@aztec/accounts 4.0.0-nightly.20260108 → 4.0.0-nightly.20260111

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "transpiled": true,
3
- "noir_version": "1.0.0-beta.18+c9a8bf882069681672e68b2612e4119592c4485a",
3
+ "noir_version": "1.0.0-beta.18+78a54455147d9ddbec669e78ebd107aed5245111",
4
4
  "name": "SchnorrAccount",
5
5
  "functions": [
6
6
  {
@@ -1000,7 +1000,7 @@
1000
1000
  "name": "note_hash_read_requests",
1001
1001
  "type": {
1002
1002
  "kind": "struct",
1003
- "path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
1003
+ "path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
1004
1004
  "fields": [
1005
1005
  {
1006
1006
  "name": "array",
@@ -1068,7 +1068,7 @@
1068
1068
  "name": "nullifier_read_requests",
1069
1069
  "type": {
1070
1070
  "kind": "struct",
1071
- "path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
1071
+ "path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
1072
1072
  "fields": [
1073
1073
  {
1074
1074
  "name": "array",
@@ -1136,7 +1136,7 @@
1136
1136
  "name": "key_validation_requests_and_generators",
1137
1137
  "type": {
1138
1138
  "kind": "struct",
1139
- "path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
1139
+ "path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
1140
1140
  "fields": [
1141
1141
  {
1142
1142
  "name": "array",
@@ -1214,7 +1214,7 @@
1214
1214
  "name": "private_call_requests",
1215
1215
  "type": {
1216
1216
  "kind": "struct",
1217
- "path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
1217
+ "path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
1218
1218
  "fields": [
1219
1219
  {
1220
1220
  "name": "array",
@@ -1334,7 +1334,7 @@
1334
1334
  "name": "public_call_requests",
1335
1335
  "type": {
1336
1336
  "kind": "struct",
1337
- "path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
1337
+ "path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
1338
1338
  "fields": [
1339
1339
  {
1340
1340
  "name": "array",
@@ -1474,7 +1474,7 @@
1474
1474
  "name": "note_hashes",
1475
1475
  "type": {
1476
1476
  "kind": "struct",
1477
- "path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
1477
+ "path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
1478
1478
  "fields": [
1479
1479
  {
1480
1480
  "name": "array",
@@ -1518,7 +1518,7 @@
1518
1518
  "name": "nullifiers",
1519
1519
  "type": {
1520
1520
  "kind": "struct",
1521
- "path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
1521
+ "path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
1522
1522
  "fields": [
1523
1523
  {
1524
1524
  "name": "array",
@@ -1577,7 +1577,7 @@
1577
1577
  "name": "l2_to_l1_msgs",
1578
1578
  "type": {
1579
1579
  "kind": "struct",
1580
- "path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
1580
+ "path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
1581
1581
  "fields": [
1582
1582
  {
1583
1583
  "name": "array",
@@ -1645,7 +1645,7 @@
1645
1645
  "name": "private_logs",
1646
1646
  "type": {
1647
1647
  "kind": "struct",
1648
- "path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
1648
+ "path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
1649
1649
  "fields": [
1650
1650
  {
1651
1651
  "name": "array",
@@ -1727,7 +1727,7 @@
1727
1727
  "name": "contract_class_logs_hashes",
1728
1728
  "type": {
1729
1729
  "kind": "struct",
1730
- "path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
1730
+ "path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
1731
1731
  "fields": [
1732
1732
  {
1733
1733
  "name": "array",
@@ -1851,6 +1851,10 @@
1851
1851
  "error_kind": "string",
1852
1852
  "string": "call to assert_max_bit_size"
1853
1853
  },
1854
+ "13682507011217565545": {
1855
+ "error_kind": "string",
1856
+ "string": "unexpected encrypted message length"
1857
+ },
1854
1858
  "14415304921900233953": {
1855
1859
  "error_kind": "string",
1856
1860
  "string": "Initializer address is not the contract deployer"
@@ -1863,19 +1867,15 @@
1863
1867
  "error_kind": "string",
1864
1868
  "string": "Stack too deep"
1865
1869
  },
1866
- "15835548349546956319": {
1867
- "error_kind": "string",
1868
- "string": "Field failed to decompose into specified 32 limbs"
1869
- },
1870
1870
  "16431471497789672479": {
1871
1871
  "error_kind": "string",
1872
1872
  "string": "Index out of bounds"
1873
1873
  }
1874
1874
  }
1875
1875
  },
1876
- "bytecode": "H4sIAAAAAAAA/+ydB3hU1db+M2cmpDMTOqIUG2Cj2UWl916kl1BFIIEACjYIqIBSMqEpgoB0VAQBASkigorMoktHQFTsomJX+O9Rhjmp+53NvPf63b8+3/Pc/SXvWXvN2mu/v1MmB2eGd9qhMl26JD08uGf3LsmpXfokD+6ZmpzUb1CXLt1TkgcNTh3SfXBKqiRuPlroxrRlNfolde9bI2VonSHJ3Wsm9euXNr9F9SZ1a2ekLWzTZ3Byz0GDrNKAyOkARIlIpILVAFER3whAVRRSXY5kdQUiKomISiGi0lDmZSDVlZDqKkh1dem0l2qk9unXr09v/+8nR6Snb0pbUn3QoJ6pg9v3TE2ZlO7N2FK6Yo8mqScrzS6/plnt19PS2nYqV+WzesPWDvDWPPnjpDMRERHifGVL6Yi8/7vBJOzSXMM6A4McPuTKZimDevbpkZJcuVnP1P5DBicN7pOSnDH54odW6V4cX3NxdK3t90sni/NVcS4T53JxvpY584wM7Wd1FIQ+3QpNIEdzZAlVnGqhZ3g1lOFKfSAow5VZ2szhTVvQsk9y7349/+4E3SRIJhF/xew/oF9Pca7aBKW1ypE5rQLktF7PvLe8k6Ap1HFYMqv1S2o2/+p0/cc0iLxKRZ4E9eEqSLUaUq0BejrrZwEyvPBZgE+NrSX0WdZS1kWt+CrMn98A5s+0w6wQd5hDP8HRCE9wh60LDtcHhxuCw43B4ZvB4abg8K3gcHNw+HZwuCU43BocvhMcvhscvhccbgsO38fc6S3MW7dgsncx2fsOE05v1y5TCZOwvlzDugIDI/xvt43X2cYbbWOfOgUQce4Q505x7sqcPbbR10MqgSqxG9hoJpXYbRvvsI132sa7VCX2iHOvOPeJ84NLLvgG23hPlnOu/eI8IM6D4jxk0i6HtUW62STskVzDJlxS7Q/bxm/axpts4yOqKEfFeUycH4rzuEkXvgWpjkKVOBEibsAUN0OqY1CKJzkpvg2pPoRS/Ii0l0/Yxidt449s4+Oqn06J82NxfiLOT00qsQVSnYIqcZqzWFsh1cdQip9xUnwHUn0Cpfg5qZ9O28af2caf28afqn76QpxfivMrcX5tUol3IdUXUCW+4SzWe5DqSyjFbzkpboNUX0EpniH10ze28be28Rnb+GvVT9+J83tx/iDOsyaVeB9SfQdV4kdSJX60jb+3jX+wjc+qSvwkzp/F+Ys4fzU5b/lNm73bKPvfbOOfbOP9WU7mfhfnH+L8U5znMl8DOkO+y/K7fh0ygpdX5y8OXRGbTFrod6i857OrOmZROVQGoV4huzKC1cnhtkvWGUIt5flQbli5HNCVqsvhyF5mrIBZE8yai4qNxHJZ2kpFQJ/EUnfNQ/8orghIhX0UZ/aPkvUg6KM4c3wAsLTxkH6D+7TsntQvKVUNJ09KW1TT/wwpKXkwcF8su9baWbDzkHzzOnW/sWxC7e+KFZg86t4t40feW/aGEOJG2G9AnLd9hIhQkpskLpe4IsWVL4ePvax2/249e/To2aPmkNQHe1bv0UN98OA8Lts40jbOZxOpu0HB8dv2+y8hJhklrmhxxWS/Za9rDQeywV1RoZ5gQDBxxWrDJpjAxBUbfCxpq+mrmVHiihNXvLgSxJU/9Ccd6rYO9AnjQnXq0J8WrA/JfN0mTwvWq+OgZFweytMCNb8nnV1JPVQdtjomhl5H1Q6JUG8pGaIqQKi1yrGAF51dI/qPrkdBo/UoiH3WgqRKI+cBEfBtYb0bFaK7ETKFbdUKG7iRq5A6DkumCMON/PMXMXl2qV8fj4qMOYQnbJ8/03pHpgcveVxFg8Ni2Cl70SyPvvOF/8Fc+qbMU0SFf4qZwc9dPDi8LDgsERxeHhxeERyWDA5LBYelg8MyweGVweFVweHVweE1WO1LQI/iXCUxWRlMdrXjUh9SqBIHx5dlfkjhulZcZcVVTlzlDa64XSUg1bWQc15HucPmuhxSlYVSvJ6T4hWQqhyU4g2cW1+u62zj623jG2zj8qqfbhTXTeKqIK6KJpUoCaluhCpRibNYpSDVTVCKlTkploZUFaAUq5D6qZJtXNk2rmIbV1T9dLO4bhHXreK6zaQSZSDVzVAlbucs1pWQ6hYoxTs4KV4FqW6FUryT1E+328Z32MZ32sa3qX66S1xVxXW3uO4xqcTVkOouqBL3kipxr21c1Ta+2za+R1Wimriqi6uGuGpe6tMEVzXb+Jost4Bqiau2uOqIq+4lPk1w1QrlaYKrXnBY3+RpgqsWtIr1oKcJ9f9ZTxNc9UK6hGyAnR43MHma8FcBsyaYNRcVG4rVMExPExqaPU2oD6mwj9IoTE8TGv2ffJqgdm9wXD/EG/WNxdVEXE1DfprQ2DZuYhs3tYsut42vsF/0hZhkM3E1F1eL0G+LYw+jmpHgksulpLpez+z6LcXVSlytxXVf3ne79J+k5ZbS13X6+PG9Ea+WXZ1vyZy63f6oM7HjH0UkrciXfWOWfd+j6otrbVbVZpPBPSGVbBt/6XXz+GWIu7Y1uCcGZdnWC2XZNlTaRGeECpCWwBR5ASzrf5ODS9guOGwfHHYIDjuirdMW8DLEQzsY3YJRHyQ4bm8Pl2WvdBJXZ3F1EVfXTF2RAd0p9XcF1D5t1UQZ2I6DOqBTqNca2ORtIVUSsLJGfz+xBuusbgb3pvXzrxXnG9j83TkPi3tow+YzCdvTYLWghu6I3cnvCGXZi4TMHrZxT9u4VxYb6C2u+8XVR1wPZDbnmJAvlHpD9/gNHsivhArZN0y22zfLHx/GpttA38/kz11d/XNNLV9gYLTGPfP+u1RXf7W+yeJKEdcAcQ0M/WoU+wpJMlSDVBPj1k+eAk0+KEQrAK/V+0GqAVCKg0k+kGobD7KNB9vGA1WfDBHXg+J6SFxDM7d/3LSwP4YL5RQt5HsM/cJ8ipg2v3pqatKwDGz+a/QBsUDXhvIxsMoMCX/IviTLd/WF9sywMFn+sNKX+uUIoBA2ijxs8uWIvuq49FAf+xec9F/dvaVDEDtUhf7ea0cjSovrEXE9Kq7HxPW4uIaLa4S40sQ1UlyjxPWEuJ4U11PiGi2uMeIaK66nxfWMuMaJa7y4JohrorjSxeUVV4a41E0P5W5TxDVVXNPE9ay4nhPXdOzW4iPRkOxRTPYYJnsckw3HZCMwWRomG4nJRmGyJzDZk5jsKUw2GpONwWRjMdnTmOwZTDYOk43HZBMw2URMlo7JvJgsA5NNwmSTMdkUTDYVk03DZM9isucw2fTozNA9GlEGPN3XQ/cRjerb8+cVrR7VqvxMe0yn+ot8j+etyvj7YdfwPFVnLzwSG5GX6kTgwVlaHqoaFx+vjcxdlR58CDcqV1WK7VHdE7mp1tgf6D2Zi2popsd+T+Wsqpv54eDoHFWnszxCHJOTqnLWB41jc1CVzfY48mnooeUz2VRtOmVXjcuqGtE2B9X4LKoRaTmpJmRWrUrLUTUxk6rW6zmr0u2qprVzUdlvG6xulpvKduuy3JpcVcGHhLPK566aHFBVnJ2HasoF1YlKeamm/q0aeDJP1bS/VI1T81Y961d1b6JRPadUFXroVNP5X4KervW+3bbz/OdNzvOnq+MyMvTz+GVIvBkGj4WgLGd4oSxnhLoqhTIMVkUj2hXShYjt+xy2rwy/gF00zMSuOV+INrnjNB2C70wI5C8AVQu9MWao6bG7ojP52/U5bbVm2rbrLJPtqq4mZwHbdaZfhsSbTdmuKsvZXijL2fzt+pxWNMN0u84JDl/EtuscbLu+aLRdn4O26xxou7wIVM3gySc2+VzKszTlFbOx+4EzoCznMZ6PuuaqwN6wzX+JjvastqFW2BxtvomjqVtk8wFHW+GXIfEWUBxNZbnAC2W5wKAroN6dF87eXcj5YsMCSLUI2N6XaPrPakWvmZr+4uBwCWb6izHTX2Jk+s9Cpr8YWpglQNUMugKb/CXG111cC1W7YXb6MsXOX1KBOfODxX8ZUr1CKX7AtQB/g1RLQzWO0Ik3TbubJtqI96oJ8dRzoVcB4k30y5B4yyjEU1ku80JZLqMQ7xW13OHs8OWhfikDm3wZpHqNT7xpWtEEU+KtCA5XYsRbgRFvpRHxpkHEWwEtzEqgagZdgU2+imK6y1W7YcR5nUK8VSowZ36w+K9DqtWU4gdcS6/EXGsNUKJLJN5U7W4qbSPeWhPiTVXHAcQr7Zch8d6gEE9l+YYXyvINCvFWq+UOZ4ev4xDvDUi1nk+8qVpRKVPiBd/J79qIEW8DRryNRsSbChFvA7QwG4GqGXQFNvmbFNNdp9oNI84mCvHeVIE584PF3wSp3qIUP+BaeiXmWpv5xJui3U27bMR724R4U9RxAPF2+WVIvC0U4qkst3ihLLdQiPeWWu5wdvhWDvG2QKp3+MSbohXtNCVe8N+Fcb2HEQ/7N1tc7xkRbwpEvHehhXkPqJpBV2CTb6OY7lbVbhhx3qcQb5sKzJkfLP77kGo7pfgB19IrMdfy8Yk3WbubkmzEExPiTVbHAcRL8suQeDsoxFNZ7vBCWe6gEG+7Wu5wdvhODvF2QKpdfOJN1oq6mhJvd3C4ByPebox4e4yINxki3m5oYfYAVTPoCmzyvRTT3anaDSPOPgrx9qrAnPnB4u+DVB9Qih9wLb0Sc639fOJN0u6mgzbiHTAh3iR1HEC8g34ZEu8ghXgqy4NeKMuDFOJ9oJY7nB1+iEO8g5DqMJ94+kU9YEq8I8HhUYx4RzDiHTUi3iSIeEeghTkKVM2gK7DJj1FM95BqN4w4H1KId0wF5swPFh/6BwtdxynFD7iWXom51gk+8fS7qb6NeCdNiJehjgOIV98vQ+J9RCGeyvIjL5TlRxTiHVfLHc4OP8Uh3keQ6mM+8fSieqbE+yQ4/BQj3icY8T41Il4GRDzoH9Z0fQpUzaArsMlPU0z3lGo3jDifUYh3WgXmzA8W/zNI9Tml+AHX0isx1/qCTzyvdjcttxHvSxPiedVxwK5d7pch8b6iEE9l+ZUXyvIrCvE+V8sdzg7/mkM86F+YdX3DJ55XK1pmSrxvg8MzGPG+xYh3xoh4Xoh430ILcwaomkFXYJN/RzHdr1W7YcT5nkK871Rgzvxg8b+HVD9Qih9wLb0Sc62zfOKla3fTehvxfjQhXro6DiDeer8MifcThXgqy5+8UJY/UYj3g1rucHb4zxzi/QSpfuETT//ytnWmxPs1OPwNI96vGPF+MyJeOkS8X6GF+Q2omkFXYJP/TjHdn1W7YcT5g0K831Vgzvxg8f+AVH9Sih9wLb0Sc61zfOJN1O6mhjbinTch3kR1HEC8hn4ZEC8ygkK8iSqwF8kyMoJCvD/VcoexwyMdFOJFQv/YfaTFJ95EraiBIfEincGhCyJepBMiXqTLiHgTEeJFOqGFcQFVM+gKbPJIhulGqv+zIOJE5mMQLzJSBebMDxY/H6SKohAv4Fp6JeZa0XziTdDuphFB4kXGmBBvgjoOIN4IvwxpsVgK8VSWsV4oy1gG8SKj1HKHs8PjOMSLhVTxfOJN0IqGmxIvITjMjxEvASNefiPiTYCIlwAtTH6gagZdgU3uphAvTrUbRhwPhXhuFZgzP1h8D6RKpBQ/4Fp6JeZaBfjEGx8S8QqaEG+8Og4jXkGodoUoxFNZFsKIV4hCvES13OHs8MIc4hWCVEX4xBvPI17R4LAYRryiGPGKGRFvPES8otDCFOMQD5u8OMV0C6t2w4hzGYV4xVVgzvxg8S+DVCUoxQ+4ll6JudblfOKN0+6mxTbiXWFCvHHqOIB4i/0ypHYlKcRTWZb0QlmWpBCvhFrucHZ4KQ7xSkKq0nzijdOKFpkSr0xweCVGvDIY8a40It44iHhloIW5EqiaQVdgk19FMd1Sqt0w4lxNId5VKjBnfrD4V0OqayjFD7iWXom51rV84j2j3U3zbMQra0K8Z9RxAPHm+WVI7cpRiKeyLOeFsixHId41arnD2eHlOcQrB6mu4xPvGa1orinxrg8Ob8CIdz1GvBuMiPcMRLzroYW5AaiaQVdgk99IMd3yqt0w4txEId6NKjBnfrD4N0GqCpTiB1xLr8RcqyKfeE9rd9MhG/EqmRDvaXUcQLxDfhlSu8oU4qksK3uhLCtTiFdBLXc4O7wKh3iVIdXNfOI9rRUdNCXeLcHhrRjxbsGId6sR8Z6GiHcLtDC3AlUz6Aps8tsopltFtRtGnNspxLtNBebMDxb/dkh1B6X4AdfSKzHXupNPvLHa3bTDRry7TIg3Vh0HEG+HX4bUriqFeCrLql4oy6oU4t2hljucHX43h3hVIdU9fOKN1YrElHj3BofVMOLdixGvmhHxxkLEuxdamGpA1Qy6Apu8OsV071bthhGnBoV41VVgzvxg8WtAqpqU4gdcS6/EXKsWn3hjtLupuI14tU2IN0YdBxCvuF+G1K4OhXgqyzpeKMs6FOLVVMsdzg6vyyFeHUhVj0+8MVpRMVPi1Q8OG2DEq48Rr4ER8cZAxKsPLUwDoGoGXYFN3pBiunVVu2HEaUQhXkMVmDM/WPxGkKoxpfgB19IrMddqwifeaO1uWmsjXlMT4o1WxwHEW+uXIbVrRiGeyrKZF8qyGYV4jdVyh7PDm3OI1wxSteATb7RWtMaUeC2Dw1YY8VpixGtlRLzREPFaQgvTCqiaQVdgk7emmG5z1W4Yce6jEK+1CsyZHyz+fZCqDaX4AdfSKzHXassn3lPa3TTGRrx2JsR7Sh0HEG+MX4bUrj2FeCrL9l4oy/YU4rVRyx3ODu/AIV57SNWRT7yntKLRpsTrFBx2xojXCSNeZyPiPQURrxO0MJ2Bqhl0BTZ5F4rpdlDthhGnK4V4XVRgzvxg8btCqiRK8QOupVdirtWNT7wntbupno143U2I96Q6DiBePb8MqV0PCvFUlj28UJY9KMRLUssdzg7vySFeD0jVi0+8J7WiuqbE6x0c3o8RrzdGvPuNiPckRLze0MLcD1TNoCuwyftQTFetUi+MOA9QiNdHBebMDxb/AUjVl1L8gGvplZhr9eMT7wntbvLaiNffhHhPqOMA4nn9MqR2yRTiqSyTvVCWyRTi9VXLHc4OT+EQLxlSDeAT7wmtKN2UeAODw1SMeAMx4qUaEe8JiHgDoYVJBapm0BXY5IMoppui2g0jzmAK8dS6DubMDxZ/MKQaQil+wLX0Ssy1HuQTb5R2Nw2wEe8hE+KNUscBxBvglyG1G0ohnspyqBfKciiFeEPUcoezw4dxiDcUUj3MJ94orSjFlHiPBIePYsR7BCPeo0bEGwUR7xFoYR4FqmbQFdjkj1FMd5hqN4w4j1OI95gKzJkfLP7jkGo4pfgB19IrMdcawSfeSO1u2mgjXpoJ8Uaq4wDibfTLkNqNpBBPZTnSC2U5kkK84Wq5w9nhozjEGwmpnuATT78KG0yJ92Rw+BRGvCcx4j1lRLyREPGehBbmKaBqBl2BTT6aYrrqVPUJjDhjKMQbrQJz5geLPwZSjaUUP+BaeiXmWk/ziZem3U2lbcR7xoR4aeo4gHil/TKkduMoxFNZjvNCWY6jEG+sWu5wdvh4DvHGQaoJfOKlaUWlTIk3MThMx4g3ESNeuhHx0iDiTYQWJh2omkFXYJN7KaY7XrUbRpwMCvHUc44Mzvxg8THVJErxA66lV2KuNZlPvBHa3RRvI94UE+KNUMcBxIv3y5DaTaUQT2U51QtlOZVCvElqucPZ4dM4xJsKqZ7lE09//yPOlHjPBYfTMeI9hxFvuhHxRkDEew5amOlA1Qy6Apv8eYrpTlPthhFnBoV4z6vAnPnB4s+AVDMpxQ+4ll6JfZYX+MQbrt1NyTbizTIhnrrynQUQL9kvQ2o3m0I8leVsL5TlbArxZqrlDmeHz+EQbzakepFPPP1zif6mxJsbHM7DiDcXI948I+INh4g3F1qYeUDVDLoCm3w+xXTnqHbDiLOAQrz5KjBnfrD4CyDVQkrxA66lV2KutYhPvMe1uynRRrzFJsR7XB0HEC/RL0Nqt4RCPJXlEi+U5RIK8Raq5Q5nh7/EId4SSPUyn3j6rwF4TIn3SnC4FCPeKxjxlhoR73GIeK9AC7MUqJpBV2CTv0ox3ZdUu2HEWUYh3qsqMGd+sPjLINVySvEDrqVXYq71Gp94+u9PRdiIt8KEeI+p46BkIldSWKbmX5lOodRytUTh7MpVHEqthFSvG2wJ4COpwOn8Nn40pDZebdLGj6rjsDZeQ2ljNf+adIpnqzVa4w1Tg17ySj6iz8O2kmtNVvIRdRy2c9ZC6/0GZb1Vlm9gq/IGxdxUV7yBwWwVlOU6Ru/6q7QunXMmsQ5SraecSQTIoldiZNlAMY71KjBmieuALZLJOApOCtU4kD/lxC+BIkqHdL3kTZtfPTU1adjRiNISuVEi35TITRL5lkRulsi3JXKLRG6VyHck8l2JfE8it0nk+xK5XSJ9EikSuUMid0rkLoncLZF7JHKvRO6TyA8kcr9EHpDIgxJ5SCIPS+QRiTwqkcewa7CN0ZDsTUy2CZO9hck2Y7K3MdkWTLYVk72Dyd7FZO9hsm2Y7H1Mth2T+TCZYLIdmGwnJtuFyXZjsj2YbC8m24fJPsBk+zHZAUx2EJMdwmSHMdkRTHYUkx3LclfoaEQZzP4hDm6E7h69qVX5mbZJp/qLfG/lrco485dqc56qs5P+Vr2dl+rEjxdUW/JQ1TgZUG3NXZVe86LqnVxVKd6g6t3cVGsG2FTv5aIautau2pazqu6wTKr3c1SdrpdZtT0nVeXPsqh8OajKVsmqkuyqjuWyqXZkU7XplF21M6tqRNscVLuyqEak5aTanVm1Ki1H1Z5Mqlqv56zaa1c1rZ2Lap9NtbpZbqoPgqpya3JV7b+omlU+d9WBgKri7DxUBy+oTlTKS3Xob9XAk3mqDv+lapyat+qIX9W9iUZ1VKkq9NCpjtEvrf1TaLxvt+3S+kODS+vIY+o44OnWbr8MiXeccWntz/K4F8ryeKirEvKjG2Dhd5k+ujkRHJ7ELhtOYI9uTpo8uok8BsH3BATyk0DVQm+M42p67J7LCf52Paqt1kzbdv3IZLuq68mPgO060y9D4p2ibFeV5SkvlOUp/nY9qhXNMN2uHweHn2Db9WNsu35itF2PQtv1Y2i7fAJUzeAWHTb5p5QnG8orTmG36I5DWZ6m3KL7VAX2hm3+S3S0I9qGWmFztM9MHE3dJPsMcLQVfhkS73OKo6ksP/dCWX5Oubevevd0OHv3C84d+M8h1Zf0r9f4G1cjes3U9L8KDr/GTP8rzPS/NjL9I5DpfwUtzNdA1Qy6Apv8G8pzmS9Uu2F2+i3Fzr9RgTnzg8X/FlKdoRQ/4FqAv0Gq70I1jtCJd1i7mybaiPe9CfHUk6HvAeJN9MuQeD9QiKey/MELZfkDhXhn1HKHs8PPcr6q8wOk+pFPvMNa0QRT4v0UHP6MEe8njHg/GxHvMES8n6CF+RmomkFXYJP/QjHds6rdMOL8SiHeLyowZ36w+L9Cqt8oxQ+4ll6Judbv/Gu8Q9rdZH8xzB8mxDukjsNeDPMHlPKfFOKpLP/EXgzzJ4V4v6nlDmeHn+MQ709IdZ5PvENakemLYfJFBIcOiHj5IiDi5XMYEe8QQrx8EcjC5HMAVQu9K8DJLYrpnlPtBhEnn5NBvHyWCsyZHyy+E1K5KMUPuJZeCblWvkg+8Q5qd9OuIPHy5TMh3kF1HEC8XX4Z0mJRFOKpLKO8UJZRDOLlc6nlDmeHR1OIly8KUsXwiXdQK9ppSrzY4DAOI14sRrw4I+IdhIgXCy1MHFA1g67AJo9nmG6+aNVuGHESKMSLV4E584PFT4BU+SnFD7iWXom5lptPvAPa3ZRkI57HhHgH1HEA8ZL8MqR2iRTiqSwTvVCWiRTi5VfLHc4OL8AhXiKkKsgn3gGtqKsp8QoFh4Ux4hXCiFfYiHgHIOIVghamMFA1g67AJi9CMd0Cqt0w4hSlEK+ICsyZHyx+UUhVjFL8gGvplZhrFecTb792Nx20Ee8yE+LtV8cBxDvolyG1K0EhnsqyhBfKsgSFeMXUcoezwy/nEK8EpLqCT7z9WtEBU+KVDA5LYcQriRGvlBHx9kPEKwktTCmgagZdgU1emmK6l6t2w4hThkK80iowZ36w+GUg1ZWU4gdcS6/EXOsqPvE+0O6m+jbiXW1CvA/UcQDx6vtlSO2uoRBPZXmNF8ryGgrxrlTLHc4Ov5ZDvGsgVVk+8T7QiuqZEq9ccFgeI145jHjljYj3AUS8ctDClAeqZtAV2OTXUUz3WtVuGHGupxDvOhWYMz9Y/Osh1Q2U4gdcS6/EXOtGPvH2aXfTchvxbjIh3j51HEC85X4ZUrsKFOKpLCt4oSwrUIh3g1rucHZ4RQ7xKkCqSnzi7dOKlpkSr3JwWAUjXmWMeFWMiLcPIl5laGGqAFUz6Aps8psppltRtRtGnFsoxLtZBebMDxb/Fkh1K6X4AdfSKzHXuo1PvL3a3bTeRrzbTYi3Vx0HEG+9X4bU7g4K8VSWd3ihLO+gEO9Wtdzh7PA7OcS7A1LdxSfeXq1onSnxqgaHd2PEq4oR724j4u2FiFcVWpi7gaoZdAU2+T0U071TtRtGnHspxLtHBebMDxb/XkhVjVL8gGvplZhrVecTb492NzW0Ea+GCfH2qOMA4jX0y5Da1aQQT2VZ0wtlWZNCvGpqucPZ4bU4xKsJqWrzibdHK2pgSrw6wWFdjHh1MOLVNSLeHoh4daCFqQtUzaArsMnrUUy3lmo3jDj1KcSrpwJz5geLXx9SNaAUP+BaeiXmWg35xNut3U0jbMRrZEK83eo4gHgj/DKkdo0pxFNZNvZCWTamEK+BWu5wdngTDvEaQ6qmfOLt1oqGmxKvWXDYHCNeM4x4zY2ItxsiXjNoYZoDVTPoCmzyFhTTbaLaDSNOSwrxWqjAnPnB4reEVK0oxQ+4ll6JuVZrPvF2hUS8+0yIt0sdhxHvPqh2bSjEU1m2wYjXhkK8Vmq5w9nhbTnEawOp2vGJt4tHvPbBYQeMeO0x4nUwIt4uiHjtoYXpwCFee0jVkWK6bVW7YcTpRCFeRxWYMz9Y/E6QqjOl+AHX0isx1+rCJ95O7W5abCNeVxPi7VTHAcRb7JchtUuiEE9lmeSFskyiEK+zWu5wdng3DvGSIFV3PvF2akWLTInXIzjsiRGvB0a8nkbE2wkRrwe0MD2Bqhl0BTZ5L4rpdlPthhGnN4V4vVRgzvxg8XtDqvspxQ+4ll6JuVYfPvF2aHfTPBvxHjAh3g51HEC8eX4ZUru+FOKpLPt6oSz7Uoh3v1rucHZ4Pw7x+kKq/nzi7dCK5poSLzk4TMGIl4wRL8WIeDsg4iVDC5MCVM2gK7DJB1BMt59qN4w4AynEG6ACc+YHiz8QUqVSih9wLb0Sc61BfOKJdjcdshFvsAnxRB0HEO+QX4bUbgiFeCrLIV4oyyEU4qWq5Q5nhz/IId4QSPUQn3iiFR00Jd7Q4HAYRryhGPGGGRFPIOINhRZmGFA1g67AJn+YYroPqnbDiPMIhXgPq8Cc+cHiPwKpHqUUP+BaeiXmWo/xiefT7qYdNuI9bkI8nzoOIN4Ovwyp3XAK8VSWw71QlsMpxHtULXc4O3wEh3jDIVUan3g+rUhMiTcyOByFEW8kRrxRRsTzQcQbCS3MKKBqBl2BTf4ExXRHqHbDiPMkhXhPqMCc+cHiPwmpnqIUP+BaeiXmWqP5xNuu3U3FbcQbY0K87eo4gHjF/TKkdmMpxFNZjvVCWY6lEO8ptdzh7PCnOcQbC6me4RNvu1ZUzJR444LD8RjxxmHEG29EvO0Q8cZBCzMeqJpBV2CTT6CY7tOq3TDiTKQQb4IKzJkfLP5ESJVOKX7AtfRKzLW8fOK9r91Na23EyzAh3vvqOIB4ayUfVrtJFOKpLCd5oSwnUYiXrpY7nB0+mUO8SZBqCp9472tFa0yJNzU4nIYRbypGvGlGxHsfIt5UaGGmAVUz6Aps8mcppjtZtRtGnOcoxHtWBebMDxb/OUg1nVL8gGvplZhrPc8n3jbtbhpjI94ME+JtU8cBxBvjlyG1m0khnspyphfKciaFeNPVcoezw1/gEG8mpJrFJ942rWi0KfFmB4dzMOLNxog3x4h42yDizYYWZg5QNYOuwCZ/kWK6L6h2w4gzl0K8F1Vgzvxg8edCqnmU4gdcS6/EXGs+n3jvaXdTPRvxFpgQ7z11HEC8en4ZUruFFOKpLBd6oSwXUog3Ty13ODt8EYd4CyHVYj7x3tOK6poSb0lw+BJGvCUY8V4yIt57EPGWQAvzElA1g67AJn+ZYrqLVLthxHmFQryXVWDO/GDxX4FUSynFD7iWXom51qt84r2r3U1eG/GWmRDvXXUcQDyvX4bUbjmFeCrL5V4oy+UU4i1Vyx3ODn+NQ7zlkGoFn3jvakXppsRbGRyuwoi3EiPeKiPivQsRbyW0MKuAqhl0BTb56xTTfU21G0ac1RTiva4Cc+YHi78aUq2hFD/gWnol5lpr+cR7R7ubBtiI94YJ8d5RxwHEG+CXIbVbRyGeynKdF8pyHYV4a9Ryh7PD13OItw5SbeAT7x2tKMWUeBuDwzcx4m3EiPemEfHegYi3EVqYN4GqGXQFNvkmiumuV+2GEectCvE2qcCc+cHivwWpNlOKH3AtvRJzrbf5xNuq3U0bbcTbYkK8reo4gHgb/TKkdlspxFNZbvVCWW6lEG+zWu5wdvg7HOJthVTv8omnX4UNpsR7LzjchhHvPYx424yItxUi3nvQwmwDqmbQFdjk71NMV52qvosRZzuFeO+rwJz5weJvh1Q+SvEDrqVXYq4lfOJt0e6m0jbi7TAh3hZ1HEC80n4ZUrudFOKpLHd6oSx3UojnU8sdzg7fxSHeTki1m0+8LVpRKVPi7QkO92LE24MRb68R8bZAxNsDLcxeoGoGXYFNvo9iurtUu2HE+YBCvH0qMGd+sPgfQKr9lOIHXEuvxFzrAJ94b2t3U7yNeAdNiPe2Og4gXrxfhtTuEIV4KstDXijLQxTi7VfLHc4OP8wh3iFIdYRPPP39jzhT4h0NDo9hxDuKEe+YEfHehoh3FFqYY0DVDLoCm/xDiukeVu2GEec4hXgfqsCc+cHiH4dUJyjFD7iWXom51kk+8TZrd1OyjXgfmRBPXfl+BBAv2S9DaneKQjyV5SkvlOUpCvFOqOUOZ4d/zCHeKUj1CZ94+ucS/U2J92lweBoj3qcY8U4bEW8zRLxPoYU5DVTNoCuwyT+jmO7Hqt0w4nxOId5nKjBnfrD4n0OqLyjFD7iWXom51pd84r2l3U2JNuJ9ZUK8t9RxAPES/TKkdl9TiKey/NoLZfk1hXhfqOUOZ4d/wyHe15DqWz7x9F8D8JgS70xw+B1GvDMY8b4zIt5bEPHOQAvzHVA1g67AJv+eYrrfqHbDiPMDhXjfq8Cc+cHi/wCpzlKKH3AtvRJzrR/5xNN/fyrCRryfTIi3SR0HJZPvZwrL1Pw/p1ModVYtUTi78hcOpX6GVL8abAngI6nA6fw2fjOkNv7NpI3fVMdhbfw7pY3V/L+nUzxbrdHv3jA16CWv5EZ9HraV/MNkJTeq47Cd8we03n9S1ltl+Se2Kn9SzE11xZ8YzH6BsjzH6F1/lc6lc84kzkGq85QziQBZ9EqILFERFOM4rwJjlngO2CKZjKPgpNCM4xrgA+IXQBGlQ7pa8qbNr56amjTsaERpiXJIlCVRTolySVSkROWTqCiJipaoGImKlag4iYqXqASJyi9RbonySFSiRBWQqIISVUiiCktUEYkqKlHFJKq4RF0mUSUk6nKJukKiSkpUKYkqDV2BRTmiIZmFyZyYzIXJIjFZPkwWhcmiMVkMJovFZHGYLB6TJWCy/JjMjck8mCwRkxXAZAUxWSFMVhiTFcFkRTFZMUxWHJNdhslKYLLLMdkVmKwkJiuFyUpnuSd0NKIMYv4QAx3InaMoS6tSPIty6lR+6kW58lZlnPlLFZmn6uykv1X58lKd+PGCKioPVY2TAVV07qr0mhdVMbmqUrxBVWxuqjUDbKq4XFRD19pV8Tmr6g7LpErIUXW6XmZV/pxUlT/LonLnoCpbJavKk13VsVw2VWI2VZtO2VUFsqpGtM1BVTCLakRaTqpCmVWr0nJUFc6kqvV6zqoidlXT2rmoitpUq5vlpioWVJVbk6uq+EXVrPK5qy4LqCrOzkNV4oLqRKW8VJf/rRp4Mk/VFX+pGqfmrSrpV3VvolGVUqoKPXSq0vTLav8UGu/bHbysjipjcFkdpc59ywBPtnb7ZUi8KxmX1f4sr/RCWV4Z6qqE/NgGWPhdho9toq4KDq/GLhqugh7bRF1t8tgmqjQE36sgkF8NVC30xrhSTQ/db4m6ir9dS2mrNdO2Xa8x2a7qavIaYLvO9MuQeNdStqvK8lovlOW1/O1aSiuaYbpdywaH5bDtWhbbruWMtmspaLuWhbZLOaBqod+eAycvz3iq4feKazMwiEFZXse4PRdVXgX2hm3+S3S0ktqGWmFztOtNHE3dIrsecLQVfhkS7waKo6ksb/BCWd7AuK/v793rwtm7N1LuvkfdAKluon+1xt+4GtFrpqZfITisiJl+Bcz0KxqZfknI9CtAC1MRqJpBV2CTV2I8k4m6UbUbZqeVKXZeSQXmzA8WvzKkqkIpfsC1AH+DVDeHahyhE+8K7W6aaCPeLSbEU8+FbgGIN9EvQ+LdSiGeyvJWL5TlrRTiVVHLHc4Ov43yNZ2oWyHV7XziXaEVTTAl3h3B4Z0Y8e7AiHenEfGugIh3B7QwdwJVM+gKbPK7KKZ7m2o3jDhVKcS7SwXmzA8WvyqkuptS/IBr6ZWYa93Dv8a7XLubbC+FibrXhHiXq+Ogl8IoGRKvGoV4Kstq0Eth/PNrwpkQ72613OHs8Ooc4lWDVDX4xLtcKzJ9KUxUzeCwFka8mhjxahkR73KIeDWhhakFVM2gK7DJa1NMt7pqN4w4dSjEq60Cc+YHi18HUtWlFD/gWnol5lr1+MQrod1Nu2zEq29CvBLqOIB4u/wyJF4DCvFUlg28UJYNKMSrq5Y7nB3ekEO8BpCqEZ94JbSinabEaxwcNsGI1xgjXhMj4pWAiNcYWpgmQNUMugKbvCnFdBuqdsOI04xCvKYqMGd+sPjNIFVzSvEDrqVXYq7Vgk+8y7S7KclGvJYmxLtMHQcQL8kvQ+K1ohBPZdnKC2XZikK85mq5w9nhrTnEawWp7uMT7zKtqKsp8doEh20x4rXBiNfWiHiXQcRrAy1MW6BqBl2BTd6OYrqtVbthxGlPIV47FZgzP1j89pCqA6X4AdfSKzHX6sgnXnHtbjpoI14nE+IVV8cBxDvolyHxOlOIp7Ls7IWy7EwhXge13OHs8C4c4nWGVF35xCuuFR0wJV5ScNgNI14SRrxuRsQrDhEvCVqYbkDVDLoCm7w7xXS7qHbDiNODQrzuKjBnfrD4PSBVT0rxA66lV2Ku1YtPvGLa3VTfRrzeJsQrpo4DiFffL0Pi3U8hnsryfi+U5f0U4qnq9gpnh/fhEO9+SPUAn3jFtKJ6psTrGxz2w4jXFyNePyPiFYOI1xdamH5A1Qy6Apu8P8V0+6h2w4iTTCFefxWYMz9Y/GRIlUIpfsC19ErMtQbwiVdUu5uW24g30IR4RdVxAPGW+2VIvFQK8VSWqV4oy1QK8VLUcoezwwdxiJcKqQbziVdUK1pmSrwhweGDGPGGYMR70Ih4RSHiDYEW5kGgagZdgU3+EMV0VV0HY8QZSiHeQyowZ36w+EMh1TBK8QOupVdirvUwn3hFtLtpvY14j5gQr4g6DiDeer8MifcohXgqy0e9UJaPUog3TC13ODv8MQ7xHoVUj/OJV0QrWmdKvOHB4QiMeMMx4o0wIl4RiHjDoYUZAVTNoCuwydMopvuYajeMOCMpxEtTgTnzg8UfCalGUYofcC29EnOtJ/jEK6zdTQ1txHvShHiF1XEA8Rr6ZUi8pyjEU1k+5YWyfIpCvFFqucPZ4aM5xHsKUo3hE6+wVtTAlHhjg8OnMeKNxYj3tBHxCkPEGwstzNNA1Qy6Apv8GYrpjlbthhFnHIV4z6jAnPnB4o+DVOMpxQ+4ll6JudYEPvEKaXfTCBvxJpoQr5A6DiDeCL8MiZdOIZ7KMt0LZUn5hyKixqvlDmeHeznES4dUGXziFdKKhpsSb1JwOBkj3iSMeJONiFcIIt4kaGEmA1Uz6Aps8ikU0/WqdsOIM5VCvCkqMGd+sPhTIdU0SvEDrqVXYq71LJ94BUMi3nMmxCuojsOI9xyU8nQK8VSW0zHiTacQb5pa7nB2+PMc4k2HVDP4xCvII97M4PAFjHgzMeK9YES8ghDxZkIL8wKHeNjksyim+7xqN4w4synEm6UCc+YHiz8bUs2hFD/gWnol5lov8olXQLubFtuIN9eEeAXUcQDxFvtlSLx5FOKpLOd5oSznUYg3Ry13ODt8Pod48yDVAj7xCmhFi0yJtzA4XIQRbyFGvEVGxCsAEW8htDCLgKoZdAU2+WKK6c5X7YYRZwmFeMoRlnDmB4u/BFK9RCl+wLX0Ssy1XuYTL1G7m+bZiPeKCfES1XEA8eb5ZUi8pRTiqSyXeqEsl1KI95Ja7nB2+Ksc4i2FVMv4xEvUiuaaEm95cPgaRrzlGPFeMyJeIkS85dDCvAZUzaArsMlXUEz3VdVuGHFWUoi3QgXmzA8WfyWkWkUpfsC19ErMtV7nE8+j3U2HbMRbbUI8jzoOIN4hvwyJt4ZCPJXlGi+U5RoK8Vap5Q5nh6/lEG8NpHqDTzyPVnTQlHjrgsP1GPHWYcRbb0Q8D0S8ddDCrAeqZtAV2OQbKKa7VrUbRpyNFOJtUIE584PF3wip3qQUP+BaeiXmWpv4xHNrd9MOG/HeMiGeWx0HEG+HX4bE20whnspysxfKcjOFeG+q5Q5nh7/NId5mSLWFTzy3ViSmxNsaHL6DEW8rRrx3jIjnhoi3FVqYd4CqGXQFNvm7FNN9W7UbRpz3KMR7VwXmzA8W/z1ItY1S/IBr6ZWYa73PJ15+7W4qbiPedhPi5VfHAcQr7pch8XwU4qksfV4oSx+FeNvUcoezw4VDPB+k2sEnXn6tqJgp8XYGh7sw4u3EiLfLiHj5IeLthBZmF1A1g67AJt9NMV1R7YYRZw+FeLtVYM78YPH3QKq9lOIHXEuvxFxrH594CdrdtNZGvA9MiJegjgOIt9YvQ+LtpxBPZbnfC2W5n0K8vWq5w9nhBzjE2w+pDvKJl6AVrTEl3qHg8DBGvEMY8Q4bES8BIt4haGEOA1Uz6Aps8iMU0z2g2g0jzlEK8Y6owJz5weIfhVTHKMUPuJZeibnWh3zixWt30xgb8Y6bEC9eHQcQb4xfhsQ7QSGeyvKEF8ryBIV4x9Ryh7PDT3KIdwJSfcQnXrxWNNqUeKeCw48x4p3CiPexEfHiIeKdghbmY6BqBl2BTf4JxXRPqnbDiPMphXifqMCc+cHifwqpTlOKH3AtvRJzrc/4xIvT7qZ6NuJ9bkK8OHUcQLx6fhkS7wsK8VSWX3ihLL+gEO+0Wu5wdviXHOJ9Aam+4hMvTiuqa0q8r4PDbzDifY0R7xsj4sVBxPsaWphvgKoZdAU2+bcU0/1StRtGnDMU4n2rAnPmB4t/BlJ9Ryl+wLX0Ssy1vucTL1a7m7w24v1gQrxYdRxAPK9fhsQ7SyGeyvKsF8ryLIV436nlDmeH/8gh3llI9ROfeLFaUbop8X4ODn/BiPczRrxfjIgXCxHvZ2hhfgGqZtAV2OS/Ukz3R9VuGHF+oxDvVxWYMz9Y/N8g1e+U4gdcS6/EXOsPPvFitLtpgI14f5oQL0YdBxBvgF+GxDtHIZ7K8pwXyvIchXi/q+UOZ4ef5xDvHKKKjuATL0YrSjEkXrQjOLQg4kU7IOJFW0bEi0GIF+2AFsYCqhZ6V4CTOymme161G0ScaBeDeNFOFZgzP1h8F6SKpBQ/4Fp6JeRa0fn4xIvW7qaNQeJFR5kQL1odBxBvo1+GtFg0hXgqy2gvlGU0g3jRkWq5w9nhMRTiRUdDqlg+8fSrsMGUeHHBYTxGvDiMePFGxIuGiBcHLUw8UDWDrsAmT2CYbnSMajeMOPkpxEtQgTnzg8XPD6nclOIHXEuvxFzLwydelHY3lbYRL9GEeFHqOIB4pf0ypHYFKMRTWRbwQlkWoBDPrZY7nB1ekEO8ApCqEJ94UVpRKVPiFQ4Oi2DEK4wRr4gR8aIg4hWGFqYIUDWDrsAmL0ox3YKq3TDiFKMQr6gKzJkfLH4xSFWcUvyAa+mVmGtdxidePu1uircRr4QJ8fKp4wDixftlSO0upxBPZXm5F8rycgrxiqvlDmeHX8Eh3uWQqiSfePr7H3GmxCsVHJbGiFcKI15pI+Llg4hXClqY0kDVDLoCm7wMxXSvUO2GEedKCvHKqMCc+cHiXwmprqIUP+BaeiXmWlfziRep3U3JNuJdY0I8deV7DUC8ZL8Mqd21FOKpLK/1QlleSyHeVWq5w9nhZTnEuxZSleMTT/9cor8p8coHh9dhxCuPEe86I+JFQsQrDy3MdUDVDLoCm/x6iumWVe2GEecGCvGuV4E584PFvwFS3UgpfsC19ErMtW7iE8+l3U2JNuJVMCGeSx0HEC/RL0NqV5FCPJVlRS+UZUUK8W5Uyx3ODq/EIV5FSFWZTzz91wA8psSrEhzejBGvCka8m42I54KIVwVamJuBqhl0BTb5LRTTraTaDSPOrRTi3aICc+YHi38rpLqNUvyAa+mVmGvdziee/vtTETbi3WFCPKc6Dkom+k4Ky9T8d1L+Fdfo29QShbMr7+JQ6k5IVdVgSwAfSQVO57exFVIb323SxpY6DmvjeyhtrOa/J53i2WqN7vGGqUEveSUd+jxsK3mvyUqqj3wvtnPuhda7GmW9/YGxValGMTfVFdUwmN0FZVmd0bv+KlVP55xJVIdUNShnEgGy6JUYWWpSjKOGCoxZYnVgi2QyjoKTQjMO5MYrfgEUUTqkqyVv2vzqqalJw45GlJboWhJdW6LrSHRdia4n0fUluoFEN5ToRhLdWKKbSHRTiW4m0c0luoVEt5ToVhLdWqLvk+g2Et1WottJdHuJ7iDRHSW6k0R3luguEt1VopMkuptEd8euwGpFQ7LamKwOJquLyephsvqYrAEma4jJGmGyxpisCSZrismaYbLmmKwFJmuJyVphstaY7D5M1gaTtcVk7TBZe0zWAZN1xGSdMFlnTNYFk3XFZEmYrBsm657lntDRiDKI+UMMrAXdOaqtVfl5Vken+ot6dfNWZZz5S1UvT9XZSX+r6uelOvHjBVWDPFQ1TgZUDXNXpde8qGqUqyrFG1Q1zk21ZoBN1SQX1dC1dlXTnFV1h2VSNctRdbpeZlXznFSVP8uiapGDqmyVrKqW2VUdy2VTtcqmatMpu6p1VtWItjmo7suiGpGWk6pNZtWqtBxVbTOpar2es6qdXdW0di6q9jbV6ma5qToEVeXW5KrqeFE1q3zuqk4BVcXZeag6X1CdqJSXqsvfqoEn81R1/UvVODVvVZJf1b2JRtVNqSr00Km60y+r/VNovG+37bK6h8FldXR3dRzwZGu3X4bE68m4rPZn2dMLZdkz1FUJ+bENsPC7TB/b9AoOe2MXDb2wxza9TR7bRHeH4NsLAnlvoGqhN4a/Ztj9ll787dpNW62Ztu16v8l2VVeT9wPbdaZfhsTrQ9muKss+XijLPvzt2k0rmmG6XR8IDvti2/UBbLv2Ndqu3aDt+gC0XfoCVTO4PYdN3o/yVEOtUh/s9lxPKMv+lNtz/VRgb9jmv0RHS9I21AqboyWbOFqSOg5wtBV+GRIvheJoKssUL5RlCuW+vqpu/3D27gDO3fcUSDWQ/tUaf+NqRK+Zmn5qcDgIM/1UzPQHGZl+EmT6qdDCDAKqZtAV2OSDKc9kBqh2w+x0CMXOB6vAnPnB4g+BVA9Sih9wLcDfINVDoRpH6MTrqt1NE23EG2pCPPVcaChAvIl+GRJvGIV4KsthXijLYRTiPaiWO5wd/jDnazrDINUjfOJ11YommBLv0eDwMYx4j2LEe8yIeF0h4j0KLcxjQNUMugKb/HGK6T6s2g0jznAK8R5XgTnzg8UfDqlGUIofcC29EnOtNP41XhftbrK/FGakCfG6qOOwl8KMhFIeRSGeynIU9lKYURTijVDLHc4Of4JDvFGQ6kk+8bpoRcYvhXkqOByNEe8pjHijjYjXBSLeU9DCjAaqZtAV2ORjKKb7hGo3jDhjKcQbowJz5geLPxZSPU0pfsC19ErMtZ7hE6+zdjftshFvnAnxOqvjAOLt8suQeOMpxFNZjvdCWY6nEO9ptdzh7PAJHOKNh1QT+cTrrBXtNCVeenDoxYiXjhHPa0S8zhDx0qGF8QJVM+gKbPIMiulOUO2GEWcShXgZKjBnfrD4kyDVZErxA66lV2KuNYVPvE7a3ZRkI95UE+J1UscBxEvyy5B40yjEU1lO80JZTqMQb7Ja7nB2+LMc4k2DVM/xiddJK+pqSrzpweHzGPGmY8R73oh4nSDiTYcW5nmgagZdgU0+g2K6z6p2w4gzk0K8GSowZ36w+DMh1QuU4gdcS6/EXGsWn3gdtbvpoI14s02I11EdBxDvoF+GxJtDIZ7Kco4XynIOhXgvqOUOZ4e/yCHeHEg1l0+8jlrRAVPizQsO52PEm4cRb74R8TpCxJsHLcx8oGoGXYFNvoBiui+qdsOIs5BCvAUqMGd+sPgLIdUiSvEDrqVXYq61mE+8DtrdVN9GvCUmxOugjgOIV98vQ+K9RCGeyvIlL5TlSxTiLVLLHc4Of5lDvJcg1St84nXQiuqZEm9pcPgqRrylGPFeNSJeB4h4S6GFeRWomkFXYJMvo5juy6rdMOIspxBvmQrMmR8s/nJI9Rql+AHX0isx11rBJ1577W5abiPeShPitVfHAcRb7pch8VZRiKeyXOWFslxFId5rarnD2eGvc4i3ClKt5hOvvVa0zJR4a4LDtRjx1mDEW2tEvPYQ8dZAC7MWqJpBV2CTv0Ex3ddVu2HEWUch3hsqMGd+sPjrINV6SvEDrqVXYq61gU+8dtrdtN5GvI0mxGunjgOIt94vQ+K9SSGeyvJNL5TlmxTiqcAbwtnhmzjEexNSvcUnXjutaJ0p8TYHh29jxNuMEe9tI+K1g4i3GVqYt4GqGXQFNvkWiuluUu2GEWcrhXhbVGDO/GDxt0KqdyjFD7iWXom51rt84rXV7qaGNuK9Z0K8tuo4gHgN/TIk3jYK8VSW27xQltsoxHtHLXc4O/x9DvG2QartfOK11YoamBLPFxwKRjwfRjwxIl5biHg+aGEEqJpBV2CT76CY7vuq3TDi7KQQb4cKzJkfLP5OSLWLUvyAa+mVmGvt5hOvjXY3jbARb48J8dqo4wDijfDLkHh7KcRTWe71QlnupRBvl1rucHb4Pg7x9kKqD/jEa6MVDTcl3v7g8ABGvP0Y8Q4YEa8NRLz90MIcAKpm0BXY5AcpprtPtRtGnEMU4h1UgTnzg8U/BKkOU4ofcC29EnOtI3zi3RcS8Y6aEO8+dRxGvKNQyscoxFNZHsOId4xCvMNqucPZ4R9yiHcMUh3nE+8+HvFOBIcnMeKdwIh30oh490HEOwEtzEkO8bDJP6KY7oeq3TDinKIQ7yMVmDM/WPxTkOpjSvEDrqVXYq71CZ94rbW7abGNeJ+aEK+1Og4g3mK/DIl3mkI8leVpL5TlaQrxPlbLHc4O/4xDvNOQ6nM+8VprRYtMifdFcPglRrwvMOJ9aUS81hDxvoAW5kugagZdgU3+FcV0P1PthhHnawrxvlKBOfODxf8aUn1DKX7AtfRKzLW+5ROvlXY3zbMR74wJ8Vqp4wDizfPLkHjfUYinsvzOC2X5HYV436jlDmeHf88h3neQ6gc+8VppRXNNiXc2OPwRI95ZjHg/GhGvFUS8s9DC/AhUzaArsMl/opju96rdMOL8TCHeTyowZ36w+D9Dql8oxQ+4ll6JudavfOK11O6mQzbi/WZCvJbqOIB4h/wyJN7vFOKpLH/3Qln+TiHeL2q5w9nhf3CI9zuk+pNPvJZa0UFT4p0LDs9jxDuHEe+8EfFaQsQ7By3MeaBqBl0BTR4TQTHdP1S7QcSJcTCIF+MPzJkfK36MA1JZlOIHXEuvhFwrxsknXgvtbtoRJF6My4R4LdRxAPF2+GVIi0VSiKeyjPRCWUYyiBdjqeUOZ4fnoxAvJhJSRfGJ10IrEkPixUQHhzEQ8WKiIeLFxBgRrwVCvJhoaGFigKoZdAU2eSzDdGPyqXbDiBNHIV6sCsyZHyx+HKSKpxQ/4Fp6JeZaCXziNdfupuI24uU3IV5zdRxAvOJ+GVI7N4V4Kku3F8rSTSFevFrucHa4h0M8N6RK5BOvuVZUzJR4BYLDghjxCmDEK2hEvOYQ8QpAC1MQqJpBV2CTF6KYrke1G0acwhTiFVKBOfODxS8MqYpQih9wLb0Sc62ifOI10+6mtTbiFTMhXjN1HEC8tX4ZUrviFOKpLIt7oSyLU4hXRC13ODv8Mg7xikOqEnziNdOK1pgS7/Lg8AqMeJdjxLvCiHjNIOJdDi3MFUDVDLoCm7wkxXQvU+2GEacUhXglVWDO/GDxS0Gq0pTiB1xLr8RcqwyfeE21u2mMjXhXmhCvqToOIN4Yvwyp3VUU4qksr/JCWV5FIV5ptdzh7PCrOcS7ClJdwydeU61otCnxrg0Oy2LEuxYjXlkj4jWFiHcttDBlgaoZdAU2eTmK6V6t2g0jTnkK8cqpwJz5weKXh1TXUYofcC29EnOt6/nEa6LdTfVsxLvBhHhN1HEA8er5ZUjtbqQQT2V5oxfK8kYK8a5Tyx3ODr+JQ7wbIVUFPvGaaEV1TYlXMTishBGvIka8SkbEawIRryK0MJWAqhl0BTZ5ZYrp3qTaDSNOFQrxKqvAnPnB4leBVDdTih9wLb0Sc61b+MRrrN1NXhvxbjUhXmN1HEA8r1+G1O42CvFUlrd5oSxvoxDvZrXc4ezw2znEuw1S3cEnXmOtKN2UeHcGh3dhxLsTI95dRsRrDBHvTmhh7gKqZtAV2ORVKaZ7u2o3jDh3U4hXVQXmzA8W/25IdQ+l+AHX0isx17qXT7xG2t00wEa8aibEa6SOA4g3wC9DaledQjyVZXUvlGV1CvHuUcsdzg6vwSFedUhVk0+8RlpRiinxagWHtTHi1cKIV9uIeI0g4tWCFqY2UDWDrsAmr0Mx3Rqq3TDi1KUQr44KzJkfLH5dSFWPUvyAa+mVmGvV5xOvoXY3bbQRr4EJ8Rqq4wDibfTLkNo1pBBPZdnQC2XZkEI8dbu0fjg7vBGHeA0hVWM+8fSrsMGUeE2Cw6YY8ZpgxGtqRLyGEPGaQAvTFKiaQVdgkzejmK46VW2MEac5hXjNVGDO/GDxm0OqFpTiB1xLr8RcqyWfeA20u6m0jXitTIjXQB0HEK+0X4bUrjWFeCrL1l4oy9YU4rVQyx3ODr+PQ7zWkKoNn3gNtKJSpsRrGxy2w4jXFiNeOyPiNYCI1xZamHZA1Qy6Apu8PcV071PthhGnA4V47VVgzvxg8TtAqo6U4gdcS6/EXKsTn3j1tbsp3ka8zibEq6+OA4gX75chtetCIZ7KsosXyrILhXgd1XKHs8O7cojXBVIl8Ymnv/8RZ0q8bsFhd4x43TDidTciXn2IeN2ghekOVM2gK7DJe1BMt6tqN4w4PSnE66ECc+YHi98TUvWiFD/gWnol5lq9+cSrp91NyTbi3W9CPHXlez9AvGS/DKldHwrxVJZ9vFCWfSjE66WWO5wd/gCHeH0gVV8+8fTPJfqbEq9fcNgfI14/jHj9jYhXDyJeP2hh+gNVM+gKbPJkiuk+oNoNI04KhXjKEVI484PFT4FUAyjFD7iWXom51kA+8epqd1OijXipJsSrq44DiJfolyG1G0QhnspykBfKchCFeAPUcoezwwdziDcIUg3hE0//NQCPKfEeDA4fwoj3IEa8h4yIVxci3oPQwjwEVM2gK7DJh1JMd7BqN4w4wyjEG6oCc+YHiz8MUj1MKX7AtfRKzLUe4RNP//2pCBvxHjUhXh11HJRMzGMUlqn5H0unUOphtUTh7MrHOZR6DFINN9gSwEdSgdP5bVw7pDYeYdLGtdVxWBunUdpYzZ+WTvFstUZp3jA16CWvZC19HraVHGmykrXUcdjOGQmt9yjKeqssR2GrMopibqorRmEwexzK8glG7/qr9EQ650ziCUj1JOVMIkAWvRIjy1MU43hSBcYs8Qlgi2Qyjth02y4fvSnzL52hukrMaP3nt13yjAkOx24yuEiJGQ0typjsqo5ZVCrW2FA915WR56Ve1hlCLeWYkFD7NHbJ+LQje5mxAmZNMGsuKjYU6xltpSKgT/KMb4TJRxkLqbCPMi77R8l6EPRRxqmPkl23tPGQfoP7tOye1C8pVQ0nT0pbVDMledDgpGTkJkt2rbWzYOch+eZ16n5j2YTa3xUrMHnUvVvGj7y37A0hxI2wpz3GNh4bSnKTJGa8xEyQmImXeBITM2FL6WKVy94x4NldhY6Wu/JItU0v3zS5+Nmrqx5dU2/Omd+2/aJEtj2SbnAS40/zL47p5vHLkHhexkmMP0uvF8rSG6rNxWcYrIp2CrtzapK221zG3zno96YX2CPI3szQXox1zKHG6ricziqyfjC/DPkwk4CCIh9mUhbPzOkE1eN4yx1TevajvdfuWfPqvS335v5psi4b+mkmh+nTTM6JAJrAanEmQTCbDH2UKZQrgtwKnv2zYAWfGmKWGZMgI/HvRqhIKgPAm/y74R92CjYppFOwaWjYqWHaANNMbhRNurAaWmViG4Pmzvphsx6gJld5Y/O3DfVyc3KG/txSJQDtmWeRlUxsA6nahmm9nwXsOwe7hRe8XTgKnnUatODPKdUVVRo//1aLB5aNv9Ndt3Ls3sf2PvVAlf0Tx4687ocRbYbluypDlRIqeLswFfw5VfBLvCAGzoVsF8TTg8Pnw+kmoZ9Qqm06HTvTmhGmYs/IobuhPJ/H8pwZpjxnGu1ClecMbBd2uPRzihzubqj5Z2Lzd6T00wS/D0CbtwOk6vgPO1WYEdKpwgv/6VOFFxxmqH4B65lO/01UzwpjW3UKU71nZb02CScqZytVwUoRB0odv2XY9UVuTWn64BPHW73yeKG55U+7i30zpOqDvx5NUTsEAmq4PvDsrKh0ZRDOtrm7cs5/elfOMdyVc7Bd2TnUXTkFu5yEVC9i1xhh3Ludw7QqL+a0d/UfeC52jh3GvRuuDzz3P32aOy84nA+ePwTuiQB3TyAV8KkMznL+uicSziwh1QLKZ5mnAmNZLgxTHy40ugKYD+e5KEx5LjK6AligPiDm20kh+jZ2BaDmX4TN3411BbAAuwJIglRIlv/JK4CFIZ1rLEbDLghT0y42OddQPbMY65nuoZ5rYFcAC6CNvSSMbdU9TPVeYnYFgH3gl6CziG7QWUS4PvBLWT8w9gQM+8AvhynJl5Eksz/YwpJ8JUxJvmLKl5exvdqDxZdXsPlD/qvjSdDTowXQ/u4BqXr+w+DyckhwWfqfhstSQ7gsxRqm138TLq+Gsa16hanerzLhsgyCS08ILuH6wMsu/fYScpVC3ZXL/9O7crnhrlyO7creoe5K7PYS1qSvYVdSYdy7vcO0Kq+Z3V5aAe23bmHcu+H6wCsMLusdDuySfmWonE4I3trCLltXOtK1fwh5xnZva1Vw+Dr2ndxVJndnXlf/h5VoNeFq3l8XbPY1+uIZfPpV6mNhJsV5UYiafw02/wOhmiR2i6QPpHog1N0R+jdw14SEwLUm38Bdo47DknmD8t1aNf8b6aw2egP+ZCHNn+MJYfawqzO02/MPVQBspyGxQt4PcCFBN1ynv5K81C2xLqQtsd5kS6xTx2HJbKBsCTX/hpD/2jQ+I6RvfYfIaX8LpIdU+Y1gc21QwbFirwrTGdNGh9ke2IB9a3gVtFPeDHV9nV7OktlOrjYFh2+Bk7ypysn5c96NKjhmOpsp829SgbH53w5TX75t9IDuLTjPLWHKc4tRnjhEtlIgtlkVGDup7Hvp8+dwA1fNvwWbvx+ln9X8W7Gz376Qql+oBka+h/t2SHR6Bw27OUyb5h2Tu0Vqzd7BeiY5xJ4B7+Fuhjbsu2Fsq+Qw1ftds3u42Ad+D7oP1A+6DxSuD/ye2QNC7ANvC1OS28weEGJJvh+mJN83ekCo9uo2bK+msPjyPjb/gFC9AntAuBna3ymQasA/DC7bQoLL9v80XLYbwmU71jAD/5tw8YWxrQaGqd4+JlwEgssACC7h+sBy6Q8Ikask6q7c8Z/elTsMd+UObFemch4QYk26E7uSCuPeTQ3Tquw0e0C4C9pv/cK4d8P1gXfpT2dyeMmC//YLdgb5JlS/3WH6NLuNXrKQ26fJfqqJfZo9Yfo0e8xesrA7A7GSPdBH2Uu525JbwbN/Fqzg+0LMEnvJgj9L6OOoFtqHvWQh5Pu65DPX3SEx8gM07L4wbYAPTO7F776wGnoAPXjpt9Jy2Fj7VN7Y/A+FymjszHkftGf2Q1x9EFI9FKb13m90bb0HXvCh4Sh49jN3rOAHIK4/BBV8aJgKfuDS//oMuB9ve4h0MDg8FE43Cf2Ot9qmB7EnDofDVOzDRk9GVJ6HsDyPhCnPI0a7UOV5GNuFD1/6OUUOd7jU/Eew+R+h9NNWvw9Am/dhSPXIP+xU4XBIpwpH/9OnCkcdZqg+ivXMo/9NVB8LY1s9GqZ6HzO7yYV94A+hC+VHIKCG6wN/eOk3uZCrXOquPP6f3pXHDXflcWxXPsa5yYU16QnsGiOMe/exMK3KCbObXCexc+ww7t1wfeCTWfduAZPT3BDedvvRJrMziI+wt91+BKV8ivL1Q5XlKS+U5SnWefupSWHcxqcg1cf61My+9fQxdm7/SahOh729Yiuk+pRyExD/8KdDLH4G2sinIeEnqgJYop+Fes6eP31S0DQ+Dw6/CA6/xP6Q5cvQS+BvQHSlPsdu134Olekrg9u1+rlVlp+hH+cL7ON8AX2cr1nb40ssyy+hLL8xYmn2F+EHW+4r2/hr2/ibcL2o/luJOSMx32U2Nmwnfq+d4NYcPu3KZimDevbpkZJcuVnP1P5DBicN7pOSnDHZ9hG+t42/tY3PBMfOpZMl5geJOSsxP0rMTybZ/6zN/jaj7H8Gs/9FYn6VmN8k5vfMdlVwUqinTT+Ecsmj/6p46ZD+gUdv2vzqqalJw45GlJaYPyTmT4k5JzHnJTZCYh0Sa0msU2JdEhspsfkkNkpioyU2RmJjJTZOYuMlNkFi80usW2I9EpsosQUktqDEFpLYwhJbRGKLSmwxiS0usZdJbAnMpP+IhmR/YrJzmOw8JIuNwGQOTGZhMicmc2GySEyWD5NFYbJoTBaDyWIxWRwmi8dkCZgsPyZzYzIPJkvEZAUwWUFMVgiTFcZkRTBZUUxWDJMVx2SXYbISWf4Z26MRZTD7h3D3R4b2rxdVrD+1Kv+M53Sqv/I6n7cq469HCrERearO/v3gIdaRl+rEhccTsVYeqhqBhxixztxV6RcfdcS6clWlBB+IxEbmplpje2wSmy8X1VD7w5XYqJxVdTM9gomNzlF1OvODmtiYnFSVszzOiY3NQVU260Of2LgM4NFQbHw2VZtO2VUJWVUj2uagyp9FNSItJ5U7s2pVWo4qTyZVrddzViXaVU1r56IqYFOtbpabqmBQVW5NrqpCF1WzyueuKhxQVZydh6rIBdWJSnmpiv6tGngyT1Wxv1SNU/NWFferujfRqC5Tqgo9dKoSoV7Qh3xj0T+Fxvt2B28sxl5ucGMxtoQ6LiNDP49fhsS7gnFj0Z/lFV4oyytCXZWQ/615YOF3Gf5b87Elg8NS0GVDbEnon8uKLWXyb83HlkDgG1sSAXlsKaBqoTfGFWp66Lo5tiR/u16mrdZM23YtbbJd1fVkaWC7zvTLkHhlKNtVZVnGC2VZhr9dL9OKZphu1yuDw6uw7Xoltl2vMtqul0Hb9Upou1wFVC30hwrg5FcbPFHRR1VeUSYDgxiU5TWMZ1ixV6vA3rDNf4mOVlzbUCtsjnatiaOpm2TXAo62wi9D4pWlOJrKsqwXyrIs446/v3evCWfvlqM8M4wtC6nKA9v7Ek2/uFb0mqnpXxccXo+Z/nWY6V9vZPrFIdO/DlqY64GqGXQFNvkNjMfoseVUu2F2eiPFzm9QgTnzg8W/EVLdRCl+wLUAf4NUFUI1jtCJV0y7mybaiFfRhHjqyVBFgHgT/TIkXiUK8VSWlbxQlpUoxLtJLXc4O7xyiB0Obq9KkKoKn3jFtKIJpsS7OTi8BSPezRjxbjEiXjGIeDdDC3MLUDWDrsAmv5ViupVVu2HEuY1CvFtVYM78YPFvg1S3U4ofcC29EnOtO/jXeEW1u6m0jXh3mhCvqDoOIF5pvwyJdxeFeCrLu7xQlndRiHe7Wu5wdnhVDvHuglR384lXVCsqZUq8e4LDezHi3YMR714j4hWFiHcPtDD3AlUz6Aps8moU062q2g0jTnUK8aqpwJz5weJXh1Q1KMUPuJZeiblWTT7ximh30y4b8WqZEK+IOg4g3i6/DIlXm0I8lWVtL5RlbQrxaqjlDmeH1+EQrzakqssnXhGtaKcp8eoFh/Ux4tXDiFffiHhFIOLVgxamPlA1g67AJm9AMd06qt0w4jSkEK+BCsyZHyx+Q0jViFL8gGvplZhrNeYTr7B2NyXZiNfEhHiF1XEA8ZL8MiReUwrxVJZNvVCWTSnEa6SWO5wd3oxDvKaQqjmfeIW1oq6mxGsRHLbEiNcCI15LI+IVhojXAlqYlkDVDLoCm7wVxXSbqXbDiNOaQrxWKjBnfrD4rSHVfZTiB1xLr8Rcqw2feIW0u+mgjXhtTYhXSB0HEO+gX4bEa0chnsqynRfKsh2FePep5Q5nh7fnEK8dpOrAJ14hreiAKfE6BoedMOJ1xIjXyYh4hSDidYQWphNQNYOuwCbvTDHd9qrdMOJ0oRCvswrMmR8sfhdI1ZVS/IBr6ZWYayXxiVdQu5vq24jXzYR4BdVxAPHq+2VIvO4U4qksu3uhLLtTiNdVLXc4O7wHh3jdIVVPPvEKakX1TInXKzjsjRGvF0a83kbEKwgRrxe0ML2Bqhl0BTb5/RTT7aHaDSNOHwrx7leBOfODxe8DqR6gFD/gWnol5lp9+cQroN1Ny23E62dCvALqOIB4y/0yJF5/CvFUlv29UJb9KcR7QC13ODs8mUO8/pAqhU+8AlrRMlPiDQgOB2LEG4ARb6AR8QpAxBsALcxAoGoGXYFNnkox3WTVbhhxBlGIl6oCc+YHiz8IUg2mFD/gWnol5lpD+MRL1O6m9TbiPWhCvER1HEC89X4ZEu8hCvFUlg95oSwfohBvsFrucHb4UA7xHoJUw/jES9SK1pkS7+Hg8BGMeA9jxHvEiHiJEPEehhbmEaBqBl2BTf4oxXSHqnbDiPMYhXiPqsCc+cHiPwapHqcUP+BaeiXmWsP5xPNod1NDG/FGmBDPo44DiNfQL0PipVGIp7JM80JZplGI97ha7nB2+EgO8dIg1Sg+8TxaUQNT4j0RHD6JEe8JjHhPGhHPAxHvCWhhngSqZtAV2ORPUUx3pGo3jDijKcR7SgXmzA8WfzSkGkMpfsC19ErMtcbyiefW7qYRNuI9bUI8tzoOIN4IvwyJ9wyFeCrLZ7xQls9QiDdGLXc4O3wch3jPQKrxfOK5taLhpsSbEBxOxIg3ASPeRCPiuSHiTYAWZiJQNYOuwCZPp5juONVuGHG8FOKlq8Cc+cHiY5NnUIofcC29EnOtSXzi5Q+JeJNNiJdfHYcRbzKU8hQK8VSWUzDiTaEQL0Mtdzg7fCqHeNC/1BY7jU+8/DziPRscPocR71mMeM8ZES8/RLxnoYV5jkM8bPLpFNOdqtoN2xLPU4g3XQXmzA8W/3lINYNS/IBr6ZVYiWbyiZeg3U2LbcR7wYR4Ceo4gHiL/TIk3iwK8VSWs7xQlrMoxJuhljucHT6bQ7xZkGoOn3gJWtEiU+K9GBzOxYj3Ika8uUbES4CI9yK0MHOBqhl0BTb5PIrpzlbthtnpfArx5qnAnPnB4s+HVAsoxQ+4ll6JudZCPvHitbtpno14i0yIF6+OA4g3zy9D4i2mEE9ludgLZbmYQrwFarnD2eFLOMRbDKle4hMvXiuaa0q8l4PDVzDivYwR7xUj4sVDxHsZWphXgKoZdAU2+VKK6S5R7YYR51UK8ZaqwJz5weK/CqmWUYofcC29EnOt5XzixWl30yEb8V4zIV6cOg4g3iG/DIm3gkI8leUKL5TlCgrxlqnlDmeHr+QQbwWkWsUnXpxWdNCUeK8Hh6sx4r2OEW+1EfHiIOK9Di3MaqBqBl2BTb6GYrorVbthxFlLId4aFZgzP1j8tZDqDUrxA66lV2KutY5PvFjtbtphI956E+LFquMA4u3wy5B4GyjEU1lu8EJZbqAQ7w213OHs8I0c4m2AVG/yiRerFYkp8TYFh29hxNuEEe8tI+LFQsTbBC3MW0DVDLoCm3wzxXQ3qnbDiPM2hXibVWDO/GDx34ZUWyjFD7iWXom51lY+8WK0u6m4jXjvmBAvRh0HEK+4X4bEe5dCPJXlu14oy3cpxNuiljucHf4eh3jvQqptfOLFaEXFTIn3fnC4HSPe+xjxthsRLwYi3vvQwmwHqmbQFdjkPorpvqfaDSOOUIjnU4E584PFF0i1g1L8gGvplZhr7eQTL1q7m9baiLfLhHjR6jiAeGv9MiTebgrxVJa7vVCWuynEUxePO8PZ4Xs4xNsNqfbyiRetFa0xJd6+4PADjHj7MOJ9YES8aIh4+6CF+QComkFXYJPvp5juHtVuGHEOUIi3XwXmzA8W/wCkOkgpfsC19ErMtQ7xiRel3U1jbMQ7bEK8KHUcQLwxfhkS7wiFeCrLI14oyyMU4h1Uyx3ODj/KId4RSHWMT7worWi0KfE+DA6PY8T7ECPecSPiRUHE+xBamONA1Qy6Apv8BMV0j6p2w4hzkkK8EyowZ36w+Cch1UeU4gdcS6/EXOsUn3j5tLupno14H5sQL586DiBePb8MifcJhXgqy0+8UJafUIj3kVrucHb4pxzifQKpTvOJl08rqmtKvM+Cw88x4n2GEe9zI+Llg4j3GbQwnwNVM+gKbPIvKKb7qWo3jDhfUoj3hQrMmR8s/peQ6itK8QOupVdirvU1n3iR2t3ktRHvGxPiRarjAOJ5/TIk3rcU4qksv/VCWX5LId5XarnD2eFnOMT7FlJ9xydepFaUbkq874PDHzDifY8R7wcj4kVCxPseWpgfgKoZdAU2+VmK6Z5R7YYR50cK8c6qwJz5weL/CKl+ohQ/4Fp6JeZaP/OJ59LupgE24v1iQjyXOg4g3gC/DIn3K4V4KstfvVCWv1KI95Na7nB2+G8c4v0KqX7nE8+lFaWYEu+P4PBPjHh/YMT704h4Loh4f0AL8ydQNYOuwCY/RzHd31S7YcQ5TyHeORWYMz9Y/POIKi6CUvyAa+mVkGvFOfjEc2p308Yg8eIsE+I51XEA8Tb6ZUC8OCeFeCpLpxfK0skgXpx/ucPZ4S4K8eKckCqSTzz9KmwwJF5cvuAwCiJeXD6IeHFRRsRzIsSLywctTBRQNYOuwCaPZphunEu1G0ScuBgG8eKiVWDO/GDxYyBVLKX4AdfSKkHXiuMTz9LuptI24sWbEM9SxwHEK+2XIVVOoBBPZZnghbJMoBAvVi13ODs8P4d4CZDKzSeepRWVMiWeJzhMxIjnwYiXaEQ8CyKeB1qYRKBqBl2BTV6AYrr5VbthxClIIV4BFZgzP1j8gpCqEKX4AdfSKzHXKswnnkO7m+JtxCtiQjz1cYsAxIv3y5DaFaUQzx/YC2VZlEK8Qmq5w9nhxTjEKwqpivOJp7//EWdKvMuCwxIY8S7DiFfCiHgOiHiXQQtTAqiaQVdgk19OMd1iqt0w4lxBId7lKjBnfrD4V0CqkpTiB1xLr8RcqxSfeBHa3ZRsI15pE+KpD1IaIF6yX4bUrgyFeCrLMl4oyzIU4pVUyx3ODr+SQ7wykOoqPvH0zyX6mxLv6uDwGox4V2PEu8aIeBEQ8a6GFuYaoGoGXYFNfi3FdK9U7YYRpyyFeNeqwJz5weKXhVTlKMUPuJZeiblWeTrxYs5rd1OijXjXGRAv5rw6DiBeol+G1O56BvH8WV7vhbK8nkK8cmq5w9nhN3CIdz2kupFOvBj91wA8psS7KTisgBHvJox4FUyIF3MeIt5N0MJUAKpm0BXY5BUppnuDajeMOJUoxKuoAnPmB4tfCVJVphQ/4Fp6JeZaVfjE039/KsJGvJtNiHdOHQclE3cLhWVq/lvSKZSqrJYonF15K4dSt0Cq2wy2BPCRVOB0fhv/GVIb327Sxn+q47A2voPSxmr+O9Ipnq3W6A5vmBr0klfyD30etpW802Ql/1DHYTvnTmi976Kst8ryLmxV7qKYm+qKuzCY3QplWZXRu/4qVU3nnElUhVR3U84kAmTRKzGy3EMxjrtVYMwSqwJbJJNxFJwUqnH8AnxE/BIoonRI10vetPnVU1OThh2NKC1x90pcNYmrLnE1JK6mxNWSuNoSV0fi6kpcPYmrL3ENJK6hxDWSuMYS10TimkpcM4lrLnEtJK6lxLWSuNYSd5/EtZG4thLXTuLaS1wHiesocZ0krjN2DXZvNCSrhsmqY7IamKwmJquFyWpjsjqYrC4mq4fJ6mOyBpisISZrhMkaY7ImmKwpJmuGyZpjshaYrCUma4XJWmOy+zBZG0zWFpO1w2TtMVkHTNYRk3XCZJ2z3BU6GlEGs3+Ig/dCd4+qaVV+plXXqf4iX428VRln/lLVzFN1dtLfqlp5qU78eEFVOw9VjZMBVZ3cVek1L6rq5qpK8QZV9XJTrRlgU9XPRTV0rV3VIGdV3WGZVA1zVJ2ul1nVKCdV5c+yqBrnoCpbJauqSXZVx3LZVE2zqdp0yq5qllU1om0OquZZVCPSclK1yKxalZajqmUmVa3Xc1a1squa1s5F1dqmWt0sN9V9QVW5Nbmq2lxUzSqfu6ptQFVxdh6qdhdUJyrlpWr/t2rgyTxVHf5SNU7NW9XRr+reRKPqpFQVeuhUnemX1v4pNN6323Zp3cXg0jquszoOeLq12y9D4nVlXFr7s+zqhbLsGuqqhPzoBlj4XaaPbpKCw27YZUMS9uimm8mjm7jOEHyTIJB3A6oWemN0VdNj91yS+Nu1k7ZaM23btbvJdlXXk92B7TrTL0Pi9aBsV5VlDy+UZQ/+du2kFc0w3a49g8Ne2HbtiW3XXkbbtRO0XXtC26UXUDWDW3TY5L0pTzaUV/TAbtF1hbK8n3KLrrcK7A3b/JfoaB21DbXC5mh9TBxN3STrAzjaCr8MifcAxdFUlg94oSwfoNzbV717fzh7ty/nDvwDkKof/es1/sbViF4zNf3+wWEyZvr9MdNPNjL9jpDp94cWJhmomkFXYJOnUJ7L9FXthtnpAIqdp6jAnPnB4g+AVAMpxQ+4FuBvkCo1VOMInXgdtLtpoo14g0yIp54MDQKIN9EvQ+INphBPZTnYC2U5mEK8gWq5w9nhQzhf1RkMqR7kE6+DVjTBlHgPBYdDMeI9hBFvqBHxOkDEewhamKFA1Qy6Apt8GMV0h6h2w4jzMIV4w1Rgzvxg8R+GVI9Qih9wLb0Sc61H+dd47bfodpP9xTCPmRCvvToOezHMY1DKj29hEE9l+Tj2YpjHKcR7RC13ODt8OId4j0OqEXzitdeKjF8MkxYcjsSIl4YRb6QR8dpDxEuDFmYkUDWDrsAmH0Ux3eGq3TDiPEEh3igVmDM/WPwnINWTlOIHXEuvxFzrKT7x2ml30y4b8UabEK+dOg4g3i6/DIk3hkI8leUYL5TlGArxnlTLHc4OH8sh3hhI9TSfeO20op2mxHsmOByHEe8ZjHjjjIjXDiLeM9DCjAOqZtAV2OTjKaY7VrUbRpwJFOKNV4E584PFnwCpJlKKH3AtvRJzLf5fW8W11e6mJBvxvCbEa6uOA4iX5Jch8TIoxFNZZnihLDMoxFO3S8Pa4ZM4xMNUk/nEa6sVdTUl3pTgcCpGvCkY8aYaEa8tRLwp0MJMBapm0BXY5NMopjtJtRtGnGcpxJumAnPmB4v/LKR6jlL8gGvplZhrTecTr412Nx20Ee95E+K1UccBxDvolyHxZlCIp7Kc4YWynEEh3nNqucPZ4TM5xJsBqV7gE6+NVnTAlHizgsPZGPFmYcSbbUS8NhDxZkELMxuomkFXYJPPoZjuTNVuGHFepBBvjgrMmR8s/ouQai6l+AHX0isx15rHJ9592t1U30a8+SbEu08dBxCvvl+GxFtAIZ7KcoEXynIBhXhz1XKHs8MXcoi3AFIt4hPvPq2oninxFgeHSzDiLcaIt8SIePdBxFsMLcwSoGoGXYFN/hLFdBeqdsOI8zKFeC+pwJz5weK/DKleoRQ/4Fp6JeZaS/nEa63dTcttxHvVhHit1XEA8Zb7ZUi8ZRTiqSyXeaEsl1GI94pa7nB2+HIO8ZZBqtf4xGutFS0zJd6K4HAlRrwVGPFWGhGvNUS8FdDCrASqZtAV2OSrKKarduRrGHFepxBvlQrMmR8s/uuQajWl+AHX0isx11rDJ14r7W5abyPeWhPitVLHAcRb75ch8d6gEE9l+YYXyvINCvFWq+UOZ4ev4xDvDUi1nk+8VlrROlPibQgON2LE24ARb6MR8VpBxNsALcxGoGoGXYFN/ibFdNepdsOIs4lCvDdVYM78YPE3Qaq3KMUPuJZeibnWZj7xWmp3U0Mb8d42IV5LdRxAvIZ+GRJvC4V4KsstXijLLRTivaWWO5wdvpVDvC2Q6h0+8VpqRQ1MifducPgeRrx3MeK9Z0S8lhDx3oUW5j2gagZdgU2+jWK6W1W7YcR5n0K8bSowZ36w+O9Dqu2U4gdcS6/EXMvHJ14L7W4aYSOemBCvhToOIN4IvwyJt4NCPJXlDi+U5Q4K8bar5Q5nh+/kEG8HpNrFJ14LrWi4KfF2B4d7MOLtxoi3x4h4LSDi7YYWZg9QNYOuwCbfSzHdnardMOLsoxBvrwrMmR8s/j5I9QGl+AHX0isx19rPJ17zkIh3wIR4zdVxGPEOQCkfpBBPZXkQI95BCvE+UMsdzg4/xCHeQUh1mE+85jziHQkOj2LEO4IR76gR8ZpDxDsCLcxRDvGwyY9RTPeQajeMOB9SiHdMBebMDxb/Q0h1nFL8gGvplZhrneATr5l2Ny22Ee+kCfGaqeMA4i32y5B4H1GIp7L8yAtl+RGFeMfVcoezw09xiPcRpPqYT7xmWtEiU+J9Ehx+ihHvE4x4nxoRrxlEvE+ghfkUqJpBV2CTn6aY7inVbhhxPqMQ77QKzJkfLP5nkOpzSvEDrqVXYq71BZ94TbW7aZ6NeF+aEK+pOg4g3jy/DIn3FYV4KsuvvFCWX1GI97la7nB2+Ncc4n0Fqb7hE6+pVjTXlHjfBodnMOJ9ixHvjBHxmkLE+xZamDNA1Qy6Apv8O4rpfq3aDSPO9xTifacCc+YHi/89pPqBUvyAa+mVmGud5ROviXY3HbIR70cT4jVRxwHEO+SXIfF+ohBPZfmTF8ryJwrxflDLHc4O/5lDvJ8g1S984jXRig6aEu/X4PA3jHi/YsT7zYh4TSDi/QotzG9A1Qy6Apv8d4rp/qzaDSPOHxTi/a4Cc+YHi/8HpPqTUvyAa+mVmGud4xOvsXY37bAR77wJ8Rqr4wDi7fDLgHjxERTiNVaBvUiW/vk14UyI96da7jB2eLyDQrz4CEhl8YnXWCsSQ+LFO4NDF0S8eCdEvHiXEfEaI8SLd0IL4wKqZtAV2OSRDNONV/9nQcSJz8cgXnykCsyZHyx+PkgVRSFewLX0Ssy1ovnEa6TdTcWDxIuPMSFeI3UcQLzifhnSYrEU4qksY71QlrEM4sVHqeUOZ4fHcYgXC6ni+cRrpBUVMyVeQnCYHyNeAka8/EbEawQRLwFamPxA1Qy6ApvcTSFenGo3jDgeCvHcKjBnfrD4HkiVSCl+wLX0Ssy1CvCJ11C7m9baiFfQhHgN1XEA8db6ZUjtClGIp7Is5IWyLEQhXqJa7nB2eGEO8QpBqiJ84jXUitaYEq9ocFgMI15RjHjFjIjXECJeUWhhigFVM+gKbPLiFNMtrNoNI85lFOKpc+DLOPODxb8MUpWgFD/gWnol5lqX84nXQLubxtiId4UJ8Rqo4wDijfHLkNqVpBBPZVnSC2VZkkK8Emq5w9nhpTjEKwmpSvOJ10ArGm1KvDLB4ZUY8cpgxLvSiHgNIOKVgRbmSqBqBl2BTX4VxXRLqXbDiHM1hXhXqcCc+cHiXw2prqEUP+BaeiXmWtfyiVdfu5vq2YhX1oR49dVxAPHq+WVI7cpRiKeyLOeFsixHId41arnD2eHlOcQrB6mu4xOvvlZU15R41weHN2DEux4j3g1GxKsPEe96aGFuAKpm0BXY5DdSTLe8ajeMODdRiHejCsyZHyz+TZCqAqX4AdfSKzHXqsgnXj3tbvLaiFfJhHgKEpUA4nn9MqR2lSnEU1lW9kJZVqYQr4Ja7nB2eBUO8SpDqpv5xKunFaWbEu+W4PBWjHi3YMS71Yh49SDi3QItzK1A1Qy6Apv8NorpVlHthhHndgrxblOBOfODxb8dUt1BKX7AtfRKzLXu5BOvrnY3DbAR7y4T4tVVxwHEG+CXIbWrSiGeyrKqF8qyKoV4d6jlDmeH380hXlVIdQ+feHW1ohRT4t0bHFbDiHcvRrxqRsSrCxHvXmhhqgFVM+gKbPLqFNO9W7UbRpwaFOJVV4E584PFrwGpalKKH3AtvRJzrVp84tXR7qaNNuLVNiFeHXUcQLyNfhlSuzoU4qks63ihLOtQiFdTLXc4O7wuh3h1IFU9PvH0q7DBlHj1g8MGGPHqY8RrYES8OhDx6kML0wComkFXYJM3pJiuOlWthxGnEYV4DVVgzvxg8RtBqsaU4gdcS6/EXKsJn3i1tbuptI14TU2IV1sdBxCvtF+G1K4ZhXgqy2ZeKMtmFOI1Vssdzg5vziFeM0jVgk+82lpRKVPitQwOW2HEa4kRr5UR8WpDxGsJLUwroGoGXYFN3ppius1Vu2HEuY9CvNYqMGd+sPj3Qao2lOIHXEuvxFyrLZ94tbS7Kd5GvHYmxKuljgOIF++XIbVrTyGeyrK9F8qyPYV4bdRyh7PDO3CI1x5SdeQTT3//I86UeJ2Cw84Y8TphxOtsRLxaEPE6QQvTGaiaQVdgk3ehmG4H1W4YcbpSiNdFBebMDxa/K6RKohQ/4Fp6JeZa3fjEq6ndTck24nU3IZ668u0OEC/ZL0Nq14NCPJVlDy+UZQ8K8ZLUcoezw3tyiNcDUvXiE0//XKK/KfF6B4f3Y8TrjRHvfiPi1YSI1xtamPuBqhl0BTZ5H4rpqlXqhRHnAQrx+qjAnPnB4j8AqfpSih9wLb0Sc61+fOLV0O6mRBvx+psQr4Y6DiBeol+G1C6ZQjyVZbIXyjKZQry+arnD2eEpHOIlQ6oBfOLpvwbgMSXewOAwFSPeQIx4qUbEqwERbyC0MKlA1Qy6Apt8EMV0U1S7YcQZTCGeWtfBnPnB4g+GVEMoxQ+4ll6JudaDfOLpvz8VYSPeQybEq66Og5KJH0phmZp/aDqFUkPUEoWzK4dxKDUUUj1ssCWAj6QCp/PbuFpIbfyISRtXU8dhbfwopY3V/I+mUzxbrdGj3jA16CWv5L36PGwr+ZjJSt6rjsN2zmPQej9OWW+V5ePYqjxOMTfVFY9jMBsGZTmc0bv+Kg1P55xJDIdUIyhnEgGy6JUYWdIoxjFCBcYscXiIWyQd6/yR2iuZW3O4FFnZLGVQzz49UpIrN+uZ2n/I4KTBfVKSMybbLk1GBscx39rGZ4Jj59LJEj9K4p+Q+Ccl/imT7Edrs7/NKPvRYPZjJH6sxD8t8c9kNu2Ck0I07fhRQHvhl58RpUO6VvWmza+empo07GhEaYkfJ/HjJX6CxE+U+HSJ90p8hsRPknj1cadI/FSJnybxz0r8cxI/XeKfl/gZEj9T4l+Q+FkSP1vi50j8ixI/V+LnSfx8iV8g8QslfpHEL5b4JRL/Enb9Oy4ako3HZBMw2URMlo7JvJgsA5NNwmSTMdkUTDYVk03DZM9isucw2XRM9jwmm4HJZmKyFzDZLEw2G5PNwWQvYrK5mGweJpuPyRZgsoWYbBEmW4zJlmCyl7LckTsaUQazfwh346A7d+O1Kv+ME3Sqv/KamLcq48xfqvQ8VWcn/a3KE+knfrygyuvMssbJgGpS7qr0mhdVk3NVpXiDqim5qdYMsKmm5qIautaumpazqu6wTKpnc1SdrpdZ9VxOqsqfZVFNz0FVtkpW1fPZVR3LZVPNyKZq0ym7amZW1Yi2OaheyKIakZaTalZm1aq0HFWzM6lqvZ6zao5d1bR2LqoXbarVzXJTzQ2qyq3JVTXvompW+dxV8wOqirPzUC24oDpRKS/Vwr9VA0/mqVr0l6pxat6qxX5V9yYa1RKlqtBDp3qJflvDP4XG+3bbbmu8bHBbI/4ldRzwZHG3X4bEe4VxW8Of5SteKMtXQl2VkB+bAQu/y/Sx2dLg8FXssmEp9tjsVZPHZvEvQfBdCoH8VaBqoTfGK2p67Lp5KX+7LtFWa6Ztuy4z2a7qenIZsF1n+mVIvOWU7aqyXO6FslzO365LtKIZptv1teBwBbZdX8O26wqj7boE2q6vQdtlBVA1g9uj2OQrKU+VlFcsx26PvgJluYpye3SlCuwN2/yX6GiLtQ21wuZor5s4mrpJ9jrgaCv8MiTeaoqjqSxXe6EsV1Oeq6jeXRXO3l3DefqxGlKtpX+1yd+4GtFrpqb/RnC4DjP9NzDTX2dk+osh038DWph1QNUMugKbfD3lmdga1W6YnW6g2Pl6FZgzP1j8DZBqI6X4AdcC/A1SvRmqcYROvEXa3TTRRrxNJsRTT4Y2AcSb6Jch8d6iEE9l+ZYXyvItCvE2quUOZ4dv5nxN6i1I9TafeIu0ogmmxNsSHG7FiLcFI95WI+Itgoi3BVqYrUDVDLoCm/wdiuluVu2GEeddCvHeUYE584PFfxdSvUcpfsC19ErMtbbxr/EWaneT/aU875sQb6E6Dnspz/tQytspxFNZbsdeyrOdQrz31HKHs8N9HOJth1TCJ95Crcj4pTw7gsOdGPF2YMTbaUS8hRDxdkALsxOomkFXYJPvopiuT7UbRpzdFOLtUoE584PF3w2p9lCKH3AtvRJzrb184i3Q7qZdNuLtMyHeAnUcQLxdfhkS7wMK8VSWH3ihLD+gEG+PWu5wdvh+DvE+gFQH+MRboBXtNCXeweDwEEa8gxjxDhkRbwFEvIPQwhwCqmbQFdjkhymmu1+1G0acIxTiHVaBOfODxT8CqY5Sih9wLb0Sc61jfOLN1+6mJBvxPjQh3nx1HEC8JL8MiXecQjyV5XEvlOVxCvGOquUOZ4ef4BDvOKQ6ySfefK2oqynxPgoOT2HE+wgj3ikj4s2HiPcRtDCngKoZdAU2+ccU0z2h2g0jzicU4n2sAnPmB4v/CaT6lFL8gGvplZhrneYTb552Nx20Ee8zE+LNU8cBxDvolyHxPqcQT2X5uRfK8nMK8T5Vyx3ODv+CQ7zPIdWXfOLN04oOmBLvq+Dwa4x4X2HE+9qIePMg4n0FLczXQNUMugKb/BuK6X6h2g0jzrcU4n2jAnPmB4v/LaQ6Qyl+wLX0Ssy1vuMTb652N9W3Ee97E+LNVccBxKvvlyHxfqAQT2X5gxfK8gcK8c6o5Q5nh5/lEO8HSPUjn3hztaJ6psT7KTj8GSPeTxjxfjYi3lyIeD9BC/MzUDWDrsAm/4ViumdVu2HE+ZVCvF9UYM78YPF/hVS/UYofcC29EnOt3/nEe1G7m5bbiPeHCfFeVMcBxFvulyHx/qQQT2X5pxfK8k8K8X5Tyx3ODj/HId6fkOo8n3gvakXLDImXEBEcOiDiJURAxEtwGBHvRYR4CRHIwiQ4gKqF3hXg5BbFdM+pdoOIk+BkEC/BUoE584PFd0IqF6X4AdfSKyHXSojkE2+OdjetDxIvIZ8J8eao4wDirffLkBaLohBPZRnlhbKMYhAvwaWWO5wdHk0hXkIUpIrhE2+OVrTOlHixwWEcRrxYjHhxRsSbAxEvFlqYOKBqBl2BTR7PMN2EaNVuGHESKMSLV4E584PFT4BU+SnFD7iWXom5lptPvNna3dTQRjyPCfFmq+MA4jX0y5DaJVKIp7JM9EJZJlKIl18tdzg7vACHeImQqiCfeLO1ogamxCsUHBbGiFcII15hI+LNhohXCFqYwkDVDLoCm7wIxXQLqHbDiFOUQrwiKjBnfrD4RSFVMUrxA66lV2KuVZxPvFna3TTCRrzLTIg3Sx0HEG+EX4bUrgSFeCrLEl4oyxIU4hVTyx3ODr+cQ7wSkOoKPvFmaUXDTYlXMjgshRGvJEa8UkbEmwURryS0MKWAqhl0BTZ5aYrpXq7aDSNOGQrxSqvAnPnB4peBVFdSih9wLb0Sc62r+MR7ISTiXW1CvBfUcRjxroZqdw2FeCrLazDiXUMh3pVqucPZ4ddyiHcNpCrLJ94LPOKVCw7LY8QrhxGvvBHxXoCIVw5amPIc4mGTX0cx3WtVu2HEuZ5CvOtUYM78YPGvh1Q3UIofcC29EnOtG/nEm6ndTYttxLvJhHgz1XEA8Rb7ZUjtKlCIp7Ks4IWyrEAh3g1qucPZ4RU5xKsAqSrxiTdTK1pkSrzKwWEVjHiVMeJVMSLeTIh4laGFqQJUzaArsMlvpphuRdVuGHFuoRDvZhWYMz9Y/Fsg1a2U4gdcS6/EXOs2PvFmaHfTPBvxbjch3gx1HEC8eX4ZUrs7KMRTWd7hhbK8g0K8W9Vyh7PD7+QQ7w5IdRefeDO0ormmxKsaHN6NEa8qRry7jYg3AyJeVWhh7gaqZtAV2OT3UEz3TtVuGHHupRDvHhWYMz9Y/HshVTVK8QOupVdirlWdT7zntbvpkI14NUyI97w6DiDeIb8MqV1NCvFUljW9UJY1KcSrppY7nB1ei0O8mpCqNp94z2tFB02JVyc4rIsRrw5GvLpGxHseIl4daGHqAlUz6Aps8noU062l2g0jTn0K8eqpwJz5weLXh1QNKMUPuJZeiblWQz7xpmt30w4b8RqZEG+6Og4g3g6/DKldYwrxVJaNvVCWjSnEa6CWO5wd3oRDvMaQqimfeNO1IjElXrPgsDlGvGYY8ZobEW86RLxm0MI0B6pm0BXY5C0opttEtRtGnJYU4rVQgTnzg8VvCalaUYofcC29EnOt1nziPafdTcVtxLvPhHjPqeMA4hX3y5DataEQT2XZxgtl2YZCvFZqucPZ4W05xGsDqdrxifecVlTMlHjtg8MOGPHaY8TrYES85yDitYcWpgNQNYOuwCbvSDHdtqrdMOJ0ohCvowrMmR8sfidI1ZlS/IBr6ZWYa3XhE+9Z7W5aayNeVxPiPauOA4i31i9DapdEIZ7KMskLZZlEIV5ntdzh7PBuHOIlQarufOI9qxWtMSVej+CwJ0a8HhjxehoR71mIeD2ghekJVM2gK7DJe1FMt5tqN4w4vSnE66UCc+YHi98bUt1PKX7AtfRKzLX68Ik3TbubxtiI94AJ8aap4wDijfHLkNr1pRBPZdnXC2XZl0K8+9Vyh7PD+3GI1xdS9ecTb5pWNNqUeMnBYQpGvGSMeClGxJsGES8ZWpgUoGoGXYFNPoBiuv1Uu2HEGUgh3gAVmDM/WPyBkCqVUvyAa+mVmGsN4hNvqnY31bMRb7AJ8aaq4wDi1fPLkNoNoRBPZTnEC2U5hEK8VLXc4ezwBznEGwKpHuITb6pWVNeUeEODw2EY8YZixBtmRLypEPGGQgszDKiaQVdgkz9MMd0HVbthxHmEQryHVWDO/GDxH4FUj1KKH3AtvRJzrcf4xJui3U1eG/EeNyHeFHUcQDyvX4bUbjiFeCrL4V4oy+EU4j2qljucHT6CQ7zhkCqNT7wpWlG6KfFGBoejMOKNxIg3yoh4UyDijYQWZhRQNYOuwCZ/gmK6I1S7YcR5kkK8J1Rgzvxg8Z+EVE9Rih9wLb0Sc63RfOJN1u6mATbijTEh3mR1HEC8AX4ZUruxFOKpLMd6oSzHUoj3lFrucHb40xzijYVUz/CJN1krSjEl3rjgcDxGvHEY8cYbEW8yRLxx0MKMB6pm0BXY5BMopvu0ajeMOBMpxJugAnPmB4s/EVKlU4ofcC29EnMtL594k7S7aaONeBkmxJukjgOIt9EvQ2o3iUI8leUkL5TlJArx0tVyh7PDJ3OINwlSTeETT78KG0yJNzU4nIYRbypGvGlGxJsEEW8qtDDTgKoZdAU2+bMU01WnqlMw4jxHId6zKjBnfrD4z0Gq6ZTiB1xLr8Rc63k+8fS7qbSNeDNMiJehjgOIV9ovQ2o3k0I8leVML5TlTArxpqvlDmeHv8Ah3kxINYtPPL2olCnxZgeHczDizcaIN8eIeBkQ8WZDCzMHqJpBV2CTv0gx3RdUu2HEmUsh3osqMGd+sPhzIdU8SvEDrqVXYq41n088r3Y3xduIt8CEeOrR1wJg18b7ZUjtFlKIp7Jc6IWyXEgh3jy13OHs8EUc4i2EVIv5xNPf/4gzJd6S4PAljHhLMOK9ZEQ8L0S8JdDCvARUzaArsMlfppjuItVuGHFeoRDvZRWYMz9Y/Fcg1VJK8QOupVdirvUqn3jp2t2UbCPeMhPiqSvfZQDxkv0ypHbLKcRTWS73QlkupxBvqVrucHb4axziLYdUK/jE0z+X6G9KvJXB4SqMeCsx4q0yIl46RLyV0MKsAqpm0BXY5K9TTPc11W4YcVZTiPe6CsyZHyz+aki1hlL8gGvplZhrreUTb6J2NyXaiPeGCfEmquMA4iX6ZUjt1lGIp7Jc54WyXEch3hq13OHs8PUc4q2DVBv4xNN/DcBjSryNweGbGPE2YsR704h4EyHibYQW5k2gagZdgU2+iWK661W7YcR5i0K8TSowZ36w+G9Bqs2U4gdcS6/EXOttPvH035+KsBFviwnxJqjjoGQStlJYpubfmk6h1Ga1ROHsync4lNoKqd412BLAR1KB0/ltPD6kNn7PpI3Hq+OwNt5GaWM1/7Z0imerNdrmDVODXvJKjtPnYVvJ901Wcpw6Dts570PrvZ2y3irL7diqbKeYm+qK7RjM3oGy9DF6118lXzrnTMIHqYRyJhEgi16JkWUHxThEBcYs0QdskUzGUXBSqMYxBviI+CVQROmQrpe8afOrp6YmDTsaUVoSdkrCLknYLQl7JGGvJOyThA8kYb8kHJCEg5JwSBIOS8IRSTgqCcck4UNJOC4JJyThpCR8JAmnJOFjSfhEEj6VhNOS8JkkfC4JX0jCl5LwlSR8LQnfYNdgO6Mh2S5MthuT7cFkezHZPkz2ASbbj8kOYLKDmOwQJjuMyY5gsqOY7Bgm+xCTHcdkJzDZSUz2ESY7hck+xmSfYLJPMdlpTPYZJvsck32Byb7EZF9hsq8x2TdZ7godjSiD2T/EwZ3Q3aNdWpWfabt1qr/ItydvVcaZv1R781SdnfS3al9eqhM/XlB9kIeqxsmAan/uqvSaF1UHclWleIOqg7mp1gywqQ7lohq61q46nLOq7rBMqiM5qk7Xy6w6mpOq8mdZVMdyUJWtklX1YXZVx3LZVMezqdp0yq46kVU1om0OqpNZVCPSclJ9lFm1Ki1H1alMqlqv56z62K5qWjsX1Sc21epmuak+DarKrclVdfqialb53FWfBVQVZ+eh+vyC6kSlvFRf/K0aeDJP1Zd/qRqn5q36yq/q3kSj+lqpKvTQqb6hX1r7p9B4327bpfW3BpfWCd+o44CnW7v9MiTeGcaltT/LM14oyzOhrkrIj26Ahd9l+ujmu+Dwe+yy4Tvs0c33Jo9uEr6B4PsdBPLvgaqF3hhn1PTYPZfv+Nv1a221Ztq26w8m21VdT/4AbNeZfhkS7yxlu6osz3qhLM/yt+vXWtEM0+36Y3D4E7Zdf8S2609G2/VraLv+CG2Xn4CqGdyiwyb/mfJkQ3nFWewW3Rkoy18ot+h+VoG9YZv/Eh3tK21DrbA52q8mjqZukv0KONoKvwyJ9xvF0VSWv3mhLH+j3NtXvftLOHv3d84d+N8g1R/0r9f4G1cjes3U9P8MDs9hpv8nZvrnjEz/K8j0/4QW5hxQNYOuwCY/T3ku87tqN8hO80dQ7Py8CsyZHyt+/ghI5aAUP+BagL9BWVqhGkfoxPtSu5smBomX32lCvC/VcQDxJvplQLz8LgrxVJYuL5Sli0G8/OqDWeHs8EjKV3XyuyBVPj7xvtSKJhgSL39UcBgNES9/FES8/NFGxPsSIV7+KGhhooGqGXQFNnkMw3TzR6p2w4gTyyBe/hgVmDM/WPxYSBVHKX7AtfRKzLXi+dd4X2h3k+3FMPkTTIj3hToOejGMkiG1y08hnsoyP/RiGP/8mnAmxItTyx3ODndziJcfUnn4xPtCKzJ9MUz+xOCwAEa8RIx4BYyI9wVEvERoYQoAVTPoCmzyghTTdat2w4hTiEK8giowZ36w+IUgVWFK8QOupVdirlWET7zPtbtpl414RU2I97k6DiDeLr8MqV0xCvFUlsW8UJbFKMQrrJY7nB1enEO8YpDqMj7xPteKdpoSr0RweDlGvBIY8S43It7nEPFKQAtzOVA1g67AJr+CYrrFVbthxClJId4VKjBnfrD4JSFVKUrxA66lV2KuVZpPvM+0uynJRrwyJsT7TB0HEC/JL0NqdyWFeCrLK71QlldSiFdKLXc4O/wqDvGuhFRX84n3mVbU1ZR41wSH12LEuwYj3rVGxPsMIt410MJcC1TNoCuwyctSTPcq1W4YccpRiFdWBebMDxa/HKQqTyl+wLX0Ssy1ruMT77R2Nx20Ee96E+KdVscBxDvolyG1u4FCPJXlDV4oyxsoxCuvljucHX4jh3g3QKqb+MQ7rRUdMCVeheCwIka8ChjxKhoR7zREvArQwlQEqmbQFdjklSime6NqN4w4lSnEq6QCc+YHi18ZUlWhFD/gWnol5lo384n3qXY31bcR7xYT4n2qjgOIV98vQ2p3K4V4KstbvVCWt1KIV0Utdzg7/DYO8W6FVLfzifepVlTPlHh3BId3YsS7AyPenUbE+xQi3h3QwtwJVM2gK7DJ76KY7m2q3TDiVKUQ7y4VmDM/WPyqkOpuSvEDrqVXYq51D594n2h303Ib8e41Id4n6jiAeMv9MqR21SjEU1lW80JZVqMQ72613OHs8Ooc4lWDVDX4xPtEK1pmSryawWEtjHg1MeLVMiLeJxDxakILUwuomkFXYJPXpphuddVuGHHqUIhXWwXmzA8Wvw6kqkspfsC19ErMterxifexdjettxGvvgnxPlbHAcRb75chtWtAIZ7KsoEXyrIBhXh11XKHs8MbcojXAFI14hPvY61onSnxGgeHTTDiNcaI18SIeB9DxGsMLUwToGoGXYFN3pRiug1Vu2HEaUYhXlMVmDM/WPxmkKo5pfgB19IrMddqwSfeKe1uamgjXksT4p1SxwHEa+iXIbVrRSGeyrKVF8qyFYV4zdVyh7PDW3OI1wpS3ccn3imtqIEp8doEh20x4rXBiNfWiHinIOK1gRamLVA1g67AJm9HMd3Wqt0w4rSnEK+dCsyZHyx+e0jVgVL8gGvplZhrdeQT7yPtbhphI14nE+J9pI4DiDfCL0Nq15lCPJVlZy+UZWcK8Tqo5Q5nh3fhEK8zpOrKJ95HWtFwU+IlBYfdMOIlYcTrZkS8jyDiJUEL0w2omkFXYJN3p5huF9VuGHF6UIjXXQXmzA8Wvwek6kkpfsC19ErMtXrxiXcyJOL1NiHeSXUcRrzeUO3upxBPZXk/Rrz7KcRT1e0Vzg7vwyHe/ZDqAT7xTvKI1zc47IcRry9GvH5GxDsJEa8vtDD9OMTDJu9PMd0+qt0w4iRTiNdfBebMDxY/GVKlUIofcC29EnOtAXzindDupsU24g00Id4JdRxAvMV+GVK7VArxVJapXijLVArxUtRyh7PDB3GIlwqpBvOJd0IrWmRKvCHB4YMY8YZgxHvQiHgnIOINgRbmQaBqBl2BTf4QxXRVXQdjxBlKId5DKjBnfrD4QyHVMErxA66lV2Ku9TCfeMe1u2mejXiPmBDvuDoOIN48vwyp3aMU4qksH/VCWT5KId4wtdzh7PDHOMR7FFI9zifeca1orinxhgeHIzDiDceIN8KIeMch4g2HFmYEUDWDrsAmT6OY7mOq3TDijKQQL00F5swPFn8kpBpFKX7AtfRKzLWe4BPvQ+1uOmQj3pMmxPtQHQcQ75BfhtTuKQrxVJZPeaEsn6IQb5Ra7nB2+GgO8Z6CVGP4xPtQKzpoSryxweHTGPHGYsR72oh4H0LEGwstzNNA1Qy6Apv8GYrpjlbthhFnHIV4z6jAnPnB4o+DVOMpxQ+4ll6JudYEPvGOaXfTDhvxJpoQ75g6DiDeDr8MqV06hXgqy3QvlGU6hXjj1XKHs8O9HOKlQ6oMPvGOaUViSrxJweFkjHiTMOJNNiLeMYh4k6CFmQxUzaArsMmnUEzXq9oNI85UCvGmqMCc+cHiT4VU0yjFD7iWXom51rN84h3V7qbiNuI9Z0K8o+o4gHjF/TKkdtMpxFNZTvdCWU6nEG+aWu5wdvjzHOJNh1Qz+MQ7qhUVMyXezODwBYx4MzHivWBEvKMQ8WZCC/MCUDWDrsAmn0Ux3edVu2HEmU0h3iwVmDM/WPzZkGoOpfgB19IrMdd6kU+8I9rdtNZGvLkmxDuijgOIt9YvQ2o3j0I8leU8L5TlPArx5qjlDmeHz+cQbx6kWsAn3hGtaI0p8RYGh4sw4i3EiLfIiHhHIOIthBZmEVA1g67AJl9MMd35qt0w4iyhEG+xCsyZHyz+Ekj1EqX4AdfSKzHXeplPvMPa3TTGRrxXTIh3WB0HEG+MX4bUbimFeCrLpV4oy6UU4r2kljucHf4qh3hLIdUyPvEOa0WjTYm3PDh8DSPecox4rxkR7zBEvOXQwrwGVM2gK7DJV1BM91XVbhhxVlKIt0IF5swPFn8lpFpFKX7AtfRKzLVe5xPvkHY31bMRb7UJ8Q6p4wDi1fPLkNqtoRBPZbnGC2W5hkK8VWq5w9nhaznEWwOp3uAT75BWVNeUeOuCw/UY8dZhxFtvRLxDEPHWQQuzHqiaQVdgk2+gmK666/IGRpyNFOJtUIE584PF3wip3qQUP+BaeiXmWpv4xDuo3U1eG/HeMiHeQXUcQDyvX4bUbjOFeCrLzV4oy80U4r2pljucHf42h3ibIdUWPvEOakXppsTbGhy+gxFvK0a8d4yIdxAi3lZoYd4BqmbQFdjk71JM923Vbhhx3qMQ710VmDM/WPz3INU2SvEDrqVXYq71Pp94B7S7aYCNeNtNiHdAHQcQb4BfhtTORyGeytLnhbL0UYi3TS13ODtcOMTzQaodfOId0IpSTIm3MzjchRFvJ0a8XUbEOwARbye0MLuAqhl0BTb5borpimo3jDh7KMTbrQJz5geLvwdS7aUUP+BaeiXmWvv4xNuv3U0bbcT7wIR4+9VxAPE2+mVI7fZTiKey3O+FstxPId5etdzh7PADHOLth1QH+cTTr8IGU+IdCg4PY8Q7hBHvsBHx9kPEOwQtzGGgagZdgU1+hGK66lT1IEacoxTiHVGBOfODxT8KqY5Rih9wLb0Sc60P+cT7QLubStuId9yEeB+o4wDilfbLkNqdoBBPZXnCC2V5gkK8Y2q5w9nhJznEOwGpPuIT7wOtqJQp8U4Fhx9jxDuFEe9jI+J9ABHvFLQwHwNVM+gKbPJPKKZ7UrUbRpxPKcT7RAXmzA8W/1NIdZpS/IBr6ZWYa33GJ94+7W6KtxHvcxPi7VPHAcSL98uQ2n1BIZ7K8gsvlOUXFOKdVssdzg7/kkO8LyDVV3zi6e9/xJkS7+vg8BuMeF9jxPvGiHj7IOJ9DS3MN0DVDLoCm/xbiul+qdoNI84ZCvG+VYE584PFPwOpvqMUP+BaeiXmWt/zibdXu5uSbcT7wYR46sr3B4B4yX4ZUruzFOKpLM96oSzPUoj3nVrucHb4jxzinYVUP/GJp38u0d+UeD8Hh79gxPsZI94vRsTbCxHvZ2hhfgGqZtAV2OS/Ukz3R9VuGHF+oxDvVxWYMz9Y/N8g1e+U4gdcS6/EXOsPPvH2aHdToo14f5oQb486DiBeol+G1O4chXgqy3NeKMtzFOL9rpY7nB1+nkO8c4jKHcEn3h6tyGNIPLcjOLQg4rkdEPHclhHx9iDEczughbGAqoXeFeDkTorpnlftBhHH7WIQz+1UgTnzg8V3QapISvEDrqVXQq7lzscnnv77UxFB4rmjTIi3Wx0HJeOOprBMzR9NeRemO1ItUTi7MoZCKXc0pIo12BLAR1KB0/ltvCukNo4zaeNd6jisjeMpbazmj0+neLZao3hvmBr0kldypz4P20ommKzkTnUctnMSoPXOT1lvlWV+bFXyU8xNdUV+CGbuGChLN6N3/VVyp3POJNyQysM4k7hIFr0SI0sixTg8KjBmiW5gi2S/Znileu2WlSrfXju5e+qwAYMnH43YlLaoZkryoMFJyYOBD/Sv9l/tv9p/tf9qw6e9ePvGNd02fs42ftY2nmYbT7WNp9jGk23jSbax7VaRy2sbp9vGE23jCbbxeNt4nG38jG38tG081jYeYxuPto2fso2ftI2fsI1H2cYjbeM023iEbTzcNn7cNn7MNn7UNn7k3z78V/uv9l/tv9r/itYR9OLIY7bxUdv4iG182DY+ZBsftI0P2Mb7beMPbON9tvFe23iPbbzbNt5lG++0jXfYxmIb+2zj7bbx+7bxNtv4Pdv4Xdv4Hdt4q228xTZ+2zbebBu/ZRtvso3ftI03BsdRpW3jUrZxSdv4Ctv4ctu4hG18mW1c3DYuZhsXtY2L2MaFbeNCtnFB27iAbZxoG3tsY7dtnN82TrCN423jONs41jaOsY2jbeMo2zifbRxpG7tsY6dtbNnGtv6P7m4bd7ONk2zjrrZxF9u4s23cyTbuaBt3sI3b28btbOO2tnEb2/g+27i1bdzKNm5pG7ewjZvbxs1s46a2cRPbuLFt3Mg2bmgbN7CN69vG9WzjurZxHdu4tm1c62iErW3i7rWNq9nG1W3jGrZxTdu4lm1smyLONnWcLaU4W6pxto8QZ/tocbaPHGcrRZytRHFNMn2EmD9s4z9t43O28fngONZ2BRJr68ZYW5fG2ro31tbVsbZuj7Xtgljb7oi17ZpY226Kte2y2LijEepmfAFxFxR3IXEXFncRcRcVdzFxFxf3ZeIuIe7LxX2FuEuKu5S4S4u7jLivFPdV4r5a3NeI+1pxlxV3OXGXF/d14r5e3DeI+0Zx3yTuCuKuKO5K4q4s7irivlnct4j7VnHfJu7bxX2HuO8U913iriruu8V9j7jvFXc1cVcXdw1x1xR3LXHXFncdcdcVdz1x1xd3A3E3FHcjcTcWdxNxNxV3M3E3F3cLcbcUdytxtxb3feJuI+624m4n7vbi7iDujuLuJO7O4u4i7q7iThJ3N3F3F3cPcavb7r3E3Vvc94u7j7gfEHdfcfcTd39xJ4s7RdwDxD1Q3KniVg/5B4t7iLgfFPdD4h4q7mHifljcj4j7UXE/Ju7HxT1c3CPEnSbukeIeJe4nxP2kuJ8S92hxjxH3WHE/Le5nxD1O3OPFPUHcE8WdLm6vuDPEPUnck8U9RdxTxT1N3M+K+zlxTxf38+KeIe6Z4n5B3LPEPVvcc8T9orjninueuOeLe4G4F4p7kbgXi3uJuF8S98vifkXcS8X9qriXiXu5uF8T9wpxrxT3KnG/Lu7V4l4j7rXifkPc68S9XtwbxL1R3G+Ke5O43xL3ZnG/Le4t4t4q7nfE/a643xP3NnG/L+7t4vaJW8S9Q9zqhrVqHvVMco+494p7n7g/EPd+cR8Q90FxHxL3YXEfEfdRcR8T94fiPi7uE+I+qb87mkE659mVacMm2E4nEmynGQm2048E22lJgu10JcF2GpNgO71JsJ32JNhOhxJsp0kJttOnBNtpVYLtdCvBdhqWYDs9S/gw00eIt90RiLfdKYi33UGIt91ZiLfdcYi33YmIt92hiLfduYi33dGIt93piLfdAYm33RmJt90xibfdSYm33WGJf159BHF/JO5T4v5Y3J+I+1Nxnxb3Z+L+XNxfiPtLcX8l7q/F/Y24vxX3GXF/l/lRnDvdmza/empq0rCjEcqsvhf3D+I+K+4fxf2TuH8W9y/i/lXcv4n7d3H/Ie4/xX1O3OfFEyEeh3gs8TjF4xJPpHjyiSdKPNHYt4G+j4ZkP2Cys5jsR0z2Eyb7GZP9gsl+xWS/YbLfMdkfmOxPTHYOk52HZJ4ITObAZBYmc2IyFyaLxGT5MFkUJouOzrzDPbYdXko8MeKJFU+ceOLFkyCe/OJxi8cjnkTxFBBPQfEUEk9h8RQRT1HxFBNPcfFcJp4S4rlcPFeIp6R4VJDS4ikjnivFc5V4rhbPNeK5VjxloZ3vicE+Riwmi8Nk8ZgsAZPlx2RuTObBZImYrAAmK4jJCmGywpisCCYrismKYbLimOwyTFYCk12Oya7AZCUxWSlMVhqTlcFkV2KyqzDZ1ZjsGkx2LSYrm7djlhNPefFcJ57rxXODeG4Uz03iqSCeiuKpJJ7K4qkinpvFc4t4bhXPbeK5XTx3iOdO8dwlnqriuVs894jnXvFUE0918dQQT03x1BJPbfHUwRyzHPYxymOy6zDZ9ZjsBkx2Iya7CZNVwGQVMVklTFYZk1XBZDdjslsw2a2Y7DZMdjsmuwOT3YnJ7sJkVTHZ3ZjsHkx2LyarhsmqY7IamKwmJquFyWpjsjp5O2Zd8dQTT33xNBBPQ/E0Ek9j8TQRT1PxNBNPc/G0EE9L8bQST2vx3CeeNuJpK5524mkvng7i6SieTuLpLJ4u4ukqniTxdBNPd/H0EE9PzDHrYh+jHiarj8kaYLKGmKwRJmuMyZpgsqaYrBkma47JWmCylpisFSZrjcnuw2RtMFlbTNYOk7XHZB0wWUdM1gmTdcZkXTBZV0yWhMm6YbLumKwHJuuZt2P2Ek9v8dwvnj7ieUA8fcXTTzz9xZMsnhTxDBDPQPGkikcFGiyeIeJ5UDwPiWeoeIaJ52HxPCKeR8XzmHgeF89w8YwQT5p4RopnlHiewByzF/YxemOy+zFZH0z2ACbri8n6YbL+mCwZk6VgsgGYbCAmS8VkgzDZYEw2BJM9iMkewmRDMdkwTPYwJnsEkz2KyR7DZI9jsuGYbAQmS8NkIzHZKEz2RN6O+aR4nhLPaPGMEc9Y8TwtnmfEM04848UzQTwTxZMuHq94MsQzSTyTxTNFPFPFM008z4rnOfFMF8/z4pkhnpnieUE8s8QzWzxzxPOieOZijvkk9jGewmSjMdkYTDYWkz2NyZ7BZOMw2XhMNgGTTcRk6ZjMi8kyMNkkTDYZk03BZFMx2TRM9iwmew6TTcdkz2OyGZhsJiZ7AZPNwmSzMdkcTPYiJpubt2POE8988SwQz0LxLBLPYvEsEc9L4nlZPK+IZ6l4XhXPMvEsF89r4lkhnpXiWSWe18WzWjxrxLNWPG+IZ5141otng3g2iudN8WwSz1vi2Yw55jzsY8zHZAsw2UJMtgiTLcZkSzDZS5jsZUz2CiZbislexWTLMNlyTPYaJluByVZislWY7HVMthqTrcFkazHZG5hsHSZbj8k2YLKNmOxNTLYJk72FyTbn7Zhvi2eLeLaK5x3xvCue98SzTTzvi2e7eHziEfHsEM9O8ewSz27x7BHPXvHsE88H4tkvngPiOSieQ+I5LJ4j4jkqnmPi+VA8x8VzQjwnMcd8G/sYWzDZVkz2DiZ7F5O9h8m2YbL3Mdl2TObDZILJdmCynZhsFybbjcn2YLK9mGwfJvsAk+3HZAcw2UFMdgiTHcZkRzDZUUx2DJN9iMmOY7ITmOxk3o75kXhOiedj8Xwink/Fc1o8n4nnc/F8IZ4vxfOVeL4Wzzfi+VY8Z8TznXi+F88P4jkrnh/F85N4fhbPL+L5VTy/ied38fwhnj/Fc0485yUxAnPMj7CPcQqTfYzJPsFkn2Ky05jsM0z2OSb7ApN9icm+wmRfY7JvMNm3mOwMJvsOk2HfY/Vg32P1YN9j9WDfY/Vg32P1YN9j9WDfY/Vg32P1YN9j9WDfY/Vg32P1YN9j9WDfY/Vg32NNjMjimJHpwdcoJgZfo5hoZX5pEfZipEQH8AqVTNMnhvoWyUQL+MOBkEI6QnktV6JzU/bX9OhmENcw5AU4iS7gbzuRNXaVzlzkfMEXXGUgr1VyFXUgr9ZxFRVXsTBVOH1T5pRjvGFfxHSTlUuEXl2UGBmmlYvMsnKOUF9NBmRi7+Z80GlMYj6D10O52oqrO/RusMS3GC9+ciXB828O9d1ck6CwUdCCvQWpkBQv7aV2iVEhdU60wUvtEqPUcVgyMYzX1fnnjwn5RY+2Fx1j7ulvfEgY6FB94nnvasdfSYOvTv5LbGN+bHAYh7lBLOZlcaUzb5op2CfNe2tlnPlLFQttwDjMfcLgEX+vQOgNGeP/KND82CeOZ7zoLzGfCow5aUKITpqBkqQbavndsEQpr6MMoVDuEBcKRI7nv4kc+xvhsaaOhBLJzzO/xOCwAGZ+iZj5FchifpPDWQ/IIhOhGQtQbE3tg0SsYfNBKuyzFDQwP2hPJ0Jv/f/rs+hV2GcpxDDSxATVPJAwv3IozMgKUxKNVLlCQrfyPCzRIqGe5EPXh85VWJubTK4LGwEkWJYxsQOYuBxjYguYuDxjYicw8XWMBrseaS/nq6FOjVx13MAopAuY+EbGxAhab2JMjFChAmNi5PZDRcbE0cDElRgTxwATV2ZMHAtMXIUxcRww8c2MieOBiW9hTIz8awe3MibOD0x8G2NiNzDx7YyJkYvJOxgTJwIT38mYuAAw8V2MiQsCE1dlTFwImPhuxsSFgYnvYUxcBJj4XsbERYGJqzEmLgZMXJ0xcXFg4hqMiS8DJq7JmLgEMHEtxsSXAxPXZkx8BTBxHcbEJYGJ6zImLgVMXI8xcWlg4vqMicsAEzdgTHwlMHFDxsRXARM3Ylx0N2YEbcK4M9EUujOxgrE6VwPpNWN85ubYXXyDW6JAVHWDGxIWUjdlka5oQUnTE0KaRZA0WzJ2RCtG0NaMoPcxgrZhBG3LCNqOEbQ9I2gHRtCOjKCdGEE7M4J2YQTtygiaxAjajRG0OyNoD0bQnoygvRhBezOC3s8I2ocR9AFG0L6MoP0YQfszgiYzgqYwgg5gBB3ICJrKCDqIEXQwI+gQRtAHGUEfYgQdygg6jBH0YUbQRxhBH2UEfYwR9HFG0OGMoL4RlKhplKgjKVFHUaI+QYn6JCXqU5SooylRx1CijqVEfZoS9RlK1HGUqOMpUSdQok6kRE2nRPVSomZQok6iRJ1MiTqFEnUqJeo0StRnKVGfo0SdTon6PCXqDErUmZSoL1CizqJEnU2JOocS9UVK1LmUqPMoUedToi6gRF1IibqIEnUxJeoSStSXKFFfpkR9hRJ1KSUq5e8yfMsoUZdTor5GibqCEnUlJeqqEKPCL9doh3xjxfc68pUVVztWku2hJFdDSbZnJdkBSnINlGTIXwOA5l4Lzd2LMvcbelFFVca8E/z2/PndBptnHWVLrqdE3UCJupES9U1K1E2UqG9Rom6mRH2bEnULJepWStR3KFHfpUR9jxJ1GyXq+5So2ylRfZSoQom6gxJ1JyXqLkrU3ZSoeyhR91Ki7qNE/YASdT8l6gFK1IOUqIcoUQ9Toh6hRD1KiXqMEvVDStTjlKgnKFFPUqJ+RIl6ihL1Y0rUTyhRP6VEPU2J+hkl6ueUqF9Qon5JifoVJerXlKjfUKJ+S4l6hhL1O0rU7ylRf6BEPUuJ+iMl6k+UqD9Tov5CiforJepvlKi/U6L+QYn6JyXqOUrU84yo4ojghHVwwlqcsE5OWBcnbKh/LA4/1GqLzZ8vxBetgx8rilOtaE7YGE7YWE7YOE7YeE7YBE7Y/Jywbk5YDydsIidsAU7YgpywhThhC3PCFuGELcoJW4wTtjgn7GWcsCU4YS/nhL2CE7YkJ2wpTtjSnLBlOGGv5IS9ihP2ak7Yazhhr+WELcsJW44Ttjwn7HWcsNdzwt7ACXsjJ+xNnLAVOGErcsJW4oStzAlbhRP2Zk7YWzhhb+WEvY0T9nZO2Ds4Ye/khL2LE7YqJ+zdnLD3cMLeywlbjRO2OidsDU7YmpywtThha3PC1uGErcsJW48Ttj4nbANO2IacsI04YRtzwjbhhG3KCduME7Y5J2wLTtiWnLCtOGFbc8LexwnbhhO2LSdsO07Y9pywHThhO3LCduKE7cwJ24UTtisnbBInbDdO2O6csD04YXtywvbihO3NCXs/J2wfTtgHOGH7csL244TtzwmbzAmbwgk7gBN2ICdsKifsIE7YwZywQzhhH+SEfYgTdign7DBO2Ic5YR/hhH2UE/YxTtjHOWGHc8KO4IRN44QdyQk7ihP2CU7YJzlhn+KEHc0JO4YTdiwn7NOcsM9wwo7jhB3PCTuBE3YiJ2w6J6yXEzaDE3YSJ+xkTtgpnLBTOWGnccI+ywn7HCfsdE7Y5zlhZ3DCzuSEfYETdhYn7GxO2DmcsC9yws7lhJ3HCTufE3YBJ+xCTthFnLCLOWGXcMK+xAn7MifsK5ywSzlhX+WEXcYJu5wT9jVO2BWcsCs5YVdxwr7OCbuaE3YNJ+xaTtg3OGHXccKu54TdwAm7kRP2TU7YTZywb3HCbuaEfZsTdgsn7FZO2Hc4Yd/lhH2PE3YbJ+z7nLDbOWF9nLDCCbuDE3YnJ+wuTtjdnLB7OGH3csLu44T9gBN2PyfsAU7Yg5ywhzhhD3PCHuGEPcoJe4wT9kNO2OOcsCc4YU9ywn7ECXuKE/ZjTthPOGE/5YQ9zQn7GSfs55ywX3DCfskJG/JbcTOgsF9nIP+00RDO5N9Ak5O+0PwtJ+wZTtjvOGG/54T9gRP2LCfsj5ywP3HC/swJ+wsn7K+csL9xwv7OCfsHJ+yfnLDnOGE5L921OC/dtTgv3bU4L921OC/dtTgv3bUiOWHzccJy3qVrcd6la3HepWtx3qVrcd6la3HepWslhPqyZugs2MoPnQVz/mTSCvmNu9hn8iCfybnSZHJdWAeUIOfdvVYBTjkLIuVMJNk15w2/FucNvxbnDb8W5w2/FucNvxbnDb8W5w2/FucNvxbnDb8W5w2/FucNvxbnDb8W5w2/FucNvxbnDb8W5w2/FucNvxbnDb8W5w2/FucNvxbnDb8W5w2/FucNvxbnDb8W5w2/FucNvxbnDb8W5w2/FucNvxbnDb9WZU5Yzht+Lc4bfi3OG34tzht+Lc4bfi3OG34tzht+Lc4bfi3OG34tzht+Lc4bfq178r6C/fb8+fMmYTlv+LU4b/i1OG/4tThv+LU4b/i1OG/4tThv+LU4b/i1OG/4tThv+LU4b/i1OG/4tThv+LU4b/i1OG/4tThv+LU4b/i1OG/4tThv+LVacMJy3vBrcd7wa3He8Gtx3vBrhfyGX+zGfFvoxryTM3k7ZPKYkN9AczSiNDR9e7/KkbdMYhbkmORpe5IOcRfI+aPUzazK7THI0EyqQrmVZY1dVTjX4qXYVEVyL3F6UFU0j4WocVFVLK/lOhFQFc9zUc9eUF2W99Jn/K0qoWmQb/9SXa5TnferrtCqzitVSaQl3aX+UjXOS6ViffR3rIF5q05dmPFEnqqPA3lVzEv1ycXsZ+Wh+jT4Gcvlrjptq8TqXFWf2evVNDfV55mqWisX1ReZa78qZ9WXWVZoRI6qr7Ku44icVNm/PNomB1UO3/LsmF31bQ6dUzab6kxO/VU5q+o7JeqeZxM6zCyvQ4Y+srhLQ+1dBmrvK6H2vgpq76uh9r4Gau9rofYuC7V3Oai9y0PtfR3U3tdD7X0D1N43Qu19E9TeFaD2rgghtRKE1MoQUqtASL0ZQuotEFJvhZB6G4TU2yGk3pGBIPXODASpd0FIrQoh9W6N6m+k3sM6y+sIWd69kOVVgyyvOmR5NSDLqwlZXi3I8mpDllcHsry6kOXVgyyvPmR5DSDLawhZXiPI8hpDltcEsrymkOU1gyyvOWR5LSDLawlZXivI8lpDlncfZHltIMtrC1leO8jy2kOW1wGyvI6Q5XViWV4nyPI6Q5bXBbK8rpDlJUGW1w2yvO6Q5fWALK8nZHm9IMvrDVne/ZDl9YEs7wHI8vpCltcPsrz+kOUlQ5aXAlneAMjyBkKWlwpZ3iDI8gZDljcEsrwHIct7CLK8oZDlDYMs72HI8h6BLO9RluV1hizvMcjyHocsbzhkeSMgy0uDLG8kZHmjIMt7ArK8JyHLewqyvNGQ5Y2BLG8sZHlPQ5b3DGR54yDLGw9Z3gTI8iZClpcOWZ4XsrwMyPImQZY3GbK8KZDlTYUsbxpkec9ClvccZHnTIct7nmV5XSDLmwFZ3kzI8l6ALG8WZHmzIcubA1nei5DlzYUsbx5kefMhy1sAWd5CyPIWQZa3GLK8JZDlvQRZ3suQ5b0CWd5SyPJehSxvGWR5yyHLew2yvBWQ5a2ELG8VZHmvQ5a3GrK8NZDlrYUs7w2W5XWFLG8dZHnrIcvbAFneRsjy3oQsbxNkeW9BlrcZsry3IcvbAlneVsjy3oEs713I8t6DLG8bZHnvQ5a3HbI8H2R5AlneDsjydkKWtwuyvN2Q5e2BLG8vZHn7IMv7ALK8/ZDlHYAs7yBkeYdYlpcEWd5hyPKOQJZ3FLK8Y5DlfQhZ3nHI8k5AlncSsrzvIcv7AbK8s5Dl/QhZ3k+Q5f0MWd4vkOX9Clneb5Dl/Q5Z3h+Q5f0JWd45yPLOI5bniUAsz+NALM9jIZbncSKW53EhlueJRCzPkw+xPE8UYnmeaJbldUMszxODWJ4nFrE8TxxieZ54xPI8CYjlefIjludxI5bn8SCW50lELM9TALE8T0HE8jyFEMvzFEYsz1MEsTxPUcTyPMUQy/MURyzPcxlieZ4SiOV5Lkcsz3MFYnmekpDllYIsrzRkeWUgy7sSsryrIMu7GrK8ayDLuxayvLIsy+sOWV45yPLKQ5Z3HWR510OWdwNkeTdClncTZHkVIMurCFleJcjyKkOWVwWyvJshy7sFsrxbIcu7DbK82yHLuwOyvDshy7sLsryqkOXdDVnePZDl3QtZXjXI8qpDllcDsryakOXVgiyvNmR5dViW1wOyvLqQ5dWDLK8+ZHkNIMtrCFleI8jyGkOW1wSyvKaQ5TWDLK85ZHktIMtrCVleK8jyWkOWdx9keW0gy2sLWV47yPLaQ5bXAbK8jpDldYIsrzNkeV0gy+sKWV4SZHndIMvrDlleD8jyerIsrydkeb0gy+sNWd79kOX1gSzvAcjy+kKW1w+yvP6Q5SVDlpcCWd4AyPIGQpaXClneIMjyBkOWNwSyvAchy3sIsryhkOUNgyzvYcjyHoEs71HI8h6DLO9xyPKGQ5Y3ArK8NMjyRkKWNwqyvCdYltcLsrwnIct7CrK80ZDljYEsbyxkeU9DlvcMZHnjIMsbD1neBMjyJkKWlw5ZnheyvAzI8iZBljcZsrwpkOVNhSxvGmR5z0KW9xxkedMhy3sesrwZkOXNhCzvBcjyZkGWNxuyvDmQ5b0IWd5cluX1hixvHmR58yHLWwBZ3kLI8hZBlrcYsrwlkOW9BFney5DlvQJZ3lLI8l6FLG8ZZHnLIct7DbK8FZDlrYQsbxVkea9Dlrcasrw1kOWthSzvDcjy1kGWtx6yvA2Q5W2ELO9NyPI2QZb3FmR5m1mWdz9keW9DlrcFsrytkOW9A1neu5DlvQdZ3jbI8t6HLG87ZHk+yPIEsrwdkOXthCxvF2R5uyHL2wNZ3l7I8vZBlvcBZHn7Ics7AFneQcjyDkGWdxiyvCOQ5R2FLO8YZHkfQpZ3HLK8E5DlnWRZXh/I8j6CLO8UZHkfQ5b3CWR5n0KWdxqyvM8gy/scsrwvIMv7ErK8ryDL+xqyvG8gy/sWsrwzkOV9B1ne95Dl/QBZ3lnI8n6ELO8nyPJ+hizvF8jyfoUs7zfI8n6HLO8PyPL+hCzvHGR55xHLSyT9g3IPaDP8NvR/6+jvf0JVP3nI/4Qq9gLCfkiKrmGcgvbnhE3mhE3hhB3ACTuQEzaVE3YQJ+xgTtghnLAPcsI+xAk7lBOWZDUPc8I+wgn7KCfsY5ywj3PCDueEHcEJm8YJO5ITdhQn7BOcsE9ywj7FCTuaE3YMJ+xYTtinOWGf4YQdxwk7nhN2AifsRE7YdE5YLydsBifsJE7YyZywUzhhp3LCTuOEfZYT9jlO2OmcsM9zws7ghJ3JCfsCJ+wsTtjZnLBzOGFf5ISdywk7jxN2PifsAk7YhZywizhhF3PCLuGEfYkT9mVO2Fc4YZdywr7KCbuME3Y5J+xrnLArOGFXcsKu4oR9nRN2NSfsGk7YtZywb3DCruOEXc8Ju4ETdiMn7JucsJs4Yd/ihN3MCfs2J+wWTtitnLDvcMK+ywn7HifsNk7Y9zlht3PC+jhhhRN2ByfsTk7YXZywuzlh93DC7uWE3ccJ+wEn7H5O2AOcsAc5YQ9xwh7mhD3CCXuUE/YYJ+yHnLDHOWFPcMKe5IT9iBP2FCfsx5ywn3DCfsoJe5oT9jNO2M85Yb/ghP2SE/YrTtivOWG/4YT9lhP2DCfsd5yw33PC/sAJe5YT9kdO2J84YX/mhP2FE/ZXTtjfOGF/54T9gxP2T07Yc5yw5ylhnZw/znE6OGEtTlgnJ6yLEzaSEzYfJ2wUJ2w0J2wMJ2wsJ2wcJ2w8J2wCJ2x+Tlg3J6yHEzaRE7YAJ2xBTthCnLCFOWGLcMIW5YQtxglbnBP2Mk7YEpywl3PCXsEJW5ITthQnbGlO2DKcsFdywl7FCXs1J+w1nLDXcsKW5YQtxwlbnhP2Ok7Y6zlhb+CEvZET9iZO2AqcsBU5YStxwlbmhK3CCXszJ+wtnLC3csLexgl7OyfsHZywd3LC3sUJW5UT9m5O2Hs4Ye/lhK3GCVudE7YGJ2xNTthanLC1OWHrcMLW5YStxwlbnxO2ASdsQ07YRpywjTlhm3DCNuWEbcYJ25wTtgUnbEtO2FacsK05Ye/jhG3DCduWE7YdJ2x7TtgOnLAdOWE7ccJ25oTtwgnblRM2iRO2Gydsd07YHpywPTlhe3HC9uaEvZ8Ttg8n7AOcsH05YftxwnLef+vkvP/WyXn/rZPz/lsn5/23zlROWM77b52c9986Oe+/dXLef+vkvP/WyXn/rZPz/lsn5/23Ts77b52c9986Oe+/dXLef+vkvP/WyXn/rZPz/lsn5/23Ts77b52c9986Oe+/dXLef+vkvP/WyXn/rZPz/lsn5/23Ts77b52c9986Oe+/dXLef+vkvP/WyXn/rZPz/ltnBics5/23Ts77b52c9986Oe+/dXLef+vkvP/WyXn/rZPz/lsn5/23Ts77b52c9986Oe+/dXLef+vkvP/WyXn/rZPz/lsn5/23Ts77b52c9986Oe+/dXLef+tcpP+HuEzCct5/6+S8/9bJef+tE3r/beOe/VNSh9VP7jN4kuOo86my5cpfd/0NN95UoWKlylVuvuXW226/4867qt59z73VqteoWat2nbr16jdo2Khxk6bNmrdo2ar1fW3atmvfoWOnzl26JnXr3qNnr97393mgb7/+ySkDBqYOGjzkwYeGDnv4kUcfe3y4b4QvzTfSN8r3hO9J31O+0b4xvrG+p33P+Mb5xvsm+Cb60n1eX4Zvkm+yb4pvqm+a71nfc77pvud9M3wzfS/4Zvlm++b4XvTN9c3zzfct8C30LfIt9i3xveR72feKb6nvVd8y33Lfa74VvpW+Vb7Xfat9a3xrfW/41vnW+zb4Nvre9G3yveXb7Hvbt8W31feO713fe75tvvd9230+n/h2+Hb6dvl2+/b49vr2+T7w7fcd8B30HfId9h3xHfUd833oO+474Tvp+8h3yvex7xPfp77Tvs98n/u+8H3p+8r3te8b37e+M77vfN/7fvCd9f3o+8n3s+8X36++33y/+/7w/ek75zsvjghxOMRhicMpDpc4IsWRTxxR4ogWR4w4YsURJ454cSSII7843OLwiCNRHAXEUVAchcRRWBxFxFFUHMXEUVwcl4mjhDguF8cV4igpjlLiKC2OMuK4UhxXieNqcVwjjmvFUVYc5cRRXhzXieN6cdwgjhvFcZM4KoijojgqiaOyOKqI42Zx3CKOW8VxmzhuF8cd4rhTHHeJo6o47hbHPeK4VxzVxFFdHDXEUVMctcRRWxx1xFFXHPXEUV8cDcTRUByNxNFYHE3E0VQczcTRXBwtxNFSHK3E0Voc94mjjTjaiqOdONqLo4M4Ooqjkzg6i6OLOLqKI0kc3cTRXRw9xNFTHL3E0Vsc94ujjzgeEEdfcfQTR39xJIsjRRwDxDFQHKniGCSOweIYIo4HxfGQOIaKY5g4HhbHI+J4VByPieNxcQwXxwhxpIljpDhGieMJcTwpjqfEMVocY8QxVhxPi+MZcYwTx3hxTBDHRHGki8MrjgxxTBLHZHFMEcdUcUwTx7PieE4c08XxvDhmiGOmOF4QxyxxzBbHHHG8KI654pgnjvniWCCOheJYJI7F4lgijpfE8bI4XhHHUnG8Ko5l4lgujtfEsUIcK8WxShyvi2O1ONaIY6043hDHOnGsF8cGcWwUx5vi2CSOt8SxWRxvi2OLOLaK4x1xvCuO98SxTRzvi2O7OHziEHHsEMdOcewSx25x7BHHXnHsE8cH4tgvjgPiOCiOQ+I4LI4j4jgqjmPi+FAcx8VxQhwnxfGROE6J42NxfCKOT8VxWhyfieNzcXwhji/F8ZU4vhbHN+L4VhxnxPGdOL4Xxw/iOCuOH8Xxkzh+Fscv4vhVHL+J43dx/CGOP8VxThznxYoQyyGWJZZTLJdYkWLlEytKrGixYsSKFStOrHixEsTKL5ZbLI9YiWIVEKugWIXEKixWEbGKilVMrOJiXSZWCbEuF+sKsUqKVUqs0mKVEetKsa4S62qxrhHrWrHKilVOrPJiXSfW9WLdINaNYt0kVgWxKopVSazKYlUR62axbhHrVrFuE+t2se4Q606x7hKrqlh3i3WPWPeKVU2s6mLVEKumWLXEqi1WHbHqilVPrPpiNRCroViNxGosVhOxmorVTKzmYrUQq6VYrcRqLdZ9YrURq61Y7cRqL1YHsTqK1UmszmJ1EaurWElidROru1g9xOopVi+xeot1v1h9xHpArL5i9ROrv1jJYqWINUCsgWKlijVIrMFiDRHrQbEeEmuoWMPEelisR8R6VKzHxHpcrOFijRArTayRYo0S6wmxnhTrKbFGizVGrLFiPS3WM2KNE2u8WBPEmihWulhesTLEmiTWZLGmiDVVrGliPSvWc2JNF+t5sWaINVOsF8SaJdZsseaI9aJYc8WaJ9Z8sRaItVCsRWItFmuJWC+J9bJYr4i1VKxXxVom1nKxXhNrhVgrxVol1utirRZrjVhrxXpDrHVirRdrg1gbxXpTrE1ivSXWZrHeFmuLWFvFekesd8V6T6xtYr0v1naxfGKJWDvE2inWLrF2i7VHrL1i7RPrA7H2i3VArINiHRLrsFhHxDoq1jGxPhTruFgnxDop1kdinRLrY7E+EetTsU6L9ZlYn4v1hVhfivWVWF+L9Y1Y34p1RqzvxPperB/EOivWj2L9JNbPYv0i1q9i/SbW72L9IdafYp0T67w4I8SpoGyJ0ylOlzgjxZlPnFHijBZnjDhjxRknznhxJogzvzjd4vSIM1GcBcRZUJyFxFlYnEXEWVScxcRZXJyXibOEOC8X5xXiLCnOUuIsLc4y4rxSnFeJ82pxXiPOa8VZVpzlxFlenNeJ83px3iDOG8V5kzgriLOiOCuJs7I4q4jzZnHeIs5bxXmbOG8X5x3ivFOcd4mzqjjvFuc94rxXnNXEWV2cNcRZU5y1xFlbnHXEWVec9cRZX5wNxNlQnI3E2VicTcTZVJzNxNlcnC3E2VKcrcTZWpz3ibONONuKs50424uzgzg7irOTODuLs4s4u4ozSZzdxNldnD3E2VOcvcTZWz3iV4/j1aNz9ZhbPZJWj4/Vo171WFY9QlWPO9WjSfUYUT3yU4/n1KM09dhLPaJSj5PUox/1mEY9UlGPP9SjCvVYQT0CULfr1a11dRtc3bJWt5fVrWB121bdYlW3Q9WtS3WbUd0SVLfv1K02dVtM3cJSt5vUrSF1G0fdclG3R9StDHXbQd0iUJfz6tJbXSarS1p1+akuFdVlnboEU5dL6tJGXYaoSwZ1eq9OxdVpszrFVaej6tRRneapU7IlLXoOHpKaXCtpcNLRiLIRDsvpiswXFR0TGxefkN/tSSxQsFDhIkWLFb+sxOVXlCxVusyVV119zbXp6Ucj6mWkzavevU9qoYydu6K+PLv9nd7p6Rd+VCT7j2pk7Hwlbk+NDbOiOwd+VCv7jxpk7Hy69Z03XN/7vW8DP2qTsfO9hEGDkmXlycCPhmQ/8KHsP3o4Y+ejvtSF5xJf+jTwI9/IjJ2Ldz08d8/l39x+8Wfjsifrm5rDz57N2Bn97YOti21r2eriz97I2Hnk7etb7K+dr1TgZ8rocvih684cfhj5Ww4/jJqV/aNI1Jycfrg4px++lNMPV+b0w9U5/fCNnH64Pqcfbsnph+/k9MPtOf1Qcvrh7px+uDenHx7J6YfHcvrh8Zx+eDKnH36e0w+/zOmHZ3L64fc5/fCXjJ033Xa4wrt7ox84GlElbUntoQNSew4a1CcleVK6/pZ0q1APuD/UA3qGekDpUA/oHuoB/UI9ICnUA/qEekB/ell7hHpAl1APGBTqAQNDPSA11AMG05vvEfoGCrmXkulVeoxe1j705itNL2vKP69bB6f937f7/y9tJuRe6kVPaeg/z1uH0o3MynwAdFc6Bvr3okIPC/zDThfPEn/99yzx37PEf88Sc/7v37PEf88Sw5XSv2eJ/54l5vLfv2eJ/54l5vbfP+Ms8bd/zxL/PUv89ywx5//+PUv89ywxXCn9e5b471liLv/9e5b471libv/9M84Sz2XsHP3R+YPjHin+TfAx9PmMneUr3uU76X7u/aMR1f5/PHX8X4Dxv6cs/4xTlh50Tw95P/x7UkRZuJDXoT+9Ssn01gh5HUI+i0qip8QHCv8EO+mft4H+gedp/15w/jNaI4k+A/9ycAj9Q6fSjez/6HVLdGwOX5+Njs/ph4Vz+mHRnH5YPKcflsjph1fl9MNrcvrhdTn98IacfnhTTj+smNMP78jph1Vz+uG9Of2wek4/rJ/TDxvm9MNmOf2wRU4/fCqHL6zH1snhh/GxOfww4f0cfuh5ImPn09f1uu+xMquaHw39XkZL+n4K2Zv5J5mpdKvtRQcS/zMMppt573/emcS/Jzf/jFOPnv+8z/DQP+8uXjL9Q/Mv4PvQV3owPaVkuvP9Ay8nBtCRFfI6PPj/442UfnQ+hNytN9E/NP+8lQ+UPv+8lLqFesAwekrd6Xu6H/2A/wWgdP0fOOfr8s/7DP8Ll8chl/UfeHnchd58/8DL43J0sPMPKE83spBTunhT1jM6+4swxPNMTj+cn7Hz2tubO0oM3n/8aESnUGdsRr82TfrnWSf/VIJfJT7o+WXlE4l/1dX9n5dSD/rC8b87wb9xPoT+Gfit0ed/YOEeon9o/hdG+LfA/sUupUp8u+/7z7sFVp/urf/A73T9A5/P/QNTCnk/DKU73/+XZ2Q30Fd6CL35+Hy4KtQDOtBPf1Lo++F/4Uzg/0uwh3xvJuJoROGMQ+WS/nrdf5fuKf0HJA3u061fzy4pqUnd1f882DPVH6rLQ6lJAwb0TD0aUSRtfs2U5EGDJ6UtqNUntWf3wVbawvrJg3v27pk6t3WVytoJHVmPd4R0/IhaWY+PCG3+4PGLWvTspz7sgz1DyyAiInsEK9QIL9dM6tevR9LgpJopA4Zd/Ci17DnZgs/zq71xF/434ZI/Qa0wfIJ5LQenDPBm5JJxljWqOb9On5799P8ydeSCv19YfOGTetJeqpOS2rNP72T//zvl0NVDBvfp12fwsL//cYqaF5u16V+9et/frZqe7k175e9/Z6J6jx7+rXAxC2/agpZ9+g/o1/PvdAKTZUnWFVIphtZKe6lGn+Qk/79qMbjpgCmBKM5FjdTUre5PSvZHCTbrxUkWNBjSf0D9XhkXDyic9kr95B5/Z5rrDrn15twTOrz1x/0rG1Tunzavldqt3ozg8YGteuETZxyq2GdQl0F9evTs0rNXL/ULtfGHqBlSu6T2VBs+kwFc3PjF/8sbv84lbvw6l9z0juwRnGHf+JY9uNoGtg9cKziwz5o2t3HKg5k24kXZ39so/4X/dV9QXvh1bfshl1qb2pdcG0d2S7HXIrMzFMzqDANS+zyYNLhn/UEtVVfX/qupa/7d0y0utnQ2XwhOdNEZLub8YutKuesd2fU5r0RwhvCYTZ1wmU2x/5zZbOzd028wyYOVoQzu0kdNlpTcvacaqMVJTup3NOLW/7KztL5EZ2n9f9BZdJ5x+YX/vSIPz8j0mzr2iTL9pm72eS/8pl7wN67Mv6kf/E1k5t80CP4mX+bfNAz+JirzbxoFfxOd+TeNg7+JyfybJsHfxGb+TdPgb+Iy/6ZZ8DfxmX/TPPibhMy/aRH8Tf7Mv2kZ/E0W524V/I0ne+ckXrJzFwgtgie7cyfagmV27oqZnfuNC6d0dXv6fegvi6h/wSGOqsC5Gnauv3Hm+htXrr+JzPU3+XL9TVSuv4nO9Tcxuf4mNtffxOX6m/hcf5OQ62/y5/obd66/yX0VEv1LlOmUOrz/nx3G/zQ9cnJw4eg8zgqy/i4vj3Zmd0vbD7L5pe0H2RzT9oNsnmn7QTbXtP0gm2/afpDNOW0/yOadth9kc0/bD7L5p+0H2RzU9oNsHmr7ga3Fs/zOY2vy8Jy5tQ7Xmdst/7kzt6U9evrvCKUM6tnlfnW6djSi5H/5TK3uJZ6p1f0fPFNDru5yP1O71E+Tw9lDaBsjwsp+9mB3usxnD8UCl8Q5aYPNNK91pcq3Z5Pay3rBml/5e0/+9f80HTDZJpjbcki3XDw7++23wO2tgpUiDpQ6fsuw64vcmtL0wSeOt3rl8UJzy592F/tmSNUHfz2akvt8rrmNh/TL5VOZ8cMVHt+qGy7fuuI/51uL+g0OONYN/3uO5Qx1f13qDgUcK69zE5tjZevWi2aVp5fVCeedqjr/2TtVV+ax5xfUHjgkqd+gXLb2xR0UPOCKtHn+H6rbX9k+Q2RonyGHM8GLDZr7eaAjj/NAK2ejiJirTpAze4Qt579rVC7zctsUEXmc6EbleYL8d6FK5/WsRJ3FA2ud+ySOi5Pk7tDOf5gLl/2PubC+/4PZY3DLoawZK/w3Fwf1TO6hHl70SkntMjip96CjEUX/955V/B95SJlw0ckzbelauZ6N1g7n2Wit/+zZaGLme1mrLzyEUPeyWv7VkeqXrVQ/ZuR+qyD3G1wZ+psU6en/sIcKRf5zp3grBuW07//bX06ofYn7vvb/4PVpfNi+tlA7DJ6W59cW8vz2QWB3t8yyu3P4vsGi3G4Fhme/1v6/+I2Dq/ygHjCkW78+3bv07TlsUJek5B5dBiSpJ7NJ/bok/V24oxE9/ssbuM0lbuA2/+ANXD/EDVz/wj4ofuF/S+f6IM6R64M4K9cHcc5cH8S5cn0QF5nrg7h8uT6Ii8r1QVx0rg/iYnJ9EBeb64O4LI8CW2e/mX3hN/fZ71xnW+v8oa11g+wR3KFFSMhuiZlummf9Jleo0bMcXyu0451Zj699iX5Qx/TmSeBhNvhNtoisB9YL8fo8M4s653rr5NL9In/OOHFkvXC3X35lA4e53WWePDjFxemzf2Yry7d/rgk+RG72F2EaKsBUT+7R7G+8XMCyN21xvZ5JA6qnpiYNs5/eJ3jT5v/9wyy0TgjhGZ/Bp1A3vRqlJPXI5QI3t4iuPCLWyRYx0y2RXCJG5hGxVraImZ405nppH5nt1pYr+HWQuU1SMl+hBQ/zX+Nc6q2tXD9oVE4f1DZL1o+a6eHopWYVmVtW0SFmlemxbCgxLxpR1oiR9oi5Lml0tiWNzHVJ7RFzXNLo0IoXldsHjc2zeNHZPmqmZ9OXmlWu5Y8LMatMT8UvNauY3LKKDzGrTM/jQ2iLuFzbIi7MbRGb20dNCPGjxud5ThZiVnG5ZZU/xKwyfbHhUrOKzy0rd4hZZTo7DKEt8ufaFvmztEUoiV48Lc2aZrQ9zfB/yyavb9Lk9Q2cvL5lk9c3afL6tkxe34jJ65s7eX07J69v4OQPz22MNuG6jdH9P3cb4w3/XQx1+6LLg0n9+qgrbP+fRqX2HDik5yD1rLnUf/nmRYNLvHnR4P+rZ82JF/63QB7PmnP7HrOV6/eYnbl+j9l1yaeQOTwVyhfqqXG2i337twMzX3MWz3yVtTF4kaUur+672P8t/m7/yf+pb+ROvrRvdl7aw5gc58zjMWUedInM67s7eZEnPO7bIFzuW/I/eBO5bHLK4D69hnXpntpT3Ynv0SV5SL9+fXr1Uc+Asv612r9Pgv59EpT3ZzN/ErThwpOgJn81Y82/e7FJoBX/fR6EbOUFqer5T0r//8mN+n/kqxrB7Zj7VzUuNbNa/9kv22XZqKuCpywt/mq3vzYdvj3D9QWL/5MPbK/MytqUwdn/KPzm//LubXSJu7dRGG4CZosQE/bdm+nPbTL/UXjD4AD8o/DcL4yynaxevCbKdjp68ZroUi9q6l1y/azstzhyfzYWG+rzx5CfjcXm/mwsOtTNgd/1jg5uwExunsMFx0V7WZT1RtCF30Rm6TZlrCXzuKUVnetXiRtkv9l1sVn/jlv+wv9ed8kUbUR/p0mOnRCVtROcwSpmKmp0UJDp5zHB9chxgtgLN1Ltc1yMFZUNEbHlAndCL/wgX/Cg+erjpfbMPnO+nGeOzvrRbD2W4wExWQ+ICR7w9zely1ygS2Zq3xTCY6zIXJ4Br8nxnFwhKz19mskVv9HdjByfL0dbJn9dPM34b2dzfpZtae6T+KscnpOdRuE62anynzvZebWXvyhd+qkMuwxWKf7333bz798N/X/+d0MFqX838U/5c5T/4GtoFnTpMmhgqnpMc+C/vLWbX+LWbv4PvjXYJMRbg02ybODLcv2GpyPXb3he+p+NNGX/2Uia6fvwLvHrkxFh//qk6dcfL35vsljlsncMeHZXoaPlrjxSbdPLN00ufvbqqkfX1Jtz5rdtv0Rc8vcmS2Q9vr4tY8eoKwdNixnvaLx55I0r42M3f159Vo2asv2Jp0u5X56V9cAGgQOvqxpzZv7Tjz8ZcWLhlxN+um59tRsTS1ZPvGnf8/tLJKd2KH4m64ENQ8v48qzHNwrxDxSzHN4YXCJHZt5U/+f8SenFewvGf1Ba1/APSnP/PmPm1wFcvP/ROPdD8mX+i37se5PZ/yQ4X/BkJoc/CL75woVVOfjNAhett+Z/acFd5ss6BF9Wh33uPNwd2WIRoTypzeHvg+/5r22t/0Sl8/qLbCvoafq/1b7H9EVJ4TmnbR6uc9o6/+k/sa6e6+1ZB3z78uKpcOAmUU5ed6lfP8nhTC3q0v4aPzKPW70h3m09H/qt3ujcb/VGhnqiZXQL7FJvnZ9LW1SjX1L3vjVShqYtbJXSIqlHn6FTctxk+eyf2jZdtr2f/b5zdK73nQN3l31vXvIlzblLbs4/c338UeuCQXXI9Q8LMntETiaX0+s8orpeCNw5r78ECf7Nee5/CODK44u4mfEfZR/m+ncS6mQn8yfJZ/9QuRwWszRQBdsd65xqkS+HWsT0CvTC7lzj51LlqLyrHNMnEHlfCM9TInO7131RkcOX/GPtSeXxpwdx2V5NZf8WsO7VVDG5rqgj94Ni/zqBvejki4Bz3r8ebeSYfyycXHSm07DsaLFFx/9ox5nHE0v7AlzYtLle34R4jR+ZK3wi8vgyuCPXZ2D1Qz89c4V+fZNp34XxPCGPS6Xc3mTmhC+WIvOoX2Q4T24yvRszj52Q+8vZ8mrqqFzve4Ujd0ceK+sM50TOXJ/nWlkR6ZuY2z7Ol4t72/4uLbt3/7/2ri1EriIN9zl9O5funkwyMz2DCxNhWXZZdjfBXVZYdtdgZoLgjCHqi0Sb0WnjeJkZM52giIooiBpURgWDF1BBgk8i+qAIguIF7YMBfRCZF8UHUfRF8VVnTJ9z6lTV/5+qU9WdPjPlS0z6nK/qVP3111//5atK98kQeF1oj0zd0SIfDdEB0PRitsFqrHlkNsHoJRKI3ai6p+M9EDrvzYTj8YysMZKw4DjGSPfNEPp53NRAKm2QDchlPBtOvB3xBuPlsDsvYS0WEdXrhAhnwOGcix/JYEFV0NXvYAWlRWFtU0HbK2ImR7ImKVl0RVrxW0nytEXisRYJ/QhhEThpRgs1iG4WC8Qjey/aUgW1QBJpLJiGBWs9K2iFN+y1qMQaE1ltVhYzsIp+iYylVQG/pMJaWpsqifLASLsHuHtV+aWDSydJPVqK8fkpNky8RTojj5+Kg+j2ctwUk5LTPQsl2FC7UlqCjQ8mG7lQ1o8vi+RQSNXMSC6dcOTHmNKdgqAqWVORuu+FNoOit+6Ct9tn/7/x3Ua6t06xoW+cwzP2G6em00Pdr59Lrg9plVqrK0vLnQ37fJMrHVEMfB8Z4lT7K7i61qbC2xdkCm9DBEZF5SPtFcqRiSIb+E5Eukzg2wS+gf8UA9/MgM2pxc3ns8XNA+sJTC29ePXFqYhXYVpJBOAmLANGBKCNh0jTAfZiikQE4AbMfy8CcCseW0oHWMAiSCIAS1g4RgTgNqxcQQRgkQXwpQBaLEBNCmCNBahLAdyOUeKJABzHGPFEADoswC4pgLtYgFEpgGUWYLcUwN0swB4pgBUWYEwK4EYWYFwK4A76wDmBRHqbchvPfvlIbxOO9E5oivQ22eP3RGyoU6MxSXaNOe1PkjsR0Nwk29wk4gOeFHCYZocs6ocs6Ycs64es6Ies6od09EO6uRAiTz+krx+yph+yrh+yoR9yJBdqY1cuVHAf1vhoLmZ8dy6EyMmF2ijlQoj27FRNNJILTZQPY9BsukM9PX1Y42O5+PDxnWoTjffDNFD0ap4AE08szFUn5Ej4n7wXw4e9GBVNXgwfSSJgvBhjZNeYiSB+BZsbY5sbQ+Z2TGDjyg5Z1A9ZysWHO/ohR/VDjuRienaZGR/mGd+dCyHy9EPuyYW+rOViekZzMT350JdeLuTSzcWMj+ZiQfZBLhv6Iau5+PB8mKwjubCJ8jHj+TBZx3eq5eYYm8jYREOoiUq5kMu6fshyLqan0Q/TgE1rFUyRHeUktAq+GpZnBNYUltAp5KRs0v7GZvjlQIEPVnpdjfJ9T4sXXxPlZZPCBX9l8n8zVCWWsZYSNFaJyk0k91R5tOHstar8THjRTDwrPhMO2Tp8zdoUxqAAVTC6nPpVJ7AOR6L8N5l78qKCq1nQx957Z6tsk/jAKIue7Y0fWPujUXtXQqh6mJdil0NWJGIBPqJ7KuRjYBd9ZsASZaHcb5/D0pqFhPsAe8UeHMhpyGJLB3IadHcaZM/AIE9DsNLsL/v+0/1q5PTH0MRyLrJsxBMLvDSCRoaQnGuhQfwvSD80AtIPNUDa+13RYnkfSycX7JnMKBKtMAuE+NXONjUYpKsfspoNMqxvJESaWLcQ08XlILvJbKSIlzEqgQmotxwOLgcZgAnyMQnFn2AP4u4otygHjf/JXusJ67G6LLa0HsNuLq3BeqwuqMf+/u8v//HhZ87N0MRyrgmup+qxBpqnr6ot9oF6rAHqsTqox0YwPdaQ7ZnMKBKtMAukLqDH8KnBIF39kNVskIweq5HrFtJjcwjBpktoMlZDFAPrRPTAKsg7dTnIuDvLWsbQL16MFrb4kLKVJXWE6P1yiP5lihw56cNFLVoxZ8UPF36iXzwL9L5olO4VYEINrAcQA5hkcpslX4aBfQIYEos55MhURo5MRSHR4BAOBdap6IFHiGM/99HHNNT+M7wJBBRMPesgJC4uMuaeHlraI3wZlqelDaynB01Mu1Ub3acL+ZDi6/zSlgfW54MiLp8/z8TlgfVGtORf2RHk5YFtZ6Qvz0KqbUWj+07+2MelhkqIf3xOaNd9R5WBXFG/Pvj1r1+cumvqx3T9yh3aobuLLrA+Hebb6ALrI3Y76eutS3EzA2FsnzeM7ZShZxjbWW3JuhrSGdsDW/2+zUFQtgfWt9A8ZSVtD6wfIvDvDXG7G1g/RUJxHdhERu72wPolAl+AwHcaffu8kOW/PejbtxYwctbLL4W71FnPkLgbEnfFhiRI3AP7D9ByzsbiHtgXRtDT25/HPbD/ROyIaUzugf1nWRMljco9sKOQp/3XAZO5z/NH5KKoQ/tU6dwD+1/goM4TzxhCd0PoDmvbvhG6b2nPbcLovqWaDKU7j9I9sK+F3FSG0120UxBUZk73wD68fUndXz3W7rR6xO7X39lpr20UXjjPhO5HFQndjw4xofsMV9WGhO67e3+CdUo2q3otxAsoeWH5jPJJuAk6/2zQ+VcE84zCQ+2a8nTMKI9Nk2WkT1xFTzPSKxLLSxLTU+zh96hSfxeQQ6OqjEzK+9dLsH+9qMm/XkI8SrZyrLMJNVvmORmJ74atKbB0qor6XRNeDc4h749oBr0tYd5W6H10us/hqTPgcU/J5aE49XvRw1hZhspJslDpQvmFVu0/lVNVLmHfkR1tmWxr4rvhTDQwLuKhCy0RHWMXmncxKxeuwEJz2e9gDNaLQF+cjoWWOJyqxtqaqlJuFfALFjLEkol0oHPjeYls/MnClawbOukuzRToS2RJQrL5Mk8mXVLxcGTysl6/rlEu2/PZZNbImM9cmtd9QDy2QXxqDb+/Yr+8NeQhSrrWdyWNlDB4mpR0jRfGhJV0XVZJo9kGLtdZVSObIyYS008eErA4GMk6ur7oHz0BHe0DaiFl+fmtUM4fzDYv4uUENbJTSBFmHfv+EnjY89SykzePCL2BeBgsLCpLfW3aEDXQYhMLLUfzUVu0JpFe4MayCUkWanIkgvEc+VoJh/V51Cb1JGwPK+4ynKjmAvto6OMbtgTDu4c5vfCkngKAo7oKALr3Dzr//55+Zf8PyukKiVcRWB8c8SWOTPSMVLuPhpeRPk671qKGeg88BzwgfU4oCYpzMX4h0bIHLG0f0ve9f65xxsYj1g41NrXus9TgO/FbUODAAbQK/W1eytpmghY+vba7T0EyWM7oD1QU6bPV73/+5INjj+cyjrCoGEdYNHGEyDgYcBxhetvGEaZNHGFJTxxh7w6MI0ybOIKJI5zhnNlMHGHJxBE4je6UOMK0iSOYOIKJI5g4gokjmDgCISAmjmDiCCaO0O5fHGHRxBFMHMHEEUwcQVMc4a2tOMJy+45Oa2F1tdVZONZaWGuttZcX28c3ClPnOaJwSDGicEjZfWwru02hiMJB7h5eAg+1B0HnwExPvzZ6f1JUybMJg0jRIT+rPKIW7pBPbhl7klvG26vHl04udNqbW8b8psgeWF29auHYgbUrfxdXeOcoUjvHOrzHgL/Y60kM6m8CrEFq+/4hXfv+5MC2/fVXzzWzOQitpeWT7eOd0/QgjCvqkzE9a7EQ9ycCpjWf4M0XBaYwNBz4sNiabpO1BIoOozcFW7eg1gtbpZrMTBWitRh9djgQ66/Fk9dZ2Yw0b571N4grQbLtbwXFQlRGACRd68U0AajGH9Yrq6bHLLmFKdazeoInKzduHRKvV3rtEvNMiBjw1jliRtrGQx4n+GsIJQOdrkqyh6UK7SjELWyHq/1c+IjoVJUnjFox8cysv0Wqu98hW7efWOkstZc7T9PNelnNkMgE1av4vBgYmHsbEzBQLC1SwGyBx3kCZgFSYdOTERnm3m/jkQQa9aoKAA==",
1877
- "debug_symbols": "7Z3djuxGcq3fRdf7gpERmRHpVzEGA3ksGwIEjSHPHOBgMO9+mCxmfKXermx2VQk4F74R1251xyIzuRbzZxXrHz/8+0//9vf//PPPv/7HX//7h3/513/88G+//fzLLz//559/+etffvzbz3/9df/pP37Yxn/EfvgX7//89oMc/2r7v2L/Vxn/0v033Pd/6fx/pe2/6Ocx9qPvx74fY/+TbRz337b87X77v7rd/u9xlPNYzqOeRzuP9Ty229HG78tetR5V9/+Of7R56mX/hx/nutfZT0btdqi3Q7sd/HaI22E/o/10bbsd9vr7aVq5HfYqMljtPA4+2Y/tPO6VpOzHOI/9dqx7MdH9KOexnMdRz/ajncdRr+7Hdh5Hvb0ta5zHfju2UW8/1ybnsZzHUW8/62bnsZ7HUW8//+bncfTNfv6t346+nce9Xtmvw8t51PM4mnK/Dq/nsZ3H0df7dXicx1Fvv44Y9Wxv+zg6Yv9p2//RZ6/ouJ/y9hq/J8ftNZq33lq3jh+WeaccPSzHbVZGZ40bIM5jvx2Pm3Ec5TyW86jn0c7j6Ho5+76cna+3/na7dbjXW48fRz2Pdh7reWzn0W/H0aXebl16HO081vPYzqOfx7gdR1PHdmvq42jncf+7OJs6zqY+jnEe++04mvo4ynks51HPo53Hs16c9fr4/f26+/j/+3X3dv578OzX0wfPfn69346ybRPIBGUCncAmGGxD/FubwCcYhWOAUXlYwLgV+jbAEJsMUG4nJaPPb8Am2P+8lwH6CYZ13IBMUCbQCWyCOkGbwCcYlXWAUXlwjXvqBmSCMsGoXAewCeoEbQKfICboJxh32w2MOqPFxv3UR/sM7+ijfYZ59NE+wz1uQCYoE9QJhkNsoxEPjzjQ4RLbaM/DF7Zxke34vXGVrU/kW6LhJ9u4vnFbnkgT2aw3bs7zZy2RJ4pE/byocZfegExQJpiXEG2eeHii22UN9R+PjdFH2m6qH8fRQ8dRzmM5j3oe7TzW89jOo5/Hs56e9eysZ2c9O+vZWc/OenbWs7OenfXsrGdnvXrWq2e9etarZ7161qtnvXrWq2e9etarZ7121mtnvXbWa2e9dtZrZ7121mtnvXbWa2c9P+v5Wc/Pen7W87Oen/X8rOdnPT/r+Vkvznpx1ouzXpz14qwXZ70468VZL856cdbrZ71+1utnvX7W62e9ftbrZ71+1utnvX7WO1xMp4vpdDGdLqbTxXS62A20CXyCmGBWlllZZmWZlWVWlllZZmWZlWVWlllZZuUyK5dZuczKZVYus3KZlcusXGblKR6Z6pEpH5n6kSkgmQqSKSGZGpIpIpkqkikjmTqSKSSZSpIpJZlakikmmWqSKSeZepIpKJmKOtxQ43TDGygT6AQ2QZ2gTeATxAT9BG1WbrNym5XbrNxm5TYrt1m5zcptVm6zss/KPiv7rOyzss/KPiv7rOyzss/KPivHrByzcszKMSvHrByzcszKMSvHrByzcp+V+6zcZ+U+K/dZuc/KfVbus3KflftZuWzbBDJBmUAnsAnqBG0CnyAmmJVlVpZZWWZlmZVlVpZZWWZlmZVlVpZZuczKZVYus3KZlcusXGblMiuXWbnMymVW1llZZ2WdlXVW1llZZ2WdlXVW1llZZ2WblW1WtlnZZmWblW1WtlnZZmWblW1WnhosU4NlarBMDZapwTI1WKYGy9RgmRosU4NlarBMDZapwTI1WKYGy9RgmRosU4NlarBMDZapwTI1WKYGy9RgmRosU4NlarBMDZZDaH2AMoFOYBPUCdoE+5/bMW3ZT8xkgP3ErIyhzH5ipgPIBGUCncAmqBO0CXyCUdnGmGjUqQOUCXQCm2DUOQZQ5wXqlJVOWemUlU5Z6ZSVTlnplJVOWemUlU5Z6ZSVTlnplJVOWemUlU5Z6ZSVTlnplJVOWemUlU5Z6ZSVTlnplJVOWWkOAnMUmMPA+fzS+fzS+fzS+fxSy7HlHFzO55fO55fO55fO55fO55fOIaHOMaHOQaHOUaHWHLbOynNgqHNkqHNoqHNsqHNwqHN0qHN4qOMOr8ds1yaoE7QJfIKYoJ9gPGVuYPyVjvHy+KtxI43b7wbiBmzcLcdE+px5m9gEdYI2gU8QE5zzeSvbBHKbsdu4NcaU3catcczZx41wTNqLz1l7TNDn/H2bYM7sNaf2c26v56TcNCboJzjWBQ4gE5QJzqm+HT50LAP12+TdhtncgExwzsvNdQKboE7QJvAJYoJzum9zvm9zwm9zxm9zym/DY8Zc3o5J/mifYSS3n9htem/DSMZU3Y6J/wF8gpjgnPvXOfevc+5fj7m/D6AT2AT1NsGvx9y/D+C3CX4d1jIm+PWY+48Fr3Gz3IBMcM7Qq7QJfIKY4Jz71zn3r3PuX+fcv865f51z/3rM/Y/Vt3abxddj7n+AmOCc+1c9Z+j1mPsfoEygE9gEdYI2wTn3r8dMf7TYMdMf7TPcYkzw6zHlH+0z3OIGYoJz7l/nTL8eS4NjTlxrS+TnhLzepvrjIo8lvzGZr8ei3w15ojk1r7fp/0C36f+BZNbL6X/N6X+9Tf8PVBOdqxZ13LE3EBOcc/8a8xJC54mHJao5wT9WcEf31XZb9z2Odh7reWzn0c9jnMd+O45uO45yHs96etbTs56e9fSsp2c9PesN/Ve/LQgcRzmP5TyOenGuVcZtQeA4tvPo5zHOY78dh/sfRzmP5Tye9epZr5716lmvnvXqWW+Mgeq5otvOldzx79GZ7Vy5beU2gW/nym07lxPbuZzYzuXEdi4ntnqbwB9HOY/lPOp5tPNYz2M7j6Oe3ibw7Zy4t3Pi3s6Jezsn7u2cuLdz4t78NnE/jn4e4zyO84pz4n4DMkGZQCewCeoEbYKznY6J+w30EwwLanP58QbKCcZdcyxPt/+9N//33vz/9N703CUp/9z/Pffw/vy33376afyvu029favvv3787adf//bDv/z6919++fbD//nxl78fv/Tf//Xjr8fxbz/+tv/fneCnX/99P+4F/+PnX34a6J/f+Ovt8Z92G213/HXfhxtZYF99uFpib77R70eNvQW3+kyRfWKkZ419RvRUCRtjy6OChd8V8MvnIGMX76iwz/yfagtts8I+Ir4rcLk/bMw2bwV6uSsgVwvUNttxHxY8VcB9Foj2TIG2zUtosr1aoD5VINugPdcGLdugPdcGnpfgz7XBfYGn2sCzDfy5NvBsA3+uDSIvIZ5rg/sCT7VBtCzgz52BTzlHPHUGfZve3J9rg/sCz51BTG/uzxlKlGmrYUGB37tqqSs1tlRjfaaAb/o/iekrBWYbeHl4Bqs2zOdCL/LM349x1u3vj3TOV/9+H1hYPmH3kcj9jXD9Vt5aiqHGU8/ozSIfkNs+HaeI6u+KqK6esqnKfQmf/tzXtH9fwxY1aska9e6u3Je1fl+jroYLbUprX8Fpj2uszqPp7Nl9MXtxHr6Qh+Z5NL2T6Mca646pdIw1fbJjbMuOsfq4Yy7X6K/XqPbcDWJ1esa+RVLecIPIU527r6pN1e3rauW5Gm41h3RtcaNeFt3jNjVf3WW9ZI2N87Dy+xKxKFEosW80PD6NvjDz6jk0qr+bsfyuRF2N0k1miR0+dOQqixLbxnyl2KMSy8bQoDHicZ8shc9YecfyWPjVrg0VH3br6vHkfT6c4t7P2xf8i4t4qoBmAa1PFcgn9L65+UwBq+kVdw/Xr5xBzn/3rcpnCqjMM9h37l4soI+7sS1cZl+YnyX2pfn2SJrNVjOvUnK0eD/evPww1DoL7Dt0T3VlyTm8PXU7m+RCRHmuK3sOb7SrPnT8trDJfes6nSF6fa5GzzHjvt0tz9YQapQ31PBnhki7KnNhpW1PjbL2cYRniVafKbFvxPbs2C7PnUUaTb8bgPsXVtra3Urb3ZTQrxv+ls/PfSBwp/N+eZ1rX5bLEvud+kxLCHendHk8+I7FY1yKTa1KaeUJu5Gu+fTrVp67kLwryqb1uRI53t1hf65ELvhIj3iyRKVEf7lEf/YsGE5s+tyEanN6xF4+i+c6VVVSqVr0uRK5nrzD9nKJuj1XorYs0Z7SiBqPRCtPPQL2k6g5MujPtQXTyh32l0u05zrVcsCtFs/dWjXHKPt46blOrUUpYc+VSAffx2pPdqpFlqhPnYX3HLXGZndTKPn9M3XfC1wsr+XEtt/5xVceiNuWSzh2N0Pfb9XrsyCeI/sYdHEhy1lpPhGL3bnnhy2sfdNz1aJ5IrHdzej0w8xWZLn/kB7sft+z3xWRK5MBk7uZZf1YoqzWLCJbVe9Gjt8X0dUKLlukcifZr52JSw7H/X6K9l2Rupqs50Rzn7evLqetdo1zQfx+tvuVEvuuMZvGbdUii5vVIlfmdyO8G771LzRI3xjAlccNshKeWXZMvZuffCe8shqKbjVvtL1FOv3r21equG9ZJe7E55etaF/ZzwVH3VaXY6sFMk5Et7gbAX13OcsqkYtk+/qEtOeq7NrM0YPI3bzJv7Ix33OFR9uiUVbm6izD+t38b3fTD0UW7hqam5JuD2eA6xI8rUQel9DFjeY5Ge53iQ8t8aHEws96V+73u5GQtA81dLW56PmkuRtAyMfTsDc8rVabBZefVtpeflqtNgsuP6003vC0WhZRfFXL4ilh28sPGtve8KCx8vqDZtk1LceZpXVdnIi9o1Xr6616rYSvbpDV3d4j7/b65N1+dUS02lC6PCKqr9+oyxLpIL2050pcvtervn6vL9v04qBq+XyIu+fD/Yzo4/OhroaZpec6o91dzPdF/A1PiBpveELU/vITom1veEI0ecMTYnkmV9W72nO6rN7VrtNF9a5KXJZea69Lb9kgl6Unq2EVA8T2eHS33rTJhfHS690QUX6/My2+XNJgF0vvd7HahzNxWd3xuY5aymJpRXxhRvu1cp/VVZGVteZo9T7dq237SosQObLaFi1S32Bo3t5gaO4vG5rHGwzN+xsMbVnk6uBstSV10YuWu1pXvSjeMAy4eC2rUeKyd6+OmqO9o2P89Y7x19vDXx41L5v06nO3yxueu7283KTLEtdGzasSl+XS6+tyWbbp1Uf3+rkbuaki2h8/d3u84QHR++sPiLJtrz4gyiavPyDKVl5/QKzP5KLyjkDcq8or28tLAMsSV2VTNn9ZNusGeYds9iXD3EgsWh7Kpsg6QuepvbsI9YfJZpGlCdxFOfzx5x1WNQpdM7Lhj2uswnx5l/3+Y1xfOYuWQ9Wty+OzqH/oWQjqv4+Xfqk9j5HSyzW2l2uoMB2qj++Nsloj0p4JG7tPDH+lhmXgdl+tfEcNf7JGZXWntWdr5IaZhbx+Lc/WqBlylCrb6zX02RpGjWaPa/RXVbs+i1Tcvob0uGdXixiXzuKThwJ7mOU+iPvxobDaoqqb5Udy79cxPz4U1jUylFy3+49jfqyxGqHWnrnkZu+o0R/V+EKj+qJRV7tLlk/aXXzx+GJWd2mr82Jq6487xpafVW6WN9n91v+zNe4/Nt6e2tEt95ner2xOh2ToMe7Smx83p8tqf0prJWTnviiyusvuPnh192mMDxfzyXnkuFLbnXK/P483rPsXe8O6f7GX1/1LfcO6f6lvWPdfn8nVWVB9w7p/qS+v+y9LXJ4F1dfX/dcNcnUWtPSAnh+VLt0ey3dZRLc8E71PT3+nvdXmkPW8Xeu22eNljPWZ5O2q291n074/k7LcQswo976QWB5mkMpqW0bzVjO5W4Gsz17Mwp/bauX/ymf9PjkN8uDbIsNUmv+xrbEFp1EensY6op8j3fuXI9TL70YojLd3bdozFRofAvXysEJZbU3tE5jZqb+LppXtw4B7tTW17x9le/rdWw6+L7JMp5T8SI7erV10/0INPj63z+nq4xrt9b3Hslppv7r3WNabU9f2HstyX+ni3uPx8cvX9h4/aZFre48lyhsGVavNqcuDqrCXB1VR3zCoWu5OXR1UvWOLq0S8PB5albg8Hurb6+Ohi9fi9cnevbj3WLq+oWP66wPViyWW7WGv7j2um/Tq2H+1O3V57L/anbrapP3Vvcdliaty0e31dOq6TS9OHz557l7be9TtDeEU3d4QTtHt5XCKbm8Ip+j2hnDK+kwuKk/lDbv+Ki/v+i9LXJaN2MuyWTfIO2Rzde9RxV/ee1SJl/celzUu7j1q2V5cuf/kLC7tPWopf+hZXNt7/KyGvqHG9nKNa3uPWvzlvcd1jWt7j1+o4U/WuLT3+FmNK3uP16/l2RrX9h6v19Bna1zae9TVx0quqXZ9Fpf2HnW1P3VtB3T9ULi296irraWLe4+f1Li096jLz09d23v8Qo2He49faFRfNGp9ee9Rrb2896ir7amLe4/Xazzee/xk1a/7pRW71fIjC9Pq9y9A2z6+sHExGAvlVbX94erUMap/3C9z8HL/bsGPq2Ra37A2pfXltSmtb1ib0vqGtan1mVydetQ3TPq1vjzpX5a4PPVYfX7q6tSjvmXGvtJdMGu4/5D+d7pbffbJ1PP9xDtu8miHTNvyfatbrpXvWP1xlfaygFebU5cF3OJlAS+T3KUxaveFbL7Qqnf32tf6ptd8/cG+KuPPVYlNlSr14Ssu1JfB1PyCgvtX6H3s4dUT69peyPosrt1n7/gAlb7+ASp9x+dB1N/wKWqNlz9FvSxx2Z7j9QXVdYNctOevKObuLRlf051ko+zYH+tutcPUgqFi3EW72ldOhFdUWdx/RcrXLscKjWJmj6p88uTLV3Nrv3vR1XdPvtVGlW7KoltbPD5XH/u5vOC9+hDTZTNZ7VVdNJPVNtNlM+lveEmV9pdfUrUscdlM+usvqVo3yOWx3nICne/Ks+qPb1ZbfoRpLBDNDt7Xax6+18mWn6YKmaci0R5/G8Unp8IbeXf82Ads9emh2J/k82bb8eMB0rJta2Tutd6/ovj7tl3dbt3zduv3cbXarhcpdy8S3O6/o+O7IqvRKy27D6TuihT9UOQNrwG0d7wG0F5/DaC94zWA9o7XAK6LXAwUmLz8+b9liavmaPL65/+uXovXJ3v34lPLlp9ZufjUsvLyx/+vlli1R3nDGwSsvL6/um7Tiw++Tywx53ulmDy2xNWugOdr97rZ4oG1Oo+SD+DfTei/P4/lvKIUNmmLPRxDm25veOqtL0iFL964/8bEjxeky718lo/l/ttY6vUvz7hP0d5tL3xI0dr6u5z4yqB2PyRpH77fZvn5qJ4RqTrWAh4XWY4680XVO7z/Lo8PXy6z/uahNKOqv9st+XgmsZry5X7cPvt7/H1fpsu3ouQcSfR3X47y4UyWm1DXvlrk+PrMh1dz7btF1ufBwKg2ra/XuN/B/lIND/aPnqxR83MN9X4+8KUakd/dU+/fNvuxxvIGsY1d8N99K9QXblWX/PSay/0O48dbdfndUpY17lLjvV2v0PNevx/Af6yw/GapazkeW+1iXczxLGtczPHYahfr0i74J2dxKcdjtf2hZ3Etx/NZDX1Dje3lGtdyPLZ8/d+1HM+6xrUczxdq+JM1LuV4PqtxJcdz/VqerXEtx3O9hj5b41KOx/zVDOAnZ3Epx2P+agZw/UTovNX9brb+8ZGw2q66mOL5pMalFI+tNqwupni+UONhiueTZ33MGr4/FR4/6/1aFGDxLbS22mu6+FWUtnpF3sXvorTVdpVuxgdua32uBo8WLZs8V+N4pcdZQxfnsfzMjTENW11Le33oEv6q8NdncW3oEv0PPYuLQ5dPaugbamwv17g4dOn2+tBlWePi0OV6DX+yxrWhyyc1Lg1dLl/LszUuDl0u19Bna1wauhwfuX5NteuzuDR0qVt92TuWXpxfNFbaYwerq89QXZyKLmtc9PO6veqkn5zFJT+vIn/oWVzz889q6BtqbC/XuObndfk9Utf8fF3jmp9/oYY/WeOSn39W44qfX7+WZ2tc8/PrNfTZGtf8vLzqpJ+cxTU/L/6H+rnX3Afz/rg9l9tPF/W2rHFRb9dr+JM1runtkxqX9Hb5Wp6tcVFvl2voszWu6e3lD099chbX9GYvL0Ct58Od772Vx/26+tTTxflwNX19DLaqcXUMZi/76Posro3BzP/Qs7g4Bvukhr6hxvZyjYtjsOV208VnwrLGxWfC9Rr+ZI1rz4RPalx6Jly+lmdrXHwmXK6hz9a49kxoL8+c1mdx7ZnQ9GXvKK/PqVcB+Kte3F7dFP3kLK55cYs/9CwuevEnNfQNNbaXa1z0YtfXvXhZ46IXX6/hT9a45sWf1LjkxZev5dkaF734cg19tsY1L45XN0U/OYtrXhz2h3rxxflwvGH9Kd6w/hRvWH+KN6w/xRvWn+IN60/xhvWneMP6U7xh/am/PG+KN6w/9ZfXn5b79nzDvbe791x93LevyzfmRfDRof74FR5t2y7OiOvduyJ6fKVIfr6lbHfb3R+LXL6cvj1+99eySJHCZ7K0LtpkFYA2AtDWyqJNVkVq4Y3Idxnb74usMiJ+9wUALu8o0p68nMYbb5uvLme19bTlJ0337ZDyZBHPvEr11p4r0jTbpGkvz92xhY8Rllof37Ft9SGmi9GZtnp/38XoTFt9duhidGZd41p0Zl3jWnSmLd/Qdm2psEl/ealwWePi9LSVV6f7n5zFpenp8TGYP/Asrk1PP6uhb6ixvVzj2vS0rV7bf3G4vK5xbbj8hRr+ZI1Lw+XPalwZLl+/lmdrXBsuX6+hz9a4NFxu+upA9ZOzuDRcbtpf9o54eamw2evfBNns1en+J2dxzYvN/tCzuOjF9vo3QX5WY3u5xkUvtte38tc1Lnrx9Rr+ZI1rXmyvb+Vfv5Zna1z04ss19Nka17y4xsuqfX0rv7XtD/Xia0uFrb2+TbqucVFv7fVt0k9qXNNbe32b9Pq1PFvjot7a69ukn9S4pjd/ed7UXt8mbf76vGk5H74UnWn++kdJmr/+UZLmL49H/fWPkjTvf+hZXBw/+esfJfmsxvZyjYvjp3j9oyTrGhf9/HoNf7LGNT+P1z9Kcv1anq1x0c8v19Bna1zz8/6yk8brHyVpL29AfeLF1+ay/fWPkixrXPXz/rKT9tc/SuKb/KFncdHP++sfJfmsxvZyjWt+7tvrW/nrGtf8/As1/Mkal/z8sxpX/Pz6tTxb45qfX6+hz9a45OcurzrpJ2dxyc9d/A/182vzYZfX15/WNS7qTV5ff/qkxjW9yevrT9ev5dkaF/Umr68/fVLjmt7Kq+tPn5zFNb3pq+tPn2y6e76gst69Werjpruv3rTn+e2M3tkur185C7b+291O99fCKi2/JHqflj8usowSReTrGCPq6s10yzySTsFFl8d5JF/tNonnyFb8XnFxvYbHNNO4e2Nvrx8qLBr14qtZvlDjuVezdM8XIPZ+r/uPTbracGoMTJvePxi+K7KYOd3nf+L+W5q+K7KYPF19hbGvPvZ09RXGvvrCqGuvMPbVB5+uvsLYbbU1evEVxuszufi6Xa9veN2u15dft7sscfVdub760qiL78pdN8jFd+WuZRNpZ9YXxuqrN+5dlk19w9fweH35a3i89jfIZrUDdfWl3b76DNS175teX8xV5a0+BXVZee3lrzRflrisvNUHoa4qb9kgb1Fe78REV0+91XdGXXxPrq/evHfxPbnr87j2ntzrNR6/J/eTGpfek7uuce09uesa196Tu7xB6lbvXgO4GFstN6Ou3iDx+g2yPI+LN8jlGosbZF3j2g2yrHHxBlnWuHqDxBseMquXhFx8yCzH75ph5mabPb5Rly/gi/zmqxqmzxahd/cp43PTRNn4klTZ9lHvk2Wk8CJ0KbU9W6bWlmX2TfQny5S71ZW9d/uTZXTb8mx0W3yo55MywixapT/bxKr5tbo7jmcvyu6e59b1cRlf7lcZwxOz+xffy1eKbMEiaX9DkcWZrFulSX5WYsf+rJpayS8o2rE9todYfYNU1FyA3td/Hvr29Rp3Xzr8xRqNGv5kDbtSY/nNE7ULX0hZH3/zRGzLb4POr3u4G8WKPVmiL0osPxLHGnbc3a1fOQ3PDda4H0rbF77Lox3fYHY+xe6N7WOLyjI7bfn1qzvWh9/WEqtPS13+tpbVd6RE5PeC9cI65YfvSNlW64NNcn3w/haT+uFSVt/Klw/k/bF6V2PrH2osN4wvfgddrCKdV7+D7pNTufgddFG2P7Z/K21Sq5XHvVOWb5I+ZoZHFd3uvxD6u8tZVoncM9mHpFqerELeQ/dx1/PnUu6qtEdVll8SuN9l+f1+O/Ynz0X2sU2ei3R/ppstl9b2braH3bx6bXnrWy6s3b8+fZT40/7PH//y829//uWvf/nxbz//9df/Hn8p9Vhi+faDtPF7+xmITxAT9DGS3C+/bBPIAHsfljKBHqPNHdgEo/KQUGkT+AQx/6qfP9FtAjmGmzsoE+gENkGdYFQeE2v1CWKCUXkMGW2bYFQeXxdm5Xj87EAnsAnqBG0CnyAm6Ceo2wQywaxcZ+U6K9dZuc7KdVQeC0M1JugjNbRbV9smkOMj4DsoA+x90XSsW+73WrMJ6rF8uYM2gQ8w/iomGJXHN1P5dowNdzAqj4bycuxB7kAnGJXHUqOPyuPJ4G0CnyCOFO4O+glim2BUHutyUSYYlcdjO2yCOkGb4Ki8k8aoPKwq+gn6dqxu7kCOeMIOygQ6gU1QJxiVx5fzdp8gJugn2B9UiSRRSaSJLFFN1BJ5okjUj+8Q3pFsiWS4Qx2oDDSkJToi0UN/YgPFQDVRGylpH8gTxUDH3/aJhjB19KYMZepYSpAhTR27CjK0qWNzR4Y4dTSlDHWeqCUaHH78XiQaHMPzZUhUx0hDhkZ1LJ3LEOmJNNHg6AeqiVoiTxTDmo/KfaBReYj1RDLQuN4hVxsPdBl6PZGNQePxezVRS+SJBsfRkkO1NjxahmxPNDjGWoQM4Z5ocIwlEBnSPVFN1BJ5okjUJxoCPpEkKomSoyVHS46WHC05WnK05PDk8OTw5PDk8OTw5PDk8OTw5PDkiOSI5IjkiOSI5IjkiOSIg8MGikR9on5wjN7qkqgk0kSWqObftkTJ0SN/r5+obFsiSVQSaSJLNDnK1hJ5okg0r6NIckhySHJIckhySE3UEnmiSJQcZUskiUoiTZQcJTlKcpTkKMlRsq00r0PzOjSvQ5NDLVG2lWZbabaVJocmhyWHJYclh2VbWV6H5XVYXoclh2V/WLZVzbaq2VY1OWpy1OSoyVGTo2Zb1byOmtfR8jpacrTsj5Zt1bKtWrZVS46WHC05WnJ4cni2led1eF6H53V4cnj2h2dbebaVZ1tFckRyRHJEckRyRLZV5HVEXkfkdaTOS8/+6NlWPduqZ1ulzktPjp4cPTlS5yV1rqlzTZ1r6ly3yaGbJaqJWiJPFPm3yZE619S5ps41da6pc02da+pcJTkkEs220tS5ps61JEdJjtS5ps41da6pc02da+pcU+eqyaElUbZV6lxT56rJocmROtfUuabONXWuqXNNnWvqXC05LPsjda6pc02da02Omhypc02da+pcU+eaOtfUuabOtSZHy/5InWvqXFPn2pKjJUfqXFPnmjrX1LmmzjV1rqlz9eTw7I/UuabONXWunhyeHKlzTZ1r6lxT55o619S5ps41n+eaz3NNnWvqXFPnms9zzee5ps41da6pc02da+pcU+eWOrdtcthWEmkiS1QTtfxbTxSJkiN1bqlzS51b6txS5ybJIS2RJ4pEs62sJEdJjtS5pc4tdW6pc0udW+rcUudWkkO3RNlWqXNLnZsmhyZH6txS55Y6t9S5pc4tdW6pc7PksOyP1Lmlzi11bpYclhypc0udW+rcUueWOrfUuaXOrSZHzf5InVvq3FLn1pKjJUfq3FLnljq31Lmlzi11bqlz8+Tw7I/UuaXOLXVunhyeHKlzS51b6txS55Y6t9S5pc4tkiOyP1Lnljq31LnluN1y3G6pc0udW+rcUueWOrfUuaXOrU+Oum2JJFFJpIkmR91qopbIE0Wi2VY1dV5T5zV1XiU5xBLVRC2RJ0oOSY7UeU2d19R5TZ3X1HlNndfUeS3JUSJRtlXqvKbOa47bqyZH6rymzmvqvKbOa+q8ps5r6rxaclj2R+q8ps5r6rzmuL1acqTOa+q8ps5r6rymzmvqvKbOa02Omv2ROq+p85o6rzlury05Uuc1dV5T5zV1XlPnNXVeU+e1JYdnf6TOa+q8ps5rjturJ0fqvKbOa+q8ps5r6rymzmvqvEZyRPZH6rymzmvqvOa4vabOaz7Paz7Pa+q85ri99uTI+XlNndfUeU2d13yet5vOfaC5ztC2kkgTWaKaqCXyRJFormU02RIlhySHJIckhySHJIckhySHJEdJjpIcJTlKcpTkKMlRkqMkR0mOkhyaHJocmhyaHJocOW5vOT9vOT9vqfOWOm+p85bP85bP85Y6b6nzljpvqfOWOm+p85Y6b6nzljpvqfNWk6MmR+q8pc5b6rzluL3l/LylzlvqvKXOW+q8pc5b6rylzltLjhaJpj5a6rylzluO21vOz1vqvKXOW+q8pc5b6rylzlvqvEVyREmUbZU6b6nzluP2lvPzljpvkRz5PG/5PG+p85bP85bP85Y6b7kO13IdrvVsq3yee47bPefnnvNzz3U4z+e55/Pc83nu+Tz3fJ57rsO5bIkkUUmkiZIj5+ee83PPdTjP57nn89zzee75PPd8nnuuw3mxRDVRS+SJkiPn557zc891OM/nuefz3PN57vk893yee+rcNRJlW1m2VT7PPXXuOT/3nJ97rsN56txT554699S5p8491+G8Zn+kzj117qlzz3G75/zcU+eeOvfUuafOPXXuqXNPnXuuw3nL/kide+rcU+ee43bP+bmnzj117qlzT5176txT554691yH88j+SJ176txT557jds/5uafOPXXuqXNPnXvq3FPnnjr3fJ57Ps89de6pc0+dez7PPZ/nkTqP1HmkziN1HqnzSJ1H6jxyHS5yvT1S55E6j9R55Lg9cn4eqfNInUfqPFLnkTqP1HmkziPX4SLX2yN1HqnzSJ1Hjtsj5+eROo/UeaTOI3UeqfNInUfqPPJ5Hvk8j9R5pM4jdR75PI98nkfqPFLnkTqP1HmkziN1HqnzyHW4yPX2SJ1H6jxS55Hj9sj5eaTOI3UeqfNInUfqPFLnkTqPXIeLXG+P1HmkziN1Hjluj5yfR+o8UueROo/UeaTOI3UeqfPIdbjI9fZInUfqPFLnkeP2yPl5pM4jdR6p80idR+o8UueROo8ct0eut0fqPFLnkTqPHLdHjtsjdR6p854676nznjrvqfOeOu+5Dtdzvb2nznvqvKfOe87Pe87Pe+q8p8576rynznvqvKfOe+q85zpcz/X2njrvqfOeOu85P+85P++p854676nznjrvqfOeOu+p857rcD3X23vqvKfOe+q857i957i9p8576rynznvqvKfOe+q8p857rsP1XG/vqfOeOu+p857j9p7z854676nznjrvqfOeOu+p854677kO13O9vafOe+q8p857jtt7zs976rynznvqvKfOe+q8p8576rznOlzP9faeOu+p85467zlu7zk/76nznjrvqfOeOu+p854676nznvPznvPznjrvqfOeOu85bu+5DtdT5z113lPnPXU+Ap1AARbg5NmhASuwAR0YVIBNYBPYBLZU/Q4NWIENCFsuwe8w8wdbin+HAoStwFZgK7AV2NIDdsi1Fa5NuTaFLRfkd0hLKi2ptKTCplybcm3KtRlsBpvBZrAZ12Zcm8FmXNvNGPyAmRbZ6gYUYAEq0IAV2IAODCBshGw2UjYbMZuNnM1G0GYjabMRtdnI2myEbTbSNhtxm428zUbgZiNxsxG52cjcbIRuNlI3G7GbjdzNRvBmI3mzEb3Zgn4L7pLgLgn6Lei34J4M7kkiOFvnLuncJR02Yjhb5y7psHXYiOJseIngJZKr+iK5rC+ClwheIniJ5BRBJNcCRPASwUsELxG8RPASwUsELxGBLRf5RfASwUsEL5ECW4ENLxG8RPASwUsELxG8RPASKbDlkr8IXiJ4ieAlorApbHiJKGwKm9KSeIkY12ZcG14iRr8ZLWm0pNGSBpvBVmGrsFXYKi1ZubbKtVWurcJW6bdKSzZastGSDbYGW4OtwdZga7Rk49oa1+Zcm8Pm9JvTkk5LOi3psDlsDpvDFrAFLRlcW3BtwbXhJRL0G1m+uzDfXZrvLs53l+e7C/TdJfruIn2ClwheInjJXaxPcj1RSm4QSsFLCl5S8BLCfVJytUEKXlLwkoKXFLyEiJ+Q8RNCflIEttwu3GEFNqADYRPY8JKClxS8pOAlBP6ExJ8Q+ZNSYMvNQyl4ScFLCl5C8E+KwoaXFLyk4CUFLyH+J+T/hACgFMYlhXFJwUsKXlLwEmKAUhiXFLyk4CUFLyl4CWFAIQ0oxAGlVNgq/YaXFLyk4CWEAqU02PCSgpcUvKTgJUQDhWygEA6U0mBz+g0vKXhJwUuICEpx2PCSgpcUvKTgJQQFhaSgEBWUwrikMC4peEnBSwpeQmBQCuOSgpcUvKTgJQUvITYo5AaF4KAUEsKl0294ieIlipcQHxTN9QxRvETxEsVLFC8hRCikCIUYoajAlhsVoniJ4iWKlxAmFBXY8BLFSxQvUbyESKGQKRRChaIFtty2EMVLFC9RvIRooajChpcoXqJ4ieIlBAyFhKEQMRRljqNGv+ElipcoXkLQUJQ5juIlipcoXqJ4CXFDIW8oBA5FK2yVfsNLFC9RvITYoWiFDS9RvETxEsVLCB8K6UMhfijaYGv0G16ieIniJYQQRR02vETxEsVLFC8hiihkEYUwomjAFvQbXqJ4ieIlRBJFmeMoXqJ4ieIlipcQTBSSiUI0UZTPGigfNlC8RPESxUsIKIqxXmJ4ieElhpcYXkJMUcgpCkFFsQ223AoRw0sMLzG8hLiiGOslhpcYXmJ4ieElhBaF1KIQWxQrsOXGiBheYniJ4SWEF8VYLzG8xPASw0sMLyHCKGQYhRCjGOslxnqJ4SWGlxheQpRRzGDDSwwvMbzE8BICjUKiUYg0ilXYKv2GlxheYngJwUaxChteYniJ4SWGlxBvFPKNQsBRrMHW6De8xPASw0uIOYo5bHiJ4SWGlxheQthRSDsKcUcxhy3oN7zE8BLDSwg9CqlHIfYo5B7F8BKSj2IdNtZLCD8K6Uch/ijkH+UMQB4fb+u5FnRGIG8w14LOEOQNCrAAFWjACmxABwYQNoFNYBPYBDaBTWAT2AQ2gU1gK7AV2ApsBbYCW4GtwFZgK7AV2BQ25jiV9ZLKegkxSSEnKQQlhaSkEJWUipdUvIS0pFS8pOIlFS+peAmRSSEzKYQmpRpsFTa8pOIlFS8hOimV9ZKKl1S8pOIlFS8hQCkkKIUIpdQGW27SSMVLKl5S8RKClFJZL6l4ScVLKl5S8RLilEKeUghUSnXYcstGKl5S8ZKKlxCrlMp6ScVLasDGuKQyLiFcKZVxSWVcQr5SKmuvJCyFiKWQsRRClkLKUohZCjlLaYxLGuOSxrikMS5pjEsaa6+NfZzGPk7LjVtpjEsac5zGekljvaSx9toYlzTGJY1xSWNc0hiXNNZeG/s4jX2cltu40hiXNOY4jfWSxnpJY+21MS5pjEsa45LGuKQxLml4SWMfhyymEMYU0phCHFPIYwqBTCGRKUQypeElDS9peAmxTGmsvTaj3/CShpc0vIRwpjTWSxpe0vCShpc0vISIppDRFEKa0lh7bY1+w0saXtLwEqKa0lgvaXhJw0saXtLwEgKbQmJTiGxKY+21Of2GlzS8pOElBDelsV7S8JKGlzS8pOElxDeF/KYQ4JTGuKQxLml4ScNLGl5CjFMa45KGlzS8pOElDS8hzCmkOYU4pzhrr84+juMljpc4XkKoU5z1EsdLHC9xvMTxEqKdQrZTCHeKs/bq7OM4XuJ4ieMlRDzFWS9xvMTxEsdLHC8h6CkkPYWopzjjEmdc4niJ4yWOlxD4FGdc4niJ4yWOlzheQuxTyH0KwU9x1l6dfRzHSxwvcbyE+Kc46yWOlzhe4niJ4yWEQIUUqBADFWft1dnHcbzE8RLHSwiDirNe4niJ4yWOlzheQiRUyIQKoVBx1l6dfRzHSxwvcbyEaKg46yWOlzhe4niJ4yUERIWEqBARFWeO4+zjOF7ieInjJQRFxZnjOF7ieInjJY6XEBcV8qJCYFSCtddgHyfwksBLAi8hNirBekngJYGXBF4SeAnhUSE9KsRHJVh7DfZxAi8JvCTwEkKkEqyXBF4SeEngJYGXECUVsqRCmFSCtddgHyfwksBLAi8hUirBHCfwksBLAi8JvIRgqZAsFaKlEqy9Bvs4gZcEXhJ4CQFTCdZLAi8JvCTwksBLiJkKOVMhaCrB2muwjxN4SeAlgZcQN5VgvSTwksBLAi8JvITQqZA6FWKnEqy9Bvs4gZcEXhJ4CeFTCdZLAi8JvCTwksBLiKAKGVQhhCrBekmwXhL373ehJfESoqgSrL0GXhJ4SeAlgZcQSBUSqUIkVYK1184+TsdLOl7S8RKCqdJZe+14ScdLOl7S8RLiqUI+VQioSmfttbOP0/GSjpd0vISYqnTWXjte0vGSjpd0vISwqpBWFeKq0ll77ezjdLyk4yUdLyG0KqRWhdiqkFuVjpeQXJXO2mtnvYTwqpBeFeKrQn5VzgCrH3CwHe+5ukVYx6sF5ZZhbbefDrbj9Ve3FOsNHl5yvPbqlmM94WDzo8LhJSccbH6wHV4St582oAMHWxwXdHjJDR5eEnFAAQ62fpzk4SUnHGz9KHZ4yQkbcLD1ox0OLzlhH2+PP9iGl0wowALUAdsBDViBbcDjJIeXHG+glCPiOuFgk6Mlh5dMONiON5wdMdcJFTjY5GjJ4SUTDrbjJWhH1nXCAPbj/fYDDi+ZcLDpcTrDSyYcbMdb0Y7I64QVONjs6O7hJRMOttuNOLzkeHFvOXKvEwpwsI2XrJUj9zqhHe/qPGAFNuBgG7dnOXKvE/bjfffHu6k2oADL8Rb8AyrQjlfcH7AC2/G2+wM6cLD5rVhPOLxkQjleYnvAAtTjZe0HNGAFDrbxSrhy5F4njOP17AfsCYeX1H403/CSCQtwsPWjJYeXTFjHm4ePkxxe0raDYnjJhDHg7Xd7wuElEwqwAPX4yrYDGrACG3CwyXEOw0uaHOc7vOSEw0smFOBgk+PiqwINONjKQTG8pN1esTm8ZMIADrZydMvwkgkH2/FGzSP3OqECDXiwHfdDa8DBpkeTDC+ZsCccXrIvPx1QgOV4d/IBFTjY7OiW4SUTDrabRIaXTBjAwVaPusNLJhxs9TjJ4SUTKnCwtUNZw0smHGztOJ3hJRPG8eUWB+wJh5dMKMdXXhywAAebHyc5vGTCwRbHSQ4vmXCw3XQxvGTCPuGRe22HRI7c64SDbXw9WzlyrxMasAIH26GWI/c6YQAH2yGcI/e6L9EcUIBlwHJABdqAx+kML5mwAX1AP2AA+/iGxYN4eMmEAhxscpzO8JIJB9tx2x+51wkH23FPHrnXCQM42MZ7G8uRe51wsOnRvsNLJlTgYNOj+YaXuB4XNLxkQgcG8GA7rsI24GA7FHDkXidUoAEHWz2Ih5dMONgOrz5yrxMONj8uaHjJhAIsQAUasAIb0IEBhK3B1mBrsDXYGmwNtgZbg63B1mBz2Bw2h81hc9gcNofNYXPYHLaALWAL2OJgO+6SMGAFHmxHv4UDA9gT9g0oWaEXIGzd+N0KhK3D1mHryXbkXidMtiP3OqECDViBjQoODCBsAtvhJScsQAUaELbDS07owAD2hAW2AluBrcBWYCsVyLUVrq1wbQW2w0tOSEsqLam0pMKmsClsCpvCprSkcW3GtRnXZrAZ/Wa0pNGSRksabAZbha3CVmGrtGTl2irXVrm2Clul3yot2WjJRks22BpsDbYGW4Ot0ZKNa2tcm3NtDpvTb05LOi3ptKTD5rA5bA5bwBa0ZHBtwbUF14aXlKDfgpYMWjJoSbykdNg6bB02vKTgJQUvKXhJwUtKTzbdNqAAC1CByaZbBTagAwOYLal4ieIlipeowCYGrMAGdCBsAhteoniJ4iWKlyheoniJ4iVaYCsBpCXxEsVLVGFT2PASxUsUL1G8RPESxUsUL1GDzeg3vETxEsVL1GAz2PASxUsUL1G8RPESxUsUL9EKW6Xf8BLFSxQv0QZbgw0vUbxE8RLFSxQvUbxE8RJtsDn9hpcoXqJ4iTpsDhteoniJ4iWKlyheoniJ4iXKuEQZlyheoniJ4iXKuEQZlyheoniJ4iWKlyheoniJ4iXaYev0G15ieInhJbYlm20KNGAFNqADA5jXZniJCWxSgAo0YAXCJrDhJYaXGF5ieInhJYaXGF5iBbbSgA4MIC2psClseInhJYaXGF5ieInhJYaXmMJm9BteYniJ4SVmsBlseInhJYaXGF5ieInhJYaXWIWt0m94ieElhpdYha3ChpcYXmJ4ieElhpcYXmJ4iTXYGv2GlxheYniJOWwOG15ieInhJYaXGF5ieInhJRawBf2GlxheYniJMccx5jiGlxheYniJ4SWGlxheYniJddg6/YaXGF5ieElljlM3ARagAg1YgQ3owADCJhtQgAWoQNgENryk4iUVL6l4ScVLKl5S8ZJaYCsGrMAGdCBsBTa8pOIlFS+peEnFSypeUvGSqrBpAGlJvKTiJZU5TjXY8JKKl1S8pOIlFS+peEnFS2qFrdJveEnFSypeUpnj1AobXlLxkoqXVLyk4iUVL6l4SW2wNfoNL6l4ScVLKnOc6rDhJRUvqXhJxUsqXlLxkoqXVIct6De8pOIlFS+pzHEqXlIZl1TGJRUvqcxxaoeN9ZKKl1S8pOIllXFJvXlJO+DB1g8YwD5hu3nJDQqwABVowApsQAcGEDaBTWAT2AQ2gU1gE9gENoFNYCuwFdgKbAW2AluBrcBWYCuwFdgUtsNLQg5YgAocbONL2sqRe52wAR0YwJ4VDi85IWyHl9x+9/CSE8JmsBlsBpvBZrBV2CpslWurXFuFrcJWYauwVdgOL7nBw0tOKECurcF2eMkJK7ABHQhbg81hc9gcNqclnWtzrs25Noft8JIT0pJBSwYtGbAFbAFbwBawBS0ZXFtwbZ1r67B1+q3Tkp2W7LRkh63D1mHryXbkXicUYAEq0IDJduReJ3RgALMlj9zrWUFgE9gENoFNKrABHRhA2MoGFGABKhC2AluBrcBWYCu0pHJtyrUp14aXuBqQllRaUmlJvMQVNoPNYMNLHC9xvMTxEsdL3GAz+g0vcbzE8RKvsFXY8BLHSxwvcbzE8RLHSxwv8QZbo9/wEsdLHC/xBluDDS9xvMTxEsdLHC9xvMTxEnfYnH7DSxwvcbzEA7aADS9xvMTxEsdLHC9xvMTxEg/YOv2Glzhe4niJd9g6bHiJ4yWOlzheEnhJ4CWBl8SWbLEZsAIb0IFBBdjwksBLAi8JvCTwksBLAi8JgU0CmC0ZeEngJVFgK7DhJYGXBF4SeEngJYGXBF4SjEuCcUngJYGXBF4SjEuCcUngJYGXBF4SeEngJYGXBF4SBpvRb3hJ4CWBl0SFrcKGlwReEnhJ4CWBlwReEnhJVNga/YaXBF4SeEk02BpseEngJYGXBF4SeEngJYGXhMPm9BteEnhJ4CXhsDlseEngJYGXBF4SeEngJYGXRMAW9BteEnhJ4CXRYeuw4SWBlwReEnhJ4CWBl3S8pG/J1rcCVKABK7BRwYEBhA0v6XhJx0s6XtLxki6wSQM6MIDZkr3AVmDDSzpe0vGSjpd0vKTjJR0v6QU23YC0JF7S8ZLOHKczx+l4ScdLOl7S8ZKOl3S8pOMl3WAz+g0v6XhJx0s6c5xusOElHS/peEnHSzpe0vGSjpf0Clul3/CSjpd0vKQzx+kNNryk4yUdL+l4ScdLOl7S8ZLusDn9hpd0vKTjJZ05TnfY8JKOl3S8pOMlHS/peEnHS3rAFvQbXtLxko6XdOY4vcOGl3S8pOMlHS/peEnHSzpe0vtk023bgAIsQAVONt22CmxABwawJ0wv0S29RLf0Et0ENjFgBTagA2ET2ApsBbYCW3qJboVrK1xb4doKbCWAtKTSkkpLKmzKtSnXplybwqawKWwKm3FtxrUZbMa13bzEDjizarplVk23zKrpllk13TKrpltm1XTLrJpumVXTLbNqumVWTbfMqumWWTXdMqumW2bVdKuwNdgabA22BluDrcHWYGuwNdgabA6bw+awOWwOm8PmsDlsDpvDFrAFbAFbrr3qlvs4uuXaq265j6Nb7uPolmuvuuU+jm65j6Nbrr3qllk13TpsufaqW6696tZh67B12DKrppL7OCq5J6yS+RKVzJeoZFZNJbNqKrmPo5L7OCq5j6OywSawZb5EJfMlKplVU8l9HBWBLfMlKpkvUcmsmkpm1VQKbAW2AluBrcCW+RKVwrUVrq1wbQW2zJeoKC2ptKTSkgqbwqawKWwKm9KSxrUZ12Zcm8Fm9JvRkkZLGi1psBlsFbYKW4Wt0pKVa6tcW+XaKmyVfqu0ZKMlGy3ZYGuwNdgabA22Rks2rq1xbc61OWxOvzkt6bSk05IOm8PmsDlsAVvQksG1BdcWXBteIkG/BS0ZtGTQkniJdNg6bB02vITcq5J7VXKvSu5VJfeEtWS+RMm9KrlXJfeqJfeEteSesJJ7VXKvSu5Vyb0quVcl96rkXrUIbJkvUXKvSu5Vyb1qEdgENryE3KuSe1Vyr0ruVcm9KrlXLQW2zJcouVcl96rkXrUobAobXkLuVcm9KrlXJfeq5F6V3KsWg83oN7yE3KuSe9VisBlseAm5VyX3quReldyrkntVcq9aKmyVfsNLyL0quVctDbYGG15C7lXJvSq5VyX3quReldyrlgab0294CblXJfeqxWHLPWEl96rkXpXcq5J7VXKvSu5Vyb1qYVxSGJeQe1Vyr0ruVQvjksK4hNyrkntVcq9K7lXJvSq5VyX3qqXD1uk3vITcq5J7Vc18iWrmS5Tcq5J7VXKvSu5Vyb0quVcl96oqsGW+RMm9KrlXJfeqKrAJbHgJuVcl96rkXpXcq5J7VXKvqgW2zJcouVcl96rkXlUVNoUNLyH3quReldyrkntVcq9K7lVVYTP6DS8h96rkXlUNNoMNLyH3quReldyrkntVcq9K7lW1wlbpN7yE3KuSe1WtsFXY8BJyr0ruVcm9KrlXJfeq5F5VG2yNfsNLyL0quVdVh81hw0vIvSq5VyX3quReldyrkntVDdiCfsNLyL0quVdV5jjKHIfcq5J7VXKvSu5Vyb0quVcl96raYev0G15C7lXJvaoxx7HMqim5VyX3quReldyrkntVcq9K7lVtgy2zakruVcm9KrlXNeY4JrDhJeReldyrkntVcq9K7lXJvaoV2DKrpuReldyrkntVY45jBTa8hNyrkntVcq9K7lXJvSq5VzWFLbNqSu5Vyb0quVc15jhmsOEl5F6V3KuSe1Vyr0ruVcm9qlXYKv2Gl5B7VXKvasxxrMKGl5B7VXKvSu5Vyb0quVcl96rWYGv0G15C7lXJvaoxxzGHDS8h96rkXpXcq5J7VXKvSu5VzWEL+g0vIfeq5F7VmOOQe1VjXGKMS8i9qjHHsQ4b6yXkXpXcq5J7VWNcYplVU8usmlpm1dQyq6Y1s2paM6umNbNqWjOrpjWzalozq6Y1s2paM6umNbNqWjfYBDaBTWAT2AQ2gU1gE9gENoGtwFZgK7AV2ApsBbYCW4GtwFZgU9hYe625j6OVtdea+zhacx9HK2uvNfdxtOY+jlbWXmtm1bQabKy9VtZeq8FmsBlsBpvBZrBV2CpslWurXFuFrcJWYauwVdgyX6I18yVaM6umtXFtDbbMl2jNfInWzKppzaya1gZbg81hc9gcNqclnWtzrs25Noct8yVanZYMWjJoyYAtYAvYAraALWjJ4NqCa+tcW4et02+dluy0ZKclO2wdtg5b7glryz1hbZkv0Zb5Em2ZVdPGPk7LPWFtmS/RlvkSbZlV05ZZNW3s4zT2cRr7OE1gE9gyX6It8yXaMqumjX2cJrBlvkRb5ku0ZVZNW2bVtLGP09jHaezjtAJbga3Qksq1KdfGPg65V23s4zT2cZrSkuzjkHvVprCxj9PYxyH3quReldyrkntVcq/aDDaj3/AScq9K7lVbha3ChpeQe1Vyr0ruVcm9KrlXJfeqrcHW6De8hNyrknvV1mBrsOEl5F6V3KuSe1Vyr0ruVcm9anPYnH7DS8i9KrlXbQFbwIaXkHtVcq9K7lXJvSq5VyX3qi1g6/QbXkLuVcm9auuwddjwEnKvSu5Vyb0quVcl96rkXtXZE/bMlyi5VyX3quRe1dkTdvaEyb0quVcl96rkXpXcq5J7VXKv6uwJe+ZLlNyrkntVcq/q7Ak7e8LkXpXcq5J7VXKvSu5Vyb0quVd1xiXOuITcq5J7VXKv6oxLnHEJuVcl96rkXpXcq5J7VXKvSu5V3WAz+g0vIfeq5F7VK2wVNryE3KuSe1Vyr0ruVcm9KrlX9Qpbo9/wEnKvSu5VvcHWYMNLyL0quVcl96rkXpXcq5J73SFsTr/hJeReldyrusPmsOEljpc4XkLuVcm9KrlXJfeqHrAF/YaXkHtVcq/qHbYOG15C7lXJvSq5VyX3quReldyrBvmSIF9C7lXJvSq5Vw3yJUG+hNyrkntVcq9K7lXJvSq5VyX3qkG+JMiXkHtVcq9K7lWDfEmQLyH3quReldyrkntVcq9K7lXJvWqQLwnyJeReldyrknvVYI4TzHHIvSq5VyX3quReldyrkntVcq8aBpvRb3gJuVcl96rBHCcMNryE3KuSe1Vyr0ruVcm9KrlXjQpbpd/wEnKvSu5VgzlONNjwEnKvSu5Vyb0quVcl96rkXjUcNqff8BJyr0ruVYM5TjhseAm5VyX3quReldyrkntVcq8aAVvQb3gJuVcl96rBHCc6bHgJuVcl96rkXpXcq5J7VXKvGmTVOlk1cq9K7lXJvWpnjtPJqpF7VXKvSu5Vyb0quVcl96rkXrWTVetk1ci9KrlXJfeqnTlOJ6tG7lXJvSq5VyX3quReldyrknvVTlatk1Uj96rkXpXcq3bmOORetTMu6YxLyL1qZ47Tyap11kvIvSq5VyX3qp1xSSerdsu9jjel6i332m+/MNjG61H1lns9YU94eMkJBViACjRgBTYgbBW2CluDrcHWYGuwNdgabA22BluDrcHmsA0v2R+pByxABRqwAhvQgQHsCYeXTAhbwBawBWwBW8AWsAVsAVuHrcPWYeuwddg6bB22DluHrU82O3KvEwqwABVowApsQAcGEDaBTWAT2AQ2gU1gE9gENoFNYCuwFdgKbAW2AluBrcBWYCuwFdgUNoVNYVPYFDaFTWFT2BQ2hc1gM9gMNoPNYDPYDDaDzWAz2CpsFbYKW4WtwlZhq7BV2CpsFbYGW4OtwdZga7A12BpsDbYGW4PNYXPYHDaHzWFz2Bw2h81hc9gCtoAtYAvYAraALWAL2AK2gK3D1mHrsHXYOmwdtg5bh63DhpcIXiJ4ieAlgpcIXiJ4ieAlgpcIXiJ4ieAlgpcIXiJ4ieAlgpcIXiJ4ieAlgpcIXiJ4ieAlgpcIXiJ4ieAlgpcIXiJ4ieAlgpcIXiJ4ieAlgpcIXiJ4ieAlgpcIXiJ4ieAlgpcIXiJ4ieAlgpcIXiJ4ieAlgpcIXiJ4ieAlgpcIXiJ4ieAlgpcIXiJ4ieAlgpcIXiJ4ieAlgpcIXiJ4ieAlgpcIXiJ4ieAlgpcIXiJ4ieAlgpcIXiJ4ieAlgpcIXiJ4ieAlgpcIXiJ4ieAlgpcIXiJ4ieAlgpcIXiJ4ieAlgpcUvKTgJQUvKXhJwUsKXlLwkoKXFLyk4CUFLyl4ScFLCl5S8JKClxS8pOAlBS8peEnBSwpeUvCSgpcUvKTgJQUvKTcviQMOtvEGdztyr/vSz4CHl4gdUICDbXxFgR25130554CDrdz+rAIHW9EDOnCwlVuxnvDwkhMKsAAVeLAd53B4yQkb0IEHWzvgweYDHl5yQgGWPPXDS8rROoeXnLACG9D5swD2hA22w0tK/+e3H/7Pj7/9/OO//fLTf//wL//Y//kff//1L3/7+a+/nv/82//9r/l//u23n3/55ef//PN//fbXv/z073//7ac///LXv4z/98M2/jNuwX+V9q3In/ZfFn7UvxUbPyr5I4tvVcePNH+0N2jp40eWP1L7psePKrX8WynjR+17Rs8fdfvWjz8Mytdvuo0f9f/hVP+n0z/OX8dZbN9s+9O388Tbt3r7/+X765Pb1Rw/km+7UOdftfrNjxLj/+2q3TluRWz+wb7z/G3fwv3T0SL/Or4QxZom6bb/81Zt/O6+v7v/bhwF6tn6/7o/GL/tz5KzwD5G+LY/uWeB/cn9bX8MzwL7g+bb/lg5CrRXC/jHdvjnP//0z/8H",
1878
- "verification_key": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACE4AAAAAAAAAAAAAAAAAAAAPLaLGSOBJ9M2xnob6xz+edkAAAAAAAAAAAAAAAAAAAAAAB60HeVONMkiv9PNjhG/1AAAAAAAAAAAAAAAAAAAACH4udhEAYfaCDInGN4rsLUcAAAAAAAAAAAAAAAAAAAAAAAaEIWzvrvFCncatNvBpB0AAAAAAAAAAAAAAAAAAAD1QrTfwilw/14NdyeSsMsS6AAAAAAAAAAAAAAAAAAAAAAAAitWSauZJ/hbThw3CdJ0AAAAAAAAAAAAAAAAAAAAwceBl9WDXAtowVm01SKSH4UAAAAAAAAAAAAAAAAAAAAAAB/niP20knrdzRscld2HlwAAAAAAAAAAAAAAAAAAAL4z9PCMHqrpcAezPC6Kwjw2AAAAAAAAAAAAAAAAAAAAAAAI6YoNx7mEvqW9iFI242gAAAAAAAAAAAAAAAAAAABSecXBmzKqkuYhsnvZGqZuyAAAAAAAAAAAAAAAAAAAAAAAG0dBjimtYKVuxUOE0YEyAAAAAAAAAAAAAAAAAAAAZ6+npj6ExPd7kXt7SQV5xawAAAAAAAAAAAAAAAAAAAAAACkAbfIc0tyb/mxnv0ASDgAAAAAAAAAAAAAAAAAAAKp5OjNOIRp3XYbh4aRZ/bUcAAAAAAAAAAAAAAAAAAAAAAAJy9+mTv8PPJvFlWShp3kAAAAAAAAAAAAAAAAAAABGNNa2iAzPr2NOMLD4MosYqQAAAAAAAAAAAAAAAAAAAAAAIx1TJSd16x37VZsXEEb2AAAAAAAAAAAAAAAAAAAAkXolQR591rVpev5p/DrOQ6sAAAAAAAAAAAAAAAAAAAAAACvFzSOkvPdMM6cM6TDRUwAAAAAAAAAAAAAAAAAAAG/iYFUZ5pdcB6YsSBHtIUjdAAAAAAAAAAAAAAAAAAAAAAABBN41eF+weXBywVvOPPUAAAAAAAAAAAAAAAAAAADUtZjIruX+HcR8OPBPjwpdWwAAAAAAAAAAAAAAAAAAAAAAJYaOLPZ3HNuJ3dyxTwhzAAAAAAAAAAAAAAAAAAAAJzF9LwqADNbKcfUoT8KtTa8AAAAAAAAAAAAAAAAAAAAAAA518y3hD5iLVkztpJIXywAAAAAAAAAAAAAAAAAAAB5J8PjTkTM7ZuCKjl4o1N0dAAAAAAAAAAAAAAAAAAAAAAAGAYYZQRXqMgE23QeNvXEAAAAAAAAAAAAAAAAAAADLzvOxf70nCh5CyeO7MbwinQAAAAAAAAAAAAAAAAAAAAAAC+Y4ZQZqlLTv/G7RCNYEAAAAAAAAAAAAAAAAAAAAHf4/GVEJ6d/9SBxR0Vsqm6MAAAAAAAAAAAAAAAAAAAAAAAEM3lfJ0Pl65D4jHKZUKwAAAAAAAAAAAAAAAAAAACUxsIuerv80ELrJzHMaDILXAAAAAAAAAAAAAAAAAAAAAAAYzfd6WsIJQS4Gq+4QnT4AAAAAAAAAAAAAAAAAAAAA5jv/I5J8/0KdIv77lorAbQAAAAAAAAAAAAAAAAAAAAAADH2f1g1oTfcgC5mfxd3mAAAAAAAAAAAAAAAAAAAASMkoy+W+lHKszdPawzPbe70AAAAAAAAAAAAAAAAAAAAAABrNgTOw2COkgJ43I7imlgAAAAAAAAAAAAAAAAAAABllH6ozmJui1aUwjilFhnrNAAAAAAAAAAAAAAAAAAAAAAATnxorXmX2ZTZpvOYTIjYAAAAAAAAAAAAAAAAAAAD+Z4EDwkPBiED2HT5EwixHhgAAAAAAAAAAAAAAAAAAAAAAEv73ie6GDNU7e+MW9hk8AAAAAAAAAAAAAAAAAAAAdKMXIGslR+quCBeKZW4pSzwAAAAAAAAAAAAAAAAAAAAAAAYA/8UCCvzucg8NdLSL8AAAAAAAAAAAAAAAAAAAAL8Ut4hQLhJz7dimIqcGYLOuAAAAAAAAAAAAAAAAAAAAAAAcu3iaaRnhb5f7io2I7TYAAAAAAAAAAAAAAAAAAAB4W7aoIImOU028ekRU8Ur2nwAAAAAAAAAAAAAAAAAAAAAABoHYydyAjVkNFGe56SHaAAAAAAAAAAAAAAAAAAAAXav0U29LrU/bEnLByTpScY0AAAAAAAAAAAAAAAAAAAAAABJJ6Pqlf1MfA3grsnO+hgAAAAAAAAAAAAAAAAAAAKwW+SlLCPfTZO78l4Wb9JxLAAAAAAAAAAAAAAAAAAAAAAACWfvuI4mJ7LOhl22AtQ0AAAAAAAAAAAAAAAAAAAB0B2CZH9D5nQ6YpNU9n2T6xAAAAAAAAAAAAAAAAAAAAAAAFHQyAapJAE6s1JJu7sbWAAAAAAAAAAAAAAAAAAAA7vsCtDgbZjVhmhhpDJMRMCAAAAAAAAAAAAAAAAAAAAAAAAPPV+DuHfeJxfz/RVyLEwAAAAAAAAAAAAAAAAAAABqDg0hdvJPUpl2U6inEHu17AAAAAAAAAAAAAAAAAAAAAAAKdN8Ov+H2f1eajZyTAHIAAAAAAAAAAAAAAAAAAADQIxX4IKnonKIWaJR/n8+nQwAAAAAAAAAAAAAAAAAAAAAALcVwnNS2Pd8KeglxcmqWAAAAAAAAAAAAAAAAAAAAOsWr2CHXC6TMg+lxbkHe2UwAAAAAAAAAAAAAAAAAAAAAAByMC5yLW03onjX4UDY6BQAAAAAAAAAAAAAAAAAAAJ/j99kO17yfXR+8AsjjPLoTAAAAAAAAAAAAAAAAAAAAAAAgbZxFVcOA30mtI3Iu6scAAAAAAAAAAAAAAAAAAADu43rYzsy37cRgXcbnqR7AVgAAAAAAAAAAAAAAAAAAAAAAEjATZR8KnNFe8+hz7hdaAAAAAAAAAAAAAAAAAAAAkveCpZgk03B7OivHY9WcyoEAAAAAAAAAAAAAAAAAAAAAAC0QQ6/9o7oGa1pNxmk4qAAAAAAAAAAAAAAAAAAAAMgtBCOyAT3kel/snW9JEpuEAAAAAAAAAAAAAAAAAAAAAAAPk3gSW6zMIgWQkSNaafUAAAAAAAAAAAAAAAAAAABXmT98c/lRwNic95XbsdN+uwAAAAAAAAAAAAAAAAAAAAAAJxorSqdC78E87oybyWo8AAAAAAAAAAAAAAAAAAAAnh7ykmv7crew1PEabuyR3xMAAAAAAAAAAAAAAAAAAAAAAAJMQTWbFn/unsNKV98C0AAAAAAAAAAAAAAAAAAAALM5XiUQFS0odknfo2YuAQKFAAAAAAAAAAAAAAAAAAAAAAAdsv6q7hmp7Ti6ZdYfiNoAAAAAAAAAAAAAAAAAAABgBSqAceEnDeXnXLV542DbtgAAAAAAAAAAAAAAAAAAAAAAD83bGxoHQ6diJ1agunuYAAAAAAAAAAAAAAAAAAAAM0uPYso6m1yk/D7KNExEbSsAAAAAAAAAAAAAAAAAAAAAAAcO0H5CIvvvuFpv7HWEdgAAAAAAAAAAAAAAAAAAANYUpx50xOsq9pO6PKhyiUELAAAAAAAAAAAAAAAAAAAAAAAAHTzGVAkUL155dQ9nn9IAAAAAAAAAAAAAAAAAAADXsQd1WcLjLiM8y35XT810JwAAAAAAAAAAAAAAAAAAAAAAKIqzpKCtIgOS8UJInCC6AAAAAAAAAAAAAAAAAAAA7XsFmdnoV4orHkw3QUGPWiwAAAAAAAAAAAAAAAAAAAAAAAfsrqZ3LNUylmmPB/I/mQAAAAAAAAAAAAAAAAAAAIBeLa5G2ILGPBev4TcpMQJEAAAAAAAAAAAAAAAAAAAAAAAYWS2atmOPVAtqFvmLT8EAAAAAAAAAAAAAAAAAAAAAppHQ7QMp2DIilBj1GZcYPwAAAAAAAAAAAAAAAAAAAAAAD4uwdXjw0587Am0YrEeeAAAAAAAAAAAAAAAAAAAAvAwYteEGYXoi/FZIEULb+CUAAAAAAAAAAAAAAAAAAAAAACahWH6bW9iSJUkEybpntAAAAAAAAAAAAAAAAAAAAOjouREL0Hzse/YhyytYtiazAAAAAAAAAAAAAAAAAAAAAAAJKCvnOXD/P8XnT96DnBUAAAAAAAAAAAAAAAAAAABEDR2hQ+vpm8dG86C3jZnFiwAAAAAAAAAAAAAAAAAAAAAAL+JJNoonD7kw5YDtCsxFAAAAAAAAAAAAAAAAAAAAC8yPjCtmlw1XoPuP9NGghQsAAAAAAAAAAAAAAAAAAAAAAC6aR/KHc984nAIyZ+avKwAAAAAAAAAAAAAAAAAAAO95RBSmpN011CFOhrQ4/evzAAAAAAAAAAAAAAAAAAAAAAAi1yeyx7cmMxmyg0V3PNYAAAAAAAAAAAAAAAAAAADNLy/RV8OxsU6b8O7MoKRFUgAAAAAAAAAAAAAAAAAAAAAAKkNNr0+wscC75Ci5wIoXAAAAAAAAAAAAAAAAAAAAnYbWFqC4GpX6168K7lYPA9IAAAAAAAAAAAAAAAAAAAAAAAibTKfOArNUIdNp2F92eQAAAAAAAAAAAAAAAAAAAMElznsi5IriwFA3QnPLhl4BAAAAAAAAAAAAAAAAAAAAAAAgJO7Smc4lgau7Ove/9PsAAAAAAAAAAAAAAAAAAABgiDOd0alsQ5arUU9DJe3SEwAAAAAAAAAAAAAAAAAAAAAAA2eTDLnQR9J0XC/+SoGzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADys03Jh2p2HIVJNdYnTsza4AAAAAAAAAAAAAAAAAAAAAAAAiY2FCKyq4/Qu0MTfe60AAAAAAAAAAAAAAAAAAAA/fPMF1XmwW/wWX17wskYqAcAAAAAAAAAAAAAAAAAAAAAAB9k5aALRP4R29b5adJjjwAAAAAAAAAAAAAAAAAAAGvMegX/lalrKJQkxfczZw2WAAAAAAAAAAAAAAAAAAAAAAAAxDcm91tv2g3iLODg36sAAAAAAAAAAAAAAAAAAAAdCgnXF47JO614WPluZPC0jQAAAAAAAAAAAAAAAAAAAAAAL5tuC04sAZaN5cMkgqp9AAAAAAAAAAAAAAAAAAAAFLmaKhz1vbFNGPy31tW7G0MAAAAAAAAAAAAAAAAAAAAAABibwBFKqYLGRXSxHbsAPgAAAAAAAAAAAAAAAAAAAIFYESpGMQpiuEn23VYsLIaUAAAAAAAAAAAAAAAAAAAAAAASkF6WwsjbCGXWk491oyQ="
1876
+ "bytecode": "H4sIAAAAAAAA/+1dd2AcxdXXvNk73Z16ccPG2DTTwaZ3jLtxwwVMFbJ0toVlSagYTAuihIRQZNm0ACGAbQidxIQSiiF09sW0j1CcEAgJAUINJBAIfCtbup293Zmb3dtnJDj/o/Ht7u9NefPmzXuzv+Wdyy5/dXhVVfWprcmaqobmqrqG1mRzQ3V9S1VVTWNDS2tzW01rYzMaq9YbY9vvPLS+umbRoY2njG9rqBlTXV/fvmrm6GkTxnW233hkXWtDsqUFhmncxJnGTWU6SBWHaNzU3zxL464BWncN0anV5jo3DdW5aQudm4Zp1Xy41l1bat21ldZdWw9rv+XQ5rr6+roFXddX5HV0rG2/eXRLS7K59ehkc+PyjmWdjw3brXZa85sjf7n9vTPG/ba9fe5x2+3+j4lL72taNubNz5d/nJeXh/y2x4blqf/tFAT2diks7yl4NHLNjMaWZF1tY8OoGcnmxW2t1a11jQ2dK1KNtqqbKm+TKm0rXL99BfI7kN+J/C7kv3bWvLMzY1tZhVbrfpMBiB2uM4QWziH+a7i1Vg3XZAbSquGaNDVjy9pXz6prWFCf3KgJmYTo1CRvA+bipvok8rvXalXrbuasVjFxtX7rnFvLlmuJsJ7Tq8w9mYc0mPx7OjI3MwDy3Rbyci09vFvrrnu07rpXQ6fT26JRw+62aLRabyy12nIfybhYI363nn2+X0O+Y4aBzxnGMgtYn1dqz7Df2cUH7OKDdvEhu/iwXVxrFx+xi4/axd/bxcfs4uN28Qm7+KRdfMouPm0Xn9GzTo/o2dbH9G57Uu+2Z1iQdfrZjMM0OAisKYU1egqBlv9nhfLvhPJDQtm0XABE/gfk65A/56y93kR/QOsu1OqJ5zUmWpCeeF4o/0EorxPKz1k98QLyF5G/hPz/su7wB4XyC2k+18vI/4j8FeSvBlGX1zJ20h5BYF+XwhZl1fevCeWHhfJaofy61Snrkf8J+Z+RvxFECx/Rumu9Vk/8xedyo1nFR7Xu+pNWFd+kqeLvte76s1YV3yKay38Rym8K5beE8huWPv0V+dvI/4b870F64jGtu/6q1RPv0AzW41p3va1VxX/QVPEJrbv+plXFd4n06R2h/A+h/K5Q/rulT+8hfx/5P5F/EKQnntS66z2tnviQZrCe0rrrfa0qfkRTxae17vqnVhU/JtKnD4XyR0L5Y6H8gaVPnyD/FPm/kH8WpCee0brrE62e+JyoJz4Xyp8K5X8J5c+snvg38v8g/wL5l0H8lv9mrH1JoNr/Vyj/Wyi/nObMfYX8a+T/Q/6Ncw/IfUdZvso8Dp329urbVNHIWxtEhb7S6t5v3Xcdm3YXs2rgd4dsdNq94xF2SZfgtyu/9ROwMpjWTtVgzN3Neh2YXsH0uljYOlgGZOypPK2WgBU1998UI0/rLr2mcHdT0h/Sagr3TADcPrWtvrVuVk11fXWzVVyxvP2mMV05pOqGVo24mPteWFdxfFt05XE1O48oGvfJwPIV5xz82EVnHzxiJx+4eWIA4luhCXl+KrccDQONCBpRj2bfOW7xvGRtbbJ2TFvzkuTo2lqr4bYcQyhHhHJUuMmKBtnl34vxF5+VzEcjhkbcHbLPpBpMZ4Ib+X4dDK3FxEhkhC0KspgYCTstKfTpHc6lxChAoxCNIjSK/Wc6rLCOVgsL/Fpq/9mCB3wZ35Ig2YIHrOe0KmOUkmQLLPmlHdQ9mXlRZUI/lvnvR0sdyrR0y7pN565ygr626li+TFd6hps26XhUBBqPCr22VhD1tI4fkKcdFs5sjSrJrZGOCGHU+gWwRkal9ZxeZfpTWKMu+f2D5C4zj0+phaxnIUpDa79jvCMd9pbHGGAXB+q57APSUt/R8BNzHWudIvLDF3GN3e5BdnEzuzjYLg6xi5vbxaF2cQu7OMwuDreLW9rFrezi1nZxG72+H6yVijOG6t02XO+2rVm2SQqri+3yZs4khbEtGiPQ2A6N7QPsuI3BWndtq2U5dyCJsBlDtO4aoVXFHWmquLnWXdtpVXEnmtCXsYNQ3lEo7ySUt7f0aWc0dkFjVzR2C9ITQ7Xu2lmrJ0bSDNYWWnftolXFUTRVHKZ1165aVdydSJ9GCuVRQnl3obybpU97oLEnGnuhsXeQnhiuddceWj2xD81gbal1155aVdyXpopbad21l1YV9yPSp32E8r5CeT+hvLelT/ujcQAaB6JxUJCe2Frrrv21euJgop44WCgfIJQPFMoHWT1xCBqj0TgUjTHZZhOMQ4TyNmkhoLFojENjPBoTsswmGGP9ZBOMiXZxUpBsgjFWaxQnamUTJvWubIIx0dcWcrKeezw5SDZhQwemVzC9Lha2FtZhIWUTDguWTZikdZdeU6aElE2Y0iezCdbstcuTfAbqp6IxDY3pvrMJU4XyNKE8XbxpiFDeXNz0+azkDDQOR2Om/7C4XjJqBtHiItlKWvt1p9WfhcZsNOagcYQ62pW5JbMeG7bDcW+f+WLeHSPuid583YR5X4+/5Niv+2N7//cXxe/8tPaA6+8TTNWRawPEhKzKHtnV9ZnkdN2mY13nBoiJadVy7jKtWs71u9rEOv0uILM0RKgWsPR/K+whPMouHm0Xj7GLx+qqzlwNW6ZjQ48JFIKxGmKXjxbh0ubKcWgcj0YVGic4tKJTK1LapRVa6jPXEtSpN+O0NOA4v3sNPeFzte6q1hjZQO9P3KunWfMCxKYzy78P+f168mtoksW1GWGjQWCTAUZLS6GP1YvkH6tVy/lES2atUE4K5flpZmABGgvRqEPjRKdxjvveKC3QivEHSMiv0erIRSGZ3UVpLx8mOoSFvj7I667GYmnVoj2FQGOcVL+Xaiy2xrcBjUY0mtA4yf9uVO8ISYNWHzQHMdyZhTdqCW/xaQo09+r1Wnc1aVWxlcgONAvlFqHcKpRPsvSkDY0laJyMxilO9S+4PPQ0nB8XzXeMoT5kF7F91ejm5uqlnXryt8kMqAe0rZ9m6PVMW/iQi4hMvrFIa84sDcnkLx2W7eEIjY4QVpFTgxyOWGQ91+E37V94mb+WbBO2joSux33KvoTUoGXdRmh9Xhkap6FxOhpnoHEmGj9C4yw02tE4G41z0DgXjfPQ+DEa56PxEzR+isYFaPxsreIkyIV28SIP1yZT3S0AvxpZ5HvTf9F30uOpfrk4kAFbqmXALgnJgF0yTHo8p1NrVzOAadmgAWgMJDruEyc5URRg5C7RGrmOkEauI1uqE42aiNq8TC+psixAIKNra1yjtyFaSRHIMKq15a8KkrHODKunYCu17tKpYpZOS6cvzVkexGnptJ7Tq8wKkhOdlvwVvs+Xl3T6tJ5diq91Y4+GZq64utIbUpW6bs6Gm4U1/1K7eJmeNbhUz5ZdNsw5aS7Va6l6anVuTGVfqjUBL9OzPiHYiI0j4F8hV3Q1RUu+XosvpwhJG8ssYD1LeoVPS9qpu5LM0zX58/QqemWAJSczqn5H/TxICCoz7FXf5ZIjGErNPEuHVkWupDN+V9vFa/SM39V6xu+aNOO3Isz+0DKRV2tJvIbErFnz4Go9hdWbLXpt+QVJhqenLRqt1rpLry3XkhjSKyzl0brxSstC6Q3NL0kq2mHVVevGn1s2T6+i15FkHPTIBY1lFHlqnTfGRlAI1kkEbUchGDQEb08hmGsI3oFCwXbUUS9+R5BMfCbRO1F0pMYuk+1MITiiIXgXCsFRDcG7UgjO1xC8G4XgmIbgkRSC4xqCR1EITmgI3p1CcIGG4D0oBBdqCN6TQnCRhuC9KAQXawjem0JwiYbgfSgE67x7vC+F4DINwftRCC7XELw/heAKDcEHUAiu1BB8IIXgfhqCD6IQ3F9D8MEUggdoCD6EQvBADcGjKQQP0hB8KIXgzTQEj6EQrPMq+lgKwTovmI+jEKzz2vh4CsE6b2lPoBCs8+71RArBOm9UT6IQrPMC82QKwTqvJR9GIVjnZeMpFJvuqRSg0ygiE9O1IhO/oRgdnRegZ1C0+XC9KH6AkKgGqhXg1rrxWisoq6MVM0mqeZWPal6nU81ZFDNiNgXoHArQIyhAj6QAnUsBehQF6NEUoMdQgB5LAXocBejxFKBVFKAnUIBWU4DOowCtoQCtpQBNUoDOpwBdQAG6kAK0jgL0RArQRRSg9RSgiylAGyhAGylAmyhAT6IAbaYAbaEAbaUAbaMAXUIBejIF6CkUoEspQE+lAD2NAvR0CtAzKEDPpAD9EQWoeRYJajsJ6tkkqOeQoJ5LgnoeCeqPSVDPJ0H9CQnqT0lQLyBB/RkJ6oUkqBeRoF5MgnoJCWoHCeoyEtROEtTlJKgrSFAvJUG9jAT1chLUK0hQryRB/TkJ6lUkqFeToF5DgvoLEtRrSVB/SYJ6HQnq9SSoN5CgriRBXUWCupoE9UYS1JtIUH9FgnozCeotJKi3kqDeRoJ6OwkqyXsZ5p0kqHeRoP6aBPU3JKhrSFDv9omqTa5xlM6JFfO3WkdWjqKq5NFalbxHq5JHU1XyGK1K3qtVSd/HALRk36clez6J7Psz37RbRrrpj7799vkAk+d3JFPyARLUB0lQHyJBfZgEdS0J6iMkqI+SoP6eBPUxEtTHSVCfIEF9kgT1KRLUp0lQnyFBfZYE1SRBRRLUP5CgriNBfY4E9XkS1BdIUF8kQX2JBPX/SFBfJkH9IwnqKySor5KgvkaC+joJ6noS1D+RoP6ZBPUNEtS/kKC+SYL6FgnqX0lQ3yZB/RsJ6t9JUN8hQf0HCeq7JKjvkaC+T4L6TxLUD0hQPyRB/YgE9WMS1E9IUD8lQf0XCepnJKifk6D+mwT1PySoX5CgfkmC+l8S1K9IUL8mQf0fCeo3JKjfUqAiy6OBZTSwQAPLaWANGtiIX1gtWkoW1UoYVdO0KZ8GNkYDG6eBTdDAFtDAFtLAFtHAFtPAltDAltLAltHAltPAVtDAVtLA9qOB7U8DO4AGdiAN7CAa2M1oYAfTwA6hgd2cBnYoDewWNLDDaGCH08BuSQO7FQ3s1jSw29DAbksDO4IGdjsa2O1pYHeggd2RBnYnGtidaWB3oYHdlQZ2NxrYkTSwo2hgd6eB3YMGdk8a2L1oYPemgd2HBnZfGtj9aGD3p4E9gAb2QBrYg2hgD6aBPYQGdjQN7KE0sGNoYMfSwI6jgR1PAzuBBnYiDewkGtjJNLCH0cBOoYGdSgM7jQZ2Og3sDBrYw2lgZ9LAzqKBnU0DO4cG9gga2CNpYOfSwB5FA3s0DewxNLDH0sAeRwN7PA1sFQ3sCTSwRMnueTSwNTSwtTSwSRrY+TSwC2hgF9LA1tHAnkgDu4gGtp4GdjENbAMNbCMNbBMN7Ek0sM00sC00sK00sG00sEtoYE+mgT2FBnYpDeypNLCn0cCeTgN7Bg3smTSwP6KBPYsGtp0G9mwa2HNoYM+lgT2PBvbHNLDn08D+hAb2pzSwF9DA/owG9kIa2ItoYC+mgb2EBraDBnYZDWwnDexyGtgVNLCX0sBeRgN7OQ3sFTSwV9LA/pwG9ioa2KtpYK+hgf0FDey1NLC/pIG9jgb2ehrYG2hgV9LArqKBXU0DeyMN7E00sL+igb2ZBvYWGthbaWBvo4G9nQb2DhrYO2lg76KB/TUN7G9oYNfQwN5NA/tbGth7aGDvpYG9jwb2fhrY39HAPkAD+yAN7EM0sA/TwK6lgX2EBvZRGtjf08A+RgP7OA3sEzSwT9LAPkUD+zQN7DM0sM/SwJo0sEgD+wca2HU0sM/RwD5PA/sCDeyLNLAv0cD+Hw3syzSwf6SBfYUG9lUa2NdoYF+ngV1PA/snGtg/08C+QQP7FxrYN2lg36KB/SsN7Ns0sH+jgf07Dew7NLD/oIF9lwb2PRrY92lgfVPi6tHUfdCpQ1PXRiP8Qy3hRAeaP6KB/ZgG9hMa2E9pYP9FA/sZDeznNLD/poH9Dw3sFzSwX9LA/pcG9isa2K9pYP9HA/sNDSwN4y7QMO4CDeMu0DDuAg3jLtAw7kKEBjZKA0vDpQs0XLpAw6ULNFy6QMOlCzRculCU2VsN4AVDsZYXTPPKJPhm3NVrU6lOm/iaIMIzwTKtCtJw90I5TXdWaKkIzeltoGH4BRqGX6Bh+AUahl+gYfgFGoZfoGH4BRqGX6Bh+AUahl+gYfgFGoZfoGH4BRqGX6Bh+AUahl+gYfgFGoZfoGH4BRqGX6Bh+AUahl+gYfgFGoZfoGH4BRqGX6Bh+AUahl+gYfgFGoZfGEUDS8PwCzQMv0DD8As0DL9Aw/ALNAy/QMPwCzQMv0DD8As0DL9Aw/ALB6l3sB99++23QWBpGH6BhuEXaBh+gYbhF2gYfoGG4RdoGH6BhuEXaBh+gYbhF2gYfoGG4RdoGH6BhuEXaBh+gYbhF2gYfoGG4RdoGH5hJg0sDcMv0DD8Ag3DL9Aw/IJvhl+9wPxcrcD8xTTCj9ISfhqN8KO1hJ9OI/wYLeFn0Ag/Vkv4mTTCj9MS/iMa4cdrCT+LRniVlvB2GuEnaAk/m0Z4tZbwc2iEz9MSfi6N8Bot4efRCK/VEv5jGuFJLeHn0wifryX8JzTCF2gJ/ymN8IVawi+gEV6nJZyG/w5OzBif+cj/WYyNR7wzC19E06H1Wh1KQzcLNMzWQMNsDTTM1kDDbA00zNbQTANLw2wNNMzWQMNsDTTM1kDDbA00zNZAZGpomK2BhtkaaJitgYbZGmiYrYGG2RpomK2BhtkaaJitgYbZGmiYrYGG2RpomK2BhtkaaJitgYbZGmiYrYHIs6dhtgYaZmugYbYGorPRNMzWQMNsDZ00sDTM1kDDbA00zNZAw2wNNMzWQMNsDTTM1kDDbA00zNZAw2wNNMzWQMNsDTTM1kDDbA00zNZAw2wNNMzWQMNsDTTM1kDDbA00zNZAw2wNNMzWQMNsDTTM1kDDbA00zNZAw2wNNMzWQMNsDTTM1vBrGlgaZmugYbYGGmZroGG2Bhpma6BhtgYaZmugYbYGGmZroGG2Bhpma6BhtgYaZmugYbYGGmZroGG2Bhpma6BhtgYaZmugYbYGGmZroGG2Bhpma6BhtgYaZmugYbYGGmZroGG2Bhpma6BhtgYaZmt4gQaWhtkaaJitgYbZGmiYrYGG2RpomK2BhtkaaJitgYbZGmiYrYGG2RpomK2BhtkaaJitgYbZGmiYrYGG2RpomK2BhtkaaJitgYbZGmiYrYGG2RpomK2Bhtka/kkD+wEN7Ic0sDRs1EDDRg00bNTwKQ0sDRs10LBRAw0bNdCwUQMNGzXQsFEDDRs10LBRAw0bNdCwUQMNGzXQsFEDDRs1p2Gj5jRs1JyGjZrTsFFzGjZqTsNGzWnYqDkNGzWnYaPmNGzUnIaNmtOwUXMaNmpeRANbTANbQgNbSgNLww7Ny2lgK2hgaXifOQ3vM6fhfeY0vM+chveZ0/A+cxreZ07D+8xpeJ85De8zp+F95jS8z5yG95nT8D5zGt5nTsP7zGl4nzkN7zOn4X3mNLzPnIb3mdPwPnMa3mdOw/vMaXifOQ3vM6fhfeY0vM+chveZ0/A+81E0sDS8z5yG95nT8D5zGt5nTsP7zGl4nzkN7zOn4X3mNLzPnIb3mdPwPvODaGBpeJ85De8zp+F95jS8z5yG95nT8D5zGt5nTsP7zGl4nzkN7zOn4X3mNLzPnIb3mdPwPnMa3mdOw/vMaXifOQ3vM6fhfeYzaWBpeJ85De8zp+F95jS8z/xIGti5NLBH0cAeTQN7DA3ssTSwx9HAHk8DW0UDewINbDUN7Dwa2Boa2Foa2CQN7HwaWJrPFPOFNLB1NLAn0sAuooGtp4Gl4b/lNPy3nIb/ltPw33Ia/lveTANLw3/LafhvOQ3/Lafhv+U0/Lechv+W0/Dfchr+W07Df8tp+G85Df8tp+G/5TT8t5yG/5bT8N9yGv5bTsN/y2n4bzkN/y2n4b/lNPy3nIb/ltPw33Ia/ltOw3/LafhvOQ3/Lafhv+U0/Lechv+W0/Df8k4aWBr+W07Df8tp+G85Df8tp+G/5TT8t5yG/5bT8N9yGv5bTsN/y2n4bzkN/y2n4b/lNPy3nIb/ltPw33Ia/ltOw3/LafhvOQ3/Lafhv+U3Zf4QVxBYGv5bTsN/y2n4b7kW/+3U5OLG5qWTGupal7P1/Mcjttt+hx132nmXXXcbOWr3Pfbca+999t1v/wMOPOjgQ0YfOmbsuPETJk6afNiUqdOmzzh85qzZc444cu5RRx9z7HHHV51QPa+mNjl/wcK6ExfVL25obDqpuaW1bcnJpyw99bTTzzjzR+ZZZrt5tnmOea55nvlj83zzJ+ZPzQvMn5kXmheZF5uXmB3mMrPTXG6uMC81LzMvN68wrzR/bl5lXm1eY/7CvNb8pXmdeb15g7nSXGWuNm80bzJ/Zd5s3mLeat5m3m7eYd5p3mX+2vyNuca82/yteY95r3mfeb/5O/MB80HzIfNhc635iPmo+XvzMfNx8wnzSfMp82nzGfNZ0zTR/IO5znzOfN58wXzRfMn8P/Nl84/mK+ar5mvm6+Z680/mn803zL+Yb5pvmX813zb/Zv7dfMf8h/mu+Z75vvlP8wPzQ/Mj82PzE/NT81/mZ+bn5r/N/5hfmF+a/zW/Mr82/2d+Y36LLA8ZQwbIODIDWQRZFFk+shiyOLIEsgJkhciKkBUjK0FWiqwMWTmyCmSVyPoh649sALKByAYh2wzZYGRDkG2ObCiyLZANQzYc2ZbItkK2NbJtkG2LbASy7ZBtj2wHZDsi2wnZzsh2QbYrst2QjUQ2CtnuyPZAtieyvZDtjWwfZPsi2w/Z/sgOQHYgsoOQHYzsEGSjkR2KbAyyscjGIRuPbAKyicgmIZuM7DBkU5BNRTYN2XRkM5AdjmwmslnIZiObg+wIZEcim4vsKGRHIzsG2bHIjkN2PLIqZCcgq0Y2D1kNslpkSWTzkS1AthBZHbITkS1CVo9sMbIGZI3ImpCdhKwZWQuyVmRtyJYgOxnZKciWIjsV2WnITkd2BrIzkf0I2VnI2pGdjewcZOciOw/Zj5Gdj+wnyH6K7AJkP0N2IbKLkF2M7BJkHciWIetEthzZCmSXIrsM2eXIrkB2JbKfI7sK2dXIrkH2C2TXIvslsuuQXY/sBmQrka1CthrZjchuQvYrZDcjuwXZrchuQ3Y7sjuQ3YnsLmS/RvYbZGuQ3Y3st8juQXYvsvuQ3Y/sd8geQPYgsoeQPYxsLbJHkD2K7PfIHkP2OLInkD2J7ClkTyN7BtmzyExkiOwPyNYhew7Z88heQPYispeQ/R+yl5H9EdkryF5F9hqy15GtR/YnZH9G9gayvyB7E9lbyP6K7G1kf0P2d2TvIPsHsneRvYfsfWT/RPYBsg+RfYTsY2SfIPsU2b+QfYbsc2T/RvYfZF8g+xLZf5F9hexrZP9D9g2ybxHyEBgCIHAEAyGCEEXIR4ghxBESCAUIhQhFCMUIJQilCGUI5QgVCJUI/RD6IwxAGIgwCGEzhMEIQxA2RxiKsAXCMIThCFsibIWwNcI2CNsijEDYDmF7hB0QdkTYCWFnhF0QdkXYDWEkwiiE3RH2QNgTYS+EvRH2QdgXYT+E/REOQDgQ4SCEgxEOQRiNcCjCGISxCOMQxiNMQJiIMAlhMsJhCFMQpiJMQ5iOMAPhcISZCLMQZiPMQTgC4UiEuQhHIRyNcAzCsQjHIRyPUIVwAkI1wjyEGoRahCTCfIQFCAsR6hBORFiEUI+wGKEBoRGhCeEkhGaEFoRWhDaEJQgnI5yCsBThVITTEE5HOAPhTIQfIZyF0I5wNsI5COcinIfwY4TzEX6C8FOECxB+hnAhwkUIFyNcgtCBsAyhE2E5wgqESxEuQ7gc4QqEKxF+jnAVwtUI1yD8AuFahF8iXIdwPcINCCsRViGsRrgR4SaEXyHcjHALwq0ItyHcjnAHwp0IdyH8GuE3CGsQ7kb4LcI9CPci3IdwP8LvEB5AeBDhIYSHEdYiPILwKMLvER5DeBzhCYQnEZ5CeBrhGYRnEUwERPgDwjqE5xCeR3gB4UWElxD+D+FlhD8ivILwKsJrCK8jrEf4E8KfEd5A+AvCmwhvIfwV4W2EvyH8HeEdhH8gvIvwHsL7CP9E+ADhQ4SPED5G+AThU4R/IXyG8DnCvxH+g/AFwpcI/0X4CuFrhP8hfIPwLfI85NaiDMg5cgN5BHkUeT7yGPI48gTyAuSFyIuQFyMvQV6KvAx5OfIK5JXI+yHvj3wA8oHIByHfDPlg5EOQb458KPItkA9DPhz5lsi3Qr418m2Qb4t8BPLtkG+PfAfkOyLfCfnOyHdBvivy3ZCPRD4K+e7I90C+J/K9kO+NfB/k+yLfD/n+yA9AfiDyg5AfjPwQ5KORH4p8DPKxyMchH498AvKJyCchn4z8MORTkE9FPg35dOQzkB+OfCbyWchnI5+D/AjkRyKfi/wo5EcjPwb5sciPQ3488irkJyCvRj4PeQ3yWuRJ5PORL7BS/FY63kqdW2luKyVtpY+tVK+VlrVSqFa600pNWmlEK+VnpeesVJqV9rJSVFY6yUr9WGkaK6VipT+sVIWVVrBSAFa43gqtW2FwK2RthZetULAVtrVCrFY41ApdWmFGKyRohe+sUJsVFrNCWFa4yQoNWWEcK+RihUesUIYVdrBCBNZ23tp6W9tka0trbT+traK1rbO2YNZ2ydraWNsQa8tgufeWK265zZaLa7mjlutouXmWS3bzzGRrW3PD2OrW6vV5I/IYcCMSzY/FEwWFRcUlpWXlFZX9+g8YOGizwUM2H7rFsOFbbrX1Ntt2dKzPK+tsXzm6pq65snPdc/nvf/bsEws6Orp/6u/+6dDOdbcVvHDog9fGju/5aaz7p8md6y6Ys99OOy546qOen47sXPdUUUtLA655s+enNveDJ7t/OrVz3elm843flN3y956fzLM71/3quVNveGHIh/ukfrvQXVnzMo/fruhcF/toyZyBT8+anfrtKqu+O8w/4ozhdx++Pm9++83jTmlqTra01DU2LO/IHHCc5feBpN8HGvw+UEtepWa/Dwzz+4DvcWjsfW1o9ftAtd8HFvh9oIW80XW9r0oN5LrUSt6GFvI5Td+Gk/0+sLD32dZh5FVaTD7jWskfqCMfhwXkA1dNLqGJfMnyPQ5LyHuplXwC+R6HevL1wbe27kLeaHq/lX5Bqet9VZrn94Gl5FWqIZ/T9eQPfB8WlBO+Bz5fVe9rw/dhe+y7W3vh9riKXPl64fZ4O/KFnf6B7ckNme8q5fXE5n7hEcO73uO3BzrXbbvP4Wxw68tvrM87zq+4GeQb0+reZzfp/Qj6XqJf5em7lX45ot9y1fS+KtWSD1wjubbSR83byNtArxp134OBO5m80a3k1ps+/pVbdkl6id7cL+p98a9J5LZ1WO+bor0wOdcLq+R7PpxCbvl+kB7ZTuQj3UaufPTrw1Z+HziG3P1pJJ8P3wdP4Ae5sPuOzeStzyvtfHW76g3vKVTVNC5uqm6tm1efrGpsrq6x/ixJNndBVZ3cXN3UlGxen9e/fdWYxoaW1uXtq8fWNSdrWqH9xkkNrckFyeYb5uw+KqNAlv488/X8WWPTn8/zJ99+/qaZyXqrsUuS/mqQl+dGAL8It46prq+vrW6tHtPYtDTVlLFinQTwlV13Lyvo/luUdQvGhtCClbNaG5uWdUpqnDZGY1aNr0vWZ6bUiqzeeNKyu6Wl7beMb2xO1i1o6Prvpa9u3dZaV1/XunTjWzVjUso6fYOuHrFRVTs6lrXftvEFmdG1tV1TIVWLZe2rZ9UtbqpPbqxOj7C0yhq+uuKUse23HFrXUN31Ok7r9KZLe1D4TVMs0bMXVjd0odjKmhKyenLb4qZJ8ztTD/Rrv21SQ+3GmkpnyF4KnvPXHv/85TWTRy1uXznbmq3LOu3ne6Zqd4s7X92trqWqpa42WZWcP9+6YE38NktCc1Vz0prwDgOQmviDvuOJPz7LiT8+a6VnbgQe+sQHEdyaBkKDx9oFUWr7DVMblzgmYuq2jdOouPtvSfed3ZfHiY9k2zfjsu4b5jYpYl84LUNFumVoaq5bUt2anNQyy9LqcRuUesxGnZ6ZUmmXXbAFpSxDqs7Xzxkpv5+57/ceCVtCOMZmfFjGZuCmMzYPLUh2GZiGVsugtFbVWcKqG2qSVsEanIbq+vV5e33HlmVOlpZlTh+0LJlsxpDuv5srbIbjynhRkOPKBLfc7isT7SuG88ok+0rEeWWyfSXqvHKYfSXfeWWKfSXmvDLVvhJ3XplmX0k4r0y3rxQ4r8ywrxQ6rxxuXylyXplpXyl2XpllX0mz3LPtK6VuzSnL2nKX+0ModVvuMgHMabl3c1ru+7tdugnJLju0wURM6rYQ1s5EbrClV7j0iiG9EpFeiUqv5EuvxKRX4tIrCemVAumVQumVIumVYumVEukV+SiUdQ2Rw6UO93/iYtzb7tdxDrqfVngF6ddUNpq7raXwg8teCj+4LKbwg8tmCj+4rKbwg8tuCj+4LKfwg8t2Cj+4rKfwg8t+Cj+4LKjwg8uGCj8IKp52rVRQ8nA8tzlheW57bjrP7fbaZFdEqLElWbXQctfW5w39jj21CVl6ahO+h56azu5O7qll2xoP78HfxMgDt/cgWjqn9zCwZ0vsda+tTCvnjBy1j+tWsVu7TfNtG+fkhv9Mb1oh3HDDrLZ5EpvtDr/1hLcqRub9cYs39ly6Y/+9GqcvOfeN2bedWXnD9u+UDPyw7YAlX65vlMszbpjaVi9pVbD1wwjHbk0Iy25tvuns1k31rT0Wa/j3z2Jxv/Mr2xmqYbFUvolgsVzamjJWSls2PsxI1fhNG6karJjzq8ed1FZd3yKZ2qkZZD/Qv31l149W+EsOmpqYehbDMXIb0QepEgyW66vRQXIhLCVEbtZ4LzNdwzad6fpNV7CsJdlQawXj5zc2V7VWL2hZnzfg+xd77yNJt6KUZXJYpLFS72pcmN7V2E3rXZU5YzP3dAfVrdjMrA0aaV2cbeljp3zrKw/YdGbedHd09LIgef9NOO9bvOb9d51sH5flvB/3PdxvFYaWhh8Xgk1TpuGV2fSe2T0rbXZ75M9vkoW2wpmv4/piBn2rroW6qW1efV1N1aLk0paq6obaqqZqK9NYXV9VvbHj1ufVfscT+MgsJ/CRvXgCT/I5gSd1z4NB3X+HSRNLTJpYAmliiUsTS4Y0sRSRJpai0sRSvjSxFJMmluLSxFJCmlhKS23NcQdnu68cIUZiXWNd7G+sJ7sRSvwhFLlNoiMInH4yyS962vNj/T3P058fl6U9GB80GNCTnNU8mZWX/uBEf4KjzrXoeGkoIHt7Uey9nLAbrOVMXEnEDadr4Qhu7pzCbREp8e42Q9pplm3spOiMDSvMYdYCM7qhdsbG5aV7WV7W/quJyeqm0c3N1UtF975oWfuqjT+mrdZFPnJWAVphBXGmNFbXSrb0MkRDgTjeheiIVkgQIwrEsS5ER+ZMGlWJuEI1hn284YZpjc4dmv1Y1x7Hpc8RfyolbWi+V0MFKelNdST7sq1VRFarmM9aOdKMfjBThigdMSIiSoc05hrSiHRIRUTPIY3567x8WUMTys6LuZrqyLVmWytp9xf4rJUjy5ttreKyWhX6rJUjv+xDLQqkalEQslokZE0t8tnUQqVP5rNWBbJaFfuslSNRn22tCmW1KvFZK4d36EMtiqVqUZymFn4qmnJL06sZE6sZ/qkR1ckQ1YkS1akR1ckQ1ekP1QkP1UkU1WkT1YmS4nDCGEeGFcao2XRhjPu7ohhW+KJqSXV9nbXD7nrVpzl5UluyxcqdbvEdBy8mZxm8mPyDyp2Wdf8tV+ROZedyQXoul0vP5RpZu5AeWaGoX9fYtdkXT7s595yDnLush+xNlrW9OiKl/zM3qv+KTXXCdEV2JxWzS8Z4ylQkZhWrS0R1FkW18oRjfSeHZX2HbsIg8oiGxta6+UurapqTViS+tqqhrb6+bn6dlQNKf/sqlwnKZYLUbQueCXqwOxM0bYMyjtmoi9N6VDGXD9KZyqubrfxP4+Lv5UTtI0c17OkoP6qRbc3GbtrDY2kT9W7bZZm5Qd02TDr96RnWAYs+mbDdMn2tbWx1v+S8x3c8e6dkOXunhBAEdCHEQ5+9jtdHnC85H2YXNF9ylm+MXM5qak/kckdTe6JsNzUTs+4/cIc45LmxhN/8o+/cWEKeG4v5nRz6Ue+YPQEd1txjw5EyLzelB4K6r0TStM0yrEMVIa2YOxSWOiLgCnallHUj7vbdf3fIehWdQs7R4akJ+emawO1edHRqzL7B8XvcHg9PAYnuQKooI4WV71oiEtv1REK7f4jaD62ymtecdEuOekuOpTdN0DHPB+LpD8TtBzYeYh7evbo4V+1dfKSxIpIc8L2ePrm1ZHV0XB5kxx8omuGZX45BkLdlLw/8Lqh3LhsyxEm6ejkcZ2dKWM7O7pvO2fl1szUMS5JdrAstrc3VdQ2tLevja75j36Y+S9+m3m0R830eQsnaO5L5NnM8EyAxqdcyR+q1HCH1Wo6Uei1z3atZ95WjpGvZ0eIbddbfHWVGC9xGy1a4rLdDx2QdYS+TOgggdRC41EEwursDo49mvQAfk3XvlKk3i4Fptr7jU2x5WZ5ic1miCVmegpsY9BTcpKAGKOVR+mTaSHv+ML/6lPb8FH/PD05/fmpPxw0cNWLfpiueq1y/3ZavH7L21l1WDPps6wPW3zvxuo//+/QXHh03LUOPs55C+oPThQfZOVu2XB6/iE199Oyd1xQmHn139LWHjsFnz71gi5Jbr01/cEbPgzscEP941QVnnpf3lxvfv/jfOzxwyM5lQ0eX7fLSVS8Pbmg+ZtDH6Q8e7q+PhqQ/P9PXu3OuBs/y+epd2uOzNVWbOX1YjKJiG6q7ibSXiW5X/SaPCEBUukaxrPfSUf/73bh8vxsNab8bdy+p0fT9rrCZFarm6seEuBzob68TiqFJiKth6JCR8CFZ+JAg9dwCKD/dUef8PnjUWZ4J5u4hSbm4E32cHzYUY5wDDBXQdU1NlOFTwyLSeNu47gDMHKkOOrfnN3nszrzesOcYvaMbeq7q8DlTnXWPqfY018/ZR8MHkO3nWNZHZh7xbzKicpMRCclkRJWRsWz3/Wt9nKDPVzgmDqdFtrbf3qN4QpzzJs/ggFv94guVnpLhI7AYS49V1ijcrOz9Ocdx0SxzKCwv6xEflnWkZ63qwN2GDm2SqoDE9oC9a/QYeoye1w3cojpQ7xHDKvB7ctp1FDYVkPNUhLx0RcgTZffsF150xlSEe/IUZ4uLXCxNhV6mzZvQSTzRn4nQqdBJ6BQVUdw2NXtCpyInoVOhcgSjaZs0WFdxfFt05XE1O48oGvfJwPIV5xz82EVnHzxiJ+nQsaxfvTT8LwzF8oWhMKSFweMdg0KpL1kiVs1lokpSW2IfJ/JLFDavRGM58A2ZChr42BQX+w3fhTnSUbqRjgYeaWFyhz7WRe5XF+RDU0Q+CYvkQ1MQ0tAUKSdh2OqoGqKoQmyp3yCwRGyZW2yBLfamQ+uraxYd2nhK++2WgW+tm1VTXV/dbBWXS9508laiUuHnMu6j4wvsmLnyrS/9WSa836Z8Y0u61BXYlGM9YWHHbHG+HSVgFnSdZlcs6kXirsljbmmGNnnWpAIe/LApNyftSpm4JUy7Vi4fIA1XqyTlar2s72oVizUL3INl8sEvcfpVxWITXfJ8UpOXuztQ1u0VYj/57tqed2cw3wjUtRVu/UgVKz2c/WLz4W5f37xfus+YKc0ET5SG5ie6X7lLoXULfNGzPo9mPUfy3McSBChX34W49ywW+12uqB7EiKW2wZI+V+Z681N4SmJly6+fvuFNHS/LX+bR/+Um9gzPM5mmWmqkhfqouqSkBxld5t3hRcnUcJaSzFEeISnRUcXuwktu7fP5DYIKt0EIvqktD7KpLROnvHQMy53bwjKxKH2owvlQudZD5U7DXKE0zP389Xb/9Mb3lxrmAWK9fY9EvyCGuUKUnnat0i4O9JiIFeY/e3TyHWkKaKbUmk1071NkV0pds+FLhQKoPKxKz3Z80gP7kcILqey56TOV8nlbnUoFboWNK+vEWUpPRb7dK9fpSHeHMPPrnstf2VbH675vs3ZbVCthWbo7LCZMvNxhwUJAd4wr/Rah41mmMFiF1P5wFRm6zP4odgUbdhqek1JfUpm4ssi5GaTVK1Etpo7qcVGSNK9pyXEs6yCubtLzc+lPMVF5JU9tcIAcT3kcbHMv1tmnlANEIHpbSjkmVk2VTykOlk9RQZaED6nMNUaVCiQ/tqnI3zDF2YfepV1sk2hXtpkkHuwYULZhNfARVmM+41uitXR4+HZlxdWb++h4Jo9vOY6+6ieSmTy+xcWe96H1PmPew0PNuTO6nDsLT+uH+TKE8mGIa9i6YmXO3fGyoUfsA9kebnsoiDV8zF/XG0LIdlXx8PkZnKjCfDNFD6oyRzHyzFGMPnMU85M5iotVUw07CzbsasgQTxV+VzowvA/qQLbHiIf50gWh3fI9rnSXUaI0ZuIS62HMSpDNUEYDDR+JoWK3MTtMrT4j98r2/XINhL3UrpEGwt5ugrm0sz3IpCcLSySne4psN8NrXKJ2J2Y4WejDD/E5dctCnbqMbuqy8KZuaUhTt0hj6hbrTt0ibz9kvnvqFmlMXY8scZF76larKCWZL29Naw2Kfe/l+aBp8Km0kVBfWwmLpiGuQdPgpbhxpVqzYGr9fYDcRN4gpaaW9UFNzfaQVqkvXRDaLfcG48G8waKM3uCFlN7g+So+8lhI+yfVp6bB7bctC3wqe4LnqezI3SnoFWq/TX+F4fIYFwvWgVwe43JyLcnHK6z9LtOUR6Ifm7p9+oYgNUJjVZUsCv0EqW0MvOokSFHyoisUP+4juMv14iRcJa84JHnFmvJI2ic72ZX9CeLnQz1BzENakIvUb+JmefRM+n5XqdIP0D//yzI+VK5WhvQGVvhr4HNCWua20eNmjRy1z7iGmualTa0rvH3LEuHnUsdZY/E/5WKFFIRlOu8sPpdjrdPcDiUodvlBNxrZDk1ZqEPDNsnQZGti/WRWizNajlKl+xHIRmV7mLJUy9wILyUWiZuOUqntESsUIrmI7Jxp9to9MFTtjtNpdzw87R4QbHebUOxuE1S72zcod7evuZlYQozPOGhd5BqcvSDB78xXveATDWnhcbzcK8uzhNEwR92zPaIxQCO08KFUn6ShBaE6XhH/yPkp8E8yfNvNT1gkHp4xTYS3M/ky1J1JYpPsTOQ2rUhpegqCmR4Ca5aDzEHmIHOQOcgcZA4yB5mDzEHmIHOQOcgcZA4yB5mDzEHmIHOQOcgcZA4yB5mDzEHmIHOQOcgcZA4yB5mDzEHmIHOQOcgcZA4yB5mDzEHmIHOQOcgcZA4yB5mDzEHmIHOQOcgcZA4yB5mDzEHmIHOQOcgcZA4yB5mDzEHmIHOQOcgcZA4yB5mDzEHmIHOQOcgc5A8O0nXVwfFISzfafW28m8exwB+V4heZqTL5J7LeK8r0FY7JHkSZRRhpSkF/pvourJRp1oPmURApG2olPa0g1vt7XvzLrk+119cvw9g8rxERHl+V5Yezn5NSfNtj8j+/Y8IcfeU1Kkf1gBt5qk8o+BkVx2fOA40LzzQuRkR7XDL2qiH9jAlk7lUvUljAyOgUeEEgXff8nLUgVPJYTFfbuUe1Y2iUavYqVzVK+rWN6OoMY13gUasoGv1StUr6+eqGT/rguLaJFiSQf3Uj6jW9UmuEi4FdqJpr/FL87BOl6uMWpv7AfQ7wBwUo/yJx9t5NVFTwVVlOp1jW31ndwuOzeqvG1yXrazM9yvI0lpxRssFJZF5yvGx3AiODUuB7qqxzNMxR9ME07tNDLfdvjQvomcYL3FNHzjReJFbNpe/C1UIfvpX6ezGZpn4OMAeYA8wB9nZAlXewyYIsmVfxpHSdCLaKF2Ak9e0aY2GgjWOBcuPIZY8V6m4cvbZohWgs1tw4FkgDTyxrp2+Yf5eBy10GCMll4IqoFWT9dastpH6kl6citDttGAo1dKRIqSMJEcwr0mSc5tYMQaw0WFvobkmh3YE9s2WJn8iAz04e7l+xEvSRgYQyMuBqc2F2k0k9HHLjXKRhs9SxwELHCuEVC/yJ0rs2gi1PPYp1jrsrDX9dOdS9kgj2sEfOz/zvCLvrepjnftDoSEFfrPpEdXT1zGRrW3OD655C0WAFmpuuUQHxNpcFCnEVd9R9E33ALF/1+WUeUirK8RFl15etQmxYsWKxKHB7QtfJ2lci0d4Cuxjz/DCg8VIKfKXqm3fUitR9bTZxb8tibB59fVv4ff1wCvxOV18XiNVUGImotxlak/IMF3a3rbtBXETpsbHd1wy/waIeGYukm4OIj2VAiOnoT1vH13pV86kgw/ZGf71nis2KAGgvMenDVyJWUCK39IZZbfOccg2xMZLHypSLeoEI5tabMjQeS43pj6QiJPpeqtZ3C/xJQSkl4OVK70DyUIX7oXKxXun9L3xOt6KrSg43Q2hG2cbQs+r5wvbbNtZpw53Tm1aITZnaVu+NK39owzeNPTWlXKndpXLIEmc9hMrHlUt4idTgubu7QDolCkRA25YqpkSRdEp4JjJLRF/ArXalaLySkvuu26ss9fvV7rT2lfW0PM97QcpLX5DyHJq5cT5EX3QaaeEeV1rDqRLpzSkTPj0/MmNrXOCliu1bOfn2rVy+fSsNafvmYV9KFdu3Cr/bN/vz3zfObpxZXVt3yqWeQxfxNFUV4kCqp7s8jjdeUHflNEu/WKqxLMmMf4ZZaBn/DwMZ/9IsjX9JBuMv74JCqd9UmqXfNEzuN5Vn9Js8m5upjyrdD1UoPaNKpSIWirKl/otLZImtoYG8lxKHWnjp2DeqeGiR+DjZ0nadypNP+NjRF4huZaDYYIE4Yp6n0PKF/gpw/C+wn+5rs6PzpXXZd8QLVdGaYowUa2yTiui2ScUZp3uJMlDhZ+4JfeKaGqVKYxDVWBcKAm6TCoSsDm3EKFParLjLTZbmjWLSHW4qQhDZwm+EICHie0UIIrumwLd0zYuEai13TBoqzY73Ms1mSs1OBNPs7AMAo9RumGIv6Ni4CQ/FfXVq5uVHve4WO5Zwj3U3smfmdUTDcSzwBt8nkOMIxI5jWtRAaEZP1EA6rmXOPX6piKLyWsp8jLo8oZ7w8Fos0xX+cemAXkuG49KW1zJe0DZFtWM+vJPM2qKeWUxlgEsCHduWuTQZDm5bTs00DacGsjT9X/Yy08+Vpr9I+f6Q1PRDQNMPwjsOCr1IBHWfZd2qnFdFjs72cjaOz2zFS5TZ74CLtqKLSlVLp3TqlEqmTrF66pRiJKkxdUropk5pxqlTFiRE4rE8lom94poc5bpTp9THtlFr6hQJL12FP3WAauq0BZo6LMupA71p6pyemzpkUwekUwe8ps4nqjMR8r3D6gzOf7637v8s5UVe7Q6gl/gb4FLpsAZIr5QESa8UiwOtyBYFSq+UKNIrZeTplTJ5eqUkpPRKmSLqC1mnlDKkV4Shi3hO13JxIFU7rRKvmZueXrHUXTnNAqU4M5tf7yRn5LrMu2T14AQ0gIoMSrmqCxJki8RA+SJRlnGR8GxudpEEj2hkhVIRE6LsAFsoaXqlNJswj6Vjd6nSK3Hx8QA7b9XSVtwz59iHPqAz70zUm3rwt6kv1pjfPs8dFqlmmiAvFpK8mHjbJjrnGFNZiZiPkSvRa1iJYlHOvmGOuqcJirtTBk/7XQhSGJO9p+hfU9Cmq1/jKm3SVW159MGdP0nN7QlSY1+cpbGP9LIdQYlyRyD1vePKbDnVQYTIJg/ilSn3sx7n0cpEDXVdZaJs/a7VWnPiqTVnmY/WFGWpP3F/DlWZ22C71aQsSzUp62XnVeLK8yqlytXGz3kVwdYGPwrrfRoq8q9eeRRWrnolZEaob2lXmXLJD6Rd491+gjhgKU8hPeXoMI12l4/cS3mk2TE4KsxSJ6b8mPrC+g03eGHEMlhO8bFSjWWy3LWBkSCUecy6cowmModpy5U1k64yFbo1K/eoWQVGi8WcZuYT6bJ9Lcv6CKvhP65UIY8rlYUUV6pQbsvTeqNSrJp6qdC3EJUKp79SdCBCh+RZj2mlu4dSkdC0K/3EDk671r/nqbHpVwb0XJnpP0pbkdL8s/WjtKVijRVGrNx7vpT31vlSTjdfyrOfL2W5+aKYL+W9eL6UiTVWdE+grIZqNlWSZzUq6WdTpXI2udrcL9SshmDqIp763s8xfUMe29LeOraldGNbusnGtszX2Cr2blEfIYoyhRmNKpb/sjDjpI66ywKyqThpdIZ0oZMeK1XESS1/+4QU9CxV/LlMtSdmZHti3stSWEXKFFaJMjDnJ4VVJN0TO8PT3YG5OfLWuF6ezhcBpLbA9VhFxqRaP6+kWuohEcilh/0wmsz8vrVMxSvFxnkq+cLMQaZ+QQIo/d0P9RPrlT5nKkSfKP2ix47DPaH6ZTmhhssnVP+ME2qAu7n9M/bRQPdDA5RTZqDYXxlnacq6ZdbqAUGyHOrqV6pGcaB0ekkUuUKtyJUYPVXjbFl/OhWpDKIilVn2cYVSRfopl9RKH2a+RGpzSxzOR6aVuCBIAl793iOo3nkqVJFtBfJ1CxS+bhG5r1sk93ULQvJ1i7x6W+7rFofq6yY8fV3HCQdhIKUvY3kkmQXrkTHjHl0uVUVpxl1pnQoxemUK/DKqJGSTjwmUEB8P9ApORlLB6DWZA+nFSmULdCAnHvjUQtTvq5nCK+7er2ZGV2qsSdmebnhEviaVZFyTSoMc9/M8EiHaXH8J+qiGf1IYMDdWmHlO83R7O16czJKHIu76RDP2m8cEj4iy0nXTUGm18KTUlselr4d1V3WSh9rGMXqPhtpGslTbfLnaxjOqbUKhDuDD+XDwrroU08GEpdq+xjPrlrg+SNQ2X6zMRrWd4+0i5KerLLd7zDFeMfsGx+9xe9A8BSRWu/epKSxhheu5HaOpk2TdP0Xtx3p6Ll121Ft2LL1xMdnI9gCmPyCoQs/sf7yHSjMrpT2l3rsG3DnPUrH2lJD0DuMYfcHlyqXcPbtKe+0hr9Jrj3/+8prJoxa3r5zdXN20rNMdUUvRh3a/4YDtt4y3RqJuQUPXD5fe3dZaV1/XunRCsnVmdUNt4+INabBl7bdNTS5ubF5qdWqz1SpB4Ze1r55Vt7ipPrkxYdbR4RaQptJGmOHAFNjsrD8o5OHI5vvaF7D0lkYU+wKf3zf51v++ICbfF0RC2hfEvBYv+b4g7k/sN+p9AXh6CzGJAy5bsmLOK87ltXsxeifrj8V9k7V2/k9KmG1vUd6TjVN+5lfCvT43l4/Rj1LgH6hYiQ0ZK3G+OFWlxAYxJ2FFvoazle8OuTo+SSTzfnS/Yxf19oI+zxx2lTlY+erOtsC/yBx2TShnXCAnJ1913rvAdUhCaEY8E2FFXDquTP5QomtkbbMuPC19JN9JjOH4xKdu5WKiJI91JrNjl68IZI13T19xAFIT2F41V2VptOUfjspTOJnM/Y267qem+j9xkDomHn1Z/8SBoTXikQ1K4uUGSB+JOsfbEOspfcjodno9unGiqnYOUSkHZozHvDcwf/MeBcivyHqdyHcPrmzYY2IP+B7caMpYfRlocGPu6FXqbIt8rhiprhrxHXUV601dNUuzqxSW06Gp3LH3lfus18/ZJ2P3zlY5gDoAC1VfAtEBSKo+a6cDMEydKsgMUK1KCOgA1Kmi6zoAi1Wv1usA1KpfZs8M0KImG84McJLq/W8dgGb16abMAK2qM0w6AKepDgTpADS4Afr7AjjDDTDAF0CjG2CgL4BT3ACD9D7RmQeeX23Ofz1l4Q6QWzhwreDMXsElntxm3c9Yu37P9cldm80w/5AeKx8fo9ov6nRVW7pZ30wRSRjsb9U7yH8kYbA8krBZSJGEwW7feTN7X5PWG0PEqrlc9SHigiURN8QtbogiyjREw/sPDpkIH7KgTzS8KHzIfuFDVvSJ4anMjXhvHvH+fUKJSsKHHNAn7GVpnxiefn1iePqGvSzpE3pZ3CdGvF+fmJAEelkePmRhn2h433BZK/qET9Q3RrxvuKwDf6ieW1HOJ8r5RL3QEhX0Cb0sCx8S+sTwlFO4Bj5CsULmOeId430l66NTo6VHSbP/1Pxo/8HUhOK7GnF5oDWheQJw+932N98sufIZHwdIMn8+t0AZnc322/UHSg9nFUgPZ6WxwEZE4T2HDh5Vpf80a+anFwUpKmrWQcGGRgXJw4dkwSB7zp0KKi3MW9lJ0JnSsyoTe1I8sapskyo1qiM1OgD1boDNfAFUqZI3OgDz3ZkQuSnb3J+uj/RvyjaXm6shIeWFNleuQ2m9MVSsmku5h4qaKBE31C1uqGK+DBX1PHTIRPiQBeFDQviQkfAhC8OHLAofsrhPKFFJ+JCbhQ9ZGj5kWfiQ5eFDVvQJs1HZJ0wwwRzv1ydGvH+fUKKiPmE2CvqEEg34oVqiij5hifqGM5hbdHv18BDM8cF9ouEDf6g+0UAK1yBYgJd5Bnhjx2b9ptMe0neWWNbvoO7hPyoSV1BPKN7JjWsGeHfZ+7Vdn3wxdqJsYD0IJTLTICTU4f4sw6i7SQO8CcXbt7IAb4EqwJvwWzM/vShIcU0Q4eqgYEOjguThQ7JgkK4Ar+MtMlmAd5Y7wCu0zQ7xyr/vaijIjqI9bx9nyZ7wXP77nz37xIKOzOwJWQp68K386/c5cUQduaC3YzPGwd0XbqHBB+HN1MG97V++BxeIwHWTTm2Rj7HG1CiflD6zU6J67jhTcodvwggJk4mLHITbDzgkJ+wbHL8X2FXzFFDo0T0prLirewoxdkbaAMTsx9KoUgrsWzxlJ9IbJ03v9QCmPyCwbfWMyBKZIvplkghJrwc/kHzu4PXvrffDc5L+IruwpECmF9nT3h1OaeQ0P5Qf+eQfCMinp/zweMk9Ik3IqN+pj9lJPokwD36RmGJ1owSUvSqcPbVLxP84K9zI/JDG2aOn8qXj7PBwPZyOTMPi24vp/YCCpyPLbYfBfxRVeF+RMAU5SOnkkyF7QSmwcYptXfZiUmAzpU5rilgndotULSRcLymMsZ5ML7EXU9C3e9zAMXZn6obfuQ0M8zfH49IDUHmKs0hRN8utXNUKFdpRJHa67GuRs72HVMWqwFLv245XsCrY3aigL5KeBwCvF4GZrTqeEY217hHj/kYsz+3XCFDfJ33IYtTPUI26fKyjrosgNiT9Ile6MFFRhMpmeho6cUyl9mmWTDc9eCQFamBFD/Ae39i3URMFeZm1l1PT7W0fkSaWMTylJrAy1ARW2caICqR033kKtY8q1D7iNoPy6aL6MLTi04caUynhy4C+7cM1Mmw9lLPaxIXlNY2B0zdzo2fbIzeMrVsitt2w8b0ZUY30isT92m3vLbniSx8ReVgggbEvvAFjKfK79Bbo7vG5LVYS+SnwixRLQ8oPjBSXxjzy/VdKBhXVjA25iWNj77uDCy4j4/uL2jLnPU8ROmVST3y6f3NgBGFr4wqLlw3Rqy61moOwSj98I+9Bqk1TNAgHl4dPYSiWChZm3ZliZHmYglJgM6Q0Z6mdWFyaZ49KnJYUxhQPlyWK8YEp6P5aBKfSsFiaRT5crII0xuLxtanUyilbbvU+G5Xv6aHFNxf4S2VxifGpLtlC2lxJbzuIeL0IZeMHpsC3VJPFpl90UPDJST1dGeiYvcX07JEdUhUaoZLJFWY4loLYSdqps4V7AvDgRpWWIOaqeVTLLqZZnqhSnpOxVC7PWsqmNTrjoXZ/d22k0wPx4gtQ3YH49FvEAGOmWH1aJzpYoHUZZBNi7XUlRUVJqrUgprS20mBEVLnhU6RHBeupmHIsCI9vvrIpfqhyo9KmOPrVNk1ZppDOf+vbVy48bdCHvlJIcq03pE31CiFFVSEky0pOyTqroAohZTAXGRoiGbax3i1JpkZshlr5FLYX/EYqourwa3yOxrdM8rP8lonRy75l4mHRHRE8CWhEOVNlqqJkWXesFZ5Kc4LwlSi1fXFdBaWZdX6rxr2ipmZlj9Ke/p2xDMtTbKCI0nJFlNbwvyeMBoq2RlXz2kGDr5j0hnRmRnvrzByvfKM2koUq5yu2TeMzuYY9qpzxyywR937rLL/7rYjK9Fr7rctT0OeoPl8Fag9T30OK6m7P5VnabA9yBEjwKw5yRDfJQY5s3Q/DR7RYGCL7gy9rZjS2JOtqGxtGzUg2L25rte5sbOj0tiMxcQYb6q+iKcwRV5sj1eyNKGdvps2Ucv7Kvqyi5bJJJ6nY+V4r8FWpaXqX2oLrD3N+RgcmoTx0G1ENT0KVA2I+PKbMbpb607MR9adnpVusAucGVNk0rVUyW/81Il8lExlXSc+vi2bqWI+vzBYqp1iROALBF9eEcnpGNZfXu3wsShHpXtcxM1OLcOf9C5KtVQ3JU1qrqpuaqlqrF1RVt1S1JBtqk83r8waljzT4XSJWybfQmZ8/a0L683n+5E/I+rwEZJ1/yWu/tUvba6tbq8c0Ni1dbnsxXjphSCPvY1Ux7A3zqbj7b4lz5o4XwbL93Nj4rHvUWigtrXcc9BdmDHe6khXObwg+0NRct6S6NTkh2TrNUtnRTU2zqxeMbpm1QV3lnxLkaZ8S7JR/dFB6BTqdGGn/k79ewMP5FuQEb1fP/7cgB26yL0F23rlRjNUJVXUNS5LNrVemd0K/LO1JZThzMc+uTwo43fJpflAiz7UQ93R8T/4gXab7pQYec9lNTelMJj2v68SCa6TyUnMx1eyejui8Xxy8DV1cdVJbY2tdsqH1ivTqJYIa1VTqPNxhTNjAkv6Am7sFCt2SZ/eP5Cm2IVptj1vG24XvzQnoafEO+xSAczBSBwoS/w9BInZvqZQDAA==",
1877
