdg+z3LlQau8WidWe/cDyZhF6tR74bpFYL5o90N4s0n19eac/db1/cyDHSurH1OPzlya+V6Y9/YpFs3dj5XF3weznc0r+pox8PLm1LXFvcmtf4tbk1hfbw5hSai6bvbN9mFNa4xW658v7n3L289+b+mI5+tMLdF1eTdKrbrZJr2uCrNeX0ydflFir0qu/moT9Ys8Eq9KivX3A9/WCw4M3s+y6e2nk3qzUvsStWSndvRx1b1bqO9tjezL/okxQxvTtMtYpE6/nDHX7G1T39s62xL29Y/X33jvP26P19/eOU6a/e87pB5ePvVR7t4zwEyCPEbi5Vto9pbp5ztmVuHnO2Zb4BeeczgcKS3fd7J3PH3RtSzyuTQ5eHI2i7xVh3vHB1d4ssn4SalzevHfK6MH7F31/yii//21xXbMFVY7Y3BbfLVLqm0V0ndCr6vFmEVu/WV7Ny3tFHtthBfXxwzTb/cf3fb39/Xj0FS8f32+f3bE9qrzuAND4BR9c0/gFH1zbTjoy137obmV2vwd0500O3X07/jHPv+ajmu8W41f8FPquiNV1RW/1h3vq8o0iRPRP94/fKRLK7fAPt1o/FWkfv96yL3Hv2qZ93O/yxdZYz7isSd9sje3pdz3PcW2yKbL7DDVPHcrxcjp5uxi2LqLdfrhp/M66mK2PR1qzt4s8fcayv11kzSD5Dw+qv3O0txUij8d1myK7bwP+kiJ3+3e0+8eXm7sSNy83u398ubndGjf7d77YpPf6d+zYXljd69/54kSzfnrpcW2kmxPNrkivFNmcrexXvJL1xZIED6ZK2yzJ9kcC1nlzdM5R5De/47xtNJd1lojnl4i+U0R1TWjr84eTf1ukf3rK25e4dcqz8vE30/Zbw/gdm+fGgd9sjfLxBcC+xM2tYb/v1nDlQ+XPL8v9ZmvE51sjPt8aH7e7bgf+Y0VW35A8/6Tpd3JMeLND9IeJhJ9/prv+zjkm/Pjv49L9eHN1niKoV3+zSF/XmY+n+fpukdWk9ijimw37C17GtvoLXsb+Yu/wXDtqfb06u/eYn14hfGp+iLhfwQsfbrPXm0N+wQ9ZmPyCH7Kwum1MWcdZqfr8NnX7aUns0226XYzKW3ci5fVi1H1TtPEU7HizSNdgZmZTRPrnYbQt0jnvjh9xZP9K/0YRP2a29uebou8WWR9i8ecPwnyvyLpR7P7cf/hzkd3jp74um/vzC0Bm90s8f+LzeO4+/LnIfmUaK9Pf3awhba3NU8P694o0dnB7yvjfbtbfu8gPn6ST3d7ZFanrmz+1Pm+TbxWR9Wsj9fkd798U2QXBY9J6zQU+poNfB4F92om1rXB3GsDs42mAbYl70wD7EremAfZb4+Y0wBeb9OY0gP+CaYD9MaYMGeubk83+HS2anvrTkPnNB1z984+vmn/+8VXzjz++ui1x72Mm99ckNmvy+cdXLT7/+OoXy3Hr46sWH3981bZTRL7eu60/NLj/9PHVfRGeRTywvFfk7mdg90tiwpfH/N0itawidbsku/cJy1Gevln+dK/483vRX5VpTpmnZ5LfLGP85NEjBdrbZdZOGiV9U2a3gaWzq5+va761l/Kh41Xk+VrvN0U+/mzwdiDf/Gzwvsa9zwZb+/izwdZ+wWeDt8txc5Pud+26xXrsZXl3ABZegS9F3h6AVRk51d8egHV11IySm5GzvVa79YmSLy737nyj5Is7pKf7vef3s36+L+mfT7b2zydbe/9dS9ycvd5v0NUM/ti2+nqD7qZa702A+SGfT4D59sWsXzKpqHzbzDcTrb57dFXt6eJm87PBvnuyEH3d+kb/4cOG3yjSZP2aa5NmbxaJ1TfSupX3ivSyXhXtpW+2ybbV6tbY/WI51ptMj+el/c2Vqcz31L4pUvT3XRkhEKUfm+Xw33c5dP0U6+OWc7cc7ePlKB//9pBvX4G6lar7reFPqbr5AVXfpeovKXJ3tsirfjpbtC1xb7ZoX+LWbNF+a9ycLfpik96bLfL6Cx4I7M8y7qtJMvrrXwx2KR9P9Pj+8dWtiR7fPb26N9GzLXFvouf+msRmTcrHEz0un/+y5RfLcWuix3fXh/fu7Xz31tTdiZ59kZsTPdsidyd69ktyc6JnX+TmRI+r/YqJnq/K3Jzo+aLM3Ymer8rcnOjZb+CbEz37IjcnerYj6N6sxHYg35zo2de4N9Hju+ckN8Ng+52ImxM92+W4uUn3u/beRM8Xx+rdiZ4vytyd6PmqzM2Jnv1l1q2Jni+u1G5N9Oxu5W9OKfgveJXF/Re8yrLvQfV1Ipbnjfq9HtSy2iVUnj+7/L1G1vUipv7wbc5vFYm6fnChHa87Hn33JOuXFLl9d7Obib95d7MrcfPuZlvi3t1N/IJf9fhik968u9m9eHX7Wfi+/ZtvOvQfGq9+PkL671ykOn31rdc3i/Tn1o93i7R1eyJH3axO+xVzre0XzLVuV0f4iWY5bLNNdp/lK8bnlx+sr37o+asit37U3LdPsW7+mPi2yM3ppy9W5t5y9O1Lre3pS2m7gK4fX0zsg/HOxcT+daNbS/HFG0u3lmL/qjH3wfbDt3W/876y8+a0d3mzSGvrk5r9sPeK/DB262Z1tn0kN9+c3ha59wX3fYlbX3D/osSdL7jv90vwHcx4+432H4rou0UqReT1fonj4+escXz8nDU+f2dqW+LuJ1C2G5QO1Ij27l5ZkfyY7303QZ6X5O0izbgisreLMD+5LbL9csm9bN9//ORWtu+/DLVq9OpvflxqvfHQa7x8W2n75bB722L/8bFb22L/kbrVxW7hb38ub30Xzpodbxbhm/gPfPdzeS1Ykv7uJwTb2rmPem9/uO/pmYC+v01oDn73U5NqvA9rvf6KIm9+alK5DdHn25DvFeF7QRrbg21bhNnRFq+L5On55UOwvi5l2nG8fu8itr9H5avRQr3by2nAr5Yk1pKU3ZLsnmL5uqwyf7q/+8ZyNH58uh0em+XY/yLm3KyPU+jrtrHYBTTfI31+oDDeSbl/jPQ1Q6u7z6CF1l9wjKj8gmPkiyW5d4yofXyM7Jbj9jGi8SuOkfa7HiN2rIlROzYfFI7dd/+stv/314LaTzV2n7GPuj6f8sPnkdt3Vma1BVk56mZl5BesjP7OK8PX9B/45lnPZD0+NlF/s0hlSWr8iiLteHd11tNak9LfXRK+oSTH+xu2s2Ht3SJKkbd/RKkqD/ft+UL8x7cNwz/uDdyXuHfnu3t16heUuPmbQ9sNKnykT+LYbNDth7pufB5rvxjK7ffj9P16MXY/jnU3zLZTTffC7Isfx6q0sVR7uTJfFHn6MRtvmyLbX8S5+TNduyL35gD3JW7NAX5R4s4c4P6n7e79FKx/fA//+S++RPv4p9uj/YKfbt/elK2Z7sdT5tc/V7p9qtr4PcvnEj+9O74r4Xy32KW/VaKtkVaevyP7nRI9+KTmUd4pUQ9C41B5ayn4KOf4rO57JTrf+i5vrcj4sv0sUfp7S8HP5hR9/uWrb5TQp8d0z7ccP5WI7Q9FNbqhno+M0u+vycqcIvHexlB+S+X5OuHd7flmiXbwffD63GfzY2C07c9d3fq9gv2HsPku+A9d2d8o0dcyHM8/FvKNEk34oPDz5fBvtsUvaKFqx+/8NeDKM63qbbMyu6YUD336JV57NcX+VZH1xPLBvb8ssu/iWFfVpbw+Qlr5+DWV/YQl58bnr73Wb5RYP5fwKLHZL+UXtKO08gvaUb7cufG0c19dRrbiv/cRwvdv6/NFx283bNtextE2vJnR+qJI5efHfFNkd1t9d6Kw1fLpROF2Oe5OFLYqn08Utl2L7L2Jwm0AlMKZ6sHPvwtw/FSm7j6wMhfk6fcD9fbV8WPsduaRX39rpu0+BnjzFaS2faHq3itIbfchv3uvIG1L3HsF6f6avH4Fab9F772C1HZPXm6+gvTFctx6BanJbg7q1lsHbfcc6u4rSPsiN19B2ha5+wrSfkluvoK0L3LzFaS2e/Jy/xWkr8rcfAXpizJ3X0H6qszNV5D2G/jmK0j7IjdfQdqOoHvvy2wH8s1XkPY17r2C1HYPpW6GgW0/DHzvFaTtctzcpPtde+8VpC+O1buvIH1R5u4rSF+VufkK0vZ3bGSNm/I8H2zf+Ckc7hfL8xzod0rQaFuffoHiN5dovp3s52nS8WaJvt5OebrW/M6KPH9A8+mDvt8p4euZxY9Nx98oEYVZle228N+5SHFuN58/O/u9IhHMYvb6ZpF+8Dt09b09U9fKPE7i740VWY/4HkdKeW8p6Cd/fn77jRLlWI+0fvg19O+UKPxMWtH2XgneJyvtvaWQNWAf+N5SWGVCROO9Es49ROvvrQhHp9T3VkT49Tuxt1Yk1v1DqL9ToCvfpdkM9t1Tvc9n2PvBF4feW4t1XPawDzfDewWkMsFWny+Je7lfYr3BKs8fXnq3xNOF17dKrKEh9WlbfKfE849cPDXifqeErifFYsd720Kc39h5fmzzbon3durTb3U85923tgVvEqm8t1P52Xp5/tn6b5VYv/cpam/uVOeVOX9rKcYvhnJhoW+VePrh0vb8cf6fSvRjdyVfie7nn7r+qcVk/8R6nUub2XtrsppUy/NvOn+rhPNI8L1BUlrnXeajvLki3HIe9eMS5d2lCEq8Ndof16lsC42Pl+K9nVp1Ped9zKy8nEjo+6dOt+aL++6h07354m2Je/PF99fk9Xzx9hZgNVT8MFP1jQpWaQQTeb01+8355t0e2dZYz953c9b3l+N1jX2jIPOzTzPFPy9F/fhzaNsSN4+t7e8R3OsE67sHTPc6wXrdfl3S+OWb56sl+3k5NtOP4zdzVpH+emqq7x7O3OsO2W/TIjxRtZc/AtJl/yvp80Lj9c+IbDfp40EEt8sPLpuNuv3+6Lqa7tLfLWJriqrbDw1I3ylSV2/aA/XdIqsTvT+3s39zm6yPnzw2j795tLZ1pu3tqVflt0fr3SJPP4D1zSIrzR7o7xV5PBuydSH2eBK4K7PdtI1N24+Xm/Z2OL98ktF3Pxl164fFv9gez786dUR9d7Me9AA8ymyOk+28/f29ox9/iGFf4lYT9hclXjZh/8/Hf/njv/357//yl7/92x//8ee//fU/Hn/336PU3//8x3/9y5+u//q///Ov//b0//7j///3+f/869///Je//Pn//Mu///1v//an//Wff//TqDT+vz8c13/8jyiPHRZF43/+0x/K+O/jx4PDSnv8d3n898eiWx3/3/iX6+PG/Z8e/5H/cv7bj5nLx1/b8T//eyzu/wU="
|
|
2134
2134
|
},
|
|
2135
2135
|
{
|
|
2136
2136
|
"name": "sync_private_state",
|
|
@@ -2288,7 +2288,7 @@
|
|
|
2288
2288
|
}
|
|
2289
2289
|
},
|
|
2290
2290
|
"bytecode": "H4sIAAAAAAAA/+29CZhdV3Umuk/VrVLdUklXpdkarFu2bCxLnmRsDBiD8CQbydYsWbbBZVu25tJQkizLJCRAhyGGgJN0hn6PpBsC6TbhpSEDaTqPJiG8hLgzkA5pMkPzgQmD05h0oP1Cc/BZqr/++s++55y7SrpYtb9PqnvPXutfa6+99trj2TcJz6fZ2d+jJw8+8LpDR/YcHx7d9bqjo9/7P32aZLm1UDElLcU8ufT5nL6Mogs4u7/3rxmKCeojieX43/D6PgYsxR++z5+EqvKfL3/KU7H8odcUAX7UxXCnfe/fdPh8C8mvqP/r29V/dkRnq5sbgb5pH549+tlf+vTjH/7dD4y+/30/Pfi5GT87fVX/D7/5zd9Y/PUlP/fMm/+d8d4EuEkorFev8d+sZN/wG907d//qd0am3/rGD5343H+/49iMJcOfWPaW9+385LuWPf26f2W8tyjeL//4z/9w40Pv/oXmyqe+1XvrO7/6um/e1nPd55567Lzf+dHnnn7mCeO9VfH+6c7n/vojjScefeTxj5667pI5w08+8dl//MqnPv0rjW/+/QcPf/Ya410LZa7Slm6rxj/L+G8H/loo1xbS9Jpq/Kf1X1eNv8v418PDpn34kfd+4K/XPP7UlV94rv9t64ff9MjVb//M9q89uvD9F31x7weXPDlovHco3s+P3viu0QUHrv1a3x89ftUvLl76t8++/yNf+qeTu6776pe+/OtD3zTeOwXvwtUveumhn/njuX91yQV/+aqPP3n5T5737PLr/+o31/7iM9/5/X8OYzbbAGUuUWeny7yxGn/N+DdV4+82/s3wsBnnsVBxuuxbqsk+zb+1uGxLPca7TfMmb7zg6L+uP56s/8SPXvaRgf5PPL3mPa++8alPv+ltyxpPvsd4twveS6+vP/O+t/3Qm8Pfvf8f3vFPl37sVZcNnr9m8PI/+/k/X3zwyN3nPWO8O0xQKFXmJcZ/F/CT7tFk/DvDRN2L8t5dTfbp9n1Pedmnee8tz3u6jbzWwEIpm5/2lddV468b/33V+PuNfxj4S/SFTeO/vxr/lcb/QDX+q4z/QeAvUf5XGf+uavLXGP9D1fhvMf6Hq/FvMf7d1fiHjX9PNf4HjH9vNf4HjX9fNf5dxr+/Gv9Dxn+gGv/Dxn+wGv9u4x+pxr/H+A9V499v/Ier8R8w/iPV+A8a/9Fq/CPGP1qN/5DxH6vGf8T4j1fjP2r8J6rxjxr/I9X4jxn/yWr8x43/0Wr8J43/VDX+U8b/WDX+1/eH5+e8X1jw/IN0Hrwwyzw2umf/ntGTt+4a3fr8pxtHDo7uemS0BwBMHn7vou/d9L1G3w2vJ4ePeVolm3f3ko7NYuwbBjL6aaQPYveRns1QKC1NCC+E8eUMhF8nXUrKSxLCM3lcPqszK3td6NIQeWzjupBTF3IaIm+fI9YxR6z9jlhHHbE8y3jYEWvEEeuII9YBR6xhRyxP23u2oeMdirXbEcvTJzxt7+lfex2xPNu2p0/sccTyjNEnHbE6tX+0sa+NHXCskeT8NTn8zOTUCavquEeVq0/Ii9FPi9D3F8RPx9WN7HM2rr5p1/3HHl438nCgxEPdm3JUXEJ0WyKqMW5C//j5EnrWLWgxpcWbn33OinfLrtEHdm8ZfvjhXQ9+r5BHmYORbsx5zgNSpLHBeD9p2gyFUlcRp0T8OulS1SmV06jGllrVtokzq64bGX7wxuFDR4/t38XTLJwisFUQFZ+pOk1AM3zWTXQ30ve1gi8I7DTfam6AnjdDoTTDvGKGyLS8mYA9jfIakIe1yalb6G86p5hPLxjDZTrWB+tjJuVNh7wGyOZ67RdyTP8uQT+dsPoFn9m+lbxuwcfT0tjUuUhrs3KkqSFkmOxJjApzOz0qWPmmV5M3JyF+lIeYpo/ZekDkGZa1w94cLOOtEf1/zP42iC5NO0nGgNAXn5l90mWkD5LuaFv2k3bsiHimFz5D/Hpoyy+TWL1h+dhPKsbY2UXsjvpwTGbbYtzrzcEy3hrR/7/Z30aYGPfZT2YIffEZ+slvke5oW/aTinZcU9RPDL8e2vLLJFZvWD72kxnV5L2qiN1RH9U/o22xD+zNwTLeGtH/Yfa3QXRpYj+ZKfTFZ+gnn8o+9+Xo2wyF0gk1bmE/Q7uUOb5Q1M8Mvx7aqvckZkfV3tTYy3gbIo+XlhtCTkPIaYi8Y45YRx2x9jhi7XPEOt6hWCOOWEccsQ44Yg07Yh1yxPL0+060V6wfKouVJk9fPeGIddARy9NXPcu42xGrU9v2KUes+x2x7CgCj/MMP019YWLbKzs3QTzTE58hfp10KSkvidlFjRmtfLOqyRtMiB/lIabpY7YeFHmGZSuJvTlYxlsj+nmZQRtElyYeUw8KffEZjqlnZbgzhb68vlDWH5GfbYR87I/t1BfimZ74DPHroS3/T2L+oexi5RusJm9WkfpFfczWs0WeYc3JvvfmYBlvjegvIn+cDTqxP84W+uIz9MdmMl53tC37SUU73lzUTwy/HtryyyRWb1g+9pPZ1eTdVMTuqI/Zeo7IM6y52ffeHCzjrRH9avKTOaAT+8kcoS8+Qz+5LMPty9G3GYolbiOGgdhol+L1kPxjUT8z/Hpoq96TmB1Ve7Pyza0kL3mGfQPlIabpY7aeJ/IMy/Yve3OwjLdG9K8iP0MZ7BuWh/riM/Szl1M8Qtuyn1SzY3h1UT8x/Hpoxy/H/ETVm2pvVr551eStKWJ31MdsPV/kGVa25TfOTxDLeGtEv578ZD7oxPFovtAXn6GfrM1wZwp9ef091l4QtyH4jU75XIm49zpVpyX4Dxv//Gr8j1gdL4CH3J4WwvMS/nZV0fZk+HXSpWp7WkjyuHy8Bnue0KVBeWni13LOE3LOE3IU1kFHrH2OWMOOWHscsQ45Yu12xBpxxDrsiOXpE3udsFScbEev4456zXPCStMxR6wTjljDjlinHLE8Y6FnezziiOVZj485Ynn6hKftvdp2cC6jp08cdcTq1Djhqde5MGaa6tPOnu092+N+RyyvMqaf5ztheeqVJq/xhHcZef8O55ZJ9rdP6FBi3npDQnimJz5D/DrpUlJeErMLlo/nyYuELg3KSxPPkxcJOYuEHIV10BFrnyPWsCOWZxlHHLGOOGKdcMTytP0pR6ypeiyH9ZgjlqdP7HXEOuqI5Rm/jjtiedre01c9bd+p8cvTVz3967Ajlmc9evqXZxvy9K9jjli7HbE8y9ipYznPMnqOJzq1Hj1t7zWWSz/Pd8JKU6eOczzHmFPjiRdGG/KME556eflX+nmeE1aaHnHE8rS95xjA+lo+N2b4aWpzDWwoITzTE58hfj1MrEuvNTB1Bs3Kt6iavGaRekB9zNaLRZ5h2b0kvTlYxlsj+puyQjWEDD6jZ3moLz7Ds1evzL7MFPq2uxeB/Gwj5GN/rFhf3UX90fDroS3/T2L+oeyi/MN4Vb2y/YvWawyL14UtP019gq+EPRpF7W/49dBWfScxu6g4aeVbUk3eTG7DKA8xTR+z9VKRZ1jnZ997c7CMt0b091I8WAo67SQZS4W++AzjwQ6KB57+iPxsI+Rjf6xYX4XfaTH8emjL/5OYfyi7WPmWVpM3q0j9oj5m6/NFnmEty7735mAZb43oD5A/ogzunywP9cVn6I+7yR9VOyvSLhFXxUeje6HJGRB83L4q+l9P0fZl+PXQVntOYv6u7KL83XiVn+bFZpSj/PQHEcv8L9Y3Fe03lP8tPcNylC+n/5qhULrN+M+vxv8y419WjX99H9GX5L/Z+Ieq8W82/guq8d9q/BdW499h/Mur8d9h/BdV47/J+C+uxr/OYs2L4CHH2UvgeYm4d0fROGv4ddKlapy9hORx+TjOrhC6NEQet9EVQs4KIach8o44Yp10xNrtiHXIEWvEEWuvI9awI9ZhR6x9jljHOxTL01cPOGJ52V71653iq57t8YQjVqe2x0ccsTzbUKfa/qAjlmec8OxrPWO0p+097dWp/uU5NvGsR0/bnwtx4pQTVvp5mSNW0xFrqAOx0rTLUa8LHLGajlhzO1SvCx2xep2w0uTpE8sdsS5yxGp2qF6evtqJsTBNDztiefqqVz166pWmTrWXp69e7IjVdMTyil9peswRa9gRa78j1ogjlueY3HOu4Ln2aON7W8fGde8k+9sXJvpl2bMjiGd64jPEr5MuJeUlMbtg+fgswqXV5M1IiB/lIabpY7ZeKfIMa1X2vTcHy3hrRP/KzLANoksTn41ZKfTFZ3gW4WUZbl+Ovs1QKK0aCBNtxX6GdilRD6uK+pnh10Nb9Z7E7Ijl472iVUKXBuWl6SGg47xu8awrgnXUEesRR6wjjlh7HbGGHbFGHLE87XXSEWu3I9YhRyxP23eqfx12xNrniHW8Q7E8ffWAI5an7T39a78j1jFHLM8+zbMNedr+hBNW+nm+E5Z3GU85Yt3viPWYE1b6eYUTVpo8be/ZP3rGQs9xjmec8IxfnToutHq086sYN/j8atG7rhuC3+gGBF+S/W1z7aHw7+rx2sP8avKiaw/KLlZ2tRbQEHm8z1J0Dq/WA445Yh11xNrjiLXPEet4h2KNOGIdccQ64Ig17Ig16ojl2YY86/GkI9ZuR6wTjliebdvTvzzbkGdcPRdsf9gRyzNG85gKxzN9JKfsfg7yG12b6/Sb1Fp8Cf5txr+qGv+dxn9ZNf4bbVx1OTxMsr+GfQU8LzHG+5GE8ELQY0rDr5MuJeWdHlNeQfK4fDymvFLo0hB5/E7KlULOlUJOQ+QdccQ66Yi12xHrkCPWiCPWXkesYUesUUesY45YnrbvVF894Yi1zxHL0788Y85RR6xzwfaHHbE8y3i8Q7E82/YBRywv26efz3fCSpOnr3bqGMATy9NeU/32VL891W9P9dutsKb67R/8fjtNnvbqVF99xBHL016eMcfT9gcdsTzbkGe/3akxulPHE55lPOSI5VmPnrY/F+LEKSes9HOvI9YKRyyvdfL080onrDTtcsR62Akr/dx0xJrriLXcEWuVE1aazgXbL3PEGnLEusARy9NelzliefmqZxtKU6f6faeW8YUeC731muo7fvD7jjQ95KiX51iu6Yh1sSPWRY5YQ45Ynu3R015NRyzPvuMxR6xhR6z9jlgjjlie6wCHHLE8z+fwvQ1XQF6S/e0LE/0yldMMhdL0hPBMT3yG+HXSpaS8JGYXLJ/Zxcp+ldClQXlp4vsPrhJyrhJyprCmsM4Wlp0XxjbM72CVjSPIb3QDgo/jCLazEu16edE4Yvj10FbcSmL2V3axsq8WujREHq9PrhZyVgs5DZF3zBHrqCPWHkesfY5YxzsUa8QR64gj1gFHrGFHrFFHrN2OWJ7t8YQjlqd/edrrkCOWp395tiHPuOrpE55xtVPbtmd79GxDJx2xPNvjueBfhx2xPMcA/I4fjpf5Hb+ycwPkN7oBwZdkf/tIvySUGkO/KyE80xOfIX49TCxzlTG7sr+yi5X9aqFLQ+Txeu/VQs7VQk5D5B1xxDrpiLXbEeuQI9aII9ZeR6xhR6xRR6xjjlietu9UXz3hiLXPEcvTvzxjzlFHrHPB9ocdsTzLeLxDsTzb9gFHLC/bp5/Pd8JKk6evduoYwBPL016e/ban7T3HAJ4x2nM80am+6ulfU/32C6NtT43Jp/yL86bGhWfPvzpxXJgmT3t1qq8+4ojlaS/PmONp+4OOWJ5tyLPv6NQY3al9mmcZPce+nvXoaftzIU6ccsJKP/c6YaVpl6NeK5yw0vSwo16e+0Oe9rrYEWuuI9ZyR6xVTlhp8vSJpiOWp+292rZne/RsQ+nnlU5YafJqj2k6F/xrmSPWkCPWBY5Ynva6zBHLKxZ6xug0darfd2oZX+h9rbdeU2OTH/y+I00POerlOZ5owud2sTzH5Bc5Yg05Ynm2R097NR2xPPuOxxyxhh2x9jtijThiea4zea5/eZ4v5Hd08Wxrkv3tCxP9MpXTDIVSf0J4pic+Q/w66VJSXhKzizonbWV/sdClQXlp4ncoXyzkvFjImcKawiqDxefHDT9NfWGiz5ZoI4V/h97w66GtGJDE7KJilZX9GqFLQ+TxGOUaIecaIach8kYcsY47Yu1xxDrqiHXSEWufI9axDtVrryPWsCPWKUes+x2xHnPE8rTXEUcsz/Z4whHL0+89Y6FnPe53xDrmiOXpE4cdsTxtv7tD9Rp1xPL0Cc+xiWe/7VmPnRq/PP3Lsz12aoz2xPL0rwOOWGZ7XkMw/DT1EV8SSs2dliaEZ3riM8Svky4l5SUxu6g5rJX9WqFLQ+Tx2YBrhZxrhZyGyDvmiHXUEWuPI9Y+R6zjHYo14oh1xBHrgCPWsCPWqCOWZxvyrMeTjli7HbFOOGJ5tm1P//LUy7MePfXyjBOePuFZj4cdsY47YvE9NDg24ntoyo7PkN/oBgRfkv3tCxPHKCXGS29OCM/0xGeIXw8Ty1xlfKbsr+xiZX+J0KUh8vhMw0uEnJcIOQ2Rd8QR66Qj1m5HrEOOWCOOWHsdsYYdsUYdsY45YnnavlN99YQj1j5HLE//8tTLsx499fKMq54+4VmPhx2xPG1/vEOxPOPEAUcsL9unn893wkqTp6926njCE8vTXlNjgKkxwNQYYGoM0ApragwwNQaYTHt1qq8+4ojlaa9OjRMHHbE821Cn9h2etu/UsYlnGT3H0Z716Gn7cyFOnHLCSj/3OmKtcMTyWr9PP690wkrTLkesh52w0s9NR6y5HaqXVz1667XcCStNnj7hWY/LHLGGHLEucMTytNdljlirHLE61VebjljnQnv0KmOn+tdUPzTl90qvhxz18hxjNh2xLnbEusgRa8gRy7Nte9qr6Yjl2R4fc8QadsTa74g14ojluT7huW7ieZ6J772YC3lJ9tfOBWKsS+U0Q6FUSwjP9MRniF8PE9t3CXmnzwUuJXlcPrOLlf18oUuD8tLEdxycL+ScL+ScKSxVXxiXWqStfWGiPUrw7zN7LoOH7EtD8LxE3S4s6kuGXyddqvrSEMnj8rEvXSB0aYg8rqMLhJwLhJyGyDvihKXqvhP0StNRJ6z084ATlncZhx2xDjtiHXfEOuCI5WmvE45YjzpijTpi7XPE8rT9iCPWXkcszzKecsS63xHL5gbWf+HYiftu7BuK96XJ3xXtuw2/Hib2kVX6bjWmwvKZXdobmyR/GxsrIKbpo8YK3O/avLQ3B8t4a0T/huzlH9XvDZKMon7T871/p/rG6462ZT+pZscwo6ifGH49tOOX8TGeGntb+S6oJm+giN1RH7P1xSLPsGzftDcHy3hrRP84+cnFoBPPTS4W+uIz9JO3ZLgzhb5XEG6svSBuQ/AbnZKzqE05i4Qc5dvpv2YolP5e+U4J/l8w/our8a8w/hXV+H/T+FdW4/91419Vjf9H1DuKJfjvNf6XVOO/xPivq8Z/tfG/tBr/l43/ZdX41xr/y6vxf9T4r6/G/y7jf0U1/m8Z/w3V+J8w/ldW43/G+F9VjT8x/lcDf4m+o2n8N1Xj7zZ9b8SHQifDt75nDdAnOX8Ni/NMVp2wSuqexHRH/TiO3wjysIx5WDeWxOoTeVXq5NUhv1yIPxDRhfVME88TqpY5TXudsNLPy52w0nTMUa8hJ6w0PeCo1wWOWBc7Yq1wxOp1xGo6Yq10xFrVoVgXOmJd64j1Ekes6xyxXuqI9TInrDQ96qjXy52w0jTqqNf1jliXOWINOWK9whHrBkesVzpiDXYo1quyz7augP3SJSSnV8jpjchBfqPrE3xN+/Ds0c/+0qcf//DvfmD0/e/76cHPzfjZ6av6f/jNb/7G4q8v+bln3vxe420Cbjfyx9P2Ntfr5rS5Hjbb+C+sxj9o/Mur8d+k1lRK8K9RayrF+ZPAayohlC/7qkqyw7L27nxKnlHrKV2F+UOfWk8pwX+tWk8pwf8SXk8JwLv8z39r2v/69++s/ce/eGbkxLcufeIPbn38t//D9e9+6rIb3rD5Cz/99fVqLaWE7WeotZQS/E21llKCfyavpXwftBBreLlaRykhu0+to5Twu7/ldZSAvDf8RvfO3b/6nZHpt77xQyc+99/vODZjyfAnlr3lfTs/+a5lT7/ux9qcrw/wGsw42X+687m//kjjiUcfefyjp667ZM7wk0989h+/8qlP/0rjm3//wcOfPe2vNyveaEq+v64+o/78N+uXktO5IUyDz9YO0tQTxtZlthBNmmpE/9zMMb7BTN4A8QT43Ef8Je15HpbBUjc9Q/x6mFj2EvISto/J4/JZvpW9JnRpUF6aeI+3JuTUhByF9Zgj1rAj1qgj1j5HrCOOWHsdsUYcsTzLeMARq1P9a7cj1jFHrBOOWJ7+5WmvQ45Ynv7l2YaOOmJ5+oRnXOVz4pjH44AeeF6iX+4qOg4w/HqY2C9XGQf0kLw8u0z/3r/Z2edjo3v27xk9uW5k+MEbhw8dPbZ/F44mcITAUhJCxWdJGF96zOumZ91EdzN9Xyv4gsBO863mptHzZiiUrjSvuFJkWt5VgM0jK/yFS6xNTt1Cf9M5/fv0gjFcpmN9sD6uojxc7VkNsrlee4Qc079L0PcSVo/gM9u3kncut0RVT8bbEHncFouO/KtEiEb2OYsQN+26/9jD60YeDpRq9P2mHBUXEt3aHNUSgZvQP36+kJ4pUyB2bBJYxGXSxJ0M5m0hOVOdzFQnczpNdTJC/8nuZLoFHy/z8PJPmpr24Ufe+4G/XvP4U1d+4bn+t60fftMjV7/9M9u/9ujC91/0xb0fXPLk7FTWY7Skhfqyz1rZelqUr0b0vwlLWm/I5KUtLatKa2mvPrZ/36Zdo0f27Dq+63sx+2ig1Kp5rKfvdwg+lcwlVHM181YMQIUDnuHXg67mZiiUTgc8NdvA8lULeOwQ3JC9A94d9L1KwOul581QKJUOeNxNY8DD2uSkAp7pXDbgYX1wwMOGygFPeWIQ+ncJ+h7CigWrVvKmhh7Pp6mhB6SpoYfQf7KHHszXEya2XOOtEe1/yLr4NlvsuBMlrONUn/18muqzIU312UL/ye6zVSRJCGMyly5QdnQy9PnRG981uuDAtV/r+6PHr/rFxUv/9tn3f+RL/3Ry13Vf/dKXf33o2TajxrY2o93WlO/3aDLG57Hxs/VMeecLjLdG9H9YH+P7A5iMXZTlZxFl2/D+PQ8Oj+66+eDhY7uO7XrwjpHRXUfXHHzw5uO7Do6WnprdQt9vFXwq9YexAvOFNFjINPHa3Lzsu72UyTRsIKP/48woqcGeyRqycjrTZ4D4Q5jYFc0n3ZuhUCrcFRl+nXSp2hXNJ3lcvmpdEbszWgVR8RmHDcw7E13RQnreDIVS6a6ol/KwK8La5KS6ItO5bFeE9cFd0QLI464I63W+kGP6dwn6BYQ1X/BxV5Qnr1vw8VAioee4ljVXyOa1rC9DdPjmgnw74FVXjGnf1eCd7W35aWrTJ7cXjSaGXw8T675KNFlI8rh81aIJegpK2UaoRoO0mLaBZkjP37n2aoKPk+HUWOf+5/+m3vc/qdPHcs0kvZW34zMeJCG/0Sk509uUM13IMU+eBnx3UV5fJK8OmDMpbwbw8b5VA/J2Ut4swJxOeYMRzNkCM627X+gfw0v/4aVkytOtB7I6wEsz+MK2ZSAHadN0T/a3RrRzwa96+8fLwlbMfrWghd4xv1oQ8uVMb1POdCGHe6s0se8sFGW1vPOAj+t5EeSx7ywW5bK8JRHMpQIzrZ9/3T+eLnZhXxOel5mUFI34zeyz14V9TZLH5eMJ21A1eVsT4kd5iNnMPputl4s8w3pR9j3v0h/jrRH9UFafDaJLE1/mslzoi8/w8PgS8pMm0CU5fw2Xn3H7agKN1Y+6XGgL6HNxTszDkRTGNZsQc6x6H+wKrqBYhfxN0ku1k6rlXybKODNMtE0/fM7z72ZETn+kPMjnWZ/9JAfjLNbnNVSfQ5DHMTr9fEH2uUb074D6vI7qU7VFZWfulywvhGJ2ninkTLaduX9Z7igHsfjlkUsIi+1s9WR2fhHkXUJ8+PIc0uGsC1+cXCFkK3zDaOWDt/XrsuX5oMmqEf1R8MF1FX1wOeVhX8E/omJ6oB2Q/oKgy9WbQ59Xrs1ZWdKx9D8tGI9p/GgrrAuOv0a/DTC/vUDrieVSl7EZvfKHS0S5lE35AgslG+28Nkd2b4j7Yo3o7xU25X4B+VU7mkO6vKiF7ty+kd/oBgRfu3FE6dyqTT5Usk3yJXdGfw+0yT3UJmM+gjrzPKKsnacLOZNtZ54jrHCUg1jcL6wkLLaz1ZPZ+VLIW0l8qyAP6bBfwMtZVgnZCr9ov/Bovy5bng+arBrRrwEffH1kXhzzwRWUhzblfqFVPOQLgEzv3hDvb2tE/6ZIv6DaK8Za7heM/sci/YLJxXLF+gXli5eKcimb8qU/6iJZtDP3C8qmWP7zqfxG/46C/QJfJIvrEXdTHq5HDFHeeZDXpDy8BHM55eF6BK+NLIE8jnd4oS/6CK9HTIuUpw8weL0P1+0WUt4MyDuP8hqQt4jycN1uMeXhMZEllDcb8pZCWW3djjdH/132vM19O3l0JbYumuT8DaFYf8BHq1DOfEc5iHUzyVngKId3HFDOeUKO1dci4muGQqnwPqvh18PEtltlnWwRyePyVdsZwWjDVkFUfJaE8aXHvMncZzW5iyFPWYJXzrFMi3P40BZBPOsS9IsIa5HgM927I/yIgXzsMQk9z9uPNIwa0X8MeqvnqLdWstAe3GOa7nknJlgHo/846PDMAo1ZyynXeTmYn4GdjN/p15hBYKpyLaZysQ6LSAej/5QYCXQTDeujnqXfcWS0OEc/VU+sK/ZyeeXhejL6pyL1tFDogG1ybQsdmGZxjg5/InQQ0e3GkUMns+gWKPHhcI5ObHnet10ocPKS4adeaB6pThmcJ/j4/b4uoVNacqu5068s7t81uiun7F1CNyWzK+jE41HjS1NfaKtPK9yHGn49aM9rhkIp4Shn8rh8fBx8kdBFXTqP9ct+FJOT1qmtsWR1unl05EhelRbtXBOhVgj5nWwSxlcF8lhVV9zmK324iYdwq4Geh5FXAx8GNU5cbixPGly+W+LgE9qUDz6he66mPGwqV1MeutKLKQ8D/jWUh1O3aykPp24voTzcMrP73GywhPWM0zPMS1Nsq7Yh+JdF5MxqU84sIWcSt8oLh69m9vlMb5Vb2YeELg2RxwfYbMo+mq1Lpl3av9CUH4/Tsl0rvr1zbVG7Gn6ddKlq12kkj8vHdu0TujQoL00PAR3ndYtnXRGso45YjzhiHXHE2uuINeyI5VlGz3r0LOMeRyzPMh52xBp1xDrkiLXPEeuEI9aII5anT3i2x2FHLE+f8LTXAUes445Ynrbf74jlaftjjlie9vKMhbsdsTzt1amx0NNenjHH0786dczk6ROe/baX7dPPA05YafL0e0/bH3TE8vR7zzJ6xgnPMYCnvU45Ytkd3LbGhOsQfOxGzfmnReQg/7QCWGr9IFZGtY7jeEuhqXgN0a3NUS0RuAn94+fX0LNuQYvY+Bp77OR1X/Z5iLCboVBanRBeCHpZyfDrpEtJedGfKW7CM15WWi50aYg8/hmkom+INETeUUesw45Yo45Yhxyx9jlinXDEGnHE8vSJI45Yw45Ynj7haa8Djlie9trviOVpr0ccsTx9da8j1rlQj8ccsTzt5dkP7XbE8rRXp/ZDnvbyjPee/uUZczzbo6dPeI6ZvGyffh5wwkqTp9972v6gI5an33uW0TNOdOr465QjFi+TDAE2L5MMCTlDETnIP1QAqymwYmWc5GUSU/Eqolubo1oicBP6x8+vometlklq2Wdbmvkf2akcWxapeKpIvnjCp7RwOQhPm2FeCMVW6pC/LyKn3qacekE5V7Qp5wohZ0DwJTl/TQ4/i63sX0FyzsYFF+wHTZKT16yVHzRzsPCmyvuAZinRD2XfawIzTXdBPtJ/J2tD6bLo57Njm3ziMk34gulz0+O6Ii/qWiP6C+EF0+9mmMrOVu/KD5qUt0zIVZjctiwvhGJ1Vxc6xLCwvmYQvdVFbw694XHd1bNxm3qRFV/cU/7TzNEB/QcvYcrznxmgQ1H/aQzEdWX/mUGyT9OD/8zOMGeGiTaO+c8MykP/aYbxmMjHJ3XLxsxZQj8lJ3ZRGPtR2YvCZgg51pei/5XoS0ufcp9FeXiF5yDl4Sn32ZT3YsjjPugayOMXaPFXxNEenLrpO9oo9f0vgu8zXSCZWId8ch793mxhdY/jFMTAPNOVn3HdI/9gDlYtTGyPadoC+Uh/UWbAtD1eMTC+XHgZoNmkTV+7OiG8EPR2luHXSZeS8hKOVyaPy8fbWapPUvHmIviMeSgndvof80YcsY47Yu1xxDrqiHXSEWufI9axDtVrryPWsCPWKUes+x2xHnPE8rTXEUcsz/Z4whHL0+89Y6FnPe53xPKsR8/45WmvUUes3Y5YnvbybEOe4wlPex1yxPL0r6m4enZsn34ecMJKk6ffe9r+oCOWp997ltEzThxwxPK0l+d49QFHLN4awzk6rz2o+fDSiBzkX5rDl37GNYcib7EPwfMS8/ruhPBMH3yG+F5vsQ+RvLz6KXsslvcG2jkaUORCD7X2EfMNVUbHrUtTcTXRbchRrUvgJvSPn6+mZ3lbl4ZtzQiXnnj7CM0YM63aPpodkTOjTTkzCsqptymnXlDOrDblzCooZ0GbchYIOXz/Yppwa+SjA1ombo3gci3fGGX0zw6M8X2MtkZwe2EalR9f6OC7F/H3Yzj0NuB5iVBY+AIRw6+HiT5ZJfQ2SB6XD8NS8TsEuQWgVRAVnyVhYtRIQDN8xpvp04hvreALAhuj1SzIU5YwTPMQLNOsHD60RRDPugR9g7Aags90747wIwbyscck9DzvDkHDsBZm9P8VNj75DkElC+3Bh2hM97x74VgHo/9T0IHvpmsAjyoXt+ZZ9B19654c+V+CKPPnA1p+EPK5fBjV8u7na5AORv85sQmuIiXqo55xzzBIeYMRWv6NRvX7eeiLfDehRZi8snP9G/3fR+q/LnSI/fIn68A0vTk6fFHo0N7dhBzluJa4JuoCJy+ZNVKPNe9l63DrYDn2XXlAu3cT9uXI7Ao68f3RxhfCWN9csa8s3Dcbfj1oz2uGQinh6GnyuHw8LWoIXRoiL6+VtpLT5t2EeZ22ChbMH4g3Ec/SpH4HeWqqkS/nXJhqMJaaQqTpwewvB/berDLUTxrMBj0U5ibSQa0CqJNJRq9WrpaKMpotcZViWQHZaEvuCIdK6qpWV4aAhk8hon7LS+q64QzrOlvoeqZPiPFprtWQxz+VgCfE+KQXnhDjn0rAE2LzKE+dELO8l0Bek/Kug7xllPdSyOOlgZdBXoPyXg55eHcpJ+5DsL7S9vzxRWO4TIef82IRtvW1pOOgKBsubfQBNspphkLpRcbfVY3/fuPvrsZ/mZWTh61pMuweeF6ibTyANrGkhlyGXyddSso7PeTqIXlcPh5y9QpdGpSXpl1Ax3lqUtIVwRp2xBp1xNrtiHXMEeuEI9aII5anvQ45Ynn61xFHrKOOWJ4+sc8Jy/i99DruiOXpE3scsTx94rAjlmdc9WzbXr6apk6Nq54+4Rm/hh2xPH3C014HHLE87bXXEcvTVz318rTXudBve9rLc7zqGaM9xwCPOGJ5xq9O9QnPONGp/ZDnHMazjI86Yk3F1RdG/PKqxyRMXHPrFHt1aszp1HHhfkcsz/bo2dd61mMnjleTMHENu1P8yzOuHnTE8owTnbrO5KmXp+07NU54jsnPhXmtZ799skP18pzXetajZ3v0nMN4rvt6Ynn6BLehJPuO+6R3wee7IR/p7dYitY9dYu/2wQHgCYCB2BX3oR9MCC+E8WONQPgDOfLSVBd5tQK6/Nqr7t33N81vnZ8Qv+nCz4rMTdSettmq4m913j8AMgLJtjzcn++hPLSL6ZD+fXLxeP16K+pXxH6I3xD0O4GuTF0MhvG+gP6u3izkm7CGII/PdbU6y8Q/GP+i7HtvDr3h1Yh+etZe8YD5TKJJP9dz5KF++Cx2JvFFOVh5N6RdmKP7IOjOZ/guEfqp469Gv0LQXwI0po+yzYqgZWN5sD7vo/IY/QJRHtX+zKf6AMfySrSd6amc31g8Jofthu2nlY3SxDa9VNCjrcwmDaJH+1oevtZ1CeVh2xkiHdSZQ3zzls93qZsd8Va/2A2OndSuVxRs10ty5KF+sXaN/GXadZpel6P7FSXb9RKhXye162sKtutm9nmqXbdu102hQ9F2bbzqtteVkGe4eP784uxzjehvivjsqjBR15h9Lxf0q4CGb81cCXmXUx7yvYjyLoc89vUrhR1QLz5Xb/TrwA6fBh+0sgTSq01fX6N8Hc9es6/jrdzdgp7rYrWgx/PbZpMG0XO94HfEQpvyWX2zUa+gR7wa0W8Xsd/0w/h2Jem+oqTuC4Tu6hZQbFOP9j//2XwQYzH3lSsiMpkX40xvDr3h1Yh+WNgrFvPRTj2EafQPRuKBip/nwzP2QWX7S0W5lE1XUh7qbr6g2qfRtdk+X63aJ5af22esrGli26jYir5r9d8IE+Mh9zfYNi4lOWrcUdT/0Yce6te4ef3NBdln9q/jEf9S7WYInpXtz7m/Qf+6lPKQr0l5aFN+N0j1u0h/YRhvB6P/oYL9jZM/z1b+jD7L/hzzzzSV7fvNJo0wsT/geKh8Fuua+xuzUW/QdWB4NaJ/a6S/aQL/StJ9eUndq7S326i/GQK6InMzxB0iejU3Q/q8udkTkf5mCHTnOYbqb4z+pyPxQM3pYv2Nsv2LRLmUTS+hPNS9mX1W7RPfv7PyWV6J9jlHtU8sP7fPWFnTVHY+yf0NxsMhymtCHs+dh4Scov6PPnQN9Tf87ilioV/E/BHbjdUT++MvR/wx1s7SxDZX/ot+Zfoof+Q5D+rezD4rfzS6Nv1xm/JHLD/7Y6ysaSrbVq0+G2Gir8b8kftn9c4yxhD2R/SjZVDWizN/tHX/irfVl37PtpvycF53M+Xhe7ZYP5y66TuWJ63379JaTxBY6p1D/tUE3LtZTXm4fnI15eGa+4spD+8iuIbyGpB3LeXhO/8voTx8N/Y6ysPLcaz85gP4fnsJHyh8hYfh10mXkvJOv0+qbgnE8lkbLXe9Ft9sgFZBVHyWhImemYBm+Iy9dT19L3O9ltXcAnreDIVS6dbLb5HjKgvWJifVQk3ntFU9XaKFYn1wC50PeatBNtfrPCHH9O8S9PMJa57gM9u3ktct+Dj6Kr4kjO91uC5iv30yn/CboVAqfGep4Xv99sl8ksfl4zfFFwhdGkG3DfuMeSgn9ltGiNVLWL0FdW7zoh/+Pi9HjS7BH4iXm2qRww2x29Va3TBmeHwJzFfFREw1I9RnQDxjt6/YwRTu0Ay/Hia6RBW3n0vyuHzs9ioMNURe3mU9reQ4umqa1ueooXrKQFiJeIZ5ylXxrEgRV1XnVNhVvxNZY0kEf4r5WH287NcAXXeYWD7WdR3pqmhQV6O3ASRemme64ljW9Blg/jCxSa0n3ZuhUCrcpAy/TrpUbVLrSR6Xr9oYkb0PrYKoQdAGkdeq5dxI36uMEe+k581QKG0wr9ggMi1vI2AnlLcJ8rA2OakxoulcdoyI9bGR8u6AvE0gm+t1vZBj+ncJ+jsIa73gM9u3ktct+BLCSOg5rgy9RsjmE6ILITp8kzpdlPWaMD6pCMFjoTSxvUOYGE0q+uSOotHE8OthYt1XiSZ3kjwuX7Vowv2iSdlOqEaDtJi2g2ZIz9+59pqCj5Ph1EjnqzIvSr3vguzzzDDRe/tJb9QhFpcbgt/olJzpbcqZLuSYJ2M93EV5NVFWPq+cpi2Udwvk7aS8W0W5LG9tBPO2CObtIi/V79cb4+kwGiU5f9PULZ6xTdcLXa3uMALw2VbV2u6MyEF+oxsQfO2WR+msxk545f71jTEe7E0xaqMfD2Wfa0T/hwvG+F5J7Q3vbTQdlZ25LZa1c7+QM9l25ja10VEOYm0B+vTfZsJiO1s9mZ1xtLOZ+BAb6XBEsBmebxGyFb5htPLBDQ1dtjwfNFk1ov9V8MHNFX1wI+XhCJL7Q9MD7YD0Q0GXqzeHPq9cO2FExHO79YJf6c53+W6M6J4m9kXk55HrZPg8ymzlPw+Q/2yCPOU/vO9u9D8H/vMQ+Q+O0Caj/LF2jSM5/kEK1e5U/GA+bKNzCuiwWejcEPxGNyD42vUNpXMr3xgl38A85Rt8ftfo3wi+cYJ8A+On6ajszGPAsnaeLuRMtp15fLfVUQ5icf+2nbDYzlZPZudtkLed+HZAHtJh/7Ydnu8QshV+0f7tLQ1dtjwfNFk1ot8NPvj2yJwm5oNbKQ9tyqslW4UdVB0kpHdvDv1WKpfRv1v0b7H2uhUwOZYb/U8BJp8vMblYLjVbjvniNlEuZdPtobVstPPaHNm9QZc/z1f+TcSmxt+TUx62qdG/J2JTZaOYTVUb2y7KNVOUeQdh3SGw0M5FbIrlv4PKb/S/FBmHbRT8auzAY0g1DkN6Pmej2pgam3Abe7LgGJLHNri2cDfl4drCBsrDPQuei90CeZsoD9cWeJ0D65H7v9sgj9cdboc89H1bW6hRWT+aPW9zb2HceZdAWMq+Sc7fEIr1p/wuPcqZjHUTJecORzmIdWP2V83Z+HdXyq4bIH9sblhrU05NyGEsi8lpwn6Ez/Ua/aehXf/XxeMxNwj98A6AtZGycntGLKszax8Y+yZj783w66RLSXlJLOZi+Xg7e5PQpSHy8uoU5aifWSyrl+OvxZqKi4lubY5qicBN6B8/X0zP1NYyYp+ppnc25cxsU85MIWeylzpnkpy86c4XSy4pX5h95iXlbTDd+XJkupPX7NDXYkcuTF7eMYaeHP2+Jo4xJMSDZb4wovMGkMFy03RXjg7/k4YqFUOxHKrwUigO6fgaEwxlvDmMQ5xu8Yx9bp2Qw1h53aTZlYd03y7ZTaJvr42UdQPlYdfEdlByVHhXdojJabQppyHkxLr9qrFE6cxTiTRhLOmdNcaDPontCnltGlAj+psgltQzTBVL+CfGeKjB8TWvn8yLJXfm6Dcz00nFEjU0vC2iM04BWW6a7srRYU6mg8US3gpqhmJJxRLemsD4x6cAy/aFyH+m+kI+5DzZ235quZ/ji9qO2hSRo7bUWrXHoVlapmqP3K+NkwPtcTm1R4+turw2EUKx7a4NQk5eDEpTrA8y+lXQxrkPajX0j03V8vTDg1VIPwhlzsMK4pnRY//HyxebiHZjhJb1Rt+2V4EtFvGWcjMUSlvMn7eITN7SQJ0sD5cR0U6c+IgS6pzW95/Qq+dBYKnp5tYcTNXm7yFaK3OXwOXtImzHbK+dOTpwHYcwcYnfcF8zawx/DfUz2HZK1O1WtSVlieuPbcdJ1Z/p9f1X9SrW3zbKU9dl8nyK62PrWbIXz/kxnQ178fJzK3tZnpW3S/DxIVST9yj46w7Cq4Es9n++KhK3Z5g/TTwWM/p7oK+4Pbu/bGaY2L8uJHmIrcbH3M8tzNFLlRPj5GbS22hPkK/ydmszFEprrI63k06IvaMidkJ4IehlR8MfEPJMr7rIK3K968H/NXz1cO+jv58Qv+nCz3gefJegXyjozVbolyVs9YoBkBFItuWhP+6gPFwzMB3U9a53VdSviP0QvyHo7wW6MnXREHLWOWJtrIhl186q7VSOuWnifkj1/Wk9/gyN07HeF5CuZeMQ8peJQzzWNdqfojhUcfz4YjUO5Di0vSJ20Thk+AMhv17rIq9IHNr93JpDn9j0maVJmBhvu8WzItv46kXVNtv5lSoOcaxBf9xOeRiHTAcVhyr2KVcWsR/iNwQ9x6GiddEQctY5Ym2siGVxSI3BVRzi8d0WUR6MQzzHeA+M2X5u1nisIuPuNPFrCRsjeZsFZir7V3LGn/YyEs4jeY6mjhXZd3yGvo48vPZg9O8H27yX9ON57U6hnxqr47rkL8/Kp9sSoSs6vuctWXVsumi9qGNavF6kjrjjs9h6kdFxn/RbUAcfjvSli0iXsn0p8htdkVeF7hQ6qHaK9fnWwfF0aKMk56+Vg59xOVT9pFvfdpFCtvV9667RzbuHj+x6cPOuB47sGu0mDXgHg1vVNtJIJdOSRya30/d19J1XhTcLnFYy1S4F361Q9mWyeULnsynnvDblnCfkqOjerkcqnVutmP9hyR0sXjE3+rfOH+P7o8iKeczOfHl8WTsvnpIzqXKWtClniZAz2e1gCZUHe2a2W9ldGOTfeIbltGrXX3Fq19dDu/5agXYdK2Nsx2idKKNhbW6BxacPkD/2ssG6AnJiL7ysKyinSHlics5meQxLvWyBdbApotdWwtrWAovbknqhQPkg61z2pAnyx060bG1TztaCcs5UeXgXH2dsHLtU3W2L6ID8vMqnVq2qxnylc6sYOTg4xpP+Uy8+xU7vGP2lECPnZpjKzuy7LzQ7b3eUg1g8y8+rzybV5w7IK1KfRj8b6vPCAvWpbLMhUh48HVUkHhZ54WtrhF6tgqp+wOyLuzdWR23u1AwW8QPEr5MuJeWdPkx/N8nj8uGh9bnZ52zmvmbX0atWX3fT96btJw+Nsk0NdxYKBf2ZPtB35kt149Pd24SMNLH/bCc6rnd7zvhFdGpF2ypftZu7iLZsv4b8eSci804/Wf3wSeVrsnauTj+pcRT60NpIWfkyi805uneLMvTn8L0yaP2wzGsjZTb66yNl3tqizDyeUOM9jk1M1y3K0Bcm+gBiFBm/YH3jD1hiHuoXWzldKuRM9mriUpKT19/dRv2denEW2/yrss+8+v7deWN86yL93Zkqf6s2jWVhn8JyqZOeaeJTLUa/NSt7m6dD5AnjvJND3H63U52qssfq1Oj/Eep0Z4E6jbWP2FhExYmNEXo11lFrRpN3wib5uyI+ivhq97rKWESdilE7k2XHIob7t1Ag1L/VWIT51FhkS46MvLbH4wMey7Qaiyid8mjLjkVwnYMvQCi7pql2tc0/uX9vhkKpabpsBD3UqSGOk3jylduiol9H+jF+3vpDLWjb8M6i0R+EccZ6Oi2IOizK0S+EYnWB/GdqfZl3Ijc4ykEsHuNgva6Bz5hncvJickPwx9axt7cpJ3Zqo5WvX599bjUmegP1n+qytprQg8fGvwj95xup/0T+2H4Jv60Wu6wCd7d5V1y9VYO720ovfoOz7C690offWvw3g2O6vIN0wT6Hf4yw7BuXyM/jA+SzttQXJtqjRPwt/OK/4dfDxDJXGR+oOlJ2sbL3CF0aIg8vNMmTE/uRyp6Cejm++G/5K4lubY5qicBN6B8/X0nP1BADsVNZS+aNyUEzvIemDty1NkOxpKYOHGKweriZl21ayJ/3MjN29+qgjQp9/HtwZbty5F+Xg1UTuqeJp3dG/zGqo4rDsw3q8B2HnooHejcUDT159+uhXnWRV+TQ7dP16//gHz7883/EXajpws/Yb9QUUv0modkKl4dK2Gr9AMgIJFsdut1MeRg7TAd16LbiC03ri9gP8RuC/h6gK1MXCmttRSw7KKumEmcrJuUt7/IdtUb/ichSp4pN6iX62GUSHNO4jBxz0tQMOn2XkuGZ/acJWXnHN34fyr1hyXhdNwhdLUZ0R2QE8SwJ+bZhGV2C92VhvG4bC+imXoJGjK4cPVMMNb1hvy07vSn68vclbcq5RMiJ9Un81+Tws9ixk0tITt706y9LTr9enn3m6dc7Yfr1N5FpDk8j1eU6OGYpeyEGxxOj/wK0K74QQx21ejlgsp+hDC5Xmng8Y/RfpvFMxTGHHHPy0g9Okzm2pun2nDJhnI7dRaa2sLZE6NWyM/okx2x1zytj5W2fseztLWRz35h3Ny9+R9kbIrLvaiGbj2GplwzZl39x7pgO36L2eyvwqHp/DWEa/TvmjGH+c0nMdTmY9dljmP87stzAv4tedvyB/FPLDeWXG3hMoOQsE3ISwmql1yQsNywgOs/lhgX0rMxyg7k5Xj/7YsK/FTC6xTN2c+Q3OiWnr005fUJODOvFAsvo1wr6PkHv6Bqm4hKi2xJRjXFbucYSepbnGpa6SWb6mVecuGpYx5kCoxYpU7d4xlVdE7KUnGvalHONkMOb+VdkvUWfkF8iWv6YRT/8dSiO/BVX+36saOTP28xCvdQvPxZZ7bn0t1//b19+4e47E+I3XfgZN0l1eOsaQd/mFZBvUqs9uMGSJrUxo1Z7cCbNqz0VVwXfVMR+iN8Q9LzaU3bVFPPWVsSy1R48ZBhry2cqZkyGnBiWWgEyerNNr6BXMcnoX5rFJPWDzcreQTzrChPjEb8Uglhzc3RXsg0/TQ3Bb3STGBN7ysbEephY5iqjYdU+lF14ox951cY9X7lU9rBrp2Ohbw6Eif6b5Pw1OfyM5WDbm0tyJutQRxE/ryoHsfhA5WQdHrGZf5t98CY+kIBJ7USxX6grMywPV2XY/urFCj4gmH6+AT5z6qbvPA7YvGQMl+ksqdVc7pfKruaqVT+12oCrrA/N1jJxxVHtyPDKz3FYpdkzO7+MPKOvumJ5kMbkk7Fi+ULy8Sp+/LaKfhz75T4+gbBZlEPF642UhzF2E+Vh/82/FIix7G6g43gaW/FXY8rbKA91qBWQExs31QrKOb9NOecLOZPZb6HMVnHq7RSn8PCailM3Zp/55MaDEKfeQXFK2TkR34uM601e0evRjf4JGNfzbpAq840RnVFGIIw0cWw1+p+h2FpxHitjK/e5aEOja1Nu4VVww6+TLiXlnR73q3Evlg+XFDMTF/htej6zxBFd7SMkYXzpMa+bnvUQ3a30fa3gCwI7zW/zQv3N3CtiKtsrYm1yUj2f6Zy2vKcXjOEyHesTe60Je0V+la3VeQjTv0vQbySsvH2+7gLy1KoDz7gVX/r9JsHjOaPyPIugRmMccSqOIucUjTiGXw9ttZPTEUedu1I/hKDaDo+M1G+wJZSHcmKvOiLWrU5Yado5hTWFNYU1hXUWsIrMPLGf4rM7GAd5Rlh2Ixz5Yxvul7Qp5xIhZ0DwVe2TGxGd1eoB263sDwEhP1+mmjfz/MpsLbPozNPot8LM82uzx+usZp4h6Fk+1oNhMG8f6GB5JcYXM9Mx8G/AD1uwXXl8EBuHpJ/tzCKfJceyK18oWkf/THVUgzxVR3xW1OhvgDr637Q6gPx8VjR2/gnlcTvszaHn1+ROt7VMP9z1i50lZ3l5Z2cvyJFXA3nfpjkR+h3uzIdQ2e/mKL/DOMN+p1a4VDyLxQu1UtcIE32YV3jUWUB1bjQh/t6g6wDfkUL6hqjzon7O9Wr0swvWq9lyMuoVbcX1qnbR1SumMT9A+8dWIPmVxlsEFtY112urtmx43LaWRuqV301hPblejb5ZsF7NlpNRr2grrlc1/lDnMWN+gP2D2UTtGNxOeep9mlj8Rj8oUudYP3nxe5Woc/WORK2AfnnnWDMRtrK4eXTkyK5saTFQii0Fpt/zjt/OFvyBeBN6xr99qcJnbEHdZOcdlOHwafRXC5PHwm+aihzRxuqejMVpw/c6ot0qrPFSUayZxaYyZ8FVQ5i4yoRqMX8grEQ8C0Efm469MRSLbspU6uwX0uPbDUh/Y6TnaLWHyZFPjdyxdzR6Vf7YWbF1OXKwR8M64x7N6G8v2KM5zXxkj4Y2KrIyGnujWb1tpFZL1QW/PDpFG/NbVq2aIZ81UH6qZlbKX2Ijs5h9lH+pn1NRZwVis2A8vxGC7ywYy8O+EKvbNLFt1AVmWN88asVzHbzyhG2J3ydQs56ivoCrHV/J2YNvhWv06gI69GGelRv9bhEDDFOdkYr5o7IFxnE+n4JDIH4jDvnwvIRhB6Jr0x9neK7KpKlqW41dtKhmWHmrOGhvPONxplb++AzbKfCzvJ+tLrqiZPQ/FPFdVYaY77ZaZeNYqi77P9M79BxbML7xjjHGNz5/hGcz+QxJ3k9JcuIxINqh6LnNWNwpGlPRlx4in8dpxZUkUw3h8Rn7PPIbnZLT16acPiEnhnWlwDJ6NYae5NfyTMULiW5LRDXGTegfP7+QnnULWkyqmmo5eodQrJqQP6+aMLzhbJwvocDhxlWEVXaTCfnz3upUuqeJj7AZ/UeysNvmK3tPFHk9peIxtScSwgshRI+pqQNH/MoeX07SDPH0Wx/YOOMzn7ju9CtnRV/diIXBqwR9m7+K+hOxYZV6ZY9f5yv6q6gVj3r/RBH7Ib46jsyv7LXzSs7GilhFXtmb7JjESwAfFcOyM62LDVt+uwN0saHQ73SALjZ8+v8iQ2fVH2DfyX0L6h473HCmDlGsblPOaiFnsg9RrCY5eRvn/23OGA+2dTXNSdPrsr+8SfmOuWN8f5FhqiXDvP49CfFxB+uHx+rVxVus31+Df/Kxei4zllPpjL/1EwgjTTwmMfrP05ik4nFzeazesIqMVyrKLbxzYfher9PeSfK4fNWO1fPiFFoFUfFZEsaXHvNabVDcTN+rHKuvODq5y7ziLpFpeXhkjiev+KIU1iYnNcHGF8rKHKvH+uDfI8cR1d0gm+v1TiHH9O8S9BsI607BZ7ZvJU9tpvAsRPGl318teDxfiGY7emDFrrCtuNhU+Je+DL8e2monpyNObJE4TVz2zUIXddSNZ91Vr2BNP29xxNrmiLXDEWudE1aadk5hTWGdw1hFXqrG/uC12d8zNaNUcq5oU84VQs6A4Kva9zUiOqur7NluRS9SUnbjzZO8Gd6Vc7XMojM8o/9hmOFdPXe8zmqGlyY1m8Z6MAzmbXOjdLraKEW78kapWsVE+vuyv7GjesoXitbRDVRHsWO9qA+fddsNdbQm+6yOhxe5VlPJ43ZY9Pi60d+S6dTq+PraHHlFf33X6G8HeWfg+Pqg8juMM0WOw6p4FosXakVMHRDi47BoYx6Xlj3aro7Dxo62G/024Q/cF7Fv5Omn7OZ8HPbOHDVmCf5AvAk9m5WDZTjpM1zkKHIcVp3b4xBxrzB5rMrSNHUc9gfuOOzNOWokgj8QViKehdD6OCz3KjETK1NVfZHigHDpWIRVI6zYSACrN3YcNrZHvjZHjnrBI03coxn9aMEezWkkJXs0tBH3aEVXToy+1ZEmbmqxFwfVzKZoMyx6HJZHat7HD9m/1MvG6nhXbFTtdPxweicfP1xHedgdbSI5RY+ttjquyDOrtS1w2SdvAyy1msxHCo3+3SIGGKba54/5o/JfdR2nOuLP8Q51jx3PNro2/bFf+SOWv8gsL3a2pWhbVS+L8lV22BdwP9nKb2L+iHuX/432XTF2zCeZZVcekJ+PSKOcvjbl9Ak5Maz5AivWFib5KKGpuJjotkRUY9yE/vHzxfSsW9BiUtV0a47eIRSrJuSPucNkLHgpOZe3KedyIWfCEZcs7LZ5K/UbY5tvbW70vjEhvBD0bCrvt75QL7WZVuRI4dcbWz+5/9lf+vexsBsbEqrfJbpc0JutcLG8hK3eoLomk62OFPJxQ+xeTAd1pLDikcc3FLEf4jcEPR8pLHujMOZtqohlRwrVLednKmbwkcKnYAjFR+fOlC52