@aztec/accounts 3.0.0-nightly.20260104 → 3.0.0-nightly.20260106

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1894,7 +1894,7 @@
1894
1894
  }
1895
1895
  },
1896
1896
  "bytecode": "H4sIAAAAAAAA/+zdCZzN1R8//juLbYixS5ZL9uxkS7InSRKS7Pu+7/vY931NQpIkoWRLkiRJkiRJQpIkSUgS//PSTDPNd36/+Zzjd1+31//RfTwO03Svz3k/7+cun8/nnNcJ8f1180f/3aJFq8F927Vp0b13i07d+7br3b1V1z4tWrTr3rf3oJ49zG925/L5TmT/674hpoVF/x0a/W/E/V3M33F/TpvA/dKbVjne7zKZNjLe7zIn8LtsCfx72RP4XY4Efpczgd/5E9hGrgR+lzuB392bwO/yJLCNfAn8rkACVgUT+F2hBH5XOIF/r2gC9yuWwO+KJ/C7kgn8e6UTuN/9CfyuTAK/K5fAv1chgfs9kMDvKibwu0oJ/HuVE7hflQR+VzWB31U3LXm839WI/jvc5+EWEv23P/rv4m3r9j5ZYmnBzfVqbIyKatysQKmztQZt6Tmz2skrsy+a/78vLPa+idwK38l2Pk58O7nj/tupfLEFh0T3E3/n9cXuuCHR/27M/fabnz8x7YBpn4b98x8Pi9ffRG4h+S3uuz/Mu8NB797/uNn2v4DFfT+x6P9npP4XtLjvAYv+H7Lof0L74cHo/fCz6L8PRf/9aZz98HPz82HTvjDtyB3uh4Us7vu5hcOXpOfxPov7Hrbo/1FS/wtb3PcLi/5/dYf74ZfR+93R6L+/iv77SJz98Jj5+WvTjpv2zR3uh0Us7nvMwuEE6XksanHfry36f5LU/2IW9z1u0f9Td7gfnoje705G/30q+u9v4uyH35qfT5v2nWln7nA/LG5x328tHL4nPY8lLO572qL/Z0n9L2lx3+8s+v/DHe6H30fvd2ej//4h+u8zcfbDc+bnH007b9pPd7gflrK47zkLhwuk57G0xX1/tOj/z6T+329x3/MW/b94h/vhhej97ufovy9G//1TnP3wF/PzJdN+Ne3yHe6HZSzu+4uFwxXS81jW4r6XLPp/ldT/chb3/dWi/7/d4X54JXq/uxr992/Rf1+Osx9eMz//btp10/64w/2wvMV9r1k43CA9jxUs7vu7Rf//JPX/AYv7Xrfo/8073A9vRO93f0b/fTP67z/i7Ie3wv56UIhpofHOctk6VLS47y0Lh7BwzvP4oMV9feHe+x9O6n8li/uGWPQ/Sfid7Yd4/vB3ePTfSaL/xv4Wc7+k5odkpiU3LcUd7ocPWdw3qYVDBOl5rGxx32QW/U9J6n8Vi/smt+h/qjvcDyOi97uU0X+niv47RZz98C7zQ2rT0pgWeYf7YVWL+95l4ZCW9DxWs7hvaov+pyP1v7rFfdNY9D/9He6HaaP3u3TRf6eP/jsyzn6YwfyQ0bRMpmW+w/2whsV9M1g4ZLlDhyzRdWeM/jtT9N+Z4zjcbX7Iato9pmWL5xAa/bff560L6X3ea8vutbaQJ0be/oyLrgmPq+y7s37msehnDu/PQUjcfsY8Ljz6v0MSeoBlv0O83zf2hg4k8/2/6UDcF3xicHG3lzPuXmm7QTw4/jOc2MZzWjxrfotXpGsN/vD/fVxi2/JbvPrhC6Ow/8t9/D5Pt6S33znu7N940vFx7Rwf15f8uE6Oj+vu+LgOjo/zOz5uiOPjijs+bpjj4/yOj2vl+Lg+jo/zOz6uvePjXF9Hro/zOz6up+PjXJ+/QY6Pc3XpndAnP+NTP8R1YzYfOi7//u2vReH2X9lsPqRzWX5tjvnKFvdxLm65AlxXbse6Enqc7Rcqm37ea/Hly6UvMfuQ3+M2XJ+bHBY157nD140nf/saQm2et7wBfu2jL7kdvgg3zR7YfmF/zeNwkJHPYh9k1JA3wO8/+S0PSGLef/5no5Z9zGW5X8bdRkA/AINxaP3zrVu34m6vwJ0cWhew3Oux8QIWe31BwqF1Qct3FNRQ8L9D6/8Orf+6/XdonfDN7/i4Vo6P++/QOuGb3/Fx/x1aJ37jHloXDPDXa3wFzOfwNbbQv+hrbMyhmu0hwn0OXxFxs7Wy+UJT2PIw2OX5zh/gr/xFgvRt2GKG2j+2V9T123D+6AfbPq5YgL/hol/FwmN/4ffZ32x3kEIWNRW/w508sX8fU/2KOezkBSy2USLAb8wwKuHwplbS8XxfyTs4j4k3rSIO3jZvjKUs31Ri2v9s1LKPNm8qd7KdvD7Odgrd4X6b6BcD31/7lO2+EGZxX4spoLEPiv+D39PDfCElAgyGeb0lHF48JSxePKUta7DtS0i8bXit2dbq/gA/F9gJY3bguI9LbDOuO29i/SkT4A+ZmA/K+PV6+YD1el+bLztlA/ztt2D0Nnx2j7v9QZIkuiXYEYs+sD5Q8vk427H94LI9esL7hM3RJu5fMjzwH4x/P9ByOzav6dA4P5eL3m/Lh9/Bh1lZx2+H5e7g2yG2Wc7hA66sxRtHBce6Kvw/uMpt088HAnyVu1C41ZHJ3y+WQB7tVQzwhxhquN/hy8SDAe4X3uhdvuRUIniVcejXQwHuFz5IXLwqB7hfhRyPxKsE6TSYRTDJP7ZX1fU0WJHoB9s+rlqAT4OhX9Ucvu25bAsfAhUcdpI2AT43jg+cig79amvZr5ib7ZFEdYsPKwurEIv+J3gkkVi/kZ5TzeGDs6jFNmoE+I0N9jUc9o2ajl+2av4/+LJVw+I942HLL1sxN9t9uFbw9+HbN9t9Ede/bI64cf8HHPaXRwJ89qmUZR2lHOuoHeDXY9nofgXyQOlRwpdLF9s6QTq9b/Nl6U62Y5H6d0fbqXWHz2+il+58gT+9b5FoFvug+D/4PT3MF1IjwGCIqavh8KK2+aB7zPLFgzzd0IQ2atlHry/aW7dunUjo935f4tvAH3H7Wjf6Vf94uO+f3y7qRr/rxP3d4wl00Pbcfh1vT8Qs80SE1LV40h63xLPd8bAD1SUd/eAd/0GHd/164YHvVyWHfj1B6NdDDv2qT+hXZYd+PUnoVxWHfjWw7Nf/qX+JbaehxXbw/pPatKXR/43XAPY3PLdwRJ8b/tf+a6T2f9rnE7klwecLPhttXyuNwr2/VkKjXyvxb36f3c32/camj67beMpyGy5jMuJ+MfT6RdX2+Wwcbvfel8b333vff+3f0f5Pry0v360tXr+3D+bwOrF9DcfdRmJ9ejrc7n01TQK/9/u89Sv+D35PD+O8rz5tuQ3Xz71AHtA34T2XsR20e1xIE8Jz+YyAQ0OCQ1OHbSS0ncT2u2YW72nB8m5G8G5O8m7hfTuhwfJuQfBuSfJu5X07YcHybkXwbk3ybuN9O+HB8m5D8G5L8m7nfTtJguXdjuDdnuTdwft2kgbLuwPBuyPJu5P37SQLlncngndnkncX79tJHizvLgTvriTvbt63kyJY3t0I3t1J3j28byciWN49CN49Sd69vG8nZbC8exG8e5O8+3jfTqpgefchePcleffzvp27guXdj+Ddn+Q9wPt2UgfLewDBeyDJe5D37aQJlvcggvdgkvcQ79uJDJb3EIL3UJL3MO/bSRss72EE7+Ek7xHet5MuWN4jCN4jSd5R3reTPljeUQTvUSTv0d63kyFY3qMJ3mNI3mO9bydjsLzHErzHkbzHe99OpmB5jyd4TyB5T/S+nczB8p5I8J5E8p7sfTtZguU9meA9heQ91ft27g6W91SC9zSS93Tv28kaLO/pBO8ZJO+Z3rdzT7C8ZxK8Z5G8Z3vfTrZgec8meM8hec/1vp3swfKeS/CeR/Ke7307OYLlPZ/gvYDkvdD7dnIGy3shwftZkvci79vxB8t7EcH7OZL3Yu/byRUs78UE7+dJ3ku8byd3sLyXELyXkryXed/OvcHyXkbwfoHkvdz7dvIEy3s5wftFkvcK79vJGyzvFQTvl0jeK71vJ1+wvFcSvF8mea/yvp38wfJeRfB+heS92vt2CgTLezXB+1WS9xrv2ykYLO81BO/XSN5rvW+nULC81xK815G813vfzn3B8l5P8H7dYhvBctgXFvhtvEHa7zZ4306RYHlvIOx3b5K8N3rfTtFgeW8keG8ieW/2vp1iwfLeTPDeQvLe6n07xYPlvZXg/RbJe5v37ZQIlvc2gvfbJO/t3rdTMlje2wne75C8d3jfTqlgee8geL9L8t7pfTulg+W9k+D9Hsl7l/ft3B8s710E7/dJ3ru9b6dMsLx3E7w/IHnv8b6dssHy3kPw/pDkvdf7dsoFy3svwfsjkvc+79spH7TzVQTvj0ne+71vp0KwvPcTvD8heR/wvp0HguV9gOD9Kcn7oPftVAyW90GC92ck70Pet/NgsLwPEbw/J3kf9r6dSsHyPkzw/oLkfcT7dh4KlvcRgveXJO+j3rdTOVjeRwneX5G8j3nfTpVgeR8jeH9N8j7ufTtVg+V9nOD9Dcn7hPftVAuW9wmC90mS9ynv26keLO9TBO9vSd6nvW+nRrC8TxO8vyN5n/G+nZrB8j5D8P6e5H3W+3YeDpb3WYL3DyTvc963UytY3ucI3j+SvM97384jwfI+T/D+ieR9wft2agfL+wLB+2eS90Xv23k0WN4XCd6/kLwved9OnWB5XyJ4/0ryvux9O48Fy/sywfsKyfuq9+3UDZb3VYL3byTva96383iwvK8RvH8neV/3vp16wfK+TvD+g+R9w/t2ngiW9w2C958k75vet1M/WN43Cd63SN6+JJ6382SwvC36GOdBdtsIScLxDvW+nQbB8g4leIeRvMO9b6dhsLzDCd5JSN5JvW+nUbC8kxK8k5G8k3vfzlPB8k5O8E5B8o7wvp3GwfKOIHinJHmn8r6dp4PlnYrgfRfJO7X37TQJlndqgncaknek9+08EyzvSIJ3WpJ3Ou/baRos73QE7/Qk7wzet9MsWN4ZCN4ZSd6ZvG+nebC8MxG8M5O8s3jfTotgeWcheN9N8s7qfTstg+WdleB9D8k7m/fttAqWdzaCd3aSdw7v22kdLO8cBO+cJG+/9+20CZa3n+Cdi+Sd2/t22gbLOzfB+16Sdx7v22kXLO88BO+8JO983rfTPlje+Qje+UneBbxvp0OwvAsQvAuSvAt5307HYHkXInjfR/Iu7H07nYLlXZjgXYTkXdT7djoHy7sowbsYybu49+10CZZ3cYJ3CZJ3Se/b6Ros75IE71Ik79Let9MtWN6lCd73k7zLeN9O92B5lyF4lyV5l/O+nR7B8i5H8C5P8q7gfTs9g+VdgeD9AMm7ovft9AqWd0WC94Mk70ret9M7WN6VCN4Pkbwre99On2B5VyZ4VyF5V/W+nb7B8q5K8K5G8q7ufTv9guVdneBdg+Rd0/t2+gfLuybB+2GSdy3v2xkQLO9aBO9HSN61vW9nYLC8axO8HyV51/G+nUHB8q5D8H6M5F3X+3YGB8u7LsH7cZJ3Pe/bGRIs73oE7ydI3vW9b2dosLzrE7yfJHk38L6dYcHybkDwbkjybuR9O8OD5d2I4P0Uybux9+2MCJZ3Y4L30yTvJt63MzJY3k0I3s+QvJt6305UsLybErybkbybe9/OqGB5Nyd4tyB5t/S+ndHB8m5J8G5F8m7tfTtjguXdmuDdhuTd1vt2xgbLuy3Bux3Ju7337YwLlnd7gncHkndH79sZHyzvjgTvTiTvzt63MyFY3p0J3l1I3l29b2disLy7Ery7kby7e9/OpGB5dyd49yB59/S+ncnB8u5J8O5F8u7tfTtTguXdm+Ddh+Td1/t2pgbLuy/Bux/Ju7/37UwLlnd/gvcAkvdA79uZHizvgQTvQSTvwd63MyNY3oMJ3kNI3kO9b2dmsLyHEryHkbyHe9/OrGB5Dyd4jyB5j/S+ndnB8h5J8I4ieY/yvp05wfIeRfAeTfIe4307c4PlPYbgPZbkPc77duYFy3scwXs8yXuC9+3MD5b3BIL3RJL3JO/bWRAs70kE78kk7ynet7MwWN5TCN5TSd7TvG/n2WB5TyN4Tyd5z/C+nUXB8p5B8J5J8p7lfTvPBct7FsF7Nsl7jvftLA6W9xyC91yS9zzv23k+WN7zCN7zSd4LvG9nSbC8FxC8F1psI8y0SNOWRv9303Cfr7lpLU1rbVpb09qb1tG0zqZ1Na27aT1N621aX9P6mzbQtMGmDTVtuGkjTRtl2hjTxpk2wbRJpk0xbZppM0ybZdoc0+aZtsC0Z017zrTnTVtq2gumvWjaS6a9bNorpr1q2mumrTPtddPeMO1N0zaZtsW0t0x727R3THvXtPdMe9+0D0z70LSPTPvYtE9M+9S0z0z73LQvTPvStK9M+9q0b0w7adq3pn1n2vem/WAa1prH+udYkxvrRGPtYqynizVese4o1sLE+oxYMxDr2GFtNaz3hTWosC4S1urB+jFY0wTrbGDtB6xHgIx85LYjSxz51shcRg4wsmmRl4oMT+RKIusQ+XvIhENOGbKzkOeEjCHk3iCLBfkgyKxAjgLm9mO+OeZAY14u5opi/iLm1GGeF+YeYT4M5mhg3gDGsmN8Ncb8YhwqxkZivB7GkGFcE8baYPwHxiTgOjmu3eJ6Iq5x4boLrgXg/DTOmeI8Hs4t4XwHjsFxXIhjFXx/xnc6fM/AZx/ej/Eegf025hZquc8XMX/UCPf+XoH7PhNuv51nLLbxrMXrEP2ITOD3fp+3fsX/we/pYb6QJoT1M20cHP79JHgu69g/l6E2+8si3nP5983WeVGSwG/juTt8LhNzxudR8ei/4z4usc2EWdy3uEV/Fgs87w0Jr+HnBRyaERyWCDi0IDgsFXBoRXBYJuDQhuDwgoBDO4LDcgGHDgSHFwUcOhEcVgg4dCE4vCTg0I3gsFLAoQfB4WUBh14Eh1UCDn0IDq8IOPQjOKwWcBhAcHhVwGEQwWGNgMMQgsNrAg7DCA5rBRxGEBzWCThEERzWCziMJji8LuAwluDwhoDDeILDBgGHiQSHNwUcJhMcNgo4TCU4bBJwmE5w2CzgMJPgsEXAYTbBYauAw1yCw1sCDvMJDtsEHBYSHN5WGPdCcNgu4LCY4PCOgMMSgsMOAYdlBId3BRyWExx2CjisIDi8J+CwkuCwS8BhFcHhfQGH1QSH3QIOawgOHwg4rCU47BFwWE9w+FDAYV9Y4LexV8BhA2F/+EjAYSPBYZ+Aw2aCw8cCDlsJDvsFHLYRHD4RcNhOcDgg4LCD4PCpgMNOgsNBAYddBIfPBBx2ExwOCTjsITh8LuCwl+BwWOE4i+DwhYDDfoLDEQGHAwSHLwUcDhIcjgo4HCI4fCXgcJjgcEzA4QjB4WsBh6MEh+MCDscIDt8IOBwnOJwQcDhBcDgp4HCK4HBKwOE0weFbAYczBIfTAg5nCQ7fCTicIzicEXA4T3D4XsDhAsHhrIDDRYLDDwIOlwgO5wQcLhMcfhRwuEpwOC/gcI3g8JOAw3WCwwUBhxsEh58FHG4SHC4KOPgIeby/CDiEEhwuCTiEExx+FXBISnC4LOCQnOBwRcAhguBwVcAhFcHhNwGH1ASHawIOkQSH3wUc0hEcrgs4ZCA4/CHgkIngcEPAIQvB4U8Bh6wEh5sCDtkIDrcEHHIQHHxJ//0OfoJDiIBDboJDqIBDHoJDmIBDPoJDuIBDAYJDEgGHQgSHpAIOhQkOyQQcihIckgs4FCc4pBBwKElwiBBwKE1wSCngUIbgkErAoRzB4S4BhwoEh9QCDhUJDmkEHCoRHCIFHCoTHNIKOFQlOKQTcKhOcEgv4FCT4JBBwKEWwSGjgENtgkMmAYc6BIfMAg51CQ5ZBBzqERzuFnCoT3DIKuDQgOBwj4BDI4JDNgGHxgSH7AIOTQgOOQQcmhIccgo4NCc4+AUcWhIccgk4tCY45BZwaEtwuFfAoT3BIY+AQ0eCQ14Bh84Eh3wCDl0JDvkFHLoTHAoIOPQkOBQUcOhNcCgk4NCX4HCfgEN/gkNhAYeBBIciAg6DCQ5FBRyGEhyKCTgMJzgUF3AYSXAoIeAwiuBQUsBhDMGhlIDDOIJDaQGHCQSH+wUcJhEcygg4TCE4lBVwmEZwKCfgMIPgUF7AYRbBoYKAwxyCwwMCDvMIDhUFHBYQHB60cAgzLa1pS6P/+3nTvyWmLTVtmWkvmLbctBdNW2HaS6atNO1l01aZ9oppq0171bQ1pr1m2lrT1pm23rTXTXvDtA2mvWnaRtM2mbbZtC2mbTXtLdO2mfa2adtNe8e0Haa9a9pO07A+PdZmx7rkWJMb61FjLWasQ4w1eLH+LNZexbqjWHMT601irUWsM4g19rC+HNZWw7piWFML60lhLSWsI4Q1dLB+DNZOwbohWDMD60VgrQSsE4CMfOTDIxsdueDIxEYeNLKQkQOMDFzkvyL7FLmfyLxE3iOyDpHzh4w75Lsh2wy5Xsi0Qp4TsoyQ44MMG+S3ILsEuR3IrEBeA7IKME8fc9QxPxtzkzEvF3NSMR8TcxExDw9z0DD/CnOPMO8Gc04w3wJzDTDOHmPMMb4aY4sxrhZjSjGeEmMJMY4OY8gwfgpjhzBuBmNGbo+XMA3XyXGNGNdHcW0Q18VwTQjXQ3AtAOfBcQ4Y5z9x7g/nvXDOB+c7cKyP41wc4+H4Bt/t8b0W3+nwfQaf5fgcw3s43r/w2sV+G3MLjbfPF29bt/fJEksLbq5XY2NUVONmBUqdrTVoS8+Z1U5emX3R/P8a4T7fc95fWyG4/+Ik/7udxB4XdxuJ9amS5ftR2gR+7/d561f8H/yeHuYLWZQk8O9HNg4O/34SPJd1wq2fy7Aa4d6fy4d4z+XfN1vnh5IGfhuVBRwaErJsqwg4NCM4VBVwaEFwqCbg0IrgUF3AoQ3BoYaAQzuCQ00Bhw4Eh4cFHDoRHGoJOHQhODwi4NCN4FBbwKEHweFRAYdeBIc6Ag59CA6PCTj0IzjUFXAYQHB4XMBhEMGhnoDDEILDEwIOwwgO9QUcRhAcnhRwiCI4NBBwGE1waCjgMJbg0EjAYTzB4SkBh4kEh8YCDpMJDk8LOEwlODQRcJhOcHhGwGEmwaGpgMNsgkMzAYe5BIfmAg7zCQ4tBBwWEhxaCjgsIji0EnBYTHBoLeCwhODQRsBhGcGhrYDDcoJDOwGHFQSH9gIOKwkOHQQcVhEcOgo4rCY4dBJwWENw6CzgsJbg0EXAYT3BoauAw76wwG+jm4DDBsL+0F3AYSPBoYeAw2aCQ08Bh60Eh14CDtsIDr0FHLYTHPoIOOwgOPQVcNhJcOgn4LCL4NBfwGE3wWGAgMMegsNAAYe9BIdBCsdZBIfBAg77CQ5DBBwOEByGCjgcJDgME3A4RHAYLuBwmOAwQsDhCMFhpIDDUYJDlIDDMYLDKAGH4wSH0QIOJwgOYwQcThEcxgo4nCY4jBNwOENwGC/gcJbgMEHA4RzBYaKAw3mCwyQBhwsEh8kCDhcJDlMEHC4RHKYKOFwmOEwTcLhKcJgu4HCN4DBDwOE6wWGmgMMNgsMsAYebBIfZAg4+QtbwHAGHUILDXAGHcILDPAGHpASH+QIOyQkOCwQcIggOCwUcUhEcnhVwSE1wWCTgEElweE7AIR3BYbGAQwaCw/MCDpkIDksEHLIQHJYKOGQlOCwTcMhGcHhBwCEHwWG5gIOf4PCigENugsMKAYc8BIeXBBzyERxWCjgUIDi8LOBQiOCwSsChMMHhFQGHogSH1QIOxQkOrwo4lCQ4rBFwKE1weE3AoQzBYa2AQzmCwzoBhwoEh/UCDhUJDq8LOFQiOLwh4FCZ4LBBwKEqweFNAYfqBIeNAg41CQ6bBBxqERw2CzjUJjhsEXCoQ3DYKuBQl+DwloBDPYLDNgGH+gSHtwUcGhActgs4NCI4vCPg0JjgsEPAoQnB4V0Bh6YEh50CDs0JDu8JOLQkOOwScGhNcHhfwKEtwWG3gEN7gsMHAg4dCQ57BBw6Exw+FHDoSnDYK+DQneDwkYBDT4LDPgGH3gSHjwUc+hIc9gs49Cc4fCLgMJDgcEDAYTDB4VMBh6EEh4MCDsMJDp8JOIwkOBwScBhFcPhcwGEMweGwgMM4gsMXAg4TCA5HBBwmERy+FHCYQnA4KuAwjeDwlYDDDILDMQGHWQSHrwUc5hAcjgs4zCM4fCPgsIDgcMLCIcy0dKYtjf7vKuaxVU2rZlp102qYVtO0h02rZdojptU27VHT6pj2mGl1TXvctHqmPWFafdOeNK2BaQ1Na2TaU6Y1Nu1p05qY9oxpTU1rZlpz01qY1tK0Vqa1Nq2NaW1Na2ca1qfH2uxYlxxrcmM9aqzFjHWIsQYv1p/F2qtYdxRrbmK9Say1iHUGscYe1pfD2mpYVwxramE9KaylhHWEsIYO1o/B2ilYNwRrZmC9CKyVgHUCkJGPfHhkoyMXHJnYyINGFjJygJGBi/xXZJ8i9xOZl8h7RNYhcv6QcYd8N2SbIdcLmVbIc0KWEXJ8kGGD/BZklyC3A5kVyGtAVgHm6WOOOuZnY24y5uViTirmY2IuIubhYQ4a5l9h7hHm3WDOCeZbYK4BxtljjDnGV2NsMcbVYkwpxlNiLCHG0WEMGcZPYewQxs1gzAjGS2CsAK6T4xoxro/i2iCui+GaEK6H4FoAzoPjHDDOf+LcH8574ZwPznfgWB/HuTjGw/ENvtvjey2+0+H7DD7L8TmG93C8f+G1i/025hZquc/fZ/6oESfDsnjbur1PllhacHO9Ghujoho3K1DqbK1BW3rOrHbyyuyL0fetnNR+O3iM122cTGr3fpQugd/7fd76Ff8Hv6eH+UIeShr496OTltuw/PeT4LmsE279XIbb7C+neM/l3zdb51OE5/JbAYeGhCzb0wIOzQgO3wk4tCA4nBFwaEVw+F7AoQ3B4ayAQzuCww8CDh0IDucEHDoRHH4UcOhCcDgv4NCN4PCTgEMPgsMFAYdeBIefBRz6EBwuCjj0Izj8IuAwgOBwScBhEMHhVwGHIQSHywIOwwgOVwQcRhAcrgo4RBEcfhNwGE1wuCbgMJbg8LuAw3iCw3UBh4kEhz8EHCYTHG4IOEwlOPwp4DCd4HBTwGEmweGWgMNsgoMv2b/fYS7BIUTAYT7BIVTAYSHBIUzAYRHBIVzAYTHBIYmAwxKCQ1IBh2UEh2QCDssJDskFHFYQHFIIOKwkOEQIOKwiOKQUcFhNcEgl4LCG4HCXgMNagkNqAYf1BIc0Ag77wgK/jUgBhw2E/SGtgMNGgkM6AYfNBIf0Ag5bCQ4ZBBy2ERwyCjhsJzhkEnDYQXDILOCwk+CQRcBhF8HhbgGH3QSHrAIOewgO9wg47CU4ZFM4ziI4ZBdw2E9wyCHgcIDgkFPA4SDBwS/gcIjgkEvA4TDBIbeAwxGCw70CDkcJDnkEHI4RHPIKOBwnOOQTcDhBcMgv4HCK4FBAwOE0waGggMMZgkMhAYezBIf7BBzOERwKCzicJzgUEXC4QHAoKuBwkeBQTMDhEsGhuIDDZYJDCQGHqwSHkgIO1wgOpQQcrhMcSgs43CA43C/gcJPgUEbAwUfIPi8r4BBKcCgn4BBOcCgv4JCU4FBBwCE5weEBAYcIgkNFAYdUBIcHBRxSExwqCThEEhweEnBIR3CoLOCQgeBQRcAhE8GhqoBDFoJDNQGHrASH6gIO2QgONQQcchAcago4+AkODws45CY41BJwyENweETAIR/BobaAQwGCw6MCDoUIDnUEHAoTHB4TcChKcKgr4FCc4PC4gENJgkM9AYfSBIcnBBzKEBzqCziUIzg8KeBQgeDQQMChIsGhoYBDJYJDIwGHygSHpwQcqhIcGgs4VCc4PC3gUJPg0ETAoRbB4RkBh9oEh6YCDnUIDs0EHOoSHJoLONQjOLQQcKhPcGgp4NCA4NBKwKERwaG1gENjgkMbAYcmBIe2Ag5NCQ7tBByaExzaCzi0JDh0EHBoTXDoKODQluDQScChPcGhs4BDR4JDFwGHzgSHrgIOXQkO3QQcuhMcugs49CQ49BBw6E1w6Cng0Jfg0EvAoT/BobeAw0CCQx8Bh8EEh74CDkMJDv0EHIYTHPoLOIwkOAwQcBhFcBgo4DCG4DBIwGEcwWGwgMMEgsMQAYdJBIehAg5TCA7DBBymERyGCzjMIDiMEHCYRXAYKeAwh+AQJeAwj+AwSsBhAcFhtIVDmGnpTVsa/d+nk/p835l2xrTvTTtr2g+mnTPtR9POm/aTaRdM+9m0i6b9Ytol03417bJpV0y7atpvpl0z7XfTrpv2h2k3TPvTtJum3TLNZ/oaYlqoaWGmhZuWxLSkpiUzLblpWJ8ea7NjXXKsyY31qLEWM9Yhxhq8WH8Wa69i3VGsuYn1JrHWItYZxBp7WF8Oa6thXTGsqYX1pLCW0u11hEzD+jFYOwXrhmDNDKwXgbUSsE4AMvKRD49sdOSCIxMbedDIQkYOMDJwkf+K7FPkfiLzEnmPyDpEzh8y7pDvhmwz5Hoh0wp5TsgyQo4PMmyQ34LsEuR2ILMCeQ3IKsA8fcxRx/xszE3GvFzMScV8TMxFxDw8zEHD/CvMPcK8G8w5wXwLzDXAOHuMMcf4aowtxrhajCnFeEqMJcQ4Oowhw/gpjB3CuBmMGcF4CYwVwHVyXCPG9VFcG8R1MVwTwvUQXAvAeXCcA8b5T5z7w3kvnPPB+Q4c6+M4F8d4OL7Bd3t8r8V3OnyfwWc5PsfwHo73L7x2sd/G3EIt9/ka4cYqToZl8bZ1e58ssbTg5no1NkZFNW5WoNTZWoO29JxZ7eSV2RfN/8f9v01qvx08xus2xiSzez9Kn8Dv/T5v/Yr/g9/Tw3whp5ISjqF5DrEbtXtcSENC/ulYAYdmBIdxAg4tCA7jBRxaERwmCDi0IThMFHBoR3CYJODQgeAwWcChE8FhioBDF4LDVAGHbgSHaQIOPQgO0wUcehEcZgg49CE4zBRw6EdwmCXgMIDgMFvAYRDBYY6AwxCCw1wBh2EEh3kCDiMIDvMFHKIIDgsEHEYTHBYKOIwlODwr4DCe4LBIwGEiweE5AYfJBIfFAg5TCQ7PCzhMJzgsEXCYSXBYKuAwm+CwTMBhLsHhBQGH+QSH5QIOCwkOLwo4LCI4rBBwWExweEnAYQnBYaWAwzKCw8sCDssJDqsEHFYQHF4RcFhJcFgt4LCK4PCqgMNqgsMaAYc1BIfXBBzWEhzWCjisJzisE3DYF0awFnDYQNgfXhdw2EhweEPAYTPBYYOAw1aCw5sCDtsIDhsFHLYTHDYJOOwgOGwWcNhJcNgi4LCL4LBVwGE3weEtAYc9BIdtAg57CQ5vKxxnERy2CzjsJzi8I+BwgOCwQ8DhIMHhXQGHQwSHnQIOhwkO7wk4HCE47BJwOEpweF/A4RjBYbeAw3GCwwcCDicIDnsEHE4RHD4UcDhNcNgr4HCG4PCRgMNZgsM+AYdzBIePBRzOExz2CzhcIDh8IuBwkeBwQMDhEsHhUwGHywSHgwIOVwkOnwk4XCM4HBJwuE5w+FzA4QbB4bCAw02CwxcCDj5CXvYRAYdQgsOXAg7hBIejAg5JCQ5fCTgkJzgcE3CIIDh8LeCQiuBwXMAhNcHhGwGHSILDCQGHdASHkwIOGQgOpwQcMhEcvhVwyEJwOC3gkJXg8J2AQzaCwxkBhxwEh+8FHPwEh7MCDrkJDj8IOOQhOJwTcMhHcPhRwKEAweG8gEMhgsNPAg6FCQ4XBByKEhx+FnAoTnC4KOBQkuDwi4BDaYLDJQGHMgSHXwUcyhEcLgs4VCA4XBFwqEhwuCrgUIng8JuAQ2WCwzUBh6oEh98FHKoTHK4LONQkOPwh4FCL4HBDwKE2weFPAYc6BIebAg51CQ63BBzqERx8yf/9DvUJDiECDg0IDqECDo0IDmECDo0JDuECDk0IDkkEHJoSHJIKODQnOCQTcGhJcEgu4NCa4JBCwKEtwSFCwKE9wSGlgENHgkMqAYfOBIe7BBy6EhxSCzh0JzikEXDoSXCIFHDoTXBIK+DQl+CQTsChP8EhvYDDQIJDBgGHwQSHjAIOQwkOmQQchhMcMgs4jCQ4ZBFwGEVwuFvAYQzBIauAwziCwz0CDhMIDtkEHCYRHLILOEwhOOQQcJhGcMgp4DCD4OAXcJhFcMgl4DCH4JBbwGEeweFeAYcFBIc8ye22Yfvv1wj3+eqE/+/jiret2/tkiaUFN9ersTEqqnGzAqXO1hq0pefMaievzL5o/n+/7IHt18PR/Qq17Fde714hga6hqPmjmqkhLN7jEquhqMV9q4V7v28+C5u///B5f0yx6G347B7nMyUgqvF2S7AjFn0o4vNZvyZxs91OYR9nO/f57LYT//WS2L+P13/NcLvXZa3w2F/4ffY3W4PFFu+zoXF+zh+9LxZIHrtN641bvGhu/9th0X/nj34crJLH65jLk/So5ZP0qOWTdOvWrWsJ/d7vS3x7+CNufQWj4Qsl9/0TpWD0MxH3d4XiALt8ej3q8Ok1gPDp5dKvgZb9irmFe9/OLLOdkILJvfepkMWnhoVriNdaY3ZMW0u8cAs6fBoltK3E7o77l3V4vu8L8Le7/I79KhzgfuVz7FeRAPerTLhbv4oGuF95fW79KhbgfqFP5R36VZzQr4oO/SpB6Fc5h36VtOgXPlczmFY5+r/xHoPXM1472E+xT8AfteLfbRj+/++WkI+NfSnv9sktPv+SDwzwdxB8/pVKbr+vlbY885Ihgd/7fXY329pKJw/8Nu63fM1l9P33mov/mrM90MFzlM/iuynui+fJdjv3W2yjjOXrIWMCv/f7vPUr/g9+Tw/jvB7KOGwDN9v327LBf78N+fsPn937bVmH99tyvP0rtrN2jwspR9i/ygs44L3N432dt1FBwKEZweEBAYcWBIeKAg6tCA4PCji0IThUEnBoR3B4SMChA8GhsoBDJ4JDFQGHLgSHqgIO3QgO1QQcehAcqgs49CI41BBw6ENwqCng0I/g8LCAwwCCQy0Bh0EEh0cEHIYQHGoLOAwjODwq4DCC4FBHwCGK4PCYgMNogkNdAYexBIfHBRzGExzqCThMJDg8IeAwmeBQX8BhKsHhSQGH6QSHBgIOMwkODQUcZhMcGgk4zCU4PCXgMJ/g0FjAYSHB4WkBh0UEhyYCDosJDs8IOCwhODQVcFhGcGgm4LCc4NBcwGEFwaGFgMNKgkNLAYdVBIdWAg6rCQ6tBRzWEBzaCDisJTi0FXBYT3BoJ+CwLyzw22gv4LCBsD90EHDYSHDoKOCwmeDQScBhK8Ghs4DDNoJDFwGH7QSHrgIOOwgO3QQcdhIcugs47CI49BBw2E1w6CngsIfg0EvAYS/BobfCcRbBoY+Aw36CQ18BhwMEh34CDgcJDv0FHA4RHAYIOBwmOAwUcDhCcBhkmbeTyRebt4PMBOQFYK485oljjjTmB2NuLOaFYk4k5gNiLhzmgWEOFOb/YO4L5n1gzgPG+2OsO8Z5Y4wzxvdibCvGdWJMI8bzYSwbxnFhDBPG72DsCsZtYMwCrtfjWjWu0+IaJa7P4doUrsvgmgTOx+NcNM7D4hwkzr/h3BPOu+CcA463cayJ4ywcY+D7Nb5b4nsVvlPg8xSfJXgfxXsIXj/Yd+AWc7PNwUFarm3eDnI6bLdT3mIbgy1fD5kS+L3f561f8X/we3oYJw9lsMM2cLPN2xnifTuBytu5vTvZ+mBfRN/jPy6xeofy9q/Yzto9LmQoYf8aJuDAyNsZLuDAyNsZIeDAyNsZKeDAyNuJEnBg5O2MEnBg5O2MFnBg5O2MEXBg5O2MFXBg5O2ME3Bg5O2MF3Bg5O1MEHBg5O1MFHBg5O1MEnBg5O1MFnBg5O1MEXBg5O1MFXBg5O1ME3Bg5O1MF3Bg5O3MEHBg5O3MFHBg5O3MEnBg5O3MFnBg5O3MEXBg5O3MFXBg5O3ME3Bg5O3MF3Bg5O0sEHBg5O0sFHBg5O08K+DAyNtZJODAyNt5TsCBkbezWMCBkbfzvIADI29niYADI29nqYADI29nmYADI2/nBQEHRt7OcgEHRt7OiwIOjLydFQIOjLydlwQcGHk7KwUcGHk7Lws4MPJ2Vgk4MPJ2XhFwYOTtrBZwYOTtvCrgwMjbWSPgwMjbeU3AgZG3s1bAgZG3s07AgZG3s17AgZG387qAAyNv5w0BB0bezgYBB0bezpsCDoy8nY0Kx1kEh00CDoy8nc0CDoy8nS0CDoy8na0CDoy8nbcEHBh5O9sEHBh5O29bOCBTJLMvNm8HmQnIC8BcecwTxxxpzA/G3FjMC8WcSMwHxFw4zAPDHCjM/8HcF8z7wJwHjPfHWHeM88YYZ4zvxdhWjOvEmEaM58NYNozjwhgmjN/B2BWM28CYBVyvx7VqXKfFNUpcn8O1KVyXwTUJnI/HuWich8U5SJx/w7knnHfBOQccb+NYE8dZOMbA92t8t8T3KnynwOcpPkvwPor3ELx+sO/ALeZmm4NT2Geft4OcDtvtDLPYxnbL10PmBH7v93nrV/wf/J4exslD2e6wDdxs83be8b6dQOXt3O6yrQ/2RfQ9/uMSq3cHb/+K7azd40J2EPavdwUcGHk7OwUcGHk77wk4MPJ2dgk4MPJ23hdwYOTt7BZwYOTtfCDgwMjb2SPgwMjb+VDAgZG3s1fAgZG385GAAyNvZ5+AAyNv52MBB0bezn4BB0bezicCDoy8nQMCDoy8nU8FHBh5OwcFHBh5O58JODDydg4JODDydj4XcGDk7RwWcGDk7Xwh4MDI2zki4MDI2/lSwIGRt3NUwIGRt/OVgAMjb+eYgAMjb+drAQdG3s5xAQdG3s43Ag6MvJ0TAg6MvJ2TAg6MvJ1TAg6MvJ1vBRwYeTunBRwYeTvfCTgw8nbOCDgw8na+F3Bg5O2cFXBg5O38IODAyNs5J+DAyNv5UcCBkbdzXsCBkbfzk4ADI2/ngoADI2/nZwEHRt7ORQEHRt7OLwIOjLydSwIOjLydXwUcGHk7lxXmZxEcrgg4MPJ2rgo4MPJ2fhNwYOTtXBNwYOTt/C7gwMjbua5wnEVw+EPAgZG3c0PAgZG386eAAyNv56aAAyNv55aAAyNvx5fi3+/AyNsJsXBAQEcWX2zeDjITkBeAufKYJ4450pgfjLmxmBeKOZGYD4i5cJgHhjlQmP+DuS+Y94E5Dxjvj7HuGOeNMc4Y34uxrRjXiTGNGM+HsWwYx4UxTBi/g7ErGLeBMQu4Xo9r1bhOi2uUuD6Ha1O4LoNrEjgfj3PROA+Lc5A4/4ZzTzjvgnMOON7GsSaOs3CMge/X+G6J71X4ToHPU3yW4H0U7yF4/WDfgVvMzTYHZ3ES+7wd5HTYbuddi22EWr4esiTwe7/PW7/i/+D39DBOHoqNQ9ybbd5OmPftBCpvJxx/2PpgX0Tf4z8usXrDeftXbGftHhcSniLw20gi4MDI20kq4MDI20km4MDI20ku4MDI20kh4MDI24kQcGDk7aQUcGDk7aQScGDk7dwl4MDI20kt4MDI20kj4MDI24kUcGDk7aQVcGDk7aQTcGDk7aQXcGDk7WQQcGDk7WQUcGDk7WQScGDk7WQWcGDk7WQRcGDk7dwt4MDI28kq4MDI27lHwIGRt5NNwIGRt5NdwIGRt5NDwIGRt5NTwIGRt+MXcGDk7eQScGDk7eQWcGDk7dwr4MDI28kj4MDI28kr4MDI28kn4MDI28kv4MDI2ykg4MDI2yko4MDI2ykk4MDI27lPwIGRt1NYwIGRt1NEwIGRt1NUwIGRt1NMwIGRt1NcwIGRt1NCwIGRt1NSwIGRt1NKwIGRt1NawIGRt3O/gAMjb6eMgAMjb6esgAMjb6ecgAMjb6e8gAMjb6eCgAMjb+cBAQdG3k5FAQdG3s6DAg6MvJ1KCsdZBIeHBBwYeTuVBRwYeTtVBBwYeTtVBRwYeTvVBBwYeTvVBRwYeTs1LPN27vbF5u0gMwF5AZgrj3nimCON+cGYG4t5oZgTifmAmAuHeWCYA4X5P5j7gnkfmPOA8f4Y645x3hjjjPG9GNuKcZ0Y03h7PJ9pGMeFMUwYv4OxKxi3gTELuF6Pa9W4TotrlLg+h2tTuC6DaxI4H49z0TgPi3OQOP+Gc08474JzDjjexrEmjrNwjIHv1/huie9V+E6Bz1N8luB9FO8heP1g34FbzM02B+c+n33eDnI6bLcTN9sjsW3UtHw93J3A7/0+b/2K/4Pf08M4eSg1HbaBm23ezsPetxOovJ0k+MPWB/si+h7/cYnVW4u3f8V21u5xIbUI+9cjAg6MvJ3aAg6MvJ1HBRwYeTt1BBwYeTuPCTgw8nbqCjgw8nYeF3Bg5O3UE3Bg5O08IeDAyNupL+DAyNt5UsCBkbfTQMCBkbfTUMCBkbfTSMCBkbfzlIADI2+nsYADI2/naQEHRt5OEwEHRt7OMwIOjLydpgIOjLydZgIOjLyd5gIOjLydFgIOjLydlgIOjLydVgIOjLyd1gIOjLydNgIOjLydtgIOjLyddgIOjLyd9gIOjLydDgIOjLydjgIOjLydTgIOjLydzgIOjLydLgIOjLydrgIOjLydbgIOjLyd7gIOjLydHgIOjLydngIOjLydXgIOjLyd3gIOjLydPgIOjLydvgIOjLydfgIOjLyd/gIOjLydAQIOjLydgQIOjLydQQIOjLydwQIOjLydIQIOjLydoQIOjLydYQIOjLyd4QIOjLydEQIOjLydkQIOjLydKAEHRt7OKIXjLILDaAEHRt7OGAEHRt7OWAEHRt7OOAEHRt7OeAEHRt7OBAEHRt7ORAsHZIpk9cXm7SAzAXkBmCuPeeKYI435wZgbi3mhmBOJ+YCYC4d5YJgDhfk/mPuCeR+Y84Dx/hjrjnHeGOOM8b0Y24pxnRjTiPF8GMuGcVwYw4TxOxi7gnEbGLOA6/W4Vo3rtLhGietzuDaF6zK4JoHz8TgXjfOwOAeJ828494TzLjjngONtHGviOAvHGPh+je+W+F6F7xT4PMVnCd5H8R6C1w/2HbjF3GxzcJBZUsAybwc5HbbbiZvtkdg2Jlm+HrIm8Hu/z1u/4v/g9/QwTh7KJIdt4GabtzPZ+3YClbeTFH/Y+mBfRN/jPy6xeqfw9q/Yzto9LmQKYf+aarkN29d8DfOZUdP750bIw+a+tcLtn89pAs8nIzdouoADIzdohoADIzdopoADIzdoloADIzdotoADIzdojoADIzdoroADIzdonoADIzdovoADIzdogYADIzdooYADIzfoWQEHRm7QIgEHRm7QcwIOjNygxQIOjNyg5wUcGLlBSwQcGLlBSwUcGLlBywQcGLlBLwg4MHKDlgs4MHKDXhRwYOQGrRBwYOQGvSTgwMgNWingwMgNelnAgZEbtErAgZEb9IqAAyM3aLWAAyM36FUBB0Zu0BoBB0Zu0GsCDozcoLUCDozcoHUCDozcoPUCDozcoNcFHBi5QW8IODBygzYIODByg94UcGDkBm0UcGDkBm0ScGDkBm0WcGDkBm0RcGDkBm0VcGDkBr0l4MDIDdom4MDIDXpbwIGRG7RdwIGRG/SOgAMjN2iHgAMjN+hdAQdGbtBOAQdGbtB7Ag6M3KBdAg6M3KD3BRwYuUG7BRwYuUEfKBxnERz2CDgwcoM+FHBg5AbtFXBg5AZ9JODAyA3aJ+DAyA36WMCBkRu038IB2Sj3+GJzg5CZgLwAzJXHPHHMkcb8YMyNxbxQzInEfEDMhcM8MMyBwvwfzH3BvA/MecB4f4x1xzhvjHHG+F6MbcW4ToxpxHg+jGXDOC6MYcL4HYxdwbgNjFnA9Xpcq8Z1WlyjxPU5XJvCdRlck8D5eJyLxnlYnIPE+Tece8J5F5xzwPE2jjVxnIVjDHy/xndLfK/Cdwp8nuKzBO+jeA/B6wf7DtxibvGzPbzkAFnkh9zOakFOR/ztJPa4uNtIrE+fpLB7PdyTwO/9Pm/9iv+D39PDOLkunzhsAzfb3KAD3rcTqNygZPjD1gf7Ivoe/3GJ1fspb/+K7azd40I+JexfBwUcGHk7nwk4MPJ2Dgk4MPJ2PhdwYOTtHBZwYOTtfCHgwMjbOSLgwMjb+VLAgZG3c1TAgZG385WAAyNv55iAAyNv52sBB0beznEBB0bezjcCDoy8nRMCDoy8nZMCDoy8nVMCDoy8nW8FHBh5O6cFHBh5O98JODDyds4IODDydr4XcGDk7ZwVcGDk7fwg4MDI2zkn4MDI2/lRwIGRt3NewIGRt/OTgAMjb+eCgAMjb+dnAQdG3s5FAQdG3s4vAg6MvJ1LAg6MvJ1fBRwYeTuXBRwYeTtXBBwYeTtXBRwYeTu/CTgw8nauCTgw8nZ+F3Bg5O1cF3Bg5O38IeDAyNu5IeDAyNv5U8CBkbdzU8CBkbdzS8CBkbfji/j3OzDydkIEHBh5O6ECDoy8nTABB0beTriAAyNvJ4mAAyNvJ6mAAyNvJ5mAAyNvJ7mAAyNvJ4WAAyNvJ0LAgZG3k1LAgZG3k0rAgZG3c5eAAyNvJ7WAAyNvJ42AAyNvJzLi3+/AyNtJK+DAyNtJZ+GATJFsvti8HWQmIC8Ac+UxTxxzpDE/GHNjMS8UcyIxHxBz4TAPDHOgMP8Hc18w7wNzHjDeH2PdMc4bY5wxvhdjWzGuE2MaMZ4PY9kwjgtjmDB+B2NXMG4DYxZwvR7XqnGdFtcocX0O16ZwXQbXJHA+HueicR4W5yBx/g3nnnDeBecccLyNY00cZ+EYA9+v8d0S36vwnQKfp/gswfso3kPw+sG+A7eYm20ODjJL8iePvb+XfJ6DDnk7By3ydtJbvh6yJfB7v89bv+L/4Pf0ME4eio1D3Jtt3k4G79sJscjbCbHI2wn5+w+f3b6Lvsd/XGL1ZrRwxb8dFv13Qo9zybfyet9MEXZ+MTfb5z9z8J//vx7g+2e/E7t7zHuXy3tezH0Ts8niuK/EfZxt/2qYz9pHvH/ehjwcfX/b18Hdlu8vLnXUtqyjtkMdWXmfF7GdtXscJTfqHgEHRm5UNgEHRm5UdgEHRm5UDgEHRm5UTgEHRm6UX8CBkRuVS8CBkRuVW8CBkRt1r4ADIzcqj4ADIzcqr4ADIzcqn4ADIzcqv4ADIzeqgIADIzeqoIADIzeqkIADIzfqPgEHRm5UYQEHRm5UEQEHRm5UUQEHRm5UMQEHRm5UcQEHRm5UCQEHRm5USQEHRm5UKQEHRm5UaQEHRm7U/QIOjNyoMgIOjNyosgIOjNyocgIOjNyo8gIOjNyoCgIOjNyoBwQcGLlRFQUcGLlRDwo4MHKjKgk4MHKjHhJwYORGVRZwYORGVRFwYORGVRVwYORGVRNwYORGVRdwYORG1RBwYORG1RRwYORGPSzgwMiNqiXgwMiNekTAgZEbVVvAgZEb9aiAAyM3qo6AAyM36jEBB0ZuVF0BB0Zu1OMCDozcqHoCDozcqCcEHBi5UfUFHBi5UU8qHGcRHBoIODByoxoKODByoxoJODByo54ScGDkRjUWcGDkRj0t4MDIjWpimWNh++8jLySjQ87M9ADnnyAfBtktthk0z1jkvQS6BmR+5E3+v5k1iT2uRrj3epta1NvPol7TBV8yX2zN//iHov/2+7xtt5T3+/5je80i7mCDzSLsH9c8wju8a7+aR8T+wu/zfnN5YWdxeGHPCvCLYlqKv8KfbPs127JfMTfbwKgWFi8oC6uQ2XcYGJZYv0v7/tq34r9hJrat0hbbaBngDyPYt3TYN1o5Blm1+n8QetbS4j2jNSn0rE3w9+HbN5fwMovgrttfEu522F/aRgS+jqyWdWR1qKNdgF+P6NczDl/C2gfwS5jLc9HU8rlo6vBcdLB4LsLjtP/pQLztJtZfmy9Xd7KdEj7Odtrc4T6d2PNUxvfX+6ntfhRmcd8yPnurkPg/+D09zBfSMsBg9/v++pCzBbP5YOxo+eIxr+m/+/N/qy2xPnp90d66detEQr/3+xLfBv6I29dO0QcAnSN8//w20in6XSfu7zon0EHbw8kO3p6IWeaJCOlk8aR1tsSz3fGwA3VyPFpyifMcm8zu0L6eQ5xnF0Is6TjLOp5wqKMroY7xlnXUd6ijG6GOCZZ1POlQR3dCHRMt62jgUEePAH+jRR2Tktn3qyehX5Md+tWL0K8pDv3qTejXVId+9SH0a5pDv/oS+jXdoV/9CP2a4dCv/oR+zXTo1wBCv2Y59GsgoV+zHfo1iNCvOQ79Gkzo11yHfg0h9GueQ7+GEvo136Ffwwj9WuDQr+GEfi106NcIQr+edejXSEK/Fjn0K4rQr+cc+jWK0K/FDv0aTejX8w79GkPo1xKHfo0l9GupQ7/GEfq1zKFf4wn9esGhXxMI/Vru0K+JhH696NCvSYR+rXDo12RCv15y6NcUQr9WOvRrKqFfLzv0axqhX6sc+jWd0K9XHPo1g9Cv1Q79mkno16sO/ZpF6Ncah37NJvTrNYd+zSH0a61Dv+YS+rXOoV/zCP1a79Cv+YR+ve7QrwWEfr3h0K+FhH5tcOjXs4R+venQr0WEfm106NdzhH5tcujXYkK/Njv063lCv7Y49GsJoV9bHfq1lNCvtxz6tYzQr20O/XqB0K+3Hfq1nNCv7Q79epHQr3cc+rWC0K8dDv16idCvdx36tZLQr50O/XqZ0K/3HPq1itCvXQ79eoXQr/cd+rWa0K/dDv16ldCvDxz6tYbQrz0O/XqN0K8PHfq1ltCvvQ79Wkfo10cO/VpP6Nc+h369TujXxw79eoPQr/0O/dpA6NcnDv16k9CvAw792kjo16cO/dpE6NdBh35tJvTrM4d+bSH065BDv7YS+vW5Q7/eIvTrsEO/thH69YVDv94m9OuIQ7+2E/r1pUO/3iH066hDv3YQ+vWVQ7/eJfTrmEO/dhL69bVDv94j9Ou4Q792Efr1jUO/3if064RDv3YT+nXSoV8fEPp1yqFfewj9+tahXx8S+nXaoV97Cf36zqFfHxH6dcahX/sI/freoV8fE/p11qFf+wn9+sGhX58Q+nXOoV8HCP360aFfnxL6dd6hXwcJ/frJoV+fEfp1waFfhwj9+tmhX58T+nXRoV+HCf36xaFfXxD6dcmhX0cI/frVoV9fEvp12aFfRwn9uuLQr68I/brq0K9jhH795tCvrwn9uubQr+OEfv3u0K9vCP267tCvE4R+/eHQr5OEft1w6NcpQr/+dOjXt4R+3XTo12lCv2459Os7Qr+QJmbbrzOEfoU49Ot7Qr9CHfp1ltCvMId+/UDoV7hDv84R+pXEoV8/EvqV1KFf5wn9SubQr58I/Uru0K8LhH6lcOjXz4R+RTj06yKhXykd+vULoV+pHPp1idCvuxz69SuhX6kd+nWZ0K80Dv26QuhXpEO/rhL6ldahX78R+pXOoV/XCP1K79Cv3wn9yuDQr+uEfmV06NcfhH5lcujXDUK/Mjv0609Cv7I49OsmoV93O/TrFqFfWR365UsZ+H7d49CvEEK/sjn0K5TQr+wO/Qoj9CuHQ7/CCf3K6dCvJIR++R36lZTQr1wO/UpG6Fduh34lJ/TrXod+pSD0K49DvyIs+oX1ELKbtjT6v5Gxj3x6ZLsjFx2Z4sjvRlY2cqmRAY28ZWQbI0cYmb3Ix0UWLXJfkbGKPFNkhyKnE5mYyJ9E1iNyFZFhiLxAZPMhBw+Zc8h3Q5YacsuQEYY8LmRfIWcKmU7IT0JWEXKBkMGDvBtkyyDHBZkpyCdBFghyN5BxgTwJZDcgJwGZBJj/j7n2mNeOOeSYr4250ZiHjDm/mF+LuayYN4o5mpgPibmHmOeHOXWYv4a5YpiXhTlQmG+EuT2YR4M5K5gfgrkYmPeAOQYYz4+x8xinjjHhGH+Nsc4YV4wxvBgvi7GpGAeKMZcY34ixhBi3hzFyGI+GsV8YZ4UxTRg/hLE6GBeDMSgY74GxFRjHgDEDuD6Pa+G47oxrvLieimuXuE6Ia3K4/oVrTbiug2souF6BawM4D49z3ji/jHO5OG+Kc5Q4H4hzbzjPhXNKOH+DcyU4L4FzADjexrEtjiNxzIbjIxyL4Hs/vmPj+yy+O+J7Gr4T4fsHPuvxuYrPMHxe4L0Z74N4z8HrG68l7LeOr5UkWO8Ca3XYvlZSWrxWQqNfK/Fvfp/dzfZ9IGXKwG8jleU2bNdAQH/iLlST2PMSs3CO7fN5l+V7Xw7ff+99/733/bve+1xWUbR4/d5eXAqvE9vXcNxtJNan1JbvqzkS+L3f561f8X/we3oY5301teU2XD/3ArnAWBrecxnbQbvHhaQhPJeRAg4NwwO/jbQCDs0IDukEHFoQHNILOLQiOGQQcGhDcMgo4NCO4JBJwKEDwSGzgEMngkMWAYcuBIe7BRy6ERyyCjj0IDjcI+DQi+CQTcChD8Ehu4BDP4JDDgGHAQSHnAIOgwgOfgGHIQSHXAIOwwgOuQUcRhAc7hVwiCI45BFwGE1wyCvgMJbgkE/AYTzBIb+Aw0SCQwEBh8kEh4ICDlMJDoUEHKYTHO4TcJhJcCgs4DCb4FBEwGEuwaGogMN8gkMxAYeFBIfiAg6LCA4lBBwWExxKCjgsITiUEnBYRnAoLeCwnOBwv4DDCoJDGQGHlQSHsgIOqwgO5QQcVhMcygs4rCE4VBBwWEtweEDAYT3BoaKAw76wwG/jQQGHDYT9oZKAw0aCw0MCDpsJDpUFHLYSHKoIOGwjOFQVcNhOcKgm4LCD4FBdwGEnwaGGgMMugkNNAYfdBIeHBRz2EBxqCTjsJTg8onCcRXCoLeCwn+DwqIDDAYJDHQGHgwSHxwQcDhEc6go4HCY4PC7gcITgUE/A4SjB4QkBh2MEh/oCDscJDk8KOJwgODQQcDhFcGgo4HCa4NBIwOEMweEpAYezBIfGAg7nCA5PCzicJzg0EXC4QHB4RsDhIsGhqYDDJYJDMwGHywSH5gIOVwkOLQQcrhEcWgo4XCc4tBJwuEFwaC3gcJPg0EbAwZck8NtoK+AQSnBoJ+AQTnBoL+CQlODQQcAhOcGho4BDBMGhk4BDKoJDZwGH1ASHLgIOkQSHrgIO6QgO3QQcMhAcugs4ZCI49BBwyEJw6CngkJXg0EvAIRvBobeAQw6CQx8BBz/Boa+AQ26CQz8BhzwEh/4CDvkIDgMEHAoQHAYKOBQiOAwScChMcBgs4FCU4DBEwKE4wWGogENJgsMwAYfSBIfhAg5lCA4jBBzKERxGCjhUIDhECThUJDiMEnCoRHAYLeBQmeAwRsChKsFhrIBDdYLDOAGHmgSH8QIOtQgOEwQcahMcJgo41CE4TBJwqEtwmCzgUI/gMEXAoT7BYaqAQwOCwzQBh0YEh+kCDo0JDjMEHJoQHGYKODQlOMwScGhOcJgt4NCS4DBHwKE1wWGugENbgsM8AYf2BIf5Ag4dCQ4LBBw6ExwWCjh0JTg8K+DQneCwSMChJ8HhOQGH3gSHxQIOfQkOzws49Cc4LBFwGEhwWCrgMJjgsEzAYSjB4QUBh+EEh+UCDiMJDi8KOIwiOKwQcBhDcHhJwGEcwWGlgMMEgsPLAg6TCA6rBBymEBxeEXCYRnBYLeAwg+DwqoDDLILDGgGHOQSH1wQc5hEc1go4LCA4rLNwCDMtp2lLo/87rXlsOtPSm5bBtIymZTIts2lZTLvbtKym3WNaNtOym5bDtJzYpmm5TMtt2r2m5TEtr2n5TMtvWgHTCppWyLT7TCtsWhHTippWzLTippUwraRppUwrbdr9pmF9eqzNjnXJsSY31qPGWsxYhxhr8GL9Way9inVHseYm1pvEWotYZxBr7GF9OaythnXFsKYW1pPCWkpYRwhr6GD9GKydgnVDsGYG1ovAWglYJwAZ+ciHRzY6csGRiY08aGQhIwcYGbjIf0X2KXI/kXmJvEdkHSLnDxl3yHdDthlyvZBphTwnZBkhxwcZNshvQXYJcjuQWYG8BmQVYJ4+5qhjfjbmJmNeLuakYj4m5iJiHh7moGH+FeYeYd4N5pxgvgXmGmCcPcaYY3w1xhZjXC3GlGI8JcYSYhwdxpBh/BTGDmHcDMaMYLwExgrgOjmuEeP6KK4N4roYrgnhegiuBeA8OM4B4/wnzv3hvBfO+eB8B471cZyLYzwc3+C7Pb7X4jsdvs/gsxyfY3gPx/sXXrvYb2NuoZb7fCnzR8uI2PsXb1u398kSSwturldjY1RU42YFSp2tNWhLz5nVTl6ZfTH6vpEp7beDx3jdxvqUdu9HORP4vd/nrV/xf/B7epgvJE3KwL8frbfchuW/nwTPZYcI6+cy1GZ/eZ33XP59s3V+nfBcvnGHz2Vizvg8KhP9d9zHJbaZMIv7lrHozwaB570hIbv3TQGHZgSHjQIOLQgOmwQcWhEcNgs4tCE4bBFwaEdw2Crg0IHg8JaAQyeCwzYBhy4Eh7cFHLoRHLYLOPQgOLwj4NCL4LBDwKEPweFdAYd+BIedAg4DCA7vCTgMIjjsEnAYQnB4X8BhGMFht4DDCILDBwIOUQSHPQIOowkOHwo4jCU47BVwGE9w+EjAYSLBYZ+Aw2SCw8cCDlMJDvsFHKYTHD4RcJhJcDgg4DCb4PCpgMNcgsNBAYf5BIfPBBwWEhwOCTgsIjh8LuCwmOBwWMBhCcHhCwGHZQSHIwIOywkOXwo4rCA4HBVwWElw+ErAYRXB4ZiAw2qCw9cCDmsIDscFHNYSHL4RcFhPcDgh4LAvLPDbOCngsIGwP5wScNhIcPhWwGEzweG0gMNWgsN3Ag7bCA5nBBy2Exy+F3DYQXA4K+Cwk+Dwg4DDLoLDOQGH3QSHHwUc9hAczgs47CU4/KRwnEVwuCDgsJ/g8LOAwwGCw0UBh4MEh18EHA4RHC4JOBwmOPwq4HCE4HBZwOEoweGKgMMxgsNVAYfjBIffBBxOEByuCTicIjj8LuBwmuBwXcDhDMHhDwGHswSHGwIO5wgOfwo4nCc43BRwuEBwuCXgcJHg4Ev173e4RHAIEXC4THAIFXC4SnAIE3C4RnAIF3C4TnBIIuBwg+CQVMDhJsEhmYCDj5D1nlzAIZTgkELAIZzgECHgkJTgkFLAITnBIZWAQwTB4S4Bh1QEh9QCDqkJDmkEHCIJDpECDukIDmkFHDIQHNIJOGQiOKQXcMhCcMgg4JCV4JBRwCEbwSGTgEMOgkNmAQc/wSGLgENugsPdAg55CA5ZBRzyERzuEXAoQHDIJuBQiOCQXcChMMEhh4BDUYJDTgGH4gQHv4BDSYJDLgGH0gSH3AIOZQgO9wo4lCM45BFwqEBwyCvgUJHgkE/AoRLBIb+AQ2WCQwEBh6oEh4ICDtUJDoUEHGoSHO4TcKhFcCgs4FCb4FBEwKEOwaGogENdgkMxAYd6BIfiAg71CQ4lBBwaEBxKCjg0IjiUEnBoTHAoLeDQhOBwv4BDU4JDGQGH5gSHsgIOLQkO5QQcWhMcygs4tCU4VBBwaE9weEDAoSPBoaKAQ2eCw4MCDl0JDpUEHLoTHB4ScOhJcKgs4NCb4FBFwKEvwaGqgEN/gkM1AYeBBIfqAg6DCQ41BByGEhxqCjgMJzg8LOAwkuBQS8BhFMHhEQGHMQSH2gIO4wgOjwo4TCA41BFwmERweEzAYQrBoa6AwzSCw+MCDjMIDvUEHGYRHJ4QcJhDcKgv4DCP4PCkgMMCgkMDC4ew6H93afR/v5nS59to2ibTNpu2xbStpr1l2jbT3jZtu2nvmLbDtHdN22nae6btMu1903ab9oFpe0z70LS9pn1k2j7TPjZtv2mfmHbAtE9NO2jaZ6YdMu1z0w6b9oVpR0z70jSsT4+12bEuOdbkxnrUWIsZ6xBjDV6sP4u1V7HuKNbcxHqTWGsR6wxijT2sL4e11bCuGNbUwnpSWEsJ6whhDR2sH4O1U7BuCNbMwHoRWCsB6wQgIx/58MhGRy44MrGRB40sZOQAIwMX+a/IPkXuJzIvkfeIrEPk/CHjDvluyDZDrhcyrZDnhCwj5Pggwwb5LcguQW4HMiuQ14CsAszTxxx1zM/G3GTMy8WcVMzHvD0X0TTMQcP8K8w9wrwbzDnBfAvMNcA4e4wxx/hqjC3GuFqMKcV4SowlxDg6jCHD+CmMHcK4GYwZwXgJjBXAdXJcI8b1UVwbxHUxXBPC9RBcC8B5cJwDxvlPnPvDeS+c88H5Dhzr4zgXx3g4vsF3e3yvxXc6fJ/BZzk+x/AejvcvvHax38bcQuPt88Xb1u19ssTSgpvr1dgYFdW4WYFSZ2sN2tJzZrWTV2ZfNP+/ZYTP94b3fOoQ3H9Dyv/dTmKPi7uNxPrU0PL9KKH7+n3e+hX/B7+nh/lCXk8Z+PcjGweHfz8JnssOEdbPZRgeF3PfxJ7LRrzn8u+brXOjVIHfxlMCDg0JWbaNBRyaERyeFnBoQXBoIuDQiuDwjIBDG4JDUwGHdgSHZgIOHQgOzQUcOhEcWgg4dCE4tBRw6EZwaCXg0IPg0FrAoRfBoY2AQx+CQ1sBh34Eh3YCDgMIDu0FHAYRHDoIOAwhOHQUcBhGcOgk4DCC4NBZwCGK4NBFwGE0waGrgMNYgkM3AYfxBIfuAg4TCQ49BBwmExx6CjhMJTj0EnCYTnDoLeAwk+DQR8BhNsGhr4DDXIJDPwGH+QSH/gIOCwkOAwQcFhEcBgo4LCY4DBJwWEJwGCzgsIzgMETAYTnBYaiAwwqCwzABh5UEh+ECDqsIDiMEHFYTHEYKOKwhOEQJOKwlOIwScFhPcBgt4LAvLPDbGCPgsIGwP4wVcNhIcBgn4LCZ4DBewGErwWGCgMM2gsNEAYftBIdJAg47CA6TBRx2EhymCDjsIjhMFXDYTXCYJuCwh+AwXcBhL8FhhsJxFsFhpoDDfoLDLAGHAwSH2QIOBwkOcwQcDhEc5go4HCY4zBNwOEJwmC/gcJTgsEDA4RjBYaGAw3GCw7MCDicIDosEHE4RHJ4TcDhNcFgs4HCG4PC8gMNZgsMSAYdzBIelAg7nCQ7LBBwuEBxeEHC4SHBYLuBwieDwooDDZYLDCgGHqwSHlwQcrhEcVgo4XCc4vCzgcIPgsErA4SbB4RUBBx8h+3y1gEMoweFVAYdwgsMaAYekBIfXBBySExzWCjhEEBzWCTikIjisF3BITXB4XcAhkuDwhoBDOoLDBgGHDASHNwUcMhEcNgo4ZCE4bBJwyEpw2CzgkI3gsEXAIQfBYauAg5/g8JaAQ26CwzYBhzwEh7cFHPIRHLYLOBQgOLwj4FCI4LBDwKEwweFdAYeiBIedAg7FCQ7vCTiUJDjsEnAoTXB4X8ChDMFht4BDOYLDBwIOFQgOewQcKhIcPhRwqERw2CvgUJng8JGAQ1WCwz4Bh+oEh48FHGoSHPYLONQiOHwi4FCb4HBAwKEOweFTAYe6BIeDAg71CA6fCTjUJzgcEnBoQHD4XMChEcHhsIBDY4LDFwIOTQgORwQcmhIcvhRwaE5wOCrg0JLg8JWAQ2uCwzEBh7YEh68FHNoTHI4LOHQkOHwj4NCZ4HBCwKErweGkgEN3gsMpAYeeBIdvBRx6ExxOCzj0JTh8J+DQn+BwRsBhIMHhewGHwQSHswIOQwkOPwg4DCc4nBNwGElw+FHAYRTB4byAwxiCw08CDuMIDhcEHCYQHH4WcJhEcLgo4DCF4PCLgMM0gsMlAYcZBIdfBRxmERwuCzjMIThcEXCYR3C4KuCwgODwm4VDmGm5TFsa/d+NzWOfNq2Jac+Y1tS0ZqY1N62FaS1Na2Vaa9PamNbWtHamtTetg2kdTetkWmfTupjW1bRupnU3rYdpPU3rZVpv0/qY1te0fqb1N22AaQNNG2TaYNOGmDbUNKxPj7XZsS451uTGetRYixnrEGMNXqw/i7VXse4o1tzEepNYaxHrDGKNPawvh7XVsK4Y1tTCelJYSwnrCGENHawfg7VTsG4I1szAehFYKwHrBCAjH/nwyEZHLjgysZEHjSxk5AAjAxf5r8g+Re4nMi+R94isQ+T8IeMO+W7INkOuFzKtkOeELCPk+CDDBvktyC5BbgcyK5DXgKwCzNPHHHXMz8bcZMzLxZxUzMfEXETMw8McNMy/wtwjzLvBnBPMt8BcA4yzxxhzjK/G2GKMq8WYUoynxFhCjKPDGDKMn8LYIYybwZgRjJfAWAFcJ8c1YlwfxbVBXBfDNSFcD8G1AJwHxzlgnP/EuT+c98I5H5zvwLE+jnNxjIfjG3y3x/dafKfD9xl8luNzDO/heP/Caxf7bcwt1HKfL2H+aBkRe//ibev2PlliacHN9WpsjIpq3KxAqbO1Bm3pObPaySuzL0bf96lU9tvBY7xu41oqu/ejXAn83u/z1q/4P/g9PcwX0ihV4N+Prlluw/LfT4LnskOE9XMZbrO//M57Lv++2Tr/Tngurws4NCRk2f4h4NCM4HBDwKEFweFPAYdWBIebAg5tCA63BBzaERx8d/37HToQHEIEHDoRHEIFHLoQHMIEHLoRHMIFHHoQHJIIOPQiOCQVcOhDcEgm4NCP4JBcwGEAwSGFgMMggkOEgMMQgkNKAYdhBIdUAg4jCA53CThEERxSCziMJjikEXAYS3CIFHAYT3BIK+AwkeCQTsBhMsEhvYDDVIJDBgGH6QSHjAIOMwkOmQQcZhMcMgs4zCU4ZBFwmE9wuFvAYSHBIauAwyKCwz0CDosJDtkEHJYQHLILOCwjOOQQcFhOcMgp4LCC4OAXcFhJcMgl4LCK4JBbwGE1weFeAYc1BIc8Ag5rCQ55BRzWExzyCTjsCwv8NvILOGwg7A8FBBw2EhwKCjhsJjgUEnDYSnC4T8BhG8GhsIDDdoJDEQGHHQSHogIOOwkOxQQcdhEcigs47CY4lBBw2ENwKCngsJfgUErhOIvgUFrAYT/B4X4BhwMEhzICDgcJDmUFHA4RHMoJOBwmOJQXcDhCcKgg4HCU4PCAgMMxgkNFAYfjBIcHBRxOEBwqCTicIjg8JOBwmuBQWcDhDMGhioDDWYJDVQGHcwSHagIO5wkO1QUcLhAcagg4XCQ41BRwuERweFjA4TLBoZaAw1WCwyMCDtcIDrUFHK4THB4VcLhBcKgj4HCT4PCYgIOPkH1eV8AhlODwuIBDOMGhnoBDUoLDEwIOyQkO9QUcIggOTwo4pCI4NBBwSE1waCjgEElwaCTgkI7g8JSAQwaCQ2MBh0wEh6cFHLIQHJoIOGQlODwj4JCN4NBUwCEHwaGZgIOf4NBcwCE3waGFgEMegkNLAYd8BIdWAg4FCA6tBRwKERzaCDgUJji0FXAoSnBoJ+BQnODQXsChJMGhg4BDaYJDRwGHMgSHTgIO5QgOnQUcKhAcugg4VCQ4dBVwqERw6CbgUJng0F3AoSrBoYeAQ3WCQ08Bh5oEh14CDrUIDr0FHGoTHPoIONQhOPQVcKhLcOgn4FCP4NBfwKE+wWGAgEMDgsNAAYdGBIdBAg6NCQ6DBRyaEByGCDg0JTgMFXBoTnAYJuDQkuAwXMChNcFhhIBDW4LDSAGH9gSHKAGHjgSHUQIOnQkOowUcuhIcxgg4dCc4jBVw6ElwGCfg0JvgMF7AoS/BYYKAQ3+Cw0QBh4EEh0kCDoMJDpMFHIYSHKYIOAwnOEwVcBhJcJgm4DCK4DBdwGEMwWGGgMM4gsNMAYcJBIdZAg6TCA6zBRymEBzmCDhMIzjMFXCYQXCYJ+Awi+AwX8BhDsFhgYDDPILDQgGHBQSHZy0cwkzLbdrS6P/+I5XPd8O0P027adot03zm3wsxLdS0MNPCTUtiWlLTkpmW3LQUpkWYltK0VKbdZVpq09KYFmlaWtPSmZbetAymZTQtk2mZTcti2t2mZTXtHtOymZbdtBym5UQtpmFtdqxLjjW5sR411mLGOsRYgxfrz2LtVaw7ijU3sd4k1lrEOoNYYw/ry2FtNawrhjW1sJ4U1lLCOkJYQwfrx2DtFKwbgjUzsF4E1krAOgHIyEc+PLLRkQuOTGzkQSMLGTnAyMBF/iuyT5H7icxL5D0i6xA5f8i4Q74bss2Q64VMK+Q5IcsIOT7IsEF+C7JLkNuBzArkNSCrAPP0MUcd87MxNxnzcjEnFfMxMRcR8/AwBw3zrzD3CPNuMOcE8y0w1wDj7DHGHOOrMbYY42oxphTjKTGWEOPoMIYM46cwdgjjZjBmBOMlMFYA18lxjRjXR3FtENfFcE0I10NwLQDnwXEOGOc/ce4P571wzgfnO3Csj+NcHOPh+Abf7fG9Ft/p8H0Gn+X4HMN7ON6/8NrFfhtzC7Xc51tGGJuI2PsXb1u398kSSwturldjY1RU42YFSp2tNWhLz5nVTl6ZfdH8f9z/eir77eAxXrex6C6796PcCfze7/PWr/g/+D09zBfye6rAvx/ZOLj8+3guO0S47TMx903suXzOogb0Pyz675jH3eHz+49/2+JxIQ0Jua6Left57EbtHhfSjODwvIBDC4LDEgGHVgSHpQIObQgOywQc2hEcXhBw6EBwWC7g0Ing8KKAQxeCwwoBh24Eh5cEHHoQHFYKOPQiOLws4NCH4LBKwKEfweEVAYcBBIfVAg6DCA6vCjgMITisEXAYRnB4TcBhBMFhrYBDFMFhnYDDaILDegGHsQSH1wUcxhMc3hBwmEhw2CDgMJng8KaAw1SCw0YBh+kEh00CDjMJDpsFHGYTHLYIOMwlOGwVcJhPcHhLwGEhwWGbgMMigsPbAg6LCQ7bBRyWEBzeEXBYRnDYIeCwnODwroDDCoLDTgGHlQSH9wQcVhEcdgk4rCY4vC/gsIbgsFvAYS3B4QMBh/UEhz0CDvvCAr+NDwUcNhD2h70CDhsJDh8JOGwmOOwTcNhKcPhYwGEbwWG/gMN2gsMnAg47CA4HBBx2Ehw+FXDYRXA4KOCwm+DwmYDDHoLDIQGHvQSHzxWOswgOhwUc9hMcvhBwOEBwOCLgcJDg8KWAwyGCw1EBh8MEh68EHI4QHI4JOBwlOHwt4HCM4HBcwOE4weEbAYcTBIcTAg6nCA4nBRxOExxOCTicITh8K+BwluBwWsDhHMHhOwGH8wSHMwIOFwgO3ws4XCQ4nBVwuERw+EHA4TLB4ZyAw1WCw48CDtcIDucFHK4THH4ScLhBcLgg4HCT4PCzgIOPkAN+UcAhlODwi4BDOMHhkoBDUoLDrwIOyQkOlwUcIggOVwQcUhEcrgo4pCY4/CbgEElwuCbgkI7g8LuAQwaCw3UBh0wEhz8EHLIQHG4IOGQlOPwp4JCN4HBTwCEHweGWgIOf4OBL/e93yE1wCBFwyENwCBVwyEdwCBNwKEBwCBdwKERwSCLgUJjgkFTAoSjBIZmAQ3GCQ3IBh5IEhxQCDqUJDhECDmUIDikFHMoRHFIJOFQgONwl4FCR4JBawKESwSGNgENlgkOkgENVgkNaAYfqBId0Ag41CQ7pBRxqERwyCDjUJjhkFHCoQ3DIJOBQl+CQWcChHsEhi4BDfYLD3QIODQgOWQUcGhEc7hFwaExwyCbg0ITgkF3AoSnBIYeAQ3OCQ04Bh5YEB7+AQ2uCQy4Bh7YEh9wCDu0JDvcKOHQkOOQRcOhMcMgr4NCV4JBPwKE7wSG/gENPgkMBAYfeBIeCAg59CQ6FBBz6ExzuE3AYSHAoLOAwmOBQRMBhKMGhqIDDcIJDMQGHkQSH4gIOowgOJQQcxhAcSgo4jCM4lBJwmEBwKC3gMIngcL+AwxSCQxkBh2kEh7ICDjMIDuUEHGYRHMoLOMwhOFQQcJhHcHhAwGEBwaFiartthFr++y0jfL4OEd7v3zr6/vHrKN62bu+TJZYW3FyvxsaoqMbNCpQ6W2vQlp4zq528Mvui+f8PWtZh/T3L/NHc9CvMsl+lLe7bPML7fSt5rzfk7z98Ft+norfhs3ucL9y0JNEtwY5Y9KGUz37/d9lOSR9nOyV8gX+ttbJ8rbWJiP2F32d/szXYkNLufTfm9lD0vlg5dew2rTdu8aK5/W+HRf/9UPTjsHMnj9cxlyepveWT1N7ySbp169a1hH7v9yW+PfwRt74q0fBVU/v+iVIl+pmI+7uqcYBtn5wYGNt3/jeyB/adv7VjvzZY9ivmFu59O7PMdkKqpPbep6oWnxoWriFea43ZMW0t8cKt4vBphJvtCzSfeYXfY/ECvc/cP5PD/lEtdeDryGZRR2HHOqoT6shuUUcRxzpqEOrIYVFHUcc6ahLqyGlRRzHHOh4m1OG3qKO4Yx21CHXksqijhGMdjxDqyG1RR0nHOmoH+EgRddzr0K9HCf3K49CvOoR+5XXo12OEfuVz6FddQr/yO/TrcUK/Cjj0qx6hXwUd+vUEoV+FHPpVn9Cv+xz69SShX4Ud+tWA0K8iDv1qSOhXUYd+NSL0q5hDv54i9Ku4Q78aE/pVwqFfTxP6VdKhX00I/Srl0K9nCP0q7dCvpoR+3e/Qr2aEfpVx6FdzQr/KOvSrBaFf5Rz61ZLQr/IO/WpF6FcFh361JvTrAYd+tSH0q6JDv9oS+vWgQ7/aEfpVyaFf7Qn9esihXx0I/ars0K+OhH5VcehXJ0K/qjr0qzOhX9Uc+tWF0K/qDv3qSuhXDYd+dSP0q6ZDv7oT+vWwQ796EPpVy6FfPQn9esShX70I/art0K/ehH496tCvPoR+1XHoV19Cvx5z6Fc/Qr/qOvSrP6Ffjzv0awChX/Uc+jWQ0K8nHPo1iNCv+g79Gkzo15MO/RpC6FcDh34NJfSroUO/hhH61cihX8MJ/XrKoV8jCP1q7NCvkYR+Pe3QryhCv5o49GuURb8wLvRe0ypH/zfGvGG8GMZaYZwSxvhgfAzGlmBcBsZAYLwBru3jOjquWeP6MK7F4ronrjHieh6uneE6Fa4J4foLrnXgugLO4eN8Oc5N4zwwzrni/CbOJeK8Hc6R4XwUzv3gPAvOaeD8AY7VcVyMY1Ac7+HYCscxOGbA93N8F8b3TnzHw/cpfHfB9wR8JuPzD581eF/Heyjer/DegNch9nnsX3guR6VO2MfGfrR3++QW4zeTbwjwGFqM30Tfbfe1Md7rvT3e6N4Efu/32d1sa7Ppo+s2xlq+5vL4/nvNxX/N2Y5Hw3MUd8KAlzHKeJ5stzPWYhvjLF8PeRL4vd/nrV/xf/B7ehjn9TDOYRu42b7fjg/++23I33/47N5vxzu8307g7V+xnbV7XMgEwv41UcChYXjgtzFJwKEZwWGygEMLgsMUAYdWBIepAg5tCA7TBBzaERymCzh0IDjMEHDoRHCYKeDQheAwS8ChG8FhtoBDD4LDHAGHXgSHuQIOfQgO8wQc+hEc5gs4DCA4LBBwGERwWCjgMITg8KyAwzCCwyIBhxEEh+cEHKIIDosFHEYTHJ4XcBhLcFgi4DCe4LBUwGEiwWGZgMNkgsMLAg5TCQ7LBRymExxeFHCYSXBYIeAwm+DwkoDDXILDSgGH+QSHlwUcFhIcVgk4LCI4vCLgsJjgsFrAYQnB4VUBh2UEhzUCDssJDq8JOKwgOKwVcFhJcFgn4LCK4LBewGE1weF1AYc1BIc3BBzWEhw2CDisJzi8KeCwLyzw29go4LCBsD9sEnDYSHDYLOCwmeCwRcBhK8Fhq4DDNoLDWwIO2wkO2wQcdhAc3hZw2Elw2C7gsIvg8I6Aw26Cww4Bhz0Eh3cFHPYSHHYqHGcRHN4TcNhPcNgl4HCA4PC+gMNBgsNuAYdDBIcPBBwOExz2CDgcITh8aOGATJG8vti8HWQmIC8Ac+UxTxxzpDE/GHNjMS8UcyIxHxBz4TAPDHOgMP8Hc18w7wNzHjDeH2PdMc4bY5wxvhdjWzGuE2MaMZ4PY9kwjgtjmDB+B2NXMG4DYxZwvR7XqnGdFtcocX0O16ZwXQbXJHA+HueicR4W5yBx/g3nnnDeBecccLyNY00cZ+EYA9+v8d0S36vwnQKfp/gswfso3kPw+sG+A7eYm20ODlZ7ts3bQU6H7XYmWmxjr+XrIW8Cv/f7vPUr/g9+Tw/j5KHsddgGbrZ5Ox95306g8nZu7062PtgX0ff4j0us3n28/Su2s3aPC9lH2L8+FnBg5O3sF3Bg5O18IuDAyNs5IODAyNv5VMCBkbdzUMCBkbfzmYADI2/nkIADI2/ncwEHRt7OYQEHRt7OFwIOjLydIwIOjLydLwUcGHk7RwUcGHk7Xwk4MPJ2jgk4MPJ2vhZwYOTtHBdwYOTtfCPgwMjbOSHgwMjbOSngwMjbOSXgwMjb+VbAgZG3c1rAgZG3852AAyNv54yAAyNv53sBB0bezlkBB0bezg8CDoy8nXMCDoy8nR8FHBh5O+cFHBh5Oz8JODDydi4IODDydn4WcGDk7VwUcGDk7fwi4MDI27kk4MDI2/lVwIGRt3NZwIGRt3NFwIGRt3NVwIGRt/ObgAMjb+eagAMjb+d3hXHmhLyd6wIOjLydPwQcGHk7NwQcGHk7fwo4MPJ2bgo4MPJ2bgk4MPJ2fGn+/Q6MvJ0QAQdG3k6ogAMjbydMwIGRtxMu4MDI20ki4MDI20kq4MDI20km4MDI20ku4MDI20kh4MDI24kQcGDk7aQUcGDk7aQScGDk7dxl4YBMkXy+2LwdZCYgLwBz5TFPHHOkMT8Yc2MxLxRzIjEfEHPhMA8Mc6Aw/wdzXzDvA3MeMN4fY90xzhtjnDG+F2NbMa4TYxoxng9j2TCOC2OYMH4HY1cwbgNjFnC9HteqcZ0W1yhxfQ7XpnBdBtckcD4e56JxHhbnIHH+DeeecN4F5xxwvI1jTRxn4RgD36/x3RLfq/CdAp+n+CzB+yjeQ/D6wb4Dt5ibbQ5OSZ993s7HDnk7H1tsI7Xl6yFfAr/3+7z1K/4Pfk8P4+Sh2DjEvdnm7aTxvp1A5e3c7rKtD/ZF9D3+4xKrN5K3f8V21u5xIZFpAr+NtAIOjLyddAIOjLyd9AIOjLydDAIOjLydjAIOjLydTAIOjLydzAIOjLydLAIOjLyduwUcGHk7WQUcGHk79wg4MPJ2sgk4MPJ2sgs4MPJ2cgg4MPJ2cgo4MPJ2/AIOjLydXAIOjLyd3AIOjLydewUcGHk7eQQcGHk7eQUcGHk7+QQcGHk7+QUcGHk7BQQcGHk7BQUcGHk7hQQcGHk79wk4MPJ2Cgs4MPJ2igg4MPJ2igo4MPJ2igk4MPJ2igs4MPJ2Sgg4MPJ2Sgo4MPJ2Sgk4MPJ2Sgs4MPJ27hdwYOTtlBFwYOTtlBVwYOTtlBNwYOTtlBdwYOTtVBBwYOTtPCDgwMjbqSjgwMjbeVDAgZG3U0nAgZG385CAAyNvp7KAAyNvp4qAAyNvp6qAAyNvp5qAAyNvp7qAAyNvp4aAAyNvp6aAAyNv52EBB0beTi0BB0beziMCDoy8ndoKx1kEh0cFHBh5O3UEHBh5O48JODDyduoKODDydh4XcGDk7dQTcGDk7TxhmbeT3xebt4PMBOQFYK485oljjjTmB2NuLOaFYk4k5gNiLhzmgWEO1O35P6Zh3gfmPGC8P8a6Y5w3xjhjfC/GtmJcJ8Y0YjwfxrJhHBfGMGH8DsauYNwGxizgej2uVeM6La5R4vocrk3hugyuSeB8PM5F4zwszkHi/BvOPeG8C8454Hgbx5o4zsIxBr5f47slvlfhOwU+T/FZgvdRvIfg9YN9B24xN9scnA0p7fN2kNNhu5242R6JbaO+5eshfwK/9/u89Sv+D35PD+PkodR32AZutnk7T3rfTqDydsLxh60P9kX0Pf7jEqu3AW//iu2s3eNCGhD2r4YCDoy8nUYCDoy8nacEHBh5O40FHBh5O08LODDydpoIODDydp4RcGDk7TQVcGDk7TQTcGDk7TQXcGDk7bQQcGDk7bQUcGDk7bQScGDk7bQWcGDk7bQRcGDk7bQVcGDk7bQTcGDk7bQXcGDk7XQQcGDk7XQUcGDk7XQScGDk7XQWcGDk7XQRcGDk7XQVcGDk7XQTcGDk7XQXcGDk7fQQcGDk7fQUcGDk7fQScGDk7fQWcGDk7fQRcGDk7fQVcGDk7fQTcGDk7fQXcGDk7QwQcGDk7QwUcGDk7QwScGDk7QwWcGDk7QwRcGDk7QwVcGDk7QwTcGDk7QwXcGDk7YwQcGDk7YwUcGDk7UQJODDydkYJODDydkYLODDydsYIODDydsYKODDydsYJODDydsYLODDydiYIODDydiYKODDydiYJODDydiYLODDydqYIODDydqYKODDydqYpHGcRHKYLODDydmYIODDydmYKODDydmYJODDydmYLODDyduYIODDyduZaOCBTpIAvNm8HmQnIC8BcecwTxxxpzA/G3FjMC8WcSMwHxFw4zAPDHCjM/8HcF8z7wJwHjPfHWHeM88YYZ4zvxdhWjOvEmEaM58NYNozjwhgmjN/B2BWM28CYBVyvx7VqXKfFNUpcn8O1KVyXwTUJnI/HuWich8U5SJx/w7knnHfBOQccb+NYE8dZOMbA92t8t8T3KnynwOcpPkvwPor3ELx+sO/ALeZmm4NTwmeft4OcDtvtxM32SGwb8yxfDwUS+L3f561f8X/we3oYJw9lnsM2cLPN25nvfTuByttJgj9sfbAvou/xH5dYvQt4+1dsZ+0eF7KAsH8tFHBg5O08K+DAyNtZJODAyNt5TsCBkbezWMCBkbfzvIADI29niYADI29nqYADI29nmYADI2/nBQEHRt7OcgEHRt7OiwIOjLydFQIOjLydlwQcGHk7KwUcGHk7Lws4MPJ2Vgk4MPJ2XhFwYOTtrBZwYOTtvCrgwMjbWSPgwMjbeU3AgZG3s1bAgZG3s07AgZG3s17AgZG387qAAyNv5w0BB0bezgYBB0bezpsCDoy8nY0CDoy8nU0CDoy8nc0CDoy8nS0CDoy8na0CDoy8nbcEHBh5O9sEHBh5O28LODDydrYLODDydt4RcGDk7ewQcGDk7bwr4MDI29kp4MDI23lPwIGRt7NLwIGRt/O+gAMjb2e3gAMjb+cDAQdG3s4eAQdG3s6HAg6MvJ29Ag6MvJ2PBBwYeTv7BBwYeTsfCzgw8nb2Czgw8nY+EXBg5O0cEHBg5O18KuDAyNs5qHCcRXD4TMCBkbdzSMCBkbfzuYADI2/nsIADI2/nCwEHRt7OEQEHRt7OlxYOyBQp6IvN20FmAvICMFce88QxRxrzgzE3FvNCMScS8wExFw7zwDAHCvN/MPcF8z4w5wHj/THWHeO8McYZ43sxthXjOjGmEeP5MJYN47gwhgnjdzB2BeM2MGYB1+txrRrXaXGNEtfncG0K12VwTQLn43EuGudhcQ4S599w7gnnXXDOAcfbONbEcRaOMfD9Gt8t8b0K3ynweYrPEryP4j0Erx/sO3CLudnm4CCzpLJl3g5yOmy3EzfbI7FtHLV8PRRM4Pd+n7d+xf/B7+lhnDyUow7bwM02b+cr79sJVN5OUvxh64N9EX2P/7jE6j3G279iO2v3uJBjhP3ra8tt2L7mW0b4fK0ivN+/tblvmwj75/O4wPPJyA36RsCBkRt0QsCBkRt0UsCBkRt0SsCBkRv0rYADIzfotIADIzfoOwEHRm7QGQEHRm7Q9wIOjNygswIOjNygHwQcGLlB5wQcGLlBPwo4MHKDzgs4MHKDfhJwYOQGXRBwYOQG/SzgwMgNuijgwMgN+kXAgZEbdEnAgZEb9KuAAyM36LKAAyM36IqAAyM36KqAAyM36DcBB0Zu0DUBB0Zu0O8CDozcoOsCDozcoD8EHBi5QTcEHBi5QX8KODByg24KODByg24JODByg3yR/34HRm5QiIADIzcoVMCBkRsUJuDAyA0KF3Bg5AYlEXBg5AYlFXBg5AYlE3Bg5AYlF3Bg5AalEHBg5AZFCDgwcoNSCjgwcoNSCTgwcoPuEnBg5AalFnBg5AalEXBg5AZFCjgwcoPSCjgwcoPSCTgwcoPSCzgwcoMyCDgwcoMyCjgwcoMyCTgwcoMyKxxnERyyCDgwcoPuFnBg5AZlFXBg5AbdI+DAyA3KJuDAyA3KLuDAyA3KYeGAbJRCvtjcIGQmIC8Ac+UxTxxzpDE/GHNjMS8UcyIxHxBz4TAPDHOgMP8Hc18w7wNzHjDeH2PdMc4bY5wxvhdjWzGuE2MaMZ4PY9kwjgtjmDB+B2NXMG4DYxZwvR7XqnGdFtcocX0O16ZwXQbXJHA+HueicR4W5yBx/g3nnnDeBecccLyNY00cZ+EYA9+v8d0S36vwnQKfp/gswfso3kPw+sG+A7eYW/xsDy85QBb5IbezWo475AZ9bZEblNPy9VAogd/7fd76Ff8Hv6eHcXJdbBzi3mxzg/zetxOo3KBk+MPWB/si+h7/cYnVm4u3f8V21u5xIbkiA7+N3AIOjLydewUcGHk7eQQcGHk7eQUcGHk7+QQcGHk7+QUcGHk7BQQcGHk7BQUcGHk7hQQcGHk79wk4MPJ2Cgs4MPJ2igg4MPJ2igo4MPJ2igk4MPJ2igs4MPJ2Sgg4MPJ2Sgo4MPJ2Sgk4MPJ2Sgs4MPJ27hdwYOTtlBFwYOTtlBVwYOTtlBNwYOTtlBdwYOTtVBBwYOTtPCDgwMjbqSjgwMjbeVDAgZG3U0nAgZG385CAAyNvp7KAAyNvp4qAAyNvp6qAAyNvp5qAAyNvp7qAAyNvp4aAAyNvp6aAAyNv52EBB0beTi0BB0beziMCDoy8ndoCDoy8nUcFHBh5O3UEHBh5O48JODDyduoKODDydh4XcGDk7dQTcGDk7Twh4MDI26kv4MDI23lSwIGRt9NAwIGRt9NQwIGRt9NIwIGRt/OUgAMjb6exgAMjb+dpAQdG3k4TAQdG3s4zCsdZBIemAg6MvJ1mAg6MvJ3mAg6MvJ0WAg6MvJ2WAg6MvJ1WAg6MvJ3Wlnk79/li83aQmYC8AMyVxzxxzJHG/GDMjcW8UMyJxHxAzIXDPDDMgcL8H8x9wbwPzHnAeH+Mdcc4b4xxxvhejG3FuE6MacR4PoxlwzgujGHC+B2MXcG4DYxZwPV6XKvGdVpco8T1OVybwnUZXJPA+Xici8Z5WJyDxPk3nHvCeRecc8DxNo41cZyFYwx8v8Z3S3yvwncKfJ7iswTvo3gPwesH+w7cYm62OTjILHkodez9veTzIKfDdjtxsz0S20Yby9fDfQn83u/z1q/4P/g9PcxHyUNp47AN3Gzzdtp6306IRd5OiEXeTsjff/js9l30Pf7jEqu3nYUr/u2w6L8TepxLvpXX+7aPtPOLudk+/x2C//z/9QDfP/ud2N1j3rtc3vNi7puYTUfHfSXu42z71zLC7NcRFp+b0fe3fR10snx/camjnWUd7Rzq6Mz7vIjtrN3jKLlRXQQcGLlRXQUcGLlR3QQcGLlR3QUcGLlRPQQcGLlRPQUcGLlRvQQcGLlRvQUcGLlRfQQcGLlRfQUcGLlR/QQcGLlR/QUcGLlRAwQcGLlRAwUcGLlRgwQcGLlRgwUcGLlRQwQcGLlRQwUcGLlRwwQcGLlRwwUcGLlRIwQcGLlRIwUcGLlRUQIOjNyoUQIOjNyo0QIOjNyoMQIOjNyosQIOjNyocQIOjNyo8QIOjNyoCQIOjNyoiQIOjNyoSQIOjNyoyQIOjNyoKQIOjNyoqQIOjNyoaQIOjNyo6QIOjNyoGQIOjNyomQIOjNyoWQIOjNyo2QIOjNyoOQIOjNyouQIOjNyoeQIOjNyo+QIOjNyoBQIOjNyohQIOjNyoZwUcGLlRiwQcGLlRzwk4MHKjFgs4MHKjnhdwYORGLRFwYORGLRVwYORGLRNwYORGvSDgwMiNWq5wnEVweFHAgZEbtULAgZEb9ZKAAyM3aqWAAyM36mUBB0Zu1CoBB0Zu1CuWORa2/z7yQto55Mx8FeD8E+TDdIi0z6BZbZH3YltD/L4k9u8jI+S5u7zfHxkhD6a2fy5etdhHzC7rS+aL3cY/OhBvu4n1t7z3+/5je2si72CDayLtH/eaRUCXa79ei4z9hd/n/ebygu3o8IL9JsAv2ONp/gp1su3XCct+xdxsg6DWWrwxWFiFnLjDILDE+l3B99e+ZfvmU8FiG+sC/CED+3UO+8Z6x4Cq9f8PwszWWbxnvE4KM3sj+Pvw7ZtLKJlFINftD/9ODvvLhsjA19HZso7ODnW8GeDXI/q12uHL1cZ/0ZcrPBevWj4Xrzo8F5ssv1zFtP/pQLztJtZfmy9Xd7Kdsj7Odt64w306seepou+v91Pb/SjM4r4VffZWIfF/8Ht6mC9kXYDBHvD99SFnC2bzwbjZ8sWT3Bfbn/9bbYn10euL9tatWycS+r3fl/g28Efcvm6JPgDYGun757eRLdHvOnF/tzWBDsb/NpBYBzZ5eyJmmSciZIvFk7bVEs92x8MOtMXxaMnlEHyx5SF4F4eYzrciA1/H85Z1dHWoYxuhjiWWdXRzqONtQh1LLevo7lDHdkIdyyzr6OFQxzuEOl6wrKOnQx07CHUst6yjl0Md7xLqeNGyjt4Odewk1LHCso4+DnW8R6jjJcs6+jrUsYtQx0rLOvo51PE+oY6XLevo71DHbkIdqyzrGOBQxweEOl6xrGOgQx17CHWstqxjkEMdHxLqeNWyjsEOdewl1LHGso4hDnV8RKjjNcs6hjrUsY9Qx1rLOoY51PExoY51lnUMd6hjP6GO9ZZ1jHCo4xNCHa9b1jHSoY4DhDresKwjyqGOTwl1bLCsY5RDHQcJdbxpWcdohzo+I9Sx0bKOMQ51HCLUscmyjrEOdXxOqGOzZR3jHOo4TKhji2Ud4x3q+IJQx1bLOiY41HGEUMdblnVMdKjjS0Id2yzrmORQx1FCHW9b1jHZoY6vCHVst6xjikMdxwh1vGNZx1SHOr4m1LHDso5pDnUcJ9TxrmUd0x3q+IZQx07LOmY41HGCUMd7lnXMdKjjJKGOXZZ1zHKo4xShjvct65jtUMe3hDp2W9Yxx6GO04Q6PrCsY65DHd8R6thjWcc8hzrOEOr40LKO+Q51fE+oY69lHQsc6jhLqOMjyzoWOtTxA6GOfZZ1POtQxzlCHR9b1rHIoY4fCXXst6zjOYc6zhPq+MSyjsUOdfxEqOOAZR3PO9RxgVDHp5Z1LHGo42dCHQct61jqUMdFQh2fWdaxzKGOXwh1HLKs4wWHOi4R6vjcso7lDnX8SqjjsGUdLzrUcZlQxxeWdaxwqOMKoY4jlnW85FDHVUIdX1rWsdKhjt8IdRy1rONlhzquEer4yrKOVQ51/E6o45hlHa841HGdUMfXlnWsdqjjD0Idxy3reNWhjhuEOr6xrGONQx1/Euo4YVnHaw513CTUcdKyjrUOddwi1HHKso51DnX40ga+jm8t61jvUEcIoY7TlnW87lBHKKGO7yzreMOhjjBCHWcs69jgUEc4oY7vLet406GOJIQ6zlrWsdGhjqSEOn6wrGOTQx3JCHWcs6xjs0MdyQl1/GhZxxaHOlIQ6jhvWcdWhzoiCHX8ZFnHWw51pCTUccGyjm0OdaQi1PGzZR1vO9RxF6GOi5Z1bHeoIzWhjl8s63jHoY40hDouWdaxw6GOSEIdv1rW8a5DHWkJdVy2rGOnQx3pCHVcsazjPYc60hPquGpZxy6HOjIQ6vjNso73HerISKjjmmUdux3qyESo43fLOj5wqCMzoY7rlnXscagjC6GOPyzr+NChjrsJddywrGOvQx1ZCXX8aVnHRw513EOo46ZlHfsc6shGqOOWZR0fO9SRnVCHL7VdHfsd6shBqCPEso5PHOrISagj1LKOAw51+Al1hFnW8alDHbkIdYRb1nHQoY7chDqSWNbxmUMd9xLqSGpZxyGHOvIQ6khmWcfnDnXkJdSR3LKOww515CPUkcKyji8c6shPqCPCso4jDnUUINSR0rKOLx3qKEioI5VlHUcd6ihEqOMuyzq+cqjjPkIdqS3rOOZQR2FCHWks6/jaoY4ihDoiLes47lBHUUIdaS3r+MahjmKEOtJZ1nHCoY7ihDrSW9Zx0qGOEoQ6MljWccqhjpKEOjJa1vGtQx2lCHVksqzjtEMdpQl1ZLas4zuHOu4n1JHFso4zDnWUIdRxt2Ud3zvUUZZQR1bLOs461FGOUMc9lnX84FBHeUId2SzrOOdQRwVCHdkt6/jRoY4HCHXksKzjvEMdFQl15LSs4yeHOh4k1OG3rOOCQx2VCHXksqzjZ4c6HiLUkduyjosOdVQm1HGvZR2/ONRRhVBHHss6LjnUUZVQR17LOn51qKMaoY58lnVcdqijOqGO/JZ1XHGoowahjgKWdVx1qKMmoY6ClnX85lDHw4Q6ClnWcc2hjlqEOu6zrON3hzoeIdRR2LKO6w511CbUUcSyjj8c6niUUEdRyzpuONRRh1BHMcs6/nSo4zFCHcUt67jpUEddQh0lLOu45VDH44Q6SlrW4UtpX0c9Qh2lLOsIcajjCUIdpS3rCHWooz6hjvst6whzqONJQh1lLOsId6ijAaGOspZ1JHGooyGhjnKWdSR1qKMRoY7ylnUkc6jjKUIdFSzrSO5QR2NCHQ9Y1pHCoY6nCXVUtKwjwqGOJhZ1YH34wqYtjf5vrDmO9bqx1jXWicYay1ifGGv7Yl1crCmL9VixlinWAcUamlh/Ems3Yt1DrBmI9fawVh3WecMaaVhfDGtzYV0rrAl1KPKvtYiwjg/WwMH6MVh7BeuWYM0PrJeBtSawTgPWOMD6AMjWRy49Mt2Rh44sceRwI8Ma+c/ITkbuMDJ7kXeLrFjkrCKjFPmeyMZEriQyGZFniCxA5Oghgw75bcg+Q24YMreQV4WsJ+QkIWMI+TzItkEuDDJVkEeCLA/kYCBDAvkLyC7AvH/Mmcd8c8zVxjxnzBHG/FrMTcW8TsyJxHxCzMXDPDbMAcP8Kcw9wrwdzHnBfBHMtcA8hdtj/NP+NbYc47IxphnjgTGWFuNQMYYT4x8xdhDj7jBmDeO9MFYK44wwRgfjWzA2BOMqMCYB1/NxLRzXkXENFtcvce0P181wzQnXa3CtA9cJcI4d56dxbhfnRXFOEefjcC4L54FwDgXnH3DsjuNeHDPieAvHKviej+/I+H6J72b4XoPvBPg8xWcR3sfxHoj3D7z2sN/+vfPH2+cTuSVZZ56nTZH2r5VnLF4rodGvlfg3v8/uZllbiE0fXbfRNMDvfejP5kjvz8sDpq1zeD6bWb73FfH9997333vfv+u9L9Ryn8frxOL1G4L743Vi+xqOu43E+tQ8rd37apEEfu/3eetX/B/8nh7GeV9tbrkN18892+dyncV7cQvecxnbQbvHhbQgPJctBRwahgd+G60EHJoRHForvC4IDm0EHFoRHNoKOLQhOLQTcGhHcGgv4NCB4NBBwKETwaGjgEMXgkMnAYduBIfOAg49CA5dBBx6ERy6Cjj0ITh0E3DoR3DoLuAwgODQQ8BhEMGhp4DDEIJDLwGHYQSH3gIOIwgOfQQcoggOfQUcRhMc+gk4jCU49BdwGE9wGCDgMJHgMFDAYTLBYZCAw1SCw2ABh+kEhyECDjMJDkMFHGYTHIYJOMwlOAwXcJhPcBgh4LCQ4DBSwGERwSFKwGExwWGUgMMSgsNoAYdlBIcxAg7LCQ5jBRxWEBzGCTisJDiMF3BYRXCYIOCwmuAwUcBhDcFhkoDDWoLDZAGH9QSHKQIO+8ICv42pAg4bCPvDNAGHjQSH6QIOmwkOMwQcthIcZgo4bCM4zBJw2E5wmC3gsIPgMEfAYSfBYa6Awy6CwzwBh90Eh/kCDnsIDgsEHPYSHBYqHGcRHJ4VcNhPcFgk4HCA4PCcgMNBgsNiAYdDBIfnBRwOExyWCDgcITgsFXA4SnBYJuBwjODwgoDDcYLDcgGHEwSHFwUcThEcVgg4nCY4vCTgcIbgsFLA4SzB4WUBh3MEh1UCDucJDq8IOFwgOKwWcLhIcHhVwOESwWGNgMNlgsNrAg5XCQ5rBRyuERzWCThcJzisF3C4QXB4XcDhJsHhDQEHX5LAb2ODgEMoweFNAYdwgsNGAYekBIdNAg7JCQ6bBRwiCA5bBBxSERy2CjikJji8JeAQSXDYJuCQjuDwtoBDBoLDdgGHTASHdwQcshAcdgg4ZCU4vCvgkI3gsFPAIQfB4T0BBz/BYZeAQ26Cw/sCDnkIDrsFHPIRHD4QcChAcNgj4FCI4PChgENhgsNeAYeiBIePBByKExz2CTiUJDh8LOBQmuCwX8ChDMHhEwGHcgSHAwIOFQgOnwo4VCQ4HBRwqERw+EzAoTLB4ZCAQ1WCw+cCDtUJDocFHGoSHL4QcKhFcDgi4FCb4PClgEMdgsNRAYe6BIevBBzqERyOCTjUJzh8LeDQgOBwXMChEcHhGwGHxgSHEwIOTQgOJwUcmhIcTgk4NCc4fCvg0JLgcFrAoTXB4TsBh7YEhzMCDu0JDt8LOHQkOJwVcOhMcPhBwKErweGcgEN3gsOPAg49CQ7nBRx6Exx+EnDoS3C4IODQn+Dws4DDQILDRQGHwQSHXwQchhIcLgk4DCc4/CrgMJLgcFnAYRTB4YqAwxiCw1UBh3EEh98EHCYQHK4JOEwiOPwu4DCF4HBdwGEaweEPAYcZBIcbAg6zCA5/CjjMITjcFHCYR3C4JeCwgODgS+d9G2GmFTVtafR/tzKGrU1rY1pb09qZ1t60DqZ1NK2TaZ1N62JaV9O6mdbdtB6m9TStl2m9TetjWl/T+pnW37QBpg00bZBpg00bYtpQ04aZNty0EaaNNC3KtFGmjTZtjGljTcP69FibHeuSY01urEeNtZixDjHW4MX6s1h7FeuOYs1NrDeJtRaxziDW2MP6clhbDeuKYU0trCeFtZSwjhDW0MH6MVg7BeuGYM0MrBeBtRKwTgAy8pEPj2x05IIjExt50MhCRg4wMnCR/4rsU+R+IvMSeY/IOkTOHzLukO+GbDPkeiHTCnlOyDJCjg8ybJDfguwS5HYgswJ5DcgqwDx9zFHH/GzMTca8XMxJxXxMzEXEPDzMQcP8K8w9wrwbzDnBfAvMNcA4e4wxx/hqjC3GuFqMKcV4SowlxDg6jCHD+CmMHcK4GYwZwXgJjBXAdXJcI8b1UVwbxHUxXBPC9RBcC8B5cJwDxvlPnPvDeS+c88H5Dhzr4zgXx3g4vsF3e3yvxXc6fJ/BZzk+x/AejvcvvHax38bcQi33+fLmj3WRsfcv3rZu75MllhbcXK/Gxqioxs0KlDpba9CWnjOrnbwy+2L0fVumtd8OHuN1GyHp7N6Piibwe7/PW7/i/+D39DBfSIu0gX8/snFw+PeT4LncFGn9XIba7C+hvOfy75utc2i6wG8j7A6fy8Sc8XlUMfrvuI9LtF8W961o0Z9wgee9ISG7N4mAQzOCQ1IBhxYEh2QCDq0IDskFHNoQHFIIOLQjOEQIOHQgOKQUcOhEcEgl4NCF4HCXgEM3gkNqAYceBIc0Ag69CA6RAg59CA5pBRz6ERzSCTgMIDikF3AYRHDIIOAwhOCQUcBhGMEhk4DDCIJDZgGHKIJDFgGH0QSHuwUcxhIcsgo4jCc43CPgMJHgkE3AYTLBIbuAw1SCQw4Bh+kEh5wCDjMJDn4Bh9kEh1wCDnMJDrkFHOYTHO4VcFhIcMgj4LCI4JBXwGExwSGfgMMSgkN+AYdlBIcCAg7LCQ4FBRxWEBwKCTisJDjcJ+CwiuBQWMBhNcGhiIDDGoJDUQGHtQSHYgIO6wkOxQUc9oUFfhslBBw2EPaHkgIOGwkOpQQcNhMcSgs4bCU43C/gsI3gUEbAYTvBoayAww6CQzkBh50Eh/ICDrsIDhUEHHYTHB4QcNhDcKgo4LCX4PCgwnEWwaGSgMN+gsNDAg4HCA6VBRwOEhyqCDgcIjhUFXA4THCoJuBwhOBQXcDhKMGhhoDDMYJDTQGH4wSHhwUcThAcagk4nCI4PCLgcJrgUFvA4QzB4VEBh7MEhzoCDucIDo8JOJwnONQVcLhAcHhcwOEiwaGegMMlgsMTAg6XCQ71BRyuEhyeFHC4RnBoIOBwneDQUMDhBsGhkYDDTYLDUwIOPkLWe2OFXGKCw9MCDuEEhyYCDkkJDs8IOCQnODQVcIggODQTcEhFcGgu4JCa4NBCwCGS4NBSwCEdwaGVgEMGgkNrAYdMBIc2Ag5ZCA5tBRyyEhzaCThkIzi0F3DIQXDoIODgJzh0FHDITXDoJOCQh+DQWcAhH8Ghi4BDAYJDVwGHQgSHbgIOhQkO3QUcihIcegg4FCc49BRwKElw6CXgUJrg0FvAoQzBoY+AQzmCQ18BhwoEh34CDhUJDv0FHCoRHAYIOFQmOAwUcKhKcBgk4FCd4DBYwKEmwWGIgEMtgsNQAYfaBIdhAg51CA7DBRzqEhxGCDjUIziMFHCoT3CIEnBoQHAYJeDQiOAwWsChMcFhjIBDE4LDWAGHpgSHcQIOzQkO4wUcWhIcJgg4tCY4TBRwaEtwmCTg0J7gMFnAoSPBYYqAQ2eCw1QBh64Eh2kCDt0JDtMFHHoSHGYIOPQmOMwUcOhLcJgl4NCf4DBbwGEgwWGOgMNggsNcAYehBId5Ag7DCQ7zBRxGEhwWCDiMIjgsFHAYQ3B4VsBhHMFhkYDDBILDcwIOkwgOiwUcphAcnhdwmEZwWCLgMIPgsFTAYRbBYZmAwxyCwwsCDvMIDssFHBYQHF60cAgzrZhpS6P/O4l5bFLTkpmW3LQUpkWYltK0VKbdZVpq09KYFmlaWtPSmZbetAymZTQtk2mZTcti2t2mZTXtHtOymZbdtBym5UQfTctlWm7T7jUtj2l5TctnWn7TCphW0DSsT4+12bEuOdbkxnrUWIsZ6xBjDV6sP4u1V7HuKNbcxHqTWGsR6wxijT2sL4e11bCuGNbUwnpSWEsJ6whhDR2sH4O1U7BuCNbMwHoRWCsB6wQgIx/58MhGRy44MrGRB40sZOQAIwMX+a/IPkXuJzIvkfeIrEPk/CHjDvluyDZDrhcyrZDnhCwj5Pggwwb5LcguQW4HMiuQ14CsAszTxxx1zM/G3GTMy8WcVMzHxFxEzMPDHDTMv8LcI8y7wZwTzLfAXAOMs8cYc4yvxthijKvFmFKMp8RYQoyjwxgyjJ/C2CGMm8GYEYyXwFgBXCfHNWJcH8W1QVwXwzUhXA/BtQCcB8c5YJz/xLk/nPfCOR+c78CxPo5zcYyH4xt8t8f3Wnynw/cZfJbjcwzv4Xj/wmsX+23MLTTePl+8bd3eJ0ssLbi5Xo2NUVGNmxUodbbWoC09Z1Y7eWX2RfP/10WafTmd99cI7h+e7n+3k9jj4m4jsT6tSGf3flQsgd/7fd76Ff8Hv6eH+UJC0wX+/WiF5TYs//0keC43RVo/l2F4XMx9E3suX+I9l3/fbJ1fIjyXKwUcGhKybF8WcGhGcFgl4NCC4PCKgEMrgsNqAYc2BIdXBRzaERzWCDh0IDi8JuDQieCwVsChC8FhnYBDN4LDegGHHgSH1wUcehEc3hBw6ENw2CDg0I/g8KaAwwCCw0YBh0EEh00CDkMIDpsFHIYRHLYIOIwgOGwVcIgiOLwl4DCa4LBNwGEsweFtAYfxBIftAg4TCQ7vCDhMJjjsEHCYSnB4V8BhOsFhp4DDTILDewIOswkOuwQc5hIc3hdwmE9w2C3gsJDg8IGAwyKCwx4Bh8UEhw8FHJYQHPYKOCwjOHwk4LCc4LBPwGEFweFjAYeVBIf9Ag6rCA6fCDisJjgcEHBYQ3D4VMBhLcHhoIDDeoLDZwIO+8ICv41DAg4bCPvD5wIOGwkOhwUcNhMcvhBw2EpwOCLgsI3g8KWAw3aCw1EBhx0Eh68EHHYSHI4JOOwiOHwt4LCb4HBcwGEPweEbAYe9BIcTCsdZBIeTAg77CQ6nBBwOEBy+FXA4SHA4LeBwiODwnYDDYYLDGQGHIwSH7wUcjhIczgo4HCM4/CDgcJzgcE7A4QTB4UcBh1MEh/MCDqcJDj8JOJwhOFwQcDhLcPhZwOEcweGigMN5gsMvAg4XCA6XBBwuEhx+FXC4RHC4LOBwmeBwRcDhKsHhqoDDNYLDbwIO1wkO1wQcbhAcfhdwuElwuC7g4CNkn/8h4BBKcLgh4BBOcPhTwCEpweGmgENygsMtAYcIgoMv/b/fIRXBIUTAITXBIVTAIZLgECbgkI7gEC7gkIHgkETAIRPBIamAQxaCQzIBh6wEh+QCDtkIDikEHHIQHCIEHPwEh5QCDrkJDqkEHPIQHO4ScMhHcEgt4FCA4JBGwKEQwSFSwKEwwSGtgENRgkM6AYfiBIf0Ag4lCQ4ZBBxKExwyCjiUIThkEnAoR3DILOBQgeCQRcChIsHhbgGHSgSHrAIOlQkO9wg4VCU4ZBNwqE5wyC7gUJPgkEPAoRbBIaeAQ22Cg1/AoQ7BIZeAQ12CQ24Bh3oEh3sFHOoTHPIIODQgOOQVcGhEcMgn4NCY4JBfwKEJwaGAgENTgkNBAYfmBIdCAg4tCQ73CTi0JjgUFnBoS3AoIuDQnuBQVMChI8GhmIBDZ4JDcQGHrgSHEgIO3QkOJQUcehIcSgk49CY4lBZw6EtwuF/AoT/BoYyAw0CCQ1kBh8EEh3ICDkMJDuUFHIYTHCoIOIwkODwg4DCK4FBRwGEMweFBAYdxBIdKAg4TCA4PCThMIjhUFnCYQnCoIuAwjeBQVcBhBsGhmoDDLIJDdQGHOQSHGgIO8wgONQUcFhAcHrZwCDOtuGlLo//75XQ+3yrTXjFttWmvmrbGtNdMW2vaOtPWm/a6aW+YtsG0N03baNom0zabtsW0raa9Zdo20942bbtp75i2w7R3Tdtp2num7TLtfdN2m/aBaXtM+9C0vaZ9ZNo+07A+PdZmx7rkWJMb61FjLWasQ4w1eLH+LNZexbqjWHMT601irUWsM4g19rC+HNZWw7piWFML60lhLSWsI4Q1dLB+DNZOwbohWDMD60VgrQSsE4CMfOTDIxsdueDIxEYeNLKQkQOMDFzkvyL7FLmfyLxE3iOyDpHzh4w75Lsh2wy5Xsi0Qp4TsoyQ44MMG+S3ILsEuR3IrEBeA7IKME8fc9QxPxtzkzEvF3NSMR8TcxExDw9z0DD/CnOPMO8Gc04w3wJzDTDOHmPMMb4aY4tvj6s1DeMpMZYQ4+gwhgzjpzB2CONmMGYE4yUwVgDXyXGNGNdHcW0Q18VwTQjXQ3AtAOfBcQ4Y5z9x7g/nvXDOB+c7cKyP41wc4+H4Bt/t8b0W3+nwfQaf5fgcw3s43r/w2sV+G3MLtdzny5o/1kXG3r9427q9T5ZYWnBzvRobo6IaNytQ6mytQVt6zqx28srsi9H3XZnOfjsr03nfRi3L96PiCfze7/PWr/g/+D09zBfyUrrAvx/ZODj8+0nwXG6KtH4uw232l0d4z+XfN1vnR9IHfhu1BRwaErJsHxVwaEZwqCPg0ILg8JiAQyuCQ10BhzYEh8cFHNoRHOoJOHQgODwh4NCJ4FBfwKELweFJAYduBIcGAg49CA4NBRx6ERwaCTj0ITg8JeDQj+DQWMBhAMHhaQGHQQSHJgIOQwgOzwg4DCM4NBVwGEFwaCbgEEVwaC7gMJrg0ELAYSzBoaWAw3iCQysBh4kEh9YCDpMJDm0EHKYSHNoKOEwnOLQTcJhJcGgv4DCb4NBBwGEuwaGjgMN8gkMnAYeFBIfOAg6LCA5dBBwWExy6CjgsITh0E3BYRnDoLuCwnODQQ8BhBcGhp4DDSoJDLwGHVQSH3gIOqwkOfQQc1hAc+go4rCU49BNwWE9w6C/gsC8s8NsYIOCwgbA/DBRw2EhwGCTgsJngMFjAYSvBYYiAwzaCw1ABh+0Eh2ECDjsIDsMFHHYSHEYIOOwiOIwUcNhNcIgScNhDcBgl4LCX4DBa4TiL4DBGwGE/wWGsgMMBgsM4AYeDBIfxAg6HCA4TBBwOExwmCjgcIThMEnA4SnCYLOBwjOAwRcDhOMFhqoDDCYLDNAGHUwSH6QIOpwkOMwQczhAcZgo4nCU4zBJwOEdwmC3gcJ7gMEfA4QLBYa6Aw0WCwzwBh0sEh/kCDpcJDgsEHK4SHBYKOFwjODwr4HCd4LBIwOEGweE5AYebBIfFAg4+Qvb58wIOoQSHJQIO4QSHpQIOSQkOywQckhMcXhBwiCA4LBdwSEVweFHAITXBYYWAQyTB4SUBh3QEh5UCDhkIDi8LOGQiOKwScMhCcHhFwCErwWG1gEM2gsOrAg45CA5rBBz8BIfXBBxyExzWCjjkITisE3DIR3BYL+BQgODwuoBDIYLDGwIOhQkOGwQcihIc3hRwKE5w2CjgUJLgsEnAoTTBYbOAQxmCwxYBh3IEh60CDhUIDm8JOFQkOGwTcKhEcHhbwKEywWG7gENVgsM7Ag7VCQ47BBxqEhzeFXCoRXDYKeBQm+DwnoBDHYLDLgGHugSH9wUc6hEcdgs41Cc4fCDg0IDgsEfAoRHB4UMBh8YEh70CDk0IDh8JODQlOOwTcGhOcPhYwKElwWG/gENrgsMnAg5tCQ4HBBzaExw+FXDoSHA4KODQmeDwmYBDV4LDIQGH7gSHzwUcehIcDgs49CY4fCHg0JfgcETAoT/B4UsBh4EEh6MCDoMJDl8JOAwlOBwTcBhOcPhawGEkweG4gMMogsM3Ag5jCA4nBBzGERxOCjhMIDicEnCYRHD4VsBhCsHhtIDDNILDdwIOMwgOZwQcZhEcvhdwmENwOCvgMI/g8IOAwwKCwzkLhzDTSpi2NPq/HzWPrWPaY6bVNe1x0+qZ9oRp9U170rQGpjU0rZFpT5nW2LSnTWti2jOmNTWtmWnNTWthWkvTWpnW2rQ2prU1rZ1p7U3rYFpH0zqZ1tm0LqZ1Na2bad1N62Ea1qfH2uxYlxxrcmM9aqzFjHWIsQYv1p/F2qtYdxRrbmK9Say1iHUGscYe1pfD2mpYVwxramE9KaylhHWEsIYO1o/B2ilYNwRrZmC9CKyVgHUCkJGPfHhkoyMXHJnYyINGFjJygJGBi/xXZJ8i9xOZl8h7RNYhcv6QcYd8N2SbIdcLmVbIc0KWEXJ8kGGD/BZklyC3A5kVyGtAVgHm6WOOOuZnY24y5uViTirmY2IuIubhYQ4a5l9h7hHm3WDOCeZbYK4BxtljjDnGV2NsMcbVYkwpxlNiLCHG0WEMGcZPYewQxs1gzAjGS2CsAK6T4xoxro/i2iCui+GaEK6H4FoAzoPjHDDOf+LcH8574ZwPznfgWB/HuTjGw/ENvtvjey2+0+H7DD7L8TmG93C8f+G1i/025hZquc+vizQ2kbH3L962bu+TJZYW3FyvxsaoqMbNCpQ6W2vQlp4zq528Mvui+f+4f+309tvBY7xu48f0du9HJRL4vd/nrV/xf/B7epgv5JH0gX8/+tFyG7b/Pp7LTZFu+0zMfRN7Ls9b1ID+h0X/HfO4O3x+//FvWzwupCEh1/Un3n4eu1G7x4U0IzhcEHBoQXD4WcChFcHhooBDG4LDLwIO7QgOlwQcOhAcfhVw6ERwuCzg0IXgcEXAoRvB4aqAQw+Cw28CDr0IDtcEHPoQHH4XcOhHcLgu4DCA4PCHgMMggsMNAYchBIc/BRyGERxuCjiMIDjcEnCIIjj4Mvz7HUYTHEIEHMYSHEIFHMYTHMIEHCYSHMIFHCYTHJIIOEwlOCQVcJhOcEgm4DCT4JBcwGE2wSGFgMNcgkOEgMN8gkNKAYeFBIdUAg6LCA53CTgsJjikFnBYQnBII+CwjOAQKeCwnOCQVsBhBcEhnYDDSoJDegGHVQSHDAIOqwkOGQUc1hAcMgk4rCU4ZBZwWE9wyCLgsC8s8Nu4W8BhA2F/yCrgsJHgcI+Aw2aCQzYBh60Eh+wCDtsIDjkEHLYTHHIKOOwgOPgFHHYSHHIJOOwiOOQWcNhNcLhXwGEPwSGPgMNegkNeheMsgkM+AYf9BIf8Ag4HCA4FBBwOEhwKCjgcIjgUEnA4THC4T8DhCMGhsIDDUYJDEQGHYwSHogIOxwkOxQQcThAcigs4nCI4lBBwOE1wKCngcIbgUErA4SzBobSAwzmCw/0CDucJDmUEHC4QHMoKOFwkOJQTcLhEcCgv4HCZ4FBBwOEqweEBAYdrBIeKAg7XCQ4PCjjcIDhUEnC4SXB4SMDBR8gBryzgEEpwqCLgEE5wqCrgkJTgUE3AITnBobqAQwTBoYaAQyqCQ00Bh9QEh4cFHCIJDrUEHNIRHB4RcMhAcKgt4JCJ4PCogEMWgkMdAYesBIfHBByyERzqCjjkIDg8LuDgJzjUE3DITXB4QsAhD8GhvoBDPoLDkwIOBQgODQQcChEcGgo4FCY4NBJwKEpweErAoTjBobGAQ0mCw9MCDqUJDk0EHMoQHJ4RcChHcGgq4FCB4NBMwKEiwaG5gEMlgkMLAYfKBIeWAg5VCQ6tBByqExxaCzjUJDi0EXCoRXBoK+BQm+DQTsChDsGhvYBDXYJDBwGHegSHjgIO9QkOnQQcGhAcOgs4NCI4dBFwaExw6Crg0ITg0E3AoSnBobuAQ3OCQw8Bh5YEh54CDq0JDr0EHNoSHHoLOLQnOPQRcOhIcOgr4NCZ4NBPwKErwaG/gEN3gsMAAYeeBIeBAg69CQ6DBBz6EhwGCzj0JzgMEXAYSHAYKuAwmOAwTMBhKMFhuIDDcILDCAGHkQSHkQIOowgOUQIOYwgOowQcxhEcRgs4TCA4jBFwmERwGCvgMIXgME7AYRrBYbyAwwyCwwQBh1kEh4kCDnMIDpMEHOYRHCYLOCwgOEzJYLeNUMt/f12kz7cp0vv9X4++f/w6iret2/tkiaUFN9ersTEqqnGzAqXO1hq0pefMaievzL5o/v9UyzpsnSqYP14z/Qqz7FcFi/u+Fun9vtO81xvy9x8+7495IHobPrvH+cJNSxLdEuyIRR/K++z3f5ftlPNxtlPWF/jX2nrL19obkbG/8Pvsb7YG4ens3ndjbtOj98UZGWK3af/F0+JNAv92WPTf06Mfh507ebyOuTxJGy2fpI2WT9KtW7euJfR7vy/x7eGPuPXNjIaflcH3T5SZ0c9E3N/NigNs++TEwNi+85fJGdh3/tcd+1XWsl8xt3Dv25llthMyM4P3Ps2y+NSwcA3xWmvMjmlriRfuTIdPI9xsX6CVUvt8XSxeoNXM/ds77B+zMwS+jq4WdVR3rGMOoY5uFnXUcKxjLqGO7hZ11HSsYx6hjh4WdTzsWMd8Qh09Leqo5VjHAkIdvSzqeMSxjoWEOnpb1FHbsY5nCXX0sajjUcc6FhHq6GtRRx3HOp4j1NHPoo7HHOtYTKijv0UddR3reJ5QxwCLOh53rGMJoY6BFnXUc6xjKaGOQRZ1POFYxzJCHYMt6qjvWMcLhDqGWNTxpGMdywl1DLWoo4FjHS8S6hhmUUdDxzpWEOoYblFHI8c6XiLUMcKijqcc61hJqGOkRR2NHet4mVBHlEUdTzvWsYpQxyiLOpo41vEKoY7RFnU841jHakIdYyzqaOpYx6uEOsZa1NHMsY41hDrGWdTR3LGO1wh1jLeoo4VjHWsJdUywqKOlYx3rCHVMtKijlWMd6wl1TLKoo7VjHa8T6phsUUcbxzreINQxxaKOto51bCDUMdWijnaOdbxJqGOaRR3tHevYSKhjukUdHRzr2ESoY4ZFHR0d69hMqGOmRR2dHOvYQqhjlkUdnR3r2EqoY7ZFHV0c63iLUMccizq6OtaxjVDHXIs6ujnW8TahjnkWdXR3rGM7oY75FnX0cKzjHUIdCyzq6OlYxw5CHQst6ujlWMe7hDqetaijt2MdOwl1LLKoo49jHe8R6njOoo6+jnXsItSx2KKOfo51vE+o43mLOvo71rGbUMcSizoGONbxAaGOpRZ1DHSsYw+hjmUWdQxyrONDQh0vWNQx2LGOvYQ6llvUMcSxjo8IdbxoUcdQxzr2EepYYVHHMMc6PibU8ZJFHcMd69hPqGOlRR0jHOv4hFDHyxZ1jHSs4wChjlUWdUQ51vEpoY5XLOoY5VjHQYs6MC+ppGmVo/8bcy4wXwFj/TFOHmPMMT4bY5sxLhhjajEeFWM5MQ4SYwgx/g5j1zDuC2OmMN4IY3UwzgVjRDC+AmMTcF0f18RxPRnXYnEdE9cAcf0M155w3QbXPHC9AOfacZ4a53hxfhTnFnFeDue0cD4I51JwHgLH8Dj+xbEjjrtwzILv+/iujO+Z+I6G7zf4boDPVXwm4f0c74V4H8FrEPsvnvuDGRL2sbH/zLt9cov5Q8nLBngOF+YPoe+2+9oh7/Xefr2UTOD3fp/dzbY2mz66buNzy9dcKd9/r7n4rznb91M8R3EnrHqZI4fnyXY7n1ts47Dl66FUAr/3+7z1K/4Pfk8P47weDjtsAzfb99svgv9+G/L3Hz6799svHN5vj/D2r9jO2j0u5Ahh//pSwKFheOC3cVTAoRnB4SsBhxYEh2MCDq0IDl8LOLQhOBwXcGhHcPhGwKEDweGEgEMngsNJAYcuBIdTAg7dCA7fCjj0IDicFnDoRXD4TsChD8HhjIBDP4LD9wIOAwgOZwUcBhEcfhBwGEJwOCfgMIzg8KOAwwiCw3kBhyiCw08CDqMJDhcEHMYSHH4WcBhPcLgo4DCR4PCLgMNkgsMlAYepBIdfBRymExwuCzjMJDhcEXCYTXC4KuAwl+Dwm4DDfILDNQGHhQSH3wUcFhEcrgs4LCY4/CHgsITgcEPAYRnB4U8Bh+UEh5sCDisIDrcEHFYSHHwZ//0OqwgOIQIOqwkOoQIOawgOYQIOawkO4QIO6wkOSQQc9oUFfhtJBRw2EPaHZAIOGwkOyQUcNhMcUgg4bCU4RAg4bCM4pBRw2E5wSCXgsIPgcJeAw06CQ2oBh10EhzQCDrsJDpECDnsIDmkFHPYSHNIpHGcRHNILOOwnOGQQcDhAcMgo4HCQ4JBJwOEQwSGzgMNhgkMWAYcjBIe7LRyQKVLaF5u3g8wE5AVgrjzmiWOONOYHY24s5oViTiTmA2IuHOaBYQ4U5v9g7gvmfWDOA8b7Y6w7xnljjDPG92JsK8Z1YkwjxvNhLBvGcWEME8bvYOwKxm1gzAKu1+NaNa7T4holrs/h2hSuy+CaBM7H41w0zsPiHCTOv+HcE8674JwDjrdxrInjLBxj4Ps1vlviexW+U+DzFJ8leB/FewheP9h34BZzs83BKe+zz9v50iFv50uLbWS1fD2UTuD3fp+3fsX/we/pYZw8FBuHuDfbvJ17vG8nUHk7t3cnWx/si+h7/MclVm823v4V21m7x4Vkyxj4bWQXcGDk7eQQcGDk7eQUcGDk7fgFHBh5O7kEHBh5O7kFHBh5O/cKODDydvIIODDydvIKODDydvIJODDydvILODDydgoIODDydgoKODDydgoJODDydu4TcGDk7RQWcGDk7RQRcGDk7RQVcGDk7RQTcGDk7RQXcGDk7ZQQcGDk7ZQUcGDk7ZQScGDk7ZQWcGDk7dwv4MDI2ykj4MDI2ykr4MDI2ykn4MDI2ykv4MDI26kg4MDI23lAwIGRt1NRwIGRt/OggAMjb6eSgAMjb+chAQdG3k5lAQdG3k4VAQdG3k5VAQdG3k41AQdG3k51AQdG3k4NAQdG3k5NAQdG3s7DAg6MvJ1aAg6MvJ1HBBwYeTu1BRwYeTuPCjgw8nbqCDgw8nYeE3Bg5O3UFXBg5O08LuDAyNupJ+DAyNt5QsCBkbdTX8CBkbfzpIADI2+ngYADI2+noYADI2+nkcJxFsHhKQEHRt5OYwEHRt7O0wIOjLydJgIOjLydZwQcGHk7TQUcGHk7zSzzdu73xebtIDPhdl6AaZgnjjnSmB+MubGYF4o5kZgPiLlwmAeGOVCY/4O5L5j3gTkPGO+Pse4Y540xzhjfi7GtGNeJMY0Yz4exbBjHhTFMGL+DsSsYt4ExC7hej2vVuE6La5S4PodrU7gug2sSOB+Pc9E4D4tzkDj/hnNPOO+Ccw443saxJo6zcIyB79f4bonvVfhOgc9TfJbgfRTvIXj9YN+BW8zNNgennM8+bwc5HbbbiZvtkdg2mlu+Hu5P4Pd+n7d+xf/B7+lhnDyU5g7bwM02b6eF9+0EKm/ndpdtfbAvou/xH5dYvS15+1dsZ+0eF9KSsH+1EnBg5O20FnBg5O20EXBg5O20FXBg5O20E3Bg5O20F3Bg5O10EHBg5O10FHBg5O10EnBg5O10FnBg5O10EXBg5O10FXBg5O10E3Bg5O10F3Bg5O30EHBg5O30