+ "debug_symbols": "tZ3bjuTGsbXfRddzwTzEab+KYBiyrW0IECRDljfww/C7/xlB5gpOtyuHxSrdqL5pdccik7mYp8isf3/3tx//8q+///mnX/73139+9z/f//u7v/z2088///T3P//8619/+P2nX38ZP/33d5v/p/Tv/qdV/s+X70r8k/2fNP5Z/Z9t83/28c82/2/l8atyfOr4lPFp41PH32z+OX6747dt/7+tjJ9S/HT81//BU72Of0iIDY0RrPX9g/YP3j9k/9D9Y0Qccn3bP8aVD5le948RpWzjsx+frlfGJx+fI1Kp41OPT9s/aQQrbXyW47Menx6vj89+fHo8Gp98fHq8URakx6ftn+zxxrVyOT7r8enxxlVzPz7p+PR44/pZjk8v23H9bPunbMfniFfHfUg9Ptvx6UU57kPo+OTj05/VuA/R49PjjftQj+dPVuNBjJ96JTDUCa8RqCH+eyUqiBcv7aXrtaRENdnLuh+FHcAT/HY2Oco7wA6IEg8oE+qENqFPoAk8YUamGZlmZJ6ReUaO0t/sKP4Aj+wVJB5AAE+QCTrBDvCnsEOZUCe0CTOyzMgyI8uMLDOyzMg6I+uMrPHn49Fq/PJ4lho3OIrf4pcdyoQ6oU3oE2gCT5AJOsEOKNsGKqAKaqAOItAUKCX+wl8R4Xev+KXE//UXQhGQgmxS3UAF5PG8+o7/gPwKvCqX6hrVdSuDwueuWxVkk/zFdlABVVADdRCBGASNBo0GjQ6NDo0OjQ6NDo0OjQ6NDo39jeWlsb+znMJDOxVQBTVQBxGIQQJyjbY52aRw004FFG9Hf75hqFadXKP5lYalmscLT+0kIAXZpPDVTgVUQQ0Ub2G/gjDXTq7Ri5OAFGSTwmE7FVAFtUnhqe41LEy1UwPFFfj9hq92YlBcgTr5FZBfX3iLijePHo+qUwPRpPAMdacG6iACMUhAocZOoTaeQg0fkTfL4SMypwpqoA4iEIMEpJPCAexqUbPZ1aLWsf/fqHU79Unx9MXLIJ7+TjYpnv5OBVRBDdRBBGIQNAQaAg2FRjx9aU4V1EAdRCAGCUhBNileyzuFhj+ZqEM7NVAHhYaXX9ShnQSkIDuoxft5pwKqoAbqIAIxSEAKgkaBRoFGgUaBRoFGgUaBRoFGgUaBRoVGhUaFRtROUacOIhCDBKQgmxRv+Z0KqIKg0aDRoBE1W8wpemqbU/TVqhODBKQgmxTv550KqIIaqIOgQdAgaBA0CBoMDYYGQ4OhwdBgaDA0GBoMDYaGQEOgIdAQaAg0BBoCDYGGQEOgodBQaCg0wqHanDqIQAwSkIJsUjh0pwKqIGgYNAwa4VDtTgLSg3q4Ub1rHM5Tdoq/9T5vOG8nASnIJoXzdiqgCmqgDoJGgUaBRjhPY5Bkk8J5OxVQBTVQBxGIQQKCRoVGg0aDRjhPY4jWQB1EIAYJSEE2KfpXOxUQNKJ/ZTEQ7CACMUhACrJJ4d+dCqiCQsMHleHfnQjEIAEpyCaFf3cqoAqCRvjXfMga/t0pNGLAJSAF2aTw704FVEEN1EEEgoZAQ6Ah0FBoKDTCv+auCP/u1EGh4U4J/+4kIAXZpPDvThElxpPxF17Dwo3WnOIvzAeZG8hHztvmVEEN1EEEYpCAFGSTygaCRoFGgUaBRoFGgUaBRoFGgUaFRoVGhUaFRoVGhUaFRoVGhUaFRoNGg0aDRoNGg0aDRoNGg0aDRoNGh0aHRodGh0aHRodGh0aHRodGhwZBg6BB0CBoEDQIGgQNggZBg6DB0GBoMDQYGgwNhgZDg6HB0GBoCDQEGgINgYZAQ6Ah0BBoCDQEGgoNhYZCQ6Gh0FBoKDQUGgoNhYZBw6Bh0DBoGDQMGgYNg4ZBw6YGbxuogCqogTqIQAwSkIKgAZ8zfM7wOcPnDJ8zfM7wOcPnDJ8zfM7wOcPnDJ8zfM7wOcPnDJ8zfM7wOcPnDJ8zfM7wOcPnDJ8zfM7wOcPnDJ8zfM7wOcPnDJ8zfM7wOcPnDJ8zfM7wOcPnDJ8zfM7wOcPnDJ8zfM7wOcPnDJ8zfM7wOcPnDJ8zfM7wOcPnDJ8zfM7wOcPnDJ8zfM7wOcPnDJ8zfM7wOcPnDJ8zfM7wOcPnDJ8zfM7wOcPnDJ8zfM7wOcPnDJ8zfM7wOcPnDJ8zfM7wOcPnDJ8zfC7wucDnAp8LfC7wucDnAp8LfC7wucDnAp8LfC7wucDnAp8LfC7wucDnAp8LfC7wucDnAp8LfC7wucDnAp8LfC7wucDnAp8LfC7wucDnAp8LfC7wucDnAp8LfC7wucDnAp8LfC7wucDnAp8LfC7wucDnAp8LfC7wucDnAp8LfC7wucDnAp8LfC7wucDnAp8LfC7wucDnAp8LfC7wucDnAp8LfC7wucDnAp8LfC7wucDnAp8LfC7wucDnAp8LfC7wucDnAp8LfC7wucDnAp8LfC7wucDnAp8LfC7wucDnAp8LfK7wucLnCp8rfK7wucLnCp8rfK7wucLnCp8rfK7wucLnCp8rfK7wucLnCp8rfK7wucLnCp8rfK7wucLnCp8rfK7wucLnCp8rfK7wucLnCp8rfK7wucLnCp8rfK7wucLnCp8rfK7wucLnCp8rfK7wucLnCp8rfK7wucLnCp8rfK7wucLnCp8rfK7wucLnCp8rfK7wucLnCp8rfK7wucLnCp8rfK7wucLnCp8rfK7wucLnCp8rfK7wucLnCp8rfK7wucLnCp8rfK7wucLnCp8rfK7wucLnCp8rfK7wucLnCp8rfG7wucHnBp8bfG7wucHnBp8bfG7wucHnBp8bfG7wucHnBp8bfG7wucHnBp8bfG7wucHnBp8bfG7wucHnBp8bfG7wucHnBp8bfG7wucHnBp8bfG7wucHnBp8bfG7wucHnBp8bfG7wucHnBp8bfG7wucHnBp8bfG7wucHnBp8bfG7wucHnBp8bfG7wucHnBp8bfG7wucHnBp8bfG7wucHnBp8bfG7wucHnBp8bfG7wucHnBp8bfG7wucHnBp8bfG7wucHnBp8bfG7wucHnBp8bfG7wucHnBp8bfG7wucHnBp8bfF42GH1gSayJoVMCeyIlRrAaqQnxZy0w/qwH9kRK5EQB7i7dsxvizzgw/kwCOVESNdGAuwk1MCJYoEcocW/huQM10YBhuwMjwyfuOIxX4o7DeQf2RFcrcUNhvgMlURMNGAY8sCTWxJbYE1ONUo1SjVKNUo1TjVONU41TjVONU41TjVONUy0ctueghJ0i9WQLP0XuyRaG2jEcVeJhhaUOrIktsSdSIidKoiYa0FLNUs1SzVLNUs1SzVLNUs1SzaAW2TsTS2JNbIk9kRI5URI1MdVKqpVUK6lWUq2kWkm1kmol1UqqlVSLFnbPFQrzHlgTI/VtC/QInhZXIumneiZciayfiSWxJrbEyKfrgZTIiZKoiQYMSx9YEmtiS0y1nmo91cLSkdgUeUATDRiWPrAk1sSW2BMpkRNTjVKNUi0cGymgkeJT657gleXAWQ6S5SBZDpLlIFkOexZjPO49kXFHTswrk7wyySvTLAfNctAsh/Bx3ZPPIicyKkw4NtKYSjj2wJLoEVoLbIk9MRItIx0tXNgiCy1c2EpgTWyJfRZfpAJN5ERJ1EQDhgsPLIk1kXBl4bfI24rkoYmaaMDw24ElsSbGXYRENKEHUmKoaaAkhtqe1RfJqP4AanjzwILiC28e2BJ5PsIaLoy0rRp+iyysSEuaWBNbYk+kRI/bQyL8dqAmGjD8dmBJrIktMdQiZzH81qP4wmQHaqIBo908sCSGRJRvuPDAnkiJcUNR6tFuHqiJBgybHlgSa2JL7NM4kYk1kRMlURMNuBtyx4gbTzOa2wMpkRM9Lu1/pokGDPMeWBJrYksM60Xdieb2QE6URE20iZGMNbEk1kSPSztyoiTGXXjti1yrUWsC/co8sa9EZtXEaCw5UBI10YB7Y7ljSayJLbEnCq4hbEoUGOUbvxA2PbAk1sSW2BMpMcphT7OVRE0MNa9nLSy933xY+sCaGL3t/XcjrgVKoiYaMMx7oMflLbAmtsSeSImcKIkxOtjjGnAfiu5YEmtiS+yJlMiJETceSziWoxqFYw+siS0x7iLqWTj2QE6URE00YDSsB8ZdxNPch6I7tsSeSImcKImaaMB9+Blq4ViOOhmOPZASOTHuIqpGOPZAm9jDsQeWxJrYEuMuWiAlcqIkaqIB94mnHUtiTaQji6X0fXMNBcb1ejlEstbEklgTW2JPjNKJXPFohA+URE00YLj7wJJYE0Ntz193NdkCOVESNdGAYekDXcJTckvkbU1siT3Rb0hqICdKoiYaMIx+YEmsie1IHipHDteOlMiJkqjAsLTE0wxLH9gSeyIlcuJMWSx77taBBpQtsSTWxEioi0q7Z2DuSImcKIkKDEvLjnG9URHDvAdyohwJjmXP0TrQgHuW5Y4lsSa2xJ5IiZyYapZqBrU9w+vAklgTW2JPjLqzoyYaMMx7YJSOBNbEltgTKZETJVETQ82r0Z7fdWBJrImhtm/w6ImUyIkyH9ae53WgAcPoB5bEmtgSeyIlelzPii57cteO4e4DPa6WQI/rWbxlT/A6sCdSot9F1Oo9yetATTRguHt/muFujYIKdx/YEnsiJXKiJGqiAaMZPzDVwvMWtxmeP7AnUiInSqImGjAa9wNdzdMpy579ZXHH0bgf2BMpkRMlURMNGI37gSUx1aJxt32LUE+kRE6URE00YHTSDyyJQ61Fkx8pYRN7IiVyoiRqok2MzLAWPaZIDZtYE1tiT6RETpTEueOg8L51InDfO7FjSayJLTHixi6q2CQbk8mRATYx3mdbYE1siT2REjlREjXRgC3KIS6nRTnExqzWEymREyVREw3ob4IWE9qRADaxJrZEV4sZ70gCm8iJkqiJBqQtMdTiyVOotcCW2BMpkRMlUfEsKJ8Q5xPiklgTW2JPpEROjLtwd0ce2MSSGHcRvystsSdSIidKoiYaUEMtnrxG3H1znted4xf8d2OMHpldE0tiTfQIMeaN7K6JlMiJkqiJNlH2PagSWBJrYkvsiZTIiZKowBJ3UQPjLlpgS+yJlMiJkqiJ7qyofbLvY92xJNbEltgTKZETBegO8IoRyVDRQkQy1EENNEJaXJPX8oMYJCAF2SSv4AcVUAU1EDQYGl6Jo7GKhCbP8y+RxnT8zK8gjhDw+hkjn0hjOsgmeeU8qIAqqIH8CjSIQAxyjdg3Gh3VWGeUfRf1vjfUH1G0EpHJtF+s1+qDcANeZXknBdlBkat0UAFVUAN10LjYGKlFrlIMqCJXiTVoaMQQKfKSZN+yWkEN1EEEYpBM8uoXw53IPDqogTqIQAySSd5RjBFC5ORELzBycg7qIAJ5lLhLr24HKcgmeXU7qIAqqIE6iEDQYGgwNBgaAg2BhkBDoCHQEGgINAQaAg2BhkJDoaHQUGgoNBQaCg2FhkJDoWHQMGgYNAwaBg2DhkHDoGHQsKkROTkHFVAFNVAHEYhBAlIQNAo0CjQKNAo0CjQKNAo0CjQKNAo0KjQqNCo0KjQqNCo0KjQqNCo0KjQaNBo0GjQaNBo0GjQaNBo0GjQaNDo0OjQ6NDo0OjQ6NDo0OjQ6NDo0CBoEDYIGQYOgQdCAzw0+N/jc4HODzw0+N/jc4HODzw0+N/jc4HODzw0+N/jc4HODzw0+N/jc4HODzw0+N/jc4HODzw0+N/jc4HODzw0+N/jc4HODzw0+N/jc4HODzw0+N/jc4HODzw0+N/jcps/rNn1et+nzuk2f1236vG7T53WbPh/EIJkUTpagCmqgDiIQgwSkIJsUTt4JGhUaFRoVGhUaFRoVGhUaFRoNGg0aDRoNGg0aDRoNGg0aDRoNGh0aHRodGh0aHRodGh0aHRodGh0aBA2CBkGDoEHQIGgQNAgaBA2CBkODocHQYGgwNBgaDA2GBkODoSHQEGgINAQaAg2BhkBDoCHQEGgoNBQaCg2FhkJDoaHQUGgoNBQaBg2DhkHDoGHQMGgYNAwaBg2bGpH3c1ABVVADdRCBGCQgBUGjQAM+L/B5gc8LfF7g8wKfF/i8wOcFPi/weYHPC3xe4PMCnxf4vMDnBT4v8HmBzwt8XuDzAp8X+LzA5wU+L/B5gc8LfF7g80hI8bSQGvkobT+ixYecHFRBDdRBBGKQgBRkk2J0vhM0Ymwe1xJD8506iEAMEpCC7KDIaTmogCqogTrINSiIQQJSkE3yGnZQAVVQA3UQNAo0Yiotjr3xWtL2Y28IxCABKcgmxdF3OxVQBTXQiOz5JzWyUjyPpEZSykEKskneBngySI00lYMqqIE6iEAMEpCCbBJBg6BB0CBoEDQIGt4G9B4kII8cpetveU9EqZF9clAHeZR4+v6WP0hACrJJ/pY/qIAqqIE6CJHjTRhPOt6ETpGScVABVVADdRCBGCQg14hDj7ye+pxpjfNxDiqgChoavu5RI43jIAIxSEAKskn+JjzI49Ug/9sW5H/Rg/wv/MlEasZBBVRBBPK/5SCbFEcpSpCrxZ17vdK4c69XO3m9OsjnS+J+Y/JppwbqM15MPu0/Y5CAFGTz3rxvcVABVRDuw2vYfvVeww7CvXlfoMd9RH2Ja/a+wEEKskn+pj5o6FJclb+V4+iuyGM4iEECUtCIF8d5xVkzBxVQBTVQBxHINeJ+/a18kILsoEhnOKiAKqiBPHIPYpCAFGSTvI4fVEAV1EAdBI0CDa/jnkNU4ySag2yS1/GDCqiC2lGmkdhwEIHmU4j0hDj6LM6QiaPPIiPhIAEpyK/An3RkIxxUQBXUQB1EIAa5hgYpyCa5Zw4qoApqIJr34U7xhKIap8Ts5K7Yr95dcVAFNZDPMUa5uFMOYpDPMdYgBdn8W4GGQEOgIdDwd/FBKHFBiQtKXFDiAo3wlvjRoS0PnP3P+Pc8m/bPv//244/+v06H1X7/7+/+8cNvP/7y+3f/88u/fv75y3f/98PP/4pf+uc/fvglPn//4bfxf0dR/fjL38bnCPi/P/38o9N/vuRfb4//dMyU8PHXY1qkI8Doj10N4ZtG6hFjdLo3uhOkmmeFRIzRhN0K0X2aNiJ0lVMAuXwNcYpnRBido1tl0XhGGDY/Bbj8PLr3qvYAVk8BytUAxLMcx7L5rQDel98DKN8JwNu8hbEs/GoAuhUAZcD3yoBRBnyvDAS3IPfK4BzgVhkIykDulYGgDOReGShuQe+VwTnArTJQRgC5dwUy7TzWLO4EsG2+m+1eGZwD3LsCne9mu/dC0Tpfq9o1A3z9VvVNJo/dyHAj3QkgW/tvZnomwCwDqQ+vYFWGaBfGksqdv/euzv73Yo/+vq2aWN8UOZtY3yN4epDX6/LGcAPprUa6NDSQhfJRjGH0EyE6QnC/F8IKmunNHoZoixpBvo9mb+Tadi+CyX9ppJ65jdgKddxGr7dCsM63w5hbaLdCSJm1Ykw7PC6K/gfH8PSiWcFZ9F4MQR/S8xnuxbBt1gxfNb33YHErPtFzK0TDK89nW+5dhRpCbLduZIxa0JtVOjUednloEOemH6+trncuYkyi55tPbznNN0jMEGM+4VYIqrgR6nIvBKNmkdq9G8nK2eq9G2m9IwTduhFBUySd7wSwjuaU7t3EVnPAyY/rhDe7f1zltk3QK7hXDqjZJvRiQd4LMCaF0AaNWSGEcJecQ/hY4uGQV21WyjHlVx7H6IvrUMLLSqXdjKHoWejJX8/FkLwO294Qgx7GWLbr2aAy8ePLsNUwvuZEQO+3Hu2YfoNHuLd71cO6oHqw3SqOjho2lnMeF4esbkXa7IOPeSK7V6Qb3p200XYrBjdcBzfZXr8X6neKtFX0occKSrkVIlKnjxC1vx5C74XAeGLQdi9EvsD6dsuwY+UHs5fDbbdC5Kt4oLwcot97qJ3g1jG9fi+EVYSwew+VMPMzsN67CrQGY9Hu5kOtjBDt1lUU7eiwjSbuXgjciKeyPgzhhf4wRs1O35irvzF54DmnOSy6ZbOSDYHnx90LgQruyaP3QhAhBPPNEC1DyMsh5O5VoA9sWu6FUMonUl+8irsPNQ74OLqgp1FR/3p2rGyrBtFaxarJV0+kXA/ip58wXELbaQlpdH2+DrOYF+oF/a7ettMiEtcPQXg1eBfF4P30Ji99eyJIL5ol2xdBVsOkjhH8WA4+zRq2+kwQmG6sH9PNIJRXch6CPxkEU7Gjc7stgqxrSk5WVSr2uKaURRhWrPWNVabzDX0M0lfXghVHP/jm5J/6TBDL9uE0ZHkuSMdSRelFFkEWZSIF7YyU0+zC5zLR1QQFYlDezGg7L0ewhqG9bg8j1FXnoWB2oJV+qvIfY5TVfCbnfOZ5SfvDq7HWFxdflhEurb58I8KF5Zf180AP3c+ifPxAeDl4w3h4k/74gSxjVEKM86LoxxjLNxC8NsbU74hhD2OsnYZ+pZxXUT45rZVrE1Cnie5OH0KsKgcJVrrpqwSUDzFWcwy95MCnPFxhi6WnhzG2LRNQTsPZTzHoDct015/MedG3PdG4jBW+aZnxFqmLx6vLsYfm2OPUryo3g9h5MPdMkFow/+6LkDeD1Fx7rCfrfQrS67W8igzxsY1bXgZ19MuIFgXS++u26fS6bTq/bhtvkl+3zbpY0X2vdGq1PxfrYnpOdMYQywKhew+XzxNrT1VUrqf530WQ1RtAtZ2SVxbdS1oE8Z1YOUY8zwg9G+Y01KS6uhpavQV6vgU6PW5wrgexNwQ5TcE+GQT5SbWs2s/rQRZXwqsx+IY5O98Z9fC1xmX1ds0Y7av+/8cLeUNvgN/QG+A39Ab4Lb2BZbE2zWLVVU1b+i9zKn3z4sLGrK+2fetuCQbxamXRLZFVbVU839Mb9uNlrCKIzsGZnt5F9qFEpb7ejb8e41433sSQW2ZtWxToKkOvoLPIbVU5hFcTXxjxjjkwuheESpn1Y2C5eSW95pxVvRmEGmY2qZ0S1Z4r2IYr4b4tgujiDUDcZm+AmO4GEUx8DbS7QTSD6N0gLChYlnYziGUCn/V6b4xkJkiuNdF7QfzLPDIZZVtZ8BthGHNw25gMuRmmVExd+VcD8N0wRJgLL3x3EOrHomPsV88rvE+GIcyU+lnii4pnqzCSa3HnzhZfDxHfojJb0Zshcgza6GYIyvGj3QvRKefS9XGIbzwVy/USptsP97RGWpVvVzUrWUeWXYtvhGmnqfDVeOcbYbCA4+el3w3Ttlzka5uVu2Fi4v4IUxrfDkMlw8jtMLVk2VTabofJbN/Wyu2yaRhr+4Htt8P0U2pmXw23l2H66YGPsYvdDdPQF/PTq+8+qX5Khh5rrI+vpq4bk55N0jkJuJcnglQ6NQFyM0hn1Lwuj4OsS4Uqpnic7z4jqpgS8UOK774+qWWDP/h+mFzSpKa3b6qjhfQDkPl2GMmyodJvhuGSTQuXRV+z1pf7DcsQFxv9dZlQziaM3tn9MtEsk7rVe2VyrSO0DnGpF7MM8Y5eDFfkuPrBwo+Lta4WwrSjvR9oj2Z61jEoN2h9lX7yVIycX6FW7sXIrF/lUm9eB6aK9Ot9yM/EQC7iiNFej6G3ryOfi959Lv1SjKVh0N+ppzt5yjANsyut6Msh2uJt2BchqGLb2mj4+GFhrNa/xiRCRWLDOS/piQLNGZ5G7eYbqGZi0822oaNv3mu92zb0Qqdml243uzW3KHWim/29mhmr9bxj67muWs2uWus3g5y6we28U/S5K9nySm53X89Bir2jTG5fSU5X9WZvCLIok28NvbCI5kOv2wPBRjm6vd91bSUz6cbolm6Hye5iK7e79dXsNPLf7k5njD/N0e22ygOxl1ueZYhrLc/VEKuWh+X1lme1CHax5VnfyqWWZz2Dd6nlWYe41vKsVwRQv0Y37+6KgGK720C9GwQ9cFK9u6ygPa+E7y61aEOmofbbCxxImhx4u0yQzjKC2M3VNMKkyZjX4jcE0bvreow3wNfrpc8Fwbk2XVaVbRlEMFvSdTHnEj2hh4vQVpGnbKdsljYGoV8HWW03YKQHdD7vNlV96koy7YlWV7J4t/KGas/bObvumevAFnndTvMKn69jlcIl6PTJV7sjPwax7coLupfHe7vXdST3AXdbTAjX1c6ty3Vk+Z6/Wke+cSXX6ojRy3VkfR0X64jJO+qI/rF1xLCERtsi8aJt28udmraV1zs1y4yJjU4Z9tviZtobbqb/wTdTsMeaSt/uNRPUkHU1JuP6zSA1r2Q1P/lEEL0bBOOA8ZjkbhCcekFV7hesZMG2u0FKBmmrhb++HH3mFEO/u//qHOSrmeyvg7RCrzun8OvO+cY+MM6pjnq3RDQXd/X+jrTTldx9NplMVs778j8FWW87xDasTl+t6j4ThJGTOnrCjzdAbssQ6JKc95M9cUwrn45pPU0nyOVr8OymWaDbacdiscuHpIqhqut2HmGVD+e31UUfQDHBYqf5xSeuomxYJ/HDgbMTQdf3Pjd0ZvxM6cc30pZBsLvfD79GkA+HzrbV+sTVXlVbbuW62Ktq7dLUyKpX1VZbua4efdbWe7munTu2vpKLJ+PF+//x+vO1Y+3aakvJtTO3liGunrrV+utnyq0L5A1n9PU8dYDO79KPxuvLnM3cZDdK5HRelGzPRBGkoY73/8l8cvlVRBX5Et41WtzOcitXXkjb9JSo8Ol2llEUo80xY1v4XpRS8iybUk6NlTxzlDYG4HTOgfpYKLQ82zK318g5AW/7UGFptfqbO7HOO4+FngiRrdU51e1TiNXeC0wl2PmUo/rhGFpavM/MWtb302kfH3YsNFoeB4wV+e28pfRDN5X4Da0VvWEOoNHLcwCN7A2tFb/hlMx1kIvHS7bVDq6LDc0qxOWGZrWD62pDs3w0F8/XbczvKFV5vVSvhVgcFrmu7dhr1AvdrO1Xe0RS3tAjktcr6jLEpRNAlyEu1/XVNqOrdX1Zphc7Vcv2QU/tw3lE9LF9EF0ufWN82L/aHv8xiL2hhdDtDS3Eag3uYguh9Q0thLY3tBDLK7nq3tWS1WX3Kr/s3lWIy9bT148RXhfIZeutTpPKw4RP9exT785WW42toZ59tcTz4diBtlqfqQ27c/2rvTIIf7ySVcJJZB/tQepiaqXZauaO8230lX0/BVmur2K1+FRVRxP3TIm0PIftfJrvpxKRN7zQVitWl19oZq++0Pr2hrPp+2rJ6uoLbR3kYuesr9asrr2LliGuvov69no34Oq9CN18uhd7zX012X39wdjrD8ZeLY+1YS71mtdFevUbNpbJgFe/HmO1HHKxSJchLvWalyEu26XI63ZZlunVpnvd7iJNazS19rDd7XV7vYHoqxMHrzYQfXXc38UGYrnV4WoDUfsbGoj1pouLzludG3jZefXlKYBliMu2qfa6bZYF8g7bjCnD+WJttT0+R62v1qwuntPZ2/IlcD7N+eEZmcsYNR+Nn7n1OMYqAwC17OsvXnzmKpCmWb/abv7xKuQPvYrcoljP2wufKs+i7Q0xtpdjtJLDIXpcN1ZHDpYYoRwzIudsl2di9DzXoPd3xJCbMXIfd2e+GyNTMrS8fi93Y+TXFBQq2+sx2t0YeTzKVxuDP8Sg8qpr11eRKTu8cMtqEuPSVXyjUcg1zDHwftworJaoLp4V/I0Yl84K7qslqouHjD0R4+EhY08U6uNzYPtydamfz6TQhzfDy7OjsNWL2B4/mNXqEudBS1zOS/93Y5y/6JlvrejWcyLVM4vTigzGr77y6uPidF+tT43F2llRx3qpLIKsalkmlp12v9cPN/ON60C/svHJuZ+v4w3z/l3eMO/f5eV5/y5vmPfv8oZ5//WVXB0FyRvm/bu8PO+/DHF5FCSvz/uvC+TyvP8yIxMbxar1x/ZdBmkbrqRt52zIj95bLQ51Q3WlbeuPlw/WV4Lq2rbTcSufr2T9fRaSW4K3+jAHqevyeGzKebu8Erp7M4v382pf1aVDV79xGT0PTF3kMPXVtqp3lAb2wI/LqA8vY/l1Q5JfAHUKQZe/zbxmf7vSqaY/ESF3U1WpDyP01dLUGMAglfucmla3Dx3u1dJU45z/kNMxp5+DLLNTTsefneYuTJ6IkRuJy/nrfT7F0NfXHvtqpv3q2iOtF6eurT3Scl3p4tojbfXVtcdvlMi1tUfa3rAtk1aLU1c7VbTxq50q2uT1ThUtV6cudqroHUtcVF7+LuVliMvfplzqy/2hq/cidPPpXlx7pNVOqusPhl9/MPx6efCra4/rIr3Y96fV6tTVvj/V8nKRLkNcWntchrhsl/p6duq6TC8OH77R7l5be6T6huQUqm9ITqH6cnIKtTckp1B7Q3LK+kquOq+9YdWf2sur/ssQl23T+HXbtPYH2+bq2iM1e3ntkfrlb5J9uH6wjHFx7ZFWs/+XZu6/cRWX1h5pdSrgG67i2trjt2K0N8TYXo5xbe2RVl+IdXHtcR3j2trjEzHkZoxLa4/finFl7fH6vdyNcW3t8XqMdjfGpbVHWm0ruehae3ntkVbrU9dWQNeNwrW1R1otLV1ce/xGjEtrj7TcP3Vt7fGJGA/XHp8oVFkUqry89kirc/8urj3Sannq4trj9RiP1x6/MetncmnGbjX9mBPTTc7HQn6YfqTV6pTiTain+vFpdkpWbX6eJ2P94SwZyTvmpuT1uSl5x9yUvGNuSt4x6Nd3DPr19UG/vmPEvto/dXXooW8Zsa98pzlqOG/S/+S71d6n3gTfJjCYy6MVMlotTY1VdMyVD27yOIq+bOB3nPlHr5/5R8tM7srZa5eVba6X6qmuPfdsjHD8wZiVkXtRNE/sG0wPj7ggWyam4qCt08Du0xM2fnUtZH0V1+rZOzZQ0esbqPgd+0F4e8Muat5e3kW9DHH19czb6xOq6wK5+Hp+xjGnUzKe812eDNW11+1mlNjbMKOcDg/8mAexbnBweFmz0/lSHxscLsvF/5ZzXUyLIG84pYrLG06p4vLyKVVc3nA2FJc35FTx60tVyxCXPVxez6laF8jlLtZy3NpPR14vKutqnagWKufvCH94nBKvNlMVzS/LUz6fyEjPXArj7J/Bj98DvFqz0tGA5pf68ON+ybJsSZFuOjoDsijb5f4hfIdssXOWGPH1IPV0ft92/kr6T0FW0xNZsqNLfQpS24cgb8ha5faGrFVuL2etcntD1iq3N2StroNcXMfn1aaqiy/H5VGCV1+O7fXdqlfvRejm073aavU3TAxwf3li4GqIVXn0N8wtcH9D57W/YW7hG69EDLOqf5fPw1diX2UD4LQ7Ox9Xrc9cR37F5lfj6M/XsVoUsFpzbbT2h31oXmWtXm711jfUSn4DpPbHN0TLgVLO2pbTl0h9DHI1efU0q/8heZVXhzzVju9zrZ1PtZXrhyCrsyrysPjea18EWXUDass0y0rnrxvtH5pfWm6LLunhdv4+HnnmWpTze6ztfAjnp2tZzu7P5TQ+7wrq9V4Iexxitc+q5Lx80dM54M9chmA5X8/rxs+EyBksO29M6s9Ukab5bXTtqy/B+fhYeDmD1TEnN7g9fpestjhdfpcs93zha4OrnbK+ryewd8KRpmPt5/Ry/XAuKq9WoU7fb75tj7dpsGzvGCEtD667OkJaX8rVEdJyNesNz5eyTPwbfx8/ndWC1uWjfL8RRTVPe7dWb0bJFCU/EPj+tVw6Vng5hB21DKPPwXLzWt5wODF1tBbjMT8++X014GPbMOA7v9g8xJ/GP3/460+//fnnX//6w+8//frLP/0vC/kq+rBLYR8YjpsoMkEnWIwZv3xXtwnl2P5T64TmMAxT+wSP7L2xyhNkgs6/suMnbZtQjiFnqxPahD6BJnhkf0k3maATLNajv3zXtwke2QeivXpnw3/SJvQJNIEnyASdYAfQNqFMmJFpRqYZmWZkmpHJI/uLinSCR/YBPW8TPLI3vOyR/VmwR/Z8EO4TPLKXBvMEiQmrATrBI3vCjXhkX6WXEu/6ATVWhga0CT3GHwMopp0H8ASZ4JF9OVHsAN0meGRf3dM6wSN7zdQ+gSbwBI/sC2mqsaAzwA4wj+y9OvPI3uG1OqFN6BNoAnsL6H8lE3SCHTAaKlABVVADdRCBGCQgBbmG59yUsoFcw0f0pbhGWKu4hg9tSnENH3cU9+RBruFdnuKuPMg1OP7WJrkxyZ9mcWeSv+mLW5N8Uqy4N8n7PMXNSV6Uxd15EIMkFsKcFGTeffTIblH2CaXiHmUfWxY36UEN1H1CNohADBKQ+qvZdd2rHCXkZj3INbwBLm5X9j1Lxf16kGv0+D0CMUhArhGl665lT/YrbtuDXMNbouLGPcg13CnFrcu+eFvcu3GYZnHzMsfvyXFueXH7HuQaHO/SLb45x6nEF+c4VZBr+CupuIkPcg1fFC1u44MEpCCbJBsoNFxXKqiBOig0vOzd0LEvprijD1KQzSt1U7NGW1BAFdRAHX9BIAZBQ0PDew3/98NvP/3wl59/9EbI26l//fLX2SaNf/7+//4x/89ffvvp559/+vuf//Hbr3/98W//+u1Hb7+i6dqi/Rr//X5MQNXi7VvJH9mX2v1HFT8a9YCa/6jhR6NnUM1/1PNH8qVV/xFlLPlS40f8WVHwo2EXi1iasehL2/xH9l8u9b9dflz/uLzvx8u/b3/6clw4f6H9/9fjvr/3bsv4I+l/ipv+fsyJjBuuxn+K2xuXPCKM/40Yg4v/wH+hxF8MS3zx/nYEbh8LzvsL/x8=",
1878
+ "verification_key": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOQAAAAAAAAAAAAAAAAAAAAFAJj2dLWaqJoRWXfShL6S1MAAAAAAAAAAAAAAAAAAAAAABx5F352T/T2jQiB8X/NgAAAAAAAAAAAAAAAAAAAAFjr7hV0aOOzAEw8Q/ASZ5f5AAAAAAAAAAAAAAAAAAAAAAAENUccqUBi9JTvc858MM4AAAAAAAAAAAAAAAAAAACqoqJC+32Y3CxHEMytFfvpPQAAAAAAAAAAAAAAAAAAAAAADFwQZR3A4vwbYYnTw2sBAAAAAAAAAAAAAAAAAAAAYdOhJUG4VFPyzUJxMq74P1IAAAAAAAAAAAAAAAAAAAAAAAu4FErFv6RZKdrrZ3igPwAAAAAAAAAAAAAAAAAAAChZORQ07OSniZAzw/xjuZDnAAAAAAAAAAAAAAAAAAAAAAAXlFXHHBlgor9ZXhrC+W4AAAAAAAAAAAAAAAAAAACtWEfZIHqUbGu2ng0RQiiTVwAAAAAAAAAAAAAAAAAAAAAALiudJJnX98yf+gS5adc7AAAAAAAAAAAAAAAAAAAAZ9zontkUGMB0E5zwRQHeOqkAAAAAAAAAAAAAAAAAAAAAAARb91pxHcMVgJZEjmAxqwAAAAAAAAAAAAAAAAAAANmBaum1b5b3J1BXZvzk8abuAAAAAAAAAAAAAAAAAAAAAAAibmfxaUJqvDuBRXDWHkIAAAAAAAAAAAAAAAAAAAB4NQjqxwEMTuHGL9WlxUQ4lwAAAAAAAAAAAAAAAAAAAAAAEt4qVVjt1Yx/nB3zrPsoAAAAAAAAAAAAAAAAAAAAsQ3kwsy8HM0jxc9uCJFZgM0AAAAAAAAAAAAAAAAAAAAAAC9Ea5m3i/+pgnjtY7JJgwAAAAAAAAAAAAAAAAAAACd0tHLN/ZGeSeS6aE2SM3b/AAAAAAAAAAAAAAAAAAAAAAAoGHsY4d4j/XaSk5Y6fYEAAAAAAAAAAAAAAAAAAAA/wqM3No6H0GisUzM035HkLAAAAAAAAAAAAAAAAAAAAAAAL8II4H0NSivxf0l2A/XDAAAAAAAAAAAAAAAAAAAAJzF9LwqADNbKcfUoT8KtTa8AAAAAAAAAAAAAAAAAAAAAAA518y3hD5iLVkztpJIXywAAAAAAAAAAAAAAAAAAAB5J8PjTkTM7ZuCKjl4o1N0dAAAAAAAAAAAAAAAAAAAAAAAGAYYZQRXqMgE23QeNvXEAAAAAAAAAAAAAAAAAAACDqQDTFOp4DIDArZuFIzoM8wAAAAAAAAAAAAAAAAAAAAAACWWBWtbJb0b3DJB/sUm/AAAAAAAAAAAAAAAAAAAAzddxH9m3Wxos0sgmUx2zSUoAAAAAAAAAAAAAAAAAAAAAACslai25UE7q+UTCKPoK+AAAAAAAAAAAAAAAAAAAACkvaYAHleFpJLoPtfHKrq7IAAAAAAAAAAAAAAAAAAAAAAAtURghvGo8WvxWCWriGpwAAAAAAAAAAAAAAAAAAABg55uOjx/S6yQ7RwRzTLnNuAAAAAAAAAAAAAAAAAAAAAAACm/Pdkb1yf/SWQQF6IZoAAAAAAAAAAAAAAAAAAAArAJ1JxBo0lRasPFR5ForoG4AAAAAAAAAAAAAAAAAAAAAAADg+G1AACF0jB9MdKz2ewAAAAAAAAAAAAAAAAAAACh2jQ1Pw+X6pwztE98lJQxVAAAAAAAAAAAAAAAAAAAAAAACjybVu8pkkv5uOzUiPUEAAAAAAAAAAAAAAAAAAADiCi3NelC+GD9nRZonpodPZQAAAAAAAAAAAAAAAAAAAAAAArKbr6D1iMN9Y8GFiO28AAAAAAAAAAAAAAAAAAAA5zIm6NTN3MjlA5NqRt45THcAAAAAAAAAAAAAAAAAAAAAACiDy7ZewmufPNb4pcQz9wAAAAAAAAAAAAAAAAAAABxeZDM+Pgu9s30i74zqY20IAAAAAAAAAAAAAAAAAAAAAAAi8dFe7ca1V1EOm2XlxPEAAAAAAAAAAAAAAAAAAAA5JaswbUHhX6L4S3gdmrOLGAAAAAAAAAAAAAAAAAAAAAAAGqT3awCv1LjIVAGLNneeAAAAAAAAAAAAAAAAAAAA8cEBQ4uKHV6tnZNZdND8RLoAAAAAAAAAAAAAAAAAAAAAABuYliCr5L5Q2hoXmjPHnQAAAAAAAAAAAAAAAAAAAC9D9PQy1s0cMH9udMLvESuwAAAAAAAAAAAAAAAAAAAAAAAhtKuK3BPnjucLk8UDUiIAAAAAAAAAAAAAAAAAAADUPdz7LPk8ycWI10Z/p6bppgAAAAAAAAAAAAAAAAAAAAAACBJrwZG3D5Wd1TdzgWa7AAAAAAAAAAAAAAAAAAAAQl2rv1V06l+iHkkv2k8IyvYAAAAAAAAAAAAAAAAAAAAAACvpoWJPI5hptvVc+zT+owAAAAAAAAAAAAAAAAAAAIRti6ANTIkrU4A9s9ivmWv2AAAAAAAAAAAAAAAAAAAAAAAjCp6tzTxMxiJ/q4JRmc8AAAAAAAAAAAAAAAAAAAC2/C6aARBtDfuNx+BWY3lW9AAAAAAAAAAAAAAAAAAAAAAAL78AViFl+pyOR7rqAizxAAAAAAAAAAAAAAAAAAAAf2uRIMeEwqvU/wY7FgyS47MAAAAAAAAAAAAAAAAAAAAAABYxJoMPRPQUzIOHqz+CWwAAAAAAAAAAAAAAAAAAABDVN8xuVhjUis3JkRVN6A1kAAAAAAAAAAAAAAAAAAAAAAAd/vhSFnJWcsCfW+ErxwMAAAAAAAAAAAAAAAAAAAAITBQxMI8lkmXQ4bzUOJhS1wAAAAAAAAAAAAAAAAAAAAAAJ05HBdjCTQmhOiDibJzvAAAAAAAAAAAAAAAAAAAAnZ/WIN/XOWDt5IFVBKwD9UkAAAAAAAAAAAAAAAAAAAAAAA3ZDdY7qGC6kkIM5BNfNQAAAAAAAAAAAAAAAAAAABHJxxGDth8JOI9ONVx3tCgoAAAAAAAAAAAAAAAAAAAAAAAmBEBRWVDFi4SLGYVIWK0AAAAAAAAAAAAAAAAAAABGknMlpFiYdpG8So8REYXDCwAAAAAAAAAAAAAAAAAAAAAABsVRqIzBShjBW2vxXhKrAAAAAAAAAAAAAAAAAAAAv33fnY0w0sGkJ1+Xiy33RpYAAAAAAAAAAAAAAAAAAAAAACvDdAohEaNbyaB9pu8+oQAAAAAAAAAAAAAAAAAAAC+GHD90xSsR1o3nCJtH2OKsAAAAAAAAAAAAAAAAAAAAAAAKS75botVadNx0fBptjFAAAAAAAAAAAAAAAAAAAABKa/dTnDkKTLIBRLm+XqQENAAAAAAAAAAAAAAAAAAAAAAAAu3QdyE2L9+/q72nYdYFAAAAAAAAAAAAAAAAAAAAKKO2pp2AAzqHywy64dBRFh0AAAAAAAAAAAAAAAAAAAAAACEpQTrnaBqVYqTs2iMwcAAAAAAAAAAAAAAAAAAAAAJ4nuD+4jZyNW442uQlgqcuAAAAAAAAAAAAAAAAAAAAAAAMIRirFAbBAGOx8e03iWwAAAAAAAAAAAAAAAAAAABFtzaAJQoLu1v9Z9S1FVZbzAAAAAAAAAAAAAAAAAAAAAAAHAskrTcyOCTkSAke9rh+AAAAAAAAAAAAAAAAAAAAymWyuXVfEnyfjYoN0jL+iFEAAAAAAAAAAAAAAAAAAAAAAANTm6hrbq1pV+7/CZmVlQAAAAAAAAAAAAAAAAAAAOrQneJolTbNr+VQgz7Q+HR6AAAAAAAAAAAAAAAAAAAAAAANgW4GBmIkKBy6CWo16MIAAAAAAAAAAAAAAAAAAACOSHmJVbRvW7UJdpXBh315RgAAAAAAAAAAAAAAAAAAAAAABKxj5hKVXwskQym6725SAAAAAAAAAAAAAAAAAAAApPwMa1Y/Y6y7dRShtZhIstwAAAAAAAAAAAAAAAAAAAAAAACq1noV2+3rLX7hlT8GaAAAAAAAAAAAAAAAAAAAAJW12Le0pjsF32UrDRDvFG0mAAAAAAAAAAAAAAAAAAAAAAAJnjvVoKAKt/4YBAEFubMAAAAAAAAAAAAAAAAAAAAhKa86Y39aYioyRA+GDR4qfwAAAAAAAAAAAAAAAAAAAAAAABW40lFdduLM7Jnc0ZRZAAAAAAAAAAAAAAAAAAAAIiuIgQjcJdGqRQ4LS8ISw34AAAAAAAAAAAAAAAAAAAAAABuRdReSC609i8AclZUJKgAAAAAAAAAAAAAAAAAAAEghQcfr5CAAodWMy3Q4H20ZAAAAAAAAAAAAAAAAAAAAAAAwXomSsUju2yLm6ZIHeoQAAAAAAAAAAAAAAAAAAAB8hoR2GGgdwp2Kk2OrfEDhwwAAAAAAAAAAAAAAAAAAAAAAFkZaXMu1UM0sY71YEW/kAAAAAAAAAAAAAAAAAAAAQ5lzrBLXynltb+mMpA5sprcAAAAAAAAAAAAAAAAAAAAAAC4k1CD7+VCO0x3mkttHewAAAAAAAAAAAAAAAAAAACjt0afkbIQNnJQ/30VSHGTOAAAAAAAAAAAAAAAAAAAAAAAEPQY7Ewrfs3NCr0XQFVoAAAAAAAAAAAAAAAAAAACTMJUq50xXPRaG2ctKAHM4VAAAAAAAAAAAAAAAAAAAAAAAJhUixAiTMGRq/5ZzYZSUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADYxKhclt03DLVVkZhCJw9B6wAAAAAAAAAAAAAAAAAAAAAALxGTCzzRPQoWvDkllrN3AAAAAAAAAAAAAAAAAAAAPtIaaZ1msqqa2PUPGk9NDV8AAAAAAAAAAAAAAAAAAAAAACv9tlmiJ0Q9dyawfNEXjgAAAAAAAAAAAAAAAAAAAGvMegX/lalrKJQkxfczZw2WAAAAAAAAAAAAAAAAAAAAAAAAxDcm91tv2g3iLODg36sAAAAAAAAAAAAAAAAAAAAdCgnXF47JO614WPluZPC0jQAAAAAAAAAAAAAAAAAAAAAAL5tuC04sAZaN5cMkgqp9AAAAAAAAAAAAAAAAAAAAFLmaKhz1vbFNGPy31tW7G0MAAAAAAAAAAAAAAAAAAAAAABibwBFKqYLGRXSxHbsAPgAAAAAAAAAAAAAAAAAAAIFYESpGMQpiuEn23VYsLIaUAAAAAAAAAAAAAAAAAAAAAAASkF6WwsjbCGXWk491oyQ="
1879
1879
  },
1880
1880
  {
1881
1881
  "name": "entrypoint",
@@ -2960,7 +2960,7 @@
2960
2960
  "name": "note_hash_read_requests",
2961
2961
  "type": {
2962
2962
  "kind": "struct",
2963
- "path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
2963
+ "path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
2964
2964
  "fields": [
2965
2965
  {
2966
2966
  "name": "array",
@@ -3028,7 +3028,7 @@
3028
3028
  "name": "nullifier_read_requests",
3029
3029
  "type": {
3030
3030
  "kind": "struct",
3031
- "path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
3031
+ "path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
3032
3032
  "fields": [
3033
3033
  {
3034
3034
  "name": "array",
@@ -3096,7 +3096,7 @@
3096
3096
  "name": "key_validation_requests_and_generators",
3097
3097
  "type": {
3098
3098
  "kind": "struct",
3099
- "path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
3099
+ "path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
3100
3100
  "fields": [
3101
3101
  {
3102
3102
  "name": "array",
@@ -3174,7 +3174,7 @@
3174
3174
  "name": "private_call_requests",
3175
3175
  "type": {
3176
3176
  "kind": "struct",
3177
- "path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
3177
+ "path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
3178
3178
  "fields": [
3179
3179
  {
3180
3180
  "name": "array",
@@ -3294,7 +3294,7 @@
3294
3294
  "name": "public_call_requests",
3295
3295
  "type": {
3296
3296
  "kind": "struct",
3297
- "path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
3297
+ "path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
3298
3298
  "fields": [
3299
3299
  {
3300
3300
  "name": "array",
@@ -3434,7 +3434,7 @@
3434
3434
  "name": "note_hashes",
3435
3435
  "type": {
3436
3436
  "kind": "struct",
3437
- "path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
3437
+ "path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
3438
3438
  "fields": [
3439
3439
  {
3440
3440
  "name": "array",
@@ -3478,7 +3478,7 @@
3478
3478
  "name": "nullifiers",
3479
3479
  "type": {
3480
3480
  "kind": "struct",
3481
- "path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
3481
+ "path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
3482
3482
  "fields": [
3483
3483
  {
3484
3484
  "name": "array",
@@ -3537,7 +3537,7 @@
3537
3537
  "name": "l2_to_l1_msgs",
3538
3538
  "type": {
3539
3539
  "kind": "struct",
3540
- "path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
3540
+ "path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
3541
3541
  "fields": [
3542
3542
  {
3543
3543
  "name": "array",
@@ -3605,7 +3605,7 @@
3605
3605
  "name": "private_logs",
3606
3606
  "type": {
3607
3607
  "kind": "struct",
3608
- "path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
3608
+ "path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
3609
3609
  "fields": [
3610
3610
  {
3611
3611
  "name": "array",
@@ -3687,7 +3687,7 @@
3687
3687
  "name": "contract_class_logs_hashes",
3688
3688
  "type": {
3689
3689
  "kind": "struct",
3690
- "path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
3690
+ "path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
3691
3691
  "fields": [
3692
3692
  {
3693
3693
  "name": "array",
@@ -3801,8 +3801,8 @@
3801
3801
  }
3802
3802
  },
3803
3803
  "bytecode": "H4sIAAAAAAAA/+y9C5xN9ff/P2POXJxzZuacMzOHVCj3+12i5JpLJVGREnLLXeMSSZqk0gUzg1SS5JZKSEIqlXSzpItQEpJQIbckl/+a+vjM6bpfZ1vL+v1/v8/n0aPH/vZ97/daz7XX+7X23u+zZsflZD+6qXinTl3uGNy9a6f+mZ169R/cPbN/l76DOnXq3n9w5vCBA/i/UNmim0uNzVrQqG+Xrn0aDRh2+ZD+XRt36ds3a1abhq2aNc3JmtOu1+D+3QcNKlAcGBQXCwwKIjOlNQAGhdfcDYwqBI06D/HqfGRQUWRQMWRQccjzC6BRF0KjSkCjSiLOl0YGlUUSphwyqDwyqCLiU2VkpirIoKrIoOqITzWRmWohg2ojg+ogPtVFZqqHDLoEGVQf8akBMlNDZFAjZFCTJGBQ09is5xpl9urbt1fPvP//xJgJE1ZmzWs4aFD3zMEdumcOyJ2QnbOqeNVurTK3VZtebmnrpkuystp3LFtjV/PhywZmN952OHd/TEwMxa1ZVTzm3/9X0c209I/TXnj64G8gF7ceMKh7r24D+ldv3T2z35DBXQb3GtA/Z+J/odnd/x6XyteEiP8/TaS4tRT3EcWto7iP/+h5bo4ja2wZYAxbgGLwieNUMdE7WBZy8CPIwU81HCwHObgOcvAzwEE3WfRJxPGnEcefRRx/zJm0nuI+p7gNFLcx+jiUh+KwHorDJo0LVQFy8HPIwS80HKwIObgBcvBLpUzaFHH8RcTxlxHHGzmTNlPcVxS3heK+jj4OlaA4bIbisFXjQlWGHPwKcnCbhoNVIAe3QA5uV8qkrRHH2yKOt0ccf82Z9A3F7aC4byluZ/RxqArF4RsoDt9pXKhqkIM7IAd3aThYHXLwW8jB3UqZ9F3E8a6I490Rxzs5k/ZQ3PcU9wPF/Rh9HGpAcdgDxWGvxoWqCTn4PeTgPg0Ha0EO/gA5uF8pk/ZGHO+LON4fcfwjZ9JPFHeA4g5S3KHo41AbisNPUBwOa1yoiyAHD0AOHtFwsA7k4EHIwZ+VMulwxPGRiOOfI44PcSYdpbhfKO4Yxf0afRwuhuJwFIrDcY0LVRdy8BfIwRMaDtaDHDwGOXhSKZOORxyfiDg+GXH8K2fSKfLEkCeWPAWij8MlUBxOIXHwxGlcqEsRBz0xkIMeDQfrQw7GQg7G62SSJy7i2BNxHB9xXGAieRLIk0ieJPIUjD4Ol0FxSIDi4NW4UA0gBxMhB30aDjaEHEyCHPQrZZI34tgXceyPOC7ImZRMnhTypJInEH0cGkFxSIbiENS4UI0hB1MgB0MaDjaBHEyFHExTyqRgxHEo4jgt4jjAmZROngzyhMlTKPo4NIXikA7FobBSHApHHGdEHIcjjgtxHM4hTxHynEue8/4YhxyAMQ0iPN9hothrkM1NnqdB9B6WhDws6jwR5CFvMf9hSyk2O2t22179e/bt/vuuj5ORWOdccLVH5SnmOPGFbqYt/o/T/ve/u8rdYv++R+Upznl7AXkuJE8J8pRU2qPyXADFoJTZHpXnQsjB0mZ7VJ4SkINllBSwVMRxZPaUiTguyZlUljzlyFOePBWU9qg8ZaE4VDTbo/KUgxysZLZH5SkPOVhZKZMqRhxXijiuHHFcgTOpCnmqkqcaeaor7VF5qkBxqGG2R+WpCjlY02yPylMNcrCWUibViDiuGXFcK+K4OmdSbfJcRJ465LlYaY/KUxuKQ12zPSrPRZCD9cz2qDx1IAcvUcqkuhHH9SKOL4k4vpgz6VLy1CfPZeRpoLRH5bkUikNDsz0qT33IwUZme1SeyyAHGytlUsOI40YRx40jjhtwJjUhT1PyXE6eZkp7VJ4mUByam+1ReZpCDrYw26PyXA452FIpk5pHHLeIOG4ZcdyMM+kK8lxJnqvI00ppj8pzBRSHq832qDxXQg62Ntuj8lwFOXiNUiZdHXHcOuL4mojjVpxJbcjTljzXkuc6pT0qTxsoDtfb7VG1hRxsZ7dHdS3kYHulTLo+4rhdxHH7iOPrOJNuIE8H8txInpu09qhugOLQ0W6PqgPk4M12e1Q3Qg52UsqkjhHHN0ccd4o4vokzqTN5upDnFvJ01dqj6gzFoZvdHlUXyMHuSheqW8Rx94jjWyKOu/KF6kGenuS5lTy9/vjavkBu/mv7CYCPWoNjp+SN7jewb3fy9M4/7JN/2Df/sF/+Yf/8wwH5hwPzD29bCW1nDEz664aL01WNhfKjb7SpmQ1NO8DZPzfbHJnA9pCLaQf947QJ/w2Cm/TPjDjuHXHcJ+J4EKf/YPIMIc9Q8twevQxwvkGjBkORGBZtOuRAxodAxodHe3Wx+PSHRg2FXLxDSSiHRRwPjzi+I+L4ds6UEeS5kzwjyXPXH4UyOcr9TZaUf8fdd+rUyex8nRr1x83O7FzIBJ/npFR5dvKGIfPdHaWowF7enQ15ebcbrXTOqSzHaT1upr3nH6eN+6+3blI167/HsRH/dUTE8T2cqKPJcy95xpDnvv8/XpL7HaeNcxW7+yOOb4s4Hv2n6D1AnrHkeZA8D53ZMgd+xhCxyB+OfpHzxXoY05tHFBZv3rQTosyAvHmdE+Bunhnmiso+WDGLQnk6DqiYyP3luD/9XCYu6nLSA8m0WQ0zM7sM3xzTgDzjyTOBPNnkySFPLnk45yeRZzJ5HiXPFPI8Rp7HyfMEeaaS50nyTCPPU+SZTp6nyTODPM+QZyZ5ZpFnNnnmkGcueZ4lzzzyPEee58nzAnnmk+dF8iwgz0LyLCLPS+RZTJ6XybOEPK+QZyl5lpFnOXleJc8K8rxGntfJ8wZ5VpLnTfK8RZ63ybOKPO+QZzV53iXPe+R5nzwfkOdD8qwhD5Fn7co/hislJ9pwjRd9PomNyclfxR/lH67Dni4+WnMEGrcuyc3t13hnIedRUJe3Z52bxeY8LWb8YzbuMAoK48cc7n9VdcBhZ1cidP2TlS4U8CM+7zepchiaNwxJg09d6D/k5afZkJefuqgTzlTreGKkAp2hXEzQk4v1+YefY3KxHpSLz13JxQRILqC/NeD5XEcuMOMbhORiw5nLxfqo5GKjG7lYz+dhcrERSoNNKnLBXm7C5GKTilx8zhOfBbnI1pOLL/MPN2Ny8SUoF5tdyUU2JBdfQstks45cYMa/EpKLr85cLr6MSi62uJGLL/k8TC62QGnwtYpcsJdfY3LxtYpcbOaJz4Jc5OjJxbb8w+2YXGwD5WK7K7nIgeRiG7RMtuvIBWb8GyG5+ObM5WJbVHKxw41cbOPzMLnYAaXBtypywV5+i8nFtypysZ0nPgtykasnF9/lH+7C5OI7UC52uZKLXEguvoOWyS4ducCM7xaSi91nLhffRSUXe9zIxXd8HiYXe6A0+F5FLtjL7zG5+F5FLnbxxGdBLibqycWP+Yd7Mbn4EZSLva7kYiIkFz9Cy2SvjlxgxvcJycW+M5eLH6OSi/1u5OJHPg+Ti/1QGvykIhfs5U+YXPykIhd7eeKzIBeT9OTiYP7hIUwuDoJycciVXEyC5OIgtEwO6cgFZvywkFwcPnO5OBiVXBxxIxcH+TxMLo5AafCzilywlz9jcvGzilwc4onPglxM1pOLX/IPj2Fy8QsoF8dcycVkSC6gP7nmOaYjF5jxX4Xk4tczl4tfopKL427k4hc+D5OL41AanFCRC/byBCYXJ1Tk4hhPfBbk4lE9uTj138P4GEwuTmFyER/jSi4eheQC+sN/8TE6coEZj5WRi/jYM5eLU9HIRXwBN3Jxis+D5IKHAWkQH6ciF+xlHCQX8XEachGfN/FZkIspanIRH59/mADJRXw8KBcJruRiCiIX8fHQik1QkQvQeKKQXCSesVzEx0clF0ku5CI+ns/D5CIJkouCGnKR52VBTC4KqshFAk98FuTiMT258OUf+jG58IFy4XclF49BcuGDlolfRy4w48lCcpF85nLhi0ouUtzIhY/Pw+QiBZKLVBW5YC9TMblIVZELP098FuTicT25COYfhjC5CIJyEXIlF49DchGElklIRy4w42lCcpF25nIRjEou0t3IRZDPw+QiHZKLDBW5YC8zMLnIUJGLEE98FuTiCT25KJR/WBiTi0KgXBR2JRdPQHJRCFomhXXkAjN+jpBcnHPmclEoKrko4kYuCvF5mFwUgeTiXBW5YC/PxeTiXBW5KMwTnwW5mKonF+fnHxbF5OJ8UC6KupKLqZBcnA8tk6I6coEZLyYkF8XOXC7Oj0ouiruRi/P5PEwuikNycYGKXLCXF2BycYGKXBTlic+CXDypJxcl8g9LYnJRApSLkq7k4klILqA/mR5fUkcuMOOlhOSi1JnLRYmo5KK0G7kowedhclEakosyKnLBXpbB5KKMilyU5InPglxM05OLcvmH5TG5KAfKRXlXcjENkgvoD/fHl9eRC8x4BSG5qHDmclEuKrmo6EYuyvF5mFxAHz6Ir6QiF+xlJUwuKqnIRXme+CzIxVN6clEl/7AqJhdVQLmo6kounoLkAvp8RHxVHbnAjFcTkotqZy4XVaKSi+pu5KIKn4fJBfRNgvgaKnLBXtbA5KKGilxU5YnPglxM15OLWvmHtTG5qAXKRW1XcjEdkota0DKprSMXmPGLhOTiojOXi1pRyUUdN3JRi8/D5AL6XED8xSpywV5ejMnFxSpyUZsnPgty8bSeXNTLP7wEk4t6oFxc4kounobkoh60TC7RkQvM+KVCcnHpmctFvajkor4buajH52FyAf0l//jLVOSCvbwMk4vLVOTiEp74LMjFDD25aJh/2AiTi4agXDRyJRczILloCC2TRjpygRlvLCQXjc9cLhpGJRdN3MhFQz4PkwvoQ9DxTVXkgr1sislFUxW5aMQTnwW5eEZPLprlHzbH5KIZKBfNXcnFM5BcNIOWSXMducCMtxCSixZnLhfNopKLlm7kohmfh8lFS0gurlCRC/byCkwurlCRi+Y88VmQi5l6cnFV/mErTC6uAuWilSu5mAnJBfT9svhWOnKBGb9aSC6uPnO5uCoquWjtRi6u4vMwuWgNycU1KnLBXl6DycU1KnLRiic+C3IxS08u2uYfXovJRVtQLq51JRezILmAvqIXf62OXGDGrxOSi+vOXC7aRiUX17uRi7Z8HiYX10Ny0U5FLtjLdphctFORi2t54rMgF7P15OKG/MMOmFzcAMpFB1dyMRuSC+hbjvEddOQCM36jkFzceOZycUNUcnGTG7m4gc/D5OImSC46qsgFe9kRk4uOKnLRgSc+C3IxR08uOuUfdsbkohMoF51dycUcSC46Qcuks45cYMa7CMlFlzOXi05RycUtbuSiE5+HycUtkFx0VZEL9rIrJhddVeSiM098FuRirp5cdM8/7IHJRXdQLnq4kou5kFx0h5ZJDx25wIz3FJKLnmcuF92jkotb3chF3nmYXNwKyUUvFblgL3thctFLRS568MRnQS6e1ZOL/E8rx/fF5KIPKBd9XcnFs5Bc9IGWSV8ducCM9xOSi35nLhd9opKL/m7kog+fh8kF9JXg+AEqcsFeDsDkYoCKXPTlic+CXMzTk4vb8g8zMbm4DZSLTFdyMQ+Si9ugZZKpIxeY8UFCcjHozOXitqjkYrAbubiNz8PkYjAkF0NU5IK9HILJxRAVucjkic+CXDynJxe35x8Ow+TidlAuhrmSi+cgubgdWibDdOQCMz5cSC6Gn7lc3B6VXNzhRi5u5/MwubgDkosRKnLBXo7A5GKEilwM44nPglw8rycXI/MP78LkYiQoF3e5kovnIbkYCS2Tu3TkAjM+SkguRp25XIyMSi7udiMXI/k8TC7uhuQiS0Uu2MssTC6yVOTiLp74LMjFC3pyMTr/8F5MLkaDcnGvK7l4AZKL0dAyuVdHLjDjY4TkYsyZy8XoqOTiPjdyMZrPw+TiPkgu7leRC/byfkwu7leRi3t54rMgF/P15GJs/uGDmFyMBeXiQVdyMR+Si7HQMnlQRy4w4w8JycVDZy4XY6OSi4fdyMVYPg+Ti4chuXhERS7Yy0cwuXhERS4e5InPgly8qCcX4/MPJ2ByMR6Uiwmu5OJFSC7GQ8tkgo5cYMazheQi+8zlYnxUcpHjRi7G83mYXORAcpGrIhfsZS4mF7kqcjGBJz4LcrFATy4m5R9OxuRiEigXk13JxQJILiZBy2Syjlxgxh8VkotHz1wuJkUlF1PcyMUkPg+TiymQXDymIhfs5WOYXDymIheTeeKzIBcL9eTiifzDqZhcPAHKxVRXcrEQkosnoGUyVUcuMONPCsnFk2cuF09EJRfT3MjFE3weJhfTILl4SkUu2MunMLl4SkUupvLEZ0EuFunJxdP5hzMwuXgalIsZruRiESQXT0PLZIaOXGDGnxGSi2fOXC6ejkouZrqRi6f5PEwuZkJyMUtFLtjLWZhczFKRixk88VmQi5f05GJO/uFcTC7mgHIx15VcvATJxRxomczVkQvM+LNCcvHsmcvFnKjkYp4buZjD52FyMQ+Si+dU5IK9fA6Ti+dU5GIuT3wW5GKxnly8kH84H5OLF0C5mO9KLhZDcvECtEzm68gFZvxFIbl48czl4oWo5GKBG7l4gc/D5GIBJBcLVeSCvVyIycVCFbmYzxOfBbl4WU8uXso/XIzJxUugXCx2JRcvQ3LxErRMFuvIBWb8ZSG5ePnM5eKlqORiiRu5eInPw+RiCSQXr6jIBXv5CiYXr6jIxWKe+CzIxRI9uViWf7gck4tloFwsdyUXSyC5WAYtk+U6coEZf1VILl49c7lYFpVcrHAjF8v4PEwuVkBy8ZqKXLCXr2Fy8ZqKXCznic+CXLyiJxdv5B+uxOTiDVAuVrqSi1cguXgDWiYrdeQCM/6mkFy8eeZy8UZUcvGWG7l4g8/D5OItSC7eVpEL9vJtTC7eVpGLlTzxWZCLpXpy8U7+4WpMLt4B5WK1K7lYCsnFO9AyWa0jF5jxd4Xk4t0zl4t3opKL99zIxTt8HiYX70Fy8b6KXLCX72Ny8b6KXKzmic+CXCzTk4sP8w/XYHLxISgXa1zJxTJILj6ElskaHbnAjJOQXNCZy8WHUcnFWjdy8SGfh8nFWkguPlKRC/byI0wuPlKRizU88VmQi+V6cvFx/uEnmFx8DMrFJ67kYjkkFx9Dy+QTHbnAjH8qJBefnrlcfByVXHzmRi4+5vMwufgMkov1KnLBXq7H5GK9ilx8whOfBbl4VU8uNuQfbsTkYgMoFxtdycWrkFxsgJbJRh25wIxvEpKLTWcuFxuikosv3MjFBj4Pk4svILn4UkUu2MsvMbn4UkUuNlL8l2dBLlboycVX+YdbMLn4CpSLLa7kYgUkF19By2SLjlxgxr8Wkouvz1wuvopKLra6kYuv+DxMLrZCcrFNRS7Yy22YXGxTkYstPPFZkIvX9OTim/zDHZhcfAPKxQ5XcvEaJBffQMtkh45cYMa/FZKLb89cLr6JSi52upGLb/g8TC52QnLxnYpcsJffYXLxnYpc7OCJz4JcvK4nF7vzD/dgcrEblIs9ruTidUgudkPLZI+OXGDGvxeSi+/PXC52RyUXP7iRi918HiYXP0By8aOKXLCXP2Jy8aOKXOzhic+CXLyhJxf78g/3Y3KxD5SL/a7k4g1ILvZBy2S/jlxgxn8Skoufzlwu9kUlFwfcyMU+Pg+TiwOQXBxUkQv28iAmFwdV5GI/T3wW5GKlnlwczj88gsnFYVAujriSi5WQXByGlskRHbnAjP8sJBc/n7lcHI5KLo66kYvDfB4mF0chufhFRS7Yy18wufhFRS6O8MRnQS7e1JOLX/MPj2Ny8SsoF8ddycWbkFz8Ci2T4zpygRk/ISQXJ85cLn6NSi5OupGLX/k8TC5OQnJxSkUu2MtTmFycUpGL4zzxWZCLt9TkIiE2/7AAJBcJsZhcJBRwJRdvIXKREIssk4QCKnIBGo+TkYuEuDOWi4TYaOQiweNCLhL4mnggueBhQBokxGvIRZ6X8ZBc5NmPKnUguUgowBOfBbl4W08uEvMPkzC5SATlIsmVXLwNyUUitEySdOQCM15QSC4KnrlcJEYlF143cpHI52Fy4YXkwqciF+ylD5MLn4pcJPHEZ0EuVunJRXL+YQomF8mgXKS4kotVkFwkQ8skRUcuMOOpQnKReuZykRyVXATcyEUyn4fJRQCSi6CKXLCXQUwugipykcITnwW5eEdPLtLyD9MxuUgD5SLdlVy8A8lFGrRM0nXkAjOeISQXGWcuF2lRyUXYjVyk8XmYXIQhuSikIhfsZSFMLgqpyEU6T3wW5GK1nlyck39YBJOLc0C5KOJKLlZDcnEOtEyK6MgFZvxcIbk498zl4pyo5OI8N3JxDp+HycV5kFycryIX7OX5mFycryIXRXjisyAX7+rJRbH8w+KYXBQD5aK4K7l4F5KLYtAyKa4jF5jxC4Tk4oIzl4tiUcnFhW7kohifh8nFhZBclFCRC/ayBCYXJVTkojhPfBbk4j09uSiVf1gak4tSoFyUdiUX70FyUQpaJqV15AIzXkZILsqcuVyUikouyrqRi1J8HiYXZSG5KKciF+xlOUwuyqnIRWme+CzIxft6clEh/7AiJhcVQLmo6Eou3ofkogK0TCrqyAVmvJKQXFQ6c7moEJVcVHYjFxX4PEwuKkNyUUVFLtjLKphcVFGRi4o88VmQiw/05KJa/mF1TC6qgXJR3ZVcfADJRTVomVTXkQvMeA0huahx5nJRLSq5qOlGLqrxeZhc1ITkopaKXLCXtTC5qKUiF9V54rMgFx/qycVF+Yd1MLm4CJSLOq7k4kNILi6ClkkdHbnAjF8sJBcXn7lcXBSVXNR1IxcX8XmYXNSF5KKeilywl/UwuainIhd1eOKzIBdr9OTi0vzD+phcXArKRX1XcrEGkotLoWVSX0cuMOOXCcnFZWcuF5dGJRcN3MjFpXweJhcNILloqCIX7GVDTC4aqshFfZ74LMgF6clF4/zDJphcNAblookruSBILhpDy6SJjlxgxpsKyUXTM5eLxlHJxeVu5KIxn4fJxeWQXDRTkQv2shkmF81U5KIJT3wW5GKtnly0yD9siclFC1AuWrqSi7WQXLSAlklLHbnAjF8hJBdXnLlctIhKLq50Ixct+DxMLq6E5OIqFblgL6/C5OIqFbloyRNHLRepudHKRQ9RuYgpHpW2ZGfNapiZ2WX45pjilHA1JbSmhGsooQ0ltKWEaynhOkq4nhLaUUJ7SriBEjpQwo2UcBMldKSEmymhEyV0poQulHALJXSlhG6UwAnZgxJ6UsKtlNCLEnpTQh9K6EsJ/SihP6ZXVydBw1pjw67BhrXBhrXFhl2LDbsOG3Y9NqwdNqw9NuwGbFgHbNiN2LCbsGEdsWE3Y8M6YcM6Y8O6YMNuwYZ1xYZ1w4Z1x4b1wIb1xIbdig3rhQ3rjQ3rgw3riw3rhw3r/6cbqM0xF2DyD90UXA3daLV2HJVX165xGvVb9Wvz76Ny9v82qu2/jjqU+/uoa/9t1NbD/xl13b+MarTt9Kjr/3nUhMb/HdXuH0cNyM4f1f6fRi0dGDHqhn8YNWxZ5KgOfz+q2fA/jLrxb0d91/yPo276u1HVd/1pVMe/GVWmxp9H3fzXUTeV/cuoTn8Z1a7jX0d1/vOou9v/zagufxp1d9bfjbrlj6NezvrbUV3/MKrJkr8f1S1y1NVN/2FU94hRr7T+p1ER67Hs0n8c1fO/o54q98+jbj09qur0fxnV6z+jtlb7t1G9fx9127Z/HdXnt1FXZf77qL55o7q2chjVj0dV6eY0qn+0d8h/fiJylMg8Ew7a93HEE9GAlS7u9fvzeTk5znbyhiHzDXTxRAR5OTAb8nKg+msO4MKvc/ua47b8w0zsseG2WGhYppu3HAn9oeJ7G1TIM4GoRZ8YA9k89nbhNv3l2s8xWk9GLNdBbpYrP08OApbrk3nDkPkGqyxX9nJwNuTlYP3l2s9x0FS3y3VI/uFQbLkOwZbrUFfLtR+0XIdAy2UoEDUXLyUx47c707p4rcZaMTgHK2KQl8NUXr7dzhNni9k/Q0Xr65hQL0Uo2nA3isYvyYYDivZS3jBkvjtUFI29vCMb8vIOF1kB5e4wydwdobPncAc06k5geZ+h6Pd1HLTIreiPzD+8CxP9kZjo3+VK9PtCoj8SujB3AVFzkRWY8VEuRN/pBE50TjdMTu9WkfNRPLGOfTD4d0OjslSCf1q1AH2DRt0TrXBEX/H6OK6m8REVb7Sbisc7Q6OBijc+bxgy370qFY+9vDcb8vJelYqXxZdbMsPHRJnh4PK6Fxp1n37F6+M4aJzbind//uEDWMW7H6t4D7iqeH2ginc/dGEeAKLmIisw42NVRHcMpxtWcR5UqXhjeWId+2DwH4RGPaQS/NOq5TwSU62H9Z/xejuupuIRFe8RNxWvN58HVLziecOQ+capVDz2clw25OU4lYr3EF9uyQwfr1PxxkGjJuhXvN6Og4q5rXgRCZ+DVbxsrOLluKp4vaGKh4luDhA1F1mBGc9VEV2+BwV/YjhRpeLl8sQ69sHgT4RGTVIJ/mnVch6JqdZk/YrXy3E1rYsQgEfdVLxefB5Q8dblDUPmm6JS8djLKdmQl1NUKt4kvtySGf6YTsWbAo16XL/i9XIc9JHbivdE/uFUrOI9gVW8qa4qXi+o4j0BXZipQNRcZAVm/EkV0X2M0w2rONNUKh7v3E7TsQ8Gfxo06imV4J9WLeeRmGpN1694tzqupi4RFe9pNxXvVj4PqHhd8oYh881QqXjs5YxsyMsZKhXvKb7ckhn+jE7FmwGNmqlf8W51HNTZbcWblX84G6t4s7CKN9tVxbsVqnizoAszG4iai6zAjM9REd1nON2wijNXpeLN4Yl17IPBnwuNelYl+KdVy3kkplrz9CteT8fVtDGi4j3npuL15POAircxbxgy3/MqFY+9fD4b8vJ5lYr3LF9uyQx/QafiPQ+Nmq9f8Xo6DtrgtuK9mH+4AKt4L2IVb4GritcTqngvQhdmARA1F1mBGV+oIrovcLphFWeRSsVbyBPr2AeDvwga9ZJK8E+rlvNITLUW61e8Ho6rqUVExXvZTcXrwecBFa9F3jBkviUqFY+9XJINeblEpeK9xJdbMsNf0al4S6BRS/UrnvPfAWjutuItyz9cjlW8ZVjFW+6q4vWAKt4y6MIsB6LmIisw46+qiO4rnG5YxVmhUvFe5Yl17IPBXwGNek0l+KdVy3kkplqv61e87o6raWFExXvDTcXLOw+oeAvzhiHzrVSpeOzlymzIy5UqFe81vtySGf6mTsVbCY16S7/idXcctMBtxXs7/3AVVvHexireKlcVrztU8d6GLswqIGousgIz/o6K6L7J6YZVnNUqFe8dnljHPhj81dCod1WCf1q1nEdiqvWefsXr5riaVkRUvPfdVLxufB5Q8VbkDUPm+0Cl4rGXH2RDXn6gUvHe5cstmeEf6lS8D6BRa/QrXjfHQa+6rXiUf7gWq3iEVby1ripeN6jiEXRh1gJRc5EVmPGPVET3Q043rOKsU6l4H/HEOvbB4K+DRn2sEvzTquU8ElOtT/QrXlfH1XRFRMX71E3F68rnARXvirxhyHyfqVQ89vKzbMjLz1Qq3sd8uSUzfL1OxfsMGvW5fsXr6jiopduKtyH/cCNW8TZgFW+jq4rXFap4G6ALsxGImouswIxvUhHd9ZxuWMX5QqXibeKJdeyDwf8CGvWlSvBPq5bzSEy1NutXvFscV9PdERXvKzcV7xY+D6h4d+cNQ+bbolLx2Mst2ZCXW1Qq3pd8uSUz/GudircFGrVVv+Ld4jholNuKty3/cDtW8bZhFW+7q4p3C1TxtkEXZjsQNRdZgRn/RkV0v+Z0wyrODpWK9w1PrGMfDP4OaNS3KsE/rVrOIzHV2qlf8bpEVfG+c1PxuvB5WMX7DnJ5l0rFYy93YRVvl0rF+5Yvt2SG79apeLugUXv0K14XvYr3ff7hD1jF+x6reD+4qnhdoIr3PXRhftCpeJjxH1VEdzenG1Zx9qpUvB95Yh37YPD3QqP2qQT/tGo5j8RUa79+xevsuJqejah4P7mpeJ35PKDiPZs3DJnvgErFYy8PZENeHlCpePv4cktm+EGdincAGnVIv+J1dhw0123FO5x/eASreIexinfEVcXrDFW8w9CFOQJEzUVWYMZ/VhHdg5xuWMU5qlLxfuaJdeyDwT8KjfpFJfinVct5JKZax/QrXifH1TQzouL96qbideLzgIo3M28YMt9xlYrHXh7Phrw8rlLxfuHLLZnhJ3Qq3nFo1En9itfJcdAzbiveqf8eJsZgFe8UVPESY1xVvE5QxTuFXJjEGCBqLrICMx6rIronON2gipNYQKPiJfI/BXTsY8FPLACNilMJ/mnVch4JqVaiR7/i3ey4mjblV7zEeDcV72Y+D6h4m/KGISmWoFLx2MuEbMjLBI2KlxjHl1sywxNVKl5iAjQqSb/i3ew4aKPLipdYMP/QC1W8xIJYxfO6qng3IxUvsSB0YbxA1FxkBWbcpyG6iYmcbljF8atUPB9PrGMfDL4fGpWsEvzTquU8ElOtFP2K19FxNa2NqHipbipeRz4PqHhr84YhsQuoVDz2MpANeRlQqXjJfLklMzyoU/EC0KiQfsXr6DiI3Fa8tPzDdKzipWEVL91VxesIVbw06MKkA1FzkRWY8QwV0Q1yumEVJ6xS8TJ4Yh37YPDD0KhCKsE/rVrOIzHVKqxf8W5yXE3nRFS8c9xUvJv4PKDinZM3DIldEZWKx14WyYa8LKJS8Qrx5ZbM8HN1Kl4RaNR5+hXvJsdBhd1WvPPzD4tiFe98rOIVdVXxboIq3vnQhSkKRM1FVmDGi6mI7rmcbljFKa5S8YrxxDr2weAXh0ZdoBL806rlPBJTrQv1K96NjqtpWUTFK+Gm4t3I5wEVb1neMCR2JVUqHntZMhvysqRKxbuAL7dkhpfSqXgloVGl9SvejY6DlrqteGXyD8tiFa8MVvHKuqp4N0IVrwx0YcoCUXORFZjxciqiW4rTDas45VUqXjmeWMc+GPzy0KgKKsE/rVrOIzHVqqhf8To4rqYHIipeJTcVrwOfB1S8B/KGIbGrrFLx2MvK2ZCXlVUqXgW+3JIZXkWn4lWGRlXVr3gdHAfd77biVcs/rI5VvGpYxavuquJ1gCpeNejCVAei5iIrMOM1VES3CqcbVnFqqlS8Gjyxjn0w+DWhUbVUgn9atZxHYqpVW7/i3eC4mppHVLyL3FS8G/g8oOI1zxuGxK6OSsVjL+tkQ17WUal4tfhyS2b4xToVrw40qq5+xbvBcVAztxWvXv7hJVjFq4dVvEtcVbwboIpXD7owlwBRc5EVmPFLVUT3Yk43rOLUV6l4l/LEOvbB4NeHRl2mEvzTquU8ElOtBvoVr73jasqOqHgN3VS89nweUPGy84YhsWukUvHYy0bZkJeNVCreZXy5JTO8sU7FawSNaqJf8do7DprgtuI1zT+8HKt4TbGKd7mritceqnhNoQtzORA1F1mBGW+mIrqNOd2witNcpeI144l17IPBbw6NaqES/NOq5TwSU62W+hWvneNqGhhR8a5wU/Ha8XlAxRuYNwyJ3ZUqFY+9vDIb8vJKlYrXgi+3ZIZfpVPxroRGtdKveO0cBw1wW/Guzj9sjVW8q7GK19pVxWsHVbyroQvTGoiai6zAjF+jIrpXcbphFaeNSsW7hifWsQ8Gvw00qq1K8E+rlvNITLWu1a941zuuptcjKt51bire9XweUPFezxuGxO56lYrHXl6fDXl5vUrFa8uXWzLD2+lUvOuhUe31K57zVXjNbcW7If+wA1bxbsAqXgdXFe96qOLdAF2YDkDUXGQFZvxGFdHlW9X2WMW5SaXi3cgT69gHg38TNKqjSvBPq5bzSEy1btaveNc5rqbiERWvk5uKdx2fB1S84nnDkNh1Vql47GXnbMjLzioVryNfbskM76JT8TpDo27Rr3jXOQ4q5rbidc0/7IZVvK5YxevmquJdB1W8rtCF6QZEzUVWYMa7q4huF043rOL0UKl4nCU9dOyDwe8BjeqpEvzTquU8ElOtW/Ur3rWOq8kfUfF6ual41/J5QMXz5w1DYtdbpeKxl72zIS97q1S8nny5JTO8j07F6w2N6qtf8Zzff/jcVrx++Yf9sYrXD6t4/V1VvGuhitcPujD9gai5yArM+AAV0e3D6YZVnIEqFW8AT6xjHwz+QGjUbSrBP61aziMx1crUr3htHVdT/4iKN8hNxeMn30FAxeufNwyJ3WCVisdeDs6GvBysUvFu48stmeFDdCreYGjUUP2K57wv0c9txbs9/3AYVvFuxyreMFcVry1U8W6HLswwIGousgIzPlxFdIdwumEV5w6VijecJ9axDwb/DmjUCJXgn1Yt55GYat2pX/HaOK6mYETFG+mm4rXh84CKF8wbhsTuLpWKx17elQ15eZdKxRvBl1syw0fpVLy7oFF361e8No6DAm4rXlb+4T1YxcvCKt49ripeG6jiZUEX5h4gai6yAjM+WkV0R3G6YRXnXpWKN5on1rEPBv9eaNQYleCfVi3nkZhq3adf8Zx/PxUTUfHud1PxruHzIGcSH1CpZWz/gQkqVWoMXyLJrByrU6UegEY96GJJAEg88QT9NG4dVRo/5CaNW/N5WBo/rJLGbP/hCSqazdfo4WyhBD3jK3m1sx8RV/IRN1fyaj4PWzmPQNd7nMr1Zi/HYVdlnIq4cVaMw4rZWMjL8Rq5mxel8RN07iTGQ6MmqNxJnK4sziOxypKtIhwTeGJMEsdrLBFPb/4HWyI5UfLnIEuE7SfmQI724X8wR52nC56hwgImIhV2oguFTczl8zBnJmkkRp79SVGrwpS/cTj2T/83xVf9O6zYP4+q/bfwsX8adcnfhyj2j6Ma/UMgY/8wqvk/hTs2clQr5KLEP4ikaomW0Qb48X80Hhvh4rX/7GJs/qgO/wIS+99Rnf8NN/b0qB7/GpTY/4zq+++hi/19VKZDgGN/GzXM6TLE5o26y/FixfIoqACUuCLai5ULydVkJJ9KtIRGIS6eofRNjkr6HnUjfZP5PMyZKSrSx/an6EifZx0ifZ7PEenzbEakz7MdkT7PLkT6PHsh6YP+UFKJa1Skz3MIkT7PMUj6YiDpS4Ckzw9JXwiSvsKQ9BWFpA/6A7Al2uhI32OQqF0DjWqjL32PRSV9j7uRvsf4PMyZJ1Skj+0/EbX0bY4JQvd9+6H7viPQfd9xRPwSCiDil5CEiF9CCqI/CemI/iQUQfQnoTiiPwmlEf1JqIjoT0J1RH8S6iD6k1Af0Z+EJtAbrZaQnEzVl4CpUUnAk24kYCqfhzkzTUUC2P40NQmYAEnAZEgCpkKPfjOgR7+50KPffOjpazH09LUcugVZCd2CrIZuQdZAtyCfQLcgG6FbkC3QLcgO6K5yDyQBT+lLwFNRScB0NxLwFJ+HOfO0igSw/ad1tvum8P0F9hZvhouXws6zTmMyzP4zgP0/ZJIn4hcnm2MC/5PD/4z6nxzGaMghsDyjTsf/3aCfHvW/G/Tfh8E36FEVxZlgHZrBMozUIeSncjOL//GOFasCs6K9Ecamnf3XaR/N6p19620fPHJJ8YfDG+880czNtHP+Ou2fT3Iz7dy/TlulwPoL130zqciwhoUrLfjl2Dg30z7712k7vzf127e6Nmg7cPpD/eIKLHjVzbTz/jrt6nsvW3zxdZ3mLO4ys8nYoT+vdzPtc3+dNrvi9+2fmbh1ZNn9H5e4996Chd1M+/xfp705fl7Tp98tX3P/PVVv7HLw8Hlupn3hr9O+mX3xh/euvnv2tobhLxLiuwx1M+38v057+P70Dd46h96qOGNFZt2BB7q6mfbFv0770+EH6nc/WnzdY9k3Tbj/vmWfZs27qnu/AZnDW/TvNTi3GD+jzvrtn9mc9JygnEx84fkicUAZnh3lSWf/fsZff7cQ8+//K8BiAbm9wMUtssP4/4geFraFKvYX8MSY/UWA/bm/X4SrB+YUywV+Nh0Tgz6GLZKb6qVoHxqj/HF5XkL986BTv//vMPLj8v/eoUT8uHxx/uHL2I/LF2M/Ln+5QdQ/Lv/3pTPhP6nDIV8MJdjLQNSifwZcyOYVfgWYx86TYz85WgjxL7FcYEvkpnol2gUWH233BrSG//c89Jdh/3seOj3M8nloKZrlSMVHpH2p4w8q/7wYftfNpdCNQYnMKNWVdw9yofXITuRCS/IfBv51Vf7TwL8szH8c+Oe1+c8D/7Q8/2XgH1fovw38wyL914GR6/TfB0YsVYeB+avVaeB/F6zjwNNr1nngf5YtMPD3lYsM/G3x/j4QupN4Cfsh9DLoNwyZQst72Zq7Xa2vCej6moyur6ng+oqfAa6v+Lng+oqfD66v+MXg+opfDq6v+JXg+opfDa6v+DXg+or/BFxf8RvB9RW/BVxf8TvA9RW/J4r19Qq2vvK2D86vcdUTb7bpveCRuqnNqns/Hfnpfb1rfD5+7D3lD97dbnhCiRy59bWc19cZ3q8ui+Z+dYLz68KIu4lXz/bdxKsu7yZexe4mJrl4VoNya9nfPdH+ObDos9oKSOEnCYV8xZ8UHmZe/nfMfz4TZX4NWnVSzK/9iRn8keHr0IWR+321CxffgIzL/Q7yr9Gef9WQvoN7te3apW+XTD6cODlrbuMB/QcN7tLf+c8xxf7N2AIfpd08JGFmx66VyiQ3/alwaOLoy1Y9cs9lZSpGMW9M/rX39I447hPNHBMjEuj1iOM3Im+XIqU94nhhLiVyKX+TEt/6o9wnRP2jkZXOnka80ns7/3DVShd/4SFxJZR2b/911E1/GsVzrYr25U30P6lZ9Vc/fv7osfVT7l/X86HsF7/qf9ecmRH17R03P6lZxef9za3EX+zkDUPmW63ywxv2cnU25OXqaK/Kn3P2z94Xj7unaKhhg6MfDZp12813zZn1tyb+fFJEzr6bf/ge9hr6XdZzZNx7iO7/jfvQGngXWgPvARurf4h2Ys6/3r392UK0C+bdqF4vvY9dj/dj3dSud3OQu733obk+cIwUdqfwgbs7hfegURjKh0DGICgf/vlRI2IdQ42zifyM+TZ0d8gDV8F67TAospqtyT8kLBPXgMpAf7rOWEDeZlQoIHlqjNXbVVBOrIG0hqJVdmWtWROV1qzFrvBaV1qzBtKatdBcHwlpzUfutIagURjKOiGtWfdnrUnMUShMuvn3MZZ/H/8p/yZidIJZ+jE01yfAbSbC+8mfsxQDfk8wlzHgT4VeFnz6L3UTSzxP76iq3Gf5h+vdPLN5sD92/xlUQ9brP7Otj+qZ7XM3z2zr+Tzsme1zyOUNKs9s7OUG7Jltg/4z24aontk25h9uwnRzI3hntsndM9sGaA1shNbApv/Dntk2RlXHvsCuxxeu7qM2QhXqC2iuL4Xuo750dx+1CRqFoWwWuo/afMbPbBtY6KFHFB64HtZrh0GR1eyr/MMtWCZ+BSrDFlfPbJ8xKhSQPDXGntnWQznxFaQ1W/4Pe2b7Kiqt+Rq7wl+70pqvIK35Gpprq5DWbHWnNVugURjKNiGt2Xbmz2xAYdLNv+1Y/m139cy2UTBLt0NzfSP0zPaNu2e2TYK5jAHvEHpm23Hmz2x9oqpy3+Yf7nT1zNYHis+3UA3Zqf/MtjOqZ7bv3Dyz7eTzsGe27yCXd6k8s7GXu7Bntl36z2y7onpm251/uAfTzd3gndked89su6A1sBtaA3v+D3tm2x1VHfseux7fu7qP2g1VqO+huX4Quo/6wd19FPanPDCUH4Xuo34842e2XSz00CMKD9wJ67XDoMhqtjf/cB+WiXtBZdjn6pntW0aFApKnxtgz204oJ/ZCWrPv/7Bntr1Rac1+7Arvd6U1eyGt2Q/N9ZOQ1vzkTmv2QaMwlANCWnPgzJ/ZgMKkm38Hsfw76OqZbbdglh6E5jok9Mx2yN0z2x7BXMaADws9sx3+2xLy55+TTo38yWZS/eHBjbUKDi23P2FIteMZH5wYPveJvR9ePOGyXu0qdh3QskPk2CKjbj72wqhqN5V6tvBB/3sbaly25rk7Nryfmr4la8U7ZX/J7RjVz0kjxsa3nNt70IcP1mxz842vf76j3tPnjLsvtdPFrUuPv+3rptmv7SgQObb4kx+9UfHXdr8c8QxosqHI6mNHM6998d0Gd3q+v6XILfd/8GZptz6c1+TArOJ3Zr314OgLZmXdtGthtUDJV39MK3zOq18cnvHC3GbNI8fGzdtbe2ej8ufHZnctv/qGx3d/P+v5ioXmvl983iUvPjT2naNz3fpQ6eiyBt+OTWmVdvvWtoOO7Xz8/CFX96q1c87dS3pMHFztAFHk2Mr0wMc39FzRdumY7MrJ4fu6XPv8knlvfXr05jIf3LVv0ZsTRkfjw5SIFHo74nhVxPFnEcfrI46/jTjeGYXROLdBchgam0uJRyjxZ0o8+kdZT839rwZjj6V5bYsTolF258HFo/pmXXbWrIaZmV2Gb44pTom/UOIxSvyVEo9T4glKPEmJpygphpJiKakAJcVRkoeS4ikpgZISKSmJkgpSkpeSfJTkp6RkSkqhpFRKClBSkJJClJRGSemUlEFJYUoqREmFsfrxSxI07Bg27Fds2HFs2Als2Els2CloWFIMNiwWG1YAGxaHDfNgw+KxYQnYsERsWBI2rCA2zIsN82HD/NiwZGxYCjYsFRsWwIYFsWEhbFgaNiwdG5aBDQtjwwphwwonuXgtuZBLAEsvdAP3i8Oo3z/iecxxVJ7dX51G/ebd8X8flfP7Y/WJfx116D8P3yf/bdTW04/op/5lVKPTD/JJMTnAX5xJiv3HUQPyXwokFfinUUsjXh0kxf3DqGGRLxiSPH8/qtkfXkMkxf/tqO/++LIiKeHvRlX/0yuNpMS/GVXmzy8+kpKQ1yNJBf8yql3Hv47y/nnU3e3/ZpTvT6Puzvq7Uf4/jno5629HJf9hVJMlfz8qJXLU1U3/YVRqxKhXWv/TqED+qLJL/3FU8L+jnir3z6NCp0dVnf4vo9L+M2prtX8blf77qNu2/euojN9GXZX576PCeaO6tnIYVYhHVenmNKqw+kZWngkH7fs4/11F0jkuNrKSCvN5wEfGP84bhsxXRGMjK8/LItmQl0WivSpRf0EbuPDrXH5BO+nc/MPzoCeHpHOhP3KWdJ6bL2gnFUaKb9K5SCFPOg+IWvSfXgSNn+9M66rPPKmI4N9BSyoK5G70a+d8njhbzP4ZKlohx4R6MkLRirlRNH7qLgYo2pN5w5D5iqsoGntZPBvysriLrIByt6hk7l4QpZfg8oYeEpIuBJb3GYp+IcdBU92Kfon8w5KY6JfARL+kK9EvBIl+CejClASi5iIrMOOlXIi+0wmc6JxumJyWVpHzUjyxpf2iPHEuVk4wL6FRZaJd4dGXprBj2r8UUZrKuilN/E64LFCaXsobhsxXTqU0sZflsiEvy2lkWF5pKoNleHmdolMOGlVBv+iEHQctclt0KuYfVsKKTkWs6FRyVXTCUNGpCF2YSkDUXGQFZryyStEpz+mGLYkqKqJfmSfWsQ8Gvwo0qqrGY95/K57T1L9XPOdRWMWrpnHbn1SVJ5aMeHX9upzhqAzjI+pyDTd1mbdrawB1eXzeMGS+mip1mb2smQ15WVOrLlfHRKCWjgjUhEbV1q/LGY6DxrmtyxflH9bB6vJFWF2u46ouZ0B1+SLowtQBouYiKzDjF6vU5VqcbtiSqKtSly/miXXsg8GvC42qpxL807XMeSRWyy5Rqbj1eGLJWF6qX3HTHdd88YiKW99NxU3n84CKWzxvGDLfZSoVl728LBvy8jKtinsptrwb6Czvy6BRDfUrbrrjoGJuK26j/MPGWMVthFXcxq4qbjpUcRtBF6YxEDUXWYEZb6Ii+g043bAl0VSl4jbhiXXsg8FvCo26XCX4p2uZ80isljVTqbiX88SSsWyuX3HTHNf8uoiK28JNxU3j84CKuy5vGDJfS5WKy162zIa8bKlVcZtjy/sKneXdEhp1pX7FTXMc9JHbintV/mErrOJehVXcVq4qbhpUca+CLkwrIGousgIzfrWK6F/B6YYtidYqFfdqnljHPhj81tCoa1SCf7qWOY/EalkblYp7DU8sGcu2+hU35Ljmu0RU3GvdVNwQnwdU3C55w5D5rlOpuOzlddmQl9dpVdy22PK+Xmd5XweNaqdfcUOOgzq7rbjt8w9vwCpue6zi3uCq4oagitseujA3AFFzkRWY8Q4qon89pxu2JG5UqbgdeGId+2Dwb4RG3aQS/NO1zHkkVss6qlTcm3hiyVjerF9xg45rfmNExe3kpuIG+Tyg4m7MG4bM11ml4rKXnbMhLztrVdybseXdRWd5d4ZG3aJfcYOOgza4rbhd8w+7YRW3K1Zxu7mquEGo4naFLkw3IGousgIz3l1F9Pnu9hZsSfRQqbicJT107IPB7wGN6qkS/NO1zHkkVstuVam4PXliyVj20q+4Acc13yKi4vZ2U3EDfB5QcVvkDUPm66NScdnLPtmQl320Km4vbHn31Vne0B9wTeqnX3EDjoOau624/fMPB2AVtz9WcQe4qrgBqOL2hy7MACBqLrICMz5QRfT7crphS+I2lYo7kCfWsQ8G/zZoVKZK8E/XMueRWC0bpFJxM3liyVgO1q+4qY5rfmFExR3ipuKm8nlAxV2YNwyZb6hKxWUvh2ZDXg7VqriDseV9u87yHgqNGqZfcVMdBy1wW3GH5x/egVXc4VjFvcNVxU2FKu5w6MLcAUTNRVZgxkeoiP7tnG7YkrhTpeKO4Il17IPBvxMaNVIl+KdrmfNIrJbdpVJxR/LEkrEcpV9xUxzX/IqIinu3m4qbwucBFXdF3jBkviyVisteZmVDXmZpVdxR2PK+R2d5Z0GjRutX3BTHQa+6rbj35h+OwSruvVjFHeOq4qZAFfde6MKMAaLmIisw4/epiP49nG7YkrhfpeLexxPr2AeDfz806gGV4J+uZc4jsVo2VqXiPsATS8byQf2Km+y45q+IqLgPuam4yXweUHGvyBuGzPewSsVlLx/Ohrx8WKviPogt70d0lvfD0Khx+hU32XFQS7cVd3z+4QSs4o7HKu4EVxU3Gaq446ELMwGImouswIxnq4j+I5xu2JLIUam42Tyxjn0w+NioXJXgn65lziOxWjZRpeLm8sSSsZykX3H9jmv+7oiKO9lNxfXzeUDFvTtvGDLfoyoVl718NBvy8lGtijsJW95TdJb3o9Cox/Qrrt9x0Ci3Fffx/MMnsIr7OFZxn3BVcf1QxX0cujBPAFFzkRWY8akqoj+F0w1bEk+qVNypPLGOfTD4T0KjpqkE/3Qtcx6JsTylUnGn8cSSsZyuX3F9UVXcp91UXB+fh1XcpyGXZ6hUXPZyBlZxZ2hV3OnY8n5GZ3nPgEbN1K+4Pr2KOyv/cDZWcWdhFXe2q4rrgyruLOjCzNapuJjxOSqi/wynG7Yk5qpU3Dk8sY59MPhzoVHPqgT/dC1zHonVsnkqFfdZnlgyls/pV1yv45p/NqLiPu+m4nr5PKDiPps3DJnvBZWKy16+kA15+YJWxX0OW97zdZb3C9CoF/Urrtdx0Fy3FXdB/uFCrOIuwCruQlcV1wtV3AXQhVkIRM1FVmDGF6mI/nxON2xJvKRScRfxxDr2weC/BI1arBL807XMeSRWy15WqbiLeWLJWC7Rr7gFHdf8zIiK+4qbiluQzwMq7sy8Ych8S1UqLnu5NBvycqlWxV2CLe9lOst7KTRquX7FLeg46Bm3FffV/MMVWMV9Fau4K1xV3IJQxX0VujArgKi5yArM+Gsqor+M0w1bEq+rVNzXeGId+2DwX4dGvaES/NO1zHkkVstWqlTcN3hiyVi+qV9xkxzX/KaIivuWm4qbxOcBFXdT3jBkvrdVKi57+XY25OXbWhX3TWx5r9JZ3m9Do97Rr7hJjoM2uq24q/MP38Uq7mqs4r7rquImQRV3NXRh3gWi5iIrMOPvqYj+Kk43bEm8r1Jx3+OJdeyDwX8fGvWBSvBP1zLnkVgt+1Cl4n7AE0vGco1+xU10XPNrIyouuam4iXweUHHX5g1D5lurUnHZy7XZkJdrtSruGmx5f6SzvNdCo9bpV9xEx0HktuJ+nH/4CVZxP8Yq7ieuKm4iVHE/hi7MJ0DUXGQFZvxTFdH/iNMNWxKfqVTcT3liHftg8D+DRq1XCf7pWuY8Eqtln6tU3PU8sWQsN+hX3ATHNX9ORMXd6KbiJvB5QMU9J28YMt8mlYrLXm7KhrzcpFVxN2DL+wud5b0JGvWlfsVNcBxU2G3F3Zx/+BVWcTdjFfcrVxU3Aaq4m6EL8xUQNRdZgRnfoiL6X3C6YUvia5WKu4Un1rEPBv9raNRWleCfrmXOI7Fatk2l4m7liSVjuV2/4sY7rvllERX3GzcVN57PAyrusrxhyHw7VCoue7kjG/Jyh1bF3Y4t7291lvcOaNRO/Yob7zhoqduK+13+4S6s4n6HVdxdripuPFRxv4MuzC4gai6yAjO+W0X0v+V0w5bEHpWKu5sn1rEPBn8PNOp7leCfrmXOI7Fa9oNKxf2eJ5aM5Y/6FdfjuOYfiKi4e91UXA+fB1TcB/KGIfPtU6m47OW+bMjLfVoV90dsee/XWd77oFE/6Vdcj+Og+91W3AP5hwexinsAq7gHXVVcD1RxD0AX5iAQNRdZgRk/pCL6+zndsCVxWKXiHuKJdeyDwT8MjTqiEvzTtcx5JFbLflapuEd4YslYHtWvuHGOa755RMX9xU3FjePzgIrbPG8YMt8xlYrLXh7Lhrw8plVxj2LL+1ed5X0MGnVcv+LGOQ5q5rbinsg/PIlV3BNYxT3pquLGQRX3BHRhTgJRc5EVmPFTKqL/K6cbtCQKxqhU3FM8sY59LPgFY6BRsSrBP13LnEdCtaxgAY2KWzCWJ5aMZZx+xS3guOaz8ytuQY+biluAzwMqbnbeMGC+gvEqFZe9jM+GvIxXqrgF47DlnaCzvOOhUYn6Fdd5bU5wWXELJuUfFoQqbsEkqOIWLOiq4hZAKm7BJOjCFASi5iIrMONeDdEvmMDphi0Jn8aSLOjliXXsg8H3QaP8KsE/XcucR2K1LFml4vp5YslYpuhX3FjHNT8wouKmuqm4fFFSgYo7MG8YcoUDKhU3b+JsyMuAVsVNwZZ3UGd5B6BRIf2K63zPPsBtxU3LP0zHKm4aVnHTXVXcWKjipkEXJh2ImouswIxnqIh+kNMNWxJhlYqbwRPr2AeDH4ZGFVIJ/ula5jwSq2WFVSpuIZ5YMpbn6FfcGMc1/3pExS3ipuIySBGg4r6eNwy5wueqVFz28txsyMtztSruOdjyPk9neZ8LjTpfv+I6v6J7zW3FLZp/WAyruEWxilvMVcWNgSpuUejCFAOi5iIrMOPFVUT/PE43bElcoFJxi/PEOvbB4F8AjbpQJfina5nzSKyWlVCpuBfyxJKxLKlecRNPOa754hEVt5SLipvI2yGlgIpbPG8YcoVLa1TcPC9LZ0NeltaquCWx5V1GZ3mXhkaVVa+4ic6bgsXcVtxy+YflsYpbDqu45d1U3MRTUMUtB12Y8kDUXGQFZryCiuiX4XTDlkRFlYpbgSfWsQ8GvyI0qpJK8E/XMueRWC2rrFJxK/HEkrGsol9xTzqueX9Exa3qpuKe5POAiuvPG4Zc4WoqFZe9rJYNeVlNq+JWwZZ3dZ3lXQ0aVUO/4jr/BsjntuLWzD+shVXcmljFreWq4p6EKm5N6MLUAqLmIisw47VVRL86pxu2JC5Sqbi1eWId+2DwL4JG1VEJ/ula5jwSq2UXq1TcOjyxZCzr6lfcE45rvn9Exa3npuKe4POAits/bxhyhS9Rqbjs5SXZkJeXaFXcutjyvlRneV8CjaqvX3FPOA7q57biXpZ/2ACruJdhFbeBq4p7Aqq4l0EXpgEQNRdZgRlvqCL6l3K6YUuikUrFbcgT69gHg98IGtVYJfina5nzSKyWNVGpuI15YslYNtWvuMcd13wwouJe7qbiHufzgIobzBuGXOFmKhWXvWyWDXnZTKviNsWWd3Od5d0MGtVCv+I6NyAF3FbclvmHV2AVtyVWca9wVXGPQxW3JXRhrgCi5iIrMONXqoh+c043bElcpVJxr+SJdeyDwb8KGtVKJfina5nzSKyWXa1ScVvxxJKxbK1fcYHmzoiKe42bivsrnwc5U7CNSi1l+20maFXJ1tiSbKuzJNtAo651sSQBJJ4YCesZJuixqBL0OjcJeozPwxL0epUEZfvXqyRo3jW6Xi5Bz/BK/uLsR8SVbOfmSv7C52Erpx10vdurXG/2sj12VdqrlCnOivZYMW0LeXmDirhylG6YoCObN0CjOqjcyZy+R3Aeid0j3KgiHB14YsxLLJY3adXfm6CFlLgQsP/XJ6s5/F/6dK8+KGdzTIOIP75QOOK4UMRxOOI4I+I4PeI4LeI4FHEcjDgORBynRhynRBwnRxz7I459EcfeiOOCEcdJEceJEccJEcfxEceeiOO4iOMCEcexEccx+ceJpyKOT0Ycn4g4Ph5x/GvE8bGI41/yjxP6Rxz3izjuG3HcJ+K4d8Rxr4jjWyOOe0Yc94g47h5x3C3iuGvE8S0Rx10ijjtHHHeKOL454rhjxPFNEcc3Rhx3iDi+IeK4fcRxu4jj6yOOr4s4vjbiuG3EcZuI42sijltHHF+9OaY4FexIBW+mgp2oYGcq2IUK3kIFu1LBblSQ63UPKtiTCt5KBXtRwd5UsA8V7EsF+1FB3hQaQAUHUsHbqGAmFeS3E4Op4BAqOJQK3k4Fh1HB4VTwDio4ggre+deXFo4LO34CJFIdIZEaqX4PhJiIuAe6y8U9UMGRfB7mzCiNu5s8+6MmaNy3JE6ixLegopQ4Cbred0d7d4Gl5GQo+DdDLmbpp2RWVCl5j5uUzOLzMGdGq6Qk2x+t84A1irMIu5W/VyfZpkJh7QS5OEY/2cZElWz3uUm2MXwe5sz9KsnG9u/XSbbRnEVYsj2gk2wzoLB2hlwcq59sY6NKtgfdJNtYPg9z5iGVZGP7D+kk2/2cRViyPayTbHOhsHaBXHxEP9keiSrZxrlJtkf4PMyZ8SrJxvbH6yTbQ5xFWLJN0Em2+VBYb4FczNZPtuyoki3HTbJl83mYM7kqycb2c3WSbTxnEZZsE3WSbTEU1q6Qi5P0k21SVMk22U2yTeLzMGceVUk2tv+oTrLlchZhyTZFJ9mWQ2HtBrn4mH6yPRZVsj3uJtke4/MwZ55QSTa2/4ROsj3KWYQl21SdZFsJhbU75OKT+sn2ZFTJNs1Nsj3J52HOPKWSbGz/KZ1ke4KzCEu26TrJthoKaw/Ixaf1k+3pqJJthptke5rPw5x5RiXZ2P4zOsn2FGcRlmwzdZJtDRTWnpCLs/STbVZUyTbbTbLN4vMwZ+aoJBvbn6OTbM9wFmHJNlcn2T6Bwnor5OKz+sn2bFTJNs9Nsj3L52HOPKeSbGz/OZ1km8NZhCXb8zrJBn1au2AvyMUX9JPthaiSbb6bZHuBz8OceVEl2dj+izrJ9hxnEZZsC3SSbQsU1t6Qiwv1k21hVMm2yE2yLeTzMGdeUkk2tv+STrK9yFmEJdtinWTbAYW1D+Tiy/rJ9nJUybbETbK9zOdhzryikmxs/xWdZHuJswhLtqU6ybYHCmtfyMVl+sm2LKpkW+4m2ZbxeZgzr6okG9t/VSfZXuEswpJthU6y7YfC2g9y8TX9ZHstqmR73U2yvcbnYc68oZJsbP8NnWR7lbMIS7aVOsl2BAprf8jFN/WT7c2oku0tN8n2Jp+HOfO2SrKx/bd1ku0NziIs2VbpJNtxKKwDIBff0U+2d6JKttVuku0dPg9z5l2VZGP77+ok29ucRViyvaeSbAkFoLAOhFx8Xz/Z3o8q2T5wk2zv83mYMx+qJBvb/1An2d7lLMKSbY1OsiVBYb0NcpH0k42iSra1bpKN+DzMmY9Uko3tf6STbB9yFmHJtk4n2VKgsGZCLn6sn2wfR5Vsn7hJto/5PMyZT1WSje1/qpNsH3EWYcn2mU6ypUNhHQS5uF4/2dZHlWyfu0m29Xwe5swGlWRj+xt0ku1TziIs2TbqJBv2daXBkIub9JNtU1TJ9oWbZNvE52HOfKmSbGz/S51k28BZhCXbZp1kKw6FdQjk4lf6yfZVVMm2xU2yfcXnYc58rZJsbP9rnWT7krMIS7atOslWGgrrUMjFbfrJti2qZNvuJtm28XmYM9+oJBvb/0Yn2b7mLMKSbYdOslWEwno75OK3+sn2bVTJttNNsn3L52HOfKeSbGz/O51k+4azCEu2XTrJVh0K6zDIxd36ybY7qmTb4ybZdvN5mDPfqyQb2/9eJ9m+4yzCku0HnWSrA4V1OOTij/rJ9mNUybbXTbL9yOdhzuxTSTa2v08n2b7nLMKSbb9OstWHwnoH5OJP+sn2U1TJdsBNsv3E52HOHFRJNrZ/UCfZ9nEWYcl2SCfZmkBhHQG5eFg/2Q5HlWxH3CTbYT4Pc+ZnlWRj+z/rJNtBziIs2Y7qJFtLKKx3Qi7+op9sv0SVbMfcJNsvfB7mzK8qycb2f9VJtp85i7BkO65i/1eeGLN/Ikr7OegfFluI/sHJE9gfu50UZQqAf0N3hs60SDvgGS3QJs4GIpbnyeiXZxM+C/vjryehJXxKYQmzj6ewND8VrWAm5UbxEYqYhKxZDTMzuwzfHFMYGd4WGQQZHiw2qBcyqD8yqCcyqDgyaAQyqCoyaKSYT12QQYPEzPUQS5XuYj4NFIvTcDHHM/+zArMx+Yx11oMJ6J0Soi1Rl3DPOJ4Y+4PRpxAF9MYAXgKfwvHGFHdxP3KKz5OEiRWCif0jDPjXzjEfCzjjRn9n9VtayIbcMw7CiXOR5UAosSwvgAbdo3I7zbGMhe4zSizWsO8twOGHUtMbj1xxPS89kos8Idp7toLRPuQioihaBjRv+fedOnUq/5bfm+jmlt+bCHzJ71TeMCS6SSq3/N6kbMjHpP/d8jsM+t8t//9u+f93yx/xP1TrIW1xVUDjsTJf0K7M/3ZjCd0Meb3RvkjH4JOgUb4ob7/hS5QgeY/j175pKBPNa3xvcvQ3DWX4LGzRpCjcDrD1FFfftHKa+Pc15nwBU12kmdOsZRkK8bEs5GFARatSeWJMBYJCz+pBFy8evD5eYtjlxlQlFO169U4UX6/RTVhKekJeGVFMieR7+TjkEsUBY8oL1ng368aJtBxPi6VjAErHtCh9zAEWDRtPA1EwAUhXCGRc+VyplIEYMhRENE/mkZ8OYDKfAo0KK9wVcSaEo/5urW+SsS6WthRa6F2vN8BSC1U5HhiUl25QJ4GlkZN/h1ko/7AwaiEMOI3cQRRycwcR5vMwyQ5DK/AcIZhz3GxdgD4W0di68BbkRIXTWfIe/VyVO2D2Mh0rgOcp2C8Dl9/ztegzMPtFFeyXgumLqdAXhO0X137ArxTVA/4F0T/gV+KzMJ2+UOEBn61fqPIbvTxhPwfb1HtVxX4RFibMvs7fvPOWgF4ivgqNWhFlxUDu8SvzpUfKQGWItqTKRSzBE2NCUEqo7pdyVfdLQqNKR3kVwUQrc1YTLfonXn5TzXKADiyCXe+yKo6GUEdDsKPltNS1iORtc3kVLwNwlCpov/gD6nh0E1aQnpAXsvCLv6piL/6qCr74c1MpnEir5EkwZh1Kx4rRpmNKTrQX2yF/Tp06tRX9vURs3r8iXgJUyj+svBKqepVioWGVi/+1PsU4k/57yHP2/zaqEnRhKgNRi/pnct6SbF7nLpjvQs/DFLCKlv3zMftVtewXxexX07JfDLNfXct+ccx+DcT+Vd37Dcgc3qJ/r8G5JTfHTOes4QvHsWP3eQZKnPW/f/5v+mf279c72ryL/03RKmB5VxPIu7m/+3H1wJySuchPh2LQIlhTbqpaOnt1FcG7DyzYtaNc5KX+t8j/r//n7xZ5DnrbUguqQjywNnZ7XAtK44ui0oxSkGbEGmjGRfI1/z/aK/kwUkch2nCI6shNdbEhR+IsOY66hhyeTDmOetG+98Zq3CWO0xbQS9dL5Ka61PIy3y/HUd+SI0uO4zKddG3gLOl66dpAbqqGOuFp5Dhtgl54GslN1VgnPE0cp03UC08Tuama6oTncsdpk/TCc7ncVM10wtPccdqCeuFpLjdVC53wtHSc1qsXnpZyU12hE54rHaf16YXnSrmprtIJTyvHaf164WklN9XVOuFp7Thtsl54WstNdY1OeNo4TpuiF542clO11QnPtY7TpuqF51q5qa7TCc/1jtMG9MJzvdxU7XTC095x2qBeeNrLTXWDTng6OE4b0gtPB7mpbtQJz02O06bphecmuak66oTnZsdp0/XCc7PcVJ10wtPZcdoMvfB0lpuqi054bnGcNqwXnlvkpuqqE55ujtMW0gtPN7mpuuuEp4fjtIX1wtNDbqqeOuG51XHac/TCc6vcVL10wtPbcdoieuHpLTdVH53w9HWc9ly98PSVm6qfTnj6O057nl54+stNNUAnPAMdpz1fLzwD5aa6TSc8mY7TFtULj+Cm/iCd8Ax2nLaYXngGy001RCc8Qx2nLa4XnqFyU92uE55hjtNeoBeeYXJTDQfCo/ZTimJyHHfoXOYRjtOW0LvMI+SmulMnPCMdpy2pF56RclPdpROeUY7TltILzyi5qe7WCY/zL6lK64VH8Gdc9+iEZ7TjtGX0wjNabqp7dcIzxnHasnrhGSM31X064XH+uWU5vfAI/tbzAZ3wjHWctrxeeMbKTfWgTngecpy2gl54HpKb6mHD29u4NXIcj+hc5nGO01bSu8zj5KYarxMeZ9jKeuERnCpbJzzOtqvohSdHbqpcnfBMdJy2ql54JspNNUknPJMdp62mF57JclM9qhOeKY7TVtcLzxS5qR7TCc/jjtPW0AvP43JTPaETnqmO09bUC89Uuame1AnPNMdpa+mFZ5rcVE/phGe647S19cIzXW6qp3XCM8Nx2ov0wjNDbqpndMIz03HaOnrhmSk31Syd8Mx2nPZivfDMlptqjk545jpOW1cvPHPlpnpWJzzzHKetpxeeeXJTPacTnucdp71ELzzPy031gk545jtOe6leeObLTfWiTngWOE5bXy88C+SmWqgTnkWO016mF55FclO9pBMe54/nNdALz2K5qV7WCc8Sx2kb6oVnidxUr+iEZ6njtI30wrNUbqplOuFZ7jhtY73wLJeb6lWd8Dj/kfMmeuFZITfVazrhed1x2qZ64Xldbqo3dMKz0nHay/XCs1Juqjd1wvOW47TN9MLzltxUb+uEZ5XjtM31wrNKbqp3dMKz2nHaFnrhWS031bs64XnPcdqWeuF5T26q93XC84HjtFfohecDuak+1AmP809srtQLj+Dve0gnPGsdp71KLzxr5ab6SCc86xynbaUXnnVyU32sE55PHKe9Wi88n8hN9alOeD5znLa1Xng+k5tqvU54Pnec9hq98HwuN9UGnfBsdJy2jV54NspNtUknPF84TttWLzxfyE31pU54NjtOe61eeDbLTfWVTni2OE57nV54tshN9bVOeLY6Tnu9Xni2yk21TSc82x2nbacXnu1yU32jE54djtO21wvPDrmpvtUJz07HaW/QC89Ouam+0wnPLsdpO+iFZ5fcVLt1wrPHcdob9cKzR26q73XC84PjtDfphecHual+1AnPXsdpO+qFZ6/cVPt0wrPfcdqb9cKzX26qn3TCc8Bx2k564TkgN9VBnfAccpy2s154DslNdVgnPEccp+2iF54jclP9rBOeo47T3qIXnqNyU/2iE55jjtN21QvPMbmpftUJz3HHabvphee43FQndMJz0nHa7nrhOSk31SmV8PhiHKftoRYewDg8VaxOeAo4TttTLzwF5KaK0wmPx3HaW/XC45GbKl4nPAmO0/bSC0+C3FSJOuFJcpy2t154kuSmKqgTHq/jtH30wuOVm8qnEx6/47R99cLjl5sqWSc8KY7T9tMLT4rcVKk64Qk4TttfLzwBuamCOuEJOU47QC88Ibmp0nTCk+447UC98KTLTZWhE56w47S36YUnLDdVIZ3wFHacNlMvPIXlpjpHJzxFHKcdpBeeInJTnasTnvMcpx2sF57z5KY6Xyc8RR2nHaIXnqJyUxXTCU9xx2mH6oWnuNxUF+iE50LHaW/XC8+FclOV0AlPScdph+mFp6TcVKV0wlPacdrheuEpLTdVGZ3wlHWc9g698JSVm6qcTnjKO047Qi885eWmqqATnoqO096pF56KclNV0glPZcdpR+qFp7LcVFV0wlPVcdq79MJTVW6qajrhqe447Si98FSXm6qGTnhqOk57t154aspNVUsnPLUdp83SC09tuaku0glPHcdp79ELTx25qS7WCU9dx2lH64WnrtxU9XTCc4njtPfqhecSuaku1QlPfcdpx+iFp77cVJfphKeB47T36YWngdxUDXXC08hx2vv1wtNIbqrGOuFp4jjtA3rhaSI3VVOd8FzuOO1YvfBcLjdVM53wNHec9kG98DSXm6qFTnhaOk77kF54WspNdYVOeK50nPZhvfBcKTfVVTrhaeU47SN64WklN9XVOuFp7TjtOL3wtJab6hqd8LRxnHa8XnjayE3VVic81zpOO0EvPNfKTXWdTniud5w2Wy8818tN1U4nPO0dp83RC097ualu0AlPB8dpc/XC00Fuqht1wnOT47QT9cJzk9xUHXXCc7PjtJP0wnOz3FSddMLT2XHayXrh6Sw3VRed8NziOO2jeuG5RW6qrjrh6eY47RS98HSTm6q7Tnh6OE77mF54eshN1VMnPLc6Tvu4XnhulZuql054ejtO+4ReeHrLTdVHJzx9HaedqheevnJT9dMJT3/HaZ/UC09/uakG6IRnoOO00/TCM1Buqtt0wpPpOO1TeuHJlJtqEBKe3zla9O81OLf05pjp5K1L3nrkvZS89cl7GXkbkrcxeZuStxl5W5D3CvJeRd6ryXsNeduS9zrytiPvDeS9kbwdyduJvF3I25W83cnbk7y9yNuHvP3IO4C8t5F3EHmHkPd28g4n7x3kvZO8d5H3bvLeQ957yXsfeR8g74PkfZi8j5B3PHmzyZtL3knkfZS8j5H3CfI+Sd6nyPs0eZ8h7yzyziHvs+R9jrwvkPdF8i4k70vkfZm8r5B3GXlfJe9r5H2DvG+S923yvkPed8n7Pnk/JC+R9yPyfkzeT8m7nrwbyLuJvF+S9yvyfk3ebeT9hrzfkvc78u4m7/fk/ZG8+8j7E3kPkvcweX8m7y/k/ZW8J8h7inx5fzKAfPHkSyRfQfL5yJdMvlTyBcmXRr4M8hUi3znkO5d855OvGPkuIF8J8pUiXxnylSNfBfJVIl8V8lUjXw3y1SLfReS7mHz1yHcpb3Xzdi5vWfK2HG898fYKbyHwa3J+FcyvO/mVHr+24lcz/PqBH7H5MZIflfhxgG95+baOb124PHMJYpllKeHlwikx+/fr/YdlkZPrnE2VyFsyF/kTIiXJe3EOkp48DFmMg4Ekzl+MpaHFGAuuIK/g74EGR6lV2c4XJf63aFcAol2AR0LRHqIQbThEQ+SmGuoi2k7RiauaC9iOA8ZUha7F7YbXInGW3LUYZsjhESynww05vIK/LbvD8nrcL8cxwpIjS47jTsu8EvzV2UhLDsGfh91lySH4O65RlhyCP7i625JD8JdRWZYcgj9huseSQ/C3RqMtOQR/FHSvJYfgr3fGWHK0keO4z5JD8Pcw91tyCP5w5QFLDsFfmIy15BD8KciDlhyCv9l4yJJD8McVD1tyCP4K4hFLDsGfK4yz5BD8XcF4Sw7BHwBMsOQQ3KnPtuQQ3FLPseQQ3PvOteQQ3KSeaMkhuJs8yZIjU45jsiXHYDmORy05hspxTLHkGCbH8Zghh6eYHMfjltdjhBzHE5YcI+U4plpyjJLjeNKSQ3A/apolx2g5jqcsOcbIcUy35BDcr33akmOsHMcMS46H5DieMeSIWyPHMdPyeoyT45hlySH4M67Zlhw5chxzLDkmynHMteSYLMfxrCXHFDmOeZYcj8txPGfJMVWO43lLjmlyHC9YckyX45hvyTFDjuNFS46ZchwLLDlmy3EstOSYK8exyJJjnhzHS5Ycz8txLLbkmC/H8bIlxwI5jiWWHIvkOF6x5Fgsx7HUkmOJHMcyS46lchzLLTmWy3G8asmxQo5jhSXH63Icr1lyrJTjeN2S4y05jjcsOVbJcay05Fgtx/GmJcd7chxvWXJ8IMfxtiWH4P7HKkuOtXIc71hyrJPjWG3J8Ykcx7uWHJ/JcbxnyfG5HMf7lhwb5Tg+sOT4Qo7jQ0uOzXIcayw5tshxkCXHVjmOtZYc2+U4PrLk2CHHsc6SY6ccx8eWHLvkOD6x5Ngjx/GpJccPchyfWXLsleNYb8mxX47jc0uOA3IcGyw5DslxbLTkOCLHscmS46gcxxeWHMfkOL605Dgux7HZkuOkHMdXhhy+GLmptlhyFJCb6mtLDo/cVFstORLkptpmyZEkN9V2Sw6v3FTfWHL45abaYcmRIjfVt5YcAbmpdlpyhOSm+s6SI11uql2WHGG5qXZbchSWm2qPJUcRuam+t+Q4T26qHyw5ispN9aMlR3G5qfZaclwoN9U+S46SclPtt+QoLTfVT5YcZeWmOmDJUV5uqoOWHBXlpjpkyVFZbqrDlhxV5aY6YslRXW6qny05aspNddSSo7bcVL9Ycgh+ieiYJUddual+teQQ/B7LcUuO+nJTnbDkEPyOyUlLDsHvmJyy5JD7jok/xpJD7jsm/lhLDrnvmPgLWHLIfcfEH2fJIfcdE7/HkkPuOyb+eEuO1nIcCZYcbeQ4Ei055L5j4k+y5JD7jom/oCWH3HdM/F5LDrnvmPh9lhxy3zHx+y055L5j4k+25JD7jok/xZJD7jsm/lRLDrnvmPgDlhxy3zHxBy055L5j4g9Zcsh9x8SfZskh9x0Tf7olh9x3TPwZlhwD5TjClhyZchyFAI55v3O06N9rcG6ZzTHTyTeMfMPJdwf5RpDvTvKNJN9d5BtFvrvJl0W+e8g3mnz3km8M+e4j3/3ke4B8Y8n3IPkeIt/D5HuEfOPIN558E8iXTb4c8uWSbyL5JpFvMvkeJd8U8j1GvsfJ9wT5ppLvSfJNI99T5GPTT5NvBvmeId9M8s0i32zyzSHfXPI9S7555HuOfM+T7wXyzSffi+RbQL6F5FtEvpfIt5h8L5NvCfleId9S8i0j33LyvUq+FeR7jXyvk+8N8q0k35vke4t8b5NvFfneId9q8r1LvvfI9z75PiDfh+RbQz4i31ryfUS+deT7mHyfkO9T8n1GvvXk+5x8G8i3kXybyPcF+b4k32byfUW+LeT7mnxbybeNfNvJ9w35dpDvW/LtJN935NtFvt3k20O+78n3A/l+JN9e8u0j337eUOe9aN7G5R1Q3jzkfTfesuLdHt4o4T0Gfj3Pb7b5pTC/T+VXkfwWj1+A8bsjfu3Cbyz4YZ+fk/kRk5/O+MGGnwn4dprvRPkmju9/+NaBqy4XLNZ6lklWGF6cnNecErN/v95Z8xoOGtQ9c3CH7pkDcnNyVxWv2q1V5rZq08stbd10SVZW+45la+xqPnzZwOzG2w7n7udEIW9J8g3NBdIub+DtOVCuD80BDPsLR7Ucy0DLMRZdjkPkliPCEXlZsp2jHZ8XbW8FINpxPBKK9jkK0YZDdI7cVEUMORJnyXGca8jhESxG5xlyeOU2G/3nW14PuY+J+Itacsh9bMdfzDKv5DZN/cUtOeQ2Tf0XWHIIbppeaMkhuGlawpJDcNO0pCWH4KZpKUsOwU3T0pYcgpumZSw5BDdNy1pytJHjKGfJIbhpWt6SQ3DTtIIlh+CmaUVLDsFN00qWHIKbppUtOQQ3TatYcghumla15BDcNK1mySG4aVrdkkNw07SGJYfgpmlNSw7BTdNalhyCm6a1LTkEN00vsuQQ3DStY8mRKcdxsSXHYDmOupYcQ+U46llyDJPjuMSQw1NMjuNSy+sxQo6jviXHSDmOyyw5RslxNLDkENyPamjJMVqOo5Elxxg5jsaWHIL7tU0sOcbKcTS15HhIjuNyQ444uY8f+ZtZXo9xchzNLTkEfwLVwpIjR46jpSXHRDmOKyw5JstxXGnJMUWO4ypLjsflOFpZckyV47jakmOaHEdrS47pchzXWHLMkONoY8kxU46jrSXHbDmOay055spxXGfJMU+O43pLjuflONpZcsyX42hvybFAjuMGS45FchwdLDkWy3HcaMmxRI7jJkuOpXIcHS05lstx3GzJsUKOo5Mlx+tyHJ0tOVbKcXSx5HhLjuMWS45VchxdLTlWy3F0s+R4T46juyXHB3IcPSw5BPc/elpyrJXjuNWSY50cRy9Ljk/kOHpbcnwmx9HHkuNzOY6+lhwb5Tj6WXJ8IcfR35JjsxzHAEuOLXIcAy05tspx3GbJsV2OI9OSY4ccxyBLjp1yHIMtOXbJcQyx5NgjxzHUkuMHOY7bLTn2ynEMs+TYL8cx3JLjgBzHHZYch+Q4RlhyHJHjuNOS46gcx0hLjmNyHHdZchyX4xhlyXFSjuNuQw5fjBxHliVHATmOeyw5PHIcoy05EuQ47rXkSJLjGGPJ4ZXjuM+Swy/Hcb8lR4ocxwOWHAE5jrGWHCE5jgctOdLlOB6y5AjLcTxsyVFYjuMRS44ichzjLDnOk+MYb8lRVI5jgiVHcTmObEuOC+U4ciw5Sspx5FpylJbjmGjJUVaOY5IlR3k5jsmWHBXlOB615KgsxzHFkqOqHMdjlhzV5Tget+SoKcfxhCVHbTmOqZYcdeQ4nrTkqCvHMc2SQ/B7LE9ZctSX45huySH4HZOnLTkEv2Myw5JD8Dsmz1hyCH7HZKYlh+B3TGZZcgh+x2S2JYfgd0zmWHIIfsdkriVHazmOZy052shxzLPkEPyOyXOWHILfMXnekkPwOyYvWHIIfsdkviWH4HdMXrTkEPyOyQJLDsHvmCy05BD8jskiSw7B75i8ZMkh+B2TxZYcgt8xedmSQ/A7JkssOQS/Y/KKJYfgd0yWWnIMlONYZsmRKccB/KmgrHm/c7To32twbtnNMdPJfy75zyP/+eQvSv5i5C9O/gvIfyH5S5C/JPlLkb80+cuQvyz5y5G/PPkrkL8i+SuRvzL5q5C/Kvmrkb86+WuQvyb5a5G/NvkvIn8d8l9M/rrkr0f+S8h/Kfnrk/8y8jcgf0PyNyJ/Y/I3IX9T8l9O/mbkb07+FuRvSf4ryH8l+a8ifyvyX03+1uS/hvxtyN+W/NeS/zryX0/+duRvT/4byN+B/DeS/ybydyT/zeTvRP7O5O9C/lvI35X83cjfnfw9yN+T/LeSvxf5e5O/D/n7kr8f+fuTfwD5B5L/NvJnkn8Q+QeTfwj5h5L/dvIPI/9w8t9B/hHkv5P8I8l/F/lHkf9u8meR/x7yjyb/veQfQ/77yH8/+R8g/1jyP0j+h8j/MPkfIf848o8n/wTyZ5M/h/y5vKHOe9G8jcs7oLx5yPtuvGXFuz28UcJ7DPx6nt9s80thfp/KryL5LR6/AON3R/zahd9Y8MM+PyfzIyY/nfGDDT8T8O0034nyTRzf//CtA1ddLlis9SyTrDC8ODmvOSVm/369s+Y1HDSoe+bgDt0zB+TmOP9AIbYCeUvysKrdWmVuqza93NLWTZdkZbXvWLbGrubDlw3MbrztcO5+HsejyF8kB0rPIjnAfP5Xo1qMZaHFGIuuoHPkFiPCEXlRsp0vSnxetL0VgGh7eCQU7RUK0YZDJPgnwV4z5EicJcfxuiGHR7AUvWHI4RXcalxpeT0EPyXypiWH4Kd23rLMK8Et07ctOQS3TFdZcghumb5jySG4ZbrakkNwy/RdSw7BLdP3LDkEt0zft+QQ3DL9wJJDcMv0Q0uONnIcayw5BLdMyZJDcMt0rSWH4JbpR5Ycglum6yw5BLdMP7bkENwy/cSSQ3DL9FNLDsEt088sOQS3TNdbcghumX5uySG4ZbrBkkNwy3SjJYfglukmSw7BLdMvLDkEt0y/tOTIlOPYbMkxWI7jK0uOoXIcWyw5hslxfG3I4Skmx7HV8nqMkOPYZskxUo5juyXHKDmObyw5BPejdlhyjJbj+NaSY4wcx05LDsH92u8sOcbKceyy5HhIjmO3IUec4KeP9lhej3FyHN9bcgj+BOoHS44cOY4fLTkmynHsteSYLMexz5JjihzHfkuOx+U4frLkmCrHccCSY5ocx0FLjulyHIcsOWbIcRy25Jgpx3HEkmO2HMfPlhxz5TiOWnLMk+P4xZLjeTmOY5Yc8+U4frXkWCDHcdySY5EcxwlLjsVyHCctOZbIcZyy5FgqNlVyjCXHcjmOWEsOuT6v5AKWHK/LccRZcqyU4/BYcrwlxxFvybFKjiPBkmO1HEeiJcd7chxJlhwfyHEUtOSQ2/9I9lpyrJXj8FlyrJPj8FtyfCLHkWzJ8ZkcR4olx+dyHKmWHBvlOAKWHF/IcQQtOTbLcYQsObbIcaRZcmyV40i35Ngux5FhybFDjiNsybFTjqOQJccuOY7Clhx75DjOseT4QY6jiCXHXjmOcy059stxnGfJcUCO43xLjkNyHEUtOY7IcRSz5Dgqx1HckuOYHMcFlhzH5TgutOQ4KcdRwpDDFyPHUdKSo4AcRylLDo8cR2lLjgQ5jjKWHElyHGUtObxyHOUsOfxyHOUtOVLkOCpYcgTkOCpacoTkOCpZcqTLcVS25AjLcVSx5Cgsx1HVkqOIHEc1S47z5DiqW3IUleOoYclRXI6jpiXHhXIctSw5Sspx1LbkKC3HcZElR1k5jjqWHOXlOC625Kgox1HXkqOyHEc9S46qchyXWHJUl+O41JKjphxHfUuO2nIcl1ly1JHjaGDJUVeOo6Elh9z3WJIbWXLUl+NobMkh9x2T5CaWHHLfMUluaskh9x2T5MstOeS+Y5LczJJD7jsmyc0tOeS+Y5LcwpJD7jsmyS0tOeS+Y5J8hSVHazmOKy052shxXGXJIfcdk+RWlhxy3zFJvtqSQ+47JsmtLTnkvmOSfI0lh9x3TJLbWHLIfcckua0lh9x3TJKvteSQ+45J8nWWHHLfMUm+3pJD7jsmye0sOeS+Y5Lc3pJD7jsmyTdYcsh9xyS5gyWH3HdMkm+05Bgox3GTJUemHEdHgGPe7xwt+vcanFtuc8x08r9O/jfIv5L8b5L/LfK/Tf5V5H+H/KvJ/y753yP/++T/gPwfkn8N+Yn8a8n/EfnXkf9j8n9C/k/J/xn515P/c/JvIP9G8m8i/xfk/5L8m8n/Ffm3kP9r8m8l/zbybyf/N+TfQf5vyb+T/N+Rfxf5d5N/D/m/J/8P5P+R/HvJv4/8+8n/E/kPkP8g+Q+R/zD5j5D/Z/IfJf8v5D9G/l/Jf5z8J8h/kvynKDmGkvP+MhAlx1Gyh5LjKTmBkhMpOYmSC1Kyl5J9lOyn5GRKTqHkVEoOUHKQkkOUnEbJ6ZScQclhSi5EyYUp+RxKLkLJ51LyeZR8PiUXpeRilFycki+g5AspuQQll6TkUpRcmpLLUHJZSi5HyeUpuQIlV6TkSpRcmZKrUHJVSq5GydUpuQYl16TkWpRcmzfUeS+at3F5B5Q3D3nfjbeseLeHN0p4j4Ffz/ObbX4pzO9T+VUkv8XjF2D87ohfu/AbC37Y5+dkfsTkpzN+sOFnAr6d5jtRvonj+x++deCqywWLtZ5lkhWGFyfnNafE7N+vd9a8hoMGdc8c3KF75oDcnFwgm7wlyVuGB1bt1ipzW7Xp5Za2brokK6t9x7I1djUfvmxgduNth3P388i8gf7XcpAE5WHAfMk3R7Ucy0HLMRZcQ37BP1OlwYEaT5wlx9HJkMMjKI+dDTm8gttfXSyvh9znLZJvseSQ+/xLclfLvBLcxutmySG4jdfdkkNwG6+HJYfgNl5PSw7BbbxbLTkEt/F6WXIIbuP1tuQQ3MbrY8khuI3X15KjjRxHP0sOwW28/pYcgtt4Ayw5BLfxBlpyCG7j3WbJIbiNl2nJIbiNN8iSQ3Abb7Alh+A23hBLDsFtvKGWHILbeLdbcghu4w2z5BDcxhtuySG4jXeHJYfgNt4ISw7Bbbw7LTkE31OPtOQYLMdxlyXHUDmOUZYcw+Q47jbk8BST48iyvB4j5DjuseQYKccx2pJjlBzHvZYcgvtRYyw5Rstx3GfJMUaO435LDsH92gcsOcbKcYy15HhIjuNBQ444wc/xPGR5PcbJcTxsySE3VfIjlhw5chzjLDkmynGMt+SYLMcxwZJjihxHtiXH43IcOZYcU+U4ci05pslxTLTkmC7HMcmSY4Ycx2RLjplyHI9acsyW45hiyTFXjuMxS455chyPW3I8L8fxhCXHfDmOqZYcC+Q4nrTkWCTHMc2SY7Ecx1OWHEvkOKZbciyV43jakmO5HMcMSw7BPq9nLDlel+OYacmxUo5jliXHW3Icsy05VslxzLHkWC3HMdeS4z05jmctOT6Q45hnySG4//GcJcdaOY7nLTnWyXG8YMnxiRzHfEuOz+Q4XrTk+FyOY4Elx0Y5joWWHF/IcSyy5Ngsx/GSJccWOY7Flhxb5ThetuTYLsexxJJjhxzHK5YcO+U4llpy7JLjWGbJsUeOY7klxw9yHK9acuyV41hhybFfjuM1S44DchyvW3IckuN4w5LjiBzHSkuOo3Icb1pyHJPjeMuS47gcx9uWHCflOFYZcvhi5DjeseQoIMex2pLDI8fxriVHghzHe5YcSXIc71tyeOU4PrDk8MtxfGjJkSLHscaSIyDHQZYcITmOtZYc6XIcH1lyhOU41llyFJbj+NiSo4gcxyeWHOfJcXxqyVFUjuMzS47ichzrLTkulOP43JKjpBzHBkuO0nIcGy05yspxbLLkKC/H8YUlR0U5ji8tOSrLcWy25Kgqx/GVJUd1OY4tlhw15Ti+tuSoLcex1ZKjjhzHNkuOunIc2y05BL/H8o0lR305jh2WHILfMfnWkkPwOyY7LTkEv2PynSWH4HdMdllyCH7HZLclh+B3TPZYcgh+x+R7Sw7B75j8YMnRWo7jR0uONnIcey05BL9jss+SQ/A7JvstOQS/Y/KTJYfgd0wOWHIIfsfkoCWH4HdMDllyCH7H5LAlh+B3TI5Ycgh+x+RnSw7B75gcteQQ/I7JL5Ycgt8xOWbJIfgdk18tOQS/Y3LckmOgHMcJS45MOQ7gp9l/+Cx9NvpZ+gp59h2/I1+CVOyXZvs5iP3kU0iUVLysTN4LcwEfKyMc3guRUSnOP2CPjZqjCk+L/NXg5xpl9urbt1fPxl369p3om5Q1u22v/j37dscStRJgIKoJK0pPWCGKCXPQRVQKzfYyE6R5yAd8ki0nb85+A/t2p5TY/MMCoAUgHWOyFjTq26Vrn0YDhl0+pH/XvNzJmtWmYatmTXOy5rTrNbh/90GD2HbxP2ZXSk70oS6Phrq8Q6hPnTp1ND/U/z44Nu9fEUGMyz/0rITQ42KhYZ7i7lS8PKbiH2mpOGh/XZT2J0z892lz9v+Wn3GQqHqgEvIRNGodkFt/DiQg+4wyQeES8TUKQxcoJV7BehnYeoKC9dKw9USVxZEB209SsF8Ktl5QhT5M3sKYfa+W/XMx+z4t+4Uw+37E/u8PKi369xqcW35zTANer7xoOHM5efgKchCZg6eixFn/v/hn9u88f5T8XChcwAcXkiAxT4q+KkGXPk/Mk7FLD7RNRTyjlhd9Rk2R69lKSY0yhSv8X5rCOVBJTolB7wlSc7DwQ8kWiCrZKkDJFmuQbIEoFy2oK8Gzqiux7nQliOlKSOFSw9cnJDdVmiFH4iw5jnRDDk+mHEeGIYdX7remKWHL6yH3LcmUQpYcct9aTSlsmVdyv5lNOceSQ+43sylFLDnkfjObcq4lh9xvZlPOs+SQ+81syvmWHHK/mU0paskh95vZlGKWHHK/mU0pbsnRWo7jAkuONnIcF1pyyP1mNqWEJYfcb2ZTSlpyyP1mNqWUJYfcb2ZTSltyyP1mNqWMJYfcb2ZTylpyyP1mNqWcJYfcb2ZTyltyyP1mNqWCJYfcb2ZTKlpyyP1mNqWSJYfcb2ZTKltyyP1mNqWKJYfcb2ZTqlpyDJTjqGbJkSnHUd2SY7AcRw1LjqFyHDUtOYbJcdQy5PAUk+OobXk9RshxXGTJMVKOo44lxyg5jostOQT3o+pacoyW46hnyTFGjuMSSw7B/dpLLTnGynHUt+R4SI7jMkOOOLlv36Y0sLwe4+Q4GlpyCP4EqpElR44cR2NLjolyHE0sOSbLcTS15Jgix3G5JcfjchzNLDmmynE0t+SYJsfRwpJjuhxHS0uOGXIcV1hyzJTjuNKSY7Ycx1WWHHPlOFpZcsyT47jakuN5OY7Wlhzz5TiuseRYIMfRxpJjkRxHW4Ajsq+s4m99ZemUkkEpYUopRCmFKeUcSilCKedSynmUcj6lFKWUYpRSnFIuoJQLKaUEpZSklFKUUppSylBKWUopRynleeued715w5j3Wnmbknf4eHOM95V4S4Z3M3gjgN+h8+tnfnPLLz35fSG/auO3VPyCh9+N8GsFfiLnh1l+DuRHKH764Bt3vufl20W+0+KbFK7vXBq5qrAgs5axDPAK4uTj68bIbvvKKkXRV5aG9ZWl5SDzXRtVslWU7SsLySUbwuGir+w6Z+OCfWUF3PWVXZcNsVyvcKnh6yP4e8h2hhySfWXtDTkk+8puMOSQ7CvrYHk9BPcpbrTkENzHu8kyrwT7yjpacgj2ld1sySHYV9bJkkOwr6yzJYdgX1kXSw7BvrJbLDkE+8q6WnII9pV1s+RoLcfR3ZKjjRxHD0sOwb6ynpYcgs9Rt1pyCPaV9bLkEOwr623JIdhX1seSQ7CvrK8lh2BfWT9LDsG+sv6WHIJ9ZQMsOQT7ygZacgj2ld1mySHYV5ZpySHYVzbIkkOwr2ywJcdAOY4hlhyC76mHWnII9pXdbskh2Fc2zJJDsK9suCGHZF/ZHZbXQ7CvbIQlh2Bf2Z2WHIJ9ZSMtOQT3o+6y5BDsKxtlySHYV3a3JYfgfm2WJYdgX9k9lhyCfWWjDTkk+8rutbwegn1lYyw5BH8CdZ8lR44cx/2WHIJ9ZQ9Ycgj2lY215BDsK3vQkkOwr+whSw7BvrKHLTkE+8oeseQQ7CsbZ8kh2Fc23pJDsK9sgiWHYF9ZtiWHYF9ZjiWHYF9ZriWHYF/ZREsOwb6ySZYcC+Q4JltyLJLjeBTgiOwrq/RbX1l7SrmBUjpQyo2UchOldKSUmymlE6V0ppQulHILpXSllG6U0p1SelBKT0q5lVJ6UUpvSulDKX0ppR+l9Oete9715g1j3mvlbUre4ePNMd5X4i0Z3s3gjQB+h86vn/nNLb/05PeF/KqN31LxCx5+N8KvFfiJnB9m+TmQH6H46YNv3Pmel28X+U6Lb1K4vnNp5KrCgsxaxjLAK4iTj68bI7vtK6sYRV9ZO6yvrF0OMt+UqJKtkmxfmeCP5BAOF31ljzkbF+wri3PXV/ZYNsTyuMKlhq+P4HPbE4Yckn1lUw05JPvKnjTkkOwrm2Z5PQT3KZ6y5BDcx5tumVeCfWVPW3II9pXNsOQQ7Ct7xpJDsK9spiWHYF/ZLEsOwb6y2ZYcgn1lcyw5BPvK5lpytJbjeNaSo40cxzxLDsG+sucsOQQfmZ+35BDsK3vBkkOwr2y+JYdgX9mLlhyCfWULLDkE+8oWWnII9pUtsuQQ7Ct7yZJDsK9ssSWHYF/Zy5Ycgn1lSyw5BPvKXrHkEOwrW2rJMVCOY5klR6Ycx3JLDsG+slctOQT7ylZYcgj2lb1myCHZV/a65fUQ7Ct7w5JDsK9spSWHYF/Zm5YcgvtRb1lyCPaVvW3JIdhXtsqSQ3C/9h1LDsG+stWWHIJ9Ze8ackj2lb1neT0E+8ret+QQ/AnUB5YcOXIcH1pyCPaVrbHkEOwrI0sOwb6ytZYcgr9P/MiSQ7CvbJ0lh2Bf2ceWHIJ9ZZ9Ycgj2lX1qySHYV/aZJYdgX9l6Sw7BvrLPLTkE+8o2WHII9pVttOQQ7CvbZMmxQI7jC0uORXIcXwIckX1llX/rK5tKKU9SyjRKeYpSplPK05Qyg1KeoZSZlDKLUmZTyhxKmUspz1LKPEp5jlKep5QXKGU+pbxIKQsoZSGlLOKte9715g1j3mvlbUre4ePNMd5X4i0Z3s3gjQB+h86vn/nNLb/05PeF/KqN31LxCx5+N8KvFfiJnB9m+TmQH6H46YNv3Pmel28X+U6Lb1K4vnNp5KrCgsxaxjLAK4iTj68bI7vtKyPf7VF0lj2BdZY9kYPMtzmqdKss21kmeDuPcLjoLPvK2bhgZ5nHXWfZV9kQyxaFSw1fny1yU31tyCHZWbbVkEOys2ybIYdkZ9l2y+shuFPxjSWH4E7eDsu8Euws+9aSQ7CzbKclh2Bn2XeWHIKdZbssOQQ7y3Zbcgh2lu2x5BDsLPvekkOws+wHS47Wchw/WnK0kePYa8kh2Fm2z5JDsLNsvyWHYGfZT5Ycgp1lByw5BDvLDlpyCHaWHbLkEOwsO2zJIdhZdsSSQ7Cz7GdLDsHOsqOWHIKdZb9Ycgh2lh2z5BDsLPvVkkOws+y4JcdAOY4TlhyZchwnLTkEO8tOWXLIdZalxlhyyHWWpcYacgh2lqUWsLwecp1lqXGWHHKdZakeSw65zrLUeEsOuf2o1ARLDrnOstRESw65zrLUJEsOuf3a1IKWHHKdZaleSw65zrJUnyGHYGdZqt/yesh1lqUmW3LITZWaYsmRI8eRaskh11mWGrDkkOssSw1acsh1lqWGLDnkfoqammbJIddZlppuySHXWZaaYckh11mWGrbkkOssSy1kySHXWZZa2JJDrrMs9RxLDrnOstQilhxynWWp51pyyHWWpZ5nySHXWZZ6viXHAjmOopYci+Q4gFfef+gsq/JbZ9lWStlGKdsp5RtK2UEp31LKTkr5jlJ2UcpuStlDKd9Tyg+U8iOl7KWUfZSyn1J+opQDlHKQUg5RymFKOcJb97zrzRvGvNfK25S8w8ebY7yvxFsyvJvBGwH8Dp1fP/ObW37pye8L+VUbv6XiFzz8boRfK/ATOT/M8nMgP0Lx0wffuPM9L98u8p0W36RwfefSyFWFBZm1jGWAVxAnH183RnbbWVYhir6yr7G+sq9zgPlSi0eVbFVk+8rkmo0gjuj7ylIvcDYu2FcW76qvLPWCbIjlQoVLDV+fC+WmKmHIIdhXllrSkEOwryy1lCGHYF9ZamnL6yG4T1HGkkNwH6+sZV7J9ZWllrPkkOsrSy1vySHXV5ZawZJDrq8staIlh1xfWWolSw65vrLUypYccn1lqVUsOeT6ylKrWnK0luOoZsnRRo6juiWHXF9Zag1LDrm+stSalhxyfWWptSw55PrKUmtbcsj1laVeZMkh11eWWseSQ66vLPViSw65vrLUupYccn1lqfUsOeT6ylIvseSQ6ytLvdSSQ66vLLW+JYdcX1nqZZYccn1lqQ0sOQbKcTS05MiU42hkySHXV5ba2JJDsK+siSWHYF9ZU0MOyb6yyy2vh2BfWTNLDsG+suaWHIJ9ZS0sOQT3o1pacgj2lV1hySHYV3alJYfgfu1VlhyCfWWtLDkE+8quNuSQ7CtrbXk9BPvKrrHkEPwJVBtLjhw5jraWHIJ9Zddacgj2lV1nySHYV3a9JYdgX1k7Sw7BvrL2lhyCfWU3WHII9pV1sOQQ7Cu70ZJDsK/sJksOwb6yjpYcgn1lN1tyCPaVdbLkEOwr62zJIdhX1sWSY4Ecxy2WHIvkOLoCHJF9ZVXz+spSS1JqKUotTallKLUspZaj1PKUWoFSK1JqJUqtTKlVKLUqpVaj1OqUWoNSa1JqLUqtTakXUWodSr2YUuvy1j3vevOGMe+18jYl7/Dx5hjvK/GWDO9m8EYAv0Pn18/85pZfevL7Qn7Vxm+p+AUPvxvh1wr8RM4Ps/wcyI9Q/PTBN+58z8u3i3ynxTcpXN+5NHJVYUFmLWMZ4BXEycfXjZFdf7Esr2GsANhZlloC6izjYUi7Ubeo0q2qaGeZZLsRwuGis6y7s3HBzrIEd51l3bMhlh4Klxq+PoK/aOkZ5aWGVqC3JHlLQQNLk7cMFvBbDQMu2QLXy5BDsgWutyGHZAtcH8vrIbil0teSQ3DLsZ9lXgm2wPW35BBsgRtgySHYAjfQkkOwBe42Sw7BFrhMSw7BFrhBlhyCLXCDLTkEW+CGWHK0luMYasnRRo7jdksOwRa4YZYcgi1wwy05BFvg7rDkEGyBG2HJIdgCd6clh2AL3EhLDsEWuLssOQRb4EZZcgi2wN1tySH4wjDLkkOwBe4eSw7BFrjRlhyCLXD3WnIItsCNseQYKMdxnyVHphzH/ZYcgi1wD1hyCLbAjbXkEGyBe9CQQ7IF7iHL6yHYAvewJYdgC9wjlhyCLXDjLDkE96PGW3IItsBNsOQQbIHLtuQQ3K/NseQQbIHLteQQbIGbaMgh2QI3yfJ6CLbATbbkEPyt1qOWHDlyHFMsOQRb4B6z5BBsgXvckkOwBe4JSw7BFriplhyCLXBPWnIItsBNs+QQbIF7ypJDsAVuuiWHYAvc05Ycgi1wMyw5BFvgnrHkEGyBm2nJIdgCN8uSQ7AFbrYlxwI5jjmWHIvkOADJ+EMLXLXfWuB6UWpvSu1DqX0ptR+l9qfUAZQ6kFJvo9RMSh1EqYMpdQilDqXU2yl1GKUOp9Q7KHUEpd5JqSMp9S5KHcVb97zrzRvGvNfK25S8w8ebY7yvxFsyvJvBGwH8Dp1fP/ObW37pye8L+VUbv6XiFzz8boRfK/ATOT/M8nMgP0Lx0wffuPM9L98u8p0W36RwfefSyFWFBZm1jGWAVxAnH183Rv6nFjios60n2vF0K9YC1zMHadN5Nqp0qybbAif4MweEw0UL3Dxn44ItcInuWuDmZUMszylcavj6PCc31fOGHJKdZS8Yckh2ls035JDsLHvR8noI7lQssOQQ3MlbaJlXgp1liyw5BDvLXrLkEOwsW2zJIdhZ9rIlh2Bn2RJLDsHOslcsOQQ7y5Zacgh2li2z5Ggtx7HckqONHMerlhyCnWUrLDkEO8tes+QQ7Cx73ZJDsLPsDUsOwc6ylZYcgp1lb1pyCHaWvWXJIdhZ9rYlh2Bn2SpLDsFXru9Ycgh2lq225BDsLHvXkkOws+w9Sw7BzrL3LTkGynF8YMmRKcfxoSWHYGfZGksOwc4ysuQQ7Cxba8gh2Vn2keX1EOwsW2fJIdhZ9rElh2Bn2SeWHIL7UZ9acgh2ln1mySHYWbbekkNwv/ZzSw7BzrINlhyCnWUbDTkkO8s2WV4Pwc6yLyw5BH8C9aUlR44cx2ZLDsHOsq8sOQQ7y7ZYcgh2ln1tySHYWbbVkkOws2ybJYdgZ9l2Sw7BzrJvLDkEO8t2WHIIdpZ9a8kh2Fm205JDsLPsO0sOwc6yXZYcgp1luy05BDvL9lhyLJDj+N6SY5Ecxw8AR2RnWfXfOsteoNT5lPoipS6g1IWUuohSX6LUxZT6MqUuodRXKHUppS6j1OWU+iqlrqDU1yj1dUp9g1JXUuqblPoWpb7NW/e8680bxrzXytuUvMPHm2O8r8RbMrybwRsB/A6dXz/zm1t+6cnvC/lVG7+l4hc8/G6EXyvwEzk/zPJzID9C8dMH37jzPS/fLvKdFt+kcH3n0shVhQWZtYxlgFcQJx9fN0Y+o4+rxaItaM9jnWXP5yDtRj9GlW7VZTvLBNuNEA4XnWV7EeNIZ1ks0lkW666zbG82xLIPCNGCRn27dO3TaMCwy4f079q4S9++WbPaNGzVrGlO1px2vQb37z5oEM9T/I+RzMmBEhfycX+UMQIv409n9TLGuLqMKbHQugYDeUDoYh8o7u5DdWXRD9WVxZL3YJRRhx0thzpaDnP0kIKgoioo2fd42JBDsu/xiCGHZN/jz5bXQ3Af7aglh+A+8y+WeSXY93jMkkOw7/FXSw7BvsfjlhyCfY8nLDkE+x5PWnII9j2esuSQ63sMxFhyyPU9BmItOVrLcRSw5GgjxxFnySHX9xjwWHLI9T0G4i055PoeAwmWHHJ9j4FESw65vsdAkiWHXN9joKAlh1zfY8BrySHX9xjwWXLI9T0G/JYccn2PgWRLDrm+x0CKJYdc32Mg1ZJDru8xELDkkOt7DAQtOQbKcYQsOTLlONIsOeT6HgPplhxyfY+BDEsOub7HQNiQQ7DvMVDI8nrI9T0GCltyyPU9Bs6x5JDrewwUseSQ248KnGvJIdf3GDjPkkOu7zFwviWH3H5toKglh1zfY6CYJYdc32OguCGHYN9j4ALL6yHX9xi40JJDbqpACUuOHDmOkpYccn2PgVKWHHJ9j4HSlhxyfY+BMpYccn2PgbKWHHJ9j4FylhxyfY+B8pYccn2PgQqWHHJ9j4GKlhxyfY+BSpYccn2PgcqWHHJ9j4EqlhxyfY+BqpYccn2PgWqWHHJ9j4HqlhwL5DhqWHIskuOoCXC46vLal2ffsf+kxHca9lP35/VQIfYDtZAo6XjpLU3Jp3KhC14SYqkNsSB/IfO5Rpm9+vbt1TOvy2picnbW7La9+vfs2x1LKmBp/DZjv4F9u1PgopVRR64Gn4Vldx3nsLmxXmeC1qo5gK2aPSqr5lZeOJj976O0j/U9Bi6GEngPNMrZxb+2rzp5WJMvPdL1WBOiratxEQMX88TQRQzUA+wDPZeBem4abAN1oVGXRHkVwUS79KwmWoyrDvvUg2ipO4hd7/pajh5CHT2EOXqZ0j0BF3vIfgOVewI0nIHaKE5tLJwNoy343oniBT+6CatJT8grPoopkVJQOw4pBHHAmNrOnk1AKd2UFCfSWnlajVmH0rFRtOmYkhPtxXbI+FOnTm3Nn/Lf7+Vi8/6Vk3+72jj/sMlKqDw2joWGNSn+10IW40z67yHP2f/bqMbQhWkCRC3a5OGkYPMTNKTSW5KSO6F/DaEKJpVNtRztjDpaFXP0ci1Hu6COVsMcbabl6C2oo9UxR5trOdoVdbQG5mgLlXcR7Gg3zH5LLfvdMftXaNnvgdm/Ust+T8z+VVr2b8Xst9Ky3wuzf7WW/d6Y/dZa9vtg9q/Rst8Xs99Gy34/zH5bLfv9MfvXatkfgNm/Tsv+QMz+9Vr2b8Pst9Oyn4nZb69lfxBm/wYt+4Mx+x207A/B7N+oZX8oZv8mLfu3Y/Y7atkfhtm/Wcv+cMx+Jy37d2D2O2vZH4HZ76Jl/07M/i1a9kdi9rtq2b8Ls99Ny/4ozH53Lft3Y/Z7aNnPwuz31LJ/D2b/Vi37ozH7vbTs34vZ761lfwxmv4+W/fsw+3217N+P2e+nZf8BzH5/LftjMfsDtOw/iNkfqGX/Icz+bVr2H8bsZ2rZfwSzP0jL/jjM/mAt++Mx+0O07E/A7A/Vsp+N2b9dy34OZn+Ylv1czP5wLfsTMft3aNmfhNkfoWV/Mmb/Ti37j2L2R2rZn4LZv0vL/mOY/VFa9h/H7N+tZf8JzH6Wlv2pmP17tOw/idkfrWV/Gmb/Xi37T2H2x2jZn47Zv0/L/tOY/fu17M/A7D+gZf8ZzP5YLfszMfsPatmfhdl/SMv+bMz+w1r252D2H9GyPxezP07L/rOY/fFa9udh9ido2X8Os5+tZf95zH6Olv0XMPu5WvbnY/Ynatl/EbM/Scv+Asz+ZC37CzH7j2rZX4TZn6Jl/yXM/mNa9hdj9h/Xsv8yZv8JLftLMPtTtey/gtl/Usv+Usz+NC37yzD7T2nZX47Zn65l/1XM/tNa9ldg9mdo2X8Ns/+Mlv3XMfsztey/gdmfpWV/JWZ/tpb9NzH7c7Tsv4XZn6tl/23M/rNa9ldh9udp2X8Hs/+clv3VmP3ntey/i9l/Qcv+e5j9+Vr238fsv6hl/wPM/gIt+x9i9hdq2V+D2V+kZZ8w+y9p2V+L2V+sZf8jzP7LWvbXYfaXaNn/GLP/ipb9TzD7S7Xsf4rZX6Zl/zPM/nIt++sx+69q2f8cs79Cy/4GzP5rWvY3YvZf17K/CbP/hpb9LzD7K7Xsf4nZf1PL/mbM/lta9r/C7L+tZX8LZn+Vlv2vMfvvaNnfitlfrWV/G2b/XS372zH772nZ/waz/76W/R2Y/Q+07H+L2f9Qy/5OzP4aLfvfYfZJy/4uzP5aLfu7Mfsfadnfg9lfp2X/e8z+x1r2f8Dsf6Jl/0fM/qda9vdi9j/Tso/9xdzAei372N/+DHyuZf8nzP4GLfvY314NbNSyD/4Zx01a9sG/zviFlv3DmP0vtewfwexv1rL/M2b/Ky37RzH7W7Ts/4LZ/1rL/jHM/lYt+79i9rdp2T+O2d+uZf8EZv8bLfsnMfs7EPu//+X/Fv17Dc6tsTlmOgWaUuByCjSjQHMKtKBASwpcQYErKXAVBVpR4GoKtKbANRRoQ4G2FLiWAtdR4HoKtKNAewrcQIEOFLiRAjdRoCMFbqZAJwp0pkAXCtxCga4U6EaB7hToQYGeFLiVAr0o0JsCfSjQlwL9KNCfAgMoMJACt1EgkwKDKDCYAkMoMJQCt1NgGAWGU+AOCoygwJ0UGEmBuygwigJ3UyCLAvdQYDQF7qXAGArcR4H7KfAABcZS4EEKPESBhynwCAXGUWA8BSZQIJsCORTIpcBECkyiwGQKPEqBKRR4jAKPU+AJCkylwJMUmEaBpyjAMXmaAjMo8AwFZlJgFgVm894+b6/zDjdvMvM+L2+18m4nbzjynh9vu/HOF28+8f4Pb8HwLghvRPBeAL+O5zfi/FKa3wvzq1l+O8ovKPkdIb+m4zdl/LKK3xfxKxt+a8IvLvjdAT++8xM0P8TycyQ/yvHTFD/Q8DMF39bznTXf3PL9Jd/i8V0W3+jwvQaXe664XPS47rD0s/qyALIGsQzwSuTFwPnIKTH79+sdbd7F//bnMRtiefctkHf5X5yoIfrFCcQ4OtXOKNcv8ocWedpGuc5BrAX/bfTvolzkNf+3yP+fXOQ5uUg28SLfiVShvIHfYX9reSeUxrui0oyakGbEGmjGLvma/x/tlfzL1rsVog2HaLfcVHsMORJnyXF8b8jhyZTj+MGQw3uJHMePltdD8Bvjey05suQ49lnmVQM5jv2WHI3kOH6y5Ggix3HAkuNyOY6DlhzN5TgOWXK0lOM4bMlxpRzHEUuOVnIcP1tytJbjOGrJ0UaO4xdLjmvlOI5Zclwvx/GrJUd7OY7jlhwd5DhOWHLcJMdx0pLjZjmOU5YcncWmCsZYctwixxFrydFNjqOAJUcPOY44S45b5Tg8lhy95TjiLTn6ynEkWHL0l+NItOQYKMeRZMmRKcdR0JJjsByH15JjqByHz5JjmByH35DDU0yOI9nyeoyQ40ix5Bgpx5FqyTFKjiNgySG3HxUMWnKMluMIWXKMkeNIs+SQ268NpltyjJXjyLDkeEiOI2zIEbdGjqOQ5fUYJ8dR2JJDbqrgOZYcOXIcRSw5JspxnGvJMVmO4zxLjilyHOdbcjwux1HUkmOqHEcxS45pchzFLTmmy3FcYMkxQ47jQkuOmXIcJSw5ZstxlLTkmCvHUcqSY54cR2lLjuflOMpYcsyX4yhrybFAjqOcJcciOY7ylhyL5TgqWHIskeOoaMmxVI6jkiXHcjmOypYcK+Q4qlhyvC7HUdWSY6UcRzVLjrfkOKpbcqyS46hhybFajqOmJcd7chy1LDk+kOOobckhuP9xkSXHWjmOOpYc6+Q4Lrbk+ESOo64lx2dyHPUsOT6X47jEkmOjHMellhxfyHHUt+TYLMdxmSXHFjmOBpYcW+U4GlpybJfjaGTJsUOOo7Elx045jiaWHLvkOJpacuyR47jckuMHOY5mlhx75TiaW3Lsl+NoYclxQI6jpSXHITmOKyw5jshxXGnJcVSO4ypLjmNyHK0sOY7LcVxtyXFSjqO1IYcvRo7jGkuOAnIcbSw5PHIcbS05EuQ4rrXkSJLjuM6SwyvHcb0lh1+Oo50lR4ocR3tLjoAcxw2WHCE5jg6WHOlyHDdacoTlOG6y5Cgsx9HRkqOIHMfNlhznyXF0suQoKsfR2ZKjuBxHF0uOC+U4brHkKCnH0dWSo7QcRzdLjrJyHN0tOcrLcfSw5Kgox9HTkqOyHMetlhxV5Th6WXJUl+PobclRU46jjyVHbTmOvpYcdeQ4+lly1JXj6G/JIfc9luAAS476chwDLTnkvmMSvM2SQ+47JsFMSw6575gEB1lyyH3HJDjYkkPuOybBIZYcct8xCQ615JD7jknwdksOue+YBIdZcrSW4xhuydFGjuMOSw6575gER1hyyH3HJHinJYfcd0yCIy055L5jErzLkkPuOybBUZYcct8xCd5tySH4HZMsSw7B75jcY8kh+B2T0ZYcgt8xudeSQ/A7JmMsOQS/Y3KfJYfgd0zut+QQ/I7JA5YcA+U4xlpyZMpxPAhwzPudo0X/XoNza22OmU6B7ynwAwV+pMBeCuyjwH4K/ESBAxQ4SIFDFDhMgSMU+JkCRynwCwWOUeBXChynwAkKnKTAKQrGUJBNF6BgHAU9FIynYAIFEymYRMGCFPRS0EdBPwWTKZhCwVQKBigYpGCIgmkUTKdgBgXDFCxEwcIUPIeCRSh4LgXPo+D5FCxKwWIULE7BCyh4IQVLULAkBUtRsDQFy1CwLAXLUbA8BStQsCIFK1GwMgWrULAqBatRsDoFa1CwJgVrUbA2BS+iYB0KXkzBuhSsR8FLKHgpBetT8DIKNqBgQwo2omBjCjahYFMKXk7BZhRsTsEWFGxJwSsoeCUFr6JgKwpeTcHWFLyGgm0o2JaC11LwOgpeT8F2FGxPwRso2IGCN1LwJgp2pODNFOxEwc4U7ELBWyjYlTfUeS+at3F5B5Q3D3nfjbeseLeHN0p4j4Ffz/ObbX4pzO9T+VUkv8XjF2D87ohfu/AbC37Y5+dkfsTkpzN+sOFnAr6d5jtRvonj+x++deCqywWLtZ5lkhWGFyfnNafE7N+vd9a8hoMGdc8c3KF75oDcnFznbKpBgbo8rGq3Vpnbqk0vt7R10yVZWe07lq2xq/nwZQOzG287nLufx/EoCuzJQdKThwHzBR+KajHWghZjLLiCArvlFiPCEXlRsp0vSvxv0W4IRLsAj4Si/bBCtOEQPSw31SMuou0UnbjauYDtOGBMbehajDO8Fomz5K7FeEMOj2A5nWDI4RXcLs22vB6Cn0PJseQQ/FxQrmVeCW77TrTkENz2nWTJIbjtO9mSQ3Db91FLDsFt3ymWHILbvo9Zcghu+z5uySG47fuEJYfgtu9US442chxPWnIIbvtOs+QQ3PZ9ypJDcNt3uiWH4Lbv05Ycgtu+Myw5BLd9n7HkENz2nWnJIbjtO8uSQ3Dbd7Ylh+C27xxLDsFt37mWHILbvs9acghu+86z5BDc9n3OkkNw2/d5S45MOY4XLDkGy3HMt+QYKsfxoiXHMDmOBYYcnmJyHAstr8cIOY5Flhwj5ThesuQYJcex2JJDcD/qZUuO0XIcSyw5xshxvGLJIbhfu9SSY6wcxzJLjofkOJYbcsQJfr7pVcvrMU6OY4Ulh+DPuF6z5MiR43jdkmOiHMcblhyT5ThWWnJMkeN405LjcTmOtyw5pspxvG3JMU2OY5Ulx3Q5jncsOWbIcay25Jgpx/GuJcdsOY73LDnmynG8b8kxT47jA0uO5+U4PrTkmC/HscaSY4EcB1lyLJLjWGvJsViO4yNLjiVyHOssOZbKcXxsybFcjuMTS44VchyfWnK8LsfxmSXHSjmO9ZYcb8lxfG7JsUqOY4Mlx2o5jo2WHO/JcWyy5PhAjuMLSw7B/Y8vLTnWynFstuRYJ8fxlSXHJ3IcWyw5PpPj+NqS43M5jq2WHBvlOLZZcnwhx7HdkmOzHMc3lhxb5Dh2WHJsleP41pJjuxzHTkuOHXIc31ly7JTj2GXJsUuOY7clxx45jj2WHD/IcXxvybFXjuMHS479chw/WnIckOPYa8lxSI5jnyXHETmO/ZYcR+U4frLkOCbHccCS47gcx0FLjpNyHIcMOXwxchyHLTkKyHEcseTwyHH8bMmRIMdx1JIjSY7jF0sOrxzHMUsOvxzHr5YcKXIcxy05AnIcJyw5QnIcJy050uU4TllyhMWmCsVYchSW44i15Cgix1HAkuM8OY44S46ichweS47ichzxlhwXynEkWHKUlONItOQoLceRZMlRVo6joCVHeTkOryVHRTkOnyVHZTkOvyVHVTmOZEuO6nIcKZYcNeU4Ui05astxBCw56shxBC056spxhCw55L7HEkqz5Kgvx5FuySH3HZNQhiWH3HdMQmFLDrnvmIQKWXLIfcckVNiSQ+47JqFzLDnkvmMSKmLJIfcdk9C5lhxy3zEJnWfJ0VqO43xLjjZyHEUtOeS+YxIqZskh9x2TUHFLDrnvmIQusOSQ+45J6EJLDrnvmIRKWHLIfcckVNKSQ+47JqFSlhxy3zEJlbbkkPuOSaiMJYfcd0xCZS055L5jEipnySH3HZNQeUsOue+YhCpYcsh9xyRU0ZJjoBxHJUuOTDkOYGsra97vHC369xqcW3tzzHQKjqfgBApmUzCHgrkUnEjBSRScTMFHKTiFgo9R8HEKPkHBqRR8koLTKPgUBfmspyk4g4LPUHAmBWdRcDYF51BwLgWfpeA8Cj5Hwecp+AIF51PwRQouoOBCCi6i4EsUXEzBlym4hIKvUHApBZdRcDkFX6XgCgq+RsHXKfgGBVdS8E0KvkXBtym4ioLvUHA1Bd+l4HsUfJ+CH1DwQwquoSBRcC0FP6LgOgp+TMFPKPgpBT+j4HoKfk7BDRTcSMFNFPyCgl9ScDMFv6LgFgp+TcGtFNxGwe0U/IaCOyj4LQV3UvA7Cu6i4G4K7qHg9xT8gYI/UnAvBfdRcD8Ff6LgAQoepOAhCh6m4BEK/kzBoxT8hYLHKPgrBY9T8AQFT1LwFIViKJT3cx8KxVHIQ6F4CiVQKJE31HkvmrdxeQeUNw953423rHi3hzdKeI+BX8/zm21+KczvU/lVJL/F4xdg/O6IX7vwGwt+2OfnZH7E5KczfrDhZwK+neY7Ub6J4/sfvnXgqssFi7WeZZIVhhcn5zWnxOzfr3fWvIaDBnXPHNyhe+aA3JzcVcWrdmuVua3a9HJLWzddkpXVvmPZGruaD182MLvxtsO5+zlRKFCXgo/kAmmXN3BcDvTDukdyAMOhKlEtx9rQcoxFf/v3sNxyRDgiL0u2c7Tj86IdaAhEO45HQtGuqhBtOESCm9jVDDkSZ8lxVDfk8AgWoxqGHF7BzcaaltdD7mMioVqWHHIf2wnVtswrwU3Tiyw5BDdN61hyCG6aXmzJIbhpWteSQ3DTtJ4lh+Cm6SWWHIKbppdacghumta35BDcNL3MkqONHEcDSw7BTdOGlhyCm6aNLDkEN00bW3IIbpo2seQQ3DRtaskhuGl6uSWH4KZpM0sOwU3T5pYcgpumLSw5BDdNW1pyCG6aXmHJIbhpeqUlh+Cm6VWWHIKbpq0sOQQ3Ta+25MiU42htyTFYjuMaS46hchxtLDmGyXG0NeTwFJPjuNbyeoyQ47jOkmOkHMf1lhyj5DjaWXII7ke1t+QYLcdxgyXHGDmODpYcgvu1N1pyjJXjuMmS4yE5jo6GHHFyHz8K3Wx5PcbJcXSy5BD8CVRnS44cOY4ulhwT5ThuseSYLMfR1ZJjihxHN0uOx+U4ultyTJXj6GHJMU2Oo6clx3Q5jlstOWbIcfSy5Jgpx9HbkmO2HEcfS465chx9LTnmyXH0s+R4Xo6jvyXHfDmOAZYcC+Q4BlpyLJLjuM2SY7EcR6YlxxI5jkGWHEvlOAZbciyX4xhiybFCjmOoJcfrchy3W3KslOMYZsnxlhzHcEuOVXIcd1hyrJbjGGHJ8Z4cx52WHB/IcYy05BDc/7jLkmOtHMcoS451chx3W3J8IseRZcnxmRzHPZYcn8txjLbk2CjHca8lxxdyHGMsOTbLcdxnybFFjuN+S46tchwPWHJsl+MYa8mxQ47jQUuOnXIcD1ly7JLjeNiSY48cxyOWHD/IcYyz5NgrxzHekmO/HMcES44DchzZlhyH5DhyLDmOyHHkWnIcleOYaMlxTI5jkiXHcTmOyZYcJ+U4HjXk8MXIcUyx5Cggx/GYJYdHjuNxS44EOY4nLDmS5DimWnJ45TietOTwy3FMs+RIkeN4ypIjIMcx3ZIjJMfxtCVHuhzHDEuOsBzHM5YcheU4ZlpyFJHjmGXJcZ4cx2xLjqJyHHMsOYrLccy15LhQjuNZS46SchzzLDlKy3E8Z8lRVo7jeUuO8nIcL1hyVJTjmG/JUVmO40VLjqpyHAssOarLcSy05Kgpx7HIkqO2HMdLlhx15DgWW3LUleN42ZJD8HssSyw56stxvGLJIfgdk6WWHILfMVlmySH4HZPllhyC3zF51ZJD8DsmKyw5BL9j8polh+B3TF635BD8jskblhyt5ThWWnK0keN405JD8Dsmb1lyCH7H5G1LDsHvmKyy5BD8jsk7lhyC3zFZbckh+B2Tdy05BL9j8p4lh+B3TN635BD8jskHlhyC3zH50JJD8Dsmayw5BL9jQpYcgt8xWWvJIfgdk48sOQbKcayz5MiU4/gY4Jj3O0eL/r0G5160OWY6hapTqAaFalKoFoVqU+giCtWh0MUUqkuhehS6hEKXUqg+hS6jUAMKNaRQIwo1plATCjWl0OUUakah5hRqQaGWFLqCQldS6CoKtaLQ1RRqTaFrKNSGQm0pdC2FrqPQ9RRqR6H2FLqBQh0odCOFbqJQRwrdTKFOFOpMoS4UuoVCXSnUjULdKdSDQj0pdCuFelGoN4X6UKgvhfpRqD+FBlBoIIVuo1AmhQZRaDCFhlBoKIVup9AwCg2n0B0UGkGhOyk0kkJ3UWgUhe6mUBaF7qHQaArdS6ExFLqPQvdT6AEKjaXQgxR6iEIPU+gRCo2j0HgKTaBQNoVyKJRLoYkUmkShyRR6lEJTKPQYhR6n0BMUmkqhJyk0jUJPUYiD+TSFZlDoGQrNpNAsCs2m0BwKzaXQsxSaxxvqvBfN27i8A8qbh7zvxltWvNvDGyW8x8Cv5/nNNr8U5vep/CqS3+LxCzB+d8SvXfiNBT/s83MyP2Ly0xk/2PAzAd9O850o38Tx/Q/fOnDV5YLFWs8yyQrDi5PzmlNi9u/XO2tew0GDumcO7tA9c0BujnNjSmw1CtTlYVW7tcrcVm16uaWtmy7JymrfsWyNXc2HLxuY3Xjb4dz9PI5HUahaDpSe1XKA+UKfRLUYL4IWYyy6ggQ3VRGOyIuS7XxR4vOiHWgIRNvDI6Fof6oQbThEn8pN9ZkhR+IsOY71hhwewVL0uSGHV3CrcYPl9RD8lMhGSw7BT+1ssswrwS3TLyw5BLdMv7TkENwy3WzJIbhl+pUlh+CW6RZLDsEt068tOQS3TLdacghumW6z5BDcMt1uydFGjuMbSw7BLdMdlhyCW6bfWnIIbpnutOQQ3DL9zpJDcMt0lyWH4JbpbksOwS3TPZYcglum31tyCG6Z/mDJIbhl+qMlh+CW6V5LDsEt032WHIJbpvstOQS3TH+y5BDcMj1gyZEpx3HQkmOwHMchS46hchyHLTmGyXEcMeTwFJPj+NnyeoyQ4zhqyTFSjuMXS45RchzHLDkE96N+teQYLcdx3JJjjBzHCUsOwf3ak5YcY+U4TllyPCQ2VVqMIUec3KeP0mItr8c4OY4ClhxyU6XFWXLkyHF4LDkmynHEW3JMluNIsOSYIseRaMnxuBxHkiXHVDmOgpYc0+Q4vJYc0+U4fJYcM+Q4/JYcM+U4ki05ZstxpFhyzJXjSLXkmCfHEbDkeF6OI2jJMV+OI2TJsUCOI82SY5EcR7olx2I5jgxLjiVyHGFLjqVyHIUsOZbLcRS25Fghx3GOJcfrchxFLDlWynGca8nxlhzHeZYcq+Q4zrfkWC3HUdSS4z05jmKWHB/IcRS35BDc/7jAkmOtHMeFlhzr5DhKWHJ8IsdR0pLjMzmOUpYcn8txlLbk2CjHUcaS4ws5jrKWHJvlOMpZcmyR4yhvybFVjqOCJcd2OY6Klhw75DgqWXLslOOobMmxS46jiiXHHjmOqpYcP8hxVLPk2CvHUd2SY78cRw1LjgNyHDUtOQ7JcdSy5Dgix1HbkuOoHMdFlhzH5DjqWHIcl+O42JLjpBxHXUMOX4wcRz1LjgJyHJdYcnjkOC615EiQ46hvyZEkx3GZJYdXjqOBJYdfjqOhJUeKHEcjS46AHEdjS46QHEcTS450OY6mlhxhOY7LLTkKy3E0s+QoIsfR3JLjPDmOFpYcReU4WlpyFJfjuMKS40I5jistOUrKcVxlyVFajqOVJUdZOY6rLTnKy3G0tuSoKMdxjSVHZTmONpYcVeU42lpyVJfjuNaSo6Ycx3WWHLXlOK635Kgjx9HOkqOuHEd7Sw6577Gk3WDJUV+Oo4Mlh9x3TNJutOSQ+45J2k2WHHLfMUnraMkh9x2TtJstOeS+Y5LWyZJD7jsmaZ0tOeS+Y5LWxZJD7jsmabdYcrSW4+hqydFGjqObJYfcd0zSultyyH3HJK2HJYfcd0zSelpyyH3HJO1WSw6575ik9bLkkPuOSVpvSw6575ik9bHkkPuOSVpfSw6575ik9bPkkPuOSVp/Sw6575ikDbDkkPuOSdpASw6575ik3WbJIfcdk7RMS46BchyDLDky5TiAT4lkzfudo0X/XoNz62yOmU6h9RT6nEIbKLSRQpso9AWFvqTQZgp9RaEtFPqaQlsptI1C2yn0DYV2UOhbCu2k0HcU2kWh3RTaQ6HvKfQDhX6k0F4K7aPQfgr9RKEDFDpIoUMUOkyhIxT6mUJHKfQLhY5R6FcKHafQCQqdpNApSouhtLw/5kxpcZTmobR4SkugtERKS6K0gpTmpTQfpfkpLZnSUigtldIClBaktBClpVFaOqVlUFqY0gpRWmFKO4fSilDauZR2HqWdT2lFKa0YpRWntAso7UJKK0FpJSmtFKWVprQylFaW0spRWnlKq0BpFSmtEqVVprQqlFaV0qpRWnVKq0FpNSmtFqXVprSLKK0OpV1MaXUprR6lXUJpl1JafUq7jNIaUFpDSmtEaY0prQmlNaW0yymtGaU1p7QWlNaS0q6gtCsp7SreUOe9aN7G5R1Q3jzkfTfesuLdHt4o4T0Gfj3Pb7b5pTC/T+VXkfwWj1+A8bsjfu3Cbyz4YZ+fk/kRk5/O+MGGnwn4dprvRPkmju9/+NaBqy4XLNZ6lklWGF6cnNecErN/v95Z8xoOGtQ9c3CH7pkDcnNygWwK1KXApTywardWmduqTS+3tHXTJVlZ7TuWrbGr+fBlA7Mbbzucu59H5g0MfZaDJCgPA+ZLGxLVcqwDLcdYcA2FPpVbjghH5GXJRi9LQyjagbpQtIHv9mQtaNS3S9c+jQYMu3xI/66Nu/TtmzWrTcNWzZrmZM1p12tw/+6DONOGFo/6oqCRTJwld1FuV0gu1LhHUOuHGXJ4BffyhlteD7lvdaTdYckh9y2btBGWeSW4J3mnJYfgnuRISw7BPcm7LDkE9yRHWXII7knebckhuCeZZckhuCd5jyWH4J7kaEsOwT3Jey052shxjLHkENyTvM+SQ3BP8n5LDsE9yQcsOQT3JMdacgjuST5oySG4J/mQJYfgnuTDlhyCe5KPWHII7kmOs+QQ3JMcb8khuCc5wZJDcE8y25JDcE8yx5JDcE8y15JDcE9yoiVHphzHJEuOwXIcky05hspxPGrJMUyOY4ohh6eYHMdjltdjhBzH45YcI+U4nrDkGCXHMdWSQ3A/6klLjtFyHNMsOcbIcTxlySG4XzvdkmOsHMfTlhwPyXHMMOSIE/y20DOW12OcHMdMSw65qdJmWXLkyHHMtuSYKMcxx5JjshzHXEuOKXIcz1pyPC7HMc+SY6ocx3OWHNPkOJ635Jgux/GCJccMOY75lhwz5ThetOSYLcexwJJjrhzHQkuOeXIciyw5npfjeMmSY74cx2JLjgVyHC9bciyS41hiybFYjuMVS44lchxLLTmWynEss+RYLsex3JJjhRzHq5Ycr8txrLDkWCnH8Zolx1tyHK9bcqyS43jDkmO1HMdKS4735DjetOT4QI7jLUsOwf2Pty051spxrLLkWCfH8Y4lxydyHKstOT6T43jXkuNzOY73LDk2ynG8b8nxhRzHB5Ycm+U4PrTk2CLHscaSY6scB1lybJfjWGvJsUOO4yNLjp1yHOssOXbJcXxsybFHjuMTS44f5Dg+teTYK8fxmSXHfjmO9ZYcB+Q4PrfkOCTHscGS44gcx0ZLjqNyHJssOY7JcXxhyXFcjuNLS46TchybDTl8MXIcX1lyFJDj2GLJ4ZHj+NqSI0GOY6slR5IcxzZLDq8cx3ZLDr8cxzeWHClyHDssOQJyHN9acoTkOHZacqTLcXxnyRGW49hlyVFYjmO3JUcROY49lhznyXF8b8lRVI7jB0uO4nIcP1pyXCjHsdeSo6Qcxz5LjtJyHPstOcrKcfxkyVFejuOAJUdFOY6DlhyV5TgOWXJUleM4bMlRXY7jiCVHTTmOny05astxHLXkqCPH8YslR105jmOWHILfY/nVkqO+HMdxSw7B75icsOQQ/I7JSUsOwe+YnLLkkPuOSXqMJYfcd0zSYy055L5jkl7AkkPuOybpcZYcct8xSfdYcrSW44i35Ggjx5FgySH3HZP0REsOue+YpCdZcsh9xyS9oCWH3HdM0r2WHHLfMUn3WXLIfcck3W/JIfcdk/RkSw6575ikp1hyyH3HJD3VkkPuOybpAUsOue+YpActOeS+Y5IesuSQ+45Jepolh9x3TNLTLTkGynFkWHJkynEAPx36w8fcc+CPuUMDL+GBeY46fs89vVCUjiJfna9JgTq5gPWaiIeBOhCH82+cYqPmqMXTAumV9VyjzF59+/bqmfep+4m+SVmz2/bq37NvdyxXagAGopqwuvSE1aKYEM7jemgeXzpBmoeCwB8+z8mbs9/Avt0p/Zz8wyLo+gd+cpe1oFHfLl37NBow7PIh/bvm5U7WrDYNWzVrmpM1p12vwf27DxrEtov/MbtScqIPdQM01A0cQn3q1Kmj+aH+98Gxef+KCOK5+YfnrYTQz42Fhp1XPOp1/XtUIH0s6VPQx9+Djdn3R2l/wsR/nzZn/2/5eS4kquchuV7SB43yA7n150ACss8oE6IMEbRwUmIo9TA0MJ5S92O19nwtR49AAxNgR4tqOfozNDARdrSYlqNHoYFJsKPFtRz9BRpYEHb0Ai1Hj0EDvbCjF2o5+is00Ac7WkLL0ePQQD/saEmNUpfn6AnMfikt+ycx+6W17J/C7JdRsh+IweyX1bIfi9kvp2W/AGa/vJb9OMx+BS37Hsx+RS378Zj9Slr2EzD7lbXsJ2L2q2jZT8LsV9WyXxCzX03LvhezX13Lvg+zX0PLvh+zX1PLfjJmv5aW/RTMfm0t+6mY/Yu07Acw+3W07Acx+xdr2Q9h9utq2U/D7NfTsp+O2b9Ey34GZv9SLfthzH59LfuFMPuXadkvjNlvoGX/HMx+Qy37RTD7jbTsn4vZb6xl/zzMfhMt++dj9ptq2S+K2b9cy34xzH4zLfvFMfvNtexfgNlvoWX/Qsx+Sy37JTD7V2jZL4nZv1LLfinM/lVa9ktj9ltp2S+D2b9ay35ZzH5rLfvlMPvXaNkvj9lvo2W/Ama/rZb9ipj9a7XsV8LsX6dlvzJm/3ot+1Uw++207FfF7LfXsl8Ns3+Dlv3qmP0OWvZrYPZv1LJfE7N/E2L/999etujfa3DuxZtjGlD6+ZRelDfieYubN495W5Y3PHkrkXfzeEON97R4W4l3dnhzhfc3eIuB3/Lzi3Z+182vm/mNL7905fee/OqR3/7xCzh+B8avofhNEL+M4fch/EqC3wrwgzk/G/PjKT8h8kMaPyfxowo/LfANO98z820r3znyzRvfP/EtDN9FcCHnWsrljCsKizrrKksbqwsvcF5jnOacaXyxOd6MPPt3nj/+hCYXCldH55+9JEE/jkmK/lc+0KXP+3FMR+zSA50sET+7vVj0Z7fpgm00naJM4br/l6Yw8huCvARBf2PVKQcLP5RsnaNKtrpQssUaJFvnKBctqCtdzqquxLrTlS6YrtyicKnh6yPYDtbVkCNxlhxHN0MOT6YcR3dDDq/cn89J72F5Pe6X4+hpyZElx3GrZV7J/Rmg9F6WHHJ/Bii9tyWH3J8BSu9jySH4Z4D6WnII/hmgfpYcgn8GqL8lh+CfARpgySH4Z4AGWnII/hmg2yw52shxZFpyCP4ZoEGWHIJ/BmiwJYfgnwEaYskh+GeAhlpyCP4ZoNstOQRfKQ2z5BD8M0DDLTkE3/vcYckh+GeARlhyCP4ZoDstOQT/DNBISw7BPwN0lyWH4J8BGmXJIfhngO625BD8M0BZlhyC76nvseQYLMcx2pJjqBzHvZYcw+Q4xhhyeIrJcdxneT1GyHHcb8kxUo7jAUuOUXIcYy05BPejHrTkGC3H8ZAlxxg5joctOQT3ax+x5BgrxzHOkuMhOY7xhhxxa+Q4Jlhej3FyHNmWHII/gcqx5MiR48i15JgoxzHRkmOyHMckS44pchyTLTkel+N41JJjqhzHFEuOaXIcj1lyTJfjeNySY4YcxxOWHDPlOKZacsyW43jSkmOuHMc0S455chxPWXI8L8cx3ZJjvhzH05YcC+Q4ZlhyLJLjeAbgiOwrq/dbX1k3Su9O6T0ovSel30rpvSi9N6X3ofS+lN6P0vtT+gBKH0jpt1F6JqUPovTBlD6E0odS+u2UPozSh1P6Hbx1z7vevGHMe628Tck7fLw5xvtKvCXDuxm8EcDv0Pn1M7+55Zee/L6QX7XxWyp+wcPvRvi1Aj+R88MsPwfyIxQ/ffCNO9/z8u0i32nxTQrXdy6NXFVYkFnLWAZ4BXHy8XVjZLd9ZTWi6CvrivWVdc1B5psZVbLVk+0rE/zRCcLhoq9slrNxwb6yAu76ymZlQyyzFS41fH0E74PmGHJI9pXNNeSQ7Ct71pBDsq9snuX1ENyneM6SQ3Af73nLvBLsK3vBkkOwr2y+JYdgX9mLlhyCfWULLDkE+8oWWnII9pUtsuQQ7Ct7yZJDsK9ssSVHazmOly052shxLLHkEOwre8WSQ7CvbKklh2Bf2TJLDsG+suWWHIJ9Za9acgj2la2w5BDsK3vNkkPwFd/rlhyCfWVvWHII9pWttOQQ7Ct705JDsK/sLUsOwb6yty05BPvKVllyDJTjeMeSI1OOY7Ulh2Bf2buWHIJ9Ze9Zcgj2lb1vyCHZV/aB5fUQ7Cv70JJDsK9sjSWHYF8ZWXII7ketteQQ7Cv7yJJDsK9snSWH4H7tx5Ycgn1ln1hyCPaVfWrIIdlX9pnl9RDsK1tvySH4E6jPLTly5Dg2WHII9pVttOQQ7CvbZMkh2Ff2hSWHYF/Zl5Ycgn1lmy05BPvKvrLkEOwr22LJIdhX9rUlh2Bf2VZLDsHfU2+z5BDsK9tuySHYV/aNJYdgX9kOSw7BvrJvLTkWyHHstORYJMfxHcAR2Vd2yW99ZXMp/VlKn0fpz1H685T+AqXPp/QXKX0BpS+k9EWU/hKlL6b0lyl9CaW/QulLKX0ZpS+n9FcpfQWlv0bpr/PWPe9684Yx77XyNiXv8PHmGO8r8ZYM72bwRgC/Q+fXz/zmll968vtCftXGb6n4BQ+/G+HXCvxEzg+z/BzIj1D89ME37nzPy7eLfKfFNylc37k0clVhQWYtYxngFcTJx9eNkd32lVWPoq9sDtZXNicHmW9XVMl2iWxfmWBxRDhc9JXtdjYu2FcW566vbHc2xLJH4VLD12eP3FTfG3JI9pX9YMgh2Vf2oyGHZF/ZXsvrIbhPsc+SQ3Afb79lXgn2lf1kySHYV3bAkkOwr+ygJYdgX9khSw7BvrLDlhyCfWVHLDkE+8p+tuQQ7Cs7asnRWo7jF0uONnIcxyw5BPvKfrXkEOwrO27JIdhXdsKSQ7Cv7KQlh2Bf2SlLDrm+sowYSw65vrKMWEsOub6yjAKWHHJ9ZRlxlhxyfWUZHksOub6yjHhLDrm+sowESw65vrKMREsOub6yjCRLjoFyHAUtOTLlOLyWHHJ9ZRk+Sw65vrIMvyWHXF9ZRrIhh2BfWUaK5fWQ6yvLSLXkkOsrywhYcsj1lWUELTnk9qMyQpYccn1lGWmWHHJ9ZRnplhxy+7UZGZYccn1lGWFLDrm+soxChhyCfWUZhS2vh1xfWcY5lhxyU2UUseTIkeM415JDrq8s4zxLDrm+sozzLTnk+soyilpyyPWVZRSz5JDrK8sobskh11eWcYElh1xfWcaFlhxyfWUZJSw55PrKMkpacsj9dD6jlCWHXF9ZRmlLDrm+sowylhxyfWUZZS055PrKMspZciyQ4yhvybFIjqMCwBHZV3bpb31lP1D6j5S+l9L3Ufp+Sv+J0g9Q+kFKP0Tphyn9CKX/TOlHKf0XSj9G6b9S+nFKP0HpJyn9FGXEUEbe7w946553vXnDmPdaeZuSd/h4c4z3lXhLhnczeCOA36Hz62d+c8svPfl9Ib9q47dU/IKH343wawV+IueHWX4O5EcofvrgG3e+5+XbRb7T4psUru9cGrmqsCCzlrEM8Ari5OPrxshu+8ooOC6KzrLvsc6y73OA+TIqRpVul8p2lsm1G0Ec0XeWZVRyNi7YWeZx1VmWUSkbYqmscKnh61NZbqoqhhyCnWUZVQ05BDvLMqoZcgh2lmVUt7wegjsVNSw5BHfyalrmlVxnWUYtSw65zrKM2pYccp1lGRdZcsh1lmXUseSQ6yzLuNiSQ66zLKOuJYdcZ1lGPUsOuc6yjEssOVrLcVxqydFGjqO+JYdcZ1nGZZYccp1lGQ0sOeQ6yzIaWnLIdZZlNLLkkOssy2hsySHYWdbEkkOws6ypJYdgZ9nllhyCnWXNLDkEO8uaW3IIdpa1sOQQ7Cxrackh2Fl2hSWHYGfZlZYcA+U4rrLkyJTjaGXJIdhZdrUlh2BnWWtLDsHOsmsMOSQ7y9pYXg/BzrK2lhyCnWXXWnIIdpZdZ8khuB91vSWHYGdZO0sOwc6y9pYcgvu1N1hyCHaWdbDkEOwsu9GQQ7Kz7CbL6yHYWdbRkkPwJ1A3W3LkyHF0suQQ7CzrbMkh2FnWxZJDsLPsFksOwc6yrpYcgp1l3Sw5BDvLultyCHaW9bDkEOws62nJIdhZdqslh2BnWS9LDsHOst6WHIKdZX0sOQQ7y/pacgh2lvWz5Fggx9HfkmORHMcAgCOys6x+XmdZRlXKqEYZ1SmjBmXUpIxalFGbMi6ijDqUcTFl1KWMepRxCWVcShn1KeMyyuBTGlJGI8poTBlNKKMpZVzOW/e8680bxrzXytuUvMPHm2O8r8RbMrybwRsB/A6dXz/zm1t+6cnvC/lVG7+l4hc8/G6EXyvwEzk/zPJzID9C8dMH37jzPS/fLvKdFt+kcH3n0shVhQWZtYxlgFcQJx9fN0Z221lWDe8ry6gC9ZXxMKTZaGBUyVZftK9MstkI4XDRV3abs3HBvrJ4d31lt2VDLJkKlxq+PoL7w4MMOST7ygYbckj2lQ0x5JDsKxtqeT0E9ylut+QQ3McbZplXgn1lwy05BPvK7rDkEOwrG2HJIdhXdqclh2Bf2UhLDsG+srssOQT7ykZZcgj2ld1tydFajiPLkqONHMc9lhyCfWWjLTkE+8ruteQQ7CsbY8kh2Fd2nyWHYF/Z/ZYcgn1lD1hyCPaVjbXkEOwre9CSQ7Cv7CFLDsG+soctOQT7yh6x5BDsKxtnySHYVzbekkOwr2yCJcdAOY5sS45MOY4cSw7BvrJcSw7BvrKJlhyCfWWTDDkk+8omW14Pwb6yRy05BPvKplhyCPaVPWbJIbgf9bglh2Bf2ROWHIJ9ZVMtOQT3a5+05BDsK5tmySHYV/aUIYdkX9l0y+sh2Ff2tCWH4E+gZlhy5MhxPGPJIdhXNtOSQ7CvbJYlh2Bf2WxLDsG+sjmWHIJ9ZXMtOQT7yp615BDsK5tnySHYV/acJYdgX9nzlhyCfWUvWHII9pXNt+QQ7Ct70ZJDsK9sgSWHYF/ZQkuOBXIciyw5FslxvARwRPaVXfZbX9lgyhhCGUMp43bKGEYZwynjDsoYQRl3UsZIyriLMkZRxt2UkUUZ91DGaMq4lzLGUMZ9lHE/ZTxAGWMp40Heuuddb94w5r1W3qbkHT7eHON9Jd6S4d0M3gjgd+j8+pnf3PJLT35fyK/a+C0Vv+DhdyP8WoGfyPlhlp8D+RGKnz74xp3vefl2ke+0+CaF6zuXRq4qLMisZSwDvII4+fi6MbLrL5blfYisCNpZNgjrLBuUg7QbLY4q3S6T7SzLlEs3hMNFZ9nLzsYFO8sS3HWWvZwNsSxRuNTw9VkiN9UrUV5qaAUG6lKgHjTwEgpcigV8qWHAJVvglhlySLbALTfkkGyBe9Xyeghuqayw5BDccnzNMq8EW+Bet+QQbIF7w5JDsAVupSWHYAvcm5Ycgi1wb1lyCLbAvW3JIdgCt8qSQ7AF7h1LjtZyHKstOdrIcbxrySHYAveeJYdgC9z7lhyCLXAfWHIItsB9aMkh2AK3xpJDsAWOLDkEW+DWWnIItsB9ZMkh2AK3zpJDsAXuY0sOwRa4Tyw5BFvgPrXkEGyB+8ySQ7AFbr0lx0A5js8tOTLlODZYcgi2wG205BBsgdtkySHYAveFIYdkC9yXltdDsAVusyWHYAvcV5Ycgi1wWyw5BPejvrbkEGyB22rJIdgCt82SQ3C/drslh2AL3DeWHIItcDsMOSRb4L61vB6CLXA7LTkEf6v1nSVHjhzHLksOwRa43ZYcgi1weyw5BFvgvrfkEGyB+8GSQ7AF7kdLDsEWuL2WHIItcPssOQRb4PZbcgi2wP1kySHYAnfAkkOwBe6gJYdgC9whSw7BFrjDlhyCLXBHLDkWyHH8bMmxSI7jKMAR2QLX4LcWuGWUsZwyXqWMFZTxGmW8ThlvUMZKyniTMt6ijLcpYxVlvEMZqynjXcp4jzLep4wPKONDylhDGUQZaynjI966511v3jDmvVbepuQdPt4c430l3pLh3QzeCOB36Pz6md/c8ktPfl/Ir9r4LRW/4OF3I/xagZ/I+WGWnwP5EYqfPvjGne95+XaR77T4JoXrO5dGriosyKxlLAO8gjj5+Lox8j+1wEGdba+gHU9LsRa4V3KQNp1fokq3BrItcIJ9UQiHixa4Y87GBVvgEt21wB3Lhlh+VbjU8PX5VW6q44Yckp1lJww5JDvLThpySHaWnbK8HnI7FeEYSw65nbxwrGVeyXWWhQtYcsh1loXjLDnkOsvCHksOuc6ycLwlh1xnWTjBkkOusyycaMkh11kWTrLkkOssCxe05Ggtx+G15Ggjx+Gz5JDrLAv7LTnkOsvCyZYccp1l4RRLDrnOsnCqJYdcZ1k4YMkh11kWDlpyyHWWhUOWHHKdZeE0Sw65zrJwuiWHXGdZOMOSQ66zLBy25JDrLAsXsuSQ6ywLF7bkkOssC59jyTFQjqOIJUemHMe5lhxynWXh8yw55DrLwudbcsh1loWLGnIIdpaFi1leD7nOsnBxSw65zrLwBZYccp1l4QstOQT3o0pYcsh1loVLWnLIdZaFS1lyCO7XlrbkkOssC5ex5JDrLAuXNeQQ7CwLl7O8HnKdZeHylhxyU4UrWHLkyHFUtOSQ6ywLV7LkkOssC1e25JDrLAtXseSQ6ywLV7XkkOssC1ez5JDrLAtXt+SQ6ywL17DkkOssC9e05JDrLAvXsuSQ6ywL17bkkOssC19kySHXWRauY8kh11kWvtiSQ66zLFzXkmOBHEc9S45FchzAT/7/0FnW8LfOshOUcZIyTlE4hsJ5P8qmcByFPRSOp3AChRMpnEThghT2UthHYT+FkymcQuFUCgcoHKRwiMJpvHXPu968Ycx7rbxNyTt8vDnG+0q8JcO7GbwRwO/Q+fUzv7nll578vpBftfFbKn7Bw+9G+LUCP5Hzwyw/B/IjFD998I073/Py7SLfafFNCtd3Lo1cVViQWctYBngFcfLxdWPkM/q42jloC9pxrLPseA4wX/jSqNKtoWxnmVy7EcQRfWdZuD5iHOksi0U6y2JddZaF62dDLJcBIVrQqG+Xrn0aDRh2+ZD+XRt36ds3a1abhq2aNc3JmtOu1+D+3QcN4nmK/zGSOTlQ4kI+NogyRuBlbHhWL2OMq8uYfg60rsFANhK62I2Ku/tQXX30Q3Vg8jaOMuqwo5ehjl6GOdpEQVBRFRTseww3NeQQ7HsMX27IIdj3GG5meT0E99GaW3II7jO3sMwrwb7HlpYcgn2PV1hyCPY9XmnJIdj3eJUlh2DfYytLDsG+x6stOQT7Hltbcgj2PV5jydFajqONJUcbOY62lhyCfY/XWnII9j1eZ8kh2Pd4vSWHYN9jO0sOwb7H9pYcgn2PN1hyCPY9drDkEOx7vNGSQ7Dv8SZLDsG+x46WHIJ9jzdbcgj2PXay5BDse+xsySHY99jFkmOgHMctlhyZchxdLTkE+x67WXII9j12t+QQ7HvsYcgh2ffY0/J6CPY93mrJIdj32MuSQ7Dvsbclh+B+VB9LDsG+x76WHIJ9j/0sOQT3a/tbcgj2PQ6w5BDsexxoyCHZ93ib5fUQ7HvMtOQQ7HscZMmRI8cx2JJDsO9xiCWHYN/jUEsOwb7H2y05BPseh1lyCPY9DrfkEOx7vMOSQ7DvcYQlh2Df452WHIJ9jyMtOQT7Hu+y5BDsexxlySHY93i3JYdg32OWJYdg3+M9lhwL5DhGW3IskuO4F+Bw1eWF9Z+UrKFhP9wgr4cKsR8eg0Qpai/Rdp60oWA7T3ohKJzh+wBHn2uU2atv314981qoJiZnZ81u26t/z77dsYwB+q9/m7HfwL7dKXz/yqgv3sV8Fpa6DzgHxI31ByZoLYlG2JK4SMN+xlJeFZj9OlHaB5sax0Ir7SJolLOLf+1NdfKwLl96pKWxLkT7oIqujeWJMSEAXuFCDZUPuemeDT8IjXo4yqsIJtojZzXRYly1z4cbo3WsMXa9x2k52gR1tAnm6Hitgj8GS80JdgU/L5z3oTj3YeHMjrbgeyeKF/zoJrxIekJe8VFMiZSCS+KQQhAHjAE6aieglG5KihNpvTytxqxD6ZgTbTqm5ER7sR0y/tSpU1vzp/z3e7nYvH/l5N+u5uYfTlwJlcfcWGjYxOJ/LWQxzqT/HvKc/b+NworiRCBq0SYPJwWbn6AhlXnPRrejf+qgKSaVk7QcHYY6ejnm6GQtR4ejjjbDHH1Uy9E7UEebY45O0XJ0BOpoC8zRx7QcvRN1tCXm6ONajo5EHb0Cc/QJLUfvQh29EnN0qpajo1BHr8IcfVLL0btRR1thjk7TcjQLdfRqzNGntBy9B3W0NebodC1HR6OOXoM5+rSWo/eijrbBHJ2h5egY1NG2mKPPaDl6H+rotZijM7UcvR919DrM0Vlajj6AOno95uhsLUfHoo62wxydo+Xog6ij7TFH52o5+hDq6A2Yo89qOfow6mgHzNF5Wo4+gjp6I+boc1qOjkMdvQlz9HktR8ejjnbEHH1By9EJqKM3Y47O13I0G3W0E+boi1qO5qCOdsYcXaDlaC7qaBfM0YVajk5EHb0Fc3SRlqOTUEe7Yo6+pOXoZNTRbpiji7UcfRR1tDvm6Mtajk5BHe2BObpEy9HHUEd7Yo6+ouXo46ijt2KOLtVy9AnU0V6Yo8u0HJ2KOtobc3S5lqNPoo72wRx9VcvRaaijfTFHV2g5+hTqaD/M0de0HJ2OOtofc/R1LUefRh0dgDn6hpajM1BHB2KOrtRy9BnU0dswR9/UcnQm6mgm5uhbWo7OQh0dhDn6tpajs1FHB2OOrtJydA7q6BDM0Xe0HJ2LOjoUc3S1lqPPoo7ejjn6rpaj81BHh2GOvqfl6HOoo8MxR9/XcvR51NE7MEc/0HL0BdTREZijH2o5Oh919E7M0TVajr6IOjoSc5S0HF2AOnoX5uhaLUcXoo6Owhz9SMvRRaijd2OOrtNy9CXU0SzM0Y+1HF2MOnoP5ugnWo6+jDo6GnP0Uy1Hl6CO3os5+pmWo6+gjo7BHF2v5ehS1FGwJ+BzLUeXoY7ejzm6QcvR5aijD2CObtRy9FXU0bGYo5u0HF2BOgr2p32h5ehrqKMPYY5+qeXo66ijD2OObtZy9A3U0UcwR7/ScnQl6ug4zNEtWo6+iTo6HnP0ay1H30IdnYA5ulXL0bdRR7MxR7dpOboKdTQHc3S7lqPvoI7mYo5+o+XoatTRiZijO7QcfRd1dBLm6Ldajr6HOjoZc3SnlqPvo44+ijn6nZajH6COTsEc3aXl6Ieoo49hju7WcnQN6ujjmKN7tBwl1NEnMEe/13J0LeroVMzRH7Qc/Qh19EnM0R+1HF2HOjoNc3SvlqMfo44+hTm6T8vRT1BHp2OO7tdy9FPU0acxR3/ScvQz1NEZmKMHtBxdjzr6DOboQS1HP0cdnYk5ekjL0Q2oo7MwRw9rOboRdXQ25ugRLUc3oY7OwRz9WcvRL1BH52KOHtVy9EvU0WcxR3/RcnQz6ug8zNFjWo5+hTr6HObor1qObkEdfR5z9LiWo1+jjr6AOXpCy9GtqKPzMUdPajm6DXX0RczRU1qObkcdXQA5WihGy9FvUEcXYo7Gajm6A3V0EeZoAS1Hv0UdfQlzNE7L0Z2oo4sxRz1ajn6HOvoy5mi8lqO7UEeXYI4maDm6G3X0FczRRC1H96COLsUcTdJy9HvU0WWYowW1HP0BdXQ55qhXy9EfUUdfxRz1aTm6F3V0BeaoX8vRfaijr2GOJms5uh919HXM0RQtR39CHX0DczRVy9EDqKMrMUcDWo4eRB19E3M0qOXoIdTRtzBHQ1qOHkYdfRtzNE3L0SOoo6swR9O1HP0ZdfQdzNEMLUePoo6uxhwNazn6C+rou5ijhbQcPYY6+h7maGEtR39FHX0fc/QcLUePo45+gDlaRMvRE6ijH2KOnqvl6EnU0TWYo+dpOXoKdZQwR89XcjQ9BnV0LeZoUS1HY1FHP8IcLablaAHU0XWYo8W1HI1DHf0Yc/QCLUc9qKOfYI5eqOVoPOrop5ijJbQcTUAd/QxztKSWo4moo+sxR0tpOZqEOvo55mhpLUcLoo5uwBwto+WoF3V0I+ZoWS1HfaijmzBHy2k56kcd/QJztLyWo8moo19ijlbQcjQFdXQz5mhFLUdTUUe/whytpOVoAHV0C+ZoZS1Hg6ijX2OOVtFyNIQ6uhVztKqWo2moo9swR6tpOZqOOrodc7S6lqMZqKPfYI7W0HI0jDq6A3O0JuLo718qbtG/1+DcRptjplN4EoUnU/hRCk+h8GMUfpzCT1B4KoWfpPA0Cj9FYR7zNIVnUPgZCs+k8CwKz6bwHArPpfCzFJ5H4eco/DyFX6DwfAq/SOEFFF5I4UUUfonCiyn8MoWXUPgVCi+l8DIKL6fwqxReQeHXKPw6hd+g8EoKv0nhtyj8NoVXUfgdCq+m8LsUfo/C71P4Awp/SOE1FCYKr6XwRxReR+GPKfwJhT+l8GcUXk/hzym8gcIbKbyJwl9Q+EsKb6bwVxTeQuGvKbyVwtsovJ3C31B4B4W/pfBOCn9H4V0U3k3hPRT+nsI/UPhHCu+l8D4K76fwTxQ+QOGDFD5E4cMUPkLhnyl8lMK/UPgYhX+l8HEKn6DwSQqfokJ5P5KhQgWoUBwV8lCheN7m5w103prmTV/eTuWNSt4C5M013rbiDSHeauFNDN4e4Bfv/EqbXxbza1h+wcmvDvmlHL/u4hdJ/IqGX37wawV+YOdHYX7I5Mc3fjDiRw6+mefbZL4B5Vs7vmni2xEu9FxCuTix7LOgslSxCPDy4sTllJj9+/X+Q4ICf0Q6/rcvfmEtlIVqAXmX/4XsRqJfyEaMo1PVVljosRTOG+YUxHro514LXRTlIm/8v0X+/+QiR7Iub5EXqo1UobyBF+VgqwhK4zpRaUZjSDNiDTQj2s8G49or+LHOQhcrRBsO0cVyU9U15EicJcdRz5DDkynHcYkhh/cSOY5LLa/H/XIc9S05suQ4LrPMqwZyHA0sORrJcTS05Ggix9HIkuNyOY7GlhzN5TiaWHK0lONoaslxpRzH5ZYcreQ4mllytJbjaG7J0UaOo4Ulx//X3psH6Fj9//+u6xr7kmz3fc+9zdwkVLK0SCX7vjUUKUlMmtKYxhBJmqRNiSFJkoQkSSpp177dr5JKkoQkbdImafsdkRlm8ZrxPD3ffX+fzx+f5n079+t6Pq5zrnOdc17385zeOI7OTI6zcRxdmBx9cRxdmRz9cBzdmBzn4Ti6MznOx3H0YHJcgOPoyeS4EMdxJpNjMI4jhclxEY6jF5PjYhxHbybHJTiOs5gcQ3EcZzM50nEcfZgcGTiOvkyOTBzHOUyOLBxHPybHSBzHuUyOUTiO84gcCVEcR39mfYzBcZzP5BiL4xjA5BiH47iAyQHMRw1kcozHcVzI5JiA4xjE5ADmawczOW7CcaQyOSbiOC4icnhxHMcQZn1MwnFczOQA/gQqjcmRg+O4hMkxDcdxKZNjOo5jKJNjBo7jMibHTBxHOpNjFo5jGJNjNo4jg8kxB8dxOZNjLo4jk8kxD8cxnMmxAMeRxeRYiOMYweRYhOMYyeRYjOO4gsmxBMcxismxFMcxmsmxDMdxJZPjMRzHGCbHchzHVUyOFTiOsUyOp3AcVzM5nsFxjGNyPIfjuIbJsRLHkc3keBHHcS2T42Ucx3gmx6s4juuYHK/jOCYwOd7EcVzP5ADmP25gcryN47iRybEKx3ETk2M1juNmJsf7OI6JTI41OI5bmBxrcRy3MjnW4TgmMTnW4zhuY3JswHFMZnJsxHFMYXJsxnHkMDm24DimMjm24jimMTm24ThuZ3J8heOYzuT4BsdxB5NjO45jBpNjB47jTibHDziOmUyOn3AcdzE5duI4ZjE5duE47mZy7MZxzGZy/I7juIfJ8SeOYw6Ro2IpHMe9TA4XxzGXyZGA47iPyVEGxzGPyVEOxzGfyVEBx7GAyVEJx3E/k6MKjmMhk6MqjuMBJkc1HMciJkcNHMeDTI5aOI7FTA4/juMhJkcijmMJkyOE43iYyRHBcSxlciThOB5hcsRwHMuYHHVwHI8yOeriOB5jctTDcTzO5GiA41jO5DgWx/EEk6MhjmMFk6MRjuNJJkcTHMdTTI4TcBxPMzlOwnE8w+RohuN4lsnRHMfxHJMDeB7L80yOFjiOlUwO4DkmLzA5gOeYvMjkAJ5j8hKTA3iOyctMDuA5Jq8wOYDnmLzK5ACeY/IakwN4jsnrTI6eOI43mBwpOI43mRzAc0zeYnIAzzGJMzmA55gIkwN4jsnbTA7gOSbvMDmA55isYnIAzzF5l8kBPMdkNZMDeI7Je0wO4Dkm7zM5gOeYfMDkAJ5jsobJATzH5EMmB/Ack7VMjgwcx0dMjkwch8Kqm71oL0en9LSsqW3Xl5ojvlPFd5r4ThdfC/GdIb6W4mslvtbiayO+tuJrJ7724usgvo7i6yS+zuLrIr6u4usmvu7i6yG+nuI7U3wp4uslvt7iO0t8Z4uvj/j6iu8c8fUT37niO098/cV3vvgGiO8C8Q0U34XiGyS+weJLFd9F4hsivovFlya+S8R3qfiGiu8y8aWLb5j4MsR3ufgyxTdcfFniGyG+keK7QnyjxDdafFeKb4z4rhLfWPFdLb5x4rtGfNniu1Z848V3nfgmiO968d0gvhvFd5P4bhbfRPHdIr5bxTdJfLeJb7L4pogvR3xTxTdNfLeLb7r47hDfDPHdKb6Z4rtLfLPEd7f4ZovvHvGZO3av+OaK7z7xzRPffPEtEN/94lsovgfEt0h8D4pvsfgeEt8S8T0svqXie0R8y8T3qEmom1y0SeOaDKhJHpq8m0lZmWyPSZSYHINZnjcr22ZR2KynmqVIs4pnFsDM2pFZdjErFmayb+bJZoppZmdmYmPmBGY4bUaiZhBnxj9m6GDeuuaFZfp6002aHsY8nKZdmyaxYG99Zy9qNXx4amZWv9TMYVNzDm3QdE6RWjebYo0Gd8/c1HhO/RU92y3Pzu7bv17TbR1HP5kxpc2mn6fuMOVMKfE1z1E1z+Y5ini+j4v1MLZVPYyO9gk6BfcwajjyVsqUQ1dK6T13u9YUxd12TUnV3V5v4W6rbxHQkv9JCe72oe6Od9pUxbU9RZnTVHWxgVgXZefj6uJTIkcC8HW6kchRAZgu3cSsD+BxKJuZHMDjgj5jtitg2ncLkwOY9v2cyQFM+25lcgDTvl8wOYBp321MDmDa90smBzDt+xWTA5j2/ZrJAUz7fsPkSMFxfMvkAKZ9tzM5gGnf75gcwLTvDiYHMO37PZMDmPb9gckBTPv+yOQApn1/YnIA074/MzmAad+dTA5g2vcXJgcw7buLyQFM+/7K5ACmfXczOYBp39+YHMC07+9Mjkwcxx9Mjiwcx59MjpE4jr+YHKNgofyliBwJURyHw6yPMTgOl8kxFsfhMTnG4TgSmBy4fJS/NJNjPI6jDJNjAo6jLJMDl6/1l2Ny3ITjKM/kmIjjqEDk8HDHN/krMutjEo6jEpMDF8pfmcmRg+OowuSYhuM4gskxHcdRlckxA8dxJJNjJo6jGpNjFo6jOpNjNo6jBpNjDo6jJpNjLo6jFpNjHo7Dx+RYgOPwMzkW4jgCTI5FOI5EJsdiHEeQybEExxFicizFcYSZHMtwHBEmx2M4jiiTYzmOI4nJsQLHkczkeArHEWNyPIPjqM3keA7HUYfJsRLHcRST40UcR10mx8s4jqOZHK/iOOoxOV7HcdRncryJ42jA5ADmP45hcryN4ziWybEKx3Eck2M1jqMhk+N9HMfxTI41OI5GTI61OI7GTI51OI4mTA7cXhn+pkyODTiOE5gcG3EcJzI5NuM4TmJybMFxnMzk2IrjaMbk2IbjOIXJ8RWOozmT4xscx6lMju04jtOYHDtwHKczOX7AcbRgcvyE4ziDybETx9GSybELx9GKybEbx9GayfE7jqMNk+NPHEdbIkfFUjiOdkwOF8fRnsmRgOPowOQog+PoyOQoh+PoxOSogOPozOSohOPowuSoguPoyuSoiuPoxuSohuPozuSogePoweSohePoyeTw4zjOZHIk4jhSmBwhHEcvJkcEx9GbyZGE4ziLyRHDcZzN5KiD4+jD5KiL4+jL5KiH4ziHydEAx9GPyXEsjuNcJkdDHMd5TI5GOI7+TI4mOI7zmRwn4DgGMDlOwnFcwORohuMYyORojuO4kMmBO4/FP4jJ0QLHMZjJgTvHxJ/K5MCdY+K/iMmBO8fEP4TJgTvHxH8xkwN3jok/jcmBO8fEfwmTA3eOif9SJgfuHBP/UCZHTxzHZUyOFBxHOpMDd46JfxiTA3eOiT+DyYE7x8R/OZMDd46JP5PJgTvHxD+cyYE7x8SfxeTAnWPiH8HkwJ1j4h/J5MCdY+K/gsmBO8fEP4rJgTvHxD+ayYE7x8R/JZMDd46JfwyTA3eOif8qJkcGjmMskyMTx3G1gmPRXo5O6WlZU9utLzVHfJ+Kb6P4Nolvs/g+E98W8X0uvq3i+0J828T3pfi+Et/X4vtGfN+Kb7v4vhPfDvF9L74fxPej+H4S38/i2ym+X8S3S3y/im+3+H4T3+/i+0N8f4rvL/GXEv+e4xfE74k/QfylxV9G/GXFX0785cVfQfwVxV9J/JXFX0X8R4i/qviPFH818VcXfw3x1xR/LfH7xO8Xf0D8ieIPij8k/rD4I+KPij9J/Mnij4m/tvjriP8o8dcV/9Hiryf++uJvIP5jxH+s+I8Tf0PxHy/+RuJvLP4m4m8q/hPEf6L4TxL/yeJvJv5TxN9c/KeK/zTxny7+FuI/Q/wtxd9K/K3F30b8bcXfTvztxd9B/B3F30n8ncXfRfxdxd9N/N3F30P8PcV/pvhTxN9L/L3Ff5b4zxZ/H5NQN7lok8Y1GVCTPDR5N5OyMtkekygxOQazPG9Wts2isFlPNUuRZhXPLICZtSOz7GJWLMxk38yTzRTTzM7MxMbMCcxw2oxEzSDOjH/M0MG8dc0Ly/T1pps0PYx5OE27Nk1iwd76zl7Uavjw1MysfqmZw6bmTH05qdHg7pmbGs+pv6Jnu+XZ2X3712u6rePoJzOmtNn089QdpqFIrZvF98lURbPbU3BDjqaB+j7JUVzYP65Yj2M71ePoKJ8hH9AmruHIWy1TDn23S++527WmKO62Z0qq7vY1Fu62+hZdgwuVTeQoOx/HcS2RIwH4MhpP5KgATDZex6wP4GEiE5gcwMN2rme2K2DS9AYmBzBpeiOTA5g0vYnJAUya3szkACZNJzI5gEnTW5gcwKTprUwOYNJ0EpMDmDS9jcmRguOYzOQAJk2nMDmASdMcJgcwaTqVyQFMmk5jcgCTprczOYBJ0+lMDmDS9A4mBzBpOoPJAUya3snkACZNZzI5gEnTu5gcwKTpLCYHMGl6N5MDmDSdzeQAJk3vYXJk4jjmMDmycBz3MjlG4jjmMjlG4TjuI3IkRHEc85j1MQbHMZ/JMRbHsYDJMQ7HcT+TA5iPWsjkGI/jeIDJMQHHsYjJAczXPsjkuAnHsZjJMRHH8RCRwwMefrSEWR+TcBwPMzmAP4FayuTIwXE8wuSYhuNYxuSYjuN4lMkxA8fxGJNjJo7jcSbHLBzHcibHbBzHE0yOOTiOFUyOuTiOJ5kc83AcTzE5FuA4nmZyLMRxPMPkWITjeJbJsRjH8RyTYwmO43kmx1Icx0omxzIcxwtMjsdwHC8yOZbjOF5icqzAcbzM5HgKx/EKk+MZHMerTI7ncByvMTlW4jheZ3K8iON4g8nxMo7jTSbHqziOt5gcr+M44kyON3EcwuQA5j/eZnK8jeN4h8mxCsexismxGsfxLpPjfRzHaibHGhzHe0yOtTiO95kc63AcHzA5gLt6rGFybMBxfMjk2IjjWMvk2Izj+IjJsQXHsY7JsRXH8TGTYxuOYz2T4yscxydMjm9wHBuYHNtxHJ8yOXbgODYyOX7AcWxicvyE49jM5NiJ4/iMybELx7GFybEbx/E5k+N3HMdWJsefOI4viBwVS+E4tjE5XBzHl0yOBBzHV0yOMjiOr5kc5XAc3zA5KuA4vmVyVMJxbGdyVMFxfMfkqIrj2MHkqIbj+J7JUQPH8QOToxaO40cmhx/H8ROTIxHH8TOTI4Tj2MnkiOA4fmFyJOE4djE5YjiOX5kcdXAcu5kcdXEcvzE56uE4fmdyNMBx/MHkOBbH8SeToyGO4y8mRyNYqEApJkcTHIfD5DgBx+EyOU7CcXhMjmY4jgQmR3McR2kmB+48lkAZJkcLHEdZJgfuHJNAOSYH7hyTQHkmB+4ck0AFJgfuHJNARSYH7hyTQCUmB+4ck0BlJgfuHJNAFSYH7hyTwBFMjp44jqpMjhQcx5FMDtw5JoFqTA7cOSaB6kwO3DkmgRpMDtw5JoGaTA7cOSaBWkwO3DkmAR+TA3eOScDP5MCdYxIIMDlw55gEEpkcuHNMAkEmB+4ck0CIyYE7xyQQZnLgzjEJRJgcuHNMAlEmRwaOI4nJkYnjSFZwLNrL0Sk9LWtq+/Wl5oj/WvGPF/914p8g/uvFf4P4bxT/TeK/WfwTxX+L+G8V/yTx3yb+yeKfIv4c8U8V/zTx3y7+6eK/Q/wzxH+n+GeK/y7xzxL/3eKfLf57xG+C3yv+ueK/T/zzxD9f/AvEf7/4F4r/AfEvEv+D4l8s/ofEv0T8D4t/qfgfEf8y8T8q/sfE/7j4l4v/CfGvEP+T4n9K/E+L/xnxPyv+58T/vPhXiv8F8b8o/pfE/7L4XxH/q+J/Tfyvi/8N8b8p/rfEHxe/iP9t8b8j/lXif1f8q8X/nvjfF/8H4l8j/g/Fv1b8H4l/nfg/Fv968X8i/g3i/1T8G8W/Sfybxf+Z+LeI/3PxbxX/F+LfJv4vxf+V+L8W/zfi/1b828X/nfh3iP978f8g/h/F/5P4fxb/TvH/Iv5d4v9V/LtNQt3kok0a12RATfLQ5N1Myspke0yixOQYzPK8Wdk2i8JmPdUsRZpVPLMAZtaOzLKLWbEwk30zTzZTTDM7MxMbMycww2kzEjWDODP+MUMH89Y1LyzT15tu0vQw5uE07do0iQV76zt7Uavhw1Mzs/qlZg6bmnPogxGdk6XWzaZYo8HdMzc1nlN/Rc92y7Oz+/av13Rbx9FPZkxps+nnqTtMOVNK/Nk5qnRpdo4iXiBWrIexvephdLQZ3WtwD6OGI2+lTDl0pZTec7drTVHc7QRTUnW3a1u42+pbVBsXqg6Ro+x8HMdRRI4E4KuoLpGjAjDVeDSzPnBHiQTqMTlwR+0E6jPbFTBl2oDJAUyZHsPkAKZMj2VyAFOmxzE5gCnThkwOYMr0eCYHMGXaiMkBTJk2ZnIAU6ZNmBwpOI6mTA5gyvQEJgcwZXoikwOYMj2JyQFMmZ7M5ACmTJsxOYAp01OYHMCUaXMmBzBleiqTA5gyPY3JAUyZns7kAKZMWzA5gCnTM5gcwJRpSyYHMGXaiskBTJm2ZnJk4jjaMDmycBxtmRwjcRztmByjcBztiRwJURxHB2Z9jMFxdGRyjMVxdGJyjMNxdGZyAPNRXZgc43EcXZkcE3Ac3ZgcwHxtdybHTTiOHkyOiTiOnkQOD3f0UeBMZn1MwnGkMDmAP4HqxeTIwXH0ZnJMw3GcxeSYjuM4m8kxA8fRh8kxE8fRl8kxC8dxDpNjNo6jH5NjDo7jXCbHXBzHeUyOeTiO/kyOBTiO85kcC3EcA5gci3AcFzA5FuM4BjI5luA4LmRyLMVxDGJyLMNxDGZyPIbjSGVyLMdxXMTkWIHjGMLkeArHcTGT4xkcRxqT4zkcxyVMjpU4jkuZHC/iOIYyOV7GcVzG5HgVx5HO5HgdxzGMyfEmjiODyQHMf1zO5Hgbx5HJ5FiF4xjO5FiN48hicryP4xjB5FiD4xjJ5FiL47iCybEOxzGKybEexzGaybEBx3Elk2MjjmMMk2MzjuMqJscWHMdYJsdWHMfVTI5tOI5xTI6vcBzXMDm+wXFkMzm24ziuZXLswHGMZ3L8gOO4jsnxE45jApNjJ47jeibHLhzHDUyO3TiOG5kcv+M4bmJy/InjuJnIUbEUjmMik8PFcdzC5EjAcdzK5CiD45jE5CiH47iNyVEBxzGZyVEJxzGFyVEFx5HD5KiK45jK5KiG45jG5KiB47idyVELxzGdyeHHcdzB5EjEccxgcoRwHHcyOSI4jplMjiQcx11MjhiOYxaTow6O424mR10cx2wmRz0cxz1MjgY4jjlMjmNxHPcyORriOOYyORrhOO5jcjTBccxjcpyA45jP5DgJx7GAydEMx3E/k6M5jmMhkwN4HssDTI4WOI5FTA7gOSYPMjmA55gsZnIAzzF5iMkBPMdkCZMDeI7Jw0wO4DkmS5kcwHNMHmFyAM8xWcbk6InjeJTJkYLjeIzJATzH5HEmB/Ack+VMDuA5Jk8wOYDnmKxgcgDPMXmSyQE8x+QpJgfwHJOnmRzAc0yeYXIAzzF5lskBPMfkOSYH8ByT55kcwHNMVjI5gOeYvMDkAJ5j8iKTIwPH8RKTIxPHodhCJHvRXo5O6WlZUzusLzVHAkdJoK4EjpZAPQnUl0ADCRwjgWMlcJwEGkrgeAk0kkBjCTSRQFMJnCCBEyVwkgROlkAzCZwigeYSOFUCp0ngdAm0kMAZEmgpgVYSaC2BNhJoK4F2EmgvgQ4S6CiBThLoLIEuEugqgW4S6C6BHhLoKYEzJZAigV4S6C2BsyRwtgT6SKCvBM6RQD8JnCuB8yTQXwLnS2CABC6QwEAJXCiBQRIYLIFUCVwkgSESuFgCaRK4RAKXSmCoBC6TQLoEhkkgQwKXSyBTAsMlkCWBERIYKYErJDBKAqMlcKUExkjgKgmMlcDVEhgngWskkC2BayUwXgLXSWCCBK6XwA0SuFECN0ngZglMlMAtErhVApMkcJsEJktgigRyJDBVAtMkcLsEpkvgDgnMkMCdEpgpgbskMEsCd5uEuslFmzSuyYCa5KHJu5mUlcn2mESJyTGY5Xmzsm0Whc16qlmKNKt4ZgHMrB2ZZRezYmEm+2aebKaYZnZmJjZmTmCG02YkagZxZvxjhg7mrWteWKavN92k6WHMw2natWkSC/bWd/aiVsOHp2Zm9UvNHDY1Z6qiNdW6WWrdago2Gtw9c1PjOfVX9Gy3PDu7b/96Tbd1HP1kxpQ2m36eusOU3FMwUCdH1UDr5CjiBV4p1uPYQfU4OtpnqDbucdRw5K2WKdpqmaK627VuVt1txX492UtbDx046NLWw0a1H5E+qM3AoUOz56e06t6hXU72/X3SstJTh5sn69WkYleK9k6WnY+rlNcsNC7txROAff3rRI4KwFzeG8z6AJ7V8SaTA3iWzVvMdgXMScaZHMCcpDA5gDnJt5kcwJzkO0wOYE5yFZMDmJN8l8kBzEmuZnIAc5LvMTmAOcn3mRwpOI4PmBzAnOQaJgcwJ/khkwOYk1zL5ADmJD9icgBzkuuYHMCc5MdMDmBOcj2TA5iT/ITJAcxJbmByAHOSnzI5gDnJjUwOYE5yE5MDmJPczOQA5iQ/Y3IAc5JbmByZOI7PmRxZOI6tTI6ROI4vmByjcBzbiBwJURzHl8z6GIPj+IrJMRbH8TWTYxyO4xsmBzAf9S2TYzyOYzuTYwKO4zsmBzBfu4PJcROO43smx0Qcxw9EDg94ttCPzPqYhOP4icmBCxX4mcmRg+PYyeSYhuP4hckxHcexi8kxA8fxK5NjJo5jN5NjFo7jNybHbBzH70yOOTiOP5gcc3EcfzI55uE4/mJyLICFSizF5FiI43CYHItwHC6TYzGOw2NyLMFxJDA5luI4SjM5luE4yjA5HsNxlGVyLMdxlGNyrMBxlGdyPIXjqMDkeAbHUZHJ8RyOoxKTYyWOozKT40UcRxUmx8s4jiOYHK/iOKoyOV7HcRzJ5HgTx1GNyYHLfyRWZ3K8jeOoweRYheOoyeRYjeOoxeR4H8fhY3KswXH4mRxrcRwBJsc6HEcik2M9jiPI5NiA4wgxOTbiOMJMjs04jgiTYwuOI8rk2IrjSGJybMNxJDM5vsJxxJgc3+A4ajM5tuM46jA5duA4jmJy/IDjqMvk+AnHcTSTYyeOox6TYxeOoz6TYzeOowGT43ccxzFMjj9xHMcSOSqWwnEcx+RwcRwNmRwJOI7jmRxlcByNmBzlcByNmRwVcBxNmByVcBxNmRxVcBwnMDmq4jhOZHJUw3GcxOSogeM4mclRC8fRjMnhx3GcwuRIxHE0Z3KEcBynMjkiOI7TmBxJOI7TmRwxHEcLJkcdHMcZTI66OI6WTI56OI5WTI4GOI7WTI5jcRxtmBwNcRxtmRyNcBztmBxNcBztmRwn4Dg6MDlOwnF0ZHI0w3F0YnI0x3F0ZnLgzmNJ7MLkaIHj6MrkwJ1jktiNyYE7xySxO5MDd45JYg8mB+4ck8SeTA7cOSaJZzI5cOeYJKYwOXDnmCT2YnLgzjFJ7M3k6InjOIvJkYLjOJvJgTvHJLEPkwN3jkliXyYH7hyTxHOYHLhzTBL7MTlw55gknsvkwJ1jkngekwN3jklifyYH7hyTxPOZHLhzTBIHMDlw55gkXsDkwJ1jkjiQyYE7xyTxQiYH7hyTxEFMDtw5JomDmRwZOI5UJkcmjkPR9R1wmHuO+jB3VcFbTME9Qg95nnvikGIK1Vy/udS6cari6s01CmvdqOI4dB/tFJvjVBNW0byyH2ydmTZ0aNqQPUfdT6t4e/aCXmnpQ4am6tqK5hdVxQrYDB3w5GIEVLfjidp2fOtkNI/4FMbtnD0xL8sYmiqJabl/XqJ9/hVDhuylrYcOHHRp62Gj2o9IH7Sn7WTPT2nVvUO7nOz7+6RlpacOH26unXRg66qSU/xbPVl7qw/Vl/7111+7cm910YWdPf8vz028NPfPoStV6Jc6qmJDk4r9XO+9K6r+8ahJFvrHvTdbd/3binn9ydOKDpuz4+/2eamqUx2qaetHTVKVuk3Rtg6+kYpu36BMLuYtUj04NfxSq52qYFhqtdS9ay+zJbS9qmBELTTdltAOqoJRtdBhtoR2VBVMUgvNsCW0k6pgslro5baEdlYVjKmFZtoS2kVVsLZa6HBbQruqCtZRC82yJbSbquBRaqEjbAntripYVy10pC2hPVQFj1YLvcKW0J6qgvXUQkfZEnqmqmB9tdDRtoSmqAo2UAu90pbQXqqCx6iFjrEltLeq4LFqoVfZEnqWquBxaqFjbQk9W1WwoVro1baE9lEVPF4tdJwtoX1VBRuphV5jS+g5qoKN1UKzbQntpyrYRC30WltCz1UVbKoWOt6W0PNUBU9QC73OltD+qoInqoVOsCX0fFXBk9RCr7cldICq4MlqoTfYEnqBqmAztdAbbQkdqCp4ilroTbaEXqgq2Fwt9GZbQgepCp6qFjrRltDBqoKnqYXeYktoqqrg6Wqht9oSepGqYAu10Em2hA5RFTxDLfQ2W0IvVhVsqRZqbQ0/TVWwlVroFFtCL1EVbK0WmmNL6KWqgm3UQqfaEjpUVbCtWug0W0IvUxVspxZ6uy2h6aqC7dVCp9sSOkxVsINa6B22hGaoCnZUC51hS+jlqoKd1ELvtCU0U1Wws1roTFtCh6sKdlELvcuW0CxVwa5qobNsCR2hKthNLfRuW0JHqgp2VwudbUvoFaqCPdRC77EldJSqYE+10Dm2hI5WFTxTLfReW0KvVBVMUQuda0voGFXBXmqh99kSepWqYG+10Hm2hI5VFTxLLXS+LaFXqwqerRa6wJbQcaqCfdRC77cl9BpVwb5qoQttCc1WFTxHLfQBW0KvVRXspxa6yJbQ8aqC56qFPmhL6HWqguephS7WCN3rOemUnpY1teP6Ui0l8TJJTJfEYZKYIYmXS2KmJA6XxCxJHCGJIyXxCkkcJYmjJfFKSRwjiVeZZLtJY5sEsUm9mqSmSReaRJxJcZnkkUnLmISHSSWYRXqz/G0Wls2SrVkMNcuMZgHPLI2ZRSeznGMWSswShJncm2mzmZCaqZ6ZRJnpiRn4myG1GayaYaAZYJmhixkUmNeteZGZV4TpfE23ZjoM8yiaRm6aj6kYg7xgL8+BPx2eqrpdDx16Zamc6kfB5Yr/62bVr6v3/Cj4IV3VL1FcP9du1BFqN9JcXBvq4WI24U7/jzZhTR+yp4FMVf62/OEc3e1XNbalxWpsnVSNzSE0tqXFfGiV/coj/2q/4pSsX3lE168ss1DV6vpZhgv1KJGj7Hwcx2NEjoRMHMfjRI4KwG0DlzPr4wYcxxNMjmwcxwpmuwJuf/gkkwO4/eFTTA7g9odPMzmA2x8+w+QAbn/4LJMDuP3hc0wO4PaHzzM5gNsfrmRy9MRxvMDkSMFxvMjkAG5/+BKTA7j94ctMDuD2h68wOYDbH77K5ABuf/gakwO4/eHrTA7g9odvMDmA2x++yeQAbn/4FpMDuP1hnMkB3P5QmBzA7Q/fZnIAtz98h8kB3P5wFZMDuP3hu0yOTBzHaiZHFo7jPSbHSBzH+0yOUTiOD4gcCVEcxxpmfYzBcXzI5BiL41jL5BiH4/iIyQHMR61jcozHcXzM5JiA41jP5ADmaz9hctyE49jA5JiI4/iUyOHFcRwbmfUxCcexickB/AnUZiZHDo7jMybHNBzHFibHdBzH50yOGTiOrUyOmTiOL5gcs3Ac25gcs3EcXzI55uA4vmJyzMVxfM3kmIfj+IbJsQDH8S2TYyGOYzuTYxGO4zsmx2Icxw4mB9Ba8j2TYymO4wcmxzIcx48Kjry+ss5/+8oek8THJXG5JD4hiSsk8UlJfEoSn5bEZyTxWUl8ThKfl8SVkviCJL4oiS9J4suS+IokviqJr0ni65L4hiS+aVL3JuttEsYm12rSlCbDZ5JjJq9kUjImm2ESAWYN3Sw/m5Vbs+hp1gvNUptZpTILPGZtxCwrmBm5mcyaeaCZQpnZhxm4mzGvGS6akZYZpJj3u3k1mreK6ZBNX2a6AfMEmcZn6s0gl9RXdkoxfGWP6nxlj+Zo4v1UrMbWGesrAzY2DUcJfGU/H/riQF+ZWzJf2c9TVCw7LVS1un524kL9QuRA+sp2ETmQvrJfiRxIX9luZn0A8xS/MTmAebzfme0K6Cv7g8kB9JX9yeQA+sr+YnLgfGXBUkwOnK8s6DA5cL6yoMvkwPnKgh6TA+crCyYwOXriOEozOVJwHGWYHDhfWbAskwPnKwuWY3LgfGXB8kwOnK8sWIHJgfOVBSsyOXC+smAlJgfOVxaszOTA+cqCVZgcOF9Z8AgmB85XFqzK5MD5yoJHMjlwvrJgNSYHzlcWrM7kwPnKgjWYHBk4jppMjkwcRy0mB85XFvQxOXC+sqCfyYHzlQUDRA6gryyYyKwPnK8sGGRy4HxlwRCTA+crC4aZHLh8VDDC5MD5yoJRJgfOVxZMYnLg8rXBZCYHzlcWjDE5cL6yYG0iB9BXFqzDrA+cryx4FJMDFypYl8mRg+M4msmB85UF6zE5cL6yYH0mB85XFmzA5MD5yoLHMDlwvrLgsUwOnK8seByTA+crCzZkcuB8ZcHjmRw4X1mwEZMD5ysLNmZy4HxlwSZMDpyvLNiUyYHzlQVPYHLgfGXBE5kcS3EcJzE5luE4TlZw5PWVdfnbV7ZLEn+VxN2S+Jsk/i6Jf0jin5L4lwRLSXDPbzcl6EkwQYKlJVhGgmUlWE6C5SVYQYIVJVhJgpUlWMWk7k3W2ySMTa7VpClNhs8kx0xeyaRkTDbDJALMGrpZfjYrt2bR06wXmqU2s0plFnjM2ohZVjAzcjOZNfNAM4Uysw8zcDdjXjNcNCMtM0gx73fzajRvFdMhm77MdAPmCTKNz9SbQS6pr6xZMXxlv+h8Zb/kKOIFmxWrsXXB+spwZiMVR/F9ZcFTDn1xoK/MK5GvLHjKFBVLcwtVra6f5rhQpxI5gL6y4GlEDqCvLHg6kQPoKwu2YNYHME9xBpMDmMdryWxXOF9ZsBWTA+crC7ZmcuB8ZcE2TA6gr6wtkwPoK2vH5AD6ytozOYC+sg5MDqCvrCOToyeOoxOTIwXH0ZnJAfSVdWFyAH1lXZkcQF9ZNyYH0FfWnckB9JX1YHIAfWU9mRxAX9mZTA6gryyFyQH0lfVicgB9Zb2ZHEBf2VlMDqCv7GwmB9BX1ofJAfSV9WVyZOA4zmFyZOI4+jE5gL6yc5kcQF/ZeUwOoK+sP5ED6Ss7n1kfQF/ZACYH0Fd2AZMD6CsbyOQA5qMuZHIAfWWDmBxAX9lgJgcwX5vK5AD6yi5icgB9ZUOIHEhf2cXM+gD6ytKYHMCfQF3C5MjBcVzK5AD6yoYyOYC+ssuYHEBfWTqTA+grG8bkAPrKMpgcQF/Z5UwOoK8sk8kB9JUNZ3IAfWVZTA6gr2wEkwPoKxvJ5AD6yq5gcgB9ZaOYHEBf2Wgmx1Icx5VMjmU4DsVS8QG+sq57fGXB0yR4ugRbSPAMCZr/2UqCrSXYRoJtJdhOgu0l2EGCHSXYSYKdJdhFgl0l2E2C3SXYQ4I9JXimBFNM6t5kvU3C2ORaTZrSZPhMcszklUxKxmQzTCLArKGb5WezcmsWPc16oVlqM6tUZoHHrI2YZQUzIzeTWTMPNFMoM/swA3cz5jXDRTPSMoMU8343r0bzVjEdsunLTDdgniDT+Ey9GeSS+srEt0HvLAueqnKWmWIau9FVxWpuXaHOMqTdSMNRAmfZ2ENfHOgsSyiZs2zsFBXL1RaqWl0/V+NCjSNyIJ1l1xA5kM6ybCIH0ll2LbM+gJmK8UwOYCbvOma7AjrLJjA5gM6y65kcQGfZDUwOoLPsRiYH0Fl2E5MD6Cy7mckBdJZNZHIAnWW3MDl64jhuZXKk4DgmMTmAzrLbmBxAZ9lkJgfQWTaFyQF0luUwOYDOsqlMDqCzbBqTA+gsu53JAXSWTWdyAJ1ldzA5gM6yGUwOoLPsTiYH0Fk2k8kBdJbdxeQAOstmMTkycBx3MzkycRyzmRxAZ9k9TA6gs2wOkwPoLLuXyIF0ls1l1gfQWXYfkwPoLJvH5AA6y+YzOYD5qAVMDqCz7H4mB9BZtpDJAczXPsDkADrLFjE5gM6yB4kcSGfZYmZ9AJ1lDzE5gD+BWsLkyMFxPMzkADrLljI5gM6yR5gcQGfZMiYH0Fn2KJMD6Cx7jMkBdJY9zuQAOsuWMzmAzrInmBxAZ9kKJgfQWfYkkwPoLHuKyQF0lj3N5AA6y55hcgCdZc8yOZbiOJ5jcizDcTyv4MjrLOv2t7PsGglmS/BaCY6X4HUSnCDB6yV4gwRvlOBNErxZghMleIsEb5XgJAneJsHJEpwiwRwJTpXgNAneLsHpJnVvst4mYWxyrSZNaTJ8Jjlm8komJWOyGSYRYNbQzfKzWbk1i55mvdAstZlVKrPAY9ZGzLKCmZGbyayZB5oplJl9mIG7GfOa4aIZaZlBinm/m1ejeauYDtn0ZaYbME+QaXym3gxySZ1lJxfDVzZO5ysbl6MxG60sVmPrhvWVAc1GGo4S+MpeOPTFgb6y0iXzlb0wRcXyooWqVtfPi7hQLxE5kL6yl4kcSF/ZK0QOpK/sVWZ9APMUrzE5gHm815ntCugre4PJAfSVvcnkAPrK3mJyAH1lcSYH0FcmTA6gr+xtJgfQV/YOkwPoK1vF5OiJ43iXyZGC41jN5AD6yt5jcgB9Ze8zOYC+sg+YHEBf2RomB9BX9iGTA+grW8vkAPrKPmJyAH1l65gcQF/Zx0wOoK9sPZMD6Cv7hMkB9JVtYHIAfWWfMjmAvrKNTI4MHMcmJkcmjmMzkwPoK/uMyQH0lW1hcgB9ZZ8TOZC+sq3M+gD6yr5gcgB9ZduYHEBf2ZdMDmA+6ismB9BX9jWTA+gr+4bJAczXfsvkAPrKtjM5gL6y74gcSF/ZDmZ9AH1l3zM5gD+B+oHJkYPj+JHJAfSV/cTkAPrKfmZyAH1lO5kcQF/ZL0wOoK9sF5MD6Cv7lckB9JXtZnIAfWW/MTmAvrLfmRxAX9kfTA6gr+xPJgfQV/YXkwPnKwuVYnLgfGUhh8mxFMfhMjmW4Tg8BUdeX1n3v31lL0vwFQm+KsHXJPi6BN+Q4JsSfEuCcQmKBN+W4DsSXCXBdyW4WoLvSfB9CX4gwTUS/FCCayX4kQTXmdS9yXqbhLHJtZo0pcnwmeSYySuZlIzJZphEgFlDN8vPZuXWLHqa9UKz1GZWqcwCj1kbMcsKZkZuJrNmHmimUGb2YQbuZsxrhotmpGUGKeb9bl6N5q1iOmTTl5luwDxBpvGZejPIJT6xLPFiSbxE6yx7SecseylHES+UUKzm1h3rLMPZjVQcxXeWhUof+uJAZ1mZEjnLQqWnqFjKWKhqdf2UwYUqW8yqVj2BtW6WWhNVBW+RWrfqbng54g0HWuBC5YkcQAtcqAKRA2iBC1Vk1gcupRKqxOTApRxDlZntCmeBC1VhcuAscKEjmBw4C1yoKpMDZ4ELHcnkwFngQtWYHDgLXKg6kwNngQvVYHLgLHChmkyOnjiOWkyOFByHj8mBs8CF/EwOnAUuFGBy4CxwoUQmB84CFwoyOXAWuFCIyYGzwIXCTA6cBS4UYXLgLHChKJMDZ4ELJTE5cBa4UDKTA2eBC8WYHDgLXKg2kwNngQvVYXLgLHCho5gcGTiOukyOTBzH0UwOnAUuVI/JgbPAheozOXAWuFADIgfQAhc6hlkfOAtc6FgmB84CFzqOyYGzwIUaMjmA+ajjmRw4C1yoEZMDZ4ELNWZyAPO1TZgcOAtcqCmTA2eBC51A5ABa4EInMusDZ4ELncTkAP5W62QmRw6OoxmTA2eBC53C5MBZ4ELNmRw4C1zoVCYHzgIXOo3JgbPAhU5ncuAscKEWTA6cBS50BpMDZ4ELtWRy4CxwoVZMDpwFLtSayYGzwIXaMDlwFrhQWyYH0ALXjskBtMC1Z3IsxXF0YHIsw3Eofnp6gAWuxx4LXKi8hCpIqKKEKkmosoSqSOgICVWV0JESqiah6hKqIaGaEqolIZ+E/BIKSChRQkEJhSQUllBEQlGTujdZb5MwNrlWk6Y0GT6THDN5JZOSMdkMkwgwa+hm+dms3JpFT7NeaJbazCqVWeAxayNmWcHMyM1k1swDzRTKzD7MwN2Mec1w0Yy0zCDFvN/Nq9G8VUyHbPoy0w2YJ8g0PlNvBrkwC5zG2RYqq3U8lVNZ4EJlczQ2nU7Fam49oBY4pC9Kw1ECC1znQ18caIErWzILXOcpKpYuFqpaXT9dcKG6EjmQzrJuRA6ks6w7kQPpLOvBrA9gpqInkwOYyTuT2a6AzrIUJgfQWdaLyQF0lvVmcgCdZWcxOYDOsrOZHEBnWR8mB9BZ1pfJAXSWncPk6Inj6MfkSMFxnMvkADrLzmNyAJ1l/ZkcQGfZ+UwOoLNsAJMD6Cy7gMkBdJYNZHIAnWUXMjmAzrJBTA6gs2wwkwPoLEtlcgCdZRcxOYDOsiFMDqCz7GImB9BZlsbkyMBxXMLkyMRxXMrkADrLhjI5gM6yy5gcQGdZOpED6SwbxqwPoLMsg8kBdJZdzuQAOssymRzAfNRwJgfQWZbF5AA6y0YwOYD52pFMDqCz7AomB9BZNorIgXSWjWbWB9BZdiWTA/gTqDFMjhwcx1VMDqCzbCyTA+gsu5rJAXSWjWNyAJ1l1zA5gM6ybCYH0Fl2LZMD6Cwbz+QAOsuuY3IAnWUTmBxAZ9n1TA6gs+wGJgfQWXYjkwPoLLuJyQF0lt3M5FiK45jI5FiG47hFwZHXWdbzb2dZNwl1l1APCfWU0JkSSpFQLwn1ltBZEjpbQn0k1FdC50ion4TOldB5EuovofMlNEBCF0hooIQulNAgk7o3WW+TMDa5VpOmNBk+kxwzeSWTkjHZDJMIMGvoZvnZrNyaRU+zXmiW2swqlVngMWsjZlnBzMjNZNbMA80Uysw+zMDdjHnNcNGMtMwgxbzfzavRvFVMh2z6MtMNmCfIND5Tbwb5sA5XS9Na0LrqnGVdczR2o1uL1dx6Yp1lQLuRhqMEzrJJmosfpSt1aGeZUzJn2aQpKpbbFLdoaeuhAwdd2nrYqPYj0ge1GTh0aPb8lFbdO7TLyb6/T1pWeupw87jclnTgnczJUTVclcbJxbxHymqc8q9WY6kSVWNimuq5Vt7IHFBl5ySV7KC6SdqD6pSNd2ox77pa6G1aobfphE6z0KFqe0Gk7/F2IgfS9zidyIH0Pd7BrA9gHm0GkwOYZ76T2a6AvseZTA6g7/EuJgfQ9ziLyQH0Pd7N5AD6HmczOYC+x3uYHEDf4xwmB9D3eC+ToyeOYy6TIwXHcR+TA+h7nMfkAPoe5zM5gL7HBUwOoO/xfiYH0Pe4kMkB9D0+wOQA+h4XMTmAvscHmRxA3+NiJgfQ9/gQkwPoe1zC5AD6Hh9mcgB9j0uZHEDf4yNMjgwcxzImRyaO41EmB9D3+BiTA+h7fJzJAfQ9LidyIH2PTzDrA+h7XMHkAPoen2RyAH2PTzE5gPmop5kcQN/jM0wOoO/xWSYHMF/7HJMD6Ht8nskB9D2uJHIgfY8vMOsD6Ht8kckB9D2+xOTIwXG8zOQA+h5fYXIAfY+vMjmAvsfXmBxA3+PrTA6g7/ENJgfQ9/gmkwPoe3yLyQH0PcaZHEDfozA5gL7Ht5kcQN/jO0wOoO9xFZMD6Ht8l8kB9D2uZnIsxXG8x+RYhuN4X8FRIpeXzn9St66N64cm7/FQaa4f+kBzl4qtUmvnCbyqtPMkDlHdztAahdAHW2emDR2aNmSPhWpa5SnZC3qlpQ8ZmqprMYqTiP+OeFnG0FQJfbiy2JV3hvmWrumuPfQNKcnV10629Ujk6B6JBlYeiXLmqdBd/5hiXl9pavxI9aQ1UJU6tMT83tRDKWxpql5jaWypol1npRI/MoF1HcHHiutrDJUfl8Q9G1qnKrW+mLWobGif/KsNrVSJ7POhqdr32FRdfW+wJXSaVug0ndBPbb3wP9A1zY28F/6e27lGi7NGdzs3FfeFX2Ea/IVfvICnowOaJ74YITWvgtae5kXgKcooHIOTtZQleaUcirTVnr5ad3VVc9xc3OZYJae4lX2IFv/XX39tzA1Z9FjO2fP/cnKHq5/l/rllper1+JmjKrYlKf+LrNShSYu+5Tk7/i71mapitijuWnEbj2kU5vKTbXSVe+ZGr2m3Orhd11V+bkvo61qh03VCt9oS+oZW6B06oV/YEvqmVugMndBttoS+pRV6p07ol7aExrVCZ+qEfmVLqGiF3qUT+rUtoW9rhc7SCf3GltB3tELv1gn91pbQVVqhs3VCt9sS+q5W6D06od/ZErpaK3SOTugOW0Lf0wq9Vyf0e1tC39cKnasT+oMtoR9ohd6nE/qjLaFrtELn6YT+ZEvoh1qh83VCf7YldK1W6AKd0J22hH6kFXq/TugvtoSu0wpdqBO6y5bQj7VCH9AJ/dWW0PVaoYt0QnfbEvqJVuiDOqG/2RK6QSt0sU7o77aEfqoV+pBO6B+2hG7UCl2iE/qnLaGbtEIf1gn9y5bQzVqhS1VCw6VsCf1MK/QRnVDHltAtWqHLdEJdW0I/1wp9VCfUsyV0q1boYzqhCbaEfqEV+rhOaGlbQrdphS7XCS1jS+iXWqFP6ISWtSX0K63QFTqh5WwJ/Vor9Emd0PK2hH6jFfqUTmgFW0K/1Qp9Wie0oi2h27VCn9EJrWRL6Hdaoc/qhFa2JXSHVuhzOqFVbAn9Xiv0eZ3QI2wJ/UErdKVOaFVbQn/UCn1BJ/RIW0J/0gp9USe0mi2hP2uFvqQTWt2W0J1aoS/rhNawJfQXrdBXdEJr2hK6Syv0VZ3QWraE/qoV+ppOqM+W0N1aoa/rhPptCf1NK/QNndCALaG/a4W+qROaaEvoH1qhb+mEBm0J/VMrNK4TGrIl9C+tUNEJDVsSmlhKK/RtndCILaGOVug7OqFRW0JdrdBVOqFJtoR6WqHv6oQm2xKaoBW6Wic0Zktoaa3Q93RCa9sSWkYr9H2d0Dq2hJbVCv1AJ/QoW0LLaYXqPAFhW27FxPJaoR/qhB5tS2gFrdC1OqH1bAmtqBX6kU5ofVtCK2mF6vxp4Qa2hFbWCv1YJ/QYW0KraIWu1wk91pbQI7RCP9EJPc6W0KpaoRt0QhvaEnqkVuinOqHH2xJaTSt0o05oI1tCq2uFbtIJbWxLaA2t0M06oU1sCa2pFfqZTmhTW0JraYVu0Qk9wZZQn1bo5zqhJ9oS6tcK3aoTepItoQGt0C90Qk+2JTRRK3SbTmgzW0KDWqFf6oSeYktoSCv0K53Q5raEhrVCv9YJPdWW0IhW6Dc6oafZEhrVCv1WJ/R0W0KTtEK364S2sCU0WSv0O53QM2wJjWmF7tAJbWlLaG2t0O91QlvZElpHK/QHndDWtoQepRX6o05oG1tC62qF/qQT2taW0KO1Qn/WCW1nS2g9rdCdOqHtbQmtrxX6i05oB1tCG2iF7tIJ7WhL6DFaob/qhHayJfRYrdDdOqGdbQk9Tiv0N53QLraENtQK/V0ntKstocdrhf6hE9rNltBGWqF/6oR2tyW0sVboXzqhPWwJbaIU6iulE9rTltCmWqGOTuiZtoSeoBXq6oSm2BJ6olaopxPay5bQk7RCE3RCe9sSerJWaGmd0LNsCW2mFVpGJ/RsW0JP0QotqxPax5bQ5lqh5XRC+9oSeqpWaHmd0HNsCT1NK7SCTmg/W0JP1wqtqBN6ri2hLbRCK+mEnmdL6BlaoZV1QvvbEtpSK7SKTuj5toS20go9Qid0gC2hrbVCq+qEXmBLaBut0CN1QgfaEtpWK7SaTuiFtoS20wqtrhM6yJbQ9lqhNXRCB9sS2kErtKZOaKotoR21QmvphF5kS2gnrVCfTugQW0I7a4X6dUIvtiW0i1ZoQCc0zZbQrlqhiTqhl9gS2k0rNKgTeqktod21QkM6oUNtCe2hFRrWCb3MltCeWqERndB0W0LP1AqN6oQOsyU0RSs0SSc0w5bQXlqhyTqhl9sS2lsrNKYTmmlL6FlaobV1QofbEnq2VmgdndAsW0L7aIUepRM6wpbQvlqhdXVCR9oSeo5W6NE6oVfYEtpPK7SeTugoW0LP1QqtrxM62pbQ87RCG+iEXmlLaH+t0GN0QsfYEnq+VuixOqFX2RI6QCv0OJ3QsbaEXqAV2lAn9GpbQgdqhR6vEzrOltALtUIb6YReY0voIK3Qxjqh2baEDtYKbaITeq0toalaoU11QsfbEnqRVugJOqHXaYTuPam4U3pa1tQz15eaI6HPJbRVQl9IaJuEvpTQVxL6WkLfSOhbCW2X0HcS2iGh7yX0g4R+lNBPEvpZQjsl9IuEdknoVwntltBvEvpdQn9I6E8J/SVho8SRsCthT8IJEi4t4TISLivhchIuL+EKEq4o4UoSrizhKhI+QsJVJXykhKtJuLqEa0i4poRrSdgnYb+EAxJOlHBQwiEJhyUckXBUwkkSTpZwTMK1JVxHwkdJuK6Ej5ZwPQnXl3ADCR8j4WMlfJyEG0r4eAk3knBjCTeRcFMJnyDhEyV8koRPlnAzCZ8i4eYSPlXCp0n4dAm3kPAZEm4p4VYSbi3hNhJuK+F2Em4v4Q4S7ijhThLuLOEuEu4q4W4S7i7hHhLuKeEzJZwi4V4S7i3hs0ya3yTQTWraJH1NOtUkKk0K0CTXTNrKJIRMqsUkMUx6wCy8myVts1hslmHNAqdZOjSLcma5yywkmSUas/hhlhXMhN1Mhc0k00zfzMTITDnMYN4Mk80A1AztzKDJDEfMi968Qs3LyXT7pkM1XZXpBMzjZRquaRIL9tb3AQ1UcdBi6b9P/FJaKCco2l3uCdlnQk/I1lxcG+p6Cw+6I6E9W2Ef6ia20h73Gr6hmA95yv895P+/fMhzFK1uz0Mevl7zFtpT8IYc3VOkasY3FqvPSFH1GQ6hz7ixmH2Gvu8FHtYZvsnC3VbfoptwoW4mcpSdj+OYSORIyMRx3ELkqHAajuNWZn3cgOOYxOTIxnHcxmxXLXEck5kcrXEcU5gcbXEcOUyO9jiOqUyOjjiOaUyOzjiO25kcXXEc05kc3XEcdzA5euI4ZjA5UnAcdzI5euM4ZjI5zsZx3MXk6IvjmMXk6IfjuJvJcR6OYzaT43wcxz1MjgtwHHOYHBfiOO5lcgzGccxlclyE47iPyXExjmMek+MSHMd8JsdQHMcCJkc6juN+JkcGjmMhkyMTx/EAkyMLx7GIyTESx/Egk2MUjmMxkSMhiuN4iFkfY3AcS5gcY3EcDzM5xuE4ljI5gPmoR5gc43Ecy5gcwF9dPMrkAOZrH2NyAH+X8TiTYyKOYzmRw4vjOJ5g1sckHMcKJgfwJ1BPMjlycBxPMTmm4TieZnJMx3E8w+SYgeN4lskxE8fxHJNjFo7jeSbHbBzHSibHHBzHC0yOuTiOF5kc83AcLzE5FuA4XmZyLMRxvMLkWITjeJXJsRjH8RqTYwmO43Umx1IcxxtMjmU4jjeZHI/hON5icizHccSZHCtwHMLkeArH8TaT4xkcxztMjudwHKuYHCtxHO8yOV7EcaxmcryM43iPyfEqjuN9JsfrOI4PmBxv4jjWMDmA+Y8PmRxv4zjWMjlW4Tg+YnKsxnGsY3K8j+P4mMmxBsexnsmxFsfxCZNjHY5jA5NjPY7jUybHBhzHRibHRhzHJibHZhzHZibHFhzHZ0yOrTiOLUyObTiOz5kcX+E4tjI5vsFxfMHk2I7j2Mbk2IHj+JLJ8QOO4ysmx084jq+ZHDtxHN8wOXbhOL5lcuzGcWxncvyO4/iOyfEnjmMHkaNiKRzH90wOF8fxA5MjAcfxI5OjDI7jJyZHORzHz0yOCjiOnUyOSjiOX5gcVXAcu5gcVXEcvzI5quE4djM5auA4fmNy1MJx/M7k8OM4/mByJOI4/mRyhHAcfzE5IrBQkVJMjiQch8PkiOE4XCZHHRyHx+Soi+NIYHLUw3GUZnI0wHGUYXIci+Moy+RoiOMox+RohOMoz+RoguOowOQ4AcdRkclxEo6jEpOjGY6jMpOjOY6jCpMDdx5L5AgmRwscR1UmB+4ck8iRTA7cOSaRakwO3DkmkepMDtw5JpEaTA7cOSaRmkwO3DkmkVpMDtw5JhEfkwN3jknEz+ToieMIMDlScByJTA7cOSaRIJMDd45JJMTkwJ1jEgkzOXDnmEQiTA7cOSaRKJMDd45JJInJgTvHJJLM5MCdYxKJMTlw55hEajM5cOeYROowOXDnmESOYnLgzjGJ1GVy4M4xiRzN5MCdYxKpx+TIwHHUZ3Jk4jgUqcbsRXs5OqWnZU3ttb7UHAlPlPAtEr5VwpMkfJuEJ0t4ioRzJDxVwtMkfLuEp0v4DgnPkPCdEp4p4bskPEvCd0t4toTvkbCJcK+E50r4PgnPk/B8CS+Q8P0SXijhByS8SMIPSnixhB+S8BIJPyzhpRJ+RMLLJPyohB+T8OMSXi7hJyS8QsJPSvgpCT8t4Wck/KyEn5Pw8xJeKeEXJPyihF+S8MsSfkXCr0r4NQm/LuE3JPymhN+ScFzCIuG3JfyOhFdJ+F0Jr5bwexJ+X8IfSHiNhD+U8FoJfyThdRL+WMLrJfyJhDdI+FMJb5TwJglvlvBnEt4i4c8lvFXCX0h4m4S/lPBXEv5awt9I+FsJb5fwdxLeIeHvJfyDhH+U8E8S/lnCOyX8i4R3SfhXCe+W8G8S/l3Cf0j4Twn/JZFSEtnz0waJeCahbnLRJo1rMqAmeWjybiZlZbI9JlFicgxmed6sbJtFYbOeapYizSqeWQAza0dm2cWsWJjJvpknmymmmZ2ZiY2ZE5jhtBmJmkGcGf+YoYN565oXlunrTTdpehjzcJp2bZrEgr31nb2o1fDhqZlZ/VIzh03NOfQBwc4ZElpnijUa3D1zU+M59Vf0bLc8O7tv/3pNt3Uc/WTGlDabfp66w5QzpSR8c47qZ0M35yjiRY4p1sPYS/UwOtpfNuE2vVdx5K2UKYeulNJ77nZok+Juu6ak6m4fa+Fuq28R8CcFx5Xgbh/q7nitpyqu7SnKtFbVRUNiXZSdj6uL44kcCcDXaSMiRwVgurQxsz5wx6FEmjA5cMcFRZoy2xUw7XsCkwOY9j2RyQFM+57E5ACmfU9mcgDTvs2YHMC07ylMDmDatzmTA5j2PZXJAUz7nsbkSMFxnM7kAKZ9WzA5gGnfM5gcwLRvSyYHMO3biskBTPu2ZnIA075tmBzAtG9bJgcw7duOyQFM+7ZncgDTvh2YHMC0b0cmBzDt24nJAUz7dmZyANO+XZgcwLRvVyZHJo6jG5MjC8fRnckxEsfRg8kxCsfRk8iREMVxnMmsjzE4jhQmx1gcRy8mxzgcR28mBzAfdRaTYzyO42wmxwQcRx8mBzBf25fJAfwlzzlMjok4jn5EDg93fFPkXGZ9TMJxnMfkAP6Mqz+TIwfHcT6TYxqOYwCTYzqO4wImxwwcx0Amx0wcx4VMjlk4jkFMjtk4jsFMjjk4jlQmx1wcx0VMjnk4jiFMjgU4jouZHAtxHGlMjkU4jkuYHItxHJcyOZbgOIYyOZbiOC5jcizDcaQzOR7DcQxjcizHcWQwOVbgOC5ncjyF48hkcjyD4xjO5HgOx5HF5FiJ4xjB5HgRxzGSyfEyjuMKJserOI5RTI7XcRyjmRxv4jiuZHIA8x9jmBxv4ziuYnKswnGMZXKsxnFczeR4H8cxjsmxBsdxDZNjLY4jm8mxDsdxLZNjPY5jPJNjA47jOibHRhzHBCbHZhzH9UyOLTiOG5gcW3EcNzI5tuE4bmJyfIXjuJnJ8Q2OYyKTYzuO4xYmxw4cx61Mjh9wHJOYHD/hOG5jcuzEcUxmcuzCcUxhcuzGceQwOX7HcUxlcvyJ45hG5KhYCsdxO5PDxXFMZ3Ik4DjuYHKUwXHMYHKUw3HcyeSogOOYyeSohOO4i8lRBccxi8lRFcdxN5OjGo5jNpOjBo7jHiZHLRzHHCaHH8dxL5MjEccxl8kRwnHcx+SI4DjmMTmScBzzmRwxHMcCJkcdHMf9TI66OI6FTI56OI4HmBwNcByLmBzAsyYeZHI0xHEsZnI0wnE8xORoguNYwuQ4AcfxMJPjJBzHUiZHMxzHI0yO5jiOZUwO4HksjzI5WuA4HmNyAM8xeZzJATzHZDmTA3iOyRNMDuA5JiuYHMBzTJ5kcgDPMXmKyQE8x+RpJgfwHJNnmBw9cRzPMjlScBzPMTmA55g8z+QAnmOykskBPMfkBSYH8ByTF5kcwHNMXmJyAM8xeZnJATzH5BUmB/Ack1eZHMBzTF5jcgDPMXmdyQE8x+QNJgfwHJM3mRzAc0zeYnIAzzGJMzkycBzC5MjEcSi2FshetJejU3pa1tTe60vNkcjxEmkkkcYSaSKRphI5QSInSuQkiZwskWYSOUUizSVyqkROk8jpEmkhkTMk0lIirSTSWiJtJNJWIu0k0l4iHSTSUSKdJNJZIl0k0lUi3STSXSI9JNJTImdKJEUivSTSWyJnSeRsifSRSF+JnCORfhI5VyLnSaS/RM6XyACJXCCRgRK5UCKDJDJYIqkSuUgiQyRysUTSJHKJRC6VyFCJXCaRdIkMk0iGRC6XSKZEhkskSyIjJDJSIldIZJRERkvkSomMkchVEhkrkaslMk4i10gkWyLXSmS8RK6TyASJXC+RGyRyo0RuksjNEpkokVskcqtEJknkNolMlsgUieRIZKpEpknkdolMl8gdEpkhkTslMlMid0lklkTulshsidwjEXNX75XIXIncJ5F5EpkvkQUSud8k1E0u2qRxTQbUJA9N3s2krEy2xyRKTI7BLM+blW2zKGzWU81SpFnFMwtgZu3ILLuYFQsz2TfzZDPFNLMzM7ExcwIznDYjUTOIM+MfM3Qwb13zwjJ9vekmTQ9jHk7Trk2TWLC3vrMXtRo+PDUzq19q5rCpOVNfTmo0uHvmpsZz6q/o2W55dnbf/vWabus4+smMKW02/Tx1h2koElonkeOmKprdnoINc1QN9LgcxYUj7xTrceytehwd7TMETHNrOPJWy5RD3+3Se+52aJPibnumpOpur7Jwt9W3aBUu1LtEjrLzcRyriRwJwJfRe0SOCsBk4/vM+gAeJvIBkwN42M4aZrsCJk0/ZHIAk6ZrmRzApOlHTA5g0nQdkwOYNP2YyQFMmq5ncgCTpp8wOYBJ0w1MDmDS9FMmRwqOYyOTA5g03cTkACZNNzM5gEnTz5gcwKTpFiYHMGn6OZMDmDTdyuQAJk2/YHIAk6bbmBzApOmXTA5g0vQrJgcwafo1kwOYNP2GyQFMmn7L5AAmTbczOYBJ0++YHJk4jh1Mjiwcx/dMjpE4jh+YHKNwHD8SORKiOI6fmPUxBsfxM5NjLI5jJ5NjHI7jFyYHMB+1i8kxHsfxK5NjAo5jN5MDmK/9jclxE47jdybHRBzHH0QOD3j40Z/M+piE4/iLyYELFS3F5MjBcThMjmk4DpfJMR3H4TE5ZuA4EpgcM3EcpZkcs3AcZZgcs3EcZZkcc3Ac5Zgcc3Ec5Zkc83AcFZgcC3AcFZkcC3EclZgci3AclZkci3EcVZgcS3AcRzA5luI4qjI5luE4jmRyPIbjqMbkWI7jqM7kWIHjqMHkeArHUZPJ8QyOoxaT4zkch4/JsRLH4WdyvIjjCDA5XsZxJDI5XsVxBJkcr+M4QkyON3EcYSYHLv8RjTA53sZxRJkcq3AcSUyO1TiOZCbH+ziOGJNjDY6jNpNjLY6jDpNjHY7jKCbHehxHXSbHBhzH0UyOjTiOekyOzTiO+kyOLTiOBkyOrTiOY5gc23AcxzI5vsJxHMfk+AbH0ZDJsR3HcTyTYweOoxGT4wccR2Mmx084jiZMjp04jqZMjl04jhOYHLtxHCcyOX7HcZzE5PgTx3EykaNiKRxHMyaHi+M4hcmRgONozuQog+M4lclRDsdxGpOjAo7jdCZHJRxHCyZHFRzHGUyOqjiOlkyOajiOVkyOGjiO1kyOWjiONkwOP46jLZMjEcfRjskRwnG0Z3JEcBwdmBxJOI6OTI4YjqMTk6MOjqMzk6MujqMLk6MejqMrk6MBjqMbkwN3Kka0O5OjIY6jB5OjEY6jJ5OjCY7jTCbHCTiOFCbHSTiOXkyOZjiO3kyO5jiOs5gcuPNYomczOVrgOPowOXDnmET7Mjlw55hEz2Fy4M4xifZjcuDOMYmey+TAnWMSPY/JgTvHJNqfyYE7xyR6PpMDd45JdACToyeO4wImRwqOYyCTA3eOSfRCJgfuHJPoICYH7hyT6GAmB+4ck2gqkwN3jkn0IiYH7hyT6BAmB+4ck+jFTA7cOSbRNCYH7hyT6CVMDtw5JtFLmRy4c0yiQ5kcuHNMopcxOXDnmETTmRy4c0yiw5gcGTiODCZHJo7jcgXHor0cndLTsqaetb7UHImslsh7EnlfIh9IZI1EPpTIWol8JJF1EvlYIusl8olENkjkU4lslMgmiWyWyGcS2SKRzyWyVSJfSGSbRL6UyFcS+Voi30jkW4lsl8h3Etkhke8l8oNEfpTITxL5WSI7JfKLRHZJ5FeJ7JbIbxL5XSJ/SORPifwl0VIS3bP7rkQ9iSZItLREy0i0rETLSbS8RCtItKJEK0m0skSrSPQIiVaV6JESrSbR6hKtIdGaEq0lUZ9E/RINSDRRokGJhiQalmhEolGJJkk0WaIxidaWaB2JHiXRuhI9WqL1JFpfog0keoxEj5XocRJtKNHjJdpIoo0l2kSiTSV6gkRPlOhJEj1Zos0keopEm0v0VImeJtHTJdpComdItKVEW0m0tUTbSLStRNtJtL1EO0i0o0Q7SbSzSaibXLRJ45oMqEkemrybSVmZbI9JlJgcg1meNyvbZlHYrKeapUizimcWwMzakVl2MSsWZrJv5slmimlmZ2ZiY+YEZjhtRqJmEGfGP2boYN665oVl+nrTTZoexjycpl2bJrFgb31nL2o1fHhqZla/1MxhU3OmHro1nS6hdaZYo8HdMzc1nlN/Rc92y7Oz+/av13Rbx9FPZkxps+nnqTtMOVNKIu/maJqnKaaIF80s1sN4luphdJRPUGQV7mHUcOStlCmHrpTSe+52aJPibieYkqq7PdzC3VbfouG4UFlEjrLzcRwjiBwJwFfRSCJHBWCq8QpmfeCOEomOYnLgjtqJjma2K2DK9EomBzBlOobJAUyZXsXkAKZMxzI5gCnTq5kcwJTpOCYHMGV6DZMDmDLNZnIAU6bXMjlScBzjmRzAlOl1TA5gynQCkwOYMr2eyQFMmd7A5ACmTG9kcgBTpjcxOYAp05uZHMCU6UQmBzBleguTA5gyvZXJAUyZTmJyAFOmtzE5gCnTyUwOYMp0CpMDmDLNYXJk4jimMjmycBzTmBwjcRy3MzlG4TimEzkSojiOO5j1MQbHMYPJMRbHcSeTYxyOYyaTA5iPuovJMR7HMYvJMQHHcTeTA5ivnc3kuAnHcQ+TYyKOYw6RwwMefXQvsz4m4TjmMjmAP4G6j8mRg+OYx+SYhuOYz+SYjuNYwOSYgeO4n8kxE8exkMkxC8fxAJNjNo5jEZNjDo7jQSbHXBzHYibHPBzHQ0yOBTiOJUyOhTiOh5kci3AcS5kci3EcjzA5luA4ljE5luI4HmVyLMNxPMbkeAzH8TiTYzmOYzmTYwWO4wkmx1M4jhVMjmdwHE8yOZ7DcTzF5FiJ43iayfEijuMZJsfLOI5nmRyv4jieY3K8juN4nsnxJo5jJZMDmP94gcnxNo7jRSbHKhzHS0yO1TiOl5kc7+M4XmFyrMFxvMrkWIvjeI3JsQ7H8TqTYz2O4w0mxwYcx5tMjo04jreYHJtxHHEmxxYchzA5tuI43mZybMNxvMPk+ArHsYrJ8Q2O410mx3Ycx2omxw4cx3tMjh9wHO8zOX7CcXzA5NiJ41jD5NiF4/iQybEbx7GWyfE7juMjJsefOI51RI6KpXAcHzM5XBzHeiZHAo7jEyZHGRzHBiZHORzHp0yOCjiOjUyOSjiOTUyOKjiOzUyOqjiOz5gc1XAcW5gcNXAcnzM5auE4tjI5/DiOL5gciTiObUyOEI7jSyZHBMfxFZMjCcfxNZMjhuP4hslRB8fxLZOjLo5jO5OjHo7jOyZHAxzHDibHsTiO75kcDXEcPzA5GuE4fmRyNMFx/MTkOAHH8TOT4yQcx04mRzMcxy9MjuY4jl1MDuB5LL8yOVrgOHYzOYDnmPzG5ACeY/I7kwN4jskfTA7gOSZ/MjmA55j8xeTAnWOSVIrJgTvHJMlhcuDOMUlymRw9cRwekyMFx5HA5MCdY5JUmsmBO8ckqQyTA3eOSVJZJgfuHJOkckwO3DkmSeWZHLhzTJIqMDlw55gkVWRy4M4xSarE5MCdY5JUmcmBO8ckqQqTA3eOSdIRTA7cOSZJVZkcuHNMko5kcuDOMUmqxuTIwHFUZ3Jk4jgUP4HKXrSXo1N6WtbUs9eXmiPRERIdKdErJDpKoqMleqVEx0j0KomOlejVEh0n0Wskmi3RayU6XqLXSXSCRK+X6A0SvVGiN0n0ZolOlOgtEr1VopMkeptEJ0t0ikRzJDpVotMkertEp0v0DonOkOidEp0p0bskOkuid0t0tkTvkajRcK9E50r0PonOk+h8iS6Q6P0SXSjRByS6SKIPSnSxRB+S6BKJPizRpRJ9RKLLJPqoRB+T6OMSXS7RJyS6QqJPSvQpiT4t0Wck+qxEn5Po8xJdKdEXJPqiRF+S6MsSfUWir0r0NYm+LtE3JPqmRN+SaFyiItG3JfqORFdJ9F2JrpboexJ9X6IfSHSNRD+U6FqJfiTRdRL9WKLrJfqJRDdI9FOJbpToJoluluhnEt0i0c8lulWiX0h0m0S/lOhXEv1aot9I9FuTUDe5aJPGNRlQkzw0eTeTsjLZHpMoMTkGszxvVrbNorBZTzVLkWYVzyyAmbUjs+xiVizMZN/Mk80U08zOzMTGzAnMcNqMRM0gzox/zNDBvHXNC8v09aabND2MeThNuzZNYsHe+s5e1Gr48NTMrH6pmcOm5kxVtKbQOgl9Ygo2Gtw9c1PjOfVX9Gy3PDu7b/96Tbd1HP1kxpQ2m36eusOU3FMwmpWjWgjLylHES6pZrMfxbNXj6GjX6objHkcNR95qmaKtlk2qux1ap7rbit8bZi9tPXTgoEtbDxvVfkT6oDYDhw7Nnp/SqnuHdjnZ9/dJy0pPHT7cxEkqdqVo72TZ+bhK8VloXNqLJwD7ej+RowIul5cUYNYH7qyOpEQmB+4sm6Qgs13hcpJJISYHLieZFGZy4HKSSREmBy4nmRRlcuBykklJTA5gTjKZyQHMScaYHMCcZG0mBzAnWYfJkYLjOIrJAcxJ1mVyAHOSRzM5gDnJekwOYE6yPpMDmJNswOQA5iSPYXIAc5LHMjmAOcnjmBzAnGRDJgcwJ3k8kwOYk2zE5ADmJBszOYA5ySZMDmBOsimTA5iTPIHJkYnjOJHJkYXjOInJMRLHcTKTYxSOoxmRIyGK4ziFWR9jcBzNmRxjcRynMjnG4ThOY3IA81GnMznG4zhaMDkm4DjOYHIA87UtmRw34ThaMTkm4jhaEzk83NlCSW2Y9TEJx9GWyYELldSOyZGD42jP5JiG4+jA5JiO4+jI5JiB4+jE5JiJ4+jM5JiF4+jC5JiN4+jK5JiD4+jG5JiL4+jO5JiH4+jB5FiA4+jJ5FiI4ziTybEIx5HC5FiM4+jF5FiC4+jN5FiK4ziLybEMx3E2k+MxHEcfJsdyHEdfJscKHMc5TI6ncBz9mBzP4DjOZXI8h+M4j8mxEsfRn8nxIo7jfCbHyziOAUyOV3Ecip862uN4HRYqaSCT400cx4VMDmD+YxCT420cx2AmxyocRyqTYzWO4yImx/s4jiFMjjU4jouZHGtxHGlMjnU4jkuYHOtxHJcyOTbgOIYyOTbiOC5jcmzGcaQzObbgOIYxObbiODKYHNtwHJczOb7CcWQyOb7BcQxncmzHcWQxOXbgOEYwOX7AcYxkcvyE47iCybETxzGKybELxzGaybEbx3Elk+N3HMcYJsefOI6riBwVS+E4xjI5XBzH1UyOBBzHOCZHGRzHNUyOcjiObCZHBRzHtUyOSjiO8UyOKjiO65gcVXEcE5gc1XAc1zM5auA4bmBy1MJx3Mjk8OM4bmJyJOI4bmZyhHAcE5kcERzHLUyOJBzHrUyOGI5jEpOjDo7jNiZHXRzHZCZHPRzHFCZHAxxHDpPjWBzHVCZHQxzHNCZHIxzH7UyOJjiO6UyOE3AcdzA5TsJxzGByNMNx3MnkaI7jmMnkAJ7HcheTowWOYxaTA3iOyd1MDuA5JrOZHMBzTO5hcgDPMZnD5ACeY3IvkwN4jslcJgfwHJP7mBzAc0zmMTl64jjmMzlScBwLmBzAc0zuZ3IAzzFZyOQAnmPyAJMDeI7JIiYH8ByTB5kcwHNMFjM5gOeYPMTkAJ5jsoTJATzH5GEmB/Ack6VMDuA5Jo8wOYDnmCxjcgDPMXmUyQE8x+QxJkcGjuNxJkcmjkOxddMBh7nnqA9zVxVcbwruEXro89yfKKZQzanzLSW0dqri6i01CkNrVRyH3mPKKTZHKxNWk3h/sHVm2tChaUP2HHU/reLt2Qt6paUPGZqqayuaHfKLFbAFOuDpxQiobscfa9vxJ5PRPBJRJJ5z9sS8LGNoqiQ9mfvnU9rnX7HlWfbS1kMHDrq09bBR7UekD9rTdrLnp7Tq3qFdTvb9fdKy0lOHDzfXTjqwdVXJKf6t3qi91RsPcav/+uuvXbm3uujCzp7/l+cmPp375zMrVehPO6pizyQV+7nee1dU/ePR2Rb6x703W3f9a4t5/cnTig6bs+Pv9vm0qlN9RtPWj85WlbpW0bYOvpGKbt+gTC7mLVI9OIkXS+h2VcHLJDRZ96591pbQ6aqC6Wqhz9kSeoeq4DC10OdtCZ2hKpihFrrSltA7VQUvVwt9wZbQmaqCmWqhL9oSepeq4HC10JdsCZ2lKpilFvqyLaF3qwqOUAt9xZbQ2aqCI9VCX7Ul9B5VwSvUQl+zJXSOquAotdDXbQm9V1VwtFroG7aEzlUVvFIt9E1bQu9TFRyjFvqWLaHzVAWvUguN2xI6X1VwrFqo2BK6QFXwarXQt20JvV9VcJxa6Du2hC5UFbxGLXSVLaEPqApmq4W+a0voIlXBa9VCV9sS+qCq4Hi10PdsCV2sKnidWuj7toQ+pCo4QS30A1tCl6gKXq8WusaW0IdVBW9QC/3QltClqoI3qoWutSX0EVXBm9RCP7IldJmq4M1qoetsCX1UVXCiWujHtoQ+pip4i1roeltCH1cVvFUt9BNbQperCk5SC91gS+gTqoK3qYV+akvoClXByWqhG20JfVJVcIpa6CZbQp9SFcxRC91sS+jTqoJT1UI/syX0GVXBaWqhW2wJfVZV8Ha10M9tCX1OVXC6WuhWW0KfVxW8Qy30C1tCV6oKzlAL3WZL6AuqgneqhX5pS+iLqoIz1UK/siX0JVXBu9RCv7Yl9GVVwVlqod/YEvqKquDdaqHf2hL6qqrgbLXQ7baEvqYqeI9a6He2hL6uKjhHLXSHLaFvqAreqxb6vS2hb6oKzlUL/cGW0LdUBe9TC/3RltC4quA8tdCfbAkVVcH5aqE/2xL6tqrgArXQnbaEvqMqeL9a6C+2hK5SFVyoFrrLltB3VQUfUAv91ZbQ1aqCi9RCd9sS+p6q4INqob/ZEvq+quBitdDfNUL3ek46padlTe2zvlRLSXpWkp6TpOclaaUkvSBJL0rSS5L0siS9IkmvStJrkvS6JL0hSW9K0luSFDfJdpPGNglik3o1SU2TLjSJOJPiMskjk5YxCQ+TSjCL9Gb52ywsmyVbsxhqlhnNAp5ZGjOLTmY5xyyUmCUIM7k302YzITVTPTOJMtMTM/A3Q2ozWDXDQDPAMkMXMygwr1vzIjOvCNP5mm7NdBjmUTSN3DQfUzEGecFengN/OjxVdbv+OPTPfcupfhRcrvi/blb9unrPj4L/0FW94gSFPHajPlC7URLw+Ia/itmE+/4/2oQ1fcieBjJV+dvyv3J0t1/T2JJLFaux9VU1Nuffb2wqjuL3K8nOv9qvOCXqV5IdVb+S7FqoanX94I4hSfaIHGXn4zgSiBwJmTiO0kSOCrhtA5PLMOvjBhxHWSZHNo6jHLNd4bY/TC7P5MBtf5hcgcmB2/4wuSKTA7f9YXIlJgdu+8PkykwO3PaHyVWYHLjtD5OPYHLgtj9Mrsrk6InjOJLJkYLjqMbkwG1/mFydyYHb/jC5BpMDt/1hck0mB277w+RaTA7c9ofJPiYHbvvDZD+TA7f9YXKAyYHb/jA5kcmB2/4wOcjkwG1/mBxicuC2P0wOMzlw2x8mR5gcuO0Pk6NMDtz2h8lJTI4MHEcykyMTxxFjcmThOGozOUbiOOowOUbhOI4iciREcRx1mfUxBsdxNJNjLI6jHpNjHI6jPpMDmI9qwOQYj+M4hskxAcdxLJMDmK89jslxE46jIZNjIo7jeCKHF8dxNGLWxyQcR2MmB/AnUE2YHDk4jqZMjmk4jhOYHNNxHCcyOWbgOE5icszEcZzM5JiF42jG5JiN4ziFyTEHx9GcyTEXx3Eqk2MejuM0JscCHMfpTI6FOI4WTI5FOI4zmByLcRwtmRxLcBytmBxLcRytmRzLcBxtFBx5fWXn7PGVJSdIcmlJLiPJZSW5nCSXl+QKklxRkitJcmVJriLJR0hyVUk+UpKrSXJ1Sa4hyTUluZYk+yTZL8kBSU40qXuT9TYJY5NrNWlKk+EzyTGTVzIpGZPNMIkAs4Zulp/Nyq1Z9DTrhWapzaxSmQUeszZilhXMjNxMZs080EyhzOzDDNzNmNcMF81IywxSzPvdvBrNW8V0yKYvM92AeYJM4zP1ZpBL6is7Q+8rS/ZUvjJTTGM2alusxnYO1FeGNBtpOErgK2t36IsDfWVuyXxl7aaoWNpbqGp1/QB/T9+ByIH0lXUkciB9ZZ2IHEhfWWdmfQDzFF2YHMA8XldmuwL6yroxOYC+su5MDqCvrAeTA/ge7MnkAPrKzmRyAH1lKUwOoK+sF5MD6CvrzeToieM4i8mRguM4m8kB9JX1YXIAfWV9mRxAX9k5TA6gr6wfkwPoKzuXyQH0lZ3H5AD6yvozOYC+svOZHEBf2QAmB9BXdgGTA+grG8jkAPrKLmRyAH1lg5gcQF/ZYCZHBo4jlcmRieO4iMkB9JUNYXIAfWUXMzmAvrI0IgfSV3YJsz6AvrJLmRxAX9lQJgfQV3YZkwOYj0pncgB9ZcOYHEBfWQaTA5ivvZzJAfSVZTI5gL6y4UQOpK8si1kfQF/ZCCYH8CdQI5kcOTiOK5gcQF/ZKCYH0Fc2mskB9JVdyeQA+srGMDmAvrKrmBxAX9lYJgfQV3Y1kwPoKxvH5AD6yq5hcgB9ZdlMDqCv7FomB9BXNp7JAfSVXcfkAPrKJjA5luI4rmdyLMNxKJZeDvCV9fvbV9ZRkjtJcmdJ7iLJXSW5myR3l+QektxTks+U5BRJ7iXJvSX5LEk+W5L7SHJfST5HkvtJ8rmSfJ4k95fk803q3mS9TcLY5FpNmtJk+ExyzOSVTErGZDNMIsCsoZvlZ7NyaxY9zXqhWWozq1RmgcesjZhlBTMjN5NZMw80Uygz+zADdzPmNcNFM9IygxTzfjevRvNWMR2y6ctMN2CeINP4TL0Z5JL6yloUw1fWQecr65CjMRvdWKzG1g/rKwP+yFrDUQJf2U2HvjjQV+aVzFd20xQVy80WqlpdPzfjQk0kciB9ZbcQOZC+sluJHEhf2SRmfQDzFLcxOYB5vMnMdgX0lU1hcgB9ZTlMDqCvbCqTAzjkmcbkAPrKbmdyAH1l05kcQF/ZHUwOoK9sBpOjJ47jTiZHCo5jJpMD6Cu7i8kB9JXNYnIAfWV3MzmAvrLZTA6gr+weJgfQVzaHyQH0ld3L5AD6yuYyOYC+svuYHEBf2TwmB9BXNp/JAfSVLWByAH1l9zM5gL6yhUyODBzHA0yOTBzHIiYH0Ff2IJMD6CtbzOQA+soeInIgfWVLmPUB9JU9zOQA+sqWMjmAvrJHmBzAfNQyJgfQV/YokwPoK3uMyQHM1z7O5AD6ypYzOYC+sieIHEhf2QpmfQB9ZU8yOYA/gXqKyZGD43iayQH0lT3D5AD6yp5lcgB9Zc8xOYC+sueZHEBf2UomB9BX9gKTA+gre5HJAfSVvcTkAPrKXmZyAH1lrzA5gL6yV5kcQF/Za0wOoK/sdSYH0Ff2BpNjKY7jTSbHMhzHWwqOvL6yc//2ld0iybdK8iRJvk2SJ0vyFEnOkeSpkjxNkm+X5OmSfIckz5DkOyV5piTfJcmzJPluSZ4tyfdI8hxJvleS55rUvcl6m4SxybWaNKXJ8JnkmMkrmZSMyWaYRIBZQzfLz2bl1ix6mvVCs9RmVqnMAo9ZGzHLCmZGbiazZh5oplBm9mEG7mbMa4aLZqRlBinm/W5ejeatYjpk05eZbsA8QabxmXozyCX1lUmkYTGcZRN1zrKJORq7UbxYze1crLMMaDfScJTAWSaHvjjQWZZQMmeZTFGxvG2hqtX18zYu1DtEDqSzbBWRA+kse5fIgXSWrWbWBzBT8R6TA5jJe5/ZroDOsg+YHEBn2RomB9BZ9iGTA+gsW8vkADrLPmJyAJ1l65gcQGfZx0wOoLNsPZOjJ47jEyZHCo5jA5MD6Cz7lMkBdJZtZHIAnWWbmBxAZ9lmJgfQWfYZkwPoLNvC5AA6yz5ncgCdZVuZHEBn2RdMDqCzbBuTA+gs+5LJAXSWfcXkADrLvmZyAJ1l3zA5MnAc3zI5MnEc25kcQGfZd0wOoLNsB5MD6Cz7nsiBdJb9wKwPoLPsRyYH0Fn2E5MD6Cz7mckBzEftZHIAnWW/MDmAzrJdTA5gvvZXJgfQWbabyQF0lv1G5EA6y35n1gfQWfYHkwP4E6g/mRw5OI6/mBw4Z1msFJMD5yyLOUwOnLMs5jI5cM6ymMfkwDnLYglMDpyzLFaayYFzlsXKMDlwzrJYWSYHzlkWK8fkwDnLYuWZHDhnWawCkwPnLItVZHLgnGWxSkwOnLMsVpnJsRTHUYXJsQzHcYSCI6+z7Ly/nWWrJPldSV4tye9J8vuS/IEkr5HkDyV5rSR/JMnrJPljSV4vyZ9I8gZJ/lSSN0ryJkneLMmfSfIWSf5ckrea1L3JepuEscm1mjSlyfCZ5JjJK5mUjMlmmESAWUM3y89m5dYsepr1QrPUZlapzAKPWRsxywpmRm4ms2YeaKZQZvZhBu5mzGuGi2akZQYp5v1uXo3mrWI6ZNOXmW7APEGm8Zl6M8gldZadXgxf2Ts6X9k7OYp4sarFamznYX1lOLORiqP4vrLYkYe+ONBXVrpEvrLYkVNULNUsVLW6fqrhQlUncgB9ZbEaRA6gryxWk8gB9JXFajHrA5eniPmYHLg8XszPbFc4X1kswOTA+cpiiUwOnK8sFmRy4HxlsRCTA+cri4WZHDhfWSzC5MD5ymJRJgfOVxZLYnL0xHEkMzlScBwxJgfOVxarzeTA+cpidZgcOF9Z7CgmB85XFqvL5MD5ymJHMzlwvrJYPSYHzlcWq8/kwPnKYg2YHDhfWewYJgfOVxY7lsmB85XFjmNy4HxlsYZMDpyvLHY8kwPnK4s1YnJk4DgaMzkycRxNmBw4X1msKZMD5yuLncDkwPnKYicSOYC+sthJzPrA+cpiJzM5cL6yWDMmB85XFjuFyQHMRzVncuB8ZbFTmRw4X1nsNCYHMF97OpMD5yuLtWBy4HxlsTOIHEBfWawlsz5wvrJYKyYH8CdQrZkcOTiONkwOoK+sLZMD6Ctrx+QA+sraMzmAvrIOTA6gr6wjkwPoK+vE5AD6yjozOYC+si5MDqCvrCuTA+gr68bkAPrKujM5gL6yHkwOoK+sJ5MD6Cs7k8mxFMeRwuRYhuPopeDI6yvrv8dXFqshsZoSqyUxn8T8EgtILFFiQYmFJBaWWERiUYklSSxZYjGJ1ZZYHYkdJbG6EjtaYvUkVl9iDUzq3mS9TcLY5FpNmtJk+ExyzOSVTErGZDNMIsCsoZvlZ7NyaxY9zXqhWWozq1RmgcesjZhlBTMjN5NZMw80Uygz+zADdzPmNcNFM9IygxTzfjevRvNWMR2y6ctMN2CeINP4TL0Z5BKfWJa0QpKeUjrLYtVVzjJTTGM36l2s5tYf6ixD2o00HCVwlp116IsDnWVlSuYsO2uKiuVsC1Wtrh/gLyL7FLOqVU9gaJ2EPlYVXC+hT3Q3vC/xhiMtcOcQOZAWuH5EDqQF7lxmfQBTKucxOYApx/7MdgW0wJ3P5ABa4AYwOYAWuAuYHEAL3EAmB9ACdyGTA2iBG8TkAFrgBjM5gBa4VCZHTxzHRUyOFBzHECYH0AJ3MZMDOOFLY3IALXCXMDmAFrhLmRxAC9xQJgfQAncZkwNogUtncgAtcMOYHEALXAaTA2iBu5zJAbTAZTI5gBa44UwOoAUui8kBtMCNYHJk4DhGMjmA69RXMDmAFrhRTA6gBW40kwNogbuSyIG0wI1h1gfQAncVkwNogRvL5ABa4K5mcgDzUeOYHEAL3DVMDqAFLpvJAczXXsvkAFrgxjM5gBa464gcSAvcBGZ9AC1w1zM5gL/VuoHJkYPjuJHJAbTA3cTkAFrgbmZyAC1wE5kcQAvcLUwOoAXuViYH0AI3ickBtMDdxuQAWuAmMzmAFrgpTA6gBS6HyQG0wE1lcgAtcNOYHEAL3O1MDqAFbjqTYymO4w4mxzIch2LIeYAF7vy/LXDnSKyfxM6V2HkS6y+x8yU2QGIXSGygxC6U2CCJDZZYqsQuktgQiV0ssTSJXSKxSyU2VGKXSSxdYsNM6t5kvU3C2ORaTZrSZPhMcszklUxKxmQzTCLArKGb5WezcmsWPc16oVlqM6tUZoHHrI2YZQUzIzeTWTMPNFMoM/swA3cz5jXDRTPSMoMU8343r0bzVjEdsunLTDdgniDT+Ey9GeTCLHAqZ1sfreOpr84C1ydHY9O5s1jN7XysBQ74MzkNRwkscDMPfXGgBa5sySxwM6eoWO6yUNXq+rkLF2oWkQPpLLubyIF0ls0mciCdZfcw6wOYqZjD5ABm8u5ltiugs2wukwPoLLuPyQF0ls1jcgCdZfOZHEBn2QImB9BZdj+TA+gsW8jkADrLHmBy9MRxLGJypOA4HmRyAJ1li5kcwCnzQ0wOoLNsCZMD6Cx7mMkBdJYtZXIAnWWPMDmAzrJlTA6gs+xRJgfQWfYYkwPoLHucyQF0li1ncgCdZU8wOYDOshVMDqCz7EkmRwaO4ykmRyaO42kmB9BZ9gyTA+gse5bJAXSWPUfkQDrLnmfWB9BZtpLJAXSWvcDkADrLXmRyAPNRLzE5gM6yl5kcQGfZK0wOYL72VSYH0Fn2GpMD6Cx7nciBdJa9wawPoLPsTSYH8CdQbzE5cnAccSYH0FkmTA6gs+xtJgfQWfYOkwPoLFvF5AA6y95lcgCdZauZHEBn2XtMDqCz7H0mB9BZ9gGTA+gsW8PkADrLPmRyAJ1la5kcQGfZR0wOoLNsHZNjKY7jYybHMhzHegVHXmfZgL+dZXdLbLbE7pHYHIndK7G5ErtPYvMkNl9iCyR2v8QWSuwBiS2S2IMSWyyxhyS2RGIPS2ypxB6R2DKJPWpS9ybrbRLGJtdq0pQmw2eSYyavZFIyJpthEgFmDd0sP5uVW7PoadYLzVKbWaUyCzxmbcQsK5gZuZnMmnmgmUKZ2YcZuJsxrxkumpGWGaSY97t5NZq3iumQTV9mugHzBJnGZ+rNIB/W4WpPai1os3TOslk5GrvRJ8VqbgOwzjKg3UjDUQJn2QbNxTXOMkfjLHNK5izbMEXF8qniFi1tPXTgoEtbDxvVfkT6oDYDhw7Nnp/SqnuHdjnZ9/dJy0pPHT7cxEk68E7m5KgarkrjxmLeI2U1bvpXq7FUiaox6UnVc628kZtBlb05qWQH1W3QHlSnbLyfFfOuq4V+qhX6qU7oFgsdqrYXRPoePydyIH2PW4kcSN/jF8z6AObRtjE5gHnmL5ntCuh7/IrJAfQ9fs3kAPoev2FyAH2P3zI5gL7H7UwOoO/xOyYH0Pe4g8kB9D1+z+ToieP4gcmRguP4kckB9D3+xOQA+h5/ZnIAfY87mRxA3+MvTA6g73EXkwPoe/yVyQH0Pe5mcgB9j78xOYC+x9+ZHEDf4x9MDqDv8U8mB9D3+BeTA+d7rF2KyYHzPdZ2mBwZOA6XyZGJ4/CYHDjfY+0EJgfO91i7NJMD53usXYbIAfQ91i7LrA+c77F2OSYHzvdYuzyTA+d7rF2ByYHLR9WuyOTA+R5rV2Jy4HyPtSszOXD52tpVmBw432PtI5gcON9j7apEDqDvsfaRzPrA+R5rV2Ny4ELVrs7kyMFx1GBy4HyPtWsyOXC+x9q1mBw432NtH5MD53us7Wdy4HyPtQNMDpzvsXYikwPne6wdZHLgfI+1Q0wOnO+xdpjJgfM91o4wOXC+x9pRJgfO91g7icmB8z3WTmZy4HyPtWNMjqU4jtpMjmU4jjoKjhK5vHT+k3oBG9ePbdzjodJcv/ZRmrtUbJVaO09SLaWdJ+kJ1e2sXbeYQifrwh5daFh3f9j89qzHeg4bnpo2eFh6k56pmZeNyBqYlTYsPWdarl2rwsj9f7fJ/bTs/Ny/ax89TWrXk9r1pXYDqX1M9oOtM9OGDk0bsif+tEpTshf0SksfMjRV29rrHfr2TNbFamfrudmse27CVp6bvubR0V0/UtyGpnI+1j5W9TiGVaUOLbH4BtZ2RqLukTlOcYMUjsbax5XAvtpOpbBhMe+PsgqP/1ersFSJ3Ouxz7Svkc90td3IltAtWqFbdEIbW3rfmhep6vpNeO9bcztr19Xi1NXdzqbF7QY1d6mU4h61t3FhR3HhDjYu7Cou3NHGhT3FhTuV5MKHCtpZ07wSivscqIYuXWzcyATFhbvauHBpxYW72bhwGcWFu9u4cFnFhXvYuHA5xYV72rhwecWFz7RxYUWmz0mxceGKigv3snHhSooL97Zx4cqKC59l48JVFBc+28aFj1BcuI+NC1dVXLivjQsfqbjwOTYuXE1x4X42LlxdceFzbVy4huLC59m4cE3FhfvbuHAtxYXPt3Fhn+LCA2xc2K+48AU2LhxQXHigjQsnKi58oY0LBxUXHmTjwiHFhQfbuLBmgSbVxoUjigtfZOPCUcWFh9i4cJLiwhfbuHCy4sJpNi4cU1z4EhsXrq248KUlWHw65IqsWSLUbJhZu6EpqJnED7UjsrFWZGONyMtsrJykq1ZOwjZaTx2FvGF2KuY4bcUcr6mYjOLeHU3Qy20EzbSxEpwwRhKu0dzQhGsk4UZNoxyuapRjbDwPWapLFzeToln3NzfyGtSy8ggbjWekjaBX2Ag6ykbQ0TaCXmkj6BgbQa+yEXSsjaBX2wg6zkbQ+DVWomZbiXqtlajjrUS9zkrUCVaiXm8l6g1Wot5oJepNVqLebCXqRCtRb7ES9VYrUSdZiXqblaiTrUSdYiVqjpWoU61EnWYl6u1Wok63EvUOK1FnWIl6p5WoM61EvctK1FlWot5tJepsK1HvsRJ1jpWo91qJOtdK1PsOPWEvQdR5VrTOtxJ1gZWo91uJutBK1AesRF1kJeqDVqIuthL1IStRl1iJ+rCVqEutRH3EStRlVqI+aiXqY1aiPm4l6nIrUZ+wEnWFlahPWon6lJWoT1uJ+oyVqM9aifqclajPW4m60krUF6xEfdFK1JesRH3ZStRXrER91UrU16xEfd1K1DesRH3TStS3rESNW4kqVqK+bSXqO1airrIS9V0rUVdbifqelajvW4n6gZWoa6xE/dBK1LVWon5kJeo6K1E/thJ1vZWon1iJusFK1E+tRN1oJeomK1E3W4n6mZWoW6xE/dxK1K1Won5hJeo2K1G/tBL1KytRv7YS9RsrUb+1EnW7lajfWYm6w0rU761E/cFK1B+tRP3JStSfrUTdaSXqL1ai7rIS9VcrUXdbifqblai/W4n6h5Wof1qJ+peNqOKUshPWsRPWtRPWsxM2wU7Y0nbClrETtqydsOXshC1vJ2wFO2Er2glbyU7YynbCVrET9gg7YavaCXuknbDV7IStbidsDTtha9oJW8tOWJ+dsH47YQN2wibaCRu0EzZkJ2zYTtiInbBRO2GT7IRNthM2ZidsbTth69gJe1Qxw2os539vPvq5quCz+zYNPrTQuraEblUVfE4t9GhbQr9QFXxeLbSeLaHbVAVXqoXWtyX0S1XBF9RCG9gS+pWq4ItqocfYEvq1quBLaqHH2hL6jargy2qhx9kS+q2q4CtqoQ1tCd2uKviqWujxtoR+pyr4mlpoI1tCd6gKvq4W2tiW0O9VBd9QC21iS+gPqoJvqoU2tSX0R1XBt9RCT7Al9CdVwbha6Im2hP6sKihqoSfZErpTVfBttdCTbQn9RVXwHbXQZraE7lIVXKUWeootob+qCr6rFtrcltDdqoKr1UJPtSX0N1XB99RCT7Ml9HdVwffVQk+3JfQPVcEP1EJb2BL6p6rgGrXQM2wJ/UtV8EO10JaWhNYupSq4Vi20lS2hjqrgR2qhrW0JdVUF16mFtrEl1FMV/FgttK0toQmqguvVQtvZElpaVfATtdD2toSWURXcoBbawZbQsqqCn6qFdrQltJyq4Ea10E62hJZXFdykFtrZltAKqoKb1UK72BJaUVXwM7XQrraEVlIV3KIW2s2W0Mqqgp+rhXa3JbSKquBWtdAetoQeoSr4hVpoT1tCq6oKblMLPdOW0CNVBb9UC02xJbSaquBXaqG9bAmtrir4tVpob1tCa6gKfqMWepYtoTVVBb9VCz3bltBaqoLb1UL72BLqUxX8Ti20ry2hflXBHWqh59gSGlAV/F4ttJ8toYmqgj+ohZ5rS2hQVfBHtdDzbAkNqQr+pBba35bQsKrgz2qh59sSGlEV3KkWOsCW0Kiq4C9qoRfYEpqkKrhLLXSgLaHJqoK/qoVeaEtoTFVwt1roIFtCa6sK/qYWOtiW0Dqqgr+rhaZaENpOajfRyNxzZFETncyLbNzP0DpJUg3yQusl9LlO6BBbQv1aoVt1Qi+2JTSgFfqFTmiaLaGJWqHbdEIvsSU0qBX6pU7opbaEhrRCv9IJHWpLaFgr9Gud0MtsCY1ohX6jE5puS2hUK/RbndBhtoQmaYVu1wnNsCU0WSv0O53Qy20JjWmF7tAJzbQltLZW6Pc6ocNtCa2jFfqDTmiWLaFHaYX+qBM6wpbQulqhP+mEjrQl9Git0J91Qq+wJbSeVuhOndBRtoTW1wr9RSd0tC2hDbRCd+mEXmlL6DFaob/qhI6xJfRYrdDdOqFX2RJ6nFbobzqhY20JbagV+rtO6NW2hB6vFfqHTug4W0IbaYX+qRN6jS2hjbVC/9IJzbYltIlSaLiUTui1toQ21Qp1dELH2xJ6glaoqxN6nS2hJ2qFejqhE2wJPUkrNEEn9HpbQk/WCi2tE3qDLaHNtELL6ITeaEvoKVqhZXVCb7IltLlWaDmd0JttCT1VK7S8TuhEW0JP0wqtoBN6iy2hp2uFVtQJvdWW0BZaoZV0QifZEnqGVmhlndDbbAltqRVaRSd0si2hrbRCj9AJnWJLaGut0Ko6oTm2hLbRCj1SJ3SqLaFttUKr6YROsyW0nVZodZ3Q220Jba8VWkMndLotoR20QmvqhN5hS2hHrdBaOqEzbAntpBXq0wm905bQzlqhfp3QmbaEdtEKDeiE3mVLaFet0ESd0Fm2hHbTCg3qhN5tS2h3rdCQTuhsW0J7aIWGdULvsSW0p1ZoRCd0ji2hZ2qFRnVC77UlNEUrNEkndK4tob20QpN1Qu+zJbS3VmhMJ3SeLaFnaYXW1gmdb0vo2VqhdXRCF9gS2kcr9Cid0PttCe2rFVpXJ3ShLaHnaIUerRP6gC2h/bRC6+mELrIl9Fyt0Po6oQ/aEnqeVmgDndDFtoT21wo9Rif0IVtCz9cKPVYndIktoQO0Qo/TCX3YltALtEIb6oQutSV0oFbo8Tqhj9gSeqFWaCOd0GW2hA7SCm2sE/qoLaGDtUKV7pvHbAlN1QptqhP6uC2hF2mFnqATutyW0CFaoSfqhD5hS+jFWqEn6YSusCU0TSv0ZJ3QJ20JvUQrtJlO6FO2hF6qFXqKTujTtoQO1QptrhP6jC2hl2mFnqoT+qwtoelaoafphD5nS+gwrdDTdUKftyU0Qyu0hU7oSltCL9cKPUMn9AVbQjO1QlvqhL5oS+hwrdBWOqEv2RKapRXaWif0ZVtCR2iFttEJfcWW0JFaoW11Ql+1JfQKrdB2OqGv2RI6Siu0vU7o67aEjtYK7aAT+oYtoVdqhXbUCX3TltAxWqGddELfsiX0Kq3QzjqhcVtCx2qFdtEJFVtCr9YK7aoT+rYtoeO0QrvphL5jS+g1WqHddUJX2RKarRXaQyf0XVtCr9UK7akTutqW0PFaoWfqhL5nS+h1WqEpOqHv2xI6QSu0l07oB7aEXq8V2lsndI0toTdohZ6lE/qhLaE3aoWerRO61pbQm7RC++iEfmRL6M1aoX11QtfZEjpRK/QcndCPbQm9RSu0n07oeltCb9UKPVcn9BNbQidphZ6nE7rBltDbtEL764R+akvoZK3Q83VCN9oSOkUrdIBO6CZbQnO0Qi/QCd1sS+hUrdCBOqGf2RI6TSv0Qp3QLbaE3q4VOkgn9HNbQqdrhQ7WCd1qS+gdWqGpOqFf2BI6Qyv0Ip3QbbaE3qkVOkQn9EtbQmdqhV6sE/qVLaF3aYWm6YR+bUvoLK3QS3RCv7El9G6t0Et1Qr+1JXS2VuhQndDttoTeoxV6mU7od7aEztEKTdcJ3WFL6L1aocN0Qr+3JXSuVmiGTugPtoTepxV6uU7oj7aEztMKzdQJ/cmW0PlaocN1Qn+2JXSBVmiWTuhOW0Lv1wodoRP6iy2hC7VCR+qE7rIl9AGt0Ct0Qn+1JXSRVugondDdtoQ+qBU6Wif0N1tCF2uFXqkT+rstoQ9phY7RCf3DltAlWqFX6YT+aUvow1qhY3VC/7IldKlW6NUqoW4pW0If0QodpxPq2BK6TCv0Gp1Q15bQR7VCs3VCPVtCH9MKvVYnNMGW0Me1QsfrhJa2JXS5Vuh1OqFlLAhtJ7VVO+TuOUZK5w9zyxZT5mRd2HJ2wpa3E7aCnbAV7YStZCdsZTthq9gJe4SdsFXthD3STthqdsJWtxO2hp2wNe2ErWUnrM9OWL+dsAE7YRPthA3aCRuyEzZsJ2zETtionbBJdsIm2wkbsxO2tp2wdeyEPcpO2Lp2wh5tJ2w9O2Hr2wnbwE7YY+yEPbaYYafoZk66Pafc4+xANbQDpdupxj3eDlQjO2Eb2wnbxE7YpnbCnmAn7Il2wp5kJ+zJdsI2sxP2FDthm9sJe6qdsKfZCXu6nbAt7IQ9w07YlnbCtrITtrWdsG3shG1rJ2w7O2Hb2wnbwU7YjnbCdrITtrOdsF3shO1qJ2w3O2G72wnbw07YnnbCnmknbIqdsL3shO1tJ+xZdsKebSdsHzth+9oJe46dsP3shD3XTtjzihs2J0cxk1ddur8dovPthB1gJ+wFdsIOtBP2QjthB9kJO9hO2FQ7YS+yE3aInbAX2wmbZifsJXbCXmon7FA7YS+zEzbdTthhdsJm2Al7uZ2wmXbCDrcTNstO2BF2wo60E/YKO2FH2Qk72k7YK+2EHWMn7FV2wo61E/ZqO2HH2Ql7jZ2w2XbCXmsn7Hg7Ya+zE3aCnbDX2wl7g52wN9oJe5OdsDfbCTvRTthb7IS91U7YSXbC3mYn7GQ7YafYCZtjJ+xUO2Gn2Ql7u52w0+2EvcNO2Bl2wt5pJ+xMO2HvshN2lp2wd9sJO9tO2HvshJ1jJ+y9dsLOtRP2Pjth59kJO99O2AV2wt5vJ+xCO2EfsBN2kZ2wD9oJu9hO2IfshF1iJ+zDdsIutRP2ETthl9kJ+6idsI/ZCfu4nbDL7YR9wk7YFXbCPmkn7FN2wj5tJ+wzdsI+ayfsc3bCPm8n7Eo7YV+wE/ZFO2FfshP2ZTthX7ET9lU7YV+zE/Z1O2HfsBP2TTth37ITNm4nrNgJ+7adsO/YCbvKTth37YRdbSfse3bCvm8n7Ad2wq6xE/ZDO2HX2gn7kZ2w6+yE/dhO2PV2wn5iJ+wGO2E/tRN2o52wm+yE3Wwn7Gd2wm6xE/ZzO2G32gn7hZ2w2+yE/dJO2K/shP3aTthv7IT91k7Y7XbCfmcn7A47Yb+3E/YHO2F/tBP2Jzthf7YTdqedsL/YCbvLTthf7YTdbSfsb3bC/m4n7B92wv5pJ+xfVsJ6peyEdeyEde2E9eyETbATtrSdsGXshLWz465nZ8ddz86Ou56dHXc9OzvuenZ23PXs7Ljr2dlx17Oz465nZ8ddz86Ou141O2Ht7Ljr2dlx17Oz465nZ8ddz86Ou56dHXc9OzvuenZ23PXs7Ljr2dlx17Oz465nZ8ddz86Ou56dHXc9OzvuenZ23PXs7Ljr2dlx17Oz465nZ8ddz86Ou56dHXc9OzvuenZ23PXs7LjrHWsnrJ2tdL2GdsLa2SPXs7NHrmdnj1yviZ2wdvbI9ezskevZ2SPXs7NHrmdnj1zPzh65np09cj07e+R6dvbI9ezskevZ2SPXs7NHrmdnj1zPzh65np09cj07e+R6dvbI9ezskevZ2SPXs7NHrmdnj1zPzh65np09cj07e+R6dvbI9ezskevZ2SPXs7NHrmdnj1zPzh65np09cr0UO2Ht7JHr2dkj17OzR65nZ49cz84euZ6dPXI9O3vkenb2yPXs7JHrnWcnrJ39bz07+996dva/9ezsf+vZ2f/Ws7P/rWdn/1vPzv63np39bz07+996dva/9ezsf+vZ2f/Ws7P/rWdn/1vPzv63np39bz07+996dva/9ezsf+vZ2f/Wy7QT1s7+t56d/W89O/vfenb2v/Xs7H/r2dn/1rOz/61nZ/9bz87+t56d/W89O/vfenb2v/Xs7H/r2dn/1rOz/61nZ/9bz87+t56d/W89O/vfenb2v/Xs7H/r2dn/1rOz/61nZ/9bz87+t56d/W89O/vfenb2v/Xs7H/r2dn/1rOz/62XYyesnf1vPTv733p29r/17Ox/69nZ/9azs/+tZ2f/W8/O/reenf1vPTv733p29r/17Ox/69nZ/9azs/+tZ2f/W8/O/reenf1vPTv733p29r/17Ox/69nZ/9azs/+tZ2f/W8/O/reenf1vPTv733p29r/17Ox/69nZ/9azs/+tZ2f/W2+ZnbB29r/17Ox/69nZ/9azs/+tZ2f/W8/O/reenf1vPTv733p29r/17Ox/69nZ/9azs/+tZ2f/W8/O/reenf1vPTv733p29r/17Ox/69nZ/9azs/+tZ2f/W8/O/reenf1vPTv733qq/W+7pV42LHN0p/S0rKnueu/69h06durcpWu37j16npnSq/dZZ/fpe06/c8/rf/6ACwZeOGhw6kVDLk675NKhl6UPy7g8c3jWiJFXjBp95Zirxl49Ln5NPDt+bXx8/Lr4hPj18RviN8Zvit8cnxi/JX5rfFL8tvjk+JR4TnxqfFr89vj0+B3xGfE74zPjd8Vnxe+Oz47fE58Tvzc+N35ffF58fnxB/P74wvgD8UXxB+OL4w/Fl8Qfji+NPxJfFn80/lj88fjy+BPxFfEn40/Fn44/E382/lz8+fjK+AvxF+MvxV+OvxJ/Nf5a/PX4G/E342/F43GJvx1/J74q/m58dfy9+PvxD+Jr4h/G18Y/iq+LfxxfH/8kviH+aXxjfFN8c/yz+Jb45/Gt8S/i2+Jfxr+Kfx3/Jv5tfHv8u/iO+PfxH+I/xn+K/xzfGf8lviv+a3x3/Lf47/E/4n/G/xKnlDiOOK44njgJ4pQWp4w4ZcUpJ055cSqIU1GcSuJUFqeKOEeIU1WcI8WpJk51cWqIU1OcWuL4xPGLExAnUZygOCFxwuJExImKkyROsjgxcWqLU0eco8SpK87R4tQTp744DcQ5RpxjxTlOnIbiHC9OI3Eai9NEnKbinCDOieKcJM7J4jQT5xRxmotzqjiniXO6OC3EOUOcluK0Eqe1OG3EaStOO3Hai9NBnI7idBKnszhdxOkqTjdxuovTQ5ye4pwpToo4vcTpLc5Z4pwtTh9x+opzjjj9xDlXnPPE6S/O+eIMEOcCcQaKc6E4g8QZLE6qOBeJM0Sci8VJE+cScS4VZ6g4l4mTLs4wcTLEuVycTHGGi5MlzghxRopzhTijxBktzpXijBHnKnHGinO1OOPEuUacbHGuFWe8ONeJM0Gc68W5QZwbxblJnJvFmSjOLeLcKs4kcW4TZ7I4U8TJEWeqONPEuV2c6eLcIc4Mce4UZ6Y4d4kzS5y7xZktzj3izBHnXnHminOfOPPEmS/OAnHuF2ehOA+Is0icB8VZLM5D4iwR52FxlorziDjLxHlUnMfEeVyc5eI8Ic4KcZ4U5ylxnhbnGXGeFec5cZ4XZ6U4L4jzojgvifOyOK+I86o4r4nzujhviPOmOG+JExdHxHlbnHfEWSXOu+KsFuc9cd4X5wNx1ojzoThrxflInHXifCzOenE+EWeDOJ+Ks1GcTeJsFuczcbaI87k4W8X5Qpxt4nwpzlfifC3ON+J8K852cb4TZ4c434vzgzg/ivOTOD+Ls1OcX8TZJc6v4uwW5zdxfhfnD3H+FOcvcUuJ64jriuuJmyBuaXHLiFtW3HLilhe3grgVxa0kbmVxq4h7hLhVxT1S3GriVhe3hrg1xa0lrk9cv7gBcRPFDYobEjcsbkTcqLhJ4iaLGxO3trh1xD1K3LriHi1uPXHri9tA3GPEPVbc48RtKO7x4jYSt7G4TcRtKu4J4p4o7kninixuM3FPEbe5uKeKe5q4p4vbQtwzxG0pbitxW4vbRty24rYTt724HcTtKG4ncTuL20XcruJ2E7e7uD3E7SnumeKmiNtL3N7iniXu2eL2EbevuOeI20/cc8U9T9z+4p4v7gBxLxB3oLgXijtI3MHipop7kbhDxL1Y3DRxLxH3UnGHinuZuOniDhM3Q9zLxc0Ud7i4WeKOEHekuFeIO0rc0eJeKe4Yca8Sd6y4V4s7TtxrxM0W91pxx4t7nbgTxL1e3BvEvVHcm8S9WdyJ4t4i7q3iThL3NnEniztF3Bxxp4o7TdzbxZ0u7h3izhD3TnFninuXuLPEvVvc2eLeI+4cce8Vd66494k7T9z54i4Q935xF4r7gLiLxH1Q3MXiPiTuEnEfFnepuI+Iu0zcR8V9TNzHxV0u7hPirhD3SXGfEvdpcZ8R91lxnxP3eXFXivuCuC+K+5K4L4v7irivivuauK+L+4a4b4r7lrhxcUXct8V9R9xV4r4r7mpx3xP3fXE/EHeNuB+Ku1bcj8RdJ+7H4q4X9xNxN4j7qbgbxd0k7mZxPxN3i7ifi7tV3C/E3Sbul+J+Je7X4n4j7rfibhf3O3F3iPu9uD+I+6O4P4n7s7g7xf1F3F3i/irubnF/E/d3cf8Q909x/xKvlHjmreuK54mXIF5p8cqIV1a8cuKVF6+CeBXFqyReZfGqiHeEeFXFO1K8auJVF6+GeDXFqyWeTzy/eAHxEsULihcSLyxeRLyoeEniJYsXE6+2eHXEO0q8uuIdLV498eqL10C8Y8Q7VrzjxGso3vHiNRKvsXhNxGsq3gninSjeSeKdLF4z8U4Rr7l4p4p3mnini9dCvDPEayleK/Fai9dGvLbitROvvXgdxOsoXifxOovXRbyu4nUTr7t4PcTrKd6Z4qWI10u83uKdJd7Z4vURr69454jXT7xzxTtPvP7inS/eAPEuEG+geBeKN0i8weKlineReEPEu1i8NPEuEe9S8YaKd5l46eINEy9DvMvFyxRvuHhZ4o0Qb6R4V4g3SrzR4l0p3hjxrhJvrHhXizdOvGvEyxbvWvHGi3edeBPEu168G0wy3yTeTZLcJLRN8tkkik1S1yRgTbLUJDZNEtIkDE1yzyTiTNLMJLhMMsokjkySxyRkTPLEJDpMUsIkEMxiv1mYN4voZsHbLE6bhWSz6GsWaM1iqln4NIuUZkHRLP6ZhTqzqGYWwMxilVlYMotAZsHGLK6YhRCzaGEWGMxigJm4m0m2mRCbyauZaJpJoZnAmcmWmRiZSYyZcJjJgRnIm0G3GSCbwawZeJpBohnQLUpJzRqRmd52YNbA9aXal3JcL6F0mbLlyleoWKlylSOqHlmteo2atXz+QGIwFI5Ek5JjtescVffoevUbHHPscQ2Pb9S4SdMTTjzp5GanND/1tNNbnNGyVes2bdtNnry+VNec7HmtBqVl9s55Z1XZr39669Uhkyfv++js/B/Fr8t5Z3yXX4N1uvWYtv+zCTnvHO9edO/dT3Q7Z/9nd+a8k1PmiBtWu4Ne2f/ZXfnjmfaX887HLx2TsqZdmej+D0tXyXlnS7me7dzHb8nzYc2cdx6quLr1s/eUOz/3Q19BH4YK+jBS0If1CvqwfkEfNizow0YFfdikoA+bFvRhs4I+bF7Qhy0K+rBlQR92KOjDjgV92K2gD3sU9OGZBX2YUtCHfQr68JyCPuxf0IcDCvrwooI+HFLQh0ML+jC9oA8zCvrw8oI+HFnQh6MK+vCqgj68uqAP7y2gzZerWMDTUa5yQR/WLujDBjnv3Lbu6w3XVZi0PffDhgWVbFHQh11y3nn0xGObV+5b95r9H1YqKGalpgWUrNKogJhVTijow2sL+vC2AmIeKQWUrJZRgKRqowv4eo0lBXy9xrICPqxZqqAPKxcQ09+lgJL+7QVI8v9SwNeDxxbw9WBBty54dUEfTiwgZuSNAkpGhxYgKTqigK8nLyrg68kF3brk3/J8uL5U1ZyP6g38e1liwKBhl2UMzEq7cGjqgGGZAweZ/4xMzRyeNix9wBWZAzMyUjPXl6qVPb/NsPThWVOzF7RNy0wdlOVm398pPSt1SGrmfWc1bXLoFY2Dv+8U6/vXtD34+6WKd/3c7y9MSR1qYEemFk+BWW7JF8EtboTFbQYOHTrYDADaDMsYvR+lbV5NeYLP21N6SsV9/6182ARtAQTzemUNy5iSU4jig+qozfz2aalDD23lKr1g79BoH2nV7AfbD8tMTRuSvud/3v5RnRFZaUPTskbvXURrs7+x9vi7rZ69t6lOnjwl+6G962GtBg/OTB0+fL+KKdkLeqVdljE0da+cfy52kNiEYt2KUW2zH2ydlj5wz+pbVo+M2/+J4i3sai7d++KB6Xui5DbW/RdZ0HnEZRmdLsrZ/4Wa2Q91Sh+8V2mhT8hJReyvs+6Vn9c81rnJZdnzepundUpO7vf/eVT3Eec8Ojw1a8Dw1PTBqZkDLhqWOSBr4JDh/Ee73WE+2u0Ou1k7+SN48EfbzRv8vm7DRh7wEO0vv/cRqAR76NvZfuiLfHafyMhMGzkwK7VXalavv9ud+cfeptUV8LTmBrfyvLb7Dz6vD4xMS71iQPqwrNT1zpfkp7T3YT6lvfO3w+LVYCkvf4TSmKe0U15NeYKbJp0HuFPuH/9cde5ZjQt9lDsd/C/uP//S+eB/8f75ly77niLfvv9G9pXc989d817mgH/plvcyB/xL9/zdzr5/6ZGX+oB/6Zn3JhzwL2fm/kuZA/8lJfdfyh74L71y/6Vc/iosX7wq7Jo/QoXiRSiXvzsrnzfYwWOYPJXdrPhPWdtifb3UwV9vpxxB5fti+5I+W/u+3+Ewe5eOxft+woFvEZNdOfgZKZ3bbxXYkTv3mRdJ3j48tzvN12GXtP84+NK5z8L+i+fXa8bxXYcNHJyT98nJU0ofsUxuxPmmBWemHnB38hT7t693UE2VsVFTZUA1VbZIzoPvXFnFnSsgYlndnSv7f9f7j18v37uo7GGvKZQr7tusEKzyRXZJhXypQkm+VLEkX6pU5HNYyJcql+RKVUrypSNK8qWqJfnSkUV+6aCutVpul5mv4VQvXsNx1Z1znisU2j1XK273fBBY9SLAahQvdvnig9UoHKx6ScdBJZVf6JurZv6GUi3vVfL1VDXzUhQStEZBQXObbN6p/MP7VuE6pGZ1NzPS4TnZD3RMHZjRKjNz4Og8V63hFDqxr56TPX9v8Sm5fxww1S/n/PO/D7hp60tVK3y1oNB/cQv9F6+QlcK2BSOVL1Xw5xUK+bxiIZ9XKuTzyoV8XqWQz48o5POqhXx+ZKlCeDsUeofKFraWWuxI5fZU3sGVumfefEDFF/y/8s6d8rWYvP9YCvqve0WU+hevWJx/LegB0X245y7qv13YuoZz2AuKJeihi5gZOKD+1c3fFTqFvoi9vNLy9bz713PaFXYxL//FvCIGnf8X8H85YFu8wsKWDkswpc53GTdvAy/8KT/8CzlFTc28vCMOzP2rlrdYISFLFzHg6VCUyOKsnHiFRzxg4WT+Ya5yFGce5+W9ysGqDlgA1U/zvNzVxoMjVsjzxWLMAb3c9cODI1bM88X8d65S8e5c6WLMFr28VzlYVeU8X82vqkrxVJUpxszSy3uVg1Udkeer+VVVLZ6qssWYPHh5r3KwqiPzTlf0s5w8Mcvli1kj73xnX75m/ye18l477yjo4IJ5pkq19g1B8921vBEaF3+Gm3BAZ7gnqTglfmthd6HWgVnJgoJUz81M5n5NnJH/xJ5cVL5NQ1CqiBX4w83iVCj+CLC8/VX88sVZiqmQV1q+V1GFvHdd30lXKOLtVuGQ45f/C/j/UMC2eIX5eiTgWO/AvHnhgx63qLGHU9QwojTohpTOW+xwf1FQvoiJ4f5u/tFClRfSzXt5707+br6COKF/Yi/Pd8scRdfjFTHXzT9mdRXj6oSCIi4sfMTpKVSWKUJl/hFnQt7L6XM9TuEjzjJ561L/znCKGi+WzVu1+gbtFDXaK+Ho3SlqrFbC8btT1FjtgBF8iWLm71rK5Y1ZxG/lNL++aF9Ud6AJMLCoeYkmQFr+AJWLFWBoUXMQTYDU/AGOKFaAwUXNNzQBkvIHqFasAFlF5cY0AYYVlcTRBBiSP0DNYgVIP/i1UquIsbeveK+smsUfe/sKH3vXAo29ffmf+1qFjr39eaXle8H78z7/hVzOn/9y/iLGDH7FMKTkISvhQ1bGh6yCD3kEPmRVfMhq+JDV/xPgNf4Tjajaf+Jelv5PqKz5n2jq1Wy0y/zTLFecGodtv6hVnFW0SsWNXew3eaWD5VTKq6zQt3wlpbVhd2qDlFGn3tGmGKP7SiX51VeeocHhrrnXOPDH6l7ed+gB/5KQ/y7u+5fSeS/+zw+YXyhqKK9UVpy7mOcq+Rp6pUOuUhVdMf8YVfI0lTzPQ74U4v4/vSJWRwr42fD+Pyvkz3/u/zOhyIX1g/4tz2y7Yv4Hcf+f5ff/+rzwWbBb1HTWKSovVKEYDbtykSt5eYoVFvLQK0oVC+jqKotTZ9+KkjjDiyItzgJDRR1MoesLFRe0u3zEwKHDC0UpWwBKRXEa7H8I48W49RUKXwCrqLjzRxQUMU/jLqKBFDoMrlaEyvZFJf0KfUNWLyJi/gWwaorXeI0iufMvgFVXjC9rFhmzStFJwMJSakXGzL8AVjPv20Y/ac0TM/8CWJ58pK+oviah0HdShcNzQZrE2z+PxjsH94e+3NeZfnjly31oihpeHVkokM8eUIWSAB3wzBaFVJFRRxUPieQrohtunx/IV+hw54A3BrGOKhfZY+UDOqBb/Z+socoF1VCeDrMopGr/oTrK018XhVT9v1hLVYtEqvFfrKVyRSLV/C/WUukikWoVmcSumGc4XJwf2e1/HRY+86mQmxc+eAzgUwzhfEW8hYv+UaSv4J8MjdlfA58VOngqcCSeUPRI3IS+Os9IvIjBkFeMQVutIn9Am6dYET8Gq3ngj8EKr4T8kz5NciFQ4N3yF323AuLcsP9ubbU2Xipf+OPmP+TjFihifa2AAWAg76NYGJDfHpCvJEC+IgeAeZDK//fqqH2RQBX+Q3VU+AAwoBmi/+/VUFEDwIBmkP4//BxVKRLpiP9iLVUtEqkWo5ZqlWRuWKvIAaAv75i2KB9JrYLMH4UNhRLyLLT98zvow9vbqXc2aG8ncVb+a7s7Fay57MHJGy+3Wg9oVOVyCxzweflcvAIvUCHv4OTgWGXz3ZIK4rz1zyBo30dlcr/2T60ffO0yBV+73MFw5QpL/vwT8OAvlM+TlNg3Pn/5n/t5mBX3z3bFh664Qm6HV0iNFnDD82x1cPANLyvOe/vZPjg40bT/Uv+U2FxIiWL/pjdBWQNe7hcOuHKFQtpjoZO4fR9XKuD2VMhT3QfdnkribDqoAsrlfu2g9lgxt0jBz8LBcBUO0R4rHvyFivnb47rCGmJxbQqgdl35lRU9Nu3KqHvodn2YF/pna9pD72u3dEhq1oCBI7IuHnBFWla66aPXl2pI3t5uwmFubzfh/8FNKKvv+2+NklmmDxen3WHvGNiy0HGYW2hu3ys0t5+w73aED7uq2x32vWmZfxO7vFV74G5q9YqwEx+ukFbF/w2KV/jvTIr9yOj9DW6erj3vtiaP525r0sr0SH32dkhTCt5Jw2tZ2M4lLfX7mRbxg4n/2Njw6P/lkWESZt/YCai5xXH/3r6xSwYM2POGvXzEsKy01PSs9aV6kd+unQ/z7dr5sPsp97BfJoW9XTsUuP6cUOjbtUOhvXHHff11lf3v3wOe3k55gx3uK6jTYd9Rp+hXkHov+DuyL5ly8eVv3npa0i211l71R4d8O6gW9sVGg7tnbmo8p/6Knu2WZ2f37a/dO9U5ONBh7p3qHPi27Qz1WR72jsdFOzWBm6wWZbT81/YZcQ/7wShoVw7lJrxOofs6t9/3TooVakw89O/23AKSRmWP2he4XVFGQyf7ob1X/RujR8a0PIt++6+b95v/PLIFXLFc/X1XPL6IoHsqr4B47YqsunJF795ZxNV6jbiwwC+VKbJNltsPUsLrFnXr2hZ06/5Z72xaDJj98Q6BUqLaL1/I1doUWVHlCw+Y24xz61zzvfJFfa/QLU7Lze3x905yBVEX5Jsu13ZfBZxe1P0q1I5cLv+komzuA16YP3jJP2QF5YTL5qXML7h8633vlJ5FduP/tOQOhXYGeT3hBU8xciUVuc3Pod3uscMcb3dGjbd7/Hsr+Yd5oX8OZTr0wH6eGdib4XyAPJzvcJjD+Q7/w8P5tsUczrctdDjf7qDh/EGJzvbI4Xx728P5A8e41Qvvyr0CXotF7ziX/yKH14N0QPUg/n9xxj44dc8hbMOGpw64OG3PjD3y/94j/p9fDy/kQW6Xv3Xnf8T/F5bD3fyPuFfAwGAvpD/fD+i8vJz/XHjeWY2b5N9PLe9t3bfoWXiHceAgtOjJnPPPVKx641IfRj89cfQxtU4a1mPkdZ/2fujqGvfV/+II//YRp438df2wwq+XcF+3EUMLoSpiZbYoS9r/WL8V/vf6rYVDs/7psZL/b1Dyf4OSA/7vXx6UBIt45vclNgp5tPPPvBJq7ZvOFDHSSShgpFNUj3FAze2NHih6y6LGJVlyyhPpn4v8d4ZcSf9e1/Xc4NQLRwwZMHTYkAED92T0/jn69op/jrw9i9yhnX+YHdr5h90dJVo7ca9tgQsZB5+41zb3jwJ2b93fo+3/o/BC7fOv7ecv1CH3j8ILdcz9o/BCBR4VeHChzrl/FF6oS+4fhRfqmvtH4YW65f5ReKHuuX8UXqhH7h+FF+qZ+0fhhc7M/aPwQim5fxReqFfuH4UX6p37R+GFzsr9o/BCZ+f+UXihPrl/FF6ob+4fhRc6J/ePwgv1y/2j8ELn5v5ReKHzcv/IW6jw0YaFH8QUs6PxF5F1O9xt1gPF/41LmcJ/45JQ3LeIfnfMhNw3VfF/+FSm0B8+ld43wDq9yG05Dnes1/+w24BjsQ24/w+1AQ/ZBg4c1f5dpuP+THgRo9uSDmHAJ9b/N35o1eF/+YdWLQuZQ7Q5rJ9R9CjGTsNuYQy5zbeIrFYh55y13TM96DpsyOTJ04o4fKzAnwkm+As9PqvA8qWdacU+8spf8KlNBf860cFM885HTfN6/3vTvI9OSx+WlXbR6AHDU7MGXJaWPiAzdWRqZlbahWaqNzxtcOqA1IsuMuUHDBo2wlw4M98s0EeeBbY7zFlgu//gQvwhZ4F/t7NDLddX3r/UdbivoXa2X0MHdn1HHtghfdQwIzNt5MCs1O5/N+ReqVnd0tJT9rfiXqYRt/u7DbfZ24QnT9b8FvkA/ZjuoR2qe6j1L3YPx+7rHlLTLx+ROiJ18ICMERcOTRs04KIR6YOy0oalDxhk6iC3OwiSu4OOh9kddDzsUXbCYY+lFd3BgeeZH2op5+92pVjLaVyiBfPCf9RXhLF134O897/VDrsH6vjv9kA1D+qBjj6gB2q371Hp+feT0n7fg7KnZNFjJcBBrbn3elqxDhDd2/PkP4UU0/F1RHV8if/i8vff/dq+es3t7dL2vEHSBw7lO/K6HGZP1+Ww+6nS+SOUhfd0BxwycsiVbV1PV0CpApet/73+sLDfmXfc3+Hs/a+vCMvDAf/SGfnTik62f1qBnRrXy791buHrXMVssV7x17nKFr7OVaa4XYb+R6llCpm+P7WvS9vzP3ru/fOfN1Qhpr6ybmGmPvf2f+ttVui/lL69GG+2Yr78imHrLZPbcov4bbGr+81Q3u6pwAngPo6DiziFDX4Oe3DkFmOxqcwBvEUda1X4ajko7d7lP+hN/OjofROuQZmp5tkcPCB9xNChaRelFbD0Uuv/ll7+534DWWn/4sp/bFGl6oGviWcPmNG02dsWu//TFHVLKHu7qf+xtZOa/96jvHTvZcw9MdOGPctRdx58E2oe5gNbA9PYS+Xq2R/44K5F6fErle/3YP/c+H9+YnbwNfNv8eOVy9cxqR2GhVy91H1t00bmq6ncB2Q/9j83IuepvJX39y3e7xefcbC8CsV9mx70/YrgaqyQG7iQ++Eu2nfBPLelVO79KeRbzt8/Dc6tt0MW3/PL5fzRD5io5GkHB1XG/r2DKuQsy62MrGEDMgcOThu1vtSRB9/G4nt/D/x+mcN8Gos9lThENZbNBTtwsuoU/MI+WA/m0OmyhSY4C614r6jW5Rb2rYS8rctTFC+odSUUmvBNKG7+tkwhDbWQKWC5Al9F5fNU5kHdXLmyh11hBz0xuTXz/wHPvM0v8GkZAA==",
