@aztec/accounts 3.0.0-nightly.20251204 → 3.0.0-nightly.20251206
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
|
@@ -1988,7 +1988,7 @@
|
|
|
1988
1988
|
}
|
|
1989
1989
|
},
|
|
1990
1990
|
"bytecode": "H4sIAAAAAAAA/+x9CbhOVfv+3pxzOM45OFIRZZvneYooSZmSZo2GUGQmosihgQZjcwhRSOY5UwOVypQKlaKUKFNmiv/z1H5rv9t6z173Ou9a+/e/rm9d19P2Pd/a537Wutdzr/u85yTb+mcUdZ9t2rR75KGO7dt0792mc/eHOvbu3q5rnzZt2vfo3ueh3n3bP9Sj9/50y7o5/z+TbYrs7jMbhePLRZ7eP6cL5l1A0cCXu4giw5e7WJArLPh6lwpylwlyRQQ5R4BRVJArJsgVF+RKuF8zwZIYtvt03GeVDjf03lV1UtmlN167eMiQO+4tU/3XJgOW9Rxzza5jzx+i/39W9v/mBowKWcGZHYyT3fu1U63/Fmy7dfKzpPu/S7lP/rqReXPoz3Mp5lHMzx79xbP56g0Y9gXA2hbI7qF9U4aXWH6vgZW1OktY8nUulOfa9tYZeS/B+q8Zz3sBrBuoJQpvkV8ZFrkHg4u7wAq3uMXZswC4ODv+3pLs8uyr1rXE00mOJT9QrEUuVnbfe0HrWgTsAbJfS4Fu+fcfYN2i9crsk+xcZL3Lsuvll8/Souz4Pr0L1MUikM2KjwjY8nOtvJ4/L3cJXeE+V7rPVe5ztft8z32+7z4/cJ8fus817nOt+/zIfX7sPj9xn+vc56d+ZXw/+/neaY0g97Eg92n28zcRJe4zeeIKZQXn82CcBO/X9luLz9y1Lnefq9zn5x5rsZ7+vIFiI8Umn7VAG3gF0MDrgQbeDN5a/n3Y7K57g/vc6D43efbhC/rzFoovKb7Knvl+rnSfX2Q/36p9TX/eSrGNYnv282vj4Uiu+xv5ddfICs63wThp3q/t35dv3H1Y7T7fc5/fevblO/rzDorvKX7I4jl7Hzhn3wHnbCdwzrwDrf8DoP4dQP27DNX/IVD/90D9P2axz3e6526X+/zRff7gOYc/0Z93U/xM8UsWz+EaYB9+AvZhjyEe1wL17wbq/9VQ/R8B9f8M1L83i+dwj3vufnWfe93nL55zuI/+/BvF7xT7s3gOPwb2YR+wDwcM8fgJUP9vQP0HDdW/Dqj/d6D+Q1k8hwfcc3fQfR5yn/s95/Aw/fkPiiMUR7N4Dj8F9uEwsA/HsrgPx9x1/+E+j7jPo559OE5/PkFxkuJUFn3bafl684jqPe3Wd9x9fi3wmWfoz39S/EVx1s1HvscR7Ym3/oBhnwH2O5vnz+ci+xb5PC1SEP8fGb4cT8rwfTH0wJ0BDtG52HPv8c21uTbJGv5ea+S781jDiZE/D9e7uIB3fcM+BzbJv3/2k8UJ/ynyE4NsdibY/xYg+3WzJUhvZtSaskkctsCPGYE6kTVlz2RN/ne9a8qe8F9T5fSsx7umgGEL5mbbeEHrvklT721fsXTatYcL5Hvh8avWjBh6VekKwNf9txkizR9peKS2BJqfSJHk+/EQyhvy3VYCwFsOUCTi9Rk+guvFy5mQBcCcCfh7ycBmqtaV7DkcjoUP9DAh3/omAuvPFdJhyqV4mFJUDxMDpigcplTNh4nrSlU8TCqNkZqA+8o0kKxk95ngYiW6z6SEzPOMk5siD0XeAPUNKiMhAduXyNygvUhPwDiKDP+PoZE9D5qbD1irl590Dw/e2gK/iPXP7cbPyA9XHOBdrvcCivwUF/p4RvcpCdini4B9EtUS9E7k/MrOj+wD2o8XGzqDa4Bvcwpo3ls+b0kABnN9scLeFgT3Fl0H7ymiTbyvBRXWYVtqZwTFuUR+LWn8tf2fOVziri3yQ+Y5gs8cCtEfClNcSnFZgF4ELW8VcKYLhWSOVih+S11E1RwxYBEFc+RoNkd/b4SCOYonGchcL15RVTIiL6MnuyigKsU0E8f/KKZwoIqF1HHIXC9e8ayQXFxhg4obIg7+kMpSk7egr1sipAOB4HrxSqoeCAYsqXAgSmk+EFxXKQUJFmEF1ee4WKjyOQl69ouXnWjF50Ap+TEuIMnzv72f9Zd2SSnj/xy9dOS7bIocVsjV57TMF5Dm+XNZd5fKuc/y7rOC+6zoPiu5z8rus4r7rOo+q7nP6u6zhvus6d/98u7ue3OVBLmqglwNTy7W7zqVdeeUc5/e33WqRX+oTXE5RR2fT0Y/PykP9FQtoKfqAsLqHWj9FYD6awP1X2Go/opA/ZcD9dcDLzb/Oazrnrsr3Gc998nnLTKvPv3hSoqrKBpk8RxWAvahPrAPVxvisTJQ/5VA/Q0N1V8FqP8qoP5rsngOr3bPXUP3eY37bOA5h43oD9dSXEfROIvnsCqwD42AfWhiiMdqQP3XAvU3NVR/daD+64D6m2XxHDZxz11T99nMfTb2nMPm9IfrKVpQ3JDFc1gD2IfmwD60zOI+tHTXfb37bOE+b/Dsw430h5sobqa4JUH8dSK/g3Sj+//XTDj/88Bb6Q+3UdxO0Sohvr+DdCuwD147fodb3J1+Q8j/R4Yvd2dC1n8H6VaA3Dtizz3vd5DuBDYgwfq/8TtId4CHNzLu8pN1V8L5pwj9KCSTYs47oHcBJN6dIL2ZUWu6W+KwBWHfCdSJrOmeTNaU2e8g3ZPw/8fvIN2R8F/DI7XdS/NbU7QJuC2C9hf5LuhegLe2oEjE62O5toqN3i4hC4DtEvD37gM2U7Wu+zyHw7HwgR4m5FvS1sD624d0mNorHqYOqoeJATsoHKaOmg8T19VR8TCpNEbHBPyz4ftBsiK/43Kvi9XafbZJyDzPOA9QdKLoHKC+QWXcm4DtS2Ru0F48mIBxFBno73/cD9TUBVirl58HPTx4awv8ItY/txs/Kyq8y/V2pehG0d3HM7pPbYB96gHsk6iWoHci51d2fmQf0H7saegMVgL2tpfmva2QEM110HzmuqfC3vYG91ZlT+8F97W3wr1lW1hP+j8L8P+so7zgs4A+9IeHKPpS9EvADELQuvt49qjcvbsf22LNKb0k6e3Jje/787pR9/x50fohF/3WJXnuHx3qvbHMi/dwQhYA+WU/oUHgDwOHsn8WzYTMGvoLDkvQGvqDLpAvENHnDugh7aMoZBaGE/WXjQ1w/8cj7vNR9znQs2/wxgMbGPWXUT3qgoo6cID7/z2SED3X24GD6A+PUQzm78ndJKqskUPjAGsdlIArH0C2PcjQDYesewh4w6HNwH+l0NLs+NkbCu4VWhf/VUrvKtT1uCKHKM4T8jhJWcF5Mov8y5zFgQl4/w4EzvBT4Hdyfk16wtWgJ93nUwJNGkZ/GE7xNMUzrivIZcm5gqCShmXxwoA3dyHw+3LPKl4Ckfd4o1K8kzx/fi7B/xWs6IUEFTciuLgk79f2Mx9h3P9XVo5I+G/eSPrDKIrRFGOy+P074F/tkUAHjI3TzRJU0yigpudBZYkMdE+fA3BGA/W/kEVVGeuerefd5wvuc4znbL1If3iJ4mWKV9w8f50cMTB4OJZcScBZEw5Hbpot+h+OJTUQ7oTDkZzHdWUT5ICvYZe08FpRjFKW2n6gOC8mmMF5Nov8wgL1LNDgryrebK96brb8VvSPCv99AazbULM60snzhv3vmry1vkabMI5iPMUEitcpJlJMophM8QbFFIqpFG9SvEUxjWI6xQyKtylmUrxDMYtiNsUcirkU8yjmUyygWEixiGIxxRKKpRTLEtxiIsRwMTl9uXGC3HhBboIg97ogN1GQmyTITRbk3hDkpghyUwW5NwW5twS5aYLcdEFuhiD3tiA3U5B7R5CbJcjNFuTmCHJzBbl5gtx8QW6BILdQkFskyC0W5JYIcksFuWVuzjuKuk/HkhpRTR8kVq9JCtvBc+fscdJzLXu87Fyqd4Lc3LH8yzevS809+vcv6kyUmbvzn1/qmSQxt6H7C0CTg+eOjvyy0BuBc3v8+4tFU4LmLv3vl5CmBszt7/mFpTczn9vY+8tNb2U6d0/UL0JNy2xutehfmpqeydzSvl+wmhF77nm/BPZ2zLmt/GfdnhlrbsZ5fWG/E2Nuxvk9ZM8Sz10k6Dd7tnBuI1Fv2nNEc1sK+9ieK5i7RNzz9rzz55aJoQ/2/PPmToylJfYC/9wqMXXHXuibuzO2RtmLouf2ykTP7MVRc1tkpn32Eu/c9pnqpL3UM7dy5ppqLwPcKXuNeP2ayDJ5Ld/sxXvX++0lCsgvIx8kM/i78htkL5dclOqvlPAaliec/17QGpaDJF9oxeenQMDh2iRKOpYUTFStK9wDstLvjFe4G+fNrRQ4GPSzF+Ak2yuAA7IS3DyUHD4UK8DDxHWtCEkxlsrv8wQv3ipVxWDAVbhiTFgFKMZqzYrBa1iNK8aE1SEpxlJ53PGipGNJwUTV+p57QN73K8Z7AsV4Pw6KAZxk+z3ggLyvuHnoz1aRmj4AmuHffwC1LHcPOPohGXJVfwg0g2gNQdN5jz5UUOIPQ1LiJfLnd4EXb42qEjPgGlyJF6wBDt9azUrMa1iLK/GCtVk8fDIN9KHmBvoIXENkoMKEcPgxcDbiecMtkcedL0o6lhRMVK2fuI23zn/DfSK44dbF4YYDFML+BCBtneLmoQcJqenTLN5wQe9w83yscDt8pvnW4nV/ZqCuyEA5/Azg8HPNHMYSWRlxlp27HhS0eLmBxfK9PsqLt0HVDTDgBtwNjNoAbNBGzW6A17ARdwOjNmp2A9wI6xP0NtsmsNkiA60J4XBzSG5gsTzuSFHSsaRgomr9wm28LX438IXADWyJgxsAFML+AiBti+LmoQcJqelLzTcJN89mhVv3K81ugNf9lYG6IgPl8CuAw681cxhLZIPeQ0R2a0ifDSyS73XHi7dN1Q0w4DbcDTjbAJK3a3YDvIbtuBtwtmt2A9wIWxP0Nts3htwAwuG3IbmBRfK4RURJx5KCiar1O7fxdvjdwHcCN7AjDm4AUAj7O4C0HYqbhx4kpKbvNd8k3DzfKty6P2h2A7zuHwzUFRkohz8AHO7UzGEskQ16DxHZXSG5gYXyvb7Ji/ejqhtgwB9xN7DpR4DknzS7AV7DT7gb2PSTZjfAjbArQW+z7TbkBhAOfw7JDSyUx90oSjqWFExUrb+4jbfH7wZ+EbiBPXFwA4BC2L8ApO1R3Dz0ICE1/ar5JuHm+Vnh1t2r2Q3wuvcaqCsyUA73Ahzu08xhLJENeg8R2d9CcgML5Hu9nRfvd1U3wIC/426g3e8Ayfs1uwFew37cDbTbr9kNcCP8lqC32Q4YcgMIhwdDcgML5HHbipKOJQUTVesht/EO+93AIYEbOBwHNwAohH0IIO2w4uahBwmp6Q/NNwk3z0GFW/eIZjfA6z5ioK7IQDk8AnB4VDOHsUQ26D1EZI+F5Abmy/f6Ni/ecVU3wIDHcTew7ThA8gnNboDXcAJ3A9tOaHYD3AjHEvQ220lDbgDh8FRIbmC+PO5WUdKxpGCiaj3tNt4Zvxs4LXADZ+LgBgCFsE8DpJ1R3Dz0ICE1/an5JuHmOaVw6/6l2Q3wuv8yUFdkoBz+BXB4VjOHsUQ26D1EZM+F5Abmyfd60yi8xCwA8sugG2jK7ziSGHaiXjfAa2AM0A00teXXIKxLphHOJehttmwAD97/gdaEcJgdqCmebmCefNM2ESUdSwomqtYEt/ESI/8tz8jNn5B4vhvgSVl1A4BC2AkAaYmJapuHHiSkpiTwcKMHhpsneyLe2DmyKBxB03ndOQzUFRkohzkADnNq5jCWyAa9h4hsMrCv8XQDc+V7fZ4XL5eqG2DAXLgbmJcLIDlFsxvgNaTgbmBeimY3wI2QnKi32VINuQGEw7SQ3MBceTcwV5R0LCmYqFpzu42Xx+8GcgvcQJ44uAFAIezcAGl5EtU2Dz1ISE15Nd8k3DxpCrduumY3wOtON1BXZKAcpgMc5tPMYSyRDXoPEdkLQnIDc+R7fYUXL7+qG2DA/LgbWJEfIPlCzW6A13Ah7gZWXKjZDXAjXJCot9kuMuQGEA4vDskNzJF3A8tFSceSgomqtYDbeAX9bqCAwA0UjIMbABTCLgCQVjBRbfPQg4TUdInmm4Sb52KFW7eQZjfA6y5koK7IQDksBHBYWDOHsUQ26D1EZC8NyQ3Mlu/15l68y1TdAANehruB5pcBJBfR7AZ4DUVwN9C8iGY3wI1waaLeZnMMuQGEw6IhuYHZ8m6gmSjpWFIwUbUWcxuvuN8NFBO4geJxcAOAQtjFANKKJ6ptHnqQkJpKaL5JuHmKKty6JTW7AV53SQN1RQbKYUmAw1KaOYwlskHvISJbOiQ3MEu+1zO8eGVU3QADlsHdQEYZgOSymt0Ar6Es7gYyymp2A9wIpRP1Nls5Q24A4bB8SG5glrwbGCxKOpYUTFStFdzGq+h3AxUEbqBiHNwAoBB2BYC0iolqm4ceJKSmSppvEm6e8gq3bmXNboDXXdlAXZGBclgZ4LCKZg5jiWzQe4jIVg3JDbyj6AaqqboBBqym4AaqASRX1+wGeA3VFdxAdc1ugBuhaqLeZqthyA0gHNYMyQ28E4IbqOU2Xm2/G6glcAO14+AGAIWwawGk1TbkBpCaLtd8k3Dz1FS4detodgO87joG6ooMlMM6AId1NXMYS2SD3kNE9oqQ3MBM+V6f4cWrp+oGGLAe7gZm1ANIrq/ZDfAa6uNuYEZ9zW6AG+GKRL3NdqUhN4BweFVIbmCmvBuYLko6lhRMVK0N3Ma72u8GGgjcwNVxcAOAQtgNANKuTlTbPPQgITU11HyTcPNcpXDrXqPZDfC6rzFQV2SgHF4DcNhIM4exRDboPURkrw3JDbwt3+tTvXjXqboBBrwOdwNTrwNIbqzZDfAaGuNuYGpjzW6AG+HaRL3N1sSQG0A4bBqSG3hb3g1MESUdSwomqtZmbuM197uBZgI30DwObgBQCLsZQFrzRLXNQw8SUtP1mm8Sbp6mCrduC81ugNfdwkBdkYFy2ALg8AbNHMYS2aD3EJFtGZIbmCHf69u9eDequgEGvBF3A9tvBEi+SbMb4DXchLuB7TdpdgPcCC0T9TbbzYbcAMLhLSG5gRnybmCbKOlYUjBRtd7qNt5tfjdwq8AN3BYHNwAohH0rQNptiWqbhx4kpKbbNd8k3Dy3KNy6rTS7AV53KwN1RQbKYSuAwzs0cxhLZIPeQ0T2zpDcwHT5Xt/gxbtL1Q0w4F24G9hwF0Dy3ZrdAK/hbtwNbLhbsxvgRrgzUW+z3WPIDSAc3huSG5gu7wbWi5KOJQUTVWtrt/Ha+N1Aa4EbaBMHNwAohN0aIK1NotrmoQcJqamt5puEm+dehVu3nWY3wOtuZ6CuyEA5bAdweJ9mDmOJbNB7iMi2D8kNTJPv9YJevA6qboABO+BuoGAHgOSOmt0Ar6Ej7gYKdtTsBrgR2ifqbbb7DbkBhMMHQnID0+TdQAFR0rGkYKJq7eQ2Xme/G+gkcAOd4+AGAIWwOwGkdU5U2zz0ICE1Paj5JuHmeUDh1u2i2Q3wursYqCsyUA67ABx21cxhLJENeg8R2W4huYG35Ht9mRevu6obYMDuuBtY1h0guYdmN8Br6IG7gWU9NLsBboRuiXqbrachN4Bw2CskN/CWvBtYKko6lhRMVK293cbr43cDvQVuoE8c3ACgEHZvgLQ+iWqbhx4kpKaHNN8k3Dy9FG7dvprdAK+7r4G6IgPlsC/AYT/NHMYS2aD3EJF9OCQ38KZ8rw/34vVXdQMM2B93A8P7AyQP0OwGeA0DcDcwfIBmN8CN8HCi3mZ7xJAbQDh8NCQ38Ka8GxgmSjqWFExUrQPdxhvkdwMDBW5gUBzcAKAQ9kCAtEGJapuHHiSkpsc03yTcPI8q3LqDNbsBXvdgA3VFBsrhYIDDDM0cxhLZoPcQkR0SkhuYKt/rTbx4Q1XdAAMOxd1Ak6EAyY9rdgO8hsdxN9Dkcc1ugBthSKLeZnvCkBtAOHwyJDcwVd4NNBYlHUsKJqrWp9zGG+Z3A08J3MCwOLgBQCHspwDShiWqbR56kJCahmu+Sbh5nlS4dZ/W7AZ43U8bqCsyUA6fBjh8RjOHsUQ26D1EZJ8NyQ1Mke/1MV6851TdAAM+h7uBMc8BJI/Q7AZ4DSNwNzBmhGY3wI3wbKLeZhtpyA0gHI4KyQ1MkXcDo0VJx5KCiap1tNt4Y/xuYLTADYyJgxsAFMIeDZA2JlFt89CDhNQ0VvNNws0zSuHWfV6zG+B1P2+grshAOXwe4PAFzRzGEtmg9xCRfTEkN/CGfK/39OK9pOoGGPAl3A30fAkg+WXNboDX8DLuBnq+rNkNcCO8mKi32V4x5AYQDl8NyQ28Ie8GeoiSjiUFE1Xra27jjfO7gdcEbmBcHNwAoBD2awBp4xLVNg89SEhN4zXfJNw8ryrcuhM0uwFe9wQDdUUGyuEEgMPXNXMYS2SD3kNEdmJIbmCyfK+v8uJNUnUDDDgJdwOrJgEkT9bsBngNk3E3sGqyZjfAjTAxUW+zvWHIDSAcTgnJDUyWdwMrRUnHkoKJqnWq23hv+t3AVIEbeDMObgBQCHsqQNqbiWqbhx4kpKa3NN8k3DxTFG7daZrdAK97moG6IgPlcBrA4XTNHMYS2aD3EJGdEZIbmCTf644X721VN8CAb+NuwHkbIHmmZjfAa5iJuwFnpmY3wI0wI1Fvs71jyA0gHM4KyQ1MkncDRURJx5KCiap1ttt4c/xuYLbADcyJgxsAFMKeDZA2J1Ft89CDhNQ0V/NNws0zS+HWnafZDfC65xmoKzJQDucBHM7XzGEskQ16DxHZBSG5gYnyvZ7qxVuo6gYYcCHuBlIXAiQv0uwGeA2LcDeQukizG+BGWJCot9kWG3IDCIdLQnIDE+XdQIoo6VhSMFG1LnUbb5nfDSwVuIFlcXADgELYSwHSliWqbR56kJCa3tV8k3DzLFG4dZdrdgO87uUG6ooMlMPlAIcrNHMYS2SD3kNEdmVIbuB1+V7v7sVbpeoGGHAV7ga6rwJIXq3ZDfAaVuNuoPtqzW6AG2Flot5me8+QG0A4fD8kN/C6vBvoJko6lhRMVK0fuI33od8NfCBwAx/GwQ0ACmF/AJD2YaLa5qEHCalpjeabhJvnfYVbd61mN8DrXmugrshAOVwLcPiRZg5jiWzQe4jIfhySG5gg3+vpXrxPVN0AA36Cu4H0TwCS12l2A7yGdbgbSF+n2Q1wI3ycqLfZPjXkBhAOPwvJDUyQdwN5RUnHkoKJqvVzt/HW+93A5wI3sD4ObgBQCPtzgLT1iWqbhx4kpKYNmm8Sbp7PFG7djZrdAK97o4G6IgPlcCPA4SbNHMYS2aD3EJHdHJIbGC8vaFF4X6i6AQb8IhF/b4vmG57r2pL4X8Kx5AfaRHxgNyfqbYovDd3aCC9fZbFRZdb8lQKH8WyocYoN9bVqQzHg1woNtVVzQ3FdW+PUUEHTmfitiWoHxpHDiOsheS1BvkYv3jbVQ8KA2xQUZxvQsds1Hyhew3YFkrdr/h6MD9F2BXvwJbBf32i2g7y33yg2a2SgZ+sbYP3farZ4sW7koPeQG/k7zRzyHn2ncBEgPLAI5rf++5YyK/U+l6B2ziwMx5FOnjfsf9dke97ZQfv1PcUPFDspdlH8SPETxW6Knyl+odhD8SvFXop9FL9R/E6xn+IAxUGKQxSHKf6gOEJxlOIYxXGKExQnKU5RnKY4Q/Gn/zOAHe73+97c94LcD4LcTkFulyD3oyD3kyC3W5D7WZD7RZDbI8j9KsjtFeT2CXK/CXK/C3L7BbkDgtxBQe6QIHdYkPtDkDsiyB0V5I4JcscFuROC3ElB7pQgd1qQOyPI/Zl4/mdLRd2nY0mNqKYPEpsdksLEn0N9Lz3Xsn+QnUv17pSbO5bqtXdJzT3Ka7N/lJm78+99sH+SmNvwnz2zdwfPHe3ur/1z4NweES7sX4LmLv2XN3tPwNz+/3Fs/5r53Mae82DvzXTuHu/ZsfdlNrda1Dmzf8tkbunoM2n/HnvuPb7za++PObeV/6zbB2LNzTivL+yDMeZmnN9D9iHx3EWCfrMPC+c2EvWm/YdobkthH9tHBHOXiHvePnr+3DIx9ME+dt7cibG0xD7un1slpu7YJ3xzd8bWKPtk9NxemeiZfSpqbovMtM8+7Z3bPlOdtM945lbOXFPtP0P6jvdPeS3f7MX7S/U7Xgb8KxH+qePmv+Q3yD4ruSjV73h5DWfB73h5DWdBkuP10zHgcG0SJR1LCiaq1nORA5JkRbuVc+7GeXM8Kas/HQNOsn0OOSBJ2Oah5PChOAceJq7rXEiKcUZ+nyd48eykLADyy6BiTLDlibOzJelVDF4DY4CKMSFbkhWKYpyRP1zjRUnHkoKJqjW7e0AS/IqRPel8xUiIg2IAJ9nODhyQhCS1zUM/qENqSgSa4d9/ALWcdQ84+kEdclUnAc0gWkPQdN6jpCR87Ulgk8ZLiU/Ln98FXrwcqkrMgDlwJV6QAzh8OTUr8d8fquBKvCBnFg+fTAMlaW6gZHANkYEKE8JhLuBsxPOGOy1/w80XJR1LCiaq1hS38VL9N1yK4IZLjcMNByiEnQKQlpqktnnoQUJqSsviDRf0DjdPLoXbIbfmW4vXndtAXZGBcpgb4DCPZg5jiayMOMvOzQsKWrzcwCn5Xh/lxUtXdQMMmI67gVHpwAbl0+wGeA35cDcwKp9mN8CNkDdJb7NdADZbZKA1IRzmD8kNnJJ3AyNFSceSgomq9UK38S7yu4ELBW7goji4AUAh7AsB0i5KUts89CAhNV2s+Sbh5smvcOsW0OwGeN0FDNQVGSiHBQAOC2rmMJbIBr2HiOwlIX02cFK+1x0vXiFVN8CAhXA34BQCSC6s2Q3wGgrjbsAprNkNcCNckqS32S415AYQDi8LyQ2clHcDcft754q4jef43UARgRtw4uAGAIWwiwCkOUlqm4ceJKSmoppvEm6eyxRu3WKa3QCvu5iBuiID5bAYwGFxzRzGEtmg9xCRLRGSGzgh3+ubvHglVd0AA5bE3cCmkgDJpTS7AV5DKdwNbCql2Q1wI5RI0ttspQ25AYTDMiG5gRPybmCjKOlYUjBRtZZ1G6+c3w2UFbiBcnFwA4BC2GUB0solqW0eepCQmsprvkm4ecoo3LoVNLsBXncFA3VFBsphBYDDipo5jCWyQe8hIlspJDdwXL7X23nxKqu6AQasjLuBdpUBkqtodgO8hiq4G2hXRbMb4EaolKS32aoacgMIh9VCcgPH5d1AW1HSsaRgomqt7jZeDb8bqC5wAzXi4AYAhbCrA6TVSFLbPPQgITXV1HyTcPNUU7h1a2l2A7zuWgbqigyUw1oAh7U1cxhLZIPeQ0T28pDcwDH5Xt/mxauj6gYYsA7uBrbVAUiuq9kN8Brq4m5gW13NboAb4fIkvc12hSE3gHBYLyQ3cEzeDWwVJR1LCiaq1vpu413pdwP1BW7gyji4AUAh7PoAaVcmqW0eepCQmq7SfJNw89RTuHUbaHYDvO4GBuqKDJTDBgCHV2vmMJbIBr2HiGzDkNzAUfleb+rFu0bVDTDgNbgbaHoNQHIjzW6A19AIdwNNG2l2A9wIDZP0Ntu1htwAwuF1IbmBo/JuoIko6VhSMFG1NnYbr4nfDTQWuIEmcXADgELYjQHSmiSpbR56kJCammq+Sbh5rlO4dZtpdgO87mYG6ooMlMNmAIfNNXMYS2SD3kNE9vqQ3MAR+V6f58VroeoGGLAF7gbmtQBIvkGzG+A13IC7gXk3aHYD3AjXJ+lttpaG3ADC4Y0huYEj8m5grijpWFIwUbXe5DbezX43cJPADdwcBzcAKIR9E0DazUlqm4ceJKSmWzTfJNw8NyrcurdqdgO87lsN1BUZKIe3AhzeppnDWCIb9B4isreH5Ab+kO/1FV68VqpugAFb4W5gRSuA5Ds0uwFewx24G1hxh2Y3wI1we5LeZrvTkBtAOLwrJDfwh7wbWC5KOpYUTFStd7uNd4/fDdwtcAP3xMENAAph3w2Qdk+S2uahBwmp6V7NNwk3z10Kt25rzW6A193aQF2RgXLYGuCwjWYOY4ls0HuIyLYNyQ0clu/15l68dqpugAHb4W6geTuA5Ps0uwFew324G2h+n2Y3wI3QNklvs7U35AYQDjuE5AYOy7uBZqKkY0nBRNXa0W28+/1uoKPADdwfBzcAKITdESDt/iS1zUMPElLTA5pvEm6eDgq3bifNboDX3clAXZGBctgJ4LCzZg5jiWzQe4jIPhiSGzgk3+sZXrwuqm6AAbvgbiCjC0ByV81ugNfQFXcDGV01uwFuhAeT9DZbN0NuAOGwe0hu4JC8GxgsSjqWFExUrT3cxuvpdwM9BG6gZxzcAKAQdg+AtJ5JapuHHiSkpl6abxJunu4Kt25vzW6A193bQF2RgXLYG+Cwj2YOY4ls0HuIyD4Ukhs4qOgG+qq6AQbsq+AG+gIk99PsBngN/RTcQD/NboAb4aEkvc32sCE3gHDYPyQ3cDAENzDAbbxH/G5ggMANPBIHNwAohD0AIO0RQ24AqelRzTcJN09/hVt3oGY3wOseaKCuyEA5HAhwOEgzh7FENug9RGQfC8kNHJDv9RlevMGqboABB+NuYMZggOQMzW6A15CBu4EZGZrdADfCY0l6m22IITeAcDg0JDdwQN4NTBclHUsKJqrWx93Ge8LvBh4XuIEn4uAGAIWwHwdIeyJJbfPQg4TU9KTmm4SbZ6jCrfuUZjfA637KQF2RgXL4FMDhMM0cxhLZoPcQkR0ekhvYL9/rU714T6u6AQZ8GncDU58GSH5GsxvgNTyDu4Gpz2h2A9wIw5P0NtuzhtwAwuFzIbmB/fJuYIoo6VhSMFG1jnAbb6TfDYwQuIGRcXADgELYIwDSRiapbR56kJCaRmm+Sbh5nlO4dUdrdgO87tEG6ooMlMPRAIdjNHMYS2SD3kNEdmxIbuB3+V7f7sV7XtUNMODzuBvY/jxA8gua3QCv4QXcDWx/QbMb4EYYm6S32V405AYQDl8KyQ38Lu8GtomSjiUFE1Xry27jveJ3Ay8L3MArcXADgELYLwOkvZKktnnoQUJqelXzTcLN85LCrfuaZjfA637NQF2RgXL4GsDhOM0cxhLZoPcQkR0fkhv4Tb7XN3jxJqi6AQacgLuBDRMAkl/X7AZ4Da/jbmDD65rdADfC+CS9zTbRkBtAOJwUkhv4Td4NrBclHUsKJqrWyW7jveF3A5MFbuCNOLgBQCHsyQBpbySpbR56kJCapmi+Sbh5JinculM1uwFe91QDdUUGyuFUgMM3NXMYS2SD3kNE9q2Q3MA++V4v6MWbpuoGGHAa7gYKTgNInq7ZDfAapuNuoOB0zW6AG+GtJL3NNsOQG0A4fDskN7BP3g0UECUdSwomqtaZbuO943cDMwVu4J04uAFAIeyZAGnvJKltHnqQkJpmab5JuHneVrh1Z2t2A7zu2QbqigyUw9kAh3M0cxhLZIPeQ0R2bkhuYK98ry/z4s1TdQMMOA93A8vmASTP1+wGeA3zcTewbL5mN8CNMDdJb7MtMOQGEA4XhuQG9sq7gaWipGNJwUTVushtvMV+N7BI4AYWx8ENAAphLwJIW5yktnnoQUJqWqL5JuHmWahw6y7V7AZ43UsN1BUZKIdLAQ6XaeYwlsgGvYeI7LshuYFf5Xt9uBdvuaobYMDluBsYvhwgeYVmN8BrWIG7geErNLsBboR3k/Q220pDbgDhcFVIbuBXeTcwTJR0LCmYqFpXu433nt8NrBa4gffi4AYAhbBXA6S9l6S2eehBQmp6X/NNws2zSuHW/UCzG+B1f2CgrshAOfwA4PBDzRzGEtmg9xCRXROSG9gj3+tNvHhrVd0AA67F3UCTtQDJH2l2A7yGj3A30OQjzW6AG2FNkt5m+9iQG0A4/CQkN7BH3g00FiUdSwomqtZ1buN96ncD6wRu4NM4uAFAIex1AGmfJqltHnqQkJo+03yTcPN8onDrfq7ZDfC6PzdQV2SgHH4OcLheM4exRDboPURkN4TkBn6R7/UxXryNqm6AATfibmDMRoDkTZrdAK9hE+4GxmzS7Aa4ETYk6W22zYbcAMLhFyG5gV/k3cBoUdKxpGCiat3iNt6XfjewReAGvoyDGwAUwt4CkPZlktrmoQcJqekrzTcJN88XCrfu15rdAK/7awN1RQbK4dcAh1s1cxhLZIPeQ0R2W0hu4Gf5Xu/pxduu6gYYcDvuBnpuB0j+RrMb4DV8g7uBnt9odgPcCNuS9Dbbt4bcAMLhdyG5gZ/l3UAPUdKxpGCiat3hNt73fjewQ+AGvo+DGwAUwt4BkPZ9ktrmoQcJqekHzTcJN893CrfuTs1ugNe900BdkYFyuBPgcJdmDmOJbNB7iMj+GJIb2C3f66u8eD+pugEG/Al3A6t+AkjerdkN8Bp2425g1W7NboAb4cckvc32syE3gHD4S0huYLe8G1gpSjqWFExUrXvcxvvV7wb2CNzAr3FwA4BC2HsA0n5NUts89CAhNe3VfJNw8/yicOvu0+wGeN37DNQVGSiH+wAOf9PMYSyRDXoPEdnfQ3IDP8n3uuPF26/qBhhwP+4GnP0AyQc0uwFewwHcDTgHNLsBboTfk/Q220FDbgDh8FBIbuAneTdQRJR0LCmYqFoPu433h98NHBa4gT/i4AYAhbAPA6T9kaS2eehBQmo6ovkm4eY5pHDrHtXsBnjdRw3UFRkoh0cBDo9p5jCWyAa9h4js8ZDcwI/yvZ7qxTuh6gYY8ATuBlJPACSf1OwGeA0ncTeQelKzG+BGOJ6kt9lOGXIDCIenQ3IDP8q7gRRR0rGkYKJqPeM23p9+N3BG4Ab+jIMbABTCPgOQ9meS2uahBwmp6S/NNwk3z2mFW/esZjfA6z5roK7IQDk8C3B4TjOHsUQ26D1EZK0c4biBXfK93t2LZ+fIAiC/DLqB7rb8BtnZcuh1A7wGxgDdQPdsAMmiumQawcqht9myAzx4/wdaE8JhAlBTPN3ALnk30E2UdCwpmKhaE93GS8phRd/8iTnOdwM8KatuAFAIOxEgLSmH2uahBwmpKQd4uNEDw82TkANv7JxZFI6g6bzunAbqigyUw5wAh8maOYwlskHvISKbKyQ3sFO+19O9eCmqboABU3A3kJ4CkJyq2Q3wGlJxN5CeqtkNcCPkyqG32dIMuQGEw9whuYGd8m4gryjpWFIwUbXmcRsvr98N5BG4gbxxcAOAQth5ANLy5lDbPPQgITWla75JuHlyK9y6+TS7AV53PgN1RQbKYT6Awws0cxhLZIPeQ0Q2f0hu4Ad5QYvCu1DVDTDghTnw9y7SfMNzXRfl+C/hWPIDbSI+sPlz6G2Kiw3d2ggvBbLYqDJrLqDAYTwb6nvFhiqo2lAMWFChoS7R3FBc1yVxaqig6Uz8JTnUDowjhxHXQ7IjUb5GL14h1UPCgIUUFKcQ0LGFNR8oXkNhBZILa/4ejA9RYQV7cDGwX5dqtoO8t5cqNmtkoGfrUmD9l2m2eLFu5KD3kBu5iGYOeY+KKFwECA8sgvmt/76lzEq9JS21c2ZhOI508rxh/7sm2/OOQ/tVlKIYRXGKEhQlKUpRlKYoQ1GWohxFeYoKFBUpKlFUpqhCUZWiGkV1ihoUNSlqUdSmuJyiDkVdiiso6lHUp7iS4ir/ZwCO+/2+N1dUkCsmyBUX5EoIciUFuVKCXGlBrowgV1aQKyfIlRfkKghyFQW5SoJcZUGuiiBXVZCrJshVF+RqCHI1BblaglxtQe5yQa6OIFdXkLtCkKsnyNUX5K4U5K7Kcf5nS0Xdp2NJjaimDxIbR1KY+HOootJzLbuY7Fyqt7jc3LFUr11Cau5RXptdUmbuzr/3wS4lMbfhP3tmlw6eO9rdX7tM4NweES7sskFzl/7Lm10uYG7//zi2y2c+t7HnPNgVMp27x3t27IqZza0Wdc7sSpnMLR19Ju3Ksefe4zu/dpWYc1v5z7pdNdbcjPP6wq4WY27G+T1kVxfPXSToN7uGcG4jUW/aNUVzWwr72K4lmLtE3PN27fPnlomhD/bl582dGEtL7Dr+uVVi6o5d1zd3Z2yNsq+IntsrEz2z60XNbZGZ9tn1vXPbZ6qT9pWeuZUz11T7qpC+471KXss3e/EaqH7Hy4ANcsA/ddzcQH6D7KslF6X6HS+v4WrwO15ew9UgyfH66RhwuDaJko4lBRNVa0P3gFzjd8YN3Y3z5q7JkfWfjgEn2W4IHJBrwM1DyeFD0RA8TFxXw5AU40r5fZ7gxWukqhgM2AhXjAmNAMW4VrNi8BquxRVjwrUhKcaV8rjjRUnHkoKJqvU694A09ivGdQLFaBwHxQBOsn0dcEAaK24e+kEdUlMToBn+/QdQy9XuAUc/qEOu6qZAM4jWEDSd96ipghI3DUmJ68uf3wVevGaqSsyAzXAlXtAMOHzNNSsxr6E5rsQLmmfx8Mk0UFPNDXQ9uIbIQIUJ4bAFcDbiecPVl8edL0o6lhRMVK03uI3X0n/D3SC44VrG4YYDFMK+ASCtpeLmoQcJqenGLN5wQe9w87RQuB1u0nxr8bpvMlBXZKAc3gRweLNmDmOJrIw4y869BRS0eLmBevK9PsqLd6uqG2DAW3E3MOpWYINu0+wGeA234W5g1G2a3QA3wi059Dbb7WCzRQZaE8Jhq5DcQD153JGipGNJwUTVeofbeHf63cAdAjdwZxzcAKAQ9h0AaXcqbh56kJCa7tJ8k3DztFK4de/W7AZ43XcbqCsyUA7vBji8RzOHsUQ26D1EZO8N6bOBK+R73fHitVZ1AwzYGncDTmuA5Daa3QCvoQ3uBpw2mt0AN8K9OfQ2W1tDbgDhsF1IbuAKedy4/b1z97mN197vBu4TuIH2cXADgELY9wGktVfcPPQgITV10HyTcPO0U7h1O2p2A7zujgbqigyUw44Ah/dr5jCWyAa9h4jsAyG5gbryvb7Ji9dJ1Q0wYCfcDWzqBJDcWbMb4DV0xt3Aps6a3QA3wgM59Dbbg4bcAMJhl5DcQF153I2ipGNJwUTV2tVtvG5+N9BV4Aa6xcENAAphdwVI66a4eehBQmrqrvkm4ebponDr9tDsBnjdPQzUFRkohz0ADntq5jCWyAa9h4hsr5DcQB35Xm/nxeut6gYYsDfuBtr1Bkjuo9kN8Br64G6gXR/NboAboVcOvc32kCE3gHDYNyQ3UEcet60o6VhSMFG19nMb72G/G+gncAMPx8ENAAph9wNIe1hx89CDhNTUX/NNws3TV+HWHaDZDfC6BxioKzJQDgcAHD6imcNYIhv0HiKyj4bkBi6X7/VtXryBqm6AAQfibmDbQIDkQZrdAK9hEO4Gtg3S7Aa4ER7NobfZHjPkBhAOB4fkBi6Xx90qSjqWFExUrRlu4w3xu4EMgRsYEgc3ACiEnQGQNkRx89CDhNQ0VPNNws0zWOHWfVyzG+B1P26grshAOXwc4PAJzRzGEtmg9xCRfTIkN1BbvtebevGeUnUDDPgU7gaaPgWQPEyzG+A1DMPdQNNhmt0AN8KTOfQ223BDbgDh8OmQ3EBtedwmoqRjScFE1fqM23jP+t3AMwI38Gwc3ACgEPYzAGnPKm4eepCQmp7TfJNw8zytcOuO0OwGeN0jDNQVGSiHIwAOR2rmMJbIBr2HiOyokNxALflen+fFG63qBhhwNO4G5o0GSB6j2Q3wGsbgbmDeGM1ugBthVA69zTbWkBtAOHw+JDdQSx53rijpWFIwUbW+4Dbei3438ILADbwYBzcAKIT9AkDai4qbhx4kpKaXNN8k3DzPK9y6L2t2A7zulw3UFRkohy8DHL6imcNYIhv0HiKyr4bkBmrK9/oKL95rqm6AAV/D3cCK1wCSx2l2A7yGcbgbWDFOsxvgRng1h95mG2/IDSAcTgjJDdSUx10uSjqWFExUra+7jTfR7wZeF7iBiXFwA4BC2K8DpE1U3Dz0ICE1TdJ8k3DzTFC4dSdrdgO87skG6ooMlMPJAIdvaOYwlsgGvYeI7JSQ3EAN+V5v7sWbquoGGHAq7gaaTwVIflOzG+A1vIm7geZvanYD3AhTcuhttrcMuQGEw2khuYEa8rjNREnHkoKJqnW623gz/G5gusANzIiDGwAUwp4OkDZDcfPQg4TU9Lbmm4SbZ5rCrTtTsxvgdc80UFdkoBzOBDh8RzOHsUQ26D1EZGeF5Aaqy/d6hhdvtqobYMDZuBvImA2QPEezG+A1zMHdQMYczW6AG2FWDr3NNteQG0A4nBeSG6gujztYlHQsKZioWue7jbfA7wbmC9zAgji4AUAh7PkAaQsUNw89SEhNCzXfJNw88xRu3UWa3QCve5GBuiID5XARwOFizRzGEtmg9xCRXRKSG6im6AaWqroBBlyq4AaWAiQv0+wGeA3LFNzAMs1ugBthSQ69zfauITeAcLg8JDdQLQQ3sMJtvJV+N7BC4AZWxsENAAphrwBIW2nIDSA1rdJ8k3DzLFe4dVdrdgO87tUG6ooMlMPVAIfvaeYwlsgGvYeI7PshuYGq8r0+w4v3gaobYMAPcDcw4wOA5A81uwFew4e4G5jxoWY3wI3wfg69zbbGkBtAOFwbkhuoKo87XZR0LCmYqFo/chvvY78b+EjgBj6OgxsAFML+CCDtY8XNQw8SUtMnmm8Sbp61CrfuOs1ugNe9zkBdkYFyuA7g8FPNHMYS2aD3EJH9LCQ3UEW+16d68T5XdQMM+DnuBqZ+DpC8XrMb4DWsx93A1PWa3QA3wmc59DbbBkNuAOFwY0huoIo87hRR0rGkYKJq3eQ23ma/G9gkcAOb4+AGAIWwNwGkbVbcPPQgITV9ofkm4ebZqHDrbtHsBnjdWwzUFRkoh1sADr/UzGEskQ16DxHZr0JyA5Xle327F+9rVTfAgF/jbmD71wDJWzW7AV7DVtwNbN+q2Q1wI3yVQ2+zbTPkBhAOt4fkBirL424TJR1LCiaq1m/cxvvW7wa+EbiBb+PgBgCFsL8BSPtWcfPQg4TU9J3mm4SbZ7vCrbtDsxvgde8wUFdkoBzuADj8XjOHsUQ26D1EZH8IyQ1Uku/1DV68napugAF34m5gw06A5F2a3QCvYRfuBjbs0uwGuBF+yKG32X405AYQDn8KyQ1UksddL0o6lhRMVK273cb72e8GdgvcwM9xcAOAQti7AdJ+Vtw89CAhNf2i+Sbh5vlJ4dbdo9kN8Lr3GKgrMlAO9wAc/qqZw1giG/QeIrJ7Q3IDFeV7vaAXb5+qG2DAfbgbKLgPIPk3zW6A1/Ab7gYK/qbZDXAj7M2ht9l+N+QGEA73h+QGKsrjFhAlHUsKJqrWA27jHfS7gQMCN3AwDm4AUAj7AEDaQcXNQw8SUtMhzTcJN89+hVv3sGY3wOs+bKCuyEA5PAxw+IdmDmOJbNB7iMgeCckNVJDv9WVevKOqboABj+JuYNlRgORjmt0Ar+EY7gaWHdPsBrgRjuTQ22zHDbkBhMMTIbmBCvK4S0VJx5KCiar1pNt4p/xu4KTADZyKgxsAFMI+CZB2SnHz0IOE1HRa803CzXNC4dY9o9kN8LrPGKgrMlAOzwAc/qmZw1giG/QeIrJ/heQGysv3+nAv3llVN8CAZ3E3MPwsQPI5zW6A13AOdwPDz2l2A9wIf+XQ22x8uzgWVP7fA60J4dAGaoqnGygvz+cwUdKxpGCias3m3u7Zc1rRNz//H343wJOy6gYAhbCz5ZQnLXtOtc1DDxJSUwJ4uNEDw2TYOfHGTpSvywWK/vpB03ndiQbqigyUw0SAwyTNHMYS2aD3EJHNAexrPN1AOfleb+LFy5kzC4D8MugGmuQESE4GDo/qGpLB5uE1JGexqWUaIUdOvc2Wy5AbQDhMCckNlJN3A41FSceSgomqNdVtvDS/G0gVuIG0OLgBQCHsVIC0tJxqm4ceJKSm3JpvEm6eFIVbN49mN8DrzmOgrshAOcwDcJhXM4exRDboPURk00NyA2Xle32MFy+fqhtgwHy4GxiTDyD5As1ugNdwAe4Gxlyg2Q1wI6Tn1Nts+Q25AYTDC0NyA2Xl3cBoUdKxpGCiar3IbbyL/W7gIoEbuDgObgBQCPsigLSLc6ptHnqQkJoKaL5JuHkuVLh1C2p2A7zuggbqigyUw4IAh5do5jCWyAa9h4hsoZDcQBn5Xu/pxSus6gYYsDDuBnoWBki+VLMb4DVciruBnpdqdgPcCIVy6m22ywy5AYTDIiG5gTLybqCHKOlYUjBRtTpu4xX1uwFH4AaKxsENAAphOwBpRXOqbR56kJCaimm+Sbh5iijcusU1uwFed3EDdUUGymFxgMMSmjmMJbJB7yEiWzIkN1BavtdXefFKqboBBiyFu4FVpQCSS2t2A7yG0rgbWFVasxvgRiiZU2+zlTHkBhAOy4bkBkrLu4GVoqRjScFE1VrObbzyfjdQTuAGysfBDQAKYZcDSCufU23z0IOE1FRB803CzVNW4datqNkN8LorGqgrMlAOKwIcVtLMYSyRDXoPEdnKIbmBUvK97njxqqi6AQasgrsBpwpAclXNboDXUBV3A05VzW6AG6FyTr3NVs2QG0A4rB6SGygl7waKiJKOJQUTVWsNt/Fq+t1ADYEbqBkHNwAohF0DIK1mTrXNQw8SUlMtzTcJN091hVu3tmY3wOuubaCuyEA5rA1weLlmDmOJbNB7iMjWCckNlJTv9VQvXl1VN8CAdXE3kFoXIPkKzW6A13AF7gZSr9DsBrgR6uTU22z1DLkBhMP6IbmBkvJuIEWUdCwpmKhar3Qb7yq/G7hS4AauioMbABTCvhIg7aqcapuHHiSkpgaabxJunvoKt+7Vmt0Ar/tqA3VFBsrh1QCHDTVzGEtkg95DRPaakNxACfle7+7Fa6TqBhiwEe4GujcCSL5WsxvgNVyLu4Hu12p2A9wI1+TU22zXGXIDCIeNQ3IDJeTdQDdR0rGkYKJqbeI2XlO/G2gicANN4+AGAIWwmwCkNc2ptnnoQUJqaqb5JuHmaaxw6zbX7AZ43c0N1BUZKIfNAQ6v18xhLJENeg8R2RYhuYHi8r2e7sW7QdUNMOANuBtIvwEguaVmN8BraIm7gfSWmt0AN0KLnHqb7UZDbgDh8KaQ3EBxeTeQV5R0LCmYqFpvdhvvFr8buFngBm6JgxsAFMK+GSDtlpxqm4ceJKSmWzXfJNw8NyncurdpdgO87tsM1BUZKIe3ARzerpnDWCIb9B4isq1CcgPFgL8Qx4t3h6obYMA7cuLv3an5hue67vQop2PJD7SJ+MC2yqm3Ke4ydGsjvNydxUaVWfPdChzGs6GKKjbUPaoNxYD3KDTUvZobiuu6N04NFTSdib83p9qBceQw4npIHOSv1vK82Fr1kDBgawXFaQ10bBvNB4rX0EaB5DaavwfjQ9RGwR7cBexXW812kPe2rWKzRgZ6ttoC62+n2eLFupGD3kNu5Ps0c8h7dJ/CRYDwwCKY3/rvW8qs1FvKUjtnFobjSCfPG/a/a7I977Sn/epA0ZHifooHKDpRdKZ4kKILRVeKbhTdKXpQ9KToRdGbog/FQxR9KfpRPEzRn2IAxSMUj1IMpBhE8RjFYIoMiiEUQ/2fAbR3v9/35joIch0FufsFuQcEuU6CXGdB7kFBrosg11WQ6ybIdRfkeghyPQW5XoJcb0GujyD3kCDXV5DrJ8g9LMj1F+QGCHKPCHKPCnIDBblBgtxjgtxgQS5DkBsiyA3Nef5nS0Xdp2NJjaimDxKb9pLCxJ9DdZCea9kdZedSvffLzR1L9doPSM09ymuzO8nM3fn3PtidJeY2/GfP7AeD545299fuEji3R4QLu2vQ3KX/8mZ3C5jb/z+O7e6Zz23sOQ92j0zn7vGeHbtnZnOrRZ0zu1cmc0tHn0m7d+y59/jOr90n5txW/rNuPxRrbsZ5fWH3jTE34/wesvuJ5y4S9Jv9sHBuI1Fv2v1Fc1sK+9geIJi7RNzz9iPnzy0TQx/sR8+bOzGWltgD/XOrxNQde5Bv7s7YGmU/Fj23VyZ6Zg+OmtsiM+2zM7xz22eqk/YQz9zKmWuqPTSnvOmK53e8Q+W1fLMX7/GcWQDkl8GfOm5+XH6D7CckF6X6HS+vgTFscA1PgCTH66djwOHaJEo6lhRMVK1PugfkKb9bedLdOG/uqZxZ/+kYcJLtJ4ED8hS4eSg5fCieBA8T1/VkSIoxRH6fJ3jxhqkqBgMOwxVjwjBAMYZrVgxew3BcMSYMD0kxhsjjjhclHUsKJqrWp90D8oxfMZ4WKMYzcVAM4CTbTwMH5BnFzUM/qENqehZohn//AdTyhHvA0Q/qkKv6OaAZRGsIms579JyCEj8XkhJnyJ/fBV68EapKzIAjcCVeMAI4fCM1KzGvYSSuxAtGZvHwyTTQc5obaBS4hshAhQnhcDRwNuJ5w2XI484XJR1LCiaq1jFu443133BjBDfc2DjccIBC2GMA0sYqbh56kJCans/iDRf0DjfPaIXb4QXNtxav+wUDdUUGyuELAIcvauYwlsjKiLPs3JdAQYuXGxgs3+ujvHgvq7oBBnwZdwOjXgY26BXNboDX8AruBka9otkNcCO8lFNvs70KNltkoDUhHL4WkhsYLI87UpR0LCmYqFrHuY033u8GxgncwPg4uAFAIexxAGnjFTcPPUhITRM03yTcPK8p3Lqva3YDvO7XDdQVGSiHrwMcTtTMYSyRDXoPEdlJIX028Jh8rztevMmqboABJ+NuwJkMkPyGZjfAa3gDdwPOG5rdADfCpJx6m22KITeAcDg1JDfwmDxu3P7euTfdxnvL7wbeFLiBt+LgBgCFsN8ESHtLcfPQg4TUNE3zTcLNM1Xh1p2u2Q3wuqcbqCsyUA6nAxzO0MxhLJENeg8R2bdDcgOD5Ht9kxdvpqobYMCZuBvYNBMg+R3NboDX8A7uBja9o9kNcCO8nVNvs80y5AYQDmeH5AYGyeNuFCUdSwomqtY5buPN9buBOQI3MDcObgBQCHsOQNpcxc1DDxJS0zzNNwk3z2yFW3e+ZjfA655voK7IQDmcD3C4QDOHsUQ26D1EZBeG5AYGyvd6Oy/eIlU3wICLcDfQbhFA8mLNboDXsBh3A+0Wa3YD3AgLc+pttiWG3ADC4dKQ3MBAedy2oqRjScFE1brMbbx3/W5gmcANvBsHNwAohL0MIO1dxc1DDxJS03LNNwk3z1KFW3eFZjfA615hoK7IQDlcAXC4UjOHsUQ26D1EZFeF5AYele/1bV681apugAFX425g22qA5Pc0uwFew3u4G9j2nmY3wI2wKqfeZnvfkBtAOPwgJDfwqDzuVlHSsaRgomr90G28NX438KHADayJgxsAFML+ECBtjeLmoQcJqWmt5puEm+cDhVv3I81ugNf9kYG6IgPl8COAw481cxhLZIPeQ0T2k5DcwCPyvd7Ui7dO1Q0w4DrcDTRdB5D8qWY3wGv4FHcDTT/V7Aa4ET7JqbfZPjPkBhAOPw/JDTwij9tElHQsKZioWte7jbfB7wbWC9zAhji4AUAh7PUAaRsUNw89SEhNGzXfJNw8nyvcups0uwFe9yYDdUUGyuEmgMPNmjmMJbJB7yEi+0VIbmCAfK/P8+JtUXUDDLgFdwPztgAkf6nZDfAavsTdwLwvNbsBboQvcupttq8MuQGEw69DcgMD5HHnipKOJQUTVetWt/G2+d3AVoEb2BYHNwAohL0VIG2b4uahBwmpabvmm4Sb52uFW/cbzW6A1/2NgboiA+XwG4DDbzVzGEtkg95DRPa7kNxAf/leX+HF26HqBhhwB+4GVuwASP5esxvgNXyPu4EV32t2A9wI3+XU22w/GHIDCIc7Q3ID/eVxl4uSjiUFE1XrLrfxfvS7gV0CN/BjHNwAoBD2LoC0HxU3Dz1ISE0/ab5JuHl2Kty6uzW7AV73bgN1RQbK4W6Aw581cxhLZIPeQ0T2l5DcwMPyvd7ci7dH1Q0w4B7cDTTfA5D8q2Y3wGv4FXcDzX/V7Aa4EX7JqbfZ9hpyAwiH+0JyAw/L4zYTJR1LCiaq1t/cxvvd7wZ+E7iB3+PgBgCFsH8DSPtdcfPQg4TUtF/zTcLNs0/h1j2g2Q3wug8YqCsyUA4PABwe1MxhLJENeg8R2UMhuYF+8r2e4cU7rOoGGPAw7gYyDgMk/6HZDfAa/sDdQMYfmt0AN8KhnHqb7YghN4BweDQkN9BPHnewKOlYUjBRtR5zG++43w0cE7iB43FwA4BC2McA0o4rbh56kJCaTmi+Sbh5jircuic1uwFe90kDdUUGyuFJgMNTmjmMJbJB7yEiezokN9BX0Q2cUXUDDHhGwQ2cAUj+U7Mb4DX8qeAG/tTsBrgRTufU22x/GXIDCIdnQ3IDfUNwA+cijZdsRd/85wRugCdl1Q0ACmGfQxov2YwbQGqyk7HDjR4Ybp6zCrduNvm6/ivOkq+L180YuuuKDJRDL07Q3OyaOYwlskHvISKbAOxrPN3AQ/K9PsOLl5icBUB+GXQDMxIBkpOAw6O6hqRk2A3MSMpiU8s0QkKy3mbLATZbZKA1IRzmBGqKpxt4SN4NTBclHUsKJqrWZLfxcvndQHLy+W4gVxzcAKAQdjJAWq5ktc1DDxJSU4rmm4SbJ6fCrZuq2Q3wulMN1BUZKIepAIdpmjmMJbJB7yEimzskN9BHvtenevHyqLoBBsyDu4GpeQCS82p2A7yGvLgbmJpXsxvgRsidrLfZ0g25AYTDfCG5gT7ybmCKKOlYUjBRtV7gNl5+vxu4QOAG8sfBDQAKYV8AkJY/WW3z0IOE1HSh5puEmyefwq17kWY3wOu+yEBdkYFyeBHA4cWaOYwlskHvISJbICQ30Fu+17d78QqqugEGLIi7ge0FAZIv0ewGeA2X4G5g+yWa3QA3QoFkvc1WyJAbQDgsHJIb6C3vBraJko4lBRNV66Vu413mdwOXCtzAZXFwA4BC2JcCpF2WrLZ56EFCaiqi+Sbh5imscOs6mt3A3+s2UFdkoBw6AIdFNXMYS2SD3kNEtlhIbqCXfK9v8OIVV3UDDFgcdwMbigMkl9DsBngNJXA3sKGEZjfAjVAsWW+zlTTkBhAOS4XkBnrJu4H1oqRjScFE1VrabbwyfjdQWuAGysTBDQAKYZcGSCuTrLZ56EFCaiqr+Sbh5imlcOuW0+wGeN3lDNQVGSiH5QAOy2vmMJbIBr2HiGyFkNxAT/leL+jFq6jqBhiwIu4GClYESK6k2Q3wGirhbqBgJc1ugBuhQrLeZqtsyA0gHFYJyQ30lHcDBURJx5KCiaq1qtt41fxuoKrADVSLgxsAFMKuCpBWLVlt89CDhNRUXfNNws1TReHWraHZDfC6axioKzJQDmsAHNbUzGEskQ16DxHZWiG5gR7yvb7Mi1db1Q0wYG3cDSyrDZB8uWY3wGu4HHcDyy7X7Aa4EWol6222OobcAMJh3ZDcQA95N7BUlHQsKZioWq9wG6+e3w1cIXAD9eLgBgCFsK8ASKuXrLZ56EFCaqqv+Sbh5qmrcOteqdkN8LqvNFBXZKAcXglweJVmDmOJbNB7iMg2CMkNdJfv9eFevKtV3QADXo27geFXAyQ31OwGeA0NcTcwvKFmN8CN0CBZb7NdY8gNIBw2CskNdJd3A8NESceSgomq9Vq38a7zu4FrBW7guji4AUAh7GsB0q5LVts89CAhNTXWfJNw8zRSuHWbaHYDvO4mBuqKDJTDJgCHTTVzGEtkg95DRLZZSG6gm3yvN/HiNVd1AwzYHHcDTZoDJF+v2Q3wGq7H3UCT6zW7AW6EZsl6m62FITeAcHhDSG6gm7wbaCxKOpYUTFStLd3Gu9HvBloK3MCNcXADgELYLQHSbkxW2zz0ICE13aT5JuHmuUHh1r1Zsxvgdd9soK7IQDm8GeDwFs0cxhLZoPcQkb01JDfQVb7Xx3jxblN1Awx4G+4GxtwGkHy7ZjfAa7gddwNjbtfsBrgRbk3W22ytDLkBhMM7QnIDXeXdwGhR0rGkYKJqvdNtvLv8buBOgRu4Kw5uAFAI+06AtLuS1TYPPUhITXdrvkm4ee5QuHXv0ewGeN33GKgrMlAO7wE4vFczh7FENug9RGRbh+QGusj3ek8vXhtVN8CAbXA30LMNQHJbzW6A19AWdwM922p2A9wIrZP1Nls7Q24A4fC+kNxAF3k30EOUdCwpmKha27uN18HvBtoL3ECHOLgBQCHs9gBpHZLVNg89SEhNHTXfJNw89yncuvdrdgO87vsN1BUZKIf3Axw+oJnDWCIb9B4isp1CcgMPyvf6Ki9eZ1U3wICdcTewqjNA8oOa3QCv4UHcDax6ULMb4EbolKy32boYcgMIh11DcgMPyruBlaKkY0nBRNXazW287n430E3gBrrHwQ0ACmF3A0jrnqy2eehBQmrqofkm4ebpqnDr9tTsBnjdPQ3UFRkohz0BDntp5jCWyAa9h4hs75DcQGf5Xne8eH1U3QAD9sHdgNMHIPkhzW6A1/AQ7gachzS7AW6E3sl6m62vITeAcNgvJDfQWd4NFBElHUsKJqrWh93G6+93Aw8L3ED/OLgBQCHshwHS+ierbR56kJCaBmi+Sbh5+incuo9odgO87kcM1BUZKIePABw+qpnDWCIb9B4isgNDcgOd5Hs91Ys3SNUNMOAg3A2kDgJIfkyzG+A1PIa7gdTHNLsBboSByXqbbbAhN4BwmBGSG+gk7wZSREnHkoKJqnWI23hD/W5giMANDI2DGwAUwh4CkDY0WW3z0IOE1PS45puEmydD4dZ9QrMb4HU/YaCuyEA5fALg8EnNHMYS2aD3EJF9KiQ38IB8r3f34g1TdQMMOAx3A92HASQP1+wGeA3DcTfQfbhmN8CN8FSy3mZ72pAbQDh8JiQ38IC8G+gmSjqWFExUrc+6jfec3w08K3ADz8XBDQAKYT8LkPZcstrmoQcJqWmE5puEm+cZhVt3pGY3wOseaaCuyEA5HAlwOEozh7FENug9RGRHh+QG7pfv9XQv3hhVN8CAY3A3kD4GIHmsZjfAaxiLu4H0sZrdADfC6GS9zfa8ITeAcPhCSG7gfnk3kFeUdCwpmKhaX3Qb7yW/G3hR4AZeioMbABTCfhEg7aVktc1DDxJS08uabxJunhcUbt1XNLsBXvcrBuqKDJTDVwAOX9XMYSyRDXoPEdnXQnIDHeUFLQpvnKobYMBxyfh74zXf8FzX+OT/Eo4lP9Am4gP7WrLepphg6NZGeHk9i40qs+bXFTiMZ0N1UGyoiaoNxYATFRpqkuaG4romxamhgqYz8ZOS1Q6MI4cR10PSHvhv3XvxJqseEgacrKA4k4GOfUPzgeI1vKFA8huavwfjQ/SGgj2YAOzXFM12kPd2imKzRgZ6tqYA65+q2eLFupGD3kNu5Dc1c8h79KbCRYDwwCKYIqiRx1vJ7oTsVnxU8i1gw7zfME9zD/J0/zfM/H9k+HLT3Zx3oN8wvwXs4LTYc+/xzbWng9cTR7ZM5jgx8n5c7/+HkjYNqNkLNMNP1ozk80+RnxhkszPB/rcA2a/7drL0Zkat6W2JwxaEPR2oE1nTzEzW5H/Xu6aZnqbK6VmPd00BwxbMzbbxgtZ9k6be275i6bRrDxfI98LjV60ZMfSq0hWAr/tvM0SaP9LwSG3v0PxZFLOT4+sBZ3n2u0C10nV6vrIp/3dlin3b4L13Kr1Q8GiJet8tbTL50Ol1J2muF2+OqgdkwDmCOy4IfA5w987V7AF5DXMFd1zQGuaCSppmxefz4lmKH5dZPpyA9UUdyHle4UTNLLBRtlcFvKABmPeIyJknYb78i54HHLb54LUUWdd8j2IH7WVe+/08yc6kgQ8s+2LpnKtu2SK7Lj+5yLoWKK5rQRxsz3zgdl0ArGmh5m/YZHnxwyC8LALXgIpyZA2y9fCeLsKFMwojaPxfsaBor0fG4syEM+jrLFJsxMXywikUtUUKn4gMTc9ag8X4v/8dXNNihboeB+uKjAQfjn9k1pxBNS0BLkRgX21krd7zsgS4kESXhcp5eUITL35chJelnrmXVm8x7v2bH5w7om6extVybRm05akHq3896umh5Y5ktBqQVHwssNf2E4q8LHV5iecHIIh79IruMvdbhHdNCZrq11+mcBiXKwrt8kwaR6bWdxVqXaFY64osNDnXulyh1qeyeCkEfZjFda1QqGtYfC+r86bPckURdYPAftnIGv6vuCi0zyJjZRguamUmLkrwWtRgzJUKB3P4/0G3sipZzwEerngrrhJ8m6nTFaz2zL2gqrW1yA81B5S/qFaPlv2e+OHWWY/ln1J2T54CB/rW63fqux7epgxyEKrrX+1xBbGaGu0R5NubrOCoCsB7YQjAe1kUgPcUBOBpRQFIBHGQBngfmIt8u4KIxdOKzfK+hFgErekDYP1eqx9PsVBd/wf/h76F+ND9FmJNsvXfjx8cS2rE/EAX+fA5aC7wwZT97z8sfA3oj+dU1xA0d63m9TLhaxVE8CNFwf4oC9+OrVGs9WPFWj/OwrdjXOdHCrU+p/nbMa7rY4W6Rhj4dmytwrdjwH7ZI/4//HYM7bPI+CQrbmytYsN8kgU3xpifKBzMkYa+HVsLiPa6ZD0HeKSiw1gXh2/HkPV/Cnw7NgJwWKrr/1SwfvSnzsj6P1Psn88U6vT/JA+p83PFOj/P4sX4mUKfjzJwMX6uUNdoRf3xG8ygn8giRhDYK3v0/4eX4meKl+L6MC7F9Vm8FNcrHMox/wcvxQ2aDvAYxUthg+FLcSNwKY4GLkXV9W/U8Bkl4lazgqMqAJvCEIBNWRSATQoCMNbQZ5RIA2wG5iKuGBGLsYrNsjkOn1F+AfzqwgjgM0pELFTX/0UWPrax3XfQM7wF6DfmIrcV3UBonVuSo993JOo8eO7cIa9wful+fvpVshW9gV/Ki8B5hfEX+0pBBL7W/KscPH+LQl1bk+U3V6Uu3uuvFep6Ib7fYpz39bmurQp1vago5uhnacD67RfBbxvi9a9PbFW8+bclZwFwWzL+3nbgtlOta3vyfwnHkh8qB3d7FvcAGUE23I/ztbyg/Lk1WU0Qgr7uiwbEQ+US+Maz3qDPGOLZqN8oNuq3qo3KgN8qHNLvNDcq1/WdQqNm9u8j+b9WELEqdUcOnIW9F0XmDtGPkYM2mTfry2S1giXnRlmzHZlYM5mu/E7hx1ZfAofue9AH+3+HwBTx3oP6g/v+TtEBCCqAF7wjTldb0HTG+V5BVndp9ta8gbsU6vpRsQl+zMI3eDsVa/1JsdafslCr6jW6O4t8y5ynHxXqeknzj0W4rp8U6npZ8+8LcF27FYQX2C/75f8PfzSC9n9k/JyVT0Z3KTbyz1n4ZJQxf1Y4mK8a+tHILuCG/yVZzwF+VfHTvl8kPu30D/8akfXvAX408jLwaafq+vfE4fcFkPX/qtg/v8bh9wWQOvcq1rk3C78vwPX9qtDnrxm4GPcq1DXO0O8LAJpsA3tlj/v/8FL8VfFS3BfGpbgvi5fiPoVDOf7/4KX4m6YDPF7xUvjN8KX4O3ApjgMuRdX1/67h9wUQt5oVHFUB2B+GAOzPogDsVxCACYZ+XwBpgAPAXMQVI2IxQbFZDsTh9wUOAr8v8DLw+wKIWKiu/6C84zvv74WKfCSHOu7vgfNySLE3DwFO1v/3Qsmuy+/skHUdVlzX4eSs/71QmezpeTp1GFjTH5o/epPlxQ+D8HIEXAP690JF1iBbD+/pEcE9EfRdBfqziP8L7h/t9cg4mpXL/4hiIx7Nwg+jDsUgNei9yZr/Xiiu6ahCXW8Y+q7kCNA4x4DvSoB9td9QvGiPZeGjlcOK52WKob8XCuHlOGCWgL22pyjycjw5/v9SN/IzKK/onnB/lnrSlKCpfv0TCofxlKLQnkpW/yEi13pSodbTirWezkKTc62nFGp9U/Pnp1zXaYW63tL8g8XdriiibhDYL/ut/w8/Q0X7LDLOhOGizmThIxTGPKNwMKf9H3QrfybrOcDTFG/FP+PwGSqy/r+Az1DfAj4WUV3/Xxo+Q0W+vckKjqoAnA1DAM5mUQDOKgjAdEOfoSINcA6Yi3y7gojFdMVmOReHz1CtXGrf1sRTLFTXz7VnWPH9rWzvtxDIf33CzpUFQH4Z/UDLziWPkQ0gWXUNjGGDa8gmvwaluo64daF/VxUiIMjeZgc4+/cflvw7/Lub2XPhwpwA8hAZ6N9jthvY18Qsng2ZX0xX2askkEP02yTeIwSDuUtUWEcOYH9ZYPN4/rf3P2WU0xW+ZPeZi59elc7lKQ7dDH4P+TcBeG7OXDhOTqCJU8CDqfJvPuTIha05WWHNyQBGqoFmzKWwhlzAGtKANXD93v9mF//vFPccp7rPtFzx+e9o5aavk4cib67za/B+naD1pcuvr9bf67D+c4u2+z4/c7vPPO5zdvb/5uWj3AUU+SkuzGK9F8nXW1tU70US9V5MuQIUBSkuyfVPPr8VLWCx6g8Ydj7FS9PCcBzp5HnDjvoOL/JOIaq7MMWlFJdRFOF1UBSlKEZRnKIERUmKUhSlKcpQlKUoR1GeogJFRYpKFJUpqlBUpahGUZ2iBkVNiloUtSkup6hDUdd/OXAxOX25woLcpYLcZYJcEUHOEeSKCnLFBLniglwJQa6kIFdKkCstyJUR5MoKcuUEufKCXAVBrqIgV0mQqyzIVRHkqgpy1QS56oJcDUGupiBXS5CrLchdLsjVEeTqujnvKOo+HUtqRDV9kMAVkpx78Nw5u7D0XMu+VHYu1XuZ3Nyx/OF3Eam5R//+oNyRmbvznw/Vi0rMbeh+AF8seO7oyIf1xQPn9vj3g/0SQXOX/vdDgJIBc/t7fmBQKvO5jb0/XCid6dw9UT+IKJPZ3GrRP7Qom8nc0r4fcJSLPfe8H0CVjzm3lf+s2xVizc04ry/sijHmZpzfQ3Yl8dxFgn6zKwvnNhL1pl1FNLelsI/tqoK5S8Q9b1c7f26ZGPpgVz9v7sRYWmLX8M+tElN37Jq+uTtja5RdK3pur0z0zK4dNbdFZtpnX+6d2z5TnbTreOZWzlxT7bqA6Yrnx4J15bV8sxfvilxZALwiF/YRC4NfIb9Bdj3gMlNdQ71c2HcGvIZ6IMkXWvH5QRFwuDaJko4lBRNVa333gFzpd8b13Y3z5q4UOBj0l1CBk2zXBw7IleDmoeTwoagPHiauq35IilFHfp8nePGuUlUMBrwKV4wJVwGK0UCzYvAaGuCKMaFBSIpRRx53vCjpWFIwUbVe7R6Qhn7FuFqgGA3joBjASbavBg5IQ8XNQ3/qgNR0DdAM//4DqKWee8DRDzqRq7oR0AyiNQRN5z1qpKDEjUJS4svlz+8CL961qkrMgNfiSrzgWuDwXadZiXkN1+FKvOC6LB4+mQZqpLmBGoNriAxUmBAOmwBnI5433OXyuPNFSceSgomqtanbeM38N1xTwQ3XLA43HKAQdlOAtGaKm4ceJKSm5lm84YLe4eZponA7XK/51uJ1X2+grshAObwe4LCFZg5jiayMOMvOvQEUtHi5gdryvT7Ki9dS1Q0wYEvcDYxqCWzQjZrdAK/hRtwNjLpRsxvgRrghl95muwlstshAa0I4vDkkN1BbHnekKOlYUjBRtd7iNt6tfjdwi8AN3BoHNwAohH0LQNqtipuHHiSkpts03yTcPDcr3Lq3a3YDvO7bDdQVGSiHtwMcttLMYSyRDXoPEdk7QvpsoJZ8rztevDtV3QAD3om7AedOgOS7NLsBXsNduBtw7tLsBrgR7silt9nuNuQGEA7vCckN1JLHLSJKOpYUTFSt97qN19rvBu4VuIHWcXADgELY9wKktVbcPPQgITW10XyTcPPco3DrttXsBnjdbQ3UFRkoh20BDttp5jCWyAa9h4jsfSG5gZryvb7Ji9de1Q0wYHvcDWxqD5DcQbMb4DV0wN3Apg6a3QA3wn259DZbR0NuAOHw/pDcQE153I2ipGNJwUTV+oDbeJ38buABgRvoFAc3ACiE/QBAWifFzUMPElJTZ803CTfP/Qq37oOa3QCv+0EDdUUGyuGDAIddNHMYS2SD3kNEtmtIbqCGfK+38+J1U3UDDNgNdwPtugEkd9fsBngN3XE30K67ZjfAjdA1l95m62HIDSAc9gzJDdSQx20rSjqWFExUrb3cxuvtdwO9BG6gdxzcAKAQdi+AtN6Km4ceJKSmPppvEm6engq37kOa3QCv+yEDdUUGyuFDAId9NXMYS2SD3kNEtl9IbqC6fK9v8+I9rOoGGPBh3A1sexggub9mN8Br6I+7gW39NbsBboR+ufQ22wBDbgDh8JGQ3EB1edytoqRjScFE1fqo23gD/W7gUYEbGBgHNwAohP0oQNpAxc1DDxJS0yDNNwk3zyMKt+5jmt0Ar/sxA3VFBsrhYwCHgzVzGEtkg95DRDYjJDdQTb7Xm3rxhqi6AQYcgruBpkMAkodqdgO8hqG4G2g6VLMb4EbIyKW32R435AYQDp8IyQ1Uk8dtIko6lhRMVK1Puo33lN8NPClwA0/FwQ0ACmE/CZD2lOLmoQcJqWmY5puEm+cJhVt3uGY3wOsebqCuyEA5HA5w+LRmDmOJbNB7iMg+E5IbqCrf6/O8eM+qugEGfBZ3A/OeBUh+TrMb4DU8h7uBec9pdgPcCM/k0ttsIwy5AYTDkSG5garyuHNFSceSgomqdZTbeKP9bmCUwA2MjoMbABTCHgWQNlpx89CDhNQ0RvNNws0zUuHWHavZDfC6xxqoKzJQDscCHD6vmcNYIhv0HiKyL4TkBqrI9/oKL96Lqm6AAV/E3cCKFwGSX9LsBngNL+FuYMVLmt0AN8ILufQ228uG3ADC4SshuYEq8rjLRUnHkoKJqvVVt/Fe87uBVwVu4LU4uAFAIexXAdJeU9w89CAhNY3TfJNw87yicOuO1+wGeN3jDdQVGSiH4wEOJ2jmMJbIBr2HiOzrIbmByvK93tyLN1HVDTDgRNwNNJ8IkDxJsxvgNUzC3UDzSZrdADfC67n0NttkQ24A4fCNkNxAZXncZqKkY0nBRNU6xW28qX43MEXgBqbGwQ0ACmFPAUibqrh56EFCanpT803CzfOGwq37lmY3wOt+y0BdkYFy+BbA4TTNHMYS2aD3EJGdHpIbqCTf6xlevBmqboABZ+BuIGMGQPLbmt0Ar+Ft3A1kvK3ZDXAjTM+lt9lmGnIDCIfvhOQGKsnjDhYlHUsKJqrWWW7jzfa7gVkCNzA7Dm4AUAh7FkDabMXNQw8SUtMczTcJN887CrfuXM1ugNc910BdkYFyOBfgcJ5mDmOJbNB7iMjOD8kNVFR0AwtU3QADLlBwAwsAkhdqdgO8hoUKbmChZjfAjTA/l95mW2TIDSAcLg7JDVQMwQ0scRtvqd8NLBG4gaVxcAOAQthLANKWGnIDSE3LNN8k3DyLFW7ddzW7AV73uwbqigyUw3cBDpdr5jCWyAa9h4jsipDcQAX5Xp/hxVup6gYYcCXuBmasBEhepdkN8BpW4W5gxirNboAbYUUuvc222pAbQDh8LyQ3UEEed7oo6VhSMFG1vu823gd+N/C+wA18EAc3ACiE/T5A2geKm4ceJKSmDzXfJNw87yncums0uwFe9xoDdUUGyuEagMO1mjmMJbJB7yEi+1FIbqC8fK9P9eJ9rOoGGPBj3A1M/Rgg+RPNboDX8AnuBqZ+otkNcCN8lEtvs60z5AYQDj8NyQ2Ul8edIko6lhRMVK2fuY33ud8NfCZwA5/HwQ0ACmF/BpD2ueLmoQcJqWm95puEm+dThVt3g2Y3wOveYKCuyEA53ABwuFEzh7FENug9RGQ3heQGysn3+nYv3mZVN8CAm3E3sH0zQPIXmt0Ar+EL3A1s/0KzG+BG2JRLb7NtMeQGEA6/DMkNlJPH3SZKOpYUTFStX7mN97XfDXwlcANfx8ENAAphfwWQ9rXi5qEHCalpq+abhJvnS4Vbd5tmN8Dr3magrshAOdwGcLhdM4exRDboPURkvwnJDZSV7/UNXrxvVd0AA36Lu4EN3wIkf6fZDfAavsPdwIbvNLsBboRvcultth2G3ADC4fchuYGy8rjrRUnHkoKJqvUHt/F2+t3ADwI3sDMObgBQCPsHgLSdipuHHiSkpl2abxJunu8Vbt0fNbsBXvePBuqKDJTDHwEOf9LMYSyRDXoPEdndIbmBMvK9XtCL97OqG2DAn3E3UPBngORfNLsBXsMvuBso+ItmN8CNsDuX3mbbY8gNIBz+GpIbKCOPW0CUdCwpmKha97qNt8/vBvYK3MC+OLgBQCHsvQBp+xQ3Dz1ISE2/ab5JuHl+Vbh1f9fsBnjdvxuoKzJQDn8HONyvmcNYIhv0HiKyB0JyA6Xle32ZF++gqhtgwIO4G1h2ECD5kGY3wGs4hLuBZYc0uwFuhAO59DbbYUNuAOHwj5DcQGl53KWipGNJwUTVesRtvKN+N3BE4AaOxsENAAphHwFIO6q4eehBQmo6pvkm4eb5Q+HWPa7ZDfC6jxuoKzJQDo8DHJ7QzGEskQ16DxHZkyG5gVLyvT7ci3dK1Q0w4CncDQw/BZB8WrMb4DWcxt3A8NOa3QA3wslcepvtjCE3gHD4Z0huoJQ87jBR0rGkYKJq/cttvLN+N/CXwA2cjYMbABTC/gsg7azi5qEHCanpnOabhJvnT4Vb10rR6wZ43Yyhu67IQDn04gTNtVP0chhLZIPeQ0Q2G7Cv8XQDJeV7vYkXL3tKFgD5ZdANNMkOkJwAHB7VNSSkwG6gSUIWm1qmEbKl6G22RLDZIgOtCeEwCTkbVvzcQEn5y6OxKOlYUjBRteZwGy9nihV98+dIOd8N8KSsugFAIewcAGk5U9Q2Dz1ISE3Jmm8Sbp4khVs3l2Y3wOvOZaCuyEA5zAVwmKKZw1giG4gFrCE1JDdQQr7Xx3jx0lTdAAOm4W5gTBpAcm7NboDXkBt3A2Nya3YD3AipKXqbLY8hN4BwmDckN1BC3g2MFiUdSwomqtZ0t/Hy+d1AusAN5IuDGwAUwk4HSMuXorZ56EFCarpA803CzZNX4dbNr9kN8LrzG6grMlAO8wMcXqiZw1giG/QeIrIXheQGisv3ek8v3sWqboABL8bdQM+LAZILaHYDvIYCuBvoWUCzG+BGuChFb7MVNOQGEA4vCckNFJd3Az1ESceSgomqtZDbeIX9bqCQwA0UjoMbABTCLgSQVjhFbfPQg4TUdKnmm4Sb5xKFW/cyzW6A132ZgboiA+XwMoDDIpo5jCWyQe8hIuuE5AaKyff6Ki9eUVU3wIBFcTewqihAcjHNboDXUAx3A6uKaXYDfzdCit5mK27IDSAclgjJDRSTdwMrRUnHkoKJqrWk23il/G6gpMANlIqDGwAUwi4JkFYqRW3z0IOE1FRa803CzVNC4dYto9kN8LrLGKgrMlAOywAcltXMYSyRDXoPEdlyIbmBovK97njxyqu6AQYsj7sBpzxAcgXNboDXUAF3A04FzW6AG6Fcit5mq2jIDSAcVgrJDRSVdwNFREnHkoKJqrWy23hV/G6gssANVImDGwAUwq4MkFYlRW3z0IOE1FRV803CzVNJ4datptkN8LqrGagrMlAOqwEcVtfMYSyRDXoPEdkaIbkBR77XU714NVXdAAPWxN1Aak2A5Fqa3QCvoRbuBlJraXYD3Ag1UvQ2W21DbgDh8PKQ3IAj7wZSREnHkoKJqrWO+5Xq+t1AHYEbqBsHNwAohF0HIK1uitrmoQcJqekKzTcJN8/lCrduPc1ugNddz0BdkYFyWA/gsL5mDmOJbNB7iMheGZIbKCLf6929eFepugEGvAp3A92vAkhuoNkN8Boa4G6gewPNboAb4coUvc12tSE3gHDYMCQ3UETeDXQTJR1LCiaq1mvcxmvkdwPXCNxAozi4AUAh7GsA0hqlqG0eepCQmq7VfJNw8zRUuHWv0+wGeN3XGagrMlAOrwM4bKyZw1giG/QeIrJNQnIDl8n3eroXr6mqG2DAprgbSG8KkNxMsxvgNTTD3UB6M81ugBuhSYreZmtuyA0gHF4fkhu4TN4N5BUlHUsKJqrWFm7j3eB3Ay0EbuCGOLgBQCHsFgBpN6SobR56kJCaWmq+Sbh5rle4dW/U7AZ43TcaqCsyUA5vBDi8STOHsUQ26D1EZG8OyQ1cCvyFOF68W1TdAAPekoK/d6vmG57rujXlv4RjyQ+0ifjA3pyityluM3RrI7zcnsVGlVnz7QocxrOhCis2VCvVhmLAVgoNdYfmhuK67ohTQwVNZ+LvSFE7MI4cRlwPSSHgb6Lx4t2pekgY8E4FxbkT6Ni7NB8oXsNdCiTfpfl7MD5EdynYg9uA/bpbsx3kvb1bsVkjAz1bdwPrv0ezxYt1Iwe9h9zI92rmkPfoXoWLAOGBRTC/9d+3lFmp92LFv8jUwnAc6eR5w/53Tbbnnda0X20o2lK0o7iPoj1FB4qOFPdTPEDRiaIzxYMUXSi6UnSj6E7Rg6InRS+K3hR9KB6i6EvRj+Jhiv4UAygeoXiUYiDFIP9nAK3d7/e9uTaCXFtBrp0gd58g116Q6yDIdRTk7hfkHhDkOglynQW5BwW5LoJcV0GumyDXXZDrIcj1FOR6CXK9Bbk+gtxDglxfQa6fIPewINdfkBsgyD0iyD0qyA0U5AalnP/ZUlH36VhSI6rpg8SmtaQw8edQbaTnWnZb2blUbzu5uWOpXvs+qblHeW12e5m5O//eB7uDxNyG/+yZ3TF47mh3f+37A+f2iHBhPxA0d+m/vNmdAub2/49ju3Pmcxt7zoP9YKZz93jPjt0ls7nVos6Z3TWTuaWjz6TdLfbce3zn1+4ec24r/1m3e8Sam3FeX9g9Y8zNOL+H7F7iuYsE/Wb3Fs5tJOpNu49obkthH9sPCeYuEfe83ff8uWVi6IPd77y5E2Npif2wf26VmLpj9/fN3Rlbo+wB0XN7ZaJn9iNRc1tkpn32o9657TPVSXugZ27lzDXVHhTSd7yD5LV8sxfvMdXveBnwsRT4p46bH5PfIHuw5KJUv+PlNQwGv+PlNQwGSY7XT8eAw7VJlHQsKZioWjPcAzLE74wz3I3z5oakZP2nY8BJtjOAAzIE3DyUHD4UGeBh4royQlKMgfL7PMGLN1RVMRhwKK4YE4YCivG4ZsXgNTyOK8aEx0NSjIHyuONFSceSgomq9Qn3gDzpV4wnBIrxZBwUAzjJ9hPAAXlScfPQD+qQmp4CmuHffwC1DHYPOPpBHXJVDwOaQbSGoOm8R8MUlHhYSEr8qPz5XeDFG66qxAw4HFfiBcOBw/e0ZiXmNTyNK/GCp7N4+GQaaJjmBnoGXENkoMKEcPgscDbiecM9Ko87X5R0LCmYqFqfcxtvhP+Ge05ww42Iww0HKIT9HEDaCMXNQw8SUtPILN5wQe9w8zyrcDuM0nxr8bpHGagrMlAORwEcjtbMYSyRlRFn2bljQEGLlxt4RL7XR3nxxqq6AQYci7uBUWOBDXpesxvgNTyPu4FRz2t2A9wIY1L0NtsLYLNFBloTwuGLIbmBR+RxR4qSjiUFE1XrS27jvex3Ay8J3MDLcXADgELYLwGkvay4eehBQmp6RfNNws3zosKt+6pmN8DrftVAXZGBcvgqwOFrmjmMJbJB7yEiOy6kzwYGyPe648Ubr+oGGHA87gac8QDJEzS7AV7DBNwNOBM0uwFuhHEpepvtdUNuAOFwYkhuYIA8btz+3rlJbuNN9ruBSQI3MDkObgBQCHsSQNpkxc1DDxJS0xuabxJunokKt+4UzW6A1z3FQF2RgXI4BeBwqmYOY4ls0HuIyL4ZkhvoL9/rm7x4b6m6AQZ8C3cDm94CSJ6m2Q3wGqbhbmDTNM1ugBvhzRS9zTbdkBtAOJwRkhvoL4+7UZR0LCmYqFrfdhtvpt8NvC1wAzPj4AYAhbDfBkibqbh56EFCanpH803CzTND4dadpdkN8LpnGagrMlAOZwEcztbMYSyRDXoPEdk5IbmBh+V7vZ0Xb66qG2DAubgbaDcXIHmeZjfAa5iHu4F28zS7AW6EOSl6m22+ITeAcLggJDfwsDxuW1HSsaRgompd6DbeIr8bWChwA4vi4AYAhbAXAqQtUtw89CAhNS3WfJNw8yxQuHWXaHYDvO4lBuqKDJTDJQCHSzVzGEtkg95DRHZZSG6gn3yvb/PivavqBhjwXdwNbHsXIHm5ZjfAa1iOu4FtyzW7AW6EZSl6m22FITeAcLgyJDfQTx53qyjpWFIwUbWuchtvtd8NrBK4gdVxcAOAQtirANJWK24eepCQmt7TfJNw86xUuHXf1+wGeN3vG6grMlAO3wc4/EAzh7FENug9RGQ/DMkN9JXv9aZevDWqboAB1+BuoOkagOS1mt0Ar2Et7gaartXsBrgRPkzR22wfGXIDCIcfh+QG+srjNhElHUsKJqrWT9zGW+d3A58I3MC6OLgBQCHsTwDS1iluHnqQkJo+1XyTcPN8rHDrfqbZDfC6PzNQV2SgHH4GcPi5Zg5jiWzQe4jIrg/JDTwk3+vzvHgbVN0AA27A3cC8DQDJGzW7AV7DRtwNzNuo2Q1wI6xP0dtsmwy5AYTDzSG5gYfkceeKko4lBRNV6xdu423xu4EvBG5gSxzcAKAQ9hcAaVsUNw89SEhNX2q+Sbh5Nivcul9pdgO87q8M1BUZKIdfARx+rZnDWCIb9B4isltDcgN95Ht9hRdvm6obYMBtuBtYsQ0gebtmN8Br2I67gRXbNbsBboStKXqb7RtDbgDh8NuQ3EAfedzloqRjScFE1fqd23g7/G7gO4Eb2BEHNwAohP0dQNoOxc1DDxJS0/eabxJunm8Vbt0fNLsBXvcPBuqKDJTDHwAOd2rmMJbIBr2HiOyukNxAb/leb+7F+1HVDTDgj7gbaP4jQPJPmt0Ar+En3A00/0mzG+BG2JWit9l2G3IDCIc/h+QGesvjNhMlHUsKJqrWX9zG2+N3A78I3MCeOLgBQCHsXwDS9ihuHnqQkJp+1XyTcPP8rHDr7tXsBnjdew3UFRkoh3sBDvdp5jCWyAa9h4jsbyG5gV7yvZ7hxftd1Q0w4O+4G8j4HSB5v2Y3wGvYj7uBjP2a3QA3wm8pepvtgCE3gHB4MCQ30Esed7Ao6VhSMFG1HnIb77DfDRwSuIHDcXADgELYhwDSDituHnqQkJr+0HyTcPMcVLh1j2h2A7zuIwbqigyUwyMAh0c1cxhLZIPeQ0T2WEhuoKeiGziu6gYY8LiCGzgOkHxCsxvgNZxQcAMnNLsBboRjKXqb7aQhN4BweCokN9AzBDdw2m28M343cFrgBs7EwQ0ACmGfBkg7Y8gNIDX9qfkm4eY5pXDr/qXZDfC6/zJQV2SgHP4FcHhWM4exRDboPURkz4XkBnrI9/qMKLzULADyy6AbmMHvOJIYdqpeN8BrYAzQDcyw5dcgrEumEc6l6G22bAAP3v+B1oRwmB2oKZ5uoId8004XJR1LCiaq1gS38RJTreibPyH1fDfAk7LqBgCFsBMA0hJT1TYPPUhITUng4UYPDDdP9lS8sXNkUTiCpvO6cxioKzJQDnMAHObUzGEskQ16DxHZZGBf4+kGusv3+lQvXi5VN8CAuXA3MDUXQHKKZjfAa0jB3cDUFM1ugBshOVVvs6UacgMIh2khuYHu8m5giijpWFIwUbXmdhsvj98N5Ba4gTxxcAOAQti5AdLypKptHnqQkJryar5JuHnSFG7ddM1ugNedbqCuyEA5TAc4zKeZw1giG/QeIrIXhOQGusn3+nYvXn5VN8CA+XE3sD0/QPKFmt0Ar+FC3A1sv1CzG+BGuCBVb7NdZMgNIBxeHJIb6CbvBraJko4lBRNVawG38Qr63UABgRsoGAc3ACiEXQAgrWCq2uahBwmp6RLNNwk3z8UKt24hzW6A113IQF2RgXJYCOCwsGYOY4ls0HuIyF4akhvoKt/rG7x4l6m6AQa8DHcDGy4DSC6i2Q3wGorgbmBDEc1ugBvh0lS9zeYYcgMIh0VDcgNd5d3AelHSsaRgomot5jZecb8bKCZwA8Xj4AYAhbCLAaQVT1XbPPQgITWV0HyTcPMUVbh1S2p2A7zukgbqigyUw5IAh6U0cxhLZIPeQ0S2dEhuoIt8rxf04pVRdQMMWAZ3AwXLACSX1ewGeA1lcTdQsKxmN8CNUDpVb7OVM+QGEA7Lh+QGusi7gQKipGNJwUTVWsFtvIp+N1BB4AYqxsENAAphVwBIq5iqtnnoQUJqqqT5JuHmKa9w61bW7AZ43ZUN1BUZKIeVAQ6raOYwlsgGvYeIbNWQ3MCD8r2+zItXTdUNMGA13A0sqwaQXF2zG+A1VMfdwLLqmt0AN0LVVL3NVsOQG0A4rBmSG3hQ3g0sFSUdSwomqtZabuPV9ruBWgI3UDsObgBQCLsWQFrtVLXNQw8SUtPlmm8Sbp6aCrduHc1ugNddx0BdkYFyWAfgsK5mDmOJbNB7iMheEZIb6Czf68O9ePVU3QAD1sPdwPB6AMn1NbsBXkN93A0Mr6/ZDXAjXJGqt9muNOQGEA6vCskNdJZ3A8NESceSgomqtYHbeFf73UADgRu4Og5uAFAIuwFA2tWpapuHHiSkpoaabxJunqsUbt1rNLsBXvc1BuqKDJTDawAOG2nmMJbIBr2HiOy1IbmBTvK93sSLd52qG2DA63A30OQ6gOTGmt0Ar6Ex7gaaNNbsBrgRrk3V22xNDLkBhMOmIbmBTvJuoLEo6VhSMFG1NnMbr7nfDTQTuIHmcXADgELYzQDSmqeqbR56kJCartd8k3DzNFW4dVtodgO87hYG6ooMlMMWAIc3aOYwlsgGvYeIbMuQ3MAD8r0+xot3o6obYMAbcTcw5kaA5Js0uwFew024Gxhzk2Y3wI3QMlVvs91syA0gHN4Skht4QN4NjBYlHUsKJqrWW93Gu83vBm4VuIHb4uAGAIWwbwVIuy1VbfPQg4TUdLvmm4Sb5xaFW7eVZjfA625loK7IQDlsBXB4h2YOY4ls0HuIyN4Zkhu4X77Xe3rx7lJ1Awx4F+4Get4FkHy3ZjfAa7gbdwM979bsBrgR7kzV22z3GHIDCIf3huQG7pd3Az1ESceSgomqtbXbeG38bqC1wA20iYMbABTCbg2Q1iZVbfPQg4TU1FbzTcLNc6/CrdtOsxvgdbczUFdkoBy2Azi8TzOHsUQ26D1EZNuH5AY6yvf6Ki9eB1U3wIAdcDewqgNAckfNboDX0BF3A6s6anYD3AjtU/U22/2G3ADC4QMhuYGO8m5gpSjpWFIwUbV2chuvs98NdBK4gc5xcAOAQtidANI6p6ptHnqQkJoe1HyTcPM8oHDrdtHsBnjdXQzUFRkoh10ADrtq5jCWyAa9h4hst5DcQAf5Xne8eN1V3QADdsfdgNMdILmHZjfAa+iBuwGnh2Y3wI3QLVVvs/U05AYQDnuF5AY6yLuBIqKkY0nBRNXa2228Pn430FvgBvrEwQ0ACmH3Bkjrk6q2eehBQmp6SPNNws3TS+HW7avZDfC6+xqoKzJQDvsCHPbTzGEskQ16DxHZh0NyA+3lez3Vi9df1Q0wYH/cDaT2B0geoNkN8BoG4G4gdYBmN8CN8HCq3mZ7xJAbQDh8NCQ30F7eDaSIko4lBRNV60C38Qb53cBAgRsYFAc3ACiEPRAgbVCq2uahBwmp6THNNwk3z6MKt+5gzW6A1z3YQF2RgXI4GOAwQzOHsUQ26D1EZIeE5Abuk+/17l68oapugAGH4m6g+1CA5Mc1uwFew+O4G+j+uGY3wI0wJFVvsz1hyA0gHD4Zkhu4T94NdBMlHUsKJqrWp9zGG+Z3A08J3MCwOLgBQCHspwDShqWqbR56kJCahmu+Sbh5nlS4dZ/W7AZ43U8bqCsyUA6fBjh8RjOHsUQ26D1EZJ8NyQ20k+/1dC/ec6pugAGfw91A+nMAySM0uwFewwjcDaSP0OwGuBGeTdXbbCMNuQGEw1EhuYF28m4gryjpWFIwUbWOdhtvjN8NjBa4gTFxcAOAQtijAdLGpKptHnqQkJrGar5JuHlGKdy6z2t2A7zu5w3UFRkoh88DHL6gmcNYIhv0HiKyL4bkBtoC/yVlL95Lqm6AAV9Kxd97WfMNz3W9nPpfwrHkB9pEfGBfTNXbFK8YurURXl7NYqPKrPlVBQ7j2VBtFBvqNdWGYsDXFBpqnOaG4rrGxamhgqYz8eNS1Q6MI4cR10PSGviv23rxxqseEgYcr6A444GOnaD5QPEaJiiQPEHz92B8iCYo2INXgP16XbMd5L19XbFZIwM9W68D65+o2eLFupGD3kNu5EmaOeQ9mqRwESA8ZFZf0LuTpddv1+KvzccxwYM12V1b7lz/PPO4z9nZ/5v3Bs2ZQjGV4s3UrNX7lny9tUX1viVR7zSaM51iBsXbqf/k81v/fcueWf1BRb2h+K2aheE40snzhv3vmmzPOzOp7ncoZlHMpphDMZdiHsV8igUUCykWUSymWEKxlGIZxbsUyylWUKykWEWxmuI9ivcpPqD4kGINxVqKjyg+pviEYh3Fp/7PWGa6n6d4c+8IcrMEudmC3BxBbq4gN0+Qmy/ILRDkFgpyiwS5xYLcEkFuqSC3TJB7V5BbLsitEORWCnKrBLnVgtx7gtz7gtwHgtyHgtwaQW6tIPeRIPexIPeJILdOkPs09fzP7oq6T8eSGlFNHyRwMyXn8ud870jPtexZsnOp3tlyc8dSvfYcqblHeW32XJm5O//eB3uexNyG/+yZPT947mh3f+0FgXN7RLiwFwbNXfovb/aigLn9/+PYXpz53Mae82AvyXTuHu/ZsZdmNrda1Dmzl2Uyt3T0mbTfjT33Ht/5tZfHnNvKf9btFbHmZpzXF/bKGHMzzu8he5V47iJBv9mrhXMbiXrTfk80t6Wwj+33BXOXiHve/uD8uWVi6IP94XlzJ8bSEnuNf26VmLpjr/XN3Rlbo+yPouf2ykTP7I+j5rbITPvsT7xz22eqk/Y6z9zKmWuq/SlguuL5icKn8lq+2Yv3WWoWAD9LhX+qu/kz+Q2yPwcuM9U1fJ6KfWfAa/gcJDleP30EDtcmUdKxpGCial3vHpANfme83t04b25DatZ/+gicZHs9cEA2gJuHksOHYj14mLiu9SEpxjr5fZ7gxduoqhgMuBFXjAkbAcXYpFkxeA2bcMWYsCkkxVgnjztelHQsKZioWje7B+QLv2JsFijGF3FQDOAk25uBA/KF4uahH4QiNW0BmuHffwC1fO4ecPSDUOSq/hJoBtEagqbzHn2poMRfhqTEn8if3wVevK9UlZgBv8KVeMFXwOH7WrMS8xq+xpV4wddZPHwyDfSl5gbaCq4hMlBhQjjcBpyNeN5wn8jjzhclHUsKJqrW7W7jfeO/4bYLbrhv4nDDAQphbwdI+0Zx89CDhNT0bRZvuKB3uHm2KdwO32m+tXjd3xmoKzJQDr8DONyhmcNYIisjzrJzvwcFLV5u4GP5Xh/lxftB1Q0w4A+4Gxj1A7BBOzW7AV7DTtwNjNqp2Q1wI3yfqrfZdoHNFhloTQiHP4bkBj6Wxx0pSjqWFExUrT+5jbfb7wZ+EriB3XFwA4BC2D8BpO1W3Dz0ICE1/az5JuHm+VHh1v1Fsxvgdf9ioK7IQDn8BeBwj2YOY4ls0HuIyP4a0mcDH8n3uuPF26vqBhhwL+4GnL0Ayfs0uwFewz7cDTj7NLsBboRfU/U222+G3ADC4e8huYGP5HHj9vf67Xcb74DfDewXuIEDcXADgELY+wHSDihuHnqQkJoOar5JuHl+V7h1D2l2A7zuQwbqigyUw0MAh4c1cxhLZIPeQ0T2j5DcwFr5Xt/kxTui6gYY8AjuBjYdAUg+qtkN8BqO4m5g01HNboAb4Y9Uvc12zJAbQDg8HpIbWCuPu1GUdCwpmKhaT7iNd9LvBk4I3MDJOLgBQCHsEwBpJxU3Dz1ISE2nNN8k3DzHFW7d05rdAK/7tIG6IgPl8DTA4RnNHMYS2aD3EJH9MyQ3sEa+19t58f5SdQMM+BfuBtr9BZB8VrMb4DWcxd1Au7Oa3QA3wp+pepvtnCE3AHGYFo4bWCO/F21FSceSgomq1U7755ktzYq++fn/8LsBnpRVNwAohG2nyZOWLU1t89CDhNSUHThI//7Dkn+Hm8dKwxs7Qb6u/4qz5OvidScYqCsyUA4TAA4TNXMYS2SD3kNENgnY13i6gQ/le32bFy9HWhYA+WXQDWzLAZCcEzg8qmvICTYPryFnFptaphGS0vQ2WzLYbJGB1oRwmCskN/ChvBvYKko6lhRMVK0pbuOl+t1AisANpMbBDQAKYacApKWmqW0eepCQmtI03yTcPLkUbt3cmt0Arzu3gboiA+UwN8BhHs0cxhLZoPcQkc0bkhv4QL7Xm3rx0lXdAAOm426gaTpAcj7NboDXkA93A03zaXYD3Ah50/Q22wWG3ADCYf6Q3MAH8m6giSjpWFIwUbVe6DbeRX43cKHADVwUBzcAKIR9IUDaRWlqm4ceJKSmizXfJNw8+RVu3QKa3QCvu4CBuiID5bAAwGFBzRzGEtmg9xCRvSQkN/C+fK/P8+IVUnUDDFgIdwPzCgEkF9bsBngNhXE3MK+wZjfAjXBJmt5mu9SQG0A4vCwkN/C+vBuYK0o6lhRMVK1F3MZz/G6giMANOHFwA4BC2EUA0pw0tc1DDxJSU1HNNwk3z2UKt24xzW6A113MQF2RgXJYDOCwuGYOY4ls0HuIyJYIyQ28J9/rK7x4JVXdAAOWxN3AipIAyaU0uwFeQyncDawopdkNcCOUSNPbbKUNuQGEwzIhuYH35N3AclHSsaRgomot6zZeOb8bKCtwA+Xi4AYAhbDLAqSVS1PbPPQgITWV13yTcPOUUbh1K2h2A7zuCgbqigyUwwoAhxU1cxhLZIPeQ0S2UkhuYLV8rzf34lVWdQMMWBl3A80rAyRX0ewGeA1VcDfQvIpmN8CNUClNb7NVNeQGEA6rheQGVsu7gWaipGNJwUTVWt1tvBp+N1Bd4AZqxMENAAphVwdIq5GmtnnoQUJqqqn5JuHmqaZw69bS7AZ43bUM1BUZKIe1AA5ra+YwlsgGvYeI7OUhuYFV8r2e4cWro+oGGLAO7gYy6gAk19XsBngNdXE3kFFXsxvgRrg8TW+zXWHIDSAc1gvJDaySdwODRUnHkoKJqrW+23hX+t1AfYEbuDIObgBQCLs+QNqVaWqbhx4kpKarNN8k3Dz1FG7dBprdAK+7gYG6IgPlsAHA4dWaOYwlskHvISLbMCQ3sFLRDVyj6gYY8BoFN3ANQHIjzW6A19BIwQ000uwGuBEapulttmsNuQGEw+tCcgMrQ3ADjd3Ga+J3A40FbqBJHNwAoBB2Y4C0JobcAFJTU803CTfPdQq3bjPNboDX3cxAXZGBctgM4LC5Zg5jiWzQe4jIXh+SG1gh3+szvHgtVN0AA7bA3cCMFgDJN2h2A7yGG3A3MOMGzW6AG+H6NL3N1tKQG0A4vDEkN7BC3g1MFyUdSwomqtab3Ma72e8GbhK4gZvj4AYAhbBvAki7OU1t89CDhNR0i+abhJvnRoVb91bNboDXfauBuiID5fBWgMPbNHMYS2SD3kNE9vaQ3MBy+V6f6sVrpeoGGLAV7gamtgJIvkOzG+A13IG7gal3aHYD3Ai3p+lttjsNuQGEw7tCcgPL5d3AFFHSsaRgomq92228e/xu4G6BG7gnDm4AUAj7boC0e9LUNg89SEhN92q+Sbh57lK4dVtrdgO87tYG6ooMlMPWAIdtNHMYS2SD3kNEtm1IbuBd+V7f7sVrp+oGGLAd7ga2twNIvk+zG+A13Ie7ge33aXYD3Aht0/Q2W3tDbgDhsENIbuBdeTewTZR0LCmYqFo7uo13v98NdBS4gfvj4AYAhbA7AqTdn6a2eehBQmp6QPNNws3TQeHW7aTZDfC6OxmoKzJQDjsBHHbWzGEskQ16DxHZB0NyA8vke32DF6+LqhtgwC64G9jQBSC5q2Y3wGvoiruBDV01uwFuhAfT9DZbN0NuAOGwe0huYJm8G1gvSjqWFExUrT3cxuvpdwM9BG6gZxzcAKAQdg+AtJ5papuHHiSkpl6abxJunu4Kt25vzW6A193bQF2RgXLYG+Cwj2YOY4ls0HuIyD4UkhtYKt/rBb14fVXdAAP2xd1Awb4Ayf00uwFeQz/cDRTsp9kNcCM8lKa32R425AYQDvuH5AaWyruBAqKkY0nBRNU6wG28R/xuYIDADTwSBzcAKIQ9ACDtkTS1zUMPElLTo5pvEm6e/gq37kDNboDXPdBAXZGBcjgQ4HCQZg5jiWzQe4jIPhaSG1gi3+vLvHiDVd0AAw7G3cCywQDJGZrdAK8hA3cDyzI0uwFuhMfS9DbbEENuAOFwaEhuYIm8G1gqSjqWFExUrY+7jfeE3w08LnADT8TBDQAKYT8OkPZEmtrmoQcJqelJzTcJN89QhVv3Kc1ugNf9lIG6IgPl8CmAw2GaOYwlskHvISI7PCQ3sFi+14d78Z5WdQMM+DTuBoY/DZD8jGY3wGt4BncDw5/R7Aa4EYan6W22Zw25AYTD50JyA4vl3cAwUdKxpGCiah3hNt5IvxsYIXADI+PgBgCFsEcApI1MU9s89CAhNY3SfJNw8zyncOuO1uwGeN2jDdQVGSiHowEOx2jmMJbIBr2HiOzYkNzAIvleb+LFe17VDTDg87gbaPI8QPILmt0Ar+EF3A00eUGzG+BGGJumt9leNOQGEA5fCskNLJJ3A41FSceSgomq9WW38V7xu4GXBW7glTi4AUAh7JcB0l5JU9s89CAhNb2q+Sbh5nlJ4dZ9TbMb4HW/ZqCuyEA5fA3gcJxmDmOJbNB7iMiOD8kNLJTv9TFevAmqboABJ+BuYMwEgOTXNbsBXsPruBsY87pmN8CNMD5Nb7NNNOQGEA4nheQGFsq7gdGipGNJwUTVOtltvDf8bmCywA28EQc3ACiEPRkg7Y00tc1DDxJS0xTNNwk3zySFW3eqZjfA655qoK7IQDmcCnD4pmYOY4ls0HuIyL4VkhtYIN/rPb1401TdAANOw91Az2kAydM1uwFew3TcDfScrtkNcCO8laa32WYYcgMIh2+H5AYWyLuBHqKkY0nBRNU60228d/xuYKbADbwTBzcAKIQ9EyDtnTS1zUMPElLTLM03CTfP2wq37mzNboDXPdtAXZGBcjgb4HCOZg5jiWzQe4jIzg3JDcyX7/VVXrx5qm6AAefhbmDVPIDk+ZrdAK9hPu4GVs3X7Aa4Eeam6W22BYbcAMLhwpDcwHx5N7BSlHQsKZioWhe5jbfY7wYWCdzA4ji4AUAh7EUAaYvT1DYPPUhITUs03yTcPAsVbt2lmt0Ar3upgboiA+VwKcDhMs0cxhLZoPcQkX03JDcwT77XHS/eclU3wIDLcTfgLAdIXqHZDfAaVuBuwFmh2Q1wI7ybprfZVhpyAwiHq0JyA/Pk3UARUdKxpGCial3tNt57fjewWuAG3ouDGwAUwl4NkPZemtrmoQcJqel9zTcJN88qhVv3A81ugNf9gYG6IgPl8AOAww81cxhLZIPeQ0R2TUhuYK58r6d68daqugEGXIu7gdS1AMkfaXYDvIaPcDeQ+pFmN8CNsCZNb7N9bMgNIBx+EpIbmCvvBlJESceSgomqdZ3beJ/63cA6gRv4NA5uAFAIex1A2qdpapuHHiSkps803yTcPJ8o3Lqfa3YDvO7PDdQVGSiHnwMcrtfMYSyRDXoPEdkNIbmBOfK93t2Lt1HVDTDgRtwNdN8IkLxJsxvgNWzC3UD3TZrdADfChjS9zbbZkBtAOPwiJDcwR94NdBMlHUsKJqrWLW7jfel3A1sEbuDLOLgBQCHsLQBpX6apbR56kJCavtJ8k3DzfKFw636t2Q3wur82UFdkoBx+DXC4VTOHsUQ26D1EZLeF5AZmy/d6uhdvu6obYMDtuBtI3w6Q/I1mN8Br+AZ3A+nfaHYD3Ajb0vQ227eG3ADC4XchuYHZ8m4gryjpWFIwUbXucBvve78b2CFwA9/HwQ0ACmHvAEj7Pk1t89CDhNT0g+abhJvnO4Vbd6dmN8Dr3mmgrshAOdwJcLhLM4exRDboPURkfwzJDcySF7QovJ9U3QAD/pSGv7db8w3Pde1O+y/hWPIDbSI+sD+m6W2Knw3d2ggvv2SxUWXW/IsCh/FsqHcUG2qPakMx4B6FhvpVc0NxXb/GqaGCpjPxv6apHRhHDiOuh2RmqnyNXry9qoeEAfcqKM5eoGP3aT5QvIZ9CiTv0/w9GB+ifQr24Gdgv37TbAd5b39TbNbIQM/Wb8D6f9ds8WLdyEHvITfyfs0c8h7tV7gIEB5YBPNb/31LmZV6p6WqnTMLw3Gkk+cN+9812Z53DtB+HaQ4RHGY4g+KIxRHKY5RHKc4QXGS4hTFaYozFH9S/EVxluIc91pu+roU2SiyUyRQJFIkUeSgyEmRTJGLIoUilSIttxX9/f4B9/t9b+6gIHdIkDssyP0hyB0R5I4KcscEueOC3AlB7qQgd0qQOy3InRHk/hTk/hLkzgpy5wQ5JsufswW5bIJcdkEuQZBLFOSSBLkcglxOQS5ZkMslyKUIcqmCXFru8z9bKuo+HUtqRDV9kNgckBQm/hzqoPRcyz4kO5fqPSw3dyzVa/8hNfcor80+IjN359/7YB+VmNvwnz2zjwXPHe3ur308cG6PCBf2iaC5S//lzT4ZMLf/fxzbpzKf29hzHuzTmc7d4z079pnM5laLOmf2n5nMLR19Ju2/Ys+9x3d+7bMx57byn3X7XKy5Gef1hc1aJJqbcX4P2bZ47iJBv9nZhHMbiXrTzi6a21LYx3aCYO4Scc/biefPLRNDH+yk8+ZOjKUldg7/3CoxdcfO6Zu7M7ZG2cnRc3tlomd2rqi5LTLTPjvFO7d9pjppp3rmVs5cU+203PKmK57f8ablltbyzV683LmzAMgvgz913JxbfoPsPJKLUv2Ol9fAGDa4hjwgyfH66RhwuDaJko4lBRNVa173gKT7nXFed+O8ufTcWf/pGHCS7bzAAUkHNw8lhw9FXvAwcV15Q1KMVPl9nuDFy6eqGAyYD1eMCfkAxbhAs2LwGi7AFWPCBSEpRqo87nhR0rGkYKJqze8ekAv9ipFfoBgXxkExgJNs5wcOyIWKm4d+UIfUdBHQDP/+A6glj3vA0Q/qkKv6YqAZRGsIms57dLGCEl8ckhKnyJ/fBV68AqpKzIAFcCVeUAA4fAU1KzGvoSCuxAsKZvHwyTTQxZob6BJwDZGBChPCYSHgbMTzhkuRx50vSjqWFExUrYXdxrvUf8MVFtxwl8bhhgMUwi4MkHap4uahBwmp6bIs3nBB73DzFFK4HYpovrV43UUM1BUZKIdFAA4dzRzGElkZcZadWxQUtHi5gVzyvT7Ki1dM1Q0wYDHcDYwqBmxQcc1ugNdQHHcDo4prdgPcCEVz6222EmCzRQZaE8JhyZDcQC553JGipGNJwUTVWsptvNJ+N1BK4AZKx8ENAAphlwJIK624eehBQmoqo/km4eYpqXDrltXsBnjdZQ3UFRkoh2UBDstp5jCWyAa9h4hs+ZA+G0iW73XHi1dB1Q0wYAXcDTgVAJIranYDvIaKuBtwKmp2A9wI5XPrbbZKhtwAwmHlkNxAsjxu3P7euSpu41X1u4EqAjdQNQ5uAFAIuwpAWlXFzUMPElJTNc03CTdPZYVbt7pmN8Drrm6grshAOawOcFhDM4exRDboPURka4bkBnLK9/omL14tVTfAgLVwN7CpFkBybc1ugNdQG3cDm2prdgPcCDVz6222yw25AYTDOiG5gZzyuBtFSceSgomqta7beFf43UBdgRu4Ig5uAFAIuy5A2hWKm4ceJKSmeppvEm6eOgq3bn3NboDXXd9AXZGBclgf4PBKzRzGEtmg9xCRvSokN5BDvtfbefEaqLoBBmyAu4F2DQCSr9bsBngNV+NuoN3Vmt0AN8JVufU2W0NDbgDh8JqQ3EAOedy2oqRjScFE1drIbbxr/W6gkcANXBsHNwAohN0IIO1axc1DDxJS03WabxJunmsUbt3Gmt0Ar7uxgboiA+WwMcBhE80cxhLZoPcQkW0akhtIku/1bV68ZqpugAGb4W5gWzOA5Oaa3QCvoTnuBrY11+wGuBGa5tbbbNcbcgMIhy1CcgNJ8rhbRUnHkoKJqvUGt/Fa+t3ADQI30DIObgBQCPsGgLSWipuHHiSkphs13yTcPC0Ubt2bNLsBXvdNBuqKDJTDmwAOb9bMYSyRDXoPEdlbQnIDifK93tSLd6uqG2DAW3E30PRWgOTbNLsBXsNtuBtoeptmN8CNcEtuvc12uyE3gHDYKiQ3kCiP20SUdCwpmKha73Ab706/G7hD4AbujIMbABTCvgMg7U7FzUMPElLTXZpvEm6eVgq37t2a3QCv+24DdUUGyuHdAIf3aOYwlsgGvYeI7L0huYEE+V6f58VrreoGGLA17gbmtQZIbqPZDfAa2uBuYF4bzW6AG+He3Hqbra0hN4Bw2C4kN5AgjztXlHQsKZioWu9zG6+93w3cJ3AD7ePgBgCFsO8DSGuvuHnoQUJq6qD5JuHmaadw63bU7AZ43R0N1BUZKIcdAQ7v18xhLJENeg8R2QdCcgPZ5Xt9hRevk6obYMBOuBtY0QkgubNmN8Br6Iy7gRWdNbsBboQHcutttgcNuQGEwy4huYHs8rjLRUnHkoKJqrWr23jd/G6gq8ANdIuDGwAUwu4KkNZNcfPQg4TU1F3zTcLN00Xh1u2h2Q3wunsYqCsyUA57ABz21MxhLJENeg8R2V4huYFs8r3e3IvXW9UNMGBv3A007w2Q3EezG+A19MHdQPM+mt0AN0Kv3Hqb7SFDbgDhsG9IbiCbPG4zUdKxpGCiau3nNt7DfjfQT+AGHo6DGwAUwu4HkPaw4uahBwmpqb/mm4Sbp6/CrTtAsxvgdQ8wUFdkoBwOADh8RDOHsUQ26D1EZB8NyQ3Y8r2e4cUbqOoGGHAg7gYyBgIkD9LsBngNg3A3kDFIsxvgRng0t95me8yQG0A4HBySG7DlcQeLko4lBRNVa4bbeEP8biBD4AaGxMENAAphZwCkDVHcPPQgITUN1XyTcPMMVrh1H9fsBnjdjxuoKzJQDh8HOHxCM4exRDboPURknwzJDViKbuApVTfAgE8puIGnAJKHaXYDvIZhCm5gmGY3wI3wZG69zTbckBtAOHw6JDdgheAGnnEb71m/G3hG4AaejYMbABTCfgYg7VlDbgCp6TnNNwk3z9MKt+4IzW6A1z3CQF2RgXI4AuBwpGYOY4ls0HuIyI4KyQ2ck//vBc7w4o1WdQMMOBp3AzNGAySP0ewGeA1jcDcwY4xmN8CNMCq33mYba8gNIBw+H5IbOCf/XyeeLko6lhRMVK0vuI33ot8NvCBwAy/GwQ0ACmG/AJD2Ym61zUMPElLTS5pvEm6e5xVu3Zc1uwFe98sG6ooMlMOXAQ5f0cxhLJENeg8R2VdDcgNn5Xt9qhfvNVU3wICv4W5g6msAyeM0uwFewzjcDUwdp9kNcCO8mltvs4035AYQDieE5AbOyruBKaKkY0nBRNX6utt4E/1u4HWBG5gYBzcAKIT9OkDaxNxqm4ceJKSmSZpvEm6eCQq37mTNboDXPdlAXZGBcjgZ4PANzRzGEtmg9xCRnRKSG/hLvte3e/GmqroBBpyKu4HtUwGS39TsBngNb+JuYPubmt0AN8KU3Hqb7S1DbgDhcFpIbuAveTewTZR0LCmYqFqnu403w+8GpgvcwIw4uAFAIezpAGkzcqttHnqQkJre1nyTcPNMU7h1Z2p2A7zumQbqigyUw5kAh+9o5jCWyAa9h4jsrJDcwJ/yvb7Bizdb1Q0w4GzcDWyYDZA8R7Mb4DXMwd3Ahjma3QA3wqzcepttriE3gHA4LyQ38Ke8G1gvSjqWFExUrfPdxlvgdwPzBW5gQRzcAKAQ9nyAtAW51TYPPUhITQs13yTcPPMUbt1Fmt0Ar3uRgboiA+VwEcDhYs0cxhLZoPcQkV0Skhs4I9/rBb14S1XdAAMuxd1AwaUAycs0uwFewzLcDRRcptkNcCMsya232d415AYQDpeH5AbOyLuBAqKkY0nBRNW6wm28lX43sELgBlbGwQ0ACmGvAEhbmVtt89CDhNS0SvNNws2zXOHWXa3ZDfC6VxuoKzJQDlcDHL6nmcNYIhv0HiKy74fkBk7L9/oyL94Hqm6AAT/A3cCyDwCSP9TsBngNH+JuYNmHmt0AN8L7ufU22xpDbgDhcG1IbuC0vBtYKko6lhRMVK0fuY33sd8NfCRwAx/HwQ0ACmF/BJD2cW61zUMPElLTJ5pvEm6etQq37jrNboDXvc5AXZGBcrgO4PBTzRzGEtmg9xCR/SwkN3BKvteHe/E+V3UDDPg57gaGfw6QvF6zG+A1rMfdwPD1mt0AN8JnufU22wZDbgDhcGNIbuCUvBsYJko6lhRMVK2b3Mbb7HcDmwRuYHMc3ACgEPYmgLTNudU2Dz1ISE1faL5JuHk2Kty6WzS7AV73FgN1RQbK4RaAwy81cxhLZIPeQ0T2q5DcwEn5Xm/ixfta1Q0w4Ne4G2jyNUDyVs1ugNewFXcDTbZqdgPcCF/l1tts2wy5AYTD7SG5gZPybqCxKOlYUjBRtX7jNt63fjfwjcANfBsHNwAohP0NQNq3udU2Dz1ISE3fab5JuHm2K9y6OzS7AV73DgN1RQbK4Q6Aw+81cxhLZIPeQ0T2h5DcwAn5Xh/jxdup6gYYcCfuBsbsBEjepdkN8Bp24W5gzC7NboAb4YfcepvtR0NuAOHwp5DcwAl5NzBalHQsKZioWne7jfez3w3sFriBn+PgBgCFsHcDpP2cW23z0IOE1PSL5puEm+cnhVt3j2Y3wOveY6CuyEA53ANw+KtmDmOJbNB7iMjuDckNHJfv9Z5evH2qboAB9+FuoOc+gOTfNLsBXsNvuBvo+ZtmN8CNsDe33mb73ZAbQDjcH5IbOC7vBnqIko4lBRNV6wG38Q763cABgRs4GAc3ACiEfQAg7WButc1DDxJS0yHNNwk3z36FW/ewZjfA6z5soK7IQDk8DHD4h2YOY4ls0HuIyB4JyQ0ck+/1VV68o6pugAGP4m5g1VGA5GOa3QCv4RjuBlYd0+wGuBGO5NbbbMcNuQGEwxMhuYFj8m5gpSjpWFIwUbWedBvvlN8NnBS4gVNxcAOAQtgnAdJO5VbbPPQgITWd1nyTcPOcULh1z2h2A7zuMwbqigyUwzMAh39q5jCWyAa9h4jsXyG5gaPyve548c6qugEGPIu7AecsQPI5zW6A13AOdwPOOc1ugBvhr9x6m83KY8YNIBzaQE3xdANH5d1AEVHSsaRgomrNluefZ/Y8VvTNz/+H3w3wpKy6AUAh7Gx55EnLnkdt89CDhNSUAB5u9MBw89h58MZOlK/LBYr++kHTed2JBuqKDJTDRIDDJM0cxhLZoPcQkc0B7Gs83cAR+V5P9eLlzJMFQH4ZdAOpOQGSk4HDo7qGZLB5eA3JWWxqmUbIkUdvs+Uy5AYQDlNCcgNH5N1AiijpWFIwUbWmuo2X5ncDqQI3kBYHNwAohJ0KkJaWR23z0IOE1JRb803CzZOicOvm0ewGeN15DNQVGSiHeQAO82rmMJbIBr2HiGx6SG7gD/le7+7Fy6fqBhgwH+4GuucDSL5AsxvgNVyAu4HuF2h2A9wI6Xn0Nlt+Q24A4fDCkNzAH/JuoJso6VhSMFG1XuQ23sV+N3CRwA1cHAc3ACiEfRFA2sV51DYPPUhITQU03yTcPBcq3LoFNbsBXndBA3VFBsphQYDDSzRzGEtkg95DRLZQSG7gsHyvp3vxCqu6AQYsjLuB9MIAyZdqdgO8hktxN5B+qWY3wI1QKI/eZrvMkBtAOCwSkhs4LO8G8oqSjiUFE1Wr4zZeUb8bcARuoGgc3ACgELYDkFY0j9rmoQcJqamY5puEm6eIwq1bXLMb4HUXN1BXZKAcFgc4LKGZw1giG/QeIrIlQ3IDh+QFLQqvlKobYMBSefD3Smu+4bmu0nn+SziW/ECbiA9syTx6m6KMoVsb4aVsFhtVZs1lFTiMZ0MdVGyocqoNxYDlFBqqvOaG4rrKx6mhgqYz8eXzqB0YRw4jrofkQJp8jV68CqqHhAErKChOBaBjK2o+ULyGigokV9T8PRgfoooK9qAMsF+VNNtB3ttKis0aGejZqgSsv7JmixfrRg56D7mRq2jmkPeoisJFgPAQ+drveb6AY8mP/83939z/zf3f3P/Njc9c1uNlCf88l7rPJe5zsftc5D4Xus8F7nO++5znPue6zznuc7b7nOU+33GfM93n2+5zhvuc7j6nuc+33Oeb7nOq+5ziPt9wn5Pd5yT3OdF9vu4+J7jP8e5znPt8LQHbq//N/d/c/83939z/zY3bXJt1+M/Ef/T4jPs87T5Puc+T7vOE+zzuPo+5z6Pu84j7/MN9Hnafh9znQfd5wH3ud5+/u8/f3Oc+97nXff7qPve4z1/c58/uc7f7/Ml9/ug+d7nPne7zB/f5vfvc4T6vyvHP80r3Wd991nOfV7jPuu6zjvu83H3Wdp+13GdN91nDfVZ3n9XcZ1X3WcV9VnafldxnRfdZwX2Wd5/l3GdZ91nGfZZ2n6XcZ0n3WcJ9FnefxdxnUffpuM+hOf95DnGfGe5zsPt8zH0Ocp8D3eej7vMR9znAffZ3nw+7z37us6/7fMh99nGfvd1nL/fZ0332cJ/d3Wc399nVfXZxnw+6z87us5P7fMB93u8+O7rPDu6zvftsnfLPs437bOs+27nP+9xne/fZwX12dJ/3u88H3Gcn99nZfT7oPru4z67us5v7LJTrn2dh93mp+7zMfRZxn477LOo+i7nP4u6zhPss6T5Luc/S7rOM+yzrPsvRc5P1z6hKnyFUo6hOUYOiJkUtitoUl1PUoahLcQVFPYr6FFdSXEXRgOJqioYU11A0oriW4jqKxhRNKJpSNKNoTnE9RQuKGyhaUtxIcRPFzRS3UNxKcRvF7RStKO6guJPiLoq7Ke6huJeiNUUbirYU7Sjuo2hP0YGiI8X9FA9QdKLoTPEgRReKrhTdKLpT9KDoSdGLojdFH4qHKPpS9KN4mKI/xQCKRygepRhIMYjiMYrBFBkUQyiGUjxO8QTFkxRPUQyjGE7xNMUzFM9SPEcxgmIkxSiK0RRjKMZSPE/xAsWLFC9RvEzxCsWrFK9RjKMYTzGB4nWKiRSTKCZTvEExhWIqxZsUb1FMo5hOMYPibYqZFO9QzKKYTTGHYi7FPIr5FAsoFlIsolhMsYRiKcUyincpllOsoFhJsYpiNcV7FO9TfEDxIcUairUUH1F8TPEJxTqKTyk+o/icYj3FBoqNFJsoNlN8QbGF4kuKryi+pthKsY1iO8U3FN9SfEexg+J7ih8odlLsoviR4ieK3RQ/U/xCsYfiV4q9FPsofqP4nWI/xQGKgxSHKA5T/EFxhOIoxTGK4xQnKE5SnKI4TXGG4k+KvyjOUpyj4F92sN0+ivq9D0t+SM7d9Pf9mebep+7zkPs87D7/cJ9H3OdR93nMfR53nyfc50n3ecp9nnafZ9znn+7zL/c5M/Wf5zvuc5b7nO0+57jPue5znvuc7z4XuM+F7nOR+1zsPpe4z6Xuc5n7fDf1v98rsekP2SiyUyRQJFIkUeSgyEmRTJGLIoUilSKNIjdFHoq8ef/5YZD3d1Rsz/Ni98/pNCEfxQUU+SkupLiI4mKKAhQFKS6hKERRmOJSissoilA4FEUpilEUpyhBUZKiFEXpvC5Q5Hd+GCinL5dPkLtAkMsvyF0oyF0kyF0syBUQ5AoKcpcIcoUEucKC3KWC3GWCXBFBzhHkigpyxQS54oJcCUGupCBXSpAr7eb4MKVb4sMU+Vemy9DcshTlKMpTVKCoSFGJojJFFYqqFNUoqlPUoKhJUYuiNsXlFHUo6lJcQVGPoj7FlRRXUTSguJqiIcU1FI0orqW4zn/YyggWUlaQKyfIlRfkKghyFQW5SoJcZUGuiiBXVZCrJshVF+RqCHI1BblaglxtQe5yQa6OIFdXkLtCkKsnyNUX5K4U5K4S5BoIclcLcg0FuWsEuUaC3LWC3HVAMzSmuU0omlI0o2hOcT1FC4obKFpS3EhxE8XNFLdQ3EpxG8XtFK0o7qC4k+Iuirsp7qG4l6I1RRuKthTtKO6jaE/RgaKjvxkaCxbSRJBrKsg1E+SaC3LXC3ItBLkbBLmWgtyNgtxNgtzNgtwtgtytgtxtgtztglwrQe4OQe5OQe4uQe5uQe4eQe5eQa61INdGkGsryLUT5O4T5NoLch0EuY5AM9xPcx+g6ETRmeJBii4UXSm6UXSn6EHRk6IXRW+KPhQPUfSl6EfxMEV/igEUj1A8SjGQYhDFYxSDKTIohlAMpXic4gl/M9wvWMgDglwnQa6zIPegINdFkOsqyHUT5LoLcj0EuZ6CXC9Brrcg10eQe0iQ6yvI9RPkHhbk+gtyAwS5RwS5RwW5gYLcIEHuMUFusCCXIcgNEeSGCnKPC3JPAM3wJM19imIYxXCKpymeoXiW4jmKERQjKUZRjKYYQzGW4nmKFyhepHiJ4mWKVyhepXiNYhzFeIoJFK9TTKSYRDGZ4g2KKf5meFKwkKcEuWGC3HBB7mlB7hlB7llB7jlBboQgN1KQGyXIjRbkxghyYwW55wW5FwS5FwW5lwS5lwW5VwS5VwW51wS5cYLceEFugiD3uiA3UZCbJMhNFuTeEOSmAM0wlea+SfEWxTSK6RQzKN6mmEnxDsUsitkUcyjmUsyjmE+xgGIhxSKKxRRLKJZSLKN4l2I5xQqKlRSrKFZTvEfxPsUH/maYKljIm4LcW4LcNEFuuiA3Q5B7W5CbKci9I8jNEuRmC3JzBLm5gtw8QW6+ILdAkFsoyC0S5BYLcksEuaWC3DJB7l1Bbrkgt0KQWynIrRLkVgty7wly7wtyHwDN8CHNXUOxluIjio8pPqFYR/EpxWcUn1Osp9hAsZFiE8Vmii8otlB8SfEVxdcUWym2UWyn+IbiW4rvKHZQfE/xA8VOil3+ZvhQsJA1gtxaQe4jQe5jQe4TQW6dIPepIPeZIPe5ILdekNsgyG0U5DYJcpsFuS8EuS2C3JeC3FeC3NeC3FZBbpsgt12Q+0aQ+1aQ+06Q2yHIfS/I/SDI7RTkdgHN8CPN/YliN8XPFL9Q7KH4lWIvxT6K3yh+p9hPcYDiIMUhisMUf1AcoThKcYziOMUJipMUpyhOU5yh+JPiL4qzFOfyuoV5i/5RsJCfBLndgtzPgtwvgtweQe5XQW6vILdPkPtNkPtdkNsvyB0Q5A4KcocEucOC3B+C3BFB7qggd0yQOy7InRDkTgpypwS504LcGUHuT0HuL0HurCB3TpDjgybbDDZNyEaRnSKBIpEiiSIHfw2KZIpcFCkUqRRpFLkp8lDkpUinyEdxAUV+igspLqK4mKIARUGKSygKURSmuJTiMooi/maw089fSDZBLrsglyDIJQpySYJcDkEupyCXLMjlEuRSBLlUQS5NkMstyOUR5PIKcumCXD5B7gJBLr8gd6Egd5Egd7EgV0CQKyjIXSLIFRLkCgtylwpylwlyRTzNkGT9N6J+2Oh2SVFvt1jWfx3jWFLD5i8UmRv417RS5LPi82/mF02XnpslHFt+7r9fm0cx/8ai/6rJqwnyG1s8HVtQ5KRE3mNicljRC4D/xVD313QdS64Onl8mQS8h/w5eYC4reoH/fkUTBXgH/C8dAS1WQvEklPCcBNuKz0YBtUThlfRflJywFYvoTyt6XHDMAv9baqC+oHUNUaxrv6LuZQdxSgEHCdgrG6k/nv8KbinFw1g6PQuApdPx98oA3a5aVxnP5eTIvWeJ/lod9I6INKPs/FhNErRGSeWxY/0fjiX3rncvyrp7Ws6vXmXT/5PUSK6coMBEefC/Cyghd1DG0kbaZYFDVQ6Y+zswdz9Iikrj8DrRQ4nsTXlA6f79hyX/Dt905dPxW6ECeCugFoQbd2gCdrsNVbjdKmbx1g38a3cU97cSyHtkoLdu5f8jt26svz8N7S3EjlYMQbSruKJd1S/aVQSiXVVQYIIPXNeGBAl8FUDEqmoWYm4yrgc9/CWBNSDrrZZF0ZapW7RemX2SnYust7rmy4Avm4rgOa6kILo1NK+DexG4OG1eQ2WFddRU/JYNXc+i7Gq9lpWaZL5DcSypYZe2zNRkW4CptMzUlM2Sr6msZaam7JZ8TeUsM2e8vCVf/5zsajWh910FywxORcsMTiXLDJeVLXkuFxjisoplBqeqZQanmmUGp7plBqeGZQanpmUGp5ZlBqe2ZQbncssMTh3LDE5dywzOFZYZnHqWGZz6lhmcKy0zOFdZZnAaWGZwrrbM4DS0zOBcY5nBaWSZwbnWMoNznWUGp7FlBqeJZQanqWUGp5llBqe5ZQbnessMTgvLDM4NlhmclpYZnBstMzg3WWZwbrbM4NximcG51TKDc5tlBud2ywxOK8sMzh2WGZw7LTM4d1lmcO62zODcY5nBudcyg9PaMoPTxjKD09Yyg9POMoNzn2UGp71lBqeDZQano2UG537LDM4DlhmcTpYZnM6WGZwHLTM4XSwzOF0tMzjdLDM43S0zOD0sMzg9LTM4vSwzOL0tMzh9LDM4D1lmcPpaZnD6WWZwHrbM4PS3zOAMsMzgPGKZwXnUMoMz0DKDM8gyg/OYZQZnsGUGJ8MygzPEMoMz1DKD87hlBucJywzOk5YZnKcsMzjDLDM4wy0zOE9bZnCesczgPGuZwXnOMoMzwjKDM9IygzPKMoMz2jKDM8bCcGAfmmBZAxLw30kc65kb9DuJAxL0r+ERhTU8b8mv4REDa3hUYQ0vWPJreDRB7cyiNb0I1PSUoZpekp9bpb/kv3l78Ny5zVEgYE0vW2Y05BXLDM6rlhmc1ywzOOMsMzjjLTM4EywzOK9bZnAmWmZwJllmcCZbZnDesMzgTLHM4Ey1zOC8aZnBecsygzPNMoMz3TKDM8Myg/O2ZQZnpmUG5x3LDM4sywzObMsMzhzLDM5cywzOPMsMznzLDM4CywzOQssMziLLDM5iywzOEssMzlLLDM4yywzOu5YZnOWWGZwVlhmclZYZnFWWGZzVlhmc9ywzOO9bZnA+sMzgfGiZwVljmcFZa5nB+cgyg/OxZQbnE8sMzjrLDM6nlhmczywzOJ9bZnDWW2ZwNlhmcDZaZnA2WWZwNltmcL6wzOBssczgfGmZwfnKMoPztWUGZ6tlBmebZQZnu2UG5xvLDM63lhmc7ywzODssMzjfW2ZwfrDM4Oy0zODssjAc9Ovzz7X7K/wt0T965sr8PXaRgf6M/icA50VDvzewG6jp2QQz5+RnywzOL5YZnD2WGZxfLTM4ey0zOPssMzi/WWZwfrfM4Oy3zOAcsMzgHLTM4ByyzOActszg/GGZwTlimcE5apnBOWaZwTlumcE5YZnBOWmZwTllmcE5bZnBOWOZwfnTMoPzl2UG56xlBuecZQaHX5Cc63sRw7EN4WQzhJPdNvP9WwKAM8zQ90qJinuMrj0JWPvC7PGpKZ5/f3sOQ2cxpyE+kgE+iqebWXsuQ3ucYggn1RBOmiGc3IZw8hjCyWsIJ90QTj5DOBcYwslvCOdCQzgXGcK52BBOAUM4BQ3hXGIIp5AhnMKGcC41hHOZIZwihnAcQzhFDeEUM4RT3BBOCUM4JQ3hlDKEU9oQThlDOGUN4ZQzhFPeEE4FQzgVDeFUMoRT2RBOFUM4VQ3hVDOEU90QTg0PTsDfs3AuKzg1Da2nliGc2oZwLjeEU8cQTl1DOFcYwqlnCKe+IZwrDeFcZQingSGcqw3hNDSEc40hnEaGcK41hHOdIZzGhnCaGMJpaginmSGc5oZwrjeE08IQzg2GcFoawrnREM5NhnBuNoRziyGcWw3h3GYI53ZDOK0M4dxhCOdOQzh3GcK52xDOPYZw7jWE09oQThtDOG0N4bQzhHOfIZz2hnA6GMLpaAjnfkM4DxjC6WQIp7MhnAcN4XQxhNPVEE43QzjdDeH0MITT0xBOL0M4vQ3h9DGE85AhnL6GcPoZwnnYEE5/QzgDDOE8YgjnUUM4Aw3hDDKE85ghnMGGcDIM4QwxhDPUEM7jhnCeMITzpCGcpwzhDDOEM9wQztOGcJ4xhPOsIZznDOGMMIQz0hDOKEM4ow3hjDGEM9YQzvOGcF4whPOiIZyXDOG8bAjnFUM4rxrCec0QzjhDOOMN4UwwhPO6IZyJhnAmGcKZbAjnDUM4UwzhTDWE86YhnLcM4UwzhDPdEM4MQzhvG8KZaQjnHUM4swzhzDaEM8cQzlxDOPMM4cw3hLPAEM5CQziLDOEsNoSzxBDOUkM4ywzhvGsIZ7khnBWGcFYawlllCGe1IZz3DOG8bwjnA0M4HxrCWWMIZ60hnI8M4XxsCOcTQzjrDOF8agjnM0M4nxvCWW8IZ4MhnI2GcDYZwtlsCOcLQzhbDOF8aQjnK0M4XxvC2WoIZ5shnO2GcL4xhPOtIZzvDOHsMITzvSGcHwzh7DSEs8sQzo+GcH4yhLPbEM7PhnB+MYSzxxDOr4Zw9hrC2WcI5zdDOL8bwtlvCOeAIZyDhnAOGcI5bAjnD0M4RwzhHDWEc8wQznFDOCcM4Zw0hHPKEM5pQzhnDOH8aQjnL0M4Zw3hnDOEw//REsm5vhcxHNsQTjZDONkN4SQYwkk0hJNkCCeHIZychnCSDeHkMoSTYggn1RBOmiGc3IZw8hjCyWsIJ90QTj5DOBcYwslvCOdCQzgXGcK52BBOAUM4BQ3hXGIIp5AhnMKGcC41hHOZIZwihnAcQzhFDeEUM4RT3BBOCUM4JQ3hlDKEU9oQThlDOGUN4ZQzhFPeEE4FQzgVDeFUMoRT2RBOFUM4VQ3hVDOEU10RB/1vNNfw4AT9N5qLpZupqSZQ0zvJajU5vmdQTbW8fNiZT16bnFn9e7z121XzZLrWxt651TKf26S/Z271gLkDlv43t0bQ3GU9/p1bM3Buz9GRubWC545p6M6tLTH3mp3/zL1cZu6uo3/PrSM199hYnltXbu7zB2nuFbJzz1l2Pem55+z6knP57F8ZNbdFZnNtO2/U1+2V2dxs0XN778xkbnbf3F1VYs9N8M+tOjHm3MTz5k4qE2tu0vlzyy6JMTeHYO7SluK5OUVzb2wknJssnHvtItHcXOK5izMEc1NizB2Scf7c1Fhzh7Q6b25azLl33OOfmzv23HtL++bmyWRumWrRc/N657bP9KxHKa7jewYMu3Y2eZyrgJ5qkEe+p67OI99TDfPI99Q1eeR7qlEe+Z66No98T12XR76nGueR76kmeeR7qmke+Z5qlke+p5rnke+p6/PI91SLPPI9dUMe+Z5qmUfee9wIeI+bAO9xM+A9bgG8x62A97gN8B63A96jFeA97gC8x52A97gL8B53A97jHsB73JvHjO++HNDu1oB2twG0uy2g3e0A7b4P0O72gHZ3ALS7I6Dd9wPa/QCg3Z0A7e4MaPeDgHZ3AbS7K6Dd3QDt7g5odw9Au3sC2t0L0O7egHb3AbT7IUC7+wLa3Q/Q7ocB7e4PaPcAQLsfAbT7UUC7BxrS7jqAdg8CtPsxQLsHA9qdAWj3EEC7hwLa/Tig3U8A2v0koN1PAdo9DNDu4YB2Pw1o9zOAdj8LaPdzgHaPALR7JKDdowDtHg1o9xhAu8cC2v08oN0vANr9IqDdLwHa/TKg3a8A2v0qoN2vAdo9zpB21wW0ezyg3RMA7X4d0O6JgHZPArR7MqDdbwDaPQXQ7qmAdr8JaPdbgHZPA7R7OqDdMwDtfhvQ7pmAdr8DaPcsQLtnA9o9B9DuuYB2zwO0ez6g3QsA7V4IaPciQLsXA9q9BNDupYB2LwO0+11D2n0FoN3LAe1eAWj3SkC7VwHavRrQ7vcA7X4f0O4PAO3+ENDuNYB2rwW0+yNAuz8GtPsTQLvXAdr9KaDdnwHa/Tmg3esB7d4AaPdGQLs3Adq9GdDuLwDt3gJo95eAdn8FaPfXgHZvBbR7G6Dd2w1pdz1Au78BtPtbQLu/A7R7B6Dd3wPa/QOg3TsB7d4FaPePgHb/BGj3bkC7fwa0+xdAu/cA2v0roN17Ae3eB2j3b4B2/w5o935Auw8A2n0Q0O5DgHYfBrT7D0C7jwDafRTQ7mOAdh8HtPsEoN0nDWl3fUC7TwHafRrQ7jOAdv8JaPdfgHafBbT7HKDdVl557U7PK6/d+fLKa/cFeeW1O39eee2+MK+8dl+UV167L84rr90F8sprd8G88tp9SV557S6UV167C+eV1+5Lg+Z6tPuywLn/aXeR4Ln/arcjMTei3UVl5rraXUxq7j/aXTyvpMbS3BKyc0m7S0rPPWeXkpzL2l06rxntvhLQ7jJ55bW7bF557S6XV167y+eV1+4KeeW1u2Jeee2ulFdeuysD2l0F0O6qgHZXA7S7OqDdNQDtrglody1Au2sD2n05oN11AO2uC2j3FYB21wO0uz6g3VcC2n0VoN0NAO2+GtDuhoB2XwNodyNAu68FtPs6Q9p9FaDdjQHtbgJod1NAu5sB2t0c0O7rAe1uAWj3DYB2twS0+0ZAu28CtPtmQLtvAbT7VkC7bwO0+3ZAu1sB2n0HoN13Atp9F6DddwPafQ+g3fcC2t0a0O42gHa3BbS7HaDd9wHa3R7Q7g6Adnc0pN0NAO2+H9DuBwDt7gRod2dAux8EtLsLoN1dAe3uBmh3d0C7ewDa3RPQ7l6AdvcGtLsPoN0PAdrdF9DufoB2Pwxod39AuwcA2v0IoN2PAto9ENDuQYB2PwZo92BAuzMA7R4CaPdQQLsfB7T7CUPafTWg3U8C2v0UoN3DAO0eDmj304B2PwNo97OAdj8HaPcIQLtHAto9CtDu0YB2jwG0eyyg3c8D2v0CoN0vAtr9EqDdLwPa/Qqg3a8C2v0aoN3jAO0eD2j3BEC7Xwe0eyKg3ZMA7Z4MaPcbgHZPMaTdDQHtngpo95uAdr8FaPc0QLunA9o9A9DutwHtnglo9zuAds8CtHs2oN1zAO2eC2j3PEC75wPavQDQ7oWAdi8CtHsxoN1LAO1eCmj3MkC73wW0ezmg3SsA7V4JaPcqQLtXA9r9HqDd7wPa/YEh7b4G0O4PAe1eA2j3WkC7PwK0+2NAuz8BtHsdoN2fAtr9GaDdnwPavR7Q7g2Adm8EtHsToN2bAe3+AtDuLYB2fwlo91eAdn8NaPdWQLu3Adq9HdDubwDt/hbQ7u8A7d4BaPf3gHb/AGj3TkC7dxnS7kaAdv8IaPdPgHbvBrT7Z0C7fwG0ew+g3b8C2r0X0O59gHb/Bmj374B27we0+wCg3QcB7T4EaPdhQLv/ALT7CKDdRwHtPgZo93FAu08A2n0S0O5TgHafBrT7DKDdfwLa/Reg3WcB7T4HaLel+PfSOr5nwLCvBbTbTpfX7mzp8tqdPV1euxPS5bU7MV1eu5PS5bU7R7q8dudMl9fu5HR57c6VLq/dKeny2p2aLq/daeny2p07XV6786TLa3fedHntTk+X1+586fLafUG6vHbnT5fX7guD5nq0+6LAuf9p98XBc//V7gIScyPaXVBmrqvdl0jN/Ue7C6VLaizNLSw7l7T7Uum55+zLJOeydhdR1G7bfTqS06/LJl3/Qe+L/r+7PGg9uy35mhob+jvemwB/n/qrCWb4aGro79FvZginuSGc6w3htDCEc4MhnJaGcG40hHOTIZybDeHcYgjnVkM4txnCud0QTitDOHcYwrnTEM5dhnDuNoRzjyGcew3htDaE08YQTltDOO0M4dxnCKe9IZwOhnA6GsK53xDOA4ZwOhnC6WwI50FDOF0M4XQ1hNPNEE53Qzg9DOH0NITTyxBOb0M4fQzhPGQIp68hnH6GcB42hNPfEM4AQziPGMJ51BDOQEM4gwzhPGYIZ7AhnAxDOEMM4Qw1hPO4IZwnDOE8aQjnKUM4wwzhDDeE87QhnGcM4TxrCOc5QzgjDOGMNIQzyhDOaEM4YwzhjDWE87whnBcM4bxoCOclQzgvG8J5xRDOq4ZwXjOEM84QznhDOBMM4bxuCGeiIZxJhnAmG8J5wxDOFEM4Uw3hvGkI5y1DONMM4Uw3hDPDEM7bhnBmGsJ5xxDOLEM4sw3hzDGEM9cQzjxDOPMN4SwwhLPQEM4iQziLDeEsMYSz1BDOMkM47xrCWW4IZ4UhnJWGcFYZwlltCOc9QzjvG8L5wBDOh4Zw1hjCWWsI5yNDOB8bwvnEEM46QzifGsL5zBDO54Zw1hvC2WAIZ6MhnE2GcDYbwvnCEM4WQzhfGsL5yhDO14ZwthrC2WYIZ7shnG8M4XxrCOc7Qzg7DOF8bwjnB0M4Ow3h7DKE86MhnJ8M4ew2hPOzIZxfDOHsMYTzqyGcvYZw9hnC+c0Qzu+GcPYbwjlgCOegIZxDhnAOG8L5wxDOEUM4Rw3hHDOEc9wQzglDOCcN4ZwyhHPaEM4ZQzh/GsL5yxDOWUM45wzhWNnN4NiGcLIZwsluCCfBEE6iIZwkQzg5DOHkNISTbAgnlyGcFEM4qYZw0gzh5DaEk8cQTl5DOOmGcPIZwrnAEE5+QzgXGsK5yBDOxYZwChjCKWgI5xJDOIUM4RQ2hHOpIZzLDOEUMYTjGMIpaginmCGc4oZwShjCKWkIp5QhnNKGcMoYwilrCKecIZzyhnAqGMKpaAinkiGcyoZwqhjCqWoIp5ohnOqGcGoYwqlpCKeWIZzahnAuN4RTxxBOXUM4VxjCqWcIp74hnCsN4VxlCKeBIZyrDeE0NIRzjSGcRoZwrjWEc50hnMaGcJoYwmlqCKeZIZzmhnCuN4TTwhDODYZwWhrCudEQzk2GcG42hHOLIZxbDeHcZgjndkM4rQzh3GEI505DOHcZwrnbEM49hnDuNYTT2hBOG0M4bQ3htDOEc58hnPaGcDoYwuloCOd+QzgPGMLpZAinsyGcBw3hdDGE09UQTjdDON0N4fQwhNPTEE4vQzi9DeH0MYTzkCGcvoZw+hnCedgQTn9DOAMM4TxiCOdRQzgDDeEMMoTzmCGcwYZwMgzhDDGEM9QQzuOGcJ7w4FTpcEPvXVUnlV1647WLhwy5494y1X9tMmBZzzHX7Dr2/KEs4jxpaD1PGcIZZghnuCJONh9OELclLPmano5TTUE4zwBns0Q6VhO8P/T1q6XLz69Oc2uk43w/m13vOiorrKOmwjqeM3RuEyz5mkYYqinRkq9ppKGakiz5mkYZqimHJV/TaEM15bTkaxpjqKZkS76msYZqymXJ1/S8oZpSLPmaXjBUU6olX9OLhmpKs+RreslQTbkt+ZpeNlRTHku+plcM1ZTXkq/pVUM1pVvyNb1mqKZ8lnxN4wzVdIElX9N4QzXlt+RrmmCopgst+ZpeN1TTRZZ8TRMN1XSxJV/TJEM1FbDka5psqKaClnxNbxiq6RJLvqYphmoqZMnXNNVQTYUt+ZreNFTTpZZ8TW8ZqukyS76maYZqKmLJ1zTdUE2OJV/TDEM1FbXka3rbUE3FLPmaZhqqqbglX9M7QE3ZrX8+3+LPjnmUpihDUZaiHEV5igoUFSkqUVTmWimqUlSjqE5Rg6ImRS2K2hSXU9ShqEtxBUU9ivoUV1JcRdGA4mqKhhTXUDSiuJbiOorGFE0omlI0o2hOcT1FC4obKFpS3EhxE8XNFLdQ3EpxG8XtFK0o7qC4k+Iuirsp7qG4l6I1RRuKthTtKO6jaE/RgaIjxf0UD1B0ouhM8SBFF4quFN0oulP0oOhJ0YuiN0Ufioco+lL0o3iYoj/FAIpHKB6lGEgxiOIxisEUGRRDKIZSPE7xBMWTzAHFMIrhFE9TPEPxLMVzFCMoRlKMohhNMYZiLMXzFC9QvEjxEsXLFK9QvErxGsU4ivEUEyhep5hIMYliMsUbFFMoplK8SfEWxTSK6RQzKN6mmEnxDsUsitkUcyjmUsyjmE+xgGIhxSKKxRRLKJZSLKN4l2I5xQqKlRSrKFZTvEfxPsUHFB9SrKFYS/ERxccUn1Cso/iU4jOKzynWU2yg2EixiWIzxRcUWyi+pPiK4muKrRTbKLZTfEPxLcV3FDsovqf4gWInxS6KHyl+othN8TPFLxR7KH6l2Euxj+I3it8p9lMcoDhIwf14mOIPiiMURymOURynOEFxkuIUxWmKMxR/UvxFcZbiHAU3nE2RjSI7RQJFIkUSRQ6KnBTJFLkoUihSKdIoclPkochLkU6Rj+ICivwUF1JcRHExRQGKghSXUBSiKExxKcVlFEUoHIqiFMUoilOUoChJUYqiNEUZirIU5SjKU1SgqEhRiaIyRRWKqhTVKKpT1KCoSVGLojbF5RR1KOpSXEFRj6I+xZUUV1E0oLiaoiHFNRSNKK6luI6iMUUTiqYUzSiaU1xP0YLiBoqWFDdS3ERxM8UtFLdS3EZxO0Urijso7qS4i+Juinso7qVoTdGGoi1FO4r7KNpTdKDoSHE/xQMUnSg6UzxI0YWiK0U3iu4UPSh6UvSi6E3Rh+Ihir4U/SgepuhPMYDiEYpHKQZSDKJ4jGIwRQbFEIqhFI9TPEHxJMVTFMMohlM8TfEMxbMUz1GMoBhJMYpiNMUYirEUz1O8QPEixUsUL1O8QvEqxWsU4yjGU0ygeJ1iIsUkiskUb1BMoZhK8SbFWxTTKKZTzKB4m2ImxTsUsyhmU8yhmEsxj2I+xQKKhRSLKBZTLKFYSrGM4l2K5RQrKFZSrKJYTfEexfsUH1B8SLGGYi3FRxQfU3xCsY7iU4rPKD6nWE+xgWIjxSaKzRRfUGyh+JLiK4qvKbZSbKPYTvENxbcU31HsoPie4geKnRS7KH6k+IliN8XPFL9Q7KH4lWIvxT6K3yh+p9hPcYDiIMUhisMUf1AcoThKcYziOMUJipMUpyhOU5yh+JPiL4qzFOco+PK3KbJRZKdIoEikSKLIQZGTIpkiF0UKRSpFGkVuijwUeSnSKfJRXECRn+JCiosoLqYoQFGQ4hKKQhSFKS6luIyiCP/dpxRFKYpRFKcoQVGSohRFaYoyFGUpylGUp6hAUZGiEkVliioUVSmqUVSnqEFRk6IWRW2KyynqUNSluIKiHkV9iisprqJoQHE1RUOKaygaUVxLcR1FY4omFE0pmlE0p7ieogXFDRQtKW6kuIniZopbKG6luI3idopWFHdQ3Enx/9p7Ezi5jupcvO50z2haGk1rX6ytR7ItW5L3FWPLkmVLlq3da8yiaBnLAlmSpZFkSbaFLNmSjeWwvSSEhCWQmBcgJIHwQlbC9h4BEkLyD4FAIAlZCAk4jz3hhf+Ufc/MN1+fW32XM5q21fX79a+7b9X5zqlTp07tde/p/7ys//Py/s8r+j+v7P9s7P/8dP9nU/9nc/9nS/9na/+nt/9zb/9nW//nvv7P9v7Pq/o/r+7/7Oj/3N//2dn/2dX/2d3/eaD/s6f/s7f/09f/2df/2d//OdD/ebD/c7D/c6j/c7j/81D/5+H+zyP9nyP9n9f0f472fx7t/xzr/xzv/zzW/3m8/3Oi/3Oy//NE/+fJ/s9r+z9P9X9O9X+e7v/8TP/ndf2f1/d/3tD/eWP/5039n//R//nZ/s/P9X9+vv/z5v7PL/R/3tL/+cX+j3+HvX+/vH/3+9v7P/6d6f595v5d4/494P4d3f792f7d1v690/6d0P59zf5dyv49x/4dxP79wP7dvf69uv6dt/59tP5dsf49rv4dq/79p/7dpP69of6dnv59m/5dmP49lf4dkv79jv7dix/p//h3Fvr3Cfp3/fn38Pl35Pn31/l3y/n3vvl3svn3pfl3mfn3jPl3gPn3c/l3Z/n3Wvl3Tvn3Qfl3Nfn3KPl3HPn3D/l3A/n39vh36vj33fh30fj3xPh3uPj3q/h3n3yt/+PfGeLf5+HfteHfg+HfUeHfH+Hf7eDfu+DfieDfV+DfJeDv+fd38Pv78f3d9f5eeX/nu7+P3d+V7u8x93eM+/u//d3c/t5sf6e1v2/a3wXt72n2dyj7+4393cO+0+3v7PX36fq7bv09tP6OWH9/q79b1d976u8k9feF+rs8/T2b/g5Mfz+lvzvS3+vo71z09yH6uwr9PYL+jj9//56/G8/fW+fvlPP3vfm72Pw9af4OM3+/2HN3f/V//J1Z/j4rf9eUvwfK39Hk70/ydxv5e4f8nUD+vh5/l46/58bfQePvh/F3t/h7VfydJ/4+En9XiL/Hw9+x4e+/8HdT+Hsj/J0O/r4FfxeCv6fA3yHgz/f7s/f+XLw/s+7Pk/uz3v4ctj8j7c8v+7PF/tyvP5Prz8v6s6z+nKk/A+rPZ/qzk/5coz9z6M8D+rN6/hydP+Pmz5/5s2H+3JY/U+XPO/mzSP6ckD/D48/X+LMv/lyKPzPiz3P4sxb+HIQ/o+DPD/i9/X7fvd8T7/er+73kfp+334Pt90f7vct+X7Hf8+v34/q9sn4fq99j6vd/+r2Zft+k39Po9xv6vYB+n57fQ+f3t/m9Z35fmN+z5fdT+b1Ofh+S3yPkx2B+b43f9+L3mfg9IH5PhN9P4Nfv/Xq5X5/268F+/dWvd/r1Rb+e59fP/HqVXx/y6zF+/cOvN/j5fT+f7uev/Xyxn5/186F+/tHP9/n5NT+f5eeP/HyNnx/x8xF+/O/H235868eT3mz92FBC3Iw9N370+xD8ur9fZ/fr2n4d2a/b+nVSvy7p1wH9uptf5/LrSn4dx6+b+HUKvy7g5+H9vLefZ/bzun4e1c9b+nlCPy/n58H8vJOf55F5lR73/Dh9nnt+/845/Z9zXX1YDb8nxd+v2/bJT3/3m6M+h+mmBOIWx9+v7HzbH9zw+THvw7jrA3E3BuKWB+JeHn9/+/9sW7jomjuexLjt8fffffCzO/fuHft/MO54APOxQNyTgbinAnFvi7//6T3j//uZPZ95COOeib+v/tbMz7/z0Of+J8b9Zvyt6fr3AnFfib/ndNz0VxsWfuxvMM63b0lxrygnx83qSI77w1HPf2t5/6NA3McDcZ8MxP1pIO5zgbgvBuK+HIj7aiDu7wJx3wjEfTMQ92wg7v8G4r4fiPthIO45R5QQ1xaIKwfiOgJx3YG4cYG4yYG4qYG4WXHcrL/Y8NHdS39832UuOdRcqnB7Adr7CtD2FqCtpX5YH7YUoN1RgHZTAdrtBWjvL0BbpIy2FqDdWIB2bwHaBwrQ7ilA21eAtpb6YX04XIC2SN0vYs87C9AW0fPDBWhrqR/WhyK6KlIXaqkf1ociZbSrAO1I1aMifF+IbWjLx7rTYs/3FqCtpX5YHx4sQFtL/bA+FGmPishcxLe34Z8oG230/1Xy7SXIyucLGfnMbo0zEpPVXKrQGme401JGrXFGetrWOCM9bWuc4U5LXailflgfWuMMd1rqUWuc4ZreNlrjjPS0rXFGyjDc44w5rXFGYrKaSxVa4wx3WsqoNc5IT9saZ6SnbY0z3GmpC7XUD+tDa5zhTks9ao0zXNPbRmuckZ62Nc5IGYZ7nDEvHmd8a/rhp/76J39/AuPOjuM+dahj02WbfrBzSQCn5lKFM20Mcqb1nWqpH9aHVh/VnRY/Vkv9sD4UGesVaR+L1N9W39g1vW0UKd8i8x5F9FykfIvYZJHyLdKvLjKvVUTmkWq7R2qsN1J6rqV+WB9eiP35WuqH9aE1V+Oa3iaL1KNa6of1YaTmTPYVoC2iqyJtShHf/qIcj18UOON0SSDumkDctYG4xYG4JYG4mwNxtwTi1gbi1gfibgvE3RGIe2UgblMgbmsg7t5A3M5A3O5A3L5A3IFA3HviOO3M5qtHJ8dd1JUc9+2xyXH/c9zz370/c/S33vLWT0xTJy7jUHOpwm0FaIv4jyLt4UiNdYr42lrqh/WhyPx0kb7DSOW3SJ+lSFu6rQDtSPUrW31hd1rsqpb6YX0oouci/mqk8nugAO1IrTMUscla6of1YaTm3or4jSJ2VYR2pNYKirQLtdQP68NIjaF3F6At0mcoUr77C9CeaXOrRfZXFml/i9SjCwvQ1lI/rA8jNT4aqbZ7pNqFWuqH9WFzAdqDBWhrqR/WhyL7o4v4qyJ1vwjtmdZ2/3QB2hfieGGk9pK35qDcaSmjF+IcVJH8nmlzUOcVoC3SNxsp2vML0P50AdoiMj8X3huvAWj3Uv5GIO5P4rgP/Ny63t6XbXvgFQEeNZcqrCtAO1J7NEaqramlflgfivQVR0rPI9VnG6kyGqn+wEjNPxSxyZGSuUgZ1VI/rA8jtc+xlvphfSjS3yuyF6ZIfkfKJouMbV+ItlFkfWek5peKtIO11A/rQ5G59FYfyZ2Wuj9Sa45FZH51AdqRmktfWYB2pM5ojpTPeSHu63ghylyk/hbZO1+kXWj129PTLipAW0v9sD4U6QO/ENvfeQVoX1aAdqT2krX6de60+JwzrW/2igK0A++Oksn8TXv39u7p27hl1/27N/Vt37yjd+OuPZu29H/t792zd/uunRsP7Nm0e3fvHqGLt7MPHO6I3PPv1aq5VCHqBLrs9K+5sZMBM9G75+gjl5f/8/n3NDnz7zpEEKBHWQTXvypoDPweS/xzyn9jUfknBGSWslkG6WsuVSj7oxA+n/ESxHN5Pzv+va9v+47tfQeXPmeqywYsde1zhnrn83bKgBH9X5bwfDTIXYY06XXy4I2CWYq/2+E3hjJ9S5rJ8XcF+Mt3OYUcX/rE9/7qg7dcev94ovdBysbn8+L49/a9G/du39q7sffee3u3+Lq/b2df756Ne3r76/wQHxDX/ekx3QjX/eUF6/7ygrYfdQJNDnq17rMsDr5vBNobKV2XG1oPMY2vR93wuxr/jo8UPff+ekf0BXVzU0HdRBNcsj7EN0yM/6Nv2L1n+/5Nfb0r997Wb9E3PWfQy5635w0D5ow6Yh6OfvOzpOdaGSC2gV9ZXtSvTIu/h9uvzI5/b+v1zmRnX7/z6Nu4fefevk07t/T2/+gvjJ2bdlwZpxphL3JHQS9yxwvFizTyEDPh9yyg8UHzEBK3XOErcSsS5PDhZogrU9xKiGunuFsgroPiboW4URS3CuI6KW41xFUobg3Ejaa4tRA3huLWQVwXxa2HuLEUtwHiuinuNohjL347xEmvSWwLa2weLz4hH/24CQp/wRIvLr0Qr7+z4t9xD29Fb7/zft5/rIzdxziAR4tD6fB/mf630/8O+j+K/nfS/wr9H03/x9D/Lvo/lv530/8q/ef8iibxedYQDWNcmvbSh1Bb2eUaezH0lmWKw/a1neLaIa6D4jogbhTFjYK4TorDFqhCcdjWjqa40RA3huLGQFwXxXVB3FiKGwtx3RTXDXFViqtC3DiKGwdxYn8G/Zk7ivZnroi/h7s/I3rb2uunRXbt7d14X38nRno5I9x/WVGw/7LixdJ/yTrCCfVfCuZpoN3MVzNc2wSX7OWk3ZTefElJi7bUDmk0vTrlWeSSvTPPODnI18RL3BfmfPWKgwunXLlr7f7jX739fY9Meuf5/1yd9q191+7/0Zd3cV7aArJnbSFQPwU904qinkn6z8PtmSSfO/qe90mL4v8vFp+Us/61Fax/qk8K9Tg0n8Q26oP4oUb+Cn2SYBf008tPx4zMXCRwg3pqd8l1uUxpZwGNzPCI7O35ZO/gHh4GrYfHPqhTkTtSsDSfKjJ7/PMAl9OxPGi73BvVbNHzqcW/tVUB59KXtcYnUvhoPhptYqT98Pz4e7j9sGb7IkOHa9yOJelPVgK2bt+7ZVf/9OXGnb0HNt7fu3fvpm29e18Sz3mOsLN/XUFn/7pm6YD+DNCn7YAKzSg3WKn975+Kfxdcniuqm0zLc5Ku5lKFktDfmI9+wO5uykffJvTL4WHNpQploeUJylo6+rFCf7PG+7t7v/Crnz71gY+/u++ZX/nZ8V8a++Yxi0Yfeeyxb8/41sxfePaxdwotTnJmyHeH0N+i8V78v0r33Peb/7lrzIpj7z/wpS+u2Td25qaPzjn5K/d84vVzvrHxcaG9VaP9l6fecqT6/je8vbbws9/rWPEz/7bxOyvbr/7SZx+a/rFHf/yNZ98otKs02s/f8+OvfLD6xkMPnvrw4avPm7jpvW/8wn/86//+9K9Xv/N373vgC1cILU605vFRa/LRjxP6tfnoxwv9unz0A3VtfT76AVvfkI9+oK7iBHKaBlCC0N+ej36g/O7IRz+Q/zvhYU1+HH3Xu7+y9NRnL/6HH49+cvWm4w9e9tq/uOvfD0175px/fNX7Zr53oOzu0mj/vm/Z6/um3n/lv3f+2alL3jFj1le/+8wH//n7B3uv/rd//pcP9XxHaO/WaBsEof0phXbapfNfsvvnPzfpy+fN/ZslH3nvhW+a/t2zr/3y79z8jmf/81M/BNp74u+sHV6hf1k++gH/+HJXL3tCGGgWhfYV+XjPEPpXpuctoV1oN+q00bG5e3+ucipa/dFHL/hg1+iPfmPp225Y9tlPH39yTvW9bxPan1ZoF1xbefZXnnzkMfe1Z7759PcX/P6SC8bPXjr+wr98y1/N2LnnZdOfFdpNwshlyvNMod8M9CR7MAj9lnz0A/VzKzysuVRhgLY3O+1AvZa9+hn1NlDe2/LRdwr9ffnoK0K/PR/9aKF/VT76MUL/6nz0XQMTSECfoS9SE/r789FfIPQ789FfLPS78tHLDc0De3Mz6k9uXB64Bzwj/6VCvycf/U1Cvzcf/cAWqr589GuEfl8++tuFfn8++o1CfyAfvdwoPXAuIyP9ZqE/mI9+i9Afykcvt14PvM8hI32v0D+Uj15u1h54r0NG+m1C/0g++vuE/kg++u1C/5p89K8W+qP56HcI/aP56O8X+mP56OX2c3c8H/0uoX8sH73csO4ez0e/R+hP5KPfK/Qn89H3Cf0T+ejlFnn3ZD76/UL/2nz0Dwr9U/noDwr9qXz0h4X+6Xz0D8vk62/E5xG0+bIMeOt44lswEDvnotKsiPCcGzpn6Qi/QrJk5BdFhCf8OH88Gd2uyFJV4ljH7QqfdoVPVYk7bIj1uCHWQ4ZYxw2xLPP4qCHWEUOsY4ZYDxti7TDEstS9ZR060aRYBwyxLG3CUveW9nXIEMuyblvaxEFDLEsf/aQhVrO2j9Jv5E0Lgq99Cx9+JnwqhJW336Plq6zwC6UvBdJ3pMT3W3llg0+8sf3G3s37tq3aVXdrXZn+r0wQcSalWxcQjXEj+vDzmfSspKTF4LMnp4Hj7C3v7dty3+2btm3r3dqfyboz5Ix0c8Jz7pBiGumMd5CkNZcqtKUxSsSvkCx5jVIzGq2yea3KSYlYq6t2bdq6bNPuvft29CademAuEaHiM61MI5DMBdLdTP9XK3ROwfbxUnKd9LzmUoUK76zHoO2s5+0buLMeS5ODtpdLZPZDzg9NGcTldCwPlgefAsB9Z2OAN5drh8JH5Nf20Y4irA6FTmga8Ssl0OHv0NA5TW2TfPhQVXgkneRAjIJeYVKzewXJ36h8/CZGRI/8EJNPxnQqcYIl9bAjAQv3AGL6j8ffVUrnw93Eo1ORF5+JfrzO/ohk5xNeztnoEfFELnyG+BVXyC6jULlh/thOcvrYCWn0jvJop514P634vY4ELKEtU/o/j7+rrt7vs51UFHnxGdrJZ0h2PvnnXGE9Lk1rJ4JfcYXsMgqVG+aP7aSSj9+SNHpHebT2GXWLbWBHApbQlin938bfVUrnA9vJaEVefIZ28sX4d2eCvDWXKhzQ+i1sZ9xvqblUYWZaOxP8iitU7lFIj1p90/peQltV4nioNUbhM0bhU1XiHjfEOm6IddAQ67Ah1okmxTpiiHXMEOthQ6wdhlhHDbEs7b4Z9RVqh7Ji+WBpqycNsR4xxLK0Vcs8HjDEata6fcoQa6chlizjcz9P8H3odPV1L+vYBPFETnyG+BWSJW9fR9OL1meU/HXl4zc+Inrkh5h8Y8RYJU6w5KxpRwKW0JYp/fxYoVVK5wP3qccq8uIz7FPPjXG7FXl5fiGrPSJ90q0aEu+DRXkhnsiJzxC/4grZfxSyD00vkr+x+fiNS1O+KI922wjq1n9kOaQjAUtoy5T+KrJHvD2H7bFbkRefoT1eGg2VnW/t8aGgHm9KayeCX3GF7DIKlRvmj+2kOx+/G9PoHeXRbp5B3fqP3DzTkYAltGVKfyPZCd6qxHZSVeTFZ2gn18e4nQny1ly6wHVEMBAb9ZK+HKL/SGtngl9xhco9CulRq2+Sv3G5+EXPsm0gP8TkG47GK3GCJSttHQlYQlum9BvIzpAH24bEobz4DO1sNfkjvhXMh2J6dDektRPBr7gidjloJ1q5afVN8pfz7rqlafSO8oiuJyhxgiX3UXQkYAltmdJvJDuZADKxP5qgyIvP0E7uiXG7FXl5/j1UXxC3qtAn3Qgm8T4ULK+etPYo+BVXyP6jkH1oepH85bwLsZamfFEe0fVEJU6wJsX/OxKwhLZM6XeRPSIP9lsSh/LiM7THV5E9avUsqz+sumR/3KXQsT3mLK9SWnsU/IorZP9RyD40vWj2IbRauSb5MuSjlWsIi32mxPvQqdBl0Ec1rf4Fv+IKlXcU0ovmfyV/k/Lx6+Y6jPwQU+QRXU9W4gRL9mF1JGAJbZnSnyR/MBlk4vZpsiIvPkN/cIz8gaU9Ij3rCOnYHnOWV+pxvuBXXCH7j0L2oelF8jc5H79xacoX5RFdT1HiBGtq/L8jAUtoy5T+58kekQe3TxKH8uIztMc3kj1q9SxNvURczT9Kuhcbny6FjutXTvtrT1u/8O0YBepzFLJ3TS+avQutZqdJvhn5aHb6QsTSyt5/ai5VWNmpYGegv0bop+ajX90Zp5+Wj/42oZ+ej37gvsuz8tHfLfQz8tEPvAVoZj76VVI3ZsFD9guz4XmGeromrV8Q/ArJktcvzCZ+nD/2C3MUWapKHNeROQqfOQqfqhJ3zBDrSUOsA4ZYRw2xjhhiHTLE2mGI9agh1mFDrBNNimVpqw8bYlnpXmtXm8VWLevjSUOsZq2PTxhiWdahZtX9I4ZYln7Csq219NGWurfUV7Pa11FDLMtytNT9meAnThlh+d9TjbB82GMo17QmxPLhAUO5phth+WClex/2N6Fc/vdZhlhtRlg+WNmED31GWP73DCMsHyzL0VIuK1ttVl/owz5DLEv/ZVmOlnWoGfXlg6WtzjTC8sHSVq38lw9PG2JZ9r8eMsQ6Yohl2Sc/aohlOfco/XuZx8Z57yj+7nT19SXrXgfEEznxGeJXSJaM/KKQXjB/vHZey8dvbET0yA8xRR7RdY8SJ1hz4/8dCVhCW6b0m+NMVSmdD7yXo0eRF5/h2vkr4j+dCfLWXKqwqEtJz3aGeslQDovS2pngV1yhco9CeqzBM14rmqvIUqU4H/ha77kKn7kKHw3ruCHWE4ZYxwyxDhli7TDEOmKIZamvJw2xDhhiHTXEstR9s9rXo4ZYhw2xTjQplqWtPmyIZal7S/t6yBDrcUMsyzbtUUMsS92fNMR6rSGWZR5PGWLtNMR62gjL/55jhOVDs/ZNLH2hZT/H0k9Y+q9m7RdKOcq+YrRd3j+ade4B6ee8SPl0KXRR/F1wjJv6ri/Br7j6PFuNcTW9ZBnjRq5+3ejF2Lc4aIh1JvTPm90vNlsb/pghVrO2b806V2HZP2/W8V+z9sXOBN0/aohl6aO5j9gD2GXi06Pw6QnwQXpJp/Wb/KfmUoUNna6+75GB/k6hn5ePfq3Qn52Pfpn0q86Bh1H8LdjnwvMMfbyjEeE5p/cpBb9CsmTkN9CnPJf4cf64TzlfkaWqxPEZm/kKn/kKn6oSd8wQ60lDrAOGWEcNsY4YYh0yxNphiPWYIdbjhliWum9WWz1piHXYEMvSvix9znFDrDNB948aYlnm8USTYlnW7YcNsax0739PMcLywdJWm7UPYInVardb7fYLpe1otdutdrvVbr84dd+stvqEIZalvix9jqXuHzHEsqxDlu12s/roZu1PWObxqCGWZTla6v5M8BOnjLAiV7/HoQhWjyGW1Ty5/z3XCMuHBwyx9hli7THE2m+I1WeE5X/PM8Ly4cWue/97qiHWNEOs6UZYPljq62xDLEtbtapDPjSr3TdrHs8EX2ip+1bb8cJvO3zYa4Tlf1vuebDSl/890xBrhiGWVVvrg2X7aKUvH5q17XjaEMtyzPeQIZblmo7lPMBRQyzL/Tkn4m/Z64V7w6L4u9PV1xfPp+ZShTER4Ymc+AzxKyRLRn5RSC+YP9GL5P08RZYqxfnA9zmcp/A5T+HTwmphjRSW7BfGOsxnsLL6EaSXdF0KHfsRrGcZ6vXZaf2I4FdcIb8VhfSv6UXyfr4iS1WJ4/nJ8xU+5yt8qkrc44ZYxw2xDhpiHTbEOtGkWEcMsY4ZYj1siLXDEOsxQ6wDhliW9fGkIZalfVnq66ghlqV9WdYhS79qaROWfrVZ67ZlfbSsQ08aYlnWxzPBvh41xLLsA/AZP+wv8xm/rGMDpJd0XQpdFH93knyRy9SHfn1EeCInPkP8iqvPc54+u6Z/TS+S9wWKLFUljud7Fyh8Fih8qkrcMUOsJw2xDhhiHTXEOmKIdcgQa4ch1mOGWI8bYlnqvllt9aQh1mFDLEv7svQ5xw2xzgTdP2qIZZnHE02KZVm3HzbEstK9/z3FCMsHS1tt1j6AJVazttuWurfsA1j6aMv+RLPaaqvdHrk2rdUnz4b1pCFWq0+eDavVLxw5+2rGfqEPlvpqVlt9whDLUl+WPsdS948YYlnWoScNsZrVRzdrm2aZx6OGWJblaKn7M8FPnDLCilz9HqUicj1gKFePEZYP+wzlslwfstTXTCMsH/YbYvUZYfnf84ywfLCyCR/2GGJZ6d6yblvWR8s65H/PNcLywao++nAm2NdUQ6xphljTjbB8sNTX2YZYlr7Qykf70Kx236x5PBPaWkvdt/omL/y2w4e9RliW/QkfrPTlf1v1yf3vGYZYVm2tD5bto+UYplnbjqcNsSznFB4yxLJct7KcZzpqiGW5v5DP6OLe1ij+7nT19cXzqblUYXREeCInPkP8CsmSkV8U0ou2T1ryvlCRpUpxPvAZyoUKn4UKnxZWCysLFu8fF3wfOl29zWaoI4vS1knBr7hCPiAK6UXzVZL3RYosVSWO+yiLFD6LFD5VJe6IIdYJQ6yDhljHDbGeNMQ6bIj1eJPKdcgQa4ch1ilDrJ2GWE8bYlnq65ghlmV9PGmIZWn3lr7QshwfMsSy9DmWNvGoIZal7g80qVyPGWJZ2oRl38Sy3bYsx2b1X5b2ZVkfm9VHW2JZ2tfDhlii+644Dsc3UfzdSXSRyzR2mhURnsiJzxC/QrJk5BeF9KKNYSXvFyiyVJU43htwgcLnAoVPVYl73BDruCHWQUOsw4ZYJ5oU64gh1jFDrIcNsXYYYj1miGVZhyzL8UlDrAOGWCcNsSzrtqV9WcplWY6Wcln6CUubsCzHRw2xLP0930ODfSO+hyZr/wzpJV2XQhfF352uvo+Sob/0WER4Iic+Q/yKq89znv6Zpn9NL5L3CxVZqkoc72m4UOFzocKnqsQdM8R60hDrgCHWUUOsI4ZYhwyxdhhiPWaI9bghlqXum9VWTxpiHTbEsrQvS7ksy9FSLku/amkTluX4qCGWpe5PNCmWpZ942BDLSvf+9xQjLB8sbbVZ+xOWWK0+QKsPMJx+tdUHaPUBWn2AVh+gEZalvprVVp8wxLLUV7P6iUcMsSzrULO2Hc3a921W+zpqiGVZjpa6PxP8xCkjrMjV72MogtVjiGU1f+9/zzXC8uEBQ6x9hlh7DLH2N6Fc1uVoqa8+QyxLm7AqR/97qiHWNEOs6UZYPljq62xDrHlGWD40q6226uPI5LGZ7avVDrXsnuP2GmH535Z7RCzta6Yh1gxDLKt22wfLttZKXz40a3182hDLciz6kCGW5bqV5fzEUUMsy/1MfO/FZIiL4m/ZF4hrzp5PzaUK5YjwRE58hvgVV+9bM/Ab2Bc4hfhx/kQvkvepiixVivOB7ziYqvCZqvA5XVhaeflPzaUKd7A+BAOx0Y9nKJtpaW1B8Cuuvmzy2MI04pekV8n7dEWWqhLHOp6u8Jmu8KkqcccMsV7TpHIdN8LyvzuNsKzzuMMQ61FDrBOGWA8bYlnq66Qh1lOGWI8ZYh02xLLU/RFDrEOGWJZ5PGWItdMQS/r20n5h38em7Y6+lrftztlvDLbdmD/Ri+Rvei5+0VfTlAPKI7qeqcQJVk/8vyMBS2jLlP7do57/rio8xhIPiUN58Znop73/885RQ2VH3bKd5NOjG5vWTgS/4orY5aCdaOWG+WM7mZmPX1cavaM8ouseJU6w5sb/OxKwhLZM6X+b7KQHZOKxRY8iLz5DO/mNGLdbkfdcws3qt5Be0ml8JhTkM0Hho9m2/9RcqvB3mu1koH+70Pfkoz9f6Ofmo/8doZ+Xj/5D2hnBDPRHhf7CfPSvEPqL8tGfJ/QX56O/TOgvyUf/L0J/aT76m4X+snz0Hxb6y/PRv17or8hH/z2hvzIf/RuF/qp89M8K/UuAPoPvrwn9S/PRl0Tea/ChIpPgS9txNaSPEr4Fi+OEV4Ww8razmuwoH/vha4Af5jEJ65qMWJ1KXJ4yeYlLzhfidwVkYTl94H5+3jz7cMgQq88Q63EjLK1tLiLXLkO5Zhpi9RhizTXEajPC8mGPoVzzDLEuaFKsswyxLjTEusgQ62JDrEsMsS41wvLhKUO5LjPC8uExQ7kuN8Q62xDLqu3wv68wxLrSEOsqQ6yxTYjlw43xt8wLYLs0m/i0KXzaAnyQnueEkK4mP7679wu/+ulTH/j4u/ue+ZWfHf+lsW8es2j0kcce+/aMb838hWcfe1fB+bK7hP6sfPQTC85nTdDmJDLQ36jNSWSgX6rNSWSYt627t8ilpnXjtfmIDLLP0eYjMsj+rDYf0Zaa3nVq8xEZ6K/U5iMy0F/F8xEOaM/+q98d9YNf+5nyb/31s7sOfG/BG/9kxak/fM+1b/jsBYtfc9s//Oy3VmtzEXnG4lfko+/muQiXnval2jxElrUGnocYwnvx/yrdc99v/ueuMSuOvf/Al764Zt/YmZs+Oufkr9zzidfP+cbGEzzeHUL7+Xt+/JUPVt946MFTHz589XkTN733jV/4j3/935/+9ep3/u59D3zhSp6/GEIblvm5eeGL40V38cvXDsQOnXvwn+vi/+0Qtw7SCG2Z0vd0D9JdHvOTMXfbEImeD50K/wx2MD0iPEdYiOlDxdW3SXnmUUrEL6ndkryXFVmqFOcDr1GWFT5lhY+G9bQh1g5DrMcMsQ4bYh0zxDpkiHXEEMsyjw8bYjWrfR0wxHrcEOukIZalfVnq66ghlqV9Wdah44ZYljZh6Vd5nzLGcT+gHZ5naJfb0vYDBL/i9Ha55lKFgX5AO/FL0ssYN7imva9v+47tfQdX7dq0ddmm3Xv37ejlnhH3xlAriIrPIjc09xhXomec7hb6v1qhcwq2j5eSG0PPay5VmC9WMV+JlLjzCBvj8A2LWJocSor8IrPfMPGhKYO4nI7lwfI4j+IqEHc+8OZybVf4iPxtSvoKYbUrdELTiN+ZXBO1chLaqhLHdTFtzz+Ph6jGv2MPcWPv5n3bVu3a5iiU6f/KBBGnUbrVCaJFCm5EH37Om89KLuyCQoPANCbjXH0jg1jriE+rkWk1MgOh1cgo8g93I1NKoMPfPP3jQ01+HH3Xu7+y9NRnL/6HH49+cvWm4w9e9tq/uOvfD0175px/fNX7Zr53guf1NprSQnnZEUve2hvkr0zpvzJ2kO6dMT9fpnIEKa5pN+zb8eoNvX17tvfu7+332XsdhUbV4076f5dCpwUxCcb3QdSb0wGldniCX3F6MddcqjDg8LTRBuYvn8Njg+CKbO3w7qL/eRwe90RqLlXI7PC4d8TvLZffHDSHJzJndXhYHuzwsKKyw8NyLSt8RMY2JX07YYWcVSN+ra7H86HV9YDQ6noo8g9314Pp2l19zRXaMqX907iJL1hj3XigYxlbbfbzodVmQ2i12Yr8w91ma56EvcRwTl0g7+Bg6O/7lr2+b+r9V/5755+duuQdM2Z99bvPfPCfv3+w9+p/++d/+VDPdwt6jTsLers7PN03aDCG9YDrsbRMSfsLhLZM6b/dOUj37zAYOyeOjz3KnZt2bN+6qa/3pp0P7Ovd17t1za6+3r1Ld269aX/vzr7MQ7Nb6f8qhU4LowFvEuCXKJM+8NycXHYihwo5DStI0n8nVoqvyH8QV2TN6ESeYbw8JnVTNFKXx2RritCcWSuIis9GuinKeSw3c1NUoThsirA0OWhNkcictSnC8uCmCK+g4aYIy3WKwkfkb1PSTyWsKQodN0VJ/EoKHXclInqOc1mTFN48lzUm/uF1+5EpyXqY5JL1gPKwnMN4/dBdab3JSF0/lM2b8OVDwuVOQpU0mBbDnSCZS0inlV5ZoeMgGiuTzGfHxe2tb3L8u9vV52s0yaNZu3YZRFWhl3Qan1EF+YxS+IgljwG6zRTXFYjDDfWjKa4b6HjdahzE3U1xOKQcRXETApgTFUxfdh+rDOL5Tw+k0yxdWiApgxrIg7T4v53S+rA1/i5T2qvArs4nu8JazHaV9eI1pJ/qkvmMKshnlMJHu+SFbWeakle+3MwHLuezII5tZ5aSL4mbHcCco2D68vndytB0XP4+FDsc4O5M6/EFv0Ky5PX484gf548PnpyTj98dEdEjP8QUebhXxrr1H+n5dCRgCW2Z0t8Yl2eV0vnAl5HMV+TFZ6IfbyfXk52gbqOEb8HlZ1y/MO9SPsKnBnTrQJ6VCT4Pe1I1wJUBMfuqP4FVwVXkq5Cey06rJ3nz36PksdvV66YDfifZ97wAn45AfoarPDuID/pZLM+7qTzPgTj20f43X9ok6T8A5fkyKk+tLmp65nYpq55HK3yGW8/cvsw35INYOLnjP+cTFutZykn0jKNNHsEtgDheSikRDaZHDA1fMBrZ4I6KnrckGxReZUr/82CDu3La4HyKw7aixw2VU+RAPWB6vjRB5OxISJ+Ur/0w6vzYlKGYQo+6wrJg/yvpDwLmJ6focmK+avCMJyM1ezhfyZem0wWuMW/U8+oE3h0ubItlSv8aRafcLiC9Vo+qJMt5DWTn+o30POOCdEX9iCZzozr5RMY6OTf+zbZ7FOrkU1QnQzaCMvM4IqueRyl8hlvPPEZYYMgHsbhdWERYrGcpJ9HzQohbRHR4wQemw3ZhETy/QOGt4adtF36pouctyQaFV5nS3ws2+PbAuDhkgwsoDnXa44bK2cgfzqX0IneHC7e3ZUr/TKBd0Oor+lpuFyT9rwXaBeGL+arBM24XNFtcqORL0+kiwqopWKhnbhc0nWL+BY91+psp2wWh1+YjtlAczkecQ3F4cQL3WfFShPkUh/MRPDeClzywv5sDcWgjPB8xJpCfLsDg+T6ct+PLYrshji8IHQdxZ1EcztvNoji86HI2xU2EuDmQV5m348XRT8bPC67bqVtXQvOiUcK3c+naA9xaFRGfKYZ8EOsW4jPVkA+/LA/5TFf4FLxEJPU6q+BXXH3dzTNPdhbx4/zlWxnha5hRK4iKz1DTHBdaGfGhyDqr4M2COE0TPHOOeZqVQIe6cMqzNiX9WYR1lkInspcC9IiBdGwxET1PWo8UjDKl/yq0Vp+i1lrjhfrgFlNkT9oxwTJI+n8AGf5gio5ZTsjX9ATM78NKxj9VdEynYGr5mkX5YhnOIhkk/b8qPYESpWF5tGeif6fQ8n/NZiZR+tkN8sPlJOmfDZTTNEUGrJOrG8jAaWYlyPBdRQbFuy3btftg7N0cBe2MHf5nzfO67TQFJymINrwVikVquwymK3Ta+T6WyedcSm7gyOKO3r7ehLyz544SeLY5PXB/1Ln6NjRnm5a6DR2pi++1PrXQVpU4frnh5JR8fJlKvzMu09v6du1JKtK0jWukiMX0rgEWF3UPPM+g+sybmyKKwyk+7kbiEA2dGgfON+bHO5fPZNj4hDrl4RKa5/kUh1VlAcWhKS2kOHT4iygOh24XUBwO3S6kuBrEXRT/ls4SljPfUyhxPoSWaqsKfU+Az/iCfMYrfIZxqTy1+xqppXLJu7aMUVXieAOb1IOfi9erfJPWM3oodgX4sl5znt65Mq1eBb9CsuTV6xjix/ljvXYpslQpzgd+f26XwqdL4aNhHTfEesIQ65gh1iFDrB2GWJZ5tCxHyzweNMSyzOOjhliPGWIdNcQ6bIh10hDriCGWpU1Y1kfLOmRpE5b6etgQ64QhlqXuHzLEstT944ZYlvqy9IUHDLEs9dWsvtBSX0cNsSztq1n7TJY2YdluW+ne/+40wvLB0u4tdf+IIZal3Vvm0dJPWPYBLPV1yhBL7uCWOSach+ghPtqYf0yAD9KPSYGlzR+E8tijpDe8pVBEvILSrU4QLVJwI/rw8yvoWUlJi9h4jL0rfn6Okk6mleYTds2lCpdGhOecPq0k+BWSJSO/gWkl7eQG5o+nlc5TZNF2C54NvzEO+YR2OGLccUOsRw2xHjPEOmqIddgQ66Qh1hFDLEubOGaItcMQy9ImLPX1sCGWpb4eMsSy1NcThliWtnrIEOtMKMfHDbEs9WXZDh0wxLLU10lDLMt2yFJfRw2xLO3L0udY1kdLm7DsM1np3v/uNMLywdLuLXX/iCGWpd1b5tHSTzRr/+uUIRZPk4ROraa9fUCbJpmfAksbD4fy2KOkN5wmEREvoXSrE0SLFNyIPvz8EnrWaJqEd+WMiudyOl29yjNMU6gHTwSrm3j63/w22awzdUjfFeAztiCfsSn5nFuQz7kKny6FLkr4Fj78LDSzfy7x6THkg1h8wQVOhbEdhC5U0fgg/TkJWHhT5XZIM4fS4wUrTuG9GeIx/ay4Dvndn++PTxCJTucBPR4wnTMmLCvSoqx8+cXNcMB0boyp6VnKXbODcyiuR+GrYXLdylp2YxUZQlhYXt2UXsqiIyG94HHZLYKy44OseHBPs59zEmRA+8FLmJLs5+Ic9nPpmLCsbD/dxFvSLwD7uYLsB3Ucsp9uikP7ER1pPpN36mb1meMV+TQ+oYvC2I6yXhTWrfAp2JZm3uU+nuLwMPMEisNd7hMpDg9Icxu0COL4cC0e1ufDtfiGbz5cexHE8eFafDN3N8XhW7exDnIo0X8sE1/XfgvqGqdzxFM7rC9x2sFmsTU8JMyHSyeQrPyMbQ3pJyRg4XE39D3rIB7Tr4oz7+v/nWOG5gsvHxSdiG3z0bGaSxUuiwjPOX35TPArJEtGfgPLZ9oxT8wfL5/1KLJo/m0G/MY45NOj8NH6SUcMsU4YYh00xDpuiPWkIdZhQ6zHm1SuQ4ZYOwyxThli7TTEetoQy1JfxwyxLOvjSUMsS7u39IWW5fiQIZZlOVr6L0t9PWaIdcAQy1JflnXIsj9hqa+jhlgtvzpyftVK9/53pxGWD5Z2b6n7RwyxLO3eMo+WfuJhQ6xm7a/uMsTipTjtoraI4pDPrAAfpJ+VQOd/45xDaF1B5hHmwfMM4/pSRHgiDz5D/JE6Na9d+F5V4vhqnqxLpYiV5gIRbe4jZBtaHg2XSkXESynd+gTR2hTciD78/FJ6lrRUKthSjXDqiZerUI0h1WrLVRMDfLoL8ulOyWdsQT5jU/IZX5DP+JR8phbkM1XhI1VZe0+Lnzb92hidJy7F4HQtL+VJ+hkwFfsPtBSDyxljKP94gITvesT31bDrxXsvM7jC1BeWCH7F1dtkHtc7jvhx/tAtpb+zkGsAagVR8Vnk6r1GBJLhM168H0N0ee4sHA9xmib4zkLM0/gEOtSFU561KenHEdY4hU5kLwXoEQPp2GIiep50Z6FglCn992Chle8s1HihPnjTjsiedA8dyyDpfwQy8F1444BGyxfX5vH0H21rawL/bvAy/2+Mzt8p/Dl/6NWS7gMcRzIMeMFYBu1+wwkKvUt4xi3DBIqbEEjL74TU3teHtsh3IU5skHcuf0nfCXnn8h+ryBB60yjLwGkqCTJ0KTIUuwuRvRyXEpfEWAUnKYg2vMWK9bJ2uHYwH/mvWUDRuxC7Eni2OT10OV02HzpdobYyddss+BWnW17NpQoRe0/hx/njYdE4RZaqEpdUSxvxKXgXYlKjrTkLpndEGynPfNDeu9waaiTzOROGGoylDSF82B1/s2O/ABw7v0JhIsihYW4gGbRZAG0nlKTvUdLPUvIousRZip4UvFGX3BDOyyirNruCM1GzSFaUb35GWdefZlknKrIW3LWTeUca7x7DHWm8ewx3pPHuMdyRxrvHFkHcZIrDHWm8e+xCiONXYlwEcT0UhzvSeGoAd6SNo7hLIa4GvzlwG4Ll5evzt2YP4nI6/J3ki7CuryYZsdONvudrdDogIj41lyoM2I82mBZs7KZksM0tKJMErcsjzyokS0Z+A12eEvHj/HGXp6zIUqU4Hx6AdBxXUp61BbB2GGI9Zoh1wBDrcUOsk4ZYRwyxLPV11BDL0r6OGWIdN8SytInDRlhCbyXXCUMsS5s4aIhlaROPGmJZ+tWjhlhWtupDs/pVS5uw9F+WdcjSJiz19bAhlqW+DhliWdqqpVytdnvk9GXZX7X00ZZ9gCcMsY4aYjWrTVj6iWZthyzHMJZ5fMoQq+VXXxz+y7IcHzTEstRXs/qcZu0XPmSIZVkfLdtay3Js1v7q/U0ql6VffcQQy9JPNKuPtpTLUvfN6ieOGmKdCeNay3b7ySaVy3Jca1mOlvXRcgxjOe9riWVpE1yHovg/ptkMv7dAPKaXW4oKrhVv5bVYwUDs9pzYEeE5N1ROR/hdCj+Rq5IQV3Ph8NtLXvHqv619b3ZE9CILP+O9Jh1Kem1NW3Q1Cugz6GpzF/BwxFviyhDXTnGoF5HBf39xzlD5OnLKl0Z/iF9V0t8N6bKUxXg31BbQ3mWPD944xDdfhS7g1C7B1E6oSXrZt9ORkF7wypT+4ri+4gbvbkrjf49N4Ify4bPQnsDzE7C0G9F8WJsg+5UgO++hW6DIp20/lfQLlfS430nk0XSz0Om8MT9YntspP5L+WiU/Wv0Tm+oEHInLUHfGeD5fnzPIh/WG9aeRjnxgnS5S0qOuRCdVSo/6lTg8VrWA4nogjvf8zVFkQNvi/VVYr/CmvktT3NjYTPV6Tcp6PTuBH8oXqtdIn7Ve35cg++0Z6/VsRb5mqtf3pKzXYlOtet24Xmu3jqat13iDK9/uugjiBBf3f8+Nf5cp/faAzV7g6mXV6pSkv1BJj/tk+ZZM1O+FFId051Ec7q9dQDJc5Or1gHLxvnZJ/wDo4Ydgg5IXR3IVtPWlmq1fBAnY1i+GuJKSnsviEiU97i8WnVQpPZdLUr1BnfJeedFRh5Ie8cqU/iHF94t8uPf7IpJ9QUbZpyqya7dwYp36pfhAjuZve4jnggBPrb0RH9SRkF7wypT+cUVfoTYM9dROmJL+iYA/0PxtDZ5l9bcij6bTRRSHsuPtqILNmAXr5w1a/cT8c/0M5dUH1o3mW9F2pfyrrt4fcluEdYPbfq1flNb+0YaeqOi4Se3NzPg329dbMvaRQi9caNRH4vZG6yNp9sV9K9Qpt+dau4ty8RhQ0r8zZXtjZM8TNHtGm2V7DtmnD1nbftFJ1dW3B0n9b8RCnXJ7IzrqcLqfETzu3/56oL3Bftcikn1+Rtnz1Lcd1N7guK2HeM4P8GRa9BdJ7Q3eMo/pfyfQ3mhvF0A9cXsj6X8v4A+0MWcNnrENaro/T8mXplO+VVsb22r1E8+/Sf4kLkP9nKjVT8w/189QXn1g3Wi+FW2X2xv0h/z2Bqwb5xEfbXyT1v7Rhu6m9qaHcBEL7SJkj1hvpJzYHv80YI+heuYD67zRnInIo9kjj3lQ9pA9SrqC9ninZo+Yf7bHUF59yFpXa/Hvqqu31ZA9cvvco/CpwTO2xxrQ90BeV8b2KPP+OW+Lz3zONaI41NstFKf17yOFT4n+Y358uX+G5nqcgiU8KxDHby3AOw3Opzht/oSvrfC/F1Ic3gWwiOLwWocLKA7P3F9IcXg29SKKw8tpJP9iA3i+PIMNpL5CQ/ArJEtGfgPnSbVb+jB/UkezXW/FNwugVhAVn6Flc1yJnnG6O+l/luutpOSm0vOaSxUy114+xY1eDEuTg1ZDRWZfQz+UoYZieXANnQJx5wNvLtfJCh+Rv01JP4WwJit0ovtG/EoKHXtfjY7juCxC7x6ZQhg1lyqkvjNU8K3ePTKF+HH++KT4VEWWqhLH9TXru4sQK81FO5rMBS/aiej/5AQx2hR6F8BCmlCWQrebNbrhK+l2rfFxK6jdbjZRofehS3nGZp+zgUndoAl+xdWbRB6zn0T8OH9s9pobqipxSZflNOJjaKo+3JkghtZSugZYXJM1U8W9ImlMFfuYSaY6RzFVUXmbQu8x39Y5lPdNkE54X+uSZV1OsnKaa0lWSX8OyPoHJCuas8jTRfQS74NUqRUke82lCqmrlOBXSJa8VWoF8eP85esjXgu/WSuIis9CVtyo5txM//P0EVfS85pLFW4Rq7hFiZS4WwH7WopbBXFYmhy0PqLInLWPiOVxK8XdDHGrgDeX6wqFj8jfpqS/mbBWKHSi+0b8SgrdtYQR0XOcGbpJ4V2m9NeBd/jIlGQ93OSS9SD/2xQ5Wd8S70NBm7w7rTcR/IqrL/s83mQl8eP85fMmaCnI5S5ClTSYFsNdIJlLSKeV3nSFjoNorEwy3xlbkbe+FfHvbldvvR0kD8oQ8stVhV7SaXxGFeQzSuEjlnwd0G2muMWuPq8Sdz3QraO4JRB3N8UtdfX5krgbApjLApg3KnG+7P6me2g69EZRwrcPJeUZ63SFIquUHXoAnoPVatvKAB+kl3RdCl3R/Ggya30nvPJ+U/cgDbam6LXRjuXuvjKlf/OUQbqtVN9uAXqRUdMz18Wseu5Q+Ay3nrlO3WrIB7HWQXr/WU1YrGcpJ9Ez9nZWE90aiMN02CPAfv0ahbeGLxiNbHBft563JBsUXmVK/wjY4IM5bfBWisMeJLeHIgfqAdOf5fR8dSSkT8rXkcDYboVCr8neRbLcGpDdB7ZFpOee63DYPPJsZD8nyX5WQZxmPz3x7zKl3wb281qyH+yhDUf+Q/Uae3L8Qgit3mn+g+mwjlZTyLBakbmq0PM6H9IVtQ1N5ka28WayjTUQp9nG3Ph3mdKvA9v4RbIN9J8hPXMfMKueRyl8hlvP3L9ba8gHsbh9W09YrGcpJ9Ez0q8nOrwPG9Nh+4Z3O29QeGv4adu393XreUuyQX7Du6S/AmzwNwJjmpANrqU41Cn6Xi6fUBlEJHdHQnreoyfp/5fSvoXq61rA7CFMSf+7gMn7S4Qv5ksbLYdscZ2SL02nfGe4xhv1vDqBd4fT859kK38c0KnQtyfkh3Uq6T8e0Kmmo5BOtTq2XslXt5Jnvt/+ZgUL9ZxGp5j/myn/kv7TgX7YrQq91nfgPqTWD8P0PZReq2Na34Tr2J+n7ENy3wbnFrZQHM4t8B6Z6yGOx2JLIG4VxS2FOJ7nuAHiuP1bBnFrKO5GiEPbl7mFMuX1b+PnBdcWhuyFcYSl6TdK+HYuXXt6HaSJiM9wzJtofG425INYXKdwzMYr3lnnDZA+NDZcXJDPYoUPY4lP9gF9ktSnMqV/Fur1f80ZinmLIt9ieLY6kFeuz4glZSb1A33fcKy9CX6FZMnILwr5XMwfL2evUmSpKnFJZYp8tOXsrHIZvq1V/s+gdKsTRIsU3Ig+/HwGPSspaRH7dFW9keQzuiCf0Qqf4Z7qHE18koY7o6uDNGjC2nDHBx4WSPp5MNwZG2Nqw50km0Zbw6UOtm3hl7SN4foE+SbEMuE2hoho0J2vDch8C/Bgvj5sTpBhaixDQVesdlV4KhS7dNdRHHY9sGwwzrnB8sBnbHPLFT6MldRMil65SzcbyipNM4n2uTqQ11soDpsm1oPGR3Pvmh5CfMYU5DNG4RNq9vP6Ek1mHkr4gL5kIfmSWyFO69JI179M6ceDL7kw4EtQRv6v+eWkdjLJl6xMkO+ygC/RuoZrAjLjEJD5+rA5QYaryZfwUlDNpQuaL+GlCfR/3SR/1rYQ6U9XW8ivIhvuZT9tup/9i7YctSrAR1tSa1Qfl1d1nlp95HYN039x8iDdSqqPWn3JulSXVC+dS7fctVrhk+SDfAi1QZJ+faAN0uTDKf3QUC1JPrx6D9OPhTwnYTnlmaTH9o+nL9ZQ2lsDaVlu9GkXxL/FF/G0fc2lCuvFntcrkRK3IUEmDrwNCeXyZfrfdLzcKVjCE/O6geKwn3hb/Junt7fFtuRtcHN1KD3WXd4OhP0a3oJzSyBulYLpeT9MbcbpKCcfforibgO+qD8Ojcrwgp5BXE7H8mhl2Obq9bCGcPBZWZFD8yGSfj+U+97qUFysxz7gtYVrSfZbFbrntk1Uk9OtDaRDm9tCvLT+PNsc8kprc6HlV9azDyXlWcjvc19S8vgElMGjJAu2fRNIlsWKLIsDsiC9pEuz5W+lIoPWT8F2fcO4oenYZrVvyQc/43xo5eP7/3IgKp7CWtHbd9t9m/b0br2td8ue3j7eLMoL3LwQvY4k0oJIybNXN9J/3ojKo6BVCk4jntpoAw/SMl9tJMqaHafIPJJ8xhfkM17ho7VcRS1Sk7lRz/ctKWa1kFZaMp6xuRN6vm8l76HNHmh65nNTWfU8scVnWPlMKshnksJnuOvBJOKTVA8+kGEE6APXA0lfgXrwoRT1gPk5p89u8UhJG+UK1uoGWOsJS9tsp41al6fgE9rolXYzT5r8hPiMZH4ES9tkhGWwISDXWsJa1wDrZYSlbaTRbDBpxSCJT6hXGZrJXVuQz9qUfE5XftZQHI5w2BdrZbcuIAPS80ETpCvqIzWZG/nIL5GP1Db8hWatJf0PJg3SfSXgI9l2X2x6Xm/IB7E4P0nl+Q0qzw0Ql6Y8Jf1XoTz/LUV5arq5JZAfHGml8YdpNjquDaTXNvFp7QDP0giGDzJzdDs8zzBzND6NHSB+hWTJyG9gE8kdxI/zh5s1pG8Vj3SX9u695NKrb+wf5h7c3cc6FdxxyBTk5/SO/jOdl61MadYpPHxg+1lP6bjc5Tnjp5GpUdpG8Vq9uY3SZm3XkD5pJTBp1l/Kh8d7/x2Y9df6UWhDqwN55UNcqxNkLyl5GO30+rrN6fJhnlcH8jyQflxyntc2yDP3ubX+nrYRmg+dcR46Xb0NIEaa/gvWD7y6CONQvtBM4xSFz3DPvk0hPknt3YRxgzSoo6RVvqvi37xh/DPQ3k2OMUN6Hu78N6rTmBe2KcxXWcH0gVfWJf3sOO8FV0nUlfWkPgzX3xqVaWj+SitTSf+HUKbzUpRpqH6E+iKan1gVSK/1dbQ5llCfUsoHVwTTl0/0tTQ2ivgVkiWjPQz0RW4jfpy/vH0Rwf0qZAjlb9QXYTqtL7ImgUdS3eP+AfdlGvVFNJmS0mbti+A8Bx/8yToHiPSSTuwz5wbomsiC18uILGjz7CdXg4xcF7X0fK0M4yfNP5Sdrhs+5CTpr4J+xiU9z//WymJCgnzOpSsLpD9d87G8cjccO/F8CO0wuhp+Y5zwSfLJVYV+VYDP+oJ81it80tr65fHvRn2ildR+apcULFbk4L7xTmg/V1H7ifSh9QXepRk6pKXtbtdW95dDfjYE5OKdy1lXtTV5eLdu77hBWe4iWXD3UY1kybrTGOl5Z4J2MKvT1esjg/9NfeBF8CuuPs95+gdaGWl60Q7vCW1ViVsCv5P41BQ+EWE1ksvwwIuIuJDSrU4QLVJwI/rw84X0TOtiIPZzU4wTB/mgGu6joUPOewfVoQO7GDQz1lvWqoX0SZv4sbkPbXrFPM8irKxNOdIvT8AqK7L7wMM7Sf8YlVHO7tk6beMTu57VObHTup6keyVQrooSl+adxt+oXPsn3/zAW/6Mm1CRhZ+xu9CGkLOU9KIrnB7KoKvVXcDDEW+JQxtZTXF435fIoL3TeE1O+dLoD/GrSvqtkC5LWWhYq3NiyfuRtaHESPmkpOld3lQt6V8bmOrUfJN2eCR0iIp9GueRfY4PNaeHn1AQPNH/KIVX0gb+N0C+L+8ZKustiqziI0oBHk55Frlk3TCPNoX2MjdUtlUpZEN6bShyXYKcHkMb3rDdZh3erFTk0fjMLshntsIn1Cbxt/DhZ6FtJ7OJT9Lw610Zhl8+yB0FPPx6OQy/ngkMc3gYqR0q1e7XYt13OH3phP2JpH8v1Cs+CKYdPMG7GJLsrKzw9WFzggy/Sf2ZnH0Otc+ZdDCn7Op9qw+3JeQJdYDDedaBtoS1LpBem3YO3ZmAbfjaBKyk5TPmvb4Bb14aS7qTCv8j7/UB3rc14M3bsFDnfEhFyvRVEwdl+EOqv0uBRit3XlqU9HdNGMT844yYdyRgfh6mGz4emG7gN3Zk7X8gfWu6Ift0A/cJND6h98SN4HTDVEpnOd0wlZ5lmW4QM18KaRYS/lLAKCnP2MyRXtJpfMoF+ZQVPiGs0GuCb1DSl5X0hqYhIs6kdOsCojFuI9OYSc+STENCiXj63zzjxEXDMnYrGIsDeSopz0LXqtwQ4LOoIJ9FCh9ezP8h9Y6QfwZveUK83zJ4yJ4/52zfibSeP2kxC+XS3niSZrZnwR8+/MsvnXff2ojoRRZ+xlVS27y1SElf8OqT49psDy6w+ICuZjnF4WyPyKDN9uScFTyeRn+IX1XS82xP1llT7TqUrFgy27MM6EN1+XT5jOHgE8IKXR8iuulQ0ms+SdK3xUMt7UVlmr6d8qzN1fujl8ff3QrW5ATZNd6C70NVoZd0w+gT27P6xIqrz3Oe3rBWPzS9aEeihVZbuMfj3Un+MrTZtdmx0Da7XL39RgnfwoefMR+sq5OJz3Bt6khj53n5IBZvChyuzSOb4++CbfAqbZZRgrYSxXaBszDcp8FZGda/drCCNwj631fCbw4l+s/9gKt6BnE5nQTtChtul7JeYbNYkUebbcBZ1ovG6zxxllVbkeGZn+thlubS8cl55BF93hnLq2Iewzlj+WKy8Tx2vDOnHXPfa5WSD22zv+RD89d8C6t2yJf9IuJrvmwLpGN/qq2e8EzwDYrsWr9pcQo+oX7T4pR8phXkM03hM5ztFvJs5KduJz+Fm9dKCu2r42/euXEB+Km7yE9peo6U/2n69cIvaTVoZYJ8L4d+Pa8GcZ4xn5rMyMMRhg/sWyX9JvKtOcexqm/lNle7rq8g39Sz4IJfIVky8hvo92v9Xu0aQz+lmP6djLxniT06p8e0Tokr0bPrKR23VqsVOqdg+/iCF0mu5lYRQ9ZWkS/HwqC1fLgnIssbXkPHmrTLtEIzOU6Rv01Jfyth3aLQie4b8dNmHXjErdH5/9coNJYjKtajBdYw7LWbmNbjCH7FFaonAx5H23el7ffQ6g73jDAOF6cwDvmEjjoi1lIjLB/ubmG1sFpYLawRwEoz8sR2ivfuLAU6HhEuVeRbGpAP6ZcG+MwuyGe2wqdLoYsSvoUPP2M+msza7AHrLet+R22/X6OR5wfG6zzTjjwl/WwYeX5o/FCZtZGnD9ooH8tBMJi2E2SQuAz9i27fB/46XG7MeuX3Yzfqh8ieRd5LjnnXbCFtGf0xldFiiNPKiPeKSvpRUEYfp9kBnAXli6wb7X/i92dJHjucPsvKx+Qk/aeUVb/QXnLml3R0cWYCv88Cv0/SmAjtTngXtLuJmt0thQRsd9oMl+bPQv5Cm6nT9i3fQFjaXkBt32hE9B1OLwM8I4Xp/1op8zR2rpWrpP+blOUquhyOckVdcblqq+jaEdOQHWB5iU60GcglhLVEwcKy5nJtVJcFj+vWPwXKlc+msJxcrpL+GynLVXQ5HOWKuuJyxbqp6TbNJj1sH5bEv7UVgxspTjtPE/LfS+BZmjJfAmmS/Pf3lDLnviP7hTTtC84sylV68czibX279vTGU4uOQmgq0P9P2n47QaF3RBvRM76RQXOfoQl14Z20UYbdp6T/cWCjjOZ+fUizRXsJPB+Oyekl8W+rLdpLiF+SCXGzq1UzjGsCU/VhVYIYkULvCCtSnvmgbZvW1tjTeDdNVdIKJbUcgsd7v7riuqS1HFpLqI2IJL3Wc8fWkV/7pl02pY1Ski4QxhYNzYhbNEk/EfIaatGMRj5qi4Y64hZNm1kInWheq6TXZku1C365dxq6ZLlRNeRT35qdaiMrzV5CPbOQfjT7wnq8huKQbinIL9iO0g3HKBjzw7YQKlsfWDehN8OjbrRLYXnmCesSX8QWOtHqQ8gWcLbjAwlr8I1wJX2j14LyqFzSX6L4AMHU9kiF7FHThXYpjnbBHZ/ERboB3wzYjtIVtMex1rMyeetq6KJFbYSVNIuD+sY9Hqdr5o/3sN0Idpb0ura0M0qSfkXAdrU8hGw3VJ6aL9Vej3e6V+h5Txv6N14xRv+2jOJwbybvISnyOjdc9U+zbzPkd9L6VLSli8jml0C6+cRzicITn7HNI72k0/iUC/IpK3xCWPMVLEm/VEk/zMfylsT/51G6dQHRGDeiDz+fR89KSloMWjEtTpDbuXTFhPRLErDQveFonN+jsRTozyMsrQiXBuRC+qUJWJqJ+bAZ4jH9w7HbLXhk741pjqfk3Kb2xojwnHPBbWrahiORq6LEpTmy97vvXj/2Lz569cCRs7RHN0Ju8Dwlvegq5x38rwt1q7Qje3ycD7tGIoN2ZC/nVu/XpdEf4mvbkfnIXpEjOS/LiZXmyN4SiBsOn8RTAI8q3bLTLYt0W040gSzSFXqqCWSR7tPrA13npQo/7OZy27IE+C2luKWBfGVtd9Juoji/IJ/zFT7DvYnifOKTtHD+1gmDNFjXk4Y598XfvEh5F1z88o4YU5syRBn5f6jfwfLhtnpMszJBvl8F++Rt9ZxnzKcm8zLg4QjDB+6TSPr3UJ8k53ZzdVu9YKXpr+Tkm3rlQvCtjtOuJH6cPxwSpN9Wjz1C1gqi4rPIDc09xjVaoOAt3nm21efsndwmVnGbEilx+DYmHrTfAXFYmhy0ATYeKMuyrR7L43aKwx7VHcCby3Wlwkfkb1PS30JYKxU60X0jftpiCo9CNDr//yUKjeWBaNajBZa2Rb/gZFPqN30JfsUVqicDHic0SewD5127Mlfb6rYEfmMc8klzBav/vcYQa50h1gZDrOVGWD7c3cJqYZ3BWGkOVWN7cG/8fbpGlBqfcwvyOVfh06XQ5W37qgGZJT/ow1hvWS9l0t4W0miE96MJOs+0IzxJfzOM8H48YajM2gjPB200vQTkFgymLbhQOkZbKEW98kKpNouJ6bfH36GtepotpC2jUROHytNo+7rIw3vdLoEyGk0bl5KusEZ614Af18O029clfTWWqdH29RsS+KV9+66knwj8TsP29fGa3S2BBGm2w2J6nm3X/AXWrdAGId4OizpeQnyybm0XGdJubZf0cxR74LaIbSNJviXwDGcEDLfDJr2NYJxC74g2omfjErAExz9bBs/SbIfFoWbSdthzFZWHisyH1nbYF9x22CQPHyn0jrAi5ZkPjbbDMs8lbqi8Sa1EyIukOUhxpWLSIQ8buoJU6wlg8Ya2w95KcUh3QwIf7YCHD9yiSfrrUrZowns4WjTUEbdoaWdOJH2jLU1L4t9pDg5qI5u01TDtdljuqVlvP2T70g4ba9u7loD8gu0o3XD0qptl+yFfm7kE4vhoQNptq422K/4oYe0sCZfXspYBVknB4C2Fkv5lig8QTG2dP2SPmv1q13FqW/zZ32H9Wxr/1uxR0hW0x9GaPWL+04zyQntb0tZV7bDoMorDtoDbyUZ2E7JHXLt8K627Ip85xDPr3pI5ivwan3JBPtoenhDWHAUrVN7DvJVQRJxB6dYFRGPciD78fAY9KylpMWjFtDRBbufSFZNmzhqfxQX5LE7J55yCfM5R+NRtcYndbsFtf8fSLJjl3CZ3LCI85/TRlOB3KfxErooSl2ZL4beqd3xix3d/9dciohdZ+BlX29uV9Oco6UVXuDidQVev0ZomXGj2Ad3RbRSHzYvIoG0pvD2nfGn0h/hVJT1vKUxbFhrWhpxYsqVQuwX4dPkM3lL4s9CF4q1zp0uWtfH/tzSBLLKl8O0jKIvG59yCfM5V+FhufqgGZG406f+ehKFk2kl/Sb8S3m/46xmmZ7j98t+4EYXru/DDrXfae/hYvg+ATfHWu5WUZ8ynJjO+O5D5+rA5QYbfobY754YUdesdD8u1191zfp3TdR6qJ5KuYB4ybwZbSnHY3t5AcXdC3DKKuwvirqc4XPBeQ3E/BXH8loN7IG4DxeFwmxfiXg5xiynuFRCX9fZ0PE32W1MHcTmdI56hzW7YborutSnGBfAb40RWfsa2hvRLA3xWFuSzUuGjTbVi/zi0+U3qA05NDMcKhOBXSJaM/AZWIJYRP84fr0BobxXRFvpQh0nls0Dhk1WuYXgx3kJKl/SypEjBjejDzxfSs6Rhs/wfyRMHw1HFGnVH/nGizjPpajF+nbGk74HuyL/AfoRvBPYjrCBdoJ5uJvmXuMHALgB1OBwuQPArJEteF6CV6xIULP7OtrOdL29GrSAqPgvVBF5r5GXgxUSXZWe78NXmQJcomKG1NaZDXTjlWZuSfilhLVXoRPZSgB4xkG4JYUT0HGvbTQpv3uHyX9C5/hR1rjVeqI9Guzg4Dcsg6X8S6OAvBRotX0tAHrYDtq2tCfwngccpTdL5O4U/5w9bmI4EeZeSDJJ+VMy30ev4UB7tGeoAaZP+Y9prKS/4X7PFmyj9jQ3yzuUv6bsh71z+1ysyiFw+rG4gA6e5NkGGCYoMitdctmv3wYQdFdyXYC/HpcQlcb2CkxREG95ixXpZO1w7mI/81yzA5zyGHeya7ejtS9pNwi3CdQk825weupwumw8jtUHo+nz8ghuEMH95Nwgl1dJGfApuEEpqtDVnwfSOaCPlmQ/enC+OV3VfbN1nxkqapdsdf3MjtQAc1CcTGsm2BEyeidNGaNoskqQPvY9U0yW6lOUpeKMu2aGvyihrow1By0jW0B14jWRdf5plXarIWnD2IvNsHs+84Wwez7zhbB7PvOFsHs+84WwezxDibB7PvOFsHs/Wp53NW0pxOJu3hOJeCXE3wm8O2kzfQMev//Ot2YO4nA5/J/mitJs90Pf8Y4qNaCEfsgqwSgoGbz6S9KsDfizr3ZDafYlYh3mDEdattRSnrS6e7s1woXtCQ3n1gXWzXkkfuhsSfRkfQcVZbPaRVveY8WpWI1tgOdYAlmYLV8S/y5T+pwP2qOk85M8b3cfJkxC4AXEdxSEd3n8o2I7SDcddpZgftkfNvjA962aDkh5tjjfjor9ZQ3FYj7ld0e4X9rK/a9zQdLhZNEr4Fln5Gff3tLf98H2FFnwQazPxwfqC07L7aUID47R6cnn8u0zp3wCTJAfj39q9umuJXuIegnr2Kz3J9Hxnr7ZJV6sjvNKr5RPTX5GQz0dBzh9CfXBuaBmJXAXrXTVrvdN2zYTqnbYbCnf/iE6qlF7z9ZpPRptM8skdLuwP2SefUibDtJWqdST7LRll19qTRn5kZexHukkG9mdJ7YFWVlobvC4Bq02RH+stl3tJ4a2lF5vAiVa0BT6SKel/Acrq3T06pkuQYXWCzB0J6W8jGST9WxV7CfkBtP8NhCnp3wGYfCFZI8yrEjDfFehraPUU21iu13co6bG8RB7NTnkXAMrO7eLtwJ/TvpT4YxzaOfN1AXm1wxkhebm9kbjfg/bq/fHvgjs+S6GyulqRN21ZrQ7kj7GEruzq7TFUR1AfH5qkY7ZnxPyw0qZrfZUtgP97Cf0RH7RxDftl7doZ7OdofQM+DCftxB8r9XH4+tjR17IeONF0EzpwEuqTow/X2puxFKfdzR4pMmRtS/EO/9q4obhrG+CuJTka9fEuin+zH/5cwA9rOgzpvNG4hucZsDw2UJxms6fbHjH/bI+hvPrAutHafxzXsT1q7Ydmj9zPamQ3IXtcC3mdQH27DYo8mo9meRr1uXkdQ3x8R0J69vmS/h8D/Z47FRlCdnyXkv5OReZukgFpmTfWS9QJ+2NJ/82U/ljKZTgOJ6Pe2P5DOvKBdXq3kh51xScvcN77DopDv3EnxaH93UYyaHU2bd0Q2ue2X1WH4q5PiRspWJqfZF8t6f8r4Ks1/xKy8Ub1kt+4jPX/dorTfJVmq5JuOGwV88O2Gupz+sC60fwF1nH21egbNlAc2irvRkb7Wg+yf4nsS/PpobJtNPfK/kvrR2rtMNvx2gAflEu7cGBtgM/EgnwmKnyGcw4SeWp9G85P1rkQpOc53nWG+dFk1i4nwL7mrMmDNGzHJYWW2ztJf9XkQbpa/DvNWlVa2+W199AckgO5hnGdoX2k+5zcr0Q/zhc9aOv5aHvYdkoaRzIOh76wPqcZM2p+I6Tf0HviUJerKQ7tjcdqmi7T9kNwrfkD1cbyh9ZFG9kHn8bS+lZa/wB9rmA7SjccfQDMD9tCqL/jQ9Y5RbYF7B+spzgsf+6Tan1HzV9yGSf1HWUum/uOK2KfmrbvGLIby76jNs8/jD6kqe0m1HfMajfsQ9CfYxst7XdojixyQ9tJbc1ZyiHkNwWH/eBoeI50F1OeuY/E2JdQeslnR0J6weO+yCuhrnwsMCemYV5KMmxoIMN6kkHSb1ZkCOnfh1CfsNPV18UM9aYcEZ7Ig88Qv+J0+6i5VCFi/Qk/zQ584Lqs1adQ/ybvbQ7oKy2wsG9ZoLwy72XkcQX6Md6TiOPjzYDBoUT/MT/ert/TM4jL6VhWLC9cz2UbW6/QrlewR6o+rM/HL1gftDFA1vrAa+xnen1YT3HNVh+0eSVNRz7UXLqQpr7kvE2pJ219EXyr+qLZnlZfCt4w9Nzy3WhX76vmwW9tHQPLy6r8sB840uW3Kh+/YPlh/oaj/LBuZSk/be5vHPzGOMxPaO4P6U/X3N844oNzzTj39y6a+9PGpkjLc3+S/oMw9/cMzf3hejvP76Ft4TkGzrOkKzh2LDXzvmB+Z7y2NzBy9WVSZM/CWxLmnyLAvVyh5bqN6Tcockh63hPHaXj/2sDeHBhL8aFazWZRrqT5lN8PzKcM9/411DPvB0vq0wu2c/V9BsmfxGVpF7Q6gfnhOhFaW/Mh61o82712liqpfvkQ2tujybqqgKxcjlhWvG9A0qJdYn7YLiX9nyp2qZW/6Hw4yj80n6bpNDSf1kinPKYJ7SkIzadpvhf9JPvEWxQZsE0M7dmPKA554jNuo5Ge21Kxy7+F8ue9uto5tdCrXyT93wV8nZaH0EsB1gbyjPKE1v40OqyXnQqvmvz4STgIntjKKIUX77OVtN8APV3eo8sSsTwNQuiMTqert+ssfd6I8JzT+/SCX3H1usjTp9f6wJrdS/5yjgHnpBmTJZ1Z4H0DSWeKvkN9YK2OYR/lwvg317EfQR/4+wmYzhVbL1yeYl+JVg6hcgud6dPmqbW1+ZUUh2XCL5/Q9hdg+ovi3zynH8V+q9FZJqP9pP/xYlzbZ7tJOpsieHw7bxeUAZ9lwnsieP301oyyp90zj3WD63Gjl5Ek3c2QdAac2wxJPxl0kuYMeKhtbfTSj9AZcD5riHShM+B494LkT+KKrstiftKcAS/iu3hsHdr3gX0/vudBe4mRl30h+V5tDI5lm3S2XJtb8b9nxr/5tt75Aftq1K5kvaODb5/GehtqG6TuD+PczYSsdwyE6pIPWfu1/FIdtD1+dSz6QvZfOAbAuZjRCXuS0V6Qdm78m9vJqwP2siGQRx+ytlF8hjnt/qLQGTHea3W7ogeUa3f8zXNGS1L2F4z2My0d6T3NfOYQx9h8pkOb10SdJu13TzrTkbQH4tZAfwF58Dh/bUbZNb+r1TesU+/rfv63Ns7nPuvaAE+mxbanIyF90vjzDkVf7M+Szof1EKakvzvgD7Q29WZ4lvVMHu/t1c45hfalD19/3t0w0nP/3H6E7gTR9kSzHSCftPaPNvRmsn9sz1cQz1A/lmmRT5L9J92VsCNg/43G5dMJU9LvCti/psuQ/TfqI4T6SKF97+JvhrF/ftNI98/Z/kP9c/S/7Fu1Pm9a+0cbOtk9FBfvxdBs9qz4N98FczSjfYXO/aTtg2o2FPK9PD+j9V25HJPaGR6nSPonUva3jO6amTjS/lx0EjpLEPKfWNZWd828KeX8DM8t3ZpR9rT1DevUPmpvcOzL7c2tAZ5Mi/U6qb3h6/kl/VsD7Q2OzXg+SGtvJP07Mo7XQ+1No/E6zwdpdwZpY/nQeN3oTsBJI/2CXG5vtHVirW5wXybtPE+j8f2m2P6L6fXB10Ugi2CXlJRl+pY0vx3bZAX4y3eaNxp+6RPf+6sP3nLp/eOJ3gcpI79m48v/N8j+8Tpw0SVeo802WyLZNLqIZOD0bUp6we1S4sqQh7w6mvH7vZ+7/sv/+uVGOsqL/8Sl5fFP/9Tqm4cL/3OjvvndT39y2+uGC//rnetuavvtp+YMF/7Pf3fNFcemzft2FhsVW+iGtEIn65hVeJ7BF6a+tl3wKyRLRn4D67RV4sf5y/dKlbHwm7WCqPgsqZaKZC4hHXsIH7K8UkVKbjw9r7lUYYJYxQQlUuImAvZYipsEcViaHEqK/CKzt9IP0U4gp2AJTywPPgWOu1EnAW8u16rCR+RvU9KPI6yqQie6b8SvpNCNJYyInmMvraTwLlP6r0Mv7SNT3JB8jnVD/6P9bSUZtVbFJTzjfPBJD+brQ6cr5AnGp/U8gl9xur5rLlUY8DzdxI/zl8/zcJsvXMYRqqTBtBjQWl1COq1E1yh0HISuKwHTh05Xb6kZtDw6banKswrJkrdUS8SP88cWzVbrQ9XVWwjeFZRkPVq71cJqYWXBklZA0k6M30rqW4+O+He3030N/m5TZGkLyIL0XEdwTLSZ4tqVPEhcRyBuVCCuMxBXCcSNhjxEFDcG6PiMS5eC6fP1wNSh6dgXa9/O1fs5H7istN4Etj48zkQ/VSWscQ2weF0L6fns0PgGWHwOCenHE9aEBlgvIyykn0BYExtg3UtYSC+0Yuslha5L4cNtIfaUM7RNY9K2hYJfIVnytoWTiB/nj+v5ZEWWKsX5wH5vssJnssKnhdXCGiksHu0KvvYtfPgZ80F/wKNYbGtxvWrx1EEapMPRIdJuj7/LlP7noV+wlPoF6DdExm5F5oh+a/5iUiD/mu8abj1zux4Z8sE43tMwhbBQzz5IOYme0ZdOIbqpEIfpcOZhCjyfqvDW8AWjkQ1umKrnTbNB5FWm9A+DDd4R6JuyDfJdhRgXUV4wnWafWGbbKb3I3aGkR7wypX95nBdtzU3oUVco1xrClPQbAZPX3DT/ps1EhGxRa7s1nU4hrLEKFuaH11o1nWL9HEv5l/T3Kjrl/hjSa2OPLRSH63PdFNcBcVWKGwVxfA69E+LGUxzO9U+gOBx7cL9qDMRxO9EFcWhbMvYokx764uedTq8vNZcu8LpDyLeirjXdVygO7bWD4rBcRlMc2sEoisMyG0NxuE7ZSXFYnqLr0S6d7/OB219J/5pAfdb8tdbvlvTTlPTYRkj6bldfh6dRHNKxH5hGfPG37BVAPaBc98XfZUp/EvQQ2lMjchVcsx+trdlPhwS8Zn8WxJWU9FwWM5T0Z0Ea0UmV0mu+VfPTqFP2raKjDiU94pUp/RsDvhV983SSPcoou7YOrtV5rFMbAn1Tbt8nB3gyLfLpcNn6Lb8UaN+1/jjKxe27pH97wB9ougy175r/mKLkS9PpVIrT+gVa/ZR0w/GeTcw/189QXn3I6yurrr7+8DwQ1g22f22+Ka39ow3JeC/vPoH/8fELbv72+n+fnWefAM5rCp30G3Kunv0xyi9Bm8sS/ArJkpHfwFyW1k/F/PF57pyrkR+JiB75aau9BfddlKSsxivYIov0NTsSZBHaMqX/JM1fa3O1fAeUDzz/os0v47O2EcLS5qpRj1Imvh7+PulCW8lOY9uajFheYpOhOpiXD2LJeF6zd/+puVThUt6RIRiIjXaTwbbvSusrBL/iCtWlKGRjmD8en41XZKm6eht7ANI1sj/ko2GdbFKsw4ZYjxpiPWaIZamvI4ZYxwyxHjbE2mGIZZnH400q10FDLMv6aFmOhwyxLOvQCUMsy3K0tNUnDbEs7etxQ6ynDLEs7b5ZfY5lHk8ZYu00xHraEMtSX5Z9E0v7atZ+oaXdN2tf7oAh1lFDrDOhL9esdm/ZN2m1admwmrUv16y+0LIvZ+kLLcvRUl/N2v/aZYjVrP2vhwyxLOu2ZR2y1JdlO2RZh5pV95b+y3Jerlnnhizt66ghVrP2MZux7fC/u42wfJC2ozsBG39nPUcVKTJr66S4fs9rog5wCp7ITv3eNsGvkCwZ+UWh8tHWVvnEONJWlTguK+1czwSFj4ZVNsTqICzNbrR1v6z6GgM48QngG3s379u2atc2R6FM/1cmiHgnpduQIFpJwY3ow8/vpGclJS1ia1WykiC3c+mqJNJ3B/gMR9Xn/+3x/9CxwmFY/t6S1g28UJa/90C6os3Baw2xLKdfLbtUzTpUtcyj5TJgs07JN+v0xWsMsc4EmzhmiHUmTFc36xSz5XSPZR6PGmI163Kb5fSFpd0/YojVrFO5ljbR6n+9OHy0ZVu73xDrqCFWs/rCZl0OedAQ6wlDrGadMrVs01pTzNmwzoSlYcs61Kzbilptx4uj7WgtpY+cTbTmFEYuj5bbzZt1PGSpe8utss06X2jZz2n5iZHrT7T8xMjpvln9RJr+F141y9exZr32FLHWExbS87VSiBXF37IunfN60FJEeCInPkP8CsmSkd/AurR2pYa21UN7MUHo6g6+wjbrNYaINZ5kOJO3B01UZKkqcXyli1bO2vVXGlaHIRZfIYbXUXNZ4vViGXSb+rUpgl9x9fnMU5ajiB/nj8tyvCKL5he3Eh3yMbL/l+a1/5xlFLR/zF8e+/dhL6QrYrM+HDDEOmKIddQQ67Ah1iFDrB2GWCcNsY4bYlnm8aAhlmUeHzXEeswQ6wlDLEv7sqyPlvZl6Qst5TpmiGVp92eCTTxiiGVpXycMsSzzaKn7hwyxLO3+cUOslp94cfgJyzw+ZYhl2Z9oVt2fMsRq1aFsWPsNsVp1aOR0bzl2txwjy7y5NgfkPzWXKhziORbBQOycr9taFRGec/r80gvldVt9kI7jSsqztgDWcUOsk4ZYhw2xdhhiPWKIdcAQ64QhlqW+LPNoJZfmp5rFVh83xLKs25Y2ccwQq+W/Wv5rOPNoqfuDhliWdv+EIZZl3W7W+mjpo5u1rbUsx0OGWGdCO3Qm5NFSLku/2qzt9v1NKpelvl5riHXEEMuyb9KsbVqrPo5cHpu13T4TxmmWNvGgIVaz2v1jhljNOtfxpCHWcPjo0D7xiOKQT2gvvHb1n8ZnXEE+41Ly6SjIp0Phw//lHji8S4/vgdNeWy/rEZPheYb1gbER4Tmnr0cIfoVkycgvCtmetg9e8jclH7+uiOiRn/baUtH1VCVOsOS1nR0JWEJbpvTvid/VW6V0PvDrA7VXj+Iz0Y+3m1+NcdkWfKi5VOFy7XWobGOokwxl0J3WxgS/4gqVeRTSofb6Vsn7NEWWqhKXZA/IZ5rCp6rE3d3CamG1sEywUvi/tj+b+Mp9He96xZYL5o+96T+mTXjTses/furR6+cvYr8vsiEu+oAM/ij1mSrBr7hC/jYK6VRrQ/hV9UhbpTgftkI6jispz9oSsDRfmhfLh83xd4F2sMRlnYG22qnIVEtF6q4Q2rPS0w68JVhoZyi0Ey9xX5jz1SsOLpxy5a61+49/9fb3PTLpnef/c3Xat/Zdu/9HX94ltDMV2oQgpjtgN2MgUl796/slX40zI2U7C+JKROt/S9mWKf1tMwbp/v6sobyxTnF9bYPnGerPorT1VfArJEve+tpG/Dh/XF9LiixVivNhL6TjuJLyLIR13BDrCUOsY4ZYhwyxdhhiPWmIdcAQ66gh1hFDrGYtR0tbtayPlnIdNMQ6bIh1whDL0iYeMsSytInHDbEs9WXpvyzlOmmIZVmOlnI1a9thWY6Wures25Z5PGWItdMQ62lDrDOh3bas28PR1sqaCo7HxlJcCeK6KA5fy9RG8pUV+coB+ZC+nEDH+ZDxVjs8i+JvGWvmvDMl9R0tgl8hWTLyGxhrdhA/zh+PNUcpslSVOH6FllY+kcInq1yGr72S+IWUbnWCaJGCG9GHny+kZ5oqELub4jXTZ5NJUm01gd6HrgCfLoVOTHM0yFiDeH41V83Vy1gLyIj0kk7jExXkEyl8GEubpvJhd/xdpvQvj6epfHX45JShmD2KfFpZyfO5SvoeSCPyaLoR2i6Fd5TwLXycC9sQytBJfOYa8pkLacrEZ54hn3mQZizxOduQz9mQpgvo/P9zIA7tTOQ4V5FDmp358DxDM5B6SULwKyRLRn4Dzc584sf5Y99zniJLleJ84OWk8xQ+5yl8ThdWl6vPP5cl5nU4ylLwK66Q7UQhvWD+uCzPV2SpUpwPvZCO40rKs7YELMmXFZbU04LldT7rA4PELQDs+RSHfYkNFLcI4jYDBocS/cf8+PbrPT2DuJyOZUX/JXJ3u3obQ9+R5As0+6kq9JJO2mB5neabYKnodTOGyjkLsDdTHmZDHNfZOUqcx//HWcl5rRTMa0XJq8anWpBPVeHDWGXAGg1Y6yEe038w1nvBerJNqyfsMxfkxE7rMwVfq5ciV0WJK6eQpfy/3/nHv/uq766LiF5k4WfcR1yopK8q6UVXi4A+g642Y3/FEW+Jw2HfAorDoarI4H3MF+cMlW9hTvnS6A/xq0ocb0NIWxZVJW69ERbWNwuszpxY411y+635JN7+m9UnIX3I940ryGecwud0t+18pTbWAZSPQ6P2uzR3EJfTsTyoU26/UQ+8DTprv7hDkVX0zX22mksVFrBOMWg67aA49ImoBw6avkVmr+/LM+gbdSqyFWzPFmp9Q+aLeT2P4i6A9PdQ3IUQl7VPKfnxOtqaQUdoD4sorcguW+bPgXjpn5Up7RdmD9J8kfqFaLPLSA4sj3OA75djDKknF0I69n+ov5LyLOT/JJ3GZ1xBPuNS8plfkM/8lHw6CvLpUPhIvboI4jLUq4vFDi5WIiXuElefB4m7FOKy+heROat/QZ2KbKdbDxdS3KWQnv3LZRCX1b+gjrbmbPNQbpS97PS2bhnFS/pSvIfS+4cfz0jGlOd4FGhzAuZPYE759+cOzQO2azxHgD5zC8VdAHQij5f5JbH8Wt3ksXvWuon0bBtIJ2VV0F5Tz4kJfsXV5znPnNhFxC9JL1yfkLbq6uvackjHcSXlWVsCFpa5BRb3m5vBv/CcmJV/yTInNhz+ZXZcPwvqesjRRkdYrbrfXHXf/+a5iSL1dYEhVqvup6/7Wdtsnp/G8RnOQUubnda33ETxkn4x9F2unZmcn4XAe9/MoVgi/1LyUznrleqnePyAY1r2U6jPkvIs5KcknVY27Kdy5i+1nxL8iqvPcx4/pflvTS+S94sUWaqu3udxH0XzhxcpfKoKnwsMsXiOBbEz6O9Crc2SoOmKbQj9G/upSyAuq5+S/GT1U+iLUG6UPa0fkfQvp7qfU9dq3RcsbW6S637WuUmk57kxpOO6n7Mupq77gl9x9XnOU/c1n6jpRRsrCm1VieM+ygUKnwsUPhrWAkMsrvs515gWae2ABE1XbEPoM7juox/LWvclP1nrPur4AorT1gOwvRddXgXpMujyauFztRIpcS8BbFw/5KDpROTyOvmjDHNCqJOXUBzazTUUhz7gpRSHNnEtxWG/4TqKQ3+8mOKwD349xWE/eQnF4VzkUoq7DOJuoLjLIY7nx6+AuBsp7kqIk/ZCfDfaDl4lg3E+lJRnXN+R/iqSAemihG/hw8+YjyazZstF+SDWOqDjeoG+KE0/9Rp4PhxtleBb9VOvIX6cP26rXqrIUlXiuH15qcLnpQofDWuhIRb7HGyX8Vj922jMdw3EaW26tDdlSv8RWBP7ZZr7RVu5OkUer1H4SXrxex1KesQrU/pnYpm8H/9YvJ+6qsj00gRZuG1lO5E0PnQS7+GqI4JfcfXln6eOXEv8kuxN8n6dIktViePx13UKn+sUPhrWhYZY3PYm1ZEPGdWR/wl15MNNWEf+0KCO4PyZNqfGdSSnzaauI4JfIVny1hGtLDB/XEeuVWSpKnHYD0uqi9cqfDSsSwyx0taRz1IduRji0tQRSf8GqCOfozqCOuI6comSR22ORNJLmXUo6RGvTOn/v5R15JIEWfzvK0Aubc6G60hOm01dRwS/4urtJ08duZT4cf64jlyhyFJV4nBcwXosKc/aAliXG2JdTPlJqiNfN6ojh6GO/HMT1pF/y1hHNNl57KXVjzT27UMb8cH6hNdCJtmu5t+rCj3b7iUKn0Y28v2ZujxJNvLq+JvLYDvYyI8CNsJlgDLzPKhmP1q91uZBee1qGPxd+wvF312myFKlOB/47NhlCp/LFD4vFCz/W66oC/UVs9bzqqu3o3OJz2WGfDA/aew8Lx/EWkd8Ljfkg1i8dpzkt6bNGsTF9jHJb62Iv8uU/qfAb82IMTspTcZ6eo3Ifo0Sqc33XEpx2B++jOJwPMllvxjisL/BQZt3lrz6NvR7Gead0bfz/PGZ3Md8sfjcNGNqzOtwlKXgW42pNb2ExtSXK7JUlTi8Ypf9Wkl51hbAutgQS9YyCpaXmV/zgdcRcQ4t6zqi5CfrOqLmu7iecDpsXy5VZNDkihQcrk8S16bQytW43UrcVOKRtc5PVeQN9VnEhtC+MthQKW2dF/yKK2SzUaj+aHrR5giEVhuLow1gHPLJO67HsfJIt58X5+MXbD+167wt7CupHC4L8LsyH7824aet+2p7Uce55+c3uAwxv2gTKNdVgC/Pkuo88pa7oLT5CPZRlzfAWk9YlyXkIakMtPmfbpesgzLF7Y/76N4P3ztraBpZL9sDae6Lf3O9Fj4+FLSB1HVK8Cuuvpzz1KkriV+Sr/E2N8qFyx51j+tnuP51kZIXtsULG8jEtqjx0tpnSefLtG9WcrpLA+lw/xnOhT4YSHeBkk6Lk76BI4wypT0cY/jy6J7nhugC+S6C3xjngza+5XZlkSKLxueSgnwuUfgM497D1HNuL4S9hz7wmC3vfsFmxfK/5fUMoX0+acpV44N2xPMhFxjyCe2PPM+Qjzbfpe3DLMpHOxdf8CxM5vEh7zHHeS/e14nzXqx/nPfiNuR6iMO9Uxy0cSWeoRk/bxCX00koeA9C0+sP94tx0PSH9ye09Dd0/yMHS/3l3Cd+kbanW4LW12L9YV+A9Yf9TtYf9kOxv8lB0xHuIc8yb402JnkqeCYqs/74fi6cT8b2l4OmB5HZ6+HmFLYS6hNr+8a5bcV2l+f5sK3kOaUFijwjdRYtp58JnkXT7qBiu0Ba7cwXvmKM7amkPAudH5tviCXlerrPonE9abazaKjjiygO723cQnGzge58ipsDcYLf6N7GUfAb43woKc+4rEcpPDU+sWrqXnX237R+2gM0GezjujTjx5x3bl2X1ldweWj3x1WUuDR3J/5g4pIL/u/b/+MtEdGLLPyM707U7r4bpaQv2B+4pgt4OFdfF33A+zjOpzicD8F2mu9OzNvfS6M/xK8q6bdCuixlUVX4zM+JJXcUYlssdUfq3yyIm0txWM94D1WPIkNPID/nKjJ0KXRcH+fC8+FouwW/4gr5loG2ey7xS9KL5uOFlu8I84HPkWf1wchnliGWtDUFy2s+6wOD1qdkG0L757Yb/VrWtlvyk7XtRh3zPGmrXg1/vTpXkUXTGZ/RPlfho93Fr2GdY4gl9lOwvM5lfWDQfBDbkLaPW6tzI1Gv+L0BInu7krYW/y5T2othn96d8W+tbYyHvuq7Rc6mOLT1WRQ3V5EpIh64FwTtfjflQdJfFcvtdfnDOTpmWwImlqlzQ+uy5KMT+EpcBhv8Yy/X1+cM8kGd+YD9uaR6g+m53xp6fwbqQGu/uM72KFjz4JmsM2r6EhmHQ18oA+vrnAYys740/aIeRAeaX5pNWLMVLNRhSF8i43DoC2VgfZ3dQGbWl6ZffHeN6KDq6nU5h7A0fWF95PdrCX2Hkh7xypT+NvAJfHYF/RqXdU3BRt8YEQbmY4ySjy6KQ1rtdehp97tI+quV9HgnAfe9cG+E0Ba8u6Op9mVr6wOYZw5a24x3haRZH4iIj+Ci/n1gmzhPkVHbg39pSlxJ32ivUVsKuXHfCtvQZYrc2l6jSxL4aHs9fVgRf/NZggegLss71DR/KrwL+tNuzZ+ijtifanVW2y+Uts7yvnY8a8f7pFHHwlOzL9y/8/0MZw1Dtse0KF9HQnrBK1P61yj+mjFRBu2MQMj+0WbZnjEPl1Mc0l2VwCfJnvlMn6Q/kdKehXdBex6r2TPqiO055A98YH1rd7KEzgLjPQMXUxzqmPc9aveSpvWvuC/t6wXP2obsX/KWZP981lbS/1zA/jX9aucqJH3onolG9v9SikO6qxL4oP2jvtj+Jf1bU9q/8B4O+0cdsf2nvT9F0mt3l2j3OGh3l4Ts/6XEx8r+P5vhzpJrAzyZFvOWZP+CV6b0vx6wf02/ofJYrKTX9plo+V9McUh3VQIftH/UF9u/pP/tlPYvvIfD/lFHbP/XQ1xJSc/6XqKkx/433ym0BOL4Ti7U8WLio/nBtPaPd/18qOCdPSH71+7swfRJd/Z8ImD/Wh1cBM+y+qOQ/V9HcUh3VQIftH/UF9u/pP9MSvsX3sNh/6gjtv+Q//CB9R2qL6iTqquvGyH7v474WNn/28j+I0g3kXhGCk98xnP4TK9h4TvSN8PvLRCP6b8V24vMU6D+M9jB6i6gcYCB2DltbDXmVUKJniF+VwI/HypKXJr9D/v/YM5T73jkkrER0Yss/IztuF1JP1FJL7rqINlrLlW4Vavrwlvb/1CmOKyvIoO2/6E9p3xp9If4VSU97/NPWxbj3VBbQHv3efwN8Jc+rhsw2Jar8DxD/tvS2rLgV0iWjPwG1jirxI/zJ3rwc6kT4t/7+rbv2N53cNWuTVuXbdq9d9+O3jaEdoNvcGcuEaHiM/Q+HMfeg9PdSv9XK3ROwfbxUnLj6XnNpQoTxComKJEShx6a326Pt+ZiaXLQZk1FZm+lH6JW3SlYwhPLYyLFjYO4ScCby7Wq8BH525T04wirqtCJ7hvxKyl0YwmjU6GryY9/eeotR6rvf8Pbaws/+72OFT/zbxu/s7L96i999qHpH3v0x9949k0ss1Nk5nIcS2m1b5Gdn/FOgqoh1ngFS3SDbzjMYPOT03orwa+4QnVswFtNIH6cP877REWWNL2miQofrVXWsNoMsUqGWGVDrHYjLB/ubmG1sFpYLayUWBKH7f14isP28974W0be6J/5TbdtinxtAfmQntserY8r7S769QztYFfadpdHtTlH7wPtbon4Jeml4Ih+TET0yE8btYuu25U4wRLb6HDhEWWZ0t8cj2yrlM4HtmttFI/PRD/+2TKaFdNmRtKUM+JWXX3eJe502z2OP/CWw3VzdJ44k4m02+PvMqX/kzmDdLfNGSozliueIhEdaHYSmhkpOAvapc2CdkAC7kehzCUl/avib+2UU5niMD8dkJ8C/meS5tuwjDdSGeNbjTW7kvyUKf0HoIw3x781O8bxWJLf0Phxve1Q0iNemdJvi2XClQNNvrEJ/FAfml9jfq8GfqHZe/TDzuW228ma3aI/Y7tFGw35vzR2rtky2nknYWm+C+1gdYKsSe2B4JUp/X6lzNPYuVaukv5gynI18kdquaKu0pRraDa7UbmGTmlWCEtrU7Gs05QrysftvKQ/HihXrY3S2hBuo06kLFfR5XCUK+oqTblq7X3acuVZeSzX0YSl+Wgs6zTlivlhHy3p3xAo17x++H80gR/G/iKXq1ZnMD2Xa8hva34Yy3wMxfH8K/LJ6qO1djnkoyX9O5Qy5zEh+4Uk+TS9+TzLmDReBbmtb9ee3ngZxFEILVv43+MSxJik0LsAFtKEsoQLO6xy4dXh9Ol1Vrmkf7eiclYhy5NmiJyzyqReSBN8qyFyo64nD5NC1Sw0nE07FDc0VR9uTRAjUuhdAyz571sG6TVjcXOvPtQTYFpsfdL2BCT97wRajEYjM/YoXUp6bBV5dI556KI4pBubwCdtD0XS/1HKlkx4D0dLhjrilgxXdbTZAdZ3aGUIdVKl9Fr1Qx13EZ9G1Zz3A2l2GhopI27IvrQ6EbIhzf412wvNihj1Vruyji41WwiNLhvZguRNs4XQjBrLpTWxaKNsC10KH54Z84F9DX4LjQO8TiW9xFUgDsvLh9HwvKRgjSI6Sf8PMCPjA9qp0OM+FUfpIkrrEvi3UfqKkr6ipPf6+fKcQZk1Obn9wryWlPTY/cH0/wIzVf8KNi3PmJ9/9oNAuijhW5MZ5QnpqKSkF96jlfQSh2cr0fYxDeoLsSoQj+m/T7aD5S30VYU/zvq4BLnxGdvOGCX9GCW9z+e35wzNQ849bdFoN3RWQ77T7Cv8wBWLrhl797mvGU/0KGsR/LGf+J21f/fD3ec2wsf9bwX3II4SPzhKiZQ4nt1zbqhsEri/iXJ5/LXzBnE5HfPEOtRJcVj2lQR+bUpanLHjPpz/1Fyq8ADPGP5a7flvjz+mNlQe7F+g/nzgFSutDdf2CJcpfbX2/LfPz755Ov82hf8r428uZ+eGtgeo54z2tTiNz0T8iqu3uTxDP/a5nD8e+o1WZKlSnA/7IB3HlZRnbQGsRwyxDhti7TDEsszjEUOsY4ZYJw2xLHV/yhCrVY7ZsJ42xLK0iUOGWMcNsSz91wlDLEvdW9qqpe6b1X9Z2qqlfT1qiGVZjpb2ZVmHLO3rcUOsA4ZYlnls1r6cZR4t+xPNWo7N2pd7rSFWs/ZzLPuYrf7Ei6MOWfoJS7ms7Mv/HmWE5cMThliWurfsAxyG36g/ma/TdkDyGvUztee/C86VLeW5KMFA7DE5sSPCc06fhxN87b5GkauixKWZ3975g02Xbeo49KmI6EUWfpZm/V6b0xNd8e6nmksVrtPWWeUZrrE4V68zH3DOWWTQzuV35ZQvjf4Qv6qk74V0WcqiqvBpN8SKcmLJfQHoC6UealubNlMcrl3IvLzP14KeoelwPp7rZs4560vS1k3B1+7FyDNHzmu9nD+eI68oslQpzgeeI9fm4rU1Yg3rEUOsw4ZYOwyxDhpiHTXEOmCIdcQQ61FDLEubOGSItd8Q64QRlv89ygjLh8cNsU4aYlnW7VOGWJa+0LI+HjPEsizHpw2xLG3CUvdWddsZ59HSJo4bYjWrn7CU60zoM7XatJHTvWV9fMgQyzKPr21SuSz7E5Z5fBp+Y53S5tGi+DfPo83vef674Hj6ch6vCgZij86JHRGec/pYXfBD+8sqSlyaebT7frx090c3/MWsiOhFFn7G82janIo27i84T3WxNo/Gc2U4hzGa4nBeSZ5p82g550QvTqM/xNfmj3kercjcfbshVpQTS+bRsH3k/bc4j7aF4kpKfrR5NJSvLQEf8bysuO+Z4ztS4EYJuJhX+U5TD69724Enuq54/28O137w9435/A1/8LbOV2bZDy7nh7R1C9EBnyHB9D5shnhMf11chgX9s+P8IJYmfykgf8nVy78hQf47Y/m9PS7tGcqP+4AYh/lkXypl255SFkm/POZ/ms76lbXzXdg+pvE9Wl8g1KagPxKdpFk/0M7RoU75mLR2tlS7CYHtYT2UAZ9MR9uskOyYd54H1/yfxGl7+X2a+6lene6zHNr8PvtO7i9hHK8DOsDGUKL/mFcv805oIzidBM0/cH0NnentVGTV6h3ezuRc89Q7sf1Q/yGrDY+iuFKAn3YuB22Y2yPtLCneTvVAzyAe6l07O+0D+1NJfxJ8ex/5dtQx24PmJ1gW53Q/xP0v7T527YYxKRftHFIG22rH8kU58RniV1wh/xKxvxV+XEY8fsjZTyhzG4v8tHIY53SdIn/BEjvWbCTkT0oUp/kTrf5x3cT6x22j1v6H6t9ol63flHQvgdByO/lUzyDdL1Pd0nxtqNzQdjh9yPehrJruR1NchbDx95gAH00ubd/JmIBc6JORlnk3ykPatsqoj9iutVVYJlxHNL2E5h3GKulxboHrCO7f4TF42rZtNMVpbXyjtu2XE9oozId2W5Z2XhXbN2n78o4PX3rO09NmfOqBruEaf7aXZ7y59v6fXpVl/Kn5lTbCRT20uXr9vTz+1voORm1nGXUhIU3bmffcOftg4cf54353pyJLleJ8SDpLjHy0vXKnC0sbm3BZ5uwnpO4H8f6pnLYT3D+ltW9Z90+x/ovMyzcjFtb/UP84TblqfLQ+fciX5OWDvmAU8RllyAex1hGfTkM+iLWZ+JQVGXz+/7JnEBfLWLvF0Yek+bBv9wzSfaFnaBqR/YuQ5uvx707g7VzmulzRxuQStLkPtlutH6jdLcT2gX0bnl/HKwG3QjoO2nyKpEv7znZNlzz/XnOpQlPpMq2+JK8e83tzB3E5HecD7U3yNNqlqwfIl+vB/wUbd3MH0yMfB5hafZbnjeZkeQyM/lloC66XjuGyxaCVLdsEli3bBF6FyTZRhTiuX3jFJ/eNMWj2InrIUr+4HLV2U7t5lX0v25X4Xm2+Tdunzt/Cn5+xHWnjnUiRV5tL4XnaUQ2w1hMW0nMZI538Ljgu6EijI8SvuELtT5RWL3nGBVwWGId80vTltbJstjGGJZY2JyDloZ0ZwT7RTKrvEcSVFFruE0n6nrmDdHPi39q7avEuQObpEniup3xZ3z7O86RaXznLWjXqDvN2b/zNc5bnx/pqtL5qtM7Toc2doY7S1MPQ3KjWZmhredpYK2kdkv1kGrvhtqmkyIB14IXQNqVpT/KuyabJF+JbtSeN9MLtyShFlqoSx3as+QHNjrWx7N0trFxYRdqm1RnbJvavkn4DtE3rjNumpLdNYPoXQtt0T/zNbdM9p7dtGvVCb5satTWrlbamtQ6hhtY6hKvPP5dlax3i+dBah9C/hQ8/a61D2PDJsw5xKmGOLWkdgttmSf9u6Ne8bu7QNCL7GyDNL8W/W+sQgwH1kGWelHXZWoeoT8f5QHuzXId4D9j4h1vrEC+KdYgPD9M6hPjevPuM3tBRPfH5ti2fyLLPSDuLJHRiK9jWZLCV7jTtFuJXXCF/lfmN3t6Gz4l/x68RW9Hbt27f5h3bt9zae3Dv0p1b123a07d9046lW7fu6d27F4VGRmjUGI+B03A6Tp82MzwxpylWnjd6wRMvGiE9D9rbG2BtICyk504bHnBjOaWT2pYCBx1OklwvI7myLrIh1r2EpS2yCVZnA6x7CEvbeM3/2129nKyvJJyCg7RRoUZMO9ijNUp80DKE5cM2wuoMYI1pgHUfYWkHVfl/u6uXk/UdwsHGMUmu7SSXdhGdYI1tgPUqwkJ6ftledwOsVxMW0iMt/m939XKyvkI42PAnybWC5MJOhNByIye2jnGar9Ma7KQBKNZ/HgRjPdQWCioUp9URrcMdumSyi+K0stc6ZaK/pAOxmF9uE/Dgg6P0PmyGeEz/XzRgyTmRox6IxU39LH+WhUltYkOCVqYRxWmHX7XyZrvUOviRIoPWuZW8erkeTNG5TXOIR3vleeiAz+k4xOPDFpIZfQQvXvgQ6jdZbPp/6DN7nvnv8e/5p2Y5dD41Lv+C7f6IHTq/OJbf286MeUP5ne5D57WYf+vQ+cgdOl8IZTCSh85XUL06Uw+dZ2lfWofO68uF7S2tDXObWArwSzqYJzbM7ZG3jdlxusEJkv6pkTs37di+dVPf9l07N/Q+sK93bx9vRSrRf47nkTv3HLXAVslTVhH9b1PSYdCmfkOjAu75YymERgySN9Zus/RIffgpSMehUc/y/SlqvqaXUQmYkau3ma2UlrcbhGaF+NWhqC8ZjfKrSO+D3sYr5ul4ba7e7uRVoKe7bIuMDL6SofywrvCIFusZLzdyL9DFMuyh1vN014Xh1ldoGw7qawvFabMRqC+tPNoS8BGvyIjmxN//5K+fOjz9W3mWF7BO4nLz4XmDWFh+2tUKPiRdW/IGqK+P0OhA27rUurYkM7/WtSWufsvjmXBtyc9C3XpvYOSdNLp2Lt32x9a1Jcn5a11bMjQOy3S4ry15b0IbhflA/5f22pLDMIMxHEc7tJkL6UcXnK1o0/ysS08fpdkKnLPd+EkaPSG+1VZgbYU31C5W8vH7b9/OydYkrR1JavOwvDQ/0klx2jYVTz//7KH5yLld478L2uD/476yD9i3/BjVW639w/zzFi5J/3+g/fsktX9oT3hEQ2sfuU6LvrWVeh6rcB9E0xuml/LqSMgrt/WS/k/BJ/3BFB0T9ae1/4z558pseajN1+pMqO3WXtsY2gKnyc5bHPGZVj4RpUUZfNiqyJT0X1vtTZIhdHygnIDJPNkefAgdR8R68zGlzepU+Gfpd2htgSN5tBljbcZ8I6TjoI3rReas81haXbJsu+V5OzxnvjzHmnQER9PZcG2b53HuqID8EeGE5kq4vmnfaeWNFHm1tqQoH8T6aeKD5Yxt1g9SzIcg7Svib54P+TG0Wf+Zss1iX4F52ATP2CdzP43rJK/4cdvEaUZRngZ8WdzvwLZJm18RrOd0dvZQ3lofQOs3cR+g5+xBuo74d6iN18ZwbMPYnmJaH7Ym6KAb5BhzdjIvXsfQ8ugxxp2tp0MZMB1jaG1jmnFVaL7COd13dAR4aO1VaI5Pa0+1+YrRDeK1I2BOedampG/ULxidgK3hajvNNP/MK96REse+B/Or7TzW5pvRb/0gMGcUuaH5CvW5RgVkT9Pf6QjIrukP/YfoJu94OQJMkUlsFvsL2B4hX0yH49YcsgzobTTwLJF8iF+m9FefPRRH8zvacVJJz314/Ea+3SCfI9q0WJ2ENaoAFs4zcfpROeXSsDoIq6JgafOVvuwWxmXjy2pi/Hxbb9/Gvb07t/bu2Xjvrj0b+zZt2zuVxMh74oJPZ2Wjf81yzWVm4L+84GnBolMYA0V1I9CjLHgaDd9gLubYFaCXuJsUvIInc24sOGRrm+Dq+aObeO40Vfzfm7bY2+492/dv6utd0dt323MGuXzXntv7zTHPTg5MowUvRrEZ8QeXCw/0jiUlZZm+JY28YynviuuXPvG9v/rgLZfe32jFVWr63vqaLiKMcE2/qWBNv6lgTY0K1hi1poeOE2BRCc0oN1ir0SMU9GJFdeMmuGTPJbVZzlgqtfk2qs0Mz7U5Up4Lq4I19qaiNXZy/D3cNTbuEj/XNu9+7sDhxlf3Hty7cdPOrRt3P3/mcOOm5w8dbomTjnANvrtgDb67WWrwLUCftgYLja8J0+F3D9D4cCvgcTu+SuErcasT5PBhDcTxMvBaiGunuHUQx8MKvLWQl4Q2QBwvCd0GcRWKux3i+A2Ud0Acv7nyTojrori7II69JR70ymAHtwp9NR/92AkK/yrI5sOynNhCf2M++oE6flM++jahX56PviT0K+BhzaULQntzPt4dQr8yH31ZWjqZUtWmaiOQtYAvap2MxzBcJ+OlElmcjL+JsLSBj2A1Ohm/nLDynoyXSpZmDzQ2AklyrSS5tHWdgmv27SJL6DQ84odOw6fB8uFmwtLmwvm/tlec9Z2E00wn6wvK0imyjMkoi3ZKuaAsFZGlK6Ms2qloTtvu6vPJ5T1GoTPI12jJV+g0v5Yv7UR3QVnGiCzdGWXRTpAXlKVLZKlmlEXrmHHadlefTy7vboVO/jeSy4dlJFenIldor37oLEDWmwl4PT3t7QOhGwZCtwh0Upy2z5X3mKJNa7cW4M0EBecJ7o7iX3nnCTbH38M9T3BW/NvPE/RPEGzcP3DwbuOe50/exRt2R3p64JaC0wO3FOxStxWc0lYn+EI1D0vsRorTeo44Je5/TwAaH3DIFVHcCojjqQMeLmHcSkV+0VPO3a7LC/YAyxNccu9ShmAyxdI6f1pSZC5y/rSg37ylqN+U0hxuvzk//r1zV9/2ew9u3LKnt3+ieuvGnft27Nh+7/b+9ZFdezZt2dG78cCeTbt39+5prZI8n7y1SpIcsq6SzIp/x6ska56zxGXPG+IasUNmwj4kUp4LwzNlrUSMak//4siu+19sVTWnOZ/WrQtadQxtXSgo240F3VA0wSW7Hq2qiiUP9jE2PGdry7f37tiatkpyOJOq6Nz4Nze3u/p6qaW9PE45wtV3VcHqu6roxJrQ593Ep1VfbTOrWMKtQHsr8cw7pNE2zS+nOG3CuuAQ5OaCumvjSQnBQNly3o9d0rxDiZ4hfsUVsqOBlR1tsljbhKkd/OOV47Iip8RhmeGhwNmQjsuWJ4NwUv0WisMNmrcC/vnwe0H8u2ATumo4e4QRyCuhRN8+sO47lfQSh5s+sYx8GA3PSwrWKKKT9OfF39pmW96kivx5k6omd2gTcJZNrT0gszTfFwJe5Fzqw7e+uZ8W/1Z75v1NlqPAG/O5R8ATAUmTDywr0yUdntKuhNMCy8Y8WEaDHsqqoj2Uy+Lv4e6hiA3f67t0G3f0L1lv7Ltv006ZaRrh7siKgt2RFWfC7Cnu4cf1Ex+02dOC7n356RiFTEQCiO9wyU1LaN7QoEqvKFqlxb2ernmBjRv3PrCn7wvxvxGuyesL1uT1zTKFh9sO007hCQ3X1rOAxgfcthhR3DqFb8E8rS3o3YLHHQpu+YsKbvlzvOXP5aBdrtBOu3T+S3b//Ocmffm8uX+z5CPvvfBN07979rVf/p2b3/Hsf37qh0C7Ip/cM3i7H/JuENp5qx/RRsfm7v25yqlo9UcfveCDXaM/+o2lb7th2Wc/ffzJOdX3vk1ob1FoF1xbefZXnnzkMfe1Z7759PcX/P6SC8bPXjr+wr98y1/N2LnnZdOfFVoeQAPvUJgp9KuAnmQPhQFbWe3qZW9EKy3O0vhBwUG46e2j2Hpz4JYHZfb4KwCX07E82g0DjBlRWh9WU1qr20elzpYp7eVAc14CXpur979Sl0532fJgFEOj8tsHuJyOeWKbjLeeaTLUXLqQZjUV/b7g+zwsJhlOd10abn2HbuTAXvoqitPaSdSXVp5tCfjGvdv1RXu34quGu3eLvlqbTI0SvlFWDVu7FU78W8G9Ha1b4QbDGXcr3B9RPprpVjjpW3u9vwxwMe9Zb4X7aaCTW79frLfC3Rt/e35/noCZ9Va47YD5l4T5Yr0VTrvlKOl/M9wKJ2PaRrfCSZ3Sxhc5x9ymt8LhPkgOWn9JZM46vtDqkmXbLc9bt8Lp9U37TitvpMirtSVF+SAWL35qp9e8Hn8GcFG+pFvhxGbLlP5NQPeG+HeRW+FwHiTrrXDLKL12KxymGUV5kvRvjr+xbdLGU8sg728h3nlvhfsw0L01/j2ct8KtJjkk7a8CzTsDvHjuNulWuHcnpEMZMB1jtG6Fq8+bU569GG+F4z5D0q1w4tOa6VY4lj3pVjjxH6Kb1q1wzn2OcDS/E9oQ0roVzg3brXAfi38XefvPjN/v/dz1X/7XLzeat8qL//XOdTe1/fZTcxrhT4p/P78bXC7J2bh71/adfa+KE47wGvCGgmvAG5plb7i2Tou4vM47I/6dd51Xu54GfYfYksuep7UF5+hLExT+7SCbD8vyYbfWgBXeDcKZugbseA04I/2Ara2BhzWXKgysId8OsnB/reZShfG+7swmHB5j1lJBuU5tTdkBFgdtzgc3W94T/04z54PtciUBMzRWcS792Mk5va+sjScLbmQfwyf+MWin87mvg0HTt8jFVy5xOuaJeeXbArDvIeeUykR3Zfzt7e8Sok+zpukDH4AoB+LaFUz/THzP6SwnH/iABt7awH03DI3K8JejQVxOx/JoZcjldEP87XW1hOi1OXqf7ibiy/24mxQ6DbNTwdRsJPTWlKT5X+SV1kbKxBvnYDD97IT00tcq2q/kvjn36zRsjEP9pDnNbrDev0HkybveL29GPh3r/dKuDuuZRK0BzzmBkful9WkdjMjl8X81g4PRJhe5smkNdmixBDv7WiNcc6nC7dpGhgz092kbBTLQ92oNTgb6mtCPyUe/Sei78tFvF/qx+ejvF/rufPRbhb6aj36v0I/LR/+A0I/PR79H6Cfko+8T+on56A8L/aR89DuFfnI++oeFfko++l1CPzUf/YNCPw0e1lKRujbeKDojdn7eNx2GhJimHWSUgB0h/5FjUGWF3odVEI/pj8Tf3hd+JtL5p9moOp3kqblUYZ/49LPcUN6IPQOeZ2jbFmttFS/wIn6FZMnIb2DD2Azix/njjZIzFVmqShy3VzMVPjMVPhpWpyFWxRBrdJPmscsQa5Ih1gRDLEvdTzTEapVjNqzJhliWNtFtiDXFEMvSf1UNsSx1b2mrlrpvVv9laauW9jXWEMuyHC3ty7IOWdrXeEOsMU2ax2bty1nm0bI/0azl2Kx9uamGWM3az7HsY7b6Ey+OOmTpJyzlsrSvcYZY0w2xLHVv2QdI2mzAB839b1zcwrTToue/tTWJDHNXS3kBXjAQO+cC99KI8JzT5+FCrxUQuSpKXJpFvJ0/2HTZpo5Dn4qIXmThZ2kOqGlzetraSAZdXacd4OT3raW93U+eeVv5M7KTMTnlS6M/xK8qcdPgd5ay0LDaDbGinFjj3VAbxXqYd2OKz9fbqMz4FrqaSxW2FJyj3yH0Z+Wj36jN42egv5fnyQXDB8GeBc8z2PMlaX2T4FdcvR/Ps0Ywi/gltRuS99mKLFUljtcIZit8Zit8NKxOQ6yKIdZoQ6yyIdZ0Q6wxhlhdhlhjDbEsbaLbEOssQ6yqIdY4Q6zxhlgTDLEs6/ZEQyxLX2hZHycZYlmW42RDLEubsNS9Zd22zKOlTUwxxGpWP2Ep15nQZ2q1aSOne8v6OKNJ8zi1SeWy7E9Y5nEypPP/ky6sFF7O1V9Y+YtxRMGDXJdrB7mEp7bvOQt2RHjO6WP10OtQ8ZA9x6WZR7zvx0t3f3TDX8yKiF5k4Wc8j6jNKWnj/oLzdBdr84g8V6hdLKXNI4oM2jxizjnhi9PoD/GrShzPI6YtCw2r3RAryokl84jaZWBZDy/ha+dlHrHIpZ145oTji1x1r51leaFfaPwl0DenY3nyXmi8htIO94XGfxQN0nww0vHa3FC9+sD7xF8IFxp3tg3icjrmiXad94JdwfAyfIr86wvhQuIs+kp7IXHIt6H9fsrAt+U9GHji73/y108dnv6tRgcD5TlfXoTfkh+R14dOJb3EDcebpL4YAzTzm6Q+Hw3KjG2HdpA7SvhGPlqZVV2yvy143rJ1wfJgOOMuWN7QNjQfbTnzUdAGG16w/K1oEBfznvWC5e9An+E/wLewn34xXLD8ozhDnt/WNh0z6wXLPwbMbYT5Yr1geY0iU9J/bZyYJIM2pmI/z5jMk+3Bh2Xxt9ZPwXrzLShLHu+80C9YzjLe0eqSZdstz1sXLOv1TftOK2+kyKu1JUX5INYtxAfLGdusueQf816wPL9tkO6c+PcL/YLlRTFjbJu08aFg+bxfSPrMe8HyKtDnJaTP4bhgeU2CDl4CclzZlswLx1lJefQYLw3ocY2SjjG0trF1wXL9szYl/ZlywfLcQH2J3NB8NdsFyxfCWMe51gXLPmxpG4qj+Z3QPEnrguXhu2D5zvjPi+GCZdlTsa23b2N8yfLmg329e98RP+8kmoz1oOjlyi/X/H0G/i8veglewfmXATu7CehRFsH1tj0BfvOeOGwTSq7er/O8VymfvDcVHGdO1ea8cG7dKdgYh+0ojhv3xr8LlsdNBfUzNfSab7HVZfmwC18MLfPcj4A8LGuUAS80XitoJ9OwDkjg8R7iV1yhchuYPy4TP84f16Oc89VTI6JHfpqNa30kPm8g7V9HAhbPN0r6s+PvqsKDbUPrj+IzbAfnkOzDsZ7CPiLJHrPyKVi+NW1MxJec8jwN8s25Z6onbb0R/IqrL/M89aZRX5/1mnNdqRYRPfIL7XXRxnyCxX1wxsI+OKa/Ov7W9u1wvUm7b8fbyGUkO89Hat+Cy8+43mjjw4JrQFOL2Wyk2oRLTT+4jon5xvm8JYCLesf5J9Rn0roMnqeUNjztGhSPE1EeXmPn9O0kj6RfCfLIJfUF99IFLxCPlGclJQ1eBH48/p1mPh/zjGNvlCejbdSd/0aMguerU/ta3GdRoGwGfG0X8eP8sa8dm49fDde4k/wn6g758Jlt9Du8D1NbA0ObDtWhblev06T1Sqzvofol6TfG3z6/JwgzbRlI+rFKetRdhfKD9j42kFfsHwq2o3Q4ny5xWfriPv9PAh/OP69xhfLqA+umW0nPZ0N9qFJ6zc4wj3w+S1vnxjZ4GaUX7A6n2w36bUy/K/72ensryaeVT+SS+wiRIp+2Pw3btCXwXORAXPwWGsH14XTvFXs4/m7mvWL7QeZi9enBl0fEs93Vt6OIzy8hOEayct+j5sIhy0sIZK5gWF9CMNyTmJphcUONxllS0uPGGkz/dPztC/F18W+erEJ+/tkvBdJFCd+azChPyKhLSnrhPVpJL3HYCUQnj2lQX4hVSeD3i/G3lAlWUOwYMH8eHGhyJzXAjFVSnmFl/x/xb3SqgpWlw1bEtj836pvf/fQnt73uBT5Bv7XgBP3W1gT9aZ2gn/Min6Cf05qgH4qd005qadonxH+BTdDPiYge+bUm6OuftSboU4XWBD3J05qgHyrjMEzQz2lN0OttUmuCvjVBj/itCfqhsrYm6AfTNPEEfa01Qd+aoG9N0A/KXHCCfmAuuzVB71oT9JwuSvjWZEZ5QkbdmqB/8U7Qyw3AfoJ+Z++DfRs37d69sW/Tto2b9m7c27tza+8euet5hKfqVxScql9RcGq2reCU5IA34OlX5+q7Ytx030hxOKSXYaX3KHiGpQo0PiwHXtjkcZc3Q56WF9RpFJruliZE7iL0tU3uj9u9Z/v+TX29/U3Imn6bXbp79+2bti3de9tz9sotieb1nKufFmG6NiUdBq0bhbIXbOZXFG3m5c644W7mZYlv6/Y9vVv6tu/v3bh95/7ePX3CV/SAS055/MakfPTqvVB4j6Tgsn9zGXhIwLLiwD0A7mKyf8zAP0qSI1ISyzLgJHg2meIGy7JvV/+67dbtD44nKXO2aUVPSQ5YQ84J7pJmDTjAwdOXgu/ot/AseMpydGiAVVH4cpqyqw/srcr0vJQirWY1EqcNpNL0IbWBF0/qYXpsoXxoT8DiQSHbR9EymqDwFNmk74Ser693W++ejQ/s29W3vXdnH9ftnFN3bUKf845U1Qdib5ena9lXYYgS/mvtZVLaKICrWYVgSmmgvJKP/x8HUpbpmmYRAA==",
|
|
1991
|
-
"debug_symbols": "7L3Lkiy7jp75LmdcAycuBKhXaWuTVaurZWV2rEpWKvWkTO/e4XAnfqxMBZMZEXvUmuz81tor8dNJB5wXkPyPv/3f//R//Y//+p//+V/+n3/973/7T//Hf/zt//q3f/773//5v/7nv//rf/nHf//nf/2Xx9/+x9+O8z9N/vafWuv+P//hby3+3OPP9vgznX/mI/7cH3/m+f/N7fGvbYKf4A8YJ4zHLx4Bj1+R/JVx3P9gtPsfBLQJNIEnyASd0G+Q+C162NfT/jiL+A9/G+36QdcPvn7I9UOvH/36YdcPv36M+NGO4/7Z7p90/+T7p9w/9f7Z7592//T7522v3fbaba/d9tptr9322m2v3fbaba/d9tptj257dNuj2x7d9ui2R7c9uu3RbY9ue3Tb49se3/b4tse3Pb7t8W2Pb3t82+PbHt/25LYntz257cltT257ctuT257c9uS2J7c9ve3pbU8f9vj8yfdPuX/q/fNhr58/7f7p98+HvcdL2fpp7/yHvU2gCTxBJuiEs5Rygk3wCeMGOya0CTSBJ8gEnTAt22lZT/AJ4wYP7zuhTaAJD8sUIBN0Qp9gE3zCuOF0mgvaBJowLY9peUzLpwPRWS2nC13gE8YFdPrRBW0CTeAJMkEn9Ak2wSdMy21abtNym5bbtNym5TYtt2m5TcttWm7TMk3LNC2f3kV6Ak+QCTqhT7AJPmHccHrZBW3CtMzTMk/LPC3ztMzTMk/LPC3LtCzTskzLMi3LtCzTskzLMi3LtCzTsk7LOi3rtKzTsk7LOi3rtKzTsk7LOi33ablPy31a7tNyn5b7tNyn5T4t92m5T8s2Ldu0bNOyTcs2Ldu0bNOyTcs2Ldu07NOyT8unD5KfwBNkgk7oE2yCTxg3hA8GtAnT8piWx7R8+iCfX8HTBy+wCQ/L3E8YF/Dpgxe0CTSBJ8gEndAn2ASfMC23abndcYMbTeAJMkEn9Ak2wSfcEYnpmDAt07RM0/LpgzxO0Al9gk3wCeOG0wcvaBNoAk+Ylnla5mmZp+XTB+U4Ydxw+uAFbQJN4AkyQSf0CTZhWpZpWafl0weFT6AJPOG07CfohD7BJviEccPpgxe0CTSBJ0zLfVru03Kflvu03Kdlm5ZtWrZp2aZlm5ZtWrZp2aZlm5ZPH9SzEk4fvKBNoAk8QSbohD7BJviEaXlMy2NaPn1Qz5ft9MELZMJp+az50wcvsAk+YVwgpw9e0CbQBJ4gE3RCn2ATfMK03KblNi23ablNy21abtNym5bbtNym5TYt07RM0zJNyzQt07RM0zJNyzQt07RM0/Lpg9pPaBNoAk+QCTqhT7AJPmHcINOyTMsyLcu0LNOyTMsyLcu0LNOyTMs6Leu0rNOyTss6Leu0rNOyTss6Leu03KflPi33ablPy31a7tNyn5b7tNyn5T4t27Rs07JNyzYt27Rs07JNyzYt27Rs07JPyz4t+7Ts07JPyz4t+7Ts07JPyz4tj2l5TMtjWh7T8piWx7Q8puUxLY9pedyW9TgmtAk0gSfIBJ3QJ9gEnzAtt2m5TcttWm7TcpuW27TcpuU2LbdpuU3LNC3TtEzTMk3LNC3TtEzTMk3LNC3TtDx9UKcP6vRBnT6o0wd1+qBOH9Tpgzp9UKcP6vRBnT6o0wd1+qBOH9Tpgzp9UKcP6vRBnT6o0wd1+qBOH9Tpgzp9UKcP6vRBnT6o0wd1+qBOH9Tpgzp9UKcP6vRBnT6o0wd1+qBOH9Tpgzp9UKcP6vRBnT6o0wd1+qBOH9Tpgzp9UKcP6vRBnT6o0wd1+qBOH9Tpgzp9UKcP6vRBnT6o0wd1+qBOH9Tpgzp9UKcP6vRBDR8cJ/iEcUEPHwxoE2gCT5AJOqFPsAk+YVoOH5QT2gSawBNkgk7oE2yCTxg30LRM0zJNyzQt07RM0zJNyzQt07RM0zJPyzwt87TM0zJPyzwt87TM0zJPyzwty7Qs07JMyzIty7Qs07JMyzIty7Qs07JOyzot67Ss07JOyzot67Ss07JOyzot92m5T8t9Wu7Tcp+W+7Tcp+U+LfdpuU/LNi3btGzTsk3LNi3btGzTsk3LNi3btOzTsk/LPi37tOzTsk/LPi37tOzTsk/LY1oe0/KYlse0PKblMS2PaXlMy2NaHrdlO44JbcLDcj9O4Aky4WG5txP6BJtwzqnxCeOG0wcveFjup+XTBy/gCTJBJ/QJNsEnjBtOH7xgWqZpmaZlmpZpWqZpmaZlmpZpWuZpmadlnpZ5WuZpmadlnpZ5WuZpmadlmZZlWpZpWaZlmZZlWpZpWaZlmZZlWtZpWadlnZZ1WtZpWadlnZZ1WtZpWaflPi33ablPy31a7tNyn5b7tNyn5T4t92n59MHeT2gTaMJpeZwgE3RCn2ATfMK44fTBC9oEmjAt+7Ts07JPyz4t+7Ts0/KYlse0PKblMS2PaXlMy2NaHtPymJbHbdmPY0KbQBN4gkzQCX2CTfAJ03Kbltu03KblNi23ablNy21abtNym5bbtEzTMk3LNC3TtEzTMk3LNC3TtEzTMk3LPC3ztMzTMk/LPC3ztMzTMk/LPC3ztCzTskzLMi3LtCzTskzLMi3LtCzTskzLOi3rtKzTsk7LOi3rtKzTsk7LOi3rtNyn5T4t92m5T8t9Wu7Tcp+W+7Tcp+U+Ldu0bNOyTcvTB336oE8f9OmDPn3Qpw/69EGfPujTB336oE8f9OmDPn3Qpw/69EGfPujTB336oE8f9OmDPn3Qpw/69EGfPujTB336oE8fHNMHx/TBMX1wTB8c0wfH9MExfXBMHxzTB8f0wTF9cEwfHNMHx/TBMX1wTB8c0wfH9MExfXBMHxzTB8f0wTF9cEwfHNMHx/TBMX1wTB8c0wfH9MExfXBMHxzTB8f0wTF9cEwfHNMHx/TBMX1wTB8c0wfH9MExfXBMHxzTB8f0wTF9cEwfHNMHx/TBMX1wTB8c0wfH9MExfXBMHxzTB8f0wTF9cEwfHNMHx/TBMX1wTB8c0wfH9MExfXBMHxzTB8f0wTF9cEwfHNMHx/TBMX1wTB8c0wfH9MExfXBMHxzTB8f0wTF9cEwfHNMHx/TBMX1wTB8c0wfH9MExfXBMHxzTB8f0wTF9cEwfHNMHx/TBMX1wTB98rLMfSS2JkjhJkjSpJ1mSJ6VGS42WGi01Wmq01Gip0VKjpUZLjZYalBqUGpQalBqUGpQalBqUGpQalBqcGpwanBqcGpwanBqcGpwap6saBY1Jp7Pe1JIoiZMkSZN6kiWlhqSGpoamhqaGpoamhqaGpoamhqaGpkZPjZ4aPTVOHzYNkiRNOjV6kCV50ph0uvJNLYmSOEmSNCk1LDUsNSw1PDU8NTw1PDU8NTw1PDU8NTw1PDVGaozUGKkxUmOkxkiNkRojNUZqjKkRCTU3tSRK4iRJ0qSeZEmelBotNVpqtNRoqdFSo6VGS42WGi01WmpQalBqUGpQalBqUGpQalBqUGpQanBqcGpwanBqcGpwanBqcGpwanBqSGqEn3sQJXHSQ8OvDCVN6kmW5Elj0unnN7UkSuKk1NDU0NTQ1NDU0NToqdFTo6dGT42eGj01emr01Oip0VPDUsNSw1LDUsNSw1LDUsNSw1LDUsNTw1PDU8NTw1PDU8NTw1PDU8NTY6TGSI2RGiM1RmqM1BipMVJjpMaYGpHwc1NLoiROkiRN6kmW5Emp0VKjpUZLjZYaLTVaarTUaKnRUqOlBqUGpQalBqUGpQalBqUGpQalBqUGpwanBqcGpwanBqcGpwanBqcGp4akhqSGpIakRvo5pZ9T+jmln1P6OaWfU/o5pZ9T+jmln1P6OaWfU/o5pZ9T+jmln1P6OaWfU/o5pZ9T+jmln1P6OaWfU/o5pZ9T+jmln1P6OaWfU/o5pZ9T+jmln1P6OaWfU/o5pZ9T+jmln1P6OaWfU/o5pZ9T+jmln1P6OaWfU/o5pZ9T+jmln1P6OaWfU/o5pZ9z+jmnn3P6Oaefc/o5p59z+jmnn3P6Oaefc/o5p59z+jmnn3P6Oaefc/o5p59z+jmnn3P6Oaefc/o5p59z+jmnn3P6Oaefc/o5p59z+jmnn3P6Oaefc/o5p59z+jmnn3P6Oaefc/o5p59z+jmnn3P6Oaefc/o5p59z+jmnn3P6Oaefc/o5p59z+jmnn3P6Oaefc/o5p59z+jmnn3P6Oaefc/o5p59z+jmnn3P6Oaefc/o5p59z+jmnn3P6Oaefc/o5p59z+jmnn3P6Oaefc/o5p59z+jmnn3P6Oaefc/o5p59z+jmnn3P6Oaefc/o5p59z+jmnn3P6OaefS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/p5ZDe5BHnSmBR+flFLoiROkiRN6kmpIakhqaGpoamhqaGpoamhqaGpoamhqaGpEX7eg1oSJXGSJGlST7IkTxqTLDUsNSw1LDUsNSw1LDUsNSw1LDU8NTw1PDU8NTw1PDU8NTw1PDU8NUZqjNQYqTFSY6TGSI2RGiM1RmqMqRHJUTe1JEriJEnSpJ5kSZ6UGi01Wmq01Gip0VKjpUZLjZYaLTVaalBqUGpQalBqUGpQalBqUGpQalBqcGpwanBqcGpwanBqcGpwanBqcGpIakhqSGpIakhqSGpIakhqSGpIamhqhJ9bECVxkiRpUk+yJE8ak8LPL0qNnho9NXpq9NToqdFTo6dGTw1LDUsNSw1LDUsNSw1LDUsNSw1LDU8NTw1PDU8NTw1PDU8NTw1PDU+NkRojNUZqjNQYqTFSY6TGSI2RGmNqRALWTS2JkjhJkjSpJ1mSJ6VGS42WGuHnI4iTJOmhcW7ma5GQdZMledKYdPr5TS2JkjhJklKDUoNSg1KDUoNTg1ODU4NTg1ODU4NTg1ODU4NTQ1JDUkNSQ1JDUkNSQ1JDUkNSQ1JDU0NTQ1NDU0NTQ1NDU0NTQ1NDU6OnRk+Nnho9NXpq9NToqdFTo6dGTw1LDUsNSw1LDUsNSw1LDUsNSw1LDU8NTw1PDU8NTw1PDU8NTw1PDU+NkRojNUZqjNQYqTFSY6TGSI2RGmNqRJLXTS2JkjhJkjSpJ1mSJ6VGS42WGi01Wmq01Eg/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/j+S0IUGa1JMsyZPGpPDzi1oSJXFSaoSfH0E9yZI8adwUyWo3tSRK4iRJ0qSeZEmelBotNVpqtNRoqdFSo6VGS42WGi01WmpQalBqUGpQalBqUGpQalBqUGpQanBqcGpwanBqcGpwanBqcGpwanBqSGpIakhqSGpIakhqSGqEn/cgTxqTws8vakmUxEmSpEk9KTU0NTQ1ws9HUEuiJE6SJE3qSZbkSWOSpYalhqVGnIpxSKAAFdhPtEADOnCcGIfOxBkZNzYgARkoQAV2oAEdCLUBtQG1AbUBtQG1AbUBtQG1AbUx1ShS5SY2IAEZKEAFdqABHQi1BrUGtQa1BrUGtQa1BrUGtQa1BjWCGkGNoEZQI6gR1AhqBDWCGkGNocZQY6gx1BhqDDWGGkONocZQE6gJ1ARqAjWBmkBNoCZQE6gJ1BRqCjWFmkJNoaZQU6gp1BRqCrUOtQ61DrUOtQ61DrUOtQ61DrUONYNanK5znphDkXI3kRPDs1rQafY8QYeuY52aBTYgARkoQAV2oAEdOBIb1BrUGtQa1BrUGtQa1BrUGtQa1AhqBDWCGkGNoEZQI6gR1AhqBDWGGkONocZQY6gx1BhqDDWGGkNNoCZQE6gJ1ARqAjWBmkBNoCZQU6gp1BRq4UJ0BApQgR1oQAeeaucpJnQdRXVjAxKQgQJUYAca0IFQCxciCmzAULvORWKgABXYgQZ0YKj1E+NzfGMDhpoHMlCAp1qcZhO5bRMN6MCRGJ/jG081jmeLz/GNDBSgAjvQgA4cEyPTbWIDhtp1jBQDBRh1NgLD7hmtIpGtxbE9kcnWOP5BxIcbBajADjTgafc8L4Yioe3GiA83NiABGShABXagAaEW8UHOBojctomhFo8Z8eFGBgpQgR0YatcBXA4ciREfbmxAAjJQgArsQKhFfJBologPF0Z8EAtsQAIy8FTTqIeIDzd2oAEdOBIjPmi8XBEfbiQgAwWowA40oANHokEt4oPGSxvx4UYGRk3GK3cdZHdhTwyfvzEsRGuGd2vUTri0eqADR2K49I0NeBrrUchw6RsFqMAONOCp1uMpwqUDI6ltYgMSkIECVGAHGtCBoXbWQ6S3TWzAULsOiWOgAEPNAkPNA081OwIdOBLD/W9sQAKedi0KGY5+owEdOBLD0S8MLzyTyimS0CaGRJQ3/M1GYAca0IEjMfztxvNvPcobfnFjAxKQgQJUYAca0IFQM6gZ1AxqBjWDWnwhz7weioywx6cvMCxEc4df3MjAsHAd9afADjSgA0diuIhHA4QzeDRAOMOIkoUz3OjAsHBWdWR+TWxAAjJQgKfaOadGkf81MdQo0IEjMV77wYFhQQI7MJ7YA8PCddrhSIwX/MYGDLs9kIECDDUL7EADQo2gxlBjqMX37UaebRH5XhMV2IEGzNaMBK+rCSOb62rCSOe6GivyuSYa0LMtBK2paE1FaypaU9Ga8c262k3RmvHNuhpL0ZqK1gwvvJow/O1qt47WvPwtmjD87aqojvrtqF9D/Ya/XY1laE1Da4a/XY1laE1DaxrUDGoGNYeaozXDGc5JKor0qIkN+CjOo/MXyEABKrADDejAkRhnm97YTrzO3yQgAwWowA4MtShvnLN440iMsxZvPNXaEUhABp5qMayOvKmJHXiqNQp04EiMM1BvDDUODLsSqMAONGDY7YFh92zjSJh69HwDG5CADAy1eOI4C/XGDjTgqRZjp8iXohjjRMLUo08YeErEwCZSpij69pEzNVGBHWhAB47EOB6Vo9bjgNQbT7UY40Ty1EQBKrADDejAkRhHpt7YgFAzqBnUDGoGNYOaQc2g5lBzqDnUHGpxnGoMriKlamIHGtCBIzGOVr0x7EYTxmGqNyqwAw3owDGxX4cbX9iABGSgABXYgQZ0INQa1BrUGtQa1BrUGtQa1BrUGtQa1AhqBDWCGkGNoEZQI6gR1AhqBDWGGkONocZQY6gx1BhqDDWGGkNNoCZQE6gJ1ARqAjWBmkBNoCZQU6gp1BRqCjWFmkJNoaZQU6gp1DrUOtQ61DrUOtQ61DrUOtQ61DrUDGoGNYOaQc2gZlAzqBnUDGoGNYeaQ82h5lBzqDnUHGoONYeaQ21AbUBtQA2xpCOWdMSSjljSEUs6YklHLDHEEkMsMcQSQywxxBJDLDHEErtiyXUStgNH4hVAKJCADBSgAjvQgA7MoGt0AKFGUCOoEdQIagQ1ghpBjaDGUGOoMdQYagw1hhpDjaHGUGOoCdQEagI1gZpATaAmUBOoCdQEago1hZpCTaGmUFOoKdQUago1hVqHWodah1qHWodah1qHWodah1qHmkHNoGZQM6gZ1AxqBjWDmkHNoOZQc6g51Bxq6HYYuh2Gboeh22Hodhi6HYZuhw2oDagNqA2oDagNqA2oDaiNVPPjADYgARkoQAV2oAEdCLUGNcQSRyxxxBJHLHHEEkcs8SuWeKADR2LEkphijuywiQQMtREoQAV2oAEdeKqdB6lTpIlNbMBQi/JGLLlRgArsQAOeajGvHPliN0YsuTHUeiABGSjAsHuOfCIdjCQqKuLDjQQ8LWhU1HVTw4UKPMsbs81+3ddwoQNH4nVrQzzQdW/DhQRkYNiN6rvuZjgHTH7dznBhA0Z5QyJ8/kYBKrADDejAUItKvW5suLABCchAASqwAw3oQKgNqA2oDagNqA2oDagNqA2oDaiFz5/n7FIkgFHMpEcG2EQBKrADDejAkRjefWMDQq1BrUGtQa1BrUGtQa1BjaBGUCOoEdQIagQ1ghpBjaBGUGOoMdQYagw1hhpDjaHGUGOoMdQEagI1gZpATaAmUBOoCdQEagI1hZpCTaGmUFOoKdQUago1hZpCrUOtQ61DrUOtQ61DrUOtQ61DrUPNoGZQM6gZ1AxqBjWDmkHNoGZQc6g51BxqDjWHmkPNoeZQc6g51AbUBtQG1AbUBtQG1AbUBtQG1MZU48gjm9iABGSgABXYgQZ0INSuWOKBDUhABgpQgR1oQAeOxIgl5+nEHHlkEwkYaiNQgArsQAM6cCReseTCBiQg1BhqEUvO5UCOPLKJlhhR48bTwrlmyZEbNjEsRP1GfLjRgA4ciREfbjzLa1ElER9uZKAATzUL4YgPNxrwVLMob8SHCyM+3BhqEkhABgow1DQw1KK8EQks2jgiwY0NSMDT7rn+xnH0Gnk8RUQCj+JEJPBQi0hwowNHYkQCj+JEJLiRgAwMtSjvdeVTFOe69ClaPtx/RHHC/UdIhPvf2IAEZKAAFXiqjShDuP+NY75Gkfg2sQEJyEABKrADDehAqDWoNag1qDWohc+fyzQciW8TOzAeyAMdOBLD529sQAIyUIAK7ECoEdTi9qjjfKMi8W1iAxKQgQJUYAca0IFQE6gJ1ARqAjWBWsSHc42K29VT6IEj8eopXNiABGSgABXYgQaEmkKtQ61DrUOtQ61DrUOtQ61DrUOtQ82gZlAzqBnUDGoGNYOaQc2gZlBzqDnUHGoONYeaQ82h5lBzqDnUBtQG1AbUBtQG1AbUBtQG1AbUcnzB1+2NNzYgARkoQAV2oAEdCLUGtQa1BrUGtQa1BrUGtQa1BrUGNYIaQY2gRlAjqBHUCGoENYIaQY2hxlBjqDHUGGoMNYYaQ42hxlATqAnUBGoCNYGaQE2gJlBDLCHEEkIsIcQSQiwhxBJCLCHEEkIsIcQSQiwhxBJCLCHEEkIsIcQSQiwhxBJCLCHEEkIsIcQSQiwhxBJCLCHEEkIsIcQSQiwhxBJCLCHEEkIsIcQSQiwhxBJCLCHEEkIsIcQSQiwhxBJCLCHEEkIsIcQSQiwhxBJCLCHEEkIsIcQSRixhxBJGLGHEEkYsYcQSRixhxBJGLGHEEkYsYcQSRixhxBJGLGHEEkYsYcQSRixhxBJGLGHEEkYsYcQSRixhxBJGLGHEEkYsYcQSRixhxBJGLGHEEkYsYcQSRixhxBJGLGHEEkYsYcQSRixhxBJGLGHEEkYsYcQSRixhxJJI9eMz84XjjLmJBGSgABXYgQZ04EjsUOtQ61DrUOtQ61DrUOtQ61DrULtiCQc2YKhRIAMFqMAONKADQ+0cEkS64cQGDDUNZKAAQy1K5h1owGi3y9hIHAewAQnIQAEqsANtYiQhxjQ3RxLixHiKHshAASqwAw3owKizs5sfB9FNbMBQG4EMFGCoRclaBxowZqYvYyORDmADEpCBAlRgB1pijFDOdC2O1MSJBDyf4kzX4khNnKjA8ynOHC2O1MSJZ52d6Voc59HdGCOUG0Mt2i1GKDcyUIAK7EADhpoGjsSIDzc2IAEZOJMQ+UpY9GjuK2HxwpEYycQ3NiABGSjAmW7IV3LjjQZ04LhzOPlKbryxAQnIQAEqsAMt0dHyjpZ3tLyj5R0t72h5R8s7Wt7R8o6WH2j5gZYfaPmBlh9o+YGWH2j5gZYfaPmRLR8ZmBMbkIAMzJaPXMur5fXIltcjWz5yLSc2IAEZKMBseW0daEAHZstHruXEBiQgAwWowA7MltfL56Nkl89fSEAGRltcv6bADjRgJBNT4EiUA9iABGSgABXYgdHGZ+TSy7svbEACMlCACuxAAzoQah1qHWodah1qHWrx9acoenz9bzSgA0fi6fMTT7Uzj5QjwXIiAwWowA40oANHYkSCG6EWkYDCLyIS3CjAUIu3JCLBmYnKkWA50YEjMSLBjQ1IQAYK8FQ701o50i4nnmpn6idH2uXEMTHSLieeaucOOo60y4kMFKACO9CADgy1M5ZE2uXEUOuBBGSgABUYEhbowJFIB7ABT4m49T1yLScKUIEdaMBTTaKiYgLzwggVNzYgARkoQAV2oAGhFt2DM+mBI9dyYgOGGgcyUIChFrUe3QOJmozuQXQBI9dy4kiMAHJjAxIwUkKCepIledKYdOVDnRQefF9734AEjAzzIEnSpJ5kST4pvPTcKseRushx+3y/vsxBPcmSohMbNCaFK17UkiiJk0IkzIQb3niqaDRRuOGNPjFyEzkGLpGFyNFLjyzEiTGVHhQGNNCBIzE868YGpLtKrnTEiyRJk3rSrM7IObwqMbILr0qM7EKO4WVkF06MR7VAA0ZJPfBR0vCjSC68qSVREidJUliMgoQD9Pjb0wHi9Y5UwZs46fztqOTz5b+pJ1mSJ41J8d7HAmekCE48271f/4CBAjyLGcswkfbHPZowPoY3nuUMW/EtvComvoU3KrADw2y0ZnwLbxyJ4UlXhYcn3UhAqBnUDGoGNYOaQc2g5lBzqDnUHGoONYeaQy2870afr7rjpR54qQde6vDAG3liZORxLMdGRt5EBcaYOMiSPGlMuma7gloSJXGSJGlSarTUaKnRUoNSI75R5w1iHCl4Exl4PkwsHUcK3sSzEs/NqhwpeBMdOBLjG3VjAxLwVIv14kjBm6jAUy1WpyMFb6IDT7VYZo4UvIkNGEu8QZwkSZrUk2xS+OO5/ZUj+Y5jDTuS79iuf6DADjTgWdJYw47kuxvDS29sQALGwmrQKRYr33Ey28QOPMViPTwOZ5s4EsNLY2E78vQmhlhIhJfeKMB4f4N6kiV50pgUDnpRWIzKCp+LBfTIuuNYQI+su4kjMZzuxrOkscIeWXcTGShABZ5qlwFL8qSQelAcw3ZTS6IkTpKkEKHADrTE+AzeGMXkQAHGuxLUkywpSqmBIzG+hDdGjcS/DXe9MaSihOGuN55fnlhCjpw6iYnLyKmTmGCMnDqJicBxfR8Drw/khQ1IQAYKUBPjMxizaZEGN1GBHWhAB45EPYBRnB4Y37J4ttP7JCY8IhuNY6U8stEmWmLcHR+/FZfHX0RJZ1likiQSySaOxPPdlpjXiESy6ChGHtlNnCRJmtSTLMmTxqTz/b8pNUZqjHjaeBdGlDGqI66Df9S9RD7YTS2JkjhJkjSpJ1mSJ6VGS42WGi01Wmq01Gip0VKjRb3aiRSt6YFnHZ6bNSVSuiYqsAMN6MCRGK/yjQ1IQKgx1BhqHH22I9CADhyJ55dnYgMSkIECVCDUBGoCNYFaXJcbFRn35V5ESZwkSZoUFtuJPUpKgXTdmSl5o6bkjZpy3agpQT3JkjxpTIobNS+KB78wHjEshrvd6MB4xH5iuNuNDUhABgpQgR1oQAdCbUAtHI/ifQzPu5GBpxpHO4RD3niqcVTr+eERjmoNN+V4+NNNL4wcrokxkuiBBIyxhAWGmgeG2gjs17GPEilcN3nSmBQHgV7Ukk6L5+hGIiNLzmGBREaWnOMXiYysG8+vz8SzpBKFDpe9kYECVGDYPVs3sqxEogzhhhIPGG54owAV2IEGdOBIDDe8MdSi4sINb2RgqEV1hhve2IEGPNU06izc8ML4PN14zp4eIXyd0HchA8/Z0yMe/jqh78IONKADR2Ke0CctT+iTlif0SeReiUZrnq47UYEdOBLPb6CckwIS+VQTY4IraEyK7t1FZ5yP9j197yZN6kmW5Elj0ul1N7UkSorCxJsTLnejAs/20ajd8LMbx8TIepJziCeR9TSRgOdj9CBJ0qSeZEmeNCbFJ/GilkRJqdFSo6VGS42WGi01WmpQalBqUGpQalBqUGpQalBqUGrEJ/Oc4ZDIbZrYgGd9nfMQErlNEwV4Nkl8XCK3aeLZOj0kwldvHInhqzc2YKhF84Wv3hhq0Wbhqz1KFr56nnkkkds00YGnmkUhw1dvbMCzCsPW6ao3SZIm9SSb1MMiBZ4ltXjs8Lz48kWm0sQONGCUNB47/PFCO4ANSMDz+x4G5vXyEnlKYlFB8ZX1eP74yt4Yvc0obXxlPQzEV/bG6HCGwNWrDWNXt/bCfl00LDQvupHIMRphPw7HvkiSov8b5YvP440GdOCYGAlGExvwLNQ5upJIMJoowH6XiuelNsLzUhu5LqMMQ3GpzUUtKYxrIAMFeD7KCEuny048HyW+qpFPNHEkzsPwhedh+MLzMHzheRi+8DwMX3gehi88D8MXnofhC8/D8IXnYfjCnBqcGpwanBqcGpwanBqcGpwanBqSGpIakhqSGuGn5whUIm9oYgdGjUWdh5/eOBI1RmlHYAMSkIGnpx4hHK56xHsQB2ZLkCV50hlSz6GqRNLQxAYkIAMFqMAONKADoWZQM6jF6dkXcZIkaVJPsiRPGpPilPyLWlJqeGrEZ/uIGonv9o0daEAHjsT4eN/YgARkYKiFIw0FduCYGClBGn2mSAnS6NtEStBEBXZglHcEOnAkxlf6xgYkIAMFqMAOhFqDWoMaQY2gRlCLT/Y5iSGREjTxVDvnMyRSgiYa0K/T1iWOMLsoAsBFLYmSOCksUuBZ0jPjQyLtR895DYm0n4kEZGCUtAcqsAMN6MBQizKEe9/YgARkoABPtRj7xullEw3owJEYHn5jAxKQgQKEWnh4jJYjGWiiA0MtajI8PEa6kQw0MdTi1TYGhlrUjimwAw3owJHoB7ABCchAqDnUHGoONYeaQ21AbUBtQG1AbUBtQG1AbUBtQG2kWqQITWxAAjJQgArsQAM6EGoNag1qDWoNag1qDWoRGcgCDejAkXid7i2BDUhABgpQgR1oQE/keAoPjPKOQAXGRNwRaEAHjsSIDzc2IAFjfq8Fon4FTxw+f2MDEjBmDSlQgArsQLSmQk3Rmh2t2dGaHa3Z0ZqXz0cZLp+/EK3Z0Zrh81cZwucvDJ+/EWoGNYMafF7h8wqfV/i8Gt4dQ006atJRk+HzVxkcNemoSfi8wucVPq/weYXPK3xe4fMKn9fL56MMAzU5UJMDNTlQk+HzMY+g19z1if2avJbABiQgA+PZLFCBHWhAB47Eaxr7wgYMNQ9kYL7g/ZrBHoEGdOBIpHw1IhloIgEZKEAFdmA2ViQDTczGimSgiQ1IQAYKUIExQ3MEjsRw/xtjkibqIdxfomTRPbhRgArsQAM6cCRGqLgx7MarEUHhRgV2YNiNVyOCwo0jMYLCjdHtiF+LoHAjAwWowA40oCdenXoNJCAD4ymiqsP9b4yniPcs3P9GB8ZTxBsV7n9jA55qMQsZx6ZNFKACO9CADhyJ4f43NiDUTkePCYHINrrJks5VgXiC08mD4my0m8IiBxKQgVF+CVRgB56D/BbkSWPSvIlebN5ELzZvohebN9GLzZvoxeZN9GLzJnqxlhotNVpqUGpQalBqUGpQalBqUGpQalBqUGpwanBqcGqET8dkaKQsTVRg1JcFGjDaO9ohPP3C8PQbY47xCCRgqI1AASowJhop0IAx1RjlDU+/MDz9xlCLRo1OwY0xp9kDBRizmvEU4f83GvCsxMvAmBRXV1/UkiiJk8Ji1EB84mNqLXKcNOYTI8dpIgEZeJY05gQjx2liBxrQgadaLLVFjtPEBiQgAwUYalFF4eM3GtCBIzF8/MYGJCADBQi1+MRbVH184m90YKidNRknm2lMR8bJZhNPtXifI49q4qkW85WRRzWxAw3owJEYn/gbG5CADIRag1qDWoNag1qDGkGNoEZQI6gR1AhqBDWCGkGNoMZQY6gx1BhqDDWGGkONocZQY6gJ1ARqERnOBCOJvKqJAlRgrHNJoAEdOBKve68ubEACMlCA8RSB8bU/k5wkkqsmRnl7IAMFqMAONKAnRiSImeXImLqrxPDE4fM3GtCBUb9nsIm0qYkNSEC0pkPN0ZqO1nS0pqM1Ha050Jrh81dxBlpzoDUHWnPg2cLnY+I8kqwmnmox8R9pVhdGntXEBox1Fw5koAAV2IEGdOBIDJ+Pid4472wiz8aKbCyNKf3IxprYgQb02QCjZWMNOoANSEAGCjAba8DRBxx9wNEHHH3A0QccfcDRBxw9jjPTWHeI48wmOjAqKuohXDqm5OM4s4kEZKAAFdiBBvTE+KzHzOO4ltkuZKAAz/SUmNSPg8smGtCB+WmOg8smNiABGShABXagJZ6f/OiFRKrYTZR0rr9Fhcb620WaFOWPt9EM6MBH+Xu8YKff39SSTpmIaJFSNlGAeq/5RVLZTZbkSWPS6fA3tSRK4iRJSo2RGiM1RmqMW0Mj9eymlkRJnCRJmtSTLMmTTo1zBKWRezaxAele+tRIP5sYNdYDFdiBdi+IapxANjGWIduJkftyYwPSvUyqV7rajaFmgQrswHNcFAqnn980Jp1eflNLoqSwGE/F8RpFvZzO3M9VA43ks4kNSMCz/lsYO515ogI70ICn2jm61Ug+uzGSz248u9NRAaeH38RJkqRJPcmSPGlMii77RanRU6OnRk+Nnho9NXpq9NToqWGpYalhqWGpEV5+zqxqHD02sQMN6MCRGI5+YwNGA8XrEa5+owBDLV7y8PUbDRhq8TqEu18Y/n4jA89M2GjWSIe+6Pylc/FCIydtYgMSkIECPIt4Tutp5KRNNKADQ+18jyMvbWIDhtoIZKAAI4vxCOxAAzrwVDtn7TSy2DpHeSlyIyVQgArswLDbA8NuPAWF3SgOx2ci1LgBCcjAU02iOOHPN3agAU81ifKGa0sUJ1z7zKTTSGjrEsUJ19aQCNe+UYEdaEAHjsRwbY0yRGLpjfkSRRbbRAV2oAEdGBLxQP0ANuD5QBqP2RkoQAV2oAEdOBLjQ35jA0LNoBZurtHc4eY3dqABHTgSr+/5hQ1IQAZCzaHmUHOoOdQcauHmGu9DuLnG+xAf8RsV2IFhN/wtPuQ3jomRNTcxvrIjkIAMFKACO9CADhyJ4fN6IQMFqMDT7jkXpZEtN9GBIzG+3mdKlkbG3EQCMlCACuxASwyfP+etNHLkJhKQgQJUYJT3jL+R99Z72A2XPvuXGnlvEwUYFjSwA6MeeqADR2K49Dk1ppH3NpGADBSgAjsw1OLVCO++cSSGd9/YgAScGaYaOXF3PYQf34jaCT+OTmDkxE1sQAIy8HwKi5cg/PjGDjTgqRa9rMiKuzH8+MZTzaIBwo9vZGCoRVuEH9/YgaEWLR9+bNEs4ccWlRp+HJ3WOL1rIgHDbjxb+PGNBnTgafecV9NImLterkiYmyhABVpiixRqDWxAAkYKdQ8UoAI70IAOHIlXgvmFDXgWMvrbkQ83sQMNeD58dN4jJ+7GcNMbGzCeIn7tSju/UIAK7EADOnAkXmnnF87tDnolw90YTxH1G857owEdGE8RvxbOe2MDEpCBAoxNENFY2oEGdOBIjITWGxuQgAwUYDzFhQ4cieG8N8ZTRBuH897IQAHGU0S7XRtHLjSgA0fitXHkwgYkYLSFBXagAR04EsNNb4zPYhAlcZIkaVJPig5SkCeNm+KUrJtaEiVFyT0wyjgCR2J0q2+MPU/xbxsBGShABXagAR04EsN3b4QaQY2gRlAjqBHUCGoEtfDdc8pQI6NtIgMFGBMKUVHRrb7RgA4cidHDvrEBCRhqFChABXZgqHGgA0diePSNLRvr8ugLGShABXagAfE+KN6H+PCec6AamW4TBRhPoYHxFD3QgA4cieHR50SiRqbbRAIy8NxFdkQLnR5tR1TU6dETDejAkXh69MQGJCADBQi1SF2P2aLIdJvowJE4DmADEpCBAgy1eGljNTwmXiLTbaIDx8TIdJvYgARkoAAV2IGhxoEOHIntADYgARkoQAWGWg80oANHIh3ABiQgA0NtBCqwAw3owJEYc2g3NmCkeARxkiRpUk+ySRKzclGzZwwwuv5WgBHJovyR4n6jAR04EmMryo0NSEAGnjUQ363IfLOYdYnMt4kjsR/ABiQgA+MpJFCBHWjAUNPAkRg7PG9sQAIyUIChFs8WMSCmhiLzbaIDR2LEgBsbkLItHC3kaKGIATd2oAEdOBIjBtzI96Z+vQ68ulGBYTdetvD2G0+7fFkYEyPHbeL5FDELFzluExl4PkVMREWO28QONKADQ+2snchxm9iABGSgABXYgWH3jG/XeVbxDYtkNYvJsEhWm2jAs2QxAxbJajeGr0Z/OZLVJhLwLJlEPZzeOlGBHWhAB47E8OOYTosUtokEZKAAFdjziSXsRlXrAWxAAoZdDRSgAjvQ7lMytF8nhlw4Eq8TQy5sQAIyUIBROz3QgSPx2ql9YTxFNHf48Y0MFKDep6FopLBNNKADR2JsIb2xAQkYtRNFD4+90YDxFPFyhcdeGB574/kUMZ8ZyWoTz6eIuB4nZk1U4KkWMxNXEtuNDhwTrzy2GxuQgKHGgQJUYAca0IFnncXMT+StxRlUGolrcRiSRubaRAV2oAEdOBLjaJGYFIwEtokEZGCoHYEK7EADOnAkXicBXdiABDztRhNG2prFrGykrU104EgM776xAQkYbRFPHN59owI78HyKeGEibW3iSIzzgG5sQAIyUIAKjKfogSMxvt03xlNErV+nMlzIwHgKD1RgPEVUX/j8jQ481a6qDp+/sQEJyEABKjAyPlugAR04EuPbfWMDRp1FCzla3tHyjpZ3tLyj5QdafqDlB1p+oOUHWn6g5QdafqDlB1p+ZMtH8trEBiQgAwWYLR+ZZY8lrIt7YSvsYI7VSw904EiUA9iABIw1zBEoQAV2oAEdOBL1ADYgAaEWS78xxRoHZE3swFMtZkXjgKyJIzEWgGPKPXK4PGZbI4fLY141crg8vhmRwzVRgR1oQAeeajHnFidkTWxAAjJQgArsQAM6EGoONYeaQ82h5lBzqDnUHGoONYfagNqA2gi7UZNDgX1i5Fp5zMRFrtXEsHtWX+RaTWxAAjJQgArsQAM6MNTOVznSrjxmNSLtaiIBGShABXagAR04EhlqDDWGGkONocZQY6gx1BhqDDWBmkBNoCZQE6gJ1ARqArXw2Jgci7Qrj/msSLu6XoJIu5rYgWGBAh04EsM3b2xAAobahQI81aIXHWlXEy0xvDAmpiLHymNiKpKsJkZ54ykuf4tX4/K3Cx2Idyf8LWauItFqIgHxpjreVMeb6lBzqDnUHGqXvz2wRy6UjwsJyInhImcKXI+EpYkK7OdhCkegAR04TmwnxmEDN7YTKZCADJQTOVCBHWhAB47E2HV8Y6hJIAEZKEAFdqDdbdwjmSle2h7JTNFCPZKZJjJQgArsQAPOsNIjmelGPYANSLe39CMdp1/5TDcqsAMN6MCRGI5zY9RvlKw7cCTaAWxAAjJQgArsQKgZ1AxqDjWHmkPNoeZQc6h5qEUTugEdOBLHAWxAAjJQgAqE2oDagNpItUhtmtiABGSgABXYgQZ0INQa1BrUGtQa1BrUGtQa1BrUGtQa1AhqBDWCGkGNoEZQI6gR1AhqBDWGGkONocZQY6gx1BhqDDWGGkNNoCZQE6gJ1ARqAjWBmkBNoCZQU6gp1BRqCjWFmkJNoaZQU6gp1DrUOtQ61DrUOtQ61DrUOtQ61DrUDGoGNYOaQc2gZlAzqBnUDGoGNYeaQ82h5lBzqDnUEEsaYklDLGmIJQ2xpCGWNMSShljSEEsaYklDLGmIJQ2xpCGWEGIJIZYQYgkhlhBiCSGWEGIJIZYQYgkhlhBiCSGWEGIJIZYQYgkhlhBiCSGWEGIJIZYQYgkhlhBiCSGWEGIJIZYQYgkhlhBiCSGWEGIJIZYQYgkhlhBiCSGWEGIJIZYQYgkhlhBiCSGWEGIJIZYQYgkhlhBiCSGWEGIJIZYQYgkhlhBiCSGWEGIJIZYQYgkhlhBiCSGWEGIJIZYQYgkhlhBiCSGWEGIJIZYQYgkhlhBiCSGWEGIJXbHEAkPNAxXYgQZ04Ei8YsmFDUhABkItYsl5Yk6PVKyJBgy1ETgSr1hy4al2rnn265CzGxl4qp2LdD0StEaLJ45YcqMBHTgmxjlnExuQgAwUoAI70IAOhFqDWoNag1qDWoNag1qDWoNag1qDGkGNoEZQI6gR1AhqBDWCGkGNoMZQY6gx1BhqDDWGGkONocZQY6gJ1ARqAjWBmkBNoCZQE6gJ1ARqCjWFmkJNoaZQU6gp1BRqCjWFWodah1qHWodah1qHWodah1qHWoeaQc2gZlAzqBnUDGoGNYOaQc2g5lBzqDnUHGoONYeaQ82h5lBzqA2oDagNqA2oDaghljBiCSOWMGIJI5YIYokglghiiSCWCGKJIJYIYokglghiiSCWCGKJIJYIYokglghiiSCWCGKJIJYIYokglghiiSCWCGKJIJYIYokglghiiSCWCGKJIJYIYokglghiiSCWCGKJIJYIYokglghiiSCWCGKJIJYIYokglghiiSCWCGKJIJYIYokglghiiSCWCGKJIJYIYokglghiiSCWCGKJIJYIYokglghiiSCWCGKJIJYIYokglghiiSCWCGKJIJYIYokglghiiSCWCGKJIJYIYokglghiiSCWCGKJIJYIYokglghiiSCWCGKJIJYIYokglghiiSCWCGKJIJbIFUtGoAEdOCZGTto4c4565KRNJCADBajADjSgA0+1MxOpR07axAYkIAMFqMAONKADoRax5MxE6pGTNpGADBSgAjswavJCB47EK5Zc2IAEZKAAFdiBUGOoMdQEagI1gZpATaAmUBOoCdQEagI1hZpCTaGmUFOoKdQUago1hZpCrUOtQ61DrUOtQ61DrUOtQ61DrUPNoGZQM6gZ1AxqBjWDmkHNoGZQc6g51BxqDjWHmkPNoeZQc6g51AbUBtQG1AbUBtQG1AbUBtQG1Eaq9eMANiABGShABXagAR0ItQa1BrUGtQa1BrUGtQa1BrUGtQY1ghpBjaBGUCOoEdQIaoglHbGkI5Z0xJKOWNIRSzpiSUcs6YglHbGkI5Z0xJKOWNIRSzpiSUcs6YglHbGkI5Z0xJKOWBLHvo0zRbJHJt2NEUtubEACMlCACuxAA0JNodah1qHWodah1qHWodah1qHWodahZlAzqBnUDGoGNYOaQc2gZlAzqDnUHGoONYeaQ82h5lBzqDnUHGoDagNqA2oDagNqA2oDagNqA2oj1ew4gA1IQAYKUIEdaEAHQq1BrUGtQa1BrUGtQa1BrUGtQa1BjaBGUCOoEdQIagQ1ghpBjaBGUGOoMdQYagw1hhpDjaHGUGOoMdQEagI1gZpATaAmUBOoCdQQSwyxxBBLDLHEEEsMscQQSwyxxBBLDLHEEEsMscQQSwyxxBBLDLHEEEsMscQQSwyxxBBLDLHEEEsMscQQSwyxxBBLDLHEEEsMscQQSwyxxBBLDLHEEEsMscQQSwyxxBBLDLHEEEsMscQQSwyxxBBLDLHEEEsMscQQSwyxxBBLDLHEEUscscQRSxyxJLL5xpld3yObb2IHnmrnzdI9jqKbOBIjlpx59D2OoptIwFPtzI3vcRTdOPOxeyQMTuxAAzpwJEYsubEBCchAqBHUCGoRSyTqIWLJjSMxYsmNDUhABgpQgR0INYYaQ02gJlATqAnUBGoCNYGaQE2gJlBTqCnUFGoKNYWaQk2hplBTqEUsOTPQe6Q8TmxAAjJQgArsQAM6EGoGtWssco6P/Rp1UCADBajADjSgA0fiNeq4sAGhNqA2oDagNqA2oDagNlJtHAewAQnIQAEqsAMN6ECoNag1qDWoNag1qDWoNag1qDWoNagR1AhqBDWCGkGNoEZQI6gR1AhqDDWGGkONocZQY6gx1BhqDDWGmkBNoCZQE6gJ1ARqAjWBmkBNoKZQU6gp1BRqCjWFmkJNoaZQU6h1qHWodah1qHWodah1qHWodah1qBnUDGoGNYOaQc2gZlAzqEVPQS8cidFTuLEBCchAASowIpcGGtCBoXbGqEiwnNiAOoPYuELFhQZ04Ax4dlyh4sIwZoEEZGAU3QMV2IFR9BHowJEYoeLGBiQgAwWowA6EWoNahIpzi4VdCaHnHiK7EkJvJCADBajADjSgA0ciQy1CxbnJyK6E0BsZKEAFdqABHTgSI1TcCLUIFT3aIkLFjQJUYAca0IEjMULFjafaeTiMRZroRE4MR7d4o8LRbyTgnKy3I5c97MhlDzty2cOOXPawI5c97MhlDzty2cOOXPawI5c97DCoGdQMagY1g5pBzaDmUHOoOdQcag41h5pDzaHmUHOoDagNqI25EGFXmuiNApxLA3alid5owFPN4k2NSBB4pYne2IAEZKAAFTiXBuxKE73RgaEWGJHgxgYkIAMFqMAOPNXOw4LsShO9cSRGJLixAQnIQAEqcA6u7Mr35HjicOkbBRijpChZuPSNBoxCXsZGYrj0jXOUZFe+540MPNXOc47syve8sQMN6MCRGC59YwOeauc2CLvyPW8UoAI70IAOHIkRFG4MtaiHcP9zY41dmZ039sRw6RElC5e+kYGnhTOj3K5szRs70IAOHInh0jc2IAEZCLVw6RHNHS59owEdOBLDpW9sQAIyMNSiHsKlb+xAA5775o4j6uT06ZsjXzO5BbdgKsyFpbAW7oWtsBce4HYULrrt0pVgLiyFtXAvbIW98ADTUfiyc/pLZFs+eAS3wlQ4yhN9oci4TNbCUZ4W9tkKe+EBlqNwK0yFubAU1sJF9zpBPj4GdB0hf/MAX4fI39wKU2EuLIW18KUb9XPd0HyzFx7g65Lm+MzQdUvzzVQ4dCmepUthLdwLW2EvPMB2FG6FqXDRtUs3ntG0cC9shb3wAPtRuBWmwpd9D+6FrbAXHuBxFG6FqTAXlsJFdxTdUXRH0R3Q5eMo3ApTYS4859Hsys+8sQMN6MCReEWM+MLyFTFupsKheJ4PYnxFjJu1cC9shb3wAF8R4+ZWmAoXXSq6dNk/32q+Ikx0APiKMPGt5yvC3MyFpbAWLuXnUn4u5edSfinll1J+KeWXUn4p5ZdSb1J0pehekeR6xitiXM+opfxayn9FjJutsBcu5e+l/L2Uv5fy91L+XsrfS/l7KX8v5e+l3nrRtaJ7RYbrGa8IcD2jlfJbKf8VAS6+IsDNpd29lN9L+b2U30v5vZTfS/m9lN9L+Ucp/yj1NoruKLpXBLie8fL0eEY5UH45WmEqzIWlsBa+7PdgKzzneu3KoLywHcAGvGxb8GXDg6MOzrNoTC7fvfjy3Zuj7BLPdPnuzVxYCmvhXtgKe+EBvnz95qLLRZeL7uXr52k8Jpev39wLW2EvPMCXr9/cClNhLlx0pejeF89Eu913zERb3ZfMXMyFpbAW7oWtsBce4MvXb750o90vX7+ZC0thLdwLW2EvPMCXr99cdK/ewXnahMkVA26Wwlq4F7bCXniAr9hwcytcdK/YoPEOX7HhZi3cC1thLzzAV2y4uRW+dMO/rthw86Ubvnb1GmIu7cqaPNdI7MqavNGBcz3FrqzJGxuQgAwUoAI70IDxjP3iAb76Cze3wlSYC0thLdwLW+FLl4IH+Io5N7fCVJgLX3Z68ABfMeTmVpgKc+Gr/Bas4MvHY25OLx+/uReO54rpOb18/+YBvr7zFjavmHAzFY7yxISIXjHhZi3cC1thLzzAV0y4uRWmwkW3F91edK+YYFFXV0y42QsP8BUTbm6FqTAXlsJauOha0b1iQkzn6BUTLr5iws2tMBXmwlJYC/fCVrjoetEdRXcU3VF0R9EdRXcU3VF0R9EdRXdAtx9H4VaYCnNhKayFe2ErHLoxe9Wv+HDxFR9uboWpMBeWwlq4F7bCly4FD/AVH25uhakwF5bCWrgXtsJF94onMZfWr3hycytMhbmwFNbCvbAV9sJF9+qTnOd9WL/6JDdTYS4shbVwL2yFHZwp1dYzpdp6plRbz5Rq61fsiVnCfsWemwf4ij03t8JUmAtLYS3cCxfdXnR70bWia0XXiq4VXSu6VnSt6FrRvWKPh3/EVGeE+Cs58sYGvERbMBeWwlq4F7bCXniAr8BzcytcdK/AE9Oe/Qo8N2vhXtgKe+GRbFfgubkVvnQ9mAtL4Ut3BPfCVtgLD/AVeG5uhakwF5bCRfc6Iu08rsbsOiLtZi88wBF4JrfCVJgLS2EN5mAvPMB82dfgVviy34O5sBS+7FtwL2yFvfAAy1G4FabCXFgKF10pulJ0pehK0dWiq0VXi64WXS26WnS16GrR1aKrl268e/0o3ApTYS4shSP+xWveL5PxKtlRuBUOk+fh2Rapk8lSWAv3wlbYCw9w9HUmt8JF1y/7LfiyH6+kW2EvPMDjKNwKU+Fr7iKq5wotN2vhXtgKe+GR7PecycWYO4pMyYfuxVq4F7bC13NJ8AC3o3ArTIW5sBS+nuviXtgKe2HMBTkdhVthKsyFMacUiZLzua4QcvMAXyHk5vJcXJ6Ly3Nxea4rhNzcC1vh8lxcnkvKc0l5LinPJeW57jnSi0t9SqnPa+x0PbuW57pCxc1UmAuX59LyXFqeS8tzaXlPtLwnvbwnvTxXL8/Vy3P18ly9PFcvz9XLe9JLffZSn1c/5Xp2K89l5f238v5bef+tPJeV57LyXF6ey8t74uU98fKeeHkuL8/l5bm8PJeX5/LyXKO8J6PU5yj1mQnX5plwbZ4J1xYpmY+C9eCRHEmZya0wFebCUlgL98JW2AsX3VZ0W9FtRbcV3VZ0W9FtRbcV3asPct4TYOPqg9zcClNhLiyFQ+s8dd4iRTPZCnvhAb4Cy82tMBXmwlK46F6BJdJoxhVYbvbCl+75Moyrb3LzpWvBVPjS9WApfOmO4F7YCnvhAb4Czs2tMBXmwlK46GrR1aKrRVeLbi+6vej2otuLbi+6vej2otuLbi+6veha0bWia0XXiq4VXSu6VnSt6FrRtaLrRdeLrhddL7pedL3oetH1outF14vuKLpXx4bDR66Ozc1cWAqHbiz6RCZoshX2wmOyH1eMurkVpsJcWApr4V7YCnvhotuKbiu6rei2onvFovMD5McVf87g7McVf26+7GgwFebCUlgL98IGvmLLubDlB2db+3HFkLP+/bhiyM1W2AtfZbaTrxhycytMhRlaUnQRQ/xADPEDMcQPxBA/EEP8uGLIVR5thakwFxaU54ohN/fCRVeLrhZdxBA/EEP8QAzxo5fn7YIy9FLPvdRzL/V8xZCrPL3Us5V6tqJrRdeKrpV6tlLPVurZyvNaad8rhlzspZ691LOX9r1iyM2lnr3oetH1ouulnr3U8yj1PMrzjvK8o7TvKPU8Sj2PUs+j1PMdQzx4JLc7hozgVpgKc+HQPRcmvV0x5OZe2Ap74QG+YsjNrXDonovE3q4YcrOmL7crnpyLtd6uvs3NXniACe9So1aYCnNhKayFe2G0aSMvjDZtfBRuhakwF5bCWvh6Lg0e4CsW3XzVYdTPFYskynnFopulsBbuha2wFx7gKxZdfL2rPcp5vas3c2EprIV7YSvshUP3PGXfr9THdqal+5X6OFkL98Jh88x29iv1sZ0JyH6lPt58vYc3t8JUmAtLYS3cC1vhotuKLhVdKrpUdKnoUtGloktFl4ouFV0qulx0uehy0eWiy0WXiy4XXS66XHS56ErRlaIrRVeKrhRdKbpSdKXoStGVoqtFV4uuFl0tulp0tehq0dWiq0VXi24vur3o9qLbi24vur3o9qLbi24vur3oWtG1omtF14quFV0rulZ0reha0bWi60XXi64XXS+6XnS96HrR9aLrRdeL7ii6o+iOojuK7ii6o+iOojuK7ii6A7pXyuXkVpgKc2EprIV7YSvshYtuiVdc4hWXeMUlXnGJV1ziFZd4xSVecYlXXOIVl3jFJV5xiVdc4hWXeMUlXnGJV1ziFZd4xSVecYlXXOIVl3jFJV5xiVdc4hWXeMUlXnGJV1ziFZd4xSVecYlXXOIVl3jFJV5xiVdc4hWXeMUlXnGJV1ziFZd4xSVecYlXXOIVl3jFJV5xiVd8x6IezIWlsBbuha2wFx7gOxZd3AoXXSu6VnSt6FrRtaJrRdeKrhddL7pedL3oetH1outF14uuF10vuqPojqI7iu4ouqPojqI7iu4ouqPoDujKcRRuhakwF5bCWrgXtsJeuOi2otuKbiu6rei2otuKbiu6rei2otuKLhVdKrpUdKnoUtGloktFl4ouFV0qulx0uehy0eWiy0WXiy4XXS66XHS56ErRlaIrRVeKrhRdKbpSdKXoStGVoqtFV4uuFl0tulp0tehq0dWiq0VXi24vur3olnglJV5JiVdS4pWUeCUlXkmJV1LilZR4JSVeSYlXUuKVlHglJV5JiVdS4pWUeCUlXkmJV1LilZR4JSVeSYlXUuKVlHh1XfZ83mTkern7mZ/perm7Xn/fC1thLzzAl7ufual+5Wq28+I6v3I1J2vhXtgKX/Y1eIAvt765FabCXFgKX7o9uBe2wl54gC+3vrkVpsKXlgVr4V7YCnvhAb5c+eZWmApz4aIrRfdy5TMH2K980cleeIAvV765FSa0i5Y21dKmWtr0cscz39iv3M523rDoV27n5F7YCl/D+niXLre7+HK7m1thKsyFpbAWvnTjPb/c7mYvPMCX293cClNhwfNertbj/b+6ADcPPOPVBbi5FabC17NEfd5TIxdr4etZ4t2+p0Yu9mIHulfe5uRWmApzYSmshXthKwzdK1fz5rjo7lxp80if9HPPoEf2pJ+byD2SJycKUIEdaEAHjsS46O7GBoRaXHR33tftkTE5UYEdaEAHjsS42+vGBiQg1ARqArW42+tcb/RIkpzowJEYd3vd2IAEZKAAFQg1hVrc4nWubXokQfq5nOmRAznRgA4ciXHR3Y0NSEAGCjAkRqABHTgS4867GxuQgAwUoAJPiZjqjhRGP+8t98hgnEjA01gsTUX64kQFdqABHTgmRuLixAYkoABPCxFMIgfxxriaMtwpMhAnEpCBp7EITZF9OLEDDejAkRgee2MDEpCBUCOoEdQIagQ1glr4ZoTnyCr0iJh23RUrgfFrGjgSr7tiL2xAAjJQgJC47oq90IAOHInXXbEXNiABGWjZborWjFvzrhbqaM2O+u2o34767ajfjvrtqN+O+u2o3476NbSmQc2gZlAzqBnUDGoGNYNaOOTVhOF6Vz3EHZNXE4brXQ3gaE1Haw605kBrDrTmQGsOSAy05kBrDrTmQGuObM1I95vYgBEqKDAC0/W3+cWJ7L6J+cWJ3L6JDUhABgpQgR0ItZZfnEjpu5EOYAMSkIECVGAHGhBqBDWGGucXx5mADBSgAjvQgA7M79t1/fONUBOoXd/N80N1Xd4cX5Hr8uYbCchAASqwAw3owPy+XTc2x1fkurH5RgYKUIEdaEAH5vfturH5xvgyHIHxxWmBHWjA/OJcFzJf6AewAQnIQAEqsAMNCIm4arxH7Zz+NtGBY2Jkyk1sQDpxBDLwHJWed2p7JMlNPNViiS9S5CaeauemB48EuRtPh7RY3ov0uImnWiz0RXLcxFDTQAWGWg80YKhZ4EikAxhq8WxEwFCLZyMBnmoez3Y65MRTzePZToeceKp5PNvpkBNPNY9nOx1y4qnm8WynQ04MtXg27omar1zknD2cLpCADBTg+ZbEUvx1yfKNBnTgSIyv3o0NSEAGChBqHWodah1qHWoGtfjqRYpApJdNDMe5MN7qqKjLcS5sQAIyMBwnavJykXhL4vt240i8OpwXNmDYjXfn6nBeKEAFdqABHRhqj1duHFeH88IGJCADBajADgyJETgS46t3YwMSkIECVGAHGhBqDWrx1TuPEx6RBTaRgAwUoAL7Xesj8r8mOnAkhg+dm3HHdXnzObc1rsubbyQgAwWowA40YHQMOTC6+XJiOOQ5WzWua5o1ihOup1GccL0bO9CADhyJ4Xo3hrFo2PCsGzvQgA4cieFZF4YzSBQ9vhcSRQ9nuNGBIzGcQaI44Qw3EpCBAlRgBxow1KLOwhkCI31pYgMSkIEC7PPZIlnpMXV6Yrz2N7b5QJGRNJGBAoyij8AONGBU9RE4Eq/XPiwQ1AhqBDWC2vXaX9iBBnRgNkvkIk2ExDV9OaI81/TlzV44ppnOqeRxZxzd3ApTYS4shbVwL2yFvXDR1aJ7TUcODr7+fTTktWpw/f01TTniGa9VgxHtfq0a3CyFtXAvbIW98FW288Vs1/Tlza3wpRuv0zV9OeJtiOlLOqJuY/qSzsPWRrumL69nuaYvby7PeK8IhP17ReBiKayFe2Er7IUH+F7BvLgVvnTjWe4VzHiWewXzYi3cC4eux/Ne05c3j+Tr4LvJrTAV5sJS+LJ/1uGdzXV2ocadwXV2nMadwXV2l8adwXWzFu6FB/hafjg7VePOyLr5stODrzKcdXVnUp1boMedSXWzFL50R3AvbIUd9i8fvP7+8sGbW2EqzKiHywdv1sK9cHney9euZ7yWCm6+6+F//sPfHr/5H3+LLnWnxx8t/nh2SDs//ujnH6N/eg4FoncaMMcUPEcUPMcTPEcTctxDBWkT6B4mCE+Qe4ggOqHfwwOxCX4PDWTcoMc9LNA2YY4ZlO+xgc7xguo9LtA5VlC7BwI6xwk6Rwn9uEcDfY4Q+hwf9Dk66HNs0HXCHBd0mzDHBH3cYMeEdg8MjCbwBLlHB6YT+gS7hwjmE8YcHoTlsylHtF3Uvz3+eDrQbEs5/9zw5/Ofn071H1dbnAedRFv0fv4Pjn/YY9Xx/LOcf6bZKYqPUsC4gWfni2fXi2fHi2e3i2enK+Yczh5VzDic/amYbzh7U1cnrl+vTPSDrg6cXa/MBbOTJbOLJbODJbN7FSOjs+dzdc78eh0umH0pnT0pnf0onb2oO9ofV9PcJEn57bP88ll+9yy/epbfPM8vnud31vMr6/mN9fzCemp4+brmN1HyK9Lz7yy/kvi2jUl3aviFDUhABgpQ5zfwTgq/0IA+P4x3Rvj5XbwSwuOzeOWDx1fxTgc/i31ng18owPyS3SnfgXQAG5CADBSgAjvQgD6/g3ei9+nKd573hQ1IwPx03TneFyqwAw3owPxY3n2wC3l++hqi+d2JOiNAQ1y/u1AXNiABFegz7LcrLyPw6mCdH6S7H3V+7+5u0flZu3tFgVen6ML8Rt1dogsZmB/Sqz90/20HGtCBI5/YD2ADEhDPdjlHPNDVI7rQ8+N2ftf+I8KTnW9YzMQE0ASeIBN0QsS/fn/jzrc9vnFjfuPONz2+cWN+48b8xgXwBJmgE/oNEZWO+yN1QZ9gE3zCuCEGiQFtQvxWv+KQx4EEPmHcMOIrrDN6nN9j5O8jex+5+8jcvxenR8aRCxvwco8GZ2Q4I8MZGc7IcEaBMyqcUeGMCmdUOKOmM14oQAV2oAGhhjzRhjTRhizRhiTRhhzRhhTRhgzRhgTRhvzQhvTQhuzQhuTQhtzQhtTQhszQhsTQhrzQhrTQhqzQhqTQhhz2hhT2hgz2hgT2hvz1hvT1huz1huT1htz1htT1hsz1hsT1hrz1hrT1hqz1hqT1hpz1hpT1hoz1hoT1hnz1hnT1hmz1hmT1hlz1hlT1hkz1hkT1hjz1hjT1hiz1hiT1hhz1hhT1hgz1hgT1hvz0hvT0huz0huT0htx0Qmo6ITOdkJhOyEsnpKUTstIJSemEnPSyhabsoCkbaMr+mbJ9puyeKZtnyt6ZsnWm7JwpG2fKvpmybabsmimbZsqembJlpuyYKRtmyn6Zsl2m7JYpm2XKXpmyVabslCkbZco+mbJNpuySKZtkyh6ZskWm7JApG2TK/piyPabsjimbY8remLI1puyMKRtjyr6Ysi2m7Iopm2LKnpiyJabsiCkbYsp+mLIdpuyGKZthyl6YshWm7IQpG2HKPpiyDabsgimbYMoemLIFpuyAKRtgyv6Xsv2l7H4pm1/K3hdCaiYhM5OQmEnIyySkkROyyAlJ5IQcckIKOSGDnJBATsgfJ6SPE7LHCcnjhNxxQuo4I3OckTjOyBtnpI0zssYZSeOMnHFGyjgjY5yRMM7IF2ekizOyxRnJ4oxccUaqOCNTnJEozsgTZ6SJM7LEGUnijBxxRoo4I0OckSDOyA9npIczssMZyeGM3HBGajgjM5yRGM7IC2ekhTOywhlJ4YyccEZKOCMjnJEQzsgHZ6SDM7LBGcngjFxwRio4IxOckQjOyANnpIEzssAZSeCMHHBGCjgjA5yRAM7I/2akfzOyvxnJ32WvStmqUnaqlI0qZZ9K2aZSdqmUTSplj0rZolJ2qJQNKmV/StmeUnanlM0pZW9K2ZpSdqaUjSllX0rZllJ2pZRNKWVPStmSUnaklA0pZT9K2Y5SdqOUzShlL0rZilJ2opSNKGUfStmGUnahlE0oZQ9K2YJSdqCUDShl/0nZflJ2n5TNJ2XvSdl6ErtEIus99n/E1FHs/rhJk3qSJXnSnKOSnKSSa5bqnFG8pqnkJJ5zUNe01FkCtpx88qSR81BHUs5WYbqqzFfN+SURT5qrdKJHUkuipDl/de9JOOef7i0JFxowJ54EM0+CqSfB3JNg8kkw+ySYfhLMPwkmoK4DsG+EmkPtnpiKudpc9ZB7Giombq/i6Ik5DaWYhlJMQymmoe6dDhd2oAGv4pxTf0cu59ybHC681M5Zvnsa6hx+xzcq5qmujQ8xT3Xvexgxv9yB+UCKaSjFNJRiGkoxDaWYhlJMQymmoe6dDBfmpNe9j+HCSy1mM3MaSpmBAlRgTkMppqEU01CKaSjFNNS9keFCAjLwsntWlOSszb0P4ZynUkxD3bsQLhSgAj2x5/LEdQD1jZeFs42vL8E5T3XvLPCYvCUgAy+1sx4wDaWYhrr3FIRdTEPdOwoC/QA2YE5DXSdF3yhABeLZPCfe7k0FF95PfM5TxSpMrBef50NGwAuQCTqhT7AJPmHcEJEuoE2Ylnla5mmZp2Welnla5mk5gt55aGTEvIA2gSacls/DJGOCvt1rOhf0CTbBJ4wbIg4GtAk0YVrWaVmnZZ2WdVrWaTnyJ+Lq0PhffK3FxN9EYkScXxeW9Zrdv0An9Ak2wSeEHb/m9S9oE2gCT5AJOqFPCMv9TME7IfJnJrQJNIEnyIRIXzyuybsLbIJPiLTFdk/c3dSSKImTJEmTetKsy5j4v2lMipyLi1oSTbqSdeJtt//9tv/vt/3/N2+7YzWV/+fjL/7+r//lH//9n//1X/7zv//bP/3T+f/mX/z3v/2n/+M//vbf/vHf/ulf/v1v/+lf/sff//4Pf/t///Hv/yP+0X//b//4L/Hz3//x3x7/9/G4//Qv//fj58Pg//PPf/+nk/7nP+C3j+e/SnHcT/z2Y+qup4HHOGfXxGMk1W8Tj4GSpYnHRP8fJmhh4kzIvCwMhQFvuwZ6m3XQGQYekwJ/GJDnBh7T9dPCYwren5rQxUN0ynroxk9NrKpy6JEV4fK0Km3RoHQOa64GfcxNwISMP0z4u62xfIwxH+MxeuSnj9EWNh69vWnjgWiQ/mcpznj3vE3Pjv3dpkpPTSzeq8gRCQvOpTn62LYQmayXhYfuUwu7j2HPH2NVmXYOZq7KtGM8NdEX75WcHfrrvXoMDJ6asLerYvFmPtYn8uV+xOa0IX962PmNeFqIMx3pKsSwp4WgRWWe2WK3iTNZDH4uuv8gcdrcDLvt2YPQ4sUin036mOJ9WhNLDxs9X4rGz1qU5P2Qt7LxmIGZNuQxifj889GX0ZvSRUptPBaF/rSxeDvVZ4v0Q4sF3X8xRPPF0OJlX18MWryeQ22kjVG/x38+Ca++6fggP5Y+YKP/ok3SS6RGzq9twov3s1kGjMfAt3xH+M/Oybmb46mNriON9CspcVr58w1jef/tYH337Vg/y8hOyoM7P3+W1ee9GSKgj1KSP/tr7G+/H+P9ELi0sekt0t73FqF3a2PZsucVq7NlTVp/2rIib3/bRFcF6YdnQUz8eUEWwbQTtexM/+G4X2wsXlNp+YJIK72FX1XI3jdSxpvfyNVzaJxee30jm/Br9cnZI++PwPrUhtLqW50BWbs/t7EMyOOY8YcOt6cBWVdtEvtILxvenwd1XYVSykHOY5a7PkvbtxG7vy8bo9lzG/b+Z0H93c/CsmUtx0oPbK+9HTHjcdl4zFY8f0tXseM8/jq/19Xfvlrp9HZ9LN8wm6NPGk1ee0sHwcbiLe2r+hicr+mDy+e6/6IcOXxkbv68HKu3FF3sswdUumJ/jli6L2doOGdo6qjnFzbEKLuEXrzlqw073vc4a+++Yes3XdGy59lDT990W330H4tL+dF/hFZ58n6YvNv1WL1hjxkeyTfM20vewpwdD34sZD+1YfbXesujr5Ff677wfFt98NXnW0r9j8Gk/Tn7tXhLzzN3c9LH9SUbo/f5LMP6wga97y3O73rLOv7gszD8eOr3vvA46ojHPuipjeXbgfnAx1TD8dqb3tEfNKKnNvztydFlKUo0HtSflmKsIin1WYzH6kKNxr5vY2Dq//ijZb/YoNV7rjP+jG5l2vxLJB2Ld3TkB3+U7xuL70f0wU0Rff7o234px9tD/FWNEmEIJ23RKh/olY63e6XLONq75JdpyNP41Y71C5bVcZRO+reJ67ZaSqBcSXg+XRv3pz5vlZYz12R1sqJ/MbL83B9p5WR5PtewfFEHIZoOff6ixq2uT5+ILb9yNQoRfa2W/m7nY10OyRktqj2Hr+VY+oy0fBYdz6NQ3JW6GA7m8PgxmfR00au1D7yu7f3XtX3idW0feV3XKwSaKwS9P13zOZajBs1RQz+erwSulp44EqfuTu5xPA9GSyNs2X/448v9zYi/v6K4WoDaXFJcrmFtrinuPsliUXG3SuXor7bLYWmkLb409IHV+0YfWL9fP47lBNljPLZ6nNVCKdF84c9LgZ6Hs7WR7CKet6ksjIz3X/jVctTmC78ysfnCbz/J4oVfVikf2S7Mr7ZLz2nt85TJ50ZWy1FNBRP9NcPCf+G/jy6qYpJ+EVfZPvCG+PtviL/9hmw/yYshUeJmurtK+3hepULvV6nw21W6MrFZpdtP8nKVlrfU2mtfGWm5UCh0rNplNazaTEmSDwRUfT+g6vsBVT4QUNc1+m4HUxsym5ouUs1Wq0m9Ww6Y3RYhWRev2MAUxFE/t/6r+jDUh79Yp5u5Xroa/svRMZEhT2304/03vbe33/SVic03fftJFm/6skZ5OGq0v2ZDc2GelPl5jS7e0sfwWHOk3MeLNnLRYWlj/YbtpRP290dS/f2R1GpBajNNIfJ23spTWJdiMzNytRy1lxoZe+OfRtLGmTtSu5SPZcdXjeiLRiTHlV3Kmvh3I/52uyyfJecuevNXn4Vyqu6xkkKvGsl59l7Hg78zwjnu6Fxn678aWS1KPSaNsyN1cmmcbym0q3WD7TzcpZGRCxjcxotGsPj5WPvsLxrZzIdrq9Wp3YS42MH45szwshzISBleumXfy7FrpB+vGskPzQP7a0YenczsqD7YVmZWTawZ2EbtSPzyZXO8bNWPf2ekDxhZOOD+N/z5eGi1VGWZx2X2/Ku17jPvpbGvVqp2h4drI5LPIjLawsg6GzWXyk0WT8Nv97zpkHf7VksTe30rWq5R7fVq6LB3ezV0rNb8m+TM8KNGn3719lvFFq2yfDtycZjM5SUbjHf98cGzV20cb9tgdK5qHPudjWzch7nnNpq+PSL6wcbWiGj9LIKXTLq/b+PFd4xpYEHGn7ftaifMY/iYkyFGK69bFcSQD2b9eShcbZLabdy1jQ80rjU8y8JxV+tT7chV/8catL5aqdnfZV+8ZasVjL1FbqJVh2poPsuw56OzZTkEE8N1N8236lh9szWX60QX+YJrI9h1IWb9RSNquXKgq94D0/vroMSf2NR3bM7L0iIBMka27z+O/dWPQz4/msrH6nHGm33ddTF6vq5quuinrjZNSaa3CtUNZF+3bL69Z2pdirRQnfd7KVa7FAnOS2Xmre+baIf3zOI+3OU1I8PL3H9JLvmNkTNLJ8P7UebOflOpuTnw0dlcVOr4S008KpIGKlWfP8r4RMuMT7TM+EDLLD3XslfVSfS1b8Qfc5osrxrJeabeF9lUayOWfaK+ym9fG+n5mjwWuxYfXx0f+EasVng+8o3onvmD3fvicVYbqB4TLoxh4pDxystmPYdn1ocvSiLvz0QsN1FtzkSsVps2ZyJWJjZnIvr7J09Qf//oidUOqu2ZiO1WWYwS12/H3kzEysbuTMQPNo63bWwONG13TVRfq9PdGZG1jb0ZkVXy/+6geW1jb9C8fBY58v2oS3hfbTj91eXYm5nZtvGiz+3OzHj/wMyM9Q+8IP0vbpjNWZXlLqjdWZV1QfZmVVZbqTZnVVY7qbZnVVbl2JxV+aETY+iUPZbdnnViRl8ayVD24LJt8BdGNoeIPzzMZjkW4bCPzBw2aYuB++rAghyZlUP2hH81kCFsWT54vDgakrKzpD8bDfFPu6l2hlRLI58Y/m/XiHyiRuwTNWLv1sgPK93lYY6jLlL/bsH84F7MLDIAhnxk3X1lpnvuCn844rNJgLUJDMse683tNROGUoynJtbpNwfOuTxezibKM7UeRhY5POutEMY5LKtDzF9thZD8frvwcyO82gx1nriUPRp52pFgej9XlentXNWlib1x6v6TPO9nrmt05DikjcHPa+P9FdEfyrG1IZPfX6tiWseynAiRxYZMfn+talkdjymIA1MQ/lKVUsNu2/a8x8z8dkeV+QMd1WU59qr0h71YWR3eSwrhtyi2XJPZy9lfnq26lW7P/P7WVOa3E6qXJjZD2PaT2GsVupltvzKxl2zPq57h5jj5Bxt7yfb29gzqse7O7WXsrg/O3cu1XdrYTLVdnjy5mZy6bWORm7q2sZeautzWut1DXtbqZmLquiTb78iqTjYTU9dn6L7/NNvv6nj/XV2ecLr5rm7bWLyraxt77+rKxi/e1WWtbuY/bx9m/rwrtVyX2srmWKUvtPQXqVcvfDtkeXm0H+O8AZZnE21rE3Lw/3Ka/U8Tq2Wp3amYhYUjX40vu3y/VIZ9IP2JVwf7ba8F93erdNUz7bm3pf+RpKP7FrIn1qU/t7Ccgc2naFqOS/t2qvoyhQupIEr81AbbciC4d7ogvz1b+MNh5Hksx4P5+enK7PS2xy5N7Hmsv507xcuDWnPy5oHPZsVZ333HWd99x5dnw2++4+vz5Tff8fVpfJvv+PLul0xEpQeXgvi+Dc06JdWFjeWB6GVRzVrdUPPVU4a87SlD3vaU95eQflEd7fmpb785ZX5xF8JqJYrjUIc7YUIxHKTXjfgHjNQc0N8ZKfkfNj5gxJ+XRI4PnN+/OlCP+UAGSDka9HtBVh1TtWnEtJ7d+OVAzdVKEmNmnv9Yr7QvNlb9ygO+d9TJNftNhShO0C7Lnt8rZGlklLyaRfPqvvct7nhYWtEDVnR1oUBbnpiK9NraOP5lLLaajy7518LPI9LycgTOve3K48WLDSwXxh+or9kYediyDpMXW8bSfZv5cbxoxcu5XK7P62SVcbDXL1pa2OoXrY83H2U9evCzRVOh5eb6PB900NOv7w8m8j0d1J/1MtfHvRuexM1f9FwfuVTw4EXnX5bLUVtdmrWJrS6NrKZQ9ro0v6iO1U0zP1gxWFF51YoOWLHnvU1Z9a82m2ZpYq9pViOajzRNrQ4fLzdNh5XxYjwcBz5Vo9Hz+D7eHieOt8eJ6yfB/rw2uizqQ+jdQfPSxONLdSDhwZq8ZiQu0p0fKtIXjeRph+fX7qXoPAyrBmMVnZcnUX/qYG3KniJxWdz+frD2rpFGLxpRyaQD7e01I49HyJB21HENfU1/WGYM5HwA8fO7dGJX0bsTs6If2Je6fBpk2dEhq6d5d+ZfP3DS8PIGLMSjLx3nX9yiZYK7p/648elPG7LcO7X33Vya2Pturnq8e9/NdWXkip86j0VlrHL8JBNbujgvjCxLkt+7djwdvi+Lodk7e0xUHy8+i+bdHl1dXzZSdhuOl43kzrr+4m1v2zfG+bsdkaWFrY7I8ta6zQnr9c13exPWYh+4IG15qZjkDILU7cZfLwYSe39MZe+PqeztMdWyMhTnR6n588rw9nZlLE3sVYbzX1oZXXA+QG+LytD3K0Pfr4y3s/KXPZ+RnyY5XrwT8bFMMmDj+a1TMo4P9ONGe7/3s9pf0Bvy4HVRjE/0SccH+qTLSm3Zuo2k3o725Yu/WqUqW0fLDLfZfin6yI2Bf97Usn8b2O4nYXmjGKLgeZglavTrhMHyVrJjetyo/YVf2sgksl6T2X5xs1ndGHT0msz2mxvWHDesjRefxXh2B4eVNd1f2XDUqZf48dWGrpamPmLkjxx2fn5j3NoIZY7go/d1vGiE84gSqputv7Xv+7dOjLe7pePtbun4QLd0fKBbqu0D3dL1VWB7e4q0vX8xira3L0ZZmthLyN9/ktUtHsv0lq09RfqBg/jWt6v1ckGs17ze/gsjmDd5YHvNyO62onVJlJHI2l+/LM5zrr/Vq+G/7bJcm1EcXfN45f1lM1kxp8nFns9lzfBA9dZPza+qV/JiEJL68f1mZHne2tY+pZX3bG79WtvY2/qlq9Wpva1fujzTb3Pr17Icu1W6bNrsZz5amV/1nIaU0Me/lFdfeRJ4DvWXHZBydek0+dxzln2BMmHHL/Ymcqt0CUnfLCw7rOVO4Hprwtd+orw9+l+b2Br9q9hfamJvAmFdn+U68vqt+Xrhvb075FZt7w+5dZXtsz19sDogbWTv3+ppTb+6Jt5yAeax4t5esjGa53ionl711YZqf/c9Xxcjc9sGLY4VXdogjFNpjMWjjL/0URiRg8fz0w21t7+0GJLnTg49VsV4OyNlbWIv+vS3M1J8OYVRos/isMjVjPLeGHdpYWuM6/T+GHdpY3eMu7rsaXuMe3xgjGvv3zSh9vZNE0sTm2Pc7SdZjHGPD4xxVzdO7Y5xj0+McY9PjHGPT4xxj0+McY/PjHGPz4xxj8+McY9PjHGPT4xxj/fHuMcHxrjHB8a4y+WpvTHueh1kc4w7PlClnxjjHp8Z4x6fGeMeHxnjLvsCW2PcdW9iZ4zb9d3xVD8+MJ7qxwfGU8st5D1PauJao19X65cr/i3TjYTrQZy/sSGZ+ix/bND9YmO5l90ob/Pw43nmwaqDttdbXVrY28FxvN9bXdrY7K329oHe6ioNo3VHeq8fTxtlZYNGvc2TXrPh2U3kg56Xoy+XqHbddnWExfY0yDI/OE+/5ENp8TSr45p2T6xf7UbXjmt47Pkt3n11iM3mgfWd2tsDmr5aptob0CxN7A1oOr2/HbWvDvHbO7C+L0/C2Dywfr9VbNEqy7dj68D6pY3NA+t/snG8bWPvwPrOu4up+lqdbh5Y/4ONrQPrO79/hd8PNrYG3utn2TuwvrP/1eXYOrB+38aLPrd5YH1fbjLaPLD+h5d98wWhv7hh9g6sj9zX53MqewfW/1CQrQPr++ri3b2Bcl8eJr45UF6WY2+g/FMfZuvA+q4fOCh+aWQzc/qHh9ksx7Jr6OUAiBdHQVuj7PUoaGeUrW+vZuvbq9k/bObDhKx6HRD+Zkdgx7bCPvhFI573GFI9Cf2X2wrLsIGeP44sl3E39yYujewd7L42sXWw+w8mtg52X7YL7lM7J95fbNw/jMirRghG+Hm7dHt7AXVtYmvlshv/pSY2b1RYVyiShK1s6/llq2Q4JhuvRpBakpeNeHalHviyEZzsvjKy3NO/l6ek70b2H44nSRuD+osnnGQHd5A93UVH79bE+ryYre/s8hyf3GKgVucsfnOODw7P0Xpr6O/OAspp9Qe+eJ6QG8rx6rlGnq36MPfquUZlxCEv14fDxvN2WeafqZerqekDNl47b0ow5Sl1yvNXNnB4htjiHVvbwMjH7bmNvkqStJFdFz+O51th+urgusfgPkvShz5dC/upJJYlWWzKsdVSlPbsRmkv00m8Xw7H+eF+dFuUg5eTr7NaH59MXRhZ7erL7eZ1VZ2+3LW1fEVGDvRldQSPLQ/y23xFbHkn1OYr8lNJNl+R8e4rsizH9ivS2gdekVX6+PuviB65zqh/HkXytRir2yEoD0NXqp8q/2Jj1Q0yytMVrJ7k5b94lkx31HbQ4lnsA8/if+2zYIL+ga997ZQzZUlZ+ms2COUg+4ANP158lkxV0noTwu/KgbNV+Hi5TgfqVF+0IbDRn/cg1ocs56beRwe59re/vKf09rH9axNbo9s4XesvNLF5OvKqPhknXbE9P3DaVifvbR2ZsyyFYIAtwxel0Pcj2Gp/1GYEWx/hTUiYJH36LGsbiuuP+vP64NX+9+2zxFdG9ub41ia25vh+MLEzx8dvz1fw2/MVyzshtsqwvlVia85keQvM7g2jP1jZvGCU+0cuGF2a2XxH+9sXjP5gYucdXd+utXe3ztrG+zc47b8jP91ItfmO6GfeEX3/HdH33xF9+x1Z7mzCpVZST6ly3jXxGCEIKpTq8HjfCA3D6fJ1om/fhOQGvpqc0Fy3y9By6fnxSZNXysA5TSg1ndB8+yEEEw2lY/1lAX15f2UOVew1A7l/QOvxrfsGcNLOH5231wzoSwayDvprddCzDvprdYBpSXutDqqBl+qgnmr6Uh1Y1oG9Vgeej+Cv1UE18FIdeG5U/GNe9xcGcvep+0slGHnB93itDqqB10qALcmvBRTPBWSv45c/93qar8ZAvac76ksWLAe2f7rTbyzMajB6Wob1nupc1Wuv/L7iyK7xwu+3duQa64Prtlvfd4fckuVWT6b7xWf6kJw6fvB4Pm+zNKINRlQX8+mr9d7dq49+YcQ/YGRx9dEPRvauPto3srj6yH/YureTa+7HMmVk7+ojX+1l2rz6yI9l1sjW1Ue+XEDau/rohwrZu7Vo2S4dW2ePvpg09dUS0tZ558ud5riPokwC8W+CCJ7iJQNIjCp77X5jQJHAN14xgFGT/BE09kuQwx0ql8z/wgC34uhvGuDnzeirTUubE6S+WibanCA9dtbuuM7f/6IxKQdt8tILLXkLgdBLjUkNe51anVmV35hIp2h1Lu83JpCSSuVw968mnJZLmFiSOV40kdsM6vjvNw9STwMtHZ3fmOj5av+ZnvsLE5ZX7jy8/bVGpdxaSGSvmeD8dj1qpb1WCmQZ1+W+X5h4LMekj9WbZdr2MKTheu3WSpz4RSFa6+hC+0tvVuN8Nx/4WimUsDdB7DUTHRvofLz2ILm36dF5eO1BGNcFsb72IB1bZ7u9VgrLL+mjY/LSy9kG6mLQSyYsB2cm/RUDQ3DA1Gv1cOR39I/h4bfIu9qM9L6bjgNHj71WEemjw/TNmnzNADtjM1U9keIxJfxHTa7OxiPsyHp0kvxFI7jV69FLlJeNoCRl7uN1I+Vb9tXIcmYbtx5o05dMYAH6jys1fmGCPefDHiti8ooJjUPEry6Olpec9w3golWtS2r7BnKzzcPWKwZwosUD5RUDO8l/SwO5ZvQw8NIjYA9oXbve79VINiNJe7p50/tq8+be+QLeV8PxrfMFlib2zhfYf5Ln+4OXHc3hqM/+igUlJKnw033wbu/vg//Bxtb24v1yPLexfD8daT/Snpeiv/1urUxsvlurQ/B25xNX9zHtnV3h60M8FVeRHONpJoOvblM6LzFJI2NxXJUvD+NjjAzLrdL9F3Xa2DBj0J7Wqcvyo44l9+cWlp1OZHCf3BaV+oEck7URzUH/qBHsd0YoP4wPlFeNZE9n1BTbX9YJEjO49xffVs+x5nDlxdu6a6RcJfRLIxnNHthfM7KfuvND1e6lRW0H56cHLvh4dx7+h/rYzav6ycxmYpWv1p5+0TrLbZxbiVVrE1uJVT+YeDOx6rE2ggu3qZ6B9eWc9x+2gG98KJZTG9mVaaOuoNEvTIwsw1HXvn9hwvMr8ec1vd/qYpX+t3nM2mjL/Ky9Y9bWk8s5FKbuzx9meVvMY62DMfOlT69W+8FIjgMfPMZTI8tOwMi1zdZk8Thrn827ZUddZD2OfSMm+e01kVeN9FwNMqvn2Hwz8v6NF8tyGMpR53++lWN9aBMOKPvj3t+vr/zytDU9cr31wfS8Z7QuC+ZeWGvex7eyLN1PyklnY2FkdcL45j7KZfu4ZmR99Gl00T7LqxpyLumPqPbFwmoHk3XcUl2CWvt6X9xy69CRaWqPWf3+3MiyQrDz58/koK8VwuvPDb4VfxxmJV+MrPYeZ4ZRnZr6boI+4DirTUi/cJxlWXYdZ2lk13H4AxuQl63ThHEO7bFqn9XoNQvC5eTWL4P56MQ9fUmwlqePJSA8y/Gbdx47/x9jkkUQWG1debwZmQRxdHneNMtj8ZBC8OjnoCTjy0dYVtuzcK3woxaO51Uiq+4AY61XjtJB0i+vvCzPttq7seCHkgjmZ+vQ5ltJbPnKb+10H6sT6fam25dtw5RewzVT5lvb6GrKG6M9Pay63vYCiuUsr/gfcfEXJjJ382Fi0f3VD1zWPPQTlzX/1Ie20od+Nt4cqyubtjviKyOb14K1j9TIyu80p0mp183dXxu4r1NIc8TXFocy/GCEMMfZV0boAxFgde/S3pLf2sTWitnyUXaPyxh9vSSwdVzGWC047R2XsX5XkaP1iIht8ZqN1fyI4uCxMhb/9jCrU/G335DV+Xabb8jyHHnrjLNxO/cXB2p/9H3t5THWXp2sjGy/r/aJ99Xef1/3hxT2cg98r1r5A6fmDP/AqTnD6f1qXR0Jm+kY1vrzwcRqGUvQURQ2ez78XY9I8gzUmgsw9p9kYOWohrNvT2IfCGf+gfO/ho+3w5m/fT7U8lG23/RBH3jTV+dFfOBNP7PycnWk3qj59Q1ZLUucRxjNSqV6m823d31ZkuxXtXqJw/eSLM95OZAUXAdF36r1E+/qeP9dHe+/q5847u4xt/CBl7Udxwfe1uWSDQ6XrVNfX9+R60rApwVpgrA6+srKamR05ArUY5qEnr70P5QFh2cx112k38viby7a/lSQMm3Mq0pZ3v+++a14WGnvO+DDCr3rgT/Y2HLB9dPs++B66WbXB5cXOm354A9vCi78Y20rJ1ytZgkOiZfB/Kr7aJ4IzH+cGvutLHS8/9V4WPnIW0sfeGvpA28tfeStpY+8tfT2W7ueyuachGr1ALhvU9nLvIe922rXRqjhZL/lbbXLD2Ef2F+iSyur2z/za1qPdXmMKX/xOJu3wy6N7N7guy7J5g2+P0yqb/Xalia2sth/MLHV8VstMey772o9a9995Xj/o7Naz9rdBXodSPG0Yre2gf5gY2sf6A9Ps7kV9Acrm1s512tAB9ZwqUysf10DehTlAytaDyv+/rfvfd9ZP82+82j7hPPo+7NZ62U+LZPaumji5cJWO8pklD5b53sY+WE2Ob9b9Tw0+2rk3ZN71ia2ju75ycTG2T0/rJzmFn896mlWX2u0L3efYQNbvcX3DSPjmZHtxWQ+jsVb1pdrsPmWNakLud8eZ3X+4JE7THprtjCyelUfL7liQurwj5ipt5z133RfscN7mYmxWgzC4TfK+jzl5/E8qy0vuafYy+7qr+kPj1ixevFxmN8f+yq+up+93Xf9oRzI1hmyssGfiPL29mUQLVLq3u8iWX+/i7S0sdlFWj7N5vEOP1jZ7iItHcezWyKLRbZ2+PKusXxhy+P8yoGlbC71ZTn4E1211fLWbjdrVZL9bpb3Tzig/7W5A3/krPPznPVHQVYbCrDPv9WjDeU3y/5748dVaNxvm/GRhYMPLHMt8zo4z4tkdl60zdBPzBOO/gkHXK107Y6VljY2nXh8YN2/tdXhftsvSlueZveJF6XcJi2LPLOVEWlImmu6eNva8Zdb2du49oONrZ1rP9nYu790OeGxeWrUT5Mvez2LH6bodk6K+MHEzlkR6zlPLMU8Jk75xYlTye44SdnG/s3IcrdHG7hr5ni+ZaS15SIXdknhw7d/nFfP8Cy97KBtMr6WwVZTFDkh9sCnZyQ8jKyux947guNhZD37OiPr4pyEtY29gxJ+8TC2ephVtY7c19/G4OdGVteYbp5f8VNJcC/sUWYHvpdktfC4dS/9w8bi07m7IeEHK5urUmsru0swP5Rlcw3mByu7S2RtmU/06CrkXOODix37pZ0c/p1sL9vR/IqeCU7+up2jTChxX9hZ1vLmyt0PVjY/HmtvEhzwVi9M67+J238k9x/+WmygljfZUnN5bmS53rUZG5ZXD+Fo9vYY65U2Hr8oyW69rlt4r4/x01vbcgT2YH7dG3EZ9lnu172R8gTu0+ZzL1rvJ9k5Qug8GXTxhd46Q6jFYe7Pe1/ZG+WaO8n7FyrsbfRZHv+Zu+1b3aFz3jy4a6LnbF17DE1fMuG51tXqWZG/MTEMJ4Ef7RUTj4VUHIku/FIp/lgpe+1BLM8+a95eepBHOEwTbbxWChwx/4hV8pIJSR9pfxzS+MVEa321YvD+ab+cm9Aa22u1IUc+Sr0N89UKfc0ENjrWb3azX1yM1cvFWPUGl2P7MQ4E4KPXY9r33YxzJZjYXjq88zHoT2eXMkL6aqI1W9ZnHvf7eFVfOr/zj7swx7IgiwnXR3Miq9L1RSuPmYm8NbqXSz9+Z6XjNoHOh36kascrVcuEDajE/TUTmvPH9XKGV02U3tivTOSJdEyvve/MOEaY5aUjcx8LWci5PV6rCzgu/xFIXzXxWqNymbMarx3cK4TpYn6tUSXPfOG6uvgrE3kiM4u+2KgdF9L0l0rx6KZkB9DGS0Gw4WjpxzrYKgiOVd+ecAQ89Xqj1C96kYRepL72KLmH8DHh5K+Z6Dis7TUvaZ6D4jaO9uKDYCR60Nsm2qulMJh4yd3bwBUHQ+ztUrzWqK45uvBekwnal1ecVjuyPCPXqFPD+12n3fm+ZdcJcyV/TC98f5Ll6sMBK+Wb9nWeg45PLELSYR9YhKTVXqzNVB5anSq4nfxCbTl427tZ5IeybKbQPMqySmDbvBCjxdzvMyt791GsbexeSfGwom8PJn+olPev+HjMhilm3PvCCZcrPIfmC3em/6GVv4znfjJjhoOXvcyI7Q8LFZkayrp6oNXuJS4leSxHlvvYvj3Q2ky5mKHVZI3fmbnmIm8zrQy59+tFMAciWq99/V4vy3y4HEFQPRHonDD/YmUVbvNEEK8HPhn/xga+YDUn9ruN1bbX7HzXzAb+mp9LP9zfjmmIOtF+fK3X1X6sjit5y6m6fHwtCX9ixx3xJ1KuiPn9jxjLJz5irJ/4iC2tbF4s9bBi739+Vjb2Pz+rjVnbn59lA23eJvcYT7VPVO0qwX23ajdt2LJiVy9+TplL01df/O0e0+rWq/0ek3zglV3a2Lo9a21j/7Vf7ZjZfu2XFbvZ61p/N0b5bNTlmW+fjeWJg4TMGqnHJXy38oETrR5WPrFVm/T9AwZI7RMfDvVPfDiWZdn25X58wpdXC1i7vtzbJ/xwtUtr2w+XlbLvh6tT0XEzX50W+tYHXJ0+uHtG7ZlvsFqN2juk9mFldeTXbvITrXZpbZ8PQD+sveRi0mKP1Q+1sndg7qMkHzhkstFH9mrRB/Zq0Ud2N9Fqn9V+iFta2e7Ara5+2g1O5p8ITv6JTsLm4yz7kqaf6F+vdkntN89qv9Zu82zaWNeJvN+//sSmvkarY/z2v8mr7Vrb9Tre718vt41tu85qv9a26ywrdvu7vvomb59LQasdW/vfjfGJLYY07P3vxvBPfDdWBwvufzeWZdl1Q17t2dp2Qz7enz5Y2th2IV7u2tp0oXWlfMaFds/94NWq2O65H3wsYwIy54Y9P3FjaYTQQH9e2PXVSFuePZBJSfXkD/9VOTIcPFbO2qIc9NeWoyEYUFls+V2lNtwZ+I6R430jnAmBj7ncxTuy3NyDXQ1NGr9oBEmBTeQjRuxVI0hnlt5fNpKrcuLtA4/zshHFrJm24wNG+GUj2OVXdyp9M7Jaw9r04XU5HDfurTxnNQeyV44fvhV7V8E05vfvgvnJyN6xSLxaBts9FukXRp4ei7Rfs8tzkXi5gLV5LhKvzujvWDDtJvaiEc9PeXfjF43g0i87aLxmxPw4slsu7bkRWSbJ7B7z9Bszrb34SCPPs7XR+6tGMt/5YeTFZvaRd3/50EULiX6mcj9xhtZ2ykE9O/x7ysFq7sEzONEf+7W+JlDwcr+WliOUazLHNyu6t4ujJOmfueW/KUnuVOI/Qtz3knxiepb1E9OzrO9Pz7J+YnqW9RPTs+uybA+z9ROzXazvz3YtbewPsz+wmeuHStlfgVo1UNztfDXQ0IUzL608ugM5zD7+uOn0qyP25U0cexdQ/lSWmjznq7LYcnE7U53PmZfnyXO8WhDjfOekFRv66vMsg/byRq6tSxZ+KEhuXuZjlX7HRn9xjTRsGC6d0q8FWe73xV6NXm8cb9uXlv9xD3ypU227Fujh/NP36pWNv7CguAVey/4y/do7t+X9G3lqlNUY3YZ8tbK8MiazRLWeD/Hdii+3h26ddP+Dkb2bXx9G6APL6rxa/9peVmeXDyyrs+sHltV5dWLh5rL6D7WyuazOn7jKqrF/4pR4Hu+fEs/jA0d7NV6tgu3325ZWdtdteby/bru0sd/jWi2Cbfe4xvtLyOtG3l1W5+Ua2G7zyOrcws3m2bWxrpPj7WX1db3uDjRktf61PdCQ1a6w7XrVt5fVlza2XUcOf9911hW7O1hZfpO3l9XlI1daSfvEVgVp729VkPaJrQrSPrFVYV2WbTdcn2K464bt/aQuaZ9I6hL6QFLXulI+40K7y+qyOspwd1ldSN5fVl8a2V1Wl/eXwn4ox96yury/FLYux+ay+k9G+BNGjveNbC6rC/P7y+prI5vL6r8wYq8a2VtW/8nI1rL6/uO8bGRzWX3fCL9sZG9ZXeTt1JgfyrG3rC4iby/vr78Vm8vqstqxtLus/oORvWV1WR1WuLus/gsji6XF3ZpdLqvL6o6u3WV1Wa1+7S6rr41sLquvjWwuqy+N7C6ry3rta3fl9zdmWnvxkTaX1X8wsresvjSyu6wuy01c+5X7CzOrnIX1hPPW3VQ/zX2nEe21g/F17ltWy1+bl1PJKl9n81Io6Z84SUb6+yfJSP/ESTJinzhJZl2W7ZGtfeIkGVltBdsd2a5s7I9s7QMnyawrZXtku3TCzjj3sYbJb064WgwTNlx1xdafr/vKqjCPFzLPl3pwWRL/Zsbfv+NN/BM3eYrT++68XPahjhGhLV1ov2rVXm2h0bMj5/UY2N+ZecwmOsyoLhp6dZnR3qWCsloP21yZW5dj84Ubn7gOSUZ7/4VbrWLtx+zVDV77MfsDa2HykbUw+cRa2LpSdmP2b7ynJGL80glbDmIebM+dUFdrWZu3PP1QFDaEFSF99YlionCaKePMb+lH629iDlYf8wHt+TdRl7vCRl7S8hjB95WVT+xm1OMTuxn1eH83ox6f2EGoqwMKt4OLtvdXcpc2toOLtg9swl1Xyn6HcJXXZIIbucp9S99f27a8mFaRIfmYIVzElraaC/CG6wxqwpnzrwrTM9A9WGRRmFXmzOMzn/d2aF90oX6o4DzL31wXw16l5fBMcUNRnXXV31nBGZBUJwO+W1n1cjsWmP94Zb5eUqur1bH9SLda+tiPdMtcyc1It77SanMYrmQfGIavrexmvii9nwqu9IlUcOUPpILvPo7pq428/TnjTyTQKL+fQLNrY1knrB9p4g8k0KwrdveTuI6SVG5fKQ/0PUquDk20PEF1iCy+ZMuSSF6XeY55ViVZjkIodwA9WJ4f/aurtbLt7+FmKnY/niZzPwqy2m7Z0n1Y6/nq2r9aWR5X2BWvbXEg/la3qwlcEtyUUXLQ/hdlGauVIaxDet008O0rpstZes5Zeq4hgb760Gq9TCkzErSuZ35dFNUf1ssI62W+MLK845ywYFDOd37dSM1I+J0Rw6zpeNUIrgV44KuP40caqadvfzeyvqEKaQ3letTvL8rqpbWWO12smS9e2tURgZhItjItOPQXJka+9sOPhYlVl3YzVUv7Ms7upWotjeymaulyj9hWWsMP5dhL1dJuf205NlO1fjLCnzByvG9kM1VLl0tBm6laayObqVq/MGKvGtlL1frJyFaq1v7jvGxkM1Vr3wi/bGQvVUtXK2ObPrwux16qlq7WxXZjyepDgaOYjzIq/valWO0P203U+sHIXqKWrlahdhO1fmHkebLKuidAOSo2qulE33oCY71VVPD5LKcdfLeyGnap5XRbXZ379qKM5fbbhqvS2nj+wq4Wf/7YCaz6ohF8dJiO9qIRIhjhVUmWV9nni099+Tj2gd7NeDsB/Idy7PVu+nH8teXY7d38YIQ/YeR438hm76YvN2Rt9m7WRjZ7N78wYq8a2evd/GRkq3ez/zgvG9ns3ewb4ZeN7PVuens7AfyHcuz1bnrr78eSZYDOi4Gpr2Ja+8Apnksju1G+09vR9YdybEZ5or+2HJtR/icj/Akjx/tGdqM8feAUz7WR3Si/b8ReNbIZ5ekDp3juP87LRnaj/LYRftnIZpTnt6PrD+XYjPLsf22UN83cBhuLSpXjA863NLLrfPtG7FUjm873g5E959t+nJeN7DrfthF+2cim861mBzadb12OTefT9yey1gPpgRvp26J5V2cg7g6ku35gW/jSyHY/Td+PrfqBbeFd/a8tx24/TT+wLfwnI8f7Rnb7actFrd1PRecPfCr2jdirRjY/Ff0D28L3H+dlI7ufim0j/LKRzU+FvT/W6h/YFt7t/VmBdZTfHI2v7u3aDtD29iLsD+XYDNA2/tpy7AboH4zwJ4wc7xvZDdCrYw+3A/TSyG6A3jdirxrZDNA/GNkL0NuP87KR3QC9bYRfNrIZoMfbi7A/lGMzQA/9awP07kB6fGIWa3xiFmt8YhZrfGIWa3xiFmt8YhZrfGIWa3xiFmt8YBbLjvdHWuMDs1h2vD+LtcwY6JSr9L3Wx9e1fltuxhqCQbAuTjq01UmHzXturfF6zq7Lr6x4pmqPkvH6v7Cy/US2eqJVlnWzPDK7jWNlZbWNirNeiEu+6v/iiVZW4Mgkva2srNJUer5z8vi6fMTKePWJNIMk/bEP/ZuV5WmHI8cHMlxftKIxJRJWtNt40UoneDQf+uK7S/3AvNaxeneXG7o283dsuZ9rM3/HaH096Vb+ztrIZv7O2shm/o6ttj/tTjsaH+9POy6N7I5qjd+eKvihHHujWmP5a8uxOar9yQh/wsjxvpHNUa3xeL9jvTay2bH+hRF71chex/onI1sd6/3HednIZsd63wi/bGSzYy3+vg+PD3Ss9e2Ulx+i/N60o612b20HaH17quCHcmwGaNW/thy7AfoHI/wJI8f7RnYDdP9ACsHayG6A3jdirxrZDND9AykE+4/zspHdAL1thF82shmg+9tLBz+UYzNAW/trA/TmtKPZBxZl10Z2nW/fiL1qZNP57AOLsvuP87KRXefbNsIvG9l0Pn9/pGUfWJQ1f3+ktR5I7+XvmH9gI4z5BzbCmL/fb/UPbISxcfy15djtYvkHNsL8ZOR438huF2t8YCPM2shulB8f2Ajzg5HNKD8+sBFm/3FeNrIb5ccHNsL8YGQvyvvxfnQdH9gI4+8vcv0QoPfGwH58YCPM0shulPf2dnT9oRx7Ud4b/bXl2IzyPxnhTxg53jeyGeW9fSCFYG1kM8r/woi9amQvyv9kZCvK7z/Oy0Y2o/y+EX7ZyGaUf/8Orx/KsRnlyf/aKL85kHb+wCzW2siu8/EHZrF+MLLpfPyBWaz9x3nZyK7z8QdmsX4wsul8/PYs1g/l2HQ+eX8Wa73Wn/eYUz2a7dtav68OJgz/vpb6y6F3+mrOgS4u3/rBiufT2LGwssxpcs+rBdx9dYjfMjMKlwv4HwdHfrXiqxWtx3RMHnVj1f38F0ZihHuVhBCQvh5b7KsVrd0zan5h5MUzaobnyZNjdFrU62pRq1PmrXWuHfrvVlZHxdvI84a9ji2+W/nEUfGunzgq3vX9o+J9tYFr+wBl19VC7O4Byuuy7J7z68vbt3bP+fXV2YSb5/wubWyf0et99d5untG7rpTdM3rXLjRy6CVjFWx9dT7hvgt1/4QLrda4dl1odYnXvgutVrm2Tw/31V6uzbvZ18+z7Yb2ieO23d4/bntpY98NVxu6tt3Q5K92Qz3ySGg9lt/D5QVem0cO++qcwt0jh/2Hq8S2jhzeN7I4cvgHI3tHDq+NbB45vDayeeTwDy+K54mH7Vh1v5YLXtsvyvjEi+KfeFH8Ey+Kf+JF8U+8KP6JF2V84uOzOiVl9+Oz7Ovji/xonL54ZZeHFXoeM69u+qqVkdfrPFBfHFu248j173Y0PV6106hnIzVyf9mO5mXG56029qodwpRG+2NPxi/tMC5ae/BqX9IPdih7pw/ml+uZOWdIGgu9/FwyMH0lwxZ2xnJNTNB9EakXDPivrByOOdfxCSursqxrprec+jmPo3vZszrh7oVHVF9Ei9EWMecx4M85F7XnwXzfiNPLRjqM2KtGZMvI+rqPiIxhhAcvrtgYq0Pres4C99LbfbxFL9oYCxvLK10cE+Ne3luhXxQEA06vixZy/KJaH66XA06qVfKtWmmZ5S15ZduD+fnFb4P+6rtlMMx7dBPLfHLbtSA9v7LS6zUsTb4+i61mGvGNrfe2H189h5br07sX6o3l9Vu7F+r9UJjdC/XG6havTzSyqo7sqNYP/bcm4uXR3Ga5o+7w1Vu7NuO5HPPotjK9aga5Jnz2y14vDRUzzy/l1vURoarYPaz2amlayyWiB4/XGhuxRevQ5ktjL0w8VqFnuH0sAHwx8X8+/viP/+Wf/+0///1f/8s//vs//+u//PfzN5uevchzXan1k84pqGZJnjSCHq8jHUntpDP+EyVx0KNpSJJC44yI1JMsyfN3x/w7PpIujYdDMiVxkiRpUmicB+yxJXlSaJwLx3IkhcY5FyyhcXaShJMkSZN6kiV50pikR1JLSg1NDU0NTQ1NDQ2N86QS9aQRvfbHu9uPpPa3e0TZT43I1+kc9PiNLkGPtuwa9Hjbek+y6L096q97UmicEdeOpNA4fcFC4+wIGidJkib1q2//IEvypDHJQ+PsuntLCo3zw+6cJEnZ5t6TLo1HW7onhca5+DdC41w7GC0pNM7WH6FxngMwJEmT4jnOoeCwJE8KjXOi+fEdBIbK+aV+TAMBGSjAUDpnJh6zpYF6Ymid5yo9PqnAS+3xvK2F2vmatNaABGSgAENthIUONKADR2I4/40NSEAGChBqBDWCWgQBOV/dFlHgwggDci5CtogDcm6DbxEI5GzsFpFAKP7tqSbnJuoWsSBSMloEgxtPNTlX6FuEgxtD7ZztbhEQbgy1cwzUIiTI+clqERNuFKACQ+2cGWwRF2504EiM0CDn2KVFbLgx1M7XskV0uFGAmk0YAeLGS+040YGhdr7ZLYKExLsTUULOCcoWYeJGBoaax79VYDxbNFbECjmvl2kRLPT6fIzECBc3nmraAgnIQAFq4CkRQUPPj0yLqHFjqMX7EHFDo7kjcNwYamdaSovQcSMDBRhqEr8WatHyET9uDLVo2IggF0YIubEBCchAASqwAw0ItZFqdBzABiQgAwWowA40oAOh1qDWoNag1qDWoNag1qDWoNag1qBGUCOo0aWmJzJQgJdaP7EDDejAkchHWuAGhBoz/q0AocZQY6gx1BhqAjWBmkBN8GyCZxOoCdQEagI1gZoewAYkIJ5NoaYK7EADOhBqHWodah1qHWodNdnxbB3P1vFsHWpXLAk01KShJg01aVAzqBnUDGoGNUNNGp7N8WyOZ3OoOdrNUZOOmnTUpEPNoeZQG1AbUBuoyYFnG3i2gWcbUBtot4GaHFmTfBzAVOODgAwUoAI70IAOzGfjBrXWgARkoACh1qDWoNag1qBGBxDPRng2wrMhljApsAMN6ECoMdQYagw1xBJGLGHEEkYsYcQSZqgx2g2xhBFLGLGEBWoCNcQSRixhxBJGLGHEEkYsYcQSVqgp2g2xhBFLGLGEFWoKNcQSRixhxBJGLGHEEkYsYcQS7lDraDfEEkYsYcQSNqgZ1BBLGLGEEUsYsYQRSxixhBFL2KHmaDfEEkYsYcQSdqg51BBLGLGEEUsYsYQRSxixhBFLeEBtoN0QSxixhBFLeKSaHAewAQnIQAEqsAMNmGpyZLsJYokglghiiTSoNaghlghiiSCWCGKJIJYIYokglgj6JYJ+iSCWCGKJIJYI+iWCfokglghiiSCWCGKJIJYIYokglghDjQ2ImkQsEcQSEagJ1BBLBLFEEEsEsUQQSwSxRBBLRKGmaDfEEkEsEcQSUagp1BBLBLFEEEsEsUQQSwSxRBBLpEOto90QSwSxRBBLpEPNoIZYIoglglgiiCWCWCKIJYJYIgY1Q7shlghiiSCWiEPNoYZYIoglglgiiCWCWCKIJYJYIgNqA+2GWCKIJYJYIgNqA2qIJYpYoogliliiiCWKWKKIJXqkmh4GdGDWpCKWaINagxpiiSKWKGKJIpYoYokilihiiRLUqAEJyEABQg1jHEUsUcQSRSxRxBJFLFHEEkUsUYYaKxA1iViiiCWKMY4K1BBLFLFEEUsUsUQRSxSxRBFLVKAmaDfEEkUsUcQSxRhHFWqIJYpYoogliliiiCWKWKKIJdqh1tFuiCWKWKKIJYoxjnaoIZYoYokilihiiSKWKGKJIpaoQc3QbogliliiiCWKMY461BBLFLFEEUsUsUQRSxSxRBFLdEBtoN0QSxSxRBFLFGMcHVBDLFHEEkUs6YglHbGkI5Z0xJJ+pFo/FNiBBnQg1BrUEEs6YklHLOmIJR2xpCOWdMSS3qDWst06YklHLOmIJR1jnI5Y0tEv6eiXdMSSjjFOJ6hhvqQjlnTEko5Y0tEv6XcsOVcUOOeCOhvQgTkX1OUANiABGShABUJNoCZQE6gp1BRqCjWFmkJNoaZQU6gp1BRqHWodah1qHWodah1qHWodah1qHWoY43TMl3TMl3TEko5Y0hFLOvolHf2SjljSEUs6YklHLOmIJR2xpCOWdMSSjljSEUu6Q82hhljSEUs6YknHGKdjvqQjlnTEko5Y0hFLOmKJIZYYYokdqWYHAwWowA40WHAg1BBLDLHEEEsMscQQSwyxxBrUmgEdmDVpiCWGMY5hvsQQS4yghn6JoV9iiCWGfomhX2KIJYa5V8PcqzFqEv0SwxjHMF9imC8xzL0a+iWGfomhX2Lolxj6JYa5VxO0m6AmBTWJfolhjGOYLzHMlxjmXg39EkO/xNAvMfRLDP0Sw9yrKdqtoyY7ahL9EsMYxzBfYpgvMcy9Gvolhn6JoV9i6JcY+iWGWGKGdjPUpKEm0S8xxBLDfIlhvsQw92qIJYZYYoglhlhiiCWGuVdztBtiiSGWGGKJYYxjmC8xxBJDLDHEEkMsMcQSQywxxBLH3KsfDUhABgpQYaEDDehAqCGWOGKJI5Y4Yolj7tWbAjvQgA6EGuZLHLHEEUscscQRSxyxxBFLHLHE0S9x9EscscQRSxyxxNEvcfRLHLHEEUscscQRSxyxxBFLHLHEMffqWMdxxBJHLHHEEscYxzFf4ogljljiiCWOWOKIJY5Y4ogljrlXxzqOI5Y4YokjljjGOI75EkcsccQSRyxxxBJHLHHEEkcscfRLHP0SRyxxxBJHLHH0Sxz9EkcsccQSRyxxxBJHLHHEEkcsccy9OtZxHLHEEUscscQxxnHMlzhiiSOWOGKJI5Y4YokjljhiiWPu1bGOMxBLBmLJQCwZGOMMzJcMxJKBWDIQSwZiyUAsGYglA7FkYO51YB1nIJYMxJKBWDIwxhmYLxmIJQOxZCCWDMSSgVgyEEsGYsnAGGdgHWcglgzEkoFYMjDGGRjjDMSSgVgyEEsGYslALBmIJQOxZGDudWAdZyCWDMSSgVgyMF8yMF8yEEsGYslALBmIJQOxZCCWDMSSgbnXgXWcgVgyEEsGYsnAfMnAfMlALBmIJQOxZCCWDMSSgVgyEEsG5l4H1nEGYslALBmIJQNjnIExzkAsGYglA7FkIJYMxJKBWDIQSwbmXgfWcQZiyUAsGYglA2OcgfmSgVgyEEsGYslALBmIJQOxZCCWDMy9DqzjDMSSgVjSDgSTB6feg6kwF5bCWrgXtsJeeIBb0cWazoOpMBeWwkW3Fd1WdFvRbUUXAebB5XmpPC+V56Wii5mUB/fCVtgLF10uulx0uehy0eVSz1yel8vzcnleLrpc2ldKPUupZyn1LEVXiq4UXSm6UnSl1LOU59XyvFqeV4uulvbVUs9a6llLPWvR1aKrRbcX3V50e6nnXp63l+ft5Xl70e2lfXup517q2Uo9W9G18rxWntfK81rRtaJrRdeKrpXn9fK8XnS9PO8dnzwYKWmHa+Fe2Ap7YWTBHSUN7ih5cEdJhDtKJtxRUuGOkgt3lGS4o2TDHSUd7kA+XGtIiGsNGXGtISWuNeTEtYakuNaQFdca0uJaQ15ca0iMa+0ouq3otqLbim4ruq3otqLbim4ruhhatYZ5mtYwUdNaiVetxKtW4lVDp6g19IpaK/GqlXjVSrxqJV61Eq9aiVetxKtW4lUr8aqVeNW46HLRLfGqlXjVSrxqUnSl6JZ41Uq8aiVetRKvWolXrcSrVuJV06KL9aXWSrxqJV61Eq+aFl0tuiVetRKvWolXrcSrVuJVK/GqlXjVetHFalNrJV61Eq9aiVetF10ruiVeNSu6VnSt1HOJV83K81p53hKvmpX29VLPXurZSz170fWi60XXi64XXS/17OV5R3neUZ53FN1R2neUeh6lnkep51F0R9HFvE8jTCI3Kv0rKv0rKv0rKv0rKv0rwlRyI6xLNcLCVCOscjcq/StqRbcV3VZ0W9Et/Ssq/Ssq/Ssq/Ssq/Ssq8YqwStVKWm8reb2tJPa2ktnbSmpvK7m9rST3tpLd26jEKyrxikq8Khm+jbjoYv27UYlXVOIVlXhV8nwbSdEt8YpKvKISr6jEq5Lt20q6byv5vo2k6Epp3xKvqMQrKvGqZP020qJb4hWVeEUlXlGJVyX3t5Xk31ayfxv1ottL+5Z4RSVeUYlXJQe4US+6JV5RiVdU4hWVeFUygVtJBW4lF7hR6V9R6V/R/1fa3exItpznFb4XjnuQX7zx61shCEGiaYMAIQq0ZMAweO+qiqw8+4GkmSbEx+ruWhmxu9bZGXshG181fNXwFUVwNe6vGr5q+Krhq4av6IKLMLgog6sduIfri68avmr4ij642oGLrxq+avgq+IpKuMiEi0648hxWV54nXxV8FXwVfEUtXCm4+Cr4Kvgq+IpmuIiGi2q4wv1VuL8Kvgq+Cr6iHa5wfxV8FXwVfBV8RUFcJMRFQ1wJ3OepWAVfBV8FX1ESVwIXXwVfBV8FX9ETF0FxURRXOtzO9cVXwVfBV3TFlQEXXwVfBV8FX1EXF3lx0RdXJtzJ9cVXwVfBV1TGlQkXXwVfBV8FX9EaF7FxURtXeD+YxfXFV8FXwVc0xxXeDwZfBV8FXwVfUR4X6XHRHlc23M31xVfBV8FXFMiVAxdfBV8FXwVf0SEXIXJRIld/jsOrP8/WquOrjq86vqJHrs75VcdXHV91fNXxFVVykSUXXXL1gvs8aauOrzq+6viKOrk67wc7vur4quOrjq9olItIuaiUqwfu89ytOr7q+KrjK1rl6pxfdXzV8VXHVx1fUSwXyXLRLFfvcDvXF191fNXxFeVydc6vOr7q+Krjq46v6JeLgLkomKsPuIPri686vur4io65OudXHV91fNXxVcdX1MxFzlz0zNU5v+qcX3V81fFVx1dUzdUXXHzV8VXHVx1f0TYXcXNRN1ffcDfXF191fNXxFY1z9QMXX3V81fFVx1eUzkXqXLTONThvH8/Tuxr4auCrga8onmtw3j7w1cBXA18NfEX3XITPRflcg/P28TzLq4GvBr4a+Ir+uQigiwK6SKBr4Csi6Bqctw/Or+igixC6KKGLFLo+LfS+83Ne96mh33NnHsyTeTFv5ueccDwhY42nZKzR4Xa4HW6H2+F2uB1uhzvgDrgD7oA74A64A+6AO+AOuBPuhDvhTrgT7oTL+8HB+dXg/Ipiukimi2a6iKaLaroGvhr4inC6Br4a+Grgq4GvqKeLfLrop2tsuBsuvhr4auArKuoanF8NfDXw1cBXA1/RUhcxdVFT1zhweT448dXEVxNf0VTX5Pxq4quJrya+mviKsrpIq4u2uibPByfPBye+mvhq4isK65qcX018NXk+OLm/mtxf0VnX5P5qcn9Fal2T83Zi66K2LnLrorcuguuiuC6S65rcX03uryb3V5P7q8n91eS8ffJ8cPJ8cHb2mfuryfvByfnV5Pxqct4+ub+a3F9N7q8m91eT+6vJefvk+eDk+eAc7DP3V5P3g5Pzq8n51eS8fXJ/Nbm/mtxfTe6vJvdXE19Nng+SZRdddhFmF2V2kWYXbXYRZxd1dk18NfHVxFcU2jU5b5+b64uvJr6a+IpOuybnVxNfTXw18dXEV9TaRa5d9No1OW+fh+uLrya+WviKarsW51cLXy18tfDVwle020W8XdTbtThvX/QMC18tfLXwFQ13Lc6vFr5a+Grhq4WvKLmLlLtouWtxf7W4v1r4auGrha8oumtxf7Xw1cJXC18tfEXXXYTdRdldi/P2xfPBha8Wvlr4ir67FudXC18tfLXw1cJXVN5F5l103rU4b188H1z4auGrha+ovWtxfrXw1cJXC18tfEXzXUTfRfVdi/urxf3VwlcLXy18Rftdi/urha8Wvlr4auErCvAiAS8a8Fqcty+eDy58tfDVwleU4LU4v1r4auGrha8WvqIHL4LwogivxXn74vngwlcLXy18RRdem/Orja82vtr4auMr6vAiDy/68Nqct2+eD258tfHVxldU4rU5v9r4auOrja82vqIVL2LxohavzfvBzfPBja82vtr4ima8Nu8HN77a+Grjq42vKMeLdLxox2tz3r55Prjx1cZXG19RkNfm/Grjq42vNr7a+IqOvAjJi5K8Nuftm+eDG19tfLXxFT15bc6vNr7a+Grjq42vqMqLrLzoymtz3r55Prjx1cZXG19Rl9fm/eDGVxtfbXy18RWNeRGZF5V5bc7bN88HN77a+GrjK1rz2pxfbXy18dXGVxtfUZwXyXnRnNfmvH3zfHDjq42vNr6iPK/N+dXGVwdfHXx18BX9eRGgFwV6Hc7bD88HD746+OrgKzr0OpxfHXx18NXBVwdfUaMXOXrRo9fh/OpwfnXw1cFXB19RpdfhvP3gq4OvDr46+Io2vYjTizq9Dufth+eDB18dfHXwFY16Hc7bD746+Orgq4OvKNWLVL1o1etw3n54Pnjw1cFXB19RrNfhvP3gq4OvDr46+IpuvQjXi3K9Dufth+eDB18dfHXwFf16EbAXBXuRsNfBV0TsdThvP5xf0bEXIXtRshcpe31a9u/zz5+Y/fufLKufmv1+PuRPzj7v73/7ar5//+Wu9++/3PX+tMLJfLnfH8dcP1H7z3y5+37/t69+5svd9/u/fXXeXw9zZ77cc9f+9tXPfLn3cyh/8vaf+Zt7P76+vfv2z1x37nduzGHud553Hszf3Pn9T1G1d9/+mTfzeebrq/n9WZbt3bd/5sZ8ue/PVL6+mu2+zuurz3y57f0BkIv5ctt9bddXP/P11We+3O9PIW/vvv0zX27ua7i++syD+XJzX9v11We+3H5f2/XVz3x9Nb8/drS9+/bP3Jgv9/vfmWnvvv0zX+64+3Z9Ncd9DddXn3kzX+64r6e/mC933u95ffWZw3y5817r66vPfLnr/Tmai3kzX+66r/P66jNf7rp7e331mS9337VfX33my93vD+qczIv5cvf7+59nvr6a577m66vP3Jgv99y/A9dXn/lyz31t11ef+Zu7Xndvr68+83nm66v1uvt8ffWZv7mr7mu+vrr/iF179+2fedz5/fsn82LezOeZr6/W+2fh+uozN+YwX+77Z+T6arX7+q+vPvNi3syX+/4ZOS/mYr7cXNb11cplXV995sF8ubnX7vrqM19u3t/z/Da/+/bPXMyX+/0J5u3dt3/my+3309ivrz7zZL7c7086b+++/TNf7venEbd33/6ZL/f7vx3t3bd/5su9P2vvvv0zD+bLnff7X1995std9zVfX/3M11ef+XK//5nF9u7bP/Plrvvarq8+8+Xu92fUTubFfLn3Z+fdt//M11dr39d8ffWZL/fc13x99Zkv9/58vfv2zzyZL/f+rL379s/8zd2vy72++szF3Jhz53XnzjyY553va76+2nVf5/XVZ77cen9E74v5cu/P5rtv/8xhvty6f/eurz7z5d6fl3ff/pk38+W2+9qurz7z5d6fnXff/pkv9/33+frqMw/my+3378P11We+3H73//rqZ76++syX2+/eXl/tfte4wtyZB/Obe9e1FvPlvn+Orq9+5uurz1zMlzvva7i++syXe/978e7bP/Pl7rvG66vPvJnPM19ffeZibsxh7syDGe6Be+Ceh/vu2z9zMTfmMHfmwTyZF/NmhltwC27BLbgFt+AW3IJbcAtue3P7nYu5Mb+5486deTBP5sW8+T7nmQM39fz+NGa4gRu4gRu4gRu4HW5nvZ31drgdbofb4Xa4b1/9zOeZ3776mVnvgPv21c/cmQfzZIY74A64E+6EO9nnyXon652sd8J9++pnZp8n+7zY5wV3wV1wF9wFd7HPi/Uu1rtY74a7ub6bfd7s82afN9wNd8PdcDfcwz4f1ntY72G9B+7h+h72+bDPh30+DzevF3MxN+Ywd+bBPJkX88PN67m+qRdzMTdmuAW34BbcglubmfU21ttYL75KC3NnHsyTGW6D2+AGLr4Kvgq+Cr4KvkrgZjGzz/gq+CodboeLr4Kvgq+Cr4Kvgq+CrzLgDq4vvgq+Cr7KgDvg4qvgq+Cr4Kvgq+Cr4KtMuJPri6+Cr4KvMuEuuPgq+Cr4Kvgq+Cr4KvgqC+7i+uKr4Kvgq2y4Gy6+Cr4Kvgq+Cr4Kvgq+yoF7uL74Kvgq+CoH7oGLrzq+6viq46uOrzq+6viqvx5ufy3mzfzsc8dXveAWXHzV8VXHVx1fdXzV8VXHV537q879VcdXHV91fNW5v+rcX3V81fFVx1cdX3V81fFVx1c9cDOY2Wd81fFVD9wOF191fNXxVcdXHV91fNXxVe9wO9cXX3V81fFVH3AHXHzV8VXHVx1fdXzV8VXHV33CnVxffNXxVcdXfcKdcPFVx1cdX3V81fFVx1cdX/UFd3F98VXHVx1f9Q13w8VXHV91fNXxVcdXHV91fNUP3MP1xVcdX3V81Q/cAxdfdXzV8dXAVwNfDXw18NV4PdzxGsyTeTFvZrgFF18NfDXw1cBXA18NfDXw1Si49Vzfga8Gvhr4avB+cPB+cOCrga8Gvhr4auCrga8GvhqBmzCzz/hq4KvB+8ERuPhq4KuBrwa+Gvhq4KuBr0aH27m++Grgq4GvBu8Hx4CLrwa+Gvhq4KuBrwa+GvhqTLiT64uvBr4a+GrwfnBMuPhq4KuBrwa+Gvhq4KuBr8aCu7i++Grgq4GvBu8Hx4aLrwa+Gvhq4KuBrwa+GvhqbLib64uvBr4a+GrwfnAcuPhq4KuBrwa+Gvhq4quJr+br4c5XmDvzYJ7Mi++zmeHiq4mvJr6a+Griq4mvZsGtxbyZn32e+GryfnDiq8n91eT+auKryfvB2eByfjXx1cRXE19N7q/mj6/WnS/3vO48mCfzYt7M55nfvvqZi7kxhxluh9vhdrgdboc74A64A+6AO+AOuAPugDvgDrgT7oQ74U64E+6EO+FOuG9fff9j6u3dt//Mb1/9zG9u7tyYw9yZB/Pk+yxmuG9fvX//21c/M9wNd8PdcDfcDXfD3XA36z2s98A9cA/cA/fAffvqZ17Mm/lZ77tvf3Pffftnbsxh7syD7zOZF/Nmhlsv5mJuzGGG+/bVzzyZF/NmhtvgNrgNboPbOjPrbay3sd4Gtz3X9923f2b2Oexz4AZu4AZu4IZ9DuvtrLez3g63c307+9zZ584+d7gdboc74A64g30erHew3sF6B9zB9R3s82CfJ/s84U64E+6EO+FO9nmy3sl6J+vFV2txfRf7vNjnxT7jq7XgLrgLLr5a+Grhq4WvFr5aG+7m+uKrha8Wvlob7oGLrxa+Wvhq4auFrxa+WvhqHbjnub4bX218tfHVfj3c/erMg3kyL+bN/Kx346uNr3bBrTB35sE8meEWXHy18dXGVxtfbXy18dXGV7vBbYt5M7PP+GoHbuDiq42vNr7a+Grjq42vNr7aHW7n+uKrja82vtodboeLrza+2vhq46uNrza+2vhqD7iD64uvNr7a+GoPuBMuvtr4auOrja82vtr4auOrzf3V5v5q46uNrza+2txfbe6vNr7a+Grjq42vNr7a+Grjq73hbq4vvtr4auOrveFuuPhq46uNrza+2vhq46uNr/aBe7i++Grjq4OvzuvhnldjDnNnHsyTeTFv5me9p+BWMTfmMHdmuAUXXx18dfDVwVcHXx18dfDVaXDbYJ7Mi3kzww1cfHXw1cFXB18dfHXw1cFXJ3DD9cVXB18dfHU63A4XXx18dfDVwVcHXx18dfDVGXAH1xdfHXx18NUZcAdcfHXw1cFXB18dfHXw1cFXZ8KdXF98dfDVwVeH94OH94MHXx18dfDVwVcHXx18dfDV2XA31xdfHXx18NXh/eDZcPHVwVcHXx18dfDVwVcHX50D93B98dXBVwdfnef9YF6vF3MxN+Ywd+bBPJkX82/cvF7nmR9f5fX4Kq/HV3kV3IJbcAtuwX18lVex3sZ6G+ttcFuYO/NgnsxwG9wGN3ADN+xzWG9Yb1hv4GYxs89hnzv73OF2uB1uh9vhdva5s97OejvrHXAH13ewz4N9HuzzgDvgDrgD7oA72efJeifrnax3wp1c38k+T/Z5ss8T7mK9i/Uu1rvgLrgL7oK7WO9ivQvuZr0/vhp3/q0XzevpRfN6etG8nl40r6cXzevpRfN6etG8nl40r6cXzevpRfN6etG8nl40r6cXzevpRfM6cA/cA/fpRVNPL5p6etHU04umnl409fSiqacXTT29aOrpRVNPL5p6wS24BbfgFtyCW3ALbsEtuAX3OW9PPc8HU895e+p5Pph6ng+mnvP21PN8MPU8H0w95+2ppxdNBe5z3p56zttTgRu4gRu4gRu4gdvhdtbbWW+H2+F2uB1uh/v0V6mnv0o9vWhqsN4B9+mvUk9/lXp60dTTi6YG3AF3wJ1wJ9zJPk/WO1nvZL0T7tNfpSb7PNnnxT4vuAvugrvgLriLfV6sd7HexXo33M313ezzZp83+7zhbrgb7oa74R72+bDew3oP6z1wD9f3sM+HfT7s8/N8MO15Ppj2PB9Me3qGtKdnSHv6q7Snv0p7etG05/lg2tMzpD39VdrTX6U9vWja04umFdyCW3ALbsF9+qu0Yr2N9TbWi6/a83ww7Xk+mPb0omnP88HQt6c1uA1u4OIr+vbQt4e+PfTtaYH79Fehbw99e+jb0zrcDhdf0beHvj307aFvD3176NvTBtzB9cVX9O2hb08bcAdcfEXfHvr20LeHvj307aFvT5twJ9cXX9G3h749bcJdcPEVfXvo20PfHvr20LeHvj1twV1cX3xF3x769rQNd8PFV/TtoW8PfXvo20PfHvr2tAP3cH3xFX176NvTDtwDF1/Rt4e+PfTtoW8PfXvo25OnZ0ie/ir07aFvD317UnALLr6ibw99e+jbQ98e+vbQtyfcX4X7K/r20LeHvj3h/ircX9G3h7499O2hbw99e+jbQ9+eBO7TX4W+PfTtoW9PArfDxVf07aFvD3176NtD3x769qTD7VxffEXfHvr2ZMAdcPEVfXvo20PfHvr20LeHvj2ZcCfXF1/Rt4e+PZlwJ1x8Rd8e+vbQt4e+PfTtoW9PFtzF9cVX9O2hb0823A0XX9G3h7499O2hbw99e+jbkwP3cH3xFX176NuTA/fAxVf07aFvD3176NtD3x769vSnv0p/+qvQt4e+PfTt6S+4BRdf0beHvj307aFvD3176NvTC+7TX4W+PfTtoW9P5/1g5/0gfXvo20PfHvr20LeHvj307emB+/SioW8PfXvo29N5P9gDF1/Rt4e+PfTtoW8PfXvo29M73M71xVf07aFvT+f9YB9w8RV9e+jbQ98e+vbQt4e+PX3CnVxffEXfHvr2dN4P9gkXX9G3h7499O2hbw99e+jb0xfcxfXFV/TtoW9P5/1g33DxFX176NtD3x769tC3h749fcPdXF98Rd8e+vZ03g/2Axdf0beHvj307aFvD3176Nsznl404+lFQ98e+vbQt2fwfnA8vWjo20PfHvr20LeHvj307aFvzyi4Ty8a+vbQt4e+PYP3g/TtGdxfDe6v6NszeD84GlzOr+jbQ98e+vYM7q/G04tmPL1oxtOLZjy9aMbTi2Y8vWjG04tmPL1oxtOLZjy9aMbTi2Z0uB1uh9vhdrgd7oA74A64A+6AO+AOuAPugDvgTrgT7oQ74U64E+6EO+Fy3j6e54MZnLeP5/lgxvN8MIPz9vE8H8x4ng9mcN4+nl40Y8HlvH1w3j423A13w91wN9wNd8PdcDfrPaz3wD1wD9wD98B9+quMp7/KeHrRDJ4PzqdnyHz6q8ynv8p8etHMpxfN5Png5Png5PngfHqGzBfcp7/KfPqrzKcXzeT54Cy4T3+V+fRXmU8vmvn0opk8H5w8H5w8H5wNboP79FeZjfU21svzwdngPv1VZtjnsM9hn3k+OHk+OHk+OAM3cMM+h/V21svzwdnhdq5vZ587+9zZZ54PTp4PTp4PzgF3wB3s82C9g/XyfHAOuIPrO9jnwT5P9pnng5Png5Png3PCnXAn+zxZ72S9PB+kb8/k+eDk+eBc7DPPB+nbMxdcng9Ong/St4e+PfTtoW8PfXvmhru5vviKvj307Zkb7oGLr+jbQ98e+vbQt4e+PfTtmQfu01+Fvj307aFvz6JnWPQM9O2hbw99e+jbQ98e+vbQt2fRM6ynvwp9e+jbQ9+eRc+w6Bno20PfHvr20LeHvj307aFvz6JnWE9/Ffr20LeHvj2LnmHRM9C3h7499O2hbw99e+jbQ9+eRc+wOtcXX9G3h749i55h0TPQt4e+PfTtoW8PfXvo20PfnkXPsAbXF1/Rt4e+PYueYdEz0LeHvj307aFvD3176NtD357F/dXi/oq+PfTtoW/P4v5qcX9F3x769tC3h7499O2hbw99e9aGu7m++Iq+PfTtWRvuhouv6NtD3x769tC3h7499O1ZB+7h+uIr+vbQt2fTX236K/r20LeHvj307aFvD3176Nuz6a82/RV9e+jbQ9+eTX+16a/o20PfHvr20LeHvj307aFvz6a/2vRX9O2hbw99ezb91aa/om8PfXvo20PfHvr20LeHvj2b/mrTX9G3h7499O3Z9Feb/oq+PfTtoW8PfXvo20PfHvr2bPqrTX9F3x769tC3Z9Nfbfor+vbQt4e+PfTtoW8PfXvo27Pprzb9FX176NtD357N+8HN+0H69tC3h7499O2hbw99e+jbszfczfXFV/TtXzP7zPvBveHiK/r20LeHvj307V8z68VX+8A9XF98Rd8e+vZs3g8eelH69tC3h7499O2hbw99e+jbc+hFD70ofXvo20PfnsP7wUMvSt8e+vbQt4e+PfTtoW8PfXsOveihF6VvD3176NtzeD946EXp20PfHvr20LeHvj307aFvz6EXPfSi9O2hbw99ew7vBw+9KH176NtD3x769tC3h7499O059KKHXpS+PfTtoW/P4f3goRelbw99e+jbQ98e+vbQt4e+PYde9NCL0reHvj307Tm8H6Rvz+H+6nB/Rd+ew/vBQy96OL+ibw99e+jbc7i/OvSi7779fH/Oed59+9dP8Z37nfudB/NkXsyb+Tzz9dVnLubGHGa4B+6Be+AeuOc3bn/37Z+5mBtzmDvzYJ7Mi/lyq935PPP11Wcu5sYc5s48mCfzYoZbcBvcBrfBbXAb3Aa3wW1wG9wGN3ADN3ADN3ADN3ADN3ADt8PtcDvcDrfD7XA73A63w+1wB9wBd8AdcAfcAXfAHXAH3AF3wp1wJ9wJd8KdcCfcCXfCnXAX3AV3wV1wF9wFd8FdcBfcBXfD3XA33A13w91wN9wNd8PdcA/cA/fAPXAP3AP3wD1wD9zzcN99+2cu5sYc5s48mCfzYt7McPFV4avCV4WvCl8Vvip8Vfiq8FXhq8JXha8KXxW+KnxV+KrwVeGrwleFrwpfFb4qfFX4qvBV4avCV4WvCl8Vvip8Vfiq8FXhq8JXha8KXxW+KnxV+KrwVeGrwleFrwpfFb4qfFX4qvBV4avCV4WvCl8Vvip8Vfiq8FXhq8JXha8KXxW+KnxV+KrwVeGrwleFrwpfFb4qfFX4qvBV4avCV4WvCl8Vvip8Vfiq8FXhq8JXha8KXxW+KnxV+KrwVeGrhq8avmr4quGrhq8avmr4quGrhq8avmr4quGrhq8avmr4quGrhq8avmr4quGrhq8avmr4quGrhq8avmr4quGrhq8avmr4quGrhq8avmr4quGrhq8avmr4quGrhq8avmr4quGrhq8avmr4quGrhq8avmr4quGrhq8avmr4quGrhq8avmr4quGrhq8avmr4quGr9uOrc+fL/f53ZPq7b/86Jbjz5bZx5818ud//1lJ/9+1f7/rvfLm5f/btq5/5ctPv3JkvN/d7vn31My/mzXye+e2rn/nNva/n7aufOcyd+c1dd35z950X82Y+z1revsrdt7evfubGHObOnx3Mkxnu21f99fdfv/u///i3P//jP/3lT//nd//j/3/93//1b//8x3/981//+ef//uv/+5fPr/zT3/78l7/8+X//w7/87a9//NP//Le//ekf/vLXP37/2u9e3//zrZzf1/zV6g9fv7meL51frX9/qf32pb5/jXx/Kb99qfVf7Xx/qf/2pa+rl/ul8cP4/ddxev/1dXaeP1zA77/+ooxfX+dF7Q/3W339+sjXr8/7699/YHwd8P8aXyf131+o+zv2/Q7z+/vO5zWuX619f2n955Xs3770dSxw9veXzvOyx6+87nr/qz2o/+Jrdxe+X+zXX+b++rzQPn+N96/nP29cvffkfql+fTn/86fm+LVen6V9+f+L8f4m4/MHvv+Jt/n1xff+9Jlfff22O99bcT5/fH79wM568+Znw7/u03593cf8/PGvO9lfX3eVnz/+dVP56+vm8PMNvu5xfn3dz9xvsP6732D/x134+9//8Pd/Bw==",
|
|
1991
|
+