FHBg5O30EnBg5O30FnBg5O30EXBg5O30FXBg5O30E3Bg5O30F3Bg5O0MEHBg5O0MFHBg5O0MEnBg5O0MFnBg5O0MEXBg5O0MFXBg5O0ME3Bg5O0MF3Bg5O2MEHBg5O2MFHBg5O1ECTgw8nZGCTgw8nZGCzgw8nbGCDgw8nbGCjgw8nbGCTgw8nbGCzgw8nYmCDgw8nYmCjgw8nYmCTgw8nYmCzgw8namCDgw8namCjgw8namCTgw8namCzgw8nZmCDgw8nZmCjgw8nZmCTgw8nZmCzgw8nbmCDgw8nbmCjgw8nbmCTgw8nbmCzgw8nYWCDgw8nYWCjgw8naeVTjOIjgsEnBg5O08J+DAyNtZLODAyNt5XsCBkbezRMCBkbezVMCBkbezzMIBAR1lfLF5O8hMQF4A5spjnjjmSGN+MObGYl4o5kRiPiDmwmEeGOZAYf4P5r5g3gfmPGC8P8a6Y5w3xjhjfC/GtmJcJ8Y0YjwfxrJhHBfGMGH8DsauYNwGxizgej2uVeM6La5R4vocrk3hugyuSeB8PM5F4zwszkHi/BvOPeG8C8454Hgbx5o4zsIxBr5f47slvlfhOwU+T/FZgvdRvIfg9YN9B24xN9scnPB09nk7yOmw3U7cbI/EtvGC5euhTAK/9/u89Sv+D35PD+PkobzgsA3cbPN2lnvfTqDydsLxh60P9kX0Pf7jEqv3Rd7+FdtZu8eFvEjYv1YIODDydl4ScGDk7awUcGDk7bws4MDI21kl4MDI23lFwIGRt7NawIGRt/OqgAMjb2eNgAMjb+c1AQdG3s5aAQdG3s46AQdG3s56AQdG3s7rAg6MvJ03BBwYeTsbBBwYeTtvCjgw8nY2Cjgw8nY2CTgw8nY2Czgw8na2CDgw8na2Cjgw8nbeEnBg5O1sE3Bg5O28LeDAyNvZLuDAyNt5R8CBkbezQ8CBkbfzroADI29np4ADI2/nPQEHRt7OLgEHRt7O+wIOjLyd3QIOjLydDwQcGHk7ewQcGHk7Hwo4MPJ29go4MPJ2PhJwYOTt7BNwYOTtfCzgwMjb2S/gwMjb+UTAgZG3c0DAgZG386mAAyNv56CAAyNv5zMBB0beziEBB0bezucCDoy8ncMCDoy8nS8EHBh5O0cEHBh5O18KODDydo4KODDydr4ScGDk7RwTcGDk7Xwt4MDI2zmucJxFcPhGwIGRt3NCwIGRt3NSwIGRt3NKwIGRt/OtgAMjb+e0gAMjb+c7CwdkipT1xebtIDMBeQGYK4954pgjjfnBmBuLeaGYE4n5gJgLh3lgmAOF+T+Y+4J5H5jzgPH+GOuOcd4Y44zxvRjbinGdGNOI8XwYy4ZxXBjDhPE7GLuCcRsYs4Dr9bhWjeu0uEaJ63O4NoXrMrgmgfPxOBeN87A4B4nzbzj3hPMuOOeA420ca+I4C8cY+H6N75b4XoXvFPg8xWcJ3kfxHoLXD/YduMXcbHNwYGibt4OcDtvtxM32SGwbZyxfD2UT+L3f561f8X/we3oYJw/ljMM2cLPN2/ne+3YClbeTBH/Y+mBfRN/jPy6xes/y9q/Yzto9LuQsYf/6QcCBkbdzTsCBkbfzo4ADI2/nvIADI2/nJwEHRt7OBQEHRt7OzwIOjLydiwIOjLydXwQcGHk7lwQcGHk7vwo4MPJ2Lgs4MPJ2rgg4MPJ2rgo4MPJ2fhNwYOTtXBNwYOTt/C7gwMjbuS7gwMjb+UPAgZG3c0PAgZG386eAAyNv56aAAyNv55aAAyNvx5fp3+/AyNsJEXBg5O2ECjgw8nbCBBwYeTvhAg6MvJ0kAg6MvJ2kAg6MvJ1kAg6MvJ3kAg6MvJ0UAg6MvJ0IAQdG3k5KAQdG3k4qAQdG3s5dAg6MvJ3UAg6MvJ00Ag6MvJ1IAQdG3k5aAQdG3k46AQdG3k56AQdG3k4GAQdG3k5GAQdG3k4mAQdG3k5mAQdG3k4WAQdG3s7dAg6MvJ2sAg6MvJ17BBwYeTvZBBwYeTvZBRwYeTs5BBwYeTs5BRwYeTt+AQdG3k4uAQdG3k5uheMsgsO9Ag6MvJ08Ag6MvJ28Ag6MvJ18Ag6MvJ38Ag6MvJ0CAg6MvJ2CFg7IFCnni83bQWYC8gIwVx7zxDFHGvODMTcW80IxJxLzATEXDvPAMAcK838w9wXzPjDnAeP9MdYd47wxxhnjezG2FeM6MaYR4/kwlg3juDCGCeN3MHYF4zYwZgHX63GtGtdpcY0S1+dwbQrXZXBNAufjcS4a52FxDhLn33DuCeddcM4Bx9s41sRxFo4xbn+/Ng3fq/CdAp+n+CzB+yjeQ/D6wb4Dt5ibbQ4OMktmWObt/OCQt/ODRd5OIcvXQ7kEfu/3eetX/B/8nh7GyUOxcYh7s83buc/7dgKVt5MUf9j6YF9E3+M/LrF6C/P2r9jO2j0upHCmwG+jiOU2bF/z6yJ9vvWR3u//urnvG5H2z2dRgeeTkRtUTMCBkRtUXMCBkRtUQsCBkRtUUsCBkRtUSsCBkRtUWsCBkRt0v4ADIzeojIADIzeorIADIzeonIADIzeovIADIzeogoADIzfoAQEHRm5QRQEHRm7QgwIOjNygSgIOjNyghwQcGLlBlQUcGLlBVQQcGLlBVQUcGLlB1QQcGLlB1QUcGLlBNQQcGLlBNQUcGLlBDws4MHKDagk4MHKDHhFwYOQG1RZwYOQGPSrgwMgNqiPgwMgNekzAgZEbVFfAgZEb9LiAAyM3qJ6AAyM36AkBB0ZuUH0BB0Zu0JMCDozcoAYCDozcoIYCDozcoEYCDozcoKcEHBi5QY0FHBi5QU8LODByg5oIODByg54RcGDkBjUVcGDkBjUTcGDkBjUXcGDkBrUQcGDkBrUUcGDkBrUScGDkBrUWcGDkBrURcGDkBrUVcGDkBrUTcGDkBrUXcGDkBnVQOM4iOHQUcGDkBnUScGDkBnUWcGDkBnURcGDkBnUVcGDkBnUTcGDkBnW3zA0q74vNDUJmAvICMFce88QxRxrzgzE3FvNCMScS8wExFw7zwDAHCvN/MPcF8z4w5wHj/THWHeO8McYZ43sxthXjOjGmEeP5MJYN47gwhgnjdzB2BeM2MGYB1+txrRrXaXGNEtfncG0K12VwTQLn43EuGudhcQ4S599w7gnnXXDOAcfbONbEcRaOMfD9Gt8t8b0K3ynweYrPEryP4j0Erx/sO3CLucXP9vCSA2SRH3I7qwU5HfG3k9jj4m4jsT71yGT3eiifwO/9Pm/9iv+D39PDOLkuPRy2gZttblBP79sJVG5QMvxh64N9EX2P/7jE6u3F279iO2v3uJBehP2rt4ADI2+nj4ADI2+nr4ADI2+nn4ADI2+nv4ADI29ngIADI29noIADI29nkIADI29nsIADI29niIADI29nqIADI29nmMLxBcFhuIADI29nhIADI29npIADI28nSsCBkbczSsCBkbczWsCBkbczRsCBkbczVsCBkbczTsCBkbczXsCBkbczQcCBkbczUcCBkbczScCBkbczWcCBkbczRcCBkbczVcCBkbczTcCBkbczXcCBkbczQ8CBkbczU8CBkbczS8CBkbczW8CBkbczR8CBkbczV8CBkbczT8CBkbczX8CBkbezQMCBkbezUMCBkbfzrIADI29nkYADI2/nOQEHRt7OYgEHRt7O8wIOjLydJQIOjLydpQIOjLydZQIOjLydFwQcGHk7ywUcGHk7Lwo4MPJ2Vgg4MPJ2XhJwYOTtrBRwYOTtvCzgwMjbWSXgwMjbeUXAgZG3s1rhOIvg8KqAAyNvZ42AAyNv5zUBB0bezloBB0bezjoBB0beznoBB0bezusWDsgUqeCLzdtBZgLyAjBXHvPEMUca84MxNxbzQjEnEvMBMRcO88AwBwrzfzD3BfM+MOcB4/0x1h3jvDHGGeN7MbYV4zoxphHj+TCWDeO4MIYJ43cwdgXjNjBmAdfrca0a12lxjRLX53BtCtdlcE0C5+NxLhrnYXEOEuffcO4J511wzgHH2zjWxHEWjjHw/RrfLfG9Ct8p8HmKzxK8j+I9BK8f7Dtwi7nZ5uAgs2R6htj7e8nnQU6H7XbiZnskto03LF8PFRL4vd/nrV/xf/B7ehgnD+UNh23gZpu3s8H7dkIs8nZCLPJ2Qv7+w2e376Lv8R+XWL1vWrji3w6L/juhx7nkW3m978ZMdn4xN9vnf1Pwn/+/HuD7Z78Tu3vMe5fLe17MfROz2ey4r8R9nG3/1kWa/TrS4nMz+v62r4Mtlu8vLnW8aVnHmw51bOV9XsR21u5xlNyotwQcGLlR2wQcGLlRbws4MHKjtgs4MHKj3hFwYORG7RBwYORGvSvgwMiN2ingwMiNek/AgZEbtUvAgZEb9b6AAyM3areAAyM36gMBB0Zu1B4BB0Zu1IcCDozcqL0CDozcqI8EHBi5UfsEHBi5UR8LODByo/YLODByoz4RcGDkRh0QcGDkRn0q4MDIjToo4MDIjfpMwIGRG3VIwIGRG/W5gAMjN+qwgAMjN+oLAQdGbtQRAQdGbtSXAg6M3KijAg6M3KivBBwYuVHHBBwYuVFfCzgwcqOOCzgwcqO+EXBg5EadEHBg5EadFHBg5EadEnBg5EZ9K+DAyI06LeDAyI36TsCBkRt1RsCBkRv1vYADIzfqrIADIzfqBwEHRm7UOQEHRm7UjwIOjNyo8wIOjNyonwQcGLlRFwQcGLlRPws4MHKjLgo4MHKjfhFwYORGXRJwYORG/apwnEVwuCzgwMiNuiLgwMiNuirgwMiN+k3AgZEbdU3AgZEb9buAAyM36rpljoXtv4+8kDcdcmb2Bzj/BPkwmzLZZ9D8YZH3YltD/L4k9u8jI+R8eu/3R0bI1Az2z8UNi33E7LK+ZL7YbfyjA/G2m1h/H/J+339s789Md7DBPzPZP+6mRUCXa79uZor9hd/n/ebygt3s8II9GOAXbNFMf4U62fbrM8t+xdxsg6BuWbwxWFiFfHaHQWCJ9buy7699y/bNp7LFNnyZA7tvwB7bsK09xKJf+LdjAqoSepztB0lck8TuG5rZbh+Iudnuw2GZg74P3765hJJZBHLd/vDf4vBeEm65H7vUsdWyjq0OdSQJ8OsR/frD4ctVUov9bz9hn7ph+VzccHguklk8F+Fx2v90IN52E+uvzZerO9nOgz7OdsLucJ9O7Hmq6vvr/dR2PwqzuG9Vn71VSPwf/J4eZu4eYLAquFNmezCbD8bkli+e5L7Y/vxzo3Z99PqivXXr1omEfu/3Jb4N/BG3ryky//V3RGbfP7+NpIj+5hP3dxEJdDD+t4HEOpDM2xMxyzwRISksnrQISzzbHQ87UAxW3Md5ubkcgv9keQj+lkNMZ8rMga/jgmUd2xzqSEWo42fLOt52qOMuQh0XLevY7lBHakIdv1jW8Y5DHWkIdVyyrGOHQx2RhDp+tazjXYc60hLquGxZx06HOtIR6rhiWcd7DnWkJ9Rx1bKOXQ51ZCDU8ZtlHe871JGRUMc1yzp2O9SRiVDH75Z1fOBQR2ZCHdct69jjUEcWQh1/WNbxoUMddxPquGFZx16HOrIS6vjTso6PHOq4h1DHTcs69jnUkY1Qxy3LOj52qCM7oQ5fBrs69jvUkYNQR4hlHZ841JGTUEeoZR0HHOrwE+oIs6zjU4c6chHqCLes46BDHbkJdSSxrOMzhzruJdSR1LKOQw515CHUkcyyjs8d6shLqCO5ZR2HHerIR6gjhWUdXzjUkZ9QR4RlHUcc6ihAqCOlZR1fOtRRkFBHKss6jjrUUYhQx12WdXzlUMd9hDpSW9ZxzKGOwoQ60ljW8bVDHUUIdURa1nHcoY6ihDrSWtbxjUMdxQh1pLOs44RDHcUJdaS3rOOkQx0lCHVksKzjlEMdJQl1ZLSs41uHOkoR6shkWcdphzpKE+rIbFnHdw513E+oI4tlHWcc6ihDqONuyzq+d6ijLKGOrJZ1nHWooxyhjnss6/jBoY7yhDqyWdZxzqGOCoQ6slvW8aNDHQ8Q6shhWcd5hzoqEurIaVnHTw51PEiow29ZxwWHOioR6shlWcfPDnU8RKgjt2UdFx3qqEyo417LOn5xqKMKoY48lnVccqijKqGOvJZ1/OpQRzVCHfks67jsUEd1Qh35Leu44lBHDUIdBSzruOpQR01CHQUt6/jNoY6HCXUUsqzjmkMdtQh13GdZx+8OdTxCqKOwZR3XHeqoTaijiGUdfzjU8SihjqKWddxwqKMOoY5ilnX86VDHY4Q6ilvWcdOhjrqEOkpY1nHLoY7HCXWUtKzDl9a+jnqEOkpZ1hHiUMcThDpKW9YR6lBHfUId91vWEeZQx5OEOspY1hHuUEcDQh1lLetI4lBHQ0Id5SzrSOpQRyNCHeUt60jmUMdThDoqWNaR3KGOxoQ6HrCsI4VDHU8T6qhoWUeEQx1NCHU8aFlHSoc6niHUUcmyjlQOdTQl1PGQZR13OdTRjFBHZcs6UjvU0ZxQRxXLOtI41NGCUEdVyzoiHepoSaijmmUdaR3qaEWoo7plHekc6mhNqKOGZR3pHepoQ6ijpmUdGRzqaEuo42HLOjI61NGOUEctyzoyOdTRnlDHI5Z1ZHaoowOhjtqWdWRxqKMjoY5HLeu426GOToQ66ljWkdWhjs6EOh6zrOMehzq6EOqoa1lHNoc6uhLqeNyyjuwOdXQj1FHPso4cDnV0J9TxhGUdOR3q6EGoo75lHX6HOnoS6njSso5cDnX0ItTRwLKO3A519CbU0dCyjnsd6uhDqKORZR15HOroS6jjKcs68jrU0Y9QR2PLOvI51NGfUMfTlnXkd6hjAKGOJpZ1FHCoYyChjmcs6yjoUMcgQh1NLeso5FDHYEIdzSzruM+hjiGEOppb1lHYoY6hhDpaWNZRxKGOYYQ6WlrWUdShjuGEOlpZ1lHMoY4RhDpaW9ZR3KGOkYQ62ljWUcKhjihCHW0t6yjpUMcoQh3tLOso5VDHaEId7S3rKO1QxxhCHR0s67jfoY6xhDo6WtZRxqGOcYQ6OlnWUdahjvGEOjpb1lHOoY4JhDq6WNZR3qGOiYQ6ulrWUcGhjkmEOrpZ1vGAQx2TCXV0t6yjokMdUwh19LCs40GHOqYS6uhpWUclhzqmEeroZVnHQw51TCfU0duyjsoOdcwg1NHHso4qDnXMJNTR17KOqg51zCLU0c+yjmoOdcwm1NHfso7qDnXMIdQxwLKOGg51zCXUMdCyjpoOdcwj1DHIso6HHeqYT6hjsGUdtRzqWECoY4hlHY841LGQUMdQyzpqO9TxLKGOYZZ1POpQxyJCHcMt66jjUMdzhDpGWNbxmEMdiwl1jLSso65DHc8T6oiyrONxhzqWEOoYZVlHPYc6lhLqGG1ZxxMOdSwj1DHGso76DnW8QKhjrGUdTzrUsZxQxzjLOho41PEioY7xlnU0dKhjBaGOCZZ1NHKo4yVCHRMt63jKoY6VhDomWdbR2KGOlwl1TLas42mHOlYR6phiWUcThzpesagD68M/YNrS6P/GmuNYrxtrXWOdaKyxjPWJsbYv1sXFmrJYjxVrmWIdUKyhifUnsXYj1j3EmoFYbw9r1WGdt9trpGX+a20urGuFNaGwnhLWIsI6PlgDB+vHYO0VrFuCNT+wXgbWmsA6DVjjAOsDIFsfufTIdEceOrLEkcONDGvkPyM7GbnDyOxF3i2yYpGzioxS5HsiGxO5kshkRJ4hsgCRo4cMOuS3IfsMuWHI3EJeFbKekJOEjCHk8yDbBrkwyFRBHgmyPJCDgQwJ5C8guwDz/jFnHvPNMVcb85wxRxjzazE3FfM6MScS8wkxFw/z2DAHDPOnMPcI83Yw5wXzRTDXAvMUMMYf4+MxthzjsjGmGeOBMZYW41AxhhPjHzF2EOPuMGYN470wVgrjjDBGB+NbMDYE4yowJgHX83EtHNeRcQ0W1y9x7Q/XzXDNCddrcK0D1wlwjh3np3FuF+dFcU4R5+NwLgvngXAOBecfcOyO414cM+J4C8cq+J6P78j4fonvZvheszzzX5+n+CzC+zjeA/H+gdce9tu/d/54+3wityQ+89hkme1fK6sze3+thEa/VuLf/D67m2VtITZ9dN3Gq5kD+96H/iTP7P15qYI7OTyfazLbvfdV9P333vffe9+/670v1HKfx+vE4vUbgvvjdWL7Go67jcT69Fpmu/fVign83u/z1q/4P/g9PYzzvvqa5TZcP/dsn0ufxXO5lvdcxumg1eNC1hKey3UCDg3DA7+N9QIOzQgOrws4tCA4vCHg0IrgsEHAoQ3B4U0Bh3YEh40CDh0IDpsEHDoRHDYLOHQhOGwRcOhGcNgq4NCD4PCWgEMvgsM2AYc+BIe3BRz6ERy2CzgMIDi8I+AwiOCwQ8BhCMHhXQGHYQSHnQIOIwgO7wk4RBEcdgk4jCY4vC/gMJbgsFvAYTzB4QMBh4kEhz0CDpMJDh8KOEwlOOwVcJhOcPhIwGEmwWGfgMNsgsPHAg5zCQ77BRzmExw+EXBYSHA4IOCwiODwqYDDYoLDQQGHJQSHzwQclhEcDgk4LCc4fC7gsILgcFjAYSXB4QsBh1UEhyMCDqsJDl8KOKwhOBxVGFdMcPhKwGE9weGYgMO+sMBv42sBhw2E/eG4gMNGgsM3Ag6bCQ4nBBy2EhxOCjhsIzicEnDYTnD4VsBhB8HhtIDDToLDdwIOuwgOZwQcdhMcvhdw2ENwOCvgsJfg8IPCcRbB4ZyAw36Cw48CDgcIDucFHA4SHH4ScDhEcLgg4HCY4PCzgMMRgsNFAYejBIdfBByOERwuCTgcJzj8KuBwguBwWcDhFMHhioDDaYLDVQGHMwSH3wQczhIcrgk4nCM4/C7gcJ7gcF3A4QLB4Q8Bh4sEhxsCDpcIDn8KOFwmONwUcLhKcLgl4HCN4ODL8u93uE5wCBFwuEFwCBVwuElwCBNw8CUJ/DbCBRxCCQ5JBBzCCQ5JBRySEhySCTgkJzgkF3CIIDikEHBIRXCIEHBITXBIKeAQSXBIJeCQjuBwl4BDBoJDagGHTASHNAIOWQgOkQIOWQkOaQUcshEc0gk45CA4pBdw8BMcMgg45CY4ZBRwyENwyCTgkI/gkFnAoQDBIYuAQyGCw90CDoUJDlkFHIoSHO4RcChOcMgm4FCS4JBdwKE0wSGHgEMZgkNOAYdyBAe/gEMFgkMuAYeKBIfcAg6VCA73CjhUJjjkEXCoSnDIK+BQneCQT8ChJsEhv4BDLYJDAQGH2gSHggIOdQgOhQQc6hIc7hNwqEdwKCzgUJ/gUETAoQHBoaiAQyOCQzEBh8YEh+ICDk0IDiUEHJoSHEoKODQnOJQScGhJcCgt4NCa4HC/gENbgkMZAYf2BIeyAg4dCQ7lBBw6ExzKCzh0JThUEHDoTnB4QMChJ8GhooBDb4LDgwIOfQkOlQQc+hMcHhJwGEhwqCzgMJjgUEXAYSjBoaqAw3CCQzUBh5EEh+oCDqMIDjUEHMYQHGoKOIwjODws4DCB4FBLwGESweERAYcpBIfaAg7TCA6PCjjMIDjUEXCYRXB4TMBhDsGhroDDPILD4wIOCwgO9Swcwkx70LSl0f+9PrPP97ppb5i2wbQ3Tdto2ibTNpu2xbStpr1l2jbT3jZtu2nvmLbDtHdN22nae6btMu1903ab9oFpe0z70LS9pn1k2j7TPjZtv2mfmHbAtE9NO2jaZ6YdMu1z07A+PdZmx7rkWJMb61FjLWasQ4w1eLH+LNZexbqjWHMT601irUWsM4g19rC+HNZWw7piWFML60lhLSWsI4Q1dLB+DNZOwbohWDMD60VgrQSsE4CMfOTDIxsdueDIxEYeNLKQkQOMDFzkvyL7FLmfyLxE3iOyDpHzh4w75Lsh2wy5Xsi0Qp4TsoyQ44MMG+S3ILsEuR3IrEBeA7IKME8fc9QxPxtzkzEvF3NSMR8TcxExDw9z0DD/6vbcI9Mw5wTzLTDXAOPsMcYc46sxthjjajGmFOMpMZYQ4+gwhgzjpzB2CONmMGYE4yX+v/bOA0yKam/6Z1lyEhDJ4IqIoKiYEwKSJIlIBsmw5LjkDAIiIDmLCIiIiIgoIiAiIiIiKuYcMGLGgDl8/8IdmTvvLjvncLfuree78zwl627PVNdvZnqmu8+pxlgBnCfHOWKcH8W5QZwXwzkhnA/BuQAcB8cxYBz/xLE/HPfCMR8c78C+PvZzsY+H/Rt8t8f3Wnynw/cZfJbjcwzbcGy/8N7F6zZyy+L5mq+G/0b1z1bu2ijl4PkrKm5pXHvzhAmt2lW48FDdEVsHzKl58Mi8w6nL3l/U3+d+D4/rPbdHV6Xx+yQX33rF/pAU191cwoaimb898uEQ8PjZ8Fzm8H8us/i8Xprwnst/br6cmxTLfI+mJ/hcZsQZn0c1Uv+Nvl9GNokey9bwWJ9mAs97c0J3b3MBDu0IHFoIcOhA4NBSgEMnAodWAhy6EDi0FuCQTODQRoBDdwKHGwQ49CRwaCvAoTeBQzsBDn0JHNoLcOhP4NBBgMNAAoeOAhwGETh0EuAwhMChswCHYQQOXQQ4jCBw6CrAYRSBQ7IAhzEEDt0EOIwjcOguwGECgUMPAQ4TCRx6CnCYTODQS4DDFAKH3gIcphI49BHgMJ3Aoa8AhxkEDv0EOMwicOgvwGEOgcMAAQ7zCBwGCnBYQOCQIsBhEYHDIAEOSwgcBgtwWErgMESAwzICh6ECHJYTOAwT4LCSwGG4AIdVBA4jBDisJnAYKcBhDYHDKAEOawkcRgtwWEfgMEaAw3oCh7ECHDYQOIwT4LCRwGG8AIf9iZnvMUGAwybC6+FGAQ6bCRwmCnDYQuAwSYDDNgKHyQIcthM43CTAYQeBwxQBDjsJHG4W4LCLwGGqAIfdBA7TBDjsIXCYLsBhL4HDLQIc9hE4zFDYzyJwmCnA4TkCh1kCHA4QOMwW4PAigcMcAQ4vEzjMFeDwKoHDPAEOrxM4zBfg8CaBwwIBDm8TOCwU4PAugcMiAQ7vEzgsFuDwAYHDEgEOHxE43CrA4RMCh6UCHA4RONwmwOFzAodlAhy+JHC4XYDD1wQOywU4HCZwWCHA4TsCh5UCHH4gcLhDgMOPBA6rBDj8TOBwpwCHXwkcVgtw+J3A4S4BDn8SOKwR4OAIXe93C3DIQuCwVoBDVgKHewQ4ZCdwWCfAISeBw70CHHITOKwX4JCXwOE+AQ75CRw2CHAoQOBwvwCHQgQOGwU4FCZweECAQxEChwcFOBQjcNgkwKEEgcNDAhxKEThsFuBQhsDhYQEOSQQOWwQ4lCVw2CrAoRyBwzYBDuUJHB4R4FCBwGG7AIezCBweFeBQicBhhwCHcwkcHhPgUJnAYacAhwsIHB4X4HARgcMuAQ6XEDg8IcDhMgKH3QIcriBweFKAQxUChz0CHKoSODwlwKE6gcNeAQ41CByeFuBQi8BhnwCHOgQOzwhwqEvgsF+AQ30Ch2cFODQkcHhOgEMjAofnBTg0JnA4IMChCYHDCwIcmhE4vCjAoQWBw0sCHFoROLwswKENgcMrAhzaEji8KsChPYHDawIcOhI4vC7AoTOBwxsCHLoSOLwpwKEbgcNbAhx6EDi8LcChF4HDOwIc+hA4vCvAoR+Bw3sCHAYQOLwvwCGFwOGgAIfBBA4fCHAYSuDwoQCH4QQOHwlwGEng8LEAh9EEDp8IcBhL4PCpAIfxBA6HBDjcSODwmQCHSQQOnwtwuInA4QsBDjcTOHwpwGEagcNXAhxuIXD4WoDDTAKHbwQ4zCZwOCzAYS6Bw7cCHOYTOHwnwGEhgcP3AhwWEzj84MEh0VTVtCL1/5vbfVuYWppamVqb2phuMLU1tTO1N3UwdTR1MnU2dTF1NSWbupm6m3qYepp6mXqb+pj6mvqZ+psGmAaaUkyDTINNQ0xDTcNMw00jTLg+Pa7NjuuS45rcuB41rsWM6xDjGry4/iyuvYrrjuKam7jeJK61iOsM4hp7uL4crq2G64rhmlq4nhSupYTrCOEaOrh+DK6dguuG4JoZuF4ErpWA6wSgIx/98OhGRy84OrHRB40uZPQAowMX/a/oPkXvJzov0feIrkP0/KHjDv1u6DZDrxc6rdDnhC4j9Pigwwb9LeguQW8HOivQ14CuAszTxxx1zM/G3GTMy8WcVMzHxFxEzMPDHDTMv8LcI8y7wZwTzLfAXAOMs8cYc4yvxthijKvFmFKMp8RYQoyjwxgyjJ/C2CGMm8GYEYyXwFgBnCfHOWKcH8W5QZwXwzkhnA/BuQAcB8cxYBz/xLE/HPfCMR8c78C+PvZzsY+H/Rt8t8f3Wnynw/cZfJbjcwzbcGy/8N7F6zZyyxLzmq/ctVHKwfNXVNzSuPbmCRNatatw4aG6I7YOmFPz4JF5h7FAUeeaFov/PYLlmxX7vz4Z3S/aI6N1OlLMb3tUNY3fJ7n41iv2h6S47uYSmhTL/O3REU8Pz8fPhucyR1Hv5zIR94ssm9Fz+SPvufzn5sv5R8Jz+ZMAh+aELtufBTi0I3D4RYBDBwKHXwU4dCJw+E2AQxcCh98FOCQTOPwhwKE7gcOfAhx6Ejj8JcChN4GDK/7fz6EvgUOCAIf+BA5ZBDgMJHBIFOAwiMAhqwCHIQQO2QQ4DCNwyC7AYQSBQw4BDqMIHHIKcBhD4JBLgMM4AofcAhwmEDjkEeAwkcAhrwCHyQQO+QQ4TCFwyC/AYSqBw0kCHKYTOBQQ4DCDwKGgAIdZBA6FBDjMIXA4WYDDPAKHwgIcFhA4nCLAYRGBQxEBDksIHIoKcFhK4FBMgMMyAofiAhyWEziUEOCwksChpACHVQQOpQQ4rCZwKC3AYQ2BQxkBDmsJHE4V4LCOwCFJgMN6AofTBDhsIHAoK8BhI4HD6QIc9idmvkc5AQ6bCK+HMwQ4bCZwKC/AYQuBw5kCHLYROFQQ4LCdwKGiAIcdBA5nCXDYSeBwtgCHXQQOlQQ47CZwOEeAwx4Ch3MFOOwlcDhPgMM+AofKCvtZBA7nC3B4jsDhAgEOBwgcLhTg8CKBw0UCHF4mcLhYgMOrBA6XCHB4ncDhUgEObxI4XCbA4W0Ch8sFOLxL4HCFAIf3CRyuFODwAYFDFQEOHxE4XCXA4RMCh6oCHA4ROFQT4PA5gUN1AQ5fEjhcLcDhawKHGgIcDhM41BTg8B2BQy0BDj8QONQW4PAjgUMdAQ4/EzhcI8DhVwKHugIcfidwqCfA4U8Ch/oCHByh+7yBAIcsBA4NBThkJXC4VoBDdgKHRgIcchI4XCfAITeBQ2MBDnkJHK4X4JCfwKGJAIcCBA5NBTgUInBoJsChMIFDcwEORQgcWghwKEbg0FKAQwkCh1YCHEoROLQW4FCGwKGNAIckAocbBDiUJXBoK8ChHIFDOwEO5Qkc2gtwqEDg0EGAw1kEDh0FOFQicOgkwOFcAofOAhwqEzh0EeBwAYFDVwEOFxE4JAtwuITAoZsAh8sIHLoLcLiCwKGHAIcqBA49BThUJXDoJcChOoFDbwEONQgc+ghwqEXg0FeAQx0Ch34CHOoSOPQX4FCfwGGAAIeGBA4DBTg0InBIEeDQmMBhkACHJgQOgwU4NCNwGCLAoQWBw1ABDq0IHIYJcGhD4DBcgENbAocRAhzaEziMFODQkcBhlACHzgQOowU4dCVwGCPAoRuBw1gBDj0IHMYJcOhF4DBegEMfAocJAhz6ETjcKMBhAIHDRAEOKQQOkwQ4DCZwmCzAYSiBw00CHIYTOEwR4DCSwOFmAQ6jCRymCnAYS+AwTYDDeAKH6QIcbiRwuEWAwyQChxkCHG4icJgpwOFmAodZAhymETjMFuBwC4HDHAEOMwkc5gpwmE3gME+Aw1wCh/kCHOYTOCwQ4LCQwGGhAIfFBA6LPDgkmqqZVqT+/8/FnPvF9KvpN9Pvpj9Mf5r+Mjl77ARTFlOiKaspmym7KYcppymXKbcpjymvKZ8pv+kkUwFTQVMh08mmwqZTTEVMRU3FTMVNJUwlTaVMuD49rs1+9LrkJlyPGtdixnWIcQ1eXH8W117FdUdxzU1cbxLXWsR1BnGNPVxfDtdWw3XFcE0tXE8K11LCdYRwDR1cPwbXTsF1Q3DNDFwvAtdKwHUC0JGPfnh0o6MXHJ3Y6INGFzJ6gNGBi/5XdJ+i9xOdl+h7RNchev7QcYd+N3SbodcLnVboc0KXEXp80GGD/hZ0l6C3A50V6GtAVwHm6WOOOuZnY24y5uViTirmY2IuIubhYQ4a5l9h7hHm3WDOCeZbYK4BxtljjDnGV2NsMcbVYkwpxlNiLCHG0WEMGcZPYewQxs1gzAjGS2CsAM6T4xwxzo/i3CDOi+GcEM6H4FwAjoPjGDCOf+LYH4574ZgPjndgXx/7udjHw/4Nvtvjey2+0+H7DD7L8TmGbTi2X3jv4nUbuWXxfM1fhf8WPbZ85a6NUg6ev6Lilsa1N0+Y0KpdhQsP1R2xdcCcmgePzDucuuxPxfx9cJ94PRYX99seVUvj90kuvvWK/SEprru5hB+LEbZ5xf08PB8/G57LHEW9n8usPq+XJbzn8p+bL+clxTPf41YBDs0JXbZLBTi0I3C4TYBDBwKHZQIcOhE43C7AoQuBw3IBDskEDisEOHQncFgpwKEngcMdAhx6EzisEuDQl8DhTgEO/QkcVgtwGEjgcJcAh0EEDmsEOAwhcLhbgMMwAoe1AhxGEDjcI8BhFIHDOgEOYwgc7hXgMI7AYb0AhwkEDvcJcJhI4LBBgMNkAof7BThMIXDYKMBhKoHDAwIcphM4PCjAYQaBwyYBDrMIHB4S4DCHwGGzAId5BA4PC3BYQOCwRYDDIgKHrQrjHwgctglwWErg8IgAh2UEDtsFOCwncHhUgMNKAocdAhxWETg8JsBhNYHDTgEOawgcHhfgsJbAYZcAh3UEDk8IcFhP4LBbgMMGAocnBThsJHDYI8Bhf2LmezwlwGET4fWwV4DDZgKHpwU4bCFw2CfAYRuBwzMCHLYTOOwX4LCDwOFZAQ47CRyeE+Cwi8DheQEOuwkcDghw2EPg8IIAh70EDi8KcNhH4PCSwn4WgcPLAhyeI3B4RYDDAQKHVwU4vEjg8JoAh5cJHF4X4PAqgcMbAhxeJ3B4U4DDmwQObwlweJvA4W0BDu8SOLwjwOF9Aod3BTh8QODwngCHjwgc3hfg8AmBw0EBDocIHD4Q4PA5gcOHAhy+JHD4SIDD1wQOHwtwOEzg8IkAh+8IHD4V4PADgcMhAQ4/Ejh8JsDhZwKHzwU4/Erg8IUAh98JHL4U4PAngcNXAhwcofv8awEOWQgcvhHgkJXA4bAAh+wEDt8KcMhJ4PCdAIfcBA7fC3DIS+DwgwCH/AQORwQ4FCBw+FGAQyECh58EOBQmcPhZgEMRAodfBDgUI3D4VYBDCQKH3wQ4lCJw+F2AQxkChz8EOCQROPwpwKEsgcNfAhzKETi4Ev/9HMoTOCQIcKhA4JBFgMNZBA6JAhwqEThkFeBwLoFDNgEOlQkcsgtwuIDAIYcAh4sIHHIKcLiEwCGXAIfLCBxyC3C4gsAhjwCHKgQOeQU4VCVwyCfAoTqBQ34BDjUIHE4S4FCLwKGAAIc6BA4FBTjUJXAoJMChPoHDyQIcGhI4FBbg0IjA4RQBDo0JHIoIcGhC4FBUgEMzAodiAhxaEDgUF+DQisChhACHNgQOJQU4tCVwKCXAoT2BQ2kBDh0JHMoIcOhM4HCqAIeuBA5JAhy6ETicJsChB4FDWQEOvQgcThfg0IfAoZwAh34EDmcIcBhA4FBegEMKgcOZAhwGEzhUEOAwlMChogCH4QQOZwlwGEngcLYAh9EEDpUEOIwlcDhHgMN4AodzBTjcSOBwngCHSQQOlQU43ETgcL4Ah5sJHC4Q4DCNwOFCAQ63EDhcJMBhJoHDxQIcZhM4XCLAYS6Bw6UCHOYTOFwmwGEhgcPlAhwWEzhc4cEh0VTdtCL1/5cWd+420zLT7ablphWmlaY7TKtMd5pWm+4yrTHdbVpruse0znSvab3pPtMG0/2mjaYHTA+aNpkeMm02PWzaYtpq2mZ6xLTd9Khph+kxE65Pj2uz47rkuCY3rkeNazHjOsS4Bi+uP4trr+K6o7jmJq43iWst4jqDuMYeri+Ha6vhumK4phauJ4VrKeE6QriGDq4fg2un4LohuGYGrheBayXgOgHoyEc/PLrR0QuOTmz0QaMLGT3A6MBF/yu6T9H7ic5L9D2i6xA9f+i4Q78bus3Q64VOK/Q5ocsIPT7osEF/C7pL0NuBzgr0NaCrAPP0MUcd87MxNxnzcjEnFfMxMRcR8/AwBw3zrzD3CPNuMOcE8y0w1wDj7DHGHOOrMbYY42oxphTjKTGWEOPoMIYM46cwdgjjZjBmBOMlMFYA58mPniM24dwgzovhnBDOh+BcAI6D4xgwjn/i2B+Oe+GYD453YF8f+7nYx8P+Db7b43stvtPh+ww+y/E5hm04tl947+J1G7ll8XzNu6LGpuix5St3bZRy8PwVFbc0rr15woRW7SpceKjuiK0D5tQ8eGTeYSxgy95a3N/n1uLxe1zpuT2qnsbvk1x86xX7Q1Jcd3MJS4pn/vbIh0PI4+O5zFE07DUTWTaj57KKRwasf2Lqv5H7neDz+y+P7XG/hOaEXtereK/zY6Z+90toR+BQVYBDBwKHagIcOhE4VBfg0IXA4WoBDskEDjUEOHQncKgpwKEngUMtAQ69CRxqC3DoS+BQR4BDfwKHawQ4DCRwqCvAYRCBQz0BDkMIHOoLcBhG4NBAgMMIAoeGAhxGEThcK8BhDIFDIwEO4wgcrhPgMIHAobEAh4kEDtcLcJhM4NBEgMMUAoemAhymEjg0E+AwncChuQCHGQQOLQQ4zCJwaCnAYQ6BQysBDvMIHFoLcFhA4NBGgMMiAocbBDgsIXBoK8BhKYFDOwEOywgc2gtwWE7g0EGAw0oCh44CHFYROHQS4LCawKGzAIc1BA5dBDisJXDoKsBhHYFDsgCH9QQO3QQ4bCBw6C7AYSOBQw8BDvsTM9+jpwCHTYTXQy8BDpsJHHoLcNhC4NBHgMM2Aoe+Ahy2Ezj0E+Cwg8ChvwCHnQQOAwQ47CJwGCjAYTeBQ4oAhz0EDoMEOOwlcBgswGEfgcMQhf0sAoehAhyeI3AYJsDhAIHDcAEOLxI4jBDg8DKBw0gBDq8SOIwS4PA6gcNoAQ5vEjiMEeDwNoHDWAEO7xI4jBPg8D6Bw3gBDh8QOEwQ4PARgcONAhw+IXCYKMDhEIHDJAEOnxM4TBbg8CWBw00CHL4mcJgiwOEwgcPNAhy+I3CYKsDhBwKHaQIcfiRwmC7A4WcCh1sEOPxK4DBDgMPvBA4zBTj8SeAwS4CDI/SAzxbgkIXAYY4Ah6wEDnMFOGQncJgnwCEngcN8AQ65CRwWCHDIS+CwUIBDfgKHRQIcChA4LBbgUIjAYYkAh8IEDrcKcChC4LBUgEMxAofbBDiUIHBYJsChFIHD7QIcyhA4LBfgkETgsEKAQ1kCh5UCHMoRONwhwKE8gcMqAQ4VCBzuFOBwFoHDagEOlQgc7hLgcC6BwxoBDpUJHO4W4HABgcNaAQ4XETjcI8DhEgKHdQIcLiNwuFeAwxUEDusFOFQhcLhPgENVAocNAhyqEzjcL8ChBoHDRgEOtQgcHhDgUIfA4UEBDnUJHDYJcKhP4PCQAIeGBA6bBTg0InB4WIBDYwKHLQIcmhA4bBXg0IzAYZsAhxYEDo8IcGhF4LBdgEMbAodHBTi0JXDYIcChPYHDYwIcOhI47BTg0JnA4XEBDl0JHHYJcOhG4PCEAIceBA67BTj0InB4UoBDHwKHPQIc+hE4PCXAYQCBw14BDikEDk8LcBhM4LBPgMNQAodnBDgMJ3DYL8BhJIHDswIcRhM4PCfAYSyBw/MCHMYTOBwQ4HAjgcMLAhwmETi8KMDhJgKHlwQ43Ezg8LIAh2kEDq8IcLiFwOFVAQ4zCRxeE+Awm8DhdQEOcwkc3hDgMJ/A4U0BDgsJHN4S4LCYwOHtEn4eWTwf3xV1LkfR+JfPkrp8bI7KXRulHDx/RcUtjWtvnjChVbsKFx6qO2LrgDk1Dx6Zd9j+/o5nDl9O1e0/fxZxLtFzvap7LIvHj3fZd0t4PAfOP+/VqR7O734uqylbqtJcEY91qOb8X/8hPlUdx+cql/nvtQTP91pi0WO/SHL+N18GzYr5bXcjt/dSX4vvlzjm6W3u8aY5+tiJqf++l3o/vLhzxqxYyJOU3fNJyu75JP31118/p/X7JJexH/4Tne9gKvgPSrh/hXIw9ZmI/t0HUYB9n5wIGN8tf8XTMnfLnyVwvc7yXK/ILWv8PnPNJ+FgifjX6QOPTw0PrgnxZo28MH1Z4o17MODTCDffN+jMws49UiT+5efZ8puL+Gf6sETm59jukWN+YI6PCDke9cixIDDHx4QcOzxyLAzM8Qkhx2MeORYF5viUkGOnR47FgTkOEXI87pFjSWCOzwg5dnnkuDUwx+eEHE945FgamOMLQo7dHjluC8zxJSHHkx45lgXm+IqQY49HjtsDc3xNyPGUR47lgTm+IeTY65FjRWCOw4QcT3vkWBmY41tCjn0eOe4IzPEdIcczHjlWBeb4npBjv0eOOwNz/EDI8axHjtWBOY4QcjznkeOuwBw/EnI875FjTWCOnwg5DnjkuDswx8+EHC945FgbmOMXQo4XPXLcE5jjV0KOlzxyrAvM8Rshx8seOe4NzPE7IccrHjnWB+b4g5DjVY8c9wXm+JOQ4zWPHBsCc/xFyPG6R477A3O4kpmf4w2PHBsDcyQQcrzpkeOBwBxZCDne8sjxYGCOREKOtz1ybArMkZWQ4x2PHA8F5shGyPGuR47NgTmyE3K855Hj4cAcOQg53vfIsSUwR05CjoMeObYG5shFyPGBR45tgTlyE3J86JHjkcAceQg5PvLIsT0wR15Cjo89cjwamCMfIccnHjl2BObIT8jxqUeOxwJznETIccgjx87AHAUIOT7zyPF4YI6ChByfe+TYFZijECHHFx45ngjMcTIhx5ceOXYH5ihMyPGVR44nA3OcQsjxtUeOPYE5ihByfOOR46nAHEUJOQ575NgbmKMYIce3HjmeDsxRnJDjO48c+wJzlCDk+N4jxzOBOUoScvzgkWN/YI5ShBxHPHI8G5ijNCHHjx45ngvMUYaQ4yePHM8H5jiVkONnjxwHAnMkEXL84pHjhcAcpxFy/OqR48XAHGU9cmBe0tXu2OxdzLnAfAWM9cc4eYwxx/hsjG3GuGCMqcV4VIzlxDhIjCHE+DuMXcO4L4yZwngjjNXBOBeMEcH4CoxNwHl9nBPH+WSci8V5TJwDxPkznHvCeRuc88D5Ahxrx3FqHOPF8VEcW8RxORzTwvEgHEvBcQjsw2P/F/uO2O/CPgu+7+O7Mr5n4jsavt/guwE+V/GZhO05toXYjhx9D5b8+7kHt7T4+LA/PX72OT3mD+X0nSsV+5rJaHHMH8K6+77Wynm81vB+uTqN3yc5v5tvNp91DPU4w/M9V8P97z0X+57z3Z7iOXrXY24flsXz5OsT/dxm5FHe8/1QI43fJ7n41iv2h6S47sZ5P5QP8MDNd3t75n9+e5vwz3+c3/b2zIDtbQXe6+vYyvrdL6EC4fVVUYBD86yZ73GWAId2BA5nC3DoQOBQSYBDJwKHcwQ4dCFwOFeAQzKBw3kCHLoTOFQW4NCTwOF8AQ69CRwuEODQl8DhQgEO/QkcLhLgMJDA4WIBDoMIHC4R4DCEwOFSAQ7DCBwuE+AwgsDhcgEOowgcrhDgMIbA4UoBDuMIHKoIcJhA4HCVAIeJBA5VBThMJnCoJsBhCoFDdQEOUwkcrhbgMJ3AoYYAhxkEDjUFOMwicKglwGEOgUNtAQ7zCBzqCHBYQOBwjQCHRQQOdQU4LCFwqCfAYSmBQ30BDssIHBoIcFhO4NBQgMNKAodrBTisInBoJMBhNYHDdQIc1hA4NBbgsJbA4XoBDusIHJoIcFhP4NBUgMMGAodmAhw2Ejg0F+CwPzHzPVoIcNhEeD20FOCwmcChlQCHLQQOrQU4bCNwaCPAYTuBww0CHHYQOLQV4LCTwKGdAIddBA7tBTjsJnDoIMBhD4FDRwEOewkcOglw2Efg0FlhP4vAoYsAh+cIHLoKcDhA4JAswOFFAoduAhxeJnDoLsDhVQKHHgIcXidw6OnZt1PTHevbQWcC+gIwVx7zxDFHGvODMTcW80IxJxLzATEXDvPAMAcK838w9wXzPjDnAeP9MdYd47wxxhnjezG2FeM6MaYR4/kwlg3juDCGCeN3MHYF4zYwZgHn63GuGudpcY4S5+dwbgrnZXBOAsfjcSwax2FxDBLH33DsCcddcMwB+9vY18R+FvYx8P0a3y3xvQrfKfB5is8SbEexDcH7B68dcIvcsngyr+b8+3bQ0+HrE93tkZFHL8/3Q800fp/k4luv2B+S4robpw+lV4AHbr59O73j98msvp2jLydfPngtYt1j75dR3j6819exlfW7X0IfwuurrwAHRt9OPwEOjL6d/gIcGH07AwQ4MPp2BgpwYPTtpAhwYPTtDBLgwOjbGSzAgdG3M0SAA6NvZ6gAB0bfzjABDoy+neECHBh9OyMEODD6dkYKcGD07YwS4MDo2xktwIHRtzNGgAOjb2esAAdG3844AQ6Mvp3xAhwYfTsTBDgw+nZuFODA6NuZKMCB0bczSYADo29nsgAHRt/OTQIcGH07UwQ4MPp2bhbgwOjbmSrAgdG3M02AA6NvZ7oAB0bfzi0CHBh9OzMEODD6dmYKcGD07cwS4MDo25ktwIHRtzNHgAOjb2euAAdG3848AQ6Mvp35AhwYfTsLBDgw+nYWCnBg9O0sEuDA6NtZLMCB0bezRIADo2/nVgEOjL6dpQIcGH07twlwYPTtLBPgwOjbuV2AA6NvZ7kAB0bfzgoBDoy+nZUCHBh9O3cIcGD07awS4MDo27lTgAOjb2e1AAdG385dCvtZBA5rBDgw+nbuFuDA6NtZK8CB0bdzjwAHRt/OOgEOjL6dewU4MPp21ntwsMOErpY71reDzgT0BWCuPOaJY4405gdjbizmhWJOJOYDYi4c5oFhDhTm/2DuC+Z9YM4DxvtjrDvGeWOMM8b3YmwrxnViTCPG82EsG8ZxYQwTxu9g7ArGbWDMAs7X41w1ztPiHCXOz+HcFM7L4JwEjsfjWDSOw+IYJI6/4dgTjrvgmAP2t7Gvif0s7GPg+zW+W+J7Fb5T4PMUnyXYjmIbgvcPXjvgFrn59uBUdf59O+jp8PWJ7vbIyOM+z/dDrTR+n+TiW6/YH5LiuhunD+W+AA/cEmN8MuK9IX6fzOrbObrKvnzwWsS6x94vo7z3815fx1bW734J9xNeXxsFODD6dh4Q4MDo23lQgAOjb2eTAAdG385DAhwYfTubBTgw+nYeFuDA6NvZIsCB0bezVYADo29nmwAHRt/OIwIcGH072wU4MPp2HhXgwOjb2SHAgdG385gAB0bfzk4BDoy+nccFODD6dnYJcGD07TwhwIHRt7NbgAOjb+dJAQ6Mvp09AhwYfTtPCXBg9O3sFeDA6Nt5WoADo29nnwAHRt/OMwIcGH07+wU4MPp2nhXgwOjbeU6AA6Nv53kBDoy+nQMCHBh9Oy8IcGD07bwowIHRt/OSAAdG387LAhwYfTuvCHBg9O28KsCB0bfzmgAHRt/O6wIcGH07bwhwYPTtvCnAgdG385YAB0bfztsCHBh9O+8IcGD07bwrwIHRt/OeAAdG3877AhwYfTsHBTgw+nY+EODA6Nv5UIADo2/nIwEOjL6djwU4MPp2PhHgwOjb+VSAA6Nv55AAB0bfzmcCHBh9O58r7GcROHwhwIHRt/OlAAdG385XAhwYfTtfC3Bg9O18I8CB0bdzWIADo2/nWw8OKOio7Y717aAzAX0BmCuPeeKYI435wZgbi3mhmBOJ+YCYC4d5YJgDhfk/mPuCeR+Y84Dx/hjrjnHeGOOM8b0Y24pxnRjTiPF8GMuGcVwYw4TxOxi7gnEbGLOA8/U4V43ztDhHifNzODeF8zI4J4Hj8TgWjeOwOAaJ42849oTjLjjmgP1t7GtiPwv7GPh+je+W+F6F7xT4PMVnCbaj2Ibg/YPXDrhFbr49OM2K+fftoKfD1ye62yMjj+883w+10/h9kotvvWJ/SIrrbpw+lO8CPHDz7dv5Pn6fzOrbyYr/+PLBaxHrHnu/jPL+wHt9HVtZv/sl/EB4fR0R4MDo2/lRgAOjb+cnAQ6Mvp2fBTgw+nZ+EeDA6Nv5VYADo2/nNwEOjL6d3wU4MPp2/hDgwOjb+VOAA6Nv5y8BDoy+HVfqv58Do28nQYADo28niwAHRt9OogAHRt9OVgEOjL6dbAIcGH072QU4MPp2cghwYPTt5BTgwOjbySXAgdG3k1uAA6NvJ48AB0bfTl4BDoy+nXwCHBh9O/kFODD6dk4S4MDo2ykgwIHRt1NQgAOjb6eQAAdG387JAhwYfTuFBTgw+nZOEeDA6NspIsCB0bdTVIADo2+nmAAHRt9OcQEOjL6dEgIcGH07JQU4MPp2SglwYPTtlBbgwOjbKSPAgdG3c6oAB0bfTpIAB0bfzmkCHBh9O2UFODD6dk4X4MDo2yknwIHRt3OGAAdG3055AQ6Mvp0zBTgw+nYqCHBg9O1UFODA6Ns5S4ADo2/nbAEOjL6dSgIcGH075whwYPTtnKuwn0XgcJ4AB0bfTmUBDoy+nfMFODD6di4Q4MDo27lQgAOjb+ciAQ6Mvp2LPTigU6SOO9a3g84E9AVgrjzmiWOONOYHY24s5oViTiTmA2IuHOaBYQ4U5v9g7gvmfWDOA8b7Y6w7xnljjDPG92JsK8Z1YkwjxvNhLBvGcWEME8bvYOwKxm1gzALO1+NcNc7T4hwlzs/h3BTOy+CcxNHj8SYch8UxSBx/w7EnHHfBMQfsb2NfE/tZ2MfA92t8t8T3KnynwOcpPkuwHcU2BO8fvHbALXLz7cG5yvn37RwJ6Ns54tG3c4nn+6FOGr9PcvGtV+wPSXHdjdOH4sMh+ubbt3Np/D6Z1beTDf/x5YPXItY99n4Z5b2M9/o6trJ+90u4rFTme1wuwIHRt3OFAAdG386VAhwYfTtVBDgw+nauEuDA6NupKsCB0bdTTYADo2+nugAHRt/O1QIcGH07NQQ4MPp2agpwYPTt1BLgwOjbqS3AgdG3U0eAA6Nv5xoBDoy+nboCHBh9O/UEODD6duoLcGD07TQQ4MDo22kowIHRt3OtAAdG304jAQ6Mvp3rBDgw+nYaC3Bg9O1cL8CB0bfTRIADo2+nqQAHRt9OMwEOjL6d5gIcGH07LQQ4MPp2WgpwYPTttBLgwOjbaS3AgdG300aAA6Nv5wYBDoy+nbYCHBh9O+0EODD6dtoLcGD07XQQ4MDo2+kowIHRt9NJgAOjb6ezAAdG304XAQ6Mvp2uAhwYfTvJAhwYfTvdBDgw+na6C3Bg9O30EODA6NvpKcCB0bfTS4ADo2+ntwAHRt9OHwEOjL6dvgIcGH07/QQ4MPp2+gtwYPTtDBDgwOjbGSjAgdG3k6Kwn0XgMEiAA6NvZ7AAB0bfzhABDoy+naECHBh9O8MEODD6doYLcGD07Yzw7Nu5xh3r20FnAvoCMFce88QxRxrzgzE3FvNCMScS8wExFw7zwDAHCvN/MPcF8z4w5wHj/THWHeO8McYZ43sxthXjOjGmEeP5MJYN47gwhgnjdzB2BeM2MGYB5+txrhrnaXGOEufncG4K52VwTgLH43EsGsdhcQwSx99w7AnHXXDMAfvb2NfEfhb2MfD9Gt8t8b0K3ynweYrPEmxHsQ3B+wevHXCL3Hx7cNBZ8r5n3w56Onx9ors9MvIY6fl+uCaN3ye5+NYr9oekuO7G6UMZGeCBm2/fzqj4fTKrbyc7/uPLB69FrHvs/TLKO5r3+jq2sn73SxhNeH2N8fTwfc+7ovafovEvn8WWTSzq/3yOFXg+Gb1B4wQ4MHqDxgtwYPQGTRDgwOgNulGAA6M3aKIAB0Zv0CQBDozeoMkCHBi9QTcJcGD0Bk0R4MDoDbpZgAOjN2iqAAdGb9A0AQ6M3qDpAhwYvUG3CHBg9AbNEODA6A2aKcCB0Rs0S4ADozdotgAHRm/QHAEOjN6guQIcGL1B8wQ4MHqD5gtwYPQGLRDgwOgNWijAgdEbtEiAA6M3aLEAB0Zv0BIBDozeoFsFODB6g5YKcGD0Bt0mwIHRG7RMgAOjN+h2AQ6M3qDlAhwYvUErBDgweoNWCnBg9AbdIcCB0Ru0SoADozfoTgEOjN6g1QIcGL1BdwlwYPQGrRHgwOgNuluAA6M3aK0AB0Zv0D0CHBi9QesEODB6g+4V4MDoDVovwIHRG3SfAAdGb9AGAQ6M3qD7BTgweoM2CnBg9AY9IMCB0Rv0oAAHRm/QJgEOjN6ghwQ4MHqDNgtwYPQGPaywn0XgsEWAA6M3aKsAB0Zv0DYBDozeoEcEODB6g7YLcGD0Bj0qwIHRG7TDgwO6Ueq6Y71B6ExAXwDmymOeOOZIY34w5sZiXijmRGI+IObCYR4Y5kBh/g/mvmDeB+Y8YLw/xrpjnDfGOGN8L8a2YlwnxjRiPB/GsmEcF8YwYfwOxq5g3AbGLOB8Pc5V4zwtzlHi/BzOTeG8DM5J4Hg8jkXjOCyOQeL4G4494bgLjjlgfxv7mtjPwj4Gvl/juyW+V+E7BT5P8VmC7Si2IXj/4LUDbpFbbLdHPD1AHv0hR7ta0NMR65PR/aI9Mlqnx0r5vR/qpvH7JBffesX+kBTX3Ti9Lo8FeODm2xu0M36fzOoNyoH/+PLBaxHrHnu/jPI+znt9HVtZv/slPE54fe0S4MDo23lCgAOjb2e3AAdG386TAhwYfTt7BDgw+naeEuDA6NvZK8CB0bfztAAHRt/OPgEOjL6dZwQ4MPp29gtwYPTtPCvAgdG385wAB0bfzvMCHBh9OwcEODD6dl4Q4MDo23lRgAOjb+clAQ6Mvp2XBTgw+nZeEeDA6Nt5VYADo2/nNQEOjL6d1wU4MPp23hDgwOjbeVOAA6Nv5y0BDoy+nbcFODD6dt4R4MDo23lXgAOjb+c9AQ6Mvp33BTgw+nYOCnBg9O18IMCB0bfzoQAHRt/ORwIcGH07HwtwYPTtfCLAgdG386kAB0bfziEBDoy+nc8EODD6dj4X4MDo2/lCgAOjb+dLAQ6Mvp2vBDgw+na+FuDA6Nv5RoADo2/nsAAHRt/OtwIcGH073wlwYPTtfC/AgdG384MAB0bfzhEBDoy+nR8FODD6dn4S4MDo2/lZgAOjb+cXAQ6Mvp1fBTgw+nZ+U9jPInD4XYADo2/nDwEOjL6dPwU4MPp2/hLgwOjbcaX/+zkw+nYSBDgw+nayeHBAp0g9d6xvB50J6AvAXHnME8ccacwPxtxYzAvFnEjMB8RcOMwDwxwozP/B3BfM+8CcB4z3x1h3jPPGGGeM78XYVozrxJhGjOfDWDaM48IYJozfwdgVjNvAmAWcr8e5apynxTlKnJ/DuSmcl8E5CRyPx7FoHIfFMUgcf8OxJxx3wTEH7G9jXxP7WdjHwPdrfLfE9yp8p8DnKT5LsB3FNgTvH7x2wC1y8+3BQWfJeyWOLR9PPw96Onx9ors9MvJI9Hw/1Evj90kuvvWK/SEprrtx+lB8OETffPt2ssbvk+DRt5Pg0beT8M9/nN9rF+see7+M8mbz4IrHTkz9N637hfRbxbts9tJ+/CI33+c/x3/++f/7Du5f1zujxSPbrpBtXmTZjNjkDHytRN/Pd/1cUXtdF/X43Exd3vd9kMtz+xKSI5tnjmwBOXLzPi+Orazf/Si9UXkEODB6o/IKcGD0RuUT4MDojcovwIHRG3WSAAdGb1QBAQ6M3qiCAhwYvVGFBDgweqNOFuDA6I0qLMCB0Rt1igAHRm9UEQEOjN6oogIcGL1RxQQ4MHqjigtwYPRGlRDgwOiNKinAgdEbVUqAA6M3qrQAB0ZvVBkBDozeqFMFODB6o5IEODB6o04T4MDojSorwIHRG3W6AAdGb1Q5AQ6M3qgzBDgweqPKC3Bg9EadKcCB0RtVQYADozeqogAHRm/UWQIcGL1RZwtwYPRGVRLgwOiNOkeAA6M36lwBDozeqPMEODB6oyoLcGD0Rp0vwIHRG3WBAAdGb9SFAhwYvVEXCXBg9EZdLMCB0Rt1iQAHRm/UpQIcGL1RlwlwYPRGXS7AgdEbdYUAB0Zv1JUCHBi9UVUEODB6o64S4MDojaoqwIHRG1VNgAOjN6q6AAdGb9TVAhwYvVE1BDgweqNqKuxnETjUEuDA6I2qLcCB0RtVR4ADozfqGgEOjN6ougIcGL1R9QQ4MHqj6nv2WPg+PvpCsgX0zDx+WuauF/ph0N3i20HTwKPvxTdD7Lpk9PjoCKlSIv7l0RHyTgn/56JhYJeSr8+1GftkiX7svKasUf+PcTL4t2bq/zdP/X88bmS5RvbzdabGputTf5/dHVvX461/BreERgGcEkLNajuX6W/cnAFv3Ccz+Y07ttTf5U6+67XnNP8nBzffQqgmHhsID1YJHuuf8M9/nN/rqUkA16aBJU9N/w2FYLU9lm1GKgRr/p9//o/eQoq9PEqtjn6A5gp4vbQonfk5cnvmyB2Qo2Umf3HCejUI+ILS6r/oCwqei4aez0XDgOeideAXFF+20ctmlKWO46xTgvPYCXacdcriPHZIHWedEp3HzqH796xTRj71XfzrXzxr2Dr5bncaOM7zkdXFv04NHWedsrn41+lax1mn7M5jB8Rx1imHi3+drnOcdcrp4l+nxo6zTrlc/Ot0veOsU24X/zo1cZx1yuPiX6emjrNOeV3869TMcdYpn4t/nZo7zjrld/GvUwvHWaeTXPzr1NJx1qmAi3+dWjnOOhV08a9Ta8dZp0Iu/nVq4zjrdLKLf51ucJx1KuziX6e2jrNOp7j416md46xTERf/OrV3nHUq6uJfpw6Os07FXPzr1NFx1qm4i3+dOjnOOpVw8a9TZ8dZp5Iu/nXq4jjrVMrFv05dHWedSrv41ynZcdapjIt/nbo5zjqd6uJfp+6Os05JLv516uE463Sai3+dejrOOpV18a9TL8dZp9Nd/OvU2/mtU8g5o+hzEPGcN2pR2v84Wh+X+TlaeuZoGZCjr/v3vEYy8unnPLbjWTmv23Iu/vXv7zL/+W7q+Xw3D3i+B7gwtr4+Ax3HJ8VxfAY5js9gx/EZ4jg+Qx3HZ5jj+Ax3HJ8RjuMz0nF8RjmOz2jH8RnjOD5jHcdnnOP4jHccnwmO43Oj4/hMdByfSY7jM9lxfG5yHJ8pjuNzs+P4THUcn2mO4zPdcXxucRyfGY7jM9NxfGY5js9sx/GZ4zg+cx3HZ57j+Mx3HJ8FjuOz0HF8FjmOz2LH8VniOD63Oo7PUsfxuc1xfJY5js/tjuOz3HF8VjiOz0rH8bnDcXxWOY7PnY7js9pxfO5yHJ81juNzt+P4rHUcn3scx2ed4/jc6zg+6x3H5z7H8dngOD73O47PRsfxecBxfB50HJ9NjuPzkOP4bHYcn4cdx2eL4/hsdRyfbY7j84jj+Gx3HJ9HHcdnh+P4POY4Pjsdx+dxx/HZ5Tg+TziOz27H8XnScXz2OI7PU47js9dxfJ52HJ99juPzjOP47Hccn2cdx+c5x/F53nF8DjiOzwuO4/Oi4/i85Dg+LzuOzyuO4/Oq4/i85jg+rzuOzxuO4/Om4/i85Tg+bzuOzzuO4/Ou4/i85zg+7zuOz0HH8fnAcXw+dByfjxzH52PH8fnEcXw+dRyfQ47j85nj+HzuOD5fOI7Pl47j85Xj+HztOD7fOI7PYcfx+dZxfL5zHJ/vHcfnB8fxOeI4Pj86js9PjuPzs+P4/OI4Pr86js9vjuPzu+P4/OE4Pn86js9fjuODO8S5bMwd/XwSSD5ZSD6JJJ+sJJ9sJJ/sJJ8cJJ+cJJ9cJJ/cJJ88JJ+8JJ98JJ/8JJ+TSD4FSD4FST6FSD4nk3wKk3xOIfkUIfkUJfkUI/kUJ/mUIPmUJPmUIvmUJvmUIfmcSvJJIvmcRvIpS/I5neRTjuRzhqePb58Urs2Rx6NP6sMSaV93KaMc5Qk58nrk+Cgwx5mEHPk8cnwcmKMCIUd+jxyfBOaoSMhxkkeOTwNznEXIUcAjx6HAHGcTchT0yPFZYI5KhByFPHJ8HpjjHEKOkz1yfBGY41xCjsIeOb4MzHEeIccpHjm+CsxRmZCjiEeOrwNznE/IUdQjxzeBOS4g5CjmkeNwYI4LCTmKe+T4NjDHRYQcJTxyfBeY42JCjpIeOb4PzHEJIUcpjxw/BOa4lJCjtEeOI4E5LiPkKOOR48fAHJcTcpzqkeOnwBxXEHIkeeT4OTDHlYQcp3nk+CUwRxVCjrIeOX4NzHEVIcfpHjl+C8xRlZCjnEeO3wNzVCPkOMMjxx+BOaoTcpT3yPFnYI6rCTnO9MjxV2COGoQcFTxy4GJIITlqEnJU9MiREJijFiHHWR45sgTmqE3IcbZHjsTAHHUIOSp55MgamOMaQo5zPHJkC8xRl5DjXI8c2QNz1CPkOM8jR47AHPUJOSp75MgZmKMBIcf5HjlyBeZoSMhxgUeO3IE5riXkuNAjR57AHI0IOS7yyJE3MMd1hBwXe+TIF5ijMSHHJR458gfmuJ6Q41KPHCcF5mhCyHGZR44CgTmaEnJc7pGjYGCOZoQcV3jkKBSYozkhx5UeOU4OzNGCkKOKR47CgTlaEnJc5ZHjlMAcrQg5qnrkKBKYozUhRzWPHEUDc7Qh5KjukaNYYI4bCDmu9shRPDBHW0KOGh45SgTmaEfIUdMjR8nAHO0JOWp55CgVmKMDIUdtjxylA3N0JOSo45GjTGCOToQc13jkODUwR2dCjroeOZICc3Qh5KjnkeO0wBxdCTnqe+QoG5gjOZNz4HrirTxy4HrirQJydMvkHK6ofW8vEf/yWWz5PEX9c3Qn5KjqmSNvQI4ehBzVPHPkC8jRk5CjumeO/AE5ehFyXO2Z46SAHL0JOWp45igQkKMPIUdNzxwFA3L0JeSo5ZmjUECOfoQctT1znByQoz8hRx3PHIUDcgwg5LjGM8cpATkGEnLU9cxRJCBHCiFHPc8cRQNyDCLkqO+Zo1hAjsGEHA08cxQPyDGEkKOhZ44SATmGEnJc65mjZECOYYQcjTxzlArIMZyQ4zrPHKUDcowg5GjsmaNMQI6RhBzXe+Y4NSDHKEKOJp45kgJyjCbkaOqZ47SAHGMIOZp55igbkGMsIUdzzxynB+QYR8jRwjNHuYAc4wk5WnrmOCMgxwRCjlaeOcoH5LiRkKO1Z44zA3JMJORo45mjQkCOSYQcN3jmqBiQYzIhR1vPHGcF5LiJkKOdZ46zA3JMIeRo75mjUkCOmwk5OnjmOCcgx1RCjo6eOc4NyDGNkKOTZ47zAnJMJ+To7JmjckCOWwg5unjmOD8gxwxCjq6eOS4IyDGTkCPZM8eFATlmEXJ088xxUUCO2YQc3T1zXByQYw4hRw/PHJcE5JhLyNHTM8elATnmEXL08sxxWUCO+YQcvT1zXB6QYwEhRx/PHFcE5FhIyNHXM8eVATkWEXL088xRJSDHYkKO/p45rgrIsYSQY4BnjqoBOW4l5BjomaNaQI6lhBwpnjmqB+S4jZBjkGeOqwNyLCPkGOyZo0ZAjtsJOYZ45qgZkGM5IcdQzxy1AnKsIOQY5pmjdkCOlYQcwz1z1AnIcQchxwjPHNcE5FhFyDHSM0fdgBx3EnKM8sxRLyDHakKO0Z456gfkuIuQY4xnjgYBOdYQcoz1zNEwIMfdhBzjPHNcG5BjLSHHeM8cjQJy3EPIMcEzx3UBOdYRctzomaNxQI57CTkmeua4PiDHekKOSZ45mgTkuI+QY7JnjqYBOTYQctzkmaNZQI77CTmmeOZoHpBjIyHHzZ45WgTkeICQY6pnjpYBOR4k5JjmmaNVQI5NhBzTPXO0DsjxECHHLZ452gTk2EzIMcMzxw0BOR4m5JjpmaNtQI4thByzPHO0C8ixlZBjtmeO9gE5thFyzPHM0SEgxyOEHHM9c3QMyLGdkGOeZ45OATkeJeSY75mjc0COHYQcCzxzdAnI8Rghx0LPHF0Dcuwk5FjkmSM5IMfjhByLPXN0C8ixi5BjiWeO7gE5niDkuNUzR4+AHLsJOZZ65ugZkONJQo7bPHP0Csixh5BjmWeO3gE5niLkuN0zR5+AHHsJOZZ75ugbkONpQo4Vnjn6BeTYR8ix0jNH/4AczxBy3OGZY0BAjv2EHKs8cwwMyPEsIcednjlSAnI8R8ix2jPHoIAczxNy3OWZY3BAjgOEHGs8cwwJyPECIcfdnjmGBuR4kZBjrWeOYQE5XiLkuMczx/CAHC8TcqzzzDEiIMcrhBz3euYYGZDjVUKO9Z45RgXkeI2Q4z7PHKMDcrxOyLHBM8eYgBxvEHLc75ljbECONwk5NnrmGBeQ4y1Cjgc8c4wPyPE2IceDnjkmBOR4h5Bjk2eOGwNyvEvI8ZBnjokBOd4j5NjsmWNSQI73CTke9swxOSDHQUKOLZ45bgrI8QEhx1bPHFMCcnxIyLHNM8fNATk+IuR4xDPH1IAcHxNybPfMMS0gxyeEHI965pgekONTQo4dnjluCchxiJDjMc8cMwJyfEbIsdMzx8yAHJ8TcjzumWNWQI4vCDl2eeaYHZDjS0KOJzxzzAnI8RUhx27PHHMDcnxNyPGkZ455ATm+IeTY45ljfkCOw4QcT3nmWBCQ41tCjr2eORYG5PiOkONpzxyLAnJ8T8ixzzPH4oAcPxByPOOZY0lAjiOEHPs9c9wakONHQo5nPXMsDcjxEyHHc545bgvI8TMhx/OeOZYF5PiFkOOAZ47bA3L8SsjxgmeO5QE5fiPkeNEzx4qAHL8TcrzkmWNlQI4/CDle9sxxR0COPwk5XvHMsSogx1+EHK965rgzIAdWLM5lg3O85pljdUCOBEKO1z1z3BWQIwshxxueOdYE5Egk5HjTM8fdATmyEnK85ZljbUCObIQcb3vmuCcgR/ZMzoHruLf2vI5764DruOfwzPHPHT19cpJ8cpF8cpN88pB88pJ88pF88pN8TiL5FCD5FCT5FCL5nEzyKUzyOYXkU4TkU5TkU4zkU5zkU4LkU5LkU4rkU5rkU4bkcyrJJ4nkcxrJpyzJ53SSTzmSzxkkn/IknzNJPhVIPhVJPmeRfM4m+VTy9Il9/Hj25xsF7J+fQ8p/LiF/84D855HyVyb5nE/yuYDkcyHJ5yKSz8Ukn0tIPpeSfC4j+VxO8rmC5HMlyacKyecqkk9Vkk81kk91ks/VJJ8aJJ+aJJ9aJJ/aJJ86JJ9rSD51ST71SD71ST4NSD4NST7XknwakXyuI/k0JvlcT/JpQvJpSvJpRvJpTvJpQfJpSfJpRfJpTfJpQ/K5geTTNtAnZNxOUnwPndCOlL09yacDyacjyacTyaczyacLyacrySeZ5NON5NOd5NOD5NOT5NOL5NOb5NOH5NOX5NOP5NOf5DOA5DOQ5JNC8hlE8hlM8hlC8hlK8hlG8hlO8hlB8hlJ8hlF8hlN8hlD8hlL8hlH8hlP8plA8rmR5DOR5DOJ5DOZ5HMTyWcKyedmks9Uks80ks90ks8tJJ8ZJJ+ZJJ9ZJJ/ZJJ85JJ+5JJ95JJ/5JJ8FJJ+FJJ9FJJ/FJJ8lJJ9bST5LST63kXyWkXxuJ/ksJ/msIPmsJPncQfJZRfK5k+SzmuRzF8lnDcnnbpLPWpLPPSSfdSSfe0k+60k+95F8NpB87if5bCT5PEDyeZDks4nk8xDJZzPJ52GSzxaSz1aSzzaSzyMkn+0kn0dJPjtIPo+RfHaSfB4n+ewi+TxB8tlN8nmS5LOH5PMUyWcvyedpks8+ks8zJJ/9JJ9nST7PkXyeJ/kcIPm8QPJ5keTzEsnnZZLPKySfV0k+r5F8Xif5vEHyeZPk8xbJ522Szzskn3dJPu+RfN4n+Rwk+XxA8vmQ5PMRyedjks8nJJ9PST6HSD6fkXw+J/l8QfL5kuTzFcnna5LPNySfwySfb0k+35F8vif5/EDyOULy+ZHk8xPJ52eSzy8kn19JPr+RfH4n+fxB8vmT5PMXycclcnwSSD5ZSD6JJJ+sJJ9sJJ/sJJ8cJJ+cJJ9cJJ/cJJ88JJ+8JJ98JJ/8JJ+TSD4FSD4FST6FSD4nk3wKk3xOIfkUIfkUJfkUI/kUJ/mUIPmUJPmUIvmUJvmUIfmcSvJJIvmcRvIpS/I5neRTjuRzBsmnPMnnTJJPBZJPRZLPWSSfs0k+lUg+55B8ziX5nEfyqUzyOZ/kcwHJ50KSz0Ukn4tJPpeQfC4l+VxG8rmc5HMFyedKkk8Vks9VJJ+qJJ9qJJ/qJJ+rST41SD41ST61SD61ST51SD7XkHzqknzqkXzqk3wakHwaknyuJfk0IvlcR/JpTPK5nuTThOTTlOTTjOTTnOTTguTTkuTTiuTTmuTThuRzA8mnLcmnHcmnPcmnA8mnI8mnE8mnM8mnC8mnK8knmeTTjeTTneTTg+TTk+TTi+TTm+TTh+TTl+TTj+TTn+QzgOQzkOSTQvIZRPIZTPIZQvIZSvIZRvIZTvIZQfIZSfIZRfIZTfIZQ/IZS/IZR/IZT/KZQPK5keQzkeQzieQzmeRzE8lnCsnnZpLPVJLPNJLPdJLPLSSfGSSfmSSfWSSf2SSfOSSfuSSfeSSf+SSfBSSfhSSfRSSfxSSfJSSfW0k+S0k+t5F8lpF8bif5LCf5rCD5rCT53EHyWUXyuZPks5rkcxfJZw3J526Sz1qSzz0kn3Ukn3tJPutJPveRfDaQfO4n+Wwk+TxA8nmQ5LOJ5PMQyWczyedhks8Wks9Wks82ks8jJJ/tJJ9HST47SD6PkXx2knweJ/nsIvk8QfLZTfJ5kuSzh+TzFMlnL8nnaZLPPpLPMx4+tqjLYsK5Q9zqmK4x1TXVM9U3NTA1NF1ramS6ztTYdL2piampqZmpuamFqaWplam1qY3pBlNbUztTe1MHU0dTJ1NnUxdTV1OyqZupu6mHqaepl6m3qY+pr6mfqb9pgGmgKcU0yDTYNMQ01DTMNNw0wjTSNMo02jTGNNY0zjTeNMF0o2miaZJpMjiYpphuNk01TTNNN91immGaaZplmm2aY5prmmeab1pgWmhaZFpsWmK61bTUdJtpmel203LTCtNK0x2mVaY7TatNd5nWmO42rTXdY1pnute03nSfaYPpftNG0wOmB02bTA+ZNpseNm0xbTVtMz1i2m561LTD9Jhpp+lx0y7TE6bdpidNe0xPmfaanjbtMz1j2m961vSc6XnTAdMLphdNL5leNr1ietX0mul10xumN01vmd42vWN61/Se6X3TQdMHpg9NH5k+Nn1i+tR0yPSZ6XPTF6YvTV+ZvjZ9Yzps+tb0nel70w+mI6YfTT+Zfjb9YvrV9Jvpd9Mfpj9Nf5nwpkowZTElmrKaspmym3KYcppymXKb8pjymvKZ8ptOMhUwFTQVMp1sKmw6xVTEVNRUzFTcVMJU0lTKVNpUxnSqKcl0mqms6XRTOdMZpvKmM00VTBVNZ5nONlUynWM613SeqbLpfNMFpgtNF5kuNl1iutR0mely0xWmK01VTFeZqpqqmaqbrjbVMNU01TLVNtUxXWOqa6pnqm9qYGpoutbUyHSdqbHpelMTU1NTM1NzUwtTS1MrU2tTG9MNpramdqb2pg6mjqZOps6mLqaupmRTN1N3Uw9TT1MvU29TH1NfUz9Tf9MA00BTimmQabBpiGmoaZhpuGmEaaRplGm0aYxprGmcabxpgulG00TTJNNk002mKaabTVNN00zTTbeYZphmmmaZZpvmmOaa5pnmmxaYFpoWmRablphuNS013WZaZrrdtNy0wrTSdIdplelO02rTXaY1prtNa033mNaZ7jWtN91n2mC637TR9IDpQdMm00OmzaaHTVtMW03bTI+YtpseNe0wPWbaaXrctMv0hGm36UnTHtNTpr2mp037TM+Y9pueNT1net50wPSC6UXTS6aXTa+YXjW9Znrd9IbpTdNbprdN75jeNb1net900PSB6UPTR6aPTZ+YPjUdMn1m+tz0helL01emr03fmA6bvjV9Z/re9IPpiOlH00+mn02/mH41/Wb63fSH6U/TXyZ86CWYspgSTVlN2UzZTTlMOU25TLlNeUx5TflM+U0nmQqYCpoKmU42FTadYipiKmoqZipuKmEqaSplKm0qYzoV/dOm00xlTaebypnOMJU3nWmqYKpoOst0tqmS6RzTuabzTJVN55suMF1oush0sekS06Wmy0yXm64wXWmqYrrKVNVUzVTddLWphqmmqZaptqmO6RpTXVM9U31TA1ND07WmRqbrTI1N15uamJqampmam1qYWppamVqb2phuMLU1tTO1N3UwdTR1MnU2dTF1NSWbupm6m3qYepp6mXqb+pj6mvqZ+psGmAaaUkyDTINNQ0xDTcNMw00jTCNNo0yjTWNMY03jTONNE0w3miaaJpkmm24yTTHdbJpqmmaabrrFNMM00zTLNNs0xzTXNM8037TAtNC0yLTYtMR0q2mp6TbTMtPtpuWmFaaVpjtMq0x3mlab7jKtMd1tWmu6x4Tr2eNa87gOPK7Rjuun49rmuO44rgmO63XjWtq4zjWuQY3rQ+PazbiuMq55jOsR41rBuI4vrrGL69/i2rS4biyu6YrrreJaqLhOKa4hiut74tqbuC4mrlmJ60niWo+4DiOukYjrF+LagrjuH67Jh+vl4Vp2uM4crgGH67Ph2mm4rhmuOYbrgeFaXbiOFq5xhetP4dpQuG4TrqmE6x3hWkS4ThCu4YPr6+DaN7guDa4Zg+u54ForuA4KrlGC64fg2h647gauiYHrVeBaErjOA67BgOsj4NoFuK4AOv/Rx4+ufPTYo2Me/e/44ovedHSao28cXeDo6UaHNvqt0T2NXmh0NqNPGV3H6CFGRzD6e9Gti95bdNKiLxZdruhZRQcq+knRHYpeT3Ruog8TXZXokUTH49H+RRN6C9EpiL4/dPGhJw8dduiXQ/cbetnQmYY+M3SNoQcMHV3oz0K3FXqn0AmFviZ0KaHnCB1E6AdCdw96ddB5gz4adMWgxwUdK+g/QTcJekPQ6YG+DXRhoKcCHRLod0D3AnoR0FmAPgHM9cc8fMyRx/x1zC3HvG/MycZ8acxlxjxjzAHG/FzMncW8Vsw5xXxQzNXEPErMccT8Q8wNxLw9zKnDfDfMRcM8MczhwvwqzH3CvCTMGcJ8Hsy1wTwYzFHB/BHM7cC8C8yJwHwFzCXAOH+Mwcf4eIxdx7hyjPnGeGyMlcY4ZowxxvhfjM3FuFmMacV4U4wFxThN7AdhfCPGHmJcIMbsYTwdxrphHBrGiGH8FsZWYdwTxiRhvBDG8mCcDcbAYHwKxo5gXAfGXGA8BMYqYBwBzvHj/DvOjeO8Nc4p43wvzsXiPCnOYeL8Is794bwczpnhfBbONeE8EM7R4PwJzm3gvAPOCeB4PY6l4zg3jkHj+DCO3eK4Ko554ngkjhXiOB6OseH4F45N4bgRjungeAuOheA4BY4hYP8e+97YL8Y+K/Yn8ZbBvmHklvoRenT/Maspmym7KYcppymXKbcpjymvKZ8pv+kkUwFTQVMh08mmwqZTTEVMRU3FTMVNJUwlTaVMpU1lTKe6v/dtTzOVNZ1uKmc6w1TedKapgqmi6SzT2aZKpnNM55rOM1U2nW+6wHSh6SLTxaZLTJeaLjNdbrrCdKWpiukqU1VTNVN109WmGqaaplqm2u7/3k6P+rlZ6r+zu+955ocvchyIXq7Fcf7W7jh/63Ccvw05zt9Gp/779czck9794s1Z0X8bf5z7zT7O35ZF7l++Vb4rKl38YPTfJmRN329a1vTvNyV7+n7Tj/O3N47zt0+yp+9XLnf693sqd/oZDuRO/zGz5Uv/MXMd528tj/O3rvnS97ujQPr3q10w/QyNCqb/mBNPTv8xpxznb68c528fnJy+X1LR9O/3RNH0M+wvmv5jJpRI/zGzHedvTdL5W67Ufyuk/ttp0KDklMEduvTvO6DT4J6d+yR36J/SqYv9MzQ5ZVDP/v06DEvpNGBAckqR1OVzpv6bJbJ+7u9taZKL65aQM+p+/vcfXytn7AN63d8dvX+CC/X/O3/kMyTk/tkjKxJ1/+h1iTwuPo/yRP2cL8Y/cP1rnej6FzrOOkeem5pRyye5uG7ZsClCztTNwNHs5VJ/HjK4Z5+eg0dcffSlWvOfV+p1R1+oLf5+ncY+YELM/9dM5/e5o9Y7a9Qy8TMZXivymImRMFE/R9+yxvwbWeaU1H9zRflH/s0ax3q8+eSRVzfVv6BvwZj74xZ5bpAzddPlBiUP7jAouV/X5JQO3fqndBjcqfug/5K3d+0TfHvXPsGXd0LOqPsE3D/Nt3fsuuCW1/3r2yj6PjlS/x75+d/01q+dmW/9tN6+qZ9qbkBKz6GdBic3TR7c9OiLrk7/lGb2kot9+ISYnxPS+H3E6gTfsbVV3rFlUn/umtx5SPcOffp379ApJaXTiMhndOpnc/PUpf7Db972J/jmbR95gYY9q65E5P7Zwu6f5ps3el0ij5sYs1zsfaLf6NH7V7XTWSZ6/7ROOstcE7XMNeksUzdqmbrpLFMvapl66SxTP2qZ+uks0yBqmQbpLNMwapmG6SxzbdQy16azTKOoZRqls8x1Uctcl84yjaOWaZzOMtdHLXN9Oss0iVqmSTrLNI1apmk6yzSLWqZZOss0j1qmeTrLtIhapkU6y7SMWqZlOsu0ilqmVTrLtI5apnU6y7SJWqZNOsvcELXMDeks0zZqmbYxyxzvA/QEP+hqn+B2pFhk3bJG/TIhZt2yhz128bQ+FRNjfhf9+LncCW1TExJiHi/iF5svwjpv1DIRv9i/ZU1jPSN/i2Ye+RlfLK6KWi72uY083gl+eWt3gs97QiY+71kUn/fEmL/9O5736MfPGrVc3aifI59rJ/iFuX1mfmFOiFrfyC0x5l/cIiwinHKmsXzkb7mi/hbNGrfcUb9PTOOxcsTcL7J85LtG/tR/o18PkfuflIZ/9OvcpbPe0b+L5ZIrjeVzpbE8+FR3x9Y5siNyXZTHv+N9kC1mfaKfy9j1T+99k5jG8thRivBLPc5RC1/2G/bv7mJusZuVhJifI6tYLGa5rOmsWsJxHjf68aN/H/vYiWksG/3Y/4adtfaRxwrdWYt8tcrsnbUqqT/36z+4Z7cRHXCUpW/Pfh1Sku1Q6t+HVgf17JrcIblbt+QuOOI6pN9gOwLzr7tykX3m/x2HOaGP8riPw2S0K4e/Z3SsJl/Uz5HNpMKxmsjrGZugc1N/Tj1W0+joS9iO2Fzbs1+Tf16/Te3lW/voq7fm3y/eWNe0thhp/T7R/Xccxokc9czsLUOl1J9TtwzJ/QYOSR6S3LXDgCGd+/Ts0qHbkH5dBuNcS5dOffpEtgQlU+/zH94S1D3BLUHdE/xSnfUEvzinuSWIXpfI3zM6GJPoMj4Yg9vxthaxOy+41Y75W2Ia/mntWER8o9/J+LlQ6s8nuAWqy9gCRQ6jYgt0ZurP/7IFqp36Tml89I1SJ/V9UtPeJrF26X05irWOjhL9/1nTeJzYW+wHUiTKCW7G6p7oZiz1VC/taPTRzVTq83Rs49UTnwj9OvU5L3Wp//CGq8EJbrganOCGJ1vk/jnC7p/mhit6XSKPm9GR5ng2XNHLpHcUGTf2xi3yt2xprFP0BgQ/F4m6D26xR7ej/xZ9VDv67PUJfOWsd4J7mlkKuf/rH703jowV3bEc0a+HyPIuKkfg6y4x+v32zy9jfhf9+LncCb1P/tnDjj0SEpsveo85ssVL3QjhA6Hx3z9GPiOi1zT60bOkkSThX9foX44tuHSW8/lMifx/tjQeN737x/4u9tkN2yoeox3tFUs7+vHzu7S/BkTfL61jvdFblbTWN9Y7SxrekWVPMHOWyH2zpuF7vMxpvRPzuvS/1qR1bDryGP+G7wkNTvR7QmQnL7O/J0S+yqXu7nRJSbY3ZtcO/Yb06dOzW8//c8zjf2NP/l78f2NP0r/5jj0pnfrzv+xN1Pz7hdgo8jqMNYndviek8fuI4f8vI1AiULv2TLHjPj2HJtv3fBwPivjmjFmf0Ddt4bD7/8s3BBezLtGPG7txcR4ekVv0cxV7izxu7POUM+bfBH//hPTWIyGNhSO7/4WjfhfhEfnWFP1cDk7ubhvkgUPsDZLcb3Ds2uaOcvL5xI3cP0/Y/dN8VnNH/Zwn1jD137T23hPS+f8sMf8eb9mE4zxu3jT+FnnMyLMRvb6RHP8PNZe2yLV3GwA=",
1897
- "debug_symbols": "rb3djqPLdWX7LrrWBSPWT3zRr9IwDNmtbggQZENtH+DA8Luf/FtjlNSoPLv39k1xZVZVTJLJOcnMXBzzP373P/74T//+v/7xT3/5n//yv3/33/77f/zun/76pz//+U//6x///C///Id/+9O//OXts//xu9f7Hyt/999W/Ofvf7f46O2D/f7Bef9g//53p74u++vyvF++/av4+C/vf/v+f/Ljo/v20evto3r/aL/9i3g7LT8v6vOiPy/O58XzefH2//rtxNfnxfq8eLsa5+0iPi/y8+LtlPt20Z8Xb6fcN7mea7//8+2juZn/+G9//eMf3//mh9v9dm/86x/++se//Nvv/ttf/v3Pf/797/6fP/z53z/+0f/+1z/85ePy3/7w17e/ff3+d3/8y/94u3w78H/+6c9/fJ/+8/f+79fP/+t67d5f/3294lUcsZ78pYfse+LrjHitX3VEZ3+d8Hx8wb4O6PtLD3ju+jrgvvqnB+TPD4iuuQ0nOSBf628OqG/uhZwDdp+fHvDLrsETPz3gm/vgxnwZbuZP74Pnt96Eb65Bnvt1QMfyGpxffMDumofjPit+zRHRex5L0ccjIvKXu2ItTNE/PJyeX/54rJPziO7wzlzrb6/Fyu8e03Nf3MhfcyX2XvOI2PuHR3XU3x6x+r/gjPPNw+LJeVzkU96fcfevO6O/OeP+9tuyv3ts9J0z1qlvzljfnHHrmTPuWT+9Ld9dj94vrBY/vze++cqu/Zy5FvF6/aozftm1+O4hmmvuip0dP/XJ/u4hGpmc8fKM83dfkW8eXef2PLqe1w9PIJH1t2d8k57nvOb+PH/zyPj7M755hAbxl8trsetvT4hvPf/MLdnx2j8/47vH5/JFwXrq150Rr8ujaz8/PyO+eULj+ejNML/qhLfXN7686W9uSX2XPKtMrx9endxfc0NO/bovaz8vnptv/PyM57/gS3J/85fk/tb74luT3AeT/Mp786zmZUa8fnpGfvfQOscngvtzo2X+1nvz2xPInLv7V53wSy2S5zdb5Nu78/rgvPvnd+e3zyWX16/148u2v3suqW9f+hX5+XZ3XB8bf/cy+vtD3p4LOOT54fnkl39Ds7J5DZrXZ5P6xS+EVxEZq+7zsxPqu29J1ppn1lg/+KT+9vm9vknPe394dPk6+O1V4N+c0L/9ubnOb39urue3PjfX/e3Pzf367c/N339ZcxI09g9e+/sv63dH7Dgc8YPX/u6Ijt/+vd53Z8QrN4/QV/4QPX/ntO8Pib08pH9q1+5v/arb1vPTbzu/v1OfuUfi7Yr89E797kEar4ev7Zt9z09vy7eHRHKHRPzw1PR3h5xvvwPuPU+Qb/M3X5rvrwlJ+nal6qdfmrO/e17ge/Fd+fMH2rdfmthj3cjXr7NMLiyT+VPLnPoveKSe/4JH6ndX5Jd69/v7o3mk5g8vaf/+/rjffQvrk+R+np89uzzf/cjqksn1+sFzb893/xdXg0f62rl/djW+PSLS1+a3f3pLvomxUx3zqvZtrvjZg+PJ/wLXfnfIXlW8Elv1w8v8vz/k+5vDz3TP20/Tzq875PCjllN3rZ8e8k0I3R+ecaN++lj/9svbvIZZP76o/L95hDzVvEB+/fSI+8335H3eflQ/P685tX76CPn+kIr0kP7pF/d+83Xpe+bL0vf+8FX55VfjaZ4s+zmv+6tuSxdfl+7ev+6B2ot79fTbDxZ/ek3Odzfn8Q754dcw/ctPuMFNub1+1Qm/6IsSv/lWxG+9Fd8+rZQvovqHly5/97Ty9tuu3/4tx3rlb/+e4+1bzt/6Tcfbt1a//Ycd63V++0873r7d/a0/7vj2iF/604q1Xr/5xxXf3yG/8OcV3z5U+/hQvfenD9UV3z7XrpfPtfnTCFvf/appPfwYfr0F609/hfv/c1V6H65K//A7yP/jqvR/wSuQb0/5xS9BvvsOZj/8Di9ef/e7iX94+/AP//ynv/7tpsL7b/nfH1vxvizwvhhwPy/z9XW5vi7312V8XebXZX1d9tfl+br8Oi+/zquv8+rrvPo6r77Oq6/z6uu8+jqvvs6rr/Pq67z+Oq+/zuuv8/rrvP46r7/O66/z+uu8/jqvv847X+edr/PO13nn67zzdd75Ou98nXe+zjtf552v856v8571btm3y/11Ge8/z3q7zK/LenfP22V/Xb6dV2+Ppud5/13V2+X9vLyvr8v3/Y23x+zd7w+Mt8v4unw777ydd+vrsr8uz9fl83V5Py/X6zXD+vy2+C2o3oZ4H963QvJ9yBlqhvdjz/vwfu7zPjwz3M/v4t6CbIb1vh3xPuwZYoZ898r7UDP0DGeG5/1X0e/Dff/V8tuw3895V3/ffrnv1/l9/+VzeN9d2e9Dz/C+v/J+zvsezOdwv4b3XZjP4f3A93/8vgjzcfL7KsznZ+rrdr2vw3xc53erfA7PDPfrqr675XNYM+wZYoa5yTk3Oecmv5vm45bm3OR323wM7775HNbXnfDumPffJ6x3y3wONUPPcGZ4v+0f/+t+De/G+RzWDHuGmCFnqBl6hjPDnNxz8pmTz5x85uQzJ585+czJZ04+c/KZk8+c/MzJz5z8zMnPnPzMyc+c/MzJz5z8zMnPnHzn5Dsn3zn5zsl3Tr5z8p2T75x85+T7dfJ+vWZYM+wZYoacoWboGc4Mzwxz8pqT15y85uQ1J685ec3Ja05ec/Kak9ecvOfkPSfvOXnPyXtO3nPynpP3nLzn5D0nx5wcc3LMyTEnx5wcc3LMyTEnx5wcc3LOyTkn55ycc3LOyTkn55ycc3LOyTkn15xcc3LNyTUn15xcc3LNyTUnjwf3eHCPB/d4cI8H93hwjwf3eHCPB/d4cI8H93hwjwf3eHCPB/d4cI8H93hwjwf3eHCPB/d4cI8H93hwjwf3eHCPB/d4cI8H93hwjwf3eHCPB/d4cI8H93hwjwf3eHCPB/d4cI8H93gwxoMxHozxYIwHYzwY48EYD8Z4MMaDMR6M8WCMB2M8GOPBGA/GeDDGgzEejPFgjAdjPBjjwRgPxngwxoMxHozxYIwHYzwY48EYD8Z4MMaDMR6M8WCMB2M8GOPBGA/GeDDGgzEejPFgjAdjPBjjwRgPxngwxoMxHozxYIwHYzwY48EYD8Z4MMaDMR6M8WCMB2M8GOPBGA/GeDDGgzEejPFgjAdjPBjjwRgPxngwxoMxHozxYIwHYzwY48EYD8Z4MMaDMR6M8WCMB2M8GOPBGA/GeDDGgzEejPFgjAdjPBjjwRgPxngwxoMxHozxYIwHczyY48EcD+Z4MMeDOR7M8WCOB3M8mOPBHA/meDDHgzkezPFgjgdzPJjjwRwP5ngwx4M5HszxYI4HczyY48EcD+Z4MMeDOR7M8WCOB3M8mOPBHA/meDDHgzkezPFgjgdzPJjjwRwP5ngwx4M5HszxYI4HczyY48EcD+Z4MMeDOR7M8WCOB3M8mOPBHA/meDDHgzkezPFgjgdzPJjjwRwP5ngwx4M5HszxYI4HczyY48EcD+Z4MMeDOR7M8WCOB3M8mOPBHA/meDDHgzkezPFgjgdzPJjjwRwP5ngwx4M5HszxYI4HczyY48EcD+Z4sMaDNR6s8WCNB2s8WOPBGg/WeLDGgzUerPFgjQdrPFjjwRoP1niwxoM1HqzxYI0HazxY48EaD9Z4sMaDNR6s8WCNB2s8WOPBGg/WeLDGgzUerPFgjQdrPFjjwRoP1niwxoM1HqzxYI0HazxY48EaD9Z4sMaDNR6s8WCNB2s8WOPBGg/WeLDGgzUerPFgjQdrPFjjwRoP1niwxoM1HqzxYI0HazxY48EaD9Z4sMaDNR6s8WCNB2s8WOPBGg/WeLDGgzUerPFgjQdrPFjjwRoP1niwxoM1HqzxYI0HazxY48EaD9Z4sMaDNR6s8WCNB3s82OPBHg/2eLDHgz0e7PFgjwd7PNjjwR4P9niwx4M9HuzxYI8HezzY48EeD/Z4sMeDPR7s8WCPB3s82OPBHg/2eLDHgz0e7PFgjwd7PNjjwR4P9niwx4M9HuzxYI8HezzY48EeD/Z4sMeDPR7s8WCPB3s82OPBHg/2eLDHgz0e7PFgjwd7PNjjwR4P9niwx4M9HuzxYI8HezzY48EeD/Z4sMeDPR7s8WCPB3s82OPBHg/2eLDHgz0e7PFgjwd7PNjjwR4P9niwx4M9HuzxYI8HezzY48EeD/Z4sMeDPR7s8WCPB3s82OPBHg/2ePCMB8948IwHz3jwjAfPePCMB8948IwHz3jwjAfPePCMB8948IwHz3jwjAfPePCMB8948IwHz3jwjAfPePCMB8948IwHz3jwjAfPePCMB8948IwHz3jwjAfPePCMB8948IwHz3jwjAfPePCMB8948IwHz3jwjAfPePCMB8948IwHz3jwjAfPePCMB8948IwHz3jwjAfPePCMB8948IwHz3jwjAfPePCMB8948IwHz3jwjAfPePCMB8948IwHz3jwjAfPePCMB8948IwHz3jwjAfPePCMB8948IwHz3jwjAfPePCMB8948IwHz3jwjAfPePCMB8948IwHz3jwGQ8+48FnPPiMB5/x4DMefMaDz3jwGQ8+48FnPPiMB5/x4DMefMaDz3jwGQ8+48FnPPiMB5/x4DMefMaDz3jwGQ8+48FnPPiMB5/x4DMefMaDz3jwGQ8+48FnPPiMB5/x4DMefMaDz3jwGQ8+48FnPPiMB5/x4DMefMaDz3jwGQ8+48FnPPiMB5/x4DMefMaDz3jwGQ8+48FnPPiMB5/x4DMefMaDz3jwGQ8+48FnPPiMB5/x4DMefMaDz3jwGQ8+48FnPPiMB5/x4DMefMaDz3jwGQ8+48FnPPiMB5/x4DMefMaDz3jwGQ8+48FnPPiMB5/x4DMefMaDz3jwGQ8+48FnPPiMB+948I4H73jwjgfvePCOB+948I4H73jwjgfvePCOB+948I4H73jwjgfvePCOB+948I4H73jwjgfvePCOB+948I4H73jwjgfvePCOB+948I4H73jwjgfvePCOB+948I4H73jwjgfvePCOB+948I4H73jwjgfvePCOB+948I4H73jwjgfvePCOB+948I4H73jwjgfvePCOB+948I4H73jwjgfvePCOB+948I4H73jwjgfvePCOB+948I4H73jwjgfvePCOB+948I4H73jwjgfvePCOB+948I4H73jwjgfvePCOB++7B99+Vf4+LabNFEzJVEzNdJgepvs1vf3xclyO2zEc07Ec2/E4Po6qLdWWaku1pdpSbam2VFuqLdWWalu1rdpWbau2VduqbdW2alu1rVqoFqqFaqFaqBaqhWqhWqgWqqVqqVqqlqqlaqlaqpaqpWqpWqlWqpVqpVqpVqqVaqVaqVaqtWqtWqvWqrVqrVqr1qq1aq3aUe2odlQ7qh3VjmpHtaPaUe2o9qj2qPao9qj2qPao9qj2qPao9qh2VbuqXdWuale1q9pV7ap2VTNLllmyzJJlliyzZJklyyxZZskyS5ZZssySZZYss2SZJcssWWbJMkuWWbLMkmWWLLNkmSXLLFlmyTJLllmyzJJlliyzZJklyyxZZskyS5ZZssySZZYss2SZJcssWWbJMkuWWbLMkmWWLLNkmSXLLFlmyTJLllmyzJJlliyzZH28hPicgun9aXN/TMX0ofSxxvWZI5/j43gZP3Pkc1yO2/Hjdn2c+5kjn2M5tuNxfBwv42eOfI7LcTuqdlQ7qh3VjmpHtaPao9qj2qPao9qj2qPao9qj2qPao9pV7ap2VbuqXdWuale1q9pV7aK2Xy/H5bgdwzEdy7Edj+PjqNpSbam2VFuqLdWWaku1pdpSbam2VduqbdW2alu1rdpWbau2VduqhWqhWqgWqoVqoVqoFqqFaqFaqpaqpWqpWqqWqqVqqVqqlqqVaqVaqVaqlWqlWqlWqpVqpVqr1qq1ambJNku2WbLNkm2WbLNkmyXbLNlmyTZLtlmyzZJtlmyzZJsl2yzZZsk2S7ZZss2SbZZss2SbJdss2WbJNku2WbLNkm2WbLNkmyXbLNlmyTZLtlmyzZJtloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhlqRZkmZJmiVplqRZkmZJmiVplqRZkmZJmiVplqRZkmZJmiVplqRZkmZJmiVplqRZkmZJmiVplqRZkmZJmiVplqRZkmZJmiVplqRZkmZJmiVplqRZkmZJmiVplqRZkmZJmiVplqRZkmZJmiVplqRZkmZJmiVplqRZkmZJmiVplqRZkmZJmiVplqRZkmZJmiVplqRZkmZJmiVplqRZkmZJmiVplqRZkmZJmiVplqRZkmZJmiVplqRZkmZJmiVplqRZkmZJmiVplqRZkmZJmiVplqRZkmZJmiVplqRZkmZJmiVplpRZUmZJmSVllpRZUmZJmSVllpRZUmZJmSVllpRZUmZJmSVllpRZUmZJmSVllpRZUmZJmSVllpRZUmZJmSVllpRZUmZJmSVllpRZUmZJmSVllpRZUmZJmSVllpRZUmZJmSVllpRZUmZJmSVllpRZUmZJmSVllpRZUmZJmSVllpRZUmZJmSVllpRZUmZJmSVllpRZUmZJmSVllpRZUmZJmSVllpRZUmZJmSVllpRZUmZJmSVllpRZUmZJmSVllpRZUmZJmSVllpRZUmZJmSVllpRZUmZJmSVllpRZUmZJmSVllrRZ0mZJmyVtlrRZ0mZJmyVtlrRZ0mZJmyVtlrRZ0mZJmyVtlrRZ0mZJmyVtlrRZ0mZJmyVtlrRZ0mZJmyVtlrRZ0mZJmyVtlrRZ0mZJmyVtlrRZ0mZJmyVtlrRZ0mZJmyVtlrRZ0mZJmyVtlrRZ0mZJmyVtlrRZ0mZJmyVtlrRZ0mZJmyVtlrRZ0mZJmyVtlrRZ0mZJmyVtlrRZ8rlo+P7G4M9Nw89pMW2mYHr/gXJ9TMXUTO+/iu2P6eFzd6aP3/N+TotpMwUTGg8aDxofv+79nNB40LhoXDQuGheNi8ZF46Jx0bho3NH43EP8nBbTZgqmZCqmZjpMDxMaC42FxkJjobHQWGgsNBYaC42FxkZjo7HR2GhsNDYaGw3eqH14p/bhrdqH92p/ril+TmgEGoFGoBFoBBqBRqCRaCQaOY/dz5XFzwmNj/dwr4+pmQ7T8/XG7o/Fxc/p443cn9Ni2kzBlEzF1F9vAv9YYPyaHqY707vhP94j/rm7+HxMwZRMxdRMX0sQiw3GdXxrt+/t9s3dvrvbt3f7/m7f4P3DO7zR8D3evMmbbcbFOuNin3Gx0LjYaFysNC52GhdLjYutxsVa42KvcbHYuNhsXKw2LnYbF8uNi+3GxXrjYr9xseC42HBcrDgudhwXS46LLcfFmuNiz3Gx6LjYdFysOi52HRfLjottx8W642LfcbHwuNh4XKw8LnYeF0uPi63HxdrjYu9xsfi42HxcrD4udh8Xy4+L7cfF+uNi/3GxALnYgFysQC52IBdLkIstyMUa5GIPcrEIudiEXKxCLnYhF8uQi23IxTrkYh9ysRC52IhcrEQudiIXS5GLrcjFWuRiL3KxGLnYjFysRi52IxfLkYvtyMV65GI/crEgudiQXKxILnYkF0uSiy3JxZrkYk9ysSi52JRcrEoudiUXy5KLbcnFuuRiX3I9whykOYhzkOcg0EGig0gHmQ4/QB3QwOfsTi6WJxfbk4v1ycX+5GKBcrFBuVihXOxQLpYoF1uUizXKxR7lYpFysUm5WKVc7FIulikX25SLdcrFPuVioXKxUblYqVzsVC6WKhdblYu1ysVe5WKxcrFZuVitXOxWLpYrF9uVi/XKxX7lYsFysWG5WLFc7FguliwXW5aLNcvFnuVi0XKxablYtVzsWi6WLRfblot1y8W+5WLhcrFxuVi5XOxcLpYuF1uXi7XLxd7lYvFysXm5WL1c7F4uli8X25eL9cvF/uViAXOxgblYwVzsYC6WMBdbmIs1zMUe5mIRc7GJuVjFXOxiLpYxF9uYi3XMxT7mYiFzsZG5WMlc7GQuljIXW5mLtczFXuZiMXOxmblYzVzsZi6WMxfbmeuKb5HfIsBFgosIFxkuQlykuIhx+YHj8qWxX5JcRLnIchHmIs1FnIs8F4EuEl1AurxguryAurygurzAurzgurwAu7wgu7xAu7xgu7yAu7ygu7zAu7zgu7wAvLwgvLxAvLxgvLyAvLygvLzAvLzgvLwAvbwgvbxAvbxgvbyAvbygvbzAvbzgvbwAvrwgvrxAvrxgvryAvrygvrzAvrzgvrwAv7wgv7xAv7xgv7yAv7ygv7zAv7zgv7wAwLwgwLxAwLxgwLyAwLygwLzAwLzgwLwAwbwgwbxAwbxgwbyAwbygwbzAwbzgwbwAwrwgwrxAwrxgwryAwrygwrzAwrzgwrwAw7wgw7xAw7xgw7yAw7ygw7zAw7zgw7wAxLwgxLxAxLxgxLyAxLygxLzAxLzgxLwAxbwgxbxAxbxgxbzw+cLnC58vfL7w+cLnC58vfL7w+cLnS3TTD+wmNKQ3iW+S3yTASYKTCCcZTvh84fOFzxc+X/h84fOFzxc+X/h84fOFzxc+X/h84fOFzxc+X/h84fOFzxc+X/h84fOFzxc+X/h84fOFzxc+X/h84fOFzxc+X/h84fOFzxc+X/h84fOFz+GtbYBrG+LaBrm2Ya5toGsb6toGu7bhrm3Aaxvy2ga9tmGvbeBrG/raBr+24a9tAGwbAtsGwbZhsG0gbBsK2wbDtuGwbUBsGxLbBsW2YbFtYGwbGtsGx7bhsW2AbBsi2wbJtmGybaBsGyrbBsu24bJtwWyS2USzyWYTziadTTybfDYBbRLaRLTJaBPSJqVNTJucNkFtktpEtclq+wHWJq3tB1wbGgLbJLaJbJPZJrRNahs+l9smuE1ym+g22W3C26S3iW+T3ybATYKbCDcZbkLcpLiJcZPjJshNkpsoN1luwtykuYlzk+cm0E2im0g3mW5C3aS6iXWT6ybYTbKbaDfZbsLdpLuJd5PvJuBNwpuINxlvQt6kvIl5k/Mm6E3Sm6g3WW/C3qS9iXuT9ybwTeKbyDeZb0LfpL6JfZP7JvhN8pvoN9lvwN829LcN/m3Df9sA4DYEuA0CbsOA20DgNhS4DQZuw4HbgOA2JLgNCm7DgtvA4DY0uA0ObsOD2wDhNkS4DRJuw4TbQOE2VLgNFm7DhduA4TZkuB3iGeUzCmj8gdCIhoxGIY1SGsU0ymnE51DiNpi4DSduA4rbkOI2qLgNK24Di9vQ4ja4uA0vbgOM2xDjNsi4DTNuA43bUOM22LgNN24DjtuQ4zbouA07bgOP29DjNvi4DT9uA5DbEOQ2CLkNQ24DkdtQ5DYYuQ1HbgOS25DkNii5DUtuA5Pb0OQ2OLkNT24DlNsQ5TZIuQ1TbgOV21DlNli5DVduA5bbkOU2aLkNW24Dl9vQ5TZ4uQ1fbgOY2xDmNoi5DWNuA5nbUOY2mLkNZ24DmtuQ5jaouQ1rbgOb29DmNri5DW9uA5zbEOc2yLkNc24DndtQ5zbYuQ13bgOe25DnNui5DXtuA5/b0Oc2+LkNf24DoNsQ6DYIug2DbgOh21DoNhi6DYdup0BWiawiWWWy/gBlRUMsq1xWwaySWfE5TLoNlG5Dpdtg6TZcug2YbkOm26DpNmy6DZxuQ6fb4Ok2fLoNoG5DqNsg6jaMug2kbkOp22DqNpy6DahuQ6rboOo2rLoNrG5Dq9vg6ja8ug2wbkOs2yDrNsy6DbRuQ63bYOs23LoNuG5Drtug6zbsug28bkOv2+DrNvy6DcBuQ7DbIOw2DLsNxG5Dsdtg7DYcuw3IbkOy26DsNiy7DcxuQ7Pb4Ow2PLsN0G5DtNsg7TZMuw3UbkO122DtNly7DdhuQ7bboO02bLsN3G5Dt9vg7TZ8uw3gbkO42yDuNoy7DeRuQ7nbYO42nLsN6G5Dutug7jasuw3sbkO72+DuNry7DfBuQ7zbIO82zLsN9G5DvdslglkGsxBmKcximH/gMKMhiVkUsyxmfA4Bb4PA2zDwNhC8DQVvg8HbcPA2ILwNCW+Dwtuw8DYwvA0Nb4PD2/DwNkC8DRFvg8TbMPE2ULwNFW+Dxdtw8TZgvA0Zb4PG27DxNnC8DR1vg8fb8PE2gLwNIW+DyNsw8nbxPuZdvI95F+9j3sX7mHfxPubdvI95N+9j3s37mHfzPubdvI95N+9j3s37mHfzPubdvI9590u1pdpSbam2VFuqLdWWaku1pdpSbau2VduqbdW2alu1rdpWbau2VQvVQrVQLVQL1UK1UC1UC9VCtVQtVUvVUrVULVVL1VK1VC1VK9VKtVKtVCvVSrVSrVQr1Uq1Vq1Va9VatVatVWvVWrVWrVU7qh3VjmpHtaPaUe2odlQ7qh3VHtUe1R7VHtUe1R7VHtUe1R7VHtWuale1q9pV7apmlrRZ0mZJmyVtlhyz5Jglxyw5ZskxS45ZcsySY5Ycs+SYJccsOWbJMUuOWXLMkmOWHLPkmCXHLDlmyTFLjllyzJJjlhyz5Jglxyw5ZskxS45ZcsySY5Ycs+SYJccsOWbJMUuOWXLMkmOWHLPkmCXHLDlmyTFLjllyzJJjlhyz5Jglxyw5ZskxS45ZcsySY5Ycs+SYJZ+owc/pzvTxkmN/TIvpQ2l9jOGYjuXYjsfxcZwt4H3Y8d+HHf992PHfhx3/fdjx34cd/33Y8d+HHf992PHf56j2qPao9qj2qPao9qj2qPao9qj2qHZVu6pd1a5qV7Wr2lXtqnZVY8d/P+z474cd//2w478fdvz3w47/ftjx3w87/vthx38/7Pjv56XaUm2ptlRbqi3VlmpLtaXaUm2ptlXbqm3Vtmpbta3aVm2rtlXbqoVqoVqoFqqFaqFaqBaqhWqhWqqWqqVqqVqqlqqlaqlaqpaqlWqlWqlWqpVqpVqpVqqVaqVaq9aqtWqtWqvWqrVqrVqrZpY8ZsljljxmyWOWPGbJY5Y8ZsljljxmyWOWPGbJY5Y8ZsljljxmyWOWPGbJY5Y8ZsljljxmyWOWPGbJY5Y8ZsljljxmyWOWPGbJY5Zcs+SaJdcsuWbJNUuuWXLNkmuWXLPkmiXXLLlmyTVLrllyzZJrllyz5Jol1yy5Zsk1S65Zcs2Sa5Zcs+SaJdcsuWbJNUuuWXLNkmuWXLPkmiXXLLlmyTVLrllyzZJrllyz5Jol1yy5Zsk1S65Zcs2Sa5Zcs+SaJdcsuWbJNUuuWXLNkmuWXLPkmiXXLLlmyTVLrllyzZJrllyz5Jol1yy5Zsk1S65Zcs2Sa5Zcs+SaJdcsuWbJNUuuWXLNkmuWXLPkmiXXLLlmyTVLrllyzZJrllyz5Jol1yy5Zsk1S65Zcs2Sa5Zcs+SaJdcsuWRJvMiSeJEl8SJL4kWWxIssiRdZEi+yJF5kSbzIkni9VFuqLdWWaku1pdpSbam2VFuqLdW2alu1rdpWbau2VduqbdW2alu1UC1UC9VCtVAtVAvVQrVQLVRL1VK1VC1VS9VStVQtVUvVUrVSrVQr1Uq1Uq1UK9VKtVKtVGvVWrVWrVVr1Vq1Vq1Va9VataPaUe2odlQ7qh3VjmpHtaPaUe1R7VHtUe1R7VHtUe1R7VHtUe1R7ap2VbuqXdWuale1q9pV7apmliyzZJklyyxZZskyS5ZZssySZZYss2SZJcssWWbJMkuWWbLMkmWWLLNkmSXLLFlmyTJLllmyzJJlliyzZJklyyxZZskyS5ZZssySZZYss2SZJcssWWbJMkuWWbLMkmWWLLNkmSXLLFlmyTJLllmyzJJlliyzZJklyyxZZskyS5ZZssySZZYss2SZJcssWWbJMkuWWbLMEhmSIUMyZEiGDMmQIRkyJEOGZMiQDBmSIUMyZEiGDMmQIRkyJEOGZMiQDBmSIUMyZEiGDMmQIRkyJEOGZMiQDBmSIUMyZEiGDMmQIRkyJEOGZMiQDBmSIUMyZEiGDMmQIRkyJEOGZMiQDBmSIUMyZEiGDMmQIRkyJEOGZMiQDBmSIUMyZEiGDMmQIRkyJEOGZMiQDBmSIUMyZEiGDMmQIRkyJEOGZMiQDBmSIUMyZEiGDMmQIRkyJEOGZMiQDBmSIUMyZEiGDMmQIRkyJEOGZMiQDBmSIUMyZEiGDMmQIRkyJEOGZMiQDBmSIUMyZEiGDMmQIRkyJEOGZMiQDBmSIUMyZEiGDMmQIRkyJEOGZMiQDBmSIUMyZEiGDMmQIRkyJEOGZMiQDBmSIUMyZEiGDMmQIRkyJEOGZMiQDBmSIUMyZEiGDMmQIRkyJEOGZMiQDBmSIUMyZEiGDMmQIRkyJEOGZMiQDBmSIUMyZEiGDMmQIRkyJEOGZMiQDBmSIUMyZEiGDMmQIRkyJEOGZMiQDBmSIUMyZEiGDMmQIRkyJEOGZMiQDBmSIUMyZEiGDMmQIRkyJEOGZMiQjM9dz/yYNlMwJVMxve8J1Md0mB6m919w9Ps0RIWIISrE567n5xRMyVRMaCQaicbHbsjHVGgUGoVGoVFoFBqFRqFRaBQajUaj0Wg0Go1Go9FoNBqNRqNx0DhoHDQOGgeNg8ZB46Bx0DhoPGg8aDxoPGg8aDxoPGg8aDxoPGhcNC4aF42LxkXjonHRuGhcNIacEjnklMghp0QOOSVyyCnxueuZH1MxNX97Pkkd8bHr+TXdmd7N/3z8u3fvf02bKZiSqZia6TA9n3yO+Nj1/JzeLf81Lab9Se+Izw3P52MqpmY6TA/T14ZOsOEZbHgGG57Bhmew4RlseAYbnsGGZ7DhGWndt33fFn7b+P1D5Tcaln7b+m3tt73fFH+z4RlseAYbnsGGZ7DhGWx4BhuewYZnsOEZbHgGG57Bhmew4RlseAYbnsGGZ7DhGWx4BhuewYZnsOEZbHgGG57Bhmew4RlseAYbnsGGZ7DhGWx4BhuewYZnsOEZbHgGG57Bhmew4RlseAYbnsGGZ7DhGWx4BhuewYZnsOEZbHgGG57Bhmew4RlseAYbnsGGZ7DhGWx4BhuewYZnsOEZbHgGG57Bhmew4RlseAYbnsGGZ7DhGWx4BhuewYZnsOEZbHgGG57Bhmew4RlseAYbnsGGZ7DhGWx4BhuewYZnsOEZbHgGG57Bhmew4RlseAYbnsGGZ7DhGWx4BhuewYZnsOEZbHgGG57Bhmew4RlseAYbnsGGZ7DhGWx4BhuewYZnsOEZbHgGG57Bhmew4RlseAYbnsGGZ7DhGWx4BhuewYZnsOEZbHgGG57Bhmew4RlseAYbnsGGZ7DhGWx4BhuewYZnsOEZbHgGG57Bhmew4RlseAYbnsGGZ7DhGWx4BhuewYZnsOEZbHgGG57Bhmew4RnUIAc9yEERctCEHFQhB13IQRly0IYc1CEHfchBIXLQiBxUIgedyEEpctCKHNQiB73IQTFy0IwcVCMH3chBOXLQjhzUIwf9yEFBctCQHFQkBx3JQUly0JIc1CQHPclBUXLQlBxUJQddyUFZctCWHNQlB33JQWFy0JgcVCYHnclBaXLQmhzUJge9yUFxctCcHFQnB93JQXly0J4c1CcH/clBgXLQoBxUKAcdykGJctCiHNQoBz3KQZFy0KQcVCkHXcpBmXLQphzUKQd9ykGhctCoHFQqB53KQaly0Koc1CoHvcpBsXLQrBxUKwfdykG5ctCuHNQrB/3KQcFy0LAcVCwHHctByXLQshzULAc9y0HRctC0HFQtB13LQdly0LYc1C0HfctB4XLQuBxULgedy0HpctC6HNQuB73LQfFy0LwcVC8H3ctB+XLQvhzULwf9y0EBc9DAHFQwBx3MQQlz0MIc1DAHPcxBEXPQxBxUMQddzEEZc9DGHNQxB33MQSFz0MgcVDIHncxBKXPQyhzUMge9zEExc9DMHFQzB93MQTlz0M4c1DMH/cxBQXPQ0BxUNAcdzUFJc9DSHNQ0Bz3NQVFz0NQcVDUHXc1BWXPQ1hzUNQd9zUFhc9DYHBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPE+JhQjxMiIcJ8TAhHibEw4R4mBAPE+JhQjxMiIcJ8TAhHibEw4R4mBAPE+JhQjxMiIcJ8TAhHibEw4R4mBAPE+JhQjxMiIcJ8TAhHibEw4R4mBAPE+JhQjxMiIcJ8TAhHibEw4R4mBAPE+JhQjxMiIcJ8TAhHibEw4R4mBAPE+JhQjxMiIcJ8TAhHibEw4R4mBAPE+JhQjxMiIcJ8TAhHibEw4R4mBAPE+JhQjxMiIcJ8TAhHibEw4R4mBAPE+JhQjxMiIcJ8TAhHibEw4R4mBAPE+JhQjxMiIcJ8TAhHibEw4R4mBAPE+JhQjxMiIcJ8TAhHibEw4R4mBAPE+JhQjxMiIcJ8TAXPod4+DZtpmBKpmJqpsP0MKGBzyEeJsTDhHiYEA8T4mFCPEyIhwnxMCEeJsTDhHiYEA8T4mFCPEyIhwnxMCEeJsTDhHiYEA8T4mFCPEyIhwnxMCEeJsTDhHiYEA8T4mFCPEyIhwnxMCEeJsTDhHiYEA8T4mFCPEyIhwnxMCEeJsTDhHiYEA8T4mFCPEyIhwnxMCEeJsTDhHiYEA8T4mFCPEyIhwnxMCEeJsTDhHiYEA8T4mFCPEyIhwnxMCEeJsTDhHiYEA8T4mFCPEyIhwnxMCEeJsTDhHiYEA8T4mFCPEyIhwnxMCEeJsTDhHiYEA8T4mFCPEyIhwnxMCEeJsTDhHiYEA8T4mFCPEyIhwnxMCEeJsTDhHiYEA8T4mFCPEyIhwnxMCEeJsTDhHiYEA8T4mFCPEyIhwnxMCEeJsTDhHiYEA8T4mFCPEyIhwnxMCEeJsTDhHiYEA8T4mFCPEyIhwnxMCEeJsTDhHiYEA8T4mFCPEyIhwnxMCEeJsTDhHiYEA8T4mFCPEyIhwnxMCEeJsTD3LyPOTdMhNwwEXLDRMgNEyE3TITcMBFyw0TIDRMhN0yE3K1aq9aqHdWOake1o9pR7ah2VDuqHdWOao9qj2qPao9qj2qPao9qj2qPao9qV7Wr2lXtqnZVu6pd1a5qVzWYCBkwETJgImTARMiAiZABEyEDJkIGTIQMmAgZMBEyXqot1ZZqS7Wl2lJtqbZUW6ot1ZZqW7Wt2lZtq7ZV26pt1bZqW7WtWqgWqoVqoVqoFqqFaqFaqBaqpWqpWqqWqqVqqVqqlqqlaqlaqVaqlWqlWqlWqpVqZkmYJWGWhFkSZkmYJWGWhFkSZkmYJWGWhFkSZkmYJWGWhFkSZkmYJWGWhFkSZkmYJWGWhFkSZkmYJWGWhFkSZkmYJWGWhFkSZkmYJWGWhFkSZkmYJWGWhFkSZkmYJWGWpFmSZkmaJWmWpFmSZkmaJWmWpFmSZkmaJWmWpFmSZkmaJWmWpFmSZkmaJWmWfEIZP6fF9P40uj+mYPpQWh9jObbjcXwcL+NnjnyOswWc9jGnfcxpH3Pax5z2Mad9zGkfc9rHnPYxp33MaR9z2sec9jGnfcxpH3Pax5z2Mad9zGkfc9rHnPYxp33MaR9z2sec9jGnfcxpH3Pax5z2Mad9zGkfc9rHnPYxp33MaR9z2sec9jGnfcxpH3Pax5z2Mad9zGkfc9rHnPYxp33MaR9z2sec9jGnfcxpH3Pax5z2Mad9zGkfc9rHnPYxp33MaR9z2sec9jGnfcxpH3Pax5z2Mad9zGkfc9rHnPYxp33MaR9z2sec9jGnfcxpH3Pax5z2Mad9zGkfc9rHnPYxp33MaR9z2sec9jGnfcxpH3Pax5z2Mad9zGkfc9rHnPYxp33MaR9z2sec9jGnfcxpH3Pax5z2Mad9zGkfc9rHnPYxp33MaR9z2sec9jGnfcxpH3Pax5z2Mad9zGkfc9rHnPYxp33MaR9z2sec9jGnfcxpH3Pax5z2Mad9zGkfc9rHnPYxp33MaR9z2sec9jGnfcxpH3Pax5z2Mad9zGkfc9rHnPYxp33MaR9z2sec9jGnfcxpH3Pax5z2Mad9zGkfc9rHnPYxp33MaR9z2sec9jGnfcxpH3Pax5z2Mad9zGkfc9rHnPYxp33MaR9z2sec9jGnfcxpH3Pax5z2Mad9zGkfc9rHnPYxp33MaR9z2sec9jGnfcxpH3Pax5z2Mad9zGkfc9rHnPYxp33MaR9z2sec9jGnfcxpH3Pax5z2Mad9zGkfc9rHnPYxp33MaR9z2sec9jGnfcxpH3Pax5z2Mad9zGkfc9rHnPYxp33MaR9z2sec9jGnfcxpH3Pax5z2Mad9zGkfc9rHnPYxp33MaR9z2sec9jGnfcxpH3Pax5z2Mad9zGkfc9rHnPYxZ5slbZa0WdJmSZslbZa0WdJmSZslbZa0WdJmSZslbZa0WdJmSZslbZa0WdJmSZslbZa0WdJmSZslbZa0WdJmSZslbZa0WXLMkmOWHLPkmCXHLDlmyTFLjllyzJJjlhyz5Jglxyw5ZskxS45ZcsySY5Ycs+SYJccsOWbJMUuOWXLMkmOWHLPkmCXHLDlmyTFLjllyzJJjlhyz5Jglxyw5ZskxS45ZcsySY5Ycs+SYJccsOWbJMUuOWXLMkmOWHLPkmCXHLDlmyTFLjllyzJJjlhyz5Jglxyw5ZskxS45ZcsySY5Ycs+SYJccskSGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJ/Nz1zI8pmYqpmQ7T+55AfUz3c6rXEBXqc9ezP6bN54IpmYqpmQ7Tw4TGQuNjN+RzQmOhsdBYaCw0FhoLjYXGRmOjsdHYaGw0NhobjY3GRmOjEWgEGoFGoBFoBBqBRqARaAQaiUaikWgkGolGopFoJBqJRqJRaBQahUahUWgUGoVGoVFoFBqNRqPRaDQajUaj0V+P3frc9fyc0Hj3/zupoz52Pb+mxbQ/uRv1sev5NSVTMTXTYXqY7kzvpn8+XPHu+a9pMwVTftI76nPD8/mYDtPDdGf62Pz6nL42dIoNz2LDs9jwLDY8iw3PYsOz2PAsNjzffsfxYlpMmymYkqmYmukwPUxoLDQWGguNhcZCY6Gx0FhoLDQWGhuNjcZGY6Ox0dhobDQ2GhuNjUagEWgEGoFGoBFoBBqBRqARaCQaiUaikWgkGolGopFoJBqJRqFRaBQahUahUWgUGoVGoVFoNBqNRqPRaDQajUaj0Wg0Go3GQeOgcdA4aBw0DhoHjYPGQeOg8aDxoPGg8aDxoPGg8aDxoPGg8aBx0cDnbHgWG57Fhmex4VlseBYbnsWGZ7HhWWx4FhuexYZnseFZbHgWG57Fhmex4VlseBYbnsWGZ7HhWWx4FhuexYZnseFZbHgWG57Fhmex4VlseBYbnsWGZ7HhWWx4FhuexYZnseFZbHgWG57Fhmex4VlseBYbnsWGZ7HhWWx4FhuexYZnseFZbHgWG57Fhmex4VlseBYbnsWGZ7HhWWx4FhuexYZnseFZbHgWG57Fhmex4VlseBad1kWnddFpXXRaF53WRad10WlddFoXndZFp3XRaV10Whed1kWnddFpXXRaF53WRad10WlddFoXndZFp3XRaV10Whed1kWnddFpXXRaF53WRad10WlddFoXndZFp3XRaV10Whed1kWnddFpXXRaF53WRad10WlddFoXndZFp3XRaV10Whed1kWnddFpXXRaF53WRad10WlddFoXndZFp3XRaV10Whed1kWnddFpXXRaF53WRad10WlddFoXndZFp3XRaV10Whed1kWnddFpXXRaF53WRad10WlddFoXndZFp3XRaV10Whed1kWnddFpXXRaF53WRad10WlddFoXndZFp3XRaV10Whed1kWnddFpXXRaF53WRad10WlddFoXndZFp3XRaV10Whed1kWnddFpXXRaF53WRad10WlddFoXndZFp3XRaV10Whed1kWnddFpXXRaF53WRad10WlddFoXndZFp3XRaV10Whed1kWnddFpXXRaF53WRad10WlddFoXndZFp3XRaV10Whed1kWnddFpXXRaF53WRad10WlddFoXndZFp3XRaV10Whed1kWnddFpXXRaF53WRad10WlddFoXndZFp3XRaV10Whed1kWnddFpXXRaF8TDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYl/cx14WJUBcmQl2YCHVhItSFiVAXJkJdmAh1YSLUhYlQd6sWqoVqoVqoFqqFaqFaqBaqhWqpWqqWqqVqqVqqlqqlaqlaqlaqlWqlWqlWqpVqpVqpVqqVaq1aq9aqtWqtWqvWqrVqrVqrdlQ7qh3VjmpHtaPaUe2odlQ7qj2qPao9qj2qPao9qj2qPao9qj2qXdWuale1q9pV7ap2VbuqXdVgIvQLJkK/YCL0CyZCv2Ai9AsmQr9gIvQLJkK/YCL0CyZCv16qLdWWaku1pdpSbam2VFuqLdWWalu1rdpWbau2VduqbdW2alu1rVqoFqqFaqFaqBaqhWqhWqgWqqVqqVqqlqqlaqlaqpaqpWqpWqlWqpVqpVqpVqqVaqVaqVaqtWqtWqvWqrVqrVqr1qq1aq3aUe2odlQ7qh3VjmpHtaPaUe2o9qj2qPbxkuNzCqb3p9H9MRXTh9L6GI/j43gZP3Pkc1yO23G2gNs+5raPue1jbvuY2z7mto/57Wd6L8fluB3DMR3LsR2P4+Oo2lJtqbZUW6ot1ZZqS7Wl2lJtqbZV26pt1bZqW7Wt2lZtq7ZV26qFaqFaqBaqhWqhWqgWqoVqoVqqlqqlaqlaqpaqpWqpWqqWqpVqpVqpVqqVaqVaqVaqlWqlWqvWqrVqrVqr1qq1aq1aq9aqHdWOake1o9pR7ah2VDuqHdWOao9qj2qPao9qj2qPao9qj2qPao9qV7Wr2lXNLLGPue1jbvuY2z7mto+57WNu+5jbPua2j7ntY277mNs+5raPue1jbvuY2z7mto+57WNu+5jbPua2j7ntY277mNs+5raPue1jbvuY2z7mto+57WNu+5jbPua2j7ntY277mNs+5raPue1jbvuY2z7mto+57WNu+5jbPua2j7ntY277mNs+5raPue1jbvuY2z7mto+57WNu+5jbPua2j7ntY277mNs+5raPue1jbvuY2z7mto+57WNu+5jbPua2j7ntY277mNs+5raPue1jbvuY2z7mto+57WNu+5jbPua2j7ntY277mNs+5raPue1jbvuY2z7mto+57WNu+5jbPua2j7ntY277mNs+5raPue1jbvuY2z7mto+57WNu+5jbPua2j7ntY277mNs+5raPue1jbvuY2z7mto+57WNu+5jbPua2j7ntY277mNs+5raPue1jbvuY2z7mto+57WNu+5jbPua2j7ntY277mNs+5raPue1jbvuY2z7mto+5wywJsyTMkjBLwiwJsyTMkjBLwiwJsyTMkjBLwiwJsyTMkjBLwiwJsyTMkjBLwiwJsyTMkjBLwiwJsyTMkjBLwiwJsyTMkjBLwiwJsyTMkjBLwiwJsyTMkjBLwiwJsyTMkjBLwiwJsyTMkjBLwiwJsyTMkjBLwiwJsyTMkjBLwiwJsyTMkjBLwiwJsyTMkjBLwiwJsyTMkjBLwixJsyTNkjRL0ixJsyTNkjRL0ixJsyTNkjRL0ixJsyTNkjRL0ixJsyTNkjRL0ixJsyTNkjRL0ixJsyTNkjRL0ixJsyTNkjRLZEi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyP3c982NqpsP0MN2ZhqjQPUSF7iEq9OeuZ39MyeeKqZkO08N0ZzpoHDQOGh+7IZ8TGgeNg8ZB46Bx0HjQeNB40HjQeNB40HjQeNB40HjQuGhcNC4aF42LxkXjonHRuGgMOaXPkFP6c9fzc9pMwZRMxdRMh+lhQmOhsdBYaCw0FhoLjYXGQmOhsdDYaGw0NhobjY3GRmOjsdHY89j93PX8mAKND/+v9TFux3ePrM9/8O6RdT7GcmzH4/g4XsYP/3+NH2rPx7gdw/FD7fnP3//u//nDX//0h3/68x//9+/+23+8ffg///0v//xvf/qXv3x9+G//77/O3/zTX//05z//6X/947/+9V/++Y//49//+sd//PO//PP73/3u9f7H+5fsv6/+/V7/8PaP1//5qf3+qbdr8N97/f6sf/j951+f+/sn3/86/B/n93u/fyr51F6/3/3+qeJTuX6fH5/qv5f6z//8h//8/wA=",