pPBPO0AXO1L42bOoi5JzRZtyrhBy1IZAkvPX5PAzlqN0brXo/3maPqi342KL/kb/GPy+4Rdp0V/ZOQm6/0r/4kEUbu8mD4/eqd/hY/2+Aj7FR+/upDJjOZXO+NukLDdNd+Xo8A3quyv2r/LoHU+DcJWY24k6IITPYu3E6M70YTA+soqHwXhqgv0Nv8F1L+T1UN5rIW8b5eFRTF7GxMRLmmij1Pe+uHAMl+kCySx7+Ewt+V0NnzHPdOVnXPfIHzuefGebcu4UctTSJ45XY4fRzD8rHvssvCPAr75UfMXn9I5A7A6h7yuW/VVjZp7uY17ekWeUc7WQU1avSfihupVEtzZHtUTgJvSPn6+kZ3nTWPt+Nt8AmIwm1mp4sHCelpn3AjL/bLfRb4HhwWL4zDs5iLU+jM9DO91B+qtzNH1hog0nIwQYfp10qRoCiu7HlztpnrfrnxAqPou1BN77Y35u3WVOmptctSapLsSK7XUxH9oiiGddgj7WIfWQ7t0RfsRAPvaYhJ5ja3uNkM0nTi7PWlU64HiOBrtKFtqj1akKpmEdjH416PBMzn5oLadc3Jq5g0ffuidH/q0QZa7NiWJByOfyYQ/Tm6PvraSD0b8MbBD7eTzURz1Lgv6Zl7zvrD9+xu/KF19D9Le3KDvXv9GvidR/j9DB9ApCf9ZB0SgdbhY6iKh548ihkzknHHgswVGOa4lrokfg5CWzRspj3svW4dbBcuy7sk5a8mwGOjY0279rNO90B5c1r0fpCjoNBK1bms7WgZ2eavKiB3awfFUP7OS10lZy2jywk9dpq2DB/IF4E/EsZGrPqD//+YU2fGasvFWzB7O/3EndCwHq2zmdZFcOJq+MqRmaWtUxerVyrjoltbG+sYBstCWHo00ldW11QId/j0zdOVRU17zfBpwsXW8Vura5elF6dY1XwnB1jX9NCFfXeJUMV9d2UB6urvGKnVpds7z7II9Xz4chj3cT74c8nu4+AHn8SsaDkHc7fOakVvqsvtL2/PFFY7hMh5/zYlHRwxcYe3i6vqEFbt5uGsYxbA9594u9IRLHvO8X41+0UG1d3ZuHvmPYjNnph9PU3Y6xw2l4z1mR364s6jcxf8QdJN5danVvJ/cTuBSlyvuK7HON6J+I+KOyYSyet7ofk30OT9lsozxVH8ofjW4y7g7F8rA/boe8bkHPttkh6PGOPD4ci6/lbqE8bMfcr2D58Q7fvxwcT4eHN5Ocv6YrP8s72Jkm3n3Z6igHse4iOdhesC38MsX5bZCn2sn12eca0X8SFkmepKVY5N9K/Jb3IWhn/2VJPj/foasOzao2wmMxVU6kf0VOOX8N9Pw0tIcQxteR6dVmu2uUbXfqtFGs3e0U9HjCx2zSIHqul7yYjD6ZF5N7Qzweckz+uFgMU33RNtJ9Q0ndVX/SKo68IYsjM0kHjmd5/YGqq4bg35aD1SX0x3bL9d4tZCt6PInQHSb6Ar8iafRPQV397hKNGXJ02Jyjc28OPZ+WMPo/Ef4SiwPo/zsI0+j/DDD5grBWmK/KwfxsZKyh2in2sdyu7xb0WF+mj/JTPgWAunO/uBPkM+3NJB/z0M9Zbojoq16WiOnL/Y3lfR36q89nn/sIr2Ss7o7V1Rqhb9G62hwpH2MZXy1M9MdYG0F7PD1PY/aUxPyq6NPVWOVuwP96zngkTTweSRPHZXUNDI5z1NhgC+lv/cSzoj1O3hg7+buyL4Ao28ReAImNyTGGq/5mkPLUXemJ0KFsX4pzvu2D43G3RnDTzxeSHq3GeNdmnzkOd2dvYag4rGwYs3mreY3po+LwDspTPnum/RHLz/4YK2uaipyMx3kd+6PqP5Q/8jgr5jdpivnjVijrbTS22yH0UTGa9Wk15uZ9DIuPvTn0HPONfiH4MY977hE6xPz4XkF/j9B5JumAvCwb2yXahF8WNvrzRbtU/m/1MhkvC6Pd2P9jNkoT2/S1gh5txVcd4br33ZSHceMeykP/u4t0UG22aNsw3tQOTYrV2wviJgJLxUmO1UZ/eSRWq/gS8/FW7dL0Ue1/J+WpWBV7Q2cyfBXLw74aG3OmiW2j4gW2cY7VGBt2UB76Kq+HYfm3g+6DBcYCsbpttfbK8UuNI1U/zHPUrRE5qJe6AGBrRM7iNuUsFnImcw0SZaqxDZen7FoI8vMa7zbH8iid+cR0mnBNdcP8MR72427By/2d0e+dP8a3Ofus9qrYb4r6Lr+NEltDShP/CIH/mDP0nO0xJ48rMY7zWQV17gF9D/tOowmk42TYC9tzkTmjihsx+2Kb4L1AtOVmykN/20pyWl08EhuH4F7zV2a11j/2e4at/IPfjlJjKzU+wJhr2IHoJmMMgOVhX4iNd9JUdk2RfQHHB9spD+ufx6Rq7KjiJddx3tiR96yM/tGSY8eY33iOHdU6/yTGkI72m9jYsazfcAzBeI59tPXfsTWyJIzvJ/Oun87bX+GzFgk974fnyPcSKjOPkRj7OqK3cvbm0Bsej0XeFVlL2N5Ch5eSDjta6LCddDD6nxI6xOyfptiYsC9MbIsl2k0tITzTB58hfj1o/2iGQilh+5k85Qdp4ras2hPm8VxGxUDVzhXWBkcsHFu2UV+lzzLyvALjGP8GKM6PUXdO3fQdy5P69acK/Gaj2uvA/Vz2se2Cd7vAPlvtYXs1edH2oOYAZdsD77Gf6+1hO+V1WntQ60rKRmlqhmKpSHupeCPOUNH2Yvhe7UX5nmovbd5I1EynYv1hYqxaAZ/VPgbWl1f94dj9bNff5mryovWn5iae9Ydtq0z9qbW/efAZ87A8sbU/5D9Ta3/zSE7e2t9nae1PzU1ja39G/yVY+/tcZO2P1/fUz82ouSO+H2LyLa/MmZdOPhccO6fOfbvX+tMf5qw/JYB7veDlto30O4QeRs9n4piGz6+dPpsDcyl+qVb5LOqVt57yjch6ymSfX0M783mwvDG9YYcwccxg5bO8Mv2CahNYHm4Tsb21NJXdi2e/V+9S5bWvNKlLcWO6bm5DV65HrCs+N2C06JdYHvbL0z6b+WKrcwNm88mo/9h6mrJpbD2tlU15ThM7UxBbT1Oxt+h6GsaQz1L/pc7sJ5SHMvFZ7KY6Psdnc5JBqH8+q7sJ9FRx/7YczLnCp2JlULf6Gf3WSJlRn5mkA/IqPnz/q0/IatqH78aT4ZmvTBOy+Jyt0S4BO21YonVJWJ8WKfaOTl+Y6NdlxrwJ4YWgx/SGXw8TbVFlTK/GwMrvrXwV54DLcEyPfoRj+rx3FvjcQN47RRfnvLeZ907Rquwzt7FVC8b4VuRghlB+vIb6DNF4LdYW09TuO31o89je/J2Up/ZcTQd1vgDpr80+85r+i6Ftxt5lcjpP+o+dvLfP760q/1J7++w3ee+mGB7flvtKqAN+lwnvieD9040ldS96Zh7bBrfjonOkWLtHvS/MPnO7XxvpW9V7WrG+tdWPcPB+PtqS3zVEvthZGKe5tdyXxfJwe/GOXTy3Vv6s3q3jex7y5sq9FHvVewNYt0V+dAj1uCD7zHcM7Iz419m8Y0DdPqz8y+ja9K/Zyr+wPOxfsbaUprLjWqvbIncMYCw0mQOEg/b+/u3RjfH6qH4SeS/OPnM/uS/iLzsiZUxT2T6K32Euer4o9o4Yn7XaKeyAej2Y/eU1o6MFxwtO55nWnO0zzfzOIc6x+Z0Ota6JNs077573TkfeGYgfiowX1H6waltFdFdxV7U3bFNvydqbmufzmHVrRCbzYt/Tm0OfN/98i7AXx7O898OWE6bRvz0SD1Sfegc8K/tOHp/tVe85xc6lT954Prz6bK/9c/8RuxMk73wW0qKcov6PPjRK/o/9+XqSGRvHMi/KyfP/vLsS3hPx/1bz8iZhGv2/Lbn2FfP/VmOE2Bgpdu49dieO0/j85rM9Pmf/j43PMf5ybFVj3qL+jz70AI238F4M5bND2We+C+YjJf0r9t5P0TFo7K4aFXt5fUaNXbke8/oZnqcY/ccKjrec7pqZc7bjOd81o8a3sfg5GXfNfKrg+gyvLW0sqXvR9oZtagP1Nzj35f5mY0Qm82K7zutvDI/7hj+J9DfqF4HQTk3CNPo/Kzlfj/U3rebrvB6k7gxSc/nYfN3pB2vnTvadgK3Wyri/UXdAqLZR5E7Aov6PPnR95v/t2fWR1yegi2F3C8oa/TWaL2c+WQf59rdWQI/PffJbf/6R21cfGCT+NFkdpXs2af1/gfwf16bMlup+RfPZbtJN8SWkA9N3CXrDHRB5NShDVRst/tiuP37lX33lr1rZqCr+W1fXBt9x1/q1k4X/x9P+4dlP/97DPzFZ+P+jb8PNXb/248smC/9nnr3jmjcuvPAbZXzUfGEm0Bqf7WM24HmJWFj42nbDr5MuJeWd3qdtkDwuX7WfVJkBn9kqiIrP8lqpaRZy6DhCpKnMT6pYzQ3S82YolGabV8wWmZY3B7BnUN5cyMPa5NQt9DedUy99mk4CBYFlMrE+5lDeLMibC7K5XhtCjunfJehnEVZD8JntW8nrFnwzCCOh5zhK6xaya0S/YOHzf1PbfnNBGFfOGWH8d/S/e0hH1auEnGdcDn7Tg+WmqS+0FQkGi0Yew68Hbe9mKJROR56ZJI/LVy3ycJ9vUmYRqtEgLSb01pBDp2r0NsHHyfgGcjDT1BcmemoJK/cXrVV7ViddqtZqN8nj8rFHs9emqREmegieo8zzHtVvTWFNYZXBsl7AaG/JeoG093hp9ln9JB/Hki6hS1dEF+TnNoJzIr4Hu0eUwfJ6I3nTInl9kbx6JK8fypBQ3nTg4/MUAwIzLdd7F46n41is/oYwMc6lietKjSaw9+F5JsapBmHNaoHFZyaQfxZhDbbA2kRYyD9IWLNbYPHaEPLPJqw5LbBeS1jIb7zm692Cb0DI4b4QR8ol+qbpRftCw6+TLlX7wrkkj8vH7Xye0IXfEUsTx715Qs48IWcKawrrbGHxbNfw1V+Tw89YDsYDnsViX4t72ocXjvEgX97vk92X/a0R/adhXDBK4wKMG6bjTKFzQp9VvMBnsTHDXCr/ZNmZ+/XEUQ7m8Z7ufMJCO6fpvuyv2Rlj6XziWwB5SIcrD/Ph+QIhW+EbRisffPNCXTblgyirRvT/D/jgWyJjU/ZB9M+E8hIqC9Ip/8Q6u4/oTe9eQY94NaJ/J6y88J6b8aOtUC9+v8no3w2YvOem4ptaiYj5ouq7lU3nE9YMgYXl4X1fZVNsnzOo/Eb/s8KmPB5DfjX3uJvycH9uJuX1Ql6D8qZB3izK64O8QcrDtf7ZlIdzDx5XTYc87icGIA99y+YeNbLD+7PnfUG3l2YolnjfIRZb0dbK9nXKQ3/tpTysl37KQz+YRnlYZ9MpD/cp+ygP69Ns3R+Kxb403Zf95dj34Uh7VvFajbuNfqGgxz7C6GeGiW14IeUhH8eBhSQXP5+XfUc7oF72O5A1ov9PYIfYmRrTq809+361Z38eEPCe/SLI6xb0XBeLBf0ioDGbqHtzObaqOI025dhqNuoV9IhXI/rfi8RWjM3nke5JSd3VPrhq89im3hwZm3L/Pi8ik3lRTm8oN27540j/rsbjqBf370b/mUg8ULaM9e8qfswX5VI2XUB5alyg2qfRTcbvbGL5uX3GypqmqrGyESa2H14HwrbB/q/Wm4r6P/qQzfeqnhP4qd+9bO03Nn7t/CrnBHAd1fhs3ID6lKjf/4L6W1JrWYZfJ11Kyju9llUneVw+fp+7v5q8jyfEj/IQs07ypleT1807q1w36T8b2/bm6MJjbqP/Nq1fDwieBuWliddfMK9bPOs6S1hq7oJ2tDpJ2+E3aNzMNm6GQmk1j/cNA7Er+sL2om3L8OuhLV8/3bamkzwuH89nBoQuqr52AV27dX+iQ7H2OWIddsQadcTytNeII9YRR6wDjljDjlieZTzaoXrtccTybI+e9bjXEcuzDR13xPKsR09fPemI5elfxxyxHnXE8vT7To05nmU85Yh1vyPWY45YnvbyHJt4+lenjgs9/b5Tx3K7HbEOOWJ5+n2njuU61e89xyae9Xgu9GmdOpbr1FjoOZbzjIWe9ehpL09f9Rx/PeCI1anjr/2OWJ5t27MNedrLsx/ybEOdanvP+OW5Ltepa0Oe/uU59u3UMaan7b36jvRz3QkrTdZ3zMzBxs9qb7QekZMInbuFHNzvHsie4V6R4fSFibYosQ9V+HfODL9OupSUl8TqB8vH+14zhC4Nkcd1FdunRDkKq+aIxWcv1F0Xat8vIX6kV/aaHsbOXGZvzN606/5jD68beThQqtH3m3JU3EZ0m3JU6xa4Cf3j5/wTR92CFrFnholV05ujdwA8de1tQ/DXInKSNuUkQs6A4OOmja5ToqmtKNq0Db8eJpa5StNWrqrsYmWvC10alJemh4GuSujFvIOOWCOOWMcdsYYdsfY4Yh11xDriiHXCEeuYI9ZuRyzPevS0l6ev7nXE8vTVfY5YnRonPNujp+071VcfccTy9AlPX/W016gjlmeM9hwDnHTE8uw7PNtQp/rXuRC/JqMfsrE8Xi2Cr70uWjReZg/kdRNvAjJrRP/2RWN8SxeNl52AbPvcR3hJKDWnWZUQXgh6DmX4ddKlpLzTc6guksfl4zlUt9ClQXlpegjoOK9bPIthHXXEesQR64gj1l5HrGFHrJOOWLsdsQ45Yo04YnVqPXr6qmd79NRrjyPWPkes445Ynj6x3xHL0yeOOWJ52sszfnnqdcIRy7MePfXq1L7Dsx49be/Ztj3LeMoR635HrMccsTzt1an9tmfbnoy+Vl1R1Edy1NynKyIH+XlehHxJ9rfN63ULX9duz+phYplLyIter6vswnuKyNugvDTxq71KTiLkJAIrppfj1rSpuJLo1uaolgjchP7x85X0TJkCsdWNT31ClqWYaRs5/GkaiMhRbm/LMP1BNz/ePi/b/JDf8s7ULblsV7WclKYHs798M9hPZktIeHNIt5CHWEVCS8Ut+8KncXjLvt3QorbsY6GlV+jC/pCme4GO87rFs5hvdTtiOXUFPWaPHpGpbMV2RL/aRHl4wwb+miqnbvqO5UnxP7VkDJfpWFf0MdNbtWU+FlO2LSN/Vw6Wuvk6TXdDPtJ/PGvLbdbppapO2V96K2IXbd+xm9u47fPxpWaIp503P/aZ//sDf3Np2XZk9NMEvTreY7aqePvMJQMgI5Bsy1PHwCwPY7DpkPI/uXi8ftMq6peE1vZDfBUfeehVtC4Gg+5nQpj61SIcbnbmrxal6Rb6PvWrRePpWB+sjxfqrxb1Cb6mffjyj//8Dzc+9O5faK586lu9t77zq6/75m09133uqcfO+50ffe7pZ36SdQ5CZ65H9YtCRVp1mngk03DEGhRYZhv8bYESPj+vaLQy/Hpoq42djlbqdxiwfFz2OUKXhsjjGKTuzFP3niqsLkesbkesmiNWjxNWmnZOYU1hTWFNYRXEsjzs7wcpD/tP/j2dyV6tm8TF8oGi/e7ZWiy38lW9czchfpSnFuB5dUH1meYbvTlYxlsj+kXZzLZBdGliv1YrfvjM7JM+m0d3CvPcRv0NIT7W400irJ8z7fc4/8BDixcs1jJxlRl578v+8srU/7V4jO+ixeN1xnrFlRWzgfKTNlehpquVlR7AtjJUwB5Qd1BjuXgcpt4DxRUZK2OD6NF2ypemQXnaiF9zYzsqaVlWk4/UII/9EsvDvy3xr8BHrsk+q3aA87m8uBNrN2b/vHvba6Sf0b8s0wnvbVf6zciRh/ZQcZHl3QDyvk3rBCpmtOm385TfYjxkv1UrdSp+Gr1aNVUvnjbCxDZQZIMc/WBtjq55/QmuuCP9baLOi/o516vRrytYr07xSNYr2qpIvarV7aL1yv0Q1mudsFrtwhWpV9SPxwlGvz1Sr6qPU30Q93E7C9ar2XIy6hVtVaRe1XihaL3yrifWK/8WqorRWNdF6hXLwzHa6HdF6rVqHN7dAXEYx5tcr6rNID3XayxuqziMdc73rfP6LcopG6NVvxyL0UY/Kuqc55QcF/L0U3ZLy2xz2mwXZfPoyJFd2TZKoBTb9kg/z8pRY67gDxEs5IkVCTeG2OQmqzfo5Xk2udGfEiZnE7I+RabYFZtM4Y04w/eaYhc996WmvNzMYtPholN5R1dN0y05aiSCP7TAsu94Bgurm0f1sZEA86b/LCIXHQkY/dsjPUZsZhbCxIiifr0aZ2s8u8cyDFIe8s3IkVN0hGL07y7Yk9mzyejJ0EbckxXdKTJ6tTKJu2M8QlE7K7GVyaLNPPZrTDhLyJspI27s3EnsWhmsNzUr7aG8vJW5ECZltDpQdnap2lJsdhnzHbRNI0z0k9iKHOululiME+wLqv3zylqaeLSNf40nhIltE+nwhjJLfP63H553C6xpxGf0vw4rMmlCPzV+POcSiC4h2pAjv4vo64JevZqd2udDi8d0Vnpy/4Vl7Rb0fA7P6P8TrFT9Z/rVSW6j9uwPInRJzl+lM+oTs1G3oDfZ/YLe8vBGNfR9pEF7IVYd8pH+98l3sL6NvyHk46pPyNE778Y4xuoWz9B3PrF4fBkqnl9O+sP4VQ37W+Rc4oevWfWyGTsufkOrX9urij/jk79559//86GLq/yan7qerai/5p19TdM92d82V/S71FnGUJw/KXLmteI5zu8WsRPi14Me0zVDoXR6esKxNq8PbfNXGf8lndLarxrnrbyj7VAOn2ftFjwYdxgj5V+1dHw5Kk7r/qVNH/z/1WoN7pR8kcZ/0yAvNn2uEf1XoP/5Mu2UcExIE865pol8+2727hK0+Jm/q9VBnsJaffXmlJV3hYz+GZizPLNAYxa9QsXovynmQYapfnkzNu6M/Xoh6qNu0p1OfGplPIhnqn4SokUd0nSP0Cnve13g5OnQJ3DUOw680q9Wl7Hd8Dha7Wxim8I+q83lpNLvtCSUh2XbBnScuuk76pxi/AmNGYPAUvbhdyc8+m573gPPWS6vJ/USLc+lUMd2xsM8vugROtj3aRH9E8JRJxNiVy1V1TcR+k7mSZM0bc/+ttnnLW51OmDRkjHcvD4vdjrA6JctGeNbmn1u1edZHo/b0rQDnnFM53EQYqSJl9EtRvYCPtL0UZmMfnlWDuzbVAwxrLTsF5M9+yAv1o/UiP4msOcKsifai6+D5jge4Hs/6IK0abonxwZXgR6XL8mXhfPUvDKmGFcv0XSoA9IxRtV+TY2vuO0WGV+pNai+iAyOx3l9t/nG9Bb56lfGg3jWJej7csobhOx6C1x1+kPF9zrlJSKPYw+Wt+g6LsatRZH2koTx5eqncvVFypUIPm7nqPu0iO7Kfhg/qq4h/Njnv/sXP37qvK9P1hrFK95z4q0D13zoVycL/4PT//TV//k9fa8tswZi9axOK7Fvqfcx03QX5CP9XVl9tLnGELg8Km7E5me8Fsr6b8rR/wjE73upXaj5iWozef1vT0FdjP5+6E9j+1t4MtJwLK+EzWtqTwPjGo93VbxVa9lG32puySdDMb4WOSWCNuUxjdmoN+j5Pe+nGv0BqAM+jaFis+Vh2Tkuqv0YtZZobSyleSu1q4rj22lqHGGJ7ynAMrI/YBktr590wjysS17vx6TmkFbWVOe3Fbj7QMUHbq9qXSU2XlTtzvA7rd2Z7zfCxHphfyvqw3njOSUP7YB9tflw3po8tmmccz1Oc4ReyFNrWhxPjf69ENt/gmI72pj9QcUJ1iWE+J53bC4/IPisXtq806AH6xf1xGeIr+6gqLJWr8amsbX6iuOEGvexKE/Vw6ygbarW83muqNZ7YvOkWDxR7Y/bplpHiL0ZEWt/uGZeZNyUdxYnbz3jA9C2fjsybsobG4Wg5wFMH4t9qKuyfT/lqbm/fZ4ekaP0iv36mdILYzLysuxWZSjaVzmNEXtUX4V1UuRtoNivoqlfZMMzJ9xG8JwTn+Yt2rf1U57q41v1bb+d00dhOdQJcXWUEvu3x9uc3778oncsXPz7hwcma/7ZU1v8s80P3beuzPxTxZUuwkU78Hp7mjZnf4vsc1fsOwvf3cZ9Z7v73EX7TjVe574A11n4jVG1BqPOLp0pLDU34bqsOE4oPA7iMwsVfSd6ZkH1b2p+xfNG7H/Y/u385EcnYmH7j42Pi9SrkqPG9JO9d8d7btMc5SDWFpLD69bqb1E56g5DtS+L87dnqG9U62HIm7cetnDpGN83l4ynMd2/BePQQOdosMwl2nJdzcktqbUP9ls1DlTnadk/cGzTR3n4GgyeheCk1lOMLpV3w9IxXKazhLYscicunzNNCI/Xjk+fW6T64r34ZiiW1NqxYb2QfKFKfR8rUN+qjmN3h/LcJjY3VWtyKlbmxTfEVzHpbsJHe8T2yFSZjRf33mOxi30f6RdD7FqxdLyOak6rYrA9b7WOHtvjNt4+wVeiHUxnf8ak/JnbgfolbY5tqh3ge1UcE/FVRJ7PYFJtxOxQJiZyPaqxjnpDlPtL9qtnYK0/TVXPECeAaTpZ2VEvvmcV2xO/L1PxTO1p26mzJTje4rU3o3/F0vE46gxM7L0LdXa+W8hV71lML4nVR1jT2sDCdQumn1ZRL4XF77WUeU/lyqxuzuQ+8000Vqg4Lzxr+8z3Qn+wlsZWZ3qfeX0mf2qf+eztM++AOjib+8yj1K7O1X3mMuPkqX3mifVyNveZR3P6o1b7zI/QeK7qPvM7Ibafotg+tc/8fJraZ57aZw6h/D7zE9C2fjkybpraZ54Yk6f2mcfof1D3mX85p4/CclTZZ7a+7/8Ao2qQKpRlBAA=",
|
|
2291
|
-
"debug_symbols": "tb3RruU4cqb7LnXtC5GMIBl+lcHA6PH0DBpodBtt+wAHht/9LIYU8a3cdRZTudaum9pfZeb+f4lkhCgqRP3Xb//7z//rP//vv/zlb//n7//+2z//j//67X/94y9//etf/u+//PXv//qn//jL3//2+NP/+u1Y/xnlt39u//TbqL/9sz5+tPOHnD/0/NHPH+P8Mc8f5j/mcf4o549TZZ4q81SZp8o8VeapMk+VearYqWKnip0qdqrYqWKnip0qdqrYqWKnSjmO62e5ftbrZ7t+yvVTr5/9+jmun/P6eemVS69ceuXSK5deufTKpVcuvXLplUuvXHr10quXXr306qVXL7166dVLr1569dKrl1679Nql1y69dum1h95YP/X62a+f4/r50CvHArtAjoCHZGkLHppl/WNpARKgAT1gBCzlucAu0COgBNSAFiABGtADRkAo61K2B/QjoAQs5dUAvQVIwEO5OvSAETAD7IJxBJSAGtACJCCURyiPUF4hU1ezrKBxWGFzQgmoAS1AAjSgB4yAUJ6hbKFsoWyhbKFsoWyhbKFsoWyhbJdyPY6AElADWsBStgUa0ANGwAywC1acnVACakALCOUSyiWUSyiXUC6hXEO5hnIN5RrKNZRrKNdQrqFcQ7mGcgvlFsotlFsot1BuodxCuYVyC+UWyhLKEsoSyhLKEsoSyhLKEsoSyhLKGsoayhrKGsoayhrKGsoayhrKGso9lHso91DuobxisNUFGtADRsAMsAtWDJ5QAmpACwjlEcojlFcMNl0wA+yCFYNyLCgBNaAFSIAG9IARMAPsAgtlC2ULZbvyRjUJ0IAeMAJmwJWR2nEElIAa0AIkQAPWMbcFI2AG2AUrBk8oATWgBUiABoRyCeUSyiWUVwyKLCgBNaAFSIAG9IARMAPsghbKLZRbKK8YlLFAAjRgXVXLghEwA+yCFYMnlIAa0AIkQANCWUJZQllCWUNZQ1lDWUNZQ1lDWUNZQ1lDWUO5h3IP5R7KPZR7KPdQ7qHcQ7mHcg/lEcojlEcoj1AeoTxCeYTyCOURyiOUZyjPUJ6hPEN5hvIM5RnKM5RnKM9QtlC2ULZQtlC2ULZQtlC2ULZQtktZjiOgBNSAFiABGtADRsAMCOUSyiWUSyiXUC6hXEK5hHIJ5RLKJZRrKNdQrqFcQ7mGcg3lGso1lGso11BuodxCuYVyC+UWyi2UIwYlYlAiBiViUDwG24ISUANagARoQA8YATPALtBQ1lDWUNZQ1lDWUNZQ1lDWUNZQ7qHcQ7mHcg/lHso9lHso91DuodxDeYTyCOURyiOURyiPUB6hPEJ5hPII5RnKM5RnKM9QnqE8Q3mG8gzlGcozlC2ULZQtlC2ULZQtlC2ULZQtlO1S1uMIKAE1oAVIgAb0gBEwA0K5hHIJ5RLKJZRLKJdQLqFcQrmEcgnlGso1lGso11CuoVxDuYZyDeUayjWUWyi3UG6h3EK5hXIL5RbKLZRbKLdQjhjUiEGNGNSIQY0Y1IhBjRjUiEGNGNSIQY0Y1IhBjRjUiEGNGNSIQY0Y1IhBjRjUiEGNGNSIQY0Y1IhBjRjUiEGNGFSPwblgBtgFHoMOJaAGtAAJ0IAeEMojlEcoz1CeoTxDeYbyDOUZyjOUZyjPUJ6hbKFsobxisB8LWoAEaEAPGAEzwE7oKwZPKAE1oAVIwFIuC3rACFjKbYFdsGLwhBJQA1qABGhADxgBoVxCuYZyDeUayjWUayjXUK6hXEO5hnIN5RbKLZRbKLdQbqHcQrmFcgvlFsotlCWUJZQllFcMdlkgARqwlHXBCJgBS/kxEvqKwRNKQA1oARKgAT1gBMyAUO6h3EO5h3IP5R7KPZR7KPdQ7qHcQ3mE8gjlEcojlEcoj1AeoTxCeYTyCOUZyjOUZyjPUJ6hPEN5hvIM5RnKM5QtlC2ULZQtlC2ULZQtlC2ULZTtUh7HEVACakALkAAN6AEjYAaEcgnlEsollEsol1AuoVxCuYRyCeUSyjWUayjXUK6hXEO5hnIN5RrKNZRrKLdQbqHcQrmFcgvlFsotlFsot1BuoSyhLKEsoSyhLKEsoSyhLKEsoRwxOCIGR8TgiBgcEYMjYnBEDI6IwRExOCIGR8TgiBgcEYMjYnBEDI6IwRExOCIGR8TgiBgcEYMjYnBEDI6IwRExOCIGR8TgiBgcEYMjYnBEDI6IwRExOCIGR8TgiBgcEYMjYnBEDI6IwRExOCIGR8TgiBgcEYMjYnBEDI6IwRExOCIGR8TgjBicEYMzYnBGDM6IwRkxOCMGZ8TgjBicEYMzYnBGDM6IwRkxOCMGZ8TgjBicEYNzxeAoC+yCFYMnlIAa0AIkQAN6wAgI5RrKLZQ9BvuCGtACJEADesAImAF2gcegQyhLKEsoSyhLKEsoSyhLKEsoayhrKGsoayhrKGsoayhrKGsoayj3UO6h3EO5h3IP5R7KPZR7KPdQ7qE8QnmE8gjlEcojlEcoj1AeoTxCeYTyDOUZyjOUZyjPUJ6hPEN5hvIM5RnKFsoWyhbKFsoWyhbKFsoWyhbKdinbcQSUgBrQAiRAA3rACJgBoVxCuYRyCeUSyiWUSyiXUC6hXEK5hHIN5RrKNZQ9BtsCCdCAFYOyYATMALvAY9ChBNSAFiABGhDKLZRbKLdQllCWUJZQllCWUJZQllCWUJZQllDWUNZQ1lDWUNZQ1lDWUNZQ1lDWUO6h3EO5h3IP5R7KPZR7KPdQ7qHcQ3mE8gjlEcojlEcoj1AeoTxCeYTyCOUZyjOUZyjPUJ6hvGJwrGGzYvCEEbCUbYFdsGLwhBJQA1qABGhADxgBoWyX8uPp+5FUkmpSS5IkTepJI2kmpUdJj5IeJT1KepT0KOlR0qOkR0mPkh41PWp61PSo6VHTo6ZHTY+aHjU9anq09Gjp0dKjpUdLj5YeLT1aerT0aOkh6SHpIekh6SHpIekh6SHpIekh6aHpoemh6aHpoemh6aHpoemh6aHp0dOjp0dPj54ePT16evT06OnR06Onx0iPkR4jPUZ6jPQY6THSY6THSI+RHjM9ZnrM9JjpMdNjpsdMj5keMz1melh6WHpYelh6WHpYelh6WHpYemScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnNOK8Z5zXjvGac14zzmnFeM85rxnnNOK8Z5zXjvGac14zzmnFeM85rxnnNOK8Z5zXjvGac14zzmnFeM85rxnnNOK8Z5zXjvGac14zzmnFeM85rxnnNOK8Z5zXjvGac14zzmnFeM85rxnnNOK8Z5zXjvGac14zzmnFeM85rxnnNOK8Z5zXjvGac14xzrxKa1UmSNKknjaSZZEErzi8qSTUpPXp69PTo6dHTo6dHT4+RHiM9RnqM9BjpMdJjpMdIjxXn86zFtKAV5xctj+5Uk1qSJGlSTxpJM8mCVpxflB6WHpYelh6WHpYelh6WHhYeXlR0UUmqSS1JkjSpJ42kmZQeJT1KepT0KOlR0qOkR0mPkh4lPUp61PSo6VHTo6ZHTY+aHjU9anrU9Kjp0dKjpUdLj5YeLT1aerT0aOnR0qOlh6SHpIekh6SHpIekh6SHpIekh6SHpoemh6aHpoemh6aHx/l0Gkkz6eFhZdGK84tKUk1qSZKkST1pJM2k9BjpMdJjpMdIj5EeIz1Geoz0GOkx0mOmx0yPmR4zPWZ6zPSY6THTY6bHTA9LD0sPSw9LD0sPSw9LD0sPSw8LDy9cuqgk1aSWJEma1JNG0kxKj5IeJT1KepT0KOlR0qOkR0mPkh4lPWp61PSo6VHTo6ZHTY+aHjU9anrU9Gjp0dKjpUdLj5YeLT1aerT0aOnR0kPSQ9JD0kPSQ9JD0kPSQ9JD0kPSQ9ND00PTQ9ND00PTQ9ND00PTI+NcMs4l41wyziXjXDLOJeNcMs4l41wyziXjXDLOJeNcMs4l41wyziXjXDLOJeNcMs4l41wyziXjXDLOJeNcMs4l41wyziXjXDLOJeNcMs4l41wyziXjXDLOJeNcMs4l41wyziXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84147xnnPeM855x3jPOe8Z5zzjvGec947xnnPeM855x3jPOe8Z5zzjvGec947xnnPeM855x3jPOe8Z5zzjvGec947xnnPeM855x3jPOe8Z5zzjvGec947xnnPeM855x3jPOe8Z5zzjvGec947xnnPeM855x3jPOe8Z5zzjvGec947xnnPeM855x3jPOvWjLxKklSZIm9aSRNJMsyOP8pJKUHj09enr09Ojp0dOjp0dPj5EeIz1Geoz0GOnhcd6detJImkkW5HF+UkmqSS1JktJjpsdMj5keMz0sPSw9LD0sPSw9LD0sPSw9LD0sPLzI66KSVJNakiRpUk8aSTMpPUp6lPQo6VHSo6RHSY+SHiU9SnqU9KjpUdOjpkdNj5oeNT1qetT0qOlR06OlR0uPlh4tPVp6tPRo6dHSo6VHSw9JD0kPSQ9JD0kPSQ9JD0kPSQ9JD00PTQ9ND00PTQ9ND00PTQ9ND02Pnh49PXp69PTo6dHTw+PcX2n1OD9pJlmQx/lJJakmtSRJ0qT0GOkx0mOkx0yPmR4zPWZ6zPSY6THTY6bHTI+ZHpYelh6WHpYelh6WHpYelh6WHhYeXkh2UUmqSS1JkjSpJ42kmZQeJT1KepT0KOlR0qOkR0mPkh4lPUp61PSo6VHTo6ZHTY+aHjU9PM7NaSZZ0Irzx+NHxwJWsIECKtjBAU7QEgU3wU1wE9wEN8FNcBPcBDfBTXFT3BQ3xU1xU9wUN8VNcVPcOm4dt45bx63j1nHruHXcOm4dt4HbwG3gNnAbuA3cBm4Dt4HbwG3iNnGbuE3cJm4Tt4nbxG3iNnEz3Aw3w81wM9wMN8PNcDPcLN285C2wgBVsoIAKdnCAE8St4FZwK7gV3ApuBbeCW8Gt4FZwq7hV3CpuFbeKW8Wt4lZxq7hV3MglRi4xcomRS4xcYuQSI5cYucTIJUYuMXKJkUuMXGLkEiOXGLnEyCVGLjFyiZFLjFxi5BIjlxi5xMglRi4xcomRS4xcYuQSI5cYucTIJUYuMXKJkUuMXGLkEiOXGLnEyCVGLjFyiZFLjFxi5BIjlxi5xMglRi4xcomRS4xcYuQSI5cYucTIJUYuMXKJkUuMXGLkEiOXGLnEyCVGLjFyiZFLjFximUvqkbmkHplL6pG5pB6ZS+qRuaQemUvqkbmkHplL6pG5pB4HbgW3glvBreBWcCu4FdwKbgW3glvFreJWcau4VdwqbhW3ilvFreLWcGu4Ndwabg23hlvDreHWcGu4CW6Cm+AmuAlugpvgJrgJboKb4qa4KW6Km+KmuCluipviprh13DpuHbeOW8et49Zx67h13DpuA7eB28Bt4DZwG7gN3AZuA7eB28Rt4jZxm7hN3CZuE7eJ28Rt4ma4GW6Gm+FmuBluhpvhZridueSxTlPLmUtOLGAFGyiggh0c4ARxO3PJ4VjACjZQQAU7OMAJWmLFreJWcau4VdwqbhW3ilvFreLWcGu4Ndwabg23hlvDreHWcGu4CW6Cm+AmuAlugpvgJrgJboKb4qa4KW6Km+KmuCluipviprh13DpuHbczl3RHARXs4AAnaIlnLjmxgBXEbeA2cDtziTkOcIKWeOaSEwtYwQYKqCBuE7eJm+eS4vHmueTCAi63tfFb9dLDQAGX29q2rXr1YeAAJ2iBXoEYWMAKNlBABTs4wAniVnAruBXcCm4Ft4Jbwa3gVnAruFXcKm4Vt4pbxa3iVnGruFXcKm4Nt4Zbw63h1nBruDXcGm4Nt4ab4Ca4CW6Cm+AmuAlugpvgJrgpboqb4qa4KW6Km+KmuCluilvHrePWceu4ddw6bh23jlvHreM2cBu4DdwGbgO3gdvAbeA2cBu4TdwmbhO3idvEbeI2cZu4eS6p4miJnkscvbBv7c9YvbCv+KZnXsVXfFtBL+MLbKCACnZwgBO0RA+LC3FruDXcGm4Nt4Zbw63h1nAT3AQ3wU1wE9wEN8FNcBPcBDfFTXFT3BQ3xU1xU9wUN8VNceu4ddw6bh23jlvHrePWceu4ddwGbgO3gdvAzcOiHY4KdnCAE7RED4tWHAtYwQYKqGAHBzhBSzTc/BLr+xh6MWCguzVHARXs4AAnaIFeFPiYJzoWsILuNh0FVHC5SXEc4AQt0S+xFxZwuUl1bKCACnZwgBO0RL/EXlhA3DyXiLeD55ILFfQ2M0fXXdnKCwEfs11HV/B/4PnhQgU7OMAJLl1d48wLAgMLWMEGCqhgBwc4Qdw8P6h3gOeHC93NT9Pzw4UCKtjBAbqbOlqi54cLC1jBBgqoYAcHiJvnB/Vu8fxwobsNxwo2UMDl1r0dPD9cOMAJWqLnhwuXW/fB5fnhwgYKqGAHBzhBS/T8cCFunh+6D1rPDxcK6C3pQ87zw4Uj0EsEA11BHP3IhqMfznS0RA/pCwtYwSU2qqOACnZwgBNcbuvt9+o1gYEFrGADBVSwgwOcIG4+PRjeDj49uLCC7qaOAirobt58Hv7Dm8TDfx6Olujhf2EBK9jApTv9ID3QL5ygJZ5bb59YEj0KV0F/9SK+QLfw4/V4mz4ePN4unKAlerxdWBI9LsyP1+Piwgo2UEAFOzjACVqi4Wa4GW6Gm+FmuPkVctVUVa+oe9zWOrqCODZQQFdQxw4OcIKW6IFzoet2R1cYjg+F6usTXjYXaIkeDOt5ePXKucAKNlBABfsS8zP2va4vdDc/ed/v+kTf8frCtrA5uoK3g+9pfaGf8XR0BT9N39n6wgJW0HW9HXyH6wsVdDdvHd/n+sIJ4qa4KW6Km+95faFkXyi9qfSm0ptKbyq96TF0dqFfs84u9F3mz87q9GanNz2Gzr4Y9OagNwe9OejNQW/6vvNnvw160/eePztr0JuD3vT95s8u9P3lz36b9OYZb96Fvsv82VCT9jXa12hf323+7CyjN43e9P2uz84yetPoTcPN0s2L4AILmL3p1WXV16u8vCywgutwSnEUUMEODnCClujBcGEBl5vfx3qpWaCACnZwgO7mx+uBc6IHzoUFXG71cGyggMut+pF54Fw4wOVWzy3ULdED58ICultzdF1x7OAAJ+i6q+e93qz6PZkXnD3WAhwr2EAB3c3P2MPpwgFOcLn5vZPXm1W/x/GCs8etseOy8BsbLzmrPrf3mrPADg5wgpboX3G4cLn5Du9eeha43Pwex4vPAhXs4AAnaIkebxcWsIK4GW6Gm+FmuBlulm5ejBZYwAo2UEB3q44dHOAELdG/AHFhAV23OSrYwQFO0BI9KVxYwAo2ELeKW8Wt4lZxq7g13BpuDbeGW8Ot4dZwa7g13BpugpvgJrgJboKb4Ca4CW6Cm+CmuCluipviprgpboqb4qa4KW4dt45bx63j1nHruHXcOm4dt47bwG3gNnAbuA3cBm4Dt4HbwG3gNnGbuE3cJm4Tt4nbxG3iNnGbuBluhpvhZrgZboab4Wa4GW6WbnYcYAEr2EABFezgACeIW8Gt4FZwK7iRS4xcYuQSI5cYucTIJUYuMXKJkUuMXGLkEiOXGLnEyCV25hL/zMeZSxzPXHJijYxoZwI5UUAFOzjACWbSNTnAAuImuAlugpvgJrgJboKb4qa4KW6Km+KmuCluipviprh13DpuHbeOW8et49Zx67h13DpuA7eB28Bt4DZwG7gN3AZuA7eB28Rt4jZxm7hN3CZuE7eJ28Rt4ma4GW6Gm+FmuBluhpvhZrhZuLXjOMACVrCBAirYwQFOELeCW8Gt4FZwK7gV3ApuBbeCW8Gt4lZxq7hV3CpuFbeKW8Wt4lZxa7g13BpuDbeGW8Ot4dZwO3PJdLTEM5ecuNzWEnPzSrTABrqbOSrYwQFO0BI9l6zd+ptXogVW0N38eD2XXKhgBwc4weWm59eTDrCA7tYdGyiggq47Fp6fkvOGOj8md2IDl0L3hvL8cGEH1/Gu1ebm1WWBluj54cLl1v2EPD9c2EABXdebz2N+rf82rxgLrKAfr1ucH7I6UcEODnCCFugVY3XtTN+8Yiywgg0UUMEODnCCllhwK7gV3ApuBbeCm8f82qe1eW1YXavjzWvDAgtYwQYKqGAHBzhB3BpuDbeGW8Ot4dZwa7g13BpuDTfBTXAT3AQ3wU1wE9wEN8FNcFPcFDfFTXFT3BQ3xU1xU9wUt45bx63j1nHruHXcOm4dt45bx23gNnAbuA3cBm4Dt4HbwG3gNnCbuE3cJm4Tt4nbxG3iNnGbuE3cDDfDzXAz3Aw3w81wM9wMN0u383OUFxawgg0UUMEODnCCuBXcCm4Ft4Jbwa3gVnAruBXcyCWVXFLJJZVcUskllVxSySWVXHJ+xHI9imvnZywvtMQzl5xYwAo2UEAFO7jc1gbw7fy05YWWeOYScyxgBRsooIIdHOAELVFxU9w8l6xHfO388OWFAo5Ezw/rOWQ7P255oSt4+3p+uFBABTs4wHW805vE88OJnh8uLOBym27s+eFCAZfb9OP1/HDhAN1NHC3R88OFBXQ3dXQ3P17PBNP72DPBhRO0RM8E65la823rqvlZeCYwPxzPBOZungkuVLCDy838cDwTXGiB50cxL3S34egW09EtzPFh0dYjkuZb17X1rKP53nWBE7TEFf6BBaxgW+jHsMI/sMcw8gq3wAlaosf8hQWsYAMFVBC3ilvFreLWcGt+Qt5mrYIN9BPylmwKdnCAE7REOcACVrCBuAluK+bb+jJ188K3wAla4or5wAJWsIECKoib4qa4KW4dt45b93PzIXfOFLpjBwc4QUs8ZwonFrCCDRQQt4HbwG3gNnCbuE3cJm4Tt4nbxG3iNnGbuE3cDDfDzXAz3Aw3w81wM9wMN0s3OQ6wgBVsoIAKdnCAE8St4FZwK7gV3ApuBTfuL6TgVnAruFXcKm4Vt4pbxa3iVnGruFXcKm4Nt4Zbw63h1nBruDXcGm4Nt4ab4Ca4CW6Cm+AmuAlugpvgJrgpboqb4qa4KW6Km+KmuCluilvHrePWceu4ddzIJUIuEXKJkEuEXCLkEiGXCLlEyCVCLhFyiZBLhFwi5BIhlwi5RMglQi4RcomQS4RcIuQSIZcIuUTIJUIuEXKJkEuEXCLkEiGXCLlEyCVCLhFyiZJLlFyi5BIllyi5RMklSi5RcomSS5RcouQSJZcouUTJJUouUXKJkkuUXKLkEiWXKLlEySVKLlFyiZJLlFyi5BIllyi5RMklSi5RcomSS5RcouQSJZcouUTJJUouUXKJkkuUXKLkEiWXKLlEySVKLlFyiZJLlFyi5BIllyi5RMklSi5RcomSS5RcouQSJZcouUTJJUouUXKJkkuUXKLkEiWXKLnES/3aqnFpXuoXWMAKNlBABTs4wAniNnGbuE3cJm4Tt4nbxG3iNnE7c8maCuuZS050t+pYwQYKqGAHB+hu4miBvn9foLupYwUb6G7NUcEOer+dYhO0xHKABaxgAwVUsIO+ervuDrwIMdDPojtWsIECKtjBAXqbTUdLbAfobuZYwQa6mx+Z37dc2EFfmT7FJmiJnjUuLGAFGyiggh1cZ7EKs5qXJgYWcJ3FKsxqXpoYKOA6i1WN1bw0MXC1WfVB4HcoF1qi36FU7ze/Q7mwgg0UUMEOupuPyT5BS/T8cGEBK+hlgS7mRfbm3X0WLJ44QUv0WcWFBaxgA73c0Pt4KtjBAc6rWrP1s5jY8SwmPrGAFWyggAp2MHveyxgDC5g979v5BQqYPe87+gVmz/uefoHZ876r39lvvq1fYAUbKKCCHcye9939ArPnvQIzsIAVzJ73Wsuz589ay+PECWbPn7WWFxawgg3Mnj9rLS/s4ACz573W8kI5wAJWsIECKthBbx0/sjPmTyxgBb0v/NfOmD9RwQ6Oqzy9jbMc+URL9NdtLixgBRsooILex9PREs/oPrGAFWyggAp2cIC4DdwmbhO3idvEza/+zQ/dr/4XdnCAE7TEFfOteeD41f/CCjZQQAU7OMAJWqAXWAa6mzhWsIHu1h3dzRw7OMAJWqJnggsLWMEGLrdVwNq87DJwua0iz+Zll4ETtETPBOKH7pngwgo2UEAFOzhAd1NHS/Q5gXjr+Jzgwgo2UEC3GI4DnKAl+gLmhcvCCxm81jKwgQIq2MHl5o++vdYy0BI9VVxYwAo2UEAFO4ibTw+8vMFrLS/06cGF7uZj0qcHFzbQ3bzVfXrg5Q1ea9l8Cui1loETtERPIBcW0Be0nTSpJ42kmWRBHsE+xfJix8AC+nzNqSVJkib1pHGRFzS29VJc89LF5iUYXrrYzr/XpJ7ko8lpJlmQR+JJJakmuUlxFHC5eJWGVywGjkQPOL9x8SrE5rN0r0IM9LTh5AJ+oB5ZF07QEj2yLizRJK0mtSRJ0qSeZNmIHjJnI3rI+O2lVxcG+qkOxw76kU7Hx5F6NvDiwpNWwFxUkmpSS3JFPxAPgOEHsgLAY9tLBS+qSeu3/dDW4L9Ik3rSSJpJbuJd6OP+wtXv/hjRSwQDG7gO0x/OeNlfG37wfjG8cB2nN61fC8+G8WvhhQIq6LLnrw1wgpYN7pF0YQFxM9wMN8PNcDPcDDcLN/Gqv8AChpscRwMFVLCD4xzq4kV/PnzFi/4uLAdYwJro16nhh+DBdKGA/pzSqSeNpJlkQT6FPakk1aSWJEnp0dKjpUdLj5Yefo0aJxawgutk1gNl8RK8wNWIw1vOA+7CAU7QEv0adWEBl9t6iixeghco4HJbz6zFS/ACB7jcpveDh+iJfo260CeCTjWpJUmSJvUkV+wLPfKmd6dH3vTj9ynrhQp2cB3perItXnwXaIkepRcW0B8HOi0z85b3KL1QwWVmPn49Si+coJt5W3iUXuhmfmoepRc2cGUvP4QVpBf1pJE0k+wir8Vr645GvOqurcfq4lV3bT1WF6+6C5ygJa6gk/XcXbzqLrCCDRRwHWpz6kkjaR1qdbKgdSW8qCTVpJbkJicq2EFLbH6YbtkauBT8KFesXtSTvEHVcYKWKN4i3qZSQLfy5pUG+sF6Q4p7ea+Im7nbCldZS4niNXWBluhXyAsLWMEGCuhufrzqbt3R3fx41d38IP3iWfwg/ep5YQMFVLCDI3F45/lpjgo2UEAFOzgS/XJZvaGm/5r36lSwgwN8nJt6V6+QO2lF3EUlqSa1JEnSpJ40ktLDwsMr2y4qSTWpJUmSJvWkkTST0qOkR0mPkh4lPUp6rGBbtxHihWonrWC7qCTVpJYkSZrUk0ZSetT0aOnR0qOlR0uPlh4tPVp6tPRo6dHSQ9JD0kPSQ9JD0sMDw6+7vnmYrImueNmYeJ73sjFp/m/X1G+VxouXdF1Ukx5K3X9lDd6LRtC6cIhfvLwWK1BAz5DiuM7WNdcgvmgmWZCP4ZNKUk1qSZKkSelh4eH1V7JufcSLrmQtVIgXXa07EvGaq4t60kiaSRa0RudFJakmtaT0KOlR0qOkR0mPkh41PWp6rLG77pfEi60ukqTl4ae5xu5FI6h5KwxHbwVvG79IrGUV8dqpwA4OcIKW6NeJCwtYwQbiJrgJbn6d8Gt6O++jTrTE807qxAJWsIECKthB3BQ3xa3j5p/89k7wT36f1JIkSZN6kiuuWPP6KPErvNdH+ZTRy6Mu0qTHb/uU1GujLppJFuQf+T2pJPmJn+in6IpzgpZofooeEVbACjZQQAU7OMAJWqCXOgUW0N2mYwMFXG5rcUq81ClwuXm681InWWtE4qVOsnZ6Ei91CizgclM39kndhcttLfaIlzqJpw4vdZK1MiDnbl7H+W8naInn5rsnFrCCflfuh179FtwP3edxHt5evhRYwHW8HuFevhQooIIddN3Vx16SJN2PwYPRb1+9JClQwQ4OcIKW6MF4YQHdzZvPg/FCAd3NG9WD8cIBTnC5DW+zcxnkxAKu9vW53rlD14UCrkcGPi88d+i6cIATtMRzY8sTV2/6HFJyY0uR3NhSvCRJhvemz/Uu7OBInAe4Wmf4oPWIvdDvYRf53dNJJWllez+qFYEX9aSRNJPsIq8Nuqgk1aSW5Aejjgp2cPWPLzV4MdCFHm0Xev9Mxwo2cJ3GSZrUk0bSTLIgvzCeVJJqUktKj5oeNT1qetT0qOnR0qOlR0uPlh4tPVp6tPRo6dHSo6WHXzh95cNLfgIruNrLF0G85CdQwdUlq35evOQncPWOLyJ4yc+FHqsXFrCC7ubd57F6obv58XqsTj8yj1VfOfCSn0BL9Fj19QIv+Qms4Lp0niRJmtSTRtIM8lnqeggoXsAjvuzgBTyyKvLFC3gCBzhBP1I/bY/HCwtYwQauQ3WBNas9O8lvzXy9wct39PDz92nthWte6/fpXr6jhwv4zPbCNbX1K4SX76jfUnv5TuA4v2wuPb7AJedOX25w7vR1oYJrIuy35F56EzhBS/SbrQsLWEG/w6iOAio44sDig1vS44Nbcn5A04X8g1sn1SQXV0cBFfS7pFNpgH6f5M1y3ow5nndjJ/pFuDhWsIECKtjBAU7QEvP7FtIFN8FNcBPcBDfBTXAT3AQ3xU1xU9wUN8VNvSWnYwcH6C3pfaGW2A9wDQpfqvCqnMAGCrjcfC3Dq3LUlyr6uSe9OE7QEtflVldRiHhVTmAFGyiggh0c4AQtceI2cZu4nXvSnyiggh0c4AQt8fy+xYkFrCBuhpvf1FZvHb+rvXCAE7RAr+AJLGAFGyigu6ljB0eiJ4kLXWE4usJ0VLCDA/TjNUdL9DWaCwtYwQYKqGAHB4hbxa3h1nBruDXcfMXGV0u8VifQV7CK4wAn6D3vCmd+OLGAFWyggK67AserctSfFnlVjvpKilflBDZQQD/e7tjBAU7QEj3m/U7cq3ICK9hAARVcbn7H7DugBU7QEj3mLyxgBRsooIK4ecz7PbbX6gRaose8r8t7rY76/bHX6gS6mw/wKaC7eev4+tWFA5ygJfql/sICVrCBAuJmuBluhpulm9fqBBawgg0UUMEODnCCuBXcCm4Ft4Jbwa3gVnAruBXcCm4Vt4pbxa3iVnGruFXcPD+s5+bitTqBluj54cIVsZ4cz+92XthAARXs4AAnaIm+hutLHF6Ko2v3EPFSnMB1vL7a4aU4gZbo+eHCAlawgUvX10u8vOZqks4Ze8xfWMEGrvb1ZRYvrwns4ADpzY7boDcHvTnozUFvDnrzjHk/hjPmT6Q3B73pMX8eg8f8hQXEbeI2cSPmJzE/iflJzM/J2DFa0mhJoyU95s9jMFrSaElifhLzk5ifxLwR80bMGzFvxLydMT8cFezgACfoLblSplcFBXpLimMFGyign5uLecxfOMAJWqLH/IUFrKC7TUcBc4B76ZD6wp2XDgVaogf6hTk0vHYosIECKtjBAWZneVnRhUJnCZ0ldJbQWSKggh1cur6O6IVFgQVcur666LVF2v3IfHpwoYIdHOAELdFTxYUFdF0fGp4ULuzgAF3Xh4YnhRM9KVxYQJ92+K95UrhQQAU7OMAJWuI5zVfHBgroZ+FN7eF/oZ+FjzMP/wst0cPfVy29JCmwgsvNVy29JClQwQ4OcIJ2oXpJUmABK9jAfi4gqNceXTST1rOEuWgF+UUlyRWbYwMF9OMXxw4OcK0IFCcL8hWBk0pSTWpJkqRJPWkkpUdNj5YeLT1aerT0aOnR0qOlR0uPlh4tPSQ9JD0kPSQ9PKbX4ql6PVNgB729huMEvb+9HzzSLyygPxb1TvZIv9DdzFHBDvqz0eo4QX8C68frkX5hAd3NO9UnBRf6Y1gfSh7/F/qDWD8Lj/8LJ7ga0QVW+F9UkmpSS5IkV/QW8Ev89LPyS7x5C3iMX9hAAdeRmp+2x/iFA5ygJXqMm/eYx/iFFWyggAq6mzeRx/iFE7RA33gssIAVbKCACnbQ3YbjBC3RL/FrSU69BKqvdUT1EqjAtey91pTUS6ACvT6gOnZwgBO0RF/Fv7CAFWyggLhV3CpuFbeKW8Ot4dZwa7g13BpuDbeGW8Ot4Sa4CW6Cm+AmuAlugpvgJrgJboqb4qa4qbs1RwEV7KA/FxPHCVri+Xm5EwtYwQYKqKCfhePw41XHCvrx+qAdAirYwQFO0BKn6/oAn7Tv5IznACdoiebtOx0LWMEG0puGm9GbRm8avWnZm15cFVjAGofj9VWBAirYQXczxwkut1Wip15mFVjACi634mIe8xcq2MEBTtASPeYvdDdxrKBEZ3khVl/r/+qVWIEDnKBFB9R2gAWsYAMFVDA7qxLolUCvBHol0CuBXgn0SqBXAt13BevrIYX6rmCBlughXbwdPKSLH5mH9IUNFFDBDg5wgpbYXdeHRm+ggAou3epDY13WAydoiSMvzV5YFljBBgqoYAcHOBPXJd9nmV6IdlFLWs/rvEH9ed1JPcmP30ejB/6FlrgC32dnXod2UU1aTVXdx6P+QgX7+YxQvRTtoplkF3l52kUlqSa1JEnSpJ40kmZSepT0KOlR0qOkR0mPkh4lPUp6lPQo6eHRve6g9KxYu7CC7XpUql60Fugt1h07OEB/ZlkdLdHv330G4huEBVbQn6W6gt+/X+huw7GDA1z3RaeDBa0wv6gk1aSW5Ip+Vh7M1dvFg3k9O1AvWQusYAO9YNDFPJgv7OAAJ+hVg2vQeslaYAHXdNobYEX4RZKkST1pJM0kC/Ip+0klKT1Geoz0GOkx0mOkx0iPkR4zPaafiDhWsIECKtjBAU7Qm8273S/yFxbQ3XzwerhfKKC7eTf7Rf7CEegFb4HrdYrupEnrl9ZDCfVqtsAJWqJfqy8soJeEDscGCqigu03HAU7Q3fxoPZovLOByW6vJ6ht3BQqooBehFkevQvXj9Qv0WhxUr3ELrGADXdcbyuNW/Sw8btUPx+O2u5tfoC+0RL9AX+g1T344foG+sIECem2VH69fq7sfjl+rV0WdehFc7344Ht6+zuJFcIEVbKCACnZwuQ0/Bg/vEzuD6IzpEyvYQAEVdAs/Ib9sXzjBdUJ+1fTKt8ACVrCBAirYwQFOELeJm4e5X5t9M67ABgqoYAcHOEFL9DC/EDfDzXAz3Aw3w83D3CcDZ2mdr9mctXUXVrCBrjsdFezgAH1iYo55RfFKu8ACVrCBAirYQW8dR4/5CwtYQS98OxwFVLCD4yrNUq+wC7REr3a9sIAVbKCAXlRXHCdoiR7zFxawgn681dEVXNdD2le0vFYusICu4N3tIX2ht0N3VLCDfrze8x7SF1qiR/eFBaxgA93Nh4ZH94UdHOAELdFf9hh+8h7HZzt4HF9I63gc+0Tb6+gCJ2iJHscXrrPwZTavowtsoIDLzdfWvJIucIDLzVf9vJLuQo/jC93N+8Lj+MIGupv3vMexzyl8I6zuC19eX9d9MuobYQVaoG951X1lzOvuAgVUcM2Wfb3MK+zOweUVdoEFrKCA4yrcVi+mC7REf4VwPZRQr6cLrGADBVSwgwOciSsgh8+jvXYusIECrjsFn5R77VzgACdoV927eu1cYAEr2EABFezgSDzfEBHHAvpZePtqAwVU0M/i/LUBTtASV/AGFtBfaPDO8vcLLxRQwQ4OcIKW6MF7YQH9LE5UsIMD9LPwPh6WOA+wgPGuino9XKCACnZwgBO0RL+H9lUer3wLFFDBDg7Qp6xOdpHXvV1UkmpSS/JJpZMm9aSRNJMsyG+ZfZnIq92Gr6d5tVvgAP1tqfPfWqLH7oUFrGADBVSwgwPEreLWcGu4Ndwabg23hpvHri8Fel3bhSt2Awu4Wme976te1xYooIIdHOAELVHdrToWsIINdLfmqGAHBzizs86Idjwj+sQCVrCBAjIeOuOh+1n4uBsHWEA/Cx9cw8+iOwqoYAf9LIbjBC3RI/rC5eYrcl7tNqo3lK+SXSiggh0c4AQt0VfKLiwgbh7nvgrk1W6BCnZwgBO0QK92Cyygu03H5eYLKl7tFqhgBwc4QUv0pbMLC1hB3Hz5zFdcvNotsIMDnKAl1gMsYAXdrTsKqGAHBzhBS2wH6G7mWMEGCqhgBwc4QV9nXuTz8pNKUk1qSZK0FMVb1nOA+J96DrjQM5kfv7++cqGACnZwgBO0xPPl6BN9Nbk6+usf3gse7Rd2cIATtETPARf6WYhjBRsooLv5KPcccOEAJ2iJngMuLKC7+bmdK+XDUUAFOzjACVr2hdFDRg95DriwgQIq2MER6HVuvs+Fep1bYAVd1xwFXLp6KnRwgOss9FSwRI/2C33RXxwr2EABFXS34TjACVqiR/uFBaxgA113Oq6R6nNVL1gbvhjmBWuBAvqTj8Oxg+vIPMi8YC3QEv0K370d/Ap/YQUbKKCCHXQ3P16/wl9oiR7dFxawgi3P2K/lPpXzgrXACVqiX8t96uYFa4EVbKBcG8eol7EFdnCAE7RE30LrwgJ663RHBTs4QD8L726P4xM9ji8sYL02CNJzZ60LBVSwgwOcoCV6xHY/dI/YCwX0s/DB5RF74QDXWfh6phesOXYvWBtrPbN7wVpgBZfbWpnovodWoIIdHOAELdHjeC1tdq9lC6xgAwVUsF/bmXWvW/Nt2boXrvn+YN0r1wIr2EABFezguPYS68e5v92Jlnjub3eiu3lL+s6RFzZQQAU7OMAJWuK5XaSfpkf3efIe3Rcq2MEBTtASPbrPM/bovrCCDfSHJH44vhXXhR0c4AQt0bfiurCAFfSz6I4dHKCfhbe6X7tP9Gv3hX4W07GCfhbefB7zFyq43KYfg8f8hRO0RI/5CwtYweU2PXD82n2hgh0c4AS9zbyHjJ43et7oeaPnjZ43et7oecueL0f2fDkKWMEGZs+fe3hd2MEBTjB7vpQDLGD2vFeXzbW02b26LFBATfRhP/0sfNhf2MEBTtASfdhPPzcf9hdWsIECKtjBAU7QEjtufqlbi8/d67ICG+huw1HBDrqbOfqTfm8+D4a1kNr9M5Fjrcd3r+EKrGADBVTQqwrcwoPhwglaogfDhQWsYAMFVBC3idvEbeJmuBluhpvhZrgZboab4Wbp5pVdc62edq/sCmyJ65I01/S2e61V4KrjXrOg7rVWgRO0xHWhCixgBRsooILuJo7upo4TtMR2gAWsYAMFVLCDuDXcGm6Cm+AmuAlugpvgJrgJboKb4Ka4KW6Km+KmuKnrrnjzvbbmWrns/onGaxD0CjbQR9R0VLCDA5ygJQ53O7GAfrxu4RsPXSjgOt61kNf9s4uz+ED0TYUu9OP1s5gth8YUUEHGznRdH78r3gIt0Ripxkg1RqrhZrgZboab75Xg6HVQs5xoif6Ow4keImvtrXvBUmAFl/FacOtesBSo4DJeq2zdC5YC3Xg6WqKHyIXuZo4VbKCACnZwgF6wdDha4lmydGIBK9hAiT5ukoPW9986e8iLmS70YLiwgBVsoICZVryYKXCAE7SIlkbgeDFTYAUbKKCCHRyJPuyrH5nvuHVhBwc4QUv0ELmwgBVsIG4Tt4nbxG3iNnEz3Aw3w81DpHoXeohcqGAHBzhBC/SapcACVrCBAirYwQFOELeCW8Gt4FZwK7gV3ApuBbeCW8Gt4lZxq7hV3CpuFbeKW8Wt4lZxa7g13BpuDbeGW8Ot4dZwa7g13AQ3wU1wE9wEN8FNcBPcBDfBTXFT3BQ3xU1xU9wUN8VNcVPcOm4dt45bx63j1nHruHXcOm4dt4HbwG3gNnAbuA3cBm4Dt4HbwG3iNnGbuE3cJm4Tt4nbxG3iNnEz3Aw3w41cIuQSIZcIuUTIJUIuEXKJkkuUXKLkEiWXKLlEySVKLlFyiZJLlFyi5BIllyi5RMklSi5RcomSS5RcouQSJZcouUTJJUouUXKJkkuUXKLkEiWXKLlEySVKLlFyiZJLlFyi5BIllyi5RMklSi5RcomSS5RcouQSJZcouUTJJUouUXKJkkuUXKLkEiWXKLlEySVKLlFyiZJLlFyi5BIllyi5RMklSi5RcomSS5RcouQSJZcouUTJJUouUXKJkkuUXKJnLmmO7iaOHRzgBC3xzCUnFrCCDRQQtzOXDMcBTtDd1gRZz1xyYgHdzRwbKOByW5Xr3cuwAgc4QQv03c8CC1jBBgqoYAcHOEHcCm4Ft4Jbwa3gVnAruBXcCm4Ft4pbxa3iVnGruFXcKm4Vt4pbxa3h1nBruDXcGm4Nt4Zbw63h1nAT3AQ3wU1wE9wEN8FNcBPcBDfFTXFT3BQ3xU1xU9wUN8VNceu4ddw6bh23jlvHrePWceu4ddwGbgO3gdvAbeA2cBu4DdwGbgO3mXHcz/wwHTs4wAla4pkfTixgBRsoIG6Gm+FmuFm6jeMAC1jBBgqoYAcHOEHcCm4Ft4Jbwa3gVnAruBXcCm4Ft4pbxa3iVnGruFXcKm4Vt4pbxa3h1nBruDXcGm4Nt4Zbw63h1nAT3AQ3wU1wE9wEN8FNcBPcBDfFTXFT3BQ3xU1xU9wUN8VNceu4ddw6bh23jlvHrePWceu4ddwGbgO3gdvAbeA2cBu4DdwGbmd+WFMUrzELLGAFGyiggp6NuuMAJ+hua17iNWaBBfRDN8cODnCCFjjPVHGii03HCjZwHfqqQupeQjZX/U73ErLAAU7QEj1VXFjACjZQQNw8Vayine4lZIETtERPFRcWsIINFDAvEpOpxGQq4SVkU7xJPFWc6KniwgJWsIECKtjBAeLWcBPcBDfBTXAT3AQ3wU1w8/ygfpqeHy4sYAUbKOCyUO8szw8XDnCCluj54cICVrCBAuLm+WGVHnWvPwucoLt5H3t+uNDdPAI8P1y43PxhqdefBS63VRfUvf4scIATtETPDxcWsIINFBC3idvEbeI2cTPcDDfDzXAz3Aw3w81wM9ws3bwqLbCAFWyggAp2cIATxK3gVnAruBXcCm4Ft4Jbwa3gVnCruHkCWUVc3avSAhsooLuJYwcHOEFL9ARyYQEr2EABcWu4Ndwabg03wU1wE9wEN08Vqzise63aXDVa3WvVAl1hOFawgQIq2MEBzkQP/1Vs1b0U7eoLD/SzqT3QL5ygJXqge8WSl6IFVrCBDBgC3Qh0I9CNQDcC3Qh0mwyYyYCZDJjJgDkD3Y/hDPQTB4gbgW4EuhHoRqAbgW4Eup2B7sZGSxotabTkGeiPYxjHcYAFDLdxZKCPIwN9HBno48hAH0cG+jgy0Me5AdsyHucObBcWsIItj+EM9BMVxK3gVnDLQB9HBvo4agE5t8q5ZaCPoyrYwQFOcLmt8rLhxWyBy224rgf6hQ0UcLmtcqLhxWyBA5ygJXqgX1jACrqbOgrYr9AbXtc2V0XY8Lq2QEv0THAhQ0MrSGcpnaV0lnZwgHSW0lmdzup0VqezOp3VGYidgdgZGp4qVjHb8Lq2wAJ6Q3k7eKoYfmSeKi5UsIMDnKAleqq4sAR6YZatcu/hhVmBAurC5tjBAU7QEn0LwAsLWMEGCohbw813+FsF+cOLw2yV0w+vCIs/9cPpjn44w9ES9QALWMEGCuiHMx07OEB385ZcA8bW/gvDK8JMvfnWgLE1Tx1eEXYdum8FciEn5Nt9VNf1/T5O9A0/LixgBRsooIIdHKC7+aH7zh/ND923/riwgBVcbs3PbV1QAhXs4AAnaIl2gC7mDWX+a97z5v929bFvz2Vr74/hRVyBFWxgB11hDQ3fcivQFYajG09H/7erSbyIK7CA3oWHYwMF1NQ9o+X80wFO0BI9WvyMvYgrsIIN5Nx8h8zzhHyLzAs5Yx/gxX/NB3jxlvQBfqGCHRzg0i3u5kO5uK4P5QsbKKCCrutN4jvbXDhBS/SxfmEBK+hu3lk+1i9UsIMDnKAl+li/0C28j32AXyiggh0c4AQt0Qf4hQXEzXDzCKg+HkzBDg5wghbo+1mdre4bWgVWsIH+ayv0fDsqW9Usw/ejChRQQT8ccRzgBC3RY+jCAlawge7WHBXs4AAnaIkeQxfWPDcPnPVwbHgRV+DIE/LAudASfXfZC/3Qvc18f9kLG+iHPhwV7CjgJrgJboqbX50upFuUblG6RekWxU2x8DuU6U3i047pTe3TjumH7tOOCyvYQAEV7OAAJ2iJEzefdkxvHb9DubCBAirYwQFO0BL9DuVC3Aw3w83vUKaPB79DubCDA5ygBZ7lWhcWsIINFFBB110p6Cy2WpXf4yy2ulDBDg5wgpbo9xcXFrCCy2JVlI+zwmpt+THOCqsLBzjBZbHKyMdZYXVhASvYQAEV7OAAJ4ib4Ca4CW6Cm+Dmy49rt5JxVlhd6BbeAX77sPYlGWcB1YUNdLHhqGAHBzhBS/TbhwsLWMEGYuFj3Xxo+Fg37zcf6yf6WL+wgBVcWWNtiDK8cMgO726/ilw4QQv0wqHAlY1WBfzwwqHABgqoYAcH6G7N0RJ9UnZhASvYQAEVdAtxnKAl+nXowgJWsIECKthB3Cpufh1a1efDq4UCC1jBBgqo2eqtgwPMzvKyH1u1wsMLfGyV1g4v8Am0RL+2XOiHY44VbKCACnZwgBN0tzVSvcAnsIAVbKCACo48t3OOuMavnrPBE2uekM8GLxRQQZ+qeZuds8ETJ+hTNR+e52zwxJIKE7eJ28Rt4uYTwwvplkm3TLrF6BbD7YzY8d///U+//fXv//qn//jL3//2L//xjz//+bd//q/8g3//7Z//x3/99m9/+sef//Yfv/3z3/7zr3/9p9/+nz/99T/9H/37v/3pb/7zP/70j8ffPhrsz3/734+fD8H/85e//nnRf/8Tv328/tXHysC6yfBff/C0lCjHjyLltYhvk+MS0nsKjPrD79fXv+8vyfnvP67hHMAo98+irdvL6yyktpdnIa9F1qXkVCj8vrS7v958n4fzLB6PdjmCqj9I9I1EdsVjqoLALHcFfE9pF+gNgcek+geBuWlI/3zy2QqPNPtSwnadWbMd+mgvJXZN6QssV0NMedmUZTMmH/fo9dJ4DI6nASH2o0b9tD+2J2JxIo9ZZHt9IhsN9Z1rXWPt9JUa/Ut46q5X10zh6lWtLyU2I8vf3HWFx0NmzqPbbQV/wn8q9PJa4e5pjNensWtM31LtbMxx2CuJusk11b8CfA4slfJSonzaFHUzMh/rXTm6y0HOlS85t20OYi3Cnwdh4/VB7BJmrdESD2RUPG50759IWcto14loeXkim4FVZ3TpYznklcA+wqznoHjK/V97dH6e9HYaj/ur0HjcPr2+gLRjm79rhshTazzWG3/U2IxO/3zMeRE59EnhuD8wRHNg6FOUfR0YbTM8zb+kc2kYI7x9yb5tcxyVS/Jj8RCN/gt9klEiz5nzd32yGZ+PJficWUx5uo58adEVCC81VqV3iKzytieVHwd6m98wOuzT0bE/F8tpyoN7e3kusru+l0EGfJq2Pi72P2rUT8fHdpTeTIFbjZvRIvp5tEj/uDV2PftYlozR8XhIVV6PUtnl0jJy9vd4ZvXUs18mkLa7SLe4pajydI19LCL+oKGbXCq+c/d1W/M0wr5qbI/Dv5Z4TRZscxybUbreJ89Z/VPMfdX4lZ7pL3tG5eNZh+7mcMO/AnMdyGOh6/WB7O5zai3ZJD+k1C8amyZ5DM/s3vI0j/ulBrk3e1H7cPayO4/13auYvRRp77Vny5ul9UbsS41ed7OovFSu3Wrf0xh5v7Q2unxPw1+6PzVmfa2xvWT7eurZr8ccLy/ZfTstbRkss7++7Pdd39a8EV6fu3nSKPc1Zo9xvjbMe61hn08cxvHpxGGbO+bxNJN6jrevfTvqp8ex79kR6wKPx73y3ujwR5SXxmZ0jF17WMvh8eCniVT/hePIG/vHEtp8fRzbCV3e/Ky56dMk+ccL1Jjb1bOWq2fP96O/oCG+O+2Z0efTKP2qMb/hBmqWP3akKz37iN/j5Uifm4llKTOPpDxSmrwYH/PjW6i+XdTMqVhb09F3ouXxzD565fEc/nipMccfGy2PuUZerfsm8ud2SjhjlNb+w23+lyXWzSidrdRcjpv6lob5p3jOW4bRNxr182ix9mm07PMPlwWbx8u4t03E1U4+ns8PIb5obEcHK7WPRaDjvZHemQ+OWl9q2Pz4MUK/l42t9pdHUY7tQ5meT5Ye15anJp2/IOIlmjETOzYidTfUNVKQ9fH0VOPLHWU5drfpedG3p2tc03Y/q1srSgb6YV75ZbXy0E8DZtuqtXIjJ2XXNePz4C/H/PRktvm059PDOkxe5rFS9sMsG+R4miR/fbSwe+LENUqO1wvqZffA6XFbm88W6nheTvrSpGV72T8KjzKPp8vU19Wg/WC1SlY13QzW3TObx6JNXu2es1F9PEX6UeTjlan9cUiuOdbnGcTvjmMbNlImqzmbZFS2C6jcJz/W+zYPJr9hvNbPx2v9jvFav2W87h/iaD7E6f3lYznZ3j5kGcPsx+uHtbuHUY97KGa7x/E6G21FGiugP1zCfycyP3/oW+3jp747iZuPfW+fyea5790mlaO/2y/HSJGyudTsHkrdLbEoTT9/3rg/nZErVI9I253OZhYwa40B/0B9nc72IjlVnNU2ObHZ5wNejo8H/E7i5oC/fSabAb9t0nZkv7T2br/0XN+es2yKaHbPpooKK/7PRTBfs/turErJqfMj8jZ5VcY3jJD5+QiZH4+Q22fyZkp8tKNkk3Z73aRaP29SbR836U7ibnFR/aOb9GmUjvLeVebxm3EgUo9dv+zuq+5WjX1DQu2fJ9T+eULVb0io+xb9dIKpheKzx2h+PcHsm2za/SPH5x3zHJuUvFvfMdYhjufL7deMvG+PQXvMN9v0Xjle6dtH/UdnLUNeaozj85E+yscjfXxcF3j/TDYjfdui/mGlaNH+noZWCh9ae92im1H6uD3WvFPu9qZGPn3YauxH2K2KT0/bn46Oz++kZvm4XqHM+mHBwv4o7pWRlN1zqXvVq2XuMmnJdwb685SyTXlXRN8UkbyvXLumb0Tmx/2yPZdcu1jfdnnzXGqu1a1veLwrkovt/fl+8NdEWt53rE8PvBbZPZ16rAfmRGrxU+d8Kc/bytytE/yJiOVjjFbsTRGegj4egvY3RW6WLJbdY6q7NYvF7OOl4e1xUDBk82la9vvjuCvSj3dF8kLzwP6eyGOSmRPVB4+dzLb+OhObPU8kfnGwTQbbcxz/mkg3RDYBeP8a/vJ+qO6eVY0spBrj9VVrP2e+96bB7lHV3dvDvYjkuYhY2Yjsy6fzmfmQzdm0j2fedbf0f29utZW4+UbO9iHVzVdyyvh0VlPLtnpacmX40aIvr3r3e2VsemU7OvLxcB1T3tJojPXHBW+8q3F8rNGYXD3nsV/TyM59yL3WqPrxHdFPNG7dEe3PRRhk0ufnGm+OsVaNBzLzdd9uX5nqlKmMuou63YEMCsNGf50KW/28c/ca39C5o3Aum8DdPZ8qRz72L4810XcbNee7bW5G2e4Jxr2H3HX71pRpnouN13dn2+MQFoafX3j6XXPsrtmaj+tEN4WDexFev5Ax+psiOvLJge5mD1I/fw5aRT5/Dro9ned12bqphKy7t6fun874o0+nzrho6vP7Qr8/Hftwrrs/jJ7DVYdu5qm621ki61ylPr0J9juJj1/y2x9FKjwH7++PYldcUgne+rTy1u9LlMN3L75u7OaU90RsPq39PxWX/IrIqtLJ9H48rZ39SqPm+5uPyeamUe0PlXg0ZDUaVV+fin1Hz9h39Ix9Q89sI3fkrGp90/e9a8QPa5pN3hXJdab1dao3RUbOifqu0H0v0nOYrG82vBb5yWtU964Ruyc833KNWJ90yNPpm9PZvUn1eOTauE00sXcG2+h5eza6zc2RyOcrEePzTVLq+HiXlK3EzZWI3XtQd1citg+b7q1E7F6lur0ScbtXNneJ+9FxbyVip3F3JeInGsfHGjdvNOfdZ6L6XpveXRHZa9xbEdlV/9+9ad5r3Ltp3p6LHDk+nh/hfdWw+kcfx72Vmdsab8bc3ZUZ69+wMjP7NwyQ/gd3zL1VlbZ9Geruqsr+QG6tqrTdC1X3VlXa7nWqu6sq2+O4uaryk0nMYFL2eOz2YhLTjr4VyVT24Kf3B39B5OYt4k9O5uZxbNJht6wcXpsNb6a6m5WMvDN72gnxy16KP7uRqby7fDR7825Int4s6a/uhtrPXqe6c0u1FfmO2//bLSLf0SLjO1pkfNoiP3nS/XQyx/H8kPrXHpgfrT/JvK4AqId8x3P3rUyf+Xr4+prZq07eSnBb9njeXN6TGByFveydffnNwWakx9vVRPa099Gmhmf/KkRuoDTb8y3mL70KIXn9ntJei7Tdy1Br66Wc0cjLiURrn9eqtvZxrepW4t596v0zeT3P3Leo5X1IMWuvW+PzJ6I/OY5bL2S2z59VtbbPZbkQIpsXMtvnz6q2zfFYgjhYgphvNWktvG1bNjNm+XyiKt8xUZWPJ6o/eRcrm2P2pxLC37+LtXsmc6tmf7/97a1y+yafv5ra5OOC6q3EzRR2+0zGew16r9p+K3Gv2L7tZoY375N/onGz+uDjFVTZT+fuVezu9za+V2u71bhZarvdHPRmceptjU1t6l7jXmlqa98yQ9616s3C1PYtVd3tGwpTW/tjz+buWG3fUBa+3YT25li9rbEZq3uNe2N1+9Ly7bHavqH++f5+86+nUtvnUreqOXZb65WMl8dU5rls6Ms+2Ns9/hr7DTR5udC2lZCj/f8us/8osXssdXMpZtcYRw6NL2/5fmmM+Q3lT223w9/dZ8G7u7CbTVp2N+l5j/5cpPN1S/CyLRbIWoH+WmF3L6l5FkWf9k373dbm2/tRSkH06Rsyv9OY2xvBe9sMto/Xxn6yX3xuy/Hg9nqb5Wb144jdStwbXvZx7VTbvxuXE+RZXq6K28dj3D4e4/Mbxvj8fIzLflO+e2N8u39/zULU+uCnA2n3NTTbtKq+1tjvjP70UG2U5xdqvu5Zf8inkbKXuBUp8vkjpF9ojvJ627f9Fv5CtYTKU8eMNzXm5xrPpZu/8imB1nPBo43X2+/LtpR9sgnulL4R2VztK09u63xaVPs1kVksRZ7fRP1FEY6k6jeItOOliG43nVc2nR/2XucIaUR0zHd7eGYCeN5q+f0vTshbLSLG64E2N11z9wsccxM2u239blahSd1m1YMqo9o3B7K5lVuflYy7H33eIHR+0dhu/Ez1xg/PxL8ex255/yC/H88LuF815v75bX16fquvz2bbrMqm708P6H/frFsRe6oAez1I9l8Duf1Zkq2KHqjo5hsYsr1ZHxSCP3fx/PHquf2myNObAtJeXzu33/NouQuDNnv3OxpZwvFAfU/Dcn9wtSFv9szIJFDGPI43VebTDnJTX7fJqJ/O4LcKt2bw+x357alywtqrx/si2+W+3MrW6ut54l4ix6nV/up+aP+FgsGZzDHfjNxp+VDrwZvbVNm+NnVv8r2VuDf53k0U702+f6E5dh9H+onKQEXlXRU1VMbmvmi3Md/NrtlK3Oua3cl8S9c8N8e0t7umo2Jv5kM7uFRZqa/z+3Yf+XsJcS9xKyPuz4V3SYt1ed0i0uunCzxbice16qA4ZxR5T4TbqwdXfVMkd+Zc17u38rMNnnDZLj9vt03/rl3ga84VH4PjecIpb4qU+qaI5rfKq/bynsjjFDKpHT/cH30pCdltF1LYkL621x+AktE+f4gg4xveod6eDRWh9ZDd2Xz6lKp/w+vT28+lkY++TJ1/4ZNrQ/iM3Q+fKfuyyLp9ferelXN+/GhHdo+p7l05942Rq1Y6m20aY1ePKrnO02W2jciuzo/vaJbj5Y3z9jA052ePhyrHm+ei+TWax+qVvi3y9GasvS2Sb4H2Nz8NePfzgrtXWm/emh2fTkS27+befLiyf7/35sMV+4av+m2/hCe5hiDPr8Z//ZqV2Od3Vfb5XZV9fFe1bQxlr7Pn5d2vjaFH+bQx9hK3GkOP9oc2Rhf2suhl0xj6eWPo543x8VPy7WfOLC9Ncrz5Ic/Hk2tD4/Wn0rQcn8/jdPv9qZuzn927ML3wzoZuDqN9x7l8w5x0/+24kt1bqjx/029+OZJd//Ke89Mi9/iVw+iWr7H++F2hX/iE3d2rwv47eGTCtfkqrfq77+BtP6Z3RNjZ86ThV0Wy7LE/l1/+yhf5nt9lO54/8v7lm3w/OZLJtwHt3dMZLeaFNp4KEX5NZNKw8ymTfBXR3YOqbxH54c2LtvnY4VakZmVrrc9t8ksiLTfWqc9bBPy+i7/hYym7vV/vLpbNT+eo+zO5OUn9SXPcm6Vq+4ZZ6v4rdvdeh9P2+Td9tH38TZ+txL13Se6fye4DNNvKrFuvw6l8vg3F/sOA/ekjx/O5JL38ggjLKA8s74ncfSNufyTaqMHu73/ncHae3T9tivG715X3MsquS48hP9+WyYZZkpttwrct04zmfb7e/FLzSn7TpsrzNfh3ItutAm+9Yrcttb/31uJe495bi7pbvL/31qJq3z5XufXW4vY47jbptmtzyvno5fZu5BSqmUtp8u6Qr0Lk1P52ANZ82LQkN5GznQ48LeC1d2cU+Z5/l43Edub69Fnr53Kxr/PF/vl6QP98PaCPP1Ti5qYU+wbNsplH28rLBp3j47vw3aekbt+F7wpebq8o7Pb3s7wNGM+bjZVf0Jgjn8k8HsOXtzSsZH2mPW++Vn7XIP3Tgb4/jCx4s7rZFXerUbllrWabU7E/9FQaqaPZ6805dZY/9DAkt001PXaH8XGZyl7iXvqZH5ep2HY14yn7bPY63X1v5d6t7lbh1p2u1c9vdLcad+9zrXzDfW75hvtc+/xDKWoffyhlK3HzPvf2mWzuc8s33Ofu1rrv3ueW77jPLd9xn1u+4z63fMd9bvme+9zyPfe55Xvuc8t33OeW77jPLZ/f55ZvuM8tn9/n9u0Tq1v3uX077G/e5/bvaNLvuM8t33OfW77nPrd8y33udi5w6zZ3P5u4c5c79NP7qV6/4X6q12+4n9rugNDzBaD23KJfH+BviwBKViBJe95H9lc0JOuh5Yf3y79obLdiGDU/RjOP18UI8+PNB+bHmw/Mb9h8YH7D5gO9fcNsdVt/1CcVv/N42Sk7jWrPH6Ot72nMnCa2o74+jr59THU3bHfFrbeXQbYlw7l5azu0bs5muwHAzQ8u7Kuh+IrUeP0Reo+K1zPWW99b6FI+vqHpu0dV925othL3bmj67iNUN9907bv9hu59b6HvvkB193sL93tlbHplOzpufW9hq3Hzews/0zg+1rj3vYWudx+o6nttevN7Cz/RuPW9ha6ff4HyJxq3brz353Lvewtd5x99HLe+t3Bf482Yu/m9hb597+jm9xZ+MthvDpD6B3fMve8t9F1t593vLfzkQG59b6H3+fGN8rY2/e6Ncp+f3ij/bA5z63sL/Tu+c7AVuVk//JOTuXkc26nhfNpb4s27oFt32fu7oFt32cenx7B/i+PW8+z9+30syOp8viH8lZcEO28admtvisz8DGd93sj/F980fLptqK9PR7aPcW++rrgVufddgr3Ere8S/ETi1ncJtv3C5wDXwvubnfuDiLwrUhFpr/ul28cPUPcSt55cdmt/qMTN2ot9g1ItPMZ8t1cyHddh72aQ5yN5W2TmVOqBb4vwYYKtyPY9/5u1Svppbv/JriWpYbW/ufFJTnGtjpev1tWPr3L105bYb++TrxvoeF61+JXtfdhTR58/e/trWwTlwvoD39xmaA6O493tjmb26kPu3e2Onu455O32mGi87pftFlI6n76tXr9B471tqIRFT3le9PwlDXbUkLEZY3sN7n3meK0xyq7A33LyMo/j9Vsxo+zeRO1ZQSbd9OXTsJ8dycgj2byfM3YPo7TnREr704JSu38ckw3w59HH5jjadvk1mvVx0dSNyO5Vv3wH/fm5epV5f4hY3urLbmeesXvT6PYQqeMbhshPjuTmELGPh8juOG4PkZ98aereEGn1jxwieuSTRv1xf5IvQ6TtPm9Sczd/rc+XqvlFYzcNGjW3XBjPG3z9yrlkwaOWo27OZXzDucw/9lxYon/ge1c7bVm0pE36exqV46jjGzTm8ea5ZLGSPn/K49eOgw1X2vF2mxptqm9qCBp9synndpfwfMW3Vn2eb39JZPLxdyf2Erfub4cef6jEvVvkbXs2tr9q4/WO6WO3Id+9fXR2RyHcYovNzVHo5xls95bUzQy234O+UjJZ9eW57DWU73f11+0hu7fh726GvxW5ucq3lbi3yreXuLPKt/3Ywq279P3nGu7cpbeP1+Tbx2vy+88Y3f1E7k9Ubn4ht41v+ULuVubeGN1L3BqjP5G4M0b3n4e7+XGorcbnnyC7P0Z+9km1m2Okf88Y6Z+Pkf75GOkfj5HPP7Y59h+aulVnNeb+Rj/uBDd1VluJe3VW98/kdZ3E59/a/PxTm2PerTvZ9cj8uMzi/nG81rj9bbqXVTjDPq7h20rcHFv2eQ3fsI9r+Ibttu8RZYem4/WnHMdu1z3TrJ0ztdcZdOzejno8HcnUM5623O+/0Kb+PeOrTZ9uV7606dxtnlWfC4lf90rfX5jufetz3zM3r7R7kZtf+9yL1LzjeKC8K3Lvm6E/aZN7Hw3dj9abXw29L7L5bOhPRO59N3Qrcn8C85OmvTc5/PzDoXP3DtCtLZl/0h53Z5c/k7k5vZy7N73u985W5t70ci9xa3r5E4kPp5dlHnyNoD6/C/DlKHYPo+5dKLbv8uZUptjz95nqL0hYHsNRy1sSM68SP+5g/ru2+IbXTWb9htdNdqFfKU+qfW5OZlfc+FgSy8jtQ19VS/xMJIvPHmyvXlmZbTsJsFw6LeX1CJnbd6MeC2H5OmOV5+F+3M6pj6fR+dbb8zfrfmGgycivszwkNn2zexR1e6DtnkXdHWg/7eDx1MEvk+H+c7XfMUrYEr325+cev2tY294H8Gr05nnlT0QqE9++EdktCt99DDy3e/ndegy8PY67j4GnyOePgeduGfLeY+B9EihcrR78/FmUL0lg7r4WlYP16eN50m5ngJ7vrkh/3jhHvhR87742dXNPkanHx0tDU8unt+9biXu37/fP5PXS0L5F7+0pMr/h1aafHAcVm0cZr49jtxfarRdG5u7tqLtbm+xFbm5tshW5u7XJ/khubm2yF6mFx9G7I+n7/VFSZfHrXR5+JnNzm5WfyNzdZuVnMje3Wdk38M1tVvYiN7dZ2UbQvVedtoF8c5uVvca9bVbm9v2Pe8lg+6Gpm2+PbY/jZpPuu/beNis/Gat3t1n5iczdbVZ+JnNzm5Xj4+XruduB4t7y9dzu5nfzFfTtvkJsLVCeyxi+TPP2EsL0W96T4A2w+rQO/7vJ5vZ7U5X6p+NNiXyrtz/Nmn/lRJ534X/6BsavSPRcivzxbbhfkBiFNaJdW9gfLVI6N879+RWhXxIZWQFVhtU3RezgI571vZ6peTKP6ch7sdKyKu0xUsp7R8GLjs/1hr8gIZNLw/P3LovdXr4rPOQpMt85iFI6n1afb0VbaRmvD3zvKLSysiPjPYnOzdC0906EwdnqeyfS+Ihp07dOZOSN0JD+joAJW8O+dxJHFgg+Lquvx4Tttun+fHTbwabB7zVEDm0b+mFLvidwr3Z1O6rzpabyvLz39VMw2+TP15d7s7ckZpZqlue+/BUJG3wr9SjvSDwWGBsPK9pbR8GjvfWh4vckjK+Vl7dO5JFo2WHD3juKllO1Ioe8JSFPuzg8r05+kbDdy1DfcA1ruYBd2nivMeTIM3kuMn+3Pd+TaJUHC/WHpQC7L5FbFLbnfdLflejtPYm8kj4eiuhbEi1vRh50vCUh+Zy3/VAU9CtH0bNHfhha70q816msRLTn6dEvtQUbYkh7r1Olsd1SG+9JFHaf0jc7tbPrS3/rKNZ34rkNkbcknj5XP59Lo75I2O4h02PRgu8s9qfMN3/hqlq5qup7Z5KvXj4W0Od7Ep1yiPeCpMxc8nvc35U3T4SltqN+LFHePYqBxFvR/rie0xYyPj6Kr536Px//+6d//cs//uWvf//XP/3HX/7+t39//OZ/L7F//OVP/+uvf77+9//859/+9elv/+P//bf4m//1j7/89a9/+b//8m//+Pu//vl//+c//ryU1t/9dlz/+R/jeKxHj8cd5f/8p9/K+v81UxiP6/vj/5v//SMEH//I/379Ql+bcfRSj/UH/hvrDx7/Gf/zv9ch/38="
|
|
2291
|
+
"debug_symbols": "tb3RruU4cqb7LnXtC5GMIBl+lcHA6PH0DBpodBtt+wAHht/9LIYU8a3MOoupvdaum9pfZeb+f4lkhCgqRP3Xb//7z//rP//vv/zlb//n7//+2z//j//67X/94y9//etf/u+//PXv//qn//jL3//2+NP/+u1Y/xnlt39u//TbqL/9sz5+tPOHnD/0/NHPH+P8Mc8f5j/mcf4o549TZZ4q81SZp8o8VeapMk+VearYqWKnip0qdqrYqWKnip0qdqrYqWKnSjmO62e5ftbrZ7t+yvVTr5/9+jmun/P6eemVS69ceuXSK5deufTKpVcuvXLplUuvXHr10quXXr306qVXL7166dVLr1569dKrl1679Nql1y69dum1h95YP/X62a+f4/r50CvHArtAjoCHZGkLHppl/WNpARKgAT1gBCzlucAu0COgBNSAFiABGtADRkAo61K2B/QjoAQs5dUAvQVIwEO5OvSAETAD7IJxBJSAGtACJCCURyiPUF4hU1ezrKBxWGFzQgmoAS1AAjSgB4yAUJ6hbKFsoWyhbKFsoWyhbKFsoWyhbJdyPY6AElADWsBStgUa0ANGwAywC1acnVACakALCOUSyiWUSyiXUC6hXEO5hnIN5RrKNZRrKNdQrqFcQ7mGcgvlFsotlFsot1BuodxCuYVyC+UWyhLKEsoSyhLKEsoSyhLKEsoSyhLKGsoayhrKGsoayhrKGsoayhrKGso9lHso91DuobxisNUFGtADRsAMsAtWDJ5QAmpACwjlEcojlFcMNl0wA+yCFYNyLCgBNaAFSIAG9IARMAPsAgtlC2ULZbvyRjUJ0IAeMAJmwJWR2nEElIAa0AIkQAPWMbcFI2AG2AUrBk8oATWgBUiABoRyCeUSyiWUVwyKLCgBNaAFSIAG9IARMAPsghbKLZRbKK8YlLFAAjRgXVXLghEwA+yCFYMnlIAa0AIkQANCWUJZQllCWUNZQ1lDWUNZQ1lDWUNZQ1lDWUO5h3IP5R7KPZR7KPdQ7qHcQ7mHcg/lEcojlEcoj1AeoTxCeYTyCOURyiOUZyjPUJ6hPEN5hvIM5RnKM5RnKM9QtlC2ULZQtlC2ULZQtlC2ULZQtktZjiOgBNSAFiABGtADRsAMCOUSyiWUSyiXUC6hXEK5hHIJ5RLKJZRrKNdQrqFcQ7mGcg3lGso1lGso11BuodxCuYVyC+UWyi2UIwYlYlAiBiViUDwG24ISUANagARoQA8YATPALtBQ1lDWUNZQ1lDWUNZQ1lDWUNZQ7qHcQ7mHcg/lHso9lHso91DuodxDeYTyCOURyiOURyiPUB6hPEJ5hPII5RnKM5RnKM9QnqE8Q3mG8gzlGcozlC2ULZQtlC2ULZQtlC2ULZQtlO1S1uMIKAE1oAVIgAb0gBEwA0K5hHIJ5RLKJZRLKJdQLqFcQrmEcgnlGso1lGso11CuoVxDuYZyDeUayjWUWyi3UG6h3EK5hXIL5RbKLZRbKLdQjhjUiEGNGNSIQY0Y1IhBjRjUiEGNGNSIQY0Y1IhBjRjUiEGNGNSIQY0Y1IhBjRjUiEGNGNSIQY0Y1IhBjRjUiEGNGFSPwblgBtgFHoMOJaAGtAAJ0IAeEMojlEcoz1CeoTxDeYbyDOUZyjOUZyjPUJ6hbKFsobxisB8LWoAEaEAPGAEzwE7oKwZPKAE1oAVIwFIuC3rACFjKbYFdsGLwhBJQA1qABGhADxgBoVxCuYZyDeUayjWUayjXUK6hXEO5hnIN5RbKLZRbKLdQbqHcQrmFcgvlFsotlCWUJZQllFcMdlkgARqwlHXBCJgBS/kxEvqKwRNKQA1oARKgAT1gBMyAUO6h3EO5h3IP5R7KPZR7KPdQ7qHcQ3mE8gjlEcojlEcoj1AeoTxCeYTyCOUZyjOUZyjPUJ6hPEN5hvIM5RnKM5QtlC2ULZQtlC2ULZQtlC2ULZTtUh7HEVACakALkAAN6AEjYAaEcgnlEsollEsol1AuoVxCuYRyCeUSyjWUayjXUK6hXEO5hnIN5RrKNZRrKLdQbqHcQrmFcgvlFsotlFsot1BuoSyhLKEsoSyhLKEsoSyhLKEsoRwxOCIGR8TgiBgcEYMjYnBEDI6IwRExOCIGR8TgiBgcEYMjYnBEDI6IwRExOCIGR8TgiBgcEYMjYnBEDI6IwRExOCIGR8TgiBgcEYMjYnBEDI6IwRExOCIGR8TgiBgcEYMjYnBEDI6IwRExOCIGR8TgiBgcEYMjYnBEDI6IwRExOCIGR8TgjBicEYMzYnBGDM6IwRkxOCMGZ8TgjBicEYMzYnBGDM6IwRkxOCMGZ8TgjBicEYNzxeAoC+yCFYMnlIAa0AIkQAN6wAgI5RrKLZQ9BvuCGtACJEADesAImAF2gcegQyhLKEsoSyhLKEsoSyhLKEsoayhrKGsoayhrKGsoayhrKGsoayj3UO6h3EO5h3IP5R7KPZR7KPdQ7qE8QnmE8gjlEcojlEcoj1AeoTxCeYTyDOUZyjOUZyjPUJ6hPEN5hvIM5RnKFsoWyhbKFsoWyhbKFsoWyhbKdinbcQSUgBrQAiRAA3rACJgBoVxCuYRyCeUSyiWUSyiXUC6hXEK5hHIN5RrKNZQ9BtsCCdCAFYOyYATMALvAY9ChBNSAFiABGhDKLZRbKLdQllCWUJZQllCWUJZQllCWUJZQllDWUNZQ1lDWUNZQ1lDWUNZQ1lDWUO6h3EO5h3IP5R7KPZR7KPdQ7qHcQ3mE8gjlEcojlEcoj1AeoTxCeYTyCOUZyjOUZyjPUJ6hvGJwrGGzYvCEEbCUbYFdsGLwhBJQA1qABGhADxgBoWyX8uPp+5FUkmpSS5IkTepJI2kmpUdJj5IeJT1KepT0KOlR0qOkR0mPkh41PWp61PSo6VHTo6ZHTY+aHjU9anq09Gjp0dKjpUdLj5YeLT1aerT0aOkh6SHpIekh6SHpIekh6SHpIekh6aHpoemh6aHpoemh6aHpoemh6aHp0dOjp0dPj54ePT16evT06OnR06Onx0iPkR4jPUZ6jPQY6THSY6THSI+RHjM9ZnrM9JjpMdNjpsdMj5keMz1melh6WHpYelh6WHpYelh6WHpYemScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnNOK8Z5zXjvGac14zzmnFeM85rxnnNOK8Z5zXjvGac14zzmnFeM85rxnnNOK8Z5zXjvGac14zzmnFeM85rxnnNOK8Z5zXjvGac14zzmnFeM85rxnnNOK8Z5zXjvGac14zzmnFeM85rxnnNOK8Z5zXjvGac14zzmnFeM85rxnnNOK8Z5zXjvGac14xzrxKa1UmSNKknjaSZZEErzi8qSTUpPXp69PTo6dHTo6dHT4+RHiM9RnqM9BjpMdJjpMdIjxXn86zFtKAV5xctj+5Uk1qSJGlSTxpJM8mCVpxflB6WHpYelh6WHpYelh6WHhYeXlR0UUmqSS1JkjSpJ42kmZQeJT1KepT0KOlR0qOkR0mPkh4lPUp61PSo6VHTo6ZHTY+aHjU9anrU9Kjp0dKjpUdLj5YeLT1aerT0aOnR0qOlh6SHpIekh6SHpIekh6SHpIekh6SHpoemh6aHpoemh6aHx/l0Gkkz6eFhZdGK84tKUk1qSZKkST1pJM2k9BjpMdJjpMdIj5EeIz1Geoz0GOkx0mOmx0yPmR4zPWZ6zPSY6THTY6bHTA9LD0sPSw9LD0sPSw9LD0sPSw8LDy9cuqgk1aSWJEma1JNG0kxKj5IeJT1KepT0KOlR0qOkR0mPkh4lPWp61PSo6VHTo6ZHTY+aHjU9anrU9Gjp0dKjpUdLj5YeLT1aerT0aOnR0kPSQ9JD0kPSQ9JD0kPSQ9JD0kPSQ9ND00PTQ9ND00PTQ9ND00PTI+NcMs4l41wyziXjXDLOJeNcMs4l41wyziXjXDLOJeNcMs4l41wyziXjXDLOJeNcMs4l41wyziXjXDLOJeNcMs4l41wyziXjXDLOJeNcMs4l41wyziXjXDLOJeNcMs4l41wyziXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84147xnnPeM855x3jPOe8Z5zzjvGec947xnnPeM855x3jPOe8Z5zzjvGec947xnnPeM855x3jPOe8Z5zzjvGec947xnnPeM855x3jPOe8Z5zzjvGec947xnnPeM855x3jPOe8Z5zzjvGec947xnnPeM855x3jPOe8Z5zzjvGec947xnnPeM855x3jPOvWjLxKklSZIm9aSRNJMsyOP8pJKUHj09enr09Ojp0dOjp0dPj5EeIz1Geoz0GOnhcd6detJImkkW5HF+UkmqSS1JktJjpsdMj5keMz0sPSw9LD0sPSw9LD0sPSw9LD0sPLzI66KSVJNakiRpUk8aSTMpPUp6lPQo6VHSo6RHSY+SHiU9SnqU9KjpUdOjpkdNj5oeNT1qetT0qOlR06OlR0uPlh4tPVp6tPRo6dHSo6VHSw9JD0kPSQ9JD0kPSQ9JD0kPSQ9JD00PTQ9ND00PTQ9ND00PTQ9ND02Pnh49PXp69PTo6dHTw+PcX2n1OD9pJlmQx/lJJakmtSRJ0qT0GOkx0mOkx0yPmR4zPWZ6zPSY6THTY6bHTI+ZHpYelh6WHpYelh6WHpYelh6WHhYeXkh2UUmqSS1JkjSpJ42kmZQeJT1KepT0KOlR0qOkR0mPkh4lPUp61PSo6VHTo6ZHTY+aHjU9PM7NaSZZ0Irzx+NHxwJWsIECKtjBAU7QEgU3wU1wE9wEN8FNcBPcBDfBTXFT3BQ3xU1xU9wUN8VNcVPcOm4dt45bx63j1nHruHXcOm4dt4HbwG3gNnAbuA3cBm4Dt4HbwG3iNnGbuE3cJm4Tt4nbxG3iNnEz3Aw3w81wM9wMN8PNcDPcLN285C2wgBVsoIAKdnCAE8St4FZwK7gV3ApuBbeCW8Gt4FZwq7hV3CpuFbeKW8Wt4lZxq7hV3MglRi4xcomRS4xcYuQSI5cYucTIJUYuMXKJkUuMXGLkEiOXGLnEyCVGLjFyiZFLjFxi5BIjlxi5xMglRi4xcomRS4xcYuQSI5cYucTIJUYuMXKJkUuMXGLkEiOXGLnEyCVGLjFyiZFLjFxi5BIjlxi5xMglRi4xcomRS4xcYuQSI5cYucTIJUYuMXKJkUuMXGLkEiOXGLnEyCVGLjFyiZFLjFximUvqkbmkHplL6pG5pB6ZS+qRuaQemUvqkbmkHplL6pG5pB4HbgW3glvBreBWcCu4FdwKbgW3glvFreJWcau4VdwqbhW3ilvFreLWcGu4Ndwabg23hlvDreHWcGu4CW6Cm+AmuAlugpvgJrgJboKb4qa4KW6Km+KmuCluipviprh13DpuHbeOW8et49Zx67h13DpuA7eB28Bt4DZwG7gN3AZuA7eB28Rt4jZxm7hN3CZuE7eJ28Rt4ma4GW6Gm+FmuBluhpvhZridueSxTlPLmUtOLGAFGyiggh0c4ARxO3PJ4VjACjZQQAU7OMAJWmLFreJWcau4VdwqbhW3ilvFreLWcGu4Ndwabg23hlvDreHWcGu4CW6Cm+AmuAlugpvgJrgJboKb4qa4KW6Km+KmuCluipviprh13DpuHbczl3RHARXs4AAnaIlnLjmxgBXEbeA2cDtziTkOcIKWeOaSEwtYwQYKqCBuE7eJm+eS4vHmueTCAi63tfFb9dLDQAGX29q2rXr1YeAAJ2iBXoEYWMAKNlBABTs4wAniVnAruBXcCm4Ft4Jbwa3gVnAruFXcKm4Vt4pbxa3iVnGruFXcKm4Nt4Zbw63h1nBruDXcGm4Nt4ab4Ca4CW6Cm+AmuAlugpvgJrgpboqb4qa4KW6Km+KmuCluilvHrePWceu4ddw6bh23jlvHreM2cBu4DdwGbgO3gdvAbeA2cBu4TdwmbhO3idvEbeI2cZu4eS6p4miJnkscvbBv7c9YvbCv+KZnXsVXfFtBL+MLbKCACnZwgBO0RA+LC3FruDXcGm4Nt4Zbw63h1nAT3AQ3wU1wE9wEN8FNcBPcBDfFTXFT3BQ3xU1xU9wUN8VNceu4ddw6bh23jlvHrePWceu4ddwGbgO3gdvAzcOiHY4KdnCAE7RED4tWHAtYwQYKqGAHBzhBSzTc/BLr+xh6MWCguzVHARXs4AAnaIFeFPiYJzoWsILuNh0FVHC5SXEc4AQt0S+xFxZwuUl1bKCACnZwgBO0RL/EXlhA3DyXiLeD55ILFfQ2M0fXXdnKCwEfs11HV/B/4PnhQgU7OMAJLl1d48wLAgMLWMEGCqhgBwc4Qdw8P6h3gOeHC93NT9Pzw4UCKtjBAbqbOlqi54cLC1jBBgqoYAcHiJvnB/Vu8fxwobsNxwo2UMDl1r0dPD9cOMAJWqLnhwuXW/fB5fnhwgYKqGAHBzhBS/T8cCFunh+6D1rPDxcK6C3pQ87zw4Uj0EsEA11BHP3IhqMfznS0RA/pCwtYwSU2qqOACnZwgBNcbuvt9+o1gYEFrGADBVSwgwOcIG4+PRjeDj49uLCC7qaOAirobt58Hv7Dm8TDfx6Olujhf2EBK9jApTv9ID3QL5ygJZ5bb59YEj0KV0F/9SK+QLfw4/V4mz4ePN4unKAlerxdWBI9LsyP1+Piwgo2UEAFOzjACVqi4Wa4GW6Gm+FmuPkVctVUVa+oe9zWOrqCODZQQFdQxw4OcIKW6IFzoet2R1cYjg+F6usTXjYXaIkeDOt5ePXKucAKNlBABfsS8zP2va4vdDc/ed/v+kTf8frCtrA5uoK3g+9pfaGf8XR0BT9N39n6wgJW0HW9HXyH6wsVdDdvHd/n+sIJ4qa4KW6Km+95faFkXyi9qfSm0ptKbyq96TF0dqFfs84u9F3mz87q9GanNz2Gzr4Y9OagNwe9OejNQW/6vvNnvw160/eePztr0JuD3vT95s8u9P3lz36b9OYZb96Fvsv82VCT9jXa12hf323+7CyjN43e9P2uz84yetPoTcPN0s2L4AILmL3p1WXV16u8vCywgutwSnEUUMEODnCClujBcGEBl5vfx3qpWaCACnZwgO7mx+uBc6IHzoUFXG71cGyggMut+pF54Fw4wOVWzy3ULdED58ICultzdF1x7OAAJ+i6q+e93qz6PZkXnD3WAhwr2EAB3c3P2MPpwgFOcLn5vZPXm1W/x/GCs8etseOy8BsbLzmrPrf3mrPADg5wgpboX3G4cLn5Du9eeha43Pwex4vPAhXs4AAnaIkebxcWsIK4GW6Gm+FmuBlulm5ejBZYwAo2UEB3q44dHOAELdG/AHFhAV23OSrYwQFO0BI9KVxYwAo2ELeKW8Wt4lZxq7g13BpuDbeGW8Ot4dZwa7g13BpugpvgJrgJboKb4Ca4CW6Cm+CmuCluipviprgpboqb4qa4KW4dt45bx63j1nHruHXcOm4dt47bwG3gNnAbuA3cBm4Dt4HbwG3gNnGbuE3cJm4Tt4nbxG3iNnGbuBluhpvhZrgZboab4Wa4GW6WbnYcYAEr2EABFezgACeIW8Gt4FZwK7iRS4xcYuQSI5cYucTIJUYuMXKJkUuMXGLkEiOXGLnEyCV25hL/zMeZSxzPXHJijYxoZwI5UUAFOzjACWbSNTnAAuImuAlugpvgJrgJboKb4qa4KW6Km+KmuCluipviprh13DpuHbeOW8et49Zx67h13DpuA7eB28Bt4DZwG7gN3AZuA7eB28Rt4jZxm7hN3CZuE7eJ28Rt4ma4GW6Gm+FmuBluhpvhZrhZuLXjOMACVrCBAirYwQFOELeCW8Gt4FZwK7gV3ApuBbeCW8Gt4lZxq7hV3CpuFbeKW8Wt4lZxa7g13BpuDbeGW8Ot4dZwO3PJdLTEM5ecuNzWEnPzSrTABrqbOSrYwQFO0BI9l6zd+ptXogVW0N38eD2XXKhgBwc4weWm59eTDrCA7tYdGyiggq47Fp6fkvOGOj8md2IDl0L3hvL8cGEH1/Gu1ebm1WWBluj54cLl1v2EPD9c2EABXdebz2N+rf82rxgLrKAfr1ucH7I6UcEODnCCFugVY3XtTN+8Yiywgg0UUMEODnCCllhwK7gV3ApuBbeCm8f82qe1eW1YXavjzWvDAgtYwQYKqGAHBzhB3BpuDbeGW8Ot4dZwa7g13BpuDTfBTXAT3AQ3wU1wE9wEN8FNcFPcFDfFTXFT3BQ3xU1xU9wUt45bx63j1nHruHXcOm4dt45bx23gNnAbuA3cBm4Dt4HbwG3gNnCbuE3cJm4Tt4nbxG3iNnGbuE3cDDfDzXAz3Aw3w81wM9wMN0u383OUFxawgg0UUMEODnCCuBXcCm4Ft4Jbwa3gVnAruBXcyCWVXFLJJZVcUskllVxSySWVXHJ+xHI9imvnZywvtMQzl5xYwAo2UEAFO7jc1gbw7fy05YWWeOYScyxgBRsooIIdHOAELVFxU9w8l6xHfO388OWFAo5Ezw/rOWQ7P255oSt4+3p+uFBABTs4wHW805vE88OJnh8uLOBym27s+eFCAZfb9OP1/HDhAN1NHC3R88OFBXQ3dXQ3P17PBNP72DPBhRO0RM8E65la823rqvlZeCYwPxzPBOZungkuVLCDy838cDwTXGiB50cxL3S34egW09EtzPFh0dYjkuZb17X1rKP53nWBE7TEFf6BBaxgW+jHsMI/sMcw8gq3wAlaosf8hQWsYAMFVBC3ilvFreLWcGt+Qt5mrYIN9BPylmwKdnCAE7REOcACVrCBuAluK+bb+jJ188K3wAla4or5wAJWsIECKoib4qa4KW4dt45b93PzIXfOFLpjBwc4QUs8ZwonFrCCDRQQt4HbwG3gNnCbuE3cJm4Tt4nbxG3iNnGbuE3cDDfDzXAz3Aw3w81wM9wMN0s3OQ6wgBVsoIAKdnCAE8St4FZwK7gV3ApuBTfuL6TgVnAruFXcKm4Vt4pbxa3iVnGruFXcKm4Nt4Zbw63h1nBruDXcGm4Nt4ab4Ca4CW6Cm+AmuAlugpvgJrgpboqb4qa4KW6Km+KmuCluilvHrePWceu4ddzIJUIuEXKJkEuEXCLkEiGXCLlEyCVCLhFyiZBLhFwi5BIhlwi5RMglQi4RcomQS4RcIuQSIZcIuUTIJUIuEXKJkEuEXCLkEiGXCLlEyCVCLhFyiZJLlFyi5BIllyi5RMklSi5RcomSS5RcouQSJZcouUTJJUouUXKJkkuUXKLkEiWXKLlEySVKLlFyiZJLlFyi5BIllyi5RMklSi5RcomSS5RcouQSJZcouUTJJUouUXKJkkuUXKLkEiWXKLlEySVKLlFyiZJLlFyi5BIllyi5RMklSi5RcomSS5RcouQSJZcouUTJJUouUXKJkkuUXKLkEiWXKLnES/3aqnFpXuoXWMAKNlBABTs4wAniNnGbuE3cJm4Tt4nbxG3iNnE7c8maCuuZS050t+pYwQYKqGAHB+hu4miBvn9foLupYwUb6G7NUcEOer+dYhO0xHKABaxgAwVUsIO+ervuDrwIMdDPojtWsIECKtjBAXqbTUdLbAfobuZYwQa6mx+Z37dc2EFfmT7FJmiJnjUuLGAFGyiggh1cZ7EKs5qXJgYWcJ3FKsxqXpoYKOA6i1WN1bw0MXC1WfVB4HcoF1qi36FU7ze/Q7mwgg0UUMEOupuPyT5BS/T8cGEBK+hlgS7mRfbm3X0WLJ44QUv0WcWFBaxgA73c0Pt4KtjBAc6rWrP1s5jY8SwmPrGAFWyggAp2MHveyxgDC5g979v5BQqYPe87+gVmz/uefoHZ876r39lvvq1fYAUbKKCCHcye9939ArPnvQIzsIAVzJ73Wsuz589ay+PECWbPn7WWFxawgg3Mnj9rLS/s4ACz573W8kI5wAJWsIECKthBbx0/sjPmTyxgBb0v/NfOmD9RwQ6Oqzy9jbMc+URL9NdtLixgBRsooILex9PREs/oPrGAFWyggAp2cIC4DdwmbhO3idvEza/+zQ/dr/4XdnCAE7TEFfOteeD41f/CCjZQQAU7OMAJWqAXWAa6mzhWsIHu1h3dzRw7OMAJWqJnggsLWMEGLrdVwNq87DJwua0iz+Zll4ETtETPBOKH7pngwgo2UEAFOzhAd1NHS/Q5gXjr+Jzgwgo2UEC3GI4DnKAl+gLmhcvCCxm81jKwgQIq2MHl5o++vdYy0BI9VVxYwAo2UEAFO4ibTw+8vMFrLS/06cGF7uZj0qcHFzbQ3bzVfXrg5Q1ea9l8Cui1loETtERPIBcW0Be0nTSpJ42kmWRBHsE+xfJix8AC+nzNqSVJkib1pHGRFzS29VJc89LF5iUYXrrYzr/XpJ7ko8lpJlmQR+JJJakmuUlxFHC5eJWGVywGjkQPOL9x8SrE5rN0r0IM9LTh5AJ+oB5ZF07QEj2yLizRJK0mtSRJ0qSeZNmIHjJnI3rI+O2lVxcG+qkOxw76kU7Hx5F6NvDiwpNWwFxUkmpSS3JFPxAPgOEHsgLAY9tLBS+qSeu3/dDW4L9Ik3rSSJpJbuJd6OP+wtXv/hjRSwQDG7gO0x/OeNlfG37wfjG8cB2nN61fC8+G8WvhhQIq6LLnrw1wgpYN7pF0YQFxM9wMN8PNcDPcDDcLN/Gqv8AChpscRwMFVLCD4xzq4kV/PnzFi/4uLAdYwJro16nhh+DBdKGA/pzSqSeNpJlkQT6FPakk1aSWJEnp0dKjpUdLj5Yefo0aJxawgutk1gNl8RK8wNWIw1vOA+7CAU7QEv0adWEBl9t6iixeghco4HJbz6zFS/ACB7jcpveDh+iJfo260CeCTjWpJUmSJvUkV+wLPfKmd6dH3vTj9ynrhQp2cB3perItXnwXaIkepRcW0B8HOi0z85b3KL1QwWVmPn49Si+coJt5W3iUXuhmfmoepRc2cGUvP4QVpBf1pJE0k+wir8Vr645GvOqurcfq4lV3bT1WF6+6C5ygJa6gk/XcXbzqLrCCDRRwHWpz6kkjaR1qdbKgdSW8qCTVpJbkJicq2EFLbH6YbtkauBT8KFesXtSTvEHVcYKWKN4i3qZSQLfy5pUG+sF6Q4p7ea+Im7nbCldZS4niNXWBluhXyAsLWMEGCuhufrzqbt3R3fx41d38IP3iWfwg/ep5YQMFVLCDI3F45/lpjgo2UEAFOzgS/XJZvaGm/5r36lSwgwN8nJt6V6+QO2lF3EUlqSa1JEnSpJ40ktLDwsMr2y4qSTWpJUmSJvWkkTST0qOkR0mPkh4lPUp6rGBbtxHihWonrWC7qCTVpJYkSZrUk0ZSetT0aOnR0qOlR0uPlh4tPVp6tPRo6dHSQ9JD0kPSQ9JD0sMDw6+7vnmYrImueNmYeJ73sjFp/m/X1G+VxouXdF1Ukx5K3X9lDd6LRtC6cIhfvLwWK1BAz5DiuM7WNdcgvmgmWZCP4ZNKUk1qSZKkSelh4eH1V7JufcSLrmQtVIgXXa07EvGaq4t60kiaSRa0RudFJakmtaT0KOlR0qOkR0mPkh41PWp6rLG77pfEi60ukqTl4ae5xu5FI6h5KwxHbwVvG79IrGUV8dqpwA4OcIKW6NeJCwtYwQbiJrgJbn6d8Gt6O++jTrTE807qxAJWsIECKthB3BQ3xa3j5p/89k7wT36f1JIkSZN6kiuuWPP6KPErvNdH+ZTRy6Mu0qTHb/uU1GujLppJFuQf+T2pJPmJn+in6IpzgpZofooeEVbACjZQQAU7OMAJWqCXOgUW0N2mYwMFXG5rcUq81ClwuXm681InWWtE4qVOsnZ6Ei91CizgclM39kndhcttLfaIlzqJpw4vdZK1MiDnbl7H+W8naInn5rsnFrCCflfuh179FtwP3edxHt5evhRYwHW8HuFevhQooIIddN3Vx16SJN2PwYPRb1+9JClQwQ4OcIKW6MF4YQHdzZvPg/FCAd3NG9WD8cIBTnC5DW+zcxnkxAKu9vW53rlD14UCrkcGPi88d+i6cIATtMRzY8sTV2/6HFJyY0uR3NhSvCRJhvemz/Uu7OBInAe4Wmf4oPWIvdDvYRf53dNJJWllez+qFYEX9aSRNJPsIq8Nuqgk1aSW5Aejjgp2cPWPLzV4MdCFHm0Xev9Mxwo2cJ3GSZrUk0bSTLIgvzCeVJJqUktKj5oeNT1qetT0qOnR0qOlR0uPlh4tPVp6tPRo6dHSo6WHXzh95cNLfgIruNrLF0G85CdQwdUlq35evOQncPWOLyJ4yc+FHqsXFrCC7ubd57F6obv58XqsTj8yj1VfOfCSn0BL9Fj19QIv+Qms4Lp0niRJmtSTRtIM8lnqeggoXsAjvuzgBTyyKvLFC3gCBzhBP1I/bY/HCwtYwQauQ3WBNas9O8lvzXy9wct39PDz92nthWte6/fpXr6jhwv4zPbCNbX1K4SX76jfUnv5TuA4v2wuPb7AJedOX25w7vR1oYJrIuy35F56EzhBS/SbrQsLWEG/w6iOAio44sDig1vS44Nbcn5A04X8g1sn1SQXV0cBFfS7pFNpgH6f5M1y3ow5nndjJ/pFuDhWsIECKtjBAU7QEvP7FtIFN8FNcBPcBDfBTXAT3AQ3xU1xU9wUN8VNvSWnYwcH6C3pfaGW2A9wDQpfqvCqnMAGCrjcfC3Dq3LUlyr6uSe9OE7QEtflVldRiHhVTmAFGyiggh0c4AQtceI2cZu4nXvSnyiggh0c4AQt8fy+xYkFrCBuhpvf1FZvHb+rvXCAE7RAr+AJLGAFGyigu6ljB0eiJ4kLXWE4usJ0VLCDA/TjNUdL9DWaCwtYwQYKqGAHB4hbxa3h1nBruDXcfMXGV0u8VifQV7CK4wAn6D3vCmd+OLGAFWyggK67AserctSfFnlVjvpKilflBDZQQD/e7tjBAU7QEj3m/U7cq3ICK9hAARVcbn7H7DugBU7QEj3mLyxgBRsooIK4ecz7PbbX6gRaose8r8t7rY76/bHX6gS6mw/wKaC7eev4+tWFA5ygJfql/sICVrCBAuJmuBluhpulm9fqBBawgg0UUMEODnCCuBXcCm4Ft4Jbwa3gVnAruBXcCm4Vt4pbxa3iVnGruFXcPD+s5+bitTqBluj54cIVsZ4cz+92XthAARXs4AAnaIm+hutLHF6Ko2v3EPFSnMB1vL7a4aU4gZbo+eHCAlawgUvX10u8vOZqks4Ze8xfWMEGrvb1ZRYvrwns4ADpzY7boDcHvTnozUFvDnrzjHk/hjPmT6Q3B73pMX8eg8f8hQXEbeI2cSPmJzE/iflJzM/J2DFa0mhJoyU95s9jMFrSaElifhLzk5ifxLwR80bMGzFvxLydMT8cFezgACfoLblSplcFBXpLimMFGyign5uLecxfOMAJWqLH/IUFrKC7TUcBc4B76ZD6wp2XDgVaogf6hTk0vHYosIECKtjBAWZneVnRhUJnCZ0ldJbQWSKggh1cur6O6IVFgQVcur666LVF2v3IfHpwoYIdHOAELdFTxYUFdF0fGp4ULuzgAF3Xh4YnhRM9KVxYQJ92+K95UrhQQAU7OMAJWuI5zVfHBgroZ+FN7eF/oZ+FjzMP/wst0cPfVy29JCmwgsvNVy29JClQwQ4OcIJ2oXpJUmABK9jAfi4gqNceXTST1rOEuWgF+UUlyRWbYwMF9OMXxw4OcK0IFCcL8hWBk0pSTWpJkqRJPWkkpUdNj5YeLT1aerT0aOnR0qOlR0uPlh4tPSQ9JD0kPSQ9PKbX4ql6PVNgB729huMEvb+9HzzSLyygPxb1TvZIv9DdzFHBDvqz0eo4QX8C68frkX5hAd3NO9UnBRf6Y1gfSh7/F/qDWD8Lj/8LJ7ga0QVW+F9UkmpSS5IkV/QW8Ev89LPyS7x5C3iMX9hAAdeRmp+2x/iFA5ygJXqMm/eYx/iFFWyggAq6mzeRx/iFE7RA33gssIAVbKCACnbQ3YbjBC3RL/FrSU69BKqvdUT1EqjAtey91pTUS6ACvT6gOnZwgBO0RF/Fv7CAFWyggLhV3CpuFbeKW8Ot4dZwa7g13BpuDbeGW8Ot4Sa4CW6Cm+AmuAlugpvgJrgJboqb4qa4qbs1RwEV7KA/FxPHCVri+Xm5EwtYwQYKqKCfhePw41XHCvrx+qAdAirYwQFO0BKn6/oAn7Tv5IznACdoiebtOx0LWMEG0puGm9GbRm8avWnZm15cFVjAGofj9VWBAirYQXczxwkut1Wip15mFVjACi634mIe8xcq2MEBTtASPeYvdDdxrKBEZ3khVl/r/+qVWIEDnKBFB9R2gAWsYAMFVDA7qxLolUCvBHol0CuBXgn0SqBXAt13BevrIYX6rmCBlughXbwdPKSLH5mH9IUNFFDBDg5wgpbYXdeHRm+ggAou3epDY13WAydoiSMvzV5YFljBBgqoYAcHOBPXJd9nmV6IdlFLWs/rvEH9ed1JPcmP30ejB/6FlrgC32dnXod2UU1aTVXdx6P+QgX7+YxQvRTtoplkF3l52kUlqSa1JEnSpJ40kmZSepT0KOlR0qOkR0mPkh4lPUp6lPQo6eHRve6g9KxYu7CC7XpUql60Fugt1h07OEB/ZlkdLdHv330G4huEBVbQn6W6gt+/X+huw7GDA1z3RaeDBa0wv6gk1aSW5Ip+Vh7M1dvFg3k9O1AvWQusYAO9YNDFPJgv7OAAJ+hVg2vQeslaYAHXdNobYEX4RZKkST1pJM0kC/Ip+0klKT1Geoz0GOkx0mOkx0iPkR4zPaafiDhWsIECKtjBAU7Qm8273S/yFxbQ3XzwerhfKKC7eTf7Rf7CEegFb4HrdYrupEnrl9ZDCfVqtsAJWqJfqy8soJeEDscGCqigu03HAU7Q3fxoPZovLOByW6vJ6ht3BQqooBehFkevQvXj9Qv0WhxUr3ELrGADXdcbyuNW/Sw8btUPx+O2u5tfoC+0RL9AX+g1T344foG+sIECem2VH69fq7sfjl+rV0WdehFc7344Ht6+zuJFcIEVbKCACnZwuQ0/Bg/vEzuD6IzpEyvYQAEVdAs/Ib9sXzjBdUJ+1fTKt8ACVrCBAirYwQFOELeJm4e5X5t9M67ABgqoYAcHOEFL9DC/EDfDzXAz3Aw3w83D3CcDZ2mdr9mctXUXVrCBrjsdFezgAH1iYo55RfFKu8ACVrCBAirYQW8dR4/5CwtYQS98OxwFVLCD4yrNUq+wC7REr3a9sIAVbKCAXlRXHCdoiR7zFxawgn681dEVXNdD2le0vFYusICu4N3tIX2ht0N3VLCDfrze8x7SF1qiR/eFBaxgA93Nh4ZH94UdHOAELdFf9hh+8h7HZzt4HF9I63gc+0Tb6+gCJ2iJHscXrrPwZTavowtsoIDLzdfWvJIucIDLzVf9vJLuQo/jC93N+8Lj+MIGupv3vMexzyl8I6zuC19eX9d9MuobYQVaoG951X1lzOvuAgVUcM2Wfb3MK+zOweUVdoEFrKCA4yrcVi+mC7REf4VwPZRQr6cLrGADBVSwgwOciSsgh8+jvXYusIECrjsFn5R77VzgACdoV927eu1cYAEr2EABFezgSDzfEBHHAvpZePtqAwVU0M/i/LUBTtASV/AGFtBfaPDO8vcLLxRQwQ4OcIKW6MF7YQH9LE5UsIMD9LPwPh6WOA+wgPGuino9XKCACnZwgBO0RL+H9lUer3wLFFDBDg7Qp6xOdpHXvV1UkmpSS/JJpZMm9aSRNJMsyG+ZfZnIq92Gr6d5tVvgAP1tqfPfWqLH7oUFrGADBVSwgwPEreLWcGu4Ndwabg23hpvHri8Fel3bhSt2Awu4Wme976te1xYooIIdHOAELVHdrToWsIINdLfmqGAHBzizs86Idjwj+sQCVrCBAjIeOuOh+1n4uBsHWEA/Cx9cw8+iOwqoYAf9LIbjBC3RI/rC5eYrcl7tNqo3lK+SXSiggh0c4AQt0VfKLiwgbh7nvgrk1W6BCnZwgBO0QK92Cyygu03H5eYLKl7tFqhgBwc4QUv0pbMLC1hB3Hz5zFdcvNotsIMDnKAl1gMsYAXdrTsKqGAHBzhBS2wH6G7mWMEGCqhgBwc4QV9nXuTz8pNKUk1qSZK0FMVb1nOA+J96DrjQM5kfv7++cqGACnZwgBO0xPPl6BN9Nbk6+usf3gse7Rd2cIATtETPARf6WYhjBRsooLv5KPcccOEAJ2iJngMuLKC7+bmdK+XDUUAFOzjACVr2hdFDRg95DriwgQIq2MER6HVuvs+Fep1bYAVd1xwFXLp6KnRwgOss9FSwRI/2C33RXxwr2EABFXS34TjACVqiR/uFBaxgA113Oq6R6nNVL1gbvhjmBWuBAvqTj8Oxg+vIPMi8YC3QEv0K370d/Ap/YQUbKKCCHXQ3P16/wl9oiR7dFxawgi3P2K/lPpXzgrXACVqiX8t96uYFa4EVbKBcG8eol7EFdnCAE7RE30LrwgJ663RHBTs4QD8L726P4xM9ji8sYL02CNJzZ60LBVSwgwOcoCV6xHY/dI/YCwX0s/DB5RF74QDXWfh6phesOXYvWBtrPbN7wVpgBZfbWpnovodWoIIdHOAELdHjeC1tdq9lC6xgAwVUsF/bmXWvW/Nt2boXrvn+YN0r1wIr2EABFezguPYS68e5v92Jlnjub3eiu3lL+s6RFzZQQAU7OMAJWuK5XaSfpkf3efIe3Rcq2MEBTtASPbrPM/bovrCCDfSHJH44vhXXhR0c4AQt0bfiurCAFfSz6I4dHKCfhbe6X7tP9Gv3hX4W07GCfhbefB7zFyq43KYfg8f8hRO0RI/5CwtYweU2PXD82n2hgh0c4AS9zbyHjJ43et7oeaPnjZ43et7oecueL0f2fDkKWMEGZs+fe3hd2MEBTjB7vpQDLGD2vFeXzbW02b26LFBATfRhP/0sfNhf2MEBTtASfdhPPzcf9hdWsIECKtjBAU7QEjtufqlbi8/d67ICG+huw1HBDrqbOfqTfm8+D4a1kNr9M5Fjrcd3r+EKrGADBVTQqwrcwoPhwglaogfDhQWsYAMFVBC3idvEbeJmuBluhpvhZrgZboab4Wbp5pVdc62edq/sCmyJ65I01/S2e61V4KrjXrOg7rVWgRO0xHWhCixgBRsooILuJo7upo4TtMR2gAWsYAMFVLCDuDXcGm6Cm+AmuAlugpvgJrgJboKb4Ka4KW6Km+KmuKnrrnjzvbbmWrns/onGaxD0CjbQR9R0VLCDA5ygJQ53O7GAfrxu4RsPXSjgOt61kNf9s4uz+ED0TYUu9OP1s5gth8YUUEHGznRdH78r3gIt0Ripxkg1RqrhZrgZboab75Xg6HVQs5xoif6Ow4keImvtrXvBUmAFl/FacOtesBSo4DJeq2zdC5YC3Xg6WqKHyIXuZo4VbKCACnZwgF6wdDha4lmydGIBK9hAiT5ukoPW9986e8iLmS70YLiwgBVsoICZVryYKXCAE7SIlkbgeDFTYAUbKKCCHRyJPuyrH5nvuHVhBwc4QUv0ELmwgBVsIG4Tt4nbxG3iNnEz3Aw3w81DpHoXeohcqGAHBzhBC/SapcACVrCBAirYwQFOELeCW8Gt4FZwK7gV3ApuBbeCW8Gt4lZxq7hV3CpuFbeKW8Wt4lZxa7g13BpuDbeGW8Ot4dZwa7g13AQ3wU1wE9wEN8FNcBPcBDfBTXFT3BQ3xU1xU9wUN8VNcVPcOm4dt45bx63j1nHruHXcOm4dt4HbwG3gNnAbuA3cBm4Dt4HbwG3iNnGbuE3cJm4Tt4nbxG3iNnEz3Aw3w41cIuQSIZcIuUTIJUIuEXKJkkuUXKLkEiWXKLlEySVKLlFyiZJLlFyi5BIllyi5RMklSi5RcomSS5RcouQSJZcouUTJJUouUXKJkkuUXKLkEiWXKLlEySVKLlFyiZJLlFyi5BIllyi5RMklSi5RcomSS5RcouQSJZcouUTJJUouUXKJkkuUXKLkEiWXKLlEySVKLlFyiZJLlFyi5BIllyi5RMklSi5RcomSS5RcouQSJZcouUTJJUouUXKJkkuUXKJnLmmO7iaOHRzgBC3xzCUnFrCCDRQQtzOXDMcBTtDd1gRZz1xyYgHdzRwbKOByW5Xr3cuwAgc4QQv03c8CC1jBBgqoYAcHOEHcCm4Ft4Jbwa3gVnAruBXcCm4Ft4pbxa3iVnGruFXcKm4Vt4pbxa3h1nBruDXcGm4Nt4Zbw63h1nAT3AQ3wU1wE9wEN8FNcBPcBDfFTXFT3BQ3xU1xU9wUN8VNceu4ddw6bh23jlvHrePWceu4ddwGbgO3gdvAbeA2cBu4DdwGbgO3mXHcz/wwHTs4wAla4pkfTixgBRsoIG6Gm+FmuFm6jeMAC1jBBgqoYAcHOEHcCm4Ft4Jbwa3gVnAruBXcCm4Ft4pbxa3iVnGruFXcKm4Vt4pbxa3h1nBruDXcGm4Nt4Zbw63h1nAT3AQ3wU1wE9wEN8FNcBPcBDfFTXFT3BQ3xU1xU9wUN8VNceu4ddw6bh23jlvHrePWceu4ddwGbgO3gdvAbeA2cBu4DdwGbmd+WFMUrzELLGAFGyiggp6NuuMAJ+hua17iNWaBBfRDN8cODnCCFjjPVHGii03HCjZwHfqqQupeQjZX/U73ErLAAU7QEj1VXFjACjZQQNw8Vayine4lZIETtERPFRcWsIINFDAvEpOpxGQq4SVkU7xJPFWc6KniwgJWsIECKtjBAeLWcBPcBDfBTXAT3AQ3wU1w8/ygfpqeHy4sYAUbKOCyUO8szw8XDnCCluj54cICVrCBAuLm+WGVHnWvPwucoLt5H3t+uNDdPAI8P1y43PxhqdefBS63VRfUvf4scIATtETPDxcWsIINFBC3idvEbeI2cTPcDDfDzXAz3Aw3w81wM9ws3bwqLbCAFWyggAp2cIATxK3gVnAruBXcCm4Ft4Jbwa3gVnCruHkCWUVc3avSAhsooLuJYwcHOEFL9ARyYQEr2EABcWu4Ndwabg03wU1wE9wEN08Vqzise63aXDVa3WvVAl1hOFawgQIq2MEBzkQP/1Vs1b0U7eoLD/SzqT3QL5ygJXqge8WSl6IFVrCBDBgC3Qh0I9CNQDcC3Qh0mwyYyYCZDJjJgDkD3Y/hDPQTB4gbgW4EuhHoRqAbgW4Eup2B7sZGSxotabTkGeiPYxjHcYAFDLdxZKCPIwN9HBno48hAH0cG+jgy0Me5AdsyHucObBcWsIItj+EM9BMVxK3gVnDLQB9HBvo4agE5t8q5ZaCPoyrYwQFOcLmt8rLhxWyBy224rgf6hQ0UcLmtcqLhxWyBA5ygJXqgX1jACrqbOgrYr9AbXtc2V0XY8Lq2QEv0THAhQ0MrSGcpnaV0lnZwgHSW0lmdzup0VqezOp3VGYidgdgZGp4qVjHb8Lq2wAJ6Q3k7eKoYfmSeKi5UsIMDnKAleqq4sAR6YZatcu/hhVmBAurC5tjBAU7QEn0LwAsLWMEGCohbw813+FsF+cOLw2yV0w+vCIs/9cPpjn44w9ES9QALWMEGCuiHMx07OEB385ZcA8bW/gvDK8JMvfnWgLE1Tx1eEXYdum8FciEn5Nt9VNf1/T5O9A0/LixgBRsooIIdHKC7+aH7zh/ND923/riwgBVcbs3PbV1QAhXs4AAnaIl2gC7mDWX+a97z5v929bFvz2Vr74/hRVyBFWxgB11hDQ3fcivQFYajG09H/7erSbyIK7CA3oWHYwMF1NQ9o+X80wFO0BI9WvyMvYgrsIIN5Nx8h8zzhHyLzAs5Yx/gxX/NB3jxlvQBfqGCHRzg0i3u5kO5uK4P5QsbKKCCrutN4jvbXDhBS/SxfmEBK+hu3lk+1i9UsIMDnKAl+li/0C28j32AXyiggh0c4AQt0Qf4hQXEzXDzCKg+HkzBDg5wghbo+1mdre4bWgVWsIH+ayv0fDsqW9Usw/ejChRQQT8ccRzgBC3RY+jCAlawge7WHBXs4AAnaIkeQxfWPDcPnPVwbHgRV+DIE/LAudASfXfZC/3Qvc18f9kLG+iHPhwV7CjgJrgJboqbX50upFuUblG6RekWxU2x8DuU6U3i047pTe3TjumH7tOOCyvYQAEV7OAAJ2iJEzefdkxvHb9DubCBAirYwQFO0BL9DuVC3Aw3w83vUKaPB79DubCDA5ygBZ7lWhcWsIINFFBB110p6Cy2WpXf4yy2ulDBDg5wgpbo9xcXFrCCy2JVlI+zwmpt+THOCqsLBzjBZbHKyMdZYXVhASvYQAEV7OAAJ4ib4Ca4CW6Cm+Dmy49rt5JxVlhd6BbeAX77sPYlGWcB1YUNdLHhqGAHBzhBS/TbhwsLWMEGYuFj3Xxo+Fg37zcf6yf6WL+wgBVcWWNtiDK8cMgO726/ilw4QQv0wqHAlY1WBfzwwqHABgqoYAcH6G7N0RJ9UnZhASvYQAEVdAtxnKAl+nXowgJWsIECKthB3Cpufh1a1efDq4UCC1jBBgqo2eqtgwPMzvKyH1u1wsMLfGyV1g4v8Am0RL+2XOiHY44VbKCACnZwgBN0tzVSvcAnsIAVbKCACo48t3OOuMavnrPBE2uekM8GLxRQQZ+qeZuds8ETJ+hTNR+e52zwxJIKE7eJ28Rt4uYTwwvplkm3TLrF6BbD7YzY8d///U+//fXv//qn//jL3//2L//xjz//+bd//q/8g3//7Z//x3/99m9/+sef//Yfv/3z3/7zr3/9p9/+nz/99T/9H/37v/3pb/7zP/70j8ffPhrsz3/734+fD8H/85e//nnRf/8Tv328/tXHysC6yfBff/C0lCjHjyLltYhvk+MS0nsKjPrD79fXv+8vyfnvP67hHMAo98+irdvL6yyktpdnIa9F1qXkVCj8vrS7v958n4fzLB6PdjmCqj9I9I1EdsVjqoLALHcFfE9pF+gNgcf0+QeBuWlI/3zy2QqPNPtSwnadWbMd+mgvJXZN6QssV0NMedmUZTMmH/fo9dJ4DI6nASE/Hkapn/bH9kQsTuQxi2yvT2Sjob5zrWusnb5So/8Unrrr1TVTuHpV60uJzcjyN3dd4fGQmfPodlvBn/CfCr28Vrh7GuP1aewa07dUOxtzHPZKom5yTfWvAJ8DS6W8lCifNkXdjMzHeleO7nKQc+WnnNs2B7EW4c+DsPH6IHYJs9ZoiQcyKh63tPdPpKxltOtEtLw8kc3AqjO69LEc8kpgH2HWc1A85f6fe3R+nvR2Go/7q9B43D69voC0Y5u/a4bIU2s8UuCPGpvR6Z+POS8ihz4p1PsDQzQHhj5F2c8Do22Gp/mXdC4NY4Q/FhJ+1NgcR+WS/Fg8RKN/oU8ySuQ5c/6uTzbj87EEnzOLKU/Xkfbj+FqB8FJjVXqHyCpve1L5qU3nN4wO+3R07M/Fcpry4N5enovsru9lkAGfpq2P6eyPGvXT8bEdpTdT4FbjZrSIfh4t0j9ujV3PPpYlY3Q8HlKV16NUdrm0jJz9PZ5ZPfXsTxNI212kW9xSVHm6xj6WC3/Q0E0uFd+5+7qteRphP2tsj8O/lnhNFmxzHJtRut4nz1n9U8z9rPGVnukve0bl41mH7uZww78Ccx3IY6Hr9YHs7nNqLdkkP6TUnzQ2TfIYntm95Wke96UGuTd7Uftw9rI7j/Xdq5i9FGnvtWfLm6X1RuxLjV53s6i8VK7dat/TGHm/tDa6fE/DX7o/NWZ9rbG9ZPt66tmvxxwvL9l9Oy1tGSyzv77s913f1rwRXp+7edIo9zVmj3G+Nsx7rWGfTxzG8enEYZs75vE0k3qOt5/7dtRPj2PfsyPWBR6Pe+W90eGPKC+NzegYu/awlsPjwU8Tqf6F48gb+8cS2nx9HNsJXd78rLnp0yT5xwv2mNvVs5arZ8/3o1/QEN+d9szo82mU/qwxv+EGapY/dqQrPfuI3+PlSJ+biWUpM4+kPFKavBgf8+NbqL5d1Myp2OMpfHkrWh7P7KNXHs/hj5cac/yx0fKYa+TVum8if26nhDNGae0/3OaPH5dYN6N0tlJzOW7qWxrmn+I5bxlG32jUz6PF2qfRss8/XBZsHi/j3jYRVzv5eD4/hPhJYzs6WKl9LAId7430znxw1PpSw+bHjxH6vWxstb88inJsH8r0fLL0uLY8Nen8goiXaMZM7NiI1N1Q10hB1sfTU42f7ijLsbtNz4u+PV3jmur9rG6tKBnoh3nlT6uVh34aMNtWrZUbOSm7rhmfB3855qcns82nPZ8e1mHyMo+Vsh9m2SDH0yT550cLuydOXKPkeL2gXnYPnB63tflsoY7n5aSfmrRsL/tH4VHm8XSZ+nk1aD9YrZJVTTeDdffMpraRV7vnbFRb/0nk45Wp/XFIrjnW5xnE745jGzZSJqs5m2RUtguo3Cc/1vs2Dya/YbzWz8dr/Y7xWr9lvO4f4mg+xOn95WM52d4+ZBnD7Mfrh7W7h1GPeyhmu8fxOhttRRoroD9cwn8nMj9/6Fvt46e+O4mbj31vn8nmue/dJpWjv9svx0iRsrnU7B5K3S2xKE0/f964P52RK1SPG7Pd6WxmAbPWGPAP1NfpbC+SU8VZbZMTm30+4OX4eMDvJG4O+Ntnshnw2yZtR/ZLa+/2S8/17TnLpohm92yqqLDi/1wE89MNyXasSsmp8yPyNnlVxjeMkPn5CJkfj5DbZ/JmSny0o2STdnvdpFo/b1JtHzfpTuJucVH9o5v0aZSO8t5V5vGbcSBSj12/7O6r7laNfUNC7Z8n1P55QtVvSKj7Fv10gqmF4rPHaH49weybbNr9I8fnHfMcm5S8W98x1iGO58vtzxl53x6D9phvtum9crzSt4/6j85ahrzUGMfnI32Uj0f6+Lgu8P6ZbEb6tkX9w0rRov09Da0UPrT2ukU3o/Rxe6x5p9ztTY18+rDV2I+wWxWfnrY/HR2f30nN8nG9Qpn1w4KF/VHcKyMpu+dS96pXy9xl0pLvDPTnKWWb/V0RfVNE8r5y7Zq+EZkf98v2XHLtYn3b5c1zqblWt77h8a5ILrb35/vBr4m0vO9Ynx54LbJ7OvVYD8yJ1OKnzvmpPG8rc7dO8Bcilo8xWrE3RXgK+ngI2t8UuVmyWHaPqe7WLBazj5eGt8dBwZDNp2nZ74/jrkg/3hXJC80D+3sij0lmTlQfPHYy2/rrTGz2PJH44mCbDLbnOP6aSDdENgF4/xr+8n6o7p5VjSykGuP1VWs/Z773psHuUdXd28O9iOS5iFjZiOzLp/OZ+ZDN2bSPZ951t/R/b261lbj5Rs72IdXNV3LK+HRWU8u2elpyZfjRoi+vevd7ZWx6ZTs68vFwHVPe0miM9ccFb7yrcXys0ZhcPeexr2lk5z7kXmtU/fiO6Bcat+6I9uciDDLp83ONN8fY43EHD2Tm677dvjLVKVMZdRd1uwMZFIaN/joVtvp55+41vqFzR+FcNoG7ez5VjnzsXx5rou82as53H9nr9SjbPcG495C7bt+aMs1zsfH67mx7HMLC8PMLT79rjt01W/NxneimcHAvwusXMkZ/U0RHPjnQ3exB6ufPQavI589Bt6fzvC5bN5WQdff21P3TGX/06dQZF019fl/o96djH85194fRc7jq0M08VXc7S2Sdq9SnN8F+bg79+CW//VGkwnPw/v4odsUlleCtTytv/b5EOXz34uvGbk55T8Tm09r/U3HJV0RWlU6m9+Np7ewrjZrvbz4mm5tGtT9U4tGQ1WhUfX0q9h09Y9/RM/YNPbON3JGzqvVN3/euET+saTZ5VyTXmdbXqd4UGTkn6rtC971Iz2GyvtnwWuQXr1Hdu0bsnvB8yzVifdIhT6dvTmf3JtXjkWvjNtHE3hlso+ft2eg2N0cin69EjM83Sanj411SthI3VyJ270HdXYnYPmy6txKxe5Xq9krE7V7Z3CXuR8e9lYidxt2ViF9oHB9r3LzRnHefiep7bXp3RWSvcW9FZFf9f/emea9x76Z5ey5y5Ph4foT3s4bVP/o47q3M3NZ4M+bursxY/4aVmdm/YYD0P7hj7q2qtO3LUHdXVfYHcmtVpe1eqLq3qtJ2r1PdXVXZHsfNVZVfTGIGk7LHY7cXk5h29K1IprIHP70/+AWRm7eIvziZm8exSYfdsnJ4bTa8mepuVjLyzuxpJ8Sf9lL81Y1M5d3lo9mbd0Py9GZJf3U31H71OtWdW6qtyHfc/t9uEfmOFhnf0SLj0xb5xZPup5M5jueH1F97YH60/iTzugKgHvIdz923Mn3m6+Hra2avOnkrwW3Z43lzeU9icBT2snf25TcHm5Eeb1cT2dPeR5sanv2rELmB0mzPt5hfehVC8vo9pb0WabuXodbWSzmjkZcTidY+r1Vt7eNa1a3EvfvU+2fyep65b1HL+5Bi1l63xudPRH9xHLdeyGyfP6tqbZ/LciFENi9kts+fVW2b47EEcbAEMd9q0lp427ZsZszy+URVvmOiKh9PVH/xLlY2x+xPJYS/fxdr90zmVs3+fvvbW+X2TT5/NbXJxwXVW4mbKez2mYz3GvRetf1W4l6xfdvNDG/eJ/9C42b1wccrqLKfzt2r2N3vbXyv1narcbPUdrs56M3i1Nsam9rUvca90tTWvmWGvGvVm4Wp7Vuquts3FKa29seezd2x2r6hLHy7Ce3NsXpbYzNW9xr3xur2peXbY7V9Q/3z/f3mX0+lts+lblVz7LbWKxkvj6nMc9nQT/tgb/f4a+w30OTlQttWQo72/7vM/qPE7rHUzaWYXWMcOTR+esv3p8aY31D+1HY7/N19Fry7C7vZpGV3k5736M9FOj/vt1q2xQJZK9BfK+zuJTXPoujTvmm/29p8ez9KKYg+fUPmdxpzeyN4b5vB9vHa2C/2i89tOR7cXm+z3Kx+HLFbiXvDyz6unWr7d+NygjzLy1Vx+3iM28djfH7DGJ+fj3HZb8p3b4xv9++vWYhaH/x0IHpfQ7NNq+prjf3O6E8P1UZ5fqHm5z3rD/k0UvYStyJFPn+E9IXmKK+3fdtv4S9US6g8dYy9qTE/13gu3fzKpwRazwWPNl5vvy/bUvbJJrjzKfx/L7K52lee3Nb5tKj2NZFZLEWe30T9oghHUvUbRJ62OP7KtxG0K5vOD3uvc4Q0Ijrmuz08MwE8b7X8/hcn5K0WEeP1QJubrrn7BY65CZvdtn43q9CkbrPqQZVR7ZsD2dzKrc9Kxt2PPm8QOn/S2G78TPXGD8/Ex08au+X9g/x+PC/g/qwx989v69PzW319NttmVTZ9f3pA//tm3YrYUwXY60Gy/xrI7c+SbFX0QEU338CQ7c36oBD8uYt/WuffflPk6U0Baa+vndvvebTchUGbvfsdjSzheKC+p2G5P7jakDd7ZmQSKGMex5sq82kHuamv22TUT2fwW4VbM/j9jvz2VDlh7dXjfZHtcl9uZWv19TxxL5Hj1Gp/dT+0/0LB4EzmmG9G7rR8qPXgzW2qbF+bujf53krcm3zvJor3Jt9faI7dx5F+oTJQUXlXRQ2Vsbkv2m3Md7NrthL3umZ3Mt/SNc/NMe3trumo2Jv50A4uVVbq6/y+3Uf+XkLcS9zKiPtz4V3SYl1et4j0+ukCz1bica06KM4ZRd4T4fbqwVXfFMmdOdf17q38bIMnXLbLz9tt079rF/iac8XajucJZ39TpNQ3RTS/VV61l/dEHqeQSe344f7op4WW3XYhhQ3pa3v9ASgZ7fOHCDK+4R3q7dlQEVoP2Z3Np0+p+je8Pr39XBr56Kep8xc+uTaEz9j98Jmyn+/Bj4+vnPPjRzuye0x178q5b4xctdLZbNMYu3pUyXWeLrNtRHZ1fnxHsxwvb5y3h6E5P3s8VDnePBfNr9E8Vq/0bZGnN2PtbZF8C7S/+WnAu58X3L3SevPW7Ph0IrJ9N/fmw5X9+703H67YN3zVb/slPMk1BHl+Nf7nr1mJfX5XZZ/fVdnHd1XbxlD2Onte3v25MfQonzbGXuJWY+jR/tDG6MJeFr1sGkM/bwz9vDE+fkq+/cyZ5aVJjjc/5Pl4cm1ovP5Umpbj83mcbr8/dXP2s3sXphfe2dDNYbTvOJdvmJPuvx1XsntLledv+s2fjmTXv7zn/LTIPcYXDqNbvsb643eFvvAJu7tXhf138MiEa/NVWvV338HbfkzviLCz50nDV0Wy7LE/l19+5Yt8z++yHc8fef/pm3y/OJLJtwHt3dMZLeaFNp4KEb4mMmnY+ZRJfhbR3YOqbxH54c2LtvnY4VakZmVrrc9t8iWRlhvr1OctAn7fxd/wsZTd3q93F8vmp3PU/ZncnKT+ojnuzVK1fcMsdf8Vu3uvw2n7/Js+2j7+ps9W4t67JPfPZPcBmm1l1q3X4VQ+34Zi/2HA/vSR4/lckt6+IMIyygPLeyJ334jbH4k2arD7+985nJ1n90+bYvzudeW9jLLr0mPIz7dlsmGW5Gab8G3LNKN5n683X2peyW/aVHm+Bv9OZLtV4K1X7Lal9vfeWtxr3HtrUXeL9/feWlTt2+cqt95a3B7H3Sbddm1OOR+93N6NnEI1cylN3h3yVYic2t8OwJoPm5bkJnK204GnBbz27owi3/PvspHYzlyfPmv9XC7283yxf74e0D9fD+jjD5W4uSnFvkGzbObRtvKyQef4+C589ymp23fhu4KX2ysKu/39LG8DxvNmYz/vJrPTmCOfyTwew5e3NKxkfaY9b772s4aO/ulA3x9GFrxZ3eyKu9Wo3LJWs82p2B96Ko3U0ez15pw6yx96GJLbppoeu8P4uExlL3Ev/cyPy1Rsu5rxlH02e53uvrdy71Z3q3DrTtfq5ze6W42797lWvuE+t3zDfa59/qEUtY8/lLKVuHmfe/tMNve55Rvuc3dr3Xfvc8t33OeW77jPLd9xn1u+4z63fM99bvme+9zyPfe55Tvuc8t33OeWz+9zyzfc55bP73P79onVrfvcvh32N+9z+3c06Xfc55bvuc8t33OfW77lPnc7F7h1m7ufTdy5yx366f1Ur99wP9XrN9xPbXdA6PkCUHtu0fIFjcd4z+fe7Xkf2a9oSNZDyw/vl/+ksd2KYdT8GM08XhcjzI83H5gfbz4wv2HzgfkNmw/09g2z1W39UZ9U/M7jZafsNKo9f4y2vqcxc5rYjvr6OPr2MdXdsN0Vt95eBtmWDOfmre3Qujmb7QYANz+4sK+G4itS4/VH6D0qXs9Yb31voUv5+Iam7x5V3buh2Urcu6Hpu49Q3XzTte/2G7r3vYW++wLV3e8t3O+VsemV7ei49b2FrcbN7y38SuP4WOPe9xa63n2gqu+16c3vLfxC49b3Frp+/gXKX2jcuvHen8u97y10nX/0cdz63sJ9jTdj7ub3Fvr2vaOb31v4xWC/OUDqH9wx97630He1nXe/t/CLA7n1vYXe58c3ytva9Ls3yn1+eqP8qznMre8t9O/4zsFW5Gb98C9O5uZxbKeG82lviTfvgm7dZe/vgm7dZR+fHsP+LY5bz7P37/exIKvz+YbwKy8Jdt407NbeFJn5Gc76vJH/F980fLptqK9PR7aPcW++rrgVufddgr3Ere8S/ELi1ncJtv3C5wDXwvubnfuDiLwrUhFpr/ul28cPUPcSt55cdmt/qMTN2ot9g1ItPMZ8t1cyHddh72aQ5yN5W2TmVOqBb4vwYYKtyPY9/5u1Svppbv/FriWpYbW/ufFJTnGtjpev1tWPr3L105bYb++TrxvoeF61+IoGe+ro82dvv7ZFUC6sP/DNbYbm4Dje3e5oZq8+5N7d7ujpnkPebo+Jxut+2W4hpfPp2+r1GzTe24ZKWPSU50XPL2mwo4aMzRjba3DvM8drjVF2Bf6Wk5d5HK/fihll9yZqzwoy6aYvn4b96khGHsnm/ZyxexilPSdS2p8WlL5wHJMN8OfRx+Y42nb5NZr1cdHUjcjuVb98B/35ufp6Y+j2ELG81Zfdzjxj96bR7SFSxzcMkV8cyc0hYh8Pkd1x3B4iv/jS1L0h0uofOUT0yCeN+uP+JD8Nkbb7vEnN3fy1Pl+q5k8au2nQqLnlwnje4Gt+4Vyy4FHLUTfnMr7hXOYfey4s0T/wvaudtixa0ib9PY3KcdTxDRrzePNcslhJnz/l8bXjYMOVdrzdpkab6psagkbfbMq53SU8X/GtVZ/n2z8+rRzy8Xcn9hK37m+HHn+oxL1b5G17Nra/auP1juljtyHfvX10dkch3GKLzc1R6OcZbPeW1M0Mtt+DvlIyWfXluew1lO939dftIbu34e9uhr8VubnKt5W4t8q3l7izyrf92MKtu/T95xru3KW3j9fk28dr8vvPGN39RO4vVG5+IbeNb/lC7lbm3hjdS9wao7+QuDNG95+Hu/lxqK3G558guz9GfvVJtZtjpH/PGOmfj5H++RjpH4+Rzz+2OfYfmrpVZzXm/kY/7gQ3dVZbiXt1VvfP5HWdxOff2vz8U5tj3q072fXI/LjM4v5xvNa4/W26l1U4wz6u4dtK3Bxb9nkN37CPa/iG7bbvEWWHpuP1pxzHbtc906ydM7XXGXTs3o56PB3J1DOettzvX2hT/57x1aZPtyvyc2X1boQ9FxK/7pW+vzDd+9bnvmduXmn3Ije/9rkXqXnH8UB5V+TeN0N/0Sb3Phq6H603vxp6X2Tz2dBfiNz7buhW5P4E5hdNe29y+PmHQ+fuHaBbWzL/oj3uzi5/JXNzejl3b3rd752tzL3p5V7i1vTyFxIfTi/LPPgaQX1+F+Cno9g9jLp3odi+y5tTmWLP32eqX5CwPIajlrckZl4lftzB/Hdt8Q2vm8z6Da+b7EK/Up5U+9yczK648bEklpHbh76qlviVSBafPdhevbIy23YSYLl0WsrrETK370bVlhfftR3o03A/bk94H0+j862352/WfWGgycivszwkNn2zexR1e6DtnkXdHWi/7ODx1MEvk+H+c7XfMUrYEr325+cev2tY294H8Gr05nnlL0QqE9++EdktCt99DDy3e/ndegy8PY67j4GnyOePgeduGfLeY+B9EihcrR78/FmUn5LA3H0tKgfr08fzpN3OAD3fXZH+vHGO/NwYu3r+e3uKTD0+XhqaWj69fd9K3Lt9v38mr5eG9i16b0+R+Q2vNv3iOKjYPMp4fRy7vdBuvTAyd29H3d3aZC9yc2uTrcjdrU32R3Jza5O9SC08jt4dSd/vj5Iqi1/v8vArmZvbrPxC5u42K7+SubnNyr6Bb26zshe5uc3KNoLuveq0DeSb26zsNe5tszK373/cSwbbD03dfHtsexw3m3Tftfe2WfnFWL27zcovZO5us/IrmZvbrBwfL1/P3Q4U95av53Y3v5uvoG/3FWJrgfJcxqDHFySE6be8J8EbYPVpHf53k83t96Yq9U/HmxL5Vm9/mjV/5USed+F/+gbGVyR6LkX++DbcFyRGYY1o1xb2R4uUzo1zf35F6EsiIyugyrD6pogdfMSzvtczNU/mMR15L1ZaVqU9Rkp57yh40fG53vALEjK5NDx/77LcXvF6pPHs1yLznYMopfNp9flWtJWW8frA945CKys7Mt6T6NwMTXvvRBicrb53Io2PmDZ960RG3ggN6e8ImLA17HsncWSB4OOy+npM2G6b7s9Htx1sGvxeQ+TQtqEftuR7AvdqV7ejOl9qKs/Lez9/Cmab/Pn6cm/2lsTMUs3y3JdfkbDBt1KP8o7EY4Gx8bCivXUUPNpbHyp+T8L4Wnl560QeiZYdNuy9o2g5VStyyFsS8rSLw/Pq5E8StnsZ6huuYS0XsEsb7zWGHHkmz0Xm77bnexKt8mChPi8FWLkvkVsUtud90t+VeLrh/JJEXklbfcp7X5FoeTPyoOMtCcnnvO2HoqCvHEXPHvlhaL0r8V6nshLRnqdHX2oLNsSQ9l6nSmO7pTbekyjsPqVvdmpn15f+1lGs78RzGyJvSTx9rn4+l0b9JGG7h0yPRQu+s9ifMt/8wlW1clXV984kX718LKDP9yQ65RDvBUmZueT3uL8rb54IS21H/ViivHsUA4m3ov1xPactZHx8FD936v98/O+f/vUv//iXv/79X//0H3/5+9/+/fGb/73E/vGXP/2vv/75+t//859/+9env/2P//ff4m/+1z/+8te//uX//su//ePv//rn//2f//jzUlp/99tx/ed/jOOxHj0ed5T/859+K+v/10xhPK7vj/9v/vePEHz8I//79Qt9bcbRSz3WH/hvrD94/Gf8z/9eh/z/AQ=="
|
|
2292
2292
|
},
|
|
2293
2293
|
{
|
|
2294
2294
|
"name": "public_dispatch",
|
|
@@ -2628,31 +2628,31 @@
|
|
|
2628
2628
|
"path": "std/hash/mod.nr",
|
|
2629
2629
|
"source": "// Exposed only for usage in `std::meta`\npub(crate) mod poseidon2;\n\nuse crate::default::Default;\nuse crate::embedded_curve_ops::{\n EmbeddedCurvePoint, EmbeddedCurveScalar, multi_scalar_mul, multi_scalar_mul_array_return,\n};\nuse crate::meta::derive_via;\n\n#[foreign(sha256_compression)]\n// docs:start:sha256_compression\npub fn sha256_compression(input: [u32; 16], state: [u32; 8]) -> [u32; 8] {}\n// docs:end:sha256_compression\n\n#[foreign(keccakf1600)]\n// docs:start:keccakf1600\npub fn keccakf1600(input: [u64; 25]) -> [u64; 25] {}\n// docs:end:keccakf1600\n\npub mod keccak {\n #[deprecated(\"This function has been moved to std::hash::keccakf1600\")]\n pub fn keccakf1600(input: [u64; 25]) -> [u64; 25] {\n super::keccakf1600(input)\n }\n}\n\n#[foreign(blake2s)]\n// docs:start:blake2s\npub fn blake2s<let N: u32>(input: [u8; N]) -> [u8; 32]\n// docs:end:blake2s\n{}\n\n// docs:start:blake3\npub fn blake3<let N: u32>(input: [u8; N]) -> [u8; 32]\n// docs:end:blake3\n{\n if crate::runtime::is_unconstrained() {\n // Temporary measure while Barretenberg is main proving system.\n // Please open an issue if you're working on another proving system and running into problems due to this.\n crate::static_assert(\n N <= 1024,\n \"Barretenberg cannot prove blake3 hashes with inputs larger than 1024 bytes\",\n );\n }\n __blake3(input)\n}\n\n#[foreign(blake3)]\nfn __blake3<let N: u32>(input: [u8; N]) -> [u8; 32] {}\n\n// docs:start:pedersen_commitment\npub fn pedersen_commitment<let N: u32>(input: [Field; N]) -> EmbeddedCurvePoint {\n // docs:end:pedersen_commitment\n pedersen_commitment_with_separator(input, 0)\n}\n\n#[inline_always]\npub fn pedersen_commitment_with_separator<let N: u32>(\n input: [Field; N],\n separator: u32,\n) -> EmbeddedCurvePoint {\n let mut points = [EmbeddedCurveScalar { lo: 0, hi: 0 }; N];\n for i in 0..N {\n // we use the unsafe version because the multi_scalar_mul will constrain the scalars.\n points[i] = from_field_unsafe(input[i]);\n }\n let generators = derive_generators(\"DEFAULT_DOMAIN_SEPARATOR\".as_bytes(), separator);\n multi_scalar_mul(generators, points)\n}\n\n// docs:start:pedersen_hash\npub fn pedersen_hash<let N: u32>(input: [Field; N]) -> Field\n// docs:end:pedersen_hash\n{\n pedersen_hash_with_separator(input, 0)\n}\n\n#[no_predicates]\npub fn pedersen_hash_with_separator<let N: u32>(input: [Field; N], separator: u32) -> Field {\n let mut scalars: [EmbeddedCurveScalar; N + 1] = [EmbeddedCurveScalar { lo: 0, hi: 0 }; N + 1];\n let mut generators: [EmbeddedCurvePoint; N + 1] =\n [EmbeddedCurvePoint::point_at_infinity(); N + 1];\n let domain_generators: [EmbeddedCurvePoint; N] =\n derive_generators(\"DEFAULT_DOMAIN_SEPARATOR\".as_bytes(), separator);\n\n for i in 0..N {\n scalars[i] = from_field_unsafe(input[i]);\n generators[i] = domain_generators[i];\n }\n scalars[N] = EmbeddedCurveScalar { lo: N as Field, hi: 0 as Field };\n\n let length_generator: [EmbeddedCurvePoint; 1] =\n derive_generators(\"pedersen_hash_length\".as_bytes(), 0);\n generators[N] = length_generator[0];\n multi_scalar_mul_array_return(generators, scalars, true)[0].x\n}\n\n#[field(bn254)]\n#[inline_always]\npub fn derive_generators<let N: u32, let M: u32>(\n domain_separator_bytes: [u8; M],\n starting_index: u32,\n) -> [EmbeddedCurvePoint; N] {\n crate::assert_constant(domain_separator_bytes);\n // TODO(https://github.com/noir-lang/noir/issues/5672): Add back assert_constant on starting_index\n __derive_generators(domain_separator_bytes, starting_index)\n}\n\n#[builtin(derive_pedersen_generators)]\n#[field(bn254)]\nfn __derive_generators<let N: u32, let M: u32>(\n domain_separator_bytes: [u8; M],\n starting_index: u32,\n) -> [EmbeddedCurvePoint; N] {}\n\n#[field(bn254)]\n// Decompose the input 'bn254 scalar' into two 128 bits limbs.\n// It is called 'unsafe' because it does not assert the limbs are 128 bits\n// Assuming the limbs are 128 bits:\n// Assert the decomposition does not overflow the field size.\nfn from_field_unsafe(scalar: Field) -> EmbeddedCurveScalar {\n // Safety: xlo and xhi decomposition is checked below\n let (xlo, xhi) = unsafe { crate::field::bn254::decompose_hint(scalar) };\n // Check that the decomposition is correct\n assert_eq(scalar, xlo + crate::field::bn254::TWO_POW_128 * xhi);\n // Check that the decomposition does not overflow the field size\n let (a, b) = if xhi == crate::field::bn254::PHI {\n (xlo, crate::field::bn254::PLO)\n } else {\n (xhi, crate::field::bn254::PHI)\n };\n crate::field::bn254::assert_lt(a, b);\n\n EmbeddedCurveScalar { lo: xlo, hi: xhi }\n}\n\npub fn poseidon2_permutation<let N: u32>(input: [Field; N], state_len: u32) -> [Field; N] {\n assert_eq(input.len(), state_len);\n poseidon2_permutation_internal(input)\n}\n\n#[foreign(poseidon2_permutation)]\nfn poseidon2_permutation_internal<let N: u32>(input: [Field; N]) -> [Field; N] {}\n\n// Generic hashing support.\n// Partially ported and impacted by rust.\n\n// Hash trait shall be implemented per type.\n#[derive_via(derive_hash)]\npub trait Hash {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher;\n}\n\n// docs:start:derive_hash\ncomptime fn derive_hash(s: TypeDefinition) -> Quoted {\n let name = quote { $crate::hash::Hash };\n let signature = quote { fn hash<H>(_self: Self, _state: &mut H) where H: $crate::hash::Hasher };\n let for_each_field = |name| quote { _self.$name.hash(_state); };\n crate::meta::make_trait_impl(\n s,\n name,\n signature,\n for_each_field,\n quote {},\n |fields| fields,\n )\n}\n// docs:end:derive_hash\n\n// Hasher trait shall be implemented by algorithms to provide hash-agnostic means.\n// TODO: consider making the types generic here ([u8], [Field], etc.)\npub trait Hasher {\n fn finish(self) -> Field;\n\n fn write(&mut self, input: Field);\n}\n\n// BuildHasher is a factory trait, responsible for production of specific Hasher.\npub trait BuildHasher {\n type H: Hasher;\n\n fn build_hasher(self) -> H;\n}\n\npub struct BuildHasherDefault<H>;\n\nimpl<H> BuildHasher for BuildHasherDefault<H>\nwhere\n H: Hasher + Default,\n{\n type H = H;\n\n fn build_hasher(_self: Self) -> H {\n H::default()\n }\n}\n\nimpl<H> Default for BuildHasherDefault<H>\nwhere\n H: Hasher + Default,\n{\n fn default() -> Self {\n BuildHasherDefault {}\n }\n}\n\nimpl Hash for Field {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self);\n }\n}\n\nimpl Hash for u1 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for u8 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for u16 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for u32 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for u64 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for u128 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for i8 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as u8 as Field);\n }\n}\n\nimpl Hash for i16 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as u16 as Field);\n }\n}\n\nimpl Hash for i32 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as u32 as Field);\n }\n}\n\nimpl Hash for i64 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as u64 as Field);\n }\n}\n\nimpl Hash for bool {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for () {\n fn hash<H>(_self: Self, _state: &mut H)\n where\n H: Hasher,\n {}\n}\n\nimpl<T, let N: u32> Hash for [T; N]\nwhere\n T: Hash,\n{\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n for elem in self {\n elem.hash(state);\n }\n }\n}\n\nimpl<T> Hash for [T]\nwhere\n T: Hash,\n{\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n self.len().hash(state);\n for elem in self {\n elem.hash(state);\n }\n }\n}\n\nimpl<A, B> Hash for (A, B)\nwhere\n A: Hash,\n B: Hash,\n{\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n self.0.hash(state);\n self.1.hash(state);\n }\n}\n\nimpl<A, B, C> Hash for (A, B, C)\nwhere\n A: Hash,\n B: Hash,\n C: Hash,\n{\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n self.0.hash(state);\n self.1.hash(state);\n self.2.hash(state);\n }\n}\n\nimpl<A, B, C, D> Hash for (A, B, C, D)\nwhere\n A: Hash,\n B: Hash,\n C: Hash,\n D: Hash,\n{\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n self.0.hash(state);\n self.1.hash(state);\n self.2.hash(state);\n self.3.hash(state);\n }\n}\n\nimpl<A, B, C, D, E> Hash for (A, B, C, D, E)\nwhere\n A: Hash,\n B: Hash,\n C: Hash,\n D: Hash,\n E: Hash,\n{\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n self.0.hash(state);\n self.1.hash(state);\n self.2.hash(state);\n self.3.hash(state);\n self.4.hash(state);\n }\n}\n\n// Some test vectors for Pedersen hash and Pedersen Commitment.\n// They have been generated using the same functions so the tests are for now useless\n// but they will be useful when we switch to Noir implementation.\n#[test]\nfn assert_pedersen() {\n assert_eq(\n pedersen_hash_with_separator([1], 1),\n 0x1b3f4b1a83092a13d8d1a59f7acb62aba15e7002f4440f2275edb99ebbc2305f,\n );\n assert_eq(\n pedersen_commitment_with_separator([1], 1),\n EmbeddedCurvePoint {\n x: 0x054aa86a73cb8a34525e5bbed6e43ba1198e860f5f3950268f71df4591bde402,\n y: 0x209dcfbf2cfb57f9f6046f44d71ac6faf87254afc7407c04eb621a6287cac126,\n is_infinite: false,\n },\n );\n\n assert_eq(\n pedersen_hash_with_separator([1, 2], 2),\n 0x26691c129448e9ace0c66d11f0a16d9014a9e8498ee78f4d69f0083168188255,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2], 2),\n EmbeddedCurvePoint {\n x: 0x2e2b3b191e49541fe468ec6877721d445dcaffe41728df0a0eafeb15e87b0753,\n y: 0x2ff4482400ad3a6228be17a2af33e2bcdf41be04795f9782bd96efe7e24f8778,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3], 3),\n 0x0bc694b7a1f8d10d2d8987d07433f26bd616a2d351bc79a3c540d85b6206dbe4,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3], 3),\n EmbeddedCurvePoint {\n x: 0x1fee4e8cf8d2f527caa2684236b07c4b1bad7342c01b0f75e9a877a71827dc85,\n y: 0x2f9fedb9a090697ab69bf04c8bc15f7385b3e4b68c849c1536e5ae15ff138fd1,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4], 4),\n 0xdae10fb32a8408521803905981a2b300d6a35e40e798743e9322b223a5eddc,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4], 4),\n EmbeddedCurvePoint {\n x: 0x07ae3e202811e1fca39c2d81eabe6f79183978e6f12be0d3b8eda095b79bdbc9,\n y: 0x0afc6f892593db6fbba60f2da558517e279e0ae04f95758587760ba193145014,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4, 5], 5),\n 0xfc375b062c4f4f0150f7100dfb8d9b72a6d28582dd9512390b0497cdad9c22,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4, 5], 5),\n EmbeddedCurvePoint {\n x: 0x1754b12bd475a6984a1094b5109eeca9838f4f81ac89c5f0a41dbce53189bb29,\n y: 0x2da030e3cfcdc7ddad80eaf2599df6692cae0717d4e9f7bfbee8d073d5d278f7,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4, 5, 6], 6),\n 0x1696ed13dc2730062a98ac9d8f9de0661bb98829c7582f699d0273b18c86a572,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4, 5, 6], 6),\n EmbeddedCurvePoint {\n x: 0x190f6c0e97ad83e1e28da22a98aae156da083c5a4100e929b77e750d3106a697,\n y: 0x1f4b60f34ef91221a0b49756fa0705da93311a61af73d37a0c458877706616fb,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4, 5, 6, 7], 7),\n 0x128c0ff144fc66b6cb60eeac8a38e23da52992fc427b92397a7dffd71c45ede3,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4, 5, 6, 7], 7),\n EmbeddedCurvePoint {\n x: 0x015441e9d29491b06563fac16fc76abf7a9534c715421d0de85d20dbe2965939,\n y: 0x1d2575b0276f4e9087e6e07c2cb75aa1baafad127af4be5918ef8a2ef2fea8fc,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4, 5, 6, 7, 8], 8),\n 0x2f960e117482044dfc99d12fece2ef6862fba9242be4846c7c9a3e854325a55c,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4, 5, 6, 7, 8], 8),\n EmbeddedCurvePoint {\n x: 0x1657737676968887fceb6dd516382ea13b3a2c557f509811cd86d5d1199bc443,\n y: 0x1f39f0cb569040105fa1e2f156521e8b8e08261e635a2b210bdc94e8d6d65f77,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4, 5, 6, 7, 8, 9], 9),\n 0x0c96db0790602dcb166cc4699e2d306c479a76926b81c2cb2aaa92d249ec7be7,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4, 5, 6, 7, 8, 9], 9),\n EmbeddedCurvePoint {\n x: 0x0a3ceae42d14914a432aa60ec7fded4af7dad7dd4acdbf2908452675ec67e06d,\n y: 0xfc19761eaaf621ad4aec9a8b2e84a4eceffdba78f60f8b9391b0bd9345a2f2,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 10),\n 0x2cd37505871bc460a62ea1e63c7fe51149df5d0801302cf1cbc48beb8dff7e94,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 10),\n EmbeddedCurvePoint {\n x: 0x2fb3f8b3d41ddde007c8c3c62550f9a9380ee546fcc639ffbb3fd30c8d8de30c,\n y: 0x300783be23c446b11a4c0fabf6c91af148937cea15fcf5fb054abf7f752ee245,\n is_infinite: false,\n },\n );\n}\n"
|
|
2630
2630
|
},
|
|
2631
|
-
"
|
|
2631
|
+
"229": {
|
|
2632
2632
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/utils/array/append.nr",
|
|
2633
2633
|
"source": "/// Appends the elements of the second `BoundedVec` to the end of the first one. The resulting `BoundedVec` can have any arbitrary maximum length, but it must be\n/// large enough to fit all of the elements of both the first and second vectors.\npub fn append<T, let ALen: u32, let BLen: u32, let DstLen: u32>(\n a: BoundedVec<T, ALen>,\n b: BoundedVec<T, BLen>,\n) -> BoundedVec<T, DstLen> {\n let mut dst = BoundedVec::new();\n\n dst.extend_from_bounded_vec(a);\n dst.extend_from_bounded_vec(b);\n\n dst\n}\n\nmod test {\n use super::append;\n\n #[test]\n unconstrained fn append_empty_vecs() {\n let a: BoundedVec<_, 3> = BoundedVec::new();\n let b: BoundedVec<_, 14> = BoundedVec::new();\n\n let result: BoundedVec<Field, 5> = append(a, b);\n\n assert_eq(result.len(), 0);\n assert_eq(result.storage(), std::mem::zeroed());\n }\n\n #[test]\n unconstrained fn append_non_empty_vecs() {\n let a: BoundedVec<_, 3> = BoundedVec::from_array([1, 2, 3]);\n let b: BoundedVec<_, 14> = BoundedVec::from_array([4, 5, 6]);\n\n let result: BoundedVec<Field, 8> = append(a, b);\n\n assert_eq(result.len(), 6);\n assert_eq(result.storage(), [1, 2, 3, 4, 5, 6, std::mem::zeroed(), std::mem::zeroed()]);\n }\n\n #[test(should_fail_with = \"out of bounds\")]\n unconstrained fn append_non_empty_vecs_insufficient_max_len() {\n let a: BoundedVec<_, 3> = BoundedVec::from_array([1, 2, 3]);\n let b: BoundedVec<_, 14> = BoundedVec::from_array([4, 5, 6]);\n\n let _: BoundedVec<Field, 5> = append(a, b);\n }\n}\n"
|
|
2634
2634
|
},
|
|
2635
|
-
"
|
|
2635
|
+
"232": {
|
|
2636
2636
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/utils/array/subarray.nr",
|
|
2637
2637
|
"source": "/// Returns `DstLen` elements from a source array, starting at `offset`. `DstLen` must not be larger than the number\n/// of elements past `offset`.\n///\n/// Examples:\n/// ```\n/// let foo: [Field; 2] = subarray([1, 2, 3, 4, 5], 2);\n/// assert_eq(foo, [3, 4]);\n///\n/// let bar: [Field; 5] = subarray([1, 2, 3, 4, 5], 2); // fails - we can't return 5 elements since only 3 remain\n/// ```\npub fn subarray<T, let SrcLen: u32, let DstLen: u32>(src: [T; SrcLen], offset: u32) -> [T; DstLen] {\n assert(offset + DstLen <= SrcLen, \"DstLen too large for offset\");\n\n let mut dst: [T; DstLen] = std::mem::zeroed();\n for i in 0..DstLen {\n dst[i] = src[i + offset];\n }\n\n dst\n}\n\nmod test {\n use super::subarray;\n\n #[test]\n unconstrained fn subarray_into_empty() {\n // In all of these cases we're setting DstLen to be 0, so we always get back an empty array.\n assert_eq(subarray::<Field, _, _>([], 0), []);\n assert_eq(subarray([1, 2, 3, 4, 5], 0), []);\n assert_eq(subarray([1, 2, 3, 4, 5], 2), []);\n }\n\n #[test]\n unconstrained fn subarray_complete() {\n assert_eq(subarray::<Field, _, _>([], 0), []);\n assert_eq(subarray([1, 2, 3, 4, 5], 0), [1, 2, 3, 4, 5]);\n }\n\n #[test]\n unconstrained fn subarray_different_end_sizes() {\n // We implicitly select how many values to read in the size of the return array\n assert_eq(subarray([1, 2, 3, 4, 5], 1), [2, 3, 4, 5]);\n assert_eq(subarray([1, 2, 3, 4, 5], 1), [2, 3, 4]);\n assert_eq(subarray([1, 2, 3, 4, 5], 1), [2, 3]);\n assert_eq(subarray([1, 2, 3, 4, 5], 1), [2]);\n }\n\n #[test(should_fail_with = \"DstLen too large for offset\")]\n unconstrained fn subarray_offset_too_large() {\n // With an offset of 1 we can only request up to 4 elements\n let _: [_; 5] = subarray([1, 2, 3, 4, 5], 1);\n }\n\n #[test(should_fail)]\n unconstrained fn subarray_bad_return_value() {\n assert_eq(subarray([1, 2, 3, 4, 5], 1), [3, 3, 4, 5]);\n }\n}\n"