"debug_symbols": "7L3Nki07b6Z3L99YgyQAEmDfisPRIbdlhyK+kBxqtSeKvnevRCbwYldpsVhrrTNyT049e59deDNJAskfkPyPv/2f//R//I//+7/+87/8X//63//2X/63//jb//Fv//z3v//z//1f//6v/+0f//2f//VfHn/7H387zv80+dt/aW3Y//yHvzX/8/A/6+PPdP6ZD//zePyZ4/+r6eNfa4CdYA+YJ8zHLx4Oj1+R/JV53P9gtvsfOLQACuAACegB4wbx36KH/X7an+cj/sPfZrt+0PWDrx9y/ejXj3H90OuHXT+m/2jHcf9s90+6f/L9U+6f/f457p96/7T7522v3fbaba/d9tptr9322m2v3fbaba/d9tptj257dNuj2x7d9ui2R7c9uu3RbY9ue3Tb49se3/b4tse3Pb7t8W2Pb3t82+PbHt/25LYntz257cltT257ctuT257c9uS2J7e9ftvrt73+sMfnT75/yv2z3z8f9sb5U++fdv982Hs0yjZOe+c/HC2AAjhAAnrA+ZRyggZYwLxBj4AWQAEcIAE9ICzrabmfYAHzBnPvO6EFUMDDMjlIQA8YARpgAfOG02kuaAEUEJZnWJ5h+XQgOovldKELLGBeQKcfXdACKIADJKAHjAANsICw3MJyC8stLLew3MJyC8stLLew3MJyC8sUliksn95F/QQOkIAeMAI0wALmDaeXXdACwjKHZQ7LHJY5LHNY5rDMYVnCsoRlCcsSliUsS1iWsCxhWcKyhOUelntY7mG5h+UelntY7mG5h+UelntYHmF5hOURlkdYHmF5hOURlkdYHmF5hGUNyxqWNSxrWNawrGFZw7KGZQ3LGpYtLFtYPn2Q7AQOkIAeMAI0wALmDe6DDi0gLM+wPMPy6YN8fgVPH7xAAx6WeZwwL+DTBy9oARTAARLQA0aABlhAWG5hud1xgxsFcIAE9IARoAEWcEckpiMgLFNYprB8+iDPE3rACNAAC5g3nD54QQugAA4IyxyWOSxzWD59UI4T5g2nD17QAiiAAySgB4wADQjLEpZ7WD59UPgECuCA07Kd0ANGgAZYwLzh9MELWgAFcEBYHmF5hOURlkdYHmFZw7KGZQ3LGpY1LGtY1rCsYVnD8umD/SyE0wcvaAEUwAES0ANGgAZYQFieYXmG5dMH+9nYTh+8QAJOy2fJnz54gQZYwLxATh+8oAVQAAdIQA8YARpgAWG5heUWlltYbmG5heUWlltYbmG5heUWliksU1imsExhmcIyhWUKyxSWKSxTWD59sI8TWgAFcIAE9IARoAEWMG+QsCxhWcKyhGUJyxKWJSxLWJawLGG5h+UelntY7mG5h+UelntY7mG5h+UelkdYHmF5hOURlkdYHmF5hOURlkdYHmFZw7KGZQ3LGpY1LGtY1rCsYVnDsoZlC8sWli0sW1i2sGxh2cKyhWULyxaWZ1ieYXmG5RmWZ1ieYXmG5RmWZ1iet+V+HAEtgAI4QAJ6wAjQAAsIyy0st7DcwnILyy0st7DcwnILyy0st7BMYZnCMoVlCssUliksU1imsExhmcJy+GAPH+zhgz18sIcP9vDBHj7Ywwd7+GAPH+zhgz18sIcP9vDBHj7Ywwd7+GAPH+zhgz18sIcP9vDBHj7Ywwd7+GAPH+zhgz18sIcP9vDBHj7Ywwd7+GAPH+zhgz18sIcP9vDBHj7Ywwd7+GAPH+zhgz18sIcP9vDBHj7Ywwd7+GAPH+zhgz18sIcP9vDBHj7Ywwd7+GAPH+zhgz18sIcP9vDBHj7Ywwd7+GAPH+zhg919cJ5gAfOC4T7o0AIogAMkoAeMAA2wgLDsPigntAAK4AAJ6AEjQAMsYN5AYZnCMoVlCssUliksU1imsExhmcIyh2UOyxyWOSxzWOawzGGZwzKHZQ7LEpYlLEtYlrAsYVnCsoRlCcsSliUs97Dcw3IPyz0s97Dcw3IPyz0s97Dcw/IIyyMsj7A8wvIIyyMsj7A8wvIIyyMsa1jWsKxhWcOyhmUNyxqWNSxrWNawbGHZwrKFZQvLFpYtLFtYtrBsYdnC8gzLMyzPsDzD8gzLMyzPsDzD8gzL87asxxHQAh6Wx3ECB0jAw/JoJ4wADTjn1PiEecPpgxc8LI/T8umDF3CABPSAEaABFjBvOH3wgrBMYZnCMoVlCssUliksU1imsMxhmcMyh2UOyxyWOSxzWOawzGGZw7KEZQnLEpYlLEtYlrAsYVnCsoRlCcs9LPew3MNyD8s9LPew3MNyD8s9LPewPMLyCMsjLI+wPMLyCMsjLI+wPMLyCMunD45xQguggNPyPEECesAI0AALmDecPnhBC6CAsGxh2cKyhWULyxaWLSzPsDzD8gzLMyzPsDzD8gzLMyzPsDxvy3YcAS2AAjhAAnrACNAACwjLLSy3sNzCcgvLLSy3sNzCcgvLLSy3sExhmcIyhWUKyxSWKSxTWKawTGGZwjKHZQ7LHJY5LHNY5rDMYZnDModlDssSliUsS1iWsCxhWcKyhGUJyxKWJSz3sNzDcg/LPSz3sNzDcg/LPSz3sNzD8gjLIyyPsDzC8gjLIyyPsDzC8gjLIyxrWNawrGE5fNDCBy180MIHLXzQwgctfNDCBy180MIHLXzQwgctfNDCBy180MIHLXzQwgctfNDCBy180MIHLXzQwgctfNDCBy18cIYPzvDBGT44wwdn+OAMH5zhgzN8cIYPzvDBGT44wwdn+OAMH5zhgzN8cIYPzvDBGT44wwdn+OAMH5zhgzN8cIYPzvDBGT44wwdn+OAMH5zhgzN8cIYPzvDBGT44wwdn+OAMH5zhgzN8cIYPzvDBGT44wwdn+OAMH5zhgzN8cIYPzvDBGT44wwdn+OAMH5zhgzN8cIYPzvDBGT44wwdn+OAMH5zhgzN8cIYPzvDBGT44wwdn+OAMH5zhgzN8cIYPzvDBGT44wwdn+OAMH5zhgzN8cIYPzvDBGT44wwdn+OAMH5zhgzN8cIYPzvDBGT44wwdn+OAMH5zhgzN8cIYPzvDBGT44wwcf6+xHUkuiJE6SpJ40kjTJklKjpUZLjZYaLTVaarTUaKnRUqOlRksNSg1KDUoNSg1KDUoNSg1KDUoNSg1ODU4NTg1ODU4NTg1ODU6N01WVnGbQ6aw3tSRK4iRJ6kkjSZNSQ1Kjp0ZPjZ4aPTV6avTU6KnRU6OnRk+NkRojNUZqnD6s3UmSetKpMZw0yZJm0OnKN7UkSuIkSepJqaGpoamhqWGpYalhqWGpYalhqWGpYalhqWGpMVNjpsZMjZkaMzVmaszUmKkxU2OGhifU3NSSKImTJKknjSRNsqTUaKnRUqOlRkuNlhotNVpqtNRoqdFSg1KDUoNSg1KDUoNSg1KDUoNSg1KDU4NTg1ODU4NTg1ODU4NTg1ODU0NSw/3cnCiJkx4admUo9aSRpEmWNINOP7+pJVESJ6VGT42eGj01emr01BipMVJjpMZIjZEaIzVGaozUGKkxUkNTQ1NDU0NTQ1NDU0NTQ1NDU0NTw1LDUsNSw1LDUsNSw1LDUsNSw1JjpsZMjZkaMzVmaszUmKkxU2OmxgwNT/i5qSVREidJUk8aSZpkSanRUqOlRkuNlhotNVpqtNRoqdFSo6UGpQalBqUGpQalBqUGpQalBqUGpQanBqcGpwanBqcGpwanBqcGpwanhqSGpIakhqRG+jmln1P6OaWfU/o5pZ9T+jmln1P6OaWfU/o5pZ9T+jmln1P6OaWfU/o5pZ9T+jmln1P6OaWfU/o5pZ9T+jmln1P6OaWfU/o5pZ9T+jmln1P6OaWfU/o5pZ9T+jmln1P6OaWfU/o5pZ9T+jmln1P6OaWfU/o5pZ9T+jmln1P6OaWfU/o5pZ9T+jmln3P6Oaefc/o5p59z+jmnn3P6Oaefc/o5p59z+jmnn3P6Oaefc/o5p59z+jmnn3P6Oaefc/o5p59z+jmnn3P6Oaefc/o5p59z+jmnn3P6Oaefc/o5p59z+jmnn3P6Oaefc/o5p59z+jmnn3P6Oaefc/o5p59z+jmnn3P6Oaefc/o5p59z+jmnn3P6Oaefc/o5p59z+jmnn3P6Oaefc/o5p59z+jmnn3P6Oaefc/o5p59z+jmnn3P6Oaefc/o5p59z+jmnn3P6Oaefc/o5p59z+jmnn3P6Oaefc/o5p59z+jmnn3P6Oaefc/o5p59z+jmnn3P6Oaefc/o5p59L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rlnN5k4WdIMcj+/qCVREidJUk8aSakhqSGp0VOjp0ZPjZ4aPTV6avTU6KnRU6Onhvv5cGpJlMRJktSTRpImWdIM0tTQ1NDU0NTQ1NDU0NTQ1NDU0NSw1LDUsNSw1LDUsNSw1LDUsNSw1JipMVNjpsZMjZkaMzVmaszUmKkxQ8OTo25qSZTESZLUk0aSJllSarTUaKnRUqOlRkuNlhotNVpqtNRoqUGpQalBqUGpQalBqUGpQalBqUGpwanBqcGpwanBqcGpwanBqcGpwakhqSGpIakhqSGpIakhqSGpIakhqdFTw/1cnSiJkySpJ40kTbKkGeR+flFqjNQYqTFSY6TGSI2RGiM1RmpoamhqaGpoamhqaGpoamhqaGpoalhqWGpYalhqWGpYalhqWGpYalhqzNSYqTFTY6bGTI2ZGjM1ZmrM1Jih4QlYN7UkSuIkSepJI0mTLCk1Wmq01HA/n06cJEkPjXMzX/OErJs0yZJm0OnnN7UkSuIkSUoNSg1KDUoNSg1ODU4NTg1ODU4NTg1ODU4NTg1ODUkNSQ1JDUkNSQ1JDUkNSQ1JDUmNnho9NXpq9NToqdFTo6dGT42eGj01RmqM1BipMVJjpMZIjZEaIzVGaozU0NTQ1NDU0NTQ1NDU0NTQ1NDU0NSw1LDUsNSw1LDUsNSw1LDUsNSw1JipMVNjpsZMjZkaMzVmaszUmKkxQ8OTvG5qSZTESZLUk0aSJllSarTUaKnRUqOlRkuN9HNNP9f0c00/1/RzTT/X9HNNP9f0c00/1/RzTT/X9HNNP9f0c00/1/RzTT/X9HNNP9f0c00/1/RzTT/X9HNNP9f0c00/1/RzTT/X9HNNP9f0c00/1/RzTT/X9HNNP9f0c00/1/RzTT/X9HNNP9f0c00/1/RzTT/X9HNNP9f0c00/1/RzTT/X9HNNP9f0c00/1/RzTT/X9HNNP9f0c00/1/RzTT/X9HNNP9f0c00/1/RzTT/X9HNNP9f0c00/1/RzTT/X9HNNP9f0c00/1/RzTT/X9HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNPTpvi1JNGkiZZ0gxyP7+oJVESJ6WG+/nhNJI0yZLmTZ6sdlNLoiROkqSeNJI0yZJSo6VGS42WGi01Wmq01Gip0VKjpUZLDUoNSg1KDUoNSg1KDUoNSg1KDUoNTg1ODU4NTg1ODU4NTg1ODU4NTg1JDUkNSQ1JDUkNSQ1JDffz4WRJM8j9/KKWREmcJEk9aSSlRk+Nnhru59OpJVESJ0lSTxpJmmRJM0hTQ1NDU8NPxTjEUYAdOE5URwUacJ7oh874GRk3NiABGSjADhxABRoQahNqE2oTahNqE2oTahNqE2oTajPUyFPlAhuQgAwUYAcOoAINCLUGtQa1BrUGtQa1BrUGtQa1BrUGNYIaQY2gRlAjqBHUCGoENYIaQY2hxlBjqDHUGGoMNYYaQ42hxlATqAnUBGoCNYGaQE2gJlATqAnUOtQ61DrUOtQ61DrUOtQ61DrUOtQG1AbUBtQG1AbUBtQG1AbUBtQG1BRqfrrOeWIOecpdICe6ZzWn0+x5gg5dxzo1dWxAAjJQgB04gAo04ExsUGtQa1BrUGtQa1BrUGtQa1BrUCOoEdQIagQ1ghpBjaBGUCOoEdQYagw1hhpDjaHGUGOoMdQYagw1gZpATaAmUBOoCdQEagI1gZpArUOtQ61DzV2IDkcBduAAKtCAp9p5igldR1Hd2IAEZKAAO3AAFWhAqLkLETk2oKtd5yIxUIAdOIAKNKCrjRP9c3xjA7qaOTJQgKean2bjuW2BCjTgTPTP8Y2nGvu7+ef4RgYKsAMHUIEGnIGe6RbYgK52HSPFQAF6mU1Ht3tGK09ka35sj2eyNfZ/4PHhRgF24AAq8LR7nhdDntB2o8eHGxuQgAwUYAcOoAKh5vFBzgrw3LZAV/PX9PhwIwMF2IED6GrXAVwGnIkeH25sQAIyUIAdOIBQ8/ggXi0eHy70+CDq2IAEZOCp1r0cPD7cOIAKNOBM9PjQvXF5fLiRgAwUYAcOoAINOBMVah4fujdajw83MtBL0pvcdZDdhSPRff5Gt+C16d7dvXTcpbs5GnAmukvf2ICnseEP6S59owA7cAAVeKoNfwt3aUdPagtsQAIyUIAdOIAKNKCrneXg6W2BDehq1yFxDBSgq6mjq5njqaaHowFnorv/jQ1IwNOu+kO6o9+oQAPORHf0C90Lz6Ry8iS0QJfw53V/0+k4gAo04Ex0f7vx/Fvz53W/uLEBCchAAXbgACrQgFBTqCnUFGoKNYWafyHPvB7yjLDHp8/RLXh1u1/cyEC3cB3114EDqEADzkR3EfMKcGcwrwB3hulP5s5wowHdwlnUnvkV2IAEZKAAT7VzTo08/yvQ1cjRgDPRm/1kR7cgjgPob2yObuE67XAmegO/sQHd7nBkoABdTR0HUIFQI6gx1Bhq/n27kaMuPN8rsAMHUIFZm57gdVWhZ3NdVejpXFdleT5XoAIt60JQmx212VGbHbXZUZv+zbrqraM2/Zt1VVZHbXbUpnvhVYXub1e9DdTm5W9ehe5vV0ENlO9A+SrK1/3tqixFbSpq0/3tqixFbSpqU6GmUFOoGdQMtenOcE5SkadHBTbg43EenT9HBgqwAwdQgQaciX626Y3txOv8TQIyUIAdOICu5s/r5yzeOBP9rMUbT7V2OBKQgaeaD6s9bypwAE+1Ro4GnIl+BuqNrsaOblccO3AAFeh2h6PbPevYE6YePV/HBiQgA13N39jPQr1xABV4qvnYyfOlyMc4njD16BM6nhI+sPGUKfK+vedMBXbgACrQgDPRj0dlL3U/IPXGU83HOJ48FSjADhxABRpwJvqRqTc2INQUago1hZpCTaGmUFOoGdQMagY1g5ofp+qDK0+pChxABRpwJvrRqje6Xa9CP0z1xg4cQAUacAaO63DjCxuQgAwUYAcOoAINCLUGtQa1BrUGtQa1BrUGtQa1BrUGNYIaQY2gRlAjqBHUCGoENYIaQY2hxlBjqDHUGGoMNYYaQ42hxlATqAnUBGoCNYGaQE2gJlATqAnUOtQ61DrUOtQ61DrUOtQ61DrUOtQG1AbUBtQG1AbUBtQG1AbUBtQG1BRqCjWFmkJNoaZQU6gp1BRqCjWDmkHNoGZQM6gZ1AxqBjWDmkFtQm1CbUINsWQglgzEkoFYMhBLBmLJQCxRxBJFLFHEEkUsUcQSRSxRxBK9Ysl1ErYBZ+IVQMiRgAwUYAcOoAINmEFX6QBCjaBGUCOoEdQIagQ1ghpBjaHGUGOoMdQYagw1hhpDjaHGUBOoCdQEagI1gZpATaAmUBOoCdQ61DrUOtQ61DrUOtQ61DrUOtQ61AbUBtQG1AbUBtQG1AbUBtQG1AbUFGoKNYWaQk2hplBTqCnUFGoKNYOaQc2gZlBDt0PR7VB0OxTdDkW3Q9HtUHQ7dEJtQm1CbUJtQm1CbUJtQm2mmh0HsAEJyEABduAAKtCAUGtQQywxxBJDLDHEEkMsMcQSu2KJORpwJnos8Slmzw4LJKCrTUcBduAAKtCAp9p5kDp5mlhgA7qaP6/HkhsF2IEDqMBTzeeVPV/sRo8lN7racCQgAwXods+Rj6eDkXhBeXy4kYCnhe4Fdd3UcGEHns/rs8123ddwoQFn4nVrg7/QdW/DhQRkoNv14rvuZjgHTHbdznBhA/rzuoT7/I0C7MABVKABXc0L9bqx4cIGJCADBdiBA6hAA0JtQm1CbUJtQm1CbUJtQm1CbULNff48Z5c8AYx8Jt0zwAIF2IEDqEADzkT37hsbEGoNag1qDWoNag1qDWoNagQ1ghpBjaBGUCOoEdQIagQ1ghpDjaHGUGOoMdQYagw1hhpDjaEmUBOoCdQEagI1gZpATaAmUBOodah1qHWodah1qHWodah1qHWodagNqA2oDagNqA2oDagNqA2oDagNqCnUFGoKNYWaQk2hplBTqCnUFGoGNYOaQc2gZlAzqBnUDGoGNYPahNqE2oTahNqE2oTahNqE2oTaDDX2PLLABiQgAwXYgQOoQANC7Yol5tiABGSgADtwABVowJnoseQ8nZg9jyyQgK42HQXYgQOoQAPOxCuWXNiABIQaQ81jybkcyJ5HFqiJHjVuPC2ca5bsuWGBbsHL1+PDjQo04Ez0+HDj+bzqReLx4UYGCvBUUxf2+HCjAk819ef1+HChx4cbXU0cCchAAbpad3Q1f16PBOp17JHgxgYk4Gn3XH9jP3qNzN/CI4H543gkMFfzSHCjAWeiRwLzx/FIcCMBGehq/rzXlU/+ONelT17z7v7TH8fdf7qEu/+NDUhABgqwA0+16c/g7n/jjGbkiW+BDUhABgqwAwdQgQaEWoNag1qDWoOa+/y5TMOe+BY4gP5C5mjAmeg+f2MDEpCBAuzAAYQaQc1vjzrOFuWJb4ENSEAGCrADB1CBBoSaQE2gJlATqAnUPD6ca1Tcrp7CcJyJV0/hwgYkIAMF2IEDqECodagNqA2oDagNqA2oDagNqA2oDagNqCnUFGoKNYWaQk2hplBTqCnUFGoGNYOaQc2gZlAzqBnUDGoGNYPahNqE2oTahNqE2oTahNqE2oRaji/4ur3xxgYkIAMF2IEDqEADQq1BrUGtQa1BrUGtQa1BrUGtQa1BjaBGUCOoEdQIagQ1ghpBjaBGUGOoMdQYagw1hhpDjaHGUGOoMdQEagI1gZpATaAmUBOoCdQQSwixhBBLCLGEEEsIsYQQSwixhBBLCLGEEEsIsYQQSwixhBBLCLGEEEsIsYQQSwixhBBLCLGEEEsIsYQQSwixhBBLCLGEEEsIsYQQSwixhBBLCLGEEEsIsYQQSwixhBBLCLGEEEsIsYQQSwixhBBLCLGEEEsIsYQQSwixhBBLCLGEEUsYsYQRSxixhBFLGLGEEUsYsYQRSxixhBFLGLGEEUsYsYQRSxixhBFLGLGEEUsYsYQRSxixhBFLGLGEEUsYsYQRSxixhBFLGLGEEUsYsYQRSxixhBFLGLGEEUsYsYQRSxixhBFLGLGEEUsYsYQRSxixhBFLGLGEEUsYscRT/fjMfGE/Yy6QgAwUYAcOoAINOBMH1AbUBtQG1AbUBtQG1AbUBtQG1K5Ywo4N6GrkyEABduAAKtCArnYOCTzdMLABXa07MlCAruZPZgOoQK+3y9hMnAewAQnIQAF24ABqoCch+jQ3exJioL/FcGSgADtwABVoQC+zs5vvB9EFNqCrTUcGCtDV/MnaACrQZ6YvYzORDmADEpCBAuzAAdREH6Gc6VrsqYmBBDzf4kzXYk9NDOzA8y3OHC321MTAs8zOdC328+hu9BHKja7m9eYjlBsZKMAOHEAFulp3nIkeH25sQAIyMJIQ+UpYNK/uK2HxwpnoycQ3NiABGSjASDfkK7nxRgUacN45nHwlN97YgARkoAA7cAA10VDzhpo31Lyh5g01b6h5Q80bat5Q84aan6j5iZqfqPmJmp+o+Yman6j5iZqfqPmZNe8ZmIENSEAGZs17ruVV8/3Imu9H1rznWgY2IAEZKMCs+d4GUIEGzJr3XMvABiQgAwXYgQOYNd8vn/cnu3z+QgIy0Ovi+rUOHEAFejIxOc5EOYANSEAGCrADB9Dr+Ixc/fLuCxuQgAwUYAcOoAINCLUBtQG1AbUBtQE1//qTP7p//W9UoAFn4unzgafamUfKnmAZyEABduAAKtCAM9EjwY1Q80hA7hceCW4UoKt5K/FIcGaisidYBhpwJnokuLEBCchAAZ5qZ1ore9pl4Kl2pn6yp10GzkBPuww81c4ddOxpl4EMFGAHDqACDehqZyzxtMtAVxuOBGSgADvQJdTRgDORDmADnhJ+67vnWgYKsAMHUIGnmnhB+QTmhR4qbmxAAjJQgB04gAqEmncPzqQH9lzLwAZ0NXZkoABdzUvduwfiJendA+8Ceq5l4Ez0AHJjAxLQU0KcRpImWdIMuvKhTnIPvq+9b0ACeoa5kyT1pJGkSRbkXnpulWNPXWS/fX5cX2ankaRJ3ol1mkHuihe1JEriJBdxM+6GN54q3avI3fBGC/TcRPaBi2chsvfSPQsx0KfSndxAdzTgTHTPurEB6S6SKx3xIknqSSMpitNzDq9C9OzCqxA9u5B9eOnZhYH+quqoQH9Sc3w8qfuRJxfe1JIoiZMkyS36g7gDDP/b0wG8eXuq4E2cdP62F/LZ+G8aSZpkSTPI270vcHqKYOBZ7+P6BwwU4PmYvgzjaX88vAr9Y3jj+Zxuy7+FV8H4t/DGDhxAN+u16d/CG2eie9JV4O5JNxIQago1hZpCTaGmUFOoGdQMagY1g5pBzaBmUHPvu9GiqRsa9USjnmjU7oE3cqBn5LEvx3pGXmAH+pjYSZMsaQZds11OLYmSOEmSelJqtNRoqdFSg1LDv1HnDWLsKXiBDDxfxpeOPQUv8CzEc7MqewpeoAFnon+jbmxAAp5qvl7sKXiBHXiq+eq0p+AFGvBU82VmT8ELbEBf4nXiJEnqSSNJg9wfz+2v7Ml37GvYnnzHev2DDhxABZ5P6mvYnnx3o3vpjQ1IQF9YdTrFfOXbT2YLHMBTzNfD/XC2wJnoXuoL256nF+hiLuFeeqMAvf06jSRNsqQZ5A56kVv0wnKf8wV0z7pjX0D3rLvAmehOd+P5pL7C7ll3gQwUYAeeapcBTbIkl3qQH8N2U0uiJE6SJBchxwHURP8M3uiPyY4C9LbiNJI0yZ+yO85E/xLe6CXi/9bd9UaX8id0d73x/PL4ErLn1IlPXHpOnfgEo+fUiU8Ezuv76Hh9IC9sQAIyUIA90T+DPpvmaXCBHTiACjTgTOwH0B9nOPq3zN/t9D7xCQ/PRmNfKfdstEBN9Lvj/bf88viLKOl8Fp8k8USywJl4tm3xeQ1PJPOOoueR3cRJktSTRpImWdIMOtv/TakxU2P623pbmP6MXhx+Hfyj7MXzwW5qSZTESZLUk0aSJllSarTUaKnRUqOlRkuNlhotNZqXq55IXpvmeJbhuVlTPKUrsAMHUIEGnInelG9sQAJCjaHGUGPvsx2OCjTgTDy/PIENSEAGCrADoSZQE6gJ1Py6XC9Ivy/3IkriJEnqSW6xnTj8ScmRrjszJW/UlLxRU64bNcVpJGmSJc0gv1HzIn/xC/0V3aK7240G9FccJ7q73diABGSgADtwABVoQKhNqLnjkbdH97wbGXiqsdeDO+SNpxp7sZ4fHmEvVndT9pc/3fRCz+EK9JHEcCSgjyXU0dXM0dWm47iOfRRP4brJkmaQHwR6UUs6LZ6jG/GMLDmHBeIZWXKOX8Qzsm48vz6B55OKP7S77I0MFGAHut2zdj3LSsSfwd1Q/AXdDW8UYAcOoAINOBPdDW90NS84d8MbGehqXpzuhjcOoAJPte5l5m54oX+ebjxnTw8Xvk7ou5CB5+zp4S9/ndB34QAq0IAzMU/ok5Yn9EnLE/rEc6+ke22erhvYgQM4E89voJyTAuL5VIE+weU0g7x7d9EZ571+T9+7qSeNJE2ypBl0et1NLYmS/GG85bjL3diBZ/10L133sxtnoGc9yTnEE896CiTg+RrDSZJ60kjSJEuaQf5JvKglUVJqtNRoqdFSo6VGS42WGpQalBqUGpQalBqUGpQalBqUGv7JPGc4xHObAhvwLK9zHkI8tylQgGeV+MfFc5sCz9oZLuG+euNMdF+9sQFdzavPffVGV/M6c18d/mTuq+eZR+K5TYEGPNXUH9J99cYGPIvQbZ2uepMk9aSRpEHDLZLj+aTqr+2e518+z1QKHEAF+pP6a7s/XqgHsAEJeH7f3UBcLy+epyTqBeRfWfP396/sjd7b9Kf1r6y5Af/K3ugdThe4erVu7OrWXjiui4aF4qIb8Ryj6fb9cOyLJMn7v/58/nm8UYEGnIGeYBTYgOdDnaMr8QSjQAGO+6k4LrURjktt5LqM0g35pTYXtSQ33h0ZKMDzVaZbOl028HwV/6p6PlHgTIzD8IXjMHzhOAxfOA7DF47D8IXjMHzhOAxfOA7DF47D8IXjMHxhTg1ODU4NTg1ODU4NTg1ODU4NTg1JDUkNSQ1JDffTcwQqnjcUOIBeYl7m7qc3zsTuo7TDsQEJyMDTUw8Xdlc9vB34gdnipEmWdIbUc6gqnjQU2IAEZKAAO3AAFWhAqCnUFGp+evZFnCRJPWkkaZIlzSA/Jf+ilpQalhr+2T68RPy7feMAKtCAM9E/3jc2IAEZ6GruSLMDB3AGekpQ9z6TpwR179t4SlBgBw6gP+90NOBM9K/0jQ1IQAYKsAMHEGoNag1qBDWCGkHNP9nnJIZ4SlDgqXbOZ4inBAUq0K7T1sWPMLvIA8BFLYmSOMktkuP5pGfGh3jaTz/nNcTTfgIJyEB/0uHYgQOoQAO6mj+Du/eNDUhABgrwVPOxr59eFqhAA85E9/AbG5CADBQg1NzDfbTsyUCBBnQ1L0n3cB/pejJQoKt501YGupqXjnbgACrQgDPRDmADEpCBUDOoGdQMagY1g9qE2oTahNqE2oTahNqE2oTahNpMNU8RCmxAAjJQgB04gAo0INQa1BrUGtQa1BrUGtQ8MpA6KtCAM/E63VscG5CADBRgBw6gAi2R/S3M0Z93OnagT8Qdjgo04Ez0+HBjAxLQ5/eaI8pX8Mbu8zc2IAF91pAcBdiBA4ja7FDrqM2B2hyozYHaHKjNy+f9GS6fvxC1OVCb7vPXM7jPX+g+fyPUFGoKNfh8h893+HyHz3dF21GUpKEkDSXpPn89g6EkDSUJn+/w+Q6f7/D5Dp/v8PkOn+/w+X75vD/DRElOlORESU6UpPu8zyP0a+76xHFNXotjAxKQgf5u6tiBA6hAA87Eaxr7wgZ0NXNkYDbwcc1gT0cFGnAmUjYNTwYKJCADBdiBA5iV5clAgVlZngwU2IAEZKAAO9BnaA7Hmejuf6NP0ng5uPuLP5l3D24UYAcOoAINOBM9VNzodr1peFC4sQMH0O160/CgcONM9KBwo3c7/Nc8KNzIQAF24AAq0BKvTn13JCAD/S28qN39b/S38Hbm7n+jAf0tvEW5+9/YgKeaz0L6sWmBAuzAAVSgAWeiu/+NDQi109F9QsCzjW7SpHNVwN/gdHInPxvtJrfIjgRkoD+/OHbgAJ6D/OZkSTMobqIXjZvoReMmetG4iV40bqIXjZvoReMmetGWGi01WmpQalBqUGpQalBqUGpQalBqUGpQanBqcGpwarhP+2SopywFdqCXlzoq0Ovb68E9/UL39Bt9jvFwJKCrTUcBdqBPNJKjAn2q0Z/XPf1C9/QbXc0r1TsFN/qc5nAUoM9q+lu4/9+owLMQLwMzyK+uvqglURInuUUvAf/E+9Sa5zh1n0/0HKdAAjLwfFKfE/Qcp8ABVKABTzVfavMcp8AGJCADBehqXkTu4zcq0IAz0X38xgYkIAMFCDX/xKsXvX/ibzSgq50l6SebdZ+O9JPNAk81b8+eRxV4qvl8pedRBQ6gAg04E/0Tf2MDEpCBUGtQa1BrUGtQa1AjqBHUCGoENYIaQY2gRlAjqBHUGGoMNYYaQ42hxlBjqDHUGGoMNYGaQM0jw5lgJJ5XFSjADvR1LnFUoAFn4nXv1YUNSEAGCtDfwtG/9meSk3hyVaA/73BkoAA7cAAVaIkeCXxm2TOm7iJRvLH7/I0KNKCX7xlsPG0qsAEJiNo0qBlq01Cbhto01KahNidq033+epyJ2pyozYnanHg393mfOPckq8BTzSf+Pc3qQs+zCmxAX3dhRwYKsAMHUIEGnInu8z7R6+edBXJUlmdjdZ/S92yswAFUoEUFzJaVNekANiABGSjArKwJR59w9AlHn3D0CUefcPQJR59wdD/OrPu6gx9nFmhALygvB3dpn5L348wCCchAAXbgACrQEv2z7jOP81pmu5CBAjzTU3xS3w8uC1SgAfPT7AeXBTYgARkowA4cQE08P/neC/FUsZso6Vx/8wL19beLepI/v7dGVaABH88/vIGdfn9TSzplPKJ5SlmgAPu95udJZTdpkiXNoNPhb2pJlMRJkpQaMzVmaszUmLdG99Szm1oSJXGSJPWkkaRJlnRqnCOo7rlngQ1I99Jn9/SzQC+x4diBA6j3gmj3E8gCfRmynei5Lzc2IN3LpP1KV7vR1dSxAwfwHBe5wunnN82g08tvakmU5Bb9rdibkZfL6czjXDXonnwW2IAEPMu/ubHTmQM7cAAVeKqdo9vuyWc3evLZjWd32gvg9PCbOEmSetJI0iRLmkHeZb8oNUZqjNQYqTFSY6TGSI2RGiM1NDU0NTQ1NDXcy8+Z1e5HjwUOoAINOBPd0W9sQK8gbx7u6jcK0NW8kbuv36hAV/Pm4O5+ofv7jQw8M2G9Wj0d+qLzl87Fi+45aYENSEAGCvB8xHNar3tOWqACDehqZzv2vLTABnS16chAAXoW4+E4gAo04Kl2ztp1z2Ib7M9LnhspjgLswAF0u8PR7fpbkNv1x2H/TLgaNyABGXiqiT+O+/ONA6jAU038ed21xR/HXfvMpOue0DbEH8ddu7uEu/aNHTiACjTgTHTX7v4Mnlh6YzYiz2IL7MABVKABXcJfaBzABjxfqPtrDgYKsAMHUIEGnIn+Ib+xAaGmUHM3717d7uY3DqACDTgTr+/5hQ1IQAZCzaBmUDOoGdQMau7m3duDu3n39uAf8Rs7cADdrvubf8hvnIGeNRfoX9npSEAGCrADB1CBBpyJ7vP9QgYKsANPu+dcVPdsuUADzkT/ep8pWd0z5gIJyEABduAAaqL7/Dlv1T1HLpCADBRgB/rznvHX897GcLvu0mf/snveW6AA3UJ3HEAvh+FowJnoLn1OjXXPewskIAMF2IED6GreNNy7b5yJ7t03NiABI8O0e07cXQ7uxzeidNyPvRPoOXGBDUhABp5vod4I3I9vHEAFnmrey/KsuBvdj2881dQrwP34Rga6mteF+/GNA+hqXvPux+rV4n6sXqjux95p9dO7Agnodv3d3I9vVKABT7vnvFr3hLmrcXnCXKAAO1ATm6dQd8cGJKCnUA9HAXbgACrQgDPxSjC/sAHPh/T+tufDBQ6gAs+X986758Td6G56YwP6W/ivXWnnFwqwAwdQgQaciVfa+YWx3aFfyXA3+lt4+brz3qhAA/pb+K+5897YgARkoAB9E4RXVh9ABRpwJnpC640NSEAGCtDf4kIDzkR33hv9LbyO3XlvZKAA/S283q6NIxcq0IAz8do4cmEDEtDrQh0HUIEGnInupjf6Z9GJkjhJknrSSPIOkpMlzZv8lKybWhIl+ZOboz/jdJyJ3q2+0fc8+b9tBGSgADtwABVowJnovnsj1AhqBDWCGkGNoEZQI6i5755Tht0z2gIZKECfUPCC8m71jQo04Ez0HvaNDUhAVyNHAXbgALoaOxpwJrpH39iysi6PvpCBAuzAAVQg2kNHe/AP7zkH2j3TLVCA/hbd0d9iOCrQgDPRPfqcSOye6RZIQAaeu8gOr6HTo/Xwgjo9OlCBBpyJp0cHNiABGShAqHnqus8WeaZboAFn4jyADUhABgrQ1bzR+mq4T7x4plugAWegZ7oFNiABGSjADhxAV2NHA87EdgAbkIAMFGAHutpwVKABZyIdwAYkIANdbTp24AAq0IAz0efQbmxAT/Fw4iRJ6kkjSYPEZ+W8ZM8YoHT9rQA9kvnze4r7jQo04Ez0rSg3NiABGXiWgH+3PPNNfdbFM98CZ+I4gA1IQAb6W4hjBw6gAl2tO85E3+F5YwMSkIECdDV/N48BPjXkmW+BBpyJHgNubEDKujDUkKGGPAbcOIAKNOBM9BhwI9+b+vt14NWNHeh2vbG5t9942uXLwgz0HLfA8y18Fs5z3AIZeL6FT0R5jlvgACrQgK52lo7nuAU2IAEZKMAOHEC3e8a36zwr/4Z5spr6ZJgnqwUq8HwynwHzZLUb3Ve9v+zJaoEEPJ9MvBxObw3swAFUoAFnovuxT6d5ClsgARkowA4c+cbidr2o+wFsQAK63e4owA4cQL1PyejjOjHkwpl4nRhyYQMSkIEC9NIZjgaciddO7Qv9Lby63Y9vZKAA+30aSvcUtkAFGnAm+hbSGxuQgF46/ujusTcq0N/CG5d77IXusTeeb+HzmZ6sFni+hcd1PzErsANPNZ+ZuJLYbjTgDLzy2G5sQAK6GjsKsAMHUIEGPMvMZ348b83PoOqeuOaHIXXPXAvswAFUoAFnoh8t4pOCnsAWSEAGutrh2IEDqEADzsTrJKALG5CAp12vQk9bU5+V9bS1QAPORPfuGxuQgF4X/sbu3Td24ACeb+ENxtPWAmeinwd0YwMSkIEC7EB/i+E4E/3bfaO/hZf6dSrDhQz0tzDHDvS38OJzn7/RgKfaVdTu8zc2IAEZKMAO9IzP5qhAA85E/3bf2IBeZl5Dhpo31Lyh5g01b6j5iZqfqPmJmp+o+Yman6j5iZqfqPmJmp9Z8568FtiABGSgALPmPbPssYR18SishQ3MvnppjgaciXIAG5CAvoY5HQXYgQOoQAPOxH4AG5CAUPOlX59i9QOyAgfwVPNZUT8gK3Am+gKwT7l7Dpf5bKvncJnPq3oOl/k3w3O4AjtwABVowFPN59z8hKzABiQgAwXYgQOoQANCzaBmUDOoGdQMagY1g5pBzaBmUJtQm1CbbtdLcnbgCPRcK/OZOM+1CnS7Z/F5rlVgAxKQgQLswAFUoAFd7WzKnnZlPqvhaVeBBGSgADtwABVowJnIUGOoMdQYagw1hhpDjaHGUGOoCdQEagI1gZpATaAmUBOoucf65JinXZnPZ3na1dUIPO0qcADdAjkacCa6b97YgAR0tQsFeKp5L9rTrgI10b3QJ6Y8x8p8YsqTrAL9ef0tLn/zpnH524UGRNtxf/OZK0+0CiQgWqqhpRpaqkHNoGZQM6hd/vbA4blQNi8kICe6i5wpcMMTlgI7cJyHKRyOCjTgPLGd6IcN3NhOJEcCMlBOZMcOHEAFGnAm+q7jG11NHAnIQAF24ADqXcfDk5m80Q5PZvIaGp7MFMhAAXbgACowwsrwZKYb+wFsQLq9ZRzpOOPKZ7qxAwdQgQacie44N3r5+pMNA85EPYANSEAGCrADBxBqCjWFmkHNoGZQM6gZ1Axq5mpehaZAA87EeQAbkIAMFGAHQm1CbUJtppqnNgU2IAEZKMAOHEAFGhBqDWoNag1qDWoNag1qDWoNag1qDWoENYIaQY2gRlAjqBHUCGoENYIaQ42hxlBjqDHUGGoMNYYaQ42hJlATqAnUBGoCNYGaQE2gJlATqHWodah1qHWodah1qHWodah1qHWoDagNqA2oDagNqA2oDagNqA2oDagp1BRqCjWFmkJNoaZQU6gp1BRqBjWDmkHNoGZQM6ghljTEkoZY0hBLGmJJQyxpiCUNsaQhljTEkoZY0hBLGmJJQywhxBJCLCHEEkIsIcQSQiwhxBJCLCHEEkIsIcQSQiwhxBJCLCHEEkIsIcQSQiwhxBJCLCHEEkIsIcQSQiwhxBJCLCHEEkIsIcQSQiwhxBJCLCHEEkIsIcQSQiwhxBJCLCHEEkIsIcQSQiwhxBJCLCHEEkIsIcQSQiwhxBJCLCHEEkIsIcQSQiwhxBJCLCHEEkIsIcQSQiwhxBJCLCHEEkIsIcQSQiwhxBJCLCHEEkIsIcQSQiwhxBK6Yok6upo5duAAKtCAM/GKJRc2IAEZCDWPJeeJOcNTsQIV6GrTcSZeseTCU+1c8xzXIWc3MvBUOxfphidozeZv7LHkRgUacAb6OWeBDUhABgqwAwdQgQaEWoNag1qDWoNag1qDWoNag1qDWoMaQY2gRlAjqBHUCGoENYIaQY2gxlBjqDHUGGoMNYYaQ42hxlBjqAnUBGoCNYGaQE2gJlATqAnUBGodah1qHWodah1qHWodah1qHWodagNqA2oDagNqA2oDagNqA2oDagNqCjWFmkJNoaZQU6gp1BRqCjWFmkHNoGZQM6gZ1AxqBjWDmkHNoDahNqE2oTahNqGGWMKIJYxYwogljFgiiCWCWCKIJYJYIoglglgiiCWCWCKIJYJYIoglglgiiCWCWCKIJYJYIoglglgiiCWCWCKIJYJYIoglglgiiCWCWCKIJYJYIoglglgiiCWCWCKIJYJYIoglglgiiCWCWCKIJYJYIoglglgiiCWCWCKIJYJYIoglglgiiCWCWCKIJYJYIoglglgiiCWCWCKIJYJYIoglglgiiCWCWCKIJYJYIoglglgiiCWCWCKIJYJYIoglglgiiCWCWCKIJYJYIoglglgiiCWCWCKIJYJYIoglglgiiCWCWCKIJYJYIoglglgiiCWCWCKIJYJYIoglglgiVyyZjgo04Az0nLR55hwNz0kLJCADBdiBA6hAA55qZybS8Jy0wAYkIAMF2IEDqEADQs1jyZmJNDwnLZCADBRgBw6gl+SFBpyJVyy5sAEJyEABduAAQo2hxlATqAnUBGoCNYGaQE2gJlATqAnUOtQ61DrUOtQ61DrUOtQ61DrUOtQG1AbUBtQG1AbUBtQG1AbUBtQG1BRqCjWFmkJNoaZQU6gp1BRqCjWDmkHNoGZQM6gZ1AxqBjWDmkFtQm1CbUJtQm1CbUJtQm1CbUJtpto4DmADEpCBAuzAAVSgAaHWoNag1qDWoNag1qDWoNag1qDWoEZQI6gR1AhqBDWCGkENsWQglgzEkoFYMhBLBmLJQCwZiCUDsWQglgzEkoFYMhBLBmLJQCwZiCUDsWQglgzEkoFYMhBL/Ni3eaZIDs+ku9FjyY0NSEAGCrADB1CBUOtQG1AbUBtQG1AbUBtQG1AbUBtQG1BTqCnUFGoKNYWaQk2hplBTqCnUDGoGNYOaQc2gZlAzqBnUDGoGtQm1CbUJtQm1CbUJtQm1CbUJtZlqehzABiQgAwXYgQOoQANCrUGtQa1BrUGtQa1BrUGtQa1BrUGNoEZQI6gR1AhqBDWCGkGNoEZQY6gx1BhqDDWGGkONocZQY6gx1ARqAjWBmkBNoCZQE6gJ1BBLFLFEEUsUsUQRSxSxRBFLFLFEEUsUsUQRSxSxRBFLFLFEEUsUsUQRSxSxRBFLFLFEEUsUsUQRSxSxRBFLFLFEEUsUsUQRSxSxRBFLFLFEEUsUsUQRSxSxRBFLFLFEEUsUsUQRSxSxRBFLFLFEEUsUsUQRSxSxRBFLFLFEEUsUscQQSwyxxBBLDLHEs/nmmV0/PJsvcABPtfNm6eFH0QXORI8lZx798KPoAgl4qp258cOPoptnPvbwhMHAAVSgAWeix5IbG5CADIQaQY2g5rFEvBw8ltw4Ez2W3NiABGSgADtwAKHGUGOoCdQEagI1gZpATaAmUBOoCdQEah1qHWodah1qHWodah1qHWodah5Lzgz04SmPgQ1IQAYKsAMHUIEGhJpC7RqLnONju0Yd5MhAAXbgACrQgDPxGnVc2IBQm1CbUJtQm1CbUJtQm6k2jwPYgARkoAA7cAAVaECoNag1qDWoNag1qDWoNag1qDWoNagR1AhqBDWCGkGNoEZQI6gR1AhqDDWGGkONocZQY6gx1BhqDDWGmkBNoCZQE6gJ1ARqAjWBmkBNoNah1qHWodah1qHWodah1qHWodahNqA2oDagNqA2oDagNqA2oDagNqCmUFOoKdQUago1hZpCTaHmPYV+4Uz0nsKNDUhABgqwAz1ydUcFGtDVzhjlCZaBDdgjiM0rVFyoQANGwNPjChUXujF1JCAD/dHNsQMH0B99OhpwJnqouLEBCchAAXbgAEKtQc1DxbnFQq+E0HMPkV4JoTcSkIEC7MABVKABZyJDzUPFuclIr4TQGxkowA4cQAUacCZ6qLgRah4qhteFh4obBdiBA6hAA85EDxU3nmrn4TDqaaKBnOiOrt6i3NFvJGBM1uuRyx565LKHHrnsoUcue+iRyx565LKHHrnsoUcue+iRyx56KNQUago1hZpCTaGmUDOoGdQMagY1g5pBzaBmUDOoGdQm1CbUZixE6JUmeqMAY2lArzTRGxV4qqm3VI8Ejlea6I0NSEAGCrADY2lArzTRGw3oao4eCW5sQAIyUIAdOICn2nlYkF5pojfORI8ENzYgARkowA6MwZVe+Z7sb+wufaMAfZTkT+YufaMC/SEvYzPRXfrGGCXple95IwNPtfOcI73yPW8cQAUacCa6S9/YgKfauQ1Cr3zPGwXYgQOoQAPORA8KN7qal4O7/7mxRq/MzhtHorv09Cdzl76RgaeFM6Ncr2zNGwdQgQacie7SNzYgARkINXfp6dXtLn2jAg04E92lb2xAAjLQ1bwc3KVvHEAFnvvmjsPL5PTpmz1fM7k5N2cqzIWlcC88CmthKzzB7ShcdNulK85cWAr3wqOwFrbCE0xH4cvO6S+ebfng6dwKU2F/Hu8LecZlci/sz9PcPmthKzzBchRuhakwF5bCvXDRvU6Q948BXUfI3zzB1yHyN7fCVJgLS+Fe+NL18rluaL7ZCk/wdUmzf2bouqX5ZirsuuTvMqRwLzwKa2ErPMF6FG6FqXDR1UvX31F74VFYC1vhCbajcCtMhS/75jwKa2ErPMHzKNwKU2EuLIWL7iy6s+jOojuhy8dRuBWmwlw45tH0ys+8cQAVaMCZeEUM/8LyFTFupsKueJ4PonxFjJt74VFYC1vhCb4ixs2tMBUuulR06bJ/tmq+Iox3APiKMP6t5yvC3MyFpXAvXJ6fy/NzeX4uzy/l+aU8v5Tnl/L8Up5fSrlJ0ZWie0WS6x2viHG9Yy/P38vzXxHjZi1shcvzj/L8ozz/KM8/yvOP8vyjPP8ozz/K849SbqPoatG9IsP1jlcEuN5Ry/Nref4rAlx8RYCbS71beX4rz2/l+a08v5Xnt/L8Vp7fyvPP8vyzlNssurPoXhHgesfL0/0d5cDzy9EKU2EuLIV74cv+cNbCMderVwblhe0ANuBlW50vG+bsZXCeRaNy+e7Fl+/e7M8u/k6X797MhaVwLzwKa2ErPMGXr99cdLnoctG9fP08jUfl8vWbR2EtbIUn+PL1m1thKsyFi64U3fviGa+3+44Zr6v7kpmLubAU7oVHYS1shSf48vWbL12v98vXb+bCUrgXHoW1sBWe4MvXby66V+/gPG1C5YoBN0vhXngU1sJWeIKv2HBzK1x0r9jQvQ1fseHmXngU1sJWeIKv2HBzK3zpun9dseHmS9d97eo1+FzalTV5rpHolTV5owFjPUWvrMkbG5CADBRgBw6gAv0dx8UTfPUXbm6FqTAXlsK98CishS9dcp7gK+bc3ApTYS582RnOE3zFkJtbYSrMha/nV+cOvnzc5+b65eM3j8L+Xj491y/fv3mCr++8us0rJtxMhf15fEKkXzHh5l54FNbCVniCr5hwcytMhYvuKLqj6F4xQb2srphwsxWe4Csm3NwKU2EuLIV74aKrRfeKCT6d06+YcPEVE25uhakwF5bCvfAorIWLrhXdWXRn0Z1FdxbdWXRn0Z1FdxbdWXQndMdxFG6FqTAXlsK98CishV3XZ6/GFR8uvuLDza0wFebCUrgXHoW18KVLzhN8xYebW2EqzIWlcC88CmvhonvFE59LG1c8ubkVpsJcWAr3wqOwFrbCRffqk5znfei4+iQ3U2EuLIV74VFYCxs4U6p1ZEq1jkyp1pEp1Tqu2OOzhOOKPTdP8BV7bm6FqTAXlsK98ChcdEfRHUVXi64WXS26WnS16GrR1aKrRfeKPeb+4VOdHuKv5MgbG/ASbc5cWAr3wqOwFrbCE3wFnptb4aJ7BR6f9hxX4Lm5Fx6FtbAVnsl6BZ6bW+FL15y5sBS+dKfzKKyFrfAEX4Hn5laYCnNhKVx0ryPSzuNqVK8j0m62whPsgSe4FabCXFgKd2d2tsITzJf97twKX/aHMxeWwpd9dR6FtbAVnmA5CrfCVJgLS+GiK0VXiq4UXSm6vej2otuLbi+6vej2otuLbi+6vej2S9fb3jgKt8JUmAtLYY9/3szHZdKbkh6FW2E3eR6erZ46mSyFe+FRWAtb4Qn2vk5wK1x07bLfnC/73iRNC1vhCZ5H4VaYCl9zF148V2i5uRcehbWwFZ7Jds+ZXIy5I8+UfOhe3AuPwlr4ei9xnuB2FG6FqTAXlsLXe108CmthK4y5IKOjcCtMhbkw5pQ8UTLe6wohN0/wFUJuLu/F5b24vBeX97pCyM2jsBYu78XlvaS8l5T3kvJeUt7rniO9uJSnlPK8xk7Xu/fyXleouJkKc+HyXr28Vy/v1ct79dJOemkno7STUd5rlPca5b1Gea9R3muU9xqlnYxSnqOU59VPud5dy3tpaf9a2r+W9q/lvbS8l5b3svJeVtqJlXZipZ1YeS8r72Xlvay8l5X3svJes7STWcpzlvLMhGu1TLhWy4Rr9ZTMx4MN55nsSZnJrTAV5sJSuBcehbWwFS66rei2otuKbiu6rei2otuKbiu6Vx/kvCdA59UHubkVpsJcWAq71nnqvHqKZrIWtsITfAWWm1thKsyFpXDRvQKLp9HMK7DcbIUv3bMxzKtvcvOlq85U+NI1Zyl86U7nUVgLW+EJvgLOza0wFebCUrjo9qLbi24vur3ojqI7iu4ouqPojqI7iu4ouqPojqI7iq4WXS26WnS16GrR1aKrRVeLrhZdLbpWdK3oWtG1omtF14quFV0rulZ0rejOont1bNh95OrY3MyFpbDr+qKPZ4Ima2ErPIPtuGLUza0wFebCUrgXHoW1sBUuuq3otqLbim4rulcsOj9Adlzx5wzOdlzx5+bLTnemwlxYCvfCo7CCr9hyLmzZwVnXdlwx5Cx/O64YcrMWtsLXM+vJVwy5uRWmwgwtKbqIIXYghtiBGGIHYogdiCF2XDHkep7eClNhLix4niuG3DwKF91edHvRRQyxAzHEDsQQO0Z53yF4hlHKeZRyHqWcrxhyPc8o5aylnLXoatHVoqulnLWUs5Zy1vK+Wur3iiEXWylnK+VspX6vGHJzKWcrulZ0rehaKWcr5TxLOc/yvrO87yz1O0s5z1LOs5TzLOV8xxBznsntjiHTuRWmwlzYdc+FSWtXDLl5FNbCVniCrxhycyvsuucisbUrhtzc05fbFU/OxVprV9/mZis8wYS21KgVpsJcWAr3wqMw6rSRFUadNj4Kt8JUmAtL4V74eq/uPMFXLLr5KkMvnysWiT/nFYtulsK98Cisha3wBF+x6OKrrQ5/zqut3syFpXAvPAprYSvsuucp+3alPrYzLd2u1MfgXngUdptntrNdqY/tTEC2K/Xx5qsd3twKU2EuLIV74VFYCxfdVnSp6FLRpaJLRZeKLhVdKrpUdKnoUtHlostFl4suF10uulx0uehy0eWiy0VXiq4UXSm6UnSl6ErRlaIrRVeKrhTdXnR70e1FtxfdXnR70e1FtxfdXnR70R1FdxTdUXRH0R1FdxTdUXRH0R1FdxRdLbpadLXoatHVoqtFV4uuFl0tulp0reha0bWia0XXiq4VXSu6VnSt6FrRnUV3Ft1ZdGfRnUV3Ft1ZdGfRnUV3QvdKuQxuhakwF5bCvfAorIWtcNEt8YpLvOISr7jEKy7xiku84hKvuMQrLvGKS7ziEq+4xCsu8YpLvOISr7jEKy7xiku84hKvuMQrLvGKS7ziEq+4xCsu8YpLvOISr7jEKy7xiku84hKvuMQrLvGKS7ziEq+4xCsu8YpLvOISr7jEKy7xiku84hKvuMQrLvGKS7ziEq+4xCsu8YrvWDScubAU7oVHYS1shSf4jkUXt8JFV4uuFl0tulp0tehq0dWia0XXiq4VXSu6VnSt6FrRtaJrRdeK7iy6s+jOojuL7iy6s+jOojuL7iy6E7pyHIVbYSrMhaVwLzwKa2ErXHRb0W1FtxXdVnRb0W1FtxXdVnRb0W1Fl4ouFV0qulR0qehS0aWiS0WXii4VXS66XHS56HLR5aLLRZeLLhddLrpcdKXoStGVoitFV4quFF0pulJ0pehK0e1FtxfdXnR70e1FtxfdXnR70e1FtxfdUXRH0S3xSkq8khKvpMQrKfFKSrySEq+kxCsp8UpKvJISr6TEKynxSkq8khKvpMQrKfFKSrySEq+kxCsp8UpKvJISr6TEKynx6rrs+bzJyPrl7md+pvXL3fv196OwFrbCE3y5+5mbaleuZjsvrrMrVzO4Fx6FtfBlvztP8OXWN7fCVJgLS+FLdziPwlrYCk/w5dY3t8JU+NJS5154FNbCVniCL1e+uRWmwly46ErRvVz5zAG2K1802ApP8OXKN7fChHrppU57qdNe6vRyxzPf2K7cznbesGhXbmfwKKyFr2G9t6XL7S6+3O7mVpgKc2Ep3Atfut7OL7e72QpP8OV2N7fCVFjwvperDW//Vxfg5ol3vLoAN7fCVPh6Fy/Pe2rk4l74ehdv2/fUyMVW7ED3ytsMboWpMBeWwr3wKKyFoXvlat7sF92dK23m6ZN27hk0z560cxO5efJkoAA7cAAVaMCZ6Bfd3diAUPOL7s77us0zJgM7cAAVaMCZ6Hd73diABISaQE2g5nd7neuN5kmSgQaciX63140NSEAGCrADodah5rd4nWub5kmQdi5nmudABirQgDPRL7q7sQEJyEABusR0VKABZ6LfeXdjAxKQgQLswFPCp7o9hdHOe8vNMxgDCXga86UpT18M7MABVKABZ6AnLgY2IAEFeFrwYOI5iDf61ZTuTp6BGEhABp7GPDR59mHgACrQgDPRPfbGBiQgA6FGUCOoEdQIagQ1900Pz55VaB4x9borVhz917rjTLzuir2wAQnIQAFC4ror9kIFGnAmXnfFXtiABGSgZr111KbfmnfV0EBtDpTvQPkOlO9A+Q6U70D5DpTvQPkOlK+iNhVqCjWFmkJNoaZQU6gp1Nwhryp017vKwe+YvKrQXe+qAENtGmpzojYnanOiNidqc0JiojYnanOiNidqc2ZterpfYAN6qCBHD0zX3+YXx7P7AvOL47l9gQ1IQAYKsAMHEGotvzie0ncjHcAGJCADBdiBA6hAqBHUGGqcXxxjAjJQgB04gAo0YH7fruufb4SaQO36bp4fquvyZv+KXJc330hABgqwAwdQgQbM79t1Y7N/Ra4bm29koAA7cAAVaMD8vl03Nt/oX4bD0b84zXEAFZhfnOtC5gvtADYgARkowA4cQAVCwq8aH146p78FGnAGeqZcYAPSidORgeeo9LxT2zxJLvBU8yU+T5ELPNXOTQ/mCXI3ng6pvrzn6XGBp5ov9HlyXKCrdccOdLXhqEBXU8eZSAfQ1fzdiICu5u9GAjzVzN/tdMjAU8383U6HDDzVzN/tdMjAU8383U6HDDzVzN/tdMhAV/N345HYs8l5ztnD6RwJyEABnq3El+KvS5ZvVKABZ6J/9W5sQAIyUIBQG1AbUBtQG1BTqPlXz1MEPL0s0B3nQm/VXlCX41zYgARkoDuOl+TlIt5K/Pt240y8OpwXNqDb9bZzdTgvFGAHDqACDehqjyY3j6vDeWEDEpCBAuzAAXSJ6TgT/at3YwMSkIEC7MABVCDUGtT8q3ceJzw9CyyQgAwUYAeOu9Sn538FGnAmug+dm3HndXnzObc1r8ubbyQgAwXYgQOoQO8YsqN38+VEd8hztmpe1zR3fxx3ve6P46534wAq0IAz0V3vRjfmFeuedeMAKtCAM9E960J3BvFH9++F+KO7M9xowJnoziD+OO4MNxKQgQLswAFUoKt5mbkzOHr6UmADEpCBAhzxbp6s9Jg6PdGb/Y0tXsgzkgIZKEB/9Ok4gAr0oj4cZ+LV7N0CQY2gRlAjqF3N/sIBVKABs1o8FykQEtf05fTnuaYvb7bCPs10TiXPO+Po5laYCnNhKdwLj8Ja2AoX3V50r+nIyc7Xv/eKvFYNrr+/pimnv+O1ajC93q9Vg5ulcC88CmthK3w929kw2zV9eXMrfOl6c7qmL6e3Bp++pMPL1qcv6TxsbbZr+vJ6l2v68ubyjveKgNu/VwQulsK98Cisha3wBN8rmBe3wpeuv8u9gunvcq9gXtwLj8Kua/6+1/TlzTP5OvguuBWmwlxYCl/2zzK8s7nOLtS8M7jOjtO8M7jO7tK8M7hu7oVH4Qm+lh/OTtW8M7JuvuwM5+sZzrK6M6nOLdDzzqS6WQpfutN5FNbCBvuXD15/f/ngza0wFWaUw+WDN/fCo3B538vXrne8lgpuvsvhf/7D3x6/+R9/8y71oMcf1f94dkgHP/5o5x+9f3oOBbx36hBjCo4RBcd4gmM0Icc9VJAWQPcwQThA7iGC9IBxDw9EA+weGsi8oR/3sKC3gBgzdL7HBj3GC73f44IeY4Wu90CgxzihxyhhHPdoYMQIYcT4YMToYMTYYPSAGBcMDYgxwZg36BHQ7oGBUgAHyD060B4wAvQeIqgFzBgeuOWzKqfXnZe/Pv54OlDUpZx/bvjz+c9Pp/qPqy7Og068LsY4/wf7Pxy+6nj+Wc4/U3SK/KPkMG/g6HxxdL04Ol4c3S6OTpfPOZw9Kp9xOPtTPt9w9qauTty4moz3g64OnF5N5oLoZEl0sSQ6WBLdKx8ZnT2fq3NmV3O4IPpSPXpSPfpRPXpRd7Q/rqq5SZLy26f55dP87ml+9TS/eZZfPMvvrOVX1vIba/mFtdSw8nXNb6LkV2Tk32l+JfFtm0F3aviFDUhABgqwxzfwTgq/UIEWH8Y7I/z8Ll4J4f5ZvPLB/at4p4Ofj31ng18owPyS3SnfjnQAG5CADBRgBw6gAi2+g3ei9+nKd573hQ1IwPx03TneF3bgACrQgPmxvPtgF3J8+hqi+d2JOiNAQ1y/u1AXNiABO9Ai7LcrL8Px6mCdH6S7H3V+7+5u0flZu3tFjlen6ML8Rt1dogsZmB/Sqz90/+0AKtCAM9/YDmADEhDvdjmHv9DVI7rQ8uN2ftf+w8OTni3MZ2IcKIADJKAHePwb9zfubO3+jZvxjTtbun/jZnzjZnzjHDhAAnrAuMGj0nF/pC4YARpgAfMGHyQ6tAD/rXHFIfMDCSxg3jD9K9wjepzfY+TvI3sfufvI3L8Xp2fGkQsb8HKPBmdkOCPDGRnOyHBGgTN2OGOHM3Y4Y4cz9nTGCwXYgQOoQKghT7QhTbQhS7QhSbQhR7QhRbQhQ7QhQbQhP7QhPbQhO7QhObQhN7QhNbQhM7QhMbQhL7QhLbQhK7QhKbQhh70hhb0hg70hgb0hf70hfb0he70heb0hd70hdb0hc70hcb0hb70hbb0ha70hab0hZ70hZb0hY70hYb0hX70hXb0hW70hWb0hV70hVb0hU70hUb0hT70hTb0hS70hSb0hR70hRb0hQ70hQb0hP70hPb0hO70hOb0hN52Qmk7ITCckphPy0glp6YSsdEJSOiEnvWyhKTtoygaasn+mbJ8pu2fK5pmyd6ZsnSk7Z8rGmbJvpmybKbtmyqaZsmembJkpO2bKhpmyX6Zslym7ZcpmmbJXpmyVKTtlykaZsk+mbJMpu2TKJpmyR6ZskSk7ZMoGmbI/pmyPKbtjyuaYsjembI0pO2PKxpiyL6Zsiym7YsqmmLInpmyJKTtiyoaYsh+mbIcpu2HKZpiyF6ZshSk7YcpGmLIPpmyDKbtgyiaYsgembIEpO2DKBpiy/6Vsfym7X8rml7L3hZCaScjMJCRmEvIyCWnkhCxyQhI5IYeckEJOyCAnJJAT8scJ6eOE7HFC8jghd5yQOs7IHGckjjPyxhlp44yscUbSOCNnnJEyzsgYZySMM/LFGenijGxxRrI4I1eckSrOyBRnJIoz8sQZaeKMLHFGkjgjR5yRIs7IEGckiDPywxnp4YzscEZyOCM3nJEazsgMZySGM/LCGWnhjKxwRlI4IyeckRLOyAhnJIQz8sEZ6eCMbHBGMjgjF5yRCs7IBGckgjPywBlp4IwscEYSOCMHnJECzsgAZySAM/K/GenfjOxvRvJ32atStqqUnSplo0rZp1K2qZRdKmWTStmjUraolB0qZYNK2Z9StqeU3Sllc0rZm1K2ppSdKWVjStmXUrallF0pZVNK2ZNStqSUHSllQ0rZj1K2o5TdKGUzStmLUrailJ0oZSNK2YdStqGUXShlE0rZg1K2oJQdKGUDStl/UraflN0nZfNJ2XtStp74LhHPevf9Hz515Ls/bupJI0mTLCnmqCQnqeSapTpnFK9pKjmJYw7qmpY6n4A1J58saeY81JGUs1WYrirzVTG/JGJJsUon/UhqSZQU81f3noRz/uneknChAnPiSTDzJJh6Esw9CSafBLNPguknwfyTYALqOgD7RqgZ1O6JKZ+rzVUPuaehfOL2epx+Yk5DdUxDdUxDdUxD3TsdLhxABV6Pc079Hbmcc29yuPBSO2f57mmoc/jt3yifp7o2Pvg81b3vYfr88gDmC3VMQ3VMQ3VMQ3VMQ3VMQ3VMQ3VMQ907GS7MSa97H8OFl5rPZuY0VGcGCrADcxqqYxqqYxqqYxqqYxrq3shwIQEZeNk9C0py1ubeh3DOU3VMQ927EC4UYAda4sjliesA6hsvC2cdX1+Cc57q3llgPnlLQAZeamc5YBqqYxrq3lPgdjENde8ocLQD2IA5DXWdFH2jADsQ72Y58XZvKrjwfuNznspXYXy9+Dwf0gOegwT0gBGgARYwb/BI59ACwjKHZQ7LHJY5LHNY5rDsQe88NNJjnkMLoIDT8nmYpE/Qt3tN54IRoAEWMG/wOOjQAiggLPew3MNyD8s9LPew7PkTfnWo/y++1mL8bzwxws+vc8v9mt2/oAeMAA2wALdj17z+BS2AAjhAAnrACHDL40zBO8HzZwJaAAVwgAR4+uJxTd5doAEW4GmL7Z64u6klURInSVJPGklRlj7xf9MM8pyLi1oSBV3JOt7a9X+19v/V2v9/09oNq6n8Px9/8fd//W//+O///K//8l///d/+6Z/O/xd/8d//9l/+t//42//zj//2T//y73/7L//yP/7+93/42//7j3//H/6P/vv/84//4j///R//7fF/H6/7T//yfz5+Pgz+X//893866X/+A377eP6r5Mf9+G8/pu5GGngMY3ZNPEZS4zbxGChpmnhM9P9hghYmzoTMy8LsMPDlGRYGRosyGAwD/OUJ5LmBx3R9WHhMwdtTE33xEoOyHIbyUxOropz9yIIweVqUuqhQOoc1V4U+5iZgQuYfJuzd2li+xozXeIwe+elrtIWNR28vbDwQFTL+fIoz3j2v07Njf9dpp6cmFu3Kc0TcgnGpjjG3LXgm62XhofvUwu5r6PPXWBWmnoOZqzD1mE9NjEW7krNDf7Wrx8DgqQl9uygWLfOxPpGN+xGb04bQnybm4iHOdKTrIaY+fQhaFOaZLXabOJPF4Odi+y/ip81F2G3PXoQWDYssqvQxxfu0JJYeNkc2isbPapTk/ZC3svGYgQkb8phEfP75GMvoTekipTQeaz5/2li0zm5RI+PoxYLtNwzp2TB68bKvDYMWzXN2nWljlu+x/vkmvPqm44P8WPqAjfGLOkkvkRo5v9YJL9pn0wwYj4Fv+Y7wn52TczfHUxujzzQyrqTEsPJnQ2d5v3Vwf7d1rN9lZiflwYOfv8vq894UEdDQxh7rmH/asLfbx3w/BC5tbHqLtPe9Rejd0ljW7HnFatSsShtPa1bk7W+b9NWDjMPyQVTs+YMsgukgatmZ/sNxv9hYNFNp2UCkld7Crwpk7xsp881v5Oo9up9ee30jm/Br5cnZIx+PwPrURqfVtzoDch/23MYyIM8j4g8dpk8Dcl/Vie8jvWzYeB7U+yqUUg5yHrPc9V3avg3f/X3ZmE2f29D3Pwvd3v0sLGtWc6z0wPZa6/AZj8vGY7bieStdxY7z+Ov8Xld/+2pl0NvlsWxhGqNPmk1ea6WTYGPRSseqPCZnM31w+VyPXzxHDh+Zmz1/jlUrRRf77AGVrtifrXTYcoaGc4amjnp+YUOUsktoxVu+2tDjfY/T9m4LW7f0jpo9zx562tJ19dF/LC7lR/8RWuVJ+1B5t+uxamGPGR7JFmbtJW9hzo4HPxayn9pQ/Wu95dHXyK/1WHi+rj743aKV0vhjMKl/zn4tWul55m5O+lh/ycYcI95l6ljYoPe9xfhdb1nHH3wWph1P/d4WHkcD8dgmPbWxbB2YD3xMNRyvtfSB/qASPbVhb0+OLp+iRONJ4+lTzFUkpRGP8VhdqNHY9m1MTP0ff9TsFxu0auc94s8cWqbN+c+JgrloozM/+LN837i3/Yg+uXVEnz/6tn9G9Pn2EH9Vog/PzN6xtEWtfKBXOt/ulS7j6BiSX6YpT+NXO9YNLIvjKJ30bxPXbbWUQLmS8Hy61u9PfV4rLWeuSetkxVcjy8/9kVZOludzDcuGOgnRdPbnDdVvdX36Rqz5latRiL4ZGe92PtbPITmjRbXn8PU5lj4jLd+lz+dRyO9KXQwHc3j8mEx6uujV2geaa3u/ubZPNNf2kea6XiHouUIwxtM1n2M5aug5ahjH85XA1dITe+LU3ck9jufBaGmENfsPf3y5vxmx91cUVwtQm0uKyzWszTXF3TdZLCruFqkc49V6OTSNtMWXhj6wet/oA+v369fRnCB7jMdWr7NaKCWKBn9eCvQ8nK2NZBfxvE1lYWS+3+BXy1GbDX5lYrPBb7/JosEvi5SPrBfmV+tl5LT2ecrkcyOr5ajWBRP9NcPCfuG/jy5qxyT9Iq6yfqCF2PstxN5uIdtv8mJIFL+Z7i7SMZ8XqdD7RSr8dpGuTGwW6fabvFykpZVqe+0rIy0XCoWOVb2shlWbKUnygYDa3w+o/f2AKh8IqOsSfbeD2Rsym1pfpJqtVpPG0Bwwmy5Ccl80sYkpiKN+bu1X5aEoD3uxTDdzvfpq+C/HwESGPLUxjvdb+mhvt/SVic2Wvv0mi5a+LFGehhIdr9nouTBPnfl5iS5a6WN43HOkPOaLNnLRYWlj3cL20gnH+yOp8f5IarUgtZmm4Hk7b+UprJ9iMzNytRy1lxrpe+OfRtLGmTtSu5Rs9KqR/qIRyXHlkLIm/t2IvV0vy3fJuYvR7NV3oZyqe6yk0KtGcp591PHg74xwjjsew5jx3MhqUeoxaZwdqZNL5XxLoV2tG2zn4S6NzFzA4DZfNILFz8fa53jRyGY+XFutTu0mxPkOxjdnhpfPgYyUaaVb9v05do2UycNfGskPzQPHa0YenczsqD5YV2ZWVdwzsM3akfhlYzM0turHvzMyJowsHHD/G/58PLRaqtLM41J9/tVa95n30thXK1W7w8O1Ecl3EZltYWSdjZpL5SqLt+G3e950yLt9q6WJvb4VLdeo9no1dOi7vRo6Vmv+TXJm+FGiT796+7Wii1pZto5cHCY1eckGo60/Pnj6qo3jbRuMzlWNY7+zkZX7MPfcRutvj4h+sLE1Ilq/i6CRybD3bbzYxpgmFmTsed2udsI8ho85GaK08rrVgyjywXQ8D4WrTVK7lbu28YHK1YZ3WTjuan2qHbnq/1iD7q8WavZ32RatbLWCsbfITbTqUM2e7zL1+ehs+RyCieG6m+Zbcay+2T2X66Qv8gXXRrDrQlTHi0a65spBX/UemN5fByX+xKa+Y3NelhYJkD6yff919K9+HbL4aHY+Vq8z3+zrrh9jZHPt2hf91NWmKcn0VqGygezbls2390ytnyItVOf9/hSrXYoE56Uy8zb2TbTDRmZxH2bympFpZe6/JJf8xsiZpZPh/ShzZ78p1Nwc+OhsLgp1/qUmHgVJE4Xan7/K/ETNzE/UzPxAzSw9V7NXNUj6a9+IP+Y0WV41kvNMYyyyqdZGNPtEY5XfvjYyspk8FrsWH98+P/CNWK3wfOQbMSzzB4eNxeusNlA9JlwYw8Qp85XGpiOHZzqmLZ5E3p+JWG6i2pyJWK02bc5ErExszkSM90+eoPH+0ROrHVTbMxHbtbIYJa5bx95MxMrG7kzEDzaOt21sDjR1d020v1amuzMiaxt7MyKr5P/dQfPaxt6gefkucmT7qEt4X20Y/dXPsTczs23jRZ/bnZmx8YGZGR0faCDjL66YzVmV5S6o3VmV9YPszaqstlJtzqqsdlJtz6qsnmNzVuWHToyiU/ZYdnvWiZljaSRD2YPLtsFfGNkcIv7wMpvPsQiHY2bmsEpbDNxXBxbkyKwcsif8q4EMYcvywfPF0ZCUnSXj2WiIf9pNtTOkWhr5xPB/u0TkEyWinygRfbdEfljpLi9zHHWR+ncL5gePYmaRATDlI+vuKzPDclf4wxGfTQKsTWBY9lhvbq+ZUDzFfGpinX5z4JzL4+VsojxT62FkkcOz3gqhnMOyOsT81VYIye+3CT83wqvNUOeJS9mjkacdCab3c1WZ3s5VXZrYG6fuv8nzfua6RGeOQ9qc/Lw03l8R/eE5tjZk8vtrVUzrWJYTIbLYkMnvr1Uti+MxBXFgCsJeKlJq2G3bnveYmd/uqDJ/oKO6fI69Iv1hL1YWh42SQvgtii3XZPZy9pdnq26l2zO/vzWV+e2E6qWJzRC2/Sb6WoFuZtuvTOwl2/OqZ7g5Tv7Bxl6yvb49g3qsu3N7Gbvrg3P3cm2XNjZTbZcnT24mp27bWOSmrm3spaYut7Vu95CXpbqZmLp+ku02siqTzcTU9Rm677/Ndlud77fV5Qmnm21128aira5t7LXVlY1ftNVlqW7mP28fZv68K7Vcl9rK5lilL7T0F6lXL3w7ZHl5tB/jvAGWZxNtaxNy8H86zf6nidWy1O5UzMLCkU3jyy7fL4WhH0h/4tXBfttrwePdIl31TEfubRl/JOnYvoXsiQ0Zzy0sZ2DzLVovx6V9O1V9mcKFVJBO/NQG63IguHe6IL89W/jDYeR5LMeD+fnpymz0tscuTex5rL2dO8XLg1pz8uaBz2bFub/bxrm/28aXZ8NvtvH1+fKbbXx9Gt9mG1/e/ZKJqPRgPMjXw+FXNnqWKfW+sLE8EL0sqmmrG2q+esqUtz1lytue8v4S0i+Koz0/9e03p8wv7kJYrUSxH+pwJ0x0KfXbXzViHzBSc0B/Z6Tkf+j8gBF7/iRyfOD8/tWBeswHMkDK0aDfH2TVMe0aRrTXsxu/jDpWK0mMmXn+Y71Sv9hY9SsP+N5RJ9f0NwXScYJ2Wfb8XiBLI7Pk1Syqt+973+KOh6WVfsBKX10o0JYnpiK9tlaO/RmTlhc0lPxr4ecRaXk5Aufe9s7zxYsNNBfGH9hfszHzsOU+VV6sGU33bWrH8aIVK+dyWX9eJquMg71+0dLCVr9ofbz5LOvRk58tmgotN9fn+aCTnn59fzCR7XTSeNbLXB/3rngTU3vRc23mUsGDF51/WS5HbXVp1ia2ujSymkLZ69L8ojhWN838YEVhpcurVvqEFX3e25RV/2qzapYm9qpmNaL5SNXU4rD5ctUMWJkvxsN54FM1Gz2P7/PtceJ8e5y4fhPsz2tzyKI8hN4dNC9NPL5UBxIetMlrRvwi3fhQUX/RSJ52eH7tXorOU7FqMFfReXkS9acO1qbsKRIftbv5qpFSx78z0iWTDnpZSf2VkccrZEg7/hjX7N8aRQ1nfBM/v0vHdxW9OzEr/QP7Updvgyw7OmT1Nu/O/PcPnDS8vAEL8ehLx/kXt2ip4O6pP258+nL3wnLv1N53c2li77u56vHufTfXhZErft14LgpjleMnmdgyxHhhZPkk+b1rx9Ph+/IxevbOHhPVx4vv0vNuj9Gtv2yk7DacLxvJnXXjxdvetm+Ms3c7IksLWx2R5a11mxPW65vv9iasRT9wQdryUjHJGQSp243btwd5f0yl74+p9O0x1bIwOs6P6mrPC8Pa24WxNLFXGMZ/aWEMwfkAoy0Ko79fGP39wng7K3/Z85n5aZLjxTsRH8skEzae3zol8/hAP26293s/q/0FoyEPvi8e4xN90vmBPumyUFvWbiOpt6N9+eKvVqnK1tEyw626/xRj5sbAP29q2b8NbPeTsLxRDFHwPMwSJfr1RrHlrWRHeNys/YVf2sgkslGT2X5xs1ndGHSUIPb1brP1cxhuWJsvvotydAenljXdX9kwlKmV+PHVRl8tTX3EyB857Pz8xri1EcocQaJaJL8ywnlECdXN1t/q9/1bJ+bb3dL5drd0fqBbOj/QLe3tA93S9VVge3uKenv/YpTe3r4YZWliLyF//01Wt3gs01u29hT1DxzEt75dbZQLYq3m9f7mijbMmzywvWZkd1vR+kk6I5F1vH5ZnOVcf6tXw3/bZbk203F0zaPJ28tmsmBOk4s9n8uS4YnirZ+aXxWv5MUgJPXj+83I8ry1rX1KK+/Z3Pq1trG39auvVqf2tn715Zl+m1u/ls+xW6TLqs1+5qOW+VXPaUgJffxLebXJk8BzaLzsgJSrS6fJ556z7AuUCTt+sTeRW6VLSKLfXCus5U7gemvC136ivD36X5vYGv130b/UxN4Ewro8y3Xk9VvzpTxXc2R7Q+7e2/tD7r7K9tmePlgdkDaz96/1tKZfXROvuQDzWHFvL9mYzXI8VE+v+mqj9/FuO18/Rua2TVocK7q0QRin0pyLV5l/6aswIgfP56cb9tH+0seQPHdy9mP1GG9npKxN7EWf8XZGii2nMEr0WRwWuZpR3hvjLi1sjXGN3h/jLm3sjnFXlz1tj3GPD4xx9f2bJrq+fdPE0sTmGHf7TRZj3OMDY9zVjVO7Y9zjE2Pc4xNj3OMTY9zjE2Pc4zNj3OMzY9zjM2Pc4xNj3OMTY9zj/THu8YEx7vGBMe5yeWpvjLteB9kc484PFOknxrjHZ8a4x2fGuMdHxrjLvsDWGHfdm9gZ447+7nhqHB8YT43jA+Op5RbykSc1cS3Rr6v1yxX/lulGwvUgzt/YkEx9lj826H6xsdzLrpS3edjxPPNg1UHb660uLezt4Dje760ubWz2Vkf7QG91lYbRhiG9146nlbKyQbPe5kmv2bDsJvJBz59jLJeodt12dYTF9jTIMj84T7/ko9PibVbHNe2eWL/ajd4HruHR57d4j9UhNpsH1g9qbw9oxmqZam9AszSxN6AZ9P521LE6xG/vwPqxPAlj88D6/VrRRa0sW8fWgfVLG5sH1v9k43jbxt6B9YN3F1P7a2W6eWD9Dza2Dqwf/P4Vfj/Y2Bp4r99l78D6wfZXP8fWgfX7Nl70uc0D68dyk9HmgfU/NPbNBkJ/ccXsHVjvua/P51T2Dqz/4UG2Dqwfq4t39wbKY3mY+OZAefkcewPln/owWwfWj/6Bg+KXRjYzp394mc3nWHYNrRwA8eIoaGuUvR4F7Yyy+9ur2f3t1ewfNvNhQrZbPaTkNzsCB7YVjskvGrG8x5DqSei/3FZYhg30/HVkuYy7uTdxaWTvYPe1ia2D3X8wsXWw+7JecJ/aOfH+YuX+YUReNUIwws/rZejbC6hrE1srl0P5LzWxeaPCukCRJKxqr9ZKhmPS+WoEqU/yshHLrtQDXzaCk91XRpZ7+vfylPq7kf2H40nSxqTx4gkn2cGdpE930dG7JbE+L2brO7s8xye3GHStcxa/OccHh+f0emvo784Cymn1B754npApnuPVc40sa/Vh7tVzjcqIQ14uD4ON5/WyzD/rVq6mpg/YeO28KcGUp9Qpz1/ZwOEZoos2traBkY/pcxtjlSSpM7sudhzPt8KM1cF1j8F9Pskot9t+XQv76Uk0n2SxKUdXS1F9ZDeqjzKdxPvPYTg/3I6hi+fg5eRrFOvjk9kXRla7+nK7eV1VPxcbt5vIzIG+rI7g0eVBfptNRJd3Qm02kZ+eZLOJzHebyPI5tptIax9oIqv08febSD9ynbH/eRTJlybSVrdDUB6G3ql+qr6OsVfdIKU8XUHrSV72i3fJdMfeDlq8i37gXeyvfRdM0D/wta9d50xZ6izjNRuE5yD9gA07XnyXTFXq9SaE3z0Hzlbh4+UynSjT/qINgY3xvAexPmQ5N/US9TpA/nPuVOntY/vXJrZGt3661l9oYvN05FV5Mk66Yn1+4LSuTt7bOjJn+RSCAbZMWzxFfz+CrfZHbUaw9RHehIRJ6k/fZW2j4/qj8bw8eLX/ffss8ZWRvTm+tYmtOb4fTOzM8fHb8xX89nzF8k6IrWdY3yqxNWeyvAVm94bRH6xsXjDK4yMXjC7NbLbR8fYFoz+Y2Gmj69u19u7WWdt4/wan/Tby041Um22kf6aN9PfbSH+/jfS328hyZxMutZJ6SpXxronHCEFQoFSHx/tGaCpOl68TffsmJDfw1eSEZn37GVouPT8ioLzyDJzThFLTCdW2X0Iw0VA61l9a5vL+yhyq6GsGcv9Ar8e37hvASTt/dN5eM9BfMpBlMF4rg5FlMF4rA0xL6mtlUA28VAb1VNOXykCzDPS1MrB8BXutDKqBl8rAcqPiH/O6vzCQu0/NXnqCmRd8z9fKoBp47QmwJfm1gGK5gGx1/PLnXk+11RhojHTH/pIFzYHtn+70GwtRDEpPn2G9pzpX9dorv99xZNd84fdbO3KN9cF1263tu0NuyTKtJ9P94jN9SE4dP3g+n7dZGukNRnpfzKev1nt3rz76hRH7gJHF1Uc/GNm7+mjfyOLqI/th695Orrkdy5SRvauPbLWXafPqIzuWWSNbVx/ZcgFp7+qjHwpk79aiZb0MbJ09xmLS1FZLSFvnnS93muM+ijoJNH4RRPAWLxlAYhT3lwx0JPDNVwxg1CR/BI39J8jhDhm9YoBbcfQ3DfDzarTVpqXNCVJbLRNtTpAeO2t3/Mf8/X5lUg7a5KUGLXkLgdBLlUkNe51anVmV35hIp2h1Lu83JpCSSuVw968mjJZLmFiSOV40kdsM6vjvNy9STwMtHZ3fmBjZtP9Mz/2FCc0rdx7e/lqlUm4tJNLXTHB+ux6l0l57CmQZ1+W+X5h4LMekj9WbZdr2MKTheu3WSpz4xUO0NtCFtpdaVuNsmw987Sk6YW+C6GsmBjbQ2XztRXJv06Pz8NqLMK4L4v7aiwxsnR362lNofkkfHZOXGmebKItJL5nQHJypjFcMTMEBU6+Vw5Hf0T+Gh98i72oz0vtuOg8cPfZaQaSPTu1vluRrBtgYm6nqiRT2pbu/OhuPsCPr0UmyF43gVq9HL1FeNoInof4BI+Vb9tXIcmYbtx701l8ygQXoP67U+IUJtpwPe6yIySsmuh8ifnVxemnkvG8AF632uqS2byA32zxsvWIAJ1o8UF4xsJP8tzSQa0YPAy+9AvaA1rXr/aksyWokaU83b9pYbd7cO1/Axmo4vnW+wNLE3vkC+2/yfH/wsqM5DeU5XrHQCUkq/HQfvOn7++B/sLG1vXj/OZ7bWLZPQ9qPtOdPMd5uWysTm21rdQje7nzi6j6mvbMrbH2IZ8dVJMd8mslgq9uUzktM0shcHFdly8P4GCPDcqv0+EWZNlbMGLSnZWqy/Khjyf25hWWnExncJ7dFoX4gx2RtpOegf9YI9jsjlB/GB8qrRrKnM2uK7S/LBIkZPMaLrdVyrDmt86K17hopVwn90khGsweO14zsp+78ULR7aVHbwfnpgQs2352H/6E8dvOqfjKzmVhlq7WnX9TOchvnVmLV2sRWYtUPJt5MrHqsjeDCbapnYH055/2HLeAbH4rl1EZ2ZdqsK2j0CxMzn+Goa9+/MGH5lfjzmt5vZbFK/9s8Zm22ZX7W3jFr68nlHArTsOcvs7wt5rHWwZj56k+vVvvBSI4DHzznUyPLTsDMtc3WZPE6a5/Nu2VnXWQ9jn0jKvntVZFXjYxcDVKt59h8M/L+jRfL51A8R53/+fYc60ObcEDZH/f+0pd99cvT1vqR660Ppuc9o/WzYO6Fe837+PYsS/eTctLZXBhZnTC+uY9yWT/WM7I++jR9UT/LqxpyLumPqPbFwmoHkw7cUl2CWvt6X9xy69CRaWqPWf3x3MiyQLDz58/koK8FwuvPDb4VfxxmJV+MrPYeZ4ZRnZr6boI+4DirTUi/cJzls+w6ztLIruPwBzYgL2unCeMc2mNVP6vRaz4Il5NbvwzmvRP3tJFgLa8/loDwLof8os1j5/9jTLIIAqutK4+WkUkQx5DnVbM8Fg8pBI9+Dp5kfvkIy2p7Fq4Vfoznj+dFIqvuAGOtV47SQepfmrwsz7bau7HghycRzM/Woc23J9Flk9/a6T5XJ9LtTbcv64YpvYZrpsy3uumrKW+M9vqh1fW2F1A0Z3nF/oiLvzCRuZsPE4vub//AZc2zf+Ky5p/60Fr60M/Gm3N1ZdN2R3xlZPNasPaREln5Xc9pUhp1c/fXCh7rFNIc8bXFoQw/GCHMcY6VEfpABFjdu7S35Lc2sbVitnyV3eMy5lgvCWwdlzFXC057x2Ws2ypytB4RsS2a2VzNj3QcPFbG4t9eZnUq/nYLWZ1vt9lClufI62CcjTt4vDhQ+6Pvqy+PsfbKZGVku73qJ9qrvt9e94cU+nIPfK9Y+QOn5kz7wKk50+j9Yl0dCZvpGNrG88HEahlL0FEUVn0+/F2PSPIM1JoLMPffZGLlqIazb2+iHwhn9oHzv6bNt8OZvX0+1PJVtlv6pA+09NV5ER9o6WdWXq6O1Bs1v7aQ1bLEeYRRFCrV22y+tfXlk2S/qtVLHL4/yfKclwNJwXVQ9K1YP9FW5/ttdb7fVj9x3N1jbuEDjbUdxwda63LJBofL1qmvr23kuhLw6YM0QVidY2VlNTI6cgXqMU1CTxv9D8+Cw7OY6y7S789iby7a/vQgZdqYV4WyvP9981vxsNLed8CHFXrXA3+wseWC67fZ98H10s2uDy4vdNrywR9aCi78495WTrhazRIcEi+T+VX36XkiMP9xauy3Z6Hj/a/Gw8pHWi19oNXSB1otfaTV0kdaLb3datdT2ZyTUK0eAPdtKnuZ97B3W+3aCDWc7Le8rXb5IRwT+0v60srq9s/8mtZjXbgfv3idzdthl0Z2b/BdP8nmDb4/TKpv9dqWJray2H8wsdXxWy0x7Lvvaj1r333leP+js1rP2t0Feh1I8bRgt7aB/mBjax/oD2+zuRX0ByubWznXa0AH1nCpTKx/XQN6PMoHVrQeVuz9b9/7vrN+m33n6e0TztPfn81aL/P1MqndF1W8XNhqR5mM6s/W+R5GfphNzu9WPQ9Nvxp59+SetYmto3t+MrFxds8PK6e5xb8f9TSrryU6lrvPsIGt3uL7hpH5zMj2YjIfx6KVjeUabLayJnUh99vrrM4fPHKHyWhNF0ZWTfXRyDsmpA77iJl6y9mvuq/Y4b3MxFgtBuHwm879ecrP431WW15yT7GV3dVf0x8esWLV8HGYX91X8aXf+bDxdt/1h+dAtk7JQv5PbPAnory+fRlE85S697tIOt7vIi1tbHaRlm+zebzDD1a2u0hLx7Hslshika0dtrxrLBtseZ1fObCUzaW2fA7+RFdttby1281aPcl+N8vGJxzQ/trcgT9y1vl5zvrjQVYbCrDPv9WjDb9M5q6X/ffGj6vQuF838yMLBx9Y5lrmdXCeF8lsvKib2T8xTzjHJxxwtdK1O1Za2th04vmBdf/WVof7bTeUtjzN7hMNpdwmLYs8s5URaUiaa33R2trxl1vZ27j2g42tnWs/2di7v3Q54bF5atRPky97PYsfpuh2Tor4wcTOWRHrOU8sxTwmTvnFiVPJ7jhJ2cb+zchyt0ebuGvmeL5lpLXlIhd2SeHDt3/U+sjwLKPsoG1fJ8Xb6ui/pjkh9sCnZyQ8jKyux947guNhZD37GpF1cU7C2sbeQQm/eBldvcyqWGfu629z8nMjq2tMN8+v+OlJcC/sUWYHvj/JauFx6176h43Fp3N3Q8IPVjZXpdZWdpdgfniWzTWYH6zsLpG1ZT7Ro6uQc40PLnb0l3Zy+Heyvmyn51f0THCy1+0cZUKJx8LOspQ3V+5+sLL58Vh7k+CAt3ph2vhN3P4juf+w12IDtbzJlprJcyPL9a7N2LC8eghHs7fHWA/lavSLJ9kt13UN7/Uxfmq1LUdgD+bXvRGXYZ/P/bo3Up7Afdp87kXr/SQ7RwidJ4MuvtBbZwg1P8z9ee8re6Nccye/tpblccM7G32Wx3/mbvtWd+hw3z5c6tFZzEj7GJq+ZMJyravVsyJ/Y2IqTgI/2ismHgupOBJd+KWn+GOl7LUX0Tz7rFl76UUe4TBNtPnaU+CI+UeskpdMSPpI++OQxv41LI/VisH7p/1ybkJrrK+Vhhz5KvU2zFcL9DUT2OhYv9lNf3Ex1igXY9UbXI7t1zgQgI9Rj2nfP++IcyWYWF86vJME56bIaE9NtKbL8szjfh9N9aXzO/+4C3MuH2Qx4fqoTmRVWn/RymNmIm+NHuXSj99ZGbhNYPDRP1K085WiZcIGVOLxmome88f1coZXTZTe2K9M5Il0TK+1d2YcI8zy0pG5j4Us5Nwer5UFHJf/CKSvmnitUrnMWc3XDu4VwnQxv1apkme+cF1d/JWJPJGZpb9YqQMX0oyXnuLRTckOoM6XgmDD0dKPdbBVEJyrvj3hCHga9UapX/QiCb3I/tqr5B7Cx4STvWZi4LC217ykWQ6K2zzaiy+CkehBb5torz6FwsRL7t4mrjiYom8/xWuVaj1HFzZqMkH7kiZFqx1ZlpFr1qnh/a7T7nzfsuuEuZI/phe+v8ly9eGAlfJN+zqap+MTi5B06AcWIWm1F2szlYdWpwpuJ79QWw7e9m4W+eFZNlNoHs+ySmDbvBCj+dzvMyt791GsbexeSfGw0t8eTP5QKO9f8fGYDeuYcR8LJ1yu8Bw9G9yZ/oda/jKe+8mMKg5etjIjtj8s7MjU6NxXL7TavcTlSR7LkeU+tm8vtDZTLmZoNVnjd2auucjbTCtD7v1yEcyBSK/Xvn4vl2U+XI4gqJ4IdE6Yf7GyCrd5IojVA5++TB/8YANfsJoT+93Gattrdr5rZgN/88Ef7m/HNESdaD++dDlptR9r4ErecqouH1+fhD+x4474EylXxPz+R4zlEx8x7p/4iC2tbF4s9bCi739+Vjb2Pz+rjVnbn59lBW3eJvcYT7VPFO0qwX23aDdt6LJgVw0/p8yl9Vcb/naPaXXr1X6PST7QZJc2tm7PWtvYb/arHTPbzX5ZsJu9rvV3Y5bPRl2e+fbZWJ44SMiskXpcwncrHzjR6mHlE1u1qb9/wAB1/cSHo9snPhzLZ9n25XF8wpdXC1i7vjzaJ/xwtUtr2w+XhbLvh6tT0XEzX50W+v4kqxSHzTNqz3yD1WrU3iG1DyurI792k59otUtr+3wA+mHtJReTFnusfiiVvQNzH0/ygUMmG31krxZ9YK8WfWR3E632We2HuKWV7Q7c6uqn3eCk9ongZJ/oJGy+zrIvqf0T/evVLqn96lnt19qtnk0b6zKR9/vXn9jU12h1jN/+N3m1XWu7XOf7/evltrFt11nt19p2nWXBbn/XV9/k7XMpaLVja/+7MT+xxZCmvv/dmPaJ78bqYMH978byWXbdkFd7trbdkI/3pw+WNrZdiJe7tjZdaF0on3Gh3XM/eLUqtnvuBx/LmIDMuanPT9xYGiFU0J8Xdn010pZnD2RSUj35w371HBkOHitnbfEc9Nc+R0MwoLLY8rtCbbgz8B0jx/tGOBMCifuijSw392BXQ5PGLxpBUmAT+YgRfdUI0plljJeN5KqcWPvA67xspGPWrLfjA0b4ZSPY5Vd3Kn0zslrD2vTh9XMYbtxbec5qDmTvOX74VuxdBdOY378L5icje8ci8WoZbPdYpF8YeXos0n7JLs9F4uUC1ua5SLw6o39gwXSo6ItGLD/lw5RfNIJLv/Sg+ZoRtePIbrm050ZkmSSze8zTb8y09uIrzTzPVucYrxrJfOeHkRer2Wbe/WWzL2pI+mcK9xNnaG2nHNSzw7+nHKzmHiyDE/2xX+trAgUv92v1coRyTeb4ZqXv7eIoSfqPYPSrJ8mdSvxHiPv+JJ+YnuX+ielZ7u9Pz3L/xPQs909Mz66fZXuY3T8x28X9/dmupY39YfYHNnP9UCj7K1CrCvK7na8Kmn3hzEsrj/mAHGYff9x0+tURx/Imjr0LKH96lpo8Z6tn0eXidqY6nzMvz5PneLUgxtnmpBUb/dX3WQbt5Y1cW5cs/PAguXmZj1X6HSv9xSXSsGG4dEq/Pshyvy/2aox643jb3nPcJqYN6k7bX2y07fC9Xkbqv7GQXYvHwrk8s/CokdVlBpSp8H9snm7za0zT1bcYX1E+yuGa363Ycnvo1kn3PxjZu/n1YYQ+sKzOq/Wv7WV1NvnAsjpb/8CyOq9OLNxcVv+hVDaX1fkTV1k1tk+cEs/z/VPieX7gaK/Gq1Ww/X7b0sruui3P99dtlzb2e1yrRbDtHtd8fwl5Xcm7y+q8XAPbrR5ZnVu4WT27NtZlcry9rL4u192BhqzWv7YHGrLaFbZdrv3tZfWljW3XkcPed511we4OVpbf5O1ldfnIlVbSPrFVQdr7WxWkfWKrgrRPbFVYP8u2G65PMdx1w/Z+Upe0TyR1CX0gqWtdKJ9xod1ldVkdZbi7rC4k7y+rL43sLqvL+0thPzzH3rK6vL8Utn6OzWX1n4zwJ4wc7xvZXFYX5veX1ddGNpfVf2FEXzWyt6z+k5GtZfX913nZyOay+r4RftnI3rK6yNupMT88x96yuoi8vby//lZsLqvLasfS7rL6D0b2ltVldVjh7rL6L4wslhZ3S3a5rC6rO7p2l9Vltfq1u6y+NrK5rL42srmsvjSyu6wu67Wv3ZXf35hp7cVX2lxW/8HI3rL60sjusrosN3HtF+4vzKxyFtYTzlt3U/009z2xIFEPFJzf3miV7r13OZWs8nU2L4WS8YmTZGS8f5KMjE+cJCP6iZNk1s+yPbLVT5wkI6utYLsj25WN/ZGtfuAkmXWhbI9sl07YGGPS8kLfnXC5GMaabvjgcqjm13VfWT3Mo0Hmks2DWZ+bsffveBP7xE2eYvS+Oy+XfWhgRKhLF9ov2tLofllDs+dpo49Og75o5jGbyDDTj0VFry4z2rtUUFbrYZsrc+vn2Gxw8xPXIcls7ze41SrWfsxe3eC1H7M/sBYmH1kLk0+sha0LZTdm/8Z7yjl8v3TClgXzYH3uhH21lrV5y9MPj8IDYeUxK/zqGwmhYB4D/admfvgm4lY/qtMiX7+JfbV4Q5JHklK3pZVP7Gbsxyd2M/bj/d2M/fjEDsK+OqBwO7j09v5K7tLGdnDp7QObcNeFst8hXOY1Zc6b0Fw127a8mLZkaT1mCJ8fxtfbai7AGq4zqAlnxr96mJGzNQ9ehIW+WtWyx2eec6w5Fl2odQH7HsHoKsuigGk5POu4oajOunb5lRWcAUl1MuC7lVUvd2CBWcsVXd8uqe2r1bH9SLda+tiPdMtcyc1It77SanMY3kk/MAxfW9nNfOn0fip4p0+kgnf+QCr47utof7WStz9n/IkEms7vJ9Ds2liWCfePVPEHEmjWBbv7SVxHSSq3r9Q5km9RcnVoouYJqlNk8SVbPonkdZnnmGf1JMtRCOWH7MGy6Piv1sq2v4e7qdj8NJn78SCr7ZYt3Yd7PV+9f63l9XGFo6PZFgdi/WplNYFLgpsySg7af/Isc7UyhHVIq5sG+OsXtS9n6XNu79wUU97om5XVzeKUGQm9rmd+XRTtP6yXEdbLbGFkecd5duP6KOc7v26kZiT8zojitpz5qhFcC/DAV1/HjjRST9/+bmR9QxXSGsr1qN8byqrRasudLtrUFo12dUSgSlSPlo1Vs//CxMxmP8u4+7uJVZd2M1Wrj2Wc3UvVWhrZTdXqyz1iW2kNPzzHXqpWH/rXPsdmqtZPRvgTRo73jWymavXlUtBmqtbayGaq1i+M6KtG9lK1fjKylaq1/zovG9lM1do3wi8b2UvV6quVsU0fXj/HXqpWX62L7caS1YcCRzEfZVT87Uux2h+2m6j1g5G9RK2+WoXaTdT6hZHnySrrngDlqFipphN96wnM5VbRvD3v8fkspx18m8pZrYhp15Ydijpk+tpQ5nL7bcNVaW0+b7CrxZ8/dgL3/qIRfHSYjvaiESIY4dWTLK+yz4ZPY/k6+oHezXw7AfyH59jr3Yzj+GufY7d384MR/oSR430jm72bsdyQtdm7WRvZ7N38woi+amSvd/OTka3ezf7rvGxks3ezb4RfNrLXuxnt7QTwH55jr3cz2ng/liwDdF4MTGMV09oHTvFcGtmN8oPejq4/PMdmlCf6a59jM8r/ZIQ/YeR438hulKcPnOK5NrIb5feN6KtGNqM8feAUz/3XednIbpTfNsIvG9mM8vx2dP3hOTajPNtfG+W1Z26DzkWhyvEB51sa2XW+fSP6qpFN5/vByJ7zbb/Oy0Z2nW/bCL9sZNP5VrMDm863fo5N5+vvT2StB9LYwsJtUb2rMxB3B9Kjf2Bb+NLIdj+tvx9b+we2hY9uf+1z7PbT+ge2hf9k5HjfyG4/bbmotfupGPyBT8W+EX3VyOanYnxgW/j+67xsZPdTsW2EXzay+anQ98da4wPbwoe+PyuwjvKbo/HVvV3bAVrfXoT94Tk2A7TOv/Y5dgP0D0b4E0aO943sBujVsYfbAXppZDdA7xvRV41sBugfjOwF6O3XednIboDeNsIvG9kM0PPtRdgfnmMzQM/+1wbo3YH0/MQs1vzELNb8xCzW/MQs1vzELNb8xCzW/MQs1vzELNb8wCyWHu+PtOYHZrH0eH8Wa5kxMChX6Uctj68ZA7rcjDUFg+C+OOlQVycdNhu5tcbqObumv7Jimao9S8brf2Jl+4109UarLOummWXd5rGystpGxVkuxCVf9T95o5UVODJJOSjgP7GySlMZ2ebk8XX5iJX56hv1DJL0xz70b1aWpx3OHB/ItP6ile5TIm6lD50vWhkEj+ajv9h2aRyY1zpWbXe5oWszf0eX+7k283eU1teTbuXvrI1s5u+sjWzm7+hq+9PutKPy8f6049LI7qhW+e2pgh+eY29Uqyx/7XNsjmp/MsKfMHK8b2RzVKs83+9Yr41sdqx/YURfNbLXsf7JyFbHev91Xjay2bHeN8IvG9nsWIu978PzAx3r/nbKyw9Rfm/aUVe7t7YDdH97quCH59gM0L3/tc+xG6B/MMKfMHK8b2Q3QI8PpBCsjewG6H0j+qqRzQA9PpBCsP86LxvZDdDbRvhlI5sBery9dPDDc2wGaG1/bYDenHZU/cCi7NrIrvPtG9FXjWw6n35gUXb/dV42sut820b4ZSObzmfvj7T0A4uyau+PtNYD6b38HbUPbIRR+8BGGLX3+632gY0wOo+/9jl2u1j2gY0wPxk53jey28WaH9gIszayG+XnBzbC/GBkM8rPD2yE2X+dl43sRvn5gY0wPxjZi/J2vB9d5wc2wtj7i1w/BOi9MbAdH9gIszSyG+WtvR1df3iOvShvjf7a59iM8j8Z4U8YOd43shnlrX0ghWBtZDPK/8KIvmpkL8r/ZGQryu+/zstGNqP8vhF+2chmlH//Dq8fnmMzypP9tVF+cyBt/IFZrLWRXefjD8xi/WBk0/n4A7NY+6/zspFd5+MPzGL9YGTT+fjtWawfnmPT+eT9Waz1Wj/nl68ezfZtrd9WBxO6f19L/eXQu/5qzkFfXL71gxXLt9FjYWWZ02SWVwuY2eoQv2VmFC4XsD8OjvxqxVYrWo/pmDzqRqv72S+M+Aj3ehJCQJpfa3i1orV7Rs0vjLx4Rs20PG54zkGLcl0tag3KvLXBtUP/3cpirCU6cRB/HVt8t/KJo+Ktf+KoeOvvHxVvqw1c2wcoW18txO4eoLx+lt1zfm15+9buOb+2Optw85zfpY3tM3ptrNrt5hm960LZPaN37UIzh14yV8HWVucT7rvQ6hKvfRdarXHtutDqEq99F1qtcm2fHm6rvVybd7Ov32fbDfUTx22bvn/c9tLGvhuuNnRtu6HKX+2G/aDMPz2W38PlBV6bRw7b6pzC3SOH7YerxLaOHN43sjhy+Acje0cOr41sHjm8NrJ55PAPDcXyxMN2rLpfywWv7YYyP9FQ7BMNxT7RUOwTDcU+0VDsEw1lfuLjszolZffjs+zr44v8qJyxaLLLwwotj5nvpv1VKzOv13lgf3Fs2Q5cwdqO1o9X7TTK67sebPaynZ6XGZ+32uirdghTGu2PPRm/tMNHXiL84NW+pB/sUPZO259Xiv3SDucMSWOhl99LJqavZOrCzlyuiQm6LyL1goH2KyuHYc51fsLK6lnWJTNaTv2cx9G97FmDcPfCI6ovosVsi5jzGPDnnEvX58F834jRy0YGjOirRmTLyPq6D4+MboQnL67YmKtD60bOAo/S2320ohdtzIWN5ZUuholxK+1W6BcPggGn1UULOX5RrA/XywEn1SL5Vqy0zPKWvGf2wfz8bplJf/XdMprthB6FjPnktmtBRn5lZdRrWJp8fRddzTTiG1vvbT++eg4t16d3L9Sby+u3di/U++Fhdi/Um6tbvD5Ryb3nfcT9jw/9tyri5dHcqrmj7jBelO7ajOVyzKPbyvSqGeSa8Nkve/1pqJgZT8309RGh5Y6mVgcDv3ua1nKJ6MFTX6rsbL2Pyuanlb0w8ViFjnD7WAD4YuJ/f/zxH//bP//bf/37v/63f/z3f/7Xf/nv52+2fvYiz3WlNk46p6CaJlnSdHo0RzqS2kln/CdKYqdH1ZAkucYZEWkkaZLl7874Oz6SLo2HQzIlcZIk9STXOA/YY02yJNc4F47lSHKNcy5YXOPsJAknSVJPGkmaZEkzqB9JLSk1emr01Oip0VOju8Z5Ukm3pOm99kfbHUdS+9s9ohynhufrDHZ6/MYQp0ddju70aG1jJKn33h7lNyzJNc6Iq0eSa5y+oK5xdgSVkySpJ42rb/8gTbKkGWSucXbdrSW5xvlhN06SpKxzG0mXxqMuzZJc41z8m65xrh3MluQaZ+1P1zjPAZiS1JP8Pc6h4NQkS3KNc6L58R0Euso5XHtMAwEZKEBXOmcmHrOljv1E1zrPVXp8UoGX2uN9W3O1s5m01oAEZKAAXW26hQFUoAFnojv/jQ1IQAYKEGoENYKaBwE5m27zKHChhwE5FyGbxwE5t8E3DwRyVnbzSCDk//ZUk3MTdfNY4CkZzYPBjaeanCv0zcPBja52znY3Dwg3uto5BmoeEuT8ZDWPCTcKsANd7ZwZbB4XbjTgTPTQIOfYpXlsuNHVzmbZPDrcKMCeVegB4sZL7TjRgK52tuzmQUK87XiUkHOCsnmYuJGBrmb+bzvQ380ry2OFnNfLNA8W/fp8zEQPFzeear05EpCBAuyOp4QHjX5+ZJpHjRtdzduDx43u1e2B40ZXO9NSmoeOGxkoQFcT/zVX85r3+HGjq3nFegS50EPIjQ1IQAYKsAMHUIFQm6lGxwFsQAIyUIAdOIAKNCDUGtQa1BrUGtQa1BrUGtQa1BrUGtQIagQ1utT6iQwU4KU2ThxABRpwJvKRFrgBocaMfytAqDHUGGoMNYaaQE2gJlATvJvg3QRqAjWBmkBNoNYPYAMSEO/WodY7cAAVaECoDagNqA2oDagNlOTAuw2828C7DahdscRRUZKKklSUpEJNoaZQU6gp1BQlqXg3w7sZ3s2gZqg3Q0kaStJQkgY1g5pBbUJtQm2iJCfebeLdJt5tQm2i3iZKcmZJ8nEAU40PAjJQgB04gAo0YL4bN6i1BiQgAwUItQa1BrUGtQY1OoB4N8K7Ed4NsYSpAwdQgQaEGkONocZQQyxhxBJGLGHEEkYsYYYao94QSxixhBFLWKAmUEMsYcQSRixhxBJGLGHEEkYs4Q61jnpDLGHEEkYs4Q61DjXEEkYsYcQSRixhxBJGLGHEEh5QG6g3xBJGLGHEElaoKdQQSxixhBFLGLGEEUsYsYQRS9igZqg3xBJGLGHEEjaoGdQQSxixhBFLGLGEEUsYsYQRS3hCbaLeEEsYsYQRS3immhwHsAEJyEABduAAKjDV5Mh6E8QSQSwRxBJpUGtQQywRxBJBLBHEEkEsEcQSQSwR9EsE/RJBLBHEEkEsEfRLBP0SQSwRxBJBLBHEEkEsEcQSQSwRhhorECWJWCKIJSJQE6ghlghiiSCWCGKJIJYIYokglkiHWke9IZYIYokglkiHWocaYokglghiiSCWCGKJIJYIYokMqA3UG2KJIJYIYokMqCnUEEsEsUQQSwSxRBBLBLFEEEtEoaaoN8QSQSwRxBIxqBnUEEsEsUQQSwSxRBBLBLFEEEtkQm2i3hBLBLFEEEtkQm1CDbGkI5Z0xJKOWNIRSzpiSUcs6Ueq9UOBBsyS7IglvUGtQQ2xpCOWdMSSjljSEUs6YklHLOkENWpAAjJQgFDDGKcjlnTEko5Y0hFLOmJJRyzpiCWdocYdiJJELOmIJR1jnC5QQyzpiCUdsaQjlnTEko5Y0hFLukBNUG+IJR2xpCOWdIxxeocaYklHLOmIJR2xpCOWdMSSjljSB9QG6g2xpCOWdMSSjjFOH1BDLOmIJR2xpCOWdMSSjljSEUu6Qk1Rb4glHbGkI5Z0jHG6QQ2xpCOWdMSSjljSEUs6YklHLOkTahP1hljSEUs6YknHGKdPqCGWdMSSjlgyEEsGYslALBmIJeNItXF04AAq0IBQa1BDLBmIJQOxZCCWDMSSgVgyEEtGg1rLehuIJQOxZCCWDIxxBmLJQL9koF8yEEsGxjiDoIb5koFYMhBLBmLJQL9k3LHkXFHgnAsarEAD5lzQkAPYgARkoAA7EGoCNYGaQK1DrUOtQ61DrUOtQ61DrUOtQ61DbUBtQG1AbUBtQG1AbUBtQG1AbUANY5yB+ZKB+ZKBWDIQSwZiyUC/ZKBfMhBLBmLJQCwZiCUDsWQglgzEkoFYMhBLBmLJMKgZ1BBLBmLJQCwZGOMMzJcMxJKBWDIQSwZiyUAsUcQSRSzRI9X0YKAAO3AAFRYMCDXEEkUsUcQSRSxRxBJFLNEGtaZAA2ZJKmKJYoyjmC9RxBIlqKFfouiXKGKJol+i6JcoYoli7lUx96qMkkS/RDHGUcyXKOZLFHOvin6Jol+i6Jco+iWKfoli7lUF9SYoSUFJol+iGOMo5ksU8yWKuVdFv0TRL1H0SxT9EkW/RDH3qh31NlCSAyWJfolijKOYL1HMlyjmXhX9EkW/RNEvUfRLFP0SRSxRRb0pSlJRkuiXKGKJYr5EMV+imHtVxBJFLFHEEkUsUcQSxdyrGuoNsUQRSxSxRDHGUcyXKGKJIpYoYokilihiiSKWKGKJYe7VjgYkIAMF2GFhABVoQKghlhhiiSGWGGKJYe7VWgcOoAINCDXMlxhiiSGWGGKJIZYYYokhlhhiiaFfYuiXGGKJIZYYYomhX2LolxhiiSGWGGKJIZYYYokhlhhiiWHu1bCOY4glhlhiiCWGMY5hvsQQSwyxxBBLDLHEEEsMscQQSwxzr4Z1HEMsMcQSQywxjHEM8yWGWGKIJYZYYoglhlhiiCWGWGLolxj6JYZYYoglhlhi6JcY+iWGWGKIJYZYYoglhlhiiCWGWGKYezWs4xhiiSGWGGKJYYxjmC8xxBJDLDHEEkMsMcQSQywxxBLD3KthHWcilkzEkolYMjHGmZgvmYglE7FkIpZMxJKJWDIRSyZiycTc68Q6zkQsmYglE7FkYowzMV8yEUsmYslELJmIJROxZCKWTMSSiTHOxDrORCyZiCUTsWRijDMxxpmIJROxZCKWTMSSiVgyEUsmYsnE3OvEOs5ELJmIJROxZGK+ZGK+ZCKWTMSSiVgyEUsmYslELJmIJRNzrxPrOBOxZCKWTMSSifmSifmSiVgyEUsmYslELJmIJROxZCKWTMy9TqzjTMSSiVgyEUsmxjgTY5yJWDIRSyZiyUQsmYglE7FkIpZMzL1OrONMxJKJWDIRSybGOBPzJROxZCKWTMSSiVgyEUsmYslELJmYe51Yx5mIJROxpB0IJg9OvQdTYS4shXvhUVgLW+EJbkUXazoPpsJcWAoX3VZ0W9FtRbcVXQSYB5f3pfK+VN6Xii5mUh48CmthK1x0uehy0eWiy0WXSzlzeV8u78vlfbnocqlfKeUspZyllLMUXSm6UnSl6ErRlVLOUt63l/ft5X170e2lfnsp517KuZdy7kW3F91edEfRHUV3lHIe5X1Hed9R3ncU3VHqd5RyHqWctZSzFl0t76vlfbW8rxZdLbpadLXoanlfK+9rRdfK+97xyZyRknZYLzwKa2ErjCy4o6TBHSUP7iiJcEfJhDtKKtxRcuGOkgx3lGy4o6TDHciHaw0Jca0hI641pMS1hpy41pAU1xqy4lpDWlxryItrDYlxrR1FtxXdVnRb0W1FtxXdVnRb0W1FF0Or1jBP0xomalor8aqVeNVKvGroFLWGXlFrJV61Eq9aiVetxKtW4lUr8aqVeNVKvGolXrUSrxoXXS66JV61Eq9aiVdNiq4U3RKvWolXrcSrVuJVK/GqlXjVSrxqvehifam1Eq9aiVetxKvWi24vuiVetRKvWolXrcSrVuJVK/GqlXjVRtHFalNrJV61Eq9aiVdtFF0tuiVeNS26WnS1lHOJV03L+2p53xKvmpb6tVLOVsrZSjlb0bWia0XXiq4VXSvlbOV9Z3nfWd53Ft1Z6neWcp6lnGcp51l0Z9HFvE8jTCI3Kv0rKv0rKv0rKv0rKv0rwlRyI6xLNcLCVCOscjcq/StqRbcV3VZ0W9Et/Ssq/Ssq/Ssq/Ssq/Ssq8YqwStVKWm8reb2tJPa2ktnbSmpvK7m9rST3tpLd26jEKyrxikq8Khm+jbjoYv27UYlXVOIVlXhV8nwbSdEt8YpKvKISr6jEq5Lt20q6byv5vo2k6Eqp3xKvqMQrKvGqZP026kW3xCsq8YpKvKISr0rubyvJv61k/zYaRXeU+i3xikq8ohKvSg5wo1F0S7yiEq+oxCsq8apkAreSCvz/lXY3O5Lt5pWG70XjGsTHxd++FUEwbLW6IUCwDLXdQKOhe3cmI+PsB7ZnnghLWZWxgmTle7jJF5GFC1yN/VVjf9XgVYNXDV5hBFdjf9XgVYNXDV41eIUXXIjBhRlc7dB7WF941eBVg1f4wdUOvfCqwasGrwKvsIQLTbjwhCvPYXXlufmqwKvAq8ArbOFK0QuvAq8CrwKvcIYLabiwhivsr8L+KvAq8CrwCne4wv4q8CrwKvAq8AqDuFCIC4e4EnqfW7EKvAq8CrzCJK6EXngVeBV4FXiFT1wIxYVRXOn0dtYXXgVeBV7hFVcGvfAq8CrwKvAKu7jQiwu/uDLpnawvvAq8CrzCMq5MeuFV4FXgVeAVrnEhGxe2cYXnwSzWF14FXgVe4RxXeB4MvAq8CrwKvMI8LtTjwj2ubHo36wuvAq8CrzCQK4deeBV4FXgVeIWHXIjIhYlc/TkOr/7crVWHVx1edXiFj1yd86sOrzq86vCqwyus5EJLLrzk6kXvc9NWHV51eNXhFXZydZ4HO7zq8KrDqw6vcJQLSbmwlKuH3uferTq86vCqwytc5eqcX3V41eFVh1cdXmEsF8py4SxX7/R21hdedXjV4RXmcnXOrzq86vCqw6sOr/CXC4G5MJirD3oH6wuvOrzq8AqPuTrnVx1edXjV4VWHV9jMhc5c+MzVOb/qnF91eNXhVYdXWM3VF73wqsOrDq86vMJtLuTmwm6uvundrC+86vCqwysc5+qHXnjV4VWHVx1eYToXqnPhOtfgvH08t3c14NWAVwNeYTzX4Lx9wKsBrwa8GvAK77kQnwvzuQbn7eO5y6sBrwa8GvAK/7kQoAsDulCga8ArJOganLcPzq/woAsRujChCxW6Pi70vvk5r/vY0O/cyYM8yYu8yc854XhExhqPyVij09vp7fR2eju9nd5Ob6d30DvoHfQOege9g95B76B30DvonfROeie9k95J76SX58HB+dXg/ApjulCmC2e6kKYLa7oGvBrwCnG6Brwa8GrAqwGvsKcLfbrwp2tseje98GrAqwGvsKhrcH414NWAVwNeDXiFS13I1IVNXePQy/3ghFcTXk14hVNdk/OrCa8mvJrwasIrzOpCrS7c6prcD07uBye8mvBqwisM65qcX014NbkfnOyvJvsrPOua7K8m+ytU65qctyNbF7Z1oVsXvnUhXBfGdaFc12R/NdlfTfZXk/3VZH81OW+f3A9O7gdnZ57ZX02eByfnV5Pzq8l5+2R/NdlfTfZXk/3VZH81OW+f3A9O7gfnYJ7ZX02eByfnV5Pzq8l5+2R/NdlfTfZXk/3VZH814dXkfhAtu/CyCzG7MLMLNbtwsws5u7Cza8KrCa8mvMLQrsl5+9ysL7ya8GrCKzztmpxfTXg14dWEVxNeYWsXunbha9fkvH0e1hdeTXi14BXWdi3Orxa8WvBqwasFr3C3C3m7sLdrcd6+8BkWvFrwasErHO5anF8teLXg1YJXC15hchcqd+Fy12J/tdhfLXi14NWCVxjdtdhfLXi14NWCVwte4XUXYndhdtfivH1xP7jg1YJXC17hd9fi/GrBqwWvFrxa8ArLu9C8C8+7Fufti/vBBa8WvFrwCtu7FudXC14teLXg1YJXON+F9F1Y37XYXy32VwteLXi14BXudy32VwteLXi14NWCVxjghQJeOOC1OG9f3A8ueLXg1YJXmOC1OL9a8GrBqwWvFrzCBy+E8MIIr8V5++J+cMGrBa8WvMILr8351YZXG15teLXhFXZ4oYcXfnhtzts394MbXm14teEVlnhtzq82vNrwasOrDa9wxQtZvLDFa/M8uLkf3PBqw6sNr3DGa/M8uOHVhlcbXm14hTleqOOFO16b8/bN/eCGVxtebXiFQV6b86sNrza82vBqwys88kIkL0zy2py3b+4HN7za8GrDK3zy2pxfbXi14dWGVxteYZUXWnnhldfmvH1zP7jh1YZXG15hl9fmeXDDqw2vNrza8ArHvJDMC8u8Nuftm/vBDa82vNrwCte8NudXG15teLXh1YZXGOeFcl4457U5b9/cD254teHVhleY57U5v9rw6sCrA68OvMI/LwT0wkCvw3n74X7wwKsDrw68wkOvw/nVgVcHXh14deAVNnqhoxc+eh3Orw7nVwdeHXh14BVWeh3O2w+8OvDqwKsDr3DTCzm9sNPrcN5+uB888OrAqwOvcNTrcN5+4NWBVwdeHXiFqV6o6oWrXofz9sP94IFXB14deIWxXofz9gOvDrw68OrAK7z1QlwvzPU6nLcf7gcPvDrw6sAr/PVCYC8M9kJhrwOvkNjrcN5+OL/CYy9E9sJkL1T2+rjs3+efPzL7968sqx+b/X4+5I/OPu/ff/Nqvv/+7V3vv3971/vTCif59n5/HHP9SO0/+fbu+/pvXv3k27vv6795dd5fD7mTb++5Y3/z6iff3vs5lD96+0/+7r0fX9/efvsn18395kYOud88bx7k7975/auo2ttv/+RNPk++vJrfn2XZ3n77Jzfy7X1/pvLl1Wz3fV5effLtbe8PgFzk29vue7u8+smXV598e78/67y9/fZPvr257+Hy6pMH+fbmvrfLq0++vf2+t8urn3x5Nb8/drS9/fZPbuTb+/17Ztrbb//k2zvuvF1ezXHfw+XVJ2/y7R33/fQX+fbO+5qXV58c8u2dd60vrz759q7352gu8ibf3nXf5+XVJ9/edef28uqTb+++Y7+8+uTbu98f1DnJi3x79/v1z5Mvr+a57/ny6pMb+fae+2/g8uqTb++57+3y6pO/e9frzu3l1SefJ19erded58urT/7uXXXf8+XV/SV27e23f/K4+f33J3mRN/k8+fJqvX8WLq8+uZFDvr3vn5HLq9Xu+7+8+uRF3uTb+/4ZOS9ykW9vbtfl1crturz65EG+vblrd3n1ybc379c8v+W33/7JRb69359g3t5++yff3n4/jf3y6pMn+fZ+f9J5e/vtn3x7vz+NuL399k++vd//7Whvv/2Tb+/9WXv77Z88yLd33te/vPrk27vue768+smXV598e79/zWJ7++2ffHvXfW+XV598e/f7M2oneZFv7/3ZefvtP/nyau37ni+vPvn2nvueL68++fben6+33/7Jk3x778/a22//5O/e/bq9l1efXORGzs3r5k4e5Hnzfc+XV7vu+7y8+uTbW++P6H2Rb+/92Xz77Z8c8u2t+2/v8uqTb+/9eXn77Z+8ybe33fd2efXJt/f+7Lz99k++ve9/z5dXnzzIt7fffw+XV598e/ud/8urn3x59cm3t9+5vbza/Y5xhdzJg/zuveNai3x73z9Hl1c/+fLqk4t8e+d9D5dXn3x7738v3n77J9/efcd4efXJm3yefHn1yUVu5JA7eZDpPfQees/T+/bbP7nIjRxyJw/yJC/yJtNb9Ba9RW/RW/QWvUVv0Vv0Fr3t3dtvLnIjv3vHzZ08yJO8yJvXOU8Ovann76eR6Q29oTf0ht7QG3o7vZ3xdsbb6e30dno7vZ3eN69+8nnym1c/mfEOet+8+smdPMiTTO+gd9A76Z30TuZ5Mt7JeCfjnfS+efWTmefJPC/medG76F30LnoXvYt5Xox3Md7FeDe9m/XdzPNmnjfzvOnd9G56N72b3sM8H8Z7GO9hvIfew/oe5vkwz4d5Pk9vXi9ykRs55E4e5Ele5Kc3r2d9Uy9ykRuZ3qK36C16i97aZMbbGG9jvPAqLeROHuRJprfR2+gNvfAq8CrwKvAq8CqhN4vMPMOrwKt0eju98CrwKvAq8CrwKvAq8CqD3sH6wqvAq8CrDHoHvfAq8CrwKvAq8CrwKvAqk97J+sKrwKvAq0x6F73wKvAq8CrwKvAq8CrwKovexfrCq8CrwKtseje98CrwKvAq8CrwKvAq8CqH3sP6wqvAq8CrHHoPvfCqw6sOrzq86vCqw6sOr/rr6e2vRd7kZ547vOpFb9ELrzq86vCqw6sOrzq86vCqs7/q7K86vOrwqsOrzv6qs7/q8KrDqw6vOrzq8KrDqw6veujNIDPP8KrDqx56O73wqsOrDq86vOrwqsOrDq96p7ezvvCqw6sOr/qgd9ALrzq86vCqw6sOrzq86vCqT3on6wuvOrzq8KpPeie98KrDqw6vOrzq8KrDqw6v+qJ3sb7wqsOrDq/6pnfTC686vOrwqsOrDq86vOrwqh96D+sLrzq86vCqH3oPvfCqw6sOrwa8GvBqwKsBr8br6R2vQZ7kRd5keoteeDXg1YBXA14NeDXg1YBXo+itZ30HvBrwasCrwfPg4HlwwKsBrwa8GvBqwKsBrwa8GqE3ITPP8GrAq8Hz4Ai98GrAqwGvBrwa8GrAqwGvRqe3s77wasCrAa8Gz4Nj0AuvBrwa8GrAqwGvBrwa8GpMeifrC68GvBrwavA8OCa98GrAqwGvBrwa8GrAqwGvxqJ3sb7wasCrAa8Gz4Nj0wuvBrwa8GrAqwGvBrwa8GpsejfrC68GvBrwavA8OA698GrAqwGvBrwa8GrCqwmv5uvpna+QO3mQJ3nxOptML7ya8GrCqwmvJrya8GoWvbXIm/zM84RXk+fBCa8m+6vJ/mrCq8nz4Gz0cn414dWEVxNeTfZX84dX6+bbe143D/IkL/Imnye/efWTi9zIIdPb6e30dno7vZ3eQe+gd9A76B30DnoHvYPeQe+gd9I76Z30TnonvZPeSe+k982r71+m3t5++09+8+onv3tzcyOH3MmDPHmdRab3zav333/z6ifTu+nd9G56N72b3k3vpncz3sN4D72H3kPvoffQ++bVT17kTX7G+/bb371vv/2TGznkTh68ziQv8ibTWy9ykRs5ZHrfvPrJk7zIm0xvo7fR2+ht9LZOZryN8TbG2+htz/q+/fZPZp7DPIfe0Bt6Q2/oDfMcxtsZb2e8nd7O+nbmuTPPnXnu9HZ6O72D3kHvYJ4H4x2MdzDeQe9gfQfzPJjnyTxPeie9k95J76R3Ms+T8U7GOxkvvFqL9V3M82KeF/MMr9aid9G76IVXC14teLXg1YJXa9O7WV94teDVgldr03vohVcLXi14teDVglcLXi14tQ6951nfDa82vNrwar+e3v3q5EGe5EXe5Ge8G15teLWL3gq5kwd5kukteuHVhlcbXm14teHVhlcbXu1Gb1vkTWae4dUOvaEXXm14teHVhlcbXm14teHV7vR21hdebXi14dXu9HZ64dWGVxtebXi14dWGVxte7UHvYH3h1YZXG17tQe+kF15teLXh1YZXG15teLXh1WZ/tdlfbXi14dWGV5v91WZ/teHVhlcbXm14teHVhlcbXu1N72Z94dWGVxte7U3vphdebXi14dWGVxtebXi14dU+9B7WF15teHXg1Xk9vefVyCF38iBP8iJv8jPeU/RWkRs55E6mt+iFVwdeHXh14NWBVwdeHXh1Gr1tkCd5kTeZ3tALrw68OvDqwKsDrw68OvDqhN6wvvDqwKsDr06nt9MLrw68OvDqwKsDrw68OvDqDHoH6wuvDrw68OoMege98OrAqwOvDrw68OrAqwOvzqR3sr7w6sCrA68Oz4OH58EDrw68OvDqwKsDrw68OvDqbHo36wuvDrw68OrwPHg2vfDqwKsDrw68OvDqwKsDr86h97C+8OrAqwOvzvM8mNfrRS5yI4fcyYM8yYv8W29er/Pkh1d5PbzK6+FVXkVv0Vv0Fr1F78OrvIrxNsbbGG+jt4XcyYM8yfQ2ehu9oTf0hnkO4w3jDeMNvVlk5jnMc2eeO72d3k5vp7fT25nnzng74+2Md9A7WN/BPA/meTDPg95B76B30DvonczzZLyT8U7GO+mdrO9knifzPJnnSe9ivIvxLsa76F30LnoXvYvxLsa76N2M94dX4+bffNG8Hl80r8cXzevxRfN6fNG8Hl80r8cXzevxRfN6fNG8Hl80r8cXzevxRfN6fNG8Hl80r0PvoffQ+/iiqccXTT2+aOrxRVOPL5p6fNHU44umHl809fiiqccXTb3oLXqL3qK36C16i96it+gteove57w99dwPpp7z9tRzP5h67gdTz3l76rkfTD33g6nnvD31+KKp0Puct6ee8/ZU6A29oTf0ht7QG3o7vZ3xdsbb6e30dno7vZ3ex79KPf5V6vFFU4PxDnof/yr1+FepxxdNPb5oatA76B30TnonvZN5nox3Mt7JeCe9j3+VmszzZJ4X87zoXfQuehe9i97FPC/GuxjvYryb3s36buZ5M8+bed70bno3vZveTe9hng/jPYz3MN5D72F9D/N8mOfDPD/3g2nP/WDacz+Y9vgMaY/PkPb4V2mPf5X2+KJpz/1g2uMzpD3+VdrjX6U9vmja44umFb1Fb9Fb9Ba9j3+VVoy3Md7GeOFVe+4H0577wbTHF0177geD357W6G30hl54hd8e/Pbgtwe/PS30Pv5V8NuD3x789rROb6cXXuG3B789+O3Bbw9+e/Db0wa9g/WFV/jtwW9PG/QOeuEVfnvw24PfHvz24LcHvz1t0jtZX3iF3x789rRJ76IXXuG3B789+O3Bbw9+e/Db0xa9i/WFV/jtwW9P2/RueuEVfnvw24PfHvz24LcHvz3t0HtYX3iF3x789rRD76EXXuG3B789+O3Bbw9+e/Dbk8dnSB7/KvjtwW8PfntS9Ba98Aq/PfjtwW8Pfnvw24PfnrC/Cvsr/Pbgtwe/PWF/FfZX+O3Bbw9+e/Dbg98e/Pbgtyeh9/Gvgt8e/Pbgtyeht9MLr/Dbg98e/Pbgtwe/PfjtSae3s77wCr89+O3JoHfQC6/w24PfHvz24LcHvz347cmkd7K+8Aq/PfjtyaR30guv8NuD3x789uC3B789+O3JonexvvAKvz347cmmd9MLr/Dbg98e/Pbgtwe/PfjtyaH3sL7wCr89+O3JoffQC6/w24PfHvz24LcHvz347emPf5X++FfBbw9+e/Db01/0Fr3wCr89+O3Bbw9+e/Dbg9+eXvQ+/lXw24PfHvz2dJ4HO8+D+O3Bbw9+e/Dbg98e/Pbgt6eH3scXDX578NuD357O82APvfAKvz347cFvD3578NuD357e6e2sL7zCbw9+ezrPg33QC6/w24PfHvz24LcHvz347emT3sn6wiv89uC3p/M82Ce98Aq/PfjtwW8Pfnvw24Pfnr7oXawvvMJvD357Os+DfdMLr/Dbg98e/Pbgtwe/Pfjt6ZvezfrCK/z24Len8zzYD73wCr89+O3Bbw9+e/Dbg9+e8fiiGY8vGvz24LcHvz2D58Hx+KLBbw9+e/Dbg98e/Pbgtwe/PaPofXzR4LcHvz347Rk8D+K3Z7C/Guyv8NszeB4cjV7Or/Dbg98e/PYM9lfj8UUzHl804/FFMx5fNOPxRTMeXzTj8UUzHl804/FFMx5fNOPxRTM6vZ3eTm+nt9Pb6R30DnoHvYPeQe+gd9A76B30DnonvZPeSe+kd9I76Z30Tno5bx/P/WAG5+3juR/MeO4HMzhvH8/9YMZzP5jBeft4fNGMRS/n7YPz9rHp3fRueje9m95N76Z307sZ72G8h95D76H30HvoffyrjMe/ynh80QzuB+fjM2Q+/lXm419lPr5o5uOLZnI/OLkfnNwPzsdnyHzR+/hXmY9/lfn4opncD86i9/GvMh//KvPxRTMfXzST+8HJ/eDkfnA2ehu9j3+V2RhvY7zcD85G7+NfZYZ5DvMc5pn7wcn94OR+cIbe0BvmOYy3M17uB2ent7O+nXnuzHNnnrkfnNwPTu4H56B30DuY58F4B+PlfnAOegfrO5jnwTxP5pn7wcn94OR+cE56J72TeZ6MdzJe7gfx2zO5H5zcD87FPHM/iN+euejlfnByP4jfHvz24LcHvz347Zmb3s36wiv89uC3Z256D73wCr89+O3Bbw9+e/Dbg9+eeeh9/Kvgtwe/PfjtWfgMC58Bvz347cFvD3578NuD3x789ix8hvX4V8FvD3578Nuz8BkWPgN+e/Dbg98e/Pbgtwe/PfjtWfgM6/Gvgt8e/Pbgt2fhMyx8Bvz24LcHvz347cFvD3578Nuz8BlWZ33hFX578Nuz8BkWPgN+e/Dbg98e/Pbgtwe/PfjtWfgMa7C+8Aq/PfjtWfgMC58Bvz347cFvD3578NuD3x789iz2V4v9FX578NuD357F/mqxv8JvD3578NuD3x789uC3B789a9O7WV94hd8e/PasTe+mF17htwe/PfjtwW8Pfnvw27MOvYf1hVf47cFvz8a/2vhX+O3Bbw9+e/Dbg98e/Pbgt2fjX238K/z24LcHvz0b/2rjX+G3B789+O3Bbw9+e/Dbg9+ejX+18a/w24PfHvz2bPyrjX+F3x789uC3B789+O3Bbw9+ezb+1ca/wm8Pfnvw27Pxrzb+FX578NuD3x789uC3B789+O3Z+Fcb/wq/PfjtwW/Pxr/a+Ff47cFvD3578NuD3x789uC3Z+Nfbfwr/Pbgtwe/PZvnwc3zIH578NuD3x789uC3B789+O3Zm97N+sIr/PavzDzzPLg3vfAKvz347cFvD377V2a88Gofeg/rC6/w24Pfns3z4MEXxW8Pfnvw24PfHvz24LcHvz0HX/Tgi+K3B789+O05PA8efFH89uC3B789+O3Bbw9+e/Dbc/BFD74ofnvw24PfnsPz4MEXxW8Pfnvw24PfHvz24LcHvz0HX/Tgi+K3B789+O05PA8efFH89uC3B789+O3Bbw9+e/Dbc/BFD74ofnvw24PfnsPz4MEXxW8Pfnvw24PfHvz24LcHvz0HX/Tgi+K3B789+O05PA/it+ewvzrsr/Dbc3gePPiih/Mr/Pbgtwe/PYf91cEXffvt5/tzzvP2279+im/uN/ebB3mSF3mTz5Mvrz65yI0cMr2H3kPvoffQe37r7W+//ZOL3Mghd/IgT/Ii395qN58nX159cpEbOeROHuRJXmR6i95Gb6O30dvobfQ2ehu9jd5Gb6M39Ibe0Bt6Q2/oDb2hN/SG3k5vp7fT2+nt9HZ6O72d3k5vp3fQO+gd9A56B72D3kHvoHfQO+id9E56J72T3knvpHfSO+md9E56F72L3kXvonfRu+hd9C56F72L3k3vpnfTu+nd9G56N72b3k3vpvfQe+g99B56D72H3kPvoffQe57et9/+yUVu5JA7eZAneZE3mV54VfCq4FXBq4JXBa8KXhW8KnhV8KrgVcGrglcFrwpeFbwqeFXwquBVwauCVwWvCl4VvCp4VfCq4FXBq4JXBa8KXhW8KnhV8KrgVcGrglcFrwpeFbwqeFXwquBVwauCVwWvCl4VvCp4VfCq4FXBq4JXBa8KXhW8KnhV8KrgVcGrglcFrwpeFbwqeFXwquBVwauCVwWvCl4VvCp4VfCq4FXBq4JXBa8KXhW8KnhV8KrgVcGrglcFrwpeFbwqeFXwqsGrBq8avGrwqsGrBq8avGrwqsGrBq8avGrwqsGrBq8avGrwqsGrBq8avGrwqsGrBq8avGrwqsGrBq8avGrwqsGrBq8avGrwqsGrBq8avGrwqsGrBq8avGrwqsGrBq8avGrwqsGrBq8avGrwqsGrBq8avGrwqsGrBq8avGrwqsGrBq8avGrwqsGrBq8avGrwqv3w6tx8e79/j0x/++1fpwQ33942bt7k2/v9u5b622//euq/+fbmfu+bVz/59qbf3Mm3N/c137z6yYu8yefJb1795HfvfT9vXv3kkDv53btufvfumxd5k88zljevcuftzauf3Mghd753kCeZ3jev+uvvv373f//xb3/+x3/6y5/+z+/+x///+r//69/++Y//+ue//vPP//3X//cvnz/5p7/9+S9/+fP//od/+dtf//in//lvf/vTP/zlr3/8/rPfvb7/5xs5v6/5q9Ufvv5yPV86v1r//lL77Ut9/xr5/lJ++1Lrv9r5/lL/7Utfq5f7pfHT8fuv4/T+6+vsPH+4Bb//+ocyfn2dF7U/3Jf6+vORrz+f98+/v2F8HfD/Gl8n9d9fqPs39n2F+f2683mP61dr319a/3kk+7cvfR0LnP39pfO87fErrzve/2oO6r/42p2F7zf79Y+5vz5vtM9f4/3n+c8TV+85uV+qX1/M/3zXHL/W6zO0L/5/dbxfZHy+4ftXvM2vL77np8/86uu32fmeivP59vn1Azvr3Tc/E/61T/v1tY/5+favneyvr13l59u/NpW/vjaHnxf42uP8+trP3BdY/90X2P9xFv7+9z/8/d8B",
|
|
1992
1992
|
"verification_key": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACE4AAAAAAAAAAAAAAAAAAAAWmfiYZLMgDPwqZ/CaNKY80wAAAAAAAAAAAAAAAAAAAAAAAtGK7p8413j+PylZaZwmgAAAAAAAAAAAAAAAAAAANHs+knoGF9uDqsXEz9vcECfAAAAAAAAAAAAAAAAAAAAAAApx972n6ezaHylTJ1YiDMAAAAAAAAAAAAAAAAAAADasJyxWdy2slXe1r3efCJXjwAAAAAAAAAAAAAAAAAAAAAADcgMzjYxSD6dcBye+wN0AAAAAAAAAAAAAAAAAAAA19ldWtfFCQ4fUmXIb3k0NysAAAAAAAAAAAAAAAAAAAAAACkqoDeMrYKmcT/XlePJMQAAAAAAAAAAAAAAAAAAAIW4SCOHAesV8cB8aOQCHwj2AAAAAAAAAAAAAAAAAAAAAAAYXimd8YlC9JKc6nksEfcAAAAAAAAAAAAAAAAAAAB5wKHoaVZUkBhTELyOQwjLkgAAAAAAAAAAAAAAAAAAAAAAGkbnYUzQ0719MHWAQOr/AAAAAAAAAAAAAAAAAAAAw7ThXUDrHhMaNeWZBZVQG/QAAAAAAAAAAAAAAAAAAAAAAA1Z06V3rpG05gQ4LYmLCQAAAAAAAAAAAAAAAAAAAOjbomCWK4yi7UD6u6qMmG41AAAAAAAAAAAAAAAAAAAAAAAQnEkfOJ0zI7Khqf+9glkAAAAAAAAAAAAAAAAAAAAXSWsmnjAtBhE6PYtJTlDkYgAAAAAAAAAAAAAAAAAAAAAAJenyPHI2ExeV/EFHJclMAAAAAAAAAAAAAAAAAAAAdhzL1dOy86/+SSlCfbIdV2gAAAAAAAAAAAAAAAAAAAAAABY6Zc60G7ORnQUq2LfVmQAAAAAAAAAAAAAAAAAAAPa6JDA/ykq4QZQ9XC0o6vBgAAAAAAAAAAAAAAAAAAAAAAApa1HhfzhEFYsVhWHvwCcAAAAAAAAAAAAAAAAAAAA+v5sXygKUJOVt5FAQt9W3cAAAAAAAAAAAAAAAAAAAAAAAL6KVJJMGpInWc7TCzCH4AAAAAAAAAAAAAAAAAAAAJzF9LwqADNbKcfUoT8KtTa8AAAAAAAAAAAAAAAAAAAAAAA518y3hD5iLVkztpJIXywAAAAAAAAAAAAAAAAAAAB5J8PjTkTM7ZuCKjl4o1N0dAAAAAAAAAAAAAAAAAAAAAAAGAYYZQRXqMgE23QeNvXEAAAAAAAAAAAAAAAAAAADLzvOxf70nCh5CyeO7MbwinQAAAAAAAAAAAAAAAAAAAAAAC+Y4ZQZqlLTv/G7RCNYEAAAAAAAAAAAAAAAAAAAAHf4/GVEJ6d/9SBxR0Vsqm6MAAAAAAAAAAAAAAAAAAAAAAAEM3lfJ0Pl65D4jHKZUKwAAAAAAAAAAAAAAAAAAAGFPmV4TBGxPBRGUNLfcC7BBAAAAAAAAAAAAAAAAAAAAAAAqQMHlU5wxsLWwah8IAYcAAAAAAAAAAAAAAAAAAABehHMSPsQXr2PcbqDdsRzo8AAAAAAAAAAAAAAAAAAAAAAAJvAMntsEnF7884ZScBZdAAAAAAAAAAAAAAAAAAAANRYI0IOsSNjL+n8pWbBPTWIAAAAAAAAAAAAAAAAAAAAAAB5A581uW1uQ1TPdpYSypwAAAAAAAAAAAAAAAAAAACika63rbhPzisTV0jymK4bfAAAAAAAAAAAAAAAAAAAAAAAlbNA1vavQo41SsMF20DcAAAAAAAAAAAAAAAAAAABPjIDPR7Ys1m7K8CPUnd88YQAAAAAAAAAAAAAAAAAAAAAAFHdGWdWKtRzCsrvr9QPLAAAAAAAAAAAAAAAAAAAAZA1VVvRExhMMPRBGb/s3ZbEAAAAAAAAAAAAAAAAAAAAAACTxWzxQqL3HKc2nI1bdGwAAAAAAAAAAAAAAAAAAAM/aDGXJ0g4kGQpWzuTQBiRLAAAAAAAAAAAAAAAAAAAAAAAuj0v8l2Z5Rmu7P60SiIwAAAAAAAAAAAAAAAAAAAALMf0tTT/2e20xiApRzE2PegAAAAAAAAAAAAAAAAAAAAAAKZISqGJ05+mUN+4CDXFVAAAAAAAAAAAAAAAAAAAAZZBSwPIhD10+Yg9MG1r8yGwAAAAAAAAAAAAAAAAAAAAAAATA+//2sq/EcN/RvDiBDgAAAAAAAAAAAAAAAAAAACxnoB02IjAxuxZv/yZzL3UYAAAAAAAAAAAAAAAAAAAAAAAaN23KYin/FZP4m1ybZTgAAAAAAAAAAAAAAAAAAACEp3ntlKv/R6ZZr5oXhTVxGwAAAAAAAAAAAAAAAAAAAAAAF0kOu+yC7G7E9Kkf5KlcAAAAAAAAAAAAAAAAAAAAuFTlCQ7v1lU9+1ifF3C82qEAAAAAAAAAAAAAAAAAAAAAAC4wpAs8u8taufI9SonEqAAAAAAAAAAAAAAAAAAAAO5N5aLc1xkBeDHpVter7WdrAAAAAAAAAAAAAAAAAAAAAAALTcOQUeomtAYzdAW7CCIAAAAAAAAAAAAAAAAAAADUCpyGTXy6KqeG0EoEFLH0zAAAAAAAAAAAAAAAAAAAAAAAF5EhoFPq9HjGdf1k+0uOAAAAAAAAAAAAAAAAAAAAsycD/VX06/jcILuFlDDEGVAAAAAAAAAAAAAAAAAAAAAAABrSehGdN8ZSFP0sL2Vy4gAAAAAAAAAAAAAAAAAAAMe7efqY10EbyIYEzxfdzrBvAAAAAAAAAAAAAAAAAAAAAAAc+3W5GIVdYZ/V43eD51EAAAAAAAAAAAAAAAAAAAADUSt0aU9VyG/ZlaUo5pCMqgAAAAAAAAAAAAAAAAAAAAAACJ68zEXSrqPB8LhiBxIJAAAAAAAAAAAAAAAAAAAAN9U8e/ARxlLXuk9XOz8gy2EAAAAAAAAAAAAAAAAAAAAAAByz9+Zxs84e0tL1ICrC3AAAAAAAAAAAAAAAAAAAAAZMW+h60mzbN5a/9jD3uzqYAAAAAAAAAAAAAAAAAAAAAAAUg6YvzpP1xuibO9kCqFEAAAAAAAAAAAAAAAAAAADrKRdal67wqo3UDvRAEVKLFQAAAAAAAAAAAAAAAAAAAAAAIYCUk3YctV2q6ofGx3rGAAAAAAAAAAAAAAAAAAAA4hWGoob96MB09JgzD29HUwMAAAAAAAAAAAAAAAAAAAAAABj9s+v6QfjBUTBj9z9NtAAAAAAAAAAAAAAAAAAAACjNWxQJqP5GxeQnOKNml7sMAAAAAAAAAAAAAAAAAAAAAAAC5jQY5Z+EwksbFBjuvB8AAAAAAAAAAAAAAAAAAACHFf3HaNVfjHWxjvl9xj8uQwAAAAAAAAAAAAAAAAAAAAAAGMkpzN5NRF+e0lZtjE9sAAAAAAAAAAAAAAAAAAAA8Fmf6BSxmzK4Gh6Rxj4TPkcAAAAAAAAAAAAAAAAAAAAAACRF9zhKjePYHnZNsjRV3QAAAAAAAAAAAAAAAAAAABLhbHuy5r2G2PVnL15vQauDAAAAAAAAAAAAAAAAAAAAAAAm5kcl6GL+LKFwcqeEK0QAAAAAAAAAAAAAAAAAAAC4Z4gFgEhKU2e4MUD9aViOKgAAAAAAAAAAAAAAAAAAAAAABrqumbmVoFoyClUNMDDLAAAAAAAAAAAAAAAAAAAAkaCGZPHJ0lBOtRS1gQ6y1NgAAAAAAAAAAAAAAAAAAAAAABdadnDTHeD/cdUiGtwSuwAAAAAAAAAAAAAAAAAAABDgdAAPztNIvj6Bu4kwg8TtAAAAAAAAAAAAAAAAAAAAAAAgn4zT0UvQ0B+xIz9QuFAAAAAAAAAAAAAAAAAAAADNi+b6FDneC3jn9lxWIG3W+wAAAAAAAAAAAAAAAAAAAAAAIoEp6uJ6kwxIZBX3Pw3SAAAAAAAAAAAAAAAAAAAAQQq433Fz4ry8i2EgA05NEQYAAAAAAAAAAAAAAAAAAAAAAAQh8E9OdsdukduX69YwWgAAAAAAAAAAAAAAAAAAAOjouREL0Hzse/YhyytYtiazAAAAAAAAAAAAAAAAAAAAAAAJKCvnOXD/P8XnT96DnBUAAAAAAAAAAAAAAAAAAABEDR2hQ+vpm8dG86C3jZnFiwAAAAAAAAAAAAAAAAAAAAAAL+JJNoonD7kw5YDtCsxFAAAAAAAAAAAAAAAAAAAAC8yPjCtmlw1XoPuP9NGghQsAAAAAAAAAAAAAAAAAAAAAAC6aR/KHc984nAIyZ+avKwAAAAAAAAAAAAAAAAAAAO95RBSmpN011CFOhrQ4/evzAAAAAAAAAAAAAAAAAAAAAAAi1yeyx7cmMxmyg0V3PNYAAAAAAAAAAAAAAAAAAADNLy/RV8OxsU6b8O7MoKRFUgAAAAAAAAAAAAAAAAAAAAAAKkNNr0+wscC75Ci5wIoXAAAAAAAAAAAAAAAAAAAAnYbWFqC4GpX6168K7lYPA9IAAAAAAAAAAAAAAAAAAAAAAAibTKfOArNUIdNp2F92eQAAAAAAAAAAAAAAAAAAAMElznsi5IriwFA3QnPLhl4BAAAAAAAAAAAAAAAAAAAAAAAgJO7Smc4lgau7Ove/9PsAAAAAAAAAAAAAAAAAAABgiDOd0alsQ5arUU9DJe3SEwAAAAAAAAAAAAAAAAAAAAAAA2eTDLnQR9J0XC/+SoGzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABKjS9dDqNNupga9L4/D4FEjwAAAAAAAAAAAAAAAAAAAAAADU/yCzj3xwqWu0LeLvvoAAAAAAAAAAAAAAAAAAAAuptpnO/0KOB9BcsyR4zy8/8AAAAAAAAAAAAAAAAAAAAAAB6odGKUjOmUU2RgrmFs0QAAAAAAAAAAAAAAAAAAAGvMegX/lalrKJQkxfczZw2WAAAAAAAAAAAAAAAAAAAAAAAAxDcm91tv2g3iLODg36sAAAAAAAAAAAAAAAAAAAAdCgnXF47JO614WPluZPC0jQAAAAAAAAAAAAAAAAAAAAAAL5tuC04sAZaN5cMkgqp9AAAAAAAAAAAAAAAAAAAAFLmaKhz1vbFNGPy31tW7G0MAAAAAAAAAAAAAAAAAAAAAABibwBFKqYLGRXSxHbsAPgAAAAAAAAAAAAAAAAAAAIFYESpGMQpiuEn23VYsLIaUAAAAAAAAAAAAAAAAAAAAAAASkF6WwsjbCGXWk491oyQ="
|
|
1993
1993
|
},
|
|
1994
1994
|
{
|
|
@@ -4052,9 +4052,9 @@
|
|
|
4052
4052
|
}
|
|
4053
4053
|
}
|
|
4054
4054
|
},
|
|
4055
|
-
"bytecode": "H4sIAAAAAAAA/+y9C/wN1ff/f473zTX3WyVHkltCQkJIQnJLQkJCkuRWouQWRXJLkiQklUqSLlSUbioKCUklSZSEJLfkPy/NO+d9Gs6s/T77Nd/1/33m8diOphlr7efe+zVrZvZeEw79s0Xc306dOt99R7cunW7v16nH7Xd063d759v6d+rU7fY7+g3q09vZU7hMKDSq1D/Hhp2S5P5mcf+N6H3pv9F/z+txXH6n1I3ZV8gpw2L2FfbYd7bHv1fMY985HvuKe+yLeNgo4bHvXI99JT32nedh43yPfWU8WJX12FfOY98FHv/ehR7HVfTYV8lj30Ue/97FHsdV9dhXzWPfJR7/3qUex9X02FfLY99lHv9eXY/j6nnsu9xj3xVOyRqzr4H7mxzysYXd34j7W6lrs35bK88qu7hFg9eHD2/boUyVnY0GLekzqf7WA5P3Ov9/VdLJY+NsF2TGzmfx7Zwb/W/nDJ2scNj1E7+lQic7btj9d9OP+9z5+2qnrHHK2qSM/3hSjL9xtnBpwbGfJ/nn8IV/3hk2qf9lBMeuFvi/juR/WcGxawT+fynw36sffuH2w3Xu75fu79qofrje+fsGp2x0yleZ7IflBMeuF3DYRGrH8oJjNwj8/5rk/wWCYzcK/N+cyX64ye13X7u/m93fr6L64TfO3791yndO2ZLJflhBcOw3Ag7fk9rxQsGx3wr830ryv6Lg2O8E/v+QyX74vdvvtrq/P7i/W6L64Tbn7z86ZbtTfspkP6wkOHabgMMOUjtWFhz7o8D/nST/LxIcu13g/8+Z7Ic73H630/392f39Kaof/uL8fZdTfnXK7kz2wyqCY38RcPiN1I4XC47dJfB/D8n/qoJjfxX4vzeT/fA3t9/tcX/3ur+7o/rhPufvvztlv1P+yGQ/rCY4dp+AwwFSO1YXHPu7wP8/Sf5fIjh2v8D/g5nshwfcfven+3vQ/f0jqh8ecv5+2ClHnHI0k/2whuDYQwIOf5Ha8VLBsYcF/h8j+V9TcOwRgf9/Z7If/uX2u2Pu79/u79Gofng86Z+Twk7JEvOUS8qhluDY4wIOScmcdqwtODaU7N//ZJL/lwmODQv8T0nOXD9E++E32f1NcX/R39KPS3X+kuaUrE7Jlsl+WEdwbKqAQ3ZSO9YVHJsm8D8Hyf96gmOzCvzPmcl+mN3tdznc35zub7aofpjL+csZTsntlDyZ7IeXC47NJeCQl9SO9QXHniHwPx/J/ysEx+YW+J8/k/0wr9vv8rm/+d3fPFH9sIDzl4JOKeSUwpnshw0ExxYQcCiSSQ5F3HoXdH8Lub+FozgUdf5yplPOcsrZMRyyuL+RkD8X8of8162Y37qFWw47cY1z64Tz6oYy5+d5Aj/P8d8G4Wg/089Ldv877HWC0O+w/2NPbnAgSyhAB05nMB794v7pn5sZO5H4diLR/3bsSCvujqzYN7iRqJFWwvnLuU4p6ZTzMqk4kje4JQSKU4p05ZC8wT1X4P/5JP8lb3BLCvwvnUnFL+X2w/Pd39Lu73lR/bCM85eyTinnlPKZ7IeSN7hlBBwuILWj5A1uWYH/FUj+S97glhP4f2Em++EFbr+r4P5e6P6Wj+qHFZ2/VHJKZadclMl+KHmDW1HAoQqpHSVvcCsJ/L+Y5L/kDW5lgf9VM9kPq7j97mL3t6r7e1FUP6zm/KW6Uy5xSo1M9kPJG9xqAg6XktpR8ga3usD/miT/JW9wLxH4XyuT/fBSt9/VdH9rub81ovphbecvlzmlDu5wMtkPJW9waws41CO1o+QN7mUC/y8n+S95g1tH4H/9TPbDem6/u9z9re/+1o3qh1c4f2nglCud0jCT/VDyBvcKAYdGpHaUvMFtIPC/Mcl/yRvcKwX+X5XJftjI7XeN3d+r3N+GUf2wifOXq53S1CnNMtkPJW9wmwg4NCe1o+QN7tUC/1uQ/Je8wW0q8L9lJvthc7fftXB/W7q/zaL64TXOX1o55VqntM5kP5S8wb1GwOE6UjtK3uC2EvjfhuS/5A3utQL/22ayH17n9rs27m9b97d1VD9s5/zleqe0d8oNmeyHkje47QQcOpDasa7g2OsF/nck+V9PcGx7gf+dMtkPO7j9rqP728n9vSGqH97o/KWzU25ySpdM9kPJG9wbBRy6ktpR8ga3s8D/bplsx65uu3Vzf29yf7tEtePNzl+6O+UWp/Rw96P+WU5hIySoazhkxj8ktJMa9R+3uhXr6f7e5v72cn9vd3974xcOpr+qw//IGvMvx75SjNdgggqHbzPsnGGhT3382wlnxk7f+HZSo//t2M7ax+2ct7q/Pd3fvlGdtZ/zl/5OucMpd2ZSdCRt1U8waAcYtqv09XV/gU93GfYBKdNeAjt3CPwfmEkhHOD2pbvc34Hu751RfWuQ85e7nXKPUwa7+88IxQCJ+jexRUL+XLrdZ133HD/+d7S9e6MrITWIkyUCBuP3ChpwiKABTeswJFkmRKjDEJKwDvVvJzkzdobFt5MU/W/Hdv6hLsP0Msj972FRnX+485cRTrnPKSOTT54b7Wec7f98e43ybyfJi+Mot2693d/hHhzvd/7ygFNGO2VMgkVEEk1F23vQVETC7snS88ZaFgYcPzZqSEVC/jdpp0HnHJtJBpJNGgWcI2D9ULKMcXpknH5ecujkRLb/nCD0+2bhFT39t67793HO+eOdMsEpE50yySkPO2WyUx5xyhSnPOqUqU55zCnTnPK4U6Y75QmnzHDKk06Z6ZRZTpntlKecMscpTztlrlOeccqzTnnOKfOc8rxTXnDKi06Z75SXnLLAKS87ZaFTXnHKIqe86pTXnPK6U95wymKnLHHKm055yylvO2WpU5Y55R2nvOuU5U55zynvO+UDp3zolI+cssIpHzvlE6d86pSVTlmV3hC5Q4m5Txtn2FlDIjvhDL5+5g7gz9N7VHpvw//4M2YfDoq9N5PGpuP8x2DhzwSj6vMEjfS46WUEPq2O9inOwdGcV7vsJZctid9+fEnf1iRnwuAaj9g33olrBPK4VtAYpnVY63XZiXPiWmFnlCrF565fIdl5CVWr8QGo1Tq3zl/GqtU6D7X6MgFqNV6gVusEnfFLklpJfFpvqFbrLajVOkO12pCcCYMbDNRqg0CtNlpWK9Rho4FabbSsVl+6foVk5yVUrSYEoFab3Dp/HatWmzzU6usEqNUEgVptEnTGr0lqJfFps6FabbagVpsM1eqb5EwY/MZArb4RqNW3ltUKdfjWQK2+taxWX7t+hWTnJVStJgagVlvcOn8fq1ZbPNTq+wSo1USBWm0RdMbvSWol8WmroVpttaBWWwzV6ofkTBj8wUCtfhCo1TbLaoU6bDNQq22W1ep716+Q7LyEqtWkANRqu1vnn2LVaruHWv2UALWaJFCr7YLO+BNJrSQ+7TBUqx0W1Gq7oVrtTM6EwZ0GarVToFY/W1Yr1OFnA7X62bJa/eT6FZKdl1C1ejgAtdrl1vnXWLXa5aFWvyZArR4WqNUuQWf8laRWEp92G6rVbgtqtctQrX5LzoTB3wzU6jeBWu2xrFaowx4DtdpjWa1+df0Kyc5LqFpNDkCt9rl1/j1WrfZ5qNXvCVCryQK12ifojL+T1Eri035DtdpvQa32GarVH8mZMPiHgVr9IVCrA5bVCnU4YKBWByyr1e+uXyHZeQlVq0cCUKuDbp0PxarVQQ+1OpQAtXpEoFYHBZ3xEEmtJD4dNlSrwxbU6qChWh1JzoTBIwZqdUSgVkctqxXqcNRArY5aVqtDrl8h2XkJVaspAajVMbfOf8eq1TEPtfo7AWo1RaBWxwSd8W+SWkl8Om6oVsctqNUxQ7UKpWTCIE6WqhXOiYR8beFwil21Qh1gQ6pW4RRZZ5Qqxd+uXyHZeQlVq0cDUKskt87JKaGMIwb/I1atcFBm1epRgVolCTpjcooZPKlaSXxKSTFTq5SUxKtVktCX9C01JRMGUw3UKlWgVmmW1Qp1SDNQqzTLapXs+hWSnZdQtZoagFplc+ucPVatsnmoVfYEqNVUgVplE3TG7CS1kviUw1CtclhQq2yGapUzJRMGcxqoVU6BWuWyrFaoQy4DtcplWa2yu36FZOclVK0eC0Ctcrt1zhOrVrk91CpPAtTqMYFa5RZ0xjwktZL4lNdQrfJaUKvchmqVLyUTBvMZqFU+gVrlt6xWqEN+A7XKb1mt8rh+hWTnJVStpgWgVgXdOheKVauCHmpVKAFqNU2gVgUFnbEQSa0kPhU2VKvCFtSqoKFaFUnJhMEiBmpVRKBWRS2rFepQ1ECtilpWq0KuXyHZeQlVq8cDUKuz3DqfHatWZ3mo1dkJUKvHBWp1lqAznk1SK4lPxQzVqpgFtTrLUK3OScmEwXMM1OocgVoVt6xWqENxA7Uqblmtznb9CsnOS6haTQ9ArUq4dT43Vq1KeKjVuQlQq+kCtSoh6IznktRK4lNJQ7UqaUGtShiq1XkpmTB4noFanSdQq1KW1Qp1KGWgVqUsq9W5rl8h2XkJVasnAlCr0m6dy8SqVWkPtSqTALV6QqBWpQWdsQxJrSQ+lTVUq7IW1Kq0oVqVS8mEwXIGalVOoFblLasV6lDeQK3KW1arMq5fIdl5CVWrGQGoVQW3zhfGqlUFD7W6MAFqNUOgVhUEnfFCklpJfKpoqFYVLahVBUO1qpSSCYOVDNSqkkCtKltWK9ShsoFaVbasVhe6foVk5yVUrZ4MQK2quHW+OFatqnio1cUJUKsnBWpVRdAZLyaplcSnqoZqVdWCWlUxVKtqKZkwWM1AraoJ1Kq6ZbVCHaobqFV1y2p1setXSHZeQtVqZgBqVcOt86WxalXDQ60uTYBazRSoVQ1BZ7yUpFYSn2oaqlVNC2pVw1CtaqVkwmAtA7WqJVCr2pbVCnWobaBWtS2r1aWuXyHZeQlVq1kBqFUdt851Y9Wqjoda1U2AWs0SqFUdQWesS1IriU/1DNWqngW1qmOoVpenZMLg5QZqdblArepbVivUob6BWtW3rFZ1Xb9CsvMSqlazA1CrBm6dr4xVqwYeanVlAtRqtkCtGgg645UktZL41NBQrRpaUKsGhmrVKCUTBhsZqFUjgVo1tqxWqENjA7VqbFmtrnT9CsnOS6haPRWAWjVx63x1rFo18VCrqxOgVk8J1KqJoDNeTVIriU9NDdWqqQW1amKoVs1SMmGwmYFaNROoVXPLaoU6NDdQq+aW1epq16+Q7LyEqtWcANSqpVvna2LVqqWHWl2TALWaI1CrloLOeA1JrSQ+tTJUq1YW1KqloVpdm5IJg9caqNW1ArVqbVmtUIfWBmrV2rJaXeP6FZKdl1C1ejoAtWrj1rltrFq18VCrtglQq6cFatVG0BnbktRK4lM7Q7VqZ0Gt2hiq1fUpmTB4vYFaXS9Qq/aW1Qp1aG+gVu0tq1Vb16+Q7LyEqtXcANSqg1vnjrFq1cFDrTomQK3mCtSqg6AzdiSplcSnToZq1cmCWnUwVKsbUzJh8EYDtbpRoFadLasV6tDZQK06W1arjq5fIdl5CVWrZwJQqy5unbvGqlUXD7XqmgC1ekagVl0EnbErSa0kPnUzVKtuFtSqi6Fa3ZySCYM3G6jVzQK16m5ZrVCH7gZq1d2yWnV1/QrJzkuoWj0bgFr1cOt8a6xa9fBQq1sToFbPCtSqh6Az3kpSK4lPPQ3VqqcFtephqFa3pWTC4G0GanWbQK16WVYr1KGXgVr1sqxWt7p+hWTnJVStngtArXq7de4Tq1a9PdSqTwLU6jmBWvUWdMY+JLWS+NTXUK36WlCr3oZq1S8lEwb7GahVP4Fa9besVqhDfwO16m9Zrfq4foVk5yVUreYFoFZ3unUeEKtWd3qo1YAEqNU8gVrdKeiMA0hqJfHpLkO1usuCWt1pqFYDUzJhcKCBWg0UqNUgy2qFOgwyUKtBltVqgOtXSHZeQtXq+QDU6h63zoNj1eoeD7UanAC1el6gVvcIOuNgklpJfLrXUK3utaBW9xiq1ZCUTBgcYqBWQwRqNdSyWqEOQw3UaqhltRrs+hWSnZdQtXohALUa7tZ5RKxaDfdQqxEJUKsXBGo1XNAZR5DUSuLTfYZqdZ8FtRpuqFYjUzJhcKSBWo0UqNUoy2qFOowyUKtRltVqhOtXSHZeQtXqxQDU6gG3zqNj1eoBD7UanQC1elGgVg8IOuNoklpJfBpjqFZjLKjVA4Zq9WBKJgw+aKBWDwrUaqxltUIdxhqo1VjLajXa9SskOy+hajU/ALUa59Z5fKxajfNQq/EJUKv5ArUaJ+iM40lqJfFpgqFaTbCgVuMM1WpiSiYMTjRQq4kCtZpkWa1Qh0kGajXJslqNd/0Kyc5LqFq9FIBaTXbr/EisWk32UKtHEqBWLwnUarKgMz5CUiuJT1MM1WqKBbWabKhWj6ZkwuCjBmr1qECtplpWK9RhqoFaTbWsVo+4foVk5yVUrRYEoFbT3Do/HqtW0zzU6vEEqNUCgVpNE3TGx0lqJfFpuqFaTbegVtMM1eqJlEwYfMJArZ4QqNUMy2qFOswwUKsZltXqcdevkOy8hKrVywGo1Uy3zrNi1Wqmh1rNSoBavSxQq5mCzjiLpFYSn2YbqtVsC2o101CtnkrJhMGnDNTqKYFazbGsVqjDHAO1mmNZrWa5foVk5yVUrRYGoFZz3To/E6tWcz3U6pkEqNVCgVrNFXTGZ0hqJfHpWUO1etaCWs01VKvnUjJh8DkDtXpOoFbzLKsV6jDPQK3mWVarZ1y/QrLzEqpWrwSgVi+4dX4xVq1e8FCrFxOgVq8I1OoFQWd8kaRWEp/mG6rVfAtq9YKhWr2UkgmDLxmo1UsCtVpgWa1QhwUGarXAslq96PoVkp2XULVaFIBaLXTr/EqsWi30UKtXEqBWiwRqtVDQGV8hqZXEp0WGarXIglotNFSrV1MyYfBVA7V6VaBWr1lWK9ThNQO1es2yWr3i+hWSnZdQtXo1ALV6w63z4li1esNDrRYnQK1eFajVG4LOuJikVhKflhiq1RILavWGoVq9mZIJg28aqNWbArV6y7JaoQ5vGajVW5bVarHrV0h2XkLV6rUA1GqpW+dlsWq11EOtliVArV4TqNVSQWdcRlIriU/vGKrVOxbUaqmhWr2bkgmD7xqo1bsCtVpuWa1Qh+UGarXcslotc/0Kyc5LqFq9HoBave/W+YNYtXrfQ60+SIBavS5Qq/cFnfEDklpJfPrQUK0+tKBW7xuq1UcpmTD4kYFafSRQqxWW1Qp1WGGgVissq9UHrl8h2XkJVas3AlCrT9w6fxqrVp94qNWnCVCrNwRq9YmgM35KUiuJTysN1WqlBbX6xFCtVqVkwuAqA7VaJVCrzyyrFerwmYFafWZZrT51/QrJzkuoWi0OQK1Wu3VeE6tWqz3Uak0C1GqxQK1WCzrjGpJaSXxaa6hWay2o1WpDtfoiJRMGvzBQqy8EarXOslqhDusM1GqdZbVa4/oVkp2XULVaEoBarXfrvCFWrdZ7qNWGBKjVEoFarRd0xg0ktZL4tNFQrTZaUKv1hmr1VUomDH5loFZfCdRqk2W1Qh02GajVJstqtcH1KyQ7L6Fq9WYAarXZrfM3sWq12UOtvkmAWr0pUKvNgs74DUmtJD59a6hW31pQq82GavVdSiYMfmegVt8J1GqLZbVCHbYYqNUWy2r1jetXSHZeQtXqrQDUaqtb5x9i1Wqrh1r9kAC1ekugVlsFnfEHklpJfNpmqFbbLKjVVkO1+jElEwZ/NFCrHwVqtd2yWqEO2w3UartltfrB9SskOy+havV2AGq1w63zzli12uGhVjsToFZvC9Rqh6Az7iSplcSnnw3V6mcLarXDUK1+ScmEwV8M1OoXgVrtsqxWqMMuA7XaZVmtdrp+hWTnJVStlgagVrvdOv8Wq1a7PdTqtwSo1VKBWu0WdMbfSGol8WmPoVrtsaBWuw3Vam9KJgzuNVCrvQK12mdZrVCHfQZqtc+yWv3m+hWSnZdQtVoWgFrtd+v8R6xa7fdQqz8SoFbLBGq1X9AZ/yCplcSnA4ZqdcCCWu03VKs/UzJh8E8DtfpToFYHLasV6nDQQK0OWlarP1y/QrLzEqpW7wSgVofdOh+JVavDHmp1JAFq9Y5ArQ4LOuMRklpJfDpqqFZHLajVYUO1+islEwb/MlCrvwRqdcyyWqEOxwzU6phltTri+hWSnZdQtXo3ALU6nl7n1FDGEXPcQ61wUGbV6l2BWh2XdMZUjlpJfAqnmqkVzku0Wh03VKssqZkwiJOlapXFf0OGk1LtqhXqABtStUoSdkapUqCzJ6We3BHxd15C1Wp5AGqV4tY5NVatUlL/q1apCVCr5QK1ShF0xlSSWkl8SjNUqzQLapUi9CV9y5qaCYNZDdQqq0CtsllWK9Qhm4FaZbOsVqmuXyHZeQlVq/cCUKscbp1zxqpVDg+1ypkAtXpPoFY5BJ0xJ0mtJD7lMlSrXBbUKoehWp2RmgmDZxio1RkCtcptWa1Qh9wGapXbslrldP0Kyc5LqFq9H4Ba5XXrnC9WrfJ6qFW+BKjV+wK1yivojPlIaiXxKb+hWuW3oFZ5DdWqQGomDBYwUKsCArUqaFmtUIeCBmpV0LJa5XP9CsnOS6hafRCAWhV261wkVq0Ke6hVkQSo1QcCtSos6IxFSGol8amooVoVtaBWhQ3V6szUTBg800CtzhSo1VmW1Qp1OMtArc6yrFZFXL9CsvMSqlYfBqBWxdw6nxOrVsU81OqcBKjVhwK1KibojOeQ1EriU3FDtSpuQa2KGapVJDUzBg3UKiJQqxKW1Qp1KGGgViUsq9U5rl8h2XkJVauPAlCrkm6dz4tVq5IeanVeAtTqI4FalRR0xvNIaiXxqZShWpWyoFYlDdXq/NRMGDzfQK3OF6hVactqhTqUNlCr0pbV6jzXr5DsvISq1YoA1KqsW+dysWpV1kOtyiVArVYI1KqsoDOWI6mVxKfyhmpV3oJalTVUqwtSM2HwAgO1ukCgVhUsqxXqUMFArSpYVqtyrl8h2XkJVauPA1Crim6dK8WqVUUPtaqUALX6WKBWFQWdsRJJrSQ+VTZUq8oW1KqioVpdlJoJgxcZqNVFArWqYlmtUIcqBmpVxbJaVXL9CsnOS6hafRKAWlV161wtVq2qeqhVtQSo1ScCtaoq6IzVSGol8am6oVpVt6BWVQ3V6pLUTBi8xECtLhGoVQ3LaoU61DBQqxqW1aqa61dIdl5C1erTANSqplvnWrFqVdNDrWolQK0+FahVTUFnrEVSK4lPtQ3VqrYFtappqFaXpWbC4GUGanWZQK3qWFYr1KGOgVrVsaxWtVy/QrLzEqpWKwNQq3punS+PVat6Hmp1eQLUaqVAreoJOuPlJLWS+FTfUK3qW1CreoZqdUVqJgxeYaBWVwjUqoFltUIdGhioVQPLanW561dIdl5C1WpVAGrV0K1zo1i1auihVo0SoFarBGrVUNAZG5HUSuJTY0O1amxBrRoaqtVVqZkweJWBWl0lUKsmltUKdWhioFZNLKtVI9evkOy8Ex0qT+jkoM2MDzdT1Mr7sEjIzxb+t07hqHOaOtyaOaW5U1o4paVTrnFKK6dc65TWTrnOKW2c0tYp7ZxyvVPaO+UGp3RwSkendHLKjU7p7JSbnNLFKV2d0s0pNzulu1NucUoPp9zqlJ5OuS1WZZu6ihq9r5nHvuYe+1p47Gvpse8aj32tPPZd67Gvtce+6zz2tfHY19ZjXzuPfdd77Gvvse8Gj30dPPZ19NjXyWPfjR77Onvsu8ljXxePfV099nXz2Hezx77uHvtu8djXw2PfrR77enrsu83j6l3C/Y2EfG0ZBn088WzqU5xxpW/m+9hQuLnfYx1/W/g79mFc9Fr6OvaPExfIa/wc+/0/F9NWPo693L3wXhv/2InpF+nWcY/t/e8F/bp4xy4+efFvE+fYgVGBQtvTH9swOqhod9pjd2QIQK4/3bEXZQxW2p/m2NIxgc0Npz72htggqMMpj23zn4Cp46mOHfbf4KrTKY4d5hGI3eh97GteQVtnz2Ov8AzwbvI6trl3MNjF49g3ThE4dv3vsWVOFWR2+8+xM08ZkN4ce2ylUwev3WOO/f40ge4tGY/te7qguEeGY5ueNoC+NfrYLqcPtntGHVsxTmB+myCwlNw9xNky2I2j5Wuj7fU61d2DH4O9UmW3ZzDeyz+g8O0+K3Wquwc/dbg9VXbXgTrcLmzkRD1/EHSuNSGPLRLyZSaDr73dDtInNjLu7YKL3tcnAc8fBD053FvQQfoI4UkbB52it7Azwa/eASlGT/+cZ0Tb62uqGDDYV64YM/oKFKOfZcVAHfrJFWNGv4AUo6d/u0947YyEfJnJ4Gt/t4PcEasY/T0U444EKIagJ4f7CzrIHYbwpE8sJT7dKRgM//4h8OV2t4P/56FgHFuSS/UAwWDwqkO8w8FogIESDwhIiW/1338XRdu7y1SJYfAuuRIvukvQ+QZaVmLUYaBciRcNzGTn8zOABlgeQIOEdUjfpMIkacO7BX0jkVe4W/3bfcVrZyTky0wGX+9xB97g2CvcPR5XuMEJuMIJFCJ8j6DRBhvCk3YkiU/3ZvIKF+8cDJ67Da4OQyxftVDvIQS/0jdpGw4RtOFQy214KpH1I85+jx0mFLRERQM9/I/1CdH2hptGAzA4XB4NTBguADTCcjSAOoyQRwMTRliOBjAQhqXaHWz3CQdb+ib1SdKGIwOKBnr4tzvea2ck5MtMBl9HuQPv/thoYJRHNHB/AqIBgUKERwka7X5DeNKOJPHpActXEgyekQZX3dGWowHUezTBr/RN2oajBW04xnIbnkpk450nEdkHA3o2cIv/sR6JtjfWNBqAwbHyaCAyVtDID1mOBlCHh+TRQOQhy9EABsKDqXYH2zhSNCBpw/EBRQO3+Ldb3GtnJOTLTAZfJ7gDb2JsNDDBIxqYmIBoQKAQ4QmCRptoCE/akSQ+TbJ8JcHgGW9w1X3YcjSAej9M8Ct9k7bhw4I2nGy5DU8lsvHOk4jsIwFFA939j/U10fammEYDMDhFHg2smSJo5EctRwOow6PyaGDNo5ajAQyER1LtDrappGhA0oaPBRQNdPdvd7XXzkjIl5kMvk5zB97jsdHANI9o4PEERAMChQhPEzTa44bwpB1J4tN0y1cSDJ7HDK66T1iOBlDvJwh+pW/SNnxC0IYzLLfhqUQ23nkSkX0yoGjgZv9jvXO0vZmm0QAMzpRHA51nChp5luVoAHWYJY8GOs+yHA1gIDyZanewzSZFA5I2fCqgaOBm/3Zv9NoZCfkyk8HXOe7Aezo2GpjjEQ08nYBoQKAQ4TmCRnvaEJ60I0l8mmv5SoLB85TBVfcZy9EA6v0Mwa/0TdqGzwja8FnLbXgqkY13nkRknwsoGujmf6x/FW1vnmk0AIPz5NHAV/MEjfy85WgAdXheHg189bzlaAAD4blUu4PtBVI0IGnDFwOKBrr5t7vRa2ck5MtMBl/nuwPvpdhoYL5HNPBSAqIBgUKE5wsa7SVDeNKOJPFpgeUrCQbPiwZX3ZctRwOo98sEv9I3aRu+LGjDhZbb8FQiG+88ici+ElA00NX/WG8cbW+RaTQAg4vk0UDjRYJGftVyNIA6vCqPBhq/ajkawEB4JdXuYHuNFA1I2vD1gKKBrv7tNvLaGQn5MpPB1zfcgbc4Nhp4wyMaWJyAaECgEOE3BI222BCetCNJfFpi+UqCwfO6wVX3TcvRAOr9JsGv9E3ahm8K2vAty214KpGNd55EZN8OKBro4n+sL4y2t9Q0GoDBpfJoYOFSQSMvsxwNoA7L5NHAwmWWowEMhLdT7Q62d0jRgKQN3w0oGuji3+7LXjsjIV9mMvi63B1478VGA8s9ooH3EhANCBQivFzQaO8ZwpN2JIlP71u+kmDwvGtw1f3AcjSAen9A8Ct9k7bhB4I2/NByG55KZOOdJxHZjwKKBm7yP9bfjra3wjQagMEV8mjg7RWCRv7YcjSAOnwsjwbe/thyNICB8FGq3cH2CSkakLThpwFFAzf5t/uW185IyJeZDL6udAfeqthoYKVHNLAqAdGAQCHCKwWNtsoQnrQjSXz6zPKVBIPnU4Or7ueWowHU+3OCX+mbtA0/F7ThastteCqRjXeeRGTXBBQNdPY/1ptE21trGg3A4Fp5NNBkraCRv7AcDaAOX8ijgSZfWI4GMBDWpNodbOtI0YCkDb8MKBro7N/uVV47IyFfZjL4ut4deBtio4H1HtHAhgREAwKFCK8XNNoGQ3jSjiTxaaPlKwkGz5cGV92vLEcDqPdXBL/SN2kbfiVow02W2/BUIhvvPInIfh1QNHCj/7E+LNreZtNoAAY3y6OBYZsFjfyN5WgAdfhGHg0M+8ZyNICB8HWq3cH2LSkakLThdwFFAzf6tzvUa2ck5MtMBl+3uAPv+9hoYItHNPB9AqIBgUKEtwga7XtDeNKOJPFpq+UrCQbPdwZX3R8sRwOo9w8Ev9I3aRv+IGjDbZbb8FQiG+88icj+GFA00MkwGthuGg3A4HaDaGC7oJF/shwNoA4/GUQDP1mOBjAQfky1O9h2kKIBSRvuDCga6BRANPCzO/B+iY0GfvaIBn5JQDQgUIjwz4JG+4UUDUh82mX5SoLBs9Pgqvur5WgA9f6V4Ff6Jm3DXwVtuNtyG55KZOOdJxHZ3wKKBjr6H+vzou3tMY0GYHCPPBqYt0fQyHstRwOow155NDBvr+VoAAPht1S7g20fKRqQtOHvAUUDHf3bfc5rZyTky0wGX/e7A++P2Ghgv0c08EcCogGBQoT3CxrtD0N40o4k8emA5SsJBs/vBlfdPy1HA6j3nwS/0jdpG/4paMODltvwVCIb7zyJyB4KKBro4H+sPx1t77BpNACDh+XRwNOHBY18xHI0gDockUcDTx+xHA1gIBxKtTvYjpKiAUkb/hVQNNDBv905XjsjIV9mMvh6zB14f8dGA8c8ooG/ExANCBQifEzQaH8bwpN2JIlPxy1fSTB4/jK46obS7EYDqDds2PYrfZO2YbSdeMeG0+y24alENt55EpHNIuCayGjgBv9jfVO0vaS0TBjEycJoYFOSoJGTBZ3HtA7JaeJoYFNyJge1n4GQJc3uYEsRDrb0TeqTpA1TJX0jlLho4Ab/F4+vvHZGQr7MZPA1zR14WdNCGa/8aWn/jQZwUGajAYFChNMEjZY1zQyetCNJfMpm+UqCwZNqcNXNbjkaQL2zE/xK36RtmF3Qhjkst+GpRDauLUEdcgYUDbT3P9Y/j7aXyzQagMFc8mjg81yCRj7DcjSAOpwhjwY+P8NyNICBkDPN7mDLTYoGJG2YJ6BooL3/aOAzr52RkC8zGXzN6w68fLHRQF6PaCBfAqIBgUKE8woaLV+aGTxpR5L4lN/ylQSDJ4/BVbeA5WgA9S5A8Ct9k7ZhAUEbFrTchqcS2XjnSUS2UEDRwPX+x3rRaHuFTaMBGCwsjwaKFhY0chHL0QDqUEQeDRQtYjkawEAolGZ3sBUlRQOSNjwzoGjgev/RQBGvnZGQLzMZfD3LHXhnx0YDZ3lEA2cnIBoQKET4LEGjnZ1mBk/akSQ+FbN8JcHgOdPgqnuO5WgA9T6H4Ff6Jm3DcwRtWNxyG55KZOOdJxHZSEDRQDv/Y31JtL0SptEADJaQRwNLSgga+VzL0QDqcK48GlhyruVo4MRASLM72EqSogFJG54XUDTQzn80sNhrZyTky0wGX0u5A+/82GiglEc0cH4CogGBQoRLCRrt/DQzeNKOJPGptOUrCQbPeQZX3TKWowHUuwzBr/RN2oZlBG1Y1nIbnkpk450nEdlyAUUDbf2P9dHR9sqbRgMwWF4eDYwuL2jkCyxHA6jDBfJoYPQFlqMBDIRyaXYHWwVSNCBpwwsDigba+o8GHvDaGQn5MpPB14ruwKsUGw1U9IgGKiUgGhAoRLiioNEqpZnBk3YkiU+VLV9JMHguNLjqXmQ5GkC9LyL4lb5J2/AiQRtWsdyGpxLZeOdJRPbigKKBNv7HeqNoe1VNowEYrCqPBhpVFTRyNcvRAOpQTR4NNKpmORrAQLg4ze5gq06KBiRteElA0UAb/9FAQ6+dkZAvMxl8reEOvEtjo4EaHtHApQmIBgQKEa4haLRL08zgSTuSxKealq8kGDyXGFx1a1mOBlDvWgS/0jdpG9YStGFty214KpGNd55EZC8LKBq4zv9YnxRtr45pNACDdeTRwKQ6gkauazkaQB3qyqOBSXUtRwMYCJel2R1s9UjRgKQNLw8oGrjOfzQw0WtnJOTLTAZf67sD74rYaKC+RzRwRQKiAYFChOsLGu2KNDN40o4k8amB5SsJBs/lBlfdKy1HA6j3lQS/0jdpG14paMOGltvwVCIb7zyJyDYKKBpo7X+s94m219g0GoDBxvJooE9jQSNfZTkaQB2ukkcDfa6yHA1gIDRKszvYmpCiAUkbXh1QNNDafzTQ22tnJOTLTAZfm7oDr1lsNNDUIxpoloBoQKAQ4aaCRmuWZgZP2pEkPjW3fCXB4Lna4KrbwnI0gHq3IPiVvknbsIWgDVtabsNTiWy88yQie01A0cC1/sf6smh7rUyjARhsJY8GlrUSNPK1lqMB1OFaeTSw7FrL0QAGwjVpdgdba1I0IGnD6wKKBq71Hw0s9doZCfkyk8HXNu7AaxsbDbTxiAbaJiAaEChEuI2g0dqmmcGTdiSJT+0sX0kweK4zuOpebzkaQL2vJ/iVvknb8HpBG7a33IanEtl450lE9oaAooFW/sd6JNpeB9NoAAY7yKOBSAdBI3e0HA2gDh3l0UCko+VoAAPhhjS7g60TKRqQtOGNAUUDrfxHA8W9dkZCvsxk8LWzO/Buio0GOntEAzclIBoQKES4s6DRbkozgyftSBKfuli+kmDw3Ghw1e1qORpAvbsS/ErfpG3YVdCG3Sy34alENt55EpG9OaBo4Br/Yz1ntL3uptEADHaXRwM5uwsa+RbL0QDqcIs8Gsh5i+VoAAPh5jS7g60HKRqQtOGtAUUD1/iPBnJ47YyEfJnJ4GtPd+DdFhsN9PSIBm5LQDQgUIhwT0Gj3ZZmBk/akSQ+9bJ8JcHgudXgqnu75WgA9b6d4Ff6Jm3D2wVt2NtyG55KZOOdJxHZPgFFAy39j/Xbo+31NY0GYLCvPBq4va+gkftZjgZQh37yaOD2fpajAQyEPml2B1t/UjQgacM7AooGWvqPBnp57YyEfJnJ4Oud7sAbEBsN3OkRDQxIQDQgUIjwnYJGG5BmBk/akSQ+3WX5SoLBc4fBVXeg5WgA9R5I8Ct9k7bhQEEbDrLchqcS2XjnSUT27oCigRb+x3reaHv3mEYDMHiPPBrIe4+gkQdbjgZQh8HyaCDvYMvRAAbC3Wl2B9u9pGhA0oZDAooGWviPBvJ47YyEfJnJ4OtQd+ANi40GhnpEA8MSEA0IFCI8VNBow9LM4Ek7ksSn4ZavJBg8QwyuuiMsRwOo9wiCX+mbtA1HCNrwPstteCqRjXeeRGRHBhQNNBd8Vi/a3ijTaAAGR6XJz7vf8hUeft2fdnJHJOR/kw4idNiRaXYHxQOkq7akXUZncqD6qfNogzZM5IBqZjigxpgOKBgcYzCgHrQ8oODXgwkaUPEOR8M/mGbWYSL+bCS0kzQVfM8u2t5Y004Cg2MNFGesYMQ+ZLlDoQ4PGTTyQ5bvwdCJHjIIDx4Q8BpnORwE23GGgzV9k/atcYL6j7cc4p3qihzvPMkVeYLlNgSjCQYXAkk7mPh1q6OcKNJxNVHIS9r/4JPARrinc3xPg3pM8m8jbyIvMgK7Gew9bHqRgcGHDTrgZMsdEH5NzqS4ZY1zbmyDXZhyGjsxB198umNjDr70tMdmPLju6Y/NcPCVcY6NPvjqeMdGnTU6xX/bNihp1jbZ3d/IaY86WYFr4vv/78FtfdQ1/eCOfri4B3f1xfCfg2/1x/vEwX18tg0OHuC3HZ2DB/tu83BohKDNrzRs89hnmvHsPCIQekE/DEv8T6S4P2Io7lNMxR0GpxiI+6OWxR1+PUoW98+T/Yv7l8n+xf3rZP/i/n2yf3H/Kdm/uP8a79ios8oIBvrVJHH/Pb7//x58yEdd0w/+2w8X9+BkgbhnF4h7HoG4FxKI+9kCcT9X0OZNSeI+VSDugn4YbhqQuE81FPfHTMUdBh8zEPdplsUdfk3LpLjnjXNubIP9Jojc/xBE7kcEkXso1b+4p8Z74Bx1cM64D6dPHpwv/oPsfw8u4uOhd/rB5/h5QO4efJ6vh+n/HFzO34P3EwdX8vmQHgdX8/tA3zm4lu+H/+HQ5f5fFIQbCZ4XPx7QM+3HDUVruqloweB0A9F6wrJowa8nyKI1XiBajwhE63GBaM0SPG54RvC44cW40cnJg18R3NovFtzaLxPc2n8giP4+FUR/awTR3wZB9PeNIPr7QfDoZ6cgUpwRkGjNMBStJ01FCwafNBCtmZZFC37NJE1/eNSN6qTnzbI8feAJl4H0vNnCyYjOuPCcjJgnxq5npaK2/4n+P9v/RP//puhLNmnf/99d2j/b/+7S/m/epcX/l09uT+GaI71g42I42+CCDTvpk8Wf8rhwSS9+c4Rv6U3tPH0aO1OH3zrplr6fjqsVeajQV4OPNcyMnbmnsRN7bmbsPHMaOxWzrD93zbYpZw6sV6TCy4ePjM+MnWdPY+fGj5/Y/l6Xuq36zBrbKynLy29lxs5zp7Hz0cg6r9Zo3enZVzs/fcWYAQfXZ8bOvNPYmXTBrrZzHvn+3jJ715YcOTJbkczYef40djqmPN9g9opyF+8dUal95/0Hzs6MnRdOY2f5pBorR3407Jmt9Qp9nZrSeUBm7Lx4GjsHHiiwMfslf7x3wVNv97u0z+9dMmNn/mns7Dsw+rJuhyJrpk26YeID9y9ZBx1CTqic7v+HlqBgrGMcYoyg/6Jvod3RJuCFusxP+++/L5y9leUpwU3VS5Znb6XruZT3Ast+od4LDPx6WeAX2s0rsVokJNukdXs5zb6NhcInGwlaqZblKR92j/+zHfD6f5HTn/pv/BLt6yvumFyUFsoYaLzidqDofTiobsy/Klyp5mcAT3Q7ZPgVwWBfJIRnMmhfSdDTljjbCUYLDKa2LhDwelXBYH+VMNhfEw5254YhIctSFxrUDdv/7rpP/vV/d93/b911vx4V1IgHnCTqir7oRRuNYzN27J0Q8dcNIrFewlk4JhMmTsvDQxhOz++/4hCH938EIl77xIpE3PaMEYr47Z9RLHz0lwyC4ad/RYuGr/4YJRz++u9J8fDZ3/8VEL/jI11EfI8nV0j8j79/xEQwXk8IiiT4wbEL0+TrT94Q+CQZw9F6AxvD3P0mcwok4/oR4bh+XDiuZ6XIxvUzKbJx/WKKbFy/kiIb14tTZON6WYpsXH+QIhvXn6bIxvWaFNm43pAiG9ffpMjG9Q8psnG9M0U+rl8zGNeLo2wUq9J0+vJrbn153KW5G16Ufd296+6/tcqGCWNGlNs/rM2g1JIPm47rxe64TuRNhECPPLfIKfbHPp2PHqNLggjClmQyCFtiEIRNFAZh0n8ffqEB4z1BiW0MyYB4UzDYJhp27DejLlgmDBb7YBD770gYvCUY3KYM3opikL5Jp8S/LWgrW+udojep/0sF/tua0o+2wNKg1Kh9Ef+nxh6bZXX+jnemPt2hS4XSuRrsK5LvkfvqfDBuRJ3SFwj+3RP/cPpiaixGlpybHPVvvO1q2NK0k4Fi+oUFvxgTy5zyjlPeTfvn3PSnul4+CfwILxM+LUzflrtPTN9LizlImuBsmWDALz/1sTfEHBt+T/j4L1GzGN87jY8HV09b/9gDa7qPnbTg29uHPPt0tL330zJh8P34odF/jL8vGNUfCBrJtA4fxL+S/6cOHwgb2e+oia1jJGnEOfnq1T20uv/cvh2HPDv3dHZjz40eNR+6jfxR7EuZD93LTPS+jwwuPadzNF7DfSgYXR8JAAA8pDtL6NRb5BT7Y+1G/z9pJ/tQGKKmbytiG2tF2n97kfSaehpn/tNBVwga8eM03zAz1OnjBMQ5Hwn8lNTpE0Fni67TJ1E3ZrEjX/oGDgNpucBnHP9eWuYuH/G26AH1qassK2M766ceyrIyqrGlIJa7Up1+fDwQ6dIujQveE9j4VKBcK4WXjP8LyvWpoXKtiu0MqxKgXJ8KlGuVoBE/M1SuzxKgXCsFfkrq9Lmhcn0epVyn6oA2L3+ZsWPaWVfHdtbVHp01WejMh4Yqcho//3XW77+7RnBsdP3XeHRsaf0ll2TJIJDUf63ho8G1p7l8Rx8v4XGr/4waGQbdF+7ldV1azEHSy1q0A/HAfSG4rK0L6HZ3neHt7pemt7sw+KXB7e6Xgtvd9ZZvd1GH9Qa3u+sDut1db3i7u8Ft5I2x0r7BIyjdmIDbXUnDbRCMro0Kb3c3GF6Hv4ptrK8SEDRuEFxbvxI04ibDoHFTAoLGjQI/JXX62jBo/DqBt7sYSF8IfMbx69Iyd/mIt0UPqM2usnwT21k3eyjLN5m43f3Cler04+OBSJd2aVywTmBjs0C5vlF4u7vZULm+je0M3yZAuTYLlOtbQSN+Z6hc3yVAub4R+Cmp0xZD5dpi4XZXcvnLjB3Tzvp9bGf9PgG3uxsMVeQ0fv7rrN9/d6vh7e7WBNzuSi7JkkEgqf8Phre7P1i43e1peLu7zb28/pgWc5D0stZTcLu7TXBZ+zGg290fDW93t5ve7sLgdoPb3e2C292fLN/uog4/Gdzu/hTQ7e5Phre7O9xG3hkr7Ts8gtKdCbjdlTTcDsHo2qnwdneH4XX459jG+jkBQeMOwbX1Z0Ej/mIYNP6SgKBxp8BPSZ12GQaNuxJ4u4uBtE3gM47/MS1zl494W/SA+tVVlt2xnfVXD2XZnYnb3W2uVKcfHw9EurRL44IfBTZ+FSjXboW3u78aKtdvsZ3htwQo168C5fpN0Ih7DJVrTwKUa7fAT0md9hoq114Lt7uSy19m7Jh21n2xnXVfAm53dxiqyGn8/NdZv//u74a3u78n4HZXckmWDAJJ/fcb3u7uj7pyYRDkjDou4v5mvWxQ3q+qZhtQdm/qnZX/KvjpsUHPTf9tZY2JdXq0uaBL76uujz72zKEdj8wfWvmGUvOK7M/58cYqdVa9cPfGT3IX+G742x+WOTy5Q/Sxfrb0Y1Oueu7W/isfvPiaju2Xbfix5uyi4+/P3alGi/Mn9N3SYNLSH7NEHxuZsfqdC462Ofxncu8rNp750ZFD/a5dsKLu4ORdN5150wOfLj8/+liJD2df8fvcyODh7z14X4m5w2/YubBynvPe2p2/SNG3vj7w1PznGjaKPjbp+d+q/XR5uWLhSV3KfdTu8Z93zX3xgsLPfRJ5vtaCsWM+PPRc9LESHyocWlJ3+5gzmuW/6/tW/Y/89HixO5v3qPrTs8Nev/mROyr//tln0cde+Nnote26v91q8ahJF+YqdH/na198/fn31h3qWPrTIXteWT7xvuhj423p3wNBP1nuakb6xLov3N/0Nw/b3N/0xxaRkK8tSXCs5N8N/+H4ccApf6b9M7bzhE5evE4cYPDvLUgT++G5RTJxWCTkZwv/W79w1DkHHf8POeWwU4445ahT/nLKMaf87ZTjqJ/T6GGnZHFKklOSnZLilFSnpDklq1OyOSW7U3I4JadTcjnlDKfkdkoep+R1Sj6n5HdKAacUdEqhrKGMIgRnYvcd8th32GPfEY99Rz32/eWx75jHvr899h332IcdsfvCHvuyeOxL8tiX7LEvxWNfqse+NI99WT32ZfPYl91jXw6PfTk99uXy2HeGx77cHvvyeOzL67Evn8e+/B77CnjsK+ixr1DWjGKGLRLytZ1YXflH1IU2/Tfexfmgzwv5nuPHw4d8HxsKH/Z7rOP7EX/HPozbqKO+jv3jxC3XX36O/f6f27NjPo693L2V+zv+sf/msToe99jeJ28Rs8Y5dvHJ28lwnGMHRt16Zjn9sQ2jb1OTTnvsjgy3tMmnO/aijLe/Kac5tnTMrXLqqY/9z+182imPbRPb18NZT3XssP+Mi3C2Uxw77L9jKJzd+9jXPMZbOIfnsVd4jc1wTq9jm3uO43Auj2Pf8B7z4TP+e2yZU+hDOPd/jp15Ki0J54k9ttIpdSecN+bY70+tUeF8GY/texo9C+fPcGzT02lfuED0sV1Oq5PhglHHVjy9poYLZfUfeCXy1VOhePpxUsvXRtsrbHrRgUGcLMm5AOOF/QMKF/FZKdNXT6gDbISFdSgibOQEZYqUdK41XjsjIV9mMvha1O0gZ8ZGLEVdcNH7zoyKYtI36cNfQU8OFxV0kDMN4UmTikh8OkswGP79Q+ALIsMiWe1mlDxbMBi86hDvcDA6O6u87mcHpMQF/fffGdH2ipkqMQwWkyvxjGKCzneOZSVGHc6RK/GMczLZ+fwMoLMtD6Diwjqkb1JhkrRhRNA3EnmFK+jf7hNeOyMhX2Yy+FrCHXjnxl7hSnhc4c5NwBVOoBDhEoJGO9cQnrQjSXwqmckrXLxzTgweg6vDeZavWqj3ef8H/Trb9Uv6lvTsrGZ1iHdsKaHQJOoqXcD/GFwUbe9806s0DJ4vv0ovOl8AqLTlqzTqUFp+lV5U2nKnxtW2lMFgK0O68krapWxAV94C/u2+4rUzEvJlJoOv5dzBVD72ylvO48pbPgFXXsGoD5cTNFp5Q3jSjiTx6QLLV14MnrIGg66CZTFAvSsQ/ErfpG1YQdCGF1p+PnCqaCCeLcG9dVgSDVS0fDsHnhWz2m2zSgFFNPn9a9uEaHuVTSMaGKwsj2gmVBYAushyRIM6XCSPaCZcRIhoKhmIWBWSiEna5eKAIpr8/u2O99oZCfkyk8HXqu5gqhYb0VT1iGiqJSCiEYz6cFVBo1UzhCftSBKfqluOaDB4LjYYdJdYFgPU+xKCX+mbtA0vEbRhDctteKorfLzzJFf4Sy1HKTWy/mPDZjvUDChKyedfryLR9mqZRikwWEsepURqCQDVthyloA615VFKpDYhSqlpIEyXkYRJ0i51AopS8vm36/UtPqMopa47mOrFRil1PaKUegmIUgSjPlxX0Gj1DOFJO5LEp8stX+EweOoYDLr6lsUA9a5P8Ct9k7ZhfUEbXmG5DU91hY93nuQK38BylAJGDbLabYcrA4pS8vrXqzXR9hqaRikw2FAepaxpKADUyHKUgjo0kkcpaxoRopQrDYSpMUmYJO1yVUBRSl7/dld77YyEfJnJ4GsTdzBdHRulNPGIUq5OQJQiGPXhJoJGu9oQnrQjSXxqavkKh8FzlcGga2ZZDFDvZgS/0jdpGzYTtGFzy214qit8vPMkV/gWlqMUMGqR1W47tAwoSsnjX686R9u7xjRKgcFr5FFK52sEgFpZjlJQh1byKKVzK0KU0tJAmK4lCZOkXVoHFKXk8W/3Rq+dkZAvMxl8vc4dTG1io5TrPKKUNgmIUgSjPnydoNHaGMKTdiSJT20tX+EweFobDLp2lsUA9W5H8Ct9k7ZhO0EbXm+5DU91hY93nuQK395ylAJG7bPabYcbAopScvvXq6+i7XUwjVJgsIM8SvmqgwBQR8tRCurQUR6lfNWREKXcYCBMnUjCJGmXGwOKUnL7t7vRa2ck5MtMBl87u4PpptgopbNHlHJTAqIUwagPdxY02k2G8KQdSeJTF8tXOAyeGw0GXVfLYoB6dyX4lb5J27CroA27WW7DU13h450nucLfbDlKAaObs9pth+4BRSln+NerxtH2bjGNUmDwFnmU0vgWAaAelqMU1KGHPEpp3IMQpXQ3EKZbScIkaZeeAUUpZ/i328hrZyTky0wGX29zB1Ov2CjlNo8opVcCohTBqA/fJmi0XobwpB1J4tPtlq9wGDw9DQZdb8tigHr3JviVvknbsLegDftYbsNTXeHjnSe5wve1HKWAUd+sdtuhX0BRSi7/erUw2l5/0ygFBvvLo5SF/QWA7rAcpaAOd8ijlIV3EKKUfgbCdCdJmCTtMiCgKCWXf7sve+2MhHyZyeDrXe5gGhgbpdzlEaUMTECUIhj14bsEjTbQEJ60I0l8GmT5CofBM8Bg0N1tWQxQ77sJfqVv0ja8W9CG91huw1Nd4eOdJ7nCD7YcpYDR4Kx22+HegKKUnP716u1oe0NMoxQYHCKPUt4eIgA01HKUgjoMlUcpbw8lRCn3GgjTMJIwSdpleEBRSk7/dt/y2hkJ+TKTwdcR7mC6LzZKGeERpdyXgChFMOrDIwSNdp8hPGlHkvg00vIVDoNnuMGgG2VZDFDvUQS/0jdpG44StOH9ltvwVFf4eOdJrvAPWI5SwOiBrHbbYXRAUUoO/3rVJNreGNMoBQbHyKOUJmMEgB60HKWgDg/Ko5QmDxKilNEGwjSWJEySdnkooCglh3+7V3ntjIR8mcng6zh3MI2PjVLGeUQp4xMQpQhGfXicoNHGG8KTdiSJTxMsX+EweB4yGHQTLYsB6j2R4Ff6Jm3DiYI2nGS5DU91hY93nuQK/7DlKAWMHs5qtx0mBxSlZPevV8Oi7T1iGqXA4CPyKGXYIwJAUyxHKajDFHmUMmwKIUqZbCBMj5KESdIuUwOKUrL7tzvUa2ck5MtMBl8fcwfTtNgo5TGPKGVaAqIUwagPPyZotGmG8KQdSeLT45avcBg8Uw0G3XTLYoB6Tyf4lb5J23C6oA2fsNyGp7rCxztPcoWfYTlKAaMZWe22w5MBRSnZDKOUmaZRCgzONIhSZgoAzbIcpaAOswyilFmEKOVJA2GaTRImSbs8FVCUki2AKGWOO5iejo1S5nhEKU8nIEoRjPrwHEGjPU2KUiQ+zbV8hcPgecpg0D1jWQxQ72cIfqVv0jZ8RtCGz1puw1Nd4eOdJ7nCP2c5SgGj57LabYd5AUUpWf3r1bxoe8+bRikw+Lw8Spn3vADQC5ajFNThBXmUMu8FQpQyz0CYXiQJk6Rd5gcUpWT1b/c5r52RkC8zGXx9yR1MC2KjlJc8opQFCYhSBKM+/JKg0RYYwpN2JIlPL1u+wmHwzDcYdAstiwHqvZDgV/ombcOFgjZ8xXIbnuoKH+88yRV+keUoBYwWZbXbDq8GFKWk+derp6PtvWYapcDga/Io5enXBIBetxyloA6vy6OUp18nRCmvGgjTGyRhkrTL4oCilDT/dud47YyEfJnJ4OsSdzC9GRulLPGIUt5MQJQiGPXhJYJGe9MQnrQjSXx6y/IVDoNnscGge9uyGKDebxP8St+kbfi2oA2XWm7DU13h450nucIvsxylgNGyrHbb4Z2AopRU/3q1Kdreu6ZRCgy+K49SNr0rALTccpSCOiyXRymblhOilHcMhOk9kjBJ2uX9gKKUVP92v/LaGQn5MpPB1w/cwfRhbJTygUeU8mECohTBqA9/IGi0Dw3hSTuSxKePLF/hMHjeNxh0KyyLAeq9guBX+iZtwxWCNvzYchue6gof7zzJFf4Ty1EKGH2S1W47fBpQlJLiX68+j7a30jRKgcGV8ijl85UCQKssRymowyp5lPL5KkKU8qmBMH1GEiZJu3weUJSS4t/uZ147IyFfZjL4utodTGtio5TVHlHKmgREKYJRH14taLQ1hvCkHUni01rLVzgMns8NBt0XlsUA9f6C4Ff6Jm3DLwRtuM5yG57qCh/vPMkV/kvLUQoYfZnVbjusDyhKSfavV0Wj7W0wjVJgcIM8Sim6QQBoo+UoBXXYKI9Sim4kRCnrDYTpK5IwSdplU0BRSrJ/u0W8dkZCvsxk8PVrdzBtjo1SvvaIUjYnIEoRjPrw14JG22wIT9qRJD59Y/kKh8GzyWDQfWtZDFDvbwl+pW/SNvxW0IbfWW7DU13h450nucJvsRylgNGWrHbb4fuAopQk/3q1JNreVtMoBQa3yqOUJVsFgH6wHKWgDj/Io5QlPxCilO8NhGkbSZgk7fJjQFFKkn+7i712RkK+zGTwdbs7mH6KjVK2e0QpPyUgShGM+vB2QaP9ZAhP2pEkPu2wfIXD4PnRYNDttCwGqPdOgl/pm7QNdwra8GfLbXiqK3y88yRX+F8sRylg9EtWu+2wK6AoJYt/vRodbe9X0ygFBn+VRymjfxUA2m05SkEddsujlNG7CVHKLgNh+o0kTJJ22RNQlJLFv90HvHZGQr7MZPB1rzuY9sVGKXs9opR9CYhSBKM+vFfQaPsM4Uk7ksSn3y1f4TB49hgMuv2WxQD13k/wK32TtuF+QRv+YbkNT3WFj3ee5Ap/wHKUAkYHstpthz8DilLC/vWqUbS9g6ZRCgwelEcpjQ4KAB2yHKWgDofkUUqjQ4Qo5U8DYTpMEiZJuxwJKEoJ+7fb0GtnJOTLTAZfj7qD6a/YKOWoR5TyVwKiFMGoDx8VNNpfhvCkHUni0zHLVzgMniMGg+5vy2KAev9N8Ct9k7bh34I2PG65DU91hY93nuQKH8pmN0oBI9iw2Q5h/3VIaJQS8q9Xk6LtZcn2778gN5glmzhKmZRFACgpm90oBXWADWGUMikpkx013uGIUsLZ5B08WehX+iYdEJJ2SREOiERFKSH/gjjRa2ck5M9MtK+p7mBKyxbKGJGkZvtvlIKDMhulCEZ9OFXQaGnZzOBJO5LEp6yCjvTvHyFB58v2T2eVDrpslsUA9c5G8Ct9k7ZhNkEbZrfchqe6wsc7T3KFz2E5SgGjHNnstkPOgKKU42m+9apPtL1cplEKDOaSRyl9cgkAnWE5SkEdzpBHKX3OIEQpOQ2EKTdJmCTtkiegKCV6QMTZenvtjIR8mcnga153MOWLjVLyekQp+RIQpQhGfTivoNHyZTODJ+1IEp/yW77CYfDkMRh0BSyLAepdgOBX+iZtwwKCNixouQ1PdYWPd57kCl/IcpQCRoWy2W2HwgFFKX/716tl0faKmEYpMFhEHqUsKyIAVNRylII6FJVHKcuKEqKUwgbCdCZJmCTtclZAUcrf/qOUpV47IyFfZjL4erY7mIrFRilne0QpxRIQpQhGffhsQaMVy2YGT9qRJD6dY/kKh8FzlsGgK25ZDFDv4gS/0jdpGxYXtGHEchue6gof7zzJFb6E5SgFjEpks9sO5wYUpRzzr1eRaHslTaMUGCwpj1IiJQWAzrMcpaAO58mjlMh5hCjlXANhKkUSJkm7nB9QlHLMf5RS3GtnJOTLTAZfS7uDqUxslFLaI0opk4AoRTDqw6UFjVYmmxk8aUeS+FTW8hUOg+d8g0FXzrIYoN7lCH6lb9I2LCdow/KW2/BUV/h450mu8BdYjlLA6IJsdtuhQkBRyl/+9SpntL0LTaMUGLxQHqXkvFAAqKLlKAV1qCiPUnJWJEQpFQyEqRJJmCTtUjmgKOUv/1FKDq+dkZAvMxl8vcgdTFVio5SLPKKUKgmIUgSjPnyRoNGqZDODJ+1IEp8utnyFw+CpbDDoqloWA9S7KsGv9E3ahlUFbVjNchue6gof7zzJFb665SgFjKpns9sOlwQUpRz1r1e3R9urYRqlwGANeZRyew0BoEstRymow6XyKOX2SwlRyiUGwlSTJEySdqkVUJRy1H+U0strZyTky0wGX2u7g+my2CiltkeUclkCohTBqA/XFjTaZdnM4Ek7ksSnOpavcBg8tQwGXV3LYoB61yX4lb5J27CuoA3rWW7DU13h450nucJfbjlKAaPLs9lth/oBRSlH/OtV3mh7V5hGKTB4hTxKyXuFAFADy1EK6tBAHqXkbUCIUuobCNOVJGGStEvDgKKUI/6jlDxeOyMhX2Yy+NrIHUyNY6OURh5RSuMERCmCUR9uJGi0xtnM4Ek7ksSnqyxf4TB4GhoMuiaWxQD1bkLwK32TtmETQRtebbkNT3WFj3ee5Arf1HKUAkZNs9lth2YBRSmH/YtyBnvNTaMUGGyeTX5eC8uRB/xqke3kjkjI/2YSTTQzEJCWJAGRsL4mkwLip87XGLRLIgfJIcNB0sp0kMBgK4NBcq3lQQK/riUNEjT8tZYHSSI7ycE0/z5G22tt2klgsLXBZam1YMReZ7lDoQ7XGTTydZYv+ehE1xmELS0FvNpYDlPBto3hYE3fpH2rjaD+bS2HnqcK2+KdJwnb2lluQzBqZ1AHSTtcT3h2cr3BGF8gvOpCzOtG/XchN1lUQfe3gPub3/3N5/7mdX/zuL+53d8z3N9c7m9O9zeH+5vd/c3m/mZ1f9Pc31T3N8X9TXZ/k9zfLOnJ0NKTWrm/WICL37/d32Pu71/u71H394j7e9j9PeT+HnR/b0v957en+3ur+9vD/b3F/e3u/t7s/nZzf7u6v13c35vc387u743ubyf3t6P728H9vcH9be/+Xu/+tnN/27q/bdzf69zf1u7vte5vK/f3Gve3pfvbwv1t7v42c3+bOr/tnf52g1M6OKWjUzo55UandHbKTU7p4pSuTunmlJud0t0ptzilh1NudUpPp9zmlF5Oud0pvZ3Sxyl9ndLPKf2dcodT7nTKAKfc5ZSBThnklLuzZeybsY+Q4vX78Sn+x1Z7wTi/J6DASGI32t5g08AIBgcbRM/3Wg524Ne9CYqe4/k32RGBd9PkF47Jgih2iOHtqHRAPCIYEDcI2nBoQANiqOGAGGY6IGBwmMGAGG55QMCv4aTbSQy8IQZRyAhSJ39c0Mk7CNrlvoA6+X2GnXykaSeHwZEGnXyU5U4Ov0aROjkG0wiDTn4/qZPPEnTyjoJ2eSCgTv6AYScfbdrJYXC0QScfY7mTw68xpE6OwXS/QSd/kNTJnxF08k6CdhkbUCcfa9jJHzLt5DD4kEEnH2e5k8OvcaROjsH0oEEnH0/q5C8KOvmNgnaZEFAnn2DYySeadnIYnGjQySdZ7uTwaxKpk2MwjTfo5A+TOvkrgk7eWdAukwPq5JMNO/kjpp0cBh8x6ORTLHdy+DWF1MkxmB426OSPkjr5YkEnv0nQLlMD6uRTDTv5Y6adHAYfM+jk0yx3cvg1jdTJMZgeNejkj5M6+TJBJ+8iaJfpAXXy6Yad/AnTTg6DTxh08hmWOzn8mkHq5BhMjxt08idJnfwDQSfvKmiXmQF18pmGnXyWaSeHwVkGnXy25U4Ov2aTOjkG05MGnfwpUif/VNDJuwnaZU5AnXyOYSd/2rSTw+DTBp18ruVODr/mkjo5BtNTBp38GVInXyPo5DcL2uXZgDr5s4ad/DnTTg6Dzxl08nmWOzn8mkfq5BhMzxh08udJnXyDoJN3F7TLCwF18hcMO/mLpp0cBl806OTzLXdy+DWf1MkxmJ436OQvkTr5N4JOfougXRYE1MkXGHbyl007OQy+bNDJF1ru5PBrIamTYzC9ZNDJXyF18h8EnbyHoF0WBdTJFxl28ldNOzkMvmrQyV+z3Mnh12ukTo7B9IpBJ3+d1Ml3Cjr5rYJ2eSOgTv6GYSdfbNrJYXCxQSdfYrmTw68lpE6OwfS6QSd/k9TJfxN08p6CdnkroE7+lmEnf9u0k8Pg2wadfKnlTg6/lpI6OQbTmwadfBmpk/8h6OS3CdrlnYA6+TuGnfxd004Og+8adPLlljs5/FpO6uQYTMsMOvl7pE5+RNDJewna5f2AOvn7hp38A9NODoMfGHTyDy13cvj1IamTYzC9Z9DJPyJ18lCq/7rcLmiXFQF18hWGnfxj004Ogx8bdPJPLHdy+PUJqZNjMH1k0Mk/JXXyVEEn7y1ol5UBdfKVhp18lWknh8FVBp38M8udHH59RurkGEyfGnTyz0mdPKegk/cRtMvqgDr5asNOvsa0k8PgGoNOvtZyJ4dfa0mdHIPpc4NO/gWpk+cTdPK+gnZZF1AnX2fYyb807eQw+KVBJ19vuZPDr/WkTo7B9IVBJ99A6uRFBJ28n6BdNgbUyTcadvKvTDs5DH5l0Mk3We7k8GsTqZNjMG0w6ORfkzr5OYJO3l/QLpsD6uSbDTv5N6adHAa/Mejk31ru5PDrW1Inx2D62qCTf0fq5OcJOvkdgnbZElAn32LYyb837eQw+L1BJ99quZPDr62kTo7B9J1BJ/+B1MnLCTr5nYJ22RZQJ99m2Ml/NO3kMPijQSffbrmTw6/tpE6OwfSDQSf/idTJKwk6+QBBu+wIqJPvMOzkO007OQzuNOjkP1vu5PDrZ1Inx2D6yaCT/0Lq5NUEnfwuQbvsCqiT7zLs5L+adnIY/NWgk++23Mnh125SJ8dg+sWgk/9G6uS1BJ18oKBd9gTUyfcYdvK9pp0cBvcadPJ9ljs5/NpH6uQYTL8ZdPLfSZ38ckEnHyRol/0BdfL9hp38D9NODoN/GHTyA5Y7Ofw6QOrkGEy/G3TyP0mdvJGgk98taJeDAXXyg4ad/JBpJ4fBQwad/LDlTg6/DpM6OQbTnwad/Eg2u36h/kcM/DpqOPik/s1Kk/UBUzuzhXak39tAum7BdxJOfIvhqMGYkaQFT6SoXBHybzfa3l+monKFe7K0If7y33HDxywLEOpwzGDwHRNeOcA46TTHREK+tlT4WSRz/0Yrw/O6GZ53B/m8Hobn3W54XnfD8yKG591jeF4lw/PuNTwvYnheZ8Pz+hueFzE872bD80zHkel5EcPz+hieZ9p+gwzPM+XSD1oajtkpvX6E/R/7HxtiY8csR6IPJf9zYZN+CEVykf5beOuT/sFpr/OkgYfEz+OCIOXfP0IyZn8bBB4vlcxcH4j376f3AenHvHGeXxuh7P7/Xdv1RV0N+nwWSV8K+6/viWAxeygxdwR/C/Ui2oZVcQritmfP8ePHo+1lyZ4JgzhZoj4wnkXQ65OyC0aTYR1gQzJaUIckYU/+320P7bz/3fZ4b/+77fHeIobn/e+2x3v7321PvJNMjUkuOib/PkL9UHb57UQyMYyNd7jp7URKdnlDYpOykgQ0qQKu//4RkrV3OLvd29w0YaCUqGi4tP9jM9jLahoNl3ZPlp6XzXKEC7+yZT+5IxKSb9IOkiyoU/ZMdvJ4/36Z0D/1l9ahjMBGDsvCDEY5ssvrnjO7bBCkP2OKPk/qK0QrzYC3RBhzCUUlh/v7H6NCHyWikhk7pUIcO8mZ7Ldx10mE/ulT4r4gOLZcSM7KOALLYRlY2dA/A10KLIdg8JwhrIPUl3CMDb91lrLKbbkt0AnTO3D0efHMmHbeeP7ksXyRSb9QSuekSS6UkmAnr+Xot6xrIyQ778SFJKdTUrz+UaEPrAvK+SGOHemFS3r3BJ2Q3G3i+JzZ7V8Y/z1RaEcyprNE/T2f22/zZ8/ExSyvYXSYLxPRIWzmM7jA5RUIRwHDenmdJ+2gEj8LCgXO5LFMDoPBYvNur5DlixjqkNsgmChs2S8IvUmQU4TAK4+BX0Ut+4ULiQmvMy37lWx4J35WQI/BKvg/NoO9s00fg1VwT5aeV8zyYzD4Vcwg2jOxhYtAAYNO8qrlZ+O44BQy8Os1oV/pmzhBjuBiJWAVFvjveScRz+8LQ//0LemF80KBjeKWhQ3sixv0jYhhsBVJQLBVXKAZJYTBVvom7cPnBt+HT2zSvoj3X5I7bhxf0KC/lLT89CmXsB65DOtxnuXxmNf1y+aNUilCcGnC9vyAHu9LgqXM2Ckf4tg5N5PtGzdDTMj+4/1KITmrcOxfIr5OC4WLWwZWMfTPRUsKTHKhKy0cPLlDGR8tnapu8Xz0O2iPHz/+vdf+SCi+DfwR7WsZN6Avmz5ROD26KOOqTvS+sh4OSp/tn++vIR7ei+fpkncgQnjSjocOVIZ09wPFL2yg+uWy2/eriIFf5Ql+FTXw6wKCX2ca+FWB4NdZBn5dKPALunCeU2a5/42+iX4A5qgf/q05af8r/yucYjhWUqD75xuMlYrC91LneeyPhGSbVAcqZrdvoxJhrkRpQZyQHkBK27OyUPvw+H2W+9//077/lSDLqcaWn5hXMH5P3GRVNrg5qyQYvxcJdbWUx/5IyJ9fsX+J+DqNo6sX2Y0R/73u2bzRrsJry5MOys4LVyG05cUKOEBHfB5rbKOqAg59ku3bqGbQ57zsxBt/1f3byRIU7+qE8XeJgn43itDvaijgMJTA4VLS+Kvp305KULxrEsZfLRLv2v7tpAbFuzaB92Uk3nX820kLincdAu+6JN71/NvJGhTvegTel5N41/dvJ1tQvOsTeF9B4t3Av53sQfFuQOB9JYl3Q/92cgTFuyGBdyMS78b+7eQMindjAu+rSLyb+LeTKyjeTQi8rybxburfzhlB8W5K4N2MxLu5fzu5g+LdnMC7BYl3S/928gTFuyWB9zUk3q3828kbFO9WBN7Xkni39m8nX1C8WxN4X0fi3ca/nfxB8W5D4N2WxLudfzsFguLdjsD7ehLv9v7tFAyKd3sC7xtIvDv4t1MoKN4dCLw7knh38m+ncFC8OxF430ji3dm/nSJB8e5M4H0TiXcX/3aKBsW7C4F3VxLvbv7tnBkU724E3jeTeHf3b+esoHh3J/C+hcS7h387ZwfFuweB960k3j392ykWFO+eBN63kXj38m/nnKB49yLwvp3Eu7d/O8WD4t2bwLsPiXdf/3YiQfHuS+Ddj8S7v387JYLi3Z/A+w4F81aLE+at3knqdwP82ykZFO8BhH53F4n3QP92zguK90AC70Ek3nf7t1MqKN53E3jfQ+I92L+d84PiPZjA+14S7yH+7ZQOivcQAu+hJN7D/NspExTvYQTew0m8R/i3UzYo3iMIvO8j8R7p3065oHiPJPAeReJ9v3875YPifT+B9wMK7vtWJdm3MZrU78b4t1MhKN5jCP3uQRLvsf7tXBgU77EE3g+ReI/zb6diULzHEXiPJ/Ge4N9OpaB4TyDwnkjiPcm/ncpB8Z5E4P0wifdk/3YuCor3ZALvR0i8p/i3UyUo3lMIvB8l8Z7q387FQfGeSuD9GIn3NP92qgbFexqB9+Mk3tP926kWFO/pBN5PkHjP8G+nelC8ZxB4P0niPdO/nUuC4j2TwHsWifds/3ZqBMV7NoH3UyTec/zbuTSwvIoE3k+TeM/1b6dmULznEng/Q+L9rH87tYLi/SyB93Mk3vP826kdFO95BN7Pk3i/4N/OZUHxfoHA+0US7/n+7dQJivd8Au+XSLwX+LdTNyjeCwi8XybxXujfTr2geC8k8H6FxHuRfzuXB8V7EYH3qyTer/m3Uz8o3q8ReL9O4v2GfztXBMX7DQLvxSTeS/zbaRAU7yUE3m+SeL/l386VQfF+i8D7bRLvpf7tNAyK91IC72Uk3u/4t9MoKN7vEHi/S+K93L+dxkHxXk7g/R6J9/v+7VwVFO/3Cbw/IPH+0L+dJkHx/pDA+yMS7xX+7VwdFO8VBN4fk3h/4t9O06B4f0Lg/SmJ90r/dpoFxXslgfcqEu/P/NtpHhTvzwi8PyfxXu3fTougeK8m8F5D4r3Wv52WQfFeS+D9BYn3Ov92rgmK9zoC7y9JvNf7t9MqKN7rCbw3kHhv9G/n2qB4byTw/orEe5N/O62D4r2JwPtrEu/N/u1cFxTvzQTe35B4f+vfTpugeH9L4P0difcW/3baBsV7C4H39yTeW/3baRcU760E3j+QeG/zb+f6oHhvI/D+kcR7u3877YPivZ3A+ycS7x3+7dwQFO8dBN47Sbx/9m+nQ1C8fybw/oXEe5d/Ox2D4r2LwPtXEu/d/u10Cor3bgLv30i89/i3c2NQvPcQeO8l8d7n307noHjvI/D+ncR7v387NwXFez+B9x8k3gf82+kSFO8DBN5/kngf9G+na1C8DxJ4HyLxPuzfTregeB8m8D5C4n3Uv52bg+J9lMD7LxLvY/7tdA+K9zEC779JvI/7t3NLULyPE3iHcnB4h/3b6REU73AO+zaykHgn+bdza1C8kwi8k0m8U/zb6RkU7xQC71QS7zT/dm4LincagXdWEu9s/u30Cop3NgLv7CTeOfzbuT0o3jkIvHOSeOfyb6d3ULxzEXifQeKd27+dPkHxzk3gnYfEO69/O32D4p2XwDsfiXd+/3b6BcU7P4F3ARLvgv7t9A+Kd0EC70Ik3oX927kjKN6FCbyLkHgX9W/nzqB4FyXwPpPE+yz/dgYExfssAu+zSbyL+bdzV1C8ixF4n0PiXdy/nYGBfTebwDtC4l3Cv51BQfEuQeB9Lol3Sf927g6Kd0kC7/NIvEv5t3NPULxLEXifT+Jd2r+dwUHxLk3gXYbEu6x/O/cGxbssgXc5Eu/y/u0MCYp3eQLvC0i8K/i3MzQo3hUIvC8k8a7o386woHhXJPCuROJd2b+d4UHxrkzgfRGJdxX/dkYExbsKgffFJN5V/du5LyjeVQm8q5F4V/dvZ2RQvKsTeF9C4l3Dv51RQfGuQeB9KYl3Tf927g+Kd00C71ok3rX923kgKN61CbwvI/Gu49/O6KB41yHwrkviXc+/nTFB8a5H4H05iXd9/3YeDIp3fQLvK0i8G/i3MzYo3g0IvK8k8W7o385DQfFuSODdiMS7sX8744Li3ZjA+yoS7yb+7YwPincTAu+rSbyb+rczISjeTQm8m5F4N/dvZ2JQvJsTeLcg8W7p386koHi3JPC+hsS7lX87DwfFuxWB97Uk3q3925kcFO/WBN7XkXi38W/nkaB4tyHwbkvi3c6/nSlB8W5H4H09iXd7/3YeDYp3ewLvG0i8O/i3MzUo3h0IvDuSeHfyb+exoHh3IvC+kcS7s38704Li3ZnA+yYS7y7+7TweFO8uBN5dSby7+bczPSje3Qi8bybx7u7fzhNB8e5O4H0LiXcP/3ZmBMW7B4H3rSTePf3beTIo3j0JvG8j8e7l387MoHj3IvC+XWAjySnnO2WW+99Vs4dC1ZxyiVNqOOVSp9RyymVOqeuUy51yhVOudEojp1zllKud0swpLZxyjVOudcp1TmnrlOudcoNTOjrlRqfc5JSuTrnZKbc45Van3OaU253Sxyn9nHKHU+50yl1OGeSUe5xyr1OGOmW4U+5zyiinPOCU0U550CkPOWW8UyY65WGnPOKUR53ymFMed8oTTnnSKbOc8pRTnnbKM055zinPO+VFp7zklJed8opTXnXK605Z7JQ3nfK2U5Y5Bd+ax/fP8U1ufCca3y7G93TxjVd8dxTfwsT3GfHNQHzHDt9Ww/e+8A0qfBcJ3+rB92PwTRN8ZwPffsD3CJAjH3nbkUsc+a2Rcxl5gJGbFvlSkcMTeSWR6xD595ATDnnKkDsL+ZyQYwh5b5CLBflBkLMCeRSwth/rzbEG+sS6XKdg/SLW1GGdF9YeYT0M1mhg3QDmsmN+Neb8Yh4q5kZivh7mkGFeE+baYP4H5iTgPTne3eJ9It5x4b0L3gXg+TSemeI5Hp4t4XkH7sFxX4h7FcTPiOkQZ+DaBz2GRqDfpm9ZhH2+gvNH8ez+tQLHXpxdbudigY3egnEIP8732B8J+fMr9i8RX6eFwlUI+TklHAz+/RS05fnytswi6S99eG357ybl3CeHfRt9M9mWcXN+4hj3N/q8eGaSBMdWEvjTT0G7z0mzb6O/hv6fbN/GHQo4VCdo+p0KOIwi9IcBCjgMJXC4SwGHmoRxMVABh9oEDoMUcKhD4HC3Ag71CBzuUcChPoHDYAUcGhA43KuAQ0MChyEKODQmcBiqgEMTAodhCjg0JXAYroBDcwKHEQo4tCRwuE8Bh1YEDiMVcGhN4DBKAYc2BA73K+DQjsDhAQUc2hM4jFbAoQOBwxgFHDoRODyogENnAoexCjh0IXB4SAGHbgQO4xRw6E7gMF4Bhx4EDhMUcOhJ4DBRAYdeBA6TFHDoTeDwsAIOfQkcJivg0J/A4REFHIoT3ndPUcBhAKE/PKqAw0ACh6kKONxN4PCYAg6DCRymKeAwhMDhcQUchhE4TFfAYQSBwxMKOIwkcJihgMP9BA5PKuCwKsm+jZkKOIwh9IdZCjiMJXCYrYDDOAKHpxRwmEDgMEcBh0kEDk8r4DCZwGGuAg5TCByeUcBhKoHDswo4TCNweE4Bh+kEDvMUcJhB4PC8Ag4zCRxeUMBhNoHDixrW8xI4zFfAYS6Bw0sKODxL4LBAAYd5BA4vK+DwAoHDQgUc5hM4vKKAwwICh0UKOCwkcHhVAYdFBA6vKeDwGoHD6wo4vEHg8IYCDksIHBYr4PAWgcMSBRyWEji8qYDDOwQObyngsJzA4W0FHN4ncFiqgMOHBA7LFHBYQeDwjgIOnxA4vKuAw0oCh+UKOHxG4PCeAg6rCRzeV8BhLYHDBwo4rCNw+FABh/UEDh8p4LCRwGGFAg6bCBw+VsBhM4HDJwo4fEvg8KkCDlsIHFYq4LCVwGGVAg7bCBw+U8BhO4HD5wo47CBwWK2Aw88EDmsUcNhF4LBWAYfdBA5fKOCwh8BhnQIO+wgcvlTAYT+Bw3oFHA4QOGxQwOEggcNGBRwOEzh8pYDDUQKHTQo4HCNw+FoBh+MEDpsVcAgTvh/3jQIOSQQO3yrgkELg8J0CDmkEDlsUcMhG4PC9Ag45CBy2KuCQi8DhBwUcchM4bFPAIS+Bw48KOOQncNiugENBAoefFHAoTOCwQwGHogQOOxVwOIvA4WcFHIoROPyiIV8xgcMuBRxKEDj8qoBDSQKH3Qo4lCJw+E0Bh9IEDnsUcChL4LBXAYfyBA77FHCoQODwuwIOFQkc9ivgUJnA4Q8FHKoQOBxQwKEqgcOfCjhUJ3A4qIBDDQKHQwo41CRwOKyAQ20ChyMKONQhcDiqgEM9Aoe/FHCoT+BwTAGHBgQOfyvg0JDA4bgCDo0JHEI5/+9zaELgEFbAoSmBQxYFHJoTOCQp4NCSwCFZAYdWBA4pCji0JnBIVcChDYFDmgIO7Qgcsirg0J7AIZsCDh0IHLIr4NCJwCGHAg6dCRxyKuDQhcAhlwIO3QgczlDAoTuBQ24FHHoQOORRwKEngUNeBRx6ETjkE3BIckppp8xy/7u/498dTrnTKQOccpdTBjplkFPudso9ThnslHudMsQpQ50yzCnDnTLCKfc5ZaRTRjnlfqc84JTRThnjlAedMtYpDzllnFPGO2WCUyY6ZZJTHnbKZKc84pQpTnnUKVOdgu/T49vs+C45vsmN71HjW8z4DjG+wYvvz+Lbq/juKL65ie9N4luL+M4gvrGH78vh22r4rhi+qYXvSeFbSviOEL6hg+/H4Nsp+G4IvpmB70XgWwn4TgBy5CM/PHKjIy84cmIjHzRyISMPMHLgIv8rcp8i7ydyXiLfI3IdIs8fctwhvxtymyGvF3JaIZ8Tchkhjw9y2CB/C3KXIG8HclYgXwNyFWCdPtaoY3021iZjXS7WpGI9JtYiYh0e1qBh/RXWHmHdDdacYL0F1hpgnj3mmGN+NeYWY14t5pRiPiXmEmIeHeaQYf4U5g5h3gzmjGC+BOYK4D053hHj/SjeDeK9GN4J4X0I3gXgOTieAeP5J5794bkXnvngeQfu9XGfi3s83N8gtkdci5gO8Qyu5biOQcOhXxi76LfpW5aYPl+pa7N+WyvPKru4RYPXhw9v26FMlZ2NBi3pM6n+1gOT9zr/v3j2UKhvDv9jBMf3y/FfO/HOi7YRz6f8Qj0q7bE/EvLnV+xfIr5OC4X75LCvRxIOBv9+Ctry/Ozitkwqnt1/WxbgteW/m5RzgZz2bRRUwGFOmn0bhRRw6JNs30ZhBRyqE3JFFFHAYRShPxRVwGEogcOZCjjUJIyLsxRwqE3gcLYCDnUIHIop4FCPwOEcBRzqEzgUV8ChAYFDRAGHhgQOJRRwaEzgcK4CDk0IHEoq4NCUwOE8BRyaEziUUsChJYHD+Qo4tCJwKK2AQ2sChzIKOLQhcCirgEM7AodyCji0J3Aor4BDBwKHCxRw6ETgUEEBh84EDhcq4NCFwKGiAg7dCBwqKeDQncChsgIOPQgcLlLAoSeBQxUFHHoROFysgENvAoeqCjj0JXCopoBDfwKH6go4FCe8775EAYcBhP5QQwGHgQQOlyrgcDeBQ00FHAYTONRSwGEIgUNtBRyGEThcpoDDCAKHOgo4jCRwqKuAw/0EDvUUcFiVZN/G5Qo4jCH0h/oKOIwlcLhCAYdxBA4NFHCYQOBwpQIOkwgcGirgMJnAoZECDlMIHBor4DCVwOEqBRymETg0UcBhOoHD1Qo4zCBwaKqAw0wCh2YKOMwmcGiuYT0vgUMLBRzmEji0VMDhWQKHaxRwmEfg0EoBhxcIHK5VwGE+gUNrBRwWEDhcp4DDQgKHNgo4LCJwaKuAw2sEDu0UcHiDwOF6BRyWEDi0V8DhLQKHGxRwWErg0EEBh3cIHDoq4LCcwKGTAg7vEzjcqIDDhwQOnRVwWEHgcJMCDp8QOHRRwGElgUNXBRw+I3DopoDDagKHmxVwWEvg0F0Bh3UEDrco4LCewKGHAg4bCRxuVcBhE4FDTwUcNhM43KaAw7cEDr0UcNhC4HC7Ag5bCRx6K+CwjcChjwIO2wkc+irgsIPAoZ8CDj8TOPRXwGEXgcMdCjjsJnC4UwGHPQQOAxRw2EfgcJcCDvsJHAYq4HCAwGGQAg4HCRzuVsDhMIHDPQo4HCVwGKyAwzECh3sVcDhO4DBEAYcw4dt4QxVwSCJwGKaAQwqBw3AFHNIIHEYo4JCNwOE+BRxyEDiMVMAhF4HDKAUcchM43K+AQ14ChwcUcMhP4DBaAYeCBA5jFHAoTODwoAIORQkcxirgcBaBw0MKOBQjcBinIV8xgcN4BRxKEDhMUMChJIHDRAUcShE4TFLAoTSBw8MKOJQlcJisgEN5AodHFHCoQOAwRQGHigQOjyrgUJnAYaoCDlUIHB5TwKEqgcM0BRyqEzg8roBDDQKH6Qo41CRweEIBh9oEDjMUcKhD4PCkAg71CBxmKuBQn8BhlgIODQgcZivg0JDA4SkFHBoTOMxRwKEJgcPTCjg0JXCYq4BDcwKHZxRwaEng8KwCDq0IHJ5TwKE1gcM8BRzaEDg8r4BDOwKHFxRwaE/g8KICDh0IHOYr4NCJwOElBRw6EzgsUMChC4HDywo4dCNwWKiAQ3cCh1cUcOhB4LBIAYeeBA6vKuDQi8DhNQGHJKeUccos978LOecWdkoRpxR1yplOOcspZzulmFPOcUpx/PtOKeGUc51S0innOaWUU853SmmnlHFKWaeUc0p5p1zglApOudApFZ1SySmVnXKRU6o45WKnVHVKNadUd8olTqnhlEudgu/T49vs+C45vsmN71HjW8z4DjG+wYvvz+Lbq/juKL65ie9N4luL+M4gvrGH78vh22r4rhi+qYXvSeFbSviOEL6hg+/H4Nsp+G4IvpmB70XgWwn4TgBy5CM/PHKjIy84cmIjHzRyISMPMHLgIv8rcp8i7ydyXiLfI3IdIs8fctwhvxtymyGvF3JaIZ8Tchkhjw9y2CB/C3KXIG8HclYgXwNyFWCdPtaoY3021iZjXS7WpGI9JtYiYh0e1qBh/RXWHmHdDdacYL0F1hpgnj3mmGN+NeYWY14t5pRiPiXmEmIeHeaQYf4U5g5h3gzmjGC+BOYK4D053hHj/SjeDeK9GN4J4X0I3gXgOTieAeP5J5794bkXnvngeQfu9XGfi3s83N8gtkdci5gO8Qyu5biOQcOhXxi76LfpWxZhny/v/FE8ak1wpa7N+m2tPKvs4hYNXh8+vG2HMlV2Nhq0pM+k+lsPTN7rHlswp9wOzvFr4/WcMj0q47E/EvLnV+xfIr5OC4UL5LSvR68LbQj//RS05fnZxW2ZLOkvb/Da8t9NyvkNQlsuVsBhTpp9G0sUcOiTbN/Gmwo4VCfkinhLAYdRhP7wtgIOQwkclirgUJMwLpYp4FCbwOEdBRzqEDi8q4BDPQKH5Qo41CdweE8BhwYEDu8r4NCQwOEDBRwaEzh8qIBDEwKHjxRwaErgsEIBh+YEDh8r4NCSwOETBRxaETh8qoBDawKHlQo4tCFwWKWAQzsCh88UcGhP4PC5Ag4dCBxWK+DQicBhjQIOnQkc1irg0IXA4QsFHLoROKxTwKE7gcOXCjj0IHBYr4BDTwKHDQo49CJw2KiAQ28Ch68UcOhL4LBJAYf+BA5fK+BQnPC+e7MCDgMI/eEbBRwGEjh8q4DD3QQO3yngMJjAYYsCDkMIHL5XwGEYgcNWBRxGEDj8oIDDSAKHbQo43E/g8KMCDquS7NvYroDDGEJ/+EkBh7EEDjsUcBhH4LBTAYcJBA4/K+AwicDhFwUcJhM47FLAYQqBw68KOEwlcNitgMM0AoffFHCYTuCwRwGHGQQOexVwmEngsE8Bh9kEDr9rWM9L4LBfAYe5BA5/KODwLIHDAQUc5hE4/KmAwwsEDgcVcJhP4HBIAYcFBA6HFXBYSOBwRAGHRQQORxVweI3A4S8NeXIIHI4p4LCEwOFvBRzeInA4roDDUgKHUK7/+xzeIXAIK+CwnMAhiwIO7xM4JCng8CGBQ7ICDisIHFIUcPiEwCFVAYeVBA5pCjh8RuCQVQGH1QQO2RRwWEvgkF0Bh3UEDjkUcFhP4JBTAYeNBA65FHDYROBwhgIOmwkccivg8C2BQx4FHLYQOORVwGErgUM+BRy2ETjkV8BhO4FDAQUcdhA4FFTA4WcCh0IKOOwicCisgMNuAociCjjsIXAoqoDDPgKHMxVw2E/gcJYCDgcIHM5WwOEggUMxBRwOEzico4DDUQKH4go4HCNwiCjgcJzAoYQCDmHCtzrPVcAhicChpAIOKQQO5yngkEbgUEoBh2wEDucr4JCDwKG0Ag65CBzKKOCQm8ChrAIOeQkcyingkJ/AobwCDgUJHC5QwKEwgUMFBRyKEjhcqIDDWQQOFRVwKEbgUEkBh+IEDpUVcChB4HCRAg4lCRyqKOBQisDhYgUcShM4VFXAoSyBQzUFHMoTOFRXwKECgcMlCjhUJHCooYBDZQKHSxVwqELgUFMBh6oEDrUUcKhO4FBbAYcaBA6XKeBQk8ChjgIOtQkc6irgUIfAoZ4CDvUIHC5XwKE+gUN9BRwaEDhcoYBDQwKHBgo4NCZwuFIBhyYEDg0VcGhK4NBIAYfmBA6NFXBoSeBwlQIOrQgcmijg0JrA4WoFHNoQODRVwKEdgUMzBRzaEzg0V8ChA4FDCwUcOhE4tFTAoTOBwzUKOHQhcGilgEM3AodrFXDoTuDQWgGHHgQO1yng0JPAoY0CDr0IHNoKOCQ5paxTZrn/vSRnKPSmU95yyttOWeqUZU55xynvOmW5U95zyvtO+cApHzrlI6escMrHTvnEKZ86ZaVTVjnlM6d87pTVTlnjlLVO+cIp65zypVPWO2WDUzY65SunbHLK107Z7JRvnPKtU/B9enybHd8lxze58T1qfIsZ3yHGN3jx/Vl8exXfHcU3N/G9SXxrEd8ZxDf28H05fFsN3xXDN7XwPSl8SwnfEcI3dPD9GHw7Bd8NwTcz8L0IfCsB3wlAjnzkh0dudOQFR05s5INGLmTkAUYOXOR/Re5T5P1Ezkvke0SuQ+T5Q4475HdDbjPk9UJOK+RzQi4j5PFBDhvkb0HuEuTtQM4K5GtArgKs08cadazPPrE22SlYk4r1mFiLiHV4WIOG9VdYe4R1N1hzgvUWWGuAefaYY4751ZhbjHm1mFOK+ZSYS4h5dJhDhvlTmDuEeTOYM4L5EpgrgPfkeEeM96N4N4j3YngnhPcheBeA5+B4Boznn3j2h+deeOaD5x2418d9Lu7xcH+D2B5xLWI6xDO4luM6Bg2HfmHsot+mb1mEfb54dodL1JrgSl2b9dtaeVbZxS0avD58eNsOZarsbDRoSZ9J9bcemLzX+f84fnFOuZ3FOf3baCfUo7Ie+yMhf37F/iXi67RQ+I2c9vWIyOGkUdl54Tlp9m1cr4BDn2TCswQFHKoT8gvcoIDDKEJ/6KCAw1ACh44KONQkjItOCjjUJnC4UQGHOgQOnRVwqEfgcJMCDvUJHLoo4NCAwKGrAg4NCRy6KeDQmMDhZgUcmhA4dFfAoSmBwy0KODQncOihgENLAodbFXBoReDQUwGH1gQOtyng0IbAoZcCDu0IHG5XwKE9gUNvBRw6EDj0UcChE4FDXwUcOhM49FPAoQuBQ38FHLoRONyhgEN3Aoc7FXDoQeAwQAGHngQOdyng0IvAYaACDr0JHAYp4NCXwOFuBRz6Ezjco4BDccL77sEKOAwg9Id7FXAYSOAwRAGHuwkchirgMJjAYZgCDkMIHIYr4DCMwGGEAg4jCBzuU8BhJIHDSAUc7idwGKWAw6okAmsFHMYQ+sMDCjiMJXAYrYDDOAKHMQo4TCBweFABh0kEDmMVcJhM4PCQAg5TCBzGKeAwlcBhvAIO0wgcJijgMJ3AYaICDjMIHCYp4DCTwOFhBRxmEzhM1rCel8DhEQUc5hI4TFHA4VkCh0cVcJhH4DBVAYcXCBweU8BhPoHDNAUcFhA4PK6Aw0ICh+kKOCwicHhCAYfXCBxmKODwBoHDkwo4LCFwmKmAw1sEDrMUcFhK4DBbAYd3CByeUsBhOYHDHAUc3idweFoBhw8JHOYq4LCCwOEZBRw+IXB4VgGHlQQOzyng8BmBwzwFHFYTODyvgMNaAocXFHBYR+DwogIO6wkc5ivgsJHA4SUFHDYROCxQwGEzgcPLCjh8S+CwUAGHLQQOryjgsJXAYZECDtsIHF5VwGE7gcNrCjjsIHB4XQGHnwkc3lDAYReBw2IFHHYTOCxRwGEPgcObCjjsI3B4SwGH/QQObyvgcIDAYakCDgcJHJYp4HCYwOEdBRyOEji8q4DDMQKH5Qo4HCdweE8BhzDh+47vK+CQRODwgQIOKQQOHyrgkEbg8JECDtkIHFYo4JCDwOFjBRxyETh8ooBDbgKHTxVwyEvgsFIBh/wEDqsUcChI4PCZAg6FCRw+V8ChKIHDagUcziJwWKOAQzECh7Ua8hUTOHyhgEMJAod1CjiUJHD4UgGHUgQO6xVwKE3gsEEBh7IEDhsVcChP4PCVAg4VCBw2KeBQkcDhawUcKhM4bFbAoQqBwzcKOFQlcPhWAYfqBA7fKeBQg8BhiwIONQkcvlfAoTaBw1YFHOoQOPyggEM9AodtCjjUJ3D4UQGHBgQO2xVwaEjg8JMCDo0JHHYo4NCEwGGnAg5NCRx+VsChOYHDLwo4tCRw2KWAQysCh18VcGhN4LBbAYc2BA6/KeDQjsBhjwIO7Qkc9irg0IHAYZ8CDp0IHH5XwKEzgcN+BRy6EDj8oYBDNwKHAwo4dCdw+FMBhx4EDgcVcOhJ4HBIAYdeBA6Hc8lsSP/94tlDofOz//e8Sl2b9dtaeVbZxS0avD58eNsOZarsbDRoSZ9J9bcemLzX+f8flbTrVwnXryxCv4745xW2XYcLnT+KOXVIijkvXh0uFBxbLLv/Y48K2Pz7R8j/ORVdGyHZeaFkp+R0SorXPyr0oUIoJB6TJnYuCHHslA/J7MSOl3j/PsZ/JLtsXJ6b/eSOSEi+SRn0E+hslqi//+X2xWO5TtoUGxcMmhP/dpL7+5d7Hjp37hjHTBqplLCRSgkb6fjx44e89kdC8e3hj+j6/e2CP54rlBHK325LRO87HgXY5OpVyuDq9THh6mXi1ydCv9K3ZP92HnbshP/O5d+n44KrhoBr2G9d0zumlCUG7t8GVyMvW/EOx/F5Ddo7dIZdv0ob+hW27Nf5hn5lsexXnuxmfiVZ9qtUyMyvZMt+waf8Bn6lEPwqZOBXKsGvfAZ+pQn8wnW1nFPqpu8445/xjLGDfoo+Af6oK/7dOWn//y5efCTss/pnn1Vw/cv6ieUYBNc/+C7ta9kEfQ1BXzmP/ZGQbJPWLdsZ9m1kF4453KnVTd/xvzF3YpPe6KCNjgpiUxyLdpLaiW7beDZyCMdDeY/9kZA/v2L/EvF1Gmc85DCwgU2qtzmD19vwv3+EZHqb00Bvc/H610lnZeeFcxH61xkKOEDbfB5rbCO3Ag59ku3byKOAQ3VC5sq8CjiMIvSHfAo4DCVwyK+AQ03CuCiggENtAoeCCjjUIXAopIBDPQKHwgo41CdwKKKAQwMCh6IKODQkcDhTAYfGBA5nKeDQhMDhbAUcmhI4FFPAoTmBwzkKOLQkcCiugEMrAoeIAg6tCRxKKODQhsDhXAUc2hE4lFTAoT2Bw3kKOHQgcCilgEMnAofzFXDoTOBQWgGHLgQOZRRw6EbgUFYBh+4EDuUUcOhB4FBeAYeeBA4XKODQi8ChggIOvQkcLlTAoS+BQ0UFHPoTOFRSwKE44X13ZQUcBhD6w0UKOAwkcKiigMPdBA4XK+AwmMChqgIOQwgcqingMIzAoboCDiMIHC5RwGEkgUMNBRzuJ3C4VAGHVUn2bdRUwGEMoT/UUsBhLIFDbQUcxhE4XKaAwwQChzoKOEwicKirgMNkAod6CjhMIXC4XAGHqQQO9RVwmEbgcIUCDtMJHBoo4DCDwOFKBRxmEjg0VMBhNoFDIw3reQkcGivgMJfA4SoFHJ4lcGiigMM8AoerFXB4gcChqQIO8wkcmgnz7SADa133v5EzAfkCsFYe68SxRhrrg7E2FutCsSYS6wGxFg7rwLAGCut/sPYF6z5OrHlwCua6Y5435jhjfi/mtmJeJ+Y0Yj4f5rJhHhfmMGH+DuauYN4G5izgfT3eVeM9Ld5R4v0c3k3hvQzeSeB5PJ5F4zksnkHi+RuePeG5C5454H4b95q4z8I9BuJrxJaIqxBT4HqKawl0FBqC8YO+A27pmzQPDrLlSvPtIE+H1E50bo94NpoLx8MFHvsjIX9+xf4l4us0Tj6U5gY2sEnz7bTwb8dWvp0T3UnKB30RvseeF6++LXn966SzsvPCLQn96xoFHBj5dlop4MDIt3OtAg6MfDutFXBg5Nu5TgEHRr6dNgo4MPLttFXAgZFvp50CDox8O9cr4MDIt9NeAQdGvp0bFHBg5NvpoIADI99ORwUcGPl2OingwMi3c6MCDox8O50VcGDk27lJw3MYAocuCjgw8u10VcCBkW+nmwIOjHw7NyvgwMi3010BB0a+nVsUcGDk2+mhgAMj386tCjgw8u30VMCBkW/nNgUcGPl2eingwMi3c7sCDox8O70VcGDk2+mjgAMj305fBRwY+Xb6KeDAyLfTXwEHRr6dOxRwYOTbuVMBB0a+nQEKODDy7dylgAMj385ABRwY+XYGKeDAyLdztwIOjHw79yjgwMi3M1gBB0a+nXsVcGDk2xmigAMj385QBRwY+XaGKeDAyLczXAEHRr6dEQo4MPLt3KeAAyPfzkgFHBj5dkYp4MDIt3O/Ag6MfDsPKODAyLczWgEHRr6dMQo4MPLtPKiAAyPfzlgFHBj5dh7SsJ6XwGGcAg6MfDvjFXBg5NuZoIADI9/ORAUcGPl2JingwMi387CAA3KKIFdMXfe/kTMB+QKwVh7rxLFGGuuDsTYW60KxJhLrAbEWDuvAsAYK63+w9gXrPrDmAfP9Mdcd87wxxxnzezG3FfM6MacR8/kwlw3zuDCHCfN3MHcF8zYwZwHv6/GuGu9p8Y4S7+fwbgrvZfBOAs/j8Swaz2HxDBLP3/DsCc9d8MwB99u418R9Fu4xEF8jtkRchZgC11NcS6Cj0BCMH/QdcEvfpHlw0Jek+XaQp0NqJzq3Rzwbk4XjoYLH/kjIn1+xf4n4Oo2TD2WygQ1s0nw7j/i3YyvfzgmXpXzQF+F77Hnx6juF179OOis7LzyF0L8eVcCBkW9nqgIOjHw7jyngwMi3M00BB0a+nccVcGDk25mugAMj384TCjgw8u3MUMCBkW/nSQUcGPl2ZirgwMi3M0sBB0a+ndkKODDy7TylgAMj384cBRwY+XaeVsCBkW9nrgIOjHw7zyjgwMi386wCDox8O88p4MDItzNPAQdGvp3nFXBg5Nt5QQEHRr6dFxVwYOTbma+AAyPfzksKODDy7SxQwIGRb+dlBRwY+XYWKuDAyLfzigIOjHw7ixRwYOTbeVUBB0a+ndcUcGDk23ldAQdGvp03FHBg5NtZrIADI9/OEgUcGPl23lTAgZFv5y0FHBj5dt5WwIGRb2epAg6MfDvLFHBg5Nt5RwEHRr6ddxVwYOTbWa6AAyPfznsKODDy7byvgAMj384HCjgw8u18qIADI9/ORwo4MPLtrFDAgZFv52MFHBj5dj7RsD6LwOFTBRwY+XZWKuDAyLezSgEHRr6dzxRwYOTb+VwBB0a+ndUKODDy7azRsJ6XwGGtAg6MfDtfKODAyLezTgEHRr6dLxVwYOTbWa+AAyPfzgYBByTouDB0Mt8OciYgXwDWymOdONZIY30w1sZiXSjWRGI9INbCYR0Y1kBh/Q/WvmDdB9Y8YL4/5rpjnjfmOGN+L+a2Yl4n5jRiPh/msmEeF+YwYf4O5q5g3gbmLOB9Pd5V4z0t3lHi/RzeTeG9DN5J4Hk8nkXjOSyeQeL5G5494bkLnjngfhv3mrjPwj0G4mvEloirEFPgeoprCXQUGoLxg74DbumbNA9OvxzyfDvI0yG1E53bI56NjcLxcKHH/kjIn1+xf4n4Oo2TD2WjgQ1s0nw7X/m3YyvfTjL+kPJBX4TvsefFq+8mXv866azsvPAmQv/6WgEHRr6dzQo4MPLtfKOAAyPfzrcKODDy7XyngAMj384WBRwY+Xa+V8CBkW9nqwIOjHw7PyjgwMi3s00BB0a+nR8VcGDk29mugAMj385PCjgw8u3sUMCBkW9npwIOjHw7PyvgwMi384sCDox8O7sUcGDk2/lVAQdGvp3dCjgw8u38poADI9/OHgUcGPl29irgwMi3s08BB0a+nd8VcGDk29mvgAMj384fCjgw8u0cUMCBkW/nTwUcGPl2DirgwMi3c0gBB0a+ncMKODDy7RxRwIGRb+eoAg6MfDt/KeDAyLdzTAEHRr6dvxVwYOTbOa6AAyPfTij3/30OjHw7YQUcGPl2sijgwMi3k6SAAyPfTrICDox8OykKODDy7aQq4MDIt5OmgAMj305WBRwY+XayKeDAyLeTXQEHRr6dHAo4MPLt5FTAgZFvJ5cCDox8O2co4MDIt5NbAQdGvp08Cjgw8u3kVcCBkW8nnwIOjHw7+RVwYOTbKaCAAyPfTkEFHBj5dgop4MDIt1NYAQdGvp0iCjgw8u0UVcCBkW/nTAEH5BSpGDqZbwc5E5AvAGvlsU4ca6SxPhhrY7EuFGsisR4Qa+GwDgxroLD+B2tfsO4Dax4w3x9z3THPG3OcMb8Xc1sxrxNzGjGfD3PZMI8Lc5gwfwdzVzBvA3MW8L4e76rxnhbvKPF+Du+m8F4G7yTwPB7PovEcFs8g8fwNz57w3AXPHHC/jXtN3GfhHgPxNWJLxFWIKXA9xbUEOgoNwfhB3wG39E2aB6d8SJ5vB3k6pHaic3vEs3GWcDxU9NgfCfnzK/YvEV+ncfKhSDhEb9J8O2f7t2Mr304K/pDyQV+E77HnxatvMV7/Oums7Lxwsdz2bZyjgAMj305xBRwY+XYiCjgw8u2UUMCBkW/nXAUcGPl2SirgwMi3c54CDox8O6UUcGDk2zlfAQdGvp3SCjgw8u2UUcCBkW+nrAIOjHw75RRwYOTbKa+AAyPfzgUKODDy7VRQwIGRb+dCBRwY+XYqKuDAyLdTSQEHRr6dygo4MPLtXKSAAyPfThUFHBj5di5WwIGRb6eqAg6MfDvVFHBg5NuproADI9/OJQo4MPLt1FDAgZFv51IFHBj5dmoq4MDIt1NLAQdGvp3aCjgw8u1cpoADI99OHQUcGPl26irgwMi3U08BB0a+ncsVcGDk26mvgAMj384VCjgw8u00UMCBkW/nSgUcGPl2GirgwMi300gBB0a+ncYKODDy7VylgAMj304TBRwY+XauVsCBkW+nqQIOjHw7zRRwYOTbaa6AAyPfTgsFHBj5dloq4MDIt3ONAg6MfDutFHBg5Nu5VgEHRr6d1go4MPLtXKeAAyPfThsFHBj5dtpqWM9L4NBOAQdGvp3rFXBg5Ntpr4ADI9/ODQo4MPLtdFDAgZFvp6OAA3KKVAqdzLdzImeCU7BWHuvEsUYa64OxNhbrQrEmEusBsRYO68CwBgrrf7D2Bes+sOYB8/0x1x3zvDHHGfN7MbcV8zoxpxHz+TCXDfO4MIcJ83cwdwXzNjBnAe/r8a4a72nxjhLv5/BuCu9l8E4Cz+PxLBrPYfEMEs/f8OwJz13wzAH327jXxH0W7jEQXyO2RFyFmALXU1xLoKPQEIwf9B1wS9+keXCQs+SYMN8O8nRI7UTn9ohno5NwPFTy2B8J+fMr9i8RX6dx8qF0MrCBTZpv50b/dmzl20nFH1I+6IvwPfa8ePXtzOtfJ52VnRfuTOhfNwltSMd8cVwz/F83wiWcY8/NLm/PLgrak5E3qKsCDoy8Qd0UcGDkDbpZAQdG3qDuCjgw8gbdooADI29QDwUcGHmDblXAgZE3qKcCDoy8Qbcp4MDIG9RLAQdG3qDbFXBg5A3qrYADI29QHwUcGHmD+irgwMgb1E8BB0beoP4KODDyBt2hgAMjb9CdCjgw8gYNUMCBkTfoLgUcGHmDBirgwMgbNEgBB0beoLsVcGDkDbpHw/soAofBCjgw8gbdq4ADI2/QEAUcGHmDhirgwMgbNEwBB0beoOEKODDyBo1QwIGRN+g+BRwYeYNGKuDAyBs0SgEHRt6g+xVwYOQNekABB0beoNEKODDyBo1RwIGRN+hBBRwYeYPGKuDAyBv0kAIOjLxB4xRwYOQNGq+AAyNv0AQFHBh5gyYq4MDIGzRJAQdG3qCHFXBg5A2arIADI2/QIwo4MPIGTVHAgZE36FEFHBh5g6Yq4MDIG/SYAg6MvEHTFHBg5A16XAEHRt6g6Qo4MPIGPaGAAyNv0AwN63kJHJ5UwIGRN2imAg6MvEGzFHBg5A2arYADI2/QUwo4MPIGzRFwQG6UyqGTeYOQMwH5ArBWHuvEsUYa64OxNhbrQrEmEusBsRYO68CwBgrrf7D2Bes+sOYB8/0x1x3zvDHHGfN7MbcV8zoxpxHz+TCXDfO4MIcJ83cwdwXzNjBnAe/r8a4a72nxjhLv5/BuCu9l8E4Cz+PxLBrPYfEMEs/f8OwJz13wzAH327jXxH0W7jEQXyO2RFyFmALXU1xLoKPQEIwf9B1wS99ic3v4yQMkyB9yIlcL8nTE2ol3XrSNeD49nVs2Hip77I+E/PkV+5eIr9M4eV2eNrCBTZo3aK5/O7byBqXhDykf9EX4HntevPo+w+tfJ52VnRd+htC/nlXAgZFv5zkFHBj5duYp4MDIt/O8Ag6MfDsvKODAyLfzogIOjHw78xVwYOTbeUkBB0a+nQUKODDy7bysgAMj385CBRwY+XZeUcCBkW9nkQIOjHw7ryrgwMi385oCDox8O68r4MDIt/OGAg6MfDuLFXBg5NtZooADI9/Omwo4MPLtvKWAAyPfztsKODDy7SxVwIGRb2eZAg6MfDvvKODAyLfzrgIOjHw7yxVwYOTbeU8BB0a+nfcVcGDk2/lAAQdGvp0PFXBg5Nv5SAEHRr6dFQo4MPLtfKyAAyPfzicKODDy7XyqgAMj385KBRwY+XZWKeDAyLfzmQIOjHw7nyvgwMi3s1oBB0a+nTUKODDy7axVwIGRb+cLBRwY+XbWKeDAyLfzpQIOjHw76xVwYOTb2aCAAyPfzkYFHBj5dr5SwIGRb2eTAg6MfDtfK+DAyLezWQEHRr6dbxRwYOTb+VYBB0a+ne8UcGDk29migAMj3873Cjgw8u1s1bCel8DhBwUcGPl2tingwMi386MCDox8O9sVcGDk2/lJAQdGvp0dAg7IKXJR6GS+HeRMQL4ArJXHOnGskcb6YKyNxbpQrInEekCshcM6MKyBwvofrH3Bug+secB8f8x1xzxvzHHG/F7MbcW8TsxpxHw+zGXDPC7MYcL8HcxdwbwNzFnA+3q8q8Z7WryjxPs5vJvCexm8k8DzeDyLxnNYPIPE8zc8e8JzFzxzwP027jVxn4V7DMTXiC0RVyGmwPUU1xLoKDQE4wd9B9zSN2keHOQs+SvXyeP95OdBng6pnejcHvFs7BSOh4s89kdC/vyK/UvE12mcfCg7DWxgk+bb+dm/nbAg305YkG8n/O8fIVnfhe+x58Wr7y8Crvi3k9xfr/NM8lv5PXZXbhm/9E3a/r8G3/7/nBDK6He8w9O1y0Tz0o+Nx2a3YV+JPk/qX3HnWlvS//U2XMI9XjoOfhPqi0k9zhPW4zyDeuzhXS9OOis7j5I3aq8CDoy8UfsUcGDkjfpdAQdG3qj9Cjgw8kb9oYADI2/UAQUcGHmj/lTAgZE36qACDoy8UYcUcGDkjTqsgAMjb9QRBRwYeaOOKuDAyBv1lwIOjLxRxxRwYOSN+lsBB0beqOMKODDyRoXy/N/nwMgbFVbAgZE3KosCDoy8UUkKODDyRiUr4MDIG5WigAMjb1SqAg6MvFFpCjgw8kZlVcCBkTcqmwIOjLxR2RVwYOSNyqGAAyNvVE4FHBh5o3Ip4MDIG3WGAg6MvFG5FXBg5I3Ko4ADI29UXgUcGHmj8ingwMgblV8BB0beqAIKODDyRhVUwIGRN6qQAg6MvFGFFXBg5I0qooADI29UUQUcGHmjzlTAgZE36iwFHBh5o85WwIGRN6qYAg6MvFHnKODAyBtVXAEHRt6oiAIOjLxRJRRwYOSNOlcBB0beqJIKODDyRp2ngAMjb1QpBRwYeaPOV8CBkTeqtAIOjLxRZRRwYOSNKquAAyNvVDkFHBh5o8or4MDIG3WBAg6MvFEVFHBg5I26UAEHRt6oinlkNqT/PvKF/GKQZ+Z7y/lPkB/m19zyHDSV/PMK264Dcn4cyfXfnDXxziue3X99Kwvq+5GgvslOOSN0ss4Z/iH3NxLyZ7eK/2Mz2LsoTyYM4mTxeXn8gzf1q0qekzsiIf+bycDebTCwt1keFF1y/5P8SerXj0K/0jdpwqiLBQNKwCr8YyYThsX1O/RP34oVzHi2LhbYqGr5YgT2VfPI615N4Bf+7fREVl7nSS84VQWaUT2PrA+kb9I+fEnwffjEZpK8TJC460SQ8JuBltTIY78ee4T12GNQj0stj0f4VSmPfEzUtBiEmbSFJEhCnSsbaFAtQVsguMrh/v7HgRi78fyVBFeZsVM5xLFzSSb7dNxrRegfPZX2oyTBsdVCclbh2L9EfJ0WCle1DKxq6J+LnBSY5MJYWzh4kBQ4i5dRoY9+B+3x48e/99ofCcW3gT+ifb3MvQGokyeUMRq5zFWd6H11PByU3k7W8tcQDzsNEb5M0Gh1hPDEHS/PSVjR5/nZTNJ5Xp9LdmtfziCdZ9089uvRXliP8gb1qEeoxw3CelxgUI/LCfXoIKxHBYN61CfUo6OwHhca1OMKyxEt6tEpl9yvBgS/bjTw60qCX50N/GpI8OsmA78aEfzqYuBXY4JfXQ38uorgVzcDv5oQ/LrZwK+rCX51N/CrKcGvWwz8akbwq4eBX80Jft1q4FcLgl89DfxqSfDrNgO/riH41cvAr1YEv2438Otagl+9DfxqTfCrj4Ff1xH86mvgVxuCX/0M/GpL8Ku/gV/tCH7dYeDX9QS/7jTwqz3BrwEGft1A8OsuA786EPwaaOBXR4Jfgwz86kTw624Dv24k+HWPgV+dCX4NNvDrJoJf9xr41YXg1xADv7oS/Bpq4Fc3gl/DDPy6meDXcAO/uhP8GmHg1y0Ev+4z8KsHwa+RBn7dSvBrlIFfPQl+3W/g120Evx4w8KsXwa/RBn7dTvBrjIFfvQl+PWjgVx+CX2MN/OpL8OshA7/6EfwaZ+BXf4Jf4w38uoPg1wQDv+4k+DXRwK8BBL8mGfh1F8Gvhw38Gkjwa7KBX4MIfj1i4NfdBL+mGPh1D8GvRw38Gkzwa6qBX/cS/HrMwK8hBL+mGfg1lODX4wZ+DSP4Nd3Ar+EEv54w8GsEwa8ZBn7dR/DrSQO/RhL8mmng1yiCX7MM/Lqf4NdsA78eIPj1lIFfowl+zTHwawzBr6cN/HqQ4NdcA7/GEvx6xsCvhwh+PWvg1ziCX88Z+DWe4Nc8A78mEPx63sCviQS/XjDwaxLBrxcN/HqY4Nd8A78mE/x6ycCvRwh+LTDwawrBr5cN/HqU4NdCA7+mEvx6xcCvxwh+LTLwaxrBr1cN/Hqc4NdrBn5NJ/j1uoFfTxD8esPArxkEvxYb+PUkwa8lBn7NJPj1poFfswh+vWXg12yCX28b+PUUwa+lBn7NIfi1zMCvpwl+vWPg11yCX+8a+PUMwa/lBn49S/DrPQO/niP49b6BX/MIfn1g4NfzBL8+NPDrBYJfHxn49SLBrxUGfs0n+PWxgV8vEfz6xMCvBQS/PjXw62WCXysN/FpI8GuVgV+vEPz6zMCvRQS/Pjfw61WCX6sN/HqN4NcaA79eJ/i11sCvNwh+fWHg12KCX+sM/FpC8OtLA7/eJPi13sCvtwh+bTDw622CXxsN/FpK8OsrA7+WEfzaZODXOwS/vjbw612CX5sN/FpO8OsbA7/eI/j1rYFf7xP8+s7Arw8Ifm0x8OtDgl/fG/j1EcGvrQZ+rSD49YOBXx8T/Npm4NcnBL9+NPDrU4Jf2w38Wknw6ycDv1YR/Nph4NdnBL92Gvj1OcGvnw38Wk3w6xcDv9YQ/Npl4Ndagl+/Gvj1BcGv3QZ+rSP49ZuBX18S/Npj4Nd6gl97DfzaQPBrn4FfGwl+/W7g11cEv/Yb+LWJ4NcfBn59TfDrgIFfmwl+/Wng1zcEvw4a+PUtwa9DBn59R/DrsIFfWwR+4XsI+ArKLPe/kWMf+emR2x150ZFTHPm7kSsbeamRAxr5lpHbGHmEkbMX+XGRixZ5X5FjFflMkTsUeTqvzfNP/knkekReReQwRL5A5OZDHjzknEN+N+RSQ94y5AhDPi7kvkKeKeR0Qv4k5CpCXiDk4EG+G+SWQR4X5ExBfhLkAkHeDeS4QD4J5G5AngTkJMD6f6y1x7p2rCHHem2sjcY6ZKz5xfparGXFulGs0cR6SKw9xDo/rKnD+jWsFcO6LKyBwnojrO3BOhqsWcH6EKzFwLoHrDHAfH7Mncc8dcwJx/xrzHXGvGLM4cV8WcxNxTxQzLnE/EbMJcS8PcyRw3w0zP3CPCvMacL8IczVwbwYzEHBfA/MrcA8BswZwPt5vAvHe2e848X7VLy7xHtCvJPD+y+8a8J7HbxDwfsKvBvAc3g888bzZTzLxXNTPKPE80A8e8NzLjxTwvMbPCvBcwk8A8D9Nu5tcR+JezbcH+FeBHE/YmzEs4gdEachJkL8gWs9rqu4huF6AW2GDkJzML4xltBvDcdKCr53gW91SMfK93n8j5Us7liJ3SIh2SbVAYmPpja2Cm1Iv4EAf6I/VBOvXdI/nCNtzx/yyLQPX/Cb5f73/7Tvf9r3f0H7TL6iKBi/Jz4uhXEiHcPRNuL5tC2PTFcv9tgfCfnzK/YvEV+ncXR1m9CG6XXP5gfGfuS15UkHZeeFfyS05XYFHOak2bfxkwIOfZLt29ihgEP17PZt7FTAYRShP/ysgMNQAodfFHCoSRgXuxRwqE3g8KsCDnUIHHYr4FCPwOE3BRzqEzjsUcChAYHDXgUcGhI47FPAoTGBw+8KODQhcNivgENTAoc/FHBoTuBwQAGHlgQOfyrg0IrA4aACDq0JHA4p4NCGwOGwAg7tCByOKODQnsDhqAIOHQgc/lLAoROBwzEFHDoTOPytgEMXAofjCjh0I3AI5f2/z6E7gUNYAYceBA5ZFHDoSeCQpIBDLwKHZAUcehM4pCjg0JfAIVUBh/4EDmkKOBQnvO/OqoDDAEJ/yKaAw0ACh+wKONxN4JBDAYfBBA45FXAYQuCQSwGHYQQOZyjgMILAIbcCDiMJHPIo4HA/gUNeBRxWJdm3kU8BhzGE/pBfAYexBA4FFHAYR+BQUAGHCQQOhRRwmETgUFgBh8kEDkUUcJhC4FBUAYepBA5nKuAwjcDhLAUcphM4nK2AwwwCh2IKOMwkcDhHAYfZBA7FFXCYQ+AQUcBhLoFDCQUcniVwOFcBh3kEDiUVcHiBwOE8BRzmEziUUsBhAYHD+Qo4LCRwKK2AwyIChzIKOLxG4FBWAYc3CBzKKeCwhMChvAIObxE4XKCAw1IChwoKOLxD4HChAg7LCRwqKuDwPoFDJQUcPiRwqKyAwwoCh4sUcPiEwKGKAg4rCRwuVsDhMwKHqgo4rCZwqKaAw1oCh+oKOKwjcLhEAYf1BA41FHDYSOBwqQIOmwgcairgsJnAoZYCDt8SONRWwGELgcNlCjhsJXCoo4DDNgKHugo4bCdwqKeAww4Ch8sVcPiZwKG+Ag67CByuUMBhN4FDAwUc9hA4XKmAwz4Ch4YKOOwncGikgMMBAofGCjgcJHC4SgGHwwQOTRRwOErgcLUCDscIHJoq4HCcwKGZAg7hHPZtNFfAIYnAoYUCDikEDi0VcEgjcLhGAYdsBA6tFHDIQeBwrQIOuQgcWivgkJvA4ToFHPISOLRRwCE/gUNbBRwKEji0U8ChMIHD9Qo4FCVwaK+Aw1kEDjco4FCMwKGDhnzFBA4dFXAoQeDQSQGHkgQONyrgUIrAobMCDqUJHG5SwKEsgUMXBRzKEzh0VcChAoFDNwUcKhI43KyAQ2UCh+4KOFQhcLhFAYeqBA49FHCoTuBwqwIONQgceirgUJPA4TYFHGoTOPRSwKEOgcPtCjjUI3DorYBDfQKHPgo4NCBw6KuAQ0MCh34KODQmcOivgEMTAoc7FHBoSuBwpwIOzQkcBijg0JLA4S4FHFoROAxUwKE1gcMgBRzaEDjcrYBDOwKHexRwaE/gMFgBhw4EDvcq4NCJwGGIAg6dCRyGKuDQhcBhmAIO3Qgchivg0J3AYYQCDj0IHO5TwKEngcNIBRx6ETiMEnBIckpVp8xy//unPKHQDqfsdMrPTvnFKbuc8qtTdjvlN6fsccpep+xzyu9O2e+UP5xywCl/OuWgUw455bBTjjjlqFP+csoxp/ztlONOCTk+hp2SxSlJTkl2SopTUp2S5pSsTsnmlOxOwffp8W12fJcc3+TG96jxLWZ8hxjf4MX3Z/HtVXx3FN/cxPcm8a1FfGcQ39jD9+XwbTV8Vwzf1DrxPSmn4DtC+IYOvh+Db6fguyH4Zga+F4FvJeA7AciRj/zwyI2OvODIiY180MiFjDzAyIGL/K/IfYq8n8h5iXyPyHWIPH/IcYf8bshthrxeyGmFfE7IZYQ8Pshhg/wtyF2CvB3IWYF8DchVgHX6WKOO9dlYm4x1uViTivWYWIuIdXhYg4b1V1h7hHU3WHOC9RZYa4B59phjjvnVmFuMebWYU4r5lJhLiHl0mEOG+VOYO4R5M5gzgvkSmCuA9+R4R4z3o3g3iPdieCeE9yF4F4Dn4HgGjOefePaH51545oPnHbjXx30u7vFwf4PYHnEtYjrEM7iW4zoGDYd+Yeyi36ZvWYR9vgr6cZ6Tx1fq2qzf1sqzyi5u0eD14cPbdihTZWejQUv6TKq/9cDkve6x2/PI7WwX2Lg/r0yPqnrsj4T8+RX7l4iv00LhH/PY1yMJB4N/PwVtWUvellkk/eUBXlv+u0k5P5DXvo3RmWzLeJxxParm/kafF89MkuDYagJ/xiho9zlp9m08qIBDn2T7NsYq4FCdkBvjIQUcRhH6wzgFHIYSOIxXwKEmYVxMUMChNoHDRAUc6hA4TFLAoR6Bw8MKONQncJisgEMDAodHFHBoSOAwRQGHxgQOjyrg0ITAYaoCDk0JHB5TwKE5gcM0BRxaEjg8roBDKwKH6Qo4tCZweEIBhzYEDjMUcGhH4PCkAg7tCRxmKuDQgcBhlgIOnQgcZivg0JnA4SkFHLoQOMxRwKEbgcPTCjh0J3CYq4BDDwKHZxRw6Eng8KwCDr0IHJ5TwKE3gcM8BRz6Ejg8r4BDfwKHFxRwKE543/2iAg4DCP1hvgIOAwkcXlLA4W4ChwUKOAwmcHhZAYchBA4LFXAYRuDwigIOIwgcFingMJLA4VUFHO4ncHhNAYdVSfZtvK6AwxhCf3hDAYexBA6LFXAYR+CwRAGHCQQObyrgMInA4S0FHCYTOLytgMMUAoelCjhMJXBYpoDDNAKHdxRwmE7g8K4CDjMIHJYr4DCTwOE9BRxmEzi8r2E9L4HDBwo4zCVw+FABh2cJHD5SwGEegcMKBRxeIHD4WAGH+QQOnyjgsIDA4VMFHBYSOKxUwGERgcMqBRxeI3D4TAGHNwgcPlfAYQmBw2oFHN4icFijgMNSAoe1Cji8Q+DwhQIOywkc1ing8D6Bw5cKOHxI4LBeAYcVBA4bFHD4hMBhowIOKwkcvlLA4TMCh00KOKwmcPhaAYe1BA6bFXBYR+DwjQIO6wkcvlXAYSOBw3cKOGwicNiigMNmAofvFXD4lsBhqwIOWwgcflDAYSuBwzYFHLYROPyogMN2AoftCjjsIHD4SQGHnwkcdijgsIvAYacCDrsJHH5WwGEPgcMvCjjsI3DYpYDDfgKHXxVwOEDgsFsBh4MEDr8p4HCYwGGPAg5HCRz2KuBwjMBhnwIOxwkcflfAIUz4Nul+BRySCBz+UMAhhcDhgAIOaQQOfyrgkI3A4aACDjkIHA4p4JCLwOGwAg65CRyOKOCQl8DhqAIO+Qkc/lLAoSCBwzEFHAoTOPytgENRAofjCjicReAQyvd/n0MxAoewAg7FCRyyKOBQgsAhSQGHkgQOyQo4lCJwSFHAoTSBQ6oCDmUJHNIUcChP4JBVAYcKBA7ZFHCoSOCQXQGHygQOORRwqELgkFMBh6oEDrkUcKhO4HCGAg41CBxyK+BQk8AhjwIOtQkc8irgUIfAIZ8CDvUIHPIr4FCfwKGAAg4NCBwKKuDQkMChkAIOjQkcCivg0ITAoYgCDk0JHIoq4NCcwOFMBRxaEjicpYBDKwKHsxVwaE3gUEwBhzYEDuco4NCOwKG4Ag7tCRwiCjh0IHAooYBDJwKHcxVw6EzgUFIBhy4EDucp4NCNwKGUAg7dCRzOV8ChB4FDaQUcehI4lFHAoReBQ1kBhySnVHPKLPe/H8wbCo11ykNOGeeU8U6Z4JSJTpnklIedMtkpjzhlilMedcpUpzzmlGlOedwp053yhFNmOOVJp8x0yiynzHbKU06Z45SnnTLXKc845VmnPOeUeU553ikvOOVFp8x3yktOwffp8W12fJcc3+TG96jxLWZ8hxjf4MX3Z/HtVXx3FN/cxPcm8a1FfGcQ39jD9+XwbTV8Vwzf1ML3pPAtJXxHCN/Qwfdj8O0UfDcE38zA9yLwrQR8JwA58pEfHrnRkRccObGRDxq5kJEHGDlwkf8VuU+R9xM5L5HvEbkOkecPOe6Q3w25zZDXCzmtkM8JuYyQxwc5bJC/BblLkLcDOSuQrwG5CrBOH2vUsT4ba5OxLhdrUrEeE2sRsQ4Pa9Cw/gprj7DuBmtOsN4Caw0wzx5zzDG/GnOLMa8Wc0oxnxJzCTGPDnPIMH8Kc4cwbwZzRjBfAnMF8J4c74jxfhTvBvFeDO+E8D4E7wLwHBzPgPH8E8/+8NwLz3zwvAP3+rjPxT3eifsbpyCuRUyHeAbXclzHoOHQL4xd9Nv0LUtMn6/UtVm/rZVnlV3cosHrw4e37VCmys5Gg5b0mVR/64HJe53/XzVPKDTa/zzyMI4fk/e/duKdF20jnk/lhHpUzWN/JOTPr9i/RHydFgo/kNe+Hkk4GPz7KWjLWnnEbZmE89KPjdeW5Xlt+e8m5Vw+n30bFyjgMCfNvo0KCjj0SbZv40IFHKoTckVUVMBhFKE/VFLAYSiBQ2UFHGoSxsVFCjjUJnCoooBDHQKHixVwqEfgUFUBh/oEDtUUcGhA4FBdAYeGBA6XKODQmMChhgIOTQgcLlXAoSmBQ00FHJoTONRSwKElgUNtBRxaEThcpoBDawKHOgo4tCFwqKuAQzsCh3oKOLQncLhcAYcOBA71FXDoROBwhQIOnQkcGijg0IXA4UoFHLoRODRUwKE7gUMjBRx6EDg0VsChJ4HDVQo49CJwaKKAQ28Ch6sVcOhL4NBUAYf+BA7NFHAoTnjf3VwBhwGE/tBCAYeBBA4tFXC4m8DhGgUcBhM4tFLAYQiBw7UKOAwjcGitgMMIAofrFHAYSeDQRgGH+wkc2irgsCrJvo12CjiMIfSH6xVwGEvg0F4Bh3EEDjco4DCBwKGDAg6TCBw6KuAwmcChkwIOUwgcblTAYSqBQ2cFHKYRONykgMN0AocuCjjMIHDoqoDDTAKHbgo4zCZwuFnDel4Ch+4KOMwlcLhFAYdnCRx6KOAwj8DhVgUcXiBw6KmAw3wCh9sUcFhA4NBLAYeFBA63K+CwiMChtwIOrxE49FHA4Q0Ch74KOCwhcOingMNbBA79FXBYSuBwhwIO7xA43KmAw3IChwEKOLxP4HCXAg4fEjgMVMBhBYHDIAUcPiFwuFsBh5UEDvco4PAZgcNgBRxWEzjcq4DDWgKHIQo4rCNwGKqAw3oCh2EKOGwkcBiugMMmAocRCjhsJnC4TwGHbwkcRirgsIXAYZQCDlsJHO5XwGEbgcMDCjhsJ3AYrYDDDgKHMQo4/Ezg8KACDrsIHMYq4LCbwOEhBRz2EDiMU8BhH4HDeAUc9hM4TFDA4QCBw0QFHA4SOExSwOEwgcPDCjgcJXCYrIDDMQKHRxRwOE7gMEUBhzDhW52PKuCQROAwVQGHFAKHxxRwSCNwmKaAQzYCh8cVcMhB4DBdAYdcBA5PKOCQm8BhhgIOeQkcnlTAIT+Bw0wFHAoSOMxSwKEwgcNsBRyKEjg8pYDDWQQOcxRwKEbg8LSGfMUEDnMVcChB4PCMAg4lCRyeVcChFIHDcwo4lCZwmKeAQ1kCh+cVcChP4PCCAg4VCBxeVMChIoHDfAUcKhM4vKSAQxUChwUKOFQlcHhZAYfqBA4LFXCoQeDwigIONQkcFingUJvA4VUFHOoQOLymgEM9AofXFXCoT+DwhgIODQgcFivg0JDAYYkCDo0JHN5UwKEJgcNbCjg0JXB4WwGH5gQOSxVwaEngsEwBh1YEDu8o4NCawOFdBRzaEDgsV8ChHYHDewo4tCdweF8Bhw4EDh8o4NCJwOFDBRw6Ezh8pIBDFwKHFQo4dCNw+FgBh+4EDp8o4NCDwOFTBRx6EjisVMChF4HDKgGHJKdUd8os978rOOde6JSKTqnklMpOucgpVZxysVOqOqWaU6o75RKn1HDKpU6p6ZRaTqntlMucUscpdZ1SzymXO6W+U65wSgOnXOmUhk5p5JTGTrnKKU2ccrVTmjqlmVOaO6WFU1o6Bd+nx7fZ8V1yfJMb36PGt5jxHWJ8gxffn8W3V/HdUXxzE9+bxLcW8Z1BfGMP35fDt9XwXTF8Uwvfk8K3lPAdIXxDB9+PwbdT8N0QfDMD34vAtxLwnQDkyEd+eORGR15w5MRGPmjkQkYeYOTARf5X5D5F3k/kvES+R+Q6RJ4/5LhDfjfkNkNeL+S0Qj4n5DJCHh/ksEH+FuQuQd4O5KxAvgbkKsA6faxRx/psrE3GulysScV6TKxFxDo8rEHD+iusPcK6G6w5wXoLrDXAPHvMMcf8aswtxrxazCnFfErMJcQ8Oswhw/wpzB3CvBnMGcF8CcwVwHtyvCPG+1G8G8R7MbwTwvsQvAvAc3A8A8bzTzz7w3MvPPPB8w7c6+M+F/d4uL9BbI+4FjEd4hlcy3Edg4ZDvzB20W/TtyzCPl/Z+aNqnpPHV+rarN/WyrPKLm7R4PXhw9t2KFNlZ6NBS/pMqr/1wOS97rEX5JPbwTl+bXyWT6ZH1T32R0L+/Ir9S8TXaaFw+Xz29egzoQ3hv5+CtqyVR9yWyZL+8jmvLf/dpJw/J7TlagUc5qTZt7FGAYc+yfZtrFXAoTohV8QXCjiMIvSHdQo4DCVw+FIBh5qEcbFeAYfaBA4bFHCoQ+CwUQGHegQOXyngUJ/AYZMCDg0IHL5WwKEhgcNmBRwaEzh8o4BDEwKHbxVwaErg8J0CDs0JHLYo4NCSwOF7BRxaEThsVcChNYHDDwo4tCFw2KaAQzsChx8VcGhP4LBdAYcOBA4/KeDQicBhhwIOnQkcdirg0IXA4WcFHLoROPyigEN3AoddCjj0IHD4VQGHngQOuxVw6EXg8JsCDr0JHPYo4NCXwGGvAg79CRz2KeBQnPC++3cFHAYQ+sN+BRwGEjj8oYDD3QQOBxRwGEzg8KcCDkMIHA4q4DCMwOGQAg4jCBwOK+AwksDhiAIO9xM4HFXAYVWSfRt/KeAwhtAfjingMJbA4W8FHMYROBxXwGECgUMo//99DpMIHMIKOEwmcMiigMMUAockBRymEjgkK+AwjcAhRQGH6QQOqQo4zCBwSFPAYSaBQ1YFHGYTOGRTwGEOgUN2BRzmEjjkUMDhWQKHnAo4zCNwyKWAwwsEDmco4DCfwCG3Ag4LCBzyKOCwkMAhrwIOiwgc8ing8BqBQ34FHN4gcCiggMMSAoeCCji8ReBQSAGHpQQOhRVweIfAoYgCDssJHIoq4PA+gcOZCjh8SOBwlgIOKwgczlbA4RMCh2IKOKwkcDhHAYfPCByKK+CwmsAhooDDWgKHEgo4rCNwOFcBh/UEDiUVcNhI4HCeAg6bCBxKKeCwmcDhfAUcviVwKK2AwxYChzIKOGwlcCirgMM2AodyCjhsJ3Aor4DDDgKHCxRw+JnAoYICDrsIHC5UwGE3gUNFBRz2EDhUUsBhH4FDZQUc9hM4XKSAwwEChyoKOBwkcLhYAYfDBA5VFXA4SuBQTQGHYwQO1RVwOE7gcIkCDmHCtzprKOCQROBwqQIOKQQONRVwSCNwqKWAQzYCh9oKOOQgcLhMAYdcBA51FHDITeBQVwGHvAQO9RRwyE/gcLkCDgUJHOor4FCYwOEKBRyKEjg0UMDhLAKHKxVwKEbg0FABh+IEDo0UcChB4NBYAYeSBA5XKeBQisChiQIOpQkcrlbAoSyBQ1MFHMoTODRTwKECgUNzBRwqEji0UMChMoFDSwUcqhA4XKOAQ1UCh1YKOFQncLhWAYcaBA6tFXCoSeBwnQIOtQkc2ijgUIfAoa0CDvUIHNop4FCfwOF6BRwaEDi0V8ChIYHDDQo4NCZw6KCAQxMCh44KODQlcOikgENzAocbFXBoSeDQWQGHVgQONyng0JrAoYsCDm0IHLoq4NCOwKGbAg7tCRxuVsChA4FDdwUcOhE43KKAQ2cChx4KOHQhcLhVAYduBA49FXDoTuBwmwIOPQgceing0JPA4XYFHHoROPQWcEhyyiVOmeX+95p8odBap3zhlHVO+dIp652ywSkbnfKVUzY55WunbHbKN0751infOWWLU753ylan/OCUbU750SnbnfKTU3Y4ZadTfnbKL07Z5ZRfnbLbKb85ZY9T9jpln1N+d8p+p/zhFHyfHt9mx3fJ8U1ufI8a32LGd4jxDV58fxbfXsV3R/HNTXxvEt9axHcG8Y09fF8O31bDd8XwTS18TwrfUsJ3hPANHXw/Bt9OwXdD8M0MfC8C30rAdwKQIx/54ZEbHXnBkRMb+aCRCxl5gJEDF/lfkfv0RN5PpyDfI3IdIs8fctwhvxtymyGvF3JaIZ8Tchkhjw9y2CB/C3KXIG8HclYgXwNyFWCdPtaoY3021iZjXS7WpGI9JtYiYh0e1qBh/RXWHmHdDdacYL0F1hpgnj3mmGN+NeYWY14t5pRiPiXmEmIeHeaQYf4U5g5h3gzmjGC+BOYK4D053hHj/SjeDeK9GN4J4X0I3gXgOTieAeP5J5794bkXnvngeQfu9XGfi3s83N8gtkdci5gO8Qyu5biOQcOhXxi76LfpWxZhn6+ax2GT5+Txlbo267e18qyyi1s0eH348LYdylTZ2WjQkj6T6m89MHmv8/9x/Op8cjur8/m30UeoR5d47I+E/PkV+5eIr9NC4c/z2dcjCQeTfx9tWSuPWZ9JPzZeW/YV1AH+J7m/6edlsn0z/NuC88Jz0uzb6Mfr5yeNys4L90m2b6O/Ag7VCXkT7lDAYRShP9ypgMNQAocBCjjUJIyLuxRwqE3gMFABhzoEDoMUcKhH4HC3Ag71CRzuUcChAYHDYAUcGhI43KuAQ2MChyEKODQhcBiqgENTAodhCjg0J3AYroBDSwKHEQo4tCJwuE8Bh9YEDiMVcGhD4DBKAYd2BA73K+DQnsDhAQUcOhA4jFbAoROBwxgFHDoTODyogEMXAoexCjh0I3B4SAGH7gQO4xRw6EHgMF4Bh54EDhMUcOhF4DBRAYfeBA6TFHDoS+DwsAIO/QkcJivgUJzwvvsRBRwGEPrDFAUcBhI4PKqAw90EDlMVcBhM4PCYAg5DCBymKeAwjMDhcQUcRhA4TFfAYSSBwxMKONxP4DBDAYdVSfZtPKmAwxhCf5ipgMNYAodZCjiMI3CYrYDDBAKHpxRwmETgMEcBh8kEDk8r4DCFwGGuAg5TCRyeUcBhGoHDswo4TCdweE4BhxkEDvMUcJhJ4PC8Ag6zCRxeUMBhDoHDiwo4zCVwmK+Aw7MEDi8p4DCPwGGBAg4vEDi8rIDDfAKHhQo4LCBweEUBh4UEDosUcFhE4PCqAg6vETi8poDDGwQOryvgsITA4Q0FHN4icFisgMNSAoclCji8Q+DwpgIOywkc3lLA4X0Ch7cVcPiQwGGpAg4rCByWKeDwCYHDOwo4rCRweFcBh88IHJYr4LCawOE9BRzWEji8r4DDOgKHDxRwWE/g8KECDhsJHD5SwGETgcMKBRw2Ezh8rIDDtwQOnyjgsIXA4VMFHLYSOKxUwGEbgcMqBRy2Ezh8poDDDgKHzxVw+JnAYbUCDrsIHNYo4LCbwGGtAg57CBy+UMBhH4HDOgUc9hM4fKmAwwECh/UKOBwkcNiggMNhAoeNCjgcJXD4SgGHYwQOmxRwOE7g8LUCDmHCdys3K+CQRODwjQIOKQQO3yrgkEbg8J0CDtkIHLYo4JCDwOF7BRxyEThsVcAhN4HDDwo45CVw2KaAQ34Chx8VcChI4LBdAYfCBA4/KeBQlMBhhwIOZxE47FTAoRiBw88a8hUTOPyigEMJAoddCjiUJHD4VQGHUgQOuxVwKE3g8JsCDmUJHPYo4FCewGGvAg4VCBz2KeBQkcDhdwUcKhM47FfAoQqBwx8KOFQlcDiggEN1Aoc/FXCoQeBwUAGHmgQOhxRwqE3gcFgBhzoEDkcUcKhH4HBUAYf6BA5/KeDQgMDhmAIODQkc/lbAoTGBw3EFHJoQOIQK/N/n0JTAIayAQ3MChywKOLQkcEhSwKEVgUOyAg6tCRxSFHBoQ+CQqoBDOwKHNAUc2hM4ZFXAoQOBQzYFHDoROGRXwKEzgUMOBRy6EDjkVMChG4FDLgUcuhM4nKGAQw8Ch9wKOPQkcMijgEMvAoe8BWQ2sgj//ap5QqFaefwfX909PrYelbo267e18qyyi1s0eH348LYdylTZ2WjQkj6T6m89MHmv8//zCesh5XSx80cVx68koV8XC46tksf/sfn91zf87x8hQbu5NkKy80LJTsnplBSvf1ToQ5WQvP+b2LkoxLFTOWR/rFUTjrVL8pzcEQnJNymDMXllupu+FXD7YsECJ22KjQsGzYl/O8n9LeCeh86dO8Yxk0aqKWykmsJGOn78+CGv/ZFQfHv4I7p+hVzwhQuEMkIp5LZE9L7CUYDFiuNWVKr8yefZVf7qhn6lCP1K35L923nYsRMuVMC/T4UFVw0B17DfuqZ3TClLDNxCBlcjbNIBejRXKLQ3t+DqekYotCu3vE5FCtivxz5BPcKG9ShKqMfvgnpkMazHmYR67BfUI8mwHmcR6vGHoB7JhvU4m1CPA4J6pBjWoxihHn8K6pFqWI9zCPU4KKhHmmE9ilu+U0Q9Dhn4FSH4ddjArxIEv44Y+HUuwa+jBn6VJPj1l4Ff5xH8OmbgVymCX38b+HU+wa/jBn6VJvgVMrjfKUPwK2zgV1mCX1kM/CpH8CvJwK/yBL+SDfy6gOBXioFfFQh+pRr4dSHBrzQDvyoS/Mpq4Fclgl/ZDPyqTPAru4FfFxH8ymHgVxWCXzkN/LqY4FcuA7+qEvw6w8CvagS/chv4VZ3gVx4Dvy4h+JXXwK8aBL/yGfh1KcGv/AZ+1ST4VcDAr1oEvwoa+FWb4FchA78uI/hV2MCvOgS/ihj4VZfgV1EDv+oR/DrTwK/LCX6dZeBXfYJfZxv4dQXBr2IGfjUg+HWOgV9XEvwqbuBXQ4JfEQO/GhH8KmHgV2OCX+ca+HUVwa+SBn41Ifh1noFfVxP8KmXgV1OCX+cb+NWM4FdpA7+aE/wqY+BXC4JfZQ38aknwq5yBX9cQ/Cpv4Fcrgl8XGPh1LcGvCgZ+tSb4daGBX9cR/Kpo4FcbgV+YF1rDKXXd/8acN8wXw1wrzFPCHB/Mj8HckhPzMgr8M98A7/bxHh3vrPF+GO9i8d4T7xjxPg/vzvCeCu+E8P4F7zrwXgHP8PG8HM+m8RwYz1zxfBPPEvHcDs/I8DwKz37wnAXPNPD8APfquC/GPSju93BvhfsY3DMgPkcsjLgTMR7iKcQuiBNwTcb1D9ca6Do0FHoFbcA4RJ9H/0JbtingzUfCvq1/9lkF8zezplieQ4v5m/Bd2tfa+a/viflGNTz2R0KyTVo3iY+mNq4XjrlLQ/8bc7FjTjofDW0UvWDAzxxltJPUzvUCG+2F4+FSj/2RkD+/Yv8S8XUaZzy0N7CBTaq3NwSvt+F//wjJ9PYGA73twOtfJ52VnRfuQOhfHRVwmJNm30YnBRz6JNu3caMCDtUJXzntrIDDKEJ/uEkBh6EEDl0UcKhJGBddFXCoTeDQTQGHOgQONyvgUI/AobsCDvUJHG5RwKEBgUMPBRwaEjjcqoBDYwKHngo4NCFwuE0Bh6YEDr0UcGhO4HC7Ag4tCRx6K+DQisChjwIOrQkc+irg0IbAoZ8CDu0IHPor4NCewOEODc/tCRzuVMChE4HDAAUcOhM43KWAQxcCh4EKOHQjcBikgEN3Aoe7FXDoQeBwjwIOPQkcBivg0IvA4V4FHHoTOAxRwKEvgcNQBRz6EzgMU8ChOOF993AFHAYQ+sMIBRwGEjjcp4DD3QQOIxVwGEzgMEoBhyEEDvcr4DCMwOEBBRxGEDiMVsBhJIHDGAUc7idweFABh1VJ9m2MVcBhDKE/PKSAw1gCh3EKOIwjcBivgMMEAocJCjhMInCYqIDDZAKHSQo4TCFweFgBh6kEDpMVcJhG4PCIAg7TCRymKOAwg8DhUQUcZhI4TFXAYTaBw2Ma1vMSOExTwGEugcPjCjg8S+AwXQGHeQQOTyjg8AKBwwwFHOYTODwp4ICcIjVDJ/PtIGcC8gVgrTzWiWONNNYHY20s1oViTSTWA2ItHNaBYQ0U1v9g7QvWfWDNA+b7Y6475nljjjPm92JuK+Z1Yk4j5vNhLhvmcWEOE+bvYO4K5m1gzgLe1+NdNd7T4h0l3s/h3RTey+CdBJ7H41k0nsPiGSSev+HZE5674JkD7rdxr4n7LNxjIL5GbIm4CjEFrqe4lkBHoSEYP+g74Ja+SfPg4GvP0nw7yNMhtdNRYGOmcDzU9NgfCfnzK/YvEV+ncfKhzDSwgU2ab2eWfzu28u2c6E5SPuiL8D32vHj1nc3rXyedlZ0Xnk3oX08p4MDItzNHAQdGvp2nFXBg5NuZq4ADI9/OMwo4MPLtPKuAAyPfznMKODDy7cxTwIGRb+d5BRwY+XZeUMCBkW/nRQUcGPl25ivgwMi385ICDox8OwsUcGDk23lZAQdGvp2FCjgw8u28ooADI9/OIgUcGPl2XlXAgZFv5zUFHBj5dl5XwIGRb+cNBRwY+XYWK+DAyLezRAEHRr6dNxVwYOTbeUsBB0a+nbcVcGDk21mqgAMj384yBRwY+XbeUcCBkW/nXQUcGPl2livgwMi3854CDox8O+8r4MDIt/OBAg6MfDsfKuDAyLfzkQIOjHw7KxRwYOTb+VgBB0a+nU8UcGDk2/lUAQdGvp2VCjgw8u2sUsCBkW/nMwUcGPl2PlfAgZFvZ7UCDox8O2sUcGDk21mrgAMj384XCjgw8u2sU8CBkW/nSwUcGPl21ivgwMi3s0EBB0a+nY0KODDy7XylgAMj384mBRwY+Xa+VsCBkW9ns4b1vAQO32hYz0vg8K0CDox8O98p4MDIt7NFAQdGvp3vFXBg5NvZqoADI9/ODwIOyClSK3Qy3w5yJiBfANbKY5041khjfTDWxmJdKNZEYj0g1sJhHRjWQGH9D9a+YN0H1jxgvj/mumOeN+Y4Y34v5rZiXifmNGI+H+ayYR4X5jBh/g7mrmDeBuYs4H093lXjPS3eUeL9HN5N4b0M3kngeTyeReM5LJ5B4vkbnj3huQueOeB+G/eauM/CPQbia8SWiKsQU+B6imsJdBQagvGDvgNu6Zs0D85FIXm+HeTpkNp5SmBjm3A81PLYHwn58yv2LxFfp3HyoWwzsIFNmm/nR/92bOXbOeGylA/6InyPPS9efbfz+tdJZ2XnhbcT+tdPCjgw8u3sUMCBkW9npwIOjHw7PyvgwMi384sCDox8O7sUcGDk2/lVAQdGvp3dCjgw8u38poADI9/OHgUcGPl29irgwMi3s08BB0a+nd8VcGDk29mvgAMj384fCjgw8u0cUMCBkW/nTwUcGPl2DirgwMi3c0gBB0a+ncMKODDy7RxRwIGRb+eoAg6MfDt/KeDAyLdzTAEHRr6dvxVwYOTbOa6AAyPfTqjg/30OjHw7YQUcGPl2sijgwMi3k6SAAyPfTrICDox8OykKODDy7aQq4MDIt5OmgAMj305WBRwY+XayKeDAyLeTXQEHRr6dHAo4MPLt5FTAgZFvJ5cCDox8O2co4MDIt5NbAQdGvp08Cjgw8u3kVcCBkW8nnwIOjHw7+RVwYOTbKaCAAyPfTkEFHBj5dgop4MDIt1NYAQdGvp0iCjgw8u0UVcCBkW/nTAUcGPl2zlLAgZFv52wFHBj5doop4MDIt3OOAg6MfDvFFXBg5NuJKODAyLdTQgEHRr6dcxVwYOTbKamAAyPfznkKODDy7ZRSwIGRb+d8AQck6KgdOplvBzkTkC8Aa+WxThxrpLE+GGtjsS4UayKxHhBr4bAODGugsP4Ha1+w7gNrHjDfH3PdMc8bc5wxvxdzWzGvE3MaMZ8Pc9kwjwtzmDB/B3NXMG8Dcxbwvh7vqvGeFu8o8X4O76bwXgbvJPA8Hs+i8RwWzyDx/A3PnvDcBc8ccL+Ne03cZ+EeA/E1YkvEVSdiCqfgWgIdhYZg/KDvgFv6Js2DMyavPN/OTwb5dn4S2CgtHA+1PfZHQv78iv1LxNdpnHwoEg7RmzTfThn/dmzl20nGH1I+6IvwPfa8ePUty+tfJ52VnRcuW9C+jXIKODDy7ZRXwIGRb+cCBRwY+XYqKODAyLdzoQIOjHw7FRVwYOTbqaSAAyPfTmUFHBj5di5SwIGRb6eKAg6MfDsXK+DAyLdTVQEHRr6dago4MPLtVFfAgZFv5xIFHBj5dmoo4MDIt3OpAg6MfDs1FXBg5NuppYADI99ObQUcGPl2LlPAgZFvp44CDox8O3UVcGDk26mngAMj387lCjgw8u3UV8CBkW/nCgUcGPl2GijgwMi3c6UCDox8Ow0VcGDk22mkgAMj305jBRwY+XauUsCBkW+niQIOjHw7VyvgwMi301QBB0a+nWYKODDy7TRXwIGRb6eFAg6MfDstFXBg5Nu5RgEHRr6dVgo4MPLtXKuAAyPfTmsFHBj5dq5TwIGRb6eNAg6MfDttFXBg5Ntpp4ADI9/O9Qo4MPLttFfAgZFv5wYFHBj5djoo4MDIt9NRAQdGvp1OCjgw8u3cqIADI99OZwUcGPl2blLAgZFvp4sCDox8O101rOclcOimgAMj387NCjgw8u10V8CBkW/nFgUcGPl2eijgwMi3c6sw385loZP5dpAzAfkCsFYe68SxRhrrg7E2FutCsSYS6wGxFg7rwLAGCut/sPYF6z6w5gHz/THXHfO8MccZ83sxtxXzOjGnEfP5MJcN87gwhwnzdzB3BfM2MGcB7+vxrhrvafGOEu/n8G4K72XwTgLP4/EsGs9h8QwSz9/w7AnPXfDMAffbuNfEfRbuMRBfI7ZEXIWYAtdTXEugo9AQjB/0HXBL36R5cCqH5Pl2kKdDaic6t0c8Gz2F4+Eyj/2RkD+/Yv8S8XUaJx9KTwMb2KT5dm7zb8dWvp0U/CHlg74I32PPi1ffXrz+ddJZ2XnhXoT+dbsCDox8O70VcGDk2+mjgAMj305fBRwY+Xb6KeDAyLfTXwEHRr6dOxRwYOTbuVMBB0a+nQEKODDy7dylgAMj385ABRwY+XYGKeDAyLdztwIOjHw79yjgwMi3M1gBB0a+nXsVcGDk2xmigAMj385QBRwY+XaGKeDAyLczXAEHRr6dEQo4MPLt3KeAAyPfzkgFHBj5dkYp4MDIt3O/Ag6MfDsPKODAyLczWgEHRr6dMQo4MPLtPKiAAyPfzlgFHBj5dh7S8N6fwGGcAg6MfDvjFXBg5NuZoIADI9/ORAUcGPl2JingwMi387ACDox8O5MVcGDk23lEAQdGvp0pCjgw8u08qoADI9/OVAUcGPl2HlPAgZFvZ5oCDox8O48r4MDItzNdAQdGvp0nFHBg5NuZoYADI9/Okwo4MPLtzFTAgZFvZ5YCDox8O7MVcGDk23lKAQdGvp05Cjgw8u08rYADI9/OXAUcGPl2nlHAgZFv51kFHBj5dp7TsJ6XwGGeAg6MfDvPK+DAyLfzggIOjHw7LyrgwMi3M18BB0a+nZcEHJBTpE7oZL4d5ExAvgCslcc6cayRxvpgrI3FulCsicR6QKyFwzowrIHC+h+sfcG6D6x5wHx/zHXHPG/Mccb8XsxtxbxOzGnEfD7MZcM8LsxhwvwdzF3BvA3MWcD7eryrxntavKPE+zm8m8J7GbyTwPN4PIvGc1g8g8TzNzx7wnMXPHPA/TbuNXGfhXsMxNeILRFXIabA9RTXEugoNATjB30H3NI3aR4c5CwpKMy3gzwdUjvRuT3i2VggHA91PPZHQv78iv1LxNdpnHwoCwxsYJPm23nZvx1b+XZS8YeUD/oifI89L159F/L610lnZeeFFxL61ytCG9IxXzVPKFQtj//jqzvHXpJH3p6LFLQnI2/Qqwo4MPIGvaaAAyNv0OsKODDyBr2hgAMjb9BiBRwYeYOWKODAyBv0pgIOjLxBbyngwMgb9LYCDoy8QUsVcGDkDVqmgAMjb9A7Cjgw8ga9q4ADI2/QcgUcGHmD3lPAgZE36H0FHBh5gz5QwIGRN+hDBRwYeYM+UsCBkTdohQIOjLxBHyvgwMgb9IkCDoy8QZ8q4MDIG7RSAQdG3qBVCjgw8gZ9poADI2/Q5wo4MPIGrVbAgZE3aI0CDoy8QWsVcGDkDfpCAQdG3qB1Cjgw8gZ9qYADI2/QegUcGHmDNijgwMgbtFEBB0beoK8UcGDkDdqkgAMjb9DXCjgw8gZtVsCBkTfoGwUcGHmDvlXAgZE36DsFHBh5g7Yo4MDIG/S9Ag6MvEFbFXBg5A36QQEHRt6gbQo4MPIG/aiAAyNv0HYFHBh5g35SwIGRN2iHAg6MvEE7FXBg5A36WQEHRt6gXxRwYOQN2qWAAyNv0K8KODDyBu3WsJ6XwOE3BRwYeYP2KODAyBu0VwEHRt6gfQo4MPIG/a6AAyNv0H4BB+RGqesWbMiZgHwBWCuPdeJYI431wVgbi3WhWBOJ9YBYC4d1YFgDhfU/WPuCdR9Y84D5/pjrjnnemOOM+b2Y24p5nZjTiPl8mMuGeVyYw4T5O5i7gnkbmLOA9/V4V433tHhHifdzeDeF9zJ4J4Hn8XgWjeeweAaJ52949oTnLnjmgPtt3GviPgv3GIivEVsirkJMgespriXQUWgIxg/6Drilb7G5PfzkARLkDzmRqwV5OmLtxDsv2kY8n/4oKBsPdT32R0L+/Ir9S8TXaZy8Ln8Y2MAmzRt0wL8dW3mD0vCHlA/6InyPPS9eff/k9a+TzsrOC/9J6F8HFXBg5Ns5pIADI9/OYQUcGPl2jijgwMi3c1QBB0a+nb8UcGDk2zmmgAMj387fCjgw8u0cV8CBkW8nVOj/PgdGvp2wAg6MfDtZFHBg5NtJUsCBkW8nWQEHRr6dFAUcGPl2UhVwYOTbSVPAgZFvJ6sCDox8O9kUcGDk28mugAMj304OBRwY+XZyKuDAyLeTSwEHRr6dMxRwYOTbya2AAyPfTh4FHBj5dvIq4MDIt5NPAQdGvp38Cjgw8u0UUMCBkW+noAIOjHw7hRRwYOTbKayAAyPfThEFHBj5dooq4MDIt3OmAg6MfDtnKeDAyLdztgIOjHw7xRRwYOTbOUcBB0a+neIKODDy7UQUcGDk2ymhgAMj3865Cjgw8u2UVMCBkW/nPAUcGPl2SingwMi3c74CDox8O6UVcGDk2ymjgAMj305ZBRwY+XbKKeDAyLdTXgEHRr6dCxRwYOTbqaCAAyPfzoUKODDy7VRUwIGRb6eSAg6MfDuVFXBg5Nu5SAEHRr6dKgo4MPLtXKyAAyPfTlUFHBj5dqop4MDIt1NdwAE5ReqFTrJAzgTkC8BaeawTxxpprA/G2lisC8WaSKwHxFo4rAPDGiis/8HaF6z7wJoHzPfHXHfM88YcZ8zvxdxWzOvEnEbM58NcNszjwhwmzN/B3BXM28CcBbyvx7tqvKfFO0q8n8O7qRPvZZyC5/F4Fo3nsHgGiedvePaE5y545oD7bdxr4j4L9xiIrxFbIq5CTIHrKa4l0FFoCMYP+g64pW9ZhMyRs6RAgZPH+8nPc9Ag385BQb6dS4TjoZ7H/kjIn1+xf4n4Oo2TD0XCIXqT5tup4d9OWJBvJyzItxP+94+QrO/C99jz4tX3UgFX/NtJ7q/XeVmEtvMLxlrNQjJ+6Zu0/WsF3/7/nBDK6He8w9O1y0Tz0o+Nx6a2YV+JPk/qX9U8Tr/OI7huusdLx8FlQn0xqcelwnpcalCPOrzrxUlnZedR8kbVVcCBkTeqngIOjLxRlyvgwMgbVV8BB0beqCsUcGDkjWqggAMjb9SVCjgw8kY1VMCBkTeqkQIOjLxRjRVwYOSNukoBB0beqCYKODDyRl2tgAMjb1RTBRwYeaOaKeDAyBvVXAEHRt6oFgo4MPJGtVTAgZE36hoFHBh5o1op4MDIG3WtAg6MvFGtFXBg5I26TgEHRt6oNgo4MPJGtVXAgZE3qp0CDoy8Udcr4MDIG9VeAQdG3qgbFHBg5I3qoIADI29URwUcGHmjOingwMgbdaMCDoy8UZ0VcGDkjbpJAQdG3qguCjgw8kZ1VcCBkTeqmwIOjLxRNyvgwMgb1V0BB0beqFsUcGDkjeqhgAMjb9StCjgw8kb1VMCBkTfqNgUcGHmjeingwMgbdbsCDoy8Ub0VcGDkjeqjgAMjb1RfBRwYeaP6KeDAyBvVXwEHRt6oOxRwYOSNulMBB0beqAEKODDyRt2lgAMjb9RABRwYeaMGaVjPS+BwtwIOjLxR9yjgwMgbNVgBB0beqHsVcGDkjRqigAMjb9RQYR4L6b+PfCGXGuSZucBy/hPkh0HuFmkOmmGCfC/SOsT6Eu/fR46Qvvn9H48cIfkKyNtiuKCPJDvljNBJGxkciLEbz98a/o/NYG9EoUwYHFFIft59hfzDNPXrvkInd0RC/jeTAVvbYMBWsjxgFxX8J6mT1K/KQr/SN2kiqJECYRCwClfOZCKwuAm9Qv/0Lan4XCqwMcryRQbsRxn0jfsNE1Tdn4BkZqMEmvEAKZnZ6OD78InNJCmZICHXiYv/ZQb9ZUwh+/WoI6xHHYN6PGh5PMKvYQbB1dj/Q8EV2mK4sC2GG7TFQ8LgKof7+x8HYuzG81cSXGXGTvUQx87oTPbpuIkeQ//oqbQfJQmOrRWSswrH/iXi67RQeJRlYDVD/1zkpMAkF8ZxwsGTO3TSn9PVLZ6Pfgft8ePHv/faHwnFt4E/on0d794ATCgUyhiNjHdVJ3rfBA8HY6OBeA485K8hHnYaIjxe0GgThPCkHQ8daLzh3ZLJLXg/4S14XYM0nRMJ6Ub7C+tRz6Aekwj1uENYj8sN6vEwoR53CutR36Aekwn1GCCsxxUG9XiEUI+7hPVoYFCPKYR6DBTW40qDejxKqMcgYT0aGtRjKqEedwvr0cigHo8R6nGPsB6NDeoxjVCPwcJ6XGVQj8cJ9bhXWI8mBvWYTqjHEGE9rjaoxxOEegwV1qOpQT1mEOoxTFiPZgb1eJJQj+HCejQ3qMdMQj1GCOvRwqAeswj1uE9Yj5YG9ZhNqMdIYT2uMajHU4R6jBLWo5VBPeYQ6nG/sB7XGtTjaUI9HhDWo7VBPeYS6jFaWI/rDOrxDKEeY4T1aGNQj2cJ9XhQWI+2BvV4jlCPscJ6tDOoxzxCPR4S1uN6g3o8T6jHOGE92hvU4wVCPcYL63GDQT1eJNRjgrAeHQzqMZ9Qj4nCenQ0qMdLhHpMEtajk0E9FhDq8bCwHjca1ONlQj0mC+vR2aAeCwn1eERYj5sM6vEKoR5ThPXoYlCPRYR6PCqsR1eDerxKqMdUYT26GdTjNUI9HhPW42aDerxOqMc0YT26G9TjDUI9HhfW4xaDeiwm1GO6sB49DOqxhFCPJ4T1uNWgHm8S6jFDWI+eBvV4i1CPJ4X1uM2gHm8T6jFTWI9eBvVYSqjHLGE9bjeoxzJCPWYL69HboB7vEOrxlLAefQzq8S6hHnOE9ehrUI/lhHo8LaxHP4N6vEeox//H3pnA21S9b3wf9xqu6RoyT9uUOSRJkoSQTElIkpBkHjPPY0hSSSokaZJGpbkkCakkSZIkJCFJs/966m52u33vPWtZ5+m8/5/9+by5nX3WetfzPWvvs8/eaz1rqaaOQQY6VhN0PKypY7CBjrcJOpZp6hhioGMNQccjmjqGGuh4h6DjUU0dtxjoWEvQ8ZimjmEGOt4l6HhcU8dwAx3rCDqe0NQxwkDHewQdyzV1jDTQsZ6g40lNHaMMdGwg6FihqWO0gY6NBB1PaeoYY6DjfYKOpzV1jDXQsYmg4xlNHeMMdHxA0PGspo7xBjo+JOh4TlPHBAMdHxF0PK+pY6KBjs0EHSs1dUwy0PExQccLmjomG+jYQtDxoqaOKQY6PiHoWKWpY6qBjq0EHS9p6phmoONTgo6XNXVMN9CxjaDjFU0dtxro+Iyg41VNHTMMdGwn6HhNU8dMAx2fE3S8rqljloGOHQQdb2jquM1AxxcEHW9q6phtoGMnQcdbmjpuN9DxJUHHak0dcwx07CLoeFtTxx0GOr4i6FijqWOugY7dBB3vaOq400DH1wQdazV13GWgYw9Bx7uaOu420PENQcc6TR3zDHTsJeh4T1PHPQY69hF0rNfUMd9Ax36Cjg2aOu410PEtQcdGTR0LDHQcIOh4X1PHfQY6viPo2KSp434DHQcJOj7Q1PGAgY7vCTo+1NSx0EDHIYKOjzR1LDLQcZigY7OmjsUGOo4QdHysqeNBAx0/EHRs0dSxxEDHUYKOTzR1PGSg40eCjq2aOpYa6DhG0PGppo6HDXT8RNCxTVPHMgMdxwk6PtPU8YiBjp8JOrZr6njUQMcvBB2fa+p4zEDHrwQdOzR1PG6g4zeCji80dTxhoON3go6dmjqWG+j4g6DjS00dTxro+JOgY5emjhUGOk4QdHylqeMpAx1Ogdjr2K2p42kDHRGCjq81dTxjoCMDQcceTR3PGuhIIOj4RlPHcwY6Egk69mrqeN5AR0aCjn2aOlYa6MhE0LFfU8cLBjoyE3R8q6njRQMdWQg6DmjqWGWgI4mg4ztNHS8Z6MhK0HFQU8fLBjqyEXR8r6njFQMd2Qk6DmnqeNVARw6CjsOaOl4z0JGToOOIpo7XDXQkE3T8oKnjDQMduQg6jmrqeNNAR26Cjh81dbxloCMPQccxTR2rDXTkJej4SVPH2wY6ziLoOK6pY42BjnwEHT9r6njHQEd+go5fNHWsNdBRgKDjV00d7xroKEjQ8ZumjnUGOgoRdPyuqeM9Ax2FCTr+0NSx3kBHEYKOPzV1bDDQUZSg44Smjo0GOooRdDhn6el430BHcYKOiKaOTQY6ShB0ZNDU8YGBDpegI0FTx4cGOkoSdCRq6vjIQEcpgo6Mmjo2G+goTdCRSVPHxwY6yhB0ZNbUscVAR1mCjiyaOj4x0HE2QUeSpo6tBjrKEXRk1dTxqYGO8gQd2TR1bDPQUYGgI7umjs8MdFQk6MihqWO7gY5KBB05NXV8bqCjMkFHsqaOHQY6qhB05NLU8YWBjnMIOnJr6thpoKOqhg6sD3+pikUp/481x7FeN9a6xjrRWGMZ6xNjbV+si4s1ZbEeK9YyxTqgWEMT609i7Uase4g1A7HeHtaqwzpvWCMN64thbS6sa4U1obCeEtYiwjo+WAMH68dg7RWsW4I1P7BeBtaawDoNWOMA6wPAWx++9PB0hx86vMThww0Pa/g/wzsZvsPw7IXfLbxi4bMKj1L4e8IbE76S8GSEnyG8AOGjBw86+LfB+wy+YfDcgl8VvJ7gkwSPIfjzwNsGvjDwVIEfCbw84IMBDwn4L8C7APP+MWce880xVxvznDFHGPNrMTcV8zoxJxLzCTEXD/PYMAcM86cw9wjzdjDnBfNFMNcC8xQwxh/j4zG2HOOyMaYZ44ExlhbjUDGGE+MfMXYQ4+4wZg3jvTBWCuOMMEYH41swNgTjKjAmAc/z8Swcz5HxDBbPL/HsD8/N8MwJz2vwrAPPCXCPHfencW8X90VxTxH343AvC/eBcA8F9x/w2/2v370F/v69hd8quM7HNTKuL3FthusaXBPg+xTfRTiP4xyI8weOPfTbk50/0OfT2TJOVtpn5tc/VqppHCsZUo6V4OY6epumtohOG01zVI/xuQ/tmZU/+s+ljorJBp/nuZrnvgbOmXPfmXNffJ37Mmj2eRwnGsdvBO/HcaJ7DPtzpNemGgX0zqsNQl53nejaFfzDjaoY57xaQzOH6fee7mc5WeNcfB7vszzVQL1ykfMIn2VNARyWZI59jvMFcOifGPsctQRwqJU19jkuEMBhMqE/1BbAYSyBw4UCONQhHBd1BHCoS+BwkQAO9Qgc6grgUJ/A4WIBHBoQONQTwKERgcMlAjg0JnCoL4BDUwKHSwVwaEbg0EAAh+YEDg0FcGhJ4NBIAIfWBA6XCeDQhsChsQAObQkcmgjg0I7AoakADh0IHC4XwKEjgUMzARw6EThcIYBDZwKH5gI4dCFwaCGAQ1cCh5YCOHQncGglgEMPAofWAjj0JHC4UgCHXgQObQRw6EPgcJUADv0IHNoK4DCAwOFqARwGETi0E8ChBOF5d3sBHIYS+kMHARyGEThcI4DDCAKHjgI4jCJwuFYAhzEEDp0EcBhH4HCdAA4TCBw6C+AwicDhegEcphA4dBHAYUNC7HPcIIDDdEJ/6CqAwwwCh24COMwicOgugMNsAocbBXCYQ+DQQwCHuQQONwngcBeBQ08BHOYRONwsgMN8AodeAjgsIHDoLYDD/QQOfQRwWEjg0FcAh8UEDv0kzOclcOgvgMNSAocBAjgsI3AYKIDDowQOgwRweJzAYbAADssJHIYI4LCCwGGoAA5PEzjcIoDDswQOwwRweJ7AYbgADi8QOIwQwGEVgcNIARxeJnAYJYDDqwQOowVweJ3AYYwADm8SOIwVwGE1gcM4ARzWEDiMF8BhLYHDBAEc1hE4TBTAYT2BwyQBHDYSOEwWwGETgcMUARw+JHCYKoDDZgKHaQI4bCFwmC6Aw1YCh1sFcNhG4DBDAIftBA4zBXDYQeAwSwCHnQQOtwngsIvAYbYADrsJHG4XwGEPgcMcARz2EjjcIYDDfgKHuQI4HCBwuFMAh4MEDncJ4HCIwOFuARyOEDjME8DhKIHDPQI4HCNwmC+Aw3ECh3sFcPiFwGGBAA6/ETjcJ4DDHwQO9wvgcILA4QEBHCLZYp9joQAOCQQOiwRwyEjgsFgAh8wEDg8K4JBE4LBEAIdsBA4PCeCQg8BhqQAOyQQODwvgkJvAYZkADnkJHB4RwCEfgcOjAjgUIHB4TACHQgQOjwvgUITA4QkBHIoROCyX4FdM4PCkAA4lCRxWCOBQmsDhKQEcyhI4PC2AQzkCh2cEcKhA4PCsAA6VCByeE8ChCoHD8wI4VCVwWCmAQ3UChxcEcKhB4PCiAA41CRxWCeBQi8DhJQEcahM4vCyAQx0Ch1cEcKhL4PCqAA71CBxeE8ChPoHD6wI4NCBweEMAh0YEDm8K4NCYwOEtARyaEjisFsChGYHD2wI4NCdwWCOAQ0sCh3cEcGhN4LBWAIc2BA7vCuDQlsBhnQAO7Qgc3hPAoQOBw3oBHDoSOGwQwKETgcNGARw6Ezi8L4BDFwKHTQI4dCVw+EAAh+4EDh8K4NCDwOEjARx6EjhsFsChF4HDxwI49CFw2KLBIUFFQxWLUv7/fFW2looLVNRWcaGKOiouUlFXxcUq6qm4REV9FZeqaKCioYpGKi5T0VhFExVNVVyuopmKK1Q0V9FCRUsVrVS0VnGlijYqrlLRVsXVKtqpaK+ig4prVGB9eqzNjnXJsSY31qPGWsxYhxhr8GL9Way9inVHseYm1pvEWotYZxBr7GF9OaythnXFsKYW1pPCWkpYRwhr6GD9GKydgnVDsGYG1ovAWglYJwAe+fCHhzc6fMHhiQ0/aHghwwcYHrjwf4X3KXw/4XkJv0d4HcLnDx538HeDtxl8veBpBT8neBnBxwceNvBvgXcJfDvgWQG/BngVYJ4+5qhjfjbmJmNeLuakYj4m5iJiHh7moGH+FeYeYd4N5pxgvgXmGmCcPcaYY3w1xhZjXC3GlGI8JcYSYhwdxpBh/BTGDmHcDMaMYLwExgrgOTmeEeP5KJ4N4rkYngnheQieBeA+OO4B4/4n7v3hvhfu+eB+B37r43cufuPh9w2u7XFdi2s6XM/guxzfYziH4/yFYxf91tsyaPb52uo/k/Ofen+1bi0G7qq+qMKLrRqtHD++fafyNfY1Gb6q/5wGu47NPZzy3poF9POgTLQ5Pimgdz5qGPK660TXruAfblTFnMh5BWJ/PvpEM4dm/RnxWc7Mr/1ZZtDpL1t5n+XJTZfzVsJn+elpfpbpccb30UUp//rLpZcmQeO9F2m0Z5uAz31J5tjn+EwAh/6Jsc+xXQCHWgRvjM8FcJhM6A87BHAYS+DwhQAOdQjHxU4BHOoSOHwpgEM9AoddAjjUJ3D4SgCHBgQOuwVwaETg8LUADo0JHPYI4NCUwOEbARyaETjsFcChOYHDPgEcWhI47BfAoTWBw7cCOLQhcDgggENbAofvBHBoR+BwUACHDgQO3wvg0JHA4ZAADp0IHA4L4NCZwOGIAA5dCBx+EMChK4HDUQEcuhM4/CiAQw8Ch2MCOPQkcPhJAIdeBA7HBXDoQ+DwswAO/QgcfhHAYQCBw68COAwicPhNAIcShOfdvwvgMJTQH/4QwGEYgcOfAjiMIHA4IYDDKAIHp2D8cxhD4BARwGEcgUMGARwmEDgkCOAwicAhUQCHKQQOGQVw2JAQ+xyZBHCYTugPmQVwmEHgkEUAh1kEDkkCOMwmcMgqgMMcAodsAjjMJXDILoDDXQQOOQRwmEfgkFMAh/kEDskCOCwgcMglgMP9BA65BXBYSOCQRwCHxQQOeQVwWELgcJYADksJHPIJ4LCMwCG/AA6PEjgUEMDhcQKHggI4LCdwKCSAwwoCh8ICODxN4FBEAIdnCRyKCuDwPIFDMQEcXiBwKC6AwyoChxICOLxM4OAK4PAqgUNJARxeJ3AoJYDDmwQOpQVwWE3gUEYAhzUEDmUFcFhL4HC2AA7rCBzKCeCwnsChvAAOGwkcKgjgsInAoaIADh8SOFQSwGEzgUNlARy2EDhUEcBhK4HDOQI4bCNwqCqAw3YCh2oCOOwgcKgugMNOAodzBXDYReBQQwCH3QQO5wngsIfAoaYADnsJHM4XwGE/gUMtARwOEDhcIIDDQQKH2gI4HCJwuFAAhyMEDnUEcDhK4HCRAA7HCBzqCuBwnMDhYgEcfiFwqCeAw28EDpcI4PAHgUN9ARxOEDhcKoBDhLA2aQMBHBIIHBoK4JCRwKGRAA6ZCRwuE8AhicChsQAO2QgcmgjgkIPAoakADskEDpcL4JCbwKGZAA55CRyuEMAhH4FDcwEcChA4tBDAoRCBQ0sBHIoQOLQSwKEYgUNrARxKEDhcKYBDSQKHNgI4lCZwuEoAh7IEDm0FcChH4HC1AA4VCBzaCeBQicChvQAOVQgcOgjgUJXA4RoBHKoTOHQUwKEGgcO1AjjUJHDoJIBDLQKH6wRwqE3g0FkAhzoEDtcL4FCXwKGLAA71CBxuEMChPoFDVwEcGhA4dBPAoRGBQ3cBHBoTONwogENTAoceAjg0I3C4SQCH5gQOPQVwaEngcLMADq0JHHoJ4NCGwKG3AA5tCRz6CODQjsChrwAOHQgc+gng0JHAob8ADp0IHAYI4NCZwGGgAA5dCBwGCeDQlcBhsAAO3Qkchgjg0IPAYagADj0JHG4RwKEXgcMwARz6EDgM1+CQoKKRikUp//9ZAcfZruJzFTtUfKFip4ovVexS8ZWK3Sq+VrFHxTcq9qrYp2K/im9VHFDxnYqDKr5XcUjFYRVHVPyg4qiKH1UcU/GTiuMqflbxi4pfVfym4ncVf6j4UwXWp8fa7FiXHGtyYz1qrMWMdYixBi/Wn8Xaq1h3FGtuYr1JrLWIdQaxxh7Wl8PaalhXDGtqYT0prKWEdYSwhg7Wj8HaKVg3BGtmYL0IrJWAdQLgkf+XP7wK+ILDExt+0PBChg8wPHDh/wrvU/h+wvMSfo/wOoTPHzzu4O8GbzP4esHTCn5O8DKCjw88bODfAu8S+HbAswJ+DfAqwDx9zFHH/GzMTca8XMxJxXxMzEXEPDzMQcP8K8w9wrwbzDnBfAvMNcA4e4wxx/hqjC3GuFqMKcV4SowlxDg6jCHD+CmMHcK4GYwZwXgJjBXAc3I8I8bzUTwbxHMxPBPC8xA8C8B9cNwDxv1P3PvDfS/c88H9DvzWx+9c/MbD7xtc2+O6Ftd0uJ7Bdzm+x3AOx/kLxy76rbdlCPT5at1aDNxVfVGFF1s1Wjl+fPtO5WvsazJ8Vf85DXYdm3tY7Z+c33E+LRD9MYL3byvw7zzplfPnSK9NIzTPR41CXned6NoV/MONqpgT2Vog9ucjHQ4G9WfEZzkzv/ZnmYBy3nvT+yxH8j7Lk5su55EFY59jlAAOSzLHPsdoARz6J8Y+xxgBHGoRvCLGCuAwmdAfxgngMJbAYbwADnUIx8UEARzqEjhMFMChHoHDJAEc6hM4TBbAoQGBwxQBHBoROEwVwKExgcM0ARyaEjhMF8ChGYHDrQI4NCdwmCGAQ0sCh5kCOLQmcJglgEMbAofbBHBoS+AwWwCHdgQOtwvg0IHAYY4ADh0JHO4QwKETgcNcARw6EzjcKYBDFwKHuwRw6ErgcLcADt0JHOYJ4NCDwOEeARx6EjjMF8ChF4HDvQI49CFwWCCAQz8Ch/sEcBhA4HC/AA6DCBweEMChBOF590IBHIYS+sMiARyGETgsFsBhBIHDgwI4jCJwWCKAwxgCh4cEcBhH4LBUAIcJBA4PC+AwicBhmQAOUwgcHhHAYUNC7HM8KoDDdEJ/eEwAhxkEDo8L4DCLwOEJARxmEzgsF8BhDoHDkwI4zCVwWCGAw10EDk8J4DCPwOFpARzmEzg8I4DDAgKHZwVwuJ/A4TkBHBYSODwvgMNiAoeVEubzEji8IIDDUgKHFwVwWEbgsEoAh0cJHF4SwOFxAoeXBXBYTuDwigAOKwgcXhXA4WkCh9cEcHiWwOF1ARyeJ3B4QwCHFwgc3hTAYRWBw1sCOLxM4LBaAIdXCRzeFsDhdQKHNQI4vEng8I4ADqsJHNYK4LCGwOFdARzWEjisE8BhHYHDewI4rCdwWC+Aw0YChw0COGwicNgogMOHBA7vC+CwmcBhkwAOWwgcPhDAYSuBw4cCOGwjcPhIAIftBA6bBXDYQeDwsQAOOwkctgjgsIvA4RMBHHYTOGwVwGEPgcOnAjjsJXDYJoDDfgKHzwRwOEDgsF0Ah4MEDp8L4HCIwGGHAA5HCBy+EMDhKIHDTgEcjhE4fCmAw3ECh10COPxC4PCVAA6/ETjsFsDhDwKHrwVwOEHgsEcAhwhhrc5vBHBIIHDYK4BDRgKHfQI4ZCZw2C+AQxKBw7cCOGQjcDgggEMOAofvBHBIJnA4KIBDbgKH7wVwyEvgcEgAh3wEDocFcChA4HBEAIdCBA4/COBQhMDhqAAOxQgcfpTgV0zgcEwAh5IEDj8J4FCawOG4AA5lCRx+FsChHIHDLwI4VCBw+FUAh0oEDr8J4FCFwOF3ARyqEjj8IYBDdQKHPwVwqEHgcEIAh5oEDk6h+OdQi8AhIoBDbQKHDAI41CFwSBDAoS6BQ6IADvUIHDIK4FCfwCGTAA4NCBwyC+DQiMAhiwAOjQkckgRwaErgkFUAh2YEDtkEcGhO4JBdAIeWBA45BHBoTeCQUwCHNgQOyQI4tCVwyCWAQzsCh9wCOHQgcMgjgENHAoe8Ajh0InA4SwCHzgQO+QRw6ELgkF8Ah64EDgUEcOhO4FBQAIceBA6FBHDoSeBQWACHXgQORQRw6EPgUFSDQ4KKy1QsSvn/0eoZ8RgVY1WMUzFexQQVE1VMUjFZxRQVU1VMUzFdxa0qZqiYqWKWittUzFZxu4o5Ku5QMVfFnSruUnG3inkq7lExX8W9KhaouE/F/SoeULFQxSIVi1VgfXqszY51ybEmN9ajxlrMWIcYa/Bi/VmsvYp1R7HmJtabxFqLWGcQa+xhfTmsrYZ1xbCmFtaTwlpKWEcIa+hg/RisnYJ1Q7BmBtaLwFoJWCcAHvnwh4c3OnzB4YkNP2h4IcMHGB648H+F9yl8P+F5Cb9HeB3C5w8ed/B3g7cZfL3gaQU/J3gZwccHHjbwb4F3CXw74FkBvwZ4FWCePuaoY3425iZjXi7mpGI+JuYiYh4e5qBh/hXmHmHeDeacYL4F5hpgnD3GmGN8NcYWY1wtxpRiPCXGEmIcHcaQYfwUxg5h3AzGjGC8BMYK4Dk5nhHj+SieDeK5GJ4J4XkIngXgPjjuAeP+J+794b4X7vngfgd+6+N3Ln7j4fcNru1xXYtrOlzP4Lsc32M4h+P8hWMX/dbbMmj2+VrqP5Pzn3p/tW4tBu6qvqjCi60arRw/vn2n8jX2NRm+qv+cBruOzT2c8t5RBfXzoEy0OYppno8uC3nddaJrV/APN6piTmRkwdifj3Q4GNSfEZ/lzPzan2WiTn8pzvssT266nIsXin2OEgI4LMkc+xyuAA79E2Ofo6QADrUIXhGlBHCYTOgPpQVwGEvgUEYAhzqE46KsAA51CRzOFsChHoFDOQEc6hM4lBfAoQGBQwUBHBoROFQUwKExgUMlARyaEjhUFsChGYFDFQEcmhM4nCOAQ0sCh6oCOLQmcKgmgEMbAofqAji0JXA4VwCHdgQONQRw6EDgcJ4ADh0JHGoK4NCJwOF8ARw6EzjUEsChC4HDBQI4dCVwqC2AQ3cChwsFcOhB4FBHAIeeBA4XCeDQi8ChrgAOfQgcLhbAoR+BQz0BHAYQOFwigMMgAof6AjiUIDzvvlQAh6GE/tBAAIdhBA4NBXAYQeDQSACHUQQOlwngMIbAobEADuMIHJoI4DCBwKGpAA6TCBwuF8BhCoFDMwEcNiTEPscVAjhMJ/SH5gI4zCBwaCGAwywCh5YCOMwmcGglgMMcAofWAjjMJXC4UgCHuwgc2gjgMI/A4SoBHOYTOLQVwGEBgcPVAjjcT+DQTgCHhQQO7QVwWEzg0EHCfF4Ch2sEcFhK4NBRAIdlBA7XCuDwKIFDJwEcHidwuE4Ah+UEDp0FcFhB4HC9AA5PEzh0EcDhWQKHGwRweJ7AoasADi8QOHQTwGEVgUN3ARxeJnC4UQCHVwkcegjg8DqBw00COLxJ4NBTAIfVBA43C+CwhsChlwAOawkcegvgsI7AoY8ADusJHPoK4LCRwKGfAA6bCBz6C+DwIYHDAAEcNhM4DBTAYQuBwyABHLYSOAwWwGEbgcMQARy2EzgMFcBhB4HDLQI47CRwGCaAwy4Ch+ECOOwmcBghgMMeAoeRAjjsJXAYJYDDfgKH0QI4HCBwGCOAw0ECh7ECOBwicBgngMMRAofxAjgcJXCYIIDDMQKHiQI4HCdwmCSAwy8EDpMFcPiNwGGKAA5/EDhMFcDhBIHDNAEcIoS1OqcL4JBA4HCrAA4ZCRxmCOCQmcBhpgAOSQQOswRwyEbgcJsADjkIHGYL4JBM4HC7AA65CRzmCOCQl8DhDgEc8hE4zBXAoQCBw50COBQicLhLAIciBA53C+BQjMBhngS/YgKHewRwKEngMF8Ah9IEDvcK4FCWwGGBAA7lCBzuE8ChAoHD/QI4VCJweEAAhyoEDgsFcKhK4LBIAIfqBA6LBXCoQeDwoAAONQkclgjgUIvA4SEBHGoTOCwVwKEOgcPDAjjUJXBYJoBDPQKHRwRwqE/g8KgADg0IHB4TwKERgcPjAjg0JnB4QgCHpgQOywVwaEbg8KQADs0JHFYI4NCSwOEpARxaEzg8LYBDGwKHZwRwaEvg8KwADu0IHJ4TwKEDgcPzAjh0JHBYKYBDJwKHFwRw6Ezg8KIADl0IHFYJ4NCVwOElARy6Ezi8LIBDDwKHVwRw6Eng8KoADr0IHF4TwKEPgcPrGhwSVDRWscjLocqWVFFKRWkVZVSUVXG2inIqyquooKKiikoqKquoouIcFVVVVFNRXcW5KmqoOE9FTRXnq6il4gIVtVVcqKKOiotU1FVxsYp6Ki5RUV/FpSoaqGioAuvTY212rEuONbmxHjXWYsY6xFiDF+vPYu1VrDuKNTex3iTWWsQ6g1hjD+vLYW01rCuGNbWwnhTWUsI6QlhDB+vHYO0UrBuCNTOwXgTWSsA6AfDIhz88vNHhCw5PbPhBwwsZPsDwwIX/K7xP4fsJz0v4PcLrED5/8LiDvxu8zeDrBU8r+DnBywg+PvCwgX8LvEvg2wHPCvg1wKsA8/QxRx3zszE3GfNyMScV8zExFxHz8DAHDfOvMPcI824w5wTzLTDXAOPsMcYc46sxthjjajGmFOMpMZYQ4+gwhgzjpzB2CONmMGYE4yUwVgDPyfGMGM9H8WwQz8XwTAjPQ/AsAPfBcQ8Y9z9x7w/3vXDPB/c78Fsfv3PxGw+/b3Btj+taXNPhegbf5fgewzkc5y8cu+i33pZBs89Pzq/Y5D/1/mrdWgzcVX1RhRdbNVo5fnz7TuVr7GsyfFX/OQ12HZt7WO3H+0sU0s+DMtHmeKOQ3vmoccjrrhNdu4J/uFEVcyLFC8X+fPSGZg7d+vFZzsxv1me896b3Wb6poQHtT0j51yt3mp/vP+rWKBdZkjn2Od7i9fNTSfXKRfonxj7HagEcahF8E94WwGEyoT+sEcBhLIHDOwI41CEcF2sFcKhL4PCuAA71CBzWCeBQn8DhPQEcGhA4rBfAoRGBwwYBHBoTOGwUwKEpgcP7Ajg0I3DYJIBDcwKHDwRwaEng8KEADq0JHD4SwKENgcNmARzaEjh8LIBDOwKHLQI4dCBw+EQAh44EDlsFcOhE4PCpAA6dCRy2CeDQhcDhMwEcuhI4bBfAoTuBw+cCOPQgcNghgENPAocvBHDoReCwUwCHPgQOXwrg0I/AYZcADgMIHL4SwGEQgcNuARxKEJ53fy2Aw1BCf9gjgMMwAodvBHAYQeCwVwCHUQQO+wRwGEPgsF8Ah3EEDt8K4DCBwOGAAA6TCBy+E8BhCoHDQQEcNiTEPsf3AjhMJ/SHQwI4zCBwOCyAwywChyMCOMwmcPhBAIc5BA5HBXCYS+DwowAOdxE4HBPAYR6Bw08COMwncDgugMMCAoefBXC4n8DhFwEcFhI4/CqAw2ICh98EcFhC4PC7AA5LCRz+EMBhGYHDnwI4PErgcEIAh8cJHJzC8c9hOYFDRACHFQQOGQRweJrAIUEAh2cJHBIFcHiewCGjAA4vEDhkEsBhFYFDZgEcXiZwyCKAw6sEDkkCOLxO4JBVAIc3CRyyCeCwmsAhuwAOawgccgjgsJbAIacADusIHJIFcFhP4JBLAIeNBA65BXDYROCQRwCHDwkc8grgsJnA4SwBHLYQOOQTwGErgUN+ARy2ETgUEMBhO4FDQQEcdhA4FBLAYSeBQ2EBHHYROBQRwGE3gUNRARz2EDgUE8BhL4FDcQEc9hM4lBDA4QCBgyuAw0ECh5ICOBwicCglgMMRAofSAjgcJXAoI4DDMQKHsgI4HCdwOFsAh18IHMoJ4PAbgUN5ARz+IHCoIIDDCQKHigI4RAjrVlYSwCGBwKGyAA4ZCRyqCOCQmcDhHAEckggcqgrgkI3AoZoADjkIHKoL4JBM4HCuAA65CRxqCOCQl8DhPAEc8hE41BTAoQCBw/kCOBQicKglgEMRAocLBHAoRuBQWwCHEgQOFwrgUJLAoY4ADqUJHC4SwKEsgUNdARzKEThcLIBDBQKHegI4VCJwuEQAhyoEDvUFcKhK4HCpAA7VCRwaCOBQg8ChoQAONQkcGgngUIvA4TIBHGoTODQWwKEOgUMTARzqEjg0FcChHoHD5QI41CdwaCaAQwMChysEcGhE4NBcAIfGBA4tBHBoSuDQUgCHZgQOrQRwaE7g0FoAh5YEDlcK4NCawKGNAA5tCByuEsChLYFDWwEc2hE4XC2AQwcCh3YCOHQkcGgvgEMnAocOAjh0JnC4RgCHLgQOHQVw6ErgcK0ADt0JHDoJ4NCDwOE6ARx6Ejh0FsChF4HD9QI49CFw6FJYL0cGzfon53ecmfmjf//UlPcHdVTr1mLgruqLKrzYqtHK8ePbdypfY1+T4av6z2mw69jcw2r/DZo6dDldqP4zUbUrQbNdF2q8d2L+6N/bNXq9kZP/caIvUyclh6NXzklUkV1FxrBKNdtQ29Hv/yZ5LnA4eWo5sT/Wpmgea9Pyn3rBdfQ3XQbbCuidd72tW0pf7F74VE79C0+NkwTqTkj5t1tKOXTu5EDDTD6kGZof0gzND+nEiRM/h73uOunnw3/8+m5MAd+jsPNPKDemfBL+13r4AOt+OB4Y3TP/1LKxPfNPNWzXNM12eVti9HnuUHkiNxaOvk09NL41NLhGotXqdUxdljhwbzT4NsKme4DmPctxLtE4QAuq99cx6B83FY69jvoaOgoZ6uhJ0HGpho7ChjpuJuhooKGjiKGOXgQdDTV0FDXU0Zugo5GGjmKGOvoQdFymoaO4oY6+BB2NNXSUMNTRj6CjiYYO11BHf4KOpho6ShrqGEDQcbmGjlKGOgYSdDTT0FHaUMcggo4rNHSUMdQxmKCjuYaOsoY6hhB0tNDQcbahjqEEHS01dJQz1HELQUcrDR3lDXUMI+horaGjgqGO4QQdV2roqGioYwRBRxsNHZUMdYwk6LhKQ0dlQx2jCDraauioYqhjNEHH1Ro6zjHUMYago52GjqqGOsYSdLTX0FHNUMc4go4OGjqqG+oYT9BxjYaOcw11TCDo6Kiho4ahjokEHddq6DjPUMckgo5OGjpqGuqYTNBxnYaO8w11TCHo6Kyho5ahjqkEHddr6LjAUMc0go4uGjpqG+qYTtBxg4aOCw113ErQ0VVDRx1DHTMIOrpp6LjIUMdMgo7uGjrqGuqYRdBxo4aOiw113EbQ0UNDRz1DHbMJOm7S0HGJoY7bCTp6auiob6hjDkHHzRo6LjXUcQdBRy8NHQ0Mdcwl6OitoaOhoY47CTr6aOhoZKjjLoKOvho6LjPUcTdBRz8NHY0Ndcwj6OivoaOJoY57CDoGaOhoaqhjPkHHQA0dlxvquJegY5CGjmaGOhYQdAzW0HGFoY77CDqGaOhobqjjfoKOoRo6WhjqeICg4xYNHS0NdSwk6BimoaOVoY5FBB3DNXS0NtSxmKBjhIaOKw11PEjQMVJDRxtDHUsIOkZp6LjKUMdDBB2jNXS0NdSxlKBjjIaOqw11PEzQMVZDRztDHcs0dGBeUhMVl6T8P+ZcYL4CxvpjnDzGmGN8NsY2Y1wwxtRiPCrGcmIcJMYQYvwdxq5h3BfGTGG8EcbqYJwLxohgfAXGJuC5Pp6J43kynsXiOSaeAeL5GZ494bkNnnngeQHuteM+Ne7x4v4o7i3ivhzuaeF+EO6l4D4EfsPj9y9+O+J3F36z4Hof18q4zsQ1Gq5vcG2A71V8J+F8jnMhziM4BtF/8dkvKxzOR4f9I9Gzz6IxfyjLtBjP4cL8IbRdt689Gr3ev46XJiGvu47epqtNp42mOR7TPOaaOmeOueAxp3s+xWfkn7AazRw5fE66eR7TyPG45vHQNOR114muXcE/3KiKcY6Hxw1yYNM93z7x359vIyf/4+idb58wON8u5/WvU43VKxdZTuhfTwrgsCRz7HOsEMChf2LsczwlgEOtrLHP8bQADpMJ/eEZARzGEjg8K4BDHcJx8ZwADnUJHJ4XwKEegcNKARzqEzi8IIBDAwKHFwVwaETgsEoAh8YEDi8J4NCUwOFlARyaETi8IoBDcwKHVwVwaEng8JoADq0JHF4XwKENgcMbAji0JXB4UwCHdgQObwng0IHAYbUADh0JHN4WwKETgcMaARw6Ezi8I4BDFwKHtQI4dCVweFcAh+4EDusEcOhB4PCeAA49CRzWC+DQi8BhgwAOfQgcNgrg0I/A4X0BHAYQOGwSwGEQgcMHAjiUIDzv/lAAh6GE/vCRAA7DCBw2C+AwgsDhYwEcRhE4bBHAYQyBwycCOIwjcNgqgMMEAodPBXCYROCwTQCHKQQOnwngsCEh9jm2C+AwndAfPhfAYQaBww4BHGYROHwhgMNsAoedAjjMIXD4UgCHuQQOuwRwuIvA4SsBHOYROOwWwGE+gcPXAjgsIHDYI4DD/QQO3wjgsJDAYa8ADosJHPZJmM9L4LBfAIelBA7fCuCwjMDhgAAOjxI4fCeAw+MEDgcl+D8QOHyvwQGeIpc7p/x24JkAvwDMlcc8ccyRxvxgzI3FvFDMicR8QMyFwzwwzIHC/B/MfcG8D8x5wHh/jHXHOG+Mccb4XoxtxbhOjGnEeD6MZcM4LoxhwvgdjF3BuA2MWcDzejyrxnNaPKPE8zk8m8JzGTyTwP143IvGfVjcg8T9N9x7wn0X3HPA72381sTvLPzGwPU1ri1xXYVrCnyf4rsE51GcQ3D8oO+Am7fp+uDUdvT9duDToZvnSY0chzSPh8tDXned6NoV/MONqhjHD+WQQQ5sun47h6PPEyu/nb+6ky4f9EW0PVguPb1HeP3rVGP1ykWOEPrXDwI4MPx2jgrgwPDb+VEAB4bfzjEBHBh+Oz8J4MDw2zkugAPDb+dnARwYfju/CODA8Nv5VQAHht/ObwI4MPx2fhfAgeG384cADgy/nT8FcGD47ZwQwIHht+MUiX8ODL+diAAODL+dDAI4MPx2EgRwYPjtJArgwPDbySiAA8NvJ5MADgy/ncwCODD8drII4MDw20kSwIHht5NVAAeG3042ARwYfjvZBXBg+O3kEMCB4beTUwAHht9OsgAODL+dXAI4MPx2cgvgwPDbySOAA8NvJ68ADgy/nbMEcGD47eQTwIHht5NfAAeG304BARwYfjsFBXBg+O0UEsCB4bdTWAAHht9OEQEcGH47RQVwYPjtFBPAgeG3U1wAB4bfTgkBHBh+O64ADgy/nZICODD8dkoJ4MDw2yktgAPDb6eMAA4Mv52yAjgw/HbOFsCB4bdTTgAHht9OeQEcGH47FQRwYPjtVBTAgeG3U0kAB4bfTmUBHBh+O1UEcGD47ZwjgAPDb6eqAA4Mv51qAjgw/HaqC+DA8Ns5V4MDPEWaOaf8duCZAL8AzJXHPHHMkcb8YMyNxbxQzInEfEDMhcM8MMyBwvwfzH3BvA/MecB4f4x1xzhvjHHG+F6MbcW4ToxpxHg+jGXDOC6MYcL4HYxdwbgNjFnA83o8q8ZzWjyjxPM5PJvCcxk8k8D9eNyLxn3Yv+5BqsC9J9x3wT0H/N7Gb038zsJvDFxf49oS11W4psD3Kb5LcB7FOQTHD/oOuHmbrg/OBY6+384PBn47P2jkqKF5PDQLed11omtX8A83qmIcPxQdDv5N12/nvOjzxMpv568m6/JBX0Tbg+XS01uT179ONVavXKRmkdjnOF8AB4bfTi0BHBh+OxcI4MDw26ktgAPDb+dCARwYfjt1BHBg+O1cJIADw2+nrgAODL+diwVwYPjt1BPAgeG3c4kADgy/nfoCODD8di4VwIHht9NAAAeG305DARwYfjuNBHBg+O1cJoADw2+nsQAODL+dJgI4MPx2mgrgwPDbuVwAB4bfTjMBHBh+O1cI4MDw22kugAPDb6eFAA4Mv52WAjgw/HZaCeDA8NtpLYADw2/nSgEcGH47bQRwYPjtXCWAA8Nvp60ADgy/nasFcGD47bQTwIHht9NeAAeG304HARwYfjvXCODA8NvpKIADw2/nWgEcGH47nQRwYPjtXCeAA8Nvp7MADgy/nesFcGD47XQRwIHht3ODAA4Mv52uAjgw/Ha6CeDA8NvpLoADw2/nRgEcGH47PQRwYPjt3CSAA8Nvp6cADgy/nZsFcGD47fQSwIHht9NbAAeG304fARwYfjt9BXBg+O30E8CB4bfTX8J8XgKHAQI4MPx2BgrgwPDbGSSAA8NvZ7AADgy/nSECODD8doZq+u1c4Zzy24FnAvwCMFce88QxRxrzgzE3FvNCMScS8wExFw7zwDAHCvN/MPcF8z4w5wHj/THWHeO8McYZ43sxthXjOjGmEeP5MJYN47gwhgnjdzB2BeM2MGYBz+vxrBrPafGMEs/n8GwKz2XwTAL343EvGvdhcQ8S999w7wn3XXDPAb+38VsTv7PwGwPX17i2xHUVrinwfYrvEpxHcQ7B8YO+A27epuuDs62Avt8OfDp08/i9PdLLcYvm8XBFyOuuE127gn+4URXj+KHcYpADm67fzrDo88TKbycR/9Hlg76ItgfLpad3OK9/nWqsXrnIcEL/GiGAA8NvZ6QADgy/nVECODD8dkYL4MDw2xkjgAPDb2esAA4Mv51xAjgw/HbGC+DA8NuZIIADw29nogAODL+dSQI4MPx2JgvgwPDbmSKAA8NvZ6oADgy/nWkCODD8dqYL4MDw27lVAAeG384MARwYfjszBXBg+O3MEsCB4bdzmwAODL+d2QI4MPx2bhfAgeG3M0cAB4bfzh0CODD8duYK4MDw27lTAAeG385dAjgw/HbuFsCB4bczTwAHht/OPQI4MPx25gvgwPDbuVcAB4bfzgIBHBh+O/cJ4MDw27lfAAeG384DAjgw/HYWCuDA8NtZJIADw29nsQAODL+dBwVwYPjtLBHAgeG385AADgy/naUCODD8dh4WwIHht7NMAAeG384jAjgw/HYeFcCB4bfzmAAODL+dxwVwYPjtPCGAA8NvZ7kADgy/nScFcGD47awQwIHht/OUAA4Mv52nBXBg+O08I4ADw2/nWQEcGH47z0mYz0vg8LwADgy/nZUCODD8dl4QwIHht/OiAA4Mv51VAjgw/HZe0uAAT5Hmzim/HXgmwC8Ac+UxTxxzpDE/GHNjMS8UcyIxHxBz4TAPDHOgMP8Hc18w7wNzHjDeH2PdMc4bY5wxvhdjWzGuE2MaMZ4PY9kwjgtjmDB+B2NXMG4DYxbwvB7PqvGcFs8o8XwOz6bwXAbPJHA/HveicR8W9yBx/w33nnDfBfcc8HsbvzXxOwu/MXB9jWtLXFfhmgLfp/guwXkU5xAcP+g74OZtuj44tRx9vx34dOjm8Xt7pJfjZc3joXnI664TXbuCf7hRFeP4obxskAObrt/OK9HniZXfTkb8R5cP+iLaHiyXnt5Xef3rVGP1ykVeJfSv1wRwYPjtvC6AA8Nv5w0BHBh+O28K4MDw23lLAAeG385qARwYfjtvC+DA8NtZI4ADw2/nHQEcGH47awVwYPjtvCuAA8NvZ50ADgy/nfcEcGD47awXwIHht7NBAAeG385GARwYfjvvC+DA8NvZJIADw2/nAwEcGH47HwrgwPDb+UgAB4bfzmYBHBh+Ox8L4MDw29kigAPDb+cTARwYfjtbBXBg+O18KoADw29nmwAODL+dzwRwYPjtbBfAgeG387kADgy/nR0CODD8dr4QwIHht7NTAAeG386XAjgw/HZ2CeDA8Nv5SgAHht/ObgEcGH47XwvgwPDb2SOAA8Nv5xsBHBh+O3sFcGD47ewTwIHht7NfAAeG3863Ajgw/HYOCODA8Nv5TgAHht/OQQEcGH473wvgwPDbOSSAA8Nv57AADgy/nSMCODD8dn4QwIHht3NUAAeG386PAjgw/HaOCeDA8Nv5SQAHht/OcQEcGH47P0uYz0vg8IsADgy/nV8FcGD47fwmgAPDb+d3ARwYfjt/CODA8Nv5U4MDPEVaOKf8duCZAL8AzJXHPHHMkcb8YMyNxbxQzInEfEDMhcM8MMyBwvwfzH3BvA/MecB4f4x1xzhvjHHG+F6MbcW4ToxpxHg+jGXDOC6MYcL4HYxdwbgNjFnA83o8q8ZzWjyjxPM5PJvCcxk8k8D9eNyLxn1Y3IPE/Tfce8J9F9xzwO9t/NbE7yz8xsD1Na4tcV2Fawp8n+K7BOdRnENw/KDvgJu36frgwLOku6bfDnw6dPP4vT3Sy3FC83hoEfK660TXruAfblTFOH4oJwxyYNP123GKRp0nVn47mfAfXT7oi2h7sFx6eiNFaf3rVGP1ykV02miaI4NmDt1jfnJ+x5mSP/r3T1XvnZZf//NMEPB5MnyDEgVwYPgGZRTAgeEblEkAB4ZvUGYBHBi+QVkEcGD4BiUJ4MDwDcoqgAPDNyibAA4M36DsAjgwfINyCODA8A3KKYADwzcoWQAHhm9QLgEcGL5BuQVwYPgG5RHAgeEblFcAB4Zv0FkCODB8g/IJ4MDwDcovgAPDN6iAAA4M36CCAjgwfIMKCeDA8A0qLIADwzeoiAAODN+gogI4MHyDigngwPANKi6AA8M3qIQADgzfIFcAB4ZvUEkBHBi+QaUEcGD4BpUWwIHhG1RGAAeGb1BZARwYvkFnC+DA8A0qJ4ADwzeovAAODN+gCgI4MHyDKgrgwPANqiSAA8M3qLIADgzfoCoCODB8g84RwIHhG1RVAAeGb1A1ARwYvkHVBXBg+AadK4ADwzeohgAODN+g8wRwYPgG1RTAgeEbdL4ADgzfoFoCODB8gy4QwIHhG1RbAAeGb9CFAjgwfIPqCODA8A26SAAHhm9QXQnzeQkcLhbAgeEbVE8AB4Zv0CUCODB8g+oL4MDwDbpUAAeGb1ADDQ7wRmnpnPINgmcC/AIwVx7zxDFHGvODMTcW80IxJxLzATEXDvPAMAcK838w9wXzPjDnAeP9MdYd47wxxhnjezG2FeM6MaYR4/kwlu2vcVwqMH4HY1cwbgNjFvC8Hs+q8ZwWzyjxfA7PpvBcBs8kcD8e96JxHxb3IHH/DfeecN8F9xzwexu/NfE7C78xcH2Na0tcV+GaAt+n+C7BeRTnEBw/6Dvg5m1Bb49ofIA0/EP+8mqBT0cwT3rl/DnSa1PDonrHQ8uQ110nunYF/3CjKsbxdWlokAObrm9Qo+jzxMo3KDP+o8sHfRFtD5ZLT+9lvP51qrF65SKXEfpXYwEcGH47TQRwYPjtNBXAgeG3c7kADgy/nWYCODD8dq4QwIHht9NcAAeG304LARwYfjstBXBg+O20EsCB4bfTWgAHht/OlQI4MPx22gjgwPDbuUoAB4bfTlsBHBh+O1cL4MDw22kngAPDb6e9AA4Mv50OAjgw/HauEcCB4bfTUQAHht/OtQI4MPx2OgngwPDbuU4AB4bfTmcBHBh+O9cL4MDw2+kigAPDb+cGARwYfjtdBXBg+O10E8CB4bfTXQAHht/OjQI4MPx2egjgwPDbuUkAB4bfTk8BHBh+OzcL4MDw2+klgAPDb6e3AA4Mv50+Ajgw/Hb6CuDA8NvpJ4ADw2+nvwAODL+dAQI4MPx2BgrgwPDbGSSAA8NvZ7AADgy/nSECODD8doYK4MDw27lFAAeG384wARwYfjvDBXBg+O2MEMCB4bczUgAHht/OKAEcGH47owVwYPjtjBHAgeG3M1YAB4bfzjgBHBh+O+MlzOclcJgggAPDb2eiAA4Mv51JAjgw/HYmC+DA8NuZIoADw29nqgYHeIq0ck757cAzAX4BmCuPeeKYI435wZgbi3mhmBOJ+YCYC4d5YJgDhfk/mPuCeR+Y84Dx/hjrjnHeGOOM8b0Y24pxnRjTiPF8GMuGcVwYw4TxOxi7gnEbGLOA5/V4Vo3ntHhGiedzeDaF5zJ4JoH78bgXjfuwuAeJ+2+494T7LrjngN/b+K2J31n4jYHra1xb4roK1xT4PsV3Cc6jOIfg+EHfATdv0/XBgWdJt8Kn3h+NPw98OnTz+L090ssxTfN4aBXyuutE167gH25UxTh+KNMMcmDT9duZXlTjGC2r0f6yep+DLh/0RbQ9WC49vbdqcEXdCSn/hpUz8beK9r0ziurx8zbdz3/mf//5/13A+We703u7d+4yOed5702PzSzDvuIvp9u+yflVv86v8ZmkvF/3OLhN8/xiouNWTR23GuiYzfu+ONVYvXIU36jbBXBg+EbNEcCB4Rt1hwAODN+ouQI4MHyj7hTAgeEbdZcADgzfqLsFcGD4Rs0TwIHhG3WPAA4M36j5AjgwfKPuFcCB4Ru1QAAHhm/UfQI4MHyj7hfAgeEb9YAADgzfqIUCODB8oxYJ4MDwjVosgAPDN+pBARwYvlFLBHBg+EY9JIADwzdqqQAODN+ohwVwYPhGLRPAgeEb9YgADgzfqEcFcGD4Rj0mgAPDN+pxARwYvlFPCODA8I1aLoADwzfqSQEcGL5RKwRwYPhGPSWAA8M36mkBHBi+Uc8I4MDwjXpWAAeGb9RzAjgwfKOeF8CB4Ru1UgAHhm/UCwI4MHyjXhTAgeEbtUoAB4Zv1EsCODB8o14WwIHhG/WKAA4M36hXBXBg+Ea9JoADwzfqdQEcGL5RbwjgwPCNelMAB4Zv1FsCODB8o1YL4MDwjXpbAAeGb9QaARwYvlHvCODA8I1aK4ADwzfqXQEcGL5R6yTM5yVweE8AB4Zv1HoBHBi+URsEcGD4Rm0UwIHhG/W+AA4M36hNmj4WuvXDL+RWA5+ZEmfHtl3wh5lZVN+D5gMNvxddDcG2pFc/PELeLBT9++ERckNh/c/iQ40+kqgip3Mqxz8aEMibXnvrRf/ef+T7qOhpJPyoqH65zRoGXabt2lz01AuuE/1mcsDOMjhgS8f4gE0o+repk267ymi2y9t0jaA+1jgxaLCKaLQ/cvI/Gu2+xPm7b+mefC7RyLElxl8yYL/FoG98YmhQ9YkFM7MtGueMrSQzs0//+z7812ZiSqZhyPXXl/9tBv1lW9HY65itqWO2gY7PYnw8ol0fGFxcbY+jiyt8Fh9qfhYfGnwWn2teXGVL+fdfDQjkTa+9OhdXp5OnrsPJ8+lp9un0PqdLnb/Pp7r9KEHjvZc6+qwiwT/cqIo5kS0xBlbf+ftLTheYzhfjDs2DJ9k51Z60tKXXxmgP2hMnTnwZ9rrrpJ8D//G39YuUHwA7izr/vBr5IuWs439tZ0gDg1cD6TXg8+g+iDvUBxH5QuND26kJT7fjoQN9YfhryeQn+FuaP8FvN7Dp/LJo7HWs1tQxx0DHLoKOtzV13GGg4yuCjjWaOuYa6NhN0PGOpo47DXR8TdCxVlPHXQY69hB0vKup424DHd8QdKzT1DHPQMdego73NHXcY6BjH0HHek0d8w107Cfo2KCp414DHd8SdGzU1LHAQMcBgo73NXXcZ6DjO4KOTZo67jfQcZCg4wNNHQ8Y6PieoONDTR0LDXQcIuj4SFPHIgMdhwk6NmvqWGyg4whBx8eaOh400PEDQccWTR1LDHQcJej4RFPHQwY6fiTo2KqpY6mBjmMEHZ9q6njYQMdPBB3bNHUsM9BxnKDjM00djxjo+JmgY7umjkcNdPxC0PG5po7HDHT8StCxQ1PH4wY6fiPo+EJTxxMGOn4n6NipqWO5gY4/CDq+1NTxpIGOPwk6dmnqWGGg4wRBx1eaOp4y0OEUi72O3Zo6njbQESHo+FpTxzMGOjIQdOzR1PGsgY4Ego5vNHU8Z6AjkaBjr6aO5w10ZCTo2KepY6WBjkwEHfs1dbxgoCMzQce3mjpeNNCRhaDjgKaOVQY6kgg6vtPU8ZKBjqwEHQc1dbxsoCMbQcf3mjpeMdCRnaDjkKaOVw105CDoOKyp4zUDHTkJOo5o6njdQEcyQccPmjreMNCRi6DjqKaONw105Cbo+FFTx1sGOvIQdBzT1LHaQEdego6fNHW8baDjLIKO45o61hjoyEfQ8bOmjncMdOQn6PhFU8daAx0FCDp+1dTxroGOggQdv2nqWGegoxBBx++aOt4z0FGYoOMPTR3rDXQUIej4U1PHBgMdRQk6Tmjq2GigoxhBh1NYT8f7BjqKE3RENHVsMtBRgqAjg6aODwx0uAQdCZo6PjTQUZKgI1FTx0cGOkoRdGTU1LHZQEdpgo5Mmjo+NtBRhqAjs6aOLQY6yhJ0ZNHU8YmBjrMJOpI0dWw10FGOoCOrpo5PDXSUJ+jIpqljm4GOCgQd2TV1fGagoyJBRw5NHdsNdFQi6MipqeNzAx2VCTqSNXXsMNBRhaAjl6aOLwx0nEPQkVtTx04DHVUJOvJo6vjSQEc1go68mjp2GeioTtBxlqaOrwx0nEvQkU9Tx24DHTUIOvJr6vjaQMd5BB0FNHXsMdBRk6CjoKaObwx0nE/QUUhTx14DHbUIOgpr6thnoOMCgo4imjr2G+ioTdBRVFPHtwY6LiToKKap44CBjjoEHcU1dXxnoOMigo4SmjoOGuioS9Dhaur43kDHxQQdJTV1HDLQUY+go5SmjsMGOi4h6CitqeOIgY76BB1lNHX8YKDjUoKOspo6jhroaEDQcbamjh8NdDQk6CinqeOYgY5GBB3lNXX8ZKDjMoKOCpo6jhvoaEzQUVFTx88GOpoQdFTS1PGLgY6mBB2VNXX8aqDjcoKOKpo6fjPQ0Yyg4xxNHb8b6LiCoKOqpo4/DHQ0J+iopqnjTwMdLQg6qmvqOGGgoyVBx7maOpwC+jpaEXTU0NQRMdDRmqDjPE0dGQx0XEnQUVNTR4KBjjYEHedr6kg00HEVQUctTR0ZDXS0Jei4QFNHJgMdVxN01NbUkdlARzuCjgs1dWQx0NGeoKOOpo4kAx0dCDou0tSR1UDHNQQddTV1ZDPQ0ZGg42JNHdkNdFxL0FFPU0cOAx2dCDou0dSR00DHdQQd9TV1JBvo6EzQcammjlwGOq4n6GigqSO3gY4uBB0NNXXkMdBxA0FHI00deQ10dCXouExTx1kGOroRdDTW1JHPQEd3go4mmjryG+i4kaCjqaaOAgY6ehB0XK6po6CBjpsIOppp6ihkoKMnQccVmjoKG+i4maCjuaaOIgY6ehF0tNDUUdRAR2+CjpaaOooZ6OhD0NFKU0dxAx19CTpaa+ooYaCjH0HHlZo6XAMd/Qk62mjqKGmgYwBBx1WaOkoZ6BhI0NFWU0dpAx2DCDqu1tRRxkDHYIKOdpo6yhroGELQ0V5Tx9kGOoYSdHTQ1FHOQMctBB3XaOoob6BjGEFHR00dFQx0DCfouFZTR0UDHSMIOjpp6qhkoGMkQcd1mjoqG+gYRdDRWVNHFQMdowk6rtfUcY6BjjEEHV00dVQ10DFWQwfWh2+tYlHK/2PNcazXjbWusU401ljG+sRY2xfr4mJNWazHirVMsQ4o1tDE+pNYuxHrHmLNQKy3h7XqsM4b1kjD+mJYmwvrWmFNKKynhLWIsI4P1sDB+jFYewXrlmDND6yXgbUmsE4D1jjA+gDw1ocvPTzd4YcOL3H4cMPDGv7P8E6G7zA8e+F3C69Y+KzCoxT+nvDGhK8kPBnhZwgvQPjowYMO/m3wPvvLN6zY335V8HqCTxI8huDPA28b+MLAUwV+JPDygA8GPCTgvwDvAsz7x5x5zDfHXG3Mc8YcYcyvxdxUzOvEnEjMJ8RcPMxjwxwwzJ/C3CPM28GcF8wXwVwLzFPAGH+Mj8fYcozLxphmjAfGWFqMQ8UYTox/xNhBjLvDmDWM98JYKYwzwhgdjG/B2BCMq8CYBDzPx7NwPEfGM1g8v8SzPzw3wzMnPK/Bsw48J8A9dtyfxr1d3BfFPUXcj8O9LNwHwj0U3H/Ab3f87sVvRvzewm8VXOfjGhnXl7g2w3UNrgnwfYrvIpzHcQ7E+QPHHvrtyc4f6PPpbBm3qL7zeVH9Y2VcseiPlQwpx0pwcx29TVNbRKeNpjnGF4vtuQ/t2VE0+s+lvootBp/nhGJ6574rnTPnvjPnvvg692XQ7PM4TjSO3wjej+NE9xj250ivTROL6Z1Xrwx53XWia1fwDzeqYpzz6kTNHKbfe7qf5RaNc/Ek3md5qoF65SKTCJ/lZAEclmSOfY4pAjj0T4x9jqkCONTKGvsc0wRwmEzoD9MFcBhL4HCrAA51CMfFDAEc6hI4zBTAoR6BwywBHOoTONwmgEMDAofZAjg0InC4XQCHxgQOcwRwaErgcIcADs0IHOYK4NCcwOFOARxaEjjcJYBDawKHuwVwaEPgME8Ah7YEDvcI4NCOwGG+AA4dCBzuFcChI4HDAgEcOhE43CeAQ2cCh/sFcOhC4PCAAA5dCRwWCuDQncBhkQAOPQgcFgvg0JPA4UEBHHoROCwRwKEPgcNDAjj0I3BYKoDDAAKHhwVwGETgsEwAhxKE592PCOAwlNAfHhXAYRiBw2MCOIwgcHhcAIdRBA5PCOAwhsBhuQAO4wgcnhTAYQKBwwoJ44oJHJ4SwGEKgcPTAjhsSIh9jmcEcJhO6A/PCuAwg8DhOQEcZhE4PC+Aw2wCh5UCOMwhcHhBAIe5BA4vCuBwF4HDKgEc5hE4vCSAw3wCh5cFcFhA4PCKAA73Ezi8KoDDQgKH1wRwWEzg8LqE+bwEDm8I4LCUwOFNARyWETi8JYDDowQOqwVweJzA4W0BHJYTOKwRwGEFgcM7Ajg8TeCwVgCHZwkc3hXA4XkCh3UCOLxA4PCeAA6rCBzWC+DwMoHDBgEcXiVw2CiAw+sEDu8L4PAmgcMmARxWEzh8IIDDGgKHDwVwWEvg8JEADusIHDYL4LCewOFjARw2EjhsEcBhE4HDJwI4fEjgsFUAh80EDp8K4LCFwGGbAA5bCRw+E8BhG4HDdgEcthM4fC6Aww4Chx0COOwkcPhCAIddBA47BXDYTeDwpQAOewgcdgngsJfA4SsBHPYTOOwWwOEAgcPXAjgcJHDYI4DDIQKHbwRwOELgsFcAh6MEDvsEcDhG4LBfAIfjBA7fCuDwC4HDAQEcfiNw+E4Ahz8IHA4K4HCCwOF7ARwi2QjXagI4JBA4HBbAISOBwxEBHDITOPwggEMSgcNRARyyETj8KIBDDgKHYwI4JBM4/CSAQ24Ch+MCOOQlcPhZAId8BA6/COBQgMDhVwEcChE4/CaAQxECh98FcChG4PCHBL9iAoc/BXAoSeBwQgCH0gQOTvH451CWwCEigEM5AocMAjhUIHBIEMChEoFDogAOVQgcMgrgUJXAIZMADtUJHDIL4FCDwCGLAA41CRySBHCoReCQVQCH2gQO2QRwqEPgkF0Ah7oEDjkEcKhH4JBTAIf6BA7JAjg0IHDIJYBDIwKH3AI4NCZwyCOAQ1MCh7wCODQjcDhLAIfmBA75BHBoSeCQXwCH1gQOBQRwaEPgUFAAh7YEDoUEcGhH4FBYAIcOBA5FBHDoSOBQVACHTgQOxQRw6EzgUFwAhy4EDiUEcOhK4OAK4NCdwKGkAA49CBxKCeDQk8ChtAAOvQgcygjg0IfAoawGhwQVbVQsSvn/KcUcZ6qKaSqmq7hVxQwVM1XMUnGbitkqblcxR8UdKuaquFPFXSruVjFPxT0q5qu4V8UCFfepuF/FAyoWqlikYrGKB1UsUfGQiqUqHlaxTMUjKh5V8ZgKrE+PtdmxLjnW5MZ61FiLGesQYw1erD+LtVex7ijW3MR6k1hrEesMYo09rC+HtdWwrhjW1MJ6UlhLCesIYQ0drB+DtVOwbgjWzMB6EVgrAesEwCMf/vDwRocvODyx4QcNL2T4AMMDF/6v8D6F7yc8L+H3CK9D+PzB4w7+bvA2g68XPK3g5wQvI/j4wMMG/i3wLoFvBzwr4NcArwLM08ccdczPxtxkzMvFnFTMx8RcRMzDwxw0zL/C3CPMu8GcE8y3wFwDjLPHGHOMr8bYYoyrxZhSjKfEWEKMo8MYMoyfwtghjJvBmBGMl8BYATwnxzNiPB/Fs0E8F8MzITwPwbMA3AfHPWDc/8S9P9z3wj0f3O/Ab338zsVvPPy+wbU9rmtxTffX9YwKfI/hHI7zF45d9Ftvy6DZ5+up/2wpeur91bq1GLir+qIKL7ZqtHL8+PadytfY12T4qv5zGuw6NvdwynsnF9PPM7lY9DnO1jwftQl53XWia1fwDzeqYk5kUrHYn490OBjUnxGf5edFtT/LDDr9pRzvszy56XIuVzz2Ocqf5meZHmd8H12a8q+/XHppEjTee6lGeyoI+NyXZI59jooCOPRPjH2OSgI41CJ4Y1QWwGEyoT9UEcBhLIHDOQI41CEcF1UFcKhL4FBNAId6BA7VBXCoT+BwrgAODQgcagjg0IjA4TwBHBoTONQUwKEpgcP5Ajg0I3CoJYBDcwKHCwRwaEngUFsAh9YEDhcK4NCGwKGOAA5tCRwuEsChHYFDXQEcOhA4XCyAQ0cCh3oCOHQicLhEAIfOBA71BXDoQuBwqQAOXQkcGgjg0J3AoaEADj0IHBoJ4NCTwOEyARx6ETg0FsChD4FDEwEc+hE4NBXAYQCBw+UCOAwicGgmgEMJwvPuKwRwGEroD80FcBhG4NBCAIcRBA4tBXAYReDQSgCHMQQOrQVwGEfgcKUADhMIHNoI4DCJwOEqARymEDi0FcBhQ0Lsc1wtgMN0Qn9oJ4DDDAKH9gI4zCJw6CCAw2wCh2sEcJhD4NBRAIe5BA7XCuBwF4FDJwEc5hE4XCeAw3wCh84COCwgcLheAIf7CRy6COCwkMDhBgEcFhM4dJUwn5fAoZsADksJHLoL4LCMwOFGARweJXDoIYDD4wQONwngsJzAoacADisIHG4WwOFpAodeAjg8S+DQWwCH5wkc+gjg8AKBQ18BHFYROPQTwOFlAof+Aji8SuAwQACH1wkcBgrg8CaBwyABHFYTOAwWwGENgcMQARzWEjgMFcBhHYHDLQI4rCdwGCaAw0YCh+ECOGwicBghgMOHBA4jBXDYTOAwSgCHLQQOowVw2ErgMEYAh20EDmMFcNhO4DBOAIcdBA7jBXDYSeAwQQCHXQQOEwVw2E3gMEkAhz0EDpMFcNhL4DBFAIf9BA5TBXA4QOAwTQCHgwQO0wVwOETgcKsADkcIHGYI4HCUwGGmAA7HCBxmCeBwnMDhNgEcfiFwmC2Aw28EDrcL4PAHgcMcARxOEDjcIYBDhLA26VwBHBIIHO4UwCEjgcNdAjhkJnC4WwCHJAKHeQI4ZCNwuEcAhxwEDvMFcEgmcLhXAIfcBA4LBHDIS+BwnwAO+Qgc7hfAoQCBwwMCOBQicFgogEMRAodFAjgUI3BYLMGvmMDhQQEcShI4LBHAoTSBw0MCOJQlcFgqgEM5AoeHBXCoQOCwTACHSgQOjwjgUIXA4VEBHKoSODwmgEN1AofHBXCoQeDwhAAONQkclgvgUIvA4UkBHGoTOKwQwKEOgcNTAjjUJXB4WgCHegQOzwjgUJ/A4VkBHBoQODwngEMjAofnBXBoTOCwUgCHpgQOLwjg0IzA4UUBHJoTOKwSwKElgcNLAji0JnB4WQCHNgQOrwjg0JbA4VUBHNoROLwmgEMHAofXBXDoSODwhgAOnQgc3hTAoTOBw1sCOHQhcFgtgENXAoe3BXDoTuCwRgCHHgQO7wjg0JPAYa0ADr0IHN4VwKEPgcM6DQ4JKq5SsSjl/yuqspVUVFZRRcU5KqqqqKaiuopzVdRQcZ6KmirOV1FLxQUqaqu4UEUdFRepqKviYhX1VFyior6KS1U0UNFQRSMVl6lorKKJiqYqLlfRTMUVKpqraKEC69NjbXasS441ubEeNdZixjrEWIMX689i7VWsO4o1N7HeJNZaxDqDWGMP68thbTWsK4Y1tbCeFNZSwjpCWEMH68dg7RSsG4I1M7BeBNZKwDoB8MiHPzy80eELDk9s+EHDCxk+wPDAhf8rvE/h+wnPS/g9wusQPn/wuIO/G7zN4OsFTyv4OcHLCD4+8LCBfwu8S+DbAc8K+DXAqwDz9DFHHfOzMTcZ83IxJxXzMTEXEfPwMAcN868w9wjzbjDnBPMtMNcA4+wxxhzjqzG2GONqMaYU4ykxlhDj6DCGDOOnMHYI42YwZgTjJTBWAM/J8YwYz0fxbBDPxfBMCM9D8CwA98FxDxj3P3HvD/e9cM8H9zvwWx+/c/EbD79vcG2P61pc0+F6Bt/l+B7DORznLxy76LfeliHQ56t1azFwV/VFFV5s1Wjl+PHtO5Wvsa/J8FX95zTYdWzuYbV/S1HHKV88+mME769Q/N950ivnz5Fem94rrnc+uirkddeJrl3BP9yoijmRcsVjfz56TzOHZv0Z8Vl+XlT7s0xAOe+96X2W63mf5clNl/N6wme5QQCHJZljn2OjAA79E2Of430BHGoRvCI2CeAwmdAfPhDAYSyBw4cCONQhHBcfCeBQl8BhswAO9QgcPhbAoT6BwxYBHBoQOHwigEMjAoetAjg0JnD4VACHpgQO2wRwaEbg8JkADs0JHLYL4NCSwOFzARxaEzjsEMChDYHDFwI4tCVw2CmAQzsChy8FcOhA4LBLAIeOBA5fCeDQicBhtwAOnQkcvhbAoQuBwx4BHLoSOHwjgEN3Aoe9Ajj0IHDYJ4BDTwKH/QI49CJw+FYAhz4EDgcEcOhH4PCdAA4DCBwOCuAwiMDhewEcShCedx8SwGEooT8cFsBhGIHDEQEcRhA4/CCAwygCh6MCOIwhcPhRAIdxBA7HBHCYQODwkwAOkwgcjgvgMIXA4WcBHDYkxD7HLwI4TCf0h18FcJhB4PCbAA6zCBx+F8BhNoHDHwI4zCFw+FMAh7kEDicEcLiLwMEpEf8c5hE4RARwmE/gkEEAhwUEDgkCONxP4JAogMNCAoeMAjgsJnDIJIDDEgKHzAI4LCVwyCKAwzIChyQBHB4lcMgqgMPjBA7ZBHBYTuCQXQCHFQQOOQRweJrAIacADs8SOCQL4PA8gUMuARxeIHDILYDDKgKHPAI4vEzgkFcAh1cJHM4SwOF1Aod8Aji8SeCQXwCH1QQOBQRwWEPgUFAAh7UEDoUEcFhH4FBYAIf1BA5FBHDYSOBQVACHTQQOxQRw+JDAobgADpsJHEoI4LCFwMEVwGErgUNJARy2ETiUEsBhO4FDaQEcdhA4lBHAYSeBQ1kBHHYROJwtgMNuAodyAjjsIXAoL4DDXgKHCgI47CdwqCiAwwECh0oCOBwkcKgsgMMhAocqAjgcIXA4RwCHowQOVQVwOEbgUE0Ah+MEDtUFcPiFwOFcARx+I3CoIYDDHwQO5wngcILAoaYADhHCWp3nC+CQQOBQSwCHjAQOFwjgkJnAobYADkkEDhcK4JCNwKGOAA45CBwuEsAhmcChrgAOuQkcLhbAIS+BQz0BHPIROFwigEMBAof6AjgUInC4VACHIgQODQRwKEbg0FAAhxIEDo0EcChJ4HCZAA6lCRwaC+BQlsChiQAO5QgcmgrgUIHA4XIBHCoRODQTwKEKgcMVAjhUJXBoLoBDdQKHFgI41CBwaCmAQ00Ch1YCONQicGgtgENtAocrBXCoQ+DQRgCHugQOVwngUI/Aoa0ADvUJHK4WwKEBgUM7ARwaETi0F8ChMYFDBwEcmhI4XCOAQzMCh44CODQncLhWAIeWBA6dBHBoTeBwnQAObQgcOgvg0JbA4XoBHNoROHQRwKEDgcMNAjh0JHDoKoBDJwKHbgI4dCZw6C6AQxcChxsFcOhK4NBDAIfuBA43CeDQg8ChpwAOPQkcbhbAoReBQy8BHPoQOPTW4JCgoq2KRSn/v7G447yvYpOKD1R8qOIjFZtVfKxii4pPVGxV8amKbSo+U7Fdxecqdqj4QsVOFV+q2KXiKxW7VXytYo+Kb1TsVbFPxX4V36o4oOI7FQdVfK/ikIrDKo6owPr0WJsd65JjTW6sR421mLEOMdbgxfqzWHsV645izU2sN4m1FrHOINbYw/pyWFsN64phTS2sJ4W1lLCOENbQwfoxWDsF64ZgzQysF4G1ErBOADzy4Q8Pb3T4gsMTG37Q8EKGDzA8cOH/Cu9T+H7C8xJ+j395HaqAxx383eBtBl8veFrBzwleRvDxgYcN/FvgXQLfDnhWwK8BXgWYp4856pifjbnJmJeLOamYj4m5iJiHhzlomH+FuUeYd4M5J5hvgbkGGGePMeYYX42xxRhXizGlGE+JsYQYR4cxZBg/hbFDGDeDMSMYL4GxAnhOjmfEeD6KZ4N4LoZnQngegmcBuA+Oe8C4/4l7f7jvhXs+uN+B3/r4nYvfePh9g2t7XNfimg7XM/gux/cYzuE4f+HYRb/1tgyafb6u+s+WoqfeX61bi4G7qi+q8GKrRivHj2/fqXyNfU2Gr+o/p8GuY3MPp7x3Q3H9PBuKR5+jj+b5qG3I664TXbuCf7hRFXMi64sTznkl9HJo1p8Rn+XnRbU/y0Sd/tKX91me3HQ59y0R+xz9BHBYkjn2OfoL4NA/MfY5BgjgUIvgFTFQAIfJhP4wSACHsQQOgwVwqEM4LoYI4FCXwGGoAA71CBxuEcChPoHDMAEcGhA4DBfAoRGBwwgBHBoTOIwUwKEpgcMoARyaETiMFsChOYHDGAEcWhI4jBXAoTWBwzgBHNoQOIwXwKEtgcMEARzaEThMFMChA4HDJAEcOhI4TBbAoROBwxQBHDoTOEwVwKELgcM0ARy6EjhMF8ChO4HDrQI49CBwmCGAQ08Ch5kCOPQicJglgEMfAofbBHDoR+AwWwCHAQQOtwvgMIjAYY4ADiUIz7vvEMBhKKE/zBXAYRiBw50COIwgcLhLAIdRBA53C+AwhsBhngAO4wgc7hHAYQKBw3wBHCYRONwrgMMUAocFAjhsSIh9jvsEcJhO6A/3C+Awg8DhAQEcZhE4LBTAYTaBwyIBHOYQOCwWwGEugcODAjjcReCwRACHeQQODwngMJ/AYakADgsIHB4WwOF+AodlAjgsJHB4RACHxQQOj0qYz0vg8JgADksJHB4XwGEZgcMTAjg8SuCwXACHxwkcnhTAYTmBwwoBHFYQODwlgMPTBA5PC+DwLIHDMwI4PE/g8KwADi8QODwngMMqAofnBXB4mcBhpQAOrxI4vCCAw+sEDi8K4PAmgcMqARxWEzi8JIDDGgKHlwVwWEvg8IoADusIHF4VwGE9gcNrAjhsJHB4XQCHTQQObwjg8CGBw5sCOGwmcHhLAIctBA6rBXDYSuDwtgAO2wgc1gjgsJ3A4R0BHHYQOKwVwGEngcO7AjjsInBYJ4DDbgKH9wRw2EPgsF4Ah70EDhsEcNhP4LBRAIcDBA7vC+BwkMBhkwAOhwgcPhDA4QiBw4cCOBwlcPhIAIdjBA6bBXA4TuDwsQAOvxA4bBHA4TcCh08EcPiDwGGrAA4nCBw+FcAhQlirc5sADgkEDp8J4JCRwGG7AA6ZCRw+F8AhicBhhwAO2QgcvhDAIQeBw04BHJIJHL4UwCE3gcMuARzyEjh8JYBDPgKH3QI4FCBw+FoAh0IEDnsEcChC4PCNAA7FCBz2SvArJnDYJ4BDSQKH/QI4lCZw+FYAh7IEDgcEcChH4PCdAA4VCBwOCuBQicDhewEcqhA4HBLAoSqBw2EBHKoTOBwRwKEGgcMPAjjUJHA4KoBDLQKHHwVwqE3gcEwAhzoEDj8J4FCXwOG4AA71CBx+FsChPoHDLwI4NCBw+FUAh0YEDr8J4NCYwOF3ARyaEjj8IYBDMwKHPwVwaE7gcEIAh5YEDnhjlO/9zzi0JnCIuPHPoQ2BQwY3/jm0JXBIcOOfQzsCh0Q3/jl0IHDI6MY/h44EDpnc+OfQicAhsxv/HDoTOGRx459DFwKHJDf+OXQlcMjqxj+H7gQO2dz459CDwCG7G/8cehI45HDjn0MvAoecbvxz6EPgkOxGnyNBxdUqFqX8f39172KAioEqBqkYrGKIiqEqblExTMVwFSNUjFQxSsVoFWNUjFUxTsV4FRNUTFQxScVkFVNUTFUxTcV0FbeqmKFipopZKm5TMVvF7SrmqLhDxVwVd6rA+vRYmx3rkmNNbqxHjbWYsQ4x1uDF+rNYexXrjmLNTaw3ibUWsc4g1tjD+nJYWw3rimFNLawnhbWUsI4Q1tDB+jFYOwXrhmDNDKwXgbUSsE4APPLhDw9vdPiCwxMbftDwQoYPMDxw4f8K71P4fsLzEn6P8DqEzx887uDvBm8z+HrB0wp+TvAygo8PPGzg3wLvEvh2wLMCfg3wKsA8fcxRx/xszE3GvFzMScV8TMxFxDw8zEHD/CvMPcK8G8w5wXwLzDXAOHuMMcf4aowtxrhajCnFeEqMJcQ4Oowhw/gpjB3CuBmMGcF4CYwVwHNyPCPG81E8G8RzMTwTwvMQPAvAfXDcA8b9T9z7w30vdLyICvzWx+9c/MbD7xtc2+O6Ftd0uJ7Bdzm+x3AOx/kLxy76rbdl0OzzW4oqNkVPvb9atxYDd1VfVOHFVo1Wjh/fvlP5GvuaDF/Vf06DXcfmHlb78f5+JfTzoEy0OXK5euejq0Ned53o2hX8w42qmBPpWyL25yMdDib147P8vKhZn/Hem95nmduNXgPan5Dyr1fuND/ff9StUS6yJHPsc+Rxaf38VFK9cpH+ibHPkdeNfw61CL4JZ7nxz2EyoT/kc+Ofw1gCh/xu/HOoQzguCrjxz6EugUNBN/451CNwKOTGP4f6BA6F3fjn0IDAoYgb/xwaETgUdeOfQ2MCh2Ju/HNoSuBQ3I1/Ds0IHEq48c+hOYGD68Y/h5YEDiXd+OfQmsChlBv/HNoQOJR2459DWwKHMm78c2hH4FDWjX8OHQgcznbjn0NHAodybvxz6ETgUN6Nfw6dCRwquPHPoQuBQ0U3/jl0JXCo5MY/h+4EDpXd+OfQg8Chihv/HHoSOJzjxj+HXgQOVd3459CHwKGaG/8c+hE4VHfjn8MAAodz3fjnMIjAoYYb/xxKEJ53n+fGP4ehhP5Q041/DsMIHM5345/DCAKHWm78cxhF4HCBG/8cxhA41Hbjn8M4AocL3fjnMIHAoY4b/xwmEThc5MY/hykEDnXd+OewISH2OS5245/DdEJ/qOfGP4cZBA6XuPHPYRaBQ303/jnMJnC41I1/DnMIHBq48c9hLoFDQzf+OdxF4NDIjX8O8wgcLnPjn8N8AofGbvxzWEDg0MSNfw73Ezg0deOfw0ICh8vd+OewmMChmRv/HJYQOFzhxj+HpQQOzd3457CMwKGFG/8cHiVwaOnGP4fHCRxaufHPYTmBQ2s3/jmsIHC40o1/Dk8TOLRx45/DswQOV7nxz+F5Aoe2bvxzeIHA4Wo3/jmsInBo58Y/h5cJHNq78c/hVQKHDm78c3idwOEaN/45vEng0NGNfw6rCRyudeOfwxoCh05u/HNYS+BwnRv/HNYROHR245/DegKH693457CRwKGLG/8cNhE43ODGP4cPCRy6uvHPYTOBQzc3/jlsIXDo7sY/h60EDje68c9hG4FDDzf+OWwncLjJjX8OOwgcerrxz2EngcPNbvxz2EXg0MuNfw67CRx6u/HPYQ+BQx83/jnsJXDo68Y/h/0EDv3c+OdwgMChvxv/HA4SOAxw45/DIQKHgW78czhC4DDIjX8ORwkcBrvxz+EYgcMQN/45HCdwGOrGP4dfCBxuceOfw28EDsPc+OfwB4HDcDf+OZwgcBjhxj+HCGHdypFu/HNIIHAY5cY/h4wEDqPd+OeQmcBhjBv/HJIIHMa68c8hG4HDODf+OeQgcBjvxj+HZAKHCW78c8hN4DDRjX8OeQkcJrnxzyEfgcNkN/45FCBwmOLGP4dCBA5T3fjnUITAYZob/xyKEThMd+OfQwkCh1vd+OdQksBhhhv/HEoTOMx0459DWQKHWW78cyhH4HCbG/8cKhA4zHbjn0MlAofb3fjnUIXAYY4b/xyqEjjc4cY/h+oEDnPd+OdQg8DhTjf+OdQkcLjLjX8OtQgc7nbjn0NtAod5bvxzqEPgcI8b/xzqEjjMd+OfQz0Ch3vd+OdQn8BhgRv/HBoQONznxj+HRgQO97vxz6ExgcMDbvxzaErgsNCNfw7NCBwWufHPoTmBw2I3/jm0JHB40I1/Dq0JHJa48c+hDYHDQ278c2hL4LDUjX8O7QgcHnbjn0MHAodlbvxz6Ejg8Igb/xw6ETg86sY/h84EDo+58c+hC4HD4278c+hK4PCEG/8cuhM4LHfjn0MPAocn3fjn0JPAYYUb/xx6ETg85cY/hz4EDk+7ejkyaNa/pajjfF40+vdvTXl/UEe1bi0G7qq+qMKLrRqtHD++fafyNfY1Gb6q/5wGu47NPaz2P+Pq6dDldIn6z2bVrgTNdl2i8d7NRaN/77Nu9G0/+R8n+jL1U3I4euWcRBXZVWQMq1SzDfUc/f5vkudih5OnrhP7Y+0TzWPt06KnXnAd/U2XQYXieuddb3vO/fvf591TObWTaxw0f9WdkPLvcynl0LmTAw0z+ZC2a35I2zU/pBMnTvwc9rrrpJ8P//HrW+n+/e8LrvNPKNgRCbyGN7n+mhx9MLpn/hHlYnvm32rYrpGa7fK2xOjz3KHyRPA5RNsm/+eTnm4NrpFotXodU5clDtyVvgSuE/2me4B2Lew4t2scoDep988w6B8vurHXMUdDR09DHavc2Ou4Q0PHzYY6XnJjr2Ouho5ehjpedmOv404NHb0Ndbzixl7HXRo6+hjqeNWNvY67NXT0NdTxmht7HfM0dPQz1PG6G3sd92jo6G+o4w039jrma+gYYKjjTTf2Ou7V0DHQUMdbbux1LNDQMchQx2o39jru09Ax2FDH227sddyvoWOIoY41bux1PKChY6ihjnfc2OtYqKHjFkMda93Y61ikoWOYoY533djrWKyhY7ihjnVu7HU8qKFjhKGO99zY61iioWOkoY71bux1PKShY5Shjg1u7HUs1dAx2lDHRjf2Oh7W0DHGUMf7bux1LNPQMdZQxyY39joe0dAxzlDHB27sdTyqoWO8oY4P3djreExDxwRDHR+5sdfxuIaOiYY6Nrux1/GEho5Jhjo+dmOvY7mGjsmGOra4sdfxpIaOKYY6PnFjr2OFho6phjq2urHX8ZSGjmmGOj51Y6/jaQ0d0w11bHNjr+MZDR23Gur4zI29jmc1dMww1LHdjb2O5zR0zDTU8bkbex3Pa+iYZahjhxt7HSs1dNxmqOMLN/Y6XtDQMdtQx0439jpe1NBxu6GOL93Y61iloWOOoY5dbux1vKSh4w5DHV+5sdfxsoaOuYY6drux1/GKho47DXV87cZex6saOu4y1LHHjb2O1zR03G2o4xs39jpe19Axz1DHXjf2Ot7Q0HGPoY59bux1vKmhY76hjv1u7HW8paHjXkMd37qx17FaQ8cCQx0H3NjreFtDx32GOr5zY69jjYaO+w11HHRjr+MdDR0PGOr43o29jrUaOhYa6jjkxl7Huxo6FhnqOOzGXsc6DR2LDXUccWOv4z0NHQ8a6vjBjb2O9Ro6lhjqOOrGXscGDR0PGer40Y29jo0aOpYa6jjmxl7H+xo6HjbU8ZMbex2bNHQsM9Rx3I1eB+YltXP+noWJDXMuMF8BY/0xTh5jzDE+G2ObMS74Dffv8agYy4lxkBhDiPF3GLuGcV8YM4XxRhirg3EuGCOC8RUYm4Dn+ngmjufJeBaL55h4BojnZ3j2hOc2eOaB5wW414771LjHi/ujuLeI+3Jfun/fD8K9FNyHwG94/P7Fb0f87sJvFlzv41oZ15m4RsP1Da4N8L2K7yScz3EuxHkExyD6Lz57cAvjg83blR77n92o2WfRmD+UZWSM53Bh/hDartvXfnGjbxeOl3Yhr7uO3qarTaeNpjl+dfWOufbOmWMueMzpnk/xGfknrEYzRw6fk26eXzVy/ObqHQ/tQ153nejaFfzDjaoY53jQ4eDfdM+3v7v/+fk2cvI/jt75Fm3XPd/+4dL616nG6pWL6LTRNMefbvxzWJI59jlOuPHPoX9i7HM4JeOfQ62ssc8REcBhMqE/ZBDAYSyBQ4IADnUIx0WiAA51CRwyCuBQj8AhkwAO9QkcMgvg0IDAIYsADo0IHJIEcGhM4JBVAIemBA7ZBHBoRuCQXQCH5gQOOQRwaEngkFMAh9YEDskCOLQhcMglgENbAofcAji0I3DII4BDBwKHvAI4dCRwOEsAh04EDvkEcOhM4JBfAIcuBA4FBHDoSuBQUACH7gQOhQRw6EHgUFgAh54EDkUEcOhF4FBUAIc+BA7FBHDoR+BQXACHAQQOJQRwGETg4ArgUILwvLukAA5DCf2hlAAOwwgcSgvgMILAoYwADqMIHMoK4DCGwOFsARzGETiUE8BhAoFDeQEcJhE4VBDAYQqBQ0UBHDYkxD5HJQEcphP6Q2UBHGYQOFQRwGEWgcM5AjjMJnCoKoDDHAKHagI4zCVwqC6Aw10EDucK4DCPwKGGAA7zCRzOE8BhAYFDTQEc7idwOF8Ah4UEDrUEcFhM4HCBAA5LCBxqC+CwlMDhQgEclhE41BHA4VECh4sEcHicwKGuAA7LCRwu1uAAT5EOzim/HXgmwC8gogLzxDFHGvODMTcW80IxJxLzATEXDvPAMAcK838w9wXzPjDnAeP9MdYd47wxxhnjezG2FeM6MaYR4/kwlg3juDCGCeN3MHYF4zb+GrOgoqQKPKfFM0o8n8OzKTyXwTMJ3I/HvWjch8U9SNx/w70n3HfBPQf83sZvTfzOwm8MXF/j2hLXVbimwPcpvktwHsU5BMcP+g64eZuuD049R99vBz4dunn+1MhRT/N46BDyuutE167gH25UxTh+KDoc/Juu384l0eeJld/OX91Jlw/6ItoeLJee3vq8/nWqsXrlIjptNM1xqQAODL+dBgI4MPx2GgrgwPDbaSSAA8Nv5zIBHBh+O40FcGD47TQRwIHht9NUAAeG387lEq6jCByaCeDA8Nu5QgAHht9OcwEcGH47LQRwYPjttBTAgeG300oAB4bfTmsBHBh+O1cK4MDw22kjgAPDb+cqARwYfjttBXBg+O1cLYADw2+nnQAODL+d9gI4MPx2OgjgwPDbuUYAB4bfTkcBHBh+O9cK4MDw2+kkgAPDb+c6ARwYfjudBXBg+O1cL4ADw2+niwAODL+dGwRwYPjtdBXAgeG3000AB4bfTncBHBh+OzcK4MDw2+khgAPDb+cmARwYfjs9BXBg+O3cLIADw2+nlwAODL+d3gI4MPx2+gjgwPDb6SuAA8Nvp58ADgy/nf4CODD8dgYI4MDw2xkogAPDb2eQAA4Mv53BAjgw/HaGCODA8NsZKoADw2/nFgEcGH47wwRwYPjtDBfAgeG3M0IAB4bfzkgBHBh+O6MEcGD47YwWwIHhtzNGAAeG385YARwYfjvjBHBg+O2MF8CB4bczQYMDPEWucU757cAzAX4BmCuPeeKYI435wZgbi3mhmBOJ+YCYC4d5YJgDhfk/mPuCeR+Y84Dx/hjrjnHeGOOM8b0Y24pxnRjTiPF8GMuGcVwYw4TxO11UYNwGxizgeT2eVeM5LZ5R4vkcnk3huQyeSeB+PO5F4z4s7kHi/hvuPeG+C+454Pc2fmvidxZ+Y+D6GteWuK7CNQW+T/FdgvMoziE4ftB3wM3bdH1wLnb0/Xbg06Gbx+/tkV6OiZrHwzUhr7tOdO0K/uFGVYzjhzLRIAc2Xb+dSdHniZXfzl9N1uWDvoi2B8ulp3cyr3+daqxeuYhOG01zTBHAgeG3M1UAB4bfzjQBHBh+O9MlnB8I/eFWARwYfjszBHBg+O3MFMCB4bczSwAHht/ObQI4MPx2ZgvgwPDbuV0AB4bfzhwBHBh+O3cI4MDw25krgAPDb+dOARwYfjt3CeDA8Nu5WwAHht/OPAEcGH479wjgwPDbmS+AA8Nv514BHBh+OwsEcGD47dwngAPDb+d+ARwYfjsPCODA8NtZKIADw29nkQAODL+dxQI4MPx2HhTAgeG3s0QAB4bfzkMCODD8dpYK4MDw23lYAAeG384yARwYfjuPCODA8Nt5VAAHht/OYwI4MPx2HhfAgeG384QADgy/neUCODD8dp4UwIHht7NCAAeG385TAjgw/HaeFsCB4bfzjAAODL+dZwVwYPjtPCeAA8Nv53kBHBh+OysFcGD47bwggAPDb+dFARwYfjurBHBg+O28JIADw2/nZQEcGH47rwjgwPDbeVUAB4bfzmsCODD8dl4XwIHht/OGAA4Mv503BXBg+O28JYADw29ntQAODL+dtwVwYPjtrBHAgeG3844GBxh0dHRO+e3AMwF+AZgrj3nimCON+cGYG4t5oZgTifmAmAuHeWCYA4X5P5j7gnkfmPOA8f4Y645x3hjjjPG9GNuKcZ0Y04jxfItVYBwXxjBh/A7GrmDcBsYs4Hk9nlXjOS2eUeL5HJ5N4bkMnkngfjzuReM+LO5B4v4b7j3hvgvuOeD3Nn5r4ncWfmPg+hrXlriuwjUFvk/xXYLzKM4hOH7Qd8DN23R9cCoU1/fbgU+Hbh6/t0d6OdZqHg8dQ153nejaFfzDjaoYxw9lrUEObLp+O+9GnydWfjuJ+I8uH/RFtD1YLj2963j961Rj9cpFdNpomuM9ARwYfjvrBXBg+O1sEMCB4bezUQAHht/O+wI4MPx2NgngwPDb+UAAB4bfzocCODD8dj4SwIHht7NZAAeG387HAjgw/Ha2CODA8Nv5RAAHht/OVgEcGH47nwrgwPDb2SaAA8Nv5zMBHBh+O9sFcGD47XwugAPDb2eHAA4Mv50vBHBg+O3sFMCB4bfzpQAODL+dXQI4MPx2vhLAgeG3s1sAB4bfztcCODD8dvYI4MDw2/lGAAeG385eARwYfjv7BHBg+O3sF8CB4bfzrQAODL+dAwI4MPx2vhPAgeG3c1AAB4bfzvcCODD8dg4J4MDw2zksgAPDb+eIAA4Mv50fBHBg+O0cFcCB4bfzowAODL+dYwI4MPx2fhLAgeG3c1wAB4bfzs8CODD8dn4RwIHht/OrAA4Mv53fBHBg+O38LoADw2/nDwEcGH47fwrgwPDbOSGAA8NvxykV/xwYfjsRARwYfjsZBHBg+O0kCODA8NtJFMCB4beTUQAHht9OJgEcGH47mQVwYPjtZBHAgeG3kySAA8NvJ6sGB3iKXOuc8tuBZwL8AjBXHvPEMUca84MxNxbzQjEnEvMBMRcO88AwBwrzfzD3BfM+MOcB4/0x1h3jvDHGGeN7d6nAuE6MacR4PoxlwzgujGHC+B2MXcG4DYxZwPN6PKvGc1o8o8TzOTybwnMZPJPA/Xjci8Z9WNyDxP033HvCfRfcc8DvbfzWxO8s/MbA9TWuLXFdhWsKfJ/iuwTnUZxDcPyg74Cbt+n64NR19P124NOhm8fv7ZFejmyax8O1Ia+7TnTtCv7hRlWM44eiw8G/6frtZI8+T6z8djLiP7p80BfR9mC59PTm4PWvU43VKxfJUSr2OXIK4MDw20kWwIHht5NLAAeG305uARwYfjt5BHBg+O3kFcCB4bdzlgAODL+dfAI4MPx28gvgwPDbKSCAA8Nvp6AADgy/nUICODD8dgoL4MDw2ykigAPDb6eoAA4Mv51iAjgw/HaKC+DA8NspIYADw2/HFcCB4bdTUgAHht9OKQEcGH47pQVwYPjtlBHAgeG3U1YAB4bfztkCODD8dsoJ4MDw2ykvgAPDb6eCAA4Mv52KAjgw/HYqCeDA8NupLIADw2+nigAODL+dcwRwYPjtVBXAgeG3U00AB4bfTnUBHBh+O+cK4MDw26khgAPDb+c8ARwYfjs1BXBg+O2cL4ADw2+nlgAODL+dCwRwYPjt1BbAgeG3c6EADgy/nToCODD8di4SwIHht1NXAAeG387FAjgw/HbqCeDA8Nu5RAAHht9OfQEcGH47lwrgwPDbaSCAA8Nvp6EADgy/nUYCODD8di4TwIHht9NYAAeG304TCfN5CRyaCuDA8Nu5XAAHht9OMwEcGH47VwjgwPDbaS6AA8Nvp4UGB3iKdHJO+e3AMwF+AZgrj3nimCON+cGYG4t5oZgTifmAmAuHeWCYA4X5P5j7gnkff815UIGx7hjnjTHOGN+Lsa0Y14kxjRjPh7FsGMeFMUwYv4OxKxi3gTELeF6PZ9V4TotnlHg+h2dTeC6DZxK4H4970bgPi3uQuP+Ge0+474J7Dvi9jd+a+J2F3xi4vsa1Ja6rcE2B71N8l+A8inMIjh/0HXDztgyazOFZ8rx76v3R+O3Ap0M3j9/bI70cLTWPh04hr7tOdO0K/uFGVYzjh9LSIAc2Xb+dVtHniZXfTib8R5cP+iLaHiyXnt7WvP51qrF65SKtCf3rSs0cusf8lqKO80nR6N+/Vb3306L6n2cbAZ8nwzfoKgEcGL5BbQVwYPgGXS2AA8M3qJ0ADgzfoPYCODB8gzoI4MDwDbpGAAeGb1BHARwYvkHXCuDA8A3qJIADwzfoOgEcGL5BnQVwYPgGXS+AA8M3qIsADgzfoBsEcGD4BnWVcD+JwKGbAA4M36DuAjgwfINuFMCB4RvUQwAHhm/QTQI4MHyDegrgwPANulkAB4ZvUC8BHBi+Qb0FcGD4BvURwIHhG9RXAAeGb1A/ARwYvkH9BXBg+AYNEMCB4Rs0UAAHhm/QIAEcGL5BgwVwYPgGDRHAgeEbNFQAB4Zv0C0CODB8g4YJ4MDwDRougAPDN2iEAA4M36CRAjgwfINGCeDA8A0aLYADwzdojAAODN+gsQI4MHyDxgngwPANGi+AA8M3aIIADgzfoIkCODB8gyYJ4MDwDZosgAPDN2iKAA4M36CpAjgwfIOmCeDA8A2aLoADwzfoVgEcGL5BMwRwYPgGzRTAgeEbNEvCfF4Ch9sEcGD4Bs0WwIHhG3S7AA4M36A5AjgwfIPuEMCB4Rs0V4MDvFGuc075BsEzAX4BmCuPeeKYI435wZgbi3mhmBOJ+YCYC4d5YJgDhfk/mPuCeR+Y84Dx/hjrjnHeGOOM8b0Y24pxnRjTiPF8GMuGcVwYw4TxOxi7gnEbGLOA5/V4Vo3ntHhGiedzeDaF5zJ4JoH78bgXjfuwuAeJ+2+494T7LrjngN/b+K2J31n4jYHra1xb4roK1xT4PsV3Cc6jOIfg+EHfATdvyxBgHo0PkIZ/yF9eLfDpCOZJr5w/R3pturOU3vFwXcjrrhNdu4J/uFEV4/i63GmQA5uub9Bd0eeJlW9QZvxHlw/6ItoeLJee3rt5/etUY/XKRe4m9K95Ajgw/HbuEcCB4bczXwAHht/OvQI4MPx2FgjgwPDbuU8AB4bfzv0CODD8dh4QwIHht7NQAAeG384iARwYfjuLBXBg+O08KIADw29niQAODL+dhwRwYPjtLBXAgeG387AADgy/nWUCODD8dh4RwIHht/OoAA4Mv53HBHBg+O08LoADw2/nCQEcGH47ywVwYPjtPCmAA8NvZ4UADgy/nacEcGD47TwtgAPDb+cZARwYfjvPCuDA8Nt5TgAHht/O8wI4MPx2VgrgwPDbeUEAB4bfzosCODD8dlYJ4MDw23lJAAeG387LAjgw/HZeEcCB4bfzqgAODL+d1wRwYPjtvC6AA8Nv5w0BHBh+O28K4MDw23lLAAeG385qARwYfjtvC+DA8NtZI4ADw2/nHQEcGH47awVwYPjtvCuAA8NvZ50ADgy/nfcEcGD47awXwIHht7NBAAeG385GARwYfjvvC+DA8NvZJIADw2/nAwEcGH47H0qYz0vg8JEADgy/nc0CODD8dj4WwIHht7NFAAeG384nAjgw/Ha2anCAp0hn55TfDjwT4BeAufKYJ4450pgfjLmxmBeKOZGYD4i5cJgHhjlQmP+DuS+Y94E5Dxjvj7HuGOeNMc4Y34uxrRjXiTGNGM+HsWwYx4UxTBi/g7ErGLeBMQt4Xo9n1XhOi2eUeD6HZ1N4LoNnErgfj3vRuA+Le5C4/4Z7T7jvgnsO+L2N35r4nYXfGLi+xrUlrqtwTYHvU3yX4DyKcwiOH/QdcPO2DJrM4VnynHvq/dH488CnQzeP39sjvRyfah4PnUNed53o2hX8w42qGMcP5VODHNh0/Xa2RZ8nouG3E9Hw24mc/I+j13fR9mC59PR+psEVdSek/BtWLoNmbrQ52vduL6XHz9t0P//P//vP/+8Czj/bnd7bvXOXyTnPe296bHYY9hV/Od32bSmq+nVRje/NlPfrHgdfaJ5fTHR8pqnjMwMdO3nfF6caq1eO4hv1pQAODN+oXQI4MHyjvhLAgeEbtVsAB4Zv1NcCODB8o/YI4MDwjfpGAAeGb9ReARwYvlH7BHBg+EbtF8CB4Rv1rQAODN+oAwI4MHyjvhPAgeEbdVAAB4Zv1PcCODB8ow4J4MDwjTosgAPDN+qIAA4M36gfBHBg+EYdFcCB4Rv1owAODN+oYwI4MHyjfhLAgeEbdVwAB4Zv1M8CODB8o34RwIHhG/WrAA4M36jfBHBg+Eb9LoADwzfqDwEcGL5RfwrgwPCNOiGAA8M3yikd/xwYvlERARwYvlEZBHBg+EYlCODA8I1KFMCB4RuVUQAHhm9UJgEcGL5RmQVwYPhGZRHAgeEblSSAA8M3KqsADgzfqGwCODB8o7IL4MDwjcohgAPDNyqnAA4M36hkARwYvlG5BHBg+EblFsCB4RuVRwAHhm9UXgEcGL5RZwngwPCNyieAA8M3Kr8ADgzfqAICODB8owoK4MDwjSokgAPDN6qwAA4M36giAjgwfKOKCuDA8I0qJoADwzequAAODN+oEqX1cujWD7+Qzwx8ZvKUj2274A/zeSl9Dxo3el4RXQ3BtqRXPzxCcrvRvx8eIc+4+p9FydL6/fCvhJp5SqWfJ4O/7uwqEn3/j3Ey+LdByv/DNySSUq/3vtLq7zIqyqo4O+X1HM6ptqbV/nS2SOnS5serdrJGjhPzA3eHwYGbP8YHbptSf5s76barQHn9DwebriFUOY0ThAariEb7Iyf/4+j1J7Rdl2t5jU6Puj2Tp7ByuifjRhrvrVBaj5+36X7+Ff/7z/+vzcTYS8PU6q8v0C8MjsNKpWOvY6emjp0GOirH+MLpLwO70vrHRJU4ukDBZ6Fx8fCX5pIG56BzDC9QdNn635uelsscTpsiTvRtauxw2pTBib5NTRxOmxKc6NvU1LHTpvTyXO5E3/5CiWZt0j3vNHNO75wQzXe2/zsgmu/tSqX1dVzhxF5HZU0dlQ10NHc4fbGFE72WYomnxza9tgxX9Y9JjL49eO+URP08LZ3ocwxP5HwOrTTaVFyzTbp9D+8fkxjb76TWDue8dqXDydPG4eS5yuHkaetw8lztcPK0czh52jucPB0cTp5rHE6ejg4nz7UOJ08nh5PnOoeTp7PDyXO9w8nTxeHkucHh5OnqcPJ0czh5ujucPDc6nDw9HE6emxxOnp4OJ8/NDidPL4eTp7fDydPH4eTp63Dy9HM4efo7nDwDHE6egQ4nzyCHk2eww8kzxOHkGepw8tzicPIMczh5hjucPCMcTp6RDifPKIeTZ7TDyTPG4eQZ63tvNM+LTPOMczh6xjucPBMcTp6JDifPJIeTZ7LDyTPF4eSZ6nDyTHM4eaY7nDy3Opw8MxxOnpkOJ88sh5PnNoeTZ7bDyXO7w8kzx+HkucPh5JnrcPLc6XDy3OVw8tztcPLMczh57nE4eeY7nDz3Opw8CxxOnvscTp77HU6eBxxOnoUOJ88ih5NnscPJ86DDybPE4eR5yOHkWepw8jzscPIsczh5HnE4eR51OHkeczh5Hnc4eZ5wOHmWO5w8TzqcPCscTp6nHE6epx1OnmccTp5nHU6e5xxOnucdTp6VDifPCw4nz4sOJ88qh5PnJYeT52WHk+cVh5PnVYeT5zWHk+d1h5PnDYeT502Hk+cth5NntcPJ87bDybPG4eR5x+HkWetw8rzrcPKsczh53nM4edY7nDwbHE6ejQ4nz/sOJ88mh5PnA4eT50OHk+cjh5Nns8PJ87HDybPF4eT5xOHk2epw8nzqcPJsczh5PnM4ebY7nDyfO5w8OxxOni8cTp6dDifPlw4nzy6Hk+crh5Nnt8PJ87XDybPH4eT5xuHk2etw8uxzOHn2O5w83zqcPAccTp7vHE6egw4nz/cOJ88hh5PnsMPJc8Th5PnB4eQ56nDy/Ohw8hxzOHl+cjh5jjucPD87nDy/OJw8vzqcPL85nDy/O5w8fzicPH86nDwnHE4eFIjyvYGCenkipDwZSHkSSHkSSXkykvJkIuXJTMqThZQniZQnKylPNlKe7KQ8OUh5cpLyJJPy5CLlyU3Kk4eUJy8pz1mkPPlIefKT8hQg5SlIylOIlKcwKU8RUp6ipDzFSHmKk/KUIOVxSXlKkvKU0swTrD8aP+LSBv7CpUn6yxD0VzTQX5ak/2xSnnKkPOVJeSqQ8lQk5alEylOZlKcKKc85pDxVSXmqkfJUJ+U5l5SnBinPeaQ8NUl5ziflqUXKcwEpT21SngtJeeqQ8lxEylOXlOdiUp56pDyXkPLUJ+W5lJSnASlPQ1KeRqQ8l5HyNCblaULK05SU53JSnmakPFeQ8jQn5WlBytOSlKcVKU9rUp4rDfOczpqn6bWpjWabdNuC9R2/LBX9+190w9fuTU/HVQQduzR0rDLU0Zag4ysNHS8Z6riaoGO3ho6XDXW0I+j4WkPHK4Y62hN07NHQ8aqhjg4EHd9o6HjNUMc1BB17NXS8bqijI0HHPg0dbxjquJagY7+GjjcNdXQi6PhWQ8dbhjquI+g4oKFjtaGOzgQd32noeNtQx/UEHQc1dKwx1NGFoON7DR3vGOq4gaDjkIaOtYY6uhJ0HNbQ8a6hjm4EHUc0dKwz1NGdoOMHDR3vGeq4kaDjqIaO9YY6ehB0/KihY4OhjpsIOo5p6NhoqKMnQcdPGjreN9RxM0HHcQ0dmwx19CLo+FlDxweGOnoTdPyioeNDQx19CDp+1dDxkaGOvgQdv2no2Gyoox9Bx+8aOj421NGfoOMPDR1bDHUMIOj4U0PHJ4Y6BhJ0nNDQsdVQxyCCDqd09O//1FDHYIKOiIaObYY6hhB0ZNDQ8ZmhjqEEHQkaOrYb6riFoCNRQ8fnhjqGEXRk1NCxw1DHcIKOTBo6vjDUMYKgI7OGjp2GOkYSdGTR0PGloY5RBB1JGjp2GeoYTdCRVUPHV4Y6xhB0ZNPQsdtQx1iCjuwaOr421DGOoCOHho49hjrGE3Tk1NDxjaGOCQQdyRo69hrqmEjQkUtDxz5DHZMIOnJr6NhvqGMyQUceDR3fGuqYQtCRV0PHAUMdUwk6ztLQ8Z2hjmkEHfk0dBw01DGdoCO/ho7vDXXcStBRQEPHIUMdMwg6CmroOGyoYyZBRyENHUcMdcwi6CisoeMHQx23EXQU0dBx1FDHbIKOoho6fjTUcTtBRzENHccMdcwh6CiuoeMnQx13EHSU0NBx3FDH3BjrwFyUKho6KpT++/26Ou6MsY4tRdV1uxv9+7eq939ZVF/HXQQdeTV17DLQcTdBx1maOr4y0DGPoCOfpo7dBjruIejIr6njawMd8wk6Cmjq2GOg416CjoKaOr4x0LGAoKOQpo69BjruI+gorKljn4GO+wk6imjq2G+g4wGCjqKaOr410LGQoKOYpo4DBjoWEXQU19TxnYGOxQQdJTR1HDTQ8SBBh6up43sDHUsIOkpq6jhkoOMhgo5SmjoOG+hYStBRWlPHEQMdDxN0lNHU8YOBjmUEHWU1dRw10PEIQcfZmjp+NNDxKEFHOU0dxwx0PEbQUV5Tx08GOh4n6KigqeO4gY4nCDoqaur42UDHcoKOSpo6fjHQ8SRBR2VNHb8a6FhB0FFFU8dvBjqeIug4R1PH7wY6niboqKqp4w8DHc8QdFTT1PGngY5nCTqqa+o4YaDjOYKOczV1OMX0dTxP0FFDU0fEQMdKgo7zNHVkMNDxAkFHTU0dCQY6XiToOF9TR6KBjlUEHbU0dWQ00PESQccFmjoyGeh4maCjtqaOzAY6XiHouFBTRxYDHa8SdNTR1JFkoOM1go6LNHVkNdDxOkFHXU0d2Qx0vEHQcbGmjuwGOt4k6KinqSOHgY63CDou0dSR00DHaoKO+po6kg10vE3QcammjlwGOtYQdDTQ1JHbQMc7BB0NNXXkMdCxlqCjkaaOvAY63iXouExTx1kGOtYRdDTW1JHPQMd7BB1NNHXkN9CxnqCjqaaOAgY6NhB0XK6po6CBjo0EHc00dRQy0PE+QccVmjoKG+jYRNDRXFNHEQMdHxB0tNDUUdRAx4cEHS01dRQz0PERQUcrTR3FDXRsJuhoramjhIGOjwk6rtTU4Rro2ELQ0UZTR0kDHZ8QdFylqaOUgY6tBB1tNXWUNtDxKUHH1Zo6yhjo2EbQ0U5TR1kDHZ8RdLTX1HG2gY7tBB0dNHWUM9DxOUHHNZo6yhvo2EHQ0VFTRwUDHV8QdFyrqaOigY6dBB2dNHVUMtDxJUHHdZo6Khvo2EXQ0VlTRxUDHV8RdFyvqeMcAx27CTq6aOqoaqDja4KOGzR1VDPQsYego6umjuoGOr4h6OimqeNcAx17CTq6a+qoYaBjH0HHjZo6zjPQsZ+go4emjpoGOr4l6LhJU8f5BjoOEHT01NRRy0DHdwQdN2vquMBAx0GCjl6aOmob6PieoKO3po4LDXQcIujoo6mjjoGOwwQdfTV1XGSg4whBRz9NHXUNdPxA0NFfU8fFBjqOEnQM0NRRz0DHjwQdAzV1XGKg4xhBxyBNHfUNdPxE0DFYU8elBjqOE3QM0dTRwEDHzwQdQzV1NDTQ8QtBxy2aOhoZ6PiVoGOYpo7LDHT8RtAxXFNHYwMdvxN0jNDU0cRAxx8EHSM1dTQ10PEnQccoTR2XG+g4QdAxWlNHMwMdaFiU7zXWMUZTxxUGOiIEHWM1dTQ30JGBoGOcpo4WBjoSCDrGa+poaaAjkaBjgqaOVgY6MhJ0TNTU0dpARyaCjkmaOq400JGZoGOypo42BjqyEHRM0dRxlYGOJIKOqZo62hroyErQMU1Tx9UGOrIRdEzX1NHOQEd2go5bNXW0N9CRg6BjhqaODgY6chJ0zNTUcY2BjmSCjlmaOjoa6MhF0HGbpo5rDXTkJuiYramjk4GOPAQdt2vquM5AR16CjjmaOjob6DiLoOMOTR3XG+jIR9AxV1NHFwMd+Qk67tTUcYOBjgIEHXdp6uhqoKMgQcfdmjq6GegoRNAxT1NHdwMdhQk67tHUcaOBjiIEHfM1dfQw0FGUoONeTR03GegoRtCxQFNHTwMdxQk67tPUcbOBjhIEHfdr6uhloMMl6HhAU0dvAx0lCToWauroY6CjFEHHIk0dfQ10lCboWKypo5+BjjIEHQ9q6uhvoKMsQccSTR0DDHScTdDxkKaOgQY6yhF0LNXUMchAR3mCjoc1dQw20FGBoGOZpo4hBjoqEnQ8oqljqIGOSgQdj2rquMVAR2WCjsc0dQwz0FGFoONxTR3DDXScQ9DxhKaOEQY6qhJ0LNfUMdJARzWCjic1dYwy0FGdoGOFpo7RBjrOJeh4SlPHGAMdNQg6ntbUMdZAx3kx1oF13M/RXMf9HIN13Gtq6jhZUDPP+aQ8tUh5LiDlqU3KcyEpTx1SnotIeeqS8lxMylOPlOcSUp76pDyXkvI0IOVpSMrTiJTnMlKexqQ8TUh5mpLyXE7K04yU5wpSnuakPC1IeVqS8rQi5WlNynMlKU8bUp6rSHnakvJcTcrTjpSnPSlPB1Kea0h5OpLyXEvK04mU5zpSns6kPNeT8nQh5bmBlKcrKU83Up7upDw3kvL0IOW5iZSnJynPzaQ8vUh5epPy9CHl6UvK04+Upz8pzwBSnoGkPINIeQaT8gwh5RlKynMLKc8wUp7hpDwjSHlGkvKMIuUZTcozhpRnLCnPOFKe8aQ8E0h5JpLyTCLlmUzKM4WUZyopzzRSnumkPLeS8swg5ZlJyjOLlOc2Up7ZpDy3k/LMIeW5g5RnLinPnaQ8d5Hy3E3KM4+U5x5SnvmkPPeS8iwg5bmPlOd+Up4HSHkWkvIsIuVZTMrzICnPElKeh0h5lpLyPEzKs4yU5xFSnkdJeR4j5XmclOcJUp7lpDxPkvKsIOV5ipTnaVKeZ0h5niXleY6U53lSnpWkPC+Q8rxIyrOKlOclUp6XSXleIeV5lZTnNVKe10l53iDleZOU5y1SntWkPG+T8qwh5XmHlGctKc+7pDzrSHneI+VZT8qzgZRnIynP+6Q8m0h5PiDl+ZCU5yNSns2kPB+T8mwh5fmElGcrKc+npDzbSHk+I+XZTsrzOSnPDlKeL0h5dpLyfEnKs4uU5ytSnt2kPF+T8uwh5fmGlGcvKc8+Up79pDzfkvIcIOX5jpTnICnP96Q8h0h5DpPyHCHl+YGU5ygpz4+kPMdIeX4i5TlOyvMzKc8vpDy/kvL8RsrzOynPH6Q8f5LynCDlcRI4eSKkPBlIeRJIeRJJeTKS8mQi5clMypOFlCeJlCcrKU82Up7spDw5SHlykvIkk/LkIuXJTcqTh5QnLynPWaQ8+Uh58pPyFCDlKUjKU4iUpzApTxFSnqKkPMVIeYqT8pQg5XFJeUqS8pQi5SlNylOGlKcsKc/ZpDzlSHnKk/JUIOWpSMpTiZSnMilPFVKec0h5qpLyVCPlqU7Kcy4pTw1SnvNIeWqS8pxPylOLlOcCUp7apDwXkvLUIeW5iJSnLinPxaQ89Uh5LiHlqU/KcykpTwNSnoakPI1IeS4j5WlMytOElKcpKc/lpDzNSHmuIOVpTsrTgpSnJSlPK1Ke1qQ8V5LytCHluYqUpy0pz9WkPO1IedqT8nQg5bmGlKcjKc+1pDydSHmuI+XpTMpzPSlPF1KeG0h5upLydCPl6U7KcyMpTw9SnptIeXqS8txMytOLlKc3KU8fUp6+pDz9SHn6k/IMIOUZSMoziJRnMCnPEFKeoaQ8t5DyDCPlGU7KM4KUZyQpzyhSntGkPGNIecaS8owj5RlPyjOBlGciKc8kUp7JpDxTSHmmkvJMI+WZTspzKynPDFKemaQ8s0h5biPlmU3KczspzxxSnjtIeeaS8txJynMXKc/dpDzzSHnuIeWZT8pzLynPAlKe+0h57ifleYCUZyEpzyJSnsWkPA+S8iwh5XmIlGcpKc/DpDzLDPNkCOSp1q3FwF3VF1V4sVWjlePHt+9Uvsa+JsNX9Z/TYNexuYfV/jJO9G16RLNNum1ppKJ86ejfX0G9t2JpfbaPkj7Dx0h5Hif1lUQn+jY9QWpTRif6Ni0ntSmTE32bniS1KbMTfZtWkNqUxYm+TU+R2pTkRN+mp0ltyupE36ZnSG3K5kTfpmdJbcruRN+m50htyuFE36bnSW3K6UTfppWkNiU70bfpBVKbcjnRt+lFUptyO9G3aRWpTXmc6Nv0EqlNeZ3o2/QyqU1nOdG36RVSm/I50bfpVVKb8jvRt+k1UpsKONG36XVSmwo60bfpDVKbCjnRt+lNUpsKO9G36S1Sm4o40bdpNalNRZ3o2/Q2qU3FnOjbtIbUpuJO9G16h9SmEk70bVpLapPrRN+md0ltKulE36Z1pDaVcqJv03ukNpV2om/Teo02JaS0BeNIsF2morGKJiqaqrhcRTMVV6horqKFipYqWqloreJKFW1UXKWirYqrVbRT0V5FBxXXqOio4loVnVRcp6KziutVdFFxg4quKrqp6K7iRhU9VNykoqeKm1X0UtFbRR8VfVX0U9FfxQAVA1UMUjFYxRAVQ1XcomKYiuEqRqgYqWKUitEqxqgYq2KcivEqJqiYqGKSisngoGKqimkqpqu4VcUMFTNVzFJxm4rZKm5XMUfFHSrmqrhTxV0q7lYxT8U9KuaruFfFAhX3qbhfxQMqFqpYpGKxigdVLFHxkIqlKh5WsUzFIyoeVfGYisdVPKFiuYonVaxQ8ZSKp1U8o+JZFc+peF7FShUvqHhRxSoVL6l4WcUrKl5V8ZqK11W8oeJNFW+pWK3ibRVrVLyjYq2Kd1WsU/GeivUqNqjYqOJ9FZtUfKDiQxUfqdis4mMVW1R8omKrik9VbFPxmYrtKj5XsUPFFyp2qvhSxS4VX6nYreJrFXtUfKNir4p9Kvar+FbFARXfqTio4nsVh1TgmDii4gcVR1X8qOKYip9UHFfxs4pfVPyq4jcVv6v4Q8WfKk6owE3diIoMKhJUJKrIqCKTiswqsqhIUpFVRTYV2VXkUJFTRbKKXCpyq8ijIq+Ks1TkU5FfRQEVBVUUUlFYRREVRVUUU1FcRQkVroqSKkqpKK2ijIqyKs5WUU5FeRUVVFRUUUlFZRVVVJyjoqqKaiqqqzhXRQ0V56moqeJ8FbVUXKCitooLVdRRcZGKuiouVlFPxSUq6qu4VEUDFQ1VNFJxmYrGKpqoaKrichXNVFyhormKFipaqmilorWKK1W0UXGVirYqrlbRTkV7FR1UXKOio4prVXRScZ2KziquV9FFxQ0quqropqK7ihtV9FBxk4qeKm5W0UtFbxV9VPRV0U9FfxUDVAxUMUjFYBVDVAxVcYuKYSqGqxihYqSKUSpGqxijYqyKcSrGq5igYqKKSSomq5iiYqqKaSqmq7hVxQwVM1XMUnGbitkqblcxR8UdKuaquFPFXSruVjFPxT0q5qu4V8UCFfepuF/FAyoWqlikYrGKB1UsUfGQiqUqHlaxTMUjKh5V8ZiKx1U8oWK5iidVrFDxlIqnVTyj4lkVz6l4XsVKFS+oeFHFKhUvqXhZxSsqXlXxmorXVbyh4k0Vb6lYreJtFWtUvKNirYp3VaxT8Z6K9So2qNio4n0Vm1R8oOJDFR+p2KziYxVbVHyiYquKT1VsU/GZiu0qPlexQ8UXKnaq+FLFLhVfqdit4msVe1R8o2Kvin0q9qv4VsUBFd+pOKjiexWHVBxWcUTFDyqOqvhRxTEVP6k4ruJnFb+o+FXFbyp+V/GHij9VnFCBL72IigwqElQkqsioIpOKzCqyqEhSkVVFNhXZVeRQkVNFsopcKnKryKMir4qzVORTkV9FARUFVRRSUVhFERVFVRRTUVxFCaxFoKKkilIqSqsoo6KsirNVlFNRXkUFFRVVVFJRWUUVFeeoqKqimorqKs5VUUPFeSpqqjhfRS0VF6ioreJCFXVUXKSiroqLVdRTcYmK+iouVdFARUMVjVRcpqKxiiYqmqq4XEUzFVeoaK6ihYqWKlqpaK3iShVtVFyloq2Kq1W0U9FeRQcV16joqOJaFZ1UXKeis4rrVXRRcYOKriq6qeiu4kYVPVTcpKKniptV9FLRW0UfFX1V9FPRX8UAFQNVDFIxWMUQFUNV3KJimIrhKkaoGKlilIrRKsaoGKtinIrxKiaomKhikorJKqaomKpimorpKm5VMUPFTBWzVNymYraK21XMUXGHirkq7lRxl4q7VcxTcY+K+SruVbFAxX0q7lfxgIqFKhapWKziQRVLVDykYqmKh1UsU/GIikdVPKbicRVPqFiu4kkVK1Q8peJpFc+oeFbFcyqeV7FSxQsqXlSxSsVLKrA2PdaNx5ruWG8da6FjnXKsIY71vbH2NtbFxprVWE8aaz1jHWaskYz1i7G2MNb9xZq8WC8Xa9linVmsAYv1WbF2KtY1xZqjWA8Ua3ViHU2scYn1J7E2JNZtxJqKWO8QaxFinUCs4Yf19bD2Hdalw5pxWM8Na61hHTSsUYb1w7C2F9bdwppYWK8Ka0lhnSeswYT1kbB2EdYVwpo/WI8Ha+VgHRusMYP1X7A2C9ZNwZomWG8Ea4HgwhdraGB9C6w9gXUhsGYD1lPAWgdYhwBrBMC/H9768L2HJz384uHlDp91eKDDnxze4fD1huc2/LDhVQ0faXg8w38Z3sjwLYanMPx+//LiVQEPW/jLwvsVvqzwTIWfKbxG4QMKj074Z8LbEr6T8ISEXyO8FOFzCA9C+APCuw++evC8gx8dvOLg4waPNfifwZsMvmHw9ILfFryw4FMFDyn4O8F7Cb5I8CyCnxC8fuDDA48c+NfAWwa+L/BkgV8KvEzgMwIPEPhzwDsDvhbwnIAfBLwa4KMAjwP4D8AbAPP2Mace890xFx3zxDGHG/OrMfcZ85IxZxjzeTHXFvNgMUcV80cxtxPzLjEnEvMVMZcQ8/wwBw/z4zB3DfPKMOcL87EwVwrzmDDHCPN/MDcH82YwpwXzTTAXBPM0MIcC8xsw9wDzAjBmH7+DMNYd49AxRhzjtzG2GuOeMSYZ44UxlhfjbDEGFuNTMXYU4zox5hLjITFWEeMIMcYP4+8wNg7j1jCmDOO9MBYL46QwhgnjizD2B+NyMGYG41kw1gRjOzAuAmMWMJ4Az+/xvBzPp/E8GM9f8bwTzxfxPA/Pz/C8Cs+H8DwGzz/wvAH393E/Hfevcb8Y92dxPxT3H3G/D/fXcD8L949wvwb3R3A/Ar//8Xsbv2/xexKHDH4belvKV+hfvx8xDgHP/fGcHc+18RwZz23xnBTPJfEcEM/d8JwLz5XwHAfPTfCcAs8FcB8e971xnxn3dXEfFfctcZ8Q9+VwHwz3nXCfx7uvUtL5+3d6aefvMTNlVZytopyK8ioqqKioopKKyiqqqDhHRVUV1VRUV3GuihoqzlNRU8X5KmqpuEBFbRUXqqij4iIVdVVcrKKeiktU1FdxqYoGKho6f4+VCW6X+/6+KuXf23u8s/7HA5k/8L/v6jT2TU75986WzcsU+aXZRP+++Sn/ruma4aOpyZnu8O9bkEadOAdgK5Gp0SdXVlq93b8vZ8aUfTOfz9CoVZav/fvypey7LsvCVy/9KNty/74Caewrmsa+4mnsK5/Gvgpp7DsnjX3V0th3bhr7aqSx74I09l2Yxr6L09h3SRr7Gqexr0ka+5qnsa9lGvtap7HvyjT2tUtjX4c09nVKY1/nNPbdmMa+Hmns653Gvr5p7Oufxr4Baewbmsa+YWnsG5XGvjFp7FvsHdMhx3u2LH//G3aeKJHGvrNT9n1/W9ZJXxz4bLZ/X8U0yl2Yxr7GKfvGnd0+x4WVaz77j3zZU89XNXvq5SrnTD1ftTT2jUlj34ycqedblzv1cr3zpK5hSJ7U63zsrNTrfDKNfb+nsS8pX+r5GhdMvdy3BVPXcLRg6nWWL5J6nZXT2DcijX1Ti6Seb03x1MvdVCJ1DQNKpF7nwyVTr/OxNPYdT2VfSlf563oFW5dBg7oPHNy5a78+/bsM7nlD7+6d+w3s0lX9M7T7wEE9+/XtfMvALv37dx+YP+X9KYfLyWcJuCbDV7vrRLVFsvjK6Zcf1zBLsEKt8s5f5SOOaf6/9XvXoSblM3kN8ZX3t8WrF9e02Xx/5wjkN2x/w9Ntf5402ux9Ng1873edqLZEXLdDZ66UF6C9TMrfQwb37N1z8PD6f3XVBid7asu/OurVf/fTYIWRwP83SOX1rL52J/reEz2TYQ29OlMucf/6XZIQ8s7EwL/ee1JOi3/9fvHye/9GM976szXHPnnu8nP75A6Ux+Z9Nll9ebr1HNS1nzq+O/ftfkvnPt0HDerSo/ugX0v/vfM/PsBnn+YBPvs0O3gki6+MQfmTB/htvvLBtmDL7vzzQPKXyZyy3/u7fcrfp3nwz2Ye/N77XCeq7WS/aWhWPoNXvpFZ+ZPtv8xXXoON65Vv7H/RiWpL9Mo2CSv746CtD6+f9ezbjwxetvTu3J/lmJ+tctaxkycfKvJ90XsPT17ilW3qa7eG7kxe+cvDcl/8QsI1Nz39a79sjSeuuOWzbS2G5Cja5a0S05Zes2ZOif2dp3hlm4WV3TdzwdjkFXcscittPJap8ezvOh9tmvGCzzaOKrR6wu/7D8/1yl4RVvaja37f8Vzy3BHDZq0aeUH5vF2emLv1yLdr1z+ZfHTX8gFba3plm/s0m5yjWpiVz+WVb+krrzEx5mRfa2VW/mT7W5uVP3msXOl70fX+GP/QIzvqz9pYbffvWW9t3mXSsBozNrc7OKLgsrJ7bl5e9IncXtk2YWW/GtxgzuACfc4/mGXTrOqLixTb+eOy5/b+NLz7Bd/t3bey5FGv7FVhZdPZvLJtQ8oWPLdc7f73fHDW5+VLbb/kjSfOubPQj2Uu+vzFJosP/7ruZ19Z76aX5ud9klc7s/Inj+/2ZuUTvPIdfOU1jvGT5a/xveimXebk15JXtqNvh+4FM7Zro8/tbRm9sp3Cy0Ymlho0L2lWpPlbE6o8lz3rW/vrL7y0wcb1k24tkfzEQq/sdSFlK16UdHjprWMmO18uO3DbTxVfuaRK7uL1c5/z8YJPivQd2LHQYa9sZy+Ro6W5qFf+el/5QNvT3LzyXczKnzw/3OB70XWi2k6W7apf9uRx0s2rzNHidvLz7m5W/uR32Y1m5bN45XuYlU/yyt9kVj6rV76nWXnvvtpfA9gMymf3yvcyK5/DK9/bV17jPHXyGqqPWfkqXvm+ZuWreeX7mZWv7pXv7yuvwe8Sr/wAs/z1vfIDzco38soPMit/mVd+sFn5Fl75IWblO3vlh5qV7+KVv8Ws/A1e+WFm5bt65Yeble/mlR9hVr67V36kWfkbvfKjzMr38MqPNit/k1d+jFn5nl75sWble3nlx5mV7+2VH29Wvo9XfoJZ+b5e+Ylm5ft55SeZle/vlZ9sVn6gV36KWflBXvmpZuUHe+WnmZUf4pWfblZ+qFf+VrPyw7zyM8zKD/fKzzQrP9IrP8us/GjvJvKxAn+/EHa/S6O+Vt49Ov/N3Ijzz7rNbhr/NS77H/U5zj/vOTqB+pMCbdHMF4kE6vPyBfV5rDztGUPakhyyL8g4Y0iejCF5kkP2jbBY12SLdY20WNdEi3XZ1DjeYl1jLNY1wWJdoyzW1dtiXTbZ2zyGpsRpXUMt1mWzT9hkb7N/DbdYl81j22afGGaxLpvn6OkW64rX70fvutG7dvBfa0RS+dfLE3zNy5MUqMv0uidMV2JIvrTen5DG+zNFWT8GNiSn/J0ysKFh9xuG9LiiXw8nsCUG/r9pKk0sGnhfxzSaFqw3Eojg60UDryWEvNe/QZ43VihF3mXdB3e96aouPXp076ZEDgqWCNbUJJXXgxek/vd4F+OZAi11nai2DNF0Sn/9SYG2mHbKsE4TdrCBaspgPY/qFf26dGvQpf+gIb27Z/BX7fyz5UEq/lr9r4V9phFfy5w03tck8P/NQ8o5IXVjv/fJZQm87jpRbUler0gK2entyxqo278vm2+f/9MMbgkh7ffajJ+cvxU4VW/wfcH2+D+PrIF9mX37svlyBz/XTCF5vPZnCHl/5kBdmULKeWXSy5eQSjn/32n9dI7maPN0YEsOyeHljuFZ4ax4Pyt4+jKb5csbCZT35/PX6bXHY50lZJ9Xl3ccZkqlLv9YO//7V6f8mxx4H7arAjmyhLTX/5rHB8xeC7TdzzbYT06Ho78+r13+1/z1Jzmn1S8jaX1ufn3BfmJ4js0TDXd/e4Ln5CBb/3kvUyp1eWUTA+/3BjInO/8+7wf7SVJIe/2v+fvJ+kDb/WyD/cSQY/1o+4lXf5JzWv0yktbn5tcX7CdJZvkuiYa7vz1h389+tv7vwEyp1OWVTQy8f0fKv8mB92EL9pOsIe31v+bvJ5+m/J0llfa6TlTbLWHXLcF+FrxucZ2otqLR9jOv/iTntD73SFocw463sGsvr2xyyL7gT61sIXmyheRJDtk32WJdEy3WNcxiXSMs1jUlTusaY7GuCRbrGmWxrt4W6xpnsS6b/T4eeaX1PaRbFzabfXWqxbpGW6zLZl+1qXGoxbri9dieabGuvhbr8h7jB6/zvPqxZXH+fezp/jbx1+e10/+av/6kQFtMr3XCuIRdM3r6spvlyx0JlPfn89fptcdjnSNkn1dXylTif1xT++vyyiYG3n92CtDkwPuwBa+pc4S01/+a/5q6ZEq9OUPaG7y/oNsf/eWDjPzlgv3xdD4vf31eO/2v+etPck6r/0fS6h9hXDx9Oczy5Yrm8/W3x2OdM2SfV5f3OCRTKnV5ZRMD7z8/0B9z+toU7I85Q9rrf83fH6tH/tl2P9tgPzHk2CjafuLVn+ScVr+MpPW5+fUF+0lOs3wNo+Hub4/HOjlkn1eXNzc4Uyp1eWUTA+9vEOgnyb42BftJckh7/a/5+8nFgX7iZxvsJ2YcI0ei7Sde/UnOafXLSFqfW9j529OXbJQvcjga7v72eKxzhezz6vLmQWdKpS6vbGLg/a0C/SSXr02NAjlyhbTX/5q/nzQL9BM/22A/MeP4l6XqP+rz2uV/zV9/knNax3ckrc8t7Lzq6ctllq9+NNz97fFY5w7Z59XlPVHNlEpdXtnEwPs7BfpJbl+bgueT3CHt9b/m7yftU+rNGdLe4P3zaM9TySHlvfeF9TmE60S1XRX2mWqUHxD8jLw6/G3L43tdo79Uj/Z48OpPcv7dX0yOhzyBfKl93p72vCFtSQ7ZF/yM8obkyRuSJzlk32iLdY2wWFdvi3UNs1jXOIt1DbVY1xiLdY23WJfNPjHcYl1DLNY1xVJdYefP02nXZIt1TbVYl81je6bFumyeC20ejxMs1mXzc5xlsS6bfcIme1vHtmNZo80+MdFiXfF6nrDZrv+Fa6Yz32n/HXubx+NIi3XZ1HhrnLbL5vWETY3B52f+35aRlH+zOP8+9jR+t3q3ME/W57XT/5q//qRAWzTzRdLi4tcX/J18VkhbkkP2BX8nnxWS56yQPMkh+0ZbrGuExbp6W6zLpsYxFuuaYLGuqRbrssl+psW6znyOenXNsliXzT4x3GJdEy3WZfP8NcViXTbZ2+yrNtnH6/nLZl+12b/GW6zL5udos3/ZPIZs9q/JFusaarEumxrj9VrOpkab1xPx+jnG67XcrRbritfrHJvXmGeuJ/5/HEM2zxM222Wrf+HvXJbqwjbNYl022du8BvC+a4Pjvrz6sZ3mPTBv+PHJ+rx2+l/z15/k/PuztHUPLGwMmafvLLN8bjSfg789Hut8Ifu8ujyPj0yp1OWVTQy8v02KqOTA+7AFx9jlC2mv/zX/2KkWKf+TM6S9p/sswl8+yMhfLtgfDT+vhGj7o1d/knNa/T+SVv8I4xLWP7yyySH7gvyj/VzTqit4X9jbjy1LSDkNHsnR8vev23Man3ckLS5h50lPX36zfDmDx7A/n79Orz0e6wIh+7y6UpZh+8f5wF+XVzYx8P7egfNBAV+brgrkKBDSXv9r/vNBj8D5wGZ/9JcPMvKXC/ZHw88r6jklXv1Jzmn1/0ha/SOMi6evgFm+XNF8vv72eKwLhuzz6iqU8v+ZUqnLK5sYeP+oQH8s6GtT8PupYEh7/a/5++Mtgf4YdpxFc1z66w07P3rv+/+WJ3tIueDxZdj/MkZ7fHn1JzmndTxH0urvYVzC+rtXNjlkX2rnZn+esH4qsS6v/6X13RTt90ZY/ytAzhPWlxGuE9XW1Ctf0Kz8hV75Qmblm3vlC5uVb+OVL2JWvrFXvqhZ+fZe+WJm5U+ur1ncrPwV3rFewvdi8Dzn+l7XOO+0iPY856b8nRRoi+l5zg3kC+oLnudKhrQlOWRf8BgpGZKnZEie5JB9EyzWNd1iXUMt1jXOYl1jLNY13GJdvS3WNd5iXSMs1jUlTuuy2VdHWazLFnv8XdBSXdhs9lWbx+NUi3XF6/E4zWJdNo+heGU/2mJdNs8TNr9rbZ6jbbK3ySte+9c4i3XZ/Bxtsv9fOE/MtFQX/i5kqS5sAy22q3Ac1oVtgMV2FbFUFzZb7LENicN24e+iFuvKYKkubLb6BLbBlurC38Us1YXN5udos122+ir+jtdzYbKlurDZPH/Z/BxttiseeWGz2VeLW6oLm83vDlvnL2yzLNZl8/prpMW6bN5TsHlNPs5iXTbvPXrX9959bNe3L5Lybxbn38eL7tgNf31eO/2v+etPCrRFM18kLS6u77XgWIBSZvlyRALl/fn8dXrt8ViXDtnn1VUm5f/9YwH8dXllEwPvvyIFbHLgfdiCY1P8+xJCXvOPBWicUm+WVNrrOlFtlbM7/2YV7Gd+LhqfQ+Vo+5lXf5JzWp97JC2Ofn3BZ0VlQtqSHNiHbZDvfcF9CSGvZUijrokW65pmsa4JFusabrGu3hbrGmOxLpu8plusa6jFusZZrMsm+3jtX+Mt1jXCYl1T4rQum311lMW6bLK32b9GWqxrssW6bH6njbdYl032Uy3WdavFumxqnGmxrr4W65plqS78XdJSXdji9drE5rnQ5nWOzfOEzfNXvF4Xep+jN37U33eD40dLhuQpmUYef3nvfdlDykVS/j3N34RRrysX/E1Y0ixfmr8Jw7jo/CaMOP9+zvL/8bt4mMW6/heuZ+P9PBJv33mTLNYVr98H8frb3ub1bLz+XorXa5f/BfbjLdZl8xwdvKbyX88kBvJEe18+OaS8976w6yaE60S1XZnF+fe1h0b5q73yZc3Kt/TKn21WvoF3XVXO92Ik5V+v7vK+1zWu8cZHAvU5Tvg1pVd/UqAtmvlOXlOWD+QL6gteU1YIaUtyyL7gnJQKIXkqhORJDtk3wWJd0y3WNdRiXeMs1jXGYl3DLdbV22JdkyzWNdliXTbZx2tfnWqxrhEW67LZv2yecyZarOt/gf14i3XZ1DglTuuyeWyPsliXLfb4u6ClurDZ7Kvxeg0wzmJdZ763z3xvx/K8euZ7+8z39pnv7f9/39vYbPKK1746zWJdNnnZPOfYZD/aYl02j6HpFuuK13N0vF5P2NQ4zmJdNj9Hm+z/F84TMy3VFXH+PcbhdOoqbbEuW/fJ8XcZS3VhG2CxXcmW6sI20GJdQyzWNdhSXfi7rMW6/r+zx9+FLNZV2GJdRSzVhc0mr7Mt1mWrr2KzeQzFa7+PV43/38+FNtuF7cx3h/zvDmyDLNWFv22OebDFC38Xt1hXMYt12fquxWbz+9EWL2zx+N2BbZbFumz+5htpsS6bz3Rs3gcYZ7Eum+Nzgr4N/rFhkZR/szj/Pl6Qx3Wi2rJFAvV57fS/5q8/KdAWzXyRtLj49XlcPO0VQ9qSHNiHLeh/UDEkT8WQPGfqOlPXf1WXN17YfwwH52Dpnkf85b33ZQ8pFzyP+I8zjeO6TLTnEa/+JOe0zluRtPiHcfG0VwppS3LIvuD9yUoheSqF5EkO2TfZYl0TLdY1zGJdIyzWNSVO6xpjsa4JFusaZbGu3hbrmmSxrqEW67J5PE61WJfN/mWT1ziLddnsXzaPIZvnVZt9wuZ5NV6PbZvHo81jaLrFumwej/8L/Wu8xbpsXgME5/j5r5eDc/x0fxv4y3vvyx5SLpLyb5ZA+yKO1jX0nEigPq+d/tf89Sc5/9Zscs0exj+Mi6e9ckhbkkP2Be/3Vg7JUzkkT3LIvgkW65pusa6hFusaZ7GuMRbrGm6xrt4W65pksa7JFuuyyT5e++pUi3WNsFiXzf5l85wz0WJd/wvsx1usy6bGKXFal81je5TFumyxx98FLdWFzWZfjddrgHEW64rX722b7G1eA9g8R9u8nojXvmqzf5353v7/cWyfuSY/07+C+8ZbrOvMdaFeXfF4XYjNJq947avTLNZlk5fNc45N9qMt1mXzGLL53RGv5+h4/U6zqXGcxbpsfo422f8vnCdmWqor4vx7jNLptGuAxXaVtlhXssW6bD4fssmruKW6sA2xWNdgS3Xh77IW67LVJ7ANtFiXLfY2j23bx6OtYwh/l7FUFzabx+P/Qv8qZLGuwhbrKmKpLmw2eZ1tsS5b50JsNs/R8drv41Xj//fvWpvtwnbm2kT+dwe2QZbqsnk9gc0WL/xt65ocfxezWJet71psNr8fbf6GicfvDmyzLNbV22JdIy3WZfO5lc37TOMs1mVzfGFwjq5/bGsk5d8szr+PF+Rxnai2rJFAfV47/a/5608KtEUzXyQtLmHjpD3tVULakhzYhy04h7JKSJ4qIXnO1HWmLp26vH7p78fBY9LfZzWOkajXoffqT3JO6xwQSYtL2LnK035OSFuSQ/YFr1HOCclzTkie5JB9YyzWNcViXcMs1jXRYl3TLdY1wmJdk+O0XcMt1tXbYl0zLdbV12JdsyzWZZPXBIt12Twep1qsy2a/t3kutPk5jrRYl81zjs0+Md5iXTbZD43Tdk2yWJfNPmHz2sTm97bNzzFez182+9d4i3XF6znaZl02+9coi3V57IP3ELz6sWUJlIs4Wr+dikUC9Xnt9L/mrz8p0BbNfJG0uIT9hvW0Vw1pS3LIvuDYgKoheaqG5EkO2TfZYl0TLdY1zGJdIyzWNSVO6xpjsa4JFusaZbGu3hbrmmSxLpvHkM3PcbrFuoZarGuqxbpsHts2+5fNdtn8HG22y+Z5wmafsPk5jrdYl83zfdCHxn9tFPSh0b0+85f33pc9pFwk5d8szr+vUTSulyZHAvV57fS/5q8/yfm3ZpPrszD+YVw87dVC2pIcsi84pqFaSJ5qIXmSQ/ZNsFjXdIt1DbVY1ziLdY2xWNdwi3X1tljXJIt1TbZYl0328dpXp1qsa4TFumz2L5vtsvk52myXzfOqzT5h83Mcb7Eum+ynxGldNs8ToyzWZYs9/i5oqS5sNvtqvF5PjLNY15lrgDPXALE8r565BjhzDXDmGuDMNUB6ddnkFa99dZrFumzyitfzxGiLddk8huL1uyNer33jtX+Ns1iXzc/RJvv/hfPETEt1RZx/j2M4nbpKW6zL1v17/F3GUl3YBlhsV7KlurANtFjXkDhsl+3P0SavwZbqst0nbH2O+LuQxboKW6yriKW6sNnkdbbFuspaqgtbvPbVM8fjf6cxHvsXtjPfQ2f6fXDfIEt14W+bY0Rs9q/iFusqZrEuW9/b2Gx+19rihS0ej0dssyzWZfO36EiLddl8bmXz/sQ4i3XZHM8U9L1I9u2LpPzrjQv0n+uQx3Wi2hIjgfq8dvpf89ef5Pz7+0Mj38lxgQUC+YL6PC6e9oIhbUkO7MMW9DgoGJKnYEgeVl1hnxfCdaLa2gZ5eHX46/b/ltP4bApG2xe8+pOcf382Jn2hUCBfalw97YVD2pIcsi/IuHBInsIheZJD9k2wWNfYOG3XREt14e8sluqyrbG3xbrGW6xrisW6RlmsyyavqRbrmmGxrkkW6xphsS6b7MdYrGu4xbpsapxpsa6+Fuvyru297y//tY+d7+7Il6bf3YbXjWl+d/v1eVw8fYWN8kV2RvM5+NvjsS4Sss+ry/tdmSmVuryyiYH3z0z5cksOvA9bo0COIiHt9b/m8cmoYmqWf7bdzzbYT8w4Ojmi7Sde/UnO6fTLU/0k7HPz6wv2kyJm+bJHw93fHo918ZB9Xl2lU/4/Uyp1eWUTA++fH+gnxX1tCv62KB7SXv9r/n5yZ0q9OUPaWz5Qr+55y1/ee19YnrNOM89ZIXnC+jbCdaLadoX1HY3yi7zyxc3KV/DKlzYr/6JXvoxZ+ZVe+bJm5ceHzTHUKN/JK1/NrHx5r3x1s/I1vPLnmpXf55WvYVa+iVf+PLPyq7zyNc3Kz/HKn29W/phXvpZZ+ble+QvMyh/2yl/oK69x7ne98heZlU/w2lvH/2JIm7z6ve+O2r73R1L516sruM/LlRSoy/R7Nqzt/vYFz8N1fPn8GlOrq45mXVlC9pl8Jhc6qevy1589jbYE24kteJ1vqhnbcIt1DbZY12RLdYV9N59Ou/pZbFcRi3UVt1hXaYt1ZbBUF7aBFttVxmJdZeO0rqIW66pqsa5qFuuqbrGucy3WVcNSXdhmWGzXeZbqwjbJYrtqWqzrbIt12fruwN/nW6yrlsW6LrBUF7ZGcVpXg5R/vfsC/u8lN5AnQ0ieDGnk8ZcP3hPyl/Pe5/w4aOvD62c9+/Yjg5ctvTv3ZznmZ6ucdezkyYeKfF/03sOTHzrN+2XtTvN+VF6vfFGz8nnC7klolM8ddk9Co3zDsHsSGuXrh92T0Ljv+y/fI8fR117NKLdTIux+hEbbD4fdj8gQdXknS9j9CI3y54fdj9AoXyt4P8LxlS3zyUuZjz82O/GZTw/3u+VYxbnvNZ712uMX3bGxysXj2uy++/vmYfciNNjnDN6LcKIvWyfsPoTOs4bgfYh/5L74hYRrbnr6137ZGk9ccctn21oMyVG0y1slpi29Zs2cEvs7Tw3+3v1H2Y+u+X3Hc8lzRwybtWrkBeXzdnli7tYj365d/2Ty0V3LB2w9P3j/4h9l027zX/eFz0r6+/+883Ldk3v/ee8BcXHK/2f07evoe49XNjHw/qzJp8oVTMnn/ebO8I8W/b1lCcmv0Q8KRQL1OYG6/HViS3L+/Z1kch8lIZAvte8tT3tiSFuSA/uwBZ9RJobkSQzJE1bXLIt19bZY1ySLdY2wWNcEi3UNt1jXGIt12dQ4ymJd8dq/hlqsa7LFuqZarMtm/7LJa5zFumz2L5vH0ESLddnsEzbPq8Fxyv59weuAjL7XNb6XM0R7HeDVn+SEfy+7TlTbyeuAjIF8qXHJpiJPyt9DBvfs3XPw8Cv6denWoEv/QUN6dw9eGQWvxvxU/LX6X4s4/1Tv35cQeC34vssD/988pJwTUjf2e59ctsDrrhPVVsHrFRVCdnr7Kgbq9u/zr7Do/zSDW0JI+702Z1bxW4FT9QbfF2yP//OoGNiX5NtXyZc7+LlmDMnjtT9DyPuTAnVlDCnnlUkv3//ykRj2OXllk0P2eW0/zV8qWv0cW9PAPn8/D2qp7Nunewx4r+EYyFDwVL3B9wXbmto5KPj+hJDXgt8W/ro6BvKc+bY4821xcjvzbRHS/lh/WySkUs7/d/DsiM31/hj/0CM76s/aWG3371lvbd5l0rAaMza3Ozii4LKye25eXvSJPMg1LXBvyt9e/70av7aM6ehLDLz/nZynys1MeRGfqTceOeVIu3RI715Xdh88sGf3od2v6NdjkBPY0js8rgz8f5uQcmGb1yWC9WPz8BqegKI+4Xn1Jzmn9WV38oQX9rPBr8/shBfsEMED2fYJr03g/01OeMFLCteJatM+4QUvDYILkHt/B7ewE57XZt0Tnv/zCJ7w/Adq8ITn/1wTQ/J4bcwQ8v6MgbrSOlmll+/Mpcff25lLD9925tIjpP2xvvQIlsvo/PvI9comBt77QkpDTvOIdXL7ygXbeOY7++/tzHe2bzvznR3S/lh/Z4edSYJniVjeuvDnTvPH0FeDG8wZXKDP+QezbJpVfXGRYjt/XPbc3p+Gd7/gu737Vpb88TTPGlef5tmuLcp9FPgx5j8Ogsex982U2kABr2xi4P2fJp0q94nvx1jZlP0pZ5Sru/Tu2a3L4O6N+g4Y0n1I924t+g3uPqh+326NhnbvO1j7p1mzwP9fEVIubMvqq88/My0hIBJb80D+fCn/780ODL4nCMh7/+cpO3AgZ065LxfW6bz2ZA+U9/Zj8zpF/kDbXSeqLeqvIq/+pEBbTL+K8gfyBfWZfRX5u3OQir9W/2v/9VeRoYeK9ldRUmCf/6vI/2kGt7CvIq/Nul9F/s8j+FXkn48e/Cryf675Q/J47c8Q8v4Cgbryh5QLfhWlli8hpFzwUiISeN1/L+uskNzBe1k/+s4OWQumzuEsJ3UO/vYE2xmNF4Fhn2wX7dnEq9+WF0GYP1OYF4He2cTfU/xZrg7U6r3H/17/drWvZU4q7wv79BJDygU3j1hioM05sv79L3rfn4Evfb+urIH2hPV2/2vBiyR/ee99YXkyn2aezCF5vJ6czVfu+sC+7Gnsy+GrM2tgX7KvXPC5VS7fvqsC+/w/KTMH9uVJo868IXXis3si66n6EKV87wvr6d43kPcZlPS1x1/W//8ZA+/FdkPKv4mB97q+fpUn6z9z+Y/iYL8qkE670+pXBZzU82Q+zTyZQ/IEv62wXR/YVzBEa5h7R/Bz9jsjBPtOkRBd3r4SadTphtSJz2dJ1n++L/j5YzvNWQJXR3vG9+pPCrTF9IxfOpAvqC84g8RsFoLTNhIo78/nr9Nrj8e6XMg+ry7vii1TKnV5ZRMD76+S8nkmB96HLegqUi6kvf7XPD7oJ+UD/cTPNpLKv169wdeCx5dfu/f5eHlK+sp19LXn3FTOef4rKf95zftBHDxXPet7KlgzcK7ylw9+dmHHian+UiEaczr/ZpPJ93dq/bt0GnkypaEnVp9npkAe/3nW/3nWD3yeZX37gudo/O3NmEoMvP8+3+fZMPB5hh2LYZyD30u6nLOG5Ik15+D3SzmLefx1+W/uICoG6gpy9j4nj3MF376KgXL+X5v+9/l/dfl/rVYKyR1Wv1dHen2wbdZwban1QS9XYuD94319sL1hHywX2Of/rvB/L/rb4efgf39wdrrXzkypvD81XZ1TtOC6I0fBf9bplfez8n8WwfOv9/4bfHXmKhjeTr+ukr7Xgjcjw/pDxRBdYUwrOenn9nNunkruTE7afTEx8P6eIUyD3wv+8mHHUc5AWyqk0/bg8e0v770v7M7R6Z5Hwtqc3jE5UPOYLJPyd7Dv3uw7JocEjsm0+oi/zcHfEbqcM4fkiTXn4G+EShbz+OsKfi9UCdQV5Ox9Th7nyr59VQLlzvHt87/P/71Qxff6OSG5w+qP9nthStZwban1QS9XYuD9LX19cHoav4vT6oOVAvv8TIPfC+mdD8sE3u+1O5OT9vdtYuD9t6fxvRB2vPrPtcHvBe/9c9P4XvDy+nWV9L0W/F4I64uVQ3SFMa0SqKtkSF1+zsHvhTCmfv0lA/q9998b5feCVz7sfkSXwD7//YiygX1+B8/gNavfHaFcYJ//fkTw3kgJ377g+c717fP3keD9iGxp6MnuqyN4v89/365gYJ9/dYKgI2wu376gC6j/vl2RwL48vn0lAvvy+va5Pq3efbvgw9EVKa+f5nO70KErad0XjaTyr+NE933gH1oVCeTJbzGPv67LA3kKWMwTXCHAnycG7rtRP2f9r9x39Z6M+M82QSr+Wv2v+UkH96X1ZATb6Txn9eor4tsXRiJ45zzMDzpYzs/CCXktQ8j7CwfqKhxSzmt7Qhrl/XX4ywV7TCTwemrPI706EgPvf9f3bZU38G0dlsvPI/iN6bU9tRETwTZ479/ga0PmguF1Jqaiq1Aqde70PcnYlDW8TiekzjBdRQK6gm0oHGiD9/7NIVcCCYH3BNsT9prH3wkpG/z/sD4T9HQukY6e4OfkvX9bGp9TwZA2+I/J5um0IfieIqm0YUdIG0LObg369R+ecnZzAltwcHgk8P9B8sHntgVD6klt82igF3o9MmyUQaGQcgVD6gm2Ccq9Ty5FecPuvbsP7p6K9uCZO5JKzgxO+Ba8HnWcf3+HGn6nRf0dKmWVIv/nG+xHaeXBZ+pdd6Z8pm0G9xuY2kca7ZdrJKRZwfJOOnUFP2rDx3zag5sigX3+n23By0j/z0P/SS24BXX79eDkkl9jSq2faXDgk797Vgrs8x8qlQP7/F2pSmCf/4R/TmCf/6db1cA+17evWmBfSd8+zxjNu1jyf87+n2f+fdjSelSbHFK+VBp5cp9mntwheWL4qDzq09d/9ajc0x72GCM5ZF9wAJt3HIxL+a2Ir7Ss2f5Zt384bZCr4eyd86Pl6tWfFGiLKddsgXxBfUGu2UPakhzYhy24EG72kDzZQ/KE1TXRYl3TLNY1wWJdwy3W1dtiXTY12vwcbWocZrEumxrHW6xrksW6xlmsa4TFuqZarGuMxbps9gmbx6PNY2icxbps8hplsa4pFuuyyX6kxbpssp9ssS6bvGyeC4darMsmr3g9F9rkNc5iXTb7V7xeM9nsEza/t22xx99ZLNWFzWa/t8l+tMW6bPZ7mxptnidsXgPY5DXTYl2embZ3j8l/H6JUIE/Yb/5saeTxl88WRV1h9w/S0hh2Hyebc2oYxMlb/jcM6XFFvx5OYAs+oWiaShNrBt7XPJWmRULqjQQi+HrNwGsJIe/11+2fxp495fWyIe/zbiuVC9TtOlFt50YC9TlO+G0lr/6kQFs08528rRQ2c8OvL3hbqUJIW8JGCwbX89Ed4ejfN9FiXeMt1jXJYl3jLNY1wmJdUy3WNcZiXTb7xASLdfW2WNc4i3XZ5DXKYl02eY20WJdNXtMs1mWzrw63WNf/wuc42WJdNnnZ/B4aarEum7zi9XvIJq9xFuuy2b9snnNsHo82+4TNayZb7PF3Fkt1YbPZ722yH22xLpv93qZGm+eJeL3+mmmxruBtkrRmrUbrPhB2m6RcFHWF/R5OS2OMb5N4TaweeF/zVJoWCak3Eojg69UDr6V3myQ4Kudwyr2c0xyZFzrxxKsrZyAn/vaPNvPvc5zo7tT5y2dPI0+O08yTI8o85U8zT/mQPNlDykVS+dfLE3wtrTv75QN5SlnM468raHDhvxUW7AdpGaqE5fGXL5tKXX6nypt873ED7/cbrDghua/37fe/P1MKVIz+/MU3+hPvKe0r759gmiV72m31l/W3NWh+Ud03wTRbSp1hnL3PPawflA3sKxWSN6zO4LGl+9nlCGlDWnW5vvckB95/8rNI5f1efcHPLp/vswtOZPXKp9Z/yqbSBn//8erAdn0qbShk0H+KZE+7rcH+kxzI7b0/r6//FA/0Hz/jtPpPcmCfv/94jMLOmcGRurrnzNwh7QvLk5ZRWLAf6RqFJYfkYY9yzx3Y559snCewr7JvX97APv/E5+B3kH9CfnBybVXfvuDkWv9S28HJtf5ltIOTa/1LZCcH9vmXv/Yfg8EtIfD//s8Ex9rvGiP1/X0mOFLf9e0LTiz3TxIOTi7NE2hr8LVgX/OXz5NKXf7pbq6vro6+/f7310w5CeP4r5f9n7r85oMeE69vB6eOuU5UW41IoD7HCX985tWfFGiLZr6Tj8/Cpnn69QUfn5UKaUvY+a2Y72//Pn+esJ8ZYddJYyzWNcViXcMs1jXRYl3TLdY1wmJdk+O0XcMt1tXbYl0zLdbV12JdsyzWZZPXBIt12Twep1qsy2a/t3kutPk5jrRYl83P0eb5yyavSRbrGmqxLpu8bB5DNq8nbPIaZ7GuM+fV/+68aos9/s5iqS5sNvu9TfajLdZls9/b1GjzPDHKYl3xer3az2JdwUdxYUZtkcA+f54iaeTxly+SSjn87frqSOu5wmnOmk+IBOrz2uN/zV9/kvPvc47JfYTSgXypfT6e9jDD9+SQfUFrHt1Hpf66ojEQCbv3kVbfCNNo8VGp18RzA++7OpWmZQipNxKI4OvnBl5L7VGpV7d3GPlvPQUfV/kxpoU27HFV3jTyJJ9mnuQo8+Q4zTw5osyT+zTz5I4yT4HTzFMgJI93KIet04Lbpuuyh+f0P4rx3651U/5ODLw/0XcrdkPgUYz/cUa2gH7/BJKg16PXD7z92LxTr9/3UuNUGLVhiVd/kvPvPmly6s0VyBfU5z8tRe9ZGDwC/FT8tfpfizj/PmtEfC3zvxZ8eJ8tUM7EszC3b18YiaBnoV9T7lTK+Vk4Ia9lCHl/rkBduULKeW1PSKO8vw5/uWCPiQReT82z0KsjMfD+L3wPWoOehWG5/DyCg3a8tqfmQxdsg/f+r3xtCHrh5fKVCdMVPJpzB/7f37duSCX/8ZT8YPdN9vD8Tkj+oD7/WS01P8BcgTZ47/825KF72JnS356w1/wM/GVT+3//e5MCWvz/H9YXg16IedPRHvz8vfcfSePzzxHSBq9d2Jqn04bge5JSacOxkDacnhdi8CwX/JSCn0SOkHpS2zwa6LFe7w3SCR4dwTze/4f1gNP1QsyeSs4MTviW3QlvG7Yszml9V0b93ezVn+SE9zzXiWqLBM+eXr6gvuDPolwhbUkO2ZfaUZpentP0QkztSzvsZBEs7wTKRkJewxa27vKZnxqp5/lf+KkRrCvsJwS2/in/Bk/s+VMghS2hkNfXjrA62wfaEHYXIGwklPf+sDtXRUI0eiz9dylKRZHbzzL4RVhas61hd1f8d6KKBNrqb185zbZeTW5r3pC2nuaoHe0RacHRY/4RacHRY5V9+4Kjx/wj0oKjx/wj0vIF9lX17QuOHvOPSAsuieEfkVYqsM8/Ii14a6CGb1+uwL7zfPtK+v4ObsHvEP/nheO5oXuq3uD7/H+ndi7yH+vNA230X3T7zz3erY0svrr9eVwnqq2clyfsx7RXt/8yRaNvdvW3ydvCLnm815ICbdHMd/KSJyGQL6gveMmTGNKW5MA+bAN87wvuSwh5LUMadfW2WNcki3UNtVjXZIt1TbVY1xiLddnkNc5iXTb71wSLdU20WJfNPjHCUl1eeVvtmmKxLpt9YpjFumz2ifEW65pksa5xFuuy1Vexxet51WafsHn+snkMjbNYl01eoyzWZZPXcIt12eyrNtt15nv7v+Nl83rV5jna5jXANIt1jbNYV7z2CZvniXj9HrL5G8amxhkW6zpzXv3/cf6y+TneYrEum7zi9ZwTr9eFIy3WZfN4tPlda/NzjNfr1T5x2i6b59XRFuuyeZ6I13O0zXbZZB+v54lxFuv6X/hda/N7e3qctsvm71qbn6PN49Hmb5hJcVqXzT4RPIYiKf/vf8/1vr+7+Pb73++5FJ3ms+JuwWexXh3+ujMa1h0J1Oc4/2ynE6g/e0g+r11JqexznbS35y/p1OsL91jxSKC815bga/5n4IhMIe8Pe6btscrsK6/B6obsvhxOILe3L9G3L2Ngn5+L1wb8W7XkP9uXybB90fDz158c8v6rfO/T+SxyO//sC/7+7o3xcX37gs5XaRlwhplghs1Q897vjenJlMr7/6+9dwGz66ruw/eZezWaK43m6i0Zv0YS+CXLb4MxliVZkiXr/bIs42A9rLEtEJKRZYN5xfiBoTGUpGkpf0iBkD80+Yc/TQNtvqRJQxIgoUlDQz+SEChJ0yah0AQaKKQkUB/rrJnf/O5v77vPOftqrvHs75vvnjl77bXWXnuttV9r72P4mgR/TmGvGOA9QjD58xwPPeQP37GvwfKXeXD5bkS7wMP7hcA7x9CtFPyp8FODv1zAYyyU8aNkc7nTtLE+2J73U30M/kWiPsr+RovnIcBjeSVsZ3ZO58ZlE3RYbmg/3WSUJ5bpKgGPsjKZtAke5Wt5eKxqJeWh7XDM36jgYQW84/gq1Dsri7f4hW5s7Ce7fkmkXV/ooYf8heway5ex6zzd5+F9dUm7vlDw1092vT7Srk2npu26u12rW0dj7RpvcOXbXVdBnuHF+O8XFs9Ngt8T0NkrXCevyqYM/koBjzG0fEsmyvdKysNyl1Iext6uJB6uEnJAvjiu3eBfDnLYATpodXHEV01dX6d0/SoAYF3HW7gbAp7b4hoBj7HHJpM2wXO7+OwGZcqx8iajQQGP+JoEPyZ8v/GHN5hfRbyvLMn7EsG7uoUTbeqts848K3/LfeXKAE3V35gPGvTAG74mwZ8U8gr1YSinGYTT4E8F/IHyt8vgXVl/yzeZolxWUR7ybrqg7NPgatrnLco+sf5sn6G65ollo3wr6q61f9t1+kPui9A2uO9X46JY/UcdOjVL4/X1N+cVz6xfT5QcI4U+uNBtjMT9jRojKf3isRXKlPtz1e8iPM8BDf7pyP4mkT7PV/qMOsv6HNLPPJXt+00mbdfZH/jG34gL25r7G5PRoNNtYPh4fPvuQH+D465VxPvFJXmvYm+3U3+D8zbuby4O0OSy6C98/Q3eMo/wHwz0N+rrAign7m8M/mcC/kDNOZfBO9ZBJftLRb2UTC+jPDW3VfaJ59+sfpZXwj4XKPvE+rN9huqaJ5aN8q2ou9zfoD/krzegbVxKdNT8Jlb/UYfWUX+znPAiLtSLkD6i3Vg7sT7+24A+huwsTyzzbmsmxo/SR57zIO8hfTS4mvq4X+kj1p/1MVTXPJW1VWvPtuvU1ZA+cv+8XNBZBu9YH1GPlkNdryn00db9K94WX/qca0Z5aMdbKA/7PGwfTg36H+uTt/viEl8twHsK+KsFeKfBSsrD9ZPLKQ/X3FdRXhvyrqA8vNbhSsrDM/dXUR6eTb2a8vByGqu/6QCeLy+hA9FXaBj+FvFSkt74eVJ1Sx/Wz2y03PVWfLMASgWx4jvUbM5r0DuG20P/l7neylpuCb0fdVGptPXyKW7sVbE1OSkLNZ5zC/3ekgm8DMf8YHuwhS6GvJVAm9t1kaBj/A8I+MWEa5EoZ7LvRq8hyrH3VeU4j9si9O2RxYRj1EWl6DtDDX+qb48sJnpcP7NBNeqysm2Rx/Za9ttFiCvmoh3Fc82LdjL6f5GHjQFR3gVwYZlQlUK3m3W74ct3u9b/ERMxZUbIz7B4x2pfsYOJ7tAMf8t1qkQVtV9I9Lh+rPbKDbVFnu+ynG50EqpqnvZ42FA9peuCiy1ZqSrGisSoKo4xfao6VAzY1BrLgCif43xbazLtWwHOaK92fl43Ea8Ms5p4NfgR4HUm8YrqbPwMU3nLf7bexfNm4n3URaVokzL8LeKlqkltJnpcv2pjxNXwzFJBrPgupMXdLGcz/V9ljLiF3o+6qLTVtGKryLS8bYB7NeWhpmJrclJjROO57BgR22Mb5d0GeShHbtfNgo7xPyDgbyNcm0U5k303eg1RbjXhyOg9rgzdKmg3Cf4i8A6zlvrlcKvzy8H+HxB8srwtP081dfJArDcx/C3X2fZVvMkWosf1q+ZNUFOQyh2E1WAQFtMdwJnzwKnWe4Eox8kk1iSe1xRalGvfVcXziOvU3kHiB3kI+eW2KD/evwk6M2vSmSnomCbfDOUOUd4a11lXy1sL5e6ivHWQt4/ybhH1srz1AZwbAjg3iry87X6rPRkOvVHm+c1TQ7xjmW4WvFrboQfgNVhlbVsCdLA8ryViubr1UTyrsRNeeb+lPVEGe1P02qjHdo9dk+D/y5KJctvJ3rZCeeNRyZltsaycBwWdXsuZbWpbQjqI6y6Az/92EC6WM98liaOdHVRuJ+QhHI4IdsD7nYK2wm84uung3W1dN58OGq0mwf8m6ODhijq4jfJwBMn9ofGBckB4/hKM8TnogffV6/7A3G6zKK94HyZetgV4zxPrIpbnkWsvdB5pdtOf15D+bIc8pT8riucmwf886M9p0h8cofWi/iG7xpEct7GyO+U/uBza6EgEDzsEz21R3uCGRbm6uqF47qYbj5Fu7IQ8pRscv2vw/xR040nSDfSfxqOSM48By8p5pqDTaznz+G5XQjqIi/u3PYSL5WztZHLeDXl7qNxeyEM47N9wDXCvoK3wx/Zv/6yt6+bTQaPVJPjXgw6+JzCnCengLspDmaLv5fYJtUFGfA964HdRvQz+A6J/C9nrLsDJvtzgPwQ4Ob7E6GK91Gw5pIu7Rb2UTHltWdFGOW/30B50uv4+Xfm5gEyt/AxPfVimBv/RgEyVjEIyVTa2R9RrRNR5L+G6TeBCOcfIFOt/G9Xf4D8eGIdtE+XV2IHHkGochvArCF7ZmBqbsI39cuQYksc2uLZwmPJwbWEr5a2FPJ6LrYM8jgvCtQVe51gPedz/bYC8nZS3EfJQ921toUl1/UzxvubewqRYGEe4lHwzz69zcf3pzQCTEZ1erJsoOrclpIO4jKaas/GOd9l1AywfmhuuqUlnjaDDuMwn5wnHRGuL5ybB/zHY9e5lk3FuFfytgXc8J0Ce2J4Rl7WZ2Qf6vl7svRn+FvFSkl4W8rlYP97O3i54aYs8X5siHbWdXZavhF9rNRbPJbjtHtYygTejP35/Lr1rCFjEfbZMbyrpzKpJZ5ag0+ulzllExzfd+duSS8p8dMfg74fpzv8OTHd8Zoe6ttZNJNZto+cLY1jr4e97IowhozJY5wsCPG8FGkw3T4c8PFgsbk1XLIcqvBS6FvJupjwcemDbYJ5zE7LAd6xzmwQdxuXrJk2uPKSbWcgptptE3d4eqOtWysOuieWg6Cj3ruQQojO7Jp3Zgk6o26/qSxTPPJXIE/qShXMnyqBOol1hWZsWNAl+P/iSJQVO5UuQR/5f+WVfP+nzJVs8/J0H+sm+RA0NdwR4xikg083TIQ8Py8iX8FbQqItLypeEhppziP+yfSGWP1t94Ryi0+ttP7Xcz/5FbUdtD9BRW2rd7PHKuZqmskfu1xD+ArDHa8geU2zV+WzCubjtrq2Cjs8H5SnUBxn8jYE+qNvQP2Q/Pv7w6j20g41QZx8uJ94ZPPZ/vHyxnWC3BWCZb9TtK4tn80W8pTzqotJO0+edIpO3NJAny8NlxNsBjhOHKCHPeXvvWzaBl+GYH5TDLg9OZfNHCNbqPCDw8nYR2jHLa5+HB27jPP1I8cv2fufcCfw7qZ/B5fISbbtLbUlZ4vZj2XFS7Wd85e33WMX220156FcPUZ7yx7m87pkiefGcH9NUyOsw5XWTl+VZfQdEOQ5CNXpvA329l/CtAVqs/3xVJG7PcPk8HSL6Bv9K6Ct+r5DliOvsX+cTPcStxsfcz8338KXqiX6Sx9kG+yTpKm+3jrqotM7aeA/xhLj3VsSdET7n9LKj4R8W9IyvlsiLud71xHcOX3t48PW/k1F544Xf8VLhPgE/X8CbrLDvKiGr1cNAwxFty0Pd3kt5GPpoPKjrXfdV5C9Gfoi/LeDvAbgybdEWdDYlxLWtIi67dlZtp7LPzdMhylN9f96OH6ZxOvoh/lR7WT+E5cv4IR7rGuyHyA9VHD9ep8aB7If2VMQd64cM/7Dzt2tL5MX4ofv/ft0Dv7Hn8+dnrtPfNsS7mG38eQK+pp1fpfwQ+xr0Q3soD/2Q8aD8UMU+5aoY+SH+toBnPxTbFm1BZ1NCXNsq4jI/pMbgyg8dprydoj7oh3iO8VEYs/3LuZNxxYy788THErYF8nYInDntf+cZf1qoOPbFPEdTYUX2P75DXccyvPZg8J8A2fxr4g/n/1hP5E+N1XFd8t/O9cPtDMDFju9vpjzUSV676tYuKkyL14tUiDu+C60XGRz3Sb8NbfDJQF+6kHgp25dieYNT4SaHKG+L4EHZKa4HvnveZDiUUeb5tXrwO66Hap9838AuUii2vjeNnd57/+FTY0f3jt1zaux0gzjgHQy2qt3EkUrGJe96b6T/+QAbrwrvEHi60VS7FHgBD9NVO1gs2bmC56mks6AmnQWCjvLudTVS8dxtxfyLJXew9he/vHr83sUT5b4cWDEPyZnv5Cgr50XTdHpKZ3FNOosFnV7bwWKqD/bMLLeyuzBYfttZptPNrr+byK53gF1/L8KuQ3UM7RhtEnU0XDu64NpPuLB86LDBpgg6oQMvsYcaYuoTojOV9TFc6rAFtsGBAF+7CNfuLrjuIFzqQIHSQea5bKSJilpQdHbVpLMrks7Zqs9OysMZG/su1Xa7AzxgeV7lU6tWVX2+4rmbj7xw3kSZ/E8dfApF7xj8TeAjlxc4lZxZd3/Y5LwnIR3ExRc1+NrzCmrPvZAX054G/0Joz6sj2lPJZmugPmzX3fxhzIGvXQF4tQqq+gGTL++o56nmTs28GD1A/C3ipSS98WD6/USP64dB67aqUMzc1409ePU1N2x4Ztr+yAOnWaaGdy4SBf4Z3tH/XC7nrUkwuwWNPLH+7CE4bnd7z/hjeOoG2y1f2Q3vQpft17C8LyLSF/1k7cORyusLO5/pOqOf1DgKdWh7oK47qJwvMrIh6jDLaXu912n+sM7bA3U2+C2BOu/qUmcec6vxHvsmhmuIOgy5Th1AHDHjF1yZ42tMy66cLhF0er2auITo+Pq7O6i/UwdnceX2huKZV9/nQX/38kB/d7bq382msS6sU1ivpsCZp0OQj/D3FHWvGR0iI4x9kUNsv2PUpqruoTY1+Aa06f0RbRqyj9BYRPmJbQF4NdZRa0a9i7DJ/jRGRxG/2r2uMhZRUTFqZ7LsWMTwfgUqhPx3G4twOTUW2emh4bM9Hh/wWKbbWETx5IMtOxbBdQ6+AKHsmqba1Tb9rHgQdNR42QZ8qKgh9pMY+cq2qOA3EX+M37f+0HRaNndBPsK/EcYZn1t25lm1xUIPf87FtQWWP1vry7wT2YsTSXnikxbYri+FZ8wzOj6f3BblQ+vYe2rSCUVthHQ9T3zZsm9M9E7qP3lsjGWRLo+Nf3HRRLkfp/4Ty4f2S/i0WuiyCnXKV0UrYKTJuwN88QnOsrv0ih8+tfhz8yZ4eR/xgqcwlhMvZU9cYnmOtFAXVAy5TnmU8L/RB/8Nf8t11rnK+EC1kZKL1X2t4KUt8tbBs4/OckEnI1zd+Ep48N9YXElw2z2sZQJvRn/8fiW9U0MMxP3sEuOiCTooho/S1IG71lEXl9TUgV0MqhmbeVnTwvK+w8zY3atAG+X6LiRcZbtyLL/Jg6speM/TIchH+M9SG1Ucnu1SwXfseioG9O6KdT0cqKi2G1siLybo9qutmz77tV987+9zF2q88Dt2F2oKqb5xb7LC5aESsto+DDQc0VZBtzsoD4NujQcVdFvxQNP2GPkh/raAPwJwZdpC4dpeEZcFyqqpxFT5JN/yLt9Ra/CfCyx1Kt+kDtGrum6iciooNE/sc/I06nT6ASXDZ/KfKWjxQWaD/UOo9+eXTeZ1q+DVfEQjQMOJd5nzy4ZpDIiy17vJvG2L4E0dgkYcN3v4zHGo6Q3rbdnpTezh79GadEYFnVCfxL9Gh9+Fwk5GiY5v+vXVEtOvPL2q+OXp1wdh+vX1wDSHp5Hqch0cs5S9EIP9icF/E+yKL8TgUCusp9IzpMH1ytMh4sHg/zeNZyqOOeSYk5d+cJrMvjVPOz11QhkcABiWgdrCuisAr5adQ3fHIX+7PLh822dMe08X2rw15rubF/9H2vsDtPd1oc1hWOqQIevyxxYCD/Mn07sFyqh25ztzDf59CyZwDpbEuduDc8n8CZyt+ZPrib5+qZtMr+z4A8tPLzeUX27gMYGis1TQyQhXN756sNywhOBSLjcsoXdllhtMzW8BmFWE/xbA0RDvWM2xvMEpOs2adJqCTgjXKoHL4NcL+KaAT6gaxuJ5BHdXgDXG2001zqN3PtWw1CCa+TOvOHHTMI8jAseaQJ0a4h039RpBS9G5oiadKwQd3sxfXfQQQ4J+CW/5lHm/DfCSPX/F1b6nYj2/bzML+VJffoxZ7bns19700y9bcf/OjMobL/yOTVIFb10h4GteAfmEWu3BDZY8oavZRHm42oMzaV7tqbgq+ESM/BB/W8Dzak/ZVVN1LWRZXLbagzeWh2z5bPmMXtAJ4Qpdo2iyGRTwyicZ/KbCJ+V6xx9sVvJ24t2A6/RHLy9+RwSutod3RdvwOzchNyxvcD30iTPK+sSW66xzldGwsg8lF97ox7Jq475usGu/40LdHHad+pt5fo0Ov2M6aKttotOroI4YPa9KB3HxwYZeBY8cKn5r9sHbOSABk9qJYr3AVRge0+CqDMtfHazgAMH8+SXwzKlB//M44AvLJvAynCW1msv9UtnVXLWaqVYbcJX19HxNE1dZ1Y4Mr/w8Aas0r53vryPP6KuuWL6RxuS9WLH8YdLxKno8Z/kEXoazpNqYx14q6EgF+1s9lL/eRnnqSkT2i4hf+bLDAMf+NLTir8aUGygPeVgTQSc0bloTSeecmnTOEXR62W8hzW5+6j3kpzB4rSHKvrL45ciNU+Cn3kd+Ssk5E//HjOuNXuz16Ab/QRjX824Q1xnrqXhGGo5w5OkQ8WDwHybfWnEeK30r97nq2vKadKNXwQ1/i3gpSW983K/Gveo693xJ0a6w7P5teo5ZYo/O8AjrRF6D3q0luG30/3ZRzgnceX7NC/V3cK+IqWyvyJd9YVI9n/GcW973lkzgZTjmJ3SsCXtFPsrWLR7C+B8Q8NsIl7pI3mTfjZ5adeAZtyqX//8yUSbljCplLIIajbHHqTiKXBDrcQx/y9Wyk3GPo+Ku1IcQlO3wyAjz1sIz5iGd0FFHxHVLIlx52jeNaxrXNK5pXFOAK2bmif0Ux+6gH+QZYdmNcCwf2nAfrUlnVNAZFuWq9sntAM9q9YDlVvZDQFieL1P1zTy/O1/TjJ15Gvw9MPP83vzJPKuZZ57ULB/bwXBw2SHgwfJKjC9G8jHwjcsm6LBccQc0ZhxiMYscS451V7oQ20aDCybzgxepqzbiWFGD3wZt1CqeVVwYx4p2i396FcFbHQedXmXlY3LjNl7whLt+oVhypuc7unieh958oGffQVd6Z7Rr6t0CpXfoZ1jv1AqX8mchf6FW6tqu0/esJ1wqFlDFjWZUftDpNsAzUgh/vmjzGD1X7Wrwo5HtarLsRbuirLhdcddPyZbbVekBtpfJRK1AriNc6wQubGtu1262bPjYtlYG2pXPpjCf3K4Gf0Vku5ose9GuKCtuVzX+UPGYIT3A/sFkonYMNlKeOk8T8t+oBzFtju3j8983ijbnsSP7hZj+BVcW7brmYmVx7+mTp8aKpUVHKbQUmP/vC7+dL8o7KpvRO/5+k3KfoQV1o+0LlGH3afDrhMhD7jdPMSHa2Ny9WJw2/KlCtNcRPZ8KcberzCw0lZkCVc2Tb0SWifKOcGXiXZ5U2HToxFDIuylRqdgvhMfTDQi/O9BzdNvDZA+rRu7YO/Lnr9VlU2qW4rtAGHs0VCPu0Qz+QGSPlmjmI3s0lBH3aGplIXSiWZ02UqulbYJH2asejU9ZdTND38wKy6qZldKX0MgsJB+lX+pzKipWIDQLxviNPKWcBWN9WBdCbZsnlo26wAzbm0etGNfBK09oSzuJjpr1xOoCrnZ817MH3w2vwasL6BAHz8oN/mHhAwynipEK6aOSBfpxjk/BIRDHf2A5jJcw3I7gaurjnNSrMlVtlVdJUU5qhhXSL4xpeA/FY/R65Y9j2N4Oeub7bHXsipLBPx3QXVWHkO6G2lP5UtRPjmk7Wzv06ykP/RvvGKN/4/gjjM3kGBLfpyQ58RgQ5RAbtxnyO7E+FXXpNOn8OoC7lGiuEzTxHes8ljc4RadZk05T0AnhulTgMng1hu7xsTxjcQXB3RVgjfFm9MfvV9C7hoDFpJppjYdv5+KaCcv7mgndG87G+TsaONy4jHCV3WTC8rd4cCkVy9MhyEf43yjcbs0je/8k5nhKxTC1f5IRPudcMExNBRzxkT2+nGTUhdMv/8vdcz7/GzeMHzmLPboRcoOXCfiaX0V9V2hYpY7s8XG+2K+iVgz1fleM/BC/Ckc+AnBl2kLhuqMirpgje+sgrxc+iZcAPiOGZWebFxu2/G4f8GJDof/UB7zYMOcLgaGz6g9wmMt9C/IeCm44W0EUK2vSWSno9DqIYiXR8W2c/zkt76yHPDWstcEVb1K+Dy5++QvaOFdyzsT/oXEH84dh9QizxcPf10A/Oaye64z1VDxvABqOcOTpEPFg8N+gMUnFcHMZVm+4YsYrFelG71wY/lTHabcQPa4fTgniw+pxRMhSQaz4LnOTa4953TYottD/VcLqK45O9plW7BOZlodfY+JJO14jha3JSU2w8UBZmbB6bI/bKQ9HVPuBNrfrFkHH+B8Q8FsJ1xZRzmTfjZ7aTOFZiCqX/3+jKJPyQDTLMQUuFaJfc7Ep+ktfhr/latnJuMcJLRLnieu+Q/CiQt3WwTPmIZ2YK1jz550Jce1OiGtvQlybEuHK075pXNO4nse4VIhUaDXiaPE74jp9Vy9mlIrOJTXpXCLoDItymefX6PA7pqN4tvqgD2O5lb2USX0tpNsM7+aFmmbsDM/g3wEzvHULJ/OsZnh5UrNpbAfDwWVrbpTOVhulKFfeKFWrmAh/f/EbCtVTuhDbRtuojbqFrxs/HOv2MLTRzuJZhYfHXKup6LEdxoavG/y+gqdu4evrPfRiv75r8AeA3lkIX5+n9G4dAMSEwyp/FvIXakVMBQhxOCzKeB3RKRvarsJhQ6HtBn9U6AP3RawbPv6U3BKHw/q+RjBXlHdUNqN3cz24DE/+Dhc5YsJhVdweu4hXCZGHmixP0+Gwz7lwWN83uzJR3hGuTLzLU7dwWO5VQiJWoqp6kOINQqVDHjZ0BakaCWDzhsJht1EellvvoaMOeOSJezSDfyyyR0s0kpI9GsqIe7TYlROD7xbSxKYWOjioZjaxZhgbDssjtdThh6xf6rCxCu9aB/wbbkdwvRhV90v4IV+buQ7yYq6vjdUFnD3xzGp9F7y8l7UBcDUEDg4pNPgPCB9gONU+f0gflf6q6zhViD/7O7S/UHi2wdXUx1lKH7H+MbO8UGxLrK2qw6J8lR32BdxPdtObkD7i3uWf074r0llGNMvGliwT/Cs6zZp0VAxPCNcygSvU3j0OJTQWzyW4uwKsMd6M/vj9ufSuIWAxqWa6xcO3c3HNpNRZ0VlTk86aSDoX16RzsaDTEeJSuN2aYX+Px2yYVQyTezwjfM7p2ZThHxb0jK+WyIsJKfzr9u2fOv6tD/9cRuWNF37HZnu7gL9YwJuscHO6hKweVV0TbjTnCd3RPsrD7sV4UCGFt1fkL0Z+iL8t4I8AXJm2ULgOVMQV883HXvsMDin8ExhCcejc2eLFQgr/tA94sZDC/z6FvCg6l9Skc4mgkzL4oR3gudui/zc8U8nYRX+Dfyd83/BvadE/tDzD/Vf+i4EobO9GD0Pv1Hf4mL/vgk5x6N0WqjPWU/G8DWgw3Twd8vDwD9R3VwxIkaF3PC1Xn7vn+jqnZR6yE4OrWYfSwWC3UB72t+spD6e4fIILdWUt5d0JeTsp7+WQt5vycFy9l/J+BPJ4I+4VkLeG8u6GvLK3p+Npsr+n5TkncMUEu2G/GbpT7nJ4xjzjld+xrmH5UDj0lpp0tgg6aqkVx8eh4Dezh4phptE7EHzUZn01euM7EKE7i55lrPjlDWwsqzb6eG6n2udyQacsXwmnzcbiSoLzfSwpE3gz+uP3K+mdb9ps/0/liYNemFi34chlizRN39Vi2BUj/L0wHFkFz7xzhLg2u8l5KKfbiP91biKxC+DTBKMuKkW7AMPfIl6quoDY/f9yke1r4ZmlgljxXcgSeK+Rt4HXULkyke1GV62BrhM4Q3trXA5l4cS7AQEf6pDWEu+NQHnEgeVYYzJ6j9Z2q6DNES5rC6vKBxwLaHCtaK0F/rpFcTDMWuLB4DcADzM9+69NT72wjVkPWLeOeOjfCV5ms8eLOUGf64c9zKCH31uIB4PfBjIIfY4P+VHvUAZY1vc/wq6muuD/ShdvJfiNXeq+lupu8HsD7b9W8GB85Wl7Fx4YZrWHhzsED8Jrrj/5wCOeiAoeS7CX41billgr8PiSSSPXWNNelg5bB9Ox/5UG5DUvZrwTQ7PjY6d90STcI9zsoTngdBp2mrc8TVWA0Npq9IIBQmuRseK3bICQz0q70akZIOTrtJWz4PKOymbiXZ5ydV7YOvP8wzZ8Zly+VboHil/upE6Cg5rr6SQHPDh5JU7N0NQqksGrgAfVKamN/E0RtFGW7NC3l+S1W0DQBuI1dAdeN173n2VebxG81ly9KL2at5byUAa88oarebzyhjrJK2+4mscrhLiaxytvuJrHq/Wxq3k83cXVvHWUdxDyNsIzJ7XSZ+2V2/OG0Qm8DIfPPl8UG+yBvoen69u64GUfor5igDheVfzyLvhPBPyYsodQ8JG6LxFtmAOM0LZ2UZ7aXTzbwXBY/5i7IdURLoPfI+BDd0Pi/Wh8BBVXsdlHdtOb2HvMeDermy5wP7ETcCldeHHx3CT4/zegj0rmIX/e7T5O42eEeMCyI6IcX1SE+mhwvbirFOvD+qj0C+FZNnsFPOocB+PiMeCdlIe2yv2Kul845/2r8ybDYbBo5vk1Xvkdj/fU136Mzq6EdBDXIaKD9oLLsr9Cfn435Ck/YhP2JsH/ISyS/BotxaKd7aLylvdJsLMNy/3l+c5eFaSrbIR3elU9Ef7Fnnp+BvjcsezMs7I746um3bXL2p2KmgnZnYqGwugfk0mb4JWvVz4ZddLnkwdd2B+yT/4DsRimdqp2E+9bS/Ku+pNufuSdhR8ZIR7Yn/n6A9VWqg/e7cE14OGfF+NuB7qKNsObTuBCK+oCH8k0+K9AW21arnE6wYNqI6M36IHfRzwY/J8LfQn5AdT/vYTT4P8CcPKFZN1w3uDB+dXAWEPZKfaxbNf7BTy2l/Gj9JSjAJB37hdvB/oMexPRxzzUNabrAvyqwxkhfrm/Gde5xWd+8jb6ViH3mhGfjVBbvVTwG9tWOwL1Y1xWruk69TFkIyiP7y3SOGeUxPl90aerscphwG98hHwk+mr2y+raGRznqLHBTuLf+onBxRP8hw7DpRljZ39a9sCJkk3owEloTI4+vC3g+Xi3ups9c508lO1L8Q7/sXmT8e4K4M2fLyA+uo3xri6e2Q8vEu0ekmFI5t3mNbzOgO2xl/KUzp5tfcT6sz6G6ponlo3q/3Fex/qo+g+ljzzOCulNnkL6uAvqegeN7fYKfpSPZn66jbl5H8N8/KAHnn2+wV8GeszjnjsEDyE9PiDg7xA8jxAPWJZpo12iTHjcb/BXRfpja5deHE5GubH+h2SUJ5bpnQIeZcUnL3Ddez/lod+4g/JQ//jqJ2WzsbZhZZ8NvyJfvScSbyZwKT/Jvtrg1wZ8tfIvIR3vZpfGj7L/2ylP+SqlqwbXC13F+rCuhsaceWLZKH+BNs6+Gn3DXspDXeVoZNSvPcD7hRFjgVDbdlt7Zf+lxpGqH+Y56q4AHeRLXTiwK0BnUU06iwSdXq5BIk01tuH6lF0LwfK8xrs7YX0Uz+qEJa6pHqE5DOqx2gvj/s7g3whzsrHiWe1Hsd7E6i7vvXdbQ9oP9XeuF2NON2Oqx5w8rlQnVzPX2YZKZ7HvNBhHPPZCXmjPMXNG5TdC8kWbMBmofZkdlIf6tovodLvoJDQOwX3C787tzn9oX7SbfvCesRpbqfEB+lzD7QiuF2MArA/rQmi8k6eya4qsCzg+2EN52P48JlVjR+UvuY3V2DFPvGdl8E+XHDuG9Cbl2FGt8/fQh/S13oTGjmX1hn0I+nPso63/Dq2RZW5yP6n6XGuHbnsbA1AHez8L3mO5a6jOPEZi3NcSvNVz0ANv+Hgs8qHAWsKeLjxcRzzs7cLDHuLB4D8ieAjJP0+hMeGQ67TFEnbTzAif8YPvEH/Laf0YdVEpY/kZPaUHeWJbVvaEeexXq97mkD9vTYgLx5Y12qt0LCPPK9CPHaA8nB8fAhycGvQ/1ifX6y3LJ/AyHPOK7YX7uaxje0TZPQL3VNnDnmr0gvag5gBl7YH32J/v9rCH8vrNHtS6kpJRnkZdXIqxl4q3KS2LtRfDn8pelO4pe6l5w9BoPhWb5Tp91YvgWe1jYHulaj8cu091++2oRi/YfmpukrL90LbKtJ9a+5sLz5iH9Qmt/WH5s7X2N5fo+Nb+vkprf2puGlr7M/i/g7W/rwfW/nh9D3ULzzFwnfF8iNG3vDIxL/0cF8zzShUbmLnONqmz/vRFz/qTyTVPt4qybNuZ61x/Qj4MnmPiGIbj18Zjc2AuxYdqlc6iz/Gtp2RLJnCe7fg1lDPHg/nG9Ibbuc4xg9XP8sr0C8omsD5sE6G9tTyV3YtnvVdnqXz2lSd1RibE644avHI7Ylv5bgREvUT+WS8NfoHQS9X+JvNetH9oPU3JNLSe1k2mPKcJxRSE1tOU741dT0Mf8lXqv1TMfkZ5SBPfcR+N5TmOz/hbAe3PsbrqnFro0y8Gf1HA16k6bBJ1MPhdgTojP6FzaqocnjcdErRG7eEH4WT4TFdmClocZ2uwV4CcPr9M85IxP11S6IzOkOvU6zJj3ozwOafH9Ia/5TplUWVMr8bASu+tfhXngBfimB71CMf0vjMLHDfgO1N0w5KJMj4bwz7mquKZbezmJRPlXubB6Vz58RrycyWN10K2mKe6Z/pQ5qG9+S2Up/ZcjQcVX4DwVxfPvKZ/K9hm6CxTonjSb/bz3n7MvQJqb5/1xnc2xeD5dt7d0AZ8lgnvieD9020leY+NmUfbYDuOnSOF7B75tnhttvuXB/pWdU4r1Ld2++hH6Aw4nzXEcqEz4Inm1nJfFusTcwa8ju/iubXSZ3W2ju958M2VF5LvVecGsG1ZvxBXQ/BxXvHMt/UeD+hXt36l7B0dfPs06n+obzDbV/plcDX1a37ZOwZCtpSnsuNa/qiOOtOufKHRHCY8KO9nb6tuT+ZH9ZNY9oXFM/eTbwroy95AHfNUto/iM8yx8UWhM2Ica3W7kAPy9UDxy2tGT0aOFxLFM62b6phmPnOIc2w+06HWNVGmvnh335kOXwzEuwLjBbUfrGwrhnfld5W9oU39s8Le1Dyfx6y7AjS5LPY9gx543/zz/xHyYn/mOx+2gnAa/E8F/IHqU2+Dd2XP5HFsrzrnFIpL79143t0y1Wv/3H+E7gTxxWchLNKJ1X/UocdI/9HmNxPN0DiWyyIdn/777kr4hYD+d5uXv4BwGvzHS659hfS/2xghNEYKxb2H7sRJND7fONXjc9b/0Pgc/S/7VjXmjdV/1KHX0HgL78VQOmtfGuO7YD5dUr9C535ix6BKh0K+l9dn1NiV29HXz/A8xeD/Y+R4K9FdMwum2p/zXTNqfBvyn724a+aPI9dneG1pW0neY+0Nbepu6m9w7sv9zbYATS6Ldu3rbwwf9w1/HuhvcG6m1oO4vzH4vyg5Xw/1N93m67wepO4MUnP50Hzd4Gra50Jln2fzA7nc36g7IJRtsC3GrvN0m99vKfS/nlxf948z4MVwNwRkk34N5v8U+tkC+vYb80XDL37q21/4+JZrXj2PyufJ2ijfs8nb/9u0JovXgZssB+Adf9igQbypchnxwPADAt7wDou8Zs06MF8zBHxDwFf8ggxWn1lcSuW2e1jLAnhZvPb/UnrXcP6myFMuzqoqd+6/G/vcmi/9jy91U7mq+N9+TXPeO+/cvrlX+D8382vf+g+fvu9dvcL/34Z2bRz4xNMX9gr/P//WjusfX7rib8qYvJnWCMBaOdsWbsP7El1L9C34hr9FvJSkN77t3SZ6XD805fnFc/cv1MyBZ5YKYsV3IUtr0Du23gEqV+YLNdZy8+j9qItK800r5otMy1sAuOdQ3kLIw9bk1BD8G8+5ln4PtJThmB9sjwWUh8G9C4E2t2tb0DH+BwT8XMLVFuVM9t3oNUS5OYQjo/c46G0I2k2Cv6LoDnLZzlo6uZ5z3OT/Uf+OEI+qk3aed1wPPjjDdPM05Gp5gnmxnsfwt5yW96iLSuOeZ4Tocf2qeR4eqhiVuYTVYBAWE2qr88CpFt0hynGycsMenHkacp2aWkLKs2Jb1d61iJeqrdogelw/1mjW2jy1XaeGcGik0h7Vb03jmsZVBpf1Agb7isLz573HruJ5xGlfg88DgpeBAC9Ynm0E5zCHKG+GqIPlDQbyZgbyhgJ5rUDeLKhDRnmzodxdlDcscD57ZejSyXDsi9Wvc51+Lk/cVmo0gb0PT9vRT7UJ19wuuPg4BJbno1jzuuA6QLiw/DzCNb8LrjsIF5afT7gWdMF1lHBheStrut4Q5YYFHe4LcaRcom+aHdsXGv4W8VK1L1xI9Lh+bOeLBC983Vae2O8tEnQWCTrTuKZxTRUunu0afvVrdPgd00F/wLNY7GsxNP5ttH2xAPJUP31/8dsk+P8K44Ifo3EB+g3jcUTwnNGz8hcLA/VXvqvXcuZ+PUtIB/PuIpqLCRfKOU/WTiZn9KWLqdwSyEM4XHlYDO+XCNoKv+HopoPvW6rrpnQQaTUJ/jOgg+8PjE1ZB1E/M8rLqC4Ip/QT2+x+gje+BwU84msS/Idh5YW3MK08ygr52kE4Df5nASdvYSr/plYiQrqo+m4l08WEa47AhfXh/Q0lU7TPOVR/g/9XQqY8HsPyau5xmPJwr2WE8gYhr015MyGPj/UPQd48ysO1/vmUh3MPHlfNhjzuJ4YhD3XL5h5NksOvFe+HnLaXUReXeN8h5FtR1kr2LcpDfR2kPGyXWZSHejCT8rDNZlMebvsOUR62p8l6lovzfXni/tfgPxuwZ+Wv1bjb4JcKeOwjDH7EddrwUsrDcuwHlhJdfD6n+B/lgHzZhmmT4P8A5BAKUTK+aoZAzFIhEOcAAIdAvADyGgKe2+JcAf8CgDGZtAle+Vblp1Gm7FtNRoMCHvE1Cf7LAd+Kvvkc4j0rybsKK1A2jzb1vsDYlPv3RQGaXBbpDLpy45a/DPTvajyOfHH/bvD/I+APlCxD/bvyH4tFvZRMl1CeGhco+zS4Xny2FOvP9hmqa56q+sq267QfXgdC22D9V+tNsfqPOmTzvapxAv/0t1Zt/pvd//OCKnECuK5p5WzcUHH37JPIvyW1lmX4W8RLSXrja1lqnIr14+PxFXcjfz2j8khP7fbWjLtoWFvNE7iNFxtrDnp4sbJNgp9bOHy1s25l+EqtPPH6i1pfxncDU4RLrVWjHK1NcjscJFmonewY3VY8YnuZToZssCodxGXzeaXv+d+oi0rXcESG4UDcqDcldPuOWF9h+Fuuli1lIR3D+vH8bJ7gpe06dew1ANdN/5COwvVUn+J6fUJcb0mI64mEuFLK680JcT2WENcbE+I6nhBXyjo+3qd8vS4hrpT2mLIdH0mIK6UNvTUhrpTtmFJX354QV0r9ejIhrh9LiCul3verz0lZx6cT4jqRENc7EuJKKa+UY5OU+tWv48KUet+vY7mHE+J6NCGu58NYrl/1PuXYZLpPK4erX8dy/eoLU47lUvrClO2YUl79Ov46mRBXv46/3pAQV0rbTmlDKeWVsh9KaUP9KvuU/ivluly/rg2l1K9HE+Lq1zFmP/Yd+fNIIlx5sr5jxIMbn8ueo8oEz2qfFPfveU/UAZ6aJ7KjP4Nn+FvES0l6Wah91N4qnxjHsm2Rx22lzvXMF3QUrmZCXIOES+mN2vcrK6+K14jk6TYPi/sJ7oCHtYbAm9Efv99P7xoCFnErk2x5+HYuziSx/EiATi9Mn/+fUfwfOlbYg+3ve2LdwHNl+/sUwNXtDv5RQlwpl19TDqn6daqaso4ptwH7dUm+X5cvfjQhrueDTjyWEFe/TiX6dUqYUl4pl3tS1vHRhLj6dbst5fJFSr1/U0Jc/bqUm1InpsdfPxw+OmVf+1BCXI8mxNWvvrBft0NemxDX2xLi6tcl05R9Wr+OC/u1T3s+bA2ntKF+DSua7jt+OPqO6a30qdOJ6TWFqatjynDzfp0PpZR9ylDZfl0vTDnOmfYTUzeemPYTUyf7fvUTMeMvvGqWr2Mte+0p4uLrWLE8XyuFuLLi1/alK14P2sgIn/GJ7xB/i3gpSW98X1pdqaFCPdSHCUJXd/AVtmWvMURc84iH53N40ALBS1vk8ZUuqp3V9VcK12BCXHyFGF5HzW2J14uVkG30Z1MMf8t11rNKW84kelw/bst5ghflF49QOaSTSP9fVlX/K7ZRUP+xflX0P08PAlwdnc3TwwlxvTkhrkcT4np9QlyPJMR1PCGupxLiejwhrpR1fF1CXCnr+JaEuJ5IiOttCXGl1K+U9phSv1L6wpR8PZYQV0q9fz7oxJsS4kqpX29NiCtlHVPK/g0JcaXU+ycT4pr2Ez8cfiJlHX8sIa6U44l+lf3TCXFN21A5XA8lxDVtQ1Mn+5Rz95RzZFs3V2tA+d+oi0qv5zUWw4G4K35ua1tG+JzT60vPlc9tnQY4zmuIdwMBXI8nxPVUQlyvT4jreEJcb0qI6+GEuN6aEFdKeaWsYyq+lJ/qF119MiGulLadUiceS4hr2n9N+69e1jGl7F+XEFdKvX9bQlwpbbtf7TGlj+7XvjZlOz6SENfzoR96PtQxJV8p/Wq/9tuv7lO+UsrrHyXE9eaEuFKOTfq1T5u2x6mrY7/228+HeVpKnXhtQlz9qvdPJMTVr2sdb0+Iqxc+OhQnnlEe0gnFwqur/xSduTXpzI2kM1iTzqCgw//bPXB4lx7fA6c+W2/7EYvgfYn9gTkZ4XNO70cY/hbxUpJeFtI9FQdv9Vtcjd5wRuWRnvpsqcl6icgzXPbZzkEPLivbJPhvF9/jbRNcnvjzgerTo/jO5JPrzTcKvKwLeRp1Uek69TlU1jGUSYk2GInVMcPfcrXaPAvJUH2+1eq+VPDSFnk+fUA6SwWdtsjbN41rGtc0riS4IvzfwO8vuPuhwZ95xT2rLp6z8ZtL5//k42t+6x2Prbn4cvb7xhviRR9Qwh9Fn6ky/C1Xy99mIZmqPoQ/VY9l25SXpyMAx3kN8W7Ag0v50qq48nSo+K3RDza4rUuUbQ8JnkajirrrrewLihcl23ymlT83nvb4V4at7Hmi7IKr3R9e+JXrH1m5+MUndz78xFf2ffTNCz906V+2l/71Qzc9/HdfOmllzxdlPclUf1zvZkOmfTo4H9dcVjBkunEB5DWobP5sutEk+H9x3kS5VedNpo02yfY+AO9LtMXlsfZu+FvES1V7HyB6XD+294bgpU15eXoQ4DivId6FcD2eENfbEuJ6LCGuRxLiOp4Q19sT4no4Ia5HE+J6c0Jc/dqOKXX18T7l63UJcb0+Ia63JsSVUifekBBXSp14MiGulPJK6b9S8vVUQlwp2zElX/3ad6Rsx5SyT2nbKev4dEJcJxLiekdCXM+Hfjulbfeir7U9GZyPzaG8BuQNUx5+1mmA+GsK/poB/rB801OO62HzrRnwLit+ba5Z8c6V6DteDH+LeClJb3yuOUj0uH4815wpeGmLPP4El2qfTNApy1fCz2ZZ/kqC2+5hLRN4M/rj9yvpnRIF4h6hfKX6rDI+0bY95fM0HKAzLMqZas4CHpdBPn/aa5ngcVmARyxvcIpOVpNOJugwLrVMlacHit8mwX+kWJrKzWHu0sk4lwv+QmawQsAvBxjjR8nGyg4L2pnn1+g4F9Yh5GGI6KxISGcFwDSJzgsT0nkhwMwhOi9KSOdFADMM5fL/L4I81DPj42LBh3U7l8D7Et1A9JaG4W8RLyXpjXc7lxA9rh/7nksFL23KyxNvR10q6Fwq6JwtXMOus/7clljXXrSl4W+5WrqTheSC9eO2vEzw0qa8PN0DcJzXEO8GPLisXqlwmZ3WbK/LWB6YLG8l4L6E8i4H+AOUtwryDgEOTg36H+uT919blk/gZTjmFf2X8T3iOnUMfYfPFyj9aYvyBmd9sH2O8yuwVfQntFV0AeA+RHW4EPLYZkdFXo7/ZRf669qqWdeWqKui065Jpy3oMK4m4JoFuPZDPsL/oJB7TTu5T9kJ+8yVFXHH+kzDr+zS+GqJvGYEL83PfOiTv/zKb+3KqLzxwu94jHi5gG8LeJPVKihfQlZHcLziiLbl4bRvJeXhVNV4yH3Mlcsm83d5Rf5i5If42yKPwxhi26It8vYnwoX2lgLXUEVc85y//1Y+icOHy/okLB/yfXNr0pkr6Jztvp2v5EYbQP44deu/f7pE/40y5f4b5cBh1GXHxYOCV5M3j9lGXVRayTLFpGQ6SHnoE1EOnJS8jedc3p8vIW+UqfFWsz+7XI0NmS7W9VLKuwLgxyjvSsg7BDg4KRlZfXIZNVZM4GU45hX1YRXBGu8Wcn8R5Nv4rEmwq0Ynyrzw/Mm0UGfvJD6wPS4CuhcXOMxOrgQ49n8ov4Z4F/J/BqfozK1JZ24knUtq0rkkks5gTTqDgo7Z1VWQV8KurjY9uFpkWt41rrMOlnct5JX1L8ZzWf+CMjXezrYcrqS8awGe/ct1kHcIcHDqJqMy/gXbAvlG3ptO93V3Ur7B7yh8Qu4fNp3vx2nv8SjRIQ/OLedP1O+uFZPrgP0arxGgzzxMeVdAOeMn5/mJgE/juXtZ28TyrBtYztqqpr5Gr4kZ/pbrrHOVNbGriJ5PLmxPWLbtOm1tE8BxXkO8G/DgwjZPgYvHzf3gX3hNLJV/2VJxTJ3Kvxwr7LOmrCcdjXSEa9r2+8v282dem6hjrysT4pq2/XjbL9tnH6I8nJ/hGvQTgXGG8i0bKN/g3w5jl6fO99fncqD96+dPxmX8P01+qqJdST/F8wec07KfQnk2xLuQnzI41TbspyrWL9pPGf6W66xzFT+l/LeSi9X9KsFL23X6PB6jKH94laDTFnSuSIiL11gQdwn5Xan6LEtKVqxD6N/YT10DeYcAByflp6w+Zf0U+iLkG3mP9SMG/xGy/YqylrZvuNTaJNt+2bVJLM9rY1iObb+iLUbbvuFvuc46V7F95ROVXNRc0cq2RR6PUa4QdK4QdBSulQlxse1X3GNapfoBS0pWrEPoM9j20Y8dAhyclO1bfcraPsr4CspT+wHY36s1d7aLinKOvmrC8Ku91yp2ofZS1V5YHp9lsVxF2OmmsdO7Hjpy/Ng9W8ceeXDdiaO7Dp86fezw8XVHj54ae/BBZBoJzYH3mI+JYex5hniPOFZ1qQx/bxYbaxXhuqILLv7eLJbnTvzKLrgOEC4szxNF+3+G6+TTBsgDEXjYABVfdxBfOODjjvPqLriOEi4sfzXhuqYLrjHCheWxLP4/w3XyyfIK4cn/rgvwlT+/gPjCRfDrCNf1AVx5updwYfnrCdeLu+C6j3BheSyL/89wnXyyvEJ48r+XdOHrfuLrxVD+JYTrhi64jhEuLH8D4XppF1yvJFxYHsvi/zNcJ58srxCe/O/GLny9ivh6KZS/kfJQLxcSnbLBFFjeFxhk+erX6PC7UNDGQqJzY0I6iOsuKJfnvQzKo29VCxJGwzr/m+B9LwbFhr9FvJSkN97530T0uH48KF4teGmLPOxXMQ/prBZ0FK5VCXG9jOqDEwC8v+MHtLh0E+SpyYP1302CXzw6UW6giMIccZ26cmNEHW8S9Az+5uL/QQGP+JoEP7PgKR9EzykObrQFT6s9vHB/ynpiMHkaItq9shHD33Kd7V/FRm4mej59s7qvEby0RR6OpTAP6awRdBSuqxLiuonq47ORxRdMplnVRn5w4US5c/rQRi5IYCM4hhoW79hGKupstI0Y/hbxUtVGVFtg/dhGbha8tEUejp99tnizoKNwXZcQV6yNrCIbuRbyYmzE4P8KbOQqshGUEduImq+oTSODtzYbFPCIr0nw10fayHUeXvJnHDerTSy2kYo6G20jhr/lOvWnio2o+R7Wj23kBsFLW+ThnInl2BDvBgK4YuZcsbiupfr4bGRDIhv5T2Ajm/rQRraVtBHFey/mXmp9Ae+v9clI6W5blL+O8lYKOt10ZP8Fmh+fjtj8vUnw/x505M6AjnAwOPLMGy5l59IXCzoxC8sV/c+MWH9n+FMtLIfWyvLE/u56wUvbdfpOPqSq/KoaezxXcOXPdhdmqB8sa+dt16lHFxOd6xPSwfqcjTWjPN1FdHhNUv3G0kFch4iOz2+9jvzWSyBP+S1b32sS/MfAb72hwDlEMCXt9Cbj/SaRqdZ7rqM8HA9fT3k4n+S2Xwt5OHbhpDb9rK55H3r3igm8DMf1QN++mvJ64HOjx5jTPjcNrun5wmRb4vkC5uFd4OzXGuLdQADXtQlx2V5GzfZK5tfyxAELuIZ2CHBwUr7L6lM2YEH5LrYThsP+Re0bKr4ygYftyfLU/p/dwa32GJcQjbI2v0TwG7OOhvpVQocasTZv+FOtoyn7Ca2jvUTw0hZ5vPal9mVfIugoXDyvx7nyVPef11ajF+w/1XcHUuiXrx2uD9C7oRq9AaOn9r2vFfTyA5KDrrMNffvzal8b28tn80ibY3PKxjsgLo7Nud5TB18bqPWfUIxCk/K+UIzRcz/86Qsmw1hcyWcB5reLZ+Xzca3jPxMcx6jkqea8INr2DH+LeKlqe6odsH6omzNdWEewjXwxS1eLurDOXtWFJ9ZZRUu1KcZwcZtioCuuhf5RAO5KAafybGzgCAcfivgTWKt87YrJdUS6HOdWNvhYBY4qOitr0lkp6MQEOVeMr4heczP8qYKcVcxiKMj5SsFLm/LyxHO2sgfh+h1X/mzfgQnF+cS0q6Kjgrx7HT8Vo+dV6aj1LhXwXZcO4jpU/NY8dFd6fshB4rjuxW2J614s/7WQxwf51kHe5fDMSc0r8bDe6yPWxGoGqve9/DBejJOSHx4kmJbf5PhHTinlV/EA0VXq8IglPnCm5IfjVJYfjtFYfjjWxH6Dk5IRXv5WZt0adczqNNtNXOg4cRBj69gj+w8fP3b08OljJ0/sGXvNQ2MPnuZrurkHWOnh0v43yfE14j6u8zRAeZdT/j4Bh2lYlDMaU3XstKKlB4+dYv2qHDvNn/FrhGwRDfEudFT0koS4TG/O9rHTyymv346doox5dohXtB6mvAuh3GWUNwp5hr/bFa341QLMy1NDvOO2niloKjqFaDq+ariv4G2I4Erqx+qYGVzF6/VWx/oKbg91VWRL5MVck/qdBWtX/a8PfPO9GZU3XvgdX5OqIlNmCviaI5obh4GGc509a57w6p3LKA9XJHA0wdekVtwdvTFGfoi/LeCPAFyZtmgLOpdUxGXXkeIqgdmO2d8FkLeC8tDOOIppueBheaA+FwsehkU5tscV8L4Xfbfhb7lavmW8715B9HxyUT7eyrZdp0/lKyPK+mCkc0FCXNbX1GyvS1gemNQKJusQ6j/33ejXDgEOTqrvtvqU7btRxrxSOW1XvberiwUvSmaL4BnzkI767IbCdVFCXKY/NdvrYpYHJuWDWIdUJLWyuUOAg1Ov7OoSgjXeZwjYZcVzk2DfCpFyP09jYCxvn79RnxF6EeWhrl9AeSsETxnRwGgM1PsHqA4G/46C71yWO5ZpnAMenNimzk22ZavHENC1vBI6+MmcrxuXTdBBmeUJx3M+u0F4HreGPpWDMlD9F9us8r/4GSXbwVPyMh57IS/kgeV1UReeWV5KvigHk4HySxcSrgsFLpRhSF7GYy/khTywvF7UhWeWl5IvfqbKZNB2nbIcJVxKXmiP/Ck9Kz8o4BFfk+B/FnwCnx5Bv8ZtvUzgRt+YEQ6sx2xRj2HKw7I53svOm4xXnSBSEScGr25AwOgSHnthlIOVrRkt01eR0WqFHuvMSfXNJofYFfqM6BhelH+eWCcuFTyqKPjrIvEafLdon4EIvjEihHXoesG3ivZZ6aGjoi3z5Ivm/wzYsn0uUflTo13Tn44of4oyYn+qbFZFB8baLEeW42k3jlRGGRtNpV8YFbW/xGk/FYWmIm5Y9wY98IavIwJM+OuQPqvI7qr6jHWoq88oLz5VZ/BfPrv6PKfX+qxuRQmdxsWT/tdSntLnzHX6sLL+FSPDNtQ87RrSf6ubT//5tKvB/8+A/iv5qqhXgw/d9NBN/1dTHpZb6aHj8+es/wb/rUj9N9q90H+UEet/7A0mBq9uD1E3KajbQ0L6v5ropNL/VSVuDbk5QJPLYt18+m/4mgTfHD3zq/RfyTfUHmsFvIr0UPVfS3lq/Ml0UP9RXqz/Bj971I3XNaT/RrsX+r8WAFj/10FeQ8CzvG8R8OsAhm/1uQXy+FYslPFaoqP8YKz+4207i2vemhPSf3VrDsL7bs05d/TMr9J/ZYPq1rFYfxTS/zWUp6KnmA7qP8qL9d/gl49O1DWk/0a7F/qPMmL9Xwt5DQHP8l4n4NcCDN/Yg7YR0v81RCeV/v+APt+TAdwCopkJmviO1/C5vMKF8VGH4Pkw5CP8htEzv7ZOgfIvoQfbh6GMAxyIu6KObce6WmrQO8Q/7KGXp5bIi4l/ePhXL3z6g2++ek5G5Y0Xfsd6PEPALxDwJqtB4n3URaWtytaNtop/aFIe2qvxoOIfZlTkL0Z+iL8t4DnSPrYt5rnJuoD6ntfx28XxOtOfEcDButyG9yXqPxCry4a/RbyUpDe+x9kmelw/k0O+lmqfPiwiOredPHx0/eEHHnzo+BhHVOLd2CwVxIrv0PtwHnsPhttK/28X5ZzAnedby82j96MuKs03rZgvMi0PPfQcylsIedianNSqqfGca+n3QEsZjvnB9lhAeXMhbyHQ5nZtCzrG/4CAn0u42qKcyb4bvYYoN4dwDIlyo/bwV0+/90fbH/uJD4yu/L1vD276x18/+Le3zbjhi7/3xnN+87G//+o3fpJ5doJnbsc5BKt+jXd+x5EE7YS45glcJhv8mGkJnV8U660Mf8vVsrFxbzWf6HH9uO4LBC8xo6YFgo7qlRWugYS4GglxNRPimpEIV572TeOaxjWNaxpXJC7Lw/5+HuVh/3m0+LWZN/pn/qj1gOBvIMAflue+R41xrd9Fv16iHxyO7Xd5Vltx9j7e7zaInk8uNWf0szMqj/TUrN1kPUPkGS7TjUEXnlE2Cf5fjJ75bRNcnliv1Swe35l88nfvGZ3Mu1oZiWlnxNt2nXW3vLOt9zj/wHsGPzyqaeJKJpa9v/htEvzosolyPzs6mWdsVzxFYjJQehJaGam5CjqsVkEHAYDHUchzQ8AfK37VKacm5WF9BqE+NfzPQuXbsI0/Meom1Qc/YK70yurTJPgWtPEvFTiVHuN8zOc3FD2220EBj/iaBP+ro2d+cedA8TfHQw/lofwa0/vk6AS90Oo9+mHnKuvtIqW36M9Yb1FHQ/4vRs+VLqOeDxEu5btQD7Z7ePX1B4avSfC/O3rmV+0WhfRctavB/z7gDLVrIn8k2xVlFdOuodXsbu3K/Qi2a4twqT4V2zqmXZE/7ucN/oujZ35Vu6o+SvUh3Ed9GXCG2tVk2Yt2RVnFtKvq72PblVflsV1nES7lo7GtY9oV68M+2uD/avTMr2rXqn74a4Bzqvwwjhe5XZXNIDy3a8hvKz+MbT6b8nj9FemU9dGqXw75aIP/zuiZXxWB3hblQ/wpueV1tjlpsQuy9/TJU2PFNoijFNq2yJ/nethYKMq7AC4sE6oSbuywyI3WoNPL6yxyg//+6JlfFDmLkPmJmSJXNJnojbTxoabT3fWoi0pZyK0pl6qmrGxmoels7FQ8oarmaauHjUyUd11w2f95z2CjZmxuHtWHRgJcFnuf2JGAwY8sO/OreoxuMzP2KMMCHntFnp1jHYYpD8vN8dCJHaEY/CKoa6gnM9q96MlQRtyT4a6OWh1geYd2hlAmbYJX5ocyHiY63cyc44GUnoZmyog3pF/KJkI6pPRf6V5oVSTRaHW47OxS6UJodtlNF6xuShdCK2rMl+piUUdZF4YFHV4ZyxP7Gvy1Mg7wDQl4y2tBHrZXnmbB+4bANZPKGfxLi7az4QHqqZXHOBVHcBnBOg/9AYJvCfiWgM/lc82yCZ4Vn9x/YV0bAh6HPwh/87IJmmtBp+0d08vfbQ/AZZ5fxTPyE5JRQ8Ab7VkC3vLwbCXqPsKgvBBXC/IRfhvpDra3lW8L+rjq4zx84zvWndkCfraAz+u5cdnkOlSMactmucmrGvYbE1f4i9dffuOcAxc9Oo/KI6918M/51C/t/LPvPnBRN/wq/g37qrL6yv4VcR0pfmvGOg5YeRw3ufjymeqTMuJtqBpvP4iRE+JvOT2mG3VRaXx6wr7W14da/VrV6H0/n9LOcp1jDmxLlB3SsfZSY48hymsKHHn5X1gxuR4Vp3Xfr6mD/6BWa3Cn5P5lE3ix7jiOV9NnnrO8GvqfV4FvNbxWHvtwNa9gmzZ5DwhYvpsP/1ergzyFtfYa9NR1kOpq8A8W9cvpzVyqcaL81HyLcT4MOOcSTu5jfDZj8LMFPK5+js8zXafuz6ZyamXciXeqfTKCRR7ydETw5Pu/JfD4eBgSeNjPM06myfqQJx5Hq/kp2hT2WTWXk2aovsARP7ybjnlYt1cAHKcG/Y885zj2LZvAy3DMj7KllH23vZ8B75kurycNEizPpZDHOuNhHl+ocwv2/8wA/xnhUZEFw07bm/qN5TcT/PYyUiRPdxe/Nfu8c7tFB/zUsgm8vj5PjRm4z/vpZRPlPhDZ51kej9vydBDesU/ncRDiyBMvo5uPHAT8CDNEdTL4j4DvmgnrcexDDNez0S8kzyHIC/UjTYL/DMjz50meKC+Tp+q/2AZmAS8Im6cjHhl8HPj4hWV+WjhP9dUxx/Fvlmk45AHhGEfVfk2Nr9h2Y8ZXag1qKECD/bGv7zbdmN0lf5aomxPvBgT8kKe+TtBudcGroj+Uf29RXiby2PdgfWPXcdFv/VTAXjI3uV6zqF5DgXplohzbOfI+M8C7kh/6j6prCE/91x/80dNvOOeve7VGsfr9r3378PUf+4Ve4f/o7D+45VffP3R3mTUQa2cVrcS6he9x7HEI8hH+S0V71FxjcFwf5TdC8zNeC2X+D3j4/zb47z8lu1DzE2Uzvv53RiQvBv/fC/pnaX+rqfY00K/xeFf5W7WWbfDd5pYmk7br9K8xUSIoUx7TqP1UFf3D+vANaAOOxlC+2fKw7uwX1X6MWks8VPzmMMPLzzzXHN/OVOMIS8PO7/9ZH7COljeLeMI8bEte78ek5pB4VnvO8gm8DGdJ+Qe219A+thovKrvDiGTn+sfuTPfbrrNdWN9iddg3nlP0UA7YV5sO+9bk0aZxzjV3+QQ+lLuKF8gT+1ODv3j5RLkFxbOKqmd9UH6CeXEuvOcdmsurqHprF7UPUGbtB9sX+cR3iL/lavmXjP2t0eM24rX6iuOEJvexSE+1w1ynZarW83muqNZ7QvOkkD9R9se2qdYRVB8Sms8ZbVwzjxk3+WJxfOsZK8G21pFtKV8bajfUHYYP+T7kVcl+FuWpub89zw7QUXypWKnZAb7QJ2NZpt2tDrF9VaIx4gzVV2GbsI0oufj2uPO/OQIeY07YRjDOiaN5Y/u2WZSn+vhufds6Tx+F9VAR4iqUEvs36/uqzg9f9qJ3Lj33d14z3Kv554zmue8Z/dihbWXmn8qvDBBelAOvt+fp5cVvzD53xb4z+psd3HfW3eeO7TvVeJ37Alxn4ROfag1GxS6dLVxqbsJtWXGcED0O4piFiroTjFlQ/ZuaX/G8Efsflr/qR1V/9VzBhfYfGh/HtKuio8b0vd674z23mQnpIC7+UjSvW6vfWDqI6xDRaQoe8vo/SH2jWg/Dsr71sHfCGPPh5ZNhjPfXAczjtGaCdS5hyy01J7ek1j5Yb9U4UMXTsn7g2GaI8vAYzBGA46TWUwwupxfznQIly4oxSX0ly1h5WV1znGW+Koz6ZnXCfdyQHSBdtoMfBx1/P9mWmh8pe7b33dZkQ/ulVnZIlCuhE7O5bTGptmWdwLZlncDjX6wTeEaH7QuPtfHYGJPSF5NDGft6v8dHGg32kTx/UHu46Ht7FQNr/Kr5Tib4VWspvE47swuu/YQLy8fEtdScFwzGyAjxt1yt/ieLlUuVeQG3BeYhnZixvGrLfptjpMSl1gSsPbrFzv4K2XsGeSp+kMdEBv/r0Bf8Gq27ob6pOCLWX6a5n+qV+sQ9r5OqsXKZvWqUHdbtaPHLa5a/Db4xtL+aaJ9nUK2doYxi7DC0Nqr6DLWXp+Zavn1I9pMxehOKdUU9/5XnUN8U059U3ZONqRfiT9WfdJML9yczBS9tkcd6rPyA0mM1l903jasSrjp909dL9k3sXw3+m9A3/U3ivsl3wwrCPxf6prHil/umvzu7fdPM53rf1K2v+broa6b3IWSa3odwnfXntpzehziTpvch9K/R4XfT+xBp6FTZh7h8xQRebGPfPgT3zQa/acVEuStXTIYx3q8GmJuK5+l9iImEciizTsqynN6H6ITjeqC+pdyH2AI6foBsa3ofYnLec2Uf4oDHRxoN9pGx+xDme6vGGf3EYPupPxi451NVzrnMIFr2jG2I77HfPQT5CH+U/FDF8Zk854Kxesx/mfVGNV6xpNZ0MspTZ1rU+LBBecpuY3XW6prz9ZsROhsTm6tu7w3F7Z6N2Nw8HSaece7JaxJ54nXKTNSrTizfG3/31Ee+P+//+4t+OUv2KNlYxTnXlJ0lew/0j0+smEzvbJ8le3tBf/os2dSdJftJaIOpPEv2r8iunq9nycr0L9NnyTrbZSrPkpkOz4L3Ve9aywCvK8oaT2hDON53bvIaBN8rWvHusXEZqjs40E/xGSWD/40Vk/Fwn4nv8oTtkid1x2BD0FX3Uc4uiWuIcM2sgQv1jeFnlsQ1FMDF93+2BC7Vb+Vt9wnQ2TLnHz9Nc7Kq5x+/DOOR36HxyPT5xzNp+vzj9PlH58qff/wzsK3vBMb6Mfui0+cfJ/8fqsP0+ceJvKk8//gdTx+F9ahy/tH6PvsMxINjpw8+OHbi6Nipg/eePHXw9OH7HlxcZBk7FbcEMl6OL1f+0Y1DjLBUebex5pZGNuQ6m6/M0NPEvgHKMy95UqFwVmamm1DXZ6e5xXPNra+6snn2enymz0tattSem1ExMnMPnDr28OHTY3vHTu99VuluPXlq3zMqx+gzes7EeyNVzwO9bqPhxFlBQ0A26ddgFhW/VVcJv/ipb3/h41uueXXsieKHj4299uCJk6fHPlFATrGd7q1pp3tr2tn41d4Vu6BxO91K5Z3r7AbZTrdSHi45byt+c1tYAM/nQZk88XIY5u2AvAHK2yn4tbxdHv7ztBvyZlDeHsjDJRTs8kvKd3vNIfngfEF/CHjL03rIy+Jxj+v+hmrlx+lvhPJVbO9WeDnq4pKV3VSN9oCV31ytfNPK31atfMPKb6lWfryfeaowmpSh7i1Xy6eMT1vVUnhT0IvZWlW41BRYDS1nnGU6KUOuUoVfdhtCh5ZpfNvciCu0TKO26qbp9Dedmts5g8aLWrpSPsDgh0rCt0rCp/iEQQj/cEn4OSXhR0rCtyPhOUTIcOTJdAEH6VW2RDLiBd8h/hbxUtbnDRM+pGN1mV8Nd/TxKsPfcrVkl9Xkd9z/L3CT+WX5Gv42wTPvCKtw5cl0arab0L/ii5ubxk7veGb29uCAByWKFUkzPD9bGvTgabhOdWAYPq3Bw2LemVYuC9+3PO9ned7P9rwf9ryf43k/4nnfdjptpP+30P/rA/DYRcxz/pTRH7/v1f/uLNJKwavpqnrOAjAxJ0orLpFEuzwesmbV6I27LBXBhjxw16WijFX0yq0Ax3mhLvL5imtDD/hSS0aZ59fo8Dumo/qIkF1UpYN55ivVl2P5Y+Zl5YblY6ap2AVvDPAVc6K6GcClTv8Yrm7D902Ey7drnP91G9rfRrjUrrPhmtUF12bCpb4UUvNEwAzjJTRFQPzGC+584u5d/jenCy6eNmL5OVQOTxXMJjoNKoPweRoS5fI06qJSpk6Rm23l+vajxM8I5DWobP5sY5Emwe/IJso9Rrw3q/Hey9O6QzE+CvH382ld5cfqnLC9dRpXKVwbesBXymXnsku3odMXGeUNCZxV5YDlcSumht3N7Ob/Pujh2ef/8JQBwjfB//1M8S50i0Ym+FJjcR4jqK3+zHXqisLFY4RGgK+ZXXDxGEHd9hDSA8TFY4SyYxeUbyjyKGbsgri4j1djl1hcbG+DApcKv8j/Rl1UulXZSonyh9U4rET5Y1Z+uFr541Z+TrXyY1Z+pFr5o1a+Xa38qJWfW638abUcXKL8SbWkWaL8fVZ+QbXyJ8zXLoSXpsuGexG8L+HHF6FNWFLjNYybQV5K0hsfry0ielw/Hq8tFry0RR7b+GJBZ7Ggo3DNSIhrVkJcwwlxzUmIayQhrnZCXHMT4prXp3WcnxBXSp1IKfuU8kpp2yn5WpAQV0pdTdmOpl821jfY7xe/NcNlF8esb1RcE1uMPFlS/aXhVyc6ja+WyIuJQV18/vWfnfuePx7vS0Nf/s1TzJa/6nvVuLGErBaqkwj2zn7VOqLloY0aD/kc5h3ZZP6GK/IXIz/E3xbwvN4R2xbznPZDzjl5c02D8tTcmfcoTJ8wT51gUKcQbE6GJ4fUyfzQaRq1hsvzTqWL+M63psN48X/fGgOe7Jqki9lEua2Zv14xc+ZWJO8tD66m4D1PW4h3g59f8JvrwD/PJuNUssU1A14DQZ5i1u0RF6+BqHV7wzXSBRevgag1fMPV7oKL10CwPPfbcwO40I5HRHnuH+d1wcVrIFh+HuXFnvLiMOuK4bBDuS69N5ugw/Vhn6XCaxDe9KxN8Pnz7EB95vWwPkMl66N0XdWnFahPL9sndMuB0kWEv43qg+NG7q+VPz3b7dPNr22m+ihf1E/to+qj1kRVfUYC9enH9kHfp+rTDtSnX9tnRqA+cynPd0PcVuq71do+jgfMp6rxIO61fLB4jumzVF+K70LxHgbH+9d7YXzyMarjCJSJGfMY/H7AaWMe1b/z3osad4wE6oflRzzl0KcgHZY1j5d5vQafF0C9GwSfJ5aLwR8Eufxr0G/j2xFfNe1oprIj5HOGp17GD8PzOAHXQvjoG9Znfg/r0y5ZH4TfFKgPztmsvHP93T63BeqDc0kr71x/t8/mQH1C47h+bB81TsD6hMYJvWwf9K9cH9XfoF/lcQL6U16TwTWPEcrLgI6v38Q8jN+qeV7dur9xOmXPqz9dIOj1eXV7z/EJ+Gv850ndAtagPBxTcazaLHjfELj41kyDfzf093nCY2JWvi3o8zkLxbeKockEroZ4hzddvSub4Llqu/23oV0bBz7x9IXd2k3JoUFl+AZPhscbrhH+/QWCZ8eRYNf2junl7/7/AFzm+VU8Iz+hNmgIeKM9S8BbHp5dQb+EMCgvxNXy0Pso6SbqE/pmpo9zI+fh27eez7ga4h3q5ofJn1SNu6yj23M+9Us7/+y7D1wUe4dGWfy/eP3lN845cNGj3fDb/OW+sdMHDz90+v6Drz12+sTYgw9eUbwfojJlZTQk+I8v/+iTQ4ywVHn3ZM1zNH1zpQ5ex4FxJ4jPuYkxhGrvmnXZqGKuS5Rfq8ZdfEUI48Y8dQVALo/zi+eabb2xpnzWznf+9rWrHy4p/g+dpanJx7qYvgXxt1w9G8lc5ziy4Trrh0dMLX5p4ojpume8zx1nnA8yiYjXwnvMx8QwDMfwaqPxuTgovLj47edB4aib4LnmpOLJupOKVcRrryYV1h4HD+Zd7GseOnn62NiJ03uLt1PcvW6t2b1uremqkt2EtZnKO8KrutfNlIeuypZ5cmvDy4kXQpk84U1A7L4rtumWmjLNQt2Qtff6irit/AZ4OeoBfvdbXvnj97/ms++4afTpxX/0xn/YZGU3RpS96uiOU3929Qcu/aVdG//NW95y4BVWNuLWKXbwdW+dGu+6ra17eXwG+Ux5I5E6BpMRnSwhHdWb1rSLQSuPPdtoVFF9VNFsIJfJcuAp/1OXAKtha5PgXwTlOLREHXWy/01HBwk2TxuIlsFeCrSu9OBzAp/ZkGqroQDPMzw0MgHLy5bq+BXyXYaekpHJmmW0CWhd6+L4R3wh/mPatRWgsYFoZKKco3Im11sDsK0ALNeZt5O5Phwuxv4/l8vq4lnJI+boKMpkPcFjXRoC/xDxZ/C3FL85rN0s2e0CY9QVtt1M1Ak/oKeOtClfEwpdRD9Uc3RsO+mVR8c7i9+zdUVsWfyfm/m1b/2HT9/3rm74rV7PjL5Pn1M8T/GYe1PNMfemfhlzb6DyjvCGlrTUmNtsjsfcHA7D4cZ5qjm2uLWXY24bP+LWJeYPirJWr1AYdIJZ9Ka6fqL4htVZm0UfHbvn5KsfOPng2MH7j504fUHx9ofFop/ri9Qhq90I+DLKu1XQneLF6oH5zu/ZzKJN+9UMAXUJZxFKrk68ywQelg22w2jxu+Bq94cXfuX6R1YufvHJnQ8/8ZV9H33zwg9d+pftpX/90E0P/92XTnJdBgK8h9ZGQwct+sEz2aZArz2T1fP46TM+aVnx//Qoo5b9TY8yOlPUKONcLOAm5DTD+W25SbCLocwCD75B1903NDx84EicceRp1EWlTNHJBJ1+H0WNFr+99lU2Xjo6duSh+w4eP3nfwcOnTh1+5ODJU4fvOT528LWnDj/wwNip2wuoKfZgd9f0YHfX9EAvsPIVw0OkB1PXJDUIjsugtuLa+UYPDK6R3+qB2QQwmzwwmwFmswfmNoC5zQODV9Nu8cBsBZitHphtALPNA7MdYLZ7YHYAzA4PzE6A2emB2QUwuzwwuwFmtwdmD8Ds8cDsBZi9Hph9ALPPA3M7wNzugdkPMPs9MHcAzB0emAMAc8ADcyfA3OmBeTnAvNwDcxfA3OWB+RGA+RGCCY0iUoWVVPQjS0P7TbwnUhL3OdzzOje5N3WEP9VXRtTXDrB+HBak9l5UyBB/oBdlbs/5KGk1wHHbGr6ao7VX1Gz3rIftPvBcbPcG5aVodzVCzeE2w7P1WWq0WmU8UtGPBL9glwG/lhr0m6epjlLCI/J56scopbVugue68RI2K+MxRJP4wbZk/lGHEb4h4MXXGzbkg/1tJ+9zlNitZB4Wl1K59R7WsgBexI/vl9K7hoBF3Akma3cbrqqTNRta9XqydlPxfOLk6WP3PnIw/+zpq4+dOHhq7OGxU6ePHXlmvvbgsaNjB8fuvXfsntMH7zn50InTY6doKmcfsZziqdzz5sOo3aZyeX63RXS85QdPUdToes7Kx1NNn3MXZKcHio+n7nhWhfeOnd5+7MSecf3d+4z6bnxWe9efUV6mqjyGet9w/fFdVVs267VnuLx4LjzD2InXPDT20NjRgw88dOT4sXsO3vvQiXtOHzt54uA9h48fN09gy4JT7Ak21/QEm2sOqps1B87SEyAvlt9tMabhui/G5Knq8rYKeAvd/2100ZLzZzwXW8MDbT4bHsjOFOQe6OLieZIH2lhYyq5nDeXWwk7WP2MmTM43OGLSWBX8vynwcOIOyapS041truvGXlD8nq3V6GfdVNFOE87rWN4jnDh83OL0p9hxbavpuLbVdDwzrHzFj1KM08VVY+TF8JZxXL4VYoTxrRDnSTk3dmADgg/l3Dhquil4UxHVGOm/CJ6XQpk8qUh/y8MV60TxC1t6Gb+Q+hRAWd7MYZuTtnbB1YAMeK2h9w209/GX9A7xt1wtOw1+jEUdOM87K/O4hRPMO6RdZx6tj0JOEfuAqEk2maNJaxvOA1emT7P/Zwi8vvL8jvlVR1hRWqapKh53gMo1CDfS5rUW5rMRwJ9RfqMLzxuIZ9+ufc3+flvd/t6mE73u783ai2nLPafGnlHwowdPPHT8+LF7j3WsXdhsanrtolZHkiy4bxiebY3iubAuYTcc5I7WgsImzQrWn1HEHaaHTIT9ZCbeG8GpXoLAT1QYfftNacsm1KPHTj2zfnPs4bFnxuv5ug5ft1jxkxzjRlvxExuT/LAjXhAvOxdXgoYlbCtOfK0M71WwcypBP/PxkQlgm8bjFecmDxt9YFueHrvvGYdsp5WZ24oXxw9Y+dnVystWxUth+GPMLH1Mmef/AfoNwWYBvMMiz3BaayC/syhvojVOnzx46vDRY6/jq4CrxiXhOboK5cdts+qIXLUijpY5Lor9L9I0XlrVeJmVCfpqf5Bb2mCUZg3Q/01634iAVZpleWp/lMt12+/k/XIn4A0X6pvCxXu9rB9122g+lTccefq/g/xhIBJQJQA=",
|
|
4056
|
-
"debug_symbols": "tL3bruzKcp75LvtaF4zMOGT6VRoNQ+2WDQEbkiHLfSPo3bsYyYg/5hiuHBxVtW40v700Z3xkkvEXD0nyP/72//7T//O//8d//ed/+e//+r/+9l/+r//42//zb//897//8//4r3//1//2j//+z//6L4//+h9/O87/Q/y3/0KN23/+w9/o/N9jPv73P/xtHusPWn+09Udff/D6Q9Yfuv6w9cdYf6wqdBzXn3T92a4/+/UnX3/K9adef9r157j+vOrRVY+uenTVo6seXfXoqkdXPbrq0VWPrnrtqteueu2q16567arXrnrtqteueu2q1656/arXr3r9qtevev2q1696/arXr3r9qtevenzV46seX/X4qsdXPb7q8VWPr3p81eOrnlz15FGvn3+2689+/cnXn496ev6p1592/fmoN88/z3rnX9QjgAJaQA/ggHMp+QQNsIARMC+wI4ACWkAP4ICobGdlOcECRsBZ+Vz5cQRQwKNyc+gBHCABGmABI2BecHbNAgqIyjMqz6h89k87h+XsoAUWMALmgnY20gIKaAE9gAMkQAMsYAREZYrKFJUpKlNUpqhMUZmiMkVlisoUlVtUPruryQktoAdwgARogAWMgHnB2WYLonKPyj0q96jco3KPyj0q96jcozJHZY7KHJU5KnNU5qjMUZmjMkdljsoSlSUqS1SWqCxRWaKyRGWJyhKVJSprVNaorFFZo7JGZY3KGpU1KmtU1qhsUdmiskVli8oWlS0qW1S2qGxR2aLyiMpnD7ZxQgvoARwgARpgASNgXuA96BCVZ1SeUfnswU4nSIAGPCp3PWEEzAX97MEFFNACegAHSIAGWMAIiMp05UYnCmgBPYADJEADLGAEXInUW1RuUblF5bMH+zyBAyRAAyxgBMwLzh5cQAEtICr3qNyj8tmDfJxgASNgXnD24AIKaAE9gAMkICpzVOaofPYgP4Konz24gALOynZCD+AACdAACxgB84KzBxdQQFTWqKxRWaOyRmWNyhqVNSpbVLaobFHZorJFZYvKFpUtKltUtqg8ovKIyiMqj6g8ovKIyiMqj6g8ovKIyjMqz6g8o/KMyjMqz6g8o/KMyjMqz6syH0cABbSAHsABEqABFjACojJFZYrKFJUpKlNUpqhMUZmiMkVlisotKreo3KJyi8otKreo3KJyi8otKreo3KNyj8o9Kveo3KNyj8o9Kveo3KNyj8oclTkqc1TmqMxRmaMyR2WOyhyVOSpLVJaoHD3I0YMcPcjeg/MEDbCAETAv8B50oIAW0AM4ICprVNaorFFZo7JFZYvKFpUtKltUtqhsUdmiskVli8ojKo+oPKLyiMojKo+oPKLyiMojKo+oPKPyjMozKs+oPKPyjMozKs+oPKPyvCrLcQRQQAvoARwgARpgASMgKlNUpqhMUZmiMkVlisoUlSkqU1SmqNyicovKLSq3qNyicovKLSq3qNyicovKPSr3qNyjco/KPSr3qNyjco/KPSr3qMxRmaMyR2WOyhyVOSpzVOaozFGZo7JEZYnKEpUlKktUjh6U6EGJHpToQYkelOhBiR6U6EGJHpToQYkelOhBiR6U6EGJHpToQYkelOhBiR6U6EGJHpToQYkelOhBiR6U6EGJHpSzB4VP6AEcIAEaYAEjYF5w9uACCojKMyrPqDyj8ozKMyrPqDyvynocARTQAnoAB0iABpyV9YQRMC84e3ABBbSAHsABEqABUZmiMkXlswfFTqCAFnBWnidwgARogAWMgHnB2YMLKKAFROUelXtU7lG5R+UelXtU5qjMUZmjMkdljsoclTkqc1TmqMxRWaKyRGWJyhKVJSpLVJaoLFH57EE9TpgXnD244FFZ6YQW0AMelfXcE84eXKABFjAC5gVnDy6ggBbQA6KyRWWLyhaVLSpbVB5ReUTlEZVHVB5ReUTlEZVHVB5ReUTlGZVnVJ5ReUblGZVnVJ5ReUblGZXnVdmOI4ACWkAP4AAJ0AALGAFRmaIyRWWKyhSVKSpTVKaoTFGZojJF5RaVW1RuUblF5RaVW1RuUblF5RaVW1TuUblH5R6Ve1TuUblH5R6Ve1TuUblHZY7KHJU5KnNU5qjMUZmjMkdljsoclSUqS1SWqCxRWaKyRGWJyhKVJSpLVNaorFFZo7JG5ehBix606EGLHrToQYsetOhBix606EGLHrToQYsetOhBix606EGLHrToQYsetOhBix606EGLHrToQYsetOhBix606EGLHrToQYsetOhBix606EGLHrToQYseHNGDI3pwRA+O6MERPTiiB0f04IgeHNGDI3pwRA+O6MERPTiiB0f04IgeHNGDI3pwRA+O6MERPTiiB0f04IgeHNGDI3pwRA+O6MERPTiiB0f04PAetBNaQA/gAAnQAAsYAfMC70GHqMxRmaOy92A7QQI0wAJGwLzAe9CBAlpAD4jKEpUlKktUlqgsUVmjskZljcoalTUqa1TWqKxRWaOyRmWLyhaVLSpbVLaobFHZorJFZYvKFpVHVB5ReUTlEZVHVB5ReUTlEZVHVB5ReUblGZVnVJ5ReUblGZVnVJ5ReUbleVWexxFAAS2gB3CABGiABYyAqExRmaIyRWWKyhSVKSpTVKaoTFGZonKLyi0qt6jconKLyi0qt6jconKLyi0q96jco3KPyj0q96jco7L34DzBAkbAo7Id523XI4ACWkAP4AAJ0AALGAFRWaKyRGWJyhKVJSpLVJaoLFFZorJEZY3KGpU1KmtU1qisUVmjskZljcoalS0qW1S2qGxR2aKyRWWLyhaVLSpbVB5ReUTlEZVHVB5ReUTlEZVHVB5ReUTlGZVnVJ5ReUblGZVnVJ5ReUblswft3G3OHjzhcaP9SDpri1NL6kmcJEmaZEkjaQad7XhROigdlA5KB6WD0kHpoHRQOlo6WjpaOlo6WjpaOlo6WjpaOlo6ejp6Ono6ejp6Ono6ejp6Ono6ejo4HZwOTgeng9PB6eB0cDo4HZwOSYekQ9Ih6ZB0SDokHZIOSYekQ9Oh6dB0aDo0HZoOTYemQ9Oh6bB0WDosHZYOS4elw9Jh6bB0WDpGOkY6RjpGOkY6RjpGOkY6RjpGOmY6ZjpmOmY6ZjpmOmY6ZjpmOmY4fEbNRZTUknoSJ0mSJlnSSEpH9jlln1P2OWWfU/Y5ZZ9T9jlln1P2OWWfU/Y5ZZ9T9jlln1P2OWWfU/Y5ZZ9T9jlln1P2OWWfU/Y5ZZ9T9jlln1P2OWWfU/Y5ZZ9T9jlln1P2OWWfU/Y5ZZ9T9jlln1P2OWWfU/Y5ZZ9T9jlln1P2OWWfU/Y5ZZ9T9jlln1P2OWWfU/Y5ZZ9T9jlln1P2OWWfU/Y5ZZ9T9jlln1P2OWWfU/Y5ZZ9T9jlln1P2OWWfU/Y5ZZ9T9jlln1P2OWWfU/Y5ZZ9T9jlln1P2OWWfU/Y5ZZ9T9jlln1P2OWWfU/Y5ZZ+37POWfd6yz1v2ecs+b9nnLfu8ZZ+37POWfd6yz1v2ecs+b9nnLfu8ZZ+37POWfd6yz1v2ecs+b9nnLfu8ZZ+37POWfd6yz1v2ecs+b9nnLfu8ZZ+37POWfd6yz1v2ecs+b9nnLfu8ZZ+37POWfd6yz1v2ecs+b9nnLfu8ZZ+37POWfd6yz1v2ecs+b9nnLfu8ZZ+37POWfd6yz1v2ecs+b9nnLfu8ZZ+37POWfe5Thmw4WdJImkHe54soqSX1JE6SpHRYOiwdlo6RjpGOkY6RjpGOkY6RjpGOkY6RjpmOs8/HmujZknrSwzGakyRpkiWNpHmRTyq6iJJaUk/iJEnSJEsaSemgdFA6KB2UDkoHpYPSQemgdFA6WjpaOlo6WjpaOlo6WjpaOlo6Wjp6Ono6ejp6Ono6ejp6Ono6ejp6OjgdnA5OB6eD08Hp4HRwOjgdnA5Jh6RD0iHpkHRIOiQdkg5Jh6RD06Hp0HRoOjQdmg5Nh6ZD03H2+eCTzj6/iJJOhzn1JE6SJE2ypJE0g84+v4iS0jHSMdIx0jHSMdIx0jHSMdMx0zHTMdMx0zHTMdMx0zHTMcPhE5cuoqSW1JM4SZI0yZJGUjooHZQOSgelg9JB6aB0UDooHZSOlo6WjpaOlo6WjpaOlo6WjpaOlo6ejp6Ono6ejp6Ono6ejp6Ono6eDk4Hp4PTwengdHA6OB2cDk4Hp0PSIemQdEg6JB2SDkmHpEPSIenQdGg6NB2aDk2HpkPToenQdGg6LB2Wjuxzzj7n7HPOPufsc84+5+xzzj7n7HPOPufsc84+5+xzzj7n7HPOPufsc84+5+xzzj7n7HPOPufsc84+5+xzzj7n7HPOPpfsc8k+l+xzyT6X7HPJPpfsc8k+l+xzyT6X7HPJPpfsc8k+l+xzyT6X7HPJPpfsc8k+l+xzyT6X7HPJPpfsc8k+l+xzyT6X7HPJPpfsc8k+l+xzyT6X7HPJPpfsc8k+l+xzyT6X7HPJPpfsc8k+l+xzyT6X7HPJPpfsc8k+l+xzyT6X7HPJPpfsc8k+l+xzyT6X7HPJPpfsc8k+l+xzyT6X7HPJPpfsc8k+l+xzyT6X7HPJPpfsc8k+l+xzyT6X7HPJPpfsc8k+l+xzyT6X7HPJPpfsc8k+l+xzyT6X7HPJPpfsc8k+l+xzyT6X7HPJPpfsc8k+l+xzyT7X7HPNPtfsc80+1+xzzT7X7HPNPtfsc80+1+xzzT7X7HPNPtfsc80+1+xzzT7X7HPNPtfsc80+1+xzzT7X7HPNPtfsc80+1+xzzT7X7HPNPtfsc80+1+xzzT7X7HPNPtfsc80+1+xzzT7X7HPNPtfsc80+1+xzzT7X7HPNPtfsc80+1+xzzT7X7HPNPtfsc80+1+xzzT7X7HPNPtfsc80+1+xzn8E1DydNsqSRNIPOPr+IklpST+KkdFg6LB2WDkvHSMdIx0jHSMdIx0jHSMdIx9nnsznNoLPPL6KkltSTOEmSNMmS0jHD4ZO8LqKkltSTOEmSNMmSRlI6KB2UDkoHpYPSQemgdFA6KB2UjpaOlo6WjpaOlo6WjpaOlo6WjpaOno6ejp6Ono6ejp6Ono6ejp6Ong5OB6eD08Hp4HRwOjgdnA5OB6dD0iHpkHRIOiQdkg5Jh6RD0iHp0HRoOjQdmg5Nh6ZD06Hp0HRoOiwdlg5Lh6XD0mHpsHRYOiwd3ufnA6o+aewiSmpJPYmTJEmTLGkkpWOmY6ZjpmOmY6ZjpmOmY6ZjpmOGwyeSXURJLakncZIkaZIljaR0UDooHZQOSgelg9JB6aB0UDooHS0dLR0tHS0dLR0tHS0dLR0tHS0dPR09HT0dPR09HT0dPR09HT0dPR3e5+JESS3pdJgTJ0mSJlnSSJpB3ueLKKklpUPSIemQdEg6JB2SDk2HpkPToenQdGg6NB2aDk2HpsPSYemwdFg6LB2WDkuHpcPSYekY6RjpGOkY6RjpGOkY6RjpGOkY6ZjpmOmY6ZjpmOmY6ZjpmOmY6Zjh8MlqF1FSS+pJnCRJmmRJIykdlA5KB6WD0kHpoHRQOigdlA5KR0tHS0dLR0tHS0dLR0tHS0dLR0tHT0dPR09HT0dPR09HT0dPR09HTweng9PB6cg+n9nnM/t8Zp/P7POZfT6zz2f2+cw+n9nnM/t8Zp/P7POZfT6zz2f2+cw+n9nnM/t8Zp/P7POZfT6zz2f2+cw+n9nnM/t8Zp/P7POZfT6zz2f2+cw+n9nnM/t8Zp/P7POZfT6zz2f2+cw+n9nnM/t8Zp/P7POZfT6zz2f2+cw+n9nnM/t8Zp/P7POZfT6zz2f2+Yw+b0f0eTuiz9sRfd6O6PN2RJ+3I/q8HdHn7Yg+b0f0eTuOdFA6KB2UDkoHpYPSQemgdFA6KB0tHS0dLR0tHS0dLR0tHS0dLR0tHT0dPR09HT0dPR09HT0dPR09HT0dnA5OB6eD08Hp4HRwOjgdnA5Oh6RD0iHpkHRIOiQdkg5Jh6RD0qHp0HRoOjQdmg5Nh6ZD06Hp0HRYOiwdlg5Lh6XD0mHpsHRYOiwdIx0jHSMdIx0jHSMdIx0jHSMdIx0zHTMdMx0zHTMdMx0zHTMdMx3Z55R9TtnnlH1O2eeUfU7Z55R9TtnnlH1O2eeUfU7Z5+vNU8fh2IEMFKACDTiAM9HfSHUhAWHzllcnTpIkTbKkkTSDvOUXUVJLSkdPR09HT0dPR09HTweng9PB6eB0cDo4HZwOTgeng9Mh6ZB0SDokHZIOSYekQ9Ih6ZB0aDo0HZoOTYemQ9Oh6dB0aDo0HZYOS4elw9Jh6fBXXh3NUYEGHMCZ6C+/upCADdiBDIRtwDZgG24Tx5nor5G7kIAN2IEMFKACDQjbTJvPmQs8bXQ4NmAHnjZar6kSoAJP2/lOseZz5wJnor+L7kICNmAHMlCACoSNYCPYGmwNtgZbg63B1mBrsDXYGmwNtg5bh63D1mHrsHXYOmwdtg5bh41hY9gYNoaNYWPYGDaGjWFj2AQ2gU1gE9gENoFNYBPYBDaBTWFT2BQ2hU1hU9gUNoVNYVPYDDaDzWAz2Aw2g81gM9gMNoNtwDZgG7AN2AZsA7YB24BtwDZgm7BN2CZsE7YJ24RtwjZhm7B5lrQzH3xeXiAlrs5yOsu2hWcBf9Gdz1W70FvoQgI2YAcyUIAKNCBsHTaGjWFj2Bg2ho1hY9gYNoaNYRPYBDaBTWAT2AQ2gU1gE9gENoVNYVPYFDaFTWFT2BQ2hU1hM9gMNoPNYDPYDDaDzWAz2Ay2AZu3UFPHBuxABgpQgW4zxwGcid5CFxKwATuQgQJUIGzeQv5mvb5a6EReLTQdCdiAHchAASrwtPkb+nzqW+BM9J/jCwnYgB3IwNPWu6MCDeg2dZyJ/nN8IQEbsAPdZo4CVKABB3AmepZcSMAG7EDYPEu6bwvPkgst0VOjs6PX9aH2fGAfHc8HXn9BgQYcwJno+XDhWZfFsQE7kIECVKABB3Amej5cCJvnA/sG8Hy40G2+mutttAsVaMABnImeD3I4ErABO5CBAlSgAQdwJg7YPB/EN4vnw4Vua44MFKAC3ebj4Plw4Uz0fLiQgA3oNt+5PB8uFKACDTiAM9CnygUSsAE70G3DUYAKdBs7DuBM9J6/0CtMx/Pvnk9gN5/x9jibcyRgA3YgA89i6gvpLX2hAQdwJnpLX+g2Xwtv6Qs7kIECVKABB3AmeqNfCJsfHqiPgx8eXMjA03Y+cdx8LlygAU+b+fB5+5sPibf/+chI8wlxgQ3YgQwUoNf1hfRGX+iNfiEBG7Aneheej2c0n64WeCqGL6/32/D9wfttoffbhQRswJ7ofTF8eb0vLmSgABVowAGcgT61LJCADdiBDBSgAtPm08keZ++OXsEcvcJ0FKACzwrnJJzmE8gCZ6I3zoUEbMCz7iRHr9AcvYIvmTfDhQT0CuzYgQwUoAIN6DZfY2+Ghd4MfhXP54oFNqDXHY5ewcfBd/CFvoOf96mbzwRrfmXOp4IFdiAD5UQfB3+v84UGHCf66PjbnRf6+50vhE1hU9gUNn/T84Wa20KxNRVbU7E1DVvTsDW9h9Ym9N+stQm9h9bGMmzNga3pPbS2xcDWHNiaA1tzYGsObE3/zVrbbWBr+m/W2lgTW3Nia3oXrk3o/ba228TW9H7zTehTvNZA+RyvwAbsQI6N5fO8AhVosbF8qldgbk2f7HUVI9gINoKNcmv6PKrHRSvHDmSgL446KtCAAzgT/YXnFxKwATvwtPnlM59UFahAAw7gTPSXoPu5tk+tCmzADnSbOApQgW7zJfPGuXAmeuOQORKwATvQbcPR607HAZyJ/lr0C8+6fhnAZ1Y9LqI5nnX9rM7nVgUKUIGnrfka+2vSL5yJ/qr0C93m6+ZvSffzLJ9a1fwsyedWNT+x8clVra9/ZsABnIn+zvQLCdiAp637qPv3Cy50my/O+obBQgMO4Awc61sGCwnYgB3IQAEq0IADCBvBRrARbAQbwUawEWzrawfmOIAzcX3zYCEBG7ADve56970BB3Am+hcPLiRgA3YgAwUIW4etw9ZhY9gYNoaNYWPYGDaGjWFj2Bg2gU1gE9gENoFNYBPYBDaBTWBT2BQ2hU1hU9gUNoVNYVPYFDaDzWAz2Aw2g81gM9gMNoPNYBuwDdgGbAO2AduAbcA2YBuwDdgmbBO2CduEbcI2YZuwTdgmbDNt8ziABGzADmSgABVowAGEjWAj2Ag2go1gI9gINoKNYCPYGmwNtgZbg63B1mBDlkxkyUSWTGTJRJZMZMlElkxkyUSWTGTJRJZMZMlElkxkiU/waudnGJrP8ApsQI5EnCtAFirQgAOYoTvlABKwATsQNoFNYBPYBDaBTWFT2BQ2hU1hU9gUNoVNYVPYDDaDzWAz2Aw2g81gM9gMNoNtwDZgG7AN2AZsA7YB24BtwDZgm7BN2CZsE7YJ24RtwjZhm7DNsPXjOIAEbMAOZKAAFWjAAYSNYCPYCDaCjWAj2Ag2go1gI9gabA22BluDrcHWYGuwNdgabA22DluHrcPWYeuwddg6bB22DluHjWFj2Bg2ho1hY9gYNoaNYWPYPEv80zA+iSywAU/beYm5+zyyQAGetvPid/epZIEDOBM9Sy4koNuGYwcy0G2+vJ4lFxpwAGeiZ8mFp+28rtyP9UmnhR142s5LzP1YH3ZaqEBLXB9zao5ewQfK8+FCAXoFHyjPhwsH8FxeWZ9HOoAEbEC3+Qp5PlwoQAV63XP4fH5YO6//dp8gFshAH191VKABB3Ames9fSMDTdr6PvftMsUAGClCBBhzAmeg9fyEBYWuwNdgabA22BluDrcHWYeuwec/r+k6V122OCjTgAM5E7+4LCdiAHchA2Bg2ho1hY9gENoFNYBPYBDaBTWAT2AQ2gU1hU9gUNoVNYVPYFDaFTWFT2Aw2g81gM9gMNoPNYDPYDDaDbcA2YBuwDdgGbAO2AduAbcA2YJuwTdgmbBO2CduEbcI2YZuwzbStjy1eSMAG7EAGClCBBhxA2Ag2go1gI9gINoKNYCPYCDaCrcHWYGuwNdgabA22BluDrcHWYOuwddg6bB22DhuypCFLGrKkIUsasqQhSxqypCFL1iccz9t2fX3E8UIBKtCAAzgTV5YsJGADuk0dGShAt7GjAQdwJq4sWUjABuxABgoQNoVtZclwnIkrSxZ2oFcwRwOeFczH1/NhoefDhQRswA48l9d8SDwfLlSgAd3mYs+HhZ4PF7rNl9fz4cIOdNt0FKACDXjaxuF42s5bh93fz/ZYfscOZKAAz7rn/bfuL2lr5/237m9pe6yKo9c9beszkBcSsAFP23lDpq/PQV4oQAWetunL6+0/fXG8/c87K319EXL64nj7T1d4+1/IQAEq0IAD+LD1w5fBvxF5YYvdqPcOZKAAFWjAAcw9tfMBJCBsDBvDxrAxbGfP98PH7Oz5wJkovkI+kv4J5QsbsAMZKEAFGnAAZ6LCprCp23yP0g5koAAVaMABnIl2AAkIm8FmsBlsBpvBZm7zXW4dKZBjA3YgAwWoQAMO4ExcRwoLYZuwTdgmbBO2CduEbcI208bHASRgA3YgAwWoQAMOIGwEG8FGsBFsBBvBRrARbAQbwdZga7A12BpsDbYGW4OtwdZga7B12DpsOL/gDluHrcPWYeuwddg6bAwbw8awMWwMG8PGsDFsDBvDJrAJbAKbwCawCWwCm8AmsAlsCpvCprApbAqbwqawKWwKm8JmsBlsBpvBZrAZbAabwWawGWwDNmQJI0sYWcLIEkaWMLKEkSWMLGFkCSNLGFnCyBJGljCyhJEljCxhZAkjSxhZIsgSQZYIskSQJYIsEWSJIEsEWSLIEkGWCLJEkCWCLBFkiSBLBFkiyBJBlgiyRJAlgiwRZIkgSwRZIsgSQZYIskSQJYIsEWSJIEsEWSLIEkGWCLJEkCWCLBFkiSBLBFkiyBJBlgiyRJAlgiwRZIkgSwRZIsgSQZYIskSQJYIsEWSJIEsEWSLIEkGWCLJEkCWCLBFkiSBLBFkiyBJBlgiyRJAlgiwRZIkgSwRZIsgSQZYIskSQJYIsEWSJIEsEWSLIEkGWCLLEp/r1c+ZL97fRBQpQgQYcwJk4DyABGxC2CduEbcI2YZuwzbT5FMJAAjagX/ccjgx0mzkq0IADOBPpABLQbdOxAxl42s55Qd2nGwYa0G2+ZDQT2wH0q8JerDVgBzJQgAo04ADORM+SC71uc2SgrwU5KtCAAzgTz9QIJOA5Zufzh91fWRfIQLexowIN6DZfMj9vWejnLRf6mHkxT40LO5CBAlSgAQdwJnpqXOhrIY4MFKCvhe+TfoZy4QD6Wvge5WcoF/qY+U7gZygXdqDbfLv5GcqFCjTgAM7EcQBPW/N98syHwA5koAAVGJMQ+zVh0Te3H1UcCxuwAxkoQAUaMKYbdp/cuPCa3LiQgO2aw9l9cmMgAwWoQAMO4Ez0KcYX5pb3aYyBAswtb2TAAcwt72+vC8wt7++vC+zA3PL+CrtABRpwAHPL+3vsAnPL+wzMwA5koAAVmFveOLf8NddyYQN2IAMFqEAD5pZfcy0XCra8YMsLtrxgywu2vGDLC7a8YMsLtrxgyyu2vPd88yXznr9QgAo8t0Vb/2wAZ6L3/IV0TVrvPtcysAMZKEAFGnAAZ+Lq7u7YgQwUoAINOIAz0X/9LyQgbBO2CduEbcI2YfNf/+aL7r/+jj7BMpCADdiBbhuOAlSgAQdwJvqv/4UEbMAOhM2T4Jy12n2CZaABT9s5l7X7BMt+zkTtPsEykIAN2IEMFKACDeg2cZyJngTn1M/u0y4DG7AD3eaL7klwoQINOIAz0Y8JLiTgaTunSnWfdhl42thHx48JLlSgAUeiHwhwcyRgA3YgA13hQ+IXMC804ADORL+AeaHbfKD8AuaFHchAASrQgAM4Ez0qLoTNDw980oPPtQxkoNt8n/TDgwsNeNp8VoTPtew+6cHnWnY/BPS5loEN2IEMFKBPQHGaQWtKlBMltaR+kU927LKQgQL0efJOljSSZpBfB1hESV6RHc9h8IkZc/0yO82g9bvs5Af+Ti2pJ3GSJGmSS9RxAH2sz03kMxYDCeiLORy9wnQcQL/vcZJ3lk9Z8EmIgQ3YgQyUGBLO4eQcTs7h5BxOyeH0RlqD6C2zBtFbRtdfGMBzVf0Wpc8uDPQl9a15toz3vU8uvIiTJEmTLMjbwm/2+VzBx5G64/mvvfa5/1+kSee/9oU4d/6LZtC5619ESS3JJb4Jfb+/8NzufsPQpwgGWqL/RPptGJ/219U3nP8YXngupw+X/xaugfHfwgsHcF7IPuuvnw8rss/6C2zAfg04+6y/QAEqihlwAGEj2Ag2go1gI9gINoKNYCPYCDbvvgtp7ersk/5892Wf9BfIQAFqov9OmS+CN9OFA+jndyf5Ba9FlNSSehInSZImWdJISoekQ9Ih6ZB0+G+UsaMAFegro44DeA6i+ch5w11IwAbsQAYK0G0++P4bdeEAus1O9Ga8kICnbfh28Ba9kIF+Q9lJkyxpJM0gv7q1yCuS47mkwzend97w5fdD1gtnovfjheeSDh9vP2S9sAMZKEC/GOfksoUDOAP9LW79vB/O/hq3wAY8ZeeNbfZ5eoGn7DyhYp+nF2hA7xunGeQ9uoiSWlJP8orN8fzH5w109ll3/byBzj7rLrABO9CX1It5012oQAMOoNtO8t+9RZTkg+LUkzhJkjTJklxijjPRfxwv7EBfTP9nfih5oe/VTjPIjykXnT8Hh28aacAO9N8sH1MRoP9q+fCKAc9fnsMH8mxXPu8ms8+p48PHSd3mg7J+Hxd2IAMFqEADDuBpI1/es12ZfFc625XJl/dsVyZfSP/xJF9I//W80IADOBP9F/RCAnoxX82hQAMO4EycB5CAXswHavo/8y00Z6DPcgsk4Llu06kncZIkaZIljaQZdHbbRZSUDkoHpYPSQemgdFA6KB0tHS0dLR0tHS0dLR0tHS0dLR1ns7GPy9lsF3GSJGmSJY2kGXS22kWUlA5OB6eD08Hp4HRwOjgdkg5Jh6RD0iHpkHRIOiQdkg5vjPNJVPYJYnxe4GJ/0Rj7r7G/Uow98n1OF/tf9b16kSY9Kon/vXPnvYiSzr/XXDkNOIC+IOcW8vd0nUfZ7K/puqgl9SROkiRNsqSRNIMoHZQO31/P0xf2mVZ8ngWxfxlTfLnOvXPRuXdeREktqSdxkiRpkiWlo6Wjp6Ono6ejp6Ono6fj3Hf9GNAnW100kh4O9XU7992LKMlHoTn6KHTHc0t1HybfLRf6fnkhARuwAxkoQAUaEDaBTWHz34nzeg773KnADmSgABVowAGcid4OF8JmsBlsBtv566G+Ec4fj4ssaSTNoPOH4yKvqI6+pOb4+Nd+rLc+dLloBvmHsXyz+oexFrWknsRJkuQrfqp9qhOfJ5fsU50CO9CbnxwFqEADDuBM9J+NCwnYgB0IG8HmPx7n2Sz7VKfAAXTbuR18qlOg29TRbeboNl95/xG5UICnTVzsvyMXnrbzYg/7VCcWF5/Nyp4i621efhC03uZ1YQcyUIAK9Lq+6P5D4gnq05f4vDTCPn0pUIC+vL7o3rgXDuBM9Ma98KzrweBTkthTwKcksZ+++pSkwJnozXghARuwAxkoQLf58HkzXjiAbvNB9Wa8kIAN6DYfM2/GCwV4jq8f4K03dF04gOctAz8YXG/oupCADdiBDDy3ph/2cb4Ekzlfgsk+JYnVt6Yf6y30Y70LCchAHx3fab1jHX3qkGezzxy6SJLOoGlOM+hswIsoqSX1JE6SJE2yJD+KOBxnojfehX6I4n/Xu+1CBvpRii+wd9uFBjxXg51m0NlrF1FSS+pJnCRJmmRJ6ejp4HRwOjgdnA5OB6eD08Hp4HRwOiQdkg5Jh6RjHdQtFKACfbzUcQBnovfqOVOefcpP4Ll1/EfEp/wEMlCACjxtfsHBp/wEnja/tOBTfnj4knmv+pUDn/IT2IFu84X0Xr1QgecQ+v7uP52LZpD/dC6ipJbkFRf6kvpqe+edc+/ZJ/AEErAB/TzDV9v78UIBKtCAD9vqgPOo9nz9Gfv0HfbrDT59h+f6rw3oLnN013QU4HngeN4dZp++I8cqNhLjS/Cs8bUp9qk3fgnCZ95cNIP8ONbPx33eTWADdiADBahAXyhfAT+evXAmxpelWOPLUqzxZSn2+TdrJPy19Is06SzuJ/A++SZwJp4dK57DPvkm8FwVP9n3yTeBDJT19n/W+CIFa3yRgjW+SMEaX6RgjS9SsMYXKVjjixSs8UUK1vgiBaukQ9Ih6ZB0SDo0HZoOTYemQ9Oh6dB0aDo0Heoj5gNuB5CAPmK+Qa0DGXhufL8e4VNvAg04gG7zXW24zZdhvaTet9p6Sf3CDnTbcBSgAg04gDPRT0EvJGADdiBsE7YJm3+twlvQv1axaF60via5iJJaUk/iJEnSJEsaSb4+jn66eiEBG7ADGShABRpwAE+bn/771JxAAjLwrHDO4GCfbiPnDUz26TYX+snrhQQ8l9cvNvh0m0AGClCBBhzAmei9fyEBYWPYGDaGjWFj2Nht4jgTxW3qSMAG9D15/V0GClCBBhyJ6nXN0Zd3OPry+sZSBRpwAM/l9QsYPt0mkIAN2IGnzU+xfbpNoAINOIAz0fvcT4X91WaBDdiBDBSgAg04gDNxwuZ97ifPPgknsAPd5iPpfe4nvj4JJ9CvGPkOPgfQrxmdozPWhamFBGzADmSgABVowAGEjWAj2Ag2go1gI9gINoKNYCPYGmwNtgZbg63B1mBrsDXYGmwNtg5bh63D1mHrsHXYOmwdtg5bh41h83w4b2qzT8IJ7EAGnh3rgTfWm/QXGnAAZ+J6k/5CAjZgB/padEdf3rOHfI5NoC+vODZgBzJQgAq0RE8CvxDi82auITGssff8hQo0oI+vOc5E7/kLCYitOWAb2JoDW3Ngaw5szYGt6T2/lsF7/kJszYmt6T2/lsF7/kIBwjZhm7Ch5yd6fqLnJ3p+HrnvzIOBAlSgxTLMYwBzJCd6fqLnJ3p+oucnen6i5yd6fqLn5+p5XwbKkZztABKwAd02HBnotumoQAMO4Gnzy2U+4yeQgA3YgQwUoAJPm19789lBF3Lu4D4nSPyKnM8JCuxABuau4ZOCArGxGBuLsbHkABIQG0uwsQQbS7CxBBtLsLFkALEjKnYNb3+/QOgzhgIF6APl4+DtL75kfnhw4Uz0ULiQgA3YgQwUoNf1XcNDYaGHwoUE9Lq+a3goXMhAAfpBzvpnBhzAmeihcCEBG7ADve7haMAB9FtZj6EWn2sU6DezumMDduC5Fuc1G/G5RoEKPG3n5UjxuUaBM9Hb/0ICNmAHMlCACoTtbPTzyoD4pKKLWtJ5k8AX8GzyiyTJKw5HAw6gL/880Vv8QgKeJnPqSZwkSZpkSSNpBp1dfhElpYPTwengdHA6OB2cDk6HpEPSIemQdEg6JB2SDkmH9/R5TUh8otKF3tMXnuNlvj38h/7Cc3ub713e6RcK8Nw65hvZO/1Ct/nm805f6J1+odt8ybzTL3SbOjJQgG7zjeoHBReetuE94v2/0Pt/7WDe/xc24Hlq7OvuH6RcJEmaZEkjyHt8+Aj4T/zaVf0nfvgIeI9faMAB9CU9V9tnKgUSsAE70O+2Ho4CVKABB3Ameo+f1wnFJysFNmAHMlCACjTgAM7EBtu6Vd0cG7AD3caObhNHBbpNHQfQbT466571QgI2YAcyUIAKNOAAwsawMWwMG8PGsDFsDBvDxrAxbAKbwCawCWwCm8AmsAlsApvAprApbAqbwqawKWwKmyfDOdlLfE5U4Ez0ZLjQb3j5nrq+MbewAxkoQAUacABnomfAeYlLfHqUHuu/KtAnLfhOOwZwJp6/9oEEbMAO9Lq+g88cX58ptdbYZ0oFNmAHnjd5zkvs4pOlAhVowAEFbHQACdiAHchAAWouDhlwAHNrtoZ1az467NiAPjriyEABKtDXbRUbwJnot+MuJGADdiAD3TYdFThiY7U1S+XcH9qaprKQgA3YcwMwNhZjYzE2FmNj+V25C2ciGr2h0RsavaHRGxq9odEbGr2h0RsavamvBTk2YAeea0E+DmdLK/mSnS0daMABnIl2AAnYgB3odX3X8PttFw7gTPRbbuS7ht9zu7ABOzB/mn3GWKACDTiAM9EP6y8kYAPKutUmPsPsIks6b8T5KPqNuJN8dtlFvvzDsQE78LH8Rk6SpEk+VNNxAGfi2fV+POZzzC5qST2JkyRJkyxpJM2glo6WjpaOlo6WjpaOlo6WjpaOlo6ejp6Ono6eDu/u8wxKfCpaoALtugcqPhst0Cco+JB6o19IwHbdGRV/81eg3yRVRwEq0O9HrgoD6Dbf/n4D/kICnmvmm//s84s4SZI0yYLUK/paeTOftxHE56Jp8yHyZr5QgQb0eRu+gt7MC72ZLyRgA7rNl8EYKMDzcNrXz78hv2gkzSD/hvwiSmpJPYmTJCkdIx0jHSMdMx0zHTMdMx0zHTMdMx0zHTMd04fsbD5/jVcgARuwAxkoQAWeG+icEyk+ty1wJvrUmnPqqPjctsAGPG3nHRLxuW2BAhyJ/uSBl/UHDxb5PxqOAlSgAQdwJq5pM15szZtZ2IAd6NNauqMAFegzW3xp1/SZhTNxTaARRwI2YAe6TR3d5su7psz48K85M45r0sxCAp51z/l54tPZVHwtzq5V8cU521bFbWffBhpwAE+b+OJ4P19IwAZ0my+vt7b44nhrq293b231xfHW9usxPrPtQm/tCwnYgB3IwNOmvgz+630hdiL/yV7oP9kXErABsXMOV/gK+bH5hQr0FfLV9GPzC2eiH5tfSMAG7EAGClCBsE3YvM39R9jfsBVIwAbsQAYKUIEGHEDYCDaCjWAj2Ag2b3M/IvE5c+qHHz5n7sJ2AAnodbtjBzJQgB5W7GjAAZyJngQXErABO5CBPjoLB3Ames9f6Gshjg3YgQyUa26W+NS5QAMO4Ez0KawXErABfXTUUYEGHMCZ6D1/oS+vOXoFr+st7Ve+fAJc4Ez0lh6+ub2lLzzHwS+N+QS4QAaey+uXxnwCXKABB3AmendfSEC3+a7h3X0hAwWoQAPGVFPxyXHXOHgfX4jR8T72A3KfHBeoQAMOoK/FuRP49LhAAjagr4U5MlCAbpuOBhxAn3F/bgt/u1UgAd2mjqfNL5v5XDr1wwt/u5X6Qau/3SrQEr2P/Qqaz6cLbMAO9Lq+bt6xvnP5zLnAmegde2EDyjVzW3yiXKABxzWfW3ym3IX+wNKFBGzADmSgABXog+pj5j/NFxKwAX3lfWP5T/OFAlSgz2Bf/2wAZ6LPab2QgA3YgQwUYDz9ILoe+3D05vWLJz4rLrABO9DXYv0zASrQgAM4E/2hQfaNNQjYgB3IQAEq0IADOBPP5rVjYQcyUIB+Ou3beJ1PLxzAGehT4PxhFfE5cIEN2IEMFKACLdFPoP1qkM96C2zADmSgAP26j5MljaQZ5I27iJL8moBTT+IkSdIkC/JTZr+c5DPdzK+7+Uy3QAH6uq+/a8ABnIneuxcSsAE7kIEChI1hY9gYNoFNYBPYBDY/HfZLhj6nLXAAZ6L66KgjARuwAxkoQAUa0G2+6+hMtANIQLcNxw5koAA1N5YZcABn4jiABGxA7A8D+8PwutNxAGfieVhtfrXTZ7qZXyf0mW6BHchAv3DlveAdfaEBB/C0+ZU7n+lm52xd8ZlugQ3YgQwUoAINOIAzkWDzPverRT7TLbADGShABRpwAGeiXzLzizQ+0838wovPdAvsQAYKUIEGHMCZ6ElwIWx++cyvzPhMt0AGClCBBhzAmcgH8LSdszrFZ7oFdiADBahAAw7gafOTRZ/pFkjABuxABgpQgX5D2WkkzaB1p9yJklqSV/SR9Qw4J3yKv0fqwvUwpy//ephzYQN2IAMFqEADjkTvdv/d8plv5lddfOZbIAMFqEADDqCvxZkBPvMtkIANeNr8t95nvgUKUIEGHMAZ6DPf7JxwJD7zzfzSkM98C+xABgpQgRbbwme+BeYW8plvgQRswA5koADH9aILWW+zWrhe7rHQ14IdG9DXwit4t18oQF+LVcGAA+hjdm4An+MWSMAG7EC/JO+j491+oQINOIAz0bv9QgJ63e5o11s+xCermV8M88lqgQ3o1/HFkYG+ZD4O3qsXGtCXzMfBf+EX+i/8hQRswA5koNt8ef0X/kIDDuBM9F/4CynX2H/L/YKcT1YLVKABz7p+2OdT2C703/ILCdiuN8fIei/WhQwUoAINOIAz0fvYDx99slogAwV4roVfVvQpbIEDOC/U9bqssZCADdiBDBSgAi3RO/ac+aY+WS2wAX0t2JGBAvS1EEcD+lqo40z0X+0L3WaODdiBDBSgAg3otuE4E72PLyRgA3bgOWbnhUldr9la67Zes3U4zkR/L8+FBGzADmSgXC8TU5/AFmjAATxtayT9LT4XErABO5CBAlSgJfr7tcRX07t7rbx394UdyEABKtCA57ZYa+zdvdC7+0ICnmshvjj+fq0LGShABRpwAGfiegfkwnMtziu46jPUAgV4roX5qPtv94UD6GvhzeC/3Rf6Wvjwec9f2IFu82Xwnr9QgQYcwBnoU9oC3aaODdiBDBSgAn3Mzi20XrTlW54otzxRA3YgAwWoQAPmlvfJaxe2A0jA3PLrxVwXMlCACjTgAOaWX2/mWsjrEQ5ypsKtcC/sd4CH4wDORH8U8/DF92cxL5yJ504eSMAG9NmSbjMGClCBBhzAmeh3eS8kYAPCtiZnNkcBKtBt3XEAZ6Lf7z18YP2G7+F7ld/xPc/F1WdrzcN3BL/ne6EAFWjAATxt56mr+syuQAI2YAcyUIAKNOAAwkawEWwEG8FGsBFsBBvBRrARbA22BlvzuuYoQE3sXnc4DqDXPYfPJ1gFErABO5CBAlSgAQfQb/+fu7JPsJrn1A71CVaBDdiBDBSgAg04gDNRYVPYFDaFTWFT2BQ2hU1hU9gMNoPNYDPYDDaDzWAz2Na8jOboFboj9qiBPWpgj/LePCduqU+wCpyJ3psXErAB3baQgb68rlgzMhZaoM+ymufjsOoTquY5TUV9QlWgL2931Ng1fE5V4ADmvuNzquZ5gUN9UlVgA+ae2omBAoSNYCPYCDbvt4Xr5QULG7AneouclwLUpyYFCvAUn7M51KcmBQ7gKe4+JN4iF7qYHRuwA93mo+4tcqECDTiAM9Fb5EK3+XbzFrmwAxkoQAVabmPLnbYbNpZhY61mWMhAASrQgBkra+bSwnEACdiiWzoa55q+tFCACjTgAM7ENYlpoY+vL5n/JF04A30uUiABG7ADGShABRpwAGEj2Ag2go1gI9gINm+R81KW+nu2AgdwJnqLXEjABuxABgoQtgZbg63B1mHrsHXYOmwdtg5bh63D1mHrsDFsDBvDxrAxbAwbw8awMWwMm8AmsAlsApvAJrAJbAKbwCawKWwKm8KmsClsCpvCprApbAqbwWawGWwGm8FmsBlsBpvBZrAN2AZsA7YB24BtwDZgG7AN2AZsE7YJ24RtwjZhm7BN2CZsE7aZNjkOIAEbsAMZKEAFGnAAYSPYCDaCjWAj2Ag2ZIkgSwRZIsgSQZYIskSQJYIsEWSJIEsEWSLIEkGWCLJEkCWCLBFkiSBLBFkiyBJBlgiyRJAlgiwRZIkgSwRZIsgSQZYIskSQJYIsEWSJIEsEWSLIEkGWCLJEkCWCLBFkiSBLBFkiyBJBlgiyRJAlgiwRZIkgSwRZIsgSQZYIskSQJYIsEWSJIEsEWSLIEkGWCLJEkCWCLBFkiSBLBFkiyBJBlgiyRJAlgiwRZIkgSwRZIsgSQZYIskSQJYIsEWSJIEsEWSLIEkWWKLJEkSW6smQ6nrbzxpD6pKtABRpwAGeiZ8mFBGzADoTNs+Scdaw+6SrQgG4jx5noWXKh28SxATvQbcPRbb7GniUXGnAAZ6JnyYUEbMAOZCBsHbYOW4etw8awMWwMG8PGsDFsDBvDxrAxbAKbwCawCWwCm8AmsAlsApvAprApbAqbwqawKWwKm8KmsClsBpvBZrAZbAabwWawGWwGm8E2YBuwDdgGbAO2AduAbcA2YBuwTdgmbBO2CduEbcI2YZuwTdhm2tZr0C4kYAN2IAMFqEADDiBsBBvBRrARbAQbwUawEWwEG8HWYGuwNdgabA02ZIkhSwxZYsgSQ5YYssSQJYYsMWSJIUsMWWLIEkOWGLLEkCWGLDFkiSFLDFliyBJDlhiyxJAlhiwxZIkhSwxZYsgSQ5YYssSQJYYsMWSJIUsMWWLIEkOWGLLEkCWGLDFkiSFLDFliyBJDlhiyxJAlhiwxZIkhSwxZYsgSQ5YYssSQJYYsMWSJIUsMWWLIEkOWGLLEkCWGLDFkiSFLDFliyBJDlhiyxJAlhiwxZIkhSwxZMpAlA1kykCUDWTKQJQNZMpAlA1kykCUDWTKQJQNZMpAlA1kykCUDWTKQJQNZMpAlA1kykCUDWTKQJQNZMpAlA1nis8/m+bCT+uyzwAGciZ4lfr/OZ58FNmAHMlCACjTgALrtPI7y2WeBBGzADmSgABVowAGEzbPknDeiPvsssAE7kIECVKBvt4UDOBNXliwkYAN2IAMFqEDYFDaFzWAz2Aw2g81gM9gMNoPNYDPYBmwDtgHbgG3ANmAbsA3YBmwDtgnbhG3CNmGbsE3YJmwTtgnbTNs8DiABG7ADGShABRpwAGEj2Ag2go1gI9gINoKNYCPYCLYGW4OtwdZga7A12BpsDbYGW4Otw9Zh67B12DpsHbYOW4etw9ZhY9gYNoaNYWPYGDaGjWFj2Bg2gU1gE9gENoFNYBPYkCUTWTKRJRNZMpElE1kykSUTWTKRJRNZMpElE1kykSUTWTKRJRNZMpElE1kykSUTWTKRJT5nbp7T0dTnzF3oWXIhARuwAxkoQAUaELYB24RtwjZhm7BN2CZsE7YJ24Rths18Jl0gARuwAxkoQAUacABhI9gINoKNYCPYCDaCjWAj2Ai2BluDrcHWYGuwNdgabA22BluDrcPWYeuwddg6bB22DluHrcPWYWPYGDaGjWFj2Bg2ho1hY9gYNoFNYBPYBDaBTWAT2AQ2gU1gU9gUNoVNYVPYFDaFTWFT2BQ2g81gM9gMNoPNYDPYDDaDzWAbsA3YBmwDtgHbgG3ANmAbsA3YJmwTtgnbhG3CNmGbsE3YJmzIEkKWELKEkCWELCFkCSFLCFlCyBJClhCyhJAlhCwhZAkhSwhZQsgSQpYQsoSQJYQsIWQJIUsIWULIEkKWELKEkCWELCFkCSFLCFlCyBJClhCyhFaWqKMAFeg2cxzAmbiyZDoSsAFP2zn90/ylc/N8VtdofWdioQINOIAzcX1sYiEBG7ADYRPYBDbPkuHj4Fly4Uz0LLmQgA3YgQwUoAJhU9gUNoPNYDPYDDaDzWAz2Aw2g81gG7AN2AZsA7YB24BtwDZgG7B5lpwPz9ua8nghARuwAxkoQAUacADTtqY8LlwnIOLoh3XsyEABKtCAAzgT16nGQgI2IGwNtgZbg63B1mBrsHXYOmwdtg5bh63D1mHrsHXYOmwMG8PGsDFsDBvDxrAxbAwbwyawCWwCm8AmsAlsApvAJrAJbAqbwqawKWwKm8KmsClsCpvCZrAZbAabwWawGWwGm8FmsBlsA7YB24BtwDZgG7AN2AZsA7YB24RtwjZhm7BN2CZsE7YJ24Rtpm3Nn7yQgA3YgQwUoAINOIAeII6eGhcSsAE7kIECVKDHlTkO4Ez0LDnf6mH+0rrABtQIsb6iYuEAzsR+AAnoxaZjBzLwXPTztR/mL6gLNOBpO98AYv6Cugs9Ki4kYAN2IAMFqEADwsaweVScD4fZmgV6vkbD1izQCzuQgQJUoAEHcCZ6VFwIm0fF9O3mUXEhAwWoQAMO4Ez0qLiQgLD5K2ePwzeGv3M2WAprYSs8Ck+wf9gxmAo3Z999r+9QLWbwXH/fd6/ZCvfCccHeet76sJ63PqznrQ/reevDet76MM5bH8Z568M4b30Y560P47z1YZy3Pozz1odx3vowzlsfxgdsBBvBRrARbAQbwUawEWwEG8HWYGuwNdha3IywNVX0QgHG7QFbU0UvHMC1sc891+eKJlPhVrgX5sJSWAu71RwHcCbyki6mwq1wL8yFpbAWtsK+Z5/vgTCfOxrsH50JpsKtcC/MhaWwFs4zrzUZ1M+Q1mTQCwXop1C+iGrAAVwL69XsKEyF8yxqzQe9kIFrSZuzFrbCo/AEr96/mAq3wmuEfFdavX+xFNbCVngUnuB5FKbCy+uDM1f94ayFLdmneD6uDzTnXpgLe51zVrr5NM9kKzwKTzAdhalwK9wLc+HipeVVZys8Ck9wOwpT4Va4F+bCy+vj07SwFR6F3dt9rFY8XEyF3dt9XVY8XMyFpbAWtsKj8ASvhLiYChfvSoju67gS4mIprIWt8Cg8wSshLqbCq87ZXz5783G1iZxb4V7Yl8cPs3wGZ7IW9uVhr6+j8ASvELiYCrfCvTAXlsJauHhXDvgPi6wcWLxy4GIq3Ar3wlxYCmth94qPz8qBiyd45cDF7vWfLFk5cHEv7F7xdVn5cLEWtsKj8Ez2SZ7JVLgV7oW58PJOZy1shUfhCV55cjEVboV7Ya/vPze6cuPiUXiCV25cTIW9/vksvOnKjYt9vc43E5iu3Lh4ednZCi+vOE/wyg3/1dOVGxcvrzn3wss7nKXw8vq6r9y42L3no86mKzcWr9wwX8eVGxe71y846sqNi91rvo4rNy52r/k6rty4eHl9HVduLF65Yb6OKzcuXl5fx3VkcfHy+jquI4uL80Lk9fHbhQOYlz2v798uJOAy+iitRLqYC7tx+AisRLrYCo/CE7wS6WIq3Ar3wly4eK14V/L4tbnrY7d+knx97dZPd3UlzMVSWAtb4bL8oyz/LMs/y/LPsvyzLP8syz/L8s+y/LOM2yzeCa+tJPF1tJUYvo52YPntsMKj8ASvxLgYy2/UCvfCXFgKa2ErPAqX5W9H4eJtxbsSY63jSoa1jq0sfy/Lv5Lh4la4Fy7L38vy97L8vSx/L8vfy/JzWX4uy89l+bmMGxcvF+9KgLWOq9PXOkpZfinLL1xYCpftLmW7rw/cni9YNZ+lGYzbDobbDobbDobbDnb1tDmvGmc22Opdv1Ziq3cvboV92aev0+rdi6WwFrbCo/AEr6OJi6lwK1y8o3hH8a5en74dVq9fPApP8Or1i6lwK9wLc2EpXLwT3rGOGs7X09pYRwd+OWiso4OLpbAWtsKj8ASvXr+YCrfCyzudubAU1sJWeBSe4NXrF1PhVrh4/ajBP0tuPgczWQtb4VF4gj0bgqlwK9wLF29f3u6sha3wKDzBfBSmwq1wL7y85iyFl3c4L6+PD+cNqTU1c6EcQAI2YAcyUIAKNCBsApv6OvolBJ+bmdwK98JcWAprYSs8Ck+wLa/3y/ps1sWtcC/MhQU81t/3fX70wlxYCmthK7yW07fXmOC5/r5vu2mFR2H/+34VwadMJlNhX87z0X7zWZPJXNiX08+2feJkshUehSeYjsJUuBXuhblw8VLxUvHS8qrzBLejMBVuhXthLiyFtbAVLt5WvCsTzi+M2FyZcHEr3AtzYSmsha3wKDzBXLxcvFy8XLxcvFy8XLxcvFy8XLxSvFK8UrxSvFK8UrxSvFK8UrxSvCsfzrd0PJgKt8K9MBeWwlrYCo/CE7zywa/ozJUPfsVlrny4uBfmwlJYC1vhUXiCx1G4eFfO+JWeuXLmYi4shbWwFR6FJ3gehWP2qM2crW0zZ2vbzNnaNlf2nFeXxrGy52Iq3Ar3wlxYCmthKzwKFy8VLxUvFS8VLxUvFS8VLxUvFS8V78qe80nXcazjkfNu0zhaK9wLL29zlsJa2AqPwhO8sudiKtwK98LFu7LnvNI3jpU9F1vhUXiCV/ZcTIVb4V54eaezFNbC7hUfw5U9F0/wyp6LqXAr3AtzYSmshYt3Zc/51tVxrOxZvLLnYircCvfCXFgKa+Hl9f1hZczFVHjVV+deeNU3ZymshVf94TwKT/DKmIupcCvcC3NhKayFi3cU7yjeWbyzeGfxzuKdxTuLdxbvLN5ZvBNeOo7CyzudW+FemAtLYS3sEXhuFlqRc75fdtCKnIt7YS95XuQctCLnYi1shUfhCV6RczEVboV74eJd0XJeUB20ouW8iDpoRcviFS0XU+FWuBfmwusygg/zdRlksRUehSf4ugyymAq3wnkZZ9CKkPNi76AVIRePwhO8IuS8CDxoRcjFrXAvzIWlsBZe67Xqj8ITrEdhKtwK98JcWAoPrLuW9VoRcjEVboXLellZLyvrZWW9VoRcPApP8CjrNcp6jbJeo6zXKOs1ynpdl0kXl/EcZTyvy6G+7rOs14qKi7mwFC7rNct6zbJeE+vVjqMwFW6FsV7t4MJSWAtb4VEY+0mjozAV5lz3RlivRlrYCo/CZb1aWa9W1quV9Wq9MBeWwmW9WlmvVtarlfXqZb16Wa/eCpfx7GU889GQ0fLRkNHy0ZDR1vHIeadmtHU8cnEr3AtzYSmsha3wKDzBUrxSvFK8UrxSvFK8UrxSvFK8UrzrGMR83dcxyMW9MBeWwlrYXeedptHW+c/FE7yC5WIq3Ar3wlxYCmvh4l3BYr5jr2BZvI5NLl5e3/HWscnFyzucufDyTmct7N7zS26jrWOTiyd4HZtcTIVb4V6YC0thLVy8s3gnvP04ClPhVrgX5sJSWAtb4VG4eKl4qXipeKl4qXipeKl4qXipeKl4W/G24m3F24q3FW8r3la8rXhb8bbi7cXbi7cX7zqwOe9VjL4ObC6Wwlp4ebvzKDzBK6MupsKtcC/MhaWwFi5eLl4uXileKV4pXileKV4p3pVFHsh95c95P2j0lT8XrzrqzIWlsBa2wqPwBK9sOe8VjTVT9NpGK0PW+K8MuXiCV4ZcvJZ5OLfCvTAXLvvYKN6SIb1kSC8Z0kuG9JIh/coQX55Z9rFZ9rFZ9rErQ3x5rgxZPArDyyVDuGQIlwzhkiFcMoRLhvCBfZsPKzwKY5z5ypDhTIVb4eItGcIlQ7hkCJcM4ZIhXDKEG7YvXxmyuBXuhbF9+cqQxVq4eEuGcMkQLhnCJUO4ZAj3sr69rG/JEC4Zwr2Mcy/j3Ms4Xxkynamwe6fXXxlyMReWwu4976eONS81eBSe4JUhF1PhVrgXXl52lsKWvcwrT857k4PXsc3ida3lYipc9iXthcs21bJNtWxTtcKjcNmmVraplW1qZZta2aZWtqmVfbhkFFvZl1YWnfdEx5q5GtwKrzH08VlZNH05VxZdrIWt8Cg8wSuLLqbCLXnNkGzn9e6xZkgGS2F1bs5WeBSe4PX1hYupcCvcC3NhKVy8XLyy6nTn9ffZ2cp/X8smzmvZznH2V10mU+FWuBfmwlJ4LZs5W+FReHl9nG15p7N7/Zrxmi3Z/Frymi15rYtx4bKO/hvXyOv7fhVMhVvhXpgLS2EtbIVH4eX1dZnL6+syqXAr3Au7t/n6+m9csBa2wqPwTF4zIYOp8KpJzuvfnvvJmsHYzlnNY81gbOfL78eawRjcC3NhA7dVR5yp8KqjzmsZzrFaMwzbec9yrBmGwa3w8k5nLiyFFfVX313/fRSe4NV3FxPGYfXdxb0wFy7rywPryBMsZRxWjxz+b1ePHD7Oq0cu1sJWeBT2+n5vZM3Ta4fXX71wMReWwlp41fexslF4gle/XEyFW+FeeHl9m65+uVgLW+FReIJXv1xMhZfL94fVIxdLYS1shUfhmWyrRy6mwq1wL8yFl3c6a2ErPApP8Oq1iym3y5r7F9wLY5uu+XvtfGZl+JsYH0zOXFgKa+GVV915FJ7g1Y8XU+FWuBfmwsvbnLWwFR6FJ3j148VUuGN9Vw+en+oYtnrw4oF1XD24ePXgxVR4rYuPp/TCXHitizprYSt1ileKV4tXi3f9bl5ctp2Wbadl22nZdlq8Wlxnzw6/xeLT84bfPvHZecPvXPjkvMAOZKAAFWjAAZyJ8wDCNt3me8PsQAYKUIEGHMAZ6FP0AgnYgB3IQLeRowINOIAzkQ4gARuwAxkIG8FGXvfcUX2C3fALwz6/LlCBBhzAmdgPIAEbsANdoY4KNOAAzkQ+gARswA5koCvM0YudMemT4wIJ6MWmYwcyUIAKNOAAzkQ9gASE4uyi4Sc1PtEt8Kzgp4g+zS2QgA14FvPTQ5/iFihABRpwAGeid+yFBGxA2AZsA7YB24BtwOa9OX1H9C48Z7wOnyU3/CTUJ8kNP+/0OXKBM9BnyAUSsAE7MBU+OS5QgQYcwJnorXchARtQY7v5fLfAEVvIZ7td2HJ8fa5bYAN2IAMFqEADDmBuTZ/iFghbh63D1mHrsHXYOmzekL4JfabaNQ4ssQl9btq1AdiAA4itKdiagq0p2JoChWBrCramYGsKtqZgawq2pmJrnj9y64fK55mtHyqfZrZ+OnyWWeAA5i+OTzELJGADdiADBQib5S+OTy0LzF+cOQ4gARuwAxkoQAXCNmAbsM38xZmTgA3YgQwUoAINOIDx+zaP4wAS0OuyY/zizIMOIAEbsAMZKEAFGnAktvjFmT4tLLABO5CBAlSgAQdwJq7fTXP0YsNRgAqMX5x59AGciXwACdiAHchAASoQCsG6eb+ZL47324UDOBO938wr+A/ghQ3YgQwUoAINOIAz0WAz2Aw2g81gM9i8Ic8Lf9MnYl3onWUL/Z/57umddaECDTiAvpDtRO+h8/7o9LlSgQwUoAK9rjeD99CFM9AnSQUSsAE70G3iKEAFGnAAZ6J34YUEdIU6MlCACjTgAM5E78ILCdiAsDXYvAvPpyGnv8gu0IADOBP9x/JCilH3aVOBHZgby+cNjfMq//TpQeN8mGv67KDADmTguZDDt4Xv4BcacABn4joaXEjABnSbL5nv4BcKUIEGHMCZ6D8za938Z2b4Nvbd/kLNFfLd/sIBnIn+gzJ8C/kPyoUN6IvuG8Cb4UJBBdgmbBO2mTafBhRIwAbsQAYKcCn+8x/+9vhH//E3/56y2eN/9vN/+o5zXjD03caBAlpAD+AACdAACxgBUZmjMkdljsoclTkqc1TmqMxRmaMyR2WJyhKVJSpLVJaoLFFZorJEZd/3zyuWHvgneNw7UEAL6AEcIAEaYAFRWaOyRWWLyhaVLSpbVLaobFHZorJFZYvKIyr77t59gk1AD+AACdAACxgB8wLf5R2i8ozKMyrPqDyj8ozKMyr7Ln7ezfEd/IQV9osoqSX1JC/fTpIkTXKDnDSS3PHYuiviF1FSS+pJnCRJmmRJIykdLR0tHZ7w5w2WFfCLLJbZG+685bJielFL6kmcJEmaZEkjaQZxOjgdnA5OB6eD08Hp4HRwOjgdkg5Jh6TD+/Cc8O8TWS+SJE2yIO+4Rf4v+kn+L/gkTbKkkTSDvM0WUVJL6kmclA5Lh6XD0mHpGOkY6RjpGOkY6RjpGOkY6RjpGOmY6ZjpmOmY6ZjpmOmY6ZjpmOmY4Vi/MYsoqSX1JE6SJE2ypJGUDkoHpYPSQemgdFA6KB2UDkoHpaOlo6WjpaOlo6WjpaOlo6WjpaOlo6ejp6Ono6ejp2N1rZ6kSZY0kmbQ6lonSmpJPYmT0sHp4HRwOjgdkg5Jh6RD0uE/hGc3tuxLn/F5UU/iJF8WO2kkzaDVl05eb57UknqSX9Q4TpIkTbKkkTSDvC8XUVJL6knpGOnwvjxfr9NWX/aTRtIMWn3pREktqSdxkiRpUjpmOmY4+nEkUVJL6kmcJEmaZEkjKR2UDkoHpYPSQemgdFA6KB2UDkpHS0dLR0tHS0dLR0tHS0dLR0tHS0fPyj2OFHy25EWa5HuO00jyPef8t955iyjJjxTkpJ7ESb6kx0m+5/h/syR36EkzyDtvkTv8cLol9SROkiRNsqSRNIO8axelQ9Oh6dB0aDo0HZoOTYemw9Jh6bB0WDosHZYOS4elw9Jh6RjpGOkY6RjpGOkY6Rjp8E4+H7ry+ZIPepz8sJ/8PIraeUH73BsX9AAOkAB1ePxbyX87+fq3Dj2AAyRAAyxgBMwLuv8rWadSC86lPV/e4DvjQdeJk0MPONf8nADhO6KDBfg/j7Oj8+a672YOPcD/+bzOjhzOYTvv/voedk6dWWdHR5wLHXEuRHEuRHEuRHEuRHEuRHHmQ3HCQ48BVD8R9b+gj/9p8T/tvBZPFuBDdB4I+hCd2Xg4PP7JyArnQHnUzPOcdp7/3XyTjXXWtMAc/vM8LfB/6X/j/Adn6v3HMoxzWchPkn3DWWx0BwsYAfOC85Bgge9ObZ05L/DdqV8b10ECfNlicw853R0n6OM/H//h7//63/7x3//5X//lv/77v/3TP53/v/gP/+tv/+X/+o+//c9//Ld/+pd//9t/+Zf//fe//8Pf/r9//Pv/9r/0v/7nP/6L//nv//hvj//vY3v907/8v48/HwX/+z///Z9O+s9/wL8+nv/Tx/GCXP/6ccBgWeBxZnO3xCMI9CrR12WHKCF/lGibEj0Wok9BgUF3CyjFGGhHgf5lJfh5gce5UFR4nOSMpyVksxLachzU+tMSu6GccuRADH46lLbZoO38wVsbtHcsxeN07o8S492tsV2NGavBx9GfrgZtaoj2qPFAbBD9cynOiRzPt+n5ap5rm0p7WmKzX5nFJh29bA6dtyv4kcOqoPS8wt3VsOersRtMO39I1mDaMZ+W0F1QnJF2BQXT0xL29lBs9szmL51aC/G4NpQ1+M8OO3/Sni7EeXNqLcS0pwvRNoM5faanl3gg9orHgeL9FaHz8tG1IkLPVqRtdqw2YpM+zh2ejsS2w6bmTkH92RZtH0jNXQ3uFIvBj2Pe5z8ful2OlstRRuNxzv9njc3eKSO2iB5SKsj9HYMldwwpXfZ1x2ib3XOKzawxsYc/jqf/qNF3v+n4QX6cWqOG/mKbZJdwTc6v26Rv9k+yDIzH5bHyO9L/PDg5p9E/raEys8j5QeZS5c89rPP7e0eXd/eO/brMPEih88uNz9dl9/Puj7RewTFmWZLxZ43x9v4x34/AbY2b3cL0frdwe3c0tlv2/GZGbNnzqwhPtyxv9tLHFZY89ntcgcaW/VpDdj/SZx+sdeHyG/s4e/6zxiZLWS22C2vZw77V2C2HCOXBwtwsx2Yv1ZbL8TgUlKc1frNl9OmWkePtow7ZHcOdr7/OBTEezxdkd5bjz55cQ/JHpH6psRmSx+6Zm5fKcdyvBuTe0YvIm0cvu/UQf8fUOnp53OZ6bTx7nivp4yfveY2xO4rKn0rR8WINy/OlB9JrNfyyzaqxLsE8+XHZ/WTPI2o87vDY059s3R6W9myWoc9/9nW3bVueBkubdUzpfg2fHLhqTLLnNeT9AwfVdw8cttkxjnIkVfvt67bV8e5y7Les5aWiSfza3jEbamz2DtuNx+y5ezy4HEjpL5YjT+wf9xXG8+XYHtDl9Z7z2LQcJP95Lmm8vXbW89pZPR/9RQ22lgfro+yl32p84ATK7K/d0wVb9ny88emebpsDy/PJ6/zRf0QaP9k/xtunULq9pJmHYo/7UPRStzxuW8VWedyPOp7WGP2v7ZbHsUb+Wuum88f2kHDEXvq4f1z3dPuzxmYvPd8Yk5fjhrxUY6rGujwyYFNjvN8tY77bLfv8wc/CHMfTvp+bjnvc6M88HrM9rbHdO3Cl9nHd+3htT1ccD1prT2tMfvey9XYpShrPps+XYpekTWMx6PHTUkZ03K/h77uN47DjeY2x288l8meqlUtzX5J07k7R8wd/lt+3xy3v+4k+OwnS549jyq9XKundZtkNaWs4h2N6vln87fbv9j0d/O66bKNUNc/yH/eVn0YYHft9LAfkKMfH3+4q2O4+T8vbPM+vpfvHAJ5vF8rbCs3qlaSvQ7r9xT+yysn89ELQfl+dDYE6ZbOv7m7XtG75Q1eDqLWvt3zevii1Xw7Oy42tHjx8XY5t1zANXMd5HkRE20unOEN+XOl7ekeS6AO7K72/u9Indlf6yO66v30jeftG9ekNuWN74iB54qDH89u0u9tQ3d/Xdh3nHsfzMNoW6bj2+ceP97ci/IHbvfL+/V55+y7n7TXZ3PG9O6R86Kvb5bAsQptfmt3tqLs3CfdLYnlZ6XE2tVuS3b14f+/M2jbnD+7TJNoXyQO8802emyIf2Ff7+/tqf39f7R/YV7dD2o/cLr2/ul00L0qf75h4XoR3+6owLtPXmSvjF63HlMe8j6bZROLuttTdPYT723vIrsTNPeT2mryYZo9x5BxSnZshtQ8M6Xh/SMf7Q2p/9ZCWvdTotR8IprwBy+3YbJftrZybU73kA4Eq7weqvB+o8oFA3Y/ou8eGQpgx9lA9PzbUTRFVy3PdYZtI1t09flxAOOrP7fjVeBjGY7w4pnfn0PHufOpQXIXg5zXk/T19d1Pq5p6+K3FzT7+9Jps9fTuifQ6MqL5WQxpmK/SnE+Fod1PqcWYreZKr88UaectgW2O/h92cpslv7x27Ejf3jt0tqZuTDGh3S+reHMntUtyccWpvTzml3f0opZ4zP+oh5eOm4atF5MUinKeEymWewfci/d3tsl+XvOzwwFfXpeVVtsd9kPZqkbxKrvV88HdFep53aK/X2r8V2d2WOo48kDq5bJxvU5N3dw5uz2/eFpl5+6HTfLEIbl0+7lzqi0VuzjP094o/LXJzoiHtblDdvKi7XQ7M8pmjHJZ9X467RfR4tUj+0DxQXyvyOMjMA9UH26bMdhNLBtusBxK/3NkGdrbax78rohNFNg14/zf86flQ292qspz9ZPb8V2t/zHzv8YBD3j893BfhXBfmSZsitu29vNFtvFmb8faRd9vdqrp3bLUtce/Yqm3vDd07qmnbB5vuPUhDfXfvgHMW1mNEn/7q3d8qttkq270jb+w2G/xSjY59/fGDZ6/WON6u0XFwVXPsdzVy4z7KPa+xexrm5hnRDzVunRHt14Wxk7GO92u8uI/1NnEvZTzftrt7S48z8rwYYm33+NpuQQyzuUyfR+H2Yam7G9f+4o1rhHXZNO72/tSRN+wfN9Tl1UHN490+NnvZ7g7GvfvTbfvAw5Rcl2nPz862y8G4MFyfUvo2HLvfbMnbdSyb2X77Inhmgs30xSJieedAdkcP3d6/henfXXm6eW8+H75dnXpdtm2mLzamD6wOt796ddqIH02pD/l8Xx1+81h3vxiau6uYbI5Ttw9O5eRUbvXBvK9jau+eIe6XIivU5v2+FJsdlRuat5Urb3q/BB3+luDrxG4Mfq3IHOXaf5kX8psi5wSbjPejXDv7zaDmQ5ePg83ngyr8l5Z4DGSbGFR5uio/FLm3ZfZFbm6ZbZG7W2bbuZZHVdpYXvuN+OOaZudXi+R1JtXNRKh9EctjIt3NTt8X0dxNHje7Nj+++olH+1X+4t8IHTn1Tx/77mZ1dr/gj6NNnCZOnq/sbKZ5emY6x2ZJ5vtXIux4/0rE7m7TzSsRuxI3r0TsHmK4eyVie7Pp3pUIkw9cibi9VTZnifu9496ViF2Nu1cifqhxvF3j5onmuHtPVF4b07tXRPY17l0RGfz+SfO+xr2T5u268JH7R72F92057K9ejntXZm7XeLHn7l6Z2T1IdfvKzKAP7CD0F2+Ym1dVpnzgqsp+Qe5dVZlvz/pvu2epbl9V2S3HzasqPxzEGA7K5hhPDmL67lmqxz/MKHtweejvF0VuniL+sDI3l2MThzpz5rAxbU7cd4/95ZlZeXnh48DsNycyDQ8cH32+eDbE5aEQPZ4Ox3j/lGpb5BOn/3dH5Ici90Zkd5fq9ojsitwbkR/udJeVOY56k/p3N8yPrqXMbgbA/Mh9910ZHflM96MR5em47ErgtOxxv5leK2FYivm0xH76zYH3hx4vzyaa5YVFmzk8+0ch8q1Ho9dTzF89CsH5+z24Py/Stw8hGVMe0fDTA4ne3p+r2tvbc1W3Je6dp95fE9usyW5EZ56HPHbop+dDvb9/R/SH5bj1LGV//15V7/ssywshvHmWsr9/r2o7HI9LEAcuQYyXhrQRHpSl50fMvdv7Q/qBA9Xtctwb0h+excrhGFqmEH5Lse3zrffm7G8fX7413b5zfz/C+O0J1dsSNyPs9prYawN6d7b9psS9yfZ9d2R48zz5hxr3Jtvb21dQj/3h3L0Zu/sXEt+ba7utcXOq7faNnjcnp96usZmbuq9xb2pq+8gR8nZUb05M3S/J7X1kNyY3J6bu3038/trc3lfn+/vq9s2xN/fV2zU2++q+xr19dTud4/6+uh3Vm/Ofb78k/vmh1Pa+1K3ZHLs77ZT98jiUqdOGvryseXdfqne8b6Dz0wtt2xJ89P/jZfYvJeT9SzGbCkfuGl+e8v06GB+Y/uRvvnn7XrC+O6S7SYeaz7boH5N05H6FPBJT1ucVdu+ykVwLkvKys29vq9++sBFTQaT1pzX62J4I3ns34O4s7t4u+sNL3vO1HA/uz9+N3Ie93bHbEvc6drw9d2r3Qo3H3Z08QB709Kq4vLuPd3l3H9++FuTmPr5/tcjNfXx7H+ruPr79pk5ORG0PLgsy7teQHNMmsqmxfZ15ualmVB+o+dopc77dKXO+2yn8/i2kXwwHPX9h2/69+4zZEoLzuPZyjfF+jTp18zfv/++aFzweBxb4jf363v3tVPaBN9eO0v7fi2y/MZHH+W2Ui2q/K+Ifp7uK1CdRf1kES9LkA0XKe4l/80EDUcGb4m2+tnEYMcJi49UtPDIA6vuRX/9MBL80IjzxeOAcm01z97MZY9M2H/iuFNM2VQ/MMiovj/22ILsLBiYWRUzqqz3Hlxq0y2bM3vjjnrh9qbG7vH8g3496Afdrjb6/f9vK/Vt5ujb7YRW8qb3coP++fbdFZpkB9nwn2X/C4/a3RLZV5EAV2Xy4gtvuOWPDRPC6iceX153uDtzLkwLcn/92bp8R7vkWBunz1Y9f5BSOB8prNWa+1Fum8YtbxjIEyMZxvFhllDfIDXk+JjrePYLfVrh1BL9/jf4sMydmf3Z7n/v2NRD5EtrZnh8n7kvkfjqbPjsf2n9WwLAmw8aLnTtm3tR68OY0lbm9e/C9L3Hv4Hv3q3nv4PsXw7H7otEPVQxVhF+tIhNVbG42zXh/04y3N83u40of2TR1OMZ8edMoqswX83Ae+Kma1J7n+/YF8PcCcV/iViLu1wXPktJUfj4iLPbuBZ5ticdv1YHJOUb8WhGcXj24yYtF8s2c5+/dS/k8DXe45i6fty88/9T721seK7ZeJmJ8f3/73SLUXiwijG9zK71W5LEKGWpHPT9qX6fIbBaE8Cr51p9/tYl1vH8TgfUDz1Bv1wYzQtux+TApv32Xavd9srtrsv3GGfLoy6HzL76TZoxvz/3xbTH6Mhry9i/ntsS9X87dbap7v5z7wcirVjL63AzGbj4q53Ue5dGfFxnbL3bnDx4dT0+ct4sheXz2uKlyvLgukl+ReVy9kpeLlCdj58tF8ilQffF7fre/Cahvn5rpuwci2xen3ry5sn/56r2bKzyP92+ubD9fx3kNgeuj8V8/QcXz/bOq+f5Z1Xz7rGo7GIJ3ndXLu98HQ98fDH1/MMZfOhjKeJeFPv+woRzHu4OxL3FrMOR4+wmS7bfJZv408fHi1zf7zFtMjxrPv28mh7x/HCe7r0/dPfrZdZsSntmQzWKMT6zLB45Jt198o9y61Lh+h+/rt9Z2h/p4zLlc4za7vxQ68yHWPz8IdP+7c3d/ErbfrkMKni9exYh+/Xbd9vt3R3TcrMcLv6yREx61Trz8xTf06kNsR/0kO//mW34D3/KbL66L9TgcnFbmH/yqxsCYjpIf/ds3t+kvLvLH8xZ9823CbZGW81kfR1/Hi0V6vk6n1RcDfC3yw4cF703N3z4Ke/MSGb97ZLpfk5uHpj8Mx71jU+kfODbdf3bu3kNw0t//ko/0t7/ksy1x7wmS+2uy2U33H/K79RCc9PdfPrH/kp+W7xGPOhFdf1EEF08eSK8Vufsc3H5JpGPmtb7+YcKhuGNfXoXx7bHgfRnBu5Yeu/x4uUwOzFly85DydmT6xPDW35tfDS/nl2wa11/gb0Xef7CO9p+juPOs4r7GvWcVZXeT6t6zivLD3ZRbzypul+PukG43bR5sPrZyf7VzCHOYiTq/uss3Ruc0fbkBW95iOktuOmd7OFAu2/VXjyjy6f4SSt8+3Lw9bi0foa5zxL4eLur7FwH0/YsA2v7SEveuI+zHM6fKPIaWn47n7vMtN8+8VT9w5r17hczdM++xe73AzJMAqy8Y+/oGmV2NYXkf5nHrnV6qMSnnZM76wrWvNWR3V+refr5fjJzkNtvmTbjbGg2nq23OzarwX7oqHcnR57FZDP1LF4PzValTjt1ivD01ZV/iXvqMt6embL+PoiV9Nu833T1ic+9Ed1vh1nnu9lNLN09ztzXunuUO/cBZ7vGBs9zx/sdRZLz9cZRtiZtnubfXZHcx5gNnubt3Pd09yz0+cZZ7fOIs9/jEWe7xibPc4zNnucdnznKPz5zlHp84yz0+cZZ7vH+We3zgLPd4/yxXt3epbp3l6m407p7lbpfj7pB+4iz3+MxZ7vGZs9zjI2e522OBWye5+6OJO+e4u8P2e+dTSh84n1L6wPnU9rhd86GfXkf060377Y1/yllH3Ou7Y39Tg3MONP/xTPnXGvvPPuQHaMbxfAKCvf3CAXv7hQP2gRcO2AdeOKDtA0er+zctD8zyHcfTjbKr0Wb9AG17rcbIw8R+tOfLodubVHfbttP7bTu304Tzha39kLZZm+3Nv5sfWdjPgMKXo+z5h+d19/6Cm99Y0K5vn9Bof/sNYdsS905odPfhqZtPt3rOPF2MW99Y0N1riu5+Y+H+VrHNVtnuHbe+sbCtcfMbCz/VON6uce8bC8p3b6fKa2N68xsLP9S49Y0Flfe/OvlDjVsn3vt1ufeNBZX+Vy/HrW8s3K/xYs/d/MaCbp81uvmNhR929ns7CNtfvGHufWPBr5c+v6Zy7xsLPyzIrW8s6PZhlnsnytvvTd09Ud4tx70T5Z+OYW59Y0E/8W2DbZG7j7P0DyzH7rNG/RjlfRIvngXdOsvenwXdOcvePndxaxn2T27cWYYfnunDBVkZ9YTwNw8GKp4u1NlfLDLy05utvrz/l08XltOG9nx1eHsb9+Yjitsi975FsC9x61sEP5S49S2C7XbBJwDPC+8vbtw/ivCrRRqK9OfbRcfbN1D3JW7dudQx/tISNz8Csh9QzBW28nTPL7dKxnGz+WqC1CV5ucjIQ6kHvlwEHyPYFtk+239zphK9m+0/vKkka8ymL77sJA9xZ7P+dD99+1duvDsS+1f65LMGYvWqxW9e6YP36Ej91O3vXguUF9Yf+OKrhYZhOV59xdHIrfoo9+orjso5B788HgM1Nttld4gto3xPvX2gxmuvnmJc9OR60fNXNfAWDbbdPratgXOfYc9rGO2m9888eBnH8fyZGH+P0fMRyRlkrFOe3g37aUksl4R2S7L5wRbNAynRckGp31+OgZfej0Ntsxxje/k1hvXxoymbIrvH+/K583pfvX35QNx2F5l5qs+7t/HY7jmj27vI7rV+t3eRH5bk3i6yu8x/cxfZLcftXeSHr0vd20V2rwR/fxeRI+80yp/vJPm6GLtPmrR8g7+0+lP155Notrshpb7/rF9/qy/1Gr9Yl5zwKHQ8/4Ww3aNGt9el/7Xrgkv0D3zt1056TlqSzvpajYblaPaBGuN4cV1yspLUz3f8bjnwkpV+vDymE2MqL9Zg1NDnRxD7N4Pn072PA+R6vP1lP+W3vzWxL3Hr/NZY/tISN1/pvRvPjldedTs247k//Yi2f/7unO1SME6xeY7nS7G9i3QzwXbPSN1MsP175xumTDZ5ui77GoJvdunz8ehzO3fz5gvwd0XuXeXbl7h1le+HEneu8m0/sHDrLH3/iYY7Z+nt7Wvy7e1r8vtPF939LO4PVW5+FbfrR775tS1zcx/Vt7+K+0OJO/vo/pNw9z4Ita/x/mfH7u8jP31G7eY+Ip/ZR+T9fUTe30fk7X1k+/3CxhiNVs9tR79bpE3Du+brVbr7JfCiqPpCVdJxt8DIG2qznFt/LWC7h6N6XuPr9fGG8bXE7lo4Dn7q+ex4bSnKnbSvJbYdm6/eYd6MBL+7Gsf2mlrsluWtO49Tsdu7lApmeFF/pcTdSZW71ciJqlLnh+rt9hp5/23Ug78/H5Wz3Qv6NL8Ho/W68y8qWJ4VWD2Y/lWF2BbWni7D9slrTAvjMtvm/Dz63RJ4oVT/47mhX5TwWZrX/sDPS9juBVs3P+9hc/uRsluf97DdAezNz3vY3D9Gde/zHttBxawwq1fffrFdLKcxdKvPLP2ixMA8zGHPS4zdO4tubtqxe1vCzU07dq/nu7lpx/bpxU9s2omLGvXrAL/ZLjMPHvsfnwe6X4KPAzPT6rXqr5uW3v8oz6D3P8rzOHx5f9NS/2s3LR8tp9kdfW4GVT4wqPqBQbUPDOr4qwe17Kn84s6eacp09Jdarucd8wc+/5Ubu7tMdzdt6+9v2t09prubtslfu2nHzHdqPLAcyMn9EiMfWZ5U79zL1zHdzWAaeRnvzwveX060tkWk55II03heZHeXqVmeizcr30jSXywHPl8lrPziyuAd6SK8KdLfvvY++tsvjv5hPKZiVXbbZfsCWMzMeJynHM+/8f5DGZ/qfZWxNjZlxmfK7F4Jka+BGfUqlv2ic+zIj5zYIeO1nc2OvG9ux3y1CGUc2R8fN79/seQRIPkmWKpv+b0fR3+WsOdxtLtbRPjOKNXz2y+Ppf0wHIThqI+E/G5MDUXKZbBvRfgDG2Zb5AM58JBPrIy8GGn33nrU+e1U3KczPphabzt9WxXZf04bFxef7mO7Cveu1e5L3LpW+0OJN6/VNsIzsVTvv3H/RYmcEE71js9vSuDRhVa+BfK1xNg99yQNN+6PF0vkobKW6w6/WZH68ujyxvbflNC8wfLnYxy/KGGEA6n+2kZtio872Wslevb6Y1TotaXA0yh1UsgvSvDA01/1Q2Q0b9/OIHyHjErs/WIhiBSnC+OlPYt67pvU52tLIQ3PsLG9VkLxoPWYr61IPgNLvb22Ih1fl+vy2oooXrGg9tpSWN6hIpsv7Zw0MRazvVTCcIDB+kqByXgR4WvjcOR0lD9Ohb8l7+7loe+36TzwisrXBiJ7dJq8OZKvFRD/Osp1aFNW4hcF8OVlqTfW7xfIg95HrVcK4M02D+RXCtyZArwtkLd9HwVeWgU8C15nsPziVApP69ALt7bwzPMfH639+i7Mv/hSfePcGRvT00fRx3z/9Y9jvv36x22Je29Lub8mz992sD0cmgPjqa9U8E+OrArSn77VY+5uJt18q8cPNW69LOH+cjyvsd0/B6YwMj1fivHuvrUtcW/fmrs7STffxDN3d5LuvYln7m4kPX6+8H2lYz69rDZ3d5LOLzNlkfl8HtTcPbN070Lwfkwpb8w/zmvp+ZjqmxcJtkN6Ti/Lw8wH02ZQd1vm5ny5fRHJU9NZE+x3RVr+vD+QXy2SU/1nfVzgl2MimIeo+uLeOvKM6HEruW/21rtF9Hi1SKbZA/W1IvenIf4wtPemeN4O56evj5m7uZm3Pqb8w3jcnSP6U5mbk0Tnbl70L7ZOe/uVFvsSty48/lDi3UmiIw8vabT6Rr8vS7F9BOHWD8X2BDwPZWjWm9LtFyXyFls76vH+L0qM/JX489vjX8diO9395ksjJ+8mk7w/v/HxC5GXg1u9Pv9tZXbvfVJD56rJ01eC/lAkz2YfPOfTItuDgJl3LIh4szr7ns0PZs86b+E47hd5XOnJQGR+tQjmwJrVt3J9LSLbidW3vt+zXQ7DcozyMu/vy7H9dA5et/jHx8y/7vKy/zbhkVcT5WibI6PtsuBBpi71Dtu3Zdm2H5f3Ns5Nke23a+49E77dPo+joTw10vIr8337bL9PkvcL/0i1LxV2Dy9b3ut/XI4qu8nXA4ntR5qOvNf/uPasz4tsBwQ3YYfVb/F+HZDdh5poCn4r/ng1H38psntCNScM1Ats30vwBxrnh+/N322c7bLcbRzlDzTO7hU3txtHt18p7Xir9rHZPruX67VckF6eXPl6Mr97ebzgjpNQnb18/Gafx1tMHuckmxCw/UsM8onXo07J+rppdu9tJ6bc1bgsyfzyI2y7F/ziW+mPUTieD8nuheet444k19mU8mWX37218O73V35YEsb12Xpq821J5naXv/XWjjnevmmw3Ta9Zdf0+lj0t20zdm+HwNmeHFZb7/bNYsurvI8T2OOVY3k2MpTYHP4O+cCx/PYFeXdfAP/TMbSVY+in55vbbyfdPRB//01722P5+yOy6zvJy6StzoX8toFn217yzTM+2rxg5ociDdc4dVeEP5AAU969cbkvceu+33ZV7r76Z84PvB1qzrffDrXfVzGT6JGIzy8rPH6Lt290xCOP9TXOX9eG/DmDd/cROnbPQt3cSXYHJI+LZh0v+9auL56r/XH4ay+fZt1rnF2Ru7vsY2Q/sM8+qry/094/r7CXD8PvDeyuyP2B3b737vbAEr8/sLuXVg1MI9an5xSPxdh9twgHjNzNnp8G789M8tHMOidg3l+ViTtINda+r8r8RKztXkNxP9Z2L5y7F2s/1Lj147dfm/t7/O7pqPt7/O75qA/s8eeslbxZUj8X/G1H2d2mEEzil1a/1fXt+tF2UfI4i+onav4Pi7LbZzHv8XESSZuR7R/ZZ/sH9tn+gX22f2Sf7R/ZZ/sH9tnd5b2B92fX62Hfd5TdTa1HsCJj5y7td49J8ZG3pR7XTtrTPf+HZcHbAc+HQDfLsvtM1K07uT8tSLmW3HeDsru9df93g/snenB3Zn23B5nf70Hun+jB/f2cuz24e9LpXg/+sKdweasH7ZpQto8N5HU+nr2/2j6Srzzvf7wW+/uytE/8cshH9lr5wF4rH9hr5SN7rXxkr5W399r99e2eV6aovuFyfvte+26fZbxQuuxrNn9RA6/EqXPEflkjrxhKmcn0uxqa72D/422dL9eQV2vkeOjL46E5HvryeOCd9PbyeNQar45H/Sl/dTxwRdleHo+R6zJeHo9a49Xx8McJr7vCLy8HHkUfry7HPHLK3svjUWu8vBx5oWJuMmh/d8zwSlhj2twd276CmfAK5vrmve9fvt8+JTbxiJdsq2zOlDjPCmouP66V/WJ1+szHdOuPzK/G5HH5D0U2Y7JfEumY2ambIuPtB532JW49aPRDiVu3HHb3T+8fhoz5icOQ3Rv17h48bz9fffNBbDrm9jX9d57E/qHGrUexf1ibm09j/1Dl5tPU+xvcByaotPoGlePr+cTuLX/3j+HneP8Yflvj5jH8bm1uN8/2E123m4eO9v4x/HYOg5Q7dvJ8E9P2bX90lCvs8mwSw6OI7O+T5e9W+a7ul2cIz0cDd4e+N94Sui9x6zWhP5W48Z7QH6aF5Ivp5KgHnN++0bc7t5KcPMTKHykynxW5PVOmH8dmL9s+0sC5lxHXWSrfVmf38pEjH59TItsU2b5KjTEFn+QYHylTP0irvzkNx0sWttPM9h9DwfvU5Pl8xsf6bB9ZzZl35QUHX+d2EbV75+F/PDT2tf3a28euPywHpiJO3tX4xJ1Yam/fiX3UkA8cItHuC1M3D5H2Ne4dIu3X5uYbVn6ocvsQads45R2Cm8kDj2DbvlI1d9iyOl+vo1HfzsLPV1HUN3R/eTXcfl24vENgbNflA3OziPrbM6v2S3L/UK1/4nIr9fcvt95+qKc/f6jn8auyf2zrzqvqfpgVdfNAenfwen/r8Ecilvkv3ToPYU7Urt8r+D9sHf3AXRPiT5xxEb9/xrWvcbON+SNnXPKRMy5pf/GOghfFM2+m4u6KMGFeMclubxP5q6vce7b3hxq3Hu79qcatD9bvL5vcfP3bT5dw7h2f/HCh784rgX4oceelQPsrp7gx/bj82l+8/Mp5UN+4ftjga5HtA3E08SLP4/lTdUS6OzPHg6T46bv/Xj7NeGYtLxkg/vqZ+N00T7K8rPbAp6+ReRTZfbPi3luKiGx7U+vOq2T2Ne69S+YXK2ObldkO68xXn9CcfTMi77/i56clyRPhdpRrDN+XZPc7gY9xH7bbNh94ZuuHKjfvbe2r3L2R88Oy3LyT80OVuzfaaHeNjtY87OvyzVG/MWC/rJMnkSfby3Ukf0XPn8rxep2jXJbquqnzift/P1S5+eOx7ybGmxrr5wL0N7n9x/NPx3gtGxrle/rb4wTseZHdAcbdbJj7x7pHxqWVrrb5iyW5O66fOMb4aa+lPAM7ryO/3o2N0UV/fPbtt3Xyux9nzedd9P5b1h7baHdZ9tZr1h5XQ7dHX3k02ut08q97y+7g6dazkNv3+JYvOvzxQYfb74d8HCxm0mr93s8vSuDTI1Rf+vqbEn49/zo+OOiVEo/bsdkzB/eXluKP+22vrYjl6yFp0Esr8miiLEHztaXoeXH7cemLXyqBD/M9riLI0xKPnt60/Ade293zOd3HRcnXRoOPXJX6tYJXB/S1Er3hqeVWjyAG3y8heUWtyXy7hPbXSuDLba3cUv5Nid5xaZCPl0qwYU728dpY9Lw13v/YtV4t8dpG7eUsvrwR/ldj0XABrb+2UfHFpV7v2vyqBOV+wfLiRlV8GExfWgoy/CRavU/5ixIjV+Rxb4CelqC2u4P1OMDJBWlaou83v6sNv6vy2qrkRE7640ONvymheMPfa11CI08TaB704org2Pxob5egV5fCUOKldn/8omMs2N5eihc36oEj8UPrB43uf7VO8pBtaL3PS1+7ZPvYUobfrNfb7i/G7QsXjeUjVXan1IPx3hnR5yeQ96votsr4yBrtLkPenTnd5PjAifV2WTQbR+tv3Pcau/lFePCd/ph29asq95Zkt9MyLnn8cZXgW+/sbu80HNc+rhLg9+Hbunzk1RXtI09gtfefwHrUmO/faaKm23Owe1/6+aHKzW/knMcHz6vc+7LLvsbdj7s8qvDbZ3O3V8fk1Y188+Na58Wqj2ye8YHNMz4wJrvmyQsPTC+P680JYNRst7Pd/KLSo0p/f1y3NW59TGhf437rbK+2322d7cC+/52pxy+s4G6Rbn55ds/LnA/STgxKue9rx6/KWL6X4HyCS5+V2V4Cxcma1vdU0+1XXZ/vTs1LCeXXWG5/xKTjVcqPCwL2rMLj6GP7yEDuaJ3KZG75up9tXzl4HGVEy7rY1yIfOSYYHzkmGB84JhgfOSaYHzkmmB85JpgfOCaYHzkmmJ84JpgfOCbY1riZ9eMDv6HjI7+huztUt39D++4e1c3d5G6N3bbZ1ri9q/Wjf2JXm+//hv6Q1UdOz3ncB6SnWd13z0Rxy6cHuL4b8uuvRj92c0Fn3oYcf3z6YvLXKrsd/8gXtHeqb0P98s3vH6rgq1H9j0tCv6tiuZm71ff/fquy+5LWvderP2p84D3+jyqfeMdJp0+8HavT22/HetTQD/yadrIP/Jruq9z9Ne27p7TuxiTNT0Tc9jmtmxF3d3W2ib3dyHd/xfruQa37v2K7x5Lubp6bNbZj0uQjm3h8YBNvB/bur9g2I2++jrTvbnPdfR3pfkluvk20977bZW++Fa5/5BGpvntY635ad30/rfff1rrbyH18opH7B3K2fyRn+RM5ux2UjzTh7Tek9u0rBG++IfWnZbn5itT+kUe2+kcecur8iXdqd57vN+LuJtj9Rtw9tHW/EeX9ywfbGvcbUT5w+WA/KJ9pxJuf/Hksyy5v73zz51Fi94jgzY/+/LQgN17x/dOZWN5m6X+8W+3bmZjupmafHx3KMqPMq/x6sbjv7hs9bqi3nLUrWl6n8K3M9qRbKHtZytSz7yfduyKan6hhlf6JIvPFIjNnGfEs1/O/FdndCJOW21nqZ3vo22be7CxqmQdqZVbK9yK7JdH8AXpciZcPFCkzgX9ZJOcXSr3F+LsimCPzwFdXZxz4eN6x2Trb/WTg0mY9A/q2n9jNk6gyL2V+XZDdjbDHTad8AtPqRK7fVjk+UAW77GPrzJer5KeifqqyG9t8p9Djh3U3uIM+Mbg/VDk+UOX24O6rfGJwH7fC8PgWtVerEB6VoPqEwetV6hNpr1fR/olxeb1Ky59UauXtXr+tksf755TB15eFUIVfriJYljfGBY9QtHoe9MsqePiqjfb6uGCNxstr1PEFda7T575V2b10sFkeyLU/JhV+rzJ3F57yKUjuc75ahfMROf5j6vwvq/RcFmZ9tYrggPCPJ3l/V0Xx6iTVl9cIrw1k3e67t6tM+cQavV7FMhnYOn2iCr+8LDik49HseRWm7Yvh8qXm9bWMv1uQfC6f66dh/w8L0v7SBRFceXqce9uL4ypH7m9yvLzXPv5pHnAfLydLrULUP7BGb1Sh/G0Venmv/aPKy8kiLb8BLK1vjn94+6mtD+xyLZ8slGa7Jty90fDugmx/D/M44fEDr7sF2b266OarTX9R5OmrTX9Yn4krnXP3O8Zt+wAD3tTRy6h8vTLI2691jfx5b6M8Yf2tSN8+pp2vQOL61PrvivR8fS33OuX/d0VysuNbRej9IngzIvN4dUxk4gpYm5si25cA5lHTYxOX6072tcj2tTAooiKbItv7QXhUedrxWpGGy+rt4M2S8NtHBj8sB0LpqPdkvy1H+2uXgzDbpNWrX/a7Iv0TRY73i6D5WpfNPrL9fi5eI/M4MOsvFmG89pL5I0Xs1SJ4fwSrvlwkT3B50AdW5+Uikm+OJqHjA0X6y0XwWrV6QvmtiOjbPbxfjmw/0l3nbO+K3cySbcrn/MSmu0zT4wMpr8cHUl7fT9f9ctxM+d1jYZ9Yjrsp/0OR/okix/tF7qb89hWAd1N+/x7Bmyl/v4i9WuRmyv9Q5F7K316dl4vcTfnbRfrLRW6mvL2frvvluJny4/hrU94kX49nczOo23eV3W2+bZG7zXe/iL1a5Gbz/VDkXvPdXp2Xi9xtvttF+stFbjbffPti1g/LcbP55tvXsvYXXDAV63EZaL521aZTPsTY60XPXxbBwxtU3/L3apFWbnh9m562vx6Wr7/pB+0usu8vV96bpCO7B7HuTtLZL8nNSTr3i2wm6fxQ5N4knX2Rm5N09kXuTtLZ7Sjnl8Jyl91fYN9Vafmtrd7ay7edGTfSub98I53x/ime9IEq8vr0DcbU2W2VH57SlvIavzJ/8FePDzZs6Ppynq9FZPdE2ONCZZ5D2h+HKMcvqvQDd8AfLM9nZ/5Qxp9rijKqmzLbCzA59ejxF8vNodZ+NbwI3DoL9/vw7qK/H5jK2+uH0b6v0bZMz+8C9/P9ds/L7O53nS8Ij40tvNnY+4HpHS8KpFd3Xs47GZ1ls/O2z+wv20ey7u4v24W53Uk/jEt+O+Bxzk+bcdndQ2hWXlBVBte+FtneqL05gfyHRcG701u5sfJ9UXZF8BWucw7B8yK7L3mZ4EHcB5dl+baz7B4Quz+DfFumkeS9rwfXF28dv1upqblStgvefZnyLXepLyX8XmYTvLM8jVsP6b53425jK6YTWjkI+t0eMwyvrKRNEd4e5/YDB7o1Gb6t0L4Mvh/wYDs2ZTbb6OZ3ePaLMhRPtA8rj3T8bo0UR7uq2o8X9zrFQeaD+2bn3T0pdvNDSfsa9z6U9EONmxuofWBd2tvrsv8ZwgbuVpbj28+QfOJTdCKf+BSdyPtf+xT5wJctH1U2u8nth+9k92DWzYfvtjVuP3wnsp39d+/hu/2gfOaFKoaXR1uZY/Ntr93dEGvnxUD8MvPml1l3b3wbhHf411eKjd8tDK5wPJg3ga3ykYMWlQ8ctOze+NtyRuN4HL9jXM53x/3fj//5j//tn//tv/79X//bP/77P//rv/yv8192+9v1Iuw+TjoXsc8gPpIoqSX1JE6SJE2ypHRwOiQdkg5Jh6RD0iHpkHRIOiQdkg5Nh6ZD06Hp0HRoOjQdmg5Nh6bD0mHpsHRYOiwdlg5Lh6XD0mHpGOkYFKcioyW547wIOTjJHecDPEOT3HFesRnuOC9MD3ect1TmkURJLakncZIkaZIljaR0PC4fAwnYgB3IQAEq0IADCBvBRrARbAQbwUawEWwEG8FGsDXYGmwNtgZbg63B1mBrsLXT1s+rmI//kNgPIDnOExvwtPUzdqmftn7+MD1OIYAKNEf/ZwM4Ez0QLnTbeQxKHgkXdqDb2FGACnTb+WNLHgxdHGeiR0M/fyDJs+HCBnTbeYWBPB76+atBng8Xuu2cG0GeEP41CPKIuHAmekhcSMAG7EAGClCBsClsCpvBZrAZbAabwWawGWwGm8FmsA3YBmwDtgHbgG3ANmAbsA3YBmwTtgnbhG3CNmGbsE3YJmwTtpm2dhxAAjZgBzJQgAo04ADCRrARbAQbwUawEWwEG8FGsBFsDbYGW4OtwdZga7A12BpsDbYGW4etw9Zh67B12DpsHbYOW4etw8awMWwMG8PGsDFsDBvDxrAxbAKbwCawCWwCm8AmsCFLGrKkIUsasqQhSxqypCFLGrKkIUsasqQhSxqypCFLGrKkIUsasqQhSxqypCFLGrKkIUsasqQhSxqypCFLGrKkIUsasqQhSxqypCFLGrKkIUsasqQhSxqypCFLGrKkIUsasqQhSxqypCFLOrKkI0s6sqQjSzqypCNLOrKkI0s6sqQjSzqypCNLOrKkI0s6sqQjSzqypCNLOrKkI0s6sqQjSzqypCNLOrKkI0s6sqQjSzqypCNLOrKkI0s6sqQjSzqypCNLOrKkI0s6sqQjSzqypCNLOrKkI0s6sqQjSzqypCNLOrKkI0s6sqQjSzqypCNLOrKkI0s6sqQjSzqypCNLOrKkI0s6sqQjSzqypCNLOrKkI0s6sqQjSzqypCNLOrKkI0s6sqQjSzqypCNLOrKkI0s6sqQjSzqypCNLOrKkI0s6sqQjSzqypCNLOrKkI0s6sqQjSzqypCNLOrKkI0s6sqQjSxhZwsgSRpYwsoSRJYwsYWQJI0sYWcLIEkaWMLKEkSWMLGFkCSNLGFnCyBJGljCyhJEljCxhZAkjSxhZwsgSRpYwsoSRJYwsYWQJI0sYWcLIEkaWMLKEkSWMLGFkCSNLGFnCyBJGljCyhJEljCxhZAkjSxhZwsgSRpYwsoSRJYwsYWQJI0sYWcLIEkaWMLKEkSWMLGFkCSNLGFnCyBJGljCyhJEljCxhZAkjSxhZwsgSRpYwsoSRJYwsYWQJI0sYWcLIEkaWMLKEkSWMLGFkCSNLGFnCyBJGljCyhJEljCxhZAkjSxhZwsgSRpYwskSQJYIsEWSJIEsEWSLIEkGWCLJEkCWCLBFkiSBLBFkiyBJBlgiyRJAlgiwRZIkgSwRZIsgSQZYIskSQJYIsEWSJIEsEWSLIEkGWCLJEkCWCLBFkiSBLBFkiyBJBlgiyRJAlgiwRZIkgSwRZIsgSQZYIskSQJYIsEWSJIEsEWSLIEkGWCLJEkCWCLBFkiSBLBFkiyBJBlgiyRJAlgiwRZIkgSwRZIsgSQZYIskSQJYIsEWSJIEsEWSLIEkGWCLJEkCWCLBFkiSBLBFkiyBJBlgiyRJAlgiwRZIkgSwRZIsgSQZYIskSQJYIsEWSJIEsUWaLIEkWWKLJEkSWKLFFkiSJLFFmiyBJFliiyRJEliixRZIkiSxRZosgSRZYoskSRJYosUWSJIksUWaLIEkWWKLJEkSWKLFFkiSJLFFmiyBJFliiyRJEliixRZIkiSxRZosgSRZYoskSRJYosUWSJIksUWaLIEkWWKLJEkSWKLFFkiSJLFFmiyBJFliiyRJEliixRZIkiSxRZosgSRZYoskSRJYosUWSJIksUWaLIEkWWKLJEkSWKLFFkiSJLFFmiyBJFliiyRJEliixRZIkiSxRZosgSRZYoskSRJYosUWSJIksUWaLIEkWWKLLEkCWGLDFkiSFLDFliyBJDlhiyxJAlhiwxZIkhSwxZYsgSQ5YYssSQJYYsMWSJIUsMWWLIEkOWGLLEkCWGLDFkiSFLDFliyBJDlhiyxJAlhiwxZIkhSwxZYsgSQ5YYssSQJYYsMWSJIUsMWWLIEkOWGLLEkCWGLDFkiSFLDFliyBJDlhiyxJAlhiwxZIkhSwxZYsgSQ5YYssSQJYYsMWSJIUsMWWLIEkOWGLLEkCWGLDFkiSFLDFliyBJDlhiyxJAlhiwxZIkhSwxZYsgSQ5YYssSQJYYsMWSJIUsMWWLIEkOWGLLEkCV2Zck8cQBn4LiyxJGADdiBDBSgAg04gLARbAQbwUawEWwEG8FGsBFsBFuDrcHWYGuwNdgabA22BluDrcHWYVtZYudd/5UlCzvQbeeMzrGyZKECDTiAMyusLFkI28oS/7srSxbCxrAxbAwbw8awCWwCm2DdBOsmsAlsApvAJrCtLHFcWbKQgFg3hW1lyUIBKtCAsClsBpvBZrAZRtKwboZ1M6ybwbayZCFGcmAkB0ZywDZgG7AN2AZsAyM5sG4D6zaxbhO2ie02MZITIzkxkhO2CduEbaZtHgeQgA3YgQxM2zwUaMABzJGcBBvBRrARbAQbCVCBBhxA2NoBJGADdiBsDbYGW4OtwdYwkh3r1rFuHeuGLJmdgRjJjpHsGElkyeywMWwMG7JkIksmsmQiSyayZDJsjO2GLJnIkoksmQKbwIYsmciSiSyZyJKJLJnIkoksmQqbYrshSyayZCJLpsKmsCFLJrJkIksmsmQiSyayZCJLpsFm2G7IkoksmciSOWAbsCFLJrJkIksmsmQiSyayZCJL5oBtYrshSyayZCJL5oRtwoYsmciSiSyZyJLzg62FqXArnMYHc2EprIWt8Ch1ipeKl4qXihfJ8mAuLIW1cPHSKDzBCJgHU+HibcXbircVbyte5MyDy/q2sr69rG8vXhy4PLiMcy/j3Ms49+LtxduLtxcvFy+XceayvlzWl8v6cvFy2b5cxpnLOHMZZyleKV4pXileKV4p4yxlfaWsr5T1leLVsn21jLOWcdYyzlq8WrxavFq8WrxaxtnK+lpZXyvra8VrZftaGWcr42xlnK14rXhH8Y7iHcU7yjiPsr6jrO8o6zuKd5TtO8o4zzLOs4zzLN5ZvLN4Z/HO4p1lnGdZ35JXVPKKDnjpaIV7YS4shbXUscKjcPGWvKKSV1TyikpeUckrouIlLWyFR2GMM7XibcVb8opKXlHJKyp5RSWvqOQVlby6Zt4ubz8Kl3EueUUlr6gXby/ekldU8opKXlHJKyp5RSWvqOTVNQ93ebls35JXVPKKSl4RFy8Xb8krKnlFJa+o5BWVvKKSV1Ty6pqVu7xStm/JKyp5RSWvSItXi7fkFZW8opJXVPKKSl5RySsqeXXN0V1eK9u35BWVvKKSV2TFa8Vb8opKXlHJKyp5RSWvqOQVlby6Zuwu7yjbt+QVlbyiklc0i3cWb8krKnlFJa+o5BWVvKKSV1Ty6pq/695rAu/FVLgV7oXhvWbxXqyFrfAojHFuJa9ayatW8uqazbu8xIWlsBa2wsVLxVvyqpW8aiWvWsmrVvKqlbxqJa+uub3L20bhMs4lr1rJq9aLt+RVK8dXrRxftZJXrRdvL95evCWvWsmrVvKqleOra7Kv+YMOK6/OBzfpmu57vjmCrvm+F4/CE7zyavoyrLy6uBXuhbmwFF5eX7aVVxePwhO88upiKry8vl4rry7mwlJ4edcTIVZ4FJ7glVfTnKnw6eXDx8TzKpidfR09r4K1sBUehSfY8yqYCrfCvXDxjuIdxTuKdxTvKN5ZvLN4Z/HO4p3FO5fXt8vUwsvbnUdh955v3KE1STiYCrv3/NI4rXnCwe6l9bSOFHbvevDG8yp4FHZvW4/3HIXd29S5Fe6F3dt92Tyv/M1utCYN8/l1XFqzhoNHYff29SyRe9nreF4x+3p5XjG7y/OKzw990po8HOze80lZWtOHg90rq/4o7F51l+cV+3M8aw4xqy+b5xWr1/e8YvOnmzyvgt1r6wEoLezeseqPwu4d7vK8Cnav9++aThzsXu/TNaE4WDDmrBhzLuPMZZx5gj2vrjEXwphLw5hLx5hLGWfPq+AyzmKFyzh7Xl2sB8ZcCWOuDWPueXWNuZZxVilcxtnzKriMs06wlXH2vAou47zy6uIyziuvLlaM+cqrNeZWxtnKOK+8upgw5iuv1pivvFpjvvJqjfko47zy6uIyziuvLi7jvPLqYsKYr7xaY77yao35yqs15rOM88qri8s4r7y6GOO8JiIHY5zXVORgjPOajByMcV7TkYPd678va0Kyv6uR1ozkiz2vgqlwK9wLc2EprIWtcPFS8bbibcXbircVbyveVryteFvxtuJtxduLtxdvL95evL14e/H24u3F24u3Fy8XLxcvL69vX+6FufDy+jZlLWyFR+EJlqMwFS5eKV4pXpHCWrh4pXileLV4tXi1Fe6Fl9cfLtXi1eJVKzwKT7AVrxWvFa8Vr3HhMs5WxtnK+lpZX5tY5nFgGQYVLuM8yjiPMs6jeEfxjuIdxTvKOM+yvrOs7yzrO8v6zjLOs4zzLOM8yzjPMs4T47wmO6+aa7ZzcCvcC3NhKayFrfAojHEWwjgLUeFWuBfmwsVLxUvFS8VLGGdpZX1bWd9W1reV9W0YZ2kYZ2la2AqPwmWce/H24u3F24u3l3HuZX17Wd9e1reX9e1lnLmMM5dxLnklJa+k5JWUvJKSV1LySkpeSckrKXklJa9EyvpKWV8p41zySkpeiZRxljLOUsa55JWUvJKSV1LySrSMs5b11bK+WtZXy/pqGWcr42xlnK2Ms5VxtjLOJa+k5JWUvJKSV2JlnEdZ31HWd5T1HWV9RxnnUcZ5lHEeZZxHGedRxrnklZS8kpJXUvJKZhnnWdZ3lvWdZX1nWd+JcdYD46wHFW6Fe2EuDK+WvNKSV1rySg+Ms9JRmAq3wr0wxlkJ46ykha3wKIxx1pJXWvJKS15pySttXLisbyvr28r6trK+rYxzL+Pcyzj3Ms69jHMv41zySkteackrLXmlvYwzl/Xlsr5c1pfL+nIZZy7jzGWcuYwzl3HmMs4lr7TklZa80pJXKmWcpayvlPUtx1dajq9UyjhrGWct46xlnLWMs5ZxLnmlJa+05JWWvFIt41yOr7QcX2k5vtJyfKVWxtnKOFsZZyvjbGWcrYxzySsteaUlr7TklY4yzuX4SsvxlZbjKy3HVzrKOM8yzrOM8yzjPMs4zzLOJa+05JWWvNKSVzoxzlaOr6wcX1k5vrJyfGUHxtkOjLMdWtgKj8IYZyt5ZSWvrOSVlbwy4sJSWAtb4VEY42wN42yNCrfCvTAXLt6SV1byykpeWSvjXI6vrBxfWTm+snJ8Zb2Mcy/j3Ms49zLOvYxzL+Nc8spKXlnJKyt5ZVzGuRxfWTm+snJ8ZeX4yriMs5RxljLO5XzQyvmglfNBK3llJa+s5JWVvLJyPmjl+MrK8ZWV4ysrx1dWzgetnA9aOR+0cj5o5XzQyvmglbyykldW8spKXlk5H7RyfGXl+MrK8ZWV4ysr54NWzgetnA9aOR+0cj5o5XzQSl5ZySsreWUlr6ycD1o5vrJyfGXl+MrK8ZWV80Er54NWzgetnA9aOR+0cj44Sl6Nklej5NUoeTXK+eAox1ejHF+Ncnw1yvHVKOeDo5wPjnI+OMr54Cjng6OcD46SV6Pk1Sh5NUpejXI+OMrx1SjHV6McX41yfDXK+eAo54OjnA+Ocj44yvngKOeDo+TVKHk1Sl6NklejnA+Ocnw1yvHVKMdXoxxfjXI+OMr54Cjng6OcD45yPjjK+eAoeTVKXo2SV6Pk1Sjng6McX41yfDXK8dUox1ejnA+Ocj44yvngKOeDo5wPjnI+OEpejZJXo+TVKHk1yvngKMdXoxxfjXJ8Ncrx1Sjng6OcD45yPjjK+eAo54OjnA+OklejHF+Ncnw1yvHVKOeDo+TVKHk1Sl6Ncnw1yvHVKHk1Sl6NK6/UeRRe3vOa+ZpyLn5vbs05D26Fe2H3nt9RpzXvPP67FrbCo/DMf7smn6//vmafB7fCvTCXfyvlv2thKzwKFy8VLxUvFS8VLxUvFS8VLxUvFS8VbyveVryteFvxtuJtxduKtxVvK95WvL14e/H24u3F24u3F28v3l68vXh78XLxcvFy8XLxcvFy8XLxcvFy8XLxSvFK8UrxSvFK8UrxSvFK8UrxSvFq8WrxavFq8WrxavFq8WrxavFq8VrxWvFa8VrxWvFa8VrxWvFa8VrxjuIdxTuKdxTvKN5RvKN4R/GO4h3FW/JqlryaJa9myatZ8mqWvJolr2bJq1nyaiKv2oG8agfyqh3Iq3Ygr9qBvGoH8qodyKt2IK/agbxqx1G8VLxUvFS8VLxUvFS8VLxUvFS8VLyteFvxtuJtxduKtxVvK95WvK14W/H24u3F24u3F28v3l68vXh78fbi7cXLxcvFy8XLxcvFy8XLxcvFy8XLxXvl1WKfj3T+RrdrfvvFvfDydmcprIWXdzi7tx3OE7zy6mIq3Ar3wu5tvpwrr5q7Vl5dbIWX15d55dX5HvG25rcHL684t8Lu7e5deXWxFHbvOYehrfntwaPwBK+86l5/5VX38Vm51H05Vy6d8xzamsce7PXZt93KpYu9Pnv9lUsXU+FWeLn8364sWt6VRdd/N4zPyqK1viuLnNfc9WDKdVxz14N7YS4shbWwFR6FZ47bmrseTIVb4Z5ju+ary/lN7bbmqwdb4VF4glf+sNdZ+XNxK9wLc2EprIWt8Cg8wb14e/H+/2Xd3ape2Xae0XvxsQ6+OfrvyK0YExLHCQYTB8cOhOB7j7SWVLORnJixVSq92wXVqEJ9PjvYDXaD3WA32A12g91gN9lNdpPdZDfZTXaT3WQ32U12i91it9gtdovdYrfYLXaL3WK32W12m91mt9ltdpvdZrfZbXaH3WF32B12h91hd9gddofdYXfZXXaX3WV32V12l91ld9lddi+7l93L7mX3snvZvexedi+79939vlf/8354H97BO3kX7+Y9vJc3uw+7D7sPuw+7D7sPuw+7D7sPuw+7eHXw6uDVwauDVwevDl4dvDp4dfDq4NXBq4NXB68OXh28Onh18Org1cGrg1cHrw5eHbw6eHXw6uDVwauDVwevDl4dvDp4dfDq4NXBq4NXB68OXh28Onh18Org1cGrg1cHrw5eHbw6eHXw6uDVwauDVwevDl4dvDp4dfDq4NXBq4NXB68OXh28Onh18Org1cGrg1cHrw5eHbw6eHXw6uDVwauDVwevDl4dvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8GrwavBq8GrwavBq8GrwavBq8GrwavBq8GrwavBq8GrwavBq8GrwavBq8GrwavBq8GrwavBq8GrwavBq8GrwavBq8GrwavBq8GrwavBq8GrwavBq8GrwavBq8GrwavBq8GrwavBq8GrwavBq8GrwavBq8GrwavBq8GrwavBq8GrwavBq8GrwavBq8GrwavBq8GrwavBq8GrwavBq8GrwavBq8GrwavBq8GrwavBq8GrwavBq8GrwavBq8GrwavBq8GrwavBq8GrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavLp4dfHq4tXFq4tXF68uXl28unh18eri1cWri1cXry5eXby6eHXx6uLVxauLVxevLl5dvLp4dfHq4tXFq4tXF68uXl28unh18eri1cWri1cXry5eXby6eHXx6uLVxauLVxevLl79vlfP+/Ve3vd9//bq+/3wPryDd/Iu3s2b3WK32G12m91mt9ltdpvdZrfZbXab3WF32B12h91hd9gddofdYXfYXXaX3WV32V12l91ld9lddpfdy+5l97J72b3sXnYvu5fdy+79azd+36v/fj+8D+/gnbyLd/Me3sub3Yfdh92H3Yfdh92H3Yfdh92H3Yfdw+5h97B72D3sHnYPu4fdw+5hN9gNdoPdYDfYDXaD3WA32A12k91kN9lNdpPdZDfZTXaT3WS32C12i91it9gtdovdYrfYLXab3Wa32W12m91mt9ltdpvdZnfYHXaH3WF32B12h91hd9gddpfdZXfZXXaX3WV32V12l91l97J72b3sXnYvu5fdy+5l97KLVw9ePXj14NWDVw9ePXj14NWDVw9e/blp/3r/vmn/fn/vPl/vw/trtz5f7+RdvJv38F7e931/e1Vfv/63V7/fh3fwTt7Fu3kP7+V933ewG+wGu8FusBvsBrvBbrAb7Ca7yW6ym+wmu8luspvsJrvJbrFb7Ba7xW6xW+wWu8VusVvsNrvNbrPb7Da7zW6z2+w2u83usDvsDrvD7rA77A67w+6wO+wuu8vusrvsLrvL7rK77C67y+5l97J72b3sXnYvu5fdy+5l9767v+/bf78f3od38E7exbt5D+/lze7D7sPuw+7D7sPuw+7D7sPuw+7DLl4dvDp4dfDq4NXBq4NXB68OXh28Onh18Org1cGrg1cHrw5eHbw6eHXw6uDVwauDVwevDl4dvDp4dfDq4NXBq4NXB68OXh28Onh18Org1cGrg1cHrw5eHbw6eHXw6uDVwauDVwevDl4dvDp4dfDq4NXBq4NXB68OXh28Onh18Org1cGrg1cHrw5eHbw6eHXw6uDVwauDVwevDl4dvDp4dfDq4NXBq4NXB68CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqv/ty3x9d7eC/v+75///7g9/v79xfy6314B+/v39eor3fx4817eC/v+75///7g95vdZDfZ/f37g99vdpPdZDfZTXaL3WK32C12i91it9gtdovdYrfZbXab3Wa32W12m91mt9ltdofdYXfYHXaH3WF32B12h91hd9lddpfdZXfZXXaX3WV32V12L7uX3cvuZfeye9m97F52L7v3/fvoz3379/vd/X3f/quFFb/v23+/k/fXbnz//OY9vJf3fd+/f3/w+/3wPry/d+vrnbyLd/P+3t2v9/f/j/Pr/fuG4fv98D68g/dfN0jBTXtw0x7ctAc37cFNe3DTHty0BzftwU17cNMe3LQHN+3BTXtw0x7ctAc37cFNe3DTHty0BzftwU17cNMe3LQHN+3BTXtw0x7ctAc37cFNe3DTHty0BzftwU17cNMe3LQHN+3BTXtw0x7ctAc37cFNe3DTHty0BzftwU17cNMe3LQHN+3BTXtw0x7ctAc37cFNe3DTHty0BzftwU17cNMe3LQHN+3BTXtw0x7ctAc37cFNe3DTHty0BzftwU17cNMe3LQHN+3BTXtw0x7ctAc37cFNe3DTHty0BzftwU17cNMe3LQHN+3BTXtw0x7ctAc37cFNe3DTHty0BzftwU17cNMe3LQHN+3BTXtw0x7ctAc37cFNe3DTHty0BzftwU17cNMe3LQHN+3BTXtw0x7ctAc37cFNe3DTHty0BzftwU17cNMe3LQHN+3BTXtw0x7ctAc37cFNe3DTHty0BzftwU17cNMe3LQHN+3BTXtw0x7ctAc37cFNe3DTHty0BzftwU17cNMe3LQHN+3BTXtw0x7ctAc37cFNe3DTHty0BzftwU17cNMe3LQHN+3BTXtw0x7ctAc37cFNe3DTHty0BzftwU17cNMe3LQHN+3BTXtw0x7ctAc37cFNe3DTHty0BzftwU17cNMe3LQHN+3BTXtw0x7ctAc37cFNe3DTHty0BzftwU17cNMe3LQHN+3BTXtw0x7ctAc37cFNe3DTHty0BzftwU17cNMe3LQHN+3BTXtw0x7ctAc37cFNe3DTHty0BzftwU17cNMe3LQHN+3BTXtw0x7ctAc37cFNe3DTHhevLl5dvLp4dfHq4tXFq4tXF68uXl28unh18eri1cWri1cXry5eXby6eHXx6uLVxauLVxevLl5dvLp4dfHq4tXFq4tXF68uXl28unh18eri1cWri1cXry5eXby6eHXx6uLVxauLVxevLl5dvLp4dV+v8vN6lZ/Xq/y8XuXn9So/r1f5eb3Kz+tVfl6v8vN6lZ8Puw+7D7sPuw+7D7sPuw+7D7sPuw+7h93D7mH3sHvYPewedg+7h93DbrAb7Aa7wW6wG+wGu8FusBvsJrvJbrKb7Ca7yW6ym+wmu8lusVvsFrvFbrFb7Ba7xW6xW+w2u81us9vsNrvNbrPb7Da7ze6wO+wOu8PusDvsDrvD7rA77C67y+6yu+wuu8vusrvsLrvL7mX3snvZvexedi+7l93L7mUXrx68evDqwasHrx68evDqwasHrx68evDqwasHrx68evDqwasHrx68evDqwasHr2i2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832n2928Ypme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nm+8/3w/vwDt7Ju3g37+G9vNnFK5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2Z4025Nme9JsT5rtSbM9abYnzfak2f7zzS5e0WzPwqt6GzJZb0Mm623IZL0Nmay3IZP1NmSy3oZM1tuQyXobMllvQyar2W12m91mt9ltdpvdZnfYHXaH3WF32B12h91hd9gddpfdZXfZXXaX3WV32V12l91l97J72b3sXnYvu5fdy+5l97L7NmSy34ZM9tuQyX4bMtlvQyb7bchkvw2Z7Lchk/02ZLLfhkz2h92H3Yfdh92H3Yfdh92H3Yfdh92H3cPuYfewe9g97B52D7uH3cPuYTfYDXaD3WA32A12g91gN9gNdpPdZDfZTXaT3WQ32U12k91kt9gtdvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxavBq8GrwavBq8GrwavBq8GrwavBq8GrwavBq8Grw6s9N+/e7eX/vPl/v5f39Dc7n1/v3Nzjf74f34R28k3fx/uvbn5z3m8Gc95vBnPebwZz3m8Gc95vBnPebwZz3m8Gc95vBnPebwZxgN9gNdoPdZDfZTXaT3WQ32U12k91kN9ktdovdYrfYLXaL3WK32C12i91mt9ltdpvdZrfZbXab3Wa32R12h91hd9gddofdYXfYHXaH3WV32V12l91ld9lddpfdZXfZvexedi+7l93L7mX3snvZvey+3wzmvt8M5r7fDOa+3wzmvt8M5r7fDOa+3wzmvt8M5r7fDOa+3wzmfth92H3Yfdh92H3Yfdh92H3Yfdh92D3sHnYPu4fdw+5hF68WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8WrxavFq8Wry5eXby6eHXx6uLVxauLVxevLl5dvLp4dfHq4tXFq4tXF68uXl28unh18eri1cWri1cXry5eXby6eHXx6uLVxauLVxevLl5dvLp4dfHq4tXFq4tXF68uXl28unh18eri1cWri1cXry5eXby6eHXx6uLVxauLVxevLl5dvLp4dfHq4tXFq4tXF68uXl28unh18eri1cWri1cXry5eXby6eHXx6uLVxauLVxevLl5dvLp4dfHq4tXFq4tXF68uXl28unh18eri1cWri1cXry5eXby6eHVfr+rzelWf16v6vF7V5/WqPq9X9Xm9qs/rVX1er+rzelWfD7sPuw+7D7sPuw+7D7sPuw+7D7sPu4fdw+5h97B72D3sHnYPu4fdw26wG+wGu8FusBvsBrvBbrAb7Ca7yW6ym+wmu8luspvsJrvJbrFb7Ba7xW6xW+wWu8VusVvsNrvNbrPb7Da7zW6z2+w2u83usDvsDrvD7rA77A67w+6wO+wuu8vusrvsLrvL7rK77C67y+5l97J72b3sXnYvu5fdy+5lF68evHrw6sGrB68evHrw6sGrB68evHrw6sGrB68evHrw6sGrB68evHrw6sGrB69othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9p9vdvGKZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvf7ct8fX+77v378/+P1+eB/e379fll/v5F28v3+frr7ew48v7/vX+899+/f74X14B+/kXbyb9/Be3uw+7D7sPuw+7D7sPuw+7D7sPuw+7B52D7uH3cPuYfewe9g97B52D7vBbrAb7Aa7wW6wG+wGu8FusJvsJrvJbrKb7Ca7yW6ym+wmu8VusVvsFrvFbrFb7Ba7xW6x2+z2+/fRn/v27ze73179arjV7/v23+/m/bUb3z9/ed/3/e3V7/fD+/AO3sn7e7e+3s17eC/v79399f59wzBf78M7eCfv4v3XTV1x017ctBc37cVNe3HTXty0FzftxU17cdNe3LQXN+3FTXtx017ctBc37cVNe3HTXty0FzftxU17cdNe3LQXN+3FTXtx017ctBc37cVNe3HTXty0FzftxU17cdNe3LQXN+3FTXtx017ctBc37cVNe3HTXty0FzftxU17cdNe3LQXN+3FTXtx017ctBc37cVNe3HTXty0FzftxU17cdNe3LQXN+3FTXtx017ctBc37cVNe3HTXty0FzftxU17cdNe3LQXN+3FTXtx017ctBc37cVNe3HTXty0FzftxU17cdNe3LQXN+3FTXtx017ctBc37cVNe3HTXty0FzftxU17cdNe3LQXN+3FTXtx017ctBc37cVNe3HTXty0FzftxU17cdNe3LQXN+3FTXtx017ctBc37cVNe3HTXty0FzftxU17cdNe3LQXN+3FTXtx017ctBc37cVNe3HTXty0FzftxU17cdNe3LQXN+3FTXtx017ctBc37cVNe3HTXty0FzftxU17cdNe3LQXN+3FTXtx017ctBc37cVNe3HTXty0FzftxU17cdNe3LQXN+3FTXtx017ctBc37cVNe3HT/vPNLl5x0/7zzS5eFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1e0Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71otjfN9qbZ3jTbm2Z702xvmu1Ns71ptjfN9qbZ3jTbm2Z702xvmu1Ns71ptjfN9qbZ3jTbm2Z702xvmu1Ns71ptjfN9qbZ3jTbm2Z702xvmu1Ns71ptjfN9qbZ3jTbm2Z702xvmu1Ns71ptjfN9qbZ3jTbm2Z702xvmu1Ns71ptjfN9qbZ3jTbm2Z702xvmu1Ns71ptjfN9qbZ3jTbm2Z702xvmu1Ns71ptjfN9qbZ3jTbm2Z702xvmu1Ns71ptjfN9qbZ3jTbm2Z702xvmu1Ns71ptjfN9qbZ3jTbm2Z702xvmu1Ns71ptjfN9qbZ3jTbm2Z702xvmu1Ns71ptjfN9qbZ3jTbm2Z702xvmu1Ns71ptjfN9qbZ3jTbm2Z702xvmu1Ns71ptjfN9qbZ3jTbm2Z702xvmu1Ns71ptjfN9qbZ3jTbm2Z702xvmu1Ns71ptjfN9qbZ3jTbm2Z702xvmu1Ns71ptjfN9qbZ3jTbm2Z702xvmu1Ns71ptjfN9qbZ3jTbm2Z702xvmu1Ns71ptjfN9qbZ/vPNLl7RbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7X3ehkyft3nV521e9XmbV33e5lWft3nV521e9XmbV33e5lWft3nV57B72D3sHnYPu4fdYDfYDXaD3WA32A12g91gN9hNdpPdZDfZTXaT3WQ32U12k91it9gtdovdYrfYLXaL3WK32G12m91mt9ltdpvdZrfZbXab3WF32B12h91hd9gddofdYXfYXXaX3WV32V12l91ld9lddpfdy+5l97J72b3sXnYvu5fdy+7bvOp4m1cdb/Oq421edbzNq463edXxNq863uZVx9u86nibVx0fdh92H3Yfdh928SrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvDqz03793t5f+8+v96/vfp+f3+D8/l6H97BO3kX7+Y9vP/69qfj/Waw4/1msOP9ZrDj/Waw4/1msOP9ZrDj/Waw4/1msOP9ZrDjsvt+M9j5fjPY+X4z2Pl+M9j5fjPY+X4z2Pl+M9j5fjPY+X4z2Pl+M9j5Yfdh92H3Yfdh92H3Yfdh92H3Yfdh97B72D3sHnYPu4fdw+5h97B72A12g91gN9gNdoPdYDfYDXaD3WQ32U12k91kN9lNdpPdZDfZLXaL3WK32C12i91it9gtdovdZrfZbXab3Wa32W12m91mt9kddofdYXfYHXaH3WF32B12h91ld9lddpfdZXfZXXaXXbxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvBq8GrwavBq8GrwavBq8GrwavBq8GrwavBq8GrwavBq8GrwavBq8GrwavBq8GrwavBq8Gryi2d4025tme9Nsb5rtTbO9abY3zfam2d4025tme9Nsb5rtTbO9abY3zfam2d4025tme9Nsb5rtTbO9abY3zfam2d4025tme9Nsb5rtTbO9abY3zfam2d4025tme9Nsb5rtTbO9abY3zfam2d4025tme9Nsb5rtTbO9abY3zfam2d4025tme9Nsb5rtTbO9abY3zfam2d4025tme9Nsb5rtTbO9abY3zfam2d4025tme9Nsb5rtTbO9abY3zfam2d4025tme9Nsb5rtTbO9abY3zfam2d4025tme9Nsb5rtTbO9abY3zfam2d4025tme9Nsb5rtTbO9abY3zfam2d4025tme9Nsb5rtTbO9abY3zfam2d4025tme9Nsb5rtTbO9abY3zfam2d4025tme9Nsb5rtTbO9abY3zfam2d4025tme9Nsb5rtTbO9abY3zfam2d4025tme9Nsb5rtTbO9abY3zfam2d4025tme9Nsb5rtTbO9abY3zfam2d4025tme9Nsb5rtTbO9abY3zfam2d4025tme9Nsb5rtTbO9abY3zfam2d4025tme9Nsb5rtTbO9abY3zfam2d4025tme9Nsb5rtTbO9abY3zfam2d4025tme9Nsb5rtTbO9abY3zfam2d4025tme9Nsb5rtTbO9abY3zfam2d4025tme9Nsb5rtTbO9abY3zfam2d4025tme9Nsb5rtTbO9abY3zfam2d4025tme9Nsb5rtTbO9abY3zfam2d4025tme9Nsb5rtTbO9abY3zfb+c98eX++H9+EdvJP39++X5de7eQ/v79+nq6/3fX/8bV71n/v27/fhHbyTN7vNbrP7+/cHv9/sDrvD7rA77A67w+6wO+wOu8PusrvsLrvL7rK77C67y+6yu+xedi+7l93L7mX3snvZvexedt9G33zeRt983kbffN5G33zeRt983kbffN5G33zeRt983kbffN5G33w+7D7sPuw+7D7sPuw+7D7sPuw+7D7sHnYPu4fd89ffR/Pnvv37ze63V78abvP7vv33e3l/7cbXz//26vf74X14B+/kXbyb9/dufb2X933f3179fn/v7tf7+//H+Xon7+LdvIf3Xzd1w037cNM+3LQPN+3DTftw0z7ctA837cNN+3DTPty0Dzftw037cNM+3LQPN+3DTftw0z7ctA837cNN+3DTPty0Dzftw037cNM+3LQPN+3DTftw0z7ctA837cNN+3DTPty0Dzftw037cNM+3LQPN+3DTftw0z7ctA837cNN+3DTPty0Dzftw037cNM+3LQPN+3DTftw0z7ctA837cNN+3DTPty0Dzftw037cNM+3LQPN+3DTftw0z7ctA837cNN+3DTPty0Dzftw037cNM+3LQPN+3DTftw0z7ctA837cNN+3DTPty0Dzftw037cNM+3LQPN+3DTftw0z7ctA837cNN+3DTPty0Dzftw037cNM+3LQPN+3DTftw0z7ctA837cNN+883u3jFTftw0z7ctA837cNN+3DTPty0Dzftw037cNM+3LQPN+3DTftw0z7ctA837cNN+3DTPty0Dzftw037cNM+3LQPN+3DTftw0z7ctA837cNN+3DTPty0Dzftw037cNM+3LQPN+3DTftw0z7ctA837cNN+3DTPty0Dzftw037cNM+3LQPN+3DTftw0z7ctA837cNN+3DTPty0Dzftw037cNM+B68OXh28Onh18Org1cGrg1cHrw5eHbw6eHXw6uDVwauDVwevDl4dvDp4dfDq4NXBq4NXB68OXh28Onh18Org1cGrg1cHrw5eHbw6eHXw6uDVwauDVwevDl4dvDp4dfDq4NXBq4NXB68OXh28Onh18Org1cGrg1cHrw5eHbw6eHXw6uDVwauDVwevDl4dvDp4dfDq4NXBq4NXB68OXh28Onh18Org1cGrg1cHrw5eHbw6eHXw6uBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgFc32odk+NNuHZvvQbB+a7UOzfWi2D832odk+NNuHZvvQbB+a7UOzfWi2D832odk+NNuHZvvQbB+a7UOzfWi2D832odk+NNuHZvvQbB+a7UOzfWi2D832odk+NNuHZvvQbB+a7UOzfWi2D832odk+NNuHZvvQbB+a7UOzfWi2D832odk+NNuHZvvQbB+a7UOzfWi2D832odk+NNuHZvvQbB+a7UOzfWi2D832odk+NNuHZvvQbB+a7UOzfWi2D832odk+NNuHZvvQbB+a7UOzfWi2D832odk+NNuHZvvQbB+a7UOzfWi2D832odk+NNuHZvvQbB+a7UOzfWi2D832odk+NNuHZvvQbB+a7UOzfWi2D832odk+NNuHZvvQbB+a7UOzfWi2D832odk+NNuHZvvQbB+a7UOzfWi2D832odk+NNuHZvvQbB+a7UOzfWi2D832odk+NNuHZvvQbB+a7UOzfWi2D832odk+NNuHZvvQbB+a7UOzfWi2D832odk+NNuHZvvQbB+a7UOzfWi2D832odk+NNuHZvvQbB+a7UOzfWi2D832odn+880uXtFs//lmF69otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPjTbh2b70Gwfmu1Ds31otg/N9qHZPvs2ZGbf5tXs27yafZtXs2/zavZtXs2+zavZt3k1+zavZt/m1eyyu+wuu8vuZfeye9m97F52L7uX3cvuZfdtXs19m1dz3+bV3Ld5NfdtXs19m1dz3+bV3Ld5NfdtXs19m1dzP+w+7D7sPuw+7D7sPuw+7D7sPuw+7B52D7uH3cPuYfewe9g97B52D7vBbrAb7Aa7wW6wG+wGu8FusJvsJrvJbrKb7Ca7yW6ym+wmu8VusVvsFrvFbrFb7Ba7xW6x2+w2u81us9vsNrvNbrPb7Da7w+6wO+wOu8PusItXF68uXl28unh18eri1cWri1cXry5eXby6eHXx6uLVxauLVxevLl5dvLp4dfHq4tV9vdrP69V+Xq/283q1n9er/bxe7ef1aj+vV/t5vdrP69V+Puw+7D7sPuw+7D7sPuw+7D7sPuw+7B52D7uH3cPuYfewe9g97B52D7vBbrAb7Aa7wW6wG+wGu8Hu75v2r/fvm/bv9/fu8/U+vL+/wfl8vZN38W7ew3t53/f9fjO4n/ebwf283wzu5/1mcD/vN4P7eb8Z3M/7zeB+3m8G9/N+M7if95vB/TS7zW6z2+w2u81us9vsNrvN7rA77A67w+6wO+wOu8PusDvsLrvL7rK77C67y+6yu+wuu8vuZfeye9m97F52L7uX3cvuZff9ZnCf95vBfd5vBvd5vxnc5/1mcJ/3m8F93m8G93m/Gdzn/WZwn/ebwX0+7D7sPuw+7D7sPuw+7D7sPuw+7D7sHnYPu4fdw+5h97B72D3sHnYPu8FusBvsBrvBbrAb7Aa7wW6wm+wmu8luspvsJrvJbrKb7Ca7ePXg1YNXD149ePXg1YNXD149ePXg1YNXD149ePXg1YNXD149ePXg1YNXD149ePXg1YNXD149ePXg1YNXD149ePXg1YNXD149ePXg1YNXD149ePXg1YNXD149ePXg1YNXD149ePXg1YNXD149ePXg1cGrg1cHrw5eHbw6eHXw6uDVwauDVwevDl4dvDp4dfDq4NXBq4NXB68OXh28Onh18Org1cGrg1cHrw5eHbw6eHXw6uDVwauDVwevDl4dvDp4dfDq4NXBq4NXB68OXh28Onh18Org1cGrg1cHrw5eHbw6eHXw6uDVwauDVwevDl4dvDp4dfDq4NXBq4NXB68OXh28Onh18Org1cGrg1cHrw5eHbw6eHXw6uDVwauDVwevDl4dvDp4dfDq4NXBq4NXB68OXh28Onh18Org1cGrg1cHrw5eBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV7RbF+a7UuzfWm2L832pdm+NNuXZvvSbF+a7UuzfWm2L832pdm+NNuXZvvSbF+a7UuzfWm2L832pdm+NNuXZvvSbF+a7UuzfWm2L832pdm+NNuXZvvSbF+a7UuzfWm2L832pdm+NNuXZvvSbF+a7UuzfWm2L832pdm+NNuXZvvSbF+a7UuzfWm2L832pdm+NNuXZvvSbF+a7UuzfWm2L832pdm+NNuXZvvSbF+a7UuzfWm2L832pdm+NNuXZvvSbF+a7UuzfWm2L832pdm+NNuXZvvSbF+a7UuzfWm2L832pdm+NNuXZvvSbF+a7UuzfWm2L832pdm+NNuXZvvSbF+a7UuzfWm2L832pdm+NNuXZvvSbF+a7UuzfWm2L832pdm+NNuXZvvSbF+a7UuzfWm2L832pdm+NNuXZvvSbF+a7UuzfWm2L832pdm+NNuXZvvSbF+a7UuzfWm2L832pdm+NNuXZvvSbF+a7UuzfWm2L832pdm+NNuXZvvSbF+a7UuzfWm2L832pdm+NNuXZvvSbF+a7UuzfWm2L832pdm+NNuXZvvPN7t4RbP955tdvKLZvjTbl2b70mxfmu1Ls31pti/N9qXZvjTbl2b70mxfmu1Ls31pti/N9qXZvjTbl2b70mxfmu1Ls31pti/N9qXZvjTbl2b70mxfmu1Ls31pti/N9qXZvjTbl2b70mxfmu1Ls31pti/N9qXZvjTbl2b70mxfmu1Ls31pti/N9qXZvjTbl2b70mxfmu1Ls31pti/N9qXZvjTbl2b7/rlvj6938E7exbt5f/9+WX69l/d9379/f7C+3g8/fngH7+RdvJs3u4fdw+7v3x/8frMb7Aa7wW6wG+wGu8FusJvsJrvJbrKb7Ca7yW6ym+wmu8VusVvsFrvFbrFb7Ba7xW6x2+w2u81us9vsNrvNbrPb7Da7w+6wO+wOu8PusDvsDrvD7rC77C67y+6yu+wufx8tfx8tu99e9efrfd/3t1f99XO+ver+eh/ewTt5F+/mPby/d+frff96/75v//3+3p1///E3/+s//cs//qf//E//8D//5j/8n5//8b/+23//+3/9x3/+77//47/+7//x54/853/5x3/6p3/8b//xf/zLP//9P/yXf/uXf/iP//TPf//rj/3N59f/+cXS3z794zx/9/MnP79//G9//fPYj1//wPJ3Xz/4t/fn73X9uD//Gv38z/Hrj//8Z8Yfv/4B7tcf//Un/PofPP7x63+5+NcPPF+/wvn6FfbXr3v+/6n4M/Xz3zZ//Py3sd+/8M9/R/7x899X//yyP//V+8fPf4X+84v+/Lewnz+3f/35+evP//VnnPvzZ/z5+fn5kfXrD9dfi5M/5v713+rzY8+vP97vf6P74+SvH5q/fujkj3N//dC+PzQ/4utPvH92+/kxz5/duT/26xd5+Ks6P87Xn/I87y/z/Dhf//Wf9y9J3B/5/efG//uX6d///e/+/f8C",