1897
+ "debug_symbols": "rb3bjmTJdWX7L3zmg5uti23rX2kIAqVmNwgQlMCWDnAg6N9P3NYYSTYyTnWVXspXRlba9Nuc7hGxfMz/+N3/+OM//fv/+sc//eV//sv//t1/++//8bt/+uuf/vznP/2vf/zzv/zzH/7tT//yl7ev/sfvXu//Wfm7/7biP3//u8Wf3v6w3/9w3v+wf/+7U1+X/XV53i/f/q/4+Cfvf/v+b/LjT/ftT6+3P9X7n/bb/xFvp+XnRX1e9OfF+bx4Pi/e/l2/nfj6vFifF29X47xdxOdFfl68nXLfLvrz4u2U+ybXc+33f779aW7mP/7bX//4x/e/+eF2v90b//qHv/7xL//2u//2l3//859//7v/5w9//veP/+l//+sf/vJx+W9/+Ovb375+/7s//uV/vF2+Hfg///TnP75P//l7//Xr5/90vXbvr3++XvEqjlhP/tJD9j3xdUa81q86orO/Tng+HrCvA/r+0gOeu74OuK/+6QH58wOia27DSQ7I1/qbA+qbeyHngN3npwf8smvwxE8P+OY+uDEPw8386X3w/Nab8M01yHO/DuhYXoPziw/YXfN03GfFrzkies9zKfp4RET8cleshSn6h6fT84ufj+c+Y8vnlT/ckPW3nlj53XN67osb+WuuxN5rnhF7//Csjnr+9kr0f8EZ55unxZPzvMinvD/jrl93Rn9zxv3tt2V/99zoO2esU9+csb4549YzZ9yzfnpbvrsevV9YLX5+b3zzyK79nLkW8Xr9qjN+2bX47ikaPQ/rzpU/9cn+7ikamZzx8mqcvzXKPt/ZlavxvH54AXk7+W/P+CY9z3nN/Xn+5pnx92d88wwN4i+X12LX354Q33r+4Q6N1/75Gd89P5dvCtZTv+6MeF2eXfv5+RnxzQsar0dvhvlVJ7y9v/HtTX9zS+q75Fllev3w7uT+mhty6tc9rM3ryX5LoJ+f8fwXPCT3Nz8k97feF9+a5D6Y5Ffem2c1bzPi9dMz8run1jm+ENyfGy3zt96b355A5tzdv+qEX2qRPL/ZIt/endcn590/vzu/e1ST7yJ2rfPT15L69q1fkZ9vd8f1ufF3b6O/P+TttYBDnh9eT375NzQrm/egeX01qV/80rqKyFh1n5+dUN99S7LWvLLG+sEntf/2iG/S894fnl0+Jm/vAv/mhP7tr811fvtrcz2/9bW57m9/be7Xb39t/v5hzUnQ2D947e8f1u+O2HE44oe34393RMdv/17vuzPilZtn6Ct/iJ6/c9r3h8ReHtI/tWv3t37Vbev56bed39+pz9wj8XZFfnqnfvckjdfDY/tm3/PT2/LtIZHcIRE/vDT93SHnu5/IVO95gXybv3lovr8mJOnblaqfPjRnf/e6cPj+oPLnT7RvH5rYY93I16+zTC4s8/ZK9bMjTv0XPFPPf8Ez9bsr8ku9+/390TxT84e3tH9/f9zvvoX1RXI/z89eXZ7vfmR1yeR6/eC5WP83V4Nn+tq5f3Y1vj0i0vfmt396S76JsVMd8/7nba742ZPjyf8C1353yF5V/CRx1Q9v8//+kO9vDj/TPXXy/LpDDj9qOXXX+ukh34TQ/eEVN+qnz/VvH97mPcz68U3l/80z5KnmDfLrp0fcb74n7/P2o/r5ec2p9dNnyPeHVKSH9E8f3PvN49L3zMPS9/7wqPzyq/E0L5b9nNf9Vbeli8elu/eve6L24l49/faDxZ9ek/PdzXm8Q374NUz/8hNucFNur191wi96UOI334r4rbfi25eV8k1U//DW5e9eVt5+2/Xbv+VYr/zt33O8fcv5W7/pePvW6rf/sGO9zm//acfbt7u/9ccd3x7xS39asdbrN/+44vs75Bf+vOLbp2ofn6r3/vSpuuLb19r18rU2fxph67tfNa1n8RuJt2D96a9w/3+uSu/DVekffgf5f1yV/i94B/LtKb/4Lch3v8N7yzAM/MMLzMfPk/7h7Y9/+Oc//fVvNxXef8v//tyK92WB98WA+3mZr6/L9XW5vy7j6zK/Luvrsr8uz9fl13n5dV59nVdf59XXefV1Xn2dV1/n1dd59XVefZ1XX+f113n9dV5/nddf5/XXef11Xn+d11/n9dd5/XXe+TrvfJ13vs47X+edr/PO13nn67zzdd75Ou98nfd8nfesd8u+Xe6vy3j/edbbZX5d1rt73i776/LtvHp7Nj3P+++q3i7v5+V9fV2+72+8PWfvfn9ivF3G1+XbeeftvFtfl/11eb4un6/L+3m5Xq8Z1ue3xW9B9TbE+/C+FZLvQ85QM7wfe96H93Of9+GZ4X5+F/cWZDOs9+2I92HPEDPku1feh5qhZzgzvJ38fJxz33+1/Dbs93Pe1d+3X96f6ut9/+VzeN9d2e9Dz/C+v/J+zvsezOdwv4b3XZjP4f3A9//5fRHm4+T3VZjPr9TX7Xpfh/m4zu9W+RyeGe7XVX13y+ewZtgzxAxzk3Nucs5NfjfNxy3NucnvtvkY3n3zOayvO+HdMe+/T1jvlvkcaoae4czwfts//tX9Gt6N8zmsGfYMMUPOUDP0DGeGObnn5DMnnzn5zMlnTj5z8pmTz5x85uQzJ585+ZmTnzn5mZOfOfmZk585+ZmTnzn5mZOfOfnOyXdOvnPynZPvnHzn5Dsn3zn5zsn36+T9es2wZtgzxAw5Q83QM5wZnhnm5DUnrzl5zclrTl5z8pqT15y85uQ1J685ec/Je07ec/Kek/ecvOfkPSfvOXnPyXtOjjk55uSYk2NOjjk55uSYk2NOjjk55uSck3NOzjk55+Sck3NOzjk55+Sck3NOrjm55uSak2tOrjm55uSak2tOHg/u8eAeD+7x4B4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD+7x4B4P7vFgjAdjPBjjwRgPxngwxoMxHozxYIwHYzwY48EYD8Z4MMaDMR6M8WCMB2M8GOPBGA/GeDDGgzEejPFgjAdjPBjjwRgPxngwxoMxHozxYIwHYzwY48EYD8Z4MMaDMR6M8WCMB2M8GOPBGA/GeDDGgzEejPFgjAdjPBjjwRgPxngwxoMxHozxYIwHYzwY48EYD8Z4MMaDMR6M8WCMB2M8GOPBGA/GeDDGgzEejPFgjAdjPBjjwRgPxngwxoMxHozxYIwHYzwY48EYD8Z4MMaDMR6M8WCMB2M8GOPBGA/GeDDGgzEejPFgjAdjPBjjwRgP5ngwx4M5HszxYI4HczyY48EcD+Z4MMeDOR7M8WCOB3M8mOPBHA/meDDHgzkezPFgjgdzPJjjwRwP5ngwx4M5HszxYI4HczyY48EcD+Z4MMeDOR7M8WCOB3M8mOPBHA/meDDHgzkezPFgjgdzPJjjwRwP5ngwx4M5HszxYI4HczyY48EcD+Z4MMeDOR7M8WCOB3M8mOPBHA/meDDHgzkezPFgjgdzPJjjwRwP5ngwx4M5HszxYI4HczyY48EcD+Z4MMeDOR7M8WCOB3M8mOPBHA/meDDHgzkezPFgjgdzPJjjwRwP5ngwx4M5HszxYI0HazxY48EaD9Z4sMaDNR6s8WCNB2s8WOPBGg/WeLDGgzUerPFgjQdrPFjjwRoP1niwxoM1HqzxYI0HazxY48EaD9Z4sMaDNR6s8WCNB2s8WOPBGg/WeLDGgzUerPFgjQdrPFjjwRoP1niwxoM1HqzxYI0HazxY48EaD9Z4sMaDNR6s8WCNB2s8WOPBGg/WeLDGgzUerPFgjQdrPFjjwRoP1niwxoM1HqzxYI0HazxY48EaD9Z4sMaDNR6s8WCNB2s8WOPBGg/WeLDGgzUerPFgjQdrPFjjwRoP1niwxoM1HqzxYI0HazxY48EaD/Z4sMeDPR7s8WCPB3s82OPBHg/2eLDHgz0e7PFgjwd7PNjjwR4P9niwx4M9HuzxYI8HezzY48EeD/Z4sMeDPR7s8WCPB3s82OPBHg/2eLDHgz0e7PFgjwd7PNjjwR4P9niwx4M9HuzxYI8HezzY48EeD/Z4sMeDPR7s8WCPB3s82OPBHg/2eLDHgz0e7PFgjwd7PNjjwR4P9niwx4M9HuzxYI8HezzY48EeD/Z4sMeDPR7s8WCPB3s82OPBHg/2eLDHgz0e7PFgjwd7PNjjwR4P9niwx4M9HuzxYI8HezzY48EeD/Z4sMeDPR7s8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgMx58xoPPePAZDz7jwWc8+IwHn/HgMx58xoPPePAZDz7jwWc8+IwHn/HgMx58xoPPePAZDz7jwWc8+IwHn/HgMx58xoPPePAZDz7jwWc8+IwHn/HgMx58xoPPePAZDz7jwWc8+IwHn/HgMx58xoPPePAZDz7jwWc8+IwHn/HgMx58xoPPePAZDz7jwWc8+IwHn/HgMx58xoPPePAZDz7jwWc8+IwHn/HgMx58xoPPePAZDz7jwWc8+IwHn/HgMx58xoPPePAZDz7jwWc8+IwHn/HgMx58xoPPePAZDz7jwWc8+IwHn/HgMx58xoPPePAZDz7jwWc8+IwHn/HgMx58xoPPePAZD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD953D779qvx9WkybKZiSqZia6TA9TPdrevvPy3E5bsdwTMdybMfj+DiqtlRbqi3VlmpLtaXaUm2ptlRbqm3Vtmpbta3aVm2rtlXbqm3VtmqhWqgWqoVqoVqoFqqFaqFaqJaqpWqpWqqWqqVqqVqqlqqlaqVaqVaqlWqlWqlWqpVqpVqp1qq1aq1aq9aqtWqtWqvWqrVqR7Wj2lHtqHZUO6od1Y5qR7Wj2qPao9qj2qPao9qj2qPao9qj2qPaVe2qdlW7ql3VrmpXtavaVc0sWWbJMkuWWbLMkmWWLLNkmSXLLFlmyTJLllmyzJJlliyzZJklyyxZZskyS5ZZssySZZYss2SZJcssWWbJMkuWWbLMkmWWLLNkmSXLLFlmyTJLllmyzJJlliyzZJklyyxZZskyS5ZZssySZZYss2SZJcssWWbJMkuWWbLMkvXxFuJzCqb3l839MRXTh9LHGtdnjnyOj+Nl/MyRz3E5bseP2/Vx7meOfI7l2I7H8XG8jJ858jkux+2o2lHtqHZUO6od1Y5qj2qPao9qj2qPao9qj2qPao9qj2pXtavaVe2qdlW7ql3VrmpXtYvafr0cl+N2DMd0LMd2PI6Po2pLtaXaUm2ptlRbqi3VlmpLtaXaVm2rtlXbqm3Vtmpbta3aVm2rFqqFaqFaqBaqhWqhWqgWqoVqqVqqlqqlaqlaqpaqpWqpWqpWqpVqpVqpVqqVaqVaqVaqlWqtWqvWqpkl2yzZZsk2S7ZZss2SbZZss2SbJdss2WbJNku2WbLNkm2WbLNkmyXbLNlmyTZLtlmyzZJtlmyzZJsl2yzZZsk2S7ZZss2SbZZss2SbJdss2WbJNku2WRJmSZglYZaEWRJmSZglYZaEWRJmSZglYZaEWRJmSZglYZaEWRJmSZglYZaEWRJmSZglYZaEWRJmSZglYZaEWRJmSZglYZaEWRJmSZglYZaEWRJmSZglYZaEWRJmSZglYZaEWRJmSZglYZaEWRJmSZglYZaEWRJmSZglYZaEWRJmSZglYZaEWRJmSZglYZaEWRJmSZglYZaEWRJmSZglYZaEWRJmSZglYZaEWRJmSZglYZaEWRJmSZglYZaEWRJmSZglYZaEWRJmSZglYZaEWRJmSZglYZaEWRJmSZglYZaEWZJmSZolaZakWZJmSZolaZakWZJmSZolaZakWZJmSZolaZakWZJmSZolaZakWZJmSZolaZakWZJmSZolaZakWZJmSZolaZakWZJmSZolaZakWZJmSZolaZakWZJmSZolaZakWZJmSZolaZakWZJmSZolaZakWZJmSZolaZakWZJmSZolaZakWZJmSZolaZakWZJmSZolaZakWZJmSZolaZakWZJmSZolaZakWZJmSZolaZakWZJmSZolaZakWZJmSZolaZakWZJmSZolaZakWZJmSZolaZakWZJmSZolaZakWVJmSZklZZaUWVJmSZklZZaUWVJmSZklZZaUWVJmSZklZZaUWVJmSZklZZaUWVJmSZklZZaUWVJmSZklZZaUWVJmSZklZZaUWVJmSZklZZaUWVJmSZklZZaUWVJmSZklZZaUWVJmSZklZZaUWVJmSZklZZaUWVJmSZklZZaUWVJmSZklZZaUWVJmSZklZZaUWVJmSZklZZaUWVJmSZklZZaUWVJmSZklZZaUWVJmSZklZZaUWVJmSZklZZaUWVJmSZklZZaUWVJmSZklZZaUWVJmSZklZZaUWVJmSZklZZaUWdJmSZslbZa0WdJmSZslbZa0WdJmSZslbZa0WdJmSZslbZa0WdJmSZslbZa0WdJmSZslbZa0WdJmSZslbZa0WdJmSZslbZa0WdJmSZslbZa0WdJmSZslbZa0WdJmSZslbZa0WdJmSZslbZa0WdJmSZslbZa0WdJmSZslbZa0WdJmSZslbZa0WdJmSZslbZa0WdJmSZslbZa0WdJmyeei4fsHgz83DT+nxbSZgun9B8r1MRVTM73/KrY/poev3Zk+fs/7OS2mzRRMaDxoPGh8/Lr3c0LjQeOicdG4aFw0LhoXjYvGReOicUfjcw/xc1pMmymYkqmYmukwPUxoLDQWGguNhcZCY6Gx0FhoLDQWGhuNjcZGY6Ox0dhobDT4oPbhk9qHj2ofPqv9uab4OaERaAQagUagEWgEGoFGopFo5Dx3P1cWPyc0Pj7DvT6mZjpMz9cHuz8WFz+njw9yf06LaTMFUzIVU399CPxjgfFrepjuTO+G//iM+Ofu4vMxBVMyFVMzfS1BLDYY1/Gj3X622w93++luP97t57v9gPcPn/BGw8948yFvthkX64yLfcbFQuNio3Gx0rjYaVwsNS62GhdrjYu9xsVi42KzcbHauNhtXCw3LrYbF+uNi/3GxYLjYsNxseK42HFcLDkuthwXa46LPcfFouNi03Gx6rjYdVwsOy62HRfrjot9x8XC42LjcbHyuNh5XCw9LrYeF2uPi73HxeLjYvNxsfq42H1cLD8uth8X64+L/cfFAuRiA3KxArnYgVwsQS62IBdrkIs9yMUi5GITcrEKudiFXCxDLrYhF+uQi33IxULkYiNysRK52IlcLEUutiIXa5GLvcjFYuRiM3KxGrnYjVwsRy62IxfrkYv9yMWC5GJDcrEiudiRXCxJLrYkF2uSiz3JxaLkYlNysSq52JVcLEsutiUX65KLfcn1CHOQ5iDOQZ6DQAeJDiIdZDr8AHVAA5+zO7lYnlxsTy7WJxf7k4sFysUG5WKFcrFDuViiXGxRLtYoF3uUi0XKxSblYpVysUu5WKZcbFMu1ikX+5SLhcrFRuVipXKxU7lYqlxsVS7WKhd7lYvFysVm5WK1crFbuViuXGxXLtYrF/uViwXLxYblYsVysWO5WLJcbFku1iwXe5aLRcvFpuVi1XKxa7lYtlxsWy7WLRf7louFy8XG5WLlcrFzuVi6XGxdLtYuF3uXi8XLxeblYvVysXu5WL5cbF8u1i8X+5eLBczFBuZiBXOxg7lYwlxsYS7WMBd7mItFzMUm5mIVc7GLuVjGXGxjLtYxF/uYi4XMxUbmYiVzsZO5WMpcbGUu1jIXe5mLxczFZuZiNXOxm7lYzlxsZ64rvkV+iwAXCS4iXGS4CHGR4iLG5QeOy5fGfklyEeUiy0WYizQXcS7yXAS6SHQB6fKC6fIC6vKC6vIC6/KC6/IC7PKC7PIC7fKC7fIC7vKC7vIC7/KC7/IC8PKC8PIC8fKC8fIC8vKC8vIC8/KC8/IC9PKC9PIC9fKC9fIC9vKC9vIC9/KC9/IC+PKC+PIC+fKC+fIC+vKC+vIC+/KC+/IC/PKC/PIC/fKC/fIC/vKC/vIC//KC//ICAPOCAPMCAfOCAfMCAvOCAvMCA/OCA/MCBPOCBPMCBfOCBfMCBvOCBvMCB/OCB/MCCPOCCPMCCfOCCfMCCvOCCvMCC/OCC/MCDPOCDPMCDfOCDfMCDvOCDvMCD/OCD/MCEPOCEPMCEfOCEfMCEvOCEvMCE/OCE/MCFPOCFPMCFfOCFfPC5wufL3y+8PnC5wufL3y+8PnC5wufL9FNP7Cb0JDeJL5JfpMAJwlOIpxkOOHzhc8XPl/4fOHzhc8XPl/4fOHzhc8XPl/4fOHzhc8XPl/4fOHzhc8XPl/4fOHzhc8XPl/4fOHzhc8XPl/4fOHzhc8XPl/4fOHzhc8XPl/4fOHzhc8XPoe3tgGubYhrG+Tahrm2ga5tqGsb7NqGu7YBr23Iaxv02oa9toGvbehrG/zahr+2AbBtCGwbBNuGwbaBsG0obBsM24bDtgGxbUhsGxTbhsW2gbFtaGwbHNuGx7YBsm2IbBsk24bJtoGybahsGyzbhsu2BbNJZhPNJptNOJt0NvFs8tkEtEloE9Emo01Im5Q2MW1y2gS1SWoT1Sar7QdYm7S2H3BtaAhsk9gmsk1mm9A2qW34XG6b4DbJbaLbZLcJb5PeJr5NfpsANwluItxkuAlxk+Imxk2OmyA3SW6i3GS5CXOT5ibOTZ6bQDeJbiLdZLoJdZPqJtZNrptgN8luot1kuwl3k+4m3k2+m4A3CW8i3mS8CXmT8ibmTc6boDdJb6LeZL0Je5P2Ju5N3pvAN4lvIt9kvgl9k/om9k3um+A3yW+i32S/AX/b0N82+LcN/20DgNsQ4DYIuA0DbgOB21DgNhi4DQduA4LbkOA2KLgNC24Dg9vQ4DY4uA0PbgOE2xDhNki4DRNuA4XbUOE2WLgNF24DhtuQ4XaIZ5TPKKDxB0IjGjIahTRKaRTTKKcRn0OJ22DiNpy4DShuQ4rboOI2rLgNLG5Di9vg4ja8uA0wbkOM2yDjNsy4DTRuQ43bYOM23LgNOG5Djtug4zbsuA08bkOP2+DjNvy4DUBuQ5DbIOQ2DLkNRG5Dkdtg5DYcuQ1IbkOS26DkNiy5DUxuQ5Pb4OQ2PLkNUG5DlNsg5TZMuQ1UbkOV22DlNly5DVhuQ5bboOU2bLkNXG5Dl9vg5TZ8uQ1gbkOY2yDmNoy5DWRuQ5nbYOY2nLkNaG5Dmtug5jasuQ1sbkOb2+DmNry5DXBuQ5zbIOc2zLkNdG5Dndtg5zbcuQ14bkOe26DnNuy5DXxuQ5/b4Oc2/LkNgG5DoNsg6DYMug2EbkOh22DoNhy6nQJZJbKKZJXJ+gOUFQ2xrHJZBbNKZsXnMOk2ULoNlW6Dpdtw6TZgug2ZboOm27DpNnC6DZ1ug6fb8Ok2gLoNoW6DqNsw6jaQug2lboOp23DqNqC6Dalug6rbsOo2sLoNrW6Dq9vw6jbAug2xboOs2zDrNtC6DbVug63bcOs24LoNuW6Drtuw6zbwug29boOv2/DrNgC7DcFug7DbMOw2ELsNxW6Dsdtw7DYguw3JboOy27DsNjC7Dc1ug7Pb8Ow2QLsN0W6DtNsw7TZQuw3VboO123DtNmC7Ddlug7bbsO02cLsN3W6Dt9vw7TaAuw3hboO42zDuNpC7DeVug7nbcO42oLsN6W6Dutuw7jawuw3tboO72/DuNsC7DfFug7zbMO820LsN9W6XCGYZzEKYpTCLYf6Bw4yGJGZRzLKY8TkEvA0Cb8PA20DwNhS8DQZvw8HbgPA2JLwNCm/DwtvA8DY0vA0Ob8PD2wDxNkS8DRJvw8TbQPE2VLwNFm/DxduA8TZkvA0ab8PG28DxNnS8DR5vw8fbAPI2hLwNIm/DyNvF55h38TnmXXyOeRefY97F55h38znm3XyOeTefY97N55h38znm3XyOeTefY97N55h38znm3S/VlmpLtaXaUm2ptlRbqi3VlmpLta3aVm2rtlXbqm3Vtmpbta3aVi1UC9VCtVAtVAvVQrVQLVQL1VK1VC1VS9VStVQtVUvVUrVUrVQr1Uq1Uq1UK9VKtVKtVCvVWrVWrVVr1Vq1Vq1Va9VatVbtqHZUO6od1Y5qR7Wj2lHtqHZUe1R7VHtUe1R7VHtUe1R7VHtUe1S7ql3VrmpXtauaWdJmSZslbZa0WXLMkmOWHLPkmCXHLDlmyTFLjllyzJJjlhyz5Jglxyw5ZskxS45ZcsySY5Ycs+SYJccsOWbJMUuOWXLMkmOWHLPkmCXHLDlmyTFLjllyzJJjlhyz5Jglxyw5ZskxS45ZcsySY5Ycs+SYJccsOWbJMUuOWXLMkmOWHLPkmCXHLDlmyTFLjllyzJJjlnyiBj+nO9PHW479MS2mD6X1MYZjOpZjOx7Hx3G2gPdhx38fdvz3Ycd/H3b892HHfx92/Pdhx38fdvz3Ycd/n6Pao9qj2qPao9qj2qPao9qj2qPao9pV7ap2VbuqXdWuale1q9pVjR3//bDjvx92/PfDjv9+2PHfDzv++2HHfz/s+O+HHf/9sOO/n5dqS7Wl2lJtqbZUW6ot1ZZqS7Wl2lZtq7ZV26pt1bZqW7Wt2lZtqxaqhWqhWqgWqoVqoVqoFqqFaqlaqpaqpWqpWqqWqqVqqVqqVqqVaqVaqVaqlWqlWqlWqpVqrVqr1qq1aq1aq9aqtWqtmlnymCWPWfKYJY9Z8pglj1nymCWPWfKYJY9Z8pglj1nymCWPWfKYJY9Z8pglj1nymCWPWfKYJY9Z8pglj1nymCWPWfKYJY9Z8pglj1lyzZJrllyz5Jol1yy5Zsk1S65Zcs2Sa5Zcs+SaJdcsuWbJNUuuWXLNkmuWXLPkmiXXLLlmyTVLrllyzZJrllyz5Jol1yy5Zsk1S65Zcs2Sa5Zcs+SaJdcsuWbJNUuuWXLNkmuWXLPkmiXXLLlmyTVLrllyzZJrllyz5Jol1yy5Zsk1S65Zcs2Sa5Zcs+SaJdcsuWbJNUuuWXLNkmuWXLPkmiXXLLlmyTVLrllyzZJrllyz5Jol1yy5Zsk1S65Zcs2Sa5Zcs+SaJdcsuWbJNUuuWXLNkmuWXLPkmiXXLLlmyTVLrllyzZJrllyz5JIl8SJL4kWWxIssiRdZEi+yJF5kSbzIkniRJfEiS+L1Um2ptlRbqi3VlmpLtaXaUm2ptlTbqm3Vtmpbta3aVm2rtlXbqm3VQrVQLVQL1UK1UC1UC9VCtVAtVUvVUrVULVVL1VK1VC1VS9VKtVKtVCvVSrVSrVQr1Uq1Uq1Va9VatVatVWvVWrVWrVVr1Y5qR7Wj2lHtqHZUO6od1Y5qR7VHtUe1R7VHtUe1R7VHtUe1R7VHtavaVe2qdlW7ql3VrmpXtauaWbLMkmWWLLNkmSXLLFlmyTJLllmyzJJlliyzZJklyyxZZskyS5ZZssySZZYss2SZJcssWWbJMkuWWbLMkmWWLLNkmSXLLFlmyTJLllmyzJJlliyzZJklyyxZZskyS5ZZssySZZYss2SZJcssWWbJMkuWWbLMkmWWLLNkmSXLLFlmyTJLllmyzJJlliyzZJklyyxZZskyS2RIhgzJkCEZMiRDhmTIkAwZkiFDMmRIhgzJkCEZMiRDhmTIkAwZkiFDMmRIhgzJkCEZMiRDhmTIkAwZkiFDMmRIhgzJkCEZMiRDhmTIkAwZkiFDMmRIhgzJkCEZMiRDhmTIkAwZkiFDMmRIhgzJkCEZMiRDhmTIkAwZkiFDMmRIhgzJkCEZMiRDhmTIkAwZkiFDMmRIhgzJkCEZMiRDhmTIkAwZkiFDMmRIhgzJkCEZMiRDhmTIkAwZkiFDMmRIhgzJkCEZMiRDhmTIkAwZkiFDMmRIhgzJkCEZMiRDhmTIkAwZkiFDMmRIhgzJkCEZMiRDhmTIkAwZkiFDMmRIhgzJkCEZMiRDhmTIkAwZkiFDMmRIhgzJkCEZMiRDhmTIkAwZkiFDMmRIhgzJkCEZMiRDhmTIkAwZkiFDMmRIhgzJkCEZMiRDhmTIkAwZkiFDMmRIhgzJkCEZMiRDhmTIkAwZkiFDMmRIhgzJkCEZMiRDhmTIkAwZkiFDMmRIhgzJkCEZMiRDhmTIkAwZkiFDMmRIhgzJkCEZMiRDhmTIkAwZkiFDMmRIhgzJkCEZMiRDhmTIkAwZkiFDMj53PfNj2kzBlEzF9L4nUB/TYXqY3n/B0e/TEBUihqgQn7uen1MwJVMxoZFoJBofuyEfU6FRaBQahUahUWgUGoVGoVFoNBqNRqPRaDQajUaj0Wg0Go3GQeOgcdA4aBw0DhoHjYPGQeOg8aDxoPGg8aDxoPGg8aDxoPGg8aBx0bhoXDQuGheNi8ZF46Jx0RhySuSQUyKHnBI55JTIIafE565nfkzF1Pzt+SR1xMeu59d0Z3o3//Px/717/2vaTMGUTMXUTIfp+eRzxMeu5+f0bvmvaTHtT3pHfG54Ph9TMTXTYXqYvjZ0gg3PYMMz2PAMNjyDDc9gwzPY8Aw2PIMNz0jrvu37tvDbxu8fKr/RsPTb1m9rv+39pvibDc9gwzPY8Aw2PIMNz2DDM9jwDDY8gw3PYMMz2PAMNjyDDc9gwzPY8Aw2PIMNz2DDM9jwDDY8gw3PYMMz2PAMNjyDDc9gwzPY8Aw2PIMNz2DDM9jwDDY8gw3PYMMz2PAMNjyDDc9gwzPY8Aw2PIMNz2DDM9jwDDY8gw3PYMMz2PAMNjyDDc9gwzPY8Aw2PIMNz2DDM9jwDDY8gw3PYMMz2PAMNjyDDc9gwzPY8Aw2PIMNz2DDM9jwDDY8gw3PYMMz2PAMNjyDDc9gwzPY8Aw2PIMNz2DDM9jwDDY8gw3PYMMz2PAMNjyDDc9gwzPY8Aw2PIMNz2DDM9jwDDY8gw3PYMMz2PAMNjyDDc9gwzPY8Aw2PIMNz2DDM9jwDDY8gw3PYMMz2PAMNjyDDc9gwzPY8Aw2PIMNz2DDM9jwDDY8gw3PYMMz2PAMNjyDDc9gwzPY8Aw2PIMNz2DDM9jwDDY8gw3PYMMz2PAMNjyDDc9gwzPY8Aw2PIMNz2DDM9jwDDY8gw3PYMMz2PAMNjyDDc+gBjnoQQ6KkIMm5KAKOehCDsqQgzbkoA456EMOCpGDRuSgEjnoRA5KkYNW5KAWOehFDoqRg2bkoBo56EYOypGDduSgHjnoRw4KkoOG5KAiOehIDkqSg5bkoCY56EkOipKDpuSgKjnoSg7KkoO25KAuOehLDgqTg8bkoDI56EwOSpOD1uSgNjnoTQ6Kk4Pm5KA6OehODsqTg/bkoD456E8OCpSDBuWgQjnoUA5KlIMW5aBGOehRDoqUgybloEo56FIOypSDNuWgTjnoUw4KlYNG5aBSOehUDkqVg1bloFY56FUOipWDZuWgWjnoVg7KlYN25aBeOehXDgqWg4bloGI56FgOSpaDluWgZjnoWQ6KloOm5aBqOehaDsqWg7bloG456FsOCpeDxuWgcjnoXA5Kl4PW5aB2OehdDoqXg+bloHo56F4OypeD9uWgfjnoXw4KmIMG5qCCOehgDkqYgxbmoIY56GEOipiDJuagijnoYg7KmIM25qCOOehjDgqZg0bmoJI56GQOSpmDVuagljnoZQ6KmYNm5qCaOehmDsqZg3bmoJ456GcOCpqDhuagojnoaA5KmoOW5qCmOehpDoqag6bmoKo56GoOypqDtuagrjnoaw4Km4PG5oB4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4GBAPA+JhQDwMiIcB8TAgHgbEw4B4mBAPE+JhQjxMiIcJ8TAhHibEw4R4mBAPE+JhQjxMiIcJ8TAhHibEw4R4mBAPE+JhQjxMiIcJ8TAhHibEw4R4mBAPE+JhQjxMiIcJ8TAhHibEw4R4mBAPE+JhQjxMiIcJ8TAhHibEw4R4mBAPE+JhQjxMiIcJ8TAhHibEw4R4mBAPE+JhQjxMiIcJ8TAhHibEw4R4mBAPE+JhQjxMiIcJ8TAhHibEw4R4mBAPE+JhQjxMiIcJ8TAhHibEw4R4mBAPE+JhQjxMiIcJ8TAhHibEw4R4mBAPE+JhQjxMiIcJ8TAhHibEw4R4mBAPE+JhQjxMiIcJ8TAhHibEw4R4mBAPE+JhQjxMiIe58DnEw7dpMwVTMhVTMx2mhwkNfA7xMCEeJsTDhHiYEA8T4mFCPEyIhwnxMCEeJsTDhHiYEA8T4mFCPEyIhwnxMCEeJsTDhHiYEA8T4mFCPEyIhwnxMCEeJsTDhHiYEA8T4mFCPEyIhwnxMCEeJsTDhHiYEA8T4mFCPEyIhwnxMCEeJsTDhHiYEA8T4mFCPEyIhwnxMCEeJsTDhHiYEA8T4mFCPEyIhwnxMCEeJsTDhHiYEA8T4mFCPEyIhwnxMCEeJsTDhHiYEA8T4mFCPEyIhwnxMCEeJsTDhHiYEA8T4mFCPEyIhwnxMCEeJsTDhHiYEA8T4mFCPEyIhwnxMCEeJsTDhHiYEA8T4mFCPEyIhwnxMCEeJsTDhHiYEA8T4mFCPEyIhwnxMCEeJsTDhHiYEA8T4mFCPEyIhwnxMCEeJsTDhHiYEA8T4mFCPEyIhwnxMCEeJsTDhHiYEA8T4mFCPEyIhwnxMCEeJsTDhHiYEA8T4mFCPEyIhwnxMCEeJsTDhHiYEA8T4mFCPEyIhwnxMCEe5uZzzLlhIuSGiZAbJkJumAi5YSLkhomQGyZCbpgIuWEi5G7VWrVW7ah2VDuqHdWOake1o9pR7ah2VHtUe1R7VHtUe1R7VHtUe1R7VHtUu6pd1a5qV7Wr2lXtqnZVu6rBRMiAiZABEyEDJkIGTIQMmAgZMBEyYCJkwETIgImQ8VJtqbZUW6ot1ZZqS7Wl2lJtqbZU26pt1bZqW7Wt2lZtq7ZV26pt1UK1UC1UC9VCtVAtVAvVQrVQLVVL1VK1VC1VS9VStVQtVUvVSrVSrVQr1Uq1Uq1UM0vCLAmzJMySMEvCLAmzJMySMEvCLAmzJMySMEvCLAmzJMySMEvCLAmzJMySMEvCLAmzJMySMEvCLAmzJMySMEvCLAmzJMySMEvCLAmzJMySMEvCLAmzJMySMEvCLAmzJM2SNEvSLEmzJM2SNEvSLEmzJM2SNEvSLEmzJM2SNEvSLEmzJM2SNEvSLEmz5BPK+DktpveX0f0xBdOH0voYy7Edj+PjeBk/c+RznC3gtI857WNO+5jTPua0jzntY077mNM+5rSPOe1jTvuY0z7mtI857WNO+5jTPua0jzntY077mNM+5rSPOe1jTvuY0z7mtI857WNO+5jTPua0jzntY077mNM+5rSPOe1jTvuY0z7mtI857WNO+5jTPua0jzntY077mNM+5rSPOe1jTvuY0z7mtI857WNO+5jTPua0jzntY077mNM+5rSPOe1jTvuY0z7mtI857WNO+5jTPua0jzntY077mNM+5rSPOe1jTvuY0z7mtI857WNO+5jTPua0jzntY077mNM+5rSPOe1jTvuY0z7mtI857WNO+5jTPua0jzntY077mNM+5rSPOe1jTvuY0z7mtI857WNO+5jTPua0jzntY077mNM+5rSPOe1jTvuY0z7mtI857WNO+5jTPua0jzntY077mNM+5rSPOe1jTvuY0z7mtI857WNO+5jTPua0jzntY077mNM+5rSPOe1jTvuY0z7mtI857WNO+5jTPua0jzntY077mNM+5rSPOe1jTvuY0z7mtI857WNO+5jTPua0jzntY077mNM+5rSPOe1jTvuY0z7mtI857WNO+5jTPua0jzntY077mNM+5rSPOe1jTvuY0z7mtI857WNO+5jTPua0jzntY077mNM+5rSPOe1jTvuY0z7mtI857WNO+5jTPua0jzntY077mNM+5rSPOe1jTvuY0z7mtI857WNO+5jTPua0jzntY077mNM+5rSPOe1jTvuY0z7mtI857WNO+5jTPua0jzntY077mNM+5rSPOe1jTvuY0z7mtI857WNO+5jTPua0jzntY077mNM+5rSPOe1jTvuY0z7mtI857WNO+5jTPua0jzntY077mNM+5rSPOdssabOkzZI2S9osabOkzZI2S9osabOkzZI2S9osabOkzZI2S9osabOkzZI2S9osabOkzZI2S9osabOkzZI2S9osabOkzZJjlhyz5Jglxyw5ZskxS45ZcsySY5Ycs+SYJccsOWbJMUuOWXLMkmOWHLPkmCXHLDlmyTFLjllyzJJjlhyz5Jglxyw5ZskxS45ZcsySY5Ycs+SYJccsOWbJMUuOWXLMkmOWHLPkmCXHLDlmyTFLjllyzJJjlhyz5Jglxyw5ZskxS45ZcsySY5Ycs+SYJccsOWbJMUuOWXLMkmOWHLPkmCXHLDlmiQzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVIpgzJlCGZMiRThmTKkEwZkilDMmVI5ueuZ35MyVRMzXSY3vcE6mO6n1O9hqhQn7ue/TFtvhZMyVRMzXSYHiY0FhofuyGfExoLjYXGQmOhsdBYaCw0NhobjY3GRmOjsdHYaGw0NhobjUAj0Ag0Ao1AI9AINAKNQCPQSDQSjUQj0Ug0Eo1EI9FINBKNQqPQKDQKjUKj0Cg0Co1Co9BoNBqNRqPRaDQajf567tbnrufnhMa7/99JHfWx6/k1Lab9yd2oj13PrymZiqmZDtPDdGd6N/3z4Yp3z39NmymY8pPeUZ8bns/HdJgepjvTx+bX5/S1oVNseBYbnsWGZ7HhWWx4FhuexYZnseH59juOF9Ni2kzBlEzF1EyH6WFCY6Gx0FhoLDQWGguNhcZCY6Gx0NhobDQ2GhuNjcZGY6Ox0dhobDQCjUAj0Ag0Ao1AI9AINAKNQCPRSDQSjUQj0Ug0Eo1EI9FINAqNQqPQKDQKjUKj0Cg0Co1Co9FoNBqNRqPRaDQajUaj0Wg0DhoHjYPGQeOgcdA4aBw0DhoHjQeNB40HjQeNB40HjQeNB40HjQeNiwY+Z8Oz2PAsNjyLDc9iw7PY8Cw2PIsNz2LDs9jwLDY8iw3PYsOz2PAsNjyLDc9iw7PY8Cw2PIsNz2LDs9jwLDY8iw3PYsOz2PAsNjyLDc9iw7PY8Cw2PIsNz2LDs9jwLDY8iw3PYsOz2PAsNjyLDc9iw7PY8Cw2PIsNz2LDs9jwLDY8iw3PYsOz2PAsNjyLDc9iw7PY8Cw2PIsNz2LDs9jwLDY8iw3PYsOz2PAsNjyLDc9iw7PotC46rYtO66LTuui0Ljqti07rotO66LQuOq2LTuui07rotC46rYtO66LTuui0Ljqti07rotO66LQuOq2LTuui07rotC46rYtO66LTuui0Ljqti07rotO66LQuOq2LTuui07rotC46rYtO66LTuui0Ljqti07rotO66LQuOq2LTuui07rotC46rYtO66LTuui0Ljqti07rotO66LQuOq2LTuui07rotC46rYtO66LTuui0Ljqti07rotO66LQuOq2LTuui07rotC46rYtO66LTuui0Ljqti07rotO66LQuOq2LTuui07rotC46rYtO66LTuui0Ljqti07rotO66LQuOq2LTuui07rotC46rYtO66LTuui0Ljqti07rotO66LQuOq2LTuui07rotC46rYtO66LTuui0Ljqti07rotO66LQuOq2LTuui07rotC46rYtO66LTuui0Ljqti07rotO66LQuOq2LTuui07rotC46rYtO66LTuui0Ljqti07rotO66LQuOq2LTuui07rotC46rYtO66LTuui0Ljqti07rotO66LQuOq2LTuui07rotC46rYtO66LTuui0Ljqti07rotO66LQuOq2LTuui07rotC46rYtO66LTuiAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDgnhYEA8L4mFBPCyIhwXxsCAeFsTDunyOuS5MhLowEerCRKgLE6EuTIS6MBHqwkSoCxOhLkyEulu1UC1UC9VCtVAtVAvVQrVQLVRL1VK1VC1VS9VStVQtVUvVUrVSrVQr1Uq1Uq1UK9VKtVKtVGvVWrVWrVVr1Vq1Vq1Va9VataPaUe2odlQ7qh3VjmpHtaPaUe1R7VHtUe1R7VHtUe1R7VHtUe1R7ap2VbuqXdWuale1q9pV7aoGE6FfMBH6BROhXzAR+gUToV8wEfoFE6FfMBH6BROhXzAR+vVSbam2VFuqLdWWaku1pdpSbam2VNuqbdW2alu1rdpWbau2VduqbdVCtVAtVAvVQrVQLVQL1UK1UC1VS9VStVQtVUvVUrVULVVL1Uq1Uq1UK9VKtVKtVCvVSrVSrVVr1Vq1Vq1Va9VatVatVWvVjmpHtaPaUe2odlQ7qh3VjmpHtUe1R7WPtxyfUzC9v4zuj6mYPpTWx3gcH8fL+Jkjn+Ny3I6zBdz2Mbd9zG0fc9vH3PYxt33Mbz/Tezkux+0YjulYju14HB9H1ZZqS7Wl2lJtqbZUW6ot1ZZqS7Wt2lZtq7ZV26pt1bZqW7Wt2lYtVAvVQrVQLVQL1UK1UC1UC9VStVQtVUvVUrVULVVL1VK1VK1UK9VKtVKtVCvVSrVSrVQr1Vq1Vq1Va9VatVatVWvVWrVW7ah2VDuqHdWOake1o9pR7ah2VHtUe1R7VHtUe1R7VHtUe1R7VHtUu6pd1a5qZol9zG0fc9vH3PYxt33MbR9z28fc9jG3fcxtH3Pbx9z2Mbd9zG0fc9vH3PYxt33MbR9z28fc9jG3fcxtH3Pbx9z2Mbd9zG0fc9vH3PYxt33MbR9z28fc9jG3fcxtH3Pbx9z2Mbd9zG0fc9vH3PYxt33MbR9z28fc9jG3fcxtH3Pbx9z2Mbd9zG0fc9vH3PYxt33MbR9z28fc9jG3fcxtH3Pbx9z2Mbd9zG0fc9vH3PYxt33MbR9z28fc9jG3fcxtH3Pbx9z2Mbd9zG0fc9vH3PYxt33MbR9z28fc9jG3fcxtH3Pbx9z2Mbd9zG0fc9vH3PYxt33MbR9z28fc9jG3fcxtH3Pbx9z2Mbd9zG0fc9vH3PYxt33MbR9z28fc9jG3fcxtH3Pbx9z2Mbd9zG0fc9vH3PYxt33MbR9z28fc9jG3fcxtH3Pbx9z2Mbd9zG0fc9vH3PYxt33MbR9z28fc9jG3fcxtH3Pbx9z2Mbd9zG0fc9vH3PYxt33MHWZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmCVhloRZEmZJmiVplqRZkmZJmiVplqRZkmZJmiVplqRZkmZJmiVplqRZkmZJmiVplqRZkmZJmiVplqRZkmZJmiVplqRZkmZJmiVplqRZIkOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmSLUOyZUi2DMmWIdkyJFuGZMuQbBmS/bnrmR9TMx2mh+nONESF7iEqdA9RoT93PftjSr5WTM10mB6mO9NB46Bx0PjYDfmc0DhoHDQOGgeNg8aDxoPGg8aDxoPGg8aDxoPGg8aDxkXjonHRuGhcNC4aF42LxkVjyCl9hpzSn7uen9NmCqZkKqZmOkwPExoLjYXGQmOhsdBYaCw0FhoLjYXGRmOjsdHYaGw0NhobjY3Gnufu567nxxRofPh/rY9xO757ZH3+D+8eWedjLMd2PI6P42X88P/X+KH2fIzbMRw/1J7//P3v/p8//PVPf/inP//xf//uv/3H2x//57//5Z//7U//8pevP/7b//uv8zf/9Nc//fnPf/pf//ivf/2Xf/7j//j3v/7xH//8L//8/ne/e73/5/0h+++rf7/XP7z9z+v//NJ+/9LbNfjvvX5/1j/8/vOvz/39k+9/Hf6L8/u937+UfGmv3+9+/1LxpVy/z48v9d9L/ed//sN//n8=",
1898
1898
  "verification_key": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOQAAAAAAAAAAAAAAAAAAAAvs1MaAut2Xh9/SsnolYBvx0AAAAAAAAAAAAAAAAAAAAAAAymqaAaQ+XUEuLFaM5YKAAAAAAAAAAAAAAAAAAAAI7WTaoJvQWmPsaR12hLiQmgAAAAAAAAAAAAAAAAAAAAAAAJ/ahuesdqVXIYKo+opFgAAAAAAAAAAAAAAAAAAABnpHwOGJ9Jr6vDa3bHWVEs/wAAAAAAAAAAAAAAAAAAAAAAC0gxQYrAVw9StaaGczWPAAAAAAAAAAAAAAAAAAAA8NZpFUhTCg1YlRa8fD915ukAAAAAAAAAAAAAAAAAAAAAABBXcyTLJV7YbwtPk+i5dAAAAAAAAAAAAAAAAAAAAK3xKXDwg8TFx+r81VpRud1KAAAAAAAAAAAAAAAAAAAAAAAU372i6IO0p3CmoR0ViIsAAAAAAAAAAAAAAAAAAADFunDndx6feppwTrpTqt/55QAAAAAAAAAAAAAAAAAAAAAALiyv1jCwMn/WtuqqnOzyAAAAAAAAAAAAAAAAAAAA3J+iC51vSxyI3OkYkTJ40UMAAAAAAAAAAAAAAAAAAAAAABmV5V/36o0jDgAzx+hnNAAAAAAAAAAAAAAAAAAAADV5otdt/qbzpmJ/EATg0A/pAAAAAAAAAAAAAAAAAAAAAAANugdfOD9stK3hRoLzz7kAAAAAAAAAAAAAAAAAAABRqVMVrLosB+VmkFyiA8fe+QAAAAAAAAAAAAAAAAAAAAAALRXJhlEThvYyx5aj6xYIAAAAAAAAAAAAAAAAAAAAlEoA/7IzYwZt6GjuQ7Fr6CwAAAAAAAAAAAAAAAAAAAAAAApWFNAAL6XQBblXURvUVQAAAAAAAAAAAAAAAAAAAOkkjp9UzRL6LT11rTykKLG2AAAAAAAAAAAAAAAAAAAAAAAhJlbQ2a6VcoviRlVXZsYAAAAAAAAAAAAAAAAAAABmNpuINkicCu/nTeQoyho4tgAAAAAAAAAAAAAAAAAAAAAAIYOj2RD0NCBg2XjJ4akZAAAAAAAAAAAAAAAAAAAAJzF9LwqADNbKcfUoT8KtTa8AAAAAAAAAAAAAAAAAAAAAAA518y3hD5iLVkztpJIXywAAAAAAAAAAAAAAAAAAAB5J8PjTkTM7ZuCKjl4o1N0dAAAAAAAAAAAAAAAAAAAAAAAGAYYZQRXqMgE23QeNvXEAAAAAAAAAAAAAAAAAAACDqQDTFOp4DIDArZuFIzoM8wAAAAAAAAAAAAAAAAAAAAAACWWBWtbJb0b3DJB/sUm/AAAAAAAAAAAAAAAAAAAAzddxH9m3Wxos0sgmUx2zSUoAAAAAAAAAAAAAAAAAAAAAACslai25UE7q+UTCKPoK+AAAAAAAAAAAAAAAAAAAAIxmQDI7eSAz+S5QkEcVdUAXAAAAAAAAAAAAAAAAAAAAAAArMZvFQM3iF2BAFA9uU7cAAAAAAAAAAAAAAAAAAACljccyuWSSL0ME4ixdy6dfmQAAAAAAAAAAAAAAAAAAAAAALLdhhC8eGyGRXxH/XOd5AAAAAAAAAAAAAAAAAAAAf8++92oYeFgnIr97FrUVsDUAAAAAAAAAAAAAAAAAAAAAABUhCL45N9hBmhARVQbMsQAAAAAAAAAAAAAAAAAAANucIcEF1eevs9oXrzjvGVw3AAAAAAAAAAAAAAAAAAAAAAAn6IdmegibAWj6d/esywwAAAAAAAAAAAAAAAAAAADGokdEEQALpCuvgWCtQFlGGwAAAAAAAAAAAAAAAAAAAAAALJwRNlthS0T6JPAo8IMCAAAAAAAAAAAAAAAAAAAAhqWp9H0voBYAJjOVJD195BIAAAAAAAAAAAAAAAAAAAAAACPotP3XrxFA9wapJv87JgAAAAAAAAAAAAAAAAAAAI9348JIqSW4qqbPwS0TUDghAAAAAAAAAAAAAAAAAAAAAAAAyuqmeJ+5QwmxgFB4B6kAAAAAAAAAAAAAAAAAAAD0/vL/j2HTszL9MhNDFA4fSwAAAAAAAAAAAAAAAAAAAAAAGuF4hMZfCdDjdE2HYCaeAAAAAAAAAAAAAAAAAAAAeHzJuOYLmFUA2GrLC6KAcboAAAAAAAAAAAAAAAAAAAAAABORq4ndTLwmBHfxNd/h4wAAAAAAAAAAAAAAAAAAAFz1FYuBr5q/CQjWk/FnRPjVAAAAAAAAAAAAAAAAAAAAAAAflOOpRQ2CItrg3Kk0WIYAAAAAAAAAAAAAAAAAAACQkPB0Xi1xoZp5NDiMT9B/JAAAAAAAAAAAAAAAAAAAAAAAJ/hVlTjgzwJ0kH5gC4wtAAAAAAAAAAAAAAAAAAAA7WU9uPm2U2wcaGxSMC/aCcwAAAAAAAAAAAAAAAAAAAAAACtEG5oeAMCBMinxH9wtdAAAAAAAAAAAAAAAAAAAAEDSAEVYurpmhYO7S0yMJMjrAAAAAAAAAAAAAAAAAAAAAAApyLOWimsUZRAn7XMr8MUAAAAAAAAAAAAAAAAAAABIA1Ux2Njkc6zCwWJR1/k/0wAAAAAAAAAAAAAAAAAAAAAAH2+VgCT5h54u6Z3/MiagAAAAAAAAAAAAAAAAAAAAXoOuRny9gVt/2OVmYITX5WcAAAAAAAAAAAAAAAAAAAAAACkzab22TIJSwBjBqWmtegAAAAAAAAAAAAAAAAAAAF+53VPNsMMi1aPMuUVF873CAAAAAAAAAAAAAAAAAAAAAAAgu0QLSKjEmC6RySxUk9IAAAAAAAAAAAAAAAAAAABgKR2tiCmdW9Ysdv9J8UVzfgAAAAAAAAAAAAAAAAAAAAAAKm2kj/FVzFpHUZObqWXkAAAAAAAAAAAAAAAAAAAAdW9l/p6g30btGcSqU5BZyJYAAAAAAAAAAAAAAAAAAAAAABNBk3ysvGYi3p8CN2g4lgAAAAAAAAAAAAAAAAAAANXr6FcKDtpMVjP1oJGTFWWrAAAAAAAAAAAAAAAAAAAAAAAsVGOZynyYSKaJgYpeBq4AAAAAAAAAAAAAAAAAAACGY02qUdMXiBvVyuDpdzqS3wAAAAAAAAAAAAAAAAAAAAAABvcVU3mFQwzzlaQUsIZ8AAAAAAAAAAAAAAAAAAAAOKZhyY27GqdxRHhPdY+XyBIAAAAAAAAAAAAAAAAAAAAAABargRKaP4MFprKmpuXOsgAAAAAAAAAAAAAAAAAAAJ+sUeS0UHcUpAAIE11VA/XwAAAAAAAAAAAAAAAAAAAAAAAZkRvFPiG4UL24g/v9IJMAAAAAAAAAAAAAAAAAAAA0uX/t+CCt+eXIUl9rYU3ZFwAAAAAAAAAAAAAAAAAAAAAAJxTfU17E5pH8MUK2tF6sAAAAAAAAAAAAAAAAAAAAHLLZXThsUx3LHlijmcVxPpkAAAAAAAAAAAAAAAAAAAAAAA3vy46gOvZv4oFbYc4tiQAAAAAAAAAAAAAAAAAAAJ78mU4jRwH/V3oYacsoAP44AAAAAAAAAAAAAAAAAAAAAAAcJtsUk1heyA1TPlLkF/MAAAAAAAAAAAAAAAAAAADmm9/6YwBnxcYCs2yVbCtSGwAAAAAAAAAAAAAAAAAAAAAAL8gBL8wWCX4GUWapM1JFAAAAAAAAAAAAAAAAAAAAdPbmlyv1wyPlcBRSq2UjFhAAAAAAAAAAAAAAAAAAAAAAAAU0PgkbR2izW18OMHttNwAAAAAAAAAAAAAAAAAAAGBa8GdzeW0IMc+e3oAjU5KbAAAAAAAAAAAAAAAAAAAAAAAjCGaaJvtFv6UXJSyi/zAAAAAAAAAAAAAAAAAAAACFBFQPUBoI5wLhzMYCIxTv1wAAAAAAAAAAAAAAAAAAAAAAAFEAR9JdowAzwzoxSKQnAAAAAAAAAAAAAAAAAAAAfqr3z2SWtC8tqVh5EYaSnM8AAAAAAAAAAAAAAAAAAAAAACAhkGD6NGO6+hHDVwgp/QAAAAAAAAAAAAAAAAAAAJW12Le0pjsF32UrDRDvFG0mAAAAAAAAAAAAAAAAAAAAAAAJnjvVoKAKt/4YBAEFubMAAAAAAAAAAAAAAAAAAAAhKa86Y39aYioyRA+GDR4qfwAAAAAAAAAAAAAAAAAAAAAAABW40lFdduLM7Jnc0ZRZAAAAAAAAAAAAAAAAAAAAIiuIgQjcJdGqRQ4LS8ISw34AAAAAAAAAAAAAAAAAAAAAABuRdReSC609i8AclZUJKgAAAAAAAAAAAAAAAAAAAEghQcfr5CAAodWMy3Q4H20ZAAAAAAAAAAAAAAAAAAAAAAAwXomSsUju2yLm6ZIHeoQAAAAAAAAAAAAAAAAAAAA47Y2iN1GGtRjHNFxgsRNLLQAAAAAAAAAAAAAAAAAAAAAABh9kSXmW6JFXIlAenjZ5AAAAAAAAAAAAAAAAAAAAKtPXy1l5LhHA0mkfMX/VDm4AAAAAAAAAAAAAAAAAAAAAABuE04M5Mh9AXrr2ovgwhAAAAAAAAAAAAAAAAAAAACjt0afkbIQNnJQ/30VSHGTOAAAAAAAAAAAAAAAAAAAAAAAEPQY7Ewrfs3NCr0XQFVoAAAAAAAAAAAAAAAAAAACTMJUq50xXPRaG2ctKAHM4VAAAAAAAAAAAAAAAAAAAAAAAJhUixAiTMGRq/5ZzYZSUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADeJ7jEj+PMhWV4AQRHHYI0ZgAAAAAAAAAAAAAAAAAAAAAAA+RgguCElnNNKSHJp4DmAAAAAAAAAAAAAAAAAAAAyBxFjhhdDIOvyhrmjGABQ0sAAAAAAAAAAAAAAAAAAAAAAATBSRh6BOpixtylLtMDSAAAAAAAAAAAAAAAAAAAAGvMegX/lalrKJQkxfczZw2WAAAAAAAAAAAAAAAAAAAAAAAAxDcm91tv2g3iLODg36sAAAAAAAAAAAAAAAAAAAAdCgnXF47JO614WPluZPC0jQAAAAAAAAAAAAAAAAAAAAAAL5tuC04sAZaN5cMkgqp9AAAAAAAAAAAAAAAAAAAAFLmaKhz1vbFNGPy31tW7G0MAAAAAAAAAAAAAAAAAAAAAABibwBFKqYLGRXSxHbsAPgAAAAAAAAAAAAAAAAAAAIFYESpGMQpiuEn23VYsLIaUAAAAAAAAAAAAAAAAAAAAAAASkF6WwsjbCGXWk491oyQ="
1899
1899
  },
1900
1900
  {
@@ -1907,153 +1907,14 @@
1907
1907
  "parameters": [],
1908
1908
  "return_type": null,
1909
1909
  "error_types": {
1910
- "361444214588792908": {
1911
- "error_kind": "string",
1912
- "string": "attempt to multiply with overflow"
1913
- },
1914
- "992401946138144806": {
1915
- "error_kind": "string",
1916
- "string": "Attempted to read past end of BoundedVec"
1917
- },
1918
- "1998584279744703196": {
1919
- "error_kind": "string",
1920
- "string": "attempt to subtract with overflow"
1921
- },
1922
- "2967937905572420042": {
1923
- "error_kind": "fmtstring",
1924
- "length": 61,
1925
- "item_types": [
1926
- {
1927
- "kind": "field"
1928
- },
1929
- {
1930
- "kind": "field"
1931
- }
1932
- ]
1933
- },
1934
- "3330370348214585450": {
1935
- "error_kind": "fmtstring",
1936
- "length": 48,
1937
- "item_types": [
1938
- {
1939
- "kind": "field"
1940
- },
1941
- {
1942
- "kind": "field"
1943
- }
1944
- ]
1945
- },
1946
- "3670003311596808700": {
1947
- "error_kind": "fmtstring",
1948
- "length": 77,
1949
- "item_types": [
1950
- {
1951
- "kind": "integer",
1952
- "sign": "unsigned",
1953
- "width": 32
1954
- }
1955
- ]
1956
- },
1957
- "4261968856572588300": {
1958
- "error_kind": "string",
1959
- "string": "Value does not fit in field"
1960
- },
1961
- "4440399188109668273": {
1962
- "error_kind": "string",
1963
- "string": "Input length must be a multiple of 32"
1964
- },
1965
- "9791669845391776238": {
1966
- "error_kind": "string",
1967
- "string": "0 has a square root; you cannot claim it is not square"
1968
- },
1969
- "9885968605480832328": {
1970
- "error_kind": "string",
1971
- "string": "Attempted to read past the length of a CapsuleArray"
1972
- },
1973
- "10135509984888824963": {
1974
- "error_kind": "fmtstring",
1975
- "length": 58,
1976
- "item_types": [
1977
- {
1978
- "kind": "field"
1979
- }
1980
- ]
1981
- },
1982
- "10791800398362570014": {
1983
- "error_kind": "string",
1984
- "string": "extend_from_bounded_vec out of bounds"
1985
- },
1986
- "11021520179822076911": {
1987
- "error_kind": "string",
1988
- "string": "Attempted to delete past the length of a CapsuleArray"
1989
- },
1990
- "11692359521570349358": {
1991
- "error_kind": "fmtstring",
1992
- "length": 40,
1993
- "item_types": []
1994
- },
1995
- "12327971061804302172": {
1996
- "error_kind": "fmtstring",
1997
- "length": 98,
1998
- "item_types": []
1999
- },
2000
- "12469291177396340830": {
2001
- "error_kind": "string",
2002
- "string": "call to assert_max_bit_size"
2003
- },
2004
- "12913276134398371456": {
2005
- "error_kind": "string",
2006
- "string": "push out of bounds"
2007
- },
2008
- "13557316507370296400": {
2009
- "error_kind": "fmtstring",
2010
- "length": 130,
2011
- "item_types": [
2012
- {
2013
- "kind": "integer",
2014
- "sign": "unsigned",
2015
- "width": 32
2016
- }
2017
- ]
2018
- },
2019
- "14938672389828944159": {
2020
- "error_kind": "fmtstring",
2021
- "length": 146,
2022
- "item_types": [
2023
- {
2024
- "kind": "integer",
2025
- "sign": "unsigned",
2026
- "width": 32
2027
- }
2028
- ]
2029
- },
2030
- "14990209321349310352": {
2031
- "error_kind": "string",
2032
- "string": "attempt to add with overflow"
2033
- },
2034
1910
  "15764276373176857197": {
2035
1911
  "error_kind": "string",
2036
1912
  "string": "Stack too deep"
2037
- },
2038
- "16431471497789672479": {
2039
- "error_kind": "string",
2040
- "string": "Index out of bounds"
2041
- },
2042
- "17531474008201752295": {
2043
- "error_kind": "fmtstring",
2044
- "length": 133,
2045
- "item_types": [
2046
- {
2047
- "kind": "integer",
2048
- "sign": "unsigned",
2049
- "width": 32
2050
- }
2051
- ]
2052
1913
  }
2053
1914
  }
2054
1915
  },
2055
- "bytecode": "H4sIAAAAAAAA/+29CZhdV3Umuk/VValuVUlX8zxcyZIsybJs2diYycbIk2zZsi1rti2VbWHLGpFKk22ZJA4dIBgChLwkJGF4ockATWgICXnp/kIg4UscXujwAomTNAl5eUACxAlDhkeH5uCzVH/99Z99zzl3lXRBtb9PqnvPXutfa6+99trj2TcJz6eV2d/duwcfG9r74O5DR3fvOzS09+ihwQPHdu8+dvrQg7uPHN13YnBo7+5jQ9/9P6VNMp5aqJiSisLPLH6evjfj6wK87u/+a4Zi4ntJj3L8P/TqXgYsxR++x5+EqvKfL3/KU7H8occUAX7UxXAnfvdfP3y+heRX1P/V7eo/LaKz1c16oG+GQmmC8d6geL9x7HP/+ZmnP/SJXxp673t+auqzk36mf03fq1/zmn+c/7UFP/vca/5P470RdEpCYdk9xn+Tkn3tb3TvfOSD/364/+anPnDy2T+/4/ikBYO/u/i179n5e29e/OXd/8l4b1a8X3rD21/d+MBb3tm85FPf7Ln5TV/Z/fUNE6559lNPzP34j3z7y8+91XhvUbx/svPbf/XhxlsfO/X0Rx+/ZuX0wfe99XP/9PeffOa/NL7+N+9/1eeuMt4NUOYq7fDWavxTjP824K+Fcu0oTRur8Z/V//Zq/F3Gfwc8bNqHH/7FX/qr65/+1OV/++2+198++KOnrvzxz2z76mNz3rv87x59/4L3TTXeTYr3C0Pr3zw0++DVX+3946fXvWv+ws9/470f/uK3Tu+95itf/NJHlnzdeO8UvHOuuPhFR3760zP+cuXSv3j577xv7U/O/cayl/7lb97yruf+/Q/+NQzb7C4oc4k6O1vmu6vx14x/czX+buO/Bx424zwWZs6WfUs12Wf5t2rZyVNLj/0f9aeT23/3Ry798EDf7375+ne8Yv2nnvnR1y9uvO8dxrtN8K5+af2597z+ydeEv37vP7zxW6t/++WXTl10/dS1/8/bPzv/0NFdc58z3u3V9F5g/DuAn3SPJuPfGUbrXpR3VzXZZ9voveVln+W9rzzvWT+/38BCKZuf7Yt2V+OvG/+eavx9xj8I/CX6s6bxP1CN/3Ljf7Aa/zrjfwgeNkOh9BLj3QuyS9ju5cb/SuAvofv1xv9wNf6bjP+Ravz3GP++avyDxv9oNf4HjX9/Nf6HjP9ANf69xn+wGv8rjf9QNf6Hjf9wNf5HjP9INf59xv8qeNgMhdKjxnu0muwDxn+sGv9B4x+qxn/I+I9X4z9s/Ceq8R8x/pPV+I8a/6lq/MeM/3Q1/iHjf6wa/3Hjf7wa/wnjf6Ia/2njP1ON/3Hjf7Ia/5m+8Pxce8K85x+k8+9lWebxoX0H9g2dvv7Ysb1Hh9YfPnhkcGjfAwf2bjo6+OCBvVv3Hj227/AhBkzo+/qc56mcOSPl3Lx3aMvzn9Yf/u6yzKmhCYSb0Pcu+t5N32v03fAm5PAxT6tk6wo9pGOzGPudAxn9RNIHsXtJz2YolBYmhBfCyHIGwq+TLiXlJQnhmTwun9WZlb0udGmIPLZxXcipCzkNkXfAEeukI9ZBR6zjjlieZTzmiHXEEWvIEeuQI9agI5an7T3b0KkOxdrniOXpE5629/Sv/Y5Ynm3b0ycedcTyjNGPO2J1av9oY2wbO+BYI8n5a3L4mcmpE1bVcY8qV6+QF6OfGKHvK4ifjqsb2edsXH3D3geOP7zx8MOBEg91b8xRcQHRbYmoxrgJ/ePnC+hZt6DFlBZvVvY5K95Ne4cefOSewYcf3vvQdwt5jDkY6Yac5zwgRRobjPeRps1QKHUVcUrEr5MuVZ1SOY1qbKlVp2WfM6tuPDz40PrBI8eOH9jL0yycIrBVEBWfqTpNQDN81k10N9D3DYIvCOw032pugJ43Q6E0ybxiksi0vMmAPZHyGpBXp7wpgPUQ0HHicmJ5vrdlPm8Yl+lYV6yryZTXD3kNkM113ifkWNm6BH0/YfUJPquXVvK6BR9PWWPT6iIt0cqRpoaQwfU4BhFjRqdHDCtffzV50xPiR3mIafqYrQdEnmFZG+3JwTLeGtF/JPvbILo07SQZA0JffGb2SZeYPki6o23ZT9qxI+KZXvgM8euhLb9MYvWG5WM/qRh/pxWxO+rD8Zpti3GvJwfLeGtE//HsbyOM7hPYTyYJffEZ+sl/J93RtuwnFe14fVE/Mfx6aMsvk1i9YfnYTyZVk/fyInZHfVTfjbbFPrAnB8t4a0T/6exvg+jSxH4yWeiLz9BPnsk+9+bo2wyF0kk1pmE/Q7uUObpR1M8Mvx7aqvckZkfV3tS4zHgbIo+XnRtCTkPIaYi8k45Yxx2xHnXEOuCIdapDsY44Yg05Yh1yxBp0xDrqiOXp951or1g/VBYrTZ6+etoR67AjlqevepZxnyNWp7btM45YDzhi2XEIHucZfpp6w+i2V3ZugnimJz5D/DrpUlJeErOLGjNa+aZUkzc1IX6Uh5imj9l6qsgzLFtl7MnBMt4a0c/NDNogujTxmHqq0Bef4ZjaFlomC315faGsPyI/2wj52B/bqS/EMz3xGeLXQ1v+n8T8Q9nFyje1mrwpReoX9TFbTxN5hjU9+96Tg2W8NaJfRf44DXRif5wm9MVn6I/LkpG6o23ZTyra8caifmL49dCWXyaxesPysZ9MqybvhiJ2R33M1tNFnmHNyL735GAZb43oryY/mQ46sZ9MF/riM/STdRlub46+zVAscRsxDMRGuxSvh+SfivqZ4ddDW/WexOyo2puVb0Yleclz7BsoDzFNH7P1TJFnWLa32ZODZbw1or+B/AxlsG9YHuqLz9DPrqN4hLZlP6lmx/CKon5i+PXQjl8O+4mqN9XerHwzq8m7vojdUR+z9SyRZ1izs+89OVjGWyP6u8hPZoFOHI9mCX3xGfrJxgx3stCX199j7QVxG4Lf6JTPlYh7u1WdluB/lfHPqsZ/yup4Njzk9jQHnpfwt3VF25Ph10mXqu1pDsnj8vEa7FyhS4Py0vQI0HFet3jWFcE67Ih1wBFr0BHrUUeso45Y+xyxjjhiHXPE8vSJ/U5YKk62o9cpR71mOmGl6aQj1mlHrEFHrDOOWJ6x0LM9Djliedbjk45Ynj7haXuvth2cy+jpE8cdsTo1TnjqdSGMmcb7tPNne8/2eNARy6uM6edZTlieeqXJazzhXUbev8O5ZZL97RU6lJi3XpsQnumJzxC/TrqUlJfE7ILl43nyPKFLg/LSxPPkeULOPCFHYR12xDrgiDXoiOVZxiOOWEOOWKcdsTxtf8YRa7wey2E96Yjl6RP7HbGOO2J5xq9Tjlietvf0VU/bd2r88vRVT/865ojlWY+e/uXZhjz966Qj1j5HLM8ydupYzrOMnuOJTq1HT9t7jeXSz7OcsNLUqeMczzHm+HjiB6MNecYJT728/Cv9PNMJK02POWJ52t5zDGB9LZ8bM/w0tbkGtiQhPNMTnyF+PYyuS681MHUGzco3r5q8ZpF6QH3M1vNFnmHZnSU9OVjGWyP6W7JCNYQMPqNneagvPsOzV+uzL5OFvu3uRSA/2wj52B8r1ld3UX80/Hpoy/+TmH8ouyj/MF5Vr2z/ovUaw+J1YctPU6/gK2GPRlH7G349tFXfScwuKk5a+RZUkzeZ2zDKQ0zTx2y9UOQZ1qLse08OlvHWiH6Q4sFC0GknyVgo9MVnGA/uzb705ujbDIXSBmXrEvwv7g2jbVeC/3bjX1SN/0bjX1yNf3Mv0Zfkv9n4l1Tj3278S6vx32H8F1Xjv8H4l1Xj32htZzk85Di1Ap6XaMd3FI1Thl8nXarGqRUkj8vH/cTFQpeGyOM2erGQc7GQ0xB5Q45Yjzti7XPEOuqIdcQRa78j1qAj1jFHrAOOWKc6FMvTVw85YnnZXvXrneKrnu3xtCNWp7bHxxyxPNtQp9r+sCOWZ5zw7Gs9Y7Sn7T3t1an+5Tk28axHT9tfCHHijBNW+nmhI9YiR6zFHYiVplc66tV0xPK0/YwO1WuJI1aPE1aaPH1iqSPWRY5YnvXoqZenr3ZiLEzTI45Ynr7qVY+eeqWpU+3l6avLHLE827ZX/ErTk45Yg45YBx2xPNcUPMfknnMFz7VHG9/bOjaueyfZ394w2i/L7sUhnumJzxC/TrqUlJfE7ILl473GldXkTUqIH+Uhpuljtl4l8gxrdfa9JwfLeGtEPzszbIPo0sR7jauEvvgM9xqnZbi9Ofo2Q6G0ZiCMthX7GdqlRD2sKepnhl8PbdV7ErMjlo/3ilYLXRqUl6aHgY7zusWzrgjWcUesxxyxhhyx9jtiDTpiHXHE8rTX445Y+xyxjjpiedq+U/3rmCPWAUesUx2K5emrhxyxPG3v6V8HHbFOOmJ59mmebcjT9qedsNLPs5ywvMt4xhHrAUesJ52w0s8XO2GlydP2nv2jZyz0HOd4xgnP+NWp40KrRztnjnGDzzkXvTtUnTM3ugHBl2R/21x7KHxXOq89zKomL7r2oOzS5pz37F3psbk86qPmoBybLsm+9+RgGW+N6J+itQeUwe89FPXPdO3hyQx3stCX+7Sya2HIb3Q/aHIGBB+3r4r+N6Fo++I1l4rtObrmouxSZs1F2b8TxltjhWX+tyoip+gaofK/VT+gcgYEH7cntHcJ/y78u3qGXw9ttd8k5k/KLlb2S4QuDZHH5wIuEXIuEXIaIu+kI9ZxR6xHHbEOOGKd6lCsI45YQ45YhxyxBh2xTjhiebYhz3p83BFrnyPWaUcsz7bt6V+ebcgzrl4Itj/miOUZo3kNAMczvSSn7FgU+Y1OjZvSf81QKN3dG0aPPUrwbzX+NdX4N9m46FJ4mGR/DXstPC8xRnsqIbwQ9JjQ8OukS0l5Z8eEa0kel4/HhJcJXRoij9+BvEzIuUzIaYi8IUesxx2x9jliHXXEOuKItd8Ra9AR64Qj1klHLE/bd6qvnnbEOuCI5elfnjHnuCPWhWD7Y45YnmU81aFYnm37kCOWl+3TzwucsNLk6audOgbwxPK013i/Pd5vj/fb4/12K6zxfvv7v99Ok6e9OtVXH3PE8rSXZ8zxtP1hRyzPNuTZb3dqjO7U8YRnGT3Hvp716Gn7CyFOnHHCSj/3OGKtdsTyWidPP1/ihJWmVzpiPeKElX5e5Ig1wxFrqSPWGiesNF0Itl/oiLXYEavpiOVpL89YuMwJK01eMcc7rnq17TR1antc4oTlXUZPv/fstz1t7xlzPPXytJfX2MS7jBc5Ynn5apoedtTLMxZ62t6r7/CuR8/26Bm/PO3lWY+e/eOTjliDjlgHHbE895o81yc81008zw3x/UV4Zi3J/vaG0X6ZymmGQqk/ITzTE58hfp10KSkvidkFy2d2sbJfLnRpUF6a+B6gy4Wcy4WccaxxrPOFxWdMDT9NvWG0/5dob8uKtm/Dr4e24kkSs4uKe1b2dUKXhsjjOfw6IWedkNMQeScdsY47Yj3qiHXAEetUh2IdccQacsQ65Ig16Ih1whFrnyOWZ3s87Yjl6V+e9jrqiOXpX55tyDOuevqEZ1zt1Lbt2R4929Djjlie7fFC8K9jjlieYwB+pw/Hy/xOX9kxO/Ib3YDgS7K/vaRfEkqNod+aEJ7pic8Qvx5Gl7nKmF3ZX9nFyn6F0KUh8ngd9goh5wohpyHyhhyxHnfE2ueIddQR64gj1n5HrEFHrBOOWCcdsTxt36m+etoR64Ajlqd/ecac445YF4LtjzlieZbxVIdiebbtQ45YXrZPPy9wwkqTp6926hjAE8vTXp79tqftPccAnjHaczzRqb7q6V/j/fYPRtseH5OP+xfnjY8Lz59/deK4ME2e9upUX33MEcvTXp4xx9P2hx2xPNuQZ9/RqTG6U/s0zzIedcTyrEdP218IceKME1b6uccJK02vdNRrtRNWmh5x1Mtzf8jTXsscsWY4Yi11xFrjhJUmT59Y5IjlaXuvtu3ZHj3bUPr5EiesNHm1xzRdCP610BFrsSNW0xGrU9ujV7xPk2c/5Nm2vfqONHVqe1zihOVdRk+/9+w7PG3vGXM89fK0l1f/6F3GixyxvHw1TQ876uUZCz1t7zlX8KxHz/boGb887eVZj57945OOWIOOWAcdsTz30zzXv446Ynmee+R3etdAXpL9bfP8cF9CeKYnPkP8OulSUl70/DCWz+xS5vxwmvidy3bsP441jpWHZe8OYLvj31gs+44C8hvdgODjto9to0RbXFO07Rt+PbQVa5KY/ZVdrOxXCl0aIo/HQlcKOVcKOQ2Rd8QR65Qj1qOOWMcdsR53xDrgiHWyQ/Xa74g16Ih1xhHrAUesJx2xPO015Ijl2R5PO2J5+r1nLPSsx4OOWJ4xx9Mnjjliedp+X4fqdcIRy9MnPMcmnv22Zz12avzy9C/P9tipMdoTy9O/Djlime15rcLw09RLfEkoNXdamBCe6YnPEL9OupSUl8TsoubKVvYXCF0aIo/3Yl8g5LxAyGmIvJOOWMcdsR51xDrgiHWqQ7GOOGINOWIdcsQadMQ64Yjl2YY86/FxR6x9jlinHbE827anf3nq5VmPnnp5xglPn/Csx2OOWJ7xnu/hwbER38NTdnyG/EY3IPiS7G9vGD1GKTFe+k8J4Zme+Azx62F0mauMz5T9lV2s7FcJXRoij89OXCXkXCXkNETekCPW445Y+xyxjjpiHXHE2u+INeiIdcIR66QjlqftO9VXTztiHXDE8vQvT70869FTL8+46ukTnvV4zBHL0/anOhTLM04ccsTysn36eYETVpo8fbVTxxOeWJ72Gh8DjI8BxscA42OAVljjY4DxMcBY2qtTffUxRyxPe3VqnDjsiOXZhjq17/C0faeOTTzL6DmO9qxHT9tfCHHijBNW+rnHEWu1I5bX+n36+RInrDS90hHrESes9PMiR6wZHaqXVz1667XUCStNnj7hWY8LHbEWO2I1HbE87eUZV5c5YaXJK355x+hObUOecWKJE5Z3GT393nMM4Gl7z5jjqZenvTq1f7zIEcvLV9P0sKNenrHQ0/ZefYd3PXq2R8/45WmvTh1jPumINeiIddARy3MPzHOtw3MNxvNsFN/VMQPykuyvnTHEWJfKaYZCqZYQnumJzxC/Hka37xLyzp4xnE/yuHxmFyv7AqFLg/LSxPcyLBByFgg55wpL1Vf6rxkKpS29YbQ9SvDvN3suhIfsS9gPlKjbOUV9yfDrpEtVX1pM8rh87EtNoUtD5MXqqFs868rBStOQE1aruj9feqXpuBNW+nnACStNnmUcdMQ65oh1yhHrkCOWp71OO2I94Yh1whHrgCOWp+2POGLtd8TyLOMZR6wHHLFsbmD9F46dkuyvGhcU70uTv04Iz/TEZ4hfD6P7yCp9txpTYfnMLu2NTZLPJ8SP8hDT9FFjBe53bV7ak4NlvDWifzp7kUj1e1NJhuWhvvjM7DPhu/9e2ztSd7Qt+0nFMd6kon7CY7xqfhkf46mxt5WvWU3eQBG7oz5m62Uiz7BsPbEnB8t4a0T/s+Qny0AnnpssE/riM/STt2W4k4W+awk31l4QtyH42UbIx/7YhOdl6wvxTE98hvj10Jb/JzH/UHax8i2rJq+/SP2iPmbr1SLPsGxNuicHy3hrRP8r5I+rQSf2x9VCX3yG/vge8scmYM0j3KbAbQrchuA3OuVzjBNJf6PqtAT/O41/dTX+VcZ/STX+31TvpZbg/4jxX1WN/4eN/+pq/PcZ/wur8a80/muq8V9p/C+qxv8l439xNf5bjP8l1fg/avwvrcb/ZuN/WTX+9cZ/bTX+bxr/ddX432r8L6/G/5zxX1+NPzH+9cBfok9oGv+N1fi7Td8b8KHQyfCtT3kF0Cc5fw2L80xWnbBK6p7EdEf9uB+4AeRhGfOwbiiJ1SvyqtTJ+pBfLsQfiOjCeqaJ56NVy5ym/U5Y6eelTlhpOumoV9MJK00POuq1zBFrtSPWJY5YPY5YixyxXuCIdVWHYi1xxLraEeuFjljXOGK9yBHrxU5YaXrCUa+XOGGl6YSjXi91xHqZI1bTEetaR6zrHLFe7og1tUOxrs8+27oE9ksrSE6PkNMTkYP8Rtcr+Jr24RvHPvefn3n6Q5/4paH3vuenpj476Wf61/S9+jWv+cf5X1vws8+95heNF/u7EuPPbW2uw003/iXV+KcZ/9Jq/FPbXGe7gddkAvJe+xvdOx/54L8f7r/5qQ+cfPbP7zg+acHg7y5+7Xt2/t6bF39594+p9ZgSsq9v756wJPB6TAjl7XZ1JdlhsVqLKaH7c2otpqswf+hVazEl+K9WazEl+F/IazEBeJd99rcm/suvvKn2X//sucMnv7n6rX9489P//Vdf+pZPXXrtD23+25/62u1qHabMXoxaR6myjnBdNf7Jah2lBH+vWkcps6fX5jrKAM/ZA/J+6Q1vf3XjA295Z/OST32z5+Y3fWX31zdMuObZTz0x9+M/8u0vP/eTvAYzgvdPdn77rz7ceOtjp57+6OPXrJw++L63fu6f/v6Tz/yXxtf/5v2v+txZn7upmt79xn9zNf4Zxn9LELpHU/K99frV9ee/Wb+YnM0NYSJ8traUpglheF1oC9GkqUb0t0wZ5lubyRsgngCfe4m/pE3mYhksqXUsw6+H0WWvso7VRfK4fHx2rSZ0aVBemvgsQ03IqQk5CutJR6xBR6wTjlgHHLGGHLH2O2IdccTyLOMhR6xO9a99jlgnHbFOO2J5+penvY46Ynn6l2cbOu6I5ekTnnGV34fAPB4HTIDnJfrlrqLjAMOvh9H9cpVxwASSl2eX/u/+m5Z9Pj6078C+odMbDw8+tH7wyLHjB/biaAJHCCwlIVR8loSRpce8bnrWTXQ30fcNgi8I7DTfam4iPW+GQukW84pbRKblbQBsHlndCnk1yrsNsB4COk5cTixP+rd/3jAu07GuWFcbKA9Xom4F2VznE4QcK1uXoO8hrAmCz+qllbwLuZWqejLehsjjdlp0VlAlejSyz1n0uGHvA8cf3nj44UCpRt9vzFFxDtFtyFEtEbgJ/ePnc+iZMgVixyaIRVwmTdwBYd4WkjPeAY13QGfTeAcUOqsD6hZ8vDzEy0ZpatqHH/7FX/qr65/+1OV/++2+198++KOnrvzxz2z76mNz3rv87x59/4L3TUtlvZ2WwlBf9mcr24QW5asR/ecbw3zvyOSlrXB2lp+1wlccP7D/7r1DR/ftPbH3u/H8WKDUquncQd83CT6VzCVUUzbzVgxOhYOh4deDruZmKJTOBkM1S8HyVQuG7BBolRD8g+Em+l4lGPbQ82YolEoHQ+7CMRhyoGwnGFp5ygZDrCsOhtiIORgqL0U5VrYuQT+BsGKBrJW88SHL82l8yAJpfMgSOmvIwnwTwuhWbbw1ov2jbGjQZmsecYKGdRzv659P4309pPG+PnRWX6+iTEIYY7lUgrKjE6wvDK1/89Dsg1d/tfePn173rvkLP/+N9374i986vfear3zxSx9Z8o02I8rWNiPhlpTvSzTB47Pp+Nl6rbyzDsZbI/qv1Yf5vgITvOVZfhZttg4e2PfQ4NDeGw+96vje43sfuuPw0N5j1x966MYTew8NlZ7u3UzfbxF8KvWF4QLzJVBYyDRxo5+ZfbcXT5mGDWT0/5wZJTXY8qwhK6czfQaIP4TR3dQs0r0ZCqXC3ZTh10mXqt3ULJLH5avWTbE7o1UQFZ9x2MC8c9FNzaHnzVAole6meigPu6mZlNdON2XlKdtNYV1xNzUb8ribwjqfJeRY2boE/WzCmiX4uJvKk9ct+HgIktBzXDubIWTz2ll/3/N/U9uunJdvB7x6jjHtuxr0s70tP01t+uu2opHG8OthdN1XiTRzSB6Xr1qkQU9BKVsJ1WiQFtNW0Azp+TvXXk3wcTKcGum8LPOi1PtmZp8nh9Hlmkx6K2/HZzyAQn6jU3L625TTL+SYJ08Evh2U1xvJqwPmZMqbBHy8h9aAvJ2UNwUw+ylvagRzmsBM6+7jfcN46b8m0ClPt6hqdYAvVyAvfp9AtGm6N/tbI9oXgl+tIr/CVsx+NbuF3jG/mh3y5fS3KadfyOHeKk3sO3NEWS1vLvBxPc+DPPad+aJc6mIkxlwoMNP6+a2+kXRNoOOIvwyel5mwFI34hl8nXapG/GUkj8vHk7nl1eRtSYgf5SGm6WO2XiHyDOvi7HtPDpbx1oj+hqw++YWsNPFlNiuEvvgMD7lfR36Ctk1y/houP+P2hWVvhpFyMN5sAX025MQ8HElhXLPJMseqP4JdyI0Uq5Cf6645rFbb5W+G0WWcHEbbpg8+5/n3soicvkh5xqo++0gOxlmsz+1Un8shj2N0+nlJ9rlG9L8O9bmL6lO1RWVn7pfK2nmykDPWdub+ZYWjHMTil1xWEhbb2erJ7Hwx5K0kvlWQh3Q461oJz1cJ2QrfMFr54IE+XbY8HzRZNaL/WfDBwxV9cAXlYV/RDCP1ND3QDki/JOhy9eTQ55XrBMw6L5k3EtP40VZYFxx/jf40YK6dp/XEcmF/wAvByh9WinIpm64KrWWjnTfkyO4JcV+sEf0PCZtyv4D8qh1NJ10ubqE7t2/kN7oBwdduHFE6t2qTryvZJu1lZfbdp6BNvoHaZMxHUGeeR5S1c7+QM9Z25jnCKkc5iMX9wqWExXa2ejI7r4G8S4nvMshDOuwXLoXnlwnZCr9ov/DzfbpseT5osmpE/wj44Dsj8+KYD66iPLRpM4zUs1U85MuNTO+eEO9va0T/3ki/oNorxlruF4z+VyL9gsnFcsX6BeWLa0S5lE0vJaxFAgvtzP2CsimWfxGV3+g/WLBfMH61HrGL8nA9YjnlzYU8HrPiZaMrKA/XI3htBC9H5niHP46BPsLrERMj5ekFDF7vw3W7OZQ3CfLmUl4D8uZRHq7bzac8PF7Cl21Pg7yFUFZbt+ON09/Pnre5pyePvMTWRZOcvyEU6w/4uBbKmeUoB7FuIjmzHeXwjgPKmSvkWH3NI75mKJQK78Eafj2MbrtV1snmkTwuX7WdEYw2bBVExWdJGFl6zDsXe7AVr3MvvQfLEQn3YDkitbMHa+UpuweLdcV7sBjxeQ8W63yekGNl6xL08wlrnuCzemklr1vw8X5lQs/z9mANo0b0X4Qeeh2NUJQsbFE8SjDd806QsA5G/w+gw/J5GrOWU645OZj/Abs3X+vTmEFgqnLNp3KxDvNIB6P/ZzH66Q6j/U/52Dz6jqPB+Tn6qXpiXbE95ZWH68no/zVST3OFDvhTIRta6MA083N0+LbQQUT09YePnM4ieqDEh+w5IrPlea96rsDJS4afeqF5pDpZMUfw8fuVXUKntORWc2dfGT2wd2hvTtm7hG5KZlfQicfgxpcm630q9uOFxw2GXw86SjVDoZSw55o8Lh8felURXf2gAdYv+1FMTlqntq6U1enmocNH86q06IAiEWqFkD+wSMLIqkCeC9kNyg0f2QnQKoiKz2KWb1XbHu+rVPzVqNLDRz6mh8NHHlq2M3y08pQdPmJd8fARGzoPH7HO5wo5GGSZfh5hxYZ+reSp4SUfA+SokDd85GGW0S/NVmbxCB/Lsu+r4TMf0RuDiejUopHk+3siOoVQjQZpMU0BzZA+dkQvTbcKPk4cSVbQ82YolM7ZRPRVQMdJRRIrT+rtLygRSbDVFYkkapJ6G+XhJH8j5eGy5O2Uh8dB7qC8JuRtojzc1r2T8nA7+K7sM0eKl2WRos2Dt3I50LAmh9H2xiVU9utu8YyXz5B/ZkTOlDblTBFyBoKOpGlq046Fx1l8gLndVyXUAWZlF9ULG29D5JnPm9/ZsvrvZn73vaNR/SOx8XUYtmvFt3avLmpXw6+TLlXtOpHkcfnYrr1ClwblpelhoOO8bvGsK4J13BHrMUesIUes/Y5Yg45YnmX0rEfPMj7qiOVZxmOOWCccsY46Yh1wxDrtiHXEEcvTJzzb46AjlqdPeNrrkCPWKUcsT9sfdMTytP1JRyxPe3nGwn2OWJ726tRY6Gkvz5jj6V+dOmby9AnPftvL9unnASesNHn6vaftDztiefq9Zxk944TnGMDTXmccsez3PGyNCdcheDdJzfknRuQg/8QCWGr9IFbGvCsvnG41NhWvIroNOaolAjehf/z8KnrWLWgRG6+hKbKZUfEn4K5ICC8Evaxk+F6bGeqksNrMUG+DGm9D5PFPOhZ9i7Mh8o47Yh1zxDrhiHXUEeuAI9ZpR6wjjliePjHkiDXoiOXpE572OuSI5Wmvg45YnvZ6zBHL01f3O2JdCPV40hHL016e/dA+RyxPe3VqP+RpL8947+lfnjHHsz16+oTnmMnL9unnASesNHn6vaftDztiefq9Zxk940Snjr/OOGLxMgnOq3mZRM1hF0XkIP+iAlhqPhwr4xgvk5iK64huQ45qicBN6B8/X0fPWi2T8KmcK7K4ZcsiFU8VydNgfEoLl4OaYWQ5yq7UIX9vRE69TTn1gnLWtilnrZAzIPiSnL8mh5/FVvbXkpyZjnIQa0v21+yGS2FN+MxNONaslR/MzcHCm6b3AA1fkoYvzwchewfkI/0tWRtKl0XfkR0VVW9m4CUQtw7EdUVe1LVG9LfCJRC3Z5jKzlbvyg/45ZmZQq7C5LZVtu7qQocYFtbXJKK3uujJoedX6Yx+G9QdXzZhNHn+wzpjHQXCSBP7j9HvquA/9w3EdWX/mRR0+deA/+wh/0Ebx/xnEuWp9yBUzOSTumVj5hShn5LDl3nOFLonYXTcig0TGoLf6KwvPVdXcE+hPDx1P5XyboO8aZS3EfK4D7od8viyijsgD+3BqZu+o41S3383+D7TBZIZO8mvrvW2usdxCg9Pp5Ku/Cw2PJ2ag4WvS6sLgWpEvzG7eS9tj2cGRpYLL+w1m7Tpa1cW6d8Rv066lJQXPX2O5ePtrEVCl4bIuwg+c/wtMuXAvCOOWKccsR51xDruiPW4I9YBR6yTHarXfkesQUesM45YDzhiPemI5WmvIUcsz/Z42hHL0+89Y6FnPR50xPKsR8/45WmvE45Y+xyxPO3l2YY8xxOe9jrqiOXpX+Nx9fzYPv084ISVJk+/97T9YUcsT7/3LKNnnDjkiOVpL8/x6oOOWE9mf23tIe/+D8xDOXMictSlVWrdD9cceC5tNGmydYSKP8rSnRCe6YPPEL8eRsecKusI6scUVP3EfiRFbefzLR/tHA1YSFhF1z4S4m9VRsetS1PxCqK7K0e1LoGb0D9+fgU9y9u6NGxrRrj01CRMNGPMtGr7aFpEzqQ25UwqKKfeppx6QTlT2pQzpaCcmW3KmVlQzuI25SwWcrqFHNyW4rua04RbNP2TRuqkbgbFZWML1Xwz6B2ThvkmTxppA9zmsLcy1AsrfE8z/tYcdwENeF4iJBe+yMTw62F026jSBTRIHpcPw2Pxa564JaJVEBWfJWF09EpAM3zGm/oTia/KhXFT6XkzFEqlN5zqlIcbTpMor50L46w8ZS+Mw7rizSGMXHxhHNZ5Q8ixsnUJ+imE1RB8Vi+t5HULvjphJPQ878I43vg1+pVZhrpvWMnCFsUHmEx323xnGtbB6NeADnyPbQN4VLnqoA/a375je7o3R/71EFkvn6TlByGfy4e+2pOjb4N0MPoXgA34buKpgj/kPGPfnkp5UyO0PVQW/K58ke8xtqiaV3auf6N/SaT+JwkdTK80bWihA9P05OhwndChvXuMObJzLXFNTBI4ecmskXqseS9bh1uHepbnAe3eY9ybI7Mr6MS/r2F8IQz3ahXHB4XHI4ZfDzr6NUOhlLDnmjwuH09JVU/REHl5rbSVnDbvMc4bqKhgwfyBeBPxLE348u65OiWo5ExqU86kgnLG4uSckjOlTTlTCsqZ2aYcdWKMsdS0KU3mwHwycg8E9rU5l+R35WBuJh3UKqA6FWb0sVUpZUtcIVpWQHbsxx+KHnQ3+osFPa5eLSJdUb+LS+p61znWda7QdUDI5i6Hfy60GQqlwl2O4ddFGap0OTG7fE+x7G+5KTB6LFsFUfFZEkaWHvNiPUuabqbvVabAq+h5MxRKpafAiygPp8ArKK+dKbCVp+wUGOuKp8ArIY+nwFjnFws5VrYuQb+SsC4WfFYvreTFWrdhKL70+w2CJ7b3UaTVpokHbisdsdQPaZpPr4HnJXx6ZtFoZPj10FYbOhuN1pA8Lh+X/VKhS0Pk4WIn5qGcS4UchTXPEWu+I9YCR6yFTlhp2jmONY41jjWOVRBLnSlaRXnYf96f/VUzokmkn9oPXxjRD/kXRuQsblPOYiFnQPBVHSs0IjpbebDvZrupH3BeFZGD/KuoPHnvpX18kpap3ktL057sL/+Q/cvgPZjfn5RfRrSzlYt17gUZlldiXDOQjr3PLByWg+MU09Fw89oPjuFuyj6rPnsa5WFdG0arOvg01QH+SDDXAepTI/oVUAefoTpAfpxP5LUbJY99pCeHnn9Rwuj/TGydKP0W5chDe6Cdb86R95diRUn5nclu0+9mKr/D9sp+V3TcXdRPzSbKT3mVSp1pQj/gVSrj7wm6Dvh3roz+i6LOi/o516vR/33BenWKJ7Je0VZcr2o1UfVDMT/A+uL357DOi7yHjXVdpF7nCHyu129G6lUdnEE9uV6N/l8L1qvZcizqFW1VpF7Vmc9Y/63ecW+E0f1kg7BUjI6tKqt6jf3qj9F3Z32Iqle1sh+Lw0bfA5jnKw6jrYrUa+xqmlb1ynEY63U55aldhqox2rCKxmijnybqnMf8HBfy9Mv7vT7HDc2Lc9SYIfgD8Sb0bEYOluGkz3Bhnk1+1sWDXgJlkxv9XGFy1UxRHxWirDy29IjVPRYbIYZfD6NdosrSY2zo+T3Fsr/qtXJuZrGmVOZHap1cNU0356iRCP5AWIl4hnnKVXFPlHcR8HAS9tD9NFNAF+KZgop8auRv9DYCzRtdGF6N6C+J9EKxUXCaOFpfJuhxZMy/gYhluIzykG9RjhzsHTHyc+9o9FcU7B1N9lj0jmgj7h0vh7xuQc/2XifoLwcaXlVaB3mxJn0ZyWkVOtj/lZ+q2bcajU8K+eVtNStj/0KfuJTy1GxO+YLRjcVKCZaHfSHWltLEton5DtqmEVr7CbbLS0lOLC6lKeYLuLpgq2G9gI1ymqFQutj4u6rxP2D83dX4L7Vy8lHHNBk21m0Jn3kQbWJJDRUMv066VB0qTCB5XD4eKvQIXRqUl6ZXAh3ndYtnXRGsQUesE45Y+xyxTjpinXbEOuKI5Wmvo45Ynv415Ih13BHL0ycOOGEZv5depxyxPH3iUUcsT5845ojlGVc927aXr6apU+Oqp094xq9BRyxPn/C01yFHLE977XfE8vRVT7087XUh9Nue9vIcr3rGaM8xwGOOWJ7xq1N9wjNOdGo/5DmH8SzjE45Y43H1ByN+edVjEkavuXWKvTo15nTquPCgI5Zne/Tsaz3rsRPHq0kYvYbdKf7lGVcPO2J5xolOXWfy1MvT9p0aJzzH5BfCvNaz3368Q/XynNd61qNne/Scw3iu+3piefoEt6Ek+477pDvg8y7IR3r7lSG1j11i7/ahAeAJgIHYFfehH0oIL4SRY41A+AM58tJUF3m1Arr86szfue+Gi75zb0L8pgs/KzI3UXvaZquJpHszFEoPqDMkJtvycH9+AuWhXUyH9O+bF47Ur6eifkXsh/gNQc9vxRWti6lhpC+gvxf5kcxWd4fk3Uzbk0PPvxxn9OuyNqnenlkB/PUceajfCmGHhuBfkYOV98bG0hzdXwi6890u6hYBdS2S0a8U9HgkmM9bYRlWUh7y9ebIwbJiXe8JI8tq9NeKsqr2Z7LbPMPVr85woY34DJc6K4X0Rd5OwTNsfCsznmFbQXlo45WUV/bHY4ue7zJe/BW+Incixe7GKdqu5wo9uG1sKtiumznyUL9Yu0b+Mu06TbtzdN9Ssl03hX6d0K6xrveEkWU1+nsvsHZtNvFs11XfVlPtGt9G4l9nvRTyDBd/ZfCS7DOfO98f8efLhK4x+7Y6+8q/colnWi+nPOS7mPLUmVnTYZ2wA+rFd7EZ/TGww8+BD1pZAunVpq9fr3wdz5Gzr+NV9N2CnuviSkF/BdCYTRpEz/WC3xELbcqvCJmNegQ94vF7AU+KfsH0w/i2jnRfVVL32UJ39cuc2KZ+vu/5z+aD+J5Ik2SuishkXowzPTn0/M6I0b9W2CsW89FOEwjT6H88Eg9U/FS/8hCz/RpRLmVTfk8Adcd78gybMdtsn6/wvFEhTWXf0bH6b4TR8ZD7G2wba0iOGmMU9X/0odf1ady8/mZJ9pn96+cj/qXazXJ4VrY/5/4G/WsN5anxvXpHhceRqt9Fep4fGv17CvY3Tv487Xy/98K3pmF/wPFQ+SzWNfc36naONQKfb8v4tUh/g283X0q6ryipe5X2doD6m+VA1ySZKyIymRfjRV5/Y3g1ov+tSH+zHHTnuZnqb4z+v5WcT8X6m1bzKdNH2ZTnU6i7+YJqn0bXZvucrtonlp/bZ6ysaWLbxOZKqr+JvcEfu193uZBT1P/Rh7ZTf9MkXMRCv4j5YxNorJ7YHz8d8cdYO0sT27zVbaHN7LPyR57zNCEv5o9G16Y/blX+iOVnf4yVNU1l2yrPxdFXY/7I/XNTyMEYwv6IftSEsm7oG0k3ETCS7K/tCeDaQAmbF76SwPDrpEtJeWffM+wleVw+q7tydzPjzghbBVHxWRJGlh7zeEetm+huou9V7maeRM+boVAqfTdzD+Xh3cwTKa+du5mtPGXvZsa64haCuyV8NzPWea+QY2XrEvR1wlI/HGb10kpet+DjnbqEnmNPoXb/akT/L9BTrJyXbwfcgWNM+75a6Ml1YfkhDPtrxR8CmVo00hh+PbQV2c5GmjrJ4/L5RBqTMoVQjQZpMeEPZCE9f+cfQrtV8HHiSDOLnjdDoeQaaXopDyPNq4COk4o0Vp7UNi8oEWmwhRaJNJaHkfo2ymtA3kbKw98LuZ3y8L6YOygPf2JxE+XhlUp3Uh7uBdhvS9So7NMzpdo8UzBC/xB0/Y+PWzpt3HIHfa8ybplNz5uhUOrYcYuVx3PcghHXc9wyi7DGetyi+JIwcobF9dRDtCG03RMV/j1tw6+HtqLb2VY/i+Rx+cwOaoXBeBtBtxv7jHkoR832FRb/qtWUgjq3eRkbf+/NUaNL8Afi5aZa5CAfBl9epDVdekLczWtEf02mtLo3UPGnqYjbn+vOrl23V2Ei5vZThC4NkYc25Do8R66apjty1FC9aCCsRDzDPOWqOCvbkCO7J+gZIbuq0d8kXLURRuqI/Cnm2+sjZaMdusPo8rGum0hXRYO6Gv1G0HU56Yq253HwJtCFm9SdpHszFEqFm5Th10mXqk3qTpLH5as2fmTvQ6sgahC0QeS1ajk30Pcq48e76XkzFEqbzSs2i0zLuwewE8rbAnk8q9oKWGXHj1aesuNHrKt7KA9/GXALyOY6v1PIsbJ1Cfq7COtOwWf10kpet+BLCCOh57judYeQzW9K7IXIweteKIvnNSp68FwrTWzvEEZHmor+ur1opDH8ehhd91Uizd0kj8tXLdKgp6CUbYRqNEiLaRtohvT8nWtvkeDjZDg10vnJzItS7zucfZ4cRntvH+mNOsRidkPwG52S09+mnH4hxzwZ62EH5dVEWfm9nTRtobwNkLeT8m4V5VKzcsbcGMG8XeR9L3JMHUmH0SjJ+ZumbvGMbXqn0NXqDiMAv/+hWtvdETnIb3QDgq/d8iid1bgKfynndVOGebCnxaiNftzMPteI/mtzh/neQO0Nf0vYdFR25rZY1s59Qs5Y25nb1D2OchALRzLpv62ExXZuZp/Nzsi/lfi2QR7S4YhgKzzfJmQrfMNo5YM/P0WXLc8HjbdG9J8BH3xnRR+8h/JwdMn9oemBdkD6ZtDl6smhzyvXeyPzvjsFv9KdV4zuieieJvZF5OeR61j4PMps5T+/Rv6Decp/+H1Ao/9t8J8Pkf/gCG0syh9r1ziSs3451q5V/GA+bKPTC+iwVejcEPxGp2ZZ7fqG0rmVb3yMfGMb5Cnf4PdYjP494BufIN/A+Gk6KjvzGLCsnfuFnLG2M4/vtjvKQSzu33YSFtvZ6snsvAPydhLfLshDOuzf8F3nXUK2wi/av/3pFF22PB80WTWifz344J9F5jQxH9xOeWhTXknZLuyg6iAhvXty6LdTuYz+86J/i7XX7YDJsdzovwCYfM5yhyiXmi3HfHGHKJeyKb9Dr2SjnTfkyO4Juvx5vvLliE2Nf0JOedimRv+ViE2VjWI2VW1spyjXZFHmXYR1l8BCOxexKZafz1EY/dcj47B7BL8aO/AYUo3DkJ5/ZVK1MTU24Tb2bwXHkDy2wbWFXZSHawubKQ/3M3guhvXBawS4tsDrHLdBHvd/GyFvG+XdDnkjfD9bW6hRWXuy523uO8jzMnx+J28NDf+GUKw/5TtlUM5YrJsoOXc5ykEs24VQczb+leey6wbIH5sb1tqUUxNyGMticppwTMTvtxj9nMzJ0nb9joUjMTcL/fAunA2RsnJ7RiyrM2sfGPvGYl/O8OukS0l5SSzmYvl4q3uL0KUh8vLqFOXEfveqqF79YfgMYraKf8PeB44/vPHww4FSjb7fmKPifKLbkKNaInAT+sfP59Mzte2M2Oeq6Z1POZPblDNZyBnrpc7JJCdvunPF1GEedOG86c7S7DMvKZ+C6c5VGaaa7uQ1O/S12HEMk5d3xGFCjn4vhtC7nIbDE0SZl0Z03gwyWG6aduTocB0NVSqGYjlU4aVQHNLxdV4YynhzGIc43eIZ+9wmIYex8rpJsysP6W4q2U2ib2+IlHUz5WHXxHZQclR4V3aIyWm0Kach5MS6/aqxROnMU4k0YSzZTLHkHshTQxqbPtSI/pUQS7ZGYgnqyN9VXM7rJ/Niyd05+u2KxBI1NLw1ojNOAVlumnbk6LCHYglvBTVDsaRiSWx7dVoYqX/ZvhD5z1VfOI3kjPW2n1ru5/iitqO2ROSoLbVW7fHQVC1TtUfu15B+LbTHV1F79Niqy2sTIRTb7tos5OTFoBDifZDRn470Qa2G/rGpWp5+eLAK6adCmfOwgnhm9Nj/8fLFFqK9J0LLeqMNr8o+WyziLeVmKJS2mT9vE5m8pYE6WR4uI/JBS0x8RAl1Tuv73XQFSxBYarq5PQdTtfl7iRaPaTEubxdhO2Z77czRges4Teuzv9zef3rqMP4bqZ/B5fIyh+3UlpQlrj+2HSdVf6ZXWn+frlh/ecexgshT8Ti117vPk714zo/pfNiLl59b2cvyrLxdgo8PoZq8T4K/vofwaiCL/T9vu6cm+EMYPRaz778MfcX87Bzk5DC6f+UrUxFbjY+5n5uTo5cqJ8bJraS30X6CfJW3W5uhULre6phjD2LvqoidEF4IetmR/Q3lmV51kVfkmvNVl7/kj/6m8TN/mBC/6cLPeB58r6CfI+jNVvcBfwlbvUxdAWOyLQ/9cRfl4ZqB6aCuOb+3on5F7If4DUGPtilTFw0hZ5Mj1j0Vsez6dbWdyjE3iDzV96f1+Hc0Tsd6n026lo1DyF8mDvFY12i/QHGo4vjxBWocyHFoZ0XsonGIj0qreq2LvCJxaO0Ln73sk5/pfTQJo+Ntt3hWZBtfvcTaZju/XMUhjjXojzspD+OQ6aDiUMU+5fIi9kP8hqDnOFS0LhpCziZHrHsqYlkcUmNwFYe4v90myoNxiOcYX4Ex2xfptYEi4+4QRre1eyJ5WwVmKvv/zxl/2stIOI/kOZo6VmTf8Rn6OvLw2oPRfwNs80+kH87/sZyonxqr47rkt6bm022L0BUd3/OWrDo2XbRe1DEtXi9SR9zxWWy9yOi4T5o4bVgXW0BUfek80qVsX4r8RlfkVaG7hQ6qneJc69PTRtKhjZKcv1YOfsblUPWTbn3bJQvZ1vfNe4c2PzJ4dO9Dm/c+eHTvUDdpwDsY3Kp2kEYqmZY8MrmdvvMLbLwqvFXgtJKpdilmwmeWq3aw2LIzhc7nU87cNuXMFXJUdG/XI5XOrVbM504b5kGfyNvB4sOHRv+rc4b5FlD0ULuOys54FUsVO88alzOmci5uU87FQs5Yt4OLSU5eO1jn1A7uh3bwggLtgOWFUGyHBfl5BLy1BRYfAEb+2OH8TQXkxF4QKfoSQJHyxOScz/IYlno5Aetgc0Sv7YS1owUW70KqA/jKB1nnsiczkD92AmR7m3K2F5RzrsqzjfJwhsOxWNXdjogOyM8jYLXKUzVGKp1bxcjtFCPVi0Kx0y5GvxFi5K5IjGTf/UGz805HOYhV9LTEw1SfuyCvSH0a/QugPh8tUJ/KNpsj5cHTREXiYZEXpLZH6NWqoeoHzL68s52mNnc2Cl9RbPh10qWkvLOHz+8neVw+POQ9I/uczXSv33ts3RXX3PDdae7pI0NsU8PFqwBRf6YP9J35Ut34NPQOISNN7D87iY7r3Z4zfhGdWtG2ylft5l6iLduvIX/eCcK800JWP3yy94msnavTQmochT60IVJWvvxha47u3aIMfTl8Lw9aPyzzhkiZjf6pSJm3tygzj7nVeI9jE9N1izL0htE+gBhFxi+4kjU/jCxX2ZXG+ULOWK++zSc5ef3dT1B/p140xTZ/ffaZV6uXQH/31kh/d67K36pNY1nYp7Bc6mRkmvgUiNH/XFb2Nk9TyBO5sYuisP3+AtWpKnusTo1+OtTpuwrUaax9xMYiKk7cE6FXYx21xjJ2J1KSvy7io4ivdnurjEXUKRK1k1d2LGK4n4cCof6txiLMp8Yi23Jk5LU9Hh/wWKbVWETplEdbdiyC6xx8gqzsGqDaBTb/rPjiZNN0uQf0UKdsOE7iSVFui4p+E+nH+HnrD7WgbcMXKhn9r8M4YxGdrkMd5uXoF0KxukD+c7Ueyzt3Y/EGT5pil029Aj5jnsnJi8kNwR875b+zTTmxUw6tfP3a7HOrMdEnqf9Ul5vVhB48Nv747GG+P4zsHsf2F/jtrtjlDuqt2Ni1urgbrPTiNx7L7morffgtv7+FHfY/JV2wz1lJupR9QxH5eXyAfNaWesNoe5SIv4VflDf8ehhd5irjA1VHyi7q0g/jbYg8fmtOyYn9EPyEgno5vihv+ZcQ3YYc1RKBm9A/fn4JPVNDDMROZe2bNSwHzfD/0dSBu9ZmKJbU1IFDDFYPN/OyTQv5817+xe5eHUxRoW85YZXtypF/Uw5WTeieJp7eGX339Of/tjk8uzP2EmKbB2DvLBp68u6jQ73qIq/IIdUrvnbqzS9/6apvcxdquvAz9hs1hVwu6M1WuDxUwla3q0OquESRJjXNVodUTQd1SLXiC0C3F7Ef4jcEPS+Vlt3SxbwNFbHsYKmaSpyvmJS3vMtTEKOvZ21fLXWq2KReOo9dvsAxjcvIMSdNzaDTdygZntl/opDFL/4a7RQo95JFI3XdLHS1GNEdkRHEsyTk24ZldAnel4SRut1TQDf10jBidOXomWKo6Q37bdnpTdGXpVe0KWeFkDOWL8ajzFbTr6XTh3kwnuRNv16afebp1wdh+rU8w1TTHJ5GqstocMxS9gIJjidGvxraFV8goY5avRQw2c9QBpcrTTyeMfrLaDxTccwhx5y89IPTZI6tabotp0wYp9VFA3l+EkL8ri+17Iw+yTFb3YvKWHnbZyx7ZwvZvDWWd5ctfkfZd0Vk39tCNvfL6qU89uWvzhzW4aXUfvGIhKr3jYRp9H8+YxjzupKYt+dg3jl9GPMVFBMw1i8MI+WVHX8g//hyQ/nlBh4TKDkLhZyEsFrpNQbLDbOJznO5YTY9K7PcYG6OJz+uIPxbAaNbPGM3R36jU3J625TTK+TEsK4QWEZ/m6DP+8FxJ9cwFRcQ3ZaIaozbyjUW0LM817DUTTLTz7zixFXDOk4WGLVImbrFM67qmpCl5FzZppwrhRzezD9BoyOUXyJavpZvPDYMxK642vfaopE/bzML9VK/olhktefrG+/46I/9xde+mBC/6cLPuEmqw1tXCvo2r0x8jVrtwQ2WNKmNGbXagzNpXu2puCr4miL2Q/yGoOfVnrKrppi3oSKWrfbgDd+xtnyuYsZYyIlhxa4dNNv0CHoVk4z+h2DWyD9+rOwdxLOuMDoe8WoDYs3I0V3JNvw0NQS/0Y1hTJxQNibWw+gyVxkNq/ah7MIb/cirNu55xlf2sGunY6Fv8i8HWL76a3L4GcvBtjqD5IzVoY4ifl5VDmLxiw1jdXjEViDa7IO3qNfTLamdKPYLdcWEuhaQ7a9erFAHBB8COk7d9J3HAcsWDeMynSW1msv9UtnVXLXqp1YbcEXt/dO1TFxxVDsyvPLzMVil+bXp+WXkGX3VFctfPwcrlj9IPl7Fj3dV9GMee6lDR+qwv5VDxWv+9QaMsVsoD/tv/mU9jGX8a0RqPKNW/NWYciPloQ61AnJi46ZaQTkL2pSzQMgZy34LZbaKU39CcQoPr6k4tT77zCc3PgBx6k8ju0GoI38vMq43eUWvEzf6ZyO7QarM6yM6o4xAGGni2Gr0n/c53SJjK+8q8BoD6l92zpo3Z+e6Mn3aLF/h1XbDr5MuJeWdnV+o8bW6Zr3cb8bz2SjuOdR+RRJGlh7zuunZBKK7hb5vEHxBYKf5bV50v5V7X0xle1++uB5fSyk7irTypK2/f94wLtOxrrFXq7Bn5tfpWp3JsLJ1Cfp7CCtvT7a7gDy18sGzfsWXfr9R8HjO6jzPQ6gRIUejiiPZ6UWjkeHXQ1tt6Gw0Ume/1I8XqHbFozPMw1VWzEM5sdctEetWJ6w07RzHGscaxxrHOg9YRWa/2E/x+SGMgzzaLrsZj/yxTf8VbcpZIeQMCL6qfXIjorNawWC7lf3xHuTnVdu82e9VM7TMorNfo38nzH6vmTFSZzX7DUGvNGA9GAbz9oIOlldifDE5HQOfgR+jYLvy+CA2Dkk/27lJPs+OZVe+ULSO1lMd1SBP1RGfVzX610Ed3ZR9VmfT+Lxq7AwWyuN22JNDz6/qGf1tmU648xg7z87y8s7vLsmRtwnkraU5Efodng4IobLfTVd+h3GG/U6tsql4FosXarWwEUb7MO82q/OI6uxqQvw9QdcBvqeF9DtFnRf1c65Xo7+vYL2aLceiXtFWXK9qJ1+95hrzA6yv2Coo19MGgYV1zfSt2rLRc9t6JFKv/H4M68n1avT7C9ar2XIs6hVtxfWqxh/qTGjMD7B/MJuoXYvbKU+90xOL3+gHReocafLi90lR5zx25LjQqn8JYeSqY7aAbKuOm4cOH92bLTsGSrFlwvR73hHgaYI/EG9Cz/j3KlX4jC3qm+y8wzocPo3+SWHyWPhNU5Fj4qjfWCxcG77XMfFWYY2XimLNLDaVOQ+umqZbctRIBH8grEQ8C0Ef3Y69tRSLbspU6vwZ0vPFlkb/xkjP0WoflSOfGrlj72j0qvx8iTHybcqRgz0autESKqvRv61gj+Y085E9GtqoyMpo7K1q9caTWi1tED3aXvVo/KZXq2ZoTZpDHfKqmZXyl9jILGYf5V/qJ1DUeYXYLBjPkITgOwvG8rAvxOo2TWwbdYka1jePWvFsCa88YVviy+DUrKeoL8RWQjYVxDV6dQke+jDPyo3+QyIGGKY6pxXzR2ULjON8RgaHQLHLm/DMhmEHomvTHyd5rsqkqWpbVbs8fB4e+4K8VRy0N54zOVcrf3yO7vfBz/J+arroipLR/0HEd1UZYr7bapWNY6n6wYFzvXvP5+owvvGOMcY3PgOFK/p8djTv5x858RgQ7VD07Ggs7hSNqehL7yefx5h5GclUQ3h8xj6P/Hx+DuX0timnV8iJYV0msIxejaHH+NVAU/EiotsSUY1xE/rHzy+iZ92CFpOqplqO3iEUqybkz6smDG84G+ff8sDhxuWEVXaTCfnz3ixVuqeJj9EZ/XeysNvma4NvK/KKTMUjbG9LCC+EED3Cpg4c8WuDfEFKM8TTH9/5mQf/4tfetTghftOFn3FzVWHwckHf5i+ZviU2rFKvDfIrhUV/ybTicfO3FLEf4qsj0e3ep495d1fEKvLa4FjHJF4CqM18/i8Oy861LjZsqXeALjYUmtwBulgfOV3oEusPsO/kvgV1jx1uOFeHKNa0KWeNkDPWhyjWkJy8jfPmzGEebOtqmpOm3dlf3qR8Fi6fuSj7rJYM8/r3JMTHHawfHu1Hmrtz9FsJ/slH+7nMWE6l80aQEQgjTTwmMfpLMx16SdeSfY082s8HoWPjlYpyC+9cGL7XK713kzwuX7Uj97ydz7/nrPZ+kjCy9JjXaoPiJvpe5ch9xdHJveYV94pMy8NfhOJJ+/2QxxPz3YD1ENBxUpNvfOGtzJF7rKv7KA9HW/eDbK7zu4UcK1uXoN9MWHcLPquXVvLURgvPUBRf+n214BkIo6NQ1d6E7eiBFbtit+JCVOFfIjP8emirDZ2NRrEF5DRx2bcKXdQxOF60r3pFbPp5hyPWLkesqlfXKqxNTlhp2jmONY51AWMVeekb+wPrV8/VbFPJWdumnLVCzoDgq9r3NSI6n+sXcPNmf0/M1DKLzv6M/hmY/b165kid1ewvTWqmjfVgGMzb5iZqv9pERbvyJqpa4UT6Pdnf2DE+5QtF6+j1VEexI7+oD5+D+zDU0dM0Q8dV3SLXfip53A6LHm03+rfADD12tP22HHlFfx3Y6H8K5J2Do+1Tld9hnClyVFbFs1i8UKtl6vAQH5VFG/OYreyxd3VUNnbs3ejfLfyB+yL2jTz9lN2cj8rm/VrCFMEfiDehZ1NysAwnfYYLIEWOyqozfRwiflmYPFZlaRo/Kvt9d1T2phw1EsEfCCsRz0JofVSWe5WYiZWpqr5k8VHh0rEIq0ZYsZEAVm/sqCxf7aiu82U56uWPEEb3aEb/OwV7NKeRlOzR0EbcoxVdOTH6VseduKnFXipUM5uizbDoUVkeqXkfTWT/Ui8iq6NfsVG109HE/k4+mriJ8tQPgyRhdPsv6ws4e3oiZ18tD5eHDxsBS60m83FDo/+fIgYYpjoDEPNH5b/qulB1/J/jHeoeO7ptdG36Y5/yRyx/kVle7NxL0baqXiTdSHnYF3A/2cpvYv6I+5pNmvFh7FhFMsuuPCA/H59GOb1tyukVcmJYqwRWrC2M8TFDU3E+0W2JqMa4Cf3j5/PpWbegxaSq6dYcvUMoVk3IH3OHsVjwUnIubVPOpUIOH3+ZkQ1927w1+zWxzbd2b95PCC8EPZvK+y0y1EttphU5bvjby9e/9l3bf/LOWNiNDQnV7yZdKujNVripXcJWP6K6JpOtjhvyUUTsXkwHddyw4nHIHyliP8RvCHo+blj2xmPM21wRy44bqlvYz1XM4OOGc7O2rI7VnStd7Ljhog7QxTaJLjqPuig5a9uUs1bIURsCSc5fk8PPWI7SudWi/9pZwzzYPoou+hv9L8we5lsXWZ7JG07hGAIPonB7t+94LE/dScn6XQ0+xcfy7qYyYzmVzvjbqSw3TTtydHgJ9d0V+1d5LI+nQTjN43aiDgipm2VVOzG6c31QjI+z4kExPpyERyr5ENkeyJtAeYOQt4PyHoA8XsbExEuaaKPU9949fxiX6QLJLHv4TC35rYPPmGe68jOue+SPHV2+u005dws5aukTx6uxw2jmnxWPhBbeEeDXYiq+/nN2RyB2v9D3FMv+qjEzT/cxL+84NMpZJ+SU1WsMfkjvEqLL+3GlROAm9I+fX0LP8qax9v18vh1wrpoYDklaDR/20vAhdqqfu06k/+VZw3yPwGfe6UGsO8PIPLTjXaS/OmfTK8o+FiHC8OukS9UQUXS/vtwp9bxTAQmh4rNYS+G9Qebn1l/llHrF4L5JDb4tWd6dgM0DBfzBZV4XxYHUQ0DHSQ0UrDxlT6ljXd1Jedgh3QWyuc5vFXKsbF2C/jbCUlvTVi+t5HULvgmEkdBzjDB3CNk1on8KJgDraAKgZJW5lI1p8vaIfywyCcG9VlUuPgbCgx5sT/fmyP85iKw/PkvLD0I+lw99tSdH37wrpd4ENoj9pKHyR36HTf00T9533vvGz/hd+eIdRH97i7Jz/Rv9T0Xqf4PQwfQKYbT9WQdFo3T4WaGD6CnWHz5yOufUB4+vOLJzLXFNbBA4ecmskXqseS9bh1uHepbnAWnJZ2Sfzw5XD+wdyjvxwmXN60W7gk4DQeuWpvN1iGlCNXnRQ0xYvqqHmPJaaSs5bR5iyhuoqGDB/IF4E/EsZGqvrj//+Xz+ltjdbcrJezUNv+etJFpFcAfxXyFArc25c7ArB7PI7oBa6TL6VpvtbEt1MCYmO3aWcmtJXdUdcHhQhVcEUb/tJXW96xzrulHoOiBkc+jEco1F6Dx7OYMoQ5XQGbPL9xTL/pabyvGxM7QKouKzJIwsPeZxhOTO9mb6XmUqV3F/8j5eK8ak1op5zxnXirdS3h7AKjuVw6tfykzlsK7upzx8IWs3yOY63y7kWNm6BP1Owtou+KxeWsmLtW7DUHzp9xsET+zF3iKtNk08ANnpiHWvwGrzTMDMotHI8OuhrTZ0NhrdR/K4fFz2+4UuDZHHS0v3Czn3CzkKa5sj1g5HrF2OWJucsNK0cxxrHGscaxyrIJbaO+SzXdh/8t7z+Tifs7hNOYuFnLE+n7OYyoN9N9tNnUW8NyIH+e+l8uCyMW7kzZytZarXAtK0J/tbI/o3wTmgObPzy4h2tnKxzm0ezR9QR/NxjFNkXIJjOHudTfXZfJs+1jWf3cirg6VUB/iaB9cB6sMvyZ+COlhOdYD8HD9Uu1Hy2Ed6cuj5fJ/Rr850Ui9gx16fUj6Jdr45R95akBd7Xc3plZCZyu+wvbLfFR13F/VTs4nyU16lUq99oB/wKpXx9wRdB4bH59ZfJOq8qJ9zvRr9SwvWq1M8mVn2Qge1mqj6oZgfqN+Fa4TRdZ63+opYWNdF6lVtr3G93hypV3UYBPXkejX6WwvWq9lyLOoVbVWkXtVZqFj/HXtNC/tJricVo2OryqpesQ7y3jPZEqlXtbIfi8NGv70D4jDaqki9qt2PovXKcRjrlS/CULsMVWO0YRWN0Ub/kKhzHvNzXMjTT9nN+SKM7TlqzBD8gXgTejYjB8tw0me4MF/kNAQugbLJjX6/MLlqpqhPkWOvFV8LK7wRYvhex15jQ8/vKZb9VcdeuZnFmlKZY6yOF2HcnKNGIvgDYSXiGeZ5vbi7l45aogvxTEFFPjXyN3obgeaNLvjAktGfifRCsVFwCKOj9W5Br94iUOXfTXlqR4nlYO+IkZ97R6P/0YK9o8kei94RbcS94x7I6xb0bO9BQb8HaHhVaRDyYk16N8lpFTrY/5Wfqtm3Go3HLjFoNStj/0Kf4FU0NZtTvmB0Y7FSguVhX4i1pTSxbfYIeqxHntnsgTz2E2yX95OcWFxKU8wXcHWBV8PUS/xFzp1gDECavN/wereIAYbp/Rtepk/sN7zUb9PF/NHoOv2Sl1Y71ryiikNNvq40dgaold/E+mZ8E5Pf0mz125g8PN0GWKq812Wfa0T/6xF/VDaMnQFq9RuU7HO407uD8lR9KH80urH4fU4sD/sj7pB0C3q2zS5Bj2MuvmQKd5u3UR62Y36LEcuPv5O7dPpIOrwEKcn5a7rys7wLkgKUiU+7eMhBLC43thdccX+G4vwOyFPt5Nrsc43ovwgr7v83rbgj/3bit7z/Ae3sLYvy+fl3atXlU6qNcP+kyon01+WU83Og589BewhhZB2ZXm22u0bZdqf6/1i7i628o03Uiiv/DrKKyeiTeTG5J8TjIcfkL0RWabAv2kG6by6pu+pPWsWRT2aHFCeTDhzP8voDVVdqBWpHDlaX0B/bLdd7t5Ct6HF+qsb2fNWw0f8j1NXbFmnMkKPD1hyde3LoeQ5t9F+PzKFVHED/30WYRv8twOQf4WqFeX0O5r9FxhqqnWIfW3YuZvooP+W5GOrO/eJ9IJ9pbyH5mId+znJDRF/uU1vpy/2N5U2Z8/zftI5q2edewisZq7tjdfUKoW/RutoaKR9jGV8tjPbHWBtBe/TP0ZgTSmJOznCwT1djlV2AP4VkqxiplqF5nMPt8Bkak2A/s430t35iFugfW4/yGWMnf132IkVlm9hFirExOcZw1d9MpTz1e+SJ0KFsX4pzvl+YNhJ3ewQ3/byU9Gg1xnth9pnj8HJR7zEbxmzeal5j+qg4vIvylM+ea3/E8rM/xsqapiK7hzivY39U/YfyRx5nxfwmTTF/3A5l/Qka2+2KyCxaNo6xPTn0eTH2ReCrRfYHYr7aan/AdFZrtLH9gR05ctT4KE384rTRv7xgPHbaH5jayfsD/LYB2ng35aFv8il91WaLtg3stx+mWL2zIG4isFSc5Fht9HdGYrVqgzH/bzUXPvtjwGG0Le+jPBWrxvBk1lTPk55pqhobGkSPdlK+yidDsfw7QfftBcYCsbpttfbKsU2NI1U/zHPU7RE5qFdD8G+PyJnVppxZQs5YrkGiTDW24fKUXQtBfl7r3OFYHqWzeiMP11SP0hwG/bhb8HJ/Z/RvgDnZ8eyz2qtivynqu3xGIbaGlCa8UiqEsRhzhgnne8zJ40qM43zOQb0zjr4X+zEI03Es7IXtucicUcWNmH2xTfBeINpyK+WhvxV5/77oOAT3mtdNa62/er+8qH/we/o4RuE1tV2ivMoXjG4sxgDn8tQ9+wKOD/jtKqx/vh1bjR1VvOQ6zhs78p6V0f9cybFjzG88x45qnX8MY0hH+01s7FjWbziGqBsAsP+OrZElYWQ/mfeT0Hn7K3zWIqHnffAc+a6hMvMYibFfRPRWzp4cer652eg/FFln2NlChxeTDrta6LCTdDD63xA6xOyfptiYsDeMbosl2k0tITzTB58hfj1o/2iGQilh+5k85Qdp4ras2hPm8Vym7FuXiLXZEQvHlm3UV+kbt3legXFsM+Xh/Bjrl1M3fcfypH7904uGcZmOdcX6wv1c9rGdgnenwD5f7WFnNXnR9qDmAGXbA69bXujtgc8udVp7UOtKykZpaoZiqUh7qXjrzJKi7cXwvdqL8j3VXtq8xaeZ/rZuXxgdq14An9F2KGcX6dBu/cXuTDvX9dfunWlF5yae9Ydtq0z9qbW/mfAZ87A8sbU/5D9Xa38zSU7e2t+/0dqfmpvG1v7O9o1zh/m+HVn74/U99K3YOXWja3Pu2N3J54Jj59S5b/daf5qbs/6UAO61gpfbNtLvEnoYPe8bMw2fXzu71pD5l7qIWfks6pW3njIVMM/1+TW0c+xdoth6itO7REvO97tE7Pd7IK/V/m+abhVYMV23tqEr1yPW1R7CUrefYHnYL43+IuGXY3huYEnZ9TRl09h62h5BH9tv3QN5sXMDvJ6mYm/R9TSMIf9G/Zc6s59QHsrEZ7Ebpfgcn/XLV0L981ld7LtV3L81B/PqSKxTZYjderI9UmbUJ3aPseLD9796haymffhOPBme+cpEIYvP2RrttWCnJYu0Lgnr0yLF3tHpDaP9usyYNyG8EPSY3vDrYbQtqozp1RhY+b2Vr+IccDGO6dGPcEyf985C7B5qbEe3zB3myWtjOE69OvvMbewOGAPfloMZQvnxGupzaOpI3FhbTFO77/ShzWN783dTntpzNR3U+QKk57NTRr8V2mbsXSan86T/1Ml7+/zeqvIvtbfPfpP3borh1Yh+EOqA32XC3xaI3U5ZRPeiZ+Zj7bjoHCnW7lHvpdlnbvePRvpW9Z5WrG9VfXHR3wjgdw2RD9c7DTsQ3Vjsy2J5uL14xy6eWyt/Vu/W4dl0jr04V95MsVe9N1Dklqe8OwaWZJ/5joEnIv51Pu8YQD5r+8q/jK5N/5qm/AvLw/4Va0tpKjuu5TtOYncMYCzkXynAOQC+P3IF+ZfqJ5H3kuwz95NPR/xlV6SMaSrbR/E7zEXPF8XeEeOzVvcJO6Bee7O/vGb0toLjBafzTNef7zPNfP4e59j8voda10Sb5p137wkhel6I19jeGRkvqP1g1baK6K7irmpv2Kb+dMrzn9U8P+8XWZRM5sW+J+9Gv7z5568Ie3E8y3s/bBlhGv37I/FA9al3wbOy7+Tx2V71nlPsXPrYjefDK8732j/3H7E7QfLOZyEtyinq/+hDHyP/x/78TpIZG8cyL8rJ8/+8uxI+FvH/VvPyRYRp9J8oufYV8/9WY4TYGCl27j12J47T+PzG8z0+Z/+Pjc8x/nJsbXVLc8z/0Yd+bcpIXLwXQ/lsM/vMd8F8tqR/xd77KToGjd1Vo2Ivr8+osSvXY14/sySMtIPR/8+C4y2nu2amn+94znfNqPFtLH6OxV0zXy64PsNrS/eU1L1oe8M29fPU3+Dcl/ubeyIymRfbdV5/Y3jcN3w90t/g3EytB3F/Y/TfKjlfj/U3rebrvB6k7gxSc/nYfN3o2myfM8b6TsBWa2Xc36g7IFTbKHInYFH/Rx96Xeb/7dn11KsT0MWwuwVljf4aTV/mk3WQb39rBfR49ve++dkP33rFwanEnyaro3TPJq3/CfOGdUiAduq8Yd0nwx636WCJz0vhPc04l1uaYdh+Uw/QNUOh9GIry0TAtboJhGtl6QUA8w11X+RkwY9+gHIXgm1mzxvGQmzWLU0PEZ7RzifbTAS8Eu05cH0jltUP5vWArovnVaNDX9hFsjh+GMbSiKwaYWBMMbzUd6u2jfm/vffT1/3l3/9lq7ZRFf91V9SmvnHH7beMFf6nJ/7DN575/Yd/Yqzw/9/eO2/s+vU3LB4r/J/+xh1XPTXnon8sE5vMFyYBrfFZm5kMz0u0mT7U31I3PUP8OulSUt7Z/fnJJI/Lx+8YNIQuDcpLE6/FNYSchpAzjjWOVQaLxwu7oE+8I/s8OYyO75NIl0TokkR0Yf40VR2XWF5PJG9iJK83kleP5PVBGSZRXj/wbaG8AYGZluvB+c9/tlg4E+iaoVDaZ/rMAlyLbYFwzfazAaDI2Ar5ZxPWnBZYdxEW8s8hrLktsHgPFfnnEta8Fli8boP88whrfgssPmeM/MZr7c7q6Z+h3e2jsajxqLHoqwjPaA/SWHQB4LU7FjWsAaFPkvM3hNH9cZo4LiAW/8r7fCGnzfL1F9ET8eukS9VxwwKSx+XjccNCoUuD8tLEfcRCIWehkDOONY51vrDMx7FNtBtHMB7MJzmzgA/3Kd5Ia4gYd7sF757sL8fev4BY/mYaQ2HcMB0nC515fKTixYJI+ScJOWNtZx4DTXKUg1i8briIsNDOadqT/TU7YyxdRHz4i9dI1w00i+D5YiFb4RtGKx989zxdNuWDKKtG9L8DPvge8kHkZx9E/5xEeTxXRj2Vf2Kd7SF607tH0CNejejfl5VF7SMYP9oK9eJ3Noz+A4DJ+wgqvuFYj9fKlS+qvlvZdBFhdQksLA/vZSmbYvvsovIb/UeETXk8hvxqvY/fg8V1nNmUh2sgcyhvCuTNpTwci86jvGmQx/fxTYc87gtmQB76z475w89btcM07cn+cjv8eMS3VOxQY0Cjbwr6xaLck8Nof2pSHvKxTzYhj/uhJdl3tEMT9LKzcDWifwbsENuzNr3a3BPrU3tiS4CA17SXQl63oOe6uEjQLwWaZva5QfSqnauY0YRn3M7NRj2CHvFqRP/ZSDvHOLGEdJ9UUvdZQnfu97hNvTsyTuK+ZmFEJvOinJ5Qrg/960hfo8aGqBf3NUb/t5F4oGwZ62tU/FgkyqVsupjyVB+l2qfRjcXv2GH5uX3GypqmqrGyEUa3n/mUh22D/V+tBRX1f/ShNxbYI+G/JpOfxcbO9+fogxi9QbfBZiiUCq+pGH49jLZNlTWVVnXB4xc1R+Q6TxPPecvOxcaxxrHONVZszbRqHMF4wGNsXLfF+ex0GkfjvkS34N2T/eX18dfOH+ablX1W81ke34/BmnHhvebxNeNxrHGs87fOOxaxL01F1h/V2kAnrT/mxeuXFFj3UPMBnjsdhHh9LcVr5Oe1BxXLY2uTRWPjHqJXa2VqbZ7Xym7MiIrOCWPrj0Z/C2Ce6/VHLPP5Wn/cJGyq1h6+X9YfuykP1x953ITrj+g/tv5Y9Xwmn4lBm/CZGLQJn4lBm/CZGLSJOhMzjfL6IW865Q1A3gyww4NkB6xzPmOKaxETI2Xtozx1NlXZtpfy0Eb9lIcxrofysE7qlIe2NZvYvTyt4nGa9mR/OR4ficQY1YeoebPRNwU99lumj+c6NK/pLcm+l12HPgV2GF+HHol1rtahn4rE+9g69PySuncL3VX7xDb1ksjcssiYA3H5t6xU/6jGQtw/Ph0Zc6j5dGzMYfQ/cR7HHGoPQJ2BwPG8YTPmWKxDY/m5fcbKmqaya/RWpkYYHQ95jRr9fyHJmSXkFPV/9CFbr6n6XsDbPnHpLf9411cXVXkvAM/hGp+t1aA+Jer3Y6i/JbVWY/h10qWkvLNrNXWSx+Xje/v6qsn7nYT4UR5i1klefzV53bw/wXWT/rNxZk+OLsZbI/qP0FhvQPA0KC9NvFaBed3iWdd5wpoksNCOVidpO3wfnQVnGzdDoXQFj8sNA7Er+sK2om3L8OuhLV8/27b6SR6Xj+eJA0IXVV+vBLp26/50h2IdcMQ65oh1whHL015HHLGGHLEOOWINOmJ5lvF4h+r1qCOWZ3v0rMf9jliebeiUI5ZnPXr66uOOWJ7+ddIR6wlHLE+/79SY41nGM45YDzhiPemI5Wkvz7GJp3916rjQ0+87dSy3zxHrqCOWp9936liuU/3ec2ziWY8XQp/WqWO5To2FnmM5z1joWY+e9vL0Vc/x14OOWJ06/jroiOXZtj3bkKe9PPshzzbUqbb3jF+e63IHHLE61b88x76dOsb0tL1X35F+rjthpcn6jsk52PhZ7Y3WI3ISoXO3kINnFAayZ7hXZDi9YbQtSuxDFf49e8Ovky4l5SWx+sHy8b7XJKGLOlfJdRXbp0Q5CqvmiMVnL2oCS+37JcSP9Mpe/WH4/OPxoX0H9g2dvmHvA8cf3nj44UCpRt9vzFFxK9FtzlGtW+Am9I+f80+WdwtaxJ4cRldNT47eAfDUzxs1BH8tIidpU04i5AwIPm7a6Dolmtqqok3b8OthdJmrNG3lqsouVva60KVBeWl6BOiqhF7MO+yIdcQR65Qj1qAj1qOOWMcdsYYcsU47Yp10xNrniOVZj5728vTV/Y5Ynr56wBGrU+OEZ3v0tH2n+upjjliePuHpq572OuGI5RmjPccAjzti7XPE8mxDnepfF0L8Got+yMbyeDU1vor7uQUjZU6AvG7iTUBmjehvWTjM9+yCkbITkG2fewkvCaXmNGsSwgtBz6EMv066lJR3dg7VRfK4fDyH6ha6NCgvTQ8DHed1i2cxrOOOWI85Yg05Yu13xBp0xHrcEWufI9ZRR6wjjlidWo+evurZHj31etQR64Aj1ilHLE+fOOiI5ekTJx2xPO3lGb889TrtiOVZj556dWrf4VmPnrb3bNueZTzjiPWAI9aTjlie9urUftuzbY9FX2v7ajgf6yU5au7TFZGD/DwvQr4k+9tL+tnnZiiUuhLCMz3xGeLXw+gyl5CXxOyv7MJ7isjboLw08au9Sk4i5CQCK6aX49a0qXgJ0W3IUS0RuAn94+eX0DNlCsRWvyzWK2RZipm2kcOfpoGIHOX2tgzTF3Tz4+3zss0P+S1PyUnalJMIOWxXtZyUpr3ZX/6FuLuy5SS8OaRbyEOsIqGl4pZ94dM4vGXfbmhRW/ax0NIjdGF/SNN9QMd53eJZzLe6HbGcuoIJZo8JIlPZiu2IfrWZ8vCGjR2AwambvmN5UvyfXjSMy3SsK/qY6a3aMh+LKduWkb8rB0v9cmKadkE+0tvNN23W6WpVp+wvPRWxi7bv2C1r3Pb5+FIzxNO717+9/rJdg2vLtiOjnyjo1fEes1XF22dWDoCMQLItTx0Dszx1213K/2byk4q/bL2yiP0QX8VHHnoVrYupQfczacIbaxDL6ALoVIM8JadG9D8M2y9P0Y1z3IfYs5+I0CU5f5XOqI89qwv6bkFvsvsEveXhaUq0K9KgvRCrDvlI/6as7FYnGNONvyHkY5sJOXrnnRZlrG7xzOjTcr524cgyVBy7JHazY5o4RuBflGF26hX0eOLYEtd/HzzvFlgTic/o3071gr5v/A0hH9t1yNFb3YwV81e11Zra5ycXDutcJ5yisf5DV6158aTtK35orH45fdLv/eamv/nXIyuq3JCmjrwWjQN544k03Zv9bbOv7lL9QyjOnxQZR1TsG79TdBxh+PWg+4tmKJTOzhPY37l83PfXq8n7j/SWXosneXNVtB3K4TFCt+BR4wfDSPn/16KR5ag4v/qPNn3wf/H2fprwWMVHFg7jYtnzbjjHfh3p/y/o1z8KsdFwjR/j6OQwun1wmzZ7dwla/KzGYcpuSG/1lXcDaQ+V1eg/BnP+5fM0ZtFjKUb/CbGOYJjqNkPVZow+diMc6qPeTuonPtQd+xl+puonIVrUIU33Cp3yvtcFTp4OvQJHzRvrpKual2C7sbVBdWQG281HoC4n0C+PV3w1ovQ6QUJ5WLatQMepm76jzinGu2ksHgSWsg/PRz36bns+AZ6z3G6i7SHa2G3x7cwzeHwxQehg3ydG9E8IJ3arO7c39beovonQV/Ul7cpBrG3Z3zb7vPmxNey0Hv6hQJ+nxgzc5z0Hfd7XCvZ5lsfjtjRth2cc03kchBhp4n0Li5E9gI80vVQmo/+m6NtUDDGstOz/QvbshbxYP1Ij+pmLhvn+neyJ9uJX7DiOB/jeB7ogbZruzbFBF+jxnYX5snCemVfGFKO2SNOhDkjHGFX7NTW+4rZbZHzFbRX5lAyOx3l9t/lGf4t8dXNzEM+6BH1vTnmDkF1vgTtR4Kj4Xqe8RORx7MHyYtziMQfGBYxb/xBpL0kYWa6zfi5oeyO69xGmmstNjOiu7Ifxo+oawo994Tt/9obH535trNYoXvaOk68buOoDHxwr/Pf3/8kr/ts7eu8vswZi9axePWbfUmvcadoB+Ui/muauFdcYApdHxY3Y/IzXmFn/zTn6r4f4vXbRSHlqfqLaTF7/O6GgLkZ/ZSYf53WxfYk2f8Ghpn7BAeMaj3dVvFXriUbfam5pNmmE0fGVZas9Y7Qpj2nMRj1Bz+8Nj/3hWqgD/oUVFZstTx0xUn0h71+rfceUZie1q4rj24lqHGGJ936xjOp1ed5P5tvoMQ/rktfRMak5pJU11XlXgf1kFR+4vap1ldh4UbU7w++0dme+3wij64X9ragP543nlDy0A/bV5sN5a/LYpnHOdf+iYTy0O8ZT5OV4avTHIbYPUmxHG7M/qDjBuoRQ7ByImssPCD6rlzb3iSdg/aKe+Azx1b5+lbV6NTaNrdVXHCfUuI9FeaoepgRtU7Wez3NFtd4TmyfF4olqf9w21TqC6kNi8zmTjWvmRcZNqm0hL/eTp6FtvSkybsobG4Wg5wFMH4t9qKuyfR/lqbm/fe6PyFF6xW6UUnphTEZelt2qDEX7Kqcx4gTVV2GdcBtRdondNKVuucLbxbiNqF/9Kdu39VGe6uNb9W1vyumjsBwY/3h+q9oY9n1V54cvWf7GOfP/4FUDYzX/nFCb/zPND+zZWGb+qeJKF+GiHXi9PU33ZH+L7HNX7DsLn4flvrPdfe6ifacar3NfgOssfN5LrcGo8yPnCkvNTbguK44TCo+D+MxCRd+JnllQ/ZuaX/G8Efsftn871yh0Iha2/9j4uEi9KjlqTD/We3d5v6TsIUddfaHOcrcrR50LV/uyOH/7GPWNaj0MefPWw74MY8xPLBpJY7r/PtD8D1ozwTKXaMt1NSe3pNY+2G/VONDycGzD/oFjG37HZjLogGchOKn1FKNL5TUWD+MynSW0ZZH3jPj8bkJ4vHZs9J+l+uK9+GYoltTaMZ6P/EHxhSr1fVOB+lZ1HHsfg+c2sbmpWpNTsTIvviG+ikm7CB/tEdsjU2U2Xtx7j8Uu9n2k/wruT1M8VHNaFYPteat19Nget/G2+Wu5/ezPmJQ/cztQtxNzbFPtoAF5HBOnQB7PZzCpNmJ2KBMT/z2nXzMZWBdp4jmf2nfH/tLKV/UMcQKYppOVHfXid1ewPdXoWcUztWdtp86W4HiL197OrncsHomjzsDEzr6rdxK6hVx1Jr+/JFYvYU1sAwvXLZh+YkW9FBa/W1AXWHnvCiRZ3ZzLfeaZi4fLxH3i98M+89pM/9R+cxePlHeu95kXZfLH95nP3z7zKqiD87nPfCO1qwt1n7nMOHl8n3l0vZzPfeYbc/qjVvvMG2CMgXYvu8+8B2L7Rort4/vMz6fxfebxfeYQyu8zPwRt67HIuGl8n3l0TB7fZx6m/37dZ34sp4/CclTZZ7a+738DZSujwjioBAA=",