|
|
2638
2638
|
},
|
|
2639
|
-
"
|
|
2639
|
+
"233": {
|
|
2640
2640
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/utils/array/subbvec.nr",
|
|
2641
2641
|
"source": "use crate::utils::array;\n\n/// Returns `DstMaxLen` elements from a source BoundedVec, starting at `offset`. `offset` must not be larger than the\n/// original length, and `DstLen` must not be larger than the total number of elements past `offset` (including the\n/// zeroed elements past `len()`).\n///\n/// Only elements at the beginning of the vector can be removed: it is not possible to also remove elements at the end\n/// of the vector by passing a value for `DstLen` that is smaller than `len() - offset`.\n///\n/// Examples:\n/// ```\n/// let foo = BoundedVec::<_, 10>::from_array([1, 2, 3, 4, 5]);\n/// assert_eq(subbvec(foo, 2), BoundedVec::<_, 8>::from_array([3, 4, 5]));\n///\n/// let bar: BoundedVec<_, 1> = subbvec(foo, 2); // fails - we can't return just 1 element since 3 remain\n/// let baz: BoundedVec<_, 10> = subbvec(foo, 3); // fails - we can't return 10 elements since only 7 remain\n/// ```\npub fn subbvec<T, let SrcMaxLen: u32, let DstMaxLen: u32>(\n bvec: BoundedVec<T, SrcMaxLen>,\n offset: u32,\n) -> BoundedVec<T, DstMaxLen> {\n // from_parts_unchecked does not verify that the elements past len are zeroed, but that is not an issue in our case\n // because we're constructing the new storage array as a subarray of the original one (which should have zeroed\n // storage past len), guaranteeing correctness. This is because `subarray` does not allow extending arrays past\n // their original length.\n BoundedVec::from_parts_unchecked(array::subarray(bvec.storage(), offset), bvec.len() - offset)\n}\n\nmod test {\n use super::subbvec;\n\n #[test]\n unconstrained fn subbvec_empty() {\n let bvec = BoundedVec::<Field, 0>::from_array([]);\n assert_eq(subbvec(bvec, 0), bvec);\n }\n\n #[test]\n unconstrained fn subbvec_complete() {\n let bvec = BoundedVec::<_, 10>::from_array([1, 2, 3, 4, 5]);\n assert_eq(subbvec(bvec, 0), bvec);\n\n let smaller_capacity = BoundedVec::<_, 5>::from_array([1, 2, 3, 4, 5]);\n assert_eq(subbvec(bvec, 0), smaller_capacity);\n }\n\n #[test]\n unconstrained fn subbvec_partial() {\n let bvec = BoundedVec::<_, 10>::from_array([1, 2, 3, 4, 5]);\n\n assert_eq(subbvec(bvec, 2), BoundedVec::<_, 8>::from_array([3, 4, 5]));\n assert_eq(subbvec(bvec, 2), BoundedVec::<_, 3>::from_array([3, 4, 5]));\n }\n\n #[test]\n unconstrained fn subbvec_into_empty() {\n let bvec: BoundedVec<_, 10> = BoundedVec::from_array([1, 2, 3, 4, 5]);\n assert_eq(subbvec(bvec, 5), BoundedVec::<_, 5>::from_array([]));\n }\n\n #[test(should_fail)]\n unconstrained fn subbvec_offset_past_len() {\n let bvec = BoundedVec::<_, 10>::from_array([1, 2, 3, 4, 5]);\n let _: BoundedVec<_, 1> = subbvec(bvec, 6);\n }\n\n #[test(should_fail)]\n unconstrained fn subbvec_insufficient_dst_len() {\n let bvec = BoundedVec::<_, 10>::from_array([1, 2, 3, 4, 5]);\n\n // We're not providing enough space to hold all of the items inside the original BoundedVec. subbvec can cause\n // for the capacity to reduce, but not the length (other than by len - offset).\n let _: BoundedVec<_, 1> = subbvec(bvec, 2);\n }\n\n #[test(should_fail_with = \"DstLen too large for offset\")]\n unconstrained fn subbvec_dst_len_causes_enlarge() {\n let bvec = BoundedVec::<_, 10>::from_array([1, 2, 3, 4, 5]);\n\n // subbvec does not supprt capacity increases\n let _: BoundedVec<_, 11> = subbvec(bvec, 0);\n }\n\n #[test(should_fail_with = \"DstLen too large for offset\")]\n unconstrained fn subbvec_dst_len_too_large_for_offset() {\n let bvec = BoundedVec::<_, 10>::from_array([1, 2, 3, 4, 5]);\n\n // This effectively requests a capacity increase, since there'd be just one element plus the 5 empty slots,\n // which is less than 7.\n let _: BoundedVec<_, 7> = subbvec(bvec, 4);\n }\n}\n"
|
|
2642
2642
|
},
|
|
2643
|
-
"
|
|
2643
|
+
"235": {
|
|
2644
2644
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/utils/conversion/bytes_to_fields.nr",
|
|
2645
2645
|
"source": "use std::static_assert;\n\n// These functions are used to facilitate the conversion of log ciphertext between byte and field representations.\n//\n// `bytes_to_fields` uses fixed-size arrays since encryption contexts have compile-time size information.\n// `bytes_from_fields` uses BoundedVec for flexibility in unconstrained contexts where sizes are dynamic.\n//\n// Together they provide bidirectional conversion between bytes and fields when processing encrypted logs.\n\n/// Converts the input bytes into an array of fields. A Field is ~254 bits meaning that each field can store 31 whole\n/// bytes. Use `bytes_from_fields` to obtain the original bytes array.\n///\n/// The input bytes are chunked into chunks of 31 bytes. Each 31-byte chunk is viewed as big-endian, and is converted\n/// into a Field.\n/// For example, [1, 10, 3, ..., 0] (31 bytes) is encoded as [1 * 256^30 + 10 * 256^29 + 3 * 256^28 + ... + 0]\n/// Note: N must be a multiple of 31 bytes\npub fn bytes_to_fields<let N: u32>(bytes: [u8; N]) -> [Field; N / 31] {\n // Assert that N is a multiple of 31\n static_assert(N % 31 == 0, \"N must be a multiple of 31\");\n\n let mut fields = [0; N / 31];\n\n // Since N is a multiple of 31, we can simply process all chunks fully\n for i in 0..N / 31 {\n let mut field = 0;\n for j in 0..31 {\n // Shift the existing value left by 8 bits and add the new byte\n field = field * 256 + bytes[i * 31 + j] as Field;\n }\n fields[i] = field;\n }\n\n fields\n}\n\n/// Converts an input BoundedVec of fields into a BoundedVec of bytes in big-endian order. Arbitrary Field arrays\n/// are not allowed: this is assumed to be an array obtained via `bytes_to_fields`, i.e. one that actually represents\n/// bytes. To convert a Field array into bytes, use `fields_to_bytes`.\n///\n/// Each input field must contain at most 31 bytes (this is constrained to be so).\n/// Each field is converted into 31 big-endian bytes, and the resulting 31-byte chunks are concatenated\n/// back together in the order of the original fields.\npub fn bytes_from_fields<let N: u32>(fields: BoundedVec<Field, N>) -> BoundedVec<u8, N * 31> {\n let mut bytes = BoundedVec::new();\n\n for i in 0..fields.len() {\n let field = fields.get(i);\n\n // We expect that the field contains at most 31 bytes of information.\n field.assert_max_bit_size::<248>();\n\n // Now we can safely convert the field to 31 bytes.\n let field_as_bytes: [u8; 31] = field.to_be_bytes();\n\n for j in 0..31 {\n bytes.push(field_as_bytes[j]);\n }\n }\n\n bytes\n}\n\nmod tests {\n use crate::utils::array::subarray;\n use super::{bytes_from_fields, bytes_to_fields};\n\n #[test]\n unconstrained fn random_bytes_to_fields_and_back(input: [u8; 93]) {\n let fields = bytes_to_fields(input);\n\n // At this point in production, the log flies through the system and we get a BoundedVec on the other end.\n // So we need to convert the field array to a BoundedVec to be able to feed it to the `bytes_from_fields`\n // function.\n let fields_as_bounded_vec = BoundedVec::<_, 6>::from_array(fields);\n\n let bytes_back = bytes_from_fields(fields_as_bounded_vec);\n\n // Compare the original input with the round-tripped result\n assert_eq(bytes_back.len(), input.len());\n assert_eq(subarray(bytes_back.storage(), 0), input);\n }\n\n #[test(should_fail_with = \"N must be a multiple of 31\")]\n unconstrained fn bytes_to_fields_input_length_not_multiple_of_31() {\n // Try to convert 32 bytes (not a multiple of 31) to fields\n let _fields = bytes_to_fields([0; 32]);\n }\n\n}\n"
|
|
2646
2646
|
},
|
|
2647
|
-
"
|
|
2647
|
+
"236": {
|
|
2648
2648
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/utils/conversion/fields_to_bytes.nr",
|
|
2649
2649
|
"source": "// These functions are used to facilitate the conversion of log plaintext represented as fields into bytes and back.\n//\n// `fields_to_bytes` uses fixed-size arrays since encryption contexts have compile-time size information.\n// `fields_from_bytes` uses BoundedVec for flexibility in unconstrained contexts where sizes are dynamic.\n//\n// Together they provide bidirectional conversion between fields and bytes.\n\n/// Converts an input array of fields into a single array of bytes. Use `fields_from_bytes` to obtain the original\n/// field array.\n/// Each field is converted to a 32-byte big-endian array.\n///\n/// For example, if you have a field array [123, 456], it will be converted to a 64-byte array:\n/// [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,123, // First field (32 bytes)\n/// 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,200] // Second field (32 bytes)\n///\n/// Since a field is ~254 bits, you'll end up with a subtle 2-bit \"gap\" at the big end, every 32 bytes. Be careful\n/// that such a gap doesn't leak information! This could happen if you for example expected the output to be\n/// indistinguishable from random bytes.\npub fn fields_to_bytes<let N: u32>(fields: [Field; N]) -> [u8; 32 * N] {\n let mut bytes = [0; 32 * N];\n\n for i in 0..N {\n let field_as_bytes: [u8; 32] = fields[i].to_be_bytes();\n\n for j in 0..32 {\n bytes[i * 32 + j] = field_as_bytes[j];\n }\n }\n\n bytes\n}\n\n/// Converts an input BoundedVec of bytes into a BoundedVec of fields. Arbitrary byte arrays are not allowed: this\n/// is assumed to be an array obtained via `fields_to_bytes`, i.e. one that actually represents fields. To convert\n/// a byte array into Fields, use `bytes_to_fields`.\n///\n/// The input bytes are chunked into chunks of 32 bytes. Each 32-byte chunk is viewed as big-endian, and is converted\n/// into a Field.\n/// For example, [1, 10, 3, ..., 0] (32 bytes) is encoded as [1 * 256^31 + 10 * 256^30 + 3 * 256^29 + ... + 0]\n/// Note 1: N must be a multiple of 32 bytes\n/// Note 2: The max value check code was taken from std::field::to_be_bytes function.\npub fn fields_from_bytes<let N: u32>(bytes: BoundedVec<u8, N>) -> BoundedVec<Field, N / 32> {\n // Assert that input length is a multiple of 32\n assert(bytes.len() % 32 == 0, \"Input length must be a multiple of 32\");\n\n let mut fields = BoundedVec::new();\n\n let p = std::field::modulus_be_bytes();\n\n // Since input length is a multiple of 32, we can simply process all chunks fully\n for i in 0..bytes.len() / 32 {\n let mut field = 0;\n\n // Process each byte in the 32-byte chunk\n let mut ok = false;\n\n for j in 0..32 {\n let next_byte = bytes.get(i * 32 + j);\n field = field * 256 + next_byte as Field;\n\n if !ok {\n if next_byte != p[j] {\n assert(next_byte < p[j], \"Value does not fit in field\");\n ok = true;\n }\n }\n }\n assert(ok, \"Value does not fit in field\");\n\n fields.push(field);\n }\n\n fields\n}\n\nmod tests {\n use crate::utils::array::subarray;\n use super::{fields_from_bytes, fields_to_bytes};\n\n #[test]\n unconstrained fn random_fields_to_bytes_and_back(input: [Field; 3]) {\n // Convert to bytes\n let bytes = fields_to_bytes(input);\n\n // At this point in production, the log flies through the system and we get a BoundedVec on the other end.\n // So we need to convert the field array to a BoundedVec to be able to feed it to the `fields_from_bytes`\n // function.\n // 113 is an arbitrary max length that is larger than the input length of 96.\n let bytes_as_bounded_vec = BoundedVec::<_, 113>::from_array(bytes);\n\n // Convert back to fields\n let fields_back = fields_from_bytes(bytes_as_bounded_vec);\n\n // Compare the original input with the round-tripped result\n assert_eq(fields_back.len(), input.len());\n assert_eq(subarray(fields_back.storage(), 0), input);\n }\n\n #[test(should_fail_with = \"Input length must be a multiple of 32\")]\n unconstrained fn to_fields_assert() {\n // 143 is an arbitrary max length that is larger than 33\n let input = BoundedVec::<_, 143>::from_array([\n 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,\n 25, 26, 27, 28, 29, 30, 31, 32, 33,\n ]);\n\n // This should fail since 33 is not a multiple of 32\n let _fields = fields_from_bytes(input);\n }\n\n #[test]\n unconstrained fn fields_from_bytes_max_value() {\n let max_field_as_bytes: [u8; 32] = (-1).to_be_bytes();\n let input = BoundedVec::<_, 32>::from_array(max_field_as_bytes);\n\n let fields = fields_from_bytes(input);\n\n // The result should be a largest value storable in a field (-1 since we are modulo-ing)\n assert_eq(fields.get(0), -1);\n }\n\n // In this test we verify that overflow check works by taking the max allowed value, bumping a random byte\n // and then feeding it to `fields_from_bytes` as input.\n #[test(should_fail_with = \"Value does not fit in field\")]\n unconstrained fn fields_from_bytes_overflow(random_value: u8) {\n let index_of_byte_to_bump = random_value % 32;\n\n // Obtain the byte representation of the maximum field value\n let max_field_value_as_bytes: [u8; 32] = (-1).to_be_bytes();\n\n let byte_to_bump = max_field_value_as_bytes[index_of_byte_to_bump as u32];\n\n // Skip test execution if the selected byte is already at maximum value (255).\n // This is acceptable since we are using fuzz testing to generate many test cases.\n if byte_to_bump != 255 {\n let mut input = BoundedVec::<_, 32>::from_array(max_field_value_as_bytes);\n\n // Increment the selected byte to exceed the field's maximum value\n input.set(index_of_byte_to_bump as u32, byte_to_bump + 1);\n\n // Attempt the conversion, which should fail due to the value exceeding the field's capacity\n let _fields = fields_from_bytes(input);\n }\n }\n\n}\n"
|
|
2650
2650
|
},
|
|
2651
|
-
"
|
|
2651
|
+
"239": {
|
|
2652
2652
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/utils/point.nr",
|
|
2653
2653
|
"source": "use protocol_types::{point::Point, utils::field::sqrt};\n\n// I am storing the modulus minus 1 divided by 2 here because full modulus would throw \"String literal too large\" error\n// Full modulus is 21888242871839275222246405745257275088548364400416034343698204186575808495617\nglobal BN254_FR_MODULUS_DIV_2: Field =\n 10944121435919637611123202872628637544274182200208017171849102093287904247808;\n\n/// Converts a point to a byte array.\n///\n/// We don't serialize the point at infinity flag because this function is used in situations where we do not want\n/// to waste the extra byte (encrypted log).\npub fn point_to_bytes(p: Point) -> [u8; 32] {\n // Note that there is 1 more free bit in the 32 bytes (254 bits currently occupied by the x coordinate, 1 bit for\n // the \"sign\") so it's possible to use that last bit as an \"is_infinite\" flag if desired in the future.\n assert(!p.is_infinite, \"Cannot serialize point at infinity as bytes.\");\n\n let mut result: [u8; 32] = p.x.to_be_bytes();\n\n if get_sign_of_point(p) {\n // y is <= (modulus - 1) / 2 so we set the sign bit to 1\n // Here we leverage that field fits into 254 bits (log2(Fr.MODULUS) < 254) and given that we serialize Fr to 32\n // bytes and we use big-endian the 2 most significant bits are never populated. Hence we can use one of\n // the bits as a sign bit.\n result[0] += 128;\n }\n\n result\n}\n\n/**\n * Returns: true if p.y <= MOD_DIV_2, else false.\n */\npub fn get_sign_of_point(p: Point) -> bool {\n // We store only a \"sign\" of the y coordinate because the rest can be derived from the x coordinate. To get\n // the sign we check if the y coordinate is less or equal than the curve's order minus 1 divided by 2.\n // Ideally we'd do `y <= MOD_DIV_2`, but there's no `lte` function, so instead we do `!(y > MOD_DIV_2)`, which is\n // equivalent, and then rewrite that as `!(MOD_DIV_2 < y)`, since we also have no `gt` function.\n !BN254_FR_MODULUS_DIV_2.lt(p.y)\n}\n\n/// Returns a `Point` in the Grumpkin curve given its x coordinate.\n///\n/// Because not all values in the field are valid x coordinates of points in the curve (i.e. there\n/// is no corresponding y value in the field that satisfies the curve equation), it may not be\n/// possible to reconstruct a `Point`. `Option::none()` is returned in such cases.\npub fn point_from_x_coord(x: Field) -> Option<Point> {\n // y ^ 2 = x ^ 3 - 17\n let rhs = x * x * x - 17;\n sqrt(rhs).map(|y| Point { x, y, is_infinite: false })\n}\n\n/// Returns a `Point` in the Grumpkin curve given its x coordinate and sign for the y coordinate.\n///\n/// Because not all values in the field are valid x coordinates of points in the curve (i.e. there\n/// is no corresponding y value in the field that satisfies the curve equation), it may not be\n/// possible to reconstruct a `Point`. `Option::none()` is returned in such cases.\n///\n/// @param x - The x coordinate of the point\n/// @param sign - The \"sign\" of the y coordinate - determines whether y <= (Fr.MODULUS - 1) / 2\npub fn point_from_x_coord_and_sign(x: Field, sign: bool) -> Option<Point> {\n // y ^ 2 = x ^ 3 - 17\n let rhs = x * x * x - 17;\n\n sqrt(rhs).map(|y| {\n // If there is a square root, we need to ensure it has the correct \"sign\"\n let y_is_positive = !BN254_FR_MODULUS_DIV_2.lt(y);\n let final_y = if y_is_positive == sign { y } else { -y };\n Point { x, y: final_y, is_infinite: false }\n })\n}\n\nmod test {\n use crate::utils::point::{point_from_x_coord, point_from_x_coord_and_sign, point_to_bytes};\n use dep::protocol_types::point::Point;\n use dep::protocol_types::utils::field::pow;\n\n #[test]\n unconstrained fn test_point_to_bytes_positive_sign() {\n let p = Point {\n x: 0x1af41f5de96446dc3776a1eb2d98bb956b7acd9979a67854bec6fa7c2973bd73,\n y: 0x07fc22c7f2c7057571f137fe46ea9c95114282bc95d37d71ec4bfb88de457d4a,\n is_infinite: false,\n };\n\n let compressed_point = point_to_bytes(p);\n\n let expected_compressed_point_positive_sign = [\n 154, 244, 31, 93, 233, 100, 70, 220, 55, 118, 161, 235, 45, 152, 187, 149, 107, 122,\n 205, 153, 121, 166, 120, 84, 190, 198, 250, 124, 41, 115, 189, 115,\n ];\n assert_eq(expected_compressed_point_positive_sign, compressed_point);\n }\n\n #[test]\n unconstrained fn test_point_to_bytes_negative_sign() {\n let p = Point {\n x: 0x247371652e55dd74c9af8dbe9fb44931ba29a9229994384bd7077796c14ee2b5,\n y: 0x26441aec112e1ae4cee374f42556932001507ad46e255ffb27369c7e3766e5c0,\n is_infinite: false,\n };\n\n let compressed_point = point_to_bytes(p);\n\n let expected_compressed_point_negative_sign = [\n 36, 115, 113, 101, 46, 85, 221, 116, 201, 175, 141, 190, 159, 180, 73, 49, 186, 41, 169,\n 34, 153, 148, 56, 75, 215, 7, 119, 150, 193, 78, 226, 181,\n ];\n\n assert_eq(expected_compressed_point_negative_sign, compressed_point);\n }\n\n #[test]\n unconstrained fn test_point_from_x_coord_and_sign() {\n // Test positive y coordinate\n let x = 0x1af41f5de96446dc3776a1eb2d98bb956b7acd9979a67854bec6fa7c2973bd73;\n let sign = true;\n let p = point_from_x_coord_and_sign(x, sign).unwrap();\n\n assert_eq(p.x, x);\n assert_eq(p.y, 0x07fc22c7f2c7057571f137fe46ea9c95114282bc95d37d71ec4bfb88de457d4a);\n assert_eq(p.is_infinite, false);\n\n // Test negative y coordinate\n let x2 = 0x247371652e55dd74c9af8dbe9fb44931ba29a9229994384bd7077796c14ee2b5;\n let sign2 = false;\n let p2 = point_from_x_coord_and_sign(x2, sign2).unwrap();\n\n assert_eq(p2.x, x2);\n assert_eq(p2.y, 0x26441aec112e1ae4cee374f42556932001507ad46e255ffb27369c7e3766e5c0);\n assert_eq(p2.is_infinite, false);\n }\n\n #[test]\n unconstrained fn test_point_from_x_coord_valid() {\n // x = 8 is a known quadratic residue - should give a valid point\n let result = point_from_x_coord(Field::from(8));\n assert(result.is_some());\n\n let point = result.unwrap();\n assert_eq(point.x, Field::from(8));\n // Check curve equation y^2 = x^3 - 17\n assert_eq(pow(point.y, 2), pow(point.x, 3) - 17);\n }\n\n #[test]\n unconstrained fn test_point_from_x_coord_invalid() {\n // x = 3 is a non-residue for this curve - should give None\n let x = Field::from(3);\n let maybe_point = point_from_x_coord(x);\n assert(maybe_point.is_none());\n }\n\n}\n"
|
|
2654
2654
|
},
|
|
2655
|
-
"
|
|
2655
|
+
"250": {
|
|
2656
2656
|
"path": "/home/aztec-dev/nargo/github.com/noir-lang/poseidon/v0.1.1/src/poseidon2.nr",
|
|
2657
2657
|
"source": "use std::default::Default;\nuse std::hash::Hasher;\n\ncomptime global RATE: u32 = 3;\n\npub struct Poseidon2 {\n cache: [Field; 3],\n state: [Field; 4],\n cache_size: u32,\n squeeze_mode: bool, // 0 => absorb, 1 => squeeze\n}\n\nimpl Poseidon2 {\n #[no_predicates]\n pub fn hash<let N: u32>(input: [Field; N], message_size: u32) -> Field {\n Poseidon2::hash_internal(input, message_size, message_size != N)\n }\n\n pub(crate) fn new(iv: Field) -> Poseidon2 {\n let mut result =\n Poseidon2 { cache: [0; 3], state: [0; 4], cache_size: 0, squeeze_mode: false };\n result.state[RATE] = iv;\n result\n }\n\n fn perform_duplex(&mut self) {\n // add the cache into sponge state\n for i in 0..RATE {\n // We effectively zero-pad the cache by only adding to the state\n // cache that is less than the specified `cache_size`\n if i < self.cache_size {\n self.state[i] += self.cache[i];\n }\n }\n self.state = crate::poseidon2_permutation(self.state, 4);\n }\n\n fn absorb(&mut self, input: Field) {\n assert(!self.squeeze_mode);\n if self.cache_size == RATE {\n // If we're absorbing, and the cache is full, apply the sponge permutation to compress the cache\n self.perform_duplex();\n self.cache[0] = input;\n self.cache_size = 1;\n } else {\n // If we're absorbing, and the cache is not full, add the input into the cache\n self.cache[self.cache_size] = input;\n self.cache_size += 1;\n }\n }\n\n fn squeeze(&mut self) -> Field {\n assert(!self.squeeze_mode);\n // If we're in absorb mode, apply sponge permutation to compress the cache.\n self.perform_duplex();\n self.squeeze_mode = true;\n\n // Pop one item off the top of the permutation and return it.\n self.state[0]\n }\n\n fn hash_internal<let N: u32>(\n input: [Field; N],\n in_len: u32,\n is_variable_length: bool,\n ) -> Field {\n let two_pow_64 = 18446744073709551616;\n let iv: Field = (in_len as Field) * two_pow_64;\n let mut sponge = Poseidon2::new(iv);\n for i in 0..input.len() {\n if i < in_len {\n sponge.absorb(input[i]);\n }\n }\n\n // In the case where the hash preimage is variable-length, we append `1` to the end of the input, to distinguish\n // from fixed-length hashes. (the combination of this additional field element + the hash IV ensures\n // fixed-length and variable-length hashes do not collide)\n if is_variable_length {\n sponge.absorb(1);\n }\n sponge.squeeze()\n }\n}\n\npub struct Poseidon2Hasher {\n _state: [Field],\n}\n\nimpl Hasher for Poseidon2Hasher {\n fn finish(self) -> Field {\n let iv: Field = (self._state.len() as Field) * 18446744073709551616; // iv = (self._state.len() << 64)\n let mut sponge = Poseidon2::new(iv);\n for i in 0..self._state.len() {\n sponge.absorb(self._state[i]);\n }\n sponge.squeeze()\n }\n\n fn write(&mut self, input: Field) {\n self._state = self._state.push_back(input);\n }\n}\n\nimpl Default for Poseidon2Hasher {\n fn default() -> Self {\n Poseidon2Hasher { _state: &[] }\n }\n}\n"
|
|
2658
2658
|
},
|
|
@@ -2660,43 +2660,43 @@
|
|
|
2660
2660
|
"path": "std/array/mod.nr",
|
|
2661
2661
|
"source": "use crate::cmp::{Eq, Ord};\nuse crate::convert::From;\nuse crate::runtime::is_unconstrained;\n\nmod check_shuffle;\nmod quicksort;\n\nimpl<T, let N: u32> [T; N] {\n /// Returns the length of this array.\n ///\n /// ```noir\n /// fn len(self) -> Field\n /// ```\n ///\n /// example\n ///\n /// ```noir\n /// fn main() {\n /// let array = [42, 42];\n /// assert(array.len() == 2);\n /// }\n /// ```\n #[builtin(array_len)]\n pub fn len(self) -> u32 {}\n\n /// Returns this array as a slice.\n ///\n /// ```noir\n /// let array = [1, 2];\n /// let slice = array.as_slice();\n /// assert_eq(slice, &[1, 2]);\n /// ```\n #[builtin(as_slice)]\n pub fn as_slice(self) -> [T] {}\n\n /// Applies a function to each element of this array, returning a new array containing the mapped elements.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let b = a.map(|a| a * 2);\n /// assert_eq(b, [2, 4, 6]);\n /// ```\n pub fn map<U, Env>(self, f: fn[Env](T) -> U) -> [U; N] {\n let uninitialized = crate::mem::zeroed();\n let mut ret = [uninitialized; N];\n\n for i in 0..self.len() {\n ret[i] = f(self[i]);\n }\n\n ret\n }\n\n /// Applies a function to each element of this array along with its index,\n /// returning a new array containing the mapped elements.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let b = a.mapi(|i, a| i + a * 2);\n /// assert_eq(b, [2, 5, 8]);\n /// ```\n pub fn mapi<U, Env>(self, f: fn[Env](u32, T) -> U) -> [U; N] {\n let uninitialized = crate::mem::zeroed();\n let mut ret = [uninitialized; N];\n\n for i in 0..self.len() {\n ret[i] = f(i, self[i]);\n }\n\n ret\n }\n\n /// Applies a function to each element of this array.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let mut b = [0; 3];\n /// let mut i = 0;\n /// a.for_each(|x| {\n /// b[i] = x;\n /// i += 1;\n /// });\n /// assert_eq(a, b);\n /// ```\n pub fn for_each<Env>(self, f: fn[Env](T) -> ()) {\n for i in 0..self.len() {\n f(self[i]);\n }\n }\n\n /// Applies a function to each element of this array along with its index.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let mut b = [0; 3];\n /// a.for_eachi(|i, x| {\n /// b[i] = x;\n /// });\n /// assert_eq(a, b);\n /// ```\n pub fn for_eachi<Env>(self, f: fn[Env](u32, T) -> ()) {\n for i in 0..self.len() {\n f(i, self[i]);\n }\n }\n\n /// Applies a function to each element of the array, returning the final accumulated value. The first\n /// parameter is the initial value.\n ///\n /// This is a left fold, so the given function will be applied to the accumulator and first element of\n /// the array, then the second, and so on. For a given call the expected result would be equivalent to:\n ///\n /// ```rust\n /// let a1 = [1];\n /// let a2 = [1, 2];\n /// let a3 = [1, 2, 3];\n ///\n /// let f = |a, b| a - b;\n /// a1.fold(10, f); //=> f(10, 1)\n /// a2.fold(10, f); //=> f(f(10, 1), 2)\n /// a3.fold(10, f); //=> f(f(f(10, 1), 2), 3)\n ///\n /// assert_eq(a3.fold(10, f), 10 - 1 - 2 - 3);\n /// ```\n pub fn fold<U, Env>(self, mut accumulator: U, f: fn[Env](U, T) -> U) -> U {\n for elem in self {\n accumulator = f(accumulator, elem);\n }\n accumulator\n }\n\n /// Same as fold, but uses the first element as the starting element.\n ///\n /// Requires the input array to be non-empty.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr = [1, 2, 3, 4];\n /// let reduced = arr.reduce(|a, b| a + b);\n /// assert(reduced == 10);\n /// }\n /// ```\n pub fn reduce<Env>(self, f: fn[Env](T, T) -> T) -> T {\n let mut accumulator = self[0];\n for i in 1..self.len() {\n accumulator = f(accumulator, self[i]);\n }\n accumulator\n }\n\n /// Returns true if all the elements in this array satisfy the given predicate.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr = [2, 2, 2, 2, 2];\n /// let all = arr.all(|a| a == 2);\n /// assert(all);\n /// }\n /// ```\n pub fn all<Env>(self, predicate: fn[Env](T) -> bool) -> bool {\n let mut ret = true;\n for elem in self {\n ret &= predicate(elem);\n }\n ret\n }\n\n /// Returns true if any of the elements in this array satisfy the given predicate.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr = [2, 2, 2, 2, 5];\n /// let any = arr.any(|a| a == 5);\n /// assert(any);\n /// }\n /// ```\n pub fn any<Env>(self, predicate: fn[Env](T) -> bool) -> bool {\n let mut ret = false;\n for elem in self {\n ret |= predicate(elem);\n }\n ret\n }\n\n /// Concatenates this array with another array.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr1 = [1, 2, 3, 4];\n /// let arr2 = [6, 7, 8, 9, 10, 11];\n /// let concatenated_arr = arr1.concat(arr2);\n /// assert(concatenated_arr == [1, 2, 3, 4, 6, 7, 8, 9, 10, 11]);\n /// }\n /// ```\n pub fn concat<let M: u32>(self, array2: [T; M]) -> [T; N + M] {\n let mut result = [crate::mem::zeroed(); N + M];\n for i in 0..N {\n result[i] = self[i];\n }\n for i in 0..M {\n result[i + N] = array2[i];\n }\n result\n }\n}\n\nimpl<T, let N: u32> [T; N]\nwhere\n T: Ord + Eq,\n{\n /// Returns a new sorted array. The original array remains untouched. Notice that this function will\n /// only work for arrays of fields or integers, not for any arbitrary type. This is because the sorting\n /// logic it uses internally is optimized specifically for these values. If you need a sort function to\n /// sort any type, you should use the [`Self::sort_via`] function.