3804
- "debug_symbols": "tZ3RjiPZcW3/ZZ7ngScidkQc/4phCLItGwIEyZDlC1wY+vfLTDJj1fTc4lRXtV6G0T1dZzMPGYuZZHDV//7073/41//5z9/98c//8Zf//umf/vl/f/rXv/7xT3/643/+7k9/+bff/+2Pf/nz/W//96fb8Z8VP/1T599//mldf1r3P9jxB7//ldbPP7k9b/15G89bPW/zeVvP237e7sdt3J63z/XiuV4814vnevFcL57rxXO9eK4Xz/X0XE/P9fRcT8/19FxPz/X0XE/P9fRcT8/18ljP77freWvPW3/exvNWz9t83tbztp+3+3Fbz/XquV4916vnevVcr57r1XO9eq5Xz/XquV4/1+vnev1cr5/r9bGe7rd63ubztp63/bzdj9t9e96u5609b/15+1xvP9fbz/X2c739XG8/11u321Wsq7Cr8KuIqzhWjaPIq6ir6KvYz2LdruJYOY/CrsKv4lh5H4Wu4r5yrqOoq+ir2M/CblexrsKuwq8irkJXca1s18p2rWzXyn6t7NfKfq3s18p+rezXykcT5XGkRxedRVyHfPRHHlt3NMijyKuoq+ir2M/i6JJHsa7CrsKv4lpZ18q6Vta1sq6Vda2c18p5rZzXynmtnNfKea2c18p5rZzXynmtXNfKR+vkcexH7zwKv4q4Cl3FfhZHY2QdxfGP+yjiKnQVeRV1FX0V+1kcDfIo1lXYVVwr72vlfa28r5X3tfK+Vt7Ple12u4p1FXYVfhVxFbqKvIq6ir6Ka+V1rbyulde18rpWXtfK61p5XSuva+V1rbyule1a2a6V7VrZrpXtWtmule1a2a6V7VrZrpX9Wtmvlf1a2a+V/VrZr5X9Wtmvlf1a2a+V41o5rpXjWjmuleNaOa6V41o5rpXjWjmulXWtrGtlXSvrWlnXyrpW1rXy0VZ1O4q+iv0sjrZ6FOsq7Cr8KuIqdBV5FdfKea2c18p1rVzXynWtXNfKda1c18r9bDRrXUVeRV1FX8WRdeeYHZ3yKPwq4iqOlf0o8irqKo77HEexH4UfnfIo1lXYVfhVxFXoKvIq6ir6Kq6V17XyulZe18rrWvnolNJR6IEUPzvlLOoq+ir2szg75SzWVdhV+FXEVVwr27WyXSvbtbJdK/u1sl8r+7WyXyv7tbJfK/u1sl8r+7WyXyvHtXJcK8e1clwrx7VyXCvHtXJcK8e1clwr61pZ18q6Vta1sq6Vda2sa2VdK+taWdfKea2c18p5rZzXynmtnNfKea2c18p5rZzXynUteJ6j5VHoKvIqjqfWWfRVHE+t46eOM7VHsa7CHuckfp6snUVcxXHHjifb0VZ1/k1dxX3lvh3FfhbHS9KjuK/c58m1XYVfRVyFriKvoq6ir2I/ijga7VGsq7Cr8KuIq9BV5FXUVfRVXCuva+V1rbyulde18rpWXtfK61p5XSuva+V1rWzXynatbNfKdq1s18p2rWzXynatbNfKdq3s18p+rezXyn6t7NfKfq3s18p+rezXykejtR0XOcfKdr+28uPa6rjj6yCfPW/9eRvPWz1v87i9/1ScP3VfY50vzs9be9768zaet3re5vO2nrf9vN2P2+NI1n5cuZ239/9v8bhSMz2u1M5bf97e/73l40rtvK3n7f3n/HlF5va4Ijtv/Xl7/zn3xxXZeXu/X96PK7LwxxVZxOMK7Ly9/3zocQV23sbzVs/bfN7ux+3RtqH7Lum8iD069Xb/U15/Wuc55fP22IPjbPHYg/r5sad1/9d1/ev2x//tY8U+/vaAwLLHldp5e6x1PJb7/Jnj/x5XzetxRX0sfMSv85L6eEyeD+jz8fTHA+KPx8MfD4cfL1F3IPx8Xnbn46r7JPXjJh4391X244r7+bDtI8iua3f7+/2P10X+7/721z/84fg/b6767+8F/Nfv//qHP//tp3/68//86U8///R/fv+n/zn/0X//1+//fN7+7fd/vf/fO2v+8Od/v9/eF/yPP/7pD0f195/56dv7P3q/+kt7/vj9AvCmWeJ+Gv7RRe7nBv5c434K8KklMvK5Qp8P1nOB+vCB9F7PBfYt310g3l/Aj4uZxzFUzAJ3wP5iAb3YhbgWuJ/fvbvAx+5B+7sLvNiD7dfDsCPe3YP+6iG8uAdxvCSeC6SvN/fgwwvcT5avp+P9DNg/s8T9BON6Lt1PH1jiftL14cPoayNlNNX9IvjDz8aDzI+nc/Sbg/jFz68Xz4XM6xiy9JkF6nYdQq3b5xa4Hoiyd+/Bq4chjouox8MQuXk23R/Vjy6hHK4o41NLpNc8GeL9JezFGqW62FLabxrrl08HW682Y63ZjLXf206zF0vcbkDW4t0l/AXs7+/sDezv7+npvUN5uaF7NrTesP57HpPqPUvs+tQSXbdhZb2/hNXXH9b++sO6v/yw+u0f/LBuv5a4X5v0px6TnfOw7v7UM+N+gXPdi/slTr67hMeXH1bXlx9Wz68/rPWPfVjvL92aDfX3Iez7yxsaty9vaKwvb2jYP3pD3zxD45NP8iHo/bLbP9Vq9zfGrs24v//17hKRX39Y6+sPa3/9Yd3/2If1/inWPChH/eacTfs7Fpkzz/uHYL3eXUT26twzr3ui+8vjuxdTr9ZQzLNU97dA3l8jXp2J25yJZ3BNlt9xL8S96NvnjkR+nUlL+WKNV09T43zj/mbze0fy4ll6f573tKzXZ/ZCyziO9x+RfPX8SvW1GfeP6G48Jvf3Xb9jlUxWKev3V7EfssqLE9Ku69WpN4/t/X3TD+9r3fIiYd0qPvUcu18gca20PruGetYo+8xbIAcyevBx//jxUwz6ZpF6d5F8hdSerltvL2DDvmNDjA0J/+SmzrHULw7lmzXqBzwwr9b4evvfozVHstYnMTb34v4RVXwCYx8E4UuMFTju91ulXr3J1Is3C997ar1aIGvuRNZe7xzGyxV6Touzoz61wuAv316A5offq1vXPdi2PvH2yp6n9a53z7w6/tGnTXMCeF/hzduu+8Pv29buC+B9e8uJ9ctnVNer936vA9lvT3Y+fifM1vUKYPbmVcS/YWbvr6+xX77vGFeDRivfvCLa59bIF2vYDziWV2825b7WuMPvxRqvnqM8y9eu9f6xvLgfabd5S9rfXeHVI3t/JZtrA7/dPrXGx+7Fq6eoz7srFm9PUr7pk/3qKeoRs8abK8/+ZaOs28t+nfvRtzeftHjom0VeXMzX/Vztejn8xXPjV4u8ekN0ri7izVtFpm+X8FfP83lBNH9zPv3rRV6ClE/Q1pv3vb5vEb/teY69OZv+9SIvLun3fHxz75vPLXHfcT4OzFcH8+pyqefF7Y6xN+dc+1PHUvrko5vz0mJ3GL2/yFo/4IFZ9uUH5oNLvNyPVw2zOYv97JbWyvl4zm8vDuXVc6yKV4b9outWfX1LXy0xELq/b/O5JT7cLnb7eru83NPN03Tb+3v66hUm5jN406p3X2HWy4+Ybhqk3nfkzVX9N59C/8YqNZ/v3Enz5mXm4wMB94/7jI+BeWi0Pv45Vc6VSr05yf5mhfXqQyZf63rJ9fWmYeTfrPECp3u/eY7xuOibz3Jffcr04VftV58zffhV29eXX7XdfsCrtvsPeNV+uchHXxxefdr0QZK9WuLDGHr1edNHMfTBY3n1KvVyiY9R+eVz7GMvdC+fYx99oXv5gdNHX+jCv/z0+OASrx6V8B/wDHv1kdNHn2Ev9/SDL3SvqXybabE7lf1dKr/62On+ucq1RtxfKd59ddCrqbecia18+1ppt/5mkZefjNa80K31/rvGrxdZa94aXG/f2PvVIv6q73ix22/fa/2eRWLbfDy66/a5RXTz6/xBt+wXi7x6us4bGPK3U2D5zRKvnmhpTMu8eaPxfvbzzSL9A168tX/Ai3fevvzinesHvHi//PTpoy/eLxf56It3xpfp/GqJD6M1fwBaP3gsr14mXj66H33ZfPnp00dfNuv25Qfmg0u82o+6/YDHtvwHPLb7B7xsvgJizjvL+WZA+VdArHz5qpm8ar4BYvrH70fv2//nsf31/Xj1IVTd5q3Q6v0+DutHXFX1j7iq6q9fVfWPOONt/wGt219nav8IpvYPYOrLDfkRfXd/S87+vx+zffuMf/UJxP0tnZlAsTcfvH5X5+0dDBfY+3dkvzwD4JMMf/thyLdP+FefUH249V59NPTh1nv1GdUHW2/rB7Te/hHvqu6vv6u6f8Rboq8+qfpo6+38R7de3OaNyKj17jPeXr3xbjPG4m++3JT7mxVeXhTNWbNutzfP1F99jeHl3ZhrkTcfIOZ3XVYx/rFu+93LKnv1yY53J8P7b4cnvnlz126vPvNX2vV8v9dvniPfvtH88iJezOKmvfsm8es1aiadory/vsabr6l8zxq6Gc8RrffWsFefMsnmIzPZzvdGQs7xgHfPEmsAkPX220/9HfeD62al6+tr/GIC7XvWqJ419ifXeDszVZ88lp7TVb39OOSbNV4/xzbfaru9GaX99vlhH7wkev/rGfbqq1DK+Zqj6s0bAN+7yO3ri/BEvT8u+7OLrPrYIrcPnVbd7NW+5o/Y1/wR+5o/Yl/zH7yv988ONeeryz65yFpM9Yf/gEXUP2CR9B+wJ59exGac/X4doM8uMm/SLovP35PFIvHZRcQ9+fyezBde7x/nrs8uMu+x3BexT+8Jh9OfPRz3ebLFm6m3Xy0SL+dF5rzG3l5h/XqRePWeUc1Jmu/9yUVivpId4f7ZRebbxBGRn1xEcb0Ox6tvNb9eJIMT1/zs4fAt88hXz9gPL7L1Aw7n04vUoOB+Ir5+wCLx2XvC6Vq0vfh6svTqFXA+G3z7qV5/z92YEZjofHEsrz7C+vrduF+YzEv5LepzW3o/Zc1Z5LPP1ftPzmn07bMkebvIWv71w/n8IotPOddnn6u/WOSzJJHNJ78yf3F6k/kPfaaZEHe80gJkf/luvHzVmzOB+2v4i5eJVx8d3d+aGIZkvH3T97Nr7HfXeHkwmzcn96uXq3o9aD074pbvvZ9n9eoLqUhVrN+8v/GrNV4wNWy+6nc/H8jPreF8p97fNMz3rTHjFl9ZY315jdAcS/Qn90MzJ3F/D22/u8arz6+s55zo/ti+a8yxlx9gJWuk9P4aLz+uGYCsXwyffMcaxhvg9lYR8Ks1vvza//pewKDbXu/fi/qH3ovFtIf9wsv1XWv4D1jj9uU16Ddzvf/c2C9nTvZcfMcv9FbfsUbw5dyIH7FGfXINzZV3ZH52DT5e6fX1Y/nsGrrNsWjdvr6Gf3aNYI18YQNaX+3a1/diOm7l+93irz6x+iA7XvJ8ZHL3T4zX+/dCX+b5yzU+yHO/fZWkv3EvPsTzc6btH3gvPsbz31rDf8Aaty+v8TGe+4ov8/z1Gh/j+XesUZ9c40M8/601PsLzjx/LZ9f4GM8/voZ/do2P8dy+StLfuBcf47npH8rzUs17wfv9/Xw1uP/Rfnu5xgf77eNr1CfX+Fi//cYaH+q3Dx/LZ9f4YL99eA3/7Bof6zf/6ttQv3EvPtZv/uV3oV6+X8L80/09nP2p91x8zfiTv32b8vvWCL5s80b3+dk1fmFG2t/zRtaMDf/CUv1rueTLdxg/NCDj8QKlHxyQeX0/PjYg8/E13h+Q+Y01PjQg83qNjw3IvF7jYwMyL58g9yfZCLhfvxP+ahEb9Z6bffZTYMSK662/7zsX6fmMPvb6+iL69ARFMJr6apHf+CZ1oL96M86p71nDsEHbm5fcb9bwV1+k+qih/OUifuPj6Hv9/vTib6zihkvr7TnEt6u8/B5UzMzP/dF5I/L7xpf+Gzs7zxP3NwOq3+7sq+8f3X+QQdn7y029fzgvV+GLmff6zZvJv1rl1VdMPjpe+lv3BU/1/TXhxQP00so/fDTF+8+41w+Qz3Sox+2T7RMzk+Vvxx++fZBr/YjnbP2A5+zLu/LRTv6NPXmjud/+/p68epfKkhmmfjNB/K0s+uWXVT82If4bd2Se9MveOF9/dUdereFMMPmbM6RfrfFSOZ0zfHSv5e8+SV59s+rjPfxqFVuaz8ju9Zvzk189YV8f0Ua3/ParwN+3SmGz1H4jkvzVEb36ftWbL8++PXX89gXs5T3JNZPzlWbvH8+rb1h9zKL4+umW80Wg9fYr9N/1lG3NqNu+vb/GS8Fb2WxIltaLp+zLVfAd5/HMf3eVV9+w+uC2vrwjnfOCfl/jzXc9vutwUvPoZL79gsV3PUs+5Pv8jSfaR4Sfrzf1Y/fi9ePykXvx+uVGnGflm3Obb19u9g/42mrcfsDXVuP25a+txu0HfG01bj/ga6tx+/LXVl8u8dHvzsXt619bfb0hP8SykohJ8s203TfP1Xj1kZUdbyfy6hvvEiTWqwvQHnXy6rc6kNb33BXeL7nXb2bNf3VX7AeclLxc5cMnJb+1uR9cZemrrzavUJLzxly9faU5xXP/cv/j7//tj3/93ZtfjPe/52/TO64Vj1+CuI5D9P0sjl/d+CjWVdhV+FXEVegq8irqKq6V41pZ18q6Vta1sq6Vda2sa2VdK+taWdfKulbOa+W8Vs5r5bxWzmvlvFbOa+W8Vs5r5bxWrmvlulaua+W6Vq5r5bpWrmvlulaua+W6Vu5r5ePXp67jku749amPws/Lh8cvu38U5+9k1OPX3T+K87cy5uMX3q/jjfDj16eexfHrUx/Fugq7Cr+KuApdRV5FXcW18r5WPn/5/bNaU9lUPlVMpalyqpqqp5qMNRlrMtZkrMlYk7EmY03Gmow1GWsybDJsMmwybDJsMmwybDLO3zR6zN2v83eNPqp9VcdvuFzH6/M6fsnlszoyjl8aso5fdbkOeKzz95Kev8n9+IWXzyqnOjLq/Imeal/V2ayPap2vwkdlU/lUR0aflabKqc7fiHo7quN3ot7Oal/V0bZ2vOiuo2+flU11/LbUY0pgHa1rh9V2Hb37rPKctjiq47enHm/KrqN9n9W+qqOBn9WayqbyqWIqTZVTTUZORk5GTUZNRk1GTUZNRk1GTUZNRk1GTUZPRk9GT0ZPRk9GT0ZPRk9GT0ZPxp6MPRl7MvZk7MnYk7EnY0/Gnox9ZdjtNtWayqbyqWIqTZVT1VQ91WSsyViTsSZjTcaajDUZazLWZKzJWJNhk2GTYZNhk2GTYZNhk2GTYZNhk+GT4ZPhk+GT4ZPhk+GT4ZPhk+GTEZMRkxGTEZMRkxGTEZMRkxGTEZOhydBkaDI0GZoMTYYmY/rcps9t+tymz2363KbPbfrcps9t+tymz2363KbPbfrcps9t+tymz2363KbPbfrcps9t+tymz2363KbPbfrcps9t+tymz2363KbPbfrcps9t+tymz2363KbPbfrcps9t+tymz2363KbPbfrcp899+tynz3363KfPffrcp899+tynz3363KfPffrcp899+tynz3363KfPffrcp899+tynz3363KfPffrcp899+tynz3363KfPffrcp899+tynz3363KfPffrcp899+tynz3363KfPffrcp899+tynz3363KfPffrcp899+tynz3363KfPffrcp899+tynz3363KfPffrcp899+tynz3363KfPffrcp899+tynz3363KfPffrcp899+tynz3363KfPffrcp899+tynz3363KfPffrcp899+tynz3363KfPffrcp899+tynz3363KfPffrcp899+tynz336PKbPY/o8ps9j+jymz2P6PKbPY/o8ps9j+jymz2P6PKbPY/o8ps9j+jymz2P6PKbPY/o8ps9j+jymz2P6PKbPY/o8ps9j+jymz2P6PKbPY/o8ps9j+jymz2P6PKbPY/o8ps9j+jymz2P6PKbPY/o8ps9j+jymz2P6PKbPY/o8ps9j+jymz2P6PKbPY/o8ps9j+jymz2P6PKbPY/o8ps9j+jymz2P6PKbPY/o8ps9j+jymz2P6PKbPY/o8ps9j+jymz2P6PKbPY/o8ps9j+jymz2P6PKbPY/o8ps9j+jymz2P6PKbPY/o8ps9j+jymz2P6PKbPY/o8ps9j+lzT55o+1/S5ps81fa7pc02fa/pc0+eaPtf0uabPNX2u6XNNn2v6XNPnmj7X9LmmzzV9rulzTZ9r+lzT55o+1/S5ps81fa7pc02fa/pc0+eaPtf0uabPNX2u6XNNn2v6XNPnmj7X9LmmzzV9rulzTZ9r+lzT55o+1/S5ps81fa7pc02fa/pc0+eaPtf0uabPNX2u6XNNn2v6XNPnmj7X9LmmzzV9rulzTZ9r+lzT55o+1/S5ps81fa7pc02fa/pc0+eaPtf0uabPNX2u6XNNn2v6XNPnmj7X9LmmzzV9rulzTZ9r+lzT55o+1/S5ps9z+jynz3P6PKfPc/o8p89z+jynz3P6PKfPc/o8p89z+jynz3P6PKfPc/o8p89z+jynz3P6PKfPc/o8p89z+jynz3P6PKfPc/o8p89z+jynz3P6PKfPc/o8p89z+jynz3P6PKfPc/o8p89z+jynz3P6PKfPc/o8p89z+jynz3P6PKfPc/o8p89z+jynz3P6PKfPc/o8p89z+jynz3P6PKfPc/o8p89z+jynz3P6PKfPc/o8p89z+jynz3P6PKfPc/o8p89z+jynz3P6PKfPc/o8p89z+jynz3P6PKfPc/o8p89z+jynz3P6PKfPc/o8p89z+jynz3P6PKfPa/q8ps9r+rymz2v6vKbPa/q8ps9r+rymz2v6vKbPa/q8ps9r+rymz2v6vKbPa/q8ps9r+rymz2v6vKbPa/q8ps9r+rymz2v6vKbPa/q8ps9r+rymz2v6vKbPa/q8ps9r+rymz2v6vKbPa/q8ps9r+rymz2v6vKbPa/q8ps9r+rymz2v6vKbPa/q8ps9r+rymz2v6vKbPa/q8ps9r+rymz2v6vKbPa/q8ps9r+rymz2v6vKbPa/q8ps9r+rymz2v6vKbPa/q8ps9r+rymz2v6vKbPa/q8ps9r+rymz2v6vKbPa/q8ps9r+rymz2v6vKbPa/q8Hn0eR9VT7WfVjz4/qzWVTeVTxVSaKqeqqXqqyViTsSZjTcaajDUZazLWZKzJWJOxJsMmwybDJsMmwybDJsMmwybDJsMmwyfj0efHZ6CPPj8rn+rMqKPSVDlVTdVT7etnH31+VpPx6PPj3z36/KwmIyYjJiMmIyYjJkOTocnQHIfmODQZmgxNhiZDk/Ho86N69PlZranmOHIyHn1+Vpoqp6qpJiMnoyajJqMmo2avao6j5jhqjqMm49HnZzV71bNXPXvVk9GT0ZPRk9GT0bNXPcfRcxx7jmNPxp7HY89e7dmrPXu1J2NPxp6MfWXs222qNZVN5VPFVFfGvuVUNVVPde3VXpOxJmNNxpqMNRlLU+VUNVVPNRl2m2pNZVP5VJNhk2GTYZNhk2GzVz7H4XMcPscxfb49ppq98tkrn72aPt8+GTEZMRnT53v6fE+f7+nzPX2+YzJiHo/p8z19vqfPtyZDkzF9vqfP9/T5nj7f0+d7+nxPn++cjJzHY/p8T5/v6fOdk5GTMX2+p8/39PmePt/T53v6fE+f75qMmsdj+nxPn+/p892T0ZMxfb6nz/f0+Z4+39Pne/p8T5/vnow9j8f0+Z4+39Pne0/Gnozp8z19vqfP9/T5uk2j38tFaZRXzr0MSlEmZVE2K5C2SFukLdKm6+9lUIoyKUlbTbmnnOa/l4uSNCPNSDPSjLRhwL3k2Ixjc47NSZsX/HvJTjo76eykk+akOWlOWpAW7GRwbMGxBccWpAWPW7CTwU4GOynSRJpIE2kiTeykODZxbOLYRFryuCU7mexkspNJWpKWpCVpSVqyk8WxFcdWHFuRVjxuxU4WO1nsZJFWpDVpTVqT1uxkc2zNsTXH1qQ1j1uzk5ud3OzkJm2TtknbpG3SNju5OTZYsmDJuk3auhmlUwalKJMVirIpSYMlC5YsWLJgyYIla5G2krIom3J2chlpRhosWbBkwZIFSxYsWbBkwZJlpPmNkp2EJQuWLCfNSYMlC5YsWLJgyYIlC5YsWLKCtOBxgyULlixYsoK0IA2WLFiyYMmCJQuWLFiyYMlzWu9ME48bLFmwZMGSlaQlabBkwZIFSxYsWbBkwZIFS56ze2da8bjBkgVLFixZRVqRBksWLFmwZMGSBUsWLFmw5DnJd6Y1jxssWbBkwZK1SdukwZIFSxYsWbBkwZIFSxYsec71HWnPwb5HuSiN0ikn7Tnd9yiTsiibcnbSYInBEoMlzym/M20FpSiTsihJW6TBEoMlBksMlhgsMVhisOQ583emWVOyk7DEYIk5abDEOC8xzksMlpiT5qQ5abDEYInBEuO85DkEuM/ySDt+Re56jAEevzd6PeYAn2VT7ilPlvgZfLLkWRqlUwalKM+08+6cLHmWTbmnPFnyLBflmXYexcmSZxmUojzS4naWRdmUe8qTJYfWez3mA5/lkRbnwZ8seZZHWpwHdLLkWSZlUTblnvJkybNclEbplKQ1aU1ak9akNWmbtE3aJm2Ttkk7WfKcXk/KM+2ccz9Z8iyPtOPbnusxPPgsF+WRdnzJdj3mB5/lkXaoGNZjgvBZHmmPMfeTJc+yKY+0PP/tyZJneaQdX0xfj0HCZ+mUR1qdd+dkST1+7Eg7vqm8HtOEz7Ipj7Q+J+xPlvS5wsmSPo/iZMk+I06WHN7e9RgqfJY6vpT/mPRPyjq/qn+WTbmP8ow4WOLnwPw5W+jrvDsHS3yd6x4s8XV+W+BgyVUeafb4NkFS1innOMum3Kdj4igPllzlkXb22zlmeJVH2tlZ56DhVWo29WTJY1ODnQx28mTJozxZ8tjUkyWPTT1Z8tjUkyWPTRU7ebLkWbKTKkp2UnvKvM2mHix5bmrabGr6bGqykwdLrpKdzKJkJ3NPWezkwZKrZCfLKdnJgyVXmbOpJ0sem1rsZLGTJ0ue5ZpNPVny2NSTJY9NPVny2NRmJ0+WPEt2spuSndw3yjWberDkuanbZ1N3zKZudvJgyVWyk7spZyfPAcWrnJ08RxSvcnbyHFK8ytnJc0zxKo+0k+vnoOL5G3PXOan4LA+WXOWiNEqnDEpRJmVRkrZIM9KMNCPNSDPSjDQjzUgz0ow0J81Jc9KcNCfNSXPSnDQnzUkL0oK0kyXn68U5y3iVQXmmnQ9WJGVRNuWeUjfKRUmaSBNpEmVSkibSRFqSlqSdLHmWTnmk6fziVJKWpJ0seZZNuacs0oq0Iq1IO1nyLNnJYieLYyuO7WDJ8072bYJ7UbKTzU42O9mkNWlNWpPW7OTm2DbHtjm2zbFtdnKzk5ud3OzkZif37OQ5BPlY7JyCvEqjdMqgFGVSFmVTzk5qzU5qLUqjdMqgJG2RtkhbpK3ZSRnHZhybcWzGsdnspGx2UpaURdmU7KST5qQ5aU6as5POsTnH5hybc2zOTgY7GewkLBEsESwRLBEsESwRLBEsESwRLJE4NnFsYidhiWCJxE6KnRQ7CUsESwRLBEvOIcqr5NiSY0uOLTm2ZCeLnSx2stjJYieLnYQlgiWCJYIl50zls2yOrTm25tiaY2t2stnJZiebnWx2stlJWCJYIlgiWHKOWF4lx7Y5ts2xbY5tz07mbXYyb4vSKJ0yKCctYUnCkoQleZudzHWjXJRG6ZSzk7lmJ3MlZVE25exkwpKEJQlLEpakBSXHZhybcWzGsRk76eyks5POTjo76ewkLElYkrAkYUk6OxkcW3BswbEFxxbsZLCTwU4GOxnsZLCTsCRhScKShCUpdlIcmzg2zkuS85JzRvN5J5OdTHYy2clkJ5OdhCUJSxKWJCzJZCc5L0nOS5LzkuS85BzZfN7JYieLnSx2stjJYidhScKShCUJS7LZSc5LkvOS5LwkOS85Jzifd3Kzk5ud3OzkZic3OwlLEpYkLElYknt2sjgvKc5LivOS4rzkHOh83Mm6zU7WLSmLsilnJwuWFCwpWFKwpFZQijIpi7IpZyfLZifLFqVROmVQkgZLCpYULCljJzkvKc5LivOS4rzkHPd83klnJ52ddHbS2UlnJ2FJwZKCJQVLKthJzkuK85LivKQ4LzmnP593Uuyk2EmucYprnOIap2BJwZKCJQVLimuc4rykOC8pzkuK85LiGqe4ximucYprnOIap7jGKVhSsKRgScGS4hqnOC8pzkuK85LivKS4ximucYprnOIap7jGKa5xCpYULClYUrCkuMYpzkuK85LivKQ4LymucYprnOIap7jGKa5ximuchiUNSxqWNCxprnGa85LmvKQ5L2nOS5prnOYap7nGaa5xmmuc5hqnYUnDkoYlDUuaa5zmvKQ5L2nOS5rzkuYap7nGaa5xmmuc5hqnucZpWNKwpGFJw5LmGqc5L2nOS5rzkua8pLnGaa5xmmuc5hqnucZprnEaljQsaVjSsKS5xmnOS5rzkua8pDkvaa5xmmuc5hqnucZprnGaa5yGJQ1LGpY0LGmucZrzkua8pDkvac5Lmmuc5hqnucZprnGaa5zmGqdhSXNe0pyXNOclzTVOw5KGJQ1LmvOS5rykYUnDknMO1Y/fXbHOQdSrPI/teBP1HEX18+OUcxb1Ko3SKc/Hrc5S/G1SFmVT7uvHzqHUx9+eU6lXaZROGfyY+NukLMqmJG2RtkhbpC3SFmmLtEXaIm2Rtkgz0ow0I81IM9KMNCPNSDPSjDQnzUlz0pw0J81Jc9KcNCfNSQvSgrQgLUgL0oK0IC1IC9KCNJEm0kSaSBNpIk2kiTSRJtKStCQtSUvSkrQkLUlL0pK0JK1IK9KKtCKtSCvSirQirUgr0pq0Jq1Ja9KatCatSWvSmrQmDZZsWLJhyYYlG5ZsWLJhyYYlG5bsYYndhiV2G5bYbVhit2GJ3YYldhuW2G1YYrdhid2GJXa7kbZIW6Qt0hZpi7RF2iJtkbZIW6QZaUaakWakGWlGmpFmpBlpRpqT5qQ5aU6ak+akOWlOmpPmpAVpQVqQFqQFaUFakBakBWlB2oMlj3Idvrx9lkbplGdan6Uok/JISz/LIy11lnvKkyV5pp0seZZG6ZRBKcqkPNPOAzpZkuedPFly/KYCO+der3JRHml13smTJYezz86516s80g7dq51zr1d5pNUZfLLkWe4pT5YcvxjYzrnXqzRKpzzS+lz3ZEmfu3NSo897dlKjz009qfEsj3X3eRQnNZ7lse4+f+ykxrMUZVKed/2x2L7SzrHWx9+eY62PfTjHWh/Hdo61XmVQ6jqgc6z1KouyKfeU60a5KI3Sr905x1qvUpRJWdf2nbOs5+9Us3OW9SoXpVE65blneZaiTMqibMo95cmHZ7kojdIpSXPSnDQnzUlz0oK0IC1IC9KCtCAtSAvSgrQgTaSJNJEm0kSaSBNpIk2kibQkLUlL0pK0JC1JS9KStCQtSSvSirQirUgr0oq0Iq1IK9KKtCatSWvSmrQmrUlr0pq0Jq1J26Rt0jZpm7RN2iZtk7ZJ26TtSTtnWa9yURqlUwalKJOyKJuStEXaIm2RtkhbpC3SFmmLtEXaIs1IM9KMNCMNlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSzYs2bBkw5INSzYs2bBkw5INSzYs2bBkw5INSzYs2bBkw5INSzYs2bBkw5INSzYs2bBkw5INSzYs2bBkw5INSzYs2bBkw5INSzYs2bBkw5INSzYs2bBkw5INSzYs2bBkw5INSzYs2bBkw5INSzYs2bBkw5LHLOvxW1DtMcv6LJ0yKEWZlEXZlHvKkyXPkrQkLUlL0pK0JC1JS9KStCKtSCvSirQirUgr0oq0Iq1Ia9KatCatSWvSmrQmrUlr0pq0TdombZO2SdukbdI2aZu0Tdq+0vwxy/osF6VROmVQijIpi7IpSVukLdIWaYu0RdoibZG2SFukLdKMNCPNSDPSjDQjzUgz0ow0I81Jc9KcNCfNSXPSnDQnzUlz0oK0IC1IC9KCtCAtSAvSgrQgTaSJNJEm0kSaSBNpIk2kibQkLUlL0pK0JC1JS9KStCQtSSvSirQirUgr0oq0Iq1IK9KKtCatSWvSmrQmrUlr0pq0Jq1J26Rt0jZpm7RN2iZtk7ZJ26TBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLnsOufZZBeb6a3s4yKc9X08ePNeWe8nFe8igXpVE65fnafaY9zkseZVIWZVPuKR/nJY9yURqlU5LmpDlpTpqT5qQFaUFakBakBWlBWpAWpAVpQZpIE2kiTaSJNJEm0kSaSBNpSVqSlqQlaUlakpakJWlJWpJWpBVpRVqRVqQVaUVakVakFWlNWpPWpDVpTVqT1qQ1aU1ak7ZJ26Rt0jZpm7RN2iZtk7ZJ25P2nHt9lIvSKJ0yKEWZlEXZlKQt0hZpi7RF2iJtkbZIW6Qt0hZpRpqRZqQZabDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlDkscljgscVjisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYclz7tXOclEapVMG5ZnmZ5mURXmmxVnu+dsHSx7lojRKpwxK0oK0IO3BkkdJmkgTaSJNpIk0kSbSRJpIE2lJWpKWpCVpSVqSlqQlaUlaklakFWlFWpFWpBVpRVqRVqQVaU1ak9akNWlNWpPWpDVpTVqTtknbpG3SNmmbtE3aJm2Ttknbk/ace32Ui9IopwOec6+PUvyDI+1Qmfhj7vVZNuX5Oc46ypGWeI20xGukJf6Ye32WQSnKpDw/NTrvzuMz4Ue5p3x8JvwozzSd5XlAjzIoRZmURXkNXjjDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrb1iyYcmGJRuWbFiyYcmGJRuWbFiyYcmGJRuWbFiyYcmGJRuWbFiyYcmGJRuWbFiyYcmGJRuWbFiyYcmGJRuWbFiyYcmGJRuWbFiyYcmGJRuWbFiyYcmGJRuWbFiyYcmGJRuWbFiyYcmGJRuW7GFJ3IYlcRuWxG1YErdhSdyGJXEblsRtWBK3YUnchiVxu5G2SFukLdIWaYu0RdoibZG2SFukGWlGmpFmpBlpRpqRZqQZaUaak+akOWlOmpPmpDlpTpqT5qQFaUFakBakBWlBWpAWpAVpQZpIE2kiTaSJNJEm0kSaSBNpSVqSlqQlaUlakpakJWlJWpJWpBVpRVqRVqQVaUVakVakFWlNWpPWpDVpTVqT1qQ1aU1ak7ZJ26Rt0jZpm7RN2iZtk7ZJgyULlixYsmDJgiULlixYsmDJgiULlixYsmDJgiULlixYsmDJgiULlixYsmDJgiULlixYsmDJgiVIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdwWILkNZC8BpLXQPIaSF4DyWsgeQ0kr/eSNFjisATJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLyGRjQQGtFAaEQDoRENhEY0EBrRQGhEA6ERDYRGNBAa0UAoSUvSkrQkrUgr0oq0Iq1IK9KKtCKtSCvSmrQmrUlr0pq0Jq1Ja9KatCZtk7ZJ26Rt0jZpm7RN2iZtkzaigcgRDUSOaCByRAORIxqIHNFA5IgGIkc0EDmigcgRDUTeSFukLdIWaYu0RdoibZG2SFukLdKMNCPNSDPSjDQjzUgz0ow0I81Jc9KcNCfNSXPSnDQnzUlz0oK0IC1IC9KCtCAtSAvSgrQgTaSJNJEm0kSaSIMlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGDJc9i1j/LBkkd5vpreztIoz1fT88ce5yWPUpRJWZRNuaecL+FEzZdwouZLOFHzJZyo+RJO1HwJJ2q+hBM1X8KJmi/hRM2XcKKCtCAtSAvSgrQgLUgL0oK0IE2kiTSRJtJEmkgTaSJNpIm0JC1JS9KStCQtSUvSkrQkLUkr0oq0Iq1IK9KKtCKtSCvSirQmrUlr0pq0Jq1Ja9KatCatSdukbdI2aZu0TdombZO2SdukzZdwoudLONHzJZzo+RJO9HwJJ3q+hBM9X8KJni/hRM+XcKLnSzjRN9IWaYu0RdoibZG2SFukLdIWaYs0I81IM9KMNCPNSDPSjDQjzUiDJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwZMOSDUs2LNmwZMOSDUs2LNmwZMOSDUs2LNmwZMOSDUs2LNmwZMOSDUs2LNmwZMOSDUs2LNmwZMOSDUs2LNmwZMOSDUs2LNmwZMOSDUs2LNmwZMOSDUs2LNmwZMOSDUs2LNmwZMOSDUs2LNmwZMOSDUs2LNmwZMOSDUs2LNmwZMOSDUs2LNmwZMOSDUs2LNmwZMOSDUs2LNmwZMOSDUs2LNmwZMOSDUs2LNmwZMOSDUs2LNmwZMOSDUs2LNmwZMOSDUs2LNmwZMOSDUs2LNmwZMOSDUs2LNmwZMOSDUs2LNnDEt2GJboNS3Qblug2LNFtWKLbsES3YYluwxLdhiW63UhbpC3SFmmLtEXaIm2RtkhbpC3SjDQjzUgz0ow0I81IM9KMNCPNSXPSnDQnzUlz0pw0J81Jc9KCtCAtSAvSgrQgLUgL0oK0IE2kiTSRJtJEmkgTaSJNpIm0JC1JS9KStCQtSUvSkrQkLUkr0oq0Iq1IK9KKtCKtSCvSirQmrUlr0pq0Jq1Ja9KatCatSdukbdI2aZu0TdombZO2SdukwZIFSxYsWbBkwZIFSxYsWbBkwZIFSxYsWbBkwZIFSxYsWbBkwZIFSxYsWbBkwZIFSxYsWbBkwRIkr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8qrn3KudpVMGpSiT8kzzs2zKfZXPudc4y8XfGqVTBqUok7Iom5K0B0seJWmLtEXaIm2RtkhbpC3SFmlGmpFmpBlpRpqRZqQZaUaakeakOWlOmpPmpDlpTpqT5qQ5aUFakBakBWlBWpAWpAVpQVqQJtJEmkgTaSJNpIk0kSbSRFqSlqQlaUlakpbTAc+510dJ2smSQ6Sjx9zrozxZ8izPzxbXWRqlUwalKJOyKJvy/GzxvDuPz4Qf5aI0yjNNZ3ke0KNMyqJsyj3lDKiJYVcx7CqGXcWwqxh2vZdJWZRNeY0eiWFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnBkoIlBUuQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvaSMaSBtpSdpIS9JGWpI20pK0kZakjbQkbaQlaSMtSRtpSZqRZqQ5aU6ak+akOWlOmpPmpDlpTlqQFqQFaUFakBakBWlBWpAWpIk0kSbSRJpIE2kiTaSJNJGWpCVpSVqSlqQlaUlakpakJWlFWpFWpBVpRVqRVqQVaUVakdakNWlNWpPWpDVpTVqT1qQ1aZu0TdombZO2SdukbdI2aZu0kZakj7QkfaQl6SMtSR9pSfpIS9JHWpI+0pL0kZakj7Qk/UbaIm2RtkhbpC3SFmmLtEUaLHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOS57Drn2WRnm+mt7OMijPV9PHjyVlUTblnvJxXvIoF+U1pp8+X8JJny/hpM+XcO5lUhZlU15j+hnzJZyM+RJOxnwJJ2O+hJMxX8LJmC/hZMyXcDLmSzgZ8yWcjBtpi7RF2iJtkbZIW6Qt0hZpi7RFmpFmpBlpRpqRZqQZaUaakWakOWlOmpPmpDlpTpqT5qQ5aU5akBakBWlBWpAWpAVpQVqQFqSJNJEm0kSaSBNpIk2kiTSRlqQlaUlakpakJWlJWpKWpCVpRVqRVqQVaUVakVakFWlFWpHWpDVpTVqT1qQ1aU1ak9akNWmbtE0aLAlYErAkYEnAkoAlAUsClgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwZKCJQVLCpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYguQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSvieQ1kbwmktdE8ppIXhPJayJ5TSSv+Zx7tbMUZVIWZVOeaX6UIy3JPdKSfM69xlk6fxuUokzKomxK0oq0Iu3BkkdJWpFWpBVpRVqRVqQ1aU1ak9akNWlNWpPWpDVpTdombZO2SdukbdI2aZu0TdombQRI9Zx7fZSL0iidMihFmZRF2ZSkLdIWaYu0RdoibZG2SFukLdIWaUaakWakGWlGmpFmpNnVAfWce32UpJ0sOUQ69Zh7fZZGeX62uM4yKEWZlEXZlHvKx2fCj/L8bPG8O4/PhB+lUwblmaazPA/oUTblnvIBkEe5KK9hoGLYtRh2LYZdi2HXYti1GHYthl2LYddi2LUYdi2GXYth12LYtRh2LYZdi2HXYti1GHYthl2LYddi2LUYdi2GXYth12LYtRh2LYZdi2HXYti1GHYthl2LYddi2LUYdi2GXYth12LYtRh2LYZdi2HXYti1GHYthl2LYddi2LUYdi2GXYth12LYtRh2LYZdi2HXYti1GHYthl2LYddi2LUYdi2GXYth12LYtRh2LYZdi2HXYti1GHYthl2LYddi2LUYdi2GXYth12LYtRh2LYZdi2HXYti1GHYthl2LYddi2LUYdi2GXYth12LYtRh2LYZdi2HXYti1GHYthl2LYddi2LUYdi2GXYth12LYtRh2LYZdi2HXYti1GHYthl2LYddi2LUYdi2GXYth12LYtRh2LYZdi2HXYti1GHYthl2LYddi2LUYdi2GXYth12LYtRh2LYZdi2HXYti1GHYthl2LYddi2LUYdi2GXYth12LYtRh2LYZdi2HXYti1GHYthl2LYddi2LUYdi2GXYth12LYtRh2LYZdi2HXYti1GHYthl2LYddi2LUYdi2GXYth12LYtRh2LYZdi2HXYti1GHYthl2LYddi2LUMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisATJayF5LSSvheS1kLwWktd7SRoscViC5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LWQvBaS10LyWkheC8lrIXktJK+F5LV6RAPVIy2pHmlJ9UhLqkdaUj3SkuqRllSPtKR6pCXVIy2p3qRt0jZpm7RN2iZtk7ZJ26SNtKT2SEtqj7Sk9khLao+0pPZIS2qPtKT2SEtqj7Sk9khLat9IW6Qt0hZpi7RF2iJtkbZIW6Qt0ow0I81IM9KMNCPNSDPSjDQjzUlz0pw0J81Jc9KcNCfNSXPSgrQgLUgL0oK0IC1IC9KCtCBNpIk0kSbSRJpIE2kiTaSJtCQtSUvSkrQkLUlL0pK0JC1JK9KKtCKtSCvSirQirUgr0oo0WLJhyYYlG5ZsWLJhyYYlG5ZsWLJhyYYlG5ZsWLJhyYYlG5ZsWLJhyYYle1jSt2FJ34YlfRuW9G1Y0rdhSd+GJX0blvRtWNK3YUnfbqQt0hZpi7RF2iJtkbZIW6Qt0hZpRpqRZqQZaUaakWakGWlGmpHmpDlpTpqT5qQ5aU6ak+akOWlBWpAWpD1Y0mcZlOer6e0sk/J8NX38WFPuKR/nJY9yURqlU15j+n2bL+H0bb6E07f5Ek7f5ks4fZsv4fRtvoTTt/kSTt/mSzh9my/h9C1JS9KStCQtSUvSirQirUgr0oq0Iq1IK9KKtCKtSWvSmrQmrUlr0pq0Jq1Ja9I2aZu0TdombZO2SdukbdI2afMlnF7zJZxe8yWcXvMlnF7zJZxe8yWcXvMlnF7zJZxe8yWcXvMlnF430hZpi7RF2iJtkbZIW6Qt0hZpizQjzUgz0ow0I81IM9KMNCPNSHPSnDQnzUlz0pw0J81Jc9KctCAtSAvSgrQgLUgL0oK0IC1IE2kiTaSJNFiyYMmCJQuWLFiyYMmCJQuWLFiyYMmCJQuWLFiyYMmCJQuWLFiyYMmCJQuWLFiyYMmCJQuWLFiyYMmCJQuWLFiyYMmCJQuWLFiyYMmCJQuWLFiyYMmCJQuWLFiyYMmCJQuWLFiyYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMljgscVjisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYQmS10by2kheG8nrvSQNljgsQfLaSF4byWsjeW0kr43ktZG8NpLXRvLaSF4byWsjeW0kr43ktZG8NpLXRvLaSF4byWsjeW0kr43ktZG8NpLXRvLaSF4byWsjeW0kr43ktZG8NpLXRvLaSF4byWsjeW0kr43ktZG8NpLXRvLaSF4byWsjeW0kr43ktZG8NpLXRvLaSF4byWsjeW0kr43ktZG8NpLXRvLaSF4byWsjeW0kr43ktZG8NpLXRvLaSF4byWsjeW0kr43ktZG8NpLXRvLaSF4byWsjeW0kr43ktZG8NpLXRvLaSF4byWsjeW0kr43ktZG8NpLXRvLaSF4byWsjeW0kr43ktZG8NpLXRvLaSF4byWsjeW0kr43ktZG8NpLXRvLaSF4byWsjeW0kr43ktZG8NpLXRvLaSF4byWsjeW0kr43ktZG8NpLXRvLaSF4byWsjeW0kr43ktZG8NpLXRvLaSF4byWsjeW0kr43ktZG8NpLXRvLaSF4byWsjeW0kr43ktZG8NpLXRvLaSF4byWsjeW0kr43ktZG8NpLXRvLaSF4byWsjeW0kr43ktZG8NpLXRvLaSF4byWsjeW0kr43ktZG8NpLXRvLaSF4byWsjeW0kr43ktZG8NpLXRvLaSF4byWsjeW0kr43ktZG8NpLXRvLaSF4byWsjeW0kr43ktZG8NpLXRvLaSF4byWsjeW0kr43ktZG8NpLXRvLaSF4byWsjeW0kr43ktZG8NpLXRvLaSF4byWsjeW0kr43ktZG8NpLXRvLaz7lXO8uibMo95YMlj/JM87M0Sqc80+Isxd8mZVE25Z7ywZJHSZqT5qQ9WPIoSXPSnDQnzUkL0oK0IC1IC9KCtCAtSAvSgjSRJtJEmkgTaSJNpIk0kSbSkrQkLUlL0pK0JC1JS9KStCStSCvSirQirUgr0oq0Iq1IK9KatCatSWvSmrQmrUlr0pq0pgM2HbBJO1hyv4Y4S6e8p92vFs5SR/n4t0lZlE25r/Kce73KRXmkrThLpwzKMy3+/vNP/+f3f/3j7//1T3/475/+6X/vf/yP//nzv/3tj3/58/OPf/u//3X9n3/96x//9Kc//ufv/uuvf/m3P/z7//z1D7/701/+7fh/P92O/xyY+eeVP9v6l/s/Xr/+K3v+03++n+L+fD8r/Jeff/LjT7F/vp8g3/90/vP7uf3P9xP144/r+GPn/d/28fN+/PzxE7Z/dv797f7Tx/+OSaz4ufa1QN9+vkfd/7+4R/tni+Ovcv7K4mfbx18Vf1U/+/mDfeXm+rnWlVv75z4X2axbP9v5E4sNsfWz5fl37Mjc5WXf7tLf//4vf/9/",
3805
- "verification_key": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuqAAAAAAAAAAAAAAAAAAAAZ0rxdT+UJck/Z11+lFjMKxMAAAAAAAAAAAAAAAAAAAAAABGZN81C25n6lgr+4dbx3gAAAAAAAAAAAAAAAAAAAO0uPlQKsVjppdPYgVGxrgl0AAAAAAAAAAAAAAAAAAAAAAALDq5Mm1o/zlfDt+e0fUsAAAAAAAAAAAAAAAAAAABmQLJRo966cRneZ4WRNswdegAAAAAAAAAAAAAAAAAAAAAAAyYBXLxVighjdQbGbvW+AAAAAAAAAAAAAAAAAAAAAYgi9+xLdxoFELPl9XwUb/cAAAAAAAAAAAAAAAAAAAAAACzx3tRI/PDXIHVx9zVSIwAAAAAAAAAAAAAAAAAAAIoRpK5ARAUXZ5Vkr1eDrhBSAAAAAAAAAAAAAAAAAAAAAAAPWtO+Q58nL0YCzmA+UGIAAAAAAAAAAAAAAAAAAADdPPaWixCoD26TBO0H8s4+pAAAAAAAAAAAAAAAAAAAAAAAEgRy9OzvVI8lWSDuw8ItAAAAAAAAAAAAAAAAAAAAFAYSyHnzkuTdY8eC4Ip4NqEAAAAAAAAAAAAAAAAAAAAAAA+lXnGqQ0njY8qg8iK1EQAAAAAAAAAAAAAAAAAAALSUza8qVVJK60V42K5nOchxAAAAAAAAAAAAAAAAAAAAAAAAOPM1jQO1xGWrsx68SiIAAAAAAAAAAAAAAAAAAABijxtv4+uqXwDwJZA4p/l+hQAAAAAAAAAAAAAAAAAAAAAAB8+IFj4RbfkQXwzK7M1PAAAAAAAAAAAAAAAAAAAAZMhEt/lfse5t2mUW4b/nunIAAAAAAAAAAAAAAAAAAAAAAC1JOgKg5JqPADOZP43pDwAAAAAAAAAAAAAAAAAAAIcXur55fbHsOUGq0r3/PRr/AAAAAAAAAAAAAAAAAAAAAAAJM7KSMX61e200rl5UxsIAAAAAAAAAAAAAAAAAAADGg2oIG7TTKnuqf8RZbOWNiAAAAAAAAAAAAAAAAAAAAAAAItMh6G4VLGUrn8C3nq1LAAAAAAAAAAAAAAAAAAAAJzF9LwqADNbKcfUoT8KtTa8AAAAAAAAAAAAAAAAAAAAAAA518y3hD5iLVkztpJIXywAAAAAAAAAAAAAAAAAAAB5J8PjTkTM7ZuCKjl4o1N0dAAAAAAAAAAAAAAAAAAAAAAAGAYYZQRXqMgE23QeNvXEAAAAAAAAAAAAAAAAAAAAzpcVM8SnGYpeM2ojUpKIsMgAAAAAAAAAAAAAAAAAAAAAAJZIxBoI9tXMYA4VtZhUfAAAAAAAAAAAAAAAAAAAAbjlCWKFs7BJFf3D9DZXyj+MAAAAAAAAAAAAAAAAAAAAAAALih/kciGzAHY5nYkJ5sQAAAAAAAAAAAAAAAAAAALGelM4oD9jlvNK8HY8oGq7iAAAAAAAAAAAAAAAAAAAAAAAK+hKBOgOsdvvYtuvslFMAAAAAAAAAAAAAAAAAAACzqxHEZMlRo93AHaQbNkQfrQAAAAAAAAAAAAAAAAAAAAAABjwTqDTBGd+QZtFkrlAyAAAAAAAAAAAAAAAAAAAAYCItCANqhEoeN32IjKA2JygAAAAAAAAAAAAAAAAAAAAAAAm6pGWS9kRqdnpgzJSacQAAAAAAAAAAAAAAAAAAABcpah+VESUYUnBMcsFfJIULAAAAAAAAAAAAAAAAAAAAAAAG6JPXszU3hcbOYj9YzSYAAAAAAAAAAAAAAAAAAABQOg3EtzWIE2/As69maewZpgAAAAAAAAAAAAAAAAAAAAAAJbapo00k6PFYgAcbY1EQAAAAAAAAAAAAAAAAAAAAfO7a16eWlQUUCVddnZCkOxMAAAAAAAAAAAAAAAAAAAAAABCJcQCO4FNvQPNUWZmJpAAAAAAAAAAAAAAAAAAAAOg0XniUgYlsNEs8DjBVRJAWAAAAAAAAAAAAAAAAAAAAAAAWcyP2sB7jgD4cFnYIQ8UAAAAAAAAAAAAAAAAAAAB85ebBUDScvw/ClZXC+wECwAAAAAAAAAAAAAAAAAAAAAAAAWb8B3teUMFldR2VAHlQAAAAAAAAAAAAAAAAAAAAKrVhtC94PcQd59nutD9x40YAAAAAAAAAAAAAAAAAAAAAACsIOvvAu0wjouLimEHoGAAAAAAAAAAAAAAAAAAAAIlNpLtmCSZXzgS4YqNo+Vp4AAAAAAAAAAAAAAAAAAAAAAAilcnxVnImx8glL5ybLDQAAAAAAAAAAAAAAAAAAACtC5uxuq5umxyKf9h/ACzIeQAAAAAAAAAAAAAAAAAAAAAABfkQeiEO+IZWrPDz4itXAAAAAAAAAAAAAAAAAAAAvG4SvFYLypzDvCBwc86F4H4AAAAAAAAAAAAAAAAAAAAAAByv9kQdo+GHlIElQDTgfwAAAAAAAAAAAAAAAAAAAHfluNnXml3UXUtLe4gWXQsiAAAAAAAAAAAAAAAAAAAAAAABHunvSNlbUiULNybYOhcAAAAAAAAAAAAAAAAAAADAljueNKhXJJUA97UC3jfWQQAAAAAAAAAAAAAAAAAAAAAAFceAzMHf6+gnBKNP7iVdAAAAAAAAAAAAAAAAAAAAb3naetKgqzfWIbIZ7fDHagcAAAAAAAAAAAAAAAAAAAAAAArf8paFGerwUeY4tht1TwAAAAAAAAAAAAAAAAAAAMetSYRp1beQYrg//yYICQq/AAAAAAAAAAAAAAAAAAAAAAAD8A+hP8qCmKdeyXP/RiIAAAAAAAAAAAAAAAAAAACizhquxal4f3xj/jNFl7HFxgAAAAAAAAAAAAAAAAAAAAAALfKlD1dMYZ8fJihFWqKeAAAAAAAAAAAAAAAAAAAAsfYMFFLU3pzugLDUL+saiN4AAAAAAAAAAAAAAAAAAAAAABTNJxx2K5wa0Y0jeiQEmAAAAAAAAAAAAAAAAAAAALqQzvv05PxDKQ+gX33v7JY3AAAAAAAAAAAAAAAAAAAAAAAkECBlXj3MQE191SHz8nQAAAAAAAAAAAAAAAAAAABhpw/3erlYRvr5Jt8f/HJvkgAAAAAAAAAAAAAAAAAAAAAABP0dSAivWlZbepyd7O7iAAAAAAAAAAAAAAAAAAAAtx3VV4WKLNdUmeapjtQiH7kAAAAAAAAAAAAAAAAAAAAAAAwx4ff761Q/fedfo7DexgAAAAAAAAAAAAAAAAAAALYmCIYKjuPS+QZKo4ca/TefAAAAAAAAAAAAAAAAAAAAAAAY/E92eyEVNN+H4lRPnbIAAAAAAAAAAAAAAAAAAADDbbL7xFEBX23/1bmKBlPvkQAAAAAAAAAAAAAAAAAAAAAAJcGBrjK3wbQtkMLyAm8WAAAAAAAAAAAAAAAAAAAAw0tzGQiAwA+2a3CSr6O7rAoAAAAAAAAAAAAAAAAAAAAAAC3PJx59czF+dFR6Fl5tVAAAAAAAAAAAAAAAAAAAAHhbg139HsL4tRNS8Lbo0uRUAAAAAAAAAAAAAAAAAAAAAAAmxf3aYLpFk44n7mfGzDwAAAAAAAAAAAAAAAAAAAAy+ykDwzkmg8xjbrhy4UQIQQAAAAAAAAAAAAAAAAAAAAAAJp/ODDfUeUIod28QZL8RAAAAAAAAAAAAAAAAAAAA4+CzXOVW7MQboPMKIO7u9j0AAAAAAAAAAAAAAAAAAAAAAC6MV0LS6pHvtFOxVKFR9AAAAAAAAAAAAAAAAAAAAEdBt8ENBXZgygaKh1RzLBfkAAAAAAAAAAAAAAAAAAAAAAAD1Gv/hSBECck0UK4xmw4AAAAAAAAAAAAAAAAAAABzxZ0hgrK3U+Q2n2ISLlYhqwAAAAAAAAAAAAAAAAAAAAAABQx0pZ33skolWNrwGM7yAAAAAAAAAAAAAAAAAAAA9gddfU47W3T+txjOUZIgsugAAAAAAAAAAAAAAAAAAAAAACRn4j+dkzlUOEII+58IKgAAAAAAAAAAAAAAAAAAAOwOwVZK5Ys5wO3Shn8hX+XaAAAAAAAAAAAAAAAAAAAAAAAUd8mKwF7lV45Sl/SZiYkAAAAAAAAAAAAAAAAAAADRm7356gtlZbPuda3U/vDBgAAAAAAAAAAAAAAAAAAAAAAAIna5XPqaJCJZ9WNKv6HJAAAAAAAAAAAAAAAAAAAAD2c7beACg9vkK95AWHKnSnQAAAAAAAAAAAAAAAAAAAAAAA/FsR+JqaUgJy/b1ewsRQAAAAAAAAAAAAAAAAAAAEKF/X3nDkSYscibqResWKzyAAAAAAAAAAAAAAAAAAAAAAAia16VsAtzFWE9b9eCVR4AAAAAAAAAAAAAAAAAAACfr8PQSX4ivwm3fN2kY2Z/CgAAAAAAAAAAAAAAAAAAAAAAEWpT7nl6PedV2vtrbYaOAAAAAAAAAAAAAAAAAAAAhUuF9c3cB2w9T+DJgfmIrLsAAAAAAAAAAAAAAAAAAAAAAClbjLiEl3aDmC2mrjZl8wAAAAAAAAAAAAAAAAAAACqsbCcAtn2MArxTHstyVRmlAAAAAAAAAAAAAAAAAAAAAAASOZAncT+gKXzeXOzkWpUAAAAAAAAAAAAAAAAAAAAaUVWcnuDlzcZyaP8QdxLcwQAAAAAAAAAAAAAAAAAAAAAAHkHX3dqx8KmIe+9yRs7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI91li8DNDJEcqNUDGVh1YHQAAAAAAAAAAAAAAAAAAAAAAEUvl6BLSJqwSIt1obGi5AAAAAAAAAAAAAAAAAAAARnvJCKXa4bSwxGonwdmT2u4AAAAAAAAAAAAAAAAAAAAAABFk7Q8rnuRI+AlrFqmkPwAAAAAAAAAAAAAAAAAAAGvMegX/lalrKJQkxfczZw2WAAAAAAAAAAAAAAAAAAAAAAAAxDcm91tv2g3iLODg36sAAAAAAAAAAAAAAAAAAAAdCgnXF47JO614WPluZPC0jQAAAAAAAAAAAAAAAAAAAAAAL5tuC04sAZaN5cMkgqp9AAAAAAAAAAAAAAAAAAAAFLmaKhz1vbFNGPy31tW7G0MAAAAAAAAAAAAAAAAAAAAAABibwBFKqYLGRXSxHbsAPgAAAAAAAAAAAAAAAAAAAIFYESpGMQpiuEn23VYsLIaUAAAAAAAAAAAAAAAAAAAAAAASkF6WwsjbCGXWk491oyQ="
3804
+ "debug_symbols": "tZ3RjiPZcW3/ZZ7ngScidkQc/4phCLItGwIEyZDlC1wY+vfLTDJj1fTc4lRXtV6G0T1dZzMPGYuZZHDV//7073/41//5z9/98c//8Zf//umf/vl/f/rXv/7xT3/643/+7k9/+bff/+2Pf/nz/W//96fb8Z8VP/1T599//mldf1r3P9jxB7//ldbPP7k9b/15G89bPW/zeVvP237e7sdt3J63z/XiuV4814vnevFcL57rxXO9eK4Xz/X0XE/P9fRcT8/19FxPz/X0XE/P9fRcT8/18ljP77freWvPW3/exvNWz9t83tbztp+3+3Fbz/XquV4916vnevVcr57r1XO9eq5Xz/XquV4/1+vnev1cr5/r9bGe7rd63ubztp63/bzdj9t9e96u5609b/15+1xvP9fbz/X2c739XG8/11u321Wsq7Cr8KuIqzhWjaPIq6ir6KvYz2LdruJYOY/CrsKv4lh5H4Wu4r5yrqOoq+ir2M/CblexrsKuwq8irkJXca1s18p2rWzXyn6t7NfKfq3s18p+rezXykcT5XGkRxedRVyHfPRHHlt3NMijyKuoq+ir2M/i6JJHsa7CrsKv4lpZ18q6Vta1sq6Vda2c18p5rZzXynmtnNfKea2c18p5rZzXynmtXNfKR+vkcexH7zwKv4q4Cl3FfhZHY2QdxfGP+yjiKnQVeRV1FX0V+1kcDfIo1lXYVVwr72vlfa28r5X3tfK+Vt7Ple12u4p1FXYVfhVxFbqKvIq6ir6Ka+V1rbyulde18rpWXtfK61p5XSuva+V1rbyule1a2a6V7VrZrpXtWtmule1a2a6V7VrZrpX9Wtmvlf1a2a+V/VrZr5X9Wtmvlf1a2a+V41o5rpXjWjmuleNaOa6V41o5rpXjWjmulXWtrGtlXSvrWlnXyrpW1rXy0VZ1O4q+iv0sjrZ6FOsq7Cr8KuIqdBV5FdfKea2c18p1rVzXynWtXNfKda1c18r9bDRrXUVeRV1FX8WRdeeYHZ3yKPwq4iqOlf0o8irqKo77HEexH4UfnfIo1lXYVfhVxFXoKvIq6ir6Kq6V17XyulZe18rrWvnolNJR6IEUPzvlLOoq+ir2szg75SzWVdhV+FXEVVwr27WyXSvbtbJdK/u1sl8r+7WyXyv7tbJfK/u1sl8r+7WyXyvHtXJcK8e1clwrx7VyXCvHtXJcK8e1clwr61pZ18q6Vta1sq6Vda2sa2VdK+taWdfKea2c18p5rZzXynmtnNfKea2c18p5rZzXynUteJ6j5VHoKvIqjqfWWfRVHE+t46eOM7VHsa7CHuckfp6snUVcxXHHjifb0VZ1/k1dxX3lvh3FfhbHS9KjuK/c58m1XYVfRVyFriKvoq6ir2I/ijga7VGsq7Cr8KuIq9BV5FXUVfRVXCuva+V1rbyulde18rpWXtfK61p5XSuva+V1rWzXynatbNfKdq1s18p2rWzXynatbNfKdq3s18p+rezXyn6t7NfKfq3s18p+rezXykejtR0XOcfKdr+28uPa6rjj6yCfPW/9eRvPWz1v87i9/1ScP3VfY50vzs9be9768zaet3re5vO2nrf9vN2P2+NI1n5cuZ239/9v8bhSMz2u1M5bf97e/73l40rtvK3n7f3n/HlF5va4Ijtv/Xl7/zn3xxXZeXu/X96PK7LwxxVZxOMK7Ly9/3zocQV23sbzVs/bfN7ux+3RtqH7Lum8iD069Xb/U15/Wuc55fP22IPjbPHYg/r5sad1/9d1/ev2x//tY8U+/vaAwLLHldp5e6x1PJb7/Jnj/x5XzetxRX0sfMSv85L6eEyeD+jz8fTHA+KPx8MfD4cfL1F3IPx8Xnbn46r7JPXjJh4391X244r7+bDtI8iua3f7+/2P10X+7/721z/84fg/b6767+8F/Nfv//qHP//tp3/68//86U8///R/fv+n/zn/0X//1+//fN7+7fd/vf/fO2v+8Od/v9/eF/yPP/7pD0f195/56dv7P3q/+kt7/vj9AvCmWeJ+Gv7RRe7nBv5c434K8KklMvK5Qp8P1nOB+vCB9F7PBfYt310g3l/Aj4uZxzFUzAJ3wP5iAb3YhbgWuJ/fvbvAx+5B+7sLvNiD7dfDsCPe3YP+6iG8uAdxvCSeC6SvN/fgwwvcT5avp+P9DNg/s8T9BON6Lt1PH1jifvb14cPoayNlNNX9IvjDz8aDzI+nc/Sbg/jFz68Xz4XM6xiy9JkF6nYdQq3b5xa4Hoiyd+/Bq4chjouox8MQuXk2rQ8/DPcTzOGKMj61RHrNkyHeX8JerFGqiy2l/aaxfvl0sPVqM9aazVj7ve00e7HE7QZkLd5dwl/A/v7O3sD+/p6e3juUlxu6Z0PrDeu/5zGp3rPErk8t0XUbVtb7S1h9/WHtrz+s+8sPq9/+wQ/r9muJ+7VJf+ox2TkP6+5PPTPuFzjXvbhf4uS7S3h8+WF1fflh9fz6w1r/2If1/tKt2VB/H8K+v7yhcfvyhsb68oaG/aM39M0zND75JB+C3i+7/VOtdn9j7NqM+/tf7y4R+fWHtb7+sPbXH9b9j31Y759izYNy1G/O2bS/Y5E587x/CNbr3UVkr84987onur88vnsx9WoNxTxLdX8L5P014tWZuM2ZeAbXZPkd90Lci7597kjk15m0lC/WePU0Nc437m82v3ckL56l9+d5T8t6fWYvtIzjeP8RyVfPr1Rfm3H/iO7GY3J/A/Y7VslklbJ+fxX7Iau8OCHtul6devPY3t9A/fC+1i0vEtat4lPPsfsFEtdK67NrqGeNss+8BXIgowcf948fP8WgbxapdxfJV0jt6br19gI27Ds2xNiQ8E9u6hxL/eJQvlmjfsAD82qNr7f/PVpzJGt9EmNzL+4fUcUnMPZBEL7EWIHjfr9V6tWbTL14s/C9p9arBbLmTmTt9c5hvFyh57Q4O+pTKwz+8u0FaH74vbp13YNt6xNvr+x5Wu9698yr4x992jQngPcV3rztuj/8vm3tvgDet7ecWL98RnW9eu/3OpD99mTn43fCbF2vAGZvXkXun2f+8k7sr6+xX77vGFeDRivfvCKuz62RL9awH3Asr95syn2tcYffizVePUd5lq9d6/1jeXE/0m7zlrS/u8KrR/b+SjbXBn67fWqNj92LV09Rn3dXLN6epHzTJ/vVU9QjZo03V579y0ZZt5f9Ovejb28+abkv/c0iLy7m636udr0c/uK58atFXr0hOlcX8eatIpO+WcJfPc/nBdH8zfn0rxd5CVI+QVtv3vf6vkX8tuc59uZs+teLvLik3/Pxzb1vPrfEfcf5ODBfHcyry6WeF7c7xt6cc+1PHUvpk49uzkuL3WH0/iJr/YAHZtmXH5gPLvFyP141zOYs9rNbWivn4zm/vTiUV8+xKl4Z9ouuW/X1LX21xEDo/r7N55b4cLvY7evt8nJPN0/Tbe/v6atXmJjP4E2r3n2FWS8/YrppkHrfkTdX9d98Cv0bq9R8vnMnzZuXmY8PBNw/7jM+Buah0Ydfcr1yrlTqzUn2NyusVx8y+VrXS66vNw0j/2aNFzjd+81zjMflm/dZ1qtPmT78qv3qc6YPv2r7+vKrttsPeNV2/wGv2i8X+eiLw6tPmz5IsldLfBhDrz5v+iiGPngsr16lXi7xMSq/fI597IXu5XPsoy90Lz9w+ugLXfiXnx4fXOLVoxL+A55hrz5y+ugz7OWefvCF7jWVbzMtdqeyv0vlVx873T9XudaI+yvFu68OejX1ljOxlW9fK+3W3yzy8pPRmhe6td5/1/j1ImvNW4Pr7Rt7v1rEX/UdL3b77Xut37NIbJuPR3fdPreIbn6dP+iW/WKRV0/XeQND/nYKLL9Z4tUTLY1pmTdvNN7Pfr5ZpH/Ai7f2D3jxztuXX7xz/YAX75efPn30xfvlIh998c74Mp1fLfFhtOYPQOsHj+XVy8TLR/ejL5svP3366Mtm3b78wHxwiVf7Ubcf8NiW/4DHdv+Al81XQMx5ZznfDCj/CoiVL181k1fNN0BM//j96H37/zy2v74frz6Eqtu8FVq938dh/Yirqv4RV1X99auq/hFnvO0/oHX760ztH8HU/gFMfbkhP6Lv7m/J2f/3Y7Zvn/GvPoG4v6UzEyj25oPX7+q8vYPhAnv/juyXZwB8kuFvPwz59gn/6hOqD7feq4+GPtx6rz6j+mDrbf2A1ts/4l3V/fV3VfePeEv01SdVH229nf/o1ovbvBEZtd59xturN95txlj8zZebcn+zwsuLojlr1u325pn6q68xvLwbcy3y5gPE/K7LKsY/1m2/e1llrz7Z8e5keP/t8MQ3b+7a7dVn/kq7nu/3+s1z5Ns3ml9exItZ3LR33yR+vUbNpFOU99fXePM1le9ZQzfjOaL13hr26lMm2XxkJtv53kjIOR7w7lliDQCy3n77qb/jfnDdrHR9fY1fTKB9zxrVs8b+5BpvZ6bqk8fSc7qqtx+HfLPG6+fY5ltttzejtN8+P+yDl0Tvfz3DXn0VSjlfc1S9eQPgexe5fX0Rnqj3x2V/dpFVH1vk9qHTqpu92tf8EfuaP2Jf80fsa/6D9/X+2aHmfHXZJxdZi6n+8B+wiPoHLJL+A/bk04vYjLPfrwP02UXmTdpl8fl7slgkPruIuCef35P5wuv949z12UXmPZb7IvbpPeFw+rOH4z5Ptngz9farReLlvMic19jbK6xfLxKv3jOqOUnzvT+5SMxXsiPcP7vIfJs4IvKTiyiu1+F49a3m14tkcOKanz0cvmUe+eoZ++FFtn7A4Xx6kRoU3E/E1w9YJD57Tzhdi7YXX0+WXr0CzmeDbz/V6++5GzMCE50vjuXVR1hfvxv3C5N5Kb9FfW5L76esOYt89rl6/8k5jb59liRvF1nLv344n19k8Snn+uxz9ReLfJYksvnkV+YvTm8y/6HPNBPijldagOwv342Xr3pzJnB/DX/xMvHqo6P7WxPDkIy3b/p+do397hovD2bz5uR+9XJVrwetZ0fc8r3386xefSEVqYr1m/c3frXGC6aGzVf97ucD+bk1nO/U+5uG+b41ZtziK2usL68RmmOJ/uR+aOYk7u+h7XfXePX5lfWcE90f23eNOfbyA6xkjZTeX+PlxzUDkPWL4ZPvWMN4A9zeKgJ+tcaXX/tf3wsYdNvr/XtR/9B7sZj2sF94ub5rDf8Ba9y+vAb9Zq73nxv75czJnovv+IXe6jvWCL6cG/Ej1qhPrqG58o7Mz67Bxyu9vn4sn11DtzkWrdvX1/DPrhGskS9sQOurXfv6XkzHrXy/W/zVJ1YfZMdLno9M7v6J8Xr/XujLPH+5xgd57revkvQ37sWHeH7OtP0D78XHeP5ba/gPWOP25TU+xnNf8WWev17jYzz/jjXqk2t8iOe/tcZHeP7xY/nsGh/j+cfX8M+u8TGe21dJ+hv34mM8N/1DeV6qeS94v7+frwb3P9pvL9f4YL99fI365Bof67ffWOND/fbhY/nsGh/stw+v4Z9d42P95l99G+o37sXH+s2//C7Uy/dLmH+6v4ezP/Wei68Zf/K3b1N+3xrBl23e6D4/u8YvzEj7e97ImrHhX1iqfy2XfPkO44cGZDxeoPSDAzKv78fHBmQ+vsb7AzK/scaHBmRer/GxAZnXa3xsQOblE+T+JBsB9+t3wl8tYqPec7PPfgqMWHG99fd95yI9n9HHXl9fRJ+eoAhGU18t8hvfpA70V2/GOfU9axg2aHvzkvvNGv7qi1QfNZS/XMRvfBx9r9+fXvyNVdxwab09h/h2lZffg4qZ+bk/Om9Efv5dOzvPE/c3A6rf7uyr7x/df5BB2fvLTb1/OC9X4YuZ9/rNm8m/WuXVV0w+Ol76W/cFT/X9NeHFA/TSyj98NMX7z7jXD5DPdKjH7ZPtEzOT5W/HH759kGv9iOds/YDn7Mu78tFO/o09eaO53/7+nrx6l8qSGaZ+M0H8rSz65ZdVPzYh/ht3ZJ70y944X391R16t4Uww+ZszpF+t8VI5nTN8dK/l7z5JXn2z6uM9/GoVW5rPyO71m/OTXz1hXx/RRrf89qvA37dKYbPUfiOS/NURvfp+1Zsvz749dfz2BezlPck1k/OVZu8fz6tvWH3Movj66ZbzRaD19iv03/WUbc2o2769v8ZLwVvZbEiW1oun7MtV8B3n8cx/d5VX37D64La+vCOd84J+X+PNdz2+63BS8+hkvv2CxXc9Sz7k+/yNJ9pHhJ+vN/Vj9+L14/KRe/H65UacZ+Wbc5tvX272D/jaatx+wNdW4/blr63G7Qd8bTVuP+Brq3H78tdWXy7x0e/Oxe3rX1t9vSE/xLKSiEnyzbTdN8/VePWRlR1vJ/LqG+8SJNarC9AedfLqtzqQ1vfcFd4vuddvZs1/dVfsB5yUvFzlwyclv7W5H1xl6auvNq9QkvPGXL19pTnFc/9y/+Pv/+2Pf/3dm1+M97/nb9M7rhWPX4K4jkP0/SyOX934KNZV2FX4VcRV6CryKuoqrpXjWlnXyrpW1rWyrpV1raxrZV0r61pZ18q6Vs5r5bxWzmvlvFbOa+W8Vs5r5bxWzmvlvFaua+W6Vq5r5bpWrmvlulaua+W6Vq5r5bpW7mvl49enruOS7vj1qY/Cz8uHxy+7fxTn72TU49fdP4rztzLm4xfer+ON8OPXp57F8etTH8W6CrsKv4q4Cl1FXkVdxbXyvlY+f/n9s1pT2VQ+VUylqXKqmqqnmow1GWsy1mSsyViTsSZjTcaajDUZazJsMmwybDJsMmwybDJsMs7fNHrM3a/zd40+qn1Vx2+4XMfr8zp+yeWzOjKOXxqyjl91uQ54rPP3kp6/yf34hZfPKqc6Mur8iZ5qX9XZrI9qna/CR2VT+VRHRp+Vpsqpzt+Iejuq43ei3s5qX9XRtna86K6jb5+VTXX8ttRjSmAdrWuH1XYdvfus8py2OKrjt6ceb8quo32f1b6qo4Gf1ZrKpvKpYipNlVNNRk5GTkZNRk1GTUZNRk1GTUZNRk1GTUZNRk9GT0ZPRk9GT0ZPRk9GT0ZPRk/Gnow9GXsy9mTsydiTsSdjT8aejH1l2O021ZrKpvKpYipNlVPVVD3VZKzJWJOxJmNNxpqMNRlrMtZkrMlYk2GTYZNhk2GTYZNhk2GTYZNhk2GT4ZPhk+GT4ZPhk+GT4ZPhk+GT4ZMRkxGTEZMRkxGTEZMRkxGTEZMRk6HJ0GRoMjQZmgxNhiZj+tymz2363KbPbfrcps9t+tymz2363KbPbfrcps9t+tymz2363KbPbfrcps9t+tymz2363KbPbfrcps9t+tymz2363KbPbfrcps9t+tymz2363KbPbfrcps9t+tymz2363KbPbfrcps9t+tynz3363KfPffrcp899+tynz3363KfPffrcp899+tynz3363KfPffrcp899+tynz3363KfPffrcp899+tynz3363KfPffrcp899+tynz3363KfPffrcp899+tynz3363KfPffrcp899+tynz3363KfPffrcp899+tynz3363KfPffrcp899+tynz3363KfPffrcp899+tynz3363KfPffrcp899+tynz3363KfPffrcp899+tynz3363KfPffrcp899+tynz3363KfPffrcp899+tynz3363KfPffrcp899+tynz3363KfPffrcp899+tynz3363KfPffo8ps9j+jymz2P6PKbPY/o8ps9j+jymz2P6PKbPY/o8ps9j+jymz2P6PKbPY/o8ps9j+jymz2P6PKbPY/o8ps9j+jymz2P6PKbPY/o8ps9j+jymz2P6PKbPY/o8ps9j+jymz2P6PKbPY/o8ps9j+jymz2P6PKbPY/o8ps9j+jymz2P6PKbPY/o8ps9j+jymz2P6PKbPY/o8ps9j+jymz2P6PKbPY/o8ps9j+jymz2P6PKbPY/o8ps9j+jymz2P6PKbPY/o8ps9j+jymz2P6PKbPY/o8ps9j+jymz2P6PKbPY/o8ps9j+jymz2P6PKbPY/o8ps9j+jymz2P6XNPnmj7X9LmmzzV9rulzTZ9r+lzT55o+1/S5ps81fa7pc02fa/pc0+eaPtf0uabPNX2u6XNNn2v6XNPnmj7X9LmmzzV9rulzTZ9r+lzT55o+1/S5ps81fa7pc02fa/pc0+eaPtf0uabPNX2u6XNNn2v6XNPnmj7X9LmmzzV9rulzTZ9r+lzT55o+1/S5ps81fa7pc02fa/pc0+eaPtf0uabPNX2u6XNNn2v6XNPnmj7X9LmmzzV9rulzTZ9r+lzT55o+1/S5ps81fa7pc02fa/pc0+eaPtf0uabPNX2u6XNNn2v6XNPnmj7X9Lmmz3P6PKfPc/o8p89z+jynz3P6PKfPc/o8p89z+jynz3P6PKfPc/o8p89z+jynz3P6PKfPc/o8p89z+jynz3P6PKfPc/o8p89z+jynz3P6PKfPc/o8p89z+jynz3P6PKfPc/o8p89z+jynz3P6PKfPc/o8p89z+jynz3P6PKfPc/o8p89z+jynz3P6PKfPc/o8p89z+jynz3P6PKfPc/o8p89z+jynz3P6PKfPc/o8p89z+jynz3P6PKfPc/o8p89z+jynz3P6PKfPc/o8p89z+jynz3P6PKfPc/o8p89z+jynz3P6PKfPc/o8p89z+jynz3P6PKfPc/o8p89r+rymz2v6vKbPa/q8ps9r+rymz2v6vKbPa/q8ps9r+rymz2v6vKbPa/q8ps9r+rymz2v6vKbPa/q8ps9r+rymz2v6vKbPa/q8ps9r+rymz2v6vKbPa/q8ps9r+rymz2v6vKbPa/q8ps9r+rymz2v6vKbPa/q8ps9r+rymz2v6vKbPa/q8ps9r+rymz2v6vKbPa/q8ps9r+rymz2v6vKbPa/q8ps9r+rymz2v6vKbPa/q8ps9r+rymz2v6vKbPa/q8ps9r+rymz2v6vKbPa/q8ps9r+rymz2v6vKbPa/q8ps9r+rymz2v6vKbPa/q8ps9r+rwefR5H1VPtZ9WPPj+rNZVN5VPFVJoqp6qpeqrJWJOxJmNNxpqMNRlrMtZkrMlYk7EmwybDJsMmwybDJsMmwybDJsMmwybDJ+PR58dnoI8+Pyuf6syoo9JUOVVN1VPt62cffX5Wk/Ho8+PfPfr8rCYjJiMmIyYjJiMmQ5OhydAch+Y4NBmaDE2GJkOT8ejzo3r0+VmtqeY4cjIefX5WmiqnqqkmIyejJqMmoyajZq9qjqPmOGqOoybj0ednNXvVs1c9e9WT0ZPRk9GT0ZPRs1c9x9FzHHuOY0/Gnsdjz17t2as9e7UnY0/Gnox9Zezbbao1lU3lU8VUV8a+5VQ1VU917dVek7EmY03Gmow1GUtT5VQ1VU81GXabak1lU/lUk2GTYZNhk2GTYbNXPsfhcxw+xzF9vj2mmr3y2SufvZo+3z4ZMRkxGdPne/p8T5/v6fM9fb5jMmIej+nzPX2+p8+3JkOTMX2+p8/39PmePt/T53v6fE+f75yMnMdj+nxPn+/p852TkZMxfb6nz/f0+Z4+39Pne/p8T5/vmoyax2P6fE+f7+nz3ZPRkzF9vqfP9/T5nj7f0+d7+nxPn++ejD2Px/T5nj7f0+d7T8aejOnzPX2+p8/39Pm6TaPfy0VplFfOvQxKUSZlUTYrkLZIW6Qt0qbr72VQijIpSVtNuaec5r+Xi5I0I81IM9KMtGHAveTYjGNzjs1Jmxf8e8lOOjvp7KST5qQ5aU5akBbsZHBswbEFxxakBY9bsJPBTgY7KdJEmkgTaSJN7KQ4NnFs4thEWvK4JTuZ7GSyk0lakpakJWlJWrKTxbEVx1YcW5FWPG7FThY7WexkkVakNWlNWpPW7GRzbM2xNcfWpDWPW7OTm53c7OQmbZO2SdukbdI2O7k5NliyYMm6Tdq6GaVTBqUokxWKsilJgyULlixYsmDJgiVrkbaSsiibcnZyGWlGGixZsGTBkgVLFixZsGTBkmWk+Y2SnYQlC5YsJ81JgyULlixYsmDJgiULlixYsoK04HGDJQuWLFiygrQgDZYsWLJgyYIlC5YsWLJgyXNa70wTjxssWbBkwZKVpCVpsGTBkgVLFixZsGTBkgVLnrN7Z1rxuMGSBUsWLFlFWpEGSxYsWbBkwZIFSxYsWbDkOcl3pjWPGyxZsGTBkrVJ26TBkgVLFixZsGTBkgVLFix5zvUdac/Bvke5KI3SKSftOd33KJOyKJtydtJgicESgyXPKb8zbQWlKJOyKElbpMESgyUGSwyWGCwxWGKw5Dnzd6ZZU7KTsMRgiTlpsMQ4LzHOSwyWmJPmpDlpsMRgicES47zkOQS4z/JIO35F7nqMAR6/N3o95gCfZVPuKU+W+Bl8suRZGqVTBqUoz7Tz7pwseZZNuac8WfIsF+WZdh7FyZJnGZSiPNLidpZF2ZR7ypMlh9Z7PeYDn+WRFufBnyx5lkdanAd0suRZJmVRNuWe8mTJs1yURumUpDVpTVqT1qQ1aZu0TdombZO2STtZ8pxeT8oz7ZxzP1nyLI+049ue6zE8+CwX5ZF2fMl2PeYHn+WRdqgY1mOC8FkeaY8x95Mlz7Ipj7Q8/+3Jkmd5pB1fTF+PQcJn6ZRHWp1352RJPX7sSDu+qbwe04TPsimPtD4n7E+W9LnCyZI+j+JkyT4jTpYc3t71GCp8ljq+lP+Y9E/KOr+qf5ZNuY/yjDhY4ufA/Dlb6Ou8OwdLfJ3rHizxdX5b4GDJVR5p9vg2QVLWKec4y6bcp2PiKA+WXOWRdvbbOWZ4lUfa2VnnoOFVajb1ZMljU4OdDHbyZMmjPFny2NSTJY9NPVny2NSTJY9NFTt5suRZspMqSnZSe8q8zaYeLHluatpsavpsarKTB0uukp3MomQnc09Z7OTBkqtkJ8sp2cmDJVeZs6knSx6bWuxksZMnS57lmk09WfLY1JMlj009WfLY1GYnT5Y8S3aym5Kd3DfKNZt6sOS5qdtnU3fMpm528mDJVbKTuylnJ88BxaucnTxHFK9ydvIcUrzK2clzTPEqj7ST6+eg4vkbc9c5qfgsD5Zc5aI0SqcMSlEmZVGStkgz0ow0I81IM9KMNCPNSDPSjDQnzUlz0pw0J81Jc9KcNCfNSQvSgrSTJefrxTnLeJVBeaadD1YkZVE25Z5SN8pFSZpIE2kSZVKSJtJEWpKWpJ0seZZOeaTp/OJUkpaknSx5lk25pyzSirQirUg7WfIs2cliJ4tjK47tYMnzTvZtgntRspPNTjY72aQ1aU1ak9bs5ObYNse2ObbNsW12crOTm53c7ORmJ/fs5DkE+VjsnIK8SqN0yqAUZVIWZVPOTmrNTmotSqN0yqAkbZG2SFukrdlJGcdmHJtxbMax2eykbHZSlpRF2ZTspJPmpDlpTpqzk86xOcfmHJtzbM5OBjsZ7CQsESwRLBEsESwRLBEsESwRLBEskTg2cWxiJ2GJYInEToqdFDsJSwRLBEsES84hyqvk2JJjS44tObZkJ4udLHay2MliJ4udhCWCJYIlgiXnTOWzbI6tObbm2Jpja3ay2clmJ5udbHay2UlYIlgiWCJYco5YXiXHtjm2zbFtjm3PTuZtdjJvi9IonTIoJy1hScKShCV5m53MdaNclEbplLOTuWYncyVlUTbl7GTCkoQlCUsSlqQFJcdmHJtxbMaxGTvp7KSzk85OOjvp7CQsSViSsCRhSTo7GRxbcGzBsQXHFuxksJPBTgY7GexksJOwJGFJwpKEJSl2UhybODbOS5LzknNG83knk51MdjLZyWQnk52EJQlLEpYkLMlkJzkvSc5LkvOS5LzkHNl83sliJ4udLHay2MliJ2FJwpKEJQlLstlJzkuS85LkvCQ5LzknOJ93crOTm53c7ORmJzc7CUsSliQsSViSe3ayOC8pzkuK85LivOQc6HzcybrNTtYtKYuyKWcnC5YULClYUrCkVlCKMimLsilnJ8tmJ8sWpVE6ZVCSBksKlhQsKWMnOS8pzkuK85LivOQc93zeSWcnnZ10dtLZSWcnYUnBkoIlBUsq2EnOS4rzkuK8pDgvOac/n3dS7KTYSa5ximuc4hqnYEnBkoIlBUuKa5zivKQ4LynOS4rzkuIap7jGKa5ximuc4hqnuMYpWFKwpGBJwZLiGqc4LynOS4rzkuK8pLjGKa5ximuc4hqnuMYprnEKlhQsKVhSsKS4xinOS4rzkuK8pDgvKa5ximuc4hqnuMYprnGKa5yGJQ1LGpY0LGmucZrzkua8pDkvac5Lmmuc5hqnucZprnGaa5zmGqdhScOShiUNS5prnOa8pDkvac5LmvOS5hqnucZprnGaa5zmGqe5xmlY0rCkYUnDkuYapzkvac5LmvOS5rykucZprnGaa5zmGqe5xmmucRqWNCxpWNKwpLnGac5LmvOS5rykOS9prnGaa5zmGqe5xmmucZprnIYlDUsaljQsaa5xmvOS5rykOS9pzkuaa5zmGqe5xmmucZprnOYap2FJc17SnJc05yXNNU7DkoYlDUua85LmvKRhScOScw7Vj99dsc5B1Ks8j+14E/UcRfXz45RzFvUqjdIpz8etzlL8bVIWZVPu68fOodTH355TqVdplE4Z/Jj426QsyqYkbZG2SFukLdIWaYu0RdoibZG2SDPSjDQjzUgz0ow0I81IM9KMNCfNSXPSnDQnzUlz0pw0J81JC9KCtCAtSAvSgrQgLUgL0oI0kSbSRJpIE2kiTaSJNJEm0pK0JC1JS9KStCQtSUvSkrQkrUgr0oq0Iq1IK9KKtCKtSCvSmrQmrUlr0pq0Jq1Ja9KatCYNlmxYsmHJhiUblmxYsmHJhiUbluxhid2GJXYblthtWGK3YYndhiV2G5bYbVhit2GJ3YYldruRtkhbpC3SFmmLtEXaIm2RtkhbpBlpRpqRZqQZaUaakWakGWlGmpPmpDlpTpqT5qQ5aU6ak+akBWlBWpAWpAVpQVqQFqQFaUHagyWPch2+vH2WRumUZ1qfpSiT8khLP8sjLXWWe8qTJXmmnSx5lkbplEEpyqQ8084DOlmS5508WXL8pgI7516vclEeaXXeyZMlh7PPzrnXqzzSDt2rnXOvV3mk1Rl8suRZ7ilPlhy/GNjOuderNEqnPNL6XPdkSZ+7c1Kjz3t2UqPPTT2p8SyPdfd5FCc1nuWx7j5/7KTGsxRlUp53/bHYvtLOsdbH355jrY99OMdaH8d2jrVeZVDqOqBzrPUqi7Ip95TrRrkojdKv3TnHWq9SlElZ1/ads6zn71Szc5b1KhelUTrluWd5lqJMyqJsyj3lyYdnuSiN0ilJc9KcNCfNSXPSgrQgLUgL0oK0IC1IC9KCtCBNpIk0kSbSRJpIE2kiTaSJtCQtSUvSkrQkLUlL0pK0JC1JK9KKtCKtSCvSirQirUgr0oq0Jq1Ja9KatCatSWvSmrQmrUnbpG3SNmmbtE3aJm2TtknbpO1JO2dZr3JRGqVTBqUok7Iom5K0RdoibZG2SFukLdIWaYu0RdoizUgz0ow0Iw2WGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkscs6/FbUO0xy/osnTIoRZmURdmUe8qTJc+StCQtSUvSkrQkLUlL0pK0Iq1IK9KKtCKtSCvSirQirUhr0pq0Jq1Ja9KatCatSWvSmrRN2iZtk7ZJ26Rt0jZpm7RN2r7S/DHL+iwXpVE6ZVCKMimLsilJW6Qt0hZpi7RF2iJtkbZIW6Qt0ow0I81IM9KMNCPNSDPSjDQjzUlz0pw0J81Jc9KcNCfNSXPSgrQgLUgL0oK0IC1IC9KCtCBNpIk0kSbSRJpIE2kiTaSJtCQtSUvSkrQkLUlL0pK0JC1JK9KKtCKtSCvSirQirUgr0oq0Jq1Ja9KatCatSWvSmrQmrUnbpG3SNmmbtE3aJm2TtknbpMGSBUsWLFmwZMGSBUsWLFmwZMGSBUsWLFmwZMGSBUuew659lkF5vprezjIpz1fTx4815Z7ycV7yKBelUTrl+dp9pj3OSx5lUhZlU+4pH+clj3JRGqVTkuakOWlOmpPmpAVpQVqQFqQFaUFakBakBWlBmkgTaSJNpIk0kSbSRJpIE2lJWpKWpCVpSVqSlqQlaUlaklakFWlFWpFWpBVpRVqRVqQVaU1ak9akNWlNWpPWpDVpTVqTtknbpG3SNmmbtE3aJm2Ttknbk/ace32Ui9IonTIoRZmURdmUpC3SFmmLtEXaIm2RtkhbpC3SFmlGmpFmpBlpsMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUOSxyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOSxyWOCxxWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhyXPu1c5yURqlUwblmeZnmZRFeabFWe752wdLHuWiNEqnDErSgrQg7cGSR0maSBNpIk2kiTSRJtJEmkgTaUlakpakJWlJWpKWpCVpSVqSVqQVaUVakVakFWlFWpFWpBVpTVqT1qQ1aU1ak9akNWlNWpO2SdukbdI2aZu0TdombZO2SduT9px7fZSL0iinA55zr49S/IMj7VCZ+GPu9Vk25fk5zjrKkZZ4jbTEa6Ql/ph7fZZBKcqkPD81Ou/O4zPhR7mnfHwm/CjPNJ3leUCPMihFmZRFeQ1eOMOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKtvWLJhyYYlG5ZsWLJhyYYlG5ZsWLJhyYYlG5ZsWLJhyYYlG5ZsWLJhyYYlG5ZsWLJhyYYlG5ZsWLJhyYYlG5ZsWLJhyYYlG5ZsWLJhyYYlG5ZsWLJhyYYlG5ZsWLJhyYYlG5ZsWLJhyYYlG5bsYUnchiVxG5bEbVgSt2FJ3IYlcRuWxG1YErdhSdyGJXG7kbZIW6Qt0hZpi7RF2iJtkbZIW6QZaUaakWakGWlGmpFmpBlpRpqT5qQ5aU6ak+akOWlOmpPmpAVpQVqQFqQFaUFakBakBWlBmkgTaSJNpIk0kSbSRJpIE2lJWpKWpCVpSVqSlqQlaUlaklakFWlFWpFWpBVpRVqRVqQVaU1ak9akNWlNWpPWpDVpTVqTtknbpG3SNmmbtE3aJm2TtkmDJQuWLFiyYMmCJQuWLFiyYMmCJQuWLFiyYMmCJQuWLFiyYMmCJQuWLFiyYMmCJQuWLFiyYMmCJUheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS13BYguQ1kLwGktdA8hpIXgPJayB5DSSv95I0WOKwBMlrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvAaS10DyGkheA8lrIHkNJK+B5DWQvIZGNBAa0UBoRAOhEQ2ERjQQGtFAaEQDoRENhEY0EBrRQChJS9KStCStSCvSirQirUgr0oq0Iq1IK9KatCatSWvSmrQmrUlr0pq0Jm2TtknbpG3SNmmbtE3aJm2TNqKByBENRI5oIHJEA5EjGogc0UDkiAYiRzQQOaKByBENRN5IW6Qt0hZpi7RF2iJtkbZIW6Qt0ow0I81IM9KMNCPNSDPSjDQjzUlz0pw0J81Jc9KcNCfNSXPSgrQgLUgL0oK0IC1IC9KCtCBNpIk0kSbSRJpIgyUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYMlz2LWP8sGSR3m+mt7O0ijPV9Pzxx7nJY9SlElZlE25p5wv4UTNl3Ci5ks4UfMlnKj5Ek7UfAknar6EEzVfwomaL+FEzZdwooK0IC1IC9KCtCAtSAvSgrQgTaSJNJEm0kSaSBNpIk2kibQkLUlL0pK0JC1JS9KStCQtSSvSirQirUgr0oq0Iq1IK9KKtCatSWvSmrQmrUlr0pq0Jq1J26Rt0jZpm7RN2iZtk7ZJ26TNl3Ci50s40fMlnOj5Ek70fAkner6EEz1fwomeL+FEz5dwoudLONE30hZpi7RF2iJtkbZIW6Qt0hZpizQjzUgz0ow0I81IM9KMNCPNSIMlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rBkw5INSzYs2bBkw5INSzYs2bBkw5INSzYs2bBkw5INSzYs2bBkw5INSzYs2bBkw5INSzYs2bBkw5INSzYs2bBkw5INSzYs2bBkw5INSzYs2bBkw5INSzYs2bBkw5INSzYs2bBkw5INSzYs2bBkw5INSzYs2bBkw5INSzYs2bBkw5INSzYs2bBkw5INSzYs2bBkw5INSzYs2bBkw5INSzYs2bBkw5INSzYs2bBkw5INSzYs2bBkw5INSzYs2bBkw5INSzYs2bBkw5INSzYs2bBkw5INSzYs2bBkw5INSzYs2cMS3YYlug1LdBuW6DYs0W1YotuwRLdhiW7DEt2GJbrdSFukLdIWaYu0RdoibZG2SFukLdKMNCPNSDPSjDQjzUgz0ow0I81Jc9KcNCfNSXPSnDQnzUlz0oK0IC1IC9KCtCAtSAvSgrQgTaSJNJEm0kSaSBNpIk2kibQkLUlL0pK0JC1JS9KStCQtSSvSirQirUgr0oq0Iq1IK9KKtCatSWvSmrQmrUlr0pq0Jq1J26Rt0jZpm7RN2iZtk7ZJ26TBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBEiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0Lyqufcq52lUwalKJPyTPOzbMp9lc+51zjLxd8apVMGpSiTsiibkrQHSx4laYu0RdoibZG2SFukLdIWaUaakWakGWlGmpFmpBlpRpqR5qQ5aU6ak+akOWlOmpPmpDlpQVqQFqQFaUFakBakBWlBWpAm0kSaSBNpIk2kiTSRJtJEWpKWpCVpSVqSltMBz7nXR0nayZJDpKPH3OujPFnyLM/PFtdZGqVTBqUok7Iom/L8bPG8O4/PhB/lojTKM01neR7Qo0zKomzKPeUMqIlhVzHsKoZdxbCrGHa9l0lZlE15jR6JYVcx7CqGXcWwqxh2FcOuYthVDLuKYVcx7CqGXcWwqxh2FcOuYthVDLuKYVcx7CqGXcWwqxh2FcOuYthVDLuKYVcx7CqGXcWwqxh2FcOuYthVDLuKYVcx7CqGXcWwqxh2FcOuYthVDLuKYVcx7CqGXcWwqxh2FcOuYthVDLuKYVcx7CqGXcWwqxh2FcOuYthVDLuKYVcx7CqGXcWwqxh2FcOuYthVDLuKYVcx7CqGXcWwqxh2FcOuYthVDLuKYVcx7CqGXcWwqxh2FcOuYthVDLuKYVcx7CqGXcWwqxh2FcOuYthVDLuKYVcx7CqGXcWwqxh2FcOuYthVDLuKYVcx7CqGXcWwqxh2FcOuYthVDLuKYVcx7CqGXcWwqxh2FcOuYthVDLuKYVcx7CqGXcWwqxh2FcOuYthVDLuKYVcx7CqGXcWwqxh2FcOuYthVDLuKYVcx7CqGXcWwqxh2FcOuYthVDLuKYVcx7CqGXcWwqxh2FcOuYthVDLuKYVcx7CqGXcWwqxh2FcOuYthVDLuKYVcx7CqGXcWwqwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFS5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CslrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK9pIxpIG2lJ2khL0kZakjbSkrSRlqSNtCRtpCVpIy1JG2lJmpFmpDlpTpqT5qQ5aU6ak+akOWlOWpAWpAVpQVqQFqQFaUFakBakiTSRJtJEmkgTaSJNpIk0kZakJWlJWpKWpCVpSVqSlqQlaUVakVakFWlFWpFWpBVpRVqR1qQ1aU1ak9akNWlNWpPWpDVpm7RN2iZtk7ZJ26Rt0jZpm7SRlqSPtCR9pCXpIy1JH2lJ+khL0kdakj7SkvSRlqSPtCT9RtoibZG2SFukLdIWaYu0RRoscVjisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LnsOufZZGeb6a3s4yKM9X08ePJWVRNuWe8nFe8igX5TWmnz5fwkmfL+Gkz5dw7mVSFmVTXmP6GfMlnIz5Ek7GfAknY76EkzFfwsmYL+FkzJdwMuZLOBnzJZyMG2mLtEXaIm2RtkhbpC3SFmmLtEWakWakGWlGmpFmpBlpRpqRZqQ5aU6ak+akOWlOmpPmpDlpTlqQFqQFaUFakBakBWlBWpAWpIk0kSbSRJpIE2kiTaSJNJGWpCVpSVqSlqQlaUlakpakJWlFWpFWpBVpRVqRVqQVaUVakdakNWlNWpPWpDVpTVqT1qQ1aZu0TRosCVgSsCRgScCSgCUBSwKWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnBkoIlBUsKlhQsKViC5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK/5nHu1sxRlUhZlU55pfpQjLck90pJ8zr3GWTp/G5SiTMqibErSirQi7cGSR0lakVakFWlFWpFWpDVpTVqT1qQ1aU1ak9akNWlN2iZtk7ZJ26Rt0jZpm7RN2iZtBEj1nHt9lIvSKJ0yKEWZlEXZlKQt0hZpi7RF2iJtkbZIW6Qt0hZpRpqRZqQZaUaakWak2dUB9Zx7fZSknSw5RDr1mHt9lkZ5fra4zjIoRZmURdmUe8rHZ8KP8vxs8bw7j8+EH6VTBuWZprM8D+hRNuWe8gGQR7kor2GgYti1GHYthl2LYddi2LUYdi2GXYth12LYtRh2LYZdi2HXYti1GHYthl2LYddi2LUYdi2GXYth12LYtRh2LYZdi2HXYti1GHYthl2LYddi2LUYdi2GXYth12LYtRh2LYZdi2HXYti1GHYthl2LYddi2LUYdi2GXYth12LYtRh2LYZdi2HXYti1GHYthl2LYddi2LUYdi2GXYth12LYtRh2LYZdi2HXYti1GHYthl2LYddi2LUYdi2GXYth12LYtRh2LYZdi2HXYti1GHYthl2LYddi2LUYdi2GXYth12LYtRh2LYZdi2HXYti1GHYthl2LYddi2LUYdi2GXYth12LYtRh2LYZdi2HXYti1GHYthl2LYddi2LUYdi2GXYth12LYtRh2LYZdi2HXYti1GHYthl2LYddi2LUYdi2GXYth12LYtRh2LYZdi2HXYti1GHYthl2LYddi2LUYdi2GXYth12LYtRh2LYZdi2HXYti1GHYthl2LYddi2LUYdi2GXYth12LYtRh2LYZdi2HXYti1GHYthl2LYddi2LUYdi2GXYth12LYtRh2LYZdi2HXYti1GHYthl2LYddi2LUYdi2GXYth12LYtQyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOSxyWOCxxWOKwBMlrIXktJK+F5LWQvBaS13tJGixxWILktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktZC8FpLXQvJaSF4LyWsheS0kr4XktXpEA9UjLakeaUn1SEuqR1pSPdKS6pGWVI+0pHqkJdUjLanepG3SNmmbtE3aJm2TtknbpI20pPZIS2qPtKT2SEtqj7Sk9khLao+0pPZIS2qPtKT2SEtq30hbpC3SFmmLtEXaIm2RtkhbpC3SjDQjzUgz0ow0I81IM9KMNCPNSXPSnDQnzUlz0pw0J81Jc9KCtCAtSAvSgrQgLUgL0oK0IE2kiTSRJtJEmkgTaSJNpIm0JC1JS9KStCQtSUvSkrQkLUkr0oq0Iq1IK9KKtCKtSCvSijRYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiV7WNK3YUnfhiV9G5b0bVjSt2FJ34YlfRuW9G1Y0rdhSd9upC3SFmmLtEXaIm2RtkhbpC3SFmlGmpFmpBlpRpqRZqQZaUaakeakOWlOmpPmpDlpTpqT5qQ5aUFakBakPVjSZxmU56vp7SyT8nw1ffxYU+4pH+clj3JRGqVTXmP6fZsv4fRtvoTTt/kSTt/mSzh9my/h9G2+hNO3+RJO3+ZLOH2bL+H0LUlL0pK0JC1JS9KKtCKtSCvSirQirUgr0oq0Iq1Ja9KatCatSWvSmrQmrUlr0jZpm7RN2iZtk7ZJ26Rt0jZp8yWcXvMlnF7zJZxe8yWcXvMlnF7zJZxe8yWcXvMlnF7zJZxe8yWcXjfSFmmLtEXaIm2RtkhbpC3SFmmLNCPNSDPSjDQjzUgz0ow0I81Ic9KcNCfNSXPSnDQnzUlz0py0IC1IC9KCtCAtSAvSgrQgLUgTaSJNpIk0WLJgyYIlC5YsWLJgyYIlC5YsWLJgyYIlC5YsWLJgyYIlC5YsWLJgyYIlC5YsWLJgyYIlC5YsWLJgyYIlC5YsWLJgyYIlC5YsWLJgyYIlC5YsWLJgyYIlC5YsWLJgyYIlC5YsWLJgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisMRhCZLXRvLaSF4byeu9JA2WOCxB8tpIXhvJayN5bSSvjeS1kbw2ktdG8tpIXhvJayN5bSSvjeS1kbw2ktdG8tpIXhvJayN5bSSvjeS1kbw2ktdG8tpIXhvJayN5bSSvjeS1kbw2ktdG8tpIXhvJayN5bSSvjeS1kbw2ktdG8tpIXhvJayN5bSSvjeS1kbw2ktdG8tpIXhvJayN5bSSvjeS1kbw2ktdG8tpIXhvJayN5bSSvjeS1kbw2ktdG8tpIXhvJayN5bSSvjeS1kbw2ktdG8tpIXhvJayN5bSSvjeS1kbw2ktdG8tpIXhvJayN5bSSvjeS1kbw2ktdG8tpIXhvJayN5bSSvjeS1kbw2ktdG8tpIXhvJayN5bSSvjeS1kbw2ktdG8tpIXhvJayN5bSSvjeS1kbw2ktdG8tpIXhvJayN5bSSvjeS1kbw2ktdG8tpIXhvJayN5bSSvjeS1kbw2ktdG8tpIXhvJayN5bSSvjeS1kbw2ktdG8tpIXhvJayN5bSSvjeS1kbw2ktdG8tpIXhvJayN5bSSvjeS1kbw2ktdG8tpIXhvJayN5bSSvjeS1kbw2ktdG8tpIXhvJayN5bSSvjeS1kbw2ktdG8tpIXhvJayN5bSSvjeS1kbw2ktdG8tpIXhvJayN5bSSvjeS1kbw2ktdG8tpIXhvJayN5bSSvjeS1kbw2ktdG8tpIXhvJayN5bSSvjeS1kbw2ktdG8tpIXhvJayN5bSSvjeS1kbw2ktdG8tpIXhvJayN5bSSvjeS1kbw2ktdG8trPuVc7y6Jsyj3lgyWP8kzzszRKpzzT4izF3yZlUTblnvLBkkdJmpPmpD1Y8ihJc9KcNCfNSQvSgrQgLUgL0oK0IC1IC9KCNJEm0kSaSBNpIk2kiTSRJtKStCQtSUvSkrQkLUlL0pK0JK1IK9KKtCKtSCvSirQirUgr0pq0Jq1Ja9KatCatSWvSmrSmAzYdsEk7WHK/hjhLp7yn3a8WzlJH+fi3SVmUTbmv8px7vcpFeaStOEunDMozLf7+80//5/d//ePv//VPf/jvn/7pf+9//I//+fO//e2Pf/nz849/+7//df2ff/3rH//0pz/+5+/+669/+bc//Pv//PUPv/vTX/7t+H8/3Y7/HJj555U/2/qX+z9ev/4re/7Tf76f4v58Pyv8l59/8uNPsX++nyDf/3T+8/u5/c/3E/Xjj+v4Y+f93/bx8378/PETtn92/v3t/tPH/45JrPi59rVA336+R93/v7hH+2eL469y/sriZ9vHXxV/VT/7+YN95eb6udaVW/vnPhfZrFs/2/kTiw2x9bPl+XfsyNzlZd/u0t///i9//38=",
3805
+ "verification_key": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuqAAAAAAAAAAAAAAAAAAAAZ0rxdT+UJck/Z11+lFjMKxMAAAAAAAAAAAAAAAAAAAAAABGZN81C25n6lgr+4dbx3gAAAAAAAAAAAAAAAAAAAO0uPlQKsVjppdPYgVGxrgl0AAAAAAAAAAAAAAAAAAAAAAALDq5Mm1o/zlfDt+e0fUsAAAAAAAAAAAAAAAAAAABmQLJRo966cRneZ4WRNswdegAAAAAAAAAAAAAAAAAAAAAAAyYBXLxVighjdQbGbvW+AAAAAAAAAAAAAAAAAAAAAYgi9+xLdxoFELPl9XwUb/cAAAAAAAAAAAAAAAAAAAAAACzx3tRI/PDXIHVx9zVSIwAAAAAAAAAAAAAAAAAAAIoRpK5ARAUXZ5Vkr1eDrhBSAAAAAAAAAAAAAAAAAAAAAAAPWtO+Q58nL0YCzmA+UGIAAAAAAAAAAAAAAAAAAADdPPaWixCoD26TBO0H8s4+pAAAAAAAAAAAAAAAAAAAAAAAEgRy9OzvVI8lWSDuw8ItAAAAAAAAAAAAAAAAAAAAFAYSyHnzkuTdY8eC4Ip4NqEAAAAAAAAAAAAAAAAAAAAAAA+lXnGqQ0njY8qg8iK1EQAAAAAAAAAAAAAAAAAAALSUza8qVVJK60V42K5nOchxAAAAAAAAAAAAAAAAAAAAAAAAOPM1jQO1xGWrsx68SiIAAAAAAAAAAAAAAAAAAABijxtv4+uqXwDwJZA4p/l+hQAAAAAAAAAAAAAAAAAAAAAAB8+IFj4RbfkQXwzK7M1PAAAAAAAAAAAAAAAAAAAAZMhEt/lfse5t2mUW4b/nunIAAAAAAAAAAAAAAAAAAAAAAC1JOgKg5JqPADOZP43pDwAAAAAAAAAAAAAAAAAAAIcXur55fbHsOUGq0r3/PRr/AAAAAAAAAAAAAAAAAAAAAAAJM7KSMX61e200rl5UxsIAAAAAAAAAAAAAAAAAAADGg2oIG7TTKnuqf8RZbOWNiAAAAAAAAAAAAAAAAAAAAAAAItMh6G4VLGUrn8C3nq1LAAAAAAAAAAAAAAAAAAAAJzF9LwqADNbKcfUoT8KtTa8AAAAAAAAAAAAAAAAAAAAAAA518y3hD5iLVkztpJIXywAAAAAAAAAAAAAAAAAAAB5J8PjTkTM7ZuCKjl4o1N0dAAAAAAAAAAAAAAAAAAAAAAAGAYYZQRXqMgE23QeNvXEAAAAAAAAAAAAAAAAAAAAzpcVM8SnGYpeM2ojUpKIsMgAAAAAAAAAAAAAAAAAAAAAAJZIxBoI9tXMYA4VtZhUfAAAAAAAAAAAAAAAAAAAAbjlCWKFs7BJFf3D9DZXyj+MAAAAAAAAAAAAAAAAAAAAAAALih/kciGzAHY5nYkJ5sQAAAAAAAAAAAAAAAAAAALGelM4oD9jlvNK8HY8oGq7iAAAAAAAAAAAAAAAAAAAAAAAK+hKBOgOsdvvYtuvslFMAAAAAAAAAAAAAAAAAAACzqxHEZMlRo93AHaQbNkQfrQAAAAAAAAAAAAAAAAAAAAAABjwTqDTBGd+QZtFkrlAyAAAAAAAAAAAAAAAAAAAAYCItCANqhEoeN32IjKA2JygAAAAAAAAAAAAAAAAAAAAAAAm6pGWS9kRqdnpgzJSacQAAAAAAAAAAAAAAAAAAABcpah+VESUYUnBMcsFfJIULAAAAAAAAAAAAAAAAAAAAAAAG6JPXszU3hcbOYj9YzSYAAAAAAAAAAAAAAAAAAABQOg3EtzWIE2/As69maewZpgAAAAAAAAAAAAAAAAAAAAAAJbapo00k6PFYgAcbY1EQAAAAAAAAAAAAAAAAAAAAfO7a16eWlQUUCVddnZCkOxMAAAAAAAAAAAAAAAAAAAAAABCJcQCO4FNvQPNUWZmJpAAAAAAAAAAAAAAAAAAAAOg0XniUgYlsNEs8DjBVRJAWAAAAAAAAAAAAAAAAAAAAAAAWcyP2sB7jgD4cFnYIQ8UAAAAAAAAAAAAAAAAAAAB85ebBUDScvw/ClZXC+wECwAAAAAAAAAAAAAAAAAAAAAAAAWb8B3teUMFldR2VAHlQAAAAAAAAAAAAAAAAAAAAKrVhtC94PcQd59nutD9x40YAAAAAAAAAAAAAAAAAAAAAACsIOvvAu0wjouLimEHoGAAAAAAAAAAAAAAAAAAAAIlNpLtmCSZXzgS4YqNo+Vp4AAAAAAAAAAAAAAAAAAAAAAAilcnxVnImx8glL5ybLDQAAAAAAAAAAAAAAAAAAACtC5uxuq5umxyKf9h/ACzIeQAAAAAAAAAAAAAAAAAAAAAABfkQeiEO+IZWrPDz4itXAAAAAAAAAAAAAAAAAAAAvG4SvFYLypzDvCBwc86F4H4AAAAAAAAAAAAAAAAAAAAAAByv9kQdo+GHlIElQDTgfwAAAAAAAAAAAAAAAAAAAHfluNnXml3UXUtLe4gWXQsiAAAAAAAAAAAAAAAAAAAAAAABHunvSNlbUiULNybYOhcAAAAAAAAAAAAAAAAAAADAljueNKhXJJUA97UC3jfWQQAAAAAAAAAAAAAAAAAAAAAAFceAzMHf6+gnBKNP7iVdAAAAAAAAAAAAAAAAAAAAb3naetKgqzfWIbIZ7fDHagcAAAAAAAAAAAAAAAAAAAAAAArf8paFGerwUeY4tht1TwAAAAAAAAAAAAAAAAAAAMetSYRp1beQYrg//yYICQq/AAAAAAAAAAAAAAAAAAAAAAAD8A+hP8qCmKdeyXP/RiIAAAAAAAAAAAAAAAAAAACizhquxal4f3xj/jNFl7HFxgAAAAAAAAAAAAAAAAAAAAAALfKlD1dMYZ8fJihFWqKeAAAAAAAAAAAAAAAAAAAAsfYMFFLU3pzugLDUL+saiN4AAAAAAAAAAAAAAAAAAAAAABTNJxx2K5wa0Y0jeiQEmAAAAAAAAAAAAAAAAAAAALqQzvv05PxDKQ+gX33v7JY3AAAAAAAAAAAAAAAAAAAAAAAkECBlXj3MQE191SHz8nQAAAAAAAAAAAAAAAAAAABhpw/3erlYRvr5Jt8f/HJvkgAAAAAAAAAAAAAAAAAAAAAABP0dSAivWlZbepyd7O7iAAAAAAAAAAAAAAAAAAAAtx3VV4WKLNdUmeapjtQiH7kAAAAAAAAAAAAAAAAAAAAAAAwx4ff761Q/fedfo7DexgAAAAAAAAAAAAAAAAAAALYmCIYKjuPS+QZKo4ca/TefAAAAAAAAAAAAAAAAAAAAAAAY/E92eyEVNN+H4lRPnbIAAAAAAAAAAAAAAAAAAADDbbL7xFEBX23/1bmKBlPvkQAAAAAAAAAAAAAAAAAAAAAAJcGBrjK3wbQtkMLyAm8WAAAAAAAAAAAAAAAAAAAAw0tzGQiAwA+2a3CSr6O7rAoAAAAAAAAAAAAAAAAAAAAAAC3PJx59czF+dFR6Fl5tVAAAAAAAAAAAAAAAAAAAAHhbg139HsL4tRNS8Lbo0uRUAAAAAAAAAAAAAAAAAAAAAAAmxf3aYLpFk44n7mfGzDwAAAAAAAAAAAAAAAAAAAAy+ykDwzkmg8xjbrhy4UQIQQAAAAAAAAAAAAAAAAAAAAAAJp/ODDfUeUIod28QZL8RAAAAAAAAAAAAAAAAAAAA4+CzXOVW7MQboPMKIO7u9j0AAAAAAAAAAAAAAAAAAAAAAC6MV0LS6pHvtFOxVKFR9AAAAAAAAAAAAAAAAAAAAEdBt8ENBXZgygaKh1RzLBfkAAAAAAAAAAAAAAAAAAAAAAAD1Gv/hSBECck0UK4xmw4AAAAAAAAAAAAAAAAAAABzxZ0hgrK3U+Q2n2ISLlYhqwAAAAAAAAAAAAAAAAAAAAAABQx0pZ33skolWNrwGM7yAAAAAAAAAAAAAAAAAAAA9gddfU47W3T+txjOUZIgsugAAAAAAAAAAAAAAAAAAAAAACRn4j+dkzlUOEII+58IKgAAAAAAAAAAAAAAAAAAAOwOwVZK5Ys5wO3Shn8hX+XaAAAAAAAAAAAAAAAAAAAAAAAUd8mKwF7lV45Sl/SZiYkAAAAAAAAAAAAAAAAAAADRm7356gtlZbPuda3U/vDBgAAAAAAAAAAAAAAAAAAAAAAAIna5XPqaJCJZ9WNKv6HJAAAAAAAAAAAAAAAAAAAAD2c7beACg9vkK95AWHKnSnQAAAAAAAAAAAAAAAAAAAAAAA/FsR+JqaUgJy/b1ewsRQAAAAAAAAAAAAAAAAAAAEKF/X3nDkSYscibqResWKzyAAAAAAAAAAAAAAAAAAAAAAAia16VsAtzFWE9b9eCVR4AAAAAAAAAAAAAAAAAAACnOfu+VaBsYMB65CKIb4/ZmQAAAAAAAAAAAAAAAAAAAAAAFxZ9scrTEB9hbHobCZqMAAAAAAAAAAAAAAAAAAAAIXAbNL89LLJQvfE8rrFTookAAAAAAAAAAAAAAAAAAAAAAAjzZBKl2hB9SEbKbp9OQgAAAAAAAAAAAAAAAAAAACqsbCcAtn2MArxTHstyVRmlAAAAAAAAAAAAAAAAAAAAAAASOZAncT+gKXzeXOzkWpUAAAAAAAAAAAAAAAAAAAAaUVWcnuDlzcZyaP8QdxLcwQAAAAAAAAAAAAAAAAAAAAAAHkHX3dqx8KmIe+9yRs7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI91li8DNDJEcqNUDGVh1YHQAAAAAAAAAAAAAAAAAAAAAAEUvl6BLSJqwSIt1obGi5AAAAAAAAAAAAAAAAAAAARnvJCKXa4bSwxGonwdmT2u4AAAAAAAAAAAAAAAAAAAAAABFk7Q8rnuRI+AlrFqmkPwAAAAAAAAAAAAAAAAAAAGvMegX/lalrKJQkxfczZw2WAAAAAAAAAAAAAAAAAAAAAAAAxDcm91tv2g3iLODg36sAAAAAAAAAAAAAAAAAAAAdCgnXF47JO614WPluZPC0jQAAAAAAAAAAAAAAAAAAAAAAL5tuC04sAZaN5cMkgqp9AAAAAAAAAAAAAAAAAAAAFLmaKhz1vbFNGPy31tW7G0MAAAAAAAAAAAAAAAAAAAAAABibwBFKqYLGRXSxHbsAPgAAAAAAAAAAAAAAAAAAAIFYESpGMQpiuEn23VYsLIaUAAAAAAAAAAAAAAAAAAAAAAASkF6WwsjbCGXWk491oyQ="
3806
3806
  },
3807
3807
  {
3808
3808
  "name": "lookup_validity",
@@ -3879,7 +3879,7 @@
3879
3879
  }
3880
3880
  },
3881
3881
  "bytecode": "H4sIAAAAAAAA/+09bZRU1ZH98V5/Tvd0T39NNzOAm/iF+IGKK4krIPIpMMgMAipgAy12HGbGnhkCOW7iRNePmGSZAdZskj1rHMCJippd49GjWVc2GqP2iW5OYvRwVt1VE9ezrpqQoDHH9ITp9+6791a9e98HMAn+cej3bt2qulV1q+requcfGrzj5RPXrSt+oa+0YV1XZV25q69U6Sp29q5b19ndfW1/z7otxc7yxnLfNt/gwL0XVcqdneVNc4qdnTs9QwN728tdmzpLO7YPDv1wsgf/z+sxfcUjB9BrDnBwFOLmns6S79+HPN7tg74aYEFyDwRmDOyZ093V27djYO/F5UppQ59v4O6Ftfc3lSrDK8452xxBerxXavwNa+nxHrn59fEjy0udxb7ylpJfDoKPhaDIQfAM3DcqLBuLfcU53T3bNFKuIHEigA8v6d4ypP/g1d+nnvjqT64c2D06w2B87P9zxt4ce7yGBMZQI7mia2xz1Duwu72vu2fQQAkBjFrxOXLQg/T4i/fMK5c6N5oOVOmBc7WJ71pxvrykzxOc10MPnA8NvGPgc4PXXPfs1y6Y/NXsL67/w3x64AJo4Fkbl1Zen3bnqY8sm/vwwMCqNfTAhdDAM30/+6sX/mdXYevs5tMf/PCjr9MDF0EDr3rm22/u3zCrvefO2zf7fQ8+Rg+8BBr49E0zH5qxYt3dDxV3X3zblt/9jB64GBo4OPWdVcM7X/vbU9578VM33RRupgcugQauVe+Z+50fTTn3vS+fdUXx1wdb6IFLoYFPDs547qanb9j7+uzsKwG1uIUe2AYNPHhL+qXI+b/ZP/Wuxyuf6flgAz1wGTTw/YO3Xlg6NPmFfxy8cvstNz/6U6OaX6rbWArgcjkVitU2uXJXsbKtNqitZ5cGdnj2xo2jAPR5NPj7FnZtPKythokvlbUM3ImX0xNfqu9GBg606wjtqZmYSol9Mo8/RTs9Rbs+xREANd85UAucA7XQOVCLnAN1iXOgFjsHaolzoJY6B6rNOVDLGKMCWCkvrdX0wHbIvJ1yzq8WbHu0Z3DO6wd3vMfZUTvkrAnjSawgNvRp8vvyZbJuHzV+pdT0DPWrbHreqwX9EWbg5XITz9q7vNTXX+ka80WrymsD986riVR5U9foD7te/nR/X7mzFl3M7u0tVWobxuaemuO3vrPUVilu6CxdVqr0lru7tm8fHNi3pLS5u7KtJquVUm+v5s9pAc1hgozQHxkDPr/Ut+LwXzVi+kpb+3bR4AiPG3qigk8C4JMg+CS0q464gaGcH887lyIR+df27XRYENb3Z8l9XNd+AhhBMzVRwMmJAkgIpDg5kUKuFTVR0MmJgsTS0xOFbExE+1oEUFvelgYnok3O4usb2L24u7iRICVCviUOMYJwLkS+dqTno1Yq4sZKRRxaqShKJ825qADnOBCjYpyLHp9vnM/HJHaiUhkQDwugQU7OQapiqEUCBsWtDGq0MiiBqiEwKGllpiYrg1JWBqWtDMqggyjLmh1g8hXas5xsklbUNhMzgNY5K2udKcJyCGHNcrDD8oQ1w4TlrIYQVtEHN648KyhZchbGUOVJKgCgzTygusiSYcIDepiwtLuv1Ds08N0FpWLP7EqluI2YtdkLevO5oYE9h18f1P8weOYhL9ffP+BpAiKbFcDv84DfV4PIRfnkxDz83+PA743A7wng9yTwexPwewr4PQ38nvEAnFgF/H4Z8PtcUTj6Tja6bPRy1uJ4kUCN3EUZWSEfehx9ehgJzxGcUeapYCjM+XGUi+Kj4cBrj02v3IJtjhzt4I3iRoxEjbG5Md0AiftlMcTbPA7wmARIbBuO4+hgNM1MY8gEOJhg4URJ2n5Cx2Qx0tdwhntZ8jXx2Carb2IIknGJwCcGQ4wTA1lD2mjPex9BQqQYOQuNVYIYKhFBxfQDBhpikhjI0tkkR6ciEWvFyFlorFLEUBartBxWqoQ7HSNnobHKGBx4m5FDAMKqgGLVzGBFBA4FCOYERCbmMBALxEAIYguKZQMDcwIxdPTgxMC6VnJu0guiX2whxoy5oJRZ9BOWbFH/5p7B55+ASFBHFtc84I5ril1GOvyGQHcUyMKriRnUqvKtOuz99PQq4n3F5AQkIu99xWDvS3XI++KYehX0vuIkasw2ENfDQvFNII7sK3FTz+E4wD8HgCOm7px1HJn4wUEvK0bqDG0gVdLtQ7yREOYUqBIJ3ASCqUq+tsemLQmb2+g3QLzNbXScY6MTVWV2HfYvMVbHJKJMFfYWDedrMpZzBPb1Ita8ZBX29QxeMrKqImch81gAcSkARRZAQgpAmQWQlALQyQJISQEosQAyUgA2sgCyUgAmYwcLIgD6WAB5KQDdLICCFIBNLIAJUgC6aPPSgvhgrXKmKyPvg7XCPliLQz5YK6v1LaAPNpFEjTH0EwX2jonsdBORvWMiaREcB5lwHmTSeZAp50FmnAeZdR5kznmQ+XFBeGFcCFFuXPAyPi6wnDAuRD3nhlyyDneo6p1hO1DIsvkDeCdPyMKW3skTNDoJEjNwl08Y7rnCiH1UmrJ862fvmGMtZBNPKBOuAeLvCjExbaxG8ZN7qOGJwnJx7IlKTl6/QP0W5soLYibDRWIWRtATpvkKfGF2d1SKhtK/OKkPSCgaZB4S92uxG8N7bJ60qvKqEYLFX3HIyQ2xXFZEEo0hNGPkdT4JpToPMug8SB+SqZbPbNGLHhQsvThD5rZC3N6BioAYx92/rRCXua1g2GA4lslcQCTzfHaN3fgGiKU9Q6ZJy6p3DYRS0Dxr2cRxooJV5UwN+FXMdqCQiEqcOwXtHeIK6FHQ/XOnoMy5U4hEDb7sME9i7wmJ3J5wAaC0qVXrf7hoatU/f1P7F2gXCZ05QlVjqqNOiYw1d+v2FBzA2p+GOC8335tutXGiluafqE3SgN9uOxzP0yTk6yQwdquACOYERJZakOVvJbnKXRkPvTIektZ64Pq+Mbgl3vGwARtBkXu79+xxuHsbChe+rxcuzO7vu2Zlua+rJq+D/PvywVlQbcKsQbgcmq6vhq2d3dB6tqOhddC90DqIBHeSzsEsqeAV1tEE+QxKd91fN2Zzr+svdvaC0BMck5asekfQfTBqMQM0ZiWHXd50YLPI2Q/2yccqYzAu50cqMQ30g0yk4ifRtJkV9nowLRTrcyGh4JLCfoKjnnDQPU8YU3DJvXvywMhFncUN117UvXXg7o7u5cWN5a27gDCVr4vEQiJBrh8iT0FTg4ymGHrP2V1wa46Ln3VcNA2Vdj/qTfCqasQZ9yNE4oVcPfM7lJY0XN6yuyCTbd9ad2xJ7fiUTVYWNYEsapLEbN9hdP7k7rT17CSmHV7S36n/M0b+CQ5KGQdFyD/BQWnjoBQ5iD2XEswnJ+H5MsPt/evJmIaYGqZs72E/glwXHSLN4iYn9/MmiwgqeiJgeGm3sUxCHzZayCkBNAQCzVBAoYr8u9r+VDzKQyaDCAmDSUIEkzRKHgs0CQLNUkChehaavAwJAuwdUNMAwyhDmQvrZWWq3nc0L+ttnshoCYGxt/yX0DKadlJG0yQLqYkyTk6UIQUA7qpgf6IsmLrJOTlNDmFc0smJkgjjUvVxqzSh+lg2S0RIbDM3S+T9pA7cNwkvXwP1Na/NzTED8zmz5qs+vzZrGAE8ykkOzOUoH/MYGTlsNsMGpM22GhWPPEGIxXkx9i3gsk+JaLPG5AlaYEaQJSkoALPNRxerAAPURVpfd5FxBWwceGMrT+8QBl+NK8MTtUXIYTzLSrQcSegqD1UbohmUBEkpi3Sh6mvR/NbFPOvKyjUha5OwalSQzBRgmpK4aUpVfZ/ScG0DgY/u0SDcRmhYlrbRRANfYEgObRCTwliTM0eDZ/RNERHGnVM4myPJQMp52frVrJBnmOFYtayQIckZDYlhEF1fSjA5M5YcRgIMQ0CT1K0DOCRr3IByJOVIsXEai6oMxGWEOJJEQiOaI8TSZcc4wtZjQ9HaJ9R/CDMpMyThI/tmaGq9HEM/eYyifyGBPhyiMZvQfFKkTeSDN4TmFBnYmYk+lQDICIh+zij6guE4if0CIdmmFCJlUDFYOHKQcGTsC0eziHBkOMLRXPUtEpPttIvo56yin6v62gj0TZM8vp+k1vYHdq/ZcPrJsbnvNzftvHHmD7/25ZknT0ViWqQATyj3F5TP32fg/H3aofw9p8tgGrzJYthFOJ64FnaIOyI5sVA25RhILY/hOI4R50HGnCcbitTtC7jqqICn3BPwlGUB1/5UnF/rkPMgs86DTLpYHWDhOujRqQ5IIyecSXtXyQXlFinmtsRqTDKIA0/9NPb+mlvWV27fUOwsVmp/7uCf8SX5UUaWlC2/RIGRQuQV4b4ISTjkhiGi/apSMlKfcl3qU+5LfUqmJsbgYmOpfNDGpXElQ0BGnAcZO97o8nijy+MAjxbAY6DNpd2GajF5LY+5r+UxGS1PkagxfEyZrn8K91+OHMCVxzyGx0k+TrIlko9QBznOxdpQPaEWunBb8hfTw1tOfS/QP+3jzLN/2DbyrXefm7F9Znnl1A3diy5HcnGFL639aN+Xpl154nebf93wzEvnzHz+3i+89OPG9H8NPP7UKR/uWIOkz9VFI5/rfe4r5y5fe8W//fyNz34n//WbG9fNWHbS31/36tzBH7zhQ7KTk//pJ09M/f3KD3+rdF/8UuHpjw5VOh740azrlXfWF9bf8uyTJ3FCq/rQlos/2DP5+oH9X7nxhD0DV/7qe9MSn37s/1LN+cdeOXjXvpH5CzgdsupD/fe8e95bF01p9Q5umPL06m++/c6e+6bmRn48+Z4LHrj9tqcOjdBL2YzsRXnXm3vm4b3IxY9WNIN7UYFEjZHUgkB8wel0W0CEv0Cqm1MgzTKP1nFMOw8yMw7IzjoPMuc82bDtTE3zvDTp1enbTsue19225aZXO/Z9MT186i8bm9/tv2DLhwe62Tu4Y0C1Wgvfq7JXFxJ6voN3ccH/sAb6v/HWk2yjcsGLtH6ws0uI/lqmIhtb14+AVoCsUyV2YW3QHN4urBMOEpRwj6CQKUHcr29pfzawJDXqngoeN6HtQ9nvltXl4vRDj85687b40tTnX2vv/eitb7b2t5Wnv3X3DQ9fvbNv2gfVqu3e9xFwISI2FyLmuGQRNGKy1cBJONX5eUb11hdXb3q8/ZG/Gzwjlr252HHfw/fs/+mhtSc/+8X//5cnt99o+xNyUdcEG+FnoxV+NqKCjRcASCbwGkCmNLrHlAZTpnDqBBsMZINV/StQ378BScfYzZIojmZJIu5lSRqQg5dGWfERX8AQMq3kIYNM4j0ied5DfkZkiGvjUmSeHTzvaUBQQc97GjBLZ6ls00EhP2G8CHnEOSE3Kdsklk7lixFif1TnzpudLZlX3TtvVpGlkdzTZ0loXwNJN3wIBNqWRvTCdwMJjI1FGqv+09z4wFa9fOmkI1Uyr4Jnx1oY5z8LogX6cAxRYxvnfjjGf7cG/BwBBKY7j8BODfj5WC/KkIs9MU5wVMGDR0fBIw4peBSt1CcMdu2va0tn9w4BkT/xc3QytrJNdMUjeUUDqXiMMMWLBnHBylkjAqI+33lRv1EDvogoj0RaVTRhzQjCnD4WgrmVM11UJmW8KFMQzCOHUTkKkwIHTBdmpwsj20CYXGDHQXKMhSIbFkCboAfhXRB0lzvoJ1Eo/VufBulToGjxcFm8T4EP1SNFUI+Cx5te2ml6aS700l0qtT+9zoPk6JFP9m4/ZHc9CO9UVscgPYrY0COfFT0yWHF6syKULCBziyYsx9XT5DUl7P4tmjAqZ4YGcy+frHeYW9z9+aX9nZ3lq8ulypLS5vWlSu815Z6xnnO74A5y4BMVfBIAnwT5ve3CU3aJfHud+y9+T7wpQyAOPvCJdwj9FrlZqZiPab6hkvJMOaOE0PgQZ9THOKNe0qODtca3d3mpr7/ShXvIoAuMeTXiDn7EsJvCGbSoBCJxAfMeBVxpzYzxOr1Fq/7bzcumOXkKvylrYibZcZo1UWIoyJoxcRv9eKwUT0NYfBNB4xsw1aKid+XhBl2qQFhkUQSsiDBncaOYCEfI9UQWEeRbAyCoKiaoDVX/twlBhc6DojbPg2bbOQ/CTzHEj4wNHxLlHBljgmtI0bsmuNOl7KHTEqgKS+BfipgoqJioR0tMzpI4AVNMWcAtm9X+TGBtKTJoPby29rtXTDub/So52dvMvGsEVJ+exvpGUPX2xDKZ9KcY49lyApiVIn2sM8depC48x+154P8P2xcoPdqHlrg3JSFk2VZ3WgewBWat7uhlJyuhx5YdKdGX7SeSE5KMPNhVMYu1VjIsc0aIcwx6Y2xrx8SJQk7jNNLxAUItJ9cbxnBZlCuDL9o+v8dkMIVZmwhswZj2Q4ZbSdB2lXLvTlvOdLvKo3XL4lc38+S6W7pZy7mElKE3JJZ5OfeYlzZlHt7qQZzjhu2KYV6etAvYPUKEtRzJ1BJj4sQ1mxKXNSGO1qs0SZs4IjKNsSSw5yoD6WbA3a/yEogYbrqKq5g5/hN4V6oJUmj8Cclie0cbmma4pX7IDb2CqfpNQG+QA4Na2EETUPVrIaUV4kPBPT6kTPmQRsudxOUyjdpwkS4YaUs2POUe8zKmzMsiKFvs/5c26amJ3cHJWLlNvwrpLZ4yr2xIoAYWrmJNmLeijaOHYOL4GBrZI59aTTBevOHTWPoVRjYQJD9yAEQEQfJtAyy47z6cpoi7l6Ywv0KfRMQJXJgmdlCSXBgs0YofayYkTlH9oGz6yelMP56StJKmMGMB0vu1yXZrm2Ppw1vUs4nwWgocqCY1Ud6PHKiKmwshEUmYf28Nlz5xm6c4bvMMuoOYH7i8AcjTB8l9jPspub8WyNTbtW2BI27bUqhiB9EamBD6/cKEkJlag5mOCNZKKYRlKxIO1cgbPArJCknDp+Z5NZLKQq3B9DcwShMSK54UIwbsbJXcy7tiTXyci/dNMqVNpEs15sihLbPEA2RD4glNnYu7xUTKAOl3LNMhz7A5IsF1TiJgT5D2C4lp8xKRNwGzGQuiCxKRKlEKS0MskFu1eBhLYMkenE0gt3jE0sRcq1CMwCa9xdSkt7LktuhKwyh4a/3ZSpCcFvfISVghBy9gbSUtwlFYoaQpSS2ICe5AsyopkKDk0VyjlIm9whyCzLG5RriPk0ZJyo7HVWpGScqNo1XSNguMoPx4XCO8vLwwHjVJRUmagCYAk4Qr7FLA+/wbmMvhVA+YrOE1TpGPcqe2Ah+Ct1TkvfAa4GHCC0euF8Uk7saoCKWGG110zlAl9zwsZ0gsARvuEfs/ePNuIpdXrRivJlaV+zRefeza6QZyyNpqqmoT2cVoRVw/IhEVBwlqdY+gghWCCqjzZ8itjbs16kAJSo7HNWpCSUqNozXCnL+JIv7sMbxKzShJ+fGnSXNQgtSjsUaqKUEF3l6KOX8F1FOKoF5WCHGD9BTbYSfoCXtc2bqWf8zhNyZBtXMMbRJtF64PqCpvMjVW2p00HaXzzoVReuWpgz9/aNHZm9k7bXWvpV47w8U5SB/N+PVlNQhVSH/B8HtYJ487QYR0TWhYQYYlkaryXt0FGvspoA+rrzo9d4A/d4gmLgSdBdQB0gOI4uG6b/62Vot0WDOU1zBHEyzpCGgVL9M4OrWC47EFqsrvbBfMepC7j0FOrbzs2Q2lewHwlJI4bPIiZZ1Y2bmfLewE+S5wEqlqtu4T5CQSWWsv8zBAEoLcXeCcn3tRa2coGmWeGk6ZmKeKniEF6/QYwx2Azym4dXqabkA9JJxoDKMBW42UmNufRgM2DxRvJ6YJ6NPY1fKE7QYVk2wXHDci3RbxkV4PuIVrnUfUgmy5pEEpeAWT6mQNeCsm5Cpawg1VqkZJAOL1Uj6B6D+GtobykS4XS3esqp5IfAsYLG1q719PlzYRrIXuQ6CY+XHM4lX11DpmgfNkiw61LlX8okN1qvlxLec2hxdyILQ3GtHbHDFGLhrI+J/OIJG9I+sX0+DxClxqETeWdBh6UoKDYsaijihJEXbrIYYJfwAWMUz4w9ZEzGcQCJ6IzTAX/jgr/DEB4W8UFX5+xzb1b8yFPwYIfxwT/prGzzIX/kYrws9JTzeSWNFyQbAxgd3KjJkVYcWM8h0Xku84KN8x3u5MQAdBRo144F1jFXJu8bpboYR/lNgobUaYLwTf+c1zT2/abh5h2pzojdCyub7vf3WS6xPti/7nRT/459Ba84mASNQPBNOcWDegKw0d6war6mptma4wxhyqPlX9jWuAN6R9T0Uw+PXrAwwzR4BUQBTKCI393MBhT4SItCn21DbpTdQChPRhVCogqr/CT0PQxEVMUgFRekCUSQWoV0GCKNtIipNSgM+SfNBHowMm7rW3/gdsv4JG+6WS9k+ii1fA9S5eAfe7eAXQo0A4ZRFAkpPz4D4mkg233AMIx7h2g0oLHzVGuh4GHFrnEJLtkO56aLYs0g0Kj32AuvFgc3wOpkeCpBq6m+6BjZ47CZ/LWGvi4DQhPals2tBV3QGKBdjQdQwG7xs44ap6vwb6Hzgv+KvqN7QXhlkD45U9rmLUFco/RxC5jSKi1oBIh6GPN/UsrucqpTPTXqEaGYSNvvHLRmlmaR0alfctdWiM8M/LBBSBQIGrCt/TlugJCHjEStQt26suTC6R3RbZUXbVIVlpQGQlhshKHJGVRkTlEiTJ0nIUkVK6JyS2U6FmS2HCJMMnjQFyLFTJxjtpDOibAiurtcD0GdvOngc5aQxhhPjNCAF8tQ4+Ja9rjHweO4LzYnV2PlljEDDZFV8UKKQL2ry7ocB3N8JQpI4ZorBNQ8SJi0QORVT0MBISFTT3GjB4jjyhOUBkhbGj2TB6NBtCj2ZV5EBzhSa0h2xH19b6KXuRyMeHeAF+xAuwcCgfsHQoH8D0OmjwFWClV0DNDByrmrlK9taUsCgHeaIMz6oYbH1dlB1K38aeeqTt9UM9J7meJ/7X6VM/E1t10g0CeWLovoPKhFgB0HwGzPqndnBvBQXyGmgVu57iw9RElciCBewHz3YvOFjIJAXdzyThff+d/mbICOJiEkukf4zmoWXdvaXyxu6us5eVKpv7+2pvdncN8S1jiLRJitytJ8PFJtTAHtFbTzoK0B0NIScUVFKS+RyfItCqqek5+J4kvszmTaC5uwWBNPpZYiRw9Er4gOaOI94oWMVbVSOHsYbzXZQ0oX3frkeuwvt+xHTfx77oaLFXu2ryTTjr7kIEVc+AmMNQ0xMLRzOr2C2YmFjfhG36BhMeL70w88D/HjD1Df4I5lGFxsb7AAA=",
3882
- "debug_symbols": "tZ3bjlw3zoXfpa99sUmJlJRXGQwCJ3EGBgwn8CQ/8CPIu49IbS5WOyilepdz4/25XbWWTtR5t/94+enDD7//5/uPn3/+5b8v3/3rj5cfvnz89Onjf77/9MuP73/7+Mvn+dM/Xg77Q/vLd+Xdi46X7/TdS5s/a/NB68HrUdajroesh65HW4++HsMffan0pdKnCh3zWc5nPZ9yPvV8tvPZz+dYz3GcTzqfp9449capN069ceqNU2+ceuPUo+MIoAAOKAE1QAI0oAX0gFCmUCZTZgMOKAE1QAI0oAX0gHECHwGhzKHMocyhzKHMocyhzKHMoVxCuYRyCeUSyiWUiylXAw1oAT1gnFCPAArggBJQA0K5hnIN5RrKNZQllCWUJZQllCWUJZTFlItBC+gB4wQ9AijAlMWgBNQAU+4GGjCV2RqAhdWCcYKF1gIK4IASUAMkQANCuYVyC+Ueyj2Ueyj3UO6h3EO5h7LFHVtOLfAcPNIsgxZabEVnsbVAA1pADxgL2OJrAQVwQAmoARKgAS2gB4QyhTKFMoUyhTKFMoUyhTKFMoUyhbLFF4sBBXBACagB/QQLGVYD+3AzKAE1QAI0oAX0gHGChcwCCgjlGso1lGso11CuoVxDuYayhLKEsoSyhLKEsoSyhLKEsoSyhLKGsoayhrKGsoayhrKGsoayhrKGcgvlFsotlFsot1BuodxCuYVyC+UWyj2Ueyj3UO6h3EO5h3IP5R7KPZR7KI9QHqE8QnmEsofVMJAADWgBPWAsKB5WDhTAASWgBkiABrSAHhDKFMoUyhTKFlbdnlO4HAZTuLCBBrSAHjBOsKhaQAEcUAJqQChzKHMoW8AVMRgn2KhV1IACOKAE1AAJ0IAW0APGCTWUayjXUK6hXEO5hnINZQu4Miu5WHgVKzoLr1oMaoAEaEAL6AHjBAuvBRTAAaFs4VWrgQRoQAvoAeMEC68FFMABJSCUWyi3UG6hbOFVrZosvBwsvBZQAAeUgBogARrQAkK5h7IFU7UGYKFTrcAtdBa0gB4wFlQLnQUUwAEloAaYcjfQgBbQA8YJFjoLTHkYcEAJqAESoAEtoAeMEyx2FoQyhzKHMocyhzKHskWKzICtFhdCBvNbUg1qgARoQAvoAeMEi4sFFGDKVmIWFwtqgCk3Aw1oAT1gnGBD0wIK4IASUANCWULZYkesCix2FowTLHYWUAAHlIAaIAEaYMpWmBY7aoXpyyQrTIsdZQMKmMpaDKayWvlY7CyQgKmsYtACTNlKzGLHwWJHLV8WO2rJsNhZYMqWHoudBbYYs4RZ7DRLmEVKs/TY+NPMwkJmQQmoARKgAbaeM3cLogVjgVgQLaAADigBNUACTGcmXixAFsxv9WIwP9OrgQa0gPmtLgbjBIuCBfPr4zCYXx9koAEtYH59sME4wcaLYenxVc7hP/JFnyXEVzWLfJFnKfB1zaIOGkG+tFlUQJZ3NZAADXAxS72vZRaNIF/NLPLE2Td8PbOogCrIE2zZ8TWNrVPEFzW2zhFf1ZDrmQfZN3xdQ/YNX9gsMg9btogvbWgY+UrPytAXN4sU1EAd5AtJS0E7QARiUAG5h7lZYJBNK6T52sz0mi/OrIKar878G748s7x1X59Z3rov0CwfvsGwqIAqSEDuYb6+1bCog0aQbzgssjZrth5DDiWgBkiABrSAHjAWqMeQAwVwQAmoARKgAS2gB4QyhTKFMoUyhTKFMoUyhTKFMoUyhTKHMoeybz1UMiqgChKQghqog0aQb0EsIpB7sFEBVZCA3OMwaqAOGkFrM8KJQAwqoAoSEDzWnoQYddAIWtsSTgRiUAFVkIAUBA+Bh8BD4aHwUHgoPBQeCg+Fh8JD4aHwaPDwQLZZkXogLyqgChKQghqog0aQB/IieHR4dHh0eHR4dHh0eHR4dHgMeAx4DHgMeAx4DHgMeAx4DHiM8GjHASIQg9yjG1WQgBTUQB00gnxbcRGBGAQPggfBg+BB8CB4EDwYHgwPhgfDg+HB8GB4MDwYHgyPAo8CjxXJw8i+YVPW5lFrc9bmUbuIQAwqoAoSkIIaqIPgIfAQeAg8PGqFjdyjGAlIQQ3UQSPIo3YRgRhUQPBQeCg8FB4KD4VHg0eDR4NHg0eDR4NHg0eDh0etTfSbR62TR+0iAjGogCpIQApqIPcQoxHkUWvz77b2IZ0YVEAVJCAFNZB7WAvzqDXqHrWLCMSgAqogASmogToIHgQPggfBg+DhEWqri+6RZ8uL7lFmy4ruUWbriu5RtqiBOmgEeZQtIhCDbDLgUAPcoRopyNXEDmvKWk90X9v5T/zzlnKPsEUN1EEjyCNsEYEYVEAVBA+Bh0eYJ8UjbNEI8ghbRCAGFVAFCcg8bKLePcIWddAI8ghbRCAGFVAFCQgeDR4eYc3y5hHm5BG2iEAMKqAKEpCC3MNq1yOsW5vyCHPyCFtEIAYVkHl0KyGPsEV+1GHKI9rI8GiyddvwaFrEINfzz1WQgBRkae5q1EEjyKOpNyNaLXL4BNehBLhYN3KxYdRBI8gHu0UEYlABRRiOFYZOCmqgDhpBKwydCMQg0xt+iqmgBuog07M17fChcBGBGFRAFSQgBbUgD0pbGw8PykUMcj0reA/KRa5nVeBBOaycPSiHlZUfDBx+DusHU+bhRwOLCMQgP5wyNz8eWCTh5kG5qIE6aAStwzMnV7H0reMzJwW5SjHylFrq1xGa0TpDcyIQgwqoggSkoAaCR4fHgMeAx4DHgMeAh58PHFa6fkCwqIE6aJw0z7aPRErkxJJYEyVRE1uimZ3H5wPoJwcnUiInlsSaKIma2BLTjdKN043TjdON043TjdON043TjdON062kW0k3X4Pafs9EVyDHnjiAfprn5+aHn+edyIklsa5t2kkCUlADddAI8g3URQRikGe/OGpiS/TEe5Y8dBd67J5IiZxYEmuiJGpiS0w3P9bzg+bDD/Zsp2piSayJkqiJLbEnjnX0QoeF9UkEYlABVZCAFGSl4skcB4hADCogT3hzbIk9cQT6dRS2zTfyCymBnGiyvO6X1ERJ1MSW2BMH0CP2RErkxHSjdKN0o3SjdKN084i1vUHyayt2QE5+b+UkBhVQBQlIQQ3UQSOowKPAo8CjwKPAo8CjwKPAo8CjwKPCo8KjwqPCo8KjwqPCo8KjwqPCQ+Ah8BB4CDwEHgIPgYfAQ+Ah8FB4KDwUHgoPhYfCQ+Gh8FB4KDwaPBo8GjwaPBo8GpTXStNorTSdCOStdF2QKoneSoujJGqizwWdOmgEeUj75zykPX7JY/pEd/LUeVSfKInu5KHssX5iTxyB62rMiZTIiSWxJkqiJrbEnphulG6UbpRulG6UbpRulG6UbpRulG6cbpxunG6cbpxunG6cbpxunG6cbiXdSrqVdCvpVtKtpFtJt5JuJd1KutV0q+lW062mm/cB3B0F6NFjNwRo3Xip66c9cQA9gk70i07DkRNLYk2URE1siT1xAH3qe2K69XTr6dbTradbTzefAdsmHq27MQvXYOkZWqPlwpLoV6tcwSPrRE30LmeJ9cQRuO652N4JrXstuq40HomMD3izt90Q8nstgZKoiW5cHXviAK4hbiElcmJJdDdxlERNdDd17InuZo2rrMGuO1IiJ7rbcKyJkqiJfo3Ji29dRVs4gOs62kJK5MSS6NelvHzXxbSFmuhu6zqpu3n5rgtqXjrritpCQr2tIXBhAa7u3XOx7i96GtYNxoWmW/yzq4dfSImcWBJroiRqYkvsiXDzuyZsp5bkt00CObEk1kRJ1MSW2BMHkNKN0o3Szdu6HayS30MJlERNbIk9cQC9rZ9IiZyYbpxu3qrt+Jb8Ngrb+S35fZTAmiiJmtgSe+IAeks9kRLdQh1roiRqYkvsiQPozfNESuREt2iOLtYde+IA+kTMzpjJ76YEcmJJrImSqIktsScOYEuLNUgcjt5tew2tQWJhTxzANUgs9EHC2/oaDrydreFgoSa2xJ7out4ePDZPpEROLIk1URLdzat73Ule2BNHoKybyQspkRNLoluooya2xJ44gOuK8kJK5MSSWBPTjdJtXVhujj1xAD0gT6RETixR6sI1URJRWX7RhX3PQDyG7NRrIieWxJroA3Z11MSW2BMH0MPpRErkRHfzlHlknSiJmtgSe+IAepCtvHmQidexh9OJigx5OJ3YEwfQ52fiNeSRdSInetK9Anx+dqKkQrq1dGvp1tLNQ+/ErJae1dKzWnpWS0+3NSnjP/989xIvAH3/25cPH+z9n5s3gv71x8uv7798+Pzby3eff//06d3L/73/9Lt/6L+/vv/sz9/ef5n/OnuPD59/ms8p+PPHTx+M/nyX3z7uf5X8HoV/2xY7EJhLv1cSdF+i2wa1K4xSU2C8TgNv0nDY9txKw9ykuiuxyUaXyMU8oribiXpfoFon4wL1JgWtvPq+3P9+sQmlf39OZDIBXwlscjBsvn6WAdW7WdgozKgMiRlp2RaEXin0TSn6wY8r9DmZg8Jczr6SGLu6HHYicWZkbolnTmS8QcSW8kvENhzuitCmXc5xL1Iipd20ii4Pa0g9onHP3rbe1yj3NeYMOTTmsiMbh74hFZKp6Me1nEipaB260dBNI+ceLWwufNq9nLRNnfj9xhVnc4vvSlkIceZjUyO79qXSozDmNtqRdVKkv0FFNVUa97sqTN9EZdOF9obAvYn8ubx6uFzbodGFtrnPf6mNNb+0uzSIrmpIh0bjuxq7iiE/cz67j7nHd6kP+kqk3RXhTY8690VRub1m3VZ+uFfXHl3hnOe0e736VgH9z5zR3B0XyqZS5roRY8vkmxFS6ltEjhSZy5+7IpvOtOXI0OYBeDb1+rp5lM1YP+dfUbPSb0ao8rjCqOhM59H8JYUhUBh6QUFz1jR7sHpPYVuWGvXR5ynz/bLchElrRwyyrUm9q1E3DbRgdJubHznpkK8Udk3Lr1CslsU3E8C/aGy6UGHMnspxTQEzHyW5lg/foDnzcTNVeJNGo4iQuaV3Pye7HqNTBshNr/VVj1F3A32PkWCuibPr1P54GjDXkH5/NrtTGIT536BxSSHnTKPqBQX1ja/VJubO+T0F2bbLfqAob3oKel2Usgn0Oa2ICNN2U5/0cG0ooTZ0bmzfzYc8nYidxMAibbQsiDmRfFxhYDg++JqEXUnItQlf0yDK9U0tz2tIf15Dy/PlcV2j5i7EcU2DsTCwQ8yLGiV3Q67WC+duxtwSvaghmY6rZeoHUKfGzRL6bRq5KzFPIK+WR+alX8xLbTGc2N7tNY1S0Nbrpo213VK+ccfYKvfrtu12mgR90DxJuNmW0MclSouRbZ65jPvJ2K3lK5rHxIsaolEt5XYt/iYNLZGXuYe20dhNQqVFyLVZuveGlr6bg1ZE7cSbWnm9/dY3E69yYPVbbifkX0vsdkLtNiI600PlXlb2JYp5aGkk12ql5U5PG+2aRm8R+BPva3R9vmbb8zXbn6/Z8U/X7CiMXebar9VKLvrmgfm11jG7T6zYDro/jRrl6Zod9emaHfJ0zQ79h2t2bjPj/OEo93vj0Z8v0fF0idJxPF2kdNA/XqY3rbRebenoSysd5dqAXxkDfi1XNTBK1lr1ogYiv9bWL05ealRu3Y34dOy604IZ4cSdyPNjPtHzgz7R86M+0TcZ9ndVo7XlEebFZqaq0NisGR7WGHJR4yYvVzUaKneuHuh5jXoxHf1A+He+Pw0i3u1EYf2jdFxqHR0tbJ6LyiYV/A+mQg7GltxRd2VRv0H3wfJ898H6fPfB7fnuY3vI9C26DzkQtnJcDH3JbRw5duvSBzWIykWNzMtlDcJWkNDF0H+lcbFLFn8369z+LfdHbSr6TwauX9s6U7FZy1Hpz6Ziu/2CPYu5G3V/FkS706bX+y96b//lDRr393B2eRl5TDN2M6m6E2GcUc8T1dubU19pbKqWBX3yxH5NQ9GLvbri8iaNRtC4Pab+i8auN5WKHlmP42I6Bk6p+1WNgTsdPG4vU7xJI0/Lb4+v3qJRcn+/UJGLGgeG29vO9G0aWS90s510VYPv18s+5gaycmx2xkj06fM4kvb0WdguL+WoqNrdVGqv0XBr8dicqG01/DfCRROrFzVwsFe24+ROg7HaL8wXjztyQke1XDy6qZLHDJtjud1hqxy42SHC9w5bSXU3MlQcIc3TML172Ya07W6IPHbbhnQz7D92UeVv0vHYTRVqm2J99KoKtd1y/6G7KtvKxXHpXKXfvddA27beMDSUfnNP9685qd+gbps8Xbf7dDxat+1b1G3/J+tWMT/VJnS3bncHUV3zNv3NINcev6rRWtSr3jaON1xa6XgnQPu1yx5UO1akdVzsjeWQPPS92qMPefrg+CYvO439CCc5EdOrGpoal0fr3G6gY1ycNfSWGsdm5bKb3eZ+FHe5OMvu2FifGnRXY3cMVRkFMrfp76+gdudQmYzby3Jf7+DsjqFyy3T2G5cU2s3N6+OiQlRI400admVZ8hCraLlWH4XGN9CgpzWqIC9zw/Sahgy0LeW7KzhvgZs4KdnG77YuPrYr/NR49crE1xryDfYY/yYluFA5U6J3W9k+6lG7swOgiz0HLtBwv7ge5a6Zjvtr/O310nxha8i1C6o3Cjd18vVF3e2t/Ny6KTej7NuuLfe82H/cv7b8N9fZe84kr1yp1zxcmNtR967U79894Xz35Ob639veX8GWXHv11shXGky7o/wHX4LZijz/rlUjvFbU+KZtvO2dMaSi8M2a+vF3xh5862z7zljLd9/6/feSmPf9Tu4d5aSHH1eYM/OKYf5mUqxvkOgYYucsvV2TwN6k3l7L0kc7HSbcaWeSSy8YMOU4QDcj0pskHnvlg3evJD32zsde4qGXPnYZefCdj52EYkuSdZRLEs+/NcKsuePUrkk8OBgdz49Fu9OdTpj7deELIzvlwZ/9brkriSDSnG/1Sy3LfjlOSJRxLRXCyIjc9DdvksD+zhzVxrWMYL/Lfg/TNQm8sTe7r2sZUbTvuVl5LRUt77G3calxUh4L0eBLEg0z+VYv7XPdvIcj18rhwPnHq7XEX3re3VtNz4fpwKbh4GsFkZt1TZ4syWsCktE1Zzn3N2O2EgO3JWRz13v/ijGuByjXaxJolbJ7D2B7SQrR9epF5zelomUqNi+rPCxxsTjz/or2/rTE1UpVvKLcDr4ocTwr0XKO1urxvMTFppUNfHcR8FEJuZqKfJNfxjWJfCn2LxL/nn99/+PHL6/+W/I/TezLx/c/fPpw/vXn3z//ePOvv/3/r/Ev8d+a//rllx8//PT7lw+mZP+2/m/z+ce/qMxWRaXXf797KfZ3++1SxGp/J/+A/abN+dNiPyD7gRR+N/+o//7Tkvg/"
3882
+ "debug_symbols": "tZ3bjlw3zoXfpa99sUmJlJRXGQSBkzgDA4YTeJIf+BHk3UekNherHZSmepdz4/25XbWWTtR5t/98+fnDj3/8+4ePn3/59T8v3/3rz5cfv3z89Onjv3/49OtP73//+Ovn+dM/Xw77Q/vLd+Xdi46X7/TdS5s/a/NB68HrUdajroesh65HW4++HsMffan0pdKnCh3zWc5nPZ9yPvV8tvPZz+dYz3GcTzqfp9449capN069ceqNU2+ceuPUo+MIoAAOKAE1QAI0oAX0gFCmUCZTZgMOKAE1QAI0oAX0gHECHwGhzKHMocyhzKHMocyhzKHMoVxCuYRyCeUSyiWUiylXAw1oAT1gnFCPAArggBJQA0K5hnIN5RrKNZQllCWUJZQllCWUJZTFlItBC+gB4wQ9AijAlMWgBNQAU+4GGjCV2RqAhdWCcYKF1gIK4IASUAMkQANCuYVyC+Ueyj2Ueyj3UO6h3EO5h7LFHVtOLfAcPNIsgxZabEVnsbVAA1pADxgL2OJrAQVwQAmoARKgAS2gB4QyhTKFMoUyhTKFMoUyhTKFMoUyhbLFF4sBBXBACagB/QQLGVYD+3AzKAE1QAI0oAX0gHGChcwCCgjlGso1lGso11CuoVxDuYayhLKEsoSyhLKEsoSyhLKEsoSyhLKGsoayhrKGsoayhrKGsoayhrKGcgvlFsotlFsot1BuodxCuYVyC+UWyj2Ueyj3UO6h3EO5h3IP5R7KPZR7KI9QHqE8QnmEsofVMJAADWgBPWAsKB5WDhTAASWgBkiABrSAHhDKFMoUyhTKFlbdnlO4HAZTuLCBBrSAHjBOsKhaQAEcUAJqQChzKHMoW8AVMRgn2KhV1IACOKAE1AAJ0IAW0APGCTWUayjXUK6hXEO5hnINZQu4Miu5WHgVKzoLr1oMaoAEaEAL6AHjBAuvBRTAAaFs4VWrgQRoQAvoAeMEC68FFMABJSCUWyi3UG6hbOFVrZosvBwsvBZQAAeUgBogARrQAkK5h7IFU7UGYKFTrcAtdBa0gB4wFlQLnQUUwAEloAaYcjfQgBbQA8YJFjoLTHkYcEAJqAESoAEtoAeMEyx2FoQyhzKHMocyhzKHskWKzICtFhdCBvNbUg1qgARoQAvoAeMEi4sFFGDKVmIWFwtqgCk3Aw1oAT1gnGBD0wIK4IASUANCWULZYkesCix2FowTLHYWUAAHlIAaIAEaYMpWmBY7aoXpyyQrTIsdZQMKmMpaDKayWvlY7CyQgKmsYtACTNlKzGLHwWJHLV8WO2rJsNhZYMqWHoudBbYYs4RZ7DRLmEVKs/TY+NPMwkJmQQmoARKgAbaeM3cLogVjgVgQLaAADigBNUACTGcmXixAFsxv9WIwP9OrgQa0gPmtLgbjBIuCBfPr4zCYXx9koAEtYH59sME4wcaLYenxVc7hP/JFnyXEVzWLfJFnKfB1zaIOGkG+tFlUQJZ3NZAADXAxS72vZRaNIF/NLPLE2Td8PbOogCrIE2zZ8TWNrVPEFzW2zhFf1ZDrmQfZN3xdQ/YNX9gsMg9btogvbWgY+UrPytAXN4sU1EAd5AtJS0E7QARiUAG5h7lZYJBNK6T52sz0mi/OrIKar878G748s7x1X59Z3rov0CwfvsGwqIAqSEDuYb6+1bCog0aQbzgssjZrth5DDiWgBkiABrSAHjAWqMeQAwVwQAmoARKgAS2gB4QyhTKFMoUyhTKFMoUyhTKFMoUyhTKHMoeybz1UMiqgChKQghqog0aQb0EsIpB7sFEBVZCA3OMwaqAOGkFrM8KJQAwqoAoSEDzWnoQYddAIWtsSTgRiUAFVkIAUBA+Bh8BD4aHwUHgoPBQeCg+Fh8JD4aHwaPDwQLZZkXogLyqgChKQghqog0aQB/IieHR4dHh0eHR4dHh0eHR4dHgMeAx4DHgMeAx4DHgMeAx4DHiM8GjHASIQg9yjG1WQgBTUQB00gnxbcRGBGAQPggfBg+BB8CB4EDwYHgwPhgfDg+HB8GB4MDwYHgyPAo8CjxXJw8i+YVPW5lFrc9bmUbuIQAwqoAoSkIIaqIPgIfAQeAg8PGqFjdyjGAlIQQ3UQSPIo3YRgRhUQPBQeCg8FB4KD4VHg0eDR4NHg0eDR4NHg0eDh0etTfSbR62TR+0iAjGogCpIQApqIPcQoxHkUWvz77b2IZ0YVEAVJCAFNZB7WAvzqDXqHrWLCMSgAqogASmogToIHgQPggfBg+DhEWqri+6RZ8uL7lFmy4ruUWbriu5RtqiBOmgEeZQtIhCDbDLgUAPcoRopyNXEDmvKWk90X9v5T/zzlnKPsEUN1EEjyCNsEYEYVEAVBA+Bh0eYJ8UjbNEI8ghbRCAGFVAFCcg8bKLePcIWddAI8ghbRCAGFVAFCQgeDR4eYc3y5hHm5BG2iEAMKqAKEpCC3MNq1yOsW5vyCHPyCFtEIAYVkHl0KyGPsEV+1GHKI9rI8GiyddvwaFrEINfzz1WQgBRkae5q1EEjyKOpNyNaLXL4BNehBLhYN3KxYdRBI8gHu0UEYlABRRiOFYZOCmqgDhpBKwydCMQg0xt+iqmgBuog07M17fChcBGBGFRAFSQgBbUgD0pbGw8PykUMcj0reA/KRa5nVeBBOaycPSiHlZUfDBx+DusHU+bhRwOLCMQgP5wyNz8eWCTh5kG5qIE6aAStwzMnV7H0reMzJwW5SjHylFrq1xGa0TpDcyIQgwqoggSkoAaCR4fHgMeAx4DHgMeAh58PHFa6fkCwqIE6aJw0z7aPRErkxJJYEyVRE1uimZ3H5wPoJwcnUiInlsSaKIma2BLTjdKN043TjdON043TjdON043TjdON062kW0k3X4Pafs9EVyDHnjiAfprn5+aHn+edyIklsa5t2kkCUlADddAI8g3URQRikGe/OGpiS/TEe5Y8dBd67J5IiZxYEmuiJGpiS0w3P9bzg+bDD/Zsp2piSayJkqiJLbEnjnX0QoeF9UkEYlABVZCAFGSl4skcB4hADCogT3hzbIk9cQT6dRS2zTfyCymBnGiyvO6X1ERJ1MSW2BMH0CP2RErkxHSjdKN0o3SjdKN084i1vUHyayt2QE5+b+UkBhVQBQlIQQ3UQSOowKPAo8CjwKPAo8CjwKPAo8CjwKPCo8KjwqPCo8KjwqPCo8KjwqPCQ+Ah8BB4CDwEHgIPgYfAQ+Ah8FB4KDwUHgoPhYfCQ+Gh8FB4KDwaPBo8GjwaPBo8GpTXStNorTSdCOStdF2QKoneSoujJGqizwWdOmgEeUj75zykPX7JY/pEd/LUeVSfKInu5KHssX5iTxyB62rMiZTIiSWxJkqiJrbEnphulG6UbpRulG6UbpRulG6UbpRulG6cbpxunG6cbpxunG6cbpxunG6cbiXdSrqVdCvpVtKtpFtJt5JuJd1KutV0q+lW062mm/cB3B0F6NFjNwRo3Xip66c9cQA9gk70i07DkRNLYk2URE1siT1xAH3qe2K69XTr6dbTradbTzefAdsmHq27MQvXYOkZWqPlwpLoV6tcwSPrRE30LmeJ9cQRuO652N4JrXstuq40HomMD3izt90Q8nstgZKoiW5cHXviAK4hbiElcmJJdDdxlERNdDd17InuZo2rrMGuO1IiJ7rbcKyJkqiJfo3Ji29dRVs4gOs62kJK5MSS6NelvHzXxbSFmuhu6zqpu3n5rgtqXjrritpCQr2tIXBhAa7u3XOx7i96GtYNxoWmW/yzq4dfSImcWBJroiRqYkvsiXDzuyZsp5bkt00CObEk1kRJ1MSW2BMHkNKN0o3Szdu6HayS30MJlERNbIk9cQC9rZ9IiZyYbpxu3qrt+Jb8Ngrb+S35fZTAmiiJmtgSe+IAeks9kRLdQh1roiRqYkvsiQPozfNESuREt2iOLtYde+IA+kTMzpjJ76YEcmJJrImSqIktsScOYEuLNUgcjt5tew2tQWJhTxzANUgs9EHC2/oaDrydreFgoSa2xJ7out4ePDZPpEROLIk1URLdzat73Ule2BNHoKybyQspkRNLoluooya2xJ44gOuK8kJK5MSSWBPTjdJtXVhujj1xAD0gT6RETixR6sI1URJRWX7RhX3PQDyG7NRrIieWxJroA3Z11MSW2BMH0MPpRErkRHfzlHlknSiJmtgSe+IAepCtvHmQidexh9OJigx5OJ3YEwfQ52fiNeSRdSInetK9Anx+dqKkQrq1dGvp1tLNQ+/ErJae1dKzWnpWS0+3NSnjv/569xIvAP3w+5cPH+z9n5s3gv7158tv7798+Pz7y3ef//j06d3L/73/9Id/6D+/vf/sz9/ff5n/OnuPD59/ns8p+MvHTx+M/nqX3z7uf5X8HoV/2xY7EJhLv1cSdF+i2wa1K4xSU2C8TgNv0nDY9txKw9ykuiuxyUaXyMU8oribiXpfoFon4wL1JgWtvPq+3P9+sQmlf39OZDIBXwlscjBsvn6WAdW7WdgozKgMiRlp2RaEXin0TSn6wY8r9DmZg8Jczr6SGLu6HHYicWZkbolnTmS8QcSW8kvENhzuitCmXc5xL1Iipd20ii4Pa0g9onHP3rbe1yj3NeYMOTTmsiMbh74hFZKp6Me1nEipaB260dBNI+ceLWwufNq9nLRNnfj9xhVnc4vvSlkIceZjUyO79qXSozDmNtqRdVKkvUFFNVUa97sqTN9EZdOF9obAvYn88lUHuivXdmh0oW3u819qY80v7S4Noqsa0qHR+K7GrmLIz5zP7mPu8V3qg74SaXdFeNOjzn1RVG6vWbeVH+7VtUdXOOc57V6vvlVA/zNnNHfHhbKplLluxNgy+WaElPoWkSNF5vLnrsimM205MrR5AJ5NvX6lsRnr5+AYTV0G34TLGxQUlTIPty8o6EExOE3slxRKgULVewrbstSojz5Pme+X5SZMWjsiH61JvatRNw20YHSbmx856ZDXAV93TcuvUKyWxTcTwL9pbLpQYcyeynFNATMfJbmWD9+gOfNxM1V4k0ajaJtzS+9+TnY9RscoLbe91lc9Rt0N9D0ap9xE2DyfejwNmGtIvz+b3SkMhNjEcUkh50zjJsQeV1Df+FptYu6c31OQbbvs6K3mDvzNgPhaYhPoc1oREabtpj7p4dpQQm3o3Ni+mw95OhE7iYFF2mhZEHMi+bjCwHB88DUJu5KQaxO+pkGU65tanteQ/ryGlufL47pGzV2I45oGY2Fgh5gXNUruhlytF87djLklelFDMh1Xy9QPoE6NmyX02zRyV2KeQF4tj8xLv5iX2mI4sb3baxqloK3XTRtru6V8446xVe7XbdvtNAn6oHmScLMtoY9LlBYj2zxzGfeTsVvLVzSPiRc1RKNayu1a/E0aWiIvcw9to7GbhEqLkGuzdO8NLX03B62I2ok3tfJ6Dd43E69yYPVbDq53JXY7oXYbEZ3poXIvK/sSxTy0NJJrtdJyp6eNdk2jtwj8ifc1uj5fs+35mu3P1+z4p2t2FMYuc+3XaiUXffPA/FrrmN0nVmwH3Z9GjfJ0zY76dM0Oebpmh/7DNTu3mXH+cJT7vfHoz5foeLpE6TieLlI66B8v05tWWq+2dPSllY5ybcCvjAG/lqsaGCVrrXpRA5Ffa+sXJy81KrfuRnw6dt1pwYxw4k7k+TGf6PlBn+j5UZ/omwz7u6rR2vII82IzU+xrzukhPa8x5KLGTV6uajRU7lw90PMa9WI6+oHw73x/GkS824nC+kfpuNQ6OlrYPBeVTSr4H0yFHIwtuaPuyqJ+g+6D5fnug/X57oPb893H9pDpW3QfcuSRxnEx9CW3ceTYrUsf1CAqFzUyL5c1CFtBQhdD/5XGxS5Z/N2sc/u33B+1qeg/Gbh+betMxWYtR6U/m4rt9gv2LOZu1P1ZEO1Om17vv+i9/Zc3aNzfw9nlZeQxzdjNpOpOhHFGPU9Ub29OfaWxqVoW9MkT+zUNRS/26orLmzQaQeP2mPpvGrveVCp6ZD2Oi+kYOKXuVzUG7nTwuL1M8SaNPC2/Pb56i0bJ/f1CRS5q4LS83Hamb9PIeqGb7aSrGny/XvYxN5CVY7MzRqJPn8eRtKfPwnZ5KUdF1e6mUnuNhluLx+ZEbatBuIYwsV7UwMFe2Y6TOw3Gar8wXzzuyAkd1XLx6KZKHjNsjuV2h61yRDJUhO8dtpLqbmSoOEKap2F697INadvdEHnstg3pZth/7KLK/0jHYzdVqG2K9dGrKtR2y/2H7qpsKxfHpXOVfvdeA23besPQUPrNPd2/56R+g7pt8nTd7tPxaN22b1G3/Z+sW8X8VJvQ3brdHUR1zdv0N4Nce/yqRmtRr3rbON5waaXjnQDt1y57UO1YkdZxsTeWQ/LQ92qPPuTpg+ObvOw09iOc5ERMr2poalwerXO7gY5xcdbQW2ocm5XLbnab+1Hc5eIsu2NjfWrQXY3dMVRlFMjcpr+/gtqdQ2Uybi/Lfb2DszuGyi1TvblN+haFdnPz+rioEBXSeJOGXVmWPMQqWq7VR6HxDTToaY0qyMvcML2mIQNtS/nuCs5b4CZOSrbxu62Lj+0KPzVevTLxtYZ8gz3G/5ESXKicKdG7rWwf9ajd2QHQxZ4DF2i4X1yPctdMx/01/vZ6ab6wNeTaBdUbhZs6+fqi7vZWfm7dlJtR9m3Xlnte7D/uX1veX2fPScftae1bLsSjMPSQe1fq9++ecL57cnP9723vr2BLrr16a+QrDabdUf6DL8FsRZ5/16oRXitqfNM23vbOGFJR+GZN/fg7Yw++dbZ9Z6zlu2/9/ntJzPt+J/eOctLDjyvMmXnFMH8zKdY3SHQMsXOW3q5JYG9Sb69l6aOdDhPutDPJpRcMmHIcoJsR6U0Sj73ywbtXkh5752Mv8dBLH7uMPPjOx05CsSXJOsolieffGmHW3HFq1yQeHIyO58ei3elOJ8z9uvCFkZ3y4M9+t9yVRBBpzrf6pZZlvxwnJMq4lgphZERu+ps3SWB/Z45q41pGsN9lv4fpmkTFGwb2Yu0VCUX7npuV11LR8h57G5caJ+WxEA2+JNEwk2/10j7XzXs4cq0cDpx/vFpL/K3n3b3V9HyYDmwaDr5WELlZ1+TJkrwmIBldc5ZzfzNmKzFwW0I2d733rxjjeoByvSaBVim79wC2l6QQXa9edH5TKlqmYvOyysMSF4sz769o709LXK1UFRTnwRcljmclWs7RWj2el7jYtLKB7y4CPiohV1ORb/LLuCaRL8X+TeL7+df3P3388uq/Jf/LxL58fP/jpw/nX3/54/NPN//6+///Fv8S/635b19+/enDz398+WBK9m/r/zaff/yLymxVVHr9/t1Lsb/bb5ciVvs7+QfsN23Onxb7AdkPpPC7+Uf9/i9L4n8B"
3883
3883
  },
3884
3884
  {
3885
3885
  "name": "verify_private_authwit",
@@ -4871,7 +4871,7 @@
4871
4871
  "name": "note_hash_read_requests",
4872
4872
  "type": {
4873
4873
  "kind": "struct",
4874
- "path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
4874
+ "path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
4875
4875
  "fields": [
4876
4876
  {
4877
4877
  "name": "array",
@@ -4939,7 +4939,7 @@
4939
4939
  "name": "nullifier_read_requests",
4940
4940
  "type": {
4941
4941
  "kind": "struct",
4942
- "path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
4942
+ "path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
4943
4943
  "fields": [
4944
4944
  {
4945
4945
  "name": "array",
@@ -5007,7 +5007,7 @@
5007
5007
  "name": "key_validation_requests_and_generators",
5008
5008
  "type": {
5009
5009
  "kind": "struct",
5010
- "path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
5010
+ "path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
5011
5011
  "fields": [
5012
5012
  {
5013
5013
  "name": "array",
@@ -5085,7 +5085,7 @@
5085
5085
  "name": "private_call_requests",
5086
5086
  "type": {
5087
5087
  "kind": "struct",
5088
- "path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
5088
+ "path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
5089
5089
  "fields": [
5090
5090
  {
5091
5091
  "name": "array",
@@ -5205,7 +5205,7 @@
5205
5205
  "name": "public_call_requests",
5206
5206
  "type": {
5207
5207
  "kind": "struct",
5208
- "path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
5208
+ "path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
5209
5209
  "fields": [
5210
5210
  {
5211
5211
  "name": "array",
@@ -5345,7 +5345,7 @@
5345
5345
  "name": "note_hashes",
5346
5346
  "type": {
5347
5347
  "kind": "struct",
5348
- "path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
5348
+ "path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
5349
5349
  "fields": [
5350
5350
  {
5351
5351
  "name": "array",
@@ -5389,7 +5389,7 @@
5389
5389
  "name": "nullifiers",
5390
5390
  "type": {
5391
5391
  "kind": "struct",
5392
- "path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
5392
+ "path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
5393
5393
  "fields": [
5394
5394
  {
5395
5395
  "name": "array",
@@ -5448,7 +5448,7 @@
5448
5448
  "name": "l2_to_l1_msgs",
5449
5449
  "type": {
5450
5450
  "kind": "struct",
5451
- "path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
5451
+ "path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
5452
5452
  "fields": [
5453
5453
  {
5454
5454
  "name": "array",
@@ -5516,7 +5516,7 @@
5516
5516
  "name": "private_logs",
5517
5517
  "type": {
5518
5518
  "kind": "struct",
5519
- "path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
5519
+ "path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
5520
5520
  "fields": [
5521
5521
  {
5522
5522
  "name": "array",
@@ -5598,7 +5598,7 @@
5598
5598
  "name": "contract_class_logs_hashes",
5599
5599
  "type": {
5600
5600
  "kind": "struct",
5601
- "path": "aztec::protocol_types::utils::arrays::ClaimedLengthArray",
5601
+ "path": "aztec::protocol_types::utils::arrays::claimed_length_array::ClaimedLengthArray",
5602
5602
  "fields": [
5603
5603
  {
5604
5604
  "name": "array",
@@ -5721,8 +5721,8 @@
5721
5721
  }
5722
5722
  },
5723
5723
  "bytecode": "H4sIAAAAAAAA/+19B3gUVfd+5s6m0Xu1BEFApSMKNnqXIqgo0gIECEICISCoHxJ7lw1YP6yAIgqi0puAFIU9gKgIiiL2LlZERf83QthJsrvzzt19o/7+n4/P43Vz7nvO3HvO+96Z2ZzYuf779zYYPDj16uy0YYMzsganZ2SnZWWkjpkwePCktKz0EVMGj8tKn5SanTY4dWL2qKvSsyV5576SvXMWtRuTOuzKdpmTO03MGNY+dcyYnLl92vbs3DE356l+6dkZaRMmqBTAyLYAo/IIUsU2gFGVwDTAqipkdQIS1YmI0UmI0cmIUQoUeS3I6hTIqjZkVScl55l2WeljxqSPzPv5zLjp09flzG87YUJaVnb/tKzMGdP9uRtTmgzvmXWg6WOnLe/dcWlOzmUD6zf/rMuUFeP87Q/8NONgXFyc2M9uTImL/E8DE9gFrrBxJrALw8Kq47BF125x78wJaenDMzOa9U7LGjsxOzU7PTMjd+bxtdSrcHx8quPTBY7xwpliPyf2IrGfF/uFgrHn5rperVURur4XXYCsi5Dc0DhtvEdYB4pwsTsQFOHiQvlr+XOe7JueMXJM2tFccHOCRBL3F+bYcWPSxF6yDgpriVUwrGRyWEsLFq1/BuRCz8OCWea+pWb+l033WOAY8hKNPAPKwyWQ1TLIajmQ04WvBYjw2LUAV43tJXQtKyj7ond8CcbQK02I3y0AG0jjqMo2zt3EUbSrvBetXplVudA2r4KsVhMKW8e42o96dzEq1v1YY7Qfa7BrXeNxpcGTzFpX3408c07eBiJJFgdF+BLnCLcuLGz8cViTI9xax/il4+Majk/X6SPcerE3iP2y2BsLxo4QdU0oX9ZDq7DJ6+IiAZ4KBbgBCnAzEKDJNm1yjDc7xi87xhv1Rm0R+xWxXxV7a0EmUTOCTIKcQVjG1gNB/tkWHAaCQwkOtweHO4LDncHha8HhLuyg+lpS0RO+265aUH4IQ8H11XJ49HWPZzcQ9o2wsAnHF8Ek/V93jLc5xgHH+A2d/m+KvVvst8Te450GdL5BVm9CK7HXazpgx5zdkPO3ve4utj47IKu3oBDfIRHlXsf4bcf4Hcd4j86UfWK/K/Z7Yu+P9s71tciX++2ff/7hOHS9b3Ln+pqe58ZUeX7yzBC8A5T7Wx3lAT8U5QHOGekDV1ifCeyHYWHt49GapOoHx8eW49N9jvGHOlE/EvtjsT8R+9N/45Z85gprG63dZ47xLsf4o0Kr97nYX4j9pdhfRVfmlqfHU197L3K9WV9jfPMNoXjzYE0eTbknwAGNDF+XJ/+gYi6G8vTbGD2f/bbQ81nbs5xsQTJtbtusrNQp++LaiH1Q7O/E/l7sH8T+UeyfxP5Z7ENi/yL2YbF/Ffs3sX8X+4jYusr/FF+c+CzxKfHZ4vOJL158CeJLFF+S+JLFV0J8JcVXSnylxVdGfGXFV0585cVXQXwVxVdJfJXFV0V8VcVXTXzVxVdDfDXFd4L4ThTfSeI7WXwp4qslvlPEV1t8dcR3qvjqiq+e+OqL7zTxnS6+M8TXQHwNxddIfI3XFVyuErlel+tgTO9P9D3+8Sr2NQkOm0J3F74mgZ8hu6ZJJsevg+5Erne2CZLvvqYmxeYOizlvpp27WEHL2Ewvd0RWBwJ2DyXI677m67wzoK+JnvcXVbmY5pkBaeA704D/oSjP9ENRnsl4VO5rqoERBYqSLr7j0cVZweHZGF2cBdLF2UZ08R1EF2dBZXI2hy4w5y1jRBcto6eLszzRRSsTujhLz8PoohVEF+dQ6EJHeQ5GF+dQ6OJsDVwMdPE9jy7OCw7Px+jiPJAuzjeii+8hujgPKpPzOXSBOb8gRnRxQfR0cZ4numhtQhfn6XkYXbSG6KINhS50lG0wumhDoYvzNXAx0MUPPLpoFxy2x+iiHUgX7Y3o4geILtpBZdKeQxeY8w4xoosO0dNFO0900dGELtrpeRhddIToohOFLnSUnTC66EShi/YauBjo4kceXXQJDrtidNEFpIuuRnTxI0QXXaAy6cqhC8x5txjRRbfo6aKLJ7robkIXXfQ8jC66Q3RxIYUudJQXYnRxIYUuumrgYqCLn3h00TM47IXRRU+QLnoZ0cVPEF30hMqkF4cuMOe9Y0QXvaOni56e6OIiE7roqedhdHERRBd9KHSho+yD0UUfCl300sDFQBc/8+ji4uDwEowuLgbp4hIjuvgZoouLoTK5hEMXmPNLY0QXl0ZPFxd7oot+JnRxsZ6H0UU/iC4uo9CFjvIyjC4uo9DFJRq4GOjiEI8u+geHV2B00R+kiyuM6OIQRBf9oTK5gkMXmPMBMaKLAdHTRX9PdDHQhC7663kYXQyE6GIQhS50lIMwuhhEoYsrNHAx0MUvPLoYEhymYnQxBKSLVCO6+AWiiyFQmaRy6AJzPjRGdDE0eroY4okuhpnQxRA9D6OLYRBdDKfQhY5yOEYXwyl0kaqBi4EuDvPoYkRwOBKjixEgXYw0oovDEF2MgMpkJIcuMOejYkQXo6KnixGe6CLdhC5G6HkYXaRDdDGaQhc6ytEYXYym0MVIDVwMdPErjy7GBIdjMboYA9LFWCO6+BWiizFQmYzl0AXmPCNGdJERPV2M8UQXmSZ0MUbPw+giE6KLcRS60FGOw+hiHIUuxmrgYqCL33h0kRUcTsDoIgukiwlGdPEbRBdZUJlM4NAF5jw7RnSRHT1dZHmii4kmdJGl52F0MRGii0kUutBRTsLoYhKFLvR2TioGuvidRxeTg8MpGF1MBuliihFd/A7RxWSoTKZw6AJzfnWM6OLq6Olisie6uMaELibreRhdXAPRxbUUutBRXovRxbUUupiigYuBLo7w6GJqcHgdRhdTQbq4zogujkB0MRUqk+s4dIE5nxYjupgWPV1M9UQXOSZ0MVXPw+giB6KL6yl0oaO8HqOL6yl0cZ0GLga6+INHFzcGhzdhdHEjSBc3GdHFHxBd3AiVyU0cusCc3xwjurg5erq40RNd3GJCFzfqeRhd3ALRxa0UutBR3orRxa0UurhJAxcDXfzJo4vbg8M7MLq4HaSLO4zo4k+ILm6HyuQODl1gzu+MEV3cGT1d3O6JLu4yoYvb9TyMLu6C6OJuCl3oKO/G6OJuCl3coYH5dOGL49HF9ODQj9HFdJAu/CZ04YuD6GI6VCZ+Dl1gznNjRBe50dPFdE90McOELqbreRhdYGkwk0IXOsqZGF3MpNCFXwMXA11YPLq4Lzi8H6OL+0C6uN+ILiyILu6DyuR+Dl1gzh+IEV08ED1d3OeJLh40oYv79DyMLh6E0uAhCl3oKB/C6OIhCl3cr4GLgS4Ujy5mBYcPY3QxC6SLh43oQkF0MQsqk4c5dIE5fyRGdPFI9HQxyxNdPGpCF7P0PIwuHoXS4DEKXegoH8Po4jEKXTysgYuBLmweXTwRHM7G6OIJkC5mG9GFDdHFE1CZzObQBeZ8TozoYk70dPGEJ7qYa0IXT+h5GF3MhdLgSQpd6CifxOjiSQpdzNbAxUAXPh5dzAsOn8boYh5IF08b0YUPoot5UJk8zaELzPn8GNHF/OjpYp4nunjGhC7m6XkYXTwDpcGzFLrQUT6L0cWzFLp4WgMXA13E8+hiYXD4HEYXC0G6eM6ILuIhulgIlclzHLrAnC+KEV0sip4uFnqii+dN6GKhnofRxfNQGrxAoQsd5QsYXbxAoYvnNHAx0EUCjy4WB4dLMLpYDNLFEiO6SIDoAup871vCoQvM+dIY0cXS6OlisSe6WGZCF4v1PIwulkFpsJxCFzrK5RhdLKfQxRINXAx0kciji5XB4SqMLlaCdLHKiC4SIbpYCZXJKg5dYM5Xx4guVkdPFys90cUaE7pYqedhdLEGSoO1FLrQUa7F6GIthS5WaeBioIskHl2sCw7XY3SxDqSL9UZ0kQTRxTqoTNZz6AJzviFGdLEherpY54kuXjahi3V6HkYXL0NpsJFCFzrKjRhdbKTQxXoNXAx0kcyji83B4RaMLjaDdLHFiC6SIbrYDJXJFg5dYM5fiRFdvBI9XWz2RBevmtDFZj0Po4tXoTTYSqELHeVWjC62UuhiiwYuBroowaOL4J9W9glGFwGQLsSILkpAdBGAykQ4dIE53x4jutgePV0EPNHFDhO6COh5GF1AfyXYt5NCFzrKnRhd7KTQhWjgYqCLkjy62BUcvo7RxS6QLl43oouSEF3sgsrkdQ5dYM7fiBFdvBE9XezyRBdvmtDFLj0Po4s3oTTYTaELHeVujC52U+jidQ1cDHRRikcXe4LDvRhd7AHpYq8RXZSC6GIPVCZ7OXSBOX87RnTxdvR0sccTXbxjQhd79DyMLt6B0mAfhS50lPswuthHoYu9GrgY6KI0jy7eCw73Y3TxHkgX+43oojREF+9BZbKfQxeY8/djRBfvR08X73miiwMmdPGenofRxQEoDT6g0IWO8gOMLj6g0MV+DVwMdFGGRxcfBYcfY3TxEUgXHxvRRRmILj6CyuRjDl1gzj+JEV18Ej1dfOSJLj41oYuP9DyMLj6F0uAzCl3oKD/D6OIzCl18rIGLgS7K8ujii+DwS4wuvgDp4ksjuigL0cUXUJl8yaELzPlXMaKLr6Kniy880cXXJnTxhZ6H0cXXUBp8Q6ELHeU3GF18Q6GLLzVwMdBFOR5dHAwOv8Po4iBIF98Z0UU5iC4OQmXyHYcuMOffx4guvo+eLg56oosfTOjioJ6H0cUPUBr8SKELHeWPGF38SKGL7zRwMdBFeR5d/BwcHsLo4meQLg4Z0UV5iC5+hsrkEIcuMOe/xIgufomeLn72RBeHTejiZz0Po4vDUBr8SqELHeWvGF38SqGLQxq4GOiiAo8ufg8Oj2B08TtIF0eM6KICRBe/Q2VyhEMXmPM/YkQXf0RPF797oos/Tejidz0Po4s/kTSIj6PQxe8aGKKL+DgKXRzRwMVAFxVpdBGvgkMboot4hdFFvG1EFxURuohXSJnE2xS6AJ37YkMX8b6o6SJeeaGL+HgDuohXeh5EF/HxEF0kMOgiL8oEjC4SGHQRb2vgYqCLSjy6SAoOkzG6SALpItmILipBdJEElUkyhy4w5yViRBcloqeLJE90UdKELpL0PIwuSkJ0UYpCFzrKUhhdlKLQRbIGLga6qMyjizLBYVmMLsqAdFHWiC4qQ3RRBiqTshy6wJyXixFdlIueLsp4oovyJnRRRs/D6KI8RBcVKHSho6yA0UUFCl2U1cDFQBdVeHRRKTisjNFFJZAuKhvRRRWILipBZVKZQxeY8yoxoosq0dNFJU90UdWELirpeRhdVIXoohqFLnSU1TC6qEahi8oauBjooiqPLmoEhzUxuqgB0kVNI7qoCtFFDahManLoAnN+Qozo4oTo6aKGJ7o40YQuauh5GF2cCNHFSRS60FGehNHFSRS6qKmBi4EuqvHoIiU4rIXRRQpIF7WM6KIaRBcpUJnU4tAF5vyUGNHFKdHTRYonuqhtQhcpeh5GF7UhuqhDoQsdZR2MLupQ6KKWBi4GuqjOo4u6wWE9jC7qgnRRz4guqkN0URcqk3ocusCc148RXdSPni7qeqKL00zooq6eh9HFaRBdnE6hCx3l6RhdnE6hi3oauBjoogaPLhoEhw0xumgA0kVDI7qoAdFFA6hMGnLoAnPeKEZ00Sh6umjgiS4am9BFAz0Po4vGEF00odCFjrIJRhdNKHTRUAMXA13U5NFFs+CwOUYXzUC6aG5EFzUhumgGlUlzDl1gzs+MEV2cGT1dNPNEFy1M6KKZnofRRQuILs6i0IWO8iyMLs6i0EVzDVwMdHECjy5aBoetMLpoCdJFKyO6OAGii5ZQmbTi0AXm/JwY0cU50dNFS090ca4JXbTU8zC6OBeii/ModKGjPA+ji/ModNFKAxcDXZzIo4sLgsPWGF1cANJFayO6OBGiiwugMmnNoQvMeZsY0UWb6OniAk900daELi7Q8zC6aAvRRTsKXego22F00Y5CF601cDHQxUk8uugQHHbE6KIDSBcdjejiJIguOkBl0pFDF5jzTjGii07R00UHT3TR2YQuOuh5GF10huiiC4UudJRdMLroQqGLjhq4GOjiZB5ddAsOu2N00Q2ki+5GdHEyRBfdoDLpzqELzPmFMaKLC6Oni26e6KKHCV100/MwuugB0UVPCl3oKHtidNGTQhfdNXAx0EUKjy56B4cXYXTRG6SLi4zoIgWii95QmVzEoQvMeZ8Y0UWf6Omitye66GtCF731PIwu+kJ0cTGFLnSUF2N0cTGFLi7SwMVAF7V4dHFpcNgPo4tLQbroZ0QXtSC6uBQqk34cusCcXxYjurgserq41BNdXG5CF5fqeRhdXA7RRX8KXego+2N00Z9CF/00cDHQxSk8uhgQHA7E6GIASBcDjejiFIguBkBlMpBDF5jzQTGii0HR08UAT3Qx2IQuBuh5GF0MhuhiCIUudJRDMLoYQqGLgRq4GOiiNo8uhgaHwzC6GArSxTAjuqgN0cVQqEyGcegCcz48RnQxPHq6GOqJLtJM6GKonofRRRpEFyModKGjHIHRxQgKXQzTwMVAF3V4dDEqOEzH6GIUSBfpRnRRB6KLUVCZpHPoAnM+OkZ0MTp6uhjliS6uNKGLUXoeRhdXQnQxhkIXOsoxGF2ModBFugYuBro4lUcXGcFhJkYXGSBdZBrRxakQXWRAZZLJoQvM+bgY0cW46OkiwxNdjDehiww9D6OL8RBdZFHoQkeZhdFFFoUuMjVwMdBFXR5dZAeHEzG6yAbpYqIRXdSF6CIbKpOJHLrAnE+KEV1Mip4usj3RxVUmdJGt52F0cRVEF5MpdKGjnIzRxWQKXUzUwMVAF/V4dHF1cHgNRhdXg3RxjRFd1IPo4mqoTK7h0AXm/NoY0cW10dPF1Z7o4j8mdHG1nofRxX8guphKoQsd5VSMLqZS6OIaDVwMdFGfRxfTgsMcjC6mgXSRY0QX9SG6mAaVSQ6HLjDn18eILq6Pni6meaKLG0zoYpqeh9HFDRBd3EihCx3ljRhd3EihixwNXAx0cRqPLm4ODm/B6OJmkC5uMaKL0yC6uBkqk1s4dIE5vzVGdHFr9HRxsye6uM2ELm7W8zC6uA2ii9spdKGjvB2ji9spdHGLBi4GujidRxd3Bod3YXRxJ0gXdxnRxekQXdwJlcldHLrAnN8dI7q4O3q6uNMTXdxjQhd36nkYXdwD0cV0Cl3oKKdjdDGdQhd3aeBioIszeHThGM7A6CIXpIsZRnRxBkQXWF3P4NAFZjUzRnQxM3q6yPVEF/ea0EWunofRxb0QXdxHoQsd5X0YXdxHoYsZGrgY6KIBjy4eCA4fxOjiAZAuHjSiiwYQXTwAlcmDHLrAnD8UI7p4KHq6eMATXfzXhC4e0PMwuvgvRBezKHSho5yF0cUsCl08qIGLgS4a8ujikeDwUYwuHgHp4lEjumgI0cUjUJk8yqELzPljMaKLx6Kni0c80cXjJnTxiJ6H0cXjEF08QaELHeUTGF08QaGLRzVwMdBFIx5dzAkO52J0MQeki7lGdNEIoos5UJnM5dAF5vzJGNHFk9HTxRxPdPGUCV3M0fMwungKoot5FLrQUc7D6GIehS7mauBioIvGPLqYHxw+g9HFfJAunjGii8YQXcyHyuQZDl1gzp+NEV08Gz1dzPdEFwtM6GK+nofRxQKILhZS6EJHuRCji4UUunhGA3umi5IzPNKFvSWmdBGX4olb/Dlz22ZlpU7ZF5ci8Ysk/nmJf0HiX5T4xRK/ROKXSvwyiV8u8SskfqXEr5L41RK/RuLXSvxLEr9O4tdL/AaJf1niN0r8JonfLPFbJP4ViX9V4rdK/DaJD0i8SPx2id+B8dWiJMjseczsBczsRcxsMWa2BDNbipktw8yWY2YrMLOVmNkqzGw1ZrYGM1uLmb2Ema3DzNZjZhsws5cxs42Y2SbMbDNmtgUzewUzexUz24qZbcPMApiZYGbbMbMdhQ5Q++JqYfQPHQoWQQet512t8nTtBTerv9TvxchWuQf/sloc0erHGUetlkSyev+nY1ZLI1i1O5BvtSy81fT2x62Wh7XK9AetVoSzWj7OYbUyjNXkFU6rVaGtOk8pYLU6pNWnXQparQll1eyzQlZrQ1jVa17Y6qWiVgPqF7FaV8Sq38CiVusLW027LITVhkJW03JCWb1c0GpJTkirjQWsOiwNbbXJadWrYxirzQ6rZb3DWTnqsf7ysFavHLd69LTwVq/mWzV5LILV1mNW7zeNZLXtqNX4AxGtAn9Z9ciKbCV5VsN6ulht11aNh7tZ7fB6Qi58R+RKkXkuXLjvNccd0c51Bmf9HXpebq67nzwzBO81gzsiKMrX/FCUr9EfcwAbv9P0Mceu4PB17LZhlwWZvW7ylCN+ByS+uyAhfx1YNe+JoXd8F/Z0YRe/XLe7rtbDjnJ9w6Rc9f3kG0C5PpxnhuC9SSlXHeWbfijKN/nlut3VaJZpue4ODt/CynU3Vq5vGZXrdqhcd0Pl8hawagYPJTHne9yv1uCxmuaKN3MxEYOi3Et5+LZHA/tj5j9KRhPXhHrRwWhvmzCafkj2NsBoL+aZIXjvUBhNR/mOH4ryHYOsgHJ3byxzdx/nncM7kNW7QHlHSfriavSCKem/Fxzux0j/PYz09xuRvkCk/x60MfuBVTPICsz5+wak7zZBJ7pON4xOD1Do/H0NzPEPLv4ByOoDyuLnsxbAb5DVh16Jw7viBVyr6R6H4n1konj6zdBHgOLdk2eG4H1MUTwd5cd+KMqPKYr3gd7uWGb4Jx4zHCyvjyGrT/mKF3A1uttU8T4LDj/HFO8zTPE+N1K8AKR4n0Eb8zmwagZZgTn/gkK6n+h0wxTnS4rifaGBOf7Bxf8SsvqKsvj5rOVuibHW1/x7vG2u1ZTiULxvTBRvm54HKF5KnhmC9y1F8XSU3/qhKL+lKN5XertjmeEHOYr3LWT1HV/xtrkanWyqeN8Hhz9givc9png/GCneNkjxvoc25gdg1QyyAnP+I4V0D+p0wxTnJ4ri/aiBOf7Bxf8JsvqZsvj5rOVuibHWIb7ibXWtpp0OxfvFRPG26nmA4u3MM0PwDlMUT0d52A9FeZiieD/r7Y5lhv/KUbzDkNVvfMXb6mq0w1Txfg8Oj2CK9zumeEeMFG8rpHi/QxtzBFg1g6zAnP9BId1fdbphivMnRfH+0MAc/+Di/4lYJcRRFj+ftdwtIdZKsPiK96prNaUGFS9BmSjeq3oeoHipeWYAXoJNUTwdpe2HorQZipeQt92xzHAfRfESbMgqnq94r7oaDTFUvISE4DARUryEBEjxEhKNFO9VRPESEqCNSQRWzSArMOdJDNJN8Ol0gxQnIZmheAlJGpjjH1z8ZMiqBGXx81nL1RJkrZJ8xXvFtZr2OBSvlInivaLnAYq3J88MWeXSFMXTUZb2Q1GWpiheCb3dsczwMhzFKw1ZleUr3iuuRm+ZKl654LA8pnjlMMUrb6R4r0CKVw7amPLAqhlkBea8AoV0y+h0wxSnIkXxKmhgjn9w8StCVpUoi5/PWu6WGGtV5iveFtdq6upQvComirdFzwMUr2ueGbJ2VSmKp6Os6oeirEpRvEp6u2OZ4dU4ilcVsqrOVzz3PgBdTBWvRnBYE1O8Gpji1TRSvC2Q4tWANqYmsGoGWYE5P4FCutV0umGKcyJF8U7QwBz/4OKfCFmdRFn8fNZyt8RY62S+4m12rabnHYqXYqJ4m/U8QPGezzND1q4WRfF0lLX8UJS1KIp3kt7uWGb4KRzFqwVZ1eYr3mZXo0WmilcnODwVU7w6mOKdaqR4myHFqwNtzKnAqhlkBea8LoV0T9HphilOPYri1dXAHP/g4teDrOpTFj+ftdwtMdY6ja94m1yrabVD8U43UbxNeh6geKvzzJC1O4OieDrKM/xQlGdQFK++3u5YZngDjuKdAVk15CveJlejVaaK1yg4bIwpXiNM8RobKd4mSPEaQRvTGFg1g6zAnDehkG4DnW6Y4jSlKF4TDczxDy5+U8iqGWXx81nL3RJjreZ8xdvoWk3dHYp3ponibdTzAMXrnmeGrF0LiuLpKFv4oShbUBSvmd7uWGb4WRzFawFZnc1XvI2uRt1MFa9lcNgKU7yWmOK1MlK8jZDitYQ2phWwagZZgTk/h0K6Z+l0wxTnXIrinaOBOf7BxT8XsjqPsvj5rOVuibHW+XzFe9m1mqY5FO8CE8V7Wc8DFG9anhmydq0piqejbO2HomxNUbzz9HbHMsPbcBSvNWTVlq94L7saXWeqeO2Cw/aY4rXDFK+9keK9DCleO2hj2gOrZpAVmPMOFNJto9MNU5yOFMXroIE5/sHF7whZdaIsfj5ruVtirNWZr3gbPCleFxPF26DnYYrXBVq7rhTF01F2xRSvK0XxOuntjmWGd+MoXlfIqjtf8TbwFO/C4LAHpngXYorXw0jxNkCKdyG0MT04ioc570kh3W463TDF6UVRvJ4amOMfXPxekFVvyuLns5a7JcZaF/EVb71rNT3tULw+Joq3Xs8DFO/pPDNk7fpSFE9H2dcPRdmXoni99XbHMsMv5iheX8jqEr7irXc1mmeqeJcGh/0wxbsUU7x+Roq3HlK8S6GN6QesmkFWYM4vo5DuxTrdMMW5nKJ4l2lgjn9w8S+HrPpTFj+ftdwtMda6gq9461yraY5D8QaYKN46PQ9QvDl5ZsjaDaQono5yoB+KciBF8frr7Y5lhg/iKN5AyGowX/HWuRrNNlW8IcFhKqZ4QzDFSzVSvHWQ4g2BNiYVWDWDrMCcD6WQ7iCdbpjiDKMo3lANzPEPLv4wyGo4ZfHzWcvdEmOtNL7iveRaTXsdijfCRPFe0vMAxdubZ4as3UiK4ukoR/qhKEdSFG+43u5YZvgojuKNhKzS+Yr3kqvRHlPFGx0cXokp3mhM8a40UryXIMUbDW3MlcCqGWQF5nwMhXRH6XTDFGcsRfHGaGCOf3Dxx0JWGZTFz2ctd0uMtTL5irfWtZq2OxRvnInirdXzAMXbnmeGrN14iuLpKMf7oSjHUxQvQ293LDM8i6N44yGrCXzFW+tqJKaKlx0cTsQULxtTvIlGircWUrxsaGMmAqtmkBWY80kU0s3S6YYpzlUUxZukgTn+wcW/CrKaTFn8fNZyt8RYawpf8da4VlN1h+JdbaJ4a/Q8QPGq55kha3cNRfF0lNf4oSivoSjeZL3dsczwazmKdw1k9R++4q1xNapmqnhTg8PrMMWbiinedUaKtwZSvKnQxlwHrJpBVmDOp1FI91qdbpji5FAUb5oG5vgHFz8Hsrqesvj5rOVuibHWDXzFW+1aTSscinejieKt1vMAxVuRZ4as3U0UxdNR3uSHoryJonjX6+2OZYbfzFG8myCrW/iKt9rVaLmp4t0aHN6GKd6tmOLdZqR4qyHFuxXamNuAVTPICsz57RTSvVmnG6Y4d1AU73YNzPEPLv4dkNWdlMXPZy13S4y17uIr3irXarrVoXh3myjeKj0PULxb88yQtbuHong6ynv8UJT3UBTvTr3dsczw6RzFuwey8vMVb5Wr0S2miucYzsAULxdTvBlGircKUjxs+2YAq2aQFZjVTArpTtfphinOvRTFm6mBOf7Bxb8XsrqPsvj5rOVuibHW/XzFW+laTV0civeAieKt1PMAxeuSZ4as3YMUxdNRPuiHonyQonj36e2OZYY/xFG8ByGr//IVb6WrUWdTxZsVHD6MKd4sTPEeNlK8lZDizYI25mFg1QyyAnP+CIV0H9LphinOoxTFe0QDc/yDi/8oZPUYZfHzWcvdEmOtx/mKt8K1mvwOxXvCRPH0g8AnAMXz55khazebong6ytl+KMrZFMV7TG93LDN8DkfxZkNWc/mKt8LVaLqp4j0ZHD6FKd6TmOI9ZaR4KyDFexLamKeAVTPICsz5PArpztHphinO0xTFm6eBOf7BxX8asppPWfx81nK3xFjrGb7iLXetpnEOxXvWRPGW63mA4o3LM0PWbgFF8XSUC/xQlAsoijdfb3csM3whR/EWQFbP8RVvuatRpqniLQoOn8cUbxGmeM8bKd5ySPEWQRvzPLBqBlmBOX+BQroLdbphivMiRfFe0MAc/+DivwhZLaYsfj5ruVtirLWEr3jLXKtprUPxlpoo3jI9D1C8tXlmyNotoyiejnKZH4pyGUXxFuvtjmWGL+co3jLIagVf8dx3YY2p4q0MDldhircSU7xVRoq3DFK8ldDGrAJWzSArMOerKaSrj6orMMVZQ1G81RqY4x9c/DWQ1VrK4uezlrslxlov8RVvqWs1pTgUb52J4i3V8wDFS8kzQ9ZuPUXxdJTr/VCU6ymKp6X0pVhm+AaO4q2HrF7mK95SV6OTTRVvY3C4CVO8jZjibTJSvKWQ4m2ENmYTsGoGWYE530wh3Q063TDF2UJRvM0amOMfXPwtkNUrlMXPZy13S4y1XuUr3hLXairlULytJoq3RM8DFK9Unhmydtsoiqej3OaHotxGUbxX9HbHMsMDHMXbBlkJX/Hcn3+UNFW87cHhDkzxtmOKt8NI8ZZAircd2pgdwKoZZAXmfCeFdAM63TDFeY2ieDs1MMc/uPivQVa7KIufz1rulhhrvc5XvMWu1ZThULw3TBRP3/m+ASheRp4ZsnZvUhRPR/mmH4ryTYri7dLbHcsM381RvDchq7f4iuf+XmKsqeLtCQ73Yoq3B1O8vUaKtxhSvD3QxuwFVs0gKzDnb1NId7dON0xx3qEo3tsamOMfXPx3IKt9lMXPZy13S4y13uUr3ouu1VTeoXjvmSjei3oeoHjl88yQtdtPUTwd5X4/FOV+iuLt09sdywx/n6N4+yGrA3zFc/8aQDlTxfsgOPwQU7wPMMX70EjxXoQU7wNoYz4EVs0gKzDnH1FI932dbpjifExRvI80MMc/uPgfQ1afUBY/n7XcLTHW+pSveC+4u3Ao3mcmiveCngcFk/A5Rcu0/8+nU1TqE71FsczKLzgq9Tlk9aVBSQCXpIGn89P4eU9p/JVJGj+v52Fp/DUljbX/r6dTOFvv0df+GCVo1Du5yD0Ox05+Y7KTi/Q8rHK+gfb7W8p+6yi/xXblWwq56az4FhOzL6AoDzJyN2+VDk7nnCQOQlbfUU4S+cribokpy/cU4vhOA2OUeJBRIvY2/S9WIj94vP5cpES0/4QfoEAD+l8s0B9d4cpHybCACyfD/mTAsAk/6nlYMD8zEiPP/8+eWSFUNwir0P+LL+RlWYWt7g958VYhq4dDL5FV0Gp2mIW0Clg9HW65LafVc8im+L5EUjXZa+/B6Q+FdW45QlwSPkQraLUqwoVYx63WR7pcK99qS8RFsY5ZSeSls45ave6ywNZfVnvdtsHKs9rvulmWtoIEIPlmr5s1A6KrQ0g+Jd8EWSEhRkl9hzxR3y8m1HdIz8OCOUyhPu3/MIn6mkLUdzZEfedD1Nceor6uEPX1gqgPapSUfCeH+i6BqO8KiPpSIeobCVHfWIj6JkDUNwWivusg6oMawCbfxaG+XyFSuxOy4reaTPjVE/X9ZkJ9v+p5WDC/U6hP+//dM/XtiyuPkF/8RQj5xfdDyC9+IEJ+8cMQ8otPR8gvPhPhn/iJCP/EX4PwT3wOwj/xtyD8E38Xwj/xMxD+iX8Q4Z/4RxH+iZ8LPdF6BqKTI3wKOOKJAv4woYAjeh4WzJ8UCtD+/2RRgO876PxzCDr/HIEowIYoIBmigLIQBVSGKKAmRAG1IAqoB1FAQ4gCmkMU0AqigNYQBXSEKKA7QgGJcXQKQFwEKSDRMqCARH0hFhaMYlBAnn/Fed13WJ8voKd4ibbBQ2F3/3/qK8P8+wD/BTLJ5/jGyb64cv+jw2NW/6PDOAYdAuXpNR3/d0A/bvW/A/pRM/iA7kkU40EdsjUNIzoEfFUuMT6l4IkVU4GEot7vzxntHzV+613npdxZZc+1RzqbwCYWhS08yQQ2qShsY/XmKTs/vLfG5LbVGi46/OvdJrDJRWGHvDLr4w3D2vQd99gdY221aJUJbImisJtvbL241SWDn1qcOqfDbZMOvWkCW7IorL/Bl5fNnvn+f+offK32jTcmVzOBLVUUdlD8/I6Pbzn9zIPXN7ki9YefTjCBLV0Udr2/1bYbN0978kDbKm8nxKdOMoEtUxT2p1sqvVWi5Y8bGjyxOuuccd8PM4EtWxT2u59uvSDtl5SdD/oHTL/l5hWv58zvkTY2M2tK14z07BklZom9IO/fxASd9DpBdTLpjdebpBdUX7wOVIM+eXRG0S8YxEX+R+mqhsIuZ3CWdbE/xk7YspWn+C+ngTH/FQD/845uQq9xuSVmAN9vjotD75cqxA6qote7O4/fAs9LqPBGfx795yfkW+DHjxLBb4EnVgoOK0PfAk+sBH0LPLFyG8/fAo9cOtOPpY5e8kpQglUGVs3zzVpiee2e8HW9vGvX4NB3gxLLQ9df5e8ssCqxg6rqtcDivf6aBVTD/7txKWL2vxuXfLO/88alGprliOIj1F7N9ZuPhYvhKG9Wgw4GyV57JuvH/DOgetRBzIBKMoxh0aoMZ1ikMMMaFq7N8IaFyjOCYcEKjWRYoEgjGjrrNLKho1RdDIPV6mZ4vGBdDfNr1t3wWNkChkcrFzH8q3iPGkIniYrQN5YTq0NfNlgQo/KuHphmUl++78D68h0C68t3BK0vG62vZLS+yqL1VRmtr5pofdVC66seWl8N0fpqjtZXK7S+WqP11RGtr+4e6qsqVl81tNWJzXv8d32f0YvuOqds52YlXv/P6zePbr77ntuuP/2Haf2mJNTOjV191dD1FeV5tbqX8+p098eFjtNEzeI+TdQ0PE3UxE4TO4Ewje4Cq4c6PRZeWPRe7QSI4XfGaMlPKMTw8DXXCHXNhWei13wiVHWxuuYTC10z9m3AxJOgjYndF6ENQjwZch67LywWXe2FPSaOyU7vOyx1TGqWHs68L2de+8yMCdmpGdnuTkPYqh0VB01MmDNwWMN6pTt+V63CzBtab7zr+tb1GnjAjQvuvb3NMQ54wZjpSKCTHOOTncclJ7U7xuX1YTVFErWan1KQ7hM8f7sjxT1SxyO92sFhnXUGrRgSU6C0q13UakAhK41Vx+vDG+/ffalTNI5DOx5884Fbdo68w//cuxlTn5rj0LdTTb77UkfPC3GUKOInzwzBq0v5hoyOsq4firKu110pnLOFo0+xrz+pQts2v+yYMHf8oKlPzQ3povAkR87WCw7rY4+h62k+R+zqI7wfInyoBupBNVAfeLFaYLUTcyOe3gp78Fow9Tw9XjoN24/TLBPtCvGtmBCnvdMgrNNdVwo7KZxudlKoD1lhl3IGkDHIpZxR+FbDUce5EKfU1UQPnQ61YR2Yr12MnGrWIDhsiGViA5AZGhbaZ2xBautLhRYkj40xva0D5UQDiGsaemV2Mtc08MQ1jbAdbmTENQ0grmkEYTWOEdc0NuOahpAVdilNYsQ1TQpzTWIuQZi4+dcUy7+mhfJvJnZ1MczSphBWM+CYiVxvs8JZil1w/RjmMnbBzWP0sKB5BN3EEs/e5knlzgwOW5jcs9lQV/rEMyENacG/Z2vh6Z7tLJN7thZ6HnbPdhYU8tmUezYd5dnYPdvZ/Hu2sz3ds7UMDlthvNkSPJm1MrtnOxuqgZZQDbT6h92ztfSkY+dg+3GO0TmqJaRQ50BY58boHHWu2TmqFWSFXcp5MTpHnRf1PdvZmuihWxRt2ALmaxcjp5qdHxxegGXi+SAzXGB0z3amvlRoQfLYGLtnawHlxPkQ11zwD7tnO98T17TGdri1EdecD3FNawirTYy4po0Z11wAWWGX0jZGXNM2+ns2QJi4+dcOy792RvdsLWOYpe0grPYxumdrb3bP1iqGuYxdcIcY3bN1iP6eLeBJ5ToGh52M7tkC0Pp0hDSkE/+erZOne7bOJvdsnfQ87J6tMxRyF8o9m46yC3bP1oV/z9bF0z1b1+CwG8abXcGTWTeze7YuUA10hWqg2z/snq2rJx3rju1Hd6NzVFdIobB2FhfG6Bx1odk5qhtkhV1Kjxido3pEfc/WRRM9dIuiDTvBfO1i5FSznsFhLywTe4LM0Mvonq2jvlRoQfLYGLtn6wTlRE+Ia3r9w+7Zenrimt7YDvc24pqeENf0hrAuihHXXGTGNb0gK+xS+sSIa/pEf88GCBM3//pi+dfX6J6tawyztC+EdXGM7tkuNrtn6xbDXMYu+JIY3bNdElJCCn+ddJbzK5tJF0wpv6dF8qTTDiZMbPp75a1Hpsz77zfbWk1vnd6vwbDMbv2dtjWuG/TrguuaDjj16Wo/lHrlreatA89c/darZSu9l7N6U/3DMwZ6+jqpwza+27zRE7bdfmafQVes3f3RuY9Xv/vmsoNb9a57z/j9Hf1rPlJO25SHd7zU4Ld+h3/2ZXZ4q8bmX3/Juvi5LW2u9X05tMbQW7aur2sawwkdvp+bcm3OhttvqDU3Z8BnzzctV2fV1xWrVV/19k9PLJjXuYvT1p7/zVmftDv9RMs/7PTNlz/0+Zdzn21Qdd6rKfPPe+6O2zb9Ms80hoa/rGjz8W1lela86v2+E3795KETJ/ZKb/HJU9OWjpiZ3fR7EadtI7n1tctHru67/CZ/o9JVbk69+Nml8ze8/sugelunfvvC+uk3eInhAUcK1XaM6zjGZzrGLRzjjo5xJw9ObdNFcjG1ZkjipZLYTxIvK0jrJWcc52DstlSjlJ/uhdndjVM8/XE5f87ctllZqVP2xaVI4uWS2F8Sr5DEAZI4UBIHSeJgSRwiiamSOFQSh0nicEnUSjBCEkdK4ihJTJfE0ZJ4pSSOkcSxkpghiZmSOE4Sx0tiliTqzcqWxImSOEkSr5LEyZh+XJ4EmfXHzK7AzAZgZgMxs0GY2WDMbAhmloqZDcXMhmFmwzGzNMxsBGY2EjMbhZmlY2ajMbMrMbMxmNlYzCwDM8vEzMZhZuMxsyzMbAJmlo2ZTcTMJmFmV2Fmk5MMHkuW1xKgqRc6wF3uYvXXX9tM7O9qlef3Cjerv6IbENkq9+ht9cCIVj8eu/keFMnq/fxb9MERrNodv5Efkot0nEkNa5XpeCgwNJzVcuejg2FhrCYXeMAwPLRV54KPIdJCWn1a6GHFiFBWzQo/0hgZwqpekQcfo6DHI+lFrPoNLGo1urDVtMtCWF1ZyGpaTiirMQWtluSEtBpbwKrD0tBWGU6rXh3DWGU6rJb1Dmc1LmhVf3lYq/HHrR49LbxVVr5Vk8ciWE04ZvV+00hW2Uetxh+IaDXxL6seWZGtJuVZDevpYnWVtmo83M1qMv9F1mRX7nvN8axiismLrMl6HvDXwF/LM0Pwrqa8yNJRXu2Horza6654/lPXwMbvNPxT14nXBIfXYncO12BNzq41+VPXiZMh8b0GEvJrgVXz/jcSQef/cb9as98zvzqWfdCmArnrvXb+o4H9MfMfJaNd5ZpQDzsY7ToTRtN33dcBjPZwnhmCN43CaDrKaX4oymkGWQHl7tRY5m6OxyjB8p4GWV0PlHeUpH+Vq9EsU9K/ITi8ESP9GzDSv9GI9K+CSP8GaGNuBFbNICsw5zcZkL7bBJ3oOt0wOr2ZQuc3aeC/0/9UDYy9k5yKRQlZ3eK1wr1L0yTXtH/RIU23mkiTfiZ8KyBNL+aZIXi3UaRJR3mbH4ryNkqGaWm6Bcvw2zmicxtkdQdfdCa5Gr1gKjp3Bod3YaJzJyY6dxmJziRIdO6ENuYuYNUMsgJzfjdFdG7X6YaVxD2UkrxbA3P8g4t/D2Q13WDxAR07pnhu0EcVz90KUzw/5dg/XQPHcsVz+bo80ZUZ7nHo8gwTXdava2cAunxPnhmCN5OiyzrKmX4oypksXc7FSOBeDgnMhKzu4+vyRFeju011+f7g8AFMl+/HdPkBI12eCOny/dDGPACsmkFWYM4fpOjyvTrdsJJ4iFKSD2pgjn9w8R+CrP5LWfx8LXO3xLRsFkVx/6uBY7mWD/MVN9u15lMcivuIieJm63mA4qbkmSF4j1IUV0f5qB+K8lGW4j6MlfdjnPJ+FLJ6nK+47l9PPNlUcZ8IDmdjivsEprizjRQ3G1LcJ6CNmQ2smkFWYM7nUEj/MZ1uWEnMpZTkHA3M8Q8u/lzI6knK4udrmbslpmVPURT3SQ0cy7Wcx1fcCa41v9OhuE+bKK4mpKcBxd2ZZ4bgzacoro5yvh+Kcj5Lcedh5f0Mp7znQ1bP8hV3gqvRDlPFXRAcLsQUdwGmuAuNFHcCpLgLoI1ZCKyaQVZgzp+jkP4zOt2wklhEKcnnNDDHP7j4iyCr5ymLn69l7paYlr1AUdznNXAs1/JFvuJmudZ8qkNxF5sobpaeByhuap4ZgreEorg6yiV+KMolLMV9ESvvpZzyXgJZLeMrbpar0RBTxV0eHK7AFHc5prgrjBQ3C1Lc5dDGrABWzSArMOcrKaS/VKcbVhKrKCW5UgNz/IOLvwqyWk1Z/Hwtc7fEtGwNRXFXa+BYruVavuKOd635PQ7FfclEccfreYDi7skzQ/DWURRXR7nOD0W5jqW4a7HyXs8p73WQ1Qa+4o53NXrLVHFfDg43Yor7Mqa4G40UdzykuC9DG7MRWDWDrMCcb6KQ/nqdblhJbKaU5CYNzPEPLv5myGoLZfHztczdEtOyVyiKu0UDx3ItX+Ur7jjXmu/qUNytJoo7Ts8DFLdrnhmCt42iuDrKbX4oym0sxX0VK+8Ap7yxP7ohfMUd52rUxVRxtweHOzDF3Y4p7g4jxR0HKe52aGN2AKtmkBWY850U0g/odMNK4jVKSeo3SK9x/IOL/xpktYuy+Pla5m6JadnrFMXdpYFjuZZv8BU307Xmn3co7psmipup5wGK+3yeGYK3m6K4OsrdfijK3SzFfQMr77c45b0bstrDV9xMV6NFpoq7Nzh8G1PcvZjivm2kuJmQ4u6FNuZtYNUMsgJz/g6F9N/S6YaVxD5KSb6jgTn+wcXfB1m9S1n8fC1zt8S07D2K4r6rgWO5lvv5ipvhWvOrHYr7voniZuh5gOKuzjND8A5QFFdHecAPRXmApbj7sfL+gFPeByCrD/mKm+FqtMpUcT8KDj/GFPcjTHE/NlLcDEhxP4I25mNg1QyyAnP+CYX0P9DphpXEp5SS/EQDc/yDi/8pZPUZZfHztczdEtOyzymK+5kGjuVafsFX3LGuNd/dobhfmijuWD0PUNzueWYI3lcUxdVRfuWHovyKpbhfYOX9Nae8v4KsvuEr7lhXo26mivttcHgQU9xvMcU9aKS4YyHF/RbamIPAqhlkBeb8Owrpf63TDSuJ7ykl+Z0G5vgHF/97yOoHyuLna5m7JaZlP1IU9wcNHMu1/ImvuGNca36aQ3F/NlHcMXoeoLjT8swQvEMUxdVRHvJDUR5iKe5PWHn/winvQ5DVYb7ijnE1us5UcX8NDn/DFPdXTHF/M1LcMZDi/gptzG/AqhlkBeb8dwrp/6LTDSuJI5SS/F0Dc/yDi38EsvqDsvj5WuZuiWnZnxTF/UMDx3Atk+L4inulF8VNskwU90o9D1JcbQbgJSmK4uooFaS4ef5d4MwUNykOKu8km1LeSQqy8vEV90qa4ibFB4cJkOImxUOKm5RgpLhXIoqbFA9tTAJFcUHniQzST7J1umElkcQoyaREDczxDy5+EmSVTFHcfC1zt8S0rARDcZOSNXAs17IkX3FHu9b80w7FLWWiuKP1PEBxn84zQwqhNEVxdZSl/VCUpVmKWxIr7zKc8i4NWZXlK+5oV6N5popbLjgsjyluOUxxyxsp7mhIcctBG1MeWDWDrMCcV6AobhmdblhJVKQobgUNzPEPLn5FyKoSZfHztczdEtOyyhTFraSBY7mWVfiKm+5a83McilvVRHHT9TxAcefkmSE7XI2iuDrKan4oymosxa2ClXd1TnlXg6xq8BU33dVotqni1gwOT8AUtyamuCcYKW46pLg1oY05AVg1g6zAnJ9IIf3qOt2wkjiJorgnamCOf3DxT4KsTqYsfr6WuVtiWpZCUdyTNXAs17IWX3FHudb8XofinmKiuKP0PEBx9+aZITtcm6K4OsrafijK2izFrYWVdx1OedeGrE7lK+4oV6M9popbNzishyluXUxx6xkp7ihIcetCG1MPWDWDrMCc16eQfh2dblhJnEZR3PoamOMfXPzTIKvTKYufr2XulpiWnUFR3NM1cCzXsgFfcUe61vx2h+I2NFHckXoeoLjb88yQHW5EUVwdZSM/FGUjluI2wMq7Mae8G0FWTfiKO9LVSEwVt2lw2AxT3KaY4jYzUtyRkOI2hTamGbBqBlmBOW9OIf3GOt2wkjiTorjNNTDHP7j4Z0JWLSiLn69l7paYlp1FUdwWGjiWa3k2X3FHuNZ8dYfitjRR3BF6HqC41fPMkB1uRVFcHWUrPxRlK5bino2V9zmc8m4FWZ3LV9wRrkbVTBX3vODwfExxz8MU93wjxR0BKe550MacD6yaQVZgzi+gkP45Ot2wkmhNUdwLNDDHP7j4rSGrNpTFz9cyd0tMy9pSFLeNBo7lWrbjK26aa82vcChuexPFzZsHKO6KPDNkhztQFFdH2cEPRdmBpbjtsPLuyCnvDpBVJ77iprkaLTdV3M7BYRdMcTtjitvFSHHTIMXtDG1MF2DVDLICc96VQvoddbphJdGNorhdNTDHP7j43SCr7pTFz9cyd0tMyy6kKG53DRzLtezBV9zhrjV/q0Nxe5oo7nA9D1DcW/PMkB3uRVFcHWUvPxRlL5bi9sDKuzenvHtBVhfxFXe4q9EtporbJzjsiyluH0xx+xop7nBIcftAG9MXWDWDrMCcX0wh/d463bCSuISiuBdrYI5/cPEvgawupSx+vpa5W2Ja1o+iuJdq4Fiu5WV8xR3mWvNdHIp7uYniDtPzAMXtkmeG7HB/iuLqKPv7oSj7sxT3Mqy8r+CUd3/IagBfcYe5GnU2VdyBweEgTHEHYoo7yEhxh0GKOxDamEHAqhlkBeZ8MIX0r9DphpXEEIriDtbAHP/g4g+BrFIpi5+vZe6WmJYNpShuqgaO5VoO4yvuUNea9zsUd7iJ4g7V8wDF9eeZITucRlFcHWWaH4oyjaW4w7DyHsEp7zTIaiRfcd1rc7qp4o4KDtMxxR2FKW66keIOhRR3FLQx6cCqGWQF5nw0hfRH6HTDSuJKiuKO1sAc/+DiXwlZjaEsfr6WuVtiWjaWorhjNHAs1zKDr7iprjU/zqG4mSaKq/cuE1DccXlmyA6PoyiujnKcH4pyHEtxM7DyHs8p73GQVRZfcd3P7JmmijshOMzGFHcCprjZRoqbCinuBGhjsoFVM8gKzPlECumP1+mGlcQkiuJO1MAc/+DiT4KsrqIsfr6WuVtiWjaZorhXaeBYruUUvuIOca35tQ7FvdpEcYfoeYDirs0zQ3b4Gori6iiv8UNRXsNS3ClYeV/LKe9rIKv/8BXX/RHdGlPFnRocXocp7lRMca8zUtwhkOJOhTbmOmDVDLICcz6NQvrX6nTDSiKHorjTNDDHP7j4OZDV9ZTFz9cyd0tMy26gKO71GjiWa3kjX3EHu9Z8ikNxbzJRXP065CZAcVPyzJAdvpmiuDrKm/1QlDezFPdGrLxv4ZT3zZDVrXzFdX8peLKp4t4WHN6OKe5tmOLebqS4gyHFvQ3amNuBVTPICsz5HRTSv0WnG1YSd1IU9w4NzPEPLv6dkNVdlMXP1zJ3S0zL7qYo7l0aOJZreQ9fcQe51nwph+JON1HcQXoeoLil8syQHfZTFFdH6fdDUfpZinsPVt65nPLGnM/gK677d4BKmiruzODwXkxxZ2KKe6+R4g6CFHcmtDH3AqtmkBWY8/sopJ+r0w3LyvspinufBub4Bxf/fsjqAcri52uZuyWmZQ9SFPcBDRzLtXyIr7gDXWs+w6G4/zVR3IF6HqC4GXlmyA7PoiiujnKWH4pyFktxH8LK+2FOec+CrB7hK+5AV6Oxpor7aHD4GKa4j2KK+5iR4g6EFPdRaGMeA1bNICsw549TSP9hnW5YSTxBUdzHNTDHP7j4T0BWsymLn69l7paYls2hKO5sDRzLtZzLV9wBrjVf3qG4T5oo7gA9D1Dc8nlmyA4/RVFcHeVTfijKp1iKOxcr73mc8n4Ksnqar7juv4BUzlRx5weHz2CKOx9T3GeMFHcApLjzoY15Blg1g6zAnD9LIf15Ot2wklhAUdxnNTDHP7j4CyCrhZTFz9cyd0tMy56jKO5CDRzLtVzEV1zglzsdivu8ieJeoedBwSS9QNFS7f+F6SyVXISV5IucknwBslpsUJLAJWlgZFmjTND+nhJ0iUmC9tfzsARdSklQ7X8pJUHz9mhp7BI0yp283D0Ox04uM9nJy/U8rHKWQfu9nLLfOsrl2K4sp8iUzorlmJi+CEW5gkKuepVWTOfQ5grIaiXlJJN/RnC3xM4IqyjEsVIDY1Fia7mapb+roUJKLA/4L3pn9ZT+5Mq0ZhNy98W1Cd5eJU52jK9yjCc5xhMd42zHeIJjnOUYj3eMxznGmY5xhmM81jEe4xhf6RiPdozTHeNRjvFIx3iEY5zmGA93jIc5xkMd41THeIhjPNgxHuQYD3SMBzjGVzjG/R3jy4Pj+B2O8XbHWBzjgGO8zTHe6hi/6hi/4hhvcYw3O8abHOONjvHLjvEGx3i9Y7zOMX7JMV7rGK9xjFc7xqsc45WO8QrHeLljvMwxXuoYL3GMFzvGLzrGLzjGzzvGi/bFpUjSGklaK0kvSdI6SVovSRsk6WVJ2ihJmyRpsyRtkaRXJOlVSdoqSdskKSBJIknbJWmHJO2UpNckaZckvS5Jb0jSm5K0W5LekqQ9krRXkt6WpHckaV/Rhxauhe37DiKpNRBJvUs/AyEuHGeg9wzOQEnv6nlYMPsZp5s8//unM84tCT9L4imQKCX8DO33+15PF1hKHoIWfy0U4gF+Sh7wlJIfmKTkAT0PC+ZDSkpq/x9ybrD26yzCjvIfcZLtCLSsL0EhfsxPto89JdsnJsn2sZ6HBfMpJdm0/085yfahziIs2T6jJFu8DS3rOijEz/nJ9rmnZPvCJNk+1/OwYL6kJJv2/yUn2T7VWYQl21ecZEuGlnU9FOLX/GT72lOyfWOSbF/reVgw31KSTfv/lpNsX+oswpLtICfZykLLugEK8Tt+sn3nKdm+N0m27/Q8LJgfKMmm/f/ASbZvdRZhyfYjJ9kqQ8v6MhTiT/xk+8lTsv1skmw/6XlYMIcoyab9H+Ik2w86i7Bk+4WTbDWhZd0IhXiYn2yHPSXbrybJdljPw4L5jZJs2v9vnGQ7pLMIS7bfOclWC1rWTVCIR/jJdsRTsv1hkmxH9DwsmD8pyab9/8lJtt90FkHJlhzHSbZ60LJuhkK06MmGuAgmW7IySLZk/a/CgrEZyZbn3+Yk2586i7Bk83GSDfuT71ugEOP5yRbvKdkSTJItXs/DgkmkJJv2n0hJtmRbZxGWbEmcZGsOJdsrUIjJ/GRL9pRsJUySLVnPw4IpSUk27b8kJ9kSdRZhyVaKk2ytoGR7FQqxND/ZSntKtjImyVZaz8OCKUtJNu2/LCfZSuoswpKtHCfZWkPJthUKsTw/2cp7SrYKJslWXs/DgqlISTbtvyIn2crqLMKSrRIn2TpCybYNCrEyP9kqe0q2KibJVlnPw4KpSkk27b8qJ9kq6izCkq0aJ9m6Q8kWgEKszk+26p6SrYZJslXX87BgalKSTfuvyUm2qjqLsGQ7gZNsF0HJJlCIJ/KT7URPyXaSSbKdqOdhwZxMSTbt/2ROstXUWYQlWwon2fpBybYdCrEWP9lqeUq2U0ySrZaehwVTm5Js2n9tTrKdrLMIS7Y6nGQbCCXbDijEU/nJdqqnZKtrkmyn6nlYMPUoyab91+MkW22dRViy1eck2zAo2XZCIZ7GT7bTPCXb6SbJdpqehwVzBiXZtP8zOMlWT2cRlmwNOMmWDiXba1CIDfnJ1tBTsjUySbaGeh4WTGNKsmn/jTnJdobOIizZmnCSDfurX7ugEJvyk62pp2RrZpJsTfU8LJjmlGTT/ptzkq2xziIs2c7kJNtEKNleh0JswU+2Fp6S7SyTZGuh52HBnE1JNu3/bE6yNddZhCVbS06yXQMl2xtQiK34ydbKU7KdY5JsrfQ8LJhzKcmm/Z/LSbazdRZhyXYeJ9lyoGR7EwrxfH6yne8p2S4wSbbz9TwsmNaUZNP+W3OS7VydRViyteEk2y1Qsu2GQmzLT7a2npKtnUmytdXzsGDaU5JN+2/PSbbWOouwZOvASba7oGR7CwqxIz/ZOnpKtk4mydZRz8OC6UxJNu2/MyfZ2usswpKtCyfZoP6TSXugELvyk62rp2TrZpJsXfU8LJjulGTT/rtzkq2zziIs2S7kJNuDULLthULswU+2Hp6SradJsvXQ87BgelGSTfvvxUm27jqLsGTrzUm2R6FkexsK8SJ+sl3kKdn6mCTbRXoeFkxfSrJp/305ydZLZxGWbBdzkm0ulGzvQCFewk+2Szwl26UmyXaJnocF04+SbNp/P06y9dVZhCXbZZxkewZKtn1QiJfzk+1yT8nW3yTZLtfzsGCuoCSb9n8FJ9n66SzCkm0Axf8VGhjzP9Cj/1y0sVh5sOFk8kAoBRJ+9pgCYA9dmwPrA2ALFGhSbs7ctllZqVP8rn/0oPPbMqHAX0gosXZazeq/vNmpYbXMK3+9r+aAPtlJpWfMvqBfQs+vesb7f35r+rqCviyvZGB/64kMBkF/eyF5kEG3V3uF2CuxzB7M58jBnpZliAlHDtbzsGBSKRyp/ad6bkru+KMgUCPC47vqGo9LJlp/xQL+9ZC/jIN/PSR5aHA4DMvgodBfD0kellJk4bElmYEtSeRyyD3410YOhYpmGLC83pMoNc895B+Lcri7U4MoB2lgjFrSGKJtLxYb62KePMLAvzsqfv0jGevvgdpHRUFIWEfzv4rKNWSXjYiKjdKDw9EYG6VjbDS6IBtNnxnL9YCoKB3a5NEUKtJJng7dryUPgqywa7nSoGCggk2HJOKva3G3wq5ljMEdg7tvneYjIMMRmn4wlhjLCNT+VscKBTpS8xQWaIbXBw5Qz2Z7CZbmJs7dYOOAAOsyHFuA43oMxwpw7PlL98iR+DSvN7BI8pwOacJzjOs5Y2PKqXO399vScuuHd5y9u9vNX54f9+ZL75/zSZVm55w/I7njFxnJp3vfHR/guAEjLeIBxw0ZjhMAx40YjhMBx40ZjpMAx00YjpG+uk0ZjksAjpsxHJcEHDdnOC4FOD6T4bg04LgFw3EZwPFZDMdIA9+zGY7LAY5bMhyXBxy3YjiuADg+h+G4IuD4XIbjSoDj8xiOkU7B5zMcVwEcX8BwXBVw3JrhuBrguA3DcXXAcVuG4xqA43YMx0hL4vYMxycAjjswHJ8IOO7IcHwS4LgTw/HJgOPODMcpgOMuDMdI7+OuDMenAI67MRzXBhx3Z9x0X8gA7WGyRG6gPaEnEy8ydqcOEF4vxjX3xp7QGzzuBFD1w2voYfQY/cAVyYqLGGEmj/IQZgYSZh/Kw+N9Yh+Alv2A2J8jqdEXSo19jKy8GHK92KNr5C2OXsgDsXoYfAmD+S5lgPZjgF7GAL2cAdqfAXoFA3QAA3QgA3QQA3QwA3QIAzSVATqUATqMATqcAZrGAB3BAB3JAB3FAE1ngI5mgF7JAB3DAB3LAM1ggGYyQMcxQMczQLMYoBMYoNkM0IkM0EkM0KsYoJMZoFMYoFczQK9hgF7LAP0PA3QqA/Q6BmhgGgU1h4J6PQX1BsZv0gRupMR6EwX1ZgrqLRTUWymot1FQb6eg3kFBvZOCehcF9W4K6j0U1OkUVD8FNZeCOoOCOpOCei8F9T4K6v0U1AcoqA9SUB+ioP6XgjqLgvowBfURCuqjFNTHKKiPU1CfoKDOpqDOoaDOpaA+SUF9ioI6j4L6NAV1PgX1GQrqsxTUBRTUhRRUym+1BBZRUJ+noL5AQX2RgrqYgrqEgrqUgrqMgrqcgrqCgrqSgrqKgrqagrqGgrqWgvoSBXUdBXU9BXUDBfVlCupGCuomCupmCuoWCuorFNRXKahbKajbKKgBCqpQULdTUHdQUHdSUF+joO6ioL5OQX2DgvomBXU3BfUtCuoeCupeCurbFNR3KKj7KKjvUlDfo6Dup6C+T0E9QEH9gIL6IQX1IwrqxxTUTyion1JQP6Ogfk5B/YKC+iUF9SsK6tcU1G8oqN9SUA9SUL+joH5PQf2BgvojBfUnCurPFNRDFNRfKKiHKai/UlB/o6D+TkE9QkH9g4L6JwNVrDgOrMWBVRxYmwPr48DGc2ATOLCJHNgkDmwyB7YEB7YkB7YUB7Y0B7YMB7YsB7YcB7Y8B7YCB7YiB7YSB7YyB7YKB7YqB7YaB7Y6B7YGB7YmB/YEDuyJHNiTOLAnc2BTOLC1OLCncGBrc2DrcGBP5cDW5cDW48DW58CexoE9nQN7Bge2AQe2IQe2EQe2MQe2CQe2KQe2GQe2OQf2TA5sCw7sWRzYszmwLTmwrTiw53Bgz+XAnseBPZ8DewEHtjUHtg0Hti0Hth0Htj0HtgMHtiMHthMHtjMHtgsHtisHthsHtjsH9kIObA8ObE8ObC8ObG8O7EUc2D4c2L4c2Is5sJdwYC/lwPbjwF7Ggb2cA9ufA3sFB3YAB3YgB3YQB3YwB3YIBzaVAzuUAzuMAzucA5vGgR3BgR3JgR3FgU3nwI7mwF7JgR3DgR3Lgc3gwGZyYMdxYMdzYLM4sBM4sNkc2Ikc2Ekc2Ks4sJM5sFM4sFdzYK/hwF7Lgf0PB3YqB/Y6Duw0DmwOB/Z6DuwNHNgbObA3cWBv5sDewoG9lQN7Gwf2dg7sHRzYOzmwd3Fg7+bA3sOBnc6B9XNgczmwMziwMzmw93Jg7+PA3s+BfYAD+yAH9iEO7H85sLM4sA9zYB/hwD7KgX2MA/s4B/YJDuxsDuwcDuxcDuyTHNinOLDzOLBPc2Dnc2Cf4cA+y4FdwIFdyIF9jgO7iAP7PAf2BQ7sixzYxRzYJRzYpRzYZRzY5RzYFRzYlRzYVRzY1RzYNRzYtRzYlziw6ziw6zmwGziwL3NgN3JgN3FgN3Ngt3BgX+HAvsqB3cqB3caBDXBghQO7nQO7gwO7kwP7Ggd2Fwf2dQ7sGxzYNzmwuzmwb3Fg93Bg93Jg3+bAvsOB3ceBfZcD+x4Hdj8H9n0O7AEO7Acc2A85sB9xYD/mwH7Cgf2UA/sZB/ZzDuwXHNgvObBfcWC/5sB+w4H9lgN7kAP7HQf2ew7sDxzYHzmwP3Fgf+bAHuLA/sKBPcyB/ZUD+xsH9ncO7BEO7B8cWE7/W8Xpf6s4/W8Vp/+t4vS/VZz+t4rT/1Zx+t8qTv9bxel/qzj9bxWn/63i9L9VnP63itP/VnH63ypO/1vF6X+rOP1vVQUOLKf/reL0v1Wc/reK0/9WcfrfKk7/W8Xpf6s4/W8Vp/+t4vS/VZz+t4rT/1Zx+t8qTv9bxel/qzj9bxWn/63i9L9VnP63itP/VnH63ypO/1vF6X+rOP1vFaf/reL0v1Wc/reK0/9WcfrfKk7/W8Xpf6uacWA5/W8Vp/+t4vS/VZz+t4rT/1Zx+t8qTv9bxel/qzj9bxWn/63i9L9VnP63itP/VnH63ypO/1vF6X+rOP1vFaf/reL0v1Wc/reK0/9WcfrfKk7/W8Xpf6s4/W8Vp/+t4vS/VZz+t4rT/1Zx+t8qTv9b1YcDy+l/qzj9bxWn/63i9L9VnP63itP/VnH63ypO/1vF6X+rOP1vFaf/reL0v1Wc/reK0/9WcfrfKk7/W8Xpf6s4/W8Vp/+t4vS/VZz+t4rT/1Zx+t8qTv9bxel/qzj9bxWn/63i9L9VnP63itP/VnH636osDiyn/63i9L9VnP63itP/VnH63ypO/1vF6X+rOP1vFaf/reL0v1Wc/reK0/9WcfrfKk7/W8Xpf6s4/W8Vp/+t4vS/VZz+t4rT/1Zx+t8qTv9bxel/qzj9bxWn/63i9L9VnP63itP/VnH63ypO/1vF6X+rcjmwnP63itP/VnH63ypO/1vF6X+rOP1vFaf/reL0v1Wc/reK0/9WcfrfKk7/W8Xpf6s4/W8Vp/+t4vS/VZz+t4rT/1Zx+t8qTv9bxel/qzj9bxWn/63i9L9VnP63itP/VnH63ypO/1vF6X+rOP1vFaf/rXqBA8vpf6s4/W8Vp/+t4vS/VZz+t4rT/1Zx+t8qTv9bxel/qzj9bxWn/63i9L9VnP63itP/VnH63ypO/1vF6X+rOP1vFaf/reL0v1Wc/reK0/9WcfrfKk7/W8Xpf6s4/W8Vp/+t4vS/VZz+t4rT/1Zx+t+qXRxYTv9bxel/qzj9bxWn/63i9L9VnP63itP/VnH63ypO/1vF6X+rOP1vFaf/reL0v1Wc/reK0/9WcfrfKk7/W8Xpf6s4/W8Vp/+t4vS/VZz+t4rT/1Zx+t8qTv9bxel/qzj9bxWn/63i9L9VnP63itP/Vn3PgeX0v1Wc/reK0/9WcfrfKk7/W8Xpf6s4/W8Vp/+t4vS/VZz+t4rT/1Zx+t8qTv9bm9P/1ub0v7U5/W9tTv9bm9P/1ub0v7U5/W9tTv9bm9P/1ub0v7U5/W9tTv9bm9P/1ub0v7U5/W9tTv9bm9P/1ub0v7UrcGA5/W9tTv9bm9P/1ub0v7U5/W9tTv9bm9P/1ub0v7U5/W9tTv9bm9P/1ub0v7U5/W9tTv9bm9P/1ub0v7U5/W9tTv9bm9P/1ub0v7U5/W9tTv9bm9P/1ub0v7U5/W9tTv9bm9P/1ub0v7U5/W9tTv9bm9P/1m7GgeX0v7U5/W9tTv9bm9P/1ub0v7U5/W9tTv9bm9P/1ub0v7U5/W9tTv9bm9P/1ub0v7U5/W9tTv9bm9P/1ub0v7U5/W9tTv9bm9P/1ub0v7U5/W9tTv9bm9P/1ub0v7U5/W9tTv9bm9P/1ub0v7U5/W9tTv9buw8HltP/1ub0v7U5/W9tTv9bm9P/1ub0v7U5/W9tTv9bm9P/1ub0v7U5/W9tTv9bm9P/1ub0v7U5/W9tTv9bm9P/1ub0v7U5/W9tTv9bm9P/1ub0v7U5/W9tTv9bm9P/1ub0v7U5/W9tTv9bm9P/1ub0v7U5/W/tLA4sp/+tzel/a3P639qc/rc2p/+tzel/a3P639qc/rc2p/+tzel/a3P639qc/rc2p/+tzel/a3P639qc/rc2p/+tzel/a3P639qc/rc2p/+tzel/a3P639qc/rc2p/+tzel/a3P639qc/rc2p/+tzel/a3P639q5HFhO/1ub0//W5vS/tTn9b21O/1ub0//W5vS/tTn9b21O/1ub0//W5vS/tTn9b21O/1ub0//W5vS/tTn9b21O/1ub0//W5vS/tTn9b21O/1ub0//W5vS/tTn9b22o/22PtLGZWVO6ZqRnz7D22TfXrVf/tNPPaNCwUeMmTZs1P7PFWWe3bHXOueedf0HrNm3bte/QsVPnLl27db+wR89evS/q0/fiSy7td9nl/a8YMHDQ4CGpQ4cNTxsxclT66CvHjM3IHDc+a0L2xElXTZ5y9TXX/mfqdYFpgZzA9YEbAjcGbgrcHLglcGvgtsDtgTsCdwbuCtwduCcwPeAP5AZmBGYG7g3cF7g/8EDgwcBDgf8GZgUeDjwSeDTwWODxwBOB2YE5gbmBJwNPBeYFng7MDzwTeDawILAw8FxgUeD5wAuBFwOLA0sCSwPLAssDKwIrA6sCqwNrAmsDLwXWBdYHNgReDmwMbApsDmwJvBJ4NbA1sC0QCEhge2BHYGfgtcCuwOuBNwJvBnYH3grsCewNvB14J7Av8G7gvcD+wPuBA4EPAh8GPgp8HPgk8Gngs8DngS8CXwa+Cnwd+CbwbeBg4LvA94EfAj8Gfgr8HDgU+CVwOPBr4LfA74EjgT8Cf4oVJ5YllhLLFssnVrxYCWIlipUkVrJYJcQqKVYpsUqLVUassmKVE6u8WBXEqihWJbEqi1VFrKpiVROrulg1xKop1glinSjWSWKdLFaKWLXEOkWs2mLVEetUseqKVU+s+mKdJtbpYp0hVgOxGorVSKzGYjURq6lYzcRqLtaZYrUQ6yyxzharpVitxDpHrHPFOk+s88W6QKzWYrURq61Y7cRqL1YHsTqK1UmszmJ1EaurWN3E6i7WhWL1EKunWL3E6i3WRWL1EauvWBeLdYlYl4rVT6zLxLpcrP5iXSHWALEGijVIrMFiDRErVayhYg0Ta7hYaWKNEGukWKPEShdrtFhXijVGrLFiZYiVKdY4scaLlSXWBLGyxZoo1iSxrhJrslhTxLparGvEulas/4g1VazrxJomVo5Y14t1g1g3inWTWDeLdYtYt4p1m1i3i3WHWHeKdZdYd4t1j1jTxfKLlSvWDLFminWvWPeJdb9YD4j1oFgPifVfsWaJ9bBYj4j1qFiPifW4WE+INVusOWLNFetJsZ4Sa55YT4s1X6xnxHpWrAViLRTrObEWifW8WC+I9aJYi8VaItZSsZaJtVysFWKtFGuVWKvFWiPWWrFeEmudWOvF2iDWy2JtFGuTWJvF2iLWK2K9KtZWsbaJFRBLxNou1g6xdor1mli7xHpdrDfEelOs3WK9JdYesfaK9bZY74i1T6x3xXpPrP1ivS/WAbE+EOtDsT4S62OxPhHrU7E+E+tzsb4Q60uxvhLra7G+EetbsQ6K9Z1Y34v1g1g/ivWTWD+LdUisX8Q6LNavYv0m1u9iHRHrD7H+FBUnyhKlRNmifKLiRSWIShSVJCpZVAlRJUWVElVaVBlRZUWVE1VeVAVRFUVVElVZVBVRVUVVE1VdVA1RNUWdIOpEUSeJOllUiqhaok4RVVtUHVGniqorqp6o+qJOE3W6qDNENRDVUFQjUY1FNRHVVFQzUc1FnSmqhaizRJ0tqqWoVqLOEXWuqPNEnS/qAlGtRbUR1VZUO1HtRXUQ1VFUJ1GdRXUR1VVUN1HdRV0oqoeonqJ6ieot6iJRfUT1FXWxqEtEXSqqn6jLRF0uqr+oK0QNEDVQ1CBRg0UNEZUqaqioYaKGi0oTNULUSFGjRKWLGi3qSlFjRI0VlSEqU9Q4UeNFZYmaICpb1ERRk0RdJWqyqCmirhZ1jahrRf1H1FRR14maJipH1PWibhB1o6ibRN0s6hZRt4q6TdTtou4Qdaeou0TdLeoeUdNF+UXlipohaqaoe0XdJ+p+UQ+IelDUQ6L+K2qWqIdFPSLqUVGPiXpc1BOiZouaI2quqCdFPSVqnqinRc0X9YyoZ0UtELVQ1HOiFol6XtQLol4UtVjUElFLRS0TtVzUClErRa0StVrUGlFrRb0kap2o9aI2iHpZ1EZRm0RtFrVF1CuiXhW1VdQ2UQFRImq7qB2idop6TdQuUa+LekPUm6J2i3pL1B5Re0W9LeodUftEvSvqPVH7Rb0v6oCoD0R9KOojUR+L+kTUp6I+E/W5qC9EfSnqK1Ffi/pG1LeiDor6TtT3on4Q9aOon0T9LOqQqF9EHRb1q6jfRP0u6oioP0T9KXac2FqVldi22D6x48VOEDtR7CSxk8UuIXZJsUuJXVrsMmKXFbuc2OXFriB2RbEriV1Z7CpiVxW7mtjVxa4hdk2xTxD7RLFPEvtksVPEriX2KWLXFruO2KeKXVfsemLXF/s0sU8X+wyxG4jdUOxGYjcWu4nYTcVuJnZzsc8Uu4XYZ4l9ttgtxW4l9jlinyv2eWKfL/YFYrcWu43YbcVuJ3Z7sTuI3VHsTmJ3FruL2F3F7iZ2d7EvFLuH2D3F7iV2b7EvEruP2H3FvljsS8S+VOx+Yl8m9uVi9xf7CrEHiD1Q7EFiDxZ7iNipYg8Ve5jYw8VOE3uEfsGvX8brF+f6Jbd+Ia1fHusXvfqlrH6Bql926heT+iWifuGnX87pF2n6pZd+QaVfJukXP/oljX6hol9+6BcV+qWCfgGgH9brB+v6Ibh+YK0fLusHwfqhrX7Aqh+G6geX+iGjfiCoH97pB236oZh+gKUfNukHQ/ohjn7goh+O6AcZ+qGDfkCgb+b1jbe+SdY3tPrmU98o6ps6fQOmb5b0jY2+CdE3DPpwrw/i+tCsD7j6MKoPjvqQpw9k8/ukZU/MyuiQmp26L65unKVsX3xCYlJyiZKlSpcpW658hYqVKlepWq16jZonnHjSySm1Tqld59Tp0/fFNcnNmdN2WHpW5dwdOxO//HHb5pHTpx/7qGrRj1Jyd+ypXrn2CQP2bM7/qHHujhu6H65Zp0evmfkfNcnd0ViNePzhZT0uz/+oQ+6O3ISyt+xSwzblf9SpKLyuhtwd77x8Rp/dHRNOPv6hb3nujo+SendUS+50fPhS7o4FJXe1W/No0qDgh+tDfbg51IevhPpwV6gPXw/14Z5QH74d6sN9oT58N9SHH4T68KNQH34W6sMvQn34XagPvw/14aFQHx4O9eFvoT78PcSH8VaoD+1QHyaG+jA51IflQn1YPtSHVUJ9WC3UhzVCfVgz1IcpoT48JdSHdUN9WD/Uh91D5Hzigtwdt/Xq2aHhbft8wQ8XhvrwuVAf6vSu2/Iiq2b27v374gbmzO84eVxW2oQJ6ZkZM6a7P+nu7XXCKK8TUr1OmOB1QprXCSleJwz7561ShtcJI/95yzqcHlI23cOwf15Iw+kbl0nPVs8hjfA6YSL9Gvipkf5/YOOuol90Np29PV/0uP/J7j9Cdvl0f6XXCY3oy9qVzq0p/7wSTafXQ8r/gZA818NkOvP9f3kia0Df6Yn05OPrQ22vE66gH38y6fXwf+Ek8P+lsHt+NhM3K3dv/dS/3tgPHpY5dlxqdvrQMWmDM7NSh+n/TErLygMafFVW6rhxaVn74qrkzG2fmTEhe0bOkx3Ss9KGZaucp7pmZKeNTMuafUnzZu4v+wvPtzzNn9ah8Pw4b/6D8+f1SRujL3ZSmrcI4uKKIiivCM+2Tx0zZrh+tt4+c9yU45fSwRmTA3xOnrW/5LH/lo76CjrE4Arm9M3OHOfPDRNxoT1qP7dTetoY998CjX/y6FuHY1daLueZTplZaekjM/L+9969dSZmp49Jz55y9Psl7Y8na6+/cvXSo6k6fbo/Z8HRr4q0HT48rxCOR+HPebJv+thxY9KOhpPvrFCwPk9LMblDzjPt0jNS876Ykt1r3L35KPa8C7Xri0elZuShBJP1uJMnu00cO67riNzjEyrnLOiaMfxopGEr5KwIrbne3vTT7sXdmo3NmXOxrlZ/bnB+fqkeu+LcvU3SJwyekD48bXDaiBH6B7rwJ2oPWYOz0nTBFyCA44Vf/W8u/E5RFn6nqJPeKopgx7zwlRNcl4HjgjsEB06vObN7ZE4qUIjHzY6WUZlj/y17zPLYjzs6p0S7Nh2jXhurKKU416IgM1QszAzjstInpWandZ3QV2d1x7+Suv3RnO5zPKWL8ELQ0XFmOB7zE5c0DW9vFbUPvRNBD7Ehm06xIptqxUc2T09KT7tqcEZmdto+64u/mUT6RkkifYumubcdjLOLIsTHhkS6OGNygBckkS7BgSPVw3JIl8I/Ufk/6Vr4J3b+T7odK9Kqx/57YkHe6e50U+AnFzrdFPhJD6ebAj/p6bzqAj/p5VyEAj/pHfxJQsGfXBT8SWLBn/QJ/iSp6BYme9vC7kURSnhDSCrKlslOsMIHMMdmt/ReZR3A81tc4YkdTYvj2PxOUdJDZ2/zfQVVRqzVhZM8Pkg8IZnYmq3FwknCQT4swrimBFDYdTCZjzsvGq++i7gwM3V4rjP1HVY4YkIQca5Oway0AqvjMCtuf4V2KoGxUwkx2qnEiNdZeOUSgZULgZiIrVzi//z9y/0VEZNET3Qf4oFGUtSPRJK96lmYdSkRkdPCTCppMqmUyaTSEQs5zKQyJp7KmkwqZzKpvMmkChEnFeLmikHOLZI4lbwljoLZ3eEhLL9X9MrvhS6sUoQLq+wNO9n7hVUOf2GVTA9SpuGHlb4qRROlotNLEaqr4ryKMKCVQ4EGU9b5rOC5Yw8RO6dl99T3pBNyc57ukpY6rm1WVuoUh9fKVti7/0q5OXOPmvuDgwJPFpOskM8H9sVVCP9IIfzDibA/scP+JDH0RZWIC/15yTCflwrzeekwn5cJ83nZMJ+XC/N5+TCfV4gL82i3U9iVSAr3MNgzUnLe9oV4TFRw60P/n1OPi+SM84dxMf3p0SDiitGjl5+GfIQGfZi3ivjscM82on/qacDREW4urBgxrCpKhlZYKbadoRXhXjv4LDmMM7uoMzvCufV/gP9IQIdwxDzGcA8QDe7Li7hRzhQPX+fRO7KcilL4/s52njpis34VnWZhIOMjHHo6RQrSy+MXOzxigacvc6N8VOLlXs52eikcVQnHVA+3enbwkWVhxJKOiR7uA+3gQ8jCiKUcE4uuXGlvKxfv4Y7RdnopHFUZx9SiUZX1FlWCh7tL2+mlcFTlHFOLRlXeW1SJHm4gbKeXwlFVcN6y4Hc6DszkIpiVnfc8x97aHP+kqtO38xxU2NBxu1T12CG0yKo5EZp6v8v1FSDDvFeL/sBd4VahasF3k6FAKgXfTwaniXVVPvb0SG/dkCuIi/AYP9o3MSW8nwFL8F8FlPDyOKakM7QiUlTSueo4SZeMoG4lXU8w/wP8vwA4z/VYaR5jEU6K4Wmv4Pvz8MeeiK9qrEhHk3gPhVsCew9QIupvFiRHuDk8TvQvho08DNEXuLsoSvQlxDoxH3tpkSWzAPKxI9zvFj21FviCVRhEXyjEeeHPnDYQZUKEKIueOX1Od/grIyv8mTMBqMakiNddOlK2e3mBY0U67yU5MxpnDSvSac3wnsCKdFpD7goiYxallmQnZoRv+SJv9TpFogMEILUoQClPAOmRbm0QgDFFAcp4AkiLdBuDAIQ4O5fzBJAS6ZYFAcguClDRE0BmpFdsCMDISO+CEICMwrJSJcLpu6o3yars/fRdNfzpu0qMTt9Vi9Z9lbCn72rO0IoIfDVn/YdxV62ou2oRzgzVgGOIOWSp2EOWjj1kmdhDlo09ZLnYQ5aPPWTFf8WFV/pXJFH5f8Vaxv8roqz8r0j18oy8LHqbpcSqFPUvjlXx8hytlFdsz0peqnA4pZyRhVX5UuCvOPyadnqfyefe397D6b6UyRfGHEeDCOddaBErFfzSeoHH/QV+4iu6isd+Eu90nv896A1Rv6Wo5GkVHV6KJHop1+dUkTcm/xdWHKniqIfwv8JjR3g6EuLbx8eHJYq+AT0+9EV4tJ5Y+GeOu+2SRQvx+DCp8M8cd9TJx7/gHv4OWUW61bUivcsqYbYhRXa4hNMsHKT706aSIWiwlFinHnvaJFZ2pCv18vChJHYxYZ89lHyy4/iJqWMmhL2UpBCXUlKsM44XqHhY+hLhH44hDzXKhEJ0JH6EBCnj4XuqJcI/HCsDHBsqRkDsHOklY1iJrxTxuos+HKsInD0rR8Qs+nCsEnC6qRIRs3zk1474Da0Ds+jDMedLyEhc4wurVyWi+01J/VouvzR2FubDqkGpw49eVYNFE+noVSHsBVXlXVAJkwsqULORLqnk37FHJV0vqWoEGu5Y9IKqhj3wFFCMv3GPSkVkrBDHIAcf/iN3qFSoHZoX8WTnIOR/zx45+DrSJVX8N+5S+YiXVOnfuEvJES+p8r9xl+IjXlKViC+4SzqOw/grPMfXAsPfFZUIvjMufAYgPFOpWMAs1BeKrj2+Ax+FVZWQJ3Ff5JO4hr7OcRIvfK1VnYuDq1lV7Bu7VSN9VaxKwa+Khd+Eojd91YPDsC8eaoRcreqRV6uGWLceX61Pw5ZbtSjLLTl8uVV3LbcaRbejeoQDYA1nKYa7oOq8C6pmckHVIh4AazjL+F+3Rx0jXlDJf9EehT8A1kBOtP+8HYp0AKyBnGn/wXVUNuIllfs37lL5iJdU9e/YJcP790gHwAJvjSL9lknVUL8aEu4o5HM8aMv/lnR0/Z/65sSo/5NY64utA1TomBMLv9ixg9taIKmSggYFPk8OXl5IByWch5PCWIlFlqSEWIH8Q9CxjxKC0/J3vbDvhNC+kwpfXFK4F0P5gIUnJDteWBw7n2/KX88oNy7/bx+5b1yY5bDD7GiIBXc0Qyi84IlivXH82nYXfgl13FW+xYdhLDx/39cH7oAdnFDAc4kw+Rj2Ju7Yx6VCLE8Jx3YXWh79puKDQhuQFJxWKB9LBk1C10Lhiyvhko8lC08oWTQf3wmXiF5/iSFGeV160/JeB34ZV9c9r6N09GKLBueUvqzuNPfed4tGpmUPTp2YPWrwVenZGZqj98U1+ptb4N0UZQu8m/6FfTTdOmRWPPbfSma/Uh3t5XSMuqtgm7DnMBX2vb8d9r2/73jjvr+/LWgbL21B60f4ZeNoA2nr/fspdvjvoHguGfx3H5SD2p2NT5YEG5+01YzU7ygh+UN32rDbhOtt0gZpi3rsFw+Bfqj/jrNhvX/yyTAlNr1lb4rVvUXD4ustu3Dw4DyFHT8xMzs9LSN7X1zfv1ldu0Wprt2i5ikVtZiEU9fOIZ8/+8Kqa+ewbNylUGfqQq/GujrBopWgruzO1HCz+/tzRvtHjd9613kpd1bZc+2RznCX1SbDe2YdaPrYact7d1yak3PZwCJdVsNMtAoDRdtetaDadovp72BG3RU58m9xxrCPa6Rfwiy2LiQq6sII1bMD7PNrhe39nP+k65Swv7To/r09FeKlUWL+t/Y6Rv6V2wVHvf51Gb3GzXS8iTru1zkzv2RDeEw67ZjHxhFA8zYvBF5Hjw1kCjQIjeCt78ShISclRMzJpOMXYug30tJ1CLV0nY95bO7hYo7juVyK0e4nh/HWPuJGJYcHDKZxcM+RecmR5oX9HdqkJ3r91Wku1FUnh9qADsc24PxI6+Xz8GvAicECDzMpeWH+lYV6J1zgN4WLBpzc7pim9I5I4/mZ3DksGTh/Xzz0LUYwJMNvNSQep7joztvdYnXe7lV8T/KjdLQz8csft20eOd39YD9HH+yz//4/OtM5yuN853/wcb6Dx+N8+E5uHSP/oZlOsTzOdyruPzQTlsrtELIYuR9dUSfRMUjnWDFIMf41mIXD0/L+ylzmhLTBo9Lz7thP+r9X4v/65+HIX4wKV+L/hMfhqmiJ2yEOBkcvslqRL9DZzuvMdzznkqbNinZbcy7rsYee4Qmj4CE08s2clX8rVrFp3Fsn728x5YwqZ2X2mnTj/osXTK00+7RPy1b7ZuJ5kw7vywzvzze7x8QxYa4qwpPZSL+u9g/jrROLj7fmjcnOZ6xa/zuU/O9QUuCfYj6U1IxQ88debIQp7aJ3Xr4qx25nIpx0fCFOOpEYo8DOHUWvHrmdUVOTR04OpHwn/54jV0ox/rXPehPybqkHp2cMTpucNky/BszMGDwsddioon/k8+/+cgLhj3z+46ktQmFA/jpEHXH4x7lW1M/lDf4+S4TWDZ5ZFW+d7ejGHe67FFbY71LEu36XopqXzgJFRKz2sf/WiTpbov8zuHEuf/v53/FG/5R/8hv9mseou/C3WwwaYBb6EsjqY38o969L7JrRMV8P2ufJwfTpYf4Yjh3hr9PkhvmeiMX4Y9ud/oXfUVh01I1eK63AeX+L+MHCi1A5SpGtFBuBigvGcxy48HEA/kOghQ+T+Quffz4t7LPo94PtpCKHCfj1ZBjvcbM7pE8qslNBQjt+2fkLkbvSuXl/LfHxL5s8UDi8EqYnjWPzS8Z4G0sEgcOsh5p/zKFjWeKC6xNmlvXXc4Xgvrma5z32KIpegN4deVBoM45/8bhE7gvBzcjOHJyVOjx98r648oWX0fsXBwrOT4iyGhO9zbfdtjExeGEF/5SzFfqQXTgej3+JsQQo4MmuG29Hyi4VbpbPmV02YB4qu3xhRdznVZMTwiRqmF+CSAopRcnhTyJJiVFvWKGKCe7M/wNia95cQocFAA==",
5724