2056
- "debug_symbols": "tb3RruQ6cmD7L+fZD2KQwSD7VwYDo+3pMRpodBvt9gUuDP/7JEOKWFm7vFnamfu8uJZPV8WSKEWkRIXE//rt//zpX/7z3/75z3/9v3/7j9/+8L/+67d/+fuf//KXP//bP//lb//6x3/8+W9/ffzX//rtWP/H6m9/qP/0m7Xf/tAff+hvfxiPP/r5h51/jPOP6X+M4/yjnH/I+Uc9/2jnH2eUcUYZZ5RxRhlnlHlGmWeUeUaZZ5R5RplnlHlGmWeUeUaZZ5RyHNef5fpTrj/r9We7/tTrz379adef4/rzileueOWKV6545YpXrnjlileueOWKV6545YonVzy54skVT654csWTK55c8eSKJ1c8ueLVK1694tUrXr3i1SteveLVK159xCvHghEwL2hHwCNmqQskoAY8wpa+4BFX/C/3AAsYAfMCPQIekaUskIAa0AI0oAdYwAiYF/QjICL3iNxXZFnQAjTgEbms0egWMAJW5AV2BJQACagBLUADeoAFjICIPCLyiMgrd+oan5U9J7QADegBFjAC5gUrl04oARF5RuQZkWdEnhF5RuQZkecVWY4joARIQA1oARrQAyxgRZYF84KVaCeUAAmoAS1AA3qABUTkEpElIktElogsEVkiskRkicgSkSUiS0SuEblG5BqRa0SuEblG5BqRa0SuEblG5BaRW0RuEblF5BaRW0RuEblF5BaRW0TWiKwRWSOyRmSNyBqRNSJrRNaIrBG5R+QekXtE7hG5R+QekXtE7hF55WDVBfOClYMnlAAJqAEtQAN6gAVEZIvIIyKvHKxjgQTUgEfkVhdoQA+wgBEwL1g5eEIJkIAaEJFnRJ4ReV51Q+YIuOpGPY6AEiABNaAFaEAPsIAREJFXDra+oARIQA1oARrQAyxgBMwLJCJLRJaILBF55WCzBRrQAyxgBMwLVg6eUAIkoAZE5BqRa0ReOajHghEwL1g5qG1BCZCAGtACNKAHWMAImBdoRNaIrBFZI7JGZI3IGpE1ImtE1ojcI3KPyD0i94jcI3KPyD0i94jcI3KPyBaRLSJbRLaIbBHZIrJFZIvIFpEtIo+IPCLyiMgjIo+IPCLyiMgjIo+IPCLyjMgzIs+IPCPyjMgzIs+IPCPyjMjzityOI6AESEANaAEa0AMsYARE5BKRS0QuEblE5BKRS0QuEblE5BKRS0SWiCwRWSKyRGSJyBKRJSJLRJaILBG5RuQakWtErhG5RuQakWtErhG5RuQakSMHW+RgixxskYPNc7Av0IAeYAEjYF7gOehQAiSgBkRkjcgakTUia0TWiNwjco/IPSL3iNwjco/IPSL3iNwjco/IFpEtIltEtohsEdkiskVki8gWkS0ij4g8IvKIyCMij4g8IvKIyCMij4g8IvKMyDMiz4g8I/KMyDMiz4g8I/KMyPOKrMcRUAIkoAa0AA3oARYwAiJyicglIpeIXCJyicglIpeIXCJyicglIktElogsEVkiskRkicgSkSUiS0SWiFwjco3INSLXiFwjco3INSLXiFwjco3ILSK3iNwicovIkYMaOaiRgxo5qJGDGjmokYMaOaiRgxo5qJGDGjmokYMaOaiRgxo5qJGDGjmokYMaOaiRgxo5qJGDGjmokYMaOaiRg7pysJcFElADWoAG9AALGAHzgpWDJ0TkEZFHRB4ReUTkEZFHRB4ReUTkGZFnRJ4ReUbkGZFnRF452OsCCxgB84S+cvCEEiABNaAFaEAPsIARsCI/hrevHDyhBEhADWgBGtADLGAERGSJyBKRJSJLRJaILBFZIrJEZInIEpFrRK4RuUbkGpFrRK4RuUbkGpFrRK4RuUXkFpFbRG4RuUXkFpFbRG4RuUXkFpE1ImtE1oisEVkjskZkjcgakTUia0TuEblH5B6Re0TuEblH5B6Re0TuEblHZIvIFpEtIltEtohsEdkiskVki8gWkUdEHhF5ROQRkUdEHhF5ROQRkUdEHhF5RuQZkWdEnhF5RuQZkWdEnhF5RuR5RbbjCCgBElADWoAG9AALGAEROXLQIgctctAiBy1y0CIHLXLQIgctctAiBy1y0CIHLXLQIgctctAiBy1y0CIHLXLQIgctctAiBy1y0CIHLXLQIgctctAiBy1y0CIHLXLQIgctctAiBy1y0CIHLXLQIgctctAiBy1y0CIHLXLQIgctctAiBy1y0CIHLXLQIgctctAiBy1y0CIHLXLQIgctctAiBy1y0CIHLXLQIgctctAiBy1y0CIHLXLQIgfNc3AumBd4DjqUAAmoAS1AA3qABUTkEZFnRPYcbAskoAa0AA3oARYwAuYJw3PQoQRIQA1oARrQAyxgBETkEpFLRC4RuUTkEpFLRC4RuUTkEpFLRJaILBFZIrJEZInIEpElIktElogsEblG5BqRa0SuEblG5BqRa0SuEblG5BqRW0RuEblF5BaRW0RuEblF5BaRW0RuEVkjskZkjcgakTUia0TWiKwRWSOyRuQekXtE7hG5R+QekXtE7hG5R+QekXtEtohsEdkiskVki8gWkS0iW0S2iGwReUTkEZFHRF45aMeCFqABj8gmCyxgBMwLVg6eUAIkoAa0AA2IyDMiz4g8r8jzOAJKgATUgBagAT3AAkZARC4RuUTkEpFLRC4RuUTkEpFLRC4RuURkicgrB60ukIAasCK3BRrQA1bkvmAEzAtWDpotKAESUANagAb0AAsYAfOCFpFbRG4RuUXkFpFbRG4RuUXkFpFbRNaIrBFZI7JGZI3IGpE1ImtE1oisEblH5B6Re0TuEblH5B6Re0TuEblH5B6RLSJbRLaIbBHZIrJFZIvIFpEtIltEHhF5ROQRkUdEHhF5ROQRkUdEHhHZc3CuZ+VHQAlYj43XeehP3B1agAb0AAsYAfOEx+P3I6kkSVJNakma1JMsaSSlo6SjpKOko6SjpKOko6SjpKOko6RD0iHpkHRIOiQdkg5Jh6RD0iHpqOmo6ajpqOmo6ajpqOmo6ajpqOlo6WjpaOlo6WjpaOlo6WjpaOlo6dB0aDo0HZoOTYemQ9Oh6dB0aDp6Ono6ejp6Ono6ejp6Ono6ejp6Oiwdlg5Lh6XD0mHpsHRYOiwdlo6RjpGOkY6RjpGOkY6RjpGOkY6RjpmOmY6ZjpmOmY6ZjpmOmY6ZjszzknleMs9L5nnJPC+Z5yXzvGSel8zzknleMs9L5nnJPC+Z5yXzvGSel8zzknleMs9L5nnJPC+Z5yXzvGSel8zzknleMs9L5nnJPC+Z5yXzvGSel8zzknleMs9L5nnJPC+Z5yXzvGSel8zzknleMs9L5nnJPC+Z5yXzvGSel8zzknleMs9L5nnJPC+Z5yXzvGSel8zzknleMs9L5nnJPC+Z5yXzvGSel8zzknleMs9L5nnJPC+Z5yXzvGSel8zzknleMs9L5nnJPC+Z5yXzvGSel8zzknleMs9L5nnJPC+Z5yXzvGSel8zzknleMs9L5nnJPC+Z5yXzvGSel8zzknleMs9L5nnJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPPdmoaFOJUmSalJL0qSeZEkjaQZZOiwdlg5Lh6XD0mHpsHRYOiwdIx0jHSMdIx0jHZ7n3aknWdJImkGe5yeVJEmqSS0pHTMdMx0zHTMc3lR0UUmSpJrUkjSpJ1nSSEpHSUdJR0lHSUdJR0lHSUdJR0lHSYekQ9Ih6ZB0SDokHZIOSYekQ9JR01HTUdNR01HTUdNR01HTUdNR09HS0dLR0tHS0dLR0tHS0dLR0tHSoenQdGg6NB2aDk2HpkPToenQdHien43HJUmSHo5ZnFqSJvUkSxpJM2jl+UUlSZLSYemwdFg6LB2WDkvHSMdIx0jHSMdIx0jHSMdIx0jHSMdMx0zHTMdMx0zHTMdMx0zHTMcMhzcuXVSSJKkmtSRN6kmWNJLSUdJR0lHSUdJR0lHSUdJR0lHSUdIh6ZB0SDokHZIOSYekQ9Ih6ZB01HTUdNR01HTUdNR01HTUdNR01HS0dLR0tHS0dLR0tHS0dLR0tHS0dGg6NB2aDk2HpkPToenQdGg6NB09HT0dPR2Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p53jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmefevDWbU0mSpJrUkjSpJ1nSSJpBlg5Lh6XD0mHpsHRYOiwdlg5Lx0jHSMdIh+e5ObUkTVqO6WRJI2kGeZ6fVJIkqSa1JE1Kx0zHTMcMhzd5XVSSJKkmtSRN6kmWNJLSUdJR0lHSUdJR0lHSUdJR0lHSUdIh6ZB0SDokHZIOSYekQ9Ih6ZB01HTUdNR01HTUdNR01HTUdNR01HS0dLR0tHS0dLR0tHS0dLR0tHS0dGg6NB2aDk2HpkPToenQdGg6NB09HT0dPR09HT0dPR09HT0dPR09HZYOS4elw9Jh6bB0WDpWnj8eOzkOcCauVA8soIAVbKCCHcQ2sA1sE9vENrFNbBPbxDaxTWwT20yb95cFFlDACjZQwQ4aOEBsBVvBVrAVbAVbwVawFWwFW8Em2ASbYBNsgk2wCTbBJtgEW8VWsVVsFVvFVrFVbBXb+R69OM7E8136E92mjgJWsIEKdtDAAc5EPUBsik2xKTbFptgUm2JTbB1bx9axdWwdW8fWsXVsHVvHZtgMm2EzbIbNsBk2w2bYDNvANrANbAPbwDawDWwD28A2sE1sE9vENrFNbBPbxDaxTWwzbfM4wAIKWMEGKthBAweIrWAr2Aq2gq1gK9gKtoKtYCvYBJtgE2yCTbAJNsEm2ASbYKvYKraKrWKr2Cq2iq1iq9gqtoaNWjKpJZNaMqklk1oyqSWTWjKpJZNaMqklk1oyqSWTWjKpJZNaMqklk1oyqSWTWjKpJZNaMqklk1oyqSWTWjKpJZNaMqklk1oyqSWTWjKpJZNaMqklk1oyqSWTWjKpJZNaMqklk1oyqSWTWjKpJZNaMqklk1oyqSWTWjKpJZNaMqklk1oyqSWTWjKpJZNaMqklM2uJHFlL5MhaIkfWEjmylsiRtUSOrCVyZC2RI2uJHFlL5DiwFWwFW8FWsBVsBVvBVrAVbAWbYBNsgk2wCTbBJtgEm2ATbBVbxVaxVWwVW8VWsVVsFVvF1rA1bA1bw9awNWwNW8PWsDVsik2xKTbFptgUm2JTbIpNsXVsHVvH1rF1bB1bx9axdWwdm2EzbIbNsBk2w2bYDJthM2wD28A2sA1sA9vANrANbAPbwDaxTWwT28Q2sU1sE9vENrFRSwq1pFBLCrWkUEsKtaRQSwq1pFBLCrWkUEsKtaRQS8pZS4ZjBRuoYAcNHOBMPGvJiQXEdtaS6thABTto4ABn4llLTiyggNgqtoqtYqvYKraKrWFr2Bq2hq1ha9gatoatYWvYFJtiU2yKTbEpNsWm2BSbYuvYOraOrWPr2Dq2jq1j69g6NsNm2AybYTNshs1ryfp4m3h/YuAAZ6LXkgsLKGAFG6ggtoFtYPNaUnzLvJZcWEABK9hABTto4ADT5m2LgQV023CsYAOXTbpjBw0c4Ez0WnJhAQWsYAOxFWwFm9cSmY4z0WvJhcvmH1TzZsbACjZQwQ4aOMCZ6LXkQmwVW8VWsVVsFVvFVrFVbA1bw9awNWwNW8PWsDVsDVvDptgUm2JTbIpNsSk2xabYFFvH1rF1bB1bx9axdWwdW8fWsRk2w2bYDJthM2yGzbAZNsM2sA1sA9vANrANbAPbwDawDWwT28Q2sU1sE9vENrFNbBPbTJu3RgYWUMAKNlDBDho4QGwFW8FWsBVsBZvXktodO2iJnhfDyf+jLTwTYDoWUMAKNlDBDho4wJnYsXVsHVvH1rF1bB1bx9axdWyGzbAZNsNm2AybYTNshs2wDWwD28A2sA1sA9vANrANbAPbxDaxTWwT28Q2sU1sE9vENtPWjgMsoIDL1sSxgQp20MABLpt/+NC7BwMLKGAFG6hgBw0cIDbB5j+mrTkK6DZ1bKCCHTRwgDPRf0zbcCyggMu2vj4o3lUYqOCyqW+v/5heOMCZ6D+mFxZw2dT3zX9ML2yggh00cIAz0WvJhQXEpti8lqgPideSCzvocctCrxrri0vibYSPC3XHFaGff0HBDho4wJno9aH72ef14UIBK9hABTto4ABn4sA2sHl96H5YvD5c6DbfY68PF3bQwAHORK8P3RwLKGAFG6hgBw0c4Az0XsPAArptOFbQbdNRwQ4auGzrFXjxpsMLvT5cWEABK7hs60158dbDwA4aOMCZ6PXhwgIKWEFsgs3rg6mjgQN02zonvRMxsIAd9AjrGHtHYTEfKE/pcThWsIEKdnAFG76RntIXzkRP6QsLKKDbfC88pS9UsIMGDnAmeqJfWEABsXVsnv7Dh+T8nveJBrrNz0lP/xM9/S90m4+kp//00fH0n+LYQAU7aOBI9ESfvpGe6BdWsIEK9kTPwumJ41l4oSvW9nrT3+MO11HACjZQwZ5Y/L+KYwcNHOBMXHkRWEABK9hAbIJNsAk2wVaxVY9bHT1Cc/QI3XGAM7F5BHMsoIAVbKCCHncdAG+7e9z/O64Ixbfs/IT9iQ1cEYoP9fkh+xMNHOBMPD9of+Ky+QRGPz9qf6LbfOf9w/YXKuhx12nk7XVSfBz84/UXeoTD0SP4bvon7C/soIEe18fBP2V/on/M/kK3+egMASuIbWAb2Aa2McCZx2JyNCdHc3I0J0dzcjT9o9p+CL2f7jyE3lB3HizvqAusYItj4U11gR00cIB5NL2z7jxu3loXKHGwvLkusIEWh9D75s7j5o1zgRKH0FvnzoHy3rlABTtocbC8fy4wj6Z30J0Hy1voAgXEVrFVbBVbzaPp/WkiPiSeDBcauDZHfHQ8GU70ZLiwgAJWsIEKdtBtvjmeIhfORF/x4cICCug2HyhPnAsV7KCBA5yJnjgXFlBAbAObJ45PAnrXWqCBy+ZzA961dqEnzoXLVn3UPXEurGADl80/zu/9aY85P8cZ6P1pgQX0uOrocbujxzVHBTtooNv8K/yeTid6Ol1YwGVrh+NS+J2lN6XJ+Wl+/33zGzFvSpN2/rMBzkTPtwsLKGAF3TYdFVw2v+XyprTAAc5Ez7cLC7hsfsPkTWmBDVSwgwYOcCb6b+GFBcTWsPlvod+TeVNaYAfd5gfWfyEvnIm+6IvftHlT2uPiw1HACjZQwQ4um9+/eVNa4Ez0UnFhAQWsYAMV7CC2jq1jM2yGzbAZNi8VfoPnTWmBHfSR9N30UnHhTPRScWEBBXSbHzcvFRcq2EEDBzgTvSh0P8ZeFC5soIIdNHCAM9DbzwILKGAFG6hgBw0cILaCrWAr2Aq2gq1gK9gKtoKtYBNsgk2wCTbBJtgEm2ATbIKtYqvYKraKrWKr2Cq2iq1iq9gatoatYWvYGraGrWFr2Bq2hk2xKTbFptgUm2JTbIpNsSm2jq1j69g6to6tY+vYOraOrWMzbIbNsBk2w2bYDJthM2yGbWAb2Aa2gW1gG9gGtoFtYBvYJraJjVoyqSWTWjKpJZNaMqklk1oys5bUI2tJPbKW1CNrST2yltQja0k9spbU46wl5mjgSDwLSHMsoIAVbKCCHTRwgDNRsAk2wSbYBJtgE2yCTbAJtoqtYqvYKraKrWKr2Cq2iq1ia9gatoatYWvYGraGrWFr2Bo2xabYFJtiU2yKTbEpNsWm2Dq2jq1j69g6to6tY+vYOraOzbAZNsNm2AybYTNshs2wGbaBbWAb2Aa2gW1gG9gGtoFtYJvYJraJbWKb2Ca2iW1im9hm2spxgAUUsIINVLCDBg4QG7WkUEsKtaRQSwq1pFBLvOdM1rd2q/ecBQ5w2dYXZav3nAUWcNnWZHL1nrPABirYQQPdpo4z0WvJhW7z7fVacmEFG6hgB91mjgOciV5LzNcs81pyoYAV9LjTcUUYPlBeHy4s4IowfKC8PlzYwLW9ozp20MABus13yOvDhQUU0OP68HnOr6nreq1C6XiuQ3mi77ErPOcvrGADFeyggW7zQT1XpnQ816Y8sYACVrCBCnbQQGwD28Q2sU1sE5vn/PADe66R5wf2XCXvxBko50p5JxZQwAo2UMEOGjhAbAVbwVawFWwFW8FWsBVsBVvBJtgEm2ATbIJNsAk2wSbYBFvFVrFVbBVbxVaxVWwVW8VWsTVsDVvD1rA1bA1bw9awNWwNm2JTbIpNsSk2xabYFJtiU2wdW8fWsXVsHVvH1rF1bB1bx2bYDJthM2yGzbAZNsNm2AzbwDawDWwD28A2sA1sA9vANrBNbBPbxDaxTWwT28RGLRFqiVBLKrWkUksqtaRSSyq15Fx/cz1QrOcKnBcaOMCZ6LXkwgIKWMEGuq06dtBAtxXHmei15MICCljBBirYQQOxCTavJev5ZvXv5wUKWNcqweLYQAX7Qt8hrxrnP/P6sL7rUP37eIEewRwV7KCBA5yJvmLuempUvUkuUMAKNlDBDho4wJnYsXVsvpLu4WeUr6V7YQOXrfhJ4CvqXmjgshU/AL6u7om+su6FBVy24kPt6+sWH0lfT7f4UPuKuhcOcCb6urrFh89X1i2+F762rvjm+Oq64jZf4/pCBTu4bOKb42tdXzgTfb3rC5dNfHt9qWvxzfHFrldPdfUeuOqr3XoPXK2u8CWvLxzgDPQeuMACCrhs6xFJ9R64wB6nZztz/sQB5vnbygEWUMAKNlBBbAVbwVawCTZfF7s2RwEr6Dt0/l0FO2jgAGeir5R9YQEFrCC2is1zfj3oqd74FjjAmeirZ19YQLdNxwo2UMEOGjjAmej14cICYlNsXh/WM6rqjW+BHVy25ueO14f15Kp6O9yFXh+aHxavDxcuW/OB8vpwYQMV7KCBA5yJXh8uLCA2w2bYDJthM2yGzbANbAPbwDawDWwD28A2sA1sA9vENrFNbBPbxDaxTWwT28Q20+ZNcoEFFLCCDVSwgwa6rTvOxHKABfRfEXGsYAMV7KCBA5yJcoC+F+aYv9Le+FbXw9LqjW+BM9Hrw4UFFLCCPg7TkfFt7HFjjz3nL6zg2mNf49s74wI7aOBAgU05msrRVI6mcjSVo3nmvG/DmfMnGsjR9Jw/t8Fz/sICYiPnlZxXcl7JeSXnlZzXzrljjKQxksZIes6f22CMpDGS5LyS80rOKzmv5LyS80rO6+C4nTl/IiM5GMnBcfOcv5CRJOeVnFdyXsl5JeeVnFdyXsl5nRy3mSPZjwMsoIA+ksWxgT6S4thBAwfo+7a2wT/TF1hAASvYQAU76DbfSM/5C/36wdGvFDwLvdXvcUwdG6hgB/MIeatfYB4hb/ULLKCAFcwj5F/qC+yggQPMs6+3AyyggL4Xw7GDBvpe+Dh4fei+ZV4fLiyggBVsoIIdtMRz9sDF5+zBiQJWsIEKdtDAAc5Ew2bYDJthM2yGzbAZNsNm2Aa2gW1gG9gGtoFtYBvYBraBbWKb2Ca2iY05xz6xTWwT28Q203a2G15YQAEr2EAFO2jgALEVbAVbwVawFWwFW8FWsBVsBZtgE2yCTbAJNsEm2ASbYBNsFVvFVrFVbBVbxVaxVWwVW8XWsDVsDVvD1rA1bA1bw9awNWyKTbEpNsWm2BSbYlNsik2xUUuMWmLUEqOWGLXEqCVGLTFqiVFLjFpi1BKjlhi1xKglRi0xaolRS4xaYtQSo5YYtcSoJUYtMWqJUUuMWmLUEqOWGLXEqCVGLTFqiVFLjFpi1BKjlhi1xKglRi0xasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGrJoJYMasmglgxqyaCWDGqJt13W1RNZve0ysIMGDnAm+h3KhQUUsILYDJthM2yGzbANbAPbwDawnbVEHd0mjh00cIAz0e9QLiyg25pjBRvoNhf7HcqFBrqtOs5Ab8YMLKAft+5YwQYq2EEDB5jPsM9mzAsL6E+rp6PvxflfO2jgAGeizz9cWEAfs+FYwQa6zcV+h3KhgW4zx5nodygXFtDH7HCsYAMV7KCBA8w+hbPt8sICrr2wExXs4NoL79fwBsvAmeh3KN4S4g2WgWvMvDHAGywDG+i25thBAwc4E30G48ICuk0dK9hABTtooL++4ofbryr8acnZSllOrGADFeyggQP012L8fDhfcjqxgAL6a0cnNlDBDho4wJl4vuR0YgE58pMjPznykyM/OfIzjnzzpkk/3M2bJgPjyDdvmgxsYBz55k2TgQYOcCaWAyxgHPnm/ZOBDVSwgwbGkW9np+Q68u3slCwnVrCBCnbQwAHGkW9HvhDVjnwhqh35QlQ7OyWPExuoYAcNHOBMbAdYQB8d3+Mz50/soIF+LMxxJp45f2IB114cflj8muDCBirYQQMHOBP9muDCdYyHn32e3Rcq2EEDB7j2YviZ6r/+FxZQwAo2UMEOGjhAbAOb//oPTwb/9b+wgm7zPfZf/ws76DY/Qv7rP/wA+K//8GPsv/4XFlDACjZw2VYLQPPux0ADBzgDvfsxsIACVrCBCnbQwAFiK9gKNq8E633p5t2PgQ10W3fsoIEDnIl+TXCh28xRwAo2UMEOGjjAmejXBBdiq9h81nK9vt28+zFQwYetHT4kqz609eCkefdj4Exc9SGwgAJWsIEKuq05Gug2dZyJeoAFdJtvulawgQp20MABzsTutulYwGUrPjqrlgQ2UMEOLsXqaWjeSnnhKiCBBRTQFT4k1kAFO2jgAN3mAzUOsIACVrCBCnbQwAFim9im2zwDpoAVdJufnlPBDrrND8AqIE18UFcBaaszo3mDZWABBaxgA/2BotNImkFeJ04qSRIkHlwcK9hAv8526kmWNJJm0DkN4OQRq+MahtVI0rxfsZ7/+0iaQf4IwZxKkiTVpJakSS5RRwN9rLvjTPQ0vNA30yN4ap0b76l1od+4OHmAdQi98zCwgAJWsMWQ9BzOnsPZczh7DmfP4fREOgfRU+YcRE+Z8xB6yly4drX6SeEpc6KnTPWj6Snje+oZc1JNakma1JM8om+IJ0D1DVkJoC5f5/9FmrT+tQ+Bn/wnjaR5kbcDXlSSXKKOFVzb6AfDmwEDO+ibubbYG/yan1be4Be4IpykMTDe3xdo4AA9rG+YHGABJQbc+/sCG4hNsAk2wSbYKraKrWKr2Cq2iq1iq9gqNv8tPNHTz8ex5UntrYCBFWygJvrvVPNN8GS60EDvOXOaQX4/e1JJkqSa1JI0qSdZUjp6Oiwdlg5Lh/9GrZag5l+vC1TQd8ZPQU+4C9cgtjPCTPSEu7CAAlawgW7zM9Oz7kID3eZHx5PxRP+NutBtfhw8RS+soD9QdtKknmRJI2le5N15zdPav0XX1tP15i15bT08b96SFzjAmbh+itp6Eb55S16ggBVsoDeSObnMt8az9MIBumwlv3fkBRbQZdOxgkvWfdc8Sy/soOeN00iaQWeKOpUkSfKIPliec93HwnOu+1/w688LCyjg2tLuO+hJd6GCHTTQbU4zyH/2TvJBcZKkmtSSNKknueQMM8CZ6D+DF/pm+uD7peSFflY7jaQZ5JeU3Q+NX1JeKKD/ZvmYerpe6L9aPryerhculU+6eJ9cs1OxZD734X1ybb3c1Nr5+3iigBVsoIIdNNBtvr2ersNPJU9Xvwv3PrnmN8PeEdf8ttc74gI7aOAAZ6B3xAV6sOaoYAcNHOBM9Ey90IOpo/+z7jjAmeg5d+Fj3/QkSapJLUmTepIljaQZtLLtonTUdNR01HTUdNR01HTUdNR0tHS0dLR0tHS0dLR0tHS0dKxk82LmTW0X1aSWpEk9yZJG0gxaP50XpaOno6ejp6Ono6ejp6Ono6fD0mHpsHRYOiwdlg5Lh6XDE2P6qXomxsoRbyZr0/+C/2KtburmPV3+S+MtXRdp0iOS10jv3DppnbsXrZPfJy28FyvQQN+Q4bj+vcdcJ/FFJUmSalJL0qSeZEkjKR01HX71tr4+17zTSn3OwjutvHp5o9VFM2idnReVJEmqSS1Jk3pSOlo6Wjo0HZoOTYemQ9Ph5+nhO+Un5eH/1c9KnyXxvqrACjZQwQ4aOMCZ6KfnhdgMm2HzU9SnZ7yvKrCDBg5wJo4DLKCAFcQ2sA1sA9tKCp9t9raqk1ZKXFSSJKkmeUTPl+lbuv7rucipOZUkSXr863n+vZakST3JkkZQ8R0fjr6L01HBDq5d9Pkjb3gKnIkr3wILKGAFG6hgB7EJNv/xWG/gNG94Ciyg25pjBd2mjm7znfc09Uca3vAUOMBl88kdb3gKXDafsPGGJ/XpFW94Ur+794ancm6vf2D0wg4aOMCZ6L8tPj/gTUzq8x/exKQ+veFNTIED9O31TffEvbCAAlbQ4/ox9mT0KQhvTFK/BfXGpEABK9hABTto4ADd5sPnyXhhAd3mg+rJeGEDFXSbj5kn44UDXON77qZ/B/jCAspCHxL/DvCFDVSwgwauo3kOX34ov438UH7zxiT1uzBvTAqsYAMtsfjodMcC+vSxkyWNIP/Na06SVJNakib1JEsaSTPIf/NO8o2ZjgJW0C8fimMHDfSrFHGciZ5tF67d8N1dyXZRTWpJmtSTLGkkzaD1w3hROjQdmg5Nh6ZD06Hp0HRoOno6ejp6Ono6ejp6Ono6zou66jjAmXhe1/mpcl7YnSigX9qZYwPX0fGJAG/8CTRwgDPRc9Uv27zxJ3DZfHrAG39Ufcs8V/1i0Rt/AjvoNt9Iz9ULZ+LKVb9X9L6fiySpJrUkTfKIawy9jUd96sDbeHR1qTdv4wlsoIJ+D3A4GjjAmehZeuH6lXfZmhTxO0P/opr2E/1uozkq6C7fWv+t7b4F/lt74XKZC/y31i/XvLUn8BHX79pmrvfbZq561WauetVmrnrVvC9H7cQGKthBAwc4Ez11/WLG+3ICBWy5ZedSVyd20Dfd9+dc6urEmaiumI4FFHDtkN+Ze4tO4Nohv3X3Fp1AA92mjjMxl81rLMHZWIKzsQRnYwnOxhKcjSU4G0twNpbgbCzB2ViCs7EEZ2MJzsYSnI0lOBtLcDaW4GwswdlYgrOxBGdjCc7GEpzNG3f0PGc9ky9soI+kH27P5AsNXKeGzzp4486FK5MDC+g2F/sjiPP8PZfN87P+XDbvxA66zVPMs/zCeaF6O09gAQWsYAMV7KCBA8R2Lpt3YgEFrGADFeyggQOciYJNsPmV9uolVW/yCWyggh00cIAz0a+0Lyyg26ZjBRtoiV4U1lcO1Bt3dHUwqH/iLLCCDVzbu6YX1Nt5Ag0c4Ez0+nBhAQWsYAOxKTbFptgUW8fmV9pr4kP9E2eBblPHBirodwZnBAMHOBO9PlxYQI/bHX17/XzwX+/pB8t/vU/0X+8LC7h+UVf9VW/cCWyggh30M9V381wq88SZ6L/eh2+k/3xfKGAFG6ig285gBg5wBnrjTmABBaxgAxXsoIFuU8eZ6PNTF7rNHN02HCvotumooM8yHY4GDnAmnrNZJxZQwAo2UEFsgk2wCbaKrWKr2Cq2iq1iq9gqtoqtYmvYGraGrWFr2Bq2hq1ha9gaNsWm2BSbYlNsik2xKTa/AVidMuqNOxf6LcCFBVy/DOs2Ts+lMi9soIIdNHCAM/Fc3etE3wtx9O2tjgb69voJbjNxHGABBaxgAz2uJ8NkfCd77Dl/YQUb6OPrm+45f6GBA8yj6b02gQUUsIINVLDHNngHTuAA82h6E865Dd6FEyggtoKtYCPnhZwXcl7IeZE8d0QKKGAFW26DKNhBbOS8kPNCzgs5L+S8kPNCzsuZ874NlZGsjGRlJCsjeea8ORbQbcOxgg1UcNnkDGbgAGei5/yFBRSwgsu2ZvXUP2YWmCe4txH1Nden3kd0oSf6hQXk1PDb/Qs5WJ2D1TlY3cABcrCMg2UcLONgGQfLOFjGiWiciMap4em/ph7Ve4wCBfSB8nHw9BffMr88uLCDBg5wJnqpuLCAAnpcPzW8KFxo4AA97jo1vA0psIAC1rhM8kakQAU7aOAAZ6Lf+F+Yl8LenhSo4NqLNRmo3p8U6I+/xHEmevpfuPZiTXSq9ycFVnAdizXRqd6fFNhBAwc4Ez39LyyggBXEthJ93bOpNyJdNINWlvv9grchXSRJHtEHzlP8QgV9+8+/a+AAHya/sfDPkV1UkiSpJrUkTepJljSS0tHT0dPR09HT0dPR09HT0dPR09HTYemwdFg6LB2WDs/p6meX5/SFBvok7vl3Z6JnevOzyzP9QgF9ttgPsmf6hT5f7OecZ/qFBrrNj75n+ome6WsyUr25KVBAt/lB9YuCC5dNPUc8/y9cNvW98Py/cAb6Z8n87su/SnaRJNWklqRJHnGNgDc39TWRqd7c1NX/gv/EX9hABX1Lu6OBA5yJnuMXum06CljBBirYQZ+MPhwHOBM9xy8soIAVbKCCHcRWsflPfPej4D/xFxbQbT6o50S+j9k5k3+i29Sxg27zgTpn80+cied8/okFFLCCDVSwg9gUm2Lr2Dq2jq1j69g6to6tY+vYOjbDZtgMm2EzbIbNsBk2w2bYBraBbWAb2AY2rwyrK0y9jyrQwAH6lMZK8XNRzgsLKGAFG6hgBy3Q+6h6P9G3dzo2cG3vmk5Xb6kKNHCAM9FvAS4s4Iq7utfUu6vOIfHuqnOPvbvqQs/5Cwu4xnfN46v3VwU2UME8mirYZIB5NLUeYAEFrGDLzakKdtBA9s1zfs3/qzdcBfroNEcBK9hA3zcP5jl/oYEDnIme8xcWUEC3+UngOX9hz4PliW5+PniiXzgTPdEvLHkAOgerc7A6B6tzsDzRLzSQg0WiK4muJLqS6EqiK4muJLqS6P45sT789PSUvrCAK+7wcfCUHr5lntIXKthBAwc4E/3H/sICelw/Nfxn/cIOGuhx/dTwn3VH/3BYYAH9x7I6VrCBCnbQwAHORE/0C+v5PE/9C2EXadJqxZpOljSSfPv9L3riX1jA1Qg0nGpSS/KhOrGDBo7zCaN6W9pJK+cvKkmSVJNakib1JEtKR01HS0dLR0tHS0dLR0tHS0dLR0tHS4emQ9Ph2e03U969FthAvR60qn8tLHCN2Hq3Un1p0cCZ6BP5njhnr9uF3iyqjhVsoF4PZfXsdbvQbcVxgDNxJfrwACvPL5KkmtSSNMkj+l55MvvTB+9c634J651rgQ1UcJ1J/sDAO9cCBzgTzwfwJ7rNT9rzEfyJFVzX034QVoZf1JMsaSTNi84ut5NKkiTVpJakST3JkkZSOko6SjpKOvzC3p+HeDdcoIIdNHCAM9Fz/cLVDbAaKtW74QIr6DbfBk/3Czu46sp6+q3eDRc4E1fCmz8w8b63+K/rPRAP4G/oneT/aB0tb2oLLKCAFWzgKnz+WMOb2gINHOBM9EbUCwsoYAUbiE2xqdt8h3SAM3Fls/mUljfABQq4bD4V6V/xClSwg8vmU+n+FS/zKW9vizOfEfS2uMAKNtDj+vCZx/W9MO/c9c0xb911m83EcYAF9PZd35xRwQYq6G3Cvr3emOozd94LZz7D5r1w5pNi3gtn1RXenHphBRuoYAcNXDafvPJeuBO9Ae48Ob0BLrCCDVSwg65ojgOciSvHbfXNqTfLBQpYwQYq2EEDBzgTBZtg8zT3GSrvuQtsoIIdNNBt03EmeppfWEABK9hABTtoILaKzevD6iZUb8MLFHDZfLLIO/HMJ4C8FS9w2XzeyJvxApfNZ328He9Crw8XFlDACjZQwQ4aiE2xdWwdW8fWsXVsHVvH1rF1bB2bYTNshs2wGTbDZtgMm2EzbAPbwDawDWwD28A2sA1sA9vANrFNbBPbxOYFxCcEvUsvsIMGrgeccuIM9C9zBRZQwAo2UMEO+l6squx9eucPqDfqmU8/eqNeoIIdNHCAM9ErwXpnU/27Wuc4+He1zt30Tr3AAc5Ez3mf9/T+vUABK5hH0/v3Ajto4ADzaM52gCW34cz5EyvYQM1t8Jy/0EBs5Pwk5yc5P8n5Sc5Pcn5qnjtTGUllJJWR9Jw/t6Ezkp2RJOcnOT/J+UnOT3J+kvOTnJ+d43bm/ImMpDGSxnHznL+QkSTnJzk/yflJzk9yfpLzk5yf5PwcHLfBSA5GcjCSg5H0nPf5dW/lC/SRFEcBK9hA3zffBs/5Cw0c4LyweytfYAEFdFt3bKDn/OE4rizs3rRnqxG4e9NeYAEFjCPUvWkvUMEOGjjAmShxhLo37QUKWMEGKthBA0fiWR+Go4AV9L3wcfD60H3LvD5caOAAZ6LXhwsLKGAFPW5xNHCAM9ErwbpT7960FyhgBdt109u9aS+wgwYOcCb6pN6FBRTQR+fEDho4QN+LttBz/sICCugN535yedPehQp20MABzsSzEf9EHx0/CTy7L1SwgwaOxPPFNE8cz9jucT1ju587nrEXGugR/IzyjHX0RjxbMyHdG/ECBfQJteLYQAU7aOAAZ6Ln8ZpV7eVsvD9RwAo2UEF/eag7zhgHb7kLLKDHrY4VbKCCHfS9aI4DnIn+O3+h74XbPI8vrKDbhqOCHXSbHwvP4wtnoufxem2+e8udDT8snsfDB9XzePjo+O/8hQquuMP3zfP4RM/jCwvocX3f/LfbTy5vows0cCT6D/aFK3HEN90n3y5U0A+h74W/L3PhAGfi+W7biQUUsIINXBs5fMz8R/jCmeg/whf6zvvB8h/hCyvYQN+L85910MABzkTvp7+wgAJWcMU9/NTw5B0+qJ68F85A76gL9L0YjgJWsIEKdtDAtRdrdqZ7R92F3jxzYQEFrGADFeygJXryjhMLKGAF116sWeDuvXOBHTTQ96I7zkTvkb+wgAJWsIEK+gOD4jgTPU0vLKCAFfQbfidN6kmWNJJm0Hkh7lSSJKkmtSRN8i1fNcEb38x/Qb3xLbCCvu/n31WwgwYOcCaeL4mfWEABK4jNsBk2w2bYDNvANrB57k7fef+JvbCDBvroqONM9AvoCwsoYAUbqKDb/NTxjL5wgDPQ2+FszdB3b4cLFLCCLQ6Wt8MFdtDAAc5E/zm+sIACetzh2EEDPe50XM+C1ssG3dvhAgso4HpqsmbUu7fDBSrYwfXcaXX3d2+HG56E3g53oT9Cu7CAAlawgQp20EBs/izNq9XZJ3dhAQWsYAMV7KCBy7Zmrru3yo3ie+yP1S4soIAVbKCCHTRwgNi62/zk6gUUsIINVLCDBg7Qnxj6SeAP1i4soIAVbKCCHfSnk37S2gBn4jjAAgpYwQb61LZTT7KkkTSDvGCc5BF9ZKdvqToa6JXs/Lsz0FviAgsoYAUbqGAHfQTWSezfAhurAbd7u1yggBVsoIId9L0YjgOciV4DLnTbdBSwgg1UsIMGLptf5Xm73FjPMLq3ywUWUMAKNlDjWLTaQQMHOBPPB+onFlDACvbru1z9+lDYiQP0vVgnmzfGBfpeeATP9gsr6HvhETzbL+zg2ovqB8Cz/cKZ6Nl+YQGXrfnoeLZf2EAFO2jgAGei5/V6AtHPj4b5zYK3tY3me+y5eqLn6oVry9bDiO5tbYG+ZT4OnqsXKuhb5uMwDBzgTJwHWEAB3ebbOxuoYAcNHOCMPfYFM8eace7e7BbYQAU97nQ0cIAz0b8f5rMu3uwWKGAFG6hgBy3R89jnxbwFLlDACnoLRHFUsIMGjuuDht1b4C707/pdWEABK9hABdfoqG+6Z+yJnrEX+l5URwEr6HvRHBX0vVBHAwfotnXCeLNbYAEFrGADFXSbnzCexxcOcCZ6Hl9YwDVmntLe4eafke3e4ebfM+3e4RY4wJnonwS8sIACrmPhhdQ73AIV7KDbfCTPT+aeOBPPT+aeWEABK9hABVdc/9X2DrfhE6ne4RZYQAEr2EAF/Vj4Hnt2XzjAGdjP70k3xwIKWMEGKthBA0ei/3b7tK0vjRlYwbUXPlfrnW+BHfQXQcRxgP4qyBo+734LLKDbfBs85y9soIIdNHCAbluJc7bAXVhAASvYQB+z4ZhH/ux68+N2tr1dWEABK9hABfPIn91vFw6QI68ceeXIK0deOfLKkVeOvHLklSOvHHm/Hp4nNnBtr989+kfVAmf+Bf81vbCAEnh2XfnV1dl2dWEBBaxgAxXsoIEDxCbYBJtgE2yCTbAJNsEm2ARbxVaxrTNqeo3yL44F9kQ/8udA+ZG/cMVdnTLd26UCCyhgBRuoYAcNHIk9j5s3RgVWsIEetzp20OOef8HjquNM9LeZLiyggBVsoIIdNBCbYRvYBraBbWAb2Aa2gW1gG9gGtoltYpvYJraJbWLzNki/rvbGqLleeuveGHWeRt4YFdhAP1OHYwcNHOBMPLPwRLedKKBvrys8Cy9UcMVdrT/dm52mX4N7s1Ogb6/vhWeWnxre7BTYQQM9rjjORM+sCzMDvNkpsILYKraKrWKrI7G5uDrORE+9C303/e966l1YwSX2uwPvRApcYr/M906kwAG6zQfKXyq8sIACVrCBCrrND6En5IUDnImekBcWkEN4pp5vpKfeeQA89S7kYBkHa3CwPPUuFJCDNRqoYActk+FMvRNn4pl6J5I4Z+qdWMEGKjiiiHl30YneXXSeGvPIlPbuosAKNlDBDho4wCwg/sGwQGwFW8FWsBVsBVvBVrAVbIJNsAk2wSbYBJtgE2yC7UzT7pijPmv+sHonUqCBA8wfVu9ECiyggBVsILaGrWFr2Bo2xabYFJtiU2yKTbEpNs1S7J1IF/YDLKCAFfSRPFFBPxauOH+ETxyJZ3Yfji2y27uLAn17/QhZFsdpA5yJg7wguyfZ7d1FgZndk+yeZPcc2Aa2gW1iO7P7gXacvzjVUcAK+m6ef1fBDnoRU8cBehHrC89fnBMLGKXYvJUmsIEKdtDAAUYpNm+lCSyggBVsYBxC81Yazzc7WpRiO/QACyhgBRuoYBwsO/LK0Y68cjRvpbmwRyk2b6UJFLCCDVSwgwaORL8X6Sd20MABzkS/Q7mwgAJWsIHYBraBbWAb2Ca2iW1im9h8RqD7cfMZgQs7aOAAZ6A32AQWUMAKNlDBDho4QGwFW8FWsBVsBVvBVrAVbAVbwSbYBJtgE2yCTbAJNsEm2ARbxVaxVWwVW8VWsVVsFVvFVrE1bA1bw9awNWwNW8PWsDVsDZtiU2yKTbEpNsWm2BSbYlNsHVvH1rF1bB1bx9axdWwdW8dm2AybYTNshs2wGTbDZtgM28A2sA1sA9vANrANbAPbwDawTWwT28Q2sVFLCrWkUEsKtaRQSwq1RKglQi0RaolQS4RaItQSoZYItUSoJUItEWqJUEuEWiLUEqGWCLVEqCVCLRFqiVBLhFoi1BKhlgi1RKglQi0RaolQS4RaItQSoZYItUSoJUItEWqJUEuEWiLUEqGWCLVEqCVCLRFqiVBLhFoi1BKhlgi1RKglQi0RaolQS4RaItQSoZYItUSoJUItEWqJUEuEWiLUEqGWCLVEqCVCLRFqiVBLhFoi1BKhlgi1RKglQi0RaomctWQ4um06GjjAmXjWkhMLKGAFG6ggNq8lq4nVvNMocCZ6LVmdA+adRoECLtvq5DLvNApUcNnWm+7mnUaBA5yB3mkUWEABK9hABTto4ACxFWwFW8FWsBVsBVvBVrAVbAWbYBNsgk2wCTbBJtgEm2ATbBVbxVaxVWwVW8VWsVVsFVvF1rA1bA1bw9awNWwNW8PWsDVsik2xKTbFptgUm2JTbIpNsXVsHVvH1rF1bB1bx9axdWwdm2EzbIbNsBk2w2bYDJthM2wD28g89qaisRo7rZ714cQBzsSzPpxYQAEr2EAFsU1sE9tMWzsOsIACVrCBCnbQwAFiK9gKtoKtYCvYCraCrWAr2Ao2wSbYBJtgE2yCTbAJNsEm2Cq2iq1iq9gqtoqtYqvYKraKrWFr2Bq2hq1ha9gatoatYWvYFJtiU2yKTbEpNsWm2BSbYuvYOraOrWPr2Dq2jq1j69g6NsNm2AybYTNshs2wGTbDZtjO+jAcCyhgBRuoYAeXbb0dYmfP04Uz8awl07GAAvaoUWdL04UDnIF6looTC7iCrZdK7Gx0urCBa9PXOxh2Njqtdw/sbHS6cIAz0UvFhQUUsIINVBCbl4rVlG/+BbDAmeil4sICCljBBiqYPxLKpYRyKeHtT2P6kHipuLCAAlawgQp20MABYmvYGraGrWFr2Bq2hq1ha9h8BvncTZ9BvnAm+gyyn3LenhMoYAUbqGAHDRzgDOzHARZwRVivVZl/VGp6inifzfVf/UHPepfKvM9m+vnrfTaBCnbQwAHORH/Qs162Mu+zCRTQberotu7oNnN023C03HSfM7+QHfIp8e5xfUr8QgU7aOAAZ6JPiV9YQAHd5pvuU+J+I+bNNYEdNNBtvm8+UX6iT5RfWEABK9hABT2YD5TPePs9mX8davrNlX8dapoPlE9zX2jgSPQnNhd6BD81/InNhR7Bj7E/m/GK6F94muZD4s9bLuyg23wczmw5cSae2eJxz2w5/6uAFWyg5h57tlxo4Ai8Fi4sjhI7dH7U6cLc47PBp/k/8xN8dYHa2eBzop/gFxZQwBVX3eansnpcP5UvHOBM9Mc/F3rc6ihgBRuoYAcNdFtznIl+rl9YQAEr2EAFXaGOA5yJfoJfWEABK9hABTuITbF5BqzuUvNPLgUWUMAKNlBz1DsHq3OwOgfL82J1otrZDLQa6uxsBrpwJvozyws9u/3U8GeWF1awgQp20MABus3PVM+hCwsoYAUbqKDlvp2Js87fsy/oQokdOvuCLmyggr7p4mjgAL1yrdPz7Au6sGSEgq1gK9gKNv91utDAAeZhGXKA2ATFeTFijn55cP7XZVsvn9jZ1XOhgQOciZ5kFxZQwAo2EJv/oBx+ADzfLhzgTPR8u7CAAlawgQpiU2yKze9b1qtx5o1DgQUUsIINVLCDBg4Qm2Hznr3DTyNPvcPPHU+9Ez31LiyggBVsoIIdNNAVq+6cHUDrNTo7O4AuFLCCrvAzyvPtwg4aOMAZePYFXVhAASvYQAU7aOAAsXlCrpe17ewLutAV03EFW5+xs7Pt58IBrmDr23V2tv1cWEABK9hABTto4EisKM4v7oujx62ODVSwgwZ63PX7drbGrO/n2dkac2EFG6igx+2OBg5wJp5f2z+xgAK6zQ/L+cX9ExXsoIEDnImeFxe6wg+sJ8OFDVSwgwYOcCZ6XlxYQGwTm+dF8TPK8+LCDho4wHnh8C/z+KgP/zJPoIAV9PanY+HZ+V0cK9hABb1NqToaOMCZeHZ+n1hAASvoNnFUsIMGDnAmnp3fJ0rum18jrs76cTYDXWi5Q2e324kz8ex2O9E33cfs7HY7sYK+6d1RwU4EbA1bw6bYzm63EzksymFRDotyWBTb2eJW/vu//+m3v/ztX//4jz//7a///I+//+lPv/3hv/I//Mdvf/hf//Xbv//x73/66z9++8Nf//Mvf/mn3/6/P/7lP/0v/ce///Gv/uc//vj3x//6GMY//fX/PP58BPy/f/7Lnxb99z/xr4/P/2nxJfX8X5euIwOU0n8IUT4PMdaXDDzCrI0AY/4QQDbbcKxSeG7D0funITa74Z1pV4SjfboX7fMILSO0p00w+eHf6+f/vq7bbf/3j0cBbMCHANsjsSrEdST685H4MYRtRqFGgFLz37d6958/Hr/02IfHzQtbIPpDiLkJUTVHQZ8OpNwN4IsqeYDHjEgGeDyv+/Fs3JyOpfUI8RjS8XkM2R1MyZHoVj+NsRvMWY8cit4+HcyyOSdFShxReTxqJob+mN9F3z0i2x0xdmTUz3dkE0N7Dsb6NHrG6B/2Y+wO68z0UJVPQ2zOLf8UlEcYz4XK7kcYLXbjcQPxeYS7u2Gf78ZuMP0b2Odg2jE/C7F+tD89sdrIE+sx5/xpiPbuUMjmzJQjfzjkUfcpWD+emisTP92INZN4bsS0zzdiVzJFYiQeyFnxeDJ+f0fK6rq9dkTLpzuyObFkxCGtx6cB9hk2e54UT9X/wxGt5f2it4vxeN4aMR6PUz//Cal1W8AlU+RpNKT+eEjq5uz0RabPn5FDnyLY/ROjaZ4Y+pRlH0+Mujk9py+vfsWYnOH1w4VN3WyHWI0RlcfkIgf2/jGpLbLksU/y+THZnJ/FsmCUx1wPMeqP51fbXeCs9+LzCucxd/wU5ccTvZX3z44m754d+33xJ7zXvsxaPt+X3e97MSrg4ByT9mFU9e3zo79fArcxbmZLG+9nS5vvjsb2yK7+sziyq13o0yOru1pauGgq9nxkf6ylKrsf6Rq3FNKefmMfF2Q/xtjU0uYrS123NU9n2E8xdtuhWvJiYW62Y3OWro/M5XX9U859jPGVI9M+PzL29lWH7q7hHjdHPTfkcdP0+YZs73TGzCF5+sX+GKNvhqSVIypZW+X8pQG5d/XS5c2rl+3Piz86OLfhGPbpz0vfFdNR88A+puw/j7E5Tdeyx3EVJfP5uJb7MfwzHWeMx9Tl5zHs/R+5Pt79kdudXVryZvyB5bWzvEre0Lfj85S1sr17zGvbri/G8O95X9fHOl+MMYgxPo+xrR1r/jCvpErZbIm+fWy32WJRS+Xx8OC1jJtCjE3G2W48Zs2Ue3Cvn/xk77cjy3GtTzM+H7djbM71kb/XU54na3689Bi7n/zac6al/XBBeD9GkyN+E5r88AP3IcY33D6N9nueX7XmxUuto7x0ftWaP9W1tePz42q/7/lVW6Zs7ZtcGbsL08PyYq7Up18W+XFM564e15zZXCsME+PD7cIuxvo+TxzaUevnMeT9M2zWd8+wfSXVkrdgj6f849NKOjeVtJSRW/Koxk+/UD+eH7O/e9Oxqz7+iaNzG0TGp+Vnbocjr7ClPCfLhxjbE51p2scM0PFa0nYuBk3k0xjlKO9OWm83w2rleUzfbMbu7imv0LU9/yiMDyF22zHyCr0Oe64ddj9Ia7PlXdwPlwwfg2wno/Lx0OxP16WP6vYhyG5WLK8aHr+5hOjlftpOYSrpUZw/v2kpx3y3fuxHdWTWtanl81Et3zAdVcrb81Hbn5fa8yauPU+Fy8d9abtD0/IO6ng6Qz4+m9g+bsqf7HZ8PiNfSr/51Mue56PmhyC73/1HfeFp6PH0q/1xOmlXVB/+vMKtx+dFteweGhWd+ZiirDWfPvmB8JWXPj/AErVI+vP9y8ctkd3lpeZVbuvPZ/zH54ki758lu+dPN88Sad9wloh+x1myL2n+islV0uZmHqbsnjg88n3kyfb0syetfAgy3r0W2W9Hy9t+eb7s/mk7dj+dzBma1M9/OnfPLXTkKf+YSNmcrfUbztb6/tlav+Nsrd9ytu6fFCqzKf3TZ7+bCM2O7JUZP1xqfriSqLsTlevuR2Wtn/9i7YLUIy966/F8B/AxyHZe+WZnwe6p1M3Wgl2Im70Ft/dk01xwd0jLMV89LoXHH2VzOdL69tLqXiNPs/cfau93p3E/otvd2fWOlBFBHtg/L2fbIJK7M2T3C67l/RN+91Do5gm/C3HzhL+9J5sTfj+kOW83fpjz/9Jx0ZmdKGa7Tq3dNavmg/rHKNRP73v35+rIWZHHI7JNXd3N2t89Q3ZPD26eIbsQd8+Q+TuXRF89Iu7h5fMh3U1I3B5SfX9I9e0hvb0nLw/p01n6nC9f+pUZI+eHZ9kcFzu2D5dutSbaNxRUe7+g2vsF1b6hoO5H9N0LTD1yDlFL3bWcboKs5QiY6d6U5N3jKX8T4xyOYx6fV+T9eBjjMV4c03s9n2X3cEnakbeG7enm4acY8v6ZvntAdfNM34W424cr75/p2xGt+av/GNH+WgwVumtq/TzG7lG/v1p83Sn3+WKMfGC3j7E9w261FZf5/p3UfP9Oavd46mZTTJnbR+x3enq3W3GvV6nMt1uky9xV0pIT5f350dJ60eXFIPpikJZPU9Zydp8GkeN4+7hs92W03Jfx6r5IztStlWNfDZIT1GuJ1BeD0CC81nLcjOpucuoxiZO36w9+OjgfW+l3YW734++D5POyx5PV+WIQGgdmfXol7GtBbvbFStk9Hb7ZGCu7B1X3Job32zGyl2sOrZvtuBukH68GyR+aB/bXgjxmUPNC9cG2CbM9xJqFbT5fSHzxZBucbM95/LUgfRLk8wT8wm/4p/dDsntYZdkBafb5r9b+mvnW6yyye1B19/ZwG+RxWZcvtJTZNkHaNvfyMaK1zd7o21fesntd6t611TbEzde+bu+JbfZkO6L52F1stJdirMb8nKSe9mqM4+0YlQuS59z/Woy8zKvP7yz89E5ge/su4hcxbt1F7PeltZyyb328H+PFc+zxxD2n/dr4/NhuG9t755UF2byiuN0Qo//Q+uflY/d06e7B3cf4hoNrhX3ZJO7utaly8O5VKfrqoOY1Yh2bs2z3hOreg2Fp2/7U7Et/1I/NHc1uO1rh2wV1Mxy73znJn6gm/fj8d06Pt2eY5BseTsn7D6fk/YdT8g0Pp/Yjem+GaR/j3gyT7B5N3U39/dlx76Vzne8f2fn+kb29J5/Xjt07U7eukfcpW7OUtmbzxetbsXyDTHbXt/snQvee1Evv7z+p3+/OOLJTdvax2Z3xHbszf+/dmfkLo8ex2Z3dM533zzSlH1tb39xJ2a6ZuggnWoaQj8Nh7e05jO1WZITnn8qft6JvfyrZk6e54X4/RDlG9us+eLTXgszx9HTqqWPwK0FWH1leTB1Ps7tfGdR8jf1xwn4+qNs3n94P8RjIbBh8sH66K78Icu/I7IPcPDLbIHePzDZzNV+s1dnGa78RnfdAe6n2apCcbHs8ca8vBmmV+f/+6u7UzN+udXOpO7/hK1My5Xf+jeiaXy7rarvd2f2Cqy+Ceu3PbPOzk+0XQW41usvueVXv+YhnLWG42Z1dh+rNRnfZvlF1r3VY5nz3DrFuH1fdbB2uxy+Kyb3W4V+EUU6Tx+3Z+DTM9pRdS/rEMW5Pz+A+HuN6vD+pWo/3J1Xr8fak6jbEvVuS+3timz15f1J1G+PmpOqvYhxvx7g3Z1ZLvXnTq6+N6c3J3V/EuDW5W3cvVd2c//tFjFuTAPt9afmGe31+gv/TdszfeztuTTLfj/Fizt2cZK67t6nuTjL/4mS/eYLU3/nA3Jsgrrs3mO5OEP9iQ25NEFd5/+e/Hu9PEG+34+YE8S8u7owr3sdT908u7ur20343rxC3QW7ef28v7azlC3vWPj9Ra3//2mH3cb+b1w67EDevHW7vyWaien+xPJ5egfz89/Ybni/tr5Z7fqNHfvjg2U9Xy7sgloP6wPJakHLkW3KPJ0DtxS3Rykxzf/3if3Qu/p9+Zb568Z97tG4ENt+zPPaPNPR/eqTxtXFp9j++7/4xyPbm7G5V3L3FeMw8U8oxXkodKfkuhJTNL56+/Ypq1fYNPzTb7w3eGtJfHNqcr34c5frqKe8vj8clQH35flca97vSX84c4Qv3j5CbTrPdRx5yitTYjg9fd//VjKLwrZujzhenJdvTTEL/bFqy9vr+3OY2yHfMw98dkV8EuTki9h0jYm+PyL4p8mlnjuO5n/FrvZVH7U9hds2i20cct1s0d2H6yIuCPo9PZ+O3IZgf7bOX10IYWzE/C/GLTu2D5RGOlxvP59O3WD9v996/8Mr33UZ9/h7JhxnWunu76ma/SLX3X1Wt4+1XVbchbl6G396TzXTCdkTv9YvsY9zrF6lD359N2Me4dzuwP8Nu9ZzU3ZtRd8+O8f7ZcXtPPp+OmO92Avwi7fMiZNS5Sfvda013777n+69T1/n269TbEDcP7O092aT9dkRv3n3Pb5hV3W/HrUdmbfvtv1u3Mu2Q92+9t9tx81bmF+/v3bk73Me4d3fYjv7+kH5Dn+p2O+4N6S8+tJHPl4Y+vXr381vdmzP93gvZ+wV0bl25tPL+u9StvP0u9TbEvRJ2f0/stQG92eha375uaeX9N6l/EeNer2x797DuH4Hcfh1zuzrSzRcpt4vS3XuPcru8yM03D2/H2Lx4uI9x773D+j33tLtRvfnW4X5L7p4j2zG5+dbhfqGk9/fm7rm635d75+p2GZub5+rtGJtzdR/j3rm6i3H/XN2P6s2XW2+vWPfppVRr776Wul1Ji0bI9uNH3PXDVuya/mg/fMyhfPYYdR+iHfV/bKL4EKK9O1W4HQxm+NrzJzJ+Hoxv+MZf+45v/G2/8XlrSHevPvb8cEH/ob/d7kdoLJXSP4+wfb6ee1H0qXnyp6XztutH0EWtUj+N0XR7I3hv2YVdut47RfertLW88yldj88Xamra387YbYh7Gbv7yvDN4di92j/yKdQDP+u92BWee+f4NsKtc3y7AODNc3y/iODNc3z71tPdc3z7XeAjb3sezIZ8XAFwF0PpVlDdxNiurXY0ljQ7zD7PlN2bUzczZRviXqbY71s4fhyOsVlZbbsIYKMX9mndqp8WAbwdY7wf4/mtp68sRljzOxiPZN0s4Ld7UloHiwKN56fgPwXZLoia1/kynibVvhZk5GLrMp4/M/TFIGyJ6DcEqcenQXarK2pncbNu87WD0ygjTW28eoSfvrlyfD6u99esbC+NSJs5Tdjm+PzQ3F7Dc3yeNm28v9xkG9uqetBD/rSWzc8bsmseUcsv8uvzi74ffvF2i0fVRm9ue16H5sMZsnsGtT72HjGO56XWPsaQfceF0CzxvPTc+MqwKsvGPf3i/Tys2yDzqb9/U1u33ai3Fzbd97QaUXSzXmOb2xV+eIfy+RCP++tGPu5ds5I8/4R/ZWVTrZpvPtf+6rqR+bBSn+8LvxRjPi1C0eTFI2Pc5T54vBhlFK5Jnn+0vrJy5L0r+G2EW1fw+zXX5lOv06yfNeTodiUqKazY+Ol14i9C5AzGlP7Z/dB+Dbqev3ePDNEXM3cM+nPH3NymainvXnzvQ9y6+NbydlfeF4Zjt7zyL6IoUeTF1H38SyNKs82hsfcPjb1/aObve2h+GA61lw9Ne4ryYj18XF/mtsxjfl7ftwvJ3SuI+xC3KuJ+X5QLmtmPzYjsPs53b4JnG+Lx+3TQnGOlvRaE26v1U6UvBmmNIPpSfX48f31qW9jU5+2KWN+1wJdkFKnH8wVneTHI0zH+WhC+GSD69NT/S0Eeu5BF7fjh/ujHILvv4wlPVETq50tIa7X3HyLodjGJuw8Rtov8ci9/tM3evP2UarfEx9092S5ir7lcsdrxvCflfgzeolL7YX3ND6uFtvb2L2drb/9ytrc/+bMfjJy10lHnZjDG7ocm53l6G3UTZNfnl7MrvRyf3TjvN4OFl3/8gMqX9kU1v6H+QyPXF4PkzvRjvhwkvwfzvDDuT+f6rqVsZNbq3MUY716JbCPcuhDZvoZy8+HKNsbNhyu6Xbfp5sOVse0k1Zz3nj+svfxhbc/+/l1Vf/+u6v13nbYf2DqY3j1+WHX542Do+4Oh7w+G/a6DUXLCrf2wWPpPgzHfH4z59mDsJqhu/jTtfh8nq4s/fxnoS6u+z3zE9Ijx+XLrat/wGUm1b7j62a4/3/ng2dNF6c/b8R0XpTa+Y2e2H7LIaa4fvqhRfrpB3U398xmbpztt+8py60IB+qEN/SuL2N/9WdgGmXpEyswfDk3TrwRptCw+fYvyq0FyEvP5220/B9m2+j69sfl0M1d7+cKWcPUxe311d3q+lT9/+PjCl4LwdtDjjl0/DaK7J1XfEuSHVy+ex+TDwO6DSLa2ijx1Z3wtSM2PUsrzF6B+OsS7yd3HHUN+L3j+cD/2IQHL2x1A+xC3rlK3u3L3MnUf5O516vyG69T9IuX3Xojrx/vfTe/H299N34a49zbJ/T3ZrS+6Xfb91gtx/Xj/c2f7dd9vfo5mH+Tm52i2Qe6+E7ffkpufo/nVMvY3P0fzizB3v0X5qzA3v2qzH5mbX7XZB7n5VZtS3/4EyzZ7br63uI9x773FXt7+fFqXb/h82nY77g7p9tDe+6rNL87Vu1+1+UWYu1+1+VWYm1+12V8OPE3h1VevKPLbHE9FSb5yY/E4N/LtIXtuCPxwwdjl7RmBfYhbMwK9lt81xL1JhV8MaH6qZD6v4PZxQIe9exvetyfpzdvwXr9haYrdJfyjnudCG3M+PeD90KW9i6FDcuL9eJ7u/kKMzm14l+d5wPZxtud490Tfb0bW1P78tt6XdqXmA+L+wzdoftqV+rvuyvNH6Z+uvH/eDP1dN0Opgs/XZj9vxtuNKvsQ98pPe7tRZdch2i37VPp4XkH+4+lV373V3Ua41yon79/obmPcvM/tu4bq2/e5pb1/n6v2/n2uvv1Fn22Im/e5t/dkc5+7HdGb97m7laju3ufuvm12+z53G+Tufe7+k3E373O3W3L3PrfYt9zn7sPcvs/9RZi797nbkbl7n7sNcvc+t+jbN2W77Ll7n7uNcfM+d/vM6t597vYjlHfvc+0bhrR/w33u/ly9fZ+7D3P7PvcXYW7e526vBW7d5u6vJu7c5e4eJ968nxrfcT81vuF+atvcIdmhVmV+3s+wjWF5TVNneTEGv56PJ9+bGNvujlwUo8n4vFFlvP35gfH25wfGN3x+YHzD5wf6/Iar1d1nuWc+LSsiz0uNzdshRHJf5MdFdb8Qo2SX+yPG59vRt0+pbmat7T7MfbsZYTeVenehsSLfMvW/neSi576pPq9Ipx8G5f1VqOwbVqGy91ehsvdXobJvWIXKvmEVKvuGVajsG1ahsm9Yhcq+YRUq+4ZVqOwbVqGyb1iFyr5hFSr7hlWo7BtWobJvWIXKvmEVKvuGVajsO1ahsm9Yhcq+YRUq+4ZVqOw7VqGyb1iFyt5fhcq+YxUqe38Vql9dPtxahcq+YxUqe38VqiLvt/3YN6xCZe+vQmXvr0Jl37AK1X5E702H2jesQlXkO9p+5DvafuQ72n7kO9p+5HvafuR7+nXkO/p15Dv6deT9fh35hn4deb9fx95fhcq+YxUq028Y0u/o15Hv6deR7+nXkW/p19nOEt2ax9zPM92Zx9y+53ZrG/Zvyt3qGNq/Q02N16ca/7UXsTtvc/dZXwwyRk4zPS9v9MW3ufOJ+QM/3x3dNsrcfCV8G+Teak37ELdWa/pFiFurNW2Pi+WVxPotf/Hg/hCkvRpECFI/Py5mb7eo7EPc6g0xs981xN1L9+2A8kKG2Xj1qOTVqth8tYI8b8nLQUbedj/w5SAs/rINsv2Wyr1u0P3nWO7U9l98GSpjTOkvflwqp0Om2GcPILYf2ro1FPtPdd16Yri7GbJc5+RxT/b8gv0XPqHGd8seOF6MkdX48bP74qfcRmM7Xv2k3Mg7oUe4Vz8pl68fPvDV8ch7qUeMz4/L9jN9mrMgTa2/H2O89qm/xmPp1tuL+8Kbh80259g2Bl/pa6N+HmNsX6HiA1mPmbvPXzwcx/YLqPlVudafnm3/dJ3+iy3puSW625Ltl2XzQkr70/RS/cp25Pog4zj6Zju2U1RHDuvzZ5x+DrJ7mzq/8/F8x7+aoG+fIuPps7Kbr5+N3dqot0+R7cucd0+RX2zJvVNkO91+7xTZb8fNU6ToN5wiu4dL33CKzJmV+Sh1c4rslpCSXDFFZT6V5g99FLup8m6Sn7Wxp8v1DzG2H2E98hLkca1zfL4vUt7fF5Hfd19KzSuIHz/58ZWP0ua38bSW9loMYTukfUeM8WKM/A7U4wjZizHyUf0j3MtjaoxpfTFGIUbdfPh4uxJDfkVBRJ9vkX+cNRz17bV99iFu3d+O2n7XEDeXUNhOsPOJwWrHZjx3n9W6862y7VY0brHbHJutmO9XsN0bUzcr2H6dD+EpjOin+7KPoayR2D8fj9b3X4+8t+DILsi9Wb59iFuzfL8IcWeWr739+mp7++3V+vacfH17Tn6/VNzzZ2iO50X8vrTgHKuKrSib5fPqt6xbtw1z8xzdhrh3ju5D3DlH90tw3lyAbxvj/WUe758jv1q28uY5It9zjsj754i8f47I2+fIrsFn0Lo95LlV+cNVQ9++wJUHRuzpm1j3t2Iqn8Ge5dOt2IaY+St5PM8EfSHEyBt0OZ7XfPg4FrtFqO62XI/dNN/dluu73596Xinlp53Z9vYZidtNP/0a5y+CGKvxPT+r+BhEdw8ZJl25pWx2Z1dBlM+T9+ee+iJ3h7VZ3ua38dzteP80a3xy4jHfuDsy39DZP8Y3dPb/8vDa0+H9rBT6ClG/7zmiyvXpU4ifBnZs3w3MRhR5fpT903TS2Haz0GVUZDPBtntb6vYs3bC3Z+n223Fzlm67DNXdWbrtOlS3Zun2JWAt6xcnWrHnNSiOD7eGu3fr82R9Wj+q1du1+d7iYGNuTrGRD2DG/LznauzelnpMZWX6l+cTbN4uh1J4DaY83xJ+OCb7ENmjUJ5vQr4Sgm4aeXoq9tOZMbd3+5ko9XgxRHbT96e+76/syPOP9tMVyFdC9Lzm/7Gz6AshrHA5txmLuX+d5xuCPH6lD34VxotBLGeTik15McjMN0fK86JCXzq4nTUv7LVcqXm1/jhTymtbQdNYPV7akTbos3xen6XM21fapeZxLW28shGldJYCHC9lW6mZrw98bStUuAx7WiXqSyE6/e9jvrYjnJxVXtsRvqn0KOkv7YhlG5C1/kqAmTPHz2tDfWUnjpxs/WF1yJ8yfffM6f2ze+alzpTXBiJP7Wn65khuAmwvDmbLycWpx/x03mduJ480n5tPnZsPKOzmON6eXXhcYRgXKeWzy625exFKeJHyKJ9fsOn7E2nbIGsO7GAOrL4YZmrlI+bP03FfCiJ8OlyeP534tSD5ntt8/h7c14Lw1v9jlPuL5+rIUj6H1s25ejfI05v/XwwycmAfd2avBbk/zfmLob03hfyLbbk7//urMDcngOfuRa/7I7MNc28CeB/i1gTwL0K8OQF874nv9vqFRR370wXlx2/U70J0VrjtT4tkfSXEyAec5flX+yshprGK21FeCSEHj2qPpzbRr2wF68CtJRRfC8Hih6O8tCOPS2pmSeZrW8EK2aU9Lwn/hRDt6X3dpzvqjyHmbkWpb7hbqXkp9LiSeG0wGrNOz60Zr47nayGqMN8rz29QTrsfQvn80lOz/6shnp5bfylEXktVMX0pRM1ppwcdL4VoWXvrD5fIX9mK/rQWvbwf4rWDyguc9flG+EtjwWtkrb52UBvrFbVqr4UofN9DXzyoPa/0W39pK9YKtkw4tZdCPC2kO56v8j+EmLvPvhXhnv55nfMPvUf7X1WWOVd9bU9YKX228VqIzrrgryVJ4fHhYyavvLgjvKF8yNshyqtbweLX5aVsf/yeMxbN3t6Kjwf1fz/+3z/+65///s9/+du//vEff/7bX//j8S//ewX7+5//+C9/+dP1//7f//zrvz79r//4//89/pd/+fuf//KXP//bP//73//2r3/6P//59z+tSOt/++24/s//svXR68dkwPjf//RbWf//rPWfHk/Jjsf/X/1/7+t/t7n+9/UPen+k9eP/9PUf/F+sZc8e/0f+93+vTf5/"
1916
+ "bytecode": "H4sIAAAAAAAA/6VTvU7DMBC2GwcCiKEMwJiBgZk3QImExMIEq2UiD5ZSp7IP1DLxULwCr8DAe7ATE1syp/6k7knO+az7fs6RKRni2mfOxRvIhmvDlQZptGgt53apGz436lWA5Bb6r+ulHsNIYtBE8QvfX/g8ifiyfpVknHyBfOyGf68LTLgTnvzhKUnVH+Z3mMT5yUEwEuFjL4H3sF8n0f4U6Sf6r/f1f7bBc/g3VdRfklGRH5Nhzqk/cLNf+f0LqFbB8tZaaaDqZnMB6rmVD0Y0rXySxqpOY0KK6mrNudO5/K9zJ+Fx2FVd/yQWkCNeiuoJqjNUM1QHvnwNDmO2hbu7cPcM8ZWjGBZ1mCmLvGUrOhnKoefc56NIP2Q2wsf358/Xx/3NbIrwLsL9ujl/AXPqS809BQAA",
1917
+ "debug_symbols": "fZLRroMgDIbfpddcUEQnvsqyGFRcSAgapic5Mbz7YJGpF+yGUtr/42/SDQbVrc9W23F6QXPfoHPaGP1szdTLRU82vG5A44EcmoIAltBU3hNIHe3ilIoNJ0kAzdIpu0BjV2MI/Emzfppes7SfuEgXqpSAskOIAThqo+LNk0NN81JEntTIaPEFIFYXBOYRtWA7QRT8ANTiAmA/PFDE5IFWVRbxY4y6TFMIKrJD8DyA83IH8JODG7voy7y+qPiuLwQ7DETAI6Sy1+6yDT6inJadUXs6rrY/VZf/OVXSNs1u6tWwOhVJp5UK5x1vhLGHj7+9AQ=="
2057
1918
  },
2058
1919
  {
2059
1920
  "name": "verify_private_authwit",
@@ -3854,7 +3715,7 @@
3854
3715
  }
3855
3716
  },
3856
3717
  "bytecode": "H4sIAAAAAAAA/+3dB3gUZbuH8SeF3nuH0IuAFJWiIEhHpSqggDGEABEIkIRqA3tXxN577wIiKKAIKNgL9t7FrtjL+T+4q+OyyGxWbs53zrfXdbtx2dnfuz3ZnXknxf44tI4cZ2ZmzSvMyc7My8/MzSvMyc/LmlKQmTkrJz93wtzM6fm5s7IKczKzZhZOmp1buDHN7KG0P5ZLUWmR41SVEXNa9Dj4c6U456uiesScVl3NjzmtRpzT6sa5vHpxTqsf57QGcU7LiGM0jHNaozinNY5zWpPIZaZbiENK5Dgjctxu/KD8t9tf1XLZkD5LFywYNbZFx4/6z71/+sJeb29Z9KX+/ba0v867g0PrZJzbwztJXZ87duykBi+7rP11w/r/++3hx00j/3975P/9cqPnu1M/36XuVvekxb/wDAt39aokcN3uDXsbpgydH3wA+XI9LLlxNrHw41wc/r5OCY4zuly6/fWk32aBBMedwFj+5i2JfQVaEnkgpAdO21WDW5qWBLg0LfHl7ksLf+8XdVz3BZ5JGRb+kKi1JGKlxSy3o+u1JIHbIJHba1kCz5Y//5PguONd3zC3U9jzJnJ970/bufevP5aWpCV+Oy3/l96hdnT2tATG5C82qfbXq/X2XhXD+v1eeaLgn5YtvXJ+nVo/vNC3Tc1pk3+6oM6YYYUlyy26tvvI4oM+HVRs4Xcv/rnA/4aX6BWxL9ErAvd6ooPwR+XyIjxqHkhg8P/mW8cDRbzRHizqW4eDDxbhrWPlTn7r8HGtLMJbR7r99fT688JiLiPMS9nytJ32iN/eMz30ssHrtipyG62OfdasStv2T6zVgQEW9UZJ9P1mcbgHyrkyUlYl8KBaneCNXZQHuI8n9jfqHY0rkevwUJK/I+xomRWRP8kTva8fBt7LlxVhXGuSHNeOLr+ot9cjO/l+LOq72NoE38ViXzijh0SfA4n8pbgmwedx7CHDwi0bvF7rIi9i62NfNNfFedFcH2eA6TH4zrpBdvSCuS6BF5v1O/kF058864rwB9iKBK5DItf30Z38B9j2rm+Y2ynseRO5vo8l+OKY6EdF/qawJsHH8SNFeNHasJOvhz8XE3iDS/HrsLYI12Njgtcjekj0+iTyAcaKf2lMYX7jz7BQh5RmxowpxcKPqbkxY0q18GNqYUUbU6Kv4y0tsfs5ekj0cdsqAedO6EOc3QLnbXr9kyPXd97w7umdNg08aXM3e2HVW10/qN6ha7dFpfp8kleqVXDBRO/3dAs/ptbGPBaLWfgxtTFmTMUt/JjaGjOmEhZ+TLsbM6aSFn5M7YwZUykLP6b2xoyptIUfUwdjxlTGwo+pozFjKmvhx7SHMWMqZ+HHtKcxYypv4ce0lzFjqmDhx9TJmDFVtPBj6mzMmCpZ+DF1MWZMlS38mLoaM6bgqgw7GtPexoypqoUf0z7GjKmahR9TN2PGVN3Cj6m7MWOqYeHHtK8xY6pp4cfUw5gx1bLwY+ppzJhqW/gx7WfMmOpY+DH1MmZMdS38mHobM6Z6Fn5MfYwZU30LP6a+xoypgYUfUz9jxpRh4cfU35gxNbTwYxpgzJgaWfgxDTRmTI0t/Jj2t6KNKdHPuQ4wxjnQ/p3beEfOIAt/f9wLfQYeXLV2R+MfbMztNMTCj39xkt/DhLn8RxP8fmtDWuKPwaG2c6/H2iJcj41FuB7DjHnODjfGOcgY52BjnBHGOCONcUYZ4xxijHOoMc5oY5wxxjhjjXEOM8bJNMY53BgnyxhnnDFOtjHOeGOcHGOcCcY4E41xJhnj5BrjHGGMM9kYZ4oxzlRjnDxjnGnGONONcWYY4+Qb4xQY4xQa48w0xplljDPbGGeOMc5cY5x5xjhHGuMcZYxztDHOMcY4xxrjzDfGWWCMc5wxzvHGOCcY45xojHOSMc7JxjinGOOcaoxzmjHO6cY4ZxjjnGmMc5YxztnGOOcY4yw0xjnXGGeRMc55xjjnG+NcYIxzoTHORcY4FxvjXGKMc6kxzmXGOJcb41xhjHOlMc5VxjhXG+NcY4xzrTHOdcY41xvj3GCMc6Mxzk3GODcb49xijHOrMc5txji3G+PcYYxzpzHOXcY4dxvj3GOMc68xzmJjnCXGOEuNce4zxllmjHO/Mc5yY5wVxjgPGOM8aIyz0hhnlTHOamOch4xxHjbGWWOM84gxzlpjnHXGOOuNcR41xnnMGGeDMc5GY5zHjXGeMMZ50hjnKWOcp41xnjHGedYY5zljnOeNcV4wxtlkjPOiMc5LxjgvG+O8YozzqjHOa8Y4rxvjvGGM86YxzlvGOG8b47xjjPOuMc57xjjvG+N8YIzzoTHOR8Y4HxvjfGKMs9kY51NjnM+McT43xvnCGOdLY5yvjHG+Nsb5xhjnW2OcLcY43xnjfG+M84Mxzo/GOD8Z4/xsjPOLMc6vxji/GeP8bozjC4Q8b8yCiTkpkJMKOWmQkw45xSCnOOSUgJySkFMKckpDThnIKQs55SCnPORUgJyKkFMJcipDThXIqQo51SCnOuTUgJyakFMLcmpDTh3IqQs59SCnPuQ0gJwMyGkIOY0gpzHkNIGcppDTDHKaQ04LyGkJOa0gZzfIaQ05bSCnLeTsDjntIKc95HSAnI6Qswfk7Ak5e0FOJ8jpDDldIKcr5OwNOftATjfI6Q45+0JOD8jpCTn7QU4vyOkNOX0gpy/k9IOc/pAzAHIGQs7+kHMA5BwIOYMgZzDkDIGcoZAzDHKGQ85BkHMw5IyAnJGQMwpyDoGcQyFnNOSMgZyxkHMY5GRCzuGQkwU54yAnG3LGQ04O5EyAnImQMwlyciHnCMiZDDlTIGcq5ORBzjTImQ45MyAnH3IKIKcQcmZCzizImQ05cyBnLuTMg5wjIecoyDkaco6BnGMhZz7kLICc4yDneMg5AXJOhJyTIOdkyDkFck6FnNMg53TIOQNyzoScsyDnbMg5B3IWQs65kLMIcs6DnPMh5wLIuRByLoKciyHnEsi5FHIug5zLIecKyLkScq6CnKsh5xrIuRZyroOc6yHnBsi5EXJugpybIecWyLkVcm6DnNsh5w7IuRNy7oKcuyHnHsi5F3IWQ84SyFkKOfdBzjLIuR9ylkPOCsh5AHIehJyVkLMKclZDzkOQ8zDkrIGcRyBnLeSsg5z1kPMo5DwGORsgZyPkPA45T0DOk5DzFOQ8DTnPQM6zkPMc5DwPOS9AzibIeRFyXoKclyHnFch5FXJeg5zXIecNyHkTct6CnLch5x3IeRdy3oOc9yHnA8j5EHI+gpyPIecTyNkMOZ9CzmeQ8znkfAE5X0LOV5DzNeR8AznfQs4WyPkOcr6HnB8g50fI+QlyfoacXyDnV8j5DXJ+hxxLZZwUyEmFnDTISYecYpBTHHJKQE5JyCkFOaUhpwzklIWccpBTHnIqQE5FyKkEOZUhpwrkVIWcapBTHXJqQE5NyKkFObUhpw7k1IWcepBTH3IaQE4G5DSEnEaQ0xhymkBOU8hpBjnNIacF5LSEnFaQsxvktIacNpDTFnJ2h5x2kNMecjpATkfI2QNy9oScvSCnE+R0hpwukNMVcvaGnH0gpxvkdIecfSGnB+T0hJz9IKcX5PSGnD6Q0xdy+kFOf8gZADkDIWd/yDkAcg6EnEGQMxhyhkDOUMgZBjnDIecgyDkYckZAzkjIGQU5h0DOoZAzGnLGQM5YyDkMcjIh53DIyYKccZCTDTnjIScHciZAzkTImQQ5uZBzBORMhpwpkDMVcvIgZxrkTIecGZCTDzkFkFMIOTMhZxbkzIacOZAzF3LmQc6RkHMU5BwNOcdAzrGQMx9yFkDOcZBzPOScADknQs5JkHMy5JwCOadCzmmQczrknAE5Z0LOWZBzNuScAzkLIedcyFkEOedBzvmQcwHkXAg5F0HOxZBzCeRcCjmXQc7lkHMF5FwJOVdBztWQcw3kXAs510HO9ZBzA+TcCDk3Qc7NkHML5NwKObdBzu2Qcwfk3Ak5d0HO3ZBzD+TcCzmLIWcJ5CyFnPsgZxnk3A85yyFnBeQ8ADkPQs5KyFkFOash5yHIeRhy1kDOI5CzFnLWQc56yHkUch6DnA2QsxFyHoecJyDnSch5CnKehpxnIOdZyHkOcp6HnBcgZxPkvAg5L0HOy5DzCuS8CjmvQc7rkPMG5LwJOW9BztuQ8w7kvAs570HO+5DzAeR8CDkfQc7HkPMJ5GyGnE8h5zPI+RxyvoCcLyHnK8j5GnK+gZxvIWcL5HwHOd9Dzg+Q8yPk/AQ5P0POL5DzK+T8Bjm/Q46lMU4K5KRCThrkpENOMcgpDjklIKck5JSCnNKQUwZyykJOOcgpDzkVIKci5FSCnMqQUwVyqkJONcipDjk1IKcm5NSCnNqQUwdy6kJOPcipDzkNICcDchpCTiPIaQw5TSCnKeQ0g5zmkNMCclpCTivI2Q1yWkNOG8hpCzm7Q047yGkPOR0gpyPk7AE5e0LOXpDTCXI6Q04XyOkKOXtDzj6Q0w1yukPOvpDTA3J6Qs5+kNMLcnpDTh/I6Qs5/SCnP+QMgJyBkLM/5BwAOQdCziDIGQw5QyBnKOQMg5zhkHMQ5BwMOSMgZyTkjIKcQyDnUMgZDTljIGcs5BwGOZmQczjkZEHOOMjJhpzxkJMDORMgZyLkTIKcXMg5AnImQ84UyJkKOXmQMw1ypkPODMjJh5wCyCmEnJmQMwtyZkPOHMiZCznzIOdIyDkKco6GnGMg51jImQ85CyDnOMg5HnJOgJwTIeckyDkZck6BnFMh5zTIOR1yzoCcMyHnLMg5G3LOgZyFkHMu5CyCnPMg53zIuQByLoSciyDnYsi5BHIuhZzLIOdyyLkCcq6EnKsg52rIuQZyroWc6yDnesi5AXJuhJybIOdmyLkFcm5NwEmLXL7/7eyHZqq5aqFaqlZqN9VatVFt1e6qnWqvOqiOag+1p9pLdVKdVRfVVe2t9lHdVHe1r+qheqr9VC/VW/VRfVU/1V8NUAPV/uoAdaAapAarIWqoGqaGq4PUwWqEGqlGqUPUoWq0GqPGqsNUpjpcZalxKluNVzlqgpqoJqlcdYSarKaoqSpPTVPT1QyVrwpUoZqpZqnZao6aq+apI9VR6mh1jDpWzVcL1HHqeHWCOtHvB3WyOkWdqk5Tp6sz1JnqLHW2OkctVOeqReo8db66QF2oLlIXq0vUpeoydbm6Ql2prlJXq2vUteo6db26Qd2oblI3q1vUreo2dbu6Q92p7lJ3q3vUvWqxWqKWqvvUMnW/Wq5WqAfUg2qlWqVWq4fUw2qNekStVevUevWoekxtUBvV4+oJ9aR6Sj2tnlHPqufU8+oFtUm9qF5SL6tX1KvqNfW6ekO9qd5Sb6t31LvqPfW++kB9qD5SH6tP1Gb1qfpMfa6+UF+qr9TX6hv1rdqivlPfqx/Uj+on9bP6Rf2qflO/K3/SpahUlabSVTFVXJVQJVUpVVqVUWVVOVVeVVAVVSVVWVVRVVU1VV3VUDVVLVVb1VF1VT1VXzVQGaqhaqQaqyaqqWqmmqsWqqVqpXZTrVUb1Vbtrtqp9qqD6qj2UHuqvVQn1Vl1UV3V3mof1U11V/uqHqqn2k/1Ur1VH9VX9VP91QA1UO2vDlAHqkFqsBqihqpharg6SB2sRqiRapQ6RB2qRqsxaqw6TGWqw1WWGqey1XiVoyaoiWqSylVHqMlqipqq8tQ0NV3NUPmqQBWqmWqWmq3mqLlqnjpSHaWOVseoY9V8tUAdp45XJ6gT1UnqZHWKOlWdpk5XZ6gz1VnqbHWOWqjOVYvUeep8dYG6UF2kLlaXqEvVZepydYW6Ul2lrlbXqGvVdep6dYO6Ud2kbla3qFvVbep2dYe6U92l7lb3qHvVYrVELVX3qWXqfrVcrVAPqAfVSrVKrVYPqYfVGvWIWqvWqfXqUfWY2qA2qsfVE+pJ9ZR6Wj2jnlXPqefVC2qTelG9pF5Wr6hX1WvqdfWGelO9pd5W76h31XvqffWB+lB9pD5Wn6jN6lP1mfpcfaG+VF+pr9U36lu1RX2nvlc/qB/VT+pn9Yv6Vf2mfleWque/SlVpKl0VU8VVCVVSlVKlVRlVVpVT5VUFVVFVUpVVFVVVVVPVVQ1VU9VStVUdVVfVU/VVA5//TTVUjVRj1UQ1Vc1Uc9VCtVSt1G6qtWqj2qrdVTvVXnVQHdUeak+1l+qkOqsuqqvaW+2juqnual/VQ/VU+6leqrfqo/qqfqq/GqAGqv3VAepANUgNVkPUUDVMDVcHqYPVCDVSjVKHqEPVaDVGjVWHqUx1uMpS41S2Gq9y1AQ1UU1SueoINVlNUVNVnpqmpqsZKl8VqEI1U81Ss9UcNVfNU0eqo9TR6hh1rJqvFqjj1PHqBHWiOkmdrE5Rp6rTlO/P3vc17/uB9320+/7Tfd/mvt9x3ye476/b96Xt+7n2fVD7/qF9382+X2Xf57Hvj9j3Fez78fV97Pr+b33ftL7fWN+nq+9v1feF6vsp9X2I+v49fd+bvl9M32el70/S9/Xo+2H0fST6/gt934K+3z/fJ5/vL8/3Zef7mfN9wPn+2Xzfab5fM9/nmO8PzPfV5fvR8n1c+f6nfN9Qvt8m36eS7+/I90Xk+wnyffj4/nV83ze+XxrfZ4zvz8X3teL7QfF9lPj+Q3zfHr7fDd8nhu+vwvcl4ft58H0w+P4RfN8Fvl8Bn/Pf5+P3ufJ9HnufY97nf/e52X3edJ/T3Ocb97nAfZ5un0Pb57f2uad9Xmifs9nnU/a5jn0eYp8j2Ofv9bl1fd5bn5PW54v1uVx9nlWfA9XnJ/W5Q31eT59z0+fD9LkqfR5Jn+PR51/0X7x93kKfU9Dn+/O5+HyePJ/DzueX87nffF42nzPN5zPzucZ8HjCfo8vnz/K5rXzeKZ8Tyudr8rmUfJ4jn4PI5wfyuXt8Xh2f88bno/G5YnweF59jZev8J8rnDfE5PXy+DZ8Lw+ep8DkkfH4Hn3vB50XwOQt8PgHf1t+3w/dt5H37dd+23Lf79m2yfXtp35bZtzP2bYB9+1zfdta3a/VtTn17UN9W07ej9G0cfftD3zbQt9vzbep8ezffFs23E/NtuHz7Kt/2ybdL8m2GfHse39bGt4PxbVR8+xHftsO3u/BtInx7Bd+WwNfz93Xwff14X3fd1yv3db59fWxfV9rXY/Z1jH39X18319eb9XVafX1TXxfU19P0dSh9/UZf99DXC/R19nx9Ol/XzddD83XEfP0tX7fK13vydZJ8fSFfl8fXs/F1YHz9FF93xNfr8HUufH0IX1fB1yPw7/j9+3f/bty/t/bvlP37Xv8u1r8n9b/D/PtF/+7Pv5fz78z8+yz/rsm/B/LvaPz7E/9uw7938O8E/PN6/yzdP+f2z6D982H/7NY/V/XPPP3zSP+s0D/H88/Y/PMv/2zKPzfyz3T88xb/LMQ/p/DPEPzve//b2/8u9r9Z/e9Jf8j634bRQ+QtbOvfj+mqmCquSqiSqpQqrcqosqqcKq8qqIqqkqqsqqiqqpqqrmqomqqWqq3qqLqqnqqvGtgff9s2VI1UY9VENbVtD+mBn6tFjs+ZuG7jt5tLPB08X41/+LeMyPG6l8bUbVyt1kvBf+sSOX5zU2GdlKGdm4217R8yLNRhSBLLTkpi2awkli1IYtmcJJbNCH3itofsJJbdVbdzXhLLTkxi2V11H41PYtlkxlyYxLLJuMk8JnfVmJO5jzJCn7jtYVoSyybzPMoIfeK2hwlJLDsziWWTub676jGZm8Sy/4mPjdlJLJvMbZXMfZTM+2BG6BO3PUxPYtn//o5kyHM/mdt5V72HTk5i2bZJLJsR+sRtDwOSWDaZ96OM0Cdue9hVrznJvE4m8/zNCH3itof/xDEn8/ydk8Syybwv/Pf39vDLtk5i2YzQJ257SOZ34P/E99/GSSw7Oollk/kdOJnfvf/7e50hrzn/3343G5vEsls/1/ZDi8hxVkFBTn5hZva0qdOzCnPHTcnJnJafla2jWTn5BbnT8jJn52dNn56TXz1y/pKR49TIsX9unhbeTykZWC7x5ef3Lhl7gQktb1uXT7Gi+n9c/+h3BUVZvnh0IIHlg2OJXq5/71Am8HO5GL+I4++d7Pgr/8OYo/dNr8D5MyzUoZh/t+LXs2LkBL/uTSI/zyzMnZJbOLfn1odqrz8fqYO3PlBH/PE4jb3AlJj/77Wd00sHxp0eOE/422RO7+hlpkWvTODn4CE95jh6nuh3OaUCfvQ4PcQ4Xlm7ZdPigR2mVopZ3g/R+8avZ7vIz7kFmQW543MycyZMyMn25/7MvMKc/Mz8HD3n//YaEHnu14ost4uf+32TfO73TfKxn1IysEwRlo/73I8diwWOeweW7R1zvrL29+dh8Dz+PCof+LlC5OeykeM+gcuKLp/kbdMnydsmpbJt//aIvjZUifx/8LVhen7urKzCnAEFw/WI7rP1Ad3rj8fzsD8fzsHbKNawmJ9jT9ve6fHug+Bl/wuvK32TfV2pGTne2a8rzSM/FxROy8/JzM3LzJmTk60Xbf32kJ2VPSn25ST62dL/lZeTIj7kU6PLF+3hEf/lJDiW6OX+W78yFHGcKWXt72OLXkZwbMWKdtmp8Z6eaTGnBS+/lCX3MpUSc3lRL/b6RR/TZQPniXopMf+WHmec0X8L3i7R8/lLYc3A+eLdt8F/i47FD30Cl9E48HP05TTJx0rfnfnrZUpgvNFD7FumH2Jvw5Jxzh/9t1KBfwveD34oHTg9Lc5llYhZLnr+RpHj6Ftw8cAy0eUrxPGLx/jxxh08LfZ2KRXn/KXinN9vnzqBMUffXlsELi/28Zxm2/66Eb08fzuuG/k58nY83N8JBuT1ib4P9PK3AYs5pG7H297bdez5LeZ8wcP/hrffNpHjnf32G/2TaXxuvn77yZ3lb8H+q0/Ujd4O1QKXU5T32apFW/5vj3+LGUvwcmN/H7AEjOgheF/FHqKXG3s/lYw5TkncT9neOFLinLly5Lhq4LTo7VE7chy8LwtzJuqvsxkzpxXm5uQVxo62dEBK9LcPP5Qp2vJx79XSgZ/LxIKR4/Q4y23v2Rz7zP+n86b8w+WWjfNv0cuM3hvB8Uavx/8AXGGfCD3GAQA=",
3857
- "debug_symbols": "rZfbbuIwEIbfJde58Jx84FVWqKI0rZAiQClUWlW8+47BTkIlW2zoDT/O4ct4PDP2fDdv3ev542W3fz98Nqs/383rsOv73cdLf9huTrvDXq9+Nyb+ADcrurQNXAe2WaEOMA7INStoG/IqF72Y3305DV0XH5jB9BPHzdDtT81qf+77tvna9OfrQ5/Hzf6qp82gd03bdPs3VQW+7/ou/ru009um/Ko4TC9bcOPr4OhRAAZLiUAGcIaARxFgABICjLUTwodHEV4cJ4S3NJsI8B2CK4iQPRGIl9iADD4RkC0VbbAVBDGPCDMh3L0RrkxwwYbsCGMmXxLLHcJXEM64hHBOuIgIZQRJ9iXDZAPKPQBqzkSf54FksMyASlyBzWYAeFlmhwOb7XBkygyq2OFcThFwoTKXSnQGlhyd4hcRwCBOWVbxRiU+2UM2g73Mkj087oxg8sJCwLIzqokWshUo83rxI9Eg1LwhY4CpO8K0sjb8B0RzZYT4WbrZh6uGEOaUF5LyZOLiFdNtZgcZT1Kyow7xPgcIaUm2iyAABCMEglvgEUbJk2EM5Vpe21FsmDJuXsLkx1QqlVQs5QARO4v1h3dGJ5ABakN5Hhhq5ce4MdYdQDFMyTy9qxA8v60QPr+vED27sRA/v7GQPL+x1FcWrBlXFhGKK1uJURrDnNkuOb2JyBjkEqAYoxR+ofrUId5P58hAuAwShGYlbLElD9XBKuQX6qDIeJ7UtaElddCjH4/FZH4g1jrcbHfDff8Cop9rr00LaOSBS+qThpui9jmoX0ZIqt0N6oyRknLML1VJGpsg5aJL6pOG2/NkbmOCpJGnJxFSHqkbSHms3yFJamMJaK/9FKeG6qrhpmzi7qEKSTEpJY08tYvlVjvZJnVJ/c0ujjz1oZikkBSTpvkKJ5WkiSfRvhiHX5tht3ntu+jkuA7n/Tb7XIenv8d8J3eVx+Gw7d7OQxfXZ9Za6u8fPaMhrMcG83optMjrsc3UK3quIF63t9vqM5b1Ja76Pw==",
3718
+ "debug_symbols": "rZfZbuIwFIbfJde58Nm88CoVqihNK6QIUAqVRhXvPsdgJ2EkW0zoDT/ZvhyfNf5p3ru38+frbv9x+GpWLz/N27Dr+93na3/Ybk67w17P/jQm/gA3K7q0DVwPbLNCPcB4QK5ZQduQV7noyfzs62nounjDDKavOG6Gbn9qVvtz37fN96Y/X2/6Om72Vz1tBr1q2qbbv6sq8GPXd/HfpZ2eNuVHxWF62IIbHwdHjwIwWEoEMoAzBDyKAAOQEGCsnRA+PIpwwWcneMM0IYDvEFxG+JA9EYiX2IBkQyIgAxdtsDUE84gw0zLcvRGu5ojRCG/M5EsF3yF8BeGMSwjnhIuIUEaQZF8yTDag3AOg5kz0ozPJYJkBlbwCm80A8LLMDgc22+HIlBlUscO5XCLgQmUtlewMLDk7xS8igEGcqqzijUp+sodsBnuZFXt43BnB5MBCwLIzajFhHmMi8671T6FBqHlDxgRTd4Qpsjb8B0RrZYT4WbnZh7uGoMsuFTLlxcTgFcttZgcZT1Kyow7xPicIaUu2iyAABCMEglvgEUaTEYzsix6pTRQbpoqbtzCtnbulVDqpWMoJInaW6w9PRhswR9YGKc8kDLX2Y8b00FYExTQl8/RUIXh+rBA+P1eInh0sxM8PFpLnB0s9smDNGFlEKEa2kqM0prm2xCVfbyKQjRBhLOYohV/oPnWI99N3ZCBcBtE6m7WwxZY81AerkF/og8JjzWlseEkfdDrYxpIz4R6x1sPNdjfc719A9HXtddMCmnngkvqk4aao+xxUNkJS3d2grhgpKcf6UpWkcROkXHRJfdJwu5/M7ZggaeTplCflkX6skvJY30OS1MYW0F73U5w2VFcNN2UTp4cqJMWklDTy1C6WW+9km9Ql9Te7OPK0nYhJCkkxaVqvcFJJmngS7Yt5+L0Zdpu3votOjnE477fZ53p4+nPMV/Ku8jgctt37eehifGZbS/190W80hPW4wbyeCi3yetxm6hnklnjd3i6rz1jWlxj1vw==",
3858
3719
  "verification_key": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOQAAAAAAAAAAAAAAAAAAAAW1Divx2Jo+ud05vRLB46u24AAAAAAAAAAAAAAAAAAAAAACiatc1b/Ec9sOx3gnvNYgAAAAAAAAAAAAAAAAAAAGxeuO1/lw06+NTENp5wIjRtAAAAAAAAAAAAAAAAAAAAAAAi7UNkMp8oX8tk4p62UWEAAAAAAAAAAAAAAAAAAACExOX0+47Q4+HQYqEqww/89gAAAAAAAAAAAAAAAAAAAAAABzdGojjeQbxcACQZ/NsyAAAAAAAAAAAAAAAAAAAAa61ZX5XBadIp2kG1hpZSYcMAAAAAAAAAAAAAAAAAAAAAABV1zvbYdYKv8yLYPsJHPgAAAAAAAAAAAAAAAAAAALXfizDI90gv8v+tqcpeuuhpAAAAAAAAAAAAAAAAAAAAAAAam32AtxvyB4hZ0FzmNJsAAAAAAAAAAAAAAAAAAAAsKDCz8lxkOruRTeGICwYRpwAAAAAAAAAAAAAAAAAAAAAALQo78tLq/r6nfHYtaXApAAAAAAAAAAAAAAAAAAAAlfVLfNRLE1XWJTwEcJxeQqUAAAAAAAAAAAAAAAAAAAAAABcxMdMylrcnF9TNooN0YAAAAAAAAAAAAAAAAAAAABWbJSnQSmKgKTEkhou2Vlq2AAAAAAAAAAAAAAAAAAAAAAAGMd9ILVQDqlqb8saiw6QAAAAAAAAAAAAAAAAAAABWcnqvDi3kcy/xZvbH4ZbEXQAAAAAAAAAAAAAAAAAAAAAAIIuoGMvrzlAd4gWoJCizAAAAAAAAAAAAAAAAAAAA/a4XLWx3Z4oNb/oxqI5m7xQAAAAAAAAAAAAAAAAAAAAAABsPQ94bMNSJPp7BusePNQAAAAAAAAAAAAAAAAAAAA5Q/UmyL22kKIzrhBtNE2yIAAAAAAAAAAAAAAAAAAAAAAAF1MmMMrJOnppzqoYNe2YAAAAAAAAAAAAAAAAAAACfrR/n3Ia6Nl9+FmghPm2XwAAAAAAAAAAAAAAAAAAAAAAAGCC7Pzqi1oU+pgKCUNxGAAAAAAAAAAAAAAAAAAAAJzF9LwqADNbKcfUoT8KtTa8AAAAAAAAAAAAAAAAAAAAAAA518y3hD5iLVkztpJIXywAAAAAAAAAAAAAAAAAAAB5J8PjTkTM7ZuCKjl4o1N0dAAAAAAAAAAAAAAAAAAAAAAAGAYYZQRXqMgE23QeNvXEAAAAAAAAAAAAAAAAAAACDqQDTFOp4DIDArZuFIzoM8wAAAAAAAAAAAAAAAAAAAAAACWWBWtbJb0b3DJB/sUm/AAAAAAAAAAAAAAAAAAAAzddxH9m3Wxos0sgmUx2zSUoAAAAAAAAAAAAAAAAAAAAAACslai25UE7q+UTCKPoK+AAAAAAAAAAAAAAAAAAAAD46a7RK4bJgW3Ua5KR185cLAAAAAAAAAAAAAAAAAAAAAAAlrXwC4mFk1x/TiHoLyGIAAAAAAAAAAAAAAAAAAAChfDvcSg49D+1CluCgxqCuLAAAAAAAAAAAAAAAAAAAAAAAFJFpxhNP5UHOtGJnIkW2AAAAAAAAAAAAAAAAAAAAdY7R20F3cCXppsCW1MF8BN4AAAAAAAAAAAAAAAAAAAAAADBSPN+nyVsEKllBxfgfOAAAAAAAAAAAAAAAAAAAANixf77oiJIX79KyIpLcLnQPAAAAAAAAAAAAAAAAAAAAAAAGEdkLpxAHK2TMbllkjyMAAAAAAAAAAAAAAAAAAAClXiKktfzkZuPQik/vfpYFnQAAAAAAAAAAAAAAAAAAAAAAImU7PECaHEAlvxs+ZgzbAAAAAAAAAAAAAAAAAAAAFfugFuQTNoPUCbMW6+CN57EAAAAAAAAAAAAAAAAAAAAAAAdQIfW+WFHd2DK9kjXaOQAAAAAAAAAAAAAAAAAAABNwyWxySFBuucKj8uqruJYcAAAAAAAAAAAAAAAAAAAAAAAvexvhwvG/Z3IgY1O8/X4AAAAAAAAAAAAAAAAAAACmDwdRlDHw5c9OTb2NWOa/rQAAAAAAAAAAAAAAAAAAAAAAL3484cnqUmRkfZuO/16xAAAAAAAAAAAAAAAAAAAAeXkufRBiXR33O5QW+CKKl/QAAAAAAAAAAAAAAAAAAAAAAAVf8YmYZ5IEMsjMCIeWMwAAAAAAAAAAAAAAAAAAAKHr951upu0YFetLn5BbKwdmAAAAAAAAAAAAAAAAAAAAAAAErLceXxjuButKi9BMoRsAAAAAAAAAAAAAAAAAAAAbKvYqqqww2ECv0Sh/gTvKLAAAAAAAAAAAAAAAAAAAAAAAIdUs2GhN2o16MpPcnLKVAAAAAAAAAAAAAAAAAAAA/iwQYXlvlSecJleHe78LJUIAAAAAAAAAAAAAAAAAAAAAAAM5PVsWl4SjZVGR6sDuoAAAAAAAAAAAAAAAAAAAAMdTUKQAuzhs9l4K9Wzd1tpYAAAAAAAAAAAAAAAAAAAAAAAkRU6jZyKWLq8tllSO8qEAAAAAAAAAAAAAAAAAAADLX9Cfw8/3NBV10KdWwPTN2gAAAAAAAAAAAAAAAAAAAAAALqMPos4Fq80K+mJuqPNfAAAAAAAAAAAAAAAAAAAA0NMQAiwSB6cETarToNSNteoAAAAAAAAAAAAAAAAAAAAAACN9H0Yudmyrr9fb93pqTAAAAAAAAAAAAAAAAAAAALpdNyTAPCWnUJJPsn5aySRwAAAAAAAAAAAAAAAAAAAAAAAcY4GtHDpCXrpGUtBG8d8AAAAAAAAAAAAAAAAAAAAOKPT8a6zGKF7+b3OcAaHZ6AAAAAAAAAAAAAAAAAAAAAAADjGea8P3TobJPkOGriQAAAAAAAAAAAAAAAAAAAAAIkdZMTN5KmqHPy6wxQB0yd4AAAAAAAAAAAAAAAAAAAAAAA58hsqpwjCxsDwUB3zCdwAAAAAAAAAAAAAAAAAAAP0c7lPMB/DeXfmmSO6Z8G5FAAAAAAAAAAAAAAAAAAAAAAAfxUtdtw1FV1rGVbRvsvYAAAAAAAAAAAAAAAAAAAAZY0b9vVYPavmTyAVf+UehPgAAAAAAAAAAAAAAAAAAAAAAIJQwfLMS0LlueI24LfjLAAAAAAAAAAAAAAAAAAAAI1rlVHxG9M55A97b7SWzVMEAAAAAAAAAAAAAAAAAAAAAACNV9qx5DlN1ow9TE+mtNAAAAAAAAAAAAAAAAAAAAJAddep1ucPnvN2WIs78yKYgAAAAAAAAAAAAAAAAAAAAAAAJ+InQuRZnPvansvSsHWoAAAAAAAAAAAAAAAAAAACzsaWl6/Ml92dzbh5DXDpgdQAAAAAAAAAAAAAAAAAAAAAAAucfZPnBXRbZza0pwuSYAAAAAAAAAAAAAAAAAAAA1ajcl8cav2pz0j4JVBFY5AgAAAAAAAAAAAAAAAAAAAAAABHpLD8GUH/cYzRsHEgGdQAAAAAAAAAAAAAAAAAAALlx/H391fJfuyG9TqjCuW21AAAAAAAAAAAAAAAAAAAAAAAL7XKvk8T0YyA1jeyZm94AAAAAAAAAAAAAAAAAAADpQ52kg6jctD21keq2XcCWGQAAAAAAAAAAAAAAAAAAAAAAFL+On3SiLtjskhAjwXsXAAAAAAAAAAAAAAAAAAAAFfZ+Hts0JaKu9kDfQ0nh4KQAAAAAAAAAAAAAAAAAAAAAAA03nN3R/OrKLx25gKVFIQAAAAAAAAAAAAAAAAAAAEHRYRhzQt88Z8MUJtgc2+NpAAAAAAAAAAAAAAAAAAAAAAADUoPd4LmO0XntcaEX2P8AAAAAAAAAAAAAAAAAAADN47yqT2xPRkJvVkSzAka3uAAAAAAAAAAAAAAAAAAAAAAAL1eR5bbHEz3FdE2WV7xUAAAAAAAAAAAAAAAAAAAAsnG7b6B/1g9rLzH9k8wRHLUAAAAAAAAAAAAAAAAAAAAAAAxS+vQ5dCgfkO7+/yjZ5QAAAAAAAAAAAAAAAAAAAJW12Le0pjsF32UrDRDvFG0mAAAAAAAAAAAAAAAAAAAAAAAJnjvVoKAKt/4YBAEFubMAAAAAAAAAAAAAAAAAAAAhKa86Y39aYioyRA+GDR4qfwAAAAAAAAAAAAAAAAAAAAAAABW40lFdduLM7Jnc0ZRZAAAAAAAAAAAAAAAAAAAAIiuIgQjcJdGqRQ4LS8ISw34AAAAAAAAAAAAAAAAAAAAAABuRdReSC609i8AclZUJKgAAAAAAAAAAAAAAAAAAAEghQcfr5CAAodWMy3Q4H20ZAAAAAAAAAAAAAAAAAAAAAAAwXomSsUju2yLm6ZIHeoQAAAAAAAAAAAAAAAAAAAA47Y2iN1GGtRjHNFxgsRNLLQAAAAAAAAAAAAAAAAAAAAAABh9kSXmW6JFXIlAenjZ5AAAAAAAAAAAAAAAAAAAAKtPXy1l5LhHA0mkfMX/VDm4AAAAAAAAAAAAAAAAAAAAAABuE04M5Mh9AXrr2ovgwhAAAAAAAAAAAAAAAAAAAACjt0afkbIQNnJQ/30VSHGTOAAAAAAAAAAAAAAAAAAAAAAAEPQY7Ewrfs3NCr0XQFVoAAAAAAAAAAAAAAAAAAACTMJUq50xXPRaG2ctKAHM4VAAAAAAAAAAAAAAAAAAAAAAAJhUixAiTMGRq/5ZzYZSUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACxufDrbkO0BdEReX/JHyegNwAAAAAAAAAAAAAAAAAAAAAAH8m4YvVOyUYAB6mt6+IwAAAAAAAAAAAAAAAAAAAA6A4uUesiFIJ//jXwSC0dIF0AAAAAAAAAAAAAAAAAAAAAAAoSTNmSu1UeYpqITRpYAQAAAAAAAAAAAAAAAAAAAGvMegX/lalrKJQkxfczZw2WAAAAAAAAAAAAAAAAAAAAAAAAxDcm91tv2g3iLODg36sAAAAAAAAAAAAAAAAAAAAdCgnXF47JO614WPluZPC0jQAAAAAAAAAAAAAAAAAAAAAAL5tuC04sAZaN5cMkgqp9AAAAAAAAAAAAAAAAAAAAFLmaKhz1vbFNGPy31tW7G0MAAAAAAAAAAAAAAAAAAAAAABibwBFKqYLGRXSxHbsAPgAAAAAAAAAAAAAAAAAAAIFYESpGMQpiuEn23VYsLIaUAAAAAAAAAAAAAAAAAAAAAAASkF6WwsjbCGXWk491oyQ="
3859
3720
  },
3860
3721
  {
@@ -4106,7 +3967,7 @@
4106
3967
  }
4107
3968
  },
4108
3969