\n ///\n /// Example:\n ///\n /// ```rust\n /// fn main() {\n /// let arr = [42, 32];\n /// let sorted = arr.sort();\n /// assert(sorted == [32, 42]);\n /// }\n /// ```\n pub fn sort(self) -> Self {\n self.sort_via(|a, b| a <= b)\n }\n}\n\nimpl<T, let N: u32> [T; N]\nwhere\n T: Eq,\n{\n /// Returns a new sorted array by sorting it with a custom comparison function.\n /// The original array remains untouched.\n /// The ordering function must return true if the first argument should be sorted to be before the second argument or is equal to the second argument.\n ///\n /// Using this method with an operator like `<` that does not return `true` for equal values will result in an assertion failure for arrays with equal elements.\n ///\n /// Example:\n ///\n /// ```rust\n /// fn main() {\n /// let arr = [42, 32]\n /// let sorted_ascending = arr.sort_via(|a, b| a <= b);\n /// assert(sorted_ascending == [32, 42]); // verifies\n ///\n /// let sorted_descending = arr.sort_via(|a, b| a >= b);\n /// assert(sorted_descending == [32, 42]); // does not verify\n /// }\n /// ```\n pub fn sort_via<Env>(self, ordering: fn[Env](T, T) -> bool) -> Self {\n // Safety: `sorted` array is checked to be:\n // a. a permutation of `input`'s elements\n // b. satisfying the predicate `ordering`\n let sorted = unsafe { quicksort::quicksort(self, ordering) };\n\n if !is_unconstrained() {\n for i in 0..N - 1 {\n assert(\n ordering(sorted[i], sorted[i + 1]),\n \"Array has not been sorted correctly according to `ordering`.\",\n );\n }\n check_shuffle::check_shuffle(self, sorted);\n }\n sorted\n }\n}\n\nimpl<let N: u32> [u8; N] {\n /// Converts a byte array of type `[u8; N]` to a string. Note that this performs no UTF-8 validation -\n /// the given array is interpreted as-is as a string.\n ///\n /// Example:\n ///\n /// ```rust\n /// fn main() {\n /// let hi = [104, 105].as_str_unchecked();\n /// assert_eq(hi, \"hi\");\n /// }\n /// ```\n #[builtin(array_as_str_unchecked)]\n pub fn as_str_unchecked(self) -> str<N> {}\n}\n\nimpl<let N: u32> From<str<N>> for [u8; N] {\n /// Returns an array of the string bytes.\n fn from(s: str<N>) -> Self {\n s.as_bytes()\n }\n}\n\nmod test {\n #[test]\n fn map_empty() {\n assert_eq([].map(|x| x + 1), []);\n }\n\n global arr_with_100_values: [u32; 100] = [\n 42, 123, 87, 93, 48, 80, 50, 5, 104, 84, 70, 47, 119, 66, 71, 121, 3, 29, 42, 118, 2, 54,\n 89, 44, 81, 0, 26, 106, 68, 96, 84, 48, 95, 54, 45, 32, 89, 100, 109, 19, 37, 41, 19, 98,\n 53, 114, 107, 66, 6, 74, 13, 19, 105, 64, 123, 28, 44, 50, 89, 58, 123, 126, 21, 43, 86, 35,\n 21, 62, 82, 0, 108, 120, 72, 72, 62, 80, 12, 71, 70, 86, 116, 73, 38, 15, 127, 81, 30, 8,\n 125, 28, 26, 69, 114, 63, 27, 28, 61, 42, 13, 32,\n ];\n global expected_with_100_values: [u32; 100] = [\n 0, 0, 2, 3, 5, 6, 8, 12, 13, 13, 15, 19, 19, 19, 21, 21, 26, 26, 27, 28, 28, 28, 29, 30, 32,\n 32, 35, 37, 38, 41, 42, 42, 42, 43, 44, 44, 45, 47, 48, 48, 50, 50, 53, 54, 54, 58, 61, 62,\n 62, 63, 64, 66, 66, 68, 69, 70, 70, 71, 71, 72, 72, 73, 74, 80, 80, 81, 81, 82, 84, 84, 86,\n 86, 87, 89, 89, 89, 93, 95, 96, 98, 100, 104, 105, 106, 107, 108, 109, 114, 114, 116, 118,\n 119, 120, 121, 123, 123, 123, 125, 126, 127,\n ];\n fn sort_u32(a: u32, b: u32) -> bool {\n a <= b\n }\n\n #[test]\n fn test_sort() {\n let mut arr: [u32; 7] = [3, 6, 8, 10, 1, 2, 1];\n\n let sorted = arr.sort();\n\n let expected: [u32; 7] = [1, 1, 2, 3, 6, 8, 10];\n assert(sorted == expected);\n }\n\n #[test]\n fn test_sort_100_values() {\n let mut arr: [u32; 100] = [\n 42, 123, 87, 93, 48, 80, 50, 5, 104, 84, 70, 47, 119, 66, 71, 121, 3, 29, 42, 118, 2,\n 54, 89, 44, 81, 0, 26, 106, 68, 96, 84, 48, 95, 54, 45, 32, 89, 100, 109, 19, 37, 41,\n 19, 98, 53, 114, 107, 66, 6, 74, 13, 19, 105, 64, 123, 28, 44, 50, 89, 58, 123, 126, 21,\n 43, 86, 35, 21, 62, 82, 0, 108, 120, 72, 72, 62, 80, 12, 71, 70, 86, 116, 73, 38, 15,\n 127, 81, 30, 8, 125, 28, 26, 69, 114, 63, 27, 28, 61, 42, 13, 32,\n ];\n\n let sorted = arr.sort();\n\n let expected: [u32; 100] = [\n 0, 0, 2, 3, 5, 6, 8, 12, 13, 13, 15, 19, 19, 19, 21, 21, 26, 26, 27, 28, 28, 28, 29, 30,\n 32, 32, 35, 37, 38, 41, 42, 42, 42, 43, 44, 44, 45, 47, 48, 48, 50, 50, 53, 54, 54, 58,\n 61, 62, 62, 63, 64, 66, 66, 68, 69, 70, 70, 71, 71, 72, 72, 73, 74, 80, 80, 81, 81, 82,\n 84, 84, 86, 86, 87, 89, 89, 89, 93, 95, 96, 98, 100, 104, 105, 106, 107, 108, 109, 114,\n 114, 116, 118, 119, 120, 121, 123, 123, 123, 125, 126, 127,\n ];\n assert(sorted == expected);\n }\n\n #[test]\n fn test_sort_100_values_comptime() {\n let sorted = arr_with_100_values.sort();\n assert(sorted == expected_with_100_values);\n }\n\n #[test]\n fn test_sort_via() {\n let mut arr: [u32; 7] = [3, 6, 8, 10, 1, 2, 1];\n\n let sorted = arr.sort_via(sort_u32);\n\n let expected: [u32; 7] = [1, 1, 2, 3, 6, 8, 10];\n assert(sorted == expected);\n }\n\n #[test]\n fn test_sort_via_100_values() {\n let mut arr: [u32; 100] = [\n 42, 123, 87, 93, 48, 80, 50, 5, 104, 84, 70, 47, 119, 66, 71, 121, 3, 29, 42, 118, 2,\n 54, 89, 44, 81, 0, 26, 106, 68, 96, 84, 48, 95, 54, 45, 32, 89, 100, 109, 19, 37, 41,\n 19, 98, 53, 114, 107, 66, 6, 74, 13, 19, 105, 64, 123, 28, 44, 50, 89, 58, 123, 126, 21,\n 43, 86, 35, 21, 62, 82, 0, 108, 120, 72, 72, 62, 80, 12, 71, 70, 86, 116, 73, 38, 15,\n 127, 81, 30, 8, 125, 28, 26, 69, 114, 63, 27, 28, 61, 42, 13, 32,\n ];\n\n let sorted = arr.sort_via(sort_u32);\n\n let expected: [u32; 100] = [\n 0, 0, 2, 3, 5, 6, 8, 12, 13, 13, 15, 19, 19, 19, 21, 21, 26, 26, 27, 28, 28, 28, 29, 30,\n 32, 32, 35, 37, 38, 41, 42, 42, 42, 43, 44, 44, 45, 47, 48, 48, 50, 50, 53, 54, 54, 58,\n 61, 62, 62, 63, 64, 66, 66, 68, 69, 70, 70, 71, 71, 72, 72, 73, 74, 80, 80, 81, 81, 82,\n 84, 84, 86, 86, 87, 89, 89, 89, 93, 95, 96, 98, 100, 104, 105, 106, 107, 108, 109, 114,\n 114, 116, 118, 119, 120, 121, 123, 123, 123, 125, 126, 127,\n ];\n assert(sorted == expected);\n }\n\n #[test]\n fn mapi_empty() {\n assert_eq([].mapi(|i, x| i * x + 1), []);\n }\n\n #[test]\n fn for_each_empty() {\n let empty_array: [Field; 0] = [];\n empty_array.for_each(|_x| assert(false));\n }\n\n #[test]\n fn for_eachi_empty() {\n let empty_array: [Field; 0] = [];\n empty_array.for_eachi(|_i, _x| assert(false));\n }\n\n #[test]\n fn map_example() {\n let a = [1, 2, 3];\n let b = a.map(|a| a * 2);\n assert_eq(b, [2, 4, 6]);\n }\n\n #[test]\n fn mapi_example() {\n let a = [1, 2, 3];\n let b = a.mapi(|i, a| i + a * 2);\n assert_eq(b, [2, 5, 8]);\n }\n\n #[test]\n fn for_each_example() {\n let a = [1, 2, 3];\n let mut b = [0, 0, 0];\n let b_ref = &mut b;\n let mut i = 0;\n let i_ref = &mut i;\n a.for_each(|x| {\n b_ref[*i_ref] = x * 2;\n *i_ref += 1;\n });\n assert_eq(b, [2, 4, 6]);\n assert_eq(i, 3);\n }\n\n #[test]\n fn for_eachi_example() {\n let a = [1, 2, 3];\n let mut b = [0, 0, 0];\n let b_ref = &mut b;\n a.for_eachi(|i, a| { b_ref[i] = i + a * 2; });\n assert_eq(b, [2, 5, 8]);\n }\n\n #[test]\n fn concat() {\n let arr1 = [1, 2, 3, 4];\n let arr2 = [6, 7, 8, 9, 10, 11];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, [1, 2, 3, 4, 6, 7, 8, 9, 10, 11]);\n }\n\n #[test]\n fn concat_zero_length_with_something() {\n let arr1 = [];\n let arr2 = [1];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, [1]);\n }\n\n #[test]\n fn concat_something_with_zero_length() {\n let arr1 = [1];\n let arr2 = [];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, [1]);\n }\n\n #[test]\n fn concat_zero_lengths() {\n let arr1: [Field; 0] = [];\n let arr2: [Field; 0] = [];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, []);\n }\n}\n"
|
|
2662
2662
|
},
|
|
2663
|
-
"
|
|
2663
|
+
"308": {
|
|
2664
2664
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/address/aztec_address.nr",
|
|
2665
2665
|
"source": "use crate::{\n address::{\n partial_address::PartialAddress, salted_initialization_hash::SaltedInitializationHash,\n },\n constants::{\n AZTEC_ADDRESS_LENGTH, GENERATOR_INDEX__CONTRACT_ADDRESS_V1, MAX_FIELD_VALUE,\n MAX_PROTOCOL_CONTRACTS,\n },\n contract_class_id::ContractClassId,\n hash::poseidon2_hash_with_separator,\n public_keys::{IvpkM, NpkM, OvpkM, PublicKeys, ToPoint, TpkM},\n traits::{Deserialize, Empty, FromField, Packable, Serialize, ToField},\n utils::field::{pow, sqrt},\n};\n\n// We do below because `use crate::point::Point;` does not work\nuse dep::std::embedded_curve_ops::EmbeddedCurvePoint as Point;\n\nuse crate::public_keys::AddressPoint;\nuse std::{\n embedded_curve_ops::{EmbeddedCurveScalar, fixed_base_scalar_mul as derive_public_key},\n ops::Add,\n};\nuse std::meta::derive;\n\n// Aztec address\n#[derive(Deserialize, Eq, Packable, Serialize)]\npub struct AztecAddress {\n pub inner: Field,\n}\n\nimpl Empty for AztecAddress {\n fn empty() -> Self {\n Self { inner: 0 }\n }\n}\n\nimpl ToField for AztecAddress {\n fn to_field(self) -> Field {\n self.inner\n }\n}\n\nimpl FromField for AztecAddress {\n fn from_field(value: Field) -> AztecAddress {\n AztecAddress { inner: value }\n }\n}\n\nimpl AztecAddress {\n pub fn zero() -> Self {\n Self { inner: 0 }\n }\n\n /// Returns an address's `AddressPoint`, which can be used to create shared secrets with the owner\n /// of the address. If the address is invalid (i.e. it is not a properly derived Aztec address), then this\n /// returns `Option::none()`, and no shared secrets can be created.\n pub fn to_address_point(self) -> Option<AddressPoint> {\n // We compute the address point by taking our address, setting it to x, and then solving for y in the\n // equation which defines our bn curve:\n // y^2 = x^3 - 17; x = address\n let x = self.inner;\n let y_squared = pow(x, 3) - 17;\n\n // An invalid AztecAddress is one for which no y coordinate satisfies the curve equation, which we'll\n // identify by proving that the square root of y_squared does not exist.\n let mut y_opt = sqrt(y_squared);\n if y_opt.is_none() {\n Option::none()\n } else {\n let mut y = y_opt.unwrap();\n\n // If we get a negative y coordinate (any y where y > MAX_FIELD_VALUE / 2), we pin it to the\n // positive one (any value where y <= MAX_FIELD_VALUE / 2) by subtracting it from the Field modulus\n // note: The field modulus is MAX_FIELD_VALUE + 1\n if (!(y.lt(MAX_FIELD_VALUE / 2) | y.eq(MAX_FIELD_VALUE / 2))) {\n y = (MAX_FIELD_VALUE + 1) - y;\n }\n\n Option::some(\n AddressPoint { inner: Point { x: self.inner, y, is_infinite: false } },\n )\n }\n }\n\n pub fn compute(public_keys: PublicKeys, partial_address: PartialAddress) -> AztecAddress {\n let public_keys_hash = public_keys.hash();\n\n let pre_address = poseidon2_hash_with_separator(\n [public_keys_hash.to_field(), partial_address.to_field()],\n GENERATOR_INDEX__CONTRACT_ADDRESS_V1,\n );\n\n let address_point = derive_public_key(EmbeddedCurveScalar::from_field(pre_address)).add(\n public_keys.ivpk_m.to_point(),\n );\n\n // Note that our address is only the x-coordinate of the full address_point. This is okay because when people want to encrypt something and send it to us\n // they can recover our full point using the x-coordinate (our address itself). To do this, they recompute the y-coordinate according to the equation y^2 = x^3 - 17.\n // When they do this, they may get a positive y-coordinate (a value that is less than or equal to MAX_FIELD_VALUE / 2) or\n // a negative y-coordinate (a value that is more than MAX_FIELD_VALUE), and we cannot dictate which one they get and hence the recovered point may sometimes be different than the one\n // our secret can decrypt. Regardless though, they should and will always encrypt using point with the positive y-coordinate by convention.\n // This ensures that everyone encrypts to the same point given an arbitrary x-coordinate (address). This is allowed because even though our original point may not have a positive y-coordinate,\n // with our original secret, we will be able to derive the secret to the point with the flipped (and now positive) y-coordinate that everyone encrypts to.\n AztecAddress::from_field(address_point.x)\n }\n\n pub fn compute_from_class_id(\n contract_class_id: ContractClassId,\n salted_initialization_hash: SaltedInitializationHash,\n public_keys: PublicKeys,\n ) -> Self {\n let partial_address = PartialAddress::compute_from_salted_initialization_hash(\n contract_class_id,\n salted_initialization_hash,\n );\n\n AztecAddress::compute(public_keys, partial_address)\n }\n\n pub fn is_protocol_contract(self) -> bool {\n self.inner.lt(MAX_PROTOCOL_CONTRACTS as Field)\n }\n\n pub fn is_zero(self) -> bool {\n self.inner == 0\n }\n\n pub fn assert_is_zero(self) {\n assert(self.to_field() == 0);\n }\n}\n\n#[test]\nfn compute_address_from_partial_and_pub_keys() {\n let public_keys = PublicKeys {\n npk_m: NpkM {\n inner: Point {\n x: 0x22f7fcddfa3ce3e8f0cc8e82d7b94cdd740afa3e77f8e4a63ea78a239432dcab,\n y: 0x0471657de2b6216ade6c506d28fbc22ba8b8ed95c871ad9f3e3984e90d9723a7,\n is_infinite: false,\n },\n },\n ivpk_m: IvpkM {\n inner: Point {\n x: 0x111223493147f6785514b1c195bb37a2589f22a6596d30bb2bb145fdc9ca8f1e,\n y: 0x273bbffd678edce8fe30e0deafc4f66d58357c06fd4a820285294b9746c3be95,\n is_infinite: false,\n },\n },\n ovpk_m: OvpkM {\n inner: Point {\n x: 0x09115c96e962322ffed6522f57194627136b8d03ac7469109707f5e44190c484,\n y: 0x0c49773308a13d740a7f0d4f0e6163b02c5a408b6f965856b6a491002d073d5b,\n is_infinite: false,\n },\n },\n tpk_m: TpkM {\n inner: Point {\n x: 0x00d3d81beb009873eb7116327cf47c612d5758ef083d4fda78e9b63980b2a762,\n y: 0x2f567d22d2b02fe1f4ad42db9d58a36afd1983e7e2909d1cab61cafedad6193a,\n is_infinite: false,\n },\n },\n };\n\n let partial_address = PartialAddress::from_field(\n 0x0a7c585381b10f4666044266a02405bf6e01fa564c8517d4ad5823493abd31de,\n );\n\n let address = AztecAddress::compute(public_keys, partial_address);\n\n // The following value was generated by `derivation.test.ts`.\n // --> Run the test with AZTEC_GENERATE_TEST_DATA=1 flag to update test data.\n let expected_computed_address_from_partial_and_pubkeys =\n 0x24e4646f58b9fbe7d38e317db8d5636c423fbbdfbe119fc190fe9c64747e0c62;\n assert(address.to_field() == expected_computed_address_from_partial_and_pubkeys);\n}\n\n#[test]\nfn compute_preaddress_from_partial_and_pub_keys() {\n let pre_address = poseidon2_hash_with_separator([1, 2], GENERATOR_INDEX__CONTRACT_ADDRESS_V1);\n let expected_computed_preaddress_from_partial_and_pubkey =\n 0x23ce9be3fa3c846b0f9245cc796902e731d04f086e8a42473bb29e405fc98075;\n assert(pre_address == expected_computed_preaddress_from_partial_and_pubkey);\n}\n\n#[test]\nfn from_field_to_field() {\n let address = AztecAddress { inner: 37 };\n assert_eq(FromField::from_field(address.to_field()), address);\n}\n\n#[test]\nfn serde() {\n let address = AztecAddress { inner: 37 };\n // We use the AZTEC_ADDRESS_LENGTH constant to ensure that there is a match between the derived trait\n // implementation and the constant.\n let serialized: [Field; AZTEC_ADDRESS_LENGTH] = address.serialize();\n let deserialized = AztecAddress::deserialize(serialized);\n assert_eq(address, deserialized);\n}\n\n#[test]\nfn to_address_point_valid() {\n // x = 8 where x^3 - 17 = 512 - 17 = 495, which is a residue in this field\n let address = AztecAddress { inner: 8 };\n let maybe_point = address.to_address_point();\n assert(maybe_point.is_some());\n\n let point = maybe_point.unwrap().inner;\n // check that x is preserved\n assert_eq(point.x, Field::from(8));\n\n // check that the curve equation holds: y^2 == x^3 - 17\n assert_eq(pow(point.y, 2), pow(point.x, 3) - 17);\n}\n\n#[test]\nunconstrained fn to_address_point_invalid() {\n // x = 3 where x^3 - 17 = 27 - 17 = 10, which is a non-residue in this field\n let address = AztecAddress { inner: 3 }; //\n let maybe_point = address.to_address_point();\n assert(maybe_point.is_none());\n}\n"
|
|
2666
2666
|
},
|
|
2667
|
-
"
|
|
2667
|
+
"329": {
|
|
2668
2668
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/debug_log.nr",
|
|
2669
2669
|
"source": "// TODO: Expose other wrapped functions than debug (info, warn)\n// ['silent', 'fatal', 'error', 'warn', 'info', 'verbose', 'debug', 'trace']\n\npub global SILENT_LOG_LEVEL: u8 = 0;\npub global FATAL_LOG_LEVEL: u8 = 1;\npub global ERROR_LOG_LEVEL: u8 = 2;\npub global WARN_LOG_LEVEL: u8 = 3;\npub global INFO_LOG_LEVEL: u8 = 4;\npub global VERBOSE_LOG_LEVEL: u8 = 5;\npub global DEBUG_LOG_LEVEL: u8 = 6;\npub global TRACE_LOG_LEVEL: u8 = 7;\n\n/// Utility function to console.log data in the acir simulator.\n/// Example:\n/// debug_log(\"blah blah this is a debug string\");\npub fn debug_log<let N: u32>(msg: str<N>) {\n debug_log_format(msg, []);\n}\n\n/// Same as debug_log, but allows to customize the log level.\n/// Consider changing just to 'log'\npub fn debug_log_with_level<let N: u32>(log_level: u8, msg: str<N>) {\n debug_log_format_with_level(log_level, msg, []);\n}\n\n/// Utility function to console.log data in the acir simulator. This variant receives a format string in which the\n/// `${k}` tokens will be replaced with the k-eth value in the `args` array.\n/// Examples:\n/// debug_log_format(\"get_2(slot:{0}) =>\\n\\t0:{1}\\n\\t1:{2}\", [storage_slot, note0_hash, note1_hash]);\n/// debug_log_format(\"whole array: {}\", [e1, e2, e3, e4]);\npub fn debug_log_format<let M: u32, let N: u32>(msg: str<M>, args: [Field; N]) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe\n // to call.\n unsafe { debug_log_array_oracle_wrapper(DEBUG_LOG_LEVEL, msg, args) };\n}\n\n/// Same as debug_log_format, but allows to customize the log level.\n/// Consider changing just to 'log_format'\npub fn debug_log_format_with_level<let M: u32, let N: u32>(\n log_level: u8,\n msg: str<M>,\n args: [Field; N],\n) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe\n // to call.\n unsafe { debug_log_array_oracle_wrapper(log_level, msg, args) };\n}\n\n/// Utility function to console.log data in the acir simulator. This variant receives a format string in which the\n/// `${k}` tokens will be replaced with the k-eth value in the `args` slice.\n/// Examples:\n/// debug_log_format(\"get_2(slot:{0}) =>\\n\\t0:{1}\\n\\t1:{2}\", [storage_slot, note0_hash, note1_hash]);\n/// debug_log_format(\"whole slice: {}\", [e1, e2, e3, e4]);\npub fn debug_log_format_slice<let M: u32>(log_level: u8, msg: str<M>, args: [Field]) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe\n // to call.\n unsafe { debug_log_slice_oracle_wrapper(log_level, msg, args) };\n}\n\n// We provide two versions of the debug log oracle: one that takes args as a slice and another one that takes args as an array.\n// We do this since conversion from array to slice generates overhead in public functions, since opcodes need to be emitted for the conversion.\n// By exposing the two flavors, we avoid conversions since the AVM is able to handle both arrays an slices in this oracle.\n\nunconstrained fn debug_log_slice_oracle_wrapper<let M: u32>(\n log_level: u8,\n msg: str<M>,\n args: [Field],\n) {\n debug_log_slice_oracle(log_level, msg, args);\n}\n\n// WARNING: sometimes when using debug logs the ACVM errors with: `thrown: \"solver opcode resolution error: cannot solve opcode: expression has too many unknowns x155\"`\n#[oracle(utilityDebugLog)]\nunconstrained fn debug_log_slice_oracle<let M: u32>(log_level: u8, msg: str<M>, args: [Field]) {}\n\nunconstrained fn debug_log_array_oracle_wrapper<let M: u32, let N: u32>(\n log_level: u8,\n msg: str<M>,\n args: [Field; N],\n) {\n debug_log_array_oracle(log_level, msg, N, args);\n}\n\n#[oracle(utilityDebugLog)]\nunconstrained fn debug_log_array_oracle<let M: u32, let N: u32>(\n log_level: u8,\n msg: str<M>,\n length: u32,\n args: [Field; N],\n) {}\n"
|
|
2670
2670
|
},
|
|
2671
|
-
"
|
|
2671
|
+
"339": {
|
|
2672
2672
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/hash.nr",
|
|
2673
2673
|
"source": "mod poseidon2_chunks;\n\nuse crate::{\n abis::{\n contract_class_function_leaf_preimage::ContractClassFunctionLeafPreimage,\n function_selector::FunctionSelector,\n note_hash::NoteHash,\n nullifier::Nullifier,\n private_log::{PrivateLog, PrivateLogData},\n transaction::tx_request::TxRequest,\n },\n address::{AztecAddress, EthAddress},\n constants::{\n CONTRACT_CLASS_LOG_SIZE_IN_FIELDS, FUNCTION_TREE_HEIGHT, GENERATOR_INDEX__NOTE_HASH_NONCE,\n GENERATOR_INDEX__OUTER_NULLIFIER, GENERATOR_INDEX__SILOED_NOTE_HASH,\n GENERATOR_INDEX__UNIQUE_NOTE_HASH, NULL_MSG_SENDER_CONTRACT_ADDRESS, TWO_POW_64,\n },\n merkle_tree::root_from_sibling_path,\n messaging::l2_to_l1_message::L2ToL1Message,\n poseidon2::Poseidon2Sponge,\n side_effect::{Counted, Scoped},\n traits::{FromField, Hash, ToField},\n utils::field::{field_from_bytes, field_from_bytes_32_trunc},\n};\n\npub use poseidon2_chunks::poseidon2_absorb_in_chunks_existing_sponge;\nuse poseidon2_chunks::poseidon2_absorb_in_chunks;\nuse std::embedded_curve_ops::EmbeddedCurveScalar;\n\npub fn sha256_to_field<let N: u32>(bytes_to_hash: [u8; N]) -> Field {\n let sha256_hashed = sha256::digest(bytes_to_hash);\n let hash_in_a_field = field_from_bytes_32_trunc(sha256_hashed);\n\n hash_in_a_field\n}\n\npub fn private_functions_root_from_siblings(\n selector: FunctionSelector,\n vk_hash: Field,\n function_leaf_index: Field,\n function_leaf_sibling_path: [Field; FUNCTION_TREE_HEIGHT],\n) -> Field {\n let function_leaf_preimage = ContractClassFunctionLeafPreimage { selector, vk_hash };\n let function_leaf = function_leaf_preimage.hash();\n root_from_sibling_path(\n function_leaf,\n function_leaf_index,\n function_leaf_sibling_path,\n )\n}\n\npub fn compute_note_hash_nonce(first_nullifier_in_tx: Field, note_index_in_tx: u32) -> Field {\n // Hashing the first nullifier with note index in tx is guaranteed to be unique (because all nullifiers are also\n // unique).\n poseidon2_hash_with_separator(\n [first_nullifier_in_tx, note_index_in_tx as Field],\n GENERATOR_INDEX__NOTE_HASH_NONCE,\n )\n}\n\npub fn compute_unique_note_hash(note_nonce: Field, siloed_note_hash: Field) -> Field {\n let inputs = [note_nonce, siloed_note_hash];\n poseidon2_hash_with_separator(inputs, GENERATOR_INDEX__UNIQUE_NOTE_HASH)\n}\n\npub fn compute_nonce_and_unique_note_hash(\n siloed_note_hash: Field,\n first_nullifier: Field,\n note_index_in_tx: u32,\n) -> Field {\n let note_nonce = compute_note_hash_nonce(first_nullifier, note_index_in_tx);\n compute_unique_note_hash(note_nonce, siloed_note_hash)\n}\n\npub fn compute_siloed_note_hash(app: AztecAddress, note_hash: Field) -> Field {\n poseidon2_hash_with_separator(\n [app.to_field(), note_hash],\n GENERATOR_INDEX__SILOED_NOTE_HASH,\n )\n}\n\n/// Computes unique note hashes from siloed note hashes\npub fn compute_unique_siloed_note_hash(\n siloed_note_hash: Field,\n first_nullifier: Field,\n note_index_in_tx: u32,\n) -> Field {\n if siloed_note_hash == 0 {\n 0\n } else {\n compute_nonce_and_unique_note_hash(siloed_note_hash, first_nullifier, note_index_in_tx)\n }\n}\n\n/// Siloing in the context of Aztec refers to the process of hashing a note hash with a contract address (this way\n/// the note hash is scoped to a specific contract). This is used to prevent intermingling of notes between contracts.\npub fn silo_note_hash(note_hash: Scoped<Counted<NoteHash>>) -> Field {\n if note_hash.contract_address.is_zero() {\n 0\n } else {\n compute_siloed_note_hash(note_hash.contract_address, note_hash.innermost())\n }\n}\n\npub fn compute_siloed_nullifier(app: AztecAddress, nullifier: Field) -> Field {\n poseidon2_hash_with_separator(\n [app.to_field(), nullifier],\n GENERATOR_INDEX__OUTER_NULLIFIER,\n )\n}\n\npub fn silo_nullifier(nullifier: Scoped<Counted<Nullifier>>) -> Field {\n let value = nullifier.innermost().value;\n // Q: shouldn't we be checking whether the _whole_ nullifier is empty?\n // A: We don't have to. The init and inner circuits add contract address to non-empty nullifiers.\n // So we know we should silo it if the contract address is not empty.\n if nullifier.contract_address.is_zero() {\n value // Return `value` instead of 0 because an already-siloed nullifier's contract address is zero.\n } else {\n compute_siloed_nullifier(nullifier.contract_address, value)\n }\n}\n\npub fn create_protocol_nullifier(tx_request: TxRequest) -> Scoped<Counted<Nullifier>> {\n Nullifier { value: tx_request.hash(), note_hash: 0 }.count(1).scope(\n NULL_MSG_SENDER_CONTRACT_ADDRESS,\n )\n}\n\npub fn compute_siloed_private_log_field(contract_address: AztecAddress, field: Field) -> Field {\n poseidon2_hash([contract_address.to_field(), field])\n}\n\npub fn silo_private_log(private_log: Scoped<Counted<PrivateLogData>>) -> PrivateLog {\n let log = private_log.innermost().log;\n if private_log.contract_address.is_zero() {\n log\n } else {\n let mut fields = log.fields;\n fields[0] = compute_siloed_private_log_field(private_log.contract_address, fields[0]);\n PrivateLog::new(fields, log.length)\n }\n}\n\npub fn compute_contract_class_log_hash(log: [Field; CONTRACT_CLASS_LOG_SIZE_IN_FIELDS]) -> Field {\n poseidon2_hash(log)\n}\n\npub fn compute_app_secret_key(\n master_secret_key: EmbeddedCurveScalar,\n app_address: AztecAddress,\n app_secret_generator: Field,\n) -> Field {\n poseidon2_hash_with_separator(\n [master_secret_key.hi, master_secret_key.lo, app_address.to_field()],\n app_secret_generator,\n )\n}\n\npub fn merkle_hash(left: Field, right: Field) -> Field {\n poseidon2_hash([left, right])\n}\n\npub fn compute_l2_to_l1_hash(\n contract_address: AztecAddress,\n recipient: EthAddress,\n content: Field,\n rollup_version_id: Field,\n chain_id: Field,\n) -> Field {\n let contract_address_bytes: [u8; 32] = contract_address.to_field().to_be_bytes();\n let recipient_bytes: [u8; 20] = recipient.to_be_bytes();\n let content_bytes: [u8; 32] = content.to_be_bytes();\n let rollup_version_id_bytes: [u8; 32] = rollup_version_id.to_be_bytes();\n let chain_id_bytes: [u8; 32] = chain_id.to_be_bytes();\n\n let mut bytes: [u8; 148] = std::mem::zeroed();\n for i in 0..32 {\n bytes[i] = contract_address_bytes[i];\n bytes[i + 32] = rollup_version_id_bytes[i];\n // 64 - 84 are for recipient.\n bytes[i + 84] = chain_id_bytes[i];\n bytes[i + 116] = content_bytes[i];\n }\n\n for i in 0..20 {\n bytes[64 + i] = recipient_bytes[i];\n }\n\n sha256_to_field(bytes)\n}\n\npub fn silo_l2_to_l1_message(\n msg: Scoped<L2ToL1Message>,\n rollup_version_id: Field,\n chain_id: Field,\n) -> Field {\n if msg.contract_address.is_zero() {\n 0\n } else {\n compute_l2_to_l1_hash(\n msg.contract_address,\n msg.inner.recipient,\n msg.inner.content,\n rollup_version_id,\n chain_id,\n )\n }\n}\n\n/// Computes sha256 hash of 2 input fields.\n///\n/// @returns A truncated field (i.e., the first byte is always 0).\npub fn accumulate_sha256(v0: Field, v1: Field) -> Field {\n // Concatenate two fields into 32 x 2 = 64 bytes\n let v0_as_bytes: [u8; 32] = v0.to_be_bytes();\n let v1_as_bytes: [u8; 32] = v1.to_be_bytes();\n let hash_input_flattened = v0_as_bytes.concat(v1_as_bytes);\n\n sha256_to_field(hash_input_flattened)\n}\n\n#[inline_always]\npub fn pedersen_hash<let N: u32>(inputs: [Field; N], hash_index: u32) -> Field {\n std::hash::pedersen_hash_with_separator(inputs, hash_index)\n}\n\npub fn poseidon2_hash<let N: u32>(inputs: [Field; N]) -> Field {\n poseidon::poseidon2::Poseidon2::hash(inputs, N)\n}\n\n#[no_predicates]\npub fn poseidon2_hash_with_separator<let N: u32, T>(inputs: [Field; N], separator: T) -> Field\nwhere\n T: ToField,\n{\n let inputs_with_separator = [separator.to_field()].concat(inputs);\n poseidon2_hash(inputs_with_separator)\n}\n\n/// Computes a Poseidon2 hash over a dynamic-length subarray of the given input.\n/// Only the first `in_len` fields of `input` are absorbed; any remaining fields are ignored.\n/// The caller is responsible for ensuring that the input is padded with zeros if required.\n#[no_predicates]\npub fn poseidon2_hash_subarray<let N: u32>(input: [Field; N], in_len: u32) -> Field {\n let mut sponge = poseidon2_absorb_in_chunks(input, in_len);\n sponge.squeeze()\n}\n\n// NB the below is the same as poseidon::poseidon2::Poseidon2::hash(), but replacing a range check with a bit check,\n// and absorbing in chunks of 3 below.\n#[no_predicates]\npub fn poseidon2_cheaper_variable_hash<let N: u32>(input: [Field; N], in_len: u32) -> Field {\n let mut sponge = poseidon2_absorb_in_chunks(input, in_len);\n // In the case where the hash preimage is variable-length, we append `1` to the end of the input, to distinguish\n // from fixed-length hashes. (the combination of this additional field element + the hash IV ensures\n // fixed-length and variable-length hashes do not collide)\n if in_len != N {\n sponge.absorb(1);\n }\n sponge.squeeze()\n}\n\n// This function is unconstrained because it is intended to be used in unconstrained context only as\n// in constrained contexts it would be too inefficient.\npub unconstrained fn poseidon2_hash_with_separator_bounded_vec<let N: u32, T>(\n inputs: BoundedVec<Field, N>,\n separator: T,\n) -> Field\nwhere\n T: ToField,\n{\n let in_len = inputs.len() + 1;\n let iv: Field = (in_len as Field) * TWO_POW_64;\n let mut sponge = Poseidon2Sponge::new(iv);\n sponge.absorb(separator.to_field());\n\n for i in 0..inputs.len() {\n sponge.absorb(inputs.get(i));\n }\n\n sponge.squeeze()\n}\n\n#[no_predicates]\npub fn poseidon2_hash_bytes<let N: u32>(inputs: [u8; N]) -> Field {\n let mut fields = [0; (N + 30) / 31];\n let mut field_index = 0;\n let mut current_field = [0; 31];\n for i in 0..inputs.len() {\n let index = i % 31;\n current_field[index] = inputs[i];\n if index == 30 {\n fields[field_index] = field_from_bytes(current_field, false);\n current_field = [0; 31];\n field_index += 1;\n }\n }\n if field_index != fields.len() {\n fields[field_index] = field_from_bytes(current_field, false);\n }\n poseidon2_hash(fields)\n}\n\n#[test]\nfn poseidon_chunks_matches_fixed() {\n let in_len = 501;\n let mut input: [Field; 4096] = [0; 4096];\n let mut fixed_input = [3; 501];\n assert(in_len == fixed_input.len()); // sanity check\n for i in 0..in_len {\n input[i] = 3;\n }\n let sub_chunk_hash = poseidon2_hash_subarray(input, in_len);\n let fixed_len_hash = poseidon::poseidon2::Poseidon2::hash(fixed_input, fixed_input.len());\n assert(sub_chunk_hash == fixed_len_hash);\n}\n\n#[test]\nfn poseidon_chunks_matches_variable() {\n let in_len = 501;\n let mut input: [Field; 4096] = [0; 4096];\n for i in 0..in_len {\n input[i] = 3;\n }\n let variable_chunk_hash = poseidon2_cheaper_variable_hash(input, in_len);\n let variable_len_hash = poseidon::poseidon2::Poseidon2::hash(input, in_len);\n assert(variable_chunk_hash == variable_len_hash);\n}\n\n#[test]\nfn smoke_sha256_to_field() {\n let full_buffer = [\n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,\n 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,\n 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,\n 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93,\n 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112,\n 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130,\n 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,\n 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159,\n ];\n let result = sha256_to_field(full_buffer);\n\n assert(result == 0x448ebbc9e1a31220a2f3830c18eef61b9bd070e5084b7fa2a359fe729184c7);\n\n // to show correctness of the current ver (truncate one byte) vs old ver (mod full bytes):\n let result_bytes = sha256::digest(full_buffer);\n let truncated_field = crate::utils::field::field_from_bytes_32_trunc(result_bytes);\n assert(truncated_field == result);\n let mod_res = result + (result_bytes[31] as Field);\n assert(mod_res == 0x448ebbc9e1a31220a2f3830c18eef61b9bd070e5084b7fa2a359fe729184e0);\n}\n\n#[test]\nfn compute_l2_l1_hash() {\n // All zeroes\n let hash_result =\n compute_l2_to_l1_hash(AztecAddress::from_field(0), EthAddress::zero(), 0, 0, 0);\n assert(hash_result == 0x3b18c58c739716e76429634a61375c45b3b5cd470c22ab6d3e14cee23dd992);\n\n // Non-zero case\n let hash_result = compute_l2_to_l1_hash(\n AztecAddress::from_field(1),\n EthAddress::from_field(3),\n 5,\n 2,\n 4,\n );\n assert(hash_result == 0xaab2a5828156782b12a1dc6f336e2bc627eb1b9514b02d511f66296990c050);\n}\n\n#[test]\nfn silo_l2_to_l1_message_matches_typescript() {\n let version = 4;\n let chainId = 5;\n\n let hash = silo_l2_to_l1_message(\n L2ToL1Message { recipient: EthAddress::from_field(1), content: 2 }.scope(\n AztecAddress::from_field(3),\n ),\n version,\n chainId,\n );\n\n // The following value was generated by `yarn-project/stdlib/src/hash/hash.test.ts`\n let hash_from_typescript = 0x0081edf209e087ad31b3fd24263698723d57190bd1d6e9fe056fc0c0a68ee661;\n\n assert_eq(hash, hash_from_typescript);\n}\n\n#[test]\nunconstrained fn poseidon2_hash_with_separator_bounded_vec_matches_non_bounded_vec_version() {\n let inputs = BoundedVec::<Field, 4>::from_array([1, 2, 3]);\n let separator = 42;\n\n // Hash using bounded vec version\n let bounded_result = poseidon2_hash_with_separator_bounded_vec(inputs, separator);\n\n // Hash using regular version\n let regular_result = poseidon2_hash_with_separator([1, 2, 3], separator);\n\n // Results should match\n assert_eq(bounded_result, regular_result);\n}\n"