- "debug_symbols": "tZ3druPGlYXfpa/7grV/q/wqwSBwEk9goOEEjj3AIMi7D6vIvZb69IitIx3fmKvbrbVYm/o2q0hK+venv/30l9///ueff/nvf/zr0w9/+venv/z685cvP//9z1/+8dcff/v5H7/sf/vvT9v8T7NPP2T85/Ontv4U+598/5PMP+n+L2z7/EnbuZVzq+fWzq2f2zi3eW77uR3H1k4/O/3s9LPTz04/O/3s9LPTz04/O/389PPTz08/P/389PPTz08/P/389PPpJ58/xXZu27mVc6vn1s6tn9s4t3lu+7k9/fL0y9MvT788/fL0y9MvT788/fL0y9Ovn3799OunXz/9+vSzfevnNs5tntt+bsexHdu5bedWzq2e29NvnH7j9Bun3zj9xunXtq1EKyEltISVmK46RZTIEr3EOEXbSkxnn0JKaInp3KfwEruzb1NkiV5inEK2Eq2ElNASVsJLlLOUs5SzlLOWs5azlrOWs5azlvOEyOdIJ0VLWA158uGzdBOQQ0SJLNFLjFNMSg7RSkgJLVHOXs5ezl7OXs5ezlHOUc5RzlHOUc5RzlHOUc5RzlHOWc4THZ9jn+wcQktYCS8xTjHB8Jhi/uOcwkp4iSiRJXqJcYoJyCFaCSlRzqOcRzmPch7lPMp5nM6ybSVaCSmhJayEl4gSWaKXKOdWzq2cWzm3cm7l3Mq5lXMr51bOrZylnKWcpZylnKWcpZylnKWcpZylnLWctZy1nLWctZy1nLWctZy1nLWcrZytnK2crZytnK2crZytnK2crZy9nL2cvZy9nL2cvZy9nBdWY4peYpxiYbVEKyEltISV8BJRopyjnKOcs5yznLOcs5yznLOc+8mXLGSWyBK9xImeTGRim0JLWAkvsfuETJEleondJ/ampxOQQ7QSUkJLWAkvESWyRC9Rzq2cWzm3cm7l3Mp5AhI2RRwtRRcgS/QS4xQLkCVaCSmhJayElyhnKWcpZylnLWctZy1nLWctZy1nLWctZy1nLWcrZytnK2crZytnK2crZytnK2crZy9nL2cvZy9nL2cvZy9nL2cvZy/nKOco5yjnKOco5yjnKOco5yjnKOcs5yzDNTfzKaJElphvrSXGKeYELear5gztEFJCjzmJdivhJc4zvk6sYv1NLzGdx5xBbyVaid051+RaS1gJLxElskQvMQ5hE7RDtBJSQktYCS8RJbJEL1HOrZxbObdybuXcyrmVcyvnVs6tnFs5SzlLOUs5SzlLOUs5SzlLOUs5SzlrOWs5azlrOWs5azlrOWs5azlrOU/Qsk0xndu+xtK5xpojmI1Pjo0eGzs2fmx2d9n/va1/P20+r5fl8bI8XpbHy/J4WR4vm5s8Nv3YjLWZQ+jHQq0f67Smx7qs2bEuW1s9t/u/bn6sy9Y2z+3+OjnXX9KO9dfa6rmdw5Bj/bW2cyB5rL9UjvWX6rHeWtv99WrHemtt7dz6uY1zO47tPIup7ZXxWrvq2P8U9ac1gTw2k/Q5/9rh+bxqOJe8iSWvHP8vp1lfS985xLMy/9n/shbOf/7t159+mv/gZiW9r6//+eOvP/3y26cffvn9y5fPn/7nxy+/r3/0r3/++Mva/vbjr/v/3Uv10y9/27e74X///OWnqf7zma/e7r/U5y6uF0dLvHyfAz9qYF1PAxfm71PvRw262GnQrd/swVev1/uvj9kGjxGsKwzvfX1uNYBs21Ovrwqm3M2/GP9+zuunwS4HHPZe9rCFR41hl/aURWiWRdh9i3FRCJ9t6KiED1q0r98K7bIWraEWbdyr5vxHdy02HM99Zmd3LeS+xX5RwOqY7jr83lAu6zlQz2z+1CHJPmAx8imLntUbdnnfosXrhzVfP6z99cM6/uDDOrQs9mlRf+qYjMBhHf2pd8Y+t6q92GdXcddC9OXDOpvzi4dV/OXDKvHHHtZ9auooqN7vwdJfL+h4uaC6vVxQbX90QW/eofbkmxwddJ/x61OoaUP725fedy3UXz6sGq8f1nz9sPY/9rDu181xUKa+ma/5eIeJBHak9XbXxNrVvDNqT3w/Pd4Mxh/2cMO71E3tvsdFH92voZXHfvFM4BHv2AvnXvTtuZG41izaPS48rt6mwvnGfp3r3kgu3qX7+7wDWc1nauFNOI6LI3J1ng/vVYz9psDGY7Jf8nmHSwRdUvpdF28f4nIxIe1ZZ6c+eGz3SzYP1zW3qE6YW9pT77F9ecSVUnvWwzs8Uu56XLWP/U3W0T72Gx5P9aA3JnnXxK9aagd17XbxureBxwsiLIjpk0XFWPKrobzxiA84MFcer+O/RztG0tqTbQx7sV8dtyfa2ION8LKNJdtxv49KXOyFdEwatnbvrXVlEImdiBztzjAuHTqmxdEtn3JA+4vbBWg8CupotQdD2hNXVwbe1iPvzrxS/9hp035jirO3dgNXyuOTJswh953gkm+/lfyoRY5e54C+3baa9vWbMi+OZx9Vi3E7X3p8J/abq8XWfuvU7u/EuPIwg8fNyqB/vRf9shbYjb5tLOd+J+prj6tmtZ9Jq1ml230Pubpyh2XSzTp+v637tcPV/JPNar/dLfc97Oo9HnyL31ySeNd+ZKtJ/X7Pd7vvcbWUzyxOWo6LsVy8Q4ehYXh/yqFtmNF/xfs3HuNqdYK+Zd1viB+PF2NsdWDbkPvFuILNDMfEby/vv4FtXF0M3RxvsL0cN/PP3N5hkrgQ2bZ+A1w+fqdCMDfw27PyN4O5vNzE/djv4KvfHcylSe+4CNhur7+9x6Q1xfm9tZvLu49XZL9dWRb7Xcl+tyKXF1lUcZ0m2Eq9vblmf+XhQM48uBv+5hrzdrVOkoHJStvb2N2atu2qm3JH2s1Sy58cy8185ZuxXHTTxMk+M+5N3L6zF1hp7TeHLvYirk6SbeOJQW4uarq9ccnXz5M71K+fKNcOv3ambFd3lx49VbbWXj9XXpsoe7tKvzDRV890lxaPnupa85fPdY+OJf3Jo/vgBKRd3WZ6dAbSrm40PXpgxuv1GB9wbEU+4Nj21ycy1y0xDXcDsuvdlnh1s2m/xIvzpd605rcnu6u7TRE4YcbtZEi2N7dD5fJqfnIC0e5fwLo2WUf/NLm9xvCNyVVXHc1wM/L2ss97TGwIjs3I7TmT/ZRXMzPf4v6NhaZXb9ehnCLSIuKNhV7duBfeuL+55tHkzTtN7QNOm5d3nh49bV7ee3rstHl17+nh0+b13acHT5uXJo+eNm17uTvb9gGt1T6gtT44lqvTxOXRffS0af4Bp82rC7ePHph4uR5XFo8f2/EBx9Y/4LR51RDDBi6/6v2GeHXzaT9rBs+aNw0x9PH92O9b/T/H9tv9sKs36oarftnH/Xbo/gGN2eMDGrPny4356vbTw+j6+AB04/WeGh/RU+MDeuplQT6Cu/1Wqfy/l+vfvuPj4s26X7LDzXC5uQf0LvLGMN7nlIsduZwB8KK9qt5/w0f/APRifAB6ub2MXrYPQC/lA9DL168C5EdcBcgPuApwWZAPQc82XGq2bPff8XnVWnFHXW/u18XbsVwuijBr9m27eae+ffT2ejewFrm5VxbvWlbxTvR+fe3+suryLlXvweeIb+/jvr06e3WHqHtIvd93ffMeeetyuYh3PhYYNw/cf7OIv/JIPHRhqf11j5sH5t/j4ZvwPeLtrkfvV7dFcFfX9/vM9+5Ot6u7VZFoAJG3NxL6O/aD62YP9dc9vnoY5j0e2eExnvS4fXwjnxxLx3TVb294vfW4fI8Nfrhmu3mq7+37Yzy4JLr/pHgbeVXSwJ23vLkA8F6T7XUTvlH34zKeNWn5mEk8NK26vVv1zQPjV7erHq3r90y2100erOt3TD6grvuNJMd8tcmTJq3xAWPTDzDx/gEmoR9Qk6dNBE/W7usAf9YEF2mb2PN70mhiz5o49+T5muCjd/v94vasCa6x7CbydE04nP7scFTxZrOb52K/ofjqtpFwXiO3K6xvTOTqbo0mJmk6xpMmhk+Gmqk+a4LPNZpZPGnipnzC4dmaBO9gRTw7HH7a1eLiHfu4yfAPGM7TJolWsE/E2weY2LN7wumadbn/SUm5+uSUYz0ft3f1+nt2Aw+bWo+LsVzdwnp9N/aFCU7lm+VzJd2nrAGTZ9+r+ysxjd6e7SS3Jq3p68N53qTxLmd79r36lcmzncQFd35d9P70Rkz+0HeaOL8/4OITymL26m5cn/UwE9jP4ReniatbR/ulCfSQsNuLvs96jLsel4MZvDg5rk5XV7ewhJfARCXuXc9b07D7l69wBpd+c33jG4+rD5UIn4UTi+c8lB/v1Rtg3ueBxy1e8Wgve5hjLPsp4jkPH3y+UMZ9j8uPp2BOtB/bu1/cIZc3sIIe4X7f4/J2DRpI++rhk3d4CC+Ay+2nlb/5FPrL5/7rvWAP2ka7vxf6h+5F49MecnvdKt/loR/gsb3sQd5E/f57Iy6fORlYfNvNaf9dHsbPCZp9hEc+6eFYeVvEsx68vdLb62N51sPx8Hvztr3uoc96GD3i/jdYZL5K7fVegLj9Lvv9I3t1x+rB3nHZzxO9Iy462NWnqh7t51cej/bz/nInvd6Lx/p59z90Lx7s59/x0A/w2F72eLCfj+31fn7p8WA/f9wjn/R4rJ9/x+Ohfv7wWJ71eLCfP+yhz3o81s/Hy530ei8e6ue6tT+0n6cnrgWP+1+Ot+nLvF17PMbbOzzySY+HePuexyO8PT6WZz0e4+1xD33W4yHetL16Geo7e/EYb+3lq1CX10v4/NN+DWc8dc1FGx5/0tvLlO/zMH429eajqc96fPUlLeM9F7IGP6178SWKen2F8aEHZFQuWumDD8hc78djD8g87nH/AZnveDz0gMy1x2MPyFx7PPaAzOUbRBuebtHLK+GXJoJvAVORZ+8C8zve2u1Xib3TBB8sbzba6yb+9BMUxkdTr0yupjAx+HTr7aO6b5481KsPUgW/9iRuv/fu4b2Iwa+w2VeWfJe9+Yy8Xn2ISnLDdw9I3n5i782Ti3r5SZvHvrZE9QMeolb9gIeo1V5+iFqvviXp0Q+WqV1+We9jHyz7zgFueIpK8rYJvD3AV7ehlFfVb29UPP5d2u54CsT95rsEv3mzXn7/1aPfcfEdl975nUVD5UkXXs2ZX5Xx/L489IUbl48fP/ZVVNc78gFf2uEGgvdjfP8LkK6+vCgwLdoP9fja4r/2P/74159//fon2davIMxfropPP8wXz6+vX9t+bsexnd9gP9/F82cA1lbmE6THDwGsre3bOH4KYG2nXz9+DGBt+7kdx7+fP3sw/zx/9WBtp984fultfZ3g/MGAQ3iJmMKPHxE4RF+YH7/3tsT8zYNDtBLzpwXm4+XrtwWWsBLTeT7UNH9c5BDTed5Dt/UDBe345bc2b0bNHxc5RCsha6Fz/PrAIayEl4i1Ajp+geAQvcR0nrds5o+LHKKVmM7zoYL5uwQt4/hhgkNM5zlvnT9NcIgsMZ3nVbL5awVtPtgwf1zkENN5Xk6cvzLS5mcH5q/vHMJKeIkokSV6iXGKvpVoJcq5l3Mv517OvZx7Ofdy7uU8ynmU8yjnUc6jnEc5j3Ie5TzKeZTz+rG4UzUogVIog3KogEqoDoWMhoyGjIaMhoyGjIaMhoyGjIaMhgxBhiBDkCHIEGQIMgQZggxBhiBDkaHIUGQoMhQZigxFhiJDkaHIMGQYMgwZhgxDhiHDkGHIMGQYMhwZjgxHhiPDkeHIcGQ4MhwZjoxARiAjkBHICGQEMgIZgYxARiAjkZHIAMwNNDfg3MBzA9ANRDcg3cB0A9QNVDdg3cB1A9gNZDeg3cB2A9wNdDfg3cB3A+ANhDcg3sB4A+QNlDdg3sC5gHMB5wLOBZwLOBdwLuBcwLmAcwHnAs4FnAs4F3Au4FzAuYBzAecCzgWcCzgXcC7gXMC5gHMB5wLOBZwLOBdwLuBcwLmAcwHnAs4FnAs4F3Au4FzAuYBzAecCzgWcCzgXcC7gXMC5gHMB5wLOBZwLOBdwLuBcwLmAcwHnAs4FnAs4F3Au4FzAuYBzAecCzgWcCzgXcC7gXMC5gHMB5wLOBZwLOBdwLuBcwLmAcwHnAs4FnAs4F3Au4FzAuYBzAecCzgWcCzgXcC7gXMC5gHMB5wLOBZwrOFdwruBcwbmCcwXnCs4VnCs4V3Cu4FzBuYJzBecKzhWcKzhXcK7gXMG5gnMF5wrOFZwrOFdwruBcwbmCcwXnCs4VnCs4V3Cu4FzBuYJzBecKzhWcKzhXcK7gXMG5gnMF5wrOFZwrOFdwruBcwbmCcwXnCs4VnCs4V3Cu4FzBuYJzBecKzhWcKzhXcK7gXMG5gnMF5wrOFZwrOFdwruBcwbmCcwXnCs4VnCs4V3Cu4FzBuYJzBecKzhWcKzhXcK7gXMG5gnMF5wrOFZwrOFdwruBcwbmBcwPnBs4NnBs4N3Bu4NzAuYFzA+cGzg2cGzg3cG7g3MC5gXMD5wbODZwbODdwbuDcwLmBcwPnBs4NnBs4N3Bu4NzAuYFzA+cGzg2cGzg3cG7g3MC5gXMD5wbODZwbODdwbuDcwLmBcwPnBs4NnBs4N3Bu4NzAuYFzA+cGzg2cGzg3cG7g3MC5gXMD5wbODZwbODdwbuDcwLmBcwPnBs4NnBs4N3Bu4NzAuYFzA+cGzg2cGzg3cG7g3MC5gXMD5wbODZwbODdwbuDcwLmBcwPnBs4NnDs4d3Du4NzBuYNzB+cOzh2cOzh3cO7g3MG5g3MH5w7OHZw7OHdw7uDcwbmDcwfnDs4dnDs4d3Du4NzBuYNzB+cOzh2cOzh3cO7g3MG5g3MH5w7OHZw7OHdw7uDcwbmDcwfnDs4dnDs4d3Du4NzBuYNzB+cOzh2cOzh3cO7g3MG5g3MH5w7OHZw7OHdw7uDcwbmDcwfnDs4dnDs4d3Du4NzBuYNzB+cOzh2cOzh3cO7g3MG5g3MH5w7OHZw7OHdw7uDcwbmDcx/IAOcOzh2cOzh3cO7gPMB5gPMA5wHOA5wHOA9wHuA8wHmA8wDnAc4DnAc4D3Ae4DzAeYDzAOcBzgOcBzgPcB7gPMB5gPMA5wHOA5wHOA9wHuA8wHmA8wDnAc4DnAc4D3Ae4DzAeYDzAOcBzgOcBzgPcB7gPMB5gPMA5wHOA5wHOA9wHuA8wHmA8wDnAc4DnAc4D3Ae4DzAeYDzAOcBzgOcBzgPcB7gPMB5gPMA5wHOA5wHOA9wHuA8wHmA8wDnAc4DnAc4D3Ae4DzAeYDzAOcBzgOcBzgPcB7gPMB5gPMA5wHOE5wnOE9wnuA8wXmC8wTnCc4TnCc4T3Ce4DwX5/OmVS7OD2VQDhVQCdWhRqnF+aEaFDIEGYIMQYYgQ5AhyBBkKDIUGYoMRYYiQ5GhyFBkKDIUGYYMQ4Yhw5BhyDBkLM7nLznk4vxQHWpl6LyJtEE1KIFSKKvXLs4PhYzF+fHvOhQyAhmBjEBGICOQEcgIZATGERhHICORkchIZCQyFueHcqiAwjgSGYvzpRbnh2pQAoWMjoyOjI6MjoyOWnWMY2AcA+MYyFicHwq1GqjVQK0GMgYyRmX0bYNqUAKlUAblUJXRt4TqUFWr3jYoZDRkNGQ0ZDRktIBKqA6FcQgypEEJlEIZFDIEGYIMQYYgQ1ErxTgU41CMQ5GhDoVaKWqlqJUiw5BhyDBkGDIMtTKMwzAOwzjAeTccD0etHLVy1Aqcd0eGI8ORAc47OO/gvIPzDs57ICNwPMB5B+cdnPdARiADnHdw3sF5B+cdnHdw3sF5T2Qkjgc47+C8g/PekdGRAc47OO/gvIPzDs47OO/gvA9kDBwPcN7BeQfnfSBjIAOcd3DewfkA5wOcD3A+wPnYKmNsDhVQCdWhkNGQAc4HOB/gfIDzAc4HOB/gfDRktDoeA5wPcD7A+RBkCDLA+QDnA5wPcD7A+QDnA5wPRYYqFGoFzgc4H4oMRQY4H+B8gPMBzgc4H+B8gPOB8/nA+XyA8wHOBzgfOJ8PnM8HOB/gfIDzAc4HOB/gfIDzEcgIHA9wPsD5AOcjkBHIAOcDnA9wPsD5AOcDnA9wPhIZieMBzgc4H+B8JDI6MsD5AOcDnA9wPsD5AOcDnI+OjI7jAc4HOB/gfAxkDGSA8wHOBzgf4HyA87YB9F02yorZpVIapVMGZdKhUzKtMa0xDdDvUimN0imZ1pKyUw5IwL9LpgnThGnCNGEaWsAuOTbh2IRjU6Zpo2QllZVUVlKZpkxTpinTlGnGShrHZhybcWzGNONxM1bSWEljJY1pzjRnmjPNmeaspHNszrE5x+ZMcx63YCWDlQxWMpgWTAumBdOCacFKBseWHFtybMm05HFLVjJZyWQlk2nJtGRaZ1pnWmclO8fWObbOsXWmdR63zkp2VnKwkoNpg2mDaYNpg2mDlRwc2+DY2EuOh+5W2vHU3SmFUimN0ukQlEnZKZnGXtLYSxp7SWMvOR7BO9KaUwZlUnZKpgnT2Esae0ljL2nsJY29pLGXNPaS44G8I01w3Bp7SWMvaewlTZmmTGMvaewljb2ksZc09pLGXtLYS47H844043FjL2nsJY29pBnT2EuacWzOsbGXNGeaM82Zxl7S2Esae0lzju3oJT7l7CUyP1HX1hN762sn23pkr6RSGqVPuYJnLymZlJ1yQM5eUnKlrd1JoVRKo3TKoFxpaxTZKQdk3yhXWiwplEpplCutLxmUM03W4GcvKTnTZA1o9pKSjVIoldIonTIok7JTIm092FeyUQqlUhqlUwZlUnbKlTZLvR7xK7nSbEmhnGm6XjZ7SUmnjPXhniWTsq9vKVhyQM5eIrbSZi8pKZQzzY5/a5QzbX7hYluP/JVMypnma3dmLxFfL5u9ROZPmbT13F9JoZxp86MvbT36J7EcZi+RWKOYvURiRcxesn4Ioq3H/0rOtPXRgvUAYMmZ1pfv7CUlZ1pfEbOXSF8Rs5dIX7sze8n6UFBbzwHKaEt2yjE/DrLMZi8p2aZcvrOXlNQpV8TsJSV9fQf/kkGZU66azV5ScqCoq5ccRQ1WMljJ1UtOaSjq6iVHUVcvOYq6eslR1GAlVy85ZLKSq5eckpVcveSUhqKuXnIUdfWSo6irlxxFTVZy9ZJDdlayN0pWsislKzl7SUlWsiclKzl7ySlXLzmKunrJUdTBSg5WcvWSUzqKunrJUdTVS46irl5yFHWgkuvhwZKo5Hp8sCQquR4gLOlV1PUI4VHU9QzhUdT1EOFR1PUU4VHJ9RhhSVRyPUhYEpVcjxKWRCXXw4QlUcn1OGFJVHI9UFiyrV8BXFLW51iXVEqjdMqgTMpOOSBnLynZKJmmTFOmKdOUaco0ZZoyzZhmTDOmGdOMacY0Y5oxzZhmTHOmOdOcac40Z5ozbfWSdb5YTx2W7JQrbR2s2CgbpVAqpVE6JdOCacG0GJC5UTItmZZMS6Yl0zIok3KlLRiSaZ1pq5ecUiiVkmmdaZ1pnWmrl5ySlRys5ODYBsc2FDs5DMHDKVnJwUoOVnIgbT2gWLJRCqVSGqVTBmVSopLrScUjeD2qWLJRCqVSMq0xrTGtMa11So5NODbh2IRjE1TSBJU0ccqgTMpOyTRlmjJNmaaspHJsyrEpx6Ycm7KSykoaK2mspLGSxkoa04xpxjRjmrGSxrE5x+Ycm3Nszko6K+msJHuJsZcYe4mxlxh7ibGXGHuJsZcYe4mxl1hwbMGxBSvJXmLsJZasZLKSyUqylxh7ibGXGHuJJSuZHFvn2DrH1jm2zkp2VrKzkp2V7KxkZyXZS4y9xNhLjL3EBis5OLbBsQ2ObXBsg5UcqKRvG2WjFEqlRJqzlzh7ibOX+NYpMTZvG2WjFEpU0hsq6c0pgzIpOyXT2EucvcTZS1yUkmMTjk04NuHYBJV0YSWVlVRWUllJZSXZS5y9xNlLnL3ElZVUjs04NuPYjGMzVtJYSWMljZU0VtJYSfYSZy9x9hJnL3FnJZ1jc47NOTbn2JyVdFYyWMlgJYOVDFaSvcTZS5y9xNlLPFjJ4NiSY+O8xDkv8WQlk5VMVjJZyWQlk5VkL3H2EmcvcfYS76wk5yXOeYlzXuKcl3hnJTsrOVjJwUoOVnKwkuwlzl7i7CXOXuKDleS8JDgvCc5LgvOS2FDJ2FDJ2JwyKJOyUzKNvSTYS4K9JJpSGqVTBmVSopLRUMmQjbJRCqVSMo29JNhLgr0kpFNybJyXBOclwXlJKCuprKSykspKKiuprCR7SbCXBHtJsJeEsZKclwTnJcF5SXBeEsZKGivprKSzks5KOivJXhLsJcFeEuwl4awk5yXBeUlwXhKcl0SwksFKBivJNU5wjRNc4wR7SbCXBHtJsJcE1zjBeUlwXhKclwTnJcE1TnCNE1zjBNc4wTVOcI0T7CXBXhLsJcFeElzjBOclwXlJcF4SnJcE1zjBNU5wjRNc4wTXOME1TrCXJHtJspcke0lyjZOclyTnJcl5SXJeklzjJNc4yTVOco2TXOMk1zjJXpLsJclekuwlyTVOcl6SnJck5yXJeUlyjZNc4yTXOMk1TnKNk1zjJHtJspcke0mylyTXOMl5SXJekpyXJOclyTVOco2TXOMk1zjJNU5yjZPsJclekuwlyV6SXOMk5yXJeUlyXpKclyTXOMk1TnKNk1zjJNc4yTVOspcke0mylyR7SXKNk5yXJOclyXlJcl6SXOMk1zjJNU5yjZNc4yTXOMlekuwlyV6S7CXJNU5yXpKclyTnJcl5SXKNk1zjJNc4yTVOco2TXOMke0lyXpKclyTnJck1TrKXJHtJspck5yXJeUmyl3T2kn70klxSKFfaWHKmrdsp66nRkkGZlDNt/gBSW0+Onn+7eskpG6VQKl7WmNaY1pjWmNaY1pgmTBOmCdOEacI0YZowTZgmTBOmKdOUaco0ZZoyTZmmTFOmKdOUacY0Y5oxzZhmTDOmGdOMacY0Y5ozzZnmTHOmOdOcac40Z5ozzZkWTAumBdOCacG0YFowLZgWTAumJdOSacm0ZFoyLZmWTEumJdOSaZ1pnWmdaZ1pnWmdaZ1pnWmdaZ1pg2mDaYNpg2mDaYNpg2mDaYNpA2nrodSSjVIokTbYSwZ7yWAvGewlg71ksJcM9pLBXjLYSwZ7yWAvGewlg71ksJcM9pLBXjLYSwZ7yWAvGewlg71ksJcM9pLBXjLYSwZ7yWAvGewlg71ksJcM9pLBXjLYSwZ7yWAvGewlg71ksJcM9pLBXjLYSwZ7yWAvGewlg71ksJcM9pLBXjLYSwZ7yWAvGewlg71ksJcM9pLBXjLYSwZ7yWAvGewl4+glh5xPs6zT4vFY6ymTcqbZIWfausO/Hm0tOdOsLymUSmmUc2zzh77aesC1ZFJ2ypnm6+sAVy+Z33be1lOuJYVyPqmzbouuB13X14G29aRryaBMys6XDcjjY2qHZNrqJes7W//nx19//vEvX37616cf/j2/7vD3X/5aX224//G3//1n/Z+//Przly8///3P//z1H3/96W+///rT/BrE+f8+betrEPf//qnFZ2nzaxIb/2p8Fpt/Jec//dN+sfzzfn35vz5/0vmnvSj7pfb9T+uf73cJPu+X/Ocf2/xjz/3fjvl6na+fr9hnNTrw7/dX+/zfhsS0zwmD/Z5zl/n//ds9CvzVPuuSFZL8q/ys64UdufZZ7U3u/FLI/wM=",
5725
- "verification_key": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuqAAAAAAAAAAAAAAAAAAAAdQnwfyirnr8isvpNDU3k1TEAAAAAAAAAAAAAAAAAAAAAABmMBYeEOpKy6hj0iJxwzwAAAAAAAAAAAAAAAAAAAGTrBjn9Axowj7pq4wTnx4UhAAAAAAAAAAAAAAAAAAAAAAAGPw6bvJMxzEsCcFHuVNMAAAAAAAAAAAAAAAAAAACnXXpG1SfqkO/rvdVzl5x4TgAAAAAAAAAAAAAAAAAAAAAABzPOoQJI1747TqIaOV8hAAAAAAAAAAAAAAAAAAAA/BtE+d9C+tITBPS6FfQMsw8AAAAAAAAAAAAAAAAAAAAAABnYuDJxyxY6IZZCFPCLoQAAAAAAAAAAAAAAAAAAAAGzUVuFgZty2Phmx7VnEfb0AAAAAAAAAAAAAAAAAAAAAAAdAezkLeHqIvaMm4cvVJQAAAAAAAAAAAAAAAAAAAAXdphTmFO0OnaBe38/kqJZswAAAAAAAAAAAAAAAAAAAAAAD3HNCdAm0/v8zXNy7HQrAAAAAAAAAAAAAAAAAAAA7kBIzLWJVYDzMxRC1bYIBiEAAAAAAAAAAAAAAAAAAAAAACYON/IvSoQPiO2R+AcHggAAAAAAAAAAAAAAAAAAAEw/VYf70t49OZYBuU/S1zDIAAAAAAAAAAAAAAAAAAAAAAAhTx5M6d6mglFW34XE0jwAAAAAAAAAAAAAAAAAAAAry+apc26hU2qbulLXiL3sPAAAAAAAAAAAAAAAAAAAAAAAB1odahIOupDZpjba47GtAAAAAAAAAAAAAAAAAAAAg7GqJsJhavsOyqTklovnviwAAAAAAAAAAAAAAAAAAAAAACpGhMz2xPnDCzXKbh3P0AAAAAAAAAAAAAAAAAAAAJAYlNW3Q008mNEy8UHmNE40AAAAAAAAAAAAAAAAAAAAAAAvNqYIbesk/BPK0O+tkB0AAAAAAAAAAAAAAAAAAAAMPjGZ77iwulqM+fC3Uz91eAAAAAAAAAAAAAAAAAAAAAAAKVeggZN9Clhr8W8IwSsYAAAAAAAAAAAAAAAAAAAAJzF9LwqADNbKcfUoT8KtTa8AAAAAAAAAAAAAAAAAAAAAAA518y3hD5iLVkztpJIXywAAAAAAAAAAAAAAAAAAAB5J8PjTkTM7ZuCKjl4o1N0dAAAAAAAAAAAAAAAAAAAAAAAGAYYZQRXqMgE23QeNvXEAAAAAAAAAAAAAAAAAAAAzpcVM8SnGYpeM2ojUpKIsMgAAAAAAAAAAAAAAAAAAAAAAJZIxBoI9tXMYA4VtZhUfAAAAAAAAAAAAAAAAAAAAbjlCWKFs7BJFf3D9DZXyj+MAAAAAAAAAAAAAAAAAAAAAAALih/kciGzAHY5nYkJ5sQAAAAAAAAAAAAAAAAAAAL3q8OLEJuWhR4lIrph/yaYIAAAAAAAAAAAAAAAAAAAAAAAQa9uAxl3WV3tBjpCAnF0AAAAAAAAAAAAAAAAAAADYNC17voRqu+QwT8hv5IYylQAAAAAAAAAAAAAAAAAAAAAAHM2fe2+rq0Cpdx8ClSSIAAAAAAAAAAAAAAAAAAAAJrxkAh8nVtfaaokvvDux49MAAAAAAAAAAAAAAAAAAAAAACHLvJYvyWU12q2rcFqq0QAAAAAAAAAAAAAAAAAAAHwqfZiSRqe+r/NQaI3N0WNxAAAAAAAAAAAAAAAAAAAAAAAPdKZltU8kkzguEZhg8MUAAAAAAAAAAAAAAAAAAACRwJUgod9yC/Sk7pEH4Iuv/AAAAAAAAAAAAAAAAAAAAAAAEH3ag2fZSMtu7iu8sMckAAAAAAAAAAAAAAAAAAAAE6gs2ikiLarY4uD4jBr6VIMAAAAAAAAAAAAAAAAAAAAAABfVLsnCA1RY5VpHCRMOxgAAAAAAAAAAAAAAAAAAAOyMD7ca1VXcirhiC5ZgQVRWAAAAAAAAAAAAAAAAAAAAAAAO70l/9EKEargqwmZ36GkAAAAAAAAAAAAAAAAAAAAHgQlGShXIcpGrsZmAPhDJEAAAAAAAAAAAAAAAAAAAAAAAJDI+0sbw8vBP7WIK5x/rAAAAAAAAAAAAAAAAAAAABjWkNq+ZW++MJw3hrSLzmf8AAAAAAAAAAAAAAAAAAAAAABbnuck6mf7eAbXfYWq4zgAAAAAAAAAAAAAAAAAAANC2KSuZ2OuIMbyhe+fdQdbxAAAAAAAAAAAAAAAAAAAAAAArUCWOrP17vuv7zTdeHcAAAAAAAAAAAAAAAAAAAAAcAk62fd0il7wY/j8T9qC59wAAAAAAAAAAAAAAAAAAAAAAH1p2I+1eugZl2ov2rwZrAAAAAAAAAAAAAAAAAAAAMmONVhTb1YrKXaFBFXhFmmEAAAAAAAAAAAAAAAAAAAAAAAXTY47d/+GhheVsQfXhKAAAAAAAAAAAAAAAAAAAACZdYrln6DaKi3jD8WPY7jM4AAAAAAAAAAAAAAAAAAAAAAAR/KgZW5k+LW5UDcfLo88AAAAAAAAAAAAAAAAAAACggtA5P3I4qXPozQ0TkkkI5wAAAAAAAAAAAAAAAAAAAAAADAXnmqPMO4O4GYGn4jVBAAAAAAAAAAAAAAAAAAAAnFWZrdjEBTTx0M/MMM0HBvkAAAAAAAAAAAAAAAAAAAAAAA/D5wIuVWbkJe/avJ2jJgAAAAAAAAAAAAAAAAAAAMEvd++Ev12hPa4tNJtKgI82AAAAAAAAAAAAAAAAAAAAAAAnjdGLOAAfKvygr7l0lh0AAAAAAAAAAAAAAAAAAACkXO3bksVDRJe3LrhR8k98yQAAAAAAAAAAAAAAAAAAAAAACG/EYqJdGCeN/vzn7TvwAAAAAAAAAAAAAAAAAAAAVi3bxmTLXuFdUbBn+vVzQbMAAAAAAAAAAAAAAAAAAAAAACNCKKBqZ1JUl0x56cnzigAAAAAAAAAAAAAAAAAAALwGBzEt1MazJFWjzggSRV9LAAAAAAAAAAAAAAAAAAAAAAArqff+hkEBvnCvVmNfr/AAAAAAAAAAAAAAAAAAAAAj2OFKmCXZ5SCOHHvaHyseZgAAAAAAAAAAAAAAAAAAAAAACCTSnRraUlhMj7xUfWJBAAAAAAAAAAAAAAAAAAAA34fbfAHZCM8uGikt3GM/FJYAAAAAAAAAAAAAAAAAAAAAAB0eOqDlE5URHzxjAsz9MgAAAAAAAAAAAAAAAAAAAP+2uYeV6uP2TzNA6b4OqPIsAAAAAAAAAAAAAAAAAAAAAAAardVR4PorgehTmIObfq8AAAAAAAAAAAAAAAAAAADE/oXlh8KuS87Bt7dwHLuOrAAAAAAAAAAAAAAAAAAAAAAAAmBrCLFYesbV1QgwS7azAAAAAAAAAAAAAAAAAAAAEUD+GG7WjtmDsf8t5eGMFD0AAAAAAAAAAAAAAAAAAAAAABmcs/5H09yPF+JFyIekyQAAAAAAAAAAAAAAAAAAALc9FczOYMj1bN+A3qgKEuNEAAAAAAAAAAAAAAAAAAAAAAALIb4rcap71SogWZsb3xEAAAAAAAAAAAAAAAAAAAD2QqsOeQ8CzEG9MTEPjU7srAAAAAAAAAAAAAAAAAAAAAAAGiB5AfaicfzGTrko55VAAAAAAAAAAAAAAAAAAAAAPOo14vIt+HBaDKjesVs5uNQAAAAAAAAAAAAAAAAAAAAAAAaZiJM77eQL734nDz5B5wAAAAAAAAAAAAAAAAAAAJdft9V3FWauIGPSviDm7FcrAAAAAAAAAAAAAAAAAAAAAAAoUI+tbjgrAOGjk/ySr9AAAAAAAAAAAAAAAAAAAAC3ZeVqsXsdf5uphsT5okQo9wAAAAAAAAAAAAAAAAAAAAAAFhoXCndsjFKzrbM5QHkcAAAAAAAAAAAAAAAAAAAACvTRWzt3M0bicesqeTwzOX4AAAAAAAAAAAAAAAAAAAAAAC/tQaYZ03x2pQDNedxB4gAAAAAAAAAAAAAAAAAAAOwOwVZK5Ys5wO3Shn8hX+XaAAAAAAAAAAAAAAAAAAAAAAAUd8mKwF7lV45Sl/SZiYkAAAAAAAAAAAAAAAAAAADRm7356gtlZbPuda3U/vDBgAAAAAAAAAAAAAAAAAAAAAAAIna5XPqaJCJZ9WNKv6HJAAAAAAAAAAAAAAAAAAAAD2c7beACg9vkK95AWHKnSnQAAAAAAAAAAAAAAAAAAAAAAA/FsR+JqaUgJy/b1ewsRQAAAAAAAAAAAAAAAAAAAEKF/X3nDkSYscibqResWKzyAAAAAAAAAAAAAAAAAAAAAAAia16VsAtzFWE9b9eCVR4AAAAAAAAAAAAAAAAAAACfr8PQSX4ivwm3fN2kY2Z/CgAAAAAAAAAAAAAAAAAAAAAAEWpT7nl6PedV2vtrbYaOAAAAAAAAAAAAAAAAAAAAhUuF9c3cB2w9T+DJgfmIrLsAAAAAAAAAAAAAAAAAAAAAAClbjLiEl3aDmC2mrjZl8wAAAAAAAAAAAAAAAAAAACqsbCcAtn2MArxTHstyVRmlAAAAAAAAAAAAAAAAAAAAAAASOZAncT+gKXzeXOzkWpUAAAAAAAAAAAAAAAAAAAAaUVWcnuDlzcZyaP8QdxLcwQAAAAAAAAAAAAAAAAAAAAAAHkHX3dqx8KmIe+9yRs7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqkRzNoOXvqTEY3yYjo9To8AAAAAAAAAAAAAAAAAAAAAAAJBkSWwNFVcYEQo9+7D9JAAAAAAAAAAAAAAAAAAAArqPlPiWv61OcLq+nvSiWH/AAAAAAAAAAAAAAAAAAAAAAAB/Ub57y/dwEQzIOWQCP6wAAAAAAAAAAAAAAAAAAAGvMegX/lalrKJQkxfczZw2WAAAAAAAAAAAAAAAAAAAAAAAAxDcm91tv2g3iLODg36sAAAAAAAAAAAAAAAAAAAAdCgnXF47JO614WPluZPC0jQAAAAAAAAAAAAAAAAAAAAAAL5tuC04sAZaN5cMkgqp9AAAAAAAAAAAAAAAAAAAAFLmaKhz1vbFNGPy31tW7G0MAAAAAAAAAAAAAAAAAAAAAABibwBFKqYLGRXSxHbsAPgAAAAAAAAAAAAAAAAAAAIFYESpGMQpiuEn23VYsLIaUAAAAAAAAAAAAAAAAAAAAAAASkF6WwsjbCGXWk491oyQ="
5724
+ "debug_symbols": "tZ3druPGlYXfpa/7grV/q/wqwSBwEk9goOEEjj3AIMi7D6vIvZb69IitIx3fmKvbrbVYm/o2q0hK+venv/30l9///ueff/nvf/zr0w9/+venv/z685cvP//9z1/+8dcff/v5H7/sf/vvT9v8T7NPP2T85/Ontv4U+598/5PMP+n+L2z7/EnbuZVzq+fWzq2f2zi3eW77uR3H1k4/O/3s9LPTz04/O/3s9LPTz04/O/389PPTz08/P/389PPTz08/P/389PPpJ58/xXZu27mVc6vn1s6tn9s4t3lu+7k9/fL0y9MvT788/fL0y9MvT788/fL0y9Ovn3799OunXz/9+vSzfevnNs5tntt+bsexHdu5bedWzq2e29NvnH7j9Bun3zj9xunXtq1EKyEltISVmK46RZTIEr3EOEXbSkxnn0JKaInp3KfwEruzb1NkiV5inEK2Eq2ElNASVsJLlLOUs5SzlLOWs5azlrOWs5azlvOEyOdIJ0VLWA158uGzdBOQQ0SJLNFLjFNMSg7RSkgJLVHOXs5ezl7OXs5ezlHOUc5RzlHOUc5RzlHOUc5RzlHOWc4THZ9jn+wcQktYCS8xTjHB8Jhi/uOcwkp4iSiRJXqJcYoJyCFaCSlRzqOcRzmPch7lPMp5nM6ybSVaCSmhJayEl4gSWaKXKOdWzq2cWzm3cm7l3Mq5lXMr51bOrZylnKWcpZylnKWcpZylnKWcpZylnLWctZy1nLWctZy1nLWctZy1nLWcrZytnK2crZytnK2crZytnK2crZy9nL2cvZy9nL2cvZy9nBdWY4peYpxiYbVEKyEltISV8BJRopyjnKOcs5yznLOcs5yznLOc+8mXLGSWyBK9xImeTGRim0JLWAkvsfuETJEleondJ/ampxOQQ7QSUkJLWAkvESWyRC9Rzq2cWzm3cm7l3Mp5AhI2RRwtRRcgS/QS4xQLkCVaCSmhJayElyhnKWcpZylnLWctZy1nLWctZy1nLWctZy1nLWcrZytnK2crZytnK2crZytnK2crZy9nL2cvZy9nL2cvZy9nL2cvZy/nKOco5yjnKOco5yjnKOco5yjnKOcs5yzDNTfzKaJElphvrSXGKeYELear5gztEFJCjzmJdivhJc4zvk6sYv1NLzGdx5xBbyVaid051+RaS1gJLxElskQvMQ5hE7RDtBJSQktYCS8RJbJEL1HOrZxbObdybuXcyrmVcyvnVs6tnFs5SzlLOUs5SzlLOUs5SzlLOUs5SzlrOWs5azlrOWs5azlrOWs5azlrOU/Qsk0xndu+xtK5xpojmI1Pjo0eGzs2fmx2d9n/va1/P20+r5fl8bI8XpbHy/J4WR4vm5s8Nv3YjLWZQ+jHQq0f67Smx7qs2bEuW1s9t/u/bn6sy9Y2z+3+OjnXX9KO9dfa6rmdw5Bj/bW2cyB5rL9UjvWX6rHeWtv99WrHemtt7dz6uY1zO47tPIup7ZXxWrvq2P8U9ac1gTw2k/Q5/9rh+bxqOJe8iSWvHP8vp1lfS985xLMy/9n/shbOf/7t159+mv/gZiW9r6//+eOvP/3y26cffvn9y5fPn/7nxy+/r3/0r3/++Mva/vbjr/v/3Uv10y9/27e74X///OWnqf7zma/e7r/U5y6uF0dLvHyfAz9qYF1PAxfm71PvRw262GnQrd/swVev1/uvj9kGjxGsKwzvfX1uNYBs21Ovrwqm3M2/GP9+zuunwS4HHPZe9rCFR41hl/aURWiWRdh9i3FRCJ9t6KiED1q0r98K7bIWraEWbdyr5vxHdy02HM99Zmd3LeS+xX5RwOqY7jr83lAu6zlQz2z+1CHJPmAx8imLntUbdnnfosXrhzVfP6z99cM6/uDDOrQs9mlRf+qYjMBhHf2pd8Y+t6q92GdXcddC9OXDOpvzi4dV/OXDKvHHHtZ9auooqN7vwdJfL+h4uaC6vVxQbX90QW/eofbkmxwddJ/x61OoaUP725fedy3UXz6sGq8f1nz9sPY/9rDu181xUKa+ma/5eIeJBHak9XbXxNrVvDNqT3w/Pd4Mxh/2cMO71E3tvsdFH92voZXHfvFM4BHv2AvnXvTtuZG41izaPS48rt6mwvnGfp3r3kgu3qX7+7wDWc1nauFNOI6LI3J1ng/vVYz9psDGY7Jf+3mHSwRdUvpdF28f4nIxIe1ZZ6c+eGz3azcP1zW3qE6YW9pT77F9ecSVUnvWwzs8Uu56XLWP/U3W0T72Gx5P9aA3JnnXxK9aagd17XbxureBxwsiLIjpk0XFWPKrobzxiA84MFcer+O/RztG0tqTbQx7sV8dtyfa2ION8LKNJdtxv49KXOyFdEwatnbvrXVlEImdiBztzjAuHTqmxdEtn3JA+4vbBWg8CupotQdD2hNXVwbe1iPvzrxS/9hp035jirO3dgNXyuOTJswh953gkq+Nhy/15eh1DujbbatpX78p8+J49lG1GLfzpcd3Yr+5Wmztt07t/k6MKw8zeNysDPrXe9Eva4Hd6NvGcu7OX3tcNav9TFrNKt3ue8jVlTssk27W8ftt3a8druafbFb77W6572FX7/HgW/zmksS79iNbTer3e77bfY+rpXxmcdJyXIzl4h06DA3D+1MObcOM/ivev/EYV6sT9C3rfkP8eLwYY6sD24bcL8YVbGY4Jn57ef8NbOPqYujmeIPt5biZf+b2DpPEhci29Rvg8vE7FYK5gd+elb8ZzOXlJu7Hfgdf/e5gLk16x0XAdnv97T0mrSnO763dXN59vCL77cqy2O9K9rsVubzIoorrNMFW6u3NNfsrDwdy5sHd8DfXmLerdZIMTFba3sbu1rRtV92UO9Kcb1R/ciw385VvxnLRTRMn+8y4N3H7zl5gpbXfHLrYi7g6SbaNJwa5uajp9sYlXz9P7lC/fqJcO/zambJd3V169FTZWnv9XHltouztKv3CRF89011aPHqqa81fPtc9Opb0J4/ugxOQdnWb6dEZSLu60fTogRmv12N8wLEV+YBj21+fyFy3xDTcDciud1vi1c2m/RIvzpd605rfnuyu7jZF4IQZt5Mh2d7cDpXLq/nJCUS7fwHr2mQd/dPk9hrDNyZXXXU0w83I28s+7zGxITg2I7fnTPZTXs3MfIv7NxaaXr1dh3KKSIuINxZ6deNeeOP+5ppHkzfvNLUPOG1e3nl69LR5ee/psdPm1b2nh0+b13efHjxtXpo8etq07eXubNsHtFb7gNb64FiuThOXR/fR06b5B5w2ry7cPnpg4uV6XFk8fmzHBxxb/4DT5lVDDBu4/Kr3G+LVzaf9rBk8a940xNDH92O/b/X/HNtv98Ou3qgbrvplH/fbofsHNGaPD2jMni835qvbTw+j6+MD0I3Xe2p8RE+ND+iplwX5CO72W6Xy/16uf/uOj4s3637JDjfD5eYe0LvIG8N4n1MuduRyBsCL9qp6/w0f/QPQi/EB6OX2MnrZPgC9lA9AL1+/CpAfcRUgP+AqwGVBPgQ923Cp2bLdf8fnVWvFHXW9uV8Xb8dyuSjCrNm37ead+vbR2+vdwFrk5l5ZvGtZxTvR+/W1+8uqy7tUvQefI769j/v26uzVHaLuIfV+3/XNe+Sty+Ui3vlYYNw8cP/NIv7KI/HQhaX21z1uHph/j4dvwveIt7sevV/dFsFdXd/vM9+7O92u7lZFogFE3t5I6O/YD66bPdRf9/jqYZj3eGSHx3jS4/bxjXxyLB3TVb+94fXW4/I9Nvjhmu3mqb6374/x4JLo/pPibeRVSQN33vLmAsB7TbbXTfhG3Y/LeNak5WMm8dC06vZu1TcPjF/drnq0rt8z2V43ebCu3zH5gLruN5Ic89UmT5q0xgeMTT/AxPsHmIR+QE2eNhE8WbuvA/xZE1ykbWLP70mjiT1r4tyT52uCj941uXkO/Z0muMaym8jTNeFw+rPDUcWbzW6ei/2G4qvbRsJ5jdyusL4xkau7NZqYpOkYT5oYPhlqpvqsCT7XaGbxpImb8gmHZ2sSvIMV8exw+GlXi4t37OMmwz9gOE+bJFrBPhFvH2Biz+4Jp2vW5f4nJeXqk1OO9Xzc3tXr79kNPGxqPS7GcnUL6/Xd2BcmOJVvls+VdJ+yBkyefa/ur8Q0enu2k9yatKavD+d5k8a7nO3Z9+pXJs92Ehfc+XXR+9MbMflD32ni/P6Ai08oi9mru3F91sNMYD+HX5wmrm4d7Zcm0EPCbi/6Pusx7npcDmbw4uS4Ol1d3cISXgITlbh3PW9Nw+5fvsIZXPrN9Y1vPK4+VCJ8Fk4snvNQfrxXb4B5nwcet3jFo73sYY6x7KeI5zx88PlCGfc9Lj+egjnRfmzvfnGHXN7ACnqE+32Py9s1aCDtq4dP3uEhvAAut59W/uZT6C+f+6/3gj1oG+3+XugfuheNT3vI7XWrfJeHfoDH9rIHeRP1+++NuHzmZGDxbTen/Xd5GD8naPYRHvmkh2PlbRHPevD2Sm+vj+VZD8fD783b9rqHPuth9Ij732CR+Sq113sB4va77PeP7NUdqwd7x2U/T/SOuOhgV5+qerSfX3k82s/7y530ei8e6+fd/9C9eLCff8dDP8Bje9njwX4+ttf7+aXHg/38cY980uOxfv4dj4f6+cNjedbjwX7+sIc+6/FYPx8vd9LrvXion+vW/tB+np64Fjzufznepi/zdu3xGG/v8MgnPR7i7Xsej/D2+Fie9XiMt8c99FmPh3jT9uplqO/sxWO8tZevQl1eL+HzT/s1nPHUNRdtePxJby9Tvs/D+NnUm4+mPuvx1Ze0jPdcyBr8tO7Flyjq9RXGhx6QUblopQ8+IHO9H489IPO4x/0HZL7j8dADMtcejz0gc+3x2AMyl28QbXi6RS+vhF+aCL4FTEWevQvM73hrt18l9k4TfLC82Wivm/jTT1AYH029MrmawsTg0623j+r6mzfJ1Qepgp9Pj+3m6u/DexGDX2Gzryz5LnvzGXm9+hCV5IbvHpC8/cTemycX9fKTNo99bYnqBzxErfoBD1GrvfwQtV59S9KjHyxTu/yy3sc+WPadA9zwFJXkbRN4e4CvbkMpr6rf3qh4/Lu03fEUiPvNdwl+82a9/P6rR7/j4jsuvfM7i4bKky68mjO/KuP5fXnoCzcuHz9+7KuornfkA760ww0E78f4/hcgXX15UWBatB/q8bXFf+1//PGvP//69U+yrV9BmL9cFZ9+mC+eX1+/tv3cjmM7v8F+vovnzwCsrcwnSI8fAlhb27dx/BTA2k6/fvwYwNr2czuOfz9/9mD+ef7qwdpOv3H80tv6OsH5gwGH8BIxhR8/InCIvjA/fu9tifmbB4doJeZPC8zHy9dvCyxhJabzfKhp/rjIIabzvIdu6wcK2vHLb23ejJo/LnKIVkLWQuf49YFDWAkvEWsFdPwCwSF6iek8b9nMHxc5RCsxnedDBfN3CVrG8cMEh5jOc946f5rgEFliOs+rZPPXCtp8sGH+uMghpvO8nDh/ZaTNzw7MX985hJXwElEiS/QS4xR9K9FKlHMv517OvZx7Ofdy7uXcy3mU8yjnUc6jnEc5j3Ie5TzKeZTzKOf1Y3GnalACpVAG5VABlVAdChkNGQ0ZDRkNGQ0ZDRkNGQ0ZDRkNGYIMQYYgQ5AhyBBkCDIEGYIMQYYiQ5GhyFBkKDIUGYoMRYYiQ5FhyDBkGDIMGYYMQ4Yhw5BhyDBkODIcGY4MR4Yjw5HhyHBkODIcGYGMQEYgI5ARyAhkBDICGYGMQEYiI5EBmBtobsC5gecGoBuIbkC6gekGqBuobsC6gesGsBvIbkC7ge0GuBvobsC7ge8GwBsIb0C8gfEGyBsob8C8gXMB5wLOBZwLOBdwLuBcwLmAcwHnAs4FnAs4F3Au4FzAuYBzAecCzgWcCzgXcC7gXMC5gHMB5wLOBZwLOBdwLuBcwLmAcwHnAs4FnAs4F3Au4FzAuYBzAecCzgWcCzgXcC7gXMC5gHMB5wLOBZwLOBdwLuBcwLmAcwHnAs4FnAs4F3Au4FzAuYBzAecCzgWcCzgXcC7gXMC5gHMB5wLOBZwLOBdwLuBcwLmAcwHnAs4FnAs4F3Au4FzAuYBzAecCzgWcCzgXcC7gXMC5gHMB5wLOBZwLOFdwruBcwbmCcwXnCs4VnCs4V3Cu4FzBuYJzBecKzhWcKzhXcK7gXMG5gnMF5wrOFZwrOFdwruBcwbmCcwXnCs4VnCs4V3Cu4FzBuYJzBecKzhWcKzhXcK7gXMG5gnMF5wrOFZwrOFdwruBcwbmCcwXnCs4VnCs4V3Cu4FzBuYJzBecKzhWcKzhXcK7gXMG5gnMF5wrOFZwrOFdwruBcwbmCcwXnCs4VnCs4V3Cu4FzBuYJzBecKzhWcKzhXcK7gXMG5gnMF5wrOFZwrOFdwruBcwbmCcwPnBs4NnBs4N3Bu4NzAuYFzA+cGzg2cGzg3cG7g3MC5gXMD5wbODZwbODdwbuDcwLmBcwPnBs4NnBs4N3Bu4NzAuYFzA+cGzg2cGzg3cG7g3MC5gXMD5wbODZwbODdwbuDcwLmBcwPnBs4NnBs4N3Bu4NzAuYFzA+cGzg2cGzg3cG7g3MC5gXMD5wbODZwbODdwbuDcwLmBcwPnBs4NnBs4N3Bu4NzAuYFzA+cGzg2cGzg3cG7g3MC5gXMD5wbODZwbODdwbuDcwLmBcwPnBs4NnBs4d3Du4NzBuYNzB+cOzh2cOzh3cO7g3MG5g3MH5w7OHZw7OHdw7uDcwbmDcwfnDs4dnDs4d3Du4NzBuYNzB+cOzh2cOzh3cO7g3MG5g3MH5w7OHZw7OHdw7uDcwbmDcwfnDs4dnDs4d3Du4NzBuYNzB+cOzh2cOzh3cO7g3MG5g3MH5w7OHZw7OHdw7uDcwbmDcwfnDs4dnDs4d3Du4NzBuYNzB+cOzh2cOzh3cO7g3MG5g3MH5w7OHZw7OHdw7uDcwbmDcwfnPpABzh2cOzh3cO7g3MF5gPMA5wHOA5wHOA9wHuA8wHmA8wDnAc4DnAc4D3Ae4DzAeYDzAOcBzgOcBzgPcB7gPMB5gPMA5wHOA5wHOA9wHuA8wHmA8wDnAc4DnAc4D3Ae4DzAeYDzAOcBzgOcBzgPcB7gPMB5gPMA5wHOA5wHOA9wHuA8wHmA8wDnAc4DnAc4D3Ae4DzAeYDzAOcBzgOcBzgPcB7gPMB5gPMA5wHOA5wHOA9wHuA8wHmA8wDnAc4DnAc4D3Ae4DzAeYDzAOcBzgOcBzgPcB7gPMB5gPMA5wHOA5wnOE9wnuA8wXmC8wTnCc4TnCc4T3Ce4DzBeS7O502rXJwfyqAcKqASqkONUovzQzUoZAgyBBmCDEGGIEOQIchQZCgyFBmKDEWGIkORochQZCgyDBmGDEOGIcOQYchYnM9fcsjF+aE61MrQeRNpg2pQAqVQVq9dnB8KGYvz4991KGQEMgIZgYxARiAjkBHICIwjMI5ARiIjkZHISGQszg/lUAGFcSQyFudLLc4P1aAEChkdGR0ZHRkdGR216hjHwDgGxjGQsTg/FGo1UKuBWg1kDGSMyujbBtWgBEqhDMqhKqNvCdWhqla9bVDIaMhoyGjIaMhoAZVQHQrjEGRIgxIohTIoZAgyBBmCDEGGolaKcSjGoRiHIkMdCrVS1EpRK0WGIcOQYcgwZBhqZRiHYRyGcYDzbjgejlo5auWoFTjvjgxHhiMDnHdw3sF5B+cdnPdARuB4gPMOzjs474GMQAY47+C8g/MOzjs47+C8g/OeyEgcD3DewXkH570joyMDnHdw3sF5B+cdnHdw3sF5H8gYOB7gvIPzDs77QMZABjjv4LyD8wHOBzgf4HyA87FVxtgcKqASqkMhoyEDnA9wPsD5AOcDnA9wPsD5aMhodTwGOB/gfIDzIcgQZIDzAc4HOB/gfIDzAc4HOB+KDFUo1AqcD3A+FBmKDHA+wPkA5wOcD3A+wPkA5wPn84Hz+QDnA5wPcD5wPh84nw9wPsD5AOcDnA9wPsD5AOcjkBE4HuB8gPMBzkcgI5ABzgc4H+B8gPMBzgc4H+B8JDISxwOcD3A+wPlIZHRkgPMBzgc4H+B8gPMBzgc4Hx0ZHccDnA9wPsD5GMgYyADnA5wPcD7A+QDnbQPou2yUFbNLpTRKpwzKpEOnZFpjWmMaoN+lUhqlUzKtJWWnHJCAf5dME6YJ04RpwjS0gF1ybMKxCcemTNNGyUoqK6mspDJNmaZMU6Yp04yVNI7NODbj2IxpxuNmrKSxksZKGtOcac40Z5ozzVlJ59icY3OOzZnmPG7BSgYrGaxkMC2YFkwLpgXTgpUMji05tuTYkmnJ45asZLKSyUom05JpybTOtM60zkp2jq1zbJ1j60zrPG6dleys5GAlB9MG0wbTBtMG0wYrOTi2wbGxlxwP3a2046m7UwqlUhql0yEok7JTMo29pLGXNPaSxl5yPIJ3pDWnDMqk7JRME6axlzT2ksZe0thLGntJYy9p7CXHA3lHmuC4NfaSxl7S2EuaMk2Zxl7S2Esae0ljL2nsJY29pLGXHI/nHWnG48Ze0thLGntJM6axlzTj2JxjYy9pzjRnmjONvaSxlzT2kuYc29FLfMrZS2R+oq6tJ/bW10629cheSaU0Sp9yBc9eUjIpO+WAnL2k5Epbu5NCqZRG6ZRBudLWKLJTDsi+Ua60WFIoldIoV1pfMihnmqzBz15ScqbJGtDsJSUbpVAqpVE6ZVAmZadE2nqwr2SjFEqlNEqnDMqk7JQrbZZ6PeJXcqXZkkI503S9bPaSkk4Z68M9SyZlX99SsOSAnL1EbKXNXlJSKGeaHf/WKGfa/MLFth75K5mUM83X7sxeIr5eNnuJzJ8yaeu5v5JCOdPmR1/aevRPYjnMXiKxRjF7icSKmL1k/RBEW4//lZxp66MF6wHAkjOtL9/ZS0rOtL4iZi+RviJmL5G+dmf2kvWhoLaeA5TRluyUY34cZJnNXlKyTbl8Zy8pqVOuiNlLSvr6Dv4lgzKnXDWbvaTkQFFXLzmKGqxksJKrl5zSUNTVS46irl5yFHX1kqOowUquXnLIZCVXLzklK7l6ySkNRV295Cjq6iVHUVcvOYqarOTqJYfsrGRvlKxkV0pWcvaSkqxkT0pWcvaSU65echR19ZKjqIOVHKzk6iWndBR19ZKjqKuXHEVdveQo6kAl18ODJVHJ9fhgSVRyPUBY0quo6xHCo6jrGcKjqOshwqOo6ynCo5LrMcKSqOR6kLAkKrkeJSyJSq6HCUuikutxwpKo5HqgsGRbvwK4pKzPsS6plEbplEGZlJ1yQM5eUrJRMk2ZpkxTpinTlGnKNGWaMc2YZkwzphnTjGnGNGOaMc2Y5kxzpjnTnGnONGfa6iXrfLGeOizZKVfaOlixUTZKoVRKo3RKpgXTgmkxIHOjZFoyLZmWTEumZVAm5UpbMCTTOtNWLzmlUCol0zrTOtM601YvOSUrOVjJwbENjm0odnIYgodTspKDlRys5EDaekCxZKMUSqU0SqcMyqREJdeTikfwelSxZKMUSqVkWmNaY1pjWuuUHJtwbMKxCccmqKQJKmnilEGZlJ2Saco0ZZoyTVlJ5diUY1OOTTk2ZSWVlTRW0lhJYyWNlTSmGdOMacY0YyWNY3OOzTk259iclXRW0llJ9hJjLzH2EmMvMfYSYy8x9hJjLzH2EmMvseDYgmMLVpK9xNhLLFnJZCWTlWQvMfYSYy8x9hJLVjI5ts6xdY6tc2ydleysZGclOyvZWcnOSrKXGHuJsZcYe4kNVnJwbINjGxzb4NgGKzlQSd82ykYplEqJNGcvcfYSZy/xrVNibN42ykYplKikN1TSm1MGZVJ2Sqaxlzh7ibOXuCglxyYcm3BswrEJKunCSiorqaykspLKSrKXOHuJs5c4e4krK6kcm3FsxrEZx2aspLGSxkoaK2mspLGS7CXOXuLsJc5e4s5KOsfmHJtzbM6xOSvprGSwksFKBisZrCR7ibOXOHuJs5d4sJLBsSXHxnmJc17iyUomK5msZLKSyUomK8le4uwlzl7i7CXeWUnOS5zzEue8xDkv8c5KdlZysJKDlRys5GAl2UucvcTZS5y9xAcryXlJcF4SnJcE5yWxoZKxoZKxOWVQJmWnZBp7SbCXBHtJNKU0SqcMyqREJaOhkiEbZaMUSqVkGntJsJcEe0lIp+TYOC8JzkuC85JQVlJZSWUllZVUVlJZSfaSYC8J9pJgLwljJTkvCc5LgvOS4LwkjJU0VtJZSWclnZV0VpK9JNhLgr0k2EvCWUnOS4LzkuC8JDgviWAlg5UMVpJrnOAaJ7jGCfaSYC8J9pJgLwmucYLzkuC8JDgvCc5Lgmuc4BonuMYJrnGCa5zgGifYS4K9JNhLgr0kuMYJzkuC85LgvCQ4LwmucYJrnOAaJ7jGCa5xgmucYC9J9pJkL0n2kuQaJzkvSc5LkvOS5LwkucZJrnGSa5zkGie5xkmucZK9JNlLkr0k2UuSa5zkvCQ5L0nOS5LzkuQaJ7nGSa5xkmuc5BonucZJ9pJkL0n2kmQvSa5xkvOS5LwkOS9JzkuSa5zkGie5xkmucZJrnOQaJ9lLkr0k2UuSvSS5xknOS5LzkuS8JDkvSa5xkmuc5BonucZJrnGSa5xkL0n2kmQvSfaS5BonOS9JzkuS85LkvCS5xkmucZJrnOQaJ7nGSa5xkr0k2UuSvSTZS5JrnOS8JDkvSc5LkvOS5BonucZJrnGSa5zkGie5xkn2kuS8JDkvSc5LkmucZC9J9pJkL0nOS5LzkmQv6ewl/egluaRQrrSx5Exbt1PWU6MlgzIpZ9r8Xri2nhw9/3b1klM2SqFUvKwxrTGtMa0xrTGtMU2YJkwTpgnThGnCNGGaME2YJkxTpinTlGnKNGWaMk2ZpkxTpinTjGnGNGOaMc2YZkwzphnTjGnGNGeaM82Z5kxzpjnTnGnONGeaMy2YFkwLpgXTgmnBtGBaMC2YFkxLpiXTkmnJtGRaMi2ZlkxLpiXTOtM60zrTOtM60zrTOtM60zrTOtMG0wbTBtMG0wbTBtMG0wbTBtMG0tZDqSUbpVAibbCXDPaSwV4y2EsGe8lgLxnsJYO9ZLCXDPaSwV4y2EsGe8lgLxnsJYO9ZLCXDPaSwV4y2EsGe8lgLxnsJYO9ZLCXDPaSwV4y2EsGe8lgLxnsJYO9ZLCXDPaSwV4y2EsGe8lgLxnsJYO9ZLCXDPaSwV4y2EsGe8lgLxnsJYO9ZLCXDPaSwV4y2EsGe8lgLxnsJYO9ZLCXDPaSwV4y2EvG0UsOOZ9mWafF47HWUyblTLNDzrR1h3892lpypllfUiiV0ijn2OYPfbX1gGvJpOyUM83X1wGuXjK/7bytp1xLCuV8UmfdFl0Puq6vA23rSdeSQZmUnS8bkMfH1A7JtNVL1ne2/s+Pv/7841++/PSvTz/8e37d4e+//LW+2nD/42//+8/6P3/59ecvX37++5//+es//vrT337/9af5NYjz/33a1tcg7v/9U4vP0ubXJDb+1fgsNv9Kzn/6p/1i+ef9+vJ/ff6k8097UfZL7fuf1j/f7xJ83i/5zz+2+cee+78d8/U6Xz9fsc9qdODf76/2+b8NiWmfEwb7Pecu8//7t3sU+Kt91iUrJPlX+VnXCzty7bPam9z5pZD/Bw==",
5725
+ "verification_key": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuqAAAAAAAAAAAAAAAAAAAAdQnwfyirnr8isvpNDU3k1TEAAAAAAAAAAAAAAAAAAAAAABmMBYeEOpKy6hj0iJxwzwAAAAAAAAAAAAAAAAAAAGTrBjn9Axowj7pq4wTnx4UhAAAAAAAAAAAAAAAAAAAAAAAGPw6bvJMxzEsCcFHuVNMAAAAAAAAAAAAAAAAAAACnXXpG1SfqkO/rvdVzl5x4TgAAAAAAAAAAAAAAAAAAAAAABzPOoQJI1747TqIaOV8hAAAAAAAAAAAAAAAAAAAA/BtE+d9C+tITBPS6FfQMsw8AAAAAAAAAAAAAAAAAAAAAABnYuDJxyxY6IZZCFPCLoQAAAAAAAAAAAAAAAAAAAAGzUVuFgZty2Phmx7VnEfb0AAAAAAAAAAAAAAAAAAAAAAAdAezkLeHqIvaMm4cvVJQAAAAAAAAAAAAAAAAAAAAXdphTmFO0OnaBe38/kqJZswAAAAAAAAAAAAAAAAAAAAAAD3HNCdAm0/v8zXNy7HQrAAAAAAAAAAAAAAAAAAAA7kBIzLWJVYDzMxRC1bYIBiEAAAAAAAAAAAAAAAAAAAAAACYON/IvSoQPiO2R+AcHggAAAAAAAAAAAAAAAAAAAEw/VYf70t49OZYBuU/S1zDIAAAAAAAAAAAAAAAAAAAAAAAhTx5M6d6mglFW34XE0jwAAAAAAAAAAAAAAAAAAAAry+apc26hU2qbulLXiL3sPAAAAAAAAAAAAAAAAAAAAAAAB1odahIOupDZpjba47GtAAAAAAAAAAAAAAAAAAAAg7GqJsJhavsOyqTklovnviwAAAAAAAAAAAAAAAAAAAAAACpGhMz2xPnDCzXKbh3P0AAAAAAAAAAAAAAAAAAAAJAYlNW3Q008mNEy8UHmNE40AAAAAAAAAAAAAAAAAAAAAAAvNqYIbesk/BPK0O+tkB0AAAAAAAAAAAAAAAAAAAAMPjGZ77iwulqM+fC3Uz91eAAAAAAAAAAAAAAAAAAAAAAAKVeggZN9Clhr8W8IwSsYAAAAAAAAAAAAAAAAAAAAJzF9LwqADNbKcfUoT8KtTa8AAAAAAAAAAAAAAAAAAAAAAA518y3hD5iLVkztpJIXywAAAAAAAAAAAAAAAAAAAB5J8PjTkTM7ZuCKjl4o1N0dAAAAAAAAAAAAAAAAAAAAAAAGAYYZQRXqMgE23QeNvXEAAAAAAAAAAAAAAAAAAAAzpcVM8SnGYpeM2ojUpKIsMgAAAAAAAAAAAAAAAAAAAAAAJZIxBoI9tXMYA4VtZhUfAAAAAAAAAAAAAAAAAAAAbjlCWKFs7BJFf3D9DZXyj+MAAAAAAAAAAAAAAAAAAAAAAALih/kciGzAHY5nYkJ5sQAAAAAAAAAAAAAAAAAAAL3q8OLEJuWhR4lIrph/yaYIAAAAAAAAAAAAAAAAAAAAAAAQa9uAxl3WV3tBjpCAnF0AAAAAAAAAAAAAAAAAAADYNC17voRqu+QwT8hv5IYylQAAAAAAAAAAAAAAAAAAAAAAHM2fe2+rq0Cpdx8ClSSIAAAAAAAAAAAAAAAAAAAAJrxkAh8nVtfaaokvvDux49MAAAAAAAAAAAAAAAAAAAAAACHLvJYvyWU12q2rcFqq0QAAAAAAAAAAAAAAAAAAAHwqfZiSRqe+r/NQaI3N0WNxAAAAAAAAAAAAAAAAAAAAAAAPdKZltU8kkzguEZhg8MUAAAAAAAAAAAAAAAAAAACRwJUgod9yC/Sk7pEH4Iuv/AAAAAAAAAAAAAAAAAAAAAAAEH3ag2fZSMtu7iu8sMckAAAAAAAAAAAAAAAAAAAAE6gs2ikiLarY4uD4jBr6VIMAAAAAAAAAAAAAAAAAAAAAABfVLsnCA1RY5VpHCRMOxgAAAAAAAAAAAAAAAAAAAOyMD7ca1VXcirhiC5ZgQVRWAAAAAAAAAAAAAAAAAAAAAAAO70l/9EKEargqwmZ36GkAAAAAAAAAAAAAAAAAAAAHgQlGShXIcpGrsZmAPhDJEAAAAAAAAAAAAAAAAAAAAAAAJDI+0sbw8vBP7WIK5x/rAAAAAAAAAAAAAAAAAAAABjWkNq+ZW++MJw3hrSLzmf8AAAAAAAAAAAAAAAAAAAAAABbnuck6mf7eAbXfYWq4zgAAAAAAAAAAAAAAAAAAANC2KSuZ2OuIMbyhe+fdQdbxAAAAAAAAAAAAAAAAAAAAAAArUCWOrP17vuv7zTdeHcAAAAAAAAAAAAAAAAAAAAAcAk62fd0il7wY/j8T9qC59wAAAAAAAAAAAAAAAAAAAAAAH1p2I+1eugZl2ov2rwZrAAAAAAAAAAAAAAAAAAAAMmONVhTb1YrKXaFBFXhFmmEAAAAAAAAAAAAAAAAAAAAAAAXTY47d/+GhheVsQfXhKAAAAAAAAAAAAAAAAAAAACZdYrln6DaKi3jD8WPY7jM4AAAAAAAAAAAAAAAAAAAAAAAR/KgZW5k+LW5UDcfLo88AAAAAAAAAAAAAAAAAAACggtA5P3I4qXPozQ0TkkkI5wAAAAAAAAAAAAAAAAAAAAAADAXnmqPMO4O4GYGn4jVBAAAAAAAAAAAAAAAAAAAAnFWZrdjEBTTx0M/MMM0HBvkAAAAAAAAAAAAAAAAAAAAAAA/D5wIuVWbkJe/avJ2jJgAAAAAAAAAAAAAAAAAAAMEvd++Ev12hPa4tNJtKgI82AAAAAAAAAAAAAAAAAAAAAAAnjdGLOAAfKvygr7l0lh0AAAAAAAAAAAAAAAAAAACkXO3bksVDRJe3LrhR8k98yQAAAAAAAAAAAAAAAAAAAAAACG/EYqJdGCeN/vzn7TvwAAAAAAAAAAAAAAAAAAAAVi3bxmTLXuFdUbBn+vVzQbMAAAAAAAAAAAAAAAAAAAAAACNCKKBqZ1JUl0x56cnzigAAAAAAAAAAAAAAAAAAALwGBzEt1MazJFWjzggSRV9LAAAAAAAAAAAAAAAAAAAAAAArqff+hkEBvnCvVmNfr/AAAAAAAAAAAAAAAAAAAAAj2OFKmCXZ5SCOHHvaHyseZgAAAAAAAAAAAAAAAAAAAAAACCTSnRraUlhMj7xUfWJBAAAAAAAAAAAAAAAAAAAA34fbfAHZCM8uGikt3GM/FJYAAAAAAAAAAAAAAAAAAAAAAB0eOqDlE5URHzxjAsz9MgAAAAAAAAAAAAAAAAAAAP+2uYeV6uP2TzNA6b4OqPIsAAAAAAAAAAAAAAAAAAAAAAAardVR4PorgehTmIObfq8AAAAAAAAAAAAAAAAAAADE/oXlh8KuS87Bt7dwHLuOrAAAAAAAAAAAAAAAAAAAAAAAAmBrCLFYesbV1QgwS7azAAAAAAAAAAAAAAAAAAAAEUD+GG7WjtmDsf8t5eGMFD0AAAAAAAAAAAAAAAAAAAAAABmcs/5H09yPF+JFyIekyQAAAAAAAAAAAAAAAAAAALc9FczOYMj1bN+A3qgKEuNEAAAAAAAAAAAAAAAAAAAAAAALIb4rcap71SogWZsb3xEAAAAAAAAAAAAAAAAAAAD2QqsOeQ8CzEG9MTEPjU7srAAAAAAAAAAAAAAAAAAAAAAAGiB5AfaicfzGTrko55VAAAAAAAAAAAAAAAAAAAAAPOo14vIt+HBaDKjesVs5uNQAAAAAAAAAAAAAAAAAAAAAAAaZiJM77eQL734nDz5B5wAAAAAAAAAAAAAAAAAAAJdft9V3FWauIGPSviDm7FcrAAAAAAAAAAAAAAAAAAAAAAAoUI+tbjgrAOGjk/ySr9AAAAAAAAAAAAAAAAAAAAC3ZeVqsXsdf5uphsT5okQo9wAAAAAAAAAAAAAAAAAAAAAAFhoXCndsjFKzrbM5QHkcAAAAAAAAAAAAAAAAAAAACvTRWzt3M0bicesqeTwzOX4AAAAAAAAAAAAAAAAAAAAAAC/tQaYZ03x2pQDNedxB4gAAAAAAAAAAAAAAAAAAAOwOwVZK5Ys5wO3Shn8hX+XaAAAAAAAAAAAAAAAAAAAAAAAUd8mKwF7lV45Sl/SZiYkAAAAAAAAAAAAAAAAAAADRm7356gtlZbPuda3U/vDBgAAAAAAAAAAAAAAAAAAAAAAAIna5XPqaJCJZ9WNKv6HJAAAAAAAAAAAAAAAAAAAAD2c7beACg9vkK95AWHKnSnQAAAAAAAAAAAAAAAAAAAAAAA/FsR+JqaUgJy/b1ewsRQAAAAAAAAAAAAAAAAAAAEKF/X3nDkSYscibqResWKzyAAAAAAAAAAAAAAAAAAAAAAAia16VsAtzFWE9b9eCVR4AAAAAAAAAAAAAAAAAAACnOfu+VaBsYMB65CKIb4/ZmQAAAAAAAAAAAAAAAAAAAAAAFxZ9scrTEB9hbHobCZqMAAAAAAAAAAAAAAAAAAAAIXAbNL89LLJQvfE8rrFTookAAAAAAAAAAAAAAAAAAAAAAAjzZBKl2hB9SEbKbp9OQgAAAAAAAAAAAAAAAAAAACqsbCcAtn2MArxTHstyVRmlAAAAAAAAAAAAAAAAAAAAAAASOZAncT+gKXzeXOzkWpUAAAAAAAAAAAAAAAAAAAAaUVWcnuDlzcZyaP8QdxLcwQAAAAAAAAAAAAAAAAAAAAAAHkHX3dqx8KmIe+9yRs7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqkRzNoOXvqTEY3yYjo9To8AAAAAAAAAAAAAAAAAAAAAAAJBkSWwNFVcYEQo9+7D9JAAAAAAAAAAAAAAAAAAAArqPlPiWv61OcLq+nvSiWH/AAAAAAAAAAAAAAAAAAAAAAAB/Ub57y/dwEQzIOWQCP6wAAAAAAAAAAAAAAAAAAAGvMegX/lalrKJQkxfczZw2WAAAAAAAAAAAAAAAAAAAAAAAAxDcm91tv2g3iLODg36sAAAAAAAAAAAAAAAAAAAAdCgnXF47JO614WPluZPC0jQAAAAAAAAAAAAAAAAAAAAAAL5tuC04sAZaN5cMkgqp9AAAAAAAAAAAAAAAAAAAAFLmaKhz1vbFNGPy31tW7G0MAAAAAAAAAAAAAAAAAAAAAABibwBFKqYLGRXSxHbsAPgAAAAAAAAAAAAAAAAAAAIFYESpGMQpiuEn23VYsLIaUAAAAAAAAAAAAAAAAAAAAAAASkF6WwsjbCGXWk491oyQ="
5726
5726
  },
5727
5727
  {
5728
5728
  "name": "process_message",
@@ -5999,8 +5999,8 @@
5999
5999
  }
6000
6000
  }
6001
6001
  },
6002
- "bytecode": "H4sIAAAAAAAA/+29eZxcR3koOj093T29T/dMT/fM9Mz07Ls2S7K8aLMlWwbLsiVvAWQztgZZ9liSpRnbkq0V7bJAkmUIueTHBS+IxMa54Esgl5dAAo8X0AlceDcQlpeQm1wCAQIPnORxIbyR1X36O6fq+07VOXWk0572H9CaOvVV1bfXV1995T975v2vbt+x7cGJnTvvf3Tmf8Y3T9x15sAf3rBjy+Tkls03jk9Onqt5/4EXV+7YMb7ruzWpZ0+fOfuFQg39n6/G8pMaMUA+VYBqVQHyqwJUpwpQQBWgoCpAIVWA6lUBCqsCFFEFKKoKUEwVoLgqQAlVgJKqADVYAzrw0oYtWzdPTogBTKkGmBYAWFLCK8RANqrCXpMqQBlVgJpVAcqqApRTBahFFaBWVYDaVAHKqwLUrgpQhypAnaoAFVQB6lIFqFsVoB5VgHpVAepTBahfFaABVYAGVQEaUgVoWBWgEVWARlUBGlMFaI4qQHNVAZqnCtB8VYAWqAJ0lSpAC1UBWqQK0GJVgK5WBWiJKkDXqAJ0rSpA16kCdL0qQEtVAVqmCtByVYBWqAK0UhWgG1QBulEVoFWqAK1WBegmVYBuVgVojSpAt6gC9BZVgN6qCtCtqgCtVQXoNlWA1qkCdLsqQHeoArTeGpBcaGqDaoB3qgZ4lzXA05/7bs3dM8cA/rpAMFQfjkRj8USyIZVubMo0Z3MtrW359o7OQld3T29f/8Dg0PDI6NicufPmL7hq4aLFVy+55trrrl+6bPmKlTfcuGr1TTevueUtb7117W3rbr9j/YY77zp9emaS5jOU7/avP/Dijdu27px69sBLq7bsmHhwqvbAR2/ZOjWxeWLH83ddZe3F+sz9fVL99//Y3L9Gbvxy//PrJybHp7Y8PlEvB+FuFkJYDkLNgZcvnkBtGp8av3Hb9l36Ui68D04KQH/hxnGw4gsfBb/gwObvfgh+Gb5jFiBHhJr3OUZB6sDza7c9fhauV+cHBnZEDnZ65pxvy9bxHbtmOq3b/pwO+PmVmza9sXx9JDDCK7ds3fTGXx1yh880eHkIfXh2zbVFbBT/6YeEMbTUwSkbWgImfpmcPDNsxrEPDm1qqwU8ZWry603nWdrUyaHnY445Z4WLnLPyTcQ5dSo5p47gnADQMqamoN70I3NTSG/65+Kgi4r/f+G4Y/3EUfK1sir6hQ1T27af4UtPLZ9PQmY+8ZdxbEB5ffkDw9/DZWpxB4i8tPqx6fHJnXAMHdYMRt8y/ej2W96lg4ssPPDCrdvGN+l/CJY7vTizvB0T7MhB/sj15qUBDuR2CJs7hMsdXrg4zzNjL62fmJresdVs0G988aYtE5ObZkj0y53ffOkrpz75hfNTH33xfalvxz8QHY3sO3z4X9p+mv+9nx1+3txxlU7ij9xlHZgJmruv1sdd9sf+tz30X361LXrzu1994tt/c9t0PD/+553HXnzbF890/vD+I+aON+kd/+mZ/7Qv+erZ/1wY0V4P3vzeH9//i1sCS76tPd3yFwd//cOfPWvueLPe8etv+/X3Xks+u/vJU595aslg4/jLz37z5z/60lc+nvzF91957JuLzB3XOPS5bpHr32Du/xbQf7FAnNDc/61y/Zn53yrXv9bcf62O+AMvnP/eylPavP/568iJteOHnrzq5Dfu+cnu3Ef7/vHhV/Ivp8wdb9M7/v3UjWemso8u/kn9V0/N/3Bb+9/+8qOv/eBfd00s+fEP/ulTXb8wd1ynd5RE1e2ljrkFA9ds/92vNX13sPs7Kz738pxzLb/svf67n17z4Z/96i//ndPxDjkaMzhaL9e/ztx/g1x/v7n/nVLSzLDIXVLdmdHvlurOIO8eC3L7Sj/MHe+VNVOm/r8jyGcBc8e3gY6+d3fvfH/4lG/tnx8cey0W+fMfrvzQDTdqXzl0ojP58ofMHd9e6jh8ffhnL57Ye7jm7z76z+/51+HPrhhLdaxMzfm//9Nft23d8faWn5k7vkNuqXlz/42ARPPlMXWfVHeGv+4XRDTT8Z2CHRmeGpfDF0PhB+T6M/bxQbn+9eb+m+T6h839J+T6R8z93yXXP2ruv1muf8zc/yG5/nFz/y2yO2xT/4dld9Gm/o/I9W8y95+UUqkFc/dHBeVmxNxxq9S4Y+bu26S6zzN33y7Vfb65+2Oym2NT/x1Sw680d98p1f1Gc/cpqe6rzN2npbqvNnd/XKr7TebuT0h1v83c/Ump7rebu++S6n6/uftuqe7j5u5PSXV/wNz9aanuD5q775Hqvsncfa9U9wlz931S3d9l7n5hv1T/zUz/A1L9H2L6H5Tqv4Xp/26p/o8w/Q9J9Z9k+h+W6v8o0/+IVH8m/HDhqFT/bUz/Y1L9tzP9j0v138H0PyHVfyfT/6RU/ymm/zNS/aeZ/qek+j/O9H+PVP8nmP7vler/JNP/tFT/XUz/M1L9n2L6n5Xqv4fp/6yYo+VjzPWFc4IRtKNMz+cEQ2jnSjHDS6FiLfLBA39400wcc8vmrRf/8Nynp6e2TG6Z2nXzxNRdl37NDDQ18eTUcwdeWTvx6LYdu2aikjtmzjJhPBtrCaMtEbQlirbEnrt4+vvo9knjPobzx8ULS3+8hBXqX6dPmwPrceI4JCHnTbbLH4ck8OOQuKLjkAR7HBI3H4foLUk4tVLMG7TqzhoyWJIdLFkeDAe4VzXAGbOgGOI+5VM86v1Fz3gXqiEeVA7xiHKI+1VDnPQ+YdSL4AnvQ9ztfdbZ63le3FMBOkI55zxdAebg1Cw00xcYDy9R9rtE/TN9HNQ7SyjyzjjLTJSHF+8Ut+zUQI8EtwWvFrcFqyYemN5867bNp0+fM/vpxY6rDnxszcT49jeuJENq5JHv7+V/31BzjnHsZ3ZjxbvOZ8/wGvP8/YG5yyW/v8a4wE8VF3jTxNSDD905vnnzxKaZZe48ffoMMu8bTfAIHmN2EUnZk2XpXUTyivMpRO4nisi9mEpz4/j2ndOTM4KKbfPiCAP5znJoPh+hru9Z8a1niaDI39c8K7KZtEgPTckeHZm4KV2aTY25pRFiztTWBEljasvox0J87qoxc1cNXE0pevARY/oV+KaG2Eg2mtsa4JyLObhgWWUYRaS/cmnGb/xj3fZzcGu7dnqS27WBgZvEZEJkBuZPEvBrAzA8uiBtexgbFycIrFABNVWgAmLW3CA3bKOE1WyA6zaRIQXbEJDpj986o3DufGh8K8hO5EFPlTMUy50vvM4yRqqEiHXYmCl2Gaky9i4lGF74GSvEOFM5RLAAUzXgTJVUxFQNtJPpWK/LUAOsmzEHoA0B2UgyVcpgWximatR8HHWTtuSqNLuONMNVv2HVP85Vkhi2kYCewrmqQRFXpXg6A+eqtGzOggw1wLpxVyKFgWwiuSoNgbFc1aT5kixXNVpyVSO7jkYzV2m+CKt6cbaSRHFenq3SOFulFLFVmtThOHXTBBGetEcEHCC+obcN8ahqiE+rBrhX+ZpPVADEg8ohHlEOcb9qiJPKp3jI+wJTCWh8TwXw90nlEA94nzDKF717NrL3GdUQtymf4lk0jMXxyBpdv6PciHtkaUUeWSO5/2HW3CSbkY555eywTXDdTOwPtCEgm0lHvwkCYx39Zs13D8sYGUtHP8OuI8M6+utLlzLPc3zbpCIupsKVjQQbS5J0tTwbN+Fs3KiIjZtoXJmHzcgNu0qK/GDdJjI0wzYEZJZk4wwExrJxVvNtZjmj2ZKNm9l1NLNs/AAbrsfZShLFN8izVQZnqyZFbJXhqSmcrZqdhX5ocoB1m8iQhW0IyBzJVs0QGMtWOc03xbJV1pKtsuw6sixbbWO0I+DyBnual5lsA/yMZVbBC+gvOKb5PSyErGwYmoGQk1VnDIQWWc4tEW8PQzxQxiaOES98vsSNULbvhUBYLgxr9V/Wxz0gUxNEst5Ii7wuCrtfEyQsUBNEb4nCqTHCELX2yaPsaFFCvKLAhVYMcVL5FI+phrhX+RSPqIa4R/kUD3p/0fiu+E3MjLuVT/G4cognvc+N6tF4yPvMqF4Cj3qfd9Rr7xOsOcadk5jruXUx3DmJKnJOYiSq7OfWhfm5dTG3c+tWu5lbJ5lP1GrmptbSbJiUtTaIOVNbHpLG1NZegmgjty5hJ7cuBufMJJyBOZvT1sIAhlVuXdSYWxeGQ5jhxjCZEJlBVdqhtOPkjJEJgWF7Ox/nGslxrng4h6kLTH3J54rnZHLFfcTu2HkSZ315w17l/Kqdq9q52WLnzJ8Yokw0L4QF6y+m9QjfT5nIYgyqIERA48bIIn/dbGwxrtWP6yP/v0ZB/uOiIN8wPfnI+ompHVsmHp+4dNVGXt7WIn+/7VnxAgBmPgoTSjfqutKN4ko3rEjpcvZhYRVKt56vdKNuK93b3FS68cuhdOsJpRtWqXTjdpRulFC6MUrpgqOLqJXSDRuVbj0cQlxPCsyg6mJVXayqizVbXCx8BsVC8FxdEea4NFGtttOxipjx1u7cMX6xKD5PF1QdkaojUnVEZosjQmivevIGseLgE5gAsc2kq/X/0rGGutuxbr2rtOGsvY7Z6sYFtroJqySaOMcqJLTa2/Rxlxt11t/0FZXW3eOTWzaNT02s3vrY9MT0xKbbtk1N7Fy5ddPqxye2Ttna996E/P1mmX3viw5Ta6KoL005FRHCqfCxd9j1n1RhOj9RT6COuJAdIO7VBon7cyF5hVevK7zP4gqvVJsR4dC25zdMP2C0l/FyaBzplOdlKuqdSObOa7XrS9Nu/QKpO9pYw4E7L+2uOy/tuPOSV+S8tLPOS16F84KUP2mvaOelUw7pBTM3FVDN0gUxZ2rrhqQxtfU4cF467Tgv7XDOprYOOGei+Ei7lfOSR8ufdDBw2zGZEJmB+ZM85qjKBpbbDOLECSzXPqKrpC9RM22zxtUMhbnuV5ylD67MJFn7Hnll1okrsw5FyqyTVWYdKpRZO1+Zdd4to8zullBmgHnQAsM2FBrLiO1a7SHd8ZtmHM526FOIW5B2wlNPw8+I8RoUjdcAP8NqC21Eay5sJOsPYMWo7mXv+BRb1hHXNJj6KDkUXmsZXpF6/h4MYf2EVKxhSNAHOuJap5+JO/WVQN7PYbN+rfb9OpsdZ8bsEGCzDlK2KTbroMZrUDReA/wMizAwzNRJMFMBJX4XykzdBDP1oPB6WWZi4i79hO0YkN0jS9uOAdx29CuyHQMsvfsBvc3DDsru6pFhB9lhB+G6TWQYgm0IyGHyUtcgBMZK6rBW+wLL3UNlDkEGHWLXMVRGX0n0P2Rez4DKINAAJJ1poL4y95cm8zFUYSJOHVCNMa6Sqy8HUV6mFOsAIV3O0dAPlmqaA8BQUkIQBojRksSy3KJuEvVsy9T9NCpxCHV1GA9zaDuo1V+tg/5vDF4NIksgPa0I6ekrgPQ0q4sUDjRUpiCCohGeptRJZkb6MOjI7K9G4XfknnEEdEL2jIaRqIA3h0kvoItFmRSMy7LpiFaf14F/1TabDjGNQ1C9YHaHMAEPowsljdWQ1XJr/1rfRn8ZNU0ILodpdT6k1f6NDlyT4Mo+sOXkdxplO43AeRHYH5WYyLBlVHWUxL6Bs1kEjWq1fwewz7FDUARx+WySYKhhQoU0wc9MsjesUlcZ5m4t5D90IOQtfCEP6MB/zGCW5KRhuEFQg/aGK4B2ZnMzqnKgUUtbNIcU4BYG7WOgK2NA5sLvSGs0B3RCrJFhJElr9Bt0udaMOsZh1Dla6Ef6jrKG2oWTjDpKsXi/PR3bgnUbIzXiiIFJmAWPaf6QtT3CxH6Utkcjmj9ibY/G7NgjDjuPCeJ/Dgazj4U5ammPaOyPGtbEw35K0B71oSGa+4gQzSAbojlf9p7wE50hIkzTwYZpcHXaa7CoWKgmga4lBReMxzU72bgmWDIT2QRLxmOb3WxsEyyZiW6CJZfjm7y8BX+/44NZKpsNDxmrMDQgLyCCcqSKgXRgq4kzIefDdBDrKRABxC7XT9K78ABiQVEAsYtVeAUVh0+d/MOnroo+Se+RQ3ovGrKuYQN9uB7rJ/TYgIOT9B47J+ldhDnqhnM2u3jAInVZnQ4XjCfpnXAIM9wuTCZEZmD+pAC/FjlJ77Q+SS9wLECn5r9ZN/pfww+GmZSjgqUz0iWWcsSbVZfmfytIOcIGeInn5bRBzHFB36fbxNsklFGb5YK7Se+rDXIKO69uzb8eeF9mfuiWYNouNKWhG506j8Bg6ki3HtEV84jco/nvtSZygZ1ZtyUlesRYr5s/q3fAWfHszo3btu8q2h3OrXbcMkBzKp2wUDgnkdTJtSIlrr+PytvptOKuTpS78kZsvaYXAJicmJrQ8XXWBr46z8pc3ewkXKWC665SAXeVOhW5SgVWO3WWXSXcThZYl7PLQD4kd5QczkDzTxZp/sYwOsntOE9cpy3vo50nwboNs5xB7PvSeT5ZChV9269bDuk9aGJIDRFvyMv52fZ96W47vnQBzpnyswnDUbA2HAZfOg+HEHd/BWZAuNt5IV86b+1Ld3IT5f0HQVaqRcppkSwXQEPcxU1/qrrpnxmuQUZRNSjJOC2u5hYVqmpIDu34eRKjAUYIdTQKiWNqG9P5+Fl5XTWkS8s3xHVVHk4a11WjRExgjAgazyGU+FxCic8jgiXz2WCJ/pM5WAJJBlfxlczvO04/p0K2ncxxBcB4o4SPmCcinY3wM2K8rKLxsoQlpu4odbruDXa6f0epk8QV7gp0sng0OAosc6a0um59m/kye8UPR7RkyYXF8ohO4IiOK0J0gkV0HEV0Ck4Nf7n1cWww+uVWHCBePNY2xGeUQzyiGuIe1QAnvb9m9ZRWvuinK4C7DyuHeEw5xEOqIe5VPsWTyiEerADmOeJ9vXOoAtC4XznEE54nzL4KoMtx77O3cmW72/tYrARlu9v7imxW+njqeWev9+nyngpwTtTL9AHvE+ak99XOfu9j8YxyiGeZqB1IxsxLBEgSxHB5+JmtmIv4srGqPY6fMUgsknvGIGXjGYNFcs8YlCukSZw3SZ49LJCP0A25f940RJ43MaclYGqc6zTFfjsVXQQatrbptiEeVg7xmHKIh1RD3Kt8iieVQzxYAcxzRDXESe/zjgto3O95NO6rACw+43323lMltAKIx72vdZTbwN3ex2Il2MDd3rcvk95XYy7I9EnPu3jq6fKeCvAZ1cv0Ae8T5qT31Y73XUY8tGQb4lmqfkteYmc/JBZaGrIXLBBftmuhpaH5cqGlYRuhpflyoSVuTthZNpqUV5ewyCYQgtSqfkWRz374GTFeo6LxGuFnTObYS2iUThKvUfkoXR6P0qUURenyJK7whMU8L2Gx2G+dxF2ZAkGYKsAqQI8BxPOZRYVbyE5Sesj5QDowtupmQUCdS2LPUMkAA8l9CWai/AFaQXaoeDH94tUSdjobucXy6v60dBkivwy9r6jXmqr7nOCsAQwwb3YCBS10QQf+FxQJ8iSTFHiUBSMTgBsV0bZRhLYsSHAnI4MSlrzvPmCYH4/GmnV1qwErritIcd2ABdf9dymu+4bgrHlcl+FMYEALfVwH/tcMc2REuS5Dcl2Bctiyihy2rKCD2EFdd8lIeETUdRcj4hxeahlCC9fWECemWeKGWY64YdbK3jDDLRAo6McUzwJlAZniWfPKP5nrvEB4mLoyCyCKTW1X4SJaQpfZHvIek8mvtHUVbpgtTAUwb2a5HISBsFyOZbmcmKOQQ0FyC7aASoqshshpwa/pGuLf2EJn+E5Iksuvkt8JEVe3Wt27utWK7oQMV8oZAullDKewwTglB/sIivdZByRtQzyhGuLTyqd4VDnEU6oh7lU+xeOen+Ie1QAnlSPxjGqI25RP8az3sXikAiT6pPcl+oTnKb2vAgh93Pvyckw1xN3ex6J6AVTv66hH46Gq8p4dyls9Xd5TAXsD9TJ9wPuEOel9tbN/Fnre213wvM3BGkP5MvE4QadYsKaTKpfWwS+w2UeEXSQfM/TLh12Ixwz73HvMsA8NuxjeFGRQPQQRqyZ3BYDstRc4Qjr1kstWm7vSuQD5/g7+97218rkrC2RyV2oZwQPPKKDnjq0knqlzx1ZqvIyi8TKC4zUqGq9RcLysovGyguPlFY2Xh5+5F4yOVWAwmllzr7NUJEor9cJ1U1FwTL+T57i9BvXHObQMPENY8HX2XILiGUfgKGWPC3x7DN65LoF5r2x+ADgS6uDmBwS+rgM/Sx1wJqibwe3s0zi40DS7XnyvGReajCKhaWapnkFsqlSF00a+mWxWVYo5hbYk3CzGnJNDO17MsYZ9EAjgDj8szaBpEDaKMefsFGNuJsQlC+dsVhTA+DZbFWPOGIsxN8IhzHCbMakQmYH5kwz8WqQYc6N1MWZeakmjFnjZ+mGTRvZ1CV060dclmsVel+DNqlkL/JH1mxfNVg+bNOKEzV5kRyisxYndz5/NF3Wl/pqEBrN+CyUn+jJIM/fQP/Bp4i2UnASfNxvRkYVQ0E45tFMcW2+cx0hgvZj7KYomHjO1aoE/s2amDDuzuCX5WsVYPM6f1V8oekAFt0HNaEsObcmoekDlotCYWDIOZNOKJRsp7nL0gAqOr0apB1QaCacs47pTlsGdskZFTlmGVWmNaHzHYP4Yv79ZSDlQwzl6QIVy07gOYtzmEyrlmjFm9x5sl/ql9nBCYZJearyMovEyguM1KhqvUXC8rKLxsoLj5RWNl4efYSDRjWgR7mMc49KrBf7B+hHf3ovOLQJ1g0TMN28ZMR0i88hZXIPgxJDERHotDfawndlz37wHCyHuYY7Ymf0dV3T2htd/8YfWGYs34rrFG8Et3rAii8dFloIwxADfyoy4FoYozvkmN4MQY3JIn8OmpWNBiLkQc3hS+jCblG4/CDFmJwgxAueMZ+vPYzxhoP5GrDzhYWMQYgAOYYY7gsmEyAzMnxj0hAEYOtc3BEg/pX2OoONAWcKlr8UxmFYGaozQcHPk+D0jr+Hm4BpuTJGGm8NquDEUG3Ph1Bj3ZS7UP8hwc9nh5hIeEQDZpR5kt3qQPepB9ikDaXXUUgVYBVgFWAWoGCDTNgBtDdOqW+9xah+YUZRCloGfEeO1KhqvFX6GJ4hJ+y2ck3UwpnlhYwKIHCM9AwqRY2iBZP2kPXgzOiwS4NBhTHACHGNa8PM66LdQy+0zOvN+AysWnaxiW51s9klxw9BzFt3ZBCSkS+/0LtI96CRJP0eAFHeirG1FindxSNGnBf9AB30PVblgVEKkwJAY35BnQgWDlPH45x3w6Ayf9IAs3+pC/Qh/3HeCwBzGmgWHrJnBWXPMkjXpHYIMPwOcUByNhvgKhKpFQ3x08Yk+A4txSj0EH7EuPmEpJ4/w5WSrAOnH3CN9nyXph+jMVmF+GTKwspn0gDF6JSLpBYekt3iUc4b0u6xJj+WF9VKkL2jBpwVI3+ce6Qt2SG9dxW+MJH0vS3pgmJslrEGvQ9JbpCrOkP6oNel77Sj8Xi144soq/F47pO91SPo+kvSD5BahV6k5GHBiDga04PsAY3C2LqC7+Kx7XT/VHuGfNxSa7JxqN0ksbdiSIL0kQYZpgsyI0+8TKU9AzpEcYOrplj7XT7D63H+6pY/U4/gD6332ZLKXNhtKuVs/0+LffLGZsSHO27kybzOZ5WD15dxyIrwwKqFXDXsZzP8WdX3GOFI1Vwu+am3/qC0raibm8aJIEFk4iuYxjYZjQWxAxEqPUVZ6nhb8lICVnuuelZ5naaXns5icZ4n+BWyn+Ya9hlnmF4hqhHl2FNAaoiptn3V8Yg59ScDOzrRAxY7mMo2GPS3GJnPcCyzNtWSTeWTYVoa3AI4YRqCZqA+OLaPnBNhkDEQUGQvug9caLfHMHEnXEs6BX46GD8o7B37cOahV5Bz4WaTXos5BHZwaQ+O6Ur8d2GB17GB1RDxZb5tUDRCv6WIX4m7lUzyuHOJJ5RAPeh+Nh7zPjEeUQzzqfd7Zqwwg0PWqV33C88zzdAXwzmHvq2/1amLvbFTfLjDPEe/r70MVgMb9nkfjHu+z956qL+FJRaYejce9bw6U+yb4C7Ee0owVwDsHZ6EN3F0Biux0VXu/yXeClbNte8r7SKwANVYBXu2+CpDoZ7xPae973lu9b13UBxAOVIDW8b4xcMGVPzAr1c6h2ad21Kta9Z7EKe9P8bj3Ca1cpNXv2Y55H+LeyyeAPvCsZPHjjaUf93FSjnwX33R0mmWwiT2zLw7JyWAIyMKWzmAImKcTgDNDsxvgxBYvxCf2h5nPbVzV89t3YCQIsEQNlImKdAqSKREMEkNySHwATRIKGlvqWCwWWwJw8EuJQcPsvIKy85LBIRiFEQ0dw+vskaX0YD1gFCAN5vwrkICWkkhnB93QYsfDoo/WDnGkeVgLfZK4TwaymtHaWMNEMjVHJTXCzzCQ6HOzRbhb+Ev5jHXtKE6hnEZLWRtlO43AWRFoG2UaQU+0HtcoggD92QDe3dJRLfQ5gWTQEYdZflE8y2+0LPvi2XOjlujnXuwDOKEuag2zrXk4NtNqeM4amRCnCJbOmmvYAsMAYPmlZeLqpoyGKDjWEAVLDfHfxTREvyIN0a9CQ2ziL+WbtjRE/5tHQ/w/VQ2hUEPIXJ4S0hAFXUN8Dl0rQnlQ5LyFQ/s5Wugn1sw/l8fHVtin70p0UMno5F2JYaZxHiQMMpv5CH70Swe8wpPztdDrOte+5NpFipW4ZMy3lAzunQgr2lzFdjLghOHuqyCdxMVtXpm7MdYirdA8OCzvpk99DXWhcRjihLruKLOmDlRiOyDAUunc31CKvF/CchjedsfUJInNDoPy5FRzqI9Y35saQQQJYDPGAT6i1cetFQ1Hzfc5VPOkIZ3DNI5C7sEEftShwN/gsYIWHWRBixFSsMYkPCYh0RnRReeHsjyow3+Yz4Gd1hzIEbxBS+xyvRPC1I1A9BEcOEBd5xqSdQXGqH3yHK1+QMDUOeX8tFtVhmy6IZzrXvME9OwIIYOoqRsllfOYwbfiOOn1CyhTNwBxwrQO2VuTpLxeYNh1UMDUDZGmbtDe9rUDrp2356u/3trUDaK7KdLUDWr1y60VzbAdU0dXvx6i8D9CFfYeQAV+yKHAN+ICP2wp8Bb1q+1sujtIP5Au5YHGHQZtis6gLjqfxkD3mw8o1kB+kWRcEEOJ8hl3vTXjDhGLrZXg9iE4L4Jx2f1evwjj9jtk3Ltxxh2yZFzucp0JN+f++ogo4w5ZcxerhNYQbyz264z7MfNXCeLMLuV6SZIUfi6XUHTrOMXiLAFoa7uofpxfCCSlqqh+BClAstrNovqSDwfhz6syterbIOaY9wABaZgXAYsQbRTVz9gpqp+Cc2beXAJzJp6XSlkV1U8Yi+rDl6kYuClMJkRmYP4kAb8WedkvjtimmEGcGNsU1+rL9ey+RM00Zo2rlaCo/zmCj1KELpN8lSolr8sacV2WUqTLGlldlnJRlzU2yOiyBgldBniHr81uUaHN2uXQ3sG6fpg26yS40HAGaGrr0vn4WXl11q4L1DfE1VkCThpXZwX2zV8wafyxtW7i8dMeolBVL2s5gOOC245+wnYMcPRQQqt/jmWMuBxj1Oh5IqzUx6sOVYU7VGvddKg65JDeiT5sXEOomTirZnCHqtuBQ9Xh0KEqEO89d7nkULVfKYcKnesbAlT+Z5ggZJxQJpLWzS+vTNpxZRJXpEzaWWUSLysTPBTTzm6gO6CoI8N1kMEQCiT6ymOWXIGjGpQRojolV1dma+1UoUQjHHFC06Nh8xQZ6DWIC2uuU1r9nxAVVmFvfoXVuFetb9w964sLTBZOjeHuLEQsMlziMnK3bo+5vJ1QW2GVw9sxS95OkLwdo3l7xhX9v6gjoXrYvRiv8/0Um0on+2J4veX8C2Ivhtdzq8jX/xV4MZyZfZzYZ1Blj7tcF8ou98sed/FSOhW4xPV8Uehy2yW+0U2XuEcO6b1oSfkaIuJdb27rJ7zQAQcucY8dl7iL2Ox2wzmbDSDQEV1WLnHB6BLXwyHMcLswmRCZgfmTAvxaJMZYj+YBQ3FiVFK9Vv8DIsYIZtppjSuDS54hGKmbUGaSrH2vvDLrwZVZtyJl1sMqs24VyqyLr8x67pFRZvfY8ZYLaEuzDYXGMmKXFq4pWez6n1OXApISqcYFYmOShJ8R4zUoGq+B0J7hUr+N5pYonLCpTXe27kXPkNYRccAGNg6IwWtH4XWUW4rUCx9GI7YqXsnrKk/STLQeAWecI5k9xGgJ+JlpWT0ql2WYu+ULcOEotr5e9GWr8+U9C+9ZjshhHXiCelK+h0J7UhHak1cA7ckD7j7uqNNQ/C5VLyQamRJiNtyGLDTRV8QHEWfEMJIBmDWjonexBqwZtZ/7oE/kYR14t21GJV8O7ZLKHQEkwpYq+oIRf8HhIWrL22XwdfFFoddWJZ9DbYSfXabnUBsFGA31jPutGS3HwXu/FtmgA1/EYLbbJTSIK4fuctSBVA24KlpD3c5ukpjKAEHGJvgZtmlUwS+GuVvzy42ymYSAX1q4mYSR63XgN1HZfQMU2hsUob3hCqC9Ac0aVDHQkKUFHeFdZABEI+6ejjBGz3ArhrSgICdxFLGghpEkLeg9sldCCnBc3qWQSJcO/G30y7kEo5KZ130SmbQGEtnKfB80MAkn8z08riTzPccV+/AmW5nv3ZY631Hmu40sXTTkPUJif8iK3cICD/IOIdgfprE/pIW32rrIbo19Oqd+mLpagN7I7SaS+21if9iwJh72pynvsQ92J3ycLgnvsRvSzJZAG5wrrkA/JegS96GRlvuISEsvG2nRf/YQWVf9RLSlQGZd4Tkdg8QJ/hCIubBoCmvhY44Pi6i8rS4UuSrsPcjpiLgcUcIH6lY5UHf5bIjYmqYUxVBS8DNivKii8aLwMwykUc3rvg4QNJaPe7Tw7+k3Uz6GBr7Y2UbxjU4PIey9xOnEFX1htte9F2Z70fyHfjg1qkRNjwQfpSzNLz1HwwnKq8UTlFUTD0xvvnXb5tOnzyFnr6uQ45M27KyW/32f7xznuGUJc9wCG9uQk10k4+Jyy6uHxksrGi9N2Gy3Yshpgf3ca/Kh+yKMLfzAfVIH/ccMXkWUcoFNg7FO4+kRS4NB9PlnQRoMMkCMayq2QLRgUwOFPNkVbeTP6POsru9V5yn1MoSJQUeHGTosNzTO3zWscQNTwHM/onK5H+fLzrCpbRA6w0x46HzZGWZuSp8vO8OmNsPdZulsk7CebfJZItvETK8w9BcJKetGj2I53kSb695EG+5NtCryJtpYtdyqItchxje+baoSt8JoS9TN1C3JlPMCalGojKgYkRHViioLG6lb7XZSt9rgnPFdMZtiBZRmm1U6UqsxdSsGhzDDbcOkQmQG5k9a4dciqVsx69StVo7RimnhH+pm9GsocNa4t1oa9zYx486bVZsW/om1cW97iRf26YSYQwmbN+aZ6Zu8+7mzidTq3tHPJTRYpyWO2skIVidkLnZe7Vr4dSJHv12Cz9uM6MhDKGindrRTPZpgyGMksF7stogomnjM1KGFf23NTK120rg77Kdxd2iRGjgrnoW7cdv2XXr+/jkbNqgNbWlHW1rPidgnyloVReWi0OCZoJa3zWMUd0Fsvabv3Ccnpsr3Hc7awFfsLLlaLHOO45S1uu6UteJOWUyRU9ZKXM2oJexxK7u9bRNSDtRwjq64UG4a10Gst3nJpXRdZI9EhLFgqWf6EOOuB7N4dfv6tEij9bFWPxHxlEkk6YezIjKIBqg8kx7XqhIR9fP0RIaARJmqAUsc0YfUBbLWXB8ZHxogbiD3WkeIRuylpsyc+PdekTKQBa+VgXyMWwYyMnoZykCurJaBtFsGMnL1ZS8DCRQ7LrEjIEdHUTJMAUKwdXZu+YpBZKWLyTCRVV5MhrkiZSBv8FgZyMJlKgMpJDqDIA+T8Cq6JNwYQ+I4Nl1R0Rngc/e91qKDpRsDbDbz043fbi06g3ZEh3ZnSK9uiMoA7ENFZ8Ch6KzGRWfQUnSG7PgxdLHOAlkOvJ9MqxqUcN+FRKffOuV9wN4loAEt8qgtHux17FLbTTTtoXQ7aniHrd6MeZhvOacF/MTBN1n14CHSbMi8DGWdaDoommiKqOf9lJ/YA3FCSeyAlNERkNgBcBuKuLAkk2Np2DdiCkbU2PXx7dEJa2OHpSz00cauV4ucshXfsDZ2dHyjj8L/ABX8wOMbfQ4FvgkX+H5Lgecu1wpH3KAIZewGIb4oweq3FzsTCYpEnaH5yR/z47R+bppJTXkQnXtLHbTIh5n4rR7jFXsH9dtffP2vX3vLgkfZjJES6V5aPzE1vUPPbY98kPsAbeS8HrF/0YzEunLCi6kFPPhZ6v0Zznukl+Kiluw7jJ8DhIqnfOW/GJ5PFY8l1+KJnEHQkYOjkBZ5TV/lx/Gp1nKmqp+Ks2BrtcgnHD8tSyUMhcxE88Ellxb0KXtf1aE58AEIqswc+Ch15rZaAIxlYjP1IrAjwg8Rlh8iRDZeLfwMA2mVhuzn0DyiRf7COg05KsW9YP1RKquoVmK4qBhyouz9B/xMTPJYykbl5xh+JhZVdCYWo3HlsNocenEzziv/BtbN1L4FbQjIJOnZxSEwlo+TWuR/8Apd6EYBGTRB1qwtKYuvEUetzlNtYwT/hplU28i3UbFB/FYdxi0cxEW11k/ooL9HZQjGcHFlUhX8lruimFiqgp+bIxT5e+sECr4PdAvENTY1Xqqtn0q1nZnRD1wuJs1A98NEfAHgEskCchP3/VxeMcbdTxaIk6f3Lzorgu37mZRCAes2kSEJ2xCQDaKFU5Mc1mzQIq+TpWj8qD5mV5JkVePPiEKrzlUjZVMU6+CynjWpwATUhrbMCHULMOGYFWtYCEnZ4uIMhAZZcWA8ZrPdiqKMlkLslsGv45UEbt2tAw9SjmacaTTwFXGLISrhdsUIgkcFzGjMyn+Pcy1PNGHtv8elrhHGBHRSXLeRS7gd/Qeev20bkmMcv2hY0U1r3JjiHIE/0U5JtMp7hGPeBIMAKapS+4zLg2hxp9LIXLdKo8nxjWBG5ramUq/b5RPgkzpLvSyeAG94q4iglAFz8XKiM9oljRI3SbARE/tIlzcDonyk3+j8He5LRlH9dehoL0v2tOwRCUNcjOxNEAPSxC2nnn3bFnGbUF2/kd29QB1cRNWSK4SqlJdQdZ8gqlBObTRyahj+ZPDbJLVXuJN6/k0EwGPc4GL0O/q6lsrELFOWm/hm3oatltqwNWtRPWGotw+lEmdv1CzHqsvk90bN+N6oVtHeqJmI51FvBTSTbwWgxdU4L2FkCWdJb7twQDXEvaoBTnp/zRcOKod4RDnEk94nzJkqqb1J6gtnPc88e5Sv+ajnVeOFE96X6SPep0sFqMY93ufFwxVA6CPel0AXlPdx1RB3e3/RFeCGnvS+t1MBhK4EL/S9s9Afc8FRrno7s0QEd3uf0Op4Uf+ZUT7JZ7xvD46rN/xo4DPDBD7B6Q7vZD+jRb/lOD65ko324bHPnCxs6dhnzjydHJwZGhfNCaYoD8277sL3kx9AM/9zLFlzZbIinVrIYKrTShxL0RT9FmNLHYvFYksADn4p6D3MzqtFdl4yOASjMMKhY/id9sjCAaj/DKsHmbIHspTbxdOtzWgOzUb0LFhPc4+9Xeb4QvIser68CCfdP75IyhxfNMOpMYQFrU0SpyXNBK80W+947ELcqxrgpGqATytH4iHVEHcrn+JB5RAPe55z9qgGuEs5Ek8og3je0gu2PcnjyiGe9LySwIMY3lG1Lgj1Ee+TGg/deId5DnpYUbi2aPW8c3Q2Kp6T3lc83vfxqobVs5RRLtT7vL/m985Gf+e9Llh+PCuaCk2muLcxY/dSSaRC2/+F7E4ej2tkZWFLxzWyZF4kGvPICoYm51z97blf+kb9w/YizuIhKSo0KRkCnIeGJnNoaDKLhiZb8NBkTnZeMjgEo+Bx+3faIwt1oBJWDzJlDyQTmjTYZSw0eR8bmgRrKwcneRcnYg/oH2yUuU2gxz6ZW5RYS6oMrTTiY0RSvX4Fq9Ttdrg+05WmDOh4MfUcQX4jLzsd9OW9JtSoxfQH4WObqaLkF2/T6IuHc0UvJcR0wJPEV2n8K6FLDBHypqsIlczX0gB/odfy0iyjpwnZiRIYSxPWplFOISXlrU0jblHSiqLojTSuHFrvBDZshh0WChIRvm9E1Rt5QTpj8CAYUctqsQOEX7TOnqNVYuOnKeYRuUtzrwJK8G7jxJ7R53iYEbVayBLI+mtp38KM0DT8zETjCKryY6RKK/bSrxgnwoTLKCqCQtvVqLH8/6eK5f9vnpja8ND4jolNGyYe3DEx9az4Y0zALmMtObmHmmbMDf5ER72NlwmSaEvKyRMdF80iZuidH2B2KT3ADLt3gBkmVG9K9nUtZNgUO2wKrttEhhbYhoBsJVVvCgJjtVCrFvt9VszAsH6JnIsWVvn+LqPYkgL+N133gqrlkET9Up9jovrlGTmFM3JSESOnSFzh/JQiyR62R3YaJK5jnFuGy8QDXRXIA06DDAUpXgDrZl6sBG0IyDZSmbVAYLxX2WKfYTmjVUCZcZ41amWV2Ws0+8xfbInKepoYAhAW0+lsAhCudvxeaMG61Ezsz9CAGFpqpgjjDg5lc1rLv+mg/5wqNBOW8WTkyvzYKT+YcN+TSch5MpI6p0HKRoN1M/EF0GZrE5mEwLibyK+xwp8SEH6uT8YI/1cue1WqN/t4TIFKZVuOgNItR8K9LUcC9dQMuwKKrcP22PrNAPIy+ZNucmqqAjnVqQ/doGhznIVtmLchujnOcr2O2L+Spz1+m6c9RZPyc2pznFC0OU4QGOT4bf8bHdaO35bUWv5AB/0ftN8mvlyicF5YgCdSBMQ7KJKkmEYXNFxYcLykovGu6PrExUen0AZqklmJY3gd4noGouFImmBadAGS5dNT8DNivKyi8bKC413u9TUzjTkBhSh5kSgBP2Puuil0IXKEC8Fq3ng36mNbaV5eUfGE1vK7Oug+Cuk5Gfcm57p7k3PfvcnJuTctitwbOlyWI8JlOQxk3km4LK/Fr3IxXBafc8WkK6FyoERZVK2F+DqU+HaEuEVr2a+DXkYLMYWgKLGqWyS29tbPgOfs5Mi1kB4EIxa4dsq7rp3yuHZqVaSd2knhMhx6v1Y89F45sXP+giWrZk68d22fOst/vr69AT08zp9lHq+HCRINzB8vzu4cf5gEM4zOZ9zvcw38v7c0nLMxKYsudCshXq2KHKFW+BkG0qoIeZ77hkj8dusi5AmCtdZQ63+jwLnJFoPvDCRAMbXhoUnE6D4o6ProUyVxkdDi91jjIkXg4g4qFppicJHCXBR0WR9Zt8PMNBA+5SFjeXuOC+X6/k5eHRJZ1ylF6rCZ3l46y0L3/a29ROVmokhGM2rmSGfNsOfkuQLxLaSN99vbHpW8i02XK28r5TR+OEMzaz9sG0pX65cu+KdLLY/qwHdISWiDSkQ2yBsQvprCpI2XKR0tJwfy6njHn3J8GaSGeHgpSzwFmNBpskcWGxYEj2ot9+vA91MER/d7DXYc6GYyuiuurMKoA50jLEaL6xajRayEkBOL0UoqPNsOdKs2o3kwF7qFdqEvdpVwohuooRL8Ps2II521cKSxqSl1pcOQFAjZwnQeA1li6EWHbzsWcI951ZbH0ahKFD+0WDvNOLvW3cLsM34iGaDRl3gOBXi3kLtfOKe/vjBI0SutiF5p+NllOrlNE2+ROh8oWkYwkVkkcsPg+9Q5sgiA/0w9HyYCYIh6EUYEwKep7YcIgE9RToQIgANUZpwIgI1UQEkEwCALoF0KwFUsgA4pAP/EAuiUArCGBVCQAsB58btLCsAZFkC3FIDXWQA9UgCeZQH0SgH4GQugX9YeMRAGnSWr63AGWLXdD0cxacw+eY1ZHgr39foU+Xqc1fQRKnsALloc5IAoSIZqA4qo1s9bJxjFRDXjpNgpF5ezTRkOim17VAN8QjVAvCiJfbonVE9yu/o5JtWDbFAPMq0ak0+qBjitftHN6kFmKwJko3qQrepB5tWDbFcPskM9yE7luve0+kkWlE/ymPpJdqme5E4vG7HzZb9dOcge9SB71YP0exlkse1OJuhjqB6EjOZnR/OLBen8OEgqxNbGia2IPR7tq7E+J0rUyKc7w4XzEp6TOnA/VdUhTOE/itZnuI+oz1BLFJPxgwoNxKzQp9Ela00YZsWiKaIlpvUJJVgS+6T226My5df9cjuyUfltr9/98ut+khombATg1BhKBUr9HscGC7CDBQjS6214KUTbEJ9RDvGIaoh7VAOcVL7mg97H4oVTqiHuVj7FQ94nTAUw42HVEPcqn+IJ70NUz937PU8X5by4TzkSj1eATT3sfR1xUjnE93p/0WdUQ9ymfIpnlUE8X/b8Z6H7tL8CHLKjFaAcK8Gx3W/envnUbVZrlW5Wfe5tVn22N6v6zzp7e2OkUx05R0PO4KvFnMFVEw9Mb7512+bTp88hV15W8TPy/CPI92v439f5zvGy7MgUvBGxnL5LkTRfKRST/SU/VvOkY86sIRJ8/VQkLKYoEhmDn2EguXl0oMjpi3gNJ5E41S0sgIgUgGupREcRAGudZqptcJqpdrPTTLVbZW7ASBZqvk1ef6bdvwGTlrke2QynRt3DCEtkoF+pB5JOqYao/uFB5W8jqn9cS/k7gepfZ/H+Y4vqXyhTD1E9d+/3Ll2ACfU8e6t/L68CHsJSLtP46Y+HhLoCCHPA+3rnlOftwaT3kVgBrHjI83TeXdU5KqZ4Rr3dj6qe5LT6OSa8DLLYtkP9HJPeJU2xbVcFME+j6jk+6V3WKbY9oRrglOc5ccq7rF1RqrbJ88w9VQGa2/tYdIG9GzyvJJTrRfzo3jM+o/J3r9WHYdRHGZVviJQHf/H9S5pXO0g/k+PVDkpryaudli2ruZ2tC18c0nn92tvlD4RyRGmwrFjxG+qR6gU/ffLMiuuHfo0Rga72hXSiC3C+6LDS5Vr0keoW9JHqHPpIdSv+SHWL7LxkcAhG4VxzKc7zfntkwQGusQeQeU/aULvOK8ftVoUu4xyV4deSS20Vd4yVUUqsnyzu6C++n8keM2M3kn5r+g9/RrrZVByQO4E0t/5acpVeyWeEmX4aLhOqGGqhxfXgs02/8eg1H4FsqkgJO71//Sehf/uD99Z94ls/2/bE68PPfvnmU3/6h9ef1caW7d/wP9/307UEdi7WU0IWRay4mV6xn12xBPpMTNQsIESSNjcGP8PLMzotvpeQN3KEIWtWlPWQpXHl0LDH7en+LPGgJnpBnn6g1WBZeA+0Jt/Bcob+5OY6CZPOPs+avIfwnUSZAudfqmAqexczOY6KjVXt9Ie4ejH3Gx30JurOI0q4GFuOLW5pmDM8auudSNuW0ZJbSqq89QvYAHGu2XxIQP1keA56nHLQZ2a01bGDXkPk/qG1L+J6Lt6MroUG8BKIt5j5KeOAcVFdllGkyzh6P2PplDdz6bxBgM5ZK8cqJqE1anG/yaC6MIhWFbzRubQRc2ELdIPK6m0oRO5c7hCYSzsxF/ZBojzo6LQk3HqnJeHudloSbh1HL8S1zH/TlSuedU/L8FsZxAWhfCBAgywpgoQNyhg+YxYS0Br1+/rJYzYXcisXcPLLOuCTTm+43yVzw71OTmvl5N2/OvdvuNcREkddGqi7vLeLXLgg8u4KmKP6y0Dv8f6qK+DuswtXlfd7H43qr4eeVg7xmGqI3r9OPSvLGVTErV2JG4h1rt9ArHP/BmKdzRuItDPhl4iVe+wGYtb9G4hZuzcQGXLgzBmU4492eeYM4swZUMScQVKOTdgIwakxzBkq9UMzvULsYCFCaeht+GVt2xCPqob4tGqAe5Wv+UQFQDyoHOIR5RD3q4Y4qXyKxypABNWT+pRqiLuVT/Gk59XEpPcV2SnvT/GI9zlHvdY5XAEGZv9lj/va8rzEl51xy08P5pHv7+V/H6qR99PzMn56DZMgAUhnrHfAfAl2TsFStgXOB7WK+KAWfmZypoPE1iIk590fkd9ahPCtRVDR1iJE4govFhxi8Qha0coRcXa4OEGauLWqtg3xlGqIu5VP8ZByiAdVQ9yjGuCk8jUfUw7xuPfpUgnsfVI1xL2eZ8a93qfz3grQ3Se9r3UOe58uJ7wPUb3S2e9duug/I55n70rwdQ5VXZOqa1J1TaquSdU1qbomVdfEm1isAO7Gi8p5iL0rQO0c8L4Eet9iVYAnXwGseMjzdN5d1TkqpnhGNcQn1e/229WDDKsH2aEakzvUz7FJ9RynVQPc5d0Zukdp5Vh8ogJYZ5f6OUbVg0yoB5n0vMy4oMMbKkA7hmejGLqgHxtnp/ZprwDSJCpgju2z0WJPed4oPF4BCne6AgzXVAVI9a4KwKOHnebS5vqs5/f/+7x/Gqo+Rq88uKU8x28mFsWWw2jRUosdJ9keM6eshktj+qiX9QRhG9FQAqwjQR8JjGCaTgTODE3ujQhW+vzFrbd95uh3fvoDjD4Rlj6RMn2QTlG2E8yeNs81LofEw2ilzyha6TOCVvqM45U+o7LzksEhGIXhch3D99sjCw5wjT2ATKXPMBSvy51gzwp+VktdB+p1vnky/uPyCuOKZ/wT75cKDYvWxwqzwxr4EFeUIVRTkVUTwwZhYLguqqXeSsjaOpuydumOeuom9la2TmxRpsD5N0Twr15yV6+amLodFRukaqIOYzMHcUEtrVdNTG2gKuWGcHFlqibGLJVcSKxqYowz5ZCWute6amKIW/ttM8Q1xtu8qok6xXlVE8NaaqNjh6SGqJoYYQgTgjQS1w3UhT0/IcAhQo+GXa8+SzhXIUV6NEziivL7OFpH/5lT5jToPwOq/ZB1VYBVgFWAQgDx7ahzNyAspn5V+BvFNraoakTAqkhizw8/swSpz8zaTEcJD+IOS2/xGd2D+DI6gFXdZXQ9MZ4HEaU8iJiWOl2aUX6Zde3s1FnBWQMYAKU8lKT/Vgf+HMMYUdLiheGHlH9L+jFRRX5MVMBnDRFMjPqsYXKHYtjjcH3EDwGeM1+Wh9Jv9RhDyPg4gq6F7pEJl8XkHKc6ea8thnttYUVeW4y3DcW8tjicGh7OXKc6PuoCQNPKYgSdJSN6AXk6x3E6xxTRmYOpGErnBJwag8WEJVkS7GAJgiyVAPCyeRZADC+TrxQjhMH5QLGy5WW0icJh4mXfgBHgBPbWkOm/69iuSTnxazCvsaE0rRpzS4pgqTTBBY0E4ZogPpjXHgA3c/FdY8Z3DcRD6b2kOcbDB/BNDeOaJARcE0lJjMLPrJ28/4EOa+3k8fzehJb+kg78W5T3jz6XE+W5thHKtZ1xtr/H4Wp1wbGE49BbgjUhGOMnCcZvIBg/RTB+Gse7AHNHdOaekGBug7dKevuEWMQsnH3JjULMQFNUR94nEcOLlp16YucRZgN8uEMVdb1AclTsLNmJQxWlz5JhUbNPFIuaXUTfjePbd05PzlDFVKUMYJJbpyzqO8spRTYfKw78LArfh9RHuxmrb/ysETT/X6ZKaA5daHvaJExokwirTYoQH5XXF6VTdi3yEUJfmAaMwjkzDheYM7GvjVrtayPmfS0Ywgw3ismEyAzMnxji+TQvRHVv7Otv+/X3Xks+u/vJU595aslg4/jLz37z5z/60lc+nvzF91957JuL8WW+sWlFlK1Cp5mhoDJQcUI7Str1RnntmMC1Y1yRdkyQG3NchjlWKwl1FzJckh0uSTiRAGRAGUirLWcVYBVgFWAVoNcBUluOOG9Djp6FiTz8Ifkkix9+JvHshbQDqjKGG3Avhgtx5dCRiEtFaMC6cWuOgmwgz4ESBr5kwiENWnq1epEoBnXSK1wOUwLSXWF5YcNl6bXosFbvCW/mPuiY/rQO+nbqLXGsunWA5bPieIaFlVi/2FYnK+ylZNuzaPJrQEI49E4PkQcJfpI7ggLUejs2Kb+d15/9WvrDOuj7qNef0Vgu9YrTQyhrkbqgFiKMy2IPwjNhfNJhWdbWkz4f5o+7WR9XQ1mz1iFrNuKsGbBkTVu1+uM8fhbkWTRXoJYF6i+HFbHpk3xhQDI3KXeHdX6KpZw8zJeTaQHSB9wjvd8O6f2WpA+RpKcPK+swoNSjtGscq4Q6vmjutyZ9LUL6Oor0tVr63QKk97tH+lpL0gcIhNdKqQqAE4b0gDHqyR1DrYStqHPIGHWWtuK9gDGoo0W77xTCqP8ni1H/N4Yphv1Pn5YIzOstMeRJwjQdmucfDaQllLR1QpdfNKGrlq9J30ckdEEVX1ySe096q32F09tPenuCu/VjJz5v++zwNnwTk7iHE5XSndZoi4uaqwBHCOJa+iVrcxUnthm1UkF4MC8CRQmmUaSOA5ZUEaCMakJLvyJgVOPuGdWEpVFNkkkqWJCDF2+A/qFZRBtIRzsMx7YhwGtY7QmGs9xTJuy4lEkydFRL7feTVNoEHgxIuBcMSFqySQMZYUI6pdhODaTbnSKZSKTyWMAmmwRAoMhMnaSAfpUMShuOzLmK4wK4Jy2d6EXEQmZAfxXoJPHlRB1qhVqK6xuq+YnO8hPFVZuQOCRAmqFUAlgM4lYmYRvMAlsL6YvEIAG4bP+PRDQtIeALSaZz+gWMWsJO7HlmKf9sS4L97kowNhFkjXFKSyW19M8FPKfom8wkxkmTmCA9pyQZxYpJJPsJaYio9W2zoJ3YaBhhlyDFLmGt0WctEhE78SNuMiSYlVkkDFmsZGItxtQRh0wdx5k6asnUcTuGn96N+cmzojDJtlE2QAxxr1e9MH1VR0RPJI+se+WjJwE8elKnKHoSIEKMtexR33nCq9YF60kJOaZK7uht+AtVtiEeVQ3xadUA9ypf84kKgHhQOcQjyiHuVw1xUvkUj6mGuLsCZPqk97lRPRoPeZ8Zj3hfe6vnnb2zUEm4INPq7cEp78v0bGTGwxXgnOyngvEZRemIGfiZLa9dfNkZ5OTy1eLJ5aqJB6Y337pt8+nT55CzyVX8s8lAD/L9vfzvgzXnOFf3ljBnmLCxB7lYxz32rGFIBzIhaiXOlusI0hmybjCQSFhCrwGwXiZnW7LA57Pye9Cg+znbdBIeU0oCTI2uDSGew0UV+glZ+zG2IZ5SDXG38ikeUg7xoGqIe1QDnFS+5mPKIR73Pl0qgb1Pqoa41/vMqF6PHa3SRcGaD3t+zbhP7R2I6nXEfu/SRf8Z8Tx7V4JrcmgWehK7K8A1Oel9Z6cC2LvqScwWT6K63ahuN6pubdWtrVS31jUsVgB3X3imAtj7pPcJc8D7Enhq9lmDCjCp6lnxkOfpvLuqc1RM8YxqiE+qBrhDfeipXT3IJvUgwxWAyQbVc9ylGuAT6hfd6WX2KbZNe54wT1aEXIfVg+yoALmeTfyo/4yqB5lQDzI5GyW7oQJkJlwBpsvDcq3/bKyAZe/ysvFyjzSJCphjewVYbOXWcMrzRuHxClC40xVguKYqQKp3VQAep71rrUuxmbOeDx/t8/4Zq/ojHuWxUeXZwMRFEt4zZfoFgY3cmqtNz7NZ/JLPyz8n8wJrRBa2ca0lwDru9JHACNTD9UKPTC1eiE/sq7d/48Hv/NGH0TAR/VI00olTjIEqEy9ZGv8sUWfE0FLHYrHYYqjqfakMw7DjV8LOSuEQjMIIh47h++2RBQe43h7A0sN9gPOAeF3uuz+s4Ge1pvOgENeVn1CL1vSKpybUpjV9wlMTataa/ti6dhpVJ249tQrybYNaieECYksMuHivLCJvNSrtXlmx3zrV3kUVYBWgLYDYMxwqnmAJEmpDr7ylP7LR9C1UW1m9G7GJW4M8c14H/R2qAm8Q15Ibph8wDhmzdDC4jynonSAgnlv/d3rZsC+gAxixoaMA4BrjEt5GI0htNEJa0z+yaj2s7j3kMPHGu9NxbRQaJzYaIUXmJEyKqv3XbIP8K/Fht1+zXe3ma7aSO5N2Mze1l2bDFF3tgJgztXVC0pjaCiWINl6zjdp5zTYM54xvkTuZov5A+4atXrMNGV+zDcIhiDdqQ/RrtpwZmD8JYc4iPtc3BEiPqpwj6OjEmOGPbDsFFSU0XEyO31PyGi6Ga7ioIg0XYzVcFMVGHE6N8SBAaw4bjlMiMk44JQBkq3qQefUg69SDTCkDaeWYVgFWAVYBGgBS2yQqRjpOhYH8ioJZfviZRBVbSdsRlTdcUfer2EZJXJmwESOpFrNkII6VjBGEqQKsAvQYQNyvdR46ikIRvMJ6j30PNvMWdFirFxR4oao6LfMBHfRa6nW2APJ6bx3EHHZqWOewkHvUyROpMSKKPsFjM7B8ijsE3lrO3ItNyvJV0gnuW3qZgzrot1MP4aLVVKjHoyZQ1nLyeu8Mi71T7PXeoCxr61HYW/jjbroMr/emcNass2RNW2UwuUf/gjxbT/qA6H7P1tu+ASdv+87E0LdT73gaXp0Un3UdEu9U945nmB8MrW2w89Zhg8TSQpYEod/xDNEEmdE9T1Tf8ayZ1e94rr4C73hGpNBtjbaok2eno1rmqPU7nnRulkzoEsyLQFGMepgMNaoxq8exeUY1pmXecxleoyKMaszSqMbJbQXSiX64hyOiCdLkBuHYNgRY6B1P3LuMEfa6VgpvBAfWQVQRr9/h24KYe9uCuCWbJMgwGtLJ6q1ThhGSJBNF4dg2zArFJnXWW8YAwSZolkHI6v3fh7in+ZmXrZ8lC9MmTTitMgxnZeZMQ81JIoMtiLJtwCHbRnC2DVuyLXe5NrYMEdEtQ4jUbmE7vLWGeMssAJJyMJnmeJBpORLk5T3INO5BxhV5kGlSJTHpAGBqDIn0ZAH09m2BHaxAhKn0NrySnm2IR1VDfFo1wL3K13yiAiAeVA7xiHKI+1VDnFQ+xWMVIILqSX1KNcTdyqd40vNqYrICJPBolS4K1ny4AuzBfsZfTpd/ZiS8mjQxXAZ+ZstREl+2a89Hpdvkno8q2Hg+qs3Z81Fx6HOrSTUx3vnDx6tVNF4t/My9zcK7K3+zkCE3CxmB/VyGlB4OSEuDYxviKdUQdyuf4iHlEA+qhrhHNcBJ5Ws+phzice/TpRLY+6RqiHu9z4zq9djRKl0UrPmw59eMe+LegaheR+z3Ll30nxHPs3cluCaHqp5E1ZOoWqyqJ1H1JKqexOzyJFzDYgVwN/7Oj4fY+6T3CXPA+xJ4avZZgwpwddSz4iHP03l3VeeomOIZ1RCfVL85b1cPMqweZIdqTO5QP8cm1XOcVg1wl2qAT6jHYmeVMEoWHVUPMqEeZNLzLO6Cym2oAGUWrgBV4WG51n82VsCyd3nZq3CPNIkKmGN7BbhSyq3hlOeNwuMVoHCnK8BwTVWAVO+qADxOe9dal/bCZz2/Xd/n/bNG9SF15bEo5QlvM6EjXtH9bMFx/eDDRBFQpwXQzOcAJcA6EvSRwAhMwSUwM6GqntQDKZ/tu/HYh+89dztGH87tRVDVE+lEX+9lkJiUQ+JB9HJoAn0gJYo+kJLEH0hJyM5LBodgFIbLdQzfb48sOMAN9gAyD6QYXukxZ5uDK8Aoi3CuG4eJBdQaPuM8kJLtI57/uPwTatGyw56aUJuWnXsFJ+Tem1M2akoSajOs6IIAfVOc0ui47K5TrQyqAKsAvQFQYdl1ZpgIoYfY50iyqCcUtiqEx6saGNZyP9JBb7BVaylMPEeCmvMI8RzJBgMgZsoRLXuv9XMkEe5zJBMQ1xiX8J4j0Sm+kVv5KbvRcdH8GuI5EraIk6FCh7iOpx6pM9Da6WrsPXkRIJ68CBI1LpjnMLrKP33mtu7yz5y5raf8s9Xc1lv+mTe39ZV/psxt/RDFprYBnB9L6DKrkhoDW1wSg/xK8Yc7IhDzuKHvdPFBtVF5l6hCH1RT/ta2+kdv8RwXuxCfVj7Fo8ohnlINUf3bwcc9P0XljxErf3Qaz2WyC3Gb8il6/+lu/FKChyT6pPcl+oTnKb3P+1rMBdY57Hm67Pa+jjhWAaxz0Pt+xO5ZqBgnvS/RFWAM1ENUz4v71dPFHBkxPBIpvtULikXogtRrklF+cXvq7diY68XtY+6/HRsjiWf3ZcWgvY26rTmqLfAVHMEen+V/H/PJF/gakSnw5aNqGaPxwwCJZyp+GKDGiygaLwI/cy9YFavAYNWLDiU9KqWmwbrxx+hQaY6LPjzCOwuIa9mfsJzh9HWx0nnIP4k8HWz5zlP2Zyg20XeeyiaFWy89+7oO/BfllzJeWj8xNb1jK3V27ld0du6HnxHjRRSNZzgjkzz/0inyGPf8K/sfIrXn105PIlDRI644efwik5lE4BpIWEJiIuGyRUI6Je3MvoHtlIQLMc8ePI/QYGf2d1zR2Yfh7E1qIEkYoAbXfb4G3AAlFRkgLrL4/tQniv7URfQVHxg6iz4vFOe7SA2+sxwvaD7m78g/X3QT5rLRzxfxnTCHNUXtHZ7GicPTJHt4WoT4qPyxY7qkMCMfET92bIBzNrWl4JzNJheov4Yi0l+5NOM3/rFu+zko9jN6mts1xcBtwGRCZAbmTwx6wgAMnesbAqRvjJ8j6Aiq1UpnmzCYVgYqTWi4Rjl+z8hruEZcw6UVabhGVsOB0tQmbDTBqTHuSxPUP8hwTexwTQdwjwiAzKkH2aoeZF49yJgykFb7hSrAKsAqwCpAxQCp8CenFLtuvcepfaDfXtCD2uPHqPECisYLwM+whx1VJNwa5k48WoEiUvLRCj/8DDsb0MNFuXF0WCTAocPgJfimtdx3dNCbqOXG0GtLaYdv2sXwN+0aSyADEtKld3oX6R4ESdI3CpBiK8raVqR4F/d91NwXdNCPUW8PpuycYrwL5RsnEdYZ/nmceKE9BHWXJN/qQv0If9zdAo/JhhyyZgZnzbQla9I7BBl+BjihODohEZfXsYuG+BIkX8QMLMbQJ6HlDlu/dmwpJ4/w5eSYAOnT7pHe+h3hBGnbxPklYWBlM+kBY4QlIukhh6QPwWG5pH/WmvTY4UaYIn1Iy71PgPQx90gfskP6kCXp0yTpwyzpgWGuk7AGYYekD9PWYIb0H7YmfdiOwg9ruReurMIP2yF92CHpYyTp68ktQlipOYg7MQdxLfdHgDE4WxfQXXzWELvwSOGTxSOFN4YpnimcPi0R9ddbGvjnDaEmOu7PP3doklha0pIgYZIgSZogM+L0x9BvMwWsgZyHqllLHD1uN2vJlp1Wzd36mRaXt8M+O7ztk+BtoTfoQyBBgggvpCT0qmEvg/nfoq5PmiNVTVruL63tH7VlRc1EhhdFgsjCUZRhGpsEtmUZxEqnKSud0XJfE7DSTe5Z6YyllW5mMZmxRH+W7dRs2GuYZT4rqhEydhTQGuLCYcw6PsHZafgd7kxDVOyoiWk07GkxNml0L7DUZMkmGTJsK8NbAEcMI9BMFINjy+g5ATZJW0cUwwSb4JV4rDZ2D3GvyOd+ap1nFSdMibKUKUNpIzJ3DWPbsEO2jeJsG7ezB7F+3jhJ7kH8LGMmIb6odLy4Hd5aw9a5gASzqnTRTHocSKccwrbNBivBMG5Oa/FZM26LnXBQK9upBc7LzJs50JVpbIGWCWPcFoeMm8AZt9WScdvY5bZa4ijPdmqDVGdYMw/xRRntVsI1bS7xYHKczWNSeBLVUD4KxLNrnA+jA9uIpinqZx4tWVTqEAFKQtLwah62XKUDZ/k2STvcSa2lvcR0vR+kejcwjQ2UFUhDBSe54jStMmZW3KMLykuoMDY4FMYkLozNlsLIdXdtKKws6d60QkqJm6a0pTJvIDdxaQODM/Rp0FrmULGqMMQJpyqUrTUJbYmTJUFJ1DAM2wwVm7hhbCb0Qg5+hoLkpL4DgUdZZdWWx1FDi3bLvsSjZ6sBjZziii3X6TriQ/Y2eCgpW0lOa4aSwM6sVWtZbh0uwNRMFhpurpq5AVRMtA88xQe+2trt4SiEnB2T3grnRTB+nmnMQn2K5tq2GvOCs9ALNkdGQWOzVb7xG0tBlsEx9mLrSPNZ/B26Eb2dDcjm5UyHX4KgfXAUWyRNUqtFYbbqZdiWyMhbGU33oJB1kZCE/TbgieBO1n36DN4hoaeTqH1IwimWvTRCTBq4G/CWBwQCd83OnBLf3+FOSdSOU2JdyzlHOiW01fOTUor6hVGb5j1aIl98jwQKdNBbZLe2WZolZra2j9na2kYPONvaZuW2tlAjo4ybdY9xWywZl7tcZ3ZQemvbDMe2wV0U42Z1xt1GBR4S9tgBxxDpe7VAvLHcnddaBBKU2u1wdwfbqR0ux4wiQLgOprEdUhUbEBFwPX5yCwcBHVrLMwIav93hNjSFC06HpeB0spjssER/ge3UCXHCiEYBkoKyBx1sa0JArFpsilWLLlbXSUR7rUOdLQi7JGh70KK1fNCWzx91qOsSlFJhfeVWSDuMrVvdY+u8JVtztEresVZhWLMD4oti6zzBgwmdB7svq1tmJmoKzpzwAFISs8wSsY8U5Y5kBWya5HgJ+JmJHFmVwd4sJVc5gYXlyE09tTCmnHJO5cIMc7eOY/+prHZMUsZ0Rjd+Swf9eSoOnbXN2mGcInj5iTvc8ohrAh7ziHOkRywTi82ZjbP6kzICeVlL5OVI1SITiwPooYLzKTIInnUtzB373xKrSTnkn6RtLyM7a7yMpKyXIRLJayGiXbdYB+nQXV8bP0r3T9Y+bN4Od3HRDeZFMFA7xXo515RQZXFXq4UPa4O7qFhqC/AUzGcABr+7jPL5i5kv87ATWUWkHXYywESZdMNDk298wIORsqAb7GZgU4xyTKwFgdDODzX81jrW0kHODC050Sk6sw7OzDq1Vj+RBg/XxU+Dbz+Ap8F3yoljnXwafCeeBt+uKA2+kyeyupzjb650WsRZxIM3BcLpByCj6kFmHdO0gBZWqiHepGln36TRsy6ZF2n03B0u91CFmjr18yqJQk15OGNCiXXw5aXDq/LS4Z68dDiXl/aqvBDy0uFheWmHMybQ85G75gu8ASYhTQU5zHfJS1PBfWkqkNLErLlLltvO3zA5/uAjN2x78sBH79y2fnzTlief46q6BJffuwziq5i2ea/SNu8ebfOXjbbtUrQlDuWSEhukdkKNJgnz364yTmqYOxaQ1eOkratRQ4fswHNUnHTG375LB72Gij+3U8ekYXRPnHe4J/bje+J2yz1xB0lyGYdB/8khYCfEFxWYa5cIIAoF5nJ6YO7P8NUwr322QQCoLmC6dVqeY3YRj4SuMQBi+LBLa32b9SOhGIsX4OK4TL7ROsjUZedsu5vt1AXnZZaZTugTmRs5Ow5WoLocClQXLlDdlgLVwy632xJHvWynHlJkeiG+LKVU127WXN1jJ0ZGT79AUbEXFS+EkTtpRi5ordsEUkS63WORgh0WKTjEcSfJIl2kSS1IqPkcqnNzBudDt8TEJVr0cLCRvGxOmY9GDkektNZ91knlKatS+7fwQR+01pqNdkqs0DeXyWSDJibGAXqmShURzL5q06WGGc7/Lf0fnjueMRk37gSauFfwW0/oG9URztycbUsaiW1JRtZFl96WZPBtSaOibUmGFhjzsM1yw3bS25IUd1uSgcMBQmKXAsve+zlZEU3D3QFXSH9PB/5+FLhN/zJVAh31S4mylfzTtTPSlPxb1M4wNwJKxWSv3IC+DdwrN60fEbg26LC0hu/nl/3aIJ0KliGP/VISLJix3FDQtV8ycFhe7ZfWV6hrg3GIE6rSg8ya0qhYpTlihauDKGFW8YpgCCPr2X9buJXAWj9lbeapvFabVQyijLDGoa4j3p7BC5Qk3DuBT1oKm8UTK8I8ZLgHTSVCxkm2TbL18iDuL3Fg5NuMAdeNfBlzixfimGv77MTXln/3R9898MKdO8a3nznLhrxK71w5HOj4grrUe35n7RrXB/pa6J9/+ZX/c/Np1wf6h/rbV9f+12c6XR/od39526J353r+xXqg0ksxHyQeNWFcroSckEXk3cwE7mbGFbmZdJ0WPC8lwQsdF/utk9CMSTIWXQVYBegEIGv3fVrrr3Q/5CeMufVBMUCm42OnQx10xOFnJoGqKx8DY0+DMjVXgmhLCG2pR1vCaIuhehJ2SfZetCb1uhKW85zdakYPTNBa60Y8MNH8kjkg4Yc+sq2rhcQ2KmvnEOMOKo8+Z+ee1gbqrKpFIk1Zh7ieSvpEs93aCIjjVI4pv/ZO25kSt7TV4yRv45C8OOaFZzlw27S2mOMiBDWs9wBAMQXC9I+cn5D6ywg1DdNGeCWSy4vKeyV53CtpU+SVcOtpYV6JIWWVExS3Mi+SJ+RVgFWAHgOIp+w410J5KIJYJE6P9LaNoRYDLWxYhDHB1+C7ddDzGLvSBqdJ5GnEJfRMXsyVy18upCt9Z5OzIp2C4skkbWWSERlJHcyRVSf8jryFADJPOpG3TA0jGYBZM+lKdLHW1Tf5Fwva7teBr5IrDdUGiUGEBv0SPBwvEwjTNWSI2cDn7HLbtba3Wt+jwMKyeer0Na613WYdlm23E5alL/3kKdx3YDBrCf2xxh7u84Y18XB/FxXe98PuJkkwHGCa2qiL30m422AKjZ4v7xvwB5NbiXOBZvZsFzc5xmOvosj9u7w8E0ZnRpofsObBTtJFFc817YSzMvMg0IMFKqmK5d6CgPXrQvPKiuvYxE1Za3tY4Pyv0+GRRAQ/kuiyPJLgpqdZ0Yab5AVwwohaj4CC6CDSgtaIXyUz9gfD8rL+2qYpBWG4OEN5ODJrai6vibG+0CHQ7S9hBf0SWl+kWGeHaGlMxLLvszZ1mG/bTpm6Gd9WINGow46po3N52ynsk0nmedfKM0U9Vp6pmbxg1EaKVYdE0ExIcNrA7uqybAbGUR+aE3Bqcz3g1IYHnJoVBZzayIwR/O4hlxOsNvqSu84qwCpAjwHE49HOtVAbsTPws3v5T8jmt/kp379Zyw/ooP8rtZNvczEobyNVoBqUrwKsAqzAGLpi3WkjnNtcUeFcjgn4tmz4x2+16cvrj9e1fY9BiuGaJ2khyFivDS1rM5xrOCbhhhT/wf4eN2+xx/2BR8K5bQIbtCsSzv2pYLZ2pYRz/UQ4t5kI57aBcC6WJnUfmyYF0MEkSgF0MKlSAB1MshRAB55MnCISptJswhRAB5MyBdBRTprCqV3H4gcsDF9phLjzEiAwW09gKMrqZ0AAnCJhArOxUlqutFono/r5pK2ovvXNETqU5Hcnqt+mOKqfz1aj+m90ELATVyKqn++2H9Vvs7cmoYcwO4AbRjhDMv6O4aEXW1bXb+Xx5EftP3hFejwzAYS5HvF4jEcveHZMm2tVTKIeq2LiJ6uYNJOCg1YxabYpOM0ghOXwostzXxhb8y93/KTDwUWXGBG9krxr8nn56FUcj17FFEWvOI82g7dvnV7u+ZzE/ZoEXDczcFK2UBDupaM6N00qzwQExmq4tJa/i9g2pMj3Y8XvEDYQYY4rAJBzYTEFiVby29/q8gkdYF5cgp0PFCtHWQjR+MhdSywZdAF6o5SjaRrkmP8eeU3TgGuapCJNQ1+IxcW1gXfrtdhvhxRf4nTV2y6c9D7EvcqneFg5xGMVQJiDyiEeUQ5xv2qIkxWw6KPen+PTnhdq5YTeUwECeMLzdHaBuU9538AcVw7xtPcVYwWoMfWLPqMa4jblUzzrfSweqwBmrAC/9oj3F63eCO5WPsVDVSd0lgjMiapV9eKiK8ELrQRde9zzuvZp72OxAnzG7bPQZ9xXATriuPd58UQFqLEKIIx6J3S/572nSmDGQxXAjLPKYuk/Ey7YLKJqrkzlywQxnKEspzl7HYxXy39wUD9h5px6plx/cDCFn3o2KDr15Fb01dFJVYVmUJ0WYJY0O1yaoB4AWaceZFCCx2zWRi53umlmGls2b72YyPPcq9NTWya3TO1aNfHA9OZbt20+ffrcgVfWTjy6bceuGRg7JnbuLHVcdeBjaybGt6/csWN8FxSUu5HvN/C/T/nPHXhpw5ZHt09OwCyAAy9e+vAMr/Fu5o9vLM7c5ZLc+ClZDiuS5bBBli+z7kDLGyaY8oZ42U6FSRQPzpokimnllue93g+IK/f+KmDnrnzNe7zvqR3z/M5GPeO8u8o4zpFYPVGYJfH/fd5f8yHP07kSUt9ciMQdmIXB9b1Vd7HqLnrD6u+qatrZcbj1lPI1PzMbw9b7ve+Nzcrz6tmYRqBeAisg8a1qsKrZGNVsjCvJOtUgjDetgfL7HBWwB1RPF+XJ5BUQqD1T1Tqe5O5dVa0zS+jifa0j5TGCp9XNSRCGgh7i+TI6RPblS3BGn2bTgYrdONkMjbL1UKSzGRrxbIa0omyGRjK1CK+J2MiSugkSCRmuiR2uieCeJkilat4akbfWCKfG4BG0BiQ4oZEgDQAZVA8yhL4tzKF2SA7htfLUDuHUDiqidojFVRCldgpODde596PvMDuXmeuUykzIPZkJ2ZaZYr/HlbG3VZTMLkDc/NuGeEg1xL2qAe5RDXBSORJPKod41POLftr7a8aLLdmGeEw5xGe8z417Pc+Mu72vI45UgLzMQs7B84q8Y/VPeH/RyumyrwLE5XhV61S1jlc8xtPe93UqgC5nqhLoSUrvqkrgLKGL8hCH8vjBzAkHEVQTqUi9m41Q4fG6JrmQ2a3y8bomPF7XqChe10Ti2oSNDJwaQ4dMqd8T2GAZdrAMQdiMtWa1DfGkaoh7VQOcVL7mA6oh7lY+xROex+Ju784QKD2vMze+RfOOjlAvgEeqirGqGD2iGNUvWjldnq4AcXmmApSE90VavTnwvt1XT+g9VQtYXbRX5vj07PMjtnp+huoV93uVQzxYAb5TBVjUqkB7cMkV4ETMzk2qctZ5ahZuo4/NxigR/vSUl2wBeeUCGU7yokkafkaM16BovAbB8YKKxgvCz9BKnSmmUmddCeY69jZHsYVzuJSRO9+Jyx8uZfDDpSZFh0schoWXTczDNssNG8OG5Ty73QzXbSJDFrYhIHPks8jNEBj7LHJO67yW5adsmS+QQbPsOrJl9BWfFe5cxGGeSwVzLTG40IyKZoIjs3LUSchzZBbnyGZFHJnlsYaOUhM2cnBqDP1yImzDDpcjVEzOkiWqAKsAqwDdBWipTmu/2njfdPCFjQ+ODcRX/zyXPvfu5V84dXD5wChrWXB1mnP9hmQOV6dZReo0R1ooEzZa4NQYArSU+t2PDdbCDtZCULRFQD9Lgyy2bbRvc+s4rCDY1c92bRHsmmS7tgp25fgXbXLsE2Ih5C0Gj5d+sF3bS10b59d8s/NvF+0aaV68bd3jh/72zlf2Nj0/9INk7qfT1z/+/313G9u1w2JUvz6qiXWjJcLfq7td6PtanedLrqKRsaLln7UcJ7FT6/wHHfhO8wR8hCaplaPGqLwmqcU1iU+RJqllJdGHahI/nBojpf5SP/TeqJ8dzE+Ivd86emAb4jPKIR5RDXGPaoCTytd8SjXE3cqneEg5xIOzkNBHKkCklc/xadUA9ypf8wnPs86+CuCc457H4m7vq4iTFUDok7PQXk16ny77vL/mM6ohblM+xbNVN8KTOsINq28+d6st/4wzjWDbFmMa6yAQZKJ17ETriInWws/M73KC8fz8dzkDxJ476HrFqyC+5w4o2nMHWXQG0D13CE6NQXUIIlacemCLb2uOal+8rBtBvl/D/z7ok3/xckTmxUsfIyU+ASnxkXimpMTHhp3AZ6Y20M//0vqJqekdW5npdpd/og90drPT7SamG4afEeP5FI3ng59hINGQXxHuY5yAX7fW+ZOLWmly8ozWqmGge+wITS/bqQfOikBbr5nMPWXdJKrDcGSCWdSbB+pVOVAv1EemgfpUDtQHDZ5poH6VA/UbjKfJmA0A6vKN2SBhzIZcP4oawo3ZoCJjNsTy/CBqzIbh1BhUD5f6oYeLw+xgwwTt3ARoWtkQQedh1+k8jNN5SBGdOZgaQuk8AqfGYHGk1O+d2GAj7GAjBFlGoK+rHOSAY4qOsPgpjsyceI1C9Jraxkq9Nphb5pRaNvJ5p8bMOzVwLUVj2PuRIlj2G2aaA3DGZrM2BFWBuNoYIsgxaPiMsekJrdBXOsQrdJkn21nGjqmlgMpzV7mlCLf7ALXQsKKFhuFnxHhJReMl4WcYyJd4yXeREtQ7OAQZ0gqrHYvNZlRsOEp2VBa2tJIdJWR1BFfAcGKLF+ITe+IDf/DoU/l3/QlGhVGWsKOWHukY2wm82c4gcY4cEh8wKgw/VFWGljoWi8WWABz8kiIaZuc1JjsvGRyCURjxAK05e4ThgNTlRhVAIJPKQdbbA/nCnTvGt5/BXAJCsaUVKba0oCJtUDReg8G1vSIOQ5p1GNBlSjkGvxJ3DIYoxwC4/0FFHnnQ4Gma0T4im6LDIBdD+xicAuONoTZVAO0jJbT3jYijfdigxRzaxjHU8awhljpsbptb6vWAuWWeA3d1VEfP28XRMwJnjN4hGWbukAyUvUDWxxnWep7Snc6HWYoUu95FSOyA3v9RRljmCejEeaywzBPTifOo8RoUjdcgON6QovGGBMcLKhovCD9jpG6+nNQtMPPJAlTqriKUz0JHyme+HeUzD87syqBhHosGTPkscqB85ttRPkNwxhjjFVXPxWMMngphtc88rXBO1x6nrOHOL/8xVcYAF+5pfZWfJMzeEBqEuI+1BPrPOn3OX6YkdFCRhA4SLDKP2E3Odz1kNx/fMc5TFLKbT+KKETMwNQaPoBVN6l/ADreAIM0CyBTKQQ55ThFtcEURyQTtXFNErzpGdo2+YeRJSlVRVKKiyKmX6tGqorjsisKOB7AR3QuuA/bflgq6m6+CvqrD1YjVjJW+6gpywMzRCl9nuWGeOk3GbkrmCGiyOSxvzxHTZHNQAvkcr9OGJpuHa7I5ijTZPBJXJmzMh1Nj8DhfwOXhKM75BGnmQ4FQDpIT+Jkrh1bc8tUQuJuD6r8NrP6zr8nm2tFkY3DGmHxJ65sZRfETx8imFMVcKnQ6qCh0Ogg/w6JXPseHRDYUxRxcUQwrUhRzSFzh+9c5LB7nCrg8c9nh5hKkmSvg8tgHOeb4gA03LDUE7oZR9bKBVS/2FcWYHUUxCmdMnmnoDgR2VuBzjF4bNVzGxA6gnYjMGH0ADVOC/6avmBN888TU7dMPTG558K0Tu3au3Lrp9vEdU1vGJ4t5vmf4+b1j8TNIYu5MgylTWO8UMH0qIfj6KthH18cgi4sLIjjjJTy+uRJezGhZVMwQ5xo8LOxwYx5zuAF88udv22a0ZOVuFyOH4q6KPs311KZ9vsQ2Toc4zkCcD10OBOJVBMQHGIgLoKuCovIqBpULUFRCiAQqF5GJCW3MREGUfxEGczGx9AcZiItARwzi1QTETQzExaAjjsyrGWQuRpEJIRLIXEJMc4KZ5tWgIwbxGgLiuxiIwI28BoN4LQFxMwPxGtARR+W1DCqvQVEJIRKovI6Y5kPMNK8FHZlGwM9NitJUmuBnuDl2ngRumLtpoOtUDqQDu5fJNb8e6Gd+rvlcwgNZ6rrTvhT3QOYq8kCWki6vCRvL4NQYRC+DNh4Zbhk73DKCdssEfAX7IK9Ht2h6bZyu1SjikIsyw2Wvgt3lLtV6NumgWddoKeRa8eUuLQ+JdFpO1nxcasAcM+nlWtda/XbPl3kCBrqbRQzAXsAXsWWEiC13XcSW4yK2TJGILScZ1ISNFXBqDKpXQN8PGW4FO9wKQh5WCPiQ9kEuFRCxd6gWsbU66PsrR8Q2qRCxxXwRW0yI2DLXRWwZLmKLFYkYh2KLURFbDqfGoHo53BGIS/RyQh6WC+ws7IMUEbGd2LAL7YjYQq1nsQ76cWojdZ3E5myhpYgtJkXMsH9jJ71Y63pKUMQWMSIGYF/DF7FFhIgtdl3EFuMitkiRiHG2votQEbsGTo1BNWi9WmJ7eA0hDwDkEvUgFwqI2AnVItapgz5VOSJ2VlzE8CUp3XgSQZlmCdQtIjilGX5GbXSbBfjog+ikrPhoM4cki7SeuA76QzTSiejCoKLowqAYkV90qMQC8hp0kfvB/kUkrhiXjeIpEM8TV9eLCcJUAkD9Z54wvs7jRYsgu+KOtPOBFruk8fDrcfeah7la5TBXlw8YrdXcn6KRZis19xBHzS3Run+jg/48qz+WyIkw41IvRc9il0HGwTcai4l9PkP8lbh/JHBWu0RPNf+U+FntQrgi9xRzXVUxe0gxV7cwxBbmanILA1pbJI72ribVJ5BG5SCvdUxTZUpR34MwKlG3H9JKb7GdBBWD0jNv+RfD70qIeuGu+QuWMJ/Cc95idAA9UFz8/IbpB7hTWIR3Wvj82ulJ7tTaqSPirCKVkSXsGBVavFqOwfzySuNq90OLV8uEFpfAqTF4XAKJLX7QvoQgzRLISlj2u9fs9kL37DZ4skU1O1IkWkwMe42z+pplDU7Ec2oPnL9hcvzBR27Y9uSBj8/oiqktGx4cnxzfMfPzWf7W5mo+E10D/nytX0J/6FNZoyoNRod4B50GI04lEP4iM1bY/cXVWndeL1oU43xwldbdoH+QIAzNIv2rVjST2+d4A2NDXpfg8nqVInnlkOQqHgf/0epHH5jYtGli043TO2Z2Q5s2vR9hJh75DDlx+s8FkN39Etl3V+F8bRgJp/g8nOLDsEPpqw7iq3ngK4m0xAAExrvr092lbxq/SuXJz1WUJ2/IYCbGG1U03ij8TCIvf67rcce57uflz5XJy58Hp8bgcZ7lblTyjmglANR/dhDZYc7DZ4YLCpcp844SBucDDaNxx3kqhwGlb5zeO7W3x51LBP5GicDfMBH4Y+6N3VD+OeakysbXif2x00sWlYG+OQ7uv1TRN3H9ZUOf5K24+eiNpxriwv1c1g3H0beQQN8iiD5pFM2xE7Ufgysy3Bb60/JlobdO7Lp7fHLLppnPtm1dP/HY9MTOqXPonZ9htGUUbZmDtsw9Z7pBxP0XeFRgvvGLsyjkMeR9g3VnyREZBOK+3xW9vD2myPfjODtjqO8nfHm7Vf1N6yE37oNfmcvbY6y2wULel/3y9hCcsalNr+nMFJsqlH8yZTS7IHChus4hjNSS5UFDhpHx8Xq4T9R2/x7LHj0O7TW1lRyRhS2tTjgVTqFax1TNiGAx5WfOn/7wic/0vhujHl0NXjx/KETEUiXV4rVGwfCzlr3YUsdisdgSYL2YYcfVQK+VwiEYBa/7f789snAAWqtkGiRTpngYCphZTjvLP3uZRvDGCpqBxnlVpodY3yD8zCQvPYT49rruDfTiItqjyBvoJXGFm4pesi5oRpE+H4JcoRxkwTFNh1gMYd7AMMFlI6g3MOrAG+i14w10whlXhc9DwjdICh9oRcujDLLDDYqRZkA9yE7HNB1kMYQJ3xDBZcOo8I1cQeEbwg9zepjDHNCvm+PZ9mjdF3Q//FeUve2jHk/rp/QB+npcL5K8qTM67/W4Xq376yUE9rxEj2tu7IUrMzf2Ccy4386M+7Xub1m/d9d/MWsHgboB9Ux7dVHRfVMpQfm8jsqzqIoNSEh4j6UPz32uDDASZZUHJLRlf/koFkNej3vI67dE3gAx5VoJjA+I6v4CBrTAAu21Rl7/leS8XjucN8BbJ0APgzyA2i62tdPASObWbqhYxBHfV0Y80qmLvHPVBxfEqqIurftfwZ0rswrsMthgYsFd5IILwKIgq+hklx418xxogWr7EujO7RIX9xZa8sZ1vNt+53F3FyRBXec4ictLFwjwk5wl8p7ONUInOeL5P8MoiwzDeVreGllEgraRdFYrsYirKb5abFgHnnY2KnshRk9d51+I6ckADwVT+Vc7VPkJXOUvsVT515CprrbEehF56XQxmQuxhODAReB6pp27uIt57AkgYAxKWoZhuDJezmJPL7AM4jKwSLkMLHRLBvS82818GRi5DDIQv+wysJSUAQ6XL4WkoGUAu8RuU3UvBPfjFV1iFxGcpaKCs4hfQeY6a8FZSmaBi9cpWSooOMuoUjao4CyzMh48wVmm9dwgIDhL3ROcZZaCQxdVQjqt4BVZoYzHClHBWeae4Oy0VcNoOSk4S1EMiQrOcg7frNB61lsLzgo7lFvJq0BFCM5S6AybG1cICM5KRHCWU4KzUuv5HQHBWeGe4Ky0FJwbWEyutET/jWynGyBOGNG40aAmCMFZKaFfhQRnKagrpqj4l4jgLBcVHH75r54t1oLDEem5DlUeKTgrmMblAoKzAhGcZZTgzGiO7QKCs9w9wVlhKThcFWSFfq60AZwwonGDqOCscE9wVjOEBydljdi4PnZcKmu7EX6GgQRP7emnM3qSEstGvouEZWI3tXJMstaMIz9xMlknC1v6ZLLOPJ06ODP01LJOMKtnR+cTF769b3oCI0EdS9U6S64PsJ0aiayeoBwS34rqhwCa1VOHZvUE8ayegOy8ZHAIRmFkQ8fwOntkYVJw/FAaisJd/DpYxiOXN0MvAYNm7lNbFsLS51rP+0qKpOd3zVjXhyp98SLyhfS9EOTMP2zu4C93MIwcKX9g+HsUswvFP8c46NFhhRn0xLSeF0wEqC93KzGCeex6/tgR8+IimGSWAJo7RAHPFCny+4xO0REglwfx0vqJqekdWzFwPkEF9clFo9fG7+3fzz7tU5q6ooHiX/z0uu//+/Z+64GKTkTkg6xqtsu+tYQSuN+xxuTo3BBMuhdIajGtNEDYxHq5yf1W3ibW43YvoChbp55VsAHChIXlhv0PcNv5o3duWz++acuTz0EdDSgNVg2GA4TErGE9ag3DJRbuDzt2l/7DMXf+BnW49HJhPZ/D6BRCthsGi8d6ijNm6os68L+g/N06XepN34SgqKL5O/XG0i0h+BNb0sUSMcbVBOHCkG5hcgfqh8BYfIS1nq/oG7AvoEMgyA7RyJ4B/lfW6TIRUuKQTlG2UwTOy0w0IDhRpo4PWEbYqo5PGKWrD+8UeaP4j67WQW+0S+jiArnzjwhPrh6OxLEzADrKkgya/eie0m8ggC7AZavpdBcVQK0Rc7oehHQxtekXDd4mfw5ep0cSXhbP+DPIoELXAeWDgJEP/IadI9YpaOwUIDAYUOnvGPZkhDxgS/KRrB0yz92ncu4+grJ+lQPpwN7u2Oy2mSday5rd12XNbi1tZmbM7q904P8uZHZR/6xkJIuTfgecBGa/WMtaX1ZjmF3i2VW9EwTELDei9fwWWFVM/6wpoaQXd0etLW+YM4F6rVfPr+qtY/Bdb1BouKmkTBqTnxwuGzgeRnpj+oTC1Jh+Fl3gsxKIBIrU+8E3LhhKwhv02/MGObIOJkaMFzA/RAadhIuhU7OfA7LvIkU/x/xJxL4rFIHTJjBh8GuicPY2nK560p6ESY0t4/XUol5PLc/reZ0SOdJRxPiynlxKRGI7G0KXYsBrWTU5jK8c/fvffuuZp1p+6nogZ+mHnjgeW/Tqf3F9oFeiX7/h//hQ/X0yESMzPwShfsH4EByDQPOqn4hw7GzvQseBmRriNe16aiF+q4WYN7dF+Bv4K9Gfc+pdQqlBHyVrtbJbWnJSYa13qcBxZcjhcWUdflwZtjyu5Gynww6300FW90ShvhU/DQpael0hMpoRhMNymWYN9RCJjzQNtaS2NRw34UHbjTrTbnLsqYdQJ4fZYhrMC8MzYImmtgjheEVxFSWwUw7qd+MmiJ0yoU18lNDX0j4tJplBr0rmGpalIiTDCbNyiNhMriGd3bIPsMnyBCTA7CF7H8LwEERUb4BSvUGtd58O+hGG+gGKNYICyipIKCuroAUTe8LPSEKuF5YM4WckQUVnJCG5M5J6WRlDd/EUicoHK6/dvm3nxJZN27YuuH1ix6PTU+MXC2CdRfxcKMF1FFv56K0fqY4o6Q2Q0hskDRG9Wa3HTjCEXDZUSCHyeRb43bqYfoDW4OJkDlk6MFzdCiZNkCdCR0DEPSZrNyvGuytHzBKYgBi+aYwat9Tk0oSspFP/NYBbyYillYzxXFErxMbZTjFSxOKQAvaNa4QUz6Cgef2AhFEKoLt3Y26TboQd7nWv63tPru0vH4u5vqkO1LV9oPDqO2+V2lSbolfQC7CKXjHHHcVh7pFJeQg5M23OzHngsphzfKPBsT56VH2dRECqnvCz3ASIba6cp7bYcNuI1JaQe6ktIZTOYTg1BothS7KESftYkQDPi3j8zo/6DLuVy3TwGiKEwflAofLmkNEmCoepL8dgsEP28u70K7KBwTqLwOD/0kH/FecDv9b7Nf2D77AKxicn42E0+lBDRHiCRISHYbUYwR1xiHRTW6J8ECcdM/IJVRkg0FhbuWiURlatncrR8MzI4qQdFwQwBa4o/FAn0b9J7Nd8DqPUdXTSF8MrETleibJUx3glRvBKnOCVBMErSULkGuCSpfkoIiV0/yZhTuvQvYrxSF1Xya4kWIvvrXwgMQMPBAUl/Ggd4h1UEIbKUXK65Qgq3XL43Nty+GxvOQCRVO0RrIntoX2McoBU1MJnnbTdh18VRJO2Cd/Kp/XldNDNTnLHfEQ26x0SeqLWUrmEeKFqMCihXkL2UgUQzOpSNc4N1vYVBI6znR6aBfFwYMgyHFhvJxoc5rE+wAm1uQtYpJPa4C0qU9oHpKZCzJ+EsZI+8JY2VkH3jVVQxliFDHLD7oStjVWI5Hh8c72uClABQKe2b5Vt2zfOt3236KBvdsv2rXmT274H+Lbvjstg+0JvKtsnYsZWVc9n9IlVz2eq5zPidK6ez1TPZ6rnM0Uzcsj2+cwD3KB034d00Ee55zN9x/UPzlXPZxScz/DQWD2f8cD5TN9HdBL9UfV85s11PoNT1PH5zIxKdpjidTaYPPr12ge/6OTeVEBgQxjk3ZsKlK0PL7u877OOdw81xL2pkOMqY7hTU0PEoHzE/oDyKf2EfrVxGUTPCO1vk7gMQmZfBw2alkrNvqzZ18V13YfxZi0vOoLGXcFMVeVZPn1hx0f/I/WH/8uLlxf7vvVmubzY93NdbX7XM5cX+75fvbzI+IMeurzY92OvXF7sr69eXpS3V9XLizzSXOHLi/36NSgT9qRrKXK5KPD8qi2PQy6qK8M3ELK+/IFpImFZC8edCFWuJlAeylyYNKL1t/IBMpV26jFNXPxzFK25GsZqz0ZlIdWbIIVsQwqjVVdD8pPCQCHZV0x1WmDkSmwbt3Hntr9D8Z3bfv0BpP6u6p3b6p1bE4mqd24Zs3NF7tz2X6OL6brqndvqnVuzm2zl3M2+O7f961y7c9vf8f8D2q264TwZBgA=",
6003
- "debug_symbols": "tf3djuU+cmcN30sf+2Azgh8RvpXBwPB4egYNNNqDtv0CLwzf+7MZFLlYWU6mcu/8n3St7q6KJVHiTxLFTf3nn/73n//Xf/zff/rL3/7Pv/7bn/7xf/znn/7X3//y17/+5f/+01//9V/++d//8q9/e/6v//mnR/+PpPanf9R/eP7pf/rH8vwzP64/0/WnXH/q9We+/izXn/X6s11/2vXnVa9c9cpVr1z1ylWvXPXKVa9c9cpVr1z1ylWvXvXqVa9e9epVr1716lWvXvXqVa9e9epVr1312lWvXfXaVa9d9dpVr1312lWvXfXaVc+uenbVs6ueXfXsqmdXPbvq2VXPrnp21fOrnl/1/KrnVz2/6vlVz696ftXzq56PevJ41mv9z3T9Kdefev35rJceHcqEOuFZMmmHZ80Uf9kvSI8JaYJM0Am9snUoE+qENsEm+AXymJAmyASdMCvLrCy9sndoE2xCr9xbQh8T0oRnZQnQCXlCmVAntAk2wS/ofWhAmjAr51k5z8q9I0lvn96TBrQJNsEv6L1pQJogE3RCnjArl1m5zMplVi6zcp2V66xcZ+U6K9dZuc7KdVaus3Kdleus3Gbl3sWkH4LexwbohDyhTKgT2gSb4Bf0vjZgVrZZ2WZlm5VtVrZZ2WZlm5VtVvZZ2Wdln5V9VvZZ2Wdln5V9VvZZ2a/K+nhMSBNkgk7IE8qEOqFNsAmzcpqV06ycZuU0K6dZOc3KaVZOs3KaldOsLLOyzMoyK8usLLOyzMoyK8usLLOyzMq9D6p0SBNkgk7IE8qEOqFNsAl+QZ6V86ycZ+XeB7V0yBPKhKt3a24TbMLVu7U8JqQJMkEn5AllwqxcZuUyK/c+qPUJvQ8OSBNkgk7IE8qEOqFNsAmzcpuV26zc+6D2Q9D74IB8gV15qL035UeHpyv3put9Z0CbYBP8gt53BqQJMkEn5Amzss/KPiv7rOxX5fx4TEgTZIJOyBPKhDqhTbAJs3KaldOsnGblNCunWTnNymlWTrNympXTrCyzsszKMivLrCyzsszKMivLrCyzsszKOivrrKyzss7KOivrrKyzss7Kve/k0sEv6H1nQJogE3RCr1w7lAl1QptgE/yC3ncGpAkyQSfMymVW7n0ntw5tQq9sHfyC3ncGpAkyQSfkCf1mKXWoE9qEfr+kHfyCuEMM6LdgfXviHjFAJ+QJZUKd0Cv3bY47xQC/IO4VA9IEmaAT8oQyoU6YlW1WjpvGvoNx1xiQJvQ6uUOv4x2e/6r2Xe79qz7/r9L714A0QSbohDzhWaeWDnVCm2AT/ILevwakCTJBJ+QJs3KalXv/qrWDTeiVn3tRev8akCbIBJ2QJzwrt0eHOqFNsAl+Qe9fA9IEmaAT8oRZWWfl3r9a6mATeuVnjyu9fw1IE2RCr9x3sPevAWVCndAm2IRe+XkClN6/BqQJMkEn5AllQp3QJtiEWbnOyr1/NesgE3RCr9zPjd6/BtQLet8Z0P9VPxa9p1jf5d5TTDu0CTbBL+g9ZUCaIBN0Qp5QJszKNivbrNw7iPXt6R1kgEzQCXlCL9h3sF+kBrQJNsEH1N6JBvTK3kEm6IQ8oUyoE9oEm+AX9E40YFZOs3LvRP7okCeUCc/Knjq0CTbhWdmfrVF7J/Lc4VnZaweZoBPyhDKhTuh1+mb0LjMgTZAJOiFfkONJUzqVRfGs2Tepn9Lp8ez8tZ/TF6VFskgX5Uk1/re+ZTUvKovqorbIFvmk9liUFsmi5WjL0ZajLUdbjrYccYP1aJ3i3/azpZ+0qT9m137WXtQW9X+b+jHrET+on8IXpUWySBdFvd66Hv/22brtEf+2dkqLZFH829IpLyqL6qK2yBaF47lvLcYEBoXDOskiXRT1vFP/t/Lc3xZP/YPi3+ZO/d9K6qSL8qKyqNcT6dQW2aJw9DaI5/9BadFy6HLocuhyaF3UrnZuaovmMWr5sSgtkkXlOjIt2zwycd7HUSjrGJV1jOK8j3Yu6xiVdYzKOkZlHaOyjlGxeTzKOkb1MY9CXceormMUfSaOTPSPOB51HaPoH3Fkon9Ea7TVfm21X1vtF/0jjkJbx6itYxT9I45CW8fI1jGy5bDlsOWw5bB5jCzO4v6AZXEWDyqLYgtap7bIFvmkOIsHpUWySBflRd2hfQvizB7UFtkinxRn+6Du6A+pFmf7IF2UF5VFdVFbZIt8Upztg5ZDlyPOdtVOeVFZFI7cqS2yReHobRpn+6C0SBaFo3aKer2tcltki3xS9ID+SGrRA/qjqEUPyL2togcMyovKou7ozzcWPWCQLfJJ0QNy34847/vzhsX1oz9nWFw/ct+C6Asl/kVd1BbZIp8U/WNQWtQd/WHCon8M6o5++27RPwbVRW2RLfJJ0T/6/b2Nh/YgWaSL8qKyqC5qi2yRT/Ll8OWI60x/irC4zgzKi7qj9qMV155BbVF31N4acT3qDxMe16NBaZEs0kV5UThKp7qoLbJFPil68qC0SBbporxoOdJypOVIy5GWQ5ZDliN6cm2ddFFeFMej71H05EFtkS3ySWPcOigc1kkW6aK8qCyqi9qk6LX98cij1w6SRbooLyqL6qK2yBb5pLIcZTnKcpTlKMtRlqMsR1mOshxlOepy1OWoy1GXoy5HXY66HHU56nLU5WjL0ZajLUdbjrYcbTnacrTlaMvRlsOWw5bDlsOWw5bDlsOWw5bDlsOWw5fDl8OXw5fDl8OXw5fDl8OXw6cjPR4PMIECKpjBAlawgQZiS9gStoQtYUvYEraELWFL2BI2wSbYBJtgE2yCTbAJNsEm2BSbYlNsik2xKTbFptgUm2LL2DK2jC1jy9gytowtY8vYMraCrWAr2Aq2iIc+lvLEAlbQrlR7oi8cyTAwgQIqmMECVrCB2Cq2hq1ha9gatoatYWvYGraGrWEzbIbNsBk2w2bYDJthM2yGzbE5Nsfm2BybY3Nsjs2x+bKlxwNMoIAKZrCAFWyggdgStoQtYUvYEraELWFL2BK2hE2wCTbBJtgEm2ATbIJNsAk2xabYFJtiU2yKTbEpNsWm2DK2jC1jy9gytowtY8vYMraMrWAr2Aq2gq1gK9gKtoKNLElkSSJLElmSyJJElsRclNRHPVNMR5lYwW7rI7gp5qVM9IWRJa0EJlBABTNYwLB5YAMN9IWRJRcmUEAFM1hAbIbNsBk2x+bYHJtjc2yOzbE5NsfmyxbzXiaGzQIFVDCDBaxgzFdJgQb6wsiSPrqdxoyYCwVUMGbBaCAVxryXgQmMCiVQwQzGDJgaWMEGGhi21jHy4cIEChh1Y+ejz1u0ZPT5gdHnL4z2jX8Wff5CBTNYwAo2MObtPAJ9YfT5CxMooIIZLGAFG4itYKvYKraKrWKr2Cq2iq1iiz7vcWCjd3ucD9G7L1QwgwWsYAMN9IXRuy/EZtgMm2EzbIbNsBk2w+bYHJtjc2yOzbE5Nsfm2HzZYlbNxAQKqGAGC1jBBhqILWFL2BK2hC1hS9gStoQtYUvYBJtgE2yCTbAJNsEm2ASbYFNsik2xKTbFptgUm2JTbIotY8vYMraMLWPL2DK2jC1jy9gKtoKtYCvYCraCrWAr2Aq2gq1iq9gqtoqtYqvYKraKrWKr2Bo2skTJEiVLlCxRskTJEiVLlCzRkSUxWXhkycAECqhgBgtYwQYaGLZ+odKRJQMTGLYcqGAGC1jBBhroE/PIkoEJFFDBsFlgASvYZ3v1l5IpZh1N9IUxa+/CBAqoYAYLWEFsCVvCFjP5+jvIlEdqxEaOfGiBDewV+tvHFHOOLuz5MDGBAirYt7e/6Uox/2hiBRtooC+MmbQXJlBABbFlbDGjr79jSzEvaaKBYeunXMxOmpjAsMXhjvl9F2awgGGLpo55filaMubWpmjqmF17oYAK9roSzRezbCX2IubZSmxOzLSVsMVc2wt9Ycy3vbDbJDYn5txeqGAGwxbbG1NuJTYnJt32qZoppi2JxubExFsNRUy9vVBABTNYwAp2m8Y2xETcgaPPxzaMPj9QQM5fpxc6vdDphaPPDzTQJ5bHA0yggApmMHaoBVawgbFD4+/6wujzFyZQQAUzWMAKNhBbwhZ9vr8TSzFHaqKACmawgN3W35almC810UBfGPlwYQIFVDCDBcSm2CIfsgb6wsiHC8NWAsNWAxUMWxyWyIcLwxYNFflwoYG+MPLhwgQKqGAGC4itYCvYCraKrWKr2Cq2iq1iq9gqtoqtYmvYGraGrWFr2Bq2hq1ha9gaNsNm2AybYTNshs2wGTbDZtgcm2OLGf393W6KKV8TM1jAdY2NqV8TDVzX2JgANjGBAiqYwZgX3oO/pnWVjqle0iemppjsNVHBDBawgm1hJEF/D52qrPatsva4SgEr2MCYs66BvjD6/IUJXEezKjbNYAEr2EADfW3D6PMDEyigrm0Yv7IZWEBs9PlKn6/0+Uqfr/T5Sp+vZZ07tdCShZYstOSY+x/bUGjJQkvS5yt9vtLnK32+0ucrfb7S52vluI0+P5CWbLRk47hFn7+QlqTPV/p8pc9X+nylz1f6fKXPV/p8NY6b0ZJGSxotabRk9Pn+EjzF3LiJ0ZLRnaLPX5hAAWPfYhuiz19YwAo20ECfGPPpJobNAwWM+4eBdfbCmEAnfVJEihl0E31hJMGF6wi1JKCCGSxgBRu4jlBMurtQHmACBVQwgwWsYOxFz52YaTcxgb1ujXaIfKixZZEPFxawgg000BdGPlyYwLhrC/EYPRhYwQYa6AvH6MHABAqoILaCrWAr2Aq2gq1iq9gqtoqtYqvYKraKjTHHMZVvYMPWsDVsDVvD1rA1bA1bw9awGTbDZtgMm2EzbIbNsBk2w+bYHJtjc2yOzbE5Nsfm2HzZ7PEAEyigghksYAUbaCC2hC1hS9gStoQtYUvYEraELWETbIJNsAk2wSbYBJtgE2yCTbEpNsWm2BSbYlNsik2xKbaMLWPL2DI2ssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJkphXKX2ea4qJlRMN9IXxhHJhAgVUMIMFxFawFWwFW8VWsVVsFVvFVrFFlsSr5JhsKX2SbIrZlhN9YTyhXJhAARUMWwssYAXDFuJ4QrnQF8YTSv95YYqplxMFVDDeuXtgASvYQAPXG/MxB/PCBAqo4JojEJMupY7/1UC/UGLa5cQECqhgb7M+dU5i2uXECnZb/2WixLTLib4wnlBaLA8STygXCqhgtFnUHWuADKxgAw30hWtWhDzWrAgZ0y4vVDD2ItYriRGMCw2Mvcix+MkDTGDsRQlUMNqsBhawgmEbi6oY6AvjCeXCBAqoYNgssIAVbKCBvjDuNWQs6RI/GorjFncVMrCAFWyggb4w7ioujJ/GRKPGXcWFCmYwflQ0sIINNNAXjl8bDUyggApy5BtHvnHkG0feOPLGkTeOvHHkjSNvHHnjyBtH3jjyxpF3jrxz5J0j7xx558g7R9458s6Rd468ryM/5k/GkR8zJePIj5mSMrCAFWyggevIj5mSF64jP2ZKXqhgBteRHzMlL2yggevIj5mSFyZQQAWjdTywgQb6wujzFq0Tff5CARXse/GIRo17ggsr2EADfWHcE1yYQAH7Me4/N5aY/TixgQb6wrj6Xxh7UQIFVDCDBaxgAw30hXH1vxBbxRZX/z69TGL248QChi3Wg4qr/4UGhi2OUFz9PQ7AWDsoTrmxetBABTNYwAp2m8dZMlYSGugLx2pCAxMooIIZLGAFsRk2w+bYHJtjc2xjpaFo37HW0MAKhi3abKw4NNAnylh1aGACBXza9PEIzGABK9hAA31hz4eJCRQQW8KWwpYCK9jAsGlg2PoZFTMlJyZQQAUzWMAKNjBsLdAXxopF0WNjpuREARXsthSbHmsXXVjBBhroC2MVowsT2G0R5jGrcmLYonViPaMLK9hAW1hCkQMTKKCCGQxFNEmpYAMN9IWxxNGFYYuGimWOLlQwgwWsYAMN9IWx7NGF2Bq2WPzoWigugwXstriExgTLiQZ2W1wLY4KlxqUuJliqREP1AJmoYAYLWMG4UHUa9wxBaZEs0kX5opjhqGNJuujBF1Yw3gQE2SKfFLf0g9IiWRQVa2A0QyijP8b/H91xUFrU2yAH6aK8qCyqi9qikFigLxwLh3lgAgXsRfUR2Cv0iSsylgcbGF1Lg3qB/jNoGWuEXahgBgtYZ5Pk1Zx5NWdezVlWc5bVnNGRRiNGlxmNGF1mbFN0mYHRZUZbRJe5MLY0is21wWQtDiZrdTBZy4PJWh9M1gJhMtYDuzD2MjYkOkA0Y5z/g9qi/q/jKMTJHxTn/qC0SBbpopAMLGC3jOL9wjnRFvYzX3McTY/zJg6hF7BXiG33thrGDfSJMb9vYpSVQAEVzLPBY37fxAo2ihmILWFL2BK2hC1hS9gStoQtYUvYBFv0vgvlOtVj0t84fWPRsYkFrGBbGNepHJsQnelCXxhPtB6UFskiXZQXlUV1UVtki3xSWY6yHGU5ynKU5YhrVJ/8IzExb2IDY2cs0BdGh8vRctHhLhRQwQwWsILd1qdfSEzXm+gL4xqVY3ujM14oYLeVOA7RRS8sYAR7UFtki3zSuD4FpUVRMc6N6HklDmf0vBLbb77QH2AC+5b2xQgkpuRNzGABKxg3WkEhi5aPXhoYM/ImJlBABTNYwAo20EBsCVvClrBFL+0vqyVm5E0sYAUbaGC39XfREjPyJiZQQAUzWMAKNtBAbIotLpV9FFZiRt5EBcNWAgtYwbDVQAN9YVxWLwxbCwybB/a6MR4Yc+8mNtDAXjfGGWPuncboTcy90xiRibl3GmMvMfduYgYLGLbYnIiACw30hREBMUwQE+40RgFiwp3G4GJMuFOLzYl+Hw+3MeFuYgMN9IXR7y9MYNhiG6LfXxiKOBGjs1/YQANDEZs+LsoDEyigzi5fRhAMLGAFG2igLxzxMLDXjQf3mE83sYBxWxEtGUFwoYG9bjy4x3y6iX0v4pk45tNNVDBsObCAFWyggb4wkuDCsJVAARXMYAErGJeavkN1XJlr4LoPqCKgghksYAUbGPcBsb3R5wfqA0xg3AfE4szR5y/MYAEr2EADfeG4lR4Yjzixm3HX7AMLWMEGGugLo89fGMciFNHnL1Qwg/GEMrCCDTTQF0afvzCBAioYe2GBDTQw9qJ3sphlNzGB0tfWfQQqmDvGCdP7/MQKto5x5Hufn+gLe5+fmEABFQxbdJxY4ffCCjbQQF8YfT6ep2I+3XXknSPvHHnnyDtH3jnyvo58ezzAdeTbQ0AFM7iOfHtUsIEGriMfs+wmJlDAdeRjJTmLK0PMcLuw9zeLK0PMcJuY+QsFrGBbGEvk9pnAEhPNJiYwDmFsQyyVe2EG4xBGsVgw98J+CGPYKCaaTfSFsXBuDAXFRLOJAiqYwQJWsIEG+sKGrWFr2Bq2hq1hi9M+xqBi8liOlftj8lhOccLECX5hBgsY22uBDTTQF8Zi1hd2m0SbjQWtByqYwQJWsIEG+kQbC1wPTKCACmYwbI/ACjbQQF84Fr0eGDYJFFBBXzjWr9ZABaOpPbCAFYzNKYEG+sKxnnULTGDYLFDBbovHh5jvlSOCYr5XjueamO81sdviyhvzvS6MNa4vTKCACmawgGGLjYwVr2MoI+Z75Ri0iPleOa7+MbMrxwU7ZnZNzGABK9hAWxh9M0erR9+8MIMFrGADbWF0vXhUjblWOR6MY67VRF8Y15YLe5vl2PnoehcqmMECVrCBBvrC6HoXYnNsjs2xOTbH5tgcmy9bzLWamEABFcxgASvYQAOxJWwJW8KWsCVsCVvClrAlbAmbYBNsgk2wCTbBJtgEm2ATbIpNsSk2xabYFJtiU2yKTbFlbBlbxpaxZWwZW8aWsWVsGVvBVrAVbAVbwVawFWwFW8FWsFVsFVvFVrFVbBVbxVaxVWwVW8PWsDVsDVvD1rA1bA1bw9awGTayxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSX1mij5Ul+lhZoo+VJfpYWaKPlSX6WFmij5Ul+lhZoo+VJfp4YEvYEraELWFL2BK2hC1hS9gSNsEm2ASbYBNsgk2wCTbBJtgUm2IbUWGBFWyggb5wRMXABAqoYAaxZWwZW8aWsRVsBVvBVrAVbAVbwVawFWwFW8VWsVVsFVvFVrFVbBVbxVaxNWwNW8PWsDVsDVvD1rA1bA2bYTNshs2wGTbDZtgMm2EzbI7NsTk2x+bYHJtjc2yOzZctPR5gAgVUMIMFrGADDcSWsCVsCVvClrAlbAlbwpawJWyCTbAJNsEm2ASbYBNsgk2wKTbFptgUm2IjSxJZksiSRJYksiSRJYksSWRJIksSWZLIkkSWJLIkkSWJLElkSSJLElmSyJJEliSyJJEliSxJZEkiS2LaVe4vdzSmXeX+nkpj2lXuX7TRmGCV+2scTePLUB5YwQZ2RX8DojH76cLoZBcmUEAFM1jACjYQmy9bzH6aGBVyYAXbwugM/V2HxiyliRmMCi2wV+hvKjRmKU000BdGZ7gwgQIqmMECYhNsgk2wKTbFptgUm2JTbIpNsSk2xZaxZWwZW8YWnaHPLdeYpTSxgg000BdGZ7gwgQIqiK1gK9jistji1IgLYH/DpDGxKLc43HEBvNAXRhe5MIECKpjBAlYQW8PWsBk2w2bYDJthM2yGzbAZNsPm2BybY3Nsjs2xOTbH5th82WLltokJFFDBDIatBlawgQb6wrgAXphAARXMILaELWEbfb4F+sLR5wdGXQuMCh7YK/R3ixrTnCb6wujHFyZQQAUzWMAKYlNsii36cR+61pgTNVFABTNYwAo20EBfWLAVbAVbwRb9uL9u1ViNbWIFG2igLxxfg8uBUSFOo+jzFocl+vyFBvrC6PMXJlBABTNYQGwNW8MWfd7ihIk+f2ECBVQwg72ux9GMfuzRfNGPLxSwV+gvVnV8j/HCAlawgQb6xPFtxgsTKKCCGQxbDqxgA8NWA31h9OP+zkfHFxv7SzeNWVWlv0jTmFU1MYOlY4h7P57YOmqgdQxx78elv3rRmFVVHmHr1+6JAiqYwQJWsIEG+kLFptgUm2JTbIotvuX9iCaJz3f3N0Eas7BKf+ejMQ1rYgH7RqZokvia94UG+sL4rPeFUTeaLz7enaL54vvd8RXRmGU10RfGh7wvTKCACmawgGGL82F8vnGggWGLJomPOF6YQAHDFm0WH3O8sIDrhjOmWU00MG44oyWj816YQAEVzGDY4mDFRx4vbKCBvjA+9nhhAgVUMIPYHJtjc2y+bDExa2ICBVQwgwWsYAMNxJawJWwJW8KWsCVsCVvClrAlbIJNsAk2wSbYBJtgE2yCTbApNsWm2BSbYlNsik2xKTbFlrFlbBlbxpaxZWwZW8aWsWVsBVvBVrAVbAVbwVawFWwFW8FWsVVsFVvFVrFVbBVbxVaxVWwNW8PWsDVsDVvD1rDF52H7S1iNSVwTfWF8JPbCDMY/S4G2MK7ocfmKeVcTCxh/VwJ9YsywmphAARXMYAEr2EADsSVsCVvClrAlbAlbwpawJWwJm2ATbIJNsAk2wSbYBJtgE2yKTbEpNsWm2BSbYlNsik2xZWwZW8aWsWVsGVvGlrFlbBlbwVawFWwFW8FWsBVsBVvBVrBVbBVbxVaxVWwVW8VWsVVsFVvD1rA1bA1bw9awNWwNW8PWsBk2w2bYDJthM2yGzbAZNsPm2BybY3Nsjs2xOba4PYiv1teRJQN9YhsB0gIFVDAUHljACnZFn9uhMV1roi+MALkwgQIqmMECVhBbwpawCTbBJtgEm2ATbIJNsAk2wabYFJtiU2yKTbEpNsWm2BRbxpaxZWwZW8aWsWVsGVvGlrEVbAVbwVawFWwFW8FWsBVsBVvFVrFVbBVbxVaxVWwVW8VWsTVsDVvD1rA1bA1bw9awNWwNm2EzbIbNsBk2w2bYDJthM2yOzbE5Nsfm2BybY3Nsjs2XLebATUyggApmsIAVbKCB2MgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSG1mSAivYwLBpoE/0kSUDw1YCBQybBWawgBVsYNg80BdGlvQfqWpM6it96qfGpL6J3dbncGpM6ptYwG7rv6jUmNQ30cBu6zMwNSb1TUyggApmsIAVbKCB2BSbYlNsik2xRWrEpJ2YqFfiBXNM1Cs52izy4UIFM9i3N95Ax0S9iQ000BdGPpRo1MiHEs0X+XChghkMW2xv5EOJbYh8qKOugd1W4+SKfIjXwzFRb2K3xZvimKhXahSLfBgYHT1ei8aMuxLvIWPG3UQF++bE28mYRVdabG903gsTKKCCGSxgBRtoIDbH5tgcm2NzbI7NsTk2x+bTlmMW3cQECqhgBgtYwQYaiC1hS9gStoQtYUvYEraELWFL2ASbYBNsgk2wCTbBJtgEm2BTbNF5+yvUHKubTVQwgwWsYAPDZoG+MDr6hXKdtDnm1k3MYAEr2EADfWH07gsTiK1gK9gKtoKtYCvYCraKrWKr2Cq2iq1iq9gqtoqtYmvYGraGrWFr2Bq2hq1ha9gaNsNm2AybYTNshs2wGTbDZtgcm2NzbI7NsTk2x+bYHJsvW3o8wAQK2G391XeOuXUTC9htNv5uAw3stv7L3Rxz6yZ2W3/BnGNu3UQFw9YCC1jBBhroCyNALkyggApiE2yCTbAJNsGm2BSbYlNsik2xKTbFptgUW8aWsWVsGVvGlrFlbBlbxpaxFWwFW8FWsBVsBVvBVrAVbAVbxVaxVWwVW8VWsVVsFVvFVrE1bA1bw9awNWwNW8PWsDVsDZthM2yGzbAZNsNm2AybYTNsjs2xOTbH5tgcm2NzbI7Nly2mEE5MoIAKZrCAFWyggdgStoQtYUvYyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlSzJZksmSTJZksiSTJZksySNLLLCBBnZbn1KaY9rlxG7rczjzmHZ5oYLd1udw5jHt8sIKNtBAXxhZcmECBVQQm2ATbIJNsAm2SI2+bE8eUyn7RNMcH6stHg0V+XChgb4w8qGv7pJjFbyJAiqYwTgWsQ0jHwY28GmrfX5qjhmYF/Z8mJhAARXMYAEr2EBsBVvFVrFVbBVbxVaxVWwVW8VWsTVsDVvD1rA1bA1bw9awNWwtbKmjPcAECqhgBsMWJ4xVsIFhi9PIfKE/wASGLU4jVzCDBYy6vW/GDMzap/fmmIE5UcFeoU/vzTEDc2IF+/b2ibw5ZmBO9IW9z0/stj7TN8cMzNpn+uaYgVn7hNscMzAnFrCCDTTQF8oDTKCA2CRsLbCAFWyggb5QH2ACBVQQm2JTbBq2EmigL8wPMIECKpjBAlYQW8YW+ZDi1Ih8uDCBAiqYwQJWsIEGYot8SHHKRT5cKGABewWJsy/6vMTJFX3+wgQK2LdX4uyLPn9hASvYQAN9YfT5CxMoIDbDZtgMm2EzbNHnJbpI9PkLwxbtEH3+QgUzWMAKdlt/LZpjOudEnxjTOScmUEAFM1jACjbQwLD1QxjTOScmMGwaqGDYamABw9YCGxg2C/SFkQ8XJlBABTNYwAo2EJtgU2yKTbEpNsWm2BSbYlNsii1jy9gytowtY8vYMraMLWPL2Aq2gq1gK9gKtoKtYCvYCraCLfKhvybPMZ1zooAKdluO0yhS48IKNtBAXxhZcmECBVQQW8PWsDVsDVvDZtgMm2GL1Ohv+HNM0aw5OkPkw8DIh/6GP8cUzYkCKpjBAlYw6vbLQXuso9keq33b6PMDC1jB2OMaaKAvjD5/4Tp3WsKWFMxgASvYQFvbMPp8oDzABMrahujzF2YQG32+0ecbfb7R5xt9vtHnm64ztSktqbSk0pLR58c2KC2ptCR9vtHnG32+0ecbfb7R5xt9vtHn2+jzsQ2Zlsy0ZKElCy0Zfb5P0sgxA3NitGTUjT5/YQUb2G194kWOGZgXRp+/MIECKpjBAnZbn8WRYwbmRE7w6Oh9+eoc0y4nCqggp8bo6AM5WI2D1ThYjdPeOO2Ng2UcLONgGQfLOFjGwTJORONENE6N6P59WkqOCZYTMxgNFe0Q3b/ElsXtwYUG+sSYYDkxgQIqmMG4BfRAA31hhEJfLTvHVMqJvW7/gnWOqZQTM9j3os+oyTGVcmIDu63/xC7HVMoLIxQuTKCACmawgBVsILbo/vGcFZMmJ0ZdDcxgASvYQAN9YXT/Plsox6TJiQKGLQ5AdP8LCxi2HNhAA+PRM47QGDIYmEABFcxgASvYQFsYHb3PecoxPXKighmMvYhGjY5+YQMN9DkkM6ZHXphAARXMYAErGNMF4kS0B5hAARXMYAEr2EADsTk2x+bYHJtjc2yOzbE5Nl+2MRHywgQKqGAGC1jBBhqILWFL2BK2hC1hS9gStoQtYUvYBJtgE2yCTbAJNsEm2ASbYFNsik2xKTbFptgUm2JTbIotY8vYMraMLWPL2DK2jC1jy9gKtoKtYCvYxrQqCSxgBXs/7ous5Jg0OdEXxu1BzEqLSZMTBeypETPNYtLkxAJWsIEG+sK4U7gwgQJia9gatoatYWvYGjbDZtgMm2EzbIbNsBk2w2bYHJtjc2yOzbE5Nsfm2BybT1uJeZkTEyigghksYAUbaCC2hC1hS9gStoQtYUvYEraELWETbIJNsAk2wSbYBJtgE2yCTbEpNsWm2BSbYlNsik2xKbaMLWPL2DK2jC1jy9gytowtYyvYCraCrWAr2Aq2gq1gK9gKtoqtYqvYKraKrWKr2Cq2iq1ia9gatoatYWvYGraGrWFr2Bo2w2bYDJthM2yGzbAZNsNm2BybY3Nsjs2xOTbH5tgcG1mSyJJEliSyJJEliSxJZEkiSxJZksiSRJYksiSRJYksSWRJIksSWZLIkkSWJLIkkSWJLElkSSJLElmSyJJEliSyJJEliSxJZEkiSxJZksiSRJYksiSRJYksSWRJIksSWZLIkkSWJLIkkSWJLElkSSJLElmSyJJEliSyJJEliSxJZEkiSxJZksiSRJYksiSRJYksSWRJIksSWZLIkkSWJLIkkSWJLElkSSJLElmSyJJEliSyJJEliSxJZEkiSxJZksiSRJYksiSRJYksSWRJIksSWZLIkkSWJLIkkSWJLElkSSJLElmSyJJEliSyJJElQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiYwsqYEZLGDYLLCBYfNAXziyZGC39XUBS0zRnNht/WcbJaZoTixgt/WfbZSYojmx20wCfWJM0ZwYthIoYNhaYAbD5oEVbGC39dX3SkzRvDCy5MIECqhgBgtYwQZiS9gEm2ATbIJNsAk2wSbYBJtgU2yKTbEptkgNj1aPfOjfdCsx7bL2OVolpl1OFFDB2N4aWMAKNtDAp631JQJLTLucmEABFcxg6Rh70fNhYgMN9IX1ASZQQAUziK1iq2GL5qsG+sIWtmioFrY4aZuAYbPADIYtzt9WwQYa6AvtASZQQAUziM2wGTbDZtgcm2NzbI7NsTk2x+bYHJsvW0y7nJhAARXMYAEr2EADsSVsCVvC1vPh+VI2MIMFrGC39flcJaZdTvSFPR8mJlBABTNYwApiE2yCTbEpNsWm2BSbYlNsik2xKbaMLWPL2DK2jC1jy9gytkiNPjOuxLTL1mfGlZh2OTEqlMAKNtBAXxj5cGECo24N5NyJPj+OcfT5gdHnL0xg7HELVDCDBeRMpc9n+nymz2f6fKbPZ/p8ps/HVMprc4wz1ThTo89fyL5Fn++TzkpMpZwY+xZ1o89fqGAGu03iuEWfv7CBBvrEWPhyYgIF7LY+96vEtMuJdR6smGvZ+jSwEnMtJ/rC6OgXpnkAYq7lRAUzWMAKNnAdrJhreaE8wAQKqGAGC1jB2It+esasyokJjIaKdoguLbFl0aUvLGAFG2igL4wufWECo64FFrCCDYy6sRdxIzAwuvSFCZR5XzLmT16YwQJWsIEGrpucMX/ywv6SpcQZFb+0uLCAFWyggb4wXpZemEABsTVsDVvD1rA1bA2bYTNshs2wGTbDZtgMm2EzbI7NsTk2x+bYHJtjc2yOzZdtLJJ5YQIFVDCDBaxgAw3ElrAlbAlbwpawJWwJW8KWsCVsgk2wxSvUPtWkjEUyL8xg71k6/m4FGxg2DfSF8Qr1wt6zdKCACoatBRawgg000BfGK9QLEyiggtgytowtY8vYMraCrWAr2Aq2gq1gK9gKtoKtYKvYKraKrWKr2Cq2iq1iq9gqtoatYWvYGraGrWFr2Bq2hq1hM2yGzbAZNsNm2AybYTNshs2xOTbH5tgcm2NzbI7NsfmytccDTKCACmawgBVsoIHYEraELWFL2BK2hC1hS9gStoRNsAk2wSbYBJtgE2yCTbAJNsWm2BSbYiNLGlnSyJJGljSypJEljSxpZEkjSxpZ0siSRpY0sqSRJY0saWRJI0saWdLIkkaWNLKkkSWNLGlkSSNLGlnSyJJGljSypJEljSxpZEkjSxpZ0siSRpY0sqSRJY0saWRJI0saWdLIkkaWNLKkkSWNLGlkSSNLGlnSyJJGljSypJEljSxpZEkjSxpZ0siSRpY0sqSRJY0saWRJI0saWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWeJkiZMlTpY4WeJkiZMlTpY4WeJkiZMlTpY4WeJkiZMlTpY4WeJkiZMlTpY4WRLTRJ+3AIEJFDBsHpjBeMYpgRVsYLf12dxlTBMdGFnSp5GXMU30QgG7rcaWRZZcGLaBFWxgH6vQ2LIYAxkYYyAXJlBABTNYwAo2EFvGVrAVbAVbwVawFWwFW8FWsBVsFVvFVrFVbBVbxRYDo31d1hJTP1v/UVaJqZ8tx7GIIdALM1jAvr05zpIYAr3QQF8YQ6AXhq0GCqhg2OLAxhDohRVsoIG+MIZAL0yggApic2yOzbE5Np+2GlM/JyZQQAUzWMAKNtBAbAlbwpawJWwJW8KWsCVsCVvCJtgEm2ATbIJNsAk2wSbYBJtiU2yKTbEpNsWm2BSbYlNsGVvGlrFlbBlbxpaxZWwZW8ZWsBVsBVvBVrAVbAVbwVawFWwVW8VWsVVsFVvFVrFVbBVbxdawNWwNW8PWsDVsDVvD1rA1bIbNsBk2w2bYDJthM2yGzbA5Nsfm2BybYxtZYoEVbKCBPjGNLBmYQAG7rf8OsMbUz4kFDJsHNtDAbusDjTWmfk5MYLf1n6HVmPo5MYMFrGADDfSFkSUXJhCbYBNskSU19i1SY2xkJMGFGSxgBRu4VYgtC4wkuDCBsWU5UMEMFrCCDTTQF0YSXJhAbAVbJEG/C6oxcXNiBRtooC+MJKhx7kQSXCigghksYAUbaKAvbNgatkiCGmdfJMGFGey2Fsc4kqD/WKbGxM2J3dbisEQSDIwkaNFQkQQXCqhgBgtYwQYa6Asdm2NzbI7NsTk2x+bYHJsvW0zcnJhAARXMYAEr2EADsSVsCVvClrAlbAlbwpawJWwJm2ATbIJNsAk2wRZ3FX1CXY2JmxMN9IW6cicmbk4UUMEMFrCCDVwpF1M0W5++V2XkQwqM7W2BFWyggb4w8uHCBEY7WCDtW9jjwh5Hn78wgdG+HqhgBgvI0azYKkezcjQbR7NxNBtHM/r82Ibo8xcWkKM5+nxsw+jzA30hfV7o80KfF/q80OeFPi/0eTHOHaMljZZ0WnL0+dgGpyWdlqTPC31e6PNCnxf6vNDnlT6vj3XcdPT5gQpmcB03HX1+YAONutjo80qfV/q80ueVPq/0eU3ruGlqoIGrJVUeYLf16ac1JlhO7LY+a7XGBMuJBaxgt1lsQ/T5C31h9PkLEyigghkMW2xk9PkL4/4h/kLcKUQvjGmXrS9tXmPa5UQFM8gRyhyhzBHKBq5zfUy7vDCBHKHCESococIRKhVsIOdD4XyonA+RD332bh0TLC8sYLROtEPkg8WWRT5c6AsjHy5MoIAKZrCAva7HWRJJMDCS4MIE9roeZ0kkwYUZLGDcKw9soIG+cDwHDEyggApmsNfts3frmDR5oU8ckyYvjL3QQAEVzGAf74tHgrFW5YUNNNAXjq/xDEyggNE6ObCCDTTQF0bvvjC2twRGhRoYFVqggb4weqzHNkSPvTDawQMVzOBze63PNq4x5XFiAw30hb0fT0ygdEyBCmawgBVsYG91CYweO9oheuyFtE6JunHkSwEr2EADYy/iJKgPMIECxl6ErWawgGGLA1AbaGDY4li0B5jAsMWRb2GLw9L7saVo1N6PLUWT9Ov8xLaw92NLsW+9H08UUMGoG/sWPXacXNFjL/SF0WMvFLB3nFFhfOB7YAP7IUyxQ+MD3x2vD3wPTKCACmawgBXsjTowPcAEChg7XwIzWMAK9r2IAzA+5X2hL4xXhxcmUEAFM1jAZ90cSRuTG63P4awxuXFiAgWMvWiBGSxgBRtooC/snTdHgsfkxokCKpjBAlawgQb6whJ7YYEKZrCAsRfRUNF5LzTQF/bOm+MGIxaHnCigghksYAXbwuimEkcouumFAiqYwQL2uvE0E5MbJxroC3vnnZjAvhfx3BKTGydmsIAVbAs99iIOgMf2SmAGCxgVolG9gQb6xJiwODGBAiqYwQJWsIEGYkvYEraELWGLftxnR9eYmjjRQF8o0To5MIECKpjBAlawgWErgb4weveFCQxbDVQwgwWs82DF1MSJBvrCuDRfmEABFcxg1G2BBvrCEnUtMOpGq0fvvlDBDPa96Ot71piEOLGBBnabxhGKS7NGQ8Wl+UIBFcxgASvYQAN9YcMWfV5jN6PPX6hgBgtYwQYa6Avjgh23tzEJ0XLscVywL1QwgwWsYAMN9IWRBBdi87DFyRX5cGEGC1jBBhroE2MS4sSweaCACmawgBVsoIHd1icT15iEODGBAiqYwQJWMNIoBRroC+UBJlDAqKuBfXvjmTcmFl6oUSH+giZQQAUzWMAKNtAWRp/v6/fVmEJoJY5F9PkLM1jACjbQwNiLngQxhXBiAgUMmwVmsIAVbKCBvjCSoMSRjySIEcOYQjhRwQwWsIJtHYvKEaocoUiCCxMooIIZLGA/FpGpMVnwwrjOXxh7MVDA2IuoEH3+wgLGXsSBjT5/oYF9L+KlRUwWnJhAARXsthatE33+wgo20ECfGJMFJyYw6qbAfqbGlTem+lm8k4ipfhMF7FvWxt/NYGxZDqxgA2PLSqAvjOv8hQkUUMEMhq0GVrCBBvrCuM5fmNYexxU9bspiUt/ECjYw6lqgL4wr+oUJ7KkRzy0xqW9iBgtYwQYa6At7v3i+doxj2DvG5N4zFqeNZWPdOG9cNq4bt403b9u8tnlt89rmtc1rm9c2r21e27y2eW3z+ub1UT9OUM8bl8UxSc3iVjQmqU0c1TXY4fTYOG0sG+vGeeOycd24wePMj00YZ/5AARUctXNw2XjULsGjdg22jR3Wx8ZpY9lYN84bl43rxptXN69u3rx58+bNmzdv3rx58+bNmzdv3rx58+Ytm7ds3rJ5y+Ytm7eM+r3Xx2S0J1swZ3hMR1usG0edGNqNGWmL68ZtY9vY4atHD04bd6/EkF7MYlucN27BPd5jctqToxdED50c2x+j3H710DiXrh46uGy8nW826se5HD10ssO+9SHf+pBvfcg3r29e37y+eb1NbjGX7OnKwbaxw2nse/z9lDaWjUcb1uC8cQluwXXjtvHwWrDD8tg4bSwb68Z54+H14Lpx29g2dlgfG69j3R5XX45t1jKPUYsJZYvbxraxw/mxcdp4HdP2yLpx3rhsXGefao+rLw+2jR0uj43TxrKxbpw3bjMzW0wnW+ycS3VlRXvUtLFsrBvnjcvGdeO2sW3scNu8bfO2zds2b9u8bfO2zds2b9u8bfPa5rXNa5vXNq9tXtu8tnlt8159P843346Lr6t/e3jZuG7cNraN19W/xUSyxWlj2Vg3zhuXjevGbWPbePOmzZs2b9q8afOmzZs2b9q8aV0LWkwtW+xw5MnktLFsPLyD88ajv4frypPBDb5yIwXryo2YfLZ4XMsseGVyS9o2to3pX2nLjbTlRkxCW0xupC030pYbKW/evHnz5s2b98qN4Os6mIPTxrLx2Pfx9/PGZePRhjW4bTwyswU77I+NuRbE1KrFunHeuGxcN24bcy2IGVYXxxSrxWlj2Vg35ljLY93/NHlwLZAH1wJJj43TxrKxbpw35pgK98hNuEdukmxjrgUij43TxrKxbpw3LhvXjbkGxSQpu7CAFWyggb4wnggvTKCACmLL2DK2jC1jy9gKtoKtYIvxnnEsY7znwgJWsIEG+sIY77kwgQJiq9gqtoqtYqvYKraGrWFr2Bq2hq1ha9gatoatYTNshs2wGTbDZtgMm2EzbIbNsTk2x+bYHJtjc2yOzbH5ssXkq4kJFFDBDBawgg00EFvClrAlbAlbwpawJWwJW8KWsAk2wSbYBJtgE2yCTbAJNsGm2BSbYlNsik2xKTbFptgUW8aWsWVsGVvGlrFlbBlbxpaxFWwFW8FGlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomRJJksyWZLJkkyWZLIkkyWZLMlkSSZLMlmSyZJMlmSyJJMlmSzJZEkmSzJZksmSTJZksiSTJZksyWRJJksyWZLJkkyWZLIkkyWZLMlkSSZLMlmSyZJMlmSyJJMlmSzJZMmYFhYPBTEtzOPeP6aFTVQwgwWsYAMN9IU9SyZiK2HTQAUzGLYUWMEGhq0E+sL6AMNmgWGLPa4KZrCAFWyggb6wPcAEYmvYGraGrWFr2Bq2hs2wGTbDZtgMm2EzbIbNsBk2x+bYHJtjc2yOzbE5NsfmyxYzzyYmUEAFM1jACjbQQGwJW8KWsCVsCVvClrAlbAlbwibYBJtgE2yCTbAJNsEm2ASbYlNsik2xKTbFptgUm2JTbBlbxpaxZWwZW8aWsWVsGVvGVrAVbAVbwVawFWwFW8FWsBVsFVvFRpYUsqSQJYUsKWRJIUsKWVLIkkKWFLKkkCWFLClkSSFLCllSyJJClhSypJAlhSwpZEkhSwpZUsiSQpYUsqSQJYUsKWRJIUsKWVLIkkKWFLKkkCWFLClkSSFLKllSyZJKllSypJIllSypZEklSypZUsmSSpZUsqSSJZUsqWRJJUsqWVLJkkqWVLKkkiWVLKlkSSVLKllSyZJKllSypJIllSypZEklSypZUsmSSpZUsqSSJZUsqWRJJUsqWVLJkkqWVLKkkiWVLKlkSSVLKllSyZJKllSypJIllSypZEklSypZUsmSSpZUsqSSJZUsqWRJzJTzPlW8xUy5iQWsYLf1idMtZspN9IWRJRcmUEAFM1jAsJXABhroCyNLLkyggApmsIDYIkv6DOgWM+Um+sLIkgsTKKCCcdwGFrCCDTTQJ7aRJQMTKKCCGSxgBRtoILaELWFL2BK2hC1hS9gStoQtYRNsgk2wCTbBJtgEm2ATbIJNsSk2xabYFJtiU2yKTbEptowtY8vYMraMLWPL2DK2jC1jK9gKtoKtYCvYCraCrWAr2Aq2iq1iq9gqtoqtYqvYKraKrWJr2Bq2hq1ha9gatoatYWvYGjbDZtgMm2EzbIbNsBk2w2bYHJtjc2yOjSxpZEkjSxpZ0siSRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElMYfP+08SWszhm9hAA31hZMmFCRRQwQxiE2yCTbAJNsWm2BSbYlNsik2xKTbFptgytowtY8vYMraMLWPL2DK2jK1gK9gKtoKtYCvYCraCrWAr2Cq2iq1iq9gqtoqtYqvYKraKrWFr2Bq2hq1ha9gatoatYWvYDJthM2yGzbAZNsNm2AybYXNsjs2xOTbH5tgcm2NzbL5ssVzfxAQKqGAGC1jBBhqILWFL2BK2hC1hI0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSH1lSAwVUMGwtsIAVDJsHGugLI0v6yvYtJk96/41Qi7mTExXMYAEr2EADfWFkyYXYHJtjiyzJ0Q6RJRdWsIEG+oUWS/tNTKCACmawgBVsoIHYEraELWFL2BK2hC1hS9gStoRNsAk2wSbYBJtgiyzpP8eymHo50UBfGFlyYQIFVDCDBcSm2PJ812GP8XyRAwVUMIMFrGADDfSF4/liILaKrWKr2Cq2iq1iq9gqtoatYWvYGraGrWFr2Bq2hq1hM2yGzbAZNsNm2AybYTNshs2xOTbH5tgcm2NzbI7NsfmypccDTKCACmawgBVsoIHYEraELWFL2BK2hC1hS9gStoRNsAk2wSbYBJtgE2yCTbAJNsWm2BSbYlNsik2xKTbFptgytowtY8vYMraMLWOLe4I80EBfGPcEFyZQQAUzGBnVAivYwLCVQF8YWXJhniGWRlQMrGADDfSFERX956UW6+5NFLBvenkEZrCA3daXkLRYd2+igb4wouLCBAqoYAYLiM2wRVT0359azA/1/stNi+mhExMooIIZLGAFG2jgssWkUO8/A7WYEzpRQAUzWMAKNtBAX5iwRVT0X3laTBCdqGAGC1jBBhroCyMq+q8xLeaFThQw/m4/o2LVvIkJnMPyJusFh8l6wWGyXnCYrBccJusFh8l6wWGyXnCYrBccJusFh0nGlrFlbBlbxpaxZWwZW8FWsBVsBVvBVrAVbAVbwVawVWx1vnKwmBA6UcH5EsCkFrCCcYzjTI0kuNAXRhJcmEABFcxg2OJEHC84BjYwbAN9YSTBhQkUUMEMFrDbWpyekQQXGugLIwkuTKCACmZwPkaZPubzkOlDQAXn85Dpo4AVjI0cxQz0hWNEwAMTKGBspARmsIAVbKCBvjC69IXRJCVQQAUzWMAKNtBAXxih0KIdovv3X/JazOGcWBZGl7bYsujSFwrYK/TvTVvMy5xYwAo20EBfGF36wgQKiC26tMXhji59YQUbaKAvjC59YQIFDFu0Q3TpCwtYwW7zaJLo0hf6wujSHpseXfpCARXMYAEr2EADfaFhiy7tsUPRpS9UMIMFrGADDfSF0U09+kX8NOPRp7BZTKBcnDaW4BKsG+eNS3ANrhu3jW1jh9Nj47SxbKwb5403bxpeD24b28YOy2PjtLFsrBvnjcObon3iJxuT28a2cXjjchLTKxenjcObYl/i506T88Zl47px29g2djg/Nk4bb948vLGPOW9cNq4bt41tY4fLY+O0cdSPa0TMr1xcN24b28YOx88kH32dDItZlotjv/qCChbzLBcPbw4uGw9vHIvaNh7eaJ/qcBveFpw2Hl4L1o2HN/a9lY3D21czsph1uTi8GvsYP5O8OH4y9tDYx/jJ2OTwauxj/GRscng19jF+MjZ5eGMfrW08vLGP5rAPb+yjp42HN/bRdeM58GhjGuaFFWyggXPg0cpIpP7tFCsjkS6WjcPYv45iZSTSxWXjunHb2DZ2eCTSxWlj2Xjzps07kicGyspImHhiLSNh4tmzjIS5WDfOG5eNt+2Xbftl237Ztl+37ddt+3Xbft22X7ft163ddPPq5h1JMvZxJMbYx7xtf962fyTGxW1j23jb/rJtf9m2v2zbX7btL9v2l237y7b9Zdv+srVb2bx1847EGPs4kmHsY922v27bP5Jh8EiGi7fj3rbtb9v2t23727b9bdv+tm1/27a/bdtv2/bb1m62eW3zjgQY+zh6+thH37bft+337bz17bz17bj7dtx91K/BbeM1OF4Y+K8M/FcG/uvVp1vwqGHB0QYxcFFH3x08+u7Fse19iSWro+9erBvnjcvGdeO2sW3s8OjrF29e2byyeUdf76uIWR19/eK6cdvYNnZ49PWL08aysW68eXXzjruGvgiY1XF3EGMzddwdXKwb543LxnXjtrFt7PDo6xcPrwfLxrpx3rhsXDduG9vGDo++fvHmHXcNMXZTRwZcnDcuG9eN28a2scMjGy5OG2/ekQ01zuGRDReXjevGbWPb2OGRDRenjYc3+tfIhouHN/rauGuo0T62XgmNyZEXGrheQI3JkRcmUEAFM1hAbI4tflz+iEf/Op5ggtu4X7g4bSwb68Z547Jx3bhtPLwS7PDInIvTxrKxwiMr+qpf1kZWXCwb68Z547Lx2M4W3ODRx2NIoI0+fnHdOP5+jAq00fcvdnhc5y1qjky4WDaO7Yyn6jYy4eKycd24bWwbOzwy4eK0sWy8ecvmLZt3ZEKMDrSRCRfbxg6PTLg4bSwb68Z547Lx5q2bd2RCXxjD2siEwSMTLk4by8a6cd64bFw3bhtv3rZ5bfPa5rXNa5vXNq9tXtu8tnlt89rm9c3rm9c3r29e37y+eX3z+uYd+dAXMrE28iHYRj5cnDaWjXXjvHHZuG7cNh5eDR7eftxt5MPFaWPZWDfOG5eN68ZtY9t4846ciZEeGzlzsWysG+eNy8Z147axwWu+tNmaL2225kubrfnSZmNxlhhdsrE4y8UOjwXaLk4by8a6cd64bFw33rx58+bNWzZv2bxl85bNWzZv2bxl85bNOxZ7esT5EqOb8RZozHy8MIFDKsG6cd64bFw3bhvbxg6PlZ4uThtv3rHSUwzzXeszXlw2rhu3jW1jh8dKTxenjYc3Tqix0tPFeePwpmjAsdLTxW1j29jhsQLUxWlj2Vg3zhtv3rEyVIqOPlaGutg29sU+Voa6OG0sG+vGeePhzcG2scNjBagYwrtWhowXSNfKkBfrxnnjsnHduG1sGzs8Vr3p6/Cbj1VvLpaNdeO8cdm4btw2to0d1s2rm1c3r25e3by6eXXz6ubVzaubN2/evHnz5s2bN2/evHlHKMUw6LVq5MW2scMjlC5OG8vGkbpxCoy86R8WMB95c7HDY3G5GEG9FpC8WDbWjfPGZeO6cdvYNna4bd4RLTFaOxaKTDFC6yNaLq4bt41tY4dHtFw8xi6iya8xkMG6cd64bFw3bhsbfI2NhGtESIwkXwtIXpw3LhuP/SrBbWPb2Cf7Y0TIxWlj2XiNxfnjGjcZXDauG7eNbWOH02PjtHGe++5jUcrYLx+LUk5uG9vG237Jtl+y7Zds+zUi5OK8cdl42y/Z9ku2/ZJtv3TbL9326xojHby1p27tqY19122/RlQMHlFxcdp426+87Vfe9itv+5Xrxm1j23jbr7LtV9n2q2z7Vbb9Ktt+le08KVt7lq0964N9r9t+VdlYN84bb/tVt/2q237Vbb/qdp607Txp23nStv1q2361bb/atl9t26+27VfbzpO2tadt7bl+oeGP9QsNf6xfaPi18mR/DeTXypMX28YOj/uRi9PGsrFunDcuG29e37y+eR3vtVLlxWlj2Vg3zhvjHasypj4w5GNVxsll49i2PoDi16qMF9vGDo+Oc3HaWDbWjfPGZePNmzfvuGb2gRhP44a9LxfvaVw0r/99bFsOHtvWT7Y0LpoXp41lY904b1w2HttWg9vGtvHwRjuPk78P3HgaJ3+Lth336f1bjp7GxXTsy7iYXrzt47hQlqg/LpQXp41lY904b1w2rhu3jW3j4Y19Ged8iX0Z5/zFsrFuPLyxv+Ocv7hu3Da2jX3xWHlyctp4nKuP4Pi3/UuyPlaSTP1DCz5Wkkx9wNTHSpKTdeO8cYPHBa4/z/m1MuTFo04JHtvQ20rGvW0fhHUZ97YXy8bDa8F547Jxpf7od9f/bhs7PPrdxYl2GP3uYt04b7zt77gwjX0c97CDy9YOsYSaRdPGEmoW/zKWULuwgg000DtGsVgszWI/Y7G0CzNYwApG3WjyWCztQl8Yi6VdmEABFQxbHJtYLO3CCjbQQF8Yi6VdmMBQxDGJFdIuLGAFG2igTxyrLV6YQAEVzGDYPLCCDTTQF8YKaRem2epjtcULFVwH61o28RHY/0L/IJxfCyQOLGAF++b0kTe/Fkgc6AvHomYDEyigghkMmwRWsIEG+sKxqNnABOrat7EqYg5soK0dGusfBo71DwcmMDY92mysfzgwg7HpNbCCjQrYCraKrWIb6x8O5LBUDkvlsFQOS8VWUVzPa3F2Xc9rcZ6My5DG3xmXoYt147xx2bhu3Da2jR0el6GLN++4DGkcr3EZujhvXDauG7eNbWNfPGbZTU4by8a6cd54eB/BdeO2sW3s8LicXZw2lo1147zx5k2bdzzH9VlGPmbHpT6zyMfsuMl147axbezwuPxdnDaWjXXj4SrBdeO2sW3s8LjkXZw2lo1147zxcNXgUbMn9pjtNjltPGpasG6cNy4b143bxraxw+PW9OK08ea6PvCRgm3jqBPX4zGrbXLaWDaOmnEhHrPaJpeN68ZtY9vY4ZEDF6eNZePNa5vXNq9tXtu8tnlHf4+7hzz6dVx78ujLcUXPoy/HVTiPvnyxLx7z0yanjWVj3RjXmJ82uW7cNraNHR59+eK0sWxc1/EtqW1s6ziWxHEvQvsXSRvLxrpx3rhsXDduG9vGHPcxV23y5tXNq5tXN69uXt28unlHH49jPeaqXe0zHhXjWI/5adcxym1j23g77mU77mU77mU77mVzle24l+24l+24l+24l+24l+241+24X+MqFjweyT2Y6+CYqzbZNuY6OOaqTU4by8a6cd64bLx5G9fBMVdtMtfBMVdtctpYNtaN88Zl47rx5rXNa5vXuQ4WTxvLxrpx3rhsXDduG9vGXH/r47Fx2njU12CugzU9Nk4by8a6cd64bFw3bhtz/R1z18Z1bcxdmywb68Z547Jx3bhtbBtz/a3X9b0Gj5otuGxcN+Y6WNU25jpY82PjtLFsrBvnjcvGdePNVbb9Hf03x7aN/nuxbezw6L856oxr9MWysW6cNy4b143bxraxw23zts3bNm/bvG3zts07+nj/cauPOWcXX/108Pi3cW6Pfnpx3bhtbBuPbe4ZUkd/7PNUvY7+eHHeuGxcNx71o0+N/nixLx5zxSanjWVj3Xh4c3DZuG7cNraNHR79+uK08XCV4Lxx2bhu3Da2jR0e/fritLFsvHll845+3efr+phnNrltbBs7PK7pF6d1XJrKxroxx3TMzUr999E+5mCl/jtlH3OwJuvGeeMxPBh1Rh+5uG1sGzs8+sjFaWPZmPO8XdfBwWXjunHb2DZ2+Bp6jf29hl7jfLuGWAdX9vEaYh1sGzt8DbHGeXUNsQ6WjUcbxrG+hlgHl63O5vXN65vX8do1xDo4bSwb68Z547Lx5fqv//qHP/31X//ln//9L//6t3/697//+c9/+sf/XP/Dv/3pH//Hf/7p//3z3//8t3//0z/+7T/++td/+NP/75//+h/xl/7t//3z3+LPf//nvz//32fr/vlv//v557Pg//nLX//c6b/+gX/9+PyfPm8b+k1W/PMnm6wSzzcnvxRJnxfJvU9FiVzrKtD0l38vn/977cOm8e+f4xNswIcCx714jrytvXgOKny6F/nzIs+h3XTVeI7sKiVE75bQ1iepjD1ppW0l6i8l6qHE2gjdtqHZ3X9f0zwbnvcZ698/x/x+KWCHtsx1Vnieo/ZpCT8dT1nN8Lzyflri1JKuj9UONX/akulwWj7fR+g8oM/xZWqUD2f26dTUsjaD5nw+fN3fkcaOmH6+I4capa7GeCKHpH7Yj3I6qn0e43VUi3xa4nBmtTYPqunWmO1+BctzN+zp/bTC3d1on+/GqTHbY/awJ/pnJeRxTIp1YpWcPi2R3m0KOZyZ8vAZec+XecRull9L6GEj6ox+8/b5Rhwa8/lub7bEEzkrnoPv93ckHn+uHSnp0x05nFhCaD4+LXDuYV7XSZH00yNq74feqcZzqHjWeI4Cf3790Mcxv9elsGyt8Xwb+muNw9lZbB6R+ihbBbt/YuSyToyy9bKPJ4YeTs8+orJqOGf480XHrzVOF/Uqq5c8H5I5sPe34uYpfqxxtzXaD7SGvdsa545SVkep9dPoO1R4DsGvu8VnCn56jufTld3WCfp87btfVO12jecrXl013D6voW9fVXN+96p6qnDvUnJ7Nz6/qt5tzbSd4d87Iuve9flOvX1ew9+/ey2PH7h9Pe1L5saxHPalHC6MFmPh48g+h/I/vX891pC1L31lqs9r5LfP8lLePctPFe6d5bd34/Oz/NyadR0R8RePSPF11/UcZvm0Rj1d40teD+1tz7+PzyXp+KA5a6jlzzO0yttnRtV3z4xThXtnxu3deDH/LK8rkm0lfmvN9n5r2tutaW+3ZvuDW3M7N/c+8p2rSczAux680+dHpOnbD97t/fBsb4dnezs82/vheW7Md28dy2M955XnkN+nt452iM7nG6h5atVfmvND/Nrh1IqFE0dbPPzxafoeByzzeqp4viEs+umA5blFGy1qrx2Ue6MhVk6jIY+6xk1T/rREfbuTWHu3k5wq3Oskt3fj805ybExddwfPxqwvlSiyxrGLfjqW4YcLYvEyz/Dno6a/VkLzjRLnE+vWMJu/HZ3+dnR6e3t8y+3N8a3jNtwbLIwfbr83Whi/A//85YTOHalpe/bvr31eLFJeLJIfa4grSzoUye8OO573xfLaF3t1X0TnWV5lS89vFmllFfFXD42u55KqrR6KnB7hH49119U5fTpcdixzd9zuiyI+j49r8heLaHmsItsL0u8VuTmEmE6jd3fHENPpHczNQcTjdpisFrHt5uf37bhbpD5eLbKuMU+srxXpS5zWdcamdihzPMRlBZvvtw/fPNmMk23vx98rUp0in3fA+1fvz19ant4itDpLtPbpRet8h3zrvU6S+v6D5LFIjp+/jVHv5PlQ5HQb0NagorR82Bt//0Xw6RXTzTfBpxI3XwXf3pPDu+Bzi66XZdIsv1RD0wrV5yWivVrj8XaNberI3vO/V2Pd5D3LfV7j9JLp5sPDFzVuPT2c9yXnNYyfq71f48VzTMXX0GC2z4/t8Q1NXQPPqcnh7vu4Ia2sE+SZrJ9vSHn/4J5r/MDBbYl9OXTcfJrpFGsFjkZ93vG82qjrDlHtcJYdXzith7PnU8nnm1EOd97Jy9oXb4fnmdN25MQ8Pj00x+k6J+sSlaU+Pr/Olfz2iFIqPzDhqbw/46n8wJSnH5jzdGzRe8NK5xr3xpXiN/Pvdv3z2XFrWCi9/9Ypvf/a6Rt78nl21PrmLfK5y+qK0pybv3h/K62tfn+6v60/MPU0bpbefXt/3h17zPM0e/18ckgsqPL+7ugfvTu+rjDl8TjtTvkjz7TCbNqS6+FJqrXTRUo40VaJ52XnQ4n3p0Edt2INue2Xyt+24vQmqr87Mt4jbTlUv1Ok1bSKtGavFbH1CNMXF/aXWqSt4+KH42L5Dy3R16BW2iN/3qj5Jxo1/0CjnovcPEeO3a481ltsz/ZawNfEDwuStleLrHGy55t1fbFIVobu66u7ozrPtefb18N9qucfCPjTC6YfCfha1k9w6vM97mF3ThM3iunqO2WfE1S/VWSbf7wPqX4s4qeX9OvtTEvy+YVCTu+rclljKrkepr7J4/hcldel4pE+fXiXh7z7eCePw13ALz9lafvLDP9Q5HS6Psem1/F9cv50mPqLMkVXsD2fXOzTMsdTtumaMdry9vrs92Pc3h4RlYe9/aQopwHze88TxxI3fxFye0/aYU/a2yOixxo3R0S/qvF4u8a9AS85/WbplyfW8lqb3hyZ/aLGrZFZSf724N0XNW49wZ/3JT/W+bG/fP9YQ+SP3o5bI8T3a7zY526OEMspTu+OEH9xst88QeoffGDuje6KPt4f3f1iQ26N7oq+f/k//X7o7ujucTtuju5+dXOXt5u7zx6dY0LKu3eIxyI5rRnCeX8cqd+4tWt5PeS1/PmJqu+/TZX89tvUY4mb9w76/tvUL26W13XueXv/+fX29Gum2/Fxuluutka7q/nhbvlUpK1GfWJ6rcj4gPA17n68bz9tSVGGievrN/9WufnfrjLfvflfe9QfBOqhjB7fR5T/7n3E99olrzFnydst4u9F3k7F42kv8X2ksR3pYS91HSHPJB2ueKd3TTcvNKX9wIWm1Peb9Hho12Dz8yjrq6d8TC6atwD68vOuZJ53pb7cc2Td1PSSh0lip3nVbe7R9qYm67dGFCVtI4r64rDkGoN7cvlsWFJOb65UbD0F6KO9UuLeXcBXo/A32+PxA+3RfuB9wLHIzRY5z2aM719c2/HYJyJ+b1LkQ+tW5jDLU46tcntu5alMbavj1LbNaKzfKGGyxlgtt9dKrNvnau3TEucp1g8W+Hm8PGPclSKfz9M+/o5V142a9Vj+dHj19EuqmzM9xN7/EarY2/MBjiVu3oPb+79DPbfovZke5xr3ZnqIvT8L8Isa954FzmfYvbV6PL19dvj76/3c35PPbzP93QnV516/3tGa+qHXe33/ydvf/7G0uL1/XN/+ufT9PTn0+mOL3nvy1scPjKiet+PW6zJ95HcfY/RR3n/sPm7HzceYU3PcfTI81rj3ZKind0s3mzQ93n8yPG7HvSY9r56xXi1Z2X4w99uafsc1jG79bPq8Atyt+xb9gSX59P01+fT9Rfn0B1blOzbozduWx9t3LSrp7buWL2rcy9H3bzi+ePq69yPK8/J+937+eKxx89ePx/XTbv5e8HaNw88FzzXu/Vrw+C7n9gPtsVVv/lbwvCV3z5Fjm9z8reB5pb/39+buuXrel5vnavuBc7X9wLnafuBcbT9xrp5b9d5PUu8vufrpnZSefkR16+HnuDwncyCfg2vb8l8fl+c8/frpee1YEznk00G+L0rcGTnV3N5+f3pqDIb38r6sxe+N8QPL9elPrNd3XjX11i2MnpdhmGNqv0xMt/sV1q1Y3V4P/FbhuDDcgxmc28TJ3xZ/PTaF0BSin9coxwfBeMt7PS9IeekMYzWJXFQ+PcOONcp6IM2lfL5klBY/vQq+NctQ690T7HC3X9++LTyWuHm3X3+gq5xb9NYsw2ONm7MMv6rxeLvGvVmGWu+OdJbX2vTmLMMvatyaZajtB56h2vvPUOd9uTfLUFv+o7fj1izD+zVe7HM3Zxnq6ZdTd2cZfnGy3ztBqv3BB+beLEM9vrK5Ocvwiw25NctQ7f1R09OKLbeH+OztUdPjXdBa6Kj+8tO679xH+aqQP6/QfuId+BdVbr4C19NKpt94CjuVufcK/Fzi1ivwL0rceQV+HlC6+TiZ/9hBi2+cI/oj54j+zDmi758j+v45om+fI6db1LZGC56vTLZU1l9jKJ/f/9x5RD6WSM8kWlOda9lmWvTla38tU98dMviixJ0hg/ywP7g9Cj+sfT6qPz5vj9O7KKnrTuaJn/0691ji7ldS8unjUPc+k3IscW/Q4Fzi1qjBuTVuDht80aT3xg1yau+PG3xxmhl3ZdW3ge3fT7PTQ2pqLJq6TSN/vqD6tchx4PLWWgPn7ZA1L1Ce/Pl2HIsUprOXcihybNj2WM8hT96i+beGPV19b+bZucStPJP6x+bZr+2xv4/+Ld+PZVR4rNqfu39v1uP5yiHeF8aVXF4t4j9QZJsN+80i61rx7ImPz4vocSJ5YSJ53dfG/fiVn/Oz1fZRRj0UOa2HaXxe0ry8WMSZd+ApvVwkUUR+okg7FDn+UEf5oc62zMZvRU4/fiptrX1Q2v7S7juH+HlurPWLnmMcr54n66lC3dOLbbJPY8inNjmupLLeq+TW0osN+1hrlpZfHm++U6RqZb6yy0/szuEQ38+TQyidXljdXEg9n95XiVBDt67z24acFvxrpc29aWVfcOtDi5wmUz0f1Feu5e2V+XObfq1xWp/q8eAzapI/r3H+bdp6S/PkWj7fm+MUovUJHtFtFO33Zj0WMY6NHU6S71zP8+fX82I/cK6dXrC6+TYzVA53KPXYLOuGWvYP4crHbTm9e7p5K3xsknvfUsinhfturdp/btRvHN9jmdwoU9LhMeX0IyjflpnaO7HZdzalNG5kWzoMVJxG5Wtad+VVt+W2fy9ynCS6Fv95PveW14oUpmo8Mb24JXlNw8n7G6TvbYmWtfae1vxiw6rwkP84FGnnz0gz77W8WqStlwRP9FeLGEXs1SJ1PZ6XfdrH94r4GrR4XkXl1Y7M/Ulne7WMJTqhyauxYo/1QjpZSofmtfcHt+z9wS17f3Dr3B5lPein/vXFQ3ucZrT0w7NuUtrnw46nb0zdvASet8P4mWgy8U+LnD7w8FjfRfD0+fDJsURau+Ipf9oa5yNT191WslZePuGNpQ3MT6Psrm+PSp1L3BqVOi0HeHNU6hvtcbqYf1WmUEZeDcfnP22UyYcxQ/f3j46/e3TK6YezP3J0fmmP0l4/Onkr8+o1xx/rqenJrq+WEd64uZbP79rK6S3VvWvOscS9a865xA9cc5x5h8nr4/OjU95/0XUs8byzdx4y9i35VpHGypFP9heLKF8tbrm+1HueQ2zbJJXTJeM4h/GHHotlVZE9UX5/LL5bZBuO/V6RvJ53ni/QHi8WYRVZKdv00G8VebbD+lzSw/TTIsejs9Y4kH2loo+v70+7wvOf9AWkPytRRI8viW/NTi/HN1U3Z6efduaR8mqPfNqZdz8UUE5LLj4jft28Wj1thr3fHMciRdbvdMov32FX+UaRsua6lPYoLxZhlbDn43D6vMhxhcBb9zZflLh1b6Nvz3f5ojXWRMZi6ofWOF5+1whDzaaHIu20Jes2ID0+G04+bwZPjb+uEP6tfSllzWT65efK3yzCjMiHv1xkLXheU3vxbLcVIsVPRU4/w/qRInfn75Tjh6ju3W6eSty83TyWuHW7eW6Nm/N3vmjSe/N3Sjleuu/N3/niQrPGxZ/3RvlwoTkVcaHI6WpV9I/eHV9j66rJDlty+g71+qGK/zIw+PhQ4jQHUNfkfc37pKj8nSJeeMe9vUX9vYi9fcE7l7h1watvr5V2bI3nWPx6Q/DYn3o/tkZ9//Jf37/81/zHtkZaXS7vn/f+vTXq+61R32+Ntye7Hru9skBa/2nWaymm/K5D9+e634q09AenmNa1WMDzxv3x4u60tZTtc8fqi0V83WXmx6uXB/X1I5FnkcOWtPoDD4inDyfdfyI6Hh3eardfhmo/7s5pgNS2aW6rRLP7FSofCdoeun/bk9MyZ7fb1OQH2vT8bnB9rOiX37d/uB2y88O/sx37ve6HRj39LuveYTluRlsDKtrqaTOOF4jVd7M+Hi8W0bUkb9ZfnhA/Fnn7XcB5O/J6e5XzL68EP2zHaVG/Hyly+0nG9e0nmVOJm08yxxL3nmSOrXH3SebcpDefZE4r+92+aJ4ihFS29HmE1NNnrJ4vSVce+tasrX6okd5/Z1xP6wPee+F73hcvvBXZppH9ti/Hla22X91tg9T64deyXxS595nAr4rc+kzgF0XufSbwiyL3lo4+Hhx5yLZYoX96cNIfXMPLY51nv9wAfJiC+UWRzIpSpb5cZD1071/V+2aRtday7wNvvxc53AL4GhDxffrzx1P+uEjf3X5z3BmuEl711Wat67sN/svnOb5VhDVkn41TPi8if3SRXxbo1MPRORaRtQKayPbzrO8Ved5jrjeJ9nmR4yXL1t64Pz6/ZMlxXHWbVJc+//JilfcXCY7fbXx+I3Br0Z0qby8SfCxxb9Gd+3vSDnvy/iLBVd9fJPiL7bi1SHDVt5e7qMdfMN38StC5yM2vBB2L3F2u+LwlN78SdC5y8zuj9fSTn/vfGf2qzM0vFn1R5u7nSr8qc/PDR+cGvvnho3ORmx8+qvr2Qi3HjnxzeetzjXvLW9f89vLWtfzA8tbH7bjZpOdDe+/DR1+cq3c/fPRFmbsfPvqqzM0PH31xw7cmwXjbXoH9dq9W2rsjR1+UuPNyoRb/Q0vcez/xRYOuQcFn2+rnDfr4gc9JfVXk1ueTav2JZ+AfeAl2HAS7tXzVF+Nod9avOr7yuTcQX+sPrM1a2w+szXp+uZFZYbEeXvjED4I+v1it6V7y6+K99qHI4cg8r7brt2m+j/jmdL9I4SfRJe9zE79VxGRNT3rsk4K+U6QKI7ZSTlvyfqaet2NdOeu+dvf3dkbXeG395YNUH4ucvuT2EzuTV5jVvD10/r4d8sduRyFG9geC37fj7aVavihx62pnby/Vcm6Ntn51UW27TP3eGvYHF7n7wqf6490XPscS9174nEvceuFzbo2bL3y+aNJ7L3yql/df+JyvMtsQ3P5o9ttV5vhFqJtDX8fXVzeHvk4/mLo59HUqcXPo6/aeHIa+ji16b+irnb5Je3fo67wdt4a+2unjVveedtvpF053h77ORW4OfR2L3B36Om/JzaGvc5GbQ1+xaPD7Q19flbk59PVFmbtDX1+VuTn0dW7gm0Nf5yI3h76OPejmOM2pI98d+jrWuDf01U6vfG6GgaT3h76O23GvSb84tPeGvr44V+8OfX1R5u7Q11dl7g59HW+zbg0pfHGndmtI4TQX/t6QQjt/WuTekEI7rQ58e0jhOI1d1miAih8mbh+LtPUzNPX0ahFuK/Lj1SJZ1rcOstjns/Kb/tFF7j7dxG+B33u6OZa493RzLnHr6ebcGjefbr5o0ntPNy3/xC9ZTj9C8TVJIYns8x0/nCD5D66RbP28T375ocF3ioisZhWprxZJLDon9bQ7PzDS2n7iK1hftAm/vPp1ju+H3TktK5iKKWe95c/eCXxVZAuS/QN2H4vk0y0nh7j+sljVx9053S2W9dOr/MtE8A+zWVp5f85DO755unevd1w/7+5DznENhvsPOecyt59OvjpR8naifLaoUqs/cbaditwbpTyfJvdGflp9/7vCrb79XeFjiXsjP/f35PORny863r2Rn9NLrJsjP+eed3fI5Vjk7pDLqcjtIZfjltwdcvkiSO4Oc3wRJHfHJ467dHd84ljk7vhEaW8/TJf3p+aca9wcnzi+x7p3zTL9gfEJk/eb1H5gfOJ8rt4enziXuT0+8UWZm+MT5welW+MTXzxr3RqfOK6jcG/ixXkphjtb8cUaSuR8+eWjId9ZiKmyJFR1fbGIrfeu4o/yWhF9rDeeT/x8d8pphPHuklDHIvc+TXUucevTVF+UuPNpqvNxaetuol/PXzy4vxTJrxYRiujnx8Ueb88Q+KLEnRkC9v73rY4lbq7teG5Q3v7uvwf75lHhQyHNX02QfUteLmLrQ51PfLkIT76nIuclGe9l+3lVx1vZfl7ydn0H2lN+cdXcNZXtiZ+v3SvvtsUXqyrfaovzEt7rSzTPR7NXl/Bmwesn2qtF1rcJntfeV9cBt8yW1FfXRmfc65dhr2+uSL5+/vjEl9tkPVg9ixyOznH5+1L5/nqrP1DEXl2In3dPueZXd4efHeZ2OtmORbYv0Zh+XsROb7AaKwA3z5//7NBOv8TKrJ393OLy6Z37V1tS15aU05acfuT+WA8Rdf8EzLdaZH05yR6PetiO46DV+nBE21eG/b3IaZB1/UJ9HwPok2PvnyP8ojuf1nc29R84R04/vbh/jvgPnCNZ3j9H/AfOkdOXpG6fI6fHxJ84R9z5ttbhSymWT4tciv33y6DahxrnKa1rXci2rerw8ctLx0+cPNYtSXm0z79eaKf3V3d3pqQ/eGfSWqW6/Ppu8VsffVlfxyua8otFhC2R/CNF7NUi633r8zC1V4usVyzPeq83bKNh9dUiiSIvfx1WMq/Syv7w/OuYop0+iXXz4flc4taTb9U/tMTNh+djgyqrj2t7HBr09AWBO+v+njcj8/i9L+r0+2bY+2F2Okvvhtn5q7/Caxopn+7MF0UKX6Ssn7dIluNnLW9+f1j03THAc4lbY4BflLg1Bpjef4ZPbz/DH9fqufV5QTut92fr4c7889c7dvzFVVpP3pr220u//b2A3FZ+ZXvIp7e5j+MEgPVapu4l6u1PDqTK17vqtrTdd0rY9uWu8tpWOD9zfDzSKyXkQWg8tmGM72wFXxvoXzJ7rQQf+tgXT/tOiWSseuavbYXynZD9w3vfKZFXJ3kO/pVPS5ifnvaNF5j7mZHun+G6Mud5gX6tMTK/sN6/h/hqe75YwphTabIvUdQ+tOfbH2K7vZRd+nQrjiWcfrYPSH2jhK1RgmdXlU9L+OMHVlz1xw+suHp3Dax9xfbfdua0DMDzgrrWEnheGT+7PH9VpJLl+xvYj0VO0ydsTcHQXz5B+tvutNO9xrouPd8JbyOfj3S/SMsr0J/vCl8tUtcJ3wdRPi+S3v4Zwnk7Gtth+/j4b9txXFGApfDLvvqz6Ici568uPJh5+Nimd2uxb2xLoef8MkL+27acu996T9/2b+z9VqS+P+Z4PD5W14Igz8ebx+H4nFb3V1Y934PgQ4XTM36r+b99tVQ/NIicv2W1TpPH/hj3scixQWTtjP3yHPexQU5LYCQjkHz/AHD9kEhyXL1ijeLsH7T5rUT+gY5zWh/wGx3nuC13O84Xn+e613GOawTe7Tjnr42t9XieL5fT58dHz5N+1jVnu6vxDxVOi1r7epjqh4l9Sd8557l5N9v35eM5r8fTdV1Ay2Ofhvzx0JxeTqW8lo163udwaPzDRfi4KJcrM6n2R9SPTaLHn78yrqT7u5j64ZTX423rvVnEX2zJGhKWvK+N+9uW/MBbIc/HidWZidXbGKrePzbPodwHI6j6+bE5vZ0qrI37fIGxp+v9IYj1Pic/78lfuZfPLHD2fLV8uP09/jLq7r18ru/fy391D90S99CfLmztp7dTt2/E89vfcjney98+NudlCgpDoNucrN+KlOMyVms2tOxzKX/rd8ffzDhT3ZMcOu/px1W3E6CcP8HG5J1ttF3vl7j3avmLXbn3atmLvf9q2Y9LA956teznqZDCOyX7fFjBT2+Vni/omBp6WKPbTz+Iun2GVH37DHm082jk9g3k/Qci33pQ2+99t9/hfvcZ616bnIvcPF/rT5yv9f3z9fYjxalZv7gDv9es5yI3m/W00NjtZm35/Wa9t4jkPiny48PE6fNWWdermaz714s+Pv6en0jW89U2EeLjE8lpTxhH++Uz97/tif9AnJ3eVN0+x06ft7oZZ6cSNy945125eabbD8ylcit/6JmeHmuA5fkes35+hthpLlVqzE55pMN40WFL+DBdSvtH2H7bkOO8knVons8zhxs8/4lT1d8/Vf39U9V/4lT1nzhV/QdO1dONd1tzkNMvX8b4eIac3l3pQ9fj2WP/qPRvRU4PRQ8eWNP+5ujj+X7cksTHYNP+RPNhS9Lj9OGhW1+m/2I71pjzc+S4nLZD3r9IPKvo+10vPR753b53rnGv8321N/d637NKe7/7PavY2/3veKJQQ/MjHU6U01uszC8r877k+ff6TmbgOdtxU+T9q8VYsuP9czb9wDmbfuCcTT9yzqYfOWfT++fscQRb18FJ+7zIDyPY6XFcn2+tK5K3iTDJ0jdqlJXT+2Ic36yxrn/F6os16ppb/escz1drlFdrrPaoL7cHv0mqL7dHW/vSXm6Pvcar7bFfx19tD+6P2svtYQ8+uvn4gRqvtoetr0Nae3k71gtos1e3w/nOx8vtsdd4eTvWj5H8kEHn9183F8A5F7m5CFZ6HD9rU50pjuVY5fS2tbb/Jpe1Pr6xOzfXrTkWubso0HlLbi4KdH4neO+p8/xacbXIE+srJW4+uP7E79WeJ4j/xG3IcXHAW7chzxqnVwKJRUlk+03xf1Pl9KqVT0Nuc1C+WcPbf3Px/ube7JMNt+ffb1Zpa863tMP+fDG9wJgBv08cTx/vek+LRt2/hy/2/j38qcbde/jz3tztPKe3WPc7T5X37+GPsxRs+52XHA7x6etUmh7bWHr5bJrCs0g5vwxb1639t3wfHydOP7PirXxt5bUSbc3i/uWu9Xsl1kxQ+XQrvpj4sX4NVB77DefHFj0tD5jLGvbN+0rBbxTxz4p8Yy5MO5xl7TwPbY1R5n2Jg9925zQWUNbNXqm/DIV/LHJ8s88PrVJqP1Bk/7lA/c4juNMkp0lkp/fY0vhJ8H66ym8H5/SDq7Xsk+X9J0b2oYbdewb39Ok957PG2/etX2wHvwf2fKqhP5Hw9vbr1meN8hO3R6cvXd29PTrWuHl7dNwbfhIs+pBXq9y+PTp+Lq+spRJ+WUTyt45zehOla53uvO3Ob2Nofpxjv36CteeIPb6xL5nrzS8p//u+/MDMq/4tzfdv0/wHJk49q/zIUKu/P9R6+yc7+vlPdlJ6HH+UtUI62Tbh/+MbrdOsp5vPn+fZVzePTXr8RMCmR/5Dj83zxR7v+OxxOjb1B96XpMdPPGulx/vPWscaNzvxF3tz90RJP/GslZL8wSfKupPWrIdptufFINeFOKdyOttS+aOr3Fv14Isat5Y9+KrGnXUPvhgw0fXY9xyASS8P3ty7O/lqiI8v6Iq+NkrI90Af+ulA43HM9Oaq0l8Uubfq+PnHbmmtB6H6+PwXc3296UMM5BWMXPh+LXCaLMgKm7J3mI8H9lyC7zzvPzL9Tombt/JJH2/fyp9r3LqVv/ub6sMw53Ex6rWWza+LUX+jxM3ngOOOrB+2yL561HdK3Myex/vBc7o7fMg2W/GlgzrOmVEibTeY3yrB906SvbYV26CI+mtbUYRfK21XpW+VqHwjxPy1HVnfPUsqr+0I3x5/JthrO1L55VZtr21Fawzt+mtnp9MWLi+VaGu955brKwV8rQO2z/f+b4LzuAbnu+ul+Lqdfd7sv7Qbq4d5K2+2w2sFVNeL7ufT03Zv4Xa/ROapa/8+xIsltmv6t0qsISDVKi+VyDw+5u0Hmt8pUbYfqvhrbZHXIjxP9LdL1NcOal4L1Gq28lpbrB9EPh/ZXjuorE33xPxaiQcrAOiLBzWvN3OlvLQVyfihq1l6qYQ/WN5h/9nuhxIpnd4hpe0Tj1L3KTb3t4NPsnmW13aFEZaHltdKsFSVv9ZLkm8T7c1eLFEo4W+X8Fe3YlvP7aXuLo8Hi0RpfnsrXjuo90a7js9CvAfwqq8UuLPawNvzit6eVfT2mMXbIxbHBRudC5CXx74GxcesssPApZd1DfJfLqYf1mx8Vjn9WOrdZdyeowWNAYf02Vh9Sqd3S7JW9tDHpyXObaorNJ8JnD5t02OR/kuO9Qjx5BfLPLvG+kTJPtH7e0VkXdyfmF8tskZyXZO/WETXqgvPVq6vnq62nlTd9uz4/XS9W2X75PB3q9hq2/1Tpd+rkh5p5Wn/JcTndb5oXqN5t+W+vte8/YdMyqnb5OWd4rdxvc7hQMnpp2D3G+dc5+bQ/bnGvaH7L2p8OnT/P5//5Z//5S9//6e//uu//PO//+Vf//Zvz3/3X73U3//yz//rr3++/uv/+Y+//cv2//77////zf/nf/39L3/961/+7z/9v7//67/8+X//x9//3Cv1/+9Pj+s//of3d3KepPzPf/hT6v+9PVP3eW+Un/9dn//9OWJQpP9//S/HYKE0Sf1/iL/dB5yf/2H/87/65v5/"
6002
+ "bytecode": "H4sIAAAAAAAA/+29aYBcR3UoPN093T29T/dMz/Ts+75II2vzIkuyZFsG27IlbwFkM7bGsvBYkkcztiQkWSO0y8LaTEjCCw+8oITFCfgRyMdLSAjkS9ANhCwkDryE5H0hEBbzgGyPhG9kdd8+91adc6vurSvd9rR/QGvq1qmqs9epU6cCZ8/84is7prY/MrFz50NPzP3P+JaJe8/MfvSmqa2Tk1u3rBmfnDxf8YuzL62emhrf/Y2K9LnTZ87+QXsF/Z+vwvKTCjFAPlWA/KoABVQBqlQFKKgKUEgVoLAqQFWqAEVUAYqqAhRTBSiuClBCFaCkKkApVYCqrQHNvrxx67YtkxNiANOqAWYEABaU8CoxkDWqsFerClBWFaA6VYDqVQHKqQLUoApQoypATaoANasC1KIKUKsqQG2qALWrAtShClCnKkBdqgB1qwLUowpQrypAfaoA9asCNKAK0KAqQEOqAA2rAjSiCtCoKkALVAFaqArQmCpAi1QBukYVoMWqAC1RBWipKkDLVAFargrQtaoAXacK0PWqAN2gCtAKVYBuVAVopSpAq1QBWq0K0E2qAK1RBWitKkA3qwJ0iypAt6oCtE4VoNtUAXqLKkBvVQXodlWA7lAF6E5VgNarAnSXKkB3qwK0wRqQXGhqo2qA96gGeK81wNOf/0bFfXPHAIHKYChcFYnG4olkqjqdqanN1tXnGhqbmlta29o7Oru6e3r7+gcGh4ZHRhcsHFt0zeIlS5ctv/a6629YcePKVatvWrP25ltuXXfbW956+x13rr/r7g0b77n39Om5SZrPUL7Re8/sS2u2b9s5fW725bVbpyYemfbPfuS2bdMTWyamXrj3Gmsv1mfu75Pqf+B75v4VcuMX+1/YMDE5Pr31qYkqOQj3sRAichAqZj926QRq8/j0+JrtO3brS7n4PjgpAP3FNeNgxRc/An7Bgc3ffQf8MnzHLECOCBXvc4yC9OwLd2x/6ixcr84PDOyoHOzM3Dnf1m3jU7vnOq3f8bwO+IXVmze/sXx9JDDCx2/btvmNvzrkDp9p8OIQ+vDsmv15bOT/GYCEMbRUwikbWoImfpmcPDNoxrEPDm1q8wOeMjUF9KYLLG0q5dDza445Z5WLnLP6TcQ5lSo5p5LgnCDQMqamkN70XXNTWG/65/ygS/L/f/G4Y/3EUfJ+WRX94sbp7TvO8KXHz+eTsJlPAkUcG1BeVfzA8PdIkVrcAaIv3/zkzPjkTjiGDmsOo2+ZeWLHbY/q4KKLZ1+8ffv4Zv0PoWKnl+aWNzXBjhzij1xlXhrgQG6HiLlDpNjhxUvzPDPy8oaJ6ZmpbWaDvualW7ZOTG6eI9FPdn795S+f+tQfXJj+yEvvS7+W+KXYcPSZw4d/2PSD5l9+/fAL5o5rdRJ/+F7rwEzI3P1mfdwbfyvwtsd+8z+2x259zytPv/bXd84kmsd/v+3YS2/74pm27zx0xNzxFr3jPz37K8+kXjn739uHtJ+Gbn3uew/9+Lbg8te0vQ1fOPiz77x+ztzxVr3j1972s2++mjq3Z9epz757eX/N+MfOff1H3/3DL38i9eNvffzJry8xd1zn0Oe6Ta5/tbn/W0D/pQJxQnP/t8r1Z+Z/u1x/v7n/HTriZ1+88M3Vp7SF//Cz6Ik7xg/tuubkn93//T25j/T8f+/6ePPH0uaOd+od/356zZnp+ieWfr/qK6fGPtTU8rc/+cir3/6X3RPLv/ftf/p0x4/NHdfrHSVRdVehY25R37U73v/V2m/0d/7Nqs9/bPR8w0+6b/jGZ9Z96PX/+KN/43S8W47GDI42yPWvNPffKNc/YO5/j5Q0Myxyr1R3ZvT7pLozyLvfgty+wg9zxwdkzZSp/y8I8lnQ3PFtoKPvPZ07fzFyynfH7x8ceTUe/f3vrP7gTWu0Lx860Zb62AfNHd9e6Dh4Q+T1l07sP1zxdx/55/f+y+DnVo2kW1enR//8V/6yadvU2xteN3d8h9xSm839NwESjclj6kGp7gx/PSSIaKbjOwU7Mjw1LocvhsIPy/Vn7OMjcv2rzP03y/WPmPtPyPWPmvs/Ktc/Zu6/Ra5/3Nz/Mbn+CXP/rbI7bFP/d8n1rzH3f1yuf625/6SUSm03d39CUG6GzB23SY07Yu6+Xar7QnP3HVLdx8zdn5TdHJv6T0kNv9rcfadU9zXm7tNS3deau89Idb/Z3P0pqe63mLs/LdX9TnP3XVLd7zJ33y3V/SFz9z1S3cfN3d8t1f1hc/e9Ut0fMXffJ9V9s7n7fqnuE+buz0h1f9Tc/eIBqf5bmP6zUv0fY/oflOq/len/Hqn+jzP9D0n1n2T6H5bq/wTT/4hUfyb8cPGoVP/tTP9jUv13MP2PS/WfYvqfkOq/k+l/Uqr/NNP/Wan+M0z/U1L9n2L6v1eq/9NM/+ek+u9i+p+W6r+b6X9Gqv+7mf5npfrvY/qfE3O0fIy5vnheMIJ2lOn5vGAI7XwhZng5VKxFPzD70Vvm4phbt2y79IfnPzMzvXVy6/TuWyem7738a26g6Yld08/PfvyOiSe2T+2ei0pOzZ1lwng21hJBW6JoSwxtiT9/6fT3iR2Txn0M549LFxf+eBkr1L9OnzYH1hPEcUhSzptskT8OSeLHIQlFxyFJ9jgkYT4O0VtScGqFmDdo1Z01ZLAUO1iqOBgOcL9qgHNmQTHEZ5RP8aj3Fz3nXaiGeFA5xCPKIR5QDXHS+4RRL4InvA9xj/dZZ7/neXFfCegI5ZyztwTMwal5aKYvMh5esuh3ifpn+jiod5ZU5J1xlpksDi/eKWHZqZoeCW4LXslvC9ZOPDyz5fbtW06fPm/20/Md187+2rqJ8R1vXEmG1GhGvn+A/311xXnGsZ/bjeXvOp89w2ts5u8PzF0u+/0VxgV+Or/AWyamH3nsnvEtWyY2zy1z5+nTZ5B5rzHBI3iM2UWkZE+WpXcRqavOpxC5n8wj91IqzZrxHTtnJucEFdvmJRAG8p3l0HwMoa7vnPjWs0BQ5O/rzolsJi3SQ9OyCZgmbsoUZlNhbqmBmDO11ULSmNqy+rEQn7sqzNxVAVdTiB582Jh+Bb6pIDaSNea2ajjnfA4uWFYRRh7pH7884zf+sX7Hebi1vWNmktu1moGbwmRCZAbmT5LwawMwPLogbXsYG5cgCKxQAdWWoAJi1lwte3orbjWr4bpNZEjDNgRk5hO3zymcex4b3wayE3nQ08UMxWLniz9lGSNdQMR6bMw0u4x0EXuXEwwvvs4KMc5UDhEswFTVOFOlFDFVNe1kOtbrMtQA62bMAWhDQNaQTJU22BaGqWo0H0fdZCy5KsOuI8Nw1X+y6h/nKkkM20hAT+NcVa2Iq9I8nYFzVUY2Z0GGGmDduCuRxkDWklyVgcBYrqrVfCmWq2osuaqGXUeNmas0X5RVvThbSaK4WZ6tMjhbpRWxVYbU4Th1MwQRdtkjAg4Q39DbhnhUNcS9qgHuV77mEyUA8aByiEeUQzygGuKk8ike8r7AlAIa31sC/H1SOcRZ7xNG+aL3zEf2PqMa4nblUzyLhrE4HlmN63eUa3CPLKPII6sh9z/MmmtlM9Ixr5wdthaum4n9gTYEZB3p6NdCYKyjX6f57mcZI2vp6GfZdWRZR39D4VLmBY5vm1LExVS4soZgY0mS3izPxrU4G9coYuNaGlfmYbNyw66VIj9Yt4kMdbANAVlPsnEWAmPZuF7zbWE5o86SjevYddSxbPwwG67H2UoSxTfJs1UWZ6taRWyV5akpnK3qnIV+aHKAdZvIUA/bEJA5kq3qIDCWrXKab5plq3pLtqpn11HPstV2RjsCLq+2p3mZyVbDz1hmFbyA/qJjmt/PQqiX9SMYCDlZdcZAaJDl3ALx9jHEA2VsEhjxIhcK3Ahl+wEIhOXCiFb1x/q4szI1QSTrjTTI66KI+zVBIgI1QfSWGJwaIwwxa588xo4WI8QrBlxoxRAnlU/xmGqI+5VP8YhqiPuUT/Gg9xeN74rfxMy4R/kUjyuHeNL73KgejYe8z4zqJfCo93lHvfY+wZpj3DmJu55bF8edk5gi5yROosp+bl2En1sXdzu37mY3c+sk84kazdzUWJgNk7LWBDFnamuGpDG1tRQg2sitS9rJrYvDOTMJZ2DO5rS1CIBhlVsXM+bWReAQZrhxTCZEZlCWdijtODnjZEJgxN7Ox7lGcpwrHslh6gJTX/K54jmZXHEfsTt2nsRZVdywlzm/bOfKdm6+2DnzJ4YoE80LEcH6ixk9wvcDJrIYhyoIEdCEMbLIXzcbW0xoVeP6yP/HKMi/lRfkm2YmH98wMT21deKpictXbeTl7Q7k73eeEy8AYOajCKF0Y64r3RiudCOKlC5nHxZRoXSr+Eo35rbSvdNNpZu4Ekq3ilC6EZVKN2FH6cYIpRunlC44uohZKd2IUelWwSHE9aTADMouVtnFKrtY88XFwmeQLwTP1RURjksT0/xtjlXEnLd2z9T4paL4PF1QdkTKjkjZEZkvjgihvarIG8SKg09gAsQ2k67W/xPHGuo+x7r13sKG0389s9VNCGx1k1ZJNAmOVUhq/jv1cVcaddZf9+SV1n3jk1s3j09P3LztyZmJmYnNd26fnti5etvmm5+a2DZta997C/L3W2X2vS85TK2Job405VRECafCx95h139ShekCRD2BSuJCdpC4Vxsi7s+F5RVela7wPocrvEJtRoRDm1/YOPOw0V4miqFxpFMLL1NR70Qyd4vm31CYduOXSN3RjBoHjvPS6rrz0oo7Ly2KnJdW1nlpUeG8IOVPWkvaeWmXQ3qHmZs6UM3SCTFnauuCpDG1dTtwXtrtOC+tcM6mtjY4Z6L4SKuV89KClj9pY+C2YjIhMgPzJy2YoyobWG42iBMnsOx/XFdJf0TNtNkaV3MU5rpfCZY+uDKTZO375ZVZO67M2hQps3ZWmbWpUGatfGXWfp+MMrtPQpkB5kELDNtQaCwjtmr+Q7rjN8M4nK3QpxC3IK2Ep56BnxHjVSsarxp+htUW2oTWXNhE1h/AilE9wN7xybesN7fk4FSxze4D7GZXh5enXqALQ1gfIRXrGBL0go641ulj4k69BZAPcdisT/P/os5mx5kx2wTYrI2UbYrN2qjxqhWNVw0/Y2wmxkztBDN1oMTvRJmpi2CmbhReD8tMTNylj7Ad/bJ7ZGnb0Y/bjj5FtqOfpXcfoLd52AHZXT0y7AA77ABct4kMg7ANATlEXuoagMBYSR3S/C+y3D1Y5BBk0EF2HYNF9BVE/4Pm9fSrDAL1Q9KZBuotcn9hMr+GKkzEqQOqMc5VclXFIMrHKMXaT0iXczT0gaWa5gAwlJIQhH5itBSxLLeom0I92yJ1P4NKHEJdYBR4tx0HtKplOvD/h8GsQWgJtGcUoT1zFdCeYbWRwoEGizREUDRM6sp6Bu1DoCuzxxqB35H7xmHQCdk3Gkaigt4cRr2ILteaUYc4jDqsVTXrwL9im1EHmcZBqGIw28MzA4BE2FJJkzVotWD/X+qbaRSbgwg2h2ilPqj5/1oH/hUJzuwFG09+pxG20zCcF4H/EYmJDFnGVkdI7Bt4m0XQiOb/O4B9jjWCQohLaK0ESw0RaqQWfmaSviGV+sowd2sx/44DMW/gi3lQB/49BrMkJw3BbYIatFdfBbQzW5wRlQONWNqjBaQANzBoHwVdGROyEH5H2qMFoBNijwwjSdqj/0SXa82ooxxGXaCFv6vvKyuovTjJqCMUi/fZ07ENWLdRUiMOG5iEWfCoFghb2yNM7EdoezSsBaLW9mjUjj3isPOoIP4XYDB7WZgjlvaIxv6IYU087KcF7VEvGqh5kAjUDLCBmgtF/wk/1xkkgjVtbLAGV6c9BouKBWyS6FrScMF4dLOdjW6CJTPxTbBkPMLZxUY4wZLxhJ4eEOXkZS8Eeh0fz1I5bXjgWIWhAdkBUZQjVQykA7uZOBlyPkwbsZ4OIozY6fp5eiceRuxQFEbsZBVeh4ojqHb+EVRnSZ+nd8shvQcNXFew4T5cj/UReqzfwXl6t53z9E7CHHXBOZtdPGCROq3OiDuM5+ntcAgz3E5MJkRmYP6kA34tcp7ebn2e3sGxAO1a4Fbd6H8NPx5mEo86LJ2RTrHEI96sOrXAW0HiETbAyzwvpxlijgv6Qd0m3imhjJotF9xFel/NkFPYeXVpgQ3A+zLzQ5cE03aiiQ3oSWcXj8Bg6ki3btEV84jcrQUesCZyBzuzLktKdIuxXhd/Vu+As+LZnTXbd+zO2x3O3XbcMkBzKp220HFeIrWTa0UKXP8glb3TbsVd7Sh3tRix9apeBmByYnpCx9dZG/hqPytzgbOdcJU6XHeVOnBXqV2Rq9TBaqf2oquE28kO1uXsNJAPySAlhzPQ/FN5mr8xjE5yO84T12lr8dHOk2D1hnnOIPZ96RY+WTpK+s5flxzSu9H0kAoi3tAi52fb96W77PjSHXDOlJ9NGI4Oa8Nh8KVb4BDi7q/ADAh3u0XIl26x9qXbuenygYMgN9Ui8TRPlougIeHipj9d3vTPDVcto6iqleSd5ldzmwpVNSiHdvw8idEAw4Q6GoHEMbWN6nx8Tl5XDerS8hfiuqoFThrXVSNETGCUCBovIJT4QkKJjxHBkkVssET/eY25DaQZLOYrmf/mOAmdCtm2M8cVAOM1Ej5iCxHprIGfEePlFI2XIywxdVOp3XVvsN39m0rtJK5wV6CdxaPBUWCZM61VdurbzI+xF/1wREsWXlgqj+gkjuiEIkQnWUQnUESn4dTw91ufwgaj32/FAeIlZG1DfFY5xCOqIe5TDXDS+2tWT2nli95bAtx9WDnEY8ohHlINcb/yKZ5UDvFgCTDPEe/rnUMlgMYDyiGe8DxhnikBuhz3PnsrV7Z7vI/FUlC2e7yvyOalj6eed/Z7ny7vLQHnRL1Mz3qfMCe9r3YOeB+LZ5RDPMtE7UAyZotEgCRJDNcCP7MVcxFfNla7x/FjBsklco8ZpG08ZrBE7jGDYp00ifMmybOHRfIRukH3z5sGyfMm5rQETI1znSbfb6eii0BD1jbdNsTDyiEeUw7xkGqI+5VP8aRyiAdLgHmOqIY46X3ecQGNBzyPxmdKAIvPep+995UJrQDice9rHeU2cI/3sVgKNnCP9+3LpPfVmAsyfdLzLp56ury3BHxG9TI9633CnPS+2vG+y4iHlmxDPEvVb2mR2NkPioWWBu0FC8SX7VpoaXBMLrQ0ZCO0NCYXWuLmhJ1lo0kt6hIW2QRCkFrVpyjy2Qc/I8arUTReDfyMyRx7GY3SSeI1Jh+la8GjdGlFUboWEld4wmILL2Ex32+9xF2ZDoIwZYBlgB4DiOcziwq3kJ2k9JDzgXRgbO3NDgF1Lok9QyUDDCT3PZiJ4gdoHdnB/MX0S1dL2Ols4hbLq/ydwmWI5lXofUW91lTl5wVnDWCAebMT6NDCF3XgX6BI0EIySQePsmBkAnCNItrWiNCWBQnuZGRRwpL33fsN8+PRWLOubtVvxXUdUlzXb8F1fyrFdX8mOGse12U5E+jXwp/Qgf8lwxxZUa7LklzXQTlsOUUOW07QQWyjrrtkJTwi6rqLEXEOL7UMosVrK4gT0xxxw6yRuGHWxN4wwy0QKOjHFM8CZQGZ4llAQJjrvADFTF2ZayCKTW2LcREtoMtsD3lPyjSvsXUVbogtTAUwb2a5RggDYblGluUaxRyFRhQkt2ALqKTIaohGLfRVXUP8K1voDN8JSXL5NfI7IeLqVpN7V7ea0J2Q4Uo5QyC9jOE0Nhin5GAvQfFe64CkbYgnVEPcq3yKR5VDPKUa4n7lUzzu+SnuUw1wUjkSz6iGuF35FM96H4tHSkCiT3pfok94ntLPlAChj3tfXo6phrjH+1hUL4DqfR31aDxUVt7zQ3mrp8t7S2BvoF6mZ71PmJPeVzsH5qHnvcMFz9scrDGULxOPE7SLBWvaqXJpbfwCm71E2EXyScOAfNiFeNKw170nDXvRsIvhZUEG1YMQsWpyVwDIHnuBI6RTD7lstbkr7YuQ7+/mf9/jl89dWSSTu+JnBA88o4CeOzaReKbOHZuo8bKKxssKjlejaLwawfFyisbLCY7Xomi8FviZe8HoeAkGo5k19zhLRaK0Ug9cNxUFx/Q7eY7bY1B/nEPL4LOEBV9vzyXIn3EEj1L2uINvj8Fr1wUwz8nmB4AjoTZufkDwazrws9QBZ5K6GdzKPo2DC02d68X36nChySoSmjqW6lnEpkpVOK3hm8k6VaWY02hL0s1izI1yaMeLOVawDwIB3OGHpVk0DcJGMeZGO8WY6whxycE5mxUFML51VsWYs8ZizDVwCDPcOkwqRGZg/iQLvxYpxlxjXYyZl1pSowU/Zv2wSQ37uoQunejrEnVir0vwZlWnBX/D+s2LOquHTWpwwuYusSMU1vzEHuLP5ou6Un9VQoNZv4XSKPoySB330D/4GeItlEYJPq8zoiMHoaCdGtFOCWy9CR4jgfVi7qcomnjM1KQFf9eambLszBKW5GsSY/EEf1ZfUPSACm6D6tCWRrQlq+oBlUtCY2LJBJBNK5asobjL0QMqOL5qpB5QqSGcsqzrTlkWd8pqFDllWVal1aDxHYP5Y/z+OiHlQA3n6AEVyk3jOogJm0+oFGvGmN17sF3qk9rDCYVJeqjxsorGywqOV6NovBrB8XKKxssJjteiaLwW+BkGEt2I5uE+yTEuPVrwf1s/4ttzyblFoG6UiPm2WEZMB8k8chbXIDgxKDGRHkuDPWRn9tw378FCiHuYw3Zmf/dVnb3h9V/8oXXG4g27bvGGcYs3pMjicZGlIAzRz7cyw66FIfJzvsXNIMSoHNIXsGnpWBBiIcQcnpQ+xCal2w9CjNoJQgzDOePZ+mOMJwzU37CVJzxkDEL0wyHMcIcxmRCZgfkTg54wAEPn+oYA6ae0zxN07C9KuPS1OAbTykCNEhpugRy/Z+U13AJcw40q0nALWA03imJjIZwa474shPoHGW4hO9xCwiMCIDvVg+xSD7JbPcheZSCtjlrKAMsAywDLABUDZNr6oa1hWnXrPU7tA7OKUsiy8DNivCZF4zXBz/AEMWm/hXOyDsY0L2xUAJGjpGdAIXIULZCsn7SHbkWHRQIcOowJToBjVAv9ng76LdRye43OfMDAinknK99WKZt9kt8wdJ1HdzZBCenSOz1KugftJOkXCJDiHpS1rUjxKIcUvVro13XQ91OVC0YkRAoMifENeSbUYZAyHv+8Ax6d4ZPul+VbXagf54/7ThCYw1izwyFrZnHWHLVkTXqHIMPPACcUR6Mhvg5C1aIhPrr4RK+BxTilHkKPWxefsJSTx/lysk2A9KPukb7XkvSDdGarML8MGljZTHrAGD0SkfQOh6S3eJRzjvS7rUmP5YX1UKTv0EJ7BUjf6x7pO+yQ3rqK3yhJ+h6W9MAw10lYgx6HpLdIVZwj/VFr0vfYUfg9WujE1VX4PXZI3+OQ9L0k6QfILUKPUnPQ78Qc9Guh9wHG4GxdQHfxWfe4fqo9zD9v6Ki1c6pdK7G0IUuC9JAEGaIJMidO/41IeQJyjuQAU0+39Lp+gtXr/tMtvaQexx9Y77Unkz202VDK3fqZFv/mi82MDXHebizyNpNZDlZfzC0nwgsjEnrVsJfB/G9R12eUI1ULtdAr1vaP2rKiZmKMF0WCyMJRNMY0Go4FsQERKz1KWekxLfRpASu90D0rPWZppRexmByzRP81bCcDThiZv0ZUI4zZUUDriKq0vdbxiQX0JQE7O9MOKna0kGk07GkxNlngXmBpoSWbjJFhWxneAjhiGIFmol44toyeE2CTURBRZCy4D15rtMRzn3kYP+EcBORo+Ii8cxDAnQO/IucgwCLdjzoHlXBqDI0rC/2msMEq2cEqiXiy3japGiBe08UuxD3Kp3hcOcSTyiEe9D4aD3mfGY8oh3jU+7yzXxlAoOtVr/qE55lnbwnwzmHvq2/1amL/fFTfLjDPEe/r70MlgMYDnkfjPu+z976yL+FJRaYejce9bw6U+yb4C7Ee0owlwDsH56EN3FMCiux0WXu/yXeCpbNte7f3kVgCaqwEvNpnSkCin/U+pb3veW/zvnVRH0CYLQGt431j4IIrPzsv1c6h+ad21Kta9Z7EKe9P8bj3Ca1cpNXv2Y55H+L+KyeAPvCsZP7jTYUfD3JSjnyX3nR0mmWwmT2zzw/JyWAIysKWzmAImqcThDNDsxvgxJYuxif20eznN63t+vk7MBIEWaIGi0RFOoXIlAgGiWE5JD6MJgmFjC2VLBbzLUE4+OXEoEF2XiHZecngEIzCiIaO4fX2yFJ4sB4wCpAGc/4VSEBLS6Szg25oseMh0UdrBznSPKSFP0XcJwNZzWhtrCEimZqjkmrgZxhI9LnZPNyt/KV81rp2FKdQTo2lrI2wnYbhrAi0jTCNoCdaj2sEQYD+bADvbumIFv68QDLosMMsvxie5TdSlH3x7LkRS/RzL/YBnFAXtYbY1hY4NtNqeM4amRCnCJbOmuvYAsMAYPGlZeLqpoyG6HCsITosNcSfimmIPkUaok+FhtjMX8rXbWmIvjePhvhfZQ2hUEPIXJ4S0hD6LYzKz6NrRSgPipw3cGi/QAt/35r5F/L42Ar79F2JNioZnbwrMcQ0jkHCILNZhOBH397wCk8u0sI/1bn2gmsXKVbjkrHIUjK4dyKsaLOY7XQNxAnD3YshncTFbazI3RhrkVZoDA7Lu+lTVUFdaByCOKGuO8qsqQ2V2DYIsFA69z8pRd4nYTkMb7tjapLEZptBeXKqOVRFre9NDSOCBLAZ5wAf1qoS1oqGo+Z7Hap50pAuYBpHIPdgAj/iUOBv8lhBizayoMUwKVijEh6TkOgM66LzHVkeBFDq+TzYZs2DHNEbsMQv1z8hjN0wRCDBg/3Uha5BWWdglNopL9Cq+gSMnVPez7hVZ8imI8K58DUmoGmHCSlEjd0IqZ5HDd4Vx02vWkQZu36IE6Z10N6aJCWW3QkOCBi7QdLYDdjbwLbBtfN2fVU3WBu7AXQ/RRq7Aa1qpbWiGbJj7Oj614MU/oep0t79qMAPOhT4GlzghywF3qKCtZ1tdxvpCdLFPNDIw4BN0RnQReczGOg+8xHFOsgvkowLoigxPuNusGbcQWKxfgluH4TzIhiX3fH1iTBun0PGvQ9n3EFLxuUu15lwc26wD4sy7qA1d7FKaB3xymKfzri/Zv4qSZzapV0vSpLGT+aSiu4dp1mcJQFtbZfVT/BLgaRVldWPIiVIbnazrL7k00GN6DOXFezTqwBzprZmSBrstUAbZfWzdsrqp+GcmVeXwJyJB6bSVmX1k8ay+vBtKgZuGpMJkRmYP0nCr0Xe9ksgtiluECfGNiW0qmJFuz+aJWYat8bValDW/zzBR2lCl0m+S5WW12U1uC5LK9JlNawuS7uoy2qqZXRZtYQuA7zD12a3qdBmrXJob2NdP0ybtRNcaDgFNLV16nx8Tl6dteoC9Rfi6iwJJ42rsw721V8wafy5tS7i+dNuolRVD2Efegn70MfaB+BBsXooqVU9zzJGQo4xKvRMEVbqE2WHqsQdqjvcdKja5JDejj5tXEGomQSrZnCHqsuBQ9Xm0KHqIF587nTJoWq9Wg4VOtc3BKj4zwhByAShTCStW0BembTiyiShSJm0ssokUVQmeCimld1At0FRR4ZrI4MhFEj0ncccuQJHVSijRH1Krq7M+e3UoUQjHAlC06Nh8zQZ6DWIC2uu01rVbxM1VmFvfo3VhFetb8I964sLTA5OjeHuHEQsMlzyCnK3bo+5vJ1UW2OVw9txS95Okrwdp3l7zhX9f6kjoSrYPR+v8/0A12TMm+FVlvNvF3szvIoz+3at6k/Am+HM7BNQa2JODEcoO1wXyg5cKNsVCSWVKubEJa5CSmm77RKvcdMl7pJDOrOL7EZd4h6IOTwazjjZfQ5c4i47LrHhOQjcd+9lDCDQER1WLnG70SWuolztDkwmRGZg/qQdfi0SY6yyzhBp56ikKq3q20SMEcy0zRpXBpc8SzBSJ6HMJFn7AXll1oUrs05FyqyLVWadKpRZB1+Zdd0vo8zut+Mtt6MtdTYUGu+NlUhFwWJX/Yg5/wTykEItM2lBGGubgp8R41UrGq+a0J6RQr9N5pYYnLCpTXe2HkDPkNYTMcJqNkaIwWtB4bUWW/LUixwmHm0QFVYcjfBBNBPRugSccY5kdhGjJeFnWBRIxbIMc8d8P/0NuEgMW1+31Y2Qd3GEr1uLHtZBJxm8dhtMNY70lCKkp64C0lPouzsqBuopUlA8LaG7SDLimYU+6mXwXtoRgVkliCNiGMkAzJpJ29DFokwKxmXZtE+LvksH3mmbTXuYRvjuDDZn6lmrd6ELdfKsVZ8WGaA2u8bHF/AloVdWe4gl0VdWe1yWFjCmNZuhPnGvNZvluC/9RTfqwJcwmO10CQ3iiqGzGG8gFQOuhtZRCWa1ElPpI8hYCz/Dtosq+MUwd2t+WYPeZ7XmlwbuK2PRG3Tgt1B33vsotFcrQnv1VUA740oOqBxowNJ6DpE1AxqoPOAhxuQNw+9I+wlyFYcR+2kYSdJ+3i9/7ReMy0sBj+oXKyNvo/Y8JKMOUCzeI5EwbCARlnorWtZhgPswZGTcOucdE/sB2kz0a5HNtlKHOy11Pp06TOJ/SGIiA5bBbvrGwYAVu0UEHuMVuHGQ4yZuR7bZunFgjX1HNw4QmJ1EdrRN7A8a1sTD/gzlPfbA7oSP0yHhPXZCmtkSaINzxRXodwu6xD1ojOVBIsbSzcZY9J9dRC5WLxFnabedi4VnegyAaAuLpogWOeb4mIjK2OpAkavC3oNsjqjLsSR8oE6VA3UWT4WIjWlaUfwkDT8jxospGi8GP8NAGtW87usAQWP5uEuL/LJ+J+WjaMiLnW0M3+h0EcLeTZxL9Lh+yNqDn0t0KzqX6CGiTH7iuI/zFHivCNHpXGs7czScnbySPztZO/HwzJbbt285ffo8cuq6Fjk4acJOabFHas9zDlqWMwctsLEJOdNFci2utLx6aLyMovEyhM12K36cEdjPvWo7aL+VH7RP6aB/i8GriFJuZxNgrBN4usQSYBB9/jmQAIMMEOeaiq0QLdjUQBFPdkWb+DP6PVbXd6vzlLoZwsSho8MMHZEbGufvCta4gSngWR8xuayPC0VnGH+cvIkND10oOsPMVdMLRWeYuT99oegMS+eZRPQ8k88ReSZmekWgv0hIWSd6CMvxJppc9yaacG+iUZE30cSq5UYVWQ5xvvFtUpWyFUFbYm4mbbVciXsMcSIXqlHlPYYWO0lbTXDO+K6YTa4CSrPJKhGp0Zi0FYdDmOE2YVIhMgPzJ43wa5Gkrbh10lYjx2jFtch3dDP6NRQ4a9wbLY17k5hx582qSYt839q4N71sUbskjhO22Zhhpm/yHuLOJurXvaMfSWiwNksctYiWYWnizKtFi/yUyM5vkeDzJiM6miEUtFML2qkKTS3kMRJYL3YtRRRNPGZq1SI/s2amRjsJ3K32E7hbtWgFnBXPwq3ZvmO3nrl/3oYNakJbWtCWxvMi9omyVnlRuSQ0eA6o5T3zOMVdEFuv6jv3yYnp4k2HszbwFT9LrhbLmeM4ZY2uO2WNuFMWV+SUNRKXMvyEPW5kt7dNQsqBGs7R5RbKTeM6iFU2r7cULorsk4gwtlvqmR7EuIN9GK9mX48WrbE+2OolYp4yqSS9cF5EDlEflWnShVYk6nWvdp6eyoBWJOon8yZsHVO385ITAL6oCFEf689D3FvFiIbsJafMnfl32yr23W+JKreKffdR9SHR4nijaJnW/Dqe5FaAjQ4LlIAcdq/e8VUpfzpClj8dkjhNH7FUg8OkG2ioPssrYBpdRp339kGcUKIpsyahCuVDIEtHUTqM4YUEW6fn7XDtvNPz6GoX02Gia72YDkPW58QEfsC9esdXpZJeO1lJr58UrEEJ+yr3/EdkDeVVdEi4MYbEcWy6oqLTx+fuB6xFp9e6CGUdP+H47dai029HdGh3hvTqBqgcwB7XilDejItOv6XoDNjxY7iZcZToDBocXCKxql/CfRcSnV7rpPc+OxeA+rToE7Y4sNuxQ2030bSL0uyo2R20Nm71fMs5I+An9rtXOfiqmI0B0mz0SSho61TTftFUU0Q9H6D8xC6IE0pi+6SMjoDE9oHbUMSFJZksS8O+EVMwosauh2+PTlgbOyxpoYc2dt1a9JSt+Ia1saPjGz0U/vuo4Ace3+hxKPC1uMD3Wgo8VcnYLxUUoYxdP8QXJVi99qJnIkGRmDM07/oeP1Ib4CaaVBQH0bm30EGLfoiJ4OpRXrFXUF/74k//8tW3LHqCzRkpkO7lDRPTM1N6dnv0A9znZ6MX9Jj9S2YkVhZTXkwt4LnPQu/Pcl4jvRwZtWTfQfwkIJw/5yv+xfB4qng02Y+ncoZARw6Owlr0VX2Vn8Cn6udMVT8XZ8H6tegnHT8sS6UMhc1E88ElFxb0aXtfVaJZ8EEIqsgc+CiV5jY/AMYysZl6UdgR4Ycoyw9RIh/PDz/DQFolIgc4NI9q0S9YJyLHpLgXrD9G5RX5JYaLiSEnxt6AwE/FJA+mbFR9juOnYjFFp2JxGlcOK82hVzcTvNJvYN1M3VvQhoBMkZ5dAgJj+TilRf+CV+RCNwrIoEmyXm1BWXyVOGx1nmwbJ/g3wiTbRl9DxQbxW3UYt3EQF9Mai7bkm1SOYBwXVyZZIWC5K4qLJSsEuFlC0b+3TqHg+0C3QVxjU+Ml2waoZNu5GX3b5ULSDPQATMUXAC6RLiA3cd+P5BVjwv10gQR5fv+SswLYvtelFApYt4kMKdiGgKwWLZqa4rBmtRb9KVmIJoDqY3YlKVY1vk4UWXWuGimbolgHF/WsSQUmoTa0ZUaoe4BJx6xYwUJIyb5twEColhUHxmM2260YymhpxG4Z/DpeOeDGvTrwEOVoJphGA18R9xhiEm5XfFboolBc7nbIAwbJ4lieWNLaf09IXSSMC+ikhG4jl3M7BmZfuHM7kmWcuGRY0U1rwpjkHIU/0U4ptMJ7lGPeBIMAaapK+5zLg2hxp9LIXLjKoOnxNWBG5rbaQq+75FPgUzpLfUI8Bd7wThFBKQPmEsVUZ7RLBiVuimAjJvaRKW4GRPlIv9P5C9xXjGKjuv7pZsmekT0iYYiLkb0WYkCauMXUs2/YIm4tqus3sbsXqIPzqFp+lVCV9hKqHhREFcqpNUZOjcCfDH5rpfYK91BPv4kAeJIbXIz9jb6uFTIxy7TlJr6Ot2HzUxu2Oi2mJwx196FU4uyN6uRY9Ub5vVEdvjfyK9ob1RHxPCaVuh5OjfFs6iGXIcPVs8PVE86S3nZxVjXE/aoBTnp/zRcPKod4RDnEk94nzJkyqb1J6otnPc88+5Sv+ajnVePFE96X6SPep0sJqMZ93ufFwyVA6CPel0AXlPdx1RD3eH/RJeCGnvS+t1MChC4FL/S5eeiPueAol72deSKCe7xPaHW8qP/MKp/ks963B8fVG3408JllAp/gdId3sp/VYn/lOD65mo324bHPnCxs6dhnjniktB6Pi+YEU5QHFl5/8VupX/pjjKyc53pzRbIinRrIYKrTWhwr0BT9BmNLJYvFfEsQDn456D3IzqtBdl4yOASjcF6azc/znfbIwgGo/4yoB5m2B7KQ28XTrXVoDs0m9CxYT3OPv13m+ELyLHpMXoRT7h9fpGSOL+rg1BjCgtZaidOSOoJX6qx3PHYh7lcNcFI1wL3KkXhINcQ9yqd4UDnEw57nnH2qAe5WjsQTyiBesPSCbU/yuHKIJz2vJPAghndUrQtCfcT7pMZDN95hnoMeVhSuLVo97xydj4rnpPcVj/d9vLJh9SxllAv1M95f83Pz0d95zgXLj2dFU6HJNPc2ZvwBKolUaPu/mN3J43GNelnY0nGNejIvEo151AuGJkeXvbbgD/+s6l32Is7iISkqNCkZAlyIhiZzaGiyHg1NNuChyZzsvGRwCEbB4/bvtEcW6kAloh5k2h5IJjRpsMtYaPJBNjQJ1lYMTvIuTsQf1j/YJHObQI99MrcosZZ0EVphxCeJpHr9Clah211wfaYrTVnQ8VLqOYL8Gl52OujLe0+oRovrD8LHt1BlyS/dptEXD+eKXkqI64Ania8y+FdClxii5E1XESqZr6UB/kKv5WVYRs8QshMjMJYhrE2NnEJKyVubGtyiZBRF0WtoXDm03kls2Cw7LBQkInxfg6o38oJ01uBBMKJWr8VnCb9ovT1Hq8DGeynmEblL84ACSvBu48Sf1ed4mBE1P2QJZP1+2rcwIzQDPzPROIqq/Dip0vK99CvGyQjhMoqKoNB2NWZ8AODT+QcAbp2Y3vjY+NTE5o0Tj0xNTJ8Tf44J2GWsJSf3VNOcucEf6aiy8TZBCm1JO3mk45JZxAy98wPMDqUHmBH3DjAjhOpNy76vhQybZodNw3WbyNAA2xCQjaTqTUNgrBZq1OL/jRUzMGxAIueigVW+72cUW0rA/6brXlC1HFKoX+pzTNSAPCOncUZOKWLkNIkrnJ/SJNkj9shOg8R1jHPLcIV4oKMEecBpkKFdihfAupk3K0EbArKJVGYNEBjvXbb4Z1nOaBRQZpyHjRpZZfYqzT5jSy1RWUUTQwDCUjqdTQDCMscvhrZbl5qJ/y4aEENLzeRh3M2hbE5r+Hcd9O9ThWYiMp6MXJkfO+UHk+57Mkk5T0ZS51RL2Wiwbia+ANpsbSJTEBh3E/lVVvjTAsLP9ckY4f/yFa9K9WYfjylQqWzLEVS65Ui6t+VIop6aYVdAsXXEHlu/GUBeIX/STU5NlyCnOvWhqxVtjuthG+ZtiG6O67leR/xfyNOegM3TnrxJ+RG1OU4q2hwnCQxy/Lb/iw5rx29LaQ0f00H/F+23iS+XKJwXEeCJNAHxbookaabRBQ0XERwvpWi8q7o+cfHRKbSRmmS9xDG8DnEDA9FwJE0wLboAyfLpafgZMV69ovHqBce70uurYxpzAgpR8iJREn7G3HVT6ELkCBeC1byJTtTHttK8vKLiSa3hl3XQPRTSczLuTc519ybnvnuTk3NvGhS5N3S4LEeEy3IYyGYn4bJmLXGNi+GyxOhVk66kyoGSRVG1FuLrUeLbEeIGreGgDvpGWogpBMWIVd0msbW3fgY8ZydHroH0IBixwLVTs+vaqRnXTo2KtFMLKVyGQ+9X84feqyd2ji1avnbuxHv3jumz/AfsW6rRw+Pms8zz9TBBopr546XZnecPk2SG0fmM+32umv/3hurzNiZl0YVuJcSrUZEj1Ag/w0BaFSFv5r4hkrjLugh5kmCtddT63yhwbrLF4DsDCVBMbXxsEjG6jwi6PvpUSVwktcT91rhIE7i4m4qFphlcpDEXBV3Wh9dPmZkGwqc8ZCxvz3GhXN/fyatDIus6rUgd1tHbS2dZ6L6/tZeoXEcUyahDzRzprBn2nDxXILGVtPEBe9ujgnex+UrlbaWdxg/naGbth21H6Wr90gX/dKlhuw58SkpCq1UislregPDVFCZtvEzpWDE5kFfHO/Fux5dBKoiHl+qJpwCTOk32yWLDguAxrWFcB36AIji636u240DXkdFdcWUVQR3oHGExGly3GA1iJYScWIxGUuHZdqAbtTnNg7nQDbQLfamrhBNdTQ2V5PepQxzpegtHGpuaUlc6AkmBkC1C5zGQJYZecvi2YzvuMa/d+hQaVYnhhxZ3zDDOrnW3CPuMn0gGaOxlnkMB3i3k7hfO668vDFL0yiiiVwZ+doVObjPEW6TOB4oVEUxkFoncMPgWdY4sAuC/U8+HiQAYoF6EEQHwGWr7IQLg05QTIQJglsqMEwGwiQooiQDoZwG0SAG4hgXQKgXgn1gAbVIA1rEA2qUAcF787pACcIYF0CkF4KcsgC4pAOdYAN1SAF5nAfTK2iMGQr+zZHUdTh+rtnvhKCaN2SOvMYtD4b5ejyJfj7OaHkJl98FFi4PsEwXJUK1PEdV6eesEo5ioZpwUO+X8crYrw0G+bZ9qgE+rBogXJbFP96TqSe5QP8eUepDV6kFmVGNyl2qAM+oXXaceZH1JgKxRD7JRPchm9SBb1INsVQ+yTbnuPa1+ku3KJ3lM/SQ7VE9yp5eN2IWi364cZJd6kN3qQQa8DDLfdg8T9DFUD0JGC7CjBcSCdAEcJBVia+LEVsQej/ZVWJ8TJSvk053hwnkJz2kdeICq6hCh8B9D6zM8SNRn8BPFZAKgQgMxK/RpdMlaE4ZZsWiKaskZfUJJlsQ+qf32sEz59YDcjmxYftsbcL/8eoCkhgkbQTg1hlLBQr+nsMGC7GBBgvR6G14K0TbEZ5VDPKIa4j7VACeVr/mg97F48ZRqiHuUT/GQ9wlTAsx4WDXE/cqneML7ENVz9wHP00U5Lz6jHInHS8CmHva+jjipHOJz3l/0GdUQtyuf4lllEC8UPf956D4dKAGH7GgJKMdScGwPmLdnPnWbVb/SzarPvc2qz/ZmVf9ZaW9vjHSqJOdoyBl8JZ8zuHbi4Zktt2/fcvr0eeTKy1p+Rl5gCPl+Hf/7St95XpYdmYI3JJbTdzmS5iuEYur/hR+r2eWYMyuIBN8AFQmLK4pExuFnGEhuHh0ocvoSXsNJJE51GwsgKgXgOirRUQTAHU4z1TY6zVS71Wmm2u0yN2AkCzXfKa8/M+7fgMnIXI+sg1Oj7mFEJDLQr9YDSadUQ1T/8KDytxHVP66l/J1A9a+zeP+xRfUvlKmHqJ67D3iXLsCEep691b+XVwIPYSmXafz0x0NCXQKEmfW+3jnleXsw6X0klgArHvI8nfeUdY6KKZ5Rb/djqic5o36OSS+DzLdNqZ9jyrukybftLgHmqVE9x13eZZ1829OqAU57nhOnvcvaJaVqaz3P3NMloLm9j0UX2Lva80pCuV7Ej+494zMqf/dafRhGfZRR+YZIefAX379keLWD9DM5Xu2gjJZa5rRsWcVdbF34/JDO69feJX8glCNKg9WLFb+hHqle9INdZ1bdMPAzjAh0tS+kE12A8yWHlS7vQB+pbkAfqc6hj1Q34o9UN8jOSwaHYBTONZf8PB+yRxYc4Dp7AJn3pA2167xy3G5V6DLBURkBLbXCVnHHeBGlxPrJ4o6B/PuZ7DEzdiPp56b/8Gek60zFAbkTyHDrr6XW6pV8RpjpZ+AyoYqhFppfDz7bzBuPXvMRyKaKFLDT/Ze/Hf7XX3+u8pN/9fr2p386eO6Pbz31Ox+94aw2cuOBjf/wvh/cQWDnUj0lZFHEiuvoFQfYFUugz8REdQJCJGlz4/AzvDyj0+J7SXkjRxiyOkVZD/U0rhwa9oQ93V9PPKiJXpCnH2g1WBbeA62pd7CcoT+5uV7CpLPPs6buJ3wnUabA+ZcqmMrexUyNo2JjVTv9Ma5ezP1cB72ZuvOIEi7OlmNLWBrmLI/aeifStmW11NaCKm/8EjZAgms2HxNQP1meg56gHPS5GW1z7KBXELl/aO2LhJ6LN6droQG8DOItZn7KOmBcVJdlFekyjt7PWjrldVw6bxSgc72VYxWX0Bp+3G8yqC4MolUFb3QuTcRc2ALdoLJ6EwqRO5e7BebSQsyFfZCoGXR0WhJug9OScPc5LQm3nqMXElr2f+rKFc+6p2X4rQziQlA+EKAhlhQhwgZlDZ8xCwlqNfp9/dQxmwu5nQs49cc64JNOb7jfK3PDvVJOa+Xk3b9K92+4VxISR10aqLyyt4tcuCDynhKYo/rLQO/1/qpL4O6zC1eVD3gfjeqvh55WDvGYaojev049L8sZlMStXYkbiJWu30CsdP8GYqXNG4i0MxGQiJV77AZivfs3EOvt3kBkyIEzZ0iOP1rkmTOEM2dQEXOGSDk2YSMMp8YwZ7jQD830CrODhQmlobfhl7VtQzyqGuJe1QD3K1/ziRKAeFA5xCPKIR5QDXFS+RSPlYAIqif1KdUQ9yif4knPq4lJ7yuyU96f4hHvc456rXO4BAzMgSse97XleYkvO+uWnx5qRr5/gP99uELeT2+W8dMrmAQJQDpjvQPmS7BzChWyLXA+8CviAz/8zORMh4itRVjOuz8iv7UI41uLkKKtRZjEFV4sOMziEbSilSMS7HAJgjQJa1VtG+Ip1RD3KJ/iIeUQD6qGuE81wEnlaz6mHOJx79OlFNj7pGqI+z3PjPu9T+f9JaC7T3pf6xz2Pl1OeB+ieqVzwLt00X9GPc/epeDrHCq7JmXXpOyalF2TsmtSdk3Krok3sVgC3I0XlfMQe5eA2pn1vgR632KVgCdfAqx4yPN03lPWOSqmeEY1xF3qd/st6kFG1INsVY3JKfVzrFU9xxnVAHd7d4buUVo5Fp8uAdbZrX6OMfUgk+pBpjwvMy7o8OoS0I6R+SiGLujHmvmpfVpKgDTJEphjy3y02NOeNwpPlYDCnSkBwzVdAlK9uwTw6GGnubC5Puv5/f8z3j8NVR+jVx7cUp7jNxeLYsthNGjppY6TbI+ZU1YjhTF91Mt6grCNaCgA1pGgjwRGME0nCmeGJvdGBSt9/vj2Oz979G9+8G2MPlGWPtEifZBOMbYTzJ42zzUhh8TDaKXPGFrpM4pW+kzglT5jsvOSwSEYheFyHcMP2SMLDnCdPYBMpc8IFK8rnWDPCn69lr4e1Ot882T8J+QVxlXP+CfeLxUaFq2PFWGHNfAhrijDqKYiqyZGDMLAcF1MS7+VkLX1NmXt8h319C3srWyd2KJMgfNvmOBfveSuXjUxfRcqNkjVRB3GFg7iQlpGr5qY3khVyg3j4spUTYxbKrmwWNXEOGfKYS39gHXVxDC39tsWiGuMt3lVE3WK86omRrT0JscOSQVRNTHKECYMaSSuG6gLewFCgMOEHo24Xn2WcK7CivRohMQV5fdxtI7+M6fMadB/BlX7IevLAMsAywCFAOLbUeduQERM/arwN/JtbFHVqIBVkcReAH5mCVKfmbWZjhEexN2W3uKzugdxER3Aqu4yup44z4OIUR5EXEufLsyoeZV17ez0WcFZAxgApTyUZL6lA3+eYYwYafEi8EPKvyX9mJgiPyYm4LOGCSZGfdYIuUMx7HG4PuIHAc+ZL8tD6bd6jCFsfBxB10L3y4TL4nKOU6W81xbHvbaIIq8tztuGYl5bAk4ND2euVx0fdQGgaWVxgs6SEb2gPJ0TOJ3jiujMwVQcpXMSTo3BYtKSLEl2sCRBllIAeMU8CyCGV8hXihPC4HygeNHyMtpE4TCJom/ACHASe2vI9N/1bNeUnPg1sI+d5KdVYW5pJFiqieCCZoJwLRAfprZWyM1cfFeY8V0B8VB4L2mh8fABfFPBuCZJAddEUhJj8DNrJ+8v0GGtnTye35vUMn+kA/8ryvtHn8uJ8VzbKOXazjnb3+RwtbrgWNJx6M1LjC/N3FGdubdIMLfBWyW9fUIs4hbOvuRGIW6gKaojH5SI4cWKTj2x84iwAT7coYq5XiA5JnaW7MShitFnybCo2SfzRc0uoW/N+I6dM5NzVDFVKQOY5NYpi/nOckqRjWHFgc+h8H1IfbRbsfrG54yg+f8yVUJz6ELb0yYRQptEWW2Sh/iEvL4onLJr0Q8T+sI0YAzOmXG4wJyJfW3Mal8bNe9rwRBmuDFMJkRmYP7EEM+neSGme2Nfe9vPvvlq6tyeXac+++7l/TXjHzv39R999w+//InUj7/18Se/vhRf5hubVkTZKnSaGQoqA5UgtKOkXa+V145JXDsmFGnHJLkxN2EjRVqtFNRdyHApdrgU4UQCkEH1IHPKQFrtYssAywDLAMsAvQ6Q2sUkeHv8fE82m0bkLRHJV14C8DOJlzQSridtJNx/SSNB48qhb5KQCvqAdeMOAgqymjxaShr4komwVGuZW9WLRD5OlLnJ5cgnIN1Vlhc2ApdBcRe0eqJ4C/eNyMxv66A3UM+TYwWzgyyf5cczLKzA+vm2SllhL+TvnkfzaYMSwqF3eow8mwiQ3BESoNYmbFIBOw9KB7TMCzrod1IPSqPhYephqMdQ1iJ1gR8ijMtiE/CYGZ90RJa19TzSd/HHLT5l/RWUNf0OWbMWZ82gJWvaKv+f4PGzIM+i6Qd+FmigGKnEpk/yhQHJ3DzfaeuUF0s5eRdfTp4WIH3QPdIH7JA+YEn6MEl6+vyzEgNKvXO7zrFKqOSL5kFr0vsR0ldSpPdrmcMCpA+4R3q/JemDBML9UqoC4IQhPWCMKnLH4JewFZUOGaPS0lacAYxBnVbaffoQHiR8Kn+Q8MYw+ZOE06clYv16Sxx55bCGjvbzTxtqJJS0dY5YQDRHzM/XpO8ncsSgis8vyb1XwtU+7OntV8I9wd36SRaft312eBs+s0lc7YlJ6U5rtCVEzVWQIwQJLXPB2lwliG2GXyquD+ZFoCjJNIqUhsDyNIKUUU1qmVcEjGrCPaOatDSqKTLvBQty8OIN0D80i2g16WhH4Ng2BHgdqz3BcJZ7yqQdlzJFho781H4/RWVi4MGApHvBgJQlm1STESakU5rtVE263WmSiUSKmQVtskkQBIrM1EkJ6FfJoHTM8BlPcfwJuHotnTtGxELmQP8p0Eniy4k51Ap+iuuryymPzlIexVWbkDgkQeaiVE5ZHOJWJgcczAJbC+mLxCEBuGz/bSKalhTwhSQzRAMCRi1pJ/Y8t5Tv25LggLsSjE0EWWOC0lIpLfNjAc8p9iYziQnSJCZJzylFRrHiEvmDQhoiZn2BLWQnNhpB2CVEsUtEqwlYi0TUTvyIm18JZmUWCUNiLJmrizF11CFTJ3CmjlkydcKO4ad3YwHyrChCsm2MDRBD3OuFNExfVRLRE8kj62756EkQj55UKoqeBIkQo5896rtAeNW6YO2SkGOqio/ehj96ZRviUdUQ96oGuF/5mk+UAMSDyiEeUQ7xgGqIk8qneEw1xD0lINMnvc+N6tF4yPvMeMT72ls97+yfh0rCBZlWbw9OeV+m5yMzHi4B5+QAFYzPKkpHzMLPbHnt4svOIieXr+RPLtdOPDyz5fbtW06fPo+cTa7ln00Gu5DvH+B/H6o4z7kNuJw5w4SNXchdPe6xZwVDOpAJ4Zc4W64kSGfIusFAImEJvazABpmcbcmaoefk96Ah93O26SQ8pjoFmBpdbkI8h4uqHRS29mNsQzylGuIe5VM8pBziQdUQ96kGOKl8zceUQzzufbqUAnufVA1xv/eZUb0eO1qmi4I1H/b8mnGf2jsQ1euIA96li/4z6nn2LgXX5NA89CT2lIBrctL7zk4JsHfZk5gvnkR5u1HebpTd2rJbW6purWtYLAHuvvhsCbD3Se8TZtb7Enhq/lmDEjCp6lnxkOfpvKesc1RM8YxqiLtUA5xSH3pqUQ+yVj3ISAlgslr1HHerBvi0+kW3eZl98m0znifMrpKQ64h6kK0lINfziR/1nzH1IJPqQabmo2RXl4DMRErAdHlYrvWfNSWw7N1eNl7ukSZZAnNsKQGLrdwaTnveKDxVAgp3pgQM13QJSPXuEsDjjHetdSE2c9bz4aNnvH/Gqv6IR3lsVHk2MHGRhPfymX5BYBO35mrtS2wWv+SL9c/LPOoalYVtXGsBsI47fSQwAvNUFpiZ0LtVSxfjE/vKXX/2yN/8xofQMBH9+DTSiVOMgSoTL1ka/yxRZ8TQUsliMd9iqOp9uQzDoOOHx85K4RCMwgiHjuGH7JEFB7jBHsDCW4CA84B4Xem7P6zg12u1vw4KcV39CTVota94akJNWu2rnppQnVb7WevaaVSduA3UKsi3DfwSwwXFlhh08V5ZVN5qlNq9sny/9aq9izLAMkBbALFnOFQ8wRIi1IZeeUt/ZKP2NVRbWb0bsZlbgzz76zrob1IVeEO4ltw487BxyLilg8F9TEHvBAHx3Pq/18uGfQkdwIgNHQUA1xiX8DYaIWqjEdZqv82q9Yi6J5YjxLPxTse1UWic2GiEFZmTCCmq9h/IDfGvxEfcfiD3ZjcfyJXcmbSwZVDzs6kgiqAyDwC1QdKY2toLEG08kBuz80BuBM4Z3yK3MUX9gfaNWD2QGzY+kBuCQxDP3obpB3I5MzB/EsacRXyubwiQHlU5T9DRiTHD3+12CipGaLi4HL+n5TVcHNdwMUUaLs5quBiKjQScGuNBgFb0+VhOicgE4ZQAkI3qQTarB1mpHmRaGUgrx7QMsAywDNAAkNomUTHScSoMFFAUzArAzySq2Erajpi84Yq5X8U2RuLKhI04SbW4JQNxrGScIEwZYBmgxwDifq3z0FEMiuBV1nvse7DZ29FhrV5Q4IWqKrXsr+ig11OvswWR13srIeawU8NKh4XcY06eSI0TUfQJHpuB5VPcIfDWcvZt2KQsXyWd4L6llz2kg95EPYSLVlOhHo+aQFnLyeu9cyz2sNjrvSFZ1tajsLfxx330Crzem8ZZs9KSNW2VweQe/QvybBXpA6L7PVtv+wadvO07F0Ofot7xNLw6KT7rSiTeqe4dzwg/GOqvtvPWYbXE0sKWBKHf8QzTBJnTPbvL73hWzOt3PG++Cu94RqXQbY22mJNnp2Na9rj1O550bpZM6BLMi0BRnHqYDDWqcavHsXlGNa5lT1+B16gIoxq3NKoJcluBdKIf7uGIaJI0uSE4tg0BFnrHE/cu44S99kvhjeDASogq4vU7fFsQd29bkLBkkyQZRkM6Wb11yjBCimSiGBzbhlmh2KTSessYJNgEzTIIW73/+xj3ND/7CetnySK0SRNOq4zAWZk501BzkshgC6FsG3TItlGcbSOWbMtdro0tQ1R0yxAmtVvEDm+tI94yC4KkHEymOR5kRo4EzfIeZAb3IBOKPMgMqZKYdAAwNYZEerIAevu2nR2snQhT6W14JT3bEI+qhrhXNcD9ytd8ogQgHlQO8YhyiAdUQ5xUPsVjJSCC6kl9SjXEPcqneNLzamKyBCTwaJkuCtZ8uATswQHGX84Uf2YlvJoMMVwWfmbLURJftmvPR2Wa5J6ParfxfFSTs+ejEtDnVpNqYrzzh4/nVzSeH37m3mbhPaW/WciSm4WswH4uS0oPB6SlwbEN8ZRqiHuUT/GQcogHVUPcpxrgpPI1H1MO8bj36VIK7H1SNcT93mdG9XrsaJkuCtZ82PNrxj1x70BUryMOeJcu+s+o59m7FFyTQ2VPouxJlC1W2ZMoexJlT2J+eRKuYbEEuBt/58dD7H3S+4SZ9b4Enpp/1qAEXB31rHjI83TeU9Y5KqZ4RjXEXeo35y3qQUbUg2xVjckp9XOsVT3HGdUAd6sG+LR6LLaVCaNk0TH1IJPqQaY8z+IuqNzqElBmkRJQFR6Wa/1nTQkse7eXvQr3SJMsgTm2lIArpdwaTnveKDxVAgp3pgQM13QJSPXuEsDjjHetdWEvfNbz2/VnvH/WqD6krjwWpTzhbS50xCu6X9/puH7wYaIIqNMCaOZzgAJgHQn6SGAEpuASmJlQVU/qgZTP9aw59qEHzt+F0YdzexFU9UQ60dd7GSSm5JB4EL0cmkQfSImhD6Sk8AdSkrLzksEhGIXhch3DD9kjCw5woz2AzAMphld6zNnm4AowyiKc68YRYgF+w2ecB1Lq+4jnP678hBq0+mFPTahJqx+7ihNy780pGzUlCbUZUXRBgL4pTml0XHbXq1YGZYBlgN4AqLDsOjNMlNBD7HMk9WjtjYhVITxe1cCIlvueDvpeW7WWIsRzJKg5jxLPkWw0AGKmHNXq32b9HEmU+xzJBMQ1xiW850h0im/iVn6qf8hx0fwK4jkStoiToUKHuI6nHqkz0Nrpauw9eREknrwIETUumOcwOoo/fea2zuLPnLmtq/iz0dzWXfzZbG7rKf5Mm9t6IYpNbX04PxbQZVYlFQa2uCwGzWvEH+6IQszjhr7NxQfVhuVdohJ9UE35W9vqH73Fc1zsQtyrfIpHlUM8pRqi+reDj3t+isofI1b+6DSey2QX4nblU/T+0934pQQPSfRJ70v0Cc9T+hnvazEXWOew5+myx/s64lgJsM5B7/sRe+ahYpz0vkSXgDFQD1E9Lx5QTxdzZMTwSKT4Vi8kFqELUa9JxvjF7am3Y+OuF7ePu/92bJwknt2XFUP2Nuq25qi2wFdoCHt8lv993Cdf4GtIpsCXj6pljMYPgySeqfhhkBovqmi8KPzMvWBVvASDVS85lPSYlJoG68Yfo0OlOSH68AjvLCCh1f+Q5Qynr4sVzkO+K/J0sOU7T/X/B8Um+s5T0aRw66XX/6sO/KfFlzJe3jAxPTO1jTo7Dyg6Ow/Az4jxoorGM5yRSZ5/6RR5kn/+VSFSe/6OmUkEKnrElSCPX2QykwhcAwlLSkwkUrRISKeUndlXs51ScCHm2YPnEartzP7uqzr7CJy9SQ2kCANU7brPV40boJQiA8RFFt+f+mTen7qEvvwDQ2fR54USfBep2neW4wWNYf6O/PNFt2AuG/18Ed8Jc1hT1N7haYI4PE2xh6d5iE/IHztmCgoz+mHxY8dqOGdTWxrO2WxygfqrziP945dn/MY/1u84D8V+Tk9zu6YZuNWYTIjMwPyJQU8YgKFzfUOA9I3x8wQdQbVa6WwTBtPKQGUIDVcjx+9ZeQ1Xg2u4jCINV8NquAyKjVo4NcZ9qYX6Bxmulh2ulvCIAMicepCN6kE2qwcZVwbSar9QBlgGWAZYBqgYIBX+5JRi1633OLUPDNgLelB7/Dg1XlDReEH4Gfawo4qEW8PciUcrUERKPloRgJ9hZwN6uCj3CDosEuDQYfASfDNa7ps66Eep5cbRa0sZh2/axfE37WoKIIMS0qV3epR0D0Ik6WsESLEDZW0rUjzKfR819yUd9E7q7cG0nVOMR1G+cRJhneOfXcQL7WGouyT5Vhfqx/nj7hV4TDbskDWzOGtmLFmT3iHI8DPACcXRSYm4fNwyxJck+SJuYDGGPkktd9T6tWNLOXmcLycnBEifcY/01u8IJ0nbJs4vSQMrm0kPGCMiEUkPOyR9GA7LJf3z1qTHDjciFOnDWu79AqSPu0f6sB3Shy1JnyFJH2FJDwxzpYQ1iDgkfYS2BnOkf8Ga9BE7Cn/uJOblq6vwI3ZIH3FI+jhJ+ipyixBRag4STsxBQst9EjAGZ+sCuovPOoIcKXwqf6TwxjD5M4XTpyWi/npLNf+8IVxLx/355w61EktLWRIkQhIkRRNkTpw+C/02U8AayHm4nLXE0eN2s5Zs2WnV3K2faXF5O+Kzw9s+Cd4WeoM+DBIkiPBCWkKvGvYymP8t6vpkOFJVq+W+bG3/qC0raiayvCgSRBaOoizTWCuwLcsiVjpDWemslvuagJWudc9KZy2tdB2Lyawl+uvZTnWGvYZZ5utFNULWjgJaR1w4jFvHJzg7jYDDnWmYih3VMo2GPS3GJjXuBZZqLdkkS4ZtZXgL4IhhBJqJ4nBsGT0nwCYZ64hihGATvBKP1cbuMe4V+dzr1nlWCcKUKEuZMpQ2InPXMLaNOGTbGM62CTt7EOvnjVPkHiTAMmYK4otKx0vY4a11bJ0LSDCrShd1pMeBdMohbFtnsBIM4+a0hoA14zbYCQc1sp0a4LzMvJkDXZnGBmiZMMZtcMi4SZxxGy0Zt4ldbqMljprZTk2Q6gxrNkN8UUa7kXBN6wo8mBpn85gUnkRVF48C8ewa58PowDahaYr6mUdDAyp1iAClIGl4NQ8blujAmxm+TdEOd0praCswXfevUr2rmcZqygpkoIKTXHGGVhlzK+7RBeUCKozVDoUxhQtjnaUwct1dGwqrnnRvGiGlxE1TxlKZV5ObuIyBwRn6VGsNC6lYVQTihFMVytaahLbEqYKgJCsYhq2Dik3cMNYReiEHP0NBclLfgcCjrLJ261OooUW71b/Mo2ejAY2c4ooNK3Qd8SF7GzyUlI0kp9VBSWBn1qg1rLYOF2Bqph4abq6aWQsqJtoHnuYDv9Xa7eEohJwdk94I50UwPms+6qE+RXNtG415wfXQCzZHRkFjnVW+8RtLQZbBMfZi68jwWfxB3YhuYAOyzXKmIyBB0B44ii2SpqjVojAb9TJsy2XkrYimX0Ah6yIhCfsdwBPBnaziDB6U0NMp1D6k4BSLXhohJtXcDXjDZoHAXZ0zp8T3d7hTErPjlFjXcs6RTglt9QKklKJ+YcymeY8VyJfYJ4ECHfRW2a1tPc0Sc1vbnba2trFZZ1vbermtLdTIKOPWu8e4DZaMy12uMzsovbWtg2Pb4C6Kcet1xt1OBR6S9tgBxxDpezVAvLHc3aw1CCQotdjh7la2UwtcjhlFgHCtTGMLpCo2ICLgevzkNg4CWrWG9wpo/BaH29A0LjitloLTxmKy1RL97WynNogTRjTaISkoe9DKtiYFxKrBplg16GJ1vUS01zrU2YCwS5K2Bw1aw6/a8vljDnVdklIqrK/cCGmHsXWje2zdbMnWHK3S7FirMKzZCvFFsXUzwYNJnQc7r6hbZiZqGs6c8ADSErOsJ2IfacodqRewaZLjJeFnJnLUqwz21lNylRNYWI7c1FMLY8op51QuzDB36zj252W1Y4oypnO68TUd9BeoOHS9bdaO4BTBy0/c7ZZHXBH0mEecIz1imVhszmyc1Z+UEcirt0RejlQtMrE4gB4qOJ8mg+D1roW54/9XYjVph/yTsu1l1M8bLyMl62WIRPIaiGjXbdZBOnTX18SP0n3X2odttsNdXHSDeREM1EKxXs41JVRa3NVo4cPa4C4qltoAPAXzGYDB7y6ifGwp82Uz7ERWEWmBnQwwUSbd+NjkGx/wYKQt6Aa7GdgUoxwTa0EgtHBDDY0+61hLKzkztOREm+jMWjkza9Mag0QaPFwXPw2+ZRZPg2+TE8dK+TT4NjwNvkVRGnwbT2R1OcffXGmziLOIB2/aCacfgIypB1nvmKbtaGGlCuJNmhb2TRo965J5kUbP3eFyD1WoqZg586J4oaZmOGNCibXy5aXVq/LS6p68tDqXl5ayvBDy0upheWmBMybQ8+F7xwTeAJOQpnY5zHfIS1O7+9LUTkoTs+YOWW67cNPk+COP37R91+xH7tm+YXzz1l3Pc1VdksvvHQbxVUzbZq/Sttk92jZfMdq2SNGWOJRLSWyQWgg1miLMf4vKOKlh7lhAVo+TNt6KGjpkB56j4qRz/vb9Oui3UPHnFuqYNILuiZsd7okD+J64xXJP3EqSXMZh0H9yCNgG8UUF5lokAohCgbmcHpj7XXw1zGufTRAAqguYbm2W55gdxCOh6wyAGD7s0BrfYf1IKMbi7XBxXCZ/yDrI1GHnbLuT7dQB52WWmTboE5kbOTsOVqA6HApUBy5QnZYC1cUut9MSR91spy5SZLohviylVNdu1lzdZSdGRk+/naJiNypeCCO30YzcrjU+KZAi0ukei7TbYZF2hzhuI1mkgzSp7RJqPofq3JzB+dAtMXGJFj0crCEvm1Pmo4bDEWmtcdY6qTxtVWr/Nj7oQ9Zas8ZOiRX65jKZbFDLxDhAz3ShIoLZV6293DDH+T+n/8Nzx7Mm48adQC33Cn7js/pGdYQzN2fbkhpiW5KVddGltyVZfFtSo2hbkqUFxjxsndywbfS2JM3dlmThcICQ2KXAovf+PlkRzcDdAVdIP6AD/yUUuE3/Ml0AHQtIibKV/NO1MzKU/FvUzjA3AkrFZa/cgL7V3Cs3jS8KXBt0WFrD96Mrfm2QTgXLksd+aQkWzFpuKOjaL1k4LK/2S+Mr1LXBBMQJVelBZk0ZVKwyHLHC1UGMMKt4RTCEkfXsv63cSmCNn7E281Req80qBjFGWBNQ1xFvz+AFSpLuncCnLIXN4okVYR4y3IOmEiETJNum2Hp5EPeXOTD6GmPAdSNfxNzSxTjmmj438dWV3/juN2ZfvGdqfMeZs2zIq/DOlcOBji+qTL/3F+5Y5/pAXw3/80++/KUtp10f6H9X3XWz/3882+b6QO//yZ1L3pPr+qH1QIWXYj5APGrCuFxJOSGLyruZSdzNTChyM+k6LXheSpIXOs73Wy+hGVNkLLoMsAzQCUDW7vu0xp/pfsgPGXPrg2KATMfHToc66EjAz0wCVVk8BsaeBmVqroTQljDaUoW2RNAWQ/Uk7JLsA2hN6vUFLDdXcnboemCC1lpr8MBE3cvmgEQA+si2rhYS26h6O4cYd1N59Dk797Q2UmdVDRJpyjrEDVTSJ5rt1kRAHKdyTPm1d5rOFbilKYqTvIlD8vyYF89x4DZpTUnHRQgqWO8BgGIKhOkfOT8hDRQRahqmifBKJJcXk/dKmnGvpEmRV8Ktp4V5JYaUVU5Q3Mq8SJ6QlwGWAXoMIJ6y41wLNUMRxCJxeqS3aQFqMdDChnkYE3wNvlcHvYixK01wmkSeRkJCzzSLuXLNVwrpSt/Z5KxIp6B4MklTkWRERlIrc2TVBr8jbyGAzJM25C1Tw0gGYNZMugZdrHX1Tf7FgqZxHfgtcqWhmiAxiNBgQIKHE0UCYbqGDDEb+JxdbovWdIf1PQosLNtMnb4mtKa7rMOyLXbCsvSln2YK960YTD+hP9bZw32zYU083N9PhfcDsLtJEgwHmKY26uJ3Cu42mEKjF4r7BvzB5EbiXKCOPdvFTY7x2Csvcv8hL8+E0ZmT5s3WPNhGuqjiuaZtcFZmHgR6sJ1KqmK5t13A+nWgeWX5dWzmpqw1TQqc/7U5PJKI4kcSHZZHEtz0NCvacJO8AE4YUesSUBCtRFrQOvGrZMb+YFhe1l/T05SCMFycoTwcmTXVFdfEWF/oEOj2l7CCAQmtL1Kss1W0NCZi2WetTR3m27ZQpm7OtxVINGq1Y+roXN4WCvtkknmza+WZYh4rz1RHXjBqIsWqVSJoJiQ4TWB3dUU2A+OoD80JODW5HnBqwgNOdYoCTk1kxgh+95DLCVYbfcldZxlgGaDHAOLxaOdaqInYGQTYvfyrsvltAcr3r9OaB3TQv0Xt5JtcDMrbSBUoB+XLAMsASzCGrlh32gjn1pVUOJdjAr4hG/4JWG36mvV6k01/yyDFcM2TtBBkrNeGlrUZzjUck3BDiv9of4/bbLHH/Y5HwrlNAhu0qxLOfV0wW7tUwrkBIpxbR4Rzm0A4F0uTepBNkwLoYBKlADqYVCmADiZZCqADTyZOEwlTGTZhCqCDSZkC6CgmTeHUrmTxAxaGrzRK3HkJEpitIjAUY/UzIABOkQiB2XghLVdarZNR/ea0rai+9c0ROpQUcCeq36Q4qt/cUI7qv9FBwE5cjah+c7f9qH6TvTUJPYTZCtwwwhmS8XcMD73YsroBK4+nedT+g1ekxzMXQBjziMdjPHrBs2OaXKtiEvNYFZMAWcWkjhQctIpJnU3BqQMhLIcXXZ7/g5F1P7z7+60OLrrEieiV5F2T35OPXiXw6FVcUfSK82gzePvW6eWez0vcr0nCdTMDp2QLBeFeOqpzM6TyTEJgrIbLaM33E9uGNPl+rPgdwmoizHEVAHIuLKYh0Qp++x0un9AB5sUl2PlA8WKUhRCND9+73JJBF6E3SjmaplqO+e+X1zTVuKZJKdI09IVYXFyrebde8/2mpPgSp6vedvGk9yHuVz7Fw8ohHisBwhxUDvGIcogHVEOcLIFFH/X+HPd6XqiVE3pfCQjgCc/T2QXmPuV9A3NcOcTT3leMJaDG1C/6jGqI25VP8az3sXisBJixBPzaI95ftHojuEf5FA+VndB5IjAnylbVi4suBS+0FHTtcc/r2r3ex2IJ+Iw75qHP+EwJ6Ijj3ufFEyWgxkqAMOqd0AOe955KgRkPlQAzziuLpf9MumCziKq5MpUvk8RwhrKc5ux1MJ6f/+CgfsLMOfVMu/7gYBo/9axWdOrJreiro5OqCs2gOiPALBl2uAxBPQCyUj3IkASP2ayNXOx0y9w0tm7ZdimR5/lXZqa3Tm6d3r124uGZLbdv33L69PnZj98x8cT2qd1zMKYmdu4sdFw7+2vrJsZ3rJ6aGt8NBeU+5PuN/O/TgfOzL2/c+sSOyQmYBTD70uUPz/Aa72P++MbizF0uy02AkuWIIlmOGGT5CusOtLxhkilviJftVJhE8ci8SaKYUW55nvN+QFy591cCO3fla97nfU/tmOd3NuoZ5z1lxnGOxPKJwjyJ/z/j/TUf8jydSyH1zYVI3Ow8DK7vL7uLZXfRG1Z/d1nTzo/DrXcrX/Oz8zFsfcD73ti8PK+ej2kE6iWwBBLfygarnI1Rzsa4mqxTDsJ40xoov89RAntA9XRRnkxeAoHaM2Wt40nu3l3WOvOELt7XOlIeI3ha3ZwEYSjoIZ4vo0NkX74EZ/QZNh0o342TzVAjWw9FOpuhBs9myCjKZqghU4vwmog1LKlrIZGQ4WrZ4WoJ7qmFVCrnrRF5azVwagweQWtQghNqCNIAkCH1IMPo28IcaoflEO6Xp3YYp3ZIEbXDLK5CKLXTcGq4zn0IfYfZucxcr1Rmwu7JTNi2zOT7PaWMva2iZHYB4ubfNsRDqiHuVw1wn2qAk8qReFI5xKOeX/Re768ZL7ZkG+Ix5RCf9T437vc8M+7xvo44UgLyMg85B88r8o7VP+H9RSunyzMlIC7Hy1qnrHW84jGe9r6vUwJ0OVOWQE9SendZAucJXZSHOJTHD+ZOOIigmkhF6j1shAqP19XKhcxul4/X1eLxuhpF8bpaEtcmbGTh1Bg6ZAv9nsYGy7KDZQnCZq01q22IJ1VD3K8a4KTyNc+qhrhH+RRPeB6Le7w7Q6D0vM7c+BbNOzpCvQAeKSvGsmL0iGJUv2jldNlbAuLybAkoCe+LtHpz4H27r57Q+8oWsLxor8xx7/zzI7Z5fobqFfdzyiEeLAHfqQQsalmgPbjkEnAi5ucmVTnrvHsebqOPzccoEf70lJdsAXnlAhlO8qJJBn5GjFetaLxqwfFCisYLwc/QSp1pplJnZQHmevY2R76Fc7iUlTvfScgfLmXxw6VaRYdLHIaFl03Mw9bJDRvHhuU8u10H120iQz1sQ0DmyGeR6yAw9lnknNZ2A8tP9UW+QAatZ9dRX0Rf/lnhtmUc5rlcMNcSg4vNqKgjOLJejjpJeY6sxzmyThFH1vNYQ0epCRs5ODWGfjkRtmGHyxEqJmfJEmWAZYBlgO4CtFSn/q/UPDgTenHTIyN9iZt/lMucf8/KPzh1cGXfMGtZcHWac/2GZA5Xp/WK1GmOtFAmbDTAqTEEaCj0ewgbrIEdrIGgaIOAfpYGmW/bZN/mVnJYQbBrgO3aINg1xXZtFOy6hO3aJMc+YRZCs8XgicIPtmtLoWvNWMXX2/52ye6huqXb1z916G/v+fj+2hcGvp3K/WDmhqf+/Rvb2a6tFqMG9FFNrBsrEP4B3e2awniq7ULBVTQyVqz4089xEtu0tn/Ugc+YJ+AjNIlfjhrD8prEj2sSnyJN4mcl0YdqkgCcGiOlgUI/9N5ogB0sQIh9wDp6YBvis8ohHlENcZ9qgJPK13xKNcQ9yqd4SDnEg/OQ0EdKQKSVz3GvaoD7la/5hOdZ55kS4JzjnsfiHu+riJMlQOiT89BeTXqfLs94f81nVEPcrnyKZ8tuhCd1hBtW33zu5i/+TDCNYNsWZxorIRBkopXsRCuJifrhZ+Z3OcF4Af67nEFizx1yveJVCN9zBxXtuUMsOoPonjsMp8agOgwRK049sMW3NUe1L15WDiHfr+N/H/LJv3g5JPPipY+REp+AlPhIPFNS4mPDTuAzUxvoF3h5w8T0zNQ2ZrqdxZ/oA52d7HQ7ielG4GfEeD5F4/ngZxhINOSXh/skJ+DXqbX98JJWmpw8ozV+BQPdZUdoutlOXXBWBNq6zWTuKuomUR2GIxPMoso8ULfKgbqhPjIN1KNyoB5o8EwD9aocqNdgPE3GrA9Ql2/M+gljNuD6UdQAbsz6FRmzAZbn+1FjNginxqB6sNAPPVwcZAcbJGjnJkDTygYIOg+6TudBnM4DiujMwdQASuchODUGi0OFfu/EBhtiBxsiyDIEfV3lIPscU3SIxU9+ZObEaxii19Q2Uui10dwyWmjZxOedCjPvVMC15I1h94t5sOw3zDT74IzNZm0AqgJxtTFAkKPf8Blj05Nae1/hEK+9yzzZtiJ2TC3tqDx3FFvycDvfQy00omihEfgZMV5K0Xgp+BkG8mVe8l20APVuDkEGtPZbHYvNFlRsOEp2WBa2tJIdJmR1CFfAcGJLF+MTe/qXfv2Jdzc/+tsYFYZZwg5beqQjbCfwZjuDxFE5JD5sVBgBqKoMLZUsFvMtQTj4ZUU0yM5rRHZeMjgEozDiAVpz9gjDAanLjSqAQCaVg6yyB/LFe6bGd5zBXAJCsWUUKbaMoCKtVjRetcG1vSoOQ4Z1GNBlSjkGPxN3DAYoxwC4/yFFHnnI4Gma0T4km6LDIBdD+wicAuONoTZVAO1DBbT3jIijfdCgxRzaxhHU8awgljpobltQ6PWwuWWhA3d1WEfPJnH0DMEZo3dIBpk7JH1FL5D1cQa1rn260znJUiTf9V5CYotO63ZGWBYK6MSFrLAsFNOJC6nxqhWNVy043oCi8QYExwspGi8EP2OkbkxO6haZ+WQRKnXXEMpnsSPlM2ZH+SyEM7s6aFjIogFTPkscKJ8xO8pnAM4YY7y86rl0jMFTIaz2Wai1v0/XHs9Zwx0r/jFdxAAX7ll9lf+DMHsDaBDiQdYS6D8r9TlfpCS0X5GE9hMsspDYTY65HrIbw3eMCxWF7MZIXDFiBqbG4BG0okn9i9jhFhGkWQSZQjnIAc8poo2uKCKZoJ1riug3HSO7Qt8w8iSlrChKUVHk1Ev1cFlRXHFFYccD2ITuBdcD+29LBd3HV0F/qsP9CrGakcJXHVUcMKNa+5+z3LBQnSZjNyWjAppslOXtUTFNNooSyOd4nTY02UJck40q0mQLSVyZsDEGp8bgcUzA5eEozjGCNGNQIJSD5AR+FsihFbd8FQTuRlH9t5HVf/Y12QI7mmwEzhiTL2l9M6cofugY2ZSiWECFTvsVhU774WdY9Mrn+JDIhqIYxRXFoCJFMUriCt+/jrJ4XCDg8ixgh1tAkGaBgMtjH+SI4wM23LBUELgbRNXLRla92FcUI3YUxTCcMXmmoTsQ2FmBzzF6bdRwGRE7gHYiMiP0ATRMCf7rnnxO8K0T03fNPDy59ZG3TuzeuXrb5rvGp6a3jk/m83zP8PN7RxJnkMTcuQZTprDeKWj6VELw9VWwj66PQBYXF0Rwxkt4fAskvJjhoqiYIS4weFjY4cZC5nAD+OQv3LndaMmK3S5FDsVdFX2aG6hN+5jENk6HOM5AHIMuBwLxGgLiwwzERdBVQVF5DYPKRSgqIUQClUvIxIQmZqIgyr8Eg7mUWPojDMQloCMGcRkBcTMDcSnoiCNzGYPMpSgyIUQCmcuJaU4w01wGOmIQryUgPspABG7ktRjE6wiIWxiI14KOOCqvY1B5LYpKCJFA5fXENB9jpnkd6Mg0An6uVZSmUgs/w82x8yRww9xNA12vciAd2ANMrvkNQD/zc80XEB7ICted9hW4B7JAkQeygnR5Tdi4EU6NQfSN0MYjw93IDncjQbsbBXwF+yBvQLdoem2cjltRxCEXZQaLXgW7y12hdT2qg34LI88rINeKL3dFcUik00qy5uMKA+aYSa/UOtbrt3su8gQMdDeLGIC9iC9iNxIittJ1EVuJi9iNikRsJcmgJmysglNjUL0K+n7IcKvY4VYR8rBKwIe0D3KFgIg9qFrE9IB4x3jpiNijKkRsKV/ElhIidqPrInYjLmJLFYkYh2JLURFbCafGoHol3BGIS/RKQh5WCuws7IMUEbEZbNjFdkRssda1XAe9i9pIXS+xOVtsKWJLSREz7N/YSS/VOvYJitgSRsQA7Gv5IraEELGlrovYUlzEligSMc7WdwkqYtfCqTGoBq3LJLaH1xLyAEAuVw9ysYCIPataxDp00M+VjoidFxcxfElKN55EUKZOAnVLCE6pg59RG906AT76VXRSVny0hUOSJVpXSgf9IRrpRHShX1F0oV+MyC85VGJBeQ26xP1g/xISV4zLRvEUiOeJq+ulBGFKAaD+s5kwvs7jRUsgu+KOtPOBlrqk8fDrcQ+Yh1mmcphlxQNGazX3eTTSbKXmHuOoueVa58910F9g9cdyORFmXOoV6FnsjZBx8I3GUmKfzxB/Ne4fCZzVLtdTzT8jfla7GK7IPcVcWVbMHlLM5S0MsYVZRm5hQGuDxNHeMlJ9AmlUDvI6xzRVphT1PQijEnX7Ia30ltpJUDEoPfOWfyn8roCoF+8dW7Sc+RSe8+ajA+iB4tIXNs48zJ3CErzT4hfumJnkTq2FOiKuV6Qy6gk7RoUWl8kxWEBeaSxzP7S4TCa0uBxOjcHjckhs8YP25QRplkNWwrLfvWa3F7tnt8GTLarZkSLRUmLYa53V1yxqcCKe45+9cNPk+COP37R91+wn5nTF9NaNj4xPjk/N/TzH39os4zPRteDP1wUk9Ic+lXWq0mB0iHfTaTDiVALhLzJjhd1fLNM6W/WiRUnOB9donRn9g2rC0CzRv2pGM7l9jjcwNuR1OS6v1yiSVw5JruFx8G/c/MTDE5s3T2xeMzM1txvavPkXEWbikc+QE6f/XATZPSCRfXcNzteGkXCKL8QpPgg7FL5qJ75aCL6SSEsMQmC8uz6dXfqm8U+pPPkFivLkDRnMxHjDisYbhp9J5OUvcD3uuMD9vPwFMnn5C+HUGDwutNyNSt4RLQWA+s9WIjvMefjMcEHhCmXeUcLgfKBBNO64UOUwoPSN03un9va4C4jA3zAR+BskAn/MvbGbij9HnFTZ+HNif+z0kkVpoG/Uwf2XMvombrhi6JO8FTeG3niqIC7cL2DdcBx9iwn0LYHok0bRqJ2o/QhckeG20O8ULwu9dWL3feOTWzfPfbZ924aJJ2cmdk6fR+/8DKItw2jLKNqy4LzpBhH3X+BRgTHjF2dRyCPI+wbrz5IjMgjEfb+renl7RJHvx3F2RlDfT/jydqP6m9YDbtwHvzqXt0dYbYOFvK/45e0BOGNTm17TmSk21V78yZTR7IDAheo6hzFSS5YHDRtGxsfr4j5R2/kBlj26HNprais5JAtbWp1wKpxCtY6pmiHBYsrPXjj9oROf7X4PRj26Grx4/lCYiKVKqsXrjIIRYC17vqWSxWK+Jch6MYOOq4FeJ4VDMApe9/8he2ThALRWyTRIpkzxIBQws5y2FX92M43gjRU0A43zqkwXsb5++JlJXroI8e123RvoxkW0S5E30E3iCjcV3WRd0KwifT4AuUI5yHbHNB1gMYR5A4MElw2h3sCwA2+g24430AZnXBY+DwlfPyl8oBUtj9LPDtcvRpo+9SDbHNO0n8UQJnwDBJcNosI3dBWFbwA/zOliDnNAv06OZ9uldf6J7of/jLK3PdTjab2UPkBfj+tGkjd1Rue9Htetdf55AYFdF+hxzY3dcGXmxh6BGffamXGv1vma9Xt3vZeydhCoG1HPtFsXFd03lRKU39NReR5VsUEJCe+y9OG5z5UBRqKscp+EtuwtHsViyOtyD3m9lsjrI6bsl8B4n6jub8eAtrNAu62R13s1Oa/bDuf18dYJ0MMgD6C2g21tMzCSubUTKhZxxPcUEY906iDvXPXABbGqqEPr/Ddw58qsAjsMNphYcAe54HZgUZBVtLFLj5l5DrRAtX0ZdNuUxMW9xZa8cT3vtt8F3N0FSVDXO07i8tIFAvwkZ7m8p3Ot0EmOeP7PIMoig3CelrdGlpCgbSSd+SUWsYziq6WGdeBpZ8OyF2L01HX+hZiueuChYCp/mUOVn8RV/nJLlX8tmepqS6yXkJdOl5K5EMsJDlwCrmfauYu7lMeeAALGoKRlGIQr4+UsdvUCyyAuA0uUy8Bit2RAz7vdwpeBkSsgA4krLgMrSBngcPkKSApaBrBL7DZV92JwP17RJXYRwVkhKjhL+BVkVlgLzgoyC1y8TskKQcG5kSplgwrOjVbGgyc4N2pdawUEZ4V7gnOjpeDQRZWQTqt4RVYo47FKVHBudE9wZmzVMFpJCs4KFEOigrOSwzertK57rAVnlR3KreZVoCIEZwV0hs2NqwQEZzUiOCspwVmtdb1dQHBWuSc4qy0F5yYWk6st0b+G7XQTxAkjGmsMaoIQnNUS+lVIcFaAumKKin+JCM5KUcHhl//qetxacDgivcChyiMFZxXTuFJAcFYhgnMjJThzmmNKQHBWuic4qywFh6uCrNDPlTaAE0Y0bhIVnFXuCc6tDOHBSVkNNq6PHZfK2q6Bn2EgwVN7+umMnqTEspHvEmGZ2I1fjknuMOMoQJxMVsrClj6ZrDRPpxLODD21rBTM6plqe/ria8/MTGAkqGSpWmnJ9UG2Uw2R1ROSQ+JbUf0QRLN6KtGsnhCe1ROUnZcMDsEojGzoGF5vjyxMCk4ASkNeuPNfh4p45PJm+GVg0Mx9/EUhLHyudb2/oEi6ftmMdX2owhcfQb6QvheCnPlHzB0CxQ6GkaPFDwx/j2F2If/nOAc9OqwIg5641vWyiQBVxW4FRjCPXcUfO2peXBSTzAJAc4cY4Jk8RT7I6BQdAXJ5EC9vmJiemdqGgfMJKqhPLRm+LvFA7wH2aZ/C1BUNlPjiZ9Z/69929FoPlHcioh9gVbNd9vUTSuAhxxqTo3PDMOleIKnFtNIgYROr5Cb3c3mbWIXbvaCibJ0qVsEGCRMWkRv2v8Bt54/cs33D+Oatu56HOhpQGqwaDAcIiVnDKtQaRgos3Btz7C79l2Pu/E/U4dLLhXX9PkanMLLdMFg81lOcM1N/qAP/IuXvVupSb/omDEUVzd+pMpZuCcOf2JIulYgxriYEF4Z0i5A70AAExuIjonVp+gbsS+gQCLLDNLLngH/VOl0mSkoc0inGdorCeZmJBgQnxtTxAcuIWNXxiaB09eGdom8U/9HVOuiNdglfWiB3/lHhyVXBkTh2BkBHWZJBcwDdUwYMBNAFuGg1ne6igqg1Yk7XQ5Aupjb9osHb5M/BK/VIwifEM/4MMqjQdUD5IGjkg4Bh54h1Chk7BQkMBlX6O4Y9GSEP2JJ8JGuHzXP3qZy7j6BsQOVAOrC3Oza7TeaJ+lmz+6+yZtdPm5k5s/szHfh/CJld1D8rGMn8pN8BJ4HZL9ayVhXVGGaXeHZV7wQBMcuNat0+YFUx/bOugJJu1LhXWVveCGcCVVq3Xka8O8Tgu8qg0HBTSZk0Jj85UjRwXIwk9QnFqDEDLLrAZwUQ1ShSHwLfuGAoCW8wYM8b5Mg6mBgxXtD8EBl0Ei6FTs1+Dsi+i+b9HPMnUfuuUBROm8CEwa+JwdnbcLqqSHsSITW2jNfjR70eP8/r+VdK5EhHEePLKnIpUYntbBhdigGvRdXkML5y9O9//lfPvrvhB64HclZ88Onj8SWv/KbrA3089rWb/ucHqx6UiRiZ+SEE9QvGh+AYBJpX/USEY2e7lzoOzFQQr2lXUQsJWC3EvLnNw9/IX4n+nFP3dZQa9FGy5pfd0pKTimjdKwWOK8MOjysr8ePKiOVxJWc7HXG4nQ6xuicG9a34aVDI0usKk9GMEByWyzRvoR4i8ZGmwU9qW8NxEx603aQz7aOOPfUw6uQwW0yDeWF4BizR1BYlHK8YrqIEdsoh/W7cFmKnTGgTHyX0ftqnxSQz5FXJXMeyVJRkOGFWDhObyXWks1v0AR61PAEJMnvI7ndheAghqjdIqd6Q1j2rg36CoX6QYo2QgLIKEcrKKmjBxJ7wM5Kw64Ulw/gZSUjRGUlY7oykSlbG0F08RaLiwcqrd23fObF18/Zti+6amHpiZnr8UgGss4ifCyW4kmIrH731I9URJb1BUnpDpCGiN6tV2AmGkMuGCilEPs8CH9bF9FdoDS5O5rClA8PVrWDSBHmidARE3GOydrPivLtyxCyBCYjjm8aYcUtNLk3ISjr1X4O4lYxaWsk4zxW1QmyC7RQnRSwBKWDfuEZJ8QwJmtdfkTBKQXT3bsxt0o2ww73u9T3vzTX90ZNx1zfVwcqmX2p/5Z23S22qTdEr6AVYRa+Y4478MPfLpDyEnZk2Z+Y8eEXMOb7R4FgfPaq+XiIgVUX4WW4CxDZXzlNbbLhtRGpL2L3UljBK5wicGoPFiCVZIqR9LEmAF0Q8fudHfYbdyhU6eA0TwuB8oHBxc8hoE4XDVBVjMNghe3F3qskGBistAoP/pIP+KueDgNb9Nf2Db7IKxicn4xE0+lBBRHhCRISHYbU4wR0JiHRTW7J4ECcdM/IJVRkg0OgvXTRKI8tvp3I0PDOyOGnHBQFMgSsK/6yT6N8l9ms+h1HqSjrpi+GVqByvxFiqY7wSJ3glQfBKkuCVFCFy1XDJ0nwUlRK6f5cwp5XoXsV4pK6rZFcSrMX3Vj6QmIEHgkISfrQO8W4qCEPlKDndcoSUbjl87m05fLa3HIBIqvYI1sT20D5GOUAqauGzTtruQQvD+tCkbcK38mk9jTronJPcMR+RzXq3hJ7wWyqXMC9UDQYl1EvYXqoAglldqsa5wdqeToHjbKeHZiE8HBi2DAdW2YkGR3isD3BCbe6CFumkNniLypT2AakpEfMnYaykD7yljVXIfWMVkjFWYYPcsDtha2MVJjke31yvLwNUANCp7bvFtu0b59u+t+qgb3PL9q17k9u+h/m2b+MVsH3hN5XtEzFjt5TPZ/SJlc9nyucz4nQun8+Uz2fK5zN5M3LE9vnMw9ygdM+HdNDHueczPSf1D95XPp9RcD7DQ2P5fMYD5zM9L+ok+mT5fObNdT6DU9Tx+cycSnaY4nU2lDr6Nf8jX3RybyoosCEM8e5NBYvWh5dd3vM7jncPFcS9qbDjKmO4U1NBxKB8xP6A8ikDhH61cRlEzwjtbZG4DEJmX4cMmpZKzb6i2df5dT2I8aafFx1B465gpqryLPdenPrIf6U/+o9evLzY89qb5fJiz491tfm/PHN5secfypcXGX/QQ5cXe37glcuLvdHy5UV5e1W+vMgjzVW+vNir76NM2JOupcjlouALa7c+BbmosgjfQMiq4gemiURkLRx3IlS5mmBxKHNh0qjW28wHyFTaqcI0cf7PMbTmagSrPRuThVRlghS2DSmCVl0Ny08KA4VkXzHVaYGRK7Btysad2952xXdue5fpoLvKd27Ld25NJCrfuWXMzlW5c9t7vS6md5fv3Jbv3JrdZCvnbv7due2VyfeUu3Pb2/7/A2HJul2TGQYA",