  "bytecode": "H4sIAAAAAAAA/+29CZhdV3UuuE/dq1LdqlJdlWaVplOS5UmegYSQBDCeZPCEJ/AAWLYLYWNbsubBk8ACQvBLgMykQ9IJIS9ARjovvE4awiOkCaHDF/pL0oRAIJ2ETGCm5CVN4mbDXaq//vrPvuecu650wbW/T7qnzl77X2uvvfba49k7C98K7c7v7j277prZu/cV93/jvx07Z276xqusE9Xs/C7u/Mb3k2FuMNo8lApZBdq5iSrwyEL/eQyF/vNohP7zaIb+81gU+s9jOPSfx+LQfx4jof88WqH/PEZD/3mMhf7zGA/957Ek9J/HROg/j3boP4+loTqPOnwmw8nhs6w87Texny/eVeG3PPS/jFaE/vNYGfrPY1XoP4/Vof881oT+81gb+s9jKvSfx7rQfx7rQ/95bAj957Ex9J/HptB/HnnoP4/p0H8em0P/eWwJ/edxWug/j62h/zxOD/3ncUboP48zQ/95nBX6z+Ps0H8e20L/eZwT+s/j3NB/HueF/vM4P/SfxwWh/zwuDP3ncVHoP49nhP7zeGboP49nhf7z+K7Qfx7fHfrP49mh/zy+J/Sfx3NC/3l8b+g/j+8L/efx/aH/PJ4b+s/jeaH/PJ4f+s/j4tB/Hi8I/edxSeg/j0tD/3lcFvrP4/LQfx5XhP7z2B76z+PK0H8eLwz95/Gi0H8eV4X+87g69J/HNaH/PK4N/edxXeg/jxeH/vO4PlTnUYfPDeHk8LkxnBw+N4UafG4mhnFDQ9xwEDcExAX7uKAeF7zjgnRcMI4LunHBNS6IxgXLuKAYF/ziglxcLIsLWXFxKS7+xMWZuHgSFzfi4kNcHIiT93FyPU5+x8npOHlsk7vT3/gXJy/j5GKc/IuTc3HyLE5uxcmnODkUJ2/i5Eqc/IiTE3HyIA7u4+A7Do7j4DUOLuPgLw7O4uApDm7i4CMODmLnPXauY+c3dk5j5zF27p7/jX+xcxQ7L7FzERv/2DjHxjM2brHxiY1DdN7RuUbnF51TdB6xcsfKFytHNN5oWLHQbwrFwQq3YP/Nr2z61uuRTvQQJKuwHyQbIXbV0j/2mREGrJQ+fDN9TDNSL/3Nlr5VL/03zTeGH4D0KIvhNjq/PwVpf4p4Gs2ngOZTRGPy1tN3+IEe8zs5Hubm0TACyDZaD3sZ5slCg94hfiv0VPZZRnjGj/NndWMcaIxfRnFNIafFLYI40390fWcDHZftCMWZLDH8FMU1IO5tnV8rE5Srgo5+ukd7eX4f7eXib0d7aVKch70gBtuLYcTwKYobhri/pLjFEPdp4P0seH6o89yjTzrhw2u2Qd/sEjB/xDJ5LTToNwbTk+l+RNBbXAviUPcxjML7hsBaTOmM/pmd34nOL5aNpW8L/sPEX8mtbDMTWA3xzuijfs4FmQ3zEqDN7eGre//sFz/6xG9+6Jf2vfMdPzb5ySU/OXbO6KPHj39x3RfW/9STx3/e0l4KsmShdHkPW/rLFO/n/rfGra/69X/fNXbFa3/14Cf/n2v2L1m/44Ob3vCOW3//zZv+/hWvs7SXq7Sff9PbHm3/6lt+Nt/2sa8NX/FD//SKr1y56Nmf/NhDa//Ha77+90++1dJeodL+ya1f/8v3tt965NAT7zv67DOX73j3W//sS//wBx/9lfZXPvueB//sWZZ2O+S5Tj/rynrpl1r6F0L6KntyLf2L6qU/If9V9dIPWfqr4WVuD8d+4Zf+8uInPnbBX3999I1X73j80DN+8BMv+ecja9659W/ufc/6d09a2mtU2s/tu+TN+1bf/13/PPLHT1z4c+s2fOar73zv3/3L4Zln/9Pfff63pr9iaa8VaddcdMb37P6Jj6/41Jmb/+L5H3j3eT+y9qunfd+nfnv7zz357x/5n2FWZ9dBniuU2Yk8v7he+qalv75e+oalvwFe5uk0J5piS3tjPd4n0t9UnreFRZb2Zp02e+3mvT/eeiK7+oOvOfe946Mf/PuL3/6CSz720cffuKn97rdb2peItGd/X+vJd7zxkePhr975j//lX87+neefO7nx4snz/u+3/em6B/bctvZJS/tSYxQq5Xm9pb8F0pPsyWDpbw3zZS+b9rZ6vE/U79ur8z6R9mXV056oIy83sFBJ5yds5RX10rcs/R310o9a+h310o9Z+jvrpT/hG++ql36Zpb+7XvoVln4G0lfoC+SW/pX4MpQKZ1nanfV4X2DpX1Uv/YWW/h5IX2VsZenvrcf/Ykv/6nrpL7H099VLf6mlv79e+sst/QP10l9n6XfVS3+jpd9dL/0OS/9gvfR3Wfo99dLfben31ks/Y+n31Uv/Sku/v176nZb+QL30r7L0B+ulv8fSH6qX/j5Lf7he+vst/ZF66R+w9Efrpd9l6R+ql363pX+4Xvo9lv6Reun3WvpH66XfZ+kfq5d+v6U/Vi/9AUv/mnrpD1r619ZLf9jSP14v/VFLf7xe+oct/evgZR5KhRN99dertOk5hNdb2jeotOk5hB+JcydxDuiJzsRPXOpa00m6f989992z7/AVM/tu+tbTJbse2DdzaB/O4UX98Fxqi/4epb/H6G+eX7T3ap6yTLA5wyWEF8Ls3OAE8clDqbAhI7wQ9Byv4bdIlor8TszxThA/zh/O8ca4tpClTXExcF+lLfi0BR+FtdcR62FHrH2OWEcdsTzzeNgR66Aj1hFHrP2OWDOOWJ6696xDjwwo1m5HLE+b8NS9p33tccTyrNueNvGgI5anjz7miDWo7aP1t63vgH2NrODX+PA749MKPfWzslS+JgS/FP2SBP3SkvhjgN3pF186c+f+nVft2hkocFf10gIR1xPdjQnRGDejf/x+Pb1rCFoMMXurOs+d7F0+s++uV924Y+fOmbu/kcm9nIKRLil4nzIq64y3SdI8lApDZYwS8U+2UUatLus8d7R61a4dd1+yY/fe/ffN4NYZNFPmkhEqvlNlmoFk+G6U6C6hv7eLdEFg47avSXqfh1JhmVnFMhFpccsBewnFrYC4CYpbCVivBDoOnE/MTxwSv3V0FpfpWFYsq+UUtxTiVgBvLvO24GN5GxL0SwlLDfmsXLrxa4h0PGRNDavL1ETLRwizzdASIXMfPcaKQfcYlr+l9fgtTzVriGnymK4nRZxhWR0dLsCytE2i/3znt010MdxKPCaFvPgOt/38NcmOumU76UWPiGdy4TvEb4We7DJLlZvqxvXqf8voHeVhf826Rb83XIBlaZtE/7XObzvMbxPYTpYJefEd2smTJDvqlu2kph5Lb/k0/FboyS6zVLlh/thOltXj9/wyekd5VNuNusU2cLgAy9I2id66e22ii4HtZLmQF9+hnfwHyY66ZTupqcf1Ze3E8FuhJ7vMUuWm/KoqN0ur9M3TxmX1rbAedsQ66oj1oCPWXkesRwYU66Aj1hFHrP2OWDOOWIccsTztflD19RpHLE9bfdQR64AjlqfuPfO42xFrUG31cUesnY5YtrVBzb9wXwf7AlXHFohncuI7xG+FnvpWWUovamxg+VtRj99kRumRH2LyPNBKEWdYNvc6XIBlaZtE/8KOQttEFwP3iVcKefEd9okv6+BOCHl5fqCqPabmyjAd22PN8rqsrD0afiv0ZP9Zyj6UXix/K+vxu7RM+aI8putVIs6wVnf+Hi7AsrRNor+V7HEVyMT2uErIi+/QHm/K5sqOumU7qanHF5S1E8NvhZ7sMkuVG+aP7WRVPX4Xl9E7ymO6Xi3iDMu2ig0XYFnaJtHvJDtZDTKxnawW8uI7tJM7yW+hvDxfVdYftkV6oxsR6XJ7SH92+As9ludLLP3qeumXW/o19dJfaunX1kt/cSyv3VRe+Ck0r4fZtsJFYbZe4pqppW0S/f8+MptuH/kR3roYwmyZ1vzEfG1ZP2L4Xp+B86eznD+e6xkTsrQpLgbuy44JPmOCj8I67og144j1kCPWXkesI45YexyxDjpieeZxvyPWoNrXbkeshx2xHnXE8rQvT30dcsTytC/POnTUEcvTJjz9qs17j4s47geMw/sK7XLp3Ul4jAe3y3X6AePEr0gv1XYnYW+ItYKo+C4Lc3OPcQ16x7uTLqO/6+xOqrlrY8qsYkpEWtw6wG5R3HqIG6O4DYBVdXeS5afq7iQsq3UUh73s9cCby1zxsbwNCfolhDUu0lm5dOP3dK6lqpwsrdpFxfW07Kigjvdw2hBrIq4huu0FomUCN6N//H4NvWuEtHtKDRDLmEwM3AAh1o3EZ6EBWmiAToSFBigMVgPUEOl4eoinjWLI7SF9ItSyODX12Y7iJoS8ODWEeVvUJX9Nor8epsL+psMv0toUYqcWvmD/fa++fmbfnntmDsyovf/dqs7V9Pc1Ip0KZhL8AXEMI6En51TaGRp+K+hizkOpcMIZqlGKOtCumjNkg0CtICq+y0J9Z3gN/V3HGdb8BLqyMxyhOHSG7Ch7cYaWn6rOEMuKnSFWYnaGWOZjgo/lbUjQjxNWypF147fQZflWWOiyQFjosoTB6rJwukVhfq22tE2iXdYxzB5r85zdyyzjQlv/rbDQ1kNYaOvDYLX1ysvwOnU/p0qQd3KAlT4296s9epSbe/SEN0Xve14nkzbAwzrCddxaraK9Dpa2SfQXD82mu6jzHPO8tRPf8TY377jvnrt37Ju57IEH98/sn7n7ml37ZvZe/MDdlx2YeWBf5eHe5fT3FSKdCqbUmhsfxlRH1IKqZKMUxxtMMA67QTwVyx/5YRxuEmpSHDaHiygON78OUxxuRFwMzxyU4zLdxnTvKeG4RsOsPtDRmiPAj395ftacmG0GYxo2WqO/bGhWxh0dz68cATtQPuQghFmb2kCy56FUKN11MPxWmN/w1Ok6bCB+nD+fIwVQK4iK77A2cNzJ6Dpsovd5KBVyswpFb3HTgM1HCmyGuPUUtwWwqnYdLD9Vuw5YVtMUtxHiNgNvLvMNgo/lTR0psJGwNoh03HUo4tcQ6bhbmNF7nM9cJ3jzfObLwXPcPVWsh3WhWA/2txqIsb4tPoYe7fUlZT2N4bfC/LKv42k2ET/OXz1Pg5aCXG4mVKNBWgw3g2RIz2dIcumNiXQcTGNNkvkgdJpeRZ00zNcykltZO77jTi2mNzrFZ2mPfJYKPtyvieEWiptMxKkPg/nDlhh4XVN9AKA2lvNBA2sSmFMCM5bdqsYsXvx3OtApS7fWycpgK8iDafHvRUQbg90x0CTaN4JdPUR2hbWY7WpjF7lTdrUxFPNZ2iOfpYKPGlyz7WwSeVWtNZfzNMSx7WwW+VKtNWOeJjBj+SxpzKXj8o/BPP4Z8L7KILKsxzf8FslS1+OfQfw4f/yByZn1+N2UUXrkh5gmj+n6LBFnWHa32HABlqVtEv2PdzLVJroY+AOTs4S8+A4/MHnL0FzZUbdZwa/h8juuX5h3Kx/jg/7mRpDnp4fm5gX9VCPM92vW82Rf9TxYGX47+SpMz2Wn6knd/J8u8jgR5uuGP0BU9n1Ggk87kZ9+lScfuIR+FsvzXVSeZ0Kc8tF3dX6bRH8mlOevUHmquqj0zO1SVT0vE3z6rWduX85y5INYfFjjNsJiP2jlZHo+G9Jvo3TnQBzS4ahrG7w/R/BW+IbRzQbfP6TzpmwQeTWJfgnY4Adr2uBZFIdtBbaLKAfqAcvsrqDzNSzoU/n6CIw6d07NxbT0qCssC/a/Rv9HgHnvlJYT84XtAW/hVPawTeRL6fSc0J036nl7Ae/hkLbFJtF/QuiU2wVMr+oRf8R8dhfZuX5jer7TFNP16keUzN3q5Kcq1kn7KJNt918Wz6b7DNXJlI2gzDyOqKrnpYJPv/XMY4RzHPkgFrcL5xEW69nKyfR8LsSdR+nOhzikw3bhPHh/vuCt8Mu2C08O6bwV2aDxahL9X4ANfiUxLk7Z4DkUhzrldqGbP1xL9Cb3cEi3t02i//dEu6DqK/pabheM/j8S7YLxxXyl2gVli+eKfCmdnkdYWwUW6pnbBaVTzP9Wyv8J22nM5j/VLlh6NR9xG8XhfMSZFJdDHPdZpyHuLIrD+QieG9kCcezvToM4tBGej5hI5AfXFXm+D+ftNlEcHo6QUxweSjBNcThvt5ni8DCBLRQ3BXGnQV5t3o4Xs9d23ve4pie3IaXmRbOC3xDKtQe4dsxrzhsc+SDWZcRnoyOfjYn85IKPlRfWl36swRp+K8yvu3XmyaaJH+ev3soIehvWCqLiuyzMzT3GnYw12C30Pg+lwmlqltUCz2Qpj4QePac4nDGougZr+am6BotlxS0MevzTgTeX+bTgk3eehwQ9r+dOi3RWLt34NUQ6Xq/M6H3RGqxhNIn+OdBC3089FMUrB/m4l2CyF+0gyUkGo38uyLBjSmM2C/K1qQDzxY1ZfVzc0JhBYKp8baZ8sQzTJIPRXyZ6P40w3/6UjU3T37i+vblAPlVOLCvWp6L85JQfo39RopxyIYPJFcP2LjIwzeYCGa4VMgiPfsmu3Yc7Hj1Q4O9OeW2aNc9r1bnAKQqmjWiFZpFqZ8UmkW4T/d0SMsWc2xzEic9475vZN1OQd26tRgt4DgUduA9u6WKw1ieH9/3oN+Sd51bQXioPpULGlmv8OH+8f3BayNIWcVi+bEcpPrFMrd/fKdMb9u3aU1SkZTsUmRCL0wfCysS7GJ7OZlCt+8hGkMPfiIrvUprvVtoe3xBxc5KHUmGLWsC3oAbMvE2vTNcyhqrdR8tP1e5jDnGnUdw0xG0F3lzmueCDTpbppwkrF+msXLrxU91L3gbIXqGo+8jdLKPfD83x3VNz88k3pL0e4niLXh7mpo2hx4HoZFlPYvjfngPRpYRqNEiLAe+dQvrUFr0YrhTpOLAnOYve56FUOFstJ1iwOJzeZG+BU5M5xeG06+uAjoPyJJafaO27p2ZxmY5lxVq3jeLQus+hOPTE51IcDvLPozj0sudTHHrZCygOB/AXUhwu615Ecbgc/IzOM3uKH6bpwJrttZwONKyJMF/ffFa36oaprfptkX59gs/qHvmsFnzGRTr2jjX1WLqfxRuYe/1UQm1gVnpRrbClbYfiFtrszuxkZWec9s2tUTQt34cr5r+rrF5P9RXzk0IWddfb/UDHcQ3xbiiBddQR6zFHrCOOWHscsWYcsTzz6FmOnnl80BHLM4+HHbEecsQ65Ii11xHrUUesg45YnjbhWR8965CnTXjqa78j1iOOWJ663+eI5an7hx2xPPXl6Qt3O2J56mtQfaGnvjx9ztOhz+RpE57ttqfuX+OI5Wn3nro/4IjlqXvPPHr6Cc8+gKe+HnfEOt75tTkmnIfg1SQ15p9I8MH0EyWw1PxBKo9FR144nTRtIj6L6LYXiJYJ3Iz+8ftn0buGoEVsPBqozGLGVsLOQ6lwUUZ4IehpJcP3WsxQO4VzeMfTSmcJWdQXWK8GOo5riHepr7mOOmIddsR6yBHrkCPWXkesRx2xDjpiedrEEUesGUcsT5vw1Nd+RyxPfe1zxPLU12OOWJ62uscR6+lQjg87Ynnqy7Md2u2I5amvQW2HPPXl6e897cvT53jWR0+b8Owzeer+NY5YnnbvqfsDjlieuvfMo6efGNT+1+OOWDxNguNqniZRY9itCT6YfmsJrFxgpfLY52kSE/FCotteIFomcDP6x+8vpHfdpkl4V87xDjObFqm5q2jeVA9iTRDP+Mwfl1edqcP0kwk+y3vks1zwGRfpLN896nEM9Ydy4jvEb4X5ea4zvaR2ySm9qN1glpZ3g8XAh4Tlgk8u+CxgLWCdKqzUbk/+NT78LtWUlfEjdfkgFh/+lkN69r858emmN/WJMWPZNwwx3AE0fDghHloRBO9bIB7pf72TIO4C/4vORxLqiyg8fOU3m2lZMS3K2iT634XDV36rg6n0zL5RfSPCZYd8FSa3aRYXQrmyWy5kSGFhea0keiuL4QJ6w+Oy+wCUHR/yYjRF9pOTDFhGgTBiYPsx+g/VsJ8PN9Oysv2sDDr/bwf7+QjZD+o4ZT8rKQ7tJw9zMTGOd8hX7RNh+lTfiw/RVbJnYb6vTXXP26FYRz3uxD+Ll84w8JcwqAf1JcwaisMvYaYoDg8P4rYBDwzaTHHnQxzqg0OD/kYdRTP8NNg+0wXiiWXIh/DgASd8wBweaMPDwjUkK79LtaVrCrDwmAJ1EFeT6N/fuS0k1se/bc7NFx6UbTrp0daekRFeCLqfz199TNXjl/zqA/PH/Xz1LWg7zPex9wEdx5UZ6mPcQUesRxyxHnTEOuqIdcwRa68j1sMDKtceR6wZR6zHHbF2OmIdd8Ty1NcRRyzP+vioI5an3Xv6Qs9y3OeI5VmOnv7LU18POWLtdsTy1JdnHfLsT3jq65Aj1oJfPXV+1VP3r3HE8rR7T90fcMTy1L1nHj39xH5HLE99efZXX+WIdbzza3MPRefuYBzy2ZTgow6LU/N+OOfAY2mjiaHHy5AaGeGZPPgO8VskS0V+ycuQVPmkLidqizg+Xafu1oT4fBphlZ37yCh9tzw6bhkwES8iuusKRBsSuBn94/cX0buiLQOGbdUIp554+QjVmFKtWj4yOsVnZY98Vpbks7xHPstL8lndI5/VJfms75HPesGnj9Oh42Xd2KmaDrX8nVaP31jKpSAmH6C1VcSxCx4uwLK0vOx1dNG3flXTycvpZZvhCHlg0Vw6lDeHNHzGfQy4xPbIorky5BDHywPY1PIS7e8tmk13rPOslqnsazb1oR+fb493dLLt41n/FWyj9AFQht8K831bHdtfRfw4f9i8lT8ejz0pagVR8V0W5uYe4xr0jjdLTFC6OgdtrqH3eSgV1quNIhb4pgLUjVowW0lx6JmqHrRp+al60CaWFVs+tjx8vzWW+SrBx/I2JOhXE9Yqkc7KpRu/hki3nDAyeo9eZZ3g3ST6t3U8iTqnXfHCGsUbP032orO3WQajfzvIwOd/r4I0Kl/LQR7Uv/2N9en2Av7vBc/684s0/yD4c/7QVovOQF9FMhj9O0EHfKb7GpE+FLxj215DcWsStEsoL+pedrRFPv99qkveufyN/lcS5b9SyICfj2/vIgPTLCmQ4TeEDL2d/86enUuJS2KlwCkKpo0o9Hupn4KltlykK6oxmLbX898nC3gOBR34XiJLF4O1ajX7B6X7I4bfCtr75aFUyNhyjR/nj6cUVEvRFnFFtbQbnx7Pfy/qqChnwekDpc3EuxiiJduhB9Z9xSEAD9NTw48YUsN0o1N8VvbIZ2VJPst75LO8JJ/VPfJZXZLP+h75rBd8GEsNm2K4p/PbJPpPgGPnq/Jw2klhXk8yqFlCtavP6NVs3xkij+pjo7NK8EZdckN4dkVZU1e6In91Pey2irJed5JlVdfpqbPAucnhK5LzUCqUbnIMvyXyUKfJ6XYtb70hMO9vR60gKr7LwtzcY1yqZYnhcvq7zhCYL0LNQ6lwHu9TxaD2qfJlkBdAHO8nxW/bqg6BLT9Vh8BYVudTHO7hvQB4c5lvE3wsb0OC/hzCUhcIW7l045eq3Yah0sXwBpFGXRuXFfyGML/WxsAdt3Mcsc4VWGbTfDFvHkqFlWW9keG3Qk916IQ3Sl0sGwPn/XwhS1vE4WQnxiGf8wUfhTXtiLXZEWuLI9ZWJ6wYbl3AWsBawFrAKollcdhmn0tx2H6+vPOrRkRF3+qhfKk9NZh+a4LPVI98pgSf1J4Z/jU+/K5ojxDytPxg2816UxfEn5vgg+n5tqAc0uGi53cNa544ese0d3R++aL3X4PvmL5nuDiPqGfLF8s8Ajwsrsqifux7v2/DLB/sp5iMhltUf5B+R+dXtdlF3yYhRrcyuITKYCvEqTIwefjbzp+EMricyiAHuXA8UVRvcsGPbWRY0CMe28iLOjLh0omS74wCfqgPlPnuAn7XAr976bYutLu889yj3a1Udof1le2ubL+7jJ2iTpSd8ixVLrBQp0VnxQwLesRrEv2toszL2jmXq9G/rGS5OvkTWa6oKy5XNZuo2qGUHWB55Z3ndphf5kWzr4iVw7sy5ZoLfC7XVyXK1dJjuaJcXK5G/+qS5Wq67Ee55kBQplyRnstVtd9qn2g7zG8nVxGW8tGpWWVVrqlNWkZ/IFGuamY/5YeN/vAA+GHUVZlyVasfZcuV/TCW65kUp1YZ6vpotTEv5aON/rgoc+7zs18okk/pzXlBc1uBGCtE+kBpM3q3ogDLcOI7nJhnlVt2h4OeAjU8rhJvEipX1TQH3n08Xb70Qojht8J8k6gz9dit68lTj2cIWcpUpW7NYh9MNYbLC8TIRPpAWJl4h3E5yRHf4ZqomSpve+UW+hHaooomxCMF5flyoCmawSzqXRhek+h/JtEKdRutsbe+QNBjzzgPxfm/gOLUihLzwdYR9cWto9G/o2TraLz70Tqijrh1xNWwhqBnfV8k6C8EGp5VugjiUlX6AuLTzXWw/eeCjxp9q9642p5cxh6VfWFv4HyKU6M5ZQtG14+ZEswP20KqLsXAuknZDuqmHbrbCdbL84lPyi/FkLIFnF2w2bARwEY+iJkIZ1j6oXrp77T0jXrpz7V88lbHGAwby7aCzdyFOrGgugqG3yJZKvI70VVYRPw4f9xVGBaytCkuhnuBjuMa4t1QAmvGEeshR6zdjlgPO2I96oh10BHLU1+HHLE87euII9ZRRyxPm9jrhGXpveR6xBHL0yYedMTytInDjlieftWzbnvZagyD6lc9bcLTf3nWIU+b8NTXfkcsT33tccTytFVPuRba7VOnL8/+qqeP9uwDPOaI5em/BtUmPP3EoLZDnmMYzzy+1hFrwa9+Z/gvr3LMwvw5t0HR16D6nEHtF+5zxPKsj485YnmW4yD2V7Mwfw57UOzL068ecMTy9BODOs/kKZen7gfVT3j2yZ8O41rPdvvYgMrlOa71LEfP+ug5hvGc9/XE8rQJrkNZ529cJ70Fnm+DeKS3W6LUOnaFtdu7xyFNAAzErrkOfXdGeCHM7WsEwh8v4BdDS8Q1S8jyrpUfeNmlW566PaP0Jgu/KzM2UWvapqvFJHseSoU71R4S421xuD6/iOJQLyZD/D2b5BuuKV8Z/SF+W9DzV3Fly2IyzLUFtHe1J4y/ak6dSByfi04WHi6g55v/jP4XOopXX8/g7uPlBfxQvtRJxpj+rAIs3OOGBwbeWSD7L4PsfLaLOlNEHYtk9N1OHTB5UuefTIh06wv4YF6xrO8Ic/Nq9L8u8qrqH9Ydw7G4CnVnTO3hQh3xHi78irMh6Mvsdsd9oXyqNu5vO4viUMfbKA7rFe8jVXv90O54f9cmgRX18OHEjZmTJXgifZl6nQs5uG58sGS9Pr2AH8qXqteYvmq9fkWB7P9nxXp9upBvEOo1lvUdYW5ejf6Pn2b1OvUVS916nZMMuZChbL22tFEPfLvueRBnuHjo7drOc5PoP52w5/PDfFlT+u2275xvKcW9v6l952dTHO6n5f36Fwo9oFx8FpvR/y3o4WNgg5aXQHL1aOsXK1vHvcNs66k95jFwWTxD0OO+c9NJm+i5XPBvxEKd8idCpqNhQY94/A3El0S7YPKhf7uQZD+nouwbhezqoGisU092FGw2iJ9kcTt1ToInp0U/M1xAb3j8tff/J/SV8vmop3HCNPr/TPgD5T+rfuV7rsiX0ul5FIey4+llhs2YPdbPF5zqL9ut/Nthvj/k9gbrxrnER/Uxyto/2tCnhjTuogLcuzq/bF9LOwWj7EvVmzPhXdX2nNsbtK9zKU7179X3K9yPVO0uysXjQ6NfA3pItTdO9rzM+4SQqm0/f9uC7QH7Q2WzqFNub0xHw0H7GcNrEv0WKANub/A7LD7x7ayKstepb++n9uZMoCszLkLcM4ne/EVRe2N4TaI/V+grIx5YD1BP3N4Y/QUJf6DGU6n2ptt4yuRROuXxlLpFS9VPo+uxfi5X9RPzz/Wz7HmqKd+KtsvtDfrD1Bf8ZxOfMwWfsvaPNvQuam9OJ1zEQrtI2SPWm7HOM9vjJQl7TNWzGFjnyn7V/IayRx7zoOwpezS6Hu3xZmWPmH+2x1ReY6haV3ksjraaskdun08XfNSJEnzKDaaNef3pobl0E4CRdX5tTQDH/xV0XvpIAsNvkSwV+Z34znCS+HH+rOyqnc28BJ5ZK4iK77IwN/cYxytqo0R3Gf1d52zmmhc5TKkL2yxYHF43soTicDZpguI2ANYrgY4D5xPzU/VsZiyrdRSHqyXrgTeX+aTgY3kbEvTLCUtdHGbl0o1fQ6RTV8bge2wpxgXvJtHfCy3F3VPFehhP6MHC64WcXBYWH4PZa82LQCbLehrDb4WePNsJT7Oc+HH+fDyNcVlKqEaDtBiWgmRIP0p/c+ldKdJxYE+zgd7noVTYyP0mDGrOmK0ph7hJipsGrNcBHQflaSw/sTbsprWCILC4HUW5lafJKQ499TTF4UlimykO7wvZQnF4XsxpFJc6ORU9++kUh56d17kt76/reBKzDfZUeSgXuIVV5b/Qbxm0fsvV9HedfstGep+HUmETewwMymOwNU1DHPdbNgNW1X6L5aeXfktOcehxp4E3l3nVfssGwup3v0Wli3+3RJpx+tviY+ixJSp9H7rht0JP3u1Erd9A/Dh/Vj/VDIOlbYu4UXjGOOSjRvsKi2+1Wl1S5h4PY+OOymSBGEMifaC0XFV5AK/udkPny5O0JstwSJt5k+jfJSYdU+ljKGP2J7ux69XslZtImf1qIUtbxPFleRMl+TiaagxXF4ihWtFAWJl4h3HKVLE12V7AezjoESGbqtG/L7GeMCLSxxHnZ7O5vPlad0yrZM1JVqYZIVmN/v0g6w6SFU2V++T5rCjzqtQ0yY60iVC6Shm+11Gc08SP81ev/4glzVpBVHyXsuJuNecS+rtO/3ELvc9DqXCaOmvYgppRHaE4nNXOKQ53nlbtP1p+qvYfsax4lLcZ4k4H3lzm04JP3nkeEvSbCWtapLNy6cavIdKNEEZG79UOSMRoEv2fJ+a9kBePKZT3WCnkVOMH9jQ17fWlZT2N4bfC/LKv42m2ED/OXz1Pg5aCXF5CqEaDtBheApIhPXcnc/p7lUjHwTTWJJm/1CnuaH2f6zyrPcptkjsH7JTPbov0Rqf4LO2Rz1LBxyy5BeluobixMD+vFoce60aKw5WGWyluncgXz0cpzA0JzI0iLpbdgdZcummgywp+Y2iId6zTaSGrlR16AO7Cqtq2JcEH0/OcIKbrNT9KZtWvwptyvj4ymyb+UzcS5IBrXXs+fv3A6Gy6p6i+4RndJqPSM9fFqnpuCz791jPXqa2OfBDrRqCP/1L3DGM5pdb3Ld2ZEId02CPANXC1B0PhG0Y3G1za0nkrskHjxbcu3AY2uLw1N/9lbXArxWHvcjrMlTO19o9lwPkq+k6tKF9Tnbyocd+0SK9k52/YtiZkjyH1DRv3XPth88izm/1sIfvBfRXKfmwdpkn0l4L9nE72gz20fuQ/Va+xJ2ejr1S9Vv6D02EdXVFChjOEzG2RHvcOcbpebUPJ3M02nkm2ofZt5YDL37EY/blgG99NtoH+k/f2oszcB6yq56WCT7/1zP27sxz5IBa3b2r/FurZykl9n7aN0p0DcUW3cOP+L7WXUeGXbd+2t3TeimzQePHe9mVggy8iG8T0KRtM7VHlPY5qP6Iqg4zkHi6gL9r3e71o31L1FffgsS83+psAs8y+XzVaTtli1X2/Kd6o5+0FvIeDzn+Rrdye0Kn6NhXzwzo1+lckdKp0lNJpt/3CvD8V88zf5G0WWKkrppROMf+bKf9G/8pEP2yrSK/6DtMki+qHIf0aold1TPVNuI7dV7IPyX0bnFu4jeJwboH3s+B6Bo/FcK8L72fBuYWc4tReF7X6fibFqW8PcG6hSXk93Hnocd1B7peZJtlQv1nBbwjl2lNcoR8lPtOOfKYTfDY78kGsSzq/aszGy9BV5w0wfWpsONYjnzHBh7HMJ8eAfSL+vsXofxDq9cc3zMVUV7SNwbvtibxyfUYsK7NTdUXeafX4Ja/IU7csqlUk/m4A44rKFPmo3ahV5RoLs/NOnVn8S2fu3L/zql07A4Um/X1pgYjriG57gWiZwM3oH79fR+8aghaxT1bVO5V8lvXIZ5ng0++pzmXEJ4d0ONx5Bw13UlPKMdzZ+eUp5QDDnV+i4U7Klebwt/FLbcew9EVbHIpc73vA9e6g7vA45RnzyTIiZlPwjeGWAhl+g7oqNV2j7KoY1gTJE5+tqzFCf1fku0XZrAVuelAGtfg/RnFlFv/j8xTF4fCNP07BYch6isMhxAaKU59CYr2z0KC/UbfRzt5TYrPBRJhfJtMUh/WHt7BPCVwrZ+ye96OpN/wWyVKRX6bankaYn796C+NYE1griIrvsjC/xDOQDN/xoGCM0tXZglNzG26uvL0Fta2FaygOTrmmYa2vugUHPwipsgUHy2qa4nCAydtmsMzXCT6WtyFBz5+xrRPprFy68WuIdOOEUdQKxXebBO8m0X8SWrb7C1q2LOgaxa2ryV7UurIMRv/pROu6DtKofKEdoP7tb6xPtxfw/0qH/zc3kLQ0/yD4c/7QVocL5F1HMhj934pJm0aYX5+VPXKvG217A8VtSNDydkO13QttkQ/x29gl71z+Rv/PifKfEjKkNrGyDEwzUiDDl4QMoqW4ZNfuwwXbknmcxJ6dS4lLYkrgFAXTRrRYs17WDtcO9a7IAmLObdntxLDzvpl9RVuyuRVsFfAcCjqMF8gWwmyrVrN/ULo/YvitoL1fHkqFjC3X+HH+eOpBtRRtEVdUS7vx6XGXfVFHRTkLTh8obSbexRDNeXc2l07NbOXwrmj6AhtCxLir89sk+manY6FWPNTuD2xYyqzs4xCFh1vqBGO16o/Df8MORIcOzuIqmK883Qnzswhw4z+1Q0itbBt9t5XGvPOsTkjiGTmcDuBVghzicFriHRVXaHmXgNGvTNjLOaE4jzFUPX0s7zyfytPH7un88uljG0APJ+H0sYsXTh+bf/rYmVAG/Tx9LBeyq/qGdWp7YgdNmV0IiHsm0asVUqQv2oVwkdAX+7OquxCelfAHp2IXwik6fewFp/r0sbzz3I/Tx3J4l7J/tKFnkv1jez5NPM9I8OS0yKfI/vmUCKO/MmH/akcl6mkVYRr9VQn7V7pM2X+3PkKqj8R1A2XHHQ+GzZg92v9lyv4x/2z/qbzGUPUkuLzzrE50PZ3i0P+yb1V93hzepewfbWhLxR3f/NWB0b+8on2p1dSy9pV3nqvuqttCcarvyuWo2pkY7ur8ctv1ypL9LZOrR3s+5adJ8mn5qn+b8p+pHXfKf6r2kv3ng4n+Fo5JzibZt1aUPReyq/qGdWpp4muIaeK5NcGT02K9LntLh9EfTbQ3askY9cTtjdE/UnG8nmpvuo3X+UsR1Au3RSh7arxudD3WzxWqfmL+uX6m8hoD6yY1vlftDfrD0ygO6wb3ZcrO83Qb338dTsCKoZ5eD30mA1kMW81pNenXaN7SsU9cmrXfMrejffL3v/an733hRffzcn0MVkaRRSz/J0ZnZciA9idhW8WPwcKZyWCBvyRdBHG3hlmMX+5g2JTsMNDloVQ40/KyGHCtbALhWl7UFCdOJfPuNkzPE/7G9x2gm7fD58mIzbLF8ErCM9qfJ90sBrwK9VluzzAsKx+MGwZZ3zlajw5tgXf+sv8wjF9O8GoSBvoUw2PbtbLDs5PYF0ExnbADfMdbmjD9aAFW0S5Me9ck+vdCu8O7MMeEfCk7RZnGKA7n11kPio+aj1Z64K0zmM7K0Gy45hJI6TNBDb8V5ue5zpLLOPEr0ovlr+ZBSkszSo/81HmtpusJEWdYtstzuACLz441+g93jIi/QI+Bb3VUBzKpUw5jnfg9qt9qaa5MOSNuO8zPO9sjrjPhVsOPjs7NyxjENUTaKzu/TaK/dmo23f9Fvgfbai4ftk37tcBjC0tftBDN/sXoPwH+hRfDVV/kSsAcK5ChKfjGcEuBDH9ObVk/ThEdIXlM5jyUC2WWjOvJnX2prP8yfK8l426ni7H/qnfqafZkGX+A8piu2yLOsOzr0aJD+Sxtk+j/lvxXm/KEPCwO5cV36L8+S/5LHeBX13+lfHw//GQMfGoJ6hb9VrdyVXwwvdH1aGMn0rdrpQ+bLP3Sevyf5L5nDNiefJXak0mI474b+lY+VHI1tCf/Su0J+mOzmYlQbENq+3WRTw8h7SPUZwrjBVhFfWA+ndDon0r0gZUPS32JNC74ZQX8lY+1PBdhBfHO6LH/zSdUtYl2iaAdEbzyUCpMGhZ/0aZ8bI91aZnVhWUi0uLw1A8+zX0F0F8LdBx4fgRljrbyCZqvDgKL/TXKxpjK5m4nWsuzKsc20eJpmqyvWwtkMFz82uumzi/f87BpbBZ/Zed5hHhVLNvlXH4YuPxYdxxU+ZlcsfyyjbO4TMc8Uc98ggf6ZJ57UmdPR32ddYr0pebfLJwKffH8TDd9WZzld0ik4098+JSYPJQKr7D0K+ulf9DSr6qX/hDPyX0M6tv5pA+e48P6y+NmXJPk9DHwOMron9HhGW3hKrAFTm/2MELpK9r2czPCC0GPWwy/RbJU5Jexfowf54+3uq4RsrQpLoZdQMdxDfFuKIF1wBFrryPWjCOWZx4POmIdccR61BHLU/ePO2ItlGM1rOOOWJ42sccR66gjlqf/esQRy1P3nrbqqftB9V+etuppX4cdsTzL0dO+POuQp3097Ii12xHLM4+D2pfzzKNnf2JQy3EQ+3LxeZUTVgyD2s/x7GMu9Ce+M+qQp5/wlMvLvuLzSiesGB5zxPLUvWcfYC88o/5sDg7XIHi92Gj/kOaBa86VXcxzUYaB2GtrYmeEF4KehzP8ccHP5GqJuDL7R8+64Hv/6LPtn/zDjNKbLPyO95ipz9fVnF6PxwV9v9objYfHxIDzrmspDvcnmgxxvvVskq/m8QHfX0Z/iN8W9C8Duipl0RZ8Wo5YkzWxJsN8X2j1UO234DUeta4Wy/Hq8bl0aG9cN2uuhV5Ytm4avtccudq7kpojXy1kaVNcDLuAjuMa4t1QAuuAI9ZeR6wZR6wHHbEOOWLtdsQ66Ih12BHL0yb2OGHF5xVOWDE84ijXSiesGB52xHrUEcuzbj/uiOXpCz3r4xFHLM9yPO6I5WkTnrr3qtvBOY+eNnHUEWtQ/YSnXE+HPtNCm3bqdO9ZH/c5YnnlMT6vcsLylCsGr/6Edx6Pw3MWZseHah7Nxvj83dgLO2NttWevwvj2mTxeNQzEXlMTOyO8EPRY3fBT+8taIq7MPNp53/3J8//gEyP3ZpTeZOF3PI+m5lRS82g156kuUPNoPFeG82hrKA7n0UwGNY9Wc070gjL6Q3w1f8zzaL3M3bccsSZrYtk8mmofxzt/4zwa7/1dJvKD82i8//zG8Vmaa8fnYqFNFu3JjoFvc24n4iYFZuR91/jse/RX9o36tRDH+/dXinT2N75DW8c04xCP9LeDbm4h+cbhGfOJ8nF5YbqI+fLxYrplCTosl9Teb76dCedH+Tu+buUyEebbF3+HhHO4DfGO68uYyO+4SMdtB7ZlFfxNu2zbYfitMD/PdeZ5lxO/Ir302O5OZJQe+ak6YrpeLeLYbw0XYFnaJtHv7diN6qsU7aVHeVW/J9rjAx3ckQJ581AqXNbjdwkvVWuNFdJf02M/aIK/a3gMfNVhqrPY/+Crh9CXpPoibZGe1yfwezluL8aFDKo9w+8xn1oylw77TVnBr+WD36XWvMwPxV/rk3eOw75iZt8Nr9qxZ+buG2bu2jOzr0ES8EkZfHnKOpJIBZOSD4sfob/5tO02/T0pcLrxHC/ADqHnVbXpst6WV9VqXiaUXFXD/LG3nazHL88oPfJDTJPHdL1exBmWuioCsSwtXxXxZvK26ylPyGO9kBffobd9E3kSlJd7y0rvbYHbFulZR2zbMfRYXo2y9mj4rdCT/Wcp+1B6UfZhaVW5sv7LlmsKK+UPyuhP8TnJ5Tw96OVs+Vtfj19eprxRHtP1BhFnWOqaFnVlDF+R8h7yO3zNFPLYIOTFd+h3fol6eShvpMtDqTCidF0h/Xep67MqpP9uS4+XvlUpazXiwx7Sb47P4mJ/Q51YEcN1nV++7uhH1s6m+y3y+ThKK+MnejslpPxJYYbv1W9QJ6Sk+g01/cXSMu0lysMjdNZt/Gf9zuECLJ7xNfoPUf1ln4s8Uv2cGLD+vp9sqN8n03yn8RkX6bh+1bS/RWXrF/fLa9bnZL9c6UXZO+92wzjWf1k7/XbE6nf/7CTYX2n/fqrsr8f+59Iy5Y3ymK6nRBy360XjwqJrFP+B/DuvJCEPtbtbXZYa/fvfJMaF3DZVHReqE+K69YO+OK55lu0HGf0V0A/6col+UCqPqROu1JgoZTdjQnal+0mK8/RHrZJ8yuQnxedU5idVF7AMrk/INUVY67pgvZiwMP06ihtLyFz1BGBMnzppeKpHPlMl+Zys/KylOPxKhX2XKrt1CRkwPV8ezpd9ql/jw++Yj5K5m49ctWQ2DaYr8pFXdn6bRP8s8JFrO5hKz5z/VF+i5pdCpfsSfLF4r30JZRepvkTNuZ4TfYlucz2sa3U9sGHZ9btl53qM/oxOWXvP9WymVZ6TVU8mHPkg1o3Ep6g+nk/1cT3ElamPRr8B6uNFJeqj0s1YIj94mjTHpfxyqq5MJeiVrat2nG3dMGKweodXTffDrxh+K+g6kYdS4YRfyYlfUb0RlzFfPLP3wouefek3likP797HOjXcpcgU5Gf6QH9zuihbk2gmBI8Y2H7WER2Xu71n/DIydaPtFq/qzQairdovwfRjBVhFp+1a+fCJ9Zd26rk6bVfVT7Sh7Ym8TlC6iQLZY/xIwfs8lAojJq/V7dESfIt0hqfoF+nsqh50xmOuujrjPIwEPZ5PzTfyF+LoG9n/1duZmf1VWf9n+C2Rhzr+T+2MVb6/t52x2WcySo/8EJN1vU7Esf8aLsCytNx+v5z6VdwXRh5lxyPf3LF4knbPWPn0Nm+WfaZbf+lu6i9NQRz3l1AOXvMYhf7STuovpeoZtzfqN4Ry+sP2iMecalymxrZcZ5oCMwY+idbod3fy3uMuc3mjB57WwOWC/ntPhTGpKlOj//qa2XT7E2XK/QAs09Q4LuWf2gl65V/UmmJq7NPbGLK8Lzf8VtB+KA/lGFre1RhQ+aqqfVnD/QxkCOXv1pfldKovu7SAR1HdY7uaovfd+rJKpiLaqn1ZnOfkuQC0xZR9qraJTwiv2Q/Mue43gp6XYN23QcYy/UbeH8D4PG+Nt3so3dwI8Uj/A9DPvLaz8UOVxbIC+UIoVxbqS49+rw/yzt0xRz6IZbpVe0nivzyUCp9Va5UV0v+sunGmQvqz1M0EFdL/turHV0j/W6ptr5D+mNr/VCH9y9Q8TIX0Z44QfcX0z7D00/XSf97Sb66Xfrul31Iv/fss/Wn10r/Z0m+tl/5rlv70eunfaunPqJf+SUt/Zr30maXHG++rtE2W/px66Rsm7zZ8KWQyfPOrZwF9Fb+KvFqEVVH2LCU7ysd+fBvwwzwWYW2riDUi4uqUydmhOF+IP56QheWMYSfQ9ZLnGPY4YcXn1U5YMTzsKNeEE1YMr3KUq+2ItdQRa5kTVgwPOMq13BFrrSPW1IBirXTE2uCItckRK3fEmnbE2uyEFcNrHeXa4oQVw0OOcp3mhBXDqx3l8mo74vNWR6zTHbHOcMRqDCiW9e8nBDbPWTUEn0aCT2o9pQE4ak7IvtvheYgY8lAmZF33gfwLzYGn9q6izLx39d0wB/5vNAeO6W0+R+l6rPOsvujmkybwi26ex+Zbtk2upxJyIR7rqyHecTkreZqUj1dPzMrS7DyPAE/kn4dS4RxVvoalbjSvMFY5B2Wy0KB3iO91MrGqY0r3lvdFQpY2xcVwP9BxXEO8G0pgHXXEeswR64gj1h5HrBlHrIOOWJ76OuaItdsR65AjlqfuB9W+Djti7XXEemRAsTxtdb8jlqfuPe1rnyPWw45Ynm2aZx3y1P2jTljxeZUTlnceH3fE2umIddwJy9J7yTWofRNPX+jZz/H0E57+a1D7hVaO42Gu7QZ47nGsNoT1AeXEd4jfCvPrkddYDWWoM1aLz7xnSfFRY8KM0neTayzMzmF09n9dOnPn/p1X7doZKPDRZpcWiLiN6LYXiJYJ3Iz+8ftt9E5lDbGjSt+8epZPfG/TEQ/QFERN05NbMA1LTfPwVEvVKbVxwYexcNuUOuDP8syf8eahVLjS0o/WS/8ctW2tQvqre9yadEOPW5Ou6HFr0lVlPh+oefDpNWVdoeF7fT6gDqBNfTq2SsjSFnFso6sEn1WCT1vEHXHEOuaItdsR65Aj1kFHrD2OWDOOWIcdsfY6Yj0yoFietrrfEctL96pdGxRb9ayPjzpiDWp9fMwRy7MODaruDzhiefqJY45Ynj7aU/ee+hpU+/Lsm3iWo6funw5+4nEnrPg85oi13BFrYgCxYrjXUa62I5an7lcMqFwrnbBieMARy9MmVjthxXCfo1xe5egtl6etDqIvjGGXI5aXrcbgVY7ecg2ivrxtdakjlqeP9vRfxx2xPPtf+xyxPOcUPPvknmMFz7lH7t/b3DWua+H6DR8BYvTndjpfI2G+DVeYf78udcRMj8eLXJcRXgh6LYGPHFHH+LREXJkLPy/6wqE3P//7zvp6RulNFn7HS6Hq2J7UsUY1j4u0Ox7n6AePhowBbWSK4nD512RQF37WPBrk6jL6Q/y2oL8d6KqUhcLaXhPLLunEz9Ss7pyq9dZF8IxHyNnaa5Pon9Gp++o4NHWUMtx/Oe8IOZRpktKpKyVi4DXGGPKgw1MUDM90vljwQp+ItM+BfF+/ca6svN5pz82C/CwjORmjSDe83o95P+1P//vif/3lH2r+xp8/uevg185+6x9e8cT/8a7ve8vHzn3uYzf89Y994WrO+1BCdpWvVQX5ahTkq4xuJgQ223zV9m5cyDwu0nE7U/My4omy7Qy3JTXbzOSRd0ovPbajS8r63pNx5N31nTrYJroYbiUeVY68u7o9V/Z+HXln5dNjv2lJt0/DXtqexUXdmq/HtCgHH3n3U/Bp2G0dTPUJFpcvtzvYnsTA7SdfFss03BYZ/R3gk3dMzcVcIvKc8jNrgAfzjeGWAhlmqC9c04/IvVisV9QD98ljeGHnd5xkZFz8DSFtx+qyey9/Veaye+yfXA80XH5Tgv7GBL06LhrrE/dV0J+tL8BC3tsTvDd24c3HxuJn+hsLsJD3dQneeRfefEUFftZvaXs8Xun6Ho9XurnH45Wu5cvsb+9MjkcdHibfaWObojr3os6v6WsYZFpD8g1DuoZ4x20Hph8GOVCuX1s2K/ujFWW/qgDzg+1ZzNeQf8soT3koFW6y9EP10r/afBrvuUXZeItyHkqFNZgnC6oPZ/gtkqWuT1Rb0zF/vO9wWMjSFnFcRlXtDuOOOGGpsh8EuWI46oj1GkcszzzOOGIddsR6xBFrvyOWp74edcR6rSPWQ45Yex2xPHV/0BFrjyOWZx4fd8Ta6Yhla1BlPp/CtqFCW1r68ykez2T1+J1ou4eIH+eP2+5FQhb1+RTP0yo+qo+QUfpucjl+PmWQq4lue4FomcDN6B+/X03vVNYQGz+f4iJAOjO/YcLOQ6mwoaz5GX4r6CLPQ6mQpaql+qrR8r5YyNKmuBh4a89iwWex4KOwHnbEOuqI9aAj1l5HrEcGFOugI9YRR6z9jlgzjlgPOWJ51iHPcjzmiLXbEetRRyzPuu1pX55yeZajp1yefsLTJjzL8bAjlqe/N796sqY0q/ZpUnlUSwqOXV0TcT3R3ZgQjXEz+sfv19O7oq6uBVZ7fObdE6xOVrcq6l5n64YEr3GRzvJlXfHFJHseSoXXZYRncuI7xG+F+Xmu0xVXZqj0og65tLRtEcdfjy8RfJYIPm0Rd8QR65gj1m5HrEOOWAcdsfY4Ys04Yj3kiPWwI5an7gfVVh91xNrriOVpX55yeZajp1yeftXTJjzL8bAjlqfuHxlQLE8/sd8Ry0v38XnUCSsGT1sd1P6EJ9ZCH2ChD9BPv7rQB1joAyz0ARb6AN2wPPU1qLb6mCOWp74G1U8ccMTyrEPHHLEGta0d1L6JZx49+9Ge5eip+6eDn3jcEesBJ6z4nDtiec3fx+dpJ6wY7nXE2uWEFZ+XO2KtGFC5vMrRW67VTlgxeNqEZzmOOWJNOGK1HbG89BWDp19d6oQVg5f/8vbRg1qHPP3ESics7zx6+oncEctT954+x1Ou3BFr2hHLK48x3Ocol6ePvt9RLk9f6Glfnm2HZzl61kdP/+WlL+9y9GwfjztieY5r9zliea6Bec51eM7BeO6NsnkTPjXmvM5myB73F77B9u+14GUW5mKP1sTOCC900uM7xB8X/Eyulogrc1rdV6665n2v/4sv/F1G6U0WfjcE+PHfmKBX+yBNV+gbKujquDqtDi8gjwG/zB+lONwDazKo0+rGaspXRn+I3xb0fFpd2bJQWNtrYtlpddgvsLpzsvYLnyw+KSx1gp3Rmz6GBT3iNYn+2R2fFP/eOTWXn/pUL4h3Q0Qfww2d33ERx74Ky7WCfTfL+ir2RzX97ol91i3ix/mzck35RlU/+OSwXupaP7D62O4sqtrutEJPtpOl9IL547IcE7K0KS4G1r9qk8YEn28XLKz/qW8pypSr4oP+cDHxWezIB31Bi/i0HPkg1o3EZ9SRD2LZSXHcj4ghD6XC9/bYR1pteVwtIvl0OGVTePIc2wGe1Mhlh6ekcV8VT01De+bQoL9RD1GWmzbO4jKdhQnBp0x/NVUHh4T8ljeUGU9ifGBS88RTCdG+sP+K9D8Bp3w9OFmcx6J9uU0hewx8qqHRH6AxE851VLBDeaqhYfXYzx4oGy9rx5bXyO9NNe2Y+8ZLRD4sbkLkQ/l6Hougf15Ccdj2T1Ac+sHbgA4xY1Bjez5xcTiRL5RvqASf1KevQ4JPH/vPS8q0MYh/svvPPfYpx7Mw3xbU+Jfr1ZiIYz82HNJjafZjP9FxQJ59suiD3zo5V/Z+9FmwfHqcuxrv1k79DLVToxCn2imTg28mfx20Uz9H7RSm5/LluoRtYQxFcxjDgKtOXGX5fhHG3XxisMrz4oTMaHMhzLd5bluN/l3UtvJpyXkoF1TbalgTQddhlL/q2BTTc98O6wn7yZr5K32yl+G3wnw/UsdPjhO/Ij8Q39lpqp1jBa7atePuS3bs3rv/vpkhhA7ze2aoFUTFd1mYm3uMa9A7pruC/t4u0gWBHeN77PVV7pmxNWHPjHvaeA79K4GOg+p9WX5irX7r6Cwu07GsWFZrKA57X2uBN5e54mN5GxL0SwhrXKSzcunGryHSsWcYEelye/iTW7/+l+9tv/XIoSfed/TZZy7f8e63/tmX/uEPPvor7a989j0P/tl3scxByFy0cmHx6tdk53c8OzTuiDUhsEw3uFOrQn1YXtaTGX4r9FT/TniyNvHj/HHelwpZ2iKO/dNSwWep4KOwFjlhxXDrAtYC1gLWAtYpwOIZEPS1Foft1HWdX+upp86AVefEL0rIh+mNrswhqDXbm9J3IBm+1yGoE8SvSC89tt9LUu0pYpo8qj3l3WI2ehsuwLK0TaJvdoYcnnYddfYUzWioflCZckbcdpifdyufk233OL7CmY/xZZpn0V1JPPNh9Adh5qO9bK7MauYjFOgAbSgEnacRkCGE6vU15uF9G2b5YL4sD4bLMquZEbtXSc1gNSgObYFnW4vKaIrKqAFxqoz4PiujvwPKaEPnWd1nVebeRcWPbWi4gL5B8hn95o5MuCtEyTdawE/N1sVwVwG/04HfvR1+yu7QjxoO5iUPpcJyZXdYn9nu1Ex+6kDIbnbKtoh2yjuBhgQW6pRnJC39cND13vCaRH+hKPMydh4Dl6vRP7NkuTr5E1muqCsuV7XLCunLrOioHWFq9apJWE2BhTrlcu1Wlw2P69bzEuWK7W5DyMXlavQvKFmu9tyPckVdcbmq9hrpy+zcQ0yTW61YjlAc+kTmo/w36rtMmas7srnMrxFlzn1/9gvd2pcQ5s442478zozzDft27ZnpTDkHCqkp4vi8pECMZSJ9SGBhmpT7xEn0orshhoOermT3afQ3CZWn3G8MypQtPzZUqFllSi9aGH4r6O5BHkqFrKxb46m+VDVLdclPganGcEWBGJlIH7pg2d94RUiZ27dT3k2pynoXRS0H3s6H9DOJlqPsGr7RqxEy9nqMXuV/guIw3WgBH2zRUF/cohn9fSVbNOPdjxYNdcQtWtkZdKNXI24c1fOtfUspHxinZpLKVkNzr+zqMK0aWan8NnrIL9sX6ncpxRXNpIQw1xaMrh+jYMwP24K63V7Nphi9ug0d1+y514pNKNsJlj+vxHTrdaVsAUeOPBOi9gekRkBqbyPaMI/Kjf6NwgcY5pIueSvj77CbY/KofXXs79S3scoeja5He1xyqn0T+x+0M94fqPYA8sgP9Y17jJR+Wdaq3wFietzzirL/L2BnH98wl1+3fblFtvuzJ9F2TZ6U7S7sG58NqIey+8bZHgy3yPcpm0dbeoBm1ftwe/FpGeGZzPgO8Qf59uIYHgA6jmuId0MJrIcdsTxvCX7QEcvz5lXP23g9sTxvcT3iiDWoNw573uy72xHLsz563qrsaV+e+jrkiOVpX4N6+7qnTQzqjdaedduzPnrWoWOOWJ718elgX4cdsTz7AHwtIfaX+VrCqjtHMH2ZVa3UDdwqj32+ltBE3EJ0NyZEY9yM/vH7LfSuIWgxWDHhMINVpVYtlGrVML9oYReH8DjUe3Hnt4+3gb81I7wQ9FDM8Af5NvAszP/kaVBudD3miOV5+/AhRyzP25r3OGLNOGIt3JR96mz16XBTtqfPOeqI9XTQveft1p559Lwp2xPLs27vd8Ty0n18HnXCisHTVge1D+CJNajttqfuPfsAnj7asz8xqLa60G6fujZtoU9eDeuYI9ZCn7wa1kK/8NTZ1yD2C2Pw1Neg2upjjlie+vL0OZ66P+CI5VmHjjliDaqPHtQ2zTOPnn1fz3L01P3TwU887oj1gCPWvU5Y8Tl3wophl6NcnutDnvpa6oi1whFrtSPWZiesGDxtYrkjlpfuY/Cq25710bMOxedpJ6wYvOpjDN/p9hWfxxyxJhyx2o5Yg1ofvfx9DJ7tkGfd9mo7YhjU+rjSCcs7j55+InfE8tS9p8/xlCt3xJp2xPLKYwz3Ocrl6aPvd5TL0xd62pdn2+FZjp710dN/eY6tPMvRs3087ojlOdexzxHLcz3Nc/7Lc17Oc99j0VZ23IeMe5f5+H+jv7RTGXu80uFH+3gt3I9mhBc66fEd4o8Lfr1eR/rH133irr/4tZ/blFF6k4XfDQF+/Kc+4U0dDlrzk+m3DPh1pG8poz/Ebwt6z+tIX1wTq8x1pP3+1sDqsn3KfmWnLkc57EiBky2LfR5/zQDI0vnCPtwwALLYUQQvFbIYv25Hp5itKtlTB9lyvqp+jjQk+PTxu5XRsv7+2+G7lRj4IORe2v0FrAWsIiw+2sLw1a/x4XfMRx2T0e36rsMrZtNguqIDgV/R+eUDLK9cOZvuoQ6mOhoOZVR+IAv62zuu98OAizR8fZfRHwNfztd3DVOeMZ8sI5ZnU+QrBu6/G/3rqP9e8xpAeX0XH4uDNse+vibf0idUnqrrB6tdq8WWiFpBVHyXhbm5x7gGvWO6y+jvOtdq1ezJ52YVit7ipgGbD2faDHGLKW4LYL0S6DhwPjE/EbPKtVpYVtMUhyOTzcCby7wl+FjehgT9KGGp0YSVSzd+jVDcKzEMlS6G14s0nq1JP67Z6sMlf5NlvdGpuuRPXfNmadsiDg8ywzjkkzrIDrE2OGJtcsRqOmJNOmHFcOsC1gLW0xhLjSBSs3ov7/yq2Y0GyVd1ZgbTG12ZQxBr+vWxsu2I4XsdgqhmmVOHIKprPNsUFwPbh2qvxgWfBawFrFOFleonlqmfig/6A6tXJ9tf4RgSZ13+cYXmWXRdD8+6GP1zYNblCyvmyoxy4cyo0gGvOqk89XhI9Vgc61S5wknZFdLf0fllu8K8K1soe73bv1EZNSBOldEdnV++Z2QLlNHXaWYMZ+v5hAMcL6f4sQ0NC3rEYxvKOvLF8kldHTZcwK9opvDKAn6LgN9JuDpsUtkd1udeD21LrRZ3s0W+igh1zGOlIcEH9V3mKiKlX57JnRT2wH1Ato0i+ZTenK8iahWIsVSkDwksTJPKEk48lrmKCKd4WOVGv0aoPFVkMSxcRfRtdxXRZQViZCJ96IJlf3e7iohblZSKlarMWxW1Krx2bvRnCpMu4zFDmO9ZUjNuKE/qKiZ19cFwAZ+iy/W4RTP680u2aMa7Hy0a6ohbNDVDoHroRt/tOgmuanz5M8ahjqtcjhpD2auIuKem7KWRyG9KP8q+sNyWUJwapStbsHf96FVjftgWUmUbA+umLeixvHk0hN8MsZ1g3eMbBMterqlsAXui/1iwno24aAu8vrwYsFRvjq9zMfqrhQ8wzFaXvLHO1b427Obw/iHsYvA1RSg7rhYZNmP2aI+jyh4x/2yPqbzGUKa3zXtVY1A2t5ji1OpcWbtJXeOCeyhsf4Wqm9aGW3dtkvKRh1JhfUZ4JjO+Q/xWmF8H63TX1LVmypdY3pcJWdoUFwN/36euQ1sm+Cishx2xjjpiPeiItdcR65EBxTroiHXEEWu/I9aMI9ZDjliedcizHI85Yu12xHrUEcuzbnval2cd8vSrTwfdH3bE8vTRfM0G9mf4mg3Vd5hM8MH0kyWwUmMalcc+X7NhIq4juhsTojFuRv/4/Tp61xC0GNRtmmWmDlKbC9QnSSfr1s4+drFfmxGeyYnvEH+Qu9hZmD/cGZSm4JgjlmeTfsgRy7MLtMcRa6H7+Z1hqwvdz2pYC93Palie3c+nw9SFZ932nG7w0n18HnXCisHTVge1D+CJtdBuL7Tb3y5tx0K7vdBuL7Tb35m6H1RbfcwRy1Nfnj7HU/cHHLE869AxR6xB9dGD2p/wzKNn39ezHD11/3TwE487Ynlt+YjPuSOW1zx5fJ52worhXkesXU5Y8Xm5I9YKR6zVjlibnbBieDrofswRa8IRq+2I5aWvGDx94VInrBi8fI63X/Wq2zEMan1c6YTlnUdPP5E7Ynnq3tPneMqVO2JNO2J55TGG+xzl8vTR9zvK5ekLPe3Ls+3wLEfP+ujpv7z05V2Onu3jcUcsz7HoPkcsz7Umz/kJz3mTPY5YNtfBxyf/XudbqR6PnTyeOpCux8N/jmeEFzrp8R3ijwt+Jpc6YK7McfW/s/WSN/zcS3/kuozSmyz8bgjw0R8ivdojaLrCcU8FXb1GfTZmvNVx9fz5I+4NNRnUcfUTNeUroz/Ebwt6Pq6+bFkorOtrYtlx9epKhIkwvy6xPajPDVsJmYcEHz6u/sOduqyOZT9Zsthx9R8dAFnsuPqPn0JZ+niNR+lD0dj31fTxJ/Y7l/0cNOWHVV3kQ6t6qdcLWAtYJwPL8yDedihuU/gT5hjwIKwvrZpNg+mKDn66o/PbJPrXr5lN99UOZpkjS9inZGHuEQ/czlp6PCIeafiIeKP/N/DlfET8KOUZ88kyYnmq63ti4CPijf4/qc9c83BkeUQ8H4WiPptP+eHUNT2q/HrMQ1710HI+2G0zxPFB2Vsgjg80Pw3iMorbCnEbKO50iFN10UKD/kYdRVk+vW4Wl+kC8cQynKY4bBs3U1wfroI5p4xPQvxBvwqG56wG5cq8RxyxHnTEOuqIdcwRy/OKwYcHVK49jlie104+7oi10xFrUK/pPOKI5VkfH3XE8rR7T184qNetevocT5s47IjlqfvdAyrXQ45Ynjbh2Tc55ojlWY6D6r887cuzPg6qj/bE8rSv/Y5Ypnsbp6tLqDKKQz7DCT6YfrggXXzG+SgeNxlNDD2O8UufNMyXOC2uxy95iZMqn6qXOPGRsmXHplXlcjyaxkTcRnTbC0TLBG5G//j9NnrXELSIrU6v5CmqqjfjYvrUDbyjPfIZFXz6OO0yXrYKnapplx5vqx8r41JRHnVfDldLq7JFB7XzFLHRv7Gzl6Yd5lfXuveiRJ0dXz2XrujewG53Vjyxeq4MiyGuQWnRzfNptm9ZPZvuh+HZThqPNq6WObmOVl3mbIh8Kz6jPfJRyyCMpXQWwz2dX17eeFtHN1GHRScADxVg8hKGOg5LTb8bfbcTu1mXWDcmSvBGXXK70K4o61JBj1tS+NgwlG9pRVmvO8mytoSs44I3+37MVz+6T4bfEnmo4/tTevmmYJ3fajfy8pngqBVExXdZmJt7jGvQO6a7nP6ucyPvMnqfh1Kh8uIWH3K3GeLaFLcFsKreyGv5iV6syo28WFbTFIeLkZuBN5f5UsHH8jYk6CcJa6lIZ+XSjV+qdhuGShfDG0Sa1GGEZWptDDwImXTEWiawzKZx83EFm15Z1hsZfiv0VIdOeKPlxI/zx3lfIWRpizj2MSsEnxWCj8Ja54i1wRFrkyPWuBNWDLcuYC1gLWAtYJXEUpNxyygO20++wVjdHplRHMqXuuEU048n+Czqkc8iwUfdB5UV/Boffsd8lMyWH267MT9VPyrB9MsoPzj7c2PnN8ryn6s1Txy9Y9o7Or9Noj8EmxOzNcV5RD1bvljmHu/QGY/y8h062Mdhu1H1B+l3dH5Vm80boLCsDaNbGYytmSuPukdtsZCH71HbAWUwQWWAs3N8/nu3SfMdRG/lVHb2z+iXd2SKtHxTKqZfUsAP9YEy313AbzXwS90rZ7x7tLuVyu6wvrLdle13l7FT1ImyU56lUrPBqFOepbL0w4Ie8ZpEv1mUeVk753I1+q0ly9XJn8hyTd0XqGYTVTuUsgMsL9NJO8wv86LZV8RCnZYp18UCn8v1gkS5qllzlIvL1eifUbJcne7+k+WKuipTrmpxMdV+Y7maTtRHx3x7sfLRqVllVa5oK+yjjf65iXJVM/spP2z0Fw+AH07doafKNXWHXrdyZT+M5co3VqtVhro+Wq3KpXy00V8typz7/OwXiuRTenO+sXppgRgrRPqQwMI0qSzhxDyr3LI7HPQUKKvc6G8UKlfVFOVZ2EdSfh9J1WaxD6Yaw+UFYmQifeiClVGcMlVc4Und+Iot9BN0+zWaEI8UlOdTPX+jt+pV1LswvCbRvzLRCnUbrbG3XinosdqbPCr/KykO0y0p4IOtI+qLW0ejv79k62i8+9E6oo64dVwFcQ1Bz/peLehXAQ3PKuHxKqkqzUd4dXMdbP/KTtXoW/XGG4n8dhuVsX2p43MmRLrUTInR9WOmBPPDtpCqSzGwblK2g7pph+52gvWyzLFDZW0BZxd4Nkw1G2gLRUdUqJEP5o8/W/1B4QMMU+3RQD/f614WdbRHas+Qskej+3a/jd3y1CZ61JPaA8VtQTe7Sd1+jaMs/nR8SuCqNt/o1wFWgzDis93a2CT6n0nY43ohQ2p2Y4OgXw80Js8EyYBpJ0Q6OyZJ2aPR9WiPE8oeMT9sjxshriHoWTebBP1GoOEZflxtXkdxayGOP61GvlMg+0vbc+lwZ0ZW8Guy8juWFbH4SIZljnwQ6xbig/UdZ9zfS23+WohTwzgrEz6i6+Mw4/7faMYd03M/1+L+O9Sz/7GxOL3pcoL+Vv4c+xd8dLDKJ9KvKcjnB0DOj0F9CEHv7Omx3rVVvVsLBFzvlF9E+jI+Cf0i9z1wx0ibsFSbgjbJPtl0NBx0GRhek+g/mpilwXZ6Lck+VlH2smNISxvL4l86DeBEmO+LeOfOWsFTlVVbpF9bgKX2BbMvxXJsCN6K3myiGeb7c+TFx339OZTVhzdqzFAgQ7tA5uEC+imSweg/lRhDKz+A9r+eMI3+M4Bpx3WVxZwswPxcoq+h6ile01ymPcXy4r4G6nETxaHs3C5uAP5MO0H8MQ7tnPmGhLzcpnaTl9sbi/s3aK/+ufM8QngVfXUjVVZnCXnLllU7kT/GsnTNMN8eU3UE9fHVNRpzUUXMfxVtuuqr3Ab4/1bQH4mB+yMxsF9Gn4H18L3UJ0H5l5L8ZrdPlZyPMqze2vrsr1Rbj+O6Mm090rNPWCfo0ZZS7Q2PB7H+8Yq6GouWbUsnIK97lnTPL+LeGXR+i/wwl7vRT3QKtOyYL6VzzzGf8p/KHo2uH/aI+Wd7TOU1hqptVN0x33riU3auoNsY8W7q2yEfrgPdyr1IF8MF9OzXjX4z2Cr3bXIhQ+r432lBnwuZJ8L88pimOEy3roAP1kvU15Vhbl6N/ixRL5X9553nHsdek8r+UUds/5shriHoWd9bBD1+jWM6aRM96l756mmKQ9vkuqH8Wdm6YWmjHs4nX122DcgElpqPZF9t9N+T8NWqDqbsv5s/4jlh1CX3QTGdlY2yVaPrh61ifthWc4hrCPq6vqFN9KgnZavGs1tfYFWJvkCqbMv2faz8cL13HcWpsVxKrikhl9pVMpXgM9EjnwnBZ1ykywp+jQ+/Yz5KZtW34fyo8llXMj/rKD/rHPOjZO42p3rb2tk0Rb4N03J7Z/T7186me3nnWc2Jst2UtV3eGrIOdKB89nWQ/xD60ecMi051n5P7ldjHKTNniLaHbafRBJKxH/rC+sz6SvnBGMqMX7BOmA7U/PAkxaG9TREfr/nXL453l38ykd+qczFl+wDocw07hO+sPgDbwjTEcR8gNYel+qTKX3IZo3/FcuE1K6M/nug7KjtI2U0u6DFfJo+yjZziUPZU39HJhwy03fAYSPUdy9pNaq4Q22hrv1P9XHtWZY30jQKcTYTDdjcK7zEd9zctLgC9sjsui+ECesPjsfdPJ+YZprvIwF+Zb+4iwzTJYPQ/K2RI6T8GdTpG1vkdIfyK9aaZEZ7Jg+8QvxW0feShVMhYf8ZP2UEMfIoHpk3NKWQUh3y2CD4Ka8wRC/uWPZTXFtYHBos7DbBzitsK9NdT3OkQdwtgcGjQ35ifaNcf2TiLy3QsK5bXaYDPNjYt0k4L7FNVH6br8UvWB/ZJMVStDzk8L9SH+afxDFp9yCHO5FY6CqG0jkrVFyybCvqfLltfDN+rvijbU/XF8ndaPX55nLMdDfN9Fc7doO6Qz2aSodfy470FiH2yy6/m/oJk+an+t2f55YBRpfzUehDPo+Rhfn5ykR+1F9noUv28MuWk+ORCZjXHiHN/n6O5v80Qp+aIeO7P6L8Mc39/Q3N/OAbKw9w4tC28lovzbHQ9jh0bauyYAwGPHacxcSgua9Yf0qP/4zJDP8FzeTj/lBMfNS82BO9S80+4z+A3x7X8GeBuFGm5biP9ZiGH0VudwyvKkMbSNon+X2EsxVeUKZtFuXg+xej/PTGfYnxDCKXWRrcKevQvJs9EmK/nrRRX1Kc37BDm9xksfxZXpV1QdQLzw3UC+0oNQc+6OUPQ45VhbPdnQNxmwuL6FcOVAisl66YeZOVyxLI6g7CMFu0S88N2afTjHVvstm/AdN6P8sc2u0z5q7FAWZ3ymAb1eBrF5RC3hfgo31u0vsG2gj7kc9R+pU7tUN8cqm9alU83Oit/mytbD+XPe3UnQU7l968swNwkbCqVh9QpCt2+mzR6tb63IpEO56tHBK/cHp5KB8Oz7xUXC16Gy9/0ngF6un6jliVjeboEdZJVRvnEbyur9HkzwgtB9+kNvxXm66JOn159T6rs3vK3qh6/TdinRzvCPj3qDvlYealvl7APfCHVB1XHUt95GP13T82me2YBZgjV+2soz1dH5+J6f1Nv+VR1t8w39RNhfpnw2QKrID8NQc97p4z+eVA3U98y+Xxvn31JtYv4XTS3i6nv52Pgslgj6PGbetNJm+i5XIrsC8ua++HqfIeVAp/Pd3ghlAF/y4Tf0q4i2ccryq6+w+J6zHWD67G6ijp18tISwGoIjDs7v3wKzw2JtrXbvkK2iW7fOZs8E2G+znmtX51spOqL0fVjXRbzw/Wl7Fn6KTtR31OqvWpLKA7tkedKsI+G5wJ8tON7+SyY+Bt1lod0WPc7Mx9/3qf+4VN8RXWAvI72gP8DFzUn/8stV2/vF/7HF//jVz/64Z0/3C/8/3fkusuG/rc3beoX/k989ZpnvXbNli92w492/ATcAID2g+msb8PnEOShVBhF+S2ovpvht8L8Ol+n71b27AW178DS8txmDLcCXZEvU/V7AWsBqwoWfisYw49Dv/uNdDot1iM+6yMTsmQJWTh9DFZH8E44PstgkciDxQ0n4hYn4kYSca1EnDr7xOKwr3MjxY0LzJivt3cmUXgcG0MeSoUvmjw4LjDfFgjXdK/62mo8pcYjqwlrTRes6wgL068hrLVdsK4nLEzP38h3+w7sxYSlvnE1rG7rBXwqPKa3tDweO68TEcvrHSAspuGyjOF1hGe0/7WDYbaEe8EqtHOB23fE4nN7mA5/Q5jfHsfAfgGxXk581N7+HvM3VkZOxG+RLHX7DWq/ovrmgc/bwbS87zoGbiPUHmh1Fs8C1gLWqcJS33r06keK9lGjz40B5y7/kOYb1DfkmPaOzi/73tXgyz9GfSj0G7wvHGXm/pHyF+sT+V8i+PRbz/24tawtsG4E+vhPnTeGvvSOzq/af7+R0hXtXW4EvYbf7ZuRjYTRzQY/PaXzpmwQeTWJ/uvQj/8s2SCmZxtE++R56KKb7IrsE8vsDqJX5/kom+XvNj4v5kwzSq++BYmB1/OM/h8Tc47Kv6XmHFNn3yl9Y5753KUhgYX54TlXpVN17gDr9MuJeeiGSD8OPC1uJcXhPM5qisM5kDUUh3OQaylOfS+r5rFXURyuz3FboNZdov386LrZ993qYQx3dH65Hj6VsC3lO1LnOuWCfpPI90SYb085xaW+T8ohjtuh6c7fqIcc5HpF55e/IVncyVi39SanvWmjp/r8hrzzrPZwcz1XPiOHd1zP1XkhucDn80KWQRlwPUc/MU2yL6ko+yohO7d7XKc+negncVuzIcGT0yKf4VCtDV0v9JURj7LnmBj9JsC8t6Ctx3yl2ppu56byGULq+znVJ8L+omEzZj/OOMb8c/1M5TWGur5S7YXiPXTqe1K2A+RT1v7Rhv5wai5dv/rOLy+QBzFGgq6DeSgVSs+pGH4rzNdNnTmVbmXB/Rc1RuQyj4HHvFXHYgtYC1gnG6vf56FwHxvnbXE8ey31o9V+JUx7R+eX58c/BHMq13ee1Xi2zHkwPc4Zl15rXpgzXsBawDp187z98H0xlJl/VHMDgzT/WOSvD5aY91DjAR47/Vfw10fIX2N6nntQvjw1N1nWN95B9GquTM3N81zZsYpjwtT8o9E/nhgT9nv+EfN8quYffzAxL7FEpB/0+ccGxeH8I/ebcP4R7cfmH9WemNsIg8fKGDcMcXyGHd7/xPs2RyBuKcXhnsFJisM9MXz7Op6DwLeC4x7SFaCHt5MesMybhIFzEYsTeR2lOKxDiygOdTtCcaijMYpDHzdMcVgmLYpTt9PaNxvd/HEMd3R+2R+/O+FjVBuS2mufC3r+rj0Gz3noMucI5yBX0Tz0exfmoU/Enap56PfXnIdeV1H2hpBd1U+sUwcTY8syfQ7EXUX0qn1UfSFuHz+S6HOo8XSqz2H0f3QK+xxqDeAUnX83dqrvNrM8tcN8f8hz1Op+ALYD5FPW/tGGbL6m7ncBP/qhc7d/8cX/vLHOdwG4D9fS2VwNylOhfH8P5beg5moMv0WyVOR3Yq5G3X2I+eNvOkfr8ftARumRH2K2iN9YPX4NXp/gson/rJ85XCCLpeU7V75Mfb1xkYa/OYqB5yowriHeDZ0iLHWHKeoRv4/6PO0FZx3noVS4iPvlhoHYNW3hJWXrluG3Qk+2fqJuqW8RMX88ThwXsqjyuhfoei37RwcUa68j1mFHrIccsTz1ddAR64gj1n5HrBlHLM88Hh1QuR50xPKsj57luMcRy7MOPeKI5VmOnrZ6zBHL074edsR6rSOWp90Pqs/xzOPjjlg7HbGOO2J56suzb+JpX4PaL/S0+0Hty+12xDrkiPV06MsNqt179k0W2rRqWIPalxtUX+jZl/P0hZ7l6KmvQe1/vcoRa1D7X/scsTzrtmcd8tSXZzvkWYcGVfee/stzXm5Q54Y87cuz7zuofcxBbDvic8sJKwZrOyYKsPFZrY22EnwyIXND8ME9CuOdd7hWZDgjYb4uKqxDlb7ryPBbJEtFflmqfNS9x5b3JUIWta+Syyq1Tol8FFbTEYv3XjQFllr3yyg90it9jYXZ/Y/7991z3z37Dl86c+f+nVft2hkoNOnvSwtEvJnori8QrSFwM/rH72+mdw1Bi9gTYX7RDBfIHQAP33ExYfpmgk/WI59M8BkX6bhqo+lUqGpnla3aht8K8/Ncp2orU1V6sby3hCxtiothF9DVcb0Yd8AR66Aj1iOOWDOOWA86Yh11xDriiPWoI9bDjli7HbE8y9FTX562uscRy9NW9zpiDaqf8KyPnrofVFt9zBHL0yY8bdVTXw85Ynn6aM8+wDFHLM+2w7MODap9PR38Vz/aIevL49HU+CnucrquahHENShtBjybRP/4htl0q+hThwx42/MI4WWh0pjmnIzwQtBjKMNvkSwV+Z0YQw0RP84fj6EaQpY2xcVwP9BxXEO8S2EddcR6zBHriCPWHkesGUesY45Yux2xDjliHXTEGtRy9LRVz/roKdeDjlh7HbEeccTytIl9jlieNvGwI5anvjz9l6dcjzpieZajp1yD2nZ4lqOn7j3rtmceH3fE2umIddwR6+nQbnvW7X60tbauhuOxEeKjxj5DCT6YnsdFmC7r/I6QfPach1JhKCM8kxPfIX4rzM9zBX5ZSv9KL7ymiGnbFBcDf9qr+GSCTyawUnI5Lk2biNuIbnuBaJnAzegfv99G75QqEFvdLDYieFlIqbZdkD6G8QQfZfY2DTMadPXj5fOq1Q/TW5zik/XIJxN8WK9qOimGezq/fEPcE50pJDw5pCH4IVYZ11Jzyb70bhxesu/Vtagl+5RrGRaysD3E8DKg47iGeJeyrYYjllNTsMj0sUhEKl2xHtGurqc4PGHjFsDg0KC/MT8R/yMbZ3GZjmVFGzO5VV3mbTFV6zKmHyrAUjcnxnAbxCO9nXzTY5mercqU7WW4JnbZ+p06ZY3rPm9fykM6/K+XvK31/bftOK9qPTL6xYJebe8xXdU8febMceARiLfFqW1gFqdOu4vpzyb5FteUr4z+EF/5R+56lS2LyaDbmRjwxBrEMroAMjUhTvFpEv3vwvLL++nEOW5D7N0fJeiygl8lM8pj71qCviHojfeooLc43E2JekUa1BditSAe6T/ayTvfpI7p24I/1plQIHfRblHGaoh3Rh/z+aENc/NQs++S9XID928+65znLHnp6Y/164bvJb//29d+9n/uPr3OSV5qa2ZZey1q92K4vfPbY5sypPxYKJ8+K9Pe1fThT5Vt7wy/FbRfy0OpcKI/O0L8OH/cRrXq8fvPeJqsnWhaNKZC3SEfbssaIo1q5wwjpj9v09x81BwH/GePNvgfvAwdAy7//x0t/y+GOJ5K4j4g0v8TtD//AL7VcC296QvHvItFvP1t+h4StPis+gtKb0hv5VV0UuYw5dXovwxj0x1TGrPs9gmj/5oY7xqmOnVP1RmjT51chvKor2jGKB3Kjm06v1PlkxEtyhDD7UKmor9bAqdIhhGBo8Y3LZJV9Z+x3qROt8R683dQltZmjQj+/RzPZhSHebsZ6DioMSv2NT9BfcYgsJR+eNzk0Xbb+0Xwnvk2iHaYaPnrH5Sxl/4w9y8WCRns78UJ+TPCSZ0+zvVN/ZaVNxPyqrakVz6I9ZLOb49t3rrUXGssh/UbZ3GL2jzVZ+A2b3rjbLpNnedubZ7Fcb8thpfCO/bp3A9CjBh4ft185DDgI80I5cnoT+/kA9s25UMMK+b9TNLnCMSl2pEm0V8O+txG+kR98adg7McD/D0KsiBtDLcX6OAZIMcFG4t54Ti1KI8R41kbNR3KgHSMUbddU/0rrrtl+ldcVzGd4sH+uKjtNtsY6xKvThgO4t2QoB8pyG8QvFtdcBcLHOXfWxSXiTj2PZhf9Fvc50C/gH5rfaK+ZGFuvkYpXyOJfGUiHddzlH1xQnalP/QfdecQXv+5p/78TUfXfqFfcxTf//aDPzD+rF/99X7hv2fsT17wu28feXmVORArZ/WJLNuWmouN4RaIR/rbOuXR4xxD4Pwov5Ean/FcKMt/fYH8+8B/v4LqhRqfqDpT1P4uKimL0d8N7em90J6GoMcPPd400FQ3DaBf4/6u8rfqEwOj7za2NJ20w3z/yrzV2ibqlPs0pqPhoMf3hsf2sAvKgG8CUb7Z4tRWGNUW8jqrWh+LND9I9apm/3ax6kdY4DVKzKP6rJvXPfnUdIzDsuT5fgxqDGl5jTK/qcS6p/IPXF/VvEqqv6jqneEPWr0z22+H+eXC9lbWhov6c4of6gHbarPhojl5rNM45vohGiMMQ5ya02J/avS/CL79LeTbUcdsD8pPsCwhlNuvoMby4yKdlUuP65mLsHxRTnyH+Gr9uc5cveqbpubqa/YTmtzGIj9VDkuD1qmaz+exoprvSY2TUv5E1T+um2oeQbUhqfGc8cY58zL9JlW3MC23k78MdesDiX5TUd8oBD0OYPqU70NZle5HKU6N/e15LMFHyZU6+UjJhT4Z0zLvbnko21Y59REXqbYKy4TriNJL6kQkdRoTnoLFdUTdTlO1bRulONXGd2vbPlDQRmE+0P/x+FbVMWz76o4Pv3frf1mz7iMPjvdr/Lmoue4n81+946oq40/lV4YIF/XA8+0x3ND5LbPOXbPtLL1vk9vOXte5y7adqr/ObQHOs/C+JDUHo24AO1lYamzCZVmzn1C6H8R7FmraTnLPgmrf1PiKx43Y/rD+e/ncfxCxsP6n+sdlylXxUX36fq/dFd3468FHHdGg9hz3ykftX1brsjh++zK1jWo+DNMWzYdNbZpN97WNc2lM9n+FfugQ7aPBPFeoyy01Jreg5j7YblU/0OKwb8P2gX0b/hZkAmTAvRAc1HyK0UV+z980i8t0FlCXZb6H4X2mGeHx3LHRL6by4rX4PJQLau7YsL6TbKFOeR8sUd6qjFPfDfDYJjU2VXNyylcW+TfEVz7pNsJHfaTWyFSeLS2uvad8F9s+0m8A37Vt01wZ1ZhW+WB7320ePbXGbWl7vNV1jO0Zg7JnrgfqFF32baoetCGOfeJSiOPxDAZVR0wPVXwil6Pq62C7xmM+te6O7aXlr+4e4gwwTSbLO8rF31hgfWrSu5p7ak/oTu0twf4Wz70Z/fM2zcVRe2DUeMPo1d75huCrvrMYq4g1QliLe8DCeQumX1xTLoU1TFjqGwzVb49ld1GnbE7mOvPl1FeoOS48ZevMr4D24IXUtzrZ68zXdvgvrDOfunXmW6EMTuU68wGqV0/XdeYq/eSFdeb55XIq15kPFLRH3daZj1B/ru4685vBtz9Mvn1hnflbYWGdeWGdOYTq68w/CnXrXYl+08I683yfvLDOPEv/7brO/K6CNgrzUWed2dq+/x+pyeBEvtQEAA==",
4109
- "debug_symbols": "tb3fju26cW/9Lvs6F6oqklXMqxwcBE7iBAYMO3CcD/gQ5N3PZEnkmGutNFs9Z+8b72F7dw39408SVVP679/+9Y///F///k9/+su//fU/f/vH//Pfv/3z3/705z//6d//6c9//Zc//P1Pf/3L43/979+O8R+i9bd/tH94/LP99o91/NOvf8b1z37+047rn3L9U69/2vXPcv2zXv+86tlVz656dtUrV71y1StXvXLVK1e9ctUrV71y1StXvXLVq1e9etWrV7161atXvXrVq1e9etWrV7161WtXvXbVa1e9dtVrV7121WtXvXbVa1e9dtXzq55f9fyq51c9v+r5Vc+ven7V86ueX/XiqhdXvbjqxVUvrnpx1YurXjzq+fhnXP/s5z/7cf3zUU+OATrBJjxKyjhW+qOm5L/cJviEmNBP0OOYMCrHAJ1gE8qEOqFN8AkxoV8gx4RZWWZlGZX7gDKhThiV6wCfEBMelXWAHhNkgk6wCWVCndAm+ISYMCvbrGyz8hhIOrbPGEknlAl1QpvgE2JCv2AMqBNkwqxcZuUyK5dZuczKZVYus3KZleusXGflOivXWbnOynVWrrNynZXHENOxC8YYSxiD7ASZoBNsQplQJ7QJPmFWbrOyz8o+K/us7LOyz8o+K/us7LOyz8o+K8esHLNyzMoxK8esHLNyzMoxK8esHLNyn5X7rNxn5T4r91m5z8p9Vu6zcp+V+1XZjmOCTNAJNqFMqBPaBJ8QE2ZlmZVlVpZZWWZlmZVlVpZZeYxB0wExoV8wxuAJMkEn2IQyoU5oE2ZlnZV1Vh5j0OoAmaATrtFtVibUCW2CT4gJ1+i2ckyQCTphVi6zcpmVxxi0NsAnxIR+wRiDJ8gEnWATyoQ6YVaus3KdlccYtLELxhg8QSZceWhjNJVH8tsYO2VsujF2TigT6oQ2wSfEhH7BGDsnyIRZOWblmJVjVo5ZOWblmJVjVu6zcp+V+6zcZ+U+K/dZuc/KfVbus3K/KpfjmCATdIJNKBPqhDbBJ8SEWVlmZZmVZVaWWVlmZZmVZVaWWVlmZZmVdVbWWVlnZZ2VdVYeY6fUAW2CT4gJ/YIxdk4YldsAnWATyoQ6oU3wCTGhXzDGzgmzcpmVx9gpPqBMGJVjQJvgE2JCv2CMnRNkwrhYkgE2oUwY10s2oE3wCeMSbCxPXiMOyIvEBJmgE2zCqDyWOa8UE9oEnxAT+gV5uZggE3SCTZiVfVbOi8axgnnVmBAX5HViGTDq9AGPv2pjlcf4avl/+YSY0C8Y4+sEmfCo08aRMMbXCWVCndAm+ISY0E+oY3ydIBN0gk0YlduAOmFU7gN8QkzoF4zxdYJMeFT2Y4BNKBPqhDbBJ8SEfsEYXyfIhFlZZ+UxvlwG1Amjsg7wCTGhXzDGl48VHOPrBJ1gE8qEOmFU9gE+ISb0C8b4OkEm6ASbUCbUCbNymZXH+PIY0C8Y4+uEUbkM0Ak2ISaMvxr7YoyUGKs8RkrYgDKhTmgTfEJM6BeMkXKCTNAJs7LPyj4rjwESY3nGADmhXzBOUifIhFFwrOA4SZ1QJtQJbYJPGJXHmo5BlDAG0QkyQSfYhDKhTmgTfMKs3K/KbQyifgyQCTrhUbnLgDKhTnhU7jbgUbmXAY/KvQ3oF4xBdIJM0Ak2YdQZizGGzAkxoV8whswJcoHlnaYO0kV5rzkWaRzSctRBvigW9UnjsL5IJtX838aSVVmki2xRWVQXtUW+KBb1SW052nK05WjL0ZajLUdeYB2PwdQ8/zYGjb8dt9ltHLUXlUXjb2XssxHxF/miWNQnjaP4oqw3tm7k346tG/m3Y1kiFvVJPf92bMmcDThJF9misqguSsdYt5wTOCkdYy1zVmCQ57TASVmvDxp/q8cgX5R/WwaNv9XHGnne+J8ki3TRqKc6qCyqi9Jhg3xRLFoOXQ5dDl0OtUXl2s6udVFb5Iti0dxHnsf92DNu9doznsf92AtuvigW9Ws7ezkWySJdZIvKonrtDy9tkc+9UGLR2kc5ZnLP5PjI/VHXPsrxkXsmx0dujbq2X1vbr63tl+Mj90Jb+6itfZTjI/dCW/uorX3UlqMthy+HL4evfZRH8bjB8jyKT9JFuQRjG+RRfFJd1Bb5oljUL4o8ik+SRcNhMsgWlUV1UVvki4Zj3KRGHu1JebSfJIt0kS0qi+qitsgXLYcsRx7tZoNkkS5KRxlUFtVF6aiDfFEs6pMsHW1Q1hvbysqiuqgtynp90Kg3bkUjR0AZ2ypHwEmySBcNx7i/iRwBJ9VFbdFwlLEeedyP+43I88e4z4g8f5SxBDkW6viLPH+cVBbVRW2RL4pFwzFuJiLHx0nDMS7fI8fHSbaoLKqL2qJ0xKBY1Cfl+DhJFukiW1QW1UVt0XL4cuR5ZtxFRJ5nTpJFw9HG3spzz0ll0XC0sTXyfDRuJiLPRyfFoj4pR/JJsigd47jKkXxSWVQXtUW+KBb1i3qO5JNkkS6yRWVRXdQW+aJYlI7H3uo5kk+SRbk/yiBbVBbVRW2RL0pHDOqTciSfJIt0kS0qi3KZ+6BY1CflqD1JFukiW1QW1UVt0XLYcthylOUoy1GWoyxHWY6yHGU5ynKU5SjLUZejLkddjrocdTnqctTlqMtRl6MuR1uOthxtOdpytOVoy9GWoy1HW462HL4cvhy+HL4cvhy+HL4cvhy+HL4csRyxHLEcsRyxHLEcsRyxHLEcsRx9Ofpy9OXoy9GXoy9HX46+HH05+nTIcRyggAoaWMAKNtDBALEJNsEm2ASbYBNsgk2wCTbBptgUm2JTbIpNsSk2xabYFJthM2yGzbAZNsNm2AybYTNsBVsmwpg+eaCCBtYryB7YQAcD7AvrAQqooIEFxFaxVWwVW8XWsDVsDVvD1rA1bA1bw9awNWyOzbE5Nsfm2BybY3Nsjs2xBbbAFtgCW2ALbIEtsAW2wNaxdWwdW8fWsXVsHVvH1rH1ZZPjAAVU0MACVrCBDgaITbAJNsEm2ASbYBNsgk2wCTbFptgUm2JTbIpNsSk2xabYDJthM2yGzbAZNsNm2AybYSvYCraCrWAr2MgSIUuELBGyRMgSIUuy/UTGRKdkB8pEA4dtTNpKtqJMbGC2UtTEAPvCzJILBVQwbT2xgBVsoIMB9oWZJRcKqCA2x+bYHJtjc2yOLbAFtsAW2AJbYAtsgS2zxHMPZZacmFlyoYAKGpgtKpJYwQZmo4omBtgnno0wF2bjS7ZdHavC1epyYoBZYezYq+HlRAGz6aUlGljACqbNEx0MsC/MJBgz2ZItLjImmiWbXCY6mNv3/LO+MMf8hQIqaGABs1XnSGyggwH2hTnmLxRQQQMLiK1gK9gKtoKtYssx33Nn5ejuuY9zdF/YQAcD7AtzdF8ooIIGYmvYGraGrWFr2BybY3Nsjs2xOTbH5tgcm2MLbIEtsAW2wBbYAltgC2yBrWPr2Dq2jq1j69g6to6tY+vLli02EwVU0MACVrCBDgaITbAJNsEm2ASbYBNsgk2wCTbFptgUm2JTbIpNsSk2xabYDJthM2yGzbAZNsNm2AybYSvYCraCrWAr2Aq2gq1gK9gKtoqtYqvYKjayxMgSI0uMLDGyxMgSI0uMLLEzSyzRwAJWsIEOBtgXnllyooBpa4kGFjBtJbGBDgbYF55ZcqKAChpYQGyB7cySSAywL8zWvPFsUbLBaKKCBhawgg10MMA+MVuOJgqoYNpaYpsLWc58GKfQcubDiaNC9u9me9FEAwtYwQaO5R0PrCRbjSb2hdkue6GAChpYwAo2EJtiywba8ahMsgVpooBps0QDC5i2kthABwNMW27qbOnLjuZsQ1LJTZ1NfBdWsIGjrubmy4ZazbXIllrNxcmmWk1bttVeqKCBw6a5ONlee2EDHUxbLm9212ouTvbXjo5LyQ4ltVyc7LG1VGSX7YUVbKCDAfaF2XFruQzZc3uhrcPzHPMnVpDj1x0McI3Cco75EwVUEFtgC2yBjTGf7U5quc2yGffEHPMX5grlv5tj/kIDC1jBBjoYYJ+YbVATBVRw2MajLcl2qIkVbKCDAQ7beOgl2Ro1UUAFDSxgBRvoYIDYFFvmQ7FEBQ1MW01MW0tsYNo8McC05YbKfLhQQAUNLGAFG+hggNgKtoKtYCvYCraCrWAr2Aq2gq1iq9gqtoqtYqvYKraKrWKr2Bq2hq1ha9gatoatYWvYGraGzbE5Nsfm2BxbNu+PR7QPbKCDAa5zbHZ5TRRQQQMLWMEGrjN69ng9bg4T11k6u7q05ijMfLiwgQ4G2Cdmh9fEbCXXxLV927HWuB0B9oXnmD8x29MtUUEDC7j2ZhNs4mCAa282PUABdS3DOeZPLGAF21qG8wc1JwaIjTHfGPONMd8Y840x3xjzzdax04wtaWxJY0uebf65DIUtWdiSjPnGmG+M+caYb4z5xphvjPlW2W/nmD+RLVnZkpX9lmP+QrYkY74x5htjvjHmG2O+MeYbY74x5ltjvzW2ZGNLNrZkY0vmmB/PsiVb4SbmlqyJBhawgrluuQw55i8MsC/MMX+hgAoamLZcyBzzF+b1w4l9jcIc86O3QbJhbqKCBrKHOnuos4c6x3rnWD+TYKAfB7j2kB8KGljACjbQwQDX8ZB9dTraxCUb6yYWcNQd7RySvXWP+alEBwPsCzMfLhRQQQMLmFdtKT5nD07sC8/ZgxMFVNDAAlawgdgMm2Er2Aq2gq1gK9gKtoKtYCvYCraKjTnHs0vvQmwVW8VWsVVsFVvF1rA1bA1bw9awNWwNW8PWsDVsjs2xOTbH5tgcm2NzbI7NsQW2wBbYAltgC2yBLbAFtsDWsXVsHVvH1rF1bB1bx9ax9WU7exIvFFBBAwtYwQY6GCA2wSbYBJtgE2yCTbAJNsEm2BSbYlNsik2xKTbFRpYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkmyk1NHEKtlJOdHAAlawgQ4G2BfmHcqF2Aq2gq1gK9gKtoKtYCvYKrbMknxonN2VOjpgJdsrJxawgg10MMC0ne+cOEAB05bivEO5sIBpa4kNdDDAfAo+LvPPfssLBVTQwAJWsIEOxsJMjewGyC5Lbef/amABK9hABwMc2yyb5LLbcqKAwzZ+dijZcDmxgMPm+e6PvEO50MEAc5tJvvHjAAVU0MACVrCBDsbCnMFwS1TQwFyLkljBBuZa1MQAc5u1fEvJAQqYtnyfSd6hXFjACjbQwQDTFvkqlAMUUEEDCzh/mKNnK+V4GKJnK6Um5lXFhQIqaGABKzh/jaNnV+WFAfaFeVUhJwqooIEFrGADHYyFjT3f2PONPd/Y840939jzjT3f2PONPe/seWfPO3ve2fPOnnf2vLPnnT3v7Hlnzwd7PtjzwZ4P9nyw54M9H+z5YM939nxnz3f2fGfPd/Z8Z8939nxnz3f2fF97/uyUlBMFVNDAAlawgQ6uPS/nmO+JChpYwLEv4khsoIMBjrUYP8LUsyfyQgEVNLCAFWygL8zRPX5LrNn9OFFBAwtYwVyLmuhggH1hnv0vFFBBAwtYQWwFW579RyOZZvfjhXn2vzBtnqiggWnLPZRn/547IM/+ozlBs/txYoB94fnKoBMFHLaeR8n54qATC1jBBjoYYF94vkboRAGxOTbH5tgcm2NzbOeLhXL7nq8WOlHAtOU2O18wdGIBK9hABx82O3JTj3y4cOTDRAEVNLCAFWygg9j6smX3ox2SKKCCabPEtLXECjbQwQD7QjlAARVMmycWMG2R2EAHAxw2yUXPVxVdKKCCBhawgg0ctgzz7KqcmLbcOvn6ogsFVNDAVJTEBjoYYF9YUpGbpAiooIEFrGDackPlW40uDLAvzHcbXSigggYWsILYKrZ811G+8y0bLC/M9x1dOGx5Cs0Gy4kGDlueC7PB0vJUlw2WprmhRoBMDLAvHAEyUcA8USXVRW2RL4pFfVKO4OulcgcoYD7PSLJFZVFd1Bb5b/PtdFmxJeZm8MRyvh5Ls13xorZobIOSFIv6pByJJ8kiXZSSSCxgbuue2EBfmAPOjsRRYbSz6Pk2sAtHBUsaBcZvnPV8JdiFAfaFObIulLlJTBfZorKoLmqL+tqIOWSul/rlguYy5ZC5MBc0t0UOmQtzSbPYfBWYrneB6XoZmK63gel6HZiu94Hp+fqvC3Mtc0HmC790vfFLsyfwovHXuRfy4D+pLmqLfFEsSkliHvcXDstZfJw4Jxo4ipbcm57HTe7COMBRIZc9dG2YMLCAFcyyuTfDwQD72uA5ki4UEFvH1rF1bB1bx9ax9WXL/r6JAi5b9vdNLGAFG+jXoZ5vGDsP32wFvFAOUEBdmOepkouQg+nCAub1RVJb5ItiUZ+Ul7snySJdZIvKouWw5bDlsOWw5chz1GgJ0nxj2EQFc2UisYBjI5bccjngLnQwwL4wh9yFAg7baMrQbNebWMC05fLmYLzQwWGruR9yiJ6YQ/TCDPYkXWSLyqK6qC3Kinls5MiruTtz5NVcfi9gBRs4lrSe7wcNsC/MUXqhgHmhlZSy3PI5Si+sYAMdDLAvzFF6oYAKYuvYOraOrWPLUdpyk+UoTcyOvIkCKmjgsI0n1JodeRMb6GCAfWEO0wsFVNBAbIItT5VjFlazI29igGkb+zU78iYKmLaWaGABK5i282WwaRuHc/be2ZgP1Oy9m6iggaOu5+bLy9ScvcneO8sZmey9s5x7yd67iX1hRsCFaTvfRKuggQVMWy5vjvucBciGO8vJxWy4s8jFyXGfN7fZcDdRQQMLWMEGpu18S24szME+psw1u+wmKmhgKnLRz5PyiQ10MOaQr2cQJOaJ+UIBFTSwgBUcdfPGPfvpLswguDAvK3JLZhBcaOComzfu2U83caxF3hNnP93EANOWy5BJcKGAChpYwAqmLY+zTIILA+wTs/duooB5qpHEPDO3xHUd0A4HA+wLz2vjEwVUMK8DSmIBK9jAvA7wxADXdV87L5pPFFBBAwtYwbzFydXMq+aemGP+QgEVNLCAFcx9kYoc8xcG2BfmmNcTBVTQwAJWsIEOxsIc6KMzXLPLbqKBuRY9sYIN9PHi3CMxwD4wD5gx5icKqANzz48xP7GAFWyggwGmbQyc7LKbKKCCBhYw93wumbPnnT0f7Plgzwd7PtjzwZ4P9nyw54M9H+z5YM939nxnz3f2fGfPd/Z8Z8939nxnz/e157PDLfJsmh1uE+vAmtjAvv6FMbImCqgL8424R/5ZvhP3wgbmLsxlyDfjXtgX5ttxj54o4NiFOW2UjWYTCzhsORWUjWYTHQywL8w35l4ooIIGFhBbxVaxVWwVW8OWh33OQWXzWMnX8mfzWBnvv9NsHpvYF+YBfmEubyQqaGABKzhsmtvsfH/1iQH2hedbrE8UUEEDC1hBbIEtsAW2883WR6KAChpYwAqmTRMdjIlxvr76xPwXLDHA3NTjkMt+r4kC5uLURAMLmIvjiQ1MWyQGOGx5+5D9XiUjKPu9St7XZL/XxGHLM2/2e02sYAMdDLAvzJdbX5i2XMh8wXVOZWS/V8lJi+z3Knn2z86ukifs7Oya2Bfm4L1QQAUNzGK51XNsXtgX5ti8UEAFDcxiuQNyZOWNcTZYTaxgA/PPcuVzvF3YF+Z4u1BABQ0sYAUbiM2xObbAFtgCW2ALbIEtsAW2wBbYOraOrWPr2Dq2jq1j69g6tr5s2WA1UUAFDSxgBRvoYIDYBJtgE2yCTbAJNsEm2ASbYFNsik2xKTbFptgUm2JTbIrNsBk2w2bYDJthM2yGzbAZtoKtYCvYCraCrWAr2Aq2gq1gq9gqtoqtYqvYKraKrWKr2Cq2hq1ha9gatoatYWvYyJJOlnSypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0leW2LGyxI6VJXasLLFjZYkdK0vsWFlix8oSO1aW2LGyxI4Dm2ATbIJNsAk2wSbYBNsZFZGooIEFrGADHQywLzyj4kRshs2wGTbDZtgMm2EzbAVbwVawFWwFW8FWsBVsBVvBVrFVbBVbxVaxVWwVW8VWsVVsDVvD1rA1bA1bw9awNWwNW8Pm2BybY3Nsjs2xOTbH5tgcW2ALbIEtsAW2wBbYAltgC2wdW8fWsXVsHVvH1rF1bB1bXzY5DlBABQ0sYAUb6GCA2ASbYBNsgk2wCTbBJtgEm2BTbGSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImRJ9lqV8XDHsteqjOdUlr1WZXyuxrKrqozHOJYtT+X6TpeCBg7FeAJi2fI0sYEOBtgX5iC7UEAFDcQW2AJbDpHxrMOyYWlinZhNSGVM31g2IU1UMCt44qgwnlRYNiFNbKCDAfaFedhfKKCCBmITbIJNsAk2wabYFJtiU2yKTbEpNsWm2BSbYTNsediP3nLLJqSJBaxgAx0MsC/Mw/5CAbEVbAVbngDHEybLvqEynjBZ9g0Vz92dg+FCBwPsC/NUd6GAChpYQGwNW8PWsDVsjs2xOTbH5tgcm2NzbI7NsQW2wBbYAltgC2yBLbAFtsDWsXVsHVuO4/Fcz7JxaWIFG+hggH1itjRNFFBBAwtYwbR5ooOx8BzdkZgVeuKoMJ4tWnYxTXQwwL4wx/GFAipoYAGxKTbFluN4PN+0bHm6MMfxhQIqaGABK9hAB7EZtoKtYMtxPB63WjZJTSxgBRvoC88vvJXErFATs0LulhzzFzbQwQD7whzzFwqooIHYGraGLcd85AGTY/7CvjDH/IUCKjjq9tybOY57br4cxyfmOL5wVBgPVu38xuKFBhawgg10MMC+MMfxhdg6thzHPXdLjuMLK5i2HGQ5ji9MW65xjuPx0M3O7zBe+LDV8UzNsmlqooFloCZWsA20RB9YEmNgTewDhzi7piYKqKCBBaxgAx0MEJtiU2yKTbEptvxG95GbJD/LPR4KWTZa1fH4x7LTamIBx0JKbpL8SveFDgbYF+YXuiU3X36UW3Lz5Xe582uhJT/NfWGAfWF+o/tCARU0sIBpa4kNdDBtuUny04wn5scZLxQwbbnN8hONFxZwXVpmJ9VEB/NCNrdkDt4Tc/BeKKCCBqYtd1Z+uvHCBjoYYF+YX/++UEAFDcQW2AJbYAtsga1j69g6to6tY+vYOraOrWPry5Z9VxMFVNDAAlawgQ4GiE2wCTbBJtgEm2ATbIJNsAk2xabYFJtiU2yKTbEpNsWm2AybYTNshs2wGTbDZtgMm2Er2Aq2gq1gK9gKtoKtYCvYCraKrWKr2Cq2iq1iq9gqtoqtYmvYGraGrWFr2Bq2hi0/+zoezVr2aE3sC/PjrxcWMP9MEmNhntHzTJZtVRMrmP+uJvaFOaQvFFBBAwtYwQY6iK0vWzZQTRRQQQMLWMEGOhggNsEm2ASbYBNsgk2wCTbBJtgUm2JTbIpNsSk2xabYFJtiM2yGzbAZNsNm2AybYTNshq1gK9gKtoKtYCvYCraCrWAr2Cq2iq1iq9gqtoqtYqvYKraKrWFr2Bq2hq1ha9gatoatYWvYHJtjc2yOzbE5Nsfm2BybYwtsgS2wBbbAFtgCW14e5Ifq25klJ/aFZ4B4ooIGpqInVrCBQzE6Piy7sSb2ifnOs4kCKmhgASvYQAcDxCbYBJtgE2yCTbAJNsEm2ASbYlNsik2xKTbFptgUm2JTbIbNsBk2w2bYDJthM2yGzbAVbAVbwVawFWwFW8FWsBVsBVvFVrFVbBVbxVaxVWwVW8VWsTVsDVvD1rA1bA1bw9awNWwNm2NzbI7NsTk2x+bYHJtjc2yBLbAFtsAW2AJbYAtsgS2wdWwdW8fWsXVsHVvHRpY4WeJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlcWaJJDbQwbRZYl94ZsmJaauJCqYtEgtYwQY6mLae2Cdm+14dP121bN+royHUsn1v4rCNzk7L9r2JFRy28TtLy/a9iQEO2+jLtGzfmyigggYWsIINdDBAbIpNsSk2xabYMiqylSf78Go+ds4+vFpym2UoXFjACo6FzOfS2Yc3McC+MEPhwmGruVEzFGpuvgyFCwtYwbTl8mYo1FyGDIV21u0LMxRGS79lH17Nh8bZhzdx2PL5cfbh1ZbFMhROzNGdD0uzoa7m08lsqJtYwLE4+cwym+Sq5/LmiL1QQQMLWMEGOhhgXxjYAltgC2yBLbAFtsAW2AJbx9axdWwdW8fWsXVsHVvH1qetZJPcRAEVNLCAFWyggwFiE2yCTbAJNsEm2ASbYBNsgk2xKTbFliN2PGMt2UU3sYINdDDAvjDP/uOpZ8kuuokKluv4Ldk6N7GBDgbYF+bovlBABQ3EVrAVbAVbwVawVWwVW8VWsVVsFVvFVrFVbBVbw9awNWwNW8PWsDVsDVvD1rA5Nsfm2BybY3Nsjs2xOTbHFtgCW2ALbIEtsAW2wBbYAlvH1rF1bB1bx5YBMp6Nl2ydm+jgsMX57/aJ2To3cdjGT3tLts5NHLbxBLpk69zECqbNEx0MsC/MALlQQAUNLGAFsQk2wSbYFJtiU2yKTbEpNsWm2BSbYjNshs2wGTbDZtgMm2EzbIatYCvYCraCrWAr2Aq2gq1gK9gqtoqtYqvYKraKrWKr2Cq2iq1ha9gatoatYWvYGraGrWFr2BybY3Nsjs2xOTbH5tgcm2MLbIEtsAW2wBbYAltgC2yBrWPr2Dq2jq1j69g6to6tY+vLpscBCqiggQWsYAMdDBAbWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpbYmSWR2CeWM0tOHLbRc1rOXssLDRy20XNazl7LCxvo4LCN3tBy9lqO9/qUs9dyvFOnnL2WFypoYAEr2EAHA+wLFVtmyeg5LWev5YUGFrCCDXQwwL4ws+RCbIbNsGWWjMbYcrZoXthABwPsCzNLLhRQQQOxFWyZJaP3tpztnBcG2BdmllwooIIGFrCC2DJLeh5ymSUX9oWZGhc+KrQjj76RD+3Ig2vkw8QA+8KRD+3Io2/kw0QFDSxgBRvoYIB9YWALbIEtsAW2wBZpyyESDqYtj9/oC/sBpi03alfQwAJWsIEOBtgnZovmRAEVNLCAFVy27MBso4u5ZK9lG13MJXst2/j+dMley4kNdHAs5GhSLtlreeEY6BMFVDAjsyQWsIJpy4VUBwPsC+0ABUxbrtsY6BMLWMEGOhhgX1gOUEBsBVtJW27UUsEGDtvoJizZazlx2DS3wxjoE4dttP2U7LWcOGzj9VAley0nVrCBDgbYF7YDFFBBbA1bw9awNWwNW8Pm2BybY3Nsjs2xOTbH5tgcW2ALbIEtsAW2wBbYAltgC2wdW8fWsXVsHVuGgubxm6FwoYMBpm0cRtnkOVFABQ0sYAUb6GCA2ASbYBNsgk2wCTbBJtgyNcYT6JKNm208ay7ZuDlxVBgvHyrZuDnRwQD7wsyHCwXMupa49mY2Y57bN5sxL8wxf6GAY43HGwBLNmNOLGAF17HTCrYS4Dp2Wj1AARW0tQznmD+xgg30tQw55i/sCxnzjTHfGPONMd8Y840x3xjzra0jtTW2ZGNLOlsyx/y5DM6WdLYkY74x5htjvjHmG2O+MeYbY74x5ts55nMZgi0ZbMlgSwZbMsf8aGQo2Yw5Mbdk1s0xf6GACua65bGeY/7CCjbQwQD7xOzLnDhsoxWiZF/mxHWAZzNmG10RJZsxJzoY4Do0shlzooAKGljACq6d5eJggGtnZTPmRAEVNLCAuRaaGGBfmMO/5HbI4V9yyfLy4EIDC1jBBjoYYF+YoTDe+1WywXJiASuYdXMtMhQuDLAvzFDI67NssJyooIEFrGADfWHOE+S1/dlKeaGCuRYnFnDUrXmc5fC/0MGxFjWPqBz+J+bwv3CsRc09lMP/QgMLWMEGOhhgX5jD/0Js51PPXMjzqeeJDXQwwL7wfOp5ooAKGoitY+vYOraOrS/b2TR5oYAKGljACjbQwQCxCTbBJtgEm2ATbIJNsAk2wabYFJtiU2yKTbEpNsWm2BSbYTNshs2wGTbDZtgMm2EzbAVbwVawFWwFW8FWsBVsBVvBVrFVbBVbxVaxVWwVW8VWsZ0dFGMMnU2TFwqY47gmGljAHMeR2EAHcxz3xL7wTI0TBVTQwAJWsIEOYnNsgS2wBbbAFtgCW2ALbIEtsHVsHVvH1rF1bB1bx9axdWx92bJpcqKAChpYwAo20MEAsQk2wSbYBJtgE2yCTbAJNsGm2BSbYlNsik2xKTbFptgUm2EzbIbNsBk2w2bYDJthM2wFW8FWsBVsBVvBVrAVbAVbwVaxVWwVW8VWsVVsFVvFVrFVbA1bw9awNWwNW8PWsDVsZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0smSTpZ0sqSTJX1lST1WltRjZUk9VpbUY2VJPVaW1GNlST1WltRjZUk9VpbU48Am2ASbYBNsgk2wCTbBJtgEm2JTbIpNsSk2xabYFJtiU2yGzbAZNsNm2AybYTNshs2wFWwFW8FWsBVsBVvBVrAVbAVbxVaxVWwVW8VWsVVsFVvFVrE1bA1bw9awNWwNW8PWsDVsDZtjc2yOzbE5Nsfm2BybY3NsgS2wBbbAFtgCW2ALbIEtsHVsHVvH1rF1bB1bx9axdWxkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkSXZ2PmaUE/vCzJILh228zKdmZ+fEYRs/7qnZ2TmxgsM2fudTs7NzYtpKYp+YnZ0T0+aJCqatJRawgmnriQ4O23i7Yc3OzgszS0ZXe83OzokKDtv42UbNzs6JFWyggwH2hZklFwqoIDbFptgUm2JTbIrNsBk2w2bYDJthM2yGzbBlanhu9cwHzz2U+TB+yVKzW3OigwGO5R2/GqjZrTlRQAUNHLbIoyTz4cIGOhhgX5j5ELkWmQ8XKmhgASvYQAcD7Asdm2PLfIjcfJkPFxYwbbmhMh96HrSZDxcO2+gLqtmteWHmQ8/jN/PhQgUNLGAFG+hggH1hx9axdWwdW8fWsXVsHVvH1pctuzUnCqiggQWsYAMdDBCbYBNsgk2wCTbBJtgEW+bDaByq2a15YebDhQKmrSUaWMAKNtDBAPvCzIcLBcRm2AybYTNshs2wGbaCrWAr2Aq2gq1gK9gKtoKtYKvYKraKLVNjNFDV7MBs42lJzQ7MCzMfxkfJanZgTlTQwAJWsIGPuj76rmp2VV4HQY75cx/nmL+wgg30UUESA+wLx5ifyJHKmDfGvDHmjTFvjHljzBtj3oIjtXOkdo7Uc8yfyLqNMe+jMatmV+XENjDrdgcD7BOzq9LH5+drdlVOVNDAAlawgQ6mzRP7QpG5s7KV0keHVc1WyokFrGCbOyBbKScGuHZWtlJOFFDBtbOKFrCCDXQwwBVixQ5QwFyLnljBBo61kNwOY0i75JKNIX3hGNITBVTQwAJWsIFZdxwa2R45UUAFs26uRS1gBRuYlx25Y3OgX9gX5kC/UEAFDSxgBcdDlppLlk3VJ2ZT9YUCKmhgASvYQAexObbAFtgCW2ALbIEtsAW2wBbYOraOrWPr2Dq2jq1j69g6tr5s53stLxRQQQMLWMEGOhggNsEm2ASbYBNsgk2wCTbBJtgUm2JTbIpNsSk2xZaPUMfLGer5XssL+0LLkdUSBVQwbZZYwArmyPJEBwNMW+L5iokTBVTQwAJWsIEOBoitYqvYKraKrWKr2Cq2iq1iq9gatoatYWvYGraGrWFr2Bq2hs2xOTbH5tgcm2NzbI7NsTm2wBbYAltgC2yBLbAFtsAW2Dq2jq1j69g6to6tY+vYOra+bOcLNS8UUEEDC1jBBjoYIDbBJtgEm2ATbIJNsAk2wSbYFJtiU2yKTbEpNsWm2BSbYjNshs2wGTbDZtgMm2EzbGRJI0saWdLIkkaWNLKkkSWNLGlkSSNLGlnSyJJGljSypJEljSxpZEkjSxpZ0siSRpY0sqSRJY0saWRJI0saWdLIkkaWNLKkkSWNLGlkSSNLGlnSyJJGljSypJEljSxpZEkjSxpZ0siSRpY0sqSRJY0saWRJI0saWdLIkkaWNLKkkSWNLGlkSSNLGlnSyJJGljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZkm2iPn6JVbNNdKKDaeuJfeF5j3OigAoOWz6YOttELxzrls+zzjbRCx0ctnwEdbaJnphzION3XzXbRCcqOOYqNBU5B3JhBRvoYIB9Yc6MXCiggtgqtoqtYqvYKraKrWFr2Bq2hq1ha9gatoatYWvYHJtn3ZKYFWpiVmiJAfaFOQV6YS5vHiWhoIEFrOCwjd8w1Wz9nBjgsFnu2JEPEwVU0MACVrCBDga4bNn6OVFABQ0sYAUb6GCA2ASbYBNsgk2wCTbBJtgEm2BTbIpNsSk2xabYFJtiU2yKzbAZNsNm2AybYTNshs2wGbaCrWAr2Aq2gq1gK9gKtoKtYKvYKraKrWKr2Cq2iq1iq9gqtoatYWvYGraGrWFr2Bq2hq1hc2yOzbE5Nsfm2BybY3Nsji2wBbbAFtgCW2ALbIEtsJElnSzpZEknSzpZ0smSTpb0M0s00cEA+4XtOLPkRAEVNDBtNbGCDUybJQbYF55Z4okCKjhs4+dXLVs/J1awgQ4G2BdmllwooILYFJtiyywpuW5nauRCnklwYgUb6GCAVMgkKCcKqGAuWSQWsIINdDDAvjCT4EIBFcRWsWUSjF94tWzcnOhggH1hJsGFw1bz2MkkuNDAAlawgQ4G2BdmElyIzbFlEtQ8+jIJLqxg2nIfZxKMD/i2bNycmLbcLZkEF6YtN1QmwYUGFrCCDXQwwL4wk+BCbB1bx9axdWwdW8fWsfVly8bNiQIqaGABK9hABwPEJtgEm2ATbIJNsAk2wSbYBJtiU2yKTbEpNsWm2PKqYtxftGzcnNgX5lXFhSt3snFzooEFrGADHQxwpVy2aPpoyWty5kNNHBXG+7ZbNmNODLAvzHy4UEAFR91x59Oksn0ra9xY43PMn6jgWONxc9WywXJiBRvI3mzYGnvT2ZvO3nT2prM3zzGfy3CO+RMbyN7MMX8uQ475E3PMX4iNMS+MeWHMC2NeGPPCmJfg2Am2ZGdLdrZkjvlzGTpbsrMlGfPCmBfGvDDmhTGvjHllzOux9pueY/7EAlZw7bdssJwYIDbGvDLmlTGvjHllzCtjXhnzKmu/qQS4tqTqAQqYW7IkGphbsiZWsIEO5rrlMuSYPzHH/IUCKmhgASuYtlzIHPMX5vVD/gt5pZCjMF+S6eOnnC1fkjmxgBVkDxX2UGEPlXWsaz1AARVkD1X2UGUPVfZQdTBAjofG8dA4HjIfRkduywbLiQ0cdT23Q+aD55JlPpyY+XChgAoaWMAKNjDr5lGSSXChgApm3TxKMgkurGADcwbjxAD7wkyCCwVU0MACVjC3TkvsE7NpcqKAuRaeaGABKzjmxPIa8XzF5YUB9oXn1zZOFFBBA3PrnOhggH1hju4LBczl7YmjwmgQbtny6OMr2S1bHi/MEXvhqBCaqODYDuMd5S1bHidWcCzv6CBu2fI4McC+MK/4LxRQwbTVxAJWsIEOBji2uuYK5Yg9t0OO2AvZOjliI/d8jtgLHQywL8wRG3kQ5Ii9UEEDcy3SluP4wgYOW8/lzXF8YV+Y47jnvshxfKGCacs9n+O4527Jcdxzo+Y47rl18jx/YSzMcdxz3XIcX2hgAbNurluO2PPgyhF7Yo7YCwU0cAwcyYU8P+B7YoBjF45PQrfz7ZEXCqiggQWsYAN9YZ6ER1trO5sbL1TQwFz5nljBBjo41uI4sS88v8l9ooAKGljACjawX19ub9nGGMeJAipoYBkoiRVsoIMB9oXlAOX6OHzL5saJBhawgg10MMC+cJyEJ+ZaaGIBK9jAXAtLDLAvbAc41iJTI5sbJxpYwAo20MFY6Lkv8jhzBQ0sYAUbOOrmKSmbGyf2heMkPFFABcda5IkqmxsnVrCBDsbCnmuRK9RzebNur2ADs0Ienj3APjEbFicKqKCBBaxgAx0MEJtgE2yCTbAJNsljxxMD7Av1AHPrRKKCBhawgg10MMC05eKco/tEARUcttGO3LI1cWIFG+hzZ9VzdJ/YF56j+0QBFTSwgBUcdUfrcssmxAvHOJ446o5+5ZZNiJFpn02IEwtYwVyLkuhggH1hjm7JPdTSlhuqKWhgASvYQAcD7Av9ALHlmNdczRzzFxawgg10MMC+cIz5icOWl7fZhBiaaxwGFrCCDXQwwL6wH6CA2MYZPSwPrsyHCyvYQAcD7BOzCXGigMOWc+bZhDixgBVsoIMB9oWStpYooIIGFrCCDXQw00gS+0I9QAEVNDDremIu7wiFbCycmBVyLUxBAwtYwQY6GGBfmGN+vIivZQthlNwXOeYvrGADHQywL8wkKLmamQQXKmhg2jSxgg10MMC+MJPgwrTlumUS5IxhthBOLGAFG+hgrH3R2EPOHsokuFBBAwtYwQaOfZEDPZsFJwqYa5GHXI75C3MtskKO+QsbmGuROzbH/IV9YY75fGiRzYITFTSwgMNWc+vkmL/QwQD7xGwWnCigglm3Jo4jdbRCtGz1i3wmka1+Ew3MJfPECuaSRaKDAeaSje2QrX4TBVTQwAJWcNhyOjpb/SYG2Bfm6L5QQF1rnGf0nIPOpr6JDgaYdcdRkk19EwVU8LEWj1uaxAJWsIEOBtgX5vX6iWNc9JwmzHa4iQIqaGABK9hABwPEFtgCW2ALbIEtsAW2wBbYAlvH1rH1rJuHXK9gm5itaJHziNmKNjHrjgMxW9EmCqiggQWsYAMdjIV5VJ/iPKovNLCAWbcnNnDUzanVbDrrefrKprMLx1E9UUAFDSxgBRvoIDbDVrAVbAVbwVawFWwFW8FWsBVsFVvFVrFVbBVbxVaz7hiF2UjW88ybjWTnYZSNZBMLmPuiJDbQwQD7wnMUnpi2ExXM5U1FjsILK5jLO+I1G8l63iJmI9nEXN5cixxZ56GRI+vCBnLs5MjKWctsJLswR9aFjIDOCOiMgI6tY+vYOrYeE7PLq+dtX3Z5XZhD78Ihzgmr7PKaaOAQ58xpdnlNHOKcOc0ur4kBDlvOnGaX10QBFTSwgBVMW0l0MMC+MAfkhQKuXdjPoZcLeQ69SHQwwLWzejlAARVcOyv7uSZWsIE+B0M/h96JfeE59E4UUEEDC1jBmCGWnVsXtmMdGm0N6ezcmmhgASvYQAcDXAGSnVsTsTk2x+bYHJtjc2yOzbEFtsAW2AJbYAtsgS2wBbYcpuex09nqfZ1Ye2+ggwHOE6tnN9ZEARU0sIAVbKCDAWITbIJNsAk2wSbYBJtgkxnFnt1YF+oBCqiggbklT6xg7otUnCfhE2PhebptieUa3X6co/vEXF5LnOHohwXYF5YDnKPbjzW6/ThPrCfO0e3HGt1+rNHtR8FWsBVsFds5uhPPg7YnKmhghuP571awgRmOkhhghqMOzDPOhQLOKPZsMppYwAo20MEAZxR7NhlNFFBBAwu4dqEc8/rB5ZhR7CIHKKCCBhawgmtnybpydFlXji7SF+qMYs92ookKGljACjbQwViYdz65L7IZaKKDAfaFeedzoYAKGlhAbAVbwVawFWwVW8VWsVVsOa+RR1+2E01soIMB9oU5r3GhgAoaiK1ha9gatoatYXNsjs2xOTbH5tgcm2NzbI4tsAW2wBbYAltgC2yBLbAFto6tY+vYOraOrWPr2Dq2jq0vWzYZTRRQQQMLWMEGOhggNsEm2ASbYBNsgk2wCTbBJtgUm2JTbIpNsSk2xabYFJtiM2yGzbAZNsNm2AybYTNshq1gK9gKtoKtYCvYCraCrWAr2Cq2iq1iq9jIEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEjuzxBLTVhIdDLAvPLPkRAEVNLCAFcR2ZoknBtgXnllSEwVUMG09sYAVHLbRZOTZFDUxwL4ws+RCARU0sIAVxNawNWwNm2NzbI7NsTk2x+bYHJtjc2yBLbAFtsAW2AJbYAtsgS2wdWwdW8fWsXVsHVvH1rF1bH3ZssNqooAKGljACjbQwQCxCTbBJtgEm2ATbIJNsAk2wabYFJtiU2yKTbEpNsWm2BSbYTNshs2wGTbDZtgMm2EzbAVbWeO4nPkQiQ4G2Bee+XCigAoaWMAKYqvYKraKrWFr2Bq2hq1ha9gatoatYWvYHJtjc2yOzbE5Nsfm2BybYwtsgS2wBbbAFtgCW2ALbIGtY+vYOraOrWPr2Dq2jq1j68tWjwMUUEEDC1jBBjoYIDbBJtgEm2ATbIJNsAk2wSbYFJtiU2yKTbEpNsWm2BSbYjNshs2wGTbDZtgMm2EzbIbtzAdLFFBBAwtYwQZmGrXEAPvCzJLRbexnl9eFCraZUWcT14UB9oVnVJwoYBbLdTsvJU4s4JhYGs2unk1c/chFz7n4CwPsC3Mu/kIBFTSwgBXElnPxR26SnIu/sC/MufgLBVTQwAJWcJ0kKpcSlUuJbOLqR26SnNa8UEAFDSxgBRvoYIDLlk1cEwVU0MACVrCBDi5b9jH10XXi2cc0McCxOOMnrZ4vSJsooIIGFrCCDXQwQGwVWz5sGi0snr1JfbSweDYkXf9rPmEazSqeDUl9dKh4NiRNLGAFG+hggLk4uaHyqL5QwLT1xHzOcCTmvH1uvrPxQhPbWvQ8qi9khfKgtaybB+2FBaxgAx0MsC/Mg/ZCAdOWi54HbclFz4P2wgo2cNhKrlsetBf2idmFNFFABQ0sYBYbGyobkvpoL/PsQuqjT8yzC6mPX6F6diFNbKAvzJn0C7NCSyxgVvDEFI9Nkq8A66Nzy/MVYBMrmLvwSHQwwL7qnqMl/9dztJyooIFlrXGOlgsb6Asr65aPdM4Vyge2F7LGeYXXTswumVyyvMK7sC/MK7wLBcxultw6eS3XcjvktdyFDgbYF+a1XD53yh6iiQoaWMAKNnDYPA+YDOgL+8K8lrtQQAUNLGAq8ujLC7gLA+wT8z1aEwVU0MACVrCBDqbNEvvCvIC7UEAFDSxzq2fz0sQGrp119iblA9DsQop81JldSBMD7AvzmisfmWUX0kQFDSxgBRvoYNpaYl+Y11wXCqiggQVsa93yQisfxWWT0URZK5SXVBcaWMBc9Nxmec11oYN5zXUk9oV5zXVWaNgatoatYcvbswvZLY3d0tgtjd3i2BzFeRWUC5knFMklyxOK5CGXJ5QLG+hggH1hnlAuFFBBA7HlCUXySM0TyoUOBtgn5nupJgqooIEFrGADHUybJPaF+cj3QgEVNLCAFWygg9gEWz7cHb+08LPfaPR7+tlvdGFfmP1GFwqooIEFrGADU+GJqRjj4mw9ulBABVPREwtYwQY6GGBfmGeyCwVUEFvFVrFVbBVbxZYNSToO+7Mh6cKh0NwBeTU4msD97De60MFRTPOAyavBE/Nq8EIBFTSwgBVsoINTEWenznhDXZydOuPXKXF26lxYwAo2MOu2gXlUj5+ZxNmTc6GCBhYw60ZiAx0MsC/My68LBUxbTzSwgBVsoIMB9oU5GMbvWyK/iDnRwAJWsIEOBtgX5ri4EFvBluNivCYrzqadCyvYQAcD7GurV3ZWZWdVdlYe4OPlWZHvQuqWB0we1RcaWMBcnDyi8li/0MEA+8I81i8UUEFbR+p5rJ9YwQY6GGBfmDfx57qd90N5KJ93Pie2tULnnc+JAfaF551PjoDzzudEBXND5UbNE9WFlQrYOraOrS/b2YV0oYAKGljACp6K//mff/jtz3/9lz/8/U9//cs//f1vf/zjb//43+t/+M/f/vH//Pdv//GHv/3xL3//7R//8l9//vM//Pb//eHP/5X/0n/+xx/+kv/8+x/+9vh/H8fmH//yr49/Pgr+25/+/MdB//MP/PXx8Z/K4xFhXH/+4NBV4rGePxSRj4uUcZ+SJR6TzauA6w9/rx//vY2+vfz7x+MaFuCnAtu1sHHtca3F43nLh2tRPi4ypuzOCmLr74vd/XPLD1+ca/GYumIJtP5Qom1KjKek13ZgEdzv/n2TeSQ0q+vvHw9gfygQm+1Y2qwgj7nfD0v03b7UtRkekyUflthtyUzbazu08uGWlM0hqSpzd6r2pxr1p6N6d1haXYvB5pTQ+yvirEjYxyuyqTE+j3DVGF80WDXaT+tRd3t1vGTh2qtVPyyxObLyPS9Z4XG79zRC71fIHzOeFZp8XOHuavjHq7HbmPlRrHNj+tE/KqGbqNES68B6PCH4sIS8uyl0c2Tq0WfcqRxEbvkpcm2zEG3G/uPW7OOF2OWl6twSD+SosBr3V0TGqfhakSofrsjmwFJC8/iwwH6E9bYOiqfo/3mPxvuht6vxeCQ+azyeeH98/rBjm9/rNFiftobaj7vENkdnjblHHk8Ynir4/QOj1HVg1KdR9vOBYZvD83Gj11eNzhFu0X+ssVkOdZtbVB+Prtix95fi5iG+rXF3a/g3bI14d2vsB0pdA6W1D6NvU6H4sa4UHyn44TFedmf2WAeoPe6Tn2r47Rp2uK0aPT6uYW+fVUt596y6q3DvVHJ7NT4+q97dmvJ0hH9tj6xrVxPxj2v0969e6/ENl6+7dSlcONbNutTNiTEkZo0Htg+vX7c1dK1L6NPJ9Zca5e2jvNZ3j/JdhXtH+e3V+Pgo32/NtvaI9hf3SO3rquvxtO/DGm13js/3HZ6r4s/59/N9iWxvNGcNezxc+fAIbfr2kdHs3SNjV+HekXF7NV7MvyjrjBRPJX7Zmv7+1oy3t2a8vTX9d96aT8fm8xj5ytkkfzZ23XjLx3vE7e0bb38/PP3t8PS3w9PfD8/9xnz30rEe6z6vPqb7Prx0jE10jjc3zXubHzbnT/Ebm0MrH6yd2+Ix7/xh+m4nK8u6qxBr1T6crNxvUWeLxms75d5sSNTdbMixbiqKlA9LtLcHSfi7g2RX4d4gub0aHw+S7ca0dXXw2JjtpRL5Ct9rdso+nMvomxNizTa186h4PAt9rYSVGyX2B9atabb+dnT2t6Oz+9vzWz3enN/aLsO9yUI5jndnC+WQ3cMJmyvS5OnefzzyebFIfbFIOdYUV1HZFCnvTjvu1yXKWpd4dV10zeqMV+2/WsTrKtJf3TW27kvGq7M3RXa38I8ZnXUP/2D5cLpsW+buvN0nRfrcP4+H9/3FIlaPVeTp4ejXitycQpTd7N3dOUTZPYO5OYm4XY7QtUXi6eLn1+W4W6QdrxZZ55gHtteKPMbEurR9sG/KbHdxXcHWny8fvniwBQfb8zj+WpHWKfLxALx/9v74oeXuKUJ+MyRLuH940tpfId96riPa3r+R3BZ5XMutJzvSy6bIfvq+rpFXNmvT338QvHvEdPNJ8K7EzUfBt9dk8yx4v0XXwzL1KC/VMFmh+jhF+Ks1jrdrPLWOPI/8r9VYF3mPch/X2D1kunnz8EmNW3cP+3UpZU3jlxbv13jxGDPta2qwxMf7dvuEpq2JZ3HdXH1vFyQ/qnguyCNZP16Q+v7O3df4hp3rwrpsBm7ZdTodvmbRH1c8r27UdYVosTnKtg+c1s3Z467k48WomytvyV+pnevSfXM/s1uOIvTw2WZz7M5zuk5RRdvx8Xlu96Tm5oyS1G9oeKrvdzzVb2h5+oaep+0WvTettK9xb15Jmrw/9PdHx61pIXn/qZO8/9jpC2vycXa09uYl8n7I2orSUry/eH2r7mvc765v2ze0nubF0rtP7/erkx8TOlent4+bQ8T1O1bHfu/V6esMU49jtzr19zzSKt20tbTNnZT77iSlHGirhP6yTd9vg9ouxarwfKr8ZSl2T6LkMVVQ1vXH8TQd2r5Q5Mhf715TD/F8JfSVIj2enmg9NTp/ZYv42i99s1+i/K4lHttAO9ujfrxRy3ds1PING3Vb5O4xsh129VhPsXuJ1wJ+fHB7zVSbv1pkzZONr4S+WKQYU/ft1dUxm8fa+FrYx0V6+YaA3z1g+paAHx8TW6vju9XZNW7UfEnEtT699I8Otk+KrCmEBz/9lufnIn33kH49nRlvRf5wdXT3vKrUNadS2qb1TY/tfVVZE0SHfHjzroe+e3unx+Yq4Iefsvjzw4z+U5FPwoTfNx1PN1Y/T1N/UqZymDzuXOLDMttDdrxncO7j8vT47Nd97G/PiOoRb98p6m7C/N79xLbEzV+E3F4T36yJvz0juq1xc0b0sxrH2zXuTXjp7jdLP9yx1te26c2Z2U9q3JqZVelvT959UuPWHfx+Xcqxjo/nh+8/11D9vZfj1gzx/RovjrmbM8S6i9O7M8SfHOw3D5D2O++Ye7O7uv0d1M3Z3U8W5Nbsrtr7p//d74fuzu5ul+Pm7O4nF3fOFe/jgfkHF3fZkPLuFeK2SFFjGuDp4q594dLOi6wRUz4+UO39p6la3n6aui1x89rB3n+a+snF8jrPPS7vPz7f7n7NdDs+dlfLLdZsd4u+uVreFfG1UR8orxWRY/3YTcv2un23JNWYJm6vX/xH4+L/6Szz1Yv/tUbjRqBtytj2eUT9355HfG27lDXnrOXpEvHXIm+n4vawf1zWryNFjnhp6KisXzyobM54u2dNN0801b/hRFPb+5t0u2vXZPNjL9urh3w2F81LAHv5flcL97vaXh45ui5qRslNk9iur3pNkTrL8dMLSj6bUVQnB6y/OC1ZnmYS2kfTkrp7cvW4C7D/9S7gfol7VwGfzcLf3B7HN2wP/4bnAdsiN7fIvpvxaWWO47kR8WtNkYe1pzKbLk/dXsbf7q3clWmxLglaPz6ci9+WYHZ0fOjytRLOUvQPS+xbrA9e8HO83DG+XnT0KPJxn/b2d6y2LtRixPKH06u7X1Ld7PTQeP9HqBpv9wNsS9y8Bo/3f4e636L3Oj32Ne51emi83wX4SY179wL7I+zeu3q6vH109Pff93N/TT6+zOzvNlTvR/26AAnrm1Hf2/t33v39H0trj/f369s/l76/JptRv92i9+687fiGGdX9ctx6XGZHefc2xo76/m33djlu3sbsNsfdO8NtjXt3hrZ7tnRzk8rx/p3hdjnubdL92zPWo6WoTz+Y++Wdftt3GN362fT+DXC3rlvsG17JZ++/k8/efymffcNb+bYb9OZly/H2VYupvH3V8kmNezn6/gXHJ3df935EuX+9372fP25r3Pz14/b9aTd/L3i7xubngvsa934tuH2Wc/uGdrtVb/5WcL8kd4+R7Ta5+VvB/Zv+3l+bu8fqfl1uHqv+Dceqf8Ox6t9wrPp3HKv7rXrvJ6n3X7n64ZWU7X5EdevmZ/t6Tnogizw9+vjl9Zy7Xz8ZnYePGZSPnqDuS9yaObXibz8/3W0MpvfK82stft0Y3/C6PvuO9/Xt35p66xLG9q9hmHNqPzSm+/0K61KsPT0e+KXC9sVw68iQ+tQ4+cvLX7ebgg7qqvZxjbq9ESRKH/zcfHX/CONtEqWafniEbWvUdUNaav34lVFW++5R8K0uQ2t3D7DN1X57+7JwW+Lm1X77hqGy36K3ugy3NW52GX5W43i7xr0uQ2t3Zzrra9v0ZpfhJzVudRmaf8M9lL9/D7Vfl3tdhubl916OW12G92u8OOZudhna7pdTd7sMPznY7x0gLX7nHXOvy9C2j2xudhl+siC3ugwt3p813b2x5fYUX7w9a7q9ClovOmo//LTuK9dR60HtU7vULxX8O56Bf1Ll5iNw273J9At3Ybsy9x6B70vcegT+SYk7j8D3E0o3byfL7ztp8YVjxL7lGLHvOUbs/WPE3j9G7O1jZHeJ6mu24PHI5CmV7ccYKtvnP7dukbcl5JFE62McrT51Woj99Kbuo707ZbAvcWvKoBzxO2+P2tZzyset+vHx9tg9i3o8Jl8z/SEf9Y9vS9z9SkrZfRzq3mdStiXuTRrsS9yaNdhvjZvTBp9s0nvzBkX8/XmDTw6z4KrskUeyOcx2N6nivDT1qY388fDvxyLbictb7xrYL0f+6O8s8eCPl2NbpNLOXuumyHbD+rHuQx781IL6y4bdnX1v5tm2xL080/b75tmP2+P5efQv+b4tY8pt1fN996+bdTuZUZgQqU8XvqW8WiS+ocjzRfzXijzNzXj/uIhtf2iw3rv4SMTndsmfv/KzO9jCuD97btz+pcj2tanrJk/jqRfka0VC+iry/FLbLxZhSbR+QxE7NkW2v2ypPLJ/vgz/ucjux0+1rdvW2p6Oky/t4kI8lurx6nHy9KbQo7y4Tco62LS03TbZrU5bP65/TDmV1zZs6WuCtfSorxVp6k+txvU7Vmezi2/nSWxCaffA6uaL1Mv2eZUdTNRq+3hBdi/88+qziNfnF279dLG1a6Z63KivBSlPj8zlp61ad++nOjgRH1o+rvHJz0nW1fhjq9aP12a7WdcdsNnTpcmvm3VbpD9Nom8Okq+cz8vH5/Ma33Cs7R6w9uhPnaG6uUJp2/asdUGtzx/C1SI/FZG3L4W3m+TetxTK7sV9t97av9+oX9i/2zLFKVNlc5uy+xEUKf2Y+HkaxOFfWZTqXMi6bCYqdrPy7XGbtML+6XXbvxbZNomul/8U2R6wu9dU0KrxQHlxScpqwynPNxlfWxKr69171sqLG9aUm/xjU8T3n5Gm77W+WsS52vLnn/18rUhQJF4t0tbteX1u+/hakb4mLR5nUX11IDttLA+OV8uEMAifL++/ViaOdVUtj5myzeaN9ye34v3JrXh/cmu/PerqoJfx9cXN9th1tAgfnX1s1OOjlwKW8LdPgfvl6E8/E31Ml31YZPtdkxWPXT+ePtmXWKvStX04CbvfM23dMD1OV/XlAz54tUH03Sx7t7dnpbYl7s1K7V4HeHNW6gvbY3cy/6xMpYy+Go6PP3XKlM2cYe/v753+7t6pux/Ofsve+WF7VH9975SnMq+ecx5BtpamH91eLaM8cXtk0sdXbXX3lOreOWdb4t45Z1/iG845nb5D6e34eO/U9x90bUs8rkcOebqyL68VYd5xXJnUF4uUQpH62imjt/7UpLI7ZWx7GL/ptlhXFbXDN7fFd4s87eSvFSnrhP6YqjheLMJbZLU+TT1+qchjO6ygPn6YZpPbj+/7eseBPr+p6OfH97tV4f5P1T7uAKhq24fEt7rT6/ZJ1c3u9N3K8GIQPcpuZd79UEDdvXLxEfFrPirabjHi/c2xLVJ1PSSuP3yH3eQLRaqvFkI/6otFeEvY43ZYPi6yfUPgrWubfYl71zb2dr/LJ1tjPeOqYX2zNban3zXD0ErYpojvlmRdBsjx0XTyfjG4a/zxDeFfWpda1/c9f/i58heL0BF59JeLrBeeN/EXj/ZYIfJ4XLcpsvsZ1rcUudu/U7cforp3ubkrcfNyc1vi1uXmfmvc7N/5ZJPe69+pdXvqvte/88mJZs2LP66NyuZEsyvSlSK7s1W133t1uvNgSmKzJLvvUDsTNs+f1+k/ldi2Ea7mfSs/NEV9pUivq7Wje9kUibdPeNsS90547e13pW23xmMufj0hOH646/1pa7T3T//t/dN/K7/v1pA15Mrz571/3Rrt/a3R3t8abze7boe98YK08dOs11LM+F2HlR826U9FXH7nFHv82cGF+/Hi6vh6le1jxdqLRfq6yizHq6cH66tF7VFksyTevuEGcffhpPt3RNu9w1Nt/2Gq9ufV2U2QUuNpItD9foXGR4Kebrp/WZPda85ub9PQb9imu2eDZT3MruX5lPvT5dD2V1k87/nhJ2by89Xd7ndZ93bLdjFiPVK38N1ibE8QnOt++I3Zl4oUxm774dHkz0X6N+TZ9vlVPWay9h+Os1K/UqTw4pKn53lfLbKu7Z4/3vTFIuuVnv35/u6XIrvXA/Z13d2ff0HU5H6J5zfhHs/tiz8X2a4Mt1W92aubta3Xg/cfmga/VIRXFT42Tt1s1t+7yA/vgbPd3tn+lGC9aEf16VcAXyti6+t4+tys/usu3obrWpLH81D5MAja8XsXuTuV0N5/ctXef3LV3n9ytd8aN6cSPtmk96YSmnzHVeu2v2e1wrjah+fwJtv5qqcWIfn4O3Jt+zbse688bd/wwsD2/gsD2/svDGzf8MLA/Ra998rTtvtx1s23CHyyHLdeedr07U8ENf2Gb57si9z85sm2yN2Xr+6X5OY3T/ZFbn41se3mvO9/NfGzMje/v/JJmbsfX/yszM3PuOw38M3PuOyL3PyMy3YE3XvtxHYg33xZ777GvZf1tt2jq5thYLFtP7n1Jo/tctzcpPoNn3H55Fi9+xmXT8rc/YzLZ2VufsZlf6V26yUnn1zs3XnLySd3N6uxoPvzzwl/ujFpxd+dsN2XuDVh20r/XUvcnPPdb9DVufLYtvbxnd5uuvbeJFqr39C50uo3dK7sJyYLb0drm8naVrfvUV+tGvrjizd/Gi+7b1s9zi3rdyX9uQu8HPeLVFsb9vEwtb5YJHS1FhzPD/S/UqQxHde0bpZk95Osm2N3vxzrPNGe37v7tZWx1RrYfviYzC8rU37flXn+tvzTLdavy9F+3+WohPvz5e+vy/H2U9Z9iXup+v4XqfZbw1fHdIunN7v/sjVcf+cit+eKtnMS9+aKdiVuzhVtS9ybK9pujbtzRftNenOuyL/hicD+LPM0r/l8I/LLWSbe/6ps+4YvWrX3v2jV3v+iVfuGL1rtt+jNiZ7d767uTvTsl+PeRE+8/SGW1o9vmOjZFrk70dOPb5jo2S7J3YmebZG7Ez27X159YaLnkzJ3J3r2ZW5P9HxS5u5ETz++YaJnW+TuRE+8/Qmh7UC+O9ET73+v19//0JUf3/DKVn//Q1ef7NqbEz37Y/X2RM++zO2Jnk/K3J3o2V5m3Zvo2V+p3Zro2c0H3JtScCnvTyn47sHP7SmFbQuqrtkA075putwW8XXBaF1eLcJlRTleLVJ0vae8aHzcUet6/M5F7t7duL793oBtiXt3N/sSt+5u9lvj5t3NJ5v03t1N3py+/SR810DeV6uEqD7NfunPB0j/fWtIrJ/m6A9Nwl8poro2q2p7tYisnz4/imxWx75hptXtG2ZaP9km/GrCjs022f1MSCqvb35w+ehz6J8VWZ+ReHDXD4vsXvVk7OL2PCX4y+rsrhbr+tlEafXj3g0vx9s3fr577fnNa72i79/k+PZHPrdvcj4pc/fu5LMDxRk9PT6ao/TyHUdbeftlsPvD5N7Mj++/h3Vr5sd3P8G6N/OzLXFv5uf+mnw88/PJwLs18+P1/S+47EfezSmXfZGbUy7bInenXPZLcnPK5bMguTnN8VmQ3Jyf2K/SzfmJfZGb8xPboL93M7097G/OT+xr3Jyf2D7HunfOav4N8xOtvb9J9f35iU+O1bvzE5+UuTs/8VmZm/MT+xulW/MTn9xr3Zqf2P4G+tZSfPIz6jtL8cn7T8j5+sML/7/yEpXG61xatxeLxPrtkT5/h+WLb2JZTzwf+PHq1N2nqO++zmVb5N5nZfYlbn1W5pMSdz4rs98vzsu5/eXX7PxQpLxaRCliH++XfNPmex0C+xK3OgR8N3n8DSVuvpdtv0F5+user+6VdcWq3l9NkOcleblIrI/sPfDlItz57orU91sd6/utjp+8rnLV6NpefOPlen9CV//wyzTx9tn2kzei3toW+9fvHutFwK6vvn6Xl9U+MF4tsiL5ce599R2+UViS9up7jWPdFD3qvfw24fWb0ge+vE3WjdWjyGbvbF9dXRvfTvb2DUXi1Zdo8+yptPLq6vBbzuK7g21bhLc0l7CPi8TuCZbz9k7v5ePfcsbuJ1SF994+lrh+eOX+2ZK0tSR1tyS7Nzq1dVlV29OEk31lOda3FOM4Pv6xbuh20mr9Qt2f3+r4a5Hdtep6xdXzHMBojr1/jMTTN08272aN3c8ebh8jWr7hGPlkSe4dI7s3B948RvbLcfcYie84Rvrve4z0vgL62HzlIHbfuKwa//srDOOnGvuW1vVON3+6fP/5qynbzxMc65KkHn5sVqZ8w8rU33llxNblxI8vIPrSBxvWC3OrSXmxiLIkWr6lSLxaZD1vfewmf7XI6gx41Ht9wzob1l4tIhR5+cuOWniUVp9vnn+cU4zdhNO9m+d9iVt3vvH+T6e2JW7ePG83qPHmYPOPvy4Zu6dOt97ZuV+Mwu136bFZDH0/zLb9VjfDbP/FTuUxjdYPV+aTIk9f2Gsfb5Gy/zH2zW+H7orcmwPcl7g1B/hJiVtzgPL+Pby8fQ+/f0R059NgsfsOVqybu+gfP96J7S+uZN15mzxfXv70eGc3c+drprvE8fE31LeNWnwJoT2XaPffON748k57enHxV0rE01d36mtL0fmZ43HIKyX0IDSOp2mMrywFbwof7/p/rQQv6Q95aUXG53bW063+2lLwLT95/mjWV0qUp9aSpwbPn0vE7i2BJXiA+XxkyP0j3FbmiPlrG6Osj0jL83XCq9vzxRJBT2Xoc4/aT9cr8fZ3BLfjrPJxjqeTwM9LsS3RGWfPE1JfKBFrluAxVHWzLbZv0rnXfhi7T0p9xycKnl8s9vy25V9WZvduhea8PK55/WiK/bMi64nlg/tHHYyx/T1DrBYM++HzgT+vTn/7Y0Hbc+OaaHg8EvBXDrLCGx4ec56b/dK/ofU/+je0/n+6c/1p59YPd67/3kdIrVwT977ZsLur82O1x+jzw/VfZrT69rev9D49fy/z5yJ992GruxOF+YDjvYnCT5bj3kRh3/2g6e5EYd/9tOreROE2AORxMc1FjD9/o+s4flqSzfG6DtanjxoXu53MYhwezzdvP63JvgSv33i+YflKCbpi9Omh1s8lumznTNfhZceLJfr6dcrT5dxXVuT5RPd01v5KibYmGH7sEPpCCRcugbbbov3ORaRxbmjPbRNfKuLOLUfXF4v09RMoef5a4Zd2buOrUf7aWLF1hfs4UuS1paD5y46XVkSONf/0w/fUv1JC1vveRUq8VoLfk0m8thS2BuwDX1uKqly9PH1+8kslGs3s0V9bEY5O09dWhJfkPDL9pRXx1c/jpb1SoK953udPTv4yTrcPNt++He7r9P78DYGvrMU6LrvXNzfDawVMuRrW56737vdLVH4G+9Sc9WqJp8nML5VYQ8PU60slnj+U8fTU7islyprWtXq8ti2s8ZWe5zmWV0u8tlOfvvfxnHdf2ha0/RZ7bacWPltQzF8rsb4Y+rjsfnGntvXquNJeWorxzVEuLMpLJZ4+fRomH5bou2dKokT388eyf3oetJ9e5lPZtb62Jnxtu5d4rUTjy9KvDRJhauVxxSYvrgi/Kjn07RLy6lLw5WR5abQ/rlPZFsXfXorNTt0+x3mcztb3Fn6Iz/rj8dl3z5N6Xa1TvfaPf47Sd0vy9tzu417Vud2Vj56M9d0PjpQPrhzy8bO13Qa1dVZ8PLOUDzfotshjkoBL8Ae/WKZX4xslz2P2S0WUL3Lo85tiv1ZkffylP78q8mtFeBfCYyu3F4/VWAOvx9M886/H6t0iTy8h+GKR9eH0B7bXisghdeXyIf5xmU82bbBp+/Hapn0cqU9fgDlcX12lw9pTmc0+2n1c6/6W2Za517ywL3GreeGTEh82L/zfx3/5w7/86W//9Oe//ssf/v6nv/7lPx9/9z+j1N/+9Id//vMfr//6b//1l395+n///v//x/x//vlvf/rzn//07//0H3/767/88V//629/HJXG//fbcf3H//H2uIX1pvF//+E3Gf/9MQD+4TF93h//3R7//XFvWXX8f+Nf1vHZ+cd/tPE/5L/ddPy1yf/9n7G4/w8="