|
|
2674
2674
|
},
|
|
2675
|
-
"
|
|
2675
|
+
"352": {
|
|
2676
2676
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/meta/mod.nr",
|
|
2677
2677
|
"source": "use utils::derive_serialization_quotes;\n\npub mod utils;\n\n/// Generates the generic parameter declarations for a struct's trait implementation.\n///\n/// This function takes a struct type definition and generates the generic parameter declarations\n/// that go after the `impl` keyword. For example, given a struct with generics `N: u32` and `T`,\n/// it generates `<let N: u32, T>`.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate generic declarations for\n///\n/// # Returns\n/// A quoted code block containing the generic parameter declarations, or an empty quote if the struct\n/// has no generic parameters\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Container<T, let N: u32> {\n/// items: [T; N],\n/// count: u32\n/// }\n/// ```\n///\n/// This function generates:\n/// ```\n/// <let N: u32, T>\n/// ```\ncomptime fn get_generics_declarations(s: TypeDefinition) -> Quoted {\n let generics = s.generics();\n\n if generics.len() > 0 {\n let generics_declarations_items = generics\n .map(|(name, maybe_integer_typ)| {\n // The second item in the generics tuple is an Option of an integer type that is Some only if\n // the generic is numeric.\n if maybe_integer_typ.is_some() {\n // The generic is numeric, so we return a quote defined as e.g. \"let N: u32\"\n let integer_type = maybe_integer_typ.unwrap();\n quote {let $name: $integer_type}\n } else {\n // The generic is not numeric, so we return a quote containing the name of the generic (e.g. \"T\")\n quote {$name}\n }\n })\n .join(quote {,});\n quote {<$generics_declarations_items>}\n } else {\n // The struct doesn't have any generics defined, so we just return an empty quote.\n quote {}\n }\n}\n\n/// Generates the `where` clause for a trait implementation that constrains non-numeric generic type parameters.\n///\n/// This function takes a struct type definition and a trait name, and generates a `where` clause that\n/// requires all non-numeric generic type parameters to implement the specified trait.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate the where clause for\n/// - `trait_name`: The name of the trait that non-numeric generic parameters must implement\n///\n/// # Returns\n/// A quoted code block containing the where clause, or an empty quote if the struct has no non-numeric\n/// generic parameters\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Container<T, let N: u32> {\n/// items: [T; N],\n/// count: u32\n/// }\n/// ```\n///\n/// And trait name \"Serialize\", this function generates:\n/// ```\n/// where T: Serialize\n/// ```\ncomptime fn get_where_trait_clause(s: TypeDefinition, trait_name: Quoted) -> Quoted {\n let generics = s.generics();\n\n // The second item in the generics tuple is an Option of an integer type that is Some only if the generic is\n // numeric.\n let non_numeric_generics =\n generics.filter(|(_, maybe_integer_typ)| maybe_integer_typ.is_none());\n\n if non_numeric_generics.len() > 0 {\n let non_numeric_generics_declarations =\n non_numeric_generics.map(|(name, _)| quote {$name: $trait_name}).join(quote {,});\n quote {where $non_numeric_generics_declarations}\n } else {\n // There are no non-numeric generics, so we return an empty quote.\n quote {}\n }\n}\n\n/// Generates a `Serialize` trait implementation for a struct type.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A quoted code block containing the trait implementation\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Log<N> {\n/// fields: [Field; N],\n/// length: u32\n/// }\n/// ```\n///\n/// This function generates code equivalent to:\n/// ```\n/// impl<let N: u32> Serialize for Log<N> {\n/// let N: u32 = <[Field; N] as Serialize>::N + <u32 as Serialize>::N;\n///\n/// #[inline_always]\n/// fn serialize(self) -> [Field; Self::N] {\n/// let mut serialized_params = [0; _];\n/// let mut offset = 0;\n///\n/// let serialized_member = Serialize::serialize(self.fields);\n/// let serialized_member_len = <[Field; N] as Serialize>::N;\n/// for i in 0..serialized_member_len {\n/// serialized_params[i + offset] = serialized_member[i];\n/// }\n/// offset += serialized_member_len;\n///\n/// let serialized_member = Serialize::serialize(self.length);\n/// let serialized_member_len = <u32 as Serialize>::N;\n/// for i in 0..serialized_member_len {\n/// serialized_params[i + offset] = serialized_member[i];\n/// }\n/// offset += serialized_member_len;\n///\n/// serialized_params\n/// }\n/// }\n/// ```\npub comptime fn derive_serialize(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n\n // We care only about the name and type so we drop the last item of the tuple\n let params = nested_struct.0.fields(nested_struct.1).map(|(name, typ, _)| (name, typ));\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Serialize` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_serialize_clause = get_where_trait_clause(s, quote {Serialize});\n\n let (function_body, params_len_quote, serialized_params_name) =\n derive_serialization_quotes(params, true);\n\n quote {\n impl$generics_declarations $crate::traits::Serialize for $typ\n $where_serialize_clause\n {\n let N: u32 = $params_len_quote;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n $function_body\n\n $serialized_params_name\n }\n }\n }\n}\n\n/// Generates a `Deserialize` trait implementation for a given struct `s`.\n///\n/// # Arguments\n/// * `s` - The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A `Quoted` block containing the generated trait implementation\n///\n/// # Requirements\n/// Each struct member type must implement the `Deserialize` trait (it gets used in the generated code).\n///\n/// # Example\n/// For a struct like:\n/// ```\n/// struct MyStruct {\n/// x: AztecAddress,\n/// y: Field,\n/// }\n/// ```\n///\n/// This generates:\n/// ```\n/// impl Deserialize for MyStruct {\n/// let N: u32 = <AztecAddress as Deserialize>::N + <Field as Deserialize>::N;\n///\n/// fn deserialize(serialized: [Field; Self::N]) -> Self {\n/// let mut offset = 0;\n/// let mut member_fields = [0; <AztecAddress as Deserialize>::N];\n/// for i in 0..<AztecAddress as Deserialize>::N {\n/// member_fields[i] = serialized[i + offset];\n/// }\n/// let x = <AztecAddress as Deserialize>::deserialize(member_fields);\n/// offset += <AztecAddress as Deserialize>::N;\n///\n/// let mut member_fields = [0; <Field as Deserialize>::N];\n/// for i in 0..<Field as Deserialize>::N {\n/// member_fields[i] = serialized[i + offset];\n/// }\n/// let y = <Field as Deserialize>::deserialize(member_fields);\n/// offset += <Field as Deserialize>::N;\n///\n/// Self { x, y }\n/// }\n/// }\n/// ```\npub(crate) comptime fn derive_deserialize(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n let params = nested_struct.0.fields(nested_struct.1);\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Deserialize` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_deserialize_clause = get_where_trait_clause(s, quote {Deserialize});\n\n // The following will give us:\n // <type_of_struct_member_1 as Deserialize>::N + <type_of_struct_member_2 as Deserialize>::N + ...\n // (or 0 if the struct has no members)\n let right_hand_side_of_definition_of_n = if params.len() > 0 {\n params\n .map(|(_, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n <$param_type as $crate::traits::Deserialize>::N\n }\n })\n .join(quote {+})\n } else {\n quote {0}\n };\n\n // For structs containing a single member, we can enhance performance by directly deserializing the input array,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let function_body = if params.len() > 1 {\n // This generates deserialization code for each struct member and concatenates them together.\n let deserialization_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let mut member_fields = [0; <$param_type as Deserialize>::N];\n for i in 0..<$param_type as Deserialize>::N {\n member_fields[i] = serialized[i + offset];\n }\n let $param_name = <$param_type as Deserialize>::deserialize(member_fields);\n offset += <$param_type as Deserialize>::N;\n }\n })\n .join(quote {});\n\n // We join the struct member names with a comma to be used in the `Self { ... }` syntax\n // This will give us e.g. `a, b, c` for a struct with three fields named `a`, `b`, and `c`.\n let struct_members = params\n .map(|(param_name, _, _): (Quoted, Type, Quoted)| quote { $param_name })\n .join(quote {,});\n\n quote {\n let mut offset = 0;\n\n $deserialization_of_struct_members\n\n Self { $struct_members }\n }\n } else if params.len() == 1 {\n let param_name = params[0].0;\n quote {\n Self { $param_name: $crate::traits::Deserialize::deserialize(serialized) }\n }\n } else {\n quote {\n Self {}\n }\n };\n\n quote {\n impl$generics_declarations $crate::traits::Deserialize for $typ\n $where_deserialize_clause\n {\n let N: u32 = $right_hand_side_of_definition_of_n;\n\n #[inline_always]\n fn deserialize(serialized: [Field; Self::N]) -> Self {\n $function_body\n }\n }\n }\n}\n\n/// Generates a `Packable` trait implementation for a given struct `s`.\n///\n/// # Arguments\n/// * `s` - The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A `Quoted` block containing the generated trait implementation\n///\n/// # Requirements\n/// Each struct member type must implement the `Packable` trait (it gets used in the generated code).\n///\n/// # Example\n/// For a struct like:\n/// ```\n/// struct MyStruct {\n/// x: AztecAddress,\n/// y: Field,\n/// }\n/// ```\n///\n/// This generates:\n/// ```\n/// impl Packable for MyStruct {\n/// let N: u32 = 2;\n///\n/// fn pack(self) -> [Field; 2] {\n/// let mut result: [Field; 2] = [0_Field; 2];\n/// let mut offset: u32 = 0_u32;\n/// let packed_member: [Field; 1] = self.x.pack();\n/// let packed_member_len: u32 = <Field as Packable>::N;\n/// for i in 0_u32..packed_member_len {\n/// {\n/// result[i + offset] = packed_member[i];\n/// }\n/// }\n/// offset = offset + packed_member_len;\n/// let packed_member: [Field; 1] = self.y.pack();\n/// let packed_member_len: u32 = <Field as Packable>::N;\n/// for i in 0_u32..packed_member_len {\n/// {\n/// result[i + offset] = packed_member[i];\n/// }\n/// }\n/// offset = offset + packed_member_len;\n/// result\n/// }\n///\n/// fn unpack(packed: [Field; 2]) -> Self {\n/// let mut offset: u32 = 0_u32;\n/// let mut member_fields: [Field; 1] = [0_Field; 1];\n/// for i in 0_u32..<AztecAddress as Packable>::N {\n/// member_fields[i] = packed[i + offset];\n/// }\n/// let x: AztecAddress = <AztecAddress as Packable>::unpack(member_fields);\n/// offset = offset + <AztecAddress as Packable>::N;\n/// let mut member_fields: [Field; 1] = [0_Field; 1];\n/// for i in 0_u32..<Field as Packable>::N {\n/// member_fields[i] = packed[i + offset];\n/// }\n/// let y: Field = <Field as Packable>::unpack(member_fields);\n/// offset = offset + <Field as Packable>::N;\n/// Self { x: x, y: y }\n/// }\n/// }\n/// ```\npub comptime fn derive_packable(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n let params = nested_struct.0.fields(nested_struct.1);\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Packable` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_packable_clause = get_where_trait_clause(s, quote {Packable});\n\n // The following will give us:\n // <type_of_struct_member_1 as Packable>::N + <type_of_struct_member_2 as Packable>::N + ...\n // (or 0 if the struct has no members)\n let right_hand_side_of_definition_of_n = if params.len() > 0 {\n params\n .map(|(_, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n <$param_type as $crate::traits::Packable>::N\n }\n })\n .join(quote {+})\n } else {\n quote {0}\n };\n\n // For structs containing a single member, we can enhance performance by directly returning the packed member,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let pack_function_body = if params.len() > 1 {\n // For multiple struct members, generate packing code that:\n // 1. Packs each member\n // 2. Copies the packed fields into the result array at the correct offset\n // 3. Updates the offset for the next member\n let packing_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let packed_member = $crate::traits::Packable::pack(self.$param_name);\n let packed_member_len = <$param_type as $crate::traits::Packable>::N;\n for i in 0..packed_member_len {\n result[i + offset] = packed_member[i];\n }\n offset += packed_member_len;\n }\n })\n .join(quote {});\n\n quote {\n let mut result = [0; Self::N];\n let mut offset = 0;\n\n $packing_of_struct_members\n\n result\n }\n } else if params.len() == 1 {\n let param_name = params[0].0;\n quote {\n $crate::traits::Packable::pack(self.$param_name)\n }\n } else {\n quote {\n [0; Self::N]\n }\n };\n\n // For structs containing a single member, we can enhance performance by directly unpacking the input array,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let unpack_function_body = if params.len() > 1 {\n // For multiple struct members, generate unpacking code that:\n // 1. Unpacks each member\n // 2. Copies packed fields into member array at correct offset\n // 3. Updates offset for next member\n let unpacking_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let mut member_fields = [0; <$param_type as $crate::traits::Packable>::N];\n for i in 0..<$param_type as $crate::traits::Packable>::N {\n member_fields[i] = packed[i + offset];\n }\n let $param_name = <$param_type as $crate::traits::Packable>::unpack(member_fields);\n offset += <$param_type as $crate::traits::Packable>::N;\n }\n })\n .join(quote {});\n\n // We join the struct member names with a comma to be used in the `Self { ... }` syntax\n let struct_members = params\n .map(|(param_name, _, _): (Quoted, Type, Quoted)| quote { $param_name })\n .join(quote {,});\n\n quote {\n let mut offset = 0;\n $unpacking_of_struct_members\n Self { $struct_members }\n }\n } else if params.len() == 1 {\n let param_name = params[0].0;\n quote {\n Self { $param_name: $crate::traits::Packable::unpack(packed) }\n }\n } else {\n quote {\n Self {}\n }\n };\n\n quote {\n impl$generics_declarations $crate::traits::Packable for $typ\n $where_packable_clause\n {\n let N: u32 = $right_hand_side_of_definition_of_n;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n $pack_function_body\n }\n\n #[inline_always]\n fn unpack(packed: [Field; Self::N]) -> Self {\n $unpack_function_body\n }\n }\n }\n}\n\nmod test {\n use crate::traits::{Deserialize, Packable, Serialize};\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct Empty {}\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct Smol {\n a: Field,\n b: Field,\n }\n\n #[derive(Deserialize, Eq, Serialize)]\n pub struct HasArray {\n a: [Field; 2],\n b: bool,\n }\n\n #[derive(Deserialize, Eq, Serialize)]\n pub struct Fancier {\n a: Smol,\n b: [Field; 2],\n c: [u8; 3],\n d: str<16>,\n }\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct HasArrayWithGenerics<T, let N: u32> {\n pub fields: [T; N],\n pub length: u32,\n }\n\n #[test]\n fn serde_on_empty() {\n let original = Empty {};\n let serialized = original.serialize();\n assert_eq(serialized, [], \"Serialized does not match empty array\");\n let deserialized = Empty::deserialize(serialized);\n assert_eq(deserialized, original, \"Deserialized does not match original\");\n }\n\n #[test]\n fn packable_on_empty() {\n let original = Empty {};\n let packed = original.pack();\n assert_eq(packed, [], \"Packed does not match empty array\");\n let unpacked = Empty::unpack(packed);\n assert_eq(unpacked, original, \"Unpacked does not match original\");\n }\n\n #[test]\n fn serde_on_smol() {\n let smol = Smol { a: 1, b: 2 };\n let serialized = smol.serialize();\n assert(serialized == [1, 2], serialized);\n let deserialized = Smol::deserialize(serialized);\n assert(deserialized == smol);\n\n // None of the struct members implements the `Packable` trait so the packed and serialized data should be the same\n let packed = smol.pack();\n assert_eq(packed, serialized, \"Packed does not match serialized\");\n }\n\n #[test]\n fn serde_on_has_array() {\n let has_array = HasArray { a: [1, 2], b: true };\n let serialized = has_array.serialize();\n assert(serialized == [1, 2, 1], serialized);\n let deserialized = HasArray::deserialize(serialized);\n assert(deserialized == has_array);\n }\n\n #[test]\n fn serde_on_fancier() {\n let fancier =\n Fancier { a: Smol { a: 1, b: 2 }, b: [0, 1], c: [1, 2, 3], d: \"metaprogramming!\" };\n let serialized = fancier.serialize();\n assert(\n serialized\n == [\n 1, 2, 0, 1, 1, 2, 3, 0x6d, 0x65, 0x74, 0x61, 0x70, 0x72, 0x6f, 0x67, 0x72, 0x61,\n 0x6d, 0x6d, 0x69, 0x6e, 0x67, 0x21,\n ],\n serialized,\n );\n let deserialized = Fancier::deserialize(serialized);\n assert(deserialized == fancier);\n }\n\n #[test]\n fn serde_on_contains_array_with_generics() {\n let struct_with_array_of_generics = HasArrayWithGenerics { fields: [1, 2, 3], length: 3 };\n let serialized = struct_with_array_of_generics.serialize();\n assert(serialized == [1, 2, 3, 3], serialized);\n let deserialized = HasArrayWithGenerics::deserialize(serialized);\n assert(deserialized == struct_with_array_of_generics);\n }\n\n #[test]\n fn packable_on_contains_array_with_generics() {\n let struct_with_array_of_generics = HasArrayWithGenerics { fields: [1, 2, 3], length: 3 };\n let packed = struct_with_array_of_generics.pack();\n assert(packed == [1, 2, 3, 3], packed);\n\n let unpacked = HasArrayWithGenerics::unpack(packed);\n assert(unpacked == struct_with_array_of_generics);\n }\n\n}\n"
|
|
2678
2678
|
},
|
|
2679
|
-
"
|
|
2679
|
+
"353": {
|
|
2680
2680
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/meta/utils.nr",
|
|
2681
2681
|
"source": "/// Generates serialization code for a list of parameters and the total length of the serialized array\n///\n/// # Parameters\n/// - `params`: A list of (name, type) tuples to serialize\n/// - `use_self_prefix`: If true, parameters are accessed as `self.$param_name` (for struct members).\n/// If false, parameters are accessed directly as `$param_name` (for function parameters).\n///\n/// # Returns\n/// A tuple containing:\n/// - Quoted code that serializes the parameters into an array named `serialized_params`\n/// - Quoted code that evaluates to the total length of the serialized array\n/// - Quoted code containing the name of the serialized array\npub comptime fn derive_serialization_quotes(\n params: [(Quoted, Type)],\n use_self_prefix: bool,\n) -> (Quoted, Quoted, Quoted) {\n let prefix_quote = if use_self_prefix {\n quote { self. }\n } else {\n quote {}\n };\n\n let params_len_quote = get_params_len_quote(params);\n let serialized_params_name = quote { serialized_params };\n\n let body = if params.len() == 0 {\n quote {\n let $serialized_params_name: [Field; 0] = [];\n }\n } else if params.len() == 1 {\n // When we have only a single parameter on the input, we can enhance performance by directly returning\n // the serialized member, bypassing the need for loop-based array construction. While this optimization yields\n // significant benefits in Brillig where the loops are expected to not be optimized, it is not relevant in ACIR\n // where the loops are expected to be optimized away.\n\n let param_name = params[0].0;\n quote {\n let $serialized_params_name = $crate::traits::Serialize::serialize($prefix_quote$param_name);\n }\n } else {\n // For multiple struct members, generate serialization code that:\n // 1. Serializes each member\n // 2. Copies the serialized fields into the serialize array at the correct offset\n // 3. Updates the offset for the next member\n let serialization_of_struct_members = params\n .map(|(param_name, param_type): (Quoted, Type)| {\n quote {\n let serialized_member = $crate::traits::Serialize::serialize($prefix_quote$param_name);\n let serialized_member_len = <$param_type as $crate::traits::Serialize>::N;\n for i in 0..serialized_member_len {\n $serialized_params_name[i + offset] = serialized_member[i];\n }\n offset += serialized_member_len;\n }\n })\n .join(quote {});\n\n quote {\n let mut $serialized_params_name = [0; $params_len_quote];\n let mut offset = 0;\n\n $serialization_of_struct_members\n }\n };\n\n (body, params_len_quote, serialized_params_name)\n}\n\n/// Generates a quoted expression that computes the total serialized length of function parameters.\n///\n/// # Parameters\n/// * `params` - An array of tuples where each tuple contains a quoted parameter name and its Type. The type needs\n/// to implement the Serialize trait.\n///\n/// # Returns\n/// A quoted expression that evaluates to:\n/// * `0` if there are no parameters\n/// * `(<type1 as Serialize>::N + <type2 as Serialize>::N + ...)` for one or more parameters\npub comptime fn get_params_len_quote(params: [(Quoted, Type)]) -> Quoted {\n if params.len() == 0 {\n quote { 0 }\n } else {\n let params_quote_without_parentheses = params\n .map(|(_, param_type): (Quoted, Type)| {\n quote {\n <$param_type as $crate::traits::Serialize>::N\n }\n })\n .join(quote {+});\n quote { ($params_quote_without_parentheses) }\n }\n}\n"
|
|
2682
2682
|
},
|
|
2683
|
-
"
|
|
2683
|
+
"355": {
|
|
2684
2684
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/poseidon2.nr",
|
|
2685
2685
|
"source": "use crate::constants::TWO_POW_64;\nuse crate::traits::{Deserialize, Serialize};\nuse std::meta::derive;\n// NB: This is a clone of noir/noir-repo/noir_stdlib/src/hash/poseidon2.nr\n// It exists as we sometimes need to perform custom absorption, but the stdlib version\n// has a private absorb() method (it's also designed to just be a hasher)\n// Can be removed when standalone noir poseidon lib exists: See noir#6679\n\ncomptime global RATE: u32 = 3;\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct Poseidon2Sponge {\n pub cache: [Field; 3],\n pub state: [Field; 4],\n pub cache_size: u32,\n pub squeeze_mode: bool, // 0 => absorb, 1 => squeeze\n}\n\nimpl Poseidon2Sponge {\n #[no_predicates]\n pub fn hash<let N: u32>(input: [Field; N], message_size: u32) -> Field {\n Poseidon2Sponge::hash_internal(input, message_size, message_size != N)\n }\n\n pub(crate) fn new(iv: Field) -> Poseidon2Sponge {\n let mut result =\n Poseidon2Sponge { cache: [0; 3], state: [0; 4], cache_size: 0, squeeze_mode: false };\n result.state[RATE] = iv;\n result\n }\n\n fn perform_duplex(&mut self) {\n // add the cache into sponge state\n for i in 0..RATE {\n // We effectively zero-pad the cache by only adding to the state\n // cache that is less than the specified `cache_size`\n if i < self.cache_size {\n self.state[i] += self.cache[i];\n }\n }\n self.state = std::hash::poseidon2_permutation(self.state, 4);\n }\n\n pub fn absorb(&mut self, input: Field) {\n assert(!self.squeeze_mode);\n if self.cache_size == RATE {\n // If we're absorbing, and the cache is full, apply the sponge permutation to compress the cache\n self.perform_duplex();\n self.cache[0] = input;\n self.cache_size = 1;\n } else {\n // If we're absorbing, and the cache is not full, add the input into the cache\n self.cache[self.cache_size] = input;\n self.cache_size += 1;\n }\n }\n\n pub fn squeeze(&mut self) -> Field {\n assert(!self.squeeze_mode);\n // If we're in absorb mode, apply sponge permutation to compress the cache.\n self.perform_duplex();\n self.squeeze_mode = true;\n\n // Pop one item off the top of the permutation and return it.\n self.state[0]\n }\n\n fn hash_internal<let N: u32>(\n input: [Field; N],\n in_len: u32,\n is_variable_length: bool,\n ) -> Field {\n let iv: Field = (in_len as Field) * TWO_POW_64;\n let mut sponge = Poseidon2Sponge::new(iv);\n for i in 0..input.len() {\n if i < in_len {\n sponge.absorb(input[i]);\n }\n }\n\n // In the case where the hash preimage is variable-length, we append `1` to the end of the input, to distinguish\n // from fixed-length hashes. (the combination of this additional field element + the hash IV ensures\n // fixed-length and variable-length hashes do not collide)\n if is_variable_length {\n sponge.absorb(1);\n }\n sponge.squeeze()\n }\n}\n"
|
|
2686
2686
|
},
|
|
2687
|
-
"
|
|
2687
|
+
"383": {
|
|
2688
2688
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/traits.nr",
|
|
2689
2689
|