6003
+ "debug_symbols": "tf3djuU+cmcN30sf+2Azgh8RvpXBwPB4egYNNNqDtv0CLwzf+7MZFLlYWU6mcu/8n3St7q6KJVHiTxLFTf3nn/73n//Xf/zff/rL3/7Pv/7bn/7xf/znn/7X3//y17/+5f/+01//9V/++d//8q9/e/6v//mnR/+PpPanf9R/eP7pf/rH8vwzP64/0/WnXH/q9We+/izXn/X6s11/2vXnVa9c9cpVr1z1ylWvXPXKVa9c9cpVr1z1ylWvXvXqVa9e9epVr1716lWvXvXqVa9e9epVr1312lWvXfXaVa9d9dpVr1312lWvXfXaVc+uenbVs6ueXfXsqmdXPbvq2VXPrnp21fOrnl/1/KrnVz2/6vlVz696ftXzq56PevJ41mv9z3T9Kdefev35rJceHcqEOuFZMmmHZ80Uf9kvSI8JaYJM0Am9snUoE+qENsEm+AXymJAmyASdMCvLrCy9sndoE2xCr9xbQh8T0oRnZQnQCXlCmVAntAk2wS/ofWhAmjAr51k5z8q9I0lvn96TBrQJNsEv6L1pQJogE3RCnjArl1m5zMplVi6zcp2V66xcZ+U6K9dZuc7KdVaus3Kdleus3Gbl3sWkH4LexwbohDyhTKgT2gSb4Bf0vjZgVrZZ2WZlm5VtVrZZ2WZlm5VtVvZZ2Wdln5V9VvZZ2Wdln5V9VvZZ2a/K+nhMSBNkgk7IE8qEOqFNsAmzcpqV06ycZuU0K6dZOc3KaVZOs3KaldOsLLOyzMoyK8usLLOyzMoyK8usLLOyzMq9D6p0SBNkgk7IE8qEOqFNsAl+QZ6V86ycZ+XeB7V0yBPKhKt3a24TbMLVu7U8JqQJMkEn5AllwqxcZuUyK/c+qPUJvQ8OSBNkgk7IE8qEOqFNsAmzcpuV26zc+6D2Q9D74IB8gV15qL035UeHpyv3put9Z0CbYBP8gt53BqQJMkEn5Amzss/KPiv7rOxX5fx4TEgTZIJOyBPKhDqhTbAJs3KaldOsnGblNCunWTnNymlWTrNympXTrCyzsszKMivLrCyzsszKMivLrCyzsszKOivrrKyzss7KOivrrKyzss7Kve/k0sEv6H1nQJogE3RCr1w7lAl1QptgE/yC3ncGpAkyQSfMymVW7n0ntw5tQq9sHfyC3ncGpAkyQSfkCf1mKXWoE9qEfr+kHfyCuEMM6LdgfXviHjFAJ+QJZUKd0Cv3bY47xQC/IO4VA9IEmaAT8oQyoU6YlW1WjpvGvoNx1xiQJvQ6uUOv4x2e/6r2Xe79qz7/r9L714A0QSbohDzhWaeWDnVCm2AT/ILevwakCTJBJ+QJs3KalXv/qrWDTeiVn3tRev8akCbIBJ2QJzwrt0eHOqFNsAl+Qe9fA9IEmaAT8oRZWWfl3r9a6mATeuVnjyu9fw1IE2RCr9x3sPevAWVCndAm2IRe+XkClN6/BqQJMkEn5AllQp3QJtiEWbnOyr1/NesgE3RCr9zPjd6/BtQLet8Z0P9VPxa9p1jf5d5TTDu0CTbBL+g9ZUCaIBN0Qp5QJszKNivbrNw7iPXt6R1kgEzQCXlCL9h3sF+kBrQJNsEH1N6JBvTK3kEm6IQ8oUyoE9oEm+AX9E40YFZOs3LvRP7okCeUCc/Knjq0CTbhWdmfrVF7J/Lc4VnZaweZoBPyhDKhTuh1+mb0LjMgTZAJOiFfkONJUzqVRfGs2Tepn9Lp8ez8tZ/TF6VFskgX5Uk1/re+ZTUvKovqorbIFvmk9liUFsmi5WjL0ZajLUdbjrYccYP1aJ3i3/azpZ+0qT9m137WXtQW9X+b+jHrET+on8IXpUWySBdFvd66Hv/22brtEf+2dkqLZFH829IpLyqL6qK2yBaF47lvLcYEBoXDOskiXRT1vFP/t/Lc3xZP/YPi3+ZO/d9K6qSL8qKyqNcT6dQW2aJw9DaI5/9BadFy6HLocuhyaF3UrnZuaovmMWr5sSgtkkXlOjIt2zwycd7HUSjrGJV1jOK8j3Yu6xiVdYzKOkZlHaOyjlGxeTzKOkb1MY9CXceormMUfSaOTPSPOB51HaPoH3Fkon9Ea7TVfm21X1vtF/0jjkJbx6itYxT9I45CW8fI1jGy5bDlsOWw5bB5jCzO4v6AZXEWDyqLYgtap7bIFvmkOIsHpUWySBflRd2hfQvizB7UFtkinxRn+6Du6A+pFmf7IF2UF5VFdVFbZIt8Upztg5ZDlyPOdtVOeVFZFI7cqS2yReHobRpn+6C0SBaFo3aKer2tcltki3xS9ID+SGrRA/qjqEUPyL2togcMyovKou7ozzcWPWCQLfJJ0QNy34847/vzhsX1oz9nWFw/ct+C6Asl/kVd1BbZIp8U/WNQWtQd/WHCon8M6o5++27RPwbVRW2RLfJJ0T/6/b2Nh/YgWaSL8qKyqC5qi2yRT/Ll8OWI60x/irC4zgzKi7qj9qMV155BbVF31N4acT3qDxMe16NBaZEs0kV5UThKp7qoLbJFPil68qC0SBbporxoOdJypOVIy5GWQ5ZDliN6cm2ddFFeFMej71H05EFtkS3ySWPcOigc1kkW6aK8qCyqi9qk6LX98cij1w6SRbooLyqL6qK2yBb5pLIcZTnKcpTlKMtRlqMsR1mOshxlOepy1OWoy1GXoy5HXY66HHU56nLU5WjL0ZajLUdbjrYcbTnacrTlaMvRlsOWw5bDlsOWw5bDlsOWw5bDlsOWw5fDl8OXw5fDl8OXw5fDl8OXw6cjPR4PMIECKpjBAlawgQZiS9gStoQtYUvYEraELWFL2BI2wSbYBJtgE2yCTbAJNsEm2BSbYlNsik2xKTbFptgUm2LL2DK2jC1jy9gytowtY8vYMraCrWAr2Aq2iIc+lvLEAlbQrlR7oi8cyTAwgQIqmMECVrCB2Cq2hq1ha9gatoatYWvYGraGrWEzbIbNsBk2w2bYDJthM2yGzbE5Nsfm2BybY3Nsjs2x+bKlxwNMoIAKZrCAFWyggdgStoQtYUvYEraELWFL2BK2hE2wCTbBJtgEm2ATbIJNsAk2xabYFJtiU2yKTbEpNsWm2DK2jC1jy9gytowtY8vYMraMrWAr2Aq2gq1gK9gKtoKNLElkSSJLElmSyJJElsRclNRHPVNMR5lYwW7rI7gp5qVM9IWRJa0EJlBABTNYwLB5YAMN9IWRJRcmUEAFM1hAbIbNsBk2x+bYHJtjc2yOzbE5NsfmyxbzXiaGzQIFVDCDBaxgzFdJgQb6wsiSPrqdxoyYCwVUMGbBaCAVxryXgQmMCiVQwQzGDJgaWMEGGhi21jHy4cIEChh1Y+ejz1u0ZPT5gdHnL4z2jX8Wff5CBTNYwAo2MObtPAJ9YfT5CxMooIIZLGAFG4itYKvYKraKrWKr2Cq2iq1iiz7vcWCjd3ucD9G7L1QwgwWsYAMN9IXRuy/EZtgMm2EzbIbNsBk2w+bYHJtjc2yOzbE5Nsfm2HzZYlbNxAQKqGAGC1jBBhqILWFL2BK2hC1hS9gStoQtYUvYBJtgE2yCTbAJNsEm2ASbYFNsik2xKTbFptgUm2JTbIotY8vYMraMLWPL2DK2jC1jy9gKtoKtYCvYCraCrWAr2Aq2gq1iq9gqtoqtYqvYKraKrWKr2Bo2skTJEiVLlCxRskTJEiVLlCzRkSUxWXhkycAECqhgBgtYwQYaGLZ+odKRJQMTGLYcqGAGC1jBBhroE/PIkoEJFFDBsFlgASvYZ3v1l5IpZh1N9IUxa+/CBAqoYAYLWEFsCVvCFjP5+jvIlEdqxEaOfGiBDewV+tvHFHOOLuz5MDGBAirYt7e/6Uox/2hiBRtooC+MmbQXJlBABbFlbDGjr79jSzEvaaKBYeunXMxOmpjAsMXhjvl9F2awgGGLpo55filaMubWpmjqmF17oYAK9roSzRezbCX2IubZSmxOzLSVsMVc2wt9Ycy3vbDbJDYn5txeqGAGwxbbG1NuJTYnJt32qZoppi2JxubExFsNRUy9vVBABTNYwAp2m8Y2xETcgaPPxzaMPj9QQM5fpxc6vdDphaPPDzTQJ5bHA0yggApmMHaoBVawgbFD4+/6wujzFyZQQAUzWMAKNhBbwhZ9vr8TSzFHaqKACmawgN3W35almC810UBfGPlwYQIFVDCDBcSm2CIfsgb6wsiHC8NWAsNWAxUMWxyWyIcLwxYNFflwoYG+MPLhwgQKqGAGC4itYCvYCraKrWKr2Cq2iq1iq9gqtoqtYmvYGraGrWFr2Bq2hq1ha9gaNsNm2AybYTNshs2wGTbDZtgcm2OLGf393W6KKV8TM1jAdY2NqV8TDVzX2JgANjGBAiqYwZgX3oO/pnWVjqle0iemppjsNVHBDBawgm1hJEF/D52qrPatsva4SgEr2MCYs66BvjD6/IUJXEezKjbNYAEr2EADfW3D6PMDEyigrm0Yv7IZWEBs9PlKn6/0+Uqfr/T5Sp+vZZ07tdCShZYstOSY+x/bUGjJQkvS5yt9vtLnK32+0ucrfb7S52vluI0+P5CWbLRk47hFn7+QlqTPV/p8pc9X+nylz1f6fKXPV/p8NY6b0ZJGSxotabRk9Pn+EjzF3LiJ0ZLRnaLPX5hAAWPfYhuiz19YwAo20ECfGPPpJobNAwWM+4eBdfbCmEAnfVJEihl0E31hJMGF6wi1JKCCGSxgBRu4jlBMurtQHmACBVQwgwWsYOxFz52YaTcxgb1ujXaIfKixZZEPFxawgg000BdGPlyYwLhrC/EYPRhYwQYa6AvH6MHABAqoILaCrWAr2Aq2gq1iq9gqtoqtYqvYKraKjTHHMZVvYMPWsDVsDVvD1rA1bA1bw9awGTbDZtgMm2EzbIbNsBk2w+bYHJtjc2yOzbE5Nsfm2HzZ7PEAEyigghksYAUbaCC2hC1hS9gStoQtYUvYEraELWETbIJNsAk2wSbYBJtgE2yCTbEpNsWm2BSbYlNsik2xKbaMLWPL2DI2ssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJkphXKX2ea4qJlRMN9IXxhHJhAgVUMIMFxFawFWwFW8VWsVVsFVvFVrFFlsSr5JhsKX2SbIrZlhN9YTyhXJhAARUMWwssYAXDFuJ4QrnQF8YTSv95YYqplxMFVDDeuXtgASvYQAPXG/MxB/PCBAqo4JojEJMupY7/1UC/UGLa5cQECqhgb7M+dU5i2uXECnZb/2WixLTLib4wnlBaLA8STygXCqhgtFnUHWuADKxgAw30hWtWhDzWrAgZ0y4vVDD2ItYriRGMCw2Mvcix+MkDTGDsRQlUMNqsBhawgmEbi6oY6AvjCeXCBAqoYNgssIAVbKCBvjDuNWQs6RI/GorjFncVMrCAFWyggb4w7ioujJ/GRKPGXcWFCmYwflQ0sIINNNAXjl8bDUyggApy5BtHvnHkG0feOPLGkTeOvHHkjSNvHHnjyBtH3jjyxpF3jrxz5J0j7xx558g7R9458s6Rd468ryM/5k/GkR8zJePIj5mSMrCAFWyggevIj5mSF64jP2ZKXqhgBteRHzMlL2yggevIj5mSFyZQQAWjdTywgQb6wujzFq0Tff5CARXse/GIRo17ggsr2EADfWHcE1yYQAH7Me4/N5aY/TixgQb6wrj6Xxh7UQIFVDCDBaxgAw30hXH1vxBbxRZX/z69TGL248QChi3Wg4qr/4UGhi2OUFz9PQ7AWDsoTrmxetBABTNYwAp2m8dZMlYSGugLx2pCAxMooIIZLGAFsRk2w+bYHJtjc2xjpaFo37HW0MAKhi3abKw4NNAnylh1aGACBXza9PEIzGABK9hAA31hz4eJCRQQW8KWwpYCK9jAsGlg2PoZFTMlJyZQQAUzWMAKNjBsLdAXxopF0WNjpuREARXsthSbHmsXXVjBBhroC2MVowsT2G0R5jGrcmLYonViPaMLK9hAW1hCkQMTKKCCGQxFNEmpYAMN9IWxxNGFYYuGimWOLlQwgwWsYAMN9IWx7NGF2Bq2WPzoWigugwXstriExgTLiQZ2W1wLY4KlxqUuJliqREP1AJmoYAYLWMG4UHUa9wxBaZEs0kX5opjhqGNJuujBF1Yw3gQE2SKfFLf0g9IiWRQVa2A0QyijP8b/H91xUFrU2yAH6aK8qCyqi9qikFigLxwLh3lgAgXsRfUR2Cv0iSsylgcbGF1Lg3qB/jNoGWuEXahgBgtYZ5Pk1Zx5NWdezVlWc5bVnNGRRiNGlxmNGF1mbFN0mYHRZUZbRJe5MLY0is21wWQtDiZrdTBZy4PJWh9M1gJhMtYDuzD2MjYkOkA0Y5z/g9qi/q/jKMTJHxTn/qC0SBbpopAMLGC3jOL9wjnRFvYzX3McTY/zJg6hF7BXiG33thrGDfSJMb9vYpSVQAEVzLPBY37fxAo2ihmILWFL2BK2hC1hS9gStoQtYUvYBFv0vgvlOtVj0t84fWPRsYkFrGBbGNepHJsQnelCXxhPtB6UFskiXZQXlUV1UVtki3xSWY6yHGU5ynKU5YhrVJ/8IzExb2IDY2cs0BdGh8vRctHhLhRQwQwWsILd1qdfSEzXm+gL4xqVY3ujM14oYLeVOA7RRS8sYAR7UFtki3zSuD4FpUVRMc6N6HklDmf0vBLbb77QH2AC+5b2xQgkpuRNzGABKxg3WkEhi5aPXhoYM/ImJlBABTNYwAo20EBsCVvClrBFL+0vqyVm5E0sYAUbaGC39XfREjPyJiZQQAUzWMAKNtBAbIotLpV9FFZiRt5EBcNWAgtYwbDVQAN9YVxWLwxbCwybB/a6MR4Yc+8mNtDAXjfGGWPuncboTcy90xiRibl3GmMvMfduYgYLGLbYnIiACw30hREBMUwQE+40RgFiwp3G4GJMuFOLzYl+Hw+3MeFuYgMN9IXR7y9MYNhiG6LfXxiKOBGjs1/YQANDEZs+LsoDEyigzi5fRhAMLGAFG2igLxzxMLDXjQf3mE83sYBxWxEtGUFwoYG9bjy4x3y6iX0v4pk45tNNVDBsObCAFWyggb4wkuDCsJVAARXMYAErGJeavkN1XJlr4LoPqCKgghksYAUbGPcBsb3R5wfqA0xg3AfE4szR5y/MYAEr2EADfeG4lR4Yjzixm3HX7AMLWMEGGugLo89fGMciFNHnL1Qwg/GEMrCCDTTQF0afvzCBAioYe2GBDTQw9qJ3sphlNzGB0tfWfQQqmDvGCdP7/MQKto5x5Hufn+gLe5+fmEABFQxbdJxY4ffCCjbQQF8YfT6ep2I+3XXknSPvHHnnyDtH3jnyvo58ezzAdeTbQ0AFM7iOfHtUsIEGriMfs+wmJlDAdeRjJTmLK0PMcLuw9zeLK0PMcJuY+QsFrGBbGEvk9pnAEhPNJiYwDmFsQyyVe2EG4xBGsVgw98J+CGPYKCaaTfSFsXBuDAXFRLOJAiqYwQJWsIEG+sKGrWFr2Bq2hq1hi9M+xqBi8liOlftj8lhOccLECX5hBgsY22uBDTTQF8Zi1hd2m0SbjQWtByqYwQJWsIEG+kQbC1wPTKCACmYwbI/ACjbQQF84Fr0eGDYJFFBBXzjWr9ZABaOpPbCAFYzNKYEG+sKxnnULTGDYLFDBbovHh5jvlSOCYr5XjueamO81sdviyhvzvS6MNa4vTKCACmawgGGLjYwVr2MoI+Z75Ri0iPleOa7+MbMrxwU7ZnZNzGABK9hAWxh9M0erR9+8MIMFrGADbWF0vXhUjblWOR6MY67VRF8Y15YLe5vl2PnoehcqmMECVrCBBvrC6HoXYnNsjs2xOTbH5tgcmy9bzLWamEABFcxgASvYQAOxJWwJW8KWsCVsCVvClrAlbAmbYBNsgk2wCTbBJtgEm2ATbIpNsSk2xabYFJtiU2yKTbFlbBlbxpaxZWwZW8aWsWVsGVvBVrAVbAVbwVawFWwFW8FWsFVsFVvFVrFVbBVbxVaxVWwVW8PWsDVsDVvD1rA1bA1bw9awGTayxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSX1mij5Ul+lhZoo+VJfpYWaKPlSX6WFmij5Ul+lhZoo+VJfp4YEvYEraELWFL2BK2hC1hS9gSNsEm2ASbYBNsgk2wCTbBJtgUm2IbUWGBFWyggb5wRMXABAqoYAaxZWwZW8aWsRVsBVvBVrAVbAVbwVawFWwFW8VWsVVsFVvFVrFVbBVbxVaxNWwNW8PWsDVsDVvD1rA1bA2bYTNshs2wGTbDZtgMm2EzbI7NsTk2x+bYHJtjc2yOzZctPR5gAgVUMIMFrGADDcSWsCVsCVvClrAlbAlbwpawJWyCTbAJNsEm2ASbYBNsgk2wKTbFptgUm2IjSxJZksiSRJYksiSRJYksSWRJIksSWZLIkkSWJLIkkSWJLElkSSJLElmSyJJEliSyJJEliSxJZEkiS2LaVe4vdzSmXeX+nkpj2lXuX7TRmGCV+2scTePLUB5YwQZ2RX8DojH76cLoZBcmUEAFM1jACjYQmy9bzH6aGBVyYAXbwugM/V2HxiyliRmMCi2wV+hvKjRmKU000BdGZ7gwgQIqmMECYhNsgk2wKTbFptgUm2JTbIpNsSk2xZaxZWwZW8YWnaHPLdeYpTSxgg000BdGZ7gwgQIqiK1gK9jistji1IgLYH/DpDGxKLc43HEBvNAXRhe5MIECKpjBAlYQW8PWsBk2w2bYDJthM2yGzbAZNsPm2BybY3Nsjs2xOTbH5th82WLltokJFFDBDIatBlawgQb6wrgAXphAARXMILaELWEbfb4F+sLR5wdGXQuMCh7YK/R3ixrTnCb6wujHFyZQQAUzWMAKYlNsii36cR+61pgTNVFABTNYwAo20EBfWLAVbAVbwRb9uL9u1ViNbWIFG2igLxxfg8uBUSFOo+jzFocl+vyFBvrC6PMXJlBABTNYQGwNW8MWfd7ihIk+f2ECBVQwg72ux9GMfuzRfNGPLxSwV+gvVnV8j/HCAlawgQb6xPFtxgsTKKCCGQxbDqxgA8NWA31h9OP+zkfHFxv7SzeNWVWlv0jTmFU1MYOlY4h7P57YOmqgdQxx78elv3rRmFVVHmHr1+6JAiqYwQJWsIEG+kLFptgUm2JTbIotvuX9iCaJz3f3N0Eas7BKf+ejMQ1rYgH7RqZokvia94UG+sL4rPeFUTeaLz7enaL54vvd8RXRmGU10RfGh7wvTKCACmawgGGL82F8vnGggWGLJomPOF6YQAHDFm0WH3O8sIDrhjOmWU00MG44oyWj816YQAEVzGDY4mDFRx4vbKCBvjA+9nhhAgVUMIPYHJtjc2y+bDExa2ICBVQwgwWsYAMNxJawJWwJW8KWsCVsCVvClrAlbIJNsAk2wSbYBJtgE2yCTbApNsWm2BSbYlNsik2xKTbFlrFlbBlbxpaxZWwZW8aWsWVsBVvBVrAVbAVbwVawFWwFW8FWsVVsFVvFVrFVbBVbxVaxVWwNW8PWsDVsDVvD1rDF52H7S1iNSVwTfWF8JPbCDMY/S4G2MK7ocfmKeVcTCxh/VwJ9YsywmphAARXMYAEr2EADsSVsCVvClrAlbAlbwpawJWwJm2ATbIJNsAk2wSbYBJtgE2yKTbEpNsWm2BSbYlNsik2xZWwZW8aWsWVsGVvGlrFlbBlbwVawFWwFW8FWsBVsBVvBVrBVbBVbxVaxVWwVW8VWsVVsFVvD1rA1bA1bw9awNWwNW8PWsBk2w2bYDJthM2yGzbAZNsPm2BybY3Nsjs2xOba4PYiv1teRJQN9YhsB0gIFVDAUHljACnZFn9uhMV1roi+MALkwgQIqmMECVhBbwpawCTbBJtgEm2ATbIJNsAk2wabYFJtiU2yKTbEpNsWm2BRbxpaxZWwZW8aWsWVsGVvGlrEVbAVbwVawFWwFW8FWsBVsBVvFVrFVbBVbxVaxVWwVW8VWsTVsDVvD1rA1bA1bw9awNWwNm2EzbIbNsBk2w2bYDJthM2yOzbE5Nsfm2BybY3Nsjs2XLebATUyggApmsIAVbKCB2MgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSG1mSAivYwLBpoE/0kSUDw1YCBQybBWawgBVsYNg80BdGlvQfqWpM6it96qfGpL6J3dbncGpM6ptYwG7rv6jUmNQ30cBu6zMwNSb1TUyggApmsIAVbKCB2BSbYlNsik2xRWrEpJ2YqFfiBXNM1Cs52izy4UIFM9i3N95Ax0S9iQ000BdGPpRo1MiHEs0X+XChghkMW2xv5EOJbYh8qKOugd1W4+SKfIjXwzFRb2K3xZvimKhXahSLfBgYHT1ei8aMuxLvIWPG3UQF++bE28mYRVdabG903gsTKKCCGSxgBRtoIDbH5tgcm2NzbI7NsTk2x+bTlmMW3cQECqhgBgtYwQYaiC1hS9gStoQtYUvYEraELWFL2ASbYBNsgk2wCTbBJtgEm2BTbNF5+yvUHKubTVQwgwWsYAPDZoG+MDr6hXKdtDnm1k3MYAEr2EADfWH07gsTiK1gK9gKtoKtYCvYCraKrWKr2Cq2iq1iq9gqtoqtYmvYGraGrWFr2Bq2hq1ha9gaNsNm2AybYTNshs2wGTbDZtgcm2NzbI7NsTk2x+bYHJsvW3o8wAQK2G391XeOuXUTC9htNv5uAw3stv7L3Rxz6yZ2W3/BnGNu3UQFw9YCC1jBBhroCyNALkyggApiE2yCTbAJNsGm2BSbYlNsik2xKTbFptgUW8aWsWVsGVvGlrFlbBlbxpaxFWwFW8FWsBVsBVvBVrAVbAVbxVaxVWwVW8VWsVVsFVvFVrE1bA1bw9awNWwNW8PWsDVsDZthM2yGzbAZNsNm2AybYTNsjs2xOTbH5tgcm2NzbI7Nly2mEE5MoIAKZrCAFWyggdgStoQtYUvYyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlS5QsUbJEyRIlSzJZksmSTJZksiSTJZksySNLLLCBBnZbn1KaY9rlxG7rczjzmHZ5oYLd1udw5jHt8sIKNtBAXxhZcmECBVQQm2ATbIJNsAm2SI2+bE8eUyn7RNMcH6stHg0V+XChgb4w8qGv7pJjFbyJAiqYwTgWsQ0jHwY28GmrfX5qjhmYF/Z8mJhAARXMYAEr2EBsBVvFVrFVbBVbxVaxVWwVW8VWsTVsDVvD1rA1bA1bw9awNWwtbKmjPcAECqhgBsMWJ4xVsIFhi9PIfKE/wASGLU4jVzCDBYy6vW/GDMzap/fmmIE5UcFeoU/vzTEDc2IF+/b2ibw5ZmBO9IW9z0/stj7TN8cMzNpn+uaYgVn7hNscMzAnFrCCDTTQF8oDTKCA2CRsLbCAFWyggb5QH2ACBVQQm2JTbBq2EmigL8wPMIECKpjBAlYQW8YW+ZDi1Ih8uDCBAiqYwQJWsIEGYot8SHHKRT5cKGABewWJsy/6vMTJFX3+wgQK2LdX4uyLPn9hASvYQAN9YfT5CxMoIDbDZtgMm2EzbNHnJbpI9PkLwxbtEH3+QgUzWMAKdlt/LZpjOudEnxjTOScmUEAFM1jACjbQwLD1QxjTOScmMGwaqGDYamABw9YCGxg2C/SFkQ8XJlBABTNYwAo2EJtgU2yKTbEpNsWm2BSbYlNsii1jy9gytowtY8vYMraMLWPL2Aq2gq1gK9gKtoKtYCvYCraCrWKr2CIf+svzHNM5J2awgN2W4+SK+4cLDfSFkSUXJlBABTNYQGwNW8PWsBk2w2bYDJthi9To7/1zTNGsObpI5MOFUSEHKpjBAlawgTYx5mXWvs5Tbo91NNtjtW8bfX5gAw2MPe49NmZgTkyggOvcaQlbKmAFG2jgOnfa6POxDaPPDxRQwby2Ifr8hRXERp9v9PlGn2/0+Uafb/T5putMbUpLKi2ptGT0+bENSktmWpI+3+jzjT7f6PONPt/o840+3+jzbfT52IZCSxZastCShZaMPt+nbuSYgTkxWjLqRp+/0EBfGH2+T8fIMQNzooAKZrCAFWxgt/W5HTlmYF7YOMGjo/dFrXNMu5yYwQJyaoyOPpCD1ThYxsEyTnvjtDcOlnGwjINlHCzjYBkHyzgRnRPROTWi+5fo0tH9L6xgNFS0Q3T/ElsWtweBMcFyYgIFVDCDBaxg3AL2E8bSA0xg1LVABXvd/l3rHFMpJ1aw70WfZ5NjKuVEXxih0H94l2Mq5UQBFcxgASvYQAN9oWKL7h9PXzFpcmLU1cAKNtBAXxjd/8IExl6UQAUzGLY4ANH9L2xg2HKgL4zuf+F6cLQioIIZLGAFG2igLxxDBgNjL1pgBgtYwdiLaNTo6Bf6wri4X5jmQM2YHnmhghksYAUbaAvHVIg4EcdUiIEKZrCAFWyggb7QHyA2x+bYHJtjc2yOzbH5so2JkBcmUEAFM1jACjbQQGwJW8KWsCVsCVvClrAlbAlbwibYBJtgE2yCTbAJNsEm2ASbYlNsik2xKTbFptgUm2JTbBlbxpaxZWwZW8aWsWVsGVvGVrAVbAVbwVawFWxjWpUENtDA3o/70is5Jk1OTGBPo5irFpMmJ2awp0bMP4vVDSc20EBfGKlxYQIFVDCD2Bq2hq1ha9gMm2EzbIbNsBk2w2bYDJthc2yOzbE5Nsfm2BybY3NsPm0l5mVOTKCACmawgBVsoIHYEraELWFL2BK2hC1hS9gStoRNsAk2wSbYBJtgE2yCTbAJNsWm2BSbYlNsik2xKTbFptgytowtY8vYMraMLWPL2DK2jK1gK9gKtoKtYCvYCraCrWAr2Cq2iq1iq9gqtoqtYqvYKraKrWFr2Bq2hq1ha9gatoatYWvYDJthM2yGzbAZNsNm2AybYXNsjs2xOTbH5tgcm2NzbGRJIksSWZLIkkSWJLIkkSWJLElkSSJLElmSyJJEliSyJJEliSxJZEkiSxJZksiSRJYksiSRJYksSWRJIksSWZLIkkSWJLIkkSWJLElkSSJLElmSyJJEliSyJJEliSxJZEkiSxJZksiSRJYksiSRJYksSWRJIksSWZLIkkSWJLIkkSWJLElkSSJLElmSyJJEliSyJJEliSxJZEkiSxJZksiSRJYksiSRJYksSWRJIksSWZLIkkSWJLIkkSWJLElkSSJLElmSyJJEliSyJJEliSxJZEkiSxJZksiSRJYksiSRJYksSWRJIksSWZLIkkSWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiI0tqYAUbGDYL9IUjSzwwgQJ2W18tsMQUzYnd1n/MUWKK5sQGdlv/MUeJKZoDY4rm8w1OYAIFDFsJzGDYWmAFw+aBBvrCyJK+Jl+JKZoTBVQwgwWsYAMN9IWCTbAJNsEm2ASbYBNsgk2wKTbFptgUm2JTbJEaHq0e+eBxhCIf+sytEtMuJ2awgLG9NbCBBvrCyIcLn7bWFw4sMe1yooIZLGAFW8fYi54PE31hz4eJCRRQwQwWsILYKrYatmi+9gATGLZoqBa2OGlbBsNmgRUMW5y/zUBfaA8wgQIqmMECVhCbYTNsjs2xOTbH5tgcm2NzbI7Nly2mXU5MoIAKZrCAFWyggdgStoQtYUvYEraeD89XtYEVbKCB3dZneZWYdjkxgQIqmMECVrCBBmJTbIpNsSk2xabYFJtiU2yKLWPL2DK2jC1jy9gytowtY8vYIjX6fLkS0y5bny9XYtrlxKhQAg30hZEPFyZQQAWjbg3k3Ik+P45x9PkLBVQw9rgFFrCCDeRMpc9n+nymz2f6fKbPZ/p8ps/HVMprc4wz1ThTo88PdPYt+nyfilZiKuXE2LeoG33+wgJWsNskjlv0+Qt9Yix8OTGBAiqYwW7rM8JKTLucaPNgxVzL1ieHlZhrOTGBAuo8ADHXcmIBK9hAA32hrIMVcy0nCqhgBgtYwQauUyNmVba+MFiJWZUTFYyGinaILi2xZdGlL2yggb4wuvSFCRRQwahrgQ000BeWqBt7ETcCFwqoYJ73JWP+5IUVbKCBvjAeFC5MoID9JUuJMyp+aXFhAw30hfFLiwsTKKCCGcTWsDVsDVvDZtgMm2EzbIbNsBk2w2bYDJtjc2yOzbE5Nsfm2BybY/NlG4tkXphAARXMYAEr2EADsSVsCVvClrAlbAlbwpawJWwJm2ATbIJNsMUr1D7VpIxFMi+sYO9ZOv6ugb4wXqH22TdlLJJ5oYC9Z+nADBYwbC2wgQb6wniFemECBVQwgwXElrFlbBlbwVawFWwFW8FWsBVsBVvBVrBVbBVbxVaxVWwVW8VWsVVsFVvD1rA1bA1bw9awNWwNW8PWsBk2w2bYDJthM2yGzbAZNsPm2BybY3Nsjs2xOTbH5th82drjASZQQAUzWMAKNtBAbAlbwpawJWwJW8KWsCVsCVvCJtgEm2ATbIJNsAk2wSbYBJtiU2yKTbEpNsVGljSypJEljSxpZEkjSxpZ0siSRpY0sqSRJY0saWRJI0saWdLIkkaWNLKkkSWNLGlkSSNLGlnSyJJGljSypJEljSxpZEkjSxpZ0siSRpY0sqSRJY0saWRJI0saWdLIkkaWNLKkkSWNLGlkSSNLGlnSyJJGljSypJEljSxpZEkjSxpZ0siSRpY0sqSRJY0saWRJI0saWdLIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCyJaaLPG4NABTMYNg+sYDzjlEADfWFkSZ/NXcY00Qv7vvVp5GVME70wg91WY8siSy4M20ADfWGMgWhsWYyBXCigghksYAUbaKAvLNgKtoKtYCvYCraCrWAr2Aq2iq1iq9gqtoqtYqvYKrYYGO2rtZaY+tn6j7JKTP1sOY5FDIFeWMEG9u3NcZbEEOjAGAK9MIEChq0GZrCAYYsDG0OgFxroC2MI9MIECqhgBguIzbE5Np+2GlM/JyZQQAUzWMAKNtBAbAlbwpawJWwJW8KWsCVsCVvCJtgEm2ATbIJNsAk2wSbYBJtiU2yKTbEpNsWm2BSbYlNsGVvGlrFlbBlbxpaxZWwZW8ZWsBVsBVvBVrAVbAVbwVawFWwVW8VWsVVsFVvFVrFVbBVbxdawNWwNW8PWsDVsDVvD1rA1bIbNsBk2w2bYDJthM2yGzbA5Nsfm2BybY3Nsjm1kiQUa6BPTyJKBCRRQwQx2W/8dYI2pnxMbGDYP9IUjSwZ2Wx9orDH1c6KC3dZ/hlZj6ufECjbQQF8YWXJhAgVUEJtgE2yRJTX2LVJjbGQkwYUVbKCBvjBTIZKgDhRQwdiyHFjACjbQQF8YSXBhAgVUEFvBFknQ74JqTNycaKAvjCS4MIFhi3MnkuDCDBawgg000BdGElyYQGwNWyRBjbMvkuDCCnZbi2McSdB/LFNj4uaFkQQtDkskwYXd1qKhIgkuzGABK9hAA31hJMGFCcTm2BybY3Nsjs2x+bLFxM2JCRRQwQwWsIINNBBbwpawJWwJW8KWsCVsCVvClrAJNsEm2ASbYBNsgk2wxV1Fn1BXY+LmhZEPFyZw5U5M3JyYwQJWsIEGrpSLiZsTYy9qYJ1xFZMxW//+cY3JmBN9YeTDhQkUUMFoBwukfSt7XNnj6PMXKhjt64EFrGADOZoVW+NoNo5m42g2jmbjaEafH9sQff7CBnI0R5+PbRh9fmACsdHnhT4v9Hmhzwt9XujzYpw7Tks6Lem05OjzsQ1OSzotSZ8X+rzQ54U+r/R5pc8rfV4f67jp6PMDC1jBddx09PmBqyWVPq/0eaXPK31e6fNKn1f6vNLnNa3jpmm1pMoDTKCA3dann9aYYDmx2/qs1RoTLCc20MBus9iG6PMXJlBABTNYwAqGLTYy+vyFcf8QfyHuFKIXxrTL1hc8rzHtcmIBK8gRyhyhzBEqDzCBAirIESococIRKhyhYiBnX+V8qJwPlfMh8qHP3q1jguWFDYzWiXaIfLDYssiHCxMooIIZLGAF28JIAo+zJJLgQgEV7HU9zpJIggsr2MC4Vx7oC8dzwMAECqhgBgtYwV63z96tY9LkhQkUMPZCAzNYwAr28b54JBhrVV7oC8fXeAYmUEAFMxitkwMN9IXRuy9MoICxvSUwKtTAqNDPnTHl8cIERoXYhuixF0Y7eGABK/jcXuuzjWtMeZzoC/tVemICBVQwd0yBBaxgAw30heMjoQN1tUP02AtpnRJ148iXBhroC+sDjL2Ik6AKqGAGYy/CVivYwLDFAai+sD3AsMWxaAIqGLY48i1scVh6P7YUjdr7saVokn6dn+gLez+2FPvW+/HEDBYw6sa+RY8dJ1f02AsTKGAGe8cZFcYHvgf6xOsD3zkwgQIqmMECVrCBtrB3SLtQQAUzGDtfAivYQAP7XsQBGJ/yvjCBAiqYwQJWsC3snTdH0sbkRutzOGtMbpyoYAZjL1pgBRtooC+MznthAqVvQwpUMIMFrGADDfSF5QEmMPbCAgtYwQbGXkRDRecdGJ33wgT2vYgbjPg898QMFrCCDTTQF0Y3lThC0U0vzGABK9jAXjeeZmJy44X9IjwxgQIq2PcinlticuPECjbQQF/osRdxADy2VwIr2MCoEI3qPjEmLE5MoIAKZrCAFWyggdgStoQtYUvYEraELfpxnx1dY2rihb0fT0xgtE4OVDCDBaxgAw30hRq2EphAARUMWw0sYAUbaPNgxdTEC6N3X5hAARXMYAErGHX7uROTECcmMOpaYNSNVo/efWEBK9j3oq/6WWMS4kRfGL37wm7TOEJxadZoqLg0X5jBAlawgQb6wrg0X5hAbNHnNXYz+vyFBaxgAw30hfYAE9htcXsbkxAtxx7HBfvCAlawgQb6wn4Zn5hAAbF52OLkiny4sIINNNAnxiTEiQkUMGwemMECVrCBBvrC9AC7rU8mrjEJcaKCGSxgBRtoYKRRPywxCXFiAgVUMINRt7dvTCy0eOaNiYUTo8L4CwpmsIAVbKCBvjA/wGiHEhjtEMci+vyFFWyggb4wkuDC2IsWKKCCGQybBVawgQb6wkiCCxMYtjjykQQxYhhTCCcWsIINNNDXsWgcocYRiiS4UMEMFrCCbWFc5yNTY7LgRAFjLwZmMPZiVKhgA2Mv4sBGnx8Yff7Cvhfx0iImC05UMIMF7LYWrRN9/kIDfWJMFpyYQAEVjLopsJ+pceWNqX4W7yRiqt/EDPYta+PvVjC2LAca6AvjOh/DYzHVb6KACmawgBUMWw000BdG774wgQLq2uO4osdNWUzqm2igL4wregyPxaS+iQIq2FMjnltiUt/ECjbQQF8Y9+sXpoW9XzxfRsYx7B1jsWysG+eNy8Z147axbeywbV7bvLZ5bfPa5rXNa5vXNq9tXtu8vnl98/rm9VE/TlCvG7fFMUnN4lY0JqldmEZ1DU4by8a6cd64bFw3bhvbxg6PMz82YZz5AzNYwFE7B7eNR+0SPGr3kzsmpy1OG8vGunHeuGxcN24b28abN2/evHnz5s2bN2/evHnz5s2bN2/evHnL5i2bt2zesnnL5i2bt2zeMur3Xh+T0Z5swZzhMR1tcdk46sTQbsxIW2wbOzx69MVp4+EdrBt3r8SQXsxiW1w39uAe7zE57cnRC6KHTo7tj1Fuv3ponEtXDx3cNt7ONxv141yOHjo5bbz1Id/6kG99yDevb17fvL553Se3mEv2dOXO6bFx2njse/z9pBvnjUcb1uC6cQtuwbaxwzK8Fpw2lo1147xx2bhuPLwebBs7rI+N08ay8TrW7XH15dhmbfMYtZhQttjh/Ng4bSwb68brmLZHLhvXjdvGNvtUe1x9Ofjqy4PTxrKxbpw3LhvXjX1mZovpZIsT51JdWdEeVTfOG5eN68ZtY9vY4fbYOG28edvmbZu3bd62edvmbZu3bV7bvLZ5bfPa5rXNa5vXNq9tXtu8tnmvvh/nm2/HxdfVvz28bWwbr6t/i2lki9PGsrFunDcuG9eN28a28eZNmzdt3rR50+ZNmzdt3rR50+ZNmzeta0GLqWWL08aysW6cNx7ewXXj0d/DdeXJYIev3EjBZeVGTD5bPK5lFrwyuSUlk9N1DzA4bUxupC03YhLaYnIjbbmRttxIefPmzVs2b9m8V24EX9fBHKwb543Hvo+/XzduG482rMEOX9fBFpw2lo25FsTUqsVl47px29g29sUxwerK/JhhtVg21o3zxmVjjrU81v1Pk8S1QFLaWDbWjfPGZeO6McdUuEduwj1yE3lszLVARDbWjfPGZeO6cdvYNuYaFJOk7MIGGugL44nwwgQKqGAGC4gtY8vYMraCrWAr2Aq2gi3Ge8axjPGeCxtooC+M8Z4LEyigghnEVrFVbBVbxdawNWwNW8PWsDVsDVvD1rA1bIbNsBk2w2bYDJthM2yGzbA5Nsfm2BybY3Nsjs2xOTZftph8NTGBAiqYwQJWsIEGYkvYEraELWFL2BK2hC1hS9gSNsEm2ASbYBNsgk2wCTbBJtgUm2JTbIpNsSk2xabYFJtiy9gytowtY8vYMraMLWPL2DK2gq1gK9gKtoKNLFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULMlkSSZLMlmSyZJMlmSyJJMlmSzJZEkmSzJZksmSTJZksiSTJZksyWRJJksyWZLJkkyWZLIkkyWZLMlkSSZLMlmSyZJMlmSyJJMlmSzJZEkmSzJZksmSTJZksiSTJZksyWRJJkvGtLB4KIhpYR73/jEtbGIBK9hAA31hz5KJCRQQWwmbBhawgmFLgQb6whq2EphAAcNmgWGLPa4FrGADDfSF7QEmUEAFsTVsDVvD1rA1bIbNsBk2w2bYDJthM2yGzbA5Nsfm2BybY3Nsjs2xOTZftph5NjGBAiqYwQJWsIEGYkvYEraELWFL2BK2hC1hS9gSNsEm2ASbYBNsgk2wCTbBJtgUm2JTbIpNsSk2xabYFJtiy9gytowtY8vYMraMLWPL2DK2gq1gK9gKtoKtYCvYCraCrWCr2Cq2iq1iI0sKWVLIkkKWFLKkkCWFLClkSSFLCllSyJJClhSypJAlhSwpZEkhSwpZUsiSQpYUsqSQJYUsKWRJIUsKWVLIkkKWFLKkkCWFLClkSSFLCllSyJJCllSypJIllSypZEklSypZUsmSSpZUsqSSJZUsqWRJJUsqWVLJkkqWVLKkkiWVLKlkSSVLKllSyZJKllSypJIllSypZEklSypZUsmSSpZUsqSSJZUsqWRJJUsqWVLJkkqWVLKkkiWVLKlkSSVLKllSyZJKllSypJIllSypZEklSypZUsmSSpZUsqSSJZUsqWRJJUsqWVLJkkqWVLIkZsp5nyreYqbcxAYa2G194nSLmXITEyigghksYAUbGLYS6AsjSy5MoIAKZrCAFWwgtsiSPgO6xUy5iQkUUMEMFjCO28AGGugT28iSgQkUUMEMFrCCDTQQW8KWsCVsCVvClrAlbAlbwpawCTbBJtgEm2ATbIJNsAk2wabYFJtiU2yKTbEpNsWm2BRbxpaxZWwZW8aWsWVsGVvGlrEVbAVbwVawFWwFW8FWsBVsBVvFVrFVbBVbxVaxVWwVW8VWsTVsDVvD1rA1bA1bw9awNWwNm2EzbIbNsBk2w2bYDJthM2yOzbE5Nsfm2BwbWdLIkkaWNLLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyJKYw+f9Jwkt5vBN9IWRJRcmUEAFM1jACmITbIJNsSk2xabYFJtiU2yKTbEptowtY8vYMraMLWPL2DK2jC1jK9gKtoKtYCvYCraCrWAr2Aq2iq1iq9gqtoqtYqvYKraKrWJr2Bq2hq1ha9gatoatYWvYGjbDZtgMm2EzbIbNsBk2w2bYHJtjc2yOzbE5Nsfm2BybL1ss1zcxgQIqmMECVrCBBmJL2BK2hC1hS9gStoSNLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0ucLHGyxMkSJ0t8ZEkNzGABw9YCG2hg2PqDmI8sGZjAbusr27eYPOn9N0It5k5OLGAFG2igL4wsuTCBAmJzbI4tsiRHO0SWXGigX2ixtN/EBAqoYAYLWMEGGogtYUvYEraELWFL2BK2hC1hS9gEm2ATbIJNsAk2wSbYIkv6z7Espl5eGFlyYQIFVDCDBaxgA7EptjLfddhjPF/kwAwWsIINNNAXjueLgQkUEFvFVrFVbBVbxVaxNWwNW8PWsDVsDVvD1rA1bA2bYTNshs2wGTbDZtgMm2EzbI7NsTk2x+bYHJtjc2yOzZctPR5gAgVUMIMFrGADDcSWsCVsCVvClrAlbAlbwpawJWyCTbAJNsEm2ASbYBNsgk2wKTbFptgUm2JTbIpNsSk2xZaxZWwZW8aWsWVsGVvGlrHFPUEOjNS4MIECKpjBAlYwMqoFGugLI0tyCUyggHWGWBpRMdBAX9geYAKjmAcqmMG+6eURWMEGdltfQtJi3b0LIyouTKCACmawgBVsIDbDFlHRf39qMT/U+y83LaaHTlQwgwWsYAMN9IkxLXRiAsPWAhXMYAEr2EADfWFExYUJxBZR0X/laTFBdGIBK9hAA31hRMWFCey2/mtMi3mhE/PC6Oj915gWq+ZNVHAOy5usFxwm6wWHyXrBYbJecJisFxwm6wWHyXrBYbJecJisFxwmGVvGlrFlbBlbxlawFWwFW8FWsBVsBVvBVrAVbBVbxVax1fnKwWJC6MQCzpcAJrWBBsYxjjM1kuDCBAqoYAYLWMGwxYk4XnAM9IWRBHVgAgVUMIMFrGADu63F6RlJMDCS4MIECqhgBgtYwfkYZfqYz0OmjwwWcD4PmT4aaGBsZBSLLn1hAuPpywMVzGBspARWsIEG+sLo0hcmUMBokhKYwQJWsIEG+sK4+l+YwLBFO0T377/ktZjDObEtjC5tsWXRpS/MYK/QvzdtMS9zYgMN9IXRpS9MoIAKZhBbdGmLwx1d+kIDfWF06QsTKKCCGQxbtEN06QsbaGC3eTRJdOkLE9htHpseXfrCDBawgg000BdGl74wgdiiS3vsUHTpCwtYwQYa6AujS1+YwKjQ+0XMn3zev6dg2Vg3zsEluGxcN27BNdg2djh+sjE5bSwb68Z547Jx3XjzpuGN/UoOy2PjtLFsrBvnjcvGdePwpmif+MnGZIfj55CTwxuXk5heuVg3Dm+KfYmfO02uG7eNbWOH82PjtLFsrBtv3jy8sY+5btw2to0dLo+N08aysW4c9eMaEfMrF9vGDsfPJCenjaN+XyfDYpbl4tivvqCCxTzLxcObg9vGwxvHojrchjfap6WNh7cF68bDa8Fl4+GNfW9t4/D21YwsZl1Ojp9JPsdzgtPG4dXYx/jJ2OTwauxj/GRscng19jF+MjZ5eGMfzWEf3thHTxsPb+yj68bDG/voZeM58GhjGuaFBs6BRxvTMC9M4DB6sG6cNw5j/zqKlZFIF7eNbWOHRyJdnDaWjXXjvPHmTZt3JE8MlJWRMPHEWkbCxLNnGQlzcdm4btw23rZftu3Xbft1237dtl+37ddt+3Xbft22X7d2082rm3ckydjHkRhjH/O2/Xnb/pEYFzs8EuPibfvLtv1l2/6ybX/Ztr9s21+27S/b9pdt++vWbnXz1s07EmPs40iGsY912/62bf9Ihotl4+24t23727b9bdv+tm1/27a/bdtv2/bbtv22bb9t7Wab1zbvSICxj6Onj330bft9237fzlvfzlvfjrtvx91H/RrsiysD/5WB/8rAf2Xgv159ugWPGj0b6ui7MXBRR9+9WDaObe9LLFkdfffisnHduG1sGzs87iYuThvLxptXNq9s3tHX+ypiVkdfv9g2dnj09YvTxrKxbpw3LhtvXt28466hLwJmddwdxNhMHXcHF5eN68ZtY9vY4dHXL04by8bD68F547Jx3bhtbBs7PPr6xWlj2XjzjruGGLupIwMurhu3jW1jh0c2XJw2lo114807sqHGOTyy4eK2sW3s8MiGi9PGsrFuPLzRv0Y2XDy80dfGXUON9rH1SmhMjhzoDzCBAiqYwQJWsIHYfNlicuTzRUEKThvLxrpx3rhsXDduG9vGDo/MiSf/NjLnYtlYN84bF3hkRV/1y9rIiovzxmXjunHbeGxnC3Z49PEYEmijj19sG8ffj1GBNvr+xWnj2E6LmiMTLs4bx3bGU3UbmXBx29g2dnhkwsVpY9lYN84bb96yecvmHZkQowNtZMLgkQkXp41lY904b1w2rhu3jTdv3bwjE/rCGNZGJlwsG+vGeeOycd24bWwbO2yb1zavbV7bvLZ5bfPa5rXNa5vXNq9vXt+8vnl98/rm9c3rm9c3r29ex2sjH/pCJmYjHy6WjXXjvHHZuG7cNraNHR75EOM4NvIhBlxs5MPFunHeuGxcN24b28YOj3uSizfvyJkY6bGRMxfnjcvGdeO2sW3s8LgnuXjO3zRb86XN1nxpszVf2mwszhKjSzYWZ7k4bSwb68Z547Jx3bhtbBtv3rJ5y+Ytm7ds3rJ5y+Ytm7ds3rJ5y+Ydiz094nyJ0c14CzRmPl6o4JBKcNm4btw2to0dHis9XZw2lo114807VnqKYb5rfcaL28a2scNjpaeL08aysW48vHFCjZWeLq4bhzdFA46Vni52eKzPeHHaWDbWjfPGZeO68eYdK0Ol6OhjZahgHytDXZw2lo1147xx2bhuPLz9fLhWhrw4bTzq1+BRvwXnjcvGdeO2sW3s8Fj15uK08fBasG6cNy4b143bxraxw2PVyIvTxptXN69uXt28unl18+rm1c2bN2/evHnz5s2bN2/evHnz5s07QimGQa9VIwePULo4bSwb68Z540jdOAVG3vQPC5iPvLk4bRwlYwT1WkDy4rxx2bhu3Da2jR0ekXNx2njzjmiJ0dqxUGSKEVof0XKxbezwiJaL08ay8Ri7iCa/xkAGl43rxm1j25hxh7Gw5ORRP1wjQmIk+VpA8uK6cdt47FcJ9sn+GBFycdpYNtaN88ZrLM4f17jJ4LaxbezwNRY6OG0sG+vGde67j0UpY798LEo52eERIRdv+yXbfsm2X7Lt14iQi+vGbeNtv2TbL932S7f90m2/dNuva4x08NaeurWnOvuet/0aUXGxbKwbb/uVt/3K237lbb+ybbydJ2U7T8q2X2Xbr7LtV9n2q2z7Vbb9Ktt5Urb2LFt7VmHf67ZfNW9cNq4bb/tVt/2q2361bb/adp607Txp23nStv1q2361bb/atl9t26+27Zdt54lt7Wlbe65faPhj/ULDH+sXGn6tPNlfA/m18uTgcT9ycdpYNtaN88Zl47px23jzOt5rpcqL08aysW6cNy4b143xjlUZUx8Y8rEq4+S2cWxbH0Dxa1XGwaPjXJw2lo1147xx2bhu3DbevHnzjmtmH4jxNG7Y+3LxnsZFc/zv46LZV4n3NC6afS6Gp3HRvFg3zhuXjevGbeOxbTXY4XHyXzy80c7j5O8DN57Gyd+ibcd9ev+Wo6dxMR37Mi6mF2/7OC6UJeqPC+XFunHeuGxcN24b28YOj3P+4uGNfRnnfIl9Gef8xXnjsvHwxv6Oc/5i29gXj5UnJ6eNZWPdeJyrvQ3HqpKpf0nWx0qSqX9owcdKkqkPmPpYSXJy2bhu7PC4wPXnOb9Whrx41CnBYxt6W8m4t+2DsC7j3vbivPHwWnDduG1s1B/9bvzvo99dnDaWjZV2GP3u4rJx3Xjb33FhGvs47mEv3tohllCzaNpYQs3iX8YSahca6AtjCbULU8coFoulWexnLJZ2YQUbaGDUjSaPxdIuTKCACmawgGGLYxOLpV1ooC+MxdIuTKCACoYijkmskHZhAw30iWO1xQsTKKCCGSxgBcPmgQb6wlgh7cIECqiz1cdqixcWcB2sa9nER2D/C/2DcH4tkDiwgQb2zekjb34tkDgwgQIqmMECVjBsEmigLxyLmg1MoIAKlrVvY1XEHOgLx/qHsUNj/cOBAioYmx5tNtY/HFjB2PQaaKCvChVbxVaxVWxj/cOBHJbKYakclsphqdgaiut5Lc6u63ktzpNxGdLxd/LGZeO6cdvYNnZ4XIYuThvLxpt3XIY0jte4DF1cN24b28a+OI/L0MVpY9lYN84bl43rxsP7CLaNHR6XsIvTxrKxbpw3LhvXjTdv2rzjOa7PMvIxOy71mUU+ZsdNto0dHkM7F6eNZWPdOG9cNh6uEmwbOzwueRenjWVj3ThvXDauGw9X71Njtlvqs6F8zHabrBuPmhZcNq4bt41tY4fHrenFaWPZWDfeXNcHPvp5nq8PfAyOOnE9HrPaJuvGeeOoGRfiMattctvYNnZ4jNtcnDaWjXXjvPHmtc1rm9c2r21e37yjv8fdQx79Oq49efTluKLn0ZfjKlxGX744bSwb68Z547IxrjE/bbJt7PDoyxenjWVj3ThvbOv4lsRxL9di/hKcNqb9i+jGeeOycd24bWwb0/5jrtrktPHm1c2rm1c3r25e3by6eXXzjj4ex3rMVbvaZzwqxrEe89OuY5S3416241624162416241624142V9mOe9mOe9mOe9mOe92Oe92Oe92O+zWuYsHjkdyDuQ6OuWoXt8fGaWPZWDfOG5eN68Zt483buA6OuWqT08aysW6cNy4b143bxrbx5vXN65vXuQ4W143zxmXjunHb2Dbm+lsfj43TxrKxbjzq93O1Jq6DNcnGunHeuGxcN24b28Zcf8c8tslcB8fctcl547Jx3bhtbBtz/a362DhtPFw1eNRswW1j25jrYM2PjdPGsrFunDcuG9eN28Zcf8fctcnb/o7+m2PbRv8dPPrvxWnj2LYcdcY1+uK8cdm4btw2to0dHn384rTx5m2bt23etnnb5m2bd/Tx/uNWH3POLr766eDxb+PcHv30YtvY4dFPLx7bnILHtklw2bhu3Da2jUf93qfGXLHJaWPZWDfOG5eNhzcHt41tY4fHtfvitLFsrBsPVwmuG7eNbWOHR1++OG0sG+vGeePNK5t39Os+X9fHPLPJDo9+fXHaWDbWdVya5o3LxhzTMTcr9d9H+5iDlfrvlH3MwZpcNq4bj+HBUcc2dnj0kYvTxrKxbpw35jxv13VwcNvYNnb4ug4OThsr+3sNvcb5dg2xDjb28RpiDb6GWAenjce+xHl1DbEOzhuPNoxjfQ2xDm5bnc3reO3x2DhtLBvrxnnjsnHduG18uf7rv/7hT3/913/553//y7/+7Z/+/e9//vOf/vE/1//wb3/6x//xn3/6f//89z//7d//9I9/+4+//vUf/vT/++e//kf8pX/7f//8t/jz3//578//99m6f/7b/37++Sz4f/7y1z93+q9/4F8/Pv+nz9uGfpMV//zJJqvE843KL0XS50Vy71NRIte6CjT95d/L5/9e+7Bp/PvnuAUb8KHAcS+e43FrL56DDZ/uRf68iOT+CBE1niO+SgnRuyWeo0B17kkrbStRfylRDyXWRui2Dc3u/vua5tlQtax//xwU/KWAHdoy11nheY7apyX8dDxlNcPzivxpiVNLuj5WO9T8aUumw2kp0qcYjQMqvtUoH87s06mpZW0Gzfl8+Lq/I40dMf18Rw41Sl2N8UQOSf2wH+V0VPs8xuuoFvm0xOHMam0eVNOtMdv9CpbnbtjT+2mFu7vRPt+NU2O2x+xhT/TPSsjjmBTrxCo5fVoivdsUcjgz5eEz8p4v9ojdLL+W0MNG1Bn95u3zjTg0Zn/nd5Xor/zo6c/wu70j8fhz7UhJn+7I4cQSQvPxaYFzD/O6Toqknx5Rez/0TjWeQ8izxnN0+PPrhz6O+b0uhWVrjedb0l9rHM7OYvOI1EfZKtj9EyOXdWKUrZd9PDH0cHr2kZZVwznDny9Dfq1xuqhXWb3k+fDMgb2/FTdP8WONu63RfqA17N3WOHeUsjpKrZ9G36HCc2h+3S0+U/DTczyfruy2TtDny+D9omq3azxf/Oqq4fZ5DX37qprzu1fVU4V7l5Lbu/H5VfVua6btDP/eEVn3rs837e3zGv7+3Wt5/MDt62lfMjeO5bAv5XBh7CtmzSMrqp/ev55rrONisp/lH2vkt8/yUt49y08V7p3lt3fj87P82Jo8ZvYliF47InU9LfefM31ao56u8SWvh/a255994wy1NGuo5c8ztMrbZ0bVd8+MU4V7Z8bt3Xgx/yyvK5JtJX5rzfZ+a9rbrWlvt2b7g1tzOzdbfu1qEjPwrgfv9PkRafr2g3d7Pzzb2+HZ3g7P9n54nhvz3VvH8ljPeSXp52MpdojO59ulGb/Plzafx68dTq1YOHG0xcMfn6bvccAyr6eK5xvCop8OWJ5btNGi9tpBuTcaYuU0GvKoa9w05U9L1Lc7ibV3O8mpwr1Ocns3Pu8kx8ZUNxqzvlSiyBrHLvrpWIYfLojFyzzDn4+a/loJzTdKnE+sW8Ns/nZ0+tvR6e3t8S23N8e3jttwb7Awfrj93mhh/A7885cTOnekpu3Z/3mBfrVIebFIfqwhrrzdhf9eJL877HjeF8trX+zVfRGdZ3mVLT2/WaSt66L4q4dG13NJ1VYPRU6P8I/HuuvqnD4dLjuWuTtu90URn8fHNfmLRbQ8VpHtBen3itwcQkyn0bu7Y4jp9A7m5iDicTtMVovYdvPz+3bcLVIfrxZZ15gn1teK9CVO6zpjUzuUOR7isoLN99uHb55sxsm29+PvFalOkc874P2r9+cvLU9vEVqdJVr79KJ1vkO+9V4nSX3/QfJYJMfP38aod/J8KHK6DWhrUFFaPuyNv/8i+PSK6eab4FOJm6+Cb+/J4V3wuUXXyzJpll+qoWmF6vMS0V6t8Xi7xjZ1ZO/536uxbvKe5T6vcXrJdPPh4Ysat54ezvuS8xrGz9Xer/HiOabia2gw2+fH9viGptY15NDkcPd93JBW1gnyTNbPN6S8f3DPNX7g4LbEvhw6bj7NdIq1AkejPu94Xm3UdYeodjjLji+c1sPZ86nk880ohzvv5GXti7fD88xpO3JiHp8emuN0nZN1icpSH59f50p+e0QplR+Y8FTen/FUfmDK0w/MeTq26L1hpXONe+NK8Zv5d7v++ey4NSyU3n/rlN5/7fSNPfk8O2p98xb53GV1RWnOzV+8v5XWVr8/3d/WH5h6GjdL7769P++OPeZ5mr1+PjkkFlR5f3f0j94dX1eY8nicdqf8kWdaYTZtyfXwJNXa6SIlnGirxPOy86HE+9Ogjluxhtz2S+VvW3F6E/V8Ak/Oe6RtJLN+p0hra7rf837GXysSyzasN1qPl1pkbcfzbDu0SP5DSzzbYF1hnlw+b9T8E42af6BRz0VuniPHblce6y22Z3st4GvihwVJ26tF1jjZ8826vlgkK0P39dXd0TW36vn29XCf6vkHAv70gulHAr6WNamoPt/jHnbnNHGjWF59p1jJn51sXxRZM86evI9lfCjip5f06+1MS/L5hUJO76tyWWMquZbP3/TL4/hcldel4pE+fXiXh7z7eCePw13ALz9lafvLjI8Ncjpdn2PT69A8OX86TP1FmaIrk55PLvZpmeMp23SdJy1vr89+P8bt7RFRedjbT4pyGjC/9zxxLHHzFyG396Qd9qS9PSJ6rHFzRPSrGo+3a9wb8JLTb5Z+eWItr7XpzZHZL2rcGpmV5G8P3n1R49YT/Hlf8mOdH/vL9481RP7o7bg1Qny/xot97uYIsZzi9O4I8Rcn+80TpP7BB+be6K7o4/3R3S825NbobkzUf/Pyf/r90N3R3eN23Bzd/ermrmw3d/rJzV1MSHn3DvFYJKc1QzjvjyP1G7d2LafVY/LnJ6q+/zZV8ttvU48lbt476PtvU7+4WV7Xueft/efX29OvmW7Hx+luudoa7a7mh7vlU5G2GvWJ6bUi4wPC17j78b79tCVFGSaur9/8W+Xmf7vKfPfmf+1RfxCohzJ6fB9R/rv3Ed9rl7zGnCVvMfJ7kbdT8Xjay2MN9Eh62EtdR8gzSYcr3uld080LTWk/cKEp9f0mPR7aNdj8PMr66ikfk4vmLYC+/LwrmeddqS/3HFk3Nb3kYZLYaV51m3u0vanJ+q0RRZVtRDG/OCzJD9AeXj8blpTTmysVW08B+mivlLh3F/DVKPzN9nj8QHu0H3gfcCxys0XOsxnj+xfXdjz2iYjfmxT50LqVOczylGOr3J5beSpT2+o4tW0zGus3Spjwy6HcXiuxVjqq1j4tcZ5i/WCBn8fLM8ZdKfL5PO3zb2HXzd7z9rN+Prx6+iXVzZkeYu//CFXs7fkAxxI378Ht/d+hnlv03kyPc417Mz3E3p8F+EWNe88C5zPs3lo9nt4+O/z99X7u78nnt5n+7oTqY6/P6xr1fFl06PVe33/y9vd/LC1u7x/Xt38ufX9PDr3+2KL3nrz18QMjquftuPW6TB/53ccYfZT3H7uP23HzMebUHHefDI817j0Z6und0s0mTY/3nwyP23GvSc+rZ6y35VZVPs2f8xpGt342fV4B7tZ9i/7Aknz6/pp8+v6ifPoDq/IdG/Tmbcvj7bsWlfT2XcsXNe7l6Ps3HF88fd37EeV5eb97P3881rj568fj+mk3fy94u8bh54LnGvd+LXh8l3P7gfbYqjd/K3jekrvnyLFNbv5W8LzS3/t7c/dcPe/LzXO1/cC52n7gXG0/cK62nzhXz6167yep95dc/fROSk8/orr18HNcnpM5kM/Bte3h5+PynKdfPz2vHWsih+hnw41flLgzcqq5vf3+9NQYDO/lfVmL3xvjB5br059Yr++8auqtWxg9L8Mwx9R+mZhu9yusW7G6PVr/VuG4MNyDV+vbxMnfFn89NoXQFKKf1yjHB0FZd1Kpf/DylTOM1SRy2e/15Rs1ynogzaV8vmSUFj+9Cr41y1Dr3RPscLdf374tPJa4ebdff6CrnFv01izDY42bswy/qvF4u8a9WYZa7450ltfa9OYswy9q3JplqO0HnqHa+89Q5325N8tQW/6jt+PWLMP7NV7sczdnGerpl1N3Zxl+cbLfO0Gq/cEH5t4sQz2+srk5y/CLDbk1y1Dt/VHT04ott4f47O1R0+Nd0FroqP7y07rv3Ef5qpA/r9B+4h34F1VuvgLX00qm33gKO5W59wr8XOLWK/AvStx5BX4eULr5OJn/2EGLb5wj+iPniP7MOaLvnyP6/jmib58jp1vUtkYLnq9MtlTWX2Mon9//3HlEPpZIzyRak4tq2WdJfFxL/lHfHTL4osSdIYP8sD+4PUpd7ymfj+qPz9vj9C5K6rqTeeJnj5bHEne/kpJPH4e695mUY4l7gwbnErdGDc6tcXPY4IsmvTdukFN7f9zgi9PMuCurvg1s/36anR5SU2PR1G0a+fMF1a9FjgOXt9YaOG9H/OhvlHjy59txLFKYzl7KocixYdtjPYc8eYvm3xr2dPW9mWfnErfyTOofm2e/toeVQ74fy6jwWLU/d//erMfzlUO8L4wrubxaxH+gyPY78m8WWdeKZ098fF5EjxPJlY86/rLi8Mev/JxONlsjXs+bxXQocloP08osIrbf5n2vyFov+In+apHGlvjjJ4qUQ5HjD3XW9zLleWvweZHTj5+eY5Dz4lXaNn/7W4f4+R6C59asL54nzkdA9kGJ77UJw6tS5NQmx5VUdGXbPsPuew37WMtBlEd5vFakqm5LQj9+YHfK4RDfz5NDKJ1eWN1cSD2f3leJUEO3SXK/bchpwb9W2tybVvYFtz60yGky1fNBfQ2A5e2VeWofapzWp3o8+Iya5M9rnH+btt7SPLmWz/fmOIVo9T7R7cbx92Y9FjGOjR1Oku9cz/Pn1/NiP3CunV6wuvk2M1QOdyj12Czrhlr2D+HKx205vXu6eSt8bJJ731LIp4X7bq3af27UbxzfY5nMr6mfL5EOjymnH0F541dDeyc2+86mlMaNbEuHgYrTqHxN66686rbc9u9FjpNE1+I/z+fe8lqRwlSNJ6YXtySvaTh5f4P0vS3Rstbe05pfbFgVHvIfhyLt/Blp5r2WV4u09ZLgif5qEaOIvVqkrsfzsk/7+F4RX4MWz6uovNqRG9NYnmyvlrFEJzR5NVbssV5IJ0vp0Lz2/uCWvT+4Ze8Pbp3bo6wH/Sf74egcP+6UGmO5zzb+bFHAfPrG1M1L4Hk7jJ+Jpv0Luh+LnD7w8FjfRfD0+fDJsURau+IpfzpOdz4ydd1tJWvl5RPeWNrg+UB7uHi5vj0qdS5xa1TqtBzgzVGpb7TH6WL+VZlCGXk1HJ//tFEmH8YM3d8/Ov7u0SmnH87+yNH5pT1Ke/3o5K3Mq9ccf6ynpie7vlpGeOPmWj6/ayunt1T3rjnHEveuOecSP3DNceYdJq+Pz49Oef9F17HE81Xwg5uKmvy1Io2VNNr+3u57RVhHo7XyWu95jqttk1ROl4zjHMYfeiyWVUX2RPn9sfhuke37Qt8rktfzzi/j3N8rwiqyUrbpod8q8myH9bmkh+mnRY5HZ61xIPtKRR9f3592hec/6QtIf1aiiB5fEt+anV6Ob6puzk4/7cwjrVH/Rz7tzLsfCiinJRefEb9uXq2eNsPeb45jkSLrdzpFfL+/kW8UKWuuS2mP8mIRVgl7Pg6nz4scVwi8dW/zRYlb9zb69nyXL1pjTWQspn5ojePld40w1Gx6KNJOW7JuA9Ljs+Hk82bw1PjrCuHf2pdS1kymYuXlIsyIfPjLRdaC5zW1F892WyFS/FTk9DOsHylyd/5OOX6I6t7t5qnEzdvNY4lbt5vn1rg5f+eLJr03f6eU46X73vydLy40a1z8eW+UDxeaUxEXipyuVkX/6N3xNbaumuywJafvUK8fqvgvA4OPDyVOcwB1Td7XvE+Kyt8p4oW5ENtb1N+L2NsXvHOJWxe8+vZaacfWeI7FrzcEj/2p92Nr1Pcv//X9y3/Nf2xrpNXl8v55799bo77fGvX91nh7suux2z/vaNevOtTSaymm/K5D9+e634q09AenmNa1WMDzxv3x4u60tZTtc8fqi0V83WXmx6uXB/U1GPEsctiSVn/gAfH04aT7T0THo8Nb7fbLUO3H3TkNkFJjGwhsdr9C5SNB20P3b3tyWubsdpua/ECbnt8Nro8V/fL79g+3Q3Z++He2Y7/X/dCop99l3Tssx81oa0BFWz1txvECsfpu1sfjxSK6BhKz/vKE+LHI2+8CztuR19urnH95JfhhO06L+v1IkdtPMq5vP8mcStx8kjmWuPckc2yNu08y5ya9+SRzWtnv9kXzFCGksqXPI6SePmP1fEm68tC3Zm31Q430/jvjelof8N4L3/O+eOGtyDaN7Ld9Oa5stf3qbhuk1vr4TpF7nwn8qsitzwR+UeTeZwK/KHJv6ejjwZGHbIsV+qcHJ/3BNbw81nn2yw1Azt8pkllRap9Z/s0i66F7/6reN4ustZZ9H3j7vcjhFsDXgIjvP+38eMofF+m722+OO8NVwqu+2qx1fbfBf/k8x7eKsIas7/33tyLyRxf5ZYFOPRydYxHhdyqyz7X/VpHnPeZ6k2ifFzlesozJUo996PzjNUuOA6vMefR9qZoPq3RWeX+V4CrvrxJc5e1Vgo8l7q26c39P2mFP3l8luOr7qwR/sR23Vgmu+vZ6F/X4E6abnwk6F7n5maBjkbvrFZ+35OZngs5Fbn5otJ5+83P/Q6Nflbn5yaIvytz9XulXZW5++ejcwDe/fHQucvPLR1XfXqnl2JFvrm99rnFvfeua317fupYfWN/6uB03m/R8aO99+eiLc/Xul4++KHP3y0dflbn55aMv7vjWLBhv2zuw327WSnt36OiLEnfeLtTif2iJey8ovmjQNSr4bFv9vEEfP/A9qa+K3Pp+Uq0/8RD8A2/BjqNgt9av+mIg7c4CVsd3PvdG4mv9gcVZa/uBxVnPbzcySyzWwxuf+EXQ5xerNd9Lfl2990MItcOReV5t14/TfB/yzel+kaKrYUveJyd+q4jJmp/02GcFfadIFYZspZy25P1MPW/HunLWffHu7+2Mrt+rP8/5Q5HTp9x+Ymfy+pFqzdtD5+/bIX/sdhRiZH8g+H073l6r5YsSt6529vZaLefWaOtnF9W2z0P83hr2Bxe5+8an+uPdNz7HEvfe+JxL3Hrjc26Nm298vmjSe298qpf33/icrzLbGNz+aPbbVeb4SaibQ1/H91c3h75Ov5i6OfR1KnFz6Ov2nhyGvo4tem/oq50+Snt36Ou8HbeGvtrp61b3nnbb6SdOd4e+zkVuDn0di9wd+jpvyc2hr3ORm0NfsWrw+0NfX5W5OfT1RZm7Q19flbk59HVu4JtDX+ciN4e+jj3o5jjNqSPfHfo61rg39NVO73xuhoGk94e+jttxr0m/OLT3hr6+OFfvDn19Uebu0NdXZe4OfR1vs24NKXxxp3ZrSOE0Gf7ekEI7f1vk3pBCOy0PfHtI4TiPXdZogIofZm4fi7T1O7RnZ3m1CLcV+fFqkSzrYwdZ7PNp+U3/6CJ3n25iSbf3nm6OJe493ZxL3Hq6ObfGzaebL5r03tNNyz/xU5bTr1B8zVJIIvuExw8nSP6DayRbv++TX35p8J0iIqtZReqrRRKrzkk97c4PjLS2n/gM1hdtwk+vfp3k+2F3TusKpmJrJO7J5bNRo6+KNLqOefu0SD7dcnKI6y+rVX3cndPdYlm/vcq/zAT/MJullffnPLTjm6d793rHBfTuPuQcF2G4/5BzLnP76eSrE6VsJ4p+dqLUnzjbTkXujVKeT5N7Iz+tvv9h4Vbf/rDwscS9kZ/7e/L5yM8XHe/eyM/pJdbNkZ9zz7s75HIscnfI5VTk9pDLcUvuDrl8ESR3hzm+CJK74xPHXbo7PnEscnd8orS3H6bL+1NzzjVujk8c32Pdu2aZ/sD4hMn7TWo/MD5xPldvj0+cy9wen/iizM3xifOD0q3xiS+etW6NTxwXUrg38eK8FsOdrfhiESVyvvzy1ZDvrMRUWROqur5YxNZ7V/FHea2IPtYbzyd+vjvlNMJ4d02oY5F736Y6l7j1baovStz5NtX5uPDbo349f/Hg/lIkv1pEKKKfHxd7vD1D4IsSd2YI2PsfuDqWuLm447lBefvbmr16VNYdqzR/NUH2LXm5iK0ho/75kleL8OR7KnJek/Fetp+XdbyV7ec1b9eHoD3lF5fNXVPZnvj5IsLyblt8sazyrbY4r+G91pV8Ppq9uoY3K14/0V4tsj5O8Lz2vroQuGW2pL66OLqth6JnvZeXJH/w46nHy22yHqyeRQ5H57j+fal8gL3VHyhir67Ez7unXPOru8PvDnM7nWzHIiz1nk0/L2KnN1iNJYDbPlH548xrO/0SK7N49nOLy6d37l9tSV1bUk5bcvqV+2Od9vWxP0N8ZzvWB1nt8aiH7TgOWq0vR7RfPhP0W5HTIOv66eI+BtAnx94/R/g2Vj4t8GzqP3COnH56cf8c8R84R7K8f474D5wjp09J3T5HTo+JP3GO+Fpd5vmW9PNLheXTKpdi//06qB+Obj5PaV0LQ7ZtWYePn146fuPksW5JyqN9/vlCO72/urszJf3BO5PWx8bKr+8Wv/XVl8e8zSua8otFhC2R/CNF7NUi6+3I8zC1V4usmQHPeq83bKNh9dUiiSIvfx5WMq/Syv7w/OuYop2+iXXz4flc4taTb9U/tMTNh+djgyrLj2t7HBr09AmBOwv/njcj8/i9r+r0+2bY+2F2Okvvhtn5s7/Caxopn+7MF0XWM+vzXc/nLZJPi6nf/gCx6LtjgOcSt8YAvyhxawwwvf8Mn95+hj8u1nPr+4J2WvDP1sPd/s7842sVO/7iKq0nb0377aXfXu0/t5Vf2R7y6W3u4zgBYL2WqXuJD2unnErwNdtUt7XtvlPCtk93lde2wvmZ4+ORXikhD0LjsX8M9xtbwecG+qfMXivBlz721dO+UyKtdzEp+WtboXwoZP/y3ndK5NVJnoN/5dMS5qenfeMF5n5mJL+/Jytznhfo1xojry/Rp/2DiK+254sljDmVJvsSRe1De779Jbbba9mlT7fiWMLpZ/uA1DdK2BoleHZV+bSEP35gyVV//MCSq3cXwdqXbP9tZ07LADyvhuskrbV8Ns/1qyJrrDDV9sifFjlNn2BlP/3lG6S/7U473Wus69LznfA28vlI94u0vAL9+a7w1SJ1nfB9EOXzIuntnyGct6OxHbaPj/+2HccVBVgLv+zLP8uHUz6dP7vwYJ7rY5veraV9Y1sKPeeXEfLftuXc/dZ7+rZ/ZO+3IvX9Mcfj8bEqa9HT6o/D8Tkt768se74HwYcKp2f8VvN/+2qpfmgQOX/Map0mj/0x7mORY4PI2hn75TnuY4OclsBI8dR7XW72LwDXD4kkx9Ur1ijO/kWb30rkH+g4p/UBv9Fxjttyt+N88X2uex3nuEbg3Y5z/tzYWo/n+XI5fX589DzpZ11ztrsa/1DhtKq1r4epfpjYl/Sdc56bd7N9Xz6e83o8XdcFtDz2acgfD83p5VTKa9mo530Oh8Y/nGjHRblcmUm1P6J+bBI9/vyVcSXd38XUj1tyvG29N4v4iy1ZQ8KS98Vxf9uSH3gr5Pk4sbrymrqVT94KHY/Ncyj3wQiqfn5sTm+nCovjPl9g7Ol6fwhivc/Jz3vyV+7lMwucPV8tH25/j7+Munsvn+v79/Jf3UPzdefnPfRnK1v76e3U7Rvx/PbHXI738rePzXmZgsIQ6DYn67ci5biM1ZoNLftcyt/63fE3M85U9ySHznv6cdXtBDj9uKrwrc/i28O83i9x79XyF7ty79WyF3v/1bIflwa89WrZz1MhhXdK9vmwgp/eKj1f0DE19LBIt59+EHX7DKn69hnyaOfRyPUDkfbLwuXfelDb73233+F+9xnrXpuci9w8X+tPnK/1/fP19iPFqVm/uAO/16znIjeb9bTQ2O1mbfn9Zr23iOQ+KfLjw8Tp+1ZZ16uZrPvniz4+/p6fSNbz1TYR4uMTyWlPGEf75Tv3v+2J/0Ccnd5U3T7HTt+3uhlnpxI3L3jnXbl5ptsPzKVyK3/omZ4e2xK0tX5+hthpLlVqzE55pMN40WFL+DJdSvtX2H7bkOO8knVoRPVwg+c/car6+6eqv3+q+k+cqv4Tp6r/wKl6uvFuPM54OozxnN5d6UPX49lj/6r0b0VOD0UPHljT/ubo4/l+3JLE12DT/kTzYUvS4/TloVufpv9iO9aY83PkuJy2Q96/SDyr6PtdLz0e+d2+d65xr/N9tTf3et+zSnu/+z2r2Nv973iiUEPzIx1OlNNbrMwvK59D6vpi38kMPGc7boq8f7UYS3a8f86mHzhn0w+cs+lHztn0I+dsev+cPY5g6zo4aZ8X+WEEOz2O6/OtdUXyNhEmWfpGjbJyel+M45s11vWvWH2xRl1zq3+d4/lqjfJqjdUe9eX2YHizvtwebe1Le7k99hqvtsd+HX+1Pbg/ai+3hz346ubjB2q82h4xbft67/vydqwX0Gavbgex7C+3x17j5e1Y7wP8kEHn9183F8A5F7m5CFZ6HD9rU50pjuVY5fS2tbb/Jpf75wvu787NdWuORe4uCnTekpuLAn3xTvDWU2c+hzvrR+4vwb5T4taD60/8Xu15gvhP3IYcFwe8dRvyrHF6JZBYlES23xT/N1VOr1rXinz7HJRv1vD231y8v7k3+2TD7fn3m1XamvMt7bA/X0wvMGbA7xPH08e73tOiUffv4U8vse7ew59q3L2HP+/N3c5zeot1v/NUef8e/jhLwbbfecnhEJ++TqXpsY2ll8+mKTyLlPPLsHXd2n/L9/Fx4vQzq7rmbdRt2sa3SrQ1i/uXu9bvlVgzQeXTrfhi4sf6NVB57DecH1v0tDxgLmvYN+8rBb9RxD8r8o25MO1wlrXzPLQ1Rpn3JQ5+253TWEBZN3ul/jIU/rHI8c0+P7RKqf1Akf3nAvU7j+BOk5wmkZ3eY0vjJ8H76Sq/HZzTD67Wsk+W958Yfew2du8Z3NOn95zPGm/ft36xHfwe2POphv5Ewtvbr1ufNcpP3B6dvnR19/boWOPm7dFxb/hJsOhDXq1y+/bo+Lm8siYJ/rKI5G8d5/QmStc63Xnbnd/G0Pw4x379BGvPEXt8Y18y15tfUv73ffmBmVfPKm/Pm/pqS+7epvmPDLX6+0Ott3+yo5//ZCelx/FHWSukk20T/j++0TrNerr5/HmefXXz2KTHTwRseuQ/9Ng8X+zxjs8ep2NTf+B9SXr8xLNWerz/rHWscbMTf7E3d0+U9BPPWinJH3yirDtpzXqYZnteDHJdiHMqp7MtlT+6yr1VD76ocWvZg69q3Fn34IsBE12Pfc8BmPTy4M29u5Mvhvj4vssjl9dGCZlk9yifDjQex0xvrir9RZF7q46ff+yW1noQqo/PfzHX15s+xEBewciF7/5PgFlhU/YO8/HAnkvwnef9R6bfKXHzVj7p4+1b+XONW7fyd39TfRjmPC5Gvday+XUx6m+UuPkccNyR9cMW2VeP+k6Jm9nzeD94TneHD9lmK750UMc5M0qk7QbzWyX4TFey17ZiGxRRf20rivBrpe2q9K0SlW+EmL+2I+u7Z0nltR3h2+NJy2s7UvnlVm2vbUXjIzbNXzs7nbZwealEW+s9t1xfKeBrHbB9vvd/E5zHNTjfXS/F1+3s82b/pd1YPWz/aeNr7fBaARXnkWlfC8hvr4ukmlgaTvL7Jey1Euua/qTHayXWt4SeFcpLJcr6leizj7/WFnldjp/Y3i6RXzuouTD1cFt/7FsluFncV8n7VnOuOTZPlNe2Yq2Oor8srfSdrdgWEdCXtuI5yLMyc1/h/lslWH7MtoUmPpZI6fQOKQlXIan7FJv78Z+Yny4vdbTkfBFxX9n2WyX4RqS/1kuSb1+7rPXFEkqJ9naJ9upWsM6UpddKWOGIyJtb8epBvTfadX4WWivZupVXCtxZbeDteUVvzyp6e8zi7RGL44KNz9sSXfdnj30Nio+DWnYYuPSyFkn34p9/eOpZ5fRjqXeXcXuOFjQGHNJnY/Upnd4tyVrZY7/L+riO5rFNdT3FuP7yUrbdL9J/ybEeIZ78YplnZq1PlOwTvb9XRNaSY0/MrxZZI7nPK4K/WETXqgvPVq6vnq62nlSf2aOn0/Vule2Tw9+tYqttzeqLVdIjrfeq/ZcQn9f5onmN5t2W+/pe8/YfMimnbpOXd4rfxvU6hwMlp5+C3W+cc52bQ/fnGveG7r+o8enQ/f98/pd//pe//P2f/vqv//LP//6Xf/3bvz3/3X/1Un//yz//r7/++fqv/+c//vYv2//77////zf/n//197/89a9/+b//9P/+/q//8uf//R9//3Ov1P+/Pz2u//gf3t9h+fOtx//8hz+l/t/b89n9eQmuz/+uz//+HDEo0v+//pdjsFCapP4/xN9O0v+1Pv7nf/XN/f8A"
6004
6004
  },
6005
6005
  {
6006
6006
  "name": "sync_private_state",
@@ -6184,8 +6184,8 @@
6184
6184
  }
6185
6185
  }
6186
6186
  },
6187
- "bytecode": "H4sIAAAAAAAA/+29Z2Bcx3UoTCwWi97bohAgeiFBEuwqbKJEABJIYNFBiaIhESZhgQ2FJEiTFFhkSbYckqLs2MmLY6s6tqy4PJc8f3kpThxH2tix3xe5yM928jkucZGf7BR/TvxAaffuuXfmnJm5dy54Iax+2EvcO+ecOX3OnJmbePXKez8xOXP4/n1HJ8aOj0yN7pucmvvfJVdmP3LbxNj4+NiBHSPj49eWXL78Z5fn/rtylfPyK/VVs0/vOHJ4curx2WduH5sYvX/KN/tsx+Gp0QOjE0/2r13zhWVL6P8SrOMTlMY/+Jh1/BI1/LHxz/WMjo9MjR0fVaNgyRIWgk8Vwkevs3r/yNTIjiNHZ4ypvPQYJApAf+r661fSI/8/4HgKj2mYwlO9U0eOXrmKUGwR0o6nd46Nju+fA/vLyZefefGxT37hualnn35P7jcz35e+Iu3cpUs/L/tZ+ftfvfSkdeDtBlkf6t8kpCpgHX6HgXfLZxL3HPz4r4+kt1144cQ3v7F7OrN85C8qH356z19dqfzRvoesA3caA3/4rt87l/3C1T9ctjz8q0Db7/xk32sdSZu+GX57yV+e/82PXn3cOrDNGPjVPb/59qeyHz918rHPnd7UmD/y0cdf/sWPv/jix7Jf+97zx15ebx3Y7tCOOtTG51jH3wnGb1inYAWR8XepjWfo71Qbz6jYLoPxs0899+3tj4VX/9Nv0h7dNXLx5Np3fm3wp6eCz9Z9/23Pl3801zpwtzHwH6d2XJkqPrThpylffqz1g2VLv/PLZz/1g3+dGd30kx/88NNVr1kHdhkDFVnVHR0YXNNw09Hf/UrBK43V39r2Zx9dea3kl7W3vvLZ9g+++usv/TtnYEhNxgyPetTG+63je9XGJ1rH9ylZM6Mi/UrDGewDSsMZ5g0KxJ0Q/WEdOGQ3vkTGD0vqWZJ14B4wMOFC9eR7Ux9L2PUX51s+lZH2Fz/a/oHbdoRfvPhoZfZHP2AdeHd0YPOtqa8+/ejZS0u+++y/vPtfmz+/rSW3Ynvuyv/1e/9Qdnji7pJXrQPvUZtquXX8XiCiVnVO3as0nNGvfZKMZga+RXIgo1MjavxiJHyf2ngmPt6vNj7FOn6/2vhU6/hRtfFp1vFvVRufbh1/QG18hnX8QbXxmdbxY0ouaZl1+NuUhrdYhz+gNHy1dfi40vBW6/BDarzbZh1/WAn9duvwI0rD77AOP6o0fKd1+DGl4butwyeUhu+zDp9UGj5iHT6lNPw+6/BppeH3W4cfVxq+3zr8hNLwUevwk0rD32odPqM0/IB1+Cml4Qetw08rDR+zDn+70vAHrMPPKA0ftw4/qzT8kHX4OaXhh63DX3pQafwRZvys0vijzPjzSuMnmPEXlMZPMuMvKo2fYsZfUho/zYx/SGn8cWb8O5TGn2TGP6w0foYZ/4jS+NPM+EeVxp9hxr9TMkd9DzPyXZIjP/NMz+jU9MThSJkqXHpw9iM7j0yMjh04fP0PT3x2empsfGxqpm10qv+NX3OIpkZPTj0x+/yu0UNHJma2798/MTo5CWtK2BMf+iQRfeJHnyQ9MftM79iho+PmhJTzxw3ron98gyvUvy5fZutsASUxds8+uevIcVBkS46VTRnQKWoJ1dK5uu/Y4ZGJmblBXUefMAA/OcedNyYfxQQwPN9xeP8bFT0L8mTV8pUZeQyFgZ6ds8/KjVRI2tNzBcmJUf7TAIYulUWXGkPHAWlkEZoBzvl3zRBPaifxQe9P+qxugKd1AzynG+CMboBjnheKfuu74H2Ik55XnBOe18TjnncP+vVmegHEgYcWYXyeW1FY0pmUWMolm5oZeNDELEVTYsaZZkoMvfygZOGgNBoTXFK8EFlS3D563/SBziMHLl++Zs3xIwNvn/1w++jI0e0TEyMzUBrlyPtD/PfTllxjFgVzifzs02+8eIX3sJy/trAOeWPNsMQ8wU9HJrhzdOr+g30jBw6M7p+b5uTly1cQundY4LEpM76ASFPdXlReQKThepqqSU/TSHM0MfcTEeZ2HhnZv2Pk6OT0+JyhYkvEZEQhEq5yZN6KSDfhcflla1SgyN/bH5dZiFpUzsr0DNX9C4s2ZUapWWJ9kgU5Z3mWDUVjeZYTK1jw1WuJVb2WwOlESw+HI3DZdxhK0yDRlmfpkOg52JYlbwxGhOvPv0Hx6//oOnoNOsJd0+PcoekM3DTMKGQosL6SCt82AcMrC8rBhwlyyYSENXqgggXogZg5p6uhzcfQprNo0+G8LWLIgM8QkJkf65zzOH0HRw7fcWx6ZHwShZ4x+8yd04eOdrwV+oaX/pJVjIwoI7ownBnsNDJi3HvqOporL/0pa8S4UjlksIRSpeNKlaZJqTjSTSOUStGx5ylJA8ybiQfgGQIyi1SqDFNwYZQq66WvsEqVKVSqTHYamYxSvch6f1ypFBm8XV2pMnClStekVBk8l4ErVabqjr2KNMC88VQiAwOZTSpVJgTGKlX2S99mlSpLqFRZ7DSyGKX6OqU6MlsAJ9Cci6OVWar9V8pamYVrZaYmrcwijRXPJbNYIYKn6BZANosum0htssUVAdsQH9QNcVo3wBPa53zB+xBP6wZ4TjfAGd0Ax3QDPON9Y/EwEyUCoFd0+6WLuiGe8rxy65/z5OLzEC89ohviA9pJfJTNTfFkLNvZGkwiGcvGk7EsTclYNpnkMnPOUUObi6HNYdHmwHlbxJALnyEg88glQg4Exi4R8sIJ9axi5ArXCLnsPHKta4RwQtXsU9dr0HyXn6ZJi9MI/mUTauxQpBJqnIOrcbYmNc6heWVFm6t6mE5F/GDeFjHkwWcIyHxSjXMhMFaN88MJG1jNyBOqcR47jzxWjVvRYn6CYxbfoa5Wubha5WhSq1yem8LVKk8N7e1K4gDztoghHz5DQBaQapUHgbFqVRBO2MGqVb5QrfLZeeSzarWFUh6ZEsoS1s5wvcxXklHCL9T1Mh/XyzxNeplP2isz5wK1Ob+KKhGLtgDO2yKGQvgMAVlE6mUBBMbqZVE4IcTqZaGEORSyMylkNbOTtTRcsdSYvOQ2dcUqwBUrX5NiFZAWy8y50FmVnBYHmLdFDEXwGQKymFSsQgiMVazicMK9rGIVCR1eETuPIlathpl0EOh5upLx4elgOnyNUFYZB9tHSV4GwDFWgrghFaspVau6IRXjhlSkyZCKSU2wcCMISWMkGZTQ9iCLLkgoR1BYe7EL8IRugGO6AU7rBnhGN8BJ3QBP6wZ41vNqc1w3wAndAPF9DGWIwCvrJvK8dogXPe8h8EqlZ9ysdos+5305z1Vnva45pz3sJNyas37NeXAx+pyLnvc53k/t4iHVs5LRbtMnvT/ndyzCTEf/pNlN2WKieBBUW79vUS8eBPHiQbGm4gGHVcVo8aAEksawETxFiwclLLoSQjIlwghjF+AJ3QDHPD/l07oBntMNEI8unpEK7sbicr6BcsYXbJ7RnOPa5/yg550iniV7RiznvC+WBeAWj3teFc96X87nvG9+Lnju87ohTnp/0t7PPvXP+dQilPMCSD/xVfSbOBc7HU904omON5zOmIdV0fhZqJ3IS96PBuf1R32ma1FbdbFKa3Wx0L3qIuh9ZOZcooZ2mZKAwLwtYiiFzxCQZWSPXwkExvb4lYV9faxeALRo82gpO5PSGAMjXX6+LqbLz4VdpUKCg0FCkRWFmqiuyCW4Igc1KXIJyStcn0pIsRfaEzsNkqnZ46IpVeNOtrpoSnHRlGgSTSntja1oy9TQZqEOgUVbBudtEUM5fIaAXEr6mDIIjPUxS8O+Q6xmlEc5gfYRl7PzKGc9zEFKeWTacjsoScgAuJkFUK4EYBcLYKkSgF4WQIUSgDYWQKUSgCEWwDIlALezAKqUADDHFKoJ91KjZmq71d1LDe5eqjW5lxrWPqpRz18LSWOMsVbCB9Sy6GoJz18rXN3ZBYhfpGoX4qRugGd0AzytG+Bx3QDHdAM8qxvgCe2KeMH7ELWr9ox3xQLit9eVW7s94wWqN69B46UaD1m09+VyyvM+R3/EP+F5qUwuQk0843kxT8Y9jg4SH9Ef88t1E3lEP41LvQwy8uywfhorvCuayLOJBaA8lfpBBryrPJFnx/RPetkCkPUy7yr4gnK4BQvAOy5bADR6mI/uKXiV58PWMe2J2aOezx1Per4Uo33RoX1ZpL34O7eKsew31EQfcXZfap1tdEYBE7svtfjuS42m3RcOq2oAq6xo61Q/QoSgrWPR1sF5W8RQD58hIBvIzd06CIzd3G0IJ1axilEf5QS6uVvPzqM+xr7I5m5iOaU8MruCK6wMqSP0sl5NRivU9bIe18s6TXpZz1MQg7EWbjRA0hgpNkTHHUVVh0XWQPgL4xneoGkb4iXdEM/pBnhcN8Ax3QBPe56HeCXYLsRJ3QDPeF4q3lfEs7oBntCuiBe8D1G7as94XizaNfGkdjGf934wPet5seCbHLYhvsP7k35EN8QHtJP4qDaIz4kXLm/avGnG+4nYg953jN5PZ2eY4xGg/lioqUpTCF9j2kK1LYdtfBODWA7XurccriXKNA2avonBVQgwb4sYGuEzBGQTWaZpgMDYMk1TOPExVjMAWvScTyM7k0a2UPMwo8gylSe6CETV5uvf9PiYQh5uqIpKm6RuqA24odZrMtQGkle4vTSQal1rT63fDCCtCutCRlULX3uz42NKp7hBNrr+hdpG3CAbNBlkI8krCzeaIGkMH8FTtOWkiUXXRIimSZw22ob4oG6I07oBntA+5wveh3haN8BzugHO6AY4pl0qs963P+1yxjcN7EKc1E7iRc+7iDHPm59+x70YxXLW+5GALZuAzDdFUzKdYkpp8BRPpg2hhwXQpARggAXQrASgy5qxLSfy1xVqKeQF9fx1BZ6/LteUv65gxb0czV9bIGmMKoCn6PHoFhZdC6FdLUIvaBcgHu3sQpzUDfCMboCndQM8rhvgmHYxz2qHeN7zYlkAuo2nDHYhnvC8Lur3YQ/GxeIc4FnPTxlPDb0DUbuHmPGuWIyfZZ5Xbu8nJWfiOUQ8h4gHq3gOEc8h4jnE4skhXGOi93UbP4TiIeW+6Hm5nPJ+gH5o8UWCBZDlaJ/zGc+LeTLucXSQ+Ij+JXRAP8hG/SBL9YNs0i2dw/ppLNBN4xHdACd0Azymn4vNccFomXS5fpBL9YOsWACcdMHpVi0Ad1a6AJyFhy3b+Fm5AKY94eW8wj3RLF0ANDYugGTKhWkv83zuc3QBuNwjXg5dLsjaPcueWABJwBHvRuzomvhRzy/bT3p+s1F7vUd7RUp7pxt7F9yK6CNOq2mLWrdnuoXaKGCDVgMTwIC2mq7Q1GrKYdWKGKss3FgJSWPYuDI6Dr05bSWLbCUhlzjAOECPAWR6r3H3sFLNQmvV3cNK3D20aHIPK0lPauHGKkgaw0XwFC11rGLRrSIEYzzDe3dsQ3xQN8Rp3QBPaJ/zBe9DPK0b4DndAGd0AxzTLpVZ3RAnF4BBX/S8Kmrn4hnPq+I57/tt/YpzYhF6CP0Grd388M4Y77jFRaiLZ72flLCHesFKOUXTKiQFvsYszPF1yCq1pcDj6uuQVfg6ZKWmdcgqklcWbqyGpDF8BE/RQvhqFt1qQjSrheHMLkDcJ9mFOKkb4BndAE/rBnhcN8Ax7WKe1Q7xvOfFsgB0G4+3diGe8Lwu6vdhD8bF4hzgWc9PGc+rvANRu4eY8a5YjJ9lnldu7yclZxZhDjHp/aREfyQ4vfh0O55CLI4UIr7KiK8y4ulsPJ1dmOmsa0z0vm7jh7M9pNwXPS+XU96PBA8tvkiwAMKp9jmf8byYJ+MeRweJj+iv5gR0E3lYP42N+kEW6AdZugA4WaWbxgndAI/pn3Szl9Un8uyIdwXjgqtw07JL9YNsWgCWvSg1slw/yKX6QVYsTtuuWgBWU7oAwpeHLdv4WbkApj3h5fDlnmiWLgAaGxdAzHZh2ss8n40fXQAu94iXQ5cLsnbPsicWQBJwxLsRO1qledTzhaSTnt9n1V6B1F4j1d4GzF4X0Bx95LwPP81CbRSwQauBCWBA+/Cb3evDb46xSrEPPzKuS7dc4gDjAG0BtJ7iAUfWaxUsgjozVAtfY87P495jtZoBr1D3Hqtx77FKk/dYTfLKwo1WSBrDx1aJRK2VRddKiKZVGBvtAsT3vuxCnNZO4oPaIT6kG+IJ7SSe9zyJx3UDHNPOxEd0Q3xAO4mPep6L5xaAQV/0vkFf8LygT3rfielXnbOeF8uk9/3srPc157T3k4jJRegWxzxvzwsgEuiHqF0VZ/SLhSnp4EvUVrVV4lL1JWorvkRdrWmJ2koWDyzcMLGT4SJ4im7Wr2HRrSEEs0bsum1DfFA3xGndAE9on/MF70M8rRvgOd0AZ3QDHNMulVnv2592OeOpk12Ik9pJvOh5FzHmfSf2kOdJPOd9xdEu57PeDy3stWWgqp6iKZdMga8xJX48m1yjltA9pJ5NrsGzyVZN2eQaklcWbqyFpDF8BE/Rhpy1LLq1hGjWCu3TLkDcJ9mFOKkb4BndAE/rBnhcN8Ax7WKe1Q7xvOfFsgB0Gw+PdiGe8LwunvC+nE94329f9Lycz3pfcS54H6J2lzPjXbEYP8s8r9zez3LOeJ6H8aQknpTEk5J4UhJPSuJJySIUi/d1G7/NykPK7X2fc8r7Ed/7wcr7GfwC0MQznhfzZNzj6CDxEf1r8oB+kI36QZbqB9mkWzqH9dNYoJvGI7oBTniXQvckrZ2LxxaA6kzop7FcP8il+kFWLABOuuDFqxaAfyxdjIbogoesXJz+p3EBiGbpAqCxcVHFbOPnMs8nU0cXgMs94uXQ5YKs3bPsiQWQBHg4dY4ush/1fB3gpOe3Q7UXkLSXuLQ397GXERVEH3G6a0vVGlwzLdRGARu0GpgABrS7tkBTd20py6oCwCor2jI1tBkY2jIWbRmct0UM5RLBa+nHOkcnJ/sOjhy+49j0yPgkCr189pk7pw8d7XgrQLA0nDLIKkZ5lBPoPTnl7DzKY+x76jqeK+GUHkp5PtS/ScjHfitDygi9LFeTUVBdL8txvSzTpJflPAUxGGvhxlJIGiPFpTLKw6JbSngM49k53QDf7nkK8UOOyhCNnxmen/WYboBntcvlgm6IM55nIr7hYxviw9ohzuqGeMLzcjmtG+Bx76viI7ohPqCdxEetgbNUWxqR8F2taUSpe2lEKZHeLlWb83eUJATmbRFDBXyGgKwi09ulEBib3laFU36XVQyANhdDW8HOpIJNcB9nTkGCjH2FveSZIXcFwcFyQpHVhLrEr67IS3FFLtekyEtJXuH6tJQndtGqhhb6vAJkMn1czhXO1qYScq7A5bxUk5wraN9uRVulhjYd9S4s2io4b4sYGuEzBGQT6bCqIDDWYTWFUz7J6kWjUNEa2Xk0su7qY4y7AhZTokmJS+BrhLLKrP+/R0leBsAfsgAalQA0sQCalAB8ljqeLgPg0yyAtUoAZlkA65QA7GUBrFcC0MgC2KAEYC0LYKMSgB+yADYpAWhnAdykBOBzLICblQBcYQHcogRgBwvgViUAv2IBbFYC8DgLYIsSgFdZANvUIsEyFsJtahASMT+5nfWT2yAWSyzZGgu0ygF5Ox6Qt2oKyJzZbCW8/nY4aXmQ22VBMlLbrklq23jzBFgsUjMTxZIsWsMq80BUCLAL8JhugPhJR/tyr9BN5Lh+Gqv0g2zUD7JJP8iAbuEc0U/jGv0g1y4IkJX6Qa7TD3K9fpAb9IPcqB/kJu3e92H9RN6knchZ/UTerB/kLV4OZM/FcnftIDfrB7lFP8hcL4OMPOtjKi2B2M8aDFuAxRYgsNXA15gEOfD0zrHR8f1zmfEvJ19+5sXHPvmF56aeffo9ud/MfF/6irRzly79vOxn5e9/9dJTjiuKgyyESjUI+Y4rfHlUoUcKQi5V6ZGCcDun1GMIYctnEvcc/Pivj6S3XXjhxDe/sXs6s3zkLyoffnrPX12p/NG+d1BFHink26kqj9SuzhJOmccgX5l3G9TIr6QqPFLkv0qVeJ7sb90gpCGFqvFIQdhAFXmkIGzkFGmiQqj9hz9J/rc/+h3/J77+6pETv2p+/G/bHvvTj9x6Ndyy5cHef3rPz3ZR5Rm7xZEtahCynBZo5vYW2aW+oYU/fNfvnct+4eofLlse/lWg7Xd+su+1jqRN3wy/veQvz//mR69e49R2JBX4FnboDrWZF7AQbjeQf3XPb779qezHT5187HOnNzXmj3z08Zd/8eMvvvix7Ne+9/yxlzlac4cc3XM2G6ntp65iIg6oFyVjEcf3XHSzAlaahiAQdpPCF87pMvCutVZIEoitKp8aT0vUK2M+vDKWoKky5mOjdAK6JemHpDER3C/uovCz2PxETuAHTQ+aIY5pJ3FWN8QTugGe0w3wuG6Apz0/5ZlFqIiT2kk8rx3iRc+ronYunvG8Kmq3Prxt2TuKo91tswda/ERWkqSWGPjUs5IkPCvxa8pKkkhWfWTnHKfGDhzeMTI+/sQnpqfGxsemZq7niztGjk5Oj88x8fldo4eOTMzMAZmYywhh1vLh9tGRo9snJkZmAD+TEq7OPtM7dujo+CjYwW2dffqNF69EH76RxyY8jsJPtD6J0HwH8vf2x82g+f8yMZWVeLLqwt6iTbdHqVlifXIH5Jzl2U4oGsuzNkN138lXryVW9VoCp/PUdcFeCZcejsBl32EoTYJEW54FINFzsC1JfAxGhOvPv0Hx6//oOnoNGvCu6XHu0AADNwkzChkK4uYOzR0XZxLrNQOQsbbWPM5d0gsRl3T76H3TBzqPHLh8+Rpi/7fz/ZEviPkLzH9d4/ivTYz/gg+DiHfhuzxiXSyrUHikS4gt1eOaHw908UC3aAKd9RVTgYlWBp9RVJx96rlvb38svPqffpP26K6RiyfXvvNrgz89FXy27vtve778o3lGce8PmaJiEvRB2DaWuajInzdbVgyEs//ZwPyU2ZI/E7Hk26bHH+gZnZoYGz0+OhcmJi9fVje4Xcjfd0sZHD/f8BFe1++61/XjXtenyetyVmI+HV43ge91/W573d1uet3AfHjdBMLr+rR63YAdr+snvG4S5XWhXou8rs/sdU2JiLyjlKAgnmTFk6x4krVokiycgmfeONTFdRY+TlLjD6f+vWMfMZev9U2MHL1ylesM4qlIPBWJpyKLJhUh3Je5w8HlAhQggFhp/uPUjitTxYc2/DTly4+1frBs6Xd++eynfvCvM6ObfvKDH3666peOXdSAY+fab6w5f0o1baLuKFnUQhPghIXkcOprBt5fmJ3WN+oiXmtgZHxs/8jU6B2Hj02PTo/u331kanRy++H9dxwfPTxla+m7E/l7m8LS95m59ff0BHojcsGTvdP3IT2s7digQt6ZaWMQycnCcOq/GU7hYVJRC6wWUUiEyiLXQ2URHioLNYXKIjZUFuoIlQF+qCxa0KEyOB+hMkCEykKtoTJoJ1QWEaGymAqVwFMWiUJloTlUBiAKK9wizChkKLC+UojlRaqVzAKTPXEqmWk5BvffSVFaIObVnISRJQ8jH9ybKer2oLo3C+LerFiTNwuy3qxYhzcr4nuz4ICKNxtQ8GZAebAnfhsejVXEonBaUzTNSCtl0htgXFkKIaSIyAuz4GsEvnRN+NLhaxaDSI6O22t9koI+SYVTsTzLRDdds6NPmIt7ciCplme5KLy8GLyo9P4GY1g1YRXtjAgqwUDc61QzZY7KKMh9HDWrDqfdahC6ksFZLKFmxaRtU2pWTOFL14QvHb7GxExMmYKEMpWgwi9FlamMUKZyFF4Fq0z/0/pONRE7alRXZMqxowaPHdWaYkcNK+9qIG8r2lrVNSSCtpZFWwvnbRFDHXyGgKwn75eqhcBYS60Pp3Ww2l0X0xAEaR07j7oY+6JqxaTENTpLDjVQdBZElTHtjxKzG3WYSFIHXGMS18llf80AHqIcaw1hXc7ZUA2maqEBcChNwRBqCGxpxLTckm4amtnGpLsXtThEuiAoVHGkWxvO/rwB/C0MZ01GS7A9SxPbs24A27NYb6QRUV1MhgiLGkhfWcWwvR4MZdZYTfA9ct3YAAYh60YTJqrEylFU9J6dBrGi1nMUtSGc/UED+JRtRa1jHtZBF4PFHl4YACLCpkqGrDrRhNNOG4vpd6MBCuFmPe3U68JpZw3gVxQ0sxIsPPmDmthBDZAugv9NCoTUC4ur9IWUJt3mXUiZdglwnxONoBHiFpqvoFL1hBvJh69ZrK9ep78y0S4283c7MPO1fDN/1AB+heEsqUn1cJmgh+3pN4DtzBKnSSeiJmE8Wk4a8FqG7c1gKBNCWuB7ZDxaDgYh8ciESTEefQidrlhRmzmKujycfcQA/jS1FicVtYlS8Wp7Pha9VquZ9IgNJiVhJtwcTvuoOB5hZt9Ex6O5YPeCOB4124lHHHVuluT/cgxmJQuzSRiPaO43mebE4/6nJeNRJVqouZco1NSyhZrnYvkTU6oB4Rsv1hSzxRrcnVaYIipWsElG55ICJ4xXN4NsdRNMmalvginjFc4ytsIJpszUOMGUY1VO3l552ouO92epFiq8cKwj0CTHfiaiGqkDUVGs2RHfGXKOppiYTwlRRix1fUOd+GxciXufjSvRsQUV5G9BlS7oDfXy+dhQDxIb6iVaN9TL7Wyol0Ki8QjBbqiDkFQq2iQuMW+oByEKK9xSzChkKLC+UgLfltlQD4o31Es4ISAYTvuJwf1r+P4w03pUIsxGSuVaj3hUlYbTXgWtRxiCZ3hpTgHkHA90eqIRFF9T8EYFwgmXkelXAdQUlq6ycNq/gfTLqg9lCkpbinY2lKGk8wQMSEeGlcvOmCfk8nDaf4qFXMJSViaURLmc6pVxqUpPgFTxAs+OI0dnIoGHc5waDw0wnir3LZRcUzhExw0jEa2/rv94+05QpF1BVLsKzdz6lHHyfHx0atTg11Ub/ApeVTkyGCRypRLXc6USPFcKasqVSljvFIzlSnicLGFzzlKT+JAeUhKdSeafjMj8dTSGyO1kT9ysrTCBzp4kLwxY5ApiP5ku5IulZEEfMiubj2S6kEimg1qT6TI7yXQJkUyXUsk0iBwl4shhSqYLIQr5/FeCAiLfLpRKpgvFyXSQ2zGf3gC6U2VbTwGCgIvr/tz4un8OXY6Kq8rR0noamU2HDmdV5+GV/7vUnVWdYS7vlXdWhbLOCq8KtBF143aibtzBtkcZP+9km5OMn3exrSbGz07rM9BpsIvvZW5z3IdOVW2DzI4F4HiqQpZYSBQ7U+FrBL4cTfhyiFhMnVYKup4PBt0/rRQkeYXnAkHBRyhZ5UwJp3/RWGiG2PPqOKMVz/pvUGd0Ms7ogCZGJ5PfmcD3k5JZRhud9EcxZCksshTCAoxn+MWltiFe0g3xnG6Ax3UDHPP8lPXLWfucp70/57PaSZzVDfGMboAntM/5om6Ip72vOec8b35nvM/EGe0kXvC8WE4ugIh/3vNc1O9nJ73PxQXgaCc978UWY2qnX3FOeFcsxs8M76cl2uVyyvue+6Lnfc6M95n4iHaIjzKFOtCCWahQE0km0BXC12yVWeSnjV3Z4/jS/OT1apfmp9i4NH+92qX5sbu4FLaYFLcb1qgX5erc32KqI7eYmDM3gDTqEM0tmg4A1Ytjul2IZ7WTOKsb4hndAE9on/NF3RBPe19zzukGOOZ5xdHPxBnPM/Gk95mIby14RrePx+WsAeJ5z3NRf/Sb9D4XF0D4m/R8bBnzvA9zwaAvej610ycW42eG95NF7XI55X3PfdHzPsf7ySJeULIN8VHqrpZChfV8nVxBqc5eiUB+2q4VlOpa1QpK9TYKSq1qBSVe81fGRraGVKivM5HtFAS1/GpN9c5q+BqBL1UTvlRJfCs04VsBX2Na0gymy1byqMIxwIm3XDpHZABjL+4rkdCPEtL4Kf0oQUFyP10wGnsBvYSyLnKo9XpTOkvOXu5NWxm7om3U5T70rJNxUU1GlyTVAAagmyWgJJwdMoD3UCJIIZWkhPTdNRTgVE2yTZWRLQsSdHNnooIlz8rWmOjjyfge8dU4NSKtK1HSuhqB1r1FSevuk6Sap3WZHAJqwtlrDeCjjHJkympdJql1JZRHztHkkXMkI0Ax1SifqalRPhO+dmM+5ZBDnD/JZc+fGD/zrM/aiVDXEfvJ3LxzZ+wnc/POXbGfzM07nbGfzB1JuyCLLc924yYaZRdxiMb4HkV5kp5DNObvUVhULhfCQFQul1W5XLkMPRcFyb3sAVzDxnqI3HCW8QmijIfYW5KMzMKplq9V3/YkDn3kuXfoIy8mBPwcE+fQB3i6DEPHubGskpB5pbDAYRcg3uBpF+K0dhIf1A7xId0QT2gn8bznSTyuG+CYdiY+ohviA9pJfNTzXDy3AAz6ovcN+oLnBX1yAQj6vPedzqxuiJPe56J+AzzteS6eiXvuReG59YnF+Jnh/XWBdrmc8r7nvuh5nzOzCHPucRdybmudxnTpkXyJIChXpwlSlywV8+/lqyQqLoqfQktUr7gQn0KrdO9TaJVoxcX0RTKG1XWQsXr2wQHICns1I2RQBTltvfvgwTXI+yH++xU+9X3wNSr74D7G8PJiP9EtxzySz9SWYx6FL1MTvkxJfKma8KVK4svRhC9HEl+hJnyFkviWasK31ITP4qgBvhK+o85ldu8y0SuAsXunwTZBMffe6cxBA3gxtemVTB06K2K/tYDHmGzXr3LKxmNMpqYYk81qQibibJXuy0vl+89sXVd7pqBPkt283DN3PvYrU4n9ykytl3vm2rncMxsSjX9jhL3cE7jlbNHlnpnmyz1TIQor3GzMLGQosL6SCd+WudwzVXy5J6/fIDWc2Sq+KT+Vva7cME/0uvJsuevKeVRlhzPXiy9RzxbdlJ+KCzbnujpCa40Qto9PzZ2GV79JwYWJL9fPlb1qPpu7E5y5mbhcP1dBz7PN7MiBUNBBueigADbfAE+RwHyxREGWTTxlygtn3i5WpkyWsoBQfHlyKh7gU9Wu6UZ+PAhlo09y0SeZum7kv240FpUMANsUqWQqpV2ObuTH+ZWqdCN/KpGVZbqelWXiWVmqpqwsk3VpqejK3xT+mNw9W8o5UOgc3chP5WncDDFg807+2H0E892zS+DL1IQvUxKfK32rBL4cTfhyJPEVasJXCF9T7F42VrOHuL3LmWPiz0K+/hkoBGqvQi23UFhL45YQCV6Du6lrFAgRf72pzg719FesK6nPZtfboT50Q6kvgdQz1V084tW7HvHq8YhXpyni1ZPFZ/t1iErsPJNbdYgIzTvdrEI0zUcVopKoQtRprUI02alC1EOiLc8aINHWVBj4v3pRKlxnrkJUQhRWuPWYUchQYH3F5ChMwFBa681p+3ZCkmDnTPm0FMNqbaCaCB/XrKbxheo+rhn3cU2afBzna9BNKDeWQ9KYBGY59EAIOs53pJcTOREAWaofZJl+kOX6QVZoAxl51hUHGAcYBxgHOE8AqZa6JvapEb1HqJVgpkKnRoVcFaOCwrdUE76l8DXmI0z28xYGkYl268SaJBjZRGYGFCObxEdlM19C0aJHZSMwRjkljqZw1k4D9Jep6VaYs/lEkypGkqzIM79aipURXTHUDFjn3xwFmaRgXcagt5LpQR4p+mYJUXwDVW2RKN7KEUVFOGuVAfoVqmWvQcGkAEpMb8hdoaDJyjj6k/k9uHmGE12pqrdAGDv4mL8PinOYcgYdKmchrpxNQuWk1wgqGg24Qul0jULvXoWwzFdDakaFSck4R/AzXxXfSlAhPt+/g2srma9JCL/JPeFXCIVfQ8Y3eY2pMSmzVfhANVQupQg6FH4QouUK/7/Ewsfaw0po4QfDWQkSwq9wT/hBO8IPCoXfRAqfcwMKCM/ZCjGhxKHwBZ/5qwlnZYiFX2LP7ZeEs7JvrNsvsSP8EofCryCFX0suFUq0BoVKJ0GhMpxVBlSDs4QBw+WpLnF9f7se6TgvsLO/XaAwtTqhQEpIgdTRApkzp2qi+Ql+7pPfvREk6rwVru9lVeB13qCmOm8F6cnxmzIq7NlkCR04tGq3sbvF1e0Sm70b8rqdG9NtpskczD7WZk6UGRoU/KppTYNl4bLpTxPHqpaHs9aJIyC1dEXDRAuvmgSZhbOohXm4HOomhhCJ0010nG4JZ90iEaeXuxenW4RxeiXLyxahAFaxg1aaVhxWq18l6xNa7LigdtYhA3TCSkUzfWLAzgo1SFWRljMPTWtbTE2a3SsxLReqSQtZwFXRLcAjRhFoJaqAuFU8nYSaNIHaIhPDE+DhNyGfG6xofER6kKgmw/vV04NEPD3waUoPElmm+9D0wA9JY2Tsj447jCHzs8j8RGXZeDamGyB+6YddiJPaSTyvHeJF3RBPe56LZzyviue0i/lB7yvOCW0AgaPXPesLntedae/rzlnvu+4z3tXuheO59WvOOc+b3xnvM3HG80w87nnVPh7PIbzowvQvCs57PxBoz0nwTxB6xyt6X3VOL77gN+l9J/Zw3HF70foWgFfULugpzzPR+y7M+7nsyQVgzpc8L2fv59tv834uq91rn/J+CcL7YUA/iacWo8s5s/hczjnvZ2EPeZ/E856Xs3Z71r8xOet9iCfmzfwSwMcFI+/ujf64l9NXlHD9y35OWwn2sxvzEZScNoUkVdjKbQpJVnKSIGVoCwMkbMM6nLCPFP7Z3ttrfnsPJoIkVqZJMZkigwJk3wPDxGQ1Jt6HdgIFzE/8LBcjT5Ig8mj3z9tYygKqlKlwEWBhbMPgcZc9wUS/hAxUBdgDcZuOyrezTYdPkGH1sh8vrePYc304exNxgAzcw4Feh6X4hfFU+BoGUnwsqZE/mS3iC6MaWHpThfbGae4yNcsTjGtiHoKR6IUT2LE8oyGdf5w0+w6Jrs8Gh+186R47lFdHHsqrZ5+mQNzM00JoPQhBNTab/WrAN3ft3M1Wxzt94dRHlAh9xICcj6jW5COqHfmICNz9/KncY8tDVL95PMT9cQ+h0UPYPPWJe4gS8bfglyOSB98GXss9FpE9IVb+Fp4ei7hPt1sXUycfVjIPW6BkrA9NfdoINasQ/qyMzoN32+SqcPYpQ2unUctocWgZ23HLWCW0jNUsm1cJZdPKDloNecJodyuUk7y5rYxpN6ZaZBRaCdHyTrRkX6LOLtZDnlCnNVXmVIxabDEEGLHYtA9RjrxaIXIUQwiYmyS5WWxyngw3m8PZvyM+ItUgPnyUxAHeEM6+KnY0HDdf6dDNk4F0OXUwpt61Swxuc+t6FZtn1IpZ42gxBX7CsJoVMiYp02kwTEdZBwGUKr4OPiXWQY7p1Qr5y81PiGDXABlI6GANdTirTjUZAGMb+cnARyXCnVPtz/PYya9m8uRXg4J+NwvDHX2zT7Mpv+Il6p+hwl0N5AnztM7enBRt9hijsLUS4a6ODHe19pawxXDu3HXfn4vDXS26oiLDXW04+wtiV1NvJ9w18NbNgC6C/w3MQ9NXDTGDr3No8Pm4wdcLDb6BLBPYWngXq97cIXPvea1N06k1TGcvBrraulHRDvVFUXFBHcXPV9yXxYpbR0zW5n3t1ZTismu+ahnFrXaouAO44tYJFVdw47od464kr2ehFbdOrF2sE2onbtOoNhR3t/WtZGLvLsX1G0hS8P25ZE1HjFNYniUD2dq+TT/Av/cjRddt+onIfSN3uHmbfuZ83KYfIG7TT9Z6m36mndv0UyDRzNeWANHEh6VSRLfpJ5tv04ffpGLgpmBGIUOB9ZVk+LbMN/0CSHAy7RCzwSkQzo7dYfdOitIkMa+2w9v81xCalEJ4M8UPUuWqe7NU3JulaPJmqaw3S3HRm6XmqHizHAVvBpSH7886dPizohvtz1Jwf/YudX9WZFjUe+X9WbKsP2O+9wuIxr+z1k5897SDuJnqTuuzvNjPu6zPwNcVO63PCmM/d3EcUXI4p9Rx38oSo1+EtfpAPKVa4CnVLjdTquI3V0pVrDulKnI/pSq6USkVSmuKOaXxEZIMEN5EMbwlqnuTItybBDR5kyLWmwRi3gSvxhSxa+hiaOsIumKyHkKBRL/wmEPOwNGtk4nEfZRcZ5njs3PvpEqjarKwcp5C1npN5sLG65RwzlbiTlU4mn+nasCr4TfgXvjFDSYHksZodw5kLIIueR612wjIXN1O1nunaoBoEEZ1O5nU7SRat+dy0V3UrpApq4x+xfcPMVLuYr8WniCkv1Pua+EJHOo7wzm94GvhDPXJRALfSRjlLteNchdulJ2ajHIXq0ydOnLiBL4p7HI7J97hZk7cpcb0bqs2daM5cQhyzvKsh1hE9jrJibvs5MS7INGWZ7sh0dYICPValBN3mnPiBIjCCncXZhQyFFhf6YRvy5QZE5Ay410me+IcaMoZJ8qMgNK7xLwy5eQBQpN2E95MUbeH1L1ZF+7NdmvyZl2sN9utw5shgb1rUMWbDdpJlzvRJxU2PBqriLvCOZeiITvnOLMHCuwhDQ3NZAhhwm0afI3Al64JXzrhPo3Da3uJS3vT2IN6kVFDbPnCON3FFC8AQZZn7Si8DhTenbEnEenlprGu2jBCWWPF2bgrRqRVaF2xn6kKltk1K3Vci5l6l85pmWjHkj/j4285l7H5dSNxACh0Jcf8usOlIQP44wxnu03BGmd7mia2p90AtqexuZBGRKGYDBEW9bIs6oZCs7K9B2Zf1sDdB98jk5FeMAhJRkyYTMDEivoUOl2xovZwFLU3XLrBAP6sbUUNMQ9D0MUgNPewIgpBEWFTJde8IdGEcz5GrXl3mXJdfFJo9S3EmxSuyDnwNXctBuAUK9pnUKGJFY13RKAnXFppAP8ThrO7XWKDvHPYHSs7kK4Bd0XsQOAM8hVI6SXEmA9fw1aNOvTFRLtYX/4Gm1+fWF94x8v6wqUpBvAXGc72mbw1zvZ0TWxPvwFsZxLKfp2I+oURdJBlUR8UmpXtA2AoE/SG4HtkBB0Eg5AIasKkGEFfQacrVtQBjqIOhkt+agD/DrXyIRW1n1LxEEZzv0BEyLABMoL2mZSEmfBAOOefxd3vmNn302GiL5zzI3ET8QBdD5BW5wFJ/g8qENIvrHkPktzvF6lbjsSXePsR7g/Q3O8P57wm5v6gHe4PsYMGIV1W7vdD14HA3M2TqDPuD5jmxOP+r6nsMQSHEznOLoXscTeUmS2DNiVXPIPOXSKZEofQSsu9RKWlexa/EqmLaBXpIaotnWy1BY/QHdCqmYoL9AFGzYVlky+cm+l4t4jq3NpFfG/LebwHTR2JLleUcES7dSLaHdscIpammZpqKJnwNQKfXxM+P3wNA2l280auAwyN1eOucG6lcToFvaS3m7gbrp2aP747xtmdCLm+1xrCdye6Ne1OhHiVJqwBogeSxgi9R0boLDrxVx5pGk07KC9EdlBuH71v+kDnkQOXL19DNl9vR7ZPyrDNWv77oYRrnO2WTcx2C3xYhmztIi0X822vHsKXpQlfFhGz3aohZ4nXc7k3OSjdN3JL9yXfMoDfSq3nCAtlOmHEnTzdcp0wSVySc7eDThgEQRLCj0aJGXWDiz3ZOe3l07TTsb+nsiW25JwEkx3rQx8UITJLH30NplVRO+FrGEhRhO7iZ5q7bEXoTjxC+6DjJ8r8nQrouuWYQ+LL1oQvWy4Dce6eTLQzax7GPe1BIzJijgaMDo5mhMIlXzJA76WcUzfOV8Y5dQmdU0jOOXVxSc69T+yc+Jlsh8R8QjzX1EW5pjmKDrCuqUefa+qh4nGepnicdwPicd587ekSOzCdCruJPXIOqkfCjqdV98NM9Q/efljJFQP4SXc2Xrs17VF2w9fk3JlcoJuzxAfFgY5au7TTzBH6jE3cgbmzT+4+Yu6ii4297mjQrr2QucPRB3+ig3rMg0JSg0LX/TjXQtazzq1XzbkxRbK+KL+XsHtSgG7LM6MY263exGq0dteclm9i7YF0oZzrtXIuAnkfPqTPLKEeSCcu1oiWcdjYRVFnUYbIkGGuE8n9gOFEnmDF3qcm9n50w3EJK1rAAWXh9hnC/bAt4Q6gDnsvu2KEYTnCqg/fIFaFvMSqeyVZhWpqv1lTO+FPVlf94dy/M6B+FIfqZ6wmFLMabPuDlwP6qRxwbs/jjw3O/pIJIiB4F2NIFb+eUQxfU5h9P7Q0LltfZLV5QPUaWYsqDBI12yFV2Mo1W6ZfdghShtZzhyQ/odG0+paXvpf9vr9V2KocEhZYh+lznFZa96gxcTN6UdXwLPYJjaFZ7BMae6hPaAyrUqbCRYCFMRCDx2+xJxgOQOCQtIMM2QPJfOhjkPDVPWhYA5lE1Kf+hPJiRZq8WJFzLxbie7EfOc5a16H5J8eLDarCVvZig6xTBZShXmxQ0out3PjNVV/8WsrbFLo0Bu10aRQRXkzRV6xGvdgQ6sUGUS82THmxIVXKVLgIsDAGMij0YrRgOADFXsw+yJA9kIwXM60HMC92L+vFwNxifoy70HnNeOFnKtm/4SaxylUX2s65N4oxj1iGxzqtYotdMD9LHQE2nF1PVrH2LV4+C8Z2cXu3cv9/g0X/jhP8+uZUbPKQVnQREQsy/0m81Ye/JbXo8BGnZ3ukpES08KG1sD5eC6VULayPG8jysgyCkqmIXKIpIpfA16TPwXVBAJi9GtXPvJfR/ENH4dcsJtiL8OlIL0Lb6FTvwZGJ0f29o/dPjE7hJy670Sf96JMBtROXc0Z5DYV1p40TnyH0Se81GcpwOqkNokJN5zALTT7cO/iCmvAF4WtPotdIOLcCE+3CDYm8ZbY3FkP8jcWY36qhN4gJptdqYnptHN8NwVevCV/9DTCaegmj2aTZaIJ/boC+xVZXhdreVicMGirnXo1JELuF5PGUTk3nqGSPw4Q04buh85M/tGNISHBGSP4YigGxhzpaMUApba+m1pxe+BqBr18Tvn5JfPM9vz7qxFytgmwH5Dz9AFEPc+55TbSLPe8+1WN3ZB/UYDj4ggH6PorpA4uG6YM6EQ3GJCiW7WG0nGhHtkPh4HsN0Mdo2VIM6iZm1WHHk6qcLOy3U2oFgcXC9GGikq24lWTjIvk9eLV6WNMZirtZbgwDFsKawKciNYHto5OtazbdPlcQmDk6dZV/tODuHHRtvecqecAgh3vA4BofzUAOdms8//3BHP7fh3Ku2SBKMIR+SpjXsKb4OAxfk2vWN1wM0EFej3neBXH7WC+hWu10fkBc7tItdY1c95O9B8cRI78fJZjLi3aaF73hvEfFvOgneBESHE+38MLUlyDDi94PdU1YlQbCV0mcQMWwVFNhtxS+Nk/VzlKJ4Ppe1TPeoMa8jbtPELxoAH8/zfb5K/qqHeHZJpHEc/dQuqmeoP5w3pOOW2mWEH3hA8QZ6V5DJk+rckMg8O5w8LgB/Dla4PKmJM6K+skmY/n8qxPNivR1KSV8106XktQevpOsaJjew7ebFQ2HE76D5kVDdF50fahCZtRHoerlj+nPwbKsa7ZI05ofdUJR6CmWmnb4n3Z4ShnfFnjy9rHjaD9WN5497Zoet1qxeFgne8poSMJpR88ZIswb4ieBnzcSn3+j5FWiSV4l8LV5Km6XuHymLZZ24AXirQpFbOo4yVb4GoFvUBM+mXYX2jo2S+RpfyeZzvPCdoib0AfrDeB/T3USdNLnAKVvbDEdUqcuK491BRBUdWnqbzBRxTsrm/djg6BXqGOvdZqO/dbB1/AbWxhHrvgFWRt3XfjxjMSnKSPxk7zCr/nxs3wET3cqoBN/CTeJpFHvXRf+5Wp3XSTZuOtiueJdF28YQ9FLfGv5KauZnfqWOJ2UBXZpssAu+BoGkptJ9OCBDvjMak2JQjV8DQPJW6b6qGVqZzg/zXGa2E2c5HXah92t7rk4d2oCylCv1ivZK73mZyevbLu16Tf2NnnlF8XVQBmstParMXEX2ivdh/ZK96K90v1Ur3SfKmUqXARYOBunEUr3adp97415X1sAmbZm01LHK55NVCrv4Tr+/BxxebiTuIKgnb5Shfjiii/6PSzGZ73xgNW431r+I05BWy6mQHJgXu9OvvHtyJpfM+R381OnDeuoiXaLvunSbT55bGIgOshnPmYJKLuVISYkTTY804/csuvjR5frwPBFW5emRZvsHQc1mvDVwNfm6R72GvGyMr9JfVkZgXGQv6gsMECvoJZvIfyaEqay0yN0u5L3x/TwDbVVfH8M//qJgxJ62cNLwEJUAtYTzt/gOEmikuhe0b0VrxshG1DulLyjxOg1E3OnV3yth3z5n7hA0nTntNyGF6s+XQoNGn5829N0u7hc15IBS0zLMEEL2/1nOjLLM44ioxyTvwND2UarzV0cwG3hwk0G4J02AXdyAecPGoA7qJyiTFNOVQZfi9drdNRruhXQlXmrXlPsfr2m2G69xmoM4Lpr9IBqG8u8NsIYVsPXCHwpmvClwNfkQa4WKk07OyjFLaVpK0feH+K/375EXWnKVZRmCZOrt8OlBPl5DSDk9mjib9GDdugH5PnfTuiBH75G4GvVhK/V9Bqn1SP/DOvx29Wc7sPsNfN4NOlUha0cTTqJo7Udcl8cpmpor3Xu/tw7vvWzH9irjcp3ErYSNTTF62MvoTW0brSG1onW0EJUDa1blTIVLgIsnD1iUQ1NsWjdKVzM0QCZGlqHpOm74mp4S+D886AS5iHfV6AJXwF8jflKhsZShol2LLOOlTIew+bXgZQyDBgHOHLsCBca++P5l6lSRjvOVxtX4XbYvwq3I5z/hLiU0cFdWh6QmA93L6lDsJf0fsffjKZKGezlpR0SBtbBKnyHnIF1uBiTs+zEZDTudmha4XWSvMJbPDrJmmsfXv7DtwjoMm6bNpCRZ11xgHGAcYBSAOepTZFyv84RdeA12xv1ASYr+SGJME196SNEZxDd4fwvib/+1217MySkfGhibnsmHKWo3CeRBX5Z9XiDD7KUx5JC40Ox+V+lL2Ggv1LB0bfnpPKYbk15TDd8TR6kOGftJD8P2GWijpcjvgJ0jtj/7hDtf3dYbwyOED5IdWOVa1rYlsPXcH/otOiQpJ4lhuSqM5q/UYafq+mBpHG+USYKU4pfYlgIAOctwgF1nacuBLfPMBgRALtmTgcacFPujfn4QQd57Tt+E2wncdd1D3sNgPHzNj7T5D6p8J/EVfLEIWDikJBSm57pjLUwYyhIVW2B8dFJVG+44FUDeAaVSvaIzinJf3SoO1yQ63LTiNM6Dv5h+yXExa0dal8EwRV/EOe7hHJ3RZW7dp2CcptSHyJ1DNF3R9GZI+V8uwVXSOGO7l6FtIi4UqyDkEgXkRV1u94d0Y1nRV2asqJuckVo2kT+RGQT+Tr7dowcnZwen5MKftcnd1+4O+Eq95ZOpDMAv+U0CdmPbsOaG9RuOH1j59nhB9LseZNOwpt0oVcrvfROdYfRY6xpDhMOgzl1CYjGbyvud9Ql3IV+VyVEtfF20fv+HAqsr3Rh6w6qo3mOw7F/3u5SWqkxFcazUKfROd/OuRfUx/Vo8nG95FIHt8Re8sqOJIVTMdStKwBkmzaQotVfHGAcYBxgHKDXAdLfLOUsK9DtEdD059fU2emHrxH4ajThq4GvWcJWm85Skol24kO0fk3FRT98TVwNOS55yIOFcYB7lqXgewboGSYjhF004mbRNrTfrt1IriLP/KqtF9HSFf6NrCQ7GdBB3iFSMH1KO2SkdRHtlBdJ6yD36yIFf2uAfgd1eCJk50DAQdRUyf0jH2QY78RHwbvg/hF1ihTDL75CpYqP+bKB+QqqnD6HypmPK2ebUDnbSS8o72HaSa0FbqtD4VgNOLCFkU9qht+kZIx82sMFvyfezfaLq7xVfFv5Awnht7knfL8d4fuFwu8ghU9vKqEnuXYSbqHdsVvYyTfOD4uF70OEv5MWvi9c8FEJ4fvdE75PKPw2guU+JXcBuEL16N5JJpQ+hYix06Fq7BRGjM8C1aDq5347cc5S2v1kpLT7OppIbffyZYXqq/GkGzl0lkfXX/n13zwFRy1uAfHLtoD4+L70fxItINDNR6akcM5yp+s7CTvdP2e5U+WcJW2xbR7TbmNvga/bCXZ0mzr1KHMJAdd3itnWLhuw2vjZypfFAaudXPzJr1BMIZ1gUS+1IOtU3Tlvo8Pq3M75P0iE1Xb3wmqvMKz22bnLqZ9Xo4E5IvGNGb+9rwD5yYyL8Z8AnXBt2Wsnrewjb2/yUZWQPmp3HC8K9LpXFOgTqkk/WZVDBnFup+4nU+8ByC/K0/cpLPWk1KQHFIxu/GdR5xzHryS+1GCnJjIH+t+BT5KfTrdDr+Cjv5fg9Jq1fnYnHNs/B1rWQXTVhIhWs06i1Yypc+3B3ZvExnufVBuavGuTMode0E2m9HHLEOStvI2aLuLC5kJmI6aPH/PUvjCLqKr1SmRDil17fomg1munBj03lQJbFux314IxQpA59lBeqi9cWCqROXW/yUJiDxkSe8nMqY+sZIUUerqkPES3+IRKh50iWSeiLh2UunSGC5vFJtFtxyS4XxwFVJHfHCVcZ7trSp2JK3VIqNRc32xjPdZD5nl0N2g7EYN9Jt4bJ+WtjAYVsxaFGsROwp+3wNcIfCma8KXA1+RBtgil1TaPVwHtrFG7CqjNxlVANYpXAeGi82sSnV9GdIifM0qTPVSXwEpNXQIr4WsYSF7zvjH9vfzb8O51fF3QEypXE3SrwrbRXo33thLXBXVLXhf05e6v3f+tP/5gpULs6rYTu1YCZXD4ccqraAQLodcFdaPXBQ1T1wWFVClT4SLAwlmnRyjdZ08wOMAeewDVrgty27dxFyf3E9cFzT9B/eHCg54iaDBceMhTBPWECyfExaY2InnuoWbR5qXuumZN+Jrha/PUXdcs7p8qPIfus4gqDfu5WzhFNxmgz1PbKsRllfidUT1K+07GIAiIQ3LhO8R3RrVzb3zYLzGfDl4y1E4lQx3hwne5fGeUQqLU5frucZf7dzh1kfdE2D+Hhlxq2+X2ObQ73DyHppg7DbOVbayOvgdyzvLsbigay7N7ohDtnEML2TmH1gWJxvP4u6l7YrsUb+tohyiIo2Md9Dk0DgXWV0wpoNw5tC7zObQ1hCSdXIHIsFobKOr7S4pHwXLVfVwP7uNCmnwcXYhjtvkBaVS1rU/T5gYAOaAf5JB+kDv1g+zUBjLyrCsOMA4wDlAKIL1pgJddRuZ9wU3gW6EJ3wr4miU07NS5GjXRTux8oYxUvIOMc9G48QfO6vdbqpuK5Oq3M1zUbID+31QXbxty1quNlQtbLHV6oiId3+7rFG73UfecjQo6ySntkJHWj2yf9Rrl9lwX5Rugf0Idm1L5GgtAiZmqk7NeO8OFv5A769Wuuo9kFOc6+Hh/NQ8nvXJx1dwpVM020gfK+5c2UmeB07qTDCo7tZ4Da3NyDqwtXJRAnfcwfYxRnuqdSAlF33mPLn59xZdjpyc+R2FqHUKB0Oc9OmiBzPmelPh5jyWL+rzHHTfgvEe3ErvFbHN4QLEoKD7v0UYmgPJZShukizwSQyRl+Pc30WOURFANhYsq5+EEba7H2rt2ql4JYFqpuXXaA88uQ0S89inxjdBA080jRI/0TqKHwrVlgbMrIGyfiKEus+okVxM9CumelJp0ipeM7QRolB7syzxGDf0gd4OwaPMNaV4lb7cM3ZibS9Jwte22s5rtdmza9OUQVHrSbUe3KLVtB/v8RGtxg6ZepQb4GoEvRRO+FAnWcUA22DED1zpeu8vUOl5DNjpey5x1vHZDbdUjujZJVfFrwueXxLdcE77lptc4LVRFkxo+cqiwxzmsClt5VThMHHEjvsAwLNnw+vm6HQ9/cOgaauic734PCw19DztoOZCqlda71Zh4Ho16e9CG12G04fVuquF1jyplKlwEWBhFN3i8z55gcIC99gAyDa+hG+lqeA2vRSeJds75J6g/XHTGUwQNhovO30CCCHwrNOFbAV/T2PNCVXZXiHdYih5TrW+QOyyhcDBWl7psqy7VTXSDov4hRHSD9poA8UoyEl8Q7eJ2g45KzCek/F2LOYre77hjaQnRDdoz7996czobex2HbUTHYTvbcWj8ZLoR98Z+Jlmf3Rv7ydxfvy/2k1mqviX2k/mOz0jsJ7NLeh9kseXZ/bg+RtlFtE0a1/eXJ+lpmwyZMhm8xrpKU8f9Kvgaga9LEz7Tl1itOzoAX4i/o9NO5O4dru/oEAfS2jXt6HCvVcR2dEyfvKT2YNsUpLdKuBygadS77m9bjjVx89/vSFBf9y9XWfcneOnczXxbZbdgnzWWI/2N+okZ4AN5B1CKMwzgLxL7eADOLiqZ2k10dDGupc1119KGu5admlxLm3xvgtLxjiTEcnUd7/ChT/xuHvBQDCf4h2aY+L+LSI12Q+EweUMEop0DHh12Dni0QaKZUAyItvoMUJBpEx3w2Gk+4JEEURC+aCd9wINDgfWVnfBtEzDEgpIQ33WXyaIY35UULvpng/vXUODsIs7mBbfGIJKqtnDRj8WLuOgtBeiEk3DBtptPw/hjNTAuNb81vPrPFFzYXUIedZDtF3eZIiRvF/H/ED1IHQp63mZmR7spr8RPP2GDUD+fwFMkMF9k2J2ybOIp053hov8QK9NOlrIEofjulFPxBD5V/wmp4oW4HUeOzhj9SddsBKE29EkH+mTnNZkARYWrqKn8llFJkFQkiVQyidIuyK1PGXn8+OhUrJ/rqg1+JV0lZ2uJMklebeFLcq+FL8l5Cx/hHCh0jlr4qDyNmyEmOGviS11FNVr4FVavHXJLsQ4KX5cmfKYjrIr9MMY67BA3khUXivthXj9ti0DtVajrd9lpEJG9AU7lkhdxj3KvHer7ya6sbuqe4n471IduKPUdkHrsLmyOh+533UP34x66V5OH5jJLw7oZ+UxDv9vXIux0c9Ws2ECxh92KwFbNd0PO4RsRvexGhINV87CdVXM/JBq/CPke6jO6/aLUrde8au6GKKxw+zGjkKHA+orJUchdi9BvTjO3E5LUeJfBoD5Qw4SPU+wpKVT3cXvk2oKc+Lg9ZLMIbomcVpe7oQdC0N3NorubyIkAyD79IAf0gxzSD7JTG8jIs644wDjAOMA4wHkCSHVdDbNPjeg9Mu83IhD4lmrCtxS+hm0c6WhtM9FundiwBCMV+1I5PbrGH9qZbeJi9F7MYdGRH14r3XC4+P8YoE9T0+1Ee46HHZ60ycBP2hhrG5W8yBj0VjI9aCNFv0dCFJdQ1RaJ4q3cWz6Kv2WAfpg69DSoYFIAJaY35C6G6aNkXP15jLg3wnT1nKLeAmHs4GO+Mg+fNCvElXNYqJx77Bwd4Go04Aql0/hFpoSzRct8PaRmdJqUjHMSpfj3xaewcUshhT9nKx+QEP6we8IX32jTY+eA+R7yhHM7K3ygGh0K9fR2h8I3bcVyhf9HEp9cRL+wQgq/PVz8vITwO90Tfrsd4bcLhT9MCr+Dd6TF+LlTISZ0OBR+Bx0T5oT/WbHwO+y5/bk9mf9xY91+hx3hdzgUficp/DvJpUKH1qDQ7SQodIeLv0hdGDQIh8tT3aFpPxa/MKifv/PQXmBnP7ZAYWq9Dpt1emmBzJnT38k167Srt5d3ur6X1el+e3mnSnt5N2mxMjap0Cmu68KgnVhfuL1eA3ndVrtqoOhvqDLDoIJflfnQ8t2y6c8wx6ruDhd/VxwBqaUrGibu4VWTILNwFt3DPDRtEGIIkTg9TMfpe8LFP5CI03e7F6fvEcbpvSwv7xEK4F520F7TisNq9ffK+oR77LigdqLJuFNcqdhj5zIXeoXaTlWR2BNaprUtfqzdtRLT3UI1uYcs4KroFuARowi0EnVC3CqeTkJNhsW1xRDhvNEepx7Ecxi3SRzkLh6CSeKeK1sfSqdbeEJ0AxJxdVb3jbg6q1eotoImHP6gQXZQP5Q5lbH3kN6t145uUYlBSHy6nFITNJ/GPhMMdGUL90PBwaBYcfvt9J7Rn+rtpT4TP8A87IccxBS3373PGQ8IFZejgwNCHg2xgwah1BnVHIL8ou6XZmZg+p529MuvTehnm3XsSfXFNgWZzimNaAxge1F3Y+x+BNEvfw6IDWgzx4AGwsE7DeCt9Be+ebefBNdFla72AWp0H2UvnZS9dKvOuJ92GXMzvtkwlGnUGPscGmO2E2MctmOMe8jLfvrJKnavgjPvFztzchln8qJcl34HVa3qhDyxFfvoACXhd/L+jlHYAegB5SPKAOEXBuFrKEimDd4PDR5VldvHjlspEQ8b5h6y22NiI2fLMGjcPlF7WEnjxaLcQ2raALQElrI94eCAuGAwIF6KD/HdzLD4s5oSwLfxgd8jTnv28KKzs2XmMKX4d1Nr0D687XaPuUUYDLqDqY2ChwOi1uO7ze28pmlwgr3cPPr5Kj5pBNEDji+aS1QQ6FaIxZZIe+nKAUaKcfXRJhV7i7EJ9QR7DJNQhH0MZCJ4knWvQcGkgp/uReOD6VNosSyNSGj6uFs0wRmJwp3DFULCd51crzvAOwhlY2k7AOMFFfVySStVuSNWKrx3G+H9aYWFJADQ6CBT3cj38g+LvfygHbHQC7d+yssP0bp9A1R3UKi6Q3YiISclGSJVd5jMTPskMsR+m6rbb6juexnpDEngFU3VVvY1JPTYv29ru0as3fR2jZ+qhpPbNQPq2zURUju4mzXBJ+dhsyZ3QW3WcA7qDEDcVLwYUjB/KbMyyi55hxW8r7jYOYSoyyAdD4bCwU+K48GwHYuhaweDlFPZQ+WPA651Cea61b9s26swqnkP5Bel1nsIHRw0dHCfQtQQS5wub/upWh5Z3u5VoLKfqH70UukIwFerCV8tfM3dci/ASeRZtZrKSLWsNbLjdEzMRDt2l32skv3/oi5VtIPZwb1lOvhzA/TXqY3Dftuq3alUhYsQ6952T5LHMuIBMiMOKexEDliDM8u8QfeY129nJdxvZ8k1ANlD7ZX1kmXwfgXWSuU9xiZv3iaF2fQ61B+2F2AQahKRgvSjajLkXpZxQw6ihMiDKINktBlWyGGBr7Wfw27m57C/tZXDirVLaw47KJPDDi4q7aJzWFva1U5cKz4IMgXrLoCphBhjeesG6haQAfpKEdN2kwkmuo3Ye3D89Rd4MDYJggccBoi8CWUjU2tBIAxws6OSInGtZZCk7GbUE8hSNsj1ByWlRCs8nBe/FX6AaIUfUjNHv3or/BDeCj+gqRV+iEz3GbdBmeswZKy866W/72P87NYPst+xTO19XQLvV+1Fa2h7+dpD3do0ZOxYHZO/tanXFLZwJzbIt5dBr9rLoHv2MujcXgbi9kLYy6CH7cVUZyPY86H+Vokv7yhYk+KdV1Xq1jTsvjUNk9bk9JKxZbPP3TY+cv8Dtx05Ofts35Gekf1jJ5/gurp1XH3fYzJfzbLt9apse92Tbe+8yXZASbZEnbRQU520kAj/btVJC8V10pJ7VFfgZJ10Lt8eN0Dvo+qkA1SdFD801OtwTZy4oJrYQ4L+VNcKc8vw2TB312+GAFBfwAwbEu5j7pG78n6Iu/tfckx8Ef+QuD2SX2QqmfJIe+QQzImIvoMB107hVXnsFF6IPIUnsYdveDexVt9jp45Ikz9MSXEval6IIg/RijwcLnloHlpEqpzUIe+xU4ekeTxEqsgee3XIIZt1SBiJyTMs2GEIFm8fkR10ml7jnNQseY+4rRw7BOqnUoM50O8Te80+Oxcs9fN4AKiiD4FaahxgZE/0VgTmQvc3Hsxp/m/p//Du8QFLcOMS0M9t2yz5oCGiX1OXzdtalvQRy5IB1RRdeVkygC9L+jQtSwZog3G40q2klyU93GWJ6XQPEKTwvF7JR1RNFCTZG/hG+nED+MdQ4Dbzy54o6NxpJVN21mzUS9k/2ZHRRS0MQ6oNJmDsRv4myuckDg46bXT+xYJq6+hRUMEB4YKiX/Y4Vw/3y/clX6AODnZBnlBnj1XmJHUwpEfsDkJ2+kjxux6Mn418HxK2dduDOND38TgE6CIMvY+qN3S7Vm8g9uD7hObmgjP0k9ktfdtDn0zpIHePwsEZ8c10IUQHAVlVHB0MhUu+I9ZBKo75FBS3B9JF1LzISNSF6mCPQx3Mc3LjSJ+dNS6dkHeSfUQh0rX2sne2Qt5HdPAm1dgMoKzlx+ZXxeo0ZMdc6ejYabtprZc+ZSo8HYksuQ/xi23/LpG5OG2W2+6xlvxhsiV/UKGIPCx0g0Nk5mLqQ+PVK0sTqczFtOVPmabKnDrRzMV0wV/EYnNeoYofIQU/YypwYCFS9rpT/vq7NFPc7NQnPpPZxL2dojRH7Gg4IX63UJnpo7L9FP8H6RMZbnWg3+axvZpO1QuHTG1zNgpelOn0GabzN1RWsUsp/wYQMHJlTYd/90pprdh0JEoXFdxlR2mDrfribofpTK/aJXOmBYtby447PLbs6FRddoQk3HiPTdMx1ss5n0GtQ5wnVnIvrCq9yZYOdjtOqcmrtQjf3kVfJodJWxzeqvixc/s8XI6V77HA0S84fSPvol2/HKu0U7LGNUDabK9S2JGwWeNyrJynGIXtlgh3ITLcob2S0l9LCfEjksQFUN3iKlsF90qX0mFbFY7dDiscIYr/vVT5o8u1O1ULcIPvERo8d7rOKpGdgqtlKMNS+aq3lOkYZZGcy87YfPIx/oZeolmDjaZZA4mhvdEB4dJDzEafsRkYI2nDOpykb/7Vr/7hU3euOTT7VN/EyNErV9nWuGd6RqemJw4bRsK7mTghXDoVZU/pMba+aTQTW54kRZ90GaMvsXuHAWObmP7vCXybOPkZ6/YwMJsApioprKqA63etJhoAAzk8Sg6XPmjM8hROqo9DagTnS+/kwPWFS8+yPEtWs/wlrPwBKIvUEuCcozM6b+8tQzfuZXUDgIppB47FT1yInBTVYofmUvb50a9sfeXHr4jNxSGiR9b4c989vKvddURfSf6XX7741wcuu47o/0vpvsP3399V6Tqi3/3l7vUXgjU/V3FpFs3JJLo3stQsK029eyML797I1NS9kcV6tsxYsLZwIxuSxsTc7JgPR5Bls8iyid6qOMA4QGcAuQnKnxpB5ONM6E6AZoCQk8CSQ50fyISv2UmILE8C6JNk9EkK+iQVfZIGp2B5lh7rnLI8yWASubK/Zl1noWQi92k8OyqiEjn0kEmxUiJXCAZiEIMERHZpVwwGYhBLCIjsejAIBmIQSwmIPQzEEjAQg1hGQGS/rF0KBnJssihcZtyIWPoSLvIyIiF+FwduWbj0K6zuletLiMut2p8Ye8n5waPEGEMtaMqIrERxeunqWUk5npWUacpKyln1KkOzkqWQNM4n0UXhZSmLbCkhljjAOECPAbQYRLlOL1QOTdCCqCiWBkTd9y/QiIGUZQ0Yo1wPXrbFAP1LJq6UQTKtD8slUjmOnymXS+XK54vpmcSS1DmizJgEERZVEK54lGE68MUVzEmQSvgeeblPBRgUOTNifcWEyQRMqKRlaOm6AlVSaHaMmlaEy2oM4CkMU4ooNS2DwrA+zITZgLwOZ8YEhPkach/GpOfsdJeGy7LF+zCZCC8NQ+EdasoMl+WJd2GWEtmnT0GRl1KCyYQKhsD0Ef6j3R7vy01z4vG+hNpRTITD8RIpc5I9C65R8LJP0PosB64bLM9y4QrA8iwPmoflWT4RcgpM5hIxuc+r2zMRdOasuV6sg5VkiooMWsYOqoRUWXUQ+MFlzMNKSnuXSUS/KoQ7y6Lz2M/hTlW4bKVEy0Glwx3INHwHsmpWtANZzbK5SiibGnZQNeQJY2o1Eg6C43SWCR1EJekglkG0rHwqw2U3UQ6iHPKEynBU5lQUmxMTfWFCYMRfIgomKnj9IggBI5fkpjiy7xCHOiy3XUqFurncdqfYzVTYCXUc31QBqSK4X0mldOWouS917yOuFUJz507XqStmTGMZ5BdlVhUKRTMpwykDq6t5WQyMoDk0p+BU5nrBqQwvOBVpKjhRovGxSz1aE0QLfcVVZxxgHKDHAOL1aOdeqIxYGSSya/nj2OyKkKCcSOX+c1sR/2KAnqFW8mUuFuVttArEi/JxgHGAC7CGrtl32ijnFi2oci4nBPyBavknUbjo+4oB/IMMUxKhYMkIQdZ6bXhZm+Vc0zYJt6T4nP01brlgjfsRj5RzyyQWaDeknPsJqlqTCYcvjHJuIlHOLSLKuWWgnGuvN5hplALsYFqlADuYZinADqZdCrADb5jKYxumADuYlinAjljTlEJ/sx9ODJ9pGtUXTXA2heBQOuufgQBwiaQSnM2ItuUqu3W6qv81W1X9IoelpER3qvpluqv634pX9V8fIBEnbkhV/5/tV/XL7M0pES1OJkKAsTSMSIZU8p1ECMFW1E0UZjyvijOeIjsZz1wB4TWPZDzmrRe8O6YMNfdy96r6S4XmXkEu5WztfCSypkHX/MsgbkxNbBpOEShhOTzo8sQXWtp/HvpphYODLhlE9UrxrMmfq1evMvHqVYam6lUmK6YMsJJ2eLjnzxTO12TBeTOIs1Xv38ezdNTn5pHOMwsCYz1cXri8hFg25LJWlCMs2+SwXMohyhw3AGAuCzAXCi1iy+XZLu/QAeXFLdg5ooxYlYUwjQ/1bxIq6Bp2+Yl7mhw15R9U9zQ5uKfJ1uRpcsjjSri55rBiyI2OO6ykl7hcjWcvXfQ+xBO6AZ7VPudZ73PxtG6A53QDnNENcMzzU37pQc+TOO15c9Yu5uOet72XLnhezPpV+6WHPK+KL53XDvFhz5vLAnBi+uf8iG6ID2gn8VHvc3F2AXgd7+ez5xZh9jmpG+CZePa5KIxFf+oUD6iLI/9cAG5Wf/456X1BX1yE2eL4IswWTy6A+Hfe+7p4YQG4sQUgGO2OccbzqdMC0MUzC0AVF1W8Mn5muRCxrN0sYMta5abLLAKd6RpOa7c6wOeLNLQzO+IR0Jxdzly1jUa/+i5nLr7LmaNplzOX3GHH24M5/QF5EsqSx6LLI6QHQPr1gwwo6BjY+rXFyY/snCNj7MDh6407T7wwPTU2PjY1c/vofdMHOo8cuHz52uzzu0YPHZmYmYMxMTo5GR14++yH20dHjm6fmBiZgYYygLzfy38/N/Ha7DO9Y4eOjo/CXf/Zp9948Qrv4QDzx9cnZx3yht0kUracqsmWU022PM++A73OMIu5zhC/plNj08T9i6Zp4oj2yPMO7xfCtSd/C2Ddrn3Ox72fqc16fl2jXXHeHtcbxwDjewmLpPJ/0vNzPuN5MXu/002/rZxahEX1E/FEMZ4oeiPgT8S9rHO98f6W1pT2OV9ahOXqGe+nYYtyk3ox9g7oN0Dvd7rFg9WiCFbx/ot45eXNW3nRHwm0n9xYAIs/7XLR3ji+AGr6j8R9jhd1eyLucxaHXLzvc5SyRePbnuyXLU0Xdsj3xxgQ2S9bgj35PLb9JzKM072Qr3rfiXL3Qj7evZCnqXshn2wlwu88zGdFXQCFhKArYNEVENpTAKUU71Mj+tTyIWkMH8HTJAVNyCdEA0AG9INMRr8dzJF2shrDferSTsalHdAk7WSWVwFU2rmQNNzn7kO/s+zcZm7RajPJ7tlMsm2biYw7qk29ReUxuwBP6wZ4RjfAE7oBHtcNcEw3QDxVtg3xQc9Petr7cz6rncRZ7RAveV8ZT3heFyc9T+E571vLYlScU57XRPwUmmfmrF0qJxeAsZyPu5y4y/FIsviw9/OcBSCXR+IG6EVBT8QNcHHIRXtpQ3vhYG5jg6ilyVw0fYotTOFlugK1SlmnepmuAC/T5Wsq0xWQvLZwoxCSxsihMDruGIaskEVWSAi2UOxYbUO8qBviCd0Ax3QDPKUb4KR2qVzwPBMnvUsh8Hle1218eeYdF6Fddc7F3WLcLXrDLZ7yvFSmF4CxXPK+h/C+PesPBd6P+drlfDwe/OJz9gSJ04svgXib5ynU77TfoRviae8nTQsgmMbN2YNT9n76sChXptoVZ2rx2Qq+D/Jmrgzh35LyUCAgz1Yg2BRPlOTB1wh8OZrw5UjiC2jCF4CvoVdw5jJXcPqjMLvYYxuRJ5ztpEK1HZ1M9e2kQnw7qUDTdhJHX+GpEivaIjW0GRhazvezi+C8LWIohs8QkEHy+8ZFEBj7feNguOK/WH0qjukFgrSYnUdxjH2R7wNX/AdHed64CVfIwXVWVhQRGlmsJp0sdY0sxjWySJNGFvNUw2CphRtBSBojv6CM2rDogoSLCQpVIg4wDjAO0F2AQnfq+3L+vdOBp/be39KQeccvgnnXLmz9wmPntzasYCML7k6Drh+FDOLutFiTOw2SEcrCjRJIGiOAkui4fRiyEhZZCSHREgn/rAwy8myv/Zjr56iC5NBEdmiJ5NBsdmip5ND17NAyNfVJZiGUC5BnRn+wQ5dGh+a3Lnm58jvrZ5YXbTjSdfzid/qeP1vwZNMPsoM/m771+H+8coQdWiHAmmhgtahuelTwQ9G0q3IdplOVz0VTRbNipcd++jhJYmW48jkD+EYrAQmEJ/GpSWOFuifx4Z4kQZMn8bGWmIB6kkRIGmOlidFx6AHRRBZZImH2ieLigW2Il3RDPKcb4HHdAMe0M/Eh3RAndQM8oxvg6cUn5nPeN2ftJE7rBnhCOxMveF5xTi6AOHDe81yc9H4cuLgABH1x8cWqMe+L5aT35/yIbogPaCfx0XgO4UUP4UbMt264+WI/M5mHYL2WwTz0QyAIoX6WUD9BqA++Zv3SJsCXyP/SZhKx2A64fqdVAF9sJ2labAdYdiahi+1kSBrD6mTIWHnpgbW9LRr1fsPSvxx5v53/fiBB/RuWy1W+YZnAWEmChJUkkHymrCSBrTeB1yzPwLjEZ3pGp6YnDjPkVsd+pmLkVrPkVhPkpsLXCHwJmvAlwNcwkGitLwL3EKfSVx2u/Ph1rzQ+fiVcegUDXWPHaGrZQTWQKoJttVYx18R8k6wPw5kJqEixIqrViagW+iMLojqdiOpgwLMgqteJqN4UPC3BrAFIlx/MGolg1uT6HlQTHswaNQWzJlbnG9Fg1gxJY1jdHB2H7io2s8iaCdm5CdAysyZCzs2uy7kZl3OTJjlzONWEynk5JI3h4vLouLdgyJazyJYTYlkOc13tIBscS3Q5y58IZmarawVkr+VZS3RUr/XJyuiTvXzdWWLVnSVwLpFgWHssApZ9hyGzAVJsDWtN0BXIu40mQhyNpteYmJ4VrvyRsXv3fSuxlTHuWJ4sQ+25KvYkArf6DmqiqZommgpfI/Bla8KXDV/DQD7D67pLi0INcQTSFF6W6thsDqBmw3GyK1RhKzvZFYStLscdMCRswzqcsBPv+6NDp8vf+ieYFFawgl0hzEhb2EHgK+wME1eqMfE+s8NIhK7K9MTPcjHyJAkijziimrexlLWoUqbCRYCFMRDwNGhPNByQhuXoAgisUjvIFHsgn+qbGDl6BUsKCNeWp8m15Um60hxN+HJMye0NSRny2JQBnaZSavAl+dSgiUoNwAIgoCknD5hyTSvbl6t25zDMxdjeAklg8jE0qkqwfbnB9l/Ls73Z5MUcRscWNPVcQky12fpsVXTUfdYnqx0krCui7KlrlmfPckgxenykmTk+0hDLA9kspzlcszWaHi5byUokMrSfsNgGY3wrYyyrJXziatZYVsv5xNUUvhxN+HIk8TVpwtckiS+gCV8AvsZYXaua1a2x6ska1OrWEs5nnSPn02rH+ayGlN0YNqxm2YA5n/UOnE+rHefTBCnGFC/ieq5vZPBcCOt9VoeXGf2wy0JiuK2xP+bGOMCF22fM8jwR9prQMsS9bCQwfvoNmt9NWWijJgttJFRkNbGebHW9aNeKrxlXayratZK8YswMkMbwETxF+/nXsOjWEKJZA5VCO8gmzzmiXlcckUrZzjVHNOmY2UuMBSPPUuKOYiE6iqB+q14RdxTz7ijsZAB70bVgF4j/tlzQAN8FPW7AvULMpsV46285YFaGl72H1YbV+jwZuyhZKeHJVrK6vVLOk61EBZTgeJ42PNlq3JOt1OTJVpO8snCjFZLG8LFVIuXhOM5WQjSt0CC0g+QUflapsRWPfEsI3q1E/V8v6//se7JVdjxZC6QYsy9lfzPnKD7umNmUo1hFlU4bNZVOG+FrWPUqwfE2kQ1HsRJ3FM2aHMVKklf4+nUly8dVEinPKhbdKkI0qyRSHvsgWxxvsOGBZQnBu2bUvfSy7sW+o2ix4yhWQIrJPQ0jgcD2ChIcs9fG9S0tclvQTkymhd6Chk3B36iLdAW3jU51T983Pnb/XaMzk9sP7+8emZgaGxmPdPpe4Xf4tmReQVpz5x5YeoWNQUmWVxUM35gF+2H1Fqji8oYI9niJjG+VQhazImYqVoirTBkWtrmxmtncADn5k7uPmCNZbNj1yqF8qmKQ2UMt2lsVlnEGxBEGYitMORCIawmI9zEQ18BUBWXlWoaVa1BWQogEK9eTjQllDKGgyr8eg7mBmPr9DMT1YCAGcSMBcT8DcQMYiDNzI8PMDSgzIUSCmZsIMkcZMjeCgRjEmwiIb2UggjTyJgzizQTEAwzEm8BAnJU3M6y8CWUlhEiw8haCzIMMmTeDgcxDoM8FmtpUCuBreDh23gZuot2C6BadiAxgQ0y3+a3AP/O7zVcRGchm15P2zXgGskpTBrKZTHkt3NgCSWMYvQXGeATdFhbdFkJ2WyRyBfsgb0WXaMY2YBXahroZOSrTHMsq2FXu5nBNowGaPTq4GWqt/HQ3x1Aig7aS1z1uNnGOIXpruCrXON/zbp6BgeFWEwOw1/BNbAthYltdN7GtuIlt0WRiW0kFtXBjGySNYfU2mPsh6Lax6LYR9rBNIoe0D3KzhIkt021iuQbomoVjYo06TGwD38Q2ECa2xXUT24Kb2AZNJsaR2AbUxLZC0hhWb4UrAnmL3krYw1aJlYV9kDImthFDu86Oia0LV//aAH0ztZC6RWFxtk5oYhtIEzOt31iiN4Srtkqa2HrGxADsm/gmtp4wsQ2um9gG3MTWazIxztJ3PWpiN0HSGFaDpxsVloc3EfYAQG7SD3KdhInt1m1i/2SADi0cExuQNzF8SloXnkRRpkiBdesJTSmCr1EL3SIJPUKPcK4X6dEBjkjWh6v/3gB9P810orrQqKm60Cgn5KcdOrEkdQ+63v1i/3qSV0zKRukUqOfJu+sNhGAWAkDjZzkRfJ3Xi9ZDdcUTaeeINrjk8fDjcUNWNBt1otkY22AUuzn0fsBNIjd3kOPmNoWr/9wAfYn1H5vUTJhJqTeje7FboOLgC40NxDqfEf52PD+S2KvdZLSaX5Lfq10HZ+SeY/bHHbOHHHN8CUMsYTaSSxjwtERha28j6T6BNWoHebNjmWpzisYahHGJRvxQdnob7DSomJyedcm/Ab4XZdRT/a1rNjGvwn3eSHUA3VDc8GTv9H1cEtbjg9Y9uWt6nEvaUmqLuFiTyygm4hhVWtyopmCJ6k5jo/ulxY0qpcVNkDSGj5ugsOU32jcRotkEVQnrfvda3F7nXtwGX2vRrY6UiDYQaG9ydsNmzIMT9Rzf7HO3jY/c/8BtR07OfmzOV0yN9d4/Mj4yMffzcf7SZiNfiW4Cf745UcF/GKS062qDMSCG6DYYeSmB8hfZscKuLzaGq75rrC++wnlhbbjqfxkvfJUINOuNt/432smd4HgBY8NeN+H2ulaTvXJEspanwX98x6H7RvfvH92/Y3pibjW0f/97EWXiic/UE2f8XAPVPVGh+24trtcmTLjEV+MSb4YDom/9I/HWavCWQltiEgTGO+tT9X1j0fgHVJ/8Kk198qYOZgLfCk34VsDXFPryV7led1zlfl/+KpW+/NWQNIaPq4WrUcUzogsBoPGzgugOc14+Mx1QmKfOO8oYnCNqRuuOq3WiAVffOD13am+Nu4oo/K0gCn/NROGPOTd2W+xni5NbNj5IrI+dHrJYGOxb6eD8S5x9o7fOG/sUT8W1oieelhAH7lexaTjOvnUE+9ZD9imzaKWdqn0LnJHptNCfxg4L3TU6MzAyPrZ/7rUjh3tGj02PTk5dQ8/8NKNPVqBPVqJPVl2znCDi/gt8VqDV/MZVFHIL8oWDrqskRoaBeO53Qw9vt2jK/TjJTgua+0kf3i7Vf9K6yY3z4Dfm8HYL622wkve8H95ughRbnhm3OjOXTS2L/WSu0ayCwKVudk7GRK14PWiyCTOOr4b7ddrqe1n1qHEYr6ml5HJV2MruhHPDKXTrmKtZLnmd8rueu/zBRz9Xi34ekb4PXr5/KJmopSq6xZvNhpHIRvbIEz/LxciTJE4Ww7tOeYUqZSpcBFjwu//32RMMB6DYKdMgmYuKm6GJWS21MvazlnkIvrOC9qBxvixTQ8yvEb5msZgawoBrXc8HanEjrdGUD9SSvMKDRS15M2ihJo/eBLVCO8hljmXaxHIIyweaCS1bjuYDKxzkA7V28oFKSHHc+DxkfI2k8YGn6AUpjSy6RjnRNOgHWelYpo0shzDjayK0rBk1vuU30Pia8O2cGmY7B4yr5uS2NeHqy0Ym/qdUvK2jPqBWT/kD9AtytUj7pqHovC/I1Yar32MkV9M0XuvDWjgz68M6CYrr7VBcH67+ffE37+qv9+0gUHvR3LTWMBUjO1UylD83WDmAutgkBQuvEWbx3E+WAUWionKDgresj23GYsyrcY959ULmNRAk+xQ43iDr+9Gjs8tYoLVi5tXfSM2rtaN5Dbx5AvYwzAOsrWKfVpoUyfq0GjoWecbXxRiPDKoiT13VwQmxrqgqXP0n4NSV1QVWmWIwMeEqcsLLQERBZlHJTj3dqnPgCXTbkQ+NrVM4urdOqBu38M77PYenu6AN6hbHbVxeOkKA7+VsUs90bpLay5HvAGpGVaQZ0ik8N7KeBG2j7cynMImNlF5tMM0DbzxboXokxmheR47EfANkKJjL3+jQ5WfhLn+T0OXfRDa72jLr9eSx0w1kN8QmQgPXgwOadk7jbuCpJ4CAKSgZGZrhzHhdi9U/BJFB3gbWa7eBdW7ZgNF5e4BvAz+fBxvInHcb2EzaAEfLN0NR0DaAHWO36brXgRPymo6xyxjOZlnDWc+9Q6b6t2LD2Uz2gcvfVLJZ0nC2UJfZoIazRRQ8eIazJVwTkDCcze4Zzhah4dDXKiGDtvGuWaGCxzZZw9ninuFstHWL0VbScDajHJI1nK0cvdkWrikSG842O5LbzruDijCczTAZtj7cJmE42xHD2UoZzvZwzVIJw9nmnuFsFxrObSwntwvZv4MddBvkCWMaO0xugjCc7Qr+VcpwNoObxTRd/yVjOFtlDYd/AVhNi9hwOCa9yqHLIw1nG/Nwq4ThbEMMZwtlOHOeY52E4Wx1z3C2CQ2H64JE7OdaG+AJYxq3yRrONvcMJ5URPNgpy8fwJrB4qb7tfPgaBhJ8bM/YnTHalFg1SrguWKZ241NTkl1WHiUSO5N+VdjKO5N+Kzl+SBm6a+mX7OuZqDzx0jfPTY9iIvCzUvULtT6JHZRP9PUE1Jh4F+ofktC+Hj/a1xOg+nqSVClT4SLAwliHweMue4JhmnASoT1EzDvydiDGSa52Jj8DQpp1jC9mhtHXwzV7oq6k5h4r3w1U0TfGkDeUz4Ygu/6p1gGJsQEmzGmxF0x/T8ciQ+TPGRz2GLBSGfZkhGsOWgSQEhsWVQQr7hQ+7jTr5NIw24wCtA5IBzoTkcgI41UMBqh1QjzTMzo1PXEY0SpULhYrTkHkkioQfBpHLgasZEYuaeGaKcwwUqxySY29wsWdYp1cikAujJamsnI5FOUnIp4ESZf/yfUrbs4cqn+Q/VxSFKUmRJl/9dmu7/370Xoxomjqd5ANdnbdgY9wqvscxyBOFEuGBxkk2oQsM00isowUNeJ+q55lpOCZRJKm/qcUNmAlEUlBqhra/wInyJ/tO9Izsn/s5BMw5gFJg1kDdECQWH6RguYXqca+2NcdJ6D/5Vg7/xNNYY0r2Gp+B5NTMrKAM2UQbO49F/avGcCvUisIv2H1lneSoamiHVEp5utwkuFPbErXr90xzyYAJ4YMSyXX9IkQGMuP1HDN+w2/9jCKAmF2Ms3sOeD/TdyAlEZaHDIonR2UBumyCg0YTjpzNxKYRqrobqRUVK4J+KC01y9UMtw6GI0OeT3x4NKfJk1cCsTEiTMAOqqSDJsT0VV6okkAhgHHoqbTdWkSGo2YfoUAlIvlmXF4Y496Z4HfWIedlu+hNNmgxtQB1YMksx4kmtbi2KCAeVASwcEknfmOaZVL2AM2pQRStZOttCfopD2BkGyiTkQGsLsdh90yK6E+Nux+QTXs+ugwMxd2v2QA/6JU2EXzs2iQjBB9DyQCi19sZE2JuTEsLvHiqjEIAmKmO7dK+zsQVTH/026w5CvodMWRN5VDQEq45mcG8K8x/E4xOTQ8VFIhjen4To0FOC5HvmUQ9HUKZyLLLvBaFMS3UabuA++4ECiJbDDRXjbIsXVAGIEvyfpxN5gkXC9GW/Mc0M+YFslzrK+k2U+F0iDZBCdMeU06pN5G0pVCxpNU0mOrZD0+NOvx8bKeL1AmRyaKmF6mkFNJU1jOJqNTMfE15poc1lfe8Y+//fq7Tpf8zPVCzuYPnHgkY/0LH3cd0fPpX73t//lAyr0qFSOrPgSgf8H0EGwswfD6BpK93Dhbm+i4MLOE+EJ5CjWRRNFErIvbCPxe/kzKozpYm0y5wQTK1nyqS1qSqNRwbYbEBnCyww1gP74BnIqV+YELYSw+1eFyOsD6nnTob+X31wLCrCuZrGYEIFqu0hRTH3dJIEODj/S2pg08vGi711DatY4z9WQ0yWGWmKbwwugMmKLlWRqReKXjLkpipWzsWNauI1bKhDdJoIzeR+e0mGUGvGqZ7axKpZEKJ63KycRisp1MdlNiqizcAUli1pC16K23AcT1JlGuNxCu3W2AZr/nlkSpRkDCWQUIZyUqWjC1J3yPJNn1yzqT8T2SgKY9kmS1PZIUVRtDV/GUiGIbK5/qPjI5Orb/yOE13aMTh6anRq5fKnYVyXOhBfsptUqgl36kO6KsN4m03gAZiOjFagq2gyGVsqFGCpnPi8A9hpkepD24vJiThQkM17cCognxpNEVEPmMSZxmZfBOHxJUghCQgS8a081LanJqUlHSaf6ahEfJNGGUzOCloiLGZrKDMkgTy4QSsB9c00jzDEiG14MKQSkJXb2bu8WMIOxwrXtL3buDZV86luH6ojrJX/a+ZS+8pVNpUW2pXsEsQFS9YrY7ImgGVVoekp2FNmfhPGlewjm+0OBEH6Oq3qVQkEoh8iw3AWKLK+etLTbSNqK1Jdm91pZkVM6pkDSGi6lCsaSS8XFBAnxOJuN3vtVnWq3M08ZrMmEMzhElxxaHjDfRiCYlVoPBNtljq9P3qxYG/YLC4H83QP83zguJ4doPGC/8EetgEtRsPBWtPiwhKjwBosLDqFoGoR2ZkOmWZ1mxjTjlmlGC1L0NBBt9C5eNyszy2bmNG+4ZCXbacUMAJHBN4bOGiP5aYb2W4LBK7aebvhhdSVPTlXRW6piuZBC6kknoShahK9mEyeXAKSvrUZqS0f21Qjj1o2sV85a64ZJdabCWX1slgMYMvBAUUMijDYghqghD9Sg5XXIEtC45EtxbciTYXnIAIelaI4iF7aF1jHaAVNUiQdy0XfuP6ElJtGmbyK0SwrU/MEB/30nvWALRzRpS8BM+oXNJ5pWqAVLCvSTbaxVAOGtY1Qi/WCtz9YzTTbMAXg5MFpYDU+xUg1N5qg94Qi3ukgTtpDZ0i+qUTgBWs0DCn0KwUt7wVg5WAfeDVUAlWCWb7IZdCYuDVTKp8fjiuisOUANAh7GvLt927Bvhxr66oAG6yK3Y1/4mj333cWNf3bJ5iH3Jb6rYJxHG5gwgvj8TJSy+PxPfn5GXc3x/Jr4/E9+fiYSRXtv7M/dxi9J1hw3QA9z9mboY7vvj+zMa9md4bIzvz3hgf6bumCGic/H9mTfX/gwuUcf7M3Mu2WGL19VA9ju+6rv/r5ycm0qSWBAGeOemkmLRh9ddXvdOx6uHJcS5qWTHt7bhSc0SogaVQKwPqJwykfCvNg6DGB2hdT9WOAxCdl8HTJ6Was2e1+7ryLzuxXTTx6uOoHVXQKmuPsu3vzTx7H/lfuSfvXh4se7ZN8vhxbo/M9zmRzxzeLHuj+OHF5l80EOHF+v+h1cOL9a9HD+8qB6v4ocXeaK5wYcX616OxjML95TvUuRqUdKTt48dh1rkj8E3CTIl9oKFkFTVCMclhLquJimGir1QtO5HfIDMTTui20HT0btSU7ErS9NVIaVYICXbhpSK3mKbrE4UBgrpvpK4R7XuFRtnbut+qvnMbb3fAP1q/Mxt/MytRUTxM7dM2LkhZ27rjWhXXxE/cxs/c2tNk0XJ3eI7cztnJ26dua376f8FbCXRZqf1BQA=",
6188
- "debug_symbols": "tf3djuY8cqaNnktve0Nk/NKnMhgYHk/PoIFGe9C2F7Bg+Ny/R0FG3KwsJ0uVT747nVfXmxmXRClCEkWR//mn//3n//Uf//ef/vK3//Ov//anf/wf//mn//X3v/z1r3/5v//013/9l3/+97/8699e//qff7ru/3H70z/SP/zJ/U//KK8fI36Ma/5o80efP2j+4PlD5g+dP2z+mFHGjNKua/1s62dfP2n95PVT1k9dP2399PVzxWsrXlvx2orXVry24rUVr614bcVrK15b8fqK11e8vuL1Fa+veH3F6yteX/H6itdXPFrxaMWjFY9WPFrxaMWjFY9WPFrxaMXjFY9XPF7xeMXjFY9XPF7xeMXjFY9XPHnFs/tnWz/7+knr5yteu26QBE14hWx0wytmi18eC/RKaAk9gRLuyH6DJGiCJXjCWGBXQkvoCZSQkS0j2x153GAJnnBHvlvCr4SW8IrcAyiBEyRBEyzBE8aCO3UmtISMPDLyyMh3EvW7fe40mmAJnjAm9DubJrSEnkAJnCAJmmAJnpCRW0ZuGbll5JaRW0ZuGbll5JaRW0ZuGbln5DvF+rihJ1ACJ0iCJliCJ4wFd65NyMiUkSkjU0amjEwZmTIyZWTKyJyROSNzRuaMzBmZMzJnZM7InJE5I0tGlowsGVkysmRkyciSkSUjS0aWjKwZWTOyZmTNyJqRNSNrRtaMrBlZM7JlZMvIlpEtI1tGtoxsGdkysmVky8ieke8cpH5DT6AETpAETbAETxgL7hyckJFHRh4Z+c5BkhskQRNekfm6wRPGBLpzcEJL6AmUwAmSoAmW4AkZua26Qa0l9ARK4ARJ0ARL8IRVkahn5J6Re0a+c5DpBk6QBE2wBE8YC+4cnNASekJGpoxMGZky8p2DzDd4wlhw5+CEltATKIETJEETMjJnZM7Idw6y3dASesJ9WW03cIIkaIIleMJYcOfghJbQEzKyZmTNyJqRNSNrRtaMbBnZMrJlZMvIlpEtI1tGtoxsGdkysmdkz8iekT0je0b2jOwZ2TOyZ2TPyCMjj4w8MvLIyCMjj4w8MvLIyCMjjxWZryuhJfQESuAESdAES/CEjNwycsvILSO3jNwycsvILSO3jNwycsvIPSP3jNwzcs/IPSP3jNwzcs/IPSP3jEwZmTIyZWTKyJSRKSNTRqaMTBmZMjJnZM7InJE5I3NG5ozMGZkzMmdkzsiSkSUjS0bOHOTMQc4c5MhBusESPGEsiBwMaAk9gRI4QRIysmZkzciakS0jW0a2jGwZ2TKyZWTLyJaRLSNbRvaM7BnZM7JnZM/InpE9I3tG9ozsGXlk5JGRR0YeGXlk5JGRR0YeGXlk5LEiy3UltISeQAmcIAmaYAmekJFbRm4ZuWXklpFbRm4ZuWXklpFbRm4ZuWfknpF7Ru4ZuWfknpF7Ru4ZuWfknpEpI1NGpoxMGZkyMmVkysiUkSkjU0bmjMwZmTMyZ2TOyJyROSNzRuaMzBlZMrJkZMnIkpElI0tGzhyUzEHJHJTMQckclMxByRyUzEHJHJTMQckclMxByRyUzEHJHJTMQckclMxByRyUzEHJHJTMQckclMxByRyUzEHJHJTIQb+BEyRBEyzBE8aCyMGAltATMvLIyCMjj4w8MvLIyGNF1utKaAk9gRI4QRI0wRJekfW6YSy4c3BCS+gJlMAJkqAJlpCRW0buGfnOQaUbegIlcIIkaIIleMJYcOfghIxMGZkyMmVkysiUkSkjU0amjMwZmTMyZ2TOyJyROSNzRuaMzBmZM7JkZMnIkpElI0tGlowsGVkysmRkyciakTUja0bWjKwZWTOyZmTNyJqRNSNbRraMbBnZMrJlZMvIlpEtI1tGtozsGdkzsmdkz8iekT0je0b2jOwZ2TPyyMgjI4+MPDLyyMgjI4+MPDLyyMhjRbbrSmgJPYESOEESNMESPCEjt4zcMnLLyC0jt4zcMnLLyC0jt4zcMnLPyJmDljlomYOWOWiZg5Y5aJmDljlomYOWOWiZg5Y5aJmDljlomYOWOWiZg5Y5aJmDljlomYOWOWiZg5Y5aJmDljlomYOWOWiZg5Y5aJmDljlomYOWOWiZg5Y5aJmDljlomYOWOWiZg5Y5aJmDljlomYOWOWiZg5Y5aJmDljlomYOWOWiZg5Y5aJmDljlomYOWOWiZg5Y5aJmDljlomYOWOWiZg5Y5aJmDFjmoN4wFkYMBLaEnUAInSIImWEJGHiuyX1fCHbnd0BMogRMkQRMswRPGgsjBgIzcMnLLyC0jt4zcMnLLyC0jt4zcM3LPyD0j94zcM3LPyD0j94zcM3LPyJSRKSNTRqaMTBmZMjJlZMrIlJEpI3NG5ozMGZkzMmdkzsickTkjc0bmjCwZWTKyZGTJyJKRJSNLRpaMLBlZMrJmZM3ImpE1I2tG1oysGVkzsmZkzciWkS0jW0a2jGwZ2TKyZWTLyJaRLSN7RvaM7BnZM7JnZM/InpE9I3tG9ow8MvLIyCMjRw7aDZwgCXfkcYMleMKYMCIHA1pCT6AETpAETbAET8jILSO3jNwycsvILSO3jNwycsvILSO3jNwzcs/IPSP3jNwzcs/IPSP3jNwzcs/IlJHvHLTrhp5ACa/I1m6QBE14RTa6wRPGgjsHjW9oCT2BEjhBEjTBEjxhLJCMLBlZMrJkZMnIkpElI0tGlowsGVkzsmZkzciakTUja0bWjKwZWTOyZmTLyJaRLSNbRraMbBnZMrJlZMvIlpE9I3tG9ozsGdkzsmdkz8iekT0je0YeGXlk5JGRR0YeGXlk5JGRR0YeGfnOQdN4234VtaI7+AiiIi6SIi2yIi8aSXc6LmpF5WjlaOVo5WjlaOVo5Wjl6OXo5ejl6OXo5ejl6OXo5ejl6OWgclA5qBxUDioHlYPKQeWgclA5uBxcDi4Hl4PLweXgcnA5uBxcDimHlEPKIeWQckg5pBxSDimHlEPLoeXQcmg5tBxaDi2HlkPLoeWwclg5rBxWDiuHlcPKYeWwclg5vBxeDi+Hl8PL4eXwcng5vBxejlGOUY5RjlGOUY5RjlGOUY5RjpGOGFazqBX1IiriIinSIivyonJUnrfK81Z53irPW+V5qzxvleet8rxVnrfK81Z53irPW+V5qzxvleet8rxVnrfK81Z53irPW+V5qzxvleet8rxVnrfK81Z53irPW+V5qzxvleet8rxVnrfK81Z53irPW+V5qzxvleet8rxVnrfK81Z53irPW+V5qzxvleet8rxVnrfK81Z53irPW+V5qzxvleet8rxVnrfK81Z53irPW+V5qzxvleet8rxVnrfK81Z53irPW+V5qzxvleet8rxVnrfK81Z53irPW+V5qzxvleet8rxVnrfK81Z53irPW+V5qzxvleet8rxVnrfK81553ivPe+V5rzzvlee98rxXnvfK81553ivPe+V5rzzvlee98rxXnvfK81553ivPe+V5rzzvlee98rxXnvfK81553ivPe+V5rzzvlee98rxXnvfK81553ivPe+V5rzzvlee98rxXnvfK81553ivPe+V5rzzvlee98rxXnvfK81553ivPe+V5rzzvlee98rxXnvfK81553ivPe+V5rzzvlee98rxXnvfK81553ivPe+V5rzzvlee98jyGDXkPakW9iIq4SIq0yIq8aCR5ObwcXg4vh5fDy+Hl8HJ4ObwcoxyjHKMcoxyjHHeeOwVpkRV50VgUg4oWtaJeREVcJEVaZEVeVI5WjlaOVo5WjlaOVo5WjlaOVo5Wjl6OXo5ejl6OXo5ejl6OXo5ejl4OKgeVg8pB5aByUDmoHFQOKgeVg8vB5eBycDm4HFwOLgeXg8vB5ZBySDmkHFIOKYeUQ8oh5ZBySDm0HFoOLYeWQ8uh5dByaDm0HFqOyPM5hrkV9aLb4UFcJEVaZEVeNJIizye1ol5UDi+Hl8PL4eXwcng5RjlGOUY5RjlGOUY5RjlGOUY5Rjpi4NKiVtSLqIiLpEiLrMiLytHK0crRytHK0crRytHK0crRytHK0cvRy9HL0cvRy9HL0cvRy9HL0ctB5aByUDmoHFQOKgeVg8pB5aBycDm4HFwOLgeXg8vB5eBycDm4HFIOKYeUQ8oh5ZBySDmkHFIOKYeWQ8uh5dByaDm0HFoOLYeWQ8th5bByWDkqz7nynCvPufKcK8+58pwrz7nynCvPufKcK8+58pwrz7nynCvPufKcK8+58pwrz7nynCvPufKcK8+58pwrz7nynCvPpfJcKs+l8lwqz6XyXCrPpfJcKs+l8lwqz6XyXCrPpfJcKs+l8lwqz6XyXCrPpfJcKs+l8lwqz6XyXCrPpfJcKs+l8lwqz6XyXCrPpfJcKs+l8lwqz6XyXCrPpfJcKs+l8lwqz6XyXCrPpfJcKs+l8lwqz6XyXCrPpfJcKs+l8lwqz6XyXCrPpfJcKs+l8lwqz6XyXCrPpfJcKs+l8lwqz6XyXCrPpfJcKs+l8lwqz6XyXCrPpfJcKs+l8lwqz6XyXCrPpfJcKs+l8lwqz6XyXCrPpfJcKs+l8lwqz6XyXCrPpfJcKs+l8lwqz6XyXCrPpfJcKs+l8lwqz7XyXCvPtfJcK8+18lwrz7XyXCvPtfJcK8+18lwrz7XyXCvPtfJcK8+18lwrz7XyXCvPtfJcK8+18lwrz7XyXCvPtfJcK8+18lwrz7XyXCvPtfJcK8+18lwrz7XyXCvPtfJcK8+18lwrz7XyXCvPtfJcK8+18lwrz7XyXCvPtfJcK8+18lwrz7XyXCvPtfJcK8+18lwrz7XyXCvPtfJcK8+18lwrz7XyXCvPtfJcK89jGNdoQa2oF1ERF0mRFlmRF40kL4eXw8vh5fByeDm8HF4OL4eXY5RjlGOU487zwUFcJEW3Q4OsyIvGohjktagV9SIq4iIp0iIr8qJytHK0crRytHK0crRytHK0crRytHL0cvRy9HL0cvRy9HL0cvRy9HL0clA5qBxUDioHlYPKQeWgclA5qBxcDi4Hl4PLweXgcnA5uBxcDi6HlEPKIeWQckg5pBxSDimHlEPKoeXQcmg5tBxaDi2HlkPLoeXQclg5rBxWDiuHlcPKYeWwclg5rBxeDi+Hl8PL4eXwcng5Is8tyItGUuT5pFbUi6iIi6RIi8oxyjHSEQPJFrWiXkRFXCRFWmRFXlSOVo5WjlaOVo5WjlaOVo5WjlaOVo5ejl6OXo5ejl6OXo5ejl6OXo5eDioHlYPKQeWgclA5qBxUDioHlYPLweXgcnA5uBxcDi4HlyPyfASNpMjzSe3+1L0HdiABGShABRrQgaMwvpRfCJvCprApbAqbwqawKWwKm8FmsBlsBpvBZrAZbAabwWawOWwOm8PmsDlsDpvD5rA5bA7bgG3ANmAbsA3YBmwDtgHbgG2ULUa3JTZgBxKQgQJUoAEdCFuDrcHWYGuwNdgabA22BluDrcHWYeuwddg6bB22DluHrcPWYeuwEWwEG8FGsBFsBBvBRrARbAQbw8awMWwMG8PGsDFsDBvDxrAJbKglA7VkoJYM1JKBWjJQSwZqyUAtGaglA7VkoJYM1JKBWjJQSwZqyUAtGaglA7VkoJYM1JKBWjJQSwZqyUAtGaglA7VkoJYM1JKBWjJQSwZqyUAtGaglA7VkoJYM1JKBWjJQSwZqyUAtGaglA7VkoJYM1JKBWjJQSwZqyUAtGVVL+lW1pF9VS/pVtaRfVUv6VbWkX1VL+lW1pF9VS/pVtaRfF2wNtgZbg63B1mBrsDXYGmwNtgZbh63D1mHrsHXYOmwdtg5bh63DRrARbAQbwUawEWwEG8FGsBFsDBvDxrAxbAwbw8awMWwMG8MmsAlsApvAJrAJbAKbwCawCWwKm8KmsClsCpvCprApbAqbwmawGWwGm8FmsBlsBpvBZrAZbA6bw+awOWwOm8PmsDlsDpvDNmAbsA3YBmwDtgHbgG3ANmBDLWmoJQ21pKGWNNSShlrSUEsaaklDLWmoJQ21pKGWNNSShlrSUEsaaklDLWmoJQ21pKGWNNSShlrSUEvarCUSSEAGClCBBnTgKJy1ZGIDwkawEWyzllyBCjSgA0fhrCUTG7ADCchA2Bg2ho1hY9gENoFNYBPYBDaBTWAT2AQ2gU1hU9gUNoVNYVPYFDaFTWFT2Aw2g81gM9gMNoPNYDPYDDaDzWFz2Bw2h81hc9gctllL5rRZDhyFs5ZMbMAOJCADBahA2AZso2wx2PCVzIEN2IG3rWkgAwWoQAM6cBRGLVnYgB0IW9SSzoECVKABHTgKo5YsbMAOJCBsHbYOW9SSOadZ1JKFozBqSffABuxAAjJQgAo0oANHIcPGsDFsDBvDxrAxbAwbw8awCWwCm8AmsAlsApvAJrAJbAKbwqawKWwKm8KmsClsCpvCprAZbAabwWawGWwGm8FmsBlsBpvD5rA5bA6bw+awOWwOm8PmsA3YBmwDtgHbgG3ANmAbsA3YRtliQGNiA3YgARkoQAUa0IGwNdgabA22BluDrcHWYGuwNdgabB22DluHLWoJcSADpTASR4Luv6KJ8d8tUIEGdOAojAxZ2IAdSEAGwqawKWwKm8JmsBlsBpvBZrAZbAabwWawGWwOm8PmsDlsDpvD5rA5bA6bwzZgG7AN2AZsA7YB24BtwDZgG2WLoYCJDdiBBGSgABVowNsWUxbGmMCFkSELG7ADCXjbuAUKUIEGdOAojAxZ2IAdSEDYOmxxteUeaMCwUeAojKvtwgbsQAIyMGwaqEADhs0DR2FcbRdGGsf2xtV2IQEZKEAF3jaJfYur7cJRGFfbhQ3YgQRkoAAVCJvAFrVEokmilixswGizERhxOTAiRENFfZD4hagPCxuwAwnIwDuuxtkX9WGhAR04CqM+LGzADiQgA2Fz2KI+aByWqA8LwxZ7HPVhYQN2IAEZGDYJVKABHTgSYwhhYgN2IAEZKEAFhk0DHRi2u2rEYMLEBuzA23Z/m95jQGGiABVoQAfeNrtPuRhWmNiAHUhABgpQgQZ0IGwEW9SH+zP6HkMMEwkYLTkCBaiFkfMLIwIHxpZFQ0VKmwc6cBRGSi9swDuYx0ZGSi9koAAVaMDb5rEXkdITI6UXNmAHEpCBAlSgAWFT2OZ03dEkc8LuiR0Ytjgn57TdEwUYtmjJSH+P1pnTd1+BozDSf2EDdiAB77gjNjISfaEDR2Ek+sKWGCP82j1QoccQv8RQWGAoRqABHTgKI98WtsKYpzf6BmIcXmIHEpCBAlSgAR04Cgk2go1gI9gINoItZs6+7uyO8XY9euhiwN2rgyCQgAyMCBKoQAM6cBTG3NkLI24cgJgbOzowYkxdb7FlMT/2wlEYc2Rf0dQxS/bCDiQgAwV421rsccyYvTBssfMxa/bEmDd74R23xWkU82K3aIeYGXth7LEHRoTYzZgfe2EDdmDEjXaIueoXCjBs0ToxY/1CB8I2YBuwDdhi9vqFXMdi4GgOHM2BozlwNEcdzRg+Nw9hjJWbhzAGy82DFaPlEh048ljEgLnEBuxAAjJQ8rjFsLlEy4MVA+cS62jGMLl5CGNM3DxuMSgu0fIQxrC42VAxLm4hXcAG7HmwYmxcIgMlD1YMj0s0IGwEG8PGsHEdzRh71ls0SSTDwg68N6dH60QyLBSgAg3owFEYybCwAW9bj82JFFnIQAEq0IBhi4aKxJkYibOwATuQgAwUoAINCJvDFokTPX8xNC2xA8MWp0YkzkIBhi1aPRJnoQNHYoxRe/V+BN5xqQUyUIAKvOMSBd5xoycihqX16H+IcWmJDdiBYdNABgpQgWHzwFsRT5YxLK3HA16MS+vxIBYD03o8csXItEQGClCBBnRg2O5WjwFqibctHrliiFoiARkoQAXetnhgioFqiaMw8m1hA3YgARkoQAXCxrDFtTCeyWLQWmIDhi0ObFwhFzIwbNFQcd2UOEJx3VzowFEYpWJhA4YtzskoFQsZKEAFGtCBozBKxcIGhM1gM9gMNoPNYDPYolTEA16MWktswDgnYzejVCxkoAAVaMDbpnHcolRMjFKxsAE7kIAMvONqHOMoCgtHYoxPS2zADiQgAwWoQAM6ELYGW4OtwdZga7A12BpsDbYGW4Otw9Zh67B12DpsHbYOW4etw9ZhI9gINoKNYCPYCDaCjWAj2Ag2ho1hY9gYNoaNYWPYGDaGjWET2AQ2gU1gE9gENoFNYBPYBDaFTWFT2BQ2hU1hU9gUNoVNYTPYDDaDzWAz2Aw2g81gM9gMNofNYXPYHDaHzWFz2Bw2h81hG7AN2AZsA7YB24BtwIZaMlBLRtUSuqqW0FW1hK6qJXRVLaGragldVUvoqlpCV9USuqqW0HXB1mCbtUQCO5CAsioiXbOATDSgA0dhv4AN2IEEZCBsHbYOW4etw0awEWwEG8FGsBFsBBvBRrARbAwbw8awMWwMG8PGsDFsDBvDJrAJbAKbwCawCWwCm8AmsAlsCpvCprApbAqbwqawKWwKm8JmsBlsBpvBZrAZbAabwWawGWwOm8PmsDlsDpvD5rA5bA6bwzZgG7AN2AZsA7YB24BtwDZgG2Vr1wVswA4kIAMFqEADOhC2BluDrcHWYGuwoZY01JKGWtJQSxpqSUMtabOWeGAHEvC2WSztFbVkoQLDNgIdOApnLZnYgB142+6ua4pBaYkCDFtsb9SShQ4chVFLFjbgbbO5+BgBGRg2DVSgAb0wqsbdUU4x0KxbNFTUh4UKvCN4NFTUh4WjMOqDt8AG7EAC3jaPHYr6sFCBVhiVwKP5IufvrmuKwWOJAoztDUXk/EIHjsLI+YUN2IFhm2u4MVCACjSgA0dh5PzCBuxA2AZsA7YB24BtwDbKNpemXNiAHRg2DYy4FmhAB47CyO6FDdiBBGSgAGFrsDXYGmwdtg5bh63D1mHrsHXYOmwdtg4bwUawEWwEG8FGsBFsBBvBRrAxbAwbw8awMWwMG8PGsDFsDJvAJrAJbAKbwCawCWwCm8AmsClsCpvCprApbAqbwqawKWwKm8FmsBlsBpvBZrAZbAabwWawOWwOm8PmsDlsDpvD5rA5bA7bgG3ANmAbsA3YBmwDtgHbgG2Uja4L2IAdSEAGClCBBnQgbKglhFpCqCWEWjIX2rxfPtJcanOhAg3owFE4a8nEBuxAAt62e8ICorkE7kQFhm0EOnAUzloysQE7kIAMFKACYSPY5vK492WR5gK5ExvwZaP7zSDFFHmJDJQbY4fm0rjxZ3Mp3B7YgRFBAhkoQAUa0IHjxvuKE4PkEhuwAwnIQAEq0IAOhM1gs7DFGWUdSMCwxUlgAlRg2OIAmANHoV/A29aiqWMh3RYtGQvntmjqWDp3oQEdeMdt0XyxhG6LvYhFdFtsTiyj28IWC+kuZKAAb1uPzbkrQaIDR2IMh3slR+Ct6BR4K/pcDvZW3O9bKMbA0f0yhGIMXKIBHTgK2wVswNtGsQ13+idKnp4x8C3RgA6svIiBb4kN2IEEZCBsHbYOW4etw3bnPFG02Z3ziR0YOzR/l4ECVKABHTgK+QI2YAfCxrBFzlMcN1agAR04CuUChs0CO5CADBSgAg3owFEY9WEhbApb1If7fRbFcLhEAd62WMY5ptGj+y0XxSC5xNvGcViiPiy8bbEUcgySSyQgAwWoQAM6cBRGfVgIm8PmsDlsDpvD5rA5bA7bgG3ANmAbsA3YBmwDtgHbgG2ULQbJJTZgBxKQgQJUoAEdCFuDrcHWYGuwNdgabA22FrZYj7o5cBT2CxhXkSuwAwnIQAEq0IAOHIVRNVgC6yodA9/ofrFKMcFeogNHYdSHhQ3YgdEOFoj2ZeyxYI8j5xd2YLSvBzJQgArE0RTYBEdTcTQVR1NxNBVHM3J+bkPk/EIF4mjOnI9tmDkfOHN+ImzIeUHOC3JekPOCnBfkvBjOHUNLOlrS0ZIz52MbHC3paEnkvCDnBTkvyHlBzgtyXpDzMnDcZs5PREsOtOTAcZs5PxEtiZxX5Lwi5xU5r8h5Rc4rcl6R83rVcdPLgdWS2i5gA4ZtBBLwtskVKEAFGvC2SWxD5PzEyPmFDdiBBGSgAMMWGxk5vzDuHwLjTiGyMIb6vVIikIAMFGAdISUDOrDOdeUL2IAdiCPEOEKMI8Q4QmxAB+J8EJwPgvMh6sM90oFi+r1EBUbrRDtEfZDYsqgPE6M+LGzADiQgAwWowHhSC/HsPZjYgB1IQAYKUIEGdCBsDpvD5rA5bA6bw+awOWwOm8M2YBuwDdgGbAO2AduAbcA2YBtls+sCNmAHEpCBAlSgAR0IW4OtwdZga7A12BpsDbYGW4OtwdZh67B12DpsHbYOW4etw9Zh67ARbAQbwUawEWwEG8FGsBFsBBvDxrAxbAwbw8awMWwMG8PGsAlsApvAJrAJbAKbwCawCWwCm8KmsClsCpvCprApbAqbwoZaYqglhlpiqCWGWmKoJYZaYqglhlpiqCWGWmKoJYZaYqglhlpiqCWGWmKoJYZaYqglhlpiqCWGWmKoJYZaYqglhlpiqCWGWmKoJYZa4qgljlriqCWOWuKoJY5a4qgljlriqCWOWuKoJY5a4qgljlriqCWOWuKoJY5a4qgljlriqCWOWuKoJY5a4qgljlriqCWOWuKoJY5a4qgljlriqCWOWuKoJY5a4qgljlriqCWOWuKoJY5a4qgljlriqCWOWuKoJY5a4qgljlriqCWOWuKoJY5a4qgljlriqCWOWuKoJY5a4qgljlriqCWOWuKoJY5a4qgljlriqCWOWuKoJTHsku6RkhTDLhMJyEABKtCADhyF8YSyEDaHzWFz2Bw2h81hc9gctgHbrCUUeNvuj/8ohl0mMlCACjSgA29bDAyIwZiJDRg2CiQgA8PWAhVoQAfGcbtv6OdgzIUN2IEEZKAAFWhAL+z11j6GXZLOfyUgAwWoQAM6MNrsPuVi2GViA4YtxPGEspCBYZNABRrQgfEm/r4dn8MuFzZgBxKQgQJUoAG9MJ5FdGIHEjD2YgQKUIH3XsRAkRhgmXi3WQwXiAGWiQ1422LoRgywTGSgABVoQAeGLU7P6MFY2IAdSEAG5scyNIdSxnuROZQyXi7MoZQLG7ADCchAAeZnMTTqIyca9ZETzaGUE+Ou4prYgB1IQAYKUIEG9IV8XXnk+bo6kIB55Pm6BKjAPPIcgyYT88hzDJpMbMA88hyDJhMZKEAFGtCBeeQ5xk8mNmAHEpCBeeR5jpS8jzzPkZItkC5gA3YgARkowDzyfNUHUTxHSi4chXzVEeIG7EACMlCACjQgjnzkvMUeR84vJCAD41hIoAIN6MD46C0Oy/yEcWIDdiABGShABVrhzO44+2Z2T+xAAjJQgPdeeJypcfVf6MBRGFf/hQ3YgQRkoABhc9ji6u+RDHH1nxhX/4Vhiz2Oq/9CAoYtjlBc/T0OQFz9PY5xXP0XOnAkxujHxAYMmwcSkIECVKABHTgKoxIsbEDYGmwNtgZbg63B1mCLSnB/Rc0x+jGxAW/b3bvIMfoxkYECVKABb9uQwFEY9wQLG7ADCchAASrQgLARbNFreX/UzTH6MbEDwxZNctcHvl+RcIx+TFSgAR04Cu8nicQG7EC6sQcyMGwUqEADOjBssel6ARuwAwnIQAEqMGxxVqsDwxatYxewATuQgKEYgQo0oANH4V1AuEWT3AUksQMJyEAB3rYWDXUXkEQHjsJxARuwAwnIQAHCNmAbYYsMGCMxhlImhk0CO5CAYbPAsHlg2EagAR04CtsFbMC46Q2SIi2yIi8aSXcG8z2qg2OEY2ID3ler2Pz5BWYQF0mRFlkSR8QWeDfDPWSEY7wizf8uRVoUrxCCvGgkzfcHQa2oF4WEAhl4t3Wfv6BAK4yEm1scqXUPXOEYepgYQweCIkC0XGTWQgeOwsishS2bxKo5rZrTqjmtmtOqOSORZiNGysxGjJTpcQJFyiyMXY2TIlJm4b2lFEczUiZ2OjImKBJmUivqRVR0R6TYkEgAujckRgXeb6g4BgUu6kX3X2sQF0mRFlmRF4XkbvYYDJh4W+Jwx2DARALGZkpgRIhg/QLeEeK/954NE+P7EhkowAgbO9UN6MCRDU4zkyY2IGwEG8FGsBFsBBvBRrAxbAwbw8awMWwMW1wLF9o61WPQ3zx9Yx3chXIBG7AXxnWKYhMimRYyMMZPBWmRFXnRSIrOrkmtqBdREReVw8ph5bByWDniGnUP/uEYmJfYgZEH0TKRcAvvRuRouUi4hQZ04CicKTexAcMW5+jMuokMDFuc5ZGMCw0YtjgOkaKBMVwvMcbSBfUiKuIiKdKiiHjXmRiHx/d7dI5xeHy/JueYiy5RgAq8t1Qi2H0tShyFkaULGzCG0QSFjAIZKMCQSaABHRiyaIvI0oUhi12LLF1IwLjPCpIiLbIiLxpJkYkSjRU5p/Nfo/a1QAM6cBRG0mnsYCTdwg4kIAMjw4O0yIoiv4NG0rwSBrWiXkRFIeFAASpwFMatpEbjx63kwrgXCpIiLYoWiUMTt5QLR2Gka/S/xDi5xLjuRPNGui68VdHpEuPkOLpMYpwcR99HjJPj+5MnjnFyiaMw0nVhA3YgARkYttjeSFeLUynSNZ7CY5wcx8NwjIjjeOyNEXGJBGSgABVohXGNjEfkGPCWSEAGClCBVhiJePfBc4xc43jejpFriQo04GvfZP7VSLozblEr6kVUxEVSpEVWVA4qB5eDy8Hl4HJwObgcXA4uB5eDyyHlkHJIOaQcUo472SSOzZ1sk+5kW9SKehEVcZEUaZEVlUPLYeWwclg5rBxWDiuHlcPKYeWwcng5vBxeDi+HlyMSY0yMk8cC75Pn/p6AY9gY3+OmOcZ0xUVH51kd1ItekaKexsitRZYU93fRaRFjsRIZGBuigffeRsz7JF7kRSMpzuFJragXUREXSVE5qBxx93bPSccx0orH/NfXX0dNi4FWi7TIirxoJN1n56JW1IuoqBxSDimHlEPKIeXQcmg54qIwJt67d8UxiLMyekliXNXCOC8XNmAHEpCBAlSgAWEz2By2OEWjeybGVSUSkIECVKABHTgKxwWEbcA2YBuw3UkR16MYVrXIirxoLIohVYsi4sTYUg58/fWY5EUjKZY2jD+JpQ0n9SIq4iIpih2/8yYGPEn0KsWAp0QCxi56oAAVaEAHjsJIuYUN2IEEhI1gi8S7v7XhGPCU6MCoZvdxiAFPiVHPYo/jEhL9PDHgSeKVRgx4ShRg2EIc15GFYRuBty26V2LAk8TTvc3VPqLN5mofEwnIQAEqMOLGpseFJPo/YhCTRF9CDGJKFOC9vdHTEYOYEh04CiNxF0bcEEcyRhdEDEySeKaKgUmJozCScWEDdiABGSjAuExH80UyLnRgXKmjUSMZFzZgB8bVOtosknGhAO/2nbs5Z9Kf6MBx490kPmfSn9iAHUhABt5HM5rPayZ99ppJn2NgksRjeQxMWtguYAMyMFqHA71wvgAM4iIpuqt9CxpJdwIuakW9iIq4SIq0yIpiY0I3b9wC553bxDg+I5CADLyPTzxexZCgRAPeuxGNEBfGoLgwTmpFvYiKuEiKtMiKyiHl0HJoObQcWg4th5ZDy6Hl0HJoOawcVg4rh5UjLpzxQBUDfxIVGO01f9eBozByNfrKYuBP4n104v4rBv4kMlCACgxbHL7I1YW3LboHYuCPxB1iDPyRePqPgT+JBLxtcW8dA38SFXg3YWTXnaqLxqIY9bOoFfWiiMiB95ZG10EM4xGJX4jMW9iAHRhb6oEMFKACDXhf5cN7d4rEQ2LMqCZxPxtDe+QeoMQxtCfxdsWzdgztkbkPca1deLtiNEMM7RGbwbzwzup4whu5/i+PWhWLR62KxaNWxeIYliPxWB3DchI7kIAMFKACY7tiH+I6uXAUxrLesWGxrPckKuK5LDDH6JxFWhTB5y86cBTGk9hs7XgUWxi7Es0Wl9CFDIyLcByDWlCPsTgnY3FOxuKcjMU5GYtzMhbnZCzOyVick7E4J2NxTsbinIzFORmLczIW52QszslYnJOxOCdjcU7G4pyMxTkZi3MyFufkGLEj0Y0RI3YSGzCej+J3I4UXxhNSnHaRwgsVGLbIvbkI1sSxUNbinBMbsAMjLgfGs9z819hevTESeWEDdmBsrwcyUIAKNGBsbwschXORvIm3bUzsQAIyUIAKNKADR2HcNi+EjWAj2Ag2go1gI9gINoKNYWPYGDaGjWFj2Bg2ho1hY9gENoEt+mDu+Q8kxvEkMlCACjRg2ChwFEZ9WBi2OKOiPiwkIANj3+KUi1vshQb0wngKHnHKxWX7rmsSI3YSFRgR4jyLy/bCURiX7RE7FJfthR1IwPtG5K7oEiN2dJ6ekfMtNidyfqED70vpnf4SI3YSG7ADCchAASrQgA4sW4zYSWzAO+fvt+wyF9FcyEABKtCADhyFc+G7iQ0IW4Otxb5RoAAVaEAHjsJ+ARuwAwkYNg4UoAJHYdyr34/rEqNw9H5alBiFkyhABcb2eqADRyFfwAbsQAIyUIAKhI1hY9gENoFNYIs7+HvIicQonMR4FImzJG7iFxrQgaMwbuQXxkNPtHrcyi8kIAMFqEADOnAUxi39QtgMtrirb3E0jYECDFscYwtbHEJzYNiiofwChi0ayjuQgAwUoAIN6MBRGPVhIWwDtgHbgG3ANmAbsA3YRtliQE5iA3YgARkoQAUa0IGwNdgabA22BluDrcHWYGuwNdgabB22DluHLerD3bEkMeNZogAVeNe+u0dA5sKYC0dhLMWzsAE7kIAMFOC9F3fnlsQsZnp3TUnMYpYY20uBDBSgAg3owFEYlaCHWNC+gj2OnF/owFEYOX/3iUnMTJbYgQTE0VTYFEdTcTQVR1NxNA1HM3J+bkPk/EIcTcPRjJyf2xA5v9CAsBlsDhtyviPnO3K+I+djRNESO1rS0ZKOloycn9sw0JIDLYmc78j5jpzvyPmOnO/I+Y6c78j5GIM0tyEGISV2IAEZGPumgQqMfbNAB47CyPmF0f8SwSLnFxKQgQJUoAEdGH09d+LEwKXEOsFjuJLe/ZMSw5USBajAOjViuFJiHawYrpTYgB1IwDpYRAJUoAEdiIPFF7ABOzD2ggIVaMBoqGiH2bkXWzZ79yY2YAcSkIECVKAVRlGI+6iYjiyxAyNunA+zV29ixI0dmv16Ew147wXH4Y6iMDGKwsLbxnHkoygsJCADBahAAzpwFEZRWAhb9OTFs0iMb0qMuHFGRfovdOAojPRf2IAdGHsRzRfpv1CAYYsDEOm/0IFhu8+HGN+U2IA9H5hihFMiAwWoQAM6cBRGl8HCBoy90EABKtCAsRfzz0ZhJPrCBuzZbRGDnxIZKEAFGtCBo/DObo92upN7ERe9gq7f0yIrurf/7rKVGOW0MPJ64b39d0euxOCnRALeJg+SIi2yIi8aSXeeL2pFvYiKyiHlkHJIOaQcUg4th5ZDy6Hl0HJoObQcWg4th5YjMv3uzJaYWCyxA6O9OJCB99klcRwi0xcaMI5OnDyR6RMj0yVOv8j0hR0YthHIwLDF9kb+LzRgdK7HQY38nxj5r3EqRf4vjA722IvI/4UMvDtvZwAtsiIvGotiTrFFEVEC7y29u74lBkXpPWRMYpqwxFEYF/OFsaUjsAMJyEAB3rZ7TJnEqKlEB47CyPGFDXjb7hf5EtOEJTJQgAo0oANHYVzXFzYgbARbXNfvrnaJMVeJCgxbNGrkv0WbRf5PjPy/O8YlRl4lhi0aKvJ/IQMFqEADOnAUxtV+YQPCJrAJbAKbwCawCWwCm8KmsClsCpvCprApbAqbwqawGWwGm8FmsBlsBpvBZrAZbAZbVIa7n15i/FZiBxIwOtTipI0XBAsVaEAHjsJYrnNhA3bgvRceKR1Xe5//OhJjbJjGZSqmFEvsQAIyUIAKjLj3CR6DymaTxDRhc49jmrBEASrwbt+4LsY0YYmjMHJ+YR1N7bB1AjJQgAo0oANHbQ5dwAbsQOxb5Hy85ogxaomxbxZoQAeOwsj5EcEi5xd2IAEZKEAFGjCGnLXAURiJPg/WHM8W58Mc0DaRgQLUOgCCgyU4WIKDpThYkegLOxAHC4muSHRFoisSXZHoikRXJLoi0WO8m8bbhhjvlqjAaKhoh0jpeIMQ490WRkovbMAOJCADBajAiBunRlzWFzZgB0bcODXisr5QgAqMS/P8MweORJvv6Cc2YAcSkIECXK/TJYa9Tbov+IteQeOCFsPeFlHRK6LFe5EY95aowHtsngR50Ui6s97iXUqMkEvsQJov+CUGyC2SIi2yIi8aSXe6L2pFvagcVA4qB5WDykHloHJwObgcXA4uB5eDy8HluLPb4mVNjIRLHIWS4xwkRsIlRotRIAEZGOMc4oDGK72F9/OPzl9w4CiMV3r3mAiJqb8SwxYRlIAMvG/zY3PjNn+SFXnRSLpzfFFEjLPD4jSK88yiXSzQgaPQL2CcSdGc3oEEZKAAb1uL5ryvz4kOvO+nY2vuDF/UinoRFXGRFGmRFXlROmKQ3KJW1IuoiIukSIusyIvK0crRyhFZfi8gLDFjVyIDBahAAzpwFEaqx0uYmLErsQPD1gMZKMCwSaABHRi22IvI7vmvcxKdICu6/yi6N2No3cJI4YUN2IEEvDcxOu1jlF2iAg3owFEoF7ABO5CAsAlsErZoGzGgA8N2Z3KMuEtswLBF80cmL2SgAMMWTaphu5MtRtnZPfxSYphdYgcS8I4bXbcx0s6ivzZG2ll0WcZIO4suyxhplzgKI8sX3rboe4yRdokEZGDYYnsjtSk2J1I7ehljeJ1Ft14Mr7PoXYvhdYkdSEAGClCBty164mJ83cQYVjdPzhhXl9iBBGSgAENhgQZ0YOzQvZtjXsonNmAHEpCBAlSgAR0IW4ct0jx6smIcXiIBGShABcbNQw904CiMC/vCBuxAAjJQgAqEjWCL+nAPlpQYy5fYgGGLwxL1ITqKYixfYtjisER9WBi2aKioDwtHYdSHhQ3YgQRkoAAVCJvAJrApbAqbwqawKWwKm8KmsClsCpvBZrAZbAabwWawGWwGm8FmsDlsDpvD5rA5bA6bw+awOWwO24BtwDZgiwISHYcxuC9RgAqM0e0c6MCxUOfgvoUN2IEEZKAA7724byM1BvfFBVSvebPfAgnIQAEq0IBeGJXgHoarV8/21avnHuvVFWhAB97te9+TagzYS2zADqRSEGwkQAUa0IGjcOZ8bMPM+YkdSECubYicX6hA2Bg2hq1yXq/Keb0q5/US7JtwiQUtKWhJQUtGzs9tELSkoiUVNoVNYVO0pKIlFS2p2DfFcZs5H2hoSUNLGo5b5PxCtKTBZrAZbIaWNLSkoyUd++bYN8dxc7SkoyUdLeloych5jcSJnJ8YOX93q2sM7kvsQALGvsU2RM4vVKABHTgSY3BfYgOGbQQSMPoi5y9YZmEM47N7VLvGML6FcaewsAHrCLVGQAYKUIEGdGAdoRjGl9iAHUhABgpQgXU+xBRbdo+X15hiK7ED77gW7RD1wWLLoj4sVKABHTgKoz4sbMAOjLgcqEADOjDi3mdJDONLbMAOjOdZDWSgABVoQAeOwqgECxswWmeiABVowNgLCxyFkfMLGzC+AIm9iK/jFjJQgAo0oANHYWS3xUkQ2b2QgQJUoBVGHlskTmSsRwZExnqcO5GxCxV4R/A4oyJjF97tcHegawy3S2zAe3vvnlqN4XaJDBSgAg3owLDd7RDD7RIbsAMJyMC71SmCRcZGO8TAuoX9AkZcDexAAjJQgLEXFmhAB47CyGMPW+Txwg6MPrUWyEABRrdaDzSgA8N2H/k+u+/isMz+u2iH2YEXrTN78CYyMOLGvkUeLxyFkccLI27sW2RsnFwxCC9RgQYchfNz1YgwP1edyMD7EPbYofm56kQDOnAUzs9VJzZgBxIwGnWiAR04CuMiPOJgxUV4YQcSMPYiDsD8iHWiAg3owFEYX9UsbMAOvONGaYtxc35Fo97Jm+jAkRjj5vzujtYYN5fYgQRkoAAVeO/F3U+pMW4ucRTGwJmFDdiBBGSgABUYe3Gf6zFCLrEBOzD2ggIZKEAFxl5woANH4fwYfWIDdiABGRjHYqIDRyFfwAbswLgsBnGRFGmRFXlR9B/eFFk7qRX1IiriotjyuybEUDiP0yyGwiV2YOx7KCN3FwpQgQZ04Cicc0RMbMAOhM1gM9gMNoPNYDPYHDaP8yVOM2egABUYreOBDhyF4wI2YAcSkIFhG4EKNKADb9vdk68xFC6xATuQ8mDxzOiJAlSgAR04CtsFbMA77t01rjEULlGBd9y751tjKJzfXzhoDIVbGBm9sAFjLziQgAwUYNgsMGwj0IGjkC5gA3YgARkoQAXCFnneYzcjzydGni9swA4kIAMFqMB49SSBYYs9jrFyE2Ow3MIG7EACMlCACjQgbDFqjuLkivqwsAE7kIAMFKACDXjbKE6CeLE2Md6sLWzADiQgAwUYtjhpzYAOHIV+ARuwAwkYIwOCpEiLrMiLRlJUBpoYW+qBCrQ1S5DO+cMWjkSZkydNbMAOJCADBRgtMALvFrjHI2sMlUtswA4kIAMFeO/F/TJCY6hcogNHYdSAe7CwxlC5xA4kIAMFqMCwUWDYOHAURg1Y2IAdSEDOYxFD5RIVaEAHjsKoAQsbsANlTZ+nMucJnGjA2AsNHIWR7RwRItsXdmDsRRzYyPaFAozhvnEAItsXOnAURrYvvG0SWxbZvpCADBSgAg3ohZHX8QgcA91i7kCNIW0usceRqwtHYeTq/TJCY0hbYmxZtEPk6kIGxpZFO8QVfqEBHTgK4wq/sAFvW3Q+x4qaiQwUoAIN6LnHMdDNo8c5BrolEpCBEbcHKtCADhxrPkqd86wtbMAOJCADBajAu3WiXyyGvyU2YAfGXnAgAwWowDsD4kyN4W+JozDm9FzYgB1IQAZG60RTR8YuHIWRsfegIo2BbokdGHthgQyMvfBABRowbLENkccTI48XNmAHEpCBty1u+GPMW6IBHTgKI48X3m0W17A5mxvFGRVTfMYlKUa3JRrQgaMw5r9e2ID3seixvTEd6EIGCjBscabGjKALHTgKY0bQhQ3YgQRk4B23x25GdtvEURjZvbABO5CADIxjEYrI7oUGdOC9F3FDF2PeEhuwAwnIQAEq0Arj2h3dtjHsLbEDYy84kIECjL2QQAPGXmjgKIycXxg2C+xAAjJQgAo0YNg8cBTGtXthA3YgAaPNYsuojnyMepvHLYa9LeQL2IAdSEAG1pGP0W+JBnQgjrzgyAuOvODIC4684MgLjrzgyAuOfMwr0+L+IEagFcfrk7gtiCUmi337nQGOeWSSW7GveRNa8ACvmRMmt437xrQxbywb68a28eZtm7dv3r55++btm7dv3r55++btm7dv3r55afPSjE/BvLGAWdGGbBvP+Bw8wHJt3DbuG9PGvLFsrBsbWHF8YxxVcd+YNp7xJVg2nvHn78z4FuwbD7BdG7eN+8a0MW8sG+vGm9c2r21e37y+eX3z+ub1zeub1zevb17fvL55x+Ydm3ds3rF5x+YdM/6dpzHU6sUjGOf5uPrGtPGMcwXLxrqxbewbD/DMa53cNg5v3IKOmdeLeeOIH7eeY+Zp3AKOmaeL5/kW+7XyVIN5Y9lYN57xOdg3HmBCHsXIquK+8ealzUublzYvGXjmctw1jpnLiwd45nLcOI6Zy4v7xrMNLZg3jm2Iu8cxc3mxbTy90YYywDPHF7eN+8a0MW8c3rhNnLOdJdvGvvEAzxxfvB3rlcuxzTOX5zGaubx4O6a2HVPbjunM5cVt4+2YOm3MG8vGipxauTzZNx7gseXgyuXJfWPamDe2qplzAFTyyHPJrqtqhV1X27hvTBvzxrKxbmwb+8YD3DZv27xt87bN2zZv27xt87bN2zZv27x98/bN2zdv37x98/bN2zdv37wr9z24jotdVPcAdpFsrBvbxr7xAPO1cdu4b0wbb17evLx5efPy5uXNK5tXNq9sXtm8snll88rmlboW2CW+8QDPerK4bdw3nvVkMm888z1cs54sNvCsG/f1wq55D3DXDbtm3Vg8713jOFrVZLvMNvaNt/xC3bALdcOuWTcWV92wC3XDLtQNW7OlrZib1zevb95VN25u6zoowW3jvvHc9/n7vLFsPNvQgm3jWTM9eIBnLiyua4E16hvTxryxbKwb28Z1LbBGA8zXxm3jvjFtjGPduO5/rHFdC6zxAMu1cdu4b0wb88Y4pg33ydZwn2xNfOO6FljTa+O2cd+YNuaNZWPd2MD3OT9aHOr7lE9UoAEdOArvsz2xATuQgLA5bA6bw+awOWwDtgHbgC0+JmpxfsfXRAsFqEADOnAk9jkPwMQG7EACMlCACjSgA2FrsDXYGmwNtgZbg63B1mBrsDXYOmwdtg5bh63D1mHrsHXYOmwdNoKNYCPYCDaCjWAj2Ag2go1gY9gYNoaNYWPYGDaGjWFj2Bg2gU1gE9gENoFNYBPYBDaBTWBT2BQ2hU1hU9gUNoVNYVPYFDaDzWAz2Aw2g81gM9gMNoPNYHPYHDaHzWFz2Bw2h81hc9gctgHbgG3AhlrSUUs6aklHLemoJR21pKOWEGoJoZYQagmhlhBqCaGWEGoJoZYQagmhlhBqCaGWEGoJoZYQagmhlhBqCaGWEGoJoZYQagmhlhBqCaGWEGoJoZYQagmhlhBqCaGWEGoJoZYQagmhlhBqCaGWEGoJoZYQagmhlhBqCaGWEGoJoZYQagmhlhBqCaGWEGoJoZYQagmhlhBqCaGWEGoJoZYQagmhlhBqCaGWEGoJoZYQagmhlhBqCaGWEGoJoZYQagmhlhBqCaGWEGoJoZYQagmhlhBqCaGWEGoJoZbQrCUWGDYP7EACMlCACjSgA0fhrCUTYYtacr8MsBiPlcjAsI1ABRrwtt2jMS3GY02M8ViJt+1+9WAxHmvco2csxmMlMlCACjSgA0dh1JKFDQhbg63B1mBrsDXYGmwNtg5bh63D1mHrsHXYOmwdtg5bh41gI9gINoKNYCPYCDaCjWAj2Bg2ho1hY9gYNoaNYWPYGDaGTWAT2AQ2gU1gE9gENoFNYBPYFDaFTWFT2BQ2hU1hU9gUNoXNYDPYDDaDzWAz2Aw2g81gM9gcNofNYXPYHDaHzWFz2Bw2h23ANmAbsA3YBmwDtgHbgG3ANso25zpb2IAdSEAGClCBBnQgbKglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaoqglilqiqCU6a8kIZKAAFXjb7uE0FmPLEkfhXGpwYgN2IAEZKMDbdg/atZhwLdGBozBqycIG7EACMlCAsEUtuefasBhxljgKo5YsbMAOJGC05EQBKtCADhyFs5ZMbMAOJCBsDBvDxrAxbAybwCawCWwCm8AmsAlsApvAJrApbAqbwqawKWwKm8KmsClsCpvBZrAZbAabwWawGWwGm8FmsDlsDpvD5rA5bA6bw+awOWwO24BtwDZgG7AN2AZsA7YB24BtlM2uC9iAHUhABgpQgQZ0IGwNtgZbg63B1mBrsDXYGmwNtgZbh63D1mHrsHXYOmwdtg5bh63DRrARbAQbwYZaYqglhlpiqCWGWmKoJYZaYqglhlpiqCWGWmKoJYZaYqglhlpiqCWGWmKoJYZaYqglhloS49vG/SmCxfi2RAM6cBRGLVnYgB1IQAbCprApbAqbwmawGWwGm8FmsBlsBpvBZrAZbA6bw+awOWwOm8PmsDlsDpvDNmAbsA3YBmwDtgHbgG3ANmAbZZtzwy1swA4kIAMFqEADOhC2BluDrcHWYGuwNdgabA22BluDrcPWYeuwddg6bB22DluHrcPWYSPYCDaCjWAj2Ag2go1gI9gINoaNYWPYGDaGjWFj2Bg2ho1hE9gENoFNYBPYUEsctcRRSxy1xFFLHLXEUUsctcRRSxy1xFFLHLXEUUsctcRRSxy1xFFLHLXEUUsctcRRSxy1xFFLHLXEUUsctcRRSxy1xFFLHLXEUUsctcRRSxy1xFFLHLXEUUsctcRRSxy1xFFLHLXEUUsctcRRSwZqyUAtGaglA7VkoJYM1JKBWjJQSwZqyUAtGaglMSxy3N+KWYyKTCTgbbtnzHuhABV42+757iwmo0schVFLYoBNDJ4cMZYkxk4mEpCBAlSgAR04CqOWLISNYCPYopbEkIUYLpmoQAM6cBRGLVnYgB1IQNgYNoaNYWPYGDaBTWAT2AQ2gU1gE9gENoFNYFPYFDaFTWFT2BS2qCUxPCqGXiY6cBRGLVnYgB1IQAYKEDaDzetdx5jPFz2wAwnIQAEq0IAOHAv9ms8XExuwAwnIQAEq0IAOhK3B1mBrsDXYGmwNtgZbg63B1mDrsHXYOmwdtg5bh63D1mHrsHXYCDaCjWAj2Ag2go1gI9gINoKNYWPYGDaGjWFj2Bg2ho1hY9gENoFNYBPYBDaBTWAT2AQ2gU1hU9gUNoVNYVPYFDaFTWFT2Aw2g81gM9gMNoPNYDPYDDaDzWFz2Bw2h81hc9gctrgn0IkOHIVzxumJDdiBBGRg1CgJVKABw0aBI7HNuacn8ipi3mapmKhAAzpwFM5Jpi2wATswNt0DGSjA2PQRaEAHjsIoFQsbsAMJyEABwtZhi1Jxf7rmMT503J/7eQwPTWzADiQgAwWoQAM6ELYoFfcXhR5jQhM7kIAMFKACDejAUSiwzWXl41jMdeUnEpCBAlSgAR04CqNU3POmeYwLTezA+3c9zqhI9IUNmN3y3uoFh7d6weGtXnB4qxcc3uoFh7d6weGtXnB4qxcc3uoFhzeHzWFz2Bw2h81hc9gctgHbgG3ANmAbsA3YBmwDtgFbveDwXi84fA4IvV8j+BwQupCA+RLA54DQhQq8bfdkdD4HhC4chVEJFjZgBxKQgWGTQAUaMGwTR2FUgoUN2IEEZKAAb9s9PZzPAaELHTgKoxIsbMAOJCAD8zHK58hOjj3mDiRgPg/5HNm5UIGxkTOYA0dhpDTH4Y6UXtiBt+1eXMbnyM6FAlSgAR04CiOlF962EWdJpPRCAjJQgAo0oANHYRSFEe0Q6X/PuedzDOdCKYwvGq4rNi2+aEjuG1NwC+aNZWPd2Db2jQd4XBu3jfvGm3dMbxz9IRvrxraxbzyKY6xmcdu4bzy9Gswby8a6cXjv6bI8xmwWD3B8IXXd01l5DNss7hvTxryxbKwb28a+8QD3zdunN/ax941pY95YNtaNbWPfeIBpxrHg+e933sWYy+K2cWxP3CbFsMti3ji2p0f8+OIp2Tb2jQc4vvJIbhv3jWlj3njzyvTGfolt7BsPsF4bt437xrQxbzy90T6qG9vGvnF44woUIzKL28bhpdiX+EIqmTeWjXVj29g3HuBZTxa3jTfvrCcU+zjryWLZWDe2jX3jAZ71ZHHbeMaP9pl1Y7FubBv7xqOYZ924Z6VynnVjcezXPQOV86wbi8N7TyblPOvG4vDeM0s5z7qxOLxxdeNZNybPuhEXNZ51Y/H0ajBtPL0WLBtPrwfbxtMb+zjrxuRZNyT2cdaNxeGV2MdZNxaHV2IfZ91YHF6JfZx1Y3F4JfZx1o3JNL2xj9Q2nt7YR6KNs6/S58jNhQo0oANH4axIEq00K9LivnEYNVpgVqTFsrFubBv7xgM8K9LitnHfePPK5p2VR6PlZ4WJh1yeFSYeV3lWmMW0MW8sG2/br9v267b9um2/bdtv2/bbtv22bb9t229bu9nmtc07K8ncx1kx5j76tv2+bf+sGIttY9942/6xbf/Ytn9s2z+27R/b9o9t+8e2/WPb/rG124BXrmtjqn2UWRliH+XC9svlGw/wrAyL28bYfmm0MW8sG+vGtrFvvG1/37a/t403b9+8swLMfZyZPveRtu2nbfupb0wb88ay8YzPwbZx9qe71LsCl3pX4FLvClxWTkvwjKHB0QbR1yEzdyfP3F0c226xTzN3F9PGvLFsrBvbxr7xAM9cX7x5dfPq5p25bnEcZq4v1o1tY994gGeuL24b941p481rm3feNVgct3l3EN05Mu8OFtPGvLFsrBvbxr7xAM9cXzy9Ftw3po15Y9lYN7aNfeNRrDPXF7eNp9eDaWPeWDbWjW1j33iAZ21Y3DbevLM23LP2u87asFg21o1tY994gGdtWNw2Dm90JeisDYunV4OnN9qn51skn+MpFzpwFNIFbMAOJCADBQgbwUZzH0fwAM/7hcVt474xbcwby8a6sW0c3ugs0FlzJs+as7ht3Dcm8KwV9+T9rrNWLO4b08a8sWwc2xndCTprxeSZ49GLoDPHF+vG9++36EXQOafC4gGecypcEXPOqbC4b0zBEXPOqbBYNtaNbWPfeIDnnAqL28Z94807Nu/YvGN6o63mHC2LfeNRbHOOlsVt474xbcwby8a6sW08vRY8wHOOlsVt474xbcwby8a6sW28edvm7Zu3b96+efvm7Zu3b96+efvm7Zu3b17avLR5afPS5qXNS5uXNi9t3jlfxT35utucr2LynK9icdu4b0wb88aysW5sG4c3enRszmMRPS4257FY3DbuG9PGvLFsrBvbxr7x5p3zWERPj815LBb3jWlj3lg21o1tYwfXEGu3GmLtVkOs3WqItdusPdG7tOYoXDzAs/Ysbhv3jWlj3lg21o03r29e37xj847NOzbv2Lxj847NOzbv2Lyz9rQ4X+IdR7w4moMlFzZgSO+1XN1n4VnMG8vGurFt7BsP8Cw8i9vGm3cWnujmWxM7LpaNdWPb2Dce4Fl4FreNp9eCaWPeeHo9WDe2jX3jAZ6FZ3HbuG9MG/PGm3cWnntGXfdZeBb7xgM8C8/itnHfmDbmjcMbb7fWhJKLB3gWmOjCWxNKxjunNaHkYtqYN5aNdWPb2Dce4Flg7kmGfU00ubhvTBvzxrKxbmwb+8YDbJvXNq9tXtu8tnlt89rmtc1rm9c2r29e37y+eX3z+ub1zTuLUnSDrokmF/vGAzyL0uK2cd84qm6cArPeUJyqs94sHsVrzsnoQV1zTi7uG9PGvLFsrBvbxr7xALfNO0tL9NauuSWjh3bM0rJYN7aNfeMBnqVl8ey70OC+MW3MG8vGurFt7ODVNxKuWUKiJ3nNObmYN5aN535RsG3sGw/wLCGL28Z9Y/TFjdVvMlk21o1tY98YfUFDro3bxox9l22/ZglZbBv7xtt+6bZfuu2Xbvu15qqdzBvLxtt+6bZfuu2Xbvtl237Ztl+rj3Ty1p62taehj3fNYzn3a82xHLzmWJ7cNt72y7f98m2/fNsv384T384T384T3/ZrbPs1tv0a236Nbb/Gtl9jO0/G1p6j2nNcV/X9jjWPJc9/7xvTxrxx7ddY81guto194wFu18Zt445ta7Qxbywb68bbfjXfeID7tXEOMh9XfdQxrvqoY6zJKu/XQGNNVrnYNx7geT+yuG3cN6aNeWPZePPS5qXNS5uXNy9vXt68vHl58/LmnSftiH2fJ+1i3fjenn7FCRMnbfIAx0mb3DbuG9PGvLFsrBtv3gFvm0tN36vJvXj+PgX79u9z2/jmNrdNgtvGfWPamDeWjXXjuW0a7BsPcJ9eC55eD57eERzeexjDmJNJrn3psvG2j/N884g/z7fFfWPamDeWjXVj29g3HuB5vnnsyzzfPPZlnm+LaWPeeHpjf+eD92Lb2Dce4HlfvLht3Dee52q04bwwjThP5sVoxPkwL0Yj2nBejBbzxrKxg+f96Yhzad6fLp5x4nyY96Ej2mpeLEa01bxYLKaNpzfaZ+XdZN3YEH9eLNa/D/C8r1zcNu5oh/mwu5g3lo23/Z03mbGPfd5kLkY79Hmzd7+kGX3e7N0vRUafN3uLbWPfeIDnzd790mL0+bxoEX8+Ly6WjXVj23jGl+ABnvmyuG3cN6aNeePp1WDd2Db2jQd4Taw6uW3cN54uC5aNdWPb2Dce4Jkji9vGfWPaePPK5p15dL/AGH3e+C32jQd43vgtbht3HBfdjqlux1S3Yzrz617wd/T5nHcvQzv6fM5brBvbxrNuxLk0b94mz5u3xW3jvjFtzBvLxtMb5/nMx8W+8QDPfFzcNu4bM/Z35qDH+T9zcPGofZzD6pLbxn3juS8czBvLxnNfJNg29i3O5m2bt23etnnnA+Bi3lg21o1t483bN9dcQmYEvrS+/rXf2AMJyEABKtCADhyFsbDMwgaELRaWiaMSA+YSBahAAzpwFMZiUgsbsANhE9gEtlhMKk6kuRjsQgeOwlhMamEDdiABGShA2BS2WOxxnlSxgOM8j2IBx4UGdOAojEXhFjZgBxKQgaHQQAM6cBTGWlELG7ADCchAAYbiro1zKde4nZlLuS7swAg2AhkoQAUa0IGjMBaIWtiAHQhFjEqPG8s5HeDEGJUet5hzOsCFHUjA+0kobkHndIALFWhAB47CObXoxAbsQALCRrARbAQbwUawzUlEW2BE6IHxZxQYf8aBo3DOETqxATuQgAyEYs4ROtGADhyFc47QiQ3YgQS0Om6KoxmDzucRMhxNQ/sa2tfQvob2NbSvoX0N7WtoX0P7Oo6mw+awOWwOm8PmsDlsDtuc7DMO4ZwiONphzuUZh3DO5RkHYOBojjqac/69hQ3YgQQsxZx/b6ECDejAOppz/r2FDSh5oZqLqcaFai6m6vMXHFhXnLmY6sIG7EACMlCACoSt1xVnLqY6kS5gA3YgARkoQAUaEDaCjWHjuuLMxVQXEpCBAlSgAR1Y17e5xOpC2AS2ed2Mk0DrijMXSF3YgQRkoAAVaEAH1vVtrpUaV5EYx5VIQAYKUIEGdGBd3+a6qgt7XqjmsqlxSZrLpi40YF1x5rKpE8cFbMAOJCADBahAA5Zirn8a2zvXP40H1bn+6cJRGBfAhffmREdUjLBKJCADBahAAzpwFEZCLoStw9Zh67B12DpscbG8R9+MOaZqYmTWmBh/1gIVaEAHjsLIrOjMmMubxrP6XN50oQAVaMCIy4GjMHJoYQN2IAEZGDYJVKABHTgKIwsXNmAHhiLOkki9hQo0oANHYdycLmzADiQgbAZbZGH008Qgq0QHjsLIwoUN2KvVHQfLcbC8DtacTi16NufEadGBOSdOW8hAAd6Xr+jgnBOnLXTgKJx3gxMbsAMJGLbYsrgbXKhAAzpwFMbd4MJe+xa3gNF5OudFW2i1Q3Gzt3AUxpjihbHpGtiBBIxNt0ABKiLAxrAxbAJb3CMuxGERHBbBYREcFoFNpuK//usf/vTXf/2Xf/73v/zr3/7p3//+5z//6R//s/7h3/70j//jP//0//7573/+27//6R//9h9//es//On/989//Y/4pX/7f//8t/j57//899d/fVWPP//tf79+vgL+n7/89c83/dc/4K+vz//01ed8N0b8+Yu1VYh2tR+CtM+D8P3KIEKwagUw+uHv++d/T/fY8fj711MYNuBDgONe0H1arb14Pal9uhf8eZBXN1pbMV69aIQQnZ6GILsXzZl7YmJbCP0hhB5CkFRbbLvh9DSAtjwdXheUCvDqD/khgB8aM1YHn235ulH9NMQ4HdBe7fCqqp+GODXlq8upGkL506Zsh/Oy95Znxavvd4shH07t/u7xOO6IYUecPt+RQ4zXLWjGeCEOiX7YDzkd1fsuZB1V6Z+GOJxZZnlQnbbGtOcRnHM3fK809sXdsM9349SYdmWev3B8FqJfx1JRJ9brcebTEO3dpuiHM/P1orDnRrxed1YM7j+GoMNG3PObzI0Y9vlGHBrzfjmzQtzvZpDp4s93JIY5rR2R9umOHE6sXqX71RH+WYBzhg2tk6LRp0fU3y96pxivvrOM8eoa+/wCQtexfvdKka01XtfFH2Mczk7xPCJ6yRbBn58YLHViyJZlH08MOpye91NtxRg4w1+duT/GOF3VtVeWKG8F4/kxIc4see1T//yYHM7P1wuwuj9x3q4j9OP5dSfCpzFez1N5lrfXCXZtUX68GpF/w9kx3j07zvvi5rUvrzc+n+4Ln67v8a54FQ7HOfZ6sfpjjP7u+XE8Sx+WwGOMh9nC8n62sL7dGqcjey9Dlkf2XjXq8yPrpyNbp/rrIF/bkZUfYxzO0tdr7oaL9HYfO35sUznU0lf3eF6mX93j+mmM43YoebWpHbbjcJa+OoRwV789I32M8TtHhj89MsJv33XI6R7uXuCjNuT1yPT5hhyfc3xUk2xX7J9iHJqEWz38vl6iydca5Nndi4w3716Ol5foTJzbcLl9ennRUzF1qgPr+vklSg+n6etVRD2n9LEf1/48hmuWwlePs30eg9+/yKm8e5E7nV2vN0LVGq21r53l1CvxX++PP42hfnx6rHvbV0/t12KYeN0fy/hiDEcM/zzGsXZ4TH2y7qRa+zyK9XeP7TlbLGtpf71M/FrGjY4Yh4yzU3vco8WyPe7RWZ9css/bUeWYaOvw+Wk7Due6VyfH6Htr/NgRaafHJ9LqaeH9hpCfx+AYPDvred8vcB9i+Dc8Pnn7I88vIqo+UfL2pfOLqC7VxHx9GsP5jz2/iCtlSQ+54qcb05hHYl1labuy9B/b1E/1GDdRr7fNW759eFw4xXi9LqpD60Sfxxjvn2HjevvqdKyk0uoR7J5M49NKOg6V9B7aWfW42Rblx/Nj0LsPHafqM6jhHYZ/Wn7GsTmsuvTaD8lyPT/R0U376gG6vpa0ipvB14u4T2MMf/sdwmkrjAivZPTTrYjZJD49R6svS7f74tbHhxDH7agbWzLdbwb9eRDmOr+YfzjPPwah95M25oP4A7P2Hp1c9Zjk82eWmCjjvQ05FmRSw9sy+7Qgx/wJn+8NV+Zf273+x9786/SuqS5yfH3ehx234o/eE9neg/Ph2J5eNr0MFeVm/rQD5pg0SH9vh6Rpp3p61TPD6xEdd8j28c3ZqftWRnVI6XZk6EMHTDu9rBl1jzz2vpMPR/dUlV+Ho26R6fq8KsdMFZ8emdcjJXLXXT+5wsTUDZ+f733UReqHB6CPW3I4V1nqNpl/qIk/vZC83k+a09unh0lzfGvzNGlOL6CeJ825KMZQqFUUx6Ejp/XTyUbVJ/3DGIL+8T1Sf7sH9bwdXP0Gfb9v/2k7TnXE6+ZujOvzOtKP3fx1yr96Yg5nK33D2Urvn630HWcrfcvZen7VKOiO0U9fHvOpV/qqATe+36t+HFJAx1emdQ/wqqz0+QX8FISuumuma7+1+imIvz804fRK6uHYhFOIh4MTHu/JYXTC0ybdr96/eVyqhFBrh7szPveiPhoI1E5vpZ6+FT/vDuOJRo67Y8eKKHVrtd0E/FTOjkF67c69hsEhyHj/hD+9mXp4wp9CPDzhH+/JaTjOsUmr489/eGnwW8dFRg1lMTsM9TreR0i96X+9dKRPn5zP5yquvK93bIe6enp18PgM8ffPEH/7DHm8J18tic51qXLrnzfp6b3S4wFw9HaTnkI8bNLHe/LlJt3O0j1ffusqE98XrV6idjou57dTj8Y26jcUVHu/oNr7BVW/oaCeW/TdG0y5qhdCGh3GrJ5eTSnGPegPTfqxJNvhFButhixc+3PMx4p8bg9De/gX2/TZoNH4eP/z57pL67lue3j4GOP8durZmX56O/XwTPe3R68+35PDmX5sUaqr/qtF9Wsx9mFCRJ+36Kk7dYjUk7KOL8aoN37HGOcz7NG45ObvP0n5+09S4zi079GomnZ6N/VsUPBxK54Ndoqpbz5tjEdjrNupF1Rbvd/S/d3UPRLsi0Hki0G4Bky9OrfaIYi/fVyO++Jc++Jf3Zdew2K0S/9qkOqg1j6+emgwwljph1GGH0bAH19QvTpx6nH9xdvB+TgW//qG0ay/CDLy+LxezY4vBqEaTHZPN/LFIA8H1vbTa6qnI2v7Nd7tGD5vh9eLneFCh+14GkSvrwapC83YX6j8VpBXD2rdqN6r1p3CHL8SqMI29huJ3zzZHCfbnse/F0QHgnyegL9xDf/0eaifXlZZDaHcBy1/rLDne+Zn38OcXlQ9fTw8Bnnd1tUXMW3wIcjpTsCq//DV+X/YG3r7zrufPop5dm91DPH0u7Gne2KHPTm2aL1S7eb8pRjUqqy+LhL21RjX2zEINyR77v9ejLrNo/2jh48xTu+oHj5F/CLGo6eI874wV5c9q78f44vn2OuNe3X7sX9+bM8fGim+eeiHbxyPG2IYwPgqrZ9vyPiGgzv+4INrDftySNzTN1NzMav1GrTJVxu17hHJD2cZ87svhjsfxw7UwPZX/fj8iea4HdwwAQIdmuN0net1ieKu1+fXueNnU896mPo3vJzq77+c6u+/nOrf8HLq3KLPepjOMZ71MPXTq6mnqX8+O559tX56nfP0yNr7R/bxnnxeO/R68x75nLJUpZTZxhfvb7vVJ2j9dH97fiP07E19P3009fj79ePu+JXnKQ/1w+7od+yO/dG7M+oKI9d12p3xR55pghHdwnp4krLTMOjWcaJViNdl50OItz+WPm9Fdbrtl8qft+J4ta13l9zIPt0KPt7B4Fv6y8y/FsTrAebF2xdtvxUkZvXMV1xbUf2dRq3v4F8n7KFRxx8a4l7/ltCo/PmujO84MuM7jsz4hiNzzFypDxhksH/tGqH4kFQb2VeDVGfb6407fTEIE/r/9au7Q/WlsQodbnV/8RHVs2vE6Suqb7lGqNT0Zyp22J3jd1Ti9cXNi/c+qt8K8migez+9r1KtVzzW+uFac3qj8XSge0x38/mj2aOhw9FL8OYT4vF11cOhw32cTtfHQ4d/EUaoCtvr8cw/D3M6ZY1qjKnx1T49xnS936lK1/udqnS93al6DPHskeT5nthhT97vVD3GeNip+qsY19sxnvWZ0emTqh8eeuVrbfqwc/cXMR517tJx1P+z/r9fxHjUCXDeF65P5Gl/g//TdtgfvR2POpmfx/hizj3sZKbT11RPO5l/cbI/PEHaH3xgnnUQ0+kLpqcdxL/YkEcdxNTfvvxT9/c7iI/b8bCD+Fc3d7zd3H0+VVl7/w7xGOTh8/fx1s64HvKMPz9Rid+/dyB5+97hFOLhvcPjPTl0VJ9vln37BPLz6+13vF863i2rY7YzH4e75VMQq0Z9YftakHbVV3Kdj/ftx757Qk+zfv3m3xU3/9tV5ndv/muP7geBw3iZcX6lIf/dK43faxe2//bz/5+DfENVPM4LM7Zv3f1LqdNRz3o7XPHk7U9U6TTH3+MLjbT3m/R4aKu/+nWU6aunfOuMWwD68vNuvOFbYbp+OXN6wyw1rx38PMxp8p+agmh72cP0Wz2KvW09ivTFbsnqg3uxfNYtSaf5XZ72bR6DfEs//NMW4e9oEfmOFpG3W+Q8KPJidKJf+3jG3xtbeZFuYQ6DRduxaR8P0TyFUavUUdsGRupvhPCaLE+d7Wsh6gZa3T4L8YuR2hfmYb2+PPC85lZ5Bfl8uPf5g1dMEOe0z0fyoYeVTl9XPRwvQvb+p6pkb3+qegzx8Dbc3v9U9dyiz8aLnGM8Gy9CTu/3JpxjPOtNOJ9hj8ackL+97sQxxNOz4/GefN4d4e+OBPhF2td7WqdxSPvTZ01Pn77H+59T03j7c+pjiIcH9vGeHNL+2KIPn77HN/Sqnrfj0SszGm9PqManyYeePnoft+PZowz94vu9J0+H5xjPng754veb9BvGqR6341mT/mKijXq/5LJ9evfzbB2HM/3ZB9nnFXge3blwe/9bam5vf0t9DPGshD3fE/tagz4c6Hq9fd/C7f0vqX8R41k35tuHtfP5Aezh55jH5ZUefkh5ivHwO8rj+iQPvzx8HOPw4eE5xrPvDo+zuD1/pj1OkPnsq0P6lk926Ru+OiT6Y/fm6blK3/DN73EdnIfn6uMYh3P1HOPZuXr8OuXxuUrf8nHr248/TO9+lnpcigsDIfnHWeB/7MNhPg3665j6qH/az/eLELX2DNFln4bob3cVnhoDPXzcfphg++NmfMMcf/wdc/zR2016ei2tNfhYfxjf7s8jMNZa0c8jnG7EBOvQyjZ48qfV1Y43cx03c50+jcFyfBB8tm4D2bun6PnrS64nn6Zyfb7SE5+WWHqYsecQjzL2tBTPw+Y4vhuvsUYv/Gxk++kN/cNzfLx9jvs3nOP+Def48aunh+f4cQnBXm99+ouxIR+XEDzFEIxWEPk8xnlxtouxJtpl9nmmnL6cepgp5xCPMkX9Dy0cPzaHfz6j93kVQRyYfcqjn1YRfBxjvB9jez35W6sZYiKbvn8C9tNKhHbuh6qxffvL1p+DnKYnd6yT7kO+GGSg/2afW/x3gzQE6d8RxD4Nchq6IVafgIipfu3gvI5qfQmqKl89wvUw+Opc/bxdny962b7WIldN2yI/vMT+uDOPFwE9pI3LsQv4yRRufFzrpCMGbafIzxtyGjwilntjsn/o+7FBTgv7MMbm8r72nX2Icerevy5M2b6v1fYhxum7qddjWL1nePG+dp3/RrNSTevbaRvg+3OzHoM4jo1/fpKcFyR9vDLqMQoboshhwUcex0VT8OXifoj9+cKTrwfPSuB9jP/vLI0qMVZtJjDpVxeerJeVsj8X/laMsS1Cwf2LRwYV7Wb/YhRvuCfx/nmbnD6hfnYHf4zw6A7+vGibY6xT8/7Z57FyeiE1rpohbLRP7xPPIVp9Tj4af/Y8dF7ETiv9m5t8MXPdMT7Xx+ExVY4rUT26+f5FiCc339LeHpX3G81xWp/5F1EEUfoXU/f1l4Yo/PlzkZxWonp4aM4hnh0a+2MPzQ/NIfblQ8NblC/Ww3HV9fvF4/P6flyK7llBPId4VBHP+yK4oRl6HVrk9FLoWQfPMcTrzmHgLmLfkt8KYvja+MXji0EIy2EY61fO19fjyDZs4VCfjytifdcCX72i9D2Ff17g62mQ7aHz94JgzoAu21v/3wry2oWaX/Ny+jQInb99qK6JTp+vQS2nT6CevkSQ42IST18iHL8GabVK8MWnvXn3LdWpX/LpnpxiiNSIabFr35Pn2yH4ikpsf0H0IYZwf/vKeQ7x6MrJb0/5c26MejstTuPQGMcLTQ3CUnY6BDk9WdXcC9quzx6cz5uBlZt/nEDlt/ZFpEbD/zCQ6zeD1M7oNb4cpOaD2dca/elcP66sW1kr4xRD3r0TUXn3RuS0H09frhxjPHy5Isd1mx6+XDmNyach6IzcFxni68OGvP9UJe8/Vb3/rZMdX9fXycHXvm7zx8Y4rR71sDHOIZ41hvyhjdGqw41/WG39p8aw9xvD3m+M8fal6fjtaF2aeJ8Z6LeWjR/1neQrxucLtot9wzSScQV79+7n9AmqYr6z7Z705834jntS+4Z70vMa9lrl+BXk8zXs5VhKfXtxVyHMn28Gt/qSnX9cSvt3glB91cv0w13Uh305LR71LG/babalV7d2jajnfd3Zn3aG3+954Hcv+MddeXrFPwd5esn3b7jkHxeff/XIVt6NrU0+LD4vx7n9nvZPn95RPetcPu/LEHQKbW+6P+7Lsa99/5x3e9KnDwMnfxHk2cyavwryaGbNXwR5NrPmL4I8+9a6nT4i6Vffvu0Znx2cY4whV50jP1wkPrw8/EUQxthp0S8HqSG6+ySSPweR98+185agLA6lr+6O1vQg44dZYH4rCD5TfHUdyqdB9PiO6TuC/PAN2N4mHxr2HKTXGPvet2FivxeEFO/M/fMg7TjC9Nn3n/oNH0/p+x9P6fsfT+k3fDx1btFn339qe3+K/0bHCbqfzb50DvJw9qVjkKefgJ635OHsS+34lc3j2Zd+Eebp1Ku/CvNwEqdzyzycxOkc5OEkTo3ennHomD0PP9M9x3j2ma72Y3/Vk89043HucMv46DNdPX/m8qxJj4f22SROvzhXn07i9IswTydx+lWYh5M4/eKuot4RDdsXuPx4Q0Bvj7P+RYgnXU96elP1DSGe9V79okFrTpyxLxX4sUF/9UjwaCKoXwV5NBGUMr3/cHIM8rBZj10L25sV+mrvxKgQ/GkI53c74pT9/Y44PY1+f9oRd+reeF3hanz12PuMPnymcYoh3uvN27W/7/qNGNrRadR/eBHw4Tojb78IOG9GXWV0/1z3t3aFqsNIf5iE6qdd0T90V/ZVKbZnkZ83w//QzRDk2363+tNm6Ntfp/4ixKPLgr79deqpD0+tBqqpb+X8Y2OcuvCeddAeIzzqnz32RT7snj2vVfKsd1bVv6F39jgt4MMnf/uGJ397/8nf3n/yt2948j+26MMnf/uGJ/9TL8bjJ/9jkKdP/u0bJn86b8nTJ/9T59BvPPmfwzx+8v9FmKdP/u36hif/Y5CnT/7X2xN0HbPn6ZP/McbDJ39//8nfv+PJ399/8j8f2odP/udz9fGT/znM4yf/X4R5+OR/vBd49EB1vpt48jx1qvQPn6fGdzxPjW94njoOSeg1RJX6+HxA0zGG1Xw/NNoXY+Dqydchhh9XYa1Vcbj75yPV/O35R/zt+Uf8G+Yf8W+Yf8Sub7hbPX4JWe/LXq/y9zEe1+MQvde+9B9W1f6dGA2fqXb9fDusfcPQKmvfMLSqnT5CerrSYOvf8jLk2M+Nj25YZF+S8sNIwtP+PFyGzpq//Uhjbbz7SHMM8eyR5vme2GFPji36aBm6Y4yHy9D9Ksb1doxny9BZfzqfpHytTR8uQ/eLGI+WobN+XOLn0fyav4jx6HH1vC/PlqGz0zuu79mOR8vQPY/xxZx7uAydnd4oPV2G7hcn+8MTRP/gA/NsGTrjY0/Es2XofrEhj5ahs+MXUI8eL43p/cdLO086+Ozx8nz78GgZOjt98fN0GbpjkIfv2Pr7A6GMx/v3DqcZdx7eO5xCPLx3eLwnh+7Q/v5AKJP3lzmN8b1vd4f27xgI1b9jIFT/joFQ/XsGQvXvGcHUv2MEU/+OEUz9/RFM/RtGMPX3RzDZcfK+ZxcatW+40Ki+36TfMYKpf88Ipv49I5j6t4xgOvYSPerHPPczPenHPH7o+mgbzp/KPtmGX0yigBovvk/N+DszMSimc9BBXwzi9ca9j0u+FoSuemP+ws93R05LyT6dE+IY5NlybecQj5Zr+0WIR8u1HY+L1Z3EfS3/4sH9IQh/NUhHEPr8uJi/PUTlFyGejA2xcf2hIZ7euh8bFB9C7N8y/eZRwVSmNr5aQfYt+XIQr8fuF345CFZ/OgY5Tqb0cNyhvlvbfzE1XPXqjsZfnF2uuv5e+NmHaseZ9h41xXmuvkdX2tP8h1YT5b6eyfYvbn9jDkVMXPhC/2KM6kt5XXa/OJejM7bjq3NK4u3FDy8vfm9Oyfrs74VfbY96lnrF+Py4HOfplOrQZTF9P4Z/ba5PxmtpVv7ivuCLP7bDOXaMsU087PR5DD99RmWYIe/Vc/f5B39+WkKKMa0k6z7H9U/36ect0doSOW3JaSqEqx4ZdJ+u97dapOaE9uv6/ItO78cuqquadZ/H7ecgpy//63vq/Yn/HgT9+BTB58d8mv7QT89hj0+Rzt9wivxiS56dIqfu9oenyHk7np4i/h2nyPhDT5ExMPV4+/wK4aev2qTXkknSx1aaPzxln95PqdUMBGrbDATt+UzOrxucutpddh32hb9hX+SP3ZdW00nKD3P+/Nas1DVZv1Djr8Xo2I7O3xHDvxijJoJ7HSH7Yox6j/IK9+U2NbQpfTFGQww6zHx+XIqlZi/oXfZH5A8fpPDbE/3+IsST51tn+0NDPHtEPrYnYY5Rss+XpfHTa6VHkxUet4LxiL3P1PPzVvT3K9jpi6mHFey80E/HW5gun+7LOYZgkVT9vD1Yz9PHPlpx6BjkWS/fOcSjXr5fhHjSy3dc0erRU/p5TawnT+n0dp88vd0nf14rcp/+5YdFV35rxUksK3hHOayfeRyL8njhymOYh+foMcSzc/Qc4sk5el6D9+EKnMcY76/z+vwc+dW6tQ/Pkf4950h//xzp758j/e1z5Pj6F+NY217TPzz6nEPUS4a2V5HfCYHXYX3r1voYwv348FRLttD1xRA1HE63gVu/syP7bEvbujG/E0IraX98NfgbIax6Xl93+187qF0xQ7t9LQTVVwGvVmlf2wq84Xy9nfxKCHYMCvD9K+3xNEJrWC57n9LvNzaiNQw8a/6lM6tRnZuNxte2Qjq+BtjqzW+FUAzW8vG1HakxuI3613YEEwC8ytfXdkTxZYTa17bCDKtdjC+dnPcCJhliX6vmN0JYvXzb18r4jQCjntf2JVl+ZyeuesT5YVG2jyHGcWrVt9N0VH/Cq3fzSw1ROTpM3mzJrwX44W3XluP0OMAQvB7aHgl+IwBvHx18KcDAQO7tmflxgGfdyucAmCyl01cCYA6Ji76wC83xOZxvq/u2/uNih6MdRwhVVnXl/vt3dj9OI9s+3YpjiFFX8Gt/u/YbIbwas1/7Qno/tcVxiPCzz9jG6VXS08/Ynt7d7ctPftyZ48jc17N6XclfT92ffqP4iyC10umLB30a5DSXrQ986dTaYXeOPSm1qJeOfUKfqz0P8rqI1eo3zF8NonXC3++EDkH83Q6R83YYtsP39/wft+M0sSBxfVVDss+s3+lDkNMX7HJd+Gri2m4wPj69n7dFkDk/vOz/aVvO6VfjDG1fUO+nIPz+K9Tj8XGtOd9ct16Rn4/Pacgz1YDHfcWn/iHCcUEexdJAe3HVjw1yGlh31eKvr9tq/TzIsUF67Yz/0Ef9sUGOXz05CtK4tvdb+qEinbqpua43Pyww9FOI/g2Jw/QtiXPclqeJw/0bEuf01dLjxDkdndfr07oM8zZG/+fjc5o3pUZP78vY6YcJNU4fDL3e51RHz7WdafdbxOfnvNUKge77vnw85+V4utYFVK79E6qPh0aO3+jXzKCv+xwcmvHhInx6y9QHYST4PqDjY5OcPoDq+Fj4/koGQfTDKS/H29ZnX0D9YkvqPXfnfW77n7bEjqf8o0EuQ/zd56Hjsdm/J+/bGOyfjs1pcj1BB7pc+5pWjx8H2Gp8Cvv+me7ze3nGHLbsdLj9VfqGe/nTWmOPV/v5xT20NdxDf7qoxFD9hhtxffub0uO9/PMW4eNbYrzg3caU/3SA7fhRWn3J1fdvQX7KOzs/eeK1RD8k72kY9OMKcFpY6lmfzDHEsy6NX+zKs5Fy47Su1NORcjFj7eGepk7Vz7vZzudq7xgt4344zcbpHceFT1sOa32M06RDj8+Q40ujZ2fIcaVhU9qWX947nX7rQW2/9+305WesZ21yDvLwfPXvOF/9/fP18SPFqVl/cQf+rFnPQR4262jf0Kyjv9+sz8ae7F92fHyYGKfR0FSfdjDti9x9fPw9P5HU89U2tvOnJ5LTpLDj+m9eofy8J/YN5ew0Sd/jc+w0Sd/DcnYK8fCCd96VZ2d6u67+/ql+Dy35Q8/1dtH2jkw/PUfmtA2fHppmGHd7tcPpftgULPvZ2tax8d9siR2HB+DFPNGpYb/hfH1FefuEPcd4dsb+am+enrLtW07Z9g2n7Pn1dr2mGK0dTpR2/Ly8xmzRta/3/XOU0wPShYfXtr9FUvqdbWmyzQ43TttyOsw1QYRtY8d++tb1vCEd07L1U6McZ+54eMl4RWnfkYOnZ+mnOXiK8TQHz3vzNAfPb3Ce5uBpbN6zHPzFmYIgxNcpCY8zXmKiCN4XufnN9OG+TRZ32ha6vuPKQd9y1tI3nLX0DWctfctZS99y1tLbZ+25R5vq4LT9E5APPdqv7TidszVHGm9jq5q334ghVar3icV+M0ZdBcX1izG0Ph/78XOWr8aQr8ao9tAvtwc+uNYvt4fVvtiX22OP8dX22C/lX20P3CXZl9vDa1/8y+2xx/hqe3it1Oz25e2oF9LuX92OgaXdvtwee4wvb0d9az0ONej8PuzhZH7nIL3hG8XTZH7X6V1W04HxqnKMcnr7qvbf1GXS6zd25+EcfMcgTyc4PG/JwwkOz+8In3WYnF8zPhk1eQzxsM/l/Mb06W3IaSa/57chp4lOnt486+kVwcOvStp1ehX17LOSX8R49F3JL/bm4aclv4jy8NOQXww3qFloXm+xx6evtNtl3zBRySuKvn8Pb29PZfGrvXmaPDa+I3n8ev8e/jhqwbcv2vvhEPvpLUG7tr51+WzYwisInV+O1XVrn7Hg4+PEcUnRekuvJl8LYTWq+4e71t8LUSND+6db8YuBIPXNoFz7DedPLXpcAaP6gHlf8+WNIOOzIL8xNsYOZ9k4j0urnkreJ3D6uDunF1oidbMn+kO/+Mcgxzf9+ByzNfuGIPvnA/o7j+D4Wuw4qOz4PaVh1pP9dO0/HZzD7YDXx6G+nSQfR3K9Yjx7Bt+/QP5wz/mK8fZ96y+2A9OeDP48Rru+4e3rK8rbr19fMegbbo+Oqz0/vD06x3h2e3Tem4efiv4iyuPbo1PiEL7C+mFC7I+Jc1znkGr9J95252Mf2nFRPqpxC7zXEb9+Y18Y15sfqvxP+9K+YSTWPVn227dpv9iSh7dprX1HV2tr73e1Pv6Ehz7/hKe14/JNKNLNtw8APrzUOo6Cevj8eR6N9fTY9G8psL3/ocfm9WoPb/n8Ohyb4xF++r7kOEfv8wTs7z9rtfenDfzV3jw+Ub7jWavR9QefKFjrh+kw7PY4MWSrCzHvE3n8fLad5lj5nijP5kb5RYxHk6P8KsajudzPHSYPZ7H4VefNs7uTX3XxPfiy+RchnnzbfO4zfbhCxi+CPFtB5fzxW6t1R4iuz7+ga41Pz+RchREXvsffevertqG36/PxIO00rNNrMmUfn6+f0tpx8r+G5eDaXuFH/40og2tKsSHX/vmOf4xyONtfvcw1Z5SM04rjcpwI580v4F9vTeoka9I+PzanJ+mOFRSvQ4hjoz6cQusc5R6jWF/OvPircV4dMjVB/f5a/Dej9Ppi+4X85Sh15RvUxlejkGCaM9WvnrRes+MMFzqctI+jbEv//m4Ur9bd16n7vSjPZzr7Vfs+m0buV1vzdBK4X8Z5OA3c6+GLvqd19BtudvQbbnb07Zudt5dHOU4OVVNBNL32Trb2OIQ2fE23v1n6jRBeU522fSah3wkx6pD262pfCdEvTNp6bQtG/M5W/PDe42s7gq+cm7cv7UjDi6DWxte2gqqj8dVVz18KwXWL9LqSy6chXlt7+l77/bngqO6PXinytdbgq3ZlX4P4qw36tRBENaTk1U+xnZ/Dn4dg9G/sq8p9McT2uPlbIaqKE2n/UghGRw1vn0b/TgjZPhEbX2sL3Hq/cLwdQr92UBkrqLPL19qiPhN/dY587aBiyusX8tdCXJh7g754ULnegYt8aSua4xNz9/alEOPCxCr7B/Pj46KF1ylKx5SJXffBbM+3gzBXIfev7Qr6Mi+Sr4VAAR5fy5I2tg9b3L8YQhBivB1ifHUrttuUL6V7vy5Mz0b89lZ8PKj/8/V///lf/vL3f/rrv/7LP//7X/71b//2+sv/uoP9/S///L/++uf1f//Pf/ztX7b/+u////+X/+V//f0vf/3rX/7vP/2/v//rv/z5f//H3/98R7r/25+u9T//Y1yvno9Xksj//Ic/tfv/31OQDLvu/0/x3/X+76b3f7//QO8Fn17/E38Qf3G9zojX/4z/+V/3Jv9/"
6187