3970
+ "debug_symbols": "tb3fju26cW/9Lvs6F6oqklXMqxwcBE7iBAYMO3CcD/gQ5N3PZEnkmGutNFs9Z+8b72F7dw39408SVVP679/+9Y///F///k9/+su//fU/f/vH//Pfv/3z3/705z//6d//6c9//Zc//P1Pf/3L43/979+O8R+i9bd/tH94/LP99o91/NOvf8b1z37+047rn3L9U69/2vXPcv2zXv+86tlVz656dtUrV71y1StXvXLVK1e9ctUrV71y1StXvXLVq1e9etWrV7161atXvXrVq1e9etWrV7161WtXvXbVa1e9dtVrV7121WtXvXbVa1e9dtXzq55f9fyq51c9v+r5Vc+ven7V86ueX/XiqhdXvbjqxVUvrnpx1YurXjzq+fhnXP/s5z/7cf3zUU+OATrBJjxKyjhW+qOm5L/cJviEmNBP0OOYMCrHAJ1gE8qEOqFN8AkxoV8gx4RZWWZlGZX7gDKhThiV6wCfEBMelXWAHhNkgk6wCWVCndAm+ISYMCvbrGyz8hhIOrbPGEknlAl1QpvgE2JCv2AMqBNkwqxcZuUyK5dZuczKZVYus3KZleusXGflOivXWbnOynVWrrNynZXHENOxC8YYSxiD7ASZoBNsQplQJ7QJPmFWbrOyz8o+K/us7LOyz8o+K/us7LOyz8o+K8esHLNyzMoxK8esHLNyzMoxK8esHLNyn5X7rNxn5T4r91m5z8p9Vu6zcp+V+1XZjmOCTNAJNqFMqBPaBJ8QE2ZlmZVlVpZZWWZlmZVlVpZZeYxB0wExoV8wxuAJMkEn2IQyoU5oE2ZlnZV1Vh5j0OoAmaATrtFtVibUCW2CT4gJ1+i2ckyQCTphVi6zcpmVxxi0NsAnxIR+wRiDJ8gEnWATyoQ6YVaus3KdlccYtLELxhg8QSZceWhjNJVH8tsYO2VsujF2TigT6oQ2wSfEhH7BGDsnyIRZOWblmJVjVo5ZOWblmJVjVu6zcp+V+6zcZ+U+K/dZuc/KfVbus3K/KpfjmCATdIJNKBPqhDbBJ8SEWVlmZZmVZVaWWVlmZZmVZVaWWVlmZZmVdVbWWVlnZZ2VdVYeY6fUAW2CT4gJ/YIxdk4YldsAnWATyoQ6oU3wCTGhXzDGzgmzcpmVx9gpPqBMGJVjQJvgE2JCv2CMnRNkwrhYkgE2oUwY10s2oE3wCeMSbCxPXiMOyIvEBJmgE2zCqDyWOa8UE9oEnxAT+gV5uZggE3SCTZiVfVbOi8axgnnVmBAX5HViGTDq9AGPv2pjlcf4avl/+YSY0C8Y4+sEmfCo08aRMMbXCWVCndAm+ISY0E+oY3ydIBN0gk0YlduAOmFU7gN8QkzoF4zxdYJMeFT2Y4BNKBPqhDbBJ8SEfsEYXyfIhFlZZ+UxvlwG1Amjsg7wCTGhXzDGl48VHOPrBJ1gE8qEOmFU9gE+ISb0C8b4OkEm6ASbUCbUCbNymZXH+PIY0C8Y4+uEUbkM0Ak2ISaMvxr7YoyUGKs8RkrYgDKhTmgTfEJM6BeMkXKCTNAJs7LPyj4rjwESY3nGADmhXzBOUifIhFFwrOA4SZ1QJtQJbYJPGJXHmo5BlDAG0QkyQSfYhDKhTmgTfMKs3K/KbQyifgyQCTrhUbnLgDKhTnhU7jbgUbmXAY/KvQ3oF4xBdIJM0Ak2YdQZizGGzAkxoV8whswJcoHlnaYO0kV5rzkWaRzSctRBvigW9UnjsL5IJtX838aSVVmki2xRWVQXtUW+KBb1SW052nK05WjL0ZajLUdeYB2PwdQ8/zYGjb8dt9ltHLUXlUXjb2XssxHxF/miWNQnjaP4oqw3tm7k346tG/m3Y1kiFvVJPf92bMmcDThJF9misqguSsdYt5wTOCkdYy1zVmCQ57TASVmvDxp/q8cgX5R/WwaNv9XHGnne+J8ki3TRqKc6qCyqi9Jhg3xRLFoOXQ5dDl0OtUXl2s6udVFb5Iti0dxHnsf92DNu9doznsf92AtuvigW9Ws7ezkWySJdZIvKonrtDy9tkc+9UGLR2kc5ZnLP5PjI/VHXPsrxkXsmx0dujbq2X1vbr63tl+Mj90Jb+6itfZTjI/dCW/uorX3UlqMthy+HL4evfZRH8bjB8jyKT9JFuQRjG+RRfFJd1Bb5oljUL4o8ik+SRcNhMsgWlUV1UVvki4Zj3KRGHu1JebSfJIt0kS0qi+qitsgXLYcsRx7tZoNkkS5KRxlUFtVF6aiDfFEs6pMsHW1Q1hvbysqiuqgtynp90Kg3bkUjR0AZ2ypHwEmySBcNx7i/iRwBJ9VFbdFwlLEeedyP+43I88e4z4g8f5SxBDkW6viLPH+cVBbVRW2RL4pFwzFuJiLHx0nDMS7fI8fHSbaoLKqL2qJ0xKBY1Cfl+DhJFukiW1QW1UVt0XL4cuR5ZtxFRJ5nTpJFw9HG3spzz0ll0XC0sTXyfDRuJiLPRyfFoj4pR/JJsigd47jKkXxSWVQXtUW+KBb1i3qO5JNkkS6yRWVRXdQW+aJYlI7H3uo5kk+SRbk/yiBbVBbVRW2RL0pHDOqTciSfJIt0kS0qi3KZ+6BY1CflqD1JFukiW1QW1UVt0XLYcthylOUoy1GWoyxHWY6yHGU5ynKU5SjLUZejLkddjrocdTnqctTlqMtRl6MuR1uOthxtOdpytOVoy9GWoy1HW462HL4cvhy+HL4cvhy+HL4cvhy+HL4csRyxHLEcsRyxHLEcsRyxHLEcsRx9Ofpy9OXoy9GXoy9HX46+HH05+nTIcRyggAoaWMAKNtDBALEJNsEm2ASbYBNsgk2wCTbBptgUm2JTbIpNsSk2xabYFJthM2yGzbAZNsNm2AybYTNsBVsmwpg+eaCCBtYryB7YQAcD7AvrAQqooIEFxFaxVWwVW8XWsDVsDVvD1rA1bA1bw9awNWyOzbE5Nsfm2BybY3Nsjs2xBbbAFtgCW2ALbIEtsAW2wNaxdWwdW8fWsXVsHVvH1rH1ZZPjAAVU0MACVrCBDgaITbAJNsEm2ASbYBNsgk2wCTbFptgUm2JTbIpNsSk2xabYDJthM2yGzbAZNsNm2AybYSvYCraCrWAr2MgSIUuELBGyRMgSIUuy/UTGRKdkB8pEA4dtTNpKtqJMbGC2UtTEAPvCzJILBVQwbT2xgBVsoIMB9oWZJRcKqCA2x+bYHJtjc2yOLbAFtsAW2AJbYAtsgS2zxHMPZZacmFlyoYAKGpgtKpJYwQZmo4omBtgnno0wF2bjS7ZdHavC1epyYoBZYezYq+HlRAGz6aUlGljACqbNEx0MsC/MJBgz2ZItLjImmiWbXCY6mNv3/LO+MMf8hQIqaGABs1XnSGyggwH2hTnmLxRQQQMLiK1gK9gKtoKtYssx33Nn5ejuuY9zdF/YQAcD7AtzdF8ooIIGYmvYGraGrWFr2BybY3Nsjs2xOTbH5tgcm2MLbIEtsAW2wBbYAltgC2yBrWPr2Dq2jq1j69g6to6tY+vLli02EwVU0MACVrCBDgaITbAJNsEm2ASbYBNsgk2wCTbFptgUm2JTbIpNsSk2xabYDJthM2yGzbAZNsNm2AybYSvYCraCrWAr2Aq2gq1gK9gKtoqtYqvYKjayxMgSI0uMLDGyxMgSI0uMLLEzSyzRwAJWsIEOBtgXnllyooBpa4kGFjBtJbGBDgbYF55ZcqKAChpYQGyB7cySSAywL8zWvPFsUbLBaKKCBhawgg10MMA+MVuOJgqoYNpaYpsLWc58GKfQcubDiaNC9u9me9FEAwtYwQaO5R0PrCRbjSb2hdkue6GAChpYwAo2EJtiywba8ahMsgVpooBps0QDC5i2kthABwNMW27qbOnLjuZsQ1LJTZ1NfBdWsIGjrubmy4ZazbXIllrNxcmmWk1bttVeqKCBw6a5ONlee2EDHUxbLm9212ouTvbXjo5LyQ4ltVyc7LG1VGSX7YUVbKCDAfaF2XFruQzZc3uhrcPzHPMnVpDj1x0McI3Cco75EwVUEFtgC2yBjTGf7U5quc2yGffEHPMX5grlv5tj/kIDC1jBBjoYYJ+YbVATBVRw2MajLcl2qIkVbKCDAQ7beOgl2Ro1UUAFDSxgBRvoYIDYFFvmQ7FEBQ1MW01MW0tsYNo8McC05YbKfLhQQAUNLGAFG+hggNgKtoKtYCvYCraCrWAr2Aq2gq1iq9gqtoqtYqvYKraKrWKr2Bq2hq1ha9gatoatYWvYGraGzbE5Nsfm2BxbNu+PR7QPbKCDAa5zbHZ5TRRQQQMLWMEGrjN69ng9bg4T11k6u7q05ijMfLiwgQ4G2Cdmh9fEbCXXxLV927HWuB0B9oXnmD8x29MtUUEDC7j2ZhNs4mCAa282PUABdS3DOeZPLGAF21qG8wc1JwaIjTHfGPONMd8Y840x3xjzzdax04wtaWxJY0uebf65DIUtWdiSjPnGmG+M+caYb4z5xphvjPlW2W/nmD+RLVnZkpX9lmP+QrYkY74x5htjvjHmG2O+MeYbY74x5ltjvzW2ZGNLNrZkY0vmmB/PsiVb4SbmlqyJBhawgrluuQw55i8MsC/MMX+hgAoamLZcyBzzF+b1w4l9jcIc86O3QbJhbqKCBrKHOnuos4c6x3rnWD+TYKAfB7j2kB8KGljACjbQwQDX8ZB9dTraxCUb6yYWcNQd7RySvXWP+alEBwPsCzMfLhRQQQMLmFdtKT5nD07sC8/ZgxMFVNDAAlawgdgMm2Er2Aq2gq1gK9gKtoKtYCvYCraKjTnHs0vvQmwVW8VWsVVsFVvF1rA1bA1bw9awNWwNW8PWsDVsjs2xOTbH5tgcm2NzbI7NsQW2wBbYAltgC2yBLbAFtsDWsXVsHVvH1rF1bB1bx9ax9WU7exIvFFBBAwtYwQY6GCA2wSbYBJtgE2yCTbAJNsEm2BSbYlNsik2xKTbFRpYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkmyk1NHEKtlJOdHAAlawgQ4G2BfmHcqF2Aq2gq1gK9gKtoKtYCvYKrbMknxonN2VOjpgJdsrJxawgg10MMC0ne+cOEAB05bivEO5sIBpa4kNdDDAfAo+LvPPfssLBVTQwAJWsIEOxsJMjewGyC5Lbef/amABK9hABwMc2yyb5LLbcqKAwzZ+dijZcDmxgMPm+e6PvEO50MEAc5tJvvHjAAVU0MACVrCBDsbCnMFwS1TQwFyLkljBBuZa1MQAc5u1fEvJAQqYtnyfSd6hXFjACjbQwQDTFvkqlAMUUEEDCzh/mKNnK+V4GKJnK6Um5lXFhQIqaGABKzh/jaNnV+WFAfaFeVUhJwqooIEFrGADHYyFjT3f2PONPd/Y840939jzjT3f2PONPe/seWfPO3ve2fPOnnf2vLPnnT3v7Hlnzwd7PtjzwZ4P9nyw54M9H+z5YM939nxnz3f2fGfPd/Z8Z8939nxnz3f2fF97/uyUlBMFVNDAAlawgQ6uPS/nmO+JChpYwLEv4khsoIMBjrUYP8LUsyfyQgEVNLCAFWygL8zRPX5LrNn9OFFBAwtYwVyLmuhggH1hnv0vFFBBAwtYQWwFW579RyOZZvfjhXn2vzBtnqiggWnLPZRn/547IM/+ozlBs/txYoB94fnKoBMFHLaeR8n54qATC1jBBjoYYF94vkboRAGxOTbH5tgcm2NzbOeLhXL7nq8WOlHAtOU2O18wdGIBK9hABx82O3JTj3y4cOTDRAEVNLCAFWygg9j6smX3ox2SKKCCabPEtLXECjbQwQD7QjlAARVMmycWMG2R2EAHAxw2yUXPVxVdKKCCBhawgg0ctgzz7KqcmLbcOvn6ogsFVNDAVJTEBjoYYF9YUpGbpAiooIEFrGDackPlW40uDLAvzHcbXSigggYWsILYKrZ811G+8y0bLC/M9x1dOGx5Cs0Gy4kGDlueC7PB0vJUlw2WprmhRoBMDLAvHAEyUcA8USXVRW2RL4pFfVKO4OulcgcoYD7PSLJFZVFd1Bb5b/PtdFmxJeZm8MRyvh5Ls13xorZobIOSFIv6pByJJ8kiXZSSSCxgbuue2EBfmAPOjsRRYbSz6Pk2sAtHBUsaBcZvnPV8JdiFAfaFObIulLlJTBfZorKoLmqL+tqIOWSul/rlguYy5ZC5MBc0t0UOmQtzSbPYfBWYrneB6XoZmK63gel6HZiu94Hp+fqvC3Mtc0HmC790vfFLsyfwovHXuRfy4D+pLmqLfFEsSkliHvcXDstZfJw4Jxo4ipbcm57HTe7COMBRIZc9dG2YMLCAFcyyuTfDwQD72uA5ki4UEFvH1rF1bB1bx9ax9WXL/r6JAi5b9vdNLGAFG+jXoZ5vGDsP32wFvFAOUEBdmOepkouQg+nCAub1RVJb5ItiUZ+Ul7snySJdZIvKouWw5bDlsOWw5chz1GgJ0nxj2EQFc2UisYBjI5bccjngLnQwwL4wh9yFAg7baMrQbNebWMC05fLmYLzQwWGruR9yiJ6YQ/TCDPYkXWSLyqK6qC3Kinls5MiruTtz5NVcfi9gBRs4lrSe7wcNsC/MUXqhgHmhlZSy3PI5Si+sYAMdDLAvzFF6oYAKYuvYOraOrWPLUdpyk+UoTcyOvIkCKmjgsI0n1JodeRMb6GCAfWEO0wsFVNBAbIItT5VjFlazI29igGkb+zU78iYKmLaWaGABK5i282WwaRuHc/be2ZgP1Oy9m6iggaOu5+bLy9ScvcneO8sZmey9s5x7yd67iX1hRsCFaTvfRKuggQVMWy5vjvucBciGO8vJxWy4s8jFyXGfN7fZcDdRQQMLWMEGpu18S24szME+psw1u+wmKmhgKnLRz5PyiQ10MOaQr2cQJOaJ+UIBFTSwgBUcdfPGPfvpLswguDAvK3JLZhBcaOComzfu2U83caxF3hNnP93EANOWy5BJcKGAChpYwAqmLY+zTIILA+wTs/duooB5qpHEPDO3xHUd0A4HA+wLz2vjEwVUMK8DSmIBK9jAvA7wxADXdV87L5pPFFBBAwtYwbzFydXMq+aemGP+QgEVNLCAFcx9kYoc8xcG2BfmmNcTBVTQwAJWsIEOxsIc6KMzXLPLbqKBuRY9sYIN9PHi3CMxwD4wD5gx5icKqANzz48xP7GAFWyggwGmbQyc7LKbKKCCBhYw93wumbPnnT0f7Plgzwd7PtjzwZ4P9nyw54M9H+z5YM939nxnz3f2fGfPd/Z8Z8939nxnz/e157PDLfJsmh1uE+vAmtjAvv6FMbImCqgL8424R/5ZvhP3wgbmLsxlyDfjXtgX5ttxj54o4NiFOW2UjWYTCzhsORWUjWYTHQywL8w35l4ooIIGFhBbxVaxVWwVW8OWh33OQWXzWMnX8mfzWBnvv9NsHpvYF+YBfmEubyQqaGABKzhsmtvsfH/1iQH2hedbrE8UUEEDC1hBbIEtsAW2883WR6KAChpYwAqmTRMdjIlxvr76xPwXLDHA3NTjkMt+r4kC5uLURAMLmIvjiQ1MWyQGOGx5+5D9XiUjKPu9St7XZL/XxGHLM2/2e02sYAMdDLAvzJdbX5i2XMh8wXVOZWS/V8lJi+z3Knn2z86ukifs7Oya2Bfm4L1QQAUNzGK51XNsXtgX5ti8UEAFDcxiuQNyZOWNcTZYTaxgA/PPcuVzvF3YF+Z4u1BABQ0sYAUbiM2xObbAFtgCW2ALbIEtsAW2wBbYOraOrWPr2Dq2jq1j69g6tr5s2WA1UUAFDSxgBRvoYIDYBJtgE2yCTbAJNsEm2ASbYFNsik2xKTbFptgUm2JTbIrNsBk2w2bYDJthM2yGzbAZtoKtYCvYCraCrWAr2Aq2gq1gq9gqtoqtYqvYKraKrWKr2Cq2hq1ha9gatoatYWvYyJJOlnSypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0leW2LGyxI6VJXasLLFjZYkdK0vsWFlix8oSO1aW2LGyxI4Dm2ATbIJNsAk2wSbYBNsZFZGooIEFrGADHQywLzyj4kRshs2wGTbDZtgMm2EzbAVbwVawFWwFW8FWsBVsBVvBVrFVbBVbxVaxVWwVW8VWsVVsDVvD1rA1bA1bw9awNWwNW8Pm2BybY3Nsjs2xOTbH5tgcW2ALbIEtsAW2wBbYAltgC2wdW8fWsXVsHVvH1rF1bB1bXzY5DlBABQ0sYAUb6GCA2ASbYBNsgk2wCTbBJtgEm2BTbGSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImRJ9lqV8XDHsteqjOdUlr1WZXyuxrKrqozHOJYtT+X6TpeCBg7FeAJi2fI0sYEOBtgX5iC7UEAFDcQW2AJbDpHxrMOyYWlinZhNSGVM31g2IU1UMCt44qgwnlRYNiFNbKCDAfaFedhfKKCCBmITbIJNsAk2wabYFJtiU2yKTbEpNsWm2BSbYTNsediP3nLLJqSJBaxgAx0MsC/Mw/5CAbEVbAVbngDHEybLvqEynjBZ9g0Vz92dg+FCBwPsC/NUd6GAChpYQGwNW8PWsDVsjs2xOTbH5tgcm2NzbI7NsQW2wBbYAltgC2yBLbAFtsDWsXVsHVuO4/Fcz7JxaWIFG+hggH1itjRNFFBBAwtYwbR5ooOx8BzdkZgVeuKoMJ4tWnYxTXQwwL4wx/GFAipoYAGxKTbFluN4PN+0bHm6MMfxhQIqaGABK9hAB7EZtoKtYMtxPB63WjZJTSxgBRvoC88vvJXErFATs0LulhzzFzbQwQD7whzzFwqooIHYGraGLcd85AGTY/7CvjDH/IUCKjjq9tybOY57br4cxyfmOL5wVBgPVu38xuKFBhawgg10MMC+MMfxhdg6thzHPXdLjuMLK5i2HGQ5ji9MW65xjuPx0M3O7zBe+LDV8UzNsmlqooFloCZWsA20RB9YEmNgTewDhzi7piYKqKCBBaxgAx0MEJtiU2yKTbEptvxG95GbJD/LPR4KWTZa1fH4x7LTamIBx0JKbpL8SveFDgbYF+YXuiU3X36UW3Lz5Xe582uhJT/NfWGAfWF+o/tCARU0sIBpa4kNdDBtuUny04wn5scZLxQwbbnN8hONFxZwXVpmJ9VEB/NCNrdkDt4Tc/BeKKCCBqYtd1Z+uvHCBjoYYF+YX/++UEAFDcQW2AJbYAtsga1j69g6to6tY+vYOraOrWPry5Z9VxMFVNDAAlawgQ4GiE2wCTbBJtgEm2ATbIJNsAk2xabYFJtiU2yKTbEpNsWm2AybYTNshs2wGTbDZtgMm2Er2Aq2gq1gK9gKtoKtYCvYCraKrWKr2Cq2iq1iq9gqtoqtYmvYGraGrWFr2Bq2hi0/+zoezVr2aE3sC/PjrxcWMP9MEmNhntHzTJZtVRMrmP+uJvaFOaQvFFBBAwtYwQY6iK0vWzZQTRRQQQMLWMEGOhggNsEm2ASbYBNsgk2wCTbBJtgUm2JTbIpNsSk2xabYFJtiM2yGzbAZNsNm2AybYTNshq1gK9gKtoKtYCvYCraCrWAr2Cq2iq1iq9gqtoqtYqvYKraKrWFr2Bq2hq1ha9gatoatYWvYHJtjc2yOzbE5Nsfm2BybYwtsgS2wBbbAFtgCW14e5Ifq25klJ/aFZ4B4ooIGpqInVrCBQzE6Piy7sSb2ifnOs4kCKmhgASvYQAcDxCbYBJtgE2yCTbAJNsEm2ASbYlNsik2xKTbFptgUm2JTbIbNsBk2w2bYDJthM2yGzbAVbAVbwVawFWwFW8FWsBVsBVvFVrFVbBVbxVaxVWwVW8VWsTVsDVvD1rA1bA1bw9awNWwNm2NzbI7NsTk2x+bYHJtjc2yBLbAFtsAW2AJbYAtsgS2wdWwdW8fWsXVsHVvHRpY4WeJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlQZYEWRJkSZAlcWaJJDbQwbRZYl94ZsmJaauJCqYtEgtYwQY6mLae2Cdm+14dP121bN+royHUsn1v4rCNzk7L9r2JFRy28TtLy/a9iQEO2+jLtGzfmyigggYWsIINdDBAbIpNsSk2xabYMiqylSf78Go+ds4+vFpym2UoXFjACo6FzOfS2Yc3McC+MEPhwmGruVEzFGpuvgyFCwtYwbTl8mYo1FyGDIV21u0LMxRGS79lH17Nh8bZhzdx2PL5cfbh1ZbFMhROzNGdD0uzoa7m08lsqJtYwLE4+cwym+Sq5/LmiL1QQQMLWMEGOhhgXxjYAltgC2yBLbAFtsAW2AJbx9axdWwdW8fWsXVsHVvH1qetZJPcRAEVNLCAFWyggwFiE2yCTbAJNsEm2ASbYBNsgk2xKTbFliN2PGMt2UU3sYINdDDAvjDP/uOpZ8kuuokKluv4Ldk6N7GBDgbYF+bovlBABQ3EVrAVbAVbwVawVWwVW8VWsVVsFVvFVrFVbBVbw9awNWwNW8PWsDVsDVvD1rA5Nsfm2BybY3Nsjs2xOTbHFtgCW2ALbIEtsAW2wBbYAlvH1rF1bB1bx5YBMp6Nl2ydm+jgsMX57/aJ2To3cdjGT3tLts5NHLbxBLpk69zECqbNEx0MsC/MALlQQAUNLGAFsQk2wSbYFJtiU2yKTbEpNsWm2BSbYjNshs2wGTbDZtgMm2EzbIatYCvYCraCrWAr2Aq2gq1gK9gqtoqtYqvYKraKrWKr2Cq2iq1ha9gatoatYWvYGraGrWFr2BybY3Nsjs2xOTbH5tgcm2MLbIEtsAW2wBbYAltgC2yBrWPr2Dq2jq1j69g6to6tY+vLpscBCqiggQWsYAMdDBAbWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpbYmSWR2CeWM0tOHLbRc1rOXssLDRy20XNazl7LCxvo4LCN3tBy9lqO9/qUs9dyvFOnnL2WFypoYAEr2EAHA+wLFVtmyeg5LWev5YUGFrCCDXQwwL4ws+RCbIbNsGWWjMbYcrZoXthABwPsCzNLLhRQQQOxFWyZJaP3tpztnBcG2BdmllwooIIGFrCC2DJLeh5ymSUX9oWZGhc+KrQjj76RD+3Ig2vkw8QA+8KRD+3Io2/kw0QFDSxgBRvoYIB9YWALbIEtsAW2wBZpyyESDqYtj9/oC/sBpi03alfQwAJWsIEOBtgnZovmRAEVNLCAFVy27MBso4u5ZK9lG13MJXst2/j+dMley4kNdHAs5GhSLtlreeEY6BMFVDAjsyQWsIJpy4VUBwPsC+0ABUxbrtsY6BMLWMEGOhhgX1gOUEBsBVtJW27UUsEGDtvoJizZazlx2DS3wxjoE4dttP2U7LWcOGzj9VAley0nVrCBDgbYF7YDFFBBbA1bw9awNWwNW8Pm2BybY3Nsjs2xOTbH5tgcW2ALbIEtsAW2wBbYAltgC2wdW8fWsXVsHVuGgubxm6FwoYMBpm0cRtnkOVFABQ0sYAUb6GCA2ASbYBNsgk2wCTbBJtgyNcYT6JKNm208ay7ZuDlxVBgvHyrZuDnRwQD7wsyHCwXMupa49mY2Y57bN5sxL8wxf6GAY43HGwBLNmNOLGAF17HTCrYS4Dp2Wj1AARW0tQznmD+xgg30tQw55i/sCxnzjTHfGPONMd8Y840x3xjzra0jtTW2ZGNLOlsyx/y5DM6WdLYkY74x5htjvjHmG2O+MeYbY74x5ts55nMZgi0ZbMlgSwZbMsf8aGQo2Yw5Mbdk1s0xf6GACua65bGeY/7CCjbQwQD7xOzLnDhsoxWiZF/mxHWAZzNmG10RJZsxJzoY4Do0shlzooAKGljACq6d5eJggGtnZTPmRAEVNLCAuRaaGGBfmMO/5HbI4V9yyfLy4EIDC1jBBjoYYF+YoTDe+1WywXJiASuYdXMtMhQuDLAvzFDI67NssJyooIEFrGADfWHOE+S1/dlKeaGCuRYnFnDUrXmc5fC/0MGxFjWPqBz+J+bwv3CsRc09lMP/QgMLWMEGOhhgX5jD/0Js51PPXMjzqeeJDXQwwL7wfOp5ooAKGoitY+vYOraOrS/b2TR5oYAKGljACjbQwQCxCTbBJtgEm2ATbIJNsAk2wabYFJtiU2yKTbEpNsWm2BSbYTNshs2wGTbDZtgMm2EzbAVbwVawFWwFW8FWsBVsBVvBVrFVbBVbxVaxVWwVW8VWsZ0dFGMMnU2TFwqY47gmGljAHMeR2EAHcxz3xL7wTI0TBVTQwAJWsIEOYnNsgS2wBbbAFtgCW2ALbIEtsHVsHVvH1rF1bB1bx9axdWx92bJpcqKAChpYwAo20MEAsQk2wSbYBJtgE2yCTbAJNsGm2BSbYlNsik2xKTbFptgUm2EzbIbNsBk2w2bYDJthM2wFW8FWsBVsBVvBVrAVbAVbwVaxVWwVW8VWsVVsFVvFVrFVbA1bw9awNWwNW8PWsDVsZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0smSTpZ0sqSTJX1lST1WltRjZUk9VpbUY2VJPVaW1GNlST1WltRjZUk9VpbU48Am2ASbYBNsgk2wCTbBJtgEm2JTbIpNsSk2xabYFJtiU2yGzbAZNsNm2AybYTNshs2wFWwFW8FWsBVsBVvBVrAVbAVbxVaxVWwVW8VWsVVsFVvFVrE1bA1bw9awNWwNW8PWsDVsDZtjc2yOzbE5Nsfm2BybY3NsgS2wBbbAFtgCW2ALbIEtsHVsHVvH1rF1bB1bx9axdWxkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkiZAlQpYIWSJkSXZ2PmaUE/vCzJILh228zKdmZ+fEYRs/7qnZ2TmxgsM2fudTs7NzYtpKYp+YnZ0T0+aJCqatJRawgmnriQ4O23i7Yc3OzgszS0ZXe83OzokKDtv42UbNzs6JFWyggwH2hZklFwqoIDbFptgUm2JTbIrNsBk2w2bYDJthM2yGzbBlanhu9cwHzz2U+TB+yVKzW3OigwGO5R2/GqjZrTlRQAUNHLbIoyTz4cIGOhhgX5j5ELkWmQ8XKmhgASvYQAcD7Asdm2PLfIjcfJkPFxYwbbmhMh96HrSZDxcO2+gLqtmteWHmQ8/jN/PhQgUNLGAFG+hggH1hx9axdWwdW8fWsXVsHVvH1pctuzUnCqiggQWsYAMdDBCbYBNsgk2wCTbBJtgEW+bDaByq2a15YebDhQKmrSUaWMAKNtDBAPvCzIcLBcRm2AybYTNshs2wGbaCrWAr2Aq2gq1gK9gKtoKtYKvYKraKLVNjNFDV7MBs42lJzQ7MCzMfxkfJanZgTlTQwAJWsIGPuj76rmp2VV4HQY75cx/nmL+wgg30UUESA+wLx5ifyJHKmDfGvDHmjTFvjHljzBtj3oIjtXOkdo7Uc8yfyLqNMe+jMatmV+XENjDrdgcD7BOzq9LH5+drdlVOVNDAAlawgQ6mzRP7QpG5s7KV0keHVc1WyokFrGCbOyBbKScGuHZWtlJOFFDBtbOKFrCCDXQwwBVixQ5QwFyLnljBBo61kNwOY0i75JKNIX3hGNITBVTQwAJWsIFZdxwa2R45UUAFs26uRS1gBRuYlx25Y3OgX9gX5kC/UEAFDSxgBcdDlppLlk3VJ2ZT9YUCKmhgASvYQAexObbAFtgCW2ALbIEtsAW2wBbYOraOrWPr2Dq2jq1j69g6tr5s53stLxRQQQMLWMEGOhggNsEm2ASbYBNsgk2wCTbBJtgUm2JTbIpNsSk2xZaPUMfLGer5XssL+0LLkdUSBVQwbZZYwArmyPJEBwNMW+L5iokTBVTQwAJWsIEOBoitYqvYKraKrWKr2Cq2iq1iq9gatoatYWvYGraGrWFr2Bq2hs2xOTbH5tgcm2NzbI7NsTm2wBbYAltgC2yBLbAFtsAW2Dq2jq1j69g6to6tY+vYOra+bOcLNS8UUEEDC1jBBjoYIDbBJtgEm2ATbIJNsAk2wSbYFJtiU2yKTbEpNsWm2BSbYjNshs2wGTbDZtgMm2EzbGRJI0saWdLIkkaWNLKkkSWNLGlkSSNLGlnSyJJGljSypJEljSxpZEkjSxpZ0siSRpY0sqSRJY0saWRJI0saWdLIkkaWNLKkkSWNLGlkSSNLGlnSyJJGljSypJEljSxpZEkjSxpZ0siSRpY0sqSRJY0saWRJI0saWdLIkkaWNLKkkSWNLGlkSSNLGlnSyJJGljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZEmRJkCVBlgRZkm2iPn6JVbNNdKKDaeuJfeF5j3OigAoOWz6YOttELxzrls+zzjbRCx0ctnwEdbaJnphzION3XzXbRCcqOOYqNBU5B3JhBRvoYIB9Yc6MXCiggtgqtoqtYqvYKraKrWFr2Bq2hq1ha9gatoatYWvYHJtn3ZKYFWpiVmiJAfaFOQV6YS5vHiWhoIEFrOCwjd8w1Wz9nBjgsFnu2JEPEwVU0MACVrCBDga4bNn6OVFABQ0sYAUb6GCA2ASbYBNsgk2wCTbBJtgEm2BTbIpNsSk2xabYFJtiU2yKzbAZNsNm2AybYTNshs2wGbaCrWAr2Aq2gq1gK9gKtoKtYKvYKraKrWKr2Cq2iq1iq9gqtoatYWvYGraGrWFr2Bq2hq1hc2yOzbE5Nsfm2BybY3Nsji2wBbbAFtgCW2ALbIEtsJElnSzpZEknSzpZ0smSTpb0M0s00cEA+4XtOLPkRAEVNDBtNbGCDUybJQbYF55Z4okCKjhs4+dXLVs/J1awgQ4G2BdmllwooILYFJtiyywpuW5nauRCnklwYgUb6GCAVMgkKCcKqGAuWSQWsIINdDDAvjCT4EIBFcRWsWUSjF94tWzcnOhggH1hJsGFw1bz2MkkuNDAAlawgQ4G2BdmElyIzbFlEtQ8+jIJLqxg2nIfZxKMD/i2bNycmLbcLZkEF6YtN1QmwYUGFrCCDXQwwL4wk+BCbB1bx9axdWwdW8fWsfVly8bNiQIqaGABK9hABwPEJtgEm2ATbIJNsAk2wSbYBJtiU2yKTbEpNsWm2PKqYtxftGzcnNgX5lXFhSt3snFzooEFrGADHQxwpVy2aPpoyWty5kNNHBXG+7ZbNmNODLAvzHy4UEAFR91x59Oksn0ra9xY43PMn6jgWONxc9WywXJiBRvI3mzYGnvT2ZvO3nT2prM3zzGfy3CO+RMbyN7MMX8uQ475E3PMX4iNMS+MeWHMC2NeGPPCmJfg2Am2ZGdLdrZkjvlzGTpbsrMlGfPCmBfGvDDmhTGvjHllzOux9pueY/7EAlZw7bdssJwYIDbGvDLmlTGvjHllzCtjXhnzKmu/qQS4tqTqAQqYW7IkGphbsiZWsIEO5rrlMuSYPzHH/IUCKmhgASuYtlzIHPMX5vVD/gt5pZCjMF+S6eOnnC1fkjmxgBVkDxX2UGEPlXWsaz1AARVkD1X2UGUPVfZQdTBAjofG8dA4HjIfRkduywbLiQ0cdT23Q+aD55JlPpyY+XChgAoaWMAKNjDr5lGSSXChgApm3TxKMgkurGADcwbjxAD7wkyCCwVU0MACVjC3TkvsE7NpcqKAuRaeaGABKzjmxPIa8XzF5YUB9oXn1zZOFFBBA3PrnOhggH1hju4LBczl7YmjwmgQbtny6OMr2S1bHi/MEXvhqBCaqODYDuMd5S1bHidWcCzv6CBu2fI4McC+MK/4LxRQwbTVxAJWsIEOBji2uuYK5Yg9t0OO2AvZOjliI/d8jtgLHQywL8wRG3kQ5Ii9UEEDcy3SluP4wgYOW8/lzXF8YV+Y47jnvshxfKGCacs9n+O4527Jcdxzo+Y47rl18jx/YSzMcdxz3XIcX2hgAbNurluO2PPgyhF7Yo7YCwU0cAwcyYU8P+B7YoBjF45PQrfz7ZEXCqiggQWsYAN9YZ6ER1trO5sbL1TQwFz5nljBBjo41uI4sS88v8l9ooAKGljACjawX19ub9nGGMeJAipoYBkoiRVsoIMB9oXlAOX6OHzL5saJBhawgg10MMC+cJyEJ+ZaaGIBK9jAXAtLDLAvbAc41iJTI5sbJxpYwAo20MFY6Lkv8jhzBQ0sYAUbOOrmKSmbGyf2heMkPFFABcda5IkqmxsnVrCBDsbCnmuRK9RzebNur2ADs0Ienj3APjEbFicKqKCBBaxgAx0MEJtgE2yCTbAJNsljxxMD7Av1AHPrRKKCBhawgg10MMC05eKco/tEARUcttGO3LI1cWIFG+hzZ9VzdJ/YF56j+0QBFTSwgBUcdUfrcssmxAvHOJ446o5+5ZZNiJFpn02IEwtYwVyLkuhggH1hjm7JPdTSlhuqKWhgASvYQAcD7Av9ALHlmNdczRzzFxawgg10MMC+cIz5icOWl7fZhBiaaxwGFrCCDXQwwL6wH6CA2MYZPSwPrsyHCyvYQAcD7BOzCXGigMOWc+bZhDixgBVsoIMB9oWStpYooIIGFrCCDXQw00gS+0I9QAEVNDDremIu7wiFbCycmBVyLUxBAwtYwQY6GGBfmGN+vIivZQthlNwXOeYvrGADHQywL8wkKLmamQQXKmhg2jSxgg10MMC+MJPgwrTlumUS5IxhthBOLGAFG+hgrH3R2EPOHsokuFBBAwtYwQaOfZEDPZsFJwqYa5GHXI75C3MtskKO+QsbmGuROzbH/IV9YY75fGiRzYITFTSwgMNWc+vkmL/QwQD7xGwWnCigglm3Jo4jdbRCtGz1i3wmka1+Ew3MJfPECuaSRaKDAeaSje2QrX4TBVTQwAJWcNhyOjpb/SYG2Bfm6L5QQF1rnGf0nIPOpr6JDgaYdcdRkk19EwVU8LEWj1uaxAJWsIEOBtgX5vX6iWNc9JwmzHa4iQIqaGABK9hABwPEFtgCW2ALbIEtsAW2wBbYAlvH1rH1rJuHXK9gm5itaJHziNmKNjHrjgMxW9EmCqiggQWsYAMdjIV5VJ/iPKovNLCAWbcnNnDUzanVbDrrefrKprMLx1E9UUAFDSxgBRvoIDbDVrAVbAVbwVawFWwFW8FWsBVsFVvFVrFVbBVbxVaz7hiF2UjW88ybjWTnYZSNZBMLmPuiJDbQwQD7wnMUnpi2ExXM5U1FjsILK5jLO+I1G8l63iJmI9nEXN5cixxZ56GRI+vCBnLs5MjKWctsJLswR9aFjIDOCOiMgI6tY+vYOrYeE7PLq+dtX3Z5XZhD78Ihzgmr7PKaaOAQ58xpdnlNHOKcOc0ur4kBDlvOnGaX10QBFTSwgBVMW0l0MMC+MAfkhQKuXdjPoZcLeQ69SHQwwLWzejlAARVcOyv7uSZWsIE+B0M/h96JfeE59E4UUEEDC1jBmCGWnVsXtmMdGm0N6ezcmmhgASvYQAcDXAGSnVsTsTk2x+bYHJtjc2yOzbEFtsAW2AJbYAtsgS2wBbYcpuex09nqfZ1Ye2+ggwHOE6tnN9ZEARU0sIAVbKCDAWITbIJNsAk2wSbYBJtgkxnFnt1YF+oBCqiggbklT6xg7otUnCfhE2PhebptieUa3X6co/vEXF5LnOHohwXYF5YDnKPbjzW6/ThPrCfO0e3HGt1+rNHtR8FWsBVsFds5uhPPg7YnKmhghuP571awgRmOkhhghqMOzDPOhQLOKPZsMppYwAo20MEAZxR7NhlNFFBBAwu4dqEc8/rB5ZhR7CIHKKCCBhawgmtnybpydFlXji7SF+qMYs92ookKGljACjbQwViYdz65L7IZaKKDAfaFeedzoYAKGlhAbAVbwVawFWwVW8VWsVVsOa+RR1+2E01soIMB9oU5r3GhgAoaiK1ha9gatoatYXNsjs2xOTbH5tgcm2NzbI4tsAW2wBbYAltgC2yBLbAFto6tY+vYOraOrWPr2Dq2jq0vWzYZTRRQQQMLWMEGOhggNsEm2ASbYBNsgk2wCTbBJtgUm2JTbIpNsSk2xabYFJtiM2yGzbAZNsNm2AybYTNshq1gK9gKtoKtYCvYCraCrWAr2Cq2iq1iq9jIEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLlCxRskTJEiVLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEjuzxBLTVhIdDLAvPLPkRAEVNLCAFcR2ZoknBtgXnllSEwVUMG09sYAVHLbRZOTZFDUxwL4ws+RCARU0sIAVxNawNWwNm2NzbI7NsTk2x+bYHJtjc2yBLbAFtsAW2AJbYAtsgS2wdWwdW8fWsXVsHVvH1rF1bH3ZssNqooAKGljACjbQwQCxCTbBJtgEm2ATbIJNsAk2wabYFJtiU2yKTbEpNsWm2BSbYTNshs2wGTbDZtgMm2EzbAVbWeO4nPkQiQ4G2Bee+XCigAoaWMAKYqvYKraKrWFr2Bq2hq1ha9gatoatYWvYHJtjc2yOzbE5Nsfm2BybYwtsgS2wBbbAFtgCW2ALbIGtY+vYOraOrWPr2Dq2jq1j68tWjwMUUEEDC1jBBjoYIDbBJtgEm2ATbIJNsAk2wSbYFJtiU2yKTbEpNsWm2BSbYjNshs2wGTbDZtgMm2EzbIbtzAdLFFBBAwtYwQZmGrXEAPvCzJLRbexnl9eFCraZUWcT14UB9oVnVJwoYBbLdTsvJU4s4JhYGs2unk1c/chFz7n4CwPsC3Mu/kIBFTSwgBXElnPxR26SnIu/sC/MufgLBVTQwAJWcJ0kKpcSlUuJbOLqR26SnNa8UEAFDSxgBRvoYIDLlk1cEwVU0MACVrCBDi5b9jH10XXi2cc0McCxOOMnrZ4vSJsooIIGFrCCDXQwQGwVWz5sGi0snr1JfbSweDYkXf9rPmEazSqeDUl9dKh4NiRNLGAFG+hggLk4uaHyqL5QwLT1xHzOcCTmvH1uvrPxQhPbWvQ8qi9khfKgtaybB+2FBaxgAx0MsC/Mg/ZCAdOWi54HbclFz4P2wgo2cNhKrlsetBf2idmFNFFABQ0sYBYbGyobkvpoL/PsQuqjT8yzC6mPX6F6diFNbKAvzJn0C7NCSyxgVvDEFI9Nkq8A66Nzy/MVYBMrmLvwSHQwwL7qnqMl/9dztJyooIFlrXGOlgsb6Asr65aPdM4Vyge2F7LGeYXXTswumVyyvMK7sC/MK7wLBcxultw6eS3XcjvktdyFDgbYF+a1XD53yh6iiQoaWMAKNnDYPA+YDOgL+8K8lrtQQAUNLGAq8ujLC7gLA+wT8z1aEwVU0MACVrCBDqbNEvvCvIC7UEAFDSxzq2fz0sQGrp119iblA9DsQop81JldSBMD7AvzmisfmWUX0kQFDSxgBRvoYNpaYl+Y11wXCqiggQVsa93yQisfxWWT0URZK5SXVBcaWMBc9Nxmec11oYN5zXUk9oV5zXVWaNgatoatYcvbswvZLY3d0tgtjd3i2BzFeRWUC5knFMklyxOK5CGXJ5QLG+hggH1hnlAuFFBBA7HlCUXySM0TyoUOBtgn5nupJgqooIEFrGADHUybJPaF+cj3QgEVNLCAFWygg9gEWz7cHb+08LPfaPR7+tlvdGFfmP1GFwqooIEFrGADU+GJqRjj4mw9ulBABVPREwtYwQY6GGBfmGeyCwVUEFvFVrFVbBVbxZYNSToO+7Mh6cKh0NwBeTU4msD97De60MFRTPOAyavBE/Nq8EIBFTSwgBVsoINTEWenznhDXZydOuPXKXF26lxYwAo2MOu2gXlUj5+ZxNmTc6GCBhYw60ZiAx0MsC/My68LBUxbTzSwgBVsoIMB9oU5GMbvWyK/iDnRwAJWsIEOBtgX5ri4EFvBluNivCYrzqadCyvYQAcD7GurV3ZWZWdVdlYe4OPlWZHvQuqWB0we1RcaWMBcnDyi8li/0MEA+8I81i8UUEFbR+p5rJ9YwQY6GGBfmDfx57qd90N5KJ93Pie2tULnnc+JAfaF551PjoDzzudEBXND5UbNE9WFlQrYOraOrS/b2YV0oYAKGljACp6K//mff/jtz3/9lz/8/U9//cs//f1vf/zjb//43+t/+M/f/vH//Pdv//GHv/3xL3//7R//8l9//vM//Pb//eHP/5X/0n/+xx/+kv/8+x/+9vh/H8fmH//yr49/Pgr+25/+/MdB//MP/PXx8Z/K4xFhXH/+4NBV4rGePxSRj4uUcZ+SJR6TzauA6w9/rx//vY2+vfz7x+MaFuCnAtu1sHHtca3F43nLh2tRPi4ypuzOCmLr74vd/XPLD1+ca/GYumIJtP5Qom1KjKek13ZgEdzv/n2TeSQ0q+vvzX5ch9hsx9JmBXnM/X5You/2pa7N8Jgs+bDEbktm2l7boZUPt6RsDklVmbtTtT/VqD8d1bvD0upaDDanhN5fEWdFwj5ekU2N8XmEq8b4osGq0X5aj7rbq+MlC9derfphic2Rle95yQqP272nEXq/Qv6Y8azQ5OMKd1fDP16N3cbMj2KdG9OP/lEJ3USNllgH1uMJwYcl5N1NoZsjU48+407lIHLLT5Frm4VoM/Yft2YfL8QuL1XnlnggR4VVv78iMk7F14pU+XBFNgeWEprHhwX2I6y3dVA8Rf/PezTeD71djccj8Vnj8cT74/OHHdv8XqfB+rQ19BEcP9TYHJ015h55PGF4quD3D4xS14FRn0bZzweGbQ7Px41eXzU6R7jFT2uyWQ51m1tUH4+u2LH3l+LmIb6tcXdr+DdsjXh3a+wHSl0DpbUPo29TofixrhQfKfjhMV52Z/ZYB6g97pOfavjtGna4rRo9Pq5hb59VS3n3rLqrcO9Ucns1Pj6r3t2a8nSEf22PrGtXE/GPa/T3r17r8Q2Xr7t1KVw41s261M2JMSRmjQe2D69ftzV0rUvo08n1lxrl7aO81neP8l2Fe0f57dX4+Cjfb8229oj2F/dI7euq6/G078MabXeOz/cdnqviz/n3832JbG80Zw17PFz58Aht+vaR0ezdI2NX4d6RcXs1Xsy/KOuMFE8lftma/v7WjLe3Zry9Nf133ppPx+bzGPnK2SR/NnbdeMvHe8Tt7Rtvfz88/e3w9LfD098Pz/3GfPfSsR7rPq8+pvs+vHSMTXSONzfNe5sfNudP8RubQysfrJ3b4jHv/GH6bicry7qrEGvVPpys3G9RZ4vGazvl3mxI1N1syLFuKoqUD0u0twdJ+LuDZFfh3iC5vRofD5LtxrR1dfDYmO2lEvkK32t2yj6cy+ibE2LNNrXzqHg8C32thJUbJfYH1q1ptv52dPa3o7P72/NbPd6c39ouw73JQjmOd2cL5ZDdwwmbK9Lk6d7/cYJ+tUh9sUg51hRXUdkUKe9OO+7XJcpal3h1XXTN6oxX7b9axOsq0l/dNbbuS8arszdFdrfwjxmddQ//YPlwumxb5u683SdF+tw/j4f3/cUiVo9V5Onh6NeK3JxClN3s3d05RNk9g7k5ibhdjtC1ReLp4ufX5bhbpB2vFlnnmAe214o8xsS6tH2wb8psd3FdwdafLx++eLAFB9vzOP5akdYp8vEAvH/2/vih5e4pQn4zJEu4f3jS2l8h33quI9rev5HcFnlcy60nO9LLpsh++r6ukVc2a9PffxC8e8R080nwrsTNR8G312TzLHi/RdfDMvUoL9UwWaH6OEX4qzWOt2s8tY48j/yv1VgXeY9yH9fYPWS6efPwSY1bdw/7dSllTeOXFu/XePEYM+1rarDEx/t2+4SmrYlncd1cfW8XJD+qeC7II1k/XpD6/s7d1/iGnevCumwGbtl1Oh2+ZtEfVzyvbtR1hWixOcq2D5zWzdnjruTjxaibK2/JX6md69J9cz+zW44i9PDZZnPsznO6TlFF2/HxeW73pObmjJLUb2h4qu93PNVvaHn6hp6n7Ra9N620r3FvXkmavD/090fHrWkhef+pk7z/2OkLa/JxdrT25iXyfsjaitJSvL94favua9zvrm/bN7Se5sXSu0/v96uTHxM6V6e3j5tDxPU7Vsd+79Xp6wxTj2O3OvX3PNIq3bS1tM2dlPvuJKUcaKuEPobxjyXeb4PaLsWq8Hyq/GUpdk+i5DFVUNb1x/E0Hdq+UOTIX+9eUw/xfCX0lSI9np5oPTU6f2WL+NovfbNfovyuJR7bQDvbo368Uct3bNTyDRt1W+TuMbIddvVYT7F7idcCfnxwe81Um79aZM2Tja+EvlikGFP37dXVMZvH2vha2MdFevmGgN89YPqWgB8fE1ur47vV2TVu1HxJxLU+vfSPDrZPiqwphAc//Zbn5yJ995B+PZ0Zb0X+cHV097yq1DWnUtqm9U2P7X1VWRNEh3x4866Hvnt7p8fmKuCHn7L488OM+KnIJ2HC75uOpxurn6epPylTOUwedy7xYZntITveMzj3cXl6fPbrPva3Z0T1iLfvFHU3YX7vfmJb4uYvQm6viW/WxN+eEd3WuDkj+lmN4+0a9ya8dPebpR/uWOtr2/TmzOwnNW7NzKr0tyfvPqlx6w5+vy7lWMfH88P3n2uo/t7LcWuG+H6NF8fczRli3cXp3RniTw72mwdI+513zL3ZXd3+Durm7O4nC3Jrdlft/dP/7vdDd2d3t8txc3b3k4s754r38cD8g4u7bEh59wpxW6SoMQ3wdHHXvnBp50XWiCkfH6j2/tNULW8/Td2WuHntYO8/Tf3kYnmd5x6X9x+fb3e/ZrodH7ur5RZrtrtF31wt74r42qgPlNeKyLF+7KZle92+W5JqTBO31y/+o3Hx/3SW+erF/1qjcSPQNmVs+zyi/m/PI762Xcqac9bydIn4a5G3U3F72D8u69eRIke8NHRU1i8eVDZnvN2zppsnmurfcKKp7f1Nut21a7L5sZft1UM+m4vmJYC9fL+rhftdbS+PHF0XNaPkpkls11e9pkid5fjpBSWfzSiqkwPWX5yWLE8zCe2jaUndPbl63AXY/3oXcL/EvauAz2bhb26P4xu2h3/D84BtkZtbZN/N+LQyx/HciPi1psjD2lOZTZenbi/jb/dW7sq0WJcErR8fzsVvSzA7Oj50+VoJZyn6hyX2LdYHL/g5Xu4YXy86ehT5uE97+ztWWxdqYbV/PL26+yXVzU4Pjfd/hKrxdj/AtsTNa/B4/3eo+y16r9NjX+Nep4fG+12An9S4dy+wP8Luvauny9tHR3//fT/31+Tjy8z+bkP1ftSvC5Cwvhn1vb1/593f/7G09nh/v779c+n7a7IZ9dsteu/O245vmFHdL8etx2V2lHdvY+yo7992b5fj5m3MbnPcvTPc1rh3Z2i7Z0s3N6kc798Zbpfj3ibdvz1jPVqK+vSDuV/e6bd9h9Gtn03v3wB367rFvuGVfPb+O/ns/Zfy2Te8lW+7QW9ethxvX7WYyttXLZ/UuJej719wfHL3de9HlPvX+937+eO2xs1fP27fn3bz94K3a2x+Lrivce/XgttnObdvaLdb9eZvBfdLcvcY2W6Tm78V3L/p7/21uXus7tfl5rHq33Cs+jccq/4Nx6p/x7G636r3fpJ6/5WrH15J2e5HVLdufrav56QHssjTo49fXs+5+/WT0Xn4mEH56AnqvsStmVMr/vbz093GYHqvPL/W4teN8Q2v67PveF/f/q2pty5hbP8ahjmn9kNjut+vsC7F2tPjgV8qbF8Mt44MqU+Nk7+8/HW7Keigrmof16jbG0Gi9MHPzVf3jzDeJlGq6YdH2LZGXTekpdaPXxllte8eBd/qMrR29wDbXO23ty8LtyVuXu23bxgq+y16q8twW+Nml+FnNY63a9zrMrR2d6azvrZNb3YZflLjVpeh+TfcQ/n791D7dbnXZWhefu/luNVleL/Gi2PuZpeh7X45dbfL8JOD/d4B0uJ33jH3ugxt+8jmZpfhJwtyq8vQ4v1Z090bW25P8cXbs6bbq6D1oqP2w0/rvnIdtR7UPrVL/VLBv+MZ+CdVbj4Ct92bTL9wF7Yrc+8R+L7ErUfgn5S48wh8P6F083ay/L6TFl84RuxbjhH7nmPE3j9G7P1jxN4+RnaXqL5mCx6PTJ5S2X6MobJ9/nPrFnlbQh5JtD7G0epTp4XYT2/qPtq7Uwb7EremDMoRv/P2qG09p3zcqh8fb4/ds6jHY/I10x/yUf/4tsTdr6SU3ceh7n0mZVvi3qTBvsStWYP91rg5bfDJJr03b1DE3583+OQwC67KHnkkm8Nsd5MqzktTn9rIHw//fiyynbi89a6B/XLkj/7OEg/+eDm2RSrt7LVuimw3rB/rPuTBTy2ov2zY3dn3Zp5tS9zLM22/b579uD2en0f/ku/bMqbcVj3fd/+6WbfHK7v4+cW4WsqrRfo3FKnl1SLrXKHix8dFbPtDg/XexUciPrdL/vyVn93BFsb92XPj9i9Ftq9NXTd5Gk+9IF8rEtJXkeeX2n6xCEui9RuK2LEpsv1lS+WR/fNl+M9Fdj9+qm3dttb29P6iL+3iQjyW6vHqcfL0ptCjvLhNyjrYtLTdNtmtTls/rn9MOZXXNmzpa4K19KivFWnqT63G9TtWZ7OL7+fJJpR2D6xuvki97J5XqVLDnprkflmQ3Qv/vPpcG6/PL9z66WJr10z1uFFfE2Dl6ZG5/LRV6+79VAcn4kPLxzU++TnJuhp/bNX68dpsW4jWJ3geqR+bzbotEuyb2BwkXzmfl4/P5zW+4VjbPWDt0Z86Q3VzhdK2m2VdUOvzh3C1yE9F5O1L4e0mufcthbJ7cd+tt/bvN+oX9u+2THHKVNncpux+BEVKPyZ+ngZx+FcWpToXsi6biYrdrHx73CatsH963favRbZNouvlP0W2B+zuNRW0ajxQXlySstpwyvNNxteWxOp695618uKGNeUm/9gU8f1npOl7ra8Wca62/PlnP18rEhSJV4u0dXten9s+vlakr0mLx1lUXx3IThvLg+PVMiEMwufL+6+ViWNdVctjpmyzeeP9ya14f3Ir3p/c2m+PujroZXx9cbM9dh0twkdnHxv1+OilgCX87VPgfjn6089EH9NlHxbZftdkxWPXj6dP9iXWqnRtH07C7vdMW1dbj9NVffmAD15tEH03y97t7VmpbYl7s1K71wHenJX6wvbYncw/K1Mpo6+G4+NPnTJlM2fY+/t7p7+7d+ruh7Pfsnd+2B7VX9875anMq+ecR5CtpelHt1fLKE/cHpn08VVb3T2lunfO2Za4d87Zl/iGc06n71B6Oz7eO/X9B13bEo/rkUOeruzLa0WYdxxXJvXFIqVQpL52yuitPzWp7E4Z2x7Gb7ot1lVF7fDNbfHdIk87+WtFyjqhP6YqjheL8BZZrU9Tj18q8tgOK6iPsA+LbPfOeseBPr+p6OfH97tV4f5P1T7uAKhq24fEt7rT6/ZJ1c3u9N3K8GIQPcpuZd79UEDdvXLxEfFrPirabjHi/c2xLVJ1PSSuP3yH3eQLRaqvFkI/6otFeEvY43ZYPi6yfUPgrWubfYl71zb2dr/LJ1tjPeOqYX2zNban3zXD0ErYpojvlmRdBsjx0XTyfjG4a/zxDeFfWpda1/c9f/i58heL0BF59JeLrBeeN/EXj/ZYIfJ4XLcpsvsZ1rcUudu/U7cforp3ubkrcfNyc1vi1uXmfmvc7N/5ZJPe69+pdXvqvte/88mJZs2LP66NyuZEsyvSlSK7s1W133t1+ppbN5PYLMnuO9TOhM3z53X6TyW2bYSred/KD01RXynS6/pVRfeyKRJvn/C2Je6d8Nrb70rbbo3HXPx6QnD8cNf709Zo75/+2/un/1Z+360ha8iV5897/7o12vtbo72/Nd5udt0Oe+MFaeOnWa+lmPG7Dis/bNKfirj8zin2+LODC/fjxdXx9Srbx4q1F4v0dZVZjldPD9bXj0QeRTZL4u0bbhB3H066f0e03Ts81fYfpmp/Xp3dBCk1niYC3e9XaHwk6Omm+5c12b3m7PY2Df2Gbbp7NljWw+xank+5P10ObX+VxfOeH35iJj9f3e1+l3Vvt2wXI9YjdQvfLcb2BMG57offmH2pSGHsth8eTf5cpH9Dnm2fX9VjJmv/4Tj7qdPnkyKFF5c8Pc/7apF1bff88aYvFlmv9OzP93e/FNm9HrCv6+7+/Auin36HuC3x/Cbc47l98eci25Xhtqo3e3WztvV68P5D0+CXivCqwsfGqZvN+nsX+eE9cLbbO9ufEqwX7ag+/Qrga0Ws0WgXmyLbIIi1JI/nofJhELTj9y5ydyqhvf/kqr3/5Kq9/+RqvzVuTiV8sknvTSU0+Y6r1m1/z2qFcbUPz+FNtvNVTy1C8vF35Nr2bdj3XnnavuGFge39Fwa2918Y2L7hhYH7LXrvladt9+Osm28R+GQ5br3ytOnbnwhq+g3fPNkXufnNk22Ruy9f3S/JzW+e7Ivc/Gpi28153/9q4mdlbn5/5ZMydz+++FmZm59x2W/gm59x2Re5+RmX7Qi699qJ7UC++bLefY17L+ttu0dXN8PAYtt+cutNHtvluLlJ9Rs+4/LJsXr3My6flLn7GZfPytz8jMv+Su3WS04+udi785aTT+5uVmNB9+efE/50Y9KKvzthuy9xa8K2lf67lrg557vfoKtz5bFt7eM7vd107b1JtFa/oXOl1W/oXNlPTBbejtY2k7Wtbt+jvlo19McXb/40XnbftnqcW9bvSvpzF3g57heptjbs42FqfbFI6GotOJ4f6H+lSGM6rmndLMnuJ1k3x+5+OdZ5oj2/d/drK2OrNbD98DGZX1am/L4r8/xt+adbrF+Xo/2+y1EJ9+fL31+X4+2nrPsS91L1/S9S7beGr47pFk9vdv9la7j+zkVuzxVt5yTuzRXtStycK9qWuDdXtN0ad+eK9pv05lyRf8MTgf1Z5mle8/lG5JezTLz/Vdn2DV+0au9/0aq9/0Wr9g1ftNpv0ZsTPbvfXd2d6Nkvx72Jnnj7QyytH98w0bMtcneipx/fMNGzXZK7Ez3bIncnena/vPrCRM8nZe5O9OzL3J7o+aTM3YmefnzDRM+2yN2Jnnj7E0LbgXx3oife/16vv/+hKz++4ZWt/v6Hrj7ZtTcnevbH6u2Jnn2Z2xM9n5S5O9Gzvcy6N9Gzv1K7NdGzmw+4N6XgUt6fUvDdg5/bUwrbFlRdswGmfdN0uS3i64LxMVheLcJlRTleLVJ0vae8aHzcUet6/M5F7t7duL793oBtiXt3N/sSt+5u9lvj5t3NJ5v03t1N3py+/SR810DeV6uEqD7NfunPB0j/fWtIrJ/m6A9Nwl8poro2q2p7tYjwwihtm9Wxb5hpdfuGmdZPtgm/mrBjs012PxOSyuubH1w++hz6Z0XWZyQe3PXDIrtXPRm7uD1PCf6yOrurxbp+NlFa/bh3w8vx9o2f7157fvNar+j7Nzm+/ZHP7ZucT8rcvTv57EBxRk+Pj+YovXzH0Vbefhns/jC5N/Pj++9h3Zr58d1PsO7N/GxL3Jv5ub8mH8/8fDLwbs38eH3/Cy77kXdzymVf5OaUy7bI3SmX/ZLcnHL5LEhuTnN8FiQ35yf2q3RzfmJf5Ob8xDbo791Mbw/7m/MT+xo35ye2z7HunbOaf8P8RGvvb1J9f37ik2P17vzEJ2Xuzk98Vubm/MT+RunW/MQn91q35ie2v4G+tRSf/Iz6zlJ88v4Tcr7+8ML/r7xEpfE6l9btxSKxfnukz99h+eKbWNYTzwd+vDp19ynqu69z2Ra591mZfYlbn5X5pMSdz8rs94vzcm5/+TU7PxQprxZRitjH+yXftPleh8C+xK0OAd9NHn9DiZvvZdtvUJ7+usere2Vdsar3VxPkeUleLhLrI3sPfLkId767IvX9Vsf6fqvjJ6+rXDW6thffeLnen9DVP/wyTbx9tv3kjai3tsX+9bvHehGw66uv3+VltQ+MV4usSH6ce199h28UlqS9+l7jWDdFj3ovv014/ab0gS9vk3Vj9Siy2TvbV1fXxreTvX1DkXj1Jdo8eyqtvLo6/Jaz+O5g2xbhLc0l7OMisXuC5by903v5+LecsfsJVeG9t48lrh9euX+2JG0tSd0tye6NTm1dVtX2NOFkX1mO9S3FOI6Pf6wbup20Wr9Q9+e3Ov5aZHetul5x9TwHoLV84RiJp2+ebN7NGrufPdw+RrR8wzHyyZLcO0Z2bw68eYzsl+PuMRLfcYz03/cY6X0F9LH5ykHsvnFZNf73Vxj+tHdt39K63unmT5fvP381Zft5gmNdktTDj83KlG9Ymfo7r4zYupz48QVEX/pgw3phbjUpLxZRlkTLtxSJV4us562P3eSvFlmdAY96r29YZ8Paq0WEIi9/2VELj9Lq883zj3OKsZtwunfzvC9x68433v/p1LbEzZvn7QY13hxs/vHXJWP31OnWOzv3i1G4/S49Nouh74fZtt/qZpjtv9ipPKbR+uHKfFLk6Qt77eMtUvY/xr757dBdkXtzgPsSt+YAPylxaw5Q3r+Hl7fv4fePiO58Gix238GKdXMX/ePHO7H9xZWsO2+T58vLfvtd38XXTHeJ4+NvqG8btfgSQnsu0W6/LlwaX95pTy8u/kqJePrqTn1tKTo/czwOeaWEHoTG8TSN8ZWl4E3h413/r5XgJf0hL63I+NzOerrVX1sK4x3/zx/N+kqJ8tRa8tTg+XOJ2L0lsAQPMJ+PDOn312Rljpi/tjHK+oi0PF8nvLo9XywR9FSGPveo/XS9Em9/R3A7ziof53g6Cfy8FNsSnXH2PCH1hRKxZgkeQ1U322L7Jp177Yex+6TUd3yi4PnFYs9vW/5lZXbvVmjOy+Oa14+m2D8rsp5YPrh/1MEY298zxGrBsB8+H/jz6vS3Pxa0PTeuiYbHIwF/5SArvOHhMee52S/9G1r/o39D6/+nO9efdm79cOf6732E1Mo1ce+bDbu7Oj9We4w+P1z/ZUarb3/7Su/T8/cyfy7Sdx+2ujtRmA843pso/GQ57k0U9t0Pmu5OFPbdT6vuTRRuA0AeF9NcxPjzN7qO46cl2Ryv62B1IqDcT2YxDo/nm7ef1mRfgtdvPN+wfKUEXTH69FDr5xJdtnOm6/Cy48USff065ely7isr8nyiezprf6VEWxMMP3YIfaGEC5dA223Rfuci0jg3tOe2iS8VceeWo+uLRfr6CZQ8f63wSzu38dUof22s2LrCfRwp8tpS0Pxlx0srIseaf/rhe+pfKSHrfe8iJV4rwe/JJF5bClsD9oGvLUVVrl6ePj/5pRKNZvbor60IR6fpayvCS3Iemf7Sivjq5/HSXinQ1zzv8ycnfxmn2webb98O93V6f/6GwFfWYh2X3eubm+G1AqZcDetz13v3+yUqP4N9as56tcTTZOaXSqyhYer1pRLPH8p4emr3lRJlTetaPV7bFtb4Ss/zHMurJV7bqU/f+3jOuy9tC9p+i722UwufLSjmr5VYXwx9PBt6cae29eq40l5aivHNUS4sykslnj59GiYflui7Z0qiRPfzx7Ll/iR3MGcVtb62Jnxtu5d4rUTjy9KvDRJhauVxxSYvrgi/Kjn07RLy6lLw5WR5abQ/rlPZFsXfXorNTt0+x3mcztb3Fn6Iz/rTMb57ntTrap3qtX/8c5S+W5K353Yf96rO7a589GSs735wpHxw5ZCPn63tNqits2K3Lh9u0G2RxyQBl+APfrFMr8Y3Sp7H7JeKKF/k0Oc3xX6tyPr4S39+VeTXivAuhMdWbi8eq7EGXo+neeZfj9W7RZ5eQvDFIuvD6Q9srxWRQ+rK5UP84zKfbNpg0/bjtU37OFKfvgBzuL66Soe1pzKbfbT7uNb9LbMtc695YV/iVvPCJyU+bF74v4//8od/+dPf/unPf/2XP/z9T3/9y38+/u5/Rqm//ekP//znP17/9d/+6y//8vT//v3//4/5//zz3/705z//6d//6T/+9td/+eO//tff/jgqjf/vt+P6j//j7XEL603j//7DbzL++2MA/MNj+rw//rs9/vvj3rLq+P/Gv6zjs/OP/2jjf8h/u+n4a5P/+z9jcf8f"
4110
3971
  },
4111
3972
  {
4112
3973
  "name": "public_dispatch",
@@ -4407,17 +4268,13 @@
4407
4268
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/macros/aztec.nr",
4408
4269
  "source": "use crate::macros::{\n calls_generation::{\n external_functions::{\n generate_external_function_calls, generate_external_function_self_calls_structs,\n },\n internal_functions::generate_call_internal_struct,\n },\n dispatch::generate_public_dispatch,\n internals_functions_generation::{create_fn_abi_exports, process_functions},\n notes::NOTES,\n storage::STORAGE_LAYOUT_NAME,\n utils::{\n get_trait_impl_method, is_fn_contract_library_method, is_fn_external, is_fn_internal,\n is_fn_test, module_has_storage,\n },\n};\n\n/// Marks a contract as an Aztec contract, generating the interfaces for its functions and notes, as well as injecting\n/// the `sync_private_state` utility function.\n/// Note: This is a module annotation, so the returned quote gets injected inside the module (contract) itself.\npub comptime fn aztec(m: Module) -> Quoted {\n // Functions that don't have #[external(...)], #[contract_library_method], or #[test] are not allowed in contracts.\n check_each_fn_macroified(m);\n\n // We generate new functions prefixed with `__aztec_nr_internals__` and we replace the original functions' bodies\n // with `static_assert(false, ...)` to prevent them from being called directly from within the contract.\n let functions = process_functions(m);\n\n // We generate structs and their implementations necessary for convenient functions calls.\n let interface = generate_contract_interface(m);\n let self_call_structs = generate_external_function_self_calls_structs(m);\n let call_internal_struct = generate_call_internal_struct(m);\n\n // We generate ABI exports for all the external functions in the contract.\n let fn_abi_exports = create_fn_abi_exports(m);\n\n // We generate `_compute_note_hash_and_nullifier`, `sync_private_state` and `process_message`\n // functions only if they are not already implemented. If they are implemented we just insert empty\n // quotes.\n let contract_library_method_compute_note_hash_and_nullifier = if !m.functions().any(|f| {\n f.name() == quote { _compute_note_hash_and_nullifier }\n }) {\n generate_contract_library_method_compute_note_hash_and_nullifier()\n } else {\n quote {}\n };\n let sync_private_state_fn_and_abi_export = if !m.functions().any(|f| {\n f.name() == quote { sync_private_state }\n }) {\n generate_sync_private_state()\n } else {\n quote {}\n };\n\n let process_message_fn_and_abi_export = if !m.functions().any(|f| {\n f.name() == quote { process_message }\n }) {\n generate_process_message()\n } else {\n quote {}\n };\n let public_dispatch = generate_public_dispatch(m);\n\n quote {\n $interface\n $self_call_structs\n $call_internal_struct\n $functions\n $fn_abi_exports\n $contract_library_method_compute_note_hash_and_nullifier\n $public_dispatch\n $sync_private_state_fn_and_abi_export\n $process_message_fn_and_abi_export\n }\n}\n\ncomptime fn generate_contract_interface(m: Module) -> Quoted {\n let calls = generate_external_function_calls(m);\n\n let module_name = m.name();\n\n let has_storage_layout = module_has_storage(m) & STORAGE_LAYOUT_NAME.get(m).is_some();\n let storage_layout_getter = if has_storage_layout {\n let storage_layout_name = STORAGE_LAYOUT_NAME.get(m).unwrap();\n quote {\n pub fn storage_layout() -> StorageLayoutFields {\n $storage_layout_name.fields\n }\n }\n } else {\n quote {}\n };\n\n let library_storage_layout_getter = if has_storage_layout {\n quote {\n #[contract_library_method]\n $storage_layout_getter\n }\n } else {\n quote {}\n };\n\n quote {\n pub struct $module_name {\n pub target_contract: dep::aztec::protocol_types::address::AztecAddress\n }\n\n impl $module_name {\n $calls\n\n pub fn at(\n addr: aztec::protocol_types::address::AztecAddress\n ) -> Self {\n Self { target_contract: addr }\n }\n\n pub fn interface() -> Self {\n Self { target_contract: aztec::protocol_types::address::AztecAddress::zero() }\n }\n\n $storage_layout_getter\n }\n\n #[contract_library_method]\n pub fn at(\n addr: aztec::protocol_types::address::AztecAddress\n ) -> $module_name {\n $module_name { target_contract: addr }\n }\n\n #[contract_library_method]\n pub fn interface() -> $module_name {\n $module_name { target_contract: aztec::protocol_types::address::AztecAddress::zero() }\n }\n\n $library_storage_layout_getter\n\n }\n}\n\n/// Generates a contract library method called `_compute_note_hash_and_nullifier` which is used for note\n/// discovery (to create the `aztec::messages::discovery::ComputeNoteHashAndNullifier` function) and to implement the\n/// `compute_note_hash_and_nullifier` unconstrained contract function.\ncomptime fn generate_contract_library_method_compute_note_hash_and_nullifier() -> Quoted {\n if NOTES.len() > 0 {\n // Contracts that do define notes produce an if-else chain where `note_type_id` is matched against the\n // `get_note_type_id()` function of each note type that we know of, in order to identify the note type. Once we\n // know it we call we correct `unpack` method from the `Packable` trait to obtain the underlying note type, and\n // compute the note hash (non-siloed) and inner nullifier (also non-siloed).\n\n let mut if_note_type_id_match_statements_list = &[];\n for i in 0..NOTES.len() {\n let typ = NOTES.get(i);\n\n let get_note_type_id = get_trait_impl_method(\n typ,\n quote { crate::note::note_interface::NoteType },\n quote { get_id },\n );\n let unpack = get_trait_impl_method(\n typ,\n quote { crate::protocol_types::traits::Packable },\n quote { unpack },\n );\n\n let compute_note_hash = get_trait_impl_method(\n typ,\n quote { crate::note::note_interface::NoteHash },\n quote { compute_note_hash },\n );\n\n let compute_nullifier_unconstrained = get_trait_impl_method(\n typ,\n quote { crate::note::note_interface::NoteHash },\n quote { compute_nullifier_unconstrained },\n );\n\n let if_or_else_if = if i == 0 {\n quote { if }\n } else {\n quote { else if }\n };\n\n if_note_type_id_match_statements_list = if_note_type_id_match_statements_list.push_back(\n quote {\n $if_or_else_if note_type_id == $get_note_type_id() {\n // As an extra safety check we make sure that the packed_note BoundedVec has the expected\n // length, since we're about to interpret its raw storage as a fixed-size array by calling the\n // unpack function on it.\n let expected_len = <$typ as $crate::protocol_types::traits::Packable>::N;\n let actual_len = packed_note.len();\n assert(\n actual_len == expected_len,\n f\"Expected packed note of length {expected_len} but got {actual_len} for note type id {note_type_id}\"\n );\n\n let note = $unpack(aztec::utils::array::subarray(packed_note.storage(), 0));\n\n let note_hash = $compute_note_hash(note, owner, storage_slot, randomness);\n \n // The message discovery process finds settled notes, that is, notes that were created in prior\n // transactions and are therefore already part of the note hash tree. We therefore compute the\n // nullification note hash by treating the note as a settled note with the provided note nonce.\n let note_hash_for_nullification = aztec::note::utils::compute_note_hash_for_nullification(\n aztec::note::retrieved_note::RetrievedNote{ \n note,\n contract_address,\n owner,\n randomness,\n storage_slot,\n metadata: aztec::note::note_metadata::SettledNoteMetadata::new(note_nonce).into()\n }\n );\n\n let inner_nullifier = $compute_nullifier_unconstrained(note, owner, note_hash_for_nullification);\n\n Option::some(\n aztec::messages::discovery::NoteHashAndNullifier {\n note_hash, inner_nullifier\n }\n )\n }\n },\n );\n }\n\n let if_note_type_id_match_statements = if_note_type_id_match_statements_list.join(quote {});\n\n quote {\n /// Unpacks an array into a note corresponding to `note_type_id` and then computes its note hash\n /// (non-siloed) and inner nullifier (non-siloed) assuming the note has been inserted into the note hash\n /// tree with `note_nonce`.\n ///\n /// The signature of this function notably matches the `aztec::messages::discovery::ComputeNoteHashAndNullifier` type,\n /// and so it can be used to call functions from that module such as `discover_new_messages`, \n /// `do_process_message` and `attempt_note_discovery`.\n ///\n /// This function is automatically injected by the `#[aztec]` macro.\n #[contract_library_method]\n unconstrained fn _compute_note_hash_and_nullifier(\n packed_note: BoundedVec<Field, aztec::messages::logs::note::MAX_NOTE_PACKED_LEN>,\n owner: aztec::protocol_types::address::AztecAddress,\n storage_slot: Field,\n note_type_id: Field,\n contract_address: aztec::protocol_types::address::AztecAddress,\n randomness: Field,\n note_nonce: Field,\n ) -> Option<aztec::messages::discovery::NoteHashAndNullifier> {\n $if_note_type_id_match_statements\n else {\n Option::none()\n }\n }\n }\n } else {\n // Contracts with no notes still implement this function to avoid having special-casing, the implementation\n // simply throws immediately.\n quote {\n /// This contract does not use private notes, so this function should never be called as it will\n /// unconditionally fail.\n ///\n /// This function is automatically injected by the `#[aztec]` macro.\n #[contract_library_method]\n unconstrained fn _compute_note_hash_and_nullifier(\n _packed_note: BoundedVec<Field, aztec::messages::logs::note::MAX_NOTE_PACKED_LEN>,\n _owner: aztec::protocol_types::address::AztecAddress,\n _storage_slot: Field,\n _note_type_id: Field,\n _contract_address: aztec::protocol_types::address::AztecAddress,\n _randomness: Field,\n _nonce: Field,\n ) -> Option<aztec::messages::discovery::NoteHashAndNullifier> {\n panic(f\"This contract does not use private notes\")\n }\n }\n }\n}\n\ncomptime fn generate_sync_private_state() -> Quoted {\n quote {\n pub struct sync_private_state_parameters {}\n\n #[abi(functions)]\n pub struct sync_private_state_abi {\n parameters: sync_private_state_parameters,\n }\n\n #[aztec::macros::internals_functions_generation::abi_attributes::abi_utility]\n unconstrained fn sync_private_state() {\n let address = aztec::context::utility_context::UtilityContext::new().this_address();\n \n aztec::messages::discovery::discover_new_messages(address, _compute_note_hash_and_nullifier);\n }\n }\n}\n\ncomptime fn generate_process_message() -> Quoted {\n quote {\n pub struct process_message_parameters {\n pub message_ciphertext: BoundedVec<Field, aztec::messages::encoding::MESSAGE_CIPHERTEXT_LEN>,\n pub message_context: aztec::messages::processing::message_context::MessageContext,\n }\n\n #[abi(functions)]\n pub struct process_message_abi {\n parameters: process_message_parameters,\n }\n\n #[aztec::macros::internals_functions_generation::abi_attributes::abi_utility]\n unconstrained fn process_message(\n message_ciphertext: BoundedVec<Field, aztec::messages::encoding::MESSAGE_CIPHERTEXT_LEN>,\n message_context: aztec::messages::processing::message_context::MessageContext,\n ) {\n let address = aztec::context::utility_context::UtilityContext::new().this_address();\n\n aztec::messages::discovery::discover_new_messages(address, _compute_note_hash_and_nullifier); \n aztec::messages::discovery::process_message::process_message_ciphertext(\n address,\n _compute_note_hash_and_nullifier,\n message_ciphertext,\n message_context,\n );\n }\n }\n}\n\n/// Checks if each function in the module is marked with either #[external(...)], #[contract_library_method], or #[test].\n/// Non-macroified functions are not allowed in contracts.\ncomptime fn check_each_fn_macroified(m: Module) {\n for f in m.functions() {\n let name = f.name();\n if !is_fn_external(f)\n & !is_fn_contract_library_method(f)\n & !is_fn_internal(f)\n & !is_fn_test(f) {\n // We don't suggest that #[contract_library_method] is allowed because we don't want to introduce another\n // concept\n panic(\n f\"Function {name} must be marked as either #[external(...)], #[internal(...)], or #[test]\",\n );\n }\n }\n}\n"
4409
4270
  },
4410
- "112": {
4411
- "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/macros/internals_functions_generation/external/helpers.nr",
4412
- "source": "use crate::macros::{\n functions::auth_registry::AUTHORIZE_ONCE_REGISTRY,\n utils::{is_fn_initializer, is_fn_only_self, is_fn_view},\n};\nuse std::meta::ctstring::AsCtString;\n\n/// Gathers all attributes relevant to the function's ABI and returns a quote that can be applied to the newly generated\n/// function. We apply the abi marker attributes instead of the original ones (e.g. abi_view instead of view) to avoid\n/// the relevant attribute's functionality from getting triggered.\npub(crate) comptime fn get_abi_relevant_attributes(f: FunctionDefinition) -> Quoted {\n let mut attributes = quote {};\n\n if is_fn_view(f) {\n attributes = quote { $attributes #[aztec::macros::internals_functions_generation::abi_attributes::abi_view] };\n }\n\n if is_fn_only_self(f) {\n attributes = quote { $attributes #[aztec::macros::internals_functions_generation::abi_attributes::abi_only_self] };\n }\n\n if is_fn_initializer(f) {\n attributes = quote { $attributes #[aztec::macros::internals_functions_generation::abi_attributes::abi_initializer] };\n }\n\n attributes\n}\n\n/// Injects a call to `aztec::messages::discovery::discover_new_messages`, causing for new notes to be added to PXE and made\n/// available for the current execution.\npub(crate) comptime fn create_message_discovery_call() -> Quoted {\n quote {\n /// Safety: message discovery returns nothing and is performed solely for its side-effects. It is therefore\n /// always safe to call.\n unsafe {\n dep::aztec::messages::discovery::discover_new_messages(\n self.address,\n _compute_note_hash_and_nullifier,\n );\n };\n }\n}\n\n/// Injects an authwit verification check of the form:\n/// ```\n/// if (!from.eq(context.msg_sender().unwrap())) {\n/// assert_current_call_valid_authwit::<N>(&mut context, from);\n/// } else {\n/// assert(authwit_nonce, \"Invalid authwit nonce. When 'from' and 'msg_sender' are the same, authwit_nonce must be zero\");\n/// }\n/// ```\n/// where `from` and `authwit_nonce` are the names of the parameters that are expected to be present in the function definition.\n/// This check is injected by the `#[authorize_once(\"from_arg_name\", \"nonce_arg_name\")]`, which allows the user to define\n/// which parameters to use.\n///\n/// # Arguments\n/// * `f` - The function definition to inject the authwit verification check into. The function must have parameters\n/// matching the names specified in the `#[authorize_once]` attribute.\n/// * `is_private` - Whether the function is a private function (`true`) or a public function (`false`). This determines\n/// which authwit verification method to use: `assert_current_call_valid_authwit` for private functions\n/// or `assert_current_call_valid_authwit_public` for public functions.\npub(crate) comptime fn create_authorize_once_check(\n f: FunctionDefinition,\n is_private: bool,\n) -> Quoted {\n let maybe_authorize_once_args = AUTHORIZE_ONCE_REGISTRY.get(f);\n let authorize_once_args = if maybe_authorize_once_args.is_some() {\n maybe_authorize_once_args.unwrap()\n } else {\n // We need to for authorize_once to have already executed so that we can retrieve its params - this depends on\n // the order in which the attributes are applied.\n panic(\n f\"Functions marked with #[authorize_once] must have the #[external(\\\"private\\\")] or #[external(\\\"public\\\")] attribute placed last\",\n )\n };\n\n let (from_arg_name, nonce_arg_name) = authorize_once_args;\n let name: Quoted = f.name();\n\n let from_arg_candidates =\n f.parameters().filter(|(name, _)| name == f\"{from_arg_name}\".quoted_contents());\n let (from_arg_name_quoted, from_arg_type) = if from_arg_candidates.len() == 1 {\n from_arg_candidates[0]\n } else {\n panic(\n f\"Function {name} does not have a {from_arg_name} parameter. Please specify which one to use in #[authorize_once(\\\"...\\\", \\\"authwit_nonce\\\")]\",\n )\n };\n if from_arg_type\n != quote { dep::protocol_types::address::aztec_address::AztecAddress }.as_type() {\n panic(\n f\"Argument {from_arg_name_quoted} in function {name} must be of type AztecAddress, but is of type {from_arg_type}\",\n )\n }\n\n let nonce_arg_candidates =\n f.parameters().filter(|(name, _)| name == f\"{nonce_arg_name}\".quoted_contents());\n let (nonce_arg_name_quoted, nonce_arg_type) = if nonce_arg_candidates.len() == 1 {\n nonce_arg_candidates[0]\n } else {\n panic(\n f\"Function {name} does not have a {nonce_arg_name}. Please specify which one to use in #[authorize_once(\\\"from\\\", \\\"...\\\")]\",\n )\n };\n if nonce_arg_type != quote { Field }.as_type() {\n panic(\n f\"Argument {nonce_arg_name_quoted} in function {name} must be of type Field, but is of type {nonce_arg_type}\",\n );\n }\n\n let nonce_check_quote = f\"{nonce_arg_name_quoted} == 0\".quoted_contents();\n\n let fn_call = if is_private {\n let args_len = f.parameters().len();\n quote { dep::aztec::authwit::auth::assert_current_call_valid_authwit::<$args_len> }\n } else {\n quote { dep::aztec::authwit::auth::assert_current_call_valid_authwit_public }\n };\n let invalid_nonce_message = f\"Invalid authwit nonce. When '{from_arg_name}' and 'msg_sender' are the same, '{nonce_arg_name}' must be zero\"\n .as_ctstring()\n .as_quoted_str();\n quote { \n if (!$from_arg_name_quoted.eq(self.msg_sender().unwrap())) {\n $fn_call(self.context, $from_arg_name_quoted);\n } else {\n assert($nonce_check_quote, $invalid_nonce_message);\n }\n }\n}\n"
4413
- },
4414
4271
  "114": {
4415
4272
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/macros/internals_functions_generation/external/private.nr",
4416