|
|
4057
|
-
"verification_key": "
|
|
4055
|
+
"bytecode": "H4sIAAAAAAAA/+y9C/wN1ff/P4f3xd2bJEmcJLfkTkjILUmSJAkhSZIkKamQhJLckqQSkqSSSkgqSSVJKkkqJKkkiZLEf16ad877NJxZ+332a77r//vM47EdTTPW2s+992vWzOy9JuL8s0W936uu6nb7gGuuvqpv/6uu6zvgmv59u/W5+aqrruk7oP+gfje6e0qUd5zRZ/xzbMQtOb3fHN6/Ebsv8zf274V8jjvBLY3i9hV1y9C4fSf57Cvh8++d6rOvpM++Uj77oj42TvPZV9pn3+k++8r42Cjrs6+8D6sKPvsq+uyr5PPvVfY5rorPvqo++6r7/Hs1fY6r5bOvts++Oj7/Xj2f487x2VffZ18Dn3+vkc9x5/nsa+yzr6lbcsXta+b9pjgBtoj3G/V+q/Zo3X9LtekVFrVptnDYsA6dy9fY0WLQ4n7jm2zZN3G3+/9X5zx6bIKtUnbsfJjYTunYfzufc7TCEc9P/J7hHO24Ee/fzTxujfv3j9yy1i0f58z6j+eM8zfBFiknOHZNzuAc1gXnnWWT+l9ecOxHAv8/IflfQXDsWoH/nwr89+uH67x++In3+6n3+3FMP/zM/ft6t3zulg3Z7IcVBcd+JuDwBakdzxQcu17g/0aS/5UEx34u8P/LbPbDL7x+t9H7/dL73RDTDze5f//KLV+75Zts9sOzBMduEnDYTGrHyoJjvxL4v4XkfxXBsV8L/N+azX642et3W7zfrd7vNzH98Fv379vc8p1btmezH1YVHPutgMP3pHasJjh2m8D/HST/qwuO/U7g/w/Z7Iffe/1uh/f7g/e7PaYf/uj+/Se37HTLz9nshzUEx/4o4LCL1I41Bcf+JPD/F5L/tQTH7hT4vzub/XCX1+9+8X53e78/x/TDX92/73HLb27Zm81+WFtw7K8CDvtI7Xi24Ng9Av9/J/lfR3DsbwL//8hmP9zn9bvfvd8/vN+9Mf1wv/v3P91ywC1/ZbMf1hUcu1/A4SCpHesJjv1T4P/fJP/PERx7QOD/oWz2w4Nev/vb+z3k/f4V0w8P5/znpIhbcsQ95ZJyqC849rCAQ84UTjueKzjWSQnufwrJ/waCYyMC/1NTstcP0X74TfF+U71f9LfM49Lcv6S7JZdbcmezHzYUHJsm4JCH1I6NBMemC/zPS/L/PMGxuQT+58tmP8zj9bu83m8+7zd3TD/M7/6lgFsKuiUjm/2wseDY/AIOhUjt2ERwbAGB/4VJ/jcVHFtQ4P8J2eyHhbx+V9j7PcH7zYjph0Xcv5zolqJuOSmb/bCZ4NgiAg7FssmhmFfvE73fot7vSTEcTnb/Utwtp7ilRByHHN5v1AnmwglO8LqdGrRukUuGHrnGeXXCeY2c7PlZRuBnyeBtEIn1M/O8FO+/I34nCP2OBD/26AYHcjghOnA8g4nolwpOv3R27EQT24nG/tvxI62UN7Li3+BGY0baae5fSrvldLeUyabiSN7gniZQnDNIVw7JG9zSAv/LkvyXvME9XeB/uWwq/hlePyzr/ZbzfsvE9MPy7l8quKWiW87MZj+UvMEtL+BQidSOkje4FQT+n0XyX/IGt6LA/8rZ7IeVvH53lvdb2fs9M6YfVnH/UtUt1dxSPZv9UPIGt4qAQw1SO0re4FYV+F+T5L/kDW41gf+1stkPa3j9rqb3W8v7rR7TD2u7fznbLXXcUjeb/VDyBre2gEM9UjtK3uCeLfD/HJL/kje4dQT+189mP6zn9btzvN/63m/dmH54rvuXBm5piDucbPZDyRvccwUcziO1o+QNbgOB/41J/kve4DYU+N8km/3wPK/fNfZ+m3i/jWL6YVP3L83c0twt52ezH0re4DYVcGhBakfJG9xmAv8vIPkveYPbXOB/y2z2wxZev7vA+23p/Z4f0w8vdP/Syi0XuaV1Nvuh5A3uhQIOF5PaUfIGt5XA/zYk/yVvcC8S+H9JNvvhxV6/a+P9XuL9to7ph23dv1zqlnZuuSyb/VDyBretgEN7UjtK3uBeKvD/cpL/kje47QT+d8hmP2zv9bvLvd8O3u9lMf3wCvcvHd1ypVs6ZbMfSt7gXiHg0JnUjo0Ex3YU+N+F5P95gmOvFPh/VTb7YWev33Xxfq/yfjvF9MOu7l+6uaW7W67OZj+UvMHtKuDQg9SOkje43QT+X5PNduzhtds13m937/fqmHbs6f7lWrf0cst13n7UP8cxbDiCukYcM/6O0E5azH/09ip2vffbx/u9wfvt6/3eiF84mPmqDv8jV9y/HP9KMVGDCSoc6WPYOSNCn/oFtxPJjp2bEttJi/234ztrP69z9vZ+r/d+b4rprP3dv9zslgFuuSWboiNpq/6CQTvQsF2lr69vFvh0q2EfkDK9QWBngMD/27IphAO9vnSr93ub93tLTN8a5P7ldrcMdssd3v4CThyQmH8TW9QJ5lLfgHX95fDhQ7H27oythNQgTpYIGIzfKWjAuwQNaFqHu1JkQoQ63EUS1iHB7aRkx87QxHZyxv7b8Z1/iMcwswzy/ntoTOcf5v7lbrcMd8s9KUfPjfUzwfZ/vr1GBLeT04/jCK9uN3q/w3w43uv+ZaRbRrlldJJFRBJNxdq7z1REIt7J0vPutywMOP7+mCEVdYJv0k6Dznl/NhlINmkUUFLAekyKjHFmZJx5XopzdCLbf04Q+t1TeEXP/G3k/f0B9/yxbnnQLePcMt4tE9wy0S2T3PKQWya75WG3THHLI26Z6pZH3TLNLY+55XG3POGW6W550i0z3DLTLbPc8pRbZrvlabfMccszbpnrlmfdMs8tz7nlebe84Jb5bnnRLQvc8pJbXnbLK25Z6JZX3bLILYvdssQtr7llqVted8syt7zhljfd8pZblrvlbbescMs7blnplnfd8p5b3nfLKrd84JbVmQ1R0EnOfdoDhp3VEdmJZPH1Q28Ar8nsUZm9Df/j97h9OCj+3kwamz4QPAaLfCgYVWuSNNITppcR+PRRrE8JDo7l/JHHXnLZkvgdxJfMbW1KNgyu9Yl9E524ViCPHwsaw7QOH/tddhKc+LGwM0qVYo3nlyM7L6lqNTYEtfrEq/On8Wr1iY9afZoEtRorUKtPBJ3xU5JaSXz6zFCtPrOgVp8YqtX6lGwYXG+gVusFavW5ZbVCHT43UKvPLavVp55fjuy8pKrVgyGo1RdenTfGq9UXPmq1MQlq9aBArb4QdMaNJLWS+PSloVp9aUGtvjBUq00p2TC4yUCtNgnU6ivLaoU6fGWgVl9ZVquNnl+O7LykqtW4ENTqG6/Om+PV6hsftdqcBLUaJ1CrbwSdcTNJrSQ+bTFUqy0W1OobQ7XampINg1sN1GqrQK2+taxWqMO3Bmr1rWW12uz55cjOS6pajQ9Brb7z6rw9Xq2+81Gr7UlQq/ECtfpO0Bm3k9RK4tP3hmr1vQW1+s5QrXakZMPgDgO12iFQqx8sqxXq8IOBWv1gWa22e345svOSqlYTQlCrn7w674xXq5981GpnEtRqgkCtfhJ0xp0ktZL49LOhWv1sQa1+MlSrXSnZMLjLQK12CdTqF8tqhTr8YqBWv1hWq52eX47svKSq1cQQ1OpXr8574tXqVx+12pMEtZooUKtfBZ1xD0mtJD79ZqhWv1lQq18N1WpvSjYM7jVQq70CtdpnWa1Qh30GarXPslrt8fxyZOclVa0mhaBWf3h13h+vVn/4qNX+JKjVJIFa/SHojPtJaiXx6U9DtfrTglr9YahWB1KyYfCAgVodEKjVX5bVCnX4y0Ct/rKsVvs9vxzZeUlVq4dCUKu/vTofilerv33U6lAS1OohgVr9LeiMh0hqJfHpsKFaHbagVn8bqpWTmg2DOFmqVjgn6gTaIpFUu2qFOsCGVK0iqbLOKFWKQ55fjuy8pKrV5BDUKqdX55RUJ+uIwf+IVysclF21mixQq5yCzpiSagZPqlYSn1JTzdQqNTX5apVT6EvmlpaaDYNpBmqVJlCrdMtqhTqkG6hVumW1SvH8cmTnJVWtHg5BrXJ7dc4Tr1a5fdQqTxLU6mGBWuUWdMY8JLWS+JTXUK3yWlCr3IZqlS81GwbzGahVPoFa5besVqhDfgO1ym9ZrfJ4fjmy85KqVlNCUKuCXp0z4tWqoI9aZSRBraYI1KqgoDNmkNRK4lMhQ7UqZEGtChqqVeHUbBgsbKBWhQVqdYJltUIdTjBQqxMsq1WG55cjOy+pavVICGp1olfnovFqdaKPWhVNglo9IlCrEwWdsShJrSQ+nWSoVidZUKsTDdWqWGo2DBYzUKtiArU62bJaoQ4nG6jVyZbVqqjnlyM7L6lqNTUEtTrFq3OJeLU6xUetSiRBraYK1OoUQWcsQVIriU+nGqrVqRbU6hRDtSqZmg2DJQ3UqqRArUpZVivUoZSBWpWyrFYlPL8c2XlJVatHQ1Cr07w6l45Xq9N81Kp0EtTqUYFanSbojKVJaiXx6XRDtTrdglqdZqhWZVKzYbCMgVqVEajVGZbVCnU4w0CtzrCsVqU9vxzZeUlVq2khqFU5r87l49WqnI9alU+CWk0TqFU5QWcsT1IriU8VDNWqggW1KmeoVhVTs2GwooFaVRSo1ZmW1Qp1ONNArc60rFblPb8c2XlJVavHQlCrs7w6V45Xq7N81KpyEtTqMYFanSXojJVJaiXxqYqhWlWxoFZnGapV1dRsGKxqoFZVBWpVzbJaoQ7VDNSqmmW1quz55cjOS6paPR6CWtXw6lwzXq1q+KhVzSSo1eMCtaoh6Iw1SWol8amWoVrVsqBWNQzVqnZqNgzWNlCr2gK1OtuyWqEOZxuo1dmW1aqm55cjOy+pavVECGpV16tzvXi1quujVvWSoFZPCNSqrqAz1iOplcSncwzV6hwLalXXUK3qp2bDYH0DtaovUKtzLasV6nCugVqda1mt6nl+ObLzkqpW00NQq4ZenRvFq1VDH7VqlAS1mi5Qq4aCztiIpFYSn84zVKvzLKhVQ0O1apyaDYONDdSqsUCtmlhWK9ShiYFaNbGsVo08vxzZeUlVqydDUKtmXp2bx6tVMx+1ap4EtXpSoFbNBJ2xOUmtJD6db6hW51tQq2aGatUiNRsGWxioVQuBWl1gWa1QhwsM1OoCy2rV3PPLkZ2XVLWaEYJaXejVuVW8Wl3oo1atkqBWMwRqdaGgM7YiqZXEp4sM1eoiC2p1oaFatU7NhsHWBmrVWqBWF1tWK9ThYgO1utiyWrXy/HJk5yVVrWaGoFaXeHVuG69Wl/ioVdskqNVMgVpdIuiMbUlqJfHpUkO1utSCWl1iqFbtUrNhsJ2BWrUTqNVlltUKdbjMQK0us6xWbT2/HNl5SVWrWSGo1eVenTvEq9XlPmrVIQlqNUugVpcLOmMHklpJfLrCUK2usKBWlxuqVcfUbBjsaKBWHQVqdaVltUIdrjRQqystq1UHzy9Hdl5S1eqpENSqs1fnLvFq1dlHrbokQa2eEqhVZ0Fn7EJSK4lPVxmq1VUW1KqzoVp1Tc2Gwa4GatVVoFbdLKsV6tDNQK26WVarLp5fjuy8pKrV7BDU6mqvzj3i1epqH7XqkQS1mi1Qq6sFnbEHSa0kPl1jqFbXWFCrqw3VqmdqNgz2NFCrngK1utayWqEO1xqo1bWW1aqH55cjOy+pavV0CGp1nVfn3vFqdZ2PWvVOglo9LVCr6wSdsTdJrSQ+XW+oVtdbUKvrDNWqT2o2DPYxUKs+ArW6wbJaoQ43GKjVDZbVqrfnlyM7L6lqNScEtbrRq3O/eLW60Uet+iVBreYI1OpGQWfsR1IriU83GarVTRbU6kZDteqfmg2D/Q3Uqr9ArW62rFaow80GanWzZbXq5/nlyM5Lqlo9E4Ja3eLVeWC8Wt3io1YDk6BWzwjU6hZBZxxIUiuJT7caqtWtFtTqFkO1ui01GwZvM1Cr2wRqNciyWqEOgwzUapBltRro+eXIzkuqWs0NQa0Ge3W+I16tBvuo1R1JUKu5ArUaLOiMd5DUSuLTnYZqdacFtRpsqFZ3pWbD4F0GanWXQK2GWFYr1GGIgVoNsaxWd3h+ObLzkqpWz4agVsO8Ot8dr1bDfNTq7iSo1bMCtRom6Ix3k9RK4tNwQ7UabkGthhmq1T2p2TB4j4Fa3SNQqxGW1Qp1GGGgViMsq9Xdnl+O7LykqtW8ENRqpFfnUfFqNdJHrUYlQa3mCdRqpKAzjiKplcSn0YZqNdqCWo00VKv7UrNh8D4DtbpPoFb3W1Yr1OF+A7W637JajfL8cmTnJVWtngtBrR7w6jw2Xq0e8FGrsUlQq+cEavWAoDOOJamVxKcHDdXqQQtq9YChWo1LzYbBcQZqNU6gVuMtqxXqMN5ArcZbVquxnl+O7LykqtXzIajVRK/Ok+LVaqKPWk1Kglo9L1CriYLOOImkVhKfHjJUq4csqNVEQ7WanJoNg5MN1GqyQK0etqxWqMPDBmr1sGW1muT55cjOS6pavRCCWj3i1XlqvFo94qNWU5OgVi8I1OoRQWecSlIriU+PGqrVoxbU6hFDtZqWmg2D0wzUappArR6zrFaow2MGavWYZbWa6vnlyM5LqlrND0GtnvDqPD1erZ7wUavpSVCr+QK1ekLQGaeT1Eri05OGavWkBbV6wlCtZqRmw+AMA7WaIVCrmZbVCnWYaaBWMy2r1XTPL0d2XlLV6sUQ1Oopr86z49XqKR+1mp0EtXpRoFZPCTrjbJJaSXx62lCtnragVk8ZqtWc1GwYnGOgVnMEavWMZbVCHZ4xUKtnLKvVbM8vR3ZeUtVqQQhq9axX53nxavWsj1rNS4JaLRCo1bOCzjiPpFYSn54zVKvnLKjVs4Zq9XxqNgw+b6BWzwvU6gXLaoU6vGCgVi9YVqt5nl+O7LykqtVLIajVi16dF8Sr1Ys+arUgCWr1kkCtXhR0xgUktZL49JKhWr1kQa1eNFSrl1OzYfBlA7V6WaBWr1hWK9ThFQO1esWyWi3w/HJk5yVVrV4OQa1e9eq8KF6tXvVRq0VJUKuXBWr1qqAzLiKplcSnxYZqtdiCWr1qqFZLUrNhcImBWi0RqNVrltUKdXjNQK1es6xWizy/HNl5SVWrV0JQq9e9Oi+LV6vXfdRqWRLU6hWBWr0u6IzLSGol8ekNQ7V6w4JavW6oVm+mZsPgmwZq9aZArd6yrFaow1sGavWWZbVa5vnlyM5LqlotDEGt3vbqvCJerd72UasVSVCrhQK1elvQGVeQ1Eri0zuGavWOBbV621CtVqZmw+BKA7VaKVCrdy2rFerwroFavWtZrVZ4fjmy85KqVq+GoFbve3VeFa9W7/uo1aokqNWrArV6X9AZV5HUSuLTB4Zq9YEFtXrfUK1Wp2bD4GoDtVotUKsPLasV6vChgVp9aFmtVnl+ObLzkqpWi0JQq4+8Oq+NV6uPfNRqbRLUapFArT4SdMa1JLWS+PSxoVp9bEGtPjJUq3Wp2TC4zkCt1gnU6hPLaoU6fGKgVp9YVqu1nl+O7LykqtXiENTqM6/O6+PV6jMftVqfBLVaLFCrzwSdcT1JrSQ+fW6oVp9bUKvPDNVqQ2o2DG4wUKsNArX6wrJaoQ5fGKjVF5bVar3nlyM7L6lqtSQEtfrSq/OmeLX60ketNiVBrZYI1OpLQWfcRFIriU9fGarVVxbU6ktDtfo6NRsGvzZQq68FavWNZbVCHb4xUKtvLKvVJs8vR3ZeUtXqtRDUaotX563xarXFR622JkGtXhOo1RZBZ9xKUiuJT98aqtW3FtRqi6FabUvNhsFtBmq1TaBW31lWK9ThOwO1+s6yWm31/HJk5yVVrZaGoFbfe3XeEa9W3/uo1Y4kqNVSgVp9L+iMO0hqJfHpB0O1+sGCWn1vqFY/pmbD4I8GavWjQK1+sqxWqMNPBmr1k2W12uH55cjOS6pavR6CWv3s1XlXvFr97KNWu5KgVq8L1OpnQWfcRVIriU+/GKrVLxbU6mdDtdqdmg2Duw3UardArX61rFaow68GavWrZbXa5fnlyM5LqlotC0GtfvPqvDderX7zUau9SVCrZQK1+k3QGfeS1Eri0z5DtdpnQa1+M1Sr31OzYfB3A7X6XaBWf1hWK9ThDwO1+sOyWu31/HJk5yVVrd4IQa3+9Op8IF6t/vRRqwNJUKs3BGr1p6AzHiCplcSnvwzV6i8LavWnoVodTM2GwYMGanVQoFZ/W1Yr1OFvA7X627JaHfD8cmTnJVWt3gxBrQ5n1jnNyTpiDvuoFQ7Krlq9KVCrw5LOmMZRK4lPkTQztcJ5yVarw4ZqlSMtGwZxslStcgRvyEjONLtqhTrAhlStcgo7o1Qp0Nlzph3dEQ12XlLV6q0Q1CrVq3NavFqlpv1XrdKSoFZvCdQqVdAZ00hqJfEp3VCt0i2oVarQl8wtV1o2DOYyUKtcArXKbVmtUIfcBmqV27JapXl+ObLzkqpWy0NQq7xenfPFq1VeH7XKlwS1Wi5Qq7yCzpiPpFYSn/IbqlV+C2qV11CtCqRlw2ABA7UqIFCrgpbVCnUoaKBWBS2rVT7PL0d2XlLV6u0Q1KqQV+fC8WpVyEetCidBrd4WqFUhQWcsTFIriU8nGKrVCRbUqpChWhVJy4bBIgZqVUSgVidaVivU4UQDtTrRsloV9vxyZOclVa1WhKBWJ3l1LhavVif5qFWxJKjVCoFanSTojMVIaiXx6WRDtTrZglqdZKhWxdOyYbC4gVoVF6jVKZbVCnU4xUCtTrGsVsU8vxzZeUlVq3dCUKtTvTqXjFerU33UqmQS1OodgVqdKuiMJUlqJfGplKFalbKgVqcaqlU0LTsGDdQqKlCr0yyrFepwmoFanWZZrUp6fjmy85KqVitDUKvTvTqXiVer033UqkwS1GqlQK1OF3TGMiS1kvh0hqFanWFBrU43VKuyadkwWNZArcoK1KqcZbVCHcoZqFU5y2pVxvPLkZ2XVLV6NwS1quDVuWK8WlXwUauKSVCrdwVqVUHQGSuS1Eri05mGanWmBbWqYKhWldKyYbCSgVpVEqjVWZbVCnU4y0CtzrKsVhU9vxzZeUlVq/dCUKsqXp2rxqtVFR+1qpoEtXpPoFZVBJ2xKkmtJD5VM1SrahbUqoqhWlVPy4bB6gZqVV2gVjUsqxXqUMNArWpYVquqnl+O7LykqtX7IahVLa/OtePVqpaPWtVOglq9L1CrWoLOWJukVhKfzjZUq7MtqFUtQ7Wqk5YNg3UM1KqOQK3qWlYr1KGugVrVtaxWtT2/HNl5SVWrVSGo1TlenevHq9U5PmpVPwlqtUqgVucIOmN9klpJfDrXUK3OtaBW5xiqVYO0bBhsYKBWDQRq1dCyWqEODQ3UqqFltarv+eXIzkuqWn0Qglqd59W5cbxaneejVo2ToFYfCNTqPEFnbExSK4lPTQzVqokFtTrPUK2apmXDYFMDtWoqUKtmltUKdWhmoFbNLKtVY88vR3ZeUtVqdQhqdb5X5xbxanW+j1q1SIJarRao1fmCztiCpFYSny4wVKsLLKjV+YZq1TItGwZbGqhVS4FaXWhZrVCHCw3U6kLLatXC88uRnXekQ2U4RwdtdnzoSVEr/8OiTpAt8m+dIjHnXORya+2Wi93Sxi2XuKWtWy51Szu3XOaW9m653C0d3HKFWzq65Uq3dHJLZ7d0cctVbunqlm5u6e6Wq93Swy3XuKWnW651Sy+3XOeW3m653i194lX2Ik9RY/e19tl3sc++Nj77LvHZ19Zn36U++9r57LvMZ197n32X++zr4LPvCp99HX32Xemzr5PPvs4++7r47LvKZ19Xn33dfPZ199l3tc++Hj77rvHZ19Nn37U++3r57LvOZ19vn33X++zr43P1Ps37jTqBtiyDPpF4XhRQnHGlbx34WCdycdBjXX/bBDt2Ai56lwQ6du+RC2TbIMdu/udiemmAYxt7F952iY8dl3mRvizhsTf+e0Fvn+jYRUcv/pcnOPa2mEChw/GPPT82qLjiuMd+nyUA6Xi8Y6tnDVauPM6x5eICm07HPrZTfBDU+ZjHXv6fgKnLsY4d+t/g6qpjHDvUJxDr6n/sK35BWzffY5v6Bnjd/Y692D8YvNrn2FePETj2+O+x5Y8VZF7zn2OfOGZA2jP+2KrHDl6vjTt283EC3V5Zj73peEHxdVmOvei4AXTv2GOvPn6wfX3MsVUSBOZ9BIGl5O4hwZbFbgIt/zjW3g3HunsIYvCGNNntGYzfEBxQpG/ASh3r7iFIHfqmye46UIe+wkZO1vMHQeda6/hsUSeQmSy+3uh1kH7xkfGNHrjYff2S8PxB0JMjNwo6SD8hPGnjoFPcKOxM8OvGkBTj+uCcH4u1d5OpYsDgTXLFeOwmgWL0t6wYqEN/uWI81j8kxbg+uN1pfjujTiAzWXy92esgA+IV42YfxRiQBMUQ9OTIzYIOMsAQnvSJpcSnWwSD4d8/BL709Tr4fx4KJrAluVQPFAwGvzokOhyMBhoo8cCQlLh38P77Uqy9W02VGAZvlSvxS7cKOt9tlpUYdbhNrsQv3ZbNzhdkAA20PIAGCeuQuUmFSdKGtwv6RjKvcL2D213gtzPqBDKTxdfB3sC7I/4KN9jnCndHEq5wAoWIDBY02h2G8KQdSeLTndm8wiU6B4PndoOrw12Wr1qo910EvzI3aRveJWjDIZbb8FgiG0Scgx47VChoyYoGrgs+1h+MtTfMNBqAwWHyaODBYQJAd1uOBlCHu+XRwIN3W44GMBCGptkdbMOFgy1zk/okacN7QooGrgtud6zfzqgTyEwWX0d4A+/e+GhghE80cG8SogGBQkRGCBrtXkN40o4k8Wmk5SsJBs89BlfdUZajAdR7FMGvzE3ahqMEbTjachseS2QTnScR2ftCejbQK/hYj8bau980GoDB++XRQPR+QSOPsRwNoA5j5NFAdIzlaAAD4b40u4PtAVI0IGnDsSFFA72C2y3ltzPqBDKTxdcHvYE3Lj4aeNAnGhiXhGhAoBCRBwWNNs4QnrQjSXwab/lKgsEz1uCqO8FyNIB6TyD4lblJ23CCoA0nWm7DY4lsovMkIjsppGjg2uBjfW2svYdMowEYfEgeDax9SNDIky1HA6jDZHk0sHay5WgAA2FSmt3B9jApGpC04ZSQooFrg9v9yG9n1AlkJouvj3gDb2p8NPCITzQwNQnRgEAhIo8IGm2qITxpR5L49KjlKwkGzxSDq+40y9EA6j2N4FfmJm3DaYI2fMxyGx5LZBOdJxHZx0OKBnoGH+vdYu09YRoNwOAT8mig2xOCRp5uORpAHabLo4Fu0y1HAxgIj6fZHWxPkqIBSRvOCCka6Bncble/nVEnkJksvs70Bt6s+Ghgpk80MCsJ0YBAISIzBY02yxCetCNJfHrK8pUEg2eGwVV3tuVoAPWeTfArc5O24WxBGz5tuQ2PJbKJzpOI7JyQooFrgo/1DbH2njGNBmDwGXk0sOEZQSPPtRwNoA5z5dHAhrmWowEMhDlpdgfbs6RoQNKG80KKBq4Jbvdzv51RJ5CZLL4+5w285+Ojged8ooHnkxANCBQi8pyg0Z43hCftSBKfXrB8JcHgmWdw1Z1vORpAvecT/MrcpG04X9CGL1puw2OJbKLzJCK7IKRooEfwsX5BrL2XTKMBGHxJHg1c8JKgkV+2HA2gDi/Lo4ELXrYcDWAgLEizO9heIUUDkjZcGFI00CO43RZ+O6NOIDNZfH3VG3iL4qOBV32igUVJiAYEChF5VdBoiwzhSTuSxKfFlq8kGDwLDa66SyxHA6j3EoJfmZu0DZcI2vA1y214LJFNdJ5EZJeGFA1cHXysvxhr73XTaAAGX5dHAy++LmjkZZajAdRhmTwaeHGZ5WgAA2Fpmt3B9gYpGpC04ZshRQNXB7c7329n1AlkJouvb3kDb3l8NPCWTzSwPAnRgEAhIm8JGm25ITxpR5L49LblKwkGz5sGV90VlqMB1HsFwa/MTdqGKwRt+I7lNjyWyCY6TyKyK0OKBroHH+tLY+29axoNwOC78mhg6buCRn7PcjSAOrwnjwaWvmc5GsBAWJlmd7C9T4oGJG24KqRooHtwu6/57Yw6gcxk8fUDb+Ctjo8GPvCJBlYnIRoQKETkA0GjrTaEJ+1IEp8+tHwlweBZZXDVXWM5GkC91xD8ytykbbhG0IYfWW7DY4lsovMkIrs2pGigW/CxfmGsvY9NowEY/FgeDVz4saCR11mOBlCHdfJo4MJ1lqMBDIS1aXYH2yekaEDShp+GFA10C263pd/OqBPITBZfP/MG3vr4aOAzn2hgfRKiAYFCRD4TNNp6Q3jSjiTx6XPLVxIMnk8NrrobLEcDqPcGgl+Zm7QNNwja8AvLbXgskU10nkRkN4YUDXQNPtaHxtr70jQagMEv5dHA0C8FjbzJcjSAOmySRwNDN1mOBjAQNqbZHWxfkaIBSRt+HVI00DW43SF+O6NOIDNZfP3GG3ib46OBb3yigc1JiAYEChH5RtBomw3hSTuSxKctlq8kGDxfG1x1t1qOBlDvrQS/MjdpG24VtOG3ltvwWCKb6DyJyG4LKRq4yjAa+M40GoDB7wyige8EjbzdcjSAOmw3iAa2W44GMBC2pdkdbN+TogFJG+4IKRq4KoRo4Adv4P0YHw384BMN/JiEaECgEJEfBI32IykakPj0k+UrCQbPDoOr7k7L0QDqvZPgV+YmbcOdgjb82XIbHktkE50nEdldIUUDXYKP9Wdi7f1iGg3A4C/yaOCZXwSNvNtyNIA67JZHA8/sthwNYCDsSrM72H4lRQOSNtwTUjTQJbjdOX47o04gM1l8/c0beHvjo4HffKKBvUmIBgQKEflN0Gh7DeFJO5LEp32WryQYPHsMrrq/W44GUO/fCX5lbtI2/F3Qhn9YbsNjiWyi8yQiuz+kaKBz8LE+K9ben6bRAAz+KY8GZv0paOQDlqMB1OGAPBqYdcByNICBsD/N7mD7ixQNSNrwYEjRQOfgdmf67Yw6gcxk8fVvb+Adio8G/vaJBg4lIRoQKETkb0GjHTKEJ+1IEp8OW76SYPAcNLjqOul2owHUGzZs+5W5Sdsw1k6iYyPpdtvwWCKb6DyJyOYQcE1mNNAp+Fj/ItZezvRsGMTJwmjgi5yCRk4RdB7TOqSki6OBL1KyOaiDDIQc6XYHW6pwsGVuUp8kbZgm6RtO8qKBTsEvHhv8dkadQGay+JruDbxc6U7WK396+n+jARyU3WhAoBCRdEGj5Uo3gyftSBKfclu+kmDwpBlcdfNYjgZQ7zwEvzI3aRvmEbRhXstteCyRTWhLUId8IUUDVwYf62ti7eU3jQZgML88GliTX9DIBSxHA6hDAXk0sKaA5WgAAyFfut3BVpAUDUjaMCOkaODK4NHAh347o04gM1l8LeQNvMLx0UAhn2igcBKiAYFCRAoJGq1wuhk8aUeS+HSC5SsJBk+GwVW3iOVoAPUuQvArc5O2YRFBG55ouQ2PJbKJzpOIbNGQooGOwcf6ybH2TjKNBmDwJHk0cPJJgkYuZjkaQB2KyaOBk4tZjgYwEIqm2x1sJ5OiAUkbFg8pGugYPBoo5rcz6gQyk8XXU7yBVyI+GjjFJxookYRoQKAQkVMEjVYi3QyetCNJfDrV8pUEg6e4wVW3pOVoAPUuSfArc5O2YUlBG5ay3IbHEtlE50lENhpSNHBF8LG+ONbeaabRAAyeJo8GFp8maOTSlqMB1KG0PBpYXNpyNHBkIKTbHWynk6IBSRuWCSkauCJ4NLDIb2fUCWQmi69neAOvbHw0cIZPNFA2CdGAQCEiZwgarWy6GTxpR5L4VM7ylQSDp4zBVbe85WgA9S5P8Ctzk7ZheUEbVrDchscS2UTnSUS2YkjRQIfgY31UrL0zTaMBGDxTHg2MOlPQyJUsRwOoQyV5NDCqkuVoAAOhYrrdwXYWKRqQtGHlkKKBDsGjgZF+O6NOIDNZfK3iDbyq8dFAFZ9ooGoSogGBQkSqCBqtaroZPGlHkvhUzfKVBIOnssFVt7rlaAD1rk7wK3OTtmF1QRvWsNyGxxLZROdJRLZmSNHA5cHHeotYe7VMowEYrCWPBlrUEjRybcvRAOpQWx4NtKhtORrAQKiZbnewnU2KBiRtWCekaODy4NHA+X47o04gM1l8resNvHrx0UBdn2igXhKiAYFCROoKGq1euhk8aUeS+HSO5SsJBk8dg6tufcvRAOpdn+BX5iZtw/qCNjzXchseS2QTnScR2QYhRQPtg4/18bH2GppGAzDYUB4NjG8oaORGlqMB1KGRPBoY38hyNICB0CDd7mA7jxQNSNqwcUjRQPvg0cA4v51RJ5CZLL428QZe0/hooIlPNNA0CdGAQCEiTQSN1jTdDJ60I0l8amb5SoLB09jgqtvccjSAejcn+JW5SduwuaANz7fchscS2UTnSUS2RUjRwGXBx3q/WHsXmEYDMHiBPBrod4GgkVtajgZQh5byaKBfS8vRAAZCi3S7g+1CUjQgacNWIUUDlwWPBm702xl1ApnJ4utF3sBrHR8NXOQTDbROQjQgUIjIRYJGa51uBk/akSQ+XWz5SoLB08rgqtvGcjSAerch+JW5SduwjaANL7HchscS2UTnSUS2bUjRQLvgY31ZrL1LTaMBGLxUHg0su1TQyO0sRwOoQzt5NLCsneVoAAOhbbrdwXYZKRqQtGH7kKKBdsGjgdf9dkadQGay+Hq5N/A6xEcDl/tEAx2SEA0IFCJyuaDROqSbwZN2JIlPV1i+kmDwtDe46na0HA2g3h0JfmVu0jbsKGjDKy234bFENtF5EpHtFFI0cGnwsR6NtdfZNBqAwc7yaCDaWdDIXSxHA6hDF3k0EO1iORrAQOiUbnewXUWKBiRt2DWkaODS4NFAKb+dUSeQmSy+dvMGXvf4aKCbTzTQPQnRgEAhIt0EjdY93QyetCNJfLra8pUEg6erwVW3h+VoAPXuQfArc5O2YQ9BG15juQ2PJbKJzpOIbM+QooG2wcd6vlh715pGAzB4rTwayHetoJF7WY4GUIde8mggXy/L0QAGQs90u4PtOlI0IGnD3iFFA22DRwN5/XZGnUBmsvh6vTfw+sRHA9f7RAN9khANCBQicr2g0fqkm8GTdiSJTzdYvpJg8PQ2uOr2tRwNoN59CX5lbtI27Ctowxstt+GxRDbReRKR7RdSNHBJ8LHeN9beTabRAAzeJI8G+t4kaOT+lqMB1KG/PBro299yNICB0C/d7mC7mRQNSNpwQEjRwCXBo4Eb/HZGnUBmsvh6izfwBsZHA7f4RAMDkxANCBQicoug0Qamm8GTdiSJT7davpJg8AwwuOreZjkaQL1vI/iVuUnb8DZBGw6y3IbHEtlE50lE9vaQooE2wcd6oVh7g02jARgcLI8GCg0WNPIdlqMB1OEOeTRQ6A7L0QAGwu3pdgfbnaRoQNKGd4UUDbQJHg1k+O2MOoHMZPF1iDfwhsZHA0N8ooGhSYgGBAoRGSJotKHpZvCkHUni0zDLVxIMnrsMrrp3W44GUO+7CX5lbtI2vFvQhsMtt+GxRDbReRKRvSekaOBiwWf1Yu2NMI0GYHBEuvy8ey1f4eHXvelHd0Sd4Jt0EKHD3pNud1CMJF21Je0yKpsDNUidRxm0YTIHVGvDATXadEDB4GiDAXWf5QEFv+5L0oBKdDga/r50sw4TDWYjqZ3kIsH37GLt3W/aSWDwfgPFuV8wYsdY7lCowxiDRh5j+R4MnWiMQXgwUsDrAcvhINg+YDhYMzdp33pAUP+xlkO8Y12RE50nuSI/aLkNwehBgwuBpB1M/OrtKieKdFyNE/KS9j/4JLARud49/nqDeowPbqNQMi8yArtZ7E0wvcjA4ASDDjjRcgeEXxOzKW65Epwb32CVU49jJ+7gmsc7Nu7gesc9NuvBjY5/bJaDmyc4NvbgVomOjTlrVGrwtm1xulnb5PF+o8c96mgF2ib2/9+DOwSoa+bBXYJw8Q7uEYjhPwf3Dsb7yMH9ArYNDh4YtB3dg+8I3OYR525Bm19g2ObxzzQT2ZkkEHpBP4xI/E+muE8yFPeHTMUdBh8yEPfJlsUdfk0mi/ualODi/mlKcHHfmBJc3DenBBf37SnBxX1nomNjziovGOgXk8R9T2L//z14f4C6Zh58KAgX7+AUgbjnEYh7hkDciwrEvYRA3EsL2rwNSdwfFoi7oB9G2oQk7g8bivsUU3GHwSkG4v6IZXGHX49kU9wLJTg3vsF2CSL3vYLI/YAgcnfSgot7WqIHzjEH50v4cProwYUTP8j+9+BiAR56Zx5cMsgDcu/gMoEepv9zcMVgD96PHFw14EN6HFw76AN99+D6gR/+R5zGwV8URFoInhdPDemZ9lRD0XrUVLRg8FED0ZpmWbTg1zSyaI0ViNYkgWhNFYjWdMHjhtmCxw3zEkYnRw9eILi1XyS4tV8muLVfIYj+Vgmiv7WC6G+9IPrbJIj+tgoe/ewQRIqPhSRajxmK1uOmogWDjxuI1hOWRQt+PUGa/jDZi+qk5023PH1gmsdAet6TwsmI7rjwnYyYEWfXt1Ix2/9E/5/tf6L/f1P0JZu07//vLu2f7X93af8379IS/8tHtxm45kgv2LgYPmlwwYadzMniM3wuXNKL30zhW3pTO7OOY+fhYb3H97pp1QP1o2OKbrjj7/OzY+ep49iJPzc7dmYfx06VHJ+VXvvtQ8VvO6/YWfP/PDA2O3aePo6dru9N+2751Y0u7Tf9/hty5pj/WnbszDmOnZX3NHy57mVXPf1yt1lNRw/847Ps2HnmOHbGV/qpw8xJm+8sv/vj0++5J3ex7NiZexw7XVLnNnvy3Yo1d99d9cpuv+0rkR07zx7Hzlvj635wz8qhs7ecV3RjWmq3gdmxM+84dvaNLPJ5njp7l1easbR/vX57rs6OneeOY+fXfaMaXLM/uvaR8Z3Gjbx38SfQIeSEyuf9f2gJCsY6xiHGCPov+hbaHW0CXqjLc+n//feFs7dyzBDcVD1vefZWpp5Leb9g2S/U+wUDv+YL/EK7+SVWizqyTVq3+en2bbwofLKRpJVqOWYEsHv4n22f3/+LHv/Uf+OXWF8XeGPypXQna6CxwOtAsftwUKO4f1W4Ui3IAB7ndcjIAsFgf0kIz2TQLkjS05YE2xFGLxhMbX1BwOtlBYP9ZcJgf0U42N0bhqQsS33RoG7Y/nfXffSv/7vr/n/rrnthTFAjHnCSqCv2ohdrNIHN+LF3RMQXGkRi/YSzcEwmTByXh48wHJ/ff8UhAe//CESi9okXiYTtGScUids/q1gE6C9ZBCNI/4oVjUD9MUY4gvXfo+IRsL//KyBBx0emiAQeT56QBB9//4iJYLweERRJ8INjX0yXrz95VeCTZAzH6g1sDPX2m8wpkIzrScJxPVU4rqenysb17FTZuJ6XKhvXC1Jl43pRqmxcL0uVjesVqbJxvSpVNq7XpsrG9fpU2bjelCob11tTZeN6R6p8XL9iMK4Xxdg4tcZFj77Vtvf8B+oVPL96nk/u/OTe3jXWPzj67oq/Db18UNrpE0zH9SJvXCfzJkKgR75b9Bj745/Ox47RxWEEYYuzGYQtNgjCJgqDMOm/D7/QgImeoMQ3hmRALBEMtomGHXtJzAXLhMGiAAzi/x0Jg9cEg9uUwWsxDDI36ZT4pZKAx9J6p9hN6v/rAv9tTelHW2BpUFrMvmjwU+OPzfHRCV1uSZvV+eqzyuVv9muxwpOGN1zxwN0Ny1US/LtH/uHMxdRYjCw5NyXm31jqadjr6UcDxcwLC34xJpa55Q23vJn+z7mZT3X9fBL4EVkmfFqYub3lPTFdnh53kDTB2TLBgH/r2Md2ijs2slz4+C9ZsxiXH8fHPz565LMpI9dee//4F77qe9fTs2LtvZ2eDYNvJw6N/mP8bcGoXiFoJNM6rEh8Jf9PHVYIGznoqImvYzTn3SULn9do/0c3P3VTl7uefup4duPPjR0173iNvDL+pcw73mUmdt9Kg0vP8RxN1HDvCEbXSgEAgId053COvUWPsT/ebuz/k3ayd4Qhaub2bnxjvZv+314kvaYex5n/dNB3BY34XnpgmFnq9F4S4pyVAj8ldXpf0Nli6/R+zI1Z/MiXvoHDQHpL4DOOX56evctHoi12QK3ylOWD+M66ykdZPohpbCmItzypzjw+EYhMaZfGBcsFNlYJlOsD4SXj/4JyrTJUrtXxnWF1EpRrlUC5Vgsa8UND5fowCcr1gcBPSZ3WGCrXmhjlOlYHtHn5y44d0876UXxn/cins6YInXnHUEWO4+e/zgb9d9cKjo2t/1qfji2tv+SSLBkEkvp/bPho8OPjXL5jj5fw6B08o0aWQbfOu7x+kh53kPSyFutAInDrBJe1T0K63f3E8Hb3U9PbXRj81OB291PB7e5nlm93UYfPDG53Pwvpdvczw9vd9V4jfx4v7et9gtLPk3C7K2m49YLR9bnC2931htfhDfGNtSEJQeN6wbV1g6ARvzAMGr9IQtD4ucBPSZ02GgaNG5N4u4uBtE7gM47/JD17l49EW+yA+tJTlk3xnfVLH2XZlI3b3XWeVGcenwhEprRL44JPBDa+FCjXJoW3u18aKtdX8Z3hqyQo15cC5fpK0IhfGyrX10lQrk0CPyV1+sZQub6xcLsrufxlx45pZ90c31k3J+F2d72hihzHz3+dDfrvbjG83d2ShNtdySVZMggk9d9qeLu71cLt7vWGt7vfepfXbelxB0kva9cLbne/FVzWtoV0u7vN8Hb3O9PbXRj8zuB29zvB7e52y7e7qMN2g9vd7SHd7m43vN393mvkHfHS/r1PULojCbe7kob7XjC6dii83f3e8Dr8Q3xj/ZCEoPF7wbX1B0Ej/mgYNP6YhKBxh8BPSZ1+Mgwaf0ri7S4G0rcCn3H8tvTsXT4SbbEDaqenLD/Hd9adPsryczZud7/1pDrz+EQgMqVdGhdsE9jYKVCunxXe7u40VK5d8Z1hVxKUa6dAuXYJGvEXQ+X6JQnK9bPAT0mddhsq124Lt7uSy1927Jh21l/jO+uvSbjd/d5QRY7j57/OBv139xje7u5Jwu2u5JIsGQSS+v9meLv7W8yVC4MgX8xxUe83V4NBhTbUyj2wwu60W6odPHHV34PmPLrrg7rjGl53eaWrb2zZMfbY4kO6HHhuSLVOZzxT7Ld8731eo+HqZ2///P2CRb4etvSd8n9O7Bx7bJAt89jUlnN63/zBfTXbdrly2fpt5zx58th7C15Vt03ZB2/6ptn417fliD02+thHb1T66/I/f0+5sennxVce2N+/3QvvNroj5afuxbuPXPVW2dhjJT6UaLrnqegdw5bfN/y0p4Z12vFitYwyr/18QrGTX9u4b8Zzc85vEXtszrm7am9vXPHUyPirK668YuoPPz01r9JJc96Pzq3/wv2j39k/J/ZYiQ9n7V/c6LvRBVqfcOvmS28+sH3qqbdcfF2t7U8PXdhz0oBqez78MPbYyh+O+viKa5deumjE+Mr5i97brd28hXOXf7K/S7lVd/2y4K1xw2OPTbRlfg8E/eQtTzMyJ9at834z3zx86/1mPraIOoG2nIJjJf9uZK/rxz63/J7+z9jOcI5evI4cYPDvvZAu9sN3i2bjsKgTZIv8W79IzDl/uP7vd8ufbjnglr/cctAtf7vlkFsOo35uo0fcksMtOd2S4pZUt6S5Jd0tudyS2y153JLXLfnckt8tBdxS0C0ZbinklsJuOcEtRdxyoluK5nKyihCcid+332ffnz77Dvjs+8tn30GffX/77Dvks++wzz7siN8X8dmXw2dfTp99KT77Un32pfnsS/fZl8tnX26ffXl89uX12ZfPZ19+n30FfPYV9NmX4bOvkM++wj77TvDZV8Rn34k++4rmyipm2KJOoO3I6sq9MRfazN9EF+c/Al7Ifzl8OLI/8LFO5M+gx7q+Hwh27ATcRv0V6Ni9R265DgY5dvM/t2d/Bzi2sXcrdyjxsf/msTqc8Ngbj94i5kpw7KKjt5ORBMfeFnPrmeP4x54fe5ua87jHfp/lljbleMdWz3r7m3qcY8vF3SqnHfvY/9zOpx/z2Mvj+3ok17GOHfqfcRHJfYxjh/53DEXy+B/7is94i+T1Pbap39iM5PM79mLfcRzJ73Psq/5jPlLgv8eWP4Y+RAr+59gnjqUlkYz4Y6seU3ciheKO3XxsjYoUznrsTcfRs8gJWY696HjaFykSe+zVx9XJyIkxx1Y5vqZGiuYKHngl89VT0UT6cVTLP461d5LpRQcGcbIk5wKMnxQcUKRYwEqZvnpCHWAjIqxDMWEjJylTpKRzrfXbGXUCmcni68leBykeH7Gc7IGL3Vc8JorJ3KQPfwU9OXKyoIMUN4QnTSoi8ekUwWD49w+BL4gMi+Wym1GyhGAw+NUh0eFgVCKXvO4lQlLiE4P338di7Z1qqsQweKpciR87VdD5SlpWYtShpFyJHyuZzc4XZACVsDyASgnrkLlJhUnShlFB30jmFe7E4Han+e2MOoHMZPH1NG/glY6/wp3mc4UrnYQrnEAhIqcJGq20ITxpR5L4dHo2r3CJzjkyeAyuDmUsX7VQ7zL/B/0q4fklfUtaIpdZHRIde4ZQaJJ1lS4SfAy+FGuvrOlVGgbLyq/SL5UVACpn+SqNOpSTX6VfKme5U+Nqe4bBYCtPuvJK2qVCSFfeIsHtLvDbGXUCmcnia0VvMJ0Zf+Wt6HPlPTMJV17BqI9UFDTamYbwpB1J4lMly1deDJ4KBoPuLMtigHqfRfArc5O24VmCNqxs+fnAsaKBRLYE99YRSTRQxfLtHHhWyWW3zaqGFNGcEFzbHoy1V800ooHBavKI5sFqAkDVLUc0qEN1eUTzYHVCRFPVQMRqkERM0i41Q4poTghud6zfzqgTyEwWX2t5g6l2fERTyyeiqZ2EiEYw6iO1BI1W2xCetCNJfDrbckSDwVPTYNDVsSwGqHcdgl+Zm7QN6wjasK7lNjzWFT7ReZIrfD3LUUrdXP/YsNkO54QUpRQOrlfRWHv1TaMUGKwvj1Ki9QWAzrUcpaAO58qjlOi5hCjlHANhakASJkm7NAwpSikc3K7ft/iMopRG3mA6Lz5KaeQTpZyXhChFMOojjQSNdp4hPGlHkvjU2PIVDoOnocGga2JZDFDvJgS/MjdpGzYRtGFTy214rCt8ovMkV/hmlqMUMGqWy247NA8pSikUXK/Wxto73zRKgcHz5VHK2vMFgFpYjlJQhxbyKGVtC0KU0txAmC4gCZOkXVqGFKUUCm73I7+dUSeQmSy+XugNplbxUcqFPlFKqyREKYJRH7lQ0GitDOFJO5LEp4ssX+EweFoaDLrWlsUA9W5N8Ctzk7Zha0EbXmy5DY91hU90nuQK38ZylAJGbXLZbYdLQopSMoLrVbdYe21NoxQYbCuPUrq1FQC61HKUgjpcKo9Sul1KiFIuMRCmdiRhkrTLZSFFKRnB7Xb12xl1ApnJ4mt7bzBdHh+ltPeJUi5PQpQiGPWR9oJGu9wQnrQjSXzqYPkKh8FzmcGgu8KyGKDeVxD8ytykbXiFoA07Wm7DY13hE50nucJfaTlKAaMrc9lth04hRSkFg+vVhlh7nU2jFBjsLI9SNnQWAOpiOUpBHbrIo5QNXQhRSicDYbqKJEySdukaUpRSMLjdz/12Rp1AZrL42s0bTN3jo5RuPlFK9yREKYJRH+kmaLTuhvCkHUni09WWr3AYPF0NBl0Py2KAevcg+JW5Sduwh6ANr7Hchse6wic6T3KF72k5SgGjnrnstsO1IUUpBYLr1QWx9nqZRikw2EsepVzQSwDoOstRCupwnTxKueA6QpRyrYEw9SYJk6Rdrg8pSikQ3G4Lv51RJ5CZLL728QbTDfFRSh+fKOWGJEQpglEf6SNotBsM4Uk7ksSnvpavcBg81xsMuhstiwHqfSPBr8xN2oY3Ctqwn+U2PNYVPtF5kiv8TZajFDC6KZfddugfUpSSP7hevRhr72bTKAUGb5ZHKS/eLAA0wHKUgjoMkEcpLw4gRCn9DYTpFpIwSdplYEhRSv7gduf77Yw6gcxk8fVWbzDdFh+l3OoTpdyWhChFMOojtwoa7TZDeNKOJPFpkOUrHAbPQINBd7tlMUC9byf4lblJ2/B2QRsOttyGx7rCJzpPcoW/w3KUAkZ35LLbDneGFKXkC65XS2Pt3WUapcDgXfIoZeldAkBDLEcpqMMQeZSydAghSrnTQJiGkoRJ0i7DQopS8gW3+5rfzqgTyEwWX+/2BtPw+Cjlbp8oZXgSohTBqI/cLWi04YbwpB1J4tM9lq9wGDzDDAbdCMtigHqPIPiVuUnbcISgDe+13IbHusInOk9yhR9pOUoBo5G57LbDqJCilLzB9erCWHujTaMUGBwtj1IuHC0AdJ/lKAV1uE8epVx4HyFKGWUgTPeThEnSLmNCilLyBrfb0m9n1AlkJouvD3iDaWx8lPKAT5QyNglRimDURx4QNNpYQ3jSjiTx6UHLVzgMnjEGg26cZTFAvccR/MrcpG04TtCG4y234bGu8InOk1zhJ1iOUsBoQi677TAxpCglT3C9Ghprb5JplAKDk+RRytBJAkAPWY5SUIeH5FHK0IcIUcpEA2GaTBImSbs8HFKUkie43SF+O6NOIDNZfJ3iDaZH4qOUKT5RyiNJiFIEoz4yRdBojxjCk3YkiU9TLV/hMHgeNhh0j1oWA9T7UYJfmZu0DR8VtOE0y214rCt8ovMkV/jHLEcpYPRYLrvt8HhIUUpuwyjlCdMoBQafMIhSnhAAmm45SkEdphtEKdMJUcrjBsL0JEmYJO0yI6QoJXcIUcpMbzDNio9SZvpEKbOSEKUIRn1kpqDRZpGiFIlPT1m+wmHwzDAYdLMtiwHqPZvgV+YmbcPZgjZ82nIbHusKn+g8yRV+juUoBYzm5LLbDs+EFKXkCq5Xz8Tam2sapcDgXHmU8sxcAaBnLUcpqMOz8ijlmWcJUcozBsI0jyRMknZ5LqQoJVdwu3P8dkadQGay+Pq8N5heiI9SnveJUl5IQpQiGPWR5wWN9oIhPGlHkvg03/IVDoPnOYNB96JlMUC9XyT4lblJ2/BFQRsusNyGx7rCJzpPcoV/yXKUAkYv5bLbDi+HFKWkB9erWbH2XjGNUmDwFXmUMusVAaCFlqMU1GGhPEqZtZAQpbxsIEyvkoRJ0i6LQopS0oPbnem3M+oEMpPF18XeYFoSH6Us9olSliQhShGM+shiQaMtMYQn7UgSn16zfIXD4FlkMOiWWhYD1Hspwa/MTdqGSwVt+LrlNjzWFT7ReZIr/DLLUQoYLctltx3eCClKSQuuV1/E2nvTNEqBwTflUcoXbwoAvWU5SkEd3pJHKV+8RYhS3jAQpuUkYZK0y9shRSlpwe1u8NsZdQKZyeLrCm8wvRMfpazwiVLeSUKUIhj1kRWCRnvHEJ60I0l8Wmn5CofB87bBoHvXshig3u8S/MrcpG34rqAN37Pchse6wic6T3KFf99ylAJG7+ey2w6rQopSUoPr1ZpYex+YRikw+IE8SlnzgQDQastRCuqwWh6lrFlNiFJWGQjThyRhkrTLmpCilNTgdj/02xl1ApnJ4utH3mBaGx+lfOQTpaxNQpQiGPWRjwSNttYQnrQjSXz62PIVDoNnjcGgW2dZDFDvdQS/MjdpG64TtOEnltvwWFf4ROdJrvCfWo5SwOjTXHbb4bOQopSU4Hp1cqy99aZRCgyul0cpJ68XAPrccpSCOnwuj1JO/pwQpXxmIEwbSMIkaZcvQopSUoLbLea3M+oEMpPF143eYPoyPkrZ6BOlfJmEKEUw6iMbBY32pSE8aUeS+LTJ8hUOg+cLg0H3lWUxQL2/IviVuUnb8CtBG35tuQ2PdYVPdJ7kCv+N5SgFjL7JZbcdNocUpeQMrleLY+1tMY1SYHCLPEpZvEUAaKvlKAV12CqPUhZvJUQpmw2E6VuSMEnaZVtIUUrO4HYX+e2MOoHMZPH1O28wbY+PUr7ziVK2JyFKEYz6yHeCRttuCE/akSQ+fW/5CofBs81g0O2wLAao9w6CX5mbtA13CNrwB8tteKwrfKLzJFf4Hy1HKWD0Yy677fBTSFFKjuB6NSrW3k7TKAUGd8qjlFE7BYB+thyloA4/y6OUUT8TopSfDIRpF0mYJO3yS0hRSo7gdkf67Yw6gcxk8XW3N5h+jY9SdvtEKb8mIUoRjPrIbkGj/WoIT9qRJD7tsXyFw+D5xWDQ/WZZDFDv3wh+ZW7SNvxN0IZ7Lbfhsa7wic6TXOH3WY5SwGhfLrvt8HtIUUokuF61iLX3h2mUAoN/yKOUFn8IAO23HKWgDvvlUUqL/YQo5XcDYfqTJEySdjkQUpQSCW73fL+dUSeQmSy+/uUNpoPxUcpfPlHKwSREKYJRH/lL0GgHDeFJO5LEp78tX+EweA4YDLpDlsUA9T5E8Ctzk7bhIUEbHrbchse6wic6T3KFd3LbjVLACDZstkMkeB2SGqU4wfVqfKy9HLn//RfkBnPkFkcp43MIAOXMbTdKQR1gQxiljM+ZzY6a6HBEKZHc8g6eIvQrc5MOCEm7pAoHRLKiFCe4II7z2xl1gpmJ9TXNG0zpuZ2sEUla7v9GKTgou1GKYNRH0gSNlp7bDJ60I0l8yiXoSP/+4Qg6X+5/Oqt00OW2LAaod26CX5mbtA1zC9owj+U2PNYVPtF5kit8XstRChjlzW23HfKFFKUcTg+sV/1i7eU3jVJgML88SumXXwCogOUoBXUoII9S+hUgRCn5DISpIEmYJO2SEVKUEjsgEmw3+u2MOoHMZPG1kDeYCsdHKYV8opTCSYhSBKM+UkjQaIVzm8GTdiSJTydYvsJh8GQYDLoilsUA9S5C8Ctzk7ZhEUEbnmi5DY91hU90nuQKX9RylAJGRXPbbYeTQopSDgXXq2Wx9oqZRikwWEwepSwrJgB0suUoBXU4WR6lLDuZEKWcZCBMxUnCJGmXU0KKUg4Fj1Je99sZdQKZyeJrCW8wnRofpZTwiVJOTUKUIhj1kRKCRjs1txk8aUeS+FTS8hUOg+cUg0FXyrIYoN6lCH5lbtI2LCVow6jlNjzWFT7ReZIr/GmWoxQwOi233XYoHVKU8ndwvYrG2jvdNEqBwdPlUUr0dAGgMpajFNShjDxKiZYhRCmlDYTpDJIwSdqlbEhRyt/Bo5RSfjujTiAzWXwt5w2m8vFRSjmfKKV8EqIUwaiPlBM0WvncZvCkHUniUwXLVzgMnrIGg66iZTFAvSsS/MrcpG1YUdCGZ1puw2Nd4ROdJ7nCV7IcpYBRpdx22+GskKKUg8H1Kl+svcqmUQoMVpZHKfkqCwBVsRyloA5V5FFKviqEKOUsA2GqShImSbtUCylKORg8SsnrtzPqBDKTxdfq3mCqER+lVPeJUmokIUoRjPpIdUGj1chtBk/akSQ+1bR8hcPgqWYw6GpZFgPUuxbBr8xN2oa1BG1Y23IbHusKn+g8yRX+bMtRChidndtuO9QJKUr5K7he9Y21V9c0SoHBuvIopW9dAaB6lqMU1KGePErpW48QpdQxEKZzSMIkaZf6IUUpfwWPUm7w2xl1ApnJ4uu53mBqEB+lnOsTpTRIQpQiGPWRcwWN1iC3GTxpR5L41NDyFQ6Dp77BoGtkWQxQ70YEvzI3aRs2ErTheZbb8FhX+ETnSa7wjS1HKWDUOLfddmgSUpRyILheFYq119Q0SoHBpvIopVBTAaBmlqMU1KGZPEop1IwQpTQxEKbmJGGStMv5IUUpB4JHKRl+O6NOIDNZfG3hDaYL4qOUFj5RygVJiFIEoz7SQtBoF+Q2gyftSBKfWlq+wmHwnG8w6C60LAao94UEvzI3aRteKGjDVpbb8FhX+ETnSa7wF1mOUsDootx226F1SFHKn8FFOYu9i02jFBi8OLf8vDaWIw/41Sb30R1RJ/hmEk20NhCQS0gCImHdNpsCEqTObQ3aJZmDZL/hILnUdJDA4KUGg6Sd5UECv9qRBgkavp3lQZLMTvJHenAfY+1dZtpJYPAyg8vSZYIR295yh0Id2hs0cnvLl3x0ovYGYcslAl6XWw5TwfZyw8GauUn71uWC+newHHoeK2xLdJ4kbLvCchuC0RUGdZC0Q0fCs5OOBmP8BeFVF2LeKOa/i3rJok70fot4vyd4v4W930Leb4b3W9D7LeD95vd+83m/eb3fPN5vbu83l/eb7v2meb+p3m+K95vT+82RmQwtM6mV94sFuPg95P3+7f0e9H7/8n4PeL9/er/7vd8/vN8+af/8Xu/99vZ+r/N+e3m/13q/Pb3fa7zfHt7v1d5vd++3m/fb1fu9yvvt4v129n47eb9Xer8dvd8rvN8O3u/l3m977/cy77ed93up99vW+73E+23j/V7s/bb2fi9yf690+1snt3R2Sxe3XOWWrm7p5pbubrnaLT3cco1berrlWrf0cst1buntluvd0sctN7ilr1tudEs/t9zklv5uudktA9xyi1sGuuVWt9zmlkFuuT131r4Z/wgpUb8fmxp8bF0pGOeDQwqMJHZj7d1hGhjB4B0G0fOdloMd+HVnkqLnRP5NdEXgzXT5hWOiIIq9y/B2VDogJgkGRCdBGw4JaUAMMRwQQ00HBAwONRgQwywPCPg1jHQ7iYF3l0EUcjepk08VdPLOgnYZHlInH27Yye8x7eQweI9BJx9huZPDrxGkTo7BdLdBJ7+X1MmnCzp5F0G7jAypk4807OSjTDs5DI4y6OSjLXdy+DWa1MkxmO416OT3kTr5bEEnv0rQLveH1MnvN+zkY0w7OQyOMejkD1ju5PDrAVInx2C6z6CTjyV18nmCTt5V0C4PhtTJHzTs5ONMOzkMjjPo5OMtd3L4NZ7UyTGYxhp08gmkTr5A0Mm7CdplYkidfKJhJ59k2slhcJJBJ3/IcieHXw+ROjkG0wSDTj6Z1MkXCTp5d0G7PBxSJ3/YsJNPMe3kMDjFoJM/YrmTw69HSJ0cg2myQSefSurkywSd/GpBuzwaUid/1LCTTzPt5DA4zaCTP2a5k8Ovx0idHINpqkEnf5zUyVcIOnkPQbs8EVInf8Kwk0837eQwON2gkz9puZPDrydJnRyD6XGDTj6D1MlXCTr5NYJ2mRlSJ59p2MlnmXZyGJxl0MmfstzJ4ddTpE6OwTTDoJPPJnXytYJO3lPQLk+H1MmfNuzkc0w7OQzOMejkz1ju5PDrGVInx2CabdDJ55I6+XpBJ79W0C7PhtTJnzXs5PNMOzkMzjPo5M9Z7uTw6zlSJ8dgmmvQyZ8ndfJNgk7eS9AuL4TUyV8w7OTzTTs5DM436OQvWu7k8OtFUifHYHreoJMvIHXyrYJOfp2gXV4KqZO/ZNjJXzbt5DD4skEnf8VyJ4dfr5A6OQbTAoNOvpDUyXcIOnlvQbu8GlInf9Wwky8y7eQwuMigky+23Mnh12JSJ8dgWmjQyZeQOvkuQSe/XtAur4XUyV8z7ORLTTs5DC416OSvW+7k8Ot1UifHYFpi0MmXkTr5XkEn7yNolzdC6uRvGHbyN007OQy+adDJ37LcyeHXW6ROjsG0zKCTLyd18gOCTn6DoF3eDqmTv23YyVeYdnIYXGHQyd+x3Mnh1zukTo7BtNygk68kdXInLXhd+gra5d2QOvm7hp38PdNODoPvGXTy9y13cvj1PqmTYzCtNOjkq0idPE3QyW8UtMsHIXXyDww7+WrTTg6Dqw06+YeWOzn8+pDUyTGYVhl08jWkTp5P0Mn7Cdrlo5A6+UeGnXytaSeHwbUGnfxjy50cfn1M6uQYTGsMOvk6UicvLOjkNwna5ZOQOvknhp38U9NODoOfGnTyzyx3cvj1GamTYzCtM+jk60mdvJigk/cXtMvnIXXyzw07+QbTTg6DGww6+ReWOzn8+oLUyTGY1ht08o2kTl5S0MlvFrTLlyF18i8NO/km004Og5sMOvlXljs5/PqK1MkxmDYadPKvSZ28jKCTDxC0yzchdfJvDDv5ZtNODoObDTr5FsudHH5tIXVyDKavDTr5VlInryjo5LcI2uXbkDr5t4adfJtpJ4fBbQad/DvLnRx+fUfq5BhMWw06+XZSJ68q6OQDBe3yfUid/HvDTr7DtJPD4A6DTv6D5U4Ov34gdXIMpu0GnfxHUievLejktwra5aeQOvlPhp18p2knh8GdBp38Z8udHH79TOrkGEw/GnTyXaROXl/QyW8TtMsvIXXyXww7+W7TTg6Duw06+a+WOzn8+pXUyTGYdhl08j2kTt5Y0MkHCdrlt5A6+W+GnXyvaSeHwb0GnXyf5U4Ov/aROjkG0x6DTv47qZO3EHTy2wXt8kdInfwPw06+37STw+B+g07+p+VODr/+JHVyDKbfDTr5gdx2/UL9Dxj49Zfh4JP6Nz1d1gdM7TwptCP93gbSdQu+k3DkWwx/GYwZSVrwZIpKUye43Vh7B01Fpal3srQhDgbvuJG/LQsQ6vC3weD7W3jlAOOcxzkm6gTa0uBnsez9G5canneN4XkDyOddZ3heX8PzrjU8L2p43mDD86oannen4XlRw/O6GZ53s+F5UcPzehqeZzqOTM+LGp7Xz/A80/YbZHieKZf+0NJI3E7p9SMS/Nj/2BAb+9tyJDom5Z8Lm/RDKJKL9CHhrU/mB6djzzPhdshyvQ4b1svvPGlAJQqS8gSvv4kvmX0oGtCGadvATjSgT5Hgdf7nH4/zJQh/g3GTQ9JuObJZh0SHw5fDBoHwgtPt+oX+ivaT9sOcgn7OqEOOPHb1J0XQP3BDksdJzl3nIeE1KdaG1QtgGLfWvxw+fDjWXmqebBhMFfZ6GE8V9Pq0PIKrhmEdYEOiKKhDmrAn/+/Wmnbe/26t/bf/3Vr7b1HD8/53a+2//e/WOtFJpsbSLIfXiLdyGoSx6f+HwtjMWzXpLUKuPPKGxCZlJQlocgtvg03aO8VyyJ9HGCglKxouF/zYLPbymkbD5byTpeflsxzhwq98eY7uiDryTdpB0gV1yp/NTp7o3y/v/FN/aR3KC2wUsCzMYFQgj7zuBfPIBkHm877Y86S+QrTyGPCWCGOGUFTyer//MSr0USIq2bFzhsOxk57NfptwLY7zT5+S9oWcgmMrOnJWxhFYAcvAKjj/DHQpsAKCwVNIWAepL5E4G0HrLGVV2HJboBNmduDY8xKZMe28ifw5wfJFJvNCKZ33KLlQSoKdIpaj3wqeDUd23pELST63pPr9o0IfWBeUsg7HjvTCJb17gk5I7jZxfME89i+M/54otCMZ0zli/n6i12+L5snGxayIYXR4YjaiQ9g80eACV0QgHCcZ1svvPGkHlfhZzPJb7vQ8ojuTfweLzbu9ky1fxFCHwgbBRHHLfkHoTYKcUwi8TjDwq4Rlv3AhMeF1qmW/0g3vxEuG9BjsrODHZrFXyvQx2FneydLzopYfgx0BYRDtmdjCReAkg06y2PKzcVxwTjbwa4nQr8xNeidxmuBiJWAVEfjveyeRyO/Kzj99S3rhrCywUdqysIF9aYO+cbphsHV6EoKt0gLNKCMMtjI3aR8+I/w+fGST9kW8/5LcceP4Ygb9pazlp08ZwnpkGNajnOXxWMTzy+aNUnlCcGnCtkJIj/clwVJ27JzpcOyckc32TZiFyLH/eL+qI2cVif9LNNBpTqS0ZWBVnH8uWlJgkgtdReHgKehkfbR0rLol8jHooD18+PBmv/1RJ7EN/BHr65leQF8pj5M1ujjTU53YfZV8HJQ+268QrCEm7MYoFzRaJSE8acdDBzqTdPcDxS9uoPpn5bHv1ykGflUm+FXCwK8qBL9ONfCrKsGvkgZ+VRP4BV0o45bp3n+jb6IfgDnqh39rZvr/yv8KpxiOlVTofgWDsVJd+F6qjM/+qCPbpDpQPY99GzUIcyUqCuKEzABS2p41hdqHx+/Tvf/+n/b9r4RZjjW2gsS8gvF75CarpsHNWQ3B+K0l1NUzfPZHnWB+xf8lGug0jq7Wshsj/nvds3mjXZvXlkcdlJ0XqU1oy7MVcICOBDzW2EYdBRz6pdi3Udegz/nZSTT+6gW3kyMs3vUI4+8cBf1uBKHf1VfAYQiBw7mk8dcguJ3UsHg3IIy/hiTejYLbSQuLdyMC7/NIvBsHt5MeFu/GBN5NSLybBreTKyzeTQm8m5F4Nw9uJ3dYvJsTeJ9P4t0iuJ08YfFuQeB9AYl3y+B28obFuyWB94Uk3q2C28kXFu9WBN4XkXi3Dm4nf1i8WxN4X0zi3Sa4nQJh8W5D4H0JiXfb4HYKhsW7LYH3pSTe7YLbyQiLdzsC78tIvNsHt1MoLN7tCbwvJ/HuENxO4bB4dyDwvoLEu2NwOyeExbsjgfeVJN6dgtspEhbvTgTenUm8uwS3c2JYvLsQeF9F4t01uJ2iYfHuSuDdjcS7e3A7J4XFuzuB99Uk3j2C2ykWFu8eBN7XkHj3DG7n5LB49yTwvpbEu1dwO8XD4t2LwPs6Eu/ewe2cEhbv3gTe15N49wlup0RYvPsQeN9A4t03uJ1Tw+Ldl8D7RhLvfsHtlAxtfiOB900k3v2D2ykVFu/+BN43k3gPCG4nGhbvAQTet5B4Dwxu57SweA8k8L5VwbzVUoR5q7eR+t2g4HZOD4v3IEK/u53Ee3BwO2XC4j2YwPsOEu87g9s5IyzedxJ430XiPSS4nbKhrTsg8B5K4j0suJ1yYfEeRuB9N4n38OB2yofFeziB9z0k3iOC26kQ2nouAu97SbxHBrdTMSzeIwm8R5F4jw5u58yweI8m8L5PwX3f6pz2bdxP6ndjgts5KyzeYwj97gES77HB7VQOi/dYAu8HSbzHBbdTJSze4wi8x5N4Twhup2pYvCcQeE8k8Z4U3E61sHhPIvB+iMR7cnA71cPiPZnA+2ES7ynB7dQIi/cUAu9HSLynBrdTMyzeUwm8HyXxnhbcTq2weE8j8H6MxPvx4HZqh8X7cQLvJ0i8pwe3c3ZYvKcTeD9J4j0juJ06YfGeQeA9k8R7VnA7dcPiPYvA+ykS79nB7dQLi/dsAu+nSbznBLdzTli85xB4P0PiPTe4nfph8Z5L4P0sife84HbODYv3PALv50i8nw9up0FYvJ8n8H6BxHt+cDsNw+I9n8D7RRLvBcHtNAqL9wIC75dIvF8Obue8sHi/TOD9Con3wuB2GofFeyGB96sk3ouC22kSFu9FBN6LSbyXBLfTNCzeSwi8XyPxXhrcTrOweC8l8H6dxHtZcDvNw+K9jMD7DRLvN4PbOT8s3m8SeL9F4r08uJ0WYfFeTuD9Non3iuB2LgiL9woC73dIvFcGt9MyLN4rCbzfJfF+L7idC8Pi/R6B9/sk3quC22kVFu9VBN4fkHivDm7notDm2xN4f0jivSa4ndZh8V5D4P0Riffa4HYuDov3WgLvj0m81wW30yYs3usIvD8h8f40uJ1LwuL9KYH3ZyTe64PbaRsW7/UE3p+TeG8IbufSsHhvIPD+gsR7Y3A77cLivZHA+0sS703B7VwWFu9NBN5fkXh/HdxO+7B4f03g/Q2J9+bgdi4Pi/dmAu8tJN5bg9vpEBbvrQTe35J4bwtu54qweG8j8P6OxHt7cDsdw+K9ncD7exLvHcHtXBkW7x0E3j+QeP8Y3E6nsHj/SOD9E4n3zuB2OofFeyeB988k3ruC2+kSFu9dBN6/kHjvDm7nqrB47ybw/pXEe09wO13D4r2HwPs3Eu+9we10C4v3XgLvfSTevwe30z0s3r8TeP9B4r0/uJ2rw+K9n8D7TxLvA8Ht9AiL9wEC779IvA8Gt3NNWLwPEnj/TeJ9KLidnmHxPkTgfZjE28kb2M61YfEW+BhzksxGJC+Hd47gdnqFxTsHgXdOEu+U4HauC4t3CoF3Kol3WnA7vcPinUbgnU7inSu4nevD4p2LwDs3iXee4Hb6hMU7D4F3XhLvfMHt3BAW73wE3vlJvAsEt9M3LN4FCLwLknhnBLdzY1i8Mwi8C5F4Fw5up19YvAsTeJ9A4l0kuJ2bwuJdhMD7RBLvosHt9A+Ld1EC75NIvIsFt3NzWLyLEXifTOJdPLidAWHxLk7gfQqJd4ngdm4Ji3cJAu9TSbxLBrczMCzeJQm8S5F4R4PbuTUs3lEC79NIvEsHt3NbWLxLE3ifTuJdJridQWHxLkPgfQaJd9ngdm4Pi3dZAu9yJN7lg9sZHBbv8gTeFUi8Kwa3c0dYvCsSeJ9J4l0puJ07w+JdicD7LBLvysHt3BUW78oE3lVIvKsGtzMkLN5VCbyrkXhXD25naFi8qxN41yDxrhnczrCweNck8K5F4l07uJ27w+Jdm8D7bBLvOsHtDA+Ldx0C77ok3vWC27knLN71CLzPIfGuH9zOiLB41yfwPpfEu0FwO/eGxbsBgXdDEu9Gwe2MDIt3IwLv80i8Gwe3Myos3o0JvJuQeDcNbmd0WLybEng3I/FuHtzOfWHxbk7gfT6Jd4vgdu4Pi3cLAu8LSLxbBrczJizeLQm8LyTxbhXczgNh8W5F4H0RiXfr4HbGhsW7NYH3xSTebYLbeTAs3m0IvC8h8W4b3M64sHi3JfC+lMS7XXA748Pi3Y7A+zIS7/bB7UwIi3d7Au/LSbw7BLczMSzeHQi8ryDx7hjczqSweHck8L6SxLtTcDsPhcW7E4F3ZxLvLsHtTA6LdxcC76tIvLsGt/NwWLy7Enh3I/HuHtzOlLB4dyfwvprEu0dwO4+ExbsHgfc1JN49g9uZGhbvngTe15J49wpu59GwePci8L6OxLt3cDvTwuLdm8D7ehLvPsHtPBYW7z4E3jeQePcNbufxsHj3JfC+kcS7X3A7T4TFux+B900CGzndUtYt073/rpPHceq65Ry31HfLuW5p6Jbz3NLELc3ccr5bLnDLhW65yC0Xu+USt1zqlsvccrlbrnDLlW7p7Jar3NLNLVe75Rq3XOuW69xyvVtucMuNbrnJLTe75Ra33OqW29xyu1vucMtdbhnqlrvdco9b7nXLKLfc55b73fKAWx50y3i3THTLQ2552C2PuOVRtzzmlifc8qRbZrrlKbc87ZZn3PKsW55zywtuedEtL7nlFbe86pbFbnnNLa+75Q23vOUWfGse3z/HN7nxnWh8uxjf08U3XvHdUXwLE99nxDcD8R07fFsN3/vCN6jwXSR8qwffj8E3TfCdDXz7Ad8jQI585G1HLnHkt0bOZeQBRm5a5EtFDk/klUSuQ+TfQ0445ClD7izkc0KOIeS9QS4W5AdBzgrkUcDafqw3xxporMvFWlGsX8SaOqzzwtojrIfBGg2sG8BcdsyvxpxfzEPF3EjM18McMsxrwlwbzP/AnAS8J8e7W7xPxDsuvHfBuwA8n8YzUzzHw7MlPO/APTjuC3GvgvgZMR3iDFz7oMfQCPTbzC2HsM+f5f5ROk9wrcCxZ+eR2zlbYKO/YBzCj7I++6NOML/i/xINdJoTqU3IPyvhYPDvp6ItK8jbMoekv9zMa8t/Nynnm/PatzEgm22ZiDOuR1W939jzEpnJKTi2qsCfWxS0+8x0+zYGKuDQL8W+jVsVcKhH0PTbFHAYQegPgxRwGELgcLsCDg0I42KwAg6NCBzuUMChMYHDnQo4NCVwuEsBh+YEDkMUcGhB4DBUAYeWBA7DFHBoReBwtwIOrQkchivg0IbA4R4FHNoSOIxQwKEdgcO9Cji0J3AYqYBDBwKHUQo4dCRwGK2AQycCh/sUcOhC4HC/Ag5dCRzGKODQncDhAQUcehA4jFXAoSeBw4MKOPQicBingENvAofxCjj0IXCYoIBDXwKHiRre8xI4TFLAoT+Bw0MKOAwgcJisgMNAAoeHFXAoRXjfPUUBh0GE/vCIAg6DCRymKuBwJ4HDoxrmwxA4TFPAYRiBw2MKOAwncHhcw3w5AocnFHAYSeAwXQGH0QQOTyrgsDqnfRszFHAYQ+gPMxVwGEvgMEsBh3EEDk8p4DCBwGG2Ag6TCByeVsBhMoHDHAUcphA4PKOAw1QCh7kKOEwjcHhWAYfHCRzmKeAwncDhOQUcZhA4PK+AwywChxcUcJhN4DBfAYc5BA4vKuAwl8BhgQIO8wgcXlLA4XkCh5cVcJhP4PCKAg4LCBwWKuDwMoHDqwo4LCRwWKSAwyICh8UKOCwhcFiigMNSAofXFHBYRuCwVAGHNwkcXlfAYTmBwzIFHFYQOLyhgMNKAoc3FXB4j8DhLQUcVhE4LNcwD4TA4W0FHNYQOKxQwGEtgcM7CjisI3BYqYDDpwQO7yrgsJ7A4T0FHDYQOLyvgMNGAodVCjhsInD4QAGHrwkcVivgsJnA4UMFHLYSOKxRwGEbgcNHCjhsJ3BYq4DDDgKHjxVw+JHAYZ0CDjsJHD5RwGEXgcOnCjjsJnD4TAGHPQQO6xVw2Evg8LkCDr8TOGxQwGE/gcMXCjgcIHDYqIDDQQKHLxVwOETgsEkBB4fwvbCvFHDIQeDwtQIOKQQO3yjgkEbgsFkBh1wEDlsUcMhD4LBVAYd8BA7fKuBQgMBhmwIOGQQO3yngUJjAYbsCDkUIHL5XwKEogcMOBRyKETj8oIBDcQKHHxVwKEHg8JMCDiUJHHYq4BAlcPhZAYfSBA67FHAoQ+DwiwIOZQkcdivgUJ7A4VcFHCoSOOxRwKESgcNvCjhUJnDYq4BDVQKHfQo4VCdw+F0Bh5oEDn8o4FCbwGG/Ag51CBz+VMChHoHDAQUc6hM4/KWAQwMCh4MKODQicPhbAYfGBA6HFHBoSuBwWAGH5gQOTr7/+xxaEDhEFHBoSeCQQwGHVgQOORVwaE3gkKKAQxsCh1QFHNoSOKQp4NCOwCFdAYf2BA65FHDoQOCQWwGHjgQOeRRw6ETgkFcBhy4EDvkUcOhK4JBfAYfuBA4FFHDoQeBQUAGHngQOGQo49CJwKKSAQ28Ch8IKOPQhcDhBAYe+BA5FFHDoR+BwooBDTreUc8t0778Huv7d6pbb3DLILbe7ZbBb7nDLnW65yy1D3DLULcPccrdbhrvlHreMcMu9bhnpllFuGe2W+9xyv1vGuOUBt4x1y4NuGeeW8W6Z4JaJbpnklofcMtktD7tlilsecctUt+D79Pg2O75Ljm9y43vU+BYzvkOMb/Di+7P49iq+O4pvbuJ7k/jWIr4ziG/s4fty+LYaviuGb2rhe1L4lhK+I4Rv6OD7Mfh2Cr4bgm9m4HsR+FYCvhOAHPnID4/c6MgLjpzYyAeNXMjIA4wcuMj/itynyPuJnJfI94hch8jzhxx3yO+G3GbI64WcVsjnhFxGyOODHDbI34LcJcjbgZwVyNeAXAVYp4816lifjbXJWJeLNalYj4m1iFiHhzVoWH+FtUdYd4M1J1hvgbUGmGePOeaYX425xZhXizmlmE+JuYSYR4c5ZJg/hblDmDeDOSOYL4G5AnhPjnfEeD+Kd4N4L4Z3QngfgncBeA6OZ8B4/olnf3juhWc+eN6Be33c5+IeD/c3iO0R1yKmQzyDazmuY9Bw6BfGLvpt5pYjrs9X7dG6/5Zq0yssatNs4bBhHTqXr7GjxaDF/cY32bJv4m73/5fO4zgD8gYfIzj+lrz/tZPovFgbiXwqKtSjcj77o04wv+L/Eg10mhO5Oa99PZJwMPj3U9GWFfKI2zJn6TzB2/IkXlv+u0k5n5TPvo1iCjjMTLdv42QFHPql2LdRXAGHeoTcIaco4DCC0B9KKOAwhMDhVAUcGhDGRUkFHBoROJRSwKExgUNUAYemBA6nKeDQnMChtAIOLQgcTlfAoSWBQxkFHFoROJyhgENrAoeyCji0IXAop4BDWwKH8go4tCNwqKCAQ3sCh4oKOHQgcDhTAYeOBA6VFHDoROBwlgIOXQgcKivg0JXAoYoCDt0JHKoq4NCDwKGaAg49CRyqK+DQi8ChhgIOvQkcairg0IfAoZYCDn0JHGpreM9L4HC2Ag79CRzqKOAwgMChrgIOAwkc6ingUIrwvvscBRwGEfpDfQUcBhM4nKuAw50EDg00zIchcGiogMMwAodGCjgMJ3A4T8N8OQKHxgo4jCRwaKKAw2gCh6YKOKzOad9GMwUcxhD6Q3MFHMYSOJyvgMM4AocWCjhMIHC4QAGHSQQOLRVwmEzgcKECDlMIHFop4DCVwOEiBRymETi0VsDhcQKHixVwmE7g0EYBhxkEDpco4DCLwKGtAg6zCRwuVcBhDoFDOwUc5hI4XKaAwzwCh/YKODxP4HC5Ag7zCRw6KOCwgMDhCgUcXiZw6KiAw0IChysVcFhE4NBJAYclBA6dFXBYSuDQRQGHZQQOVyng8CaBQ1cFHJYTOHRTwGEFgUN3BRxWEjhcrYDDewQOPRRwWEXgcI2GeSAEDj0VcFhD4HCtAg5rCRx6KeCwjsDhOgUcPiVw6K2Aw3oCh+sVcNhA4NBHAYeNBA43KOCwicChrwIOXxM43KiAw2YCh34KOGwlcLhJAYdtBA79FXDYTuBwswIOOwgcBijg8COBwy0KOOwkcBiogMMuAodbFXDYTeBwmwIOewgcBingsJfA4XYFHH4ncBisgMN+Aoc7FHA4QOBwpwIOBwkc7lLA4RCBwxAFHBzCt9CGKuCQg8BhmAIOKQQOdyvgkEbgMFwBh1wEDvco4JCHwGGEAg75CBzuVcChAIHDSAUcMggcRingUJjAYbQCDkUIHO5TwKEogcP9CjgUI3AYo4BDcQKHBxRwKEHgMFYBh5IEDg8q4BAlcBingENpAofxCjiUIXCYoIBDWQKHiQo4lCdwmKSAQ0UCh4cUcKhE4DBZAYfKBA4PK+BQlcBhigIO1QkcHlHAoSaBw1QFHGoTODyqgEMdAodpCjjUI3B4TAGH+gQOjyvg0IDA4QkFHBoROExXwKExgcOTCjg0JXCYoYBDcwKHmQo4tCBwmKWAQ0sCh6cUcGhF4DBbAYfWBA5PK+DQhsBhjgIObQkcnlHAoR2Bw1wFHNoTODyrgEMHAod5Cjh0JHB4TgGHTgQOzyvg0IXA4QUFHLoSOMxXwKE7gcOLCjj0IHBYoIBDTwKHlxRw6EXg8LICDr0JHF5RwKEPgcNCBRz6Eji8qoBDPwKHRQIOOd1S3i3Tvf8+2T23uFtOcUsJt5zqlpJuKYV/0y2nuaW0W053Sxm3nOGWsm4p55bybqnglopuOdMtldxyllsqu6WKW6q6pZpbqrulhltquqWWW2q75Wy31HFLXbfUc8s5bqnvlnPdgu/T49vs+C45vsmN71HjW8z4DjG+wYvvz+Lbq/juKL65ie9N4luL+M4gvrGH78vh22r4rhi+qYXvSeFbSviOEL6hg+/H4Nsp+G4IvpmB70XgWwn4TgBy5CM/PHKjIy84cmIjHzRyISMPMHLgIv8rcp8i7ydyXiLfI3IdIs8fctwhvxtymyGvF3JaIZ8Tchkhjw9y2CB/C3KXIG8HclYgXwNyFWCdPtaoY3021iZjXS7WpGI9JtYiYh0e1qBh/RXWHmHdDdacYL0F1hpgnj3mmGN+NeYWY14t5pRiPiXmEmIeHeaQYf4U5g5h3gzmjGC+BOYK4D053hHj/SjeDeK9GN4J4X0I3gXgOTieAeP5J5794bkXnvngeQfu9XGfi3s83N8gtkdci5gO8Qyu5biOQcOhXxi76LeZWw5hnz/T/aN0zBrxqj1a999SbXqFRW2aLRw2rEPn8jV2tBi0uN/4Jlv2TdztHVssn9wOzglqY3E+mR6V99kfdYL5Ff+XaKDTnMhJ+ezr0WKhDeG/n4q2rJBH3JYpkv6yhNeW/25SzksIbfmaAg4z0+3bWKqAQ78U+zZeV8ChHiF3yDIFHEYQ+sMbCjgMIXB4UwGHBoRx8ZYCDo0IHJYr4NCYwOFtBRyaEjisUMChOYHDOwo4tCBwWKmAQ0sCh3cVcGhF4PCeAg6tCRzeV8ChDYHDKgUc2hI4fKCAQzsCh9UKOLQncPhQAYcOBA5rFHDoSODwkQIOnQgc1irg0IXA4WMFHLoSOKxTwKE7gcMnCjj0IHD4VAGHngQOnyng0IvAYb0CDr0JHD5XwKEPgcMGBRz6Ejh8oeE9L4HDRgUc+hM4fKmAwwACh00KOAwkcPhKAYdShPfdXyvgMIjQH75RwGEwgcNmBRzuJHDYomE+DIHDVgUchhE4fKuAw3ACh20a5ssROHyngMNIAoftCjiMJnD4XgGH1Tnt29ihgMMYQn/4QQGHsQQOPyrgMI7A4ScFHCYQOOxUwGESgcPPCjhMJnDYpYDDFAKHXxRwmErgsFsBh2kEDr8q4PA4gcMeBRymEzj8poDDDAKHvQo4zCJw2KeAw2wCh98VcJhD4PCHAg5zCRz2K+Awj8DhTwUcnidwOKCAw3wCh78UcFhA4HBQAYeXCRz+VsBhIYHDIQUcFhE4HNaQJ4fAwcn/f5/DUgKHiAIOywgccijg8CaBQ04FHJYTOKQo4LCCwCFVAYeVBA5pCji8R+CQroDDKgKHXAo4rCZwyK2AwxoChzwKOKwlcMirgMM6Aod8Cjh8SuCQXwGH9QQOBRRw2EDgUFABh40EDhkKOGwicCikgMPXBA6FFXDYTOBwggIOWwkciijgsI3A4UQFHLYTOBRVwGEHgcNJCjj8SOBQTAGHnQQOJyvgsIvAobgCDrsJHE5RwGEPgUMJBRz2EjicqoDD7wQOJRVw2E/gUEoBhwMEDlEFHA4SOJymgMMhAofSCjg4hG8znq6AQw4ChzIKOKQQOJyhgEMagUNZBRxyETiUU8AhD4FDeQUc8hE4VFDAoQCBQ0UFHDIIHM5UwKEwgUMlBRyKEDicpYBDUQKHygo4FCNwqKKAQ3ECh6oKOJQgcKimgENJAofqCjhECRxqKOBQmsChpgIOZQgcaingUJbAobYCDuUJHM5WwKEigUMdBRwqETjUVcChMoFDPQUcqhI4nKOAQ3UCh/oKONQkcDhXAYfaBA4NFHCoQ+DQUAGHegQOjRRwqE/gcJ4CDg0IHBor4NCIwKGJAg6NCRyaKuDQlMChmQIOzQkcmivg0ILA4XwFHFoSOLRQwKEVgcMFCji0JnBoqYBDGwKHCxVwaEvg0EoBh3YEDhcp4NCewKG1Ag4dCBwuVsChI4FDGwUcOhE4XKKAQxcCh7YKOHQlcLhUAYfuBA7tFHDoQeBwmQIOPQkc2ivg0IvA4XIFHHoTOHRQwKEPgcMVCjj0JXDoqIBDPwKHKwUccrqlglume/+9NJ/jvO6WZW55wy1vuuUttyx3y9tuWeGWd9yy0i3vuuU9t7zvllVu+cAtq93yoVvWuOUjt6x1y8duWeeWT9zyqVs+c8t6t3zulg1u+cItG93ypVs2ueUrt3ztlm/cstkt+D49vs2O75Ljm9z4HjW+xYzvEOMbvPj+LL69iu+O4pub+N4kvrWI7wziG3v4vhy+rYbviuGbWvieFL6lhO8I4Rs6+H4Mvp2C74bgmxn4XgS+lYDvBCBHPvLDIzc68oIjJzbyQSMXMvIAIwcu8r8i9ynyfiLnJfI9Itch8vwhxx3yuyG3GfJ6IacV8jkhlxHy+CCHDfK3IHcJ8nYgZwXyNSBXwZF1+m7B+mysTca6XKxJxXpMrEXEOjysQcP6K6w9wrobrDnBegusNcA8e8wxx/xqzC3GvFrMKcV8SswlxDw6zCHD/CnMHcK8GcwZwXwJzBXAe3K8I8b7UbwbxHsxvBPC+xC8C8BzcDwDxvNPPPvDcy8888HzDtzr4z4X93i4v0Fsj7gWMR3iGVzLcR2DhkO/MHbRbzO3HMI+XzqPyyVmjXjVHq37b6k2vcKiNs0WDhvWoXP5GjtaDFrcb3yTLfsm7nb/P45/LZ/czmv5gtvoJNSjCj77o04wv+L/Eg10mhNZks++HhE5HDUqOy8yM92+jc4KOPRLITxLUMChHiHfxFUKOIwg9IeuCjgMIXDopoBDA8K46K6AQyMCh6sVcGhM4NBDAYemBA7XKODQnMChpwIOLQgcrlXAoSWBQy8FHFoROFyngENrAofeCji0IXC4XgGHtgQOfRRwaEfgcIMCDu0JHPoq4NCBwOFGBRw6Ejj0U8ChE4HDTQo4dCFw6K+AQ1cCh5sVcOhO4DBAAYceBA63KODQk8BhoAIOvQgcblXAoTeBw20KOPQhcBikgENfAofbNbznJXAYrIBDfwKHOxRwGEDgcKcCDgMJHO5SwKEU4X33EAUcBhH6w1AFHAYTOAxTwOFOAoe7NcyHIXAYroDDMAKHexRwGE7gMELDfDkCh3sVcBhJ4DBSAYfRBA6jFHBYnZPAWgGHMYT+cJ8CDmMJHO5XwGEcgcMYBRwmEDg8oIDDJAKHsQo4TCZweFABhykEDuMUcJhK4DBeAYdpBA4TFHB4nMBhogIO0wkcJingMIPA4SEFHGYROExWwGE2gcPDCjjMIXCYooDDXAKHRxRwmEfgMFUBh+cJHB5VwGE+gcM0BRwWEDg8poDDywQOjyvgsJDA4QkFHBYROExXwGEJgcOTCjgsJXCYoYDDMgKHmQo4vEngMEsBh+UEDk8p4LCCwGG2Ag4rCRyeVsDhPQKHOQo4rCJweEbDPBACh7kKOKwhcHhWAYe1BA7zFHBYR+DwnAIOnxI4PK+Aw3oChxcUcNhA4DBfAYeNBA4vKuCwicBhgQIOXxM4vKSAw2YCh5cVcNhK4PCKAg7bCBwWKuCwncDhVQUcdhA4LFLA4UcCh8UKOOwkcFiigMMuAofXFHDYTeCwVAGHPQQOryvgsJfAYZkCDr8TOLyhgMN+Aoc3FXA4QODwlgIOBwkclivgcIjA4W0FHBzC9/xWKOCQg8DhHQUcUggcVirgkEbg8K4CDrkIHN5TwCEPgcP7CjjkI3BYpYBDAQKHDxRwyCBwWK2AQ2EChw8VcChC4LBGAYeiBA4fKeBQjMBhrQIOxQkcPlbAoQSBwzoFHEoSOHyigEOUwOFTBRxKEzh8poBDGQKH9Qo4lCVw+FwBh/IEDhsUcKhI4PCFAg6VCBw2KuBQmcDhSwUcqhI4bFLAoTqBw1cKONQkcPhaAYfaBA7fKOBQh8BhswIO9QgctijgUJ/AYasCDg0IHL5VwKERgcM2BRwaEzh8p4BDUwKH7Qo4NCdw+F4BhxYEDjsUcGhJ4PCDAg6tCBx+VMChNYHDTwo4tCFw2KmAQ1sCh58VcGhH4LBLAYf2BA6/KODQgcBhtwIOHQkcflXAoROBwx4FHLoQOPymgENXAoe9Cjh0J3DYp4BDDwKH3xVw6Eng8IcCDr0IHPYr4NCbwOFPBRz6EDgcUMChL4HDXwo49CNwOJhfZkP675fO47LL89/zqvZo3X9LtekVFrVptnDYsA6dy9fY0WLQ4n7jm2zZN3G3+/8/ON2uX2U8v3II/fo7OK+I7TpUxrFuHXLGnZeoDpUFx0bzBD/2kIDNv384wc+p4tlwZOc5KW7J55ZUv39U6MNZjiMekyZ2KjkcO2c6Mjvx4yXRv4/xf3oe2bg8I8/RHVFHvkkZ3CLQ2Rwxfz+c2RcLHLUpNi4YNEf+7Zze72HvPHTugnGOmTRSeWEjlRc20uHDh/f77Y86ie3hj9j6RQr885ujgJMVSsRridh9OCga+y85cjDSq9eHhKuXiV9rhH5lbinB7Uxw7UQiBYL7FNs+ieot4BoJWtfMjilliYGb2RFjzwvknOycCI4vYtDeOQvY9aucoV8plv0qa+hXqmW/Tshj5leaZb/OcMz8SrfsF3wqauBXLoJfJxv4lZvg14kGfuUR+IXrakW3NMr87wL/jGeMHfRT9AnwR13x785M//938eMjYZ83OPtcgutfrjWWYxBc//IWkPe1fIK+hqCvos/+qCPbpHXLV8C+jfzCMYc7tUaZ//2/MXdkk97ooI1ib7iCxHhoJ6md/IL4t4BwPJzpsz/qBPMr/i/RQKdxxkMBAxvYpHpbMHy9jfz7hyPT24IGepvB619HnZWdF8kg9K9CCjhA2wIea2yjsAIO/VLs2zhBAYd6hEymRRRwGEHoDycq4DCEwKGoAg4NCOPiJAUcGhE4FFPAoTGBw8kKODQlcCiugENzAodTFHBoQeBQQgGHlgQOpyrg0IrAoaQCDq0JHEop4NCGwCGqgENbAofTFHBoR+BQWgGH9gQOpyvg0IHAoYwCDh0JHM5QwKETgUNZBRy6EDiUU8ChK4FDeQUcuhM4VFDAoQeBQ0UFHHoSOJypgEMvAodKCjj0JnA4SwGHPgQOlRVw6EvgUEXDe14Ch6oKOPQncKimgMMAAofqCjgMJHCooYBDKcL77poKOAwi9IdaCjgMJnCorYDDnQQOZ2uYD0PgUEcBh2EEDnUVcBhO4FBPw3w5AodzFHAYSeBQXwGH0QQO5yrgsDqnfRsNFHAYQ+gPDRVwGEvg0EgBh3EEDucp4DCBwKGxAg6TCByaKOAwmcChqQIOUwgcmingMJXAobkCDtMIHM5XwOFxAocWCjhMJ3C4QAGHGQQOLRVwmEXgcKECDrMJHFop4DCHwOEiBRzmEji0VsBhHoHDxQo4PE/g0EYBh/kEDpcI8+0gA2sj77+RMwH5ArBWHuvEsUYa64OxNhbrQrEmEusBsRYO68CwBurI+h+3YN0H1jxgvj/mumOeN+Y4Y34v5rZiXifmNGI+H+ayYR4X5jBh/g7mrmDeBuYs4H093lXjPS3eUeL9HN5N4b0M3kngeTyeReM5LJ5B4vkbnj3huQueOeB+G/eauM/CPQbia8SWiKsQU+B6imsJdBQagvGDvgNumZs0Dw6y5Urz7SBPh9RObG6PRDbaCsdDJZ/9USeYX/F/iQY6jZMPpa2BDWzSfDuXBrdjK9/Oke4k5YO+CN/jz0tU33a8/nXUWdl5kXaE/nWZAg6MfDvtFXBg5Nu5XAEHRr6dDgo4MPLtXKGAAyPfTkcFHBj5dq5UwIGRb6eTAg6MfDudFXBg5NvpooADI9/OVQo4MPLtdFXAgZFvp5sCDox8O90VcGDk27laAQdGvp0eCjgw8u1co+E5DIFDTwUcGPl2rlXAgZFvp5cCDox8O9cp4MDIt9NbAQdGvp3rFXBg5Nvpo4ADI9/ODQo4MPLt9FXAgZFv50YFHBj5dvop4MDIt3OTAg6MfDv9FXBg5Nu5WcN7XgKHAQo4MPLt3KKAAyPfzkAFHBj5dm5VwIGRb+c2BRwY+XYGKeDAyLdzuwIOjHw7gzXMhyFwuEMBB0a+nTsVcGDk27lLw3w5AochCjgw8u0MVcCBkW9nmAIOjHw7dyvgwMi3M1wBB0a+nXsUcGDk2xmhgAMj3869Cjgw8u2MVMCBkW9nlAIOjHw7oxVwYOTbuU8BB0a+nfsVcGDk2xmjgAMj384DCjgw8u2MVcCBkW/nQQUcGPl2xingwMi3M14BB0a+nQkKODDy7UxUwIGRb2eSAg6MfDsPCTggpwhyxTTy/hs5E5AvAGvlsU4ca6SxPhhrY7EuFGsisR4Qa+GwDgxroLD+B2tfsO4Dax4w3x9z3THPG3OcMb8Xc1sxrxNzGjGfD3PZMI8Lc5gwfwdzVzBvA3MW8L4e76rxnhbvKPF+Du+m8F4G7yTwPB7PovEcFs8g8fwNz57w3AXPHHC/jXtN3GfhHgPxNWJLxFWIKXA9xbUEOgoNwfhB3wG3zE2aBwd9SZpvB3k6pHZic3sksjFZOB7O8tkfdYL5Ff+XaKDTOPlQJhvYwCbNt/NwcDu28u0ccVnKB30Rvsefl6i+U3j966izsvMiUwj96xEFHBj5dqYq4MDIt/OoAg6MfDvTFHBg5Nt5TAEHRr6dxxVwYOTbeUIBB0a+nekKODDy7TypgAMj384MBRwY+XZmKuDAyLczSwEHRr6dpxRwYOTbma2AAyPfztMKODDy7cxRwIGRb+cZBRwY+XbmKuDAyLfzrAIOjHw78xRwYOTbeU4BB0a+necVcGDk23lBAQdGvp35Cjgw8u28qIADI9/OAgUcGPl2XlLAgZFv52UFHBj5dl5RwIGRb2ehAg6MfDuvanjPS+CwSAEHRr6dxQo4MPLtLFHAgZFv5zUFHBj5dpYq4MDIt/O6Ag6MfDvLFHBg5Nt5Q8N8GAKHNxVwYOTbeUsBB0a+neUa5ssROLytgAMj384KBRwY+XbeUcCBkW9npQIOjHw77yrgwMi3854CDox8O+8r4MDIt7NKAQdGvp0PFHBg5NtZrWF9FoHDhwo4MPLtrFHAgZFv5yMFHBj5dtYq4MDIt/OxAg6MfDvrFHBg5Nv5RAEHRr6dTxVwYOTb+UwBB0a+nfUKODDy7XyugAMj384GBRwY+Xa+EHBAgo7KztF8O8iZgHwBWCuPdeJYI431wVgbi3WhWBOJ9YBYC4d1YFgDhfU/WPuCdR9Y84D5/pjrjnnemOOM+b2Y24p5nZjTiPl8mMuGeVyYw4T5O5i7gnkbmLOA9/V4V433tHhHifdzeDeF9zJ4J4Hn8XgWjeeweAaJ52949oTnLnjmgPtt3GviPgv3GIivEVsirkJMgespriXQUWgIxg/6DrhlbtI8OLfklefbQZ4OqZ3Y3B6JbGwUjofKPvujTjC/4v8SDXQaJx/KRgMb2KT5dr4MbsdWvp0U/CHlg74I3+PPS1TfTbz+ddRZ2XmRTYT+9ZUCDox8O18r4MDIt/ONAg6MfDubFXBg5NvZooADI9/OVgUcGPl2vlXAgZFvZ5sCDox8O98p4MDIt7NdAQdGvp3vFXBg5NvZoYADI9/ODwo4MPLt/KiAAyPfzk8KODDy7exUwIGRb+dnBRwY+XZ2KeDAyLfziwIOjHw7uxVwYOTb+VUBB0a+nT0KODDy7fymgAMj385eBRwY+Xb2KeDAyLfzuwIOjHw7fyjgwMi3s18BB0a+nT8VcGDk2zmggAMj385fGt7zEjgcVMCBkW/nbwUcGPl2DingwMi3c1gBB0a+Hafg/30OjHw7EQUcGPl2cijgwMi3k1MBB0a+nRQFHBj5dlIVcGDk20lTwIGRbyddAQdGvp1cCjgw8u3kVsCBkW8njwIOjHw7eRVwYOTbyaeAAyPfTn4FHBj5dgoo4MDIt1NQAQdGvp0MBRwY+XYKKeDAyLdTWAEHRr6dExRwYOTbKaKAAyPfzokKODDy7RRVwIGRb+ckBRwY+XaKKeDAyLdzsgIOjHw7xRVwYOTbOUUBB0a+nRIKODDy7Zwq4ICcIlWco/l2kDMB+QKwVh7rxLFGGuuDsTYW60KxJhLrAbEWDuvAsAYK63+w9gXrPrDmAfP9Mdcd87wxxxnzezG3FfM6MacR8/kwlw3zuDCHCfN3MHcF8zYwZwHv6/GuGu9p8Y4S7+fwbgrvZfBOAs/j8Swaz2HxDBLP3/DsCc9d8MwB99u418R9Fu4xEF8jtkRchZgC11NcS6Cj0BCMH/QdcMvcpHlwznTk+XaQp0NqJza3RyIbJYXjoYrP/qgTzK/4v0QDncbJhyLhELtJ8+2UCm7HVr6dVPwh5YO+CN/jz0tU3yivfx11VnZeJFrQvo3TFHBg5NsprYADI9/O6Qo4MPLtlFHAgZFv5wwFHBj5dsoq4MDIt1NOAQdGvp3yCjgw8u1UUMCBkW+nogIOjHw7ZyrgwMi3U0kBB0a+nbMUcGDk26msgAMj304VBRwY+XaqKuDAyLdTTQEHRr6d6go4MPLt1FDAgZFvp6YCDox8O7UUcGDk26mtgAMj387ZCjgw8u3UUcCBkW+nrgIOjHw79RRwYOTbOUcBB0a+nfoKODDy7ZyrgAMj304DBRwY+XYaanjPS+DQSAEHRr6d8xRwYOTbaayAAyPfThMFHBj5dpoq4MDIt9NMAQdGvp3mCjgw8u2cr2E+DIFDCwUcGPl2LlDAgZFvp6WG+XIEDhcq4MDIt9NKAQdGvp2LFHBg5NtprYADI9/OxQo4MPLttFHAgZFv5xIFHBj5dtoq4MDIt3OpAg6MfDvtFHBg5Nu5TAEHRr6d9go4MPLtXK6AAyPfTgcFHBj5dq5QwIGRb6ejAg6MfDtXKuDAyLfTSQEHRr6dzgo4MPLtdFHAgZFv5yoFHBj5droq4MDIt9NNwAE5Rao6R/PtIGcC8gVgrTzWiWONNNYHY20s1oViTSTWA2ItHNaBYQ0U1v9g7QvWfWDNA+b7Y6475nljjjPm92JuK+Z1Yk4j5vNhLhvmcWEOE+bvYO4K5m1gzgLe1+NdNd7T4h0l3s/h3RTey+CdBJ7H41k0nsPiGSSev+HZE5674JkD7rdxr4n7LNxjIL5GbIm4CjEFrqe4lkBHoSEYP+g74Ja5SfPgIGeJI8iFg+ORp0NqJza3RyIb3YXjoarP/qgTzK/4v0QDneZQ8qF0N7CBTZpv5+rgdmzl20nDH1I+6IvwPf68RPXtwetfR52VnRfpQehf1whtSMd8afeacXrw60akjHvsGXnk7dlTQXsy8gZdq4ADI29QLwUcGHmDrlPAgZE3qLcCDoy8Qdcr4MDIG9RHAQdG3qAbFHBg5A3qq4ADI2/QjQo4MPIG9VPAgZE36CYFHBh5g/or4MDIG3SzAg6MvEEDFHBg5A26RQEHRt6ggQo4MPIG3aqAAyNv0G0KODDyBg1SwIGRN+h2BRwYeYMGK+DAyBt0hwIOjLxBdyrgwMgbdJeG91EEDkMUcGDkDRqqgAMjb9AwBRwYeYPuVsCBkTdouAIOjLxB92h4z0vgMEIBB0beoHsVcGDkDRqpgAMjb9AoBRwYeYNGK+DAyBt0nwIOjLxB9yvgwMgbNEbDfBgChwcUcGDkDRqrgAMjb9CDGubLETiMU8CBkTdovAIOjLxBExRwYOQNmqiAAyNv0CQFHBh5gx5SwIGRN2iyAg6MvEEPK+DAyBs0RQEHRt6gRxRwYOQNmqqAAyNv0KMKODDyBk1TwIGRN+gxBRwYeYMeV8CBkTfoCQUcGHmDpivgwMgb9KQCDoy8QTMUcGDkDZqpgAMjb9AsBRwYeYOeUsCBkTdotoADcqNUc47mDULOBOQLwFp5rBPHGmmsD8baWKwLxZpIrAfEWjisA8MaKKz/wdoXrPvAmgfM98dcd8zzxhxnzO/F3FbM68ScRsznw1w2zOPCHCbM38HcFczbwJwFvK/Hu2q8p8U7Sryfw7spvJfBOwk8j8ezaDyHxTNIPH/Dsyc8d8EzB9xv414T91m4x0B8jdgScRViClxPcS2BjkJDMH7Qd8Atc4vP7REkD5Agf8iRXC3I0xFvJ9F5sTYS+fR0Qdl4qOazP+oE8yv+L9FAp3HyujxtYAObNG/QnOB2bOUNSscfUj7oi/A9/rxE9X2G17+OOis7L/IMoX/NVcCBkW/nWQUcGPl25ingwMi385wCDox8O88r4MDIt/OCAg6MfDvzFXBg5Nt5UQEHRr6dBQo4MPLtvKSAAyPfzssKODDy7byigAMj385CBRwY+XZeVcCBkW9nkQIOjHw7ixVwYOTbWaKAAyPfzmsKODDy7SxVwIGRb+d1BRwY+XaWKeDAyLfzhgIOjHw7byrgwMi385YCDox8O8sVcGDk23lbAQdGvp0VCjgw8u28o4ADI9/OSgUcGPl23lXAgZFv5z0N73kJHN5XwIGRb2eVAg6MfDsfKODAyLezWgEHRr6dDxVwYOTbWaOAAyPfzkcKODDy7azVMB+GwOFjBRwY+XbWKeDAyLfziYb5cgQOnyrgwMi385kCDox8O+sVcGDk2/lcAQdGvp0NCjgw8u18oYADI9/ORgUcGPl2vlTAgZFvZ5MCDox8O18p4MDIt/O1Ag6MfDvfKODAyLezWQEHRr6dLQo4MPLtbFXAgZFv51sFHBj5drYp4MDIt/OdAg6MfDvbFXBg5Nv5XgEHRr6dHQo4MPLt/KCAAyPfzo8CDsgpUt05mm8HOROQLwBr5bFOHGuksT4Ya2OxLhRrIrEeEGvhsA4Ma6Cw/gdrX7DuA2seMN8fc90xzxtznDG/F3NbMa8Tcxoxnw9z2TCPC3OYMH8Hc1cwbwNzFvC+Hu+q8Z4W7yjxfg7vpvBeBu8k8Dwez6LxHBbPIPH8Dc+e8NwFzxxwv417Tdxn4R4D8TViS8RViClwPcW1BDoKDcH4Qd8Bt8xNmgcHOUsO5z96fJD8PMjTIbUTm9sjkY2fhOOhus/+qBPMr/i/RAOdxsmH8pOBDWzSfDs7g9uJCPLtRAT5diL//uHI+i58jz8vUX1/FnDFv53T+/U7zyS/VdBjdxWU8cvcpO3/S/jt/88JTla/Ex2eqV0mmpd5bCI2uw37Sux5Uv9Ku9fassGvt5Ey3vHScfCrUF9M6lFOWI9yBvXYw7teHHVWdh4lb9RvCjgw8kbtVcCBkTdqnwIOjLxRvyvgwMgb9YcCDoy8UfsVcGDkjfpTAQdG3qgDCjgw8kb9pYADI2/UQQUcGHmj/lbAgZE36pACDoy8UYcVcGDkjXIy/u9zYOSNiijgwMgblUMBB0beqJwKODDyRqUo4MDIG5WqgAMjb1SaAg6MvFHpCjgw8kblUsCBkTcqtwIOjLxReRRwYOSNyquAAyNvVD4FHBh5o/Ir4MDIG1VAAQdG3qiCCjgw8kZlKODAyBtVSAEHRt6owgo4MPJGnaCAAyNvVBEFHBh5o05UwIGRN6qoAg6MvFEnKeDAyBtVTAEHRt6okxVwYOSNKq6AAyNv1CkKODDyRpVQwIGRN+pUBRwYeaNKKuDAyBtVSgEHRt6oqAIOjLxRpyngwMgbVVoBB0beqNMVcGDkjSqjgAMjb9QZCjgw8kaVVcCBkTeqnAIOjLxR5RVwYOSNqqCAAyNvVEUFHBh5o85UwIGRN6qSAg6MvFFnKeDAyBtVWQEHRt6oKgo4MPJGVVXAgZE3qpoCDoy8UdUzZDak/z7yhfxskGfmO8v5T5Af5peC8hw0NYLzitiuA3J+/J3/vzlrEp1XOk/w+tYU1PcDQX1T3FLAOVrnLP+Q9xt1gtmtEfzYLPZqZWTDIE6Wnlc7Izh4U79qZxzdEXWCbyYDe7fBwN5heVD0LPhP8iepXz8I/crcpAmjzhYMKAGryA/ZTBiWUAicf/pWvGAmslVTYKOO5YsR2NfJkNe9rsAv/NuZiaz8zpNecOoINKNehqwPZG7SPnxO+H34yGaSvEyQuOtIkPCrgZbUz7Bfjz3CeuwxqMe5lscj/KqRIR8TDSwGYSZtIQmSUOeaBhrUUNAWCK7yer//cSDObiJ/JcFVduxUczh2zslmn07UTrWdf/RU2o9yCo6t7chZReL/Eg10mhOpYxlYLeefi5wUmOTC2Eg4eJAUOIefUaGPQQft4cOHN/vtjzqJbeCPWF/P824AGmc4WaOR8zzVid3X2MdB6e1kw2ANMcFtiMh5gkZrLIQn7XjoQOcZ3i2ZpPPsnF92a3+WQTrPJhn269FFWI/KBvVoSqjHVcJ6VDGoRzNCPboK61HVoB7NCfXoJqxHNYN6nG85okU9uueX+9WC4NfVBn5dQPCrh4FfLQl+XWPg14UEv3oa+NWK4Ne1Bn5dRPCrl4FfrQl+XWfg18UEv3ob+NWG4Nf1Bn5dQvCrj4FfbQl+3WDg16UEv/oa+NWO4NeNBn5dRvCrn4Ff7Ql+3WTg1+UEv/ob+NWB4NfNBn5dQfBrgIFfHQl+3WLg15UEvwYa+NWJ4NetBn51Jvh1m4FfXQh+DTLw6yqCX7cb+NWV4NdgA7+6Efy6w8Cv7gS/7jTw62qCX3cZ+NWD4NcQA7+uIfg11MCvngS/hhn4dS3Br7sN/OpF8Gu4gV/XEfy6x8Cv3gS/Rhj4dT3Br3sN/OpD8GukgV83EPwaZeBXX4Jfow38upHg130GfvUj+HW/gV83EfwaY+BXf4JfDxj4dTPBr7EGfg0g+PWggV+3EPwaZ+DXQIJf4w38upXg1wQDv24j+DXRwK9BBL8mGfh1O8Gvhwz8Gkzwa7KBX3cQ/HrYwK87CX5NMfDrLoJfjxj4NYTg11QDv4YS/HrUwK9hBL+mGfh1N8Gvxwz8Gk7w63EDv+4h+PWEgV8jCH5NN/DrXoJfTxr4NZLg1wwDv0YR/Jpp4Ndogl+zDPy6j+DXUwZ+3U/wa7aBX2MIfj1t4NcDBL/mGPg1luDXMwZ+PUjwa66BX+MIfj1r4Nd4gl/zDPyaQPDrOQO/JhL8et7Ar0kEv14w8Oshgl/zDfyaTPDrRQO/Hib4tcDArykEv14y8OsRgl8vG/g1leDXKwZ+PUrwa6GBX9MIfr1q4NdjBL8WGfj1OMGvxQZ+PUHwa4mBX9MJfr1m4NeTBL+WGvg1g+DX6wZ+zST4tczAr1kEv94w8Ospgl9vGvg1m+DXWwZ+PU3wa7mBX3MIfr1t4NczBL9WGPg1l+DXOwZ+PUvwa6WBX/MIfr1r4NdzBL/eM/DreYJf7xv49QLBr1UGfs0n+PWBgV8vEvxabeDXAoJfHxr49RLBrzUGfr1M8OsjA79eIfi11sCvhQS/Pjbw61WCX+sM/FpE8OsTA78WE/z61MCvJQS/PjPw6zWCX+sN/FpK8OtzA79eJ/i1wcCvZQS/vjDw6w2CXxsN/HqT4NeXBn69RfBrk4Ffywl+fWXg19sEv7428GsFwa9vDPx6h+DXZgO/VhL82mLg17sEv7Ya+PUewa9vDfx6n+DXNgO/VhH8+s7Arw8Ifm038Gs1wa/vDfz6kODXDgO/1hD8+sHAr48Ifv1o4Ndagl8/Gfj1McGvnQZ+rSP49bOBX58Q/Npl4NenBL9+MfDrM4Jfuw38Wk/w61cDvz4n+LXHwK8NBL9+M/DrC4Jfew382kjwa5+BX18S/PrdwK9NBL/+MPDrK4Jf+w38+prg158Gfn1D8OuAgV+bCX79ZeDXFoJfBw382irwC99DwFdQpnv/jRz7yE+P3O7Ii46c4sjfjVzZyEuNHNDIt4zcxsgjjJy9yI+LXLTI+4ocq+0y/skdijydyImJ/JPI9Yi8ishhiHyByM2HPHjIOYf8bsilhrxlyBGGfFzIfYU8U8jphPxJyFWEvEDIwYN8N8gtgzwuyJmC/CTIBYK8G8hxgXwSyN2APAnISYD1/1hrj3XtWEOO9dpYG411yFjzi/W1WMuKdaNYo4n1kFh7iHV+WFOH9WtYK4Z1WVgDhfVGWNuDdTRYs4L1IViLgXUPWGOA+fyYO4956pgTjvnXmOuMecWYw4v5spibinmgmHOJ+Y2YS4h5e5gjh/lomPuFeVaY04T5Q5irg3kxmIOC+R6YW4F5DJgzgPfzeBeO9854x4v3qXh3ifeEeCeH919414T3OniHgvcVeDeA5/B45o3ny3iWi+emeEaJ54F49obnXHimhOc3eFaC5xJ4BoD7bdzb4j4S92y4P8K9COJ+xNiIZxE7Ik5DTIT4A9d6XFdxDcP1AtoMHYTmYHxjLKHfGo6VVHzvAt/qkI6VbzOCj5Uc3liJ36KObJPqgMRHUxvbhDak30CAP7EfqknULpkfzpG253cZMu3DF/yme//9P+37n/b9X9A+k68oCsbvkY9LYZxIx3CsjUQ+bc+Q6WpNn/1RJ5hf8X+JBjqNo6vbhTZMr3s2PzD2Pa8tjzooOy/yPaEtdyjgMDPdvo0fFHDol2Lfxo8KONTLY9/GTwo4jCD0h50KOAwhcPhZAYcGhHGxSwGHRgQOvyjg0JjAYbcCDk0JHH5VwKE5gcMeBRxaEDj8poBDSwKHvQo4tCJw2KeAQ2sCh98VcGhD4PCHAg5tCRz2K+DQjsDhTwUc2hM4HFDAoQOBw18KOHQkcDiogEMnAoe/FXDoQuBwSAGHrgQOhxVw6E7g4BT6v8+hB4FDRAGHngQOORRw6EXgkFMBh94EDikKOPQhcEhVwKEvgUOaAg79CBzSFXDoT+CQSwGHAQQOuRVwGEjgkEcBh1KE9915FXAYROgP+RRwGEzgkF8BhzsJHAoo4DCEwKGgAg7DCBwyFHAYTuBQSAGHEQQOhRVwGEngcIICDqMJHIoo4LA6p30bJyrgMIbQH4oq4DCWwOEkBRzGETgUU8BhAoHDyQo4TCJwKK6Aw2QCh1MUcJhC4FBCAYepBA6nKuAwjcChpAIOjxM4lFLAYTqBQ1QBhxkEDqcp4DCLwKG0Ag6zCRxOV8BhDoFDGQUc5hI4nKGAwzwCh7IKODxP4FBOAYf5BA7lFXBYQOBQQQGHlwkcKirgsJDA4UwFHBYROFRSwGEJgcNZCjgsJXCorIDDMgKHKgo4vEngUFUBh+UEDtUUcFhB4FBdAYeVBA41FHB4j8ChpgIOqwgcammYB0LgUFsBhzUEDmcr4LCWwKGOAg7rCBzqKuDwKYFDPQUc1hM4nKOAwwYCh/oKOGwkcDhXAYdNBA4NFHD4msChoQIOmwkcGingsJXA4TwFHLYRODRWwGE7gUMTBRx2EDg0VcDhRwKHZgo47CRwaK6Awy4Ch/MVcNhN4NBCAYc9BA4XKOCwl8ChpQIOvxM4XKiAw34Ch1YKOBwgcLhIAYeDBA6tFXA4ROBwsQIOTl77Ntoo4JCDwOESBRxSCBzaKuCQRuBwqQIOuQgc2ingkIfA4TIFHPIROLRXwKEAgcPlCjhkEDh0UMChMIHDFQo4FCFw6KiAQ1EChysVcChG4NBJAYfiBA6dFXAoQeDQRQGHkgQOVyngECVw6KqAQ2kCh24KOJQhcOiugENZAoerFXAoT+DQQwGHigQO1yjgUInAoacCDpUJHK5VwKEqgUMvBRyqEzhcp4BDTQKH3go41CZwuF4BhzoEDn0UcKhH4HCDAg71CRz6KuDQgMDhRgUcGhE49FPAoTGBw00KODQlcOivgENzAoebFXBoQeAwQAGHlgQOtyjg0IrAYaACDq0JHG5VwKENgcNtCji0JXAYpIBDOwKH2xVwaE/gMFgBhw4EDnco4NCRwOFOBRw6ETjcpYBDFwKHIQo4dCVwGKqAQ3cCh2EKOPQgcLhbAYeeBA7DFXDoReBwjwIOvQkcRijg0IfA4V4FHPoSOIxUwKEfgcMoAYecbqnllunef/+Q4Tg/uuUnt+x0y89u2eWWX9yy2y2/umWPW35zy1637HPL7275wy373fKnWw645S+3HHTL32455JbDbnFcvyJuyeGWnG5JcUuqW9Lcku6WXG7J7ZY8bsnrlnxuye8WfJ8e32bHd8nxTW58jxrfYsZ3iPENXnx/Ft9exXdH8c1NfG8S31rEdwbxjT18X+7It9Xcgm9q4XtS+JYSviOEb+jg+zH4dgq+G4JvZuB7EfhWAr4TgBz5yA+P3OjIC46c2MgHjVzIyAOMHLjI/4rcp8j7iZyXyPeIXIfI84ccd8jvhtxmyOuFnFbI54RcRsjjgxw2yN+C3CXI24GcFcjXgFwFWKePNepYn421yViXizWpWI+JtYhYh4c1aFh/hbVHWHeDNSdYb4G1BphnjznmmF+NucWYV4s5pZhPibmEmEeHOWSYP4W5Q5g3gzkjmC+BuQJ4T453xHg/ineDeC+Gd0J4H4J3AXgOjmfAeP6JZ3947oVnPnjegXt93OfiHg/3N4jtEdcipkM8g2s5rmPQcOgXxi76beaWQ9jna7h/1Mk4enzVHq37b6k2vcKiNs0WDhvWoXP5GjtaDFrcb3yTLfsm7vaO3ZEht7NDYGN0IZke1fLZH3WC+RX/l2ig05zI9xn29UjCweDfT0VbNpS3ZQ5Jf7mP15b/blLO9xWyb+P+bLZlIs64HtX2fmPPS2Qmp+DY2gJ/xiho95np9m08oIBDvxT7NsYq4FCPkCvlQQUcRhD6wzgFHIYQOIxXwKEBYVxMUMChEYHDRAUcGhM4TFLAoSmBw0MKODQncJisgEMLAoeHFXBoSeAwRQGHVgQOjyjg0JrAYaoCDm0IHB5VwKEtgcM0BRzaETg8poBDewKHxxVw6EDg8IQCDh0JHKYr4NCJwOFJBRy6EDjMUMChK4HDTAUcuhM4zFLAoQeBw1MKOPQkcJitgEMvAoenFXDoTeAwRwGHPgQOzyjg0JfAYa6G97wEDs8q4NCfwGGeAg4DCByeU8BhIIHD8wo4lCK8735BAYdBhP4wXwGHwQQOLyrgcCeBwwIN82EIHF5SwGEYgcPLCjgMJ3B4RcN8OQKHhQo4jCRweFUBh9EEDosUcFid076NxQo4jCH0hyUKOIwlcHhNAYdxBA5LFXCYQODwugIOkwgclingMJnA4Q0FHKYQOLypgMNUAoe3FHCYRuCwXAGHxwkc3lbAYTqBwwoFHGYQOLyjgMMsAoeVCjjMJnB4VwGHOQQO7yngMJfA4X0FHOYROKxSwOF5AocPFHCYT+CwWgGHBQQOHyrg8DKBwxoFHBYSOHykgMMiAoe1CjgsIXD4WAGHpQQO6xRwWEbg8IkCDm8SOHyqgMNyAofPFHBYQeCwXgGHlQQOnyvg8B6BwwYFHFYROHyhYR4IgcNGBRzWEDh8qYDDWgKHTQo4rCNw+EoBh08JHL5WwGE9gcM3CjhsIHDYrIDDRgKHLQo4bCJw2KqAw9cEDt8q4LCZwGGbAg5bCRy+U8BhG4HDdgUcthM4fK+Aww4Chx0KOPxI4PCDAg47CRx+VMBhF4HDTwo47CZw2KmAwx4Ch58VcNhL4LBLAYffCRx+UcBhP4HDbgUcDhA4/KqAw0EChz0KOBwicPhNAQeH8C3KvQo45CBw2KeAQwqBw+8KOKQROPyhgEMuAof9CjjkIXD4UwGHfAQOBxRwKEDg8JcCDhkEDgcVcChM4PC3Ag5FCBwOKeBQlMDhsAIOxQgcnML/9zkUJ3CIKOBQgsAhhwIOJQkccirgECVwSFHAoTSBQ6oCDmUIHNIUcChL4JCugEN5AodcCjhUJHDIrYBDJQKHPAo4VCZwyKuAQ1UCh3wKOFQncMivgENNAocCCjjUJnAoqIBDHQKHDAUc6hE4FFLAoT6BQ2EFHBoQOJyggEMjAociCjg0JnA4UQGHpgQORRVwaE7gcJICDi0IHIop4NCSwOFkBRxaETgUV8ChNYHDKQo4tCFwKKGAQ1sCh1MVcGhH4FBSAYf2BA6lFHDoQOAQVcChI4HDaQo4dCJwKK2AQxcCh9MVcOhK4FBGAYfuBA5nKODQg8ChrAIOPQkcying0IvAobwCDr0JHCoo4NCHwKGiAg59CRzOVMChH4FDJQGHnG6p7Zbp3n8/UMhxxrrlQbeMc8t4t0xwy0S3THLLQ26Z7JaH3TLFLY+4ZapbHnXLNLc85pbH3fKEW6a75Um3zHDLTLfMcstTbpntlqfdMsctz7hlrluedcs8tzznlufd8oJb5rvlRbfg+/T4Nju+S45vcuN71PgWM75DjG/w4vuz+PYqvjuKb27ie5P41iK+M4hv7OH7cvi2Gr4rhm9q4XtS+JYSviOEb+jg+zH4dgq+G4JvZuB7EfhWAr4TgBz5yA+P3OjIC46c2MgHjVzIyAOMHLjI/4rcp8j7iZyXyPeIXIfI84ccd8jvhtxmyOuFnFbI54RcRsjjgxw2yN+C3CXI24GcFcjXgFwFWKePNepYn421yViXizWpWI+JtYhYh4c1aFh/hbVHWHeDNSdYb4G1BphnjznmmF+NucWYV4s5pZhPibmEmEeHOWSYP4W5Q5g3gzkjmC+BuQJ4T453xHg/ineDeC+Gd0J4H4J3AXgOjmfAeP6JZ3947oVnPnjeceRe3y24x8P9DWJ7xLWI6RDP4FqO6xg0HPqFsYt+m7nliOvzVXu07r+l2vQKi9o0WzhsWIfO5WvsaDFocb/xTbbsm7jb/f91Mhzn/uDrKyI4fkyh/9pJdF6sjUQ+nSXUo9o++6NOML/i/xINdJoTua+QfT2ScDD491PRlg0zxG2ZE+dlHpuoLSvz2vLfTcq5cmH7Nqoo4DAz3b6Nqgo49Euxb6OaAg71CLlDqivgMILQH2oo4DCEwKGmAg4NCOOilgIOjQgcaivg0JjA4WwFHJoSONRRwKE5gUNdBRxaEDjUU8ChJYHDOQo4tCJwqK+AQ2sCh3MVcGhD4NBAAYe2BA4NFXBoR+DQSAGH9gQO5yng0IHAobECDh0JHJoo4NCJwKGpAg5dCByaKeDQlcChuQIO3QkczlfAoQeBQwsFHHoSOFyggEMvAoeWCjj0JnC4UAGHPgQOrRRw6EvgcJGG97wEDq0VcOhP4HCxAg4DCBzaKOAwkMDhEgUcShHed7dVwGEQoT9cqoDDYAKHdgo43EngcJmG+TAEDu0VcBhG4HC5Ag7DCRw6aJgvR+BwhQIOIwkcOirgMJrA4UoFHFbntG+jkwIOYwj9obMCDmMJHLoo4DCOwOEqBRwmEDh0VcBhEoFDNwUcJhM4dFfAYQqBw9UKOEwlcOihgMM0AodrFHB4nMChpwIO0wkcrlXAYQaBQy8FHGYROFyngMNsAofeCjjMIXC4XgGHuQQOfRRwmEfgcIMCDs8TOPRVwGE+gcONCjgsIHDop4DDywQONyngsJDAob8CDosIHG5WwGEJgcMABRyWEjjcooDDMgKHgQo4vEngcKsCDssJHG5TwGEFgcMgBRxWEjjcroDDewQOgxVwWEXgcIeGeSAEDncq4LCGwOEuBRzWEjgMUcBhHYHDUAUcPiVwGKaAw3oCh7sVcNhA4DBcAYeNBA73KOCwicBhhAIOXxM43KuAw2YCh5EKOGwlcBilgMM2AofRCjhsJ3C4TwGHHQQO9yvg8COBwxgFHHYSODyggMMuAoexCjjsJnB4UAGHPQQO4xRw2EvgMF4Bh98JHCYo4LCfwGGiAg4HCBwmKeBwkMDhIQUcDhE4TFbAwSF8m/FhBRxyEDhMUcAhhcDhEQUc0ggcpirgkIvA4VEFHPIQOExTwCEfgcNjCjgUIHB4XAGHDAKHJxRwKEzgMF0BhyIEDk8q4FCUwGGGAg7FCBxmKuBQnMBhlgIOJQgcnlLAoSSBw2wFHKIEDk8r4FCawGGOAg5lCByeUcChLIHDXAUcyhM4PKuAQ0UCh3kKOFQicHhOAYfKBA7PK+BQlcDhBQUcqhM4zFfAoSaBw4sKONQmcFiggEMdAoeXFHCoR+DwsgIO9QkcXlHAoQGBw0IFHBoROLyqgENjAodFCjg0JXBYrIBDcwKHJQo4tCBweE0Bh5YEDksVcGhF4PC6Ag6tCRyWKeDQhsDhDQUc2hI4vKmAQzsCh7cUcGhP4LBcAYcOBA5vK+DQkcBhhQIOnQgc3lHAoQuBw0oFHLoSOLyrgEN3Aof3FHDoQeDwvgIOPQkcVing0IvA4QMFHHoTOKxWwKEPgcOHCjj0JXBYo4BDPwKHjwQccrrlbLdM9/67qntuNbdUd0sNt9R0Sy231HbL2W6p45a6bqnnlnPcUt8t57qlgVsauqWRW85zS2O3NHFLU7c0c0tzt5zvlhZuucAtLd1yoVtaueUit7R2y8VuaeOWS9zS1i2XuqWdW/B9enybHd8lxze58T1qfIsZ3yHGN3jx/Vl8exXfHcU3N/G9SXxrEd8ZxDf28H05fFsN3xXDN7XwPSl8SwnfEcI3dPD9GHw7Bd8NwTcz8L0IfCsB3wlAjnzkh0dudOQFR05s5INGLmTkAUYOXOR/Re5T5P1Ezkvke0SuQ+T5Q4475HdDbjPk9UJOK+RzQi4j5PFBDhvkb0HuEuTtQM4K5GtArgKs08cadazPxtpkrMvFmlSsx8RaRKzDwxo0rL/C2iOsu8GaE6y3wFoDzLPHHHPMr8bcYsyrxZxSzKfEXELMo8McMsyfwtwhzJvBnBHMl8BcAbwnxztivB/Fu0G8F8M7IbwPwbsAPAfHM2A8/8SzPzz3wjMfPO/AvT7uc3GPh/sbxPaIaxHTIZ7BtRzXMWg49AtjF/02c8sh7PPV3D/qZBw9vmqP1v23VJteYVGbZguHDevQuXyNHS0GLe43vsmWfRN3e8dWKSy3g3OC2lhbWKZHZ/vsjzrB/Ir/SzTQaU6kcmH7erRWaEP476eiLRtmiNsyRdJfPua15b+blPPHhLZcp4DDzHT7Nj5RwKFfin0bnyrgUI+QO+QzBRxGEPrDegUchhA4fK6AQwPCuNiggEMjAocvFHBoTOCwUQGHpgQOXyrg0JzAYZMCDi0IHL5SwKElgcPXCji0InD4RgGH1gQOmxVwaEPgsEUBh7YEDlsVcGhH4PCtAg7tCRy2KeDQgcDhOwUcOhI4bFfAoROBw/cKOHQhcNihgENXAocfFHDoTuDwowIOPQgcflLAoSeBw04FHHoROPysgENvAoddCjj0IXD4RQGHvgQOuzW85yVw+FUBh/4EDnsUcBhA4PCbAg4DCRz2KuBQivC+e58CDoMI/eF3BRwGEzj8oYDDnQQO+zXMhyFw+FMBh2EEDgcUcBhO4PCXhvlyBA4HFXAYSeDwtwIOowkcDingsDqnfRuHFXAYQ+gPzgn/9zmMJXCIKOAwjsAhhwIOEwgccirgMInAIUUBh8kEDqkKOEwhcEhTwGEqgUO6Ag7TCBxyKeDwOIFDbgUcphM45FHAYQaBQ14FHGYROORTwGE2gUN+BRzmEDgUUMBhLoFDQQUc5hE4ZCjg8DyBQyEFHOYTOBRWwGEBgcMJCji8TOBQRAGHhQQOJyrgsIjAoagCDksIHE5SwGEpgUMxBRyWETicrIDDmwQOxRVwWE7gcIoCDisIHEoo4LCSwOFUBRzeI3AoqYDDKgKHUgo4rCZwiCrgsIbA4TQFHNYSOJRWwGEdgcPpCjh8SuBQRgGH9QQOZyjgsIHAoawCDhsJHMop4LCJwKG8Ag5fEzhUUMBhM4FDRQUcthI4nKmAwzYCh0oKOGwncDhLAYcdBA6VFXD4kcChigIOOwkcqirgsIvAoZoCDrsJHKor4LCHwKGGAg57CRxqKuDwO4FDLQUc9hM41FbA4QCBw9kKOBwkcKijgMMhAoe6Cjg4hG8z1lPAIQeBwzkKOKQQONRXwCGNwOFcBRxyETg0UMAhD4FDQwUc8hE4NFLAoQCBw3kKOGQQODRWwKEwgUMTBRyKEDg0VcChKIFDMwUcihE4NFfAoTiBw/kKOJQgcGihgENJAocLFHCIEji0VMChNIHDhQo4lCFwaKWAQ1kCh4sUcChP4NBaAYeKBA4XK+BQicChjQIOlQkcLlHAoSqBQ1sFHKoTOFyqgENNAod2CjjUJnC4TAGHOgQO7RVwqEfgcLkCDvUJHDoo4NCAwOEKBRwaETh0VMChMYHDlQo4NCVw6KSAQ3MCh84KOLQgcOiigENLAoerFHBoReDQVQGH1gQO3RRwaEPg0F0Bh7YEDlcr4NCOwKGHAg7tCRyuUcChA4FDTwUcOhI4XKuAQycCh14KOHQhcLhOAYeuBA69FXDoTuBwvQIOPQgc+ijg0JPA4QYFHHoROPRVwKE3gcONCjj0IXDop4BDXwKHmxRw6Efg0F/AIadb6rhluvffnxR2nE/d8plb1rvlc7dscMsXbtnoli/dssktX7nla7d845bNbtnilq1u+dYt29zynVu2u+V7t+xwyw9u+dEtP7llp1t+dssut/zilt1u+dUte9zym1v2umWfW353yx9uwffp8W12fJcc3+TG96jxLWZ8hxjf4MX3Z/HtVXx3FN/cxPcm8a1FfGcQ39jD9+XwbTV8Vwzf1ML3pPAtJXxHCN/Qwfdj8O0UfDcE38zA9yLwrQR8JwA58pEfHrnRkRccObGRDxq5kJEH+EgOXLcg9ynyfiLnJfI9Itch8vwhxx3yuyG3GfJ6IacV8jkhlxHy+CCHDfK3IHcJ8nYgZwXyNSBXAdbpY4061mdjbTLW5WJNKtZjYi0i1uFhDRrWX2HtEdbdYM0J1ltgrQHm2WOOOeZXY24x5tViTinmU2IuIebRYQ4Z5k9h7hDmzWDOCOZLYK4A3pPjHTHej+LdIN6L4Z0Q3ofgXQCeg+MZMJ5/4tkfnnvhmQ+ed+BeH/e5uMfD/Q1ie8S1iOkQz+BajusYNBz6hbGLfpu55RD2+ToZLpuMo8dX7dG6/5Zq0yssatNs4bBhHTqXr7GjxaDF/cY32bJv4m70effYdYXldtYVDm7jZqEe1fHZH3WC+RX/l2ig05zIx4Xt65GEg8m/j7ZsmGHWZzKPTdSWAwR1gP85vd/M87LZvln+bcF5kZnp9m3cwuvnR43Kzov0S7FvY6ACDvUIeTRuVcBhBKE/3KaAwxACh0EKODQgjIvbFXBoROAwWAGHxgQOdyjg0JTA4U4FHJoTONylgEMLAochCji0JHAYqoBDKwKHYQo4tCZwuFsBhzYEDsMVcGhL4HCPAg7tCBxGKODQnsDhXgUcOhA4jFTAoSOBwygFHDoROIxWwKELgcN9Cjh0JXC4XwGH7gQOYxRw6EHg8IACDj0JHMYq4NCLwOFBBRx6EziMU8ChD4HDeAUc+hI4TNDwnpfAYaICDv0JHCYp4DCAwOEhBRwGEjhMVsChFOF998MKOAwi9IcpCjgMJnB4RAGHOwkcpmqYD0Pg8KgCDsMIHKYp4DCcwOExDfPlCBweV8BhJIHDEwo4jCZwmK6Aw+qc9m08qYDDGEJ/mKGAw1gCh5kKOIwjcJilgMMEAoenFHCYROAwWwGHyQQOTyvgMIXAYY4CDlMJHJ5RwGEagcNcBRweJ3B4VgGH6QQO8xRwmEHg8JwCDrMIHJ5XwGE2gcMLCjjMIXCYr4DDXAKHFxVwmEfgsEABh+cJHF5SwGE+gcPLCjgsIHB4RQGHlwkcFirgsJDA4VUFHBYROCxSwGEJgcNiBRyWEjgsUcBhGYHDawo4vEngsFQBh+UEDq8r4LCCwGGZAg4rCRzeUMDhPQKHNxVwWEXg8JaGeSAEDssVcFhD4PC2Ag5rCRxWKOCwjsDhHQUcPiVwWKmAw3oCh3cVcNhA4PCeAg4bCRzeV8BhE4HDKgUcviZw+EABh80EDqsVcNhK4PChAg7bCBzWKOCwncDhIwUcdhA4rFXA4UcCh48VcNhJ4LBOAYddBA6fKOCwm8DhUwUc9hA4fKaAw14Ch/UKOPxO4PC5Ag77CRw2KOBwgMDhCwUcDhI4bFTA4RCBw5cKODiE7xRuUsAhB4HDVwo4pBA4fK2AQxqBwzcKOOQicNisgEMeAoctCjjkI3DYqoBDAQKHbxVwyCBw2KaAQ2ECh+8UcChC4LBdAYeiBA7fK+BQjMBhhwIOxQkcflDAoQSBw48KOJQkcPhJAYcogcNOBRxKEzj8rIBDGQKHXQo4lCVw+EUBh/IEDrsVcKhI4PCrAg6VCBz2KOBQmcDhNwUcqhI47FXAoTqBwz4FHGoSOPyugENtAoc/FHCoQ+CwXwGHegQOfyrgUJ/A4YACDg0IHP5SwKERgcNBBRwaEzj8rYBDUwKHQwo4NCdwOKyAQwsCB6fI/30OLQkcIgo4tCJwyKGAQ2sCh5wKOLQhcEhRwKEtgUOqAg7tCBzSFHBoT+CQroBDBwKHXAo4dCRwyK2AQycChzwKOHQhcMirgENXAod8Cjh0J3DIr4BDDwKHAgo49CRwKKiAQy8ChwwFHHoTOBRSwKEPgUNhBRz6EjicoIBDPwKHIkVkNnII//06GY7TMCP48fW84+PrUbVH6/5bqk2vsKhNs4XDhnXoXL7GjhaDFvcb32TLvom73f9/orAeUk413T9qu37lFPpVU3Bs7YzgxxYNXt/Iv384wc+p5dlwZOc5KW7J55ZUv39U6EMNR97/TexUdzh2qjn2x1pd4Vg7J+Pojqgj36QMxhSS6W7mdpLXF4sVOWpTbFwwaI782zm935O889C5C8Y5ZtJIDYSN1EDYSIcPH97vtz/qJLaHP2Lrd7IHvngRJyuUk72WiN1XPAawtHEywUiVP3cZu8pfz9CvPEK/MreU4HYmuHYiJxcJ7lNxwVVDwDUStK6ZHVPKEgP3ZIOrETbpAD2U33F+Kxj8+JwFHGdXQXmdTilivx57BfVIMaxHCUI99gnqkWpYj1MJ9fhdUI80w3qUJNTjD0E90g3rUYpQj/2CeuQyrEeUUI8/BfXIbViP0wj1OCCoRx7DepS2fKeIevxl4NfpBL8OGvhVhuDX3wZ+nUHw65CBX2UJfh028KscwS/HIE4uT/ArYuBXBYJfOQz8qkjwK6eBX2cS/Eox8KsSwa9UA7/OIviVZuBXZYJf6QZ+VSH4lcvAr6oEv3Ib+FWN4FceA7+qE/zKa+BXDYJf+Qz8qknwK7+BX7UIfhUw8Ks2wa+CBn6dTfArw8CvOgS/Chn4VZfgV2EDv+oR/DrBwK9zCH4VMfCrPsGvEw38OpfgV1EDvxoQ/DrJwK+GBL+KGfjViODXyQZ+nUfwq7iBX40Jfp1i4FcTgl8lDPxqSvDrVAO/mhH8KmngV3OCX6UM/Dqf4FfUwK8WBL9OM/DrAoJfpQ38aknw63QDvy4k+FXGwK9WBL/OMPDrIoJfZQ38ak3wq5yBXxcT/Cpv4Fcbgl8VDPy6hOBXRQO/2hL8OtPAr0sJflUy8Ksdwa+zDPy6jOBXZQO/2hP8qmLg1+UEv6oa+NWB4Fc1A7+uIPhV3cCvjgK/MC+0rlsaef+NOW+YL4a5VpindGSOT5F/5pZgXgbmQGC+Ad7t4z063lnj/TDexeK9J94x4n0e3p3hPRXeCeH9C9514L0CnuHjeTmeTeM5MJ654vkmniXiuR2ekeF5FJ794DkLnmng+QHu1XFfjHtQ3O/h3gr3MbhnQHyOWBhxJ2I8xFOIXRAn4JqM6x+uNdB1aCj0CtqAcYg+j/6FtuxYxJ+PhP2VwdnnEszfzJXH8hxazN+E79K+1il4fY/MN6rrsz/qyDZp3SQ+mtroLBxz9Zz/jbn4MSedj4Y2il0wEGSOMtpJaqezwEYX4Xio57M/6gTzK/4v0UCnccZDFwMb2KR6e1X4ehv59w9HprdXGehtV17/Ouqs7LxIV0L/6qaAw8x0+za6K+DQL8W+jasVcKhH+OptDwUcRhD6wzUKOAwhcOipgEMDwri4VgGHRgQOvRRwaEzgcJ0CDk0JHHor4NCcwOF6BRxaEDj0UcChJYHDDQo4tCJw6KuAQ2sChxsVcGhD4NBPAYe2BA43KeDQjsChvwIO7QkcblbAoQOBwwAFHDoSONyigEMnAoeBCjh0IXC4VcNzewKH2xRw6E7gMEgBhx4EDrcr4NCTwGGwAg69CBzuUMChN4HDnQo49CFwuEsBh74EDkM0vOclcBiqgEN/AodhCjgMIHC4WwGHgQQOwxVwKEV4332PAg6DCP1hhAIOgwkc7lXA4U4Ch5Ea5sMQOIxSwGEYgcNoBRyGEzjcp2G+HIHD/Qo4jCRwGKOAw2gChwcUcFid076NsQo4jCH0hwcVcBhL4DBOAYdxBA7jFXCYQOAwQQGHSQQOExVwmEzgMEkBhykEDg8p4DCVwGGyAg7TCBweVsDhcQKHKQo4TCdweEQBhxkEDlMVcJhF4PCoAg6zCRymKeAwh8DhMQUc5hI4PK6AwzwChycUcHiewGG6Ag7zCRyeFHBATpFznKP5dpAzAfkCsFYe68SxRhrrg7E2FutCsSYS6wGxFg7rwLAGCut/sPYF6z6w5gHz/THXHfO8MccZ83sxtxXzOjGnEfP5MJcN87gwhwnzdzB3BfM2MGcB7+vxrhrvafGOEu/n8G4K72XwTgLP4/EsGs9h8QwSz9/w7AnPXfDMAffbuNfEfRbuMRBfI7ZEXIWYAtdTXEugo9AQjB/0HXDL3KR5cPC1Z2m+HeTpkNrpJrAxQzgezvHZH3WC+RX/l2ig0zj5UGYY2MAmzbczM7gdW/l2jnQnKR/0Rfgef16i+s7i9a+jzsrOi8wi9K+nFHBg5NuZrYADI9/O0wo4MPLtzFHAgZFv5xkFHBj5duYq4MDIt/OsAg6MfDvzFHBg5Nt5TgEHRr6d5xVwYOTbeUEBB0a+nfkKODDy7byogAMj384CBRwY+XZeUsCBkW/nZQUcGPl2XlHAgZFvZ6ECDox8O68q4MDIt7NIAQdGvp3FCjgw8u0sUcCBkW/nNQUcGPl2lirgwMi387oCDox8O8sUcGDk23lDAQdGvp03FXBg5Nt5SwEHRr6d5Qo4MPLtvK3hPS+BwwoFHBj5dt5RwIGRb2elAg6MfDvvKuDAyLfzngIOjHw77yvgwMi3s0oBB0a+nQ80zIchcFitgAMj386HCjgw8u2s0TBfjsDhIwUcGPl21irgwMi387ECDox8O+sUcGDk2/lEAQdGvp1PFXBg5Nv5TAEHRr6d9Qo4MPLtfK6AAyPfzgYFHBj5dr5QwIGRb2ejAg6MfDtfKuDAyLezSQEHRr6drxRwYOTb+VrDel4Ch28UcGDk29msgAMj384WBRwY+Xa2KuDAyLfzrQIOjHw72xRwYOTb+U7AATlF6jtH8+0gZwLyBWCtPNaJY4001gdjbSzWhWJNJNYDYi0c1oFhDRTW/2DtC9Z9YM0D5vtjrjvmeWOOM+b3Ym4r5nViTiPm82EuG+ZxYQ4T5u9g7grmbWDOAt7X41013tPiHSXez+HdFN7L4J0EnsfjWTSew+IZJJ6/4dkTnrvgmQPut3Gvifss3GMgvkZsibgKMQWup7iWQEehIRg/6DvglrlJ8+BUd+T5dpCnQ2rnKYGN7cLxUN9nf9QJ5lf8X6KBTuPkQ9luYAObNN/O98Ht2Mq3c8RlKR/0Rfgef16i+u7g9a+jzsrOi+wg9K8fFHBg5Nv5UQEHRr6dnxRwYOTb2amAAyPfzs8KODDy7exSwIGRb+cXBRwY+XZ2K+DAyLfzqwIOjHw7exRwYOTb+U0BB0a+nb0KODDy7exTwIGRb+d3BRwY+Xb+UMCBkW9nvwIOjHw7fyrgwMi3c0ABB0a+nb8UcGDk2zmogAMj387fCjgw8u0cUsCBkW/nsAIOjHw7zon/9zkw8u1EFHBg5NvJoYADI99OTgUcGPl2UhRwYOTbSVXAgZFvJ00BB0a+nXQFHBj5dnIp4MDIt5NbAQdGvp08Cjgw8u3kVcCBkW8nnwIOjHw7+RVwYOTbKaCAAyPfTkEFHBj5djIUcGDk2ymkgAMj305hBRwY+XZOUMCBkW+niAIOjHw7JyrgwMi3U1QBB0a+nZMUcGDk2ymmgAMj387JCjgw8u0UV8CBkW/nFAUcGPl2SijgwMi3c6oCDox8OyUVcGDk2ymlgAMj305UAQdGvp3TFHBg5NsprYADI9/O6Qo4MPLtlFHAgZFv5wwFHBj5dsoq4MDIt1NOAQdGvp3yCjgw8u1UEHBAgo5znaP5dpAzAfkCsFYe68SxRhrrg7E2FutCsSYS6wGxFg7rwLAGCut/sPYF6z6w5gHz/THXHfO8MccZ83sxtxXzOjGnEfP5MJcN87gwhwnzdzB3BfM2MGcB7+vxrhrvafGOEu/n8G4K72XwTgLP4/EsGs9h8QwSz9/w7AnPXfDMAffbuNfEfRbuMY7E125BXIWYAtdTXEugo9AQjB/0HXDL3KR5cMYUkufb+cEg384PAhsVhePhXJ/9USeYX/F/iQY6jZMPRcIhdpPm2zkzuB1b+XZS8IeUD/oifI8/L1F9K/H611FnZedFKp1o38ZZCjgw8u1UVsCBkW+nigIOjHw7VRVwYOTbqaaAAyPfTnUFHBj5dmoo4MDIt1NTAQdGvp1aCjgw8u3UVsCBkW/nbAUcGPl26ijgwMi3U1cBB0a+nXoKODDy7ZyjgAMj3059BRwY+XbOVcCBkW+ngQIOjHw7DRVwYOTbaaSAAyPfznkKODDy7TRWwIGRb6eJAg6MfDtNFXBg5NtppoADI99OcwUcGPl2zlfAgZFvp4UCDox8Oxco4MDIt9NSAQdGvp0LNbznJXBopYADI9/ORQo4MPLttFbAgZFv52IFHBj5dtoo4MDIt3OJAg6MfDttFXBg5Nu5VMN8GAKHdgo4MPLtXKaAAyPfTnsN8+UIHC5XwIGRb6eDAg6MfDtXKODAyLfTUQEHRr6dKxVwYOTb6aSAAyPfTmcFHBj5droo4MDIt3OVAg6MfDtdFXBg5NvppoADI99OdwUcGPl2rlbAgZFvp4cCDox8O9co4MDIt9NTAQdGvp1rFXBg5NvppYADI9/OdQo4MPLt9FbAgZFv53oFHBj5dvoo4MDIt3ODMN9OA+dovh3kTEC+AKyVxzpxrJHG+mCsjcW6UKyJxHpArIXDOjCsgcL6H6x9wboPrHnAfH/Mdcc8b8xxxvxezG3FvE7MacR8PsxlwzwuzGHC/B3MXcG8DcxZwPt6vKvGe1q8o8T7ObybwnsZvJPA83g8i8ZzWDyDxPM3PHvCcxc8c8D9Nu41cZ+FewzE14gtEVchpsD1FNcS6Cg0BOMHfQfcMjdpHpxqjjzfDvJ0SO3E5vZIZKOvcDw08NkfdYL5Ff+XaKDTOPlQ+hrYwCbNt3NjcDu28u2k4g8pH/RF+B5/XqL69uP1r6POys6L9CP0r5sUcGDk2+mvoT8Q5lndrIADI9/OAAUcGPl2blHAgZFvZ6ACDox8O7cq4MDIt3ObAg6MfDuDFHBg5Nu5XQEHRr6dwQo4MPLt3KGAAyPfzp0KODDy7dylgAMj384QBRwY+XaGKuDAyLczTAEHRr6duxVwYOTbGa6AAyPfzj0KODDy7YxQwIGRb+deBRwY+XZGKuDAyLczSgEHRr6d0Qo4MPLt3KeAAyPfzv0KODDy7YxRwIGRb+cBBRwY+XbGKuDAyLfzoIb3vAQO4xRwYOTbGa+AAyPfzgQFHBj5diYq4MDItzNJAQdGvp2HFHBg5NuZrIADI9/OwxrmwxA4TFHAgZFv5xEFHBj5dqZqmC9H4PCoAg6MfDvTFHBg5Nt5TAEHRr6dxxVwYOTbeUIBB0a+nekKODDy7TypgAMj384MBRwY+XZmKuDAyLczSwEHRr6dpxRwYOTbma2AAyPfztMKODDy7cxRwIGRb+cZBRwY+XbmKuDAyLfzrAIOjHw78xRwYOTbeU4BB0a+necVcGDk23lBAQdGvp35Cjgw8u28KOCAnCINnaP5dpAzAfkCsFYe68SxRhrrg7E2FutCsSYS6wGxFg7rwLAGCut/sPYF6z6w5gHz/THXHfO8MccZ83sxtxXzOjGnEfP5MJcN87gwhwnzdzB3BfM2MGcB7+vxrhrvafGOEu/n8G4K72XwTgLP4/EsGs9h8QwSz9/w7AnPXfDMAffbuNfEfRbuMRBfI7ZEXIWYAtdTXEugo9AQjB/0HXDL3KR5cJCzpJgw3w7ydEjtxOb2SGRjgXA8NPTZH3WC+RX/l2ig0zj5UBYY2MAmzbfzUnA7tvLtpOEPKR/0Rfgef16i+r7M619HnZWdF3mZ0L9eEdqQjvk6GY5TNyP48fXcY8/JkLfnQgXtycgb9KoCDoy8QYsUcGDkDVqsgAMjb9ASBRwYeYNeU8CBkTdoqQIOjLxBryvgwMgbtEwBB0beoDcUcGDkDXpTAQdG3qC3FHBg5A1aroADI2/Q2wo4MPIGrVDAgZE36B0FHBh5g1Yq4MDIG/SuAg6MvEHvKeDAyBv0vgIOjLxBqxRwYOQN+kABB0beoNUKODDyBn2ogAMjb9AaBRwYeYM+UsCBkTdorQIOjLxBHyvgwMgbtE4BB0beoE8UcGDkDfpUw3teAofPFHBg5A1ar4ADI2/Q5wo4MPIGbVDAgZE36AsFHBh5gzYq4MDIG/SlAg6MvEGbNMyHIXD4SgEHRt6grxVwYOQN+kbDfDkCh80KODDyBm1RwIGRN2irAg6MvEHfKuDAyBu0TQEHRt6g7xRwYOQN2q6AAyNv0PcKODDyBu1QwIGRN+gHBRwYeYN+VMCBkTfoJwUcGHmDdirgwMgb9LMCDoy8QbsUcGDkDfpFAQdG3qDdCjgw8gb9qoADI2/QHgUcGHmDflPAgZE3aK8CDoy8QfsUcGDkDfpdwAG5URp5BRtyJiBfANbKY5041khjfTDWxmJdKNZEYj0g1sJhHRjWQGH9D9a+YN0H1jxgvj/mumOeN+Y4Y34v5rZiXifmNGI+H+ayYR4X5jBh/g7mrmDeBuYs4H093lXjPS3eUeL9HN5N4b0M3kngeTyeReM5LJ5B4vkbnj3huQueOeB+G/eauM/CPQbia8SWiKsQU+B6imsJdBQagvGDvgNumVt8bo8geYAE+UOO5GpBno54O4nOi7WRyKc/TpSNh0Y++6NOML/i/xINdBonr8sfBjawSfMG7Q9ux1beoHT8IeWDvgjf489LVN8/ef3rqLOy8yJ/EvrXAQUcGPl2/lLAgZFv56ACDox8O38r4MDIt3NIAQdGvp3DCjgw8u04Rf/vc2Dk24ko4MDIt5NDAQdGvp2cCjgw8u2kKODAyLeTqoADI99OmgIOjHw76Qo4MPLt5FLAgZFvJ7cCDox8O3kUcGDk28mrgAMj304+BRwY+XbyK+DAyLdTQAEHRr6dggo4MPLtZCjgwMi3U0gBB0a+ncIKODDy7ZyggAMj304RBRwY+XZOVMCBkW+nqAIOjHw7JyngwMi3U0wBB0a+nZMVcGDk2ymugAMj384pCjgw8u2UUMCBkW/nVAUcGPl2SirgwMi3U0oBB0a+nagCDox8O6cp4MDIt1NaAQdGvp3TFXBg5Nspo4ADI9/OGQo4MPLtlFXAgZFvp5wCDox8O+UVcGDk26mggAMj305FBRwY+XbOVMCBkW+nkgIOjHw7ZyngwMi3U1kBB0a+nSoKODDy7VRVwIGRb6eaAg6MfDvVFXBg5NupoYADI99OTQUcGPl2aingwMi3U1sBB0a+nbMVcGDk26mjgAMj305dBRwY+XbqCTggp8h5zlEWyJmAfAFYK4914lgjjfXBWBuLdaFYE4n1gFgLh3VgWAOF9T9Y+4J1H1jzgPn+mOuOed6Y44z5vZjbinmdmNOI+XyYy4Z5XJjDhPk7mLuCeRuYs4D39XhXjfe0R95RugXvpvBeBu8k8Dwez6LxHBbPIPH8Dc+e8NwFzxxwv417Tdxn4R4D8TViS8RViClwPcW1BDoKDcH4Qd8Bt8wth5A5cpacVOTo8UHy8xwwyLdzQJBv5xzheDjPZ3/UCeZX/F+igU7j5EORcIjdpPl26ge3ExHk24kI8u1E/v3DkfVd+B5/XqL6nivgin87p/frd14Ooe2igrHWoKiMX+Ymbf+G4bf/Pyc4Wf1OdHimdploXuaxidg0MuwrsedJ/auT4fbrDMF10zteOg7OE+qLST3OFdbjXIN6NOZdL446KzuPkjeqiQIOjLxRTRVwYOSNaqaAAyNvVHMFHBh5o85XwIGRN6qFAg6MvFEXKODAyBvVUgEHRt6oCxVwYOSNaqWAAyNv1EUKODDyRrVWwIGRN+piBRwYeaPaKODAyBt1iQIOjLxRbRVwYOSNulQBB0beqHYKODDyRl2mgAMjb1R7BRwYeaMuV8CBkTeqgwIOjLxRVyjgwMgb1VEBB0beqCsVcGDkjeqkgAMjb1RnBRwYeaO6KODAyBt1lQIOjLxRXTW85yVw6KaAAyNvVHcFHBh5o65WwIGRN6qHAg6MvFHXKODAyBvVUwEHRt6oaxVwYOSN6qVhPgyBw3UKODDyRvVWwIGRN+p6DfPlCBz6KODAyBt1gwIOjLxRfRVwYOSNulEBB0beqH4KODDyRt2kgAMjb1R/BRwYeaNuVsCBkTdqgAIOjLxRtyjgwMgbNVABB0beqFsVcGDkjbpNAQdG3qhBCjgw8kbdroADI2/UYAUcGHmj7lDAgZE36k4FHBh5o+5SwIGRN2qIAg6MvFFDFXBg5I0apoADI2/U3cI8FtJ/H/lCzjXIM1PNcv4T5IdB7hZpDprhgnwv0jrE+5Lo30eOkAEnBD8eOUJOLCJvi3sEfSTFLQWcozayOBBnN5G/dYMfm8XeiKLZMDiiqPy8e4sGh2nq171Fj+6IOsE3kwHbyGDA1rI8YBee+E9SJ6lftYV+ZW7SRFAjBcIgYBWpnc1EYIn8ruf807ek4lNPYGOU5YsM2I8y6BujDRNUjU5CMrNRAs24j5TM7P7w+/CRzSQpmSAh15GL/3kG/WVMUfv1aCysR2ODejxgeTzCr+EGwdXY/0PBFdriHmFb3GPQFg8Kg6u83u9/HIizm8hfSXCVHTtnOxw792ezTydM9On8o6fSfpRTcGx9R84qEv+XaKDTnMgoy8DOcf65yEmBSS6M44SDp6Bz1J/j1S2Rj0EH7eHDhzf77Y86iW3gj1hfx3s3ABOKOlmjkfGe6sTum+DjYHw0kMiBB4M1xAS3ISLjBY02QQhP2vHQgcYb3i2Z3ILfIrwFb2KQpnMiId3oQGE9mhrUYxKhHrcK69HMoB4PEepxm7AezQ3qMZlQj0HCepxvUI+HCfW4XViPFgb1mEKox2BhPS4wqMcjhHrcIaxHS4N6TCXU405hPS40qMejhHrcJaxHK4N6TCPUY4iwHhcZ1OMxQj2GCuvR2qAejxPqMUxYj4sN6vEEoR53C+vRxqAe0wn1GC6sxyUG9XiSUI97hPVoa1CPGYR6jBDW41KDeswk1ONeYT3aGdRjFqEeI4X1uMygHk8R6jFKWI/2BvWYTajHaGE9Ljeox9OEetwnrEcHg3rMIdTjfmE9rjCoxzOEeowR1qOjQT3mEurxgLAeVxrU41lCPcYK69HJoB7zCPV4UFiPzgb1eI5Qj3HCenQxqMfzhHqMF9bjKoN6vECoxwRhPboa1GM+oR4ThfXoZlCPFwn1mCSsR3eDeiwg1OMhYT2uNqjHS4R6TBbWo4dBPV4m1ONhYT2uMajHK4R6TBHWo6dBPRYS6vGIsB7XGtTjVUI9pgrr0cugHosI9XhUWI/rDOqxmFCPacJ69DaoxxJCPR4T1uN6g3q8RqjH48J69DGox1JCPZ4Q1uMGg3q8TqjHdGE9+hrUYxmhHk8K63GjQT3eINRjhrAe/Qzq8SahHjOF9bjJoB5vEeoxS1iP/gb1WE6ox1PCetz8/7F3JvA2Ve8b3+fea7ima8p4sY0hZChJkjkJSZKEEJKETJm5ZmUmSSpFkqRJ0jzPmlSSJDRJkgpJqv966m52u33vPWtZ5+m8/5/9+by5nX3WetfzPWvvs8/eaz3LQMdLBB0rNXUMNdDxMkHHvZo6hhnoeIWgY5WmjuEGOl4l6LhPU8cNBjpeI+hYraljhIGO1wk67tfUMdJAxxsEHWs0dYwy0PEmQccDmjpGG+h4i6BjraaOMQY6NhJ0PKipY6yBjrcJOh7S1DHOQMc7BB0Pa+oYb6DjXYKORzR1TDDQ8R5Bx6OaOtIMdLxP0LFOU8dEAx2bCDoe09QxyUDHBwQd6zV1TDbQ8SFBx+OaOqYY6PiIoGODpo6pBjo2E3Q8oaljmoGOjwk6ntTUMd1AxxaCjqc0dcww0PEJQcfTmjpuNNCxlaDjGU0dNxno+JSg41lNHTMNdGwj6HhOU8csAx2fEXQ8r6ljtoGO7QQdL2jqmGOg43OCjhc1dcw10LGDoOMlTR3zDHTsJOh4WVPHfAMduwg6XtHUscBAxxcEHa9q6lhooONLgo7XNHXcbKDjK4KO1zV1LDLQ8TVBxxuaOm4x0PENQcebmjoWG+jYTdDxlqaOWw10fEvQsVFTxxIDHXsIOt7W1HGbgY7vCDre0dSx1EDHXoKOdzV13G6g43uCjvc0ddxhoGMfQcf7mjruNNDxA0HHJk0dywx07Cfo+EBTx10GOn4k6PhQU8fdBjp+Iuj4SFPHcgMdPxN0bNbUscJAxwGCjo81ddxjoOMgQccWTR0rDXQcIuj4RFPHvQY6fiHo2KqpY5WBjsMEHZ9q6rjPQMevBB3bNHWsNtBxhKDjM00d9xvo+I2gY7umjjUGOo4SdHyuqeMBAx2/E3Ts0NSx1kDHHwQdOzV1PGig40+Cjl2aOh4y0OEUjb2OLzR1PGygI0LQ8aWmjkcMdCQQdHylqeNRAx2JBB1fa+pYZ6AjiaDjG00djxnoyEbQsVtTx3oDHdkJOr7V1PG4gY4cBB17NHVsMNCRk6DjO00dTxjoSCbo2Kup40kDHbkIOr7X1PGUgY7cBB37NHU8baAjD0HHD5o6njHQkZegY7+mjmcNdOQj6PhRU8dzBjpSCDp+0tTxvIGO/AQdP2vqeMFARwGCjgOaOl400FGQoOOgpo6XDHQUIug4pKnjZQMdhQk6ftHU8YqBjlMIOg5r6njVQEcRgo5fNXW8ZqCjKEHHEU0drxvoKEbQ8ZumjjcMdBQn6DiqqeNNAx0lCDp+19TxloGOkgQdf2jq2GigI5Wg409NHW8b6ChF0OEU1tPxjoGO0gQdEU0d7xroKEPQkaCp4z0DHS5BR6KmjvcNdJQl6EjS1LHJQEc5go5smjo+MNBRnqAju6aODw10VCDoyKGp4yMDHRUJOnJq6thsoKMSQUeypo6PDXScStCRS1PHFgMdlQk6cmvq+MRARxWCjjyaOrYa6KhK0JFXU8enBjpOI+jIp6ljm4GOagQdKZo6PjPQUZ2gI7+mju0GOmoQdBTQ1PG5gY7TCToKaurYYaCjJkFHIU0dOw101CLoKKypY5eBjtoaOrA+fBMVy9L/H2uOY71urHWNdaKxxjLWJ8bavlgXF2vKYj1WrGWKdUCxhibWn8TajVj3EGsGYr09rFWHdd6wRhrWF8PaXFjXCmtCYT0lrEWEdXywBg7Wj8HaK1i3BGt+YL0MrDWBdRqwxgHWB4C3Pnzp4ekOP3R4icOHGx7W8H+GdzJ8h+HZC79beMXCZxUepfD3hDcmfCXhyQg/Q3gBwkcPHnTwb4P3GXzD4LkFvyp4PcEnCR5D8OeBtw18YeCpAj8SeHnABwMeEvBfgHcB5v1jzjzmm2OuNuY5Y44w5tdibirmdWJOJOYTYi4e5rFhDhjmT2HuEebtYM4L5otgrgXmKWCMP8bHY2w5xmVjTDPGA2MsLcahYgwnxj9i7CDG3WHMGsZ7YawUxhlhjA7Gt2BsCMZVYEwCnufjWTieI+MZLJ5f4tkfnpvhmROe1+BZB54T4B477k/j3i7ui+KeIu7H4V4W7gP9dQ+l6N+/3fG7F78Z8XsLv1VwnY9rZFxf4toM1zW4JsD3Kb6LcB7HORDnDxx76LfHOn+gz2exZZuuOMwpon+s1NE4VhLSj5Xg5jp6m6a2iE4bTXOcEeNzH9ozt0j0n8s5KqYbfJ5nap77mjonz30nz33xde5L0OzzOE40jt8I3o/jRPcY9ufIqk11i+qdV5uGvO460bUr+IcbVTHOebWuZg7T7z3dz3K6xrn4LN5nebyBeuUiZxE+y3oCOCzPEfscZwvgMCgp9jnqC+BQP1fsc5wjgMMUQn9oIIDDeAKHcwVwaEg4LhoK4NCIwOE8ARyaEDg0EsChGYFDYwEcWhA4NBHAoSWBQ1MBHFoRODQTwKE1gUNzARzaEji0EMChHYHD+QI4tCdwaCmAQwcChwsEcOhI4NBKAIdOBA4XCuDQmcChtQAOXQgc2gjg0I3Aoa0ADt0JHC4SwKEngUM7ARx6EThcLIBDHwKH9gI49CVwuEQAh34EDh0EcOhP4HCpAA4DCBw6SnjOS+BwmQAOgwkcOgngMJTA4XIBHIYTOHQWwKEM4Xn3FQI4jCT0hy4COIwmcOgqgMNYAoduEsbDEDhcKYBDGoFDdwEcJhE49JAwXo7AoacADtMIHK4SwGEGgUMvARw2JsY+R28BHGYS+kMfARxmEzhcLYDDXAKHvgI4zCdwuEYAh4UEDv0EcFhE4HCtAA6LCRz6C+CwhMDhOgEclhI4DBDA4Q4Ch4ECOCwjcBgkgMPdBA7XC+CwgsBhsAAOKwkchgjgsIrAYagADqsJHIYJ4LCGwGG4AA5rCRxuEMDhIQKHEQI4PELgMFIAh3UEDqMEcFhP4DBaAIcNBA5jBHB4ksBhrAAOTxM4jBPA4VkCh/ECODxP4DBBAIcXCRzSBHB4mcBhogAOrxI4TBLA4XUCh8kCOLxJ4DBFwjgQAoepAji8Q+AwTQCH9wgcpgvgsInAYYYADh8SONwogMNmAoebBHDYQuAwUwCHrQQOswRw2EbgMFsAh+0EDnMEcNhB4DBXAIddBA7zBHD4ksBhvgAOXxM4LBDAYTeBw0IBHPYQONwsgMNeAodFAjjsI3C4RQCH/QQOiwVw+InA4VYBHA4QOCwRwOEQgcNtAjgcJnBYKoDDEQKH2wVwOErgcIcADn8QONwpgIOTO/Y5lgngkEDgcJcADkkEDncL4JCdwGG5AA45CRxWCOCQi8DhHgEc8hA4rBTAIR+Bw70COOQncFglgENBAof7BHAoTOCwWgCHIgQO9wvgUIzAYY0ADiUIHB4QwCGVwGGtAA6lCRweFMDBJXB4SACHcgQODwvgUIHA4REBHCoRODwqgENlAod1AjhUJXB4TACHagQO6wVwqEHg8LgADjUJHDYI4FCbwOEJARzOIHB4UgCHugQOTwngUI/A4WkBHOoTODwjgEMDAodnBXBoSODwnAAOjQgcnhfAoQmBwwsCODQjcHhRAIcWBA4vCeDQksDhZQEcWhE4vCKAQ2sCh1cFcGhL4PCaAA7tCBxeF8ChPYHDGwI4dCBweFMAh44EDm8J4NCJwGGjAA6dCRzeFsChC4HDOwI4dCNweFcAh+4EDu8J4NCTwOF9ARx6EThsEsChD4HDBwI49CVw+FAAh34EDh8J4NCfwGGzAA4DCBw+FsBhEIHDFg0OiSqaqViW/v9nq7L1VZyjooGKc1U0VHGeikYqGqtooqKpimYqmqtooeJ8FS1VXKCilYoLVbRW0UZFWxUXqWin4mIV7VVcoqKDiktVdFRxmYpOKi5X0VnFFSq6qOiqAuvTY212rEuONbmxHjXWYsY6xFiDF+vPYu1VrDuKNTex3iTWWsQ6g1hjD+vLYW01rCuGNbWwnhTWUsI6QlhDB+vHYO0UrBuCNTOwXgTWSsA6AfDIhz88vNHhCw5PbPhBwwsZPsDwwIX/K7xP4fsJz0v4PcLrED5/8LiDvxu8zeDrBU8r+DnBywg+PvCwgX8LvEvg2wHPCvg1wKsA8/QxRx3zszE3GfNyMScV8zExFxHz8DAHDfOvMPcI824w5wTzLTDXAOPsMcYc46sxthjjajGmFOMpMZYQ4+gwhgzjpzB2CONmMGYE4yUwVgDPyfGMGM9H8WwQz8XwTAjPQ/AsAPfBcQ8Y9z9x7w/3vXDPB/c78Fsfv3PxGw+/b3Btj+taXNPhegbf5fgewzkc5y8cu+i33pag2efPVv+ZXuT4+2v2ajt4Z61lVTa0a74+La1T18p1drcc+cSgeU13HlywP/299Yrq50GZaHN8UlTvfNQs5HXXia5dwT/cqIo5kbOKxv589IlmDs36s+GznFNE+7NM0OkvW3mf5bFNl/NWwmf56Ql+lllxxvdRg/R//eWySpOo8d4GGu3ZJuBzX54j9jk+E8BhUFLsc2wXwKE+wSvlcwEcphD6ww4BHMYTOOwUwKEh4bjYJYBDIwKHLwRwaELg8KUADs0IHL4SwKEFgcPXAji0JHD4RgCHVgQOuwVwaE3g8K0ADm0JHPYI4NCOwOE7ARzaEzjsFcChA4HD9wI4dCRw2CeAQycChx8EcOhM4LBfAIcuBA4/CuDQjcDhJwEcuhM4/CyAQ08ChwMCOPQicDgogEMfAodDAjj0JXD4RQCHfgQOhwVw6E/g8KsADgMIHI5IeM5L4PCbAA6DCRyOCuAwlMDhdwEchhM4/CGAQxnC8+4/BXAYSegPTrH45zCawCEigMNYAocEARzGEzgkCuCQRuCQJIDDJAKHbAI4TCFwyC6AwzQChxwCOMwgcMgpgMPGxNjnSBbAYSahP+QSwGE2gUNuARzmEjjkEcBhPoFDXgEcFhI45BPAYRGBQ4oADosJHPIL4LCEwKGAAA5LCRwKCuBwB4FDIQEclhE4FBbA4W4Ch1MEcFhB4FBEAIeVBA5FBXBYReBQTACH1QQOxQVwWEPgUEIAh7UEDiUFcHiIwCFVAIdHCBxKCeCwjsChtAAO6wkcygjgsIHAwRXA4UkCh7ICODxN4FBOAIdnCRzKC+DwPIFDBQEcXiRwqCiAw8sEDpUEcHiVwOFUARxeJ3CoLIDDmwQOVSSMAyFwqCqAwzsEDqcJ4PAegUM1ARw2EThUF8DhQwKHGgI4bCZwOF0Ahy0EDjUFcNhK4FBLAIdtBA61BXDYTuBQRwCHHQQOZwjgsIvA4UwBHL4kcKgrgMPXBA5nCeCwm8ChngAOewgczhbAYS+BQ30BHPYROJwjgMN+AocGAjj8ROBwrgAOBwgcGgrgcIjA4TwBHA4TODQSwOEIgUNjARyOEjg0EcDhDwKHpgI4OIS1KJsJ4JBA4NBcAIckAocWAjhkJ3A4XwCHnAQOLQVwyEXgcIEADnkIHFoJ4JCPwOFCARzyEzi0FsChIIFDGwEcChM4tBXAoQiBw0UCOBQjcGgngEMJAoeLBXBIJXBoL4BDaQKHSwRwcAkcOgjgUI7A4VIBHCoQOHQUwKESgcNlAjhUJnDoJIBDVQKHywVwqEbg0FkAhxoEDlcI4FCTwKGLAA61CRy6CuBwBoFDNwEc6hI4XCmAQz0Ch+4CONQncOghgEMDAoeeAjg0JHC4SgCHRgQOvQRwaELg0FsAh2YEDn0EcGhB4HC1AA4tCRz6CuDQisDhGgEcWhM49BPAoS2Bw7UCOLQjcOgvgEN7AofrBHDoQOAwQACHjgQOAwVw6ETgMEgAh84EDtcL4NCFwGGwAA7dCByGCODQncBhqAAOPQkchgng0IvAYbgADn0IHG4QwKEvgcMIARz6ETiMFMChP4HDKAEcBhA4jBbAYRCBwxgNDokqmqtYlv7/nxV1nO0qPlexQ8VOFbtUfKHiSxVfqfhaxTcqdqv4VsUeFd+p2KviexX7VPygYr+KH1X8pOJnFQdUHFRxSMUvKg6r+FXFERW/qTiq4ncVf6j4U4WjdERUYH16rM2OdcmxJjfWo8ZazFiHGGvwYv1ZrL2KdUex5ibWm8Rai1hnEGvsYX05rK2GdcWwphbWk8JaSlhHCGvoYP0YrJ2CdUOwZgbWi/hrrQQV8MiHPzy80eELDk9s+EHDCxk+wPDAhf8rvE/h+wnPS/g9wusQPn/wuIO/G7zN4OsFTyv4OcHLCD4+8LCBfwu8S+DbAc8K+DXAqwDz9DFHHfOzMTcZ83IxJxXzMTEXEfPwMAcN868w9wjzbjDnBPMtMNcA4+wxxhzjqzG2GONqMaYU4ykxlhDj6DCGDOOnMHYI42YwZgTjJTBWAM/J8YwYz0fxbBDPxfBMCM9D8CwA98FxDxj3P3HvD/e9cM8H9zvwWx+/c/EbD79vcG2P61pc0+F6Bt/l+B7DORznLxy76LfelhDo8zV7tR28s9ayKhvaNV+fltapa+U6u1uOfGLQvKY7Dy7Yr/ZPL+I4nxaN/hjB+7cV/XeerMr5c2TVprHF9M5HzUNed53o2hX8w42qmBPZWjT25yMdDgb1Z8NnOaeI9meZiHLee7P6LMfxPstjmy7nccVin2O8AA7Lc8Q+xwQBHAYlxT5HmgAO9QneIRMFcJhC6A+TBHAYT+AwWQCHhoTjYooADo0IHKYK4NCEwGGaAA7NCBymC+DQgsBhhgAOLQkcbhTAoRWBw00COLQmcJgpgENbAodZAji0I3CYLYBDewKHOQI4dCBwmCuAQ0cCh3kCOHQicJgvgENnAocFAjh0IXBYKIBDNwKHmwVw6E7gsEgAh54EDrcI4NCLwGGxAA59CBxuFcChL4HDEgEc+hE43CaAQ38Ch6UCOAwgcLhdwnNeAoc7BHAYTOBwpwAOQwkclgngMJzA4S4BHMoQnnffLYDDSEJ/WC6Aw2gChxUCOIwlcLhHwngYAoeVAjikETjcK4DDJAKHVRLGyxE43CeAwzQCh9UCOMwgcLhfAIeNibHPsUYAh5mE/vCAAA6zCRzWCuAwl8DhQQEc5hM4PCSAw0ICh4cFcFhE4PCIAA6LCRweFcBhCYHDOgEclhI4PCaAwx0EDusFcFhG4PC4AA53EzhsEMBhBYHDEwI4rCRweFIAh1UEDk8J4LCawOFpARzWEDg8I4DDWgKHZwVweIjA4TkBHB4hcHheAId1BA4vCOCwnsDhRQEcNhA4vCSAw5MEDi8L4PA0gcMrAjg8S+DwqgAOzxM4vCaAw4sEDq8L4PAygcMbAji8SuDwpgAOrxM4vCWAw5sEDhsljAMhcHhbAId3CBzeEcDhPQKHdwVw2ETg8J4ADh8SOLwvgMNmAodNAjhsIXD4QACHrQQOHwrgsI3A4SMBHLYTOGwWwGEHgcPHAjjsInDYIoDDlwQOnwjg8DWBw1YBHHYTOHwqgMMeAodtAjjsJXD4TACHfQQO2wVw2E/g8LkADj8ROOwQwOEAgcNOARwOETjsEsDhMIHDFwI4HCFw+FIAh6MEDl8J4PAHgcPXAjg4hLUZvxHAIYHAYbcADkkEDt8K4JCdwGGPAA45CRy+E8AhF4HDXgEc8hA4fC+AQz4Ch30COOQncPhBAIeCBA77BXAoTODwowAORQgcfhLAoRiBw88COJQgcDgggEMqgcNBARxKEzgcEsDBJXD4RQCHcgQOhwVwqEDg8KsADpUIHI4I4FCZwOE3ARyqEjgcFcChGoHD7wI41CBw+EMAh5oEDn8K4FCbwMEpHv8cziBwiAjgUJfAIUEAh3oEDokCONQncEgSwKEBgUM2ARwaEjhkF8ChEYFDDgEcmhA45BTAoRmBQ7IADi0IHHIJ4NCSwCG3AA6tCBzyCODQmsAhrwAObQkc8gng0I7AIUUAh/YEDvkFcOhA4FBAAIeOBA4FBXDoROBQSACHzgQOhQVw6ELgcIoADt0IHIoI4NCdwKGoAA49CRyKCeDQi8ChuAAOfQgcSgjg0JfAoaQADv0IHFIFcOhP4FBKAIcBBA6lBXAYROBQRoNDoooWKpal//+EYo6TpmKiikkqJquYomKqimkqpquYoeJGFTepmKlilorZKuaomKtinor5KhaoWKjiZhWLVNyiYrGKW1UsUXGbiqUqbldxh4o7VSxTcZeKu1UsV7FCBdanx9rsWJcca3JjPWqsxYx1iLEGL9afxdqrWHcUa25ivUmstYh1BrHGHtaXw9pqWFcMa2phPSmspYR1hLCGDtaPwdopWDcEa2ZgvQislYB1AuCRD394eKPDFxye2PCDhhcyfIDhgQv/V3ifwvcTnpfwe4TXIXz+4HEHfzd4m8HXC55W8HOClxF8fOBhA/8WeJfAtwOeFfBrgFcB5uljjjrmZ2NuMublYk4q5mNiLiLm4WEOGuZfYe4R5t1gzgnmW2CuAcbZY4w5xldjbDHG1WJMKcZTYiwhxtFhDBnGT2HsEMbNYMwIxktgrACek+MZMZ6P4tkgnovhmRCeh+BZAO6D4x4w7n/i3h/ue+GeD+534Lc+fufiNx5+3+DaHte1uKbD9Qy+y/E9hnM4zl84dtFvvS1Bs8+fpf4zvcjx99fs1XbwzlrLqmxo13x9WlqnrpXr7G458olB85ruPLhgf/p7xxfTz4My0eZwNc9HLUJed53o2hX8w42qmBMZVyz25yMdDgb1Z8NnOaeI9meZpNNfyvI+y2ObLueyxWOfo5wADstzxD5HeQEcBiXFPkcFARzqE7xDKgrgMIXQHyoJ4DCewOFUARwaEo6LygI4NCJwqCKAQxMCh6oCODQjcDhNAIcWBA7VBHBoSeBQXQCHVgQONQRwaE3gcLoADm0JHGoK4NCOwKGWAA7tCRxqC+DQgcChjgAOHQkczhDAoROBw5kCOHQmcKgrgEMXAoezBHDoRuBQTwCH7gQOZwvg0JPAob4ADr0IHM4RwKEPgUMDARz6EjicK4BDPwKHhgI49CdwOE8AhwEEDo0kPOclcGgsgMNgAocmAjgMJXBoKoDDcAKHZgI4lCE8724ugMNIQn9oIYDDaAKH8wVwGEvg0FLCeBgChwsEcEgjcGglgMMkAocLJYyXI3BoLYDDNAKHNgI4zCBwaCuAw8bE2Oe4SACHmYT+0E4Ah9kEDhcL4DCXwKG9AA7zCRwuEcBhIYFDBwEcFhE4XCqAw2ICh44COCwhcLhMAIelBA6dBHC4g8DhcgEclhE4dBbA4W4ChysEcFhB4NBFAIeVBA5dBXBYReDQTQCH1QQOVwrgsIbAobsADmsJHHoI4PAQgUNPARweIXC4SgCHdQQOvQRwWE/g0FsAhw0EDn0EcHiSwOFqARyeJnDoK4DDswQO1wjg8DyBQz8BHF4kcLhWAIeXCRz6C+DwKoHDdQI4vE7gMEAAhzcJHAZKGAdC4DBIAId3CByuF8DhPQKHwQI4bCJwGCKAw4cEDkMFcNhM4DBMAIctBA7DBXDYSuBwgwAO2wgcRgjgsJ3AYaQADjsIHEYJ4LCLwGG0AA5fEjiMEcDhawKHsQI47CZwGCeAwx4Ch/ECOOwlcJgggMM+Aoc0ARz2EzhMFMDhJwKHSQI4HCBwmCyAwyEChykCOBwmcJgqgMMRAodpAjgcJXCYLoDDHwQOMwRwcAhrM94ogEMCgcNNAjgkETjMFMAhO4HDLAEcchI4zBbAIReBwxwBHPIQOMwVwCEfgcM8ARzyEzjMF8ChIIHDAgEcChM4LBTAoQiBw80COBQjcFgkgEMJAodbBHBIJXBYLIBDaQKHWwVwcAkclgjgUI7A4TYBHCoQOCwVwKESgcPtAjhUJnC4QwCHqgQOdwrgUI3AYZkADjUIHO4SwKEmgcPdAjjUJnBYLoDDGQQOKwRwqEvgcI8ADvUIHFYK4FCfwOFeARwaEDisEsChIYHDfQI4NCJwWC2AQxMCh/sFcGhG4LBGAIcWBA4PCODQksBhrQAOrQgcHhTAoTWBw0MCOLQlcHhYAId2BA6PCODQnsDhUQEcOhA4rBPAoSOBw2MCOHQicFgvgENnAofHBXDoQuCwQQCHbgQOTwjg0J3A4UkBHHoSODwlgEMvAoenBXDoQ+DwjAAOfQkcnhXAoR+Bw3MCOPQncHheAIcBBA4vCOAwiMDhRQ0OiSrOV7Es/f/Lq7IVVFRUUUnFqSoqq6iioqqK01RUU1FdRQ0Vp6uoqaKWitoq6qg4Q8WZKuqqOEtFPRVnq6iv4hwVDVScq6KhivNUNFLRWEUTFU1VNFPRXEULFeerwPr0WJsd65JjTW6sR421mLEOMdbgxfqzWHsV645izU2sN4m1FrHOINbYw/pyWFsN64phTS2sJ4W1lLCOENbQwfoxWDsF64ZgzQysF4G1ErBOADzy4Q8Pb3T4gsMTG37Q8EKGDzA8cOH/Cu9T+H7C8xJ+j/A6hM8fPO7g7wZvM/h6wdMKfk7wMoKPDzxs4N8C7xL4dsCzAn4N8CrAPH3MUcf8bMxNxrxczEnFfEzMRcQ8PMxBw/wrzD3CvBvMOcF8C8w1wDh7jDHH+GqMLca4WowpxXhKjCXEODqMIcP4KYwdwrgZjBnBeAmMFcBzcjwjxvNRPBvEczE8E8LzEDwLwH1w3APG/U/c+8N9L9zzwf0O/NbH71z8xsPvG1zb47oW13S4nsF3Ob7HcA7H+QvHLvqttyVo9vnpRRSbIsffX7NX28E7ay2rsqFd8/VpaZ26Vq6zu+XIJwbNa7rz4IL9aj/eX664fh6UiTbHS8X1zkfnh7zuOtG1K/iHG1UxJ1K2eOzPRy9p5tCtH5/lnCJmfcZ7b1af5csaGtD+xPR/vXIn+Pn+o26NcpHlOWKf4xVePz+eVK9cZFBS7HO8KoBDfYKPxmsCOEwh9IfXBXAYT+DwhgAODQnHxZsCODQicHhLAIcmBA4bBXBoRuDwtgAOLQgc3hHAoSWBw7sCOLQicHhPAIfWBA7vC+DQlsBhkwAO7QgcPhDAoT2Bw4cCOHQgcPhIAIeOBA6bBXDoRODwsQAOnQkctgjg0IXA4RMBHLoROGwVwKE7gcOnAjj0JHDYJoBDLwKHzwRw6EPgsF0Ah74EDp8L4NCPwGGHAA79CRx2CuAwgMBhl4TnvAQOXwjgMJjA4UsBHIYSOHwlgMNwAoevBXAoQ3je/Y0ADiMJ/WG3AA6jCRy+FcBhLIHDHgnjYQgcvhPAIY3AYa8ADpMIHL6XMF6OwGGfAA7TCBx+EMBhBoHDfgEcNibGPsePAjjMJPSHnwRwmE3g8LMADnMJHA4I4DCfwOGgAA4LCRwOCeCwiMDhFwEcFhM4HBbAYQmBw68COCwlcDgigMMdBA6/CeCwjMDhqAAOdxM4/C6AwwoChz8EcFhJ4PCnAA6rCBycEvHPYTWBQ0QAhzUEDgkCOKwlcEgUwOEhAockARweIXDIJoDDOgKH7AI4rCdwyCGAwwYCh5wCODxJ4JAsgMPTBA65BHB4lsAhtwAOzxM45BHA4UUCh7wCOLxM4JBPAIdXCRxSBHB4ncAhvwAObxI4FBDAYSOBQ0EBHN4hcCgkgMN7BA6FBXDYROBwigAOHxI4FBHAYTOBQ1EBHLYQOBQTwGErgUNxARy2ETiUEMBhO4FDSQEcdhA4pArgsIvAoZQADl8SOJQWwOFrAocyAjjsJnBwBXDYQ+BQVgCHvQQO5QRw2EfgUF4Ah/0EDhUEcPiJwKGiAA4HCBwqCeBwiMDhVAEcDhM4VBbA4QiBQxUBHI4SOFQVwOEPAofTBHBwCOsUVhPAIYHAoboADkkEDjUEcMhO4HC6AA45CRxqCuCQi8ChlgAOeQgcagvgkI/AoY4ADvkJHM4QwKEggcOZAjgUJnCoK4BDEQKHswRwKEbgUE8AhxIEDmcL4JBK4FBfAIfSBA7nCODgEjg0EMChHIHDuQI4VCBwaCiAQyUCh/MEcKhM4NBIAIeqBA6NBXCoRuDQRACHGgQOTQVwqEng0EwAh9oEDs0FcDiDwKGFAA51CRzOF8ChHoFDSwEc6hM4XCCAQwMCh1YCODQkcLhQAIdGBA6tBXBoQuDQRgCHZgQObQVwaEHgcJEADi0JHNoJ4NCKwOFiARxaEzi0F8ChLYHDJQI4tCNw6CCAQ3sCh0sFcOhA4NBRAIeOBA6XCeDQicChkwAOnQkcLhfAoQuBQ2cBHLoROFwhgEN3AocuAjj0JHDoKoBDLwKHbgI49CFwuFIAh74EDt0FcOhH4NBDAIf+BA49BXAYQOBwlQAOgwgcepXQy5GgWf/0Io4zp0j0778x/f1BHTV7tR28s9ayKhvaNV+fltapa+U6u1uOfGLQvKY7Dy7Yr/b31tShy6m++s9U1a5EzXbV13jv1CLRv7dP9Hojx/7jRF/mnPQcjl45J0lFHhXZwirVbMPZjn7/N8lTz+HkOcuJ/bE2Q/NYu6nI8RdcR3/TZbCtqN5519uuTu+LfUscz6l/4alxkkDdien/Xp1eDp07JdAwkw9ptuaHNFvzQ/rzzz8Ph73uOlnnw3/8+q5JB9+vhPNPKNekfxL+1/r5AOt+OB4Y3TP/zIqxPfPfaNiuWZrt8rak6PPMV3ki15SIvk39NL41NLhGotXqdUxdljhwrzH4NsKme4AWKew4TTUO0JLq/Q0N+se1JWKvo5mGjlRDHf0JOppr6ChlqOM6go4WGjpKG+oYQNBxvoaOMoY6BhJ0tNTQ4RrqGETQcYGGjrKGOq4n6GiloaOcoY7BBB0Xaugob6hjCEFHaw0dFQx1DCXoaKOho6KhjmEEHW01dFQy1DGcoOMiDR2nGuq4gaCjnYaOyoY6RhB0XKyho4qhjpEEHe01dFQ11DGKoOMSDR2nGeoYTdDRQUNHNUMdYwg6LtXQUd1Qx1iCjo4aOmoY6hhH0HGZho7TDXWMJ+jopKGjpqGOCQQdl2voqGWoI42go7OGjtqGOiYSdFyhoaOOoY5JBB1dNHScYahjMkFHVw0dZxrqmELQ0U1DR11DHVMJOq7U0HGWoY5pBB3dNXTUM9QxnaCjh4aOsw11zCDo6Kmho76hjhsJOq7S0HGOoY6bCDp6aehoYKhjJkFHbw0d5xrqmEXQ0UdDR0NDHbMJOq7W0HGeoY45BB19NXQ0MtQxl6DjGg0djQ11zCPo6Keho4mhjvkEHddq6GhqqGMBQUd/DR3NDHUsJOi4TkNHc0MdNxN0DNDQ0cJQxyKCjoEaOs431HELQccgDR0tDXUsJui4XkPHBYY6biXoGKyho5WhjiUEHUM0dFxoqOM2go6hGjpaG+pYStAxTENHG0MdtxN0DNfQ0dZQxx0EHTdo6LjIUMedBB0jNHS0M9SxjKBjpIaOiw113EXQMUpDR3tDHXcTdIzW0HGJoY7lBB1jNHR0MNSxgqBjrIaOSw113EPQMU5DR0dDHSsJOsZr6LjMUMe9BB0TNHR0MtSxiqAjTUPH5YY67iPomKiho7OhjtUaOjAvqaWKRun/jzkXmK+Asf4YJ48x5hifjbHNGBeMMbUYj4qxnBgHiTGEGH+HsWsY94UxUxhvhLE6GOeCMSIYX4GxCXiuj2fieJ6MZ7F4jolngHh+hmdPeG6DZx54XoB77bhPjXu8uD+Ke4u4L4d7WrgfhHspuA+B3/D4/Yvfjvjdhd8suN7HtTKuM3GNhusbXBvgexXfSTif41yI8wiOQfRffParS4Tz0WF/f/Tsc2rMH8o5K8ZzuDB/CG3X7Wtrotf71/HSMuR119HbdLXptNE0xwOax9wFzsljLnjM6Z5P8Rn5J6xGM0cOn5Nungc0cqzVPB4uCHnddaJrV/APN6pinONhrUEObLrn2wf/+/Nt5Nh/HL3z7YMG59uHeP3reGP1ykUeIvSvhwVwWJ4j9jkeEcBhUFLsczwqgEP9XLHPsU4AhymE/vCYAA7jCRzWC+DQkHBcPC6AQyMChw0CODQhcHhCAIdmBA5PCuDQgsDhKQEcWhI4PC2AQysCh2cEcGhN4PCsAA5tCRyeE8ChHYHD8wI4tCdweEEAhw4EDi8K4NCRwOElARw6ETi8LIBDZwKHVwRw6ELg8KoADt0IHF4TwKE7gcPrAjj0JHB4QwCHXgQObwrg0IfA4S0BHPoSOGwUwKEfgcPbAjj0J3B4RwCHAQQO70p4zkvg8J4ADoMJHN4XwGEogcMmARyGEzh8IIBDGcLz7g8FcBhJ6A8fCeAwmsBhswAOYwkcPpYwHobAYYsADmkEDp8I4DCJwGGrhPFyBA6fCuAwjcBhmwAOMwgcPhPAYWNi7HNsF8BhJqE/fC6Aw2wChx0COMwlcNgpgMN8AoddAjgsJHD4QgCHRQQOXwrgsJjA4SsBHJYQOHwtgMNSAodvBHC4g8BhtwAOywgcvhXA4W4Chz0COKwgcPhOAIeVBA57BXBYReDwvQAOqwkc9gngsIbA4QcBHNYSOOyX4P9A4PCjBgd4irRyjvvtwDMBfgGYK4954pgjjfnBmBuLeaGYE4n5gJgLh3lgmAOF+T+Y+4J5H5jzgPH+GOuOcd4Y44zxvRjbinGdGNOI8XwYy4ZxXBjDhPE7GLuCcRsYs4Dn9XhWjee0eEaJ53N4NoXnMngmgfvxuBeN+7C4B4n7b7j3hPsuuOeA39v4rYnfWfiNgetrXFviugrXFPg+xXcJzqM4h+D4Qd8BN2/T9cE529H324FPh26ehzVy/KR5PLQKed11omtX8A83qmIcP5SfDHJg0/Xb+Tn6PLHy2/mrO+nyQV9E24PlstJ7gNe/jjdWr1zkAKF/HRTAgeG3c0gAB4bfzi8CODD8dg4L4MDw2/lVAAeG384RARwYfju/CeDA8Ns5KoADw2/ndwEcGH47fwjgwPDb+VMAB4bfjlMy/jkw/HYiAjgw/HYSBHBg+O0kCuDA8NtJEsCB4beTTQAHht9OdgEcGH47OQRwYPjt5BTAgeG3kyyAA8NvJ5cADgy/ndwCODD8dvII4MDw28krgAPDbyefAA4Mv50UARwYfjv5BXBg+O0UEMCB4bdTUAAHht9OIQEcGH47hQVwYPjtnCKAA8Nvp4gADgy/naICODD8dooJ4MDw2ykugAPDb6eEAA4Mv52SAjgw/HZSBXBg+O2UEsCB4bdTWgAHht9OGQEcGH47rgAODL+dsgI4MPx2ygngwPDbKS+AA8Nvp4IADgy/nYoCODD8dioJ4MDw2zlVAAeG305lARwYfjtVBHBg+O1UFcCB4bdzmgAODL+dagI4MPx2qgvgwPDbqSGAA8Nv53QBHBh+OzUFcGD47dQSwIHht1NbAAeG304dARwYfjtnCODA8Ns5U4MDPEUudI777cAzAX4BmCuPeeKYI435wZgbi3mhmBOJ+YCYC4d5YJgDhfk/mPuCeR+Y84Dx/hjrjnHeGOOM8b0Y24pxnRjTiPF8GMuGcVwYw4TxOxi7gnEbGLOA5/V4Vo3ntHhGiedzeDaF5zJ4JvHX/XgVuA+Le5C4/4Z7T7jvgnsO+L2N35r4nYXfGLi+xrUlrqtwTYHvU3yX4DyKcwiOH/QdcPM2XR+ceo6+385BA7+dgxo56moeDxeGvO460bUr+IcbVTGOH4oOB/+m67dzVvR5YuW381eTdfmgL6LtwXJZ6a3H61/HG6tXLlKvZOxznC2AA8Nvp74ADgy/nXMEcGD47TQQwIHht3OuAA4Mv52GAjgw/HbOE8CB4bfTSAAHht9OYwEcGH47TQRwYPjtNBXAgeG300wAB4bfTnMBHBh+Oy0EcGD47ZwvgAPDb6elAA4Mv50LBHBg+O20EsCB4bdzoQAODL+d1gI4MPx22gjgwPDbaSuAA8Nv5yIBHBh+O+0EcGD47VwsgAPDb6e9AA4Mv51LBHBg+O10EMCB4bdzqQAODL+djgI4MPx2LpPwnJfAoZMADgy/ncsFcGD47XQWwIHht3OFAA4Mv50uAjgw/Ha6CuDA8NvpJoADw2/nSgnjYQgcugvgwPDb6SGAA8Nvp6eE8XIEDlcJ4MDw2+klgAPDb6e3AA4Mv50+Ajgw/HauFsCB4bfTVwAHht/ONQI4MPx2+gngwPDbuVYAB4bfTn8BHBh+O9cJ4MDw2xkggAPDb2egAA4Mv51BAjgw/HauF8CB4bczWAAHht/OEAEcGH47QwVwYPjtDBPAgeG3M1wAB4bfzg0CODD8dkYI4MDw2xmp6bfT2jnutwPPBPgFYK485oljjjTmB2NuLOaFYk4k5gNiLhzmgWEOFOb/YO4L5n1gzgPG+2OsO8Z5Y4wzxvdibCvGdWJMI8bzYSwbxnFhDBPG72DsCsZtYMwCntfjWTWe0+IZJZ7P4dkUnsvgmQTux+NeNO7D4h4k7r/h3hPuu+CeA35v47cmfmfhNwaur3FtiesqXFPg+xTfJTiP4hyC4wd9B9y8TdcHZ1tRfb8d+HTo5vF7e2SVY5Tm8dA65HXXia5dwT/cqIpx/FBGGeTApuu3Mzr6PLHy20nCf3T5oC+i7cFyWekdw+tfxxurVy4yhtC/xgrgwPDbGSeAA8NvZ7wADgy/nQkCODD8dtIEcGD47UwUwIHhtzNJAAeG385kARwYfjtTBHBg+O1MFcCB4bczTQAHht/OdAEcGH47MwRwYPjt3CiAA8Nv5yYBHBh+OzMFcGD47cwSwIHhtzNbAAeG384cARwYfjtzBXBg+O3ME8CB4bczXwAHht/OAgEcGH47CwVwYPjt3CyAA8NvZ5EADgy/nVsEcGD47SwWwIHht3OrAA4Mv50lAjgw/HZuk/Ccl8BhqQAODL+d2wVwYPjt3CGAA8Nv504BHBh+O8sEcGD47dwlgAPDb+duARwYfjvLJYyHIXBYIYADw2/nHgEcGH47KyWMlyNwuFcAB4bfzioBHBh+O/cJ4MDw21ktgAPDb+d+ARwYfjtrBHBg+O08IIADw29nrQAODL+dBwVwYPjtPCSAA8Nv52EBHBh+O48I4MDw23lUAAeG3846ARwYfjuPCeDA8NtZL4ADw2/ncQEcGH47GwRwYPjtPCGAA8Nv50kBHBh+O08J4MDw23laAAeG384zGhzgKdLGOe63A88E+AVgrjzmiWOONOYHY24s5oViTiTmA2IuHOaBYQ4U5v9g7gvmfWDOA8b7Y6w7xnljjDPG92JsK8Z1YkwjxvNhLBvGcWEME8bvYOwKxm1gzAKe1+NZNZ7T4hklns/h2RSey+CZBO7H41407sPiHiTuv+HeE+674J4Dfm/jtyZ+Z+E3Bq6vcW2J6ypcU+D7FN8lOI/iHILjB30H3LxN1wfnLEffbwc+Hbp5/N4eWeV4VvN4aBPyuutE167gH25UxTh+KM8a5MCm67fzXPR5YuW3kw3/0eWDvoi2B8tlpfd5Xv863li9cpHnCf3rBQEcGH47LwrgwPDbeUkAB4bfzssCODD8dl4RwIHht/OqAA4Mv53XBHBg+O28LoADw2/nDQEcGH47bwrgwPDbeUsAB4bfzkYBHBh+O28L4MDw23lHAAeG3867Ajgw/HbeE8CB4bfzvgAODL+dTQI4MPx2PhDAgeG386EADgy/nY8EcGD47WwWwIHht/OxAA4Mv50tAjgw/HY+EcCB4bezVQAHht/OpwI4MPx2tgngwPDb+UwAB4bfznYBHBh+O59LeM5L4LBDAAeG385OARwYfju7BHBg+O18IYADw2/nSwEcGH47XwngwPDb+VoAB4bfzjcSxsMQOOwWwIHht/OtAA4Mv509EsbLETh8J4ADw29nrwAODL+d7wVwYPjt7BPAgeG384MADgy/nf0CODD8dn4UwIHht/OTAA4Mv52fBXBg+O0cEMCB4bdzUAAHht/OIQEcGH47vwjgwPDbOSyAA8Nv51cBHBh+O0cEcGD47fwmgAPDb+eoAA4Mv53fBXBg+O38IYADw2/nTwEcGH47Tmr8c2D47UQ0OMBTpK1z3G8HngnwC8BcecwTxxxpzA/G3FjMC8WcSMwHxFw4zAPDHCjM/8HcF8z7wJwHjPfHWHeM88YYZ4zvxdhWjOvEmEaM58NYNozjwhgmjN/B2BWM28CYBTyvx7NqPKfFM0o8n8OzKTyXwTMJ3I/HvWjch8U9SNx/w70n3HfBPQf83sZvTfzOwm8MXF/j2hLXVbimwPcpvktwHsU5BMcP+g64eZuuDw48S/pq+u3Ap0M3j9/bI6scCZrHQ9uQ110nunYF/3CjKsbxQ9Hh4N90/XYSo88TK7+d7PiPLh/0RbQ9WC4rvUm8/nW8sXrlIkmpsc+RTTOH7jE/vYjjzCgS/ftvVO+9qYj+55ldwOfJ8A3KIYADwzcopwAODN+gZAEcGL5BuQRwYPgG5RbAgeEblEcAB4ZvUF4BHBi+QfkEcGD4BqUI4MDwDcovgAPDN6iAAA4M36CCAjgwfIMKCeDA8A0qLIADwzfoFAEcGL5BRQRwYPgGFRXAgeEbVEwAB4ZvUHEBHBi+QSUEcGD4BpUUwIHhG5QqgAPDN6iUAA4M36DSAjgwfIPKCODA8A1yBXBg+AaVFcCB4RtUTgAHhm9QeQEcGL5BFSQ85yVwqCiAA8M3qJIADgzfoFMFcGD4BlUWwIHhG1RFAAeGb1BVARwYvkGnCeDA8A2qJmE8DIFDdQEcGL5BNQRwYPgGnS5hvByBQ00BHBi+QbUEcGD4BtUWwIHhG1RHAAeGb9AZAjgwfIPOFMCB4RtUVwAHhm/QWQI4MHyD6gngwPANOlsAB4ZvUH0BHBi+QecI4MDwDWoggAPDN+hcARwYvkENBXBg+AadJ4ADwzeokQAODN+gxgI4MHyDmgjgwPANaiqAA8M3qJkADgzfoOYCODB8g1po+gZd5Bz3DYJnAvwCMFce88QxRxrzgzE3FvNCMScS8wExFw7zwDAHCvN/MPcF8z4w5wHj/THWHeO8McYZ43sxthXjOv8a06gCY9kwjgtjmDB+B2NXMG4DYxbwvB7PqvGcFs8o8XwOz6bwXAbPJHA/HveicR8W9yBx/w33nnDfBfcc8HsbvzXxOwu/MXB9jWtLXFfhmgLfp/guwXkU5xAcP+g74OZtQW+PaHyANPxD/vJqgU9HME9W5fw5smrT+al6x8NFIa+7TnTtCv7hRlWM4+tyvkEObLq+QS2jzxMr36Ac+I8uH/RFtD1YLiu9F/D61/HG6pWLXEDoX60EcGD47VwogAPDb6e1AA4Mv502Ajgw/HbaCuDA8Nu5SAAHht9OOwEcGH47FwvgwPDbaS+AA8Nv5xIBHBh+Ox0EcGD47VwqgAPDb6ejAA4Mv53LBHBg+O10EsCB4bdzuQAODL+dzgI4MPx2rhDAgeG300UAB4bfTlcBHBh+O90EcGD47VwpgAPDb6e7AA4Mv50eAjgw/HZ6CuDA8Nu5SgAHht9OLwEcGH47vQVwYPjt9BHAgeG3c7UADgy/nb4SnvMSOFwjgAPDb6efAA4Mv51rBXBg+O30F8CB4bdznQAODL+dAQI4MPx2BgrgwPDbGSRhPAyBw/UCODD8dgYL4MDw2xkiYbwcgcNQARwYfjvDBHBg+O0MF8CB4bdzgwAODL+dEQI4MPx2RgrgwPDbGSWAA8NvZ7QADgy/nTECODD8dsYK4MDw2xkngAPDb2e8AA4Mv50JAjgw/HbSBHBg+O1MFMCB4bczSQAHht/OZAEcGH47UwRwYPjtTBXAgeG3M00AB4bfznQBHBh+OzMEcGD47dyowQGeIu2c43478EyAXwDmymOeOOZIY34w5sZiXijmRGI+IObCYR4Y5kBh/g/mvmDeB+Y8YLw/xrpjnDfGOGN8L8a2YlwnxjRiPB/GsmEcF8YwYfwOxq5g3AbGLOB5PZ5V4zktnlHi+RyeTeG5DJ5J4H487kXjPizuQeL+G+494b4L7jng9zZ+a+J3Fn5j4Poa15a4rsI1Bb5P8V2C8yjOITh+0HfAzdt0fXDgWXJ1iePvj8afBz4dunn83h5Z5bhJ83hoF/K660TXruAfblTFOH4oNxnkwKbrtzMz+jwRDb+diIbfTuTYfxy9vou2B8tlpXeWBlfUnZj+b1g5E3+raN87O1WPn7fpfv5z/vvP/+8Czj/bndXbvXOXyTnPe29WbOYa9hV/Od32TS+i+nURje/N9PfrHgfzNM8vJjpmaeqYZaBjPu/74nhj9cpRfKMWCODA8I1aKIADwzfqZgEcGL5RiwRwYPhG3SKAA8M3arEADgzfqFsFcGD4Ri0RwIHhG3WbAA4M36ilAjgwfKNuF8CB4Rt1hwAODN+oOwVwYPhGLRPAgeEbdZcADgzfqLsFcGD4Ri0XwIHhG7VCAAeGb9Q9AjgwfKNWCuDA8I26VwAHhm/UKgEcGL5R9wngwPCNWi2AA8M36n4BHBi+UWsEcGD4Rj0ggAPDN2qtAA4M36gHBXBg+EY9JOE5L4HDwwI4MHyjHhHAgeEb9agADgzfqHUCODB8ox4TwIHhG7VeAAeGb9TjAjgwfKM2SBgPQ+DwhAAODN+oJwVwYPhGPSVhvByBw9MCODB8o54RwIHhG/WsAA4M36jnBHBg+EY9L4ADwzfqBQEcGL5RLwrgwPCNekkAB4Zv1MsCODB8o14RwIHhG/WqAA4M36jXBHBg+Ea9LoADwzfqDQEcGL5RbwrgwPCNeksAB4Zv1EYBHBi+UW8L4MDwjXpHAAeGb9S7AjgwfKPeE8CB4Rv1vgAODN+oTZo+Frr1wy9kloHPTIVKsW0X/GHmpOp70Hyg4feiqyHYlqzqh0fIy8Wjfz88QnqX0P8sPtToI0kq8jnHc/yjAYG8WbX3vOjf+498H6WeQMKPUvXLbdYw6DJt1+bU4y+4TvSbyQE71+CArRzjAzZ76t+mTrrtqqLZLm/TNYL6WOPEoMEqotH+yLH/aLS7kfN339I9+TTSyLElxl8yYL/FoG98YmhQ9YkFM7MtGueMrSQzs0//+z7812ZiSqZhyPXXl/88g/6yLTX2OuZr6phvoOOzGB+PaNcHBhdX2+Po4gqfxYean8WHBp/F55oXV7nT//1XAwJ5s2qvzsXVieQ51+Hk+fQE+3RWn1MT5+/zqW4/StR4bxNHn1Uk+IcbVTEnsiXGwBo7f3/J6QLT+WLcoXnwpDjH25OZtqzaGO1B++eff+4Ie911ss6B//jbujP9B8CuVOefVyM70886/td2hTQweDWQVQM+j+6DmK8+iMhOjQ9tlyY83Y6HDrTT8NeSyU/wVzR/gi8wsOn8IjX2Ol7V1LHQQMeXBB2vaeq42UDHVwQdr2vqWGSg42uCjjc0ddxioOMbgo43NXUsNtCxm6DjLU0dtxro+JagY6OmjiUGOvYQdLytqeM2Ax3fEXS8o6ljqYGOvQQd72rquN1Ax/cEHe9p6rjDQMc+go73NXXcaaDjB4KOTZo6lhno2E/Q8YGmjrsMdPxI0PGhpo67DXT8RNDxkaaO5QY6fibo2KypY4WBjgMEHR9r6rjHQMdBgo4tmjpWGug4RNDxiaaOew10/ELQsVVTxyoDHYcJOj7V1HGfgY5fCTq2aepYbaDjCEHHZ5o67jfQ8RtBx3ZNHWsMdBwl6PhcU8cDBjp+J+jYoaljrYGOPwg6dmrqeNBAx58EHbs0dTxkoMMpFXsdX2jqeNhAR4Sg40tNHY8Y6Egg6PhKU8ejBjoSCTq+1tSxzkBHEkHHN5o6HjPQkY2gY7emjvUGOrITdHyrqeNxAx05CDr2aOrYYKAjJ0HHd5o6njDQkUzQsVdTx5MGOnIRdHyvqeMpAx25CTr2aep42kBHHoKOHzR1PGOgIy9Bx35NHc8a6MhH0PGjpo7nDHSkEHT8pKnjeQMd+Qk6ftbU8YKBjgIEHQc0dbxooKMgQcdBTR0vGegoRNBxSFPHywY6ChN0/KKp4xUDHacQdBzW1PGqgY4iBB2/aup4zUBHUYKOI5o6XjfQUYyg4zdNHW8Y6ChO0HFUU8ebBjpKEHT8rqnjLQMdJQk6/tDUsdFARypBx5+aOt420FGKoMMpoafjHQMdpQk6Ipo63jXQUYagI0FTx3sGOlyCjkRNHe8b6ChL0JGkqWOTgY5yBB3ZNHV8YKCjPEFHdk0dHxroqEDQkUNTx0cGOioSdOTU1LHZQEclgo5kTR0fG+g4laAjl6aOLQY6KhN05NbU8YmBjioEHXk0dWw10FGVoCOvpo5PDXScRtCRT1PHNgMd1Qg6UjR1fGagozpBR35NHdsNdNQg6CigqeNzAx2nE3QU1NSxw0BHTYKOQpo6dhroqEXQUVhTxy4DHbUJOk7R1PGFgY46BB1FNHV8aaDjDIKOopo6vjLQcSZBRzFNHV8b6KhL0FFcU8c3BjrOIugooaljt4GOegQdJTV1fGug42yCjlRNHXsMdNQn6CilqeM7Ax3nEHSU1tSx10BHA4KOMpo6vjfQcS5Bh6upY5+BjoYEHWU1dfxgoOM8go5ymjr2G+hoRNBRXlPHjwY6GhN0VNDU8ZOBjiYEHRU1dfxsoKMpQUclTR0HDHQ0I+g4VVPHQQMdzQk6KmvqOGSgowVBRxVNHb8Y6DifoKOqpo7DBjpaEnScpqnjVwMdFxB0VNPUccRARyuCjuqaOn4z0HEhQUcNTR1HDXS0Jug4XVPH7wY62hB01NTU8YeBjrYEHbU0dfxpoOMigo7amjqcovo62hF01NHUETHQcTFBxxmaOhIMdLQn6DhTU0eigY5LCDrqaupIMtDRgaDjLE0d2Qx0XErQUU9TR3YDHR0JOs7W1JHDQMdlBB31NXXkNNDRiaDjHE0dyQY6LifoaKCpI5eBjs4EHedq6shtoOMKgo6GmjryGOjoQtBxnqaOvAY6uhJ0NNLUkc9ARzeCjsaaOlIMdFxJ0NFEU0d+Ax3dCTqaauooYKCjB0FHM00dBQ109CToaK6po5CBjqsIOlpo6ihsoKMXQcf5mjpOMdDRm6CjpaaOIgY6+hB0XKCpo6iBjqsJOlpp6ihmoKMvQceFmjqKG+i4hqCjtaaOEgY6+hF0tNHUUdJAx7UEHW01daQa6OhP0HGRpo5SBjquI+hop6mjtIGOAQQdF2vqKGOgYyBBR3tNHa6BjkEEHZdo6ihroON6go4OmjrKGegYTNBxqaaO8gY6hhB0dNTUUcFAx1CCjss0dVQ00DGMoKOTpo5KBjqGE3RcrqnjVAMdNxB0dNbUUdlAxwiCjis0dVQx0DGSoKOLpo6qBjpGEXR01dRxmoGO0QQd3TR1VDPQMYag40pNHdUNdIwl6OiuqaOGgY5xBB09NHWcbqBjPEFHT00dNQ10TCDouEpTRy0DHWkEHb00ddQ20DFRQwfWh79YxbL0/8ea41ivG2tdY51orLGM9Ymxti/WxcWasliPFWuZYh1QrKGJ9SexdiPWPcSagVhvD2vVYZ03rJGG9cWwNhfWtcKaUFhPCWsRYR0frIGD9WOw9grWLcGaH1gvA2tNYJ0GrHGA9QHgrQ9feni6ww8dXuLw4YaHNfyf4Z0M32F49sLvFl6x8FmFRyn8PeGNCV9JeDLCzxBegPDR+8uDrtTf3mfwDYPnFvyq4PUEnyR4DMGfB9428IWBpwr8SODlAR8MeEjAfwHeBZj3jznzmG+OudqY54w5wphfi7mpmNeJOZGYT4i5eJjHhjlgmD+FuUeYt4M5L5gvgrkWmKeAMf4YH4+x5RiXjTHNGA+MsbQYh4oxnBj/iLGDGHeHMWsY74WxUhhnhDE6GN+CsSEYV4ExCXiej2fheI6MZ7B4folnf3huhmdOeF6DZx14ToB77Lg/jXu7uC+Ke4q4H4d7WbgPhHsouP+A3+743YvfjPi9hd8quM7HNTKuL3FthusaXBPg+xTfRTiP4xyI