+ "bytecode": "H4sIAAAAAAAA/+29aWAcx3EozAUWi4u4r8VBgMQNkCAJHhB18BIlApBAAosblCgZEmEKEkRQOEiCNEmBpC7askmK8pG8Lz50JpasxPazE39OPidxEifSxo79Xhwr8mc7l+3EhxzZSZ6jxA+Udmdrpruqu2d6wFlh9cNeYqarquvu6uqe5EsXP/Tp6blDd995eGr8yOjM2J3TMwv/u+zi/CdvnBqfmBg/uGt0YuLysgsXvnRh4b+Llzgvv1ZfM//MrslD0zNPzD970/jU2N0zSfPPdR6aGTs4NvXUwMYNX165jP7PZx3vUxr/4OPW8cvU8MfGP987NjE6M35kTI2CZctYCEmqEF64wuoDozOjuyYPzxlTeeVxSBSA/vSV1y9mRv5/0PEUHtcwhaf7ZiYPX7yEUGwR0q5ndo+PTRxYAPvz6W8++/Ljn/ny8zPPPfPBvFezPpK5JuP0Qw/9tPwnFb/2+kNPWQfeZJD1iYEtQqoC1uE3G3i3fT553z2/88vJzPazLx199Vt7Z7MqRv+o6tFn9v3Jxaof3vmwdeBuY+AP3vfrp3NeuvSxlavDvwi0f+BHd77RmbLl1fB7Sv/4zJs/fP0J68B2Y+DX97357c/mPHH82OO/d2JLY8HoC09882f//Gcvfyrnje+9+MA3N1sHdji0o0618bnW8beA8W2bFKwgMv5WtfEM/V1q4xkV22Mwfv7p57+98/Hw+r9/M+P8ntFzxza+9xtDPz4efK7uH+99seKFPOvAvcbAv5vZdXGm5P62H6d99fHWj5ev+M7Pn/vs9/9tbmzLj77/g8+tesM6sNsYqMiqnujA4IaGaw9/+GuFrzVW/+2OL72w9nLpz2tveO13Oz7++i///D84A0NqMmZ41Ks23m8d36c2Ptk6vl/JmhkVGVAazmAfVBrOMG9IIG5f9Id14LDd+BIZPyKpZynWgfvAQN/Z6ukPpT/u2/NHZ1o+uzzjj36486M37gq/fO58Vc4LH7UOvC06sPmG9NefOX/qoWXffe5f3v9vzV/c0ZJXuTNv7f/69b8uPzR1W+nr1oG3q021wjp+PxBRqzqn7lAazujXnZKMZga+S3Igo1OjavxiJHyX2ngmPt6tNj7NOv6A2vh06/gxtfEZ1vHvVhufaR1/UG38cuv4e9TGZ1nHjyu5pJXW4fcqDW+xDr9Pafh66/AJpeGt1uH3q/Fuh3X8ISX0O63DJ5WG32wdflhp+G7r8AeUhu+1Dp9SGn6ndfi00vBR6/AZpeF3WYfPKg2/2zr8iNLwA9bhR5WGj1mHH1Ma/m7r8Dml4Qetw48rDb/HOvyE0vBx6/D3KA2/zzr8pNLwCevwU0rD77cOP600/JB1+CsPKo2fZMbPK40/zIw/ozR+ihl/Vmn8NDP+nNL4GWb8Q0rjZ5nxDyuNP8KMf0Rp/DFm/KNK4+eY8Y8pjT/BjD+vNP4kM/69kjnqB5mR75Mc+flne8dmZqcORcpU4bJ75z+5e3JqbPzgoSt/ePJ3Z2fGJ8Zn5trHZgbe/rWAaGbs2MyT8y/uGbt/cmpu54EDU2PT07CmhD1JQp8ko0/86JOUJ+ef7Ru///CEOSHl/LFtU/SPb3OF+teFC2ydLaAkxp75p/ZMHgFFttRY2ZQBnaaWUK1YqPuOHxqdmlsY1H34SQPwUwvceXvyUUwAw4udhw68XdGzIE9VLV+ZkcdQGOjZOSdZuZEOSXtmoSA5NcZ/GsDQpbPo0mPoOCCNLEIzwAX/rhniMe0kPuj9SZ/SDfCEboCndQOc0w1w3PNC0W99Z70PcdrzinPU85p4xPPuQb/ezMZBHHh4CcbnhRWFJZ1Ji6VcsqmZgQdNzNI0JWacaabF0MsPShUOyqAxwSXFS5ElxU1jd80e7Jo8eOHCZWuOHxl40/xvdoyNHt45NTU6B6VRgbw/zH8/Y9llZlGwkMjPP/P2ixd5Dyv4awvrkLfXDMvME/xcZIK7x2buvqd/9ODBsQML05y+cOEiQvcuCzw2ZcYXEBmq24vKC4gMXE/TNelpBmmOJuZ+OsLcrsnRA7tGD0/PTiwYKrZETEUUwneJI/NWRLq+J+SXrVGBIn/veEJmIWpROSvTl6vuX1i0KStKzTLrk2zIOcuzHCgay7PcWMGCr17LrOq1DE4nWno4HIHLvsNQmgGJtjzLhEQvwLYseWMwIlx/8W2K3/pH9+HL0BHumZ3gDs1k4GZgRiFDgfWVdPi2CRheWVAOPkyQSyUkrNEDFcahB2LmnKmGtgBDm8mizYTztohhOXyGgMz6VNeCx+m/Z/TQzQ/Mjk5Mo9CXzz97y+z9hzvfDX3DK3/MKsbyKCO6MZzL2Wksj3Hv6StoLr7yB6wR40rlkMESSpWJK1WGJqXiSDeDUCpFx56vJA0wbyYegGcIyGxSqZabggujVNmvfI1VqiyhUmWx08hilOpl1vvjSqXI4J3qSrUcV6pMTUq1nOcycKXKUt2xV5EGmDeeSizHQOaQSpUFgbFKlfPKt1mlyhYqVTY7jWxGqf6GUh2ZLYCjaM7F0cps1f4rZa3MxrUyS5NWZpPGiueS2awQwVN0CyCHRZdDpDY54oqAbYgP6oY4qxvgUe1zPut9iCd0AzytG+CcboDjugGe9L6xeJiJEgHQK7r9yjndEI97Xrn1z3l66XmIVx7TDfE+7SSeZ3NTPBnLcbYGk0jGcvBkLFtTMpZDJrnMnHPV0OZhaHNZtLlw3hYx5MFnCMh8comQC4GxS4T8sK+eVYw84Rohj51HnnWNEPatmn/6Sg2a7/IzNGlxBsG/HEKNHYpUQo1zcTXO0aTGuTSvrGjzVA/TqYgfzNsihnz4DAFZQKpxHgTGqnFB2NfGaka+UI3z2Xnks2rcihbzfY5ZfLO6WuXhapWrSa3yeG4KV6t8NbQ3KYkDzNsihgL4DAFZSKpVPgTGqlVh2LeLVasCoVoVsPMoYNVqG6U8MiWUZayd4XpZoCQj38/U9bIA18t8TXpZQNorM+dCtTm/jioRi7YQztsihiL4DAFZTOplIQTG6mVx2Bdi9bJIwhyK2JkUsZrZxVoarlhqTF52o7piFeKKVaBJsQpJi2XmXOSsSk6LA8zbIoZi+AwBWUIqVhEExipWSdh3B6tYxUKHV8zOo5hVqxEmHQR6nqlkfHg6mAlfI5RVxsH2U5KXAfAAK0HckErUlKpV3ZBKcEMq1mRIJaQmWLgRhKQxkgxKaHuQRRcklCMorL3YBXhUN8Bx3QBndQM8qRvgtG6AJ3QDPOV5tTmiG+CUboD4PoYyROCVdRN5RjvEc573EHil0jNuVrtFn/a+nBeqs17XnBMedhJuzVm/5jy4FH3OOc/7HO+ndomQ6lnJaLfpY96f8yNLMNPRP2l2U7aEKB4E1dbv29SLB0G8eFCiqXjAYVUJWjwohaQxbARP0eJBKYuulJBMqTDC2AV4VDfAcc9P+YRugKd1A8Sji2ekgruxhJyvopzxBZtnNOeI9jk/6HmniGfJnhHLae+LJQ7c4hHPq+Ip78v5tPfNzwXPfUY3xGnvT9r72af+OR9fgnKOg/QTX0W/g3OxE4lEJ5HoeMPpjHtYFY2fRdqJfMj70eCM/qjPdC1qqy6u0lpdLHKvugh6H5k5l6qhXakkIDBvixjK4DMEZDnZ41cKgbE9fuXhpH5WLwBatHm0jJ1JWYyBkS6/pG6my8+FXaUigoNBQpEVhZqsrsiluCIHNSlyKckrXJ9KSbEX2RM7DZKp2eOiKVPjTo66aMpw0ZRqEk0Z7Y2taMvV0GajDoFFWw7nbRFDBXyGgFxB+phyCIz1MSvCSfezmlER5QTaR1zBzqOC9TD3UMoj05bbSUlCBsB1LIAKJQB7WAArlAD0sQAqlQC0swCqlAAMswBWKgG4iQWwSgkAc0yhmnAvNWqmtlfdvdTg7qVak3upYe2jGvX8tZA0xhhrJXxALYuulvD8tcLVnV2A+EWqdiFO6wZ4UjfAE7oBHtENcFw3wFO6AR7VrohnvQ9Ru2rPeVcsIH57Xbm12zNeoHrnGjReqvGQRXtfLsc973P0R/yjnpfK9BLUxJOeF/N0wuPoIPEx/TG/QjeRk/ppXOFlkJFnh/TTWOld0USeTcWB8lTpBxnwrvJEnj2gf9Ir40DWK72r4HHlcAvjwDuujAMaPcxH9xR8lefD1gPaE7Pzns8dj3m+FKN90aF9WaS9+LuwirHsN9REH3F2X2qdbXRGARO7L7X47kuNpt0XDqtqAKusaOtUP0KEoK1j0dbBeVvEUA+fISAbyM3dOgiM3dxtCCevYhWjPsoJdHO3np1HfYx9kc3d5ApKeWR2BddYGVJH6GW9mozWqOtlPa6XdZr0sp6nIAZjLdxogKQxUmyIjjuMqg6LrIHwF8YzvEHTNsSHdEM8rRvgEd0Ax3UDPOF5HuKVYLsQp3UDPOl5qXhfEU/pBnhUuyKe9T5E7ao953mxaNfEY9rFfMb7wfSU58WCb3LYhviI9yf9mG6I92kn8bw2iM+LFy7v2LxpzvuJ2IPed4zeT2fnmOMRoP5YpKlKUwRfY9pCtS2HbXwTg1gO17q3HK4lyjQNmr6JwVUIMG+LGBrhMwRkE1mmaYDA2DJNUzj5cVYzAFr0nE8jO5NGtlDzKKPIMpUnughE1ebr3/H4mEIebqiKSpuibqgNuKHWazLUBpJXuL00kGpda0+t3wkgrQrrQkZVC197p+NjSqe4QTa6/oXaRtwgGzQZZCPJKws3miBpDB/BU7TlpIlF10SIpkmcNtqG+KBuiLO6AR7VPuez3od4QjfA07oBzukGOK5dKvPetz/tcsY3DexCnNZO4jnPu4hxz5uffse9FMVyyvuRgC2bgMw3TVMynWZKafAUT6YNoZcF0KQEYJAF0KwEoNuasa0m8tc1ainkWfX8dQ2ev67WlL+uYcW9Gs1fWyBpjCqAp+jx6BYWXQuhXS1CL2gXIB7t7EKc1g3wpG6AJ3QDPKIb4Lh2Mc9rh3jG82KJA93GUwa7EI96Xhf1+7AHE2JxDvCU56eMp4begajdQ8x5VyzGz3LPK7f3k5KTiRwikUMkglUih0jkEIkcYunkEK4x0fu6jR9C8ZByn/O8XI57P0A/vPQiQRxkOdrnfNLzYp5OeBwdJD6mfwkd0A+yUT/IMv0gm3RL55B+Ggt10zipG+CUboAP6Odic0IwWiZdoR/kCv0gK+OAky443VVx4M7K4sBZeNiyjZ9VcTDtKS/nFe6JZkUc0NgYB8mUC9Ne6fnc53AcuNxJL4cuF2TtnmVPxUESMOndiB1dE5/3/LL9mOc3G7XXe7RXpLR3urF3wa2JPuK0mraodXtmWqiNAjZoNTABDGir6RpNraYcVq2JscrCjbWQNIaNa6Pj0JvT1rLI1hJySQBMAPQYQKb3GncPa9UstFbdPazF3UOLJvewlvSkFm6sg6QxXARP0VLHOhbdOkIwxjO8d8c2xAd1Q5zVDfCo9jmf9T7EE7oBntYNcE43wHHtUpnXDXE6Dgz6nOdVUTsXT3peFU9732/rV5yjS9BD6Ddo7eaHd8Z4xy0uQV085f2khD3UC1bKaZpWIWnwNWZhjq9D1qktBZ5QX4esw9chazWtQ9aRvLJwYz0kjeEjeIoWwtez6NYTolkvDGd2AeI+yS7Ead0AT+oGeEI3wCO6AY5rF/O8dohnPC+WONBtPN7ahXjU87qo34c9mBCLc4CnPD9lPK/yDkTtHmLOu2IxfpZ7Xrm9n5ScXII5xLT3kxL9keDE0tPtRAqxNFKIxCojscpIpLOJdDY+01nXmOh93cYPZ3tIuc95Xi7HvR8JHl56kSAOwqn2OZ/0vJinEx5HB4mP6a/mBHQTeUg/jY36QRbqB1kWB5xcpZvGKd0AH9A/6WYvq0/k2aR3BeOCq3DTssv0g2yKA8tekhpZoR/kCv0gK5emba+KA6spi4Pw5WHLNn5WxcG0p7wcvtwTzYo4oLExDmK2C9Ne6fls/HAcuNxJL4cuF2TtnmVPxUESMOndiB2t0pz3fCHpmOf3WbVXILXXSLW3AbPXBTRHHznvw8+wUBsFbNBqYAIY0D78Zvf68JtjrFLsw4+M69YtlwTABEBbAK2neMCR9VoFi6DODNXC15jz87j3WK9mwGvUvcd63Hus0+Q91pO8snCjFZLG8LFVIlFrZdG1EqJpFcZGuwDxvS+7EGe1k/igdogP64Z4VDuJZzxP4hHdAMe1M/Ex3RDv007iec9z8XQcGPQ57xv0Wc8L+pj3nZh+1TnlebFMe9/Pzntfc054P4mYXoJucdzz9hwHkUA/RO2qOKdfLExJB1+itqqtEleoL1Fb8SXqek1L1FayeGDhhomdDBfBU3SzfgOLbgMhmA1i120b4oO6Ic7qBnhU+5zPeh/iCd0AT+sGOKcb4Lh2qcx73/60yxlPnexCnNZO4jnPu4hx7zuxhz1P4mnvK452OZ/yfmhhry0DVfU0TblkGnyNKfHj2eQGtYTuYfVscgOeTbZqyiY3kLyycGMjJI3hI3iKNuRsZNFtJESzUWifdgHiPskuxGndAE/qBnhCN8AjugGOaxfzvHaIZzwvljjQbTw82oV41PO6eNT7cj7qfb99zvNyPuV9xTnrfYjaXc6cd8Vi/Cz3vHJ7P8s56XkeJpKSRFKSSEoSSUkiKUkkJUtQLN7Xbfw2Kw8pt/d9znHvR3zvByvvZ/BxoIknPS/m6YTH0UHiY/rX5AH9IBv1gyzTD7JJt3QO6aexUDeNk7oBTnmXQvckrZ2LD8SB6kzpp7FCP8gV+kFWxgEnXfDiq+LAP5YtRUN0wUNWLU3/0xgHolkRBzQ2LqmYbfxc6flk6nAcuNxJL4cuF2TtnmVPxUES4OHUObrIPu/5OsAxz2+Hai8gaS9xaW/uYy8jKow+4nTXlqk1uGZZqI0CNmg1MAEMaHdtoabu2jKWVYWAVVa05Wpol2Noy1m05XDeFjFUSASvFZ/qGpue7r9n9NDND8yOTkyj0Cvmn71l9v7Dne8GCFaE04ZYxaiIcgK9J6eCnUdFjH1PX8FzMZzWSynPJwa2CPk4YGVIOaGXFWoyCqrrZQWul+Wa9LKCpyAGYy3cWAFJY6S4QkZ5WHQrCI9hPDutG+B7PE8hfshRGaLxc7nnZz2uG+Ap7XI5qxvinOeZiG/42Ib4qHaI87ohHvW8XE7oBnjE+6r4mG6I92kn8bw1cJZpSyN839WaRpS5l0aUEentCrU5f0dJQmDeFjFUwmcIyFVkersCAmPT21XhtA+zigHQ5mFoK9mZVLIJ7hPMKUiQsa+xlzwz5K4hOFhBKLKaUJf51RV5Ba7IFZoUeQXJK1yfVvDELlrV0EJfVIBMpo/LudLZ2lRCzpW4nFdoknMl7dutaFepoc1EvQuLdhWct0UMjfAZArKJdFirIDDWYTWF0z7D6kWjUNEa2Xk0su7qU4y7AhZTqkmJS+FrhLLKrP+/R0leBsDHWACNSgCaWABNSgB+lzqeLgPgcyyAjUoA5lkAm5QA7GcBbFYC0MgCaFMCsJEFcI0SgB+wALYoAehgAVyrBOD3WADXKQG4yAK4XgnALhbADUoAfsEC2KoE4AkWwDYlAK+zAHaoRYKVLIQb1SAkY35yJ+snd0AslliyPRZolQPyTjwgb9cUkDmz2U54/Z1w0vIgd8qCZKS2U5PUdvDmCbBYpGYmiiVZtIZV5oGoEGAX4AO6AeInHe3LvVI3kRP6aVylH2SjfpBN+kEGdAtnUj+NG/SD3BgXIKv0g9ykH+Rm/SDb9IO8Rj/ILdq976P6ibxWO5Hz+om8Tj/I670cyJ6P5e7aQW7VD3KbfpB5XgYZedbPVFoCsZ81GLYAiy1AYKuBrzEJcuCZ3eNjEwcWMuOfT3/z2Zcf/8yXn5957pkP5r2a9ZHMNRmnH3rop+U/qfi11x962nFFcYiFUKUGocBxhS+fKvRIQcijKj1SEG7ilHoMIWz7fPK+e37nl5OZ7WdfOvrqt/bOZlWM/lHVo8/s+5OLVT+88xGqyCOFfCdV5ZHa1VnGKfMY5Cvzrk2N/CqqwiNF/utUieepgdY2IQ1pVI1HCkIbVeSRgnANp0gTFULtX38h9d9/6wP+T//N65NHf9H8xF+0P/4Hn7zhUrhl24N9f//Bn+yhyjN2iyPb1CBkOy3QLOwtskt9Qwt/8L5fP53z0qWPrVwd/kWg/QM/uvONzpQtr4bfU/rHZ9784euXObUdSQW+nh26S23mhSyEmwzkX9/35rc/m/PE8WOP/96JLY0Foy888c2f/fOfvfypnDe+9+ID3+Rozc1ydC/YbKS2n76OiTigXpSKRZyk56ObFbDSNAyBsJsUSeHcbgPvRmuFxEdsVSWp8bRUvTKWhFfGfJoqY0lslPahW5J+SBoTwf3iLgo/i81P5AR+0PSgGeK4dhLndUM8qhvgad0Aj+gGeMLzU55bgoo4rZ3EM9ohnvO8Kmrn4knPq6J268Pblr2jONrdNnugxU9kJSlqiUGSelaSgmclfk1ZSQrJqk/uXuDU+MFDu0YnJp789OzM+MT4zNyVfHHX6OHp2YkFJr64Z+z+yam5BSBTCxkhzFp+s2Ns9PDOqanROcDPFN+l+Wf7xu8/PDEGdnBb5595+8WL0Ydv57G+J1D4ydYnEZpvRv7e8YQZNP9fJqayEk9VXdhbtOmmKDXLrE9uhpyzPNsNRWN51m6o7nv56rXMql7L4HSeviLYi+GywxG47DsMpSmQaMuzACR6AbYliY/BiHD9xbcpfusf3YcvQwPeMzvBHRpg4KZgRiFDQcLcobnj4kxhvWYAMtbWmse5S3op4pJuGrtr9mDX5MELFy4j9n8T3x8lBTF/gfmvyxz/tYXxX/BhEPEufJdHrItlFQqPdL7YUj2h+YlAlwh0SybQWV8xFZhoZUgyiorzTz//7Z2Ph9f//ZsZ5/eMnju28b3fGPrx8eBzdf9474sVL+Qbxb2PMUXFFOiDsG0sc1GRP2+2rBgI5/yTgflpsyV/PmLJN85O3Nc7NjM1PnZkbCFMTF+4oG5we5C/75UyOH6+kUR4Xb/rXtePe90kTV6XsxJL0uF1fXyv63fb6+510+sGFsPr+givm6TV6wbseF0/4XVTKK8L9VrkdZPMXteUiMg7SgkKEklWIslKJFlLJsnCKXj27UNdXGeRxElq/OH0v3LsIxbytf6p0cMXL3GdQSIVSaQiiVRkyaQihPsydzi4XIACBBArzb+b2XVxpuT+th+nffXx1o+Xr/jOz5/77Pf/bW5sy4++/4PPrfq5Yxc16Ni5Dhhrzh9TTZuoO0oVtdAEOGEhNZz+hoH3Z2an9a26iNcaHJ0YPzA6M3bzoQdmx2bHDuydnBmb3nnowM1Hxg7N2Fr67kb+3q6w9H12Yf09O4XeiFz4VN/sXUgPawc2qIh3ZtoYRHKyKJz+74ZTOE8qaqHVIoqIUFnseqgsxkNlkaZQWcyGyiIdoTLAD5XFcR0qg4sRKgNEqCzSGiqDdkJlMREqS6hQCTxlsShUFplDZQCisMItxoxChgLrK0VYXqRaySw02ROnkpmRa3D/cYrSQjGvFiSMLHkY+eDeTFG3h9S9WRD3ZiWavFmQ9WYlOrxZMd+bBQdVvNmggjcDyoM98dvwaKwiFoczmqJpRkYZk94A48pWCCHFRF6YDV8j8GVqwpcJX7MYRGp03H7rkzT0STqciuVZFrrpmhN9wlzckwtJtTzLQ+Hlx+BFpfcVjGHVhFV0MCKoAgNxr1PNlDmqoiDv5KhZdTjjBoPQtQzOEgk1KyFtm1KzEgpfpiZ8mfA1JmZiyhQklKkUFX4ZqkzlhDJVoPAqWWX6/6zvVBOxo0Z1RaYcO2rw2FGtKXbUsPKuBvK2oq1VXUMiaGtZtLVw3hYx1MFnCMh68n6pWgiMtdT6cEYnq911MQ1BkNax86iLsS+qVkxKXKOz5FADRWdBVBXT/igxe1GHiSR1wDWmcJ1czjcM4CHKsdYQ1uWcDdVgqhYaAIcyFAyhhsCWQUzLLelmoJltTLr7UYtDpAuCwiqOdGvDOV80gL+L4azJaAm2Z2tie/ZVYHs26400IqqLyRBhUQPpK1cxbK8HQ5k1VhN8j1w3NoBByLrRhIkqsXIUFb1np0GsqPUcRW0I53zcAD5jW1HrmId10MVgsYcXBoCIsKmSIatONOGME8Zi+gIaoBBu1tNOvS6cccoA/oSCZlaBhSd/UBM7qAHSRfC/SYGQemFxlb6Q0qTbvAspMx4C3OdEI2iEuIUWKKhUPeFGCuBrFuur1+mvTLSLzfz9Dsx8I9/MzxvALzKcJTWpHi4T9LA98yqwnVniNOlE1CSMR6tJA97IsL0ZDGVCSAt8j4xHq8EgJB6ZMCnGo0+g0xUrajNHUVeHcyYN4M9Qa3FSUZsoFa+252PRa7WaSY/YYFISZsLN4YwXxPEIM/smOh4tBLuXxPGo2U484qhzsyT/V2Mwq1iYTcJ4RHO/yTQnHvc/JxmPqtBCzR1EoaaWLdQ8H8ufmFINCN94saaELdbg7rTSFFGxgk0qOpc0OGG8uhlkq5tgykx9E0wZr3CWsxVOMGWmxgmmHKty8vbKM152vD9LtVDhhWMdgSY19jMZ1UgdiIpjzY74zpBzNCXEfEqJMmKZ6xvqxGfjSt37bFypji2oIH8LqiyuN9QrFmNDPUhsqJdq3VCvsLOhXgaJxiMEu6EOQlKZaJO41LyhHoQorHDLMKOQocD6Sil8W2ZDPSjeUC/lhIBgOONHBvc/iO8PM61HpcJspEyu9YhHVVk443XQeoQheJaX5hRCzvFAZyYbQfENBW9UKJxwOZl+FUJNYekqD2f8O0i/rPpQrqC0ZWhnQzlKOk/AgHRkWIXsjHlCrghn/JdYyKUsZeVCSVTIqV45l6pMH6SKF3h2TR6eiwQeznFqPDTAeKrct1B6WeEQHTeMRLT+iv7j7TtBkXYFUe0qMnPrs8bJ84mxmTGDX5ds8Ct4SeXIYJDIlUpdz5VK8VwpqClXKmW9UzCWK+FxspTNOctM4kN6SEl0Jpl/JiLzt9AYIreTPXGztiIfnT1JXhiwxBXEfjJdxBdLaVwfMitfjGS6iEimg1qT6XI7yXQpkUyXUck0iByl4shhSqaLIAr5/FeCAiLfLpJKpovEyXSQ2zGf2QC6U2VbTwGCgIvr/rzEun8BXa6Kq8rV0noamU2nDmdV5+GV//vUnVWdYS4fkXdWRbLOCq8KtBN14w6ibtzJtkcZP29hm5OMn7eyrSbGzy7rM9BpsIfvZW503IdOVW2DzI4F4Hi6QpZYRBQ70+FrBL5cTfhyiVhMnVYKup4PBt0/rRQkeYXnAkHBRyhZ5UwLZ/6ZsdAMsefVcUYrnvVvU2d0Ks7ogCZGp5LfmcD3k1JZRhud9IcxZGkssjTCAoxn+MWltiE+pBviad0Aj+gGOO75KeuXs/Y5z3p/zqe0kzivG+JJ3QCPap/zOd0QT3hfc0573vxOep+Jc9pJPOt5sRyLg4h/xvNc1O9np73PxThwtNOe92JLMbXTrzhHvSsW4+dy76cl2uVy3Pue+5znfc6c95n4mHaI55lCHWjBLFKoiaQS6Irga7bKLPLTxq7scXxpfupmtUvz02xcmr9Z7dL82F1cCltMitsNG9SLcnXubzHVkVtMzJkbQBp1iOZ6TQeA6sUx3S7EU9pJnNcN8aRugEe1z/mcbognvK85p3UDHPe84uhn4pznmXjM+0zEtxY8o9tHEnLWAPGM57moP/pNe5+LcRD+pj0fW8Y978NcMOhznk/t9InF+Lnc+8midrkc977nPud5n+P9ZBEvKNmGeJ66q6VIYT1fJ1dQqrNXIpCftmsFpbpWtYJSvY2CUqtaQYnX/LX8GraGVKSvM5HtFAS1/GpN9c5q+BqBL10TvnRJfGs04VsDX2Na0gymy1byqMIxwIm3XDpHZABjL+4rldCPUtL4Kf0oRUFyP10wFnsBvYSyLnKo9UpTOkvOfu5NW8v3RNuoK/zoWSfjoprl3ZJUAxiAbpaA0nBOyADeS4kgjVSSUtJ311CA0zXJNl1GtixI0M2dhQqWPCtbY6KPJ+PbxVfj1Ii0rlRJ62oEWvcuJa27S5JqntZlcQioCedsNICPMcqRJat1WaTWlVIeOVeTR86VjAAlVKN8lqZG+Sz42tX5lEMucf4kjz1/YvzMtz7rIEJdZ+wnc/POLbGfzM07t8Z+MjfvdMV+Mnck7YEstjzbi5tolF3EIRrjexQVqXoO0Zi/R2FRuTwIA1G5PFbl8uQy9DwUJPeyB3ANG+sh8sLZxieIlj/M3pJkZBZOtXyj+rYncegj371DH/kxIeDnmDiHPsDTlRg6zo1lVYTMq4QFDrsA8QZPuxBntZP4oHaID+uGeFQ7iWc8T+IR3QDHtTPxMd0Q79NO4nnPc/F0HBj0Oe8b9FnPC/pYHAj6jPedzrxuiNPe56J+AzzheS6eTHjuJeG59YnF+Lnc++sC7XI57n3Pfc7zPmduCebcEy7k3NY6jenSI/kSQVCuThOkLlkq4d/LV0VUXBQ/hZasXnEhPoVW5d6n0KrQiovpi2QMq+sgY/XsgwOQlfZqRsigSnLaevfBgxuQ90P89yuT1PfBN6jsgycxhpcf+4luOeaTfKa2HPMpfFma8GVJ4kvXhC9dEl+uJny5kviKNOErksS3QhO+FSZ8FkcN8JXyHXUes3uXhV4BjN07DbYJSrj3TmcNGcBLqE2vVOrQWTH7rQU8xuS4fpVTDh5jsjTFmBxWE7IQZ6t0X14633/m6LraMw19kurm5Z55i7FfmU7sV2Zpvdwzz87lnjmQaPwbI+zlnsAt54gu98wyX+6ZDlFY4eZgZiFDgfWVLPi2zOWe6eLLPXn9BunhrFbxTfnp7HXlhnmi15XnyF1XzqMqJ5y1WXyJeo7opvx0XLC5V9QRWmuEsDv51NxiePVrFVyY+HL9PNmr5nO4O8FZW4nL9fMU9DzHzI5cCAUdlIcOCmDzDfAUCcwXSxRk2cRTpvxw1k1iZcpiKQsIxZcvp+IBPlUdmm7kx4NQDvokD32SpetG/itGY1HJALBNkUqmU9rl6EZ+nF/pSjfypxNZWZbrWVkWnpWla8rKsliXlo6u/E3hj8ndc6ScA4XO0Y38VJ7GzRADNu/kj91HsNg9uwS+LE34siTxudK3SuDL1YQvVxJfkSZ8RfA1xe5lYzV7P7d3OWtc/FnItz4DhUDtU6jlFglradwSIsFrcDd1jQIh4q831dmhnv6KdRX12ex6O9SHrir1pZB6prqLR7x61yNePR7x6jRFvHqy+Gy/DlGFnWdyqw4RoXm3m1WIpsWoQlQRVYg6rVWIJjtViHpItOVZAyTamgoD/1cvSoXrzFWIKojCCrceMwoZCqyvmByFCRhKa705bd9JSBLsnCmflmJYrQ1UE+HjmtU0vkjdxzXjPq5Jk4/jfA26CeXGakgak8Cshh4IQcf5jvRqIicCIMv0gyzXD7JCP8hKbSAjz7oTABMAEwATABcJINVS18Q+NaL3KLUSzFLo1KiUq2JUUvhWaMK3Ar7GfITJft7CIDLRbp1YkwQjm8jMgGJkk/iobNYrKFr0qGwExhinxNEUzt5tgP4qNd1KczafbFLFSJIVeeZXS7GWR1cMNcPW+TdHQaYoWJcx6N1kepBPir5ZQhTfQlVbJIp3c0RRGc5eZ4B+jWrZa1AwKYAS0xtyVyhosjKO/mR9D26e4URXqeotEMYuPuZ/BMU5TDmDDpWzCFfOJqFy0msEFY0GXKF0ukahd69SWOarITWj0qRknCP4Wa+LbyWoFJ/v38W1law3JITf5J7wK4XCryHjm7zG1JiU2Sp8oBoql1IEHQo/CNFyhf/fYuFj7WGltPCD4WyfhPAr3RN+0I7wg0LhN5HC59yAAsJzjkJMKHUofMFn/mrC2cvFwi+15/ZLw9k5V9ftl9oRfqlD4VeSwq8llwqlWoNClZOgUBXOLgeqwVnCgOHyVJe6vr9dj3ScF9rZ3y5UmFqdUCClpEDqaIEsmFM10fwEP/fJ794IEnXeStf3sirxOm9QU523kvTk+E0ZlfZsspQOHFq129jd4up2qc3eDXndzovpNtNkDmYfazMnygwNCn7VtKbBsnDZ9KeJY1Wrw9mbxBGQWrqiYaKFV02CzMJZ1MI8XA11E0OIxOkmOk63hLOvl4jTq92L0y3COL2W5WWLUADr2EFrTSsOq9Wvk/UJLXZcUAfrkAE6YaWimT4xYGeFGqSqSKuZh6a1LaYmze6VmFYL1aSFLOCq6BbgEaMItBJVQtwqnk5CTZpAbZGJ4T54+E3I5wYrmiQiPUhWk+Hd6ulBMp4eJGlKD5JZpieh6YEfksbI2B8ddwhD5meR+YnKsvFsXDdA/NIPuxCntZN4RjvEc7ohnvA8F096XhVPaxfzg95XnKPaAAJHr3vWZz2vO7Pe151T3nfdJ72r3fHjufVrzmnPm99J7zNxzvNMPOJ51T6SyCG86ML0LwrOeD8QaM9J8E8Qescrel91Tiy94DftfSf2aMJxe9H64sArahf0jOeZ6H0X5v1c9lgcmPNDnpez9/Pte72fy2r32se9X4LwfhjQT+LxpehyTi49l3Pa+1nYw94n8Yzn5azdnvVvTM57H+LRRTM/H/i4YOTd/dEfd3D6inxXvuzntJXgALsxH0HJaVNIUYWt3KaQYiUnBVKGtjBAwto24YR9suhL+2+q+dXtmAhSWJmmxGSKDAqQfQ8ME1PVmHgX2gkUMD/xs1yMPEmByKPdPxMsZQFVylS4CLAwtmHwuNueYKJfQgaqAuyBuE1H5dvZpsMnyLB62Y+X1nHsuT6cs4U4QAbu4UCvw1L8wng6fA0DKT6W1MifzDbxhVENLL3pQnvjNHeZmuUJxjUxD8FI9MIJ7Fie0ZDOP06ac7NE12eDw3a+TI8dyqsjD+XVs0/TIG7maRG0HoSgGpvNfjXgm7t27mar452+cOojSoU+YlDOR1Rr8hHVjnxEBO4B/lRut+Uhqt85HuLuhIfQ6CFsnvrEPUSp+FvwqxHJg28Db+Qei8iZEit/C0+PRdyn261LqJMPa5mHLVAy1oemPm2EmnUIf9ZG58G7bXJdOOe4obVHUctocWgZO3HLWCe0jPUsm9cJZdPKDloPecJodyuUk7y5rY1pN6ZaZBRaC9HyTrTkPESdXayHPKFOa6rMqQS12BIIMGKxGZ+gHHm1QuQogRAwN0lys8TkPBluNodzPiA+ItUgPnyUwgHeEM65JHY0HDdf5dDNk4F0NXUwpt61SwxudOt6FZtn1EpY42gxBX7CsJoVMiYp02kwTOf9qjoIoKzi6+DTYh3kmF6tkL/c/IQIdg2QgYQO1lCHs+pUkwEwtpGfDLwgEe6can++x05+NZMnvxoU9LtZGO7om32aTfkVL1H/PBXuaiBPmKd19uakaLMPMApbKxHu6shwV2tvCVsC585d9/2hONzVoisqMtzVhnO+LHY19XbCXQNv3QzoIvjfwDw0fdUQM/g6hwZfgBt8vdDgG8gyga2Fd4nqzR0y957X2jSdWsN09mOgq60bFR1QXxQVF9RR/HzF/aZYceuIydq8r72aUlx2zVcto7jVDhV3EFfcOqHiCm5ct2PcVeT1LLTi1om1i3VCHcRtGtWG4u61vpVK7N2luX4DSRq+P5eq6YhxGsuzVCBb27fpB/j3fqTpuk0/Gblv5GY3b9PPWozb9APEbfqpWm/Tz7Jzm34aJJr52hIgmviwVJroNv1U82368JtUDNw0zChkKLC+kgrflvmmXwAJTqYdYjY4BcI5sTvsHqcoTRHzaie8zX8DoUlphDdT/CBVnro3S8e9WZomb5bOerM0F71Zeq6KN8tV8GZAefj+rFOHPyu+2v4sDfdn71P3Z8WGRX1E3p+lyvoz5nu/gGj8O2sdxHdPO4mbqW6xPsuP/bzV+gx8XbHL+qwo9nMPxxGlhnPLHPetLDP6RVirDyRSqjhPqfa4mVKVvLNSqhLdKVWx+ylV8dVKqVBa08wpTRIhyQDhTRTDW7K6NynGvUlAkzcpZr1JIOZN8GpMMbuGLoG2jqArIeshFEj0C4+55Awc3TqZTNxHyXWWuUl27p1UaVRNFVbO08har8lc2HidFs7dTtypCkfz71QNeDX8BtwLv7jB5ELSGO3OhYxF0KUuonYbAZmr26l671QNEA3CqG6nkrqdQuv2Qi66h9oVMmWV0a/4fgwj5Vb2a+E+If1dcl8L93Go7wrn9oGvhTPUpxIJfBdhlHtcN8o9uFF2aTLKPawydenIiX18U9jjdk68y82cuFuN6T1WbepBc+IQ5JzlWS+xiOxzkhN328mJ90CiLc/2QqKtERDqtSgn7jLnxD6Iwgp3D2YUMhRYX+mCb8uUGX1ImfFWkz1xDjTlThBlRkDprWJemXLyAKFJewlvpqjbw+rerBv3Zns1ebNu1pvt1eHNkMDePaTizYbspMtd6JNKGx6NVcQ94dyHoiE79wizBwrsIQMNzWQIYcJtBnyNwJepCV8m4T6Nw2v7iUt7M9iDepFRw2z5wjjdxRQvAEGWZx0ovE4U3i2xJxHp5WWwrtowQlljxdm4J0akVWjdsZ/pCpbZPS91XIuZerfOaZlox5I/4+NvuWgTTw8SB4BCV3HMrydc1mcAf4LhbI8pWONsz9DE9oyrwPYMNhfSiCgUkyHCoj6WRT1QaFa298Lsyxq4++F7ZDLSBwYhyYgJkwmYWFGfRqcrVtRejqL2hcu2GMCfs62oIeZhCLoYhOZeVkQhKCJsquSaNySacO6nqDXvHlOui08Krb6FeJPCFTkXvuauxQCcYkX7PCo0saLxjgj0hstWGcC/wHB2r0tskHcOe2NlB9I14K6IHQicQYECKX2EGAvga9iqUYe+mGgX68tXsPn1i/WFd7ysP1yWYQB/meFsv8lb42zP1MT2zKvAdiahHNCJaEAYQYdYFvVDoVnZPgiGMkFvGL5HRtAhMAiJoCZMihH0NXS6YkUd5CjqULj0pwbw71ArH1JRBygVD2E0DwhEhAwbJCNov0lJmAkPhnP/Sdz9jpn9AB0m+sO5PxQ3EQ/S9QBpdR6U5P+QAiEDwpr3EMn9AZG65Up8iXcA4f4gzf2BcO4bYu4P2eH+MDtoCNJl5f4AdB0IzL08iTrj/qBpTjzu/5LKHkNwOJHj7FHIHvdCmdkyaFNyxTPovGWSKXEIrbTcQVRaeubxK5G6iVaRXqLa0sVWW/AI3Qmtmqm4QB9g1FxYNiWF87Ic7xZRnVt7iO9tOY/3oKkj2eWKEo5or05Ee2ObQ8TSNEtTDSULvkbg82vC54evYSDNbt7IdYChsXrcHc6rMk6noDfs9RB3w3VQ88d3xzi7EyHX91pD+O5Ej6bdiRCv0oQ1QPRC0hih98oInUUn/sojTaNpB+WlyA7KTWN3zR7smjx44cJlZPP1JmT7pBzbrOW/H/Jd5my3bGG2W+DDcmRrF2m5WGx79RC+bE34somY7VYNOVu8nsu71kHpvpFbui/9tgH8Bmo9R1go0wkj7uTpkeuESeGSnLcTdMIgCFIQfjRKzKgHXOzJzmk/n6bdjv09lS2xJecUmOxYHyZBESKzTKKvwbQqahd8DQMpitDd/Exzj60I3YVH6CTo+Ikyf5cCuh455pD4cjThy5HLQJy7JxPtzJqHcU/70IiMmKMBo5OjGaFw6csG6P2Uc+rB+co4p26hcwrJOaduLsl5d4mdEz+T7ZSYT4jnmrop17RA0UHWNfXqc029VDzO1xSP869CPM5frD1dYgemS2E3sVfOQfVK2PGs6n6Yqf7B2w8rfcIAfsydjdceTXuUPfA1OXcmF+gWLPFBcaCj1i4dNHOEPmMLd2De/FN7J81ddLGxVxwN2rUXMnc4JsGf6KBe86CQ1KDQFT/OtZDNrHPrU3NuTJGsP8rvZeyeFKDb8swoxvaoN7Eard01J+WbWHshXSjn+qyci0C+Ex/Sb5ZQL6QTF2tEyzhs7KaosyhDZMgI14nkfdRwIk+yYu9XE/sAuuG4jBUt4ICycPsN4X7SlnAHUYe9n10xwrAcYdVvXiVWhbzEqjskWYVq6oBZU7vgT1ZX/eG8vzSgvoBD9TNWE4pZDbb9wcsB/VQOuLDn8dsGZ/+NCSIgeJdgSBW/nlECX1OY/QC0NC5bX2a1eVD1GlmLKgwRNdthVdjKNVumX3YYUobWc4clP6HRtP76V76X85G/UNiqHBYWWEfoc5xWWvepMXErelHVyDz2CY3heewTGvuoT2iMqFKmwkWAhTEQg8fvsicYDkDgkLSDDNkDyXzoY4jw1b1oWAOZRNSn/ojyYsWavFixcy8W4nuxHzrOWjeh+SfHiw2pwlb2YkOsUwWUoV5sSNKLrb3m1XV/9o20exW6NIbsdGkUE15M0VesR73YMOrFhlAvNkJ5sWFVylS4CLAwBjIk9GK0YDgAxV7MPsiQPZCMFzOtBzAvdgfrxcDcYn6Mu9B5w3jhJyrZv+EmscpVN9rOuT+KMZ9Yhsc6rWKLXTA/Sx0BNpxdSVax9i1ePgvGdnN7t/L+02DRf+AEv7U5FZs8pBVdRMSCzH8Rb/Xjb0ktOpKI07O9UlIiWvjQWlg/r4VSqhbWzw1k+dkGQalURC7VFJFL4WvS5+C6IQDMXo3qZ/430fxDR+HXLCbYi/C5SC9C+9hM3z2jU2MH+sbunhqbwU9c9qBPBtAng2onLheM8jIK6xYbJz5D6JO+yzKU4XRSG0RFms5hFpl8uHfwBTXhC8LXnkKvkXBuBSbahRsS+SttbyyG+BuLuQboGnqDmGB6rSam1ybwXRV89Zrw1V8Fo6mXMJotmo0m+McG6OttdVWo7W11waChcu7VmASxW0geT+nSdI5K9jhMSBO+qzo/+UM7hoQEZ4Tkj6EYEHupoxWDlNL2aWrN6YOvEfgGNOEbkMS32PPrp07M1SrIdlDO0w8S9TDnntdEu9jz3ql67I7sgxoKB3/HAH0XxfTBJcP0IZ2IhmISFMv2EFpOtCPb4XDwIwboB2jZUgzqIWbVaceTqpwsHLBTagWBxcL0EaKSrbiVZOMi+X14tXpE0xmK21hujAAWwprAZyM1gZ1j060btty0UBCYOzxziX+04LZcdG297xJ5wCCXe8DgMh/NYC52azz//aFc/t+Hcy/bIEowhH5KmNeIpvg4Al+Ta9Y3XAzQQV6Pef5ZcftYH6FaHXR+QFzu0iN1jVzPU333TCBGfjdKMJcXHTQv+sL558W8GCB4ERIcT7fwwtSXIMOLvk90T1mVBsJXSZxAxbBMU2G3DL62SNXOMong+iHVM96gxryDu08QfNgA/ms02xev6Kt2hGeHRBLP3UPpoXqCBsL5TzlupVlG9IUPEmekjevC8p9R5YZA4D3h4DED+PO0wOVNSZwVDZBNxvL5VxeaFenrUvJ9106XktQevpOsaITew7ebFY2Efd9B86JhOi+6MlQhM+qnUPXxxwzkYlnWZVukac2PuqAo9BRLTTv8zzg8pYxvCzx10/gRtB+rB8+e9sxOWK1YPKyLPWU0LOG0o+cMEeYN85PALxqJz/+h5FWqSV6l8LVFKm6XunymLZZ24AXi7QpFbOo4yXb4GoFvSBM+mXYX2jq2SuRpfymZzvPCdoib0AcbDeB/RXUSdNHnAKVvbDEdUqcuK491BRBUdWvqbzBRxTsrm//PBkGvUcde6zQd+62Dr+E3tjCOXPELsjbuuvDjGUmSpozET/IKv+bHz/IRPN2tgE78JdwUkka9d134V6vddZFi466L1Yp3XbxtDMV/ybeWH7Oa2aVvidNFWWC3Jgvshq9hILmZRC8e6IDPrNaUKFTD1zCQvGVqErVM7QoXZDhOE3uIk7xO+7B71D0X505NQBnq1foke6U3/OTYxR03NL1pb5NXflFcDZTBSuuAGhP3oL3S/WivdB/aKz1A9Ur3q1KmwkWAhbNxGqH0Tk27730x72sLINPWbFrqeMWziUrlvVzHX5ArLg93EVcQdNBXqhBfXEmKfg+L8VlvP2A17leW/4hT0JaLKZAcmNe7U2B8O7LmTYb8Hn7q1LaJmmiP6JsuPeaTxyYGooOSzMcsAWU3MMSEpMmGZ/qRW3aT+NHlCjB80datadEme8dBjSZ8NfC1RbqHvUa8rCxoUl9WRmDcw19UFhug11DLtxB+TQlT2ekVul3J+2N6+YbaKr4/hn/9xD0SetnLS8BCVALWGy5oc5wkUUl0n+jeireMkA0ot0jeUWL0mom50ye+1kO+/E9cIGm6c1puw4tVn26FBg0/vu1pul1crmvJgCWmZYSghe3+Mx2Z5RlH8V7DnndhKNtptbmVA7g9XHSdAXi3TcBdXMAFQwbgTiqnKNeUU5XD1xL1Gh31mh4FdOXeqteUuF+vKbFbr7EaA7juGj2g2s4yr50whvXwNQJfmiZ8afA1eZDrhUrTwQ5Kc0tp2iuQ94f573csU1eaChWlWcbk6h1wKUF+XgMIuSOa+Fv0oAP6AXn+dxB64IevEfhaNeFrNb3GafUoOMl6/A41p/soe808Hk26VGErR5Mu4mhtp9wXh6ka2htde3/vkb/9yfft1UblOwlbiRqa4vWxD6E1tB60htaF1tBCVA2tR5UyFS4CLJw9YlENTbFo3SVczNEAmRpap6Tpu+JqeEvggjOgEuYh31eoCV8hfI35SobGUoaJdiyzjpUyHsfm14mUMgwYBzly7AwXGfvjBReoUkYHzlcbV+F22r8KtzNc8KS4lNHJXVoelJgPdy+pU7CX9GuOvxlNlTLYy0s7JQysk1X4TjkD63QxJmfbiclo3O3UtMLrInmFt3h0kTXXfrz8h28R0GXcdm0gI8+6EwATABMApQAuUpsi5X6dI+rEa7ZX6wNMVvJDEmGa+tJHiM4gesIFfy7++l+P7c2QkPKhiYXtmXCUogq/RBb4VdXjDUmQpTyWFBkfii34On0JA/2VCo6+PS+Vx/RoymN64GvyIMU5axf5ecBuE3W8HPE1oHPE/nenaP+703pjcITwIaobq0LTwrYCvob7Q6dFhxT1LDEkV53R/I0y/FxNLySN840yUZhS/BJDPABctAgH1HWRuhDcPsNgRADsmjkdaMBNuU535u1d7d5J3PYaIu6z7mKP+oNJWZ7ti/28kc80uU8q/Iq4Sp44BEwcElJq0zOdsRZmDIXpqi0wSXQS1Rcu/FcD+HIqlewVnVOS/+hQT7gwz+WmEad1HC8pvrJyd0eVu7ZNQblNqQ+ROobou6PozJFyvj2CK6RwR3eHQlpEXCnWSUikm8iKelzvjujBs6JuTVlRD7kiNG0ifzqyiXyFfbtGD0/PTixIBb/rk7sv3OO7xL2lE+kMwG85TUH2o9ux5ga1G07f3nl2+IE0e96ki/Am3aw3iUB85b3qDqPXWNMcJhwGc+oSEI3fVjzkqEu4G/2uSohq4+2m9/05FFhf6cbWHVRH8wKHY/+8yaW0UmMqjGehTqNzoZ1zL6iP69Xk4/rIpQ5jo1TsGYAeSL7tc4BIBQHIdv0g+7WBFC0oEwATABMAEwC9DpD+DCpnpRIZ2Uc1i/o1NYv64WsEvhpN+Grga5ZI2K6zOmWinfi2rV9TvdIPXxMXWI5JnhthYRzkHo8p/HsD9AkmyYSNOeL+03a0ha/DyNciz/yq3RzRahhemUyxk1TdwzuXCqZPaYeMtB5Gm+9F0rqH+8GSwlcM0I9R5zFCds4Y3IOaKrkllQQZxjtEUvh+uCVFHUzF8ItvZaniY75kYH4CVc4kh8pZiCtnu1A5O0gvKO9hOkitBW6rU+GkDjgDhpFPaobfpGSMfDrChf+PeIPcLy4cV/Ft5WMSwm93T/h+O8L3C4XfSQqf3qdCD4ftJtxCh2O3sJtvnJ8UCz8JEf5uWvhJ4cJPSQjf757wk4TCbydYnqTkLgBXqLbfW8iEMkkhYux2qBq7hRHjC0A1qJK8306cs1SLPxOpFr+FJlIuvnBBoaBrPOlBzrEV0CVdfkm5QMFRi7tK/LJdJUl8X/qHRFcJdPORKSkc3dzt+ubEbvePbu5WObpJW2y7x7Tb2K7g67bPjm5TByll7jXg+k4x2zpkA1Y7P1v5K3HA6iAXf/IrFFNIJ1jURy3IulQ349vpsLqwGf83EmG1w72w2icMq/12rofi1Gj6TTkiUbf22/uwkJ/MuBj/CdAJ15Z9dtLKfvJCqCSqEtJPbbjjRYE+94oC/UI14UpcxKNBXinveSL1HoT8ojx9v8JST0pNekHBiPimVI+mqqXp6wBcx/HvEh9/sFMTWQD9S+CT5KfT41jchNYPOr5TDv820TJi272TaOIJEU08XUT3GlPnug13bxJ7+QNSnW3yrk3KHPpAg5rS9zJDkLfyNmq62wubC5mNmL6nzFP7olyiqtYnkQ0pNgL6JYJan50a9MJUim1ZsN9dC8YIQebYS3mpgXBRhUTm1ONeSBwQhsRB0uUjgzi3NdFBb8iUABCZ0wBZyQoptIlJeYge8aGXTjtFsi5EXTopdekKF60Rm0SPHZPgfsQUUEV+xpRwnR2uKXUWrtQhoVJzfbON9VgvmefRDaYdRAxOMvHeOHxvZTSomLUo1CB2E/68Bb5G4EvThC8NviYPskUorfZFvF1od43a7ULtNm4XqlG8XQgXnV+T6PwyokP8nFGa7KW6BNZq6hJYC1/DQPLOAxjT38+/YO9djm8gelLltoMeVdg2OrbxdlniBqIeyRuIvtrzjbv/9rc/XqUQu3rsxK61QBkcfu/yEhrBQugNRD3oDUQj1A1EIVXKVLgIsHDW6RFK77QnGBxgrz2AajcQue3buIuTMeIGosUnaGElca+nCBoKF016iqDecNGMuNjUTiTPvdQs2r3UXdesCV8zfG2Ruuuaxf1TRfPoPouo0nCAu4VTfL0B+hy1rULcf4lfQ9WrtO9kDIKAOCQXPSa+hqqDe4nEAYn5dPKSoQ4qGeoMF73f5WuoFBKlbtd3j7vdvxaqm7x6wv7RNuSe3G63j7bd7ObRNsXcaYStemN19H2Qc3jNm6mx3x6FaOdoW8jO0bZuSDSex99GXT3brXgBSAdEQZxG66SPtnEosL5iSgHljrZ1m4+2bSAk6eRWRYbV2kBRn3RSPF2Wp+7jenEfF9Lk4+hCHLPND0ijqm39mjY3ZAr/9kEO6we5Wz/ILm0gI8+6EwATABMApQDSmwZ42WV00RfcBL41mvCtga9ZQsNunatRE+3EzhfKSMVrzTh3lxt/4Kx+v626qUiufrvCxWsM0N+lunjbkbNe7axc2GKp0xMVmfh2X5dwu4+6Om1M0ElOaYeMtP7F9lmvMW7PdXGRAfon1LEplQ+8AJSYqTo567U7XPSG3FmvDtV9JKM418nH+++LcNIrD1fN3ULVbCd9oLx/aSd1FjitW8igslvrObB2J+fA2sPFydR5D9P3HeWp3o2UUPSd9+jm11eScu30xOcqTK1TKBD6vEcnLZAF35OROO+xbEmf97j5Kpz36FFit5htDg8oFpeJz3u0kwmgfJbSDukij8QQSRn+SU/0GCURVEPh4lWLcII2z2PtXbtVrwQwrdTcOu2BZ5chIl4nKfGN0EDTzSNEj/RuoofCtWWBsysgbJ+IYRShH/KLWk30KqR7UmrSJV4ydhCgUXqwj/0YNfR7uBuExduvSvMqeWFm6OrcXJKBq22PndVsj2PTpi+HoNKTHju6RaltB9jnJ1qLGzT1KjXA1wh8aZrwpUmwjgOywY4ZuNbx2lOu1vEastHxWu6s47UHaqse0bVLqopfEz6/JL7VmvCtNr3GaaEqntXw3USFPc4RVdjKq8IR4vgb8VGHEcmG1y/W7Xr048OXUUPnfEp8RGjo+9hBq4FUrbTepsbEM2jU24c2vI6gDa+3UQ2v+1QpU+EiwMIousHjO+0JBgfYZw8g0/AaupquhtfwWnycaOdcfIIGwsWnPUXQULj43FUkiMC3RhO+NfA1jT0vVGV3jXiHpfgDqvUNcoclFA4mG6Av2apL9RDdoKh/CBHdoH0mQLySzIfE3aDd3G7QMYn5hJQ/lbFA0f9w3LG0jOgG7V30z8c5nY29jsN2ouOwg+04NH4y3Yj7Yz9TrM/uiP3stz67M/aTuXvgXbGfzDJ2NPaT2SW9C7LY8uxuXB+j7CLaJo0vAlSk6mmbDJkyGbzGuk5Tx/06+BqBr1sTPtPHXa07OgBfiL+j00Hk7p2u7+gQB9I6NO3ocK9VxHZ0TF/RpPZg2xWkt064HKBp1Lvub1+NNXHz3+/0qa/7V6us+31eOnez2FbZI9hnjeVIf6F+Ygb4QN4BlJJsA3iY2McDcPZQydReoqOLcS3trruWdty17NbkWtrlexOUjnekIJar63hHEvrE7+YBD8Vwgn+7hon/e4jUaC8UDpM3RCDaOeDRaeeARzskmgnFgGirzwAFmXbRAY/d5gMeKRAF4Yt20wc8OBRYX9kN3zYBQywoBfFdt5osivFdKeHiHxjc/yAKnF3E2bzg1hhEUtUeLv6ReBEXvaUAnXAKLtgO82kYf6wGxqOmJNad8bqCC7tVyKNOsv3iVlOE5O0i/pzoQepU0PN2Mzs6THklfvoJG4T6eR9PkcB8kWG3yLKJp0y3hIv/U6xMu1nKfELx3SKn4j4+Vb+CVPFC3K7Jw3NGf9JlG0GoHX3SiT7ZfVkmQFHhKmIqV4zGopIgqUgRqWQKpV2QW5818viJsZlYP9clG/xKuUTO1hJlUrzawpfiXgtfivMWPsI5UOgctfBReRo3Q/Q5a+JLX0c1WvgVVq+dckuxTgpftyZ8piOsiv0wxjrsfm4kKykR98O8ddoWgdqnUNfvttMgInsDnMolL+Ie5T471A+QXVk91D3FA3aoD11V6jsh9dhd2D7Hl83a8NADuIfu0+ShuczSsG5GPtMw4Pa1CLvdXDUrNlDsY7cisFXzbZBz+EZEH7sR4WDVPGJn1TwAicYvSb6d+jLvgCh16zOvmnsgCivcAcwoZCiwvmJyFHLXIgyY08ydhCQ13mUwpA/UCOHjFHtKitR93D65tiAnPm4f2SyCWyKn1eU26IEQdLex6G4jciIAsl8/yEH9IIf1g+zSBjLyrDsBMAEwATABcJEAUl1XI7wL2iMjRxf9RgQC3wpN+FbA17CNIx2tbSbarRMbkWCkYl8qp0fX+EMHs01cgt6LOSI68sNrpRsJl/zcAH2Smm4X2nM84vCkzXL8pI2xtlHJi4xB7ybTg3ZS9PskRPEIqtoiUbybe8tHybcN0OepQ09DCiYFUGJ6Q+5imD5KxtWfDxD3RpiunlPUWyCMXXzMTyzCJ82KcOUcESrnPjtHB7gaDbhC6TR+kSnhbNEyXy+pGV0mJeOcRCn5DfEpbNxSSOEv2MrHJYQ/4p7wxTfa9No5YL6PPOHcwQofqEanQj29w6HwTVuxXOG/IPHJRfQLK6TwO8IlL0kIv8s94XfYEX6HUPgjpPA7eUdajJ+7FWJCp0Phd9IxYUH4XxALv9Oe21/Yk/n9q+v2O+0Iv9Oh8LtI4d9CLhU6tQaFHidBoSdc8ufUhUFDcLg81Z2a9mPxC4MG+DsPHYV29mMLFabW57BZp48WyII5fU2uWadDvb28y/W9rC7328u7VNrLe0iLlbFJhU5xXRcG7cb6wu31GsjrttpVA8V/QZUZhhT8qsyHlm+TTX9GOFZ1W7jk78QRkFq6omHidl41CTILZ9HtzEPTBiGGEInTI3Scvj1c8kOJOH2be3H6dmGc3s/y8nahAO5gB+03rTisVn+HrE+43Y4L6iCajLvElYp9di5zoVeoHVQViT2hZVrb4sfaXSsx3SZUk9vJAq6KbgEeMYpAK1EXxK3i6STUZERcWwwRzhvtcepFPIdxm8Q93MVDMFXcc2XrQ+l0C0+IbkAirs7quRpXZ/UJ1VbQhMMfxPkq7ACUOZWx95Lerc+OblGJQUh8upxSEzSf7kfUFujKNo7i9oeDZbY+hizuPaM/htzH6Ca4zmyQ+oZ8CFXcAfc+ZzwoVFzul4lFPBpmBw1BqTOqOQz5Rd0vzZypNn1PO/rl1ybrW/0696T6Y5uCTOeURjQGsP2ouzF2P4LrUXUVG9BWjgENhoNGwhLcSH3he4B7+0mwLap0tfdTo/spe+mi7KVHdcYDtMtYmPENhqEcRY2x36Ex5jgxxhE7xriPvOxngKxi9yk48wGxMyeXcSYvynXp7VS1qgvyxFbsowOUhN/JZ4/zDkIPKB9RBgm/MARfQ0EybfB+aPCoqtw0fsRKiXjYCPeQ3T4TGzlbhsF+w0ccVtJ4sSj3kZo2CC2BpWxfODgsLhgMipfiw3w3c5v4s5oSwHfwgd8hTnv28aKzs2XmCKX4t1Fr0H687XafuUUYDLqZqY2Ch4Oi1uPbzO28pmlwgr3cPAb4Kj5rBNFxxxfNJSsIdDvEYkukfXTlACPFuPpoi4q9xdiEeoJ9hkkowp4GmQieZN1hUDCr4Kf70Phg+hRaLEsjEpp+7hZN8IRE4c7hCsH3XSfX6w7yDkLZWNoOwnhBRb080kpV7oiVCu89Rnh/RmEhCQA0OshUr+F7+fNiLz9kRyz0wm2A8vLDtG5fBdUdEqrusJ1IyElJhknVHSEz036JDHHApuoOGKr7IUY6wxJ4RVO1lX0NCz32b9jarhFrN71d46eq4eR2zaD6dk2E1E7uZk3wmUXYrMmLq80azkGdQYibihfDCuYvZVZG2SX/kIL3FRc7hxF1GaLjwXA4+D/F8WDEjsXQtYMhyqnso/LHQde6BPPc6l+27VUY1bwd8otS632EDg4ZOninQtQQS5wub/upWh5Z3u5ToHKAqH70UekIwFerCV8tfM3dci/ASeRZtZrKSLWsNbLjdEzMRDt2l32skv1N1KWKdjA7ubdMB39mgH6V2jgcsK3aXUpVuAix7m33pHgsIx4kM+KQwk7koDU4s8wbco95A3ZWwgN2llyDkD3UXlkfWQYfUGCtVN5jbPLmb1GYTZ9D/WF7AYagJhEpyACqJsPuZRlX5SBKiDyIMkRGmxGFHBb4Wvs57FZuDlvqs5XDirVLaw47JJPDDi0p7aJzWFva1UFcKz4EMgXrLoCphBhjeWsbdQvIIH2liGm7yQQT3Ubsu2firRd4MLYIggccBoi8FmUjU2tBIAxys6PSoLjWMkRSdh3qCWQpG+L7gwqiFR7Oi98KP0i0wg+rmaNfvRV+GG+FH9TUCj9MpvuM26DMdQQyVt710t/3MX726Ac54Fim9r4uMYj2q/ahNbT9fO2hbm0ydp9rp+VvbeozhS3ciQ3x7WXIq/Yy5J69DDm3l8GEvRD2MuRhezHV2Qj2fGKgVeLLOwrWpHjn1Sp1axpx35pGSGtyesnYyvnnb5wYvfu+GyePzT/XP9k7emD82JNcV7eJq+/7TOarWbZ9XpVtn3uy7Vs02Q4qyZaokxZpqpMWEeHfrTppkbhOWnqH6gqcrJMu5NuHDNCjVJ10kKqT4oeG+hyuiZPjqok9JOhPda0wtxKfDXN3/VYIAPUFzLBh4T7mPrkr74e5u/+l0+KL+IfF7ZFIkemIR9ojh2FORPQdDLp2Cm+Vx07hhchTeBJ7+IZ3E2v17XbqiDT5I5QU96PmhSjyMK3II+HSRxehRWSVkzrk7XbqkDSPh0kV2WevDjlssw4JIzF5hgU7DMHi7Seygy7Ta5yTmqUfFreVY4dA/VRqsAD618Ves9/OBUsDPB4AquhDoJYaBxjZG70VgbnQ/e0HC5r/K/o/vHt80BLcuAQMcNs2S58yRPQmddm8rWVJP7EsGVRN0ZWXJYP4sqRf07JkkDYYhyvdKnpZ0stdlphO9wBBCs/rlb6oaqIgyW7jG+lnDOC/jQK3mV/2RkHnzSqZsrNmoz7K/smOjG5qYRhSbTABY6/hb6L8vxIHB502Ov8srto6ehVUcFC4oBiQPc7Vy/3yfemfUgcHuyFPqLPHKnOSOhjSK3YHITt9pPhdD8bPRr4P+aqt2x7Egb6fxyFAF2Ho/VS9oce1egOxB98vNDcXnKGfzG7p2x76ZUoHefsUDs6Ib6YLIToIyFrF0cFQuPR7Yh2k4liSguL2QrqImhcZibpRHex1qIP5Tm4c6bezxqUT8i6yjyhEutY+9s5WyPuIDl6rGpsBlI382PyvYnUatmOudHTsst201kefMhWejkSW3Pfzi22/lMhcnDbL7fRYS/4I2ZI/pFBEHhG6wWEyczH1ofHqlWUpVOZi2vKnTFNlTl1o5mK64C9isbmvUcWPkIKfMRU4sBApe90pf/1dliNuduoXn8ls4t5OUZYvdjScEL9XqMz0UdkBiv9D9IkMtzrQb/TYXk2X6oVDprY5GwUvynT6DdP5CpVV7FHKvwEEjFxZ0+HfvVJWLzYdidJFJXfZUdZkq76412E606d2yZxpweLWsuNmjy07ulSXHSEJN95r03SM9XLu51HrEOeJVdwLq8qut6WDPY5TavJqLcK3d9OXyWHSFoe3VfzYuWsRLscq8FjgGBCcvpF30a5fjlW2V7LGNUjabJ9S2JGwWeNyrNynGYXtkQh3ITLcob2S0l9LCfEjksQFUD3iKlsl90qXsttsVTj2OqxwhCj+91Hlj27X7lQtxA2+V2jw3Ok6q0R2Ca6WoQxL5aveUqZjlEVyLzhj87HH+Rt6yWYNNppmDSSG9kYHhMsmmY0+YzMwRlLbJpykV//kF3/92Vs23D//dP/U6OGLl9jWuGd7x2Zmpw4ZRnIvx4p84bIjUfaUTbP1TaOZ2PIkJfqk2xj9CLt3GDC2ien/nsS3iVOftW4PA7MJYKqSxqoKuH7XaqIBMJDDo9Rw2Rljlu/BSU3ikBrB+cp7OXCTwmUPsjxLVbP8Zaz8ASiL1HxwztEZnbP3lqEbd7C6AUDFtAPH4icuRE6JarFDcyn/4tjXtr/2z6+JzcUhosc2+PPeP7Knw3VEX0v9l5+//KcHL7iO6B/Sem5O+p/vq3Id0Yd/vnfz2WDNT1VcmkVzsojujWw1y8pQ797Ixrs3sjR1b2Szni0rFqwt3MiBpDExNyfmwxFkOSyyHKK3KgEwAdAZQG6C8iUjiHyGCd0+aAYIOT6WHOr8QBZ8zU5CZHkSQJ+kok/S0Cfp6JMMOAXLs8xY55TlyXImkSv/Cus6iyQTuc/h2VExlcihh0xKlBK5IjAQgxgkILJLuxIwEINYSkBk14NBMBCDWEZA7GUgloKBGMRyAiJ7TKUMDOTYZHG43Ni4KvtLXOTlREL8Pg7c8nDZ11ndq9CXEFdYtT859pLzg0fJMYZa0JQTWYni9DLVs5IKPCsp15SVVLDqVY5mJSsgaZxPoovCywoW2QpCLAmACYAeA2gxiAqdXqgCmqAFUXEsDYi67zfQiIGUZQ0YY1wPXr7DAP1vTFwph2RaH1ZIpHIcP1Mhl8pVLBbTs4glqXNEWTEJIiyqJFzxGMN04IsrmZMgVfA98nKfSjAocmbE+ooJkwmYUEnLU9HJokoKzY5R08pweZ0BPINhSjGlpuVQGNaHWTAbkNfhrJiAMF9D7sOY9Jyd7opweZ54HyYL4aVhKLxDTVnh8kLxLswKIvtMUlDkFZRgsqCCITCTCP/RYY/3FaY58XhfTu0oJsPheImUOcmeDdcoeNknaH2WC9cNlmd5cAVgeZYPzcPyrIAIOYUmc4mY3B+o2zMRdBasuVGsg1VkiooMWskOqoJUWXUQ+MGVzMMqSntXSkS/VQh3VkbncYDDnVXh8vUSLQdVDncgM/AdyFXzoh3IapbNq4SyqWEHVUOeMKZWI+EgOE5npdBBVJEOYiVEy8qnKlx+PeUgKiBPqAxHZU7FsTkx0RcmBEb8JaJgsoLXL4YQMHJJbooj+83iUIfltiuoULeQ23aI3UylnVDH8U2VkCqC+1VUSleBmvsK9z7iWik0d+50nbpixjRWQn5RZlWpUDSTMpxysLpalMXAKJpDcwpO5a4XnMrxglOxpoITJZokdqlHa4Jooa+46kwATAD0GEC8Hu3cC5UTK4Nkdi1/DJtdMRKUk6ncf2Er4scG6BPUSr7cxaK8jVaBRFE+ATABMA5r6Jp9p41ybnFclXM5IeBjquWfZOGi7+sG8KcYpiRDwZIRgqz12vCyNsu5pm0Sbknxt+yvcSsEa9wXPVLOLZdYoF2Vcu5nqWpNFhweH+XcZKKcW0yUc8tBOddebzDTKAXYwbRKAXYwzVKAHUy7FGAH3jCVzzZMAXYwLVOAHbGmKYX+Zj+cGD7TDKovmuBsGsGhTNY/AwHgEkknOLs82par7Nbpqv7/tlXVL3ZYSkp2p6pfrruq/+1EVf+tARJx4qpU9X9gv6pfbm9OyWhxMhkCjKVhRDKkku8kQwi2om6yMOP5V3HGU2wn41koIPzCIxmPeesF744pR829wr2q/gqhuVeSSzlbOx/JrGnQNf9yiBtTE5uGUwxKWA4Pujz55ZaOn4Z+XOngoMtyonqleNbkD9WrV1l49Wq5pupVFium5WAl7fBwz5cUztdkw3kziHNU79/Hs3TU5+aTzjMbAmM9XH64opxYNuSxVpQrLNvkslzKJcocVwFgHgswDwotYssVeS7v0AHlxS3YOaLlsSoLYRqfGNgiVNAN7PIT9zS5aso/pO5pcnFPk6PJ0+SSx5Vwc81lxZAXHXdISS9xuRrPXjnnfYhHdQM8pX3O897n4gndAE/rBjinG+C456f8yoOeJ3HW8+asXcxHPG97r5z1vJj1q/YrD3teFV85ox3io543lzhwYvrn/JhuiPdpJ/G897k4Hwdex/v57OklmH1O6wZ4MpF9Lglj0Z86JQLq0sg/48DN6s8/p70v6HNLMFucWILZ4rE4iH9nvK+LZ+PAjcWBYLQ7xjnPp05xoIsn40AVl1S8Mn5muxCxrN0sYMta5abLbAKd6RpOa7c6wJcUaWhndsQjoDm7nHlqG41+9V3OPHyXM1fTLmceucOOtwdz+gPyJZQln0WXT0gPgPTrBxlQ0DGw9WuLk5/cvUDG+MFDVxp3nnxpdmZ8Ynxm7qaxu2YPdk0evHDh8vyLe8bun5yaW4AxNTY9HR140/xvdoyNHt45NTU6Bw1lEHm/j/9+XvLl+Wf7xu8/PDEGd/3nn3n7xYu8h4PMH9+anHXI23aTTNlyuiZbTjfZ8iL7DvQ6w2zmOkP8mk6NTRN3L5mmiUntkecR7xfCtSd/cbBu1z7nI97P1OY9v67RrjjvSeiNY4CJvYQlUvk/5vk5n/S8mL3f6abfVo4vwaL60USimEgUvRHwpxJe1rneeH9La0b7nB9aguXqOe+nYUtyk3op9g7oN0Dvd7olgtWSCFaJ/otE5eWdW3nRHwm0n9yIg8WfdrlobxyPg5r+Ywmf40Xdnkr4nKUhF+/7HKVs0fi2J/tlS9OFHfL9MQZE9suWYE8+n23/iQzjdC8UqN53oty9UIB3L+Rr6l4oIFuJ8DsPC1hRF0IhIegKWXSFhPYUQikl+tSIPrUCSBrDR/A0RUETCgjRAJAB/SBT0W8Hc6SdqsbwJHVpp+LSDmiSdirLqwAq7TxIGu5z70S/s+zcZq7XajOp7tlMqm2biYw7rE29ReUxuwBP6AZ4UjfAo7oBHtENcFw3QDxVtg3xQc9Petb7cz6lncR57RAf8r4yHvW8Lk57nsLT3reWpag4xz2vifgpNM/MWbtUjsWBsZxJuJyEy/FIsvio9/OcOJDLYwkD9KKgpxIGuDTkor20ob1wsLCxQdTSZC6aPs4WpvAyXaFapaxLvUxXiJfpCjSV6QpJXlu4UQRJY+RQFB33AIasiEVWRAi2SOxYbUM8pxviUd0Ax3UDPK4b4LR2qZz1PBOnvUsh8Hle1218eeYdF6FddU4n3GLCLXrDLR73vFRm48BYHvK+h/C+PesPBd6P+drlfCQR/BJz9gSJs0svgbjX8xTqd9qP6IZ4wvtJUxwE04Q5e3DK3k8fluTKVLvizCw9W8H3Qd7JlSH8W1IeCgTk2QoEm+KJknz4GoEvVxO+XEl8AU34AvA19ArOPOYKTn8UZjd7bCPyhLOdVKS2o5Olvp1UhG8nFWraTuLoKzxVYkVbrIZ2OYaW8/3sYjhvixhK4DMEZJD8vnExBMZ+3zgYrlrG6lNJTC8QpCXsPEpi7It8H7jyPznK8/ZNuEIObrKyopjQyBI16WSra2QJrpHFmjSyhKcaBkst3AhC0hj5BWXUhkUXJFxMUKgSCYAJgAmA7gIUutOkrxbcMRt4ev/dLQ1ZN/8smH/57PYvP35me8MaNrLg7jTo+lHIIO5OSzS50yAZoSzcKIWkMQIojY67E0NWyiIrJSRaKuGflUFGnu23H3P9HFWQHJrMDi2VHJrDDi2THLqZHVqupj6pLIQKAfKs6A926Iro0ILWZd+s+s7mudXFbZPdR859p//FU4VPNX0/J/iT2RuO/J/XJtmhlQKsyQZWi+pmRgU/HE27qtownap6PpoqmhUrM/YziZMkVoWrfssAfq2VAB/hSZLUpLFG3ZMk4Z7Ep8mTJLGW6EM9STIkjbHS5Og49IBoMossmTD7ZHHxwDbEh3RDPK0b4BHdAMe1M/Fh3RCndQM8qRvgiaUn5tPeN2ftJM7qBnhUOxPPel5xjsVBHDjjeS5Oez8OnIsDQZ9berFq3PtiOeb9OT+mG+J92kk8n8ghvOgh3Ij51g23pNjPLOYhWK8tZx76IRCEUD9LqJ8gNAm+Zv3SJsCXzP/SZgqx2A64fqdVAF9sp2habAdYdqagi+1USBrD6lTIWHnpgbW9LRr1fsPSvxp5v4P/fsCn/g3L1SrfsPQxVuKTsBIfyWfKSnxsvQm8ZnkGxiU/2zs2Mzt1iCG3OvYzHSO3miW3miA3Hb5G4PNpwueDr2Eg0VpfBO79nEpfdbjqM1e80sTExXDZExjoGjtGU8sOqoFUEWyrtYq5JuabZH0YzkxARZoVUa1ORLXQH1kQ1elEVAcDngVRvU5E9abgaQlmDUC6/GDWSASzJtf3oJrwYNaoKZg1sTrfiAazZkgaw+rm6Dh0V7GZRdZMyM5NgJaZNRFybnZdzs24nJs0yZnDqSZUzqshaQwXV0fHvQtDtppFtpoQy2qY62oH2eBYoqtZ/kQwM1tdayB7Lc9aoqP6rE/WRp/s5+vOMqvuLINziQTD2ukIWPYdhswGSLE1rDVBVyDvNpoIcTSaXmNiena46l+M3bvvW4mtinHH8mQlas+rYk8icKvbqYmma5poOnyNwJejCV8OfA0D+Syv6y4jCjXEEUhTeGWmY7M5iJoNx8muUYWt7GTXELa6GnfAkLC2TThhRz/yW/efqHj3FzAprGEFu0aYkbawg8BX2BkmrlVj4l1mh5EMXZXpiZ/lYuRJCkQecUQ1EyxlLaqUqXARYGEMBDwN2hMNB6RhOboAAqvUDjLNHsin+6dGD1/EkgLCteVrcm35kq40VxO+XFNye1VShnw2ZUCnqZQavCyfGjRRqQFYAAQ05eQBU65pZftq1e4chrkY21sgCUw+hkZVCbavNtj+pjzbm01ezGF0bEFTz2XEVJutz9ZFR91lfbLeQcK6JsqeujXy7FkNKUaPjzQzx0caYnkgm+U0h2t2RtPDletZiUSGDhAW22CM38gYy3oJn7ieNZb1cj5xPYUvVxO+XEl8TZrwNUniC2jCF4CvMVbXqmZ1G6x6sgG1uo2E89nkyPm02nE+6yFlV4cN61k2YM5nswPn02rH+TRBijHFi7ieKxsZPBfCep/14ZX7DO/RJ4bbGvtjXowDXLiDxizPEWGvCS1D3MFGAuOn36D5AmWhjZostJFQkfXEerLV9aJdK75mXK+paNdK8ooxM0Aaw0fwFO3n38Ci20CIZgNUCu0gmzzniPpccUQqZTvXHNGsY2YvMxaMPEtJOIp4dBRB/Va9JuEoFt1R2MkA9qNrwW4Q/225oEG+C3rSgPsEMZsW461XOGDWhld+mNWG9fo8GbsoWSvhydayur1WzpOtRQXkczxPG55sPe7J1mryZOtJXlm40QpJY/jYKpHycBxnKyGaVmgQ2kFyCj/r1NiKR75lBO/Wov6vj/V/9j3ZOjuerAVSjNmXsr9ZcBSfccxsylGso0qnjZpKp43wNax65XO8TWTDUazFHUWzJkexluQVvn5dy/JxnUTKs45Ft44QzTqJlMc+yBbHG2x4YFlG8K4ZdS99rHux7yha7DiKNZBick/DSCCwvQKfY/bauL6lRW4L2onJtNBb0LAp+Ft1ka7g9rGZntm7JsbvvnVsbnrnoQM9o1Mz46MTkU7fi/wO35asi0hr7sIDS6+wMSjF8qqC4RuzYD+s3gJVXN4QwR4vkfGtU8hi1sRMxQpxnSnDwjY31jObGyAnf2rvpDmSxYZdqRzKpyoGmb3Uor1VYRlnQBxlILbClAOBuJGAeBcDcQNMVVBWbmRYuQFlJYRIsHIz2ZhQzhAKqvybMZhtxNTvZiBuBgMxiNcQEA8wENvAQJyZ1zDMbEOZCSESzNxCkDnGkHkNGIhBvJaA+G4GIkgjr8UgXkdAPMhAvBYMxFl5HcPKa1FWQogEK68nyLyHIfM6MJB5CPS5UFObSiF8DQ/HztvATbRbEF2vE5EBbJjpNr8B+Gd+t/k6IgPZ6nrSvhXPQNZpykC2kimvhRvbIGkMo7fBGI+g28ai20bIbptErmAf5A3oEs24FmdVJso45KhMcyyrYFe5W8M1zQbobMaet0KtlZ/u1hhKZNB28rrHrSbOMURvD68qMM73XOAZGBhuNTEAewPfxLYRJrbddRPbjpvYNk0mtp1UUAs3dkDSGFbvgLkfgm4Hi24HYQ87JHJI+yC3SphYtW4TKzBA18WPiTXrMLE2vom1ESa2zXUT24abWJsmE+NIrA01se2QNIbV2+GKQN6itxP2sF1iZWEfpIyJoTnzJjsmtilc/aYB+gZqIXW9wuJsk9DE2kgTM63fWKLbwqt2SprYZsbEAOxr+Sa2mTCxNtdNrA03sc2aTIyz9N2Mmti1kDSG1eDpNQrLw2sJewAgt+gHuUnCxHp0m9g/GqD74sfEhuVNDJ+S1oUnUZQpVmDdZkJTiuFr1EK3WEKP0IM2m0V6dJAjks3h6m8YoMdophPVhUZN1YVGOSE/49CJpah70M3uF/s3k7xiUjZKp0A9T95dtxGCiQeAxs8KIvg6rxdthuqKJ9LOEbW55PHw43HDVjTX6ERzTWyDUezm0Euhtojc3D0cN7clXP3HBuhHWP+xRc2EmZR6K7oXuw0qDr7QaCPW+Yzwd+L5kcRe7Raj1fwR+b3aTXBG7jlmf8Ixe8gxJ5YwxBLmGnIJA56WKmztXUO6T2CN2kFe51im2pyisQZhXKIRP5SdXpudBhWT07Mu+dvge1FGPT3QumEL8yrc541UB9ANxban+mbv4pKwGR+06ak9sxNc0lZQW8QlmlxGCRHHqNLiNWoKlqzuNK5xv7R4jUppcQskjeHjFihs+Y32LYRotkBVwrrfvRa3N7kXt8HXWnSrIyWiNgLttc5u2Ix5cKKekzT//I0To3ffd+PksflPLfiKmfG+u0cnRqcWfj7BX9pcw1eia8Gfr0tW8B8GKR262mAMiCG6DUZeSqD8RXassOuLa8Kr/s5YX3yd88LG8Kq/Nl74X0Sg2Wy89V20k9vneAFjw1634Pa6UZO9ckSykafBv33z/XeNHTgwdmDX7NTCaujAgQ8hysQTn6knzvi5Aap7skL33UZcr02YcImvxyXeDAdE3/oH4q314C2FtsQUCIx31mfV941F48eoPvl1mvrkTR3MBL41mvCtga8p9OWvc73uuM79vvx1Kn356yFpDB/XC1ejimdE4wGg8bOS6A5zXj4zHVBYpM47yhicI2pG647rdaIBV984PXdqb427jij8rSEKf81E4Y85N3Zj7GeLk1s2niLWx04PWcQH+9Y6OP+SYN/YDYvGPsVTca3oiadlxIH7dWwajrNvE8G+zZB9yixaa6dq3wJnZDot9Aexw0K3js0Njk6MH1h4bfJQ79gDs2PTM5fRMz/N6JM16JO16JN1ly0niLj/Ap8VaDW/cQmF3IJ84aD7EomRYSCe+13Vw9stmnI/TrLTguZ+0oe3y/SftG5y4zz41Tm83cJ6G6zkveiHt5sgxZZnxq3OzGVTK2M/mWs0V0HgUjc7p2KiVrweNNWEGcdXw/06bfW7WPWocRivqaXkalXYyu6Ec8MpdOuYq1kteZ3y+56/8PHzv1eLfh6Rvg9evn8olailKrrF68yGkcxG9sgTP8vFyJMUThbDu055jSplKlwEWPC7/++0JxgOQLFTpkEyFxU3QxOzWmpV7Gct8xB8ZwXtQeN8WaaGmF8jfM1iMTWEAde6ng/U4kZaoykfqCV5hQeLWvJm0CJNHr0JaoV2kCsdy7SJ5RCWDzQTWrYazQfWOMgHau3kA1WQ4oTxecj4GknjA0/RC1IaWXSNcqJp0A+yyrFMG1kOYcbXRGhZM2p8q6+i8TXh2zk1zHYOGFfNyW1rwtWXjEz8S1S8raM+oFZP+QP0zF4t0r5pKDrvC3K14eoPG8nVURqv9WEtnJn1YZ0ExfV2KK4PV/+G+Jt39Vf6dhCofWhuWmuYipGdKhnKHxqsHEZdbIqChdcIs3juJ8uAIlFRuUHBW9bHNmMx5tW4x7x6IfMaCJKTFDjeIOv7V2JAV7JAa8XMq7+amldrR/MaePME7GGYB1i7in1aZVIk69Nq6FjkGV8XYzwyaBV56qoOToh1RavC1V8Ep66sLnCVKQYTE15FTngliCjILKrYqWdadQ48gW478qGxNoWje5uEunE977zf83i6C9qgrnfcxuWlIwT4Xs4W9UznWqm9HPkOoGZURZohncJzI5tJ0DbazpIUJnENpVdtpnngjWdrVI/EGM3ryJGYvwUZCubyr3Ho8rNxl79F6PKvJZtdbZn1ZvLYaRvZDbGF0MDN4ICmndO4bTz1BBAwBSUjQzOcGa9rsfqfQWSQt4HN2m1gk1s2YHTeHuTbwM8WwQayFt0GtpI2wNHyrVAUtA1gx9htuu5N4IS8pmPsMoazVdZwNvPvkPGJDWcr2Qcuf1PJVknD2UZdZoMazjZR8OAZzrZwTZqE4Wx1z3C2CQ2HvlYJGbSDd80KFTx2yBrONvcM51pbtxhtJw1nK8ohWcPZztGbHeGaoNhwdtiR3E7eHVSE4WyFybD14Q4Jw9mJGM52ynB2hmuqJAxnh3uGs1NoODeynNwpZP8udtCNkCeMaewyuQnCcHYq+Fcpw9kKbhbTdP2XjOFslzUc/gVgNevEhsMx6XUOXR5pODuYh9slDGcHYjjbKMNZ8BxtEoaz3T3D2SE0HK4LErGfa22AJ4xp3ChrODvcM5xMRvBgp6wAw+tj8VJ92wXwNQwk+NiesTtjtCmxauS7IlimdpOkpiR7rDxKJnYm/aqwlXcm/VZy/JAydNfSL9nXM1V19JVXT8+OYSLws1L1C7U+hR1UQPT1BNSYeCvqH1LQvh4/2tcToPp6UlQpU+EiwMJYh8HjbnuCYZpwkqE9RMw78nYgxkmudqY+C0KadUxSzAyjr4drbo+6kpo7rHw3UEXfuA95Q/lsCLLrn24dkBwbYMKcEXvB9PdMLDJE/rycwx4DVjrDnuXhmnstAkiLDYsqghV3Gh93hnVyGZhtRgFaB2QCnYlI5G7GqxgMUOuEeLZ3bGZ26hCiVahcLFachsglXSD4DI5cDFipjFwywjVHMMNIs8olPfYKF3eadXJpArkwWprOymUyyk9EPD5Jl/+ZzWuuyxquf5D9XFIUpSZEWX/yu93f+4/D9WJE0dTvXjbY2XUHSYRTvdNxDOJEsVR4kEGiTcgy0xQiy0hTI+5X6llGGp5JpGjqf0pjA1YKkRSkq6H9b3CC/Ln+yd7RA+PHnoQxD0gazBqgA4LE8os0NL9IN/bFXnWcgP63Y+38LzSFNa5gq7mIySkVWcCZMgg2914I+x80gF+mVhB+w+ot76RCU0U7otLM1+Gkwp/YlK5cu2OeTQBODBmWTq7pkyEwlh/p4Zr/Yfi18ygKhNmpNLMXgH9U3ICUQVocMiiTHZQB6bIKDRhOJnM3EphGuuhupHRUrj58UMZbFyoZbh2MRoe8lXhw6c+QJi4NYuLEGQAdVUmGzcnoKj3ZJADDgGNR0+m6NAWNRky/QgDKxfLMOLyxT72zwG+sw07K91CabFBj6oDqQYpZD5JNa3FsUMA8KIXgYIrOfMe0yiXsAZuSj1TtVCvtPp20+wjJJutEZAC7zXHYLbcSmsSG3T9VDbtJdJhZCLsvG8D/XCrsovlZNEhGiL4dEoHFLzaypsXcGBaXeHHVGAQBMdNdWKV9DURVzP90GCz5OjpdceRN5xCQFq553QD+vxl+p5kcGh4qqZDGdHynxwIclyPfNgh6lcKZzLILvBYF8R2UqXeCd1wIlEQ2mGwvG+TYOiCMwJdi/bgbTBKuFKOteQ7oZ8yI5DnWVzLsp0IZkGyCE6a8JhNSbyPpSiPjSTrpsVWyniQ060niZT1/SpkcmShieplGTiVDYTmbik7FxNeYa3JYX3nk7371N+87UfoT1ws5Wz969LHlm1/6HdcRvZj59Rt//6Npd6hUjKz6EID+BdNDsLEEw+vbSPZz42xtiuPCzDLiC+Vp1ESSRROxLm4j8Pv4M6mM6mAt6XZ9lK0lqS5pSaLSw7XZEhvAqQ43gP34BnA6VuYHLoSx+HSHy+kA63syob+V318LCLOuVLKaEYBouUpTSn3cxUeGhiTS25o28PCi7X5DaTc7ztRT0SSHWWKawgujM2CKlmcZROKVibsoiZWysWNZ20aslAlv4qOMPonOaTHLDHjVMjtYlcogFU5alVOJxWQHmeymxVRZuAOSwqwha9HvuQUQ15tCud5AuLbHAM1+zy2FUo2AhLMKEM5KVLRgak/4Hkmq65d1puJ7JAFNeySpanskaao2hq7iKRHFNlY+2zM5PTZ+YPLQhp6xqftnZ0avXCp2CclzoQX7KbXy0Us/0h1R1ptCWm+ADET0YjUN28GQStlQI4XM50XgfsNM76U9uLyYU4UJDNe3AqIJ8WTQFRD5jEmcZi3nnT4kqAQhYDm+aMw0L6nJqUlFSaf5awoeJTOEUXI5LxUVMTaLHbScNLEsKAH7wTWDNM+AZHi9VyEopaCrd3O3mBGEHa51r697f7D8zx9Y7vqiOsVf/pGVL72rS2lRbalewSxAVL1itjsiaIZUWh5SnYU2Z+E8ZVHCOb7Q4EQfo6rerVCQSiPyLDcBYosr560tNtI2orUl1b3WllRUzumQNIaL6UKxpJPxMS4BPi+T8Tvf6jOtVhZp4zWVMAbniFJji0PGm2hEkxarwWCb7LHV6f9QLQz6BYXBzxugP8p5ITlc+3HjhRdYB+NTs/F0tPqwjKjwBIgKD6NqywntyIJMtzzLjm3EKdeMfFL3NhBsTIpfNiozK8nObdxwz0iw044bAiCBawpfMET0FYX1ms9hldpPN30xupKhpiuZrNQxXVlO6EoWoSvZhK7kECaXC6esrEcZSkb3FYVw6kfXKuYtdcMlu9JgLb+28oHGDLwQFFDIow2IIaoIQ/UoOV1yBLQuOXzuLTl8tpccQEi61ghiYXtoHaMdIFW18Imbtmv/AT0piTZtE7mVL1z7QwP09530jvmIbtaQgp9IEjqXVF6pGiAl3EuqvVYBhLOGVY3yi7UyV8843TQL4OXAVGE5MM1ONTidp/qAJ9TiLkXQTmpDt6hOaR+wmjgJfwrBSnnDWzlYBdwPVgGVYJVqsht2JSwOVqmkxuOL6+4EQA0AHca+uiLbsW+UG/vqygzQQbdiX8c7PPbdxY19ddWLEPtS31GxTyKMLRhAYn8mSlhifyaxPyMv58T+TGJ/JrE/EwkjA7b3Z+7iFqXrDhugh7n7M3X7jBfGEvszGvZneGxM7M94YH+mbtoQ0Xxif+adtT+DS9Tx/syCS3bY4nUpkPPI15Pu/hMn56ZSJBaEAd65qZRY9OF1l9c97nj1sIw4N5Xq+NY2PKlZRtSgfMT6gMopkwn/auMwiNERWvcjhcMgZPd1wORpqdbsRe2+jszrDkw3k3jVEbTuCijV1Wf5nlemnvvvvE/+kxcPL9b95jvl8GLdHxlu80XPHF6s+3Ti8CKTD3ro8GLd73vl8GLdtxKHF9XjVeLwIk80V/nwYt23ovHMwj3luxS5WpTy1E3jR6AW+WPwTYJMi71gISRdNcJxCaGuq0mJoWIvFK37Fz5A5qYd0e2gmehdqenYlaWZqpDSLJBSbUNKR2+xTVUnCgOFdF9J3KNa9//bOHNb91PNZ27rjZNEdf+aOHObOHNrEVHizC0Tdq7Kmdv6jKiZ1q9MnLlNnLm1psmi5G7pnbmtX+namdu6n/5fZrliL/r1BQA=",
6188
+ "debug_symbols": "tf3djuU8kp4Nn0tvz4bI+OWcimEY4/HYaKAxY4zHH/DB8Lm/S0FG3KwqJ0u1VvZO59X1ZMYlUYqQRFHk//nLf/uX//q//8d/+eu//vd/+19/+cf/9H/+8l///a9/+9tf/8d/+du//fM//cdf/+1fX//6f/5y3f/j9pd/pH/4i/tf/lFeP0b8GNf80eaPPn/Q/MHzh8wfOn/Y/DGjjBmlXdf62dbPvn7S+snrp6yfun7a+unr54rXVry24rUVr614bcVrK15b8dqK11a8tuL1Fa+veH3F6yteX/H6itdXvL7i9RWvr3i04tGKRyserXi04tGKRyserXi04tGKxyser3i84vGKxyser3i84vGKxyser3jyimf3z7Z+9vWT1s9XvHbdIAma8ArZ6IZXzBa/PBboldASegIl3JH9BknQBEvwhLHAroSW0BMoISNbRrY78rjBEjzhjny3hF8JLeEVuQdQAidIgiZYgieMBXfqTGgJGXlk5JGR7yTqd/vcaTTBEjxhTOh3Nk1oCT2BEjhBEjTBEjwhI7eM3DJyy8gtI7eM3DJyy8gtI7eM3DJyz8h3ivVxQ0+gBE6QBE2wBE8YC+5cm5CRKSNTRqaMTBmZMjJlZMrIlJE5I3NG5ozMGZkzMmdkzsickTkjc0aWjCwZWTKyZGTJyJKRJSNLRpaMLBlZM7JmZM3ImpE1I2tG1oysGVkzsmZky8iWkS0jW0a2jGwZ2TKyZWTLyJaRPSPfOUj9hp5ACZwgCZpgCZ4wFtw5OCEjj4w8MvKdgyQ3SIImvCLzdYMnjAl05+CEltATKIETJEETLMETMnJbdYNaS+gJlMAJkqAJluAJqyJRz8g9I/eMfOcg0w2cIAmaYAmeMBbcOTihJfSEjEwZmTIyZeQ7B5lv8ISx4M7BCS2hJ1ACJ0iCJmRkzsicke8cZLuhJfSE+7LabuAESdAES/CEseDOwQktoSdkZM3ImpE1I2tG1oysGdkysmVky8iWkS0jW0a2jGwZ2TKyZWTPyJ6RPSN7RvaM7BnZM7JnZM/InpFHRh4ZeWTkkZFHRh4ZeWTkkZFHRh4rMl9XQkvoCZTACZKgCZbgCRm5ZeSWkVtGbhm5ZeSWkVtGbhm5ZeSWkXtG7hm5Z+SekXtG7hm5Z+SekXtG7hmZMjJlZMrIlJEpI1NGpoxMGZkyMmVkzsickTkjc0bmjMwZmTMyZ2TOyJyRJSNLRpaMnDnImYOcOciRg3SDJXjCWBA5GNASegIlcIIkZGTNyJqRNSNbRraMbBnZMrJlZMvIlpEtI1tGtozsGdkzsmdkz8iekT0je0b2jOwZ2TPyyMgjI4+MPDLyyMgjI4+MPDLyyMhjRZbrSmgJPYESOEESNMESPCEjt4zcMnLLyC0jt4zcMnLLyC0jt4zcMnLPyD0j94zcM3LPyD0j94zcM3LPyD0jU0amjEwZmTIyZWTKyJSRKSNTRqaMzBmZMzJnZM7InJE5I3NG5ozMGZkzsmRkyciSkSUjS0aWjJw5KJmDkjkomYOSOSiZg5I5KJmDkjkomYOSOSiZg5I5KJmDkjkomYOSOSiZg5I5KJmDkjkomYOSOSiZg5I5KJmDkjkokYN+AydIgiZYgieMBZGDAS2hJ2TkkZFHRh4ZeWTkkZHHiqzXldASegIlcIIkaIIlvCLrdcNYcOfghJbQEyiBEyRBEywhI7eM3DPynYNKN/QESuAESdAES/CEseDOwQkZmTIyZWTKyJSRKSNTRqaMTBmZMzJnZM7InJE5I3NG5ozMGZkzMmdkyciSkSUjS0aWjCwZWTKyZGTJyJKRNSNrRtaMrBlZM7JmZM3ImpE1I2tGtoxsGdkysmVky8iWkS0jW0a2jGwZ2TOyZ2TPyJ6RPSN7RvaM7BnZM7Jn5JGRR0YeGXlk5JGRR0YeGXlk5JGRx4ps15XQEnoCJXCCJGiCJXhCRm4ZuWXklpFbRm4ZuWXklpFbRm4ZuWXknpEzBy1z0DIHLXPQMgctc9AyBy1z0DIHLXPQMgctc9AyBy1z0DIHLXPQMgctc9AyBy1z0DIHLXPQMgctc9AyBy1z0DIHLXPQMgctc9AyBy1z0DIHLXPQMgctc9AyBy1z0DIHLXPQMgctc9AyBy1z0DIHLXPQMgctc9AyBy1z0DIHLXPQMgctc9AyBy1z0DIHLXPQMgctc9AyBy1z0DIHLXPQMgctc9AyBy1yUG8YCyIHA1pCT6AETpAETbCEjDxWZL+uhDtyu6EnUAInSIImWIInjAWRgwEZuWXklpFbRm4ZuWXklpFbRm4ZuWfknpF7Ru4ZuWfknpF7Ru4ZuWfknpEpI1NGpoxMGZkyMmVkysiUkSkjU0bmjMwZmTMyZ2TOyJyROSNzRuaMzBlZMrJkZMnIkpElI0tGlowsGVkysmRkzciakTUja0bWjKwZWTOyZmTNyJqRLSNbRraMbBnZMrJlZMvIlpEtI1tG9ozsGdkzsmdkz8iekT0je0b2jOwZeWTkkZFHRo4ctBs4QRLuyOMGS/CEMWFEDga0hJ5ACZwgCZpgCZ6QkVtGbhm5ZeSWkVtGbhm5ZeSWkVtGbhm5Z+SekXtG7hm5Z+SekXtG7hm5Z+SekSkj3zlo1w09gRJeka3dIAma8IpsdIMnjAV3Dhrf0BJ6AiVwgiRogiV4wlggGVkysmRkyciSkSUjS0aWjCwZWTKyZmTNyJqRNSNrRtaMrBlZM7JmZM3IlpEtI1tGtoxsGdkysmVky8iWkS0je0b2jOwZ2TOyZ2TPyJ6RPSN7RvaMPDLyyMgjI4+MPDLyyMgjI4+MPDLynYOm8bb9KmpFd/ARREVcJEVaZEVeNJLudFzUisrRytHK0crRytHK0crRytHL0cvRy9HL0cvRy9HL0cvRy9HLQeWgclA5qBxUDioHlYPKQeWgcnA5uBxcDi4Hl4PLweXgcnA5uBxSDimHlEPKIeWQckg5pBxSDimHlkPLoeXQcmg5tBxaDi2HlkPLYeWwclg5rBxWDiuHlcPKYeWwcng5vBxeDi+Hl8PL4eXwcng5vByjHKMcoxyjHKMcoxyjHKMcoxwjHTGsZlEr6kVUxEVSpEVW5EXlqDxvleet8rxVnrfK81Z53irPW+V5qzxvleet8rxVnrfK81Z53irPW+V5qzxvleet8rxVnrfK81Z53irPW+V5qzxvleet8rxVnrfK81Z53irPW+V5qzxvleet8rxVnrfK81Z53irPW+V5qzxvleet8rxVnrfK81Z53irPW+V5qzxvleet8rxVnrfK81Z53irPW+V5qzxvleet8rxVnrfK81Z53irPW+V5qzxvleet8rxVnrfK81Z53irPW+V5qzxvleet8rxVnrfK81Z53irPW+V5qzxvleet8rxVnrfK81Z53irPW+V5qzxvlee98rxXnvfK81553ivPe+V5rzzvlee98rxXnvfK81553ivPe+V5rzzvlee98rxXnvfK81553ivPe+V5rzzvlee98rxXnvfK81553ivPe+V5rzzvlee98rxXnvfK81553ivPe+V5rzzvlee98rxXnvfK81553ivPe+V5rzzvlee98rxXnvfK81553ivPe+V5rzzvlee98rxXnvfK81553ivPe+V5rzzvlee98rxXnvfK81553ivPe+V5DBvyHtSKehEVcZEUaZEVedFI8nJ4ObwcXg4vh5fDy+Hl8HJ4OUY5RjlGOUY5RjnuPHcK0iIr8qKxKAYVLWpFvYiKuEiKtMiKvKgcrRytHK0crRytHK0crRytHK0crRy9HL0cvRy9HL0cvRy9HL0cvRy9HFQOKgeVg8pB5aByUDmoHFQOKgeXg8vB5eBycDm4HFwOLgeXg8sh5ZBySDmkHFIOKYeUQ8oh5ZByaDm0HFoOLYeWQ8uh5dByaDm0HJHncwxzK+pFt8ODuEiKtMiKvGgkRZ5PakW9qBxeDi+Hl8PL4eXwcoxyjHKMcoxyjHKMcoxyjHKMcox0xMClRa2oF1ERF0mRFlmRF5WjlaOVo5WjlaOVo5WjlaOVo5WjlaOXo5ejl6OXo5ejl6OXo5ejl6OXg8pB5aByUDmoHFQOKgeVg8pB5eBycDm4HFwOLgeXg8vB5eBycDmkHFIOKYeUQ8oh5ZBySDmkHFIOLYeWQ8uh5dByaDm0HFoOLYeWw8ph5bByVJ5z5TlXnnPlOVeec+U5V55z5TlXnnPlOVeec+U5V55z5TlXnnPlOVeec+U5V55z5TlXnnPlOVeec+U5V55z5TlXnkvluVSeS+W5VJ5L5blUnkvluVSeS+W5VJ5L5blUnkvluVSeS+W5VJ5L5blUnkvluVSeS+W5VJ5L5blUnkvluVSeS+W5VJ5L5blUnkvluVSeS+W5VJ5L5blUnkvluVSeS+W5VJ5L5blUnkvluVSeS+W5VJ5L5blUnkvluVSeS+W5VJ5L5blUnkvluVSeS+W5VJ5L5blUnkvluVSeS+W5VJ5L5blUnkvluVSeS+W5VJ5L5blUnkvluVSeS+W5VJ5L5blUnkvluVSeS+W5VJ5L5blUnkvluVSeS+W5VJ5L5blUnkvluVSeS+W5VJ5L5blUnkvluVSeS+W5VJ5r5blWnmvluVaea+W5Vp5r5blWnmvluVaea+W5Vp5r5blWnmvluVaea+W5Vp5r5blWnmvluVaea+W5Vp5r5blWnmvluVaea+W5Vp5r5blWnmvluVaea+W5Vp5r5blWnmvluVaea+W5Vp5r5blWnmvluVaea+W5Vp5r5blWnmvluVaea+W5Vp5r5blWnmvluVaea+W5Vp5r5blWnmvluVaea+W5Vp5r5blWnmvluVaexzCu0YJaUS+iIi6SIi2yIi8aSV4OL4eXw8vh5fByeDm8HF4OL8coxyjHKMed54ODuEiKbocGWZEXjUUxyGtRK+pFVMRFUqRFVuRF5WjlaOVo5WjlaOVo5WjlaOVo5Wjl6OXo5ejl6OXo5ejl6OXo5ejl6OWgclA5qBxUDioHlYPKQeWgclA5uBxcDi4Hl4PLweXgcnA5uBxcDimHlEPKIeWQckg5pBxSDimHlEPLoeXQcmg5tBxaDi2HlkPLoeWwclg5rBxWDiuHlcPKYeWwclg5vBxeDi+Hl8PL4eXwckSeW5AXjaTI80mtqBdRERdJkRaVY5RjpCMGki1qRb2IirhIirTIiryoHK0crRytHK0crRytHK0crRytHK0cvRy9HL0cvRy9HL0cvRy9HL0cvRxUDioHlYPKQeWgclA5qBxUDioHl4PLweXgcnA5uBxcDi5H5PkIGkmR55Pa/al7D+xAAjJQgAo0oANHYXwpvxA2hU1hU9gUNoVNYVPYFDaDzWAz2Aw2g81gM9gMNoPNYHPYHDaHzWFz2Bw2h81hc9gctgHbgG3ANmAbsA3YBmwDtgHbKFuMbktswA4kIAMFqEADOhC2BluDrcHWYGuwNdgabA22BluDrcPWYeuwddg6bB22DluHrcPWYSPYCDaCjWAj2Ag2go1gI9gINoaNYWPYGDaGjWFj2Bg2ho1hE9hQSwZqyUAtGaglA7VkoJYM1JKBWjJQSwZqyUAtGaglA7VkoJYM1JKBWjJQSwZqyUAtGaglA7VkoJYM1JKBWjJQSwZqyUAtGaglA7VkoJYM1JKBWjJQSwZqyUAtGaglA7VkoJYM1JKBWjJQSwZqyUAtGaglA7VkoJYM1JKBWjKqlvSrakm/qpb0q2pJv6qW9KtqSb+qlvSrakm/qpb0q2pJvy7YGmwNtgZbg63B1mBrsDXYGmwNtg5bh63D1mHrsHXYOmwdtg5bh41gI9gINoKNYCPYCDaCjWAj2Bg2ho1hY9gYNoaNYWPYGDaGTWAT2AQ2gU1gE9gENoFNYBPYFDaFTWFT2BQ2hU1hU9gUNoXNYDPYDDaDzWAz2Aw2g81gM9gcNofNYXPYHDaHzWFz2Bw2h23ANmAbsA3YBmwDtgHbgG3AhlrSUEsaaklDLWmoJQ21pKGWNNSShlrSUEsaaklDLWmoJQ21pKGWNNSShlrSUEsaaklDLWmoJQ21pKGWtFlLJJCADBSgAg3owFE4a8nEBoSNYCPYZi25AhVoQAeOwllLJjZgBxKQgbAxbAwbw8awCWwCm8AmsAlsApvAJrAJbAKbwqawKWwKm8KmsClsCpvCprAZbAabwWawGWwGm8FmsBlsBpvD5rA5bA6bw+awOWyzlsxpsxw4CmctmdiAHUhABgpQgbAN2EbZYrDhK5kDG7ADb1vTQAYKUIEGdOAojFqysAE7ELaoJZ0DBahAAzpwFEYtWdiAHUhA2DpsHbaoJXNOs6glC0dh1JLugQ3YgQRkoAAVaEAHjkKGjWFj2Bg2ho1hY9gYNoaNYRPYBDaBTWAT2AQ2gU1gE9gENoVNYVPYFDaFTWFT2BQ2hU1hM9gMNoPNYDPYDDaDzWAz2Aw2h81hc9gcNofNYXPYHDaHzWEbsA3YBmwDtgHbgG3ANmAbsI2yxYDGxAbsQAIyUIAKNKADYWuwNdgabA22BluDrcHWYGuwNdg6bB22DlvUEuJABkphJI4E3X9FE+O/W6ACDejAURgZsrABO5CADIRNYVPYFDaFzWAz2Aw2g81gM9gMNoPNYDPYHDaHzWFz2Bw2h81hc9gcNodtwDZgG7AN2AZsA7YB24BtwDbKFkMBExuwAwnIQAEq0IC3LaYsjDGBCyNDFjZgBxLwtnELFKACDejAURgZsrABO5CAsHXY4mrLPdCAYaPAURhX24UN2IEEZGDYNFCBBgybB47CuNoujDSO7Y2r7UICMlCACrxtEvsWV9uFozCutgsbsAMJyEABKhA2gS1qiUSTRC1Z2IDRZiMw4nJgRIiGivog8QtRHxY2YAcSkIF3XI2zL+rDQgM6cBRGfVjYgB1IQAbC5rBFfdA4LFEfFoYt9jjqw8IG7EACMjBsEqhAAzpwJMYQwsQG7EACMlCACgybBjowbHfViMGEiQ3Ygbft/ja9x4DCRAEq0IAOvG12n3IxrDCxATuQgAwUoAIN6EDYCLaoD/dn9D2GGCYSMFpyBApQCyPnF0YEDowti4aKlDYPdOAojJRe2IB3MI+NjJReyEABKtCAt81jLyKlJ0ZKL2zADiQgAwWoQAPCprDN6bqjSeaE3RM7MGxxTs5puycKMGzRkpH+Hq0zp+++AkdhpP/CBuxAAt5xR2xkJPpCB47CSPSFLTFG+LV7oEKPIX6JobDAUIxAAzpwFEa+LWyFMU9v9A3EOLzEDiQgAwWoQAM6cBQSbAQbwUawEWwEW8ycfd3ZHePtevTQxYC7VwdBIAEZGBEkUIEGdOAojLmzF0bcOAAxN3Z0YMSYut5iy2J+7IWjMObIvqKpY5bshR1IQAYK8La12OOYMXth2GLnY9bsiTFv9sI7bovTKObFbtEOMTP2wthjD4wIsZsxP/bCBuzAiBvtEHPVLxRg2KJ1Ysb6hQ6EbcA2YBuwxez1C7mOxcDRHDiaA0dz4GiOOpoxfG4ewhgrNw9hDJabBytGyyU6cOSxiAFziQ3YgQRkoORxi2FziZYHKwbOJdbRjGFy8xDGmLh53GJQXKLlIYxhcbOhYlzcQrqADdjzYMXYuEQGSh6sGB6XaEDYCDaGjWHjOpox9qy3aJJIhoUdeG9Oj9aJZFgoQAUa0IGjMJJhYQPeth6bEymykIECVKABwxYNFYkzMRJnYQN2IAEZKEAFGhA2hy0SJ3r+YmhaYgeGLU6NSJyFAgxbtHokzkIHjsQYo/bq/Qi841ILZKAAFXjHJQq840ZPRAxL69H/EOPSEhuwA8OmgQwUoALD5oG3Ip4sY1hajwe8GJfW40EsBqb1eOSKkWmJDBSgAg3owLDdrR4D1BJvWzxyxRC1RAIyUIAKvG3xwBQD1RJHYeTbwgbsQAIyUIAKhI1hi2thPJPFoLXEBgxbHNi4Qi5kYNiioeK6KXGE4rq50IGjMErFwgYMW5yTUSoWMlCACjSgA0dhlIqFDQibwWawGWwGm8FmsEWpiAe8GLWW2IBxTsZuRqlYyEABKtCAt03juEWpmBilYmEDdiABGXjH1TjGURQWjsQYn5bYgB1IQAYKUIEGdCBsDbYGW4OtwdZga7A12BpsDbYGW4etw9Zh67B12DpsHbYOW4etw0awEWwEG8FGsBFsBBvBRrARbAwbw8awMWwMG8PGsDFsDBvDJrAJbAKbwCawCWwCm8AmsAlsCpvCprApbAqbwqawKWwKm8JmsBlsBpvBZrAZbAabwWawGWwOm8PmsDlsDpvD5rA5bA6bwzZgG7AN2AZsA7YB24ANtWSgloyqJXRVLaGragldVUvoqlpCV9USuqqW0FW1hK6qJXRVLaHrgq3BNmuJBHYgAWVVRLpmAZloQAeOwn4BG7ADCchA2DpsHbYOW4eNYCPYCDaCjWAj2Ag2go1gI9gYNoaNYWPYGDaGjWFj2Bg2hk1gE9gENoFNYBPYBDaBTWAT2BQ2hU1hU9gUNoVNYVPYFDaFzWAz2Aw2g81gM9gMNoPNYDPYHDaHzWFz2Bw2h81hc9gcNodtwDZgG7AN2AZsA7YB24BtwDbK1q4L2IAdSEAGClCBBnQgbA22BluDrcHWYEMtaaglDbWkoZY01JKGWtJmLfHADiTgbbNY2itqyUIFhm0EOnAUzloysQE78LbdXdcUg9ISBRi22N6oJQsdOAqjlixswNtmc/ExAjIwbBqoQAN6YVSNu6OcYqBZt2ioqA8LFXhH8GioqA8LR2HUB2+BDdiBBLxtHjsU9WGhAq0wKoFH80XO313XFIPHEgUY2xuKyPmFDhyFkfMLG7ADwzbXcGOgABVoQAeOwsj5hQ3YgbAN2AZsA7YB24BtlG0uTbmwATswbBoYcS3QgA4chZHdCxuwAwnIQAHC1mBrsDXYOmwdtg5bh63D1mHrsHXYOmwdNoKNYCPYCDaCjWAj2Ag2go1gY9gYNoaNYWPYGDaGjWFj2Bg2gU1gE9gENoFNYBPYBDaBTWBT2BQ2hU1hU9gUNoVNYVPYFDaDzWAz2Aw2g81gM9gMNoPNYHPYHDaHzWFz2Bw2h81hc9gctgHbgG3ANmAbsA3YBmwDtgHbKBtdF7ABO5CADBSgAg3oQNhQSwi1hFBLCLVkLrR5v3ykudTmQgUa0IGjcNaSiQ3YgQS8bfeEBURzCdyJCgzbCHTgKJy1ZGIDdiABGShABcJGsM3lce/LIs0Fcic24MtG95tBiinyEhkoN8YOzaVx48/mUrg9sAMjggQyUIAKNKADx433FScGySU2YAcSkIECVKABHQibwWZhizPKOpCAYYuTwASowLDFATAHjkK/gLetRVPHQrotWjIWzm3R1LF07kIDOvCO26L5YgndFnsRi+i22JxYRreFLRbSXchAAd62HptzV4JEB47EGA73So7AW9Ep8Fb0uRzsrbjft1CMgaP7ZQjFGLhEAzpwFLYL2IC3jWIb7vRPlDw9Y+BbogEdWHkRA98SG7ADCchA2DpsHbYOW4ftznmiaLM75xM7MHZo/i4DBahAAzpwFPIFbMAOhI1hi5ynOG6sQAM6cBTKBQybBXYgARkoQAUa0IGjMOrDQtgUtqgP9/ssiuFwiQK8bbGMc0yjR/dbLopBcom3jeOwRH1YeNtiKeQYJJdIQAYKUIEGdOAojPqwEDaHzWFz2Bw2h81hc9gctgHbgG3ANmAbsA3YBmwDtgHbKFsMkktswA4kIAMFqEADOhC2BluDrcHWYGuwNdgabC1ssR51c+Ao7BcwriJXYAcSkIECVKABHTgKo2qwBNZVOga+0f1ilWKCvUQHjsKoDwsbsAOjHSwQ7cvYY8EeR84v7MBoXw9koAAViKMpsAmOpuJoKo6m4mgqjmbk/NyGyPmFCsTRnDkf2zBzPnDm/ETYkPOCnBfkvCDnBTkvyHkxnDuGlnS0pKMlZ87HNjha0tGSyHlBzgtyXpDzgpwX5Lwg52XguM2cn4iWHGjJgeM2c34iWhI5r8h5Rc4rcl6R84qcV+S8Iuf1quOmlwOrJbVdwAYM2wgk4G2TK1CACjTgbZPYhsj5iZHzCxuwAwnIQAGGLTYycn5h3D8Exp1CZGEM9XulRCABGSjAOkJKBnRgnevKF7ABOxBHiHGEGEeIcYTYgA7E+SA4HwTnQ9SHe6QDxfR7iQqM1ol2iPogsWVRHyZGfVjYgB1IQAYKUIHxpBbi2XswsQE7kIAMFKACDehA2Bw2h81hc9gcNofNYXPYHDaHbcA2YBuwDdgGbAO2AduAbcA2ymbXBWzADiQgAwWoQAM6ELYGW4OtwdZga7A12BpsDbYGW4Otw9Zh67B12DpsHbYOW4etw9ZhI9gINoKNYCPYCDaCjWAj2Ag2ho1hY9gYNoaNYWPYGDaGjWET2AQ2gU1gE9gENoFNYBPYBDaFTWFT2BQ2hU1hU9gUNoUNtcRQSwy1xFBLDLXEUEsMtcRQSwy1xFBLDLXEUEsMtcRQSwy1xFBLDLXEUEsMtcRQSwy1xFBLDLXEUEsMtcRQSwy1xFBLDLXEUEsMtcRRSxy1xFFLHLXEUUsctcRRSxy1xFFLHLXEUUsctcRRSxy1xFFLHLXEUUsctcRRSxy1xFFLHLXEUUsctcRRSxy1xFFLHLXEUUsctcRRSxy1xFFLHLXEUUsctcRRSxy1xFFLHLXEUUsctcRRSxy1xFFLHLXEUUsctcRRSxy1xFFLHLXEUUsctcRRSxy1xFFLHLXEUUsctcRRSxy1xFFLHLXEUUsctcRRSxy1xFFLHLXEUUti2CXdIyUphl0mEpCBAlSgAR04CuMJZSFsDpvD5rA5bA6bw+awOWwDtllLKPC23R//UQy7TGSgABVoQAfethgYEIMxExswbBRIQAaGrQUq0IAOjON239DPwZgLG7ADCchAASrQgF7Y6619DLsknf9KQAYKUIEGdGC02X3KxbDLxAYMW4jjCWUhA8MmgQo0oAPjTfx9Oz6HXS5swA4kIAMFqEADemE8i+jEDiRg7MUIFKAC772IgSIxwDLxbrMYLhADLBMb8LbF0I0YYJnIQAEq0IAODFucntGDsbABO5CADMyPZWgOpYz3InMoZbxcmEMpFzZgBxKQgQLMz2Jo1EdONOojJ5pDKSfGXcU1sQE7kIAMFKACDegL+bryyPN1dSAB88jzdQlQgXnkOQZNJuaR5xg0mdiAeeQ5Bk0mMlCACjSgA/PIc4yfTGzADiQgA/PI8xwpeR95niMlWyBdwAbsQAIyUIB55PmqD6J4jpRcOAr5qiPEDdiBBGSgABVoQBz5yHmLPY6cX0hABsaxkEAFGtCB8dFbHJb5CePEBuxAAjJQgAq0wpndcfbN7J7YgQRkoADvvfA4U+Pqv9CBozCu/gsbsAMJyEABwuawxdXfIxni6j8xrv4LwxZ7HFf/hQQMWxyhuPp7HIC4+nsc47j6L3TgSIzRj4kNGDYPJCADBahAAzpwFEYlWNiAsDXYGmwNtgZbg63BFpXg/oqaY/RjYgPetrt3kWP0YyIDBahAA962IYGjMO4JFjZgBxKQgQJUoAFhI9ii1/L+qJtj9GNiB4YtmuSuD3y/IuEY/ZioQAM6cBTeTxKJDdiBdGMPZGDYKFCBBnRg2GLT9QI2YAcSkIECVGDY4qxWB4YtWscuYAN2IAFDMQIVaEAHjsK7gHCLJrkLSGIHEpCBArxtLRrqLiCJDhyF4wI2YAcSkIEChG3ANsIWGTBGYgylTAybBHYgAcNmgWHzwLCNQAM6cBS2C9iAcdMbJEVaZEVeNJLuDOZ7VAfHCMfEBryvVrH58wvMIC6SIi2yJI6ILfBuhnvICMd4RZr/XYq0KF4hBHnRSJrvD4JaUS8KCQUy8G7rPn9BgVYYCTe3OFLrHrjCMfQwMYYOBEWAaLnIrIUOHIWRWQtbNolVc1o1p1VzWjWnVXNGIs1GjJSZjRgp0+MEipRZGLsaJ0WkzMJ7SymOZqRM7HRkTFAkzKRW1Iuo6I5IsSGRAHRvSIwKvN9QcQwKXNSL7r/WIC6SIi2yIi8Kyd3sMRgw8bbE4Y7BgIkEjM2UwIgQwfoFvCPEf+89GybG9yUyUIARNnaqG9CBIxucZiZNbEDYCDaCjWAj2Ag2go1gY9gYNoaNYWPYGLa4Fi60darHoL95+sY6uAvlAjZgL4zrFMUmRDItZGCMnwrSIivyopEUnV2TWlEvoiIuKoeVw8ph5bByxDXqHvzDMTAvsQMjD6JlIuEW3o3I0XKRcAsN6MBROFNuYgOGLc7RmXUTGRi2OMsjGRcaMGxxHCJFA2O4XmKMpQvqRVTERVKkRRHxrjMxDo/v9+gc4/D4fk3OMRddogAVeG+pRLD7WpQ4CiNLFzZgDKMJChkFMlCAIZNAAzowZNEWkaULQxa7Flm6kIBxnxUkRVpkRV40kiITJRorck7nv0bta4EGdOAojKTT2MFIuoUdSEAGRoYHaZEVRX4HjaR5JQxqRb2IikLCgQJU4CiMW0mNxo9byYVxLxQkRVoULRKHJm4pF47CSNfof4lxcolx3YnmjXRdeKui0yXGyXF0mcQ4OY6+jxgnx/cnTxzj5BJHYaTrwgbsQAIyMGyxvZGuFqdSpGs8hcc4OY6H4RgRx/HYGyPiEgnIQAEq0ArjGhmPyDHgLZGADBSgAq0wEvHug+cYucbxvB0j1xIVaMDXvsn8q5F0Z9yiVtSLqIiLpEiLrKgcVA4uB5eDy8Hl4HJwObgcXA4uB5dDyiHlkHJIOaQcd7JJHJs72SbdybaoFfUiKuIiKdIiKyqHlsPKYeWwclg5rBxWDiuHlcPKYeXwcng5vBxeDi9HJMaYGCePBd4nz/09AcewMb7HTXOM6YqLjs6zOqgXvSJFPY2RW4ssKe7votMixmIlMjA2RAPvvY2Y90m8yItGUpzDk1pRL6IiLpKiclA54u7tnpOOY6QVj/mvr7+OmhYDrRZpkRV50Ui6z85FragXUVE5pBxSDimHlEPKoeXQcsRFYUy8d++KYxBnZfSSxLiqhXFeLmzADiQgAwWoQAPCZrA5bHGKRvdMjKtKJCADBahAAzpwFI4LCNuAbcA2YLuTIq5HMaxqkRV50VgUQ6oWRcSJsaUc+PrrMcmLRlIsbRh/EksbTupFVMRFUhQ7fudNDHiS6FWKAU+JBIxd9EABKtCADhyFkXILG7ADCQgbwRaJd39rwzHgKdGBUc3u4xADnhKjnsUexyUk+nliwJPEK40Y8JQowLCFOK4jC8M2Am9bdK/EgCeJp3ubq31Em83VPiYSkIECVGDEjU2PC0n0f8QgJom+hBjElCjAe3ujpyMGMSU6cBRG4i6MuCGOZIwuiBiYJPFMFQOTEkdhJOPCBuxAAjJQgHGZjuaLZFzowLhSR6NGMi5swA6Mq3W0WSTjQgHe7Tt3c86kP9GB48a7SXzOpD+xATuQgAy8j2Y0n9dM+uw1kz7HwCSJx/IYmLSwXcAGZGC0Dgd64XwBGMRFUnRX+xY0ku4EXNSKehEVcZEUaZEVxcaEbt64Bc47t4lxfEYgARl4H594vIohQYkGvHcjGiEujEFxYZzUinoRFXGRFGmRFZVDyqHl0HJoObQcWg4th5ZDy6Hl0HJYOawcVg4rR1w444EqBv4kKjDaa/6uA0dh5Gr0lcXAn8T76MT9Vwz8SWSgABUYtjh8kasLb1t0D8TAH4k7xBj4I/H0HwN/Egl42+LeOgb+JCrwbsLIrjtVF41FMepnUSvqRRGRA+8tja6DGMYjEr8QmbewATswttQDGShABRrwvsqH9+4UiYfEmFFN4n42hvbIPUCJY2hP4u2KZ+0Y2iNzH+Jau/B2xWiGGNojNoN54Z3V8YQ3cv1fHrUqFo9aFYtHrYrFMSxH4rE6huUkdiABGShABcZ2xT7EdXLhKIxlvWPDYlnvSVTEc1lgjtE5i7Qogs9fdOAojCex2drxKLYwdiWaLS6hCxkYF+E4BrWgHmNxTsbinIzFORmLczIW52QszslYnJOxOCdjcU7G4pyMxTkZi3MyFudkLM7JWJyTsTgnY3FOxuKcjMU5GYtzMhbnZCzOyTFiR6IbI0bsJDZgPB/F70YKL4wnpDjtIoUXKjBskXtzEayJY6GsxTknNmAHRlwOjGe5+a+xvXpjJPLCBuzA2F4PZKAAFWjA2N4WOArnInkTb9uY2IEEZKAAFWhAB47CuG1eCBvBRrARbAQbwUawEWwEG8PGsDFsDBvDxrAxbAwbw8awCWwCW/TB3PMfSIzjSWSgABVowLBR4CiM+rAwbHFGRX1YSEAGxr7FKRe32AsN6IXxFDzilIvL9l3XJEbsJCowIsR5FpfthaMwLtsjdigu2ws7kID3jchd0SVG7Og8PSPnW2xO5PxCB96X0jv9JUbsJDZgBxKQgQJUoAEdWLYYsZPYgHfO32/ZZS6iuZCBAlSgAR04CufCdxMbELYGW4t9o0ABKtCADhyF/QI2YAcSMGwcKEAFjsK4V78f1yVG4ej9tCgxCidRgAqM7fVAB45CvoAN2IEEZKAAFQgbw8awCWwCm8AWd/D3kBOJUTiJ8SgSZ0ncxC80oANHYdzIL4yHnmj1uJVfSEAGClCBBnTgKIxb+oWwGWxxV9/iaBoDBRi2OMYWtjiE5sCwRUP5BQxbNJR3IAEZKEAFGtCBozDqw0LYBmwDtgHbgG3ANmAbsI2yxYCcxAbsQAIyUIAKNKADYWuwNdgabA22BluDrcHWYGuwNdg6bB22DluHrcMW9eHubpKY8SzRgA68a9/dTyBzYcyFDdiBBGSgABVohVE17i4viVFBendYSYwKSoztpUAFGtCBozDqw8IGjLghFrSvYI8j5ydGzi9swLt9754yieFBiQwUII6mwqY4moqjaTiahqNpOJqR83MbIucX4mgajmbk/NyGyPmFo9BhQ8535HxHznfkfEfOd+R8jChaYkdLOlpyoCUj5+c2DLTkQEsi5ztyviPnO3K+I+c7cp6Q84Scj1FIcxtiGFIiAwWowNg3DXRg7NtdSGMwUmIDdmD0wESwyPmFAlSgAR04CiPnF0ZvTwvswDrBY7iS3r2WEsOVEg3owDo1YrhSYgN2IAEZKMA6WEQGdCAOFuNgMQ4WdyABGRh7QYEOHIWzdy/aYXbvxZbN/r2JBGSgABVoQAeOwigKcXcVw5wSGRhx43yY/XoTI27s0OzZmzgKoyhwHO4oCgs78LZxHPkoCgsFqEADOnAURlFY2IAdCFv05MUTSoxvSoy4cUZF+k+M9F/YgB1IQAbGXkTzRfovNGDY4gBE+gfG+KbEsFFgBxKwHq5ijFOiAg3owFEYXQYLG7ADCRh7oYEGdOAojETn+LNI9IUdSEDOzowY/JSoQAM6cBTO19gTG5BnR6DEMKdFWvQKun7Pi0ZS5PXdkSsx5VhiB97bf3fvSkw5lijA2+RBVuRFI+nO9EWtqBdRERdJUTmkHFIOKYeWQ8uh5dByaDm0HFoOLYeWQ8th5bByRKbfXdwSo6USGRjtxYEKvM8uieMQmb5wFEamS5w8kekLwxanX2T6QgaGbQQqMGyxvZH/C0dh5L/GQY38Xxgd7HEqRf4vvG0aexH5v1CB92vsGcCLxqKYVWxRK+pFEVEC4zWABsZ7gLsFYpqwxAbswNjSEchAASrQgLftHmkmMU3YwsjxhQ3YgQS8bffrfYnBVokKNKADR2Fc1xc2YAcSEDaCLa7rdwe8xKirRAeGLRo18t+izSL/F4bNAwkYtmioyP+FCjSgA0dhXO0XNmAHEhA2gU1gE9gENoFNYVPYFDaFTWFT2BQ2hU1hU9gMNoPNYDPYDDaDzWAz2Aw2g81hc9iiMty99xIjuBIZKMDoUIuTdnYWTnTgKIzlOhc2YAcSkIH3XtyDGyXGhun9BkFiSrHE2F4KJCADBahAA3phVIJ4bRDThM0mmWPNYo/nYLOFBnTg3b5xXYxpwhIbsAPraGqHrQtQgQZ0YB1NpQvYanOoAwnIQOxb5Hy8/IhRaomxbxY4CiPnFzZgDDaLYJHzCxkoQAUa0IGjcA5si5NgjmybSHWw5oi2OB/mkLaJCjSg1wEQHCzFwVIcLMXBikRfyEAcLCS6ItEVia5IdEWiKxJdkeiKRI/xbhrvIGK8W6IDo6GiHSKl471CjHdL7EACMlCACjSgF8ZlPR4BYmRbIgEZGHHj1IjL+kIDOjAuzfef2XxHP7EBO5CADBSgAq3wvuTH1SsGvi3qRa+gNn+Pi6ToHpoXb0tiVrBEB97v7e8WiknBFrWiWxNvWGKEXCIDZb72lxggt8iKvGgk3Qm/qBX1IirionJQOagcVA4qB5eDy8Hl4HJwObgcXA4uB5fjzm6LVzgxEi6xAWOcQzRtvNJbGC1GgQJUoK0xERJTfyXezz9x1xlTfyU2YNg8kIBhiwgqQAXet/mxuXGbP2kkxW3+pFbUiyJinB0Wp1GcZxbtcmdEjJdLbMAOjDMpmtMZKEAFGvC2tWjO+/q88L4+J97307E1d4YvoiIukiItsiIvGotimNyiVtSLqIiLpEiLrMiLytHK0crRytHKEVl+LyssMWNXogIN6MBRGIm+sAHvAxSvZmLAXSIDw9YDFWjAsEngKIx8Xxi22IvI7vWvfk9NEjSSIoGjezMm3krsQAIyUID3JkanfYyyS3TgKIxMXtiAHUhABgoQNoFNwhZtI6NQL2DYKLADCRi2aP7I5IUKNGDYokk1bHeyxTg7uwdlSgy0S2SgAGMcdzSfxUDu2IvI8uiyjJF2Fl2WMdIusQE78LZF32OMtEsUoALDFtsbqU2xOZHa0csYw+ssuvVieJ1F71oMr0tkoAAVaEAH3rboiYsRdok9T86YTCuRgQJUoAFDYYGjcF7IJ8YOeWAHEpCBAlSgAR04CiPNF8LWYYs0j56sGIeXKEAFGtCBcfNwn8oxxVZiA3YgARkoQAUa0IGwMWxRH+4hlBJj+RIJGLY4LFEfoqMoxvIlhi0OS9SHhWGLhor6sLABO5CADBSgAg3oQNgUNoVNYVPYFDaFTWFT2BQ2hc1gM9gMNoPNYDPYDDaDzWAz2Bw2h81hc9gcNofNYXPYHDaHbcA2YBuwDdgGbFFAouMwBvclGtCBMZb+VUt0Du5b2IAdSEAGClCBVhhV476N1BjcFxdQvebNfgsUoAIN6MBRGPVhYTxD9MBsX7167rFe3YGjcOb8xLt973tSjQF7iQRkoJSCYCMDOnAU8gVswF7bMHN+IgMFqLUNkfMLHQibwCawVc7rVTmvV+W8XoJ9Ey2xoCUFLSloycj5uQ2KllS0pMKmsClsipZUtKSiJRX7ZjhuM+cnoiUNLWk4bpHzC9GSBpvBZrA5WtLRko6WdOybY98cx83Rko6WdLSkoyUj5zUSJ3J+YbSkBBKQgQKMfYttiJxf6MCRGIP7EhuwAwkYthEowOiLnL8wMgtjGJ/dY901hvEldiAB6wi1JkAFGtCBo7BfwDpCMYwvkYAMFKACDejAOh9icJ/do+g1BvclMvCOa9EOUR8stizqw0IHjsKoDwsbsAMJyMCIy4EOHIVRCRZGXAnsQAIyMJ5nNVCBBnTgKIxKsLABO5CA0ToTDejAURg5f7/i0Biwl9iBBIwvQGIvYkDvQgUa0IGjMAb0LmzAaJ04CSK7FyrQgA4chZHHFokTGeuRAZGxHudOZOxCB94R7u4LjeF2iXc73B3oGsPtEgl4b+/dU6sx3C5RgQZ04CiMPF4YNgnsQAIyUIAKvFudIlhkbLRDDKxL7MCIq4EMFKACDRh7YYGjMK7zCxsw9iJskccLGRh9ai1QgQaMbrU4FrPvLnB23k0MmwdG910cltl/F+0wO/CidWYP3kQFRtzYt8jjhQ3YgRE39i0yNk6uGISX6MBRGGm68E6cHhHm56oTFXgfwh47ND9XnTgK5+eqExuwAwnIQAFGo04chXERXtiAsfNxsOIivJCBAoy9iAMQw2kWOnAUxlc1CxuwAwnIwDtulLYYN+dXNOqdvBNj3FxiA959k3d3tMa4uUQGClCBBnTgvRd3P6XGuLnEBuxAAjJQgAo0oBf22Ise2IEEZGDsBQUq0IAOjL24U4Tmx+gTG7ADCchAASowjkUgX8AG7EACMjAui0FaZEVeNJJmP3tQ9B8G9SIq4iIp0qLY8rsmxFA4j9MshsIlMjD2PZSRuwsN6MBROOeImNiAHUhABsJmsBlsBpvB5rA5bA6bx/kSp5kr0IAOjNa5a0IMhUtswA4kIAMFqMCwjUAHjkSeGT3xtt09+RpD4RIJyEDJg8Uzoyca0IGjsF3ABuxAAt5x765xjaFwiQ6849493xpD4fz+7kFjKFxiBxIw9oIDBahAA4bNAsMWDUUXsAE7kIAMFKACDehA2CLPe+xm5PnCDiQgAwWoQAM6MF493bk5h8rFtXKOlVvYgQRkoAAVaEAHjkKFLUbNUZxcUR8WEpCBAlSgAR04CuO9GsVJEC/WFnYgARkoQAUaMGxx0too9AvYgB1IQAYKMEYGBFmRF42kGDw3qRVFxImxpR7owLHmDlKZkydNbMAOJCADBahAK4xsv98faAyV83s8ssZQuUQCMlCACjTgvRf3ywiNoXILowYsbMCw9UACMlCACjSgA8N2H/MYKuf3OwyNoXKJHUhABgpQ81jEULlEB47CqAELG7ADCchAW5Pqqcx5AieOwsj2ezSxxqC4xNiLiBDZvpCBsRdxYCPbFxowhvvGAYhsnxjZvrABO/C2SWxZZPtCASrQgA4chZHtCyOuBOqaUVBjSJtL7HHk6sIGjC2zQALGlkU7RK4uVGBsWbRDXOEXjsK4wi9swA4k4G2LzueYBC1RgQZ04EicU6PFHsdAN48e5xjolihABUbcHujAURjZvbCtWSp1zrS2kIAMFKACDeiFkcfRLxbD3xIJyMDYCw5UoAEdeGdAnKkx/C2xATuQgAwUoAKjdaKpI2MXNmDshQYSkIGxFxaowNgLD3TgKIw8jv7MGOiW2IEEZKAAFXjb4oY/xrwljsLI44UN2IF3m8U1LEa3xRzQGqPbYjJijdFtiaMw5r9e2IAdSMD7WPTY3pgPdKECDRi2OFNjRtCJMSPowgbsQAIyUIAKvOP22M3IbpvYgB1IQAYKUIFxLEIR2b1wJMaYt8R7L/rEDiQgAwWoQAM6cBTGtTu6bWPYWyIDYy84UIEGjL2QwFEY1+7oJ42xb4kdGDYLZKAAFWhAB47CuHZHf2YMgUvsQAIyUIDRZrFlVEc+Rr3N4xbD3hI7kIAMFKAC68jH6LdEHHnBkRccecGRFxx5wZEXHHnBkRccecGRFxz5mFemxf1BjEArjtcncVsQM7klxywy63diGpnkvjEV+5o3oQW3jfvGtDFvLBvrxraxbzzAffP2zds3b9+8ffP2zds3b9+8ffP2zUublzYvbV6a8SlYNzYwO9qQB1hmfA5uG/eNaWPeWDbWjW1j33iAFcc3xlEV88ay8YwvwbbxjD9/Z8a/czemMituG/eNaWPeWDbWjW1j33jz+ub1zeub1zevb17fvL55ffP65vXNOzbv2Lxj847NOzbv2Lxj844Z/87TseZBGcE4z8fFG8vGM84VbBv7xgO88npy2zi8Opk2Dm/cgo6Z14t144gft55j5mncAo6Zp4vn+Rb7tfJUg3Vj29g3nvHv83nMPF3cNkYexciqYt5489Lmpc1Lm5cGeOZy3DWOmcuL28Zz3+P3Zy4v5o1nG1qwbhzbEHePY+by4gHW6Y021LZx35g25o1lY904vHGbOGc7Sx7gmeOL28Z94+1Yr1yObZ65PI/RzOXF2zH17Zj6dkxnLi+mjbdj6rKxbmwbO3Jq5XLwyuXJbeMtB1cuT+aNZWPdeGTNtDkAKrnluWTXVbXCros25o1lY93YNvaNB7hdG7eNN2/bvG3zts3bNm/bvG3zts3bN2/fvH3z9s3bN2/fvH3z9s3bN2/fvCv3PbiOi11U9wB2kW3sGw8wXxu3jfvGtDFvLBtvXt68vHl588rmlc0rm1c2r2xe2byyeWXzyuaVuhbYpdfGbeO+MW3MG896Mlk3nvkerllPFg/wrBv39cKueQ9w1w27Zt1YPO9d4zha1WS7bIDXPcDkLb9QN+xC3bBr1o3FVTfsQt2wC3XD1mxpK+bmHZt3bN5VN25u6zoowbQxbzz3ff6+bmwbzza04AFe10EPbhv3jetaYI14Y9lYN7aNfeMB5roWWOO2cd+YNuaNZWMc68Z1/2NN6lpgTdrGfWPamDeWjXVjHNOG+2RruE+2ptfGdS2wpn1j2pg3lo11Y9vYNx7g+5wfLQ71fconOnAU3ud7YgN2IAEZKEDYHDaHzWEbsA3YBmwDtgFbfEzU4vyOr4kWGtCBI7HPWQAmNmAHEpCBAlSgAR0IW4OtwdZga7A12BpsDbYGW4OtwdZh67B12DpsHbYOW4etw9Zh67ARbAQbwUawEWwEG8FGsBFsBBvDxrAxbAwbw8awMWwMG8PGsAlsApvAJrAJbAKbwCawCWwCm8KmsClsCpvCprApbAqbwqawGWwGm8FmsBlsBpvBZrAZbAabw+awOWwOm8PmsDlsDpvD5rAN2AZsA7YB24ANtaSjlnTUko5a0lFLCLWEUEsItYRQSwi1hFBLCLWEUEsItYRQSwi1hFBLCLWEUEsItYRQSwi1hFBLCLWEUEsItYRQSwi1hFBLCLWEUEsItYRQSwi1hFBLCLWEUEsItYRQSwi1hFBLCLWEUEsItYRQSwi1hFBLCLWEUEsItYRQSwi1hFBLCLWEUEsItYRQSwi1hFBLCLWEUEsItYRQSwi1hFBLCLWEUEsItYRQSwi1hFBLCLWEUEsItYRQSwi1hFBLCLWEUEsItYRQSwi1hFBLCLWEUEsItYRQS2jWEgsMmwcyUIAKNKADR+GsJRMbsANhi1pyvwywGI+VqMCwjUAHjsQYjzXu0ZgW47ESO/C23a8eLMZjjXv0jMV4rEQFGtCBozBqycIG7EACwtZga7A12BpsDbYOW4etw9Zh67B12DpsHbYOW4eNYCPYCDaCjWAj2Ag2go1gI9gYNoaNYWPYGDaGjWFj2Bg2hk1gE9gENoFNYBPYBDaBTWAT2BQ2hU1hU9gUNoVNYVPYFDaFzWAz2Aw2g81gM9gMNoPNYDPYHDaHzWFz2Bw2h81hc9gcNodtwDZgG7AN2AZsA7YB24BtwDbKNmc6W9iAHUhABgpQgQZ0IGyoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWqKoJYpaoqglilqiqCU6a8kIVKABHXjb7uE0pnOpwYkN2IEEZKAAFWjA23YP2rWYcG1h1JKFDdiBBGSgABVoQNiiltxzbViMOEtswA4kIAMFGC050YAOHIWzlkxswA4kIAMFCBvDxrAxbAKbwCawCWwCm8AmsAlsApvAprApbAqbwqawKWwKm8KmsClsBpvBZrAZbAabwWawGWwGm8HmsDlsDpvD5rA5bA6bw+awOWwDtgHbgG3ANmAbsA3YBmwDtlE2uy5gA3YgARkoQAUa0IGwNdgabA22BluDrcHWYGuwNdgabB22DluHrcPWYeuwddg6bB22DhvBRrARbAQbwUawoZYYaomhlhhqiaGWGGqJoZYYaomhlhhqiaGWGGqJoZYYaomhlhhqiaGWGGqJoZYYaomhlsT4tnF/imAxvi1xFEYtWdiAHUhABgpQgbApbAqbwWawGWwGm8FmsBlsBpvBZrA5bA6bw+awOWwOm8PmsDlsDtuAbcA2YBuwDdgGbAO2AduAbZRtzgy3sAE7kIAMFKACDehA2BpsDbYGW4OtwdZga7A12BpsDbYOW4etw9Zh67B12DpsHbYOW4eNYCPYCDaCjWAj2Ag2go1gI9gYNoaNYWPYGDaGjWFj2Bg2hk1gE9gENoFNYBPYBDbUEkctcdQSRy1x1BJHLXHUEkctcdQSRy1x1BJHLXHUEkctcdQSRy1x1BJHLXHUEkctcdQSRy1x1BJHLXHUEkctcdQSRy1x1BJHLXHUEkctcdQSRy1x1BJHLXHUEkctcdQSRy1x1BJHLXHUkoFaMlBLBmrJQC0ZqCUDtWSglgzUkoFaMlBLBmrJQC0ZqCUxLHLc34pZjIpMFOBtu2fMs5iMLtGBt+2e785iMrrEBrxtMcAmBk+OGEsSYycTBahAAzpwFEYtWdiAHQgbwUawRS2JIQsxXDLRgaMwasnCBuxAAjJQgLAxbAwbwyawCWwCm8AmsAlsApvAJrAJbAqbwqawKWwKm8KmsClsUUtieFQMvVwYtWRhA3YgARkoQAUaEDaDbdS7jjGfL3ogAwWoQAM6cCz0az5fTGzADiQgAwWoQAM6ELYGW4OtwdZga7A12BpsDbYGW4Otw9Zh67B12DpsHbYOW4etw9ZhI9gINoKNYCPYCDaCjWAj2Ag2ho1hY9gYNoaNYWPYGDaGjWET2AQ2gU1gE9gENoFNYBPYBDaFTWFT2BQ2hU1hU9gUNoVNYTPYDDaDzWAz2Aw2g81gM9gMNofNYXPYHDaHzWFz2Bw2hy3uCTQwqsbCBuxAAjJQgAqMGiWBDhyJbc48TYEN2IG6ipi3WSomOnAUtgvYgBHMAgnIwNh0D1SgAWPTR+AojFKxsAE7kIAMFKACDQhbhy1Kxf3pmsf40HF/7ucxPDSRgAwUoAIN6MBRGKViIWxRKiyOW5SKhQwUoAIN6MBRGKViYQPCNheWj2MRpWKhABVoQAeOwigVCxvwtt3zpnmMC03kwkh0jzMqEn0hAbNb3lu94PBWLzi81QsOb/WCw1u94PBWLzi81QsOb/WCw1u94PDmsDlsDpvD5rA5bAO2AduAbcA2YBuwDdgGbAO2esHhvV5weK8XHN7rBYfPAaH3awSfA0IXCjBfAvgcELrQgbftnozO54DQhQ3YgQRkoAAVGDYJdOAojErgExuwAwnIQAEq0IC37Z4ezueA0IlRCRY2YAcSkIECVGA+Rvkc2cmxx8xAAebzkM+RnQsdGBsZwSKlFzbgvZEchztSeiEDb9u9uIzPkZ0LDejAURgpvbABO/C2jThLIqUXClCBBnTgKIyr/8IGDFu0Q6T/PeeezzGcC60wvmi4rti0+KIhmTeW4BasG9vGvvEAxxcNyW3jvjFtzBtv3jG9cfSHbewbj+IYqVncNu4b08a88fRqsG5sG/vG4b2ny/IYs1ncNg7vPZ2Vx7DNYt5YNtaNbWPfeID7tXHbePP26Y197LyxbKwb28a+8QDTtXHbeMa5UymGXL54BPeNaePYnrhNimGXxbpxbE+P+PHFU/IAx1ceyW3jvjFtzBvLxrrx5pXpjf2SAdZr47Zx35g25o1lY914eqN91DceYLs2Dm9cgWJEZjFtHF6KfYkvpJJ1Y9vYNx7g+EIquW3cN6aNN++sJxT7OOvJYtvYNx7gWU8Wt437xrTxjB/tM+vGYt94FPOsG4vbxhH/npXKedaNxbFf9wxUzrNuLA7vPZmU86wbi8N7zyzlPOvG5Fk34urGs24snl4Jpo2nV4Nl4+m1YNt4ej14gGfd4NjHWTcWh1diH2fdWBxeiX2cdWNxeCX2cdaNxeGV2MdZNybPuiGxj7NuLJ7e2Eeijac39pFk4+yr9Dlyc6EDRyFfwAacxmilWZEW88Zh1GiBWZEW28a+8QDPirS4bdw3po15480rm3dWHo2WnxUmHnJ5Vph4XOVZYRbLxrqxbbxtv27bb9v227b9tm2/bdtv2/bbtv22bb9t7Wab1zbvrCRzH2fFmPvo2/b7tv2zYiwe4FkxFm/bP7btH9v2j237x7b9Y9v+sW3/2LZ/YPvlujZuG/eNpfZRZmWIfZQL2y/t2rht3DemjbH90mRj3dg29o237e/b9vdt+/u2/Z023rx9884KMPdxZvrcR9q2n7btJ95YNtaNbeMZn4MHuN4VuNS7Apd6V+BS7wpcVk5L8Ixx1waZuRt9HTJzd3HfOLbdYp9m7i6WjXVj29g3HuB5N7G4bdw33ry6eXXzzly3OA4z1xf7xgM8c31x27hvTBvzxrLx5rXNO+8aLI7bvDuI7hyZdweLZWPd2Db2jQd45vritnHfeHotmDeWjXVj29g3HsU6c31x27hvTBtPrwfLxrqxbewbD/CsDYvbxn1j2njzztpwz9rvOmvDYtvYNx7gWRsWt437xrRxeKMrQWdtWDy9Gjy90T493yL5HE85kS5gA3YgARkoQAUaEDaCjec+juC2cd+YNuaNZWPd2Db2jQd41pzoLNBZcxb3jWlj3ljAs1bck/e7zlqxmDeWjXVj2zi2M7oTdNaKyTPHoxdBZ44v9o3v32/Ri6BzToXFbeMeHDHnnAqLeWMJjphzToXFtrFvPMBzToXFbeO+MW3MG2/esXnH5h3TG20152gJtjlHy+K2cd+YNuaNZWPd2Db2jTfvnKPlnmzcbc7RsrhvTBvzxrKxbmwb+8YD3Ddv37x98/bN2zdv37x98/bN2zdv37y0eWnz0ualzUublzYvbV7avLR5afPO+Sruydfd5nwVi/vGtDFvLBvrxraxbzzAcx6L6NGxOY9F9LjYnMdiMW3MG8vGurFt7BsP8JzHYvHmnfNYRE+PzXksFvPGsrFubBv7xgM854hanEM+3WqItVsNsXarIdZus/ZE79Kao3Bx27hvTBvzxrKxbmwb+8abd2zesXnH5h2bd2zesXnH5h2bd2zeAa/P2nN/qepzsGS8OJqDJRcSMKT3Wq7us/As1o1tY994gGfhWdw27hvTxpt3Fp7o5lsTOy62jX3jAZ6FZ3HbuG9MG0+vBcvGuvH0RgPOwrN4gGfhWdw27hvTxryxbKwbb95ZeO4Zdd1n4Zk8C8/itnHfmDbmjWVj3Ti88XZrTSi5uG0843PwjC/BvLFsrBvbxr7xAM8Cs7htPL0aTBvzxrKxbmwb+8YDPAvM4rbx5rXNa5vXNq9tXtu8tnlt8/rm9c3rm9c3r29e37y+eX3zzqIU3aBrosnJsygtbhv3jWlj3jiqbpwCs97c08/7mPVmcdt4hhzBtDFvLBvrxraxbzzAs+Qsbhtv3llaord2zS0ZPbRjlpbFvvEAz9KyuG3cN559FxrMG8vGurFt7Buj32HORZk844drlpDoSV5zTi7WjW3juV8UPMCzhCxuG/eNaWPeGH1xY/WbTLaNfeMBXn2hk9vGfWPaWLHvsu3XLCGLB3iWkMXbfum2X7rtl277teaqnawb28bbfum2X7btl237Zdt+2bZfq4908taetrWnoY93zWM592vNsTy5b0wbb/vl2375tl++7Zdv54lv58nYzpOx7dfY9mts+zW2/Rrbfo1tv8Z2noytPUe157iu6vsdax5Lnv/OG8vGunHt11jzWC4e4HZt3DbuG9PGjG1rsrFubBv7xtt+9WvjtnHfOAeZj6s+6hhXfdQx1mSV92ugsSarnDzvRxa3jfvGtDFvLBvrxrbx5qXNy5uXNy9vXt68vHl58/Lm5c07T9oR+z5P2sW+8b09/YoTJk7a5LZx35g25o1lY93YNvaN4W3XtfGM04Pn798nUowLzH9vc9s4eG6bBNPGvLFsrBvbxr7x3Da9uV8bt42n14Kn14OndwSH9x7GMOZkkmtfum287eM83zziz/NtMW8sG+vGtrFvPMDzfFvcNp7e2Jd5vnnsyzzfFsvGuvH0xv7OB+/FAzzvixe3jfvGtDFvPM/VaMN5YRpxnsyL0YjzYV6MRrThvBgt1o0NPO9bF884cS7N+9PFM06cD/M+dERbzYvFiLaaF4vFsvH0RvusvJvsGw/EnxeL+e/zvnJx35g2ZrTDfNhdrBtbcb+wv33eZMY+9nmTuRjt0OfNnsXfzpu9+6XI6PNmb/EAz5u9xW3jiG/hnc+LFvHn8+Ji29g3HuBZn+9hpKPP+ry4b0wb88aysW48vRrsGw/wmlh1ctu4b0wb88bTZcG2sW88wDNHFreN+8a0MW8sG29e2bwzj+4XGKPPG7/J88Zvcdu4b0wbM46LbsdUt2Oq2zGd+XUv+Dv6fM67l6EdfT7nLfaNB3jevHmcS/PmbXHfmDbmjWVj3dg2nt44z2c+Tp75uLht3DemjXljxf7OHLxHFo85rC651T7OYXXJtDFvPPeFg3Vj23juiwQP8Lxhm3Ha5m2bt23etnnnA+Bi3dg29o1x7OawuuTNNZeQGYEvra9/5Rt7oAAVaEAHjsJYWGZhA3YgAWGLhWXmUYmFZRYa0IGjMBaWWdiAHUhABsImsAlssZhUnEhzMdiJsZjUwgbsQAIyUIAKNCBsClss9jhPqljAcZ5HsYDjwlEYi8ItbMAOJCADBajAUGjgKIy1ohY2YAcSkIECVKABQ3HXxrmUa9zOzKVcFzIwgo1ABRrQgaMwln9b2IAdSEAGQhGj0uPGck4HuPDujb7mLxCQgQK8n4TiFnROB7jQgaNwTi06sQE7kIAMFCBsBBvBRrAxbAzbnES0BUaEHhh/dqfInNfvfoEy5rx+CzuQgAwUoAKhmHOEThyFc47QiQ3YgQRkoABHHTfD0YxB5/MIGY6moX0N7WtoX0P7GtrX0L6G9nW0r6N9HUfTYXPYHDaHzWFz2By2Aduc7DMO4ZwiONphzuUZh3DO5XkfgDn/3sIG7EACMlCApZjz7y10YB3NOf/ewgbsQAJaXqjmYqpxoZqLqcalYy6murABO5CADBSgAg3oQNiorjhzMdWFHUhABgpQgQZ0YF3f5mKqC2Fj2LiuOHMx1YUCVKABHVhXnLnE6sIG7EDYBLZ53YyTQOuKMxdIXchAASrQgA6s69tcIHVhA9YVJ8ZxJQpQgQZ0YF3f5rqqCxuwAzkvVHPZ1LgkzWVTF47CUVecuWzqwg4kIAMFqEADOrCubzFgK7H2ba5/Gg+qc/3ThQ3YgffmREdUjLBKFKACDejAURgJubABOxC2DluHrcPWYeuwxcXyHn0z5piqhfFnE+PPWqADR2Fk1sIGjI3sgbE5FKhAAzpwFEYOxeP7XN50YQcSkIECVGDYJNCBozDuSBc2YAcSkIGhiLMkUm+hA0dhpN7CBuxAAjJQgLAZbJGF0U8Tg6wWRhYubMAOJCBXqzsOluNgeR2sOZ1a9GzOidOiA3NOnLZQgQa8L1/RwTknTps47wYnNmAHEpCBAgxbbFncDS504CicJ/jEBuxArn2LW8DoPJ3zoi0ctUNxs7ewATswNl0DGSjA2HQLNKAjAmwCm8AmsMU94kIcFsFhERwWwWER2HQq/u///Ye//O3f/vmf/uOv//av/+U//v1f/uUv//h/6h/+11/+8T/9n7/8z3/693/51//4yz/+6//+29/+4S//v3/62/+OX/pf//Of/jV+/sc//fvrv76qx7/86397/XwF/O9//du/3PR//wF/fX39p6++6Lsx4s9frK1CtKv9EKR9HYTvVwYRglUrgNEPf9+//nu6x47H37+ezbABPwU47gXdp9Xai9fz25d7wV8HeXWvtRXj1btGCNHpaQiye9GcuSevY7+F0B9C6CEESbXFthtOTwNoy9NBCQFeHSY/BPBDY8bq4LMtX7evX4YYpwPaqx1etfbLEKemfHVFVUMof9mU7XBevjqU86x49QlvMeSnU7t/ejyOO2LYEaevd+QQ43VjmjFeiEOiP+2HnI7qfReyjqr0L0McziyzPKhOW2Pa8wjOuRu+Vxp7czfs6904NaZdmecvHF+F6NexVNSJ9XrI+TJE+7Qp+uHMfL0o7LkRr9fYFYP7jyHosBH3/CZzI4Z9vRGHxny9bMmWeCHOilfH5PMdiWFOa0ekfbkjhxOrV+l+dZB/FeCcYUPrpGj05RH1z4veKcarRy1jvDrMvr6A0HWs371SZGuN13XxxxiHs1M8j4heskXw5ycGS50YsmXZzycGHU7P+1m3Ygyc4a/e3h9jnK7q2itLXo9KOLDPjwlxZslrn/rXx+Rwfr5egNX9ifN2HaEfz687Eb6M8XrKyrP89Uqari3Kj2cY+TecHePTs+O8L25e+/J6+/PlvvDp+h7vilfhcJxjrxeuP8bon54fx7P0YQk8xniYLSyfZwvrx61xOrL34mR5ZO+1pL4+sn46snWqvw7ytR1Z+THGOF2k61bh9SZ8a4/xY3vIoZa+etUr919Pe1/GOG6H1kPB6633YTsOZ6lSbcerm+j6MsafHBn+8sgIf3zXIad7uHvZj9qQ1yPT1xtyfM7xUU2yXbF/iXFoEm718Pt6tSbvNcizuxcZH969HC8v0Zk4t+Fy+/Lyoqdi6lQH1vXrS5QeTtPXC4p6TuljP679eQzXLIWvfmj7OgZ/fpFT+fQidzq7Xu+JqjVaa++d5dTrcf71VvnLGOrHp8e6t1V5M4aJ1/2xjDdjOGL41zGOtcNj6pN1J9Xa11Gsf3psz9liWUv762Xiexk3OmIcMs5O7XGP4Mr2GF39i0v2eTuqHBNtHT6/bMfhXPfq5Bh9b40fOyLt9PhEWj0tvN8Q8vMYHINnZz3v+wXupxj+DY9P3v6e59frobH6RMnbW+cXUV2qifn6Mobz3/f8Iq6UJT3kip9uTGMeiXWVpe3K0n9sUz/VY6qOzdc76C3ffnpcOMV4vUSqQ+tEX8cYn59h4/r46nSspNLqEeyeZOPLSjoOlfQerlg78yrO44vzY9CnDx2n6jOo4R2Gf1l+xrE5rLr02g/Jcj0/0dFN++oBut5LWsXN4Ov13Jcxhn/8DuG0FUaEVzL65VbEbBJfnqPVl6XbfXHr46cQx+2oG1sy3W8G/XkQ5jq/mH84z38OQp8nbcwH8XfM2nvUctVjkq+fWWKijM825FiQSQ1vy+zLghzzJ3y9N1yZf233+j/35l+nd01Vf/j6ug87bsUfvSeyvQfnp305vWx6GSrKzfxlB8wxaZD+3g5J00719KpnhtcjOiqy/fzm7NR9K6M6pHQ7Mq8biZ+CnHqk6h75dYeJEPq8Kr8OR90i0/V1VY6ZKr48MoLa/uLtZP25QU49UtQHenHGYUsO5ypL3SbzDzXxlxeS1+dJc3r79DBpjm9tnibN6QXU86Q5F8UYCrWK4jh05LR+Otmo+qR/GEPQf36P1D/uQT1vB1e/Qd/v23/ZjlMdcdzcXe36upD0Yz+/9OqKocP7c/qG05U+P13pO05X+pbT9fyuUdAfo1++PeZTt/RVI258v1n9eUwBHd+Z1k3Aq7TS11fwUxC6qrTStd9b/RLEPx+bcHon9XBwwinEw9EJj/fkMDzhaZPul+8/PC5VQ6i1w+0Zn7tRH40EaqfXUk9fi593h/FII8fdOfVR9erhvhdJ+LqcnYPU0bnnwT8EGZ+f8KdXUw9P+FOIhyf84z05jcc5NSm1jl1597hoDUK8J6T6OsjxRkLqVf/rrSN9+eh8Pldx6X29ZDvU1dO7g8dniH9+hvjHZ8jjPXm3JDrXpcqtf92kpxdLj0fA0cdNegrxsEkf78nbTbqdpcZvXmXiA6PVTdROx+X8eurR4Eb9hoJqnxdU+7yg6jcU1HOLfnqDKVd1Q0ijw6DV07spVZfqK/dDSbbDKTZavX64xvV1RT63h6E9/M02fTZqNL7e//rB7qqRILw9PPwc4/x66tmZfno99fBM94+Hrz7fk8OZfmxRGo4W1fdiSK+xRkL0dYue+lNHvSV79XqPN2PUK79jjPMZ9mhgcvPPn6T88yepcRzb92hYTTu9nHo2Kvi4Fc9GO8XcN1/fmT4ZZN1O3aDa6gWX7i+nXhfdd4PIm0G4Rky9erfaIYh/fFyO++Jc++Lv7kuvcTHat1L6h0Gqh1r7ePfQYIix0t5VPn7+JuHUOfXqxKnH9RdvB+fnwfjXNwxn/U2QkcfnntrlzSBUo8nuWUjeDPJwZG0/vad6OrS2X+PTnuHzdni92RkudNiOp0H0ejdIXWheqO8FefWg1o3qvWzdKczxM4EqbGO/kfjDk81xsu15/GdBdCDI1wn4B9fwL5+H+ultldUYSrOvr1rne+ZnH8Sc3lQ9fTw8Bnnd1tUnMW3wIcjpTsCq//DV+X/YG/r4zrufvop5dm91DPH0w7Gne2KHPTm2aI2H6Ob8VgxqVVZfFwl7N8b1cQzCDcme+38Wo27zaP/q4ecYp3dUD58ifhPj0VPEeV+Yq8ue1T+P8eY59nrlXt1+7F8f2/OXRoqPHvrhI8fjhhhGML5K69cbMr7h4I6/88G1hn05JO7po6m5mtV6Ddrk3Uate0Tyw1nG/OmL4c7HwQM1sv1VP75+ojluBzfMgECH5jhd53pdorjr9fV17vjd1LMepv4NL6f65y+n+ucvp/o3vJw6t+izHqZzjGc9TP30aupp6p/PjmefrZ9e5zw9svb5kX28J1/XDr0+vEc+pyxVKWW28eb9bbf6Bq2f7m/Pb4Sevanvp6+mHn/Aftwdv/I85aF+2B39jt2xv/fujLrCyHWddmf8Pc80wZBuYT08SdlpHHS9Zn+daBXiddn5KcTHX0uft6I63fZL5a9bcbza1rtLbmRfbgUf72Dq2/H7bma8FyRmbqu3U9d7QUYbCLJ1zP5Jo9bOvE7YQ6OOv2uIe5FZRqPK17syvuPIjO84MuMbjswxc6W+YJDB/t41QvElqTayd4NUZ9vrjTu9GYQJ/f/67u5QDcRSocOt7m++onp2jTh9RvUt1wiVGnqkYofdOX5IJc6VO+LbZ7r6R0EejXTvp/dVqvWKx1o/XGtObzSejnSP+W6+fjR7NHQ4egk+fEI8vq56OHS4j9Pp+njo8G/CCFVNej2e+ddhTqesUZ0nxlf78hjT9XmnKl2fd6rS9XGn6jHEs0eS53tihz35vFP1GONhp+rvYlwfx3jWZ0anb6p+eOiV99r0Yefub2I86tyl46j/Z/1/v4nxqBPgvC9c38jT/gb/l+2wv/d2POpkfh7jzZx72MlMp8+pnnYy/+Zkf3iCtL/zgXnWQUynT5iedhD/ZkMedRBT//jyT90/7yA+bsfDDuLf3dzJdnNHX9zc0elLqqd3iMcgD5+/j7d2xvXFnvHXJyrx5/cOJB/fO5xCPLx3eLwnh47q882yb99Afn29/Y73S8e7Za1Zfl44DnfLpyBWjfrC9l6QdtVXcp2P9+3HvntCT7O+f/Pvipv/7Srzpzf/tUf3g8BhvMw4v9KQ/9crjT9rF7b/5/f/vwb5hqp4nBhmbB+7+1up01HPejtc8eTjT1TpNMnf4wuNtM+b9Hhoq7/6dZTp3VO+dcYtAL39vBtv+FaYrm9nTq+bmjvkIXNOs//UHETbyx6mP+pRpL71KPKb3ZL4Su3aJw77eT7a9nnf5jHIt/TDP20R/o4Wke9oEfm4Rc6DIi+uO7Tr2scz/tnYyot0C3MYLNqOTft4iOYpjFqljto2MFL/IIR3fE3E9l6IWmhC3b6cBuQ8UvvC8grX2wPPa3KVV5Cvh3v/5qtZzBTDW5Cfe1jp9HXVw/EiZJ9/qkr28aeqxxAPb8Pt809Vzy36bLzIOcaz8SLk9HlvwjnGs96E8xn2aMwJ+ccLTxxDPD07Hu/J190R/ulIgHPac12lXi+MDml/+qzp6dP3+Pxzahoff059DPHwwD7ek0PaH1v04dP3+IZe1fN2PHplRuPjGdX4NPvQ00fv43Y8e5Sh33y/9+Tp8Bzj2dMhX/x5k37DONXjdjxr0t9MtFGvzF335TB+ma3jcKY/+yD7vATPozsXbp9/S83t42+pjyGelbDne2LvNejDga7Xx/ct3D7/kvo3MZ51Y358WDufH8Aefo55XF/p4YeUpxgPv6M8LlDy8MvDxzEOHx6eYzz77vA4i9vzZ9rjDJnPvjqkb/lkl77hq0Oiv+/ePD1X6Ru++T0uhPPwXH0c43CunmM8O1ePX6c8PlfpWz5u/fjxh+nTz1KPa3FhICT/OA38j304zKdBfx1TH3X6qsfxNyFq8Rmiy74M0T/uKjw1Bnr4uP0ww/bPm/ENc/zxd8zxRx836em1tNbEBfrD+HZ/HoGx2Ip+HeF0IyZYiFa2wZO/LK92vJnruJnr9GUMluOD4LOFG8g+PUXPX18ylgdQub5e6olPayw9zNhziEcZe1qL52FzHN+N11ijF355SMbH5/j4+Bz3bzjH/RvO8eNXTw/P8eMagvEWZR6SF2NDfl5D8BRDMFpB5OsY59XZLsaiaJfZ15ly+nLqYaacQzzKFPW/a+H4sTn86ym9z8sI4sDsUx79sozg4xjj8xjb0P4/W86QsDw5f70EIJ/elL46p+vYjtYOQU7zk7vUVPi+X+3/LEjN4PTC8W4Qw5aM6zuCyJdBTkM3Xo9MtWidMb93cF53YuidY3rzCA9Mlbr3fby96iWP91rkqs9Z5JLDoXm8CughbVyOXcBPpnDj42InHTFo61X/dUNOg0fEcm9M9g99f26Q08o+jLG5vC9+99PT8ekd1D3Ze8a49sXafopx+m7q9RjGWPbp2hev8z9oVqpztdN29f61WY9BHMfGvz5JziuSPl4a9RiFMUDX5LDiI4/jqikYhrIfYn++8uTrwbMek/cx/n+yNqoQFn8gfXflyfqUU/bnwj+KMepO8ZU1/c0jY3jKfbG/GcUb7km8f90mp0+on93BHyM8uoM/r9rmGOvU9hUk9KeLxOk8vWqGsNG+vE88h2j1Oflo/NXt+3kVO630b27yZua6Y3zu60bisCLxcSmqRzffvwnx5OZb2sej8v6gOU4LNP8miiBKfzN1X39piMJfPxfJaSmqh4fmHOLZobG/76H5oTnE3j40vEV5sx6Oq67fLx5f1/fjWnTPCuI5xKOKeN4XwQ3N0OvQIqeXQs86eI4hXn38F64y2sZ7QQyjr83oejMIxl6byVvn6+sZZBu2cKjPxyWxvmuFr15R+p7Cv67w9TTINqvlnwXBnAFdtrf+fxTktQs1v+bl9GUQOn/7UF0Tnb5ehFpOn0A9fYkgx8Uknr5EOH4N0qpX4eLT3nz6lurUL/l0T04xRGrEtNi178nz7RB8RSW2vyD6KYZw//jKeQ7x6MrJH0/5c26MejstTuPQGMcLTQ3CUnY6BDk9WdUXmLqvzOd/sBlYuvnHCVT+aF9EajS8uLwdpHZGr/F2kJoPZl9s9Jdz/bi0bmWtjFMM+fROROXTG5HTfjx9uXKM8fDlihzXbXr4cuU0Jp+GoLt5X2SIr5825POnKvn8qerzb53s+Lq+Tg6+9oWbf26M0+pRDxvjHOJZY8jftTFadbjxD8ut/9IY9nlj2OeNMT6+NB2/Ha1LE+8zA/3RuvGj7tVfMb5esV3sG6aRjCvYp3c/p09QFfOdbfekv27Gd9yT2jfck54Xsdcqx68gXy9iL8dSillstgdt8+ebwa2+ZOcf19L+kyBUz5VMP9xF/bQvp8WjnuVtO8229OrWrhH1vC/D+cvO8Oc9D/zpBf+4K0+v+OcgTy/5/g2X/OPq868e2cq7sbXJT6vPy3Fuv6f906d3VM86l8/7MgSdQtur4Z/35djXvn/Ouz3pk15/EuTZzJq/C/JoZs3fBHk2s+Zvgjz71rqdPiLpV9++7RlfHZxjjCFXnSM/XCRe7/D/IAhj7LTo20FqiO4+ieSvQeTzc+28JSiLQ+nd3dGaHmT8MAvMHwXBZ4pjP+d/DqLHd0zfEeSHb8D2NvmpYc9BOkbw9H1IxB8FIcU7c/86SDuOMH32/ad+w8dT+vnHU/r5x1P6DR9PnVv02fef2j6f4r/RcYLuZ7MvnYM8nH3pGOTpJ6DnLXk4+1I7fmXzePal34R5OvXq78I8nMTp3DIPJ3E6B3k4iVOjj2ccOmbPw890zzGefaar/dhf9eQz3XicO9wyPvpMV8+fuTxr0uOhfTaJ02/O1aeTOP0mzNNJnH4X5uEkTr+5q6h3RMP2BS5/viGgj8dZ/ybEk64nPb2p+oYQz3qvftOgNSfO2JcK/LlBf/dI8GgiqN8FeTQRlDJ9/nByDPKwWY9dC9ubFXq3d2JUCP4yhPOnHXHK/nlHnJ5Gvz/tiDt1b7yucLXSztj7jH76TOMUQ7zXm7drf9/1BzG0o9Oo//Ai4KdLhHz8IuC8GXWV0f1z3T/aFapR3q/zYxx2Rf+uu7KvSrE9i/y6Gf533QxBvu13q79shn78depvQjy6LOjHX6ee+vDUaqCa+jYZxM+NcerCe9ZBe4zwqH/22Bf5sHv2vFbJs95ZVf+G3tnjtIAPn/ztG5787fMnf/v8yd++4cn/2KIPn/ztG578T70Yj5/8j0GePvm3b5j86bwlT5/8T51Df/Dkfw7z+Mn/N2GePvm36xue/I9Bnj75Xx9P0HXMnqdP/scYD5/8/fMnf/+OJ3///Mn/fGgfPvmfz9XHT/7nMI+f/H8T5uGT//Fe4NED1flu4snz1KnSP3yeGt/xPDW+4XnqOCSh1xBV6uPrAU3HGFbz/bzy5M0YuHrydYjhx1VYa1Uc7v71SDX/eP4R/3j+Ef+G+Uf8G+Yfsesb7laPX0LW+7LXq/x9jMf1OETvtS/9h1W1/yRGw2eqXb/eDmvfMLTK2jcMrWqnj5CerjTY+re8DDn2c+OjGxbZl6T8aSThaX8eLkNnzT9+pLE2Pn2kOYZ49kjzfE/ssCfHFn20DN0xxsNl6H4X4/o4xrNl6Kw/nU9S3mvTh8vQ/SbGo2XorB+X+Hk0v+ZvYjx6XD3vy7Nl6Oz0jut7tuPRMnTPY7yZcw+XobPTG6Wny9D95mR/eILo3/nAPFuGzvjYE/FsGbrfbMijZejs+AXUo8dLY/r88dLOkw4+e7w83z48WobOTl/8PF2G7hjk4Tu2/vlAKOPx+b3Dacadh/cOpxAP7x0e78mhO7R/PhDK5PNlTmN878fdof07BkL17xgI1b9jIFT/noFQ/XtGMPXvGMHUv2MEU/98BFP/hhFM/fMRTHacvO/ZhUbtGy40qp836XeMYOrfM4Kpf88Ipv4tI5iOvUSP+jHP/UxP+jGPH7o+2obzp7JPtuE3kyigxovvUzP+yUwMiukcdNCbQbzeuPdxyXtB6Ko35i/8enfktJTs0zkhjkGeLdd2DvFoubbfhHi0XNvxuOCzmfta/ubB/SEIvxukIwh9fVzMPx6i8psQT8aG2Lj+riGe3rofGxQfQpj5u0el7la7jXcryL4lbwfxeuy+51d9NwhWfzoGOU6m9HDcoX5a238zNVz16o7Gb84uV11/L/zqa7fjTHuPmuI8V9+jK+1p/kOr6aBez2T7F7d/MIciJi58ob8Zo/pSXpfdN+dydMZ2vDunpNeT0Cvcu3NK1md/L3y3PepZ6hXj6+NynKdTqkOXxfTzGP7eXJ+M19Ks/Oa+4Is/tsM5doyBaTrZ6esYfvqMyjBDnu2jt38eju6nJaQY00qy7pNC/3Kfft4SrS2R05acpkK46nzXa39i+JPtqAWC/Lq+/qLT+7GL6qpm3edx+zXI6cv/+p56f+K/B0E/PkUwWzefpj/003PY41Ok8zecIr/ZkmenyKm7/eEpct6Op6eIf8cpMv6up8ioiWnlal9fIfz0VZv0WjJJ+thK808H9/R+Sq1mIFDbZiBoz2dyft3g1NXusuuwL/wN+yJ/331pNa28/DDnzx/NSn3lPZ1Q4/didGxH5++I4W/GqHcgryNkb8aoV/WvcG+3qaFN6c0YDTHoMPP5cSmWmr2gd9kfkX/6IIU/nuj3NyGePN862981xLNH5GN7EuYYJft6WRo/vVZ6NFnhcSsYj9j7TD2/bkX/vIKdvph6WMHOC/10vIXp8uW+nGMIFknVr9uD9Tx97KMVh45BnvXynUM86uX7TYgnvXzHFa0ePaWf18R68pROH/fJ08d98ue1IvfpX659Fc8/WnESywreUQ7rZx7HojxeuPIY5uE5egzx7Bw9h3hyjp7X4H24AucxxufrvD4/R363bu3Dc6R/zznSPz9H+ufnSP/4HDm+/sU41rbX9J8efc4h6iVD26vIn4TA67C+dWv9HML9+PBUS7bQ9WaIGg6n28CtP9mRfbalbd2YPwmhlbQ/vhr8gxBWPa/d6L2D2hUztNt7Iai+Cni1SntvK/CG8/V28p0Q7BgU4PtX2uNphNawXPY+pd8fbERrioWr/K0zq1Gdm43Ge1shHV8DbPXmj0IoBmv5eG9Hagxuo/7ejmACgEby3o4ovoxQe28rDKMJXz1qb4UYaIt9rZo/CGH18s1Y3wkw6nltX5LlT3bi6phDRb8+ucdxatWP03RUf8Krd/OthqgcHSYftuR7AV6vdOqBc2zLwtLzAHhdNrY68wcBFO+X7I0AelWXzAv9nQBPupWPAfA9274ax58EqIeiS97Yheb4HM63w9j6j7fMox1HCFVWdd3uJPR5bdmnkW1fbsUxxKgr+H4w/ySE10uPfu0L6f3SFschws8+YxunV0lPP2N7ene3Lz/5884cR+aqYrooVfnyG8XfBKkXn6/r18VfBjnNZYtJdV/3Z+2wO8eelFrUS8c+oc/Vngd5XcRq9Rvmd4NonfD3O6FDEP+0Q+S8HYbt8P09/8/bcZpYkLi+qiHZZ9bvP53yp96d1wPdhY8ur+0G4+en9/O2CDLnh5f9v2zLOf1qnKHtC+r9EoQ/f4V6PD6uPbPYdesV+fX4nIY817xxtK/41H+KcFyQR7E00F5c9ecGOQ2su+qzmNdttX4d5NggvXbGf+ij/rlBjl89ed053Ev0bVvyU0U6dVNzXW9+WGDolxD9GxKH6VsS57gtTxOH+zckzumrpceJczo6r9endRnmbYz+r8fnNG9KjZ7el7HT8VOE0wQwozoF7sOEfWl/cs5brRDovu/Lz+e8HE/XuoDKtX9C9fOhkeM3+jUz6Os+B4dm/HSind4y9UEYCb4P6Pi5SU4fQHV8LHx/JYMg+vOWHG9bn30B9Zstqffcnfe57X/ZEjue8o8GuQzxT5+Hjsdm/568b2Owfzk2p8n1BB3ocu1rWj1+HGCr8Sns+2e6z+/lGXPYstPh9lfpG+7lT2uNPV7t5zf30FjF+XUP/dWiEkP1G27E9eNvSo/38s9bhI9vifGCdxtT/ssBtuNHafUlV9+/Bfkl7+z85InXEv2QvKdh0I8rwGlhqWd9MscQz7o0frMrz0bKjdO6Uk9HysWMtYd7mjpVv+5mO5+rvWO0jPvhNBundxwXPm05rPUxTpMOPT5Dzi+NHp0hx5WGTQmTKPyw/skfPajt976d3n7GetYm5yAPz1f/jvPVPz9fHz9SnJr1N3fgz5r1HORhs472Dc06+ufN+mzsyf5lx88PE+M0Gprq0w6mfZG7nx9/z08k9Xy1je385YnkNClsPQb8sKr9L3ti31DOTpP0PT7Hxvi4nJ1CPLzgnXfl2Znerqt/fqrfQ0v+rud6u7Z1BlS/PEfmtA1fHppmGHd7tcPpftgULPvZ2tax8f/YEjsOD8CLeaJTw37D+fqK8vEJe47x7Iz93d48PWXbt5yy7RtO2fPr7XqwGa0dTpR2/Ly8xmzRta/3/WuU0wPShYfXtr9FUvqTbWmyzQ43TttyOsw1QYRtY8d++db1vCEd07L1U6McZ+54eMl4RWnfkYO9f56DpxhPc/C8N09z8PwG52kOnsbmPcvB35wpCEJ8nZLwOOMlJop49bDTu+nDfZss7rQtdH3HlYO+5aylbzhr6RvOWvqWs5a+5aylj8/ac4821cFp+ycgP/Vov7bjdM7WHGm8ja1q3v4ghlSp3icW+8MYdRUU1zdjaH0+9uPnLO/GkHdjVHvo2+2B7k59uz2s9sXebo89xrvtsV/K320P3CXZ2+3htS/+dnvsMd5tD9eKYW9vR72Qdn93O1CWx9vtscd4ezvq/cA41KDz+7CHk/mdg/SGbxRPk/ldp3dZTQfGq8oxyuntq9r/oy7fy3A9352Hc/Adgzyd4PC8JQ8nOPzNO8JHHSZyLu4PRk3+JsSjPpfzG9OntyGnmfye34acJjp5evOsp1cED78qadfpVdSzz0p+E+PRdyW/2ZuHn5b8JsrDT0N+M9ygZqF5vcUeX77Sbpd9w0Qlryj6+T28fTyVxe/25mny2PiO5PHr83v446gF375o74dD7Ke3BO3a+tblq2ELryB0fjlW1619xoKfHyeOS4rWOA41eS+E1ajuH+5a/yxEjQztX27FbwaC1DeDcu03nL+06HEFjOoD5n3Nlw+CjK+C/MHYGDucZeM8Lq16KnmfwOnn3Tm90BKpmz3RH/rFfw5yfNOPzzFbs28Isn8+oH/yCI6vxY6Dyo7fUxpmPdlP1/7LwTncDnh9HOrbSfLzSK5XjGfP4D98gTx+jvHxfetvtgPTngz+Oka7vuHt6yvKx69fXzHoG26Pjqs9P7w9Osd4dnt03puHn4r+Jsrj26NT4lB9YC4/TIj9c+Ic1zmkWv+Jt935uQ/tuCgf1bgF3uuIX3+wL4zrzQ9V/pd9ad8wEuueLPvj27TfbMnD27TWvqOrtbXPu1off8JDX3/C09px+SYU6ebbBwA/vdQ6joJ6+Px5Ho319Nj0bymwvf9dj83r1R7e8vl1ODbHI/z0fclxjt7nCdg/f9Zqn08b+Lu9eXyifMezVqPr73yiYK0fpsOw2+PEkK0uxLxP5PHr2XaaY+V7ojybG+U3MR5NjvK7GI/mcj93mDycxeJ3nTfP7k5+08X35Mvm34V48G3zuc/04QoZvwnybAWV88dvrdYdIbq+/oKuNT49k3MVRlz4nn8SfNU29HZ9PR6knYZ1ek2mvC9K9esCWcfJ/xqWg2t7hR9/EmVwTSk25No/3/k5/09faL16mWvOKBmnFcflOBHOh1/Av96a1EnWpH19bE5P0h0rKF6HEMdGfTiF1jnKPUaxvpx58btxXh0yNUH9/lr8D6P0+mL7hfx2lLryDWrj3SgkmOZM9d2T1mt2nOFCh5P2cZRt6d8/jeLVuu76ZpTnM539rn2fTSP3u615Ogncb+M8nAbu9fBF39M6+g03O/oNNzv68c3Ox8ujHCeHqqkgmm43OaTX4xBa/S+vnR1vhfCa6rTtMwn9SYhRh7RfW9X/gxD9wqSt17ZgxJ9sxQ/vPd7bEXzl3Ly9tSMNL4JaG+9tBVVH46urnt8KwXWL9LqSy5chXlt7+l7787ngqO6PXinyXmvwVbuyr0H8boO+F4L6QOfEfooPfxyCGqab3m8B3g3h74WovqsXXe+FGFgV+pK3Qkhd215Xxffaguu+7IX2cQh+76CyYJDvNqnwH4XAY9k+9/YfNWeNZnthf28r6mJEP1SMP9mKbfoOemsrXt2pAxej8V4IXFV9f5gaPy9aeJ2idEyZ+Hqw2l4GPL8oNnwP0t9KtDYYk4E1ei8EYaXf97KkYa3xNlTfDEEIYR+HsHe3AjO8eXsvhAuOSP9wK349qP/59X//6Z//+u//5W//9s//9B9//bd//V+vv/y/d7B//+s//de//cv6v//9f//rP2//9T/+//8z/8t//fe//u1vf/0f/+V//vu//fO//Lf//e//cke6/9tfrvU//2lc7P8wLrX//A9/aff/19c7kfHq3H39f4r/rvd/N7//+/0Haq/3uK//iT+Iv7jH5IzL23/+v/cm/38="
6189
6189
  },
6190
6190
  {
6191
6191
  "name": "public_dispatch",
@@ -6592,7 +6592,7 @@
6592
6592
  "file_map": {
6593
6593
  "101": {
6594
6594
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/macros/aztec.nr",
6595
- "source": "use crate::macros::{\n calls_generation::{\n external_functions::{\n generate_external_function_calls, generate_external_function_self_calls_structs,\n },\n internal_functions::generate_call_internal_struct,\n },\n dispatch::generate_public_dispatch,\n internals_functions_generation::{create_fn_abi_exports, process_functions},\n notes::NOTES,\n storage::STORAGE_LAYOUT_NAME,\n utils::{\n get_trait_impl_method, is_fn_contract_library_method, is_fn_external, is_fn_internal,\n is_fn_test, module_has_storage,\n },\n};\n\n/// Marks a contract as an Aztec contract, generating the interfaces for its functions and notes, as well as injecting\n/// the `sync_private_state` utility function.\n/// Note: This is a module annotation, so the returned quote gets injected inside the module (contract) itself.\npub comptime fn aztec(m: Module) -> Quoted {\n // Functions that don't have #[external(...)], #[contract_library_method], or #[test] are not allowed in contracts.\n check_each_fn_macroified(m);\n\n // We generate new functions prefixed with `__aztec_nr_internals__` and we replace the original functions' bodies\n // with `static_assert(false, ...)` to prevent them from being called directly from within the contract.\n let functions = process_functions(m);\n\n // We generate structs and their implementations necessary for convenient functions calls.\n let interface = generate_contract_interface(m);\n let self_call_structs = generate_external_function_self_calls_structs(m);\n let call_internal_struct = generate_call_internal_struct(m);\n\n // We generate ABI exports for all the external functions in the contract.\n let fn_abi_exports = create_fn_abi_exports(m);\n\n // We generate `_compute_note_hash_and_nullifier`, `sync_private_state` and `process_message`\n // functions only if they are not already implemented. If they are implemented we just insert empty\n // quotes.\n let contract_library_method_compute_note_hash_and_nullifier = if !m.functions().any(|f| {\n f.name() == quote { _compute_note_hash_and_nullifier }\n }) {\n generate_contract_library_method_compute_note_hash_and_nullifier()\n } else {\n quote {}\n };\n let sync_private_state_fn_and_abi_export = if !m.functions().any(|f| {\n f.name() == quote { sync_private_state }\n }) {\n generate_sync_private_state()\n } else {\n quote {}\n };\n\n let process_message_fn_and_abi_export = if !m.functions().any(|f| {\n f.name() == quote { process_message }\n }) {\n generate_process_message()\n } else {\n quote {}\n };\n let public_dispatch = generate_public_dispatch(m);\n\n quote {\n $interface\n $self_call_structs\n $call_internal_struct\n $functions\n $fn_abi_exports\n $contract_library_method_compute_note_hash_and_nullifier\n $public_dispatch\n $sync_private_state_fn_and_abi_export\n $process_message_fn_and_abi_export\n }\n}\n\ncomptime fn generate_contract_interface(m: Module) -> Quoted {\n let calls = generate_external_function_calls(m);\n\n let module_name = m.name();\n\n let has_storage_layout = module_has_storage(m) & STORAGE_LAYOUT_NAME.get(m).is_some();\n let storage_layout_getter = if has_storage_layout {\n let storage_layout_name = STORAGE_LAYOUT_NAME.get(m).unwrap();\n quote {\n pub fn storage_layout() -> StorageLayoutFields {\n $storage_layout_name.fields\n }\n }\n } else {\n quote {}\n };\n\n let library_storage_layout_getter = if has_storage_layout {\n quote {\n #[contract_library_method]\n $storage_layout_getter\n }\n } else {\n quote {}\n };\n\n quote {\n pub struct $module_name {\n pub target_contract: dep::aztec::protocol_types::address::AztecAddress\n }\n\n impl $module_name {\n $calls\n\n pub fn at(\n addr: aztec::protocol_types::address::AztecAddress\n ) -> Self {\n Self { target_contract: addr }\n }\n\n pub fn interface() -> Self {\n Self { target_contract: aztec::protocol_types::address::AztecAddress::zero() }\n }\n\n $storage_layout_getter\n }\n\n #[contract_library_method]\n pub fn at(\n addr: aztec::protocol_types::address::AztecAddress\n ) -> $module_name {\n $module_name { target_contract: addr }\n }\n\n #[contract_library_method]\n pub fn interface() -> $module_name {\n $module_name { target_contract: aztec::protocol_types::address::AztecAddress::zero() }\n }\n\n $library_storage_layout_getter\n\n }\n}\n\n/// Generates a contract library method called `_compute_note_hash_and_nullifier` which is used for note\n/// discovery (to create the `aztec::messages::discovery::ComputeNoteHashAndNullifier` function) and to implement the\n/// `compute_note_hash_and_nullifier` unconstrained contract function.\ncomptime fn generate_contract_library_method_compute_note_hash_and_nullifier() -> Quoted {\n if NOTES.len() > 0 {\n // Contracts that do define notes produce an if-else chain where `note_type_id` is matched against the\n // `get_note_type_id()` function of each note type that we know of, in order to identify the note type. Once we\n // know it we call we correct `unpack` method from the `Packable` trait to obtain the underlying note type, and\n // compute the note hash (non-siloed) and inner nullifier (also non-siloed).\n\n let mut if_note_type_id_match_statements_list = &[];\n for i in 0..NOTES.len() {\n let typ = NOTES.get(i);\n\n let get_note_type_id = get_trait_impl_method(\n typ,\n quote { crate::note::note_interface::NoteType },\n quote { get_id },\n );\n let unpack = get_trait_impl_method(\n typ,\n quote { crate::protocol_types::traits::Packable },\n quote { unpack },\n );\n\n let compute_note_hash = get_trait_impl_method(\n typ,\n quote { crate::note::note_interface::NoteHash },\n quote { compute_note_hash },\n );\n\n let compute_nullifier_unconstrained = get_trait_impl_method(\n typ,\n quote { crate::note::note_interface::NoteHash },\n quote { compute_nullifier_unconstrained },\n );\n\n let if_or_else_if = if i == 0 {\n quote { if }\n } else {\n quote { else if }\n };\n\n if_note_type_id_match_statements_list = if_note_type_id_match_statements_list.push_back(\n quote {\n $if_or_else_if note_type_id == $get_note_type_id() {\n // As an extra safety check we make sure that the packed_note BoundedVec has the expected\n // length, since we're about to interpret its raw storage as a fixed-size array by calling the\n // unpack function on it.\n let expected_len = <$typ as $crate::protocol_types::traits::Packable>::N;\n let actual_len = packed_note.len();\n assert(\n actual_len == expected_len,\n f\"Expected packed note of length {expected_len} but got {actual_len} for note type id {note_type_id}\"\n );\n\n let note = $unpack(aztec::utils::array::subarray(packed_note.storage(), 0));\n\n let note_hash = $compute_note_hash(note, owner, storage_slot, randomness);\n \n // The message discovery process finds settled notes, that is, notes that were created in prior\n // transactions and are therefore already part of the note hash tree. We therefore compute the\n // nullification note hash by treating the note as a settled note with the provided note nonce.\n let note_hash_for_nullification = aztec::note::utils::compute_note_hash_for_nullification(\n aztec::note::retrieved_note::RetrievedNote{ \n note,\n contract_address,\n owner,\n randomness,\n storage_slot,\n metadata: aztec::note::note_metadata::SettledNoteMetadata::new(note_nonce).into()\n }\n );\n\n let inner_nullifier = $compute_nullifier_unconstrained(note, owner, note_hash_for_nullification);\n\n Option::some(\n aztec::messages::discovery::NoteHashAndNullifier {\n note_hash, inner_nullifier\n }\n )\n }\n },\n );\n }\n\n let if_note_type_id_match_statements = if_note_type_id_match_statements_list.join(quote {});\n\n quote {\n /// Unpacks an array into a note corresponding to `note_type_id` and then computes its note hash\n /// (non-siloed) and inner nullifier (non-siloed) assuming the note has been inserted into the note hash\n /// tree with `note_nonce`.\n ///\n /// The signature of this function notably matches the `aztec::messages::discovery::ComputeNoteHashAndNullifier` type,\n /// and so it can be used to call functions from that module such as `discover_new_messages`, \n /// `do_process_message` and `attempt_note_discovery`.\n ///\n /// This function is automatically injected by the `#[aztec]` macro.\n #[contract_library_method]\n unconstrained fn _compute_note_hash_and_nullifier(\n packed_note: BoundedVec<Field, aztec::messages::logs::note::MAX_NOTE_PACKED_LEN>,\n owner: aztec::protocol_types::address::AztecAddress,\n storage_slot: Field,\n note_type_id: Field,\n contract_address: aztec::protocol_types::address::AztecAddress,\n randomness: Field,\n note_nonce: Field,\n ) -> Option<aztec::messages::discovery::NoteHashAndNullifier> {\n $if_note_type_id_match_statements\n else {\n Option::none()\n }\n }\n }\n } else {\n // Contracts with no notes still implement this function to avoid having special-casing, the implementation\n // simply throws immediately.\n quote {\n /// This contract does not use private notes, so this function should never be called as it will\n /// unconditionally fail.\n ///\n /// This function is automatically injected by the `#[aztec]` macro.\n #[contract_library_method]\n unconstrained fn _compute_note_hash_and_nullifier(\n _packed_note: BoundedVec<Field, aztec::messages::logs::note::MAX_NOTE_PACKED_LEN>,\n _owner: aztec::protocol_types::address::AztecAddress,\n _storage_slot: Field,\n _note_type_id: Field,\n _contract_address: aztec::protocol_types::address::AztecAddress,\n _randomness: Field,\n _nonce: Field,\n ) -> Option<aztec::messages::discovery::NoteHashAndNullifier> {\n panic(f\"This contract does not use private notes\")\n }\n }\n }\n}\n\ncomptime fn generate_sync_private_state() -> Quoted {\n quote {\n pub struct sync_private_state_parameters {}\n\n #[abi(functions)]\n pub struct sync_private_state_abi {\n parameters: sync_private_state_parameters,\n }\n\n #[aztec::macros::internals_functions_generation::abi_attributes::abi_utility]\n unconstrained fn sync_private_state() {\n let address = aztec::context::utility_context::UtilityContext::new().this_address();\n \n aztec::messages::discovery::discover_new_messages(address, _compute_note_hash_and_nullifier);\n }\n }\n}\n\ncomptime fn generate_process_message() -> Quoted {\n quote {\n pub struct process_message_parameters {\n pub message_ciphertext: BoundedVec<Field, aztec::messages::encoding::MESSAGE_CIPHERTEXT_LEN>,\n pub message_context: aztec::messages::processing::message_context::MessageContext,\n }\n\n #[abi(functions)]\n pub struct process_message_abi {\n parameters: process_message_parameters,\n }\n\n #[aztec::macros::internals_functions_generation::abi_attributes::abi_utility]\n unconstrained fn process_message(\n message_ciphertext: BoundedVec<Field, aztec::messages::encoding::MESSAGE_CIPHERTEXT_LEN>,\n message_context: aztec::messages::processing::message_context::MessageContext,\n ) {\n let address = aztec::context::utility_context::UtilityContext::new().this_address();\n\n aztec::messages::discovery::discover_new_messages(address, _compute_note_hash_and_nullifier); \n aztec::messages::discovery::process_message::process_message_ciphertext(\n address,\n _compute_note_hash_and_nullifier,\n message_ciphertext,\n message_context,\n );\n }\n }\n}\n\n/// Checks if each function in the module is marked with either #[external(...)], #[contract_library_method], or #[test].\n/// Non-macroified functions are not allowed in contracts.\ncomptime fn check_each_fn_macroified(m: Module) {\n for f in m.functions() {\n let name = f.name();\n if !is_fn_external(f)\n & !is_fn_contract_library_method(f)\n & !is_fn_internal(f)\n & !is_fn_test(f) {\n // We don't suggest that #[contract_library_method] is allowed because we don't want to introduce another\n // concept\n panic(\n f\"Function {name} must be marked as either #[external(...)], #[internal(...)], or #[test]\",\n );\n }\n }\n}\n"
6595
+ "source": "use crate::macros::{\n calls_generation::{\n external_functions::{\n generate_external_function_calls, generate_external_function_self_calls_structs,\n },\n internal_functions::generate_call_internal_struct,\n },\n dispatch::generate_public_dispatch,\n internals_functions_generation::{create_fn_abi_exports, process_functions},\n notes::NOTES,\n storage::STORAGE_LAYOUT_NAME,\n utils::{\n get_trait_impl_method, is_fn_contract_library_method, is_fn_external, is_fn_internal,\n is_fn_test, module_has_storage,\n },\n};\n\n/// Marks a contract as an Aztec contract, generating the interfaces for its functions and notes, as well as injecting\n/// the `sync_private_state` utility function.\n/// Note: This is a module annotation, so the returned quote gets injected inside the module (contract) itself.\npub comptime fn aztec(m: Module) -> Quoted {\n // Functions that don't have #[external(...)], #[contract_library_method], or #[test] are not allowed in contracts.\n check_each_fn_macroified(m);\n\n // We generate new functions prefixed with `__aztec_nr_internals__` and we replace the original functions' bodies\n // with `static_assert(false, ...)` to prevent them from being called directly from within the contract.\n let functions = process_functions(m);\n\n // We generate structs and their implementations necessary for convenient functions calls.\n let interface = generate_contract_interface(m);\n let self_call_structs = generate_external_function_self_calls_structs(m);\n let call_internal_struct = generate_call_internal_struct(m);\n\n // We generate ABI exports for all the external functions in the contract.\n let fn_abi_exports = create_fn_abi_exports(m);\n\n // We generate `_compute_note_hash_and_nullifier`, `sync_private_state` and `process_message`\n // functions only if they are not already implemented. If they are implemented we just insert empty\n // quotes.\n let contract_library_method_compute_note_hash_and_nullifier = if !m.functions().any(|f| {\n f.name() == quote { _compute_note_hash_and_nullifier }\n }) {\n generate_contract_library_method_compute_note_hash_and_nullifier()\n } else {\n quote {}\n };\n let sync_private_state_fn_and_abi_export = if !m.functions().any(|f| {\n f.name() == quote { sync_private_state }\n }) {\n generate_sync_private_state()\n } else {\n quote {}\n };\n\n let process_message_fn_and_abi_export = if !m.functions().any(|f| {\n f.name() == quote { process_message }\n }) {\n generate_process_message()\n } else {\n quote {}\n };\n let public_dispatch = generate_public_dispatch(m);\n\n quote {\n $interface\n $self_call_structs\n $call_internal_struct\n $functions\n $fn_abi_exports\n $contract_library_method_compute_note_hash_and_nullifier\n $public_dispatch\n $sync_private_state_fn_and_abi_export\n $process_message_fn_and_abi_export\n }\n}\n\ncomptime fn generate_contract_interface(m: Module) -> Quoted {\n let calls = generate_external_function_calls(m);\n\n let module_name = m.name();\n\n let has_storage_layout = module_has_storage(m) & STORAGE_LAYOUT_NAME.get(m).is_some();\n let storage_layout_getter = if has_storage_layout {\n let storage_layout_name = STORAGE_LAYOUT_NAME.get(m).unwrap();\n quote {\n pub fn storage_layout() -> StorageLayoutFields {\n $storage_layout_name.fields\n }\n }\n } else {\n quote {}\n };\n\n let library_storage_layout_getter = if has_storage_layout {\n quote {\n #[contract_library_method]\n $storage_layout_getter\n }\n } else {\n quote {}\n };\n\n quote {\n pub struct $module_name {\n pub target_contract: dep::aztec::protocol_types::address::AztecAddress\n }\n\n impl $module_name {\n $calls\n\n pub fn at(\n addr: aztec::protocol_types::address::AztecAddress\n ) -> Self {\n Self { target_contract: addr }\n }\n\n pub fn interface() -> Self {\n Self { target_contract: aztec::protocol_types::address::AztecAddress::zero() }\n }\n\n $storage_layout_getter\n }\n\n #[contract_library_method]\n pub fn at(\n addr: aztec::protocol_types::address::AztecAddress\n ) -> $module_name {\n $module_name { target_contract: addr }\n }\n\n #[contract_library_method]\n pub fn interface() -> $module_name {\n $module_name { target_contract: aztec::protocol_types::address::AztecAddress::zero() }\n }\n\n $library_storage_layout_getter\n\n }\n}\n\n/// Generates a contract library method called `_compute_note_hash_and_nullifier` which is used for note\n/// discovery (to create the `aztec::messages::discovery::ComputeNoteHashAndNullifier` function) and to implement the\n/// `compute_note_hash_and_nullifier` unconstrained contract function.\ncomptime fn generate_contract_library_method_compute_note_hash_and_nullifier() -> Quoted {\n if NOTES.len() > 0 {\n // Contracts that do define notes produce an if-else chain where `note_type_id` is matched against the\n // `get_note_type_id()` function of each note type that we know of, in order to identify the note type. Once we\n // know it we call we correct `unpack` method from the `Packable` trait to obtain the underlying note type, and\n // compute the note hash (non-siloed) and inner nullifier (also non-siloed).\n\n let mut if_note_type_id_match_statements_list = @[];\n for i in 0..NOTES.len() {\n let typ = NOTES.get(i);\n\n let get_note_type_id = get_trait_impl_method(\n typ,\n quote { crate::note::note_interface::NoteType },\n quote { get_id },\n );\n let unpack = get_trait_impl_method(\n typ,\n quote { crate::protocol_types::traits::Packable },\n quote { unpack },\n );\n\n let compute_note_hash = get_trait_impl_method(\n typ,\n quote { crate::note::note_interface::NoteHash },\n quote { compute_note_hash },\n );\n\n let compute_nullifier_unconstrained = get_trait_impl_method(\n typ,\n quote { crate::note::note_interface::NoteHash },\n quote { compute_nullifier_unconstrained },\n );\n\n let if_or_else_if = if i == 0 {\n quote { if }\n } else {\n quote { else if }\n };\n\n if_note_type_id_match_statements_list = if_note_type_id_match_statements_list.push_back(\n quote {\n $if_or_else_if note_type_id == $get_note_type_id() {\n // As an extra safety check we make sure that the packed_note BoundedVec has the expected\n // length, since we're about to interpret its raw storage as a fixed-size array by calling the\n // unpack function on it.\n let expected_len = <$typ as $crate::protocol_types::traits::Packable>::N;\n let actual_len = packed_note.len();\n assert(\n actual_len == expected_len,\n f\"Expected packed note of length {expected_len} but got {actual_len} for note type id {note_type_id}\"\n );\n\n let note = $unpack(aztec::utils::array::subarray(packed_note.storage(), 0));\n\n let note_hash = $compute_note_hash(note, owner, storage_slot, randomness);\n \n // The message discovery process finds settled notes, that is, notes that were created in prior\n // transactions and are therefore already part of the note hash tree. We therefore compute the\n // nullification note hash by treating the note as a settled note with the provided note nonce.\n let note_hash_for_nullification = aztec::note::utils::compute_note_hash_for_nullification(\n aztec::note::retrieved_note::RetrievedNote{ \n note,\n contract_address,\n owner,\n randomness,\n storage_slot,\n metadata: aztec::note::note_metadata::SettledNoteMetadata::new(note_nonce).into()\n }\n );\n\n let inner_nullifier = $compute_nullifier_unconstrained(note, owner, note_hash_for_nullification);\n\n Option::some(\n aztec::messages::discovery::NoteHashAndNullifier {\n note_hash, inner_nullifier\n }\n )\n }\n },\n );\n }\n\n let if_note_type_id_match_statements = if_note_type_id_match_statements_list.join(quote {});\n\n quote {\n /// Unpacks an array into a note corresponding to `note_type_id` and then computes its note hash\n /// (non-siloed) and inner nullifier (non-siloed) assuming the note has been inserted into the note hash\n /// tree with `note_nonce`.\n ///\n /// The signature of this function notably matches the `aztec::messages::discovery::ComputeNoteHashAndNullifier` type,\n /// and so it can be used to call functions from that module such as `discover_new_messages`, \n /// `do_process_message` and `attempt_note_discovery`.\n ///\n /// This function is automatically injected by the `#[aztec]` macro.\n #[contract_library_method]\n unconstrained fn _compute_note_hash_and_nullifier(\n packed_note: BoundedVec<Field, aztec::messages::logs::note::MAX_NOTE_PACKED_LEN>,\n owner: aztec::protocol_types::address::AztecAddress,\n storage_slot: Field,\n note_type_id: Field,\n contract_address: aztec::protocol_types::address::AztecAddress,\n randomness: Field,\n note_nonce: Field,\n ) -> Option<aztec::messages::discovery::NoteHashAndNullifier> {\n $if_note_type_id_match_statements\n else {\n Option::none()\n }\n }\n }\n } else {\n // Contracts with no notes still implement this function to avoid having special-casing, the implementation\n // simply throws immediately.\n quote {\n /// This contract does not use private notes, so this function should never be called as it will\n /// unconditionally fail.\n ///\n /// This function is automatically injected by the `#[aztec]` macro.\n #[contract_library_method]\n unconstrained fn _compute_note_hash_and_nullifier(\n _packed_note: BoundedVec<Field, aztec::messages::logs::note::MAX_NOTE_PACKED_LEN>,\n _owner: aztec::protocol_types::address::AztecAddress,\n _storage_slot: Field,\n _note_type_id: Field,\n _contract_address: aztec::protocol_types::address::AztecAddress,\n _randomness: Field,\n _nonce: Field,\n ) -> Option<aztec::messages::discovery::NoteHashAndNullifier> {\n panic(f\"This contract does not use private notes\")\n }\n }\n }\n}\n\ncomptime fn generate_sync_private_state() -> Quoted {\n quote {\n pub struct sync_private_state_parameters {}\n\n #[abi(functions)]\n pub struct sync_private_state_abi {\n parameters: sync_private_state_parameters,\n }\n\n #[aztec::macros::internals_functions_generation::abi_attributes::abi_utility]\n unconstrained fn sync_private_state() {\n let address = aztec::context::utility_context::UtilityContext::new().this_address();\n \n aztec::messages::discovery::discover_new_messages(address, _compute_note_hash_and_nullifier);\n }\n }\n}\n\ncomptime fn generate_process_message() -> Quoted {\n quote {\n pub struct process_message_parameters {\n pub message_ciphertext: BoundedVec<Field, aztec::messages::encoding::MESSAGE_CIPHERTEXT_LEN>,\n pub message_context: aztec::messages::processing::message_context::MessageContext,\n }\n\n #[abi(functions)]\n pub struct process_message_abi {\n parameters: process_message_parameters,\n }\n\n #[aztec::macros::internals_functions_generation::abi_attributes::abi_utility]\n unconstrained fn process_message(\n message_ciphertext: BoundedVec<Field, aztec::messages::encoding::MESSAGE_CIPHERTEXT_LEN>,\n message_context: aztec::messages::processing::message_context::MessageContext,\n ) {\n let address = aztec::context::utility_context::UtilityContext::new().this_address();\n\n aztec::messages::discovery::discover_new_messages(address, _compute_note_hash_and_nullifier); \n aztec::messages::discovery::process_message::process_message_ciphertext(\n address,\n _compute_note_hash_and_nullifier,\n message_ciphertext,\n message_context,\n );\n }\n }\n}\n\n/// Checks if each function in the module is marked with either #[external(...)], #[contract_library_method], or #[test].\n/// Non-macroified functions are not allowed in contracts.\ncomptime fn check_each_fn_macroified(m: Module) {\n for f in m.functions() {\n let name = f.name();\n if !is_fn_external(f)\n & !is_fn_contract_library_method(f)\n & !is_fn_internal(f)\n & !is_fn_test(f) {\n // We don't suggest that #[contract_library_method] is allowed because we don't want to introduce another\n // concept\n panic(\n f\"Function {name} must be marked as either #[external(...)], #[internal(...)], or #[test]\",\n );\n }\n }\n}\n"
6596
6596
  },
6597
6597
  "109": {
6598
6598
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/macros/functions/initialization_utils.nr",
@@ -6608,11 +6608,11 @@
6608
6608
  },
6609
6609
  "12": {
6610
6610
  "path": "std/convert.nr",
6611
- "source": "// docs:start:from-trait\npub trait From<T> {\n fn from(input: T) -> Self;\n}\n// docs:end:from-trait\n\nimpl<T> From<T> for T {\n fn from(input: T) -> T {\n input\n }\n}\n\n// docs:start:into-trait\npub trait Into<T> {\n fn into(self) -> T;\n}\n\nimpl<T, U> Into<T> for U\nwhere\n T: From<U>,\n{\n fn into(self) -> T {\n T::from(self)\n }\n}\n// docs:end:into-trait\n\n// docs:start:from-impls\n// Unsigned integers\n\nimpl From<u8> for u16 {\n fn from(value: u8) -> u16 {\n value as u16\n }\n}\n\nimpl From<u8> for u32 {\n fn from(value: u8) -> u32 {\n value as u32\n }\n}\n\nimpl From<u16> for u32 {\n fn from(value: u16) -> u32 {\n value as u32\n }\n}\n\nimpl From<u8> for u64 {\n fn from(value: u8) -> u64 {\n value as u64\n }\n}\n\nimpl From<u16> for u64 {\n fn from(value: u16) -> u64 {\n value as u64\n }\n}\n\nimpl From<u32> for u64 {\n fn from(value: u32) -> u64 {\n value as u64\n }\n}\n\nimpl From<u8> for u128 {\n fn from(value: u8) -> u128 {\n value as u128\n }\n}\n\nimpl From<u16> for u128 {\n fn from(value: u16) -> u128 {\n value as u128\n }\n}\n\nimpl From<u32> for u128 {\n fn from(value: u32) -> u128 {\n value as u128\n }\n}\nimpl From<u64> for u128 {\n fn from(value: u64) -> u128 {\n value as u128\n }\n}\n\nimpl From<u8> for Field {\n fn from(value: u8) -> Field {\n value as Field\n }\n}\n\nimpl From<u16> for Field {\n fn from(value: u16) -> Field {\n value as Field\n }\n}\n\nimpl From<u32> for Field {\n fn from(value: u32) -> Field {\n value as Field\n }\n}\nimpl From<u64> for Field {\n fn from(value: u64) -> Field {\n value as Field\n }\n}\n\nimpl From<u128> for Field {\n fn from(value: u128) -> Field {\n value as Field\n }\n}\n\n// Signed integers\n\nimpl From<i8> for i16 {\n fn from(value: i8) -> i16 {\n value as i16\n }\n}\n\nimpl From<i8> for i32 {\n fn from(value: i8) -> i32 {\n value as i32\n }\n}\n\nimpl From<i16> for i32 {\n fn from(value: i16) -> i32 {\n value as i32\n }\n}\n\nimpl From<i8> for i64 {\n fn from(value: i8) -> i64 {\n value as i64\n }\n}\n\nimpl From<i16> for i64 {\n fn from(value: i16) -> i64 {\n value as i64\n }\n}\n\nimpl From<i32> for i64 {\n fn from(value: i32) -> i64 {\n value as i64\n }\n}\n\n// Booleans\nimpl From<bool> for u8 {\n fn from(value: bool) -> u8 {\n value as u8\n }\n}\nimpl From<bool> for u16 {\n fn from(value: bool) -> u16 {\n value as u16\n }\n}\nimpl From<bool> for u32 {\n fn from(value: bool) -> u32 {\n value as u32\n }\n}\nimpl From<bool> for u64 {\n fn from(value: bool) -> u64 {\n value as u64\n }\n}\nimpl From<bool> for u128 {\n fn from(value: bool) -> u128 {\n value as u128\n }\n}\nimpl From<bool> for i8 {\n fn from(value: bool) -> i8 {\n value as i8\n }\n}\nimpl From<bool> for i16 {\n fn from(value: bool) -> i16 {\n value as i16\n }\n}\nimpl From<bool> for i32 {\n fn from(value: bool) -> i32 {\n value as i32\n }\n}\nimpl From<bool> for i64 {\n fn from(value: bool) -> i64 {\n value as i64\n }\n}\nimpl From<bool> for Field {\n fn from(value: bool) -> Field {\n value as Field\n }\n}\n// docs:end:from-impls\n\n/// A generic interface for casting between primitive types,\n/// equivalent of using the `as` keyword between values.\n///\n/// # Example\n///\n/// ```\n/// let x: Field = 1234567890;\n/// let y: u8 = x as u8;\n/// let z: u8 = x.as_();\n/// assert_eq(y, z);\n/// ```\npub trait AsPrimitive<T> {\n /// The equivalent of doing `self as T`.\n fn as_(self) -> T;\n}\n\n#[generate_as_primitive_impls]\ncomptime fn generate_as_primitive_impls(_: FunctionDefinition) -> Quoted {\n let types = [\n quote { bool },\n quote { u8 },\n quote { u16 },\n quote { u32 },\n quote { u64 },\n quote { u128 },\n quote { i8 },\n quote { i16 },\n quote { i32 },\n quote { i64 },\n ];\n\n let mut impls = &[];\n for type1 in types {\n for type2 in types {\n let body = if type1 == type2 {\n quote { self }\n } else if type1 == quote { bool } {\n quote { self != 0 }\n } else {\n quote { self as $type1 }\n };\n\n impls = impls.push_back(\n quote {\n impl AsPrimitive<$type1> for $type2 {\n fn as_(self) -> $type1 {\n $body\n }\n }\n },\n );\n }\n }\n\n let u_types =\n [quote { bool }, quote { u8 }, quote { u16 }, quote { u32 }, quote { u64 }, quote { u128 }];\n\n for type2 in u_types {\n let body = quote { self as Field };\n\n impls = impls.push_back(\n quote {\n impl AsPrimitive<Field> for $type2 {\n fn as_(self) -> Field {\n $body\n }\n }\n },\n );\n }\n\n for type1 in u_types {\n let body = if type1 == quote { bool } {\n quote { self != 0 }\n } else {\n quote { self as $type1 }\n };\n\n impls = impls.push_back(\n quote {\n impl AsPrimitive<$type1> for Field {\n fn as_(self) -> $type1 {\n $body\n }\n }\n },\n );\n }\n\n impls.join(quote {})\n}\n"
6611
+ "source": "// docs:start:from-trait\npub trait From<T> {\n fn from(input: T) -> Self;\n}\n// docs:end:from-trait\n\nimpl<T> From<T> for T {\n fn from(input: T) -> T {\n input\n }\n}\n\n// docs:start:into-trait\npub trait Into<T> {\n fn into(self) -> T;\n}\n\nimpl<T, U> Into<T> for U\nwhere\n T: From<U>,\n{\n fn into(self) -> T {\n T::from(self)\n }\n}\n// docs:end:into-trait\n\n// docs:start:from-impls\n// Unsigned integers\n\nimpl From<u8> for u16 {\n fn from(value: u8) -> u16 {\n value as u16\n }\n}\n\nimpl From<u8> for u32 {\n fn from(value: u8) -> u32 {\n value as u32\n }\n}\n\nimpl From<u16> for u32 {\n fn from(value: u16) -> u32 {\n value as u32\n }\n}\n\nimpl From<u8> for u64 {\n fn from(value: u8) -> u64 {\n value as u64\n }\n}\n\nimpl From<u16> for u64 {\n fn from(value: u16) -> u64 {\n value as u64\n }\n}\n\nimpl From<u32> for u64 {\n fn from(value: u32) -> u64 {\n value as u64\n }\n}\n\nimpl From<u8> for u128 {\n fn from(value: u8) -> u128 {\n value as u128\n }\n}\n\nimpl From<u16> for u128 {\n fn from(value: u16) -> u128 {\n value as u128\n }\n}\n\nimpl From<u32> for u128 {\n fn from(value: u32) -> u128 {\n value as u128\n }\n}\nimpl From<u64> for u128 {\n fn from(value: u64) -> u128 {\n value as u128\n }\n}\n\nimpl From<u8> for Field {\n fn from(value: u8) -> Field {\n value as Field\n }\n}\n\nimpl From<u16> for Field {\n fn from(value: u16) -> Field {\n value as Field\n }\n}\n\nimpl From<u32> for Field {\n fn from(value: u32) -> Field {\n value as Field\n }\n}\nimpl From<u64> for Field {\n fn from(value: u64) -> Field {\n value as Field\n }\n}\n\nimpl From<u128> for Field {\n fn from(value: u128) -> Field {\n value as Field\n }\n}\n\n// Signed integers\n\nimpl From<i8> for i16 {\n fn from(value: i8) -> i16 {\n value as i16\n }\n}\n\nimpl From<i8> for i32 {\n fn from(value: i8) -> i32 {\n value as i32\n }\n}\n\nimpl From<i16> for i32 {\n fn from(value: i16) -> i32 {\n value as i32\n }\n}\n\nimpl From<i8> for i64 {\n fn from(value: i8) -> i64 {\n value as i64\n }\n}\n\nimpl From<i16> for i64 {\n fn from(value: i16) -> i64 {\n value as i64\n }\n}\n\nimpl From<i32> for i64 {\n fn from(value: i32) -> i64 {\n value as i64\n }\n}\n\n// Booleans\nimpl From<bool> for u8 {\n fn from(value: bool) -> u8 {\n value as u8\n }\n}\nimpl From<bool> for u16 {\n fn from(value: bool) -> u16 {\n value as u16\n }\n}\nimpl From<bool> for u32 {\n fn from(value: bool) -> u32 {\n value as u32\n }\n}\nimpl From<bool> for u64 {\n fn from(value: bool) -> u64 {\n value as u64\n }\n}\nimpl From<bool> for u128 {\n fn from(value: bool) -> u128 {\n value as u128\n }\n}\nimpl From<bool> for i8 {\n fn from(value: bool) -> i8 {\n value as i8\n }\n}\nimpl From<bool> for i16 {\n fn from(value: bool) -> i16 {\n value as i16\n }\n}\nimpl From<bool> for i32 {\n fn from(value: bool) -> i32 {\n value as i32\n }\n}\nimpl From<bool> for i64 {\n fn from(value: bool) -> i64 {\n value as i64\n }\n}\nimpl From<bool> for Field {\n fn from(value: bool) -> Field {\n value as Field\n }\n}\n// docs:end:from-impls\n\n/// A generic interface for casting between primitive types,\n/// equivalent of using the `as` keyword between values.\n///\n/// # Example\n///\n/// ```\n/// let x: Field = 1234567890;\n/// let y: u8 = x as u8;\n/// let z: u8 = x.as_();\n/// assert_eq(y, z);\n/// ```\npub trait AsPrimitive<T> {\n /// The equivalent of doing `self as T`.\n fn as_(self) -> T;\n}\n\n#[generate_as_primitive_impls]\ncomptime fn generate_as_primitive_impls(_: FunctionDefinition) -> Quoted {\n let types = [\n quote { bool },\n quote { u8 },\n quote { u16 },\n quote { u32 },\n quote { u64 },\n quote { u128 },\n quote { i8 },\n quote { i16 },\n quote { i32 },\n quote { i64 },\n ];\n\n let mut impls = [].as_vector();\n for type1 in types {\n for type2 in types {\n let body = if type1 == type2 {\n quote { self }\n } else if type1 == quote { bool } {\n quote { self != 0 }\n } else {\n quote { self as $type1 }\n };\n\n impls = impls.push_back(\n quote {\n impl AsPrimitive<$type1> for $type2 {\n fn as_(self) -> $type1 {\n $body\n }\n }\n },\n );\n }\n }\n\n let u_types =\n [quote { bool }, quote { u8 }, quote { u16 }, quote { u32 }, quote { u64 }, quote { u128 }];\n\n for type2 in u_types {\n let body = quote { self as Field };\n\n impls = impls.push_back(\n quote {\n impl AsPrimitive<Field> for $type2 {\n fn as_(self) -> Field {\n $body\n }\n }\n },\n );\n }\n\n for type1 in u_types {\n let body = if type1 == quote { bool } {\n quote { self != 0 }\n } else {\n quote { self as $type1 }\n };\n\n impls = impls.push_back(\n quote {\n impl AsPrimitive<$type1> for Field {\n fn as_(self) -> $type1 {\n $body\n }\n }\n },\n );\n }\n\n impls.join(quote {})\n}\n"
6612
6612
  },
6613
6613
  "123": {
6614
6614
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/macros/notes.nr",
6615
- "source": "use crate::note::note_getter_options::PropertySelector;\nuse std::{collections::bounded_vec::BoundedVec, meta::{ctstring::AsCtString, type_of}};\n\n/// Maximum number of note types within 1 contract.\ncomptime global MAX_NOTE_TYPES: u32 = 128;\n\n/// A BoundedVec containing all the note types within this contract.\npub comptime mut global NOTES: BoundedVec<Type, MAX_NOTE_TYPES> = BoundedVec::new();\n\ncomptime mut global NOTE_TYPE_ID_COUNTER: u32 = 0;\n\n/// The note type id is set by enumerating the note types.\ncomptime fn get_next_note_type_id() -> Field {\n // We assert that the note type id fits within 7 bits\n assert(\n NOTE_TYPE_ID_COUNTER < MAX_NOTE_TYPES,\n f\"A contract can contain at most {MAX_NOTE_TYPES} different note types\",\n );\n\n let note_type_id = NOTE_TYPE_ID_COUNTER as Field;\n NOTE_TYPE_ID_COUNTER += 1;\n note_type_id\n}\n\n/// Generates default `NoteType` implementation for a given note struct `s` and returns it as a quote.\n///\n/// impl NoteType for NoteStruct {\n/// fn get_id() -> Field {\n/// ...\n/// }\n/// }\ncomptime fn generate_note_type_impl(s: TypeDefinition, note_type_id: Field) -> Quoted {\n let name = s.name();\n let typ = s.as_type();\n let note_type_name: str<_> = f\"{name}\".as_ctstring().as_quoted_str!();\n let max_note_packed_len = crate::messages::logs::note::MAX_NOTE_PACKED_LEN;\n\n quote {\n impl aztec::note::note_interface::NoteType for $name {\n fn get_id() -> Field {\n // This static assertion ensures the note's packed length doesn't exceed the maximum allowed size.\n // While this check would ideally live in the Packable trait implementation, we place it here since\n // this function is always generated by our macros and the Packable trait implementation is not.\n // Note: We set the note type name and max packed length as local variables because injecting them\n // directly into the error message doesn't work.\n let note_type_name = $note_type_name;\n let max_note_packed_len: u32 = $max_note_packed_len; // Casting to u32 to avoid the value to be printed in hex.\n let note_packed_len = <$typ as Packable>::N;\n std::static_assert(note_packed_len <= $max_note_packed_len, f\"{note_type_name} has a packed length of {note_packed_len} fields, which exceeds the maximum allowed length of {max_note_packed_len} fields\");\n\n $note_type_id\n }\n }\n }\n}\n\n/// Generates default `NoteHash` trait implementation for a given note struct `s` and returns it as a quote.\n///\n/// # Generated Implementation\n/// ```\n/// impl NoteHash for NoteStruct {\n/// fn compute_note_hash(self, owner: AztecAddress, storage_slot: Field, randomness: Field) -> Field { ... }\n///\n/// fn compute_nullifier(self, context: &mut PrivateContext, note_hash_for_nullification: Field, owner: AztecAddress) -> Field { ... }\n///\n/// unconstrained fn compute_nullifier_unconstrained(note_hash_for_nullification: Field, owner: AztecAddress) -> Field { ... }\n/// }\n/// ```\ncomptime fn generate_note_hash_trait_impl(s: TypeDefinition) -> Quoted {\n let name = s.name();\n\n quote {\n impl aztec::note::note_interface::NoteHash for $name {\n fn compute_note_hash(self, owner: aztec::protocol_types::address::AztecAddress, storage_slot: Field, randomness: Field) -> Field {\n let inputs = aztec::protocol_types::traits::Packable::pack(self).concat( [aztec::protocol_types::traits::ToField::to_field(owner), storage_slot, randomness]);\n aztec::protocol_types::hash::poseidon2_hash_with_separator(inputs, aztec::protocol_types::constants::DOM_SEP__NOTE_HASH)\n }\n\n fn compute_nullifier(\n self,\n context: &mut aztec::context::PrivateContext,\n owner: aztec::protocol_types::address::AztecAddress,\n note_hash_for_nullification: Field,\n ) -> Field {\n let owner_npk_m = aztec::keys::getters::get_public_keys(owner).npk_m;\n // We invoke hash as a static trait function rather than calling owner_npk_m.hash() directly\n // in the quote to avoid \"trait not in scope\" compiler warnings.\n let owner_npk_m_hash = aztec::protocol_types::traits::Hash::hash(owner_npk_m);\n let secret = context.request_nsk_app(owner_npk_m_hash);\n aztec::protocol_types::hash::poseidon2_hash_with_separator(\n [note_hash_for_nullification, secret],\n aztec::protocol_types::constants::DOM_SEP__NOTE_NULLIFIER as Field,\n )\n }\n\n unconstrained fn compute_nullifier_unconstrained(\n self,\n owner: aztec::protocol_types::address::AztecAddress,\n note_hash_for_nullification: Field,\n ) -> Field {\n let owner_npk_m = aztec::keys::getters::get_public_keys(owner).npk_m;\n // We invoke hash as a static trait function rather than calling owner_npk_m.hash() directly\n // in the quote to avoid \"trait not in scope\" compiler warnings.\n let owner_npk_m_hash = aztec::protocol_types::traits::Hash::hash(owner_npk_m);\n let secret = aztec::keys::getters::get_nsk_app(owner_npk_m_hash);\n aztec::protocol_types::hash::poseidon2_hash_with_separator(\n [note_hash_for_nullification, secret],\n aztec::protocol_types::constants::DOM_SEP__NOTE_NULLIFIER as Field,\n )\n }\n }\n }\n}\n\n/// Generates note properties struct for a given note struct `s`.\n///\n/// Example:\n/// ```\n/// struct TokenNoteProperties {\n/// amount: aztec::note::note_getter_options::PropertySelector,\n/// npk_m_hash: aztec::note::note_getter_options::PropertySelector\n/// randomness: aztec::note::note_getter_options::PropertySelector\n/// }\n///\n/// impl aztec::note::note_interface::NoteProperties<TokenNoteProperties> for TokenNote {\n/// fn properties() -> TokenNoteProperties {\n/// Self {\n/// amount: aztec::note::note_getter_options::PropertySelector { index: 0, offset: 0, length: 32 },\n/// npk_m_hash: aztec::note::note_getter_options::PropertySelector { index: 1, offset: 0, length: 32 },\n/// randomness: aztec::note::note_getter_options::PropertySelector { index: 2, offset: 0, length: 32 }\n/// }\n/// }\n/// }\n/// ```\ncomptime fn generate_note_properties(s: TypeDefinition) -> Quoted {\n let name = s.name();\n\n let struct_name = f\"{name}Properties\".quoted_contents();\n\n let property_selector_type = type_of(PropertySelector { index: 0, offset: 0, length: 0 });\n\n let note_fields = s.fields_as_written();\n\n let properties_types = note_fields\n .map(|(name, _, _)| quote { pub $name: $property_selector_type })\n .join(quote {,});\n\n // TODO #8694: Properly handle non-field types https://github.com/AztecProtocol/aztec-packages/issues/8694\n let mut properties_list = &[];\n for i in 0..note_fields.len() {\n let (name, _, _) = note_fields[i];\n let i = i as u8;\n properties_list = properties_list.push_back(\n quote { $name: aztec::note::note_getter_options::PropertySelector { index: $i, offset: 0, length: 32 } },\n );\n }\n\n let properties = properties_list.join(quote {,});\n\n quote {\n pub struct $struct_name {\n $properties_types\n }\n\n impl aztec::note::note_interface::NoteProperties<$struct_name> for $name {\n fn properties() -> $struct_name {\n $struct_name {\n $properties\n }\n }\n }\n }\n}\n\n/// Generates the core note functionality for a struct:\n///\n/// - NoteTypeProperties: Defines the structure and properties of note fields\n/// - NoteType trait implementation: Provides the note type ID\n/// - NoteHash trait implementation: Handles note hash and nullifier computation\n///\n/// # Requirements\n///\n/// The note struct must:\n/// - Implement the `Packable` trait\n/// - Not exceed `MAX_NOTE_PACKED_LEN` when packed\n///\n/// # Registration\n///\n/// Registers the note in the global `NOTES` BoundedVec to enable note processing functionality.\n///\n/// # Generated Code\n///\n/// For detailed documentation on the generated implementations, see:\n/// - `generate_note_properties()`\n/// - `generate_note_type_impl()`\n/// - `generate_note_hash_trait_impl()`\npub comptime fn note(s: TypeDefinition) -> Quoted {\n assert_has_packable(s);\n\n // We register the note in the global `NOTES` BoundedVec because we need that information inside the #[aztec] macro\n // to generate note processing functionality.\n NOTES.push(s.as_type());\n\n let note_properties = generate_note_properties(s);\n let note_type_id = get_next_note_type_id();\n let note_type_impl = generate_note_type_impl(s, note_type_id);\n let note_hash_impl = generate_note_hash_trait_impl(s);\n\n quote {\n $note_properties\n $note_type_impl\n $note_hash_impl\n }\n}\n\n/// Generates code for a custom note implementation that requires specialized note hash or nullifier computation.\n///\n/// # Generated Code\n/// - NoteTypeProperties: Defines the structure and properties of note fields\n/// - NoteType trait implementation: Provides the note type ID\n///\n/// # Requirements\n///\n/// The note struct must:\n/// - Implement the `Packable` trait\n/// - Not exceed `MAX_NOTE_PACKED_LEN` when packed\n///\n/// # Registration\n///\n/// Registers the note in the global `NOTES` BoundedVec to enable note processing functionality.\n///\n/// # Use Cases\n/// Use this macro when implementing a note that needs custom:\n/// - Note hash computation logic\n/// - Nullifier computation logic\n///\n/// The macro omits generating default NoteHash trait implementation, allowing you to provide your own.\n///\n/// # Example\n/// ```\n/// #[custom_note]\n/// struct CustomNote {\n/// value: Field,\n/// metadata: Field\n/// }\n///\n/// impl NoteHash for CustomNote {\n/// // Custom note hash computation...\n/// fn compute_note_hash(...) -> Field { ... }\n///\n/// // Custom nullifier computation...\n/// fn compute_nullifier(...) -> Field { ... }\n/// fn compute_nullifier_unconstrained(...) -> Field { ... }\n/// }\n/// ```\npub comptime fn custom_note(s: TypeDefinition) -> Quoted {\n assert_has_packable(s);\n\n // We register the note in the global `NOTES` BoundedVec because we need that information inside the #[aztec] macro\n // to generate note processing functionality.\n NOTES.push(s.as_type());\n\n let note_type_id = get_next_note_type_id();\n let note_properties = generate_note_properties(s);\n let note_type_impl = generate_note_type_impl(s, note_type_id);\n\n quote {\n $note_properties\n $note_type_impl\n }\n}\n\n/// Asserts that the given note implements the `Packable` trait.\n///\n/// We require that notes have the `Packable` trait implemented because it is used when emitting a note in a log or as\n/// an offchain message.\ncomptime fn assert_has_packable(note: TypeDefinition) {\n let packable_constraint =\n quote { crate::protocol_types::traits::Packable }.as_trait_constraint();\n let note_name = note.name();\n\n assert(\n note.as_type().implements(packable_constraint),\n f\"{note_name} does not implement Packable trait. Either implement it manually or place #[derive(Packable)] on the note struct before #[note] macro invocation.\",\n );\n}\n"
6615
+ "source": "use crate::note::note_getter_options::PropertySelector;\nuse std::{collections::bounded_vec::BoundedVec, meta::{ctstring::AsCtString, type_of}};\n\n/// Maximum number of note types within 1 contract.\ncomptime global MAX_NOTE_TYPES: u32 = 128;\n\n/// A BoundedVec containing all the note types within this contract.\npub comptime mut global NOTES: BoundedVec<Type, MAX_NOTE_TYPES> = BoundedVec::new();\n\ncomptime mut global NOTE_TYPE_ID_COUNTER: u32 = 0;\n\n/// The note type id is set by enumerating the note types.\ncomptime fn get_next_note_type_id() -> Field {\n // We assert that the note type id fits within 7 bits\n assert(\n NOTE_TYPE_ID_COUNTER < MAX_NOTE_TYPES,\n f\"A contract can contain at most {MAX_NOTE_TYPES} different note types\",\n );\n\n let note_type_id = NOTE_TYPE_ID_COUNTER as Field;\n NOTE_TYPE_ID_COUNTER += 1;\n note_type_id\n}\n\n/// Generates default `NoteType` implementation for a given note struct `s` and returns it as a quote.\n///\n/// impl NoteType for NoteStruct {\n/// fn get_id() -> Field {\n/// ...\n/// }\n/// }\ncomptime fn generate_note_type_impl(s: TypeDefinition, note_type_id: Field) -> Quoted {\n let name = s.name();\n let typ = s.as_type();\n let note_type_name: str<_> = f\"{name}\".as_ctstring().as_quoted_str!();\n let max_note_packed_len = crate::messages::logs::note::MAX_NOTE_PACKED_LEN;\n\n quote {\n impl aztec::note::note_interface::NoteType for $name {\n fn get_id() -> Field {\n // This static assertion ensures the note's packed length doesn't exceed the maximum allowed size.\n // While this check would ideally live in the Packable trait implementation, we place it here since\n // this function is always generated by our macros and the Packable trait implementation is not.\n // Note: We set the note type name and max packed length as local variables because injecting them\n // directly into the error message doesn't work.\n let note_type_name = $note_type_name;\n let max_note_packed_len: u32 = $max_note_packed_len; // Casting to u32 to avoid the value to be printed in hex.\n let note_packed_len = <$typ as Packable>::N;\n std::static_assert(note_packed_len <= $max_note_packed_len, f\"{note_type_name} has a packed length of {note_packed_len} fields, which exceeds the maximum allowed length of {max_note_packed_len} fields\");\n\n $note_type_id\n }\n }\n }\n}\n\n/// Generates default `NoteHash` trait implementation for a given note struct `s` and returns it as a quote.\n///\n/// # Generated Implementation\n/// ```\n/// impl NoteHash for NoteStruct {\n/// fn compute_note_hash(self, owner: AztecAddress, storage_slot: Field, randomness: Field) -> Field { ... }\n///\n/// fn compute_nullifier(self, context: &mut PrivateContext, note_hash_for_nullification: Field, owner: AztecAddress) -> Field { ... }\n///\n/// unconstrained fn compute_nullifier_unconstrained(note_hash_for_nullification: Field, owner: AztecAddress) -> Field { ... }\n/// }\n/// ```\ncomptime fn generate_note_hash_trait_impl(s: TypeDefinition) -> Quoted {\n let name = s.name();\n\n quote {\n impl aztec::note::note_interface::NoteHash for $name {\n fn compute_note_hash(self, owner: aztec::protocol_types::address::AztecAddress, storage_slot: Field, randomness: Field) -> Field {\n let inputs = aztec::protocol_types::traits::Packable::pack(self).concat( [aztec::protocol_types::traits::ToField::to_field(owner), storage_slot, randomness]);\n aztec::protocol_types::hash::poseidon2_hash_with_separator(inputs, aztec::protocol_types::constants::DOM_SEP__NOTE_HASH)\n }\n\n fn compute_nullifier(\n self,\n context: &mut aztec::context::PrivateContext,\n owner: aztec::protocol_types::address::AztecAddress,\n note_hash_for_nullification: Field,\n ) -> Field {\n let owner_npk_m = aztec::keys::getters::get_public_keys(owner).npk_m;\n // We invoke hash as a static trait function rather than calling owner_npk_m.hash() directly\n // in the quote to avoid \"trait not in scope\" compiler warnings.\n let owner_npk_m_hash = aztec::protocol_types::traits::Hash::hash(owner_npk_m);\n let secret = context.request_nsk_app(owner_npk_m_hash);\n aztec::protocol_types::hash::poseidon2_hash_with_separator(\n [note_hash_for_nullification, secret],\n aztec::protocol_types::constants::DOM_SEP__NOTE_NULLIFIER as Field,\n )\n }\n\n unconstrained fn compute_nullifier_unconstrained(\n self,\n owner: aztec::protocol_types::address::AztecAddress,\n note_hash_for_nullification: Field,\n ) -> Field {\n let owner_npk_m = aztec::keys::getters::get_public_keys(owner).npk_m;\n // We invoke hash as a static trait function rather than calling owner_npk_m.hash() directly\n // in the quote to avoid \"trait not in scope\" compiler warnings.\n let owner_npk_m_hash = aztec::protocol_types::traits::Hash::hash(owner_npk_m);\n let secret = aztec::keys::getters::get_nsk_app(owner_npk_m_hash);\n aztec::protocol_types::hash::poseidon2_hash_with_separator(\n [note_hash_for_nullification, secret],\n aztec::protocol_types::constants::DOM_SEP__NOTE_NULLIFIER as Field,\n )\n }\n }\n }\n}\n\n/// Generates note properties struct for a given note struct `s`.\n///\n/// Example:\n/// ```\n/// struct TokenNoteProperties {\n/// amount: aztec::note::note_getter_options::PropertySelector,\n/// npk_m_hash: aztec::note::note_getter_options::PropertySelector\n/// randomness: aztec::note::note_getter_options::PropertySelector\n/// }\n///\n/// impl aztec::note::note_interface::NoteProperties<TokenNoteProperties> for TokenNote {\n/// fn properties() -> TokenNoteProperties {\n/// Self {\n/// amount: aztec::note::note_getter_options::PropertySelector { index: 0, offset: 0, length: 32 },\n/// npk_m_hash: aztec::note::note_getter_options::PropertySelector { index: 1, offset: 0, length: 32 },\n/// randomness: aztec::note::note_getter_options::PropertySelector { index: 2, offset: 0, length: 32 }\n/// }\n/// }\n/// }\n/// ```\ncomptime fn generate_note_properties(s: TypeDefinition) -> Quoted {\n let name = s.name();\n\n let struct_name = f\"{name}Properties\".quoted_contents();\n\n let property_selector_type = type_of(PropertySelector { index: 0, offset: 0, length: 0 });\n\n let note_fields = s.fields_as_written();\n\n let properties_types = note_fields\n .map(|(name, _, _)| quote { pub $name: $property_selector_type })\n .join(quote {,});\n\n // TODO #8694: Properly handle non-field types https://github.com/AztecProtocol/aztec-packages/issues/8694\n let mut properties_list = @[];\n for i in 0..note_fields.len() {\n let (name, _, _) = note_fields[i];\n let i = i as u8;\n properties_list = properties_list.push_back(\n quote { $name: aztec::note::note_getter_options::PropertySelector { index: $i, offset: 0, length: 32 } },\n );\n }\n\n let properties = properties_list.join(quote {,});\n\n quote {\n pub struct $struct_name {\n $properties_types\n }\n\n impl aztec::note::note_interface::NoteProperties<$struct_name> for $name {\n fn properties() -> $struct_name {\n $struct_name {\n $properties\n }\n }\n }\n }\n}\n\n/// Generates the core note functionality for a struct:\n///\n/// - NoteTypeProperties: Defines the structure and properties of note fields\n/// - NoteType trait implementation: Provides the note type ID\n/// - NoteHash trait implementation: Handles note hash and nullifier computation\n///\n/// # Requirements\n///\n/// The note struct must:\n/// - Implement the `Packable` trait\n/// - Not exceed `MAX_NOTE_PACKED_LEN` when packed\n///\n/// # Registration\n///\n/// Registers the note in the global `NOTES` BoundedVec to enable note processing functionality.\n///\n/// # Generated Code\n///\n/// For detailed documentation on the generated implementations, see:\n/// - `generate_note_properties()`\n/// - `generate_note_type_impl()`\n/// - `generate_note_hash_trait_impl()`\npub comptime fn note(s: TypeDefinition) -> Quoted {\n assert_has_packable(s);\n\n // We register the note in the global `NOTES` BoundedVec because we need that information inside the #[aztec] macro\n // to generate note processing functionality.\n NOTES.push(s.as_type());\n\n let note_properties = generate_note_properties(s);\n let note_type_id = get_next_note_type_id();\n let note_type_impl = generate_note_type_impl(s, note_type_id);\n let note_hash_impl = generate_note_hash_trait_impl(s);\n\n quote {\n $note_properties\n $note_type_impl\n $note_hash_impl\n }\n}\n\n/// Generates code for a custom note implementation that requires specialized note hash or nullifier computation.\n///\n/// # Generated Code\n/// - NoteTypeProperties: Defines the structure and properties of note fields\n/// - NoteType trait implementation: Provides the note type ID\n///\n/// # Requirements\n///\n/// The note struct must:\n/// - Implement the `Packable` trait\n/// - Not exceed `MAX_NOTE_PACKED_LEN` when packed\n///\n/// # Registration\n///\n/// Registers the note in the global `NOTES` BoundedVec to enable note processing functionality.\n///\n/// # Use Cases\n/// Use this macro when implementing a note that needs custom:\n/// - Note hash computation logic\n/// - Nullifier computation logic\n///\n/// The macro omits generating default NoteHash trait implementation, allowing you to provide your own.\n///\n/// # Example\n/// ```\n/// #[custom_note]\n/// struct CustomNote {\n/// value: Field,\n/// metadata: Field\n/// }\n///\n/// impl NoteHash for CustomNote {\n/// // Custom note hash computation...\n/// fn compute_note_hash(...) -> Field { ... }\n///\n/// // Custom nullifier computation...\n/// fn compute_nullifier(...) -> Field { ... }\n/// fn compute_nullifier_unconstrained(...) -> Field { ... }\n/// }\n/// ```\npub comptime fn custom_note(s: TypeDefinition) -> Quoted {\n assert_has_packable(s);\n\n // We register the note in the global `NOTES` BoundedVec because we need that information inside the #[aztec] macro\n // to generate note processing functionality.\n NOTES.push(s.as_type());\n\n let note_type_id = get_next_note_type_id();\n let note_properties = generate_note_properties(s);\n let note_type_impl = generate_note_type_impl(s, note_type_id);\n\n quote {\n $note_properties\n $note_type_impl\n }\n}\n\n/// Asserts that the given note implements the `Packable` trait.\n///\n/// We require that notes have the `Packable` trait implemented because it is used when emitting a note in a log or as\n/// an offchain message.\ncomptime fn assert_has_packable(note: TypeDefinition) {\n let packable_constraint =\n quote { crate::protocol_types::traits::Packable }.as_trait_constraint();\n let note_name = note.name();\n\n assert(\n note.as_type().implements(packable_constraint),\n f\"{note_name} does not implement Packable trait. Either implement it manually or place #[derive(Packable)] on the note struct before #[note] macro invocation.\",\n );\n}\n"
6616
6616
  },
6617
6617
  "126": {
6618
6618
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/messages/discovery/mod.nr",
@@ -6628,7 +6628,7 @@
6628
6628
  },
6629
6629
  "129": {
6630
6630
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/messages/discovery/private_events.nr",
6631