- "source": "use crate::macros::{\n internals_functions_generation::external::helpers::{\n create_authorize_once_check, create_message_discovery_call, get_abi_relevant_attributes,\n },\n notes::NOTES,\n utils::{\n fn_has_authorize_once, fn_has_noinitcheck, fn_has_nophasecheck, is_fn_initializer,\n is_fn_only_self, is_fn_view, module_has_initializer, module_has_storage,\n },\n};\nuse protocol_types::meta::utils::derive_serialization_quotes;\nuse std::meta::{ctstring::AsCtString, type_of};\n\npub(crate) comptime fn generate_private_external(f: FunctionDefinition) -> Quoted {\n let module_has_initializer = module_has_initializer(f.module());\n let module_has_storage = module_has_storage(f.module());\n\n // Private functions undergo a lot of transformations from their Aztec.nr form into a circuit that can be fed to the\n // Private Kernel Circuit.\n // First we change the function signature so that it also receives `PrivateContextInputs`, which contain information\n // about the execution context (e.g. the caller).\n let original_params = f.parameters();\n\n let original_params_quotes = original_params\n .map(|(param_name, param_type)| quote { $param_name: $param_type })\n .join(quote {, });\n\n let params = quote { inputs: aztec::context::inputs::private_context_inputs::PrivateContextInputs, $original_params_quotes };\n\n let mut body = f.body().as_block().unwrap();\n\n // The original params are hashed and passed to the `context` object, so that the kernel can verify we've received\n // the correct values.\n let (args_serialization, _, serialized_args_name) =\n derive_serialization_quotes(original_params, false);\n\n let storage_init = if module_has_storage {\n // Contract has Storage defined so we initialize it.\n quote {\n let storage = Storage::init(&mut context);\n }\n } else {\n // Contract does not have Storage defined, so we set storage to the unit type `()`. ContractSelf requires a\n // storage struct in its constructor. Using an Option type would lead to worse developer experience and higher\n // constraint counts so we use the unit type `()` instead.\n quote {\n let storage = ();\n }\n };\n\n let contract_self_creation = quote {\n #[allow(unused_variables)]\n let mut self = {\n $args_serialization\n let args_hash = aztec::hash::hash_args($serialized_args_name);\n let mut context = aztec::context::private_context::PrivateContext::new(inputs, args_hash);\n $storage_init\n let self_address = context.this_address();\n let call_self: CallSelf<&mut aztec::context::private_context::PrivateContext> = CallSelf { address: self_address, context: &mut context };\n let enqueue_self: EnqueueSelf<&mut aztec::context::private_context::PrivateContext> = EnqueueSelf { address: self_address, context: &mut context };\n let call_self_static: CallSelfStatic<&mut aztec::context::private_context::PrivateContext> = CallSelfStatic { address: self_address, context: &mut context };\n let enqueue_self_static: EnqueueSelfStatic<&mut aztec::context::private_context::PrivateContext> = EnqueueSelfStatic { address: self_address, context: &mut context };\n let internal: CallInternal<&mut aztec::context::private_context::PrivateContext> = CallInternal { context: &mut context };\n aztec::contract_self::ContractSelf::new_private(&mut context, storage, call_self, enqueue_self, call_self_static, enqueue_self_static, internal)\n };\n };\n\n let original_function_name = f.name();\n\n // Modifications introduced by the different marker attributes.\n let internal_check = if is_fn_only_self(f) {\n let assertion_message =\n f\"Function {original_function_name} can only be called by the same contract\";\n quote { assert(self.msg_sender().unwrap() == self.address, $assertion_message); }\n } else {\n quote {}\n };\n\n let view_check = if is_fn_view(f) {\n let assertion_message = f\"Function {original_function_name} can only be called statically\"\n .as_ctstring()\n .as_quoted_str();\n quote { assert(self.context.inputs.call_context.is_static_call, $assertion_message); }\n } else {\n quote {}\n };\n\n let (assert_initializer, mark_as_initialized) = if is_fn_initializer(f) {\n (\n quote { aztec::macros::functions::initialization_utils::assert_initialization_matches_address_preimage_private(*self.context); },\n quote { aztec::macros::functions::initialization_utils::mark_as_initialized_private(self.context); },\n )\n } else {\n (quote {}, quote {})\n };\n\n // Initialization checks are not included in contracts that don't have initializers.\n let init_check = if module_has_initializer & !is_fn_initializer(f) & !fn_has_noinitcheck(f) {\n quote { aztec::macros::functions::initialization_utils::assert_is_initialized_private(self.context); }\n } else {\n quote {}\n };\n\n // Phase checks are skipped in functions that request to manually handle phases\n let initial_phase_store = if fn_has_nophasecheck(f) {\n quote {}\n } else {\n quote { let within_revertible_phase: bool = self.context.in_revertible_phase(); }\n };\n\n let no_phase_change_check = if fn_has_nophasecheck(f) {\n quote {}\n } else {\n quote { \n assert_eq(\n within_revertible_phase,\n self.context.in_revertible_phase(),\n f\"Phase change detected on function with phase check. If this is expected, use #[nophasecheck]\",\n ); \n }\n };\n\n // All private functions perform message discovery, since they may need to access notes. This is slightly\n // inefficient and could be improved by only doing it once we actually attempt to read any. Note that the message\n // discovery call syncs private events as well. We do not sync those here if there are no notes because we don't\n // have an API that would access events from private functions.\n let message_discovery_call = if NOTES.len() > 0 {\n create_message_discovery_call()\n } else {\n quote {}\n };\n\n // Inject the authwit check if the function is marked with #[authorize_once].\n let authorize_once_check = if fn_has_authorize_once(f) {\n create_authorize_once_check(f, true)\n } else {\n quote {}\n };\n\n // Finally, we need to change the return type to be `PrivateCircuitPublicInputs`, which is what the Private Kernel\n // circuit expects.\n let return_value_var_name = quote { macro__returned__values };\n\n let return_value_type = f.return_type();\n let return_value = if body.len() == 0 {\n quote {}\n } else if return_value_type != type_of(()) {\n // The original return value is serialized and hashed before being passed to the context.\n let (body_without_return, last_body_expr) = body.pop_back();\n let return_value = last_body_expr.quoted();\n let return_value_assignment =\n quote { let $return_value_var_name: $return_value_type = $return_value; };\n\n let (return_serialization, _, serialized_return_name) =\n derive_serialization_quotes([(return_value_var_name, return_value_type)], false);\n\n body = body_without_return;\n\n quote {\n $return_value_assignment\n $return_serialization\n self.context.set_return_hash($serialized_return_name);\n }\n } else {\n let (body_without_return, last_body_expr) = body.pop_back();\n if !last_body_expr.has_semicolon()\n & last_body_expr.as_for().is_none()\n & last_body_expr.as_assert().is_none()\n & last_body_expr.as_for_range().is_none()\n & last_body_expr.as_assert_eq().is_none()\n & last_body_expr.as_let().is_none() {\n let unused_return_value_name = f\"_{return_value_var_name}\".quoted_contents();\n body = body_without_return.push_back(\n quote { let $unused_return_value_name = $last_body_expr; }.as_expr().unwrap(),\n );\n }\n quote {}\n };\n\n let context_finish = quote { self.context.finish() };\n\n // Preserve all attributes that are relevant to the function's ABI.\n let abi_relevant_attributes = get_abi_relevant_attributes(f);\n\n let fn_name = f\"__aztec_nr_internals__{original_function_name}\".quoted_contents();\n\n let to_prepend = quote {\n dep::aztec::oracle::version::assert_compatible_oracle_version();\n $contract_self_creation\n $initial_phase_store\n $assert_initializer\n $init_check\n $internal_check\n $view_check\n $message_discovery_call\n $authorize_once_check\n };\n\n let body_quote = body.map(|expr| expr.quoted()).join(quote { });\n\n let to_append = quote {\n $return_value\n $mark_as_initialized\n $no_phase_change_check\n $context_finish\n };\n\n quote {\n #[aztec::macros::internals_functions_generation::abi_attributes::abi_private]\n $abi_relevant_attributes\n fn $fn_name($params) -> return_data aztec::protocol_types::abis::private_circuit_public_inputs::PrivateCircuitPublicInputs {\n $to_prepend\n $body_quote\n $to_append\n }\n }\n}\n"
4273
+ "source": "use crate::macros::{\n internals_functions_generation::external::helpers::{\n create_authorize_once_check, get_abi_relevant_attributes,\n },\n utils::{\n fn_has_authorize_once, fn_has_noinitcheck, fn_has_nophasecheck, is_fn_initializer,\n is_fn_only_self, is_fn_view, module_has_initializer, module_has_storage,\n },\n};\nuse protocol_types::meta::utils::derive_serialization_quotes;\nuse std::meta::{ctstring::AsCtString, type_of};\n\npub(crate) comptime fn generate_private_external(f: FunctionDefinition) -> Quoted {\n let module_has_initializer = module_has_initializer(f.module());\n let module_has_storage = module_has_storage(f.module());\n\n // Private functions undergo a lot of transformations from their Aztec.nr form into a circuit that can be fed to the\n // Private Kernel Circuit.\n // First we change the function signature so that it also receives `PrivateContextInputs`, which contain information\n // about the execution context (e.g. the caller).\n let original_params = f.parameters();\n\n let original_params_quotes = original_params\n .map(|(param_name, param_type)| quote { $param_name: $param_type })\n .join(quote {, });\n\n let params = quote { inputs: aztec::context::inputs::private_context_inputs::PrivateContextInputs, $original_params_quotes };\n\n let mut body = f.body().as_block().unwrap();\n\n // The original params are hashed and passed to the `context` object, so that the kernel can verify we've received\n // the correct values.\n let (args_serialization, _, serialized_args_name) =\n derive_serialization_quotes(original_params, false);\n\n let storage_init = if module_has_storage {\n // Contract has Storage defined so we initialize it.\n quote {\n let storage = Storage::init(&mut context);\n }\n } else {\n // Contract does not have Storage defined, so we set storage to the unit type `()`. ContractSelf requires a\n // storage struct in its constructor. Using an Option type would lead to worse developer experience and higher\n // constraint counts so we use the unit type `()` instead.\n quote {\n let storage = ();\n }\n };\n\n let contract_self_creation = quote {\n #[allow(unused_variables)]\n let mut self = {\n $args_serialization\n let args_hash = aztec::hash::hash_args($serialized_args_name);\n let mut context = aztec::context::private_context::PrivateContext::new(inputs, args_hash);\n $storage_init\n let self_address = context.this_address();\n let call_self: CallSelf<&mut aztec::context::private_context::PrivateContext> = CallSelf { address: self_address, context: &mut context };\n let enqueue_self: EnqueueSelf<&mut aztec::context::private_context::PrivateContext> = EnqueueSelf { address: self_address, context: &mut context };\n let call_self_static: CallSelfStatic<&mut aztec::context::private_context::PrivateContext> = CallSelfStatic { address: self_address, context: &mut context };\n let enqueue_self_static: EnqueueSelfStatic<&mut aztec::context::private_context::PrivateContext> = EnqueueSelfStatic { address: self_address, context: &mut context };\n let internal: CallInternal<&mut aztec::context::private_context::PrivateContext> = CallInternal { context: &mut context };\n aztec::contract_self::ContractSelf::new_private(&mut context, storage, call_self, enqueue_self, call_self_static, enqueue_self_static, internal)\n };\n };\n\n let original_function_name = f.name();\n\n // Modifications introduced by the different marker attributes.\n let internal_check = if is_fn_only_self(f) {\n let assertion_message =\n f\"Function {original_function_name} can only be called by the same contract\";\n quote { assert(self.msg_sender().unwrap() == self.address, $assertion_message); }\n } else {\n quote {}\n };\n\n let view_check = if is_fn_view(f) {\n let assertion_message = f\"Function {original_function_name} can only be called statically\"\n .as_ctstring()\n .as_quoted_str();\n quote { assert(self.context.inputs.call_context.is_static_call, $assertion_message); }\n } else {\n quote {}\n };\n\n let (assert_initializer, mark_as_initialized) = if is_fn_initializer(f) {\n (\n quote { aztec::macros::functions::initialization_utils::assert_initialization_matches_address_preimage_private(*self.context); },\n quote { aztec::macros::functions::initialization_utils::mark_as_initialized_private(self.context); },\n )\n } else {\n (quote {}, quote {})\n };\n\n // Initialization checks are not included in contracts that don't have initializers.\n let init_check = if module_has_initializer & !is_fn_initializer(f) & !fn_has_noinitcheck(f) {\n quote { aztec::macros::functions::initialization_utils::assert_is_initialized_private(self.context); }\n } else {\n quote {}\n };\n\n // Phase checks are skipped in functions that request to manually handle phases\n let initial_phase_store = if fn_has_nophasecheck(f) {\n quote {}\n } else {\n quote { let within_revertible_phase: bool = self.context.in_revertible_phase(); }\n };\n\n let no_phase_change_check = if fn_has_nophasecheck(f) {\n quote {}\n } else {\n quote { \n assert_eq(\n within_revertible_phase,\n self.context.in_revertible_phase(),\n f\"Phase change detected on function with phase check. If this is expected, use #[nophasecheck]\",\n ); \n }\n };\n\n // Inject the authwit check if the function is marked with #[authorize_once].\n let authorize_once_check = if fn_has_authorize_once(f) {\n create_authorize_once_check(f, true)\n } else {\n quote {}\n };\n\n // Finally, we need to change the return type to be `PrivateCircuitPublicInputs`, which is what the Private Kernel\n // circuit expects.\n let return_value_var_name = quote { macro__returned__values };\n\n let return_value_type = f.return_type();\n let return_value = if body.len() == 0 {\n quote {}\n } else if return_value_type != type_of(()) {\n // The original return value is serialized and hashed before being passed to the context.\n let (body_without_return, last_body_expr) = body.pop_back();\n let return_value = last_body_expr.quoted();\n let return_value_assignment =\n quote { let $return_value_var_name: $return_value_type = $return_value; };\n\n let (return_serialization, _, serialized_return_name) =\n derive_serialization_quotes([(return_value_var_name, return_value_type)], false);\n\n body = body_without_return;\n\n quote {\n $return_value_assignment\n $return_serialization\n self.context.set_return_hash($serialized_return_name);\n }\n } else {\n let (body_without_return, last_body_expr) = body.pop_back();\n if !last_body_expr.has_semicolon()\n & last_body_expr.as_for().is_none()\n & last_body_expr.as_assert().is_none()\n & last_body_expr.as_for_range().is_none()\n & last_body_expr.as_assert_eq().is_none()\n & last_body_expr.as_let().is_none() {\n let unused_return_value_name = f\"_{return_value_var_name}\".quoted_contents();\n body = body_without_return.push_back(\n quote { let $unused_return_value_name = $last_body_expr; }.as_expr().unwrap(),\n );\n }\n quote {}\n };\n\n let context_finish = quote { self.context.finish() };\n\n // Preserve all attributes that are relevant to the function's ABI.\n let abi_relevant_attributes = get_abi_relevant_attributes(f);\n\n let fn_name = f\"__aztec_nr_internals__{original_function_name}\".quoted_contents();\n\n let to_prepend = quote {\n dep::aztec::oracle::version::assert_compatible_oracle_version();\n $contract_self_creation\n $initial_phase_store\n $assert_initializer\n $init_check\n $internal_check\n $view_check\n $authorize_once_check\n };\n\n let body_quote = body.map(|expr| expr.quoted()).join(quote { });\n\n let to_append = quote {\n $return_value\n $mark_as_initialized\n $no_phase_change_check\n $context_finish\n };\n\n quote {\n #[aztec::macros::internals_functions_generation::abi_attributes::abi_private]\n $abi_relevant_attributes\n fn $fn_name($params) -> return_data aztec::protocol_types::abis::private_circuit_public_inputs::PrivateCircuitPublicInputs {\n $to_prepend\n $body_quote\n $to_append\n }\n }\n}\n"
4417
4274
  },
4418
4275
  "116": {
4419
4276
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/macros/internals_functions_generation/external/utility.nr",
4420
- "source": "use crate::macros::{\n internals_functions_generation::external::helpers::create_message_discovery_call,\n utils::module_has_storage,\n};\n\npub(crate) comptime fn generate_utility_external(f: FunctionDefinition) -> Quoted {\n // Initialize Storage if module has storage\n let storage_init = if module_has_storage(f.module()) {\n quote {\n let storage = Storage::init(context);\n }\n } else {\n // Contract does not have Storage defined, so we set storage to the unit type `()`. ContractSelf requires a\n // storage struct in its constructor. Using an Option type would lead to worse developer experience and higher\n // constraint counts so we use the unit type `()` instead.\n quote {\n let storage = ();\n }\n };\n\n // Create utility context\n let contract_self_creation = quote {\n #[allow(unused_variables)]\n let mut self = {\n let context = dep::aztec::context::utility_context::UtilityContext::new();\n $storage_init\n aztec::contract_self::ContractSelf::new_utility(context, storage)\n };\n };\n\n // All utility functions perform message discovery, since they may need to access private notes that would be\n // found during this process or they may be used to sync private events from TypeScript\n // (`sync_private_state` function gets invoked by PXE::getPrivateEvents function).\n let message_discovery_call = create_message_discovery_call();\n\n // A quote to be injected at the beginning of the function body.\n let to_prepend = quote {\n dep::aztec::oracle::version::assert_compatible_oracle_version();\n $contract_self_creation\n $message_discovery_call\n };\n\n let original_function_name = f.name();\n let fn_name = f\"__aztec_nr_internals__{original_function_name}\".quoted_contents();\n let body = f.body();\n let params = f\n .parameters()\n .map(|(param_name, param_type)| quote { $param_name: $param_type })\n .join(quote {, });\n let return_type = f.return_type();\n\n quote {\n #[aztec::macros::internals_functions_generation::abi_attributes::abi_utility]\n unconstrained fn $fn_name($params) -> pub $return_type {\n $to_prepend\n $body\n }\n }\n}\n"
4277
+ "source": "use crate::macros::utils::module_has_storage;\n\npub(crate) comptime fn generate_utility_external(f: FunctionDefinition) -> Quoted {\n // Initialize Storage if module has storage\n let storage_init = if module_has_storage(f.module()) {\n quote {\n let storage = Storage::init(context);\n }\n } else {\n // Contract does not have Storage defined, so we set storage to the unit type `()`. ContractSelf requires a\n // storage struct in its constructor. Using an Option type would lead to worse developer experience and higher\n // constraint counts so we use the unit type `()` instead.\n quote {\n let storage = ();\n }\n };\n\n // Create utility context\n let contract_self_creation = quote {\n #[allow(unused_variables)]\n let mut self = {\n let context = dep::aztec::context::utility_context::UtilityContext::new();\n $storage_init\n aztec::contract_self::ContractSelf::new_utility(context, storage)\n };\n };\n\n // A quote to be injected at the beginning of the function body.\n let to_prepend = quote {\n dep::aztec::oracle::version::assert_compatible_oracle_version();\n $contract_self_creation\n };\n\n let original_function_name = f.name();\n let fn_name = f\"__aztec_nr_internals__{original_function_name}\".quoted_contents();\n let body = f.body();\n let params = f\n .parameters()\n .map(|(param_name, param_type)| quote { $param_name: $param_type })\n .join(quote {, });\n let return_type = f.return_type();\n\n quote {\n #[aztec::macros::internals_functions_generation::abi_attributes::abi_utility]\n unconstrained fn $fn_name($params) -> pub $return_type {\n $to_prepend\n $body\n }\n }\n}\n"
4421
4278
  },
4422
4279
  "125": {
4423
4280
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/messages/discovery/mod.nr",
@@ -4537,9 +4394,9 @@
4537
4394
  },
4538
4395
  "244": {
4539
4396
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/utils/point.nr",
4540
- "source": "use protocol_types::{point::Point, utils::field::sqrt};\n\n// I am storing the modulus minus 1 divided by 2 here because full modulus would throw \"String literal too large\" error\n// Full modulus is 21888242871839275222246405745257275088548364400416034343698204186575808495617\nglobal BN254_FR_MODULUS_DIV_2: Field =\n 10944121435919637611123202872628637544274182200208017171849102093287904247808;\n\n/// Converts a point to a byte array.\n///\n/// We don't serialize the point at infinity flag because this function is used in situations where we do not want\n/// to waste the extra byte (encrypted log).\npub fn point_to_bytes(p: Point) -> [u8; 32] {\n // Note that there is 1 more free bit in the 32 bytes (254 bits currently occupied by the x coordinate, 1 bit for\n // the \"sign\") so it's possible to use that last bit as an \"is_infinite\" flag if desired in the future.\n assert(!p.is_infinite, \"Cannot serialize point at infinity as bytes.\");\n\n let mut result: [u8; 32] = p.x.to_be_bytes();\n\n if get_sign_of_point(p) {\n // y is <= (modulus - 1) / 2 so we set the sign bit to 1\n // Here we leverage that field fits into 254 bits (log2(Fr.MODULUS) < 254) and given that we serialize Fr to 32\n // bytes and we use big-endian the 2 most significant bits are never populated. Hence we can use one of\n // the bits as a sign bit.\n result[0] += 128;\n }\n\n result\n}\n\n/**\n * Returns: true if p.y <= MOD_DIV_2, else false.\n */\npub fn get_sign_of_point(p: Point) -> bool {\n // We store only a \"sign\" of the y coordinate because the rest can be derived from the x coordinate. To get\n // the sign we check if the y coordinate is less or equal than the curve's order minus 1 divided by 2.\n // Ideally we'd do `y <= MOD_DIV_2`, but there's no `lte` function, so instead we do `!(y > MOD_DIV_2)`, which is\n // equivalent, and then rewrite that as `!(MOD_DIV_2 < y)`, since we also have no `gt` function.\n !BN254_FR_MODULUS_DIV_2.lt(p.y)\n}\n\n/// Returns a `Point` in the Grumpkin curve given its x coordinate.\n///\n/// Because not all values in the field are valid x coordinates of points in the curve (i.e. there\n/// is no corresponding y value in the field that satisfies the curve equation), it may not be\n/// possible to reconstruct a `Point`. `Option::none()` is returned in such cases.\npub fn point_from_x_coord(x: Field) -> Option<Point> {\n // y ^ 2 = x ^ 3 - 17\n let rhs = x * x * x - 17;\n sqrt(rhs).map(|y| Point { x, y, is_infinite: false })\n}\n\n/// Returns a `Point` in the Grumpkin curve given its x coordinate and sign for the y coordinate.\n///\n/// Because not all values in the field are valid x coordinates of points in the curve (i.e. there\n/// is no corresponding y value in the field that satisfies the curve equation), it may not be\n/// possible to reconstruct a `Point`. `Option::none()` is returned in such cases.\n///\n/// @param x - The x coordinate of the point\n/// @param sign - The \"sign\" of the y coordinate - determines whether y <= (Fr.MODULUS - 1) / 2\npub fn point_from_x_coord_and_sign(x: Field, sign: bool) -> Option<Point> {\n // y ^ 2 = x ^ 3 - 17\n let rhs = x * x * x - 17;\n\n sqrt(rhs).map(|y| {\n // If there is a square root, we need to ensure it has the correct \"sign\"\n let y_is_positive = !BN254_FR_MODULUS_DIV_2.lt(y);\n let final_y = if y_is_positive == sign { y } else { -y };\n Point { x, y: final_y, is_infinite: false }\n })\n}\n\nmod test {\n use crate::utils::point::{point_from_x_coord, point_from_x_coord_and_sign, point_to_bytes};\n use dep::protocol_types::point::Point;\n use dep::protocol_types::utils::field::pow;\n\n #[test]\n unconstrained fn test_point_to_bytes_positive_sign() {\n let p = Point {\n x: 0x1af41f5de96446dc3776a1eb2d98bb956b7acd9979a67854bec6fa7c2973bd73,\n y: 0x07fc22c7f2c7057571f137fe46ea9c95114282bc95d37d71ec4bfb88de457d4a,\n is_infinite: false,\n };\n\n let compressed_point = point_to_bytes(p);\n\n let expected_compressed_point_positive_sign = [\n 154, 244, 31, 93, 233, 100, 70, 220, 55, 118, 161, 235, 45, 152, 187, 149, 107, 122,\n 205, 153, 121, 166, 120, 84, 190, 198, 250, 124, 41, 115, 189, 115,\n ];\n assert_eq(expected_compressed_point_positive_sign, compressed_point);\n }\n\n #[test]\n unconstrained fn test_point_to_bytes_negative_sign() {\n let p = Point {\n x: 0x247371652e55dd74c9af8dbe9fb44931ba29a9229994384bd7077796c14ee2b5,\n y: 0x26441aec112e1ae4cee374f42556932001507ad46e255ffb27369c7e3766e5c0,\n is_infinite: false,\n };\n\n let compressed_point = point_to_bytes(p);\n\n let expected_compressed_point_negative_sign = [\n 36, 115, 113, 101, 46, 85, 221, 116, 201, 175, 141, 190, 159, 180, 73, 49, 186, 41, 169,\n 34, 153, 148, 56, 75, 215, 7, 119, 150, 193, 78, 226, 181,\n ];\n\n assert_eq(expected_compressed_point_negative_sign, compressed_point);\n }\n\n #[test]\n unconstrained fn test_point_from_x_coord_and_sign() {\n // Test positive y coordinate\n let x = 0x1af41f5de96446dc3776a1eb2d98bb956b7acd9979a67854bec6fa7c2973bd73;\n let sign = true;\n let p = point_from_x_coord_and_sign(x, sign).unwrap();\n\n assert_eq(p.x, x);\n assert_eq(p.y, 0x07fc22c7f2c7057571f137fe46ea9c95114282bc95d37d71ec4bfb88de457d4a);\n assert_eq(p.is_infinite, false);\n\n // Test negative y coordinate\n let x2 = 0x247371652e55dd74c9af8dbe9fb44931ba29a9229994384bd7077796c14ee2b5;\n let sign2 = false;\n let p2 = point_from_x_coord_and_sign(x2, sign2).unwrap();\n\n assert_eq(p2.x, x2);\n assert_eq(p2.y, 0x26441aec112e1ae4cee374f42556932001507ad46e255ffb27369c7e3766e5c0);\n assert_eq(p2.is_infinite, false);\n }\n\n #[test]\n unconstrained fn test_point_from_x_coord_valid() {\n // x = 8 is a known quadratic residue - should give a valid point\n let result = point_from_x_coord(Field::from(8));\n assert(result.is_some());\n\n let point = result.unwrap();\n assert_eq(point.x, Field::from(8));\n // Check curve equation y^2 = x^3 - 17\n assert_eq(pow(point.y, 2), pow(point.x, 3) - 17);\n }\n\n #[test]\n unconstrained fn test_point_from_x_coord_invalid() {\n // x = 3 is a non-residue for this curve - should give None\n let x = Field::from(3);\n let maybe_point = point_from_x_coord(x);\n assert(maybe_point.is_none());\n }\n\n}\n"
4397
+ "source": "use protocol_types::{point::Point, utils::field::sqrt};\n\n// I am storing the modulus minus 1 divided by 2 here because full modulus would throw \"String literal too large\" error\n// Full modulus is 21888242871839275222246405745257275088548364400416034343698204186575808495617\nglobal BN254_FR_MODULUS_DIV_2: Field =\n 10944121435919637611123202872628637544274182200208017171849102093287904247808;\n\n/**\n * Returns: true if p.y <= MOD_DIV_2, else false.\n */\npub fn get_sign_of_point(p: Point) -> bool {\n // We store only a \"sign\" of the y coordinate because the rest can be derived from the x coordinate. To get\n // the sign we check if the y coordinate is less or equal than the field's modulus minus 1 divided by 2.\n // Ideally we'd do `y <= MOD_DIV_2`, but there's no `lte` function, so instead we do `!(y > MOD_DIV_2)`, which is\n // equivalent, and then rewrite that as `!(MOD_DIV_2 < y)`, since we also have no `gt` function.\n !BN254_FR_MODULUS_DIV_2.lt(p.y)\n}\n\n/// Returns a `Point` in the Grumpkin curve given its x coordinate.\n///\n/// Because not all values in the field are valid x coordinates of points in the curve (i.e. there\n/// is no corresponding y value in the field that satisfies the curve equation), it may not be\n/// possible to reconstruct a `Point`. `Option::none()` is returned in such cases.\npub fn point_from_x_coord(x: Field) -> Option<Point> {\n // y ^ 2 = x ^ 3 - 17\n let rhs = x * x * x - 17;\n sqrt(rhs).map(|y| Point { x, y, is_infinite: false })\n}\n\n/// Returns a `Point` in the Grumpkin curve given its x coordinate and sign for the y coordinate.\n///\n/// Because not all values in the field are valid x coordinates of points in the curve (i.e. there\n/// is no corresponding y value in the field that satisfies the curve equation), it may not be\n/// possible to reconstruct a `Point`. `Option::none()` is returned in such cases.\n///\n/// @param x - The x coordinate of the point\n/// @param sign - The \"sign\" of the y coordinate - determines whether y <= (Fr.MODULUS - 1) / 2\npub fn point_from_x_coord_and_sign(x: Field, sign: bool) -> Option<Point> {\n // y ^ 2 = x ^ 3 - 17\n let rhs = x * x * x - 17;\n\n sqrt(rhs).map(|y| {\n // If there is a square root, we need to ensure it has the correct \"sign\"\n let y_is_positive = !BN254_FR_MODULUS_DIV_2.lt(y);\n let final_y = if y_is_positive == sign { y } else { -y };\n Point { x, y: final_y, is_infinite: false }\n })\n}\n\nmod test {\n use crate::utils::point::{\n BN254_FR_MODULUS_DIV_2, get_sign_of_point, point_from_x_coord, point_from_x_coord_and_sign,\n };\n use dep::protocol_types::point::Point;\n use dep::protocol_types::utils::field::pow;\n\n #[test]\n unconstrained fn test_point_from_x_coord_and_sign() {\n // Test positive y coordinate\n let x = 0x1af41f5de96446dc3776a1eb2d98bb956b7acd9979a67854bec6fa7c2973bd73;\n let sign = true;\n let p = point_from_x_coord_and_sign(x, sign).unwrap();\n\n assert_eq(p.x, x);\n assert_eq(p.y, 0x07fc22c7f2c7057571f137fe46ea9c95114282bc95d37d71ec4bfb88de457d4a);\n assert_eq(p.is_infinite, false);\n\n // Test negative y coordinate\n let x2 = 0x247371652e55dd74c9af8dbe9fb44931ba29a9229994384bd7077796c14ee2b5;\n let sign2 = false;\n let p2 = point_from_x_coord_and_sign(x2, sign2).unwrap();\n\n assert_eq(p2.x, x2);\n assert_eq(p2.y, 0x26441aec112e1ae4cee374f42556932001507ad46e255ffb27369c7e3766e5c0);\n assert_eq(p2.is_infinite, false);\n }\n\n #[test]\n unconstrained fn test_point_from_x_coord_valid() {\n // x = 8 is a known quadratic residue - should give a valid point\n let result = point_from_x_coord(Field::from(8));\n assert(result.is_some());\n\n let point = result.unwrap();\n assert_eq(point.x, Field::from(8));\n // Check curve equation y^2 = x^3 - 17\n assert_eq(pow(point.y, 2), pow(point.x, 3) - 17);\n }\n\n #[test]\n unconstrained fn test_point_from_x_coord_invalid() {\n // x = 3 is a non-residue for this curve - should give None\n let x = Field::from(3);\n let maybe_point = point_from_x_coord(x);\n assert(maybe_point.is_none());\n }\n\n #[test]\n unconstrained fn test_both_roots_satisfy_curve() {\n // Derive a point from x = 8 (known to be valid from test_point_from_x_coord_valid)\n let x: Field = 8;\n let point = point_from_x_coord(x).unwrap();\n\n // Check y satisfies curve equation\n assert_eq(point.y * point.y, x * x * x - 17);\n\n // Check -y also satisfies curve equation\n let neg_y = 0 - point.y;\n assert_eq(neg_y * neg_y, x * x * x - 17);\n\n // Verify they are different (unless y = 0)\n assert(point.y != neg_y);\n }\n\n #[test]\n unconstrained fn test_point_from_x_coord_and_sign_invalid() {\n // x = 3 has no valid point on the curve (from test_point_from_x_coord_invalid)\n let x = Field::from(3);\n let result_positive = point_from_x_coord_and_sign(x, true);\n let result_negative = point_from_x_coord_and_sign(x, false);\n\n assert(result_positive.is_none());\n assert(result_negative.is_none());\n }\n\n #[test]\n unconstrained fn test_get_sign_of_point() {\n // Derive a point from x = 8, then test both possible y values\n let point = point_from_x_coord(8).unwrap();\n let neg_point = Point { x: point.x, y: 0 - point.y, is_infinite: false };\n\n // One should be \"positive\" (y <= MOD_DIV_2) and one \"negative\"\n let sign1 = get_sign_of_point(point);\n let sign2 = get_sign_of_point(neg_point);\n assert(sign1 != sign2);\n\n // y = 0 should return true (0 <= MOD_DIV_2)\n let zero_y_point = Point { x: 0, y: 0, is_infinite: false };\n assert(get_sign_of_point(zero_y_point) == true);\n\n // y = MOD_DIV_2 should return true (exactly at boundary)\n let boundary_point = Point { x: 0, y: BN254_FR_MODULUS_DIV_2, is_infinite: false };\n assert(get_sign_of_point(boundary_point) == true);\n\n // y = MOD_DIV_2 + 1 should return false (just over boundary)\n let over_boundary_point = Point { x: 0, y: BN254_FR_MODULUS_DIV_2 + 1, is_infinite: false };\n assert(get_sign_of_point(over_boundary_point) == false);\n }\n\n #[test]\n unconstrained fn test_point_from_x_coord_zero() {\n // x = 0: y^2 = 0^3 - 17 = -17, which is not a quadratic residue in BN254 scalar field\n let result = point_from_x_coord(0);\n assert(result.is_none());\n }\n\n #[test]\n unconstrained fn test_bn254_fr_modulus_div_2() {\n // Verify that BN254_FR_MODULUS_DIV_2 == (p - 1) / 2\n // This means: 2 * BN254_FR_MODULUS_DIV_2 + 1 == p == 0 (in the field)\n assert_eq(2 * BN254_FR_MODULUS_DIV_2 + 1, 0);\n }\n\n}\n"
4541
4398
  },
4542
- "255": {
4399
+ "254": {
4543
4400
  "path": "/home/aztec-dev/nargo/github.com/noir-lang/poseidon/v0.1.1/src/poseidon2.nr",
4544
4401
  "source": "use std::default::Default;\nuse std::hash::Hasher;\n\ncomptime global RATE: u32 = 3;\n\npub struct Poseidon2 {\n cache: [Field; 3],\n state: [Field; 4],\n cache_size: u32,\n squeeze_mode: bool, // 0 => absorb, 1 => squeeze\n}\n\nimpl Poseidon2 {\n #[no_predicates]\n pub fn hash<let N: u32>(input: [Field; N], message_size: u32) -> Field {\n Poseidon2::hash_internal(input, message_size, message_size != N)\n }\n\n pub(crate) fn new(iv: Field) -> Poseidon2 {\n let mut result =\n Poseidon2 { cache: [0; 3], state: [0; 4], cache_size: 0, squeeze_mode: false };\n result.state[RATE] = iv;\n result\n }\n\n fn perform_duplex(&mut self) {\n // add the cache into sponge state\n for i in 0..RATE {\n // We effectively zero-pad the cache by only adding to the state\n // cache that is less than the specified `cache_size`\n if i < self.cache_size {\n self.state[i] += self.cache[i];\n }\n }\n self.state = crate::poseidon2_permutation(self.state, 4);\n }\n\n fn absorb(&mut self, input: Field) {\n assert(!self.squeeze_mode);\n if self.cache_size == RATE {\n // If we're absorbing, and the cache is full, apply the sponge permutation to compress the cache\n self.perform_duplex();\n self.cache[0] = input;\n self.cache_size = 1;\n } else {\n // If we're absorbing, and the cache is not full, add the input into the cache\n self.cache[self.cache_size] = input;\n self.cache_size += 1;\n }\n }\n\n fn squeeze(&mut self) -> Field {\n assert(!self.squeeze_mode);\n // If we're in absorb mode, apply sponge permutation to compress the cache.\n self.perform_duplex();\n self.squeeze_mode = true;\n\n // Pop one item off the top of the permutation and return it.\n self.state[0]\n }\n\n fn hash_internal<let N: u32>(\n input: [Field; N],\n in_len: u32,\n is_variable_length: bool,\n ) -> Field {\n let two_pow_64 = 18446744073709551616;\n let iv: Field = (in_len as Field) * two_pow_64;\n let mut sponge = Poseidon2::new(iv);\n for i in 0..input.len() {\n if i < in_len {\n sponge.absorb(input[i]);\n }\n }\n\n // In the case where the hash preimage is variable-length, we append `1` to the end of the input, to distinguish\n // from fixed-length hashes. (the combination of this additional field element + the hash IV ensures\n // fixed-length and variable-length hashes do not collide)\n if is_variable_length {\n sponge.absorb(1);\n }\n sponge.squeeze()\n }\n}\n\npub struct Poseidon2Hasher {\n _state: [Field],\n}\n\nimpl Hasher for Poseidon2Hasher {\n fn finish(self) -> Field {\n let iv: Field = (self._state.len() as Field) * 18446744073709551616; // iv = (self._state.len() << 64)\n let mut sponge = Poseidon2::new(iv);\n for i in 0..self._state.len() {\n sponge.absorb(self._state[i]);\n }\n sponge.squeeze()\n }\n\n fn write(&mut self, input: Field) {\n self._state = self._state.push_back(input);\n }\n}\n\nimpl Default for Poseidon2Hasher {\n fn default() -> Self {\n Poseidon2Hasher { _state: &[] }\n }\n}\n"
4545
4402
  },
@@ -4547,35 +4404,35 @@
4547
4404
  "path": "std/array/mod.nr",
4548
4405
  "source": "use crate::cmp::{Eq, Ord};\nuse crate::convert::From;\nuse crate::runtime::is_unconstrained;\n\nmod check_shuffle;\nmod quicksort;\n\nimpl<T, let N: u32> [T; N] {\n /// Returns the length of this array.\n ///\n /// ```noir\n /// fn len(self) -> Field\n /// ```\n ///\n /// example\n ///\n /// ```noir\n /// fn main() {\n /// let array = [42, 42];\n /// assert(array.len() == 2);\n /// }\n /// ```\n #[builtin(array_len)]\n pub fn len(self) -> u32 {}\n\n /// Returns this array as a slice.\n ///\n /// ```noir\n /// let array = [1, 2];\n /// let slice = array.as_slice();\n /// assert_eq(slice, &[1, 2]);\n /// ```\n #[builtin(as_slice)]\n pub fn as_slice(self) -> [T] {}\n\n /// Applies a function to each element of this array, returning a new array containing the mapped elements.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let b = a.map(|a| a * 2);\n /// assert_eq(b, [2, 4, 6]);\n /// ```\n pub fn map<U, Env>(self, f: fn[Env](T) -> U) -> [U; N] {\n let uninitialized = crate::mem::zeroed();\n let mut ret = [uninitialized; N];\n\n for i in 0..self.len() {\n ret[i] = f(self[i]);\n }\n\n ret\n }\n\n /// Applies a function to each element of this array along with its index,\n /// returning a new array containing the mapped elements.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let b = a.mapi(|i, a| i + a * 2);\n /// assert_eq(b, [2, 5, 8]);\n /// ```\n pub fn mapi<U, Env>(self, f: fn[Env](u32, T) -> U) -> [U; N] {\n let uninitialized = crate::mem::zeroed();\n let mut ret = [uninitialized; N];\n\n for i in 0..self.len() {\n ret[i] = f(i, self[i]);\n }\n\n ret\n }\n\n /// Applies a function to each element of this array.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let mut b = [0; 3];\n /// let mut i = 0;\n /// a.for_each(|x| {\n /// b[i] = x;\n /// i += 1;\n /// });\n /// assert_eq(a, b);\n /// ```\n pub fn for_each<Env>(self, f: fn[Env](T) -> ()) {\n for i in 0..self.len() {\n f(self[i]);\n }\n }\n\n /// Applies a function to each element of this array along with its index.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let mut b = [0; 3];\n /// a.for_eachi(|i, x| {\n /// b[i] = x;\n /// });\n /// assert_eq(a, b);\n /// ```\n pub fn for_eachi<Env>(self, f: fn[Env](u32, T) -> ()) {\n for i in 0..self.len() {\n f(i, self[i]);\n }\n }\n\n /// Applies a function to each element of the array, returning the final accumulated value. The first\n /// parameter is the initial value.\n ///\n /// This is a left fold, so the given function will be applied to the accumulator and first element of\n /// the array, then the second, and so on. For a given call the expected result would be equivalent to:\n ///\n /// ```rust\n /// let a1 = [1];\n /// let a2 = [1, 2];\n /// let a3 = [1, 2, 3];\n ///\n /// let f = |a, b| a - b;\n /// a1.fold(10, f); //=> f(10, 1)\n /// a2.fold(10, f); //=> f(f(10, 1), 2)\n /// a3.fold(10, f); //=> f(f(f(10, 1), 2), 3)\n ///\n /// assert_eq(a3.fold(10, f), 10 - 1 - 2 - 3);\n /// ```\n pub fn fold<U, Env>(self, mut accumulator: U, f: fn[Env](U, T) -> U) -> U {\n for elem in self {\n accumulator = f(accumulator, elem);\n }\n accumulator\n }\n\n /// Same as fold, but uses the first element as the starting element.\n ///\n /// Requires the input array to be non-empty.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr = [1, 2, 3, 4];\n /// let reduced = arr.reduce(|a, b| a + b);\n /// assert(reduced == 10);\n /// }\n /// ```\n pub fn reduce<Env>(self, f: fn[Env](T, T) -> T) -> T {\n let mut accumulator = self[0];\n for i in 1..self.len() {\n accumulator = f(accumulator, self[i]);\n }\n accumulator\n }\n\n /// Returns true if all the elements in this array satisfy the given predicate.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr = [2, 2, 2, 2, 2];\n /// let all = arr.all(|a| a == 2);\n /// assert(all);\n /// }\n /// ```\n pub fn all<Env>(self, predicate: fn[Env](T) -> bool) -> bool {\n let mut ret = true;\n for elem in self {\n ret &= predicate(elem);\n }\n ret\n }\n\n /// Returns true if any of the elements in this array satisfy the given predicate.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr = [2, 2, 2, 2, 5];\n /// let any = arr.any(|a| a == 5);\n /// assert(any);\n /// }\n /// ```\n pub fn any<Env>(self, predicate: fn[Env](T) -> bool) -> bool {\n let mut ret = false;\n for elem in self {\n ret |= predicate(elem);\n }\n ret\n }\n\n /// Concatenates this array with another array.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr1 = [1, 2, 3, 4];\n /// let arr2 = [6, 7, 8, 9, 10, 11];\n /// let concatenated_arr = arr1.concat(arr2);\n /// assert(concatenated_arr == [1, 2, 3, 4, 6, 7, 8, 9, 10, 11]);\n /// }\n /// ```\n pub fn concat<let M: u32>(self, array2: [T; M]) -> [T; N + M] {\n let mut result = [crate::mem::zeroed(); N + M];\n for i in 0..N {\n result[i] = self[i];\n }\n for i in 0..M {\n result[i + N] = array2[i];\n }\n result\n }\n}\n\nimpl<T, let N: u32> [T; N]\nwhere\n T: Ord + Eq,\n{\n /// Returns a new sorted array. The original array remains untouched. Notice that this function will\n /// only work for arrays of fields or integers, not for any arbitrary type. This is because the sorting\n /// logic it uses internally is optimized specifically for these values. If you need a sort function to\n /// sort any type, you should use the [`Self::sort_via`] function.\n ///\n /// Example:\n ///\n /// ```rust\n /// fn main() {\n /// let arr = [42, 32];\n /// let sorted = arr.sort();\n /// assert(sorted == [32, 42]);\n /// }\n /// ```\n pub fn sort(self) -> Self {\n self.sort_via(|a, b| a <= b)\n }\n}\n\nimpl<T, let N: u32> [T; N]\nwhere\n T: Eq,\n{\n /// Returns a new sorted array by sorting it with a custom comparison function.\n /// The original array remains untouched.\n /// The ordering function must return true if the first argument should be sorted to be before the second argument or is equal to the second argument.\n ///\n /// Using this method with an operator like `<` that does not return `true` for equal values will result in an assertion failure for arrays with equal elements.\n ///\n /// Example:\n ///\n /// ```rust\n /// fn main() {\n /// let arr = [42, 32]\n /// let sorted_ascending = arr.sort_via(|a, b| a <= b);\n /// assert(sorted_ascending == [32, 42]); // verifies\n ///\n /// let sorted_descending = arr.sort_via(|a, b| a >= b);\n /// assert(sorted_descending == [32, 42]); // does not verify\n /// }\n /// ```\n pub fn sort_via<Env>(self, ordering: fn[Env](T, T) -> bool) -> Self {\n // Safety: `sorted` array is checked to be:\n // a. a permutation of `input`'s elements\n // b. satisfying the predicate `ordering`\n let sorted = unsafe { quicksort::quicksort(self, ordering) };\n\n if !is_unconstrained() {\n for i in 0..N - 1 {\n assert(\n ordering(sorted[i], sorted[i + 1]),\n \"Array has not been sorted correctly according to `ordering`.\",\n );\n }\n check_shuffle::check_shuffle(self, sorted);\n }\n sorted\n }\n}\n\nimpl<let N: u32> [u8; N] {\n /// Converts a byte array of type `[u8; N]` to a string. Note that this performs no UTF-8 validation -\n /// the given array is interpreted as-is as a string.\n ///\n /// Example:\n ///\n /// ```rust\n /// fn main() {\n /// let hi = [104, 105].as_str_unchecked();\n /// assert_eq(hi, \"hi\");\n /// }\n /// ```\n #[builtin(array_as_str_unchecked)]\n pub fn as_str_unchecked(self) -> str<N> {}\n}\n\nimpl<let N: u32> From<str<N>> for [u8; N] {\n /// Returns an array of the string bytes.\n fn from(s: str<N>) -> Self {\n s.as_bytes()\n }\n}\n\nmod test {\n #[test]\n fn map_empty() {\n assert_eq([].map(|x| x + 1), []);\n }\n\n global arr_with_100_values: [u32; 100] = [\n 42, 123, 87, 93, 48, 80, 50, 5, 104, 84, 70, 47, 119, 66, 71, 121, 3, 29, 42, 118, 2, 54,\n 89, 44, 81, 0, 26, 106, 68, 96, 84, 48, 95, 54, 45, 32, 89, 100, 109, 19, 37, 41, 19, 98,\n 53, 114, 107, 66, 6, 74, 13, 19, 105, 64, 123, 28, 44, 50, 89, 58, 123, 126, 21, 43, 86, 35,\n 21, 62, 82, 0, 108, 120, 72, 72, 62, 80, 12, 71, 70, 86, 116, 73, 38, 15, 127, 81, 30, 8,\n 125, 28, 26, 69, 114, 63, 27, 28, 61, 42, 13, 32,\n ];\n global expected_with_100_values: [u32; 100] = [\n 0, 0, 2, 3, 5, 6, 8, 12, 13, 13, 15, 19, 19, 19, 21, 21, 26, 26, 27, 28, 28, 28, 29, 30, 32,\n 32, 35, 37, 38, 41, 42, 42, 42, 43, 44, 44, 45, 47, 48, 48, 50, 50, 53, 54, 54, 58, 61, 62,\n 62, 63, 64, 66, 66, 68, 69, 70, 70, 71, 71, 72, 72, 73, 74, 80, 80, 81, 81, 82, 84, 84, 86,\n 86, 87, 89, 89, 89, 93, 95, 96, 98, 100, 104, 105, 106, 107, 108, 109, 114, 114, 116, 118,\n 119, 120, 121, 123, 123, 123, 125, 126, 127,\n ];\n fn sort_u32(a: u32, b: u32) -> bool {\n a <= b\n }\n\n #[test]\n fn test_sort() {\n let mut arr: [u32; 7] = [3, 6, 8, 10, 1, 2, 1];\n\n let sorted = arr.sort();\n\n let expected: [u32; 7] = [1, 1, 2, 3, 6, 8, 10];\n assert(sorted == expected);\n }\n\n #[test]\n fn test_sort_100_values() {\n let mut arr: [u32; 100] = [\n 42, 123, 87, 93, 48, 80, 50, 5, 104, 84, 70, 47, 119, 66, 71, 121, 3, 29, 42, 118, 2,\n 54, 89, 44, 81, 0, 26, 106, 68, 96, 84, 48, 95, 54, 45, 32, 89, 100, 109, 19, 37, 41,\n 19, 98, 53, 114, 107, 66, 6, 74, 13, 19, 105, 64, 123, 28, 44, 50, 89, 58, 123, 126, 21,\n 43, 86, 35, 21, 62, 82, 0, 108, 120, 72, 72, 62, 80, 12, 71, 70, 86, 116, 73, 38, 15,\n 127, 81, 30, 8, 125, 28, 26, 69, 114, 63, 27, 28, 61, 42, 13, 32,\n ];\n\n let sorted = arr.sort();\n\n let expected: [u32; 100] = [\n 0, 0, 2, 3, 5, 6, 8, 12, 13, 13, 15, 19, 19, 19, 21, 21, 26, 26, 27, 28, 28, 28, 29, 30,\n 32, 32, 35, 37, 38, 41, 42, 42, 42, 43, 44, 44, 45, 47, 48, 48, 50, 50, 53, 54, 54, 58,\n 61, 62, 62, 63, 64, 66, 66, 68, 69, 70, 70, 71, 71, 72, 72, 73, 74, 80, 80, 81, 81, 82,\n 84, 84, 86, 86, 87, 89, 89, 89, 93, 95, 96, 98, 100, 104, 105, 106, 107, 108, 109, 114,\n 114, 116, 118, 119, 120, 121, 123, 123, 123, 125, 126, 127,\n ];\n assert(sorted == expected);\n }\n\n #[test]\n fn test_sort_100_values_comptime() {\n let sorted = arr_with_100_values.sort();\n assert(sorted == expected_with_100_values);\n }\n\n #[test]\n fn test_sort_via() {\n let mut arr: [u32; 7] = [3, 6, 8, 10, 1, 2, 1];\n\n let sorted = arr.sort_via(sort_u32);\n\n let expected: [u32; 7] = [1, 1, 2, 3, 6, 8, 10];\n assert(sorted == expected);\n }\n\n #[test]\n fn test_sort_via_100_values() {\n let mut arr: [u32; 100] = [\n 42, 123, 87, 93, 48, 80, 50, 5, 104, 84, 70, 47, 119, 66, 71, 121, 3, 29, 42, 118, 2,\n 54, 89, 44, 81, 0, 26, 106, 68, 96, 84, 48, 95, 54, 45, 32, 89, 100, 109, 19, 37, 41,\n 19, 98, 53, 114, 107, 66, 6, 74, 13, 19, 105, 64, 123, 28, 44, 50, 89, 58, 123, 126, 21,\n 43, 86, 35, 21, 62, 82, 0, 108, 120, 72, 72, 62, 80, 12, 71, 70, 86, 116, 73, 38, 15,\n 127, 81, 30, 8, 125, 28, 26, 69, 114, 63, 27, 28, 61, 42, 13, 32,\n ];\n\n let sorted = arr.sort_via(sort_u32);\n\n let expected: [u32; 100] = [\n 0, 0, 2, 3, 5, 6, 8, 12, 13, 13, 15, 19, 19, 19, 21, 21, 26, 26, 27, 28, 28, 28, 29, 30,\n 32, 32, 35, 37, 38, 41, 42, 42, 42, 43, 44, 44, 45, 47, 48, 48, 50, 50, 53, 54, 54, 58,\n 61, 62, 62, 63, 64, 66, 66, 68, 69, 70, 70, 71, 71, 72, 72, 73, 74, 80, 80, 81, 81, 82,\n 84, 84, 86, 86, 87, 89, 89, 89, 93, 95, 96, 98, 100, 104, 105, 106, 107, 108, 109, 114,\n 114, 116, 118, 119, 120, 121, 123, 123, 123, 125, 126, 127,\n ];\n assert(sorted == expected);\n }\n\n #[test]\n fn mapi_empty() {\n assert_eq([].mapi(|i, x| i * x + 1), []);\n }\n\n #[test]\n fn for_each_empty() {\n let empty_array: [Field; 0] = [];\n empty_array.for_each(|_x| assert(false));\n }\n\n #[test]\n fn for_eachi_empty() {\n let empty_array: [Field; 0] = [];\n empty_array.for_eachi(|_i, _x| assert(false));\n }\n\n #[test]\n fn map_example() {\n let a = [1, 2, 3];\n let b = a.map(|a| a * 2);\n assert_eq(b, [2, 4, 6]);\n }\n\n #[test]\n fn mapi_example() {\n let a = [1, 2, 3];\n let b = a.mapi(|i, a| i + a * 2);\n assert_eq(b, [2, 5, 8]);\n }\n\n #[test]\n fn for_each_example() {\n let a = [1, 2, 3];\n let mut b = [0, 0, 0];\n let b_ref = &mut b;\n let mut i = 0;\n let i_ref = &mut i;\n a.for_each(|x| {\n b_ref[*i_ref] = x * 2;\n *i_ref += 1;\n });\n assert_eq(b, [2, 4, 6]);\n assert_eq(i, 3);\n }\n\n #[test]\n fn for_eachi_example() {\n let a = [1, 2, 3];\n let mut b = [0, 0, 0];\n let b_ref = &mut b;\n a.for_eachi(|i, a| { b_ref[i] = i + a * 2; });\n assert_eq(b, [2, 5, 8]);\n }\n\n #[test]\n fn concat() {\n let arr1 = [1, 2, 3, 4];\n let arr2 = [6, 7, 8, 9, 10, 11];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, [1, 2, 3, 4, 6, 7, 8, 9, 10, 11]);\n }\n\n #[test]\n fn concat_zero_length_with_something() {\n let arr1 = [];\n let arr2 = [1];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, [1]);\n }\n\n #[test]\n fn concat_something_with_zero_length() {\n let arr1 = [1];\n let arr2 = [];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, [1]);\n }\n\n #[test]\n fn concat_zero_lengths() {\n let arr1: [Field; 0] = [];\n let arr2: [Field; 0] = [];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, []);\n }\n}\n"
4549
4406
  },
4550
- "313": {
4407
+ "312": {
4551
4408
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/address/aztec_address.nr",
4552
4409
  "source": "use crate::{\n address::{\n partial_address::PartialAddress, salted_initialization_hash::SaltedInitializationHash,\n },\n constants::{AZTEC_ADDRESS_LENGTH, DOM_SEP__CONTRACT_ADDRESS_V1, MAX_FIELD_VALUE},\n contract_class_id::ContractClassId,\n hash::poseidon2_hash_with_separator,\n public_keys::{IvpkM, NpkM, OvpkM, PublicKeys, ToPoint, TpkM},\n traits::{Deserialize, Empty, FromField, Packable, Serialize, ToField},\n utils::field::{pow, sqrt},\n};\n\n// We do below because `use crate::point::Point;` does not work\nuse dep::std::embedded_curve_ops::EmbeddedCurvePoint as Point;\n\nuse crate::public_keys::AddressPoint;\nuse std::{\n embedded_curve_ops::{EmbeddedCurveScalar, fixed_base_scalar_mul as derive_public_key},\n ops::Add,\n};\nuse std::meta::derive;\n\n// Aztec address\n#[derive(Deserialize, Eq, Packable, Serialize)]\npub struct AztecAddress {\n pub inner: Field,\n}\n\nimpl Empty for AztecAddress {\n fn empty() -> Self {\n Self { inner: 0 }\n }\n}\n\nimpl ToField for AztecAddress {\n fn to_field(self) -> Field {\n self.inner\n }\n}\n\nimpl FromField for AztecAddress {\n fn from_field(value: Field) -> AztecAddress {\n AztecAddress { inner: value }\n }\n}\n\nimpl AztecAddress {\n pub fn zero() -> Self {\n Self { inner: 0 }\n }\n\n /// Returns an address's `AddressPoint`, which can be used to create shared secrets with the owner\n /// of the address. If the address is invalid (i.e. it is not a properly derived Aztec address), then this\n /// returns `Option::none()`, and no shared secrets can be created.\n pub fn to_address_point(self) -> Option<AddressPoint> {\n // We compute the address point by taking our address, setting it to x, and then solving for y in the\n // equation which defines our bn curve:\n // y^2 = x^3 - 17; x = address\n let x = self.inner;\n let y_squared = pow(x, 3) - 17;\n\n // An invalid AztecAddress is one for which no y coordinate satisfies the curve equation, which we'll\n // identify by proving that the square root of y_squared does not exist.\n let mut y_opt = sqrt(y_squared);\n if y_opt.is_none() {\n Option::none()\n } else {\n let mut y = y_opt.unwrap();\n\n // If we get a negative y coordinate (any y where y > MAX_FIELD_VALUE / 2), we pin it to the\n // positive one (any value where y <= MAX_FIELD_VALUE / 2) by subtracting it from the Field modulus\n // note: The field modulus is MAX_FIELD_VALUE + 1\n if (!(y.lt(MAX_FIELD_VALUE / 2) | y.eq(MAX_FIELD_VALUE / 2))) {\n y = (MAX_FIELD_VALUE + 1) - y;\n }\n\n Option::some(\n AddressPoint { inner: Point { x: self.inner, y, is_infinite: false } },\n )\n }\n }\n\n pub fn compute(public_keys: PublicKeys, partial_address: PartialAddress) -> AztecAddress {\n let public_keys_hash = public_keys.hash();\n\n let pre_address = poseidon2_hash_with_separator(\n [public_keys_hash.to_field(), partial_address.to_field()],\n DOM_SEP__CONTRACT_ADDRESS_V1,\n );\n\n let address_point = derive_public_key(EmbeddedCurveScalar::from_field(pre_address)).add(\n public_keys.ivpk_m.to_point(),\n );\n\n // Note that our address is only the x-coordinate of the full address_point. This is okay because when people want to encrypt something and send it to us\n // they can recover our full point using the x-coordinate (our address itself). To do this, they recompute the y-coordinate according to the equation y^2 = x^3 - 17.\n // When they do this, they may get a positive y-coordinate (a value that is less than or equal to MAX_FIELD_VALUE / 2) or\n // a negative y-coordinate (a value that is more than MAX_FIELD_VALUE), and we cannot dictate which one they get and hence the recovered point may sometimes be different than the one\n // our secret can decrypt. Regardless though, they should and will always encrypt using point with the positive y-coordinate by convention.\n // This ensures that everyone encrypts to the same point given an arbitrary x-coordinate (address). This is allowed because even though our original point may not have a positive y-coordinate,\n // with our original secret, we will be able to derive the secret to the point with the flipped (and now positive) y-coordinate that everyone encrypts to.\n AztecAddress::from_field(address_point.x)\n }\n\n pub fn compute_from_class_id(\n contract_class_id: ContractClassId,\n salted_initialization_hash: SaltedInitializationHash,\n public_keys: PublicKeys,\n ) -> Self {\n let partial_address = PartialAddress::compute_from_salted_initialization_hash(\n contract_class_id,\n salted_initialization_hash,\n );\n\n AztecAddress::compute(public_keys, partial_address)\n }\n\n pub fn is_zero(self) -> bool {\n self.inner == 0\n }\n\n pub fn assert_is_zero(self) {\n assert(self.to_field() == 0);\n }\n}\n\n#[test]\nfn compute_address_from_partial_and_pub_keys() {\n let public_keys = PublicKeys {\n npk_m: NpkM {\n inner: Point {\n x: 0x22f7fcddfa3ce3e8f0cc8e82d7b94cdd740afa3e77f8e4a63ea78a239432dcab,\n y: 0x0471657de2b6216ade6c506d28fbc22ba8b8ed95c871ad9f3e3984e90d9723a7,\n is_infinite: false,\n },\n },\n ivpk_m: IvpkM {\n inner: Point {\n x: 0x111223493147f6785514b1c195bb37a2589f22a6596d30bb2bb145fdc9ca8f1e,\n y: 0x273bbffd678edce8fe30e0deafc4f66d58357c06fd4a820285294b9746c3be95,\n is_infinite: false,\n },\n },\n ovpk_m: OvpkM {\n inner: Point {\n x: 0x09115c96e962322ffed6522f57194627136b8d03ac7469109707f5e44190c484,\n y: 0x0c49773308a13d740a7f0d4f0e6163b02c5a408b6f965856b6a491002d073d5b,\n is_infinite: false,\n },\n },\n tpk_m: TpkM {\n inner: Point {\n x: 0x00d3d81beb009873eb7116327cf47c612d5758ef083d4fda78e9b63980b2a762,\n y: 0x2f567d22d2b02fe1f4ad42db9d58a36afd1983e7e2909d1cab61cafedad6193a,\n is_infinite: false,\n },\n },\n };\n\n let partial_address = PartialAddress::from_field(\n 0x0a7c585381b10f4666044266a02405bf6e01fa564c8517d4ad5823493abd31de,\n );\n\n let address = AztecAddress::compute(public_keys, partial_address);\n\n // The following value was generated by `derivation.test.ts`.\n // --> Run the test with AZTEC_GENERATE_TEST_DATA=1 flag to update test data.\n let expected_computed_address_from_partial_and_pubkeys =\n 0x24e4646f58b9fbe7d38e317db8d5636c423fbbdfbe119fc190fe9c64747e0c62;\n assert(address.to_field() == expected_computed_address_from_partial_and_pubkeys);\n}\n\n#[test]\nfn compute_preaddress_from_partial_and_pub_keys() {\n let pre_address = poseidon2_hash_with_separator([1, 2], DOM_SEP__CONTRACT_ADDRESS_V1);\n let expected_computed_preaddress_from_partial_and_pubkey =\n 0x23ce9be3fa3c846b0f9245cc796902e731d04f086e8a42473bb29e405fc98075;\n assert(pre_address == expected_computed_preaddress_from_partial_and_pubkey);\n}\n\n#[test]\nfn from_field_to_field() {\n let address = AztecAddress { inner: 37 };\n assert_eq(FromField::from_field(address.to_field()), address);\n}\n\n#[test]\nfn serde() {\n let address = AztecAddress { inner: 37 };\n // We use the AZTEC_ADDRESS_LENGTH constant to ensure that there is a match between the derived trait\n // implementation and the constant.\n let serialized: [Field; AZTEC_ADDRESS_LENGTH] = address.serialize();\n let deserialized = AztecAddress::deserialize(serialized);\n assert_eq(address, deserialized);\n}\n\n#[test]\nfn to_address_point_valid() {\n // x = 8 where x^3 - 17 = 512 - 17 = 495, which is a residue in this field\n let address = AztecAddress { inner: 8 };\n let maybe_point = address.to_address_point();\n assert(maybe_point.is_some());\n\n let point = maybe_point.unwrap().inner;\n // check that x is preserved\n assert_eq(point.x, Field::from(8));\n\n // check that the curve equation holds: y^2 == x^3 - 17\n assert_eq(pow(point.y, 2), pow(point.x, 3) - 17);\n}\n\n#[test]\nunconstrained fn to_address_point_invalid() {\n // x = 3 where x^3 - 17 = 27 - 17 = 10, which is a non-residue in this field\n let address = AztecAddress { inner: 3 }; //\n let maybe_point = address.to_address_point();\n assert(maybe_point.is_none());\n}\n"
4553
4410
  },
4554
- "334": {
4411
+ "333": {
4555
4412
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/debug_log.nr",
4556
4413
  "source": "// TODO: Expose other wrapped functions than debug (info, warn)\n// ['silent', 'fatal', 'error', 'warn', 'info', 'verbose', 'debug', 'trace']\n\npub global SILENT_LOG_LEVEL: u8 = 0;\npub global FATAL_LOG_LEVEL: u8 = 1;\npub global ERROR_LOG_LEVEL: u8 = 2;\npub global WARN_LOG_LEVEL: u8 = 3;\npub global INFO_LOG_LEVEL: u8 = 4;\npub global VERBOSE_LOG_LEVEL: u8 = 5;\npub global DEBUG_LOG_LEVEL: u8 = 6;\npub global TRACE_LOG_LEVEL: u8 = 7;\n\n/// Utility function to console.log data in the acir simulator.\n/// Example:\n/// debug_log(\"blah blah this is a debug string\");\npub fn debug_log<let N: u32>(msg: str<N>) {\n debug_log_format(msg, []);\n}\n\n/// Same as debug_log, but allows to customize the log level.\n/// Consider changing just to 'log'\npub fn debug_log_with_level<let N: u32>(log_level: u8, msg: str<N>) {\n debug_log_format_with_level(log_level, msg, []);\n}\n\n/// Utility function to console.log data in the acir simulator. This variant receives a format string in which the\n/// `${k}` tokens will be replaced with the k-eth value in the `args` array.\n/// Examples:\n/// debug_log_format(\"get_2(slot:{0}) =>\\n\\t0:{1}\\n\\t1:{2}\", [storage_slot, note0_hash, note1_hash]);\n/// debug_log_format(\"whole array: {}\", [e1, e2, e3, e4]);\npub fn debug_log_format<let M: u32, let N: u32>(msg: str<M>, args: [Field; N]) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe\n // to call.\n unsafe { debug_log_array_oracle_wrapper(DEBUG_LOG_LEVEL, msg, args) };\n}\n\n/// Same as debug_log_format, but allows to customize the log level.\n/// Consider changing just to 'log_format'\npub fn debug_log_format_with_level<let M: u32, let N: u32>(\n log_level: u8,\n msg: str<M>,\n args: [Field; N],\n) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe\n // to call.\n unsafe { debug_log_array_oracle_wrapper(log_level, msg, args) };\n}\n\n/// Utility function to console.log data in the acir simulator. This variant receives a format string in which the\n/// `${k}` tokens will be replaced with the k-eth value in the `args` slice.\n/// Examples:\n/// debug_log_format(\"get_2(slot:{0}) =>\\n\\t0:{1}\\n\\t1:{2}\", [storage_slot, note0_hash, note1_hash]);\n/// debug_log_format(\"whole slice: {}\", [e1, e2, e3, e4]);\npub fn debug_log_format_slice<let M: u32>(log_level: u8, msg: str<M>, args: [Field]) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe\n // to call.\n unsafe { debug_log_slice_oracle_wrapper(log_level, msg, args) };\n}\n\n// We provide two versions of the debug log oracle: one that takes args as a slice and another one that takes args as an array.\n// We do this since conversion from array to slice generates overhead in public functions, since opcodes need to be emitted for the conversion.\n// By exposing the two flavors, we avoid conversions since the AVM is able to handle both arrays an slices in this oracle.\n\nunconstrained fn debug_log_slice_oracle_wrapper<let M: u32>(\n log_level: u8,\n msg: str<M>,\n args: [Field],\n) {\n debug_log_slice_oracle(log_level, msg, args);\n}\n\n// WARNING: sometimes when using debug logs the ACVM errors with: `thrown: \"solver opcode resolution error: cannot solve opcode: expression has too many unknowns x155\"`\n#[oracle(utilityDebugLog)]\nunconstrained fn debug_log_slice_oracle<let M: u32>(log_level: u8, msg: str<M>, args: [Field]) {}\n\nunconstrained fn debug_log_array_oracle_wrapper<let M: u32, let N: u32>(\n log_level: u8,\n msg: str<M>,\n args: [Field; N],\n) {\n debug_log_array_oracle(log_level, msg, N, args);\n}\n\n#[oracle(utilityDebugLog)]\nunconstrained fn debug_log_array_oracle<let M: u32, let N: u32>(\n log_level: u8,\n msg: str<M>,\n length: u32,\n args: [Field; N],\n) {}\n"