8weOPfTbY50/0Oez2LJtUf3o81T9Y2VSqeiPlYT0YyW4uY7epqktotNG0xyTS8X23If27EiN/nNprGKLwec5pZTeua+9c/Lcd/LcF1/nvgTNPo/jROP4jeD9OE50j2F/jqzaNLWU3nm1fcjrrhNdu4J/uFEV45xXp2rmMP3e0/0st2ici6fxPsvjDdQrF5lG+CynC+CwPEfsc8wQwGFQUuxz3CiAQ/1csc9xkwAOUwj9YaYADuMJHGYJ4NCQcFzMFsChEYHDHAEcmhA4zBXAoRmBwzwBHFoQOMwXwKElgcMCARxaETgsFMChNYHDzQI4tCVwWCSAQzsCh1sEcGhP4LBYAIcOBA63CuDQkcBhiQAOnQgcbhPAoTOBw1IBHLoQONwugEM3Aoc7BHDoTuBwpwAOPQkclgng0IvA4S4BHPoQONwtgENfAoflAjj0I3BYIYBDfwKHewRwGEDgsFLCc14Ch3sFcBhM4LBKAIehBA73CeAwnMBhtQAOZQjPu+8XwGEkoT+sEcBhNIHDAwI4jCVwWCthPAyBw4MCOKQRODwkgMMkAoeHJYyXI3B4RMK4YgKHRwVwmEHgsE4Ah42Jsc/xmAAOMwn9Yb0ADrMJHB4XwGEugcMGARzmEzg8IYDDQgKHJwVwWETg8JQADosJHJ4WwGEJgcMzAjgsJXB4VgCHOwgcnhPAYRmBw/MCONxN4PCCAA4rCBxeFMBhJYHDSwI4rCJweFkAh9UEDq8I4LCGwOFVARzWEji8JoDDQwQOrwvg8AiBwxsCOKwjcHhTAIf1BA5vCeCwgcBhowAOTxI4vC2Aw9MEDu8I4PAsgcO7Ajg8T+DwngAOLxI4vC+Aw8sEDpsEcHiVwOEDARxeJ3D4UACHNwkcPpIwDoTAYbMADu8QOHwsgMN7BA5bBHDYRODwiQAOHxI4bBXAYTOBw6cCOGwhcNgmgMNWAofPBHDYRuCwXQCH7QQOnwvgsIPAYYcADrsIHHYK4PAlgcMuARy+JnD4QgCH3QQOXwrgsIfA4SsBHPYSOHwtgMM+AodvBHDYT+CwWwCHnwgcvhXA4QCBwx4BHA4ROHwngMNhAoe9AjgcIXD4XgCHowQO+wRw+IPA4QcBHJzchGsUARwSCBx+FMAhicDhJwEcshM4/CyAQ04ChwMCOOQicDgogEMeAodDAjjkI3D4RQCH/AQOhwVwKEjg8KsADoUJHI4I4FCEwOE3ARyKETgcFcChBIHD7wI4pBI4/CGAQ2kChz8FcHAJHJzS8c+hHIFDRACHCgQOCQI4VCJwSBTAoTKBQ5IADlUJHLIJ4FCNwCG7AA41CBxyCOBQk8AhpwAOtQkckgVwOIPAIZcADnUJHHIL4FCPwCGPAA71CRzyCuDQgMAhnwAODQkcUgRwaETgkF8AhyYEDgUEcGhG4FBQAIcWBA6FBHBoSeBQWACHVgQOpwjg0JrAoYgADm0JHIoK4NCOwKGYAA7tCRyKC+DQgcChhAAOHQkcSgrg0InAIVUAh84EDqUEcOhC4FBaAIduBA5lBHDoTuDgCuDQk8ChrAAOvQgcygng0IfAobwADn0JHCoI4NCPwKGiAA79CRwqCeAwgMDhVAEcBhE4VNbgkKjiEhXL0v9/RinHuVHFTSpmqpilYraKOSrmqpinYr6KBSoWqrhZxSIVt6hYrOJWFUtU3KZiqYrbVdyh4k4Vy1TcpeJuFctVrFBxj4qVKu5VsUrFfSpWq7hfxRoVD6jA+vRYmx3rkmNNbqxHjbWYsQ4x1uDF+rNYexXrjmLNTaw3ibUWsc4g1tjD+nJYWw3rimFNLawnhbWUsI4Q1tDB+jFYOwXrhmDNDKwXgbUSsE4APPLhDw9vdPiCwxMbftDwQoYPMDxw4f8K71P4fsLzEn6P8DqEzx887uDvBm8z+HrB0wp+TvAygo8PPGzg3wLvEvh2wLMCfg3wKsA8fcxRx/xszE3GvFzMScV8TMxFxDw8zEHD/CvMPcK8G8w5wXwLzDXAOHuMMcf4aowtxrhajCnFeEqMJcQ4Oowhw/gpjB3CuBmMGcF4CYwVwHNyPCPG81E8G8RzMTwTwvMQPAvAfXDcA8b9T9z7w30v3PPB/Q781sfvXPzGw++bv67tVeCaDtcz+C7H9xjO4Th/4dhFv/W2BM0+f576z5bU4++v2avt4J21llXZ0K75+rS0Tl0r19ndcuQTg+Y13Xlwwf70904vpZ9neqnoc1TRPB9dEvK660TXruAfblTFnMi0UrE/H+lwMKg/Gz7Lz1O1P8sEnf5SlfdZHtt0OVctHfscp53gZ5kVZ3wfNUn/118uqzSJGu9totGeagI+9+U5Yp+jugAOg5Jin6OGAA71CV4ppwvgMIXQH2oK4DCewKGWAA4NCcdFbQEcGhE41BHAoQmBwxkCODQjcDhTAIcWBA51BXBoSeBwlgAOrQgc6gng0JrA4WwBHNoSONQXwKEdgcM5Aji0J3BoIIBDBwKHcwVw6Ejg0FAAh04EDucJ4NCZwKGRAA5dCBwaC+DQjcChiQAO3Qkcmgrg0JPAoZkADr0IHJoL4NCHwKGFAA59CRzOF8ChH4FDSwEc+hM4XCCAwwACh1YSnvMSOFwogMNgAofWAjgMJXBoI4DDcAKHtgI4lCE8775IAIeRhP7QTgCH0QQOFwvgMJbAob2E8TAEDpcI4JBG4NBBAIdJBA6XShgvR+DQUQCHaQQOlwngMIPAoZMADhsTY5/jcgEcZhL6Q2cBHGYTOFwhgMNcAocuAjjMJ3DoKoDDQgKHbgI4LCJwuFIAh8UEDt0FcFhC4NBDAIelBA49BXC4g8DhKgEclhE49BLA4W4Ch94COKwgcOgjgMNKAoerBXBYReDQVwCH1QQO1wjgsIbAoZ8ADmsJHK4VwOEhAof+Ajg8QuBwnQAO6wgcBgjgsJ7AYaAADhsIHAYJ4PAkgcP1Ajg8TeAwWACHZwkchgjg8DyBw1ABHF4kcBgmgMPLBA7DBXB4lcDhBgEcXidwGCGAw5sEDiMljAMhcBglgMM7BA6jBXB4j8BhjAAOmwgcxgrg8CGBwzgBHDYTOIwXwGELgcMEARy2EjikCeCwjcBhogAO2wkcJgngsIPAYbIADrsIHKYI4PAlgcNUARy+JnCYJoDDbgKH6QI47CFwmCGAw14ChxsFcNhH4HCTAA77CRxmCuDwE4HDLAEcDhA4zBbA4RCBwxwBHA4TOMwVwOEIgcM8ARyOEjjMF8DhDwKHBQI4OIS1KBcK4JBA4HCzAA5JBA6LBHDITuBwiwAOOQkcFgvgkIvA4VYBHPIQOCwRwCEfgcNtAjjkJ3BYKoBDQQKH2wVwKEzgcIcADkUIHO4UwKEYgcMyARxKEDjcJYBDKoHD3QI4lCZwWC6Ag0vgsEIAh3IEDvcI4FCBwGGlAA6VCBzuFcChMoHDKgEcqhI43CeAQzUCh9UCONQgcLhfAIeaBA5rBHCoTeDwgAAOZxA4rBXAoS6Bw4MCONQjcHhIAIf6BA4PC+DQgMDhEQEcGhI4PCqAQyMCh3UCODQhcHhMAIdmBA7rBXBoQeDwuAAOLQkcNgjg0IrA4QkBHFoTODwpgENbAoenBHBoR+DwtAAO7QkcnhHAoQOBw7MCOHQkcHhOAIdOBA7PC+DQmcDhBQEcuhA4vCiAQzcCh5cEcOhO4PCyAA49CRxeEcChF4HDqwI49CFweE0Ah74EDq8L4NCPwOENARz6Ezi8KYDDAAKHtwRwGETgsFGDQ6KKDiqWpf9/dVW2horTVdRUUUtFbRV1VJyh4kwVdVWcpaKeirNV1FdxjooGKs5V0VDFeSoaqWisoomKpiqaqWiuooWK81W0VHGBilYqLlTRWkUbFW1VXKSinYqLVWB9eqzNjnXJsSY31qPGWsxYhxhr8GL9Way9inVHseYm1pvEWotYZxBr7GF9OaythnXFsKYW1pPCWkpYRwhr6GD9GKydgnVDsGYG1ovAWglYJwAe+fCHhzc6fMHhiQ0/aHghwwcYHrjwf4X3KXw/4XkJv0d4HcLnDx538HeDtxl8veBpBT8neBnBxwceNvBvgXcJfDvgWQG/BngVYJ4+5qhjfjbmJmNeLuakYj4m5iJiHh7moGH+FeYeYd4N5pxgvgXmGmCcPcaYY3w1xhZjXC3GlGI8JcYSYhwdxpBh/BTGDmHcDMaMYLwExgrgOTmeEeP5KJ4N4rkYngnheQieBeA+OO4B4/4n7v3hvhfu+eB+B37r43cufuPh9w2u7XFdi2s6XM/guxzfYziH4/yFYxf91tsSAn2+Zq+2g3fWWlZlQ7vm69PSOnWtXGd3y5FPDJrXdOfBBfvV/i2pjnNa6eiPEby/Wul/58mqnD9HVm16u7Te+ahDyOuuE127gn+4URVzIlVLx/589LZmDs36s+Gz/DxV+7NMRDnvvVl9lu/wPstjmy7ndwif5bsCOCzPEfsc7wngMCgp9jneF8ChPsE7ZJMADlMI/eEDARzGEzh8KIBDQ8Jx8ZEADo0IHDYL4NCEwOFjARyaEThsEcChBYHDJwI4tCRw2CqAQysCh08FcGhN4LBNAIe2BA6fCeDQjsBhuwAO7QkcPhfAoQOBww4BHDoSOOwUwKETgcMuARw6Ezh8IYBDFwKHLwVw6Ebg8JUADt0JHL4WwKEngcM3Ajj0InDYLYBDHwKHbwVw6EvgsEcAh34EDt8J4NCfwGGvAA4DCBy+l/Ccl8BhnwAOgwkcfhDAYSiBw34BHIYTOPwogEMZwvPunwRwGEnoDz8L4DCawOGAAA5jCRwOShgPQ+BwSACHNAKHXwRwmETgcFjCeDkCh18FcJhG4HBEAIcZBA6/CeCwMTH2OY4K4DCT0B9+F8BhNoHDHwI4zCVw+FMAh/kEDk6Z+OewkMAhIoDDIgKHBAEcFhM4JArgsITAIUkAh6UEDtkEcLiDwCG7AA7LCBxyCOBwN4FDTgEcVhA4JAvgsJLAIZcADqsIHHIL4LCawCGPAA5rCBzyCuCwlsAhnwAODxE4pAjg8AiBQ34BHNYROBQQwGE9gUNBARw2EDgUEsDhSQKHwgI4PE3gcIoADs8SOBQRwOF5AoeiAji8SOBQTACHlwkcigvg8CqBQwkBHF4ncCgpgMObBA6pAjhsJHAoJYDDOwQOpQVweI/AoYwADpsIHFwBHD4kcCgrgMNmAodyAjhsIXAoL4DDVgKHCgI4bCNwqCiAw3YCh0oCOOwgcDhVAIddBA6VBXD4ksChigAOXxM4VBXAYTeBw2kCOOwhcKgmgMNeAofqAjjsI3CoIYDDfgKH0wVw+InAoaYADgcIHGoJ4HCIwKG2AA6HCRzqCOBwhMDhDAEcjhI4nCmAwx8EDnUFcHAIazOeJYBDAoFDPQEckggczhbAITuBQ30BHHISOJwjgEMuAocGAjjkIXA4VwCHfAQODQVwyE/gcJ4ADgUJHBqViX8OhQkcGgvgUITAoYkADsUIHJoK4FCCwKGZAA6pBA7NBXAoTeDQQgAHl8DhfAEcyhE4tBTAoQKBwwUCOFQicGglgENlAocLBXCoSuDQWgCHagQObQRwqEHg0FYAh5oEDhcJ4FCbwKGdAA5nEDhcLIBDXQKH9gI41CNwuEQAh/oEDh0EcGhA4HCpAA4NCRw6CuDQiMDhMgEcmhA4dBLAoRmBw+UCOLQgcOgsgENLAocrBHBoReDQRQCH1gQOXQVwaEvg0E0Ah3YEDlcK4NCewKG7AA4dCBx6CODQkcChpwAOnQgcrhLAoTOBQy8BHLoQOPQWwKEbgUMfARy6EzhcLYBDTwKHvgI49CJwuEYAhz4EDv0EcOhL4HCtAA79CBz6C+DQn8DhOgEcBhA4DBDAYRCBw0ANDokqLlWxLP3/3yvtOO+r2KTiAxUfqvhIxWYVH6vYouITFVtVfKpim4rPVGxX8bmKHSp2qtil4gsVX6r4SsXXKr5RsVvFtyr2qPhOxV4V36vYp+IHFftV/KjiJxU/qzigAuvTY212rEuONbmxHjXWYsY6xFiDF+vPYu1VrDuKNTex3iTWWsQ6g1hjD+vLYW01rCuGNbWwnhTWUsI6QlhDB+vHYO0UrBuCNTOwXgTWSsA6AfDIhz88vNHhCw5PbPhBwwsZPsDwwIX/K7xP//L9VAG/R3gdwucPHnfwd4O3GXy94GkFPyd4GcHHBx428G+Bdwl8O+BZAb8GeBVgnj7mqGN+NuYmY14u5qRiPibmImIeHuagYf4V5h5h3g3mnGC+BeYaYJw9xphjfDXGFmNcLcaUYjwlxhJiHB3GkGH8FMYOYdwMxoxgvATGCuA5OZ4R4/kong3iuRieCeF5CJ4F4D447gHj/ifu/eG+F+754H4Hfuvjdy5+4+H3Da7tcV2Lazpcz+C7HN9jOIfj/IVjF/3W2xI0+/y56j9bUo+/v2avtoN31lpWZUO75uvT0jp1rVxnd8uRTwya13TnwQX709/7bmn9PO+Wjj7HIM3z0aUhr7tOdO0K/uFGVcyJvFOacM4ro5dDs/5s+Cw/T9X+LJN0+sv1vM/y2KbL+foysc8xWACH5Tlin2OIAA6DkmKfY6gADvUJ3iHDBHCYQugPwwVwGE/gcIMADg0Jx8UIARwaETiMFMChCYHDKAEcmhE4jBbAoQWBwxgBHFoSOIwVwKEVgcM4ARxaEziMF8ChLYHDBAEc2hE4pAng0J7AYaIADh0IHCYJ4NCRwGGyAA6dCBymCODQmcBhqgAOXQgcpgng0I3AYboADt0JHGYI4NCTwOFGARx6ETjcJIBDHwKHmQI49CVwmCWAQz8Ch9kCOPQncJgjgMMAAoe5Ep7zEjjME8BhMIHDfAEchhI4LBDAYTiBw0IBHMoQnnffLIDDSEJ/WCSAw2gCh1sEcBhL4LBYwngYAodbBXBII3BYIoDDJAKH2ySMlyNwWCqAwzQCh9sFcJhB4HCHAA4bE2Of404BHGYS+sMyARxmEzjcJYDDXAKHuwVwmE/gsFwAh4UEDisEcFhE4HCPAA6LCRxWCuCwhMDhXgEclhI4rBLA4Q4Ch/sEcFhG4LBaAIe7CRzuF8BhBYHDGgEcVhI4PCCAwyoCh7UCOKwmcHhQAIc1BA4PCeCwlsDhYQEcHiJweEQAh0cIHB4VwGEdgcM6ARzWEzg8JoDDBgKH9QI4PEng8LgADk8TOGwQwOFZAocnBHB4nsDhSQEcXiRweEoAh5cJHJ4WwOFVAodnBHB4ncDhWQEc3iRweE7COBACh+cFcHiHwOEFARzeI3B4UQCHTQQOLwng8CGBw8sCOGwmcHhFAIctBA6vCuCwlcDhNQEcthE4vC6Aw3YChzcEcNhB4PCmAA67CBzeEsDhSwKHjQI4fE3g8LYADrsJHN4RwGEPgcO7AjjsJXB4TwCHfQQO7wvgsJ/AYZMADj8ROHwggMMBAocPBXA4RODwkQAOhwkcNgvgcITA4WMBHI4SOGwRwOEPAodPBHBwCGszbhXAIYHA4VMBHJIIHLYJ4JCdwOEzARxyEjhsF8AhF4HD5wI45CFw2CGAQz4Ch50COOQncNglgENBAocvBHAoTODwpQAORQgcvhLAoRiBw9cCOJQgcPhGAIdUAofdAjiUJnD4VgAHl8BhjwAO5QgcvhPAoQKBw14BHCoROHwvgENlAod9AjhUJXD4QQCHagQO+wVwqEHg8KMADjUJHH4SwKE2gcPPAjicQeBwQACHugQOBwVwqEfgcEgAh/oEDr8I4NCAwOGwAA4NCRx+FcChEYHDEQEcmhA4/CaAQzMCh6MCOLQgcPhdAIeWBA5/CODQisDhTwEcWhM44I1Rvvc/49CWwCHixj+HdgQOCW78c2hP4JDoxj+HDgQOSW78c+hI4JDNjX8OnQgcsrvxz6EzgUMON/45dCFwyOnGP4duBA7Jbvxz6E7gkMuNfw49CRxyu/HPoReBQx43/jn0IXDI68Y/h74EDvnc+OfQj8AhxY1/Dv0JHPK78c9hAIFDATf+OQwicCjoRp8jUUVHFcvS/3+Iuqc3VMUwFcNV3KBihIqRKkapGK1ijIqxKsapGK9igoo0FRNVTFIxWcUUFVNVTFMxXcUMFTequEnFTBWzVMxWMUfFXBXzVMxXsUDFQhU3q1ik4hYVWJ8ea7NjXXKsyY31qLEWM9Yhxhq8WH8Wa69i3VGsuYn1JrHWItYZxBp7WF8Oa6thXTGsqYX1pLCWEtYRwho6WD8Ga6dg3RCsmYH1IrBWAtYJgEc+/OHhjQ5fcHhiww8aXsjwAYYHLvxf4X0K3094XsLvEV6H8PmDxx383eBtBl8veFrBzwleRvDxgYcN/FvgXQLfDnhWwK8BXgWYp4856pifjbnJmJeLOamYj4m5iJiHhzlomH+FuUeYd4M5J5hvgbkGGGePMeYYX42xxRhXizGlGE+JsYQYR4cxZBg/hbFDGDeDMSMYL4GxAnhOjmfEeD6KZ4N4LoZnQngegmcBuA+Oe8DobBEVuO+Fez6434Hf+vidi994+H2Da3tc1+KaDtcz+C7H9xjO4Th/4dhFv/W2BM0+vyVVsUk9/v6avdoO3llrWZUN7ZqvT0vr1LVynd0tRz4xaF7TnQcX7Ff78f7BZfTzoEy0OQq5euejjiGvu0507Qr+4UZVzIlcXyb25yMdDib147P8PNWsz3jvzeqzLOxGrwHtT0z/1yt3gp/vP+rWKBdZniP2OU5xaf38eFK9cpFBSbHPUcSNfw71CT4aRd345zCF0B+KufHPYTyBQ3E3/jk0JBwXJdz459CIwKGkG/8cmhA4pLrxz6EZgUMpN/45tCBwKO3GP4eWBA5l3Pjn0IrAwXXjn0NrAoeybvxzaEvgUM6Nfw7tCBzKu/HPoT2BQwU3/jl0IHCo6MY/h44EDpXc+OfQicDhVDf+OXQmcKjsxj+HLgQOVdz459CNwKGqG/8cuhM4nObGP4eeBA7V3Pjn0IvAobob/xz6EDjUcOOfQ18Ch9Pd+OfQj8Chphv/HPoTONRy45/DAAKH2m78cxhE4FDHjX8OgwkcznDjn8NQAocz3fjnMJzAoa4b/xzKEJ53n+XGP4eRhP5Qz41/DqMJHM5245/DWAKH+m78cxhP4HCOG/8c0ggcGrjxz2ESgcO5bvxzmELg0NCNfw7TCBzOc+OfwwwCh0Zu/HPYmBj7HI3d+Ocwk9Afmrjxz2E2gUNTN/45zCVwaObGP4f5BA7N3fjnsJDAoYUb/xwWETic78Y/h8UEDi3d+OewhMDhAjf+OSwlcGjlxj+HOwgcLnTjn8MyAofWbvxzuJvAoY0b/xxWEDi0deOfw0oCh4vc+OewisChnRv/HFYTOFzsxj+HNQQO7d3457CWwOESN/45PETg0MGNfw6PEDhc6sY/h3UEDh3d+OewnsDhMjf+OWwgcOjkxj+HJwkcLnfjn8PTBA6d3fjn8CyBwxVu/HN4nsChixv/HF4kcOjqxj+Hlwkcurnxz+FVAocr3fjn8DqBQ3c3/jm8SeDQw41/DhsJHHq68c/hHQKHq9z45/AegUMvN/45bCJw6O3GP4cPCRz6uPHPYTOBw9Vu/HPYQuDQ141/DlsJHK5x45/DNgKHfm78c9hO4HCtG/8cdhA49Hfjn8MuAofr3Pjn8CWBwwA3/jl8TeAw0I1/DrsJHAa58c9hD4HD9W78c9hL4DDYjX8O+wgchrjxz2E/gcNQN/45/ETgMMyNfw4HCByGu/HP4RCBww1u/HM4TOAwwo1/DkcIHEa68c/hKIHDKDf+OfxB4DDajX8ODmGdwjFu/HNIIHAY68Y/hyQCh3Fu/HPITuAw3o1/DjkJHCa48c8hF4FDmhv/HPIQOEx0459DPgKHSW78c8hP4DDZjX8OBQkcprjxz6EwgcNUN/45FCFwmObGP4diBA7T3fjnUILAYYYb/xxSCRxudOOfQ2kCh5vc+OfgEjjMdOOfQzkCh1lu/HOoQOAw241/DpUIHOa48c+hMoHDXDf+OVQlcJjnxj+HagQO893451CDwGGBG/8cahI4LHTjn0NtAoeb3fjncAaBwyI3/jnUJXC4xY1/DvUIHBa78c+hPoHDrW78c2hA4LDEjX8ODQkcbnPjn0MjAoelbvxzaELgcLsb/xyaETjc4cY/hxYEDne68c+hJYHDMjf+ObQicLjLjX8OrQkc7nbjn0NbAoflbvxzaEfgsMKNfw7tCRzuceOfQwcCh5Vu/HPoSOBwrxv/HDoROKxy459DZwKH+9z459CFwGG1G/8cuhE43O/GP4fuBA5r3Pjn0JPA4QE3/jn0InBY68Y/hz4EDg+68c+hL4HDQ278c+hH4PCwG/8c+hM4POLGP4cBBA6PuvHPYRCBwzpXL0eCZv1bUh3n89To3781/f1BHTV7tR28s9ayKhvaNV+fltapa+U6u1uOfGLQvKY7Dy7Yr/Y/5urp0OXUSP1ns2pXoma7Gmm8d3Nq9O9d70bf9mP/caIv0zg9h6NXzklSkUdFtrBKNdtwnqPf/03yNHQ4ec51Yn+sfaJ5rH2aevwF19HfdBlUK6133vW2x92//93gHs+pnVzjoPmr7sT0fx9PL4fOnRJomMmHtF3zQ9qu+SH9+eefh8Ned52s8+E/fn1PuH//+6Tr/BMKdkQCr+FNrr8mRx+M7pl//KmxPfNvNWzXBM12eVtS9HnmqzwRfA7Rtsn/+WSlW4NrJFqtXsfUZYkD9wlfAteJftM9QPuUcJwFGgfoter9sw36x1Nu7HUs1NDR31DH027sddysoeM6Qx3PuLHXsUhDxwBDHc+6sddxi4aOgYY6nnNjr2Oxho5Bhjqed2Ov41YNHdcb6njBjb2OJRo6BhvqeNGNvY7bNHQMMdTxkht7HUs1dAw11PGyG3sdt2voGGao4xU39jru0NAx3FDHq27sddypoeMGQx2vubHXsUxDxwhDHa+7sddxl4aOkYY63nBjr+NuDR2jDHW86cZex3INHaMNdbzlxl7HCg0dYwx1bHRjr+MeDR1jDXW87cZex0oNHeMMdbzjxl7HvRo6xhvqeNeNvY5VGjomGOp4z429jvs0dKQZ6njfjb2O1Ro6Jhrq2OTGXsf9GjomGer4wI29jjUaOiYb6vjQjb2OBzR0TDHU8ZEbex1rNXRMNdSx2Y29jgc1dEwz1PGxG3sdD2nomG6oY4sbex0Pa+iYYajjEzf2Oh7R0HGjoY6tbux1PKqh4yZDHZ+6sdexTkPHTEMd29zY63hMQ8csQx2fubHXsV5Dx2xDHdvd2Ot4XEPHHEMdn7ux17FBQ8dcQx073NjreEJDxzxDHTvd2Ot4UkPHfEMdu9zY63hKQ8cCQx1fuLHX8bSGjoWGOr50Y6/jGQ0dNxvq+MqNvY5nNXQsMtTxtRt7Hc9p6LjFUMc3bux1PK+hY7Ghjt1u7HW8oKHjVkMd37qx1/Giho4lhjr2uLHX8ZKGjtsMdXznxl7Hyxo6lhrq2OvGXscrGjpuN9TxvRt7Ha9q6LjDUMc+N/Y6XtPQcaehjh/c2Ot4XUPHMkMd+93Y63hDQ8ddhjp+dGOv400NHXcb6vjJjb2OtzR0LDfU8bMbex0bNXSsMNRxwI29jrc1dNxjqOOgG3sd72joWGmo45Abex3vaui411DHL27sdbynoWOVoY7Dbux1vK+h4z5DHb+6sdexSUPHakMdR9zodWBe0mXO37MwsWHOBeYrYKw/xsljjPnz7t9jmzEuGGNqMR4VYzkxDhJjCDH+DmPXMO4LY6Yw3ghjdTDOBWNEML4CYxPwXB/PxPE8Gc9i8RwTzwDx/AzPnvDcBs888LwA99pxnxr3eHe4f99bxH053NPC/SDcS8F9CPyGx+9f/HbE7y78ZsH1Pq6VcZ2JazRc3+DaAN+r+E7C+RznQpxHcAyi/+KzB7cwPti8XVmx/82Nmn1OjflDOSfEeA4X5g+h7bp97agbfbtwvFwW8rrr6G262nTaaJrjd1fvmOvknDzmgsec7vkUn5F/wmo0c+TwOenm+V0jxx+u3vHQKeR114muXcE/3KiKcY4HHQ7+Tfd8+6f7n59vI8f+4+idb9F23fOtU5bWv443Vq9cRKeNxwvp5YgI4LA8R+xzJAjgMCgp9jkSBXConyv2OZIEcJhC6A/ZBHAYT+CQXQCHhoTjIocADo0IHHIK4NCEwCFZAIdmBA65BHBoQeCQWwCHlgQOeQRwaEXgkFcAh9YEDvkEcGhL4JAigEM7Aof8Aji0J3AoIIBDBwKHggI4dCRwKCSAQycCh8ICOHQmcDhFAIcuBA5FBHDoRuBQVACH7gQOxQRw6EngUFwAh14EDiUEcOhD4FBSAIe+BA6pAjj0I3AoJYBDfwKH0gI4DCBwKCOAwyACB1cAh8EEDmUFcBhK4FBOAIfhBA7lBXAoQ3jeXUEAh5GE/lBRAIfRBA6VBHAYS+BwqgAO4wkcKgvgkEbgUEUAh0kEDlUFcJhC4HCaAA7TCByqCeAwg8ChugAOGxNjn6OGAA4zCf3hdAEcZhM41BTAYS6BQy0BHOYTONQWwGEhgUMdARwWETicIYDDYgKHMwVwWELgUFcAh6UEDmcJ4HAHgUM9ARyWETicLYDD3QQO9QVwWEHgcI4ADisJHBoI4LCKwOFcARxWEzg0FMBhDYHDeQI4rCVwaCSAw0MEDo01OMBT5HLnuN8OPBPgF4C58pgnjjnSmB+MubGYF4o5kZgPiLlwmAeGOVCY/4O5L5j3gTkPGO+Pse4Y540xzhjfi7GtGNeJMY0Yz4exbBjHhTFMf43fUVFWBcYs4Hk9nlXjOS2eUeL5HJ5N4bkMnkngfjzuReM+LO5B4v4b7j3hvgvuOeD3Nn5r4ncWfmPg+hrXlriuwjUFvk/xXYLzKM4hOH7Qd8DN23R9cM5z9P12ImUNfH3KRp+jiebxcHnI664TXbuCf7hRFXMofihNDHJg0/XbaRp9nlj57fzVnXT5oC+i7cFyWeltxutfxxurVy6i00bTHM0FcGD47bQQwIHht3O+AA4Mv52WAjgw/HYuEMCB4bfTSgAHht/OhQI4MPx2WgvgwPDbaSPhOorAoa0ADgy/nYsEcGD47bQTwIHht3OxAA4Mv532Ajgw/HYuEcCB4bfTQQAHht/OpQI4MPx2OgrgwPDbuUwAB4bfTicBHBh+O5cL4MDw2+ksgAPDb+cKARwYfjtdBHBg+O10FcCB4bfTTQAHht/OlQI4MPx2ugvgwPDb6SGAA8Nvp6cADgy/nasEcGD47fQSwIHht9NbAAeG304fARwYfjtXC+DA8NvpK4ADw2/nGgEcGH47/QRwYPjtXCuAA8Nvp78ADgy/nesEcGD47QwQwIHhtzNQAAeG384gARwYfjvXC+DA8NsZLIADw29niAAODL+doQI4MPx2hgngwPDbGS6AA8Nv5wYBHBh+OyMEcGD47YwUwIHhtzNKAAeG385oARwYfjtjBHBg+O2MFcCB4bczTgAHht/OeAEcGH47EwRwYPjtpAngwPDbmSiAA8NvZ5IADgy/nckCODD8dqZocICnSGfnuN8OPBPgF4C58pgnjjnSmB+MubGYF4o5kZgPiLlwmAeGOVCY/4O5L5j3gTkPGO+Pse4Y540xzhjfi7GtGNeJMY0Yz4exbD1UYAwTxu9g7ArGbWDMAp7X41k1ntPiGSWez+HZFJ7L4JkE7sfjXjTuw+IeJO6/4d4T7rvgngN+b+O3Jn5n4TcGrq9xbYnrKlxT4PsU3yU4j+IcguMHfQfcvE3XB6eho++3A58O3Tx+b4+sckzVPB46h7zuOtG1K/iHG1Uxjh/KVIMc2HT9dqZFnydWfjt/NVmXD/oi2h4sl5Xe6bz+dbyxeuUiOm00zTFDAAeG386NAjgw/HZuEsCB4bczUwAHht/OLAEcGH47swVwYPjtzBHAgeG3M1cAB4bfzjwBHBh+O/MFcGD47SwQwIHht7NQAAeG387NAjgw/HYWCeDA8Nu5RQAHht/OYgEcGH47twrgwPDbWSKAA8Nv5zYBHBh+O0sFcGD47dwugAPDb+cOARwYfjt3CuDA8NtZJoADw2/nLgEcGH47dwvgwPDbWS6AA8NvZ4UADgy/nXsEcGD47awUwIHht3OvAA4Mv51VAjgw/HbuE8CB4bezWgAHht/O/QI4MPx21gjgwPDbeUAAB4bfzloBHBh+Ow8K4MDw23lIAAeG387DAjgw/HYeEcCB4bfzqAAODL+ddQI4MPx2HhPAgeG3s14AB4bfzuMCODD8djYI4MDw23lCAAeG386TAjgw/HaeEsCB4bfztAAODL+dZwRwYPjtPCuAA8Nv5zkBHBh+O88L4MDw23lBAAeG386LAjgw/HZeEsCB4bfzsgAODL+dVwRwYPjtvCqAA8Nv5zUBHBh+O68L4MDw23lDgwMMOq5wjvvtwDMBfgGYK4954pgjjfnBmBuLeaGYE4n5gJgLh3lgmAOF+T+Y+4J5H5jzgPH+GOuOcd4Y44zxvRjbepcKjGnEeD6MZcM4LoxhwvgdjF3BuA2MWcDzejyrxnNaPKPE8zk8m8JzGTyTwP143IvGfVjcg8T9N9x7wn0X3HPA72381sTvLPzGwPU1ri1xXYVrCnyf4rsE51GcQ3D8oO+Am7fp+uBUK63vtwOfDt08fm+PrHK8qXk8XBHyuutE167gH25UxTh+KG8a5MCm67fzVvR5YuW3k4T/6PJBX0Tbg+Wy0ruR17+ON1avXESnjaY53hbAgeG3844ADgy/nXcFcGD47bwngAPDb+d9ARwYfjubBHBg+O18IIADw2/nQwEcGH47HwngwPDb2SyAA8Nv52MBHBh+O1sEcGD47XwigAPDb2erAA4Mv51PBXBg+O1sE8CB4bfzmQAODL+d7QI4MPx2PhfAgeG3s0MAB4bfzk4BHBh+O7sEcGD47XwhgAPDb+dLARwYfjtfCeDA8Nv5WgAHht/ONwI4MPx2dgvgwPDb+VYAB4bfzh4BHBh+O98J4MDw29krgAPDb+d7ARwYfjv7BHBg+O38IIADw29nvwAODL+dHwVwYPjt/CSAA8Nv52cBHBh+OwcEcGD47RwUwIHht3NIAAeG384vAjgw/HYOC+DA8Nv5VQAHht/OEQEcGH47vwngwPDbOSqAA8Nv53cBHBh+O38I4MDw2/lTAAeG345TLv45MPx2IgI4MPx2EgRwYPjtJArgwPDbSRLAgeG3k00AB4bfTnYBHBh+OzkEcGD47eQUwIHht5MsgAPDbyeXAA4Mv53cAjgw/HbyCODA8NvJq8EBniJdnON+O/BMgF8A5spjnjjmSGN+MObGYl4o5kRiPiDmwmEeGOZAYf4P5r5g3gfmPGC8P8a671SBMc4Y34uxrRjXiTGNGM+HsWwYx4UxTBi/g7ErGLeBMQt4Xo9n1XhOi2eUeD6HZ1N4LoNnErgfj3vRuA+Le5C4/4Z7T7jvgnsO+L2N35r4nYXfGLi+xrUlrqtwTYHvU3yX4DyKcwiOH/QdcPM2XR+ccx19vx34dOjm8Xt7ZJUjn+bx0CXkddeJrl3BP9yoinH8UHQ4+Dddv52U6PPEym8nG/6jywd9EW0PlstKb35e/zreWL1ykfzlYp+jgAAODL+dggI4MPx2CgngwPDbKSyAA8Nv5xQBHBh+O0UEcGD47RQVwIHht1NMAAeG305xARwYfjslBHBg+O2UFMCB4beTKoADw2+nlAAODL+d0gI4MPx2ygjgwPDbcQVwYPjtlBXAgeG3U04AB4bfTnkBHBh+OxUEcGD47VQUwIHht1NJAAeG386pAjgw/HYqC+DA8NupIoADw2+nqgAODL+d0wRwYPjtVBPAgeG3U10AB4bfTg0BHBh+O6dLeM5L4FBTAAeG304tARwYfju1BXBg+O3UEcCB4bdzhgAODL+dMwVwYPjt1BXAgeG3c5aE8TAEDvUEcGD47ZwtgAPDb6e+hPFyBA7nCODA8NtpIIADw2/nXAEcGH47DQVwYPjtnCeAA8Nvp5EADgy/ncYCODD8dpoI4MDw22kqgAPDb6eZAA4Mv53mAjgw/HZaCODA8Ns5XwAHht9OSwEcGH47FwjgwPDbaSWAA8Nv50IBHBh+O60FcGD47bQRwIHht9NWAAeG385FAjgw/HbaCeDA8Nu5WIMDPEW6Osf9duCZAL8AzJXHPHHMkcb8YMyNxbxQzInEfEDMhcM8MMyB+mv+jwrM+8CcB4z3x1h3jPPGGGeM78XYVozrxJhGjOfDWDaM48IYJozfwdgVjNvAmAU8r8ezajynxTNKPJ/Dsyk8l8EzCdyPx71o3IfFPUjcf8O9J9x3wT0H/N7Gb038zsJvDFxf49oS11W4psD3Kb5LcB7FOQTHD/oOuHlbgiZzeJZscI+/Pxq/Hfh06Obxe3tklaO95vHQNeR114muXcE/3KiKcfxQ2hvkwKbrt3NJ9Hli5beTHf/R5YO+iLYHy2WltwOvfx1vrF65SAdC/7pUM4fuMb8l1XE+SY3+/VvVez9N1f88Owr4PBm+QZcJ4MDwDeokgAPDN+hyARwYvkGdBXBg+AZdIYADwzeoiwAODN+grgI4MHyDugngwPANulIAB4ZvUHcBHBi+QT0EcGD4BvUUwIHhG3SVAA4M36BeAjgwfIN6C+DA8A3qI+F+EoHD1QI4MHyD+grgwPANukYAB4ZvUD8BHBi+QdcK4MDwDeovgAPDN+g6ARwYvkEDBHBg+AYNFMCB4Rs0SAAHhm/Q9QI4MHyDBgvgwPANGiKAA8M3aKiE57wEDsMEcGD4Bg0XwIHhG3SDAA4M36ARAjgwfINGCuDA8A0aJYADwzdotAAODN+gMRLGwxA4jBXAgeEbNE4AB4Zv0HgJ4+UIHCYI4MDwDUoTwIHhGzRRAAeGb9AkARwYvkGTBXBg+AZNEcCB4Rs0VQAHhm/QNAEcGL5B0wVwYPgGzRDAgeEbdKMADgzfoJsEcGD4Bs0UwIHhGzRLAAeGb9BsARwYvkFzBHBg+AbNFcCB4Rs0TwAHhm/QfAEcGL5BCwRwYPgGLRTAgeEbdLMADgzfoEUaHOCN0s057hsEzwT4BWCuPOaJY4405gdjbizmhWJOJOYDYi4c5oFhDhTm/2DuC+Z9YM4DxvtjrDvGeWOMM8b3YmwrxnViTCPG82EsG8ZxYQwTxu9g7ArGbWDMAp7X41k1ntPiGSWez+HZFJ7L4JkE7sfjXjTuw+IeJO6/4d4T7rvgngN+b+O3Jn5n4TcGrq9xbYnrKlxT4PsU3yU4j+IcguMHfQfcvC0hwDwaHyAN/5C/vFrg0xHMk1U5f46s2nRLOb3joVvI664TXbuCf7hRFeP4utxikAObrm/Q4ujzxMo3KAf+o8sHfRFtD5bLSu+tvP51vLF65SK3EvrXEgEcGH47twngwPDbWSqAA8Nv53YBHBh+O3cI4MDw27lTAAeG384yARwYfjt3CeDA8Nu5WwAHht/OcgEcGH47KwRwYPjt3COAA8NvZ6UADgy/nXsFcGD47awSwIHht3OfAA4Mv53VAjgw/HbuF8CB4bezRgAHht/OAwI4MPx21grgwPDbeVAAB4bfzkMCODD8dh4WwIHht/OIAA4Mv51HBXBg+O2sE8CB4bfzmAAODL+d9QI4MPx2HhfAgeG3s0HCc14ChycEcGD47TwpgAPDb+cpARwYfjtPC+DA8Nt5RgAHht/OswI4MPx2nhPAgeG387yE8TAEDi8I4MDw23lRAAeG385LEsbLETi8LIADw2/nFQEcGH47rwrgwPDbeU0AB4bfzusCODD8dt4QwIHht/OmAA4Mv523BHBg+O1sFMCB4bfztgAODL+ddwRwYPjtvCuAA8Nv5z0BHBh+O+8L4MDw29kkgAPDb+cDARwYfjsfCuDA8Nv5SAAHht/OZgEcGH47HwvgwPDb2SKAA8Nv5xMBHBh+O1s1OMBT5ErnuN8OPBPgF4C58pgnjjnSmB+MubGYF4o5kZgPiLlwmAeGOVCY/4O5L5j3gTkPGO+Pse4Y540xzhjfi7GtGNeJMY0Yz4exbBjHhTFMGL+DsSsYt4ExC3hej2fVeE6LZ5R4PodnU3gug2cSuB+Pe9G4D4t7kLj/hntPuO+Cew74vY3fmvidhd8YuL7GtSWuq3BNge9TfJfgPIpzCI4f9B1w87YETebwLHncPf7+aPx54NOhm8fv7ZFVjk81j4crQ153nejaFfzDjaoYxw/lU4Mc2HT9drZFnyei4bcT0fDbiRz7j6PXd9H2YLms9H6mwRV1J6b/G1YuQTM32hzte7eX0+Pnbbqf/+f//ef/dwHnn+3O6u3eucvknOe9Nys2Owz7ir+cbvu2pKp+narxvZn+ft3jYKfm+cVEx2eaOj4z0LGL931xvLF65Si+UV8I4MDwjfpSAAeGb9RXAjgwfKO+FsCB4Rv1jQAODN+o3QI4MHyjvhXAgeEbtUcAB4Zv1HcCODB8o/YK4MDwjfpeAAeGb9Q+ARwYvlE/CODA8I3aL4ADwzfqRwEcGL5RPwngwPCN+lkAB4Zv1AEBHBi+UQcFcGD4Rh0SwIHhG/WLAA4M36jDAjgwfKN+FcCB4Rt1RAAHhm/UbwI4MHyjjgrgwPCN+l0AB4Zv1B8CODB8o/4UwIHhG+WUj38ODN+oiAAODN+oBAEcGL5RiQI4MHyjkgRwYPhGZRPAgeEblV0AB4ZvVA4BHBi+UTkFcGD4RiUL4MDwjcolgAPDNyq3AA4M36g8AjgwfKPyCuDA8I3KJ4ADwzcqRQAHhm9UfgEcGL5RBQRwYPhGFRTAgeEbVUgAB4ZvVGEBHBi+UacI4MDwjSoigAPDN6qoAA4M36hiAjgwfKOKC+DA8I0qIYADwzeqpAAODN+oVAEcGL5RpQRwYPhGlRbAgeEbVUYAB4ZvlCuAA8M3qqwADgzfqHLl9XLo1g+/kM8MfGaKVo5tu+AP83k5fQ+a8tHziuhqCLYlq/rhEVLYjf798Ah5zNX/LCqU1++HfyXUzFMx6zwJ/rrzqEjy/T/GyeDfpun/D9+QSHq93vsqqb9PVVFZRZX01/M6x9uaWfuz2CKVypsfr9rJmjtOzA/cHQYHbskYH7gdy/1t7qTbrtTK+h8ONl1DqKoaJwgNVhGN9keO/cfR609ouy7X0zQ6Per2TJ7CyumejJtrvLdaeT1+3qb7+Vf/7z//vzYTYy8NU6u/vkB3GhyHNcrHXscuTR27DHScHuMLJ7QLFxu6x0TNOLpAwWehcfHwl+YKBuegWoYXKLps/e/NSksLh9OmiBN9m853OG1KcKJvU0uH06ZEJ/o2XeDYaVNWeVo50be/eJJZm3TPOxc6J3ZOiOY72/8dEM33do3y+jpaO7HXcbqmjtMNdLRxOH2xrRO9llJJJ8Y2q7aMVPWPS4q+PXjv1CT9PBc50ecYmcT5HNpptKm0Zpt0+x7ePy4ptt9JFzuc81p7h5PnEoeTp4PDyXOpw8nT0eHkuczh5OnkcPJc7nDydHY4ea5wOHm6OJw8XR1Onm4OJ8+VDidPd4eTp4fDydPT4eS5yuHk6eVw8vR2OHn6OJw8VzucPH0dTp5rHE6efg4nz7UOJ09/h5PnOoeTZ4DDyTPQ4eQZ5HDyXO9w8gx2OHmGOJw8Qx1OnmEOJ89wh5PnBoeTZ4TDyTPS4eQZ5XDyjHY4ecY4nDxjHU6ecQ4nz3jfe6N5XmSaZ4LD0ZPmcPJMdDh5JjmcPJMdTp4pDifPVIeTZ5rDyTPd4eSZ4XDy3Ohw8tzkcPLMdDh5ZjmcPLMdTp45DifPXIeTZ57DyTPf4eRZ4HDyLHQ4eW52OHkWOZw8tzicPIsdTp5bHU6eJQ4nz20OJ89Sh5PndoeT5w6Hk+dOh5NnmcPJc5fDyXO3w8mz3OHkWeFw8tzjcPKsdDh57nU4eVY5nDz3OZw8qx1OnvsdTp41DifPAw4nz1qHk+dBh5PnIYeT52GHk+cRh5PnUYeTZ53DyfOYw8mz3uHkedzh5NngcPI84XDyPOlw8jzlcPI87XDyPONw8jzrcPI853DyPO9w8rzgcPK86HDyvORw8rzscPK84nDyvOpw8rzmcPK87nDyvOFw8rzpcPK85XDybHQ4ed52OHnecTh53nU4ed5zOHnedzh5NjmcPB84nDwfOpw8HzmcPJsdTp6PHU6eLQ4nzycOJ89Wh5PnU4eTZ5vDyfOZw8mz3eHk+dzh5NnhcPLsdDh5djmcPF84nDxfOpw8XzmcPF87nDzfOJw8ux1Onm8dTp49DifPdw4nz16Hk+d7h5Nnn8PJ84PDybPf4eT50eHk+cnh5PnZ4eQ54HDyHHQ4eQ45nDy/OJw8hx1Onl8dTp4jDifPbw4nz1GHk+d3h5PnD4eT50+HkwcFonxvoKBenggpTwIpTyIpTxIpTzZSnuykPDlIeXKS8iST8uQi5clNypOHlCcvKU8+Up4UUp78pDwFSHkKkvIUIuUpTMpzCilPEVKeoqQ8xUh5ipPylCDlKUnKk0rKU4qUpzQpTxlSHpeUpywpTznNPMH6o/EjrmTgL1yepL8CQX91A/0VSforkfKcSspTmZSnCilPVVKe00h5qpHyVCflqUHKczopT01SnlqkPLVJeeqQ8pxBynMmKU9dUp6zSHnqkfKcTcpTn5TnHFKeBqQ855LyNCTlOY+UpxEpT2NSniakPE1JeZqR8jQn5WlBynM+KU9LUp4LSHlakfJcSMrTmpSnDSlPW1Kei0h52pHyXEzK094wz4mseZpVmy7RbJNuW7C+4xflon//U2742r1Z6ehA0PGlho6nDXVcStDxlYaOZwx1dCTo+FpDx7OGOi4j6PhGQ8dzhjo6EXTs1tDxvKGOywk6vtXQ8YKhjs4EHXs0dLxoqOMKgo7vNHS8ZKijC0HHXg0dLxvq6ErQ8b2GjlcMdXQj6NinoeNVQx1XEnT8oKHjNUMd3Qk69mvoeN1QRw+Cjh81dLxhqKMnQcdPGjreNNRxFUHHzxo63jLU0Yug44CGjo2GOnoTdBzU0PG2oY4+BB2HNHS8Y6jjaoKOXzR0vGuooy9Bx2ENHe8Z6riGoONXDR3vG+roR9BxREPHJkMd1xJ0/Kah4wNDHf0JOo5q6PjQUMd1BB2/a+j4yFDHAIKOPzR0bDbUMZCg408NHR8b6hhE0OGUj/79Wwx1XE/QEdHQ8YmhjsEEHQkaOrYa6hhC0JGooeNTQx1DCTqSNHRsM9QxjKAjm4aOzwx1DCfoyK6hY7uhjhsIOnJo6PjcUMcIgo6cGjp2GOoYSdCRrKFjp6GOUQQduTR07DLUMZqgI7eGji8MdYwh6MijoeNLQx1jCTryauj4ylDHOIKOfBo6vjbUMZ6gI0VDxzeGOiYQdOTX0LHbUEcaQUcBDR3fGuqYSNBRUEPHHkMdkwg6Cmno+M5Qx2SCjsIaOvYa6phC0HGKho7vDXVMJegooqFjn6GOaQQdRTV0/GCoYzpBRzENHfsNdcwg6CiuoeNHQx03EnSU0NDxk6GOmwg6Smro+NlQx0yCjlQNHQcMdcwi6CiloeOgoY7ZBB2lNXQcMtQxh6CjjIaOXwx1zCXocDV0HDbUMY+go6yGjl8Ndcwn6CinoeOIoY4FMdaBuSg1NXRUK//3+3V1LIyxji2p6rrdjf79W9X7v0jV13EzQUcRTR1fGuhYRNBRVFPHVwY6biHoKKap42sDHYsJOopr6vjGQMetBB0lNHXsNtCxhKCjpKaObw103EbQkaqpY4+BjqUEHaU0dXxnoON2go7Smjr2Gui4g6CjjKaO7w103EnQ4Wrq2GegYxlBR1lNHT8Y6LiLoKOcpo79BjruJugor6njRwMdywk6Kmjq+MlAxwqCjoqaOn420HEPQUclTR0HDHSsJOg4VVPHQQMd9xJ0VNbUcchAxyqCjiqaOn4x0HEfQUdVTR2HDXSsJug4TVPHrwY67ifoqKap44iBjjUEHdU1dfxmoOMBgo4amjqOGuhYS9BxuqaO3w10PEjQUVNTxx8GOh4i6KilqeNPAx0PE3TU1tThlNLX8QhBRx1NHREDHY8SdJyhqSPBQMc6go4zNXUkGuh4jKCjrqaOJAMd6wk6ztLUkc1Ax+MEHfU0dWQ30LGBoONsTR05DHQ8QdBRX1NHTgMdTxJ0nKOpI9lAx1MEHQ00deQy0PE0Qce5mjpyG+h4hqCjoaaOPAY6niXoOE9TR14DHc8RdDTS1JHPQMfzBB2NNXWkGOh4gaCjiaaO/AY6XiToaKqpo4CBjpcIOppp6ihooONlgo7mmjoKGeh4haCjhaaOwgY6XiXoOF9TxykGOl4j6GipqaOIgY7XCTou0NRR1EDHGwQdrTR1FDPQ8SZBx4WaOoob6HiLoKO1po4SBjo2EnS00dRR0kDH2wQdbTV1pBroeIeg4yJNHaUMdLxL0NFOU0dpAx3vEXRcrKmjjIGO9wk62mvqcA10bCLouERTR1kDHR8QdHTQ1FHOQMeHBB2Xauoob6DjI4KOjpo6Khjo2EzQcZmmjooGOj4m6OikqaOSgY4tBB2Xa+o41UDHJwQdnTV1VDbQsZWg4wpNHVUMdHxK0NFFU0dVAx3bCDq6auo4zUDHZwQd3TR1VDPQsZ2g40pNHdUNdHxO0NFdU0cNAx07CDp6aOo43UDHToKOnpo6ahro2EXQcZWmjloGOr4g6OilqaO2gY4vCTp6a+qoY6DjK4KOPpo6zjDQ8TVBx9WaOs400PENQUdfTR11DXTsJui4RlPHWQY6viXo6Kepo56Bjj0EHddq6jjbQMd3BB39NXXUN9Cxl6DjOk0d5xjo+J6gY4CmjgYGOvYRdAzU1HGugY4fCDoGaepoaKBjP0HH9Zo6zjPQ8SNBx2BNHY0MdPxE0DFEU0djAx0/E3QM1dTRxEDHAYKOYZo6mhroOEjQMVxTRzMDHYcIOm7Q1NHcQMcvBB0jNHW0MNBxmKBjpKaO8w10/ErQMUpTR0sDHUcIOkZr6rjAQMdvBB1jNHW0MtBxlKBjrKaOCw10/E7QMU5TR2sDHX8QdIzX1NHGQMefBB0TNHW0NdCBhkX5XmMdaZo6LjLQESHomKipo52BjgSCjkmaOi420JFI0DFZU0d7Ax1JBB1TNHVcYqAjG0HHVE0dHQx0ZCfomKap41IDHTkIOqZr6uhooCMnQccMTR2XGehIJui4UVNHJwMduQg6btLUcbmBjtwEHTM1dXQ20JGHoGOWpo4rDHTkJeiYramji4GOfAQdczR1dDXQkULQMVdTRzcDHfkJOuZp6rjSQEcBgo75mjq6G+goSNCxQFNHDwMdhQg6Fmrq6GmgozBBx82aOq4y0HEKQcciTR29DHQUIei4RVNHbwMdRQk6Fmvq6GOgoxhBx62aOq420FGcoGOJpo6+BjpKEHTcpqnjGgMdJQk6lmrq6GegI5Wg43ZNHdca6ChF0HGHpo7+BjpKE3TcqanjOgMdZQg6lmnqGGCgwyXouEtTx0ADHWUJOu7W1DHIQEc5go7lmjquN9BRnqBjhaaOwQY6KhB03KOpY4iBjooEHSs1dQw10FGJoONeTR3DDHScStCxSlPHcAMdlQk67tPUcYOBjioEHas1dYww0FGVoON+TR0jDXScRtCxRlPHKAMd1Qg6HtDUMdpAR3WCjrWaOsYY6KhB0PGgpo6xBjpOJ+h4SFPHOAMdNQk6HtbUMd5ARy2Cjkc0dUww0FGboONRTR1pBjrqEHSs09Qx0UDHGTHWgXXca2mu417LYB33MzV1HCuomacuKc9ZpDz1SHnOJuWpT8pzDilPA1Kec0l5GpLynEfK04iUpzEpTxNSnqakPM1IeZqT8rQg5TmflKclKc8FpDytSHkuJOVpTcrThpSnLSnPRaQ87Uh5LiblaU/KcwkpTwdSnktJeTqS8lxGytOJlOdyUp7OpDxXkPJ0IeXpSsrTjZTnSlKe7qQ8PUh5epLyXEXK04uUpzcpTx9SnqtJefqS8lxDytOPlOdaUp7+pDzXkfIMIOUZSMoziJTnelKewaQ8Q0h5hpLyDCPlGU7KcwMpzwhSnpGkPKNIeUaT8owh5RlLyjOOlGc8Kc8EUp40Up6JpDyTSHkmk/JMIeWZSsozjZRnOinPDFKeG0l5biLlmUnKM4uUZzYpzxxSnrmkPPNIeeaT8iwg5VlIynMzKc8iUp5bSHkWk/LcSsqzhJTnNlKepaQ8t5Py3EHKcycpzzJSnrtIee4m5VlOyrOClOceUp6VpDz3kvKsIuW5j5RnNSnP/aQ8a0h5HiDlWUvK8yApz0OkPA+T8jxCyvMoKc86Up7HSHnWk/I8TsqzgZTnCVKeJ0l5niLleZqU5xlSnmdJeZ4j5XmelOcFUp4XSXleIuV5mZTnFVKeV0l5XiPleZ2U5w1SnjdJed4i5dlIyvM2Kc87pDzvkvK8R8rzPinPJlKeD0h5PiTl+YiUZzMpz8ekPFtIeT4h5dlKyvMpKc82Up7PSHm2k/J8Tsqzg5RnJynPLlKeL0h5viTl+YqU52tSnm9IeXaT8nxLyrOHlOc7Up69pDzfk/LsI+X5gZRnPynPj6Q8P5Hy/EzKc4CU5yApzyFSnl9IeQ6T8vxKynOElOc3Up6jpDy/k/L8QcrzJymPk8jJEyHlSSDlSSTlSSLlyUbKk52UJwcpT05SnmRSnlykPLlJefKQ8uQl5clHypNCypOflKcAKU9BUp5CpDyFSXlOIeUpQspTlJSnGClPcVKeEqQ8JUl5Ukl5SpHylCblKUPK45LylCXlKUfKU56UpwIpT0VSnkqkPKeS8lQm5alCylOVlOc0Up5qpDzVSXlqkPKcTspTk5SnFilPbVKeOqQ8Z5DynEnKU5eU5yxSnnqkPGeT8tQn5TmHlKcBKc+5pDwNSXnOI+VpRMrTmJSnCSlPU1KeZqQ8zUl5WpDynE/K05KU5wJSnlakPBeS8rQm5WlDytOWlOciUp52pDwXk/K0J+W5hJSnAynPpaQ8HUl5LiPl6UTKczkpT2dSnitIebqQ8nQl5elGynMlKU93Up4epDw9SXmuIuXpRcrTm5SnDynP1aQ8fUl5riHl6UfKcy0pT39SnutIeQaQ8gwk5RlEynM9Kc9gUp4hpDxDSXmGkfIMJ+W5gZRnBCnPSFKeUaQ8o0l5xpDyjCXlGUfKM56UZwIpTxopz0RSnkmkPJNJeaaQ8kwl5ZlGyjOdlGcGKc+NpDw3kfLMJOWZRcozm5RnDinPXFKeeaQ880l5FpDyLCTluZmUZxEpzy2kPItJeW4l5VlCynMbKc9SUp7bSXnuIOW5k5RnGSnPXaQ8d5PyLCflWUHKcw8pz0pSnnsN8yQE8tTs1XbwzlrLqmxo13x9WlqnrpXr7G458olB85ruPLhgv9pfwYm+Tas026TbluYqTisf/furqfdWL6/P9j7SZ7ialOd+Ul9JcqJv0xpSm7I50bfpAVKbsjvRt2ktqU05nOjb9CCpTTmd6Nv0EKlNyU70bXqY1KZcTvRteoTUptxO9G16lNSmPE70bVpHalNeJ/o2PUZqUz4n+jatJ7UpxYm+TY+T2pTfib5NG0htKuBE36YnSG0q6ETfpidJbSrkRN+mp0htKuxE36anSW06xYm+Tc+Q2lTEib5Nz5LaVNSJvk3PkdpUzIm+Tc+T2lTcib5NL5DaVMKJvk0vktpU0om+TS+R2pTqRN+ml0ltKuVE36ZXSG0q7UTfpldJbSrjRN+m10htcp3o2/Q6qU1lnejb9AapTeWc6Nv0JqlN5Z3o2/SWRpsS09uCcSTYWqg4X0VLFReoaKXiQhWtVbRR0VbFRSraqbhYRXsVl6jooOJSFR1VXKaik4rLVXRWcYWKLiq6quim4koV3VX0UNFTxVUqeqnoraKPiqtV9FVxjYp+Kq5V0V/FdSoGqBioYpCK61UMVjFExVAVw1QMV3GDihEqRqoYpWK0ijEqxqoYp2K8igkq0lRMVDFJxWQVU8BBxTQV01XMUHGjiptUzFQxS8VsFXNUzFUxT8V8FQtULFRxs4pFKm5RsVjFrSqWqLhNxVIVt6u4Q8WdKpapuEvF3SqWq1ih4h4VK1Xcq2KVivtUrFZxv4o1Kh5QsVbFgyoeUvGwikdUPKpinYrHVKxX8biKDSqeUPGkiqdUPK3iGRXPqnhOxfMqXlDxooqXVLys4hUVr6p4TcXrKt5Q8aaKt1RsVPG2indUvKviPRXvq9ik4gMVH6r4SMVmFR+r2KLiExVbVXyqYpuKz1RsV/G5ih0qdqrYpeILFV+q+ErF1yq+UbFbxbcq9qj4TsVeFd+r2KfiBxU4Jn5U8ZOKn1UcUHFQxSEVv6g4rOJXFUdU/KbiqIrfVfyh4k8VuKkbUZGgIlFFkopsKrKryKEip4pkFblU5FaRR0VeFflUpKjIr6KAioIqCqkorOIUFUVUFFVRTEVxFSVUlFSRqqKUitIqyqhwVZRVUU5FeRUVVFRUUUnFqSoqq6iioqqK01RUU1FdRQ0Vp6uoqaKWitoq6qg4Q8WZKuqqOEtFPRVnq6iv4hwVDVScq6KhivNUNFLRWEUTFU1VNFPRXEULFeeraKniAhWtVFyoorWKNiraqrhIRTsVF6tor+ISFR1UXKqio4rLVHRScbmKziquUNFFRVcV3VRcqaK7ih4qeqq4SkUvFb1V9FFxtYq+Kq5R0U/FtSr6q7hOxQAVA1UMUnG9isEqhqgYqmKYiuEqblAxQsVIFaNUjFYxRsVYFeNUjFcxQUWaiokqJqmYrGKKiqkqpqmYrmKGihtV3KRipopZKmarmKNirop5KuarWKBioYqbVSxScYuKxSpuVbFExW0qlqq4XcUdKu5UsUzFXSruVrFcxQoV96hYqeJeFatU3KditYr7VaxR8YCKtSoeVPGQiodVPKLiURXrVDymYr2Kx1VsUPGEiidVPKXiaRXPqHhWxXMqnlfxgooXVbyk4mUVr6h4VcVrKl5X8YaKN1W8pWKjirdVvKPiXRXvqXhfxSYVH6j4UMVHKjar+FjFFhWfqNiq4lMV21R8pmK7is9V7FCxU8UuFV+o+FLFVyq+VvGNit0qvlWxR8V3Kvaq+F7FPhU/qNiv4kcVP6n4WcUBFQdVHFLxi4rDKn5VcUTFbyqOqvhdxR8q/lSBL72IigQViSqSVGRTkV1FDhU5VSSryKUit4o8KvKqyKciRUV+FQVUFFRRSEVhFaeoKKKiqIpiKoqrKKGipIpUFaVUlFZRBmsRqCiropyK8ioqqKioopKKU1VUVlFFRVUVp6mopqK6ihoqTldRU0UtFbVV1FFxhoozVdRVcZaKeirOVlFfxTkqGqg4V0VDFeepaKSisYomKpqqaKaiuYoWKs5X0VLFBSpaqbhQRWsVbVS0VXGRinYqLlbRXsUlKjqouFRFRxWXqeik4nIVnVVcoaKLiq4quqm4UkV3FT1U9FRxlYpeKnqr6KPiahV9VVyjop+Ka1X0V3GdigEqBqoYpOJ6FYNVDFExVMUwFcNV3KBihIqRKkapGK1ijIqxKsapGK9igoo0FRNVTFIxWcUUFVNVTFMxXcUMFTequEnFTBWzVMxWMUfFXBXzVMxXsUDFQhU3q1ik4hYVi1XcqmKJittULFVxu4o7VNypYpmKu1TcrWK5ihUq7lGxUsW9KlapuE/FahX3q1ij4gEVa1U8qOIhFQ+reETFoyrWqXhMxXoVj6vYoOIJFU+qwNr0WDcea7pjvXWshY51yrGGONb3xtrbWBcba1ZjPWms9Yx1mLFGMtYvxtrCWPcXa/JivVysZYt1ZrEGLNZnxdqpWNcUa45iPVCs1Yl1NLHGJdafxNqQWLcRaypivUOsRYh1ArGGH9bXw9p3WJcOa8ZhPTestYZ10LBGGdYPw9peWHcLa2JhvSqsJYV1nrAGE9ZHwtpFWFcIa/5gPR6slYN1bLDGDNZ/wdosWDcFa5pgvRGsBYILX6yhgfUtsPYE1oXAmg1YTwFrHWAdAqwRAP9+eOvD9x6e9PCLh5c7fNbhgQ5/cniHw9cbntvww4ZXNXyk4fEM/2V4I8O3GJ7C8Pv9y4tXBTxs4S8L71f4ssIzFX6m8BqFDyg8OuGfCW9L+E7CExJ+jfBShM8hPAjhDwjvPvjqwfMOfnTwioOPGzzW4H8GbzL4hsHTC35b8MKCTxU8pODvBO8l+CLBswh+QvD6gQ8PPHLgXwNvGfi+wJMFfinwMoHPCDxA4M8B7wz4WsBzAn4Q8GqAjwI8DuA/AG8AzNvHnHrMd8dcdMwTxxxuzK/G3GfMS8acYcznxVxbzIPFHFXMH8XcTsy7xJxIzFfEXELM88McPMyPw9w1zCvDnC/Mx8JcKcxjwhwjzP/B3BzMm8GcFsw3wVwQzNPAHArMb8DcA8wLwJh9/A7CWHeMQ8cYcYzfxthqjHvGmGSMF8ZYXoyzxRhYjE/F2FGM68SYS4yHxFhFjCPEGD+Mv8PYOIxbw5gyjPfCWCyMk8IYJowvwtgfjMvBmBmMZ8FYE4ztwLgIjFnAeAI8v8fzcjyfxvNgPH/F8048X8TzPDw/w/MqPB/C8xg8/8DzBtzfx/103L/G/WLcn8X9UNx/xP0+3F/D/SzcP8L9Gtwfwf0I/P7H7238vsXvSRwy+G3obelfoX/9fsQ4BDz3x3N2PNfGc2Q8t8VzUjyXxHNAPHfDcy48V8JzHDw3wXMKPBfAfXjc98Z9ZtzXxX1U3LfEfULcl8N9MNx3wn0e775KWefv3+nlnb/HzFRUUUnFqSoqq6iioqqK01RUU1FdRQ0Vp6uoqaKWitoq6qg4Q8WZKuqqOEtFPRVnq6iv4hwVDVScq6KhivNUNFLRWEUTFU1VNHP+HisT3C70/d0h/d+5V7/61oHvcrznf1/HTPZNSf934UVtKpT89cJJ/n23pv/7ylUJm6alZJ/v33dbJnXiHICtTPbmm9uf9tKn/n35sqXvm/lYQvN2Ob/07zslfV+3nHc+02RT7gf8+4pmsi81k32lM9lXOZN9VTLZVyOTfTUz2Vc7k311MtlXL5N99TPZ1zCTfY0y2Xd+JvtaZrKvTSb7Lspk38WZ7Gufyb7LMtl3eSb7umay78pM9vXJZN/Vmezrn8m+AZnsG5TJvusz2Tc8k30jMtk3JpN94zLZd5d3TIcc77lz/v1v2Hkibyb7ymeyr2r6vn2zc03e/t3WOf59NTIp1zCTfRem75tQqVPe+tXOfPQf+fJknK9OnozL1cyXcb4zMtk3MZN9c/JlnO/tAhmXG1QwYw0jC2Zc59rCGdf5SCb7/vrCzWBf3lMyzndhsYzL7SuWsYZfimVcZ7WSGddZM5N94zLZd1PJjPO9UTrjcv3LZKxhWJmM61xdNuM612ay77cM9qV3lb+uZbD1GDKk9+ChV1418LpBPYZe07N/7ysHDu5xlfpneO/BQ64ZOODKGwb3GDSo9+Ai6e9PP1yOPWfA9Rq+9l0nqi2S01dOv/yEZjmDFWqVd/4qH3FM8/+t37tGNSmf3WuIr7y/LV69uN7N7fs7byC/YfubnWj7C2bSZu+zaep7v+tEtSXhmh4686e/AO0V0v8eNvSa/tcMHdn4r67a9FhPveivjtrx734arDAS+P+mGbyey9fuJN97omcyoplXZ/rl71+/WRJD3pkU+Nd7T/pp8a/fNl5+799oxmJvfeXg5nWtal9XIFAem/fZ5PLl6XXNkKsGquP7ygG9b7jyut5DhvS4uveQI+X/3vkfH+BzTvAAn3OCHTyS01fGoPyxA3y2r3ywLdjyOP88kPxlcqTv9/7ulP73CR78c5gHv/c+14lqO9ZvmpmVT/DKNzcrf6z9LXzlNdi4Xvnz/S86UW1JXtmWYWUPDPl45VuzHn151dB771lUYGveW3NXyzV+ypQfSu5LXbJ/ynKv7AW+dmvozu6VbxWWu+HjiZ37PnxkYO7zJz14w9ZP2g7Lm9rjxTLT7+n8yrwy31451St7YVjZ3TNvG5/y4Pxl7mlvH8x+/py9V/58QbZ6W98eU/yliUe/3b/AK9s6rOymzkc/W5eyYNSIWU+Mrle5UI81Cz7+cc9rb61N+XnnA9d/fKZXto1Ps8k5qq1Z+fxe+Yt85TUmzRzra+3Myh9r/8Vm5Y8dK+19L7reH2krVn3WeNbbNb84muvGNj0mj6hz0weXfT+q2L0Vv+r3QOqaAl7ZS8LK7hradN7QotfV/T7nu7Nq3VWy1OcH7l33zaGRvevt/Wb3+rI/e2U7hJXNYvPKXhpStljtU88etPi9wtsql/u00fNraiwsfqBCg20bWt61/8gbh31lvRtimp/3MV6XmZU/dnx3Miuf6JW/3Fde4xg/Vr6z70U38zLHvpa8slf4duheMGPrEn1ub8vmle0aXjYyqdyQW5JnRdq8OLH6ujy5Xvy28Z1Nmr791uQby6SsudMr2y2kbNUGyfvvuXHcFGfHvd/NPlT16UbVC5RuXKDGh7dtLjlg8BXF93tlr/QSOVqaU73y3X3lA23PdPPK9zArf+z80NP3outEtR0re5V+2WPHSS+vMkeL27HPu7dZ+WPfZX3Myuf0yl9tVj7ZK9/XrHwur/w1ZuW9e25/DW4zKJ/HK3+tWXnvvt5fg+q88hrnqWPXUNeZla/ulR9gVr6mV36gWflaXvlBvvIa/Bp55a83y9/YKz/YrHxzr/wQs/ItvPJDzcq39coPMyt/pVd+uFn5Hl75G8zK9/TKjzArf5VXfqRZ+V5e+VFm5Xt75Ueble/jlR9jVv5qr/xYs/J9vfLjzMpf45Ufb1b+Wq/8BLPy/b3yaWblr/PKTzQrP8ArP8ms/ECv/GSz8oO88lPMyg/2yk81Kz/EKz/NrPxQr/x0s/LDvPIzzMoP98rfaFZ+hFf+JrPyI73yM83Kj/bKzzIrP9a7iXyw6N8vhN3v0qivnXePzn8zN+L8s26zm8Z/jdn+R32O8897jk6g/uRAWzTzRSKB+rx8QX0eK097tpC2pITsCzLOFpInW0ielJB9oyzWNcViXaMt1jXJYl02NaZZrGucxbomWqxrjMW6+lusyyZ7m8fQ1Dita7jFumz2CZvsbfavkRbrsnls2+wTIyzWZfMcPcNiXfH6/ehdN3rXDv5rjUgG/3p5gq95eZIDdZle94TpSgrJl9n7EzN5f/Yo68fAhpT0v9MHNjTr3XPY1a0HXu0EtqTA/1+QQRNTA++7IpOmBeuNBCL4emrgtcSQ9/o3yPPGCqXLa9F76FV9O/S4+urevZTIIcESwZpaZvB68ILU/x7vYjx7oKWuE9WWEE2n9NefHGiLaacM6zRhBxuopg/W86i2HtijV9Meg4YM6987wV+188+WB6n4a/W/FvaZRnwtczJ5X8vA/7cJKeeE1I393ieXM/C660S1JXu9Ijlkp7cvV6Bu/77cvn3+TzO4JYa032szfnL+VvR4vcH3Bdvj/zxyBfbl8O3L7csd/Fyzh+Tx2p8Q8v4cgbqyh5TzymSVLzGDcv6/M/vpHM3R5unAlhKSw8sdw7NC4Xg/K3j6cpjlKxQJlPfn89fptcdjnTNkn1eXdxxmz6Au/1g7//tfSv83JfA+bB0COXKGtNf/mscHzJ4NtN3PNthPToSjvz6vXf7X/PUnOyfULyOZfW5+fcF+YniOLRgNd397gufkIFv/eS97BnV5ZZMC7/cGMqc4/z7vB/tJckh7/a/5+8lbgbb72Qb7iSHHxtH2E6/+ZOeE+mUks8/Nry/YT5LN8jWKhru/PWHfz362/u/A7BnU5ZVNCrz/s/R/UwLvwxbsJ7lC2ut/zd9PtqT/nTOD9rpOVNsNYdctwX4WvG5xnai21Gj7mVd/snNCn3skM45hx1vYtZdXNiVkX/CnVu6QPLlD8qSE7Jtisa5JFusaYbGuURbrmhqndY2zWNdEi3WNsVhXf4t1TbBYl81+H4+8Mvse0q0Lm82+Os1iXWMt1mWzr9rUONxiXfF6bM+0WNcAi3V5j/GD13le/dhyOv8+9nR/m/jr89rpf81ff3KgLabXOmFcwq4ZPX15zPIViATK+/P56/Ta47HOG7LPqyt9KvE/rqn9dXllkwLvr5QONCXwPmzBa+q8Ie31v+a/pi6bXm++kPYG7y/o9kd/+SAjf7lgfzyRz8tfn9dO/2v++pOdE+r/kcz6RxgXT19es3z5o/l8/e3xWOcL2efV5T0OyZ5BXV7ZpMD76wb6Yz5fm4L9MV9Ie/2v+ftjrcg/2+5nG+wnhhybR9tPvPqTnRPql5HMPje/vmA/yWeWr1k03P3t8VinhOzz6vLmBmfPoC6vbFLg/U0D/STF16ZgP0kJaa//NX8/aRjoJ362wX5ixjHyY7T9xKs/2TmhfhnJ7HMLO397+lKM8kX2R8Pd3x6Pdf6QfV5d3jzo7BnU5ZVNCry/XaCf5Pe1qXkgR/6Q9vpf8/eTCwP9xM822E/MOP5lt/qP+rx2+V/z15/snNDxHcnscws7r3r68pvlaxwNd397PNYFQvZ5dXlPVLNnUJdXNinw/q6BflLA16bg+aRASHv9r/n7Saf0evOFtDd4/zza81RKSHnvfWF9DuE6UW0dwj5TjfLXBz8jrw5/2wr6XtfoL7WiPR68+pOdf/cXk+OhYCBfRp+3p71QSFtSQvYFP6NCIXkKheRJCdk31mJdoyzW1d9iXSMs1jXBYl3DLdY1zmJdaRbrstknRlqsa5jFuqZaqivs/Hki7Zpisa5pFuuyeWzPtFiXzXOhzeNxosW6bH6OsyzWZbNP2GRv69h2LGu02ScmWawrXs8TNtv1v3DNdPI77b9jb/N4HG2xLpsab4zTdtm8nrCpMfj8zP/bMpL+b07n38eexu9W7xbmsfq8dvpf89efHGiLZr5IZlz8+oK/kwuHtCUlZF/wd3LhkDyFQ/KkhOwba7GuURbr6m+xLpsax1msa6LFuqZZrMsm+5kW6zr5OerVNctiXTb7xEiLdU2yWJfN89dUi3XZZG+zr9pkH6/nL5t91Wb/SrNYl83P0Wb/snkM2exfUyzWNdxiXTY1xuu1nE2NNq8n4vVzjNdruRst1hWv1zk2rzFPXk/8/ziGbJ4nbLbLVv/C3/kt1YVtusW6bLK3eQ3gfdcGx3159WM7wXtg3vDjY/V57fS/5q8/2fn3Z2nrHljYGDJPX2GzfG40n4O/PR7rU0L2eXV5Hh/ZM6jLK5sUeP8l6aJSAu/DFhxjd0pIe/2v+cdOtU3/n3wh7T3RZxH+8kFG/nLB/mj4eSVG2x+9+pOdE+r/kcz6RxiXsP7hlU0J2RfkH+3nmlldwfvC3n5sOUPKafBIiZa/f92eE/i8I5lxCTtPevqKmOXLFzyG/fn8dXrt8VgXDdnn1ZW+DNs/zgf+uryySYH39w+cD4r62tQhkKNoSHv9r/nPB1cHzgc2+6O/fJCRv1ywPxp+XlHPKfHqT3ZOqP9HMusfYVw8fUXN8uWP5vP1t8djXSxkn1dX8fT/z55BXV7ZpMD7xwT6YzFfm4LfT8VC2ut/zd8fbwj0x7DjLJrj0l9v2PnRe9//tzx5QsoFjy/D/pct2uPLqz/ZOaHjOZJZfw/jEtbfvbIpIfsyOjf784T1U4l1ef0vs++maL83wvpfUXKesL6McJ2otgu88sXMytf3yhc3K9/GK1/CrPwlXvmSZuXP98qnmpXv5JUvZVb+2Pqapc3Kt/aO9TK+F4PnOdf3usZ5p2205zk3/e/kQFtMz3NuIF9QX/A8VzakLSkh+4LHSNmQPGVD8qSE7Jtosa4ZFusabrGuCRbrGmexrpEW6+pvsa40i3WNsljX1Dity2ZfHWOxLlvs8XcxS3Vhs9lXbR6P0yzWFa/H43SLddk8huKV/ViLddk8T9j8rrV5jrbJ3iaveO1fEyzWZfNztMn+f+E8MdNSXfi7uKW6sA222K4ScVgXtusttqukpbqw2WKPbVgctgt/p1qsK8FSXdhs9QlsQy3Vhb9LWaoLm83P0Wa7bPVV/B2v58IUS3Vhs3n+svk52mxXPPLCZrOvlrZUFzab3x22zl/YZlmsy+b112iLddm8p2DzmnyCxbps3nv0ru+9+9iub18k/d+czr+PF92xG/76vHb6X/PXnxxoi2a+SGZcXN9rwbEA5czy5Y0Eyvvz+ev02uOxLh+yz6urQvr/Z8+gLq9sUuD9rdPBpgTehy04NqV8SHv9r/nHApyfXm/ODNrrOlFt1fI4/2YV7Gd+LhqfQ7Vo+5lXf7JzQp97JDOOfn3BZ0UVQtqSEtiHbYjvfcF9iSGvJWRS1ySLdU23WNdEi3WNtFhXf4t1jbNYl01eMyzWNdxiXRMs1mWTfbz2rzSLdY2yWNfUOK3LZl8dY7Eum+xt9q/RFuuaYrEum99paRbrssl+msW6brRYl02NMy3WNcBiXbMs1YW/y1qqC1u8XpvYPBfavM6xeZ6wef6K1+tC73P0xo/6+25w/GjZkDxlM8njL++9L09IuUj6vyf4mzDqdeWCvwnLmuXL9DdhGBed34QRX7n/z9/FIyzW9b9wPRvv55F4+86bbLGueP0+iNff9javZ+P191K8Xrv8L7BPs1iXzXN08JrKfz2TFMgT7X35lJDy3vvCrpsQrhPV1j6n8+9rD43yHb3yFc3KX+SVr2RWvql3XXWq78VI+r9e3ZV9r2tc46VFAvU5Tvg1pVd/cqAtmvmOXVNWDuQL6gteU1YJaUtKyL7gnJQqIXmqhORJCdk30WJdMyzWNdxiXRMs1jXOYl0jLdbV32Jdky3WNcViXTbZx2tfnWaxrlEW67LZv2yecyZZrOt/gX2axbpsapwap3XZPLbHWKzLFnv8XcxSXdhs9tV4vQaYYLGuk9/bJ7+3Y3lePfm9ffJ7++T39v+/721sNnnFa1+dbrEum7xsnnNssh9rsS6bx9AMi3XF6zk6Xq8nbGqcYLEum5+jTfb/C+eJmZbqijj/HuNwInWVt1iXrfvk+LuCpbqwXW+xXSmW6sI22GJdwyzWNdRSXfi7osW6/r+zx9/FLdZVwmJdJS3Vhc0mr0oW67LVV7HZPIbitd/Hq8b/7+dCm+3CdvK7Q/53B7YhlurC3zbHPNjihb9LW6yrlMW6bH3XYrP5/WiLF7Z4/O7ANstiXTZ/8422WJfNZzo27wNMsFiXzfE5Qd8G/9iwSPq/OZ1/Hy/I4zpRbbkjgfq8dvpf89efHGiLZr5IZlz8+jwunvaqIW1JCezDFvQ/qBqSp2pInpN1nazrv6rLGy/sP4aDc7B0zyP+8t778oSUC55H/MeZxnFdIdrziFd/snNC561IZvzDuHjaTwtpS0rIvuD9ydNC8pwWkiclZN8Ui3VNsljXCIt1jbJY19Q4rWucxbomWqxrjMW6+lusa7LFuoZbrMvm8TjNYl02+5dNXhMs1mWzf9k8hmyeV232CZvn1Xg9tm0ejzaPoRkW67J5PP4v9K80i3XZvAYIzvHzXy8H5/jp/jbwl/felyekXCT935yB9kUcrWvoeZFAfV47/a/56092/q3Z5Jo9jH8YF097tZC2pITsC97vrRaSp1pInpSQfRMt1jXDYl3DLdY1wWJd4yzWNdJiXf0t1jXZYl1TLNZlk3289tVpFusaZbEum/3L5jlnksW6/hfYp1msy6bGqXFal81je4zFumyxx9/FLNWFzWZfjddrgAkW64rX722b7G1eA9g8R9u8nojXvmqzf5383v7/cWyfvCY/2b+C+9Is1nXyulCvrni8LsRmk1e89tXpFuuyycvmOccm+7EW67J5DNn87ojXc3S8fqfZ1DjBYl02P0eb7P8XzhMzLdUVcf49RulE2nW9xXaVt1hXisW6bD4fssmrtKW6sA2zWNdQS3Xh74oW67LVJ7ANtliXLfY2j23bx6OtYwh/V7BUFzabx+P/Qv8qbrGuEhbrKmmpLmw2eVWyWJetcyE2m+foeO338arx//t3rc12YTt5bSL/uwPbEEt12byewGaLF/62dU2Ov0tZrMvWdy02m9+PNn/DxON3B7ZZFuvqb7Gu0RbrsvncyuZ9pgkW67I5vjA4R9c/tjWS/m9O59/HC/K4TlRbrkigPq+d/tf89ScH2qKZL5IZl7Bx0p726iFtSQnswxacQ1k9JE/1kDwn6zpZl05dXr/09+PgMenvsxrHSNTr0Hv1JzsndA6IZMYl7Fzlaa8R0paUkH3Ba5QaIXlqhORJCdk3zmJdUy3WNcJiXZMs1jXDYl2jLNY1JU7bNdJiXf0t1jXTYl0DLNY1y2JdNnlNtFiXzeNxmsW6bPZ7m+dCm5/jaIt12Tzn2OwTaRbrssl+eJy2a7LFumz2CZvXJja/t21+jvF6/rLZv9Is1hWv52ibddnsX2Ms1uWxD95D8OrHljNQLuJo/XYqFQnU57XT/5q//uRAWzTzRTLjEvYb1tN+ekhbUkL2BccGnB6S5/SQPCkh+6ZYrGuSxbpGWKxrlMW6psZpXeMs1jXRYl1jLNbV32Jdky3WZfMYsvk5zrBY13CLdU2zWJfNY9tm/7LZLpufo8122TxP2OwTNj/HNIt12TzfB31o/NdGQR8a3eszf3nvfXlCykXS/83p/PsaReN6aUokUJ/XTv9r/vqTnX9rNrk+C+MfxsXTXjOkLSkh+4JjGmqG5KkZkiclZN9Ei3XNsFjXcIt1TbBY1ziLdY20WFd/i3VNtljXFIt12WQfr311msW6Rlmsy2b/stkum5+jzXbZPK/a7BM2P8c0i3XZZD81TuuyeZ4YY7EuW+zxdzFLdWGz2Vfj9XpigsW6Tl4DnLwGiOV59eQ1wMlrgJPXACevAbKqyyaveO2r0y3WZZNXvJ4nxlqsy+YxFK/fHfF67Ruv/WuCxbpsfo422f8vnCdmWqor4vx7HMOJ1FXeYl227t/j7wqW6sJ2vcV2pViqC9tgi3UNi8N22f4cbfIaaqku233C1ueIv4tbrKuExbpKWqoLm01elSzWVdFSXdjita+ePB7/O43x2L+wnfweOtnvg/uGWKoLf9scI2Kzf5W2WFcpi3XZ+t7GZvO71hYvbPF4PGKbZbEum79FR1usy+ZzK5v3JyZYrMvmeKag70WKb18k/V9vXKD/XIc8rhPVlhQJ1Oe10/+av/5k59/fHxr5jo0LLBrIF9TncfG0FwtpS0pgH7agx0GxkDzFQvKw6gr7vBCuE9V2aZCHV4e/bv9vOY3Ppli0fcGrP9n592dj0heKB/JlxNXTXiKkLSkh+4KMS4TkKRGSJyVk30SLdY2P03ZNslQX/s5pqS7bGvtbrCvNYl1TLdY1xmJdNnlNs1jXTRbrmmyxrlEW67LJfpzFukZarMumxpkW6xpgsS7v2t77/vJf+9j57o7sMP3uNrxuzPS726/P4+LpK2GUL/J5NJ+Dvz0e65Ih+7y6vN+V2TOoyyubFHj/zPQvt5TA+7A1D+QoGdJe/2sen2wqpuX8Z9v9bIP9xIyjkzfafuLVn+ycSL883k/CPje/vmA/KWmWL0803P3t8ViXDtnn1VU+/f+zZ1CXVzYp8P5bA/2ktK9Nwd8WpUPa63/N308WptebL6S9lQP16p63/OW994XlKXyCeQqH5Anr2wjXiWrbGdZ3NMov88qXNitfxStf3qz8Bq98BbPy673yFc3Kp4XNMdQo39UrX9OsfGWvfC2z8nW88rXNyu/2ytcxK9/SK3+GWfknvPJnmpWf55Wva1b+oFf+LLPyC7zy9czK7/fK1/eV1zj3u175BmblE732nuN/MaRNXv3ed8fZvvdHMvjXqyu4z8uVHKjL9Hs2rO3+9gXPw+f48vk1ZlTXOZp15QzZZ/KZ1Hcy1uWvP08mbQm2E1vwOt9UM7aRFusaarGuKZbqCvtuPpF2DbTYrpIW6yptsa7yFutKsFQXtsEW21XBYl0V47SuVIt1nW6xrpoW66plsa7aFuuqY6kubDdZbNcZlurCNtliu860WFcli3XZ+u7A33Ut1nWWxbrqWaoLW/M4ratp+r/efQH/95IbyJMQkichkzz+8sF7Qv5y3vucA0M+XvnWrEdfXjX03nsWFdia99bc1XKNnzLlh5L7Upfsn7LiBO+XXXaC96MKeeVTzcoXDLsnoVG+QNg9CY3yzcLuSWiUbxx2T0Ljvu+/fI8cR197TaPcTpmw+xEabd8fdj8iIeryTs6w+xEa5euG3Y/QKH9W8H6E4ytbYfOTOX5ZPSfpkS37B95wsOqCN8+f9ez9Dea/Xb3hhEu+WLSvTdi9CA32+YL3Ipzoy54Tdh9C51lD8D7EP3I3fDyxc9+HjwzMff6kB2/Y+knbYXlTe7xYZvo9nV+ZV+bbK6cFf+/+o+ymzkc/W5eyYNSIWU+Mrle5UI81Cz7+cc9rb61N+XnnA9d/XDd4/+IfZTNv81/3hQsn//1/3nn53GN7/3nvAdEw/f+z+fZd4XuPVzYp8P5cKcfLFUvP5/3mTvhHi/7ecobk1+gHxSOB+pxAXf46sSU7//5OMrmPkhjIl9H3lqc9KaQtKYF92ILPKJNC8iSF5Amra5bFuvpbrGuyxbpGWaxrosW6Rlqsa5zFumxqHGOxrnjtX8Mt1jXFYl3TLNZls3/Z5DXBYl02+5fNY2iSxbps9gmb59XgOGX/vuB1QDbf6xrfywnRXgd49Sc74d/LrhPVduw6IFsgX0ZccqsomP73sKHX9L9m6MjWA3v0atpj0JBh/XsHr4yCV2N+Kv5a/a9FnH+q9+9LDLwWfF+rwP+3CSnnhNSN/d4nlzvwuutEtVXxekWVkJ3evqqBuv37/Css+j/N4JYY0n6vzTlU/Fb0eL3B9wXb4/88qgb2Jfv2nebLHfxcs4Xk8dqfEPL+5EBd2ULKeWWyyve/fCSGfU5e2ZSQfV7bT/CXilY/x3ZBYJ+/nwe1VPPt0z0GvNdwDCQUO15v8H3BtmZ0Dgq+PzHkteC3hb+uKwJ5Tn5bnPy2OLad/LYIaX+svy0SMyjn/zt4dsTmen+krVj1WeNZb9f84miuG9v0mDyizk0fXPb9qGL3Vvyq3wOpawoi1/TAvSl/e/33avzasmWhLynw/lfzHS83M/1FfKbeeOT0I63JsP7Xtu89dPA1vYf3bj3w6iFOYMvq8Ggf+P9LQsqFbV6XCNaPzcNreAKK+oTn1Z/snNCX3bETXtjPBr8+sxNesEMED2TbJ7xLAv9vcsILXlK4TlSb9gkveGkQXIDc+zu4hZ3wvDbrnvD8n0fwhOc/UIMnPP/nmhSSx2tjQsj7swXqyuxklVW+k5cef28nLz1828lLj5D2x/rSI1gum/PvI9crmxR47+PpDTnBI9Yp4CsXbOPJ7+y/t5Pf2b7t5Hd2SPtj/Z0ddiYJniVieevCnzvTH0O7hjadN7TodXW/z/nurFp3lSz1+YF7131zaGTvenu/2b2+7IETPGt0PMGz3aUotynwY8x/HASPY++bKaOBAl7ZpMD7tyQfL7fZ92OsYvr+9DNKxx79r+nVY2jv5gOuH9Z7WO9ebQcO7T2k8YBezYf3HjBU+6fZhYH/bx1SLmzL5avPPzMtMSASW5tA/lPS/9+bHRh8TxCQ9/5t6TtwIOdIvy8X1um89uQJlPf2Y/M6RZFA210nqi3qryKv/uRAW0y/iooE8gX1mX0V+btzkIq/Vv9r//VXkaGHivZXUXJgn/+ryP9pBrewryKvzbpfRf7PI/hV5J+PHvwq8n+uRULyeO1PCHl/0UBdRULKBb+KMsqXGFIueCkRCbzuv5dVOCR38F7WAd/ZIVexjDkUdjLm4G9PsJ3ReBEY9snLoj2bePXb8iII82cK8yLQO5v4e4o/S8dArd57/O/1bx19LXMyeF/Yp5cUUi64ecSSAm3Om+vvf9H7/gh86ft15Qq0J6y3+18LXiT5y3vvC8uT4wTz5AjJ4/Xk3L5y3QP78mSyL6+vzlyBfSm+csHnVvl9+zoE9vl/UuYI7CuYSZ2FQurEZ7cm1/H6EOV87wvr6d43kPcZlPW1x1/W///ZAu/F1jP936TAe11fvyqY65+5/EdxsF8VzaLdmfWrok7GeXKcYJ4cIXmC31bYugf2FQvRGubeEfyc/c4Iwb5TMkSXt69MJnW6IXXi81me65/vC37+2E5wlkDHaM/4Xv3JgbaYnvHLB/IF9QVnkJjNQnAujQTK+/P56/Ta47E+NWSfV5d3xZY9g7q8skmB91dP/zxTAu/DFnQVOTWkvf7XPD7oJ5UD/cTPNpLBv169wdeCx5dfu/f5eHnK+spd4WtP7QzOef4rKf95zftBHDxXPep7Knhm4FzlLx/87MKOE1P95UI05nP+zSa77++M+nf5TPJkz0RPrD7P7IE8/vOs//NsHPg8K/r2Bc/R+NubMZUUeP9S3+fZLPB5hh2LYZyD30u6nHOF5Ik15+D3y6kW8/jr8t/cQVQN1BXk7H1OHucqvn1VA+X8vzb97/P/6vL/Wj0tJHdY/V4dWfXBS3OFa8uoD3q5kgLvT/P1wU6GffDUwD7/d4X/e9HfDj8H//uDs9O9dmbP4P0Z6boyXQuuO/IW+2edXnk/K/9nETz/eu/v6aszf7Hwdvp1lfW9FrwZGdYfqoboCmN6mpN1bj/nNhnkzu5k3heTAu+/JoRp8HvBXz7sOMoXaEuVLNoePL795b33hd05OtHzSFibszomB2sekxXS/w723X6+Y3JY4JjMrI/42xz8HaHLOUdInlhzDv5GOM1iHn9dwe+F6oG6gpy9z8njXM23r3qgXA3fPv/7/N8L1X2v1wjJHVZ/tN8LU3OFa8uoD3q5kgLvv8jXB2dk8rs4sz54WmCfn2nweyGr82GFwPu9dmd3Mv++TQq8f24m3wthx6v/XBv8XvDevyCT7wUvr19XWd9rwe+FsL5YLURXGNPqgbrKhtTl5xz8Xghj6tdfNqDfe/+SKL8XvPJh9yN6BPb570dUDOzzO3gGr1n97ginBvb570cE742U8e0Lnu9c3z5/Hwnej8idiZ48vjqC9/v89+2KBfb5VycIOsLm9+0LuoD679uVDOwr6NtXJrCvkG+f69Pq3bcLPhx9MP31E3xuFzp0JbP7opEM/nWc6L4P/EOrIoE8RSzm8dfVKpCnqMU8wRUC/Hli4L4b9XPW/8p9V+/JiP9sE6Tir9X/mp90cF9mT0awnchzVq++kr59YSSCd87D/KCD5fwsnJDXEkLeXyJQV4mQcl7bEzMp76/DXy7YYyKB1zN6HunVkRR4/+u+b6tCgW/rsFx+HsFvTK/tGY2YCLbBe/9GXxtyFAuvMykDXcUzqPNz35OMd3OF1+mE1Bmmq2RAV7ANJQJt8N7/QciVQGLgPcH2hL3m8XdCygb/P6zPBD2dy2ShJ/g5ee//JJPPqVhIG/zHZJss2hB8T8kM2vBZSBtCzm5NBw4amX52cwJbcHB4JPD/QfLB57bFQurJaPNooBd6PTJslEHxkHLFQuoJtgnKvU8uXXmz3v17D+2dgfbgmTuSQc4EJ3wLXo86zr+/Qw2/06L+DpWySpH/8w32o8zy4DP1rjvTP9NLhg4cnNFHGu2XaySkWcHyThZ1BT9qw8d82oObIoF9/p9twctI/89D/0ktuAV1+/Xg5FJEY0qtn2lw4JO/e54W2Oc/VKoF9vm7UvXAPv8Jv0Zgn/+n2+mBfa5vX83AvrK+fZ4xmnex5P+c/T/P/PuwZfaoNiWkfLlM8hQ4wTwFQvLE8FF51Kev/+pRuac97DFGSsi+4AA27ziYkP5bEV9puXL/s27/cNogV8PZO3Wj5erVnxxoiynX3IF8QX1BrnlC2pIS2IctuBBunpA8eULyhNU1yWJd0y3WNdFiXSMt1tXfYl02Ndr8HG1qHGGxLpsa0yzWNdliXRMs1jXKYl3TLNY1zmJdNvuEzePR5jE0wWJdNnmNsVjXVIt12WQ/2mJdNtlPsViXTV42z4XDLdZlk1e8ngtt8ppgsS6b/Ster5ls9gmb39u22OPvnJbqwmaz39tkP9ZiXTb7vU2NNs8TNq8BbPKaabEuz0zbu8fkvw9RLpAn7Dd/7kzy+MvnjqKusPsHmWkMu4+T2zk+DOLYLf+ew65uPfBqJ7AFn1BckEETzwy8r00GTYuE1BsJRPD1MwOvJYa811+3fxp7nvTXK4a8z7utdGqgbteJaqsdCdTnOOG3lbz6kwNt0cx37LZS2MwNv77gbaUqIW0JGy0YXM9Hd4Sjf98ki3WlWaxrssW6Jlisa5TFuqZZrGucxbps9omJFuvqb7GuCRbrsslrjMW6bPIabbEum7ymW6zLZl8dabGu/4XPcYrFumzysvk9NNxiXTZ5xev3kE1eEyzWZbN/2Tzn2DwebfYJm9dMttjj75yW6sJms9/bZD/WYl02+71NjTbPE/F6/TXTYl3B2ySZzVqN1n0g7DbJqVHUFfZ7ODONMb5N4jWxVuB9bTJoWiSk3kgggq/XCryW1W2S4Kic/en3ck5wZF7oxBOvrnyBnPjbP9rMv89xortT5y+fJ5M8eU8wT94o81Q+wTyVQ/LkCSkXyeBfL0/wtczu7FcO5ClnMY+/rqDBhf9WWLAfZGaoEpbHX75iBnX5nSr7+t7jBt7vN1hxQnJ39+33vz97OlSM/vzVN/oT7ynvK++fYJozT+Zt9Zf1tzVoflHLN8E0d3qdYZy9zz2sH1QM7CsXkjeszuCxpfvZ5Q1pQ2Z1ub73pATef+yzyOD9Xn3Bz+4U32cXnMjqlc+o/1TMoA3+/uPVga17Bm0obtB/SubJvK3B/pMSyO29v5Cv/5QO9B8/48z6T0pgn7//eIzCzpnBkbq658wCIe0Ly5OZUViwH+kahaWE5GGPci8Q2OefbFwwsK+ab1+hwD7/xOfgd5B/Qn5wcu3pvn3BybX+pbaDk2v9y2gHJ9f6l8hOCezzL3/tPwaDW2Lg//2fCY61oxoj9f19JjhS3/XtC04s908SDk4uLRhoa/C1YF/zly+YQV3+6W6ur64rfPv97z8z/SSM4/+8PP/U5Tcf9Jh4fTs4dcx1otrqRAL1OU744zOv/uRAWzTzHXt8FjbN068v+PisXEhbws5vpXx/+/f584T9zAi7Thpnsa6pFusaYbGuSRbrmmGxrlEW65oSp+0aabGu/hbrmmmxrgEW65plsS6bvCZarMvm8TjNYl02+73Nc6HNz3G0xbpsfo42z182eU22WNdwi3XZ5GXzGLJ5PWGT1wSLdZ08r/5351Vb7PF3Tkt1YbPZ722yH2uxLpv93qZGm+eJMRbritfr1YEW6wo+igszaosE9vnzlMwkj798yQzK4W/XV0dmzxVOcNZ8YiRQn9ce/2v++pOdf59zTO4jlA/ky+jz8bSHGb6nhOwLWvPoPir11xWNgUjYvY/M+kaYRouPSr0m1g68r2MGTUsIqTcSiODrtQOvZfSo1KvbO4z8t56Cj6v8GDNDG/a4qlAmeVJOME9KlHnynmCevFHmKXCCeQpEmafoCeYpGpLHO5TD1mnBbdM38oTn9D+K8d+uddP/Tgq8P8l3K3Zj4FGM/3FG7oB+/wSSoNej1w+8/di8U6/f91LjVBi1YYlXf7Lz7z5pcurNH8gX1Oc/LUXvWRg8AvxU/LX6X4s4/z5rRHwt878WfHifO1DOxLOwgG9fGImgZ6FfU4EMyvlZOCGvJYS8P3+grvwh5by2J2ZS3l+Hv1ywx0QCr2fkWejVkRR4/3bfg9agZ2FYLj+P4KAdr+0Z+dAF2+C9f5evDUEvvPy+MmG6gkdzgcD/+/tWzwzy/5KeH+y+zhOe3wnJH9TnP6tl5AeYP9AG7/17Qh66h50p/e0Je83PwF82o//3vzc5oMX//2F9MeiFWCgL7cHP33v/j5l8/nlD2uC1C1ubLNoQfE9yBm04GNKGE/NCDJ7lgp9S8JPIG1JPRptHAz3W671BOsGjI5jH+/+wHnCiXoh5MsiZ4IRveZzwtmHL6ZzQd2XU381e/clOeM9znai2SPDs6eUL6gv+LMof0paUkH0ZHaVZ5TlBL8SMvrTDThbB8k6gbCTkNWxh6y6f/KmRcZ7/hZ8awbrCfkJgG5T+b/DEXiQdUtgSCoV87Qirs1OgDWF3AcJGQnnvD7tzVTJEo8fSf5eiXBS5/SyDX4TlNdsadnfFfyeqZKCt/vadqtnWjuS2Fgpp6wmO2tEekRYcPeYfkRYcPVbNty84esw/Ii04esw/Iu2UwL7TffuCo8f8I9KCS2L4R6SVC+zzj0gL3hqo49uXP7DvDN++sr6/g1vwO8T/eeF4buYerzf4Pv/fGZ2L/Md6m0Ab/Rfd/nOPd2sjp69ufx7XiWo71csT9mPaq9t/maLRN6/yt8nbwi55vNeSA23RzHfskicxkC+oL3jJkxTSlpTAPmzX+94X3JcY8lpCJnX1t1jXZIt1DbdY1xSLdU2zWNc4i3XZ5DXBYl02+9dEi3VNsliXzT4xylJdXnlb7ZpqsS6bfWKExbps9ok0i3VNtljXBIt12eqr2OL1vGqzT9g8f9k8hiZYrMsmrzEW67LJa6TFumz2VZvtOvm9/d/xsnm9avMcbfMaYLrFuiZYrCte+4TN80S8fg/Z/A1jU+NNFus6eV79/3H+svk53mCxLpu84vWcE6/XhaMt1mXzeLT5XWvzc4zX69Xr4rRdNs+rYy3WZfM8Ea/naJvtssk+Xs8TEyzW9b/wu9bm9/aMOG2Xzd+1Nj9Hm8ejzd8wk+O0Lpt9IngMRdL/3/+e7r6/e/j2+9/vuRSd4LPiXsFnsV4d/rqzGdYdCdTnOP9spxOoP09IPq9dyRnsc53Mt8cadb12u3uwdCRQ3mtL8DX/M3BE9pD3hz3T9ljl8JXXYNUzjy+HE8jt7Uvy7csW2Ofn4rUB/55e9p/ty27Yvmj4+etPCXl/B9/7dD6LAs4/+4K/v3tjfFzfvqDzVWYGnGEmmP/X3ruA2XVV9+H7zL0azZVGc/WWjF8jCfyS5bfBGMuSLMmS9X5ZlnGwHtbYFgjJyLLBvGL8wNAYStK0lD+kQMgfmvzDn6aBNl/SpCEJkNCkoaEfSQiUpGmTUGgCDRRSEqiPddbMb373t/fd55x9Ndd49vfNd8+cvfZaa6+91tqvtfdRJ9QM3mJ6Bj3whq9J8OcU9ooB3iMEkz/P8dBD/vAd+xosf5kHl+9GtAs8vF8IvHMM3UrBnwo/NfjLBTzGQhk/SjaXO00b64PteT/Vx+BfJOqj7G+0eB4CPJZXwnZm53RuXDZBh+WG9tNNRnlima4S8Cgrk0mb4FG+lofHqlZSHtoOx/yNCh5WwDuOr0K9s7J4i1/oxsZ+suuXRNr1hR56yF/IrrF8GbvO030e3leXtOsLBX/9ZNfrI+3adGrarrvbtbp1NNau8QZXvt11FeQZXoz/fmHx3CT4PQGdvcJ18qpsyuCvFPAYQ8u3ZKJ8r6Q8LHcp5WHs7Uri4SohB+SL49oN/uUghx2gg1YXR3zV1PV1StevAgDWdbyFuyHguS2uEfAYe2wyaRM8t4vPblCmHCtvMhoU8IivSfBjwvcbf3iD+VXE+8qSvC8RvKtbONGm3jrrzLPyt9xXrgzQVP2N+aBBD7zhaxL8SSGvUB+GcppBOA3+VMAfKH+7DN6V9bd8kynKZRXlIe+mC8o+Da6mfd6i7BPrz/YZqmueWDbKt6LuWvu3Xac/5L4IbYP7fjUuitV/1KFTszReX39zXvHM+vVEyTFS6IML3cZI3N+oMZLSLx5boUy5P1f9LsLzHNDgn47sbxLp83ylz6izrM8h/cxT2b7fZNJ2nf2Bb/yNuLCtub8xGQ063QaGj8e37w70NzjuWkW8X1yS9yr2djv1Nzhv4/7m4gBNLov+wtff4C3zCP/BQH+jvi6AcuL+xuB/JuAP1JxzGbxjHVSyv1TUS8n0MspTc1tln3j+zepneSXsc4GyT6w/22eornli2SjfirrL/Q36Q/56A9rGpURHzW9i9R91aB31N8sJL+JCvQjpI9qNtRPr478N6GPIzvLEMu+2ZmL8KH3kOQ/yHtJHg6upj/uVPmL9WR9Ddc1TWVu19my7Tl0N6SP3z8sFnWXwjvUR9Wg51PWaQh9t3b/ibfGlz7lmlId2vIXysM/D9uHUoP+xPnm7Ly7x1QK8p4C/WoB3GqykPFw/uZzycM19FeW1Ie8KysNrHa6kPDxzfxXl4dnUqykPL6ex+psO4PnyEjoQfYWG4W8RLyXpjZ8nVbf0Yf3MRstdb8U3C6BUECu+Q83mvAa9Y7g99H+Z662s5ZbQ+1EXlUpbL5/ixl4VW5OTslDjObfQ7y2ZwMtwzA+2B1voYshbCbS5XRcJOsb/gIBfTLgWiXIm+270GqIce19VjvO4LULfHllMOEZdVIq+M9Twp/r2yGKix/UzG1SjLivbFnlsr2W/XYS4Yi7aUTzXvGgno/8XedgYEOVdABeWCVUpdLtZtxu+fLdr/R8xEVNmhPwMi3es9hU7mOgOzfC3XKdKVFH7hUSP68dqr9xQW+T5LsvpRiehquZpj4cN1VO6LrjYkpWqYqxIjKriGNOnqkPFgE2tsQyI8jnOt7Um074V4Iz2aufndRPxyjCriVeDHwFeZxKvqM7GzzCVt/xn6108bybeR11UijYpw98iXqqa1Gaix/WrNkZcDc8sFcSK70Ja3M1yNtP/VcaIW+j9qItKW00rtopMy9sGuFdTHmoqtiYnNUY0nsuOEbE9tlHebZCHcuR23SzoGP8DAv42wrVZlDPZd6PXEOVWE46M3uPK0K2CdpPgLwLvMGupXw63Or8c7P8BwSfL2/LzVFMnD8R6E8Pfcp1tX8WbbCF6XL9q3gQ1BancQVgNBmEx3QGcOQ+car0XiHKcTGJN4nlNoUW59l1VPI+4Tu0dJH6Qh5Bfbovy4/2boDOzJp2Zgo5p8s1Q7hDlrXGddbW8tVDuLspbB3n7KO8WUS/LWx/AuSGAc6PIy9vut9qT4dAbZZ7fPDXEO5bpZsGrtR16AF6DVda2JUAHy/NaIparWx/Fsxo74ZX3W9oTZbA3Ra+Nemz32DUJ/r8smSi3nextK5Q3HpWc2RbLynlQ0Om1nNmmtiWkg7juAvj8bwfhYjnzXZI42tlB5XZCHsLhiGAHvN8paCv8hqObDt7d1nXz6aDRahL8b4IOHq6og9soD0eQ3B8aHygHhOcvwRifgx54X73uD8ztNovyivdh4mVbgPc8sS5ieR659kLnkWY3/XkN6c92yFP6s6J4bhL8z4P+nCb9wRFaL+ofsmscyXEbK7tT/oPLoY2ORPCwQ/DcFuUNbliUq6sbiuduuvEY6cZOyFO6wfG7Bv9PQTeeJN1A/2k8KjnzGLCsnGcKOr2WM4/vdiWkg7i4f9tDuFjO1k4m592Qt4fK7YU8hMP+DdcA9wraCn9s//bP2rpuPh00Wk2Cfz3o4HsCc5qQDu6iPJQp+l5un1AbZMT3oAd+F9XL4D8g+reQve4CnOzLDf5DgJPjS4wu1kvNlkO6uFvUS8mU15YVbZTzdg/tQafr79OVnwvI1MrP8NSHZWrwHw3IVMkoJFNlY3tEvUZEnfcSrtsELpRzjEyx/rdR/Q3+44Fx2DZRXo0deAypxmEIv4LglY2psQnb2C9HjiF5bINrC4cpD9cWtlLeWsjjudg6yOO4IFxb4HWO9ZDH/d8GyNtJeRshD3Xf1haaVNfPFO9r7i1MioVxhEvJN/P8OhfXn94MMBnR6cW6iaJzW0I6iMtoqjkb73iXXTfA8qG54ZqadNYIOozLfHKecEy0tnhuEvwfg13vXjYZ51bB3xp4x3MC5IntGXFZm5l9oO/rxd6b4W8RLyXpZSGfi/Xj7eztgpe2yPO1KdJR29ll+Ur4tVZj8VyC2+5hLRN4M/rj9+fSu4aARdxny/Smks6smnRmCTq9XuqcRXR8052/LbmkzEd3DP5+mO7878B0x2d2qGtr3URi3TZ6vjCGtR7+vifCGDIqg3W+IMDzVqDBdPN0yMODxeLWdMVyqMJLoWsh72bKw6EHtg3mOTchC3zHOrdJ0GFcvm7S5MpDupmFnGK7SdTt7YG6bqU87JpYDoqOcu9KDiE6s2vSmS3ohLr9qr5E8cxTiTyhL1k4d6IM6iTaFZa1aUGT4PeDL1lS4FS+BHnk/5Vf9vWTPl+yxcPfeaCf7EvU0HBHgGecAjLdPB3y8LCMfAlvBY26uKR8SWioOYf4L9sXYvmz1RfOITq93vZTy/3sX9R21PYAHbWl1s0er5yraSp75H4N4S8Ae7yG7DHFVp3PJpyL2+7aKuj4fFCeQn2Qwd8Y6IO6Df1D9uPjD6/eQzvYCHX24XLincFj/8fLF9sJdlsAlvlG3b6yeDZfxFvKoy4q7TR93ikyeUsDebI8XEa8HeA4cYgS8py3975lE3gZjvlBOezy4FQ2f4Rgrc4DAi9vF6Eds7z2eXjgNs7TjxS/bO93zp3Av5P6GVwuL9G2u9SWlCVuP5YdJ9V+xlfefo9VbL/dlId+9RDlKX+cy+ueKZIXz/kxTYW8DlNeN3lZntV3QJTjIFSj9zbQ13sJ3xqgxfrPV0Xi9gyXz9Mhom/wr4S+4vcKWY64zv51PtFD3Gp8zP3cfA9fqp7oJ3mcbbBPkq7yduuoi0rrrI33EE+Ie29F3Bnhc04vOxr+YUHP+GqJvJjrXU985/C1hwdf/zsZlTde+B0vFe4T8PMFvMkK+64Sslo9DDQc0bY81O29lIehj8aDut51X0X+YuSH+NsC/h6AK9MWbUFnU0Jc2yrismtn1XYq+9w8HaI81ffn7fhhGqejH+JPtZf1Q1i+jB/isa7Bfoj8UMXx43VqHMh+aE9F3LF+yPAPO3+7tkRejB+6/+/XPfAbez5/fuY6/W1DvIvZxp8n4Gva+VXKD7GvQT+0h/LQDxkPyg9V7FOuipEf4m8LePZDsW3RFnQ2JcS1rSIu80NqDK780GHK2ynqg36I5xgfhTHbv5w7GVfMuDtPfCxhWyBvh8CZ0/53nvGnhYpjX8xzNBVWZP/jO9R1LMNrDwb/CZDNvyb+cP6P9UT+1Fgd1yX/7Vw/3M4AXOz4/mbKQ53ktatu7aLCtHi9SIW447vQepHBcZ/029AGnwz0pQuJl7J9KZY3OBVucojytggelJ3ieuC7502GQxllnl+rB7/jeqj2yfcN7CKFYut709jpvfcfPjV2dO/YPafGTjeIA97BYKvaTRypZFzyrvdG+p8PsPGq8A6BpxtNtUuBF/AwXbWDxZKdK3ieSjoLatJZIOgo715XIxXP3VbMv1hyB2t/8curx+9dPFHuy4EV85Cc+U6OsnJeNE2np3QW16SzWNDptR0spvpgz8xyK7sLg+W3nWU63ez6u4nsegfY9fci7DpUx9CO0SZRR8O1owuu/YQLy4cOG2yKoBM68BJ7qCGmPiE6U1kfw6UOW2AbHAjwtYtw7e6C6w7CpQ4UKB1knstGmqioBUVnV006uyLpnK367KQ8nLGx71JttzvAA5bnVT61alXV5yueu/nIC+dNlMn/1MGnUPSOwd8EPnJ5gVPJmXX3h03OexLSQVx8UYOvPa+g9twLeTHtafAvhPa8OqI9lWy2BurDdt3NH8Yc+NoVgFeroKofMPnyjnqeau7UzIvRA8TfIl5K0hsPpt9P9Lh+GLRuqwrFzH3d2INXX3PDhmem7Y88cJplanjnIlHgn+Ed/c/lct6aBLNb0MgT688eguN2t/eMP4anbrDd8pXd8C502X4Ny/siIn3RT9Y+HKm8vrDzma4z+kmNo1CHtgfquoPK+SIjG6IOs5y213ud5g/rvD1QZ4PfEqjzri515jG3Gu+xb2K4hqjDkOvUAcQRM37BlTm+xrTsyukSQafXq4lLiI6vv7uD+jt1cBZXbm8onnn1fR70dy8P9Hdnq/7dbBrrwjqF9WoKnHk6BPkIf09R95rRITLC2Bc5xPY7Rm2q6h5qU4NvQJveH9GmIfsIjUWUn9gWgFdjHbVm1LsIm+xPY3QU8avd6ypjERUVo3Ymy45FDO9XoELIf7exCJdTY5GdHho+2+PxAY9luo1FFE8+2LJjEVzn4AsQyq5pql1t08+KB0FHjZdtwIeKGmI/iZGvbIsKfhPxx/h96w9Np2VzF+Qj/BthnPG5ZWeeVVss9PDnXFxbYPmztb7MO5G9OJGUJz5pge36UnjGPKPj88ltUT60jr2nJp1Q1EZI1/PEly37xkTvpP6Tx8ZYFuny2PgXF02U+3HqP7F8aL+ET6uFLqtQp3xVtAJGmrw7wBef4Cy7S6/44VOLPzdvgpf3ES94CmM58VL2xCWW50gLdUHFkOuURwn/G33w3/C3XGedq4wPVBspuVjd1wpe2iJvHTz76CwXdDLC1Y2vhAf/jcWVBLfdw1om8Gb0x+9X0js1xEDczy4xLpqgg2L4KE0duGsddXFJTR3YxaCasZmXNS0s7zvMjN29CrRRru9CwlW2K8fymzy4moL3PB2CfIT/LLVRxeHZLhV8x66nYkDvrljXw4GKaruxJfJigm6/2rrps1/7xff+Pnehxgu/Y3ehppDqG/cmK1weKiGr7cNAwxFtFXS7g/Iw6NZ4UEG3FQ80bY+RH+JvC/gjAFemLRSu7RVxWaCsmkpMlU/yLe/yHbUG/7nAUqfyTeoQvarrJiqngkLzxD4nT6NOpx9QMnwm/5mCFh9kNtg/hHp/ftlkXrcKXs1HNAI0nHiXOb9smMaAKHu9m8zbtgje1CFoxHGzh88ch5resN6Wnd7EHv4erUlnVNAJ9Un8a3T4XSjsZJTo+KZfXy0x/crTq4pfnn59EKZfXw9Mc3gaqS7XwTFL2Qsx2J8Y/DfBrvhCDA61wnoqPUMaXK88HSIeDP5/03im4phDjjl56Qenyexb87TTUyeUwQGAYRmoLay7AvBq2Tl0dxzyt8uDy7d9xrT3dKHNW2O+u3nxf6S9P0B7XxfaHIalDhmyLn9sIfAwfzK9W6CMane+M9fg37dgAudgSZy7PTiXzJ/A2Zo/uZ7o65e6yfTKjj+w/PRyQ/nlBh4TKDpLBZ2McHXjqwfLDUsILuVywxJ6V2a5wdT8FoBZRfhvARwN8Y7VHMsbnKLTrEmnKeiEcK0SuAx+vYBvCviEqmEsnkdwdwVYY7zdVOM8eudTDUsNopk/84oTNw3zOCJwrAnUqSHecVOvEbQUnStq0rlC0OHN/NVFDzEk6Jfwlk+Z99sAL9nzV1zteyrW8/s2s5Av9eXHmNWey37tTT/9shX378yovPHC79gkVfDWFQK+5hWQT6jVHtxgyRO6mk2Uh6s9OJPm1Z6Kq4JPxMgP8bcFPK/2lF01VddClsVlqz14Y3nIls+Wz+gFnRCu0DWKJptBAa98ksFvKnxSrnf8wWYlbyfeDbhOf/Ty4ndE4Gp7eFe0Db9zE3LD8gbXQ584o6xPbLnOOlcZDSv7UHLhjX4sqzbu6wa79jsu1M1h16m/mefX6PA7poO22iY6vQrqiNHzqnQQFx9s6FXwyKHit2YfvJ0DEjCpnSjWC1yF4TENrsqw/NXBCg4QzJ9fAs+cGvQ/jwO+sGwCL8NZUqu53C+VXc1Vq5lqtQFXWU/P1zRxlVXtyPDKzxOwSvPa+f468oy+6orlG2lM3osVyx8mHa+ix3OWT+BlOEuqjXnspYKOVLC/1UP5622Up65EZL+I+JUvOwxw7E9DK/5qTLmB8pCHNRF0QuOmNZF0zqlJ5xxBp5f9FtLs5qfeQ34Kg9caouwri1+O3DgFfup95KeUnDPxf8y43ujFXo9u8B+EcT3vBnGdsZ6KZ6ThCEeeDhEPBv9h8q0V57HSt3Kfq64tr0k3ehXc8LeIl5L0xsf9atyrrnPPlxTtCsvu36bnmCX26AyPsE7kNejdWoLbRv9vF+WcwJ3n17xQfwf3ipjK9op82Rcm1fMZz7nlfW/JBF6GY35Cx5qwV+SjbN3iIYz/AQG/jXCpi+RN9t3oqVUHnnGrcvn/LxNlUs6oUsYiqNEYe5yKo8gFsR7H8LdcLTsZ9zgq7kp9CEHZDo+MMG8tPGMe0gkddURctyTClad907imcU3jmsY1BbhiZp7YT3HsDvpBnhGW3QjH8qEN99GadEYFnWFRrmqf3A7wrFYPWG5lPwSE5fkyVd/M87vzNc3YmafB3wMzz+/Nn8yzmnnmSc3ysR0MB5cdAh4sr8T4YiQfA9+4bIIOyxV3QGPGIRazyLHkWHelC7FtNLhgMj94kbpqI44VNfht0Eat4lnFhXGsaLf4p1cRvNVx0OlVVj4mN27jBU+46xeKJWd6vqOL53nozQd69h10pXdGu6beLVB6h36G9U6tcCl/FvIXaqWu7Tp9z3rCpWIBVdxoRuUHnW4DPCOF8OeLNo/Rc9WuBj8a2a4my160K8qK2xV3/ZRsuV2VHmB7mUzUCuQ6wrVO4MK25nbtZsuGj21rZaBd+WwK88ntavBXRLarybIX7Yqy4nZV4w8VjxnSA+wfTCZqx2Aj5anzNCH/jXoQ0+bYPj7/faNocx47sl+I6V9wZdGuay5WFveePnlqrFhadJRCS4H5/77w2/mivKOyGb3j7zcp9xlaUDfavkAZdp8Gv06IPOR+8xQToo3N3YvFacOfKkR7HdHzqRB3u8rMQlOZKVDVPPlGZJko7whXJt7lSYVNh04MhbybEpWK/UJ4PN2A8LsDPUe3PUz2sGrkjr0jf/5aXTalZim+C4SxR0M14h7N4A9E9miJZj6yR0MZcY+mVhZCJ5rVaSO1WtomeJS96tH4lFU3M/TNrLCsmlkpfQmNzELyUfqlPqeiYgVCs2CM38hTylkw1od1IdS2eWLZqAvMsL151IpxHbzyhLa0k+ioWU+sLuBqx3c9e/Dd8Bq8uoAOcfCs3OAfFj7AcKoYqZA+KlmgH+f4FBwCcfwHlsN4CcPtCK6mPs5JvSpT1VZ5lRTlpGZYIf3CmIb3UDxGr1f+OIbt7aBnvs9Wx64oGfzTAd1VdQjpbqg9lS9F/eSYtrO1Q7+e8tC/8Y4x+jeOP8LYTI4h8X1KkhOPAVEOsXGbIb8T61NRl06Tzq8DuEuJ5jpBE9+xzmN5g1N0mjXpNAWdEK5LBS6DV2PoHh/LMxZXENxdAdYYb0Z//H4FvWsIWEyqmdZ4+HYurpmwvK+Z0L3hbJy/o4HDjcsIV9lNJix/iweXUrE8HYJ8hP+Nwu3WPLL3T2KOp1QMU/snGeFzzgXD1FTAER/Z48tJRl04/fK/3D3n879xw/iRs9ijGyE3eJmAr/lV1HeFhlXqyB4f54v9KmrFUO93xcgP8atw5CMAV6YtFK47KuKKObK3DvJ64ZN4CeAzYlh2tnmxYcvv9gEvNhT6T33Aiw1zvhAYOqv+AIe53Lcg76HghrMVRLGyJp2Vgk6vgyhWEh3fxvmf0/LOeshTw1obXPEm5fvg4pe/oI1zJedM/B8adzB/GFaPMFs8/H0N9JPD6rnOWE/F8wag4QhHng4RDwb/DRqTVAw3l2H1hitmvFKRbvTOheFPdZx2C9Hj+uGUID6sHkeELBXEiu8yN7n2mNdtg2IL/V8lrL7i6GSfacU+kWl5+DUmnrTjNVLYmpzUBBsPlJUJq8f2uJ3ycES1H2hzu24RdIz/AQG/lXBtEeVM9t3oqc0UnoWocvn/N4oyKQ9EsxxT4FIh+jUXm6K/9GX4W66WnYx7nNAicZ647jsELyrUbR08Yx7SibmCNX/emRDX7oS49ibEtSkRrjztm8Y1jet5jEuFSIVWI44WvyOu03f1Ykap6FxSk84lgs6wKJd5fo0Ov2M6imerD/owllvZS5nU10K6zfBuXqhpxs7wDP4dMMNbt3Ayz2qGlyc1m8Z2MBxctuZG6Wy1UYpy5Y1StYqJ8PcXv6FQPaULsW20jdqoW/i68cOxbg9DG+0snlV4eMy1mooe22Fs+LrB7yt46ha+vt5DL/bruwZ/AOidhfD1eUrv1gFATDis8mchf6FWxFSAEIfDoozXEZ2yoe0qHDYU2m7wR4U+cF/EuuHjT8ktcTis72sEc0V5R2UzejfXg8vw5O9wkSMmHFbF7bGLeJUQeajJ8jQdDvucC4f1fbMrE+Ud4crEuzx1C4flXiUkYiWqqgcp3iBUOuRhQ1eQqpEANm8oHHYb5WG59R466oBHnrhHM/jHInu0RCMp2aOhjLhHi105MfhuIU1saqGDg2pmE2uGseGwPFJLHX7I+qUOG6vwrnXAv+F2BNeLUXW/hB/ytZnrIC/m+tpYXcDZE8+s1nfBy3tZGwBXQ+DgkEKD/4DwAYZT7fOH9FHpr7qOU4X4s79D+wuFZxtcTX2cpfQR6x8zywvFtsTaqjosylfZYV/A/WQ3vQnpI+5d/jntuyKdZUSzbGzJMsG/otOsSUfF8IRwLRO4Qu3d41BCY/FcgrsrwBrjzeiP359L7xoCFpNqpls8fDsX10xKnRWdNTXprImkc3FNOhcLOh0hLoXbrRn293jMhlnFMLnHM8LnnJ5NGf5hQc/4aom8mJDCv27f/qnj3/rwz2VU3njhd2y2twv4iwW8yQo3p0vI6lHVNeFGc57QHe2jPOxejAcVUnh7Rf5i5If42wL+CMCVaQuF60BFXDHffOy1z+CQwj+BIRSHzp0tXiyk8E/7gBcLKfzvU8iLonNJTTqXCDopgx/aAZ67Lfp/wzOVjF30N/h3wvcN/5YW/UPLM9x/5b8YiML2bvQw9E59h4/5+y7oFIfebaE6Yz0Vz9uABtPN0yEPD/9AfXfFgBQZesfTcvW5e66vc1rmITsxuJp1KB0MdgvlYX+7nvJwissnuFBX1lLenZC3k/JeDnm7KQ/H1Xsp70cgjzfiXgF5ayjvbsgre3s6nib7e1qecwJXTLAb9puhO+Uuh2fMM175Hesalg+FQ2+pSWeLoKOWWnF8HAp+M3uoGGYavQPBR23WV6M3vgMRurPoWcaKX97AxrJqo4/ndqp9Lhd0yvKVcNpsLK4kON/HkjKBN6M/fr+S3vmmzfb/VJ446IWJdRuOXLZI0/RdLYZdMcLfC8ORVfDMO0eIa7ObnIdyuo34X+cmErsAPk0w6qJStAsw/C3ipaoLiN3/LxfZvhaeWSqIFd+FLIH3GnkbeA2VKxPZbnTVGug6gTO0t8blUBZOvBsQ8KEOaS3x3giURxxYjjUmo/dobbcK2hzhsrawqnzAsYAG14rWWuCvWxQHw6wlHgx+A/Aw07P/2vTUC9uY9YB164iH/p3gZTZ7vJgT9Ll+2MMMevi9hXgw+G0gg9Dn+JAf9Q5lgGV9/yPsaqoL/q908VaC39il7mup7ga/N9D+awUPxleetnfhgWFWe3i4Q/AgvOb6kw884omo4LEEezluJW6JtQKPL5k0co017WXpsHUwHftfaUBe82LGOzE0Oz522hdNwj3CzR6aA06nYad5y9NUBQitrUYvGCC0FhkrfssGCPmstBudmgFCvk5bOQsu76hsJt7lKVfnha0zzz9sw2fG5Vule6D45U7qJDiouZ5OcsCDk1fi1AxNrSIZvAp4UJ2S2sjfFEEbZckOfXtJXrsFBG0gXkN34HXjdf9Z5vUWwWvN1YvSq3lrKQ9lwCtvuJrHK2+ok7zyhqt5vEKIq3m88oarebxaH7uax9NdXM1bR3kHIW8jPHNSK33WXrk9bxidwMtw+OzzRbHBHuh7eLq+rQte9iHqKwaI41XFL++C/0TAjyl7CAUfqfsS0YY5wAhtaxflqd3Fsx0Mh/WPuRtSHeEy+D0CPnQ3JN6PxkdQcRWbfWQ3vYm9x4x3s7rpAvcTOwGX0oUXF89Ngv9/A/qoZB7y593u4zR+RogHLDsiyvFFRaiPBteLu0qxPqyPSr8QnmWzV8CjznEwLh4D3kl5aKvcr6j7hXPevzpvMhwGi2aeX+OV3/F4T33tx+jsSkgHcR0iOmgvuCz7K+Tnd0Oe8iM2YW8S/B/CIsmv0VIs2tkuKm95nwQ727DcX57v7FVBuspGeKdX1RPhX+yp52eAzx3LzjwruzO+atpdu6zdqaiZkN2paCiM/jGZtAle+Xrlk1EnfT550IX9IfvkPxCLYWqnajfxvrUk76o/6eZH3ln4kRHigf2Zrz9QbaX64N0eXAMe/nkx7nagq2gzvOkELrSiLvCRTIP/CrTVpuUapxM8qDYyeoMe+H3Eg8H/udCXkB9A/d9LOA3+LwAnX0jWDecNHpxfDYw1lJ1iH8t2vV/AY3sZP0pPOQoAeed+8Xagz7A3EX3MQ11jui7ArzqcEeKX+5txnVt85idvo28Vcq8Z8dkItdVLBb+xbbUjUD/GZeWarlMfQzaC8vjeIo1zRkmc3xd9uhqrHAb8xkfIR6KvZr+srp3BcY4aG+wk/q2fGFw8wX/oMFyaMXb2p2UPnCjZhA6chMbk6MPbAp6Pd6u72TPXyUPZvhTv8B+bNxnvrgDe/PkC4qPbGO/q4pn98CLR7iEZhmTebV7D6wzYHnspT+ns2dZHrD/rY6iueWLZqP4f53Wsj6r/UPrI46yQ3uQppI+7oK530Nhur+BH+Wjmp9uYm/cxzMcPeuDZ5xv8ZaDHPO65Q/AQ0uMDAv4OwfMI8YBlmTbaJcqEx/0Gf1WkP7Z26cXhZJQb639IRnlimd4p4FFWfPIC1733Ux76jTsoD/WPr35SNhtrG1b22fAr8tV7IvFmApfyk+yrDX5twFcr/xLS8W52afwo+7+d8pSvUrpqcL3QVawP62pozJknlo3yF2jj7KvRN+ylPNRVjkZG/doDvF8YMRYItW23tVf2X2ocqfphnqPuCtBBvtSFA7sCdBbVpLNI0OnlGiTSVGMbrk/ZtRAsz2u8uxPWR/GsTljimuoRmsOgHqu9MO7vDP6NMCcbK57VfhTrTazu8t57tzWk/VB/53ox5nQzpnrMyeNKdXI1c51tqHQW+06DccRjL+SF9hwzZ1R+IyRftAmTgdqX2UF5qG+7iE63i05C4xDcJ/zu3O78h/ZFu+kH7xmrsZUaH6DPNdyO4HoxBsD6sC6Exjt5KrumyLqA44M9lIftz2NSNXZU/pLbWI0d88R7Vgb/dMmxY0hvUo4d1Tp/D31IX+tNaOxYVm/Yh6A/xz7a+u/QGlnmJveTqs+1dui2tzEAdbD3s+A9lruG6sxjJMZ9LcFbPQc98IaPxyIfCqwl7OnCw3XEw94uPOwhHgz+I4KHkPzzFBoTDrlOWyxhN82M8Bk/+A7xt5zWj1EXlTKWn9FTepAntmVlT5jHfrXqbQ7589aEuHBsWaO9Sscy8rwC/dgBysP58SHAwalB/2N9cr3esnwCL8Mxr9heuJ/LOrZHlN0jcE+VPeypRi9oD2oOUNYeeI/9+W4Peyiv3+xBrSspGeVp1MWlGHupeJvSslh7Mfyp7EXpnrKXmjcMjeZTsVmu01e9CJ7VPga2V6r2w7H7VLffjmr0gu2n5iYp2w9tq0z7qbW/ufCMeVif0Noflj9ba39ziY5v7e+rtPan5qahtT+D/ztY+/t6YO2P1/dQt/AcA9cZz4cYfcsrE/PSz3HBPK9UsYGZ62yTOutPX/SsP5lc83SrKMu2nbnO9Sfkw+A5Jo5hOH5tPDYH5lJ8qFbpLPoc33pKtmQC59mOX0M5czyYb0xvuJ3rHDNY/SyvTL+gbALrwzYR2lvLU9m9eNZ7dZbKZ195UmdkQrzuqMErtyO2le9GQNRL5J/10uAXCL1U7W8y70X7h9bTlExD62ndZMpzmlBMQWg9Tfne2PU09CFfpf5LxexnlIc08R330Vie4/iMvxXQ/hyrq86phT79YvAXBXydqsMmUQeD3xWoM/ITOqemyuF50yFBa9QefhBOhs90ZaagxXG2BnsFyOnzyzQvGfPTJYXO6Ay5Tr0uM+bNCJ9zekxv+FuuUxZVxvRqDKz03upXcQ54IY7pUY9wTO87s8BxA74zRTcsmSjjszHsY64qntnGbl4yUe5lHpzOlR+vIT9X0ngtZIt5qnumD2Ue2pvfQnlqz9V4UPEFCH918cxr+reCbYbOMiWKJ/1mP+/tx9wroPb2WW98Z1MMnm/n3Q1twGeZ8J4I3j/dVpL32Jh5tA2249g5UsjukW+L12a7f3mgb1XntEJ9a7ePfoTOgPNZQywXOgOeaG4t92WxPjFnwOv4Lp5bK31WZ+v4ngffXHkh+V51bgDblvULcTUEH+cVz3xb7/GAfnXrV8re0cG3T6P+h/oGs32lXwZXU7/ml71jIGRLeSo7ruWP6qgz7coXGs1hwoPyfva26vZkflQ/iWVfWDxzP/mmgL7sDdQxT2X7KD7DHBtfFDojxrFWtws5IF8PFL+8ZvRk5HghUTzTuqmOaeYzhzjH5jMdal0TZeqLd/ed6fDFQLwrMF5Q+8HKtmJ4V35X2Rva1D8r7E3N83nMuitAk8ti3zPogffNP/8fIS/2Z77zYSsIp8H/VMAfqD71NnhX9kwex/aqc06huPTejefdLVO99s/9R+hOEF98FsIinVj9Rx16jPQfbX4z0QyNY7ks0vHpv++uhF8I6H+3efkLCKfBf7zk2ldI/7uNEUJjpFDce+hOnETj841TPT5n/Q+Nz9H/sm9VY95Y/Ucdeg2Nt/BeDKWz9qUxvgvm0yX1K3TuJ3YMqnQo5Ht5fUaNXbkdff0Mz1MM/j9GjrcS3TWzYKr9Od81o8a3If/Zi7tm/jhyfYbXlraV5D3W3tCm7qb+Bue+3N9sC9DksmjXvv7G8HHf8OeB/gbnZmo9iPsbg/+LkvP1UH/Tbb7O60HqziA1lw/N1w2upn0uVPZ5Nj+Qy/2NugNC2QbbYuw6T7f5/ZZC/+vJ9XX/OANeDHdDQDbp12D+T6GfLaBvvzFfNPzip779hY9vuebV86h8nqyN8j2bvP2/TWuyeB24yXIA3vGHDRrEmyqXEQ8MPyDgDe+wyGvWrAPzNUPANwR8xS/IYPWZxaVUbruHtSyAl8Vr/y+ldw3nb4o85eKsqnLn/ruxz6350v/4UjeVq4r/7dc0573zzu2be4X/czO/9q3/8On73tUr/P9taNfGgU88fWGv8P/zb+24/vGlK/6mjMmbaY0ArJWzbeE2vC/RtUTfgm/4W8RLSXrj295tosf1Q1OeXzx3/0LNHHhmqSBWfBeytAa9Y+sdoHJlvlBjLTeP3o+6qDTftGK+yLS8BYB7DuUthDxsTU4Nwb/xnGvp90BLGY75wfZYQHkY3LsQaHO7tgUd439AwM8lXG1RzmTfjV5DlJtDODJ6j4PehqDdJPgriu4gl+2spZPrOcdN/h/17wjxqDpp53nH9eCDM0w3T0OulieYF+t5DH/LaXmPuqg07nlGiB7Xr5rn4aGKUZlLWA0GYTGhtjoPnGrRHaIcJys37MGZpyHXqaklpDwrtlXtXYt4qdqqDaLH9WONZq3NU9t1agiHRirtUf3WNK5pXGVwWS9gsK8oPH/ee+wqnkec9jX4PCB4GQjwguXZRnAOc4jyZog6WN5gIG9mIG8okNcK5M2COmSUNxvK3UV5wwLns1eGLp0Mx75Y/TrX6efyxG2lRhPY+/C0Hf1Um3DN7YKLj0NgeT6KNa8LrgOEC8vPI1zzu+C6g3Bh+fmEa0EXXEcJF5a3sqbrDVFuWNDhvhBHyiX6ptmxfaHhbxEvVfvChUSP68d2vkjwwtdt5Yn93iJBZ5GgM41rGtdU4eLZruFXv0aH3zEd9Ac8i8W+FkPj30bbFwsgT/XT9xe/TYL/rzAu+DEaF6DfMB5HBM8ZPSt/sTBQf+W7ei1n7tezhHQw7y6iuZhwoZzzZO1kckZfupjKLYE8hMOVh8XwfomgrfAbjm46+L6lum5KB5FWk+A/Azr4/sDYlHUQ9TOjvIzqgnBKP7HN7id443tQwCO+JsF/GFZeeAvTyqOskK8dhNPgfxZw8ham8m9qJSKki6rvVjJdTLjmCFxYH97fUDJF+5xD9Tf4fyVkyuMxLK/mHocpD/daRihvEPLalDcT8vhY/xDkzaM8XOufT3k49+Bx1WzI435iGPJQt2zu0SQ5/Frxfshpexl1cYn3HUK+FWWtZN+iPNTXQcrDdplFeagHMykP22w25eG27xDlYXuarGe5ON+XJ+5/Df6zAXtW/lqNuw1+qYDHPsLgR1ynDS+lPCzHfmAp0cXnc4r/UQ7Il22YNgn+D0AOoRAl46tmCMQsFQJxDgBwCMQLIK8h4LktzhXwLwAYk0mb4JVvVX4aZcq+1WQ0KOARX5PgvxzwreibzyHes5K8q7ACZfNoU+8LjE25f18UoMllkc6gKzdu+ctA/67G48gX9+8G/z8C/kDJMtS/K/+xWNRLyXQJ5alxgbJPg+vFZ0ux/myfobrmqaqvbLtO++F1ILQN1n+13hSr/6hDNt+rGifwT39r1ea/2f0/L6gSJ4DrmlbOxg0Vd88+ifxbUmtZhr9FvJSkN76WpcapWD8+Hl9xN/LXMyqP9NRub824i4a11TyB23ixseaghxcr2yT4uYXDVzvrVoav1MoTr7+o9WV8NzBFuNRaNcrR2iS3w0GShdrJjtFtxSO2l+lkyAar0kFcNp9X+p7/jbqodA1HZBgOxI16U0K374j1FYa/5WrZUhbSMawfz8/mCV7arlPHXgNw3fQP6ShcT/UprtcnxPWWhLieSIgrpbzenBDXYwlxvTEhruMJcaWs4+N9ytfrEuJKaY8p2/GRhLhS2tBbE+JK2Y4pdfXtCXGl1K8nE+L6sYS4Uup9v/qclHV8OiGuEwlxvSMhrpTySjk2Salf/TouTKn3/TqWezghrkcT4no+jOX6Ve9Tjk2m+7RyuPp1LNevvjDlWC6lL0zZjinl1a/jr5MJcfXr+OsNCXGltO2UNpRSXin7oZQ21K+yT+m/Uq7L9evaUEr9ejQhrn4dY/Zj35E/jyTClSfrO0Y8uPG57DmqTPCs9klx/573RB3gqXkiO/ozeIa/RbyUpJeF2kftrfKJcSzbFnncVupcz3xBR+FqJsQ1SLiU3qh9v7LyqniNSJ5u87C4n+AOeFhrCLwZ/fH7/fSuIWARtzLJlodv5+JMEsuPBOj0wvT5/xnF/6FjhT3Y/r4n1g08V7a/TwFc3e7gHyXElXL5NeWQql+nqinrmHIbsF+X5Pt1+eJHE+J6PujEYwlx9etUol+nhCnllXK5J2UdH02Iq1+321IuX6TU+zclxNWvS7kpdWJ6/PXD4aNT9rUPJcT1aEJc/eoL+3U75LUJcb0tIa5+XTJN2af167iwX/u058PWcEob6tewoum+44ej75jeSp86nZheU5i6OqYMN+/X+VBK2acMle3X9cKU45xpPzF144lpPzF1su9XPxEz/sKrZvk61rLXniIuvo4Vy/O1UogrK35tX7ri9aCNjPAZn/gO8beIl5L0xvel1ZUaKtRDfZggdHUHX2Fb9hpDxDWPeHg+hwctELy0RR5f6aLaWV1/pXANJsTFV4jhddTclni9WAnZRn82xfC3XGc9q7TlTKLH9eO2nCd4UX7xCJVDOon0/2VV9b9iGwX1H+tXRf/z9CDA1dHZPD2cENebE+J6NCGu1yfE9UhCXMcT4noqIa7HE+JKWcfXJcSVso5vSYjriYS43pYQV0r9SmmPKfUrpS9MyddjCXGl1Pvng068KSGulPr11oS4UtYxpezfkBBXSr1/MiGuaT/xw+EnUtbxxxLiSjme6FfZP50Q17QNlcP1UEJc0zY0dbJPOXdPOUe2dXO1BpT/jbqo9HpeYzEciLvi57a2ZYTPOb2+9Fz53NZpgOO8hng3EMD1eEJcTyXE9fqEuI4nxPWmhLgeTojrrQlxpZRXyjqm4kv5qX7R1ScT4kpp2yl14rGEuKb917T/6mUdU8r+dQlxpdT7tyXEldK2+9UeU/rofu1rU7bjIwlxPR/6oedDHVPyldKv9mu//eo+5SulvP5RQlxvTogr5dikX/u0aXucujr2a7/9fJinpdSJ1ybE1a96/0RCXP261vH2hLh64aNDceIZ5SGdUCy8uvpP0Zlbk87cSDqDNekMCjr8v90Dh3fp8T1w6rP1th+xCN6X2B+YkxE+5/R+hOFvES8l6WUh3VNx8Fa/xdXoDWdUHumpz5aarJeIPMNln+0c9OCysk2C/3bxPd42weWJPx+oPj2K70w+ud58o8DLupCnUReVrlOfQ2UdQ5mUaIORWB0z/C1Xq82zkAzV51ut7ksFL22R59MHpLNU0GmLvH3TuKZxTeNKgivC/w38/oK7Hxr8mVfcs+riORu/uXT+Tz6+5rfe8diaiy9nv2+8IV70ASX8UfSZKsPfcrX8bRaSqepD+FP1WLZNeXk6AnCc1xDvBjy4lC+tiitPh4rfGv1gg9u6RNn2kOBpNKqou97KvqB4UbLNZ1r5c+Npj39l2MqeJ8ouuNr94YVfuf6RlYtffHLnw098Zd9H37zwQ5f+ZXvpXz9008N/96WTVvZ8UdaTTPXH9W42ZNqng/NxzWUFQ6YbF0Beg8rmz6YbTYL/F+dNlFt13mTaaJNs7wPwvkRbXB5r74a/RbxUtfcBosf1Y3tvCF7alJenBwGO8xriXQjX4wlxvS0hrscS4nokIa7jCXG9PSGuhxPiejQhrjcnxNWv7ZhSVx/vU75elxDX6xPiemtCXCl14g0JcaXUiScT4kopr5T+KyVfTyXElbIdU/LVr31HynZMKfuUtp2yjk8nxHUiIa53JMT1fOi3U9p2L/pa25PB+dgcymtA3jDl4WedBoi/puCvGeAPyzc95bgeNt+aAe+y4tfmmhXvXIm+48Xwt4iXkvTG55qDRI/rx3PNmYKXtsjjT3Cp9skEnbJ8JfxsluWvJLjtHtYygTejP36/kt4pUSDuEcpXqs8q4xNt21M+T8MBOsOinKnmLOBxGeTzp72WCR6XBXjE8gan6GQ16WSCDuNSy1R5eqD4bRL8R4qlqdwc5i6djHO54C9kBisE/HKAMX6UbKzssKCdeX6NjnNhHUIehojOioR0VgBMk+i8MCGdFwLMHKLzooR0XgQww1Au//8iyEM9Mz4uFnxYt3MJvC/RDURvaRj+FvFSkt54t3MJ0eP6se+5VPDSprw88XbUpYLOpYLO2cI17Drrz22Jde1FWxr+lqulO1lILlg/bsvLBC9tysvTPQDHeQ3xbsCDy+qVCpfZac32uozlgcnyVgLuSyjvcoA/QHmrIO8Q4ODUoP+xPnn/tWX5BF6GY17RfxnfI65Tx9B3+HyB0p+2KG9w1gfb5zi/AltFf0JbRRcA7kNUhwshj212VOTl+F92ob+urZp1bYm6KjrtmnTagg7jagKuWYBrP+Qj/A8Kude0k/uUnbDPXFkRd6zPNPzKLo2vlshrRvDS/MyHPvnLr/zWrozKGy/8jseIlwv4toA3Wa2C8iVkdQTHK45oWx5O+1ZSHk5VjYfcx1y5bDJ/l1fkL0Z+iL8t8jiMIbYt2iJvfyJcaG8pcA1VxDXP+ftv5ZM4fLisT8LyId83tyaduYLO2e7b+UputAHkj1O3/vunS/TfKFPuv1EOHEZddlw8KHg1efOYbdRFpZUsU0xKpoOUhz4R5cBJydt4zuX9+RLyRpkabzX7s8vV2JDpYl0vpbwrAH6M8q6EvEOAg5OSkdUnl1FjxQRehmNeUR9WEazxbiH3F0G+jc+aBLtqdKLMC8+fTAt19k7iA9vjIqB7cYHD7ORKgGP/h/JriHch/2dwis7cmnTmRtK5pCadSyLpDNakMyjomF1dBXkl7Opq04OrRablXeM662B510JeWf9iPJf1LyhT4+1sy+FKyrsW4Nm/XAd5hwAHp24yKuNfsC2Qb+S96XRfdyflG/yOwifk/mHT+X6c9h6PEh3y4Nxy/kT97loxuQ7Yr/EaAfrMw5R3BZQzfnKenwj4NJ67l7VNLM+6geWsrWrqa/SamOFvuc46V1kTu4ro+eTC9oRl267T1jYBHOc1xLsBDy5s8xS4eNzcD/6F18RS+ZctFcfUqfzLscI+a8p60tFIR7imbb+/bD9/5rWJOva6MiGuaduPt/2yffYhysP5Ga5BPxEYZyjfsoHyDf7tMHZ56nx/fS4H2r9+/mRcxv/T5Kcq2pX0Uzx/wDkt+ymUZ0O8C/kpg1Ntw36qYv2i/ZThb7nOOlfxU8p/K7lY3a8SvLRdp8/jMYryh1cJOm1B54qEuHiNBXGXkN+Vqs+ypGTFOoT+jf3UNZB3CHBwUn7K6lPWT6EvQr6R91g/YvAfIduvKGtp+4ZLrU2y7Zddm8TyvDaG5dj2K9pitO0b/pbrrHMV21c+UclFzRWtbFvk8RjlCkHnCkFH4VqZEBfbfsU9plWqH7CkZMU6hD6DbR/92CHAwUnZvtWnrO2jjK+gPLUfgP29WnNnu6go5+irJgy/2nutYhdqL1XtheXxWRbLVYSdbho7veuhI8eP3bN17JEH1504uuvwqdPHDh9fd/ToqbEHH0SmkdAceI/5mBjGnmeI94hjVZfK8PdmsbFWEa4ruuDi781iee7Er+yC6wDhwvI8UbT/Z7hOPm2APBCBhw1Q8XUH8YUDPu44r+6C6yjhwvJXE65ruuAaI1xYHsvi/zNcJ58srxCe/O+6AF/58wuIL1wEv45wXR/Alad7CReWv55wvbgLrvsIF5bHsvj/DNfJJ8srhCf/e0kXvu4nvl4M5V9CuG7ogusY4cLyNxCul3bB9UrCheWxLP4/w3XyyfIK4cn/buzC16uIr5dC+RspD/VyIdEpG0yB5X2BQZavfo0OvwsFbSwkOjcmpIO47oJyed7LoDz6VrUgYTSs878J3vdiUGz4W8RLSXrjnf9NRI/rx4Pi1YKXtsjDfhXzkM5qQUfhWpUQ18uoPjgBwPs7fkCLSzdBnpo8WP/dJPjFoxPlBooozBHXqSs3RtTxJkHP4G8u/h8U8IivSfAzC57yQfSc4uBGW/C02sML96esJwaTpyGi3SsbMfwt19n+VWzkZqLn0zer+xrBS1vk4VgK85DOGkFH4boqIa6bqD4+G1l8wWSaVW3kBxdOlDunD23kggQ2gmOoYfGObaSizkbbiOFvES9VbUS1BdaPbeRmwUtb5OH42WeLNws6Ctd1CXHF2sgqspFrIS/GRgz+r8BGriIbQRmxjaj5ito0Mnhrs0EBj/iaBH99pI1c5+Elf8Zxs9rEYhupqLPRNmL4W65Tf6rYiJrvYf3YRm4QvLRFHs6ZWI4N8W4ggCtmzhWL61qqj89GNiSykf8ENrKpD21kW0kbUbz3Yu6l1hfw/lqfjJTutkX56yhvpaDTTUf2X6D58emIzd+bBP/vQUfuDOgIB4Mjz7zhUnYufbGgE7OwXNH/zIj1d4Y/1cJyaK0sT+zvrhe8tF2n7+RDqsqvqrHHcwVX/mx3YYb6wbJ23nadenQx0bk+IR2sz9lYM8rTXUSH1yTVbywdxHWI6Pj81uvIb70E8pTfsvW9JsF/DPzWGwqcQwRT0k5vMt5vEplqvec6ysPx8PWUh/NJbvu1kIdjF05q08/qmvehd6+YwMtwXA/07asprwc+N3qMOe1z0+Cani9MtiWeL2Ae3gXOfq0h3g0EcF2bEJftZdRsr2R+LU8csIBraIcAByflu6w+ZQMWlO9iO2E47F/UvqHiKxN42J4sT+3/2R3cao9xCdEoa/NLBL8x62ioXyV0qBFr84Y/1Tqasp/QOtpLBC9tkcdrX2pf9iWCjsLF83qcK091/3ltNXrB/lN9dyCFfvna4foAvRuq0Rswemrf+1pBLz8gOeg629C3P6/2tbG9fDaPtDk2p2y8A+Li2JzrPXXwtYFa/wnFKDQp7wvFGD33w5++YDKMxZV8FmB+u3hWPh/XOv4zwXGMSp5qzguibc/wt4iXqran2gHrh7o504V1BNvIF7N0tagL6+xVXXhinVW0VJtiDBe3KQa64lroHwXgrhRwKs/GBo5w8KGIP4G1yteumFxHpMtxbmWDj1XgqKKzsiadlYJOTJBzxfiK6DU3w58qyFnFLIaCnK8UvLQpL088Zyt7EK7fceXP9h2YUJxPTLsqOirIu9fxUzF6XpWOWu9SAd916SCuQ8VvzUN3peeHHCSO617clrjuxfJfC3l8kG8d5F0Oz5zUvBIP670+Yk2sZqB638sP48U4KfnhQYJp+U2Of+SUUn4VDxBdpQ6PWOIDZ0p+OE5l+eEYjeWHY03sNzgpGeHlb2XWrVHHrE6z3cSFjhMHMbaOPbL/8PFjRw+fPnbyxJ6x1zw09uBpvqabe4CVHi7tf5McXyPu4zpPA5R3OeXvE3CYhkU5ozFVx04rWnrw2CnWr8qx0/wZv0bIFtEQ70JHRS9JiMv05mwfO72c8vrt2CnKmGeHeEXrYcq7EMpdRnmjkGf4u13Ril8twLw8NcQ7buuZgqaiU4im46uG+wrehgiupH6sjpnBVbxeb3Wsr+D2UFdFtkRezDWp31mwdtX/+sA335tReeOF3/E1qSoyZaaArzmiuXEYaDjX2bPmCa/euYzycEUCRxN8TWrF3dEbY+SH+NsC/gjAlWmLtqBzSUVcdh0prhKY7Zj9XQB5KygP7YyjmJYLHpYH6nOx4GFYlGN7XAHve9F3G/6Wq+VbxvvuFUTPJxfl461s23X6VL4yoqwPRjoXJMRlfU3N9rqE5YFJrWCyDqH+c9+Nfu0Q4OCk+m6rT9m+G2XMK5XTdtV7u7pY8KJktgieMQ/pqM9uKFwXJcRl+lOzvS5meWBSPoh1SEVSK5s7BDg49cquLiFY432GgF1WPDcJ9q0QKffzNAbG8vb5G/UZoRdRHur6BZS3QvCUEQ2MxkC9f4DqYPDvKPjOZbljmcY54MGJbercZFu2egwBXcsroYOfzPm6cdkEHZRZnnA857MbhOdxa+hTOSgD1X+xzSr/i59Rsh08JS/jsRfyQh5YXhd14ZnlpeSLcjAZKL90IeG6UOBCGYbkZTz2Ql7IA8vrRV14Znkp+eJnqkwGbdcpy1HCpeSF9sif0rPygwIe8TUJ/mfBJ/DpEfRr3NbLBG70jRnhwHrMFvUYpjwsm+O97LzJeNUJIhVxYvDqBgSMLuGxF0Y5WNma0TJ9FRmtVuixzpxU32xyiF2hz4iO4UX554l14lLBo4qCvy4Sr8F3i/YZiOAbI0JYh64XfKton5UeOiraMk++aP7PgC3b5xKVPzXaNf3piPKnKCP2p8pmVXRgrM1yZDmeduNIZZSx0VT6hVFR+0uc9lNRaCrihnVv0ANv+DoiwIS/Dumziuyuqs9Yh7r6jPLiU3UG/+Wzq89zeq3P6laU0GlcPOl/LeUpfc5cpw8r618xMmxDzdOuIf23uvn0n0+7Gvz/DOi/kq+KejX40E0P3fR/NeVhuZUeOj5/zvpv8N+K1H+j3Qv9Rxmx/sfeYGLw6vYQdZOCuj0kpP+riU4q/V9V4taQmwM0uSzWzaf/hq9J8M3RM79K/5V8Q+2xVsCrSA9V/7WUp8afTAf1H+XF+m/ws0fdeF1D+m+0e6H/awGA9X8d5DUEPMv7FgG/DmD4Vp9bII9vxUIZryU6yg/G6j/etrO45q05If1Xt+YgvO/WnHNHz/wq/Vc2qG4di/VHIf1fQ3kqeorpoP6jvFj/DX756ERdQ/pvtHuh/ygj1v+1kNcQ8CzvdQJ+LcDwjT1oGyH9X0N0Uun/D+jzPRnALSCamaCJ73gNn8srXBgfdQieD0M+wm8YPfNr6xQo/xJ6sH0YyjjAgbgr6th2rKulBr1D/MMeenlqibyY+IeHf/XCpz/45qvnZFTeeOF3rMczBPwCAW+yGiTeR11U2qps3Wir+Icm5aG9Gg8q/mFGRf5i5If42wKeI+1j22Kem6wLqO95Hb9dHK8z/RkBHKzLbXhfov4Dsbps+FvES0l643ucbaLH9TM55Gup9unDIqJz28nDR9cffuDBh46PcUQl3o3NUkGs+A69D+ex92C4rfT/dlHOCdx5vrXcPHo/6qLSfNOK+SLT8tBDz6G8hZCHrclJrZoaz7mWfg+0lOGYH2yPBZQ3F/IWAm1u17agY/wPCPi5hKstypnsu9FriHJzCMeQKDdqD3/19Ht/tP2xn/jA6Mrf+/bgpn/89YN/e9uMG774e2885zcf+/uvfuMnmWcneOZ2nEOw6td453ccSdBOiGuewGWywY+ZltD5RbHeyvC3XC0bG/dW84ke14/rvkDwEjNqWiDoqF5Z4RpIiKuREFczIa4ZiXDlad80rmlc07imcUXisjzs7+dRHvafR4tfm3mjf+aPWg8I/gYC/GF57nvUGNf6XfTrJfrB4dh+l2e1FWfv4/1ug+j55FJzRj87o/JIT83aTdYzRJ7hMt0YdOEZZZPg/8Xomd82weWJ9VrN4vGdySd/957RybyrlZGYdka8bddZd8s723qP8w+8Z/DDo5omrmRi2fuL3ybBjy6bKPezo5N5xnbFUyQmA6UnoZWRmqugw2oVdBAAeByFPDcE/LHiV51yalIe1mcQ6lPD/yxUvg3b+BOjblJ98APmSq+sPk2Cb0Eb/1KBU+kxzsd8fkPRY7sdFPCIr0nwvzp65hd3DhR/czz0UB7KrzG9T45O0Aut3qMfdq6y3i5Seov+jPUWdTTk/2L0XOky6vkQ4VK+C/Vgu4dXX39g+JoE/7ujZ37VblFIz1W7GvzvA85QuybyR7JdUVYx7Rpaze7WrtyPYLu2CJfqU7GtY9oV+eN+3uC/OHrmV7Wr6qNUH8J91JcBZ6hdTZa9aFeUVUy7qv4+tl15VR7bdRbhUj4a2zqmXbE+7KMN/q9Gz/yqdq3qh78GOKfKD+N4kdtV2QzCc7uG/Lbyw9jmsymP11+RTlkfrfrlkI82+O+MnvlVEehtUT7En5JbXmebkxa7IHtPnzw1VmyDOEqhbYv8ea6HjYWivAvgwjKhKuHGDovcaA06vbzOIjf474+e+UWRswiZn5gpckWTid5IGx9qOt1dj7qolIXcmnKpasrKZhaazsZOxROqap62etjIRHnXBZf9n/cMNmrG5uZRfWgkwGWx94kdCRj8yLIzv6rH6DYzY48yLOCxV+TZOdZhmPKw3BwPndgRisEvgrqGejKj3YueDGXEPRnu6qjVAZZ3aGcIZdImeGV+KONhotPNzDkeSOlpaKaMeEP6pWwipENK/5XuhVZFEo1Wh8vOLpUuhGaX3XTB6qZ0IbSixnypLhZ1lHVhWNDhlbE8sa/BXyvjAN+QgLe8FuRhe+VpFrxvCFwzqZzBv7RoOxseoJ5aeYxTcQSXEazz0B8g+JaAbwn4XD7XLJvgWfHJ/RfWtSHgcfiD8Dcvm6C5FnTa3jG9/N32AFzm+VU8Iz8hGTUEvNGeJeAtD89Wou4jDMoLcbUgH+G3ke5ge1v5tqCPqz7Owze+Y92ZLeBnC/i8nhuXTa5DxZi2bJabvKphvzFxhb94/eU3zjlw0aPzqDzyWgf/nE/90s4/++4DF3XDr+LfsK8qq6/sXxHXkeK3ZqzjgJXHcZOLL5+pPikj3oaq8faDGDkh/pbTY7pRF5XGpyfsa319qNWvVY3e9/Mp7SzXOebAtkTZIR1rLzX2GKK8psCRl/+FFZPrUXFa9/2aOvgParUGd0ruXzaBF+uO43g1feY5y6uh/3kV+FbDa+WxD1fzCrZpk/eAgOW7+fB/tTrIU1hrr0FPXQeprgb/YFG/nN7MpRonyk/Ntxjnw4BzLuHkPsZnMwY/W8Dj6uf4PNN16v5sKqdWxp14p9onI1jkIU9HBE++/1sCj4+HIYGH/TzjZJqsD3nicbSan6JNYZ9VczlphuoLHPHDu+mYh3V7BcBxatD/yHOOY9+yCbwMx/woW0rZd9v7GfCe6fJ60iDB8lwKeawzHubxhTq3YP/PDPCfER4VWTDstL2p31h+M8FvLyNF8nR38Vuzzzu3W3TATy2bwOvr89SYgfu8n142Ue4DkX2e5fG4LU8H4R37dB4HIY488TK6+chBwI8wQ1Qng/8I+K6ZsB7HPsRwPRv9QvIcgrxQP9Ik+M+APH+e5InyMnmq/ottYBbwgrB5OuKRwceBj19Y5qeF81RfHXMc/2aZhkMeEI5xVO3X1PiKbTdmfKXWoIYCNNgf+/pu043ZXfJnibo58W5AwA956usE7VYXvCr6Q/n3FuVlIo99D9Y3dh0X/dZPBewlc5PrNYvqNRSoVybKsZ0j7zMDvCv5of+ouobw1H/9wR89/YZz/rpXaxSr3//atw9f/7Ff6BX+j87+g1t+9f1Dd5dZA7F2VtFKrFv4HscehyAf4b9UtEfNNQbH9VF+IzQ/47VQ5v+Ah/9vg//+U7ILNT9RNuPrf2dE8mLw/72gf5b2t5pqTwP9Go93lb9Va9kG321uaTJpu07/GhMlgjLlMY3aT1XRP6wP34A24GgM5ZstD+vOflHtx6i1xEPFbw4zvPzMc83x7Uw1jrA07Pz+n/UB62h5s4gnzMO25PV+TGoOiWe15yyfwMtwlpR/YHsN7WOr8aKyO4xIdq5/7M50v+0624X1LVaHfeM5RQ/lgH216bBvTR5tGudcc5dP4EO5q3iBPLE/NfiLl0+UW1A8q6h61gflJ5gX58J73qG5vIqqt3ZR+wBl1n6wfZFPfIf4W66Wf8nY3xo9biNeq684TmhyH4v0VDvMdVqmaj2f54pqvSc0Twr5E2V/bJtqHUH1IaH5nNHGNfOYcZMvFse3nrESbGsd2ZbytaF2Q91h+JDvQ16V7GdRnpr72/PsAB3Fl4qVmh3gC30ylmXa3eoQ21clGiPOUH0VtgnbiJKLb487/5sj4DHmhG0E45w4mje2b5tFeaqP79a3rfP0UVgPFSGuQimxf7O+r+r88GUveufSc3/nNcO9mn/OaJ77ntGPHdpWZv6p/MoA4UU58Hp7nl5e/Mbsc1fsO6O/2cF9Z9197ti+U43XuS/AdRY+8anWYFTs0tnCpeYm3JYVxwnR4yCOWaioO8GYBdW/qfkVzxux/2H5q35U9VfPFVxo/6HxcUy7KjpqTN/rvTvec5uZkA7i4i9F87q1+o2lg7gOEZ2m4CGv/4PUN6r1MCzrWw97J4wxH14+GcZ4fx3APE5rJljnErbcUnNyS2rtg/VWjQNVPC3rB45thigPj8EcAThOaj3F4HJ6Md8pULKsGJPUV7KMlZfVNcdZ5qvCqG9WJ9zHDdkB0mU7+HHQ8feTban5kbJne99tTTa0X2plh0S5Ejoxm9sWk2pb1glsW9YJPP7FOoFndNi+8Fgbj40xKX0xOZSxr/d7fKTRYB/J8we1h4u+t1cxsMavmu9kgl+1lsLrtDO74NpPuLB8TFxLzXnBYIyMEH/L1ep/sli5VJkXcFtgHtKJGcurtuy3OUZKXGpNwNqjW+zsr5C9Z5Cn4gd5TGTwvw59wa/Ruhvqm4ojYv1lmvupXqlP3PM6qRorl9mrRtlh3Y4Wv7xm+dvgG0P7q4n2eQbV2hnKKMYOQ2ujqs9Qe3lqruXbh2Q/GaM3oVhX1PNfeQ71TTH9SdU92Zh6If5U/Uk3uXB/MlPw0hZ5rMfKDyg9VnPZfdO4KuGq0zd9vWTfxP7V4L8JfdPfJO6bfDesIPxzoW8aK365b/q7s9s3zXyu903d+pqvi75meh9Cpul9CNdZf27L6X2IM2l6H0L/Gh1+N70PkYZOlX2Iy1dM4MU29u1DcN9s8JtWTJS7csVkGOP9aoC5qXie3oeYSCiHMuukLMvpfYhOOK4H6lvKfYgtoOMHyLam9yEm5z1X9iEOeHyk0WAfGbsPYb63apzRTwy2n/qDgXs+VeWcywyiZc/Yhvge+91DkI/wR8kPVRyfyXMuGKvH/JdZb1TjFUtqTSejPHWmRY0PG5Sn7DZWZ62uOV+/GaGzMbG56vbeUNzu2YjNzdNh4hnnnrwmkSdep8xEverE8r3xd0995Pvz/r+/6JezZI+SjVWcc03ZWbL3QP/4xIrJ9M72WbK3F/Snz5JN3Vmyn4Q2mMqzZP+K7Or5epasTP8yfZass12m8iyZ6fAseF/1rrUM8LqirPGENoTjfecmr0HwvaIV7x4bl6G6gwP9FJ9RMvjfWDEZD/eZ+C5P2C55UncMNgRddR/l7JK4hgjXzBq4UN8YfmZJXEMBXHz/Z0vgUv1W3nafAJ0tc/7x0zQnq3r+8cswHvkdGo9Mn388k6bPP06ff3Su/PnHPwPb+k5grB+zLzp9/nHy/6E6TJ9/nMibyvOP3/H0UViPKucfre+zz0A8OHb64INjJ46OnTp478lTB08fvu/BxUWWsVNxSyDj5fhy5R/dOMQIS5V3G2tuaWRDrrP5ygw9TewboDzzkicVCmdlZroJdX12mls819z6qiubZ6/HZ/q8pGVL7bkZFSMz98CpYw8fPj22d+z03meV7taTp/Y9o3KMPqPnTLw3UvU80Os2Gk6cFTQEZJN+DWZR8Vt1lfCLn/r2Fz6+5ZpXx54ofvjY2GsPnjh5euwTBeQU2+nemna6t6adjV/tXbELGrfTrVTeuc5ukO10K+XhkvO24je3hQXwfB6UyRMvh2HeDsgboLydgl/L2+XhP0+7IW8G5e2BPFxCwS6/pHy31xySD84X9IeAtzyth7wsHve47m+oVn6c/kYoX8X2boWXoy4uWdlN1WgPWPnN1co3rfxt1co3rPyWauXH+5mnCqNJGerecrV8yvi0VS2FNwW9mK1VhUtNgdXQcsZZppMy5CpV+GW3IXRomca3zY24Qss0aqtumk5/06m5nTNovKilK+UDDH6oJHyrJHyKTxiE8A+XhJ9TEn6kJHw7Ep5DhAxHnkwXcJBeZUskI17wHeJvES9lfd4w4UM6Vpf51XBHH68y/C1XS3ZZTX7H/f8CN5lflq/hbxM8846wCleeTKdmuwn9K764uWns9I5nZm8PDnhQoliRNMPzs6VBD56G61QHhuHTGjws5p1p5bLwfcvzfpbn/WzP+2HP+zme9yOe922n00b6fwv9vz4Aj13EPOdPGf3x+179784irRS8mq6q5ywAE3OitOISSbTL4yFrVo3euMtSEWzIA3ddKspYRa/cCnCcF+oin6+4NvSAL7VklHl+jQ6/YzqqjwjZRVU6mGe+Un05lj9mXlZuWD5mmopd8MYAXzEnqpsBXOr0j+HqNnzfRLh8u8b5X7eh/W2ES+06G65ZXXBtJlzqSyE1TwTMMF5CUwTEb7zgzifu3uV/c7rg4mkjlp9D5fBUwWyi06AyCJ+nIVEuT6MuKmXqFLnZVq5vP0r8jEBeg8rmzzYWaRL8jmyi3GPEe7Ma7708rTsU46MQfz+f1lV+rM4J21uncZXCtaEHfKVcdi67dBs6fZFR3pDAWVUOWB63YmrY3cxu/u+DHp59/g9PGSB8E/zfzxTvQrdoZIIvNRbnMYLa6s9cp64oXDxGaAT4mtkFF48R1G0PIT1AXDxGKDt2QfmGIo9ixi6Ii/t4NXaJxcX2NihwqfCL/G/URaVbla2UKH9YjcNKlD9m5YerlT9u5edUKz9m5UeqlT9q5dvVyo9a+bnVyp9Wy8Elyp9US5olyt9n5RdUK3/CfO1CeGm6bLgXwfsSfnwR2oQlNV7DuBnkpSS98fHaIqLH9ePx2mLBS1vksY0vFnQWCzoK14yEuGYlxDWcENechLhGEuJqJ8Q1NyGueX1ax/kJcaXUiZSyTymvlLadkq8FCXGl1NWU7Wj6ZWN9g/1+8VszXHZxzPpGxTWxxciTJdVfGn51otP4aom8mBjUxedf/9m57/nj8b409OXfPMVs+au+V40bS8hqoTqJYO/sV60jWh7aqPGQz2HekU3mb7gifzHyQ/xtAc/rHbFtMc9pP+SckzfXNChPzZ15j8L0CfPUCQZ1CsHmZHhySJ3MD52mUWu4PO9UuojvfGs6jBf/960x4MmuSbqYTZTbmvnrFTNnbkXy3vLgagre87SFeDf4+QW/uQ7882wyTiVbXDPgNRDkKWbdHnHxGohatzdcI11w8RqIWsM3XO0uuHgNBMtzvz03gAvteESU5/5xXhdcvAaC5edRXuwpLw6zrhgOO5Tr0nuzCTpcH/ZZKrwG4U3P2gSfP88O1GdeD+szVLI+StdVfVqB+vSyfUK3HChdRPjbqD44buT+WvnTs90+3fzaZqqP8kX91D6qPmpNVNVnJFCffmwf9H2qPu1Affq1fWYE6jOX8nw3xG2lvlut7eN4wHyqGg/iXssHi+eYPkv1pfguFO9hcLx/vRfGJx+jOo5AmZgxj8HvB5w25lH9O++9qHHHSKB+WH7EUw59CtJhWfN4mddr8HkB1LtB8HliuRj8QZDLvwb9Nr4d8VXTjmYqO0I+Z3jqZfwwPI8TcC2Ej75hfeb3sD7tkvVBeB4nYH1wzmblnevv9rktUB+cS1p55/q7fTYH6hMax/Vj+6hxAtYnNE7oZfuMBOqj+hv0qzxOQH/KazK45jFCeRnQ8fWbmIfxWzXPq1v3N06n7Hn1pwsEvT6vbu85PgF/jf88qVvAGpSHYyqOVZsF7xsCF9+aafDvhv4+T3hMzMq3BX0+Z6H4VjE0mcDVEO/wpqt3ZRM8V223/za0a+PAJ56+sFu7KTk0qAzf4MnweMM1wr+/QPDsOBLs2t4xvfzd/x+Ayzy/imfkJ9QGDQFvtGcJeMvDsyvolxAG5YW4Wh56HyXdRH1C38z0cW7kPHz71vMZV0O8Q938MPmTqnGXdXR7zqd+aeefffeBi2Lv0CiL/xevv/zGOQcuerQbfpu/3Dd2+uDhh07ff/C1x06fGHvwwSuK90NUpqyMhgT/8eUffXKIEZYq756seY6mb67Uwes4MO4E8Tk3MYZQ7V2zLhtVzHWJ8mvVuIuvCGHcmKeuAMjlcX7xXLOtN9aUz9r5zt++dvXDJcX/obM0NflYF9O3IP6Wq2cjmescRzZcZ/3wiKnFL00cMV33jPe544zzQSYR8Vp4j/mYGIbhGF5tND4XB4UXF7/9PCgcdRM815xUPFl3UrGKeO3VpMLa4+DBvIt9zUMnTx8bO3F6b/F2irvXrTW71601XVWym7A2U3lHeFX3upny0FXZMk9ubXg58UIokye8CYjdd8U23VJTplmoG7L2Xl8Rt5XfAC9HPcDvfssrf/z+13z2HTeNPr34j974D5us7MaIslcd3XHqz67+wKW/tGvjv3nLWw68wspG3DrFDr7urVPjXbe1dS+PzyCfKW8kUsdgMqKTJaSjetOadjFo5bFnG40qqo8qmg3kMlkOPOV/6hJgNWxtEvyLoByHlqijTva/6eggweZpA9Ey2EuB1pUefE7gMxtSbTUU4HmGh0YmYHnZUh2/Qr7L0FMyMlmzjDYBrWtdHP+IL8R/TLu2AjQ2EI1MlHNUzuR6awC2FYDlOvN2MteHw8XY/+dyWV08K3nEHB1FmawneKxLQ+AfIv4M/pbiN4e1myW7XWCMusK2m4k64Qf01JE25WtCoYvoh2qOjm0nvfLoeGfxe7auiC2L/3Mzv/at//Dp+97VDb/V65nR9+lziucpHnNvqjnm3tQvY+4NVN4R3tCSlhpzm83xmJvDYTjcOE81xxa39nLMbeNH3LrE/EFR1uoVCoNOMIveVNdPFN+wOmuz6KNj95x89QMnHxw7eP+xE6cvKN7+sFj0c32ROmS1GwFfRnm3CrpTvFg9MN/5PZtZtGm/miGgLuEsQsnViXeZwMOywXYYLX4XXO3+8MKvXP/IysUvPrnz4Se+su+jb174oUv/sr30rx+66eG/+9JJrstAgPfQ2mjooEU/eCbbFOi1Z7J6Hj99xictK/6fHmXUsr/pUUZnihplnIsF3IScZji/LTcJdjGUWeDBN+i6+4aGhw8ciTOOPI26qJQpOpmg0++jqNHit9e+ysZLR8eOPHTfweMn7zt4+NSpw48cPHnq8D3Hxw6+9tThBx4YO3V7ATXFHuzumh7s7poe6AVWvmJ4iPRg6pqkBsFxGdRWXDvf6IHBNfJbPTCbAGaTB2YzwGz2wNwGMLd5YPBq2i0emK0As9UDsw1gtnlgtgPMdg/MDoDZ4YHZCTA7PTC7AGaXB2Y3wOz2wOwBmD0emL0As9cDsw9g9nlgbgeY2z0w+wFmvwfmDoC5wwNzAGAOeGDuBJg7PTAvB5iXe2DuApi7PDA/AjA/QjChUUSqsJKKfmRpaL+J90RK4j6He17nJvemjvCn+sqI+toB1o/DgtTeiwoZ4g/0osztOR8lrQY4blvDV3O09oqa7Z71sN0Hnovt3qC8FO2uRqg53GZ4tj5LjVarjEcq+pHgF+wy4NdSg37zNNVRSnhEPk/9GKW01k3wXDdewmZlPIZoEj/Ylsw/6jDCNwS8+HrDhnywv+3kfY4Su5XMw+JSKrfew1oWwIv48f1SetcQsIg7wWTtbsNVdbJmQ6teT9ZuKp5PnDx97N5HDuafPX31sRMHT409PHbq9LEjz8zXHjx2dOzg2L33jt1z+uA9Jx86cXrsFE3l7COWUzyVe958GLXbVC7P77aIjrf84CmKGl3PWfl4qulz7oLs9EDx8dQdz6rw3rHT24+d2DOuv3ufUd+Nz2rv+jPKy1SVx1DvG64/vqtqy2a99gyXF8+FZxg78ZqHxh4aO3rwgYeOHD92z8F7Hzpxz+ljJ08cvOfw8ePmCWxZcIo9weaanmBzzUF1s+bAWXoC5MXyuy3GNFz3xZg8VV3eVgFvofu/jS5acv6M52JreKDNZ8MD2ZmC3ANdXDxP8kAbC0vZ9ayh3FrYyfpnzITJ+QZHTBqrgv83BR5O3CFZVWq6sc113dgLit+ztRr9rJsq2mnCeR3Le4QTh49bnP4UO65tNR3XtpqOZ4aVr/hRinG6uGqMvBjeMo7Lt0KMML4V4jwp58YObEDwoZwbR003BW8qohoj/RfB81IokycV6W95uGKdKH5hSy/jF1KfAijLmzlsc9LWLrgakAGvNfS+gfY+/pLeIf6Wq2WnwY+xqAPneWdlHrdwgnmHtOvMo/VRyCliHxA1ySZzNGltw3ngyvRp9v8MgddXnt8xv+oIK0rLNFXF4w5QuQbhRtq81sJ8NgL4M8pvdOF5A/Hs27Wv2d9vq9vf23Si1/29WXsxbbnn1NgzCn704ImHjh8/du+xjrULm01Nr13U6kiSBfcNw7OtUTwX1iXshoPc0VpQ2KRZwfozirjD9JCJsJ/MxHsjONVLEPiJCqNvvylt2YR69NipZ9Zvjj089sx4PV/X4esWK36SY9xoK35iY5IfdsQL4mXn4krQsIRtxYmvleG9CnZOJehnPj4yAWzTeLzi3ORhow9sy9Nj9z3jkO20MnNb8eL4ASs/u1p52ap4KQx/jJmljynz/D9AvyHYLIB3WOQZTmsN5HcW5U20xumTB08dPnrsdXwVcNW4JDxHV6H8uG1WHZGrVsTRMsdFsf9FmsZLqxovszJBX+0PcksbjNKsAfq/Se8bEbBKsyxP7Y9yuW77nbxf7gS84UJ9U7h4r5f1o24bzafyhiNP/xe3vG8dklIlAA==",
|
|
4056
|
+
"debug_symbols": "tL3LruzKcmX5L7etBs3dHu75K4VCQpWlKgi4kBJKZXUE/XsFzWk2ba+l8MUVEaejPe7R3jZIJ20GH07yP/72f//T//W//9///s//8v/86//623/7P/7jb//Xv/3z3//+z//vf//7v/6Pf/z3f/7Xf3n81//423H+H+K//Tdq3P7zH/5G5/8e8/G//+Fv81h/0PqjrT/6+oPXH7L+0PWHrT/G+mNVoeO4/qTrz3b92a8/+fpTrj/1+tOuP8f151WPrnp01aOrHl316KpHVz266tFVj656dNVrV7121WtXvXbVa1e9dtVrV7121WtXvXbV61e9ftXrV71+1etXvX7V61e9ftXrV71+1eOrHl/1+KrHVz2+6vFVj696fNXjqx5f9eSqJ496/fyzXX/260++/nzU0/NPvf60689HvXn+edY7/6IeARTQAnoAB5xLySdogAWMgHmBHQEU0AJ6AAdEZTsrywkWMALOyufKjyOAAh6Vm0MP4AAJ0AALGAHzgrNrFlBAVJ5ReUbls3/aOSxnBy2wgBEwF7SzkRZQQAvoARwgARpgASMgKlNUpqhMUZmiMkVlisoUlSkqU1SmqNyi8tldTU5oAT2AAyRAAyxgBMwLzjZbEJV7VO5RuUflHpV7VO5RuUflHpU5KnNU5qjMUZmjMkdljsoclTkqc1SWqCxRWaKyRGWJyhKVJSpLVJaoLFFZo7JGZY3KGpU1KmtU1qisUVmjskZli8oWlS0qW1S2qGxR2aKyRWWLyhaVR1Q+e7CNE1pAD+AACdAACxgB8wLvQYeoPKPyjMpnD3Y6QQI04FG56wkjYC7oZw8uoIAW0AM4QAI0wAJGQFSmKzc6UUAL6AEcIAEaYAEj4Eqk3qJyi8otKp892OcJHCABGmABI2BecPbgAgpoAVG5R+Uelc8e5OMECxgB84KzBxdQQAvoARwgAVGZozJH5bMH+RFE/ezBBRRwVrYTegAHSIAGWMAImBecPbiAAqKyRmWNyhqVNSprVNaorFHZorJFZYvKFpUtKltUtqhsUdmiskXlEZVHVB5ReUTlEZVHVB5ReUTlEZVHVJ5ReUblGZVnVJ5ReUblGZVnVJ5ReV6V+TgCKKAF9AAOkAANsIAREJUpKlNUpqhMUZmiMkVlisoUlSkqU1RuUblF5RaVW1RuUblF5RaVW1RuUblF5R6Ve1TuUblH5R6Ve1TuUblH5R6Ve1TmqMxRmaMyR2WOyhyVOSpzVOaozFFZorJE5ehBjh7k6EH2HpwnaIAFjIB5gfegAwW0gB7AAVFZo7JGZY3KGpUtKltUtqhsUdmiskVli8oWlS0qW1QeUXlE5RGVR1QeUXlE5RGVR1QeUXlE5RmVZ1SeUXlG5RmVZ1SeUXlG5RmV51VZjiOAAlpAD+AACdAACxgBUZmiMkVlisoUlSkqU1SmqExRmaIyReUWlVtUblG5ReUWlVtUblG5ReUWlVtU7lG5R+UelXtU7lG5R+UelXtU7lG5R2WOyhyVOSpzVOaozFGZozJHZY7KHJUlKktUlqgsUVmicvSgRA9K9KBED0r0oEQPSvSgRA9K9KBED0r0oEQPSvSgRA9K9KBED0r0oEQPSvSgRA9K9KBED0r0oEQPSvSgRA9K9KCcPSh8Qg/gAAnQAAsYAfOCswcXUEBUnlF5RuUZlWdUnlF5RuV5VdbjCKCAFtADOEACNOCsrCeMgHnB2YMLKKAF9AAOkAANiMoUlSkqnz0odgIFtICz8jyBAyRAAyxgBMwLzh5cQAEtICr3qNyjco/KPSr3qNyjMkdljsoclTkqc1TmqMxRmaMyR2WOyhKVJSpLVJaoLFFZorJEZYnKZw/qccK84OzBBY/KSie0gB7wqKznnnD24AINsIARMC84e3ABBbSAHhCVLSpbVLaobFHZovKIyiMqj6g8ovKIyiMqj6g8ovKIyiMqz6g8o/KMyjMqz6g8o/KMyjMqz6g8r8p2HAEU0AJ6AAdIgAZYwAiIyhSVKSpTVKaoTFGZojJFZYrKFJUpKreo3KJyi8otKreo3KJyi8otKreo3KJyj8o9Kveo3KNyj8o9Kveo3KNyj8o9KnNU5qjMUZmjMkdljsoclTkqc1TmqCxRWaKyRGWJyhKVJSpLVJaoLFFZorJGZY3KGpU1KkcPWvSgRQ9a9KBFD1r0oEUPWvSgRQ9a9KBFD1r0oEUPWvSgRQ9a9KBFD1r0oEUPWvSgRQ9a9KBFD1r0oEUPWvSgRQ9a9KBFD1r0oEUPWvSgRQ9a9KBFD1r04IgeHNGDI3pwRA+O6MERPTiiB0f04IgeHNGDI3pwRA+O6MERPTiiB0f04IgeHNGDI3pwRA+O6MERPTiiB0f04IgeHNGDI3pwRA+O6MERPTiiB4f3oJ3QAnoAB0iABljACJgXeA86RGWOyhyVvQfbCRKgARYwAuYF3oMOFNACekBUlqgsUVmiskRlicoalTUqa1TWqKxRWaOyRmWNyhqVNSpbVLaobFHZorJFZYvKFpUtKltUtqg8ovKIyiMqj6g8ovKIyiMqj6g8ovKIyjMqz6g8o/KMyjMqz6g8o/KMyjMqz6vyPI4ACmgBPYADJEADLGAERGWKyhSVKSpTVKaoTFGZojJFZYrKFJVbVG5RuUXlFpVbVG5RuUXlFpVbVG5RuUflHpV7VO5RuUflHpW9B+cJFjACHpXtOG+7HgEU0AJ6AAdIgAZYwAiIyhKVJSpLVJaoLFFZorJEZYnKEpUlKmtU1qisUVmjskZljcoalTUqa1TWqGxR2aKyRWWLyhaVLSpbVLaobFHZovKIyiMqj6g8ovKIyiMqj6g8ovKIyiMqz6g8o/KMyjMqz6g8o/KMyjMqnz1o525z9uAJjxvtR9JZW5xaUk/iJEnSJEsaSTPobMeL0kHpoHRQOigdlA5KB6WD0tHS0dLR0tHS0dLR0tHS0dLR0tHS0dPR09HT0dPR09HT0dPR09HT0dPB6eB0cDo4HZwOTgeng9PB6eB0SDokHZIOSYekQ9Ih6ZB0SDokHZoOTYemQ9Oh6dB0aDo0HZoOTYelw9Jh6bB0WDosHZYOS4elw9Ix0jHSMdIx0jHSMdIx0jHSMdIx0jHTMdMx0zHTMdMx0zHTMdMx0zHD4TNqLqKkltSTOEmSNMmSRlI6ss8p+5yyzyn7nLLPKfucss8p+5yyzyn7nLLPKfucss8p+5yyzyn7nLLPKfucss8p+5yyzyn7nLLPKfucss8p+5yyzyn7nLLPKfucss8p+5yyzyn7nLLPKfucss8p+5yyzyn7nLLPKfucss8p+5yyzyn7nLLPKfucss8p+5yyzyn7nLLPKfucss8p+5yyzyn7nLLPKfucss8p+5yyzyn7nLLPKfucss8p+5yyzyn7nLLPKfucss8p+5yyzyn7nLLPKfucss8p+5yyzyn7nLLPKfucss8p+5yyzyn7nLLPKfu8ZZ+37POWfd6yz1v2ecs+b9nnLfu8ZZ+37POWfd6yz1v2ecs+b9nnLfu8ZZ+37POWfd6yz1v2ecs+b9nnLfu8ZZ+37POWfd6yz1v2ecs+b9nnLfu8ZZ+37POWfd6yz1v2ecs+b9nnLfu8ZZ+37POWfd6yz1v2ecs+b9nnLfu8ZZ+37POWfd6yz1v2ecs+b9nnLfu8ZZ+37POWfd6yz1v2ecs+b9nnLfu8ZZ+37HOfMmTDyZJG0gzyPl9ESS2pJ3GSJKXD0mHpsHSMdIx0jHSMdIx0jHSMdIx0jHSMdMx0nH0+1kTPltSTHo7RnCRJkyxpJM2LfFLRRZTUknoSJ0mSJlnSSEoHpYPSQemgdFA6KB2UDkoHpYPS0dLR0tHS0dLR0tHS0dLR0tHS0dLR09HT0dPR09HT0dPR09HT0dPR08Hp4HRwOjgdnA5OB6eD08Hp4HRIOiQdkg5Jh6RD0iHpkHRIOiQdmg5Nh6ZD06Hp0HRoOjQdmo6zzwefdPb5RZR0OsypJ3GSJGmSJY2kGXT2+UWUlI6RjpGOkY6RjpGOkY6RjpmOmY6ZjpmOmY6ZjpmOmY6ZjhkOn7h0ESW1pJ7ESZKkSZY0ktJB6aB0UDooHZQOSgelg9JB6aB0tHS0dLR0tHS0dLR0tHS0dLR0tHT0dPR09HT0dPR09HT0dPR09HT0dHA6OB2cDk4Hp4PTwengdHA6OB2SDkmHpEPSIemQdEg6JB2SDkmHpkPToenQdGg6NB2aDk2HpkPTYemwdGSfc/Y5Z59z9jlnn3P2OWefc/Y5Z59z9jlnn3P2OWefc/Y5Z59z9jlnn3P2OWefc/Y5Z59z9jlnn3P2OWefc/Y5Z59z9rlkn0v2uWSfS/a5ZJ9L9rlkn0v2uWSfS/a5ZJ9L9rlkn0v2uWSfS/a5ZJ9L9rlkn0v2uWSfS/a5ZJ9L9rlkn0v2uWSfS/a5ZJ9L9rlkn0v2uWSfS/a5ZJ9L9rlkn0v2uWSfS/a5ZJ9L9rlkn0v2uWSfS/a5ZJ9L9rlkn0v2uWSfS/a5ZJ9L9rlkn0v2uWSfS/a5ZJ9L9rlkn0v2uWSfS/a5ZJ9L9rlkn0v2uWSfS/a5ZJ9L9rlkn0v2uWSfS/a5ZJ9L9rlkn0v2uWSfS/a5ZJ9L9rlkn0v2uWSfS/a5ZJ9L9rlkn0v2uWSfS/a5ZJ9L9rlkn0v2uWSfS/a5Zp9r9rlmn2v2uWafa/a5Zp9r9rlmn2v2uWafa/a5Zp9r9rlmn2v2uWafa/a5Zp9r9rlmn2v2uWafa/a5Zp9r9rlmn2v2uWafa/a5Zp9r9rlmn2v2uWafa/a5Zp9r9rlmn2v2uWafa/a5Zp9r9rlmn2v2uWafa/a5Zp9r9rlmn2v2uWafa/a5Zp9r9rlmn2v2uWafa/a5Zp9r9rlmn2v2uWaf+wyueThpkiWNpBl09vlFlNSSehInpcPSYemwdFg6RjpGOkY6RjpGOkY6RjpGOs4+n81pBp19fhEltaSexEmSpEmWlI4ZDp/kdREltaSexEmSpEmWNJLSQemgdFA6KB2UDkoHpYPSQemgdLR0tHS0dLR0tHS0dLR0tHS0dLR09HT0dPR09HT0dPR09HT0dPR09HRwOjgdnA5OB6eD08Hp4HRwOjgdkg5Jh6RD0iHpkHRIOiQdkg5Jh6ZD06Hp0HRoOjQdmg5Nh6ZD02HpsHRYOiwdlg5Lh6XD0mHp8D4/H1D1SWMXUVJL6kmcJEmaZEkjKR0zHTMdMx0zHTMdMx0zHTMdMx0zHD6R7CJKakk9iZMkSZMsaSSlg9JB6aB0UDooHZQOSgelg9JB6WjpaOlo6WjpaOlo6WjpaOlo6Wjp6Ono6ejp6Ono6ejp6Ono6ejp6OnwPhcnSmpJp8OcOEmSNMmSRtIM8j5fREktKR2SDkmHpEPSIemQdGg6NB2aDk2HpkPToenQdGg6NB2WDkuHpcPSYemwdFg6LB2WDkvHSMdIx0jHSMdIx0jHSMdIx0jHSMdMx0zHTMdMx0zHTMdMx0zHTMcMh09Wu4iSWlJP4iRJ0iRLGknpoHRQOigdlA5KB6WD0kHpoHRQOlo6WjpaOlo6WjpaOlo6WjpaOlo6ejp6Ono6ejp6Ono6ejp6Ono6ejo4HZwOTkf2+cw+n9nnM/t8Zp/P7POZfT6zz2f2+cw+n9nnM/t8Zp/P7POZfT6zz2f2+cw+n9nnM/t8Zp/P7POZfT6zz2f2+cw+n9nnM/t8Zp/P7POZfT6zz2f2+cw+n9nnM/t8Zp/P7POZfT6zz2f2+cw+n9nnM/t8Zp/P7POZfT6zz2f2+cw+n9nnM/t8Zp/P7POZfT6zz2f0eTuiz9sRfd6O6PN2RJ+3I/q8HdHn7Yg+b0f0eTuiz9txpIPSQemgdFA6KB2UDkoHpYPSQelo6WjpaOlo6WjpaOlo6WjpaOlo6ejp6Ono6ejp6Ono6ejp6Ono6ejp4HRwOjgdnA5OB6eD08Hp4HRwOiQdkg5Jh6RD0iHpkHRIOiQdkg5Nh6ZD06Hp0HRoOjQdmg5Nh6bD0mHpsHRYOiwdlg5Lh6XD0mHpGOkY6RjpGOkY6RjpGOkY6RjpGOmY6ZjpmOmY6ZjpmOmY6ZjpmOnIPqfsc8o+p+xzyj6n7HPKPqfsc8o+p+xzyj6n7HPKPl9vnjoOxw5koAAVaMABnIn+RqoLCQibt7w6cZIkaZIljaQZ5C2/iJJaUjp6Ono6ejp6Ono6ejo4HZwOTgeng9PB6eB0cDo4HZwOSYekQ9Ih6ZB0SDokHZIOSYekQ9Oh6dB0aDo0HZoOTYemQ9Oh6bB0WDosHZYOS4e/8upojgo04ADORH/51YUEbMAOZCBsA7YB23CbOM5Ef43chQRswA5koAAVaEDYZtp8zlzgaaPDsQE78LTRek2VABV42s53ijWfOxc4E/1ddBcSsAE7kIECVCBsBBvB1mBrsDXYGmwNtgZbg63B1mBrsHXYOmwdtg5bh63D1mHrsHXYOmwMG8PGsDFsDBvDxrAxbAwbwyawCWwCm8AmsAlsApvAJrAJbAqbwqawKWwKm8KmsClsCpvCZrAZbAabwWawGWwGm8FmsBlsA7YB24BtwDZgG7AN2AZsA7YB24RtwjZhm7BN2CZsE7YJ24TNs6Sd+eDz8gIpcXWW01m2LTwL+IvufK7ahd5CFxKwATuQgQJUoAFh67AxbAwbw8awMWwMG8PGsDFsDJvAJrAJbAKbwCawCWwCm8AmsClsCpvCprApbAqbwqawKWwKm8FmsBlsBpvBZrAZbAabwWawDdi8hZo6NmAHMlCACnSbOQ7gTPQWupCADdiBDBSgAmHzFvI36/XVQifyaqHpSMAG7EAGClCBp83f0OdT3wJnov8cX0jABuxABp623h0VaEC3qeNM9J/jCwnYgB3oNnMUoAINOIAz0bPkQgI2YAfC5lnSfVt4llxoiZ4anR29rg+15wP76Hg+8PoLCjTgAM5Ez4cLz7osjg3YgQwUoAINOIAz0fPhQtg8H9g3gOfDhW7z1Vxvo12oQAMO4Ez0fJDDkYAN2IEMFKACDTiAM3HA5vkgvlk8Hy50W3NkoAAV6DYfB8+HC2ei58OFBGxAt/nO5flwoQAVaMABnIE+VS6QgA3YgW4bjgJUoNvYcQBnovf8hV5hOp5/93wCu/mMt8fZnCMBG7ADGXgWU19Ib+kLDTiAM9Fb+kK3+Vp4S1/YgQwUoAINOIAz0Rv9Qtj88EB9HPzw4EIGnrbziePmc+ECDXjazIfP2998SLz9z0dGmk+IC2zADmSgAL2uL6Q3+kJv9AsJ2IA90bvwfDyj+XS1wFMxfHm934bvD95vC73fLiRgA/ZE74vhy+t9cSEDBahAAw7gDPSpZYEEbMAOZKAAFZg2n072OHt39Arm6BWmowAVeFY4J+E0n0AWOBO9cS4kYAOedSc5eoXm6BV8ybwZLiSgV2DHDmSgABVoQLf5GnszLPRm8Kt4PlcssAG97nD0Cj4OvoMv9B38vE/dfCZY8ytzPhUssAMZKCf6OPh7nS804DjRR8ff7rzQ3+98IWwKm8KmsPmbni/U3BaKranYmoqtadiahq3pPbQ2of9mrU3oPbQ2lmFrDmxN76G1LQa25sDWHNiaA1tzYGv6b9babgNb03+z1saa2JoTW9O7cG1C77e13Sa2pvebb0Kf4rUGyud4BTZgB3JsLJ/nFahAi43lU70Cc2v6ZK+rGMFGsBFslFvT51E9Llo5diADfXHUUYEGHMCZ6C88v5CADdiBp80vn/mkqkAFGnAAZ6K/BN3PtX1qVWADdqDbxFGACnSbL5k3zoUz0RuHzJGADdiBbhuOXnc6DuBM9NeiX3jW9csAPrPqcRHN8azrZ3U+typQgAo8bc3X2F+TfuFM9FelX+g2Xzd/S7qfZ/nUquZnST63qvmJjU+uan39MwMO4Ez0d6ZfSMAGPG3dR92/X3Ch23xx1jcMFhpwAGfgWN8yWEjABuxABgpQgQYcQNgINoKNYCPYCDaCjWBbXzswxwGcieubBwsJ2IAd6HXXu+8NOIAz0b94cCEBG7ADGShA2DpsHbYOG8PGsDFsDBvDxrAxbAwbw8awCWwCm8AmsAlsApvAJrAJbAKbwqawKWwKm8KmsClsCpvCprAZbAabwWawGWwGm8FmsBlsBtuAbcA2YBuwDdgGbAO2AduAbcA2YZuwTdgmbBO2CduEbcI2YZtpm8cBJGADdiADBahAAw4gbAQbwUawEWwEG8FGsBFsBBvB1mBrsDXYGmwNtgYbsmQiSyayZCJLJrJkIksmsmQiSyayZCJLJrJkIksmsmQiS3yCVzs/w9B8hldgA3Ik4lwBslCBBhzADN0pB5CADdiBsAlsApvAJrAJbAqbwqawKWwKm8KmsClsCpvCZrAZbAabwWawGWwGm8FmsBlsA7YB24BtwDZgG7AN2AZsA7YB24RtwjZhm7BN2CZsE7YJ24Rthq0fxwEkYAN2IAMFqEADDiBsBBvBRrARbAQbwUawEWwEG8HWYGuwNdgabA22BluDrcHWYGuwddg6bB22DluHrcPWYeuwddg6bAwbw8awMWwMG8PGsDFsDBvD5lnin4bxSWSBDXjazkvM3eeRBQrwtJ0Xv7tPJQscwJnoWXIhAd02HDuQgW7z5fUsudCAAzgTPUsuPG3ndeV+rE86LezA03ZeYu7H+rDTQgVa4vqYU3P0Cj5Qng8XCtAr+EB5Plw4gOfyyvo80gEkYAO6zVfI8+FCASrQ657D5/PD2nn9t/sEsUAG+viqowINOIAz0Xv+QgKetvN97N1nigUyUIAKNOAAzkTv+QsJCFuDrcHWYGuwNdgabA22DluHzXte13eqvG5zVKABB3AmendfSMAG7EAGwsawMWwMG8MmsAlsApvAJrAJbAKbwCawCWwKm8KmsClsCpvCprApbAqbwmawGWwGm8FmsBlsBpvBZrAZbAO2AduAbcA2YBuwDdgGbAO2AduEbcI2YZuwTdgmbBO2CduEbaZtfWzxQgI2YAcyUIAKNOAAwkawEWwEG8FGsBFsBBvBRrARbA22BluDrcHWYGuwNdgabA22BluHrcPWYeuwddiQJQ1Z0pAlDVnSkCUNWdKQJQ1Zsj7heN626+sjjhcKUIEGHMCZuLJkIQEb0G3qyEABuo0dDTiAM3FlyUICNmAHMlCAsClsK0uG40xcWbKwA72CORrwrGA+vp4PCz0fLiRgA3bgubzmQ+L5cKECDeg2F3s+LPR8uNBtvryeDxd2oNumowAVaMDTNg7H03beOuz+frbH8jt2IAMFeNY97791f0lbO++/dX9L22NVHL3uaVufgbyQgA142s4bMn19DvJCASrwtE1fXm//6Yvj7X/eWenri5DTF8fbf7rC2/9CBgpQgQYcwIetH74M/o3IC1vsRr13IAMFqEADDmDuqZ0PIAFhY9gYNoaNYTt7vh8+ZmfPB85E8RXykfRPKF/YgB3IQAEq0IADOBMVNoVN3eZ7lHYgAwWoQAMO4Ey0A0hA2Aw2g81gM9gMNnOb73LrSIEcG7ADGShABRpwAGfiOlJYCNuEbcI2YZuwTdgmbBO2mTY+DiABG7ADGShABRpwAGEj2Ag2go1gI9gINoKNYCPYCLYGW4OtwdZga7A12BpsDbYGW4Otw9Zhw/kFd9g6bB22DluHrcPWYWPYGDaGjWFj2Bg2ho1hY9gYNoFNYBPYBDaBTWAT2AQ2gU1gU9gUNoVNYVPYFDaFTWFT2BQ2g81gM9gMNoPNYDPYDDaDzWAbsCFLGFnCyBJGljCyhJEljCxhZAkjSxhZwsgSRpYwsoSRJYwsYWQJI0sYWcLIEkGWCLJEkCWCLBFkiSBLBFkiyBJBlgiyRJAlgiwRZIkgSwRZIsgSQZYIskSQJYIsEWSJIEsEWSLIEkGWCLJEkCWCLBFkiSBLBFkiyBJBlgiyRJAlgiwRZIkgSwRZIsgSQZYIskSQJYIsEWSJIEsEWSLIEkGWCLJEkCWCLBFkiSBLBFkiyBJBlgiyRJAlgiwRZIkgSwRZIsgSQZYIskSQJYIsEWSJIEsEWSLIEkGWCLJEkCWCLBFkiSBLBFkiyBJBlgiyRJAlPtWvnzNfur+NLlCACjTgAM7EeQAJ2ICwTdgmbBO2CduEbabNpxAGErAB/brncGSg28xRgQYcwJlIB5CAbpuOHcjA03bOC+o+3TDQgG7zJaOZ2A6gXxX2Yq0BO5CBAlSgAQdwJnqWXOh1myMDfS3IUYEGHMCZeKZGIAHPMTufP+z+yrpABrqNHRVoQLf5kvl5y0I/b7nQx8yLeWpc2IEMFKACDTiAM9FT40JfC3FkoAB9LXyf9DOUCwfQ18L3KD9DudDHzHcCP0O5sAPd5tvNz1AuVKABB3AmjgN42prvk2c+BHYgAwWowJiE2K8Ji765/ajiWNiAHchAASrQgDHdsPvkxoXX5MaFBGzXHM7ukxsDGShABRpwAGeiTzG+MLe8T2MMFGBueSMDDmBueX97XWBueX9/XWAH5pb3V9gFKtCAA5hb3t9jF5hb3mdgBnYgAwWowNzyxrnlr7mWCxuwAxkoQAUaMLf8mmu5ULDlBVtesOUFW16w5QVbXrDlBVtesOUFW16x5b3nmy+Z9/yFAlTguS3a+mcDOBO95y+ka9J697mWgR3IQAEq0IADOBNXd3fHDmSgABVowAGcif7rfyEBYZuwTdgmbBO2CZv/+jdfdP/1d/QJloEEbMAOdNtwFKACDTiAM9F//S8kYAN2IGyeBOes1e4TLAMNeNrOuazdJ1j2cyZq9wmWgQRswA5koAAVaEC3ieNM9CQ4p352n3YZ2IAd6DZfdE+CCxVowAGciX5McCEBT9s5Var7tMvA08Y+On5McKECDTgS/UCAmyMBG7ADGegKHxK/gHmhAQdwJvoFzAvd5gPlFzAv7EAGClCBBhzAmehRcSFsfnjgkx58rmUgA93m+6QfHlxowNPmsyJ8rmX3SQ8+17L7IaDPtQxswA5koAB9AorTDFpTopwoqSX1i3yyY5eFDBSgz5N3sqSRNIP8OsAiSvKK7HgOg0/MmOuX2WkGrd9lJz/wd2pJPYmTJEmTXKKOA+hjfW4in7EYSEBfzOHoFabjAPp9j5O8s3zKgk9CDGzADmSgxJBwDifncHIOJ+dwSg6nN9IaRG+ZNYjeMrr+wgCeq+q3KH12YaAvqW/Ns2W8731y4UWcJEmaZEHeFn6zz+cKPo7UHc9/7bXP/f8iTTr/tS/EufNfNIPOXf8iSmpJLvFN6Pv9hed29xuGPkUw0BL9J9Jvw/i0v66+4fzH8MJzOX24/LdwDYz/Fl44gPNC9ll//XxYkX3WX2AD9mvA2Wf9BQpQUcyAAwgbwUawEWwEG8FGsBFsBBvBRrB5911Ia1dnn/Tnuy/7pL9ABgpQE/13ynwRvJkuHEA/vzvJL3gtoqSW1JM4SZI0yZJGUjokHZIOSYekw3+jjB0FqEBfGXUcwHMQzUfOG+5CAjZgBzJQgG7zwfffqAsH0G12ojfjhQQ8bcO3g7fohQz0G8pOmmRJI2kG+dWtRV6RHM8lHb45vfOGL78fsl44E70fLzyXdPh4+yHrhR3IQAH6xTgnly0cwBnob3Hr5/1w9te4BTbgKTtvbLPP0ws8ZecJFfs8vUADet84zSDv0UWU1JJ6kldsjuc/Pm+gs8+66+cNdPZZd4EN2IG+pF7Mm+5CBRpwAN12kv/uLaIkHxSnnsRJkqRJluQSc5yJ/uN4YQf6Yvo/80PJC32vdppBfky56Pw5OHzTSAN2oP9m+ZiKAP1Xy4dXDHj+8hw+kGe78nk3mX1OHR8+Tuo2H5T1+7iwAxkoQAUacABPG/nynu3K5LvS2a5MvrxnuzL5QvqPJ/lC+q/nhQYcwJnov6AXEtCL+WoOBRpwAGfiPIAE9GI+UNP/mW+hOQN9llsgAc91m049iZMkSZMsaSTNoLPbLqKkdFA6KB2UDkoHpYPSQelo6WjpaOlo6WjpaOlo6WjpaOk4m419XM5mu4iTJEmTLGkkzaCz1S6ipHRwOjgdnA5OB6eD08HpkHRIOiQdkg5Jh6RD0iHpkHR4Y5xPorJPEOPzAhf7i8bYf439lWLske9zutj/qu/VizTpUUn8750770WUdP695sppwAH0BTm3kL+n6zzKZn9N10UtqSdxkiRpkiWNpBlE6aB0+P56nr6wz7Ti8yyI/cuY4st17p2Lzr3zIkpqST2JkyRJkywpHS0dPR09HT0dPR09HT0d577rx4A+2eqikfRwqK/bue9eREk+Cs3RR6E7nluq+zD5brnQ98sLCdiAHchAASrQgLAJbAqb/06c13PY504FdiADBahAAw7gTPR2uBA2g81gM9jOXw/1jXD+eFxkSSNpBp0/HBd5RXX0JTXHx7/2Y731octFM8g/jOWb1T+Mtagl9SROkiRf8VPtU534PLlkn+oU2IHe/OQoQAUacABnov9sXEjABuxA2Ag2//E4z2bZpzoFDqDbzu3gU50C3aaObjNHt/nK+4/IhQI8beJi/x258LSdF3vYpzqxuPhsVvYUWW/z8oOg9TavCzuQgQJUoNf1RfcfEk9Qn77E56UR9ulLgQL05fVF98a9cABnojfuhWddDwafksSeAj4lif301ackBc5Eb8YLCdiAHchAAbrNh8+b8cIBdJsPqjfjhQRsQLf5mHkzXijAc3z9AG+9oevCATxvGfjB4HpD14UEbMAOZOC5Nf2wj/MlmMz5Ekz2KUmsvjX9WG+hH+tdSEAG+uj4Tusd6+hThzybfebQRZJ0Bk1zmkFnA15ESS2pJ3GSJGmSJflRxOE4E73xLvRDFP+73m0XMtCPUnyBvdsuNOC5Guw0g85eu4iSWlJP4iRJ0iRLSkdPB6eD08Hp4HRwOjgdnA5OB6eD0yHpkHRIOiQd66BuoQAV6OOljgM4E71Xz5ny7FN+As+t4z8iPuUnkIECVOBp8wsOPuUn8LT5pQWf8sPDl8x71a8c+JSfwA50my+k9+qFCjyH0Pd3/+lcNIP8p3MRJbUkr7jQl9RX2zvvnHvPPoEnkIAN6OcZvtrejxcKUIEGfNhWB5xHtefrz9in77Bfb/DpOzzXf21Ad5mju6ajAM8Dx/PuMPv0HTlWsZEYX4Jnja9NsU+98UsQPvPmohnkx7F+Pu7zbgIbsAMZKEAF+kL5Cvjx7IUzMb4sxRpflmKNL0uxz79ZI+GvpV+kSWdxP4H3yTeBM/HsWPEc9sk3geeq+Mm+T74JZKCst/+zxhcpWOOLFKzxRQrW+CIFa3yRgjW+SMEaX6RgjS9SsMYXKVglHZIOSYekQ9Kh6dB0aDo0HZoOTYemQ9Oh6VAfMR9wO4AE9BHzDWodyMBz4/v1CJ96E2jAAXSb72rDbb4M6yX1vtXWS+oXdqDbhqMAFWjAAZyJfgp6IQEbsANhm7BN2PxrFd6C/rWKRfOi9TXJRZTUknoSJ0mSJlnSSPL1cfTT1QsJ2IAdyEABKtCAA3ja/PTfp+YEEpCBZ4VzBgf7dBs5b2CyT7e50E9eLyTgubx+scGn2wQyUIAKNOAAzkTv/QsJCBvDxrAxbAwbw8ZuE8eZKG5TRwI2oO/J6+8yUIAKNOBIVK9rjr68w9GX1zeWKtCAA3gur1/A8Ok2gQRswA48bX6K7dNtAhVowAGcid7nfirsrzYLbMAOZKAAFWjAAZyJEzbvcz959kk4gR3oNh9J73M/8fVJOIF+xch38DmAfs3oHJ2xLkwtJGADdiADBahAAw4gbAQbwUawEWwEG8FGsBFsBBvB1mBrsDXYGmwNtgZbg63B1mBrsHXYOmwdtg5bh63D1mHrsHXYOmwMm+fDeVObfRJOYAcy8OxYD7yx3qS/0IADOBPXm/QXErABO9DXojv68p495HNsAn15xbEBO5CBAlSgJXoS+IUQnzdzDYlhjb3nL1SgAX18zXEmes9fSEBszQHbwNYc2JoDW3Ngaw5sTe/5tQze8xdia05sTe/5tQze8xcKELYJ24QNPT/R8xM9P9Hz88h9Zx4MFKACLZZhHgOYIznR8xM9P9HzEz0/0fMTPT/R8xM9P1fP+zJQjuRsB5CADei24chAt01HBRpwAE+bXy7zGT+BBGzADmSgABV42vzam88OupBzB/c5QeJX5HxOUGAHMjB3DZ8UFIiNxdhYjI0lB5CA2FiCjSXYWIKNJdhYgo0lA4gdUbFrePv7BUKfMRQoQB8oHwdvf/El88ODC2eih8KFBGzADmSgAL2u7xoeCgs9FC4koNf1XcND4UIGCtAPctY/M+AAzkQPhQsJ2IAd6HUPRwMOoN/Kegy1+FyjQL+Z1R0bsAPPtTiv2YjPNQpU4Gk7L0eKzzUKnIne/hcSsAE7kIECVCBsZ6OfVwbEJxVd1JLOmwS+gGeTXyRJXnE4GnAAffnnid7iFxLwNJlTT+IkSdIkSxpJM+js8osoKR2cDk4Hp4PTwengdHA6JB2SDkmHpEPSIemQdEg6vKfPa0LiE5Uu9J6+8Bwv8+3hP/QXntvbfO/yTr9QgOfWMd/I3ukXus03n3f6Qu/0C93mS+adfqHb1JGBAnSbb1Q/KLjwtA3vEe//hd7/awfz/r+wAc9TY193/yDlIknSJEsaQd7jw0fAf+LXruo/8cNHwHv8QgMOoC/pudo+UymQgA3YgX639XAUoAINOIAz0Xv8vE4oPlkpsAE7kIECVKABB3AmNtjWrerm2IAd6DZ2dJs4KtBt6jiAbvPRWfesFxKwATuQgQJUoAEHEDaGjWFj2Bg2ho1hY9gYNoaNYRPYBDaBTWAT2AQ2gU1gE9gENoVNYVPYFDaFTWFT2DwZzsle4nOiAmeiJ8OFfsPL99T1jbmFHchAASrQgAM4Ez0Dzktc4tOj9Fj/VYE+acF32jGAM/H8tQ8kYAN2oNf1HXzm+PpMqbXGPlMqsAE78LzJc15iF58sFahAAw4oYKMDSMAG7EAGClBzcciAA5hbszWsW/PRYccG9NERRwYKUIG+bqvYAM5Evx13IQEbsAMZ6LbpqMARG6utWSrn/tDWNJWFBGzAnhuAsbEYG4uxsRgby+/KXTgT0egNjd7Q6A2N3tDoDY3e0OgNjd7Q6E19LcixATvwXAvycThbWsmX7GzpQAMO4Ey0A0jABuxAr+u7ht9vu3AAZ6LfciPfNfye24UN2IH50+wzxgIVaMABnIl+WH8hARtQ1q028RlmF1nSeSPOR9FvxJ3ks8su8uUfjg3YgY/lN3KSJE3yoZqOAzgTz6734zGfY3ZRS+pJnCRJmmRJI2kGtXS0dLR0tHS0dLR0tHS0dLR0tHT0dPR09HT0dHh3n2dQ4lPRAhVo1z1Q8dlogT5BwYfUG/1CArbrzqj4m78C/SapOgpQgX4/clUYQLf59vcb8BcS8Fwz3/xnn1/ESZKkSRakXtHXypv5vI0gPhdNmw+RN/OFCjSgz9vwFfRmXujNfCEBG9BtvgzGQAGeh9O+fv4N+UUjaQb5N+QXUVJL6kmcJEnpGOkY6RjpmOmY6ZjpmOmY6ZjpmOmY6ZjpmD5kZ/P5a7wCCdiAHchAASrw3EDnnEjxuW2BM9Gn1pxTR8XntgU24Gk775CIz20LFOBI9CcPvKw/eLDI/9FwFKACDTiAM3FNm/Fia97MwgbsQJ/W0h0FqECf2eJLu6bPLJyJawKNOBKwATvQberoNl/eNWXGh3/NmXFck2YWEvCse87PE5/OpuJrcXatii/O2bYqbjv7NtCAA3jaxBfH+/lCAjag23x5vbXFF8dbW327e2urL463tl+P8ZltF3prX0jABuxABp429WXwX+8LsRP5T/ZC/8m+kIANiJ1zuMJXyI/NL1Sgr5Cvph+bXzgT/dj8QgI2YAcyUIAKhG3C5m3uP8L+hq1AAjZgBzJQgAo04ADCRrARbAQbwUaweZv7EYnPmVM//PA5cxe2A0hAr9sdO5CBAvSwYkcDDuBM9CS4kIAN2IEM9NFZOIAz0Xv+Ql8LcWzADmSgXHOzxKfOBRpwAGeiT2G9kIAN6KOjjgo04ADORO/5C315zdEreF1vab/y5RPgAmeit/Twze0tfeE5Dn5pzCfABTLwXF6/NOYT4AINOIAz0bv7QgK6zXcN7+4LGShABRowppqKT467xsH7+EKMjvexH5D75LhABRpwAH0tzp3Ap8cFErABfS3MkYECdNt0NOAA+oz7c1v4260CCeg2dTxtftnM59KpH174263UD1r97VaBluh97FfQfD5dYAN2oNf1dfOO9Z3LZ84FzkTv2AsbUK6Z2+IT5QINOK753OIz5S70B5YuJGADdiADBahAH1QfM/9pvpCADegr7xvLf5ovFKACfQb7+mcDOBN9TuuFBGzADmSgAOPpB9H12IejN69fPPFZcYEN2IG+FuufCVCBBhzAmegPDbJvrEHABuxABgpQgQYcwJl4Nq8dCzuQgQL002nfxut8euEAzkCfAucPq4jPgQtswA5koAAVaIl+Au1Xg3zWW2ADdiADBejXfZwsaSTNIG/cRZTk1wScehInSZImWZCfMvvlJJ/pZn7dzWe6BQrQ1339XQMO4Ez03r2QgA3YgQwUIGwMG8PGsAlsApvAJrD56bBfMvQ5bYEDOBPVR0cdCdiAHchAASrQgG7zXUdnoh1AArptOHYgAwWoubHMgAM4E8cBJGADYn8Y2B+G152OAzgTz8Nq86udPtPN/Dqhz3QL7EAG+oUr7wXv6AsNOICnza/c+Uw3O2fris90C2zADmSgABVowAGciQSb97lfLfKZboEdyEABKtCAAzgT/ZKZX6TxmW7mF158pltgBzJQgAo04ADORE+CC2Hzy2d+ZcZnugUyUIAKNOAAzkQ+gKftnNUpPtMtsAMZKEAFGnAAT5ufLPpMt0ACNmAHMlCACvQbyk4jaQatO+VOlNSSvKKPrGfAOeFT/D1SF66HOX3518OcCxuwAxkoQAUacCR6t/vvls98M7/q4jPfAhkoQAUacAB9Lc4M8JlvgQRswNPmv/U+8y1QgAo04ADOQJ/5ZueEI/GZb+aXhnzmW2AHMlCACrTYFj7zLTC3kM98CyRgA3YgAwU4rhddyHqb1cL1co+Fvhbs2IC+Fl7Bu/1CAfparAoGHEAfs3MD+By3QAI2YAf6JXkfHe/2CxVowAGcid7tFxLQ63ZHu97yIT5ZzfximE9WC2xAv44vjgz0JfNx8F690IC+ZD4O/gu/0H/hLyRgA3YgA93my+u/8BcacABnov/CX0i5xv5b7hfkfLJaoAINeNb1wz6fwnah/5ZfSMB2vTlG1nuxLmSgABVowAGcid7Hfvjok9UCGSjAcy38sqJPYQscwHmhrtdljYUEbMAOZKAAFWiJ3rHnzDf1yWqBDehrwY4MFKCvhTga0NdCHWei/2pf6DZzbMAOZKAAFWhAtw3Hmeh9fCEBG7ADzzE7L0zqes3WWrf1mq3DcSb6e3kuJGADdiAD5XqZmPoEtkADDuBpWyPpb/G5kIAN2IEMFKACLdHfryW+mt7da+W9uy/sQAYKUIEGPLfFWmPv7oXe3RcS8FwL8cXx92tdyEABKtCAAzgT1zsgF55rcV7BVZ+hFijAcy3MR91/uy8cQF8Lbwb/7b7Q18KHz3v+wg50my+D9/yFCjTgAM5An9IW6DZ1bMAOZKAAFehjdm6h9aIt3/JEueWJGrADGShABRowt7xPXruwHUAC5pZfL+a6kIECVKABBzC3/Hoz10Jej3CQMxVuhXthvwM8HAdwJvqjmIcvvj+LeeFMPHfyQAI2oM+WdJsxUIAKNOAAzkS/y3shARsQtjU5szkKUIFu644DOBP9fu/hA+s3fA/fq/yO73kurj5bax6+I/g93wsFqEADDuBpO09d1Wd2BRKwATuQgQJUoAEHEDaCjWAj2Ag2go1gI9gINoKNYGuwNdia1zVHAWpi97rDcQC97jl8PsEqkIAN2IEMFKACDTiAfvv/3JV9gtU8p3aoT7AKbMAOZKAAFWjAAZyJCpvCprApbAqbwqawKWwKm8JmsBlsBpvBZrAZbAabwbbmZTRHr9AdsUcN7FEDe5T35jlxS32CVeBM9N68kIAN6LaFDPTldcWakbHQAn2W1Twfh1WfUDXPaSrqE6oCfXm7o8au4XOqAgcw9x2fUzXPCxzqk6oCGzD31E4MFCBsBBvBRrB5vy1cLy9Y2IA90VvkvBSgPjUpUICn+JzNoT41KXAAT3H3IfEWudDF7NiAHeg2H3VvkQsVaMABnIneIhe6zbebt8iFHchAASrQchtb7rTdsLEMG2s1w0IGClCBBsxYWTOXFo4DSMAW3dLRONf0pYUCVKABB3AmrklMC318fcn8J+nCGehzkQIJ2IAdyEABKtCAAwgbwUawEWwEG8FGsHmLnJey1N+zFTiAM9Fb5EICNmAHMlCAsDXYGmwNtg5bh63D1mHrsHXYOmwdtg5bh41hY9gYNoaNYWPYGDaGjWFj2AQ2gU1gE9gENoFNYBPYBDaBTWFT2BQ2hU1hU9gUNoVNYVPYDDaDzWAz2Aw2g81gM9gMNoNtwDZgG7AN2AZsA7YB24BtwDZgm7BN2CZsE7YJ24RtwjZhm7DNtMlxAAnYgB3IQAEq0IADCBvBRrARbAQbwUawIUsEWSLIEkGWCLJEkCWCLBFkiSBLBFkiyBJBlgiyRJAlgiwRZIkgSwRZIsgSQZYIskSQJYIsEWSJIEsEWSLIEkGWCLJEkCWCLBFkiSBLBFkiyBJBlgiyRJAlgiwRZIkgSwRZIsgSQZYIskSQJYIsEWSJIEsEWSLIEkGWCLJEkCWCLBFkiSBLBFkiyBJBlgiyRJAlgiwRZIkgSwRZIsgSQZYIskSQJYIsEWSJIEsEWSLIEkGWCLJEkCWCLBFkiSBLBFkiyBJBliiyRJEliizRlSXT8bSdN4bUJ10FKtCAAzgTPUsuJGADdiBsniXnrGP1SVeBBnQbOc5Ez5IL3SaODdiBbhuObvM19iy50IADOBM9Sy4kYAN2IANh67B12DpsHTaGjWFj2Bg2ho1hY9gYNoaNYRPYBDaBTWAT2AQ2gU1gE9gENoVNYVPYFDaFTWFT2BQ2hU1hM9gMNoPNYDPYDDaDzWAz2Ay2AduAbcA2YBuwDdgGbAO2AduAbcI2YZuwTdgmbBO2CduEbcI207Zeg3YhARuwAxkoQAUacABhI9gINoKNYCPYCDaCjWAj2Ai2BluDrcHWYGuwIUsMWWLIEkOWGLLEkCWGLDFkiSFLDFliyBJDlhiyxJAlhiwxZIkhSwxZYsgSQ5YYssSQJYYsMWSJIUsMWWLIEkOWGLLEkCWGLDFkiSFLDFliyBJDlhiyxJAlhiwxZIkhSwxZYsgSQ5YYssSQJYYsMWSJIUsMWWLIEkOWGLLEkCWGLDFkiSFLDFliyBJDlhiyxJAlhiwxZIkhSwxZYsgSQ5YYssSQJYYsMWSJIUsMWWLIkoEsGciSgSwZyJKBLBnIkoEsGciSgSwZyJKBLBnIkoEsGciSgSwZyJKBLBnIkoEsGciSgSwZyJKBLBnIkoEsGcgSn302z4ed1GefBQ7gTPQs8ft1PvsssAE7kIECVKABB9Bt53GUzz4LJGADdiADBahAAw4gbJ4l57wR9dlngQ3YgQwUoAJ9uy0cwJm4smQhARuwAxkoQAXCprApbAabwWawGWwGm8FmsBlsBpvBNmAbsA3YBmwDtgHbgG3ANmAbsE3YJmwTtgnbhG3CNmGbsE3YZtrmcQAJ2IAdyEABKtCAAwgbwUawEWwEG8FGsBFsBBvBRrA12BpsDbYGW4OtwdZga7A12BpsHbYOW4etw9Zh67B12DpsHbYOG8PGsDFsDBvDxrAxbAwbw8awCWwCm8AmsAlsApvAhiyZyJKJLJnIkoksmciSiSyZyJKJLJnIkoksmciSiSyZyJKJLJnIkoksmciSiSyZyJKJLPE5c/OcjqY+Z+5Cz5ILCdiAHchAASrQgLAN2CZsE7YJ24RtwjZhm7BN2CZsM2zmM+kCCdiAHchAASrQgAMIG8FGsBFsBBvBRrARbAQbwUawNdgabA22BluDrcHWYGuwNdgabB22DluHrcPWYeuwddg6bB22DhvDxrAxbAwbw8awMWwMG8PGsAlsApvAJrAJbAKbwCawCWwCm8KmsClsCpvCprApbAqbwqawGWwGm8FmsBlsBpvBZrAZbAbbgG3ANmAbsA3YBmwDtgHbgG3ANmGbsE3YJmwTtgnbhG3CNmFDlhCyhJAlhCwhZAkhSwhZQsgSQpYQsoSQJYQsIWQJIUsIWULIEkKWELKEkCWELCFkCSFLCFlCyBJClhCyhJAlhCwhZAkhSwhZQsgSQpYQsoSQJbSyRB0FqEC3meMAzsSVJdORgA142s7pn+YvnZvns7pG6zsTCxVowAGcietjEwsJ2IAdCJvAJrB5lgwfB8+SC2eiZ8mFBGzADmSgABUIm8KmsBlsBpvBZrAZbAabwWawGWwG24BtwDZgG7AN2AZsA7YB24DNs+R8eN7WlMcLCdiAHchAASrQgAOYtjXlceE6ARFHP6xjRwYKUIEGHMCZuE41FhKwAWFrsDXYGmwNtgZbg63D1mHrsHXYOmwdtg5bh63D1mFj2Bg2ho1hY9gYNoaNYWPYGDaBTWAT2AQ2gU1gE9gENoFNYFPYFDaFTWFT2BQ2hU1hU9gUNoPNYDPYDDaDzWAz2Aw2g81gG7AN2AZsA7YB24BtwDZgG7AN2CZsE7YJ24RtwjZhm7BN2CZsM21r/uSFBGzADmSgABVowAH0AHH01LiQgA3YgQwUoAI9rsxxAGeiZ8n5Vg/zl9YFNqBGiPUVFQsHcCb2A0hALzYdO5CB56Kfr/0wf0FdoAFP2/kGEPMX1F3oUXEhARuwAxkoQAUaEDaGzaPifDjM1izQ8zUatmaBXtiBDBSgAg04gDPRo+JC2Dwqpm83j4oLGShABRpwAGeiR8WFBITNXzl7HL4x/J2zwVJYC1vhUXiC/cOOwVS4Ofvue32HajGD5/r7vnvNVrgXjgv21vPWh/W89WE9b31Yz1sf1vPWh3He+jDOWx/GeevDOG99GOetD+O89WGctz6M89aHcd76MD5gI9gINoKNYCPYCDaCjWAj2Ai2BluDrcHW4maEramiFwowbg/Ymip64QCujX3uuT5XNJkKt8K9MBeWwlrYreY4gDORl3QxFW6Fe2EuLIW1sBX2Pft8D4T53NFg/+hMMBVuhXthLiyFtXCeea3JoH6GtCaDXihAP4XyRVQDDuBaWK9mR2EqnGdRaz7ohQxcS9qctbAVHoUnePX+xVS4FV4j5LvS6v2LpbAWtsKj8ATPozAVXl4fnLnqD2ctbMk+xfNxfaA598Jc2Oucs9LNp3kmW+FReILpKEyFW+FemAsXLy2vOlvhUXiC21GYCrfCvTAXXl4fn6aFrfAo7N7uY7Xi4WIq7N7u67Li4WIuLIW1sBUehSd4JcTFVLh4V0J0X8eVEBdLYS1shUfhCV4JcTEVXnXO/vLZm4+rTeTcCvfCvjx+mOUzOJO1sC8Pe30dhSd4hcDFVLgV7oW5sBTWwsW7csB/WGTlwOKVAxdT4Va4F+bCUlgLu1d8fFYOXDzBKwcudq//ZMnKgYt7YfeKr8vKh4u1sBUehWeyT/JMpsKtcC/MhZd3OmthKzwKT/DKk4upcCvcC3t9/7nRlRsXj8ITvHLjYirs9c9n4U1Xblzs63W+mcB05cbFy8vOVnh5xXmCV274r56u3Lh4ec25F17e4SyFl9fXfeXGxe49H3U2XbmxeOWG+Tqu3LjYvX7BUVduXOxe83VcuXGxe83XceXGxcvr67hyY/HKDfN1XLlx8fL6Oq4ji4uX19dxHVlcnBcir4/fLhzAvOx5ff92IQGX0UdpJdLFXNiNw0dgJdLFVngUnuCVSBdT4Va4F+bCxWvFu5LHr81dH7v1k+Tra7d+uqsrYS6WwlrYCpflH2X5Z1n+WZZ/luWfZflnWf5Zln+W5Z9l3GbxTnhtJYmvo63E8HW0A8tvhxUehSd4JcbFWH6jVrgX5sJSWAtb4VG4LH87ChdvK96VGGsdVzKsdWxl+XtZ/pUMF7fCvXBZ/l6Wv5fl72X5e1n+Xpafy/JzWX4uy89l3Lh4uXhXAqx1XJ2+1lHK8ktZfuHCUrhsdynbfX3g9nzBqvkszWDcdjDcdjDcdjDcdrCrp8151TizwVbv+rUSW717cSvsyz59nVbvXiyFtbAVHoUneB1NXEyFW+HiHcU7inf1+vTtsHr94lF4glevX0yFW+FemAtL4eKd8I511HC+ntbGOjrwy0FjHR1cLIW1sBUehSd49frFVLgVXt7pzIWlsBa2wqPwBK9ev5gKt8LF60cN/lly8zmYyVrYCo/CE+zZEEyFW+FeuHj78nZnLWyFR+EJ5qMwFW6Fe+HlNWcpvLzDeXl9fDhvSK2pmQvlABKwATuQgQJUoAFhE9jU19EvIfjczORWuBfmwlJYC1vhUXiCbXm9X9Znsy5uhXthLizgsf6+7/OjF+bCUlgLW+G1nL69xgTP9fd9200rPAr73/erCD5lMpkK+3Kej/abz5pM5sK+nH627RMnk63wKDzBdBSmwq1wL8yFi5eKl4qXlledJ7gdhalwK9wLc2EprIWtcPG24l2ZcH5hxObKhItb4V6YC0thLWyFR+EJ5uLl4uXi5eLl4uXi5eLl4uXi5eKV4pXileKV4pXileKV4pXileKV4l35cL6l48FUuBXuhbmwFNbCVngUnuCVD35FZ6588Csuc+XDxb0wF5bCWtgKj8ITPI7Cxbtyxq/0zJUzF3NhKayFrfAoPMHzKByzR23mbG2bOVvbZs7Wtrmy57y6NI6VPRdT4Va4F+bCUlgLW+FRuHipeKl4qXipeKl4qXipeKl4qXipeFf2nE+6jmMdj5x3m8bRWuFeeHmbsxTWwlZ4FJ7glT0XU+FWuBcu3pU955W+cazsudgKj8ITvLLnYircCvfCyzudpbAWdq/4GK7suXiCV/ZcTIVb4V6YC0thLVy8K3vOt66OY2XP4pU9F1PhVrgX5sJSWAsvr+8PK2MupsKrvjr3wqu+OUthLbzqD+dReIJXxlxMhVvhXpgLS2EtXLyjeEfxzuKdxTuLdxbvLN5ZvLN4Z/HO4p3w0nEUXt7p3Ar3wlxYCmthj8Bzs9CKnPP9soNW5FzcC3vJ8yLnoBU5F2thKzwKT/CKnIupcCvcCxfvipbzguqgFS3nRdRBK1oWr2i5mAq3wr0wF16XEXyYr8sgi63wKDzB12WQxVS4Fc7LOINWhJwXewetCLl4FJ7gFSHnReBBK0IuboV7YS4shbXwWq9VfxSeYD0KU+FWuBfmwlJ4YN21rNeKkIupcCtc1svKellZLyvrtSLk4lF4gkdZr1HWa5T1GmW9RlmvUdbruky6uIznKON5XQ71dZ9lvVZUXMyFpXBZr1nWa5b1mlivdhyFqXArjPVqBxeWwlrYCo/C2E8aHYWpMOe6N8J6NdLCVngULuvVynq1sl6trFfrhbmwFC7r1cp6tbJeraxXL+vVy3r1VriMZy/jmY+GjJaPhoyWj4aMto5Hzjs1o63jkYtb4V6YC0thLWyFR+EJluKV4pXileKV4pXileKV4pXileJdxyDm676OQS7uhbmwFNbC7jrvNI22zn8unuAVLBdT4Va4F+bCUlgLF+8KFvMdewXL4nVscvHy+o63jk0uXt7hzIWXdzprYfeeX3IbbR2bXDzB69jkYircCvfCXFgKa+HincU74e3HUZgKt8K9MBeWwlrYCo/CxUvFS8VLxUvFS8VLxUvFS8VLxUvF24q3FW8r3la8rXhb8bbibcXbircVby/eXry9eNeBzXmvYvR1YHOxFNbCy9udR+EJXhl1MRVuhXthLiyFtXDxcvFy8UrxSvFK8UrxSvFK8a4s8kDuK3/O+0Gjr/y5eNVRZy4shbWwFR6FJ3hly3mvaKyZotc2Whmyxn9lyMUTvDLk4rXMw7kV7oW5cNnHRvGWDOklQ3rJkF4ypJcM6VeG+PLMso/Nso/Nso9dGeLLc2XI4lEYXi4ZwiVDuGQIlwzhkiFcMoQP7Nt8WOFRGOPMV4YMZyrcChdvyRAuGcIlQ7hkCJcM4ZIh3LB9+cqQxa1wL4zty1eGLNbCxVsyhEuGcMkQLhnCJUO4l/XtZX1LhnDJEO5lnHsZ517G+cqQ6UyF3Tu9/sqQi7mwFHbveT91rHmpwaPwBK8MuZgKt8K98PKysxS27GVeeXLemxy8jm0Wr2stF1Phsi9pL1y2qZZtqmWbqhUehcs2tbJNrWxTK9vUyja1sk2t7MMlo9jKvrSy6LwnOtbM1eBWeI2hj8/KounLubLoYi1shUfhCV5ZdDEVbslrhmQ7r3ePNUMyWAqrc3O2wqPwBK+vL1xMhVvhXpgLS+Hi5eKVVac7r7/Pzlb++1o2cV7Ldo6zv+oymQq3wr0wF5bCa9nM2QqPwsvr42zLO53d69eM12zJ5teS12zJa12MC5d19N+4Rl7f96tgKtwK98JcWAprYSs8Ci+vr8tcXl+XSYVb4V7Yvc3X13/jgrWwFR6FZ/KaCRlMhVdNcl7/9txP1gzGds5qHmsGYztffj/WDMbgXpgLG7itOuJMhVcddV7LcI7VmmHYznuWY80wDG6Fl3c6c2EprKi/+u7676PwBK++u5gwDqvvLu6FuXBZXx5YR55gKeOweuTwf7t65PBxXj1ysRa2wqOw1/d7I2ueXju8/uqFi7mwFNbCq76PlY3CE7z65WIq3Ar3wsvr23T1y8Va2AqPwhO8+uViKrxcvj+sHrlYCmthKzwKz2RbPXIxFW6Fe2EuvLzTWQtb4VF4glevXUy5Xdbcv+BeGNt0zd9r5zMrw9/E+GBy5sJSWAuvvOrOo/AEr368mAq3wr0wF17e5qyFrfAoPMGrHy+mwh3ru3rw/FTHsNWDFw+s4+rBxasHL6bCa118PKUX5sJrXdRZC1upU7xSvFq8Wrzrd/Pisu20bDst207LttPi1eI6e3b4LRafnjf89onPzht+58In5wV2IAMFqEADDuBMnAcQtuk23xtmBzJQgAo04ADOQJ+iF0jABuxABrqNHBVowAGciXQACdiAHchA2Ag28rrnjuoT7IZfGPb5dYEKNOAAzsR+AAnYgB3oCnVUoAEHcCbyASRgA3YgA11hjl7sjEmfHBdIQC82HTuQgQJUoAEHcCbqASQgFGcXDT+p8YlugWcFP0X0aW6BBGzAs5ifHvoUt0ABKtCAAzgTvWMvJGADwjZgG7AN2AZsAzbvzek7onfhOeN1+Cy54SehPklu+Hmnz5ELnIE+Qy6QgA3YganwyXGBCjTgAM5Eb70LCdiAGtvN57sFjthCPtvtwpbj63PdAhuwAxkoQAUacABza/oUt0DYOmwdtg5bh63D1mHzhvRN6DPVrnFgiU3oc9OuDcAGHEBsTcHWFGxNwdYUKARbU7A1BVtTsDUFW1OwNRVb8/yRWz9UPs9s/VD5NLP10+GzzAIHMH9xfIpZIAEbsAMZKEDYLH9xfGpZYP7izHEACdiAHchAASoQtgHbgG3mL86cBGzADmSgABVowAGM37d5HAeQgF6XHeMXZx50AAnYgB3IQAEq0IAjscUvzvRpYYEN2IEMFKACDTiAM3H9bpqjFxuOAlRg/OLMow/gTOQDSMAG7EAGClCBUAjWzfvNfHG83y4cwJno/WZewX8AL2zADmSgABVowAGciQabwWawGWwGm8HmDXle+Js+EetC7yxb6P/Md0/vrAsVaMAB9IVsJ3oPnfdHp8+VCmSgABXodb0ZvIcunIE+SSqQgA3YgW4TRwEq0IADOBO9Cy8koCvUkYECVKABB3AmehdeSMAGhK3B5l14Pg05/UV2gQYcwJnoP5YXUoy6T5sK7MDcWD5vaJxX+adPDxrnw1zTZwcFdiADz4Ucvi18B7/QgAM4E9fR4EICNqDbfMl8B79QgAo04ADORP+ZWevmPzPDt7Hv9hdqrpDv9hcO4Ez0H5ThW8h/UC5sQF903wDeDBcKKsA2YZuwzbT5NKBAAjZgBzJQgEvxn//wt8c/+o+/+feUzR7/s5//03ec84Kh7zYOFNACegAHSIAGWMAIiMoclTkqc1TmqMxRmaMyR2WOyhyVOSpLVJaoLFFZorJEZYnKEpUlKvu+f16x9MA/wePegQJaQA/gAAnQAAuIyhqVLSpbVLaobFHZorJFZYvKFpUtKltUHlHZd/fuE2wCegAHSIAGWMAImBf4Lu8QlWdUnlF5RuUZlWdUnlHZd/Hzbo7v4CessF9ESS2pJ3n5dpIkaZIb5KSR5I7H1l0Rv4iSWlJP4iRJ0iRLGknpaOlo6fCEP2+wrIBfZLHM3nDnLZcV04taUk/iJEnSJEsaSTOI08Hp4HRwOjgdnA5OB6eD08HpkHRIOiQd3ofnhH+fyHqRJGmSBXnHLfJ/0U/yf8EnaZIljaQZ5G22iJJaUk/ipHRYOiwdlg5Lx0jHSMdIx0jHSMdIx0jHSMdIx0jHTMdMx0zHTMdMx0zHTMdMx0zHDMf6jVlESS2pJ3GSJGmSJY2kdFA6KB2UDkoHpYPSQemgdFA6KB0tHS0dLR0tHS0dLR0tHS0dLR0tHT0dPR09HT0dPR2ra/UkTbKkkTSDVtc6UVJL6kmclA5OB6eD08HpkHRIOiQdkg7/ITy7sWVf+ozPi3oSJ/my2EkjaQatvnTyevOkltST/KLGcZIkaZIljaQZ5H25iJJaUk9Kx0iH9+X5ep22+rKfNJJm0OpLJ0pqST2JkyRJk9Ix0zHD0Y8jiZJaUk/iJEnSJEsaSemgdFA6KB2UDkoHpYPSQemgdFA6WjpaOlo6WjpaOlo6WjpaOlo6Wjp6Vu5xpOCzJS/SJN9znEaS7znnv/XOW0RJfqQgJ/UkTvIlPU7yPcf/myW5Q0+aQd55i9zhh9MtqSdxkiRpkiWNpBnkXbsoHZoOTYemQ9Oh6dB0aDo0HZYOS4elw9Jh6bB0WDosHZYOS8dIx0jHSMdIx0jHSMdIh3fy+dCVz5d80OPkh/3k51HUzgva5964oAdwgASow+PfSv7byde/degBHCABGmABI2Be0P1fyTqVWnAu7fnyBt8ZD7pOnBx6wLnm5wQI3xEdLMD/eZwdnTfXfTdz6AH+z+d1duRwDtt599f3sHPqzDo7OuJc6IhzIYpzIYpzIYpzIYpzIYozH4oTHnoMoPqJqP8FffxPi/9p57V4sgAfovNA0IfozMbD4fFPRlY4B8qjZp7ntPP87+abbKyzpgXm8J/naYH/S/8b5z84U+8/lmGcy0J+kuwbzmKjO1jACJgXnIcEC3x3auvMeYHvTv3auA4S4MsWm3vI6e44QR//+fgPf//X//GP//7P//ov//3f/+2f/un8/8V/+F9/+2//x3/87X/+47/907/8+9/+27/877///R/+9v/949//t/+l//U///Ff/M9//8d/e/x/H9vrn/7l/378+Sj4//zz3//ppP/8B/zr4/k/fRwvyPWvHwcMlgUeZzZ3SzyCQK8SfV12iBLyR4m2KdFjIfoUFBh0t4BSjIF2FOhfloCfF3icC0WFx0nOeFpCNiuhLcdBrT8tsRvKKUcOxOCnQ2mbDdrOH7y1QXvHUjxO5/4oMd7dGtvVmLEafBz96WrQpoZojxoPxAbRP5finMjxfJuer+a5tqm0pyU2+5VZbNLRy+bQebuCHzmsCkrPK9xdDXu+GrvBtPOHZA2mHfNpCd0FxRlpV1AwPS1hbw/FZs9s/tKptRCPa0NZg/8Mq/Mn7elCnDen1kJMe7oQbTOY02d6eokHYq94HAreXxE6Lx9dKyL0bEXaZsdqIzbp49zh6UhsO2xq7hTUn23R9oHU3NXgTrEY/Djmff7zodvlaLkcZTQeZ/V/1tjsnTJii+ghpcK4v2Ow5I4hpcu+7hhts3tOsZk1JvbwxxHzHzX67jcdP8iPU2vU0F9sk+wSrsn5dZv0zf5JloHxuDxWfkf6nwcn5zT6pzVUZhY5P8hcqvy5o3d+f+/o8u7esV+XmQcpdH658fm67H7e/ZHWKzgG9rHHtao/a4y394/5fgRua9zsFqb3u4Xbu6Ox3bLnNzNiy55fRXi6ZXmzlz6usOSx3+MKdNmyXw5iZfcjffbBWhcuv7GP8+M/a2yylNViu7CWPexbjd1yiFAeLMzNcmz2Um25HI9DQXla4zdbRp9uGTnePuqQ3THc+frrXBDj8XxBdmc5/uzJNSR/ROqXGpsheeyeuXmpHMf9akDuHb2IvHn0slsP8XdMraOXx22u18az57mSPn7yntcYu6Oo/KkUHS/WsDxfeiC9VsMv26wa6xLMkx+X3U/2PKLG4w6PPf3J1u1hac9mGfr8Z19327blabC0WceU7tfwyYGrxiR7XkPeP3BQfffAYZsd4yhHUrXfvm5bHe8ux37LWl4qmsSv7R2zocZm77DdeMyeu8eDy4GU/mI58sT+cV9hPF+O7QFdXu85j03LQfKfe4fx9tpZz2tn9Xz0FzXYWh6sj7KXfqvxgRMos792Txds2fPxxqd7um0OLM8nr/NH/xFp/GT/GG+fQun2kmYeij3uQ9FL3fK4bRVb5XE/6nhaY/S/tlsexxr5a62bzh/bQ8IRe+nj/nHd0/88nBubvfR8Y0xejhvyUo2pGuvyyIBNjfF+t4z5brfs8wc/C3McT/t+bjrucaM/83jM9rTGdu/AldrHde/jtT1dcTxorT2tMfndy9bbpShpPJs+X4pdkjaNxaDHT0sZ0XG/hr/vNo7Djuc1xm4/l8ifqVYuzX05nZy7U/T8wZ/l9+1xU/t+os9OgvT545jy65VKerdZdkP6aM08LGV6vln87fbv9j0d/O66bKNUNc/yH/eVn0YYHft9LAfkKMfH3+4q2O4+T8vbPM+vpfvHAJ5vF8rbCs3qlaSvRba/+EdWOZmfXgja76uzIVCnbPbV3e2a1i1/6GoQtW9F3r4otV8OzsuNrR48fF2ObdcwDVzHeR5ERNtLpzhDflzpe3pHkugDuyu9v7vSJ3ZX+sjuur99I3n7RvXpDblje+IgeeKgx/PbtLvbUN3f13Yd5x7H8zDaFum49vnHj/e3IvyB273y/v1eefsu5+012dzxvTukfOir2+WwLEKbX5rd7ai7Nwn3S2J5WelxNrVbkt29eH/vzNo2rcnzJNoXyQO8802emyIf2Ff7+/tqf39f7R/YV7dD2o/cLr2/ul00L0qf75h4XoR3+6owLtPXmSvjF63HlMe8j6bZROLuttTdPYT723vIrsTNPeT2mryYZo9x5BxSnZshtQ8M6Xh/SMf7Q2p/9ZCWvdTotR8IprwBy+3YbJftrZybU73kA4Eq7weqvB+o8oFA3Y/ou8eGQpgx9lA9PzbUTRFVy3PdYZtI1t09flxAOOrP7fjVeBjGY7w4pnfn0PHufOpQXIXg5zXk/T19d1Pq5p6+K3FzT7+9Jps9fTuifQ6MqL5WQxpmK/SnE+Fod1PqcWYreZKr88UaectgW2O/h92cpslv7x27Ejf3jt0tqZuTDGh3S+reHMntUtyccWpvTzml3f0opZ4zP+ohZR/t1SLyYhHOU0LlRpsi/d3tsl+XvOzwwFfXpeVVtsd9kPZqkbxKrvV88HdFep53PE5jdFNkd1vqOPJA6uSycb5NTd7dObg9v3lbZObth07zxSK4dfm4c6kvFrk5z9DfK/60yM2JhrS7QXXzou52OTDLZ45yWPZ9Oe4WKdf9flkkf2geqK8VeRxk5oHqg21TZruJJYNt1gOJX+5sAztb7ePfFdGJIpsGvP8b/vR8qO1uVVnOfjJ7/qu1P2a+93jAIe+fHu6LcK4L86RNEdv2Xt7oNt6szXj7yLvtblXdO7balrh3bNW294buHdW07YNN9x6kob67d8A5C+sxok9/9e5vFdtsle3ekTd2mw1+qUbHvv74wbNXaxxv1+g4uKo59rsauXEf5Z7X2D0Nc/OM6Icat86I9uvC2MlYx/s1XtzHepu4lzKeb9vdvaXHGXleDLG2e3xttyCG2Vymz6Nw+7DU3Y1rf/HGNcK6bBp3e3/qyBv2jxvq8uqg5vFuH5u9bHcH49796bZ94GFKrsu052dn2+VgXBiuTyl9G47db7bk7TqWzWy/fRE8M8Fm+mIRsbxzILujh27v38L076483bw3nw/frk69Lts20xcb0wdWh9tfvTptxI+m1Id8vq8Ov3msu18Mzd1VTDbHqdsHp3JyKrfy+Na3MbV3zxD3S5EVavN+X4rNjsoNzdvKlTe9X4IOf0vwdWI3Br9WZI5y7b/MC/lNkXOCTcb7Ua6d/WZQ86HLx8Hm80EV/ktLPAayTQyqPF2VH4rc2zL7Ije3zLbI3S2z7VzLoyptLK/9RvxxTbPzq0XyOpPqZiLUvojlMZHuZqfvi2juJo+bXZsfX/3Eo/0qf/FvhI6c+qePfXezOrtf8MfRJk4TJ89XdjbTPD0znWOzJPP9KxF2vH8lYne36eaViF2Jm1cidg8x3L0Ssb3ZdO9KhMkHrkTc3iqbs8T93nHvSsSuxt0rET/UON6ucfNEc9y9JyqvjendKyL7GveuiAx+/6R5X+PeSfN2XfjI/aPewvu2HPZXL8e9KzO3a7zYc3evzOwepLp9ZWbQB3YQ+os3zM2rKlM+cFVlvyD3rqrMt2f9t92zVLevquyW4+ZVlR8OYgwHZXOMJwcxffcs1eMfZpQ9uDz094siN08Rf1iZm8uxiUOdOXPYmDYn7rvH/vLMrLy88HFg9psTmYYHjo8+Xzwb4vJQiB5Ph2O8f0q1LfKJ0/+7I/JDkXsjsrtLdXtEdkXujcgPd7rLyhxHvUn9uxvmR9dSZjcDYH7kvvuujI58pvvRiPJ0XHYlcFr2uN9Mr5UwLMV8WmI//ebA+0OPl2cTzfLCos0cnv2jEPnWo9HrKeavHoXg/P0e3J8X6duHkIwpj2j46YFEb+/PVe3t7bmq2xL3zlPvr4lt1mQ3ojPPQx479NPzod7fvyP6w3Lcepayv3+vqvd9luWFEN48S9nfv1e1HY7HJYgDlyDGS0PaCA/K0vMj5t7t/SH9wIHqdjnuDekPz2LlcAwtUwi/pdj2+dZ7c/a3jy/fmm7fub8fYfz2hOptiZsRdntN7LUBvTvbflPi3mT7vjsyvHme/EONe5Pt7e0rqMf+cO7ejN39C4nvzbXd1rg51Xb7Rs+bk1Nv19jMTd3XuDc1tX3kCHk7qjcnpu6X5PY+shuTmxNT9+8mfn9tbu+r8/19dfvm2Jv76u0am311X+PevrqdznF/X92O6s35z7dfEv/8UGp7X+rWbI7dnXbKfnkcytRpQ19eXr27L9U73jfQ+emFtm0JPvp/eZn9Swl5/1LMpsKRu8aXp3y/DsYHpj/5m2/evhes7w7pbtKh5rMt+scknXG/Qh6JKevzCrt32UiuBUl52dm3t9VvX9iIqSDS+tMafWxPBO+9G3B3FndvF/3hJe/5Wo4H9+fvRu7D3u7YbYl7HTvenju1e6HG4+5OHiAPenpVXN7dx7u8u49vXwtycx/fv1rk5j6+vQ91dx/fflMnJ6K2B2NBvr50f1dDckybyKbG9nXm5aaaUX2g5munzPl2p8z5bqfw+7eQfjEc9PyFbfv37jNmSwiXDSMv1hjv16hTN3/z/v+uecHjcWBRrv98ee/+dir7wJtrB+umyPYbE3mc30a5qPa7Iv5xuqtIfRL1l0WwJE0+UKQfz4ts3xQveFO8zdc2DiNGWGy8uoVHBkB9P/Lrn4ngl0aEJx4PnGOzae5+NmNs2uYD35Vi2qbqgVlG5eWx3xZkd8HAxKKISX2155cz20a7bMbsjT/uiX8Z1O3r1g7k+1Ev4H6t0ff3b1u5fytP12Y/rII3tZcb9N+377bILDPAnu8k+0943P6WyLaKHKgimw9XcNs9Z2yYCF438fjz13P7IZDypAD357+d22eEe76FQfp89eMXOYXjgfJajZkv9ZZp/OKWsQwBsnEcL1YZ5Q1yQ56PiY53j+C3FW4dwe9foz/LzInZn93e5759DUS+hHa258eJ+xK5n86mz86H9p8VMKzJsPFi546ZN7UevDlNZW7vHnzvS9w7+N79at47+P7FcOy+aPRDFUMV4VeryEQVm5tNM97fNOPtTbP7uNJHNk0djjFf3jSKKvPFPJwHfqomtef5vn0B/L1A3Je4lYj7dcGzpDSVn48Ii717gWdb4vFbdWByjhG/VgSnVw9u8mKRfDPn+Xv3Uj5Pwx2uucvn7QvPP/X+9pbHiq0f9YDz1SJlG/+uiDC+zV3u+v+qyGMVMtSOP86P7n8XrBFeJd/68682sY73byKwfuAZ6u3aYEZoOzYfJuW371Ltvk92d0223zhDHn05dP7Fd9KM8e25P74tRl9GQ97+5dyWuPfLubtNde+Xcz8YedVKRp+bwdjNR+W8zqM8+vMiY/vF7vzBo+PpifN2MSSPzx43VY4X10XyKzKPq1fycpHyZOx8uUg+Baovfs/v9jcB9e1TM333QGT74tSbN1f2L1+9d3OF5/H+zZXt5+s4ryFwfTSevi3I+2dV8/2zqvn2WdV2MATvOquXd78Phr4/GPr+YIy/dDCU8S4Lff5hQzmOdwdjX+LWYMjx9hMk22+Tzfxp4uPFr2/2mbeYHjWef99MDnn/OE52X5+6e/Sz6zYlPLMhm8UYn1iXDxyTbr/4Rrl1qXH9Dt/X09PdoT4ecy7XuM3uL4XOfIj1zw8C3f/u3N2fhO2365CC54tXMaJfv123/f7dER036/HCL2vkhEetEy9/8Q29+hDbUT/J/uUrevvlGPiW33xxXazH4eC0Mv/gVzUGxnSU/PhaQxr9xUX+eN6ib75NuC3Scj5ra3VIflWk5+t0Wn0xwNciP3xY8N7U/O2jsDcvkfG7R6b7Nbl5aPrDcNw7NpX+gWPT/Wfn7j0EJ/39L/lIf/tLPtsS954gub8mm910/yG/Ww/BSX//5RP7L/lp+R7xqBPRf/M5QFw8eSC9VuTuc3D7JZGOmdf6+ocJh+KOfXkVxrfHgvdlBO9aeuzy4+UyOTBnyc1DytuR6RPDW39vfjW8nF+yaVx/gb8Vef/BOtp/juLOs4r7GveeVZTdTap7zyrKD3dTbj2ruF2Ou0O63bR5sPnYyv3VziHMYSbq/Oou3xid0/TlBmx5i+ksuemc7eFAuWzXXz2iyKf7Syi133zH2spHqOscsa+Hi/r+RQB9/yKAtr+0xL3rCPvxzKkyj6Hlp+O5+3zLzTNv1Q+cee9eIXP3zHvsXi8w8yTA6gvGvr5BZldjWN6Hedx6p5dqTMo5mbO+cO1rDdndlbq3n+8XIye5zbZ5E+62RsPpaptzsyr8l65KR3L0eWwWQ//SxeB8VeqUY7cYb09N2Ze4lz7j7akp2++jaEmfzftNd4/Y3DvR3Va4dZ67/dTSzdPcbY27Z7lDP3CWe3zgLHe8/3EUGW9/HGVb4uZZ7u012V2M+cBZ7u5dT3fPco9PnOUenzjLPT5xlnt84iz3+MxZ7vGZs9zjM2e5xyfOco9PnOUe75/lHh84yz3eP8vV7V2qW2e5uhuNu2e52+W4O6SfOMs9PnOWe3zmLPf4yFnu9ljg1knu/mjizjnu7rD93vmU0gfOp5Q+cD61PW7XfOin1xH9etN+e+OfctYR9/ru2N/U4JwDzX88U/61xv6zD/kBmnE8n4Bgb79wwN5+4YB94IUD9oEXDmj7wNHq/k3LA7N8x/F0o+xqtFk/QNteqzHyMLEf7fly6PYm1d227fR+287tNOF8YWs/pG3WZnvz7+ZHFvYzoPDlKHv+4Xndvb/g5jcWtOvbJzTa335D2LbEvRMa3X146ubTrZ4zTxfj1jcWdPeaorvfWLi/VWyzVbZ7x61vLGxr3PzGwk81jrdr3PvGgvLd26ny2pje/MbCDzVufWNB5f2vTv5Q49aJ935d7n1jQaX/1ctx6xsL92u82HM3v7Gg22eNbn5j4Yed/d4OwvYXb5h731jw66XPr6nc+8bCDwty6xsLun2Y5d6J8vZ7U3dPlHfLce9E+adjmFvfWNBPfNtgW+Tu4yz9A8ux+6xRP0Z5n8SLZ0G3zrL3Z0F3zrK3z13cWob9kxt3luGHZ/pwQVbKBdnfPRioeLpQZ3+xyMhPb7b68v5fPl1YThva89Xh7W3cm48obovc+xbBvsStbxH8UOLWtwi22wWfADwvvL+4cf8owq8WaSjSn28XHW/fQN2XuHXnUsf4S0vc/AjIfkAxV9hsvLpVMo6bzVcTpC7Jy0VGHko98OUi+BjBtsj22f6bM5Xo3Wz/4U0lWWM2ffFlJ3mIO5v1p/vp279y492R2L/SJ581EKtXLX7zSh+8R0fqp25/91qgvLD+wBdfLTQMy/HqK45GbtVHuVdfcVTOOfjl8Riosdkuu0NsGeV76u0DNV579RTjoifXi56/qoG3aLDt9rFtDZz7DHtew2g3vX/mwcs4jufPxPh7jJ6PSM4gYy2fZP56N+ynJbFcEtotyeYHWzQPpETLBaV+fzkGXno/DrXNcozt5dcY1sePpmyK7B7vy+fO633183bj7V1k5qk+797GY7vnjG7vIrvX+t3eRX5Yknu7yO4y/81dZLcct3eRH74udW8X2b0S/P1dRI680yh/vpPk6y6y+6RJyzf4S6s/VV/Osnc3pNT3n/Xrb/WlXuMX65ITHoWO578QtnvU6Pa69L92XXCJ/oGv/dpJz0lL0llfq9GwHM0+UGMcL65LTlaS+vmO3y0HXrLSj5fHdGJM5cUajBr6/Ahi/2bwfLq3NamnyPRlpsLb35rYl7h1fmssf2mJm6/03o1nxyuvuh2b8dyffkTbP393znYpGKfYPMfzpdjeRbqZYLtnpG4m2P698w1TJps8XZd9DcE3u/T5ePS5nbt58wX4uyL3rvLtS9y6yvdDiTtX+bYfWLh1lr7/RMOds/T29jX59vY1+f2ni+5+FveHKje/itv1I9/82pa5uY/q21/F/aHEnX10/0m4ex+E2td4/7Nj9/eRnz6jdnMfkc/sI/L+PiLv7yPy9j6y/X5hY4xGq+e2o98t0qbhXfP1Kt39EnhRVH2hKum4W2DkDbVZzq2/FrDdw1E9r/H1+njD/HLIMHbXwnHwU89nv5W4txTlTtrXEtuOzVfvMG9Ggt9djWN7TS12y/LWncep2O1dSgUzvKi/UuLupMrdauREVanzQ/V2e428/zbqwd+fj8rZ7gV9mt+D0Xrd+RcVLM8KrB5M/6pCbAtrT5dh++Q1poVxmW3Dx+0dquOFUr0+N/SbEj5L89of+HkJ271g6+bnPWxuP1J26/MetjuAvfl5D5v7x6jufd5jO6iYFWYl+n+zXSynMTx+ge2lEgPzMIc9LzF27yy6uWnH7m0JNzft2L2e7+amHdunFz+xaScuatSvA/xmu8w8eOz180C/KMHHgZlp5drst01L73+UZ9D7H+V5HL68v2mp/7Wblo+W0+yOPjeDKh8YVP3AoNoHBnX81YNa9lR+cWfPNGU6+kst1/OO+QOf/8qN3V2mu5u29fc37e4e091N2+Sv3bRj5js1HlgO5OR+iZGPLE+qd+7l65juZjCNvIz35wXvLyda2yLSc0mEaTwvsrvL1CzPxZuVbyTpL5YDn68SVn5xZfCOdBHeFOlvX3sf/e0XR/8wHlOxKrvtsn0BLGZmPM5TjuffeP+hjE/1vspYG5sy4zNldq+EyNfAjHoVa9D9wbUjP3Jih4zXdjY78r65HfPVIpRxZH983Pz+xZJHgOSbYKm+5fd+HP1Zwp7H0e5uEeE7o1TPb788lvbDcBCGoz4S8rsxNRQpl8G+FeEPbJhtkQ/kwEM+sTLyYqTde+tR57dTcZ/O+GBqve30bVVk/zltXFx8uo/tKty7Vrsvceta7Q8l3rxW2wjPxFK9/8a/KZETwqne8flNCTy60Mq3QL6WGLvnnqThxv3xYok8VNZy3eE3K1JfHl3e2P6bEpo3WP58jOMXJYxwINVf26hN8XEne61Ez15/jAq9thR4GqVOCvlFCR54+qt+iIzm7dsZhO+QUYm9XywEkeJ0Yby0Z1HPffOBry2FNDzDxvZaCcWD1mO+tiL5DCz19tqKdHxdrstrK6J4xYLaa0theYeKbL60c9LEWMz2UgnDAQbrKwUm40WEr43DkdNR/jgV/pa8u5eHvt+m88ArKl8biOzRafLmSL5WQPzrKNehTVmJfr8Avrws9cb6/QJ50Puo9UoBvNnmgfxKgTtTgLcF8rbvo8BLq4BnwesMll+cSuFpHXrh1haeef7jo7Vf34X5F1+qb5w7Y2N6+ij6mO+//nHMt1//uC1x720p99fk+dsOtodDc2A89ZUK/smRVUH607d6zN3NpJtv9fihxq2XJdxfjuc1tvvnwBRGpudLMd7dt7Yl7u1bc3cn6eabeObuTtK9N/HM3Y2kx88Xvq90zKeX1ebuTtL5ZaYsMp/Pg5q7Z5buXQjejynljfnHeS09H1N98yLBdkjP6WV5mPlg2gzqbsvcnC+3LyJ5ajprgv2uSMuf9wfyq0Vyqv+sjwv8ckwE8xBVX9xbR54RPW4l983eerdIuXL6yyKZZg/U14rcn4b4w9Dem+J5O5yfvj5m7uZm3vqY8g/jcXeO6E9lbk4Snbt50b/YOu3tV1rsS9y68PhDiXcniY48vKTR6hv9vizF9hGEWz8U2xPwPJShWW9Kt1+UyFts7ajH+78oMfJX4s9vj38di+1095svjZy8m0zy/vzGxy9EXg5u9fr8t5XZvfdJDZ2rJk9fCfpDkTybffCcT4tsDwJm3rEg4s3q7Hs2P5g967yF47hf5HGlJwOR+dUimANrVt/K9bWIbCdW3/p+z3Y5DMsxysu8vy/H9tM5eN3iHx8zb19+JGT/bcIjrybK0TZHRttlwYNMXeodtm/Lsm0/Lu9tnJsi22/X3HsmfLt9HkdDeWqk5Vfm+/bZfp8k7xf+kWpfKuweXra81/+4HFV2k68HEtuPNB15r/9x7VmfF9kOCG7CDqvf4v06ILsPNdEU/Fb88Wo+/lJk94RqThioF9i+l+APNM4P35u/2zjbZbnbOMofaJzdK25uN45uv1La8VbtY7N9di/Xa7kgvTy58vVkfvfyeMEdJ6Eye7kf/It9Hm8xeZyTbELA9i8xyCdejzol6+um2b23nZhyV+OyJPPLj7DtXvCLb6U/zueP50Oye+F567gjyWU2Zf8yx2Xu3lp49/srPywJ4/psPbX5tiRzu8vfemvHHG/fNNhum96ya3p9LPrbthm7t0PgbE8Oq613+2ax5VXexwns8cqxPBsZSmwOf4d84Fh++4K8uy+A/+kY2sox9NPzze23k+4eiL//pr3tsfz9Edn1neRl0lbnQn7bwLNtL/nmGR9tXjDzQ5GGa5y6K8IfSIAp79643Je4dd9vuyp3X/0z5wfeDjXn22+H2u+rmEn0SMTnlxUev8XbNzrikcf6Gueva0P+nMG7+wgdu2ehbu4kuwOSx0Wzjpd9a9cXz9X+OPy1l0+z7jXOrsjdXfYxsh/YZx9V3t9p759X2MuH4fcGdlfk/sBu33t3e2CJ3x/Y3UurBqYR69Nzisdi7L5bhANG7mbPT4P3Zyb5aGadEzDvr8rEHaQaa99XZX4i1navobgfa7sXzt2LtR9q3Prx26/N/T1+93TU/T1+93zUB/b4c9ZK3iypnwv+tqPsblMIJvFLq9/q+nb9aLsoeZxF9RM1/8Wi7PZZzHtsvZ4lfRvZ/pF9tn9gn+0f2Gf7R/bZ/pF9tn9gn91d3ht4f3a9HvZ9R9nd1HoEKzJ27tJ+95gUH3lb6nHtpD3d839YFrwd8HwIdLMsu89E3bqT+9OClGvJfTcou9tb9383uH+iB3dn1nd7kPn9HuT+iR7c38+524O7J53u9eAPewqXt3rQrgll+9hAXufj2fur7SP5yvP+x2uxvy9L+8Qvh3xkr5UP7LXygb1WPrLXykf2Wnl7r91f3+55ZYrqGy7nt++17/ZZxguly7727eu5up9+HZvGXq6RVwylzGT6XQ3Nd7D/8bbOl2vIqzVyPPTl8dAcD315PPBOent5PGqNV8ej/pS/Oh64omwvj8fIdRkvj0et8ep4+OOE113hl5cDj6KPV5djHjll7+XxqDVeXo68UDE3GbS/O2Z4Jaxxne36myKN8Arm+ua971++3z4lNvGIl2yrbM6UOM8Kai53OX6xOn3mY7r1R+ZXY/K4/IcimzHZL4l0zOzUTZHx9oNO+xK3HjT6ocStWw67+6f3D0PG/MRhyO6NencPnrefr775IDYdc/ua/jtPYv9Q49aj2D+szc2nsX+ocvNp6v0N7gMTVFp9g8rx9Uxg95a/+8fwc7x/DL+tcfMYfrc2t5tn+4mu281DR3v/GH47h0HKHTt5volp+7Y/OsoVdnk2ieFRRPb3yfJ3q3xX98szhOejgbtD3xtvCd2XuPWa0J9K3HhP6A/TQvLFdHLUA85v3+jbnVtJTh5i5Y8Umc+K3J4p049js5dtH2ng3MuI6yyVb6uze/nIkY/PKZFtimxfpcaYgk9yjI+UqR+k/dVpOF6ysJ1mtv8YCt6nJs/nMz7WZ/vIas68Ky84+Dq3i6jdOw+vD419Oe581Hj72PWH5cBUxPKIxX9R4xN3Yqm9fSf2UUM+cIhEuy9M3TxE2te4d4i0X5ubb1j5ocrtQ6Rt45R3CG4mDzyCbftK1dxhy+p8vY5GfTsLP19FUd/QbeMX68LlHQJjuy4fmJtF1N+eWbVfkvuHav0Tl1upv3+59fZDPf35Qz2PX5X9Y1t3XlX3w6yomwfSu4PX+1uHPxKxzH/p1uk933Df6/cK/outox+4a0L8iTMu4vfPuPY1brYxf+SMSz5yxiXtL95R8KJ45s1U3F0RJswrJtntbSJ/dZV7z/b+UOPWw70/1bj1wfr9ZZObr3/76RLOveOTHy703Xkl0A8l7rwUaH/lFDemH5df+4uXXzkP6huXN318K7J9II4mXuR5PH+qjkh3Z+Z4kBQ/fbdfksSa8cxaXjJAXy+t026aJ1leVnvg09fIPIrsvllx7y1FRLa9qXXnVTL7GvfeJfOLlbHNymyHdearT2jOvhmR91/x89OS5IlwO8o1hu9LsvudwMe4D9ttmw88s/VDlZv3tvZV7t7I+WFZbt7J+aHK3RtttLtGR2se9nX55ihTi7++G+PHOnkSebK9XEfyV/T8qRyv1znKZamumzqfuP/3Q5WbPx77bmK8qbF+LkB/k9t/PP90jNeyoVG+p789TsCeF9kdYNzNhrl/rHtkXFrp6tF+sSR3x/UTxxg/7bWUZ2DndeTXu7ExuuiPz779tk5+9+Os+byL3n/L2mMb7S7L3nrN2uNq6PboK49Ge51O/nVv2R083XoWcvse3/JFh3o7Um6/f+9xsJhJq+V7P78pgU+PUH3p629K+PX86/jgoFdKPG7HZs8c3F9aij/ut722Ipavh6RBL63Io4myBM3XlqLnxe3HpS9+qQQ+zPe4iiBPSzx6etPyH3htd8/ndB8XJV8bDT5yVerXCl4d0NdK9Ianlls9ghj3P5bYJK+oNZlvlyi/T78qgS+3NZOXSvSOS4N8vFSCDXOyj9fGouet8f7HrvVqidc2ai9n8eWN8L8ai4YLaP21jYovLvV61+ZXJSj3C5YXN6riw2D60lKQ4SfR6n3KX5QYuSKPewP0tAS13R2sxwFOLkjTEn3jF7+rDb+r8tqq5EROqh9q/FUJxRv+XusSGnmaQPOgF1cEx+ZHe7sEvboUhhIvtfvjFx1jwfb2Ury4UQ8ciR9aP2h0/6t1kodsQ+t9Xvoyg6VtH1vK8Jv1etv9xbh94aKxfKTK7pR6MN47I/r8BPJ+Fd1WGR9Zo91lyLszp5scHzix3i6LZuPoH79x7RfbmfDgO/0x7epXVe4tyW6nZVzy+OMqwbfe2d3eaTiufVwlwO+Dfds2n3h1RfvIE1jt/SewHjXm+3eaqOn2HOzel35+qHLzGznn8cHzKve+7LKvcffjLo8q/PbZ3O3VMXl1I9/8uNZ5seojm2d8YPOMD4zJrnnywgPTy+N6cwIYNdvtbDe/qPSo0t8f122NWx8T2te43zrbq+13W2c7sO9/Z+rxCyu4W6SbX57d8zLng7QTg1Lu+9rxqzKW7yU4n+DSZ2W2l0Bxsqb1PdV0+9e4S04K6DJQ4hfXdjSPhbuWPf7btbKxfWQgd7ROZTK39K9FZHtPsYwoklG+nrqOjxwTjI8cE4wPHBOMjxwTzI8cE8yPHBPMDxwTzI8cE8xPHBPMDxwTbGvczPrxgd/Q8ZHf0N0dqtu/oX13j+rmbnK3xm7bbGvc3tX60T+xq833f0N/yOojp+c87gPS06zuu2eiGNfiuZdw+/qr0Y9NyvI0vC23frdifhva3Y5/5AvaO9W3oX59UmVfBV+N6n9cEvpdFcvN3K2+//dbld2XtO69Xv1R4wPv8X9U+cQ7Tjp94u1Ynd5+O9ajhn7g17STfeDXdF/l7q9p3z2ldTcmaX4i4rbPad2MuLurs03s7Ua++yvWdw9q3f8V2z2WdHfz3KyxHZMmH9nE4wObeDuwd3/Fthl583WkfXeb6+7rSPdLcvNtor333S57861w/SOPSPXdw1r307rr+2m9/7bW3Ubu4xON3D+Qs/0jOcufyNntoHykCW+/IbVvXyF48w2pPy3LzVek9o88stU/8pBT50+8U7vzfL8RdzfB7jfi7qGt+40o718+2Na434jygcsH+0H5TCPe/OTPY1l2eXvnmz+PErtHBG9+9OenBbnxiu+fzsTyNkv/491q387EdDc1ewxFmVFW6OvF4r67bzTKq6LGH49OfiuzPemW/KIwS9ltv59074popgqrjQ8UKfPef1dkKl5wWg6dvhXZ3QiTlttZ6md76Ntm3uwsapkHj6vhY1NktySaP0CiXT5QpMwE/mWRnF8o9Rbj74pgjswDX12dceDjecdm6+z3E7xn7SgTH77tJ3bzJKrMvD++1di97ULzcEesXD34dZXjA1Wwyz62zny5Sn4q6qcqu7HNdwo9flh3gzvoE4P7Q5XjA1VuD+6+yicG93ErDI9vUXu1CuFRCSq58kaVcvT1RhXtnxiX16v4IwCrSitv9/ptlTzeP6cMvr4shCr8chXBsrwxLniEopXzoN9WwcNXbbTXxwVrNF5eo44vqHP5FfleZffSwWYt563VSYX/RZW5u/CUT0Fyn/PVKpyPyHGdOv/bKjioZNZXq0h++JDrk7y/rKJ4dZLqy2uE1wY+Dk7pE1WmfGKNXq9imQxsnT5RhV9eFhzS8Wj2vArT9sVw+VLz+lrG8asFyefyuX4a9r9YkPaXLojgytPj3NteHFc5cn+T4+W99vFP84D7eDlZahWi/oE1eqMK5W+r0Mt77R9VXk4WafkNYGl9c/zD209tfWCXa/lkoTTbNeHujYZ3F2T7e5jHCY8feN0tyO7VRTdfbfqLIk9fbfrD+kxc6Zy73zFu2wcY8KaOXkbl65VB3n6ta+TPextCz4v07WPa+Qokrk+t/65Iz9fXcq9T/n9XJCc7vlWE3i+CNyMyj1fHRPLpEtY2N0W2LwHMo6bHJi7Xnexrke1rYVBERTZFtveD8KjytOO1Ig2X1dvBmyXht48MflgOhNJR78l+W4721y4HYbZJq1e/7HdF+ieKHO8XQfO1Lpt9ZPv9XLxG5nFg1l8swnjtJfNHitirRfD+CFZ9uUie4PKgD6zOy0Uk3xxNQscHivSXi+C1avWE8lsR0bd7eL8c2X6ku87Z3hW7mSXblM/5iU13mabHB1Jejw+kvL6frvvluJnyu8fCPrEcd1P+hyL9E0WO94vcTfntKwDvpvz+PYI3U/5+EXu1yM2U/6HIvZS/vTovF7mb8reL9JeL3Ex5ez9d98txM+XH8demvEm+Hs/mZlC37yq723zbIneb734Re7XIzeb7oci95ru9Oi8Xudt8t4v0l4vcbL759sWsH5bjZvPNt69l7S+4YCrW4zLQfO2qTad8iLHXi56/LIKHN6i+5e/VIq3c8Po2PW1/PSxff9MP2l1k31+uvDdJR3YPYt2dpLNfkpuTdO4X2UzS+aHIvUk6+yI3J+nsi9ydpLPbUc4vheUuu7/AvqvS8ltbvbWXbzszbqRzf/lGOuP9UzzpA1Xk9ekbjKmz2yo/PKUt5TV+ZSJV/02Rhg1dX87ztYjsngh7XKjMc0j74xDl+EWVfuAO+IM30yp/KOPPNUUZ1U2Z7QWYnHr0+IvlGY4mvxpeBG6dhft9eHfR3w9M5e31w2jf12hbpuMnpPdygfpbmd39rvuzX39aGsPQsGw20+6m1/m68tj1hDe73n4z9Y7XFtKrrcR5X+WxPptW2n2C6xd7b/vE3rtdmNt9/cO45JcMHlcgnj+hLLsbNNSsvC6rDK59LbI7ur07nf2HRcGb3Fvpou+Lsn35gpazurYpsnsS93HQE0P74PKVmG87y+4RsV90dN9+xw5vL3lwfQ3Y8buVyjfcPs6f2V4tY/mqN5P6lsXvZXYPipVng+sB5vci2zdbY3KjlUOy3+0xw/ACTdoU2d0Gexx14xt/JrTZY/ZlJM+d1erDC9/L7L73ee+rQPtFGXh2VIeV9+/+bo1U8vEFVW2v7rxKOb6mrW123t2zYjc/27Svce+zTT/UuLmB+APrwm+vy/5nCCdXjyMPef4zJJ94JlfkE8/kirz/TK7IJ57JFfnEM7ki7z+Tu61x+1FA0Q88k7sflM+83sXwKmsrM36+7bW722LtvDSJX2behJvuTlsH4YsC9QVn43cLg+stDy4z478vjH3koGVX5vZBy+79wy3nV47H8TvG5XyT3f/5+J//+D/++d/++9//9X/847//87/+y/86/2W3v12v5e7jpHPY+wziI4mSWlJP4iRJ0iRLSgenQ9Ih6ZB0SDokHZIOSYekQ9Ih6dB0aDo0HZoOTYemQ9Oh6dB0aDosHZYOS4elw9Jh6bB0WDosHZaOkY5BcSoyWpI7zkuig5PccT5ONDTJHefBynDHeZl8uOO8wTOPJEpqST2JkyRJkyxpJKXjcTEbSMAG7EAGClCBBhxA2Ag2go1gI9gINoKNYCPYCDaCrcHWYGuwNdgabA22BluDrZ22fl5TffyHxH4AyXGe2ICnrZ+xS/209fOH6XEKAVSgOfo/G8CZ6IFwodvOr/WQR8KFHeg2dhSgAt12/tiSB0MXx5no0dDPn1nybLiwAd12XmEgj4d+fqyGPB8udNv5K0CeEP5tCvKIuHAmekhcSMAG7EAGClCBsClsCpvBZrAZbAabwWawGWwGm8FmsA3YBmwDtgHbgG3ANmAbsA3YBmwTtgnbhG3CNmGbsE3YJmwTtpm2dhxAAjZgBzJQgAo04ADCRrARbAQbwUawEWwEG8FGsBFsDbYGW4OtwdZga7A12BpsDbYGW4etw9Zh67B12DpsHbYOW4etw8awMWwMG8PGsDFsDBvDxrAxbAKbwCawCWwCm8AmsCFLGrKkIUsasqQhSxqypCFLGrKkIUsasqQhSxqypCFLGrKkIUsasqQhSxqypCFLGrKkIUsasqQhSxqypCFLGrKkIUsasqQhSxqypCFLGrKkIUsasqQhSxqypCFLGrKkIUsasqQhSxqypCFLOrKkI0s6sqQjSzqypCNLOrKkI0s6sqQjSzqypCNLOrKkI0s6sqQjSzqypCNLOrKkI0s6sqQjSzqypCNLOrKkI0s6sqQjSzqypCNLOrKkI0s6sqQjSzqypCNLOrKkI0s6sqQjSzqypCNLOrKkI0s6sqQjSzqypCNLOrKkI0s6sqQjSzqypCNLOrKkI0s6sqQjSzqypCNLOrKkI0s6sqQjSzqypCNLOrKkI0s6sqQjSzqypCNLOrKkI0s6sqQjSzqypCNLOrKkI0s6sqQjSzqypCNLOrKkI0s6sqQjSzqypCNLOrKkI0s6sqQjSzqypCNLOrKkI0s6sqQjSxhZwsgSRpYwsoSRJYwsYWQJI0sYWcLIEkaWMLKEkSWMLGFkCSNLGFnCyBJGljCyhJEljCxhZAkjSxhZwsgSRpYwsoSRJYwsYWQJI0sYWcLIEkaWMLKEkSWMLGFkCSNLGFnCyBJGljCyhJEljCxhZAkjSxhZwsgSRpYwsoSRJYwsYWQJI0sYWcLIEkaWMLKEkSWMLGFkCSNLGFnCyBJGljCyhJEljCxhZAkjSxhZwsgSRpYwsoSRJYwsYWQJI0sYWcLIEkaWMLKEkSWMLGFkCSNLGFnCyBJGljCyhJEljCxhZAkjSxhZwsgSRpYwskSQJYIsEWSJIEsEWSLIEkGWCLJEkCWCLBFkiSBLBFkiyBJBlgiyRJAlgiwRZIkgSwRZIsgSQZYIskSQJYIsEWSJIEsEWSLIEkGWCLJEkCWCLBFkiSBLBFkiyBJBlgiyRJAlgiwRZIkgSwRZIsgSQZYIskSQJYIsEWSJIEsEWSLIEkGWCLJEkCWCLBFkiSBLBFkiyBJBlgiyRJAlgiwRZIkgSwRZIsgSQZYIskSQJYIsEWSJIEsEWSLIEkGWCLJEkCWCLBFkiSBLBFkiyBJBlgiyRJAlgiwRZIkgSwRZIsgSQZYIskSQJYIsEWSJIEsUWaLIEkWWKLJEkSWKLFFkiSJLFFmiyBJFliiyRJEliixRZIkiSxRZosgSRZYoskSRJYosUWSJIksUWaLIEkWWKLJEkSWKLFFkiSJLFFmiyBJFliiyRJEliixRZIkiSxRZosgSRZYoskSRJYosUWSJIksUWaLIEkWWKLJEkSWKLFFkiSJLFFmiyBJFliiyRJEliixRZIkiSxRZosgSRZYoskSRJYosUWSJIksUWaLIEkWWKLJEkSWKLFFkiSJLFFmiyBJFliiyRJEliixRZIkiSxRZosgSRZYoskSRJYosUWSJIksUWaLIEkWWKLLEkCWGLDFkiSFLDFliyBJDlhiyxJAlhiwxZIkhSwxZYsgSQ5YYssSQJYYsMWSJIUsMWWLIEkOWGLLEkCWGLDFkiSFLDFliyBJDlhiyxJAlhiwxZIkhSwxZYsgSQ5YYssSQJYYsMWSJIUsMWWLIEkOWGLLEkCWGLDFkiSFLDFliyBJDlhiyxJAlhiwxZIkhSwxZYsgSQ5YYssSQJYYsMWSJIUsMWWLIEkOWGLLEkCWGLDFkiSFLDFliyBJDlhiyxJAlhiwxZIkhSwxZYsgSQ5YYssSQJYYsMWSJIUsMWWLIEkOWGLLEkCV2Zck8cQBn4LiyxJGADdiBDBSgAg04gLARbAQbwUawEWwEG8FGsBFsBFuDrcHWYGuwNdgabA22BluDrcHWYVtZYudd/5UlCzvQbeeMzrGyZKECDTiAMyusLFkI28oS/7srSxbCxrAxbAwbw8awCWwCm2DdBOsmsAlsApvAJrCtLHFcWbKQgFg3hW1lyUIBKtCAsClsBpvBZrAZRtKwboZ1M6ybwbayZCFGcmAkB0ZywDZgG7AN2AZsAyM5sG4D6zaxbhO2ie02MZITIzkxkhO2CduEbaZtHgeQgA3YgQxM2zwUaMABzJGcBBvBRrARbAQbCVCBBhxA2NoBJGADdiBsDbYGW4OtwdYwkh3r1rFuHeuGLJmdgRjJjpHsGElkyeywMWwMG7JkIksmsmQiSyayZDJsjO2GLJnIkoksmQKbwIYsmciSiSyZyJKJLJnIkoksmQqbYrshSyayZCJLpsKmsCFLJrJkIksmsmQiSyayZCJLpsFm2G7IkoksmciSOWAbsCFLJrJkIksmsmQiSyayZCJL5oBtYrshSyayZCJL5oRtwoYsmciSiSyZyJLz87GFqXArnMYHc2EprIWt8Ch1ipeKl4qXihfJ8mAuLIW1cPHSKDzBCJgHU+HibcXbircVbyte5MyDy/q2sr69rG8vXhy4PLiMcy/j3Ms49+LtxduLtxcvFy+XceayvlzWl8v6cvFy2b5cxpnLOHMZZyleKV4pXileKV4p4yxlfaWsr5T1leLVsn21jLOWcdYyzlq8WrxavFq8WrxaxtnK+lpZXyvra8VrZftaGWcr42xlnK14rXhH8Y7iHcU7yjiPsr6jrO8o6zuKd5TtO8o4zzLOs4zzLN5ZvLN4Z/HO4p1lnGdZ35JXVPKKDnjpaIV7YS4shbXUscKjcPGWvKKSV1TyikpeUckrouIlLWyFR2GMM7XibcVb8opKXlHJKyp5RSWvqOQVlby6Zt4ubz8Kl3EueUUlr6gXby/ekldU8opKXlHJKyp5RSWvqOTVNQ93ebls35JXVPKKSl4RFy8Xb8krKnlFJa+o5BWVvKKSV1Ty6pqVu7xStm/JKyp5RSWvSItXi7fkFZW8opJXVPKKSl5RySsqeXXN0V1eK9u35BWVvKKSV2TFa8Vb8opKXlHJKyp5RSWvqOQVlby6Zuwu7yjbt+QVlbyiklc0i3cWb8krKnlFJa+o5BWVvKKSV1Ty6pq/695rAu/FVLgV7oXhvWbxXqyFrfAojHFuJa9ayatW8uqazbu8xIWlsBa2wsVLxVvyqpW8aiWvWsmrVvKqlbxqJa+uub3L20bhMs4lr1rJq9aLt+RVK8dXrRxftZJXrRdvL95evCWvWsmrVvKqleOra7Kv+YMOK6/OBzfpmu57vseCrvm+F4/CE7zyavoyrLy6uBXuhbmwFF5eX7aVVxePwhO88upiKry8vl4rry7mwlJ4edcTIVZ4FJ7glVfnY790zQO++PTy4WPieRXMzr6OnlfBWtgKj8IT7HkVTIVb4V64eEfxjuIdxTuKdxTvLN5ZvLN4Z/HO4p3L69tlauHl7c6jsHvP9//QmiQcTIXde373nNY84WD30npaRwq7dz1443kVPAq7t63He47C7j3fmUFrwnBwL+ze7svmeeXvmaM1aZjPNyjQmjUcPAq7t69nidzLXsfzitnXy/OK2V2eV3w+wk1r8nCwe88nf2lNHw52r6z6o7B71V2eV+zP8aw5xKy+bJ5XrF7f84rNn27yvAp2r60HoLSwe8eqPwq7d7jL8yrYvd6/azpxsHu9T9eE4mDBmLNizLmMM5dx5gn2vLrGXAhjLg1jLh1jLmWcPa+CyziLFS7j7Hl1sR4YcyWMuTaMuefVNeZaxlmlcBlnz6vgMs46wVbG2fMquIzzyquLyzivvLpYMeYrr9aYWxlnK+O88upiwpivvFpjvvJqjfnKqzXmo4zzyquLyzivvLq4jPPKq4sJY77yao35yqs15iuv1pjPMs4rry4u47zy6mKM85qIHIxxXlORgzHOazJyMMZ5TUcOdq//vqwJyf7mSFozki/2vAqmwq1wL8yFpbAWtsLFS8XbircVbyveVryteFvxtuJtxduKtxVvL95evL14e/H24u3F24u3F28v3l68XLxcvLy8vn25F+bCy+vblLWwFR6FJ1iOwlS4eKV4pXhFCmvh4pXileLV4tXi1Va4F15ef7hUi1eLV63wKDzBVrxWvFa8VrzGhcs4WxlnK+trZX1tYpnHgWUYVLiM8yjjPMo4j+IdxTuKdxTvKOM8y/rOsr6zrO8s6zvLOM8yzrOM8yzjPMs4T4zzmuy8aq7ZzsGtcC/MhaWwFrbCozDGWQjjLESFW+FemAsXLxUvFS8VL2GcpZX1bWV9W1nfVta3YZylYZylaWErPAqXce7F24u3F28v3l7GuZf17WV9e1nfXta3l3HmMs5cxrnklZS8kpJXUvJKSl5JySspeSUlr6TklZS8EinrK2V9pYxzySspeSVSxlnKOEsZ55JXUvJKSl5JySvRMs5a1lfL+mpZXy3rq2WcrYyzlXG2Ms5WxtnKOJe8kpJXUvJKSl6JlXEeZX1HWd9R1neU9R1lnEcZ51HGeZRxHmWcRxnnkldS8kpKXknJK5llnGdZ31nWd5b1nWV9J8ZZD4yzHlS4Fe6FuTC8WvJKS15pySs9MM5KR2Eq3Ar3whhnJYyzkha2wqMwxllLXmnJKy15pSWvtHHhsr6trG8r69vK+rYyzr2Mcy/j3Ms49zLOvYxzySsteaUlr7TklfYyzlzWl8v6cllfLuvLZZy5jDOXceYyzlzGmcs4l7zSklda8kpLXqmUcZayvlLWtxxfaTm+UinjrGWctYyzlnHWMs5axrnklZa80pJXWvJKtYxzOb7Scnyl5fhKy/GVWhlnK+NsZZytjLOVcbYyziWvtOSVlrzSklc6yjiX4ystx1dajq+0HF/pKOM8yzjPMs6zjPMs4zzLOJe80pJXWvJKS17pxDhbOb6ycnxl5fjKyvGVHRhnOzDOdmhhKzwKY5yt5JWVvLKSV1byyogLS2EtbIVHYYyzNYyzNSrcCvfCXLh4S15ZySsreWWtjHM5vrJyfGXl+MrK8ZX1Ms69jHMv49zLOPcyzr2Mc8krK3llJa+s5JVxGedyfGXl+MrK8ZWV4yvjMs5SxlnKOJfzQSvng1bOB63klZW8spJXVvLKyvmgleMrK8dXVo6vrBxfWTkftHI+aOV80Mr5oJXzQSvng1byykpeWckrK3ll5XzQyvGVleMrK8dXVo6vrJwPWjkftHI+aOV80Mr5oJXzQSt5ZSWvrOSVlbyycj5o5fjKyvGVleMrK8dXVs4HrZwPWjkftHI+aOV80Mr54Ch5NUpejZJXo+TVKOeDoxxfjXJ8Ncrx1SjHV6OcD45yPjjK+eAo54OjnA+Ocj44Sl6Nklej5NUoeTXK+eAox1ejHF+Ncnw1yvHVKOeDo5wPjnI+OMr54Cjng6OcD46SV6Pk1Sh5NUpejXI+OMrx1SjHV6McX41yfDXK+eAo54OjnA+Ocj44yvngKOeDo+TVKHk1Sl6NklejnA+Ocnw1yvHVKMdXoxxfjXI+OMr54Cjng6OcD45yPjjK+eAoeTVKXo2SV6Pk1Sjng6McX41yfDXK8dUox1ejnA+Ocj44yvngKOeDo5wPjnI+OEpejXJ8Ncrx1SjHV6OcD46SV6Pk1Sh5Ncrx1SjHV6Pk1Sh5Na68UudReHnPa+Zryrn4vbk15zy4Fe6F3Xt+1Z3WvPP471rYCo/CM//tmny+/vuafR7cCvfCXP6tlP+uha3wKFy8VLxUvFS8VLxUvFS8VLxUvFS8VLyteFvxtuJtxduKtxVvK95WvK14W/H24u3F24u3F28v3l68vXh78fbi7cXLxcvFy8XLxcvFy8XLxcvFy8XLxSvFK8UrxSvFK8UrxSvFK8UrxSvFq8WrxavFq8WrxavFq8WrxavFq8VrxWvFa8VrxWvFa8VrxWvFa8VrxTuKdxTvKN5RvKN4R/GO4h3FO4p3FG/Jq1nyapa8miWvZsmrWfJqlryaJa9myauJvGoH8qodyKt2IK/agbxqB/KqHcirdiCv2oG8agfyqh1H8VLxUvFS8VLxUvFS8VLxUvFS8VLxtuJtxduKtxVvK95WvK14W/G24m3F24u3F28v3l68vXh78fbi7cXbi7cXLxcvFy8XLxcvFy8XLxcvFy8XLxfvlVeLfT7S+RvdrvntF/fCy9udpbAWXt7h7N52OE/wyqvm3pVXF7fCvTAXlsJa2L3N13Hl1TkPp6357XJ+b6et+e3BVHh5fZlXXp0v0G1rfnvw8pqzFnZv92VYeXXxBK+86j6GK68uboV7Yfd2r7/yin3cVi51X86VS+zru3LpYq/Pvi1WLl3s9dnrr1y6WApr4eVa/3amd81dX/99zV1f47Pmrq/1XXPXg7mw5DquuevBVngUnmA6ClPhVrjnuK2568FSWAtbju2ar/64G3Xyyp+LqXAr3Au7S7zO/1/Wva1qlmXnub4XHcfBHL1t+7oVIYytpbUQCMvIGzBG9+6IOf/K8WCfFL0iI+OrTMiHTKqNN3/8+byb9/Be3vd9//jzeT+8D+/gzW6wG+wGu8FusJvsJrvJbrKb7Ca7yW6ym+wmu8VusVvsFrvFbrFb7Ba7xW6x2+w2u81us9vsNrvNbrPb7Da7w+6wO+wOu8PusDvsDrvD7rC77C67y+6yu+wuu8vusrvsLruX3cvuZfeye9m97F52L7uX3fvu/tyr/+398D68g3fyLt7Ne3gvb3Yfdh92H3Yfdh92H3Yfdh92H3Yfdg+7h93D7mEXrw5eHbw6eHXw6uDVwauDVwevDl4dvDp4dfDq4NXBq4NXB68OXh28Onh18Org1cGrg1cHrw5eHbw6eHXw6uDVwauDVwevDl4dvDp4dfDq4NXBq4NXB68OXh28Onh18Org1cGrg1cHrw5eHbw6eHXw6uDVwauDVwevDl4dvDp4dfDq4NXBq4NXB68OXh28Onh18Org1cGrg1cHrw5eHbw6eBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4lXiVeJV4lXiVeJV4lXiVeJV4lXiVeJV4lXiVeJV4lXiVeJV4lXiVeJV4lXiVeJV4lXiVeJV4lXiVeJV4lXiVeJV4lXiVeJV4lXiVeJV4lXiVeJV4lXiVeJV4lXiVeJV4lXiVeJV4lXiVeJV4lXiVeJV4lXiVeJV4lXiVeJV4lXiVeJV4lXiVeJV4lXiVeJV4lXiVeJV4lXiVeJV4lXiVeJV4lXiVeJV4lXiVeJV4lXiVeJV4lXiVeJV4lXiVeJV4lXiVeJV4lXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eHXx6uLVxauLVxevLl5dvLp4dfHq4tXFq4tXF68uXl28unh18eri1cWri1cXry5eXby6eHXx6uLVxauLVxevLl5dvLp4dfHq4tXFq4tXF68uXl28unh18eri1cWri1cXry5eXby6eHXx6uLVxavPvXo93+/DO3gn7+LdvIf38r7v++PVz5vdZrfZbXab3Wa32W12m91hd9gddofdYXfYHXaH3WF32F12l91ld9lddpfdZXfZXXaX3cvuZfeye9m97F52L7uX3cvu/Ws3Pvfqn/fD+/AO3sm7eDfv4b282X3Yfdh92H3Yfdh92H3Yfdh92H3YPewedg+7h93D7mH3sHvYPewedoPdYDfYDXaD3WA32A12g91gN9lNdpPdZDfZTXaT3WQ32U12i91it9gtdovdYrfYLXaL3WK32W12m91mt9ltdpvdZrfZbXaH3WF32B12h91hd9gddofdYXfZXXaX3WV32V12l91ld9lddi+7l93L7mX3snvZvexedi+7ePXg1YNXD149ePXg1YNXD149ePXg1YNXD149ePXg1eemPX/eyfvnbj++3837Z/d8v5f3fd8fr37eD+/DO3j//PF+//ofr37ezXt4L+/7vj9e/bwf3od38GY32A12g91gN9hNdpPdZDfZTXaT3WQ32U12k91it9gtdovdYrfYLXaL3WK32G12m91mt9ltdpvdZrfZbXab3WF32B12h91hd9gddofdYXfYXXaX3WV32V12l91ld9lddpfdy+5l97J72b3sXnYvu5fdy+59d/923/7zfngf3sE7eRfv5j28lze7D7sPuw+7D7sPuw+7D7sPuw+7D7uH3cPuYfewi1cHrw5eHbw6eHXw6uDVwauDVwevDl4dvDp4dfDq4NXBq4NXB68OXh28Onh18Org1cGrg1cHrw5eHbw6eHXw6uDVwauDVwevDl4dvDp4dfDq4NXBq4NXB68OXh28Onh18Org1cGrg1cHrw5eHbw6eHXw6uDVwauDVwevDl4dvDp4dfDq4NXBq4NXB68OXh28Onh18Org1cGrg1cHrw5eHbwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8SrxKvEq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrwqvCq8KrxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arxqvGq8arz63Ldnfb8f3od38E7eP///Qn+/m/fw/t7N+X7f98d/vPq8H96Hd/BO3uwmu8nuj1efN7vFbrFb7Ba7xW6xW+wWu8VusdvsNrvNbrPb7Da7zW6z2+w2u8PusDvsDrvD7rA77A67w+6wu+wuu8vusrvsLrvL7rK77C67l93L7mX3snvZvexedi+7l9377n7u2z/vh/fh/f519Llv/7yLn/O9+6eFFZ/79s97eX/vxvfPf5tXMW/zKuZtXsXnvv3zTt7Fu3n/7M73e3nf9/3j1ef988f79f3++WO83+/kXbyb9/D+6wYpuGkPbtqDm/bgpj24aQ9u2oOb9uCmPbhpD27ag5v24KY9uGkPbtqDm/bgpj24aQ9u2oOb9uCmPbhpD27ag5v24KY9uGkPbtqDm/bgpj24aQ9u2oOb9uCmPbhpD27ag5v24KY9uGkPbtqDm/bgpj24aQ9u2oOb9uCmPbhpD27ag5v24KY9uGkPbtqDm/bgpj24aQ9u2oOb9uCmPbhpD27ag5v24KY9uGkPbtqDm/bgpj24aQ9u2oOb9uCmPbhpD27ag5v24KY9uGkPbtqDm/bgpj24aQ9u2oOb9uCmPbhpD27ag5v24KY9uGkPbtqDm/bgpj24aQ9u2oOb9uCmPbhpD27ag5v24KY9uGkPbtqDm/bgpj24aQ9u2oOb9uCmPbhpD27ag5v24KY9uGkPbtqDm/bgpj24aQ9u2oOb9uCmPbhpD27ag5v24KY9uGkPbtqDm/bgpj24aQ9u2oOb9uCmPbhpD27ag5v24KY9uGkPbtqDm/bgpj24aQ9u2oOb9uCmPbhpD27ag5v24KY9uGkPbtqDm/bgpj24aQ9u2oOb9uCmPbhpD27ag5v24KY9uGkPbtqDm/bgpj24aQ9u2oOb9uCmPbhpD27ag5v24KY9uGkPbtqDm/bgpj24aQ9u2oOb9uCmPbhpD27ag5v24KY9uGkPbtqDm/bgpj24aQ9u2oOb9uCmPbhpD27ag5v24KY9uGkPbtqDm/bgpj24aQ9u2oOb9uCmPbhpD27ag5v24KY9uGkPbtqDm/bgpj24aQ9u2oOb9uCmPbhpD27ag5v24KY9uGkPbtqDm/bgpj24aQ9u2uPi1cWri1cXry5eXby6eHXx6uLVxauLVxevLl5dvLp4dfHq4tXFq4tXF68uXl28unh18eri1cWri1cXry5eXby6eHXx6uLVxauLVxevLl5dvLp4dfHq4tXFq4tXF68uXl28unh18eq+XuXX61V+vV7l1+tVfr1e5dfrVX69XuXX61V+vV7l1+tVfn2x+7D7sPuw+7D7sPuw+7D7sPuw+7B72D3sHnYPu4fdw+5h97B72D3sBrvBbrAb7Aa7wW6wG+wGu8FuspvsJrvJbrKb7Ca7yW6ym+wWu8VusVvsFrvFbrFb7Ba7xW6z2+w2u81us9vsNrvNbrPb7A67w+6wO+wOu8PusDvsDrvD7rK77C67y+6yu+wuu8vusrvsXnYvu5fdy+5l97J72b3sXnbx6sGrB68evHrw6sGrB68evHrw6sGrB68evHrw6sGrB68evHrw6sGrB68evHrw6sGrB68evHrwimZ70mxPmu1Jsz1ptifN9qTZnjTbk2Z70mxPmu1Jsz1ptifN9qTZnjTbk2Z70mxPmu1Jsz1ptifN9qTZnjTbk2Z70mxPmu1Jsz1ptifN9qTZ/vvNLl7RbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbE+a7UmzPWm2J832pNmeNNuTZnvSbP9NDrt4RbM9C69otifN9qy3IZP1NmSy3oZM1tuQyXobMllvQybrbchkvQ2ZrLchk/U2ZLKa3Wa32W12h91hd9gddofdYXfYHXaH3WF32V12l91ld9lddpfdZXfZXXYvu5fdy+5l97J72b3sXnYvu29DJvttyGS/DZnstyGT/TZkst+GTPbbkMl+GzLZb0Mm+23IZH+x+7D7sPuw+7D7sPuw+7D7sPuw+7B72D3sHnYPu4fdw+5h97B72D3sBrvBbrAb7Aa7wW6wG+wGu8FuspvsJrvJbrKb7Ca7yW6ym+wWu8VusVvsFrvFLl41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41Xg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1efW7a8/v9+Xc6/7x/btrj+314/+ye73fyLt7Ne3gv7/u+328Gc95vBnPebwZz3m8Gc95vBnPebwZz3m8Gc95vBnPebwZz3m8Gc5LdZDfZTXaT3WQ32U12k91kt9gtdovdYrfYLXaL3WK32C12m91mt9ltdpvdZrfZbXab3WZ32B12h91hd9gddofdYXfYHXaX3WV32V12l91ld9lddpfdZfeye9m97F52L7uX3cvuZfey+34zmPt+M5j7fjOY+34zmPt+M5j7fjOY+34zmPt+M5j7fjOY+34zmPvF7sPuw+7D7sPuw+7D7sPuw+7D7sPuYfewe9g97B52D7uH3cPuYfewi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1eLV4tXi1cXry5eXby6eHXx6uLVxauLVxevLl5dvLp4dfHq4tXFq4tXF68uXl28unh18eri1cWri1cXry5eXby6eHXx6uLVxauLVxevLl5dvLp4dfHq4tXFq4tXF68uXl28unh18eri1cWri1cXry5eXby6eHXx6uLVxauLVxevLl5dvLp4dfHq4tXFq4tXF68uXl28unh18eri1cWri1cXry5eXby6eHXx6uLVxauLVxevLl5dvLp4dfHq4tXFq4tXF68uXl28unh18eri1cWri1cXry5eXby6r1f19XpVX69X9fV6VV+vV/X1elVfr1f19XpVX69X9fV6VV9f7D7sPuw+7D7sPuw+7D7sPuw+7D7sHnYPu4fdw+5h97B72D3sHnYPu8FusBvsBrvBbrAb7Aa7wW6wm+wmu8luspvsJrvJbrKb7Ca7xW6xW+wWu8VusVvsFrvFbrHb7Da7zW6z2+w2u81us9vsNrvD7rA77A67w+6wO+wOu8PusLvsLrvL7rK77C67y+6yu+wuu5fdy+5l97J72b3sXnYvu5ddvHrw6sGrB68evHrw6sGrB68evHrw6sGrB68evHrw6sGrB68evHrw6sGrB68evHrw6sGrB68evKLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71othfN9qLZXjTbi2Z70Wwvmu1Fs71otv9+s4tXNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832+ty3/2lM1ee+/fNO3sW7eX/v/mlS1XmbV3Xe5lV97tv/tN0q3uZVxdu8qs99++edvIt38x7ey5vdH68+b3Yfdh92H3Yfdh92H3Yfdh92D7uH3cPuYfewe9g97B52D7uH3WA32A12g91gN9gNdoPdYDfYTXaT3WQ32U12k91kN9lNdpPdYrfYLXaL3WK32C12i91it9htdpvdZrfZbXb7/evoc9/+ebP749Wfhlt97tt/3j9efd7fu/H983+8+ryDd/Iu3s17eC/vn93vv2Z/vPq8H96H988f79f3++eP8X6/m/fwXt73fb83osVNe3HTXty0FzftxU17cdNe3LQXN+3FTXtx017ctBc37cVNe3HTXty0FzftxU17cdNe3LQXN+3FTXtx017ctBc37cVNe3HTXty0FzftxU17cdNe3LQXN+3FTXtx017ctBc37cVNe3HTXty0FzftxU17cdNe3LQXN+3FTXtx017ctBc37cVNe3HTXty0FzftxU17cdNe3LQXN+3FTXtx017ctBc37cVNe3HTXty0FzftxU17cdNe3LQXN+3FTXtx017ctBc37cVNe3HTXty0FzftxU17cdNe3LQXN+3FTXtx017ctBc37cVNe3HTXty0FzftxU17cdNe3LQXN+3FTXtx017ctBc37cVNe3HTXty0FzftxU17cdNe3LQXN+3FTXtx017ctBc37cVNe3HTXty0FzftxU17cdNe3LQXN+3FTXtx017ctBc37cVNe3HTXty0FzftxU17cdNe3LQXN+3FTXtx017ctBc37cVNe3HTXty0FzftxU17cdNe3LQXN+3FTXtx017ctBc37cVNe3HTXty0FzftxU17cdNe3LQXN+3FTXtx017ctBc37cVNe3HTXty0V+FV4RU37b/f7OIVN+1VeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41Xg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eEWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7UWzvWi2F832otleNNuLZnvRbC+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N83232928Ypme9Nsb5rtTbO9abY3zfam2d4025tme9Nsb5rtTbO9abY3zfam2d4025tme9Nsb5rtTbO9abY3zfam2d4025tme9Nsb5rtTbO9abY3zfam2d4025tme9Nsb5rtTbO9abY3zfam2d4025tme9Nsb5rtTbO9abY3zfam2d4025tme9Nsb5rtTbO9abY3zfam2d4025tme9Nsb5rtTbO9abb3eRsyfd7mVZ+3edXnbV71eZtXfd7mVZ+3edXnbV71eZtXfd7mVZ/D7mE32A12g91gN9gNdoPdYDfYDXaT3WQ32U12k91kN9lNdpPdZLfYLXaL3WK32C12i91it9gtdpvdZrfZbXab3Wa32W12m91md9gddofdYXfYHXaH3WF32B12l91ld9lddpfdZXfZXXaX3WX3snvZvexedi+7l93L7mX3svs2rzre5lXH27zqeJtXHW/zquNtXnW8zauOt3nV8TavOt7mVccXuw+7D7sPuw+7D7sPuw+7D7t4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVeBV4FXgVePW5ac+f9+H9c9Me3+/k/bN7vt/Ne3gv7/u+P179vB/ef3370/F+M9jxfjPY8X4z2PF+M9jxfjPY8X4z2PF+M9j5fjPY+X4z2Pl+M9j5fjPY+X4z2Pl+M9j5fjPY+X4z2Pl+M9j5xe7D7sPuw+7D7sPuw+7D7sPuw+7D7mH3sHvYPewedg+7h93D7mH3sBvsBrvBbrAb7Aa7wW6wG+wGu8luspvsJrvJbrKb7Ca7yW6yW+wWu8VusVvsFrvFbrFb7Ba7zW6z2+w2u81us9vsNrvNbrM77A67w+6wO+wOu8PusDvsDrvL7rK77C67y+6yu+wuu8vusnvZveziVeJV4lXiVeJV4lXiVeJV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXhVeFV4VXjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41XjVeNV41Xj1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXg1eDV4NXgFc32ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm2N832ptneNNubZnvTbG+a7U2zvWm29+e+/U9jqj/37Z938x7ey/t790+Tqu/bvOr7Nq/6c9/+p+3W921e9X2bV/25b/+8m/fwXt7sDrvD7o9Xnze7w+6wO+wOu8PusLvsLrvL7rK77C67y+6yu+wuu5fdy+5l97J72b3sXnYvu5fdt9E3n/v2z/vhfXgH7+RdvJv38F7e7D7sPuw+7D7sPuw+7D7sPuw+7D7sHnYPu4fdw+5h97B72D1//XU0n/v2z5vdH6/+NNzmc9/+eR/e37vx8/OTd/Fu3sN7ed/3/ePV5/2zO9/vwzt4J++fP96v7/fPH+P9fi/v+74/Xb6f98P7r5u64aZ9uGkfbtqHm/bhpn24aR9u2oeb9uGmfbhpH27ah5v24aZ9uGkfbtqHm/bhpn24aR9u2oeb9uGmfbhpH27ah5v24aZ9uGkfbtqHm/bhpn24aR9u2oeb9uGmfbhpH27ah5v24aZ9uGkfbtqHm/bhpn24aR9u2oeb9uGmfbhpH27ah5v24aZ9uGkfbtqHm/bhpn24aR9u2oeb9uGmfbhpH27ah5v24aZ9uGkfbtqHm/bhpn24aR9u2oeb9uGmfbhpH27ah5v24aZ9uGkfbtqHm/bhpn24aR9u2oeb9uGmfbhpH27ah5v24aZ9uGkfbtqHm/bhpn24aR9u2oeb9uGmfbhpH27ah5v24aZ9uGkfbtqHm/bhpn24af/9ZhevuGkfbtqHm/bhpn24aR9u2oeb9uGmfbhpH27ah5v24aZ9uGkfbtqHm/bhpn24aR9u2oeb9uGmfbhpH27ah5v24aZ9uGkfbtqHm/bhpn24aR9u2oeb9uGmfbhpH27ah5v24aZ9uGkfbtqHm/bhpn24aR9u2oeb9uGmfbhpH27ah5v24aZ9uGkfbtqHm/bhpn24aR9u2oeb9uGmfbhpH27ah5v24aZ9uGmfg1cHrw5eHbw6eHXw6uDVwauDVwevDl4dvDp4dfDq4NXBq4NXB68OXh28Onh18Org1cGrg1cHrw5eHbw6eHXw6uDVwauDVwevDl4dvDp4dfDq4NXBq4NXB68OXh28Onh18Org1cGrg1cHrw5eHbw6eHXw6uDVwauDVwevDl4dvDp4dfDq4NXBq4NXB68OXh28Onh18Org1cGrg1cHrw5eHbw6eHXw6uDVwauDVwevAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvaLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9Cq8Kr2i2/36zi1c024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N9aLYPzfah2T4024dm+9BsH5rtQ7N99m3IzL7Nq9m3eTX7Nq9m3+bV7Nu8mn2bV7Nv82r2bV7Nvs2r2cvuZfeye9m97F52L7uX3cvu27ya+zav5r7Nq7lv82ru27ya+zav5r7Nq7lv82ru27ya+zav5n6x+7D7sPuw+7D7sPuw+7D7sPuw+7B72D3sHnYPu4fdw+5h97B72D3sBrvBbrAb7Aa7wW6wG+wGu8FuspvsJrvJbrKb7Ca7yW6ym+wWu8VusVvsFrvFbrFb7Ba7xW6z2+w2u81us9vsNrvNbrPb7A67w+6wO+wOu8PusDvsDrvDLl5dvLp4dfHq4tXFq4tXF68uXl28unh18eri1cWri1cXry5eXby6eHVfr/br9Wq/Xq/26/Vqv16v9uv1ar9er/br9Wq/Xq/26/Vqv77Yfdh92H3Yfdh92H3Yfdh92H3Yfdg97B52D7uH3cPuYfewe9g97B52g91gN9gNdoPdYDfYDXaD3WA32U12k93Pv3f+5528f27a4/vdvH92z/d7ed/3/fHq5/3wPryD91/f/uzX+83gfr3fDO7X+83gfr3fDO7X+83gfr3fDO7X+83gfr3fDO7X+83gfjW7zW6z2+w2u83usDvsDrvD7rA77A67w+6wO+wuu8vusrvsLrvL7rK77C67y+5l97J72b3sXnYvu5fdy+5l9/1mcJ/3m8F93m8G93m/Gdzn/WZwn/ebwX3ebwb3eb8Z3Of9ZnCf95vBfb7Yfdh92H3Yfdh92H3Yfdh92H3Yfdg97B52D7uH3cPuYfewe9g97B52g91gN9gNdoPdYDfYDXaD3WA32U12k91kN9lNdpPdZDfZTXaL3WK32C128erBqwevHrx68OrBqwevHrx68OrBqwevHrx68OrBqwevHrx68OrBqwevHrx68OrBqwevHrx68OrBqwevHrx68OrBqwevHrx68OrBqwevHrx68OrBqwevHrx68OrBqwevHrx68OrBq4NXB68OXh28Onh18Org1cGrg1cHrw5eHbw6eHXw6uDVwauDVwevDl4dvDp4dfDq4NXBq4NXB68OXh28Onh18Org1cGrg1cHrw5eHbw6eHXw6uDVwauDVwevDl4dvDp4dfDq4NXBq4NXB68OXh28Onh18Org1cGrg1cHrw5eHbw6eHXw6uDVwauDVwevDl4dvDp4dfDq4NXBq4NXB68OXh28Onh18Org1cGrg1cHrw5eHbw6eHXw6uDVwauDVwevDl4dvDp4dfDq4NXBq4NXB68OXh28CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvAq8CrwKvKLZvjTbl2b70mxfmu1Ls31pti/N9qXZvjTbl2b70mxfmu1Ls31pti/N9qXZvjTbl2b70mxfmu1Ls31pti/N9qXZvjTbl2b70mxfmu1Ls31pti/N9qXZvjTbl2b70mxfmu1Ls31pti/N9qXZvjTbl2b70mxfmu1Ls31pti/N9qXZvjTbl2b70mxfmu1Ls31pti/N9qXZvjTbl2b70mxfmu1Ls31pti/N9qXZvjTbl2b70mxfmu1Ls31pti/N9qXZvjTbl2b70mxfmu1Ls31pti/N9qXZvjTbl2b70mxfmu1Ls31pti/N9qXZvjTbl2b70mxfmu1Ls31pti/N9qXZvjTbl2b70mxfmu1Ls31pti/N9qXZvjTbl2b70mxfmu1Ls31pti/N9qXZvjTbl2b70mxfmu1Ls31pti/N9qXZvjTbl2b70mxfmu1Ls31pti/N9qXZvjTbl2b70mxfmu1Ls31pti/N9qXZvjTbl2b70mxfmu1Ls31pti/N9qXZvjTbl2b70mxfmu1Ls31pti/N9qXZvjTbl2b70mxfmu1Ls30LrwqvaLb/frOLVzTbl2b70mxfmu1Ls31pti/N9qXZvjTbl2b70mxfmu1Ls31pti/N9qXZvjTbl2b70mxfmu1Ls31pti/N9qXZvjTbl2b70mxfmu1Ls31pti/N9qXZvjTbl2b70mxfmu1Ls31pti/N9qXZvjTbl2b70mxfmu1Ls31pti/N9qXZvjTbl2b70mxfmu1Ls31pti/N9qXZvjTbl2b70mxfmu1Ls30/9+1/GlP7uW//vJf3fd+f5tXP+3v3T5Nq+21ebb/Nq/3ct/9pu22/zavtt3m1n/v2z3t53/f949XnzW6wG+z+ePV5sxvsBrvBbrCb7Ca7yW6ym+wmu8luspvsJrvFbrFb7Ba7xW6xW+wWu8VusdvsNrvNbrPb7Da7zW6z2+w2u8PusDvsDrvD7rA77A67w+6wu+wuu8vusrvsLrvL7rK77C5/HV3+Orrs/njV5/sdvL93++fnfO/2fr+b9/Be3vev9+e+/fN+eP/s3u938E7eP7v333/93f/4j//2z//xP/3LP/3Xv/t//tfv//r//ff//I//7Z//9T9//ut/+5//5W+/5T/92z//y7/88///H/7Lv/3rP/7T//vf/+2f/sO//Os//vltf/f15z/+MPb3T/86zz/8/snP58f//s/fv/368zc4//D9g39/f/9/Y7/u7z9Hv/97/Pntv/8e89efv+H789v//A5//gXJv/78m47//MDz/Suc719h//y65/+eir9N/f6n01+//+nt8wv//mfqX7//+fZvv+zvf1T/9fsfuf/2i/7+p7bfP7f//P755/f/83uc+/tn/O3n59evrD+/uf5anPw196//VV+/9vz57f3+L7q/Tv75ofnrh07+OvfPD+37Q/Mrvn/H+7fdfn7N87fdub/2+xd5+LM6v8737/I87y/z/Drf//Of909J3F/58/vG//mn6d///R/+/X8D",
|
|
4057
|
+
"verification_key": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuqAAAAAAAAAAAAAAAAAAAACsX3eBSDzPT9GGzALzuquG8AAAAAAAAAAAAAAAAAAAAAABz9U11Qx5CiLYCLD9iSJwAAAAAAAAAAAAAAAAAAAApJ3aqM6HGiWA+3gnnl9CkZAAAAAAAAAAAAAAAAAAAAAAAX2UllKHqXRQsddO5IBlMAAAAAAAAAAAAAAAAAAAAQFVmVybhrZvFHDIjhKa6/NQAAAAAAAAAAAAAAAAAAAAAAISZvtgB9kSaY29P0SGArAAAAAAAAAAAAAAAAAAAAGxuspBFKV6+1POrWyAuVbecAAAAAAAAAAAAAAAAAAAAAABzPtF4rPuWo03bcVT6XHgAAAAAAAAAAAAAAAAAAADYvqrQFbU4jgUfoB5+xdWvAAAAAAAAAAAAAAAAAAAAAAAAh9hqXdYg4Fh8nfUXK8r8AAAAAAAAAAAAAAAAAAABtKzNA9jz/E/m4X/IFDIPLBAAAAAAAAAAAAAAAAAAAAAAAEYD1C9on9bfYkzPm/E0LAAAAAAAAAAAAAAAAAAAArCqM7MJpLYWKq/6tlVWHMgkAAAAAAAAAAAAAAAAAAAAAACE5ab/EA3J+JOt9ALrMsgAAAAAAAAAAAAAAAAAAAEv6cZsUtcCJyHHMZA3/bU0lAAAAAAAAAAAAAAAAAAAAAAAJZwiVSEz1ptPMUUOUNUAAAAAAAAAAAAAAAAAAAADhLawiDmLFGBqdwm96/RzE9AAAAAAAAAAAAAAAAAAAAAAAAUVpTl7uTveogfeMAapNAAAAAAAAAAAAAAAAAAAAsCjSR+SzCm3XkD2gxesjrBgAAAAAAAAAAAAAAAAAAAAAAC8HLGjE1nqSVxGTR9TK0gAAAAAAAAAAAAAAAAAAAGyu56oYys8UtZUihal9Mm7iAAAAAAAAAAAAAAAAAAAAAAAgvuAfmTiWXFXMnzcrXuIAAAAAAAAAAAAAAAAAAADnoUsXzSsPM6l48XsTzoFzSgAAAAAAAAAAAAAAAAAAAAAAHh74X4wgVVswW6WywlQ/AAAAAAAAAAAAAAAAAAAAJzF9LwqADNbKcfUoT8KtTa8AAAAAAAAAAAAAAAAAAAAAAA518y3hD5iLVkztpJIXywAAAAAAAAAAAAAAAAAAAB5J8PjTkTM7ZuCKjl4o1N0dAAAAAAAAAAAAAAAAAAAAAAAGAYYZQRXqMgE23QeNvXEAAAAAAAAAAAAAAAAAAAAzpcVM8SnGYpeM2ojUpKIsMgAAAAAAAAAAAAAAAAAAAAAAJZIxBoI9tXMYA4VtZhUfAAAAAAAAAAAAAAAAAAAAbjlCWKFs7BJFf3D9DZXyj+MAAAAAAAAAAAAAAAAAAAAAAALih/kciGzAHY5nYkJ5sQAAAAAAAAAAAAAAAAAAAAgbLAJ5JN3ZiZ5U9UlowVwiAAAAAAAAAAAAAAAAAAAAAAAIKA16tDJmyBYRXlBN6RAAAAAAAAAAAAAAAAAAAADWW9eVawj+dEKCqGZZjEibOgAAAAAAAAAAAAAAAAAAAAAACH4QRCXMUVG96WdQVsYeAAAAAAAAAAAAAAAAAAAAUPDeD5oY8SPbVIJFaMQZtCQAAAAAAAAAAAAAAAAAAAAAAC9iVJPbV8stiYwV6oJQaAAAAAAAAAAAAAAAAAAAADwDmoVPsBiWMSdL9+bUuWkTAAAAAAAAAAAAAAAAAAAAAAAv2A3nekVYJs0bYJlD8n0AAAAAAAAAAAAAAAAAAADtHNj/IA5pyrkHEBZ1Cpl2vwAAAAAAAAAAAAAAAAAAAAAABn9i8aqH+sI1jU/raCoqAAAAAAAAAAAAAAAAAAAAaPSjOCQ+n0UxLouxzhiCVd8AAAAAAAAAAAAAAAAAAAAAAAovFJp/NDn0TE4fyV/7TQAAAAAAAAAAAAAAAAAAAN5d3VUWOSBSXpNuQ3z64VHSAAAAAAAAAAAAAAAAAAAAAAAW+SeB0rVlCK86QDeZHDMAAAAAAAAAAAAAAAAAAABEiOK23guPILxfWmlAJd+iKgAAAAAAAAAAAAAAAAAAAAAALFdUkZW1dCVzM8e1RYBVAAAAAAAAAAAAAAAAAAAAQHB8kr09QmRdqo+D9YlU5mQAAAAAAAAAAAAAAAAAAAAAACc+ZYgjl96I4i3h90qmRwAAAAAAAAAAAAAAAAAAAFXD4PFnnYFZK9fsYU8VKx0dAAAAAAAAAAAAAAAAAAAAAAAjQ57VjuW64GOxjmcsFBcAAAAAAAAAAAAAAAAAAACWHPFAYAjsGnoP1hqWfAzTTwAAAAAAAAAAAAAAAAAAAAAAE5ZPtEiDpJEmkTAItQ26AAAAAAAAAAAAAAAAAAAAI/9LuyPvmVeBluYwsaK8194AAAAAAAAAAAAAAAAAAAAAAB95zaLaA7b3Vqu/BQ2OJwAAAAAAAAAAAAAAAAAAAMLe/3pzRnl01dViFKdZi4oYAAAAAAAAAAAAAAAAAAAAAAAZH8JMebz2R3mYXLQED/UAAAAAAAAAAAAAAAAAAAATHWomd/BAmzfhQ78N7wUuogAAAAAAAAAAAAAAAAAAAAAAEa8B3FUV4L3iLrFiGqPLAAAAAAAAAAAAAAAAAAAAdHB13TlqY/WqFWx38FvYW4QAAAAAAAAAAAAAAAAAAAAAAAznIUkuUTyzadW4731ZGQAAAAAAAAAAAAAAAAAAAHlo8rLJkDSrjxwe3E4RXgGUAAAAAAAAAAAAAAAAAAAAAAAGFB6Z0gipFB+SFKRlRGEAAAAAAAAAAAAAAAAAAADTHuxZPTicny6Gv9I5hTdTzAAAAAAAAAAAAAAAAAAAAAAAAu445XTTq9yafve2D8//AAAAAAAAAAAAAAAAAAAAC9VZlDaJNURlpNhAAWmYLDsAAAAAAAAAAAAAAAAAAAAAACr6J4cfC7CNg93ah8luKQAAAAAAAAAAAAAAAAAAAB3X8/JtiI9wdOlzmdjBcAe7AAAAAAAAAAAAAAAAAAAAAAAMmo0nhc3bdHa+KyN6dvEAAAAAAAAAAAAAAAAAAACaPm9o7iYbIlBTRlExIYTBTwAAAAAAAAAAAAAAAAAAAAAALCAyaDoA5fD4v+CW/LWTAAAAAAAAAAAAAAAAAAAAXXRfzUcXs46vtgUFw9/t1BoAAAAAAAAAAAAAAAAAAAAAAAjUonDoLlFZ5ejAwLRVpwAAAAAAAAAAAAAAAAAAAIGpKCQgs2VP/0WxQzuzM3WXAAAAAAAAAAAAAAAAAAAAAAAjlGWl3Au65355/8WrKu0AAAAAAAAAAAAAAAAAAACBHVD3C2YjESJokE3wdUlwEAAAAAAAAAAAAAAAAAAAAAAAAkHelk+5SGS6GcDMAsC6AAAAAAAAAAAAAAAAAAAAocVBZHSE03EGJ8o3TfPkpEQAAAAAAAAAAAAAAAAAAAAAAAudLqd52+/gsoHCPnEGvwAAAAAAAAAAAAAAAAAAAOx8hC4+U0I+BjG/A1QUkJ7IAAAAAAAAAAAAAAAAAAAAAAAt3Jt3p5ehKpL7bPpd+EYAAAAAAAAAAAAAAAAAAADKOOYjDskfn0UAGAyGlHH/3AAAAAAAAAAAAAAAAAAAAAAACblzZU7/THBM39K+ebCdAAAAAAAAAAAAAAAAAAAAawEfvtlR/5EMS0M25DCAmw0AAAAAAAAAAAAAAAAAAAAAAAjjATEOujCcQF0112JBwwAAAAAAAAAAAAAAAAAAAGagS03obBFCxp52qNbg4IxvAAAAAAAAAAAAAAAAAAAAAAAwOCAjfA1l/vySYe83RKsAAAAAAAAAAAAAAAAAAADhHgYuOl7DobsInEmugMav3gAAAAAAAAAAAAAAAAAAAAAAHT2MZ4q0jadc5K8HFIxJAAAAAAAAAAAAAAAAAAAASstc7hgvJeN8Oh5E2om7e1IAAAAAAAAAAAAAAAAAAAAAAAevPHzYp5Yy8aRB8unJFgAAAAAAAAAAAAAAAAAAAOwOwVZK5Ys5wO3Shn8hX+XaAAAAAAAAAAAAAAAAAAAAAAAUd8mKwF7lV45Sl/SZiYkAAAAAAAAAAAAAAAAAAADRm7356gtlZbPuda3U/vDBgAAAAAAAAAAAAAAAAAAAAAAAIna5XPqaJCJZ9WNKv6HJAAAAAAAAAAAAAAAAAAAAD2c7beACg9vkK95AWHKnSnQAAAAAAAAAAAAAAAAAAAAAAA/FsR+JqaUgJy/b1ewsRQAAAAAAAAAAAAAAAAAAAEKF/X3nDkSYscibqResWKzyAAAAAAAAAAAAAAAAAAAAAAAia16VsAtzFWE9b9eCVR4AAAAAAAAAAAAAAAAAAACfr8PQSX4ivwm3fN2kY2Z/CgAAAAAAAAAAAAAAAAAAAAAAEWpT7nl6PedV2vtrbYaOAAAAAAAAAAAAAAAAAAAAhUuF9c3cB2w9T+DJgfmIrLsAAAAAAAAAAAAAAAAAAAAAAClbjLiEl3aDmC2mrjZl8wAAAAAAAAAAAAAAAAAAACqsbCcAtn2MArxTHstyVRmlAAAAAAAAAAAAAAAAAAAAAAASOZAncT+gKXzeXOzkWpUAAAAAAAAAAAAAAAAAAAAaUVWcnuDlzcZyaP8QdxLcwQAAAAAAAAAAAAAAAAAAAAAAHkHX3dqx8KmIe+9yRs7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADS1MTTqllm1zayvLeO2ywSkgAAAAAAAAAAAAAAAAAAAAAABMVSxnANbqFIMLKhKBolAAAAAAAAAAAAAAAAAAAA1W2hK+0GntmikOkFCzJCn6kAAAAAAAAAAAAAAAAAAAAAACY44N2NZPbvByFpv++YwAAAAAAAAAAAAAAAAAAAAGvMegX/lalrKJQkxfczZw2WAAAAAAAAAAAAAAAAAAAAAAAAxDcm91tv2g3iLODg36sAAAAAAAAAAAAAAAAAAAAdCgnXF47JO614WPluZPC0jQAAAAAAAAAAAAAAAAAAAAAAL5tuC04sAZaN5cMkgqp9AAAAAAAAAAAAAAAAAAAAFLmaKhz1vbFNGPy31tW7G0MAAAAAAAAAAAAAAAAAAAAAABibwBFKqYLGRXSxHbsAPgAAAAAAAAAAAAAAAAAAAIFYESpGMQpiuEn23VYsLIaUAAAAAAAAAAAAAAAAAAAAAAASkF6WwsjbCGXWk491oyQ="
|
|
4058
4058
|
},
|
|
4059
4059
|
{
|
|
4060
4060
|
"name": "lookup_validity",
|
|
@@ -4273,7 +4273,7 @@
|
|
|
4273
4273
|
}
|
|
4274
4274
|
},
|
|
4275
4275
|
"bytecode": "H4sIAAAAAAAA/+19C5xdVXX3vjN3JnOTmbl5ERKSwM0DEiAg4f0SCK9IeBNCCCA4hDGggWAePFWekQSIkCcI+GyttvVRv/rZ2trW2tqq1NbPtmL9altr66O1Fqv2Yf3q55G7Zv7zn//Z95xz102uZPbvl9w7Z6/1X2uvvfbaz7NvKbyUDq1/3nDDwD0bB1ffcNv6G265bePg+tsG1m644Ya169a9ftPtN9wxsPaWm27ZeHfHTwlLdYZy/bMjjE5GUwuZUikH7WjGHHJK2WmHsJPUMfSfyCwhET3LZd0PLXyJuIcAE7DO7JqXekiJfPz3/0IPA+biDz/jN54C/B3GXy7GH7rrn+8i/kC4vfW/sTLfRXlYqe+uf4776b9++L4FeJL0HpBl2D2El7NM72nSpqXJKfJNtySdUwx7nPGfCw9rIVMqG+95ivcHG174pee3/fofvn/j+967Z9JX+t42YdH4+zZv/teZ3531zIubh/z0/DCsd44W3m38S5XsM36j85qbP/KjdROWPvThO7/yV5ds6ps18KlDtrz3mk9vP+TbN7zFeF+leL/1+LP3VT+84121Iz//w+6lT3znhu9f0HXyVz7/xhl/8OCPv/3iTuO9QPF+8Zoff/Wj1Z333LXt4/eevHDKwAd2vvC9f/rj5z9U/f7XPviGF04w3mVQ5iKx4ULgz2GzIf6LivF3GP/FwJ9D/4nGfwnwl7PzD/n6pcX4h8p/WTH+ofJfDg9r9uWBX3z/V5ds+/wxX//x+EcvHnj4ruMe+/OV/3LP9Pcd+o+v++CsD0wy3isU799vPGf7xgNvPfFfev5s2+J3z5z9tz9430e/+e93D578nW9+62Nzvm+8yxVvg2S8V2bgfeqB122/+Q2f23Z67fFpX37j/1tqvCsy8B5z0yXrv7b4XYf/5mXnfeyBB65+tfFelYH3FR1/OfcLX9990F1Lph/1a//1o7ca78oMvK/5zHP/+KnVZy2//V2P3drZ8Wu/bbxXZ+D9o4fP/OgpK25430cHfvHcrXf8x18a76oMvNsX/fPVv7Dr79608MX/M+/hhyvTjfeaDLzXd/3Kee/+4yOOf/HBY64d+P4PZxnvtRl4f3/7Kc8//Ef3/9LXlkz7SnfXwB3Ge10G3h8+MvWF8Sf/4FOL3vOJ9afe/m+rjffVGXi/98MtZwz+Z+0Lb9t+3ZOPvOXjf2795fVAg/1lkm6A5zniRB+OfSx1imeGXyFd8sbVEuGhPCyf9b9W9teE0bpURd5y0IvzOsWzjr2EdaUj1gpHrKscsVY6Yl3tiLXKEesaR6xrHbGuc8SyGMWxJUm1IFOJH/QI3Fr9c/qxC065/ekvTP3rhXP/71mf/MDRu2b8YP7pf/2br3r3iz/67H8C7wCA550XJenGYvxDY+3Vxfg7jf8m4M8x9hviHywmv2r8r4WHtTjPUP0Z75pisof4b84ge+Fx33rV3R+/ffs5X/vhzhdhzHhLBl5KXcb7Os1bemjuhqcq20oXf+rBoz7aO/5T317yzrPP+fzzDz96SPUD7zTe1wveI06vvPjeR9+8Ofzd+/75rf9+xCfOOmrSwUsmHf0Xz35p5m3rr53xovGuNUEhl72GxiO3Aj/pHk3Gf1sx/iGbr4OHtZApDfHenp93qI2+IT/vUPtYb4qEXDYf8pUNxfiH5sMbi/H3GP+mYvwV47+jGP9447+zGP8E47+rGH+v8d9djL/P+O8pxn+I8d8L/Dnic83431iM/yjjf1Mx/mOM/83F+Bcb/33An8N+Zxn//cXkLzH+B4rxn2f8DxbjP9/4HyrGf4nxP1yM/wbj31yMf8D431KM/0bjf6QY/9Bcdksx/puMf2sx/kHjf7QY/2uN/7Fi/GuM//Fi/Dcb/7Zi/LcY/1uL8b/e+J8oxr/W+J8sxn+r8W8vxn+b8e8oxr/O+HcW47/d+HcV419v/LuL8W8w/j3F+Dca/1PF+DcZ/9PF+IfW0d5WjP8u43+mGP/dxv9sMf57jf+5YvxvMv63w8NayJJKQ+P9d6TzdvzZlOs3df/iq1cftaDvvO9Nn7zroTP/cNuDZy5YZLzvFLxTFocXDvnbE+4+ctqJ6y694+G/vfKDb576C4d/szr9u5tOv+O//nrd+PDSHt7GWS/RT/jpv/l13k0bb1n7023ZJRs2DK7feM66W28f2HjLjWsHL10/sHrt4FWD6zfcsu62MKokI9O5Kc8TOdNHylk6uHHFS9/OWffTPeK7NnYRbif9Xaa/mb6b/h5X/56Gy5iNku2R9hCe+gxBr7/ieg1iYXlMTsVRDmKtIznjHeWMB5pOktPpKAdpuklOt6OcbqAxf+qhv3PGjctMzwlCT8Puhec5xvSzs5QT8SukS055pRLhmTwuH+4DJHl9QpeqyGMb9wk5fUJOVeRtdcTa5Yj1qCPWDkcszzI+6Yi1zRFruyPWY45Y9zpiedresw3tblOszY5Ynj7haXtP/9riiOXZtj194hFHLM8Y/bQjVrv2jzY/tLEDjjVKKZ8mh5+ZnAphFR33qHL1Cnkx+gkR+v6M+AmG7QHX51fnDt64ac1F69YESjzlOT9FxVlEtyaiGuOW6B8/n0XPOgUtpqR40+rf68U7f3Dj6puvHFizZvCmnxZyA3Mw0nkpz3lAijQ2GO8nTWshU+rI4pSIXyFdijqlchrV2BKrTq5/r1v1onUDN50zcPuGTWsH+Xw3ThHYKoiKz1SdlkAzfNZFdOfR38sEXxDYSb7V3ER6XguZ0iTzikki0/ImA/YEypsCeVibnDqF/qZzMvW5Z9YwLtOxPlgfkymvCnlTQDbXa7+QY/p3CPoqYfULPrN9I3mdgo+npbGpc5bWZuUIYbirmSB0bmFUmNruUcHKVy0mb0qJ+FEeYpo+ZuuJIs+wrB12p2AZb5noy3WDVokuSctJxkShLz4z+yRx6iekO9qW/aQZOyKe6YXPEL8SmvLLUqzesHzsJwVj7OQsdkd9OCazbTHudadgDfkF0U8iP8G4z34ySeiLz9BPeksjdUfbsp8UtOOSrH5i+JXQlF+WYvWG5WM/mVRM3llZ7I76qP4ZbYt9YHcKlvGWif5g8pPJoBP7yWShLz5DP5lRx+1J0bcWMqU71biF/QztkueIW1Y/M/xKaKreSzE7qvamxl7GWxV5vLQ8RciZIuRURd4uR6wdjliPOGJtdcTa3aZY2xyxtjtiPeaIda8j1hOOWJ5+3472ivVDebGS5OmrexyxHnfE8vRVzzJudsRq17b9rCPWmxyx7LgOj/MMP0k9YXTbyzs3QTzTE58hfoV0KTrWUXZRY0Yr39Ri8iaViB/lIabpY7Y+QOQZlq3PdqdgGW+Z6NfUDVoluiQtJxkHCH3xGY6pb6zj9gt9eX0hrz8iP9sI+dgfm6kvxDM98RniV0JT/l+K+Yeyi5XvgGLyJmapX9THbD1N5BnWgfW/u1OwjLdM9HeSP04Dndgfpwl98Rn64/rSSN3RtuwnBe14XlY/MfxKaMovS7F6w/Kxn0wrJu/cLHZHfczWB4o8w7Jjid0pWMZbJvqHyU8OBJ3YTw4U+uIz9JP76rg9KfrWQrbEbcQwEBvtkr0eSt/L6meGXwlN1XspZkfV3qx80wvJK73IvoHyENP0MVvPEHmGdVD97+4ULOMtE/0O8jOUwb5heagvPkM/20bxCG3LflLMjuHsrH5i+JXQjF8O+4mqN9XerHwzislbksXuqI/Z+iCRZ1gz6393p2AZb5no30l+chDoxPHoIKEvPkM/eaaO2y/05fX3WHtB3KrgNzrlczni3pWqTnPwv4HryDBQt5nwPIe/LM7aHgy/Ekb7S5H2MJPkpdW3lX2W0KUq8riOZgk5s4Scqsh73BFrqyPWvY5YjzhiPeGItdkRa5sj1pOOWJ4+scUR62FHrN1OWCp+NqPXLkesPY5Ynm37WUcsz1jo2R63O2J51uNzjliePuFpe6+2HZzL6OkTOxyx2jVOeOq1P4yZxvq0fWd7z/b4qCOWZxnf1qZ6eY4nPMv4XP3T5oo4tyzVP3vC6LaXY956RonwTE98hvgV0iWnvFLMLlg+nifPFrpURR7Pk2cLObOFnKrIe9wRa6sj1r2OWJ5l3OaItd0Ra48jlqftn3XEGqvHfFjPOWJ5+sQWR6wdjlie8Wu3I5an7T191dP27Rq/PH3V07+edMTyrEdP//JsQ57+tcsRa7MjlmcZ23Us51lGz/FEu9Zju47l3uaI1a7jHM8x5th44uXRhjzjhKdeXv6VfJ/hhJWkpxyxPG3vOQawvpbPfRl+kppcA5tTIjzTE58hfiWMrkuvNTB1hszKN7uYvFqWekB9zNYHizzDOqT+d3cKlvGWiX53vVBVIYPP2Fke6ovP8OzUk/U/+oW+ze5FID/bCPnYHwvWV2dWfzT8SmjK/0sx/1B2Uf5hvKpe2f5Z6zWGxevClp+kHsGXwx7VrPY3/Epoqr5LMbuoOGnlO6SYvH5uwygPMU0fs3VN5BnWnPrf3SlYxlsm+g9RPKiBTnyWsib0xWcYD36Z4oGnPyI/2wj52B8L1lfmd1IMvxKa8v9SzD+UXax8tWLyJmapX9THbD1H5BnW3Prf3SlYxlsm+t8lf0QZ3D9ZHuqLz9AfP07+qNpZlnaJuCo+Gt3LTU6v4OP2VYPnOfyvK2v7qtW/V0JT7bkU83dlF+Xvxqv8NC02oxzlpz+PWOZ/tYicmpBTi8hB/tpelqN8mXEi6QLjn1OM/1Tjn1uM/2Ljn1eMf7nxzy/Gv9T4Dy3Gf7XxH1aM/1zjX1CM/yJr6wvhYan+adiHw/McceeSrHHO8CukS9E4dzjJ4/JxnDtC6FIVeTX4jnko5wghpyrytjtiPe2ItdkR6wlHrG2OWFscse51xHrSEWurI9buNsXy9NXHHLG8bK/61XbxVc/2uMcRq13b41OOWJ5tqF1t/7gjlmec8OxrPWO0p+097dWu/uU5NvGsR0/b7w9x4lknrOT7XCesJD3gqNe8NsRK0v2Oes13wkqSl+2T9HAb6pV8P9QRa5wTVpLud8R6yAkr+X6YE1aSPOvRUy8vX23nWDjdCStJ9zvq5VmP9zvq1Y72SpKnry5wwkqSl68mySt+Jek5RyzP8dejjlieawqeY3LPuYLn2qON720dG9e9S/XPnjC6veQ9u4F4pic+Q/wK6ZJTXilmFywfnwU4spi8vhLxozzENH3M1otEnmEdVf+7OwXLeMtE/9a6YatElyQ+m7JI6IvP8CzA1jpuT4q+tZApLeoNo23FfoZ2yVEPi7L6meFXQlP1XorZEcvHe0VHCV2qlJekB4GO8zrFs44I1g5HrKccsbY7Ym1xxLrXEWubI5anvZ52xNrsiPWEI5an7dvVv550xNrqiLW7TbE8ffUxRyxP23v616OOWLscsTz7NM825Gn7PY5Yb3PE8izjs45Yb3LEes4JK/l+hBNWktp1bOIZCz3HOZ5xwjN+edre015Wj3Z+FH2Xz4/mXXtAfp4PI1+p/tnknDDz79LxnLDgWkd0TqjskmdOmHznfZaXY1/8iCPW/jCebfc40m593k5HrHbtD9p1bu85nm3X+VK7jl32B9t7zuM8YzSPqXA800tysq7LVwW/0alxU/KvFjKlK3rC6LFHDv6rjP/oYvyXGv8rivGfY+OqY+Bhqf5p2IvheY4x3gMlwgtBjykNv0K65JQ3NKZcTPK4fDymPFboUhV5NfiOeSjnWCGnKvK2O2I97Yi12RHrCUesbY5YWxyx7nXE2umItcsRy9P27eqrexyxtjpiefqXZ8zZ4Yi1P9j+SUcszzLublMsz7b9mCOWl+2T73OcsJLk6avtOgbwxBrrt8f67Z+XvmOs3x7rt8f67Zen7dvVV59yxPK0l2fM8bT9445Ynm3Is99u1xjdruMJzzJ6jn0969HT9vtDnHjWCSv5Ps4Ra5EjVs0R6ygnrCTd76jXdCesJD3giPWwI9ZDTljJ96MdsV7utk++z3XEmueINd8JK0me9nqFI5aXrybJsw21q9+3axlf7rHQU68kjfUdP/99R5IedMJKvtecsJLkZa/k+wJHrMMcsbz62iR59o9e9kqSp997xq/nHLE853yPOmJ57ul4rgM84YjleT6H723As2Gl+mdPGN1eEjm1kClNKBGe6YnPEL9CuuSUV4rZBctndrGyHyd0qVJekvj+g+OEnOOEnDGsMax9hWXnhbEN8ztYeeMI8htdr+DjOILtLEe7np81jhh+JTQVt0ox+yu7WNmPF7pURR6vTx4v5Bwv5FRF3i5HrB2OWI84Ym11xNrdpljbHLG2O2I95oh1ryPWTkeszY5Ynu1xjyOWp3952usJRyxP//JsQ55x1dMnPONqu7Ztz/bo2YaedsTybI/7g3896YjlOQbgd/xwvMzv+OWdGyC/0fUKvlL9s4f0K4VcY+jtJcIzPfEZ4lfC6DIXGbMr+yu7WNlPELpURV4NvmMeyjlByKmKvO2OWE87Ym12xHrCEWubI9YWR6x7HbF2OmLtcsTytH27+uoeR6ytjlie/uUZc3Y4Yu0Ptn/SEcuzjLvbFMuzbT/miOVl++T7HCesJHn6aruOATyx2rXf9rS95xjAM0Z7jifa1VfH+u1916eNjcnzYY2Nyfedf42NC/edf7XjuDBJnvZqV199yhHL016eMcfT9o87Ynm2Ic++o11jdLv2aZ5l9Bz7etajp+33hzjxrBNW8n2cE1aS7nfUa5Ej1nRHrJoTVpLud9RrgRNWkh52xHrICSv5frQjlpdPJOkBRywv23u2be/2WHPEOsoJK0n3O+q1P/jXXEeseY5Y852wkuRpr1c4YnnFwiR5xuh29ft2LePLva/11CtJY2OTn/++I0kPOmEl32tOWEnyslfy3WtMnnw/zBHLq69Nkmf/6DmH8fR7z/j1nCOW55rCo45YnvtWnutMTzhieZ4v3F3/5PfLDD9JPWF0e0nk1EKmNL5EeKYnPkP8CumSU14pZhd1TtrKfqLQpUp5SeJ3KE8Uck4UcsawxrDyYPH5ccNPUk8Y7bM52kjm36E3/EpoKgaUYnZRscrKfpLQpSryeIxykpBzkpBTFXnbHLF2O2I94oi1wxHraUesrY5Yu9pUry2OWPc6Yj3riPUmR6znHLE87bXdEcuzPe5xxPL0e89Y6FmPjzpiecYcT5940hHL0/ab21SvnY5Ynj7hOTbx7Lc967Fd45enf3m2x3aN0Z5Ynv71mCOW2Z7XEAw/ST3EVwq55k6zS4RneuIzxK+QLjnllWJ2UXNYK/vJQpeqyOOzAScLOScLOVWRt8sRa4cj1iOOWFsdsXa3KdY2R6ztjliPOWLd64i10xHLsw151uPTjlibHbH2OGJ5tm1P//LUy7MePfXyjBOePuFZj086YnnGe76HBsdGfA9N3vEZ8htdr+Ar1T97wugxSo7x0uYS4Zme+AzxK2F0mYuMz5T9lV2s7KcIXaoirwbfMQ/lnCLkVEXedkespx2xNjtiPeGItc0Ra4sj1r2OWDsdsXY5Ynnavl19dY8j1lZHLE//8tTLsx499fKMq54+4VmPTzpiedp+d5tiecaJxxyxvGyffJ/jhJUkT19t1/GEJ9bYGGBsDNDKuDo2BhgbA4yNAcbGAI2wPO3Vrr76lCOWp73aNU487ojl2Ybate9o17Fvu/qX5zjasx49bb8/xIlnnbCS7+McsRY5YtUcsY5ywkrS/Y56TXfCStIDjlgPt6Fe3vXoaa+HnLC8fcKrHpPvcx2x5jlizXfCSpKnvV7hiHW0E1aS2tVXH3DEerm3R+8ytqN/JWmsHxrze8570Akr+V5zwkqSp38tcMQ6zBHLq99Okmdf62WvJHnVY5I8Y+Fzjliec9FHHbE896081yeecMTyPM/E915Mh7xS/dPOBdbgeSf83SCVS4RneuIzxK+E0f1HDnlD5wJrJI/LZ3axss8RulQpL0l8x8EcIWeOkLO3sFR9sT0iaQXbwzAQey48z1E307P6guFXwui6KeILc0leml2t7POELlWRV4PvmIdy5gk5VZG33RHrrW2q1w4nrOT7RCcs7zLe64j1pCPWbkesxxyxPO21xxHrGUesnY5YWx2xPG2/zRFriyOWZxmfdcR6kyOWje2t/6pBnk/fXfq7on13rZC8eN9dg2dmFyvfvELySn+bpR5QH7P1fJFnWDav7E7BMt4y0f9pz0ufVSHjAJJheagvPjP7dP3032d7RuqOtmU/KWbH0JfVTwy/Eprxy2E/UfWG5WM/mV9MXm8Wu6M+ZusFIs+wbN+zOwXLeMtE/3/JTxaATjy3WCD0xWfoJ1+q4/YLfRcTbt64hfxGp+TMblLObCFH+TbHk0j6mvKdHPzvMv4FxfgPN/5Fxfh/0/iPKsb/MeM/uhj/A+odwxz8rzb+U4rxLzT+U4vxH2f8pxXj/5bxn16M/1XG/8pi/B83/jOK8W83/jOL8f/Q+M8qxr/T+JcU43/R+M8B/hyxv2b85xXj7zR9z8WHQifDt77jbKAvpXwaFueZrAphFe1nle6oH8fhc0EeljEN69ycWD0ir0idnBPSy4X4vRFdWM8k8Ti/aJmTtMUR6yFHrF1OWKpvbkavNzvqNd8Ra4Ej1iJHrHFOWEl6wFGvoxyxjm5TrEMdsU52xDrFEetUR6zTHLFOd8JK0jOOer3SCStJOx31OsMR6xWOWF59R/L9TEessxyxljhiHdCGWEm6sP5p6wLYLx1OcsYJOeMicpDf6HoEX82+/GDDC7/0/LZf/8P3b3zfe/dM+krf2yYsGn/f5s3/OvO7s555cfMvNrletrLJ9agpxn9oMf7Jak0iB/8ktSaRg/9ctSaRg3+JWpPIse476t6jEPKX/ZRisl9U6xEdmflDj1qPyMF/olqPyMF/Eq9HBOCd/6XfGvcfv/JE+X99+cV1d/7wiJ2fW7rtd3/19B2fP+qM+5d/fc93L1ZrEUXm4mcW4+/ntYiQnfc0tQ6RZ6+B1yFGyD7jNzqvufkjP1o3YelDH77zK391yaa+WQOfOmTLe6/59PZDvn3DIzzfHcH7xWt+/NWPVnfec9e2j9978sIpAx/Y+cL3/umPn/9Q9ftf++AbXjgxWdtdUXmJ1GJrGcowAb4n/2wdoisMry2sARrjLRP91inDfKvq8nqJxzCSxPE3Z13OKBFeCHotxPArYXTZi6yFqL4Hy8fnSiYIXaqUlyTeZ5wg5EwQchTWc45Y9zpi7XTE2uqItd0Ra4sj1jZHLM8yPuaI1a7+tdkRa5cj1h5HLE//8rTXE45Ynv7l2YZ2OGJ5+oRnXOWzxpjH44A+eJ6jX+7IOg4w/EoY3S8XGQf0kbw0uyTPJte/b9p4y9pbNt590bqBm84ZuH3DprWDHQgdRq/GolUQFZ+VwsjSY14nPesiuqX09zLBFwR2km81N4We10KmdKZ5xZki0/LOAuxxlLcE8rA2OXUK/U3nBPOeWcO4TMf6YH2cRXmTIG8JyOZ67RNyTP8OQT+JsPoEn9m+kbz9uSWqejLeqsjjtph15F8kQlTr3+sR4tzBGzetuWjdmkCpTH+fn6LidKJblqJaSeCW6B8/5xdGOkM8BMUmgVlcJkncySDWGpIz1smMdTJDaayTEfq3upPpFHy8zBNdfn/gF9//1SXbPn/M1388/tGLBx6+67jH/nzlv9wz/X2H/uPrPjjrA5MT//pDWtJCfXGJB8vW1aB8ZaI/D5a0PlOXl9AeWM+vt7SzN619/RWDG9ffMnjH4E9j9oZAqVHzuJz+vkLwqWQuMY7wk9QTmgpAmQOe4VeCruZayJSGAp6abaidnXwBjx2CG7J3wLuC/i4S8CbR81rIlHIHvDLlLYE8rE1OKuCZznkDHtbHWZSHDZUDnlrHDkL/DkHfR1ixYNVI3tjQ46U0NvSANDb0EPq3eujBfF1hdMs13jLRfr/exTfZYkfYiXUc67NfSmN9NqSxPlvo3+o+W0US3htu5dIFyo5Ohv5+4znbNx5464n/0vNn2xa/e+bsv/3B+z76zX+/e/Dk73zzWx+b84Mmo8ZVTUa7FUk76h//0h82GcN2wO3Yeqa08wXGWyb6lf3DfJPr8pIy2xmoekS5amDtLTcNbBw877Y3bBrcNHjTJes2Dm5YcttN590xeNvG3FOzV9HfFwg+lfoJL/leoTx0vPq7d0MOVyG91CfqoRyuQlie4b0i5PWH0Y6IstOwYptJyD+hDeT0Nimnt83KMyanfeTkbW9G35eTvj8nfVXQ90boJ+bEn5STfnJO+ik56admpLdYPQ3yLA5bp3ogPG/FUN7wK6RL3ljfS3gox8oyoxj2uKxlMfxKaMp2pSb1Her3Dgoj9WX7Gn6V6Fl3pFVYSYpsBS4d3PizMUxHCiSaFUUzPX+31J2Ck6g5iZ7xrLWL/ub3AdT4nkMWPu9PeV5NeT4x5fmklOeTU55PSXk+Nei0jP7mfdoLG9DbOJT1VDpwnbX677AXZXnoar6qvpciNBby2IeT1OTZ5Mwhj88mdxWTFz2bjOXjrqsidOEhSpL4XpGKkKO6yP0RS8VBD71iK4dZ/E3JQf/uIjldjnIQy2KlDavRbti9FrEb8mcZomMXvCyiFw/RexvoxVixKWSj4fsAYSF/H2E1GtqvJizk7yesagOsGwkL+auE1WhKsJ6wkJ/vfGw0XdhAWMjPOw2TIzp3Eg/SJ0mtDZpvJ/6+YfxIvCrkqbVJG7eVif5gWPe6Y/xI2WqZqMn1wJ6sfRfvIuytZSYru1pK4WWWJN0KdGltV01nFdbyMazMWKof9NArtteexXeVHLW0o/qBcZSHZe2ivD6BGYv5fRH9kJ93EtPiz06KPxXIU/HHylIm+r/oG+bbQ+v8OF7lPlL13TgO4D4SxyJZ+m7EGiCsvH03YnEfqfruLHMH9I0c8fCArPHX8L3mDo3swvG3T+hSDaN9+UGgK+L7mLfZEWubI9YTjlhbHbG2OGLd64i1xxFrhyOWZxkfc8Ty9AlP23vay7Nte+q13RHL01c969H8y/p+64u/Wu/vm+zTpnGfYRiI3V8QO2t/afi9Qh6fncS8cgZdps0+4XMT3/ZXQ32pmofjsyxbbKrvNVvhnDaHrab2goxAsnH8F8Jom4UwcoxhOiS+8sCskfpVC+qXxX6IXxX0PH/JWheTQvq4Ro13uykP91HMvr30t+Unqck15q6sfs9rzJ3F5EXXmLF8sXk6rzHzWhh+b2be2eWI1e2IxbbxWGPtIT2TVAuZ0tFZTqMWjPndWf2T5zHNnkZV9aNOo+aZxyg/aKa/Xb4fYfEeANZHozWM0oSR+nRDXqfgvbH+WSb6T8EaRrmOqe5C4jUc1Jl/2xLbbqzPrgp+o+sRfLUQTUOkvWF0u9/XfUt3MXnRvgXLV6RvSdL+sNa6N/bv0I9bvR/ZTXK6HeUgFr8+3usoR+1DqDEhxrz5FPP6IE+Nt2zvrEz0/wti3oI6ZpNnvXO/p8A+uQTyuA84G/K47s+BPPR5Tp30N5Y1kfd4jvcbsF84i/Ji674FY+CSrDHX8L3WfbtJXlo/lriQ7ecMH01bsmnjzStv2Xjb4IYNqCQCnwXPMR8T09j3sniepBZ2fpkrYl91fk0OzM/K0tmoBton8gzLJtTdKVjGWyb6c+uBSQ24efMw62A0cd4zJ4zUfW91UmlB/YIMA1nkva/+yQPZd0FQv4gGsqg7v1jEhzxrIVtq4SG5OUXb2d46JNdkO6slC2Tjw+g4djR8R9upRQc1SUEbYR6WR11LVBX8RtdkXeYeGPAC2RKgx5fBOKkO3nROPt/r1MFjezHd1EY110Xei8ljbXZvDdLS6iL5jhc1c2o02MpTF2jTsygP28WSFHn2sihu1vMBkX6ixUMCfJCqSrT9Edq0g3PJ95NTcLvC6DrmDQq1WZIlZpreIeh+tZqiP78qn6TlgMdlU4f1Gas7gjUxBatEz3qE7sjPeSZ7XEbZaI80rN4I1qQULPaHHqE782MebhKpzY8y0T88YVjnB1PGVUm6Fcr2N/WC9Qatv/pMUhafw7rigzMTHeWgLXnMOslRDmLxosFkRzl4KJXt1orFCWU3bI92UCvxl900jh0HeWpzzQ7j8sby0+Crv0njWDUmsr/tRZ3uMLqNX0myjPY5kPWeCRovCLwb6p/KXsandJ6conNJyFhHMiYLPtQ7jzxloxX1T7bR22Fe8UsTsuu/IoP+Wep1akTGlSSjV/AF4rN+54YI7dQILZfZ/u4RshCL7fob4Hu/FqnDSSnykqTGkXyfJ5alU+BPIf2M/n/XdUpov14fr1WFTuiL6CvcdnsjZcKxgVrc5lhh9J8AHb8xS2N2pGAOkA788kCSrodnfDBDvWuM5TL5qvyTG8hOi7NpshvpqnwGdZhEuuKYgtsqlpH7avu7W9Byu06zAdKq9SL1YieOi1jWDUQ7KaLHRCpr2lgQ/y4JWi4rH2ZQY2V1mAV15QM0SaoFnX5Cics3TshKGzt+EdrYt2el69rbBrq+IHQNxG8x/UrIY5/A+kmj7Qyj6z027+H5RZLYNydH9OhPwTUdV8DfvREc5p1I5elP0YcPmCWpFnRKq1O8ei5ND+4nv57R/6rOuk7OoavRfkvoqsbNJdKz4KG4zC8TG746xFhknVQdSlQH53hOh7w8R0vSOqDjvE7xrCOC9Q5HrFudsJLvFUesCU5YWMbYfL/JQ6aZD48YfiU01T5KMbtg+dhf1ZhAzWP4AjM1Jpws5CisbkesSY5YvM4Q+8G2gvuc5ax+wRvczf5gm9rgVnHM48BjHj9s8tLIcqze1f5PopeN2bEO1bib9ZoM+PYMedNk80t+aXK5ThTWasJCfl47j/lvwX4xs/8avpf/NrILxzU1nlRrshyLVH+v/FZhVRyxJlB5Ymc8Cr50Xslal4bvdcZDvRQbO+CoXkzml5aTxAcJ895HN4b18sUyX/K4U1S9kJ7loGaTl1L0ZW2vfClFs+1V2T/WXvuFLp4vKbUa67Y21WusjGNlTCsj95WGrz5NDj9Li6PY3mMvWvWccfekL59QuePwF7s3Lf7xAZ/7f3e//9nvPn/Kk2fesnLR6nXLruGxJ/IedN/1P/rgfYuvO/SXp3+/9zMvHHfmn/zqPS98tjr1bx74xKcX/tfOV8fWWbuWvf91G55/9Pgrrr/2d7/0D6e9e8Zb31K94ZTLDnviDX973vbf+YeO2BpZ7e1/9nuL/nvlf/17ed25Lxz0Rz/6z/VXfviPz3pj+Z9vPOjGRz73+4fx/AR5Z537b++tvfGBTz360Jz3PnDdtz6yeOL83/6XKdNn/PZXfvieD75/6auMd7Lg7fyV7574jbOPmF3avvqIP1r1zLf/+b0fWHTg+z9b+5XTP/zY1k//5/utPnlvFusA9wtzxPXxWfsRw6+QLkX7EXWnLJaP+5FpQpeqyOMx/DQhR90zqrD6nbCSdKujXlVHrIlOWN5lnOSINdkJC8uozlHj+eY7ekfKVOebkXd1/ZPPN18Ae8t31zHV2kEF9LJyhTA6XpsMy8szR0z0/Q6t72MZ+CVj1Zch/Tn1T9WXvSEMyzH+QBitKE93zvIg/caQXh5++VPNF9Q5COt3eX6fpFr986j//PhZ/7i1/5Ipd/7d8g0/+sYzszddessJ33jf/R977a6Ni//t859voQ37lA2x3GzDRnsod9Q/Y2sqsR8HOfrzW/7PqjWfWP6bm7cf3TftLQNXfuBjv/KpP//P6xd87s3/+r9+/8mHlC34XKWnLbC+stgC6e+sfypb4Pm0JGF50E5J8ixPM+39rvqnah+3Up76IZvYvL3J+XTmtcy9ccmjOh/f5Fptb8znYu9UFdzz6jF5WX/LANfisQ7VXjfrhWcT7BnbUcmOrcXzuwdYz0mqhWwp9r5Vkz6b+X0h9tlmL5TYSz5bw/eFsG6Ohu9pvoLjIfZxtn/BNpz5vch9tWbepH+dFatvtQ6v1vzS9kG6U7CMly/9/d16R1cVMvi9yKxrKEn/9XE677+31oTTLvj4gwzzBuzP7X0knjecCvOGP+rNJvszTrIXgOznac6ifv+rhe8uF36nshXvLsfeqSwYg86KtVEVEyaG0f0jyzesWv1T1R2/ZxY7y474eEZXXYCj3s9iP0nz36+Q/3ZBXhb/Nfpp4L9f7R3+/jfky+hHpq96P9XG4QUut7H0iha2kcxj3319uY1616Aq8nhe0iPk9Ag5CqvsiMVtvuC8bIJa37ek3hHlvgfffVtNeWpOVhJyOulvLM/P6mb2MC7Tsa4YE4yebZSkWsiUxrXwUpLCZ7b21qUk6v1h41X3NbB/531fm++98MLitoI+0sq2whf0tKqtWHnythW0sdH3h9E2Gk98PQK3ybHHkVnbAs9/eorJi85/VAxO6nxB/fvwBT0Xrbvzkk1r197y2lsG1188eOuNg+s33HzL7fUrezhk8LE5zufumJuDqXpE/ZN/TjctYVUHwugguo4UPn4ec0N7rbsrBYddT8nsILnMY/J7I3iJ28aGmzEXUEMHo4/9lgrWc2wJPib7DIHFsruCXobiq22M/uB6odVrfuqYaWek/GpKjGGPf+MjbVkFacthdKhX9hondFLTQDX05/ak7phUx2t5qoC8aqqgutcsdYr0qjuO2X+CwFf+x69Uxn52V71SimVjXzP6VwhfU1sLuB1lOJaXZ+nMe9uI7R07co42iV2ZoJZxuC0ov8nqj7i8wksvWZdYi/pXtyhTzL9ezr5geitfYD/ZG77AS4BZj7tnsQ/6kfKFKvGlHY/vSsFG2UFgpPme/c2vNCPeO1Nwrfw3CBz7m191TdMZ/+4S+hoOL09fVY+ffMwrZ1sYcewlEFYIo32Fy2qvw6rriZR/TmqQr3wjiGfq6h+u28lEi9hcX1NT5Ch7pOmQpJuJdlKKDklaQbTdER3SXp3uJv0Rh33mJvKZgksS0mdiv8WQtiWDV0ZgXzNQ/9zbR4vQxtwHxK6hsLIgvTpuqH7rshpG11+WOI9tA+O80QTSsRX28uwzlX1j46fYq6NZ+sw031udoRxTIuXIOg7sF/pNzCAbfYGvK5mUU9dGV6tUSVfUL8vVKqjrANFnPY5r9OoIJbYZvloF9ZtGeVhGfNXNsBmzFceasPzcdmJlTRLb5kBBr44oV4ke/U+V32S2ovzNHHvk8seu9VGxVl2tE5OdNdY69U3SXqgD2yvr684xe6nrVZS9JlMezt3Sxt0oR12hFdtCUEeb1TJ/fwRXzUXUVXpqjSu2xqKuw+ZX10PQY6I+4ov9zo3CVrIbvdrNz2NHOnFbLEmec23UPUvbV1eMx/pIPv4VQvz1a7UdxOu/ypdx/ZN9TsUFdQ2591ybfU5dO9vkMbm2+g0KyzsX8rDMnDrpb7RDosvVGbbGYu0/q0/gb4rMT7maHnHVuk4sbsXW5hvFrdjaMB87UVuZJVFG1Y+vr3/y76Z8LuPasFOM6t7XMYrjkDp2b3lqj6rR+l6JroiM/Z46th3+La7YMcu8r5HG5mhqT6Esys17Cn8Nx6hm9qeXqxW/BV8Suqm2u4Z0N/q/j+y9KdvGjpWrK81jvohYA4SVdhw++TexAdZqwko7Tp/8a3Rs/0bCil3fPbkB1nrCUuNbw5rSAGsDYcWu31VHHlv4Ok2PimtYHo5rjebk5mdVQX9bGJZj/IEwWlGeSs7yKF9Xa3AYW40/hNbXT6zfUb6ojgtViR7bsSpPXwvLE6ufRnHtRiqPikXtVD+NxgXrI+WZGClPu9bPhkh5JkXK0671c05IL09s3QPHuTbuMJnq7E7WPdoK4O6sn6+LrW/G+r/YNYTq1XXeO5pXL1di8ydmj5RXBZ4sYx6jPwwwbcyjxgrNXm2G/LH9ZnVdOtuax8sYY9P6H7QLxnC2i9G/Auyyg+aj2I5Mrybb0bi9NU5oNO5xGifI8kzOWR6kHwjp5cF1COMPob3rZ3WkPLFxT7vWz42R8sTGPe1aP+sj5YmNe1pZP7H9h9jebZJ4nBDbu8W1Jt63wbX4tH4T8xL6DeNH6now4POeJ/Ia/SH1v+31Uabh8zlGfy3E8N2zR5YD6+VgKschoEup/mnrtTXSvRYypY4S4YUw0m8C4VdIl5zyho7N10gelw+PzZtP1I/NX7Ru4KZzBm7fsGntIJ/85l66Bn8jKj4rhZGlx7xOesYn5q+gv5cJviCwk3yrubn0vBYypdwr7ZMobwnkYW1yUqvipnPiwffk+CHBGuSdRXlzIG8JyOZ6rQk5pr86+TWHsGqCz2zfSF6n4OMLokv0HFcqDxayy0S/AaLD07NHykVZB4d0O9jf6keM2N6Wn6QmfXJl1mhi+JUwuu6LRJO5JI/LVyya1OA7SrmKUI0GaTFdBZohPb+/w7U3QfBxMouVSefH616UyHgTrXfXgJfXNGuA3Sme8fwJ+Y1Oyak2Kacq5Kjx1K2UNzWSp+a2ljcD+NZQ3kGQx9f4zgTMKuXNimDOFphJ3R1ZHcZL/i0COuXpvN5/JOiDvPh3F9EmaV39s0y07wS/2k5+ha2Y/WpOA71jfjUnpMupNimnKuRwb5Uk9p25oqyWNw/4uJ7nQx77zkJRLss7PIJ5hMBM6mdudSQd13+SLOIfA89zROCrskZ8w6+QLkUj/jEkj8vHr+weW0zeihLxozzENH3M1seJPMM6vv53dwqW8ZaJ/gP19lYluiTx1b3HCX3xGb5r+b7+kbqjbUspn4bLz7h9YdmtfkwOxhu8OuMjtE6KcaozjI5rvOdr9MdOGeb7KMUq5Oe6U+2kaPkXiTL2h9G24b1Y5d/HROT0R8rTqvrsJzlzgA/r85NUn8dCHsfo5Puh9e9lop8J9fkHVJ+qLSo7c7+U186ThZxW25n7l+Mc5SDWGqBP/p1AWGxnqyez8/GQdwLxnQh5SIezrhPg+YlCtsI3jEY++Bf9umxpPmiyykQfwAdfKOiDx1Ee9hXYL6IeaAekPzTocnWn0KeV629g1vl1OmNi/GgrrAuOv0b/NbGHE/Mt7A/4nJTyhxNEuZRNTwyNZaOdl6XI7g5xXywT/beETblfQH7Vjg4kXY5voDu3b+Q3ul7B12wcUTo3apPfy9kmj6p/Z9/99uRhvh9Qm4z5COrM84i8dq4KOa22M88RTnSUg1jcL5xCWGxnqyez80mQdwrxnQp5SIf9winw/FQhW+Fn7Re6qrpsaT5osspE/6fggz3VkeVX/YrywRMpD23K/UKjeHgU0Zve3SHe35aJvlovi+oXVHvFWMv9gtFPBkzuF0wulivWLyhfPEmUS9n0FMI6UmChnblfUDbF8h9J5Tf6GcKmql8wfrUecRvl4XrEsZQ3D/J4zDof8o6jPFyPmEN5h0Mex7sjIA99hNcjpkTKg/uaNcrDdbu5lDcD8uZR3kGQN5/ycN1uIeXNgrzDKW825OG9SrZuxz+lfHT9eZP7dvI96xrppn6ihT9DyNYfqLMsyi+blVODvKUkZ46jnDmR8swTcqy+sL20Yp/V8CthdNstsk42n+Rx+YrtjGC0YasgKj4rhZGlx7xW7rOa3IWQpyzBK+dYpoUpfGiLIJ51CPr5hDVf8JnunRF+xEA+9pgSPU/bjzSMMtEvhd7qWTrdp2ShPbjHNN3TTkywDkZ/Ieiwe7bGLKeUa14K5vXVYXtcUtWYQWCqci2kcrEO80kHo79CjAQ6iYb1Uc9KYeRe78IU/VQ9sa7Yy6WVh+vJ6K+O1NNcoQO2yWUNdGCahSk6XCd0ENHtnHW3312PboESnhfiaKQsz/u2cwVOWjJrJDLMI9Upg3mCby79PU7olJTcxlL1kp87uHZw42BK2Tlyd6XI7Ag68XjU+JLUE5rq0zL3oYZfCdrzaiFTKnGUM3lcPr7udr7QpSrysH7Zj2Jykjq18Vi9TpdvXLc+rUqzdq4loRbzB8IqiWdJsqouuM3n9hpxkngYeTbwYVDjxOXG8iRN7R05bspFm55FeeieSygPm8rZlIeudA7lYcA/l/Jw6nYe5eHU7XzKwy0zs6kNlrCe+ZUDdWRBbdWqVw4WReTMbFLOTCGnhVvlmcPXvtoqt7KrbYyqyOMDbNbN/AQGVltpys9XlSXJ7FrwVzxPzGpXw6+QLkXtql65U9d+qSUN41WvSz4IdJzXKZ51RLB2OGI95Yi13RFriyPWvY5YnmX0rEfPMj7iiOVZxicdsXY6Yj3hiLXVEWuPI9Y2RyxPn/Bsj55tyNMnPO31mCPWbkcsT9s/6ojlaftdjlie9vKMhZsdsTzt1a6x0NNenjFnfxgzefqEZ7/tZfvk+0QnrCR5+r2n7R93xPL0e88yesYJzzGAp72edcR6rv6prm3gYzdqzj8lIgf5p2TAynttuFrHmRCGj4YNLfnfuGnNRevWBEq8Q3F+ioonEN2yFNVKArdE//j5CfSsU9AidrKs1F9/c5uXrJDOlpWOI+xayJSOLRFeCHpZyfArpEtOeUPLSurNDSwfLysdL3RRpwVfAd8xD+UcL+RURd4OR6wnHbF2OmI94Yi11RFrjyPWNkcsT5/Y7oh1ryOWp0942usxRyxPez3qiOVpr6ccsTx9dYsj1v5Qj7scsTzt5dkPbXbE8rRXu/ZDnvbyjPee/uUZczzbo6dPeI6ZvGyffJ/ohJUkT7/3tP3jjliefu9ZRs840a7jr2cdsXiZJPbWatbbB9QyyXEZsNR8OFbGFi+TmIqLiW5ZimolgVuif/x8MT1rtEzCp3LW1eNWkyfz5IsnfEprKuThaTPMCyHbSh3yT43ImdaknGkZ5SxuUs5iIadX8JVSPk0OP4ut7C8mOXvrggtcCmM/iF2oouQg/7EpWPZqQ5LuAJojiB4vWAlC9q2Qj/Sb620oOf35QP3oqLr8AV8wfWRiXFfkRV358otfgxdMH61jKjtbvSs/OJbyFgm5CpPbVt66myZ0iGFhfc0gequL7hR6w+O62wV1xy+y4ot7yn+OTdEB/QcvYUrzn6cL+M8zE+O6sv/MINlGvwP85+3kP2jjmP/MoDz0H7ORipl8UjdvzJwp9FNy5lDeHKF7ifJQhzkRHWYIOXv7lPtMylsCebMo72zIm01550Ae90HnQt5cyjsP8uZRHo6J+OXapZDHL9e+CvJmUN4FkIdtkFMn/Y11krS1h6GtMV0gmegzZ1EexhmzvfkaviSMGJhnuvIz9jXkn5WCha+7Yezhi+ON/qP1gVvS/n934shy4eWDZhPzbX51rBYypeNKhBeC3j4z/ArpklPe0PaZes0Ty8fbZ4uELiq+HQbfMQ/lxN42wLxtjli7HbEeccTa4Yj1tCPWVkesXW2q1xZHrHsdsZ51xHqTI9Zzjlie9truiOXZHvc4Ynn6vWcs9KzHRx2xPOvRM3552munI9ZmRyxPe3m2Ic/xhKe9nnDEGour+y6uetk++T7RCStJnn7vafvHHbE8/d6zjJ5x4jFHrHYdr77ZEYu34tRFbSXKQzkLI3KQf2EKX/Id1xx6hY6l+meTb813lgjP9MFniL+v3ppXF75XRR5fzZN3qxSxslwgotY+Yr6hyui4VWoqHkt0AymqdQjcEv3j53waPG2r1LCtGeHSE29XoRljplXbVbMjcmY0KWdGRjnTmpQzLaOcmU3KmZlRzpwm5cwRcqwpq99pSZZNXzVJy8StGFyu5a08o38IlmIvnDSyjLidMYXKjy+Q1Ehn/L0aDr1472WOUJj5whLDr4TRPlkk9B5E8rh8GJbqu1oZ7izkFoBWQVR8Vgqjo0YJNMNnvHk/hfiK3Fk4E/KUJfjOQizTzBQ+tEUQzzoE/UGEdZDgM907I/yIgXzsMSV6nnZnoWGUif7V9Val7ixUstAefGjHdE+7h451MPoB0IHvwjsIeFS5uDXPpL/Rt9alyL8DoszgJC0/CPlcPoxqafcBHkQ6GP0tYAO+33CW4A8pz9AGyJv2N9Lyb0Kq3+tDX+S7EGc3KDvXv9HfHqn/aUKH2C+Nsg5MMylFh41Ch+buQuQox7XENTFN4KQls0bisea9bB1uHSzH/lYe0OxdiFNTZHYEnXqD1i1JPaGpvjJz32z4laA9rxYypRJHT5PH5eNp0UFCl6rIS2uljeQ0eRdiWqetggXzB+ItiWdJwhdWx6YajeXsD1MNxlJTiCTdV//kwL4bAjv/hMJs0ENhriYd1CrAHFEeo1crVwtFGc2WuEqxKINstCV3hMfk1FWtruBK1ELSFfU7LqeuA3tZ19lC1yZP7eQ+kcanx5ZA3lzKOxvy5lHeOZDHp8fwRNohlIcn0vj0GC498U9i4Im0RZSHJ9J4aQBPpB1EeeireFcqJ+5DsL6S9vyZQ4dxmQ6/p8UibOvLSMdZomy4tNED2CinFjKlBSZHTaYNG4cpOXxzNepkSQ157FmFdMkpb2jI00nyuHw85CkLXaqUl6T7gY7zOsWzjgjWvY5YOx2xNjti7XLE2uOItc0Ry9NeTzhiefrXdkesHY5Ynj6x1QnL+L302u2I5ekTjzhiefrEk45YnnHVs217+WqS2jWuevqEZ/zybEOePuFpr8ccsTzttcURy9NXPfUa67f3nb08x6ueMdpzDPCUI5Zn/GpXn/CME+3aD3nOYTzL+Iwj1lhcfXnEL896fIsjlqe92jXmtOu48FFHLM/26NnXetZju45X39imennG1ccdsTzjRLvGaE+9PG3frnHCc0y+P8xrPfvtp9tUL895rWc9erZHzzmM57qvJ5anT3AbKtX/Rppb4fttkI/0dktRk3vFN/FerGEgdldB7BLhhTBSz0D4vUKe6VVJyauFePrfZ7369X9T++HBJeI3XfgZnzXpFvRqT9tshT8tncNWN/aCjECyLa8MeV2Uh3YxHX52e9askfp1F9Qvi/0QvyrolwNdnrqYFEb6Avq7nfHBG4f45qvYBZzqEkz1hprR249wdKfQG16Z6J+ut1c84N1PNMn3aSnyUD98FjsTeEIKVtqNaAtSdH8H6M5n6E4U+qnjp0Z/kqA/EWhMH2Wbk4KWjeXB+ryDymP0vyjKo9qf+VQP4FhejrYzIZHzHZDDdsP208hGSWKbniLo0VZmkyrRo30tD1+rOpHyYmf+jhA64Lk+Pl+lbnLEW/xiNza2U7v+WMZ2fXiKPNQv1q6RP0+7TtKmFN0/kbNdHy70a6d2/amM7dp8aqxdN27X6tbRrO0ab3Dl211PgTzDnQO8R9W/l4n+/0R89lShq2pTRn+aoD8VaEyf/jDavqdRHvIdT3mnQd6JpMPpYbQdUC8+1270fwV22FE/oKp83fRq0teXKF8/HQjY118JeZ2CnuviTEH/SqAxm1SJnuslrd2gTfmsvNmoW9AjXpno/0HEftMPbzA/nXQ/Mafuc4TuvWF0m8E21VV96buKt9xXnhiRqfobi0HdKfSGVyb67wp7xfowtFMfYRr99yLxQMXbI+FZ3nhr+iibnkJ5qLv5gmqfRtdk+zxbtU8sP7fPWFmTxLZRsRV91+q/GkbHQ+6LsG1w36/GRVn9H33oe/0aN62/qb9KMMq/OusvumUdI8V+cKHRGIn7GzVGUv7FYyu0Kffnqt9Fep4DGv0EsEOsv3Hy58nKn9Fn2Z9j/pmkvH2/2aQaRvcHaeNvxMK65v7GbNQddB0YHo9vp0EdcH+D465TSPfjcuo+R+jeqL39Rb29qXkb9zfHRWQyL8aLtP4Gb5lH+pqwV4lkYDtAO3F/Y/TzIvFAzTlj/Y2y/fGiXMqmJ1Cemtuq9onvv1n5LC9H+5yi2ieWn9tnrKxJYtuo2Iq+a/WvxlT86w3YNo4nOWp+k9X/0Yc+Sf0Nv/uJWOgXMX/EdjOh/p398cSIP8baWZLY5o3WTEwf5Y8850HdY/5odE3641XKH7H87I+xsiYpb1u1+qyG0b4a80fun9U7wxhD2B/RjxZBWT9S90db9y94W3zu91x5L2cJ0C+lvLOBrw++c+qkv7E8Sb2/g8YjQWCZTLyn4CzKwzsNllAerp+cTXm45n4O5eFdAOdSHl7rcB7l4Tv351MevpvKNsXLaaz85gP4fnkOH8h8hYbhV0iXnPKG3idVt/Rh+ayN5rveim8WQKsgKj4rhdGeWQLN8FkX0V1Of+e53spqbg49r4VMKXfr5be4l0Ae1iYn1UJN56SF3kOrsUFgmUysj7MorwZ5S0A21+shQo7p3yHoa4R1iOAz2zeS1yn4OPoqvuTvcYKnl/62/CT1hNF2yeEfme8MrdW/e/32SI3kcfmsDapRl/GqW0O4l58j5MwRchRWlot2lM5NXrTTRX8fkqJGh+APxMtNtSMFy3A4wDa6XYvdPO12rbvFREw1I9SnVzxjty/YwWTu0Ay/Eka7RBG3P5jkcfnY7VUYqoq8tMtyGslxdNUkXZ6ihuopA2GVxDPMU67aB8+yuCqOMdNc9ZHIGktZ8Cc2+MPKSNkXA506H8a6XkK6Mk2ZdDX6baCrXVpnuk4AftOnl/gtP0nWpC4l3WshU8rcpAy/QroUbVKXkjwuX7ExItY0WwVR8VnMixu1nPPo7yJjxMvpeS1kSleYV1whMi0PT26VKe9KyMPa5KTGiKZz3jEi1sdyyrsM8q4E2Vyvlwo5pn+HoL+MsC4VfGb7RvI6BR+vfJToOa4MXSxkl4n+vRAdnp6dboeLQ7od7O9xQk+2t+UnqUmfvDprNDH8Shhd90WiyeUkj8tXLJqgp6CUlYRqNEiLaSVohvQ8ZOTamyf4OJnFyqTz79a9KJHx4fr3/jDae/tJb9QhFpergt/olJxqk3KqQg7fkZakWynvfFFWviMtSWso71WQx5HqAlEuviNNYV4YwbxI5CV1d87UkXQYjUopn0nqFM/YppcKXa3uMALg+CuttV0ekYP8Rtcr+Jotj9JZjZ3wyvvPThnmwd4Uozb68fz69zLRv3rWMN+fUHu7AvhNR2Vnbot57dwv5LTaztymljvKQaw1QJ/8W0FYbGerJ7MzjnZWEN9VkId0OCJYAc+vErIVvmE08sGvTtFlS/NBk1Um+rPBB/+uoA8upzwcQXJ/aHqgHZB+ftDl6k6hTyvXNyNzu0sFv9J9KumyPKJ7ktgXkZ9jdyt8HmU28p8XyX+uhDzlP4vq38tEfyT4z/fJf3CE1oryx9o1juT4ByFUu1Pxg/mwjR6YQYcVQueq4De6XsHXrG8onRv5RmnqMA/GrjTf4PO7Rj8VfKNcx+wPo+On6ajszGPAvHauCjmttjOP71Y6ykEs7t9WERbb2erJ7Hw15K0ivmsgD+mwf1sFz68RshV+1v7tgKm6bGk+aLLKRP9fM4f5ppMPIn/MB1dSHtqU33NbKeyg6qBEenen0K+kchn9IfWyqPNOqr2uBEyO5UY/FzD5fInJxXKp2XLMF68W5VI2XRUay0Y7L0uR3R10+dN85fCITY2/K6U8bFOjXxSxqbJRzKaqja0S5eoXZb6GsC4TWGjnLDbF8l9G5Tf644RN1bjlMtIdxw48hlTjMKTnM4iqjamxCbexUyK6x1YlcW3hNsrDtYUrKA/vX+e5GN6/fiXl4doCr3NgPXL/dyHkXUV5F0Ee+r6tLZSprOfXnze5tzDqt0UQS9m3lPIZQrb+9Dyg4fNMrVg3UXIuc5SDWFY2NWfjHe+86wbIH5sbnt+knPOFHMaymJwkHBNZeyoT/dXQrp+gH6G6Quh3PjxbFikrt2fEsjqz9oGxrxV7b4ZfIV1yyivFYi6Wj7ezrxS6VEVeWp2iHLWdnVcvx19rNRVnEt2yFNVKArdE//g5/7Zdp6BF7L3V9PalnMlNypks5LR6qXMyyUmb7qyn6U6jJeUF9e+8pPxNmO5sikx30pod+hpudbBvm7y0YwxLU/S7B0Iv//7fUlHmBRGdrwAZLDdJt6bocB8NVQqGYjlU4aVQHNJxd4xDD6wbzAth2Bb4jH3uEiGHsdK6SbMrD+nekrObRN9eFinrFZSHXRPbQclR4V3ZISZnSpNypgg5sW6/aCxROvNUIkkYS3ZSLMGtQTWksUMBZaL/S4gleyKxBHXkv1VcTusn02LJ5Sn6PRuJJWpoeHFEZ5wCstwk3Zqiw7solvBWUC1kSyqW8NYExj++OihvX4j8e6svnEZyWr3tp5b7Ob6o7agrI3LUllqj9vihqVqmao/cryH926E9foTao8dWXVqbCCHbdtcVQk5aDEpSrA8y+o9H+qBGQ//YVC1NP7x6D+kPgDKnYQXxzOix/+PliyuJdnmElvVG3z65/t1iEW8p10KmdJX581Uik7c0UCfLw2XE1wAdJz6ihDon9f3rhw3jMh3rg3ZYmYKp2vw6orUydwhc3i7Cdsz2Wp6iA9dxkm6pf3J7//LUYfw/pX4Gl8tz1O1KtSVlieuPbcdJ1Z/pldTf1wrW39WUh3GVj2qpeJzY6+/3kb14zo9pX9iLl58b2cvy8Lgi8/EhVJM37oBhvH8kvPNBFvs/xzTcnmH+JPFYzOi/DX3FovrEsT+M7l/5J5IRW42PuZ9Tr2umlRPj5ArS22jLdbv1hNH+lMNXl1gdryKdEPuagtglwgtBLzsafq+QZ3pVRF6W611v+4+B4wa67/lsifhNF37GS4XXCvqZgt5sdR3w57DVK9Wr7ybb8tC3r6E8fLHNdFDXu15bUL8s9kP8qqC/Hejy1EVVyLnEEWt5QSy7dlZtp3LMTRL3Q6rvT+rx0HrbVnHoINI1bxxC/jxxiMe6RjuX4lDB8ePxahzIcWhVQeysccjwe0N6vVZEXpY4dPOPl9z+qSv+fHYpjI63neJZlm38gwR9k+38GBWHONZgHFpFeRiHTAcVhwr2KcdksR/iVwU9x6GsdVEVci5xxFpeEMvikBqDqzjE47urRHkwDvEcYxGM2RYcMBIry7g7hPjRTs5bITAT2acdMPwc45VdMf4ayOM5mjpWZH/jM/R15OG1B6M/HmyzmPTD+T+WE/VTY3VclzzxgHS6qyJ0Wcf3fM2IOjadtV7UMS1eL1JH3PFZbL3I6LhPWgp1cFakL+W3ovP2pcjPV7DEXhW6XOig2imuB06bNpIObVRK+bRy8DMuh6qfZOvb1l7rW99LBzcuv3lg/eBNywdXrx/c2Eka8A4Gt6qrSSOVTEve9b6I/uYX2NJWTnhXPiZT7VLg5TwsV+1gsWVnCJ33pZxZTcqZJeSo6N6sRyqdG62YrzpgmAd9Im0Ha6D+yavHB8GK+XUUPdSuo7Iz3jtRxM4Hj8lpqZxDmpRziJDT6nZwCJUHe2a2W95dGORfvpflNGrXdzq1688fNMx3T4Z2HStjbMfoElFGw1rRAGuAsJA/9rLBJRnkxF54yfpSQ5byxOTsy/IYlnrZAutgdUSvlYR1dQOsGwlLvVCgfJB1znvSBPljJ1pWNilnZUY5e6s8V1Eeztg4dqm6uzqiA/LzKp9atSoa85XOjWLkOyhGqhefYqd3jP63IUa+OxIj2XdfbnZe5SgHsfiihrT6/CDV5zWQl6U+jf4XoD5/LUN9KttcESkPno7KEg+zvPC1MkKvVkFVP2D2xd0bq6Mmd2omZfEDxK+QLjnlDR2mfzXJ4/LhoXXbSK3P3JcMblh87Mnn/nTafvftG9mmhjsRhYL+TB/ob+ZLdOPrsa4WMpLE/rOK6Lje7TnjZ9GpEW2jfNVuriXavP0a8qediEw7/WT1wyeVP1Vv5+r0kxpHoQ8ti5SVL7NYkaJ7pyjD+KDb68ag9cMyL4uU2eg/GynzygZlHqAyq/Eexyam6xRl6AmjfQAxsoxfcGWuFkaWK+/KaU3IafVqYo3kpPV3X6L+Tr04iyu3S+rfefX9Sejv/irS3+2t8jdq01gW9iksV1lgJolPtRj93/ucDpEnjNNODnH7/QeqU1X2WJ0a/YNQp9/MUKex9hEbi6g4sTxCr8Y6as2odSdsSn+XxUcRX+1eFxmLqFMxamcy71jEcP8WCoT6NxqLMJ8ai1yVIiOt7fH4gMcyjcYiSqc02rxjEVzn4AsQ8q5pql1t88+CL4LWTJfloIc6NcRxEk++cltU9JeQfoyftv5QDto2ayAf6f8bxhmvoNOCqMPsFP1CyFYXyL+31pd5J7IVbyQlid+0wHo9G75jnslJi8lVwR9bx17VpJzYqY1Gvn5G/XujMVHftJG46rK284UePDY+FvrPiXVMtRse2y/ht9Vwd/s2ylNv+cauAsbdbaUXv8GZd5de6cNvLR4+bViXmaQLvoXBP8qU941L5OeTFuqCip4w2h454m/mF/8NvxJGl7nI+EDVkbKLusTEeKsiDy80SZMT+0G1pRn1cnzx3/4+kuiWpahWErgl+sfPj6RnaoiB2D9bYpwxLAfNsKju/uZ63LXWQrakpg4cYtDNuJnnbVrIn/YyM3b36qCNCn0LCStvV478l6RglYXuSeLpndFfQHVUcHh2WeylyiYP9F6WNfSk3a+HelVEXpZDt9+unP65f/71Z/+Mu1DThZ9xuFBTyIWC3myFy0M5bHWxOnSLSxRJQh9ZQXl46NZ0UIduC77QdHEW+yF+VdCvA7o8daGwlhXEsoOyaiqxr2JS2vIu31Fr9JfW275a6lSxSb1Er8p6CfGpQ6FJ4piTpFrQ6SeUDM/sP07I4heZjfYqKPe36SeCrhC6WozojMgI4lkppNuGZXQIXvtNejVtTdNNvQSNGOel6JlgqOkN+23e6U3Wl78Pb1LO4UJOK1/0R5mNpl8355h+Jenu+idPv2ow/Xp9ZJrD00h1uQ6OWfJeiMHxxOhvh3a1O+VleYxRdwMm+xnK4HIlicczRr+JxjMFxxxyzMlLPzhN5tiapEtSyoQ2WA00bAO1hbUmQq+WnWN3x6l7XhkrbfuMZa9qIHuAZKfdzYt/o+yBiOxrG8jmY1jqJUP25aNnDOvwILXfC4BH1fulhGn0M6cPY27OiXlZCuYeWG7YEllumBNGyss7/kD+seWG/MsNPCZQcuYIOSXCaqRXC5YbDiQ6z+WGA+lZnuUGc3O8fvZEwr8AMDrFM3Zz5Dc6Jae3STm9Qk4M60SBZfTLBH2voHd0DVNxFtGtiajGuI1cYxY9S3MNS50kM/nOK05cNaxjv8A4P1KmTvEsdr3ksoick5qUc5KQw5v5n6DREcrPES0f4RucDQOxC672PZI18qdtZqFe6pcfs6z2HPG7b3rPafNuvrRE/KYLP+MmqQ5vnSTom7wC8mG12oMbLEnCEfQllIerPTiT5tWegquCD2exH+JXBT2v9uRdNcW8ZQWxbLUHbyyPteW9FTNaISeGFbtG0WzTLehVTDL6P4JZI/9gs7J3EM86wuh49Nr6Z7/Amp6iu5Jt+EmqCn6ja2FM7MobEythdJmLjIZV+1B24Y1+5FUb97xCkfewa7tjoW/yLyFYvvo0OfyM5WDbm05yWnWoI4ufF5WDWPxiQ6sOj9gKUpN98JXqdXtLaieK/UJdmaGuOWT7qxcr1HUzZ4Xh75w66W8eBxy7YBiX6Syp1Vzul/Ku5qrVTLXagKus35+mZeIqq9qR4ZWfTlil+fdp6WXkGX3RFcv/3gsrli8nHy/ix7cU9OPYL/fxCYQVohwqXvOvUWCMvZLysP/mXwrEWHYb0HE8ja34qzHlhZSHOpyfQU5s3HR+Rjlzm5QzV8hpZb+FMhvFqekHDvNg/as4laS76p98cuN7Bw7zzax/V7tBqCP/nWVcb/KyXo9u9LW6Tmo3iMuM5VQ6o4xAGEni2Gr0h9Z1aHIeK2Mr97nq2vIm5WZeBTf8CumSU97QuF+Ne9V17vl+m573wziiMz3SBpHXSc+WEt0F9PcywRcEdpLf5IX6K7hXxJS3V+TLvjCpns90TlrePbOGcZmO9Ym91oS9Ir/K1ug8hOmvLvNdTljqInmzfSN5atWBZ9yKL/n7XMHjOaPyPIugRmMccQqOIqdkjTiGXwlNtZOhiKPOXakfQlBth0dGmIebU5iHcmKvOiLWBU5YSVo+hjWGNYY1hrUPsLLMPLGfGqh/qo3wtJ1h1C+2EY78sQ33w5uUc7iQ0yv4ivbJ1YjOavWA7Zb3h4CQny9TTZt53nmglpl15mn0fw8zz3sOHKmzmnkmSc3ysR4Mg3l7QAfLyzG+6E/GwN+BMTDbFXdAs4xD7Myiuk6Kz/+gL2Sto81UR3iRuqojPitq9M9DHW2h1QFcBeX40uj8091Eb2XsDnqVlV+TM/ptsDpgu36xs+QsL+3VxUNT5G0Hed+gORH6nclu0u+mKL/DOMN+p1a4VDyLxQu1UlcNo2MPr/Cos4Dq3GiJ+LuDrgN8RwrpnxN1nsXPVb0a/Tsz1qvZshX1irbielW76OoV05gfoP3NJmoFkl9pfJXAwrrmem3Ulg2P29avROqV301hPblejf6DGevVbNmKekVbcb2q8Yc6jxnzA+wfzCZqx+AiylPv08TiN/pBljrH+kmL3x8Xda7ekUg7VIr6pZ1jnVL/Xl9ZXL5x3frB+tJioBRbCkz+Tjt+O1nwB+It0bPJlKfCZ2xB3WSnHZTh8Gn0nxQmj4XfJGU5oo3V3YrFacP3OqLdKKzxUlGsmcWmMvvAVUMYvcqEajF/IKySeJYkdWw69sZQLLopU6mzX0iPbzcg/RciPUejPUyOsGrkjr2j6aPKzxcII98lKXKwR8M64x7N6F/I2KM5zXxkj4Y24h5NrSzE3mhWbxup1VJ1wS+PTtHG/JZVo2bIZw2Un6qZlfKX2MgsZh/lX+rnVNRZgdgsGM9vJMlzFozlYV+I1W2SslxghvXNo1Y818ErT9iW+CI2NevJ6gu42nFnyh58I1yjVxfQIQbPyo3+hyIGGKY6IxXzR2ULjON8PgWHQPzT3siH5yUMOxBdk/7Y570qU7Stxi5aVDOstFUctDee8dhbK398hq2nfoYt9rPVWVeUjH4CYLLvqjLEfDdWnyqWqsv+9/YOPccWjG+8Y4zxjc8f4dlMPkOS9lOSnHgMiHbIem4zFneyxlT0pe/TWUmcVhxLMtUQHp+xzyO/0Sk5vU3K6RVyYljHCiyjV2PoFr+WZyrOI7o1EdUYt0T/+Pk8etYpaDGpakrTO4Rs1YT8adWE4Q1n4zeSXjjcOI6w8m4yIX/aW51loXuS+Aib0S+ph90mX9nbmeX1lILH1HaWCC+EED2mpg4c8St7fDlJLcTTb73/8r4//9TJQ6+cZX11IxYGjxP0Tf4q6pOxYZV6ZY9f58OhUexXUQse9X4yi/0QXx1HXgd0eepCYd1YECvLK3utjkm8BHC+GJbtbV1s2HJhG+hiQ6HL2kAXGz6tiAydVX+Aw1zuW1D32OGGvXWI4vgm5Rwv5LT6EMXxJCdt4/zG6cM82NbTpjmb6p+8STkTLn4ZrGOqJcO0/r0U4uMO1g+P1SPN5Sn6vQ78k4/Vc5mxnErnC0FGIIwk8ZjE6NfRmKTgcXN5rN6wsoxXCsrNvHNh+F6v015O8rh8xY7V8+IUHxf3PlbPfxc5Vl9wdHKt+jUmS5aHv8bEk9dXQx7WJic1wcYXyvIcq8f6uI7ycET1apDN9Xq5kGP6dwj6KwjrcsFntm8kT22m8CxE8SV/nyN4PF+I9nxJOMsVtgUXmzL/0pfhV0JT7WQo4sQWiZPEZV8hdFFH3XjWXfQK1uT7VY5YVztiXeOIdYkTVpKa/eXUMawxrJ9nrCwvVWN/sL7+ubdmlErO4iblLBZyegVf0b6vGtFZXWXPdst7KZP6tZBGM7zfma5lZp3hDcmBGd4np4/UWc3wkqRm01gPhsG8PaCD5eXoxyeojVK0K2+UqlVMpL+j/hk7qqd8IWsdPU911Oj4uunDZ91+CJdw/CnNwnEDKsu1mkoet8Osx9eN/s9hFh47vr4sRZ46vp6ki1PkvSA2X1t4fH2S8juMM1mOw6p4FosXakVMHRC6iPLQxjwuzXu0XR2HjR1tN/qvC3/gvoh9I00/ZTfn47Bpv0YwUfAH4i3Rs4kpWIaTPMNFjizHYdW5PQ4R/yRMHquyJI0dh/25Ow67NEWNkuAPhFUSz5LU6Dgs9yoxEytTFX2R4kfCpWMRNnYFqRoJYPXGjsPyDzWo63JZjnrBI0ncow2NOGYMl3UvvLgjezS0EfdoWVdOjL7RkSZuarEXB9XMJmszzHoclkdq3scP2b/Uy8bqeFdsVO10/HBCOx8/5GszsTu6kuRkPbba6Lji76TsnaXh8l7WhYDVKTD4SKHRHyJigGGqff6YPyr/VddxqiP+HO+w/cWOZxtdk/44Xvkjlj/LLC92tiVrW1Uvi/JVdtgXcD/ZyG9i/oh7lzfSjA/lHEEy854tOULor+T0NimnV8iJYR0hsGL13eKjhKbiTKJbE1GNcUv0j5/PpGedghaTqqYLUvQOIVs1KXdWcs5vUs75GeUc06ScY4ScUUdc6mG3yWN/D2XZMCt4TO6hEuGFoGdTht8r5PFvPmJeliOF362u+PTaH/zSr5SI33ThZ9xsrxP0xwh6sxVuTuew1f2qa8KN5iRh13Qt5WH3YjqoI4XXFdQvi/0Qvyro1wFdnrpQWKsLYmX5zcdWxww+UngNDKH46Nze0sWOFN7QBrrYkcKb9qEuSs7iJuUsFnJaeUM6ymy06L9uxjAPto+si/5G3we/b7g+x/IM91/JJx5E4fauft8QadJuBr8TfIqP3l1OZcZyKp3xtwNZbpJuTdHhjdR3FzyQIo/e8bRc/dw9lzcEbfNYOzG6JsuQ+zAYH1nF/panJtdDHr/BdQPkLaW810Ae36E6AHlXUx5Oqa+hPPRN3oi7CfLOp7xByMt7ezq+TfbwwcO4TBdIZuywG/abZnu1xHgCfMc805Wfsa8hf+w49OVNyrlcyFFLrTg+jh1+s/ZQ8Jhp5h0IftWm4CtFQzsQsTuLfqZY/ZM3sJFXbfSlHbFGOScIOXn1asEP4x1JdGk/llQSuCX6x8+PpGdp02b7e1++cdCKJtZoOPLLM7RMNRzhrhjp/xHOiXwAvvPOEWJdGkbmoZ0uI/3VuZ2eMNqGrQgBhl8hXYqGgKz7//lOtvPeH1oFUfFZrCXwXiNvA59PfHlOtptctQaqLuCK7a0xH9oiiGcdgj7WIS0l3Tsj/IiBfOwxJXqOre1iIZtPuPweDK6fpcG1koX2aHSKg2lYB6P/g8gAH9/fVeXi1swdPPrWuhT5X4Yo88cpUSwI+Vw+7GG6U/RNu5LpebBB7Of4+B1yflYK+mdl0v5G2jKVhfdV2BcvJvqLGpSd69/ovxip/6VCB+y1lzXQIaSUkXX4ktBBRM1z1t1+d8qJCh5LcJTjWuKaWCpw0pJZI/FY8162DrcOlmN/K+skJZ9a/z40NFs7uDHtNAn3COelyOwIOvUGrVuS9tUBoaXF5EUPCGH5ih4QSmuljeQ0eUAordNWwYL5A/GWxLMkJe68ovLS95fb8Jmx0lbp7qt/cif13cim/QWgh8JcTTqoGZpaRTJ6deBBdUpqI/+SDLLRlhzQr8ypa6MDQfz7Z7E78BrpOrCXdb1A6Nrk6kXu1TxeecPVPF55w9U8XnnD1TxeeXsN5PEKIdqcV95wNY9X67Ou5vF0F1fz+BWQ10LeRfCdk1rps/pK2vNnDh3GZTr8nhaLsh72wNjzyym7B2m4HEPUrxggBh8+MvpJ9d0GFcfy3g2p7kvENswHjLBtraQ8tbu4tw/Dxe4JjZU1SWybVYI+djck3o/Gr6DiKjbHSK97zHg3q5EvcD9xFWApXziz/r1M9PMj/qhsHovnje7j5Ptu8QDi1ZSHfHxREfqj0bXirlIsD/uj8i+kZ9tcI+jR5/gwLr4GfBXlYVvlfkXdL5zofvO0kXR4WLSU8mm68rMsv/bD9xV6yEGsW0kOthdclj31oGFctFdaOzmj/r1M9FfBLvEr69/Vvborid/yzoJ29q4F6fx8Z686pKvaCO/0qnIi/Zkp5Twf9NxRXwhQ7c70arLdVfO2O3VqJtbu1GkoPP1jNqkSvYr1KiajT6bF5O4Qj4ccky+HOuDXunC8fjXpfkVO3VV/0iiO9NF9m3j1wSqSqfoDVVeqD746BatD6I/tluu9U8hW9OYTuNCKvsCvZBr99VBXv7BAY4YUHVak6NydQn8t6WD0Nwp/icUB9P9rCNPoBwGTLyRrhLkkvJQY8+bIWEO1U+xjuV2/WtBjfZk+yk/5FADqzv3idSCf6/TtJB9x0M9Zbojoq17OiOnL/Y3l3Qf91Yb69yZPfHbG6upsoW/WuloRKR9jGV85jPbHWBtBe9xzkMbsyon5JtGnq7HKbYB/X8p4JElqXsNxWV07g+McNTa4ivS3fmKzaI+tG2OX/i7vCyfKNrEXTmJjcozhqr85gPLU3ewloUPevhTv8P+HA0birozgJt8XkB6Nxnin1L9zHN4VicPKhjGbN5rX8DoD1sc1lKd8dm/7I5af/TFW1iSxbVT/j/M69kfVfyh/5HFWzG+SFPPHlVDWL9X9sV/oyvPzayP6NBpz8z6GxfjuFHqO+Ub/y5Fxz/VCh5gf3yDorxc695MOyMuysV2iTfjlZKP/cMZ4bPXSipeT0W7s/zEbJYlt+hpBj7biNy9eA3mvpjyMG9dTHvrftaSDarNZ24bx/uz4FcXqVRlxSwJLxUmO1Ub/e5FYreJLzMcbtUvTR7X/6yhPxSrlq0bXCl/F8rCvxsacSWLbqHiBbZxjNcaGaygPfZVPI6N/rQLd35FhLBCr20Zrrxy/1DhS9cM8R10ZkYN6qQsHVkbkHNyknIOFnFauQaJMNbbh8uRdC0F+XuO92rE8Smf1hiWuqX6N5jDox2ovjPs7o/9vmJP9A81fcI2b/Sar7/Lee2wNKUkDYbj8IbRizBm69vWYk8eV6s3VUhhdh8pnse80mkA6tsJe2J6zzBlV3IjZF9sEX/GItlxBeehvK0lOo4tOYuMQ3Ce884DG+sf2RRv5B+8Zq7GVGh9gzDXsQHStGANgedgXYuOdJOVdU2RfwPHBKsrD+ucxqRo7qnjJdZw2duQ9K6OfMPOlz6xjx5jfeI4d1Tp/C2NIW/tNbOyY1284hmA8xz7a+u/YGlkpjOwn0667TttfWUE4JXo+Hp4j36lUZh4jMfZpRG/l7E6hNzwei8yFtvL1yJqYwjyddLimgQ6rSAejP0zoELN/kmJjwp4wui3maDflEuGZPvgM8StB+0ctZEoltp/JU36QJG7Lqj1hHs9lit7mkHy/whELx5ZN1Ffus4w8r8A4tprycH58K2Bw6qS/sTyJXwc6U4B0rCvWF+7nso+tEryrBPa+ag+rismLtgc1B8jbHniPfX9vD6sor93ag1pXUjZKUi1kS1naS8HblOZkbS+G79VelO+p9tLkDUO15A7i8WF0rDoavqt9DKwvr/rDsfu+rr8VxeRF60/NTTzrD9tWnvpTa38z4DvmYXlia3/Iv7fW/maQnLS1v5tnDvOgHbKu/Rn9XTOH+V5f/67W/nh9T/28jZo74vshJt/y8px5aedzwTyvVGcDS2F0nTSz/rQqZf2pBLhnCF5u20h/jdDD6PlMHNPw+bWhszkwl+KXapXPol5p6yn3R9ZTWn1+De3M58HSxvSGHcLoMYOVz/Ly9AuqTWB5uE3E9taSlHcvnv1evUuV1r6SdLHAium6oglduR6xrvjcgNGiX2J52C+NfofwS1X/ZvNW1H9sPU3ZNLae1simPKeJnSmIraep2Jt1PQ1jyM3Uf6kz+yXKQ5n4jPto5OdzfPae0nug/vmsrnpPLfbTL0b/3kisU2WI/SjAykiZUZ/Ye2qKD9837RGyavblJ/FkeOYr44QsPmdrtB8EO317ltalxPo0SLF3dHrCaL/OM+YtEV4Iekxv+JUw2hZFxvRqDKz83spXcA54CI7p0Y9wTJ/2zgKfG0h7p+g3aAys2hjy3lP/5Db2OzAG/q0UzBDyj9dQnw9NHYkba4tJavadPrR5bG/+cspTe66mgzpfgPR8dsroPw1tM/Yuk9N50u+1894+/4iD8i+1t89+k/ZuiuHx7bxfEHsa6p4I3j9dnlP3rGfmsW1wO846R4q1e9Tbzmtzu/+rSN+q3tOK9a2NfvQj9g44v2uIfLF3wJ3m1nJfFsuT5R3wZmIXz62VP6t36/ieh7S58k6Kveq9AazbLD9yhHocWv/Ot/X+c8S/GvUree/o4Nun0f9jfYO1feVfRtekf03Oe8dArC0lKe+4ln9UR73TrmKhyVQ3l+L7I+vJv1Q/ibxH1b9zP/njiL9cEyljkvL2UfwOc9bzRbF3xPis1XXCDqgX3zE09H5BveyNxgtO55mW7OszzfzOIc6x+Z0Ota6JNk077572TkfaGYgq1AGPF9R+sGpbWXRXcVe1N2xTB9Tbm5rn85h1ZUQm82Lf051Cnzb/nCHsxfEs7f2wRYRp9LMA8xsp7xNjuS6DZ3nfyeOzveo9p9i59NaN58PZ+3rtn/uP2J0gaeezkBblZPV/9KES+T/255eSzNg4lnlRTpr/p92VcEzE/2Pz8uT7PMI0+uMi/q9sGfP/RmOE2Bgpdu49dieO0/j8vH09Pmf/j43PMf5ybFVj3qz+jz704pSRuHgvhvLZ+fXvfBfMeTn9K/beT9YxaOyuGhV7eX1GjV25HtP6GZ6nGP3FGcdbTnfNTNnX8ZzvmlHj21j8bMVdM1dHxls4J+G1peU5dc/a3rBNfbXe3tQvG3F/szwik3mxXaf1N3w9v9HfGOlvcG6m1oO4vzH6wUg8ULEr1t80mq/zepC6M0jN5WPzdac7Aafu6x/I5f5G3QGh2gaPZbKu8zSa33+27v/N2fWuXyiBLobdKSjL9Gk0d9frpALy7TPLLxp+5dM//NJHlx17K//6U5KsjpI9m6T+N5L/q+ud8Rpt/mGDTtJN8ZVIB6bvEPSG2yvyylAGwx1HeuNnkroAL0k9gt7yKpCHPmAy7XmnwBpHfEb/WN3O/fW/u4HH+KtCfjfJV3rjsw6irwj6iqBP7PPwrGGd0TesrjEe8LXgpic+7wI5/EtnRr+D9nDHAX+OWCZ/6cyweoT+ObC7e0lnTL1C7xLl9UAenx2vkE6YNx7y2A8xcWzBsiZ6/dKCYVyms6TquER53aIclsf1lqQq4SB+NYxu192Uh7FlHOVhnLqNdMZ41RlG1x3HsJIoF7eBXiG3lPJpcvlZR6QM68JIOV2OchCL7wvtdpTTHZGDPop7+x+h/mcc5HUKXj4/Y/S/MWuY76MUt5T/WZ7yv/FB+zW3DY7F7Hv3EL219e6g+8geKpvRfyIyBub4wfGmk3QYL3TojOhg9J8EHfh8p/FgnWEfw+v/Rv8HkXH4eODvDCPrMUk8tpgg6DF+mj79YbSNJhAf2hTrWPFyPBgP+sWw2Ebsa4bDbViVBfkwRrMM5aODRK/8o0PIZv/4QsRHsR6UjdlHJwgdOiM6GP1fRHzUeNBH0cfYR43+hYiPKp+L+WivoJ8ANKZPfxhto17iU74dxLMOQc9+OJ7+HidwOMbH+DqEnLcTTjlFHv4dgu4DeD6nxgnYtxSdR31h3D//4Pk/WvNko3lUUfx/6LnsvI7//fghrcL/4IQvnv077+y5vhG+mpNwf4/zmk5B3wH5SP8i9Mv/Rmelu4S85NlPInSllE+lM+pjz9R8qFPQm+zxgt7ysP1jfEYatBdiYQxD+v+heSK2IewTWD72SSFFb3zG88QJgn6CoE/K+R/UrgrOq0o8xra2jngdzBSG/a6D6JP02vpnbBzd5Fwz83vJhl8Jo8uVx06xuIjl47llj9ClGkbHZt5fUONatcawt7B4jm34IQzXJY95ayFT6spal4ZfCU35TilmFyxfbJ0A14swL0lsfzX+U+s/Py9Y2P5bOYfFttXKOTnWe8zPi8pBrDUkh8eB6jOrHMTi3wopCx2S8h+eYYyOvKvrnzxGP3f2MN+i2SNpTPejgeaU+vcekB1C7rZc4baJSa3hsd/i2J99rRfy2D/6IK+H8vpBh3VAx0mtGeJY7+oM9yQoW/Iafi1kSm1ly6z2srImmI/TmDUILJOJ/mZlGh+ytQOUy+1gKfj4Cmpb3usppo+aqxpvj+DL4RMTuG4xqbpln8C6ZZ/ohzz2iSrkcfuaCHk8L8Ok/MXskKd9rUiJkSaDYyTPjctCX4y9ap8H+0De5+H9LaRPEu/zGP31FCcKjtfkPo9hKf07I/qrvYHVKfrfCW3rxtkj5am9H7VWyG1MtfOYLka/Buou9v4x7n8ZjuXlme+ocwLoh7wurmKNGttljTW8L6RifYn+Riy198P+0C3oEY/9YT3UAZ/jQd/k9TO13q/2u3ifDNu4tbGE5q3Urtj3ayFTGqfGnpbUfLJEeRgLee7C8R/zsC7z7nFaWfPucfIaOeaNE+WIrfurdmf47dbuzPerYXS9sL9l9WFeV+iMyEM74J6R+XAza519n/7NS7/2n7cf1qq11F8/YdGpfVcfdn+r8Gd+YvALZ/71P/11q/C3Hlue9NZVF7+qVfhP/+CSEx6aPu9f85w5UnMW47N4hmOxHG2nA/W3pNZ18MwN6pJT3tC6TpXkcfnMFkncm1z/vmnjLWtv2Xj3ResGbjpn4PYNm9YO4qpngoAjWbYKouIzbMWc10nPSvQ3r7ouE3xBYCf5VnOT6HktZEqTzSsmi0zLmwLYfZQ3FfKwNjmpHsV0Trz0nhwzOqyPKZSHM4apIJvrtSrkmP4dgn4iYVUFn9m+kbxOwddHGCV6rk5oIEaZ6D8GI6anZ4cR5ewLI/9G/1tHOqpTgiHlGZeDRyYsN0k9oalIMClr5DH8StD2roVMaSjy9JM8Ll+xyMNjdZMykVCNBmkxobeGFDpVoxcLPk7Gx+srIYyu1U7iqYVMaXzWWrVnFdKlaK12kjwuH3s0e22SqmG0h/B6vPIe1W+NYY1h5cGyXsBo/xHWUb5M6yjqvHiJ8lCXjoguyM9tRM2l1R5P7KxkbG+S82J7mpVIHs7PSpSHaya8r9MrMJNynXPwSDqOxeozhPj+j+mmRhPY+/CZW4xTVcKa2ABrgLCQfyJhTWqAtZqwkH8SYU1ugHUjYSH/ZMKa0gBrPWEhv/GqObfx9Qo53BfiSDnPunzWvtDwK6RL0b5wKsnj8nE7P0DoUqW8JHHcO0DIOUDIGcMaw9pXWDzbNXz1aXL4GcvBeMCzWOxrcQ9/4sHDPMiHs0PkvaP+WSb61x08zDel/r0/jI4bpmO/0LlE31W8mBopv4pdrbYz9+slRzmYt4ZkTiMstHOSrJ7MzhhLpxHfgZCHdLjyMA2eHyhkK3zDaOSD8w/WZVM+iLLKRH8p+OAC8kHkZx9E/yxRXonKgnTKP7HO7iB607tb0CNemeiPrpdFnc03frQV6sXv2xj9YsDkc/EqvqmViJgvqr5b2XQaYfUJLCwP7/8pm2L77KPyG/3JwqZqH49XJ9V7azz3KIXh8THPPUpheLzLc4/k+0TKwz2rSZSHa/2TKQ/nHjyuwj077ifwPAb6ls09ymSH8+vPmzyLJc8FpMVWtLWyfYXy1Dtiql7GU57ai1d1NoHy1D6Zqk88o54l9iWJ+1+jvyLSnlW8VuNuo58u6LGP4H1VbMPTKQ/5OA5MJ7n43X5fA+2Aem2qf5aJ/hqwQ+yOFNOryT3e8WqPdwYQ8B7vQZDXKei5LmYK+oOAxmxSJXoVW1WcRptybDUbdQt6xCsT/WAktmJsnkG6l3Lqru41UG0e29T8yNiU+/cDIjKZF+WkvXuXNm5ZF+nf1Xgc9eL+3ejXR+KBsmWsf1fxY5ool7LpgZSnxgWqfRpdk+1zgmqfWH5un7GyJqlorKyG0e2H14GwbbD/q/WmrP6PPmTzvaLnBHb/4VGv+tfL/+XgIucEcF3T+GzcUHD37PdRf0tqLcvwK6RLTnlDa1lqnIrlM1s0uRv5yRLxozy129vkuYtOq6tJAtt0sbFmd4ouxlsm+qdp/Vqt1VYpL0m8/qLWl/FZxz7CUmvVaEerk5+dmSJbqJ3sLL6tdMT6Mp+MtcGichDL5vPK35N/tZApHcsnMgwDsdFvcvj2yqyxwvAroam2VIr5GJaP52eThC7VMNrH7ge6Rv6HchTWnjbF2uqI9aQj1k5HLE97bXPE2u6I9Zgj1r2OWJ5l3NGmej3iiOXZHj3rcYsjlmcb2u2I5VmPnr76tCOWp3/tcsR6xhHL0+/bNeZ4lvFZR6w3OWI954jlaS/PsYmnf7XruNDT79t1LLfZEesJR6z9YSzXrn7vOTYZ69PyYbXrWK5dY6HnWM4zFnrWo6e92nX89WZHrHYdfz3qiOXZtj3bkKe9PPshzzbUrrb3jF+e63Ltujbk6V+eY992HWO2Y9+RfO93wkqS9R39Kdj4Pe97VCWhs9onxf173hMNgNPkG9mZ77s0/ArpklNeKVY/am+V3xhH3qrI47pS7/VMFnIUVtkRi+8lUX6j9v3y2msC4NTfAD538MZNay5atyZQKtPf56eoeBXRrU5RrVPglugfP7+KnnUKWsRWTbKSoncI2Zok8vdH5LSi6fPfXfW/Y68VtmD7e3XWMPDzsv39ANA12x28zRHLc/nVc0jVrlNVzzJ6bgO265J8uy5fvNURa3/wie2OWPvDcnW7LjF7Lvd4ltFzqtqu222eyxeefv+4I1a7LuV6+sTY+OvlEaM9+9qHHbH2h1jYrtshb3HEesoRq12XTD37tLEl5nxY+8PWsGcbatdjRWN9x8uj7xjbSt93PjG2prDvyuh53Lxd50Oetvc8Ktuu64We45yxOLHvxhNjcWLf2b5d40SW8Zf6KZCi154i1gBhIT9fK4VYpfqn7UsXvB60s0R4pic+Q/wK6ZJT3tC+tLpSQx31UD9MELu6g6+wzXuNIWJNIh325+NBU4QuVZHHV7qoelbXXymsbkcsvkJM/expkz9tnPlnU/injQv+7FT0p43Vz4urMx78E0ToF+uIL/YTwgX9/7Si/t/sTwgr/4/9hHAW/0/Sg0DXjM8mabMj1jZHrCccsbY6Ym1xxLrXEWuPI9YORyzPMj7iiOVZxicdsXY6Yj3liOXpX57t0dO/PGOhp17bHbE8/X5/8InHHbE8/Wu3I5ZnGT1t/6gjlqff73LEGosTL4844VnGZxyxdjpitavtn3XEGmtD+bAedsQaa0P7zvaec3fPObKtm6s1oORfLWRK97Tw57YuKhFeCHp96efl57YeAjrO6xTPOiJYOxyx9jhibXXEutcR63FHrM2OWLsdsTzt5VlGL71UnGoXX93liOXZtj19Yrsj1lj8GotfrSyjp+0fccTy9PunHLE823a7tkfPGN2ufa1nPW5xxNof+qH9oYyeennG1Xbtt9/Ypnp52uttjljbHLF2O2K1a5821h73XRnbtd/eH+Zpnj7xFkesdvX7nY5Y7brW8bQjVitidOyceInyUE7sLLy6+k/JmdiknIkZ5XQ3KadbyOG/7R44vEtvef0z9rP1th9xADzPsT/QVyK8EPR+hOFXSJec8kox31Pn4K1804rJ6y0RP8pTP1tqtj5Q5BmW/WxndwqW8ZaJ/k1zXvqsEl2SlpMM9dOj+Mzsk/jNXXVc9oUk1UKmdLz6OVT2MbRJjjroz+pjhl8JTdV5KWZD9fOtVvbpQpeqyEvzB5QzXcipirzlY1hjWGNYLli8d234SWoyhmV+L4pjWMF+ORrD1BgtTwxL0jqga9b+73DEurX+yfWVpFrIlKo9AreWiTWcYLwzsvMO/Vqv8R6UnddcaKj+JkCmXeCc9PEfmvPSd7PxTMjrJN7ku9m4TPRz5w7zfWTOSNno29xuOuB5Dj9elLXdGH6FdCnabjpIHpeP202n0KVKeUl6EOg4r1M8i2HtcMR6yhFruyPWFkesex2xnnbE2uyI9YQj1jZHrHatR09f9WyPnno94oi11RFrtyOWp0886ojl6RO7HLE87eUZvzz12uOI5VmPnnq1a9/hWY+etvds255lfNYR602OWM85Yu0P/bZn225FX2v7Ezgf66O8TsjrpTz8iaMO0q8s9CtH9EP+cgofl8PmW13wrFT/tLlmwftHMt93YvgV0iWnvKG5ZjfJ4/LxXHOc0KUq8vjnqFT9lIScvHo5/oSU5R9JdMtSVCsJ3BL94+dH0jNlCsTup3zl+uwyaaatpvAnqTcip1fwmWuOBx0Phnz+mauDhY4HR3REfqNTckpNyikJOYyllqmSdF/9s0z0R8596TNpDt+YNRLzEKFfrBnUBP0hQGP6KNsYb6+QXUr5NDkhxH0IdeghOTVHOTWgKZOcOY5y5gBNH8mZ6yhnLtD0Al/y9zzIQz8zPeYLPazbORSe5+gGMm8NGH6FdCna7RxK8rh8HHsOE7pUKS9JvDVzmJBzmJCzt7B6w+jyc11iWVtRl4ZfCU35TilmFywf1+UCoUuV8pJ0O9BxXqd41pGCZeXywrJ22mR9LWB7YLK8hYB9KOUdDvSrKe8IyLsVMDh10t9Ynp8N52YP4zId64rxy/TuD6N9DGNHWixQ/lMV/EZnfbD9NOVq2Cq6Ye5IPWcC9q1UhlmQx212tshL8H9vfnpZK02WtSLKquRUm5RTFXIYqwxY4wFrAPKR/qG63ZtsJ2tUO+GYubAgdtaYafiqXZpeFZFXzqBL+Y9/4fd/63U/uKxE/KYLP+Mx4uGCvirozVZHAH8OW92I45VAsi0Pp30LKQ+nqqZDEmMemDVSv8ML6pfFfohfFfRvALo8daGwBpywsL15YPUUxJoU0vtvFZP4KG3emIT8sdg3sUk5E4Wcvd238/XU2AZQP06N+u+vLhjGZTrWB23K/TfagY8U5x0Xdwtdzd48ZquFTGkh2xSTsmk35WFMRDtwUvY2nRN79y8cxmU61gdtaro12Z8drsaGLBfLehjl4frUBspbBHl5x5RWnsRGZ+SwEfrDEURrutvx83mQb+OzMtF+5NBhnvfTuBB99ibSA+tjHsj91TqGtZNFQMfxD+3XKZ7F4p/RKTkTm5QzMaOcQ5uUc2hGOd1NyukWcqxdHQV5OdrV0eYHR4tMy3tFGF0GyzsG8vLGF9M5b3xBm5pue9sOiyjvGKDn+LIY8vLGF7RRnviCdYF6o+7loPu6myjf6L8Ic8/n56Zj2nN8rebWFMw/hTXlPQtHlgH7NV4jwJh5G+UdCXymT6JzTz3AqbbJc/e8bRP52TeQz+qqSX/NvCZm+JUwusxF1sSOInlpduH2hLzVMLqtnQt0nNcpnnWkYGGde2DxuLkd4stqyvOKL3nWxFoRX/6F1lUK2nrEa4KBsMbafvu1fV6baKa9LnTEGmv72dt+3j6b16dxfoZr0NZnZ40tF1G+0ffNG8acMC+9PIeD7HPnjcQy/SfWn/eEptqVjFM8f8A5LccptGeneBaLU0an6objVMHyZY5Thl8Jo8tcJE6p+K3sYmU/SuhSDaNjHo9RVDw8SsipCjlHOmLxGgti57DfItVnWVK2Yh/C+MZx6hWQlzdOWXnyximMRag36p41jhj9kdT2C9patn3DUmuT3Pbzrk0iP6+NIR+3/YJtMXPbN/xKGF3mIm1fxURlFzVXNN4q5SWJxyhHCjlHCjlVIWehIxa3/YJ7TEeofsCSshX7EMYMbvsYx/K2fStP3raPNj6S8tR+APb3jIEymrRz5msXDF/tvRZpF2ovVe2FJeezzD71Y6dLBzdetunGtbesvnDw7g1LbrvpsoH1G28ZWLvkppvWD27YgEqjoD54jvmYmMa+d4nniHFEg8Lwb69iZR1BWEc2wBogLOTnTnxRA6zVhIX8PFG0v7vCaD1tgNyRAYcboNLrRtILB3zccR7dAGs9YSH/0YT1igZYGwgL+ZEX/+4Ko/Vke8Vwkn+LG+h1DumFi+CLCevYBlgbCQv5jyWs4xpgbSIs5Ede/LsrjNaT7RXDSf4d30CvO0iv44D/eMI6oQHWnYSF/CcQ1okNsO4iLORHXvy7K4zWk+0Vw0n+ndRAr7tJrxOB/yTKw45hKsnJe5gC+dMOBlm++jQ5/Cx2aGMqyTnJUQ5irQG+JO9k4MfYqhYkTIZ1/qfA81YMig2/QrrklDfU+Z9C8rh8PCg+VehSFXnYr2IeyjlVyFFYRzhinUzlwQkA3t/xEC0unQJ5avJg/XeZ6J+Bzfe30CYT+spJGcp4ipBn9KfV/+4W9IhXJvrH6jolg+iv1w+lVYVOp6bowv0p+4nRJKmHZLeqjRh+JYyu/yJt5DSSl+ZvVvbThS5VkYdjKcxDOacLOQrrKEesU6g8aW3kGac28hC0kbe3YRt5j0MbwTFUr3jGbaSgz2ZuI4ZfIV2KthFVF1g+biOnCV2qIg/Hz2lt8TQhR2EtdsTK2kY+Qm3kGMjL0kaMfi20kY9SG0EbcRtR8xW1aWT0Vmfdgh7xykT/8YxtZHGKLsl3HDerTSxuIwV9NnMbMfxKGO0/RdqImu9h+biNnCB0qYo8nDOxHTvFs44IVpY5V1asY6g8aW3kM05tZAW0kefbsI18IWcbUbq3Yu6l1hfwLtc0GynfrQr+xZS3UMhp5CNfmaf1SfMRm7+Xif4c8JGvRnyED4OjzrzhkncuPV/IybKwXDD+dGWNd4bvtbDcaK2M492xQpdqGB07+SVVFVfV2OPnBSv5bvdZxvrBvO28Gkb70XySc6yjHCzP3lgzStIaksNrkuozqxzE4kMqaXHrxxS3joc8Fbdsfa9M9MdB3PoJbTRjn52jnZ5iup8iMtV6z2LKw/HwsZSH80mu+1dCHo5dOKlNPytr0oc+PmsYl+m4HBjbT6W8FsTczGPMsZjrgzU2XxjZlni+gHl4pzbHtU7xrCOCdYwjlu1lNFlfbnEtSaspD9fQ8h5YsPLkPbCgYhe3E6bD/kXtGyq9SgKH25PldQi8d9Y/1R4j/wZD3jZ/gNA3yzoa+lcOH+rM2uYN32sdTbWf2Dra8UKXqsjjtS+1L3u8kKOweF6Pc+V93X8eU0xetP9U9/d7+FdaPRwbkXdCMXkdJk/tex8j5CUvSHaH0XWYtj+v9rWxvtLaPMrmszl5zzsg1gBhHZtShrQ6UOs/sTMKZcq7pj6xSuLwsvkjaexcySVAc1H9u4r5uNZxNdHxGZUkNTkvyNz2DL9CuhRte6oesHzom+NC3EewjtLOLB0tysI+e1QDndhnlSxVp3iGi+sUD7riWuh1EbpFgk7l2dggEAa/FHFDHSOx89sWjiwjyuVzbnkPH6uDo0rOwiblLBRyshxyLni+IvOam+F7HXJWZxZjh5wXCV2qlJcknrPlfRGu3bGS7/Y7MLFzPlnqVclRh7xbfX4qi58XlaPWu9inPOQgFv/WUMGX7nLPD/mQOK57cV3iuhfbH9e9FlHeGZCHZ6c4qXklvqx3dYZ5ZZMH1dvefnhejJOyH75IMGa/kecfOXnar+ALREepl0cs8Qtnyn44TmX74RiN7YdjTew3OCkb4eVvedat0cesTMmLGHbp8fCLGBcO3n3VwNpbbhrYeMu6264YfMOmwQ0b+Zpu7gEWpmhpf5vl+BrxNK2T1EF5fC3TckGHqVfwmYx99dppwZYefe0Uy1fktdPkO/56ILeITvEs9qrooY5Y5jd7+7XTwymv3V47RRvz7BCvaL2N8mYB3wLKmw15ht/oilb81QLMS1KneMZ1PU7IVHLsynT+VcMv13XrIbqc/vHKLDO4gtfrvTJrrOD6UFdFVkRelmtS/2PKWUf927u+92yJ+E0XfsbXpKqTKeMEfZMjmlN7QUYIo3vWJOHVOwsoD1ckcDTB16QW3B09NYv9EF9dzb0O6PLURVXIObQg1qQw0q+w7Vj7mwl5NcrDdsanmNTPNBwSKc98oUOv4OP2WIPnrei7a/XvldBUbBnqu2skL80uKsYbL18HmCS+MiJvDEY5Mx2xrK9psr4OZXtg4ritfAj9n/tujGt5++5a/XvevhttzCuVY+2q9e1qvtCFbZakNwAd53WKZzH7z3PEMv9psr7msz0wqRjEPqROUqs2ty/a1aFEa7p3CVqbAZeJdjyclDum/l31jXPCyDz8GaG5lIe+PpPyakKnEsnA0xhGnyT+OSWjn1TXO7HljtkasyMFE+s0hJFt2crRA3ItL4cP/n6i13dgFQNtliQcz6W1G6Tncavqv7AtmQ1U/8VtVsXfOfDMdvCUvUzHVtgLdWB7zQtxndleyr5oB7OBikuzCGuWwEIbxuxlOrbCXqgD22tuA53ZXsq+c4HGbFANo205m7CUvWrwjH9Kz/i7BT3ilYn+KIgJ/PYIxjWu64MFNsbGEmFgOSaIcvRSHvImuB+aMxJXvUGkTpwYvboBAU+X8NgLTzkYb5OnZdrqZLRaoccyc1J9s9kh6wp9ieQYLto/SewThwkd1Sn4xRlxjb7RaZ+ODHrjiRD2oWOF3uq0z8IUOeq0ZZLSTvNfCG35G7QbgPHUZDcZT/tVPEUbcTxVbVadDszaZvlkOb7txieV0cYmU/kXnoqyt8OyvO2nTqGpEzfse90p9IY36gSYiNcxf1Ynu4v6M5ahWX9Ge/FbdUY/sHf9ua/V/qxuRYm9jYtv+h9DecqfS2F0DMsbX/Fk2Gdy+H8s9ir/t7Kl+T+/7Wr0b4j4v7KvOvVq9LGbHhr5/6mUh3wLU+SkxXP2f6O/K6P/m+xW+D/aiP0/6w0mRq9uD1E3KajbQ2L+fyrJ8fL/j5D/x24NOS0ik3mxbGn+b3hlot8S8X9l31h9vFLQq5MeqvyvpDw1/mQ56P9oL/Z/o38io/+b7Fb4P9qI/f8MyOsU9GzvMwU9jr/5Vp8zIY9vxUIbv5LkqDiY1f/xtp1ncvj/qRGZyv/VrTlIn3Zrzjsj/q/aoLp1LGs8ivn/6ZSnTk+xHPR/tBf7v9H/Ukb/N9mt8H+0Eft/LH4kie0day9ok2oY3TZi/n86yfHy/4fI/0tAN4VkloRMfMZr+MyvsPB81K3w/TbIR/rP1P3F1inQ/jn84OJe4AmAgdgFfexiLKulTnqG+L0p8pJUEXlZzj/c8TuHPP7uNy/uKxG/6cLP2I+7BP0UQW+26ibdayFTulC1dZOtzj+UKQ/bq+mgzj90FdQvi/0Qvyro+aR91rqYFEb6Avp7UsaNFMf6AYN9uQrPc5S/I6svG36FdMkpb2iPs0ryuHx4tfbk+vf6ic6L1g3cdM7A7Rs2rR3kE5V4NzZbBVHxGUYfzuPowXSvor+XCb4gsJN8q7lJ9LwWMqXJ5hWTRablYYTuozy8txZrk5NaNTWdEy+9J8eZXayPKZQ3EfKmgmyu16qQY/p3CPqJhFUVfGb7RvI6BV8fYfQIvpp9+dbjz95X/fCOd9WO/PwPu5c+8Z0bvn9B18lf+fwbZ/zBgz/+9ou7WOcgdOZ67CNa9Wm68zM+SVB1xJoksMw2+GOmOXz+gKzRyvAroak2NhStJpM8Lh+XfYrQJcuoaYqQo3plhdXhiNXpiFV2xOpywkrS8jGsMawxrDGsjFiWh/39JMrD/nN9/dNm3hif+UetO4R+HRH9kJ/7HjXGtX4X43qOfrA3a7/Ls9qCs/ehfreT5KXZpckZ/YQS8aM8NWs3W3eJPMMy3+gO8Rllmejn1pdyqkSXJPZrNYvHZ2af5Nnsw0bqrlZGstQz4lbD6LLz3al7y+9x/rGm/pmU+4jDtExcyURe+92VMtH/4mHDfEcdNlJnrFd8i8RsoPwktjLS5Cpor1oF7QYCHkehzp2C3n4/Rr3lVKY8LE83lKeJ+DNVxTas41OojvEHzJVfWXnKRL8N6vj0+nflxzgfS4sbSh63225Bj3hlol9S1wl3DpR+fSny0B4qrrG880BebPUe43AIhf32AOW3GM/Yb9FHY/Evi58rX0Y/7yEsFbvQD5al6JrWHxhemegvE3Wexc9VvRr98oz16hSPZL2irbLUa2w1u1G9xt7SrBCW6lOxrrPUK+rH/bzRXx+pV9VHqT6E+6iBjPVqtmxFvaKtstSr6u+z1iuvymO9jicsFaOxrrPUK5aHY7TRr43Ua9E4vK4N4jCOF7leVZtBeq7XWNxWcRjrfALl8foryskbo1W/HIvRRn+vqHOeE3JcSNNP2S0ps81J67sgyzeuWz9Y3wYJlGLbFsn3iSlqTBX8IYKFPLEi4cYOm9xkdQe9vM4mN/oHhcnZhKxPlilywSaTeSPN8L2myI2GnjxNijWz2HQ261Tc0VWT9KoUNUqCPzTAsr+TnsFGzVjdPKqPjQSYF3ufrCMBo98R6TEazcw4ovQKeuwVeXaOZeilPOTrS5GTdYRi9G/L2JOZ7Fb0ZGgj7slwV0etDrC9YztDaJMq0avmhzbuJTmNmjmfB1J+GpspI27Mv1SbiPmQ8n/le7FVEafRam/e2aXyhdjsspEvWNmUL8RW1Fgv1cWij7Iv9Ao5uDKmzpqgX5RSPk0+P+OyINa6+meT54o6jB9jVMjOX1L1z0OBnmK6/SSLnRC/EnT8rIVMaWgo0EPy0vzVylcpJu9/kuHj+DC6fWNdou1QjtWXauc9lFcWGAn/cwtHlqPgEOp/mvTB/6dmRrgq+ccUa8dBXmyoyuODP4FVyc/RqiT6k9kLxzdqpdb+Nnt3CFq+Bwv/VjNxHi5afXWnlLWbymr0X4SYtHu2xkT7qbENY/6lGHMYpq0ShJAtxk8Q9LjSYPr0h9G+P4H41CpUEM9U/ZSIFnVI0jqhU9rfFYGTpkOPwOE4z5gsU810uc9SY0FsU9hnNTl161J9QSB9eOcK87BsrwM6TjxXQZ0TjF+HHTqmY31UW/Lsu+15FzxnuTx36yZaHregjl0OOqppazfhjovoXyIctYvXG3R7U59Z9S0JfVu5K5uk19c/m+zzZjbaiftxhj5PjRm4zystGOb7ScY+z/J43JaktfCMYzqPgxAjSbxkZTGyG/CRpofKNERfLxP2bSqGGFZS9p4FI2X3QF6sHykT/WFgzwn17/1htL3Mnqr/Sutzuog2SetSbDAF9Ji4IF0WzgfTyphgHLBA06EOSMcYRfs1Nb7itptlfKXmez0RGRyP0/pu840JDfLHi7IF8axD0PeklDcI2ZUGuGqnVcX3CuWVRB7HHixv1jUTjFs/pvjDO8FYrvFUrp5IuUqCj9s56j4uoruyH8YPtI19ZnnP6JG//8mXH793xncnEb+VMdR1L4r/ynfeubX3hA9/pBE+jvesHtTOPdc9Psexwa2Qj/Qn1+3V5BpA4PKodh2bP6H+al1udYr+l0N8PZ3iq5o/KJ9O6x+7Mupi9Eugv9sLa71ltb6HcYfHoyoeIn3euZ/ZpBpGx78sO6ZoUx5zqL0FtRPO/nAR1AHvTKrYaXlYdo5bam1SrfVZG0tobqZ2VXD8OU7185Z6Q3p8Zn/AMlreeNIJ87Au0T85qTkevrd4C4xXmM6Sig/cXmN7Omo8p9odns4LoX3anfl+NYyuF/a3rD6cNt5S8tAO2JeaD3N/pOa0a4BvLY3huyFPrTlxPDX6hyC2r6PYjjZmf1BxgnUJIb7/E5trqxOmVi9qnT7P2gzWL+qJzxC/EpqKLyWOtyaP64jX0guOE8rcx6I8VQ8Tg7apWm/nuZxaj4nNY2LxRLU/bptqnq/6kNh8y2TjmnaWcVPavnTaesMj0LbeHhk3pY2NQtDjdKaPxT7UVdl