- "source": "use crate::{\n event::event_interface::compute_private_serialized_event_commitment,\n messages::{\n encoding::MAX_MESSAGE_CONTENT_LEN, logs::event::decode_private_event_message,\n processing::enqueue_event_for_validation,\n },\n};\nuse protocol_types::{address::AztecAddress, traits::ToField};\n\npub unconstrained fn process_private_event_msg(\n contract_address: AztecAddress,\n recipient: AztecAddress,\n msg_metadata: u64,\n msg_content: BoundedVec<Field, MAX_MESSAGE_CONTENT_LEN>,\n tx_hash: Field,\n) {\n let (event_type_id, randomness, serialized_event) =\n decode_private_event_message(msg_metadata, msg_content);\n\n let event_commitment = compute_private_serialized_event_commitment(\n serialized_event,\n randomness,\n event_type_id.to_field(),\n );\n\n enqueue_event_for_validation(\n contract_address,\n event_type_id,\n serialized_event,\n event_commitment,\n tx_hash,\n recipient,\n );\n}\n"
6631
+ "source": "use crate::{\n event::event_interface::compute_private_serialized_event_commitment,\n messages::{\n encoding::MAX_MESSAGE_CONTENT_LEN, logs::event::decode_private_event_message,\n processing::enqueue_event_for_validation,\n },\n};\nuse protocol_types::{address::AztecAddress, traits::ToField};\n\npub unconstrained fn process_private_event_msg(\n contract_address: AztecAddress,\n recipient: AztecAddress,\n msg_metadata: u64,\n msg_content: BoundedVec<Field, MAX_MESSAGE_CONTENT_LEN>,\n tx_hash: Field,\n) {\n let (event_type_id, randomness, serialized_event) =\n decode_private_event_message(msg_metadata, msg_content);\n\n let event_commitment = compute_private_serialized_event_commitment(\n serialized_event,\n randomness,\n event_type_id.to_field(),\n );\n\n enqueue_event_for_validation(\n contract_address,\n event_type_id,\n randomness,\n serialized_event,\n event_commitment,\n tx_hash,\n recipient,\n );\n}\n"
6632
6632
  },
6633
6633
  "130": {
6634
6634
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/messages/discovery/private_notes.nr",
@@ -6662,9 +6662,13 @@
6662
6662
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/messages/logs/utils.nr",
6663
6663
  "source": "use crate::oracle::notes::{get_next_app_tag_as_sender, get_sender_for_tags};\nuse dep::protocol_types::address::AztecAddress;\n\n// TODO(#14565): Add constrained tagging\npub(crate) fn prefix_with_tag<let L: u32>(\n log_without_tag: [Field; L],\n recipient: AztecAddress,\n) -> [Field; L + 1] {\n // Safety: we assume that the sender wants for the recipient to find the tagged note, and therefore that they will\n // cooperate and use the correct tag. Usage of a bad tag will result in the recipient not being able to find the\n // note automatically.\n let tag = unsafe {\n let sender = get_sender_for_tags().expect(\n f\"Sender for tags is not set when emitting a private log. Set it by calling `set_sender_for_tags(...)`.\",\n );\n get_next_app_tag_as_sender(sender, recipient)\n };\n\n let mut log_with_tag = [0; L + 1];\n\n log_with_tag[0] = tag;\n for i in 0..log_without_tag.len() {\n log_with_tag[i + 1] = log_without_tag[i];\n }\n\n log_with_tag\n}\n\nmod test {\n use super::prefix_with_tag;\n use protocol_types::{address::AztecAddress, traits::FromField};\n use std::test::OracleMock;\n\n #[test(should_fail)]\n unconstrained fn no_tag_sender() {\n let recipient = AztecAddress::from_field(2);\n\n let expected_tag = 42;\n\n // Mock the tagging oracles - note privateGetSenderForTags returns none\n let _ = OracleMock::mock(\"privateGetSenderForTags\").returns(Option::<AztecAddress>::none());\n let _ = OracleMock::mock(\"privateGetNextAppTagAsSender\").returns(expected_tag);\n\n let log_without_tag = [1, 2, 3];\n let _ = prefix_with_tag(log_without_tag, recipient);\n }\n\n #[test]\n unconstrained fn prefixing_with_tag() {\n let sender = AztecAddress::from_field(1);\n let recipient = AztecAddress::from_field(2);\n\n let expected_tag = 42;\n\n // Mock the tagging oracles\n let _ = OracleMock::mock(\"privateGetSenderForTags\").returns(Option::some(sender));\n let _ = OracleMock::mock(\"privateGetNextAppTagAsSender\").returns(expected_tag);\n\n let log_without_tag = [1, 2, 3];\n let log_with_tag = prefix_with_tag(log_without_tag, recipient);\n\n let expected_result = [expected_tag, 1, 2, 3];\n\n // Check tag was prefixed correctly\n assert_eq(log_with_tag, expected_result, \"Tag was not prefixed correctly\");\n }\n}\n"
6664
6664
  },
6665
+ "143": {
6666
+ "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/messages/message_delivery.nr",
6667
+ "source": "use crate::{\n context::private_context::PrivateContext,\n messages::{\n encryption::{aes128::AES128, message_encryption::MessageEncryption},\n logs::utils::prefix_with_tag,\n offchain_messages::deliver_offchain_message,\n },\n utils::remove_constraints::remove_constraints_if,\n};\nuse protocol_types::address::AztecAddress;\n\n/// Specifies how to deliver a message to a recipient.\n///\n/// All messages are delivered encrypted to their recipient's public address key, so no other account will be able to\n/// read their contents. This enum instead configures which **guarantees** exist regarding delivery.\n///\n/// There are two aspects to delivery guarantees:\n/// - the medium on which the message is sent (off-chain or on-chain)\n/// - whether the contract constrains the message to be constructed correctly\n///\n/// For scenarios where the sender is incentivized to deliver the message correctly, use\n/// [MessageDeliveryEnum::OFFCHAIN] (the cheapest delivery option, but requiring that sender and recipient can\n/// communicate off-chain) or [MessageDeliveryEnum::ONCHAIN_UNCONSTRAINED]. If the sender cannot be trusted to send the\n/// message to the recipient, use [MessageDeliveryEnum::ONCHAIN_CONSTRAINED].\npub struct MessageDeliveryEnum {\n /// Delivers the message fully off-chain, with no guarantees whatsoever.\n ///\n /// ## Use Cases\n ///\n /// This delivery method is suitable when the sender is required to send the message to the recipient because of\n /// some external reason, and where the sender is able to directly contact the recipient off-chain. In these cases,\n /// it might be unnecessary to force the sender to spend proving time guaranteeing message correctness, or to pay\n /// transaction fees in order to use the chain as a medium.\n ///\n /// For example, if performing a payment in exchange for some good or service, the recipient will only accept the\n /// payment once they receive note and event messages, allowing them to observe the balance increase. The sender has\n /// no reason not to deliver the message correctly to the recipient, and in all likelihood has a way to send it to\n /// them.\n ///\n /// Similarly, in games and other applications that might rely on some server processing state, players might be\n /// required to update the server with their current state.\n ///\n /// Finally, any messages for which the recipient is a local account (e.g.: the message for the change note in a\n /// token transfer) work well with this delivery option, since the sender would only be harming themselves by not\n /// delivering correctly.\n ///\n /// ## Guarantees\n ///\n /// The sender of the message is free to both not deliver the message to the recipient at all (since no delivery\n /// occurs on-chain), and to alter the message contents (possibly resulting in an undecryptable message, or one with\n /// incorrect content).\n ///\n /// An undecryptable or otherwise invalid note or event message will however simply be ignored by the recipient, who\n /// can always validate the existence of the note or event on-chain.\n ///\n /// Because the message is not stored on-chain, it is the sender's (and eventually recipient's) responsability to\n /// back it up and make sure it is not lost.\n ///\n /// ## Costs\n ///\n /// Because no data is emitted on-chain, this delivery option is the cheapest one in terms of transaction fees:\n /// these are zero.\n ///\n /// Additionally, no circuit gates are introduced when the message is encrypted, since its provenance cannot be\n /// authenticated anyway. Therefore, off-chain messages do not affect proving time at all.\n ///\n /// ## Privacy\n ///\n /// No information is revelead on-chain about sender, recipient, or the message contents. The message itself reveals\n /// no information about the sender or recipient, and requires knowledge of the recipient's private address keys in\n /// order to obtain the plaintext.\n pub OFFCHAIN: u8,\n\n /// Delivers the message on-chain, but with no guarantees on the content.\n ///\n /// ## Use Cases\n ///\n /// This delivery method is suitable when the sender is required to send the message to the recipient because of\n /// some external reason, but might not have a way to contact them off-chain, or does not wish to bear the\n /// responsability of keeping backups. In these cases, it might be unnecessary to force the sender to spend proving\n /// time guaranteeing message correctness.\n ///\n /// For example, when depositing funds into an escrow or sale contract the sender may not have an off-chain channel\n /// through which they could send the recipient a message. But since the recipient will not acknowledge receipt and\n /// proceed with the exchange unless they obtain the message, the sender has no reason not to deliver the message\n /// correctly.\n ///\n /// ## Guarantees\n ///\n /// The message will be stored on-chain in a private log, as part of the transaction's effects, and will be\n /// retrievable in the future without requiring any backups. However, the sender is free to alter the message\n /// contents (possibly resulting in an undecryptable message, or one with incorrect content), including making it so\n /// that the recipient cannot find it.\n ///\n /// An undecryptable or otherwise invalid note or event message will however simply be ignored by the recipient, who\n /// can always validate the existence of the note or event on-chain.\n ///\n /// These guarantees make this delivery mechanism be quite similar to [MessageDeliveryEnum::OFFCHAIN], except the\n /// sender does not need to establish an off-chain communication channel with the recipient, and neither party needs\n /// to worry about backups.\n ///\n /// ## Costs\n ///\n /// Because the encrypted message is emitted on-chain as transaction private logs, this delivery option results in\n /// transaction fees associated with DA gas. The length of the original message is irrelevant to this cost, since\n /// all private logs are padded to the same length with random data to enhance privacy.\n ///\n /// However, no circuit gates are introduced when the message is encrypted. Therefore, on-chain unconstrained\n /// messages do not affect proving time at all.\n ///\n /// ## Privacy\n ///\n /// No information is revealed on-chain about sender, recipient, or the message contents. The message itself reveals\n /// no information about the sender or recipient, and requires knowledge of the recipient's private address keys in\n /// order to obtain the plaintext.\n ///\n /// Delivering the message does produce on-chain information in the form of private logs, so transactions that\n /// deliver many messages this way might be identifiable by the large number of logs.\n ///\n /// Identifying that a log corresponds to a message between a given sender and recipient requires, among other\n /// things, knowledge of both of their addresses **and** either the sender's or recipient's private address key.\n pub ONCHAIN_UNCONSTRAINED: u8,\n\n /// Delivers the message on-chain, guaranteeing the recipient will receive the correct content.\n ///\n /// >**WARNING**: this delivery mode is\n /// [currently NOT fully constrained](https://github.com/AztecProtocol/aztec-packages/issues/14565). The log's\n /// tag is unconstrained, meaning a malicious sender could manipulate it to prevent the recipient from finding\n /// the message.\n ///\n /// ## Use Cases\n ///\n /// This delivery method is suitable for all use cases, since it always works as expected. It is however the most\n /// costly method, and there are multiple scenarios where alternatives such as [MessageDeliveryEnum::OFFCHAIN]\n /// or [MessageDeliveryEnum::ONCHAIN_UNCONSTRAINED] will suffice.\n ///\n /// If the sender cannot be relied on to correctly send the message to the recipient (e.g. because they have no\n /// incentive to do so, such as when paying a fee to a protocol, creating the change note after spending a third\n /// party's tokens, or updating the configuration of a shared system like a multisig) then this is the only\n /// suitable delivery option.\n ///\n /// ## Guarantees\n ///\n /// The message will be stored on-chain in a private log, as part of the transaction's effects, and will be\n /// retrievable in the future without requiring any backups. The ciphertext will be decryptable by the recipient\n /// using their address private key and the ephemeral public key that accompanies the message.\n ///\n /// The log will be tagged in such a way that the recipient will be able to efficiently find it after querying for\n /// handshakes.\n ///\n /// ## Costs\n ///\n /// Because the encrypted message is emitted on-chain as transaction private logs, this delivery option results in\n /// transaction fees associated with DA gas. The length of the original message is irrelevant to this cost, since\n /// all private logs are padded to the same length with random data to enhance privacy.\n ///\n /// Additionally, the constraining of the log's tag results in additional DA usage and hence transaction fees due\n /// to the emission of nullifiers.\n ///\n /// Proving time is also increased as circuit gates are introduced to guarantee both the correct encryption of the\n /// message, and selection of log tag.\n ///\n /// ## Privacy\n ///\n /// No information is revelead on-chain about sender, recipient, or the message contents. The message itself reveals\n /// no information about the sender or recipient, and requires knowledge of the recipient's private address keys in\n /// order to obtain the plaintext.\n ///\n /// Delivering the message does produce on-chain information in the form of private logs and nullifiers, so\n /// transactions that deliver many messages this way might be identifiable by these markers.\n ///\n /// Identifying that a log corresponds to a message between a given sender and recipient requires, among other\n /// things, knowledge of both of their addresses **and** either the sender's or recipient's private address key.\n pub ONCHAIN_CONSTRAINED: u8,\n}\n\npub global MessageDelivery: MessageDeliveryEnum =\n MessageDeliveryEnum { OFFCHAIN: 1, ONCHAIN_UNCONSTRAINED: 2, ONCHAIN_CONSTRAINED: 3 };\n\n/// Performs private delivery of a message to `recipient` according to `delivery_mode`.\n///\n/// The message is encoded into plaintext and then encrypted for `recipient`. This function takes a _function_ that\n/// returns the plaintext instead of taking the plaintext directly in order to not waste constraints encoding the\n/// message in scenarios where the plaintext will be encrypted with unconstrained encryption.\n///\n/// `maybe_note_hash_counter` is only relevant for on-chain delivery modes (i.e. via protocol logs): if a newly created\n/// note hash's side effect counter is passed, then the log will be squashed alongside the note should its nullifier be\n/// emitted in the current transaction. This is typically only used for note messages: since the note will not actually\n/// be created, there is no point in delivering the message.\n///\n/// `delivery_mode` must be one of [MessageDeliveryEnum].\npub(crate) fn do_private_message_delivery<Env, let MESSAGE_PLAINTEXT_LEN: u32>(\n context: &mut PrivateContext,\n encode_into_message_plaintext: fn[Env]() -> [Field; MESSAGE_PLAINTEXT_LEN],\n maybe_note_hash_counter: Option<u32>,\n recipient: AztecAddress,\n delivery_mode: u8,\n) {\n // This function relies on `delivery_mode` being a constant in order to reduce circuit constraints when\n // unconstrained usage is requested. If `delivery_mode` were a runtime value the compiler would be unable to\n // perform dead-code elimination.\n assert_constant(delivery_mode);\n\n // The following maps out the 3 dimensions across which we configure message delivery.\n let constrained_encryption = delivery_mode == MessageDelivery.ONCHAIN_UNCONSTRAINED;\n let deliver_as_offchain_message = delivery_mode == MessageDelivery.OFFCHAIN;\n // TODO(#14565): Add constrained tagging\n let _constrained_tagging = delivery_mode == MessageDelivery.ONCHAIN_CONSTRAINED;\n\n let ciphertext = remove_constraints_if(\n !constrained_encryption,\n || AES128::encrypt(encode_into_message_plaintext(), recipient),\n );\n\n if deliver_as_offchain_message {\n deliver_offchain_message(ciphertext, recipient);\n } else {\n // Safety: Currently unsafe. See description of ONCHAIN_CONSTRAINED in MessageDeliveryEnum.\n // TODO(#14565): Implement proper constrained tag prefixing to make this truly ONCHAIN_CONSTRAINED\n let log_content = prefix_with_tag(ciphertext, recipient);\n\n // We forbid this value not being constant to avoid predicating the context calls below, which might result in\n // the context's arrays having unknown compile time write indices and hence dramatically increasing constraints\n // when accessing them. In practice this restriction is not a problem as we always know at compile time whether\n // we're emitting a note or non-note message.\n assert_constant(maybe_note_hash_counter.is_some());\n\n if maybe_note_hash_counter.is_some() {\n // We associate the log with the note's side effect counter, so that if the note ends up being squashed\n // in the current transaction, the log will be removed as well.\n //\n // Note that the log always has the same length regardless of `MESSAGE_PLAINTEXT_LEN`, because all message\n // ciphertexts also have the same length. This prevents accidental privacy leakage via the log length.\n context.emit_raw_note_log(\n log_content,\n log_content.len(),\n maybe_note_hash_counter.unwrap(),\n );\n } else {\n context.emit_private_log(log_content, log_content.len());\n }\n }\n}\n"
6668
+ },
6665
6669
  "151": {
6666
6670
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/messages/processing/mod.nr",
6667
- "source": "pub(crate) mod event_validation_request;\npub mod message_context;\npub(crate) mod note_validation_request;\npub(crate) mod log_retrieval_request;\npub(crate) mod log_retrieval_response;\npub(crate) mod pending_tagged_log;\n\nuse crate::{\n capsules::CapsuleArray,\n event::event_selector::EventSelector,\n messages::{\n discovery::partial_notes::DeliveredPendingPartialNote,\n logs::{event::MAX_EVENT_SERIALIZED_LEN, note::MAX_NOTE_PACKED_LEN},\n processing::{\n log_retrieval_request::LogRetrievalRequest,\n log_retrieval_response::LogRetrievalResponse,\n note_validation_request::NoteValidationRequest, pending_tagged_log::PendingTaggedLog,\n },\n },\n oracle,\n};\nuse event_validation_request::EventValidationRequest;\nuse protocol_types::{address::AztecAddress, hash::sha256_to_field};\n\n// Base slot for the pending tagged log array to which the fetch_tagged_logs oracle inserts found private logs.\nglobal PENDING_TAGGED_LOG_ARRAY_BASE_SLOT: Field =\n sha256_to_field(\"AZTEC_NR::PENDING_TAGGED_LOG_ARRAY_BASE_SLOT\".as_bytes());\n\nglobal NOTE_VALIDATION_REQUESTS_ARRAY_BASE_SLOT: Field = sha256_to_field(\n \"AZTEC_NR::NOTE_VALIDATION_REQUESTS_ARRAY_BASE_SLOT\".as_bytes(),\n);\n\nglobal EVENT_VALIDATION_REQUESTS_ARRAY_BASE_SLOT: Field = sha256_to_field(\n \"AZTEC_NR::EVENT_VALIDATION_REQUESTS_ARRAY_BASE_SLOT\".as_bytes(),\n);\n\nglobal LOG_RETRIEVAL_REQUESTS_ARRAY_BASE_SLOT: Field = sha256_to_field(\n \"AZTEC_NR::LOG_RETRIEVAL_REQUESTS_ARRAY_BASE_SLOT\".as_bytes(),\n);\n\nglobal LOG_RETRIEVAL_RESPONSES_ARRAY_BASE_SLOT: Field = sha256_to_field(\n \"AZTEC_NR::LOG_RETRIEVAL_RESPONSES_ARRAY_BASE_SLOT\".as_bytes(),\n);\n\n/// Searches for private logs emitted by `contract_address` that might contain messages for one of the local accounts,\n/// and stores them in a `CapsuleArray` which is then returned.\npub(crate) unconstrained fn get_private_logs(\n contract_address: AztecAddress,\n) -> CapsuleArray<PendingTaggedLog> {\n // We will eventually perform log discovery via tagging here, but for now we simply call the `fetchTaggedLogs`\n // oracle. This makes PXE synchronize tags, download logs and store the pending tagged logs in a capsule array.\n oracle::message_processing::fetch_tagged_logs(PENDING_TAGGED_LOG_ARRAY_BASE_SLOT);\n\n CapsuleArray::at(contract_address, PENDING_TAGGED_LOG_ARRAY_BASE_SLOT)\n}\n\n/// Enqueues a note for validation by PXE, so that it becomes aware of a note's existence allowing for later retrieval\n/// via `get_notes` oracle. The note will be scoped to `contract_address`, meaning other contracts will not be able to\n/// access it unless authorized.\n///\n/// In order for the note validation and insertion to occur, `validate_enqueued_notes_and_events` must be later called.\n/// For optimal performance, accumulate as many note validation requests as possible and then validate them all at the\n/// end (which results in PXE minimizing the number of network round-trips).\n///\n/// The `packed_note` is what `getNotes` will later return. PXE indexes notes by `storage_slot`, so this value\n/// is typically used to filter notes that correspond to different state variables. `note_hash` and `nullifier` are\n/// the inner hashes, i.e. the raw hashes returned by `NoteHash::compute_note_hash` and\n/// `NoteHash::compute_nullifier`. PXE will verify that the siloed unique note hash was inserted into the tree\n/// at `tx_hash`, and will store the nullifier to later check for nullification.\n///\n/// `owner` is the address used in note hash and nullifier computation, often requiring knowledge of their\n/// nullifier secret key.\n///\n/// `recipient` is the account to which the note message was delivered (i.e. the address the message was encrypted to).\n/// This determines which PXE account can see the note - other accounts will not be able to access it (e.g. other\n/// accounts will not be able to see one another's token balance notes, even in the same PXE) unless authorized. In most\n/// cases `recipient` equals `owner`, but they can differ in scenarios like delegated discovery.\npub(crate) unconstrained fn enqueue_note_for_validation(\n contract_address: AztecAddress,\n owner: AztecAddress,\n storage_slot: Field,\n randomness: Field,\n note_nonce: Field,\n packed_note: BoundedVec<Field, MAX_NOTE_PACKED_LEN>,\n note_hash: Field,\n nullifier: Field,\n tx_hash: Field,\n recipient: AztecAddress,\n) {\n // We store requests in a `CapsuleArray`, which PXE will later read from and deserialize into its version of the\n // Noir `NoteValidationRequest`\n CapsuleArray::at(contract_address, NOTE_VALIDATION_REQUESTS_ARRAY_BASE_SLOT).push(\n NoteValidationRequest {\n contract_address,\n owner,\n storage_slot,\n randomness,\n note_nonce,\n packed_note,\n note_hash,\n nullifier,\n tx_hash,\n recipient,\n },\n )\n}\n\n/// Enqueues an event for validation by PXE, so that it can be efficiently validated and then inserted into the event\n/// store.\n///\n/// In order for the event validation and insertion to occur, `validate_enqueued_notes_and_events` must be later\n/// called. For optimal performance, accumulate as many event validation requests as possible and then validate them\n/// all at the end (which results in PXE minimizing the number of network round-trips).\npub(crate) unconstrained fn enqueue_event_for_validation(\n contract_address: AztecAddress,\n event_type_id: EventSelector,\n serialized_event: BoundedVec<Field, MAX_EVENT_SERIALIZED_LEN>,\n event_commitment: Field,\n tx_hash: Field,\n recipient: AztecAddress,\n) {\n // We store requests in a `CapsuleArray`, which PXE will later read from and deserialize into its version of the\n // Noir `EventValidationRequest`\n CapsuleArray::at(contract_address, EVENT_VALIDATION_REQUESTS_ARRAY_BASE_SLOT).push(\n EventValidationRequest {\n contract_address,\n event_type_id,\n serialized_event,\n event_commitment,\n tx_hash,\n recipient,\n },\n )\n}\n\n/// Validates all note and event validation requests enqueued via `enqueue_note_for_validation` and\n/// `enqueue_event_for_validation`, inserting them into the note database and event store respectively, making them\n/// queryable via `get_notes` oracle and our TS API (PXE::getPrivateEvents).\n///\n/// This automatically clears both validation request queues, so no further work needs to be done by the caller.\npub(crate) unconstrained fn validate_enqueued_notes_and_events(contract_address: AztecAddress) {\n oracle::message_processing::validate_enqueued_notes_and_events(\n contract_address,\n NOTE_VALIDATION_REQUESTS_ARRAY_BASE_SLOT,\n EVENT_VALIDATION_REQUESTS_ARRAY_BASE_SLOT,\n );\n}\n\n/// Efficiently queries the node for logs that result in the completion of all `DeliveredPendingPartialNote`s stored in\n/// a `CapsuleArray` by performing all node communication concurrently. Returns a second `CapsuleArray` with Options for\n/// the responses that correspond to the pending partial notes at the same index.\n///\n/// For example, given an array with pending partial notes `[ p1, p2, p3 ]`, where `p1` and `p3` have corresponding\n/// completion logs but `p2` does not, the returned `CapsuleArray` will have contents\n/// `[some(p1_log), none(), some(p3_log)]`.\npub(crate) unconstrained fn get_pending_partial_notes_completion_logs(\n contract_address: AztecAddress,\n pending_partial_notes: CapsuleArray<DeliveredPendingPartialNote>,\n) -> CapsuleArray<Option<LogRetrievalResponse>> {\n let log_retrieval_requests =\n CapsuleArray::at(contract_address, LOG_RETRIEVAL_REQUESTS_ARRAY_BASE_SLOT);\n\n // We create a LogRetrievalRequest for each PendingPartialNote in the CapsuleArray. Because we need the indices in\n // the request array to match the indices in the partial note array, we can't use CapsuleArray::for_each, as that\n // function has arbitrary iteration order. Instead, we manually iterate the array from the beginning and push into\n // the requests array, which we expect to be empty.\n let mut i = 0;\n let pending_partial_notes_count = pending_partial_notes.len();\n while i < pending_partial_notes_count {\n let pending_partial_note = pending_partial_notes.get(i);\n log_retrieval_requests.push(\n LogRetrievalRequest {\n contract_address,\n unsiloed_tag: pending_partial_note.note_completion_log_tag,\n },\n );\n i += 1;\n }\n\n oracle::message_processing::bulk_retrieve_logs(\n contract_address,\n LOG_RETRIEVAL_REQUESTS_ARRAY_BASE_SLOT,\n LOG_RETRIEVAL_RESPONSES_ARRAY_BASE_SLOT,\n );\n\n CapsuleArray::at(contract_address, LOG_RETRIEVAL_RESPONSES_ARRAY_BASE_SLOT)\n}\n"
6671
+ "source": "pub(crate) mod event_validation_request;\npub mod message_context;\npub(crate) mod note_validation_request;\npub(crate) mod log_retrieval_request;\npub(crate) mod log_retrieval_response;\npub(crate) mod pending_tagged_log;\n\nuse crate::{\n capsules::CapsuleArray,\n event::event_selector::EventSelector,\n messages::{\n discovery::partial_notes::DeliveredPendingPartialNote,\n logs::{event::MAX_EVENT_SERIALIZED_LEN, note::MAX_NOTE_PACKED_LEN},\n processing::{\n log_retrieval_request::LogRetrievalRequest,\n log_retrieval_response::LogRetrievalResponse,\n note_validation_request::NoteValidationRequest, pending_tagged_log::PendingTaggedLog,\n },\n },\n oracle,\n};\nuse event_validation_request::EventValidationRequest;\nuse protocol_types::{address::AztecAddress, hash::sha256_to_field};\n\n// Base slot for the pending tagged log array to which the fetch_tagged_logs oracle inserts found private logs.\nglobal PENDING_TAGGED_LOG_ARRAY_BASE_SLOT: Field =\n sha256_to_field(\"AZTEC_NR::PENDING_TAGGED_LOG_ARRAY_BASE_SLOT\".as_bytes());\n\nglobal NOTE_VALIDATION_REQUESTS_ARRAY_BASE_SLOT: Field = sha256_to_field(\n \"AZTEC_NR::NOTE_VALIDATION_REQUESTS_ARRAY_BASE_SLOT\".as_bytes(),\n);\n\nglobal EVENT_VALIDATION_REQUESTS_ARRAY_BASE_SLOT: Field = sha256_to_field(\n \"AZTEC_NR::EVENT_VALIDATION_REQUESTS_ARRAY_BASE_SLOT\".as_bytes(),\n);\n\nglobal LOG_RETRIEVAL_REQUESTS_ARRAY_BASE_SLOT: Field = sha256_to_field(\n \"AZTEC_NR::LOG_RETRIEVAL_REQUESTS_ARRAY_BASE_SLOT\".as_bytes(),\n);\n\nglobal LOG_RETRIEVAL_RESPONSES_ARRAY_BASE_SLOT: Field = sha256_to_field(\n \"AZTEC_NR::LOG_RETRIEVAL_RESPONSES_ARRAY_BASE_SLOT\".as_bytes(),\n);\n\n/// Searches for private logs emitted by `contract_address` that might contain messages for one of the local accounts,\n/// and stores them in a `CapsuleArray` which is then returned.\npub(crate) unconstrained fn get_private_logs(\n contract_address: AztecAddress,\n) -> CapsuleArray<PendingTaggedLog> {\n // We will eventually perform log discovery via tagging here, but for now we simply call the `fetchTaggedLogs`\n // oracle. This makes PXE synchronize tags, download logs and store the pending tagged logs in a capsule array.\n oracle::message_processing::fetch_tagged_logs(PENDING_TAGGED_LOG_ARRAY_BASE_SLOT);\n\n CapsuleArray::at(contract_address, PENDING_TAGGED_LOG_ARRAY_BASE_SLOT)\n}\n\n/// Enqueues a note for validation by PXE, so that it becomes aware of a note's existence allowing for later retrieval\n/// via `get_notes` oracle. The note will be scoped to `contract_address`, meaning other contracts will not be able to\n/// access it unless authorized.\n///\n/// In order for the note validation and insertion to occur, `validate_enqueued_notes_and_events` must be later called.\n/// For optimal performance, accumulate as many note validation requests as possible and then validate them all at the\n/// end (which results in PXE minimizing the number of network round-trips).\n///\n/// The `packed_note` is what `getNotes` will later return. PXE indexes notes by `storage_slot`, so this value\n/// is typically used to filter notes that correspond to different state variables. `note_hash` and `nullifier` are\n/// the inner hashes, i.e. the raw hashes returned by `NoteHash::compute_note_hash` and\n/// `NoteHash::compute_nullifier`. PXE will verify that the siloed unique note hash was inserted into the tree\n/// at `tx_hash`, and will store the nullifier to later check for nullification.\n///\n/// `owner` is the address used in note hash and nullifier computation, often requiring knowledge of their\n/// nullifier secret key.\n///\n/// `recipient` is the account to which the note message was delivered (i.e. the address the message was encrypted to).\n/// This determines which PXE account can see the note - other accounts will not be able to access it (e.g. other\n/// accounts will not be able to see one another's token balance notes, even in the same PXE) unless authorized. In most\n/// cases `recipient` equals `owner`, but they can differ in scenarios like delegated discovery.\npub(crate) unconstrained fn enqueue_note_for_validation(\n contract_address: AztecAddress,\n owner: AztecAddress,\n storage_slot: Field,\n randomness: Field,\n note_nonce: Field,\n packed_note: BoundedVec<Field, MAX_NOTE_PACKED_LEN>,\n note_hash: Field,\n nullifier: Field,\n tx_hash: Field,\n recipient: AztecAddress,\n) {\n // We store requests in a `CapsuleArray`, which PXE will later read from and deserialize into its version of the\n // Noir `NoteValidationRequest`\n CapsuleArray::at(contract_address, NOTE_VALIDATION_REQUESTS_ARRAY_BASE_SLOT).push(\n NoteValidationRequest {\n contract_address,\n owner,\n storage_slot,\n randomness,\n note_nonce,\n packed_note,\n note_hash,\n nullifier,\n tx_hash,\n recipient,\n },\n )\n}\n\n/// Enqueues an event for validation by PXE, so that it can be efficiently validated and then inserted into the event\n/// store.\n///\n/// In order for the event validation and insertion to occur, `validate_enqueued_notes_and_events` must be later\n/// called. For optimal performance, accumulate as many event validation requests as possible and then validate them\n/// all at the end (which results in PXE minimizing the number of network round-trips).\npub(crate) unconstrained fn enqueue_event_for_validation(\n contract_address: AztecAddress,\n event_type_id: EventSelector,\n randomness: Field,\n serialized_event: BoundedVec<Field, MAX_EVENT_SERIALIZED_LEN>,\n event_commitment: Field,\n tx_hash: Field,\n recipient: AztecAddress,\n) {\n // We store requests in a `CapsuleArray`, which PXE will later read from and deserialize into its version of the\n // Noir `EventValidationRequest`\n CapsuleArray::at(contract_address, EVENT_VALIDATION_REQUESTS_ARRAY_BASE_SLOT).push(\n EventValidationRequest {\n contract_address,\n event_type_id,\n randomness,\n serialized_event,\n event_commitment,\n tx_hash,\n recipient,\n },\n )\n}\n\n/// Validates all note and event validation requests enqueued via `enqueue_note_for_validation` and\n/// `enqueue_event_for_validation`, inserting them into the note database and event store respectively, making them\n/// queryable via `get_notes` oracle and our TS API (PXE::getPrivateEvents).\n///\n/// This automatically clears both validation request queues, so no further work needs to be done by the caller.\npub(crate) unconstrained fn validate_enqueued_notes_and_events(contract_address: AztecAddress) {\n oracle::message_processing::validate_enqueued_notes_and_events(\n contract_address,\n NOTE_VALIDATION_REQUESTS_ARRAY_BASE_SLOT,\n EVENT_VALIDATION_REQUESTS_ARRAY_BASE_SLOT,\n );\n}\n\n/// Efficiently queries the node for logs that result in the completion of all `DeliveredPendingPartialNote`s stored in\n/// a `CapsuleArray` by performing all node communication concurrently. Returns a second `CapsuleArray` with Options for\n/// the responses that correspond to the pending partial notes at the same index.\n///\n/// For example, given an array with pending partial notes `[ p1, p2, p3 ]`, where `p1` and `p3` have corresponding\n/// completion logs but `p2` does not, the returned `CapsuleArray` will have contents\n/// `[some(p1_log), none(), some(p3_log)]`.\npub(crate) unconstrained fn get_pending_partial_notes_completion_logs(\n contract_address: AztecAddress,\n pending_partial_notes: CapsuleArray<DeliveredPendingPartialNote>,\n) -> CapsuleArray<Option<LogRetrievalResponse>> {\n let log_retrieval_requests =\n CapsuleArray::at(contract_address, LOG_RETRIEVAL_REQUESTS_ARRAY_BASE_SLOT);\n\n // We create a LogRetrievalRequest for each PendingPartialNote in the CapsuleArray. Because we need the indices in\n // the request array to match the indices in the partial note array, we can't use CapsuleArray::for_each, as that\n // function has arbitrary iteration order. Instead, we manually iterate the array from the beginning and push into\n // the requests array, which we expect to be empty.\n let mut i = 0;\n let pending_partial_notes_count = pending_partial_notes.len();\n while i < pending_partial_notes_count {\n let pending_partial_note = pending_partial_notes.get(i);\n log_retrieval_requests.push(\n LogRetrievalRequest {\n contract_address,\n unsiloed_tag: pending_partial_note.note_completion_log_tag,\n },\n );\n i += 1;\n }\n\n oracle::message_processing::bulk_retrieve_logs(\n contract_address,\n LOG_RETRIEVAL_REQUESTS_ARRAY_BASE_SLOT,\n LOG_RETRIEVAL_RESPONSES_ARRAY_BASE_SLOT,\n );\n\n CapsuleArray::at(contract_address, LOG_RETRIEVAL_RESPONSES_ARRAY_BASE_SLOT)\n}\n"
6668
6672
  },
6669
6673
  "156": {
6670
6674
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/note/lifecycle.nr",
@@ -6680,7 +6684,7 @@
6680
6684
  },
6681
6685
  "162": {
6682
6686
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/note/note_message.nr",
6683
- "source": "use crate::{\n context::PrivateContext,\n messages::{\n encryption::{aes128::AES128, message_encryption::MessageEncryption},\n logs::{note::encode_private_note_message, utils::prefix_with_tag},\n message_delivery::MessageDelivery,\n offchain_messages::deliver_offchain_message,\n },\n note::{lifecycle::NewNote, note_interface::NoteType},\n utils::remove_constraints::remove_constraints_if,\n};\nuse protocol_types::{address::AztecAddress, traits::Packable};\n\n/// A message with information about a note that was created in the current contract call. This message **MUST** be\n/// delivered to a recipient in order to not lose the private note information.\n///\n/// Use [NoteMessage::deliver] to select a delivery mechanism. The same message can be delivered to multiple\n/// recipients.\n#[must_use = \"Unused NoteMessage result - use the `deliver` function to prevent the note information from being lost forever\"]\npub struct NoteMessage<Note> {\n pub(crate) new_note: NewNote<Note>,\n\n // NoteMessage is constructed when a note is created, which means that the `context` object will be in scope. By\n // storing a reference to it inside this object we remove the need for its methods to receive it, resulting in a\n // cleaner end-user API.\n context: &mut PrivateContext,\n}\n\nimpl<Note> NoteMessage<Note>\nwhere\n Note: NoteType + Packable,\n{\n pub fn new(new_note: NewNote<Note>, context: &mut PrivateContext) -> Self {\n Self { new_note, context }\n }\n\n /// Delivers the note message to its owner, providing them access to the private note information.\n ///\n /// The message is first encrypted to the owner's public key, ensuring no other actor can read it.\n ///\n /// The `delivery_mode` must be one of [crate::messages::message_delivery::MessageDeliveryEnum], and will inform\n /// costs (both proving time and TX fees) as well as delivery guarantees. This value must be a compile-time\n /// constant.\n ///\n /// To deliver the message to a recipient that is not the note's owner, use [NoteMessage::deliver_to] instead.\n ///\n /// # Invalid Recipients\n ///\n /// If the note's owner is an invalid address, then a random public key is selected and message delivery continues\n /// as normal. This prevents both 'king of the hill' attacks (where a sender would otherwise fail to deliver a note\n /// to an invalid recipient) and forced privacy leaks (where an invalid recipient results in a unique transaction\n /// fingerprint, e.g. one lacking the private logs that would correspond to message delivery).\n pub fn deliver(self, delivery_mode: u8) {\n self.deliver_to(self.new_note.owner, delivery_mode);\n }\n\n /// Same as [NoteMessage::deliver], except the message gets delivered to an arbitrary `recipient` instead of the\n /// note owner.\n ///\n /// Note that `recipient` getting the message does not let them **use** the note, it only means that thy will know\n /// about it, including the transaction in which it was created, and prove it exists. They will also not be able to\n /// know when or if the note is used (i.e. nullified), assuming the standard note nullifier function.\n ///\n /// # Use Cases\n ///\n /// This feature enables many design patterns that diverge in how notes are traditionally handled. For example,\n /// an institutional contract may require to have some actor receive all notes created for compliance purposes. Or a\n /// low value application like a game might deliver all notes offchain to a centralized server that then serves them\n /// via the app, bypassing the need for contract sync and improving UX.\n pub fn deliver_to(self, recipient: AztecAddress, delivery_mode: u8) {\n // This function relies on `delivery_mode` being a constant in order to reduce circuit constraints when\n // unconstrained usage is requested. If `delivery_mode` were a runtime value the compiler would be unable to\n // perform dead-code elimination.\n assert_constant(delivery_mode);\n\n // The following maps out the 3 dimensions across which we configure message delivery.\n let constrained_encryption = delivery_mode == MessageDelivery.ONCHAIN_CONSTRAINED;\n let deliver_as_offchain_message = delivery_mode == MessageDelivery.OFFCHAIN;\n // TODO(#14565): Add constrained tagging\n let _constrained_tagging = delivery_mode == MessageDelivery.ONCHAIN_CONSTRAINED;\n\n // Technical note: we're about to call a closure that needs access to `new_note`, but we can't pass `self` to it\n // because the closure might execute in unconstrained mode, and since `self` contains a mutable reference to\n // `context` this would cause for a mutable reference to cross the constrained-unconstrained barrier, which is\n // not allowed. As a workaround, we create a variable without the context and capture that instead.\n let new_note = self.new_note;\n\n let ciphertext = remove_constraints_if(\n !constrained_encryption,\n || AES128::encrypt(\n encode_private_note_message(\n new_note.note,\n new_note.owner,\n new_note.storage_slot,\n new_note.randomness,\n ),\n recipient,\n ),\n );\n\n if deliver_as_offchain_message {\n deliver_offchain_message(ciphertext, recipient);\n } else {\n // Onchain messages are delivered via private logs, which must be prefixed with a tag such that the\n // recipient will know to fetch and decrypt them.\n\n // Safety: Currently unsafe. See description of ONCHAIN_CONSTRAINED in messages::MessageDeliveryEnum.\n // TODO(#14565): Implement proper constrained tag prefixing to make this truly ONCHAIN_CONSTRAINED\n let log_content = prefix_with_tag(ciphertext, recipient);\n\n // We associate the log with the new note's side effect counter, so that if the note ends up being squashed\n // in the current transaction, the log will be removed as well.\n //\n // Note that the log always has the same length regardless of the [Note] type, because all\n // message ciphertexts also have the same length. This prevents accidental privacy leakage via the log length.\n self.context.emit_raw_note_log(\n log_content,\n log_content.len(),\n new_note.note_hash_counter,\n );\n }\n }\n\n /// Returns the note contained in the message.\n pub fn get_note(self) -> Note {\n self.new_note.note\n }\n\n /// Returns the [NewNote] container in the message.\n ///\n /// This is an advanced function, typically needed only when creating new kinds of state variables that need to\n /// create [MaybeNoteMessage] values.\n pub fn get_new_note(self) -> NewNote<Note> {\n self.new_note\n }\n}\n\n/// Same as [NoteMessage], except this type also handles the possibility where the note may not have been actually\n/// created depending on runtime conditions (e.g. a token transfer change note is not created if there is no change).\n/// Other than that, it and [MaybeNoteMessage::delivery] behave the exact same way as [NoteMessage].\n#[must_use = \"Unused NoteMessage result - use the `deliver` function to prevent the note information from being lost forever\"]\npub struct MaybeNoteMessage<Note> {\n // We can't simply create an `Option` of `NoteMessage` because that type includes a mutable reference to the\n // `context`. All `Option` methods (map, or, etc.) have if-else expressions in which they might return the contents,\n // and conditionally returning mutable references is disallowed by Noir. Hence, we create this type which only holds\n // `NewNote` in the `Option`, keeping the `context` out.\n maybe_new_note: Option<NewNote<Note>>,\n\n // MaybeNoteMessage is expected to be constructed when a note is created, which means that the `context` object\n // will be in scope. By storing a reference to it inside this object we remove the need for its methods to receive\n // it, resulting in a cleaner end-user API.\n context: &mut PrivateContext,\n}\n\nimpl<Note> MaybeNoteMessage<Note>\nwhere\n Note: NoteType + Packable,\n{\n pub fn new(maybe_new_note: Option<NewNote<Note>>, context: &mut PrivateContext) -> Self {\n Self { maybe_new_note, context }\n }\n\n /// Same as [NoteMessage::deliver], except the message will only be delivered if it actually exists.\n ///\n /// Messages delivered using [crate::messages::message_delivery::MessageDeliveryEnum::ONCHAIN_CONSTRAINED] will pay\n /// proving costs regardless of whether the message exists or not.\n pub fn deliver(self, delivery_mode: u8) {\n if self.maybe_new_note.is_some() {\n NoteMessage::new(self.maybe_new_note.unwrap_unchecked(), self.context).deliver(\n delivery_mode,\n );\n }\n }\n\n /// Same as [NoteMessage::deliver_to], except the message will only be delivered if it actually exists.\n ///\n /// Messages delivered using [crate::messages::message_delivery::MessageDeliveryEnum::ONCHAIN_CONSTRAINED] will pay\n /// proving costs regardless of whether the message exists or not.\n pub fn deliver_to(self, recipient: AztecAddress, delivery_mode: u8) {\n if self.maybe_new_note.is_some() {\n NoteMessage::new(self.maybe_new_note.unwrap_unchecked(), self.context).deliver_to(\n recipient,\n delivery_mode,\n );\n }\n }\n\n /// Returns the note contained in the message.\n pub fn get_note(self) -> Option<Note> {\n self.maybe_new_note.map(|new_note| new_note.note)\n }\n}\n"
6687
+ "source": "use crate::{\n context::PrivateContext,\n messages::{\n logs::note::encode_private_note_message, message_delivery::do_private_message_delivery,\n },\n note::{lifecycle::NewNote, note_interface::NoteType},\n};\nuse protocol_types::{address::AztecAddress, traits::Packable};\n\n/// A message with information about a note that was created in the current contract call. This message **MUST** be\n/// delivered to a recipient in order to not lose the private note information.\n///\n/// Use [NoteMessage::deliver] to select a delivery mechanism. The same message can be delivered to multiple\n/// recipients.\n#[must_use = \"Unused NoteMessage result - use the `deliver` function to prevent the note information from being lost forever\"]\npub struct NoteMessage<Note> {\n pub(crate) new_note: NewNote<Note>,\n\n // NoteMessage is constructed when a note is created, which means that the `context` object will be in scope. By\n // storing a reference to it inside this object we remove the need for its methods to receive it, resulting in a\n // cleaner end-user API.\n context: &mut PrivateContext,\n}\n\nimpl<Note> NoteMessage<Note>\nwhere\n Note: NoteType + Packable,\n{\n pub fn new(new_note: NewNote<Note>, context: &mut PrivateContext) -> Self {\n Self { new_note, context }\n }\n\n /// Delivers the note message to its owner, providing them access to the private note information.\n ///\n /// The message is first encrypted to the owner's public key, ensuring no other actor can read it.\n ///\n /// The `delivery_mode` must be one of [crate::messages::message_delivery::MessageDeliveryEnum], and will inform\n /// costs (both proving time and TX fees) as well as delivery guarantees. This value must be a compile-time\n /// constant.\n ///\n /// To deliver the message to a recipient that is not the note's owner, use [NoteMessage::deliver_to] instead.\n ///\n /// # Invalid Recipients\n ///\n /// If the note's owner is an invalid address, then a random public key is selected and message delivery continues\n /// as normal. This prevents both 'king of the hill' attacks (where a sender would otherwise fail to deliver a note\n /// to an invalid recipient) and forced privacy leaks (where an invalid recipient results in a unique transaction\n /// fingerprint, e.g. one lacking the private logs that would correspond to message delivery).\n pub fn deliver(self, delivery_mode: u8) {\n self.deliver_to(self.new_note.owner, delivery_mode);\n }\n\n /// Same as [NoteMessage::deliver], except the message gets delivered to an arbitrary `recipient` instead of the\n /// note owner.\n ///\n /// Note that `recipient` getting the message does not let them **use** the note, it only means that thy will know\n /// about it, including the transaction in which it was created, and prove it exists. They will also not be able to\n /// know when or if the note is used (i.e. nullified), assuming the standard note nullifier function.\n ///\n /// # Use Cases\n ///\n /// This feature enables many design patterns that diverge in how notes are traditionally handled. For example,\n /// an institutional contract may require to have some actor receive all notes created for compliance purposes. Or a\n /// low value application like a game might deliver all notes offchain to a centralized server that then serves them\n /// via the app, bypassing the need for contract sync and improving UX.\n pub fn deliver_to(self, recipient: AztecAddress, delivery_mode: u8) {\n // Technical note: we're about to call a closure that needs access to `new_note`, but we can't pass `self` to it\n // because the closure might execute in unconstrained mode, and since `self` contains a mutable reference to\n // `context` this would cause for a mutable reference to cross the constrained-unconstrained barrier, which is\n // not allowed. As a workaround, we create a variable without the context and capture that instead.\n let new_note = self.new_note;\n\n do_private_message_delivery(\n self.context,\n || encode_private_note_message(\n new_note.note,\n new_note.owner,\n new_note.storage_slot,\n new_note.randomness,\n ),\n Option::some(self.new_note.note_hash_counter),\n recipient,\n delivery_mode,\n );\n }\n\n /// Returns the note contained in the message.\n pub fn get_note(self) -> Note {\n self.new_note.note\n }\n\n /// Returns the [NewNote] container in the message.\n ///\n /// This is an advanced function, typically needed only when creating new kinds of state variables that need to\n /// create [MaybeNoteMessage] values.\n pub fn get_new_note(self) -> NewNote<Note> {\n self.new_note\n }\n}\n\n/// Same as [NoteMessage], except this type also handles the possibility where the note may not have been actually\n/// created depending on runtime conditions (e.g. a token transfer change note is not created if there is no change).\n/// Other than that, it and [MaybeNoteMessage::delivery] behave the exact same way as [NoteMessage].\n#[must_use = \"Unused NoteMessage result - use the `deliver` function to prevent the note information from being lost forever\"]\npub struct MaybeNoteMessage<Note> {\n // We can't simply create an `Option` of `NoteMessage` because that type includes a mutable reference to the\n // `context`. All `Option` methods (map, or, etc.) have if-else expressions in which they might return the contents,\n // and conditionally returning mutable references is disallowed by Noir. Hence, we create this type which only holds\n // `NewNote` in the `Option`, keeping the `context` out.\n maybe_new_note: Option<NewNote<Note>>,\n\n // MaybeNoteMessage is expected to be constructed when a note is created, which means that the `context` object\n // will be in scope. By storing a reference to it inside this object we remove the need for its methods to receive\n // it, resulting in a cleaner end-user API.\n context: &mut PrivateContext,\n}\n\nimpl<Note> MaybeNoteMessage<Note>\nwhere\n Note: NoteType + Packable,\n{\n pub fn new(maybe_new_note: Option<NewNote<Note>>, context: &mut PrivateContext) -> Self {\n Self { maybe_new_note, context }\n }\n\n /// Same as [NoteMessage::deliver], except the message will only be delivered if it actually exists.\n ///\n /// Messages delivered using [crate::messages::message_delivery::MessageDeliveryEnum::ONCHAIN_CONSTRAINED] will pay\n /// proving costs regardless of whether the message exists or not.\n pub fn deliver(self, delivery_mode: u8) {\n if self.maybe_new_note.is_some() {\n NoteMessage::new(self.maybe_new_note.unwrap_unchecked(), self.context).deliver(\n delivery_mode,\n );\n }\n }\n\n /// Same as [NoteMessage::deliver_to], except the message will only be delivered if it actually exists.\n ///\n /// Messages delivered using [crate::messages::message_delivery::MessageDeliveryEnum::ONCHAIN_CONSTRAINED] will pay\n /// proving costs regardless of whether the message exists or not.\n pub fn deliver_to(self, recipient: AztecAddress, delivery_mode: u8) {\n if self.maybe_new_note.is_some() {\n NoteMessage::new(self.maybe_new_note.unwrap_unchecked(), self.context).deliver_to(\n recipient,\n delivery_mode,\n );\n }\n }\n\n /// Returns the note contained in the message.\n pub fn get_note(self) -> Option<Note> {\n self.maybe_new_note.map(|new_note| new_note.note)\n }\n}\n"
6684
6688
  },
6685
6689
  "163": {
6686
6690
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/note/note_metadata.nr",
@@ -6804,7 +6808,7 @@
6804
6808
  },
6805
6809
  "3": {
6806
6810
  "path": "std/array/mod.nr",
6807
- "source": "use crate::cmp::{Eq, Ord};\nuse crate::convert::From;\nuse crate::runtime::is_unconstrained;\n\nmod check_shuffle;\nmod quicksort;\n\nimpl<T, let N: u32> [T; N] {\n /// Returns the length of this array.\n ///\n /// ```noir\n /// fn len(self) -> Field\n /// ```\n ///\n /// example\n ///\n /// ```noir\n /// fn main() {\n /// let array = [42, 42];\n /// assert(array.len() == 2);\n /// }\n /// ```\n #[builtin(array_len)]\n pub fn len(self) -> u32 {}\n\n /// Returns this array as a vector.\n ///\n /// ```noir\n /// let array = [1, 2];\n /// let vector = array.as_vector();\n /// assert_eq(vector, &[1, 2]);\n /// ```\n #[builtin(as_vector)]\n pub fn as_vector(self) -> [T] {}\n\n /// Returns this array as a vector.\n /// This method is deprecated in favor of `as_vector`.\n ///\n /// ```noir\n /// let array = [1, 2];\n /// let vector = array.as_slice();\n /// assert_eq(vector, &[1, 2]);\n /// ```\n #[builtin(as_vector)]\n #[deprecated(\"This method has been renamed to `as_vector`\")]\n pub fn as_slice(self) -> [T] {}\n\n /// Applies a function to each element of this array, returning a new array containing the mapped elements.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let b = a.map(|a| a * 2);\n /// assert_eq(b, [2, 4, 6]);\n /// ```\n pub fn map<U, Env>(self, f: fn[Env](T) -> U) -> [U; N] {\n let uninitialized = crate::mem::zeroed();\n let mut ret = [uninitialized; N];\n\n for i in 0..self.len() {\n ret[i] = f(self[i]);\n }\n\n ret\n }\n\n /// Applies a function to each element of this array along with its index,\n /// returning a new array containing the mapped elements.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let b = a.mapi(|i, a| i + a * 2);\n /// assert_eq(b, [2, 5, 8]);\n /// ```\n pub fn mapi<U, Env>(self, f: fn[Env](u32, T) -> U) -> [U; N] {\n let uninitialized = crate::mem::zeroed();\n let mut ret = [uninitialized; N];\n\n for i in 0..self.len() {\n ret[i] = f(i, self[i]);\n }\n\n ret\n }\n\n /// Applies a function to each element of this array.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let mut b = [0; 3];\n /// let mut i = 0;\n /// a.for_each(|x| {\n /// b[i] = x;\n /// i += 1;\n /// });\n /// assert_eq(a, b);\n /// ```\n pub fn for_each<Env>(self, f: fn[Env](T) -> ()) {\n for i in 0..self.len() {\n f(self[i]);\n }\n }\n\n /// Applies a function to each element of this array along with its index.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let mut b = [0; 3];\n /// a.for_eachi(|i, x| {\n /// b[i] = x;\n /// });\n /// assert_eq(a, b);\n /// ```\n pub fn for_eachi<Env>(self, f: fn[Env](u32, T) -> ()) {\n for i in 0..self.len() {\n f(i, self[i]);\n }\n }\n\n /// Applies a function to each element of the array, returning the final accumulated value. The first\n /// parameter is the initial value.\n ///\n /// This is a left fold, so the given function will be applied to the accumulator and first element of\n /// the array, then the second, and so on. For a given call the expected result would be equivalent to:\n ///\n /// ```rust\n /// let a1 = [1];\n /// let a2 = [1, 2];\n /// let a3 = [1, 2, 3];\n ///\n /// let f = |a, b| a - b;\n /// a1.fold(10, f); //=> f(10, 1)\n /// a2.fold(10, f); //=> f(f(10, 1), 2)\n /// a3.fold(10, f); //=> f(f(f(10, 1), 2), 3)\n ///\n /// assert_eq(a3.fold(10, f), 10 - 1 - 2 - 3);\n /// ```\n pub fn fold<U, Env>(self, mut accumulator: U, f: fn[Env](U, T) -> U) -> U {\n for elem in self {\n accumulator = f(accumulator, elem);\n }\n accumulator\n }\n\n /// Same as fold, but uses the first element as the starting element.\n ///\n /// Requires the input array to be non-empty.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr = [1, 2, 3, 4];\n /// let reduced = arr.reduce(|a, b| a + b);\n /// assert(reduced == 10);\n /// }\n /// ```\n pub fn reduce<Env>(self, f: fn[Env](T, T) -> T) -> T {\n let mut accumulator = self[0];\n for i in 1..self.len() {\n accumulator = f(accumulator, self[i]);\n }\n accumulator\n }\n\n /// Returns true if all the elements in this array satisfy the given predicate.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr = [2, 2, 2, 2, 2];\n /// let all = arr.all(|a| a == 2);\n /// assert(all);\n /// }\n /// ```\n pub fn all<Env>(self, predicate: fn[Env](T) -> bool) -> bool {\n let mut ret = true;\n for elem in self {\n ret &= predicate(elem);\n }\n ret\n }\n\n /// Returns true if any of the elements in this array satisfy the given predicate.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr = [2, 2, 2, 2, 5];\n /// let any = arr.any(|a| a == 5);\n /// assert(any);\n /// }\n /// ```\n pub fn any<Env>(self, predicate: fn[Env](T) -> bool) -> bool {\n let mut ret = false;\n for elem in self {\n ret |= predicate(elem);\n }\n ret\n }\n\n /// Concatenates this array with another array.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr1 = [1, 2, 3, 4];\n /// let arr2 = [6, 7, 8, 9, 10, 11];\n /// let concatenated_arr = arr1.concat(arr2);\n /// assert(concatenated_arr == [1, 2, 3, 4, 6, 7, 8, 9, 10, 11]);\n /// }\n /// ```\n pub fn concat<let M: u32>(self, array2: [T; M]) -> [T; N + M] {\n let mut result = [crate::mem::zeroed(); N + M];\n for i in 0..N {\n result[i] = self[i];\n }\n for i in 0..M {\n result[i + N] = array2[i];\n }\n result\n }\n}\n\nimpl<T, let N: u32> [T; N]\nwhere\n T: Ord + Eq,\n{\n /// Returns a new sorted array. The original array remains untouched. Notice that this function will\n /// only work for arrays of fields or integers, not for any arbitrary type. This is because the sorting\n /// logic it uses internally is optimized specifically for these values. If you need a sort function to\n /// sort any type, you should use the [`Self::sort_via`] function.\n ///\n /// Example:\n ///\n /// ```rust\n /// fn main() {\n /// let arr = [42, 32];\n /// let sorted = arr.sort();\n /// assert(sorted == [32, 42]);\n /// }\n /// ```\n pub fn sort(self) -> Self {\n self.sort_via(|a, b| a <= b)\n }\n}\n\nimpl<T, let N: u32> [T; N]\nwhere\n T: Eq,\n{\n /// Returns a new sorted array by sorting it with a custom comparison function.\n /// The original array remains untouched.\n /// The ordering function must return true if the first argument should be sorted to be before the second argument or is equal to the second argument.\n ///\n /// Using this method with an operator like `<` that does not return `true` for equal values will result in an assertion failure for arrays with equal elements.\n ///\n /// Example:\n ///\n /// ```rust\n /// fn main() {\n /// let arr = [42, 32]\n /// let sorted_ascending = arr.sort_via(|a, b| a <= b);\n /// assert(sorted_ascending == [32, 42]); // verifies\n ///\n /// let sorted_descending = arr.sort_via(|a, b| a >= b);\n /// assert(sorted_descending == [32, 42]); // does not verify\n /// }\n /// ```\n pub fn sort_via<Env>(self, ordering: fn[Env](T, T) -> bool) -> Self {\n // Safety: `sorted` array is checked to be:\n // a. a permutation of `input`'s elements\n // b. satisfying the predicate `ordering`\n let sorted = unsafe { quicksort::quicksort(self, ordering) };\n\n if !is_unconstrained() {\n for i in 0..N - 1 {\n assert(\n ordering(sorted[i], sorted[i + 1]),\n \"Array has not been sorted correctly according to `ordering`.\",\n );\n }\n check_shuffle::check_shuffle(self, sorted);\n }\n sorted\n }\n}\n\nimpl<let N: u32> [u8; N] {\n /// Converts a byte array of type `[u8; N]` to a string. Note that this performs no UTF-8 validation -\n /// the given array is interpreted as-is as a string.\n ///\n /// Example:\n ///\n /// ```rust\n /// fn main() {\n /// let hi = [104, 105].as_str_unchecked();\n /// assert_eq(hi, \"hi\");\n /// }\n /// ```\n #[builtin(array_as_str_unchecked)]\n pub fn as_str_unchecked(self) -> str<N> {}\n}\n\nimpl<let N: u32> From<str<N>> for [u8; N] {\n /// Returns an array of the string bytes.\n fn from(s: str<N>) -> Self {\n s.as_bytes()\n }\n}\n\nmod test {\n #[test]\n fn map_empty() {\n assert_eq([].map(|x| x + 1), []);\n }\n\n global arr_with_100_values: [u32; 100] = [\n 42, 123, 87, 93, 48, 80, 50, 5, 104, 84, 70, 47, 119, 66, 71, 121, 3, 29, 42, 118, 2, 54,\n 89, 44, 81, 0, 26, 106, 68, 96, 84, 48, 95, 54, 45, 32, 89, 100, 109, 19, 37, 41, 19, 98,\n 53, 114, 107, 66, 6, 74, 13, 19, 105, 64, 123, 28, 44, 50, 89, 58, 123, 126, 21, 43, 86, 35,\n 21, 62, 82, 0, 108, 120, 72, 72, 62, 80, 12, 71, 70, 86, 116, 73, 38, 15, 127, 81, 30, 8,\n 125, 28, 26, 69, 114, 63, 27, 28, 61, 42, 13, 32,\n ];\n global expected_with_100_values: [u32; 100] = [\n 0, 0, 2, 3, 5, 6, 8, 12, 13, 13, 15, 19, 19, 19, 21, 21, 26, 26, 27, 28, 28, 28, 29, 30, 32,\n 32, 35, 37, 38, 41, 42, 42, 42, 43, 44, 44, 45, 47, 48, 48, 50, 50, 53, 54, 54, 58, 61, 62,\n 62, 63, 64, 66, 66, 68, 69, 70, 70, 71, 71, 72, 72, 73, 74, 80, 80, 81, 81, 82, 84, 84, 86,\n 86, 87, 89, 89, 89, 93, 95, 96, 98, 100, 104, 105, 106, 107, 108, 109, 114, 114, 116, 118,\n 119, 120, 121, 123, 123, 123, 125, 126, 127,\n ];\n fn sort_u32(a: u32, b: u32) -> bool {\n a <= b\n }\n\n #[test]\n fn test_sort() {\n let mut arr: [u32; 7] = [3, 6, 8, 10, 1, 2, 1];\n\n let sorted = arr.sort();\n\n let expected: [u32; 7] = [1, 1, 2, 3, 6, 8, 10];\n assert(sorted == expected);\n }\n\n #[test]\n fn test_sort_100_values() {\n let mut arr: [u32; 100] = [\n 42, 123, 87, 93, 48, 80, 50, 5, 104, 84, 70, 47, 119, 66, 71, 121, 3, 29, 42, 118, 2,\n 54, 89, 44, 81, 0, 26, 106, 68, 96, 84, 48, 95, 54, 45, 32, 89, 100, 109, 19, 37, 41,\n 19, 98, 53, 114, 107, 66, 6, 74, 13, 19, 105, 64, 123, 28, 44, 50, 89, 58, 123, 126, 21,\n 43, 86, 35, 21, 62, 82, 0, 108, 120, 72, 72, 62, 80, 12, 71, 70, 86, 116, 73, 38, 15,\n 127, 81, 30, 8, 125, 28, 26, 69, 114, 63, 27, 28, 61, 42, 13, 32,\n ];\n\n let sorted = arr.sort();\n\n let expected: [u32; 100] = [\n 0, 0, 2, 3, 5, 6, 8, 12, 13, 13, 15, 19, 19, 19, 21, 21, 26, 26, 27, 28, 28, 28, 29, 30,\n 32, 32, 35, 37, 38, 41, 42, 42, 42, 43, 44, 44, 45, 47, 48, 48, 50, 50, 53, 54, 54, 58,\n 61, 62, 62, 63, 64, 66, 66, 68, 69, 70, 70, 71, 71, 72, 72, 73, 74, 80, 80, 81, 81, 82,\n 84, 84, 86, 86, 87, 89, 89, 89, 93, 95, 96, 98, 100, 104, 105, 106, 107, 108, 109, 114,\n 114, 116, 118, 119, 120, 121, 123, 123, 123, 125, 126, 127,\n ];\n assert(sorted == expected);\n }\n\n #[test]\n fn test_sort_100_values_comptime() {\n let sorted = arr_with_100_values.sort();\n assert(sorted == expected_with_100_values);\n }\n\n #[test]\n fn test_sort_via() {\n let mut arr: [u32; 7] = [3, 6, 8, 10, 1, 2, 1];\n\n let sorted = arr.sort_via(sort_u32);\n\n let expected: [u32; 7] = [1, 1, 2, 3, 6, 8, 10];\n assert(sorted == expected);\n }\n\n #[test]\n fn test_sort_via_100_values() {\n let mut arr: [u32; 100] = [\n 42, 123, 87, 93, 48, 80, 50, 5, 104, 84, 70, 47, 119, 66, 71, 121, 3, 29, 42, 118, 2,\n 54, 89, 44, 81, 0, 26, 106, 68, 96, 84, 48, 95, 54, 45, 32, 89, 100, 109, 19, 37, 41,\n 19, 98, 53, 114, 107, 66, 6, 74, 13, 19, 105, 64, 123, 28, 44, 50, 89, 58, 123, 126, 21,\n 43, 86, 35, 21, 62, 82, 0, 108, 120, 72, 72, 62, 80, 12, 71, 70, 86, 116, 73, 38, 15,\n 127, 81, 30, 8, 125, 28, 26, 69, 114, 63, 27, 28, 61, 42, 13, 32,\n ];\n\n let sorted = arr.sort_via(sort_u32);\n\n let expected: [u32; 100] = [\n 0, 0, 2, 3, 5, 6, 8, 12, 13, 13, 15, 19, 19, 19, 21, 21, 26, 26, 27, 28, 28, 28, 29, 30,\n 32, 32, 35, 37, 38, 41, 42, 42, 42, 43, 44, 44, 45, 47, 48, 48, 50, 50, 53, 54, 54, 58,\n 61, 62, 62, 63, 64, 66, 66, 68, 69, 70, 70, 71, 71, 72, 72, 73, 74, 80, 80, 81, 81, 82,\n 84, 84, 86, 86, 87, 89, 89, 89, 93, 95, 96, 98, 100, 104, 105, 106, 107, 108, 109, 114,\n 114, 116, 118, 119, 120, 121, 123, 123, 123, 125, 126, 127,\n ];\n assert(sorted == expected);\n }\n\n #[test]\n fn mapi_empty() {\n assert_eq([].mapi(|i, x| i * x + 1), []);\n }\n\n #[test]\n fn for_each_empty() {\n let empty_array: [Field; 0] = [];\n empty_array.for_each(|_x| assert(false));\n }\n\n #[test]\n fn for_eachi_empty() {\n let empty_array: [Field; 0] = [];\n empty_array.for_eachi(|_i, _x| assert(false));\n }\n\n #[test]\n fn map_example() {\n let a = [1, 2, 3];\n let b = a.map(|a| a * 2);\n assert_eq(b, [2, 4, 6]);\n }\n\n #[test]\n fn mapi_example() {\n let a = [1, 2, 3];\n let b = a.mapi(|i, a| i + a * 2);\n assert_eq(b, [2, 5, 8]);\n }\n\n #[test]\n fn for_each_example() {\n let a = [1, 2, 3];\n let mut b = [0, 0, 0];\n let b_ref = &mut b;\n let mut i = 0;\n let i_ref = &mut i;\n a.for_each(|x| {\n b_ref[*i_ref] = x * 2;\n *i_ref += 1;\n });\n assert_eq(b, [2, 4, 6]);\n assert_eq(i, 3);\n }\n\n #[test]\n fn for_eachi_example() {\n let a = [1, 2, 3];\n let mut b = [0, 0, 0];\n let b_ref = &mut b;\n a.for_eachi(|i, a| { b_ref[i] = i + a * 2; });\n assert_eq(b, [2, 5, 8]);\n }\n\n #[test]\n fn concat() {\n let arr1 = [1, 2, 3, 4];\n let arr2 = [6, 7, 8, 9, 10, 11];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, [1, 2, 3, 4, 6, 7, 8, 9, 10, 11]);\n }\n\n #[test]\n fn concat_zero_length_with_something() {\n let arr1 = [];\n let arr2 = [1];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, [1]);\n }\n\n #[test]\n fn concat_something_with_zero_length() {\n let arr1 = [1];\n let arr2 = [];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, [1]);\n }\n\n #[test]\n fn concat_zero_lengths() {\n let arr1: [Field; 0] = [];\n let arr2: [Field; 0] = [];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, []);\n }\n}\n"
6811
+ "source": "use crate::cmp::{Eq, Ord};\nuse crate::convert::From;\nuse crate::runtime::is_unconstrained;\n\nmod check_shuffle;\nmod quicksort;\n\nimpl<T, let N: u32> [T; N] {\n /// Returns the length of this array.\n ///\n /// ```noir\n /// fn len(self) -> Field\n /// ```\n ///\n /// example\n ///\n /// ```noir\n /// fn main() {\n /// let array = [42, 42];\n /// assert(array.len() == 2);\n /// }\n /// ```\n #[builtin(array_len)]\n pub fn len(self) -> u32 {}\n\n /// Returns this array as a vector.\n ///\n /// ```noir\n /// let array = [1, 2];\n /// let vector = array.as_vector();\n /// assert_eq(vector, [1, 2].as_vector());\n /// ```\n #[builtin(as_vector)]\n pub fn as_vector(self) -> [T] {}\n\n /// Returns this array as a vector.\n /// This method is deprecated in favor of `as_vector`.\n ///\n /// ```noir\n /// let array = [1, 2];\n /// let vector = array.as_slice();\n /// assert_eq(vector, [1, 2].as_vector());\n /// ```\n #[builtin(as_vector)]\n #[deprecated(\"This method has been renamed to `as_vector`\")]\n pub fn as_slice(self) -> [T] {}\n\n /// Applies a function to each element of this array, returning a new array containing the mapped elements.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let b = a.map(|a| a * 2);\n /// assert_eq(b, [2, 4, 6]);\n /// ```\n pub fn map<U, Env>(self, f: fn[Env](T) -> U) -> [U; N] {\n let uninitialized = crate::mem::zeroed();\n let mut ret = [uninitialized; N];\n\n for i in 0..self.len() {\n ret[i] = f(self[i]);\n }\n\n ret\n }\n\n /// Applies a function to each element of this array along with its index,\n /// returning a new array containing the mapped elements.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let b = a.mapi(|i, a| i + a * 2);\n /// assert_eq(b, [2, 5, 8]);\n /// ```\n pub fn mapi<U, Env>(self, f: fn[Env](u32, T) -> U) -> [U; N] {\n let uninitialized = crate::mem::zeroed();\n let mut ret = [uninitialized; N];\n\n for i in 0..self.len() {\n ret[i] = f(i, self[i]);\n }\n\n ret\n }\n\n /// Applies a function to each element of this array.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let mut b = [0; 3];\n /// let mut i = 0;\n /// a.for_each(|x| {\n /// b[i] = x;\n /// i += 1;\n /// });\n /// assert_eq(a, b);\n /// ```\n pub fn for_each<Env>(self, f: fn[Env](T) -> ()) {\n for i in 0..self.len() {\n f(self[i]);\n }\n }\n\n /// Applies a function to each element of this array along with its index.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let mut b = [0; 3];\n /// a.for_eachi(|i, x| {\n /// b[i] = x;\n /// });\n /// assert_eq(a, b);\n /// ```\n pub fn for_eachi<Env>(self, f: fn[Env](u32, T) -> ()) {\n for i in 0..self.len() {\n f(i, self[i]);\n }\n }\n\n /// Applies a function to each element of the array, returning the final accumulated value. The first\n /// parameter is the initial value.\n ///\n /// This is a left fold, so the given function will be applied to the accumulator and first element of\n /// the array, then the second, and so on. For a given call the expected result would be equivalent to:\n ///\n /// ```rust\n /// let a1 = [1];\n /// let a2 = [1, 2];\n /// let a3 = [1, 2, 3];\n ///\n /// let f = |a, b| a - b;\n /// a1.fold(10, f); //=> f(10, 1)\n /// a2.fold(10, f); //=> f(f(10, 1), 2)\n /// a3.fold(10, f); //=> f(f(f(10, 1), 2), 3)\n ///\n /// assert_eq(a3.fold(10, f), 10 - 1 - 2 - 3);\n /// ```\n pub fn fold<U, Env>(self, mut accumulator: U, f: fn[Env](U, T) -> U) -> U {\n for elem in self {\n accumulator = f(accumulator, elem);\n }\n accumulator\n }\n\n /// Same as fold, but uses the first element as the starting element.\n ///\n /// Requires the input array to be non-empty.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr = [1, 2, 3, 4];\n /// let reduced = arr.reduce(|a, b| a + b);\n /// assert(reduced == 10);\n /// }\n /// ```\n pub fn reduce<Env>(self, f: fn[Env](T, T) -> T) -> T {\n let mut accumulator = self[0];\n for i in 1..self.len() {\n accumulator = f(accumulator, self[i]);\n }\n accumulator\n }\n\n /// Returns true if all the elements in this array satisfy the given predicate.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr = [2, 2, 2, 2, 2];\n /// let all = arr.all(|a| a == 2);\n /// assert(all);\n /// }\n /// ```\n pub fn all<Env>(self, predicate: fn[Env](T) -> bool) -> bool {\n let mut ret = true;\n for elem in self {\n ret &= predicate(elem);\n }\n ret\n }\n\n /// Returns true if any of the elements in this array satisfy the given predicate.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr = [2, 2, 2, 2, 5];\n /// let any = arr.any(|a| a == 5);\n /// assert(any);\n /// }\n /// ```\n pub fn any<Env>(self, predicate: fn[Env](T) -> bool) -> bool {\n let mut ret = false;\n for elem in self {\n ret |= predicate(elem);\n }\n ret\n }\n\n /// Concatenates this array with another array.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr1 = [1, 2, 3, 4];\n /// let arr2 = [6, 7, 8, 9, 10, 11];\n /// let concatenated_arr = arr1.concat(arr2);\n /// assert(concatenated_arr == [1, 2, 3, 4, 6, 7, 8, 9, 10, 11]);\n /// }\n /// ```\n pub fn concat<let M: u32>(self, array2: [T; M]) -> [T; N + M] {\n let mut result = [crate::mem::zeroed(); N + M];\n for i in 0..N {\n result[i] = self[i];\n }\n for i in 0..M {\n result[i + N] = array2[i];\n }\n result\n }\n}\n\nimpl<T, let N: u32> [T; N]\nwhere\n T: Ord + Eq,\n{\n /// Returns a new sorted array. The original array remains untouched. Notice that this function will\n /// only work for arrays of fields or integers, not for any arbitrary type. This is because the sorting\n /// logic it uses internally is optimized specifically for these values. If you need a sort function to\n /// sort any type, you should use the [`Self::sort_via`] function.\n ///\n /// Example:\n ///\n /// ```rust\n /// fn main() {\n /// let arr = [42, 32];\n /// let sorted = arr.sort();\n /// assert(sorted == [32, 42]);\n /// }\n /// ```\n pub fn sort(self) -> Self {\n self.sort_via(|a, b| a <= b)\n }\n}\n\nimpl<T, let N: u32> [T; N]\nwhere\n T: Eq,\n{\n /// Returns a new sorted array by sorting it with a custom comparison function.\n /// The original array remains untouched.\n /// The ordering function must return true if the first argument should be sorted to be before the second argument or is equal to the second argument.\n ///\n /// Using this method with an operator like `<` that does not return `true` for equal values will result in an assertion failure for arrays with equal elements.\n ///\n /// Example:\n ///\n /// ```rust\n /// fn main() {\n /// let arr = [42, 32]\n /// let sorted_ascending = arr.sort_via(|a, b| a <= b);\n /// assert(sorted_ascending == [32, 42]); // verifies\n ///\n /// let sorted_descending = arr.sort_via(|a, b| a >= b);\n /// assert(sorted_descending == [32, 42]); // does not verify\n /// }\n /// ```\n pub fn sort_via<Env>(self, ordering: fn[Env](T, T) -> bool) -> Self {\n // Safety: `sorted` array is checked to be:\n // a. a permutation of `input`'s elements\n // b. satisfying the predicate `ordering`\n let sorted = unsafe { quicksort::quicksort(self, ordering) };\n\n if !is_unconstrained() {\n for i in 0..N - 1 {\n assert(\n ordering(sorted[i], sorted[i + 1]),\n \"Array has not been sorted correctly according to `ordering`.\",\n );\n }\n check_shuffle::check_shuffle(self, sorted);\n }\n sorted\n }\n}\n\nimpl<let N: u32> [u8; N] {\n /// Converts a byte array of type `[u8; N]` to a string. Note that this performs no UTF-8 validation -\n /// the given array is interpreted as-is as a string.\n ///\n /// Example:\n ///\n /// ```rust\n /// fn main() {\n /// let hi = [104, 105].as_str_unchecked();\n /// assert_eq(hi, \"hi\");\n /// }\n /// ```\n #[builtin(array_as_str_unchecked)]\n pub fn as_str_unchecked(self) -> str<N> {}\n}\n\nimpl<let N: u32> From<str<N>> for [u8; N] {\n /// Returns an array of the string bytes.\n fn from(s: str<N>) -> Self {\n s.as_bytes()\n }\n}\n\nmod test {\n #[test]\n fn map_empty() {\n assert_eq([].map(|x| x + 1), []);\n }\n\n global arr_with_100_values: [u32; 100] = [\n 42, 123, 87, 93, 48, 80, 50, 5, 104, 84, 70, 47, 119, 66, 71, 121, 3, 29, 42, 118, 2, 54,\n 89, 44, 81, 0, 26, 106, 68, 96, 84, 48, 95, 54, 45, 32, 89, 100, 109, 19, 37, 41, 19, 98,\n 53, 114, 107, 66, 6, 74, 13, 19, 105, 64, 123, 28, 44, 50, 89, 58, 123, 126, 21, 43, 86, 35,\n 21, 62, 82, 0, 108, 120, 72, 72, 62, 80, 12, 71, 70, 86, 116, 73, 38, 15, 127, 81, 30, 8,\n 125, 28, 26, 69, 114, 63, 27, 28, 61, 42, 13, 32,\n ];\n global expected_with_100_values: [u32; 100] = [\n 0, 0, 2, 3, 5, 6, 8, 12, 13, 13, 15, 19, 19, 19, 21, 21, 26, 26, 27, 28, 28, 28, 29, 30, 32,\n 32, 35, 37, 38, 41, 42, 42, 42, 43, 44, 44, 45, 47, 48, 48, 50, 50, 53, 54, 54, 58, 61, 62,\n 62, 63, 64, 66, 66, 68, 69, 70, 70, 71, 71, 72, 72, 73, 74, 80, 80, 81, 81, 82, 84, 84, 86,\n 86, 87, 89, 89, 89, 93, 95, 96, 98, 100, 104, 105, 106, 107, 108, 109, 114, 114, 116, 118,\n 119, 120, 121, 123, 123, 123, 125, 126, 127,\n ];\n fn sort_u32(a: u32, b: u32) -> bool {\n a <= b\n }\n\n #[test]\n fn test_sort() {\n let mut arr: [u32; 7] = [3, 6, 8, 10, 1, 2, 1];\n\n let sorted = arr.sort();\n\n let expected: [u32; 7] = [1, 1, 2, 3, 6, 8, 10];\n assert(sorted == expected);\n }\n\n #[test]\n fn test_sort_100_values() {\n let mut arr: [u32; 100] = [\n 42, 123, 87, 93, 48, 80, 50, 5, 104, 84, 70, 47, 119, 66, 71, 121, 3, 29, 42, 118, 2,\n 54, 89, 44, 81, 0, 26, 106, 68, 96, 84, 48, 95, 54, 45, 32, 89, 100, 109, 19, 37, 41,\n 19, 98, 53, 114, 107, 66, 6, 74, 13, 19, 105, 64, 123, 28, 44, 50, 89, 58, 123, 126, 21,\n 43, 86, 35, 21, 62, 82, 0, 108, 120, 72, 72, 62, 80, 12, 71, 70, 86, 116, 73, 38, 15,\n 127, 81, 30, 8, 125, 28, 26, 69, 114, 63, 27, 28, 61, 42, 13, 32,\n ];\n\n let sorted = arr.sort();\n\n let expected: [u32; 100] = [\n 0, 0, 2, 3, 5, 6, 8, 12, 13, 13, 15, 19, 19, 19, 21, 21, 26, 26, 27, 28, 28, 28, 29, 30,\n 32, 32, 35, 37, 38, 41, 42, 42, 42, 43, 44, 44, 45, 47, 48, 48, 50, 50, 53, 54, 54, 58,\n 61, 62, 62, 63, 64, 66, 66, 68, 69, 70, 70, 71, 71, 72, 72, 73, 74, 80, 80, 81, 81, 82,\n 84, 84, 86, 86, 87, 89, 89, 89, 93, 95, 96, 98, 100, 104, 105, 106, 107, 108, 109, 114,\n 114, 116, 118, 119, 120, 121, 123, 123, 123, 125, 126, 127,\n ];\n assert(sorted == expected);\n }\n\n #[test]\n fn test_sort_100_values_comptime() {\n let sorted = arr_with_100_values.sort();\n assert(sorted == expected_with_100_values);\n }\n\n #[test]\n fn test_sort_via() {\n let mut arr: [u32; 7] = [3, 6, 8, 10, 1, 2, 1];\n\n let sorted = arr.sort_via(sort_u32);\n\n let expected: [u32; 7] = [1, 1, 2, 3, 6, 8, 10];\n assert(sorted == expected);\n }\n\n #[test]\n fn test_sort_via_100_values() {\n let mut arr: [u32; 100] = [\n 42, 123, 87, 93, 48, 80, 50, 5, 104, 84, 70, 47, 119, 66, 71, 121, 3, 29, 42, 118, 2,\n 54, 89, 44, 81, 0, 26, 106, 68, 96, 84, 48, 95, 54, 45, 32, 89, 100, 109, 19, 37, 41,\n 19, 98, 53, 114, 107, 66, 6, 74, 13, 19, 105, 64, 123, 28, 44, 50, 89, 58, 123, 126, 21,\n 43, 86, 35, 21, 62, 82, 0, 108, 120, 72, 72, 62, 80, 12, 71, 70, 86, 116, 73, 38, 15,\n 127, 81, 30, 8, 125, 28, 26, 69, 114, 63, 27, 28, 61, 42, 13, 32,\n ];\n\n let sorted = arr.sort_via(sort_u32);\n\n let expected: [u32; 100] = [\n 0, 0, 2, 3, 5, 6, 8, 12, 13, 13, 15, 19, 19, 19, 21, 21, 26, 26, 27, 28, 28, 28, 29, 30,\n 32, 32, 35, 37, 38, 41, 42, 42, 42, 43, 44, 44, 45, 47, 48, 48, 50, 50, 53, 54, 54, 58,\n 61, 62, 62, 63, 64, 66, 66, 68, 69, 70, 70, 71, 71, 72, 72, 73, 74, 80, 80, 81, 81, 82,\n 84, 84, 86, 86, 87, 89, 89, 89, 93, 95, 96, 98, 100, 104, 105, 106, 107, 108, 109, 114,\n 114, 116, 118, 119, 120, 121, 123, 123, 123, 125, 126, 127,\n ];\n assert(sorted == expected);\n }\n\n #[test]\n fn mapi_empty() {\n assert_eq([].mapi(|i, x| i * x + 1), []);\n }\n\n #[test]\n fn for_each_empty() {\n let empty_array: [Field; 0] = [];\n empty_array.for_each(|_x| assert(false));\n }\n\n #[test]\n fn for_eachi_empty() {\n let empty_array: [Field; 0] = [];\n empty_array.for_eachi(|_i, _x| assert(false));\n }\n\n #[test]\n fn map_example() {\n let a = [1, 2, 3];\n let b = a.map(|a| a * 2);\n assert_eq(b, [2, 4, 6]);\n }\n\n #[test]\n fn mapi_example() {\n let a = [1, 2, 3];\n let b = a.mapi(|i, a| i + a * 2);\n assert_eq(b, [2, 5, 8]);\n }\n\n #[test]\n fn for_each_example() {\n let a = [1, 2, 3];\n let mut b = [0, 0, 0];\n let b_ref = &mut b;\n let mut i = 0;\n let i_ref = &mut i;\n a.for_each(|x| {\n b_ref[*i_ref] = x * 2;\n *i_ref += 1;\n });\n assert_eq(b, [2, 4, 6]);\n assert_eq(i, 3);\n }\n\n #[test]\n fn for_eachi_example() {\n let a = [1, 2, 3];\n let mut b = [0, 0, 0];\n let b_ref = &mut b;\n a.for_eachi(|i, a| { b_ref[i] = i + a * 2; });\n assert_eq(b, [2, 5, 8]);\n }\n\n #[test]\n fn concat() {\n let arr1 = [1, 2, 3, 4];\n let arr2 = [6, 7, 8, 9, 10, 11];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, [1, 2, 3, 4, 6, 7, 8, 9, 10, 11]);\n }\n\n #[test]\n fn concat_zero_length_with_something() {\n let arr1 = [];\n let arr2 = [1];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, [1]);\n }\n\n #[test]\n fn concat_something_with_zero_length() {\n let arr1 = [1];\n let arr2 = [];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, [1]);\n }\n\n #[test]\n fn concat_zero_lengths() {\n let arr1: [Field; 0] = [];\n let arr2: [Field; 0] = [];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, []);\n }\n}\n"
6808
6812
  },
6809
6813
  "313": {
6810
6814
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/address/aztec_address.nr",
@@ -6818,53 +6822,53 @@
6818
6822
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/address/salted_initialization_hash.nr",
6819
6823
  "source": "use crate::{\n address::aztec_address::AztecAddress, constants::DOM_SEP__PARTIAL_ADDRESS,\n hash::poseidon2_hash_with_separator, traits::ToField,\n};\n\n// Salted initialization hash. Used in the computation of a partial address.\n#[derive(Eq)]\npub struct SaltedInitializationHash {\n pub inner: Field,\n}\n\nimpl ToField for SaltedInitializationHash {\n fn to_field(self) -> Field {\n self.inner\n }\n}\n\nimpl SaltedInitializationHash {\n pub fn from_field(field: Field) -> Self {\n Self { inner: field }\n }\n\n pub fn compute(salt: Field, initialization_hash: Field, deployer: AztecAddress) -> Self {\n SaltedInitializationHash::from_field(poseidon2_hash_with_separator(\n [salt, initialization_hash, deployer.to_field()],\n DOM_SEP__PARTIAL_ADDRESS,\n ))\n }\n\n pub fn assert_is_zero(self) {\n assert(self.to_field() == 0);\n }\n}\n"
6820
6824
  },
6821
- "328": {
6825
+ "327": {
6822
6826
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/contract_instance.nr",
6823
6827
  "source": "use crate::{\n address::{aztec_address::AztecAddress, partial_address::PartialAddress},\n contract_class_id::ContractClassId,\n public_keys::PublicKeys,\n traits::{Deserialize, Hash, Serialize, ToField},\n};\nuse std::meta::derive;\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct ContractInstance {\n pub salt: Field,\n pub deployer: AztecAddress,\n pub contract_class_id: ContractClassId,\n pub initialization_hash: Field,\n pub public_keys: PublicKeys,\n}\n\nimpl Hash for ContractInstance {\n fn hash(self) -> Field {\n self.to_address().to_field()\n }\n}\n\nimpl ContractInstance {\n pub fn to_address(self) -> AztecAddress {\n AztecAddress::compute(\n self.public_keys,\n PartialAddress::compute(\n self.contract_class_id,\n self.salt,\n self.initialization_hash,\n self.deployer,\n ),\n )\n }\n}\n\nmod test {\n use crate::{\n address::AztecAddress,\n constants::CONTRACT_INSTANCE_LENGTH,\n contract_class_id::ContractClassId,\n contract_instance::ContractInstance,\n public_keys::PublicKeys,\n traits::{Deserialize, FromField, Serialize},\n };\n\n #[test]\n fn serde() {\n let instance = ContractInstance {\n salt: 6,\n deployer: AztecAddress::from_field(12),\n contract_class_id: ContractClassId::from_field(13),\n initialization_hash: 156,\n public_keys: PublicKeys::default(),\n };\n\n // We use the CONTRACT_INSTANCE_LENGTH constant to ensure that there is a match between the derived trait\n // implementation and the constant.\n let serialized: [Field; CONTRACT_INSTANCE_LENGTH] = instance.serialize();\n\n let deserialized = ContractInstance::deserialize(serialized);\n\n assert(instance.eq(deserialized));\n }\n\n}\n"
6824
6828
  },
6825
- "334": {
6829
+ "333": {
6826
6830
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/debug_log.nr",
6827
6831
  "source": "// TODO: Expose other wrapped functions than debug (info, warn)\n// ['silent', 'fatal', 'error', 'warn', 'info', 'verbose', 'debug', 'trace']\n\npub global SILENT_LOG_LEVEL: u8 = 0;\npub global FATAL_LOG_LEVEL: u8 = 1;\npub global ERROR_LOG_LEVEL: u8 = 2;\npub global WARN_LOG_LEVEL: u8 = 3;\npub global INFO_LOG_LEVEL: u8 = 4;\npub global VERBOSE_LOG_LEVEL: u8 = 5;\npub global DEBUG_LOG_LEVEL: u8 = 6;\npub global TRACE_LOG_LEVEL: u8 = 7;\n\n/// Utility function to console.log data in the acir simulator.\n/// Example:\n/// debug_log(\"blah blah this is a debug string\");\npub fn debug_log<let N: u32>(msg: str<N>) {\n debug_log_format(msg, []);\n}\n\n/// Same as debug_log, but allows to customize the log level.\n/// Consider changing just to 'log'\npub fn debug_log_with_level<let N: u32>(log_level: u8, msg: str<N>) {\n debug_log_format_with_level(log_level, msg, []);\n}\n\n/// Utility function to console.log data in the acir simulator. This variant receives a format string in which the\n/// `${k}` tokens will be replaced with the k-eth value in the `args` array.\n/// Examples:\n/// debug_log_format(\"get_2(slot:{0}) =>\\n\\t0:{1}\\n\\t1:{2}\", [storage_slot, note0_hash, note1_hash]);\n/// debug_log_format(\"whole array: {}\", [e1, e2, e3, e4]);\npub fn debug_log_format<let M: u32, let N: u32>(msg: str<M>, args: [Field; N]) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe\n // to call.\n unsafe { debug_log_array_oracle_wrapper(DEBUG_LOG_LEVEL, msg, args) };\n}\n\n/// Same as debug_log_format, but allows to customize the log level.\n/// Consider changing just to 'log_format'\npub fn debug_log_format_with_level<let M: u32, let N: u32>(\n log_level: u8,\n msg: str<M>,\n args: [Field; N],\n) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe\n // to call.\n unsafe { debug_log_array_oracle_wrapper(log_level, msg, args) };\n}\n\n/// Utility function to console.log data in the acir simulator. This variant receives a format string in which the\n/// `${k}` tokens will be replaced with the k-eth value in the `args` slice.\n/// Examples:\n/// debug_log_format(\"get_2(slot:{0}) =>\\n\\t0:{1}\\n\\t1:{2}\", [storage_slot, note0_hash, note1_hash]);\n/// debug_log_format(\"whole slice: {}\", [e1, e2, e3, e4]);\npub fn debug_log_format_slice<let M: u32>(log_level: u8, msg: str<M>, args: [Field]) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe\n // to call.\n unsafe { debug_log_slice_oracle_wrapper(log_level, msg, args) };\n}\n\n// We provide two versions of the debug log oracle: one that takes args as a slice and another one that takes args as an array.\n// We do this since conversion from array to slice generates overhead in public functions, since opcodes need to be emitted for the conversion.\n// By exposing the two flavors, we avoid conversions since the AVM is able to handle both arrays an slices in this oracle.\n\nunconstrained fn debug_log_slice_oracle_wrapper<let M: u32>(\n log_level: u8,\n msg: str<M>,\n args: [Field],\n) {\n debug_log_slice_oracle(log_level, msg, args);\n}\n\n// WARNING: sometimes when using debug logs the ACVM errors with: `thrown: \"solver opcode resolution error: cannot solve opcode: expression has too many unknowns x155\"`\n#[oracle(utilityDebugLog)]\nunconstrained fn debug_log_slice_oracle<let M: u32>(log_level: u8, msg: str<M>, args: [Field]) {}\n\nunconstrained fn debug_log_array_oracle_wrapper<let M: u32, let N: u32>(\n log_level: u8,\n msg: str<M>,\n args: [Field; N],\n) {\n debug_log_array_oracle(log_level, msg, N, args);\n}\n\n#[oracle(utilityDebugLog)]\nunconstrained fn debug_log_array_oracle<let M: u32, let N: u32>(\n log_level: u8,\n msg: str<M>,\n length: u32,\n args: [Field; N],\n) {}\n"
6828
6832
  },
6829
- "345": {
6833
+ "344": {
6830
6834
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/hash.nr",
6831
6835
  "source": "mod poseidon2_chunks;\n\nuse crate::{\n abis::{\n contract_class_function_leaf_preimage::ContractClassFunctionLeafPreimage,\n function_selector::FunctionSelector,\n note_hash::NoteHash,\n nullifier::Nullifier,\n private_log::{PrivateLog, PrivateLogData},\n transaction::tx_request::TxRequest,\n },\n address::{AztecAddress, EthAddress},\n constants::{\n CONTRACT_CLASS_LOG_SIZE_IN_FIELDS, DOM_SEP__NOTE_HASH_NONCE, DOM_SEP__OUTER_NULLIFIER,\n DOM_SEP__SILOED_NOTE_HASH, DOM_SEP__UNIQUE_NOTE_HASH, FUNCTION_TREE_HEIGHT,\n NULL_MSG_SENDER_CONTRACT_ADDRESS, TWO_POW_64,\n },\n merkle_tree::root_from_sibling_path,\n messaging::l2_to_l1_message::L2ToL1Message,\n poseidon2::Poseidon2Sponge,\n side_effect::{Counted, Scoped},\n traits::{FromField, Hash, ToField},\n utils::field::{field_from_bytes, field_from_bytes_32_trunc},\n};\n\npub use poseidon2_chunks::poseidon2_absorb_in_chunks_existing_sponge;\nuse poseidon2_chunks::poseidon2_absorb_in_chunks;\nuse std::embedded_curve_ops::EmbeddedCurveScalar;\n\npub fn sha256_to_field<let N: u32>(bytes_to_hash: [u8; N]) -> Field {\n let sha256_hashed = sha256::digest(bytes_to_hash);\n let hash_in_a_field = field_from_bytes_32_trunc(sha256_hashed);\n\n hash_in_a_field\n}\n\npub fn private_functions_root_from_siblings(\n selector: FunctionSelector,\n vk_hash: Field,\n function_leaf_index: Field,\n function_leaf_sibling_path: [Field; FUNCTION_TREE_HEIGHT],\n) -> Field {\n let function_leaf_preimage = ContractClassFunctionLeafPreimage { selector, vk_hash };\n let function_leaf = function_leaf_preimage.hash();\n root_from_sibling_path(\n function_leaf,\n function_leaf_index,\n function_leaf_sibling_path,\n )\n}\n\npub fn compute_note_hash_nonce(first_nullifier_in_tx: Field, note_index_in_tx: u32) -> Field {\n // Hashing the first nullifier with note index in tx is guaranteed to be unique (because all nullifiers are also\n // unique).\n poseidon2_hash_with_separator(\n [first_nullifier_in_tx, note_index_in_tx as Field],\n DOM_SEP__NOTE_HASH_NONCE,\n )\n}\n\npub fn compute_unique_note_hash(note_nonce: Field, siloed_note_hash: Field) -> Field {\n let inputs = [note_nonce, siloed_note_hash];\n poseidon2_hash_with_separator(inputs, DOM_SEP__UNIQUE_NOTE_HASH)\n}\n\npub fn compute_nonce_and_unique_note_hash(\n siloed_note_hash: Field,\n first_nullifier: Field,\n note_index_in_tx: u32,\n) -> Field {\n let note_nonce = compute_note_hash_nonce(first_nullifier, note_index_in_tx);\n compute_unique_note_hash(note_nonce, siloed_note_hash)\n}\n\npub fn compute_siloed_note_hash(app: AztecAddress, note_hash: Field) -> Field {\n poseidon2_hash_with_separator([app.to_field(), note_hash], DOM_SEP__SILOED_NOTE_HASH)\n}\n\n/// Computes unique note hashes from siloed note hashes\npub fn compute_unique_siloed_note_hash(\n siloed_note_hash: Field,\n first_nullifier: Field,\n note_index_in_tx: u32,\n) -> Field {\n if siloed_note_hash == 0 {\n 0\n } else {\n compute_nonce_and_unique_note_hash(siloed_note_hash, first_nullifier, note_index_in_tx)\n }\n}\n\n/// Siloing in the context of Aztec refers to the process of hashing a note hash with a contract address (this way\n/// the note hash is scoped to a specific contract). This is used to prevent intermingling of notes between contracts.\npub fn silo_note_hash(note_hash: Scoped<Counted<NoteHash>>) -> Field {\n if note_hash.contract_address.is_zero() {\n 0\n } else {\n compute_siloed_note_hash(note_hash.contract_address, note_hash.innermost())\n }\n}\n\npub fn compute_siloed_nullifier(contract_address: AztecAddress, nullifier: Field) -> Field {\n poseidon2_hash_with_separator(\n [contract_address.to_field(), nullifier],\n DOM_SEP__OUTER_NULLIFIER,\n )\n}\n\npub fn silo_nullifier(nullifier: Scoped<Counted<Nullifier>>) -> Field {\n let value = nullifier.innermost().value;\n // Q: shouldn't we be checking whether the _whole_ nullifier is empty?\n // A: We don't have to. The init and inner circuits add contract address to non-empty nullifiers.\n // So we know we should silo it if the contract address is not empty.\n if nullifier.contract_address.is_zero() {\n value // Return `value` instead of 0 because an already-siloed nullifier's contract address is zero.\n } else {\n compute_siloed_nullifier(nullifier.contract_address, value)\n }\n}\n\npub fn create_protocol_nullifier(tx_request: TxRequest) -> Scoped<Counted<Nullifier>> {\n Nullifier { value: tx_request.hash(), note_hash: 0 }.count(1).scope(\n NULL_MSG_SENDER_CONTRACT_ADDRESS,\n )\n}\n\npub fn compute_siloed_private_log_field(contract_address: AztecAddress, field: Field) -> Field {\n poseidon2_hash([contract_address.to_field(), field])\n}\n\npub fn silo_private_log(private_log: Scoped<Counted<PrivateLogData>>) -> PrivateLog {\n let log = private_log.innermost().log;\n if private_log.contract_address.is_zero() {\n log\n } else {\n let mut fields = log.fields;\n fields[0] = compute_siloed_private_log_field(private_log.contract_address, fields[0]);\n PrivateLog::new(fields, log.length)\n }\n}\n\npub fn compute_contract_class_log_hash(log: [Field; CONTRACT_CLASS_LOG_SIZE_IN_FIELDS]) -> Field {\n poseidon2_hash(log)\n}\n\npub fn compute_app_secret_key(\n master_secret_key: EmbeddedCurveScalar,\n app_address: AztecAddress,\n app_secret_generator: Field,\n) -> Field {\n poseidon2_hash_with_separator(\n [master_secret_key.hi, master_secret_key.lo, app_address.to_field()],\n app_secret_generator,\n )\n}\n\npub fn merkle_hash(left: Field, right: Field) -> Field {\n poseidon2_hash([left, right])\n}\n\npub fn compute_l2_to_l1_hash(\n contract_address: AztecAddress,\n recipient: EthAddress,\n content: Field,\n rollup_version_id: Field,\n chain_id: Field,\n) -> Field {\n let contract_address_bytes: [u8; 32] = contract_address.to_field().to_be_bytes();\n let recipient_bytes: [u8; 20] = recipient.to_be_bytes();\n let content_bytes: [u8; 32] = content.to_be_bytes();\n let rollup_version_id_bytes: [u8; 32] = rollup_version_id.to_be_bytes();\n let chain_id_bytes: [u8; 32] = chain_id.to_be_bytes();\n\n let mut bytes: [u8; 148] = std::mem::zeroed();\n for i in 0..32 {\n bytes[i] = contract_address_bytes[i];\n bytes[i + 32] = rollup_version_id_bytes[i];\n // 64 - 84 are for recipient.\n bytes[i + 84] = chain_id_bytes[i];\n bytes[i + 116] = content_bytes[i];\n }\n\n for i in 0..20 {\n bytes[64 + i] = recipient_bytes[i];\n }\n\n sha256_to_field(bytes)\n}\n\npub fn silo_l2_to_l1_message(\n msg: Scoped<L2ToL1Message>,\n rollup_version_id: Field,\n chain_id: Field,\n) -> Field {\n if msg.contract_address.is_zero() {\n 0\n } else {\n compute_l2_to_l1_hash(\n msg.contract_address,\n msg.inner.recipient,\n msg.inner.content,\n rollup_version_id,\n chain_id,\n )\n }\n}\n\n/// Computes sha256 hash of 2 input fields.\n///\n/// @returns A truncated field (i.e., the first byte is always 0).\npub fn accumulate_sha256(v0: Field, v1: Field) -> Field {\n // Concatenate two fields into 32 x 2 = 64 bytes\n let v0_as_bytes: [u8; 32] = v0.to_be_bytes();\n let v1_as_bytes: [u8; 32] = v1.to_be_bytes();\n let hash_input_flattened = v0_as_bytes.concat(v1_as_bytes);\n\n sha256_to_field(hash_input_flattened)\n}\n\n#[inline_always]\npub fn pedersen_hash<let N: u32>(inputs: [Field; N], hash_index: u32) -> Field {\n std::hash::pedersen_hash_with_separator(inputs, hash_index)\n}\n\npub fn poseidon2_hash<let N: u32>(inputs: [Field; N]) -> Field {\n poseidon::poseidon2::Poseidon2::hash(inputs, N)\n}\n\n#[no_predicates]\npub fn poseidon2_hash_with_separator<let N: u32, T>(inputs: [Field; N], separator: T) -> Field\nwhere\n T: ToField,\n{\n let inputs_with_separator = [separator.to_field()].concat(inputs);\n poseidon2_hash(inputs_with_separator)\n}\n\n/// Computes a Poseidon2 hash over a dynamic-length subarray of the given input.\n/// Only the first `in_len` fields of `input` are absorbed; any remaining fields are ignored.\n/// The caller is responsible for ensuring that the input is padded with zeros if required.\n#[no_predicates]\npub fn poseidon2_hash_subarray<let N: u32>(input: [Field; N], in_len: u32) -> Field {\n let mut sponge = poseidon2_absorb_in_chunks(input, in_len);\n sponge.squeeze()\n}\n\n// NB the below is the same as poseidon::poseidon2::Poseidon2::hash(), but replacing a range check with a bit check,\n// and absorbing in chunks of 3 below.\n#[no_predicates]\npub fn poseidon2_cheaper_variable_hash<let N: u32>(input: [Field; N], in_len: u32) -> Field {\n let mut sponge = poseidon2_absorb_in_chunks(input, in_len);\n // In the case where the hash preimage is variable-length, we append `1` to the end of the input, to distinguish\n // from fixed-length hashes. (the combination of this additional field element + the hash IV ensures\n // fixed-length and variable-length hashes do not collide)\n if in_len != N {\n sponge.absorb(1);\n }\n sponge.squeeze()\n}\n\n// This function is unconstrained because it is intended to be used in unconstrained context only as\n// in constrained contexts it would be too inefficient.\npub unconstrained fn poseidon2_hash_with_separator_bounded_vec<let N: u32, T>(\n inputs: BoundedVec<Field, N>,\n separator: T,\n) -> Field\nwhere\n T: ToField,\n{\n let in_len = inputs.len() + 1;\n let iv: Field = (in_len as Field) * TWO_POW_64;\n let mut sponge = Poseidon2Sponge::new(iv);\n sponge.absorb(separator.to_field());\n\n for i in 0..inputs.len() {\n sponge.absorb(inputs.get(i));\n }\n\n sponge.squeeze()\n}\n\n#[no_predicates]\npub fn poseidon2_hash_bytes<let N: u32>(inputs: [u8; N]) -> Field {\n let mut fields = [0; (N + 30) / 31];\n let mut field_index = 0;\n let mut current_field = [0; 31];\n for i in 0..inputs.len() {\n let index = i % 31;\n current_field[index] = inputs[i];\n if index == 30 {\n fields[field_index] = field_from_bytes(current_field, false);\n current_field = [0; 31];\n field_index += 1;\n }\n }\n if field_index != fields.len() {\n fields[field_index] = field_from_bytes(current_field, false);\n }\n poseidon2_hash(fields)\n}\n\n#[test]\nfn poseidon_chunks_matches_fixed() {\n let in_len = 501;\n let mut input: [Field; 4096] = [0; 4096];\n let mut fixed_input = [3; 501];\n assert(in_len == fixed_input.len()); // sanity check\n for i in 0..in_len {\n input[i] = 3;\n }\n let sub_chunk_hash = poseidon2_hash_subarray(input, in_len);\n let fixed_len_hash = poseidon::poseidon2::Poseidon2::hash(fixed_input, fixed_input.len());\n assert(sub_chunk_hash == fixed_len_hash);\n}\n\n#[test]\nfn poseidon_chunks_matches_variable() {\n let in_len = 501;\n let mut input: [Field; 4096] = [0; 4096];\n for i in 0..in_len {\n input[i] = 3;\n }\n let variable_chunk_hash = poseidon2_cheaper_variable_hash(input, in_len);\n let variable_len_hash = poseidon::poseidon2::Poseidon2::hash(input, in_len);\n assert(variable_chunk_hash == variable_len_hash);\n}\n\n#[test]\nfn smoke_sha256_to_field() {\n let full_buffer = [\n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,\n 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,\n 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,\n 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93,\n 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112,\n 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130,\n 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,\n 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159,\n ];\n let result = sha256_to_field(full_buffer);\n\n assert(result == 0x448ebbc9e1a31220a2f3830c18eef61b9bd070e5084b7fa2a359fe729184c7);\n\n // to show correctness of the current ver (truncate one byte) vs old ver (mod full bytes):\n let result_bytes = sha256::digest(full_buffer);\n let truncated_field = crate::utils::field::field_from_bytes_32_trunc(result_bytes);\n assert(truncated_field == result);\n let mod_res = result + (result_bytes[31] as Field);\n assert(mod_res == 0x448ebbc9e1a31220a2f3830c18eef61b9bd070e5084b7fa2a359fe729184e0);\n}\n\n#[test]\nfn compute_l2_l1_hash() {\n // All zeroes\n let hash_result =\n compute_l2_to_l1_hash(AztecAddress::from_field(0), EthAddress::zero(), 0, 0, 0);\n assert(hash_result == 0x3b18c58c739716e76429634a61375c45b3b5cd470c22ab6d3e14cee23dd992);\n\n // Non-zero case\n let hash_result = compute_l2_to_l1_hash(\n AztecAddress::from_field(1),\n EthAddress::from_field(3),\n 5,\n 2,\n 4,\n );\n assert(hash_result == 0xaab2a5828156782b12a1dc6f336e2bc627eb1b9514b02d511f66296990c050);\n}\n\n#[test]\nfn silo_l2_to_l1_message_matches_typescript() {\n let version = 4;\n let chainId = 5;\n\n let hash = silo_l2_to_l1_message(\n L2ToL1Message { recipient: EthAddress::from_field(1), content: 2 }.scope(\n AztecAddress::from_field(3),\n ),\n version,\n chainId,\n );\n\n // The following value was generated by `yarn-project/stdlib/src/hash/hash.test.ts`\n let hash_from_typescript = 0x0081edf209e087ad31b3fd24263698723d57190bd1d6e9fe056fc0c0a68ee661;\n\n assert_eq(hash, hash_from_typescript);\n}\n\n#[test]\nunconstrained fn poseidon2_hash_with_separator_bounded_vec_matches_non_bounded_vec_version() {\n let inputs = BoundedVec::<Field, 4>::from_array([1, 2, 3]);\n let separator = 42;\n\n // Hash using bounded vec version\n let bounded_result = poseidon2_hash_with_separator_bounded_vec(inputs, separator);\n\n // Hash using regular version\n let regular_result = poseidon2_hash_with_separator([1, 2, 3], separator);\n\n // Results should match\n assert_eq(bounded_result, regular_result);\n}\n"
6832
6836
  },
6833
- "358": {
6837
+ "357": {
6834
6838
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/meta/mod.nr",
6835
6839
  "source": "use utils::derive_serialization_quotes;\n\npub mod utils;\n\n/// Generates the generic parameter declarations for a struct's trait implementation.\n///\n/// This function takes a struct type definition and generates the generic parameter declarations\n/// that go after the `impl` keyword. For example, given a struct with generics `N: u32` and `T`,\n/// it generates `<let N: u32, T>`.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate generic declarations for\n///\n/// # Returns\n/// A quoted code block containing the generic parameter declarations, or an empty quote if the struct\n/// has no generic parameters\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Container<T, let N: u32> {\n/// items: [T; N],\n/// count: u32\n/// }\n/// ```\n///\n/// This function generates:\n/// ```\n/// <let N: u32, T>\n/// ```\ncomptime fn get_generics_declarations(s: TypeDefinition) -> Quoted {\n let generics = s.generics();\n\n if generics.len() > 0 {\n let generics_declarations_items = generics\n .map(|(name, maybe_integer_typ)| {\n // The second item in the generics tuple is an Option of an integer type that is Some only if\n // the generic is numeric.\n if maybe_integer_typ.is_some() {\n // The generic is numeric, so we return a quote defined as e.g. \"let N: u32\"\n let integer_type = maybe_integer_typ.unwrap();\n quote {let $name: $integer_type}\n } else {\n // The generic is not numeric, so we return a quote containing the name of the generic (e.g. \"T\")\n quote {$name}\n }\n })\n .join(quote {,});\n quote {<$generics_declarations_items>}\n } else {\n // The struct doesn't have any generics defined, so we just return an empty quote.\n quote {}\n }\n}\n\n/// Generates the `where` clause for a trait implementation that constrains non-numeric generic type parameters.\n///\n/// This function takes a struct type definition and a trait name, and generates a `where` clause that\n/// requires all non-numeric generic type parameters to implement the specified trait.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate the where clause for\n/// - `trait_name`: The name of the trait that non-numeric generic parameters must implement\n///\n/// # Returns\n/// A quoted code block containing the where clause, or an empty quote if the struct has no non-numeric\n/// generic parameters\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Container<T, let N: u32> {\n/// items: [T; N],\n/// count: u32\n/// }\n/// ```\n///\n/// And trait name \"Serialize\", this function generates:\n/// ```\n/// where T: Serialize\n/// ```\ncomptime fn get_where_trait_clause(s: TypeDefinition, trait_name: Quoted) -> Quoted {\n let generics = s.generics();\n\n // The second item in the generics tuple is an Option of an integer type that is Some only if the generic is\n // numeric.\n let non_numeric_generics =\n generics.filter(|(_, maybe_integer_typ)| maybe_integer_typ.is_none());\n\n if non_numeric_generics.len() > 0 {\n let non_numeric_generics_declarations =\n non_numeric_generics.map(|(name, _)| quote {$name: $trait_name}).join(quote {,});\n quote {where $non_numeric_generics_declarations}\n } else {\n // There are no non-numeric generics, so we return an empty quote.\n quote {}\n }\n}\n\n/// Generates a `Serialize` trait implementation for a struct type.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A quoted code block containing the trait implementation\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Log<N> {\n/// fields: [Field; N],\n/// length: u32\n/// }\n/// ```\n///\n/// This function generates code equivalent to:\n/// ```\n/// impl<let N: u32> Serialize for Log<N> {\n/// let N: u32 = <[Field; N] as Serialize>::N + <u32 as Serialize>::N;\n///\n/// #[inline_always]\n/// fn serialize(self) -> [Field; Self::N] {\n/// let mut serialized_params = [0; _];\n/// let mut offset = 0;\n///\n/// let serialized_member = Serialize::serialize(self.fields);\n/// let serialized_member_len = <[Field; N] as Serialize>::N;\n/// for i in 0..serialized_member_len {\n/// serialized_params[i + offset] = serialized_member[i];\n/// }\n/// offset += serialized_member_len;\n///\n/// let serialized_member = Serialize::serialize(self.length);\n/// let serialized_member_len = <u32 as Serialize>::N;\n/// for i in 0..serialized_member_len {\n/// serialized_params[i + offset] = serialized_member[i];\n/// }\n/// offset += serialized_member_len;\n///\n/// serialized_params\n/// }\n/// }\n/// ```\npub comptime fn derive_serialize(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n\n // We care only about the name and type so we drop the last item of the tuple\n let params = nested_struct.0.fields(nested_struct.1).map(|(name, typ, _)| (name, typ));\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Serialize` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_serialize_clause = get_where_trait_clause(s, quote {Serialize});\n\n let (function_body, params_len_quote, serialized_params_name) =\n derive_serialization_quotes(params, true);\n\n quote {\n impl$generics_declarations $crate::traits::Serialize for $typ\n $where_serialize_clause\n {\n let N: u32 = $params_len_quote;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n $function_body\n\n $serialized_params_name\n }\n }\n }\n}\n\n/// Generates a `Deserialize` trait implementation for a given struct `s`.\n///\n/// # Arguments\n/// * `s` - The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A `Quoted` block containing the generated trait implementation\n///\n/// # Requirements\n/// Each struct member type must implement the `Deserialize` trait (it gets used in the generated code).\n///\n/// # Example\n/// For a struct like:\n/// ```\n/// struct MyStruct {\n/// x: AztecAddress,\n/// y: Field,\n/// }\n/// ```\n///\n/// This generates:\n/// ```\n/// impl Deserialize for MyStruct {\n/// let N: u32 = <AztecAddress as Deserialize>::N + <Field as Deserialize>::N;\n///\n/// fn deserialize(serialized: [Field; Self::N]) -> Self {\n/// let mut offset = 0;\n/// let mut member_fields = [0; <AztecAddress as Deserialize>::N];\n/// for i in 0..<AztecAddress as Deserialize>::N {\n/// member_fields[i] = serialized[i + offset];\n/// }\n/// let x = <AztecAddress as Deserialize>::deserialize(member_fields);\n/// offset += <AztecAddress as Deserialize>::N;\n///\n/// let mut member_fields = [0; <Field as Deserialize>::N];\n/// for i in 0..<Field as Deserialize>::N {\n/// member_fields[i] = serialized[i + offset];\n/// }\n/// let y = <Field as Deserialize>::deserialize(member_fields);\n/// offset += <Field as Deserialize>::N;\n///\n/// Self { x, y }\n/// }\n/// }\n/// ```\npub(crate) comptime fn derive_deserialize(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n let params = nested_struct.0.fields(nested_struct.1);\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Deserialize` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_deserialize_clause = get_where_trait_clause(s, quote {Deserialize});\n\n // The following will give us:\n // <type_of_struct_member_1 as Deserialize>::N + <type_of_struct_member_2 as Deserialize>::N + ...\n // (or 0 if the struct has no members)\n let right_hand_side_of_definition_of_n = if params.len() > 0 {\n params\n .map(|(_, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n <$param_type as $crate::traits::Deserialize>::N\n }\n })\n .join(quote {+})\n } else {\n quote {0}\n };\n\n // For structs containing a single member, we can enhance performance by directly deserializing the input array,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let function_body = if params.len() > 1 {\n // This generates deserialization code for each struct member and concatenates them together.\n let deserialization_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let mut member_fields = [0; <$param_type as Deserialize>::N];\n for i in 0..<$param_type as Deserialize>::N {\n member_fields[i] = serialized[i + offset];\n }\n let $param_name = <$param_type as Deserialize>::deserialize(member_fields);\n offset += <$param_type as Deserialize>::N;\n }\n })\n .join(quote {});\n\n // We join the struct member names with a comma to be used in the `Self { ... }` syntax\n // This will give us e.g. `a, b, c` for a struct with three fields named `a`, `b`, and `c`.\n let struct_members = params\n .map(|(param_name, _, _): (Quoted, Type, Quoted)| quote { $param_name })\n .join(quote {,});\n\n quote {\n let mut offset = 0;\n\n $deserialization_of_struct_members\n\n Self { $struct_members }\n }\n } else if params.len() == 1 {\n let param_name = params[0].0;\n quote {\n Self { $param_name: $crate::traits::Deserialize::deserialize(serialized) }\n }\n } else {\n quote {\n Self {}\n }\n };\n\n quote {\n impl$generics_declarations $crate::traits::Deserialize for $typ\n $where_deserialize_clause\n {\n let N: u32 = $right_hand_side_of_definition_of_n;\n\n #[inline_always]\n fn deserialize(serialized: [Field; Self::N]) -> Self {\n $function_body\n }\n }\n }\n}\n\n/// Generates a `Packable` trait implementation for a given struct `s`.\n///\n/// # Arguments\n/// * `s` - The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A `Quoted` block containing the generated trait implementation\n///\n/// # Requirements\n/// Each struct member type must implement the `Packable` trait (it gets used in the generated code).\n///\n/// # Example\n/// For a struct like:\n/// ```\n/// struct MyStruct {\n/// x: AztecAddress,\n/// y: Field,\n/// }\n/// ```\n///\n/// This generates:\n/// ```\n/// impl Packable for MyStruct {\n/// let N: u32 = 2;\n///\n/// fn pack(self) -> [Field; 2] {\n/// let mut result: [Field; 2] = [0_Field; 2];\n/// let mut offset: u32 = 0_u32;\n/// let packed_member: [Field; 1] = self.x.pack();\n/// let packed_member_len: u32 = <Field as Packable>::N;\n/// for i in 0_u32..packed_member_len {\n/// {\n/// result[i + offset] = packed_member[i];\n/// }\n/// }\n/// offset = offset + packed_member_len;\n/// let packed_member: [Field; 1] = self.y.pack();\n/// let packed_member_len: u32 = <Field as Packable>::N;\n/// for i in 0_u32..packed_member_len {\n/// {\n/// result[i + offset] = packed_member[i];\n/// }\n/// }\n/// offset = offset + packed_member_len;\n/// result\n/// }\n///\n/// fn unpack(packed: [Field; 2]) -> Self {\n/// let mut offset: u32 = 0_u32;\n/// let mut member_fields: [Field; 1] = [0_Field; 1];\n/// for i in 0_u32..<AztecAddress as Packable>::N {\n/// member_fields[i] = packed[i + offset];\n/// }\n/// let x: AztecAddress = <AztecAddress as Packable>::unpack(member_fields);\n/// offset = offset + <AztecAddress as Packable>::N;\n/// let mut member_fields: [Field; 1] = [0_Field; 1];\n/// for i in 0_u32..<Field as Packable>::N {\n/// member_fields[i] = packed[i + offset];\n/// }\n/// let y: Field = <Field as Packable>::unpack(member_fields);\n/// offset = offset + <Field as Packable>::N;\n/// Self { x: x, y: y }\n/// }\n/// }\n/// ```\npub comptime fn derive_packable(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n let params = nested_struct.0.fields(nested_struct.1);\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Packable` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_packable_clause = get_where_trait_clause(s, quote {Packable});\n\n // The following will give us:\n // <type_of_struct_member_1 as Packable>::N + <type_of_struct_member_2 as Packable>::N + ...\n // (or 0 if the struct has no members)\n let right_hand_side_of_definition_of_n = if params.len() > 0 {\n params\n .map(|(_, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n <$param_type as $crate::traits::Packable>::N\n }\n })\n .join(quote {+})\n } else {\n quote {0}\n };\n\n // For structs containing a single member, we can enhance performance by directly returning the packed member,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let pack_function_body = if params.len() > 1 {\n // For multiple struct members, generate packing code that:\n // 1. Packs each member\n // 2. Copies the packed fields into the result array at the correct offset\n // 3. Updates the offset for the next member\n let packing_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let packed_member = $crate::traits::Packable::pack(self.$param_name);\n let packed_member_len = <$param_type as $crate::traits::Packable>::N;\n for i in 0..packed_member_len {\n result[i + offset] = packed_member[i];\n }\n offset += packed_member_len;\n }\n })\n .join(quote {});\n\n quote {\n let mut result = [0; Self::N];\n let mut offset = 0;\n\n $packing_of_struct_members\n\n result\n }\n } else if params.len() == 1 {\n let param_name = params[0].0;\n quote {\n $crate::traits::Packable::pack(self.$param_name)\n }\n } else {\n quote {\n [0; Self::N]\n }\n };\n\n // For structs containing a single member, we can enhance performance by directly unpacking the input array,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let unpack_function_body = if params.len() > 1 {\n // For multiple struct members, generate unpacking code that:\n // 1. Unpacks each member\n // 2. Copies packed fields into member array at correct offset\n // 3. Updates offset for next member\n let unpacking_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let mut member_fields = [0; <$param_type as $crate::traits::Packable>::N];\n for i in 0..<$param_type as $crate::traits::Packable>::N {\n member_fields[i] = packed[i + offset];\n }\n let $param_name = <$param_type as $crate::traits::Packable>::unpack(member_fields);\n offset += <$param_type as $crate::traits::Packable>::N;\n }\n })\n .join(quote {});\n\n // We join the struct member names with a comma to be used in the `Self { ... }` syntax\n let struct_members = params\n .map(|(param_name, _, _): (Quoted, Type, Quoted)| quote { $param_name })\n .join(quote {,});\n\n quote {\n let mut offset = 0;\n $unpacking_of_struct_members\n Self { $struct_members }\n }\n } else if params.len() == 1 {\n let param_name = params[0].0;\n quote {\n Self { $param_name: $crate::traits::Packable::unpack(packed) }\n }\n } else {\n quote {\n Self {}\n }\n };\n\n quote {\n impl$generics_declarations $crate::traits::Packable for $typ\n $where_packable_clause\n {\n let N: u32 = $right_hand_side_of_definition_of_n;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n $pack_function_body\n }\n\n #[inline_always]\n fn unpack(packed: [Field; Self::N]) -> Self {\n $unpack_function_body\n }\n }\n }\n}\n\nmod test {\n use crate::traits::{Deserialize, Packable, Serialize};\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct Empty {}\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct Smol {\n a: Field,\n b: Field,\n }\n\n #[derive(Deserialize, Eq, Serialize)]\n pub struct HasArray {\n a: [Field; 2],\n b: bool,\n }\n\n #[derive(Deserialize, Eq, Serialize)]\n pub struct Fancier {\n a: Smol,\n b: [Field; 2],\n c: [u8; 3],\n d: str<16>,\n }\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct HasArrayWithGenerics<T, let N: u32> {\n pub fields: [T; N],\n pub length: u32,\n }\n\n #[test]\n fn serde_on_empty() {\n let original = Empty {};\n let serialized = original.serialize();\n assert_eq(serialized, [], \"Serialized does not match empty array\");\n let deserialized = Empty::deserialize(serialized);\n assert_eq(deserialized, original, \"Deserialized does not match original\");\n }\n\n #[test]\n fn packable_on_empty() {\n let original = Empty {};\n let packed = original.pack();\n assert_eq(packed, [], \"Packed does not match empty array\");\n let unpacked = Empty::unpack(packed);\n assert_eq(unpacked, original, \"Unpacked does not match original\");\n }\n\n #[test]\n fn serde_on_smol() {\n let smol = Smol { a: 1, b: 2 };\n let serialized = smol.serialize();\n assert(serialized == [1, 2], serialized);\n let deserialized = Smol::deserialize(serialized);\n assert(deserialized == smol);\n\n // None of the struct members implements the `Packable` trait so the packed and serialized data should be the same\n let packed = smol.pack();\n assert_eq(packed, serialized, \"Packed does not match serialized\");\n }\n\n #[test]\n fn serde_on_has_array() {\n let has_array = HasArray { a: [1, 2], b: true };\n let serialized = has_array.serialize();\n assert(serialized == [1, 2, 1], serialized);\n let deserialized = HasArray::deserialize(serialized);\n assert(deserialized == has_array);\n }\n\n #[test]\n fn serde_on_fancier() {\n let fancier =\n Fancier { a: Smol { a: 1, b: 2 }, b: [0, 1], c: [1, 2, 3], d: \"metaprogramming!\" };\n let serialized = fancier.serialize();\n assert(\n serialized\n == [\n 1, 2, 0, 1, 1, 2, 3, 0x6d, 0x65, 0x74, 0x61, 0x70, 0x72, 0x6f, 0x67, 0x72, 0x61,\n 0x6d, 0x6d, 0x69, 0x6e, 0x67, 0x21,\n ],\n serialized,\n );\n let deserialized = Fancier::deserialize(serialized);\n assert(deserialized == fancier);\n }\n\n #[test]\n fn serde_on_contains_array_with_generics() {\n let struct_with_array_of_generics = HasArrayWithGenerics { fields: [1, 2, 3], length: 3 };\n let serialized = struct_with_array_of_generics.serialize();\n assert(serialized == [1, 2, 3, 3], serialized);\n let deserialized = HasArrayWithGenerics::deserialize(serialized);\n assert(deserialized == struct_with_array_of_generics);\n }\n\n #[test]\n fn packable_on_contains_array_with_generics() {\n let struct_with_array_of_generics = HasArrayWithGenerics { fields: [1, 2, 3], length: 3 };\n let packed = struct_with_array_of_generics.pack();\n assert(packed == [1, 2, 3, 3], packed);\n\n let unpacked = HasArrayWithGenerics::unpack(packed);\n assert(unpacked == struct_with_array_of_generics);\n }\n\n}\n"
6836
6840
  },
6837
- "359": {
6841
+ "358": {
6838
6842
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/meta/utils.nr",
6839
6843
  "source": "/// Generates serialization code for a list of parameters and the total length of the serialized array\n///\n/// # Parameters\n/// - `params`: A list of (name, type) tuples to serialize\n/// - `use_self_prefix`: If true, parameters are accessed as `self.$param_name` (for struct members).\n/// If false, parameters are accessed directly as `$param_name` (for function parameters).\n///\n/// # Returns\n/// A tuple containing:\n/// - Quoted code that serializes the parameters into an array named `serialized_params`\n/// - Quoted code that evaluates to the total length of the serialized array\n/// - Quoted code containing the name of the serialized array\npub comptime fn derive_serialization_quotes(\n params: [(Quoted, Type)],\n use_self_prefix: bool,\n) -> (Quoted, Quoted, Quoted) {\n let prefix_quote = if use_self_prefix {\n quote { self. }\n } else {\n quote {}\n };\n\n let params_len_quote = get_params_len_quote(params);\n let serialized_params_name = quote { serialized_params };\n\n let body = if params.len() == 0 {\n quote {\n let $serialized_params_name: [Field; 0] = [];\n }\n } else if params.len() == 1 {\n // When we have only a single parameter on the input, we can enhance performance by directly returning\n // the serialized member, bypassing the need for loop-based array construction. While this optimization yields\n // significant benefits in Brillig where the loops are expected to not be optimized, it is not relevant in ACIR\n // where the loops are expected to be optimized away.\n\n let param_name = params[0].0;\n quote {\n let $serialized_params_name = $crate::traits::Serialize::serialize($prefix_quote$param_name);\n }\n } else {\n // For multiple struct members, generate serialization code that:\n // 1. Serializes each member\n // 2. Copies the serialized fields into the serialize array at the correct offset\n // 3. Updates the offset for the next member\n let serialization_of_struct_members = params\n .map(|(param_name, param_type): (Quoted, Type)| {\n quote {\n let serialized_member = $crate::traits::Serialize::serialize($prefix_quote$param_name);\n let serialized_member_len = <$param_type as $crate::traits::Serialize>::N;\n for i in 0..serialized_member_len {\n $serialized_params_name[i + offset] = serialized_member[i];\n }\n offset += serialized_member_len;\n }\n })\n .join(quote {});\n\n quote {\n let mut $serialized_params_name = [0; $params_len_quote];\n let mut offset = 0;\n\n $serialization_of_struct_members\n }\n };\n\n (body, params_len_quote, serialized_params_name)\n}\n\n/// Generates a quoted expression that computes the total serialized length of function parameters.\n///\n/// # Parameters\n/// * `params` - An array of tuples where each tuple contains a quoted parameter name and its Type. The type needs\n/// to implement the Serialize trait.\n///\n/// # Returns\n/// A quoted expression that evaluates to:\n/// * `0` if there are no parameters\n/// * `(<type1 as Serialize>::N + <type2 as Serialize>::N + ...)` for one or more parameters\npub comptime fn get_params_len_quote(params: [(Quoted, Type)]) -> Quoted {\n if params.len() == 0 {\n quote { 0 }\n } else {\n let params_quote_without_parentheses = params\n .map(|(_, param_type): (Quoted, Type)| {\n quote {\n <$param_type as $crate::traits::Serialize>::N\n }\n })\n .join(quote {+});\n quote { ($params_quote_without_parentheses) }\n }\n}\n"
6840
6844
  },
6841
- "360": {
6845
+ "359": {
6842
6846
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/point.nr",
6843
6847
  "source": "pub use dep::std::embedded_curve_ops::EmbeddedCurvePoint as Point;\nuse crate::{hash::poseidon2_hash, traits::{Deserialize, Empty, Hash, Packable, Serialize}};\n\npub global POINT_LENGTH: u32 = 3;\n\n// Note: Not deriving this because it's not supported to call derive_serialize on a \"remote\" struct (and it will never\n// be supported).\nimpl Serialize for Point {\n let N: u32 = POINT_LENGTH;\n\n fn serialize(self: Self) -> [Field; Self::N] {\n [self.x, self.y, self.is_infinite as Field]\n }\n}\n\nimpl Hash for Point {\n fn hash(self) -> Field {\n poseidon2_hash(self.serialize())\n }\n}\n\nimpl Empty for Point {\n /// Note: Does not return a valid point on curve - instead represents an empty/\"unpopulated\" point struct (e.g.\n /// empty/unpopulated value in an array of points).\n fn empty() -> Self {\n Point { x: 0, y: 0, is_infinite: false }\n }\n}\n\nimpl Deserialize for Point {\n let N: u32 = POINT_LENGTH;\n\n fn deserialize(serialized: [Field; Self::N]) -> Self {\n Point { x: serialized[0], y: serialized[1], is_infinite: serialized[2] != 0 }\n }\n}\n\n// TODO(#11356): use compact representation here.\nimpl Packable for Point {\n let N: u32 = POINT_LENGTH;\n\n fn pack(self) -> [Field; Self::N] {\n self.serialize()\n }\n\n fn unpack(packed: [Field; Self::N]) -> Self {\n Self::deserialize(packed)\n }\n}\n"
6844
6848
  },
6845
- "361": {
6849
+ "360": {
6846
6850
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/poseidon2.nr",
6847
6851
  "source": "use crate::constants::TWO_POW_64;\nuse crate::traits::{Deserialize, Serialize};\nuse std::meta::derive;\n// NB: This is a clone of noir/noir-repo/noir_stdlib/src/hash/poseidon2.nr\n// It exists as we sometimes need to perform custom absorption, but the stdlib version\n// has a private absorb() method (it's also designed to just be a hasher)\n// Can be removed when standalone noir poseidon lib exists: See noir#6679\n\ncomptime global RATE: u32 = 3;\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct Poseidon2Sponge {\n pub cache: [Field; 3],\n pub state: [Field; 4],\n pub cache_size: u32,\n pub squeeze_mode: bool, // 0 => absorb, 1 => squeeze\n}\n\nimpl Poseidon2Sponge {\n #[no_predicates]\n pub fn hash<let N: u32>(input: [Field; N], message_size: u32) -> Field {\n Poseidon2Sponge::hash_internal(input, message_size, message_size != N)\n }\n\n pub(crate) fn new(iv: Field) -> Poseidon2Sponge {\n let mut result =\n Poseidon2Sponge { cache: [0; 3], state: [0; 4], cache_size: 0, squeeze_mode: false };\n result.state[RATE] = iv;\n result\n }\n\n fn perform_duplex(&mut self) {\n // add the cache into sponge state\n for i in 0..RATE {\n // We effectively zero-pad the cache by only adding to the state\n // cache that is less than the specified `cache_size`\n if i < self.cache_size {\n self.state[i] += self.cache[i];\n }\n }\n self.state = std::hash::poseidon2_permutation(self.state, 4);\n }\n\n pub fn absorb(&mut self, input: Field) {\n assert(!self.squeeze_mode);\n if self.cache_size == RATE {\n // If we're absorbing, and the cache is full, apply the sponge permutation to compress the cache\n self.perform_duplex();\n self.cache[0] = input;\n self.cache_size = 1;\n } else {\n // If we're absorbing, and the cache is not full, add the input into the cache\n self.cache[self.cache_size] = input;\n self.cache_size += 1;\n }\n }\n\n pub fn squeeze(&mut self) -> Field {\n assert(!self.squeeze_mode);\n // If we're in absorb mode, apply sponge permutation to compress the cache.\n self.perform_duplex();\n self.squeeze_mode = true;\n\n // Pop one item off the top of the permutation and return it.\n self.state[0]\n }\n\n fn hash_internal<let N: u32>(\n input: [Field; N],\n in_len: u32,\n is_variable_length: bool,\n ) -> Field {\n let iv: Field = (in_len as Field) * TWO_POW_64;\n let mut sponge = Poseidon2Sponge::new(iv);\n for i in 0..input.len() {\n if i < in_len {\n sponge.absorb(input[i]);\n }\n }\n\n // In the case where the hash preimage is variable-length, we append `1` to the end of the input, to distinguish\n // from fixed-length hashes. (the combination of this additional field element + the hash IV ensures\n // fixed-length and variable-length hashes do not collide)\n if is_variable_length {\n sponge.absorb(1);\n }\n sponge.squeeze()\n }\n}\n"
6848
6852
  },
6849
- "368": {
6853
+ "367": {
6850
6854
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/public_keys.nr",
6851
6855
  "source": "use crate::{\n address::public_keys_hash::PublicKeysHash,\n constants::{\n DEFAULT_IVPK_M_X, DEFAULT_IVPK_M_Y, DEFAULT_NPK_M_X, DEFAULT_NPK_M_Y, DEFAULT_OVPK_M_X,\n DEFAULT_OVPK_M_Y, DEFAULT_TPK_M_X, DEFAULT_TPK_M_Y, DOM_SEP__PUBLIC_KEYS_HASH,\n },\n hash::poseidon2_hash_with_separator,\n traits::{Deserialize, Hash, Serialize},\n};\n\nuse dep::std::embedded_curve_ops::EmbeddedCurvePoint as Point;\nuse std::{default::Default, meta::derive};\n\npub trait ToPoint {\n fn to_point(self) -> Point;\n}\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct NpkM {\n pub inner: Point,\n}\n\nimpl ToPoint for NpkM {\n fn to_point(self) -> Point {\n self.inner\n }\n}\n\n// Note: If we store npk_m_hash directly we can remove this trait implementation. See #8091\nimpl Hash for NpkM {\n fn hash(self) -> Field {\n self.inner.hash()\n }\n}\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct IvpkM {\n pub inner: Point,\n}\n\nimpl ToPoint for IvpkM {\n fn to_point(self) -> Point {\n self.inner\n }\n}\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct OvpkM {\n pub inner: Point,\n}\n\nimpl Hash for OvpkM {\n fn hash(self) -> Field {\n self.inner.hash()\n }\n}\n\nimpl ToPoint for OvpkM {\n fn to_point(self) -> Point {\n self.inner\n }\n}\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct TpkM {\n pub inner: Point,\n}\n\nimpl ToPoint for TpkM {\n fn to_point(self) -> Point {\n self.inner\n }\n}\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct PublicKeys {\n pub npk_m: NpkM,\n pub ivpk_m: IvpkM,\n pub ovpk_m: OvpkM,\n pub tpk_m: TpkM,\n}\n\nimpl Default for PublicKeys {\n fn default() -> Self {\n PublicKeys {\n npk_m: NpkM {\n inner: Point { x: DEFAULT_NPK_M_X, y: DEFAULT_NPK_M_Y, is_infinite: false },\n },\n ivpk_m: IvpkM {\n inner: Point { x: DEFAULT_IVPK_M_X, y: DEFAULT_IVPK_M_Y, is_infinite: false },\n },\n ovpk_m: OvpkM {\n inner: Point { x: DEFAULT_OVPK_M_X, y: DEFAULT_OVPK_M_Y, is_infinite: false },\n },\n tpk_m: TpkM {\n inner: Point { x: DEFAULT_TPK_M_X, y: DEFAULT_TPK_M_Y, is_infinite: false },\n },\n }\n }\n}\n\nimpl PublicKeys {\n pub fn hash(self) -> PublicKeysHash {\n PublicKeysHash::from_field(poseidon2_hash_with_separator(\n self.serialize(),\n DOM_SEP__PUBLIC_KEYS_HASH as Field,\n ))\n }\n}\n\npub struct AddressPoint {\n pub inner: Point,\n}\n\nimpl ToPoint for AddressPoint {\n fn to_point(self) -> Point {\n self.inner\n }\n}\n\nmod test {\n use crate::{\n point::POINT_LENGTH,\n public_keys::{IvpkM, NpkM, OvpkM, PublicKeys, TpkM},\n traits::{Deserialize, Serialize},\n };\n use dep::std::embedded_curve_ops::EmbeddedCurvePoint as Point;\n\n #[test]\n unconstrained fn compute_public_keys_hash() {\n let keys = PublicKeys {\n npk_m: NpkM { inner: Point { x: 1, y: 2, is_infinite: false } },\n ivpk_m: IvpkM { inner: Point { x: 3, y: 4, is_infinite: false } },\n ovpk_m: OvpkM { inner: Point { x: 5, y: 6, is_infinite: false } },\n tpk_m: TpkM { inner: Point { x: 7, y: 8, is_infinite: false } },\n };\n\n let actual = keys.hash();\n let expected_public_keys_hash =\n 0x0fecd9a32db731fec1fded1b9ff957a1625c069245a3613a2538bd527068b0ad;\n\n assert(actual.to_field() == expected_public_keys_hash);\n }\n\n #[test]\n unconstrained fn compute_default_hash() {\n let keys = PublicKeys::default();\n\n let actual = keys.hash();\n let test_data_default_hash =\n 0x1d3bf1fb93ae0e9cda83b203dd91c3bfb492a9aecf30ec90e1057eced0f0e62d;\n\n assert(actual.to_field() == test_data_default_hash);\n }\n\n #[test]\n unconstrained fn serde() {\n let keys = PublicKeys {\n npk_m: NpkM { inner: Point { x: 1, y: 2, is_infinite: false } },\n ivpk_m: IvpkM { inner: Point { x: 3, y: 4, is_infinite: false } },\n ovpk_m: OvpkM { inner: Point { x: 5, y: 6, is_infinite: false } },\n tpk_m: TpkM { inner: Point { x: 7, y: 8, is_infinite: false } },\n };\n\n // We use the PUBLIC_KEYS_LENGTH constant to ensure that there is a match between the derived trait\n let serialized: [Field; POINT_LENGTH * 4] = keys.serialize();\n let deserialized = PublicKeys::deserialize(serialized);\n\n assert_eq(keys, deserialized);\n }\n}\n"
6852
6856
  },
6853
- "389": {
6857
+ "388": {
6854
6858
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/traits.nr",
6855
6859