4557
4414
  },
4558
- "345": {
4415
+ "344": {
4559
4416
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/hash.nr",
4560
4417
  "source": "mod poseidon2_chunks;\n\nuse crate::{\n abis::{\n contract_class_function_leaf_preimage::ContractClassFunctionLeafPreimage,\n function_selector::FunctionSelector,\n note_hash::NoteHash,\n nullifier::Nullifier,\n private_log::{PrivateLog, PrivateLogData},\n transaction::tx_request::TxRequest,\n },\n address::{AztecAddress, EthAddress},\n constants::{\n CONTRACT_CLASS_LOG_SIZE_IN_FIELDS, DOM_SEP__NOTE_HASH_NONCE, DOM_SEP__OUTER_NULLIFIER,\n DOM_SEP__SILOED_NOTE_HASH, DOM_SEP__UNIQUE_NOTE_HASH, FUNCTION_TREE_HEIGHT,\n NULL_MSG_SENDER_CONTRACT_ADDRESS, TWO_POW_64,\n },\n merkle_tree::root_from_sibling_path,\n messaging::l2_to_l1_message::L2ToL1Message,\n poseidon2::Poseidon2Sponge,\n side_effect::{Counted, Scoped},\n traits::{FromField, Hash, ToField},\n utils::field::{field_from_bytes, field_from_bytes_32_trunc},\n};\n\npub use poseidon2_chunks::poseidon2_absorb_in_chunks_existing_sponge;\nuse poseidon2_chunks::poseidon2_absorb_in_chunks;\nuse std::embedded_curve_ops::EmbeddedCurveScalar;\n\npub fn sha256_to_field<let N: u32>(bytes_to_hash: [u8; N]) -> Field {\n let sha256_hashed = sha256::digest(bytes_to_hash);\n let hash_in_a_field = field_from_bytes_32_trunc(sha256_hashed);\n\n hash_in_a_field\n}\n\npub fn private_functions_root_from_siblings(\n selector: FunctionSelector,\n vk_hash: Field,\n function_leaf_index: Field,\n function_leaf_sibling_path: [Field; FUNCTION_TREE_HEIGHT],\n) -> Field {\n let function_leaf_preimage = ContractClassFunctionLeafPreimage { selector, vk_hash };\n let function_leaf = function_leaf_preimage.hash();\n root_from_sibling_path(\n function_leaf,\n function_leaf_index,\n function_leaf_sibling_path,\n )\n}\n\npub fn compute_note_hash_nonce(first_nullifier_in_tx: Field, note_index_in_tx: u32) -> Field {\n // Hashing the first nullifier with note index in tx is guaranteed to be unique (because all nullifiers are also\n // unique).\n poseidon2_hash_with_separator(\n [first_nullifier_in_tx, note_index_in_tx as Field],\n DOM_SEP__NOTE_HASH_NONCE,\n )\n}\n\npub fn compute_unique_note_hash(note_nonce: Field, siloed_note_hash: Field) -> Field {\n let inputs = [note_nonce, siloed_note_hash];\n poseidon2_hash_with_separator(inputs, DOM_SEP__UNIQUE_NOTE_HASH)\n}\n\npub fn compute_nonce_and_unique_note_hash(\n siloed_note_hash: Field,\n first_nullifier: Field,\n note_index_in_tx: u32,\n) -> Field {\n let note_nonce = compute_note_hash_nonce(first_nullifier, note_index_in_tx);\n compute_unique_note_hash(note_nonce, siloed_note_hash)\n}\n\npub fn compute_siloed_note_hash(app: AztecAddress, note_hash: Field) -> Field {\n poseidon2_hash_with_separator([app.to_field(), note_hash], DOM_SEP__SILOED_NOTE_HASH)\n}\n\n/// Computes unique note hashes from siloed note hashes\npub fn compute_unique_siloed_note_hash(\n siloed_note_hash: Field,\n first_nullifier: Field,\n note_index_in_tx: u32,\n) -> Field {\n if siloed_note_hash == 0 {\n 0\n } else {\n compute_nonce_and_unique_note_hash(siloed_note_hash, first_nullifier, note_index_in_tx)\n }\n}\n\n/// Siloing in the context of Aztec refers to the process of hashing a note hash with a contract address (this way\n/// the note hash is scoped to a specific contract). This is used to prevent intermingling of notes between contracts.\npub fn silo_note_hash(note_hash: Scoped<Counted<NoteHash>>) -> Field {\n if note_hash.contract_address.is_zero() {\n 0\n } else {\n compute_siloed_note_hash(note_hash.contract_address, note_hash.innermost())\n }\n}\n\npub fn compute_siloed_nullifier(contract_address: AztecAddress, nullifier: Field) -> Field {\n poseidon2_hash_with_separator(\n [contract_address.to_field(), nullifier],\n DOM_SEP__OUTER_NULLIFIER,\n )\n}\n\npub fn silo_nullifier(nullifier: Scoped<Counted<Nullifier>>) -> Field {\n let value = nullifier.innermost().value;\n // Q: shouldn't we be checking whether the _whole_ nullifier is empty?\n // A: We don't have to. The init and inner circuits add contract address to non-empty nullifiers.\n // So we know we should silo it if the contract address is not empty.\n if nullifier.contract_address.is_zero() {\n value // Return `value` instead of 0 because an already-siloed nullifier's contract address is zero.\n } else {\n compute_siloed_nullifier(nullifier.contract_address, value)\n }\n}\n\npub fn create_protocol_nullifier(tx_request: TxRequest) -> Scoped<Counted<Nullifier>> {\n Nullifier { value: tx_request.hash(), note_hash: 0 }.count(1).scope(\n NULL_MSG_SENDER_CONTRACT_ADDRESS,\n )\n}\n\npub fn compute_siloed_private_log_field(contract_address: AztecAddress, field: Field) -> Field {\n poseidon2_hash([contract_address.to_field(), field])\n}\n\npub fn silo_private_log(private_log: Scoped<Counted<PrivateLogData>>) -> PrivateLog {\n let log = private_log.innermost().log;\n if private_log.contract_address.is_zero() {\n log\n } else {\n let mut fields = log.fields;\n fields[0] = compute_siloed_private_log_field(private_log.contract_address, fields[0]);\n PrivateLog::new(fields, log.length)\n }\n}\n\npub fn compute_contract_class_log_hash(log: [Field; CONTRACT_CLASS_LOG_SIZE_IN_FIELDS]) -> Field {\n poseidon2_hash(log)\n}\n\npub fn compute_app_secret_key(\n master_secret_key: EmbeddedCurveScalar,\n app_address: AztecAddress,\n app_secret_generator: Field,\n) -> Field {\n poseidon2_hash_with_separator(\n [master_secret_key.hi, master_secret_key.lo, app_address.to_field()],\n app_secret_generator,\n )\n}\n\npub fn merkle_hash(left: Field, right: Field) -> Field {\n poseidon2_hash([left, right])\n}\n\npub fn compute_l2_to_l1_hash(\n contract_address: AztecAddress,\n recipient: EthAddress,\n content: Field,\n rollup_version_id: Field,\n chain_id: Field,\n) -> Field {\n let contract_address_bytes: [u8; 32] = contract_address.to_field().to_be_bytes();\n let recipient_bytes: [u8; 20] = recipient.to_be_bytes();\n let content_bytes: [u8; 32] = content.to_be_bytes();\n let rollup_version_id_bytes: [u8; 32] = rollup_version_id.to_be_bytes();\n let chain_id_bytes: [u8; 32] = chain_id.to_be_bytes();\n\n let mut bytes: [u8; 148] = std::mem::zeroed();\n for i in 0..32 {\n bytes[i] = contract_address_bytes[i];\n bytes[i + 32] = rollup_version_id_bytes[i];\n // 64 - 84 are for recipient.\n bytes[i + 84] = chain_id_bytes[i];\n bytes[i + 116] = content_bytes[i];\n }\n\n for i in 0..20 {\n bytes[64 + i] = recipient_bytes[i];\n }\n\n sha256_to_field(bytes)\n}\n\npub fn silo_l2_to_l1_message(\n msg: Scoped<L2ToL1Message>,\n rollup_version_id: Field,\n chain_id: Field,\n) -> Field {\n if msg.contract_address.is_zero() {\n 0\n } else {\n compute_l2_to_l1_hash(\n msg.contract_address,\n msg.inner.recipient,\n msg.inner.content,\n rollup_version_id,\n chain_id,\n )\n }\n}\n\n/// Computes sha256 hash of 2 input fields.\n///\n/// @returns A truncated field (i.e., the first byte is always 0).\npub fn accumulate_sha256(v0: Field, v1: Field) -> Field {\n // Concatenate two fields into 32 x 2 = 64 bytes\n let v0_as_bytes: [u8; 32] = v0.to_be_bytes();\n let v1_as_bytes: [u8; 32] = v1.to_be_bytes();\n let hash_input_flattened = v0_as_bytes.concat(v1_as_bytes);\n\n sha256_to_field(hash_input_flattened)\n}\n\n#[inline_always]\npub fn pedersen_hash<let N: u32>(inputs: [Field; N], hash_index: u32) -> Field {\n std::hash::pedersen_hash_with_separator(inputs, hash_index)\n}\n\npub fn poseidon2_hash<let N: u32>(inputs: [Field; N]) -> Field {\n poseidon::poseidon2::Poseidon2::hash(inputs, N)\n}\n\n#[no_predicates]\npub fn poseidon2_hash_with_separator<let N: u32, T>(inputs: [Field; N], separator: T) -> Field\nwhere\n T: ToField,\n{\n let inputs_with_separator = [separator.to_field()].concat(inputs);\n poseidon2_hash(inputs_with_separator)\n}\n\n/// Computes a Poseidon2 hash over a dynamic-length subarray of the given input.\n/// Only the first `in_len` fields of `input` are absorbed; any remaining fields are ignored.\n/// The caller is responsible for ensuring that the input is padded with zeros if required.\n#[no_predicates]\npub fn poseidon2_hash_subarray<let N: u32>(input: [Field; N], in_len: u32) -> Field {\n let mut sponge = poseidon2_absorb_in_chunks(input, in_len);\n sponge.squeeze()\n}\n\n// NB the below is the same as poseidon::poseidon2::Poseidon2::hash(), but replacing a range check with a bit check,\n// and absorbing in chunks of 3 below.\n#[no_predicates]\npub fn poseidon2_cheaper_variable_hash<let N: u32>(input: [Field; N], in_len: u32) -> Field {\n let mut sponge = poseidon2_absorb_in_chunks(input, in_len);\n // In the case where the hash preimage is variable-length, we append `1` to the end of the input, to distinguish\n // from fixed-length hashes. (the combination of this additional field element + the hash IV ensures\n // fixed-length and variable-length hashes do not collide)\n if in_len != N {\n sponge.absorb(1);\n }\n sponge.squeeze()\n}\n\n// This function is unconstrained because it is intended to be used in unconstrained context only as\n// in constrained contexts it would be too inefficient.\npub unconstrained fn poseidon2_hash_with_separator_bounded_vec<let N: u32, T>(\n inputs: BoundedVec<Field, N>,\n separator: T,\n) -> Field\nwhere\n T: ToField,\n{\n let in_len = inputs.len() + 1;\n let iv: Field = (in_len as Field) * TWO_POW_64;\n let mut sponge = Poseidon2Sponge::new(iv);\n sponge.absorb(separator.to_field());\n\n for i in 0..inputs.len() {\n sponge.absorb(inputs.get(i));\n }\n\n sponge.squeeze()\n}\n\n#[no_predicates]\npub fn poseidon2_hash_bytes<let N: u32>(inputs: [u8; N]) -> Field {\n let mut fields = [0; (N + 30) / 31];\n let mut field_index = 0;\n let mut current_field = [0; 31];\n for i in 0..inputs.len() {\n let index = i % 31;\n current_field[index] = inputs[i];\n if index == 30 {\n fields[field_index] = field_from_bytes(current_field, false);\n current_field = [0; 31];\n field_index += 1;\n }\n }\n if field_index != fields.len() {\n fields[field_index] = field_from_bytes(current_field, false);\n }\n poseidon2_hash(fields)\n}\n\n#[test]\nfn poseidon_chunks_matches_fixed() {\n let in_len = 501;\n let mut input: [Field; 4096] = [0; 4096];\n let mut fixed_input = [3; 501];\n assert(in_len == fixed_input.len()); // sanity check\n for i in 0..in_len {\n input[i] = 3;\n }\n let sub_chunk_hash = poseidon2_hash_subarray(input, in_len);\n let fixed_len_hash = poseidon::poseidon2::Poseidon2::hash(fixed_input, fixed_input.len());\n assert(sub_chunk_hash == fixed_len_hash);\n}\n\n#[test]\nfn poseidon_chunks_matches_variable() {\n let in_len = 501;\n let mut input: [Field; 4096] = [0; 4096];\n for i in 0..in_len {\n input[i] = 3;\n }\n let variable_chunk_hash = poseidon2_cheaper_variable_hash(input, in_len);\n let variable_len_hash = poseidon::poseidon2::Poseidon2::hash(input, in_len);\n assert(variable_chunk_hash == variable_len_hash);\n}\n\n#[test]\nfn smoke_sha256_to_field() {\n let full_buffer = [\n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,\n 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,\n 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,\n 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93,\n 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112,\n 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130,\n 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,\n 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159,\n ];\n let result = sha256_to_field(full_buffer);\n\n assert(result == 0x448ebbc9e1a31220a2f3830c18eef61b9bd070e5084b7fa2a359fe729184c7);\n\n // to show correctness of the current ver (truncate one byte) vs old ver (mod full bytes):\n let result_bytes = sha256::digest(full_buffer);\n let truncated_field = crate::utils::field::field_from_bytes_32_trunc(result_bytes);\n assert(truncated_field == result);\n let mod_res = result + (result_bytes[31] as Field);\n assert(mod_res == 0x448ebbc9e1a31220a2f3830c18eef61b9bd070e5084b7fa2a359fe729184e0);\n}\n\n#[test]\nfn compute_l2_l1_hash() {\n // All zeroes\n let hash_result =\n compute_l2_to_l1_hash(AztecAddress::from_field(0), EthAddress::zero(), 0, 0, 0);\n assert(hash_result == 0x3b18c58c739716e76429634a61375c45b3b5cd470c22ab6d3e14cee23dd992);\n\n // Non-zero case\n let hash_result = compute_l2_to_l1_hash(\n AztecAddress::from_field(1),\n EthAddress::from_field(3),\n 5,\n 2,\n 4,\n );\n assert(hash_result == 0xaab2a5828156782b12a1dc6f336e2bc627eb1b9514b02d511f66296990c050);\n}\n\n#[test]\nfn silo_l2_to_l1_message_matches_typescript() {\n let version = 4;\n let chainId = 5;\n\n let hash = silo_l2_to_l1_message(\n L2ToL1Message { recipient: EthAddress::from_field(1), content: 2 }.scope(\n AztecAddress::from_field(3),\n ),\n version,\n chainId,\n );\n\n // The following value was generated by `yarn-project/stdlib/src/hash/hash.test.ts`\n let hash_from_typescript = 0x0081edf209e087ad31b3fd24263698723d57190bd1d6e9fe056fc0c0a68ee661;\n\n assert_eq(hash, hash_from_typescript);\n}\n\n#[test]\nunconstrained fn poseidon2_hash_with_separator_bounded_vec_matches_non_bounded_vec_version() {\n let inputs = BoundedVec::<Field, 4>::from_array([1, 2, 3]);\n let separator = 42;\n\n // Hash using bounded vec version\n let bounded_result = poseidon2_hash_with_separator_bounded_vec(inputs, separator);\n\n // Hash using regular version\n let regular_result = poseidon2_hash_with_separator([1, 2, 3], separator);\n\n // Results should match\n assert_eq(bounded_result, regular_result);\n}\n"
4561
4418
  },
4562
- "358": {
4419
+ "357": {
4563
4420
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/meta/mod.nr",
4564
4421
  "source": "use utils::derive_serialization_quotes;\n\npub mod utils;\n\n/// Generates the generic parameter declarations for a struct's trait implementation.\n///\n/// This function takes a struct type definition and generates the generic parameter declarations\n/// that go after the `impl` keyword. For example, given a struct with generics `N: u32` and `T`,\n/// it generates `<let N: u32, T>`.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate generic declarations for\n///\n/// # Returns\n/// A quoted code block containing the generic parameter declarations, or an empty quote if the struct\n/// has no generic parameters\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Container<T, let N: u32> {\n/// items: [T; N],\n/// count: u32\n/// }\n/// ```\n///\n/// This function generates:\n/// ```\n/// <let N: u32, T>\n/// ```\ncomptime fn get_generics_declarations(s: TypeDefinition) -> Quoted {\n let generics = s.generics();\n\n if generics.len() > 0 {\n let generics_declarations_items = generics\n .map(|(name, maybe_integer_typ)| {\n // The second item in the generics tuple is an Option of an integer type that is Some only if\n // the generic is numeric.\n if maybe_integer_typ.is_some() {\n // The generic is numeric, so we return a quote defined as e.g. \"let N: u32\"\n let integer_type = maybe_integer_typ.unwrap();\n quote {let $name: $integer_type}\n } else {\n // The generic is not numeric, so we return a quote containing the name of the generic (e.g. \"T\")\n quote {$name}\n }\n })\n .join(quote {,});\n quote {<$generics_declarations_items>}\n } else {\n // The struct doesn't have any generics defined, so we just return an empty quote.\n quote {}\n }\n}\n\n/// Generates the `where` clause for a trait implementation that constrains non-numeric generic type parameters.\n///\n/// This function takes a struct type definition and a trait name, and generates a `where` clause that\n/// requires all non-numeric generic type parameters to implement the specified trait.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate the where clause for\n/// - `trait_name`: The name of the trait that non-numeric generic parameters must implement\n///\n/// # Returns\n/// A quoted code block containing the where clause, or an empty quote if the struct has no non-numeric\n/// generic parameters\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Container<T, let N: u32> {\n/// items: [T; N],\n/// count: u32\n/// }\n/// ```\n///\n/// And trait name \"Serialize\", this function generates:\n/// ```\n/// where T: Serialize\n/// ```\ncomptime fn get_where_trait_clause(s: TypeDefinition, trait_name: Quoted) -> Quoted {\n let generics = s.generics();\n\n // The second item in the generics tuple is an Option of an integer type that is Some only if the generic is\n // numeric.\n let non_numeric_generics =\n generics.filter(|(_, maybe_integer_typ)| maybe_integer_typ.is_none());\n\n if non_numeric_generics.len() > 0 {\n let non_numeric_generics_declarations =\n non_numeric_generics.map(|(name, _)| quote {$name: $trait_name}).join(quote {,});\n quote {where $non_numeric_generics_declarations}\n } else {\n // There are no non-numeric generics, so we return an empty quote.\n quote {}\n }\n}\n\n/// Generates a `Serialize` trait implementation for a struct type.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A quoted code block containing the trait implementation\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Log<N> {\n/// fields: [Field; N],\n/// length: u32\n/// }\n/// ```\n///\n/// This function generates code equivalent to:\n/// ```\n/// impl<let N: u32> Serialize for Log<N> {\n/// let N: u32 = <[Field; N] as Serialize>::N + <u32 as Serialize>::N;\n///\n/// #[inline_always]\n/// fn serialize(self) -> [Field; Self::N] {\n/// let mut serialized_params = [0; _];\n/// let mut offset = 0;\n///\n/// let serialized_member = Serialize::serialize(self.fields);\n/// let serialized_member_len = <[Field; N] as Serialize>::N;\n/// for i in 0..serialized_member_len {\n/// serialized_params[i + offset] = serialized_member[i];\n/// }\n/// offset += serialized_member_len;\n///\n/// let serialized_member = Serialize::serialize(self.length);\n/// let serialized_member_len = <u32 as Serialize>::N;\n/// for i in 0..serialized_member_len {\n/// serialized_params[i + offset] = serialized_member[i];\n/// }\n/// offset += serialized_member_len;\n///\n/// serialized_params\n/// }\n/// }\n/// ```\npub comptime fn derive_serialize(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n\n // We care only about the name and type so we drop the last item of the tuple\n let params = nested_struct.0.fields(nested_struct.1).map(|(name, typ, _)| (name, typ));\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Serialize` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_serialize_clause = get_where_trait_clause(s, quote {Serialize});\n\n let (function_body, params_len_quote, serialized_params_name) =\n derive_serialization_quotes(params, true);\n\n quote {\n impl$generics_declarations $crate::traits::Serialize for $typ\n $where_serialize_clause\n {\n let N: u32 = $params_len_quote;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n $function_body\n\n $serialized_params_name\n }\n }\n }\n}\n\n/// Generates a `Deserialize` trait implementation for a given struct `s`.\n///\n/// # Arguments\n/// * `s` - The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A `Quoted` block containing the generated trait implementation\n///\n/// # Requirements\n/// Each struct member type must implement the `Deserialize` trait (it gets used in the generated code).\n///\n/// # Example\n/// For a struct like:\n/// ```\n/// struct MyStruct {\n/// x: AztecAddress,\n/// y: Field,\n/// }\n/// ```\n///\n/// This generates:\n/// ```\n/// impl Deserialize for MyStruct {\n/// let N: u32 = <AztecAddress as Deserialize>::N + <Field as Deserialize>::N;\n///\n/// fn deserialize(serialized: [Field; Self::N]) -> Self {\n/// let mut offset = 0;\n/// let mut member_fields = [0; <AztecAddress as Deserialize>::N];\n/// for i in 0..<AztecAddress as Deserialize>::N {\n/// member_fields[i] = serialized[i + offset];\n/// }\n/// let x = <AztecAddress as Deserialize>::deserialize(member_fields);\n/// offset += <AztecAddress as Deserialize>::N;\n///\n/// let mut member_fields = [0; <Field as Deserialize>::N];\n/// for i in 0..<Field as Deserialize>::N {\n/// member_fields[i] = serialized[i + offset];\n/// }\n/// let y = <Field as Deserialize>::deserialize(member_fields);\n/// offset += <Field as Deserialize>::N;\n///\n/// Self { x, y }\n/// }\n/// }\n/// ```\npub(crate) comptime fn derive_deserialize(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n let params = nested_struct.0.fields(nested_struct.1);\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Deserialize` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_deserialize_clause = get_where_trait_clause(s, quote {Deserialize});\n\n // The following will give us:\n // <type_of_struct_member_1 as Deserialize>::N + <type_of_struct_member_2 as Deserialize>::N + ...\n // (or 0 if the struct has no members)\n let right_hand_side_of_definition_of_n = if params.len() > 0 {\n params\n .map(|(_, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n <$param_type as $crate::traits::Deserialize>::N\n }\n })\n .join(quote {+})\n } else {\n quote {0}\n };\n\n // For structs containing a single member, we can enhance performance by directly deserializing the input array,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let function_body = if params.len() > 1 {\n // This generates deserialization code for each struct member and concatenates them together.\n let deserialization_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let mut member_fields = [0; <$param_type as Deserialize>::N];\n for i in 0..<$param_type as Deserialize>::N {\n member_fields[i] = serialized[i + offset];\n }\n let $param_name = <$param_type as Deserialize>::deserialize(member_fields);\n offset += <$param_type as Deserialize>::N;\n }\n })\n .join(quote {});\n\n // We join the struct member names with a comma to be used in the `Self { ... }` syntax\n // This will give us e.g. `a, b, c` for a struct with three fields named `a`, `b`, and `c`.\n let struct_members = params\n .map(|(param_name, _, _): (Quoted, Type, Quoted)| quote { $param_name })\n .join(quote {,});\n\n quote {\n let mut offset = 0;\n\n $deserialization_of_struct_members\n\n Self { $struct_members }\n }\n } else if params.len() == 1 {\n let param_name = params[0].0;\n quote {\n Self { $param_name: $crate::traits::Deserialize::deserialize(serialized) }\n }\n } else {\n quote {\n Self {}\n }\n };\n\n quote {\n impl$generics_declarations $crate::traits::Deserialize for $typ\n $where_deserialize_clause\n {\n let N: u32 = $right_hand_side_of_definition_of_n;\n\n #[inline_always]\n fn deserialize(serialized: [Field; Self::N]) -> Self {\n $function_body\n }\n }\n }\n}\n\n/// Generates a `Packable` trait implementation for a given struct `s`.\n///\n/// # Arguments\n/// * `s` - The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A `Quoted` block containing the generated trait implementation\n///\n/// # Requirements\n/// Each struct member type must implement the `Packable` trait (it gets used in the generated code).\n///\n/// # Example\n/// For a struct like:\n/// ```\n/// struct MyStruct {\n/// x: AztecAddress,\n/// y: Field,\n/// }\n/// ```\n///\n/// This generates:\n/// ```\n/// impl Packable for MyStruct {\n/// let N: u32 = 2;\n///\n/// fn pack(self) -> [Field; 2] {\n/// let mut result: [Field; 2] = [0_Field; 2];\n/// let mut offset: u32 = 0_u32;\n/// let packed_member: [Field; 1] = self.x.pack();\n/// let packed_member_len: u32 = <Field as Packable>::N;\n/// for i in 0_u32..packed_member_len {\n/// {\n/// result[i + offset] = packed_member[i];\n/// }\n/// }\n/// offset = offset + packed_member_len;\n/// let packed_member: [Field; 1] = self.y.pack();\n/// let packed_member_len: u32 = <Field as Packable>::N;\n/// for i in 0_u32..packed_member_len {\n/// {\n/// result[i + offset] = packed_member[i];\n/// }\n/// }\n/// offset = offset + packed_member_len;\n/// result\n/// }\n///\n/// fn unpack(packed: [Field; 2]) -> Self {\n/// let mut offset: u32 = 0_u32;\n/// let mut member_fields: [Field; 1] = [0_Field; 1];\n/// for i in 0_u32..<AztecAddress as Packable>::N {\n/// member_fields[i] = packed[i + offset];\n/// }\n/// let x: AztecAddress = <AztecAddress as Packable>::unpack(member_fields);\n/// offset = offset + <AztecAddress as Packable>::N;\n/// let mut member_fields: [Field; 1] = [0_Field; 1];\n/// for i in 0_u32..<Field as Packable>::N {\n/// member_fields[i] = packed[i + offset];\n/// }\n/// let y: Field = <Field as Packable>::unpack(member_fields);\n/// offset = offset + <Field as Packable>::N;\n/// Self { x: x, y: y }\n/// }\n/// }\n/// ```\npub comptime fn derive_packable(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n let params = nested_struct.0.fields(nested_struct.1);\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Packable` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_packable_clause = get_where_trait_clause(s, quote {Packable});\n\n // The following will give us:\n // <type_of_struct_member_1 as Packable>::N + <type_of_struct_member_2 as Packable>::N + ...\n // (or 0 if the struct has no members)\n let right_hand_side_of_definition_of_n = if params.len() > 0 {\n params\n .map(|(_, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n <$param_type as $crate::traits::Packable>::N\n }\n })\n .join(quote {+})\n } else {\n quote {0}\n };\n\n // For structs containing a single member, we can enhance performance by directly returning the packed member,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let pack_function_body = if params.len() > 1 {\n // For multiple struct members, generate packing code that:\n // 1. Packs each member\n // 2. Copies the packed fields into the result array at the correct offset\n // 3. Updates the offset for the next member\n let packing_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let packed_member = $crate::traits::Packable::pack(self.$param_name);\n let packed_member_len = <$param_type as $crate::traits::Packable>::N;\n for i in 0..packed_member_len {\n result[i + offset] = packed_member[i];\n }\n offset += packed_member_len;\n }\n })\n .join(quote {});\n\n quote {\n let mut result = [0; Self::N];\n let mut offset = 0;\n\n $packing_of_struct_members\n\n result\n }\n } else if params.len() == 1 {\n let param_name = params[0].0;\n quote {\n $crate::traits::Packable::pack(self.$param_name)\n }\n } else {\n quote {\n [0; Self::N]\n }\n };\n\n // For structs containing a single member, we can enhance performance by directly unpacking the input array,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let unpack_function_body = if params.len() > 1 {\n // For multiple struct members, generate unpacking code that:\n // 1. Unpacks each member\n // 2. Copies packed fields into member array at correct offset\n // 3. Updates offset for next member\n let unpacking_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let mut member_fields = [0; <$param_type as $crate::traits::Packable>::N];\n for i in 0..<$param_type as $crate::traits::Packable>::N {\n member_fields[i] = packed[i + offset];\n }\n let $param_name = <$param_type as $crate::traits::Packable>::unpack(member_fields);\n offset += <$param_type as $crate::traits::Packable>::N;\n }\n })\n .join(quote {});\n\n // We join the struct member names with a comma to be used in the `Self { ... }` syntax\n let struct_members = params\n .map(|(param_name, _, _): (Quoted, Type, Quoted)| quote { $param_name })\n .join(quote {,});\n\n quote {\n let mut offset = 0;\n $unpacking_of_struct_members\n Self { $struct_members }\n }\n } else if params.len() == 1 {\n let param_name = params[0].0;\n quote {\n Self { $param_name: $crate::traits::Packable::unpack(packed) }\n }\n } else {\n quote {\n Self {}\n }\n };\n\n quote {\n impl$generics_declarations $crate::traits::Packable for $typ\n $where_packable_clause\n {\n let N: u32 = $right_hand_side_of_definition_of_n;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n $pack_function_body\n }\n\n #[inline_always]\n fn unpack(packed: [Field; Self::N]) -> Self {\n $unpack_function_body\n }\n }\n }\n}\n\nmod test {\n use crate::traits::{Deserialize, Packable, Serialize};\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct Empty {}\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct Smol {\n a: Field,\n b: Field,\n }\n\n #[derive(Deserialize, Eq, Serialize)]\n pub struct HasArray {\n a: [Field; 2],\n b: bool,\n }\n\n #[derive(Deserialize, Eq, Serialize)]\n pub struct Fancier {\n a: Smol,\n b: [Field; 2],\n c: [u8; 3],\n d: str<16>,\n }\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct HasArrayWithGenerics<T, let N: u32> {\n pub fields: [T; N],\n pub length: u32,\n }\n\n #[test]\n fn serde_on_empty() {\n let original = Empty {};\n let serialized = original.serialize();\n assert_eq(serialized, [], \"Serialized does not match empty array\");\n let deserialized = Empty::deserialize(serialized);\n assert_eq(deserialized, original, \"Deserialized does not match original\");\n }\n\n #[test]\n fn packable_on_empty() {\n let original = Empty {};\n let packed = original.pack();\n assert_eq(packed, [], \"Packed does not match empty array\");\n let unpacked = Empty::unpack(packed);\n assert_eq(unpacked, original, \"Unpacked does not match original\");\n }\n\n #[test]\n fn serde_on_smol() {\n let smol = Smol { a: 1, b: 2 };\n let serialized = smol.serialize();\n assert(serialized == [1, 2], serialized);\n let deserialized = Smol::deserialize(serialized);\n assert(deserialized == smol);\n\n // None of the struct members implements the `Packable` trait so the packed and serialized data should be the same\n let packed = smol.pack();\n assert_eq(packed, serialized, \"Packed does not match serialized\");\n }\n\n #[test]\n fn serde_on_has_array() {\n let has_array = HasArray { a: [1, 2], b: true };\n let serialized = has_array.serialize();\n assert(serialized == [1, 2, 1], serialized);\n let deserialized = HasArray::deserialize(serialized);\n assert(deserialized == has_array);\n }\n\n #[test]\n fn serde_on_fancier() {\n let fancier =\n Fancier { a: Smol { a: 1, b: 2 }, b: [0, 1], c: [1, 2, 3], d: \"metaprogramming!\" };\n let serialized = fancier.serialize();\n assert(\n serialized\n == [\n 1, 2, 0, 1, 1, 2, 3, 0x6d, 0x65, 0x74, 0x61, 0x70, 0x72, 0x6f, 0x67, 0x72, 0x61,\n 0x6d, 0x6d, 0x69, 0x6e, 0x67, 0x21,\n ],\n serialized,\n );\n let deserialized = Fancier::deserialize(serialized);\n assert(deserialized == fancier);\n }\n\n #[test]\n fn serde_on_contains_array_with_generics() {\n let struct_with_array_of_generics = HasArrayWithGenerics { fields: [1, 2, 3], length: 3 };\n let serialized = struct_with_array_of_generics.serialize();\n assert(serialized == [1, 2, 3, 3], serialized);\n let deserialized = HasArrayWithGenerics::deserialize(serialized);\n assert(deserialized == struct_with_array_of_generics);\n }\n\n #[test]\n fn packable_on_contains_array_with_generics() {\n let struct_with_array_of_generics = HasArrayWithGenerics { fields: [1, 2, 3], length: 3 };\n let packed = struct_with_array_of_generics.pack();\n assert(packed == [1, 2, 3, 3], packed);\n\n let unpacked = HasArrayWithGenerics::unpack(packed);\n assert(unpacked == struct_with_array_of_generics);\n }\n\n}\n"
4565
4422
  },
4566
- "359": {
4423
+ "358": {
4567
4424
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/meta/utils.nr",
4568
4425
  "source": "/// Generates serialization code for a list of parameters and the total length of the serialized array\n///\n/// # Parameters\n/// - `params`: A list of (name, type) tuples to serialize\n/// - `use_self_prefix`: If true, parameters are accessed as `self.$param_name` (for struct members).\n/// If false, parameters are accessed directly as `$param_name` (for function parameters).\n///\n/// # Returns\n/// A tuple containing:\n/// - Quoted code that serializes the parameters into an array named `serialized_params`\n/// - Quoted code that evaluates to the total length of the serialized array\n/// - Quoted code containing the name of the serialized array\npub comptime fn derive_serialization_quotes(\n params: [(Quoted, Type)],\n use_self_prefix: bool,\n) -> (Quoted, Quoted, Quoted) {\n let prefix_quote = if use_self_prefix {\n quote { self. }\n } else {\n quote {}\n };\n\n let params_len_quote = get_params_len_quote(params);\n let serialized_params_name = quote { serialized_params };\n\n let body = if params.len() == 0 {\n quote {\n let $serialized_params_name: [Field; 0] = [];\n }\n } else if params.len() == 1 {\n // When we have only a single parameter on the input, we can enhance performance by directly returning\n // the serialized member, bypassing the need for loop-based array construction. While this optimization yields\n // significant benefits in Brillig where the loops are expected to not be optimized, it is not relevant in ACIR\n // where the loops are expected to be optimized away.\n\n let param_name = params[0].0;\n quote {\n let $serialized_params_name = $crate::traits::Serialize::serialize($prefix_quote$param_name);\n }\n } else {\n // For multiple struct members, generate serialization code that:\n // 1. Serializes each member\n // 2. Copies the serialized fields into the serialize array at the correct offset\n // 3. Updates the offset for the next member\n let serialization_of_struct_members = params\n .map(|(param_name, param_type): (Quoted, Type)| {\n quote {\n let serialized_member = $crate::traits::Serialize::serialize($prefix_quote$param_name);\n let serialized_member_len = <$param_type as $crate::traits::Serialize>::N;\n for i in 0..serialized_member_len {\n $serialized_params_name[i + offset] = serialized_member[i];\n }\n offset += serialized_member_len;\n }\n })\n .join(quote {});\n\n quote {\n let mut $serialized_params_name = [0; $params_len_quote];\n let mut offset = 0;\n\n $serialization_of_struct_members\n }\n };\n\n (body, params_len_quote, serialized_params_name)\n}\n\n/// Generates a quoted expression that computes the total serialized length of function parameters.\n///\n/// # Parameters\n/// * `params` - An array of tuples where each tuple contains a quoted parameter name and its Type. The type needs\n/// to implement the Serialize trait.\n///\n/// # Returns\n/// A quoted expression that evaluates to:\n/// * `0` if there are no parameters\n/// * `(<type1 as Serialize>::N + <type2 as Serialize>::N + ...)` for one or more parameters\npub comptime fn get_params_len_quote(params: [(Quoted, Type)]) -> Quoted {\n if params.len() == 0 {\n quote { 0 }\n } else {\n let params_quote_without_parentheses = params\n .map(|(_, param_type): (Quoted, Type)| {\n quote {\n <$param_type as $crate::traits::Serialize>::N\n }\n })\n .join(quote {+});\n quote { ($params_quote_without_parentheses) }\n }\n}\n"
4569
4426
  },
4570
- "361": {
4427
+ "360": {
4571
4428
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/poseidon2.nr",
4572
4429
  "source": "use crate::constants::TWO_POW_64;\nuse crate::traits::{Deserialize, Serialize};\nuse std::meta::derive;\n// NB: This is a clone of noir/noir-repo/noir_stdlib/src/hash/poseidon2.nr\n// It exists as we sometimes need to perform custom absorption, but the stdlib version\n// has a private absorb() method (it's also designed to just be a hasher)\n// Can be removed when standalone noir poseidon lib exists: See noir#6679\n\ncomptime global RATE: u32 = 3;\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct Poseidon2Sponge {\n pub cache: [Field; 3],\n pub state: [Field; 4],\n pub cache_size: u32,\n pub squeeze_mode: bool, // 0 => absorb, 1 => squeeze\n}\n\nimpl Poseidon2Sponge {\n #[no_predicates]\n pub fn hash<let N: u32>(input: [Field; N], message_size: u32) -> Field {\n Poseidon2Sponge::hash_internal(input, message_size, message_size != N)\n }\n\n pub(crate) fn new(iv: Field) -> Poseidon2Sponge {\n let mut result =\n Poseidon2Sponge { cache: [0; 3], state: [0; 4], cache_size: 0, squeeze_mode: false };\n result.state[RATE] = iv;\n result\n }\n\n fn perform_duplex(&mut self) {\n // add the cache into sponge state\n for i in 0..RATE {\n // We effectively zero-pad the cache by only adding to the state\n // cache that is less than the specified `cache_size`\n if i < self.cache_size {\n self.state[i] += self.cache[i];\n }\n }\n self.state = std::hash::poseidon2_permutation(self.state, 4);\n }\n\n pub fn absorb(&mut self, input: Field) {\n assert(!self.squeeze_mode);\n if self.cache_size == RATE {\n // If we're absorbing, and the cache is full, apply the sponge permutation to compress the cache\n self.perform_duplex();\n self.cache[0] = input;\n self.cache_size = 1;\n } else {\n // If we're absorbing, and the cache is not full, add the input into the cache\n self.cache[self.cache_size] = input;\n self.cache_size += 1;\n }\n }\n\n pub fn squeeze(&mut self) -> Field {\n assert(!self.squeeze_mode);\n // If we're in absorb mode, apply sponge permutation to compress the cache.\n self.perform_duplex();\n self.squeeze_mode = true;\n\n // Pop one item off the top of the permutation and return it.\n self.state[0]\n }\n\n fn hash_internal<let N: u32>(\n input: [Field; N],\n in_len: u32,\n is_variable_length: bool,\n ) -> Field {\n let iv: Field = (in_len as Field) * TWO_POW_64;\n let mut sponge = Poseidon2Sponge::new(iv);\n for i in 0..input.len() {\n if i < in_len {\n sponge.absorb(input[i]);\n }\n }\n\n // In the case where the hash preimage is variable-length, we append `1` to the end of the input, to distinguish\n // from fixed-length hashes. (the combination of this additional field element + the hash IV ensures\n // fixed-length and variable-length hashes do not collide)\n if is_variable_length {\n sponge.absorb(1);\n }\n sponge.squeeze()\n }\n}\n"
4573
4430
  },
4574
- "389": {
4431
+ "388": {
4575
4432
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/traits.nr",
4576
4433
  "source": "use crate::meta::{derive_deserialize, derive_packable, derive_serialize};\nuse crate::utils::field::field_from_bytes;\n\n// Trait: is_empty\n//\n// The general is_empty trait checks if a data type is is empty,\n// and it defines empty for the basic data types as 0.\n//\n// If a Field is equal to zero, then it is regarded as zero.\n// We will go with this definition for now, however it can be problematic\n// if a value can actually be zero. In a future refactor, we can\n// use the optional type for safety. Doing it now would lead to a worse devex\n// and would make it harder to sync up with the cpp code.\n// Preferred over Default trait to convey intent, as default doesn't necessarily mean empty.\npub trait Empty: Eq {\n fn empty() -> Self;\n\n fn is_empty(self) -> bool {\n self.eq(Self::empty())\n }\n\n // Requires this Noir fix: https://github.com/noir-lang/noir/issues/9002\n // fn assert_not_empty<let U: u32>(self, msg: str<U>) { // This msg version was failing with weird compiler errors.\n // // We provide a default impl but it's likely inefficient.\n // // The reason we include this function is because there's a lot of\n // // opportunity for optimisation on a per-struct basis.\n // // You only need to show one element is not empty to know that the whole thing\n // // is not empty.\n // // If you know an element of your struct which should always be nonempty,\n // // you can write an impl that solely checks that that element is nonempty.\n // assert(!self.is_empty(), msg);\n // }\n\n // This default impl is overwritten by types like arrays, because there's a much\n // more efficient approach.\n fn assert_empty<let S: u32>(self, msg: str<S>) {\n assert(self.is_empty(), msg);\n }\n}\n\nimpl Empty for Field {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\n\nimpl Empty for bool {\n #[inline_always]\n fn empty() -> Self {\n false\n }\n}\n\nimpl Empty for u1 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u8 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u16 {\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u32 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u64 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u128 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\n\nimpl<T, let N: u32> Empty for [T; N]\nwhere\n T: Empty,\n{\n #[inline_always]\n fn empty() -> Self {\n [T::empty(); N]\n }\n\n fn is_empty(self) -> bool {\n self.all(|elem| elem.is_empty())\n }\n\n fn assert_empty<let S: u32>(self, msg: str<S>) -> () {\n self.for_each(|elem| elem.assert_empty(msg))\n }\n}\n\nimpl<T> Empty for [T]\nwhere\n T: Empty,\n{\n #[inline_always]\n fn empty() -> Self {\n [T::empty()]\n }\n\n fn is_empty(self) -> bool {\n self.all(|elem| elem.is_empty())\n }\n\n fn assert_empty<let S: u32>(self, msg: str<S>) -> () {\n self.for_each(|elem| elem.assert_empty(msg))\n }\n}\nimpl<A, B> Empty for (A, B)\nwhere\n A: Empty,\n B: Empty,\n{\n #[inline_always]\n fn empty() -> Self {\n (A::empty(), B::empty())\n }\n}\n\nimpl<T> Empty for Option<T>\nwhere\n T: Eq,\n{\n #[inline_always]\n fn empty() -> Self {\n Option::none()\n }\n}\n\n// pub fn is_empty<T>(item: T) -> bool\n// where\n// T: Empty,\n// {\n// item.eq(T::empty())\n// }\n\n// pub fn is_empty_array<T, let N: u32>(array: [T; N]) -> bool\n// where\n// T: Empty,\n// {\n// array.all(|elem| is_empty(elem))\n// }\n\n// pub fn assert_empty<T>(item: T) -> ()\n// where\n// T: Empty,\n// {\n// assert(item.eq(T::empty()))\n// }\n\n// pub fn assert_empty_array<T, let N: u32>(array: [T; N]) -> ()\n// where\n// T: Empty,\n// {\n// // A cheaper option than `is_empty_array` for if you don't need to gracefully\n// // handle a bool result.\n// // Avoids the `&` operator of `is_empty_array`'s `.all()` call.\n// for i in 0..N {\n// assert(is_empty(array[i]));\n// }\n// }\n\npub trait Hash {\n fn hash(self) -> Field;\n}\n\npub trait ToField {\n fn to_field(self) -> Field;\n}\n\nimpl ToField for Field {\n #[inline_always]\n fn to_field(self) -> Field {\n self\n }\n}\n\nimpl ToField for bool {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u1 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u8 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u16 {\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u32 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u64 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u128 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl<let N: u32> ToField for str<N> {\n #[inline_always]\n fn to_field(self) -> Field {\n assert(N < 32, \"String doesn't fit in a field, consider using Serialize instead\");\n field_from_bytes(self.as_bytes(), true)\n }\n}\n\npub trait FromField {\n fn from_field(value: Field) -> Self;\n}\n\nimpl FromField for Field {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value\n }\n}\n\nimpl FromField for bool {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value != 0\n }\n}\nimpl FromField for u1 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u1\n }\n}\nimpl FromField for u8 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u8\n }\n}\nimpl FromField for u16 {\n fn from_field(value: Field) -> Self {\n value as u16\n }\n}\nimpl FromField for u32 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u32\n }\n}\nimpl FromField for u64 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u64\n }\n}\nimpl FromField for u128 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u128\n }\n}\n\n// docs:start:serialize\n/// Trait for serializing Noir types into arrays of Fields.\n///\n/// An implementation of the Serialize trait has to follow Noir's intrinsic serialization (each member of a struct\n/// converted directly into one or more Fields without any packing or compression). This trait (and Deserialize) are\n/// typically used to communicate between Noir and TypeScript (via oracles and function arguments).\n///\n/// # On Following Noir's Intrinsic Serialization\n/// When calling a Noir function from TypeScript (TS), first the function arguments are serialized into an array\n/// of fields. This array is then included in the initial witness. Noir's intrinsic serialization is then used\n/// to deserialize the arguments from the witness. When the same Noir function is called from Noir this Serialize trait\n/// is used instead of the serialization in TS. For this reason we need to have a match between TS serialization,\n/// Noir's intrinsic serialization and the implementation of this trait. If there is a mismatch, the function calls\n/// fail with an arguments hash mismatch error message.\n///\n/// # Associated Constants\n/// * `N` - The length of the output Field array, known at compile time\n///\n/// # Example\n/// ```\n/// impl<let N: u32> Serialize for str<N> {\n/// let N: u32 = N;\n///\n/// fn serialize(self) -> [Field; Self::N] {\n/// let bytes = self.as_bytes();\n/// let mut fields = [0; Self::N];\n/// for i in 0..bytes.len() {\n/// fields[i] = bytes[i] as Field; // Each byte gets its own Field\n/// }\n/// fields\n/// }\n/// }\n/// ```\n#[derive_via(derive_serialize)]\npub trait Serialize {\n let N: u32;\n\n fn serialize(self) -> [Field; N];\n}\n// docs:end:serialize\n\nimpl<let M: u32> Serialize for str<M> {\n let N: u32 = M;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let bytes = self.as_bytes();\n let mut fields = [0; Self::N];\n for i in 0..bytes.len() {\n fields[i] = bytes[i] as Field;\n }\n fields\n }\n}\n\n/// Implementation of Deserialize for BoundedVec.\n///\n/// This implementation deserializes a BoundedVec from an array of Fields. The array contains:\n/// 1. The serialized items, each taking up T::N Fields\n/// 2. The length of the BoundedVec as the last Field\n///\n/// # Type Parameters\n/// * `T` - The type of items stored in the BoundedVec, must implement Deserialize\n/// * `M` - The maximum length of the BoundedVec\n///\n/// # Fields Array Layout\n/// [item1_field1, item1_field2, ..., item2_field1, item2_field2, ..., length]\n/// Where:\n/// - itemN_fieldM: The M-th Field of the N-th item (T::N Fields per item)\n/// - length: The number of items in the BoundedVec (1 Field)\n///\n/// Total length N = T::N * M + 1, where:\n/// - T::N is the number of Fields needed to deserialize one item\n/// - M is the maximum length of the BoundedVec\n/// - +1 is for storing the length\n///\n/// # Note\n/// Not deriving this because it's not supported to call derive_deserialize on a \"remote\" struct (and it will never\n/// be supported).\nimpl<T, let M: u32> Deserialize for BoundedVec<T, M>\nwhere\n T: Deserialize,\n{\n let N: u32 = <T as Deserialize>::N * M + 1;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n let mut new_bounded_vec: BoundedVec<T, M> = BoundedVec::new();\n\n // Length is stored in the last field as we need to match intrinsic Noir serialization and the `len` struct\n // field is after `storage` struct field (see `bounded_vec.nr` in noir-stdlib)\n let len = fields[<T as Deserialize>::N * M] as u32;\n\n for i in 0..len {\n let mut nested_fields = [0; <T as Deserialize>::N];\n for j in 0..<T as Deserialize>::N {\n nested_fields[j] = fields[i * <T as Deserialize>::N + j];\n }\n\n let item = T::deserialize(nested_fields);\n new_bounded_vec.push(item);\n }\n\n new_bounded_vec\n }\n}\n\n// This may cause issues if used as program input, because noir disallows empty arrays for program input.\n// I think this is okay because I don't foresee a unit type being used as input. But leaving this comment as a hint\n// if someone does run into this in the future.\nimpl Deserialize for () {\n let N: u32 = 0;\n\n fn deserialize(_fields: [Field; Self::N]) -> Self {\n ()\n }\n}\n\n// Note: Not deriving this because it's not supported to call derive_serialize on a \"remote\" struct (and it will never\n// be supported).\nimpl<T, let M: u32> Serialize for BoundedVec<T, M>\nwhere\n T: Serialize,\n{\n let N: u32 = <T as Serialize>::N * M + 1; // +1 for the length of the BoundedVec\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let mut fields = [0; Self::N];\n\n let storage = self.storage();\n\n for i in 0..M {\n let serialized_item = storage[i].serialize();\n\n for j in 0..<T as Serialize>::N {\n fields[i * <T as Serialize>::N + j] = serialized_item[j];\n }\n }\n\n // Length is stored in the last field as we need to match intrinsic Noir serialization and the `len` struct\n // field is after `storage` struct field (see `bounded_vec.nr` in noir-stdlib)\n fields[<T as Serialize>::N * M] = self.len() as Field;\n\n fields\n }\n}\n\n// docs:start:deserialize\n/// Trait for deserializing Noir types from arrays of Fields.\n///\n/// An implementation of the Deserialize trait has to follow Noir's intrinsic serialization (each member of a struct\n/// converted directly into one or more Fields without any packing or compression). This trait is typically used when\n/// deserializing return values from function calls in Noir. Since the same function could be called from TypeScript\n/// (TS), in which case the TS deserialization would get used, we need to have a match between the 2.\n///\n/// # Associated Constants\n/// * `N` - The length of the input Field array, known at compile time\n///\n/// # Example\n/// ```\n/// impl<let M: u32> Deserialize for str<M> {\n/// let N: u32 = M;\n///\n/// #[inline_always]\n/// fn deserialize(fields: [Field; Self::N]) -> Self {\n/// str::<Self::N>::from(fields.map(|value| value as u8))\n/// }\n/// }\n/// ```\n#[derive_via(derive_deserialize)]\npub trait Deserialize {\n let N: u32;\n\n fn deserialize(fields: [Field; N]) -> Self;\n}\n// docs:end:deserialize\n\nimpl<let M: u32> Deserialize for str<M> {\n let N: u32 = M;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n str::<Self::N>::from(fields.map(|value| value as u8))\n }\n}\n\n/// Trait for efficiently packing and unpacking Noir types into and from arrays of Fields.\n///\n/// The `Packable` trait allows types to be serialized and deserialized with a focus on minimizing the size of\n/// the resulting Field array. This trait is used when storage efficiency is critical (e.g. when storing data\n/// in the contract's public storage).\n///\n/// # Associated Constants\n/// * `N` - The length of the Field array, known at compile time\n#[derive_via(derive_packable)]\npub trait Packable {\n let N: u32;\n\n /// Packs the current value into a compact array of `Field` elements.\n fn pack(self) -> [Field; N];\n\n /// Unpacks a compact array of `Field` elements into the original value.\n fn unpack(fields: [Field; N]) -> Self;\n}\n\n#[test]\nunconstrained fn bounded_vec_serialization() {\n // Test empty BoundedVec\n let empty_vec: BoundedVec<Field, 3> = BoundedVec::from_array([]);\n let serialized = empty_vec.serialize();\n let deserialized = BoundedVec::<Field, 3>::deserialize(serialized);\n assert_eq(empty_vec, deserialized);\n assert_eq(deserialized.len(), 0);\n\n // Test partially filled BoundedVec\n let partial_vec: BoundedVec<[u32; 2], 3> = BoundedVec::from_array([[1, 2]]);\n let serialized = partial_vec.serialize();\n let deserialized = BoundedVec::<[u32; 2], 3>::deserialize(serialized);\n assert_eq(partial_vec, deserialized);\n assert_eq(deserialized.len(), 1);\n assert_eq(deserialized.get(0), [1, 2]);\n\n // Test full BoundedVec\n let full_vec: BoundedVec<[u32; 2], 3> = BoundedVec::from_array([[1, 2], [3, 4], [5, 6]]);\n let serialized = full_vec.serialize();\n let deserialized = BoundedVec::<[u32; 2], 3>::deserialize(serialized);\n assert_eq(full_vec, deserialized);\n assert_eq(deserialized.len(), 3);\n assert_eq(deserialized.get(0), [1, 2]);\n assert_eq(deserialized.get(1), [3, 4]);\n assert_eq(deserialized.get(2), [5, 6]);\n}\n"
4577
4434
  },
4578
- "392": {
4435
+ "391": {
4579
4436
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/type_serialization.nr",
4580
4437
  "source": "use crate::traits::{Deserialize, Serialize};\n\nglobal U1_SERIALIZED_LEN: u32 = 1;\nglobal BOOL_SERIALIZED_LEN: u32 = 1;\nglobal U8_SERIALIZED_LEN: u32 = 1;\nglobal U16_SERIALIZED_LEN: u32 = 1;\nglobal U32_SERIALIZED_LEN: u32 = 1;\nglobal U64_SERIALIZED_LEN: u32 = 1;\nglobal U128_SERIALIZED_LEN: u32 = 1;\nglobal FIELD_SERIALIZED_LEN: u32 = 1;\nglobal I8_SERIALIZED_LEN: u32 = 1;\nglobal I16_SERIALIZED_LEN: u32 = 1;\nglobal I32_SERIALIZED_LEN: u32 = 1;\nglobal I64_SERIALIZED_LEN: u32 = 1;\n\nimpl Serialize for bool {\n let N: u32 = BOOL_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for bool {\n let N: u32 = BOOL_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> bool {\n fields[0] != 0\n }\n}\n\nimpl Serialize for u1 {\n let N: u32 = U1_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u1 {\n let N: u32 = U1_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u1\n }\n}\n\nimpl Serialize for u8 {\n let N: u32 = U8_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u8 {\n let N: u32 = U8_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u8\n }\n}\n\nimpl Serialize for u16 {\n let N: u32 = U16_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u16 {\n let N: u32 = U16_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u16\n }\n}\n\nimpl Serialize for u32 {\n let N: u32 = U32_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u32 {\n let N: u32 = U32_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u32\n }\n}\n\nimpl Serialize for u64 {\n let N: u32 = U64_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u64 {\n let N: u32 = U64_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u64\n }\n}\n\nimpl Serialize for u128 {\n let N: u32 = U128_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u128 {\n let N: u32 = U128_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u128\n }\n}\n\nimpl Serialize for Field {\n let N: u32 = FIELD_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self]\n }\n}\n\nimpl Deserialize for Field {\n let N: u32 = FIELD_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0]\n }\n}\n\nimpl Serialize for i8 {\n let N: u32 = I8_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u8 as Field]\n }\n}\n\nimpl Deserialize for i8 {\n let N: u32 = I8_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u8 as i8\n }\n}\n\nimpl Serialize for i16 {\n let N: u32 = I16_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u16 as Field]\n }\n}\n\nimpl Deserialize for i16 {\n let N: u32 = I16_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u16 as i16\n }\n}\n\nimpl Serialize for i32 {\n let N: u32 = I32_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u32 as Field]\n }\n}\n\nimpl Deserialize for i32 {\n let N: u32 = I32_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u32 as i32\n }\n}\n\nimpl Serialize for i64 {\n let N: u32 = I64_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u64 as Field]\n }\n}\n\nimpl Deserialize for i64 {\n let N: u32 = I64_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u64 as i64\n }\n}\n\nimpl<T, let M: u32> Serialize for [T; M]\nwhere\n T: Serialize,\n{\n let N: u32 = <T as Serialize>::N * M;\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let mut result: [Field; _] = std::mem::zeroed();\n for i in 0..M {\n let serialized_t = self[i].serialize();\n for j in 0..<T as Serialize>::N {\n result[i * <T as Serialize>::N + j] = serialized_t[j];\n }\n }\n result\n }\n}\n\nimpl<T, let M: u32> Deserialize for [T; M]\nwhere\n T: Deserialize,\n{\n let N: u32 = <T as Deserialize>::N * M;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n let mut reader = crate::utils::reader::Reader::new(fields);\n let mut result: [T; M] = std::mem::zeroed();\n reader.read_struct_array::<T, <T as Deserialize>::N, M>(Deserialize::deserialize, result)\n }\n}\n\nimpl<T> Serialize for Option<T>\nwhere\n T: Serialize,\n{\n let N: u32 = <T as Serialize>::N + 1;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let mut result: [Field; Self::N] = std::mem::zeroed();\n\n result[0] = if self.is_some() { 1 } else { 0 };\n\n let value_serialized = self.unwrap_unchecked().serialize();\n for i in 0..<T as Serialize>::N {\n result[1 + i] = value_serialized[i];\n }\n\n result\n }\n}\n\nimpl<T> Deserialize for Option<T>\nwhere\n T: Deserialize,\n{\n let N: u32 = <T as Deserialize>::N + 1;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n if fields[0] == 1 {\n let mut value_fields = [0; <T as Deserialize>::N];\n for i in 0..<T as Deserialize>::N {\n value_fields[i] = fields[1 + i];\n }\n\n Option::some(T::deserialize(value_fields))\n } else {\n Option::none()\n }\n }\n}\n\nmod test {\n use crate::traits::{Deserialize, Serialize};\n\n #[test]\n fn u16_serialization() {\n let a: u16 = 10;\n assert_eq(a, u16::deserialize(a.serialize()));\n }\n\n #[test]\n fn i8_serialization() {\n let a: i8 = -10;\n assert_eq(a, i8::deserialize(a.serialize()));\n }\n\n #[test]\n fn i16_serialization() {\n let a: i16 = -10;\n assert_eq(a, i16::deserialize(a.serialize()));\n }\n\n #[test]\n fn i32_serialization() {\n let a: i32 = -10;\n assert_eq(a, i32::deserialize(a.serialize()));\n }\n\n #[test]\n fn i64_serialization() {\n let a: i64 = -10;\n assert_eq(a, i64::deserialize(a.serialize()));\n }\n\n #[test]\n fn option_field_serialization() {\n let opt_some = Option::some(5);\n assert_eq(Option::<_>::deserialize(opt_some.serialize()), opt_some);\n\n let opt_none = Option::none();\n assert_eq(Option::<Field>::deserialize(opt_none.serialize()), opt_none);\n }\n\n #[test]\n fn array_serialization() {\n let array = [1, 2, 3, 4];\n\n let serialized: [Field; 4] = array.serialize();\n let deserialized: [Field; 4] = Deserialize::deserialize(serialized);\n assert_eq(deserialized, array);\n }\n\n #[test]\n fn nested_array_serialization() {\n let nested_array = [[1, 2, 3, 4], [5, 6, 7, 8]];\n\n let serialized: [Field; 8] = nested_array.serialize();\n let deserialized: [[Field; 4]; 2] = Deserialize::deserialize(serialized);\n\n assert_eq(deserialized, nested_array);\n }\n\n #[test]\n fn option_array_serialization() {\n let opt_some = Option::some([2, 5]);\n assert_eq(Option::<_>::deserialize(opt_some.serialize()), opt_some);\n\n let opt_none = Option::none();\n assert_eq(Option::<Field>::deserialize(opt_none.serialize()), opt_none);\n }\n}\n"
4581
4438
  },