"source": "use crate::meta::{derive_deserialize, derive_packable, derive_serialize};\nuse crate::utils::field::field_from_bytes;\n\n// Trait: is_empty\n//\n// The general is_empty trait checks if a data type is is empty,\n// and it defines empty for the basic data types as 0.\n//\n// If a Field is equal to zero, then it is regarded as zero.\n// We will go with this definition for now, however it can be problematic\n// if a value can actually be zero. In a future refactor, we can\n// use the optional type for safety. Doing it now would lead to a worse devex\n// and would make it harder to sync up with the cpp code.\n// Preferred over Default trait to convey intent, as default doesn't necessarily mean empty.\npub trait Empty: Eq {\n fn empty() -> Self;\n\n fn is_empty(self) -> bool {\n self.eq(Self::empty())\n }\n\n // Requires this Noir fix: https://github.com/noir-lang/noir/issues/9002\n // fn assert_not_empty<let U: u32>(self, msg: str<U>) { // This msg version was failing with weird compiler errors.\n // // We provide a default impl but it's likely inefficient.\n // // The reason we include this function is because there's a lot of\n // // opportunity for optimisation on a per-struct basis.\n // // You only need to show one element is not empty to know that the whole thing\n // // is not empty.\n // // If you know an element of your struct which should always be nonempty,\n // // you can write an impl that solely checks that that element is nonempty.\n // assert(!self.is_empty(), msg);\n // }\n\n // This default impl is overwritten by types like arrays, because there's a much\n // more efficient approach.\n fn assert_empty<let S: u32>(self, msg: str<S>) {\n assert(self.is_empty(), msg);\n }\n}\n\nimpl Empty for Field {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\n\nimpl Empty for bool {\n #[inline_always]\n fn empty() -> Self {\n false\n }\n}\n\nimpl Empty for u1 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u8 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u16 {\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u32 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u64 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u128 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\n\nimpl<T, let N: u32> Empty for [T; N]\nwhere\n T: Empty,\n{\n #[inline_always]\n fn empty() -> Self {\n [T::empty(); N]\n }\n\n fn is_empty(self) -> bool {\n self.all(|elem| elem.is_empty())\n }\n\n fn assert_empty<let S: u32>(self, msg: str<S>) -> () {\n self.for_each(|elem| elem.assert_empty(msg))\n }\n}\n\nimpl<T> Empty for [T]\nwhere\n T: Empty,\n{\n #[inline_always]\n fn empty() -> Self {\n [T::empty()]\n }\n\n fn is_empty(self) -> bool {\n self.all(|elem| elem.is_empty())\n }\n\n fn assert_empty<let S: u32>(self, msg: str<S>) -> () {\n self.for_each(|elem| elem.assert_empty(msg))\n }\n}\nimpl<A, B> Empty for (A, B)\nwhere\n A: Empty,\n B: Empty,\n{\n #[inline_always]\n fn empty() -> Self {\n (A::empty(), B::empty())\n }\n}\n\nimpl<T> Empty for Option<T>\nwhere\n T: Eq,\n{\n #[inline_always]\n fn empty() -> Self {\n Option::none()\n }\n}\n\n// pub fn is_empty<T>(item: T) -> bool\n// where\n// T: Empty,\n// {\n// item.eq(T::empty())\n// }\n\n// pub fn is_empty_array<T, let N: u32>(array: [T; N]) -> bool\n// where\n// T: Empty,\n// {\n// array.all(|elem| is_empty(elem))\n// }\n\n// pub fn assert_empty<T>(item: T) -> ()\n// where\n// T: Empty,\n// {\n// assert(item.eq(T::empty()))\n// }\n\n// pub fn assert_empty_array<T, let N: u32>(array: [T; N]) -> ()\n// where\n// T: Empty,\n// {\n// // A cheaper option than `is_empty_array` for if you don't need to gracefully\n// // handle a bool result.\n// // Avoids the `&` operator of `is_empty_array`'s `.all()` call.\n// for i in 0..N {\n// assert(is_empty(array[i]));\n// }\n// }\n\npub trait Hash {\n fn hash(self) -> Field;\n}\n\npub trait ToField {\n fn to_field(self) -> Field;\n}\n\nimpl ToField for Field {\n #[inline_always]\n fn to_field(self) -> Field {\n self\n }\n}\n\nimpl ToField for bool {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u1 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u8 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u16 {\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u32 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u64 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u128 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl<let N: u32> ToField for str<N> {\n #[inline_always]\n fn to_field(self) -> Field {\n assert(N < 32, \"String doesn't fit in a field, consider using Serialize instead\");\n field_from_bytes(self.as_bytes(), true)\n }\n}\n\npub trait FromField {\n fn from_field(value: Field) -> Self;\n}\n\nimpl FromField for Field {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value\n }\n}\n\nimpl FromField for bool {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value != 0\n }\n}\nimpl FromField for u1 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u1\n }\n}\nimpl FromField for u8 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u8\n }\n}\nimpl FromField for u16 {\n fn from_field(value: Field) -> Self {\n value as u16\n }\n}\nimpl FromField for u32 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u32\n }\n}\nimpl FromField for u64 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u64\n }\n}\nimpl FromField for u128 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u128\n }\n}\n\n// docs:start:serialize\n/// Trait for serializing Noir types into arrays of Fields.\n///\n/// An implementation of the Serialize trait has to follow Noir's intrinsic serialization (each member of a struct\n/// converted directly into one or more Fields without any packing or compression). This trait (and Deserialize) are\n/// typically used to communicate between Noir and TypeScript (via oracles and function arguments).\n///\n/// # On Following Noir's Intrinsic Serialization\n/// When calling a Noir function from TypeScript (TS), first the function arguments are serialized into an array\n/// of fields. This array is then included in the initial witness. Noir's intrinsic serialization is then used\n/// to deserialize the arguments from the witness. When the same Noir function is called from Noir this Serialize trait\n/// is used instead of the serialization in TS. For this reason we need to have a match between TS serialization,\n/// Noir's intrinsic serialization and the implementation of this trait. If there is a mismatch, the function calls\n/// fail with an arguments hash mismatch error message.\n///\n/// # Associated Constants\n/// * `N` - The length of the output Field array, known at compile time\n///\n/// # Example\n/// ```\n/// impl<let N: u32> Serialize for str<N> {\n/// let N: u32 = N;\n///\n/// fn serialize(self) -> [Field; Self::N] {\n/// let bytes = self.as_bytes();\n/// let mut fields = [0; Self::N];\n/// for i in 0..bytes.len() {\n/// fields[i] = bytes[i] as Field; // Each byte gets its own Field\n/// }\n/// fields\n/// }\n/// }\n/// ```\n#[derive_via(derive_serialize)]\npub trait Serialize {\n let N: u32;\n\n fn serialize(self) -> [Field; N];\n}\n// docs:end:serialize\n\nimpl<let M: u32> Serialize for str<M> {\n let N: u32 = M;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let bytes = self.as_bytes();\n let mut fields = [0; Self::N];\n for i in 0..bytes.len() {\n fields[i] = bytes[i] as Field;\n }\n fields\n }\n}\n\n/// Implementation of Deserialize for BoundedVec.\n///\n/// This implementation deserializes a BoundedVec from an array of Fields. The array contains:\n/// 1. The serialized items, each taking up T::N Fields\n/// 2. The length of the BoundedVec as the last Field\n///\n/// # Type Parameters\n/// * `T` - The type of items stored in the BoundedVec, must implement Deserialize\n/// * `M` - The maximum length of the BoundedVec\n///\n/// # Fields Array Layout\n/// [item1_field1, item1_field2, ..., item2_field1, item2_field2, ..., length]\n/// Where:\n/// - itemN_fieldM: The M-th Field of the N-th item (T::N Fields per item)\n/// - length: The number of items in the BoundedVec (1 Field)\n///\n/// Total length N = T::N * M + 1, where:\n/// - T::N is the number of Fields needed to deserialize one item\n/// - M is the maximum length of the BoundedVec\n/// - +1 is for storing the length\n///\n/// # Note\n/// Not deriving this because it's not supported to call derive_deserialize on a \"remote\" struct (and it will never\n/// be supported).\nimpl<T, let M: u32> Deserialize for BoundedVec<T, M>\nwhere\n T: Deserialize,\n{\n let N: u32 = <T as Deserialize>::N * M + 1;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n let mut new_bounded_vec: BoundedVec<T, M> = BoundedVec::new();\n\n // Length is stored in the last field as we need to match intrinsic Noir serialization and the `len` struct\n // field is after `storage` struct field (see `bounded_vec.nr` in noir-stdlib)\n let len = fields[<T as Deserialize>::N * M] as u32;\n\n for i in 0..len {\n let mut nested_fields = [0; <T as Deserialize>::N];\n for j in 0..<T as Deserialize>::N {\n nested_fields[j] = fields[i * <T as Deserialize>::N + j];\n }\n\n let item = T::deserialize(nested_fields);\n new_bounded_vec.push(item);\n }\n\n new_bounded_vec\n }\n}\n\n// This may cause issues if used as program input, because noir disallows empty arrays for program input.\n// I think this is okay because I don't foresee a unit type being used as input. But leaving this comment as a hint\n// if someone does run into this in the future.\nimpl Deserialize for () {\n let N: u32 = 0;\n\n fn deserialize(_fields: [Field; Self::N]) -> Self {\n ()\n }\n}\n\n// Note: Not deriving this because it's not supported to call derive_serialize on a \"remote\" struct (and it will never\n// be supported).\nimpl<T, let M: u32> Serialize for BoundedVec<T, M>\nwhere\n T: Serialize,\n{\n let N: u32 = <T as Serialize>::N * M + 1; // +1 for the length of the BoundedVec\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let mut fields = [0; Self::N];\n\n let storage = self.storage();\n\n for i in 0..M {\n let serialized_item = storage[i].serialize();\n\n for j in 0..<T as Serialize>::N {\n fields[i * <T as Serialize>::N + j] = serialized_item[j];\n }\n }\n\n // Length is stored in the last field as we need to match intrinsic Noir serialization and the `len` struct\n // field is after `storage` struct field (see `bounded_vec.nr` in noir-stdlib)\n fields[<T as Serialize>::N * M] = self.len() as Field;\n\n fields\n }\n}\n\n// docs:start:deserialize\n/// Trait for deserializing Noir types from arrays of Fields.\n///\n/// An implementation of the Deserialize trait has to follow Noir's intrinsic serialization (each member of a struct\n/// converted directly into one or more Fields without any packing or compression). This trait is typically used when\n/// deserializing return values from function calls in Noir. Since the same function could be called from TypeScript\n/// (TS), in which case the TS deserialization would get used, we need to have a match between the 2.\n///\n/// # Associated Constants\n/// * `N` - The length of the input Field array, known at compile time\n///\n/// # Example\n/// ```\n/// impl<let M: u32> Deserialize for str<M> {\n/// let N: u32 = M;\n///\n/// #[inline_always]\n/// fn deserialize(fields: [Field; Self::N]) -> Self {\n/// str::<Self::N>::from(fields.map(|value| value as u8))\n/// }\n/// }\n/// ```\n#[derive_via(derive_deserialize)]\npub trait Deserialize {\n let N: u32;\n\n fn deserialize(fields: [Field; N]) -> Self;\n}\n// docs:end:deserialize\n\nimpl<let M: u32> Deserialize for str<M> {\n let N: u32 = M;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n str::<Self::N>::from(fields.map(|value| value as u8))\n }\n}\n\n/// Trait for efficiently packing and unpacking Noir types into and from arrays of Fields.\n///\n/// The `Packable` trait allows types to be serialized and deserialized with a focus on minimizing the size of\n/// the resulting Field array. This trait is used when storage efficiency is critical (e.g. when storing data\n/// in the contract's public storage).\n///\n/// # Associated Constants\n/// * `N` - The length of the Field array, known at compile time\n#[derive_via(derive_packable)]\npub trait Packable {\n let N: u32;\n\n /// Packs the current value into a compact array of `Field` elements.\n fn pack(self) -> [Field; N];\n\n /// Unpacks a compact array of `Field` elements into the original value.\n fn unpack(fields: [Field; N]) -> Self;\n}\n\n#[test]\nunconstrained fn bounded_vec_serialization() {\n // Test empty BoundedVec\n let empty_vec: BoundedVec<Field, 3> = BoundedVec::from_array([]);\n let serialized = empty_vec.serialize();\n let deserialized = BoundedVec::<Field, 3>::deserialize(serialized);\n assert_eq(empty_vec, deserialized);\n assert_eq(deserialized.len(), 0);\n\n // Test partially filled BoundedVec\n let partial_vec: BoundedVec<[u32; 2], 3> = BoundedVec::from_array([[1, 2]]);\n let serialized = partial_vec.serialize();\n let deserialized = BoundedVec::<[u32; 2], 3>::deserialize(serialized);\n assert_eq(partial_vec, deserialized);\n assert_eq(deserialized.len(), 1);\n assert_eq(deserialized.get(0), [1, 2]);\n\n // Test full BoundedVec\n let full_vec: BoundedVec<[u32; 2], 3> = BoundedVec::from_array([[1, 2], [3, 4], [5, 6]]);\n let serialized = full_vec.serialize();\n let deserialized = BoundedVec::<[u32; 2], 3>::deserialize(serialized);\n assert_eq(full_vec, deserialized);\n assert_eq(deserialized.len(), 3);\n assert_eq(deserialized.get(0), [1, 2]);\n assert_eq(deserialized.get(1), [3, 4]);\n assert_eq(deserialized.get(2), [5, 6]);\n}\n"
|
|
2690
2690
|
},
|
|
2691
|
-
"
|
|
2691
|
+
"386": {
|
|
2692
2692
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/type_serialization.nr",
|
|
2693
2693
|
"source": "use crate::traits::{Deserialize, Serialize};\n\nglobal U1_SERIALIZED_LEN: u32 = 1;\nglobal BOOL_SERIALIZED_LEN: u32 = 1;\nglobal U8_SERIALIZED_LEN: u32 = 1;\nglobal U16_SERIALIZED_LEN: u32 = 1;\nglobal U32_SERIALIZED_LEN: u32 = 1;\nglobal U64_SERIALIZED_LEN: u32 = 1;\nglobal U128_SERIALIZED_LEN: u32 = 1;\nglobal FIELD_SERIALIZED_LEN: u32 = 1;\nglobal I8_SERIALIZED_LEN: u32 = 1;\nglobal I16_SERIALIZED_LEN: u32 = 1;\nglobal I32_SERIALIZED_LEN: u32 = 1;\nglobal I64_SERIALIZED_LEN: u32 = 1;\n\nimpl Serialize for bool {\n let N: u32 = BOOL_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for bool {\n let N: u32 = BOOL_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> bool {\n fields[0] != 0\n }\n}\n\nimpl Serialize for u1 {\n let N: u32 = U1_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u1 {\n let N: u32 = U1_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u1\n }\n}\n\nimpl Serialize for u8 {\n let N: u32 = U8_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u8 {\n let N: u32 = U8_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u8\n }\n}\n\nimpl Serialize for u16 {\n let N: u32 = U16_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u16 {\n let N: u32 = U16_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u16\n }\n}\n\nimpl Serialize for u32 {\n let N: u32 = U32_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u32 {\n let N: u32 = U32_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u32\n }\n}\n\nimpl Serialize for u64 {\n let N: u32 = U64_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u64 {\n let N: u32 = U64_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u64\n }\n}\n\nimpl Serialize for u128 {\n let N: u32 = U128_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u128 {\n let N: u32 = U128_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u128\n }\n}\n\nimpl Serialize for Field {\n let N: u32 = FIELD_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self]\n }\n}\n\nimpl Deserialize for Field {\n let N: u32 = FIELD_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0]\n }\n}\n\nimpl Serialize for i8 {\n let N: u32 = I8_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u8 as Field]\n }\n}\n\nimpl Deserialize for i8 {\n let N: u32 = I8_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u8 as i8\n }\n}\n\nimpl Serialize for i16 {\n let N: u32 = I16_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u16 as Field]\n }\n}\n\nimpl Deserialize for i16 {\n let N: u32 = I16_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u16 as i16\n }\n}\n\nimpl Serialize for i32 {\n let N: u32 = I32_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u32 as Field]\n }\n}\n\nimpl Deserialize for i32 {\n let N: u32 = I32_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u32 as i32\n }\n}\n\nimpl Serialize for i64 {\n let N: u32 = I64_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u64 as Field]\n }\n}\n\nimpl Deserialize for i64 {\n let N: u32 = I64_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u64 as i64\n }\n}\n\nimpl<T, let M: u32> Serialize for [T; M]\nwhere\n T: Serialize,\n{\n let N: u32 = <T as Serialize>::N * M;\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let mut result: [Field; _] = std::mem::zeroed();\n for i in 0..M {\n let serialized_t = self[i].serialize();\n for j in 0..<T as Serialize>::N {\n result[i * <T as Serialize>::N + j] = serialized_t[j];\n }\n }\n result\n }\n}\n\nimpl<T, let M: u32> Deserialize for [T; M]\nwhere\n T: Deserialize,\n{\n let N: u32 = <T as Deserialize>::N * M;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n let mut reader = crate::utils::reader::Reader::new(fields);\n let mut result: [T; M] = std::mem::zeroed();\n reader.read_struct_array::<T, <T as Deserialize>::N, M>(Deserialize::deserialize, result)\n }\n}\n\nimpl<T> Serialize for Option<T>\nwhere\n T: Serialize,\n{\n let N: u32 = <T as Serialize>::N + 1;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let mut result: [Field; Self::N] = std::mem::zeroed();\n\n result[0] = if self.is_some() { 1 } else { 0 };\n\n let value_serialized = self.unwrap_unchecked().serialize();\n for i in 0..<T as Serialize>::N {\n result[1 + i] = value_serialized[i];\n }\n\n result\n }\n}\n\nimpl<T> Deserialize for Option<T>\nwhere\n T: Deserialize,\n{\n let N: u32 = <T as Deserialize>::N + 1;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n if fields[0] == 1 {\n let mut value_fields = [0; <T as Deserialize>::N];\n for i in 0..<T as Deserialize>::N {\n value_fields[i] = fields[1 + i];\n }\n\n Option::some(T::deserialize(value_fields))\n } else {\n Option::none()\n }\n }\n}\n\nmod test {\n use crate::traits::{Deserialize, Serialize};\n\n #[test]\n fn u16_serialization() {\n let a: u16 = 10;\n assert_eq(a, u16::deserialize(a.serialize()));\n }\n\n #[test]\n fn i8_serialization() {\n let a: i8 = -10;\n assert_eq(a, i8::deserialize(a.serialize()));\n }\n\n #[test]\n fn i16_serialization() {\n let a: i16 = -10;\n assert_eq(a, i16::deserialize(a.serialize()));\n }\n\n #[test]\n fn i32_serialization() {\n let a: i32 = -10;\n assert_eq(a, i32::deserialize(a.serialize()));\n }\n\n #[test]\n fn i64_serialization() {\n let a: i64 = -10;\n assert_eq(a, i64::deserialize(a.serialize()));\n }\n\n #[test]\n fn option_field_serialization() {\n let opt_some = Option::some(5);\n assert_eq(Option::<_>::deserialize(opt_some.serialize()), opt_some);\n\n let opt_none = Option::none();\n assert_eq(Option::<Field>::deserialize(opt_none.serialize()), opt_none);\n }\n\n #[test]\n fn array_serialization() {\n let array = [1, 2, 3, 4];\n\n let serialized: [Field; 4] = array.serialize();\n let deserialized: [Field; 4] = Deserialize::deserialize(serialized);\n assert_eq(deserialized, array);\n }\n\n #[test]\n fn nested_array_serialization() {\n let nested_array = [[1, 2, 3, 4], [5, 6, 7, 8]];\n\n let serialized: [Field; 8] = nested_array.serialize();\n let deserialized: [[Field; 4]; 2] = Deserialize::deserialize(serialized);\n\n assert_eq(deserialized, nested_array);\n }\n\n #[test]\n fn option_array_serialization() {\n let opt_some = Option::some([2, 5]);\n assert_eq(Option::<_>::deserialize(opt_some.serialize()), opt_some);\n\n let opt_none = Option::none();\n assert_eq(Option::<Field>::deserialize(opt_none.serialize()), opt_none);\n }\n}\n"
|
|
2694
2694
|
},
|
|
2695
|
-
"
|
|
2695
|
+
"391": {
|
|
2696
2696
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/utils/field.nr",
|
|
2697
2697
|
"source": "global KNOWN_NON_RESIDUE: Field = 5; // This is a non-residue in Noir's native Field.\n\npub fn field_from_bytes<let N: u32>(bytes: [u8; N], big_endian: bool) -> Field {\n assert(bytes.len() < 32, \"field_from_bytes: N must be less than 32\");\n let mut as_field = 0;\n let mut offset = 1;\n for i in 0..N {\n let mut index = i;\n if big_endian {\n index = N - i - 1;\n }\n as_field += (bytes[index] as Field) * offset;\n offset *= 256;\n }\n\n as_field\n}\n\n// Convert a 32 byte array to a field element by truncating the final byte\npub fn field_from_bytes_32_trunc(bytes32: [u8; 32]) -> Field {\n // Convert it to a field element\n let mut v = 1;\n let mut high = 0 as Field;\n let mut low = 0 as Field;\n\n for i in 0..15 {\n // covers bytes 16..30 (31 is truncated and ignored)\n low = low + (bytes32[15 + 15 - i] as Field) * v;\n v = v * 256;\n // covers bytes 0..14\n high = high + (bytes32[14 - i] as Field) * v;\n }\n // covers byte 15\n low = low + (bytes32[15] as Field) * v;\n\n low + high * v\n}\n\n// TODO to radix returns u8, so we cannot use bigger radixes. It'd be ideal to use a radix of the maximum range-constrained integer noir supports\npub fn full_field_less_than(lhs: Field, rhs: Field) -> bool {\n lhs.lt(rhs)\n}\n\npub fn full_field_greater_than(lhs: Field, rhs: Field) -> bool {\n rhs.lt(lhs)\n}\n\npub fn min(f1: Field, f2: Field) -> Field {\n if f1.lt(f2) {\n f1\n } else {\n f2\n }\n}\n\nglobal C1: u32 = 28;\nglobal C3: Field = 40770029410420498293352137776570907027550720424234931066070132305055;\nglobal C5: Field = 19103219067921713944291392827692070036145651957329286315305642004821462161904;\n\npub fn pow(x: Field, y: Field) -> Field {\n let mut r = 1 as Field;\n let b: [u1; 254] = y.to_le_bits();\n\n for i in 0..254 {\n r *= r;\n r *= (b[254 - 1 - i] as Field) * x + (1 - b[254 - 1 - i] as Field);\n }\n\n r\n}\n\n/// Returns Option::some(sqrt) if there is a square root, and Option::none() if there isn't.\npub fn sqrt(x: Field) -> Option<Field> {\n // Safety: if the hint returns the square root of x, then we simply square it\n // check the result equals x. If x is not square, we return a value that\n // enables us to prove that fact (see the `else` clause below).\n let (is_sq, maybe_sqrt) = unsafe { __sqrt(x) };\n\n if is_sq {\n let sqrt = maybe_sqrt;\n validate_sqrt_hint(x, sqrt);\n Option::some(sqrt)\n } else {\n let not_sqrt_hint = maybe_sqrt;\n validate_not_sqrt_hint(x, not_sqrt_hint);\n Option::none()\n }\n}\n\n// Boolean indicating whether Field element is a square, i.e. whether there exists a y in Field s.t. x = y*y.\nunconstrained fn is_square(x: Field) -> bool {\n let v = pow(x, -1 / 2);\n v * (v - 1) == 0\n}\n\n// Tonelli-Shanks algorithm for computing the square root of a Field element.\n// Requires C1 = max{c: 2^c divides (p-1)}, where p is the order of Field\n// as well as C3 = (C2 - 1)/2, where C2 = (p-1)/(2^c1),\n// and C5 = ZETA^C2, where ZETA is a non-square element of Field.\n// These are pre-computed above as globals.\nunconstrained fn tonelli_shanks_sqrt(x: Field) -> Field {\n let mut z = pow(x, C3);\n let mut t = z * z * x;\n z *= x;\n let mut b = t;\n let mut c = C5;\n\n for i in 0..(C1 - 1) {\n for _j in 1..(C1 - i - 1) {\n b *= b;\n }\n\n z *= if b == 1 { 1 } else { c };\n\n c *= c;\n\n t *= if b == 1 { 1 } else { c };\n\n b = t;\n }\n\n z\n}\n\n// NB: this doesn't return an option, because in the case of there _not_ being a square root, we still want to return a field element that allows us to then assert in the _constrained_ sqrt function that there is no sqrt.\nunconstrained fn __sqrt(x: Field) -> (bool, Field) {\n let is_sq = is_square(x);\n if is_sq {\n let sqrt = tonelli_shanks_sqrt(x);\n (true, sqrt)\n } else {\n // Demonstrate that x is not a square (a.k.a. a \"quadratic non-residue\").\n // Facts:\n // The Legendre symbol (\"LS\") of x, is x^((p-1)/2) (mod p).\n // - If x is a square, LS(x) = 1\n // - If x is not a square, LS(x) = -1\n // - If x = 0, LS(x) = 0.\n //\n // Hence:\n // sq * sq = sq // 1 * 1 = 1\n // non-sq * non-sq = sq // -1 * -1 = 1\n // sq * non-sq = non-sq // -1 * 1 = -1\n //\n // See: https://en.wikipedia.org/wiki/Legendre_symbol\n let demo_x_not_square = x * KNOWN_NON_RESIDUE;\n let not_sqrt = tonelli_shanks_sqrt(demo_x_not_square);\n (false, not_sqrt)\n }\n}\n\nfn validate_sqrt_hint(x: Field, hint: Field) {\n assert(hint * hint == x, f\"The claimed_sqrt {hint} is not the sqrt of x {x}\");\n}\n\nfn validate_not_sqrt_hint(x: Field, hint: Field) {\n // We need this assertion, because x = 0 would pass the other assertions in this\n // function, and we don't want people to be able to prove that 0 is not square!\n assert(x != 0, \"0 has a square root; you cannot claim it is not square\");\n // Demonstrate that x is not a square (a.k.a. a \"quadratic non-residue\").\n //\n // Facts:\n // The Legendre symbol (\"LS\") of x, is x^((p-1)/2) (mod p).\n // - If x is a square, LS(x) = 1\n // - If x is not a square, LS(x) = -1\n // - If x = 0, LS(x) = 0.\n //\n // Hence:\n // 1. sq * sq = sq // 1 * 1 = 1\n // 2. non-sq * non-sq = sq // -1 * -1 = 1\n // 3. sq * non-sq = non-sq // -1 * 1 = -1\n //\n // See: https://en.wikipedia.org/wiki/Legendre_symbol\n //\n // We want to demonstrate that this below multiplication falls under bullet-point (2):\n let demo_x_not_square = x * KNOWN_NON_RESIDUE;\n // I.e. we want to demonstrate that `demo_x_not_square` has Legendre symbol 1\n // (i.e. that it is a square), so we prove that it is square below.\n // Why do we want to prove that it has LS 1?\n // Well, since it was computed with a known-non-residue, its squareness implies we're\n // in case 2 (something multiplied by a known-non-residue yielding a result which\n // has a LS of 1), which implies that x must be a non-square. The unconstrained\n // function gave us the sqrt of demo_x_not_square, so all we need to do is\n // assert its squareness:\n assert(\n hint * hint == demo_x_not_square,\n f\"The hint {hint} does not demonstrate that {x} is not a square\",\n );\n}\n\n#[test]\nunconstrained fn bytes_field_test() {\n // Tests correctness of field_from_bytes_32_trunc against existing methods\n // Bytes representing 0x543e0a6642ffeb8039296861765a53407bba62bd1c97ca43374de950bbe0a7\n let inputs = [\n 84, 62, 10, 102, 66, 255, 235, 128, 57, 41, 104, 97, 118, 90, 83, 64, 123, 186, 98, 189, 28,\n 151, 202, 67, 55, 77, 233, 80, 187, 224, 167,\n ];\n let field = field_from_bytes(inputs, true);\n let return_bytes: [u8; 31] = field.to_be_bytes();\n assert_eq(inputs, return_bytes);\n // 32 bytes - we remove the final byte, and check it matches the field\n let inputs2 = [\n 84, 62, 10, 102, 66, 255, 235, 128, 57, 41, 104, 97, 118, 90, 83, 64, 123, 186, 98, 189, 28,\n 151, 202, 67, 55, 77, 233, 80, 187, 224, 167, 158,\n ];\n let field2 = field_from_bytes_32_trunc(inputs2);\n let return_bytes2: [u8; 31] = field.to_be_bytes();\n\n assert_eq(return_bytes2, return_bytes);\n assert_eq(field2, field);\n}\n\n#[test]\nunconstrained fn max_field_test() {\n // Tests the hardcoded value in constants.nr vs underlying modulus\n // NB: We can't use 0-1 in constants.nr as it will be transpiled incorrectly to ts and sol constants files\n let max_value = crate::constants::MAX_FIELD_VALUE;\n assert_eq(max_value, 0 - 1);\n // modulus == 0 is tested elsewhere, so below is more of a sanity check\n let max_bytes: [u8; 32] = max_value.to_be_bytes();\n let mod_bytes = std::field::modulus_be_bytes();\n for i in 0..31 {\n assert_eq(max_bytes[i], mod_bytes[i]);\n }\n assert_eq(max_bytes[31], mod_bytes[31] - 1);\n}\n\n#[test]\nunconstrained fn sqrt_valid_test() {\n let x = 16; // examples: 16, 9, 25, 81\n let result = sqrt(x);\n assert(result.is_some());\n assert_eq(result.unwrap() * result.unwrap(), x);\n}\n\n#[test]\nunconstrained fn sqrt_invalid_test() {\n let x = KNOWN_NON_RESIDUE; // has no square root in the field\n let result = sqrt(x);\n assert(result.is_none());\n}\n"
|
|
2698
2698
|
},
|
|
2699
|
-
"
|
|
2699
|
+
"395": {
|
|
2700
2700
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/utils/reader.nr",
|
|
2701
2701
|
"source": "pub struct Reader<let N: u32> {\n data: [Field; N],\n offset: u32,\n}\n\nimpl<let N: u32> Reader<N> {\n pub fn new(data: [Field; N]) -> Self {\n Self { data, offset: 0 }\n }\n\n pub fn read(&mut self) -> Field {\n let result = self.data[self.offset];\n self.offset += 1;\n result\n }\n\n pub fn read_u32(&mut self) -> u32 {\n self.read() as u32\n }\n\n pub fn read_u64(&mut self) -> u64 {\n self.read() as u64\n }\n\n pub fn read_bool(&mut self) -> bool {\n self.read() != 0\n }\n\n pub fn read_array<let K: u32>(&mut self) -> [Field; K] {\n let mut result = [0; K];\n for i in 0..K {\n result[i] = self.data[self.offset + i];\n }\n self.offset += K;\n result\n }\n\n pub fn read_struct<T, let K: u32>(&mut self, deserialise: fn([Field; K]) -> T) -> T {\n let result = deserialise(self.read_array());\n result\n }\n\n pub fn read_struct_array<T, let K: u32, let C: u32>(\n &mut self,\n deserialise: fn([Field; K]) -> T,\n mut result: [T; C],\n ) -> [T; C] {\n for i in 0..C {\n result[i] = self.read_struct(deserialise);\n }\n result\n }\n\n pub fn finish(self) {\n assert_eq(self.offset, self.data.len(), \"Reader did not read all data\");\n }\n}\n"
|
|
2702
2702
|
},
|