  "source": "use crate::meta::{derive_deserialize, derive_packable, derive_serialize};\nuse crate::utils::field::field_from_bytes;\n\n// Trait: is_empty\n//\n// The general is_empty trait checks if a data type is is empty,\n// and it defines empty for the basic data types as 0.\n//\n// If a Field is equal to zero, then it is regarded as zero.\n// We will go with this definition for now, however it can be problematic\n// if a value can actually be zero. In a future refactor, we can\n// use the optional type for safety. Doing it now would lead to a worse devex\n// and would make it harder to sync up with the cpp code.\n// Preferred over Default trait to convey intent, as default doesn't necessarily mean empty.\npub trait Empty: Eq {\n fn empty() -> Self;\n\n fn is_empty(self) -> bool {\n self.eq(Self::empty())\n }\n\n // Requires this Noir fix: https://github.com/noir-lang/noir/issues/9002\n // fn assert_not_empty<let U: u32>(self, msg: str<U>) { // This msg version was failing with weird compiler errors.\n // // We provide a default impl but it's likely inefficient.\n // // The reason we include this function is because there's a lot of\n // // opportunity for optimisation on a per-struct basis.\n // // You only need to show one element is not empty to know that the whole thing\n // // is not empty.\n // // If you know an element of your struct which should always be nonempty,\n // // you can write an impl that solely checks that that element is nonempty.\n // assert(!self.is_empty(), msg);\n // }\n\n // This default impl is overwritten by types like arrays, because there's a much\n // more efficient approach.\n fn assert_empty<let S: u32>(self, msg: str<S>) {\n assert(self.is_empty(), msg);\n }\n}\n\nimpl Empty for Field {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\n\nimpl Empty for bool {\n #[inline_always]\n fn empty() -> Self {\n false\n }\n}\n\nimpl Empty for u1 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u8 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u16 {\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u32 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u64 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u128 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\n\nimpl<T, let N: u32> Empty for [T; N]\nwhere\n T: Empty,\n{\n #[inline_always]\n fn empty() -> Self {\n [T::empty(); N]\n }\n\n fn is_empty(self) -> bool {\n self.all(|elem| elem.is_empty())\n }\n\n fn assert_empty<let S: u32>(self, msg: str<S>) -> () {\n self.for_each(|elem| elem.assert_empty(msg))\n }\n}\n\nimpl<T> Empty for [T]\nwhere\n T: Empty,\n{\n #[inline_always]\n fn empty() -> Self {\n [T::empty()]\n }\n\n fn is_empty(self) -> bool {\n self.all(|elem| elem.is_empty())\n }\n\n fn assert_empty<let S: u32>(self, msg: str<S>) -> () {\n self.for_each(|elem| elem.assert_empty(msg))\n }\n}\nimpl<A, B> Empty for (A, B)\nwhere\n A: Empty,\n B: Empty,\n{\n #[inline_always]\n fn empty() -> Self {\n (A::empty(), B::empty())\n }\n}\n\nimpl<T> Empty for Option<T>\nwhere\n T: Eq,\n{\n #[inline_always]\n fn empty() -> Self {\n Option::none()\n }\n}\n\n// pub fn is_empty<T>(item: T) -> bool\n// where\n// T: Empty,\n// {\n// item.eq(T::empty())\n// }\n\n// pub fn is_empty_array<T, let N: u32>(array: [T; N]) -> bool\n// where\n// T: Empty,\n// {\n// array.all(|elem| is_empty(elem))\n// }\n\n// pub fn assert_empty<T>(item: T) -> ()\n// where\n// T: Empty,\n// {\n// assert(item.eq(T::empty()))\n// }\n\n// pub fn assert_empty_array<T, let N: u32>(array: [T; N]) -> ()\n// where\n// T: Empty,\n// {\n// // A cheaper option than `is_empty_array` for if you don't need to gracefully\n// // handle a bool result.\n// // Avoids the `&` operator of `is_empty_array`'s `.all()` call.\n// for i in 0..N {\n// assert(is_empty(array[i]));\n// }\n// }\n\npub trait Hash {\n fn hash(self) -> Field;\n}\n\npub trait ToField {\n fn to_field(self) -> Field;\n}\n\nimpl ToField for Field {\n #[inline_always]\n fn to_field(self) -> Field {\n self\n }\n}\n\nimpl ToField for bool {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u1 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u8 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u16 {\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u32 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u64 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u128 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl<let N: u32> ToField for str<N> {\n #[inline_always]\n fn to_field(self) -> Field {\n assert(N < 32, \"String doesn't fit in a field, consider using Serialize instead\");\n field_from_bytes(self.as_bytes(), true)\n }\n}\n\npub trait FromField {\n fn from_field(value: Field) -> Self;\n}\n\nimpl FromField for Field {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value\n }\n}\n\nimpl FromField for bool {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value != 0\n }\n}\nimpl FromField for u1 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u1\n }\n}\nimpl FromField for u8 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u8\n }\n}\nimpl FromField for u16 {\n fn from_field(value: Field) -> Self {\n value as u16\n }\n}\nimpl FromField for u32 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u32\n }\n}\nimpl FromField for u64 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u64\n }\n}\nimpl FromField for u128 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u128\n }\n}\n\n// docs:start:serialize\n/// Trait for serializing Noir types into arrays of Fields.\n///\n/// An implementation of the Serialize trait has to follow Noir's intrinsic serialization (each member of a struct\n/// converted directly into one or more Fields without any packing or compression). This trait (and Deserialize) are\n/// typically used to communicate between Noir and TypeScript (via oracles and function arguments).\n///\n/// # On Following Noir's Intrinsic Serialization\n/// When calling a Noir function from TypeScript (TS), first the function arguments are serialized into an array\n/// of fields. This array is then included in the initial witness. Noir's intrinsic serialization is then used\n/// to deserialize the arguments from the witness. When the same Noir function is called from Noir this Serialize trait\n/// is used instead of the serialization in TS. For this reason we need to have a match between TS serialization,\n/// Noir's intrinsic serialization and the implementation of this trait. If there is a mismatch, the function calls\n/// fail with an arguments hash mismatch error message.\n///\n/// # Associated Constants\n/// * `N` - The length of the output Field array, known at compile time\n///\n/// # Example\n/// ```\n/// impl<let N: u32> Serialize for str<N> {\n/// let N: u32 = N;\n///\n/// fn serialize(self) -> [Field; Self::N] {\n/// let bytes = self.as_bytes();\n/// let mut fields = [0; Self::N];\n/// for i in 0..bytes.len() {\n/// fields[i] = bytes[i] as Field; // Each byte gets its own Field\n/// }\n/// fields\n/// }\n/// }\n/// ```\n#[derive_via(derive_serialize)]\npub trait Serialize {\n let N: u32;\n\n fn serialize(self) -> [Field; N];\n}\n// docs:end:serialize\n\nimpl<let M: u32> Serialize for str<M> {\n let N: u32 = M;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let bytes = self.as_bytes();\n let mut fields = [0; Self::N];\n for i in 0..bytes.len() {\n fields[i] = bytes[i] as Field;\n }\n fields\n }\n}\n\n/// Implementation of Deserialize for BoundedVec.\n///\n/// This implementation deserializes a BoundedVec from an array of Fields. The array contains:\n/// 1. The serialized items, each taking up T::N Fields\n/// 2. The length of the BoundedVec as the last Field\n///\n/// # Type Parameters\n/// * `T` - The type of items stored in the BoundedVec, must implement Deserialize\n/// * `M` - The maximum length of the BoundedVec\n///\n/// # Fields Array Layout\n/// [item1_field1, item1_field2, ..., item2_field1, item2_field2, ..., length]\n/// Where:\n/// - itemN_fieldM: The M-th Field of the N-th item (T::N Fields per item)\n/// - length: The number of items in the BoundedVec (1 Field)\n///\n/// Total length N = T::N * M + 1, where:\n/// - T::N is the number of Fields needed to deserialize one item\n/// - M is the maximum length of the BoundedVec\n/// - +1 is for storing the length\n///\n/// # Note\n/// Not deriving this because it's not supported to call derive_deserialize on a \"remote\" struct (and it will never\n/// be supported).\nimpl<T, let M: u32> Deserialize for BoundedVec<T, M>\nwhere\n T: Deserialize,\n{\n let N: u32 = <T as Deserialize>::N * M + 1;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n let mut new_bounded_vec: BoundedVec<T, M> = BoundedVec::new();\n\n // Length is stored in the last field as we need to match intrinsic Noir serialization and the `len` struct\n // field is after `storage` struct field (see `bounded_vec.nr` in noir-stdlib)\n let len = fields[<T as Deserialize>::N * M] as u32;\n\n for i in 0..len {\n let mut nested_fields = [0; <T as Deserialize>::N];\n for j in 0..<T as Deserialize>::N {\n nested_fields[j] = fields[i * <T as Deserialize>::N + j];\n }\n\n let item = T::deserialize(nested_fields);\n new_bounded_vec.push(item);\n }\n\n new_bounded_vec\n }\n}\n\n// This may cause issues if used as program input, because noir disallows empty arrays for program input.\n// I think this is okay because I don't foresee a unit type being used as input. But leaving this comment as a hint\n// if someone does run into this in the future.\nimpl Deserialize for () {\n let N: u32 = 0;\n\n fn deserialize(_fields: [Field; Self::N]) -> Self {\n ()\n }\n}\n\n// Note: Not deriving this because it's not supported to call derive_serialize on a \"remote\" struct (and it will never\n// be supported).\nimpl<T, let M: u32> Serialize for BoundedVec<T, M>\nwhere\n T: Serialize,\n{\n let N: u32 = <T as Serialize>::N * M + 1; // +1 for the length of the BoundedVec\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let mut fields = [0; Self::N];\n\n let storage = self.storage();\n\n for i in 0..M {\n let serialized_item = storage[i].serialize();\n\n for j in 0..<T as Serialize>::N {\n fields[i * <T as Serialize>::N + j] = serialized_item[j];\n }\n }\n\n // Length is stored in the last field as we need to match intrinsic Noir serialization and the `len` struct\n // field is after `storage` struct field (see `bounded_vec.nr` in noir-stdlib)\n fields[<T as Serialize>::N * M] = self.len() as Field;\n\n fields\n }\n}\n\n// docs:start:deserialize\n/// Trait for deserializing Noir types from arrays of Fields.\n///\n/// An implementation of the Deserialize trait has to follow Noir's intrinsic serialization (each member of a struct\n/// converted directly into one or more Fields without any packing or compression). This trait is typically used when\n/// deserializing return values from function calls in Noir. Since the same function could be called from TypeScript\n/// (TS), in which case the TS deserialization would get used, we need to have a match between the 2.\n///\n/// # Associated Constants\n/// * `N` - The length of the input Field array, known at compile time\n///\n/// # Example\n/// ```\n/// impl<let M: u32> Deserialize for str<M> {\n/// let N: u32 = M;\n///\n/// #[inline_always]\n/// fn deserialize(fields: [Field; Self::N]) -> Self {\n/// str::<Self::N>::from(fields.map(|value| value as u8))\n/// }\n/// }\n/// ```\n#[derive_via(derive_deserialize)]\npub trait Deserialize {\n let N: u32;\n\n fn deserialize(fields: [Field; N]) -> Self;\n}\n// docs:end:deserialize\n\nimpl<let M: u32> Deserialize for str<M> {\n let N: u32 = M;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n str::<Self::N>::from(fields.map(|value| value as u8))\n }\n}\n\n/// Trait for efficiently packing and unpacking Noir types into and from arrays of Fields.\n///\n/// The `Packable` trait allows types to be serialized and deserialized with a focus on minimizing the size of\n/// the resulting Field array. This trait is used when storage efficiency is critical (e.g. when storing data\n/// in the contract's public storage).\n///\n/// # Associated Constants\n/// * `N` - The length of the Field array, known at compile time\n#[derive_via(derive_packable)]\npub trait Packable {\n let N: u32;\n\n /// Packs the current value into a compact array of `Field` elements.\n fn pack(self) -> [Field; N];\n\n /// Unpacks a compact array of `Field` elements into the original value.\n fn unpack(fields: [Field; N]) -> Self;\n}\n\n#[test]\nunconstrained fn bounded_vec_serialization() {\n // Test empty BoundedVec\n let empty_vec: BoundedVec<Field, 3> = BoundedVec::from_array([]);\n let serialized = empty_vec.serialize();\n let deserialized = BoundedVec::<Field, 3>::deserialize(serialized);\n assert_eq(empty_vec, deserialized);\n assert_eq(deserialized.len(), 0);\n\n // Test partially filled BoundedVec\n let partial_vec: BoundedVec<[u32; 2], 3> = BoundedVec::from_array([[1, 2]]);\n let serialized = partial_vec.serialize();\n let deserialized = BoundedVec::<[u32; 2], 3>::deserialize(serialized);\n assert_eq(partial_vec, deserialized);\n assert_eq(deserialized.len(), 1);\n assert_eq(deserialized.get(0), [1, 2]);\n\n // Test full BoundedVec\n let full_vec: BoundedVec<[u32; 2], 3> = BoundedVec::from_array([[1, 2], [3, 4], [5, 6]]);\n let serialized = full_vec.serialize();\n let deserialized = BoundedVec::<[u32; 2], 3>::deserialize(serialized);\n assert_eq(full_vec, deserialized);\n assert_eq(deserialized.len(), 3);\n assert_eq(deserialized.get(0), [1, 2]);\n assert_eq(deserialized.get(1), [3, 4]);\n assert_eq(deserialized.get(2), [5, 6]);\n}\n"
6856
6860
  },
6857
- "391": {
6861
+ "390": {
6858
6862
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/type_packing.nr",
6859
6863
  "source": "use crate::traits::Packable;\n\nglobal BOOL_PACKED_LEN: u32 = 1;\nglobal U8_PACKED_LEN: u32 = 1;\nglobal U16_PACKED_LEN: u32 = 1;\nglobal U32_PACKED_LEN: u32 = 1;\nglobal U64_PACKED_LEN: u32 = 1;\nglobal U128_PACKED_LEN: u32 = 1;\nglobal FIELD_PACKED_LEN: u32 = 1;\nglobal I8_PACKED_LEN: u32 = 1;\nglobal I16_PACKED_LEN: u32 = 1;\nglobal I32_PACKED_LEN: u32 = 1;\nglobal I64_PACKED_LEN: u32 = 1;\n\nimpl Packable for bool {\n let N: u32 = BOOL_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> bool {\n (fields[0] as u1) != 0\n }\n}\n\nimpl Packable for u8 {\n let N: u32 = U8_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u8\n }\n}\n\nimpl Packable for u16 {\n let N: u32 = U16_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u16\n }\n}\n\nimpl Packable for u32 {\n let N: u32 = U32_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u32\n }\n}\n\nimpl Packable for u64 {\n let N: u32 = U64_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u64\n }\n}\n\nimpl Packable for u128 {\n let N: u32 = U128_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u128\n }\n}\n\nimpl Packable for Field {\n let N: u32 = FIELD_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0]\n }\n}\n\nimpl Packable for i8 {\n let N: u32 = I8_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as u8 as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u8 as i8\n }\n}\n\nimpl Packable for i16 {\n let N: u32 = I16_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as u16 as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u16 as i16\n }\n}\n\nimpl Packable for i32 {\n let N: u32 = I32_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as u32 as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u32 as i32\n }\n}\n\nimpl Packable for i64 {\n let N: u32 = I64_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as u64 as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u64 as i64\n }\n}\n\nimpl<T, let M: u32> Packable for [T; M]\nwhere\n T: Packable,\n{\n let N: u32 = M * <T as Packable>::N;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n let mut result: [Field; Self::N] = std::mem::zeroed();\n for i in 0..M {\n let serialized = self[i].pack();\n for j in 0..<T as Packable>::N {\n result[i * <T as Packable>::N + j] = serialized[j];\n }\n }\n result\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n let mut reader = crate::utils::reader::Reader::new(fields);\n let mut result: [T; M] = std::mem::zeroed();\n reader.read_struct_array::<T, <T as Packable>::N, M>(Packable::unpack, result)\n }\n}\n\n#[test]\nfn test_u16_packing() {\n let a: u16 = 10;\n assert_eq(a, u16::unpack(a.pack()));\n}\n\n#[test]\nfn test_i8_packing() {\n let a: i8 = -10;\n assert_eq(a, i8::unpack(a.pack()));\n}\n\n#[test]\nfn test_i16_packing() {\n let a: i16 = -10;\n assert_eq(a, i16::unpack(a.pack()));\n}\n\n#[test]\nfn test_i32_packing() {\n let a: i32 = -10;\n assert_eq(a, i32::unpack(a.pack()));\n}\n\n#[test]\nfn test_i64_packing() {\n let a: i64 = -10;\n assert_eq(a, i64::unpack(a.pack()));\n}\n"
6860
6864
  },
6861
- "392": {
6865
+ "391": {
6862
6866
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/type_serialization.nr",
6863
6867
  "source": "use crate::traits::{Deserialize, Serialize};\n\nglobal U1_SERIALIZED_LEN: u32 = 1;\nglobal BOOL_SERIALIZED_LEN: u32 = 1;\nglobal U8_SERIALIZED_LEN: u32 = 1;\nglobal U16_SERIALIZED_LEN: u32 = 1;\nglobal U32_SERIALIZED_LEN: u32 = 1;\nglobal U64_SERIALIZED_LEN: u32 = 1;\nglobal U128_SERIALIZED_LEN: u32 = 1;\nglobal FIELD_SERIALIZED_LEN: u32 = 1;\nglobal I8_SERIALIZED_LEN: u32 = 1;\nglobal I16_SERIALIZED_LEN: u32 = 1;\nglobal I32_SERIALIZED_LEN: u32 = 1;\nglobal I64_SERIALIZED_LEN: u32 = 1;\n\nimpl Serialize for bool {\n let N: u32 = BOOL_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for bool {\n let N: u32 = BOOL_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> bool {\n fields[0] != 0\n }\n}\n\nimpl Serialize for u1 {\n let N: u32 = U1_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u1 {\n let N: u32 = U1_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u1\n }\n}\n\nimpl Serialize for u8 {\n let N: u32 = U8_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u8 {\n let N: u32 = U8_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u8\n }\n}\n\nimpl Serialize for u16 {\n let N: u32 = U16_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u16 {\n let N: u32 = U16_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u16\n }\n}\n\nimpl Serialize for u32 {\n let N: u32 = U32_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u32 {\n let N: u32 = U32_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u32\n }\n}\n\nimpl Serialize for u64 {\n let N: u32 = U64_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u64 {\n let N: u32 = U64_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u64\n }\n}\n\nimpl Serialize for u128 {\n let N: u32 = U128_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u128 {\n let N: u32 = U128_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u128\n }\n}\n\nimpl Serialize for Field {\n let N: u32 = FIELD_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self]\n }\n}\n\nimpl Deserialize for Field {\n let N: u32 = FIELD_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0]\n }\n}\n\nimpl Serialize for i8 {\n let N: u32 = I8_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u8 as Field]\n }\n}\n\nimpl Deserialize for i8 {\n let N: u32 = I8_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u8 as i8\n }\n}\n\nimpl Serialize for i16 {\n let N: u32 = I16_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u16 as Field]\n }\n}\n\nimpl Deserialize for i16 {\n let N: u32 = I16_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u16 as i16\n }\n}\n\nimpl Serialize for i32 {\n let N: u32 = I32_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u32 as Field]\n }\n}\n\nimpl Deserialize for i32 {\n let N: u32 = I32_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u32 as i32\n }\n}\n\nimpl Serialize for i64 {\n let N: u32 = I64_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u64 as Field]\n }\n}\n\nimpl Deserialize for i64 {\n let N: u32 = I64_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u64 as i64\n }\n}\n\nimpl<T, let M: u32> Serialize for [T; M]\nwhere\n T: Serialize,\n{\n let N: u32 = <T as Serialize>::N * M;\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let mut result: [Field; _] = std::mem::zeroed();\n for i in 0..M {\n let serialized_t = self[i].serialize();\n for j in 0..<T as Serialize>::N {\n result[i * <T as Serialize>::N + j] = serialized_t[j];\n }\n }\n result\n }\n}\n\nimpl<T, let M: u32> Deserialize for [T; M]\nwhere\n T: Deserialize,\n{\n let N: u32 = <T as Deserialize>::N * M;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n let mut reader = crate::utils::reader::Reader::new(fields);\n let mut result: [T; M] = std::mem::zeroed();\n reader.read_struct_array::<T, <T as Deserialize>::N, M>(Deserialize::deserialize, result)\n }\n}\n\nimpl<T> Serialize for Option<T>\nwhere\n T: Serialize,\n{\n let N: u32 = <T as Serialize>::N + 1;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let mut result: [Field; Self::N] = std::mem::zeroed();\n\n result[0] = if self.is_some() { 1 } else { 0 };\n\n let value_serialized = self.unwrap_unchecked().serialize();\n for i in 0..<T as Serialize>::N {\n result[1 + i] = value_serialized[i];\n }\n\n result\n }\n}\n\nimpl<T> Deserialize for Option<T>\nwhere\n T: Deserialize,\n{\n let N: u32 = <T as Deserialize>::N + 1;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n if fields[0] == 1 {\n let mut value_fields = [0; <T as Deserialize>::N];\n for i in 0..<T as Deserialize>::N {\n value_fields[i] = fields[1 + i];\n }\n\n Option::some(T::deserialize(value_fields))\n } else {\n Option::none()\n }\n }\n}\n\nmod test {\n use crate::traits::{Deserialize, Serialize};\n\n #[test]\n fn u16_serialization() {\n let a: u16 = 10;\n assert_eq(a, u16::deserialize(a.serialize()));\n }\n\n #[test]\n fn i8_serialization() {\n let a: i8 = -10;\n assert_eq(a, i8::deserialize(a.serialize()));\n }\n\n #[test]\n fn i16_serialization() {\n let a: i16 = -10;\n assert_eq(a, i16::deserialize(a.serialize()));\n }\n\n #[test]\n fn i32_serialization() {\n let a: i32 = -10;\n assert_eq(a, i32::deserialize(a.serialize()));\n }\n\n #[test]\n fn i64_serialization() {\n let a: i64 = -10;\n assert_eq(a, i64::deserialize(a.serialize()));\n }\n\n #[test]\n fn option_field_serialization() {\n let opt_some = Option::some(5);\n assert_eq(Option::<_>::deserialize(opt_some.serialize()), opt_some);\n\n let opt_none = Option::none();\n assert_eq(Option::<Field>::deserialize(opt_none.serialize()), opt_none);\n }\n\n #[test]\n fn array_serialization() {\n let array = [1, 2, 3, 4];\n\n let serialized: [Field; 4] = array.serialize();\n let deserialized: [Field; 4] = Deserialize::deserialize(serialized);\n assert_eq(deserialized, array);\n }\n\n #[test]\n fn nested_array_serialization() {\n let nested_array = [[1, 2, 3, 4], [5, 6, 7, 8]];\n\n let serialized: [Field; 8] = nested_array.serialize();\n let deserialized: [[Field; 4]; 2] = Deserialize::deserialize(serialized);\n\n assert_eq(deserialized, nested_array);\n }\n\n #[test]\n fn option_array_serialization() {\n let opt_some = Option::some([2, 5]);\n assert_eq(Option::<_>::deserialize(opt_some.serialize()), opt_some);\n\n let opt_none = Option::none();\n assert_eq(Option::<Field>::deserialize(opt_none.serialize()), opt_none);\n }\n}\n"
6864
6868
  },
6865
6869
  "398": {
6866
6870
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/utils/field.nr",
6867
- "source": "// TODO: consider a dedicated sqrt.nr file, since a lot of this file relates to sqrt.\n\nglobal KNOWN_NON_RESIDUE: Field = 5; // This is a non-residue in Noir's native Field.\n\npub fn field_from_bytes<let N: u32>(bytes: [u8; N], big_endian: bool) -> Field {\n assert(bytes.len() < 32, \"field_from_bytes: N must be less than 32\");\n let mut as_field = 0;\n let mut offset = 1;\n for i in 0..N {\n let mut index = i;\n if big_endian {\n index = N - i - 1;\n }\n as_field += (bytes[index] as Field) * offset;\n offset *= 256;\n }\n\n as_field\n}\n\n// Convert a 32 byte array to a field element by truncating the final byte\npub fn field_from_bytes_32_trunc(bytes32: [u8; 32]) -> Field {\n // Convert it to a field element\n let mut v = 1;\n let mut high = 0 as Field;\n let mut low = 0 as Field;\n\n for i in 0..15 {\n // covers bytes 16..30 (31 is truncated and ignored)\n low = low + (bytes32[15 + 15 - i] as Field) * v;\n v = v * 256;\n // covers bytes 0..14\n high = high + (bytes32[14 - i] as Field) * v;\n }\n // covers byte 15\n low = low + (bytes32[15] as Field) * v;\n\n low + high * v\n}\n\n// TODO to radix returns u8, so we cannot use bigger radixes. It'd be ideal to use a radix of the maximum range-constrained integer noir supports\npub fn full_field_less_than(lhs: Field, rhs: Field) -> bool {\n lhs.lt(rhs)\n}\n\npub fn full_field_greater_than(lhs: Field, rhs: Field) -> bool {\n rhs.lt(lhs)\n}\n\npub fn min(f1: Field, f2: Field) -> Field {\n if f1.lt(f2) {\n f1\n } else {\n f2\n }\n}\n\nglobal C1: u32 = 28;\nglobal C3: Field = 40770029410420498293352137776570907027550720424234931066070132305055;\nglobal C5: Field = 19103219067921713944291392827692070036145651957329286315305642004821462161904;\n\npub fn pow(x: Field, y: Field) -> Field {\n let mut r = 1 as Field;\n let b: [u1; 254] = y.to_le_bits();\n\n for i in 0..254 {\n r *= r;\n r *= (b[254 - 1 - i] as Field) * x + (1 - b[254 - 1 - i] as Field);\n }\n\n r\n}\n\n/// Returns Option::some(sqrt) if there is a square root, and Option::none() if there isn't.\npub fn sqrt(x: Field) -> Option<Field> {\n // Safety: if the hint returns the square root of x, then we simply square it\n // check the result equals x. If x is not square, we return a value that\n // enables us to prove that fact (see the `else` clause below).\n let (is_sq, maybe_sqrt) = unsafe { __sqrt(x) };\n\n if is_sq {\n let sqrt = maybe_sqrt;\n validate_sqrt_hint(x, sqrt);\n Option::some(sqrt)\n } else {\n let not_sqrt_hint = maybe_sqrt;\n validate_not_sqrt_hint(x, not_sqrt_hint);\n Option::none()\n }\n}\n\n// Boolean indicating whether Field element is a square, i.e. whether there exists a y in Field s.t. x = y*y.\nunconstrained fn is_square(x: Field) -> bool {\n let v = pow(x, -1 / 2);\n v * (v - 1) == 0\n}\n\n// Tonelli-Shanks algorithm for computing the square root of a Field element.\n// Requires C1 = max{c: 2^c divides (p-1)}, where p is the order of Field\n// as well as C3 = (C2 - 1)/2, where C2 = (p-1)/(2^c1),\n// and C5 = ZETA^C2, where ZETA is a non-square element of Field.\n// These are pre-computed above as globals.\nunconstrained fn tonelli_shanks_sqrt(x: Field) -> Field {\n let mut z = pow(x, C3);\n let mut t = z * z * x;\n z *= x;\n let mut b = t;\n let mut c = C5;\n\n for i in 0..(C1 - 1) {\n for _j in 1..(C1 - i - 1) {\n b *= b;\n }\n\n z *= if b == 1 { 1 } else { c };\n\n c *= c;\n\n t *= if b == 1 { 1 } else { c };\n\n b = t;\n }\n\n z\n}\n\n// NB: this doesn't return an option, because in the case of there _not_ being a square root, we still want to return a field element that allows us to then assert in the _constrained_ sqrt function that there is no sqrt.\nunconstrained fn __sqrt(x: Field) -> (bool, Field) {\n let is_sq = is_square(x);\n if is_sq {\n let sqrt = tonelli_shanks_sqrt(x);\n (true, sqrt)\n } else {\n // Demonstrate that x is not a square (a.k.a. a \"quadratic non-residue\").\n // Facts:\n // The Legendre symbol (\"LS\") of x, is x^((p-1)/2) (mod p).\n // - If x is a square, LS(x) = 1\n // - If x is not a square, LS(x) = -1\n // - If x = 0, LS(x) = 0.\n //\n // Hence:\n // sq * sq = sq // 1 * 1 = 1\n // non-sq * non-sq = sq // -1 * -1 = 1\n // sq * non-sq = non-sq // -1 * 1 = -1\n //\n // See: https://en.wikipedia.org/wiki/Legendre_symbol\n let demo_x_not_square = x * KNOWN_NON_RESIDUE;\n let not_sqrt = tonelli_shanks_sqrt(demo_x_not_square);\n (false, not_sqrt)\n }\n}\n\nfn validate_sqrt_hint(x: Field, hint: Field) {\n assert(hint * hint == x, f\"The claimed_sqrt {hint} is not the sqrt of x {x}\");\n}\n\nfn validate_not_sqrt_hint(x: Field, hint: Field) {\n // We need this assertion, because x = 0 would pass the other assertions in this\n // function, and we don't want people to be able to prove that 0 is not square!\n assert(x != 0, \"0 has a square root; you cannot claim it is not square\");\n // Demonstrate that x is not a square (a.k.a. a \"quadratic non-residue\").\n //\n // Facts:\n // The Legendre symbol (\"LS\") of x, is x^((p-1)/2) (mod p).\n // - If x is a square, LS(x) = 1\n // - If x is not a square, LS(x) = -1\n // - If x = 0, LS(x) = 0.\n //\n // Hence:\n // 1. sq * sq = sq // 1 * 1 = 1\n // 2. non-sq * non-sq = sq // -1 * -1 = 1\n // 3. sq * non-sq = non-sq // -1 * 1 = -1\n //\n // See: https://en.wikipedia.org/wiki/Legendre_symbol\n //\n // We want to demonstrate that this below multiplication falls under bullet-point (2):\n let demo_x_not_square = x * KNOWN_NON_RESIDUE;\n // I.e. we want to demonstrate that `demo_x_not_square` has Legendre symbol 1\n // (i.e. that it is a square), so we prove that it is square below.\n // Why do we want to prove that it has LS 1?\n // Well, since it was computed with a known-non-residue, its squareness implies we're\n // in case 2 (something multiplied by a known-non-residue yielding a result which\n // has a LS of 1), which implies that x must be a non-square. The unconstrained\n // function gave us the sqrt of demo_x_not_square, so all we need to do is\n // assert its squareness:\n assert(\n hint * hint == demo_x_not_square,\n f\"The hint {hint} does not demonstrate that {x} is not a square\",\n );\n}\n\n#[test]\nunconstrained fn bytes_field_test() {\n // Tests correctness of field_from_bytes_32_trunc against existing methods\n // Bytes representing 0x543e0a6642ffeb8039296861765a53407bba62bd1c97ca43374de950bbe0a7\n let inputs = [\n 84, 62, 10, 102, 66, 255, 235, 128, 57, 41, 104, 97, 118, 90, 83, 64, 123, 186, 98, 189, 28,\n 151, 202, 67, 55, 77, 233, 80, 187, 224, 167,\n ];\n let field = field_from_bytes(inputs, true);\n let return_bytes: [u8; 31] = field.to_be_bytes();\n assert_eq(inputs, return_bytes);\n // 32 bytes - we remove the final byte, and check it matches the field\n let inputs2 = [\n 84, 62, 10, 102, 66, 255, 235, 128, 57, 41, 104, 97, 118, 90, 83, 64, 123, 186, 98, 189, 28,\n 151, 202, 67, 55, 77, 233, 80, 187, 224, 167, 158,\n ];\n let field2 = field_from_bytes_32_trunc(inputs2);\n let return_bytes2: [u8; 31] = field2.to_be_bytes();\n\n assert_eq(return_bytes2, return_bytes);\n assert_eq(field2, field);\n}\n\n#[test]\nunconstrained fn max_field_test() {\n // Tests the hardcoded value in constants.nr vs underlying modulus\n // NB: We can't use 0-1 in constants.nr as it will be transpiled incorrectly to ts and sol constants files\n let max_value = crate::constants::MAX_FIELD_VALUE;\n assert_eq(max_value, 0 - 1);\n // modulus == 0 is tested elsewhere, so below is more of a sanity check\n let max_bytes: [u8; 32] = max_value.to_be_bytes();\n let mod_bytes = std::field::modulus_be_bytes();\n for i in 0..31 {\n assert_eq(max_bytes[i], mod_bytes[i]);\n }\n assert_eq(max_bytes[31], mod_bytes[31] - 1);\n}\n\n#[test]\nunconstrained fn sqrt_valid_test() {\n let x = 16; // examples: 16, 9, 25, 81\n let result = sqrt(x);\n assert(result.is_some());\n assert_eq(result.unwrap() * result.unwrap(), x);\n}\n\n#[test]\nunconstrained fn sqrt_invalid_test() {\n let x = KNOWN_NON_RESIDUE; // has no square root in the field\n let result = sqrt(x);\n assert(result.is_none());\n}\n\n#[test]\nunconstrained fn sqrt_zero_test() {\n let result = sqrt(0);\n assert(result.is_some());\n assert_eq(result.unwrap(), 0);\n}\n\n#[test]\nunconstrained fn sqrt_one_test() {\n let result = sqrt(1);\n assert(result.is_some());\n assert_eq(result.unwrap() * result.unwrap(), 1);\n}\n\n#[test]\nunconstrained fn field_from_bytes_empty_test() {\n let empty: [u8; 0] = [];\n let result = field_from_bytes(empty, true);\n assert_eq(result, 0);\n\n let result_le = field_from_bytes(empty, false);\n assert_eq(result_le, 0);\n}\n\n#[test]\nunconstrained fn field_from_bytes_little_endian_test() {\n // Test little-endian conversion: [0x01, 0x02] should be 0x0201 = 513\n let bytes = [0x01, 0x02];\n let result_le = field_from_bytes(bytes, false);\n assert_eq(result_le, 0x0201);\n\n // Compare with big-endian: [0x01, 0x02] should be 0x0102 = 258\n let result_be = field_from_bytes(bytes, true);\n assert_eq(result_be, 0x0102);\n}\n\n#[test]\nunconstrained fn pow_test() {\n assert_eq(pow(2, 0), 1);\n assert_eq(pow(2, 1), 2);\n assert_eq(pow(2, 10), 1024);\n assert_eq(pow(3, 5), 243);\n assert_eq(pow(0, 5), 0);\n assert_eq(pow(1, 100), 1);\n}\n\n#[test]\nunconstrained fn min_test() {\n assert_eq(min(5, 10), 5);\n assert_eq(min(10, 5), 5);\n assert_eq(min(7, 7), 7);\n assert_eq(min(0, 1), 0);\n}\n\n#[test]\nunconstrained fn full_field_comparison_test() {\n assert(full_field_less_than(5, 10));\n assert(!full_field_less_than(10, 5));\n assert(!full_field_less_than(5, 5));\n\n assert(full_field_greater_than(10, 5));\n assert(!full_field_greater_than(5, 10));\n assert(!full_field_greater_than(5, 5));\n}\n\n#[test]\nunconstrained fn sqrt_has_two_roots_test() {\n // Every square has two roots: r and -r (i.e., p - r)\n // sqrt(16) can return 4 or -4\n let x = 16;\n let result = sqrt(x).unwrap();\n assert(result * result == x);\n // The other root is -result\n let other_root = 0 - result;\n assert(other_root * other_root == x);\n // Verify they are different (unless x = 0)\n assert(result != other_root);\n\n // Same for 9: roots are 3 and -3\n let y = 9;\n let result_y = sqrt(y).unwrap();\n assert(result_y * result_y == y);\n let other_root_y = 0 - result_y;\n assert(other_root_y * other_root_y == y);\n assert(result_y != other_root_y);\n}\n\n#[test]\nunconstrained fn sqrt_negative_one_test() {\n let x = 0 - 1;\n let result = sqrt(x);\n assert(result.unwrap() == 0x30644e72e131a029048b6e193fd841045cea24f6fd736bec231204708f703636);\n}\n\n#[test]\nunconstrained fn validate_sqrt_hint_valid_test() {\n // 4 is a valid sqrt of 16\n validate_sqrt_hint(16, 4);\n // -4 is also a valid sqrt of 16\n validate_sqrt_hint(16, 0 - 4);\n // 0 is a valid sqrt of 0\n validate_sqrt_hint(0, 0);\n // 1 is a valid sqrt of 1\n validate_sqrt_hint(1, 1);\n // -1 is also a valid sqrt of 1\n validate_sqrt_hint(1, 0 - 1);\n}\n\n#[test(should_fail_with = \"is not the sqrt of x\")]\nunconstrained fn validate_sqrt_hint_invalid_test() {\n // 5 is not a valid sqrt of 16\n validate_sqrt_hint(16, 5);\n}\n\n#[test]\nunconstrained fn validate_not_sqrt_hint_valid_test() {\n // 5 (KNOWN_NON_RESIDUE) is not a square.\n let x = KNOWN_NON_RESIDUE;\n let hint = tonelli_shanks_sqrt(x * KNOWN_NON_RESIDUE);\n validate_not_sqrt_hint(x, hint);\n}\n\n#[test(should_fail_with = \"0 has a square root\")]\nunconstrained fn validate_not_sqrt_hint_zero_test() {\n // 0 has a square root, so we cannot claim it is not square\n validate_not_sqrt_hint(0, 0);\n}\n\n#[test(should_fail_with = \"does not demonstrate that\")]\nunconstrained fn validate_not_sqrt_hint_wrong_hint_test() {\n // Provide a wrong hint for a non-square\n let x = KNOWN_NON_RESIDUE;\n validate_not_sqrt_hint(x, 123);\n}\n"
6871
+ "source": "pub fn field_from_bytes<let N: u32>(bytes: [u8; N], big_endian: bool) -> Field {\n assert(bytes.len() < 32, \"field_from_bytes: N must be less than 32\");\n let mut as_field = 0;\n let mut offset = 1;\n for i in 0..N {\n let mut index = i;\n if big_endian {\n index = N - i - 1;\n }\n as_field += (bytes[index] as Field) * offset;\n offset *= 256;\n }\n\n as_field\n}\n\n// Convert a 32 byte array to a field element by truncating the final byte\npub fn field_from_bytes_32_trunc(bytes32: [u8; 32]) -> Field {\n // Convert it to a field element\n let mut v = 1;\n let mut high = 0 as Field;\n let mut low = 0 as Field;\n\n for i in 0..15 {\n // covers bytes 16..30 (31 is truncated and ignored)\n low = low + (bytes32[15 + 15 - i] as Field) * v;\n v = v * 256;\n // covers bytes 0..14\n high = high + (bytes32[14 - i] as Field) * v;\n }\n // covers byte 15\n low = low + (bytes32[15] as Field) * v;\n\n low + high * v\n}\n\n// TODO to radix returns u8, so we cannot use bigger radixes. It'd be ideal to use a radix of the maximum range-constrained integer noir supports\npub fn full_field_less_than(lhs: Field, rhs: Field) -> bool {\n lhs.lt(rhs)\n}\n\npub fn full_field_greater_than(lhs: Field, rhs: Field) -> bool {\n rhs.lt(lhs)\n}\n\npub fn min(f1: Field, f2: Field) -> Field {\n if f1.lt(f2) {\n f1\n } else {\n f2\n }\n}\n\n// TODO: write doc-comments and tests for these magic constants.\n\nglobal KNOWN_NON_RESIDUE: Field = 5; // This is a non-residue in Noir's native Field.\nglobal C1: u32 = 28;\nglobal C3: Field = 40770029410420498293352137776570907027550720424234931066070132305055;\nglobal C5: Field = 19103219067921713944291392827692070036145651957329286315305642004821462161904;\n\npub fn pow(x: Field, y: Field) -> Field {\n let mut r = 1 as Field;\n let b: [u1; 254] = y.to_le_bits();\n\n for i in 0..254 {\n r *= r;\n r *= (b[254 - 1 - i] as Field) * x + (1 - b[254 - 1 - i] as Field);\n }\n\n r\n}\n\n/// Returns Option::some(sqrt) if there is a square root, and Option::none() if there isn't.\npub fn sqrt(x: Field) -> Option<Field> {\n // Safety: if the hint returns the square root of x, then we simply square it\n // check the result equals x. If x is not square, we return a value that\n // enables us to prove that fact (see the `else` clause below).\n let (is_sq, maybe_sqrt) = unsafe { __sqrt(x) };\n\n if is_sq {\n let sqrt = maybe_sqrt;\n validate_sqrt_hint(x, sqrt);\n Option::some(sqrt)\n } else {\n let not_sqrt_hint = maybe_sqrt;\n validate_not_sqrt_hint(x, not_sqrt_hint);\n Option::none()\n }\n}\n\n// Boolean indicating whether Field element is a square, i.e. whether there exists a y in Field s.t. x = y*y.\nunconstrained fn is_square(x: Field) -> bool {\n let v = pow(x, -1 / 2);\n v * (v - 1) == 0\n}\n\n// Tonelli-Shanks algorithm for computing the square root of a Field element.\n// Requires C1 = max{c: 2^c divides (p-1)}, where p is the order of Field\n// as well as C3 = (C2 - 1)/2, where C2 = (p-1)/(2^c1),\n// and C5 = ZETA^C2, where ZETA is a non-square element of Field.\n// These are pre-computed above as globals.\nunconstrained fn tonelli_shanks_sqrt(x: Field) -> Field {\n let mut z = pow(x, C3);\n let mut t = z * z * x;\n z *= x;\n let mut b = t;\n let mut c = C5;\n\n for i in 0..(C1 - 1) {\n for _j in 1..(C1 - i - 1) {\n b *= b;\n }\n\n z *= if b == 1 { 1 } else { c };\n\n c *= c;\n\n t *= if b == 1 { 1 } else { c };\n\n b = t;\n }\n\n z\n}\n\n// NB: this doesn't return an option, because in the case of there _not_ being a square root, we still want to return a field element that allows us to then assert in the _constrained_ sqrt function that there is no sqrt.\nunconstrained fn __sqrt(x: Field) -> (bool, Field) {\n let is_sq = is_square(x);\n if is_sq {\n let sqrt = tonelli_shanks_sqrt(x);\n (true, sqrt)\n } else {\n // Demonstrate that x is not a square (a.k.a. a \"quadratic non-residue\").\n // Facts:\n // The Legendre symbol (\"LS\") of x, is x^((p-1)/2) (mod p).\n // - If x is a square, LS(x) = 1\n // - If x is not a square, LS(x) = -1\n // - If x = 0, LS(x) = 0.\n //\n // Hence:\n // sq * sq = sq // 1 * 1 = 1\n // non-sq * non-sq = sq // -1 * -1 = 1\n // sq * non-sq = non-sq // -1 * 1 = -1\n //\n // See: https://en.wikipedia.org/wiki/Legendre_symbol\n let demo_x_not_square = x * KNOWN_NON_RESIDUE;\n let not_sqrt = tonelli_shanks_sqrt(demo_x_not_square);\n (false, not_sqrt)\n }\n}\n\nfn validate_sqrt_hint(x: Field, hint: Field) {\n assert(hint * hint == x, f\"The claimed_sqrt {hint} is not the sqrt of x {x}\");\n}\n\nfn validate_not_sqrt_hint(x: Field, hint: Field) {\n // We need this assertion, because x = 0 would pass the other assertions in this\n // function, and we don't want people to be able to prove that 0 is not square!\n assert(x != 0, \"0 has a square root; you cannot claim it is not square\");\n // Demonstrate that x is not a square (a.k.a. a \"quadratic non-residue\").\n //\n // Facts:\n // The Legendre symbol (\"LS\") of x, is x^((p-1)/2) (mod p).\n // - If x is a square, LS(x) = 1\n // - If x is not a square, LS(x) = -1\n // - If x = 0, LS(x) = 0.\n //\n // Hence:\n // 1. sq * sq = sq // 1 * 1 = 1\n // 2. non-sq * non-sq = sq // -1 * -1 = 1\n // 3. sq * non-sq = non-sq // -1 * 1 = -1\n //\n // See: https://en.wikipedia.org/wiki/Legendre_symbol\n //\n // We want to demonstrate that this below multiplication falls under bullet-point (2):\n let demo_x_not_square = x * KNOWN_NON_RESIDUE;\n // I.e. we want to demonstrate that `demo_x_not_square` has Legendre symbol 1\n // (i.e. that it is a square), so we prove that it is square below.\n // Why do we want to prove that it has LS 1?\n // Well, since it was computed with a known-non-residue, its squareness implies we're\n // in case 2 (something multiplied by a known-non-residue yielding a result which\n // has a LS of 1), which implies that x must be a non-square. The unconstrained\n // function gave us the sqrt of demo_x_not_square, so all we need to do is\n // assert its squareness:\n assert(\n hint * hint == demo_x_not_square,\n f\"The hint {hint} does not demonstrate that {x} is not a square\",\n );\n}\n\n#[test]\nunconstrained fn bytes_field_test() {\n // Tests correctness of field_from_bytes_32_trunc against existing methods\n // Bytes representing 0x543e0a6642ffeb8039296861765a53407bba62bd1c97ca43374de950bbe0a7\n let inputs = [\n 84, 62, 10, 102, 66, 255, 235, 128, 57, 41, 104, 97, 118, 90, 83, 64, 123, 186, 98, 189, 28,\n 151, 202, 67, 55, 77, 233, 80, 187, 224, 167,\n ];\n let field = field_from_bytes(inputs, true);\n let return_bytes: [u8; 31] = field.to_be_bytes();\n assert_eq(inputs, return_bytes);\n // 32 bytes - we remove the final byte, and check it matches the field\n let inputs2 = [\n 84, 62, 10, 102, 66, 255, 235, 128, 57, 41, 104, 97, 118, 90, 83, 64, 123, 186, 98, 189, 28,\n 151, 202, 67, 55, 77, 233, 80, 187, 224, 167, 158,\n ];\n let field2 = field_from_bytes_32_trunc(inputs2);\n let return_bytes2: [u8; 31] = field2.to_be_bytes();\n\n assert_eq(return_bytes2, return_bytes);\n assert_eq(field2, field);\n}\n\n#[test]\nunconstrained fn max_field_test() {\n // Tests the hardcoded value in constants.nr vs underlying modulus\n // NB: We can't use 0-1 in constants.nr as it will be transpiled incorrectly to ts and sol constants files\n let max_value = crate::constants::MAX_FIELD_VALUE;\n assert_eq(max_value, 0 - 1);\n // modulus == 0 is tested elsewhere, so below is more of a sanity check\n let max_bytes: [u8; 32] = max_value.to_be_bytes();\n let mod_bytes = std::field::modulus_be_bytes();\n for i in 0..31 {\n assert_eq(max_bytes[i], mod_bytes[i]);\n }\n assert_eq(max_bytes[31], mod_bytes[31] - 1);\n}\n\n#[test]\nunconstrained fn sqrt_valid_test() {\n let x = 16; // examples: 16, 9, 25, 81\n let result = sqrt(x);\n assert(result.is_some());\n assert_eq(result.unwrap() * result.unwrap(), x);\n}\n\n#[test]\nunconstrained fn sqrt_invalid_test() {\n let x = KNOWN_NON_RESIDUE; // has no square root in the field\n let result = sqrt(x);\n assert(result.is_none());\n}\n\n#[test]\nunconstrained fn sqrt_zero_test() {\n let result = sqrt(0);\n assert(result.is_some());\n assert_eq(result.unwrap(), 0);\n}\n\n#[test]\nunconstrained fn sqrt_one_test() {\n let result = sqrt(1);\n assert(result.is_some());\n assert_eq(result.unwrap() * result.unwrap(), 1);\n}\n\n#[test]\nunconstrained fn field_from_bytes_empty_test() {\n let empty: [u8; 0] = [];\n let result = field_from_bytes(empty, true);\n assert_eq(result, 0);\n\n let result_le = field_from_bytes(empty, false);\n assert_eq(result_le, 0);\n}\n\n#[test]\nunconstrained fn field_from_bytes_little_endian_test() {\n // Test little-endian conversion: [0x01, 0x02] should be 0x0201 = 513\n let bytes = [0x01, 0x02];\n let result_le = field_from_bytes(bytes, false);\n assert_eq(result_le, 0x0201);\n\n // Compare with big-endian: [0x01, 0x02] should be 0x0102 = 258\n let result_be = field_from_bytes(bytes, true);\n assert_eq(result_be, 0x0102);\n}\n\n#[test]\nunconstrained fn pow_test() {\n assert_eq(pow(2, 0), 1);\n assert_eq(pow(2, 1), 2);\n assert_eq(pow(2, 10), 1024);\n assert_eq(pow(3, 5), 243);\n assert_eq(pow(0, 5), 0);\n assert_eq(pow(1, 100), 1);\n}\n\n#[test]\nunconstrained fn min_test() {\n assert_eq(min(5, 10), 5);\n assert_eq(min(10, 5), 5);\n assert_eq(min(7, 7), 7);\n assert_eq(min(0, 1), 0);\n}\n\n#[test]\nunconstrained fn full_field_comparison_test() {\n assert(full_field_less_than(5, 10));\n assert(!full_field_less_than(10, 5));\n assert(!full_field_less_than(5, 5));\n\n assert(full_field_greater_than(10, 5));\n assert(!full_field_greater_than(5, 10));\n assert(!full_field_greater_than(5, 5));\n}\n\n#[test]\nunconstrained fn sqrt_has_two_roots_test() {\n // Every square has two roots: r and -r (i.e., p - r)\n // sqrt(16) can return 4 or -4\n let x = 16;\n let result = sqrt(x).unwrap();\n assert(result * result == x);\n // The other root is -result\n let other_root = 0 - result;\n assert(other_root * other_root == x);\n // Verify they are different (unless x = 0)\n assert(result != other_root);\n\n // Same for 9: roots are 3 and -3\n let y = 9;\n let result_y = sqrt(y).unwrap();\n assert(result_y * result_y == y);\n let other_root_y = 0 - result_y;\n assert(other_root_y * other_root_y == y);\n assert(result_y != other_root_y);\n}\n\n#[test]\nunconstrained fn sqrt_negative_one_test() {\n let x = 0 - 1;\n let result = sqrt(x);\n assert(result.unwrap() == 0x30644e72e131a029048b6e193fd841045cea24f6fd736bec231204708f703636);\n}\n\n#[test]\nunconstrained fn validate_sqrt_hint_valid_test() {\n // 4 is a valid sqrt of 16\n validate_sqrt_hint(16, 4);\n // -4 is also a valid sqrt of 16\n validate_sqrt_hint(16, 0 - 4);\n // 0 is a valid sqrt of 0\n validate_sqrt_hint(0, 0);\n // 1 is a valid sqrt of 1\n validate_sqrt_hint(1, 1);\n // -1 is also a valid sqrt of 1\n validate_sqrt_hint(1, 0 - 1);\n}\n\n#[test(should_fail_with = \"is not the sqrt of x\")]\nunconstrained fn validate_sqrt_hint_invalid_test() {\n // 5 is not a valid sqrt of 16\n validate_sqrt_hint(16, 5);\n}\n\n#[test]\nunconstrained fn validate_not_sqrt_hint_valid_test() {\n // 5 (KNOWN_NON_RESIDUE) is not a square.\n let x = KNOWN_NON_RESIDUE;\n let hint = tonelli_shanks_sqrt(x * KNOWN_NON_RESIDUE);\n validate_not_sqrt_hint(x, hint);\n}\n\n#[test(should_fail_with = \"0 has a square root\")]\nunconstrained fn validate_not_sqrt_hint_zero_test() {\n // 0 has a square root, so we cannot claim it is not square\n validate_not_sqrt_hint(0, 0);\n}\n\n#[test(should_fail_with = \"does not demonstrate that\")]\nunconstrained fn validate_not_sqrt_hint_wrong_hint_test() {\n // Provide a wrong hint for a non-square\n let x = KNOWN_NON_RESIDUE;\n validate_not_sqrt_hint(x, 123);\n}\n"
6868
6872
  },
6869
6873
  "402": {
6870
6874
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/utils/reader.nr",
@@ -6884,7 +6888,7 @@
6884
6888
  },
6885
6889
  "5": {
6886
6890
  "path": "std/cmp.nr",
6887
- "source": "use crate::meta::derive_via;\n\n#[derive_via(derive_eq)]\n// docs:start:eq-trait\npub trait Eq {\n fn eq(self, other: Self) -> bool;\n}\n// docs:end:eq-trait\n\n// docs:start:derive_eq\ncomptime fn derive_eq(s: TypeDefinition) -> Quoted {\n let signature = quote { fn eq(_self: Self, _other: Self) -> bool };\n let for_each_field = |name| quote { (_self.$name == _other.$name) };\n let body = |fields| {\n if s.fields_as_written().len() == 0 {\n quote { true }\n } else {\n fields\n }\n };\n crate::meta::make_trait_impl(\n s,\n quote { $crate::cmp::Eq },\n signature,\n for_each_field,\n quote { & },\n body,\n )\n}\n// docs:end:derive_eq\n\nimpl Eq for Field {\n fn eq(self, other: Field) -> bool {\n self == other\n }\n}\n\nimpl Eq for u128 {\n fn eq(self, other: u128) -> bool {\n self == other\n }\n}\nimpl Eq for u64 {\n fn eq(self, other: u64) -> bool {\n self == other\n }\n}\nimpl Eq for u32 {\n fn eq(self, other: u32) -> bool {\n self == other\n }\n}\nimpl Eq for u16 {\n fn eq(self, other: u16) -> bool {\n self == other\n }\n}\nimpl Eq for u8 {\n fn eq(self, other: u8) -> bool {\n self == other\n }\n}\nimpl Eq for u1 {\n fn eq(self, other: u1) -> bool {\n self == other\n }\n}\n\nimpl Eq for i8 {\n fn eq(self, other: i8) -> bool {\n self == other\n }\n}\nimpl Eq for i16 {\n fn eq(self, other: i16) -> bool {\n self == other\n }\n}\nimpl Eq for i32 {\n fn eq(self, other: i32) -> bool {\n self == other\n }\n}\nimpl Eq for i64 {\n fn eq(self, other: i64) -> bool {\n self == other\n }\n}\n\nimpl Eq for () {\n fn eq(_self: Self, _other: ()) -> bool {\n true\n }\n}\nimpl Eq for bool {\n fn eq(self, other: bool) -> bool {\n self == other\n }\n}\n\nimpl<T, let N: u32> Eq for [T; N]\nwhere\n T: Eq,\n{\n fn eq(self, other: [T; N]) -> bool {\n let mut result = true;\n for i in 0..self.len() {\n result &= self[i].eq(other[i]);\n }\n result\n }\n}\n\nimpl<T> Eq for [T]\nwhere\n T: Eq,\n{\n fn eq(self, other: [T]) -> bool {\n let mut result = self.len() == other.len();\n if result {\n for i in 0..self.len() {\n result &= self[i].eq(other[i]);\n }\n }\n result\n }\n}\n\nimpl<let N: u32> Eq for str<N> {\n fn eq(self, other: str<N>) -> bool {\n let self_bytes = self.as_bytes();\n let other_bytes = other.as_bytes();\n self_bytes == other_bytes\n }\n}\n\nimpl<A, B> Eq for (A, B)\nwhere\n A: Eq,\n B: Eq,\n{\n fn eq(self, other: (A, B)) -> bool {\n self.0.eq(other.0) & self.1.eq(other.1)\n }\n}\n\nimpl<A, B, C> Eq for (A, B, C)\nwhere\n A: Eq,\n B: Eq,\n C: Eq,\n{\n fn eq(self, other: (A, B, C)) -> bool {\n self.0.eq(other.0) & self.1.eq(other.1) & self.2.eq(other.2)\n }\n}\n\nimpl<A, B, C, D> Eq for (A, B, C, D)\nwhere\n A: Eq,\n B: Eq,\n C: Eq,\n D: Eq,\n{\n fn eq(self, other: (A, B, C, D)) -> bool {\n self.0.eq(other.0) & self.1.eq(other.1) & self.2.eq(other.2) & self.3.eq(other.3)\n }\n}\n\nimpl<A, B, C, D, E> Eq for (A, B, C, D, E)\nwhere\n A: Eq,\n B: Eq,\n C: Eq,\n D: Eq,\n E: Eq,\n{\n fn eq(self, other: (A, B, C, D, E)) -> bool {\n self.0.eq(other.0)\n & self.1.eq(other.1)\n & self.2.eq(other.2)\n & self.3.eq(other.3)\n & self.4.eq(other.4)\n }\n}\n\nimpl Eq for Ordering {\n fn eq(self, other: Ordering) -> bool {\n self.result == other.result\n }\n}\n\n// Noir doesn't have enums yet so we emulate (Lt | Eq | Gt) with a struct\n// that has 3 public functions for constructing the struct.\npub struct Ordering {\n result: Field,\n}\n\nimpl Ordering {\n // Implementation note: 0, 1, and 2 for Lt, Eq, and Gt are built\n // into the compiler, do not change these without also updating\n // the compiler itself!\n pub fn less() -> Ordering {\n Ordering { result: 0 }\n }\n\n pub fn equal() -> Ordering {\n Ordering { result: 1 }\n }\n\n pub fn greater() -> Ordering {\n Ordering { result: 2 }\n }\n}\n\n#[derive_via(derive_ord)]\n// docs:start:ord-trait\npub trait Ord {\n fn cmp(self, other: Self) -> Ordering;\n}\n// docs:end:ord-trait\n\n// docs:start:derive_ord\ncomptime fn derive_ord(s: TypeDefinition) -> Quoted {\n let name = quote { $crate::cmp::Ord };\n let signature = quote { fn cmp(_self: Self, _other: Self) -> $crate::cmp::Ordering };\n let for_each_field = |name| quote {\n if result == $crate::cmp::Ordering::equal() {\n result = _self.$name.cmp(_other.$name);\n }\n };\n let body = |fields| quote {\n let mut result = $crate::cmp::Ordering::equal();\n $fields\n result\n };\n crate::meta::make_trait_impl(s, name, signature, for_each_field, quote {}, body)\n}\n// docs:end:derive_ord\n\n// Note: Field deliberately does not implement Ord\n\nimpl Ord for u128 {\n fn cmp(self, other: u128) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\nimpl Ord for u64 {\n fn cmp(self, other: u64) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for u32 {\n fn cmp(self, other: u32) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for u16 {\n fn cmp(self, other: u16) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for u8 {\n fn cmp(self, other: u8) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for i8 {\n fn cmp(self, other: i8) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for i16 {\n fn cmp(self, other: i16) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for i32 {\n fn cmp(self, other: i32) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for i64 {\n fn cmp(self, other: i64) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for () {\n fn cmp(_self: Self, _other: ()) -> Ordering {\n Ordering::equal()\n }\n}\n\nimpl Ord for bool {\n fn cmp(self, other: bool) -> Ordering {\n if self {\n if other {\n Ordering::equal()\n } else {\n Ordering::greater()\n }\n } else if other {\n Ordering::less()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl<T, let N: u32> Ord for [T; N]\nwhere\n T: Ord,\n{\n // The first non-equal element of both arrays determines\n // the ordering for the whole array.\n fn cmp(self, other: [T; N]) -> Ordering {\n let mut result = Ordering::equal();\n for i in 0..self.len() {\n if result == Ordering::equal() {\n result = self[i].cmp(other[i]);\n }\n }\n result\n }\n}\n\nimpl<T> Ord for [T]\nwhere\n T: Ord,\n{\n // The first non-equal element of both arrays determines\n // the ordering for the whole array.\n fn cmp(self, other: [T]) -> Ordering {\n let self_len = self.len();\n let other_len = other.len();\n let min_len = if self_len < other_len {\n self_len\n } else {\n other_len\n };\n\n let mut result = Ordering::equal();\n for i in 0..min_len {\n if result == Ordering::equal() {\n result = self[i].cmp(other[i]);\n }\n }\n\n if result != Ordering::equal() {\n result\n } else {\n self_len.cmp(other_len)\n }\n }\n}\n\nimpl<A, B> Ord for (A, B)\nwhere\n A: Ord,\n B: Ord,\n{\n fn cmp(self, other: (A, B)) -> Ordering {\n let result = self.0.cmp(other.0);\n\n if result != Ordering::equal() {\n result\n } else {\n self.1.cmp(other.1)\n }\n }\n}\n\nimpl<A, B, C> Ord for (A, B, C)\nwhere\n A: Ord,\n B: Ord,\n C: Ord,\n{\n fn cmp(self, other: (A, B, C)) -> Ordering {\n let mut result = self.0.cmp(other.0);\n\n if result == Ordering::equal() {\n result = self.1.cmp(other.1);\n }\n\n if result == Ordering::equal() {\n result = self.2.cmp(other.2);\n }\n\n result\n }\n}\n\nimpl<A, B, C, D> Ord for (A, B, C, D)\nwhere\n A: Ord,\n B: Ord,\n C: Ord,\n D: Ord,\n{\n fn cmp(self, other: (A, B, C, D)) -> Ordering {\n let mut result = self.0.cmp(other.0);\n\n if result == Ordering::equal() {\n result = self.1.cmp(other.1);\n }\n\n if result == Ordering::equal() {\n result = self.2.cmp(other.2);\n }\n\n if result == Ordering::equal() {\n result = self.3.cmp(other.3);\n }\n\n result\n }\n}\n\nimpl<A, B, C, D, E> Ord for (A, B, C, D, E)\nwhere\n A: Ord,\n B: Ord,\n C: Ord,\n D: Ord,\n E: Ord,\n{\n fn cmp(self, other: (A, B, C, D, E)) -> Ordering {\n let mut result = self.0.cmp(other.0);\n\n if result == Ordering::equal() {\n result = self.1.cmp(other.1);\n }\n\n if result == Ordering::equal() {\n result = self.2.cmp(other.2);\n }\n\n if result == Ordering::equal() {\n result = self.3.cmp(other.3);\n }\n\n if result == Ordering::equal() {\n result = self.4.cmp(other.4);\n }\n\n result\n }\n}\n\n// Compares and returns the maximum of two values.\n//\n// Returns the second argument if the comparison determines them to be equal.\n//\n// # Examples\n//\n// ```\n// use std::cmp;\n//\n// assert_eq(cmp::max(1, 2), 2);\n// assert_eq(cmp::max(2, 2), 2);\n// ```\npub fn max<T>(v1: T, v2: T) -> T\nwhere\n T: Ord,\n{\n if v1 > v2 {\n v1\n } else {\n v2\n }\n}\n\n// Compares and returns the minimum of two values.\n//\n// Returns the first argument if the comparison determines them to be equal.\n//\n// # Examples\n//\n// ```\n// use std::cmp;\n//\n// assert_eq(cmp::min(1, 2), 1);\n// assert_eq(cmp::min(2, 2), 2);\n// ```\npub fn min<T>(v1: T, v2: T) -> T\nwhere\n T: Ord,\n{\n if v1 > v2 {\n v2\n } else {\n v1\n }\n}\n\nmod cmp_tests {\n use super::{Eq, max, min, Ord};\n\n #[test]\n fn sanity_check_min() {\n assert_eq(min(0_u64, 1), 0);\n assert_eq(min(0_u64, 0), 0);\n assert_eq(min(1_u64, 1), 1);\n assert_eq(min(255_u8, 0), 0);\n }\n\n #[test]\n fn sanity_check_max() {\n assert_eq(max(0_u64, 1), 1);\n assert_eq(max(0_u64, 0), 0);\n assert_eq(max(1_u64, 1), 1);\n assert_eq(max(255_u8, 0), 255);\n }\n\n #[test]\n fn correctly_handles_unequal_length_vectors() {\n let vector_1 = &[0, 1, 2, 3];\n let vector_2 = &[0, 1, 2];\n assert(!vector_1.eq(vector_2));\n }\n\n #[test]\n fn lexicographic_ordering_for_vectors() {\n assert(&[2_u32].cmp(&[1_u32, 1_u32, 1_u32]) == super::Ordering::greater());\n assert(&[1_u32, 2_u32].cmp(&[1_u32, 2_u32, 3_u32]) == super::Ordering::less());\n }\n}\n"
6891
+ "source": "use crate::meta::derive_via;\n\n#[derive_via(derive_eq)]\n// docs:start:eq-trait\npub trait Eq {\n fn eq(self, other: Self) -> bool;\n}\n// docs:end:eq-trait\n\n// docs:start:derive_eq\ncomptime fn derive_eq(s: TypeDefinition) -> Quoted {\n let signature = quote { fn eq(_self: Self, _other: Self) -> bool };\n let for_each_field = |name| quote { (_self.$name == _other.$name) };\n let body = |fields| {\n if s.fields_as_written().len() == 0 {\n quote { true }\n } else {\n fields\n }\n };\n crate::meta::make_trait_impl(\n s,\n quote { $crate::cmp::Eq },\n signature,\n for_each_field,\n quote { & },\n body,\n )\n}\n// docs:end:derive_eq\n\nimpl Eq for Field {\n fn eq(self, other: Field) -> bool {\n self == other\n }\n}\n\nimpl Eq for u128 {\n fn eq(self, other: u128) -> bool {\n self == other\n }\n}\nimpl Eq for u64 {\n fn eq(self, other: u64) -> bool {\n self == other\n }\n}\nimpl Eq for u32 {\n fn eq(self, other: u32) -> bool {\n self == other\n }\n}\nimpl Eq for u16 {\n fn eq(self, other: u16) -> bool {\n self == other\n }\n}\nimpl Eq for u8 {\n fn eq(self, other: u8) -> bool {\n self == other\n }\n}\nimpl Eq for u1 {\n fn eq(self, other: u1) -> bool {\n self == other\n }\n}\n\nimpl Eq for i8 {\n fn eq(self, other: i8) -> bool {\n self == other\n }\n}\nimpl Eq for i16 {\n fn eq(self, other: i16) -> bool {\n self == other\n }\n}\nimpl Eq for i32 {\n fn eq(self, other: i32) -> bool {\n self == other\n }\n}\nimpl Eq for i64 {\n fn eq(self, other: i64) -> bool {\n self == other\n }\n}\n\nimpl Eq for () {\n fn eq(_self: Self, _other: ()) -> bool {\n true\n }\n}\nimpl Eq for bool {\n fn eq(self, other: bool) -> bool {\n self == other\n }\n}\n\nimpl<T, let N: u32> Eq for [T; N]\nwhere\n T: Eq,\n{\n fn eq(self, other: [T; N]) -> bool {\n let mut result = true;\n for i in 0..self.len() {\n result &= self[i].eq(other[i]);\n }\n result\n }\n}\n\nimpl<T> Eq for [T]\nwhere\n T: Eq,\n{\n fn eq(self, other: [T]) -> bool {\n let mut result = self.len() == other.len();\n if result {\n for i in 0..self.len() {\n result &= self[i].eq(other[i]);\n }\n }\n result\n }\n}\n\nimpl<let N: u32> Eq for str<N> {\n fn eq(self, other: str<N>) -> bool {\n let self_bytes = self.as_bytes();\n let other_bytes = other.as_bytes();\n self_bytes == other_bytes\n }\n}\n\nimpl<A, B> Eq for (A, B)\nwhere\n A: Eq,\n B: Eq,\n{\n fn eq(self, other: (A, B)) -> bool {\n self.0.eq(other.0) & self.1.eq(other.1)\n }\n}\n\nimpl<A, B, C> Eq for (A, B, C)\nwhere\n A: Eq,\n B: Eq,\n C: Eq,\n{\n fn eq(self, other: (A, B, C)) -> bool {\n self.0.eq(other.0) & self.1.eq(other.1) & self.2.eq(other.2)\n }\n}\n\nimpl<A, B, C, D> Eq for (A, B, C, D)\nwhere\n A: Eq,\n B: Eq,\n C: Eq,\n D: Eq,\n{\n fn eq(self, other: (A, B, C, D)) -> bool {\n self.0.eq(other.0) & self.1.eq(other.1) & self.2.eq(other.2) & self.3.eq(other.3)\n }\n}\n\nimpl<A, B, C, D, E> Eq for (A, B, C, D, E)\nwhere\n A: Eq,\n B: Eq,\n C: Eq,\n D: Eq,\n E: Eq,\n{\n fn eq(self, other: (A, B, C, D, E)) -> bool {\n self.0.eq(other.0)\n & self.1.eq(other.1)\n & self.2.eq(other.2)\n & self.3.eq(other.3)\n & self.4.eq(other.4)\n }\n}\n\nimpl Eq for Ordering {\n fn eq(self, other: Ordering) -> bool {\n self.result == other.result\n }\n}\n\n// Noir doesn't have enums yet so we emulate (Lt | Eq | Gt) with a struct\n// that has 3 public functions for constructing the struct.\npub struct Ordering {\n result: Field,\n}\n\nimpl Ordering {\n // Implementation note: 0, 1, and 2 for Lt, Eq, and Gt are built\n // into the compiler, do not change these without also updating\n // the compiler itself!\n pub fn less() -> Ordering {\n Ordering { result: 0 }\n }\n\n pub fn equal() -> Ordering {\n Ordering { result: 1 }\n }\n\n pub fn greater() -> Ordering {\n Ordering { result: 2 }\n }\n}\n\n#[derive_via(derive_ord)]\n// docs:start:ord-trait\npub trait Ord {\n fn cmp(self, other: Self) -> Ordering;\n}\n// docs:end:ord-trait\n\n// docs:start:derive_ord\ncomptime fn derive_ord(s: TypeDefinition) -> Quoted {\n let name = quote { $crate::cmp::Ord };\n let signature = quote { fn cmp(_self: Self, _other: Self) -> $crate::cmp::Ordering };\n let for_each_field = |name| quote {\n if result == $crate::cmp::Ordering::equal() {\n result = _self.$name.cmp(_other.$name);\n }\n };\n let body = |fields| quote {\n let mut result = $crate::cmp::Ordering::equal();\n $fields\n result\n };\n crate::meta::make_trait_impl(s, name, signature, for_each_field, quote {}, body)\n}\n// docs:end:derive_ord\n\n// Note: Field deliberately does not implement Ord\n\nimpl Ord for u128 {\n fn cmp(self, other: u128) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\nimpl Ord for u64 {\n fn cmp(self, other: u64) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for u32 {\n fn cmp(self, other: u32) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for u16 {\n fn cmp(self, other: u16) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for u8 {\n fn cmp(self, other: u8) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for i8 {\n fn cmp(self, other: i8) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for i16 {\n fn cmp(self, other: i16) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for i32 {\n fn cmp(self, other: i32) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for i64 {\n fn cmp(self, other: i64) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for () {\n fn cmp(_self: Self, _other: ()) -> Ordering {\n Ordering::equal()\n }\n}\n\nimpl Ord for bool {\n fn cmp(self, other: bool) -> Ordering {\n if self {\n if other {\n Ordering::equal()\n } else {\n Ordering::greater()\n }\n } else if other {\n Ordering::less()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl<T, let N: u32> Ord for [T; N]\nwhere\n T: Ord,\n{\n // The first non-equal element of both arrays determines\n // the ordering for the whole array.\n fn cmp(self, other: [T; N]) -> Ordering {\n let mut result = Ordering::equal();\n for i in 0..self.len() {\n if result == Ordering::equal() {\n result = self[i].cmp(other[i]);\n }\n }\n result\n }\n}\n\nimpl<T> Ord for [T]\nwhere\n T: Ord,\n{\n // The first non-equal element of both arrays determines\n // the ordering for the whole array.\n fn cmp(self, other: [T]) -> Ordering {\n let self_len = self.len();\n let other_len = other.len();\n let min_len = if self_len < other_len {\n self_len\n } else {\n other_len\n };\n\n let mut result = Ordering::equal();\n for i in 0..min_len {\n if result == Ordering::equal() {\n result = self[i].cmp(other[i]);\n }\n }\n\n if result != Ordering::equal() {\n result\n } else {\n self_len.cmp(other_len)\n }\n }\n}\n\nimpl<A, B> Ord for (A, B)\nwhere\n A: Ord,\n B: Ord,\n{\n fn cmp(self, other: (A, B)) -> Ordering {\n let result = self.0.cmp(other.0);\n\n if result != Ordering::equal() {\n result\n } else {\n self.1.cmp(other.1)\n }\n }\n}\n\nimpl<A, B, C> Ord for (A, B, C)\nwhere\n A: Ord,\n B: Ord,\n C: Ord,\n{\n fn cmp(self, other: (A, B, C)) -> Ordering {\n let mut result = self.0.cmp(other.0);\n\n if result == Ordering::equal() {\n result = self.1.cmp(other.1);\n }\n\n if result == Ordering::equal() {\n result = self.2.cmp(other.2);\n }\n\n result\n }\n}\n\nimpl<A, B, C, D> Ord for (A, B, C, D)\nwhere\n A: Ord,\n B: Ord,\n C: Ord,\n D: Ord,\n{\n fn cmp(self, other: (A, B, C, D)) -> Ordering {\n let mut result = self.0.cmp(other.0);\n\n if result == Ordering::equal() {\n result = self.1.cmp(other.1);\n }\n\n if result == Ordering::equal() {\n result = self.2.cmp(other.2);\n }\n\n if result == Ordering::equal() {\n result = self.3.cmp(other.3);\n }\n\n result\n }\n}\n\nimpl<A, B, C, D, E> Ord for (A, B, C, D, E)\nwhere\n A: Ord,\n B: Ord,\n C: Ord,\n D: Ord,\n E: Ord,\n{\n fn cmp(self, other: (A, B, C, D, E)) -> Ordering {\n let mut result = self.0.cmp(other.0);\n\n if result == Ordering::equal() {\n result = self.1.cmp(other.1);\n }\n\n if result == Ordering::equal() {\n result = self.2.cmp(other.2);\n }\n\n if result == Ordering::equal() {\n result = self.3.cmp(other.3);\n }\n\n if result == Ordering::equal() {\n result = self.4.cmp(other.4);\n }\n\n result\n }\n}\n\n// Compares and returns the maximum of two values.\n//\n// Returns the second argument if the comparison determines them to be equal.\n//\n// # Examples\n//\n// ```\n// use std::cmp;\n//\n// assert_eq(cmp::max(1, 2), 2);\n// assert_eq(cmp::max(2, 2), 2);\n// ```\npub fn max<T>(v1: T, v2: T) -> T\nwhere\n T: Ord,\n{\n if v1 > v2 {\n v1\n } else {\n v2\n }\n}\n\n// Compares and returns the minimum of two values.\n//\n// Returns the first argument if the comparison determines them to be equal.\n//\n// # Examples\n//\n// ```\n// use std::cmp;\n//\n// assert_eq(cmp::min(1, 2), 1);\n// assert_eq(cmp::min(2, 2), 2);\n// ```\npub fn min<T>(v1: T, v2: T) -> T\nwhere\n T: Ord,\n{\n if v1 > v2 {\n v2\n } else {\n v1\n }\n}\n\nmod cmp_tests {\n use super::{Eq, max, min, Ord};\n\n #[test]\n fn sanity_check_min() {\n assert_eq(min(0_u64, 1), 0);\n assert_eq(min(0_u64, 0), 0);\n assert_eq(min(1_u64, 1), 1);\n assert_eq(min(255_u8, 0), 0);\n }\n\n #[test]\n fn sanity_check_max() {\n assert_eq(max(0_u64, 1), 1);\n assert_eq(max(0_u64, 0), 0);\n assert_eq(max(1_u64, 1), 1);\n assert_eq(max(255_u8, 0), 255);\n }\n\n #[test]\n fn correctly_handles_unequal_length_vectors() {\n let vector_1 = [0, 1, 2, 3].as_vector();\n let vector_2 = [0, 1, 2].as_vector();\n assert(!vector_1.eq(vector_2));\n }\n\n #[test]\n fn lexicographic_ordering_for_vectors() {\n assert(\n [2_u32].as_vector().cmp([1_u32, 1_u32, 1_u32].as_vector())\n == super::Ordering::greater(),\n );\n assert(\n [1_u32, 2_u32].as_vector().cmp([1_u32, 2_u32, 3_u32].as_vector())\n == super::Ordering::less(),\n );\n }\n}\n"
6888
6892
  },
6889
6893
  "51": {
6890
6894
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-contracts/contracts/account/schnorr_account_contract/src/main.nr",
@@ -6904,7 +6908,7 @@
6904
6908
  },
6905
6909
  "6": {
6906
6910
  "path": "std/collections/bounded_vec.nr",
6907
- "source": "use crate::{cmp::Eq, convert::From, runtime::is_unconstrained, static_assert};\n\n/// A `BoundedVec<T, MaxLen>` is a growable storage similar to a built-in vector except that it\n/// is bounded with a maximum possible length. `BoundedVec` is also not\n/// subject to the same restrictions vectors are (notably, nested vectors are disallowed).\n///\n/// Since a BoundedVec is backed by a normal array under the hood, growing the BoundedVec by\n/// pushing an additional element is also more efficient - the length only needs to be increased\n/// by one.\n///\n/// For these reasons `BoundedVec<T, N>` should generally be preferred over vectors when there\n/// is a reasonable maximum bound that can be placed on the vector.\n///\n/// Example:\n///\n/// ```noir\n/// let mut vector: BoundedVec<Field, 10> = BoundedVec::new();\n/// for i in 0..5 {\n/// vector.push(i);\n/// }\n/// assert(vector.len() == 5);\n/// assert(vector.max_len() == 10);\n/// ```\npub struct BoundedVec<T, let MaxLen: u32> {\n storage: [T; MaxLen],\n len: u32,\n}\n\nimpl<T, let MaxLen: u32> BoundedVec<T, MaxLen> {\n /// Creates a new, empty vector of length zero.\n ///\n /// Since this container is backed by an array internally, it still needs an initial value\n /// to give each element. To resolve this, each element is zeroed internally. This value\n /// is guaranteed to be inaccessible unless `get_unchecked` is used.\n ///\n /// Example:\n ///\n /// ```noir\n /// let empty_vector: BoundedVec<Field, 10> = BoundedVec::new();\n /// assert(empty_vector.len() == 0);\n /// ```\n ///\n /// Note that whenever calling `new` the maximum length of the vector should always be specified\n /// via a type signature:\n ///\n /// ```noir\n /// fn good() -> BoundedVec<Field, 10> {\n /// // Ok! MaxLen is specified with a type annotation\n /// let v1: BoundedVec<Field, 3> = BoundedVec::new();\n /// let v2 = BoundedVec::new();\n ///\n /// // Ok! MaxLen is known from the type of `good`'s return value\n /// v2\n /// }\n ///\n /// fn bad() {\n /// // Error: Type annotation needed\n /// // The compiler can't infer `MaxLen` from the following code:\n /// let mut v3 = BoundedVec::new();\n /// v3.push(5);\n /// }\n /// ```\n ///\n /// This defaulting of `MaxLen` (and numeric generics in general) to zero may change in future noir versions\n /// but for now make sure to use type annotations when using bounded vectors. Otherwise, you will receive a\n /// constraint failure at runtime when the vec is pushed to.\n pub fn new() -> Self {\n let zeroed = crate::mem::zeroed();\n BoundedVec { storage: [zeroed; MaxLen], len: 0 }\n }\n\n /// Retrieves an element from the vector at the given index, starting from zero.\n ///\n /// If the given index is equal to or greater than the length of the vector, this\n /// will issue a constraint failure.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn foo<let N: u32>(v: BoundedVec<u32, N>) {\n /// let first = v.get(0);\n /// let last = v.get(v.len() - 1);\n /// assert(first != last);\n /// }\n /// ```\n pub fn get(self, index: u32) -> T {\n assert(index < self.len, \"Attempted to read past end of BoundedVec\");\n self.get_unchecked(index)\n }\n\n /// Retrieves an element from the vector at the given index, starting from zero, without\n /// performing a bounds check.\n ///\n /// Since this function does not perform a bounds check on length before accessing the element,\n /// it is unsafe! Use at your own risk!\n ///\n /// Example:\n ///\n /// ```noir\n /// fn sum_of_first_three<let N: u32>(v: BoundedVec<u32, N>) -> u32 {\n /// // Always ensure the length is larger than the largest\n /// // index passed to get_unchecked\n /// assert(v.len() > 2);\n /// let first = v.get_unchecked(0);\n /// let second = v.get_unchecked(1);\n /// let third = v.get_unchecked(2);\n /// first + second + third\n /// }\n /// ```\n pub fn get_unchecked(self, index: u32) -> T {\n self.storage[index]\n }\n\n /// Writes an element to the vector at the given index, starting from zero.\n ///\n /// If the given index is equal to or greater than the length of the vector, this will issue a constraint failure.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn foo<let N: u32>(v: BoundedVec<u32, N>) {\n /// let first = v.get(0);\n /// assert(first != 42);\n /// v.set(0, 42);\n /// let new_first = v.get(0);\n /// assert(new_first == 42);\n /// }\n /// ```\n pub fn set(&mut self, index: u32, value: T) {\n assert(index < self.len, \"Attempted to write past end of BoundedVec\");\n self.set_unchecked(index, value)\n }\n\n /// Writes an element to the vector at the given index, starting from zero, without performing a bounds check.\n ///\n /// Since this function does not perform a bounds check on length before accessing the element, it is unsafe! Use at your own risk!\n ///\n /// Example:\n ///\n /// ```noir\n /// fn set_unchecked_example() {\n /// let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n /// vec.extend_from_array([1, 2]);\n ///\n /// // Here we're safely writing within the valid range of `vec`\n /// // `vec` now has the value [42, 2]\n /// vec.set_unchecked(0, 42);\n ///\n /// // We can then safely read this value back out of `vec`.\n /// // Notice that we use the checked version of `get` which would prevent reading unsafe values.\n /// assert_eq(vec.get(0), 42);\n ///\n /// // We've now written past the end of `vec`.\n /// // As this index is still within the maximum potential length of `v`,\n /// // it won't cause a constraint failure.\n /// vec.set_unchecked(2, 42);\n /// println(vec);\n ///\n /// // This will write past the end of the maximum potential length of `vec`,\n /// // it will then trigger a constraint failure.\n /// vec.set_unchecked(5, 42);\n /// println(vec);\n /// }\n /// ```\n pub fn set_unchecked(&mut self, index: u32, value: T) {\n self.storage[index] = value;\n }\n\n /// Pushes an element to the end of the vector. This increases the length\n /// of the vector by one.\n ///\n /// Panics if the new length of the vector will be greater than the max length.\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut v: BoundedVec<Field, 2> = BoundedVec::new();\n ///\n /// v.push(1);\n /// v.push(2);\n ///\n /// // Panics with failed assertion \"push out of bounds\"\n /// v.push(3);\n /// ```\n pub fn push(&mut self, elem: T) {\n assert(self.len < MaxLen, \"push out of bounds\");\n\n self.storage[self.len] = elem;\n self.len += 1;\n }\n\n /// Returns the current length of this vector\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut v: BoundedVec<Field, 4> = BoundedVec::new();\n /// assert(v.len() == 0);\n ///\n /// v.push(100);\n /// assert(v.len() == 1);\n ///\n /// v.push(200);\n /// v.push(300);\n /// v.push(400);\n /// assert(v.len() == 4);\n ///\n /// let _ = v.pop();\n /// let _ = v.pop();\n /// assert(v.len() == 2);\n /// ```\n pub fn len(self) -> u32 {\n self.len\n }\n\n /// Returns the maximum length of this vector. This is always\n /// equal to the `MaxLen` parameter this vector was initialized with.\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut v: BoundedVec<Field, 5> = BoundedVec::new();\n ///\n /// assert(v.max_len() == 5);\n /// v.push(10);\n /// assert(v.max_len() == 5);\n /// ```\n pub fn max_len(_self: BoundedVec<T, MaxLen>) -> u32 {\n MaxLen\n }\n\n /// Returns the internal array within this vector.\n ///\n /// Since arrays in Noir are immutable, mutating the returned storage array will not mutate\n /// the storage held internally by this vector.\n ///\n /// Note that uninitialized elements may be zeroed out!\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut v: BoundedVec<Field, 5> = BoundedVec::new();\n ///\n /// assert(v.storage() == [0, 0, 0, 0, 0]);\n ///\n /// v.push(57);\n /// assert(v.storage() == [57, 0, 0, 0, 0]);\n /// ```\n pub fn storage(self) -> [T; MaxLen] {\n self.storage\n }\n\n /// Pushes each element from the given array to this vector.\n ///\n /// Panics if pushing each element would cause the length of this vector\n /// to exceed the maximum length.\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut vec: BoundedVec<Field, 3> = BoundedVec::new();\n /// vec.extend_from_array([2, 4]);\n ///\n /// assert(vec.len == 2);\n /// assert(vec.get(0) == 2);\n /// assert(vec.get(1) == 4);\n /// ```\n pub fn extend_from_array<let Len: u32>(&mut self, array: [T; Len]) {\n let new_len = self.len + array.len();\n assert(new_len <= MaxLen, \"extend_from_array out of bounds\");\n for i in 0..array.len() {\n self.storage[self.len + i] = array[i];\n }\n self.len = new_len;\n }\n\n /// Pushes each element from the given vector to this vector.\n ///\n /// Panics if pushing each element would cause the length of this vector\n /// to exceed the maximum length.\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut vec: BoundedVec<Field, 3> = BoundedVec::new();\n /// vec.extend_from_vector(&[2, 4]);\n ///\n /// assert(vec.len == 2);\n /// assert(vec.get(0) == 2);\n /// assert(vec.get(1) == 4);\n /// ```\n pub fn extend_from_vector(&mut self, vector: [T]) {\n let new_len = self.len + vector.len();\n assert(new_len <= MaxLen, \"extend_from_vector out of bounds\");\n for i in 0..vector.len() {\n self.storage[self.len + i] = vector[i];\n }\n self.len = new_len;\n }\n\n /// Pushes each element from the other vector to this vector. The length of\n /// the other vector is left unchanged.\n ///\n /// Panics if pushing each element would cause the length of this vector\n /// to exceed the maximum length.\n ///\n /// ```noir\n /// let mut v1: BoundedVec<Field, 5> = BoundedVec::new();\n /// let mut v2: BoundedVec<Field, 7> = BoundedVec::new();\n ///\n /// v2.extend_from_array([1, 2, 3]);\n /// v1.extend_from_bounded_vec(v2);\n ///\n /// assert(v1.storage() == [1, 2, 3, 0, 0]);\n /// assert(v2.storage() == [1, 2, 3, 0, 0, 0, 0]);\n /// ```\n pub fn extend_from_bounded_vec<let Len: u32>(&mut self, vec: BoundedVec<T, Len>) {\n let append_len = vec.len();\n let new_len = self.len + append_len;\n assert(new_len <= MaxLen, \"extend_from_bounded_vec out of bounds\");\n\n if is_unconstrained() {\n for i in 0..append_len {\n self.storage[self.len + i] = vec.get_unchecked(i);\n }\n } else {\n let mut exceeded_len = false;\n for i in 0..Len {\n exceeded_len |= i == append_len;\n if !exceeded_len {\n self.storage[self.len + i] = vec.get_unchecked(i);\n }\n }\n }\n self.len = new_len;\n }\n\n /// Creates a new vector, populating it with values derived from an array input.\n /// The maximum length of the vector is determined based on the type signature.\n ///\n /// Example:\n ///\n /// ```noir\n /// let bounded_vec: BoundedVec<Field, 10> = BoundedVec::from_array([1, 2, 3])\n /// ```\n pub fn from_array<let Len: u32>(array: [T; Len]) -> Self {\n static_assert(Len <= MaxLen, \"from array out of bounds\");\n let mut vec: BoundedVec<T, MaxLen> = BoundedVec::new();\n vec.extend_from_array(array);\n vec\n }\n\n /// Pops the element at the end of the vector. This will decrease the length\n /// of the vector by one.\n ///\n /// Panics if the vector is empty.\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut v: BoundedVec<Field, 2> = BoundedVec::new();\n /// v.push(1);\n /// v.push(2);\n ///\n /// let two = v.pop();\n /// let one = v.pop();\n ///\n /// assert(two == 2);\n /// assert(one == 1);\n ///\n /// // error: cannot pop from an empty vector\n /// let _ = v.pop();\n /// ```\n pub fn pop(&mut self) -> T {\n assert(self.len > 0, \"cannot pop from an empty vector\");\n self.len -= 1;\n\n let elem = self.storage[self.len];\n self.storage[self.len] = crate::mem::zeroed();\n elem\n }\n\n /// Returns true if the given predicate returns true for any element\n /// in this vector.\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut v: BoundedVec<u32, 3> = BoundedVec::new();\n /// v.extend_from_array([2, 4, 6]);\n ///\n /// let all_even = !v.any(|elem: u32| elem % 2 != 0);\n /// assert(all_even);\n /// ```\n pub fn any<Env>(self, predicate: fn[Env](T) -> bool) -> bool {\n let mut ret = false;\n if is_unconstrained() {\n for i in 0..self.len {\n ret |= predicate(self.storage[i]);\n }\n } else {\n let mut exceeded_len = false;\n for i in 0..MaxLen {\n exceeded_len |= i == self.len;\n if !exceeded_len {\n ret |= predicate(self.storage[i]);\n }\n }\n }\n ret\n }\n\n /// Creates a new vector of equal size by calling a closure on each element in this vector.\n ///\n /// Example:\n ///\n /// ```noir\n /// let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n /// let result = vec.map(|value| value * 2);\n ///\n /// let expected = BoundedVec::from_array([2, 4, 6, 8]);\n /// assert_eq(result, expected);\n /// ```\n pub fn map<U, Env>(self, f: fn[Env](T) -> U) -> BoundedVec<U, MaxLen> {\n let mut ret = BoundedVec::new();\n ret.len = self.len();\n\n if is_unconstrained() {\n for i in 0..self.len() {\n ret.storage[i] = f(self.get_unchecked(i));\n }\n } else {\n for i in 0..MaxLen {\n if i < self.len() {\n ret.storage[i] = f(self.get_unchecked(i));\n }\n }\n }\n\n ret\n }\n\n /// Creates a new vector of equal size by calling a closure on each element\n /// in this vector, along with its index.\n ///\n /// Example:\n ///\n /// ```noir\n /// let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n /// let result = vec.mapi(|i, value| i + value * 2);\n ///\n /// let expected = BoundedVec::from_array([2, 5, 8, 11]);\n /// assert_eq(result, expected);\n /// ```\n pub fn mapi<U, Env>(self, f: fn[Env](u32, T) -> U) -> BoundedVec<U, MaxLen> {\n let mut ret = BoundedVec::new();\n ret.len = self.len();\n\n if is_unconstrained() {\n for i in 0..self.len() {\n ret.storage[i] = f(i, self.get_unchecked(i));\n }\n } else {\n for i in 0..MaxLen {\n if i < self.len() {\n ret.storage[i] = f(i, self.get_unchecked(i));\n }\n }\n }\n\n ret\n }\n\n /// Calls a closure on each element in this vector.\n ///\n /// Example:\n ///\n /// ```noir\n /// let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n /// let mut result = BoundedVec::<u32, 4>::new();\n /// vec.for_each(|value| result.push(value * 2));\n ///\n /// let expected = BoundedVec::from_array([2, 4, 6, 8]);\n /// assert_eq(result, expected);\n /// ```\n pub fn for_each<Env>(self, f: fn[Env](T) -> ()) {\n if is_unconstrained() {\n for i in 0..self.len() {\n f(self.get_unchecked(i));\n }\n } else {\n for i in 0..MaxLen {\n if i < self.len() {\n f(self.get_unchecked(i));\n }\n }\n }\n }\n\n /// Calls a closure on each element in this vector, along with its index.\n ///\n /// Example:\n ///\n /// ```noir\n /// let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n /// let mut result = BoundedVec::<u32, 4>::new();\n /// vec.for_eachi(|i, value| result.push(i + value * 2));\n ///\n /// let expected = BoundedVec::from_array([2, 5, 8, 11]);\n /// assert_eq(result, expected);\n /// ```\n pub fn for_eachi<Env>(self, f: fn[Env](u32, T) -> ()) {\n if is_unconstrained() {\n for i in 0..self.len() {\n f(i, self.get_unchecked(i));\n }\n } else {\n for i in 0..MaxLen {\n if i < self.len() {\n f(i, self.get_unchecked(i));\n }\n }\n }\n }\n\n /// Creates a new BoundedVec from the given array and length.\n /// The given length must be less than or equal to the length of the array.\n ///\n /// This function will zero out any elements at or past index `len` of `array`.\n /// This incurs an extra runtime cost of O(MaxLen). If you are sure your array is\n /// zeroed after that index, you can use [`from_parts_unchecked`][Self::from_parts_unchecked] to remove the extra loop.\n ///\n /// Example:\n ///\n /// ```noir\n /// let vec: BoundedVec<u32, 4> = BoundedVec::from_parts([1, 2, 3, 0], 3);\n /// assert_eq(vec.len(), 3);\n /// ```\n pub fn from_parts(mut array: [T; MaxLen], len: u32) -> Self {\n assert(len <= MaxLen);\n let zeroed = crate::mem::zeroed();\n\n if is_unconstrained() {\n for i in len..MaxLen {\n array[i] = zeroed;\n }\n } else {\n for i in 0..MaxLen {\n if i >= len {\n array[i] = zeroed;\n }\n }\n }\n\n BoundedVec { storage: array, len }\n }\n\n /// Creates a new BoundedVec from the given array and length.\n /// The given length must be less than or equal to the length of the array.\n ///\n /// This function is unsafe because it expects all elements past the `len` index\n /// of `array` to be zeroed, but does not check for this internally. Use `from_parts`\n /// for a safe version of this function which does zero out any indices past the\n /// given length. Invalidating this assumption can notably cause `BoundedVec::eq`\n /// to give incorrect results since it will check even elements past `len`.\n ///\n /// Example:\n ///\n /// ```noir\n /// let vec: BoundedVec<u32, 4> = BoundedVec::from_parts_unchecked([1, 2, 3, 0], 3);\n /// assert_eq(vec.len(), 3);\n ///\n /// // invalid use!\n /// let vec1: BoundedVec<u32, 4> = BoundedVec::from_parts_unchecked([1, 2, 3, 1], 3);\n /// let vec2: BoundedVec<u32, 4> = BoundedVec::from_parts_unchecked([1, 2, 3, 2], 3);\n ///\n /// // both vecs have length 3 so we'd expect them to be equal, but this\n /// // fails because elements past the length are still checked in eq\n /// assert_eq(vec1, vec2); // fails\n /// ```\n pub fn from_parts_unchecked(array: [T; MaxLen], len: u32) -> Self {\n assert(len <= MaxLen);\n BoundedVec { storage: array, len }\n }\n}\n\nimpl<T, let MaxLen: u32> Eq for BoundedVec<T, MaxLen>\nwhere\n T: Eq,\n{\n fn eq(self, other: BoundedVec<T, MaxLen>) -> bool {\n // TODO: https://github.com/noir-lang/noir/issues/4837\n //\n // We make the assumption that the user has used the proper interface for working with `BoundedVec`s\n // rather than directly manipulating the internal fields as this can result in an inconsistent internal state.\n if self.len == other.len {\n self.storage == other.storage\n } else {\n false\n }\n }\n}\n\nimpl<T, let MaxLen: u32, let Len: u32> From<[T; Len]> for BoundedVec<T, MaxLen> {\n fn from(array: [T; Len]) -> BoundedVec<T, MaxLen> {\n BoundedVec::from_array(array)\n }\n}\n\nmod bounded_vec_tests {\n\n mod get {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test(should_fail_with = \"Attempted to read past end of BoundedVec\")]\n fn panics_when_reading_elements_past_end_of_vec() {\n let vec: BoundedVec<Field, 5> = BoundedVec::new();\n\n let _ = vec.get(0);\n }\n\n #[test(should_fail_with = \"Attempted to read past end of BoundedVec\")]\n fn panics_when_reading_beyond_length() {\n let vec: BoundedVec<u32, 5> = BoundedVec::from_array([1, 2, 3]);\n let _ = vec.get(3);\n }\n\n #[test]\n fn get_works_within_bounds() {\n let vec: BoundedVec<u32, 5> = BoundedVec::from_array([1, 2, 3, 4, 5]);\n assert_eq(vec.get(0), 1);\n assert_eq(vec.get(2), 3);\n assert_eq(vec.get(4), 5);\n }\n\n #[test]\n fn get_unchecked_works() {\n let vec: BoundedVec<u32, 5> = BoundedVec::from_array([1, 2, 3]);\n assert_eq(vec.get_unchecked(0), 1);\n assert_eq(vec.get_unchecked(2), 3);\n }\n\n #[test]\n fn get_unchecked_works_past_len() {\n let vec: BoundedVec<u32, 5> = BoundedVec::from_array([1, 2, 3]);\n assert_eq(vec.get_unchecked(4), 0);\n }\n }\n\n mod set {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn set_updates_values_properly() {\n let mut vec = BoundedVec::from_array([0, 0, 0, 0, 0]);\n\n vec.set(0, 42);\n assert_eq(vec.storage, [42, 0, 0, 0, 0]);\n\n vec.set(1, 43);\n assert_eq(vec.storage, [42, 43, 0, 0, 0]);\n\n vec.set(2, 44);\n assert_eq(vec.storage, [42, 43, 44, 0, 0]);\n\n vec.set(1, 10);\n assert_eq(vec.storage, [42, 10, 44, 0, 0]);\n\n vec.set(0, 0);\n assert_eq(vec.storage, [0, 10, 44, 0, 0]);\n }\n\n #[test(should_fail_with = \"Attempted to write past end of BoundedVec\")]\n fn panics_when_writing_elements_past_end_of_vec() {\n let mut vec: BoundedVec<Field, 5> = BoundedVec::new();\n vec.set(0, 42);\n }\n\n #[test(should_fail_with = \"Attempted to write past end of BoundedVec\")]\n fn panics_when_setting_beyond_length() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::from_array([1, 2, 3]);\n vec.set(3, 4);\n }\n\n #[test]\n fn set_unchecked_operations() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n vec.push(1);\n vec.push(2);\n\n vec.set_unchecked(0, 10);\n assert_eq(vec.get(0), 10);\n }\n\n #[test(should_fail_with = \"Attempted to read past end of BoundedVec\")]\n fn set_unchecked_operations_past_len() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n vec.push(1);\n vec.push(2);\n\n vec.set_unchecked(3, 40);\n assert_eq(vec.get(3), 40);\n }\n\n #[test]\n fn set_preserves_other_elements() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::from_array([1, 2, 3, 4, 5]);\n\n vec.set(2, 30);\n assert_eq(vec.get(0), 1);\n assert_eq(vec.get(1), 2);\n assert_eq(vec.get(2), 30);\n assert_eq(vec.get(3), 4);\n assert_eq(vec.get(4), 5);\n }\n }\n\n mod any {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn returns_false_if_predicate_not_satisfied() {\n let vec: BoundedVec<bool, 4> = BoundedVec::from_array([false, false, false, false]);\n let result = vec.any(|value| value);\n\n assert(!result);\n }\n\n #[test]\n fn returns_true_if_predicate_satisfied() {\n let vec: BoundedVec<bool, 4> = BoundedVec::from_array([false, false, true, true]);\n let result = vec.any(|value| value);\n\n assert(result);\n }\n\n #[test]\n fn returns_false_on_empty_boundedvec() {\n let vec: BoundedVec<bool, 0> = BoundedVec::new();\n let result = vec.any(|value| value);\n\n assert(!result);\n }\n\n #[test]\n fn any_with_complex_predicates() {\n let vec: BoundedVec<u32, 5> = BoundedVec::from_array([1, 2, 3, 4, 5]);\n\n assert(vec.any(|x| x > 3));\n assert(!vec.any(|x| x > 10));\n assert(vec.any(|x| x % 2 == 0)); // has a even number\n assert(vec.any(|x| x == 3)); // has a specific value\n }\n\n #[test]\n fn any_with_partial_vector() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n vec.push(1);\n vec.push(2);\n\n assert(vec.any(|x| x == 1));\n assert(vec.any(|x| x == 2));\n assert(!vec.any(|x| x == 3));\n }\n }\n\n mod map {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn applies_function_correctly() {\n // docs:start:bounded-vec-map-example\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = vec.map(|value| value * 2);\n // docs:end:bounded-vec-map-example\n let expected = BoundedVec::from_array([2, 4, 6, 8]);\n\n assert_eq(result, expected);\n }\n\n #[test]\n fn applies_function_that_changes_return_type() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = vec.map(|value| (value * 2) as Field);\n let expected: BoundedVec<Field, 4> = BoundedVec::from_array([2, 4, 6, 8]);\n\n assert_eq(result, expected);\n }\n\n #[test]\n fn does_not_apply_function_past_len() {\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([0, 1]);\n let result = vec.map(|value| if value == 0 { 5 } else { value });\n let expected = BoundedVec::from_array([5, 1]);\n\n assert_eq(result, expected);\n assert_eq(result.get_unchecked(2), 0);\n }\n\n #[test]\n fn map_with_conditional_logic() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n\n let result = vec.map(|x| if x % 2 == 0 { x * 2 } else { x });\n let expected = BoundedVec::from_array([1, 4, 3, 8]);\n assert_eq(result, expected);\n }\n\n #[test]\n fn map_preserves_length() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = vec.map(|x| x * 2);\n\n assert_eq(result.len(), vec.len());\n assert_eq(result.max_len(), vec.max_len());\n }\n\n #[test]\n fn map_on_empty_vector() {\n let vec: BoundedVec<u32, 5> = BoundedVec::new();\n let result = vec.map(|x| x * 2);\n assert_eq(result, vec);\n assert_eq(result.len(), 0);\n assert_eq(result.max_len(), 5);\n }\n }\n\n mod mapi {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn applies_function_correctly() {\n // docs:start:bounded-vec-mapi-example\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = vec.mapi(|i, value| i + value * 2);\n // docs:end:bounded-vec-mapi-example\n let expected = BoundedVec::from_array([2, 5, 8, 11]);\n\n assert_eq(result, expected);\n }\n\n #[test]\n fn applies_function_that_changes_return_type() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = vec.mapi(|i, value| (i + value * 2) as Field);\n let expected: BoundedVec<Field, 4> = BoundedVec::from_array([2, 5, 8, 11]);\n\n assert_eq(result, expected);\n }\n\n #[test]\n fn does_not_apply_function_past_len() {\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([0, 1]);\n let result = vec.mapi(|_, value| if value == 0 { 5 } else { value });\n let expected = BoundedVec::from_array([5, 1]);\n\n assert_eq(result, expected);\n assert_eq(result.get_unchecked(2), 0);\n }\n\n #[test]\n fn mapi_with_index_branching_logic() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n\n let result = vec.mapi(|i, x| if i % 2 == 0 { x * 2 } else { x });\n let expected = BoundedVec::from_array([2, 2, 6, 4]);\n assert_eq(result, expected);\n }\n }\n\n mod for_each {\n use crate::collections::bounded_vec::BoundedVec;\n\n // map in terms of for_each\n fn for_each_map<T, U, Env, let MaxLen: u32>(\n input: BoundedVec<T, MaxLen>,\n f: fn[Env](T) -> U,\n ) -> BoundedVec<U, MaxLen> {\n let mut output = BoundedVec::<U, MaxLen>::new();\n let output_ref = &mut output;\n input.for_each(|x| output_ref.push(f(x)));\n output\n }\n\n #[test]\n fn smoke_test() {\n let mut acc = 0;\n let acc_ref = &mut acc;\n // docs:start:bounded-vec-for-each-example\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([1, 2, 3]);\n vec.for_each(|value| { *acc_ref += value; });\n // docs:end:bounded-vec-for-each-example\n assert_eq(acc, 6);\n }\n\n #[test]\n fn applies_function_correctly() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = for_each_map(vec, |value| value * 2);\n let expected = BoundedVec::from_array([2, 4, 6, 8]);\n\n assert_eq(result, expected);\n }\n\n #[test]\n fn applies_function_that_changes_return_type() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = for_each_map(vec, |value| (value * 2) as Field);\n let expected: BoundedVec<Field, 4> = BoundedVec::from_array([2, 4, 6, 8]);\n\n assert_eq(result, expected);\n }\n\n #[test]\n fn does_not_apply_function_past_len() {\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([0, 1]);\n let result = for_each_map(vec, |value| if value == 0 { 5 } else { value });\n let expected = BoundedVec::from_array([5, 1]);\n\n assert_eq(result, expected);\n assert_eq(result.get_unchecked(2), 0);\n }\n\n #[test]\n fn for_each_on_empty_vector() {\n let vec: BoundedVec<u32, 5> = BoundedVec::new();\n let mut count = 0;\n let count_ref = &mut count;\n vec.for_each(|_| { *count_ref += 1; });\n assert_eq(count, 0);\n }\n\n #[test]\n fn for_each_with_side_effects() {\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([1, 2, 3]);\n let mut seen = BoundedVec::<u32, 3>::new();\n let seen_ref = &mut seen;\n vec.for_each(|x| seen_ref.push(x));\n assert_eq(seen, vec);\n }\n }\n\n mod for_eachi {\n use crate::collections::bounded_vec::BoundedVec;\n\n // mapi in terms of for_eachi\n fn for_eachi_mapi<T, U, Env, let MaxLen: u32>(\n input: BoundedVec<T, MaxLen>,\n f: fn[Env](u32, T) -> U,\n ) -> BoundedVec<U, MaxLen> {\n let mut output = BoundedVec::<U, MaxLen>::new();\n let output_ref = &mut output;\n input.for_eachi(|i, x| output_ref.push(f(i, x)));\n output\n }\n\n #[test]\n fn smoke_test() {\n let mut acc = 0;\n let acc_ref = &mut acc;\n // docs:start:bounded-vec-for-eachi-example\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([1, 2, 3]);\n vec.for_eachi(|i, value| { *acc_ref += i * value; });\n // docs:end:bounded-vec-for-eachi-example\n\n // 0 * 1 + 1 * 2 + 2 * 3\n assert_eq(acc, 8);\n }\n\n #[test]\n fn applies_function_correctly() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = for_eachi_mapi(vec, |i, value| i + value * 2);\n let expected = BoundedVec::from_array([2, 5, 8, 11]);\n\n assert_eq(result, expected);\n }\n\n #[test]\n fn applies_function_that_changes_return_type() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = for_eachi_mapi(vec, |i, value| (i + value * 2) as Field);\n let expected: BoundedVec<Field, 4> = BoundedVec::from_array([2, 5, 8, 11]);\n\n assert_eq(result, expected);\n }\n\n #[test]\n fn does_not_apply_function_past_len() {\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([0, 1]);\n let result = for_eachi_mapi(vec, |_, value| if value == 0 { 5 } else { value });\n let expected = BoundedVec::from_array([5, 1]);\n\n assert_eq(result, expected);\n assert_eq(result.get_unchecked(2), 0);\n }\n\n #[test]\n fn for_eachi_on_empty_vector() {\n let vec: BoundedVec<u32, 5> = BoundedVec::new();\n let mut count = 0;\n let count_ref = &mut count;\n vec.for_eachi(|_, _| { *count_ref += 1; });\n assert_eq(count, 0);\n }\n\n #[test]\n fn for_eachi_with_index_tracking() {\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([10, 20, 30]);\n let mut indices = BoundedVec::<u32, 3>::new();\n let indices_ref = &mut indices;\n vec.for_eachi(|i, _| indices_ref.push(i));\n\n let expected = BoundedVec::from_array([0, 1, 2]);\n assert_eq(indices, expected);\n }\n\n }\n\n mod from_array {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn empty() {\n let empty_array: [Field; 0] = [];\n let bounded_vec = BoundedVec::from_array([]);\n\n assert_eq(bounded_vec.max_len(), 0);\n assert_eq(bounded_vec.len(), 0);\n assert_eq(bounded_vec.storage(), empty_array);\n }\n\n #[test]\n fn equal_len() {\n let array = [1, 2, 3];\n let bounded_vec = BoundedVec::from_array(array);\n\n assert_eq(bounded_vec.max_len(), 3);\n assert_eq(bounded_vec.len(), 3);\n assert_eq(bounded_vec.storage(), array);\n }\n\n #[test]\n fn max_len_greater_then_array_len() {\n let array = [1, 2, 3];\n let bounded_vec: BoundedVec<Field, 10> = BoundedVec::from_array(array);\n\n assert_eq(bounded_vec.max_len(), 10);\n assert_eq(bounded_vec.len(), 3);\n assert_eq(bounded_vec.get(0), 1);\n assert_eq(bounded_vec.get(1), 2);\n assert_eq(bounded_vec.get(2), 3);\n }\n\n #[test(should_fail_with = \"from array out of bounds\")]\n fn max_len_lower_then_array_len() {\n let _: BoundedVec<Field, 2> = BoundedVec::from_array([0; 3]);\n }\n\n #[test]\n fn from_array_preserves_order() {\n let array = [5, 3, 1, 4, 2];\n let vec: BoundedVec<u32, 5> = BoundedVec::from_array(array);\n for i in 0..array.len() {\n assert_eq(vec.get(i), array[i]);\n }\n }\n\n #[test]\n fn from_array_with_different_types() {\n let bool_array = [true, false, true];\n let bool_vec: BoundedVec<bool, 3> = BoundedVec::from_array(bool_array);\n assert_eq(bool_vec.len(), 3);\n assert_eq(bool_vec.get(0), true);\n assert_eq(bool_vec.get(1), false);\n }\n }\n\n mod trait_from {\n use crate::collections::bounded_vec::BoundedVec;\n use crate::convert::From;\n\n #[test]\n fn simple() {\n let array = [1, 2];\n let bounded_vec: BoundedVec<Field, 10> = BoundedVec::from(array);\n\n assert_eq(bounded_vec.max_len(), 10);\n assert_eq(bounded_vec.len(), 2);\n assert_eq(bounded_vec.get(0), 1);\n assert_eq(bounded_vec.get(1), 2);\n }\n }\n\n mod trait_eq {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn empty_equality() {\n let mut bounded_vec1: BoundedVec<Field, 3> = BoundedVec::new();\n let mut bounded_vec2: BoundedVec<Field, 3> = BoundedVec::new();\n\n assert_eq(bounded_vec1, bounded_vec2);\n }\n\n #[test]\n fn inequality() {\n let mut bounded_vec1: BoundedVec<Field, 3> = BoundedVec::new();\n let mut bounded_vec2: BoundedVec<Field, 3> = BoundedVec::new();\n bounded_vec1.push(1);\n bounded_vec2.push(2);\n\n assert(bounded_vec1 != bounded_vec2);\n }\n }\n\n mod from_parts {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn from_parts() {\n // docs:start:from-parts\n let vec: BoundedVec<u32, 4> = BoundedVec::from_parts([1, 2, 3, 0], 3);\n assert_eq(vec.len(), 3);\n\n // Any elements past the given length are zeroed out, so these\n // two BoundedVecs will be completely equal\n let vec1: BoundedVec<u32, 4> = BoundedVec::from_parts([1, 2, 3, 1], 3);\n let vec2: BoundedVec<u32, 4> = BoundedVec::from_parts([1, 2, 3, 2], 3);\n assert_eq(vec1, vec2);\n // docs:end:from-parts\n }\n\n #[test]\n fn from_parts_unchecked() {\n // docs:start:from-parts-unchecked\n let vec: BoundedVec<u32, 4> = BoundedVec::from_parts_unchecked([1, 2, 3, 0], 3);\n assert_eq(vec.len(), 3);\n\n // invalid use!\n let vec1: BoundedVec<u32, 4> = BoundedVec::from_parts_unchecked([1, 2, 3, 1], 3);\n let vec2: BoundedVec<u32, 4> = BoundedVec::from_parts_unchecked([1, 2, 3, 2], 3);\n\n // both vecs have length 3 so we'd expect them to be equal, but this\n // fails because elements past the length are still checked in eq\n assert(vec1 != vec2);\n // docs:end:from-parts-unchecked\n }\n }\n\n mod push_pop {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn push_and_pop_operations() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n\n assert_eq(vec.len(), 0);\n\n vec.push(1);\n assert_eq(vec.len(), 1);\n assert_eq(vec.get(0), 1);\n\n vec.push(2);\n assert_eq(vec.len(), 2);\n assert_eq(vec.get(1), 2);\n\n let popped = vec.pop();\n assert_eq(popped, 2);\n assert_eq(vec.len(), 1);\n\n let popped2 = vec.pop();\n assert_eq(popped2, 1);\n assert_eq(vec.len(), 0);\n }\n\n #[test(should_fail_with = \"push out of bounds\")]\n fn push_to_full_vector() {\n let mut vec: BoundedVec<u32, 2> = BoundedVec::new();\n vec.push(1);\n vec.push(2);\n vec.push(3); // should panic\n }\n\n #[test(should_fail_with = \"cannot pop from an empty vector\")]\n fn pop_from_empty_vector() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n let _ = vec.pop(); // should panic\n }\n\n #[test]\n fn push_pop_cycle() {\n let mut vec: BoundedVec<u32, 3> = BoundedVec::new();\n\n // push to full\n vec.push(1);\n vec.push(2);\n vec.push(3);\n assert_eq(vec.len(), 3);\n\n // pop all\n assert_eq(vec.pop(), 3);\n assert_eq(vec.pop(), 2);\n assert_eq(vec.pop(), 1);\n assert_eq(vec.len(), 0);\n\n // push again\n vec.push(4);\n assert_eq(vec.len(), 1);\n assert_eq(vec.get(0), 4);\n }\n }\n\n mod extend {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn extend_from_array() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n vec.push(1);\n vec.extend_from_array([2, 3]);\n\n assert_eq(vec.len(), 3);\n assert_eq(vec.get(0), 1);\n assert_eq(vec.get(1), 2);\n assert_eq(vec.get(2), 3);\n }\n\n #[test]\n fn extend_from_vector() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n vec.push(1);\n vec.extend_from_vector(&[2, 3]);\n\n assert_eq(vec.len(), 3);\n assert_eq(vec.get(0), 1);\n assert_eq(vec.get(1), 2);\n assert_eq(vec.get(2), 3);\n }\n\n #[test]\n fn extend_from_bounded_vec() {\n let mut vec1: BoundedVec<u32, 5> = BoundedVec::new();\n let mut vec2: BoundedVec<u32, 3> = BoundedVec::new();\n\n vec1.push(1);\n vec2.push(2);\n vec2.push(3);\n\n vec1.extend_from_bounded_vec(vec2);\n\n assert_eq(vec1.len(), 3);\n assert_eq(vec1.get(0), 1);\n assert_eq(vec1.get(1), 2);\n assert_eq(vec1.get(2), 3);\n }\n\n #[test(should_fail_with = \"extend_from_array out of bounds\")]\n fn extend_array_beyond_max_len() {\n let mut vec: BoundedVec<u32, 3> = BoundedVec::new();\n vec.push(1);\n vec.extend_from_array([2, 3, 4]); // should panic\n }\n\n #[test(should_fail_with = \"extend_from_vector out of bounds\")]\n fn extend_vector_beyond_max_len() {\n let mut vec: BoundedVec<u32, 3> = BoundedVec::new();\n vec.push(1);\n vec.extend_from_vector(&[2, 3, 4]); // S]should panic\n }\n\n #[test(should_fail_with = \"extend_from_bounded_vec out of bounds\")]\n fn extend_bounded_vec_beyond_max_len() {\n let mut vec: BoundedVec<u32, 3> = BoundedVec::new();\n let other: BoundedVec<u32, 5> = BoundedVec::from_array([1, 2, 3, 4, 5]);\n vec.extend_from_bounded_vec(other); // should panic\n }\n\n #[test]\n fn extend_with_empty_collections() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n let original_len = vec.len();\n\n vec.extend_from_array([]);\n assert_eq(vec.len(), original_len);\n\n vec.extend_from_vector(&[]);\n assert_eq(vec.len(), original_len);\n\n let empty: BoundedVec<u32, 3> = BoundedVec::new();\n vec.extend_from_bounded_vec(empty);\n assert_eq(vec.len(), original_len);\n }\n }\n\n mod storage {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn storage_consistency() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n\n // test initial storage state\n assert_eq(vec.storage(), [0, 0, 0, 0, 0]);\n\n vec.push(1);\n vec.push(2);\n\n // test storage after modifications\n assert_eq(vec.storage(), [1, 2, 0, 0, 0]);\n\n // storage doesn't change length\n assert_eq(vec.len(), 2);\n assert_eq(vec.max_len(), 5);\n }\n\n #[test]\n fn storage_after_pop() {\n let mut vec: BoundedVec<u32, 3> = BoundedVec::from_array([1, 2, 3]);\n\n let _ = vec.pop();\n // after pop, the last element should be zeroed\n assert_eq(vec.storage(), [1, 2, 0]);\n assert_eq(vec.len(), 2);\n }\n\n #[test]\n fn vector_immutable() {\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([1, 2, 3]);\n let storage = vec.storage();\n\n assert_eq(storage, [1, 2, 3]);\n\n // Verify that the original vector is unchanged\n assert_eq(vec.len(), 3);\n assert_eq(vec.get(0), 1);\n assert_eq(vec.get(1), 2);\n assert_eq(vec.get(2), 3);\n }\n }\n}\n"
6911
+ "source": "use crate::{cmp::Eq, convert::From, runtime::is_unconstrained, static_assert};\n\n/// A `BoundedVec<T, MaxLen>` is a growable storage similar to a built-in vector except that it\n/// is bounded with a maximum possible length. `BoundedVec` is also not\n/// subject to the same restrictions vectors are (notably, nested vectors are disallowed).\n///\n/// Since a BoundedVec is backed by a normal array under the hood, growing the BoundedVec by\n/// pushing an additional element is also more efficient - the length only needs to be increased\n/// by one.\n///\n/// For these reasons `BoundedVec<T, N>` should generally be preferred over vectors when there\n/// is a reasonable maximum bound that can be placed on the vector.\n///\n/// Example:\n///\n/// ```noir\n/// let mut vector: BoundedVec<Field, 10> = BoundedVec::new();\n/// for i in 0..5 {\n/// vector.push(i);\n/// }\n/// assert(vector.len() == 5);\n/// assert(vector.max_len() == 10);\n/// ```\npub struct BoundedVec<T, let MaxLen: u32> {\n storage: [T; MaxLen],\n len: u32,\n}\n\nimpl<T, let MaxLen: u32> BoundedVec<T, MaxLen> {\n /// Creates a new, empty vector of length zero.\n ///\n /// Since this container is backed by an array internally, it still needs an initial value\n /// to give each element. To resolve this, each element is zeroed internally. This value\n /// is guaranteed to be inaccessible unless `get_unchecked` is used.\n ///\n /// Example:\n ///\n /// ```noir\n /// let empty_vector: BoundedVec<Field, 10> = BoundedVec::new();\n /// assert(empty_vector.len() == 0);\n /// ```\n ///\n /// Note that whenever calling `new` the maximum length of the vector should always be specified\n /// via a type signature:\n ///\n /// ```noir\n /// fn good() -> BoundedVec<Field, 10> {\n /// // Ok! MaxLen is specified with a type annotation\n /// let v1: BoundedVec<Field, 3> = BoundedVec::new();\n /// let v2 = BoundedVec::new();\n ///\n /// // Ok! MaxLen is known from the type of `good`'s return value\n /// v2\n /// }\n ///\n /// fn bad() {\n /// // Error: Type annotation needed\n /// // The compiler can't infer `MaxLen` from the following code:\n /// let mut v3 = BoundedVec::new();\n /// v3.push(5);\n /// }\n /// ```\n ///\n /// This defaulting of `MaxLen` (and numeric generics in general) to zero may change in future noir versions\n /// but for now make sure to use type annotations when using bounded vectors. Otherwise, you will receive a\n /// constraint failure at runtime when the vec is pushed to.\n pub fn new() -> Self {\n let zeroed = crate::mem::zeroed();\n BoundedVec { storage: [zeroed; MaxLen], len: 0 }\n }\n\n /// Retrieves an element from the vector at the given index, starting from zero.\n ///\n /// If the given index is equal to or greater than the length of the vector, this\n /// will issue a constraint failure.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn foo<let N: u32>(v: BoundedVec<u32, N>) {\n /// let first = v.get(0);\n /// let last = v.get(v.len() - 1);\n /// assert(first != last);\n /// }\n /// ```\n pub fn get(self, index: u32) -> T {\n assert(index < self.len, \"Attempted to read past end of BoundedVec\");\n self.get_unchecked(index)\n }\n\n /// Retrieves an element from the vector at the given index, starting from zero, without\n /// performing a bounds check.\n ///\n /// Since this function does not perform a bounds check on length before accessing the element,\n /// it is unsafe! Use at your own risk!\n ///\n /// Example:\n ///\n /// ```noir\n /// fn sum_of_first_three<let N: u32>(v: BoundedVec<u32, N>) -> u32 {\n /// // Always ensure the length is larger than the largest\n /// // index passed to get_unchecked\n /// assert(v.len() > 2);\n /// let first = v.get_unchecked(0);\n /// let second = v.get_unchecked(1);\n /// let third = v.get_unchecked(2);\n /// first + second + third\n /// }\n /// ```\n pub fn get_unchecked(self, index: u32) -> T {\n self.storage[index]\n }\n\n /// Writes an element to the vector at the given index, starting from zero.\n ///\n /// If the given index is equal to or greater than the length of the vector, this will issue a constraint failure.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn foo<let N: u32>(v: BoundedVec<u32, N>) {\n /// let first = v.get(0);\n /// assert(first != 42);\n /// v.set(0, 42);\n /// let new_first = v.get(0);\n /// assert(new_first == 42);\n /// }\n /// ```\n pub fn set(&mut self, index: u32, value: T) {\n assert(index < self.len, \"Attempted to write past end of BoundedVec\");\n self.set_unchecked(index, value)\n }\n\n /// Writes an element to the vector at the given index, starting from zero, without performing a bounds check.\n ///\n /// Since this function does not perform a bounds check on length before accessing the element, it is unsafe! Use at your own risk!\n ///\n /// Example:\n ///\n /// ```noir\n /// fn set_unchecked_example() {\n /// let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n /// vec.extend_from_array([1, 2]);\n ///\n /// // Here we're safely writing within the valid range of `vec`\n /// // `vec` now has the value [42, 2]\n /// vec.set_unchecked(0, 42);\n ///\n /// // We can then safely read this value back out of `vec`.\n /// // Notice that we use the checked version of `get` which would prevent reading unsafe values.\n /// assert_eq(vec.get(0), 42);\n ///\n /// // We've now written past the end of `vec`.\n /// // As this index is still within the maximum potential length of `v`,\n /// // it won't cause a constraint failure.\n /// vec.set_unchecked(2, 42);\n /// println(vec);\n ///\n /// // This will write past the end of the maximum potential length of `vec`,\n /// // it will then trigger a constraint failure.\n /// vec.set_unchecked(5, 42);\n /// println(vec);\n /// }\n /// ```\n pub fn set_unchecked(&mut self, index: u32, value: T) {\n self.storage[index] = value;\n }\n\n /// Pushes an element to the end of the vector. This increases the length\n /// of the vector by one.\n ///\n /// Panics if the new length of the vector will be greater than the max length.\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut v: BoundedVec<Field, 2> = BoundedVec::new();\n ///\n /// v.push(1);\n /// v.push(2);\n ///\n /// // Panics with failed assertion \"push out of bounds\"\n /// v.push(3);\n /// ```\n pub fn push(&mut self, elem: T) {\n assert(self.len < MaxLen, \"push out of bounds\");\n\n self.storage[self.len] = elem;\n self.len += 1;\n }\n\n /// Returns the current length of this vector\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut v: BoundedVec<Field, 4> = BoundedVec::new();\n /// assert(v.len() == 0);\n ///\n /// v.push(100);\n /// assert(v.len() == 1);\n ///\n /// v.push(200);\n /// v.push(300);\n /// v.push(400);\n /// assert(v.len() == 4);\n ///\n /// let _ = v.pop();\n /// let _ = v.pop();\n /// assert(v.len() == 2);\n /// ```\n pub fn len(self) -> u32 {\n self.len\n }\n\n /// Returns the maximum length of this vector. This is always\n /// equal to the `MaxLen` parameter this vector was initialized with.\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut v: BoundedVec<Field, 5> = BoundedVec::new();\n ///\n /// assert(v.max_len() == 5);\n /// v.push(10);\n /// assert(v.max_len() == 5);\n /// ```\n pub fn max_len(_self: BoundedVec<T, MaxLen>) -> u32 {\n MaxLen\n }\n\n /// Returns the internal array within this vector.\n ///\n /// Since arrays in Noir are immutable, mutating the returned storage array will not mutate\n /// the storage held internally by this vector.\n ///\n /// Note that uninitialized elements may be zeroed out!\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut v: BoundedVec<Field, 5> = BoundedVec::new();\n ///\n /// assert(v.storage() == [0, 0, 0, 0, 0]);\n ///\n /// v.push(57);\n /// assert(v.storage() == [57, 0, 0, 0, 0]);\n /// ```\n pub fn storage(self) -> [T; MaxLen] {\n self.storage\n }\n\n /// Pushes each element from the given array to this vector.\n ///\n /// Panics if pushing each element would cause the length of this vector\n /// to exceed the maximum length.\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut vec: BoundedVec<Field, 3> = BoundedVec::new();\n /// vec.extend_from_array([2, 4]);\n ///\n /// assert(vec.len == 2);\n /// assert(vec.get(0) == 2);\n /// assert(vec.get(1) == 4);\n /// ```\n pub fn extend_from_array<let Len: u32>(&mut self, array: [T; Len]) {\n let new_len = self.len + array.len();\n assert(new_len <= MaxLen, \"extend_from_array out of bounds\");\n for i in 0..array.len() {\n self.storage[self.len + i] = array[i];\n }\n self.len = new_len;\n }\n\n /// Pushes each element from the given vector to this vector.\n ///\n /// Panics if pushing each element would cause the length of this vector\n /// to exceed the maximum length.\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut vec: BoundedVec<Field, 3> = BoundedVec::new();\n /// vec.extend_from_vector([2, 4].as_vector());\n ///\n /// assert(vec.len == 2);\n /// assert(vec.get(0) == 2);\n /// assert(vec.get(1) == 4);\n /// ```\n pub fn extend_from_vector(&mut self, vector: [T]) {\n let new_len = self.len + vector.len();\n assert(new_len <= MaxLen, \"extend_from_vector out of bounds\");\n for i in 0..vector.len() {\n self.storage[self.len + i] = vector[i];\n }\n self.len = new_len;\n }\n\n /// Pushes each element from the other vector to this vector. The length of\n /// the other vector is left unchanged.\n ///\n /// Panics if pushing each element would cause the length of this vector\n /// to exceed the maximum length.\n ///\n /// ```noir\n /// let mut v1: BoundedVec<Field, 5> = BoundedVec::new();\n /// let mut v2: BoundedVec<Field, 7> = BoundedVec::new();\n ///\n /// v2.extend_from_array([1, 2, 3]);\n /// v1.extend_from_bounded_vec(v2);\n ///\n /// assert(v1.storage() == [1, 2, 3, 0, 0]);\n /// assert(v2.storage() == [1, 2, 3, 0, 0, 0, 0]);\n /// ```\n pub fn extend_from_bounded_vec<let Len: u32>(&mut self, vec: BoundedVec<T, Len>) {\n let append_len = vec.len();\n let new_len = self.len + append_len;\n assert(new_len <= MaxLen, \"extend_from_bounded_vec out of bounds\");\n\n if is_unconstrained() {\n for i in 0..append_len {\n self.storage[self.len + i] = vec.get_unchecked(i);\n }\n } else {\n let mut exceeded_len = false;\n for i in 0..Len {\n exceeded_len |= i == append_len;\n if !exceeded_len {\n self.storage[self.len + i] = vec.get_unchecked(i);\n }\n }\n }\n self.len = new_len;\n }\n\n /// Creates a new vector, populating it with values derived from an array input.\n /// The maximum length of the vector is determined based on the type signature.\n ///\n /// Example:\n ///\n /// ```noir\n /// let bounded_vec: BoundedVec<Field, 10> = BoundedVec::from_array([1, 2, 3])\n /// ```\n pub fn from_array<let Len: u32>(array: [T; Len]) -> Self {\n static_assert(Len <= MaxLen, \"from array out of bounds\");\n let mut vec: BoundedVec<T, MaxLen> = BoundedVec::new();\n vec.extend_from_array(array);\n vec\n }\n\n /// Pops the element at the end of the vector. This will decrease the length\n /// of the vector by one.\n ///\n /// Panics if the vector is empty.\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut v: BoundedVec<Field, 2> = BoundedVec::new();\n /// v.push(1);\n /// v.push(2);\n ///\n /// let two = v.pop();\n /// let one = v.pop();\n ///\n /// assert(two == 2);\n /// assert(one == 1);\n ///\n /// // error: cannot pop from an empty vector\n /// let _ = v.pop();\n /// ```\n pub fn pop(&mut self) -> T {\n assert(self.len > 0, \"cannot pop from an empty vector\");\n self.len -= 1;\n\n let elem = self.storage[self.len];\n self.storage[self.len] = crate::mem::zeroed();\n elem\n }\n\n /// Returns true if the given predicate returns true for any element\n /// in this vector.\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut v: BoundedVec<u32, 3> = BoundedVec::new();\n /// v.extend_from_array([2, 4, 6]);\n ///\n /// let all_even = !v.any(|elem: u32| elem % 2 != 0);\n /// assert(all_even);\n /// ```\n pub fn any<Env>(self, predicate: fn[Env](T) -> bool) -> bool {\n let mut ret = false;\n if is_unconstrained() {\n for i in 0..self.len {\n ret |= predicate(self.storage[i]);\n }\n } else {\n let mut exceeded_len = false;\n for i in 0..MaxLen {\n exceeded_len |= i == self.len;\n if !exceeded_len {\n ret |= predicate(self.storage[i]);\n }\n }\n }\n ret\n }\n\n /// Creates a new vector of equal size by calling a closure on each element in this vector.\n ///\n /// Example:\n ///\n /// ```noir\n /// let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n /// let result = vec.map(|value| value * 2);\n ///\n /// let expected = BoundedVec::from_array([2, 4, 6, 8]);\n /// assert_eq(result, expected);\n /// ```\n pub fn map<U, Env>(self, f: fn[Env](T) -> U) -> BoundedVec<U, MaxLen> {\n let mut ret = BoundedVec::new();\n ret.len = self.len();\n\n if is_unconstrained() {\n for i in 0..self.len() {\n ret.storage[i] = f(self.get_unchecked(i));\n }\n } else {\n for i in 0..MaxLen {\n if i < self.len() {\n ret.storage[i] = f(self.get_unchecked(i));\n }\n }\n }\n\n ret\n }\n\n /// Creates a new vector of equal size by calling a closure on each element\n /// in this vector, along with its index.\n ///\n /// Example:\n ///\n /// ```noir\n /// let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n /// let result = vec.mapi(|i, value| i + value * 2);\n ///\n /// let expected = BoundedVec::from_array([2, 5, 8, 11]);\n /// assert_eq(result, expected);\n /// ```\n pub fn mapi<U, Env>(self, f: fn[Env](u32, T) -> U) -> BoundedVec<U, MaxLen> {\n let mut ret = BoundedVec::new();\n ret.len = self.len();\n\n if is_unconstrained() {\n for i in 0..self.len() {\n ret.storage[i] = f(i, self.get_unchecked(i));\n }\n } else {\n for i in 0..MaxLen {\n if i < self.len() {\n ret.storage[i] = f(i, self.get_unchecked(i));\n }\n }\n }\n\n ret\n }\n\n /// Calls a closure on each element in this vector.\n ///\n /// Example:\n ///\n /// ```noir\n /// let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n /// let mut result = BoundedVec::<u32, 4>::new();\n /// vec.for_each(|value| result.push(value * 2));\n ///\n /// let expected = BoundedVec::from_array([2, 4, 6, 8]);\n /// assert_eq(result, expected);\n /// ```\n pub fn for_each<Env>(self, f: fn[Env](T) -> ()) {\n if is_unconstrained() {\n for i in 0..self.len() {\n f(self.get_unchecked(i));\n }\n } else {\n for i in 0..MaxLen {\n if i < self.len() {\n f(self.get_unchecked(i));\n }\n }\n }\n }\n\n /// Calls a closure on each element in this vector, along with its index.\n ///\n /// Example:\n ///\n /// ```noir\n /// let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n /// let mut result = BoundedVec::<u32, 4>::new();\n /// vec.for_eachi(|i, value| result.push(i + value * 2));\n ///\n /// let expected = BoundedVec::from_array([2, 5, 8, 11]);\n /// assert_eq(result, expected);\n /// ```\n pub fn for_eachi<Env>(self, f: fn[Env](u32, T) -> ()) {\n if is_unconstrained() {\n for i in 0..self.len() {\n f(i, self.get_unchecked(i));\n }\n } else {\n for i in 0..MaxLen {\n if i < self.len() {\n f(i, self.get_unchecked(i));\n }\n }\n }\n }\n\n /// Creates a new BoundedVec from the given array and length.\n /// The given length must be less than or equal to the length of the array.\n ///\n /// This function will zero out any elements at or past index `len` of `array`.\n /// This incurs an extra runtime cost of O(MaxLen). If you are sure your array is\n /// zeroed after that index, you can use [`from_parts_unchecked`][Self::from_parts_unchecked] to remove the extra loop.\n ///\n /// Example:\n ///\n /// ```noir\n /// let vec: BoundedVec<u32, 4> = BoundedVec::from_parts([1, 2, 3, 0], 3);\n /// assert_eq(vec.len(), 3);\n /// ```\n pub fn from_parts(mut array: [T; MaxLen], len: u32) -> Self {\n assert(len <= MaxLen);\n let zeroed = crate::mem::zeroed();\n\n if is_unconstrained() {\n for i in len..MaxLen {\n array[i] = zeroed;\n }\n } else {\n for i in 0..MaxLen {\n if i >= len {\n array[i] = zeroed;\n }\n }\n }\n\n BoundedVec { storage: array, len }\n }\n\n /// Creates a new BoundedVec from the given array and length.\n /// The given length must be less than or equal to the length of the array.\n ///\n /// This function is unsafe because it expects all elements past the `len` index\n /// of `array` to be zeroed, but does not check for this internally. Use `from_parts`\n /// for a safe version of this function which does zero out any indices past the\n /// given length. Invalidating this assumption can notably cause `BoundedVec::eq`\n /// to give incorrect results since it will check even elements past `len`.\n ///\n /// Example:\n ///\n /// ```noir\n /// let vec: BoundedVec<u32, 4> = BoundedVec::from_parts_unchecked([1, 2, 3, 0], 3);\n /// assert_eq(vec.len(), 3);\n ///\n /// // invalid use!\n /// let vec1: BoundedVec<u32, 4> = BoundedVec::from_parts_unchecked([1, 2, 3, 1], 3);\n /// let vec2: BoundedVec<u32, 4> = BoundedVec::from_parts_unchecked([1, 2, 3, 2], 3);\n ///\n /// // both vecs have length 3 so we'd expect them to be equal, but this\n /// // fails because elements past the length are still checked in eq\n /// assert_eq(vec1, vec2); // fails\n /// ```\n pub fn from_parts_unchecked(array: [T; MaxLen], len: u32) -> Self {\n assert(len <= MaxLen);\n BoundedVec { storage: array, len }\n }\n}\n\nimpl<T, let MaxLen: u32> Eq for BoundedVec<T, MaxLen>\nwhere\n T: Eq,\n{\n fn eq(self, other: BoundedVec<T, MaxLen>) -> bool {\n // TODO: https://github.com/noir-lang/noir/issues/4837\n //\n // We make the assumption that the user has used the proper interface for working with `BoundedVec`s\n // rather than directly manipulating the internal fields as this can result in an inconsistent internal state.\n if self.len == other.len {\n self.storage == other.storage\n } else {\n false\n }\n }\n}\n\nimpl<T, let MaxLen: u32, let Len: u32> From<[T; Len]> for BoundedVec<T, MaxLen> {\n fn from(array: [T; Len]) -> BoundedVec<T, MaxLen> {\n BoundedVec::from_array(array)\n }\n}\n\nmod bounded_vec_tests {\n\n mod get {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test(should_fail_with = \"Attempted to read past end of BoundedVec\")]\n fn panics_when_reading_elements_past_end_of_vec() {\n let vec: BoundedVec<Field, 5> = BoundedVec::new();\n\n let _ = vec.get(0);\n }\n\n #[test(should_fail_with = \"Attempted to read past end of BoundedVec\")]\n fn panics_when_reading_beyond_length() {\n let vec: BoundedVec<u32, 5> = BoundedVec::from_array([1, 2, 3]);\n let _ = vec.get(3);\n }\n\n #[test]\n fn get_works_within_bounds() {\n let vec: BoundedVec<u32, 5> = BoundedVec::from_array([1, 2, 3, 4, 5]);\n assert_eq(vec.get(0), 1);\n assert_eq(vec.get(2), 3);\n assert_eq(vec.get(4), 5);\n }\n\n #[test]\n fn get_unchecked_works() {\n let vec: BoundedVec<u32, 5> = BoundedVec::from_array([1, 2, 3]);\n assert_eq(vec.get_unchecked(0), 1);\n assert_eq(vec.get_unchecked(2), 3);\n }\n\n #[test]\n fn get_unchecked_works_past_len() {\n let vec: BoundedVec<u32, 5> = BoundedVec::from_array([1, 2, 3]);\n assert_eq(vec.get_unchecked(4), 0);\n }\n }\n\n mod set {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn set_updates_values_properly() {\n let mut vec = BoundedVec::from_array([0, 0, 0, 0, 0]);\n\n vec.set(0, 42);\n assert_eq(vec.storage, [42, 0, 0, 0, 0]);\n\n vec.set(1, 43);\n assert_eq(vec.storage, [42, 43, 0, 0, 0]);\n\n vec.set(2, 44);\n assert_eq(vec.storage, [42, 43, 44, 0, 0]);\n\n vec.set(1, 10);\n assert_eq(vec.storage, [42, 10, 44, 0, 0]);\n\n vec.set(0, 0);\n assert_eq(vec.storage, [0, 10, 44, 0, 0]);\n }\n\n #[test(should_fail_with = \"Attempted to write past end of BoundedVec\")]\n fn panics_when_writing_elements_past_end_of_vec() {\n let mut vec: BoundedVec<Field, 5> = BoundedVec::new();\n vec.set(0, 42);\n }\n\n #[test(should_fail_with = \"Attempted to write past end of BoundedVec\")]\n fn panics_when_setting_beyond_length() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::from_array([1, 2, 3]);\n vec.set(3, 4);\n }\n\n #[test]\n fn set_unchecked_operations() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n vec.push(1);\n vec.push(2);\n\n vec.set_unchecked(0, 10);\n assert_eq(vec.get(0), 10);\n }\n\n #[test(should_fail_with = \"Attempted to read past end of BoundedVec\")]\n fn set_unchecked_operations_past_len() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n vec.push(1);\n vec.push(2);\n\n vec.set_unchecked(3, 40);\n assert_eq(vec.get(3), 40);\n }\n\n #[test]\n fn set_preserves_other_elements() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::from_array([1, 2, 3, 4, 5]);\n\n vec.set(2, 30);\n assert_eq(vec.get(0), 1);\n assert_eq(vec.get(1), 2);\n assert_eq(vec.get(2), 30);\n assert_eq(vec.get(3), 4);\n assert_eq(vec.get(4), 5);\n }\n }\n\n mod any {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn returns_false_if_predicate_not_satisfied() {\n let vec: BoundedVec<bool, 4> = BoundedVec::from_array([false, false, false, false]);\n let result = vec.any(|value| value);\n\n assert(!result);\n }\n\n #[test]\n fn returns_true_if_predicate_satisfied() {\n let vec: BoundedVec<bool, 4> = BoundedVec::from_array([false, false, true, true]);\n let result = vec.any(|value| value);\n\n assert(result);\n }\n\n #[test]\n fn returns_false_on_empty_boundedvec() {\n let vec: BoundedVec<bool, 0> = BoundedVec::new();\n let result = vec.any(|value| value);\n\n assert(!result);\n }\n\n #[test]\n fn any_with_complex_predicates() {\n let vec: BoundedVec<u32, 5> = BoundedVec::from_array([1, 2, 3, 4, 5]);\n\n assert(vec.any(|x| x > 3));\n assert(!vec.any(|x| x > 10));\n assert(vec.any(|x| x % 2 == 0)); // has a even number\n assert(vec.any(|x| x == 3)); // has a specific value\n }\n\n #[test]\n fn any_with_partial_vector() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n vec.push(1);\n vec.push(2);\n\n assert(vec.any(|x| x == 1));\n assert(vec.any(|x| x == 2));\n assert(!vec.any(|x| x == 3));\n }\n }\n\n mod map {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn applies_function_correctly() {\n // docs:start:bounded-vec-map-example\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = vec.map(|value| value * 2);\n // docs:end:bounded-vec-map-example\n let expected = BoundedVec::from_array([2, 4, 6, 8]);\n\n assert_eq(result, expected);\n }\n\n #[test]\n fn applies_function_that_changes_return_type() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = vec.map(|value| (value * 2) as Field);\n let expected: BoundedVec<Field, 4> = BoundedVec::from_array([2, 4, 6, 8]);\n\n assert_eq(result, expected);\n }\n\n #[test]\n fn does_not_apply_function_past_len() {\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([0, 1]);\n let result = vec.map(|value| if value == 0 { 5 } else { value });\n let expected = BoundedVec::from_array([5, 1]);\n\n assert_eq(result, expected);\n assert_eq(result.get_unchecked(2), 0);\n }\n\n #[test]\n fn map_with_conditional_logic() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n\n let result = vec.map(|x| if x % 2 == 0 { x * 2 } else { x });\n let expected = BoundedVec::from_array([1, 4, 3, 8]);\n assert_eq(result, expected);\n }\n\n #[test]\n fn map_preserves_length() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = vec.map(|x| x * 2);\n\n assert_eq(result.len(), vec.len());\n assert_eq(result.max_len(), vec.max_len());\n }\n\n #[test]\n fn map_on_empty_vector() {\n let vec: BoundedVec<u32, 5> = BoundedVec::new();\n let result = vec.map(|x| x * 2);\n assert_eq(result, vec);\n assert_eq(result.len(), 0);\n assert_eq(result.max_len(), 5);\n }\n }\n\n mod mapi {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn applies_function_correctly() {\n // docs:start:bounded-vec-mapi-example\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = vec.mapi(|i, value| i + value * 2);\n // docs:end:bounded-vec-mapi-example\n let expected = BoundedVec::from_array([2, 5, 8, 11]);\n\n assert_eq(result, expected);\n }\n\n #[test]\n fn applies_function_that_changes_return_type() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = vec.mapi(|i, value| (i + value * 2) as Field);\n let expected: BoundedVec<Field, 4> = BoundedVec::from_array([2, 5, 8, 11]);\n\n assert_eq(result, expected);\n }\n\n #[test]\n fn does_not_apply_function_past_len() {\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([0, 1]);\n let result = vec.mapi(|_, value| if value == 0 { 5 } else { value });\n let expected = BoundedVec::from_array([5, 1]);\n\n assert_eq(result, expected);\n assert_eq(result.get_unchecked(2), 0);\n }\n\n #[test]\n fn mapi_with_index_branching_logic() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n\n let result = vec.mapi(|i, x| if i % 2 == 0 { x * 2 } else { x });\n let expected = BoundedVec::from_array([2, 2, 6, 4]);\n assert_eq(result, expected);\n }\n }\n\n mod for_each {\n use crate::collections::bounded_vec::BoundedVec;\n\n // map in terms of for_each\n fn for_each_map<T, U, Env, let MaxLen: u32>(\n input: BoundedVec<T, MaxLen>,\n f: fn[Env](T) -> U,\n ) -> BoundedVec<U, MaxLen> {\n let mut output = BoundedVec::<U, MaxLen>::new();\n let output_ref = &mut output;\n input.for_each(|x| output_ref.push(f(x)));\n output\n }\n\n #[test]\n fn smoke_test() {\n let mut acc = 0;\n let acc_ref = &mut acc;\n // docs:start:bounded-vec-for-each-example\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([1, 2, 3]);\n vec.for_each(|value| { *acc_ref += value; });\n // docs:end:bounded-vec-for-each-example\n assert_eq(acc, 6);\n }\n\n #[test]\n fn applies_function_correctly() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = for_each_map(vec, |value| value * 2);\n let expected = BoundedVec::from_array([2, 4, 6, 8]);\n\n assert_eq(result, expected);\n }\n\n #[test]\n fn applies_function_that_changes_return_type() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = for_each_map(vec, |value| (value * 2) as Field);\n let expected: BoundedVec<Field, 4> = BoundedVec::from_array([2, 4, 6, 8]);\n\n assert_eq(result, expected);\n }\n\n #[test]\n fn does_not_apply_function_past_len() {\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([0, 1]);\n let result = for_each_map(vec, |value| if value == 0 { 5 } else { value });\n let expected = BoundedVec::from_array([5, 1]);\n\n assert_eq(result, expected);\n assert_eq(result.get_unchecked(2), 0);\n }\n\n #[test]\n fn for_each_on_empty_vector() {\n let vec: BoundedVec<u32, 5> = BoundedVec::new();\n let mut count = 0;\n let count_ref = &mut count;\n vec.for_each(|_| { *count_ref += 1; });\n assert_eq(count, 0);\n }\n\n #[test]\n fn for_each_with_side_effects() {\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([1, 2, 3]);\n let mut seen = BoundedVec::<u32, 3>::new();\n let seen_ref = &mut seen;\n vec.for_each(|x| seen_ref.push(x));\n assert_eq(seen, vec);\n }\n }\n\n mod for_eachi {\n use crate::collections::bounded_vec::BoundedVec;\n\n // mapi in terms of for_eachi\n fn for_eachi_mapi<T, U, Env, let MaxLen: u32>(\n input: BoundedVec<T, MaxLen>,\n f: fn[Env](u32, T) -> U,\n ) -> BoundedVec<U, MaxLen> {\n let mut output = BoundedVec::<U, MaxLen>::new();\n let output_ref = &mut output;\n input.for_eachi(|i, x| output_ref.push(f(i, x)));\n output\n }\n\n #[test]\n fn smoke_test() {\n let mut acc = 0;\n let acc_ref = &mut acc;\n // docs:start:bounded-vec-for-eachi-example\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([1, 2, 3]);\n vec.for_eachi(|i, value| { *acc_ref += i * value; });\n // docs:end:bounded-vec-for-eachi-example\n\n // 0 * 1 + 1 * 2 + 2 * 3\n assert_eq(acc, 8);\n }\n\n #[test]\n fn applies_function_correctly() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = for_eachi_mapi(vec, |i, value| i + value * 2);\n let expected = BoundedVec::from_array([2, 5, 8, 11]);\n\n assert_eq(result, expected);\n }\n\n #[test]\n fn applies_function_that_changes_return_type() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = for_eachi_mapi(vec, |i, value| (i + value * 2) as Field);\n let expected: BoundedVec<Field, 4> = BoundedVec::from_array([2, 5, 8, 11]);\n\n assert_eq(result, expected);\n }\n\n #[test]\n fn does_not_apply_function_past_len() {\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([0, 1]);\n let result = for_eachi_mapi(vec, |_, value| if value == 0 { 5 } else { value });\n let expected = BoundedVec::from_array([5, 1]);\n\n assert_eq(result, expected);\n assert_eq(result.get_unchecked(2), 0);\n }\n\n #[test]\n fn for_eachi_on_empty_vector() {\n let vec: BoundedVec<u32, 5> = BoundedVec::new();\n let mut count = 0;\n let count_ref = &mut count;\n vec.for_eachi(|_, _| { *count_ref += 1; });\n assert_eq(count, 0);\n }\n\n #[test]\n fn for_eachi_with_index_tracking() {\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([10, 20, 30]);\n let mut indices = BoundedVec::<u32, 3>::new();\n let indices_ref = &mut indices;\n vec.for_eachi(|i, _| indices_ref.push(i));\n\n let expected = BoundedVec::from_array([0, 1, 2]);\n assert_eq(indices, expected);\n }\n\n }\n\n mod from_array {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn empty() {\n let empty_array: [Field; 0] = [];\n let bounded_vec = BoundedVec::from_array([]);\n\n assert_eq(bounded_vec.max_len(), 0);\n assert_eq(bounded_vec.len(), 0);\n assert_eq(bounded_vec.storage(), empty_array);\n }\n\n #[test]\n fn equal_len() {\n let array = [1, 2, 3];\n let bounded_vec = BoundedVec::from_array(array);\n\n assert_eq(bounded_vec.max_len(), 3);\n assert_eq(bounded_vec.len(), 3);\n assert_eq(bounded_vec.storage(), array);\n }\n\n #[test]\n fn max_len_greater_then_array_len() {\n let array = [1, 2, 3];\n let bounded_vec: BoundedVec<Field, 10> = BoundedVec::from_array(array);\n\n assert_eq(bounded_vec.max_len(), 10);\n assert_eq(bounded_vec.len(), 3);\n assert_eq(bounded_vec.get(0), 1);\n assert_eq(bounded_vec.get(1), 2);\n assert_eq(bounded_vec.get(2), 3);\n }\n\n #[test(should_fail_with = \"from array out of bounds\")]\n fn max_len_lower_then_array_len() {\n let _: BoundedVec<Field, 2> = BoundedVec::from_array([0; 3]);\n }\n\n #[test]\n fn from_array_preserves_order() {\n let array = [5, 3, 1, 4, 2];\n let vec: BoundedVec<u32, 5> = BoundedVec::from_array(array);\n for i in 0..array.len() {\n assert_eq(vec.get(i), array[i]);\n }\n }\n\n #[test]\n fn from_array_with_different_types() {\n let bool_array = [true, false, true];\n let bool_vec: BoundedVec<bool, 3> = BoundedVec::from_array(bool_array);\n assert_eq(bool_vec.len(), 3);\n assert_eq(bool_vec.get(0), true);\n assert_eq(bool_vec.get(1), false);\n }\n }\n\n mod trait_from {\n use crate::collections::bounded_vec::BoundedVec;\n use crate::convert::From;\n\n #[test]\n fn simple() {\n let array = [1, 2];\n let bounded_vec: BoundedVec<Field, 10> = BoundedVec::from(array);\n\n assert_eq(bounded_vec.max_len(), 10);\n assert_eq(bounded_vec.len(), 2);\n assert_eq(bounded_vec.get(0), 1);\n assert_eq(bounded_vec.get(1), 2);\n }\n }\n\n mod trait_eq {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn empty_equality() {\n let mut bounded_vec1: BoundedVec<Field, 3> = BoundedVec::new();\n let mut bounded_vec2: BoundedVec<Field, 3> = BoundedVec::new();\n\n assert_eq(bounded_vec1, bounded_vec2);\n }\n\n #[test]\n fn inequality() {\n let mut bounded_vec1: BoundedVec<Field, 3> = BoundedVec::new();\n let mut bounded_vec2: BoundedVec<Field, 3> = BoundedVec::new();\n bounded_vec1.push(1);\n bounded_vec2.push(2);\n\n assert(bounded_vec1 != bounded_vec2);\n }\n }\n\n mod from_parts {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn from_parts() {\n // docs:start:from-parts\n let vec: BoundedVec<u32, 4> = BoundedVec::from_parts([1, 2, 3, 0], 3);\n assert_eq(vec.len(), 3);\n\n // Any elements past the given length are zeroed out, so these\n // two BoundedVecs will be completely equal\n let vec1: BoundedVec<u32, 4> = BoundedVec::from_parts([1, 2, 3, 1], 3);\n let vec2: BoundedVec<u32, 4> = BoundedVec::from_parts([1, 2, 3, 2], 3);\n assert_eq(vec1, vec2);\n // docs:end:from-parts\n }\n\n #[test]\n fn from_parts_unchecked() {\n // docs:start:from-parts-unchecked\n let vec: BoundedVec<u32, 4> = BoundedVec::from_parts_unchecked([1, 2, 3, 0], 3);\n assert_eq(vec.len(), 3);\n\n // invalid use!\n let vec1: BoundedVec<u32, 4> = BoundedVec::from_parts_unchecked([1, 2, 3, 1], 3);\n let vec2: BoundedVec<u32, 4> = BoundedVec::from_parts_unchecked([1, 2, 3, 2], 3);\n\n // both vecs have length 3 so we'd expect them to be equal, but this\n // fails because elements past the length are still checked in eq\n assert(vec1 != vec2);\n // docs:end:from-parts-unchecked\n }\n }\n\n mod push_pop {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn push_and_pop_operations() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n\n assert_eq(vec.len(), 0);\n\n vec.push(1);\n assert_eq(vec.len(), 1);\n assert_eq(vec.get(0), 1);\n\n vec.push(2);\n assert_eq(vec.len(), 2);\n assert_eq(vec.get(1), 2);\n\n let popped = vec.pop();\n assert_eq(popped, 2);\n assert_eq(vec.len(), 1);\n\n let popped2 = vec.pop();\n assert_eq(popped2, 1);\n assert_eq(vec.len(), 0);\n }\n\n #[test(should_fail_with = \"push out of bounds\")]\n fn push_to_full_vector() {\n let mut vec: BoundedVec<u32, 2> = BoundedVec::new();\n vec.push(1);\n vec.push(2);\n vec.push(3); // should panic\n }\n\n #[test(should_fail_with = \"cannot pop from an empty vector\")]\n fn pop_from_empty_vector() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n let _ = vec.pop(); // should panic\n }\n\n #[test]\n fn push_pop_cycle() {\n let mut vec: BoundedVec<u32, 3> = BoundedVec::new();\n\n // push to full\n vec.push(1);\n vec.push(2);\n vec.push(3);\n assert_eq(vec.len(), 3);\n\n // pop all\n assert_eq(vec.pop(), 3);\n assert_eq(vec.pop(), 2);\n assert_eq(vec.pop(), 1);\n assert_eq(vec.len(), 0);\n\n // push again\n vec.push(4);\n assert_eq(vec.len(), 1);\n assert_eq(vec.get(0), 4);\n }\n }\n\n mod extend {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn extend_from_array() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n vec.push(1);\n vec.extend_from_array([2, 3]);\n\n assert_eq(vec.len(), 3);\n assert_eq(vec.get(0), 1);\n assert_eq(vec.get(1), 2);\n assert_eq(vec.get(2), 3);\n }\n\n #[test]\n fn extend_from_vector() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n vec.push(1);\n vec.extend_from_vector([2, 3].as_vector());\n\n assert_eq(vec.len(), 3);\n assert_eq(vec.get(0), 1);\n assert_eq(vec.get(1), 2);\n assert_eq(vec.get(2), 3);\n }\n\n #[test]\n fn extend_from_bounded_vec() {\n let mut vec1: BoundedVec<u32, 5> = BoundedVec::new();\n let mut vec2: BoundedVec<u32, 3> = BoundedVec::new();\n\n vec1.push(1);\n vec2.push(2);\n vec2.push(3);\n\n vec1.extend_from_bounded_vec(vec2);\n\n assert_eq(vec1.len(), 3);\n assert_eq(vec1.get(0), 1);\n assert_eq(vec1.get(1), 2);\n assert_eq(vec1.get(2), 3);\n }\n\n #[test(should_fail_with = \"extend_from_array out of bounds\")]\n fn extend_array_beyond_max_len() {\n let mut vec: BoundedVec<u32, 3> = BoundedVec::new();\n vec.push(1);\n vec.extend_from_array([2, 3, 4]); // should panic\n }\n\n #[test(should_fail_with = \"extend_from_vector out of bounds\")]\n fn extend_vector_beyond_max_len() {\n let mut vec: BoundedVec<u32, 3> = BoundedVec::new();\n vec.push(1);\n vec.extend_from_vector([2, 3, 4].as_vector()); // S]should panic\n }\n\n #[test(should_fail_with = \"extend_from_bounded_vec out of bounds\")]\n fn extend_bounded_vec_beyond_max_len() {\n let mut vec: BoundedVec<u32, 3> = BoundedVec::new();\n let other: BoundedVec<u32, 5> = BoundedVec::from_array([1, 2, 3, 4, 5]);\n vec.extend_from_bounded_vec(other); // should panic\n }\n\n #[test]\n fn extend_with_empty_collections() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n let original_len = vec.len();\n\n vec.extend_from_array([]);\n assert_eq(vec.len(), original_len);\n\n vec.extend_from_vector([].as_vector());\n assert_eq(vec.len(), original_len);\n\n let empty: BoundedVec<u32, 3> = BoundedVec::new();\n vec.extend_from_bounded_vec(empty);\n assert_eq(vec.len(), original_len);\n }\n }\n\n mod storage {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn storage_consistency() {\n let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n\n // test initial storage state\n assert_eq(vec.storage(), [0, 0, 0, 0, 0]);\n\n vec.push(1);\n vec.push(2);\n\n // test storage after modifications\n assert_eq(vec.storage(), [1, 2, 0, 0, 0]);\n\n // storage doesn't change length\n assert_eq(vec.len(), 2);\n assert_eq(vec.max_len(), 5);\n }\n\n #[test]\n fn storage_after_pop() {\n let mut vec: BoundedVec<u32, 3> = BoundedVec::from_array([1, 2, 3]);\n\n let _ = vec.pop();\n // after pop, the last element should be zeroed\n assert_eq(vec.storage(), [1, 2, 0]);\n assert_eq(vec.len(), 2);\n }\n\n #[test]\n fn vector_immutable() {\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([1, 2, 3]);\n let storage = vec.storage();\n\n assert_eq(storage, [1, 2, 3]);\n\n // Verify that the original vector is unchanged\n assert_eq(vec.len(), 3);\n assert_eq(vec.get(0), 1);\n assert_eq(vec.get(1), 2);\n assert_eq(vec.get(2), 3);\n }\n }\n}\n"
6908
6912
  },
6909
6913
  "61": {
6910
6914
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/capsules/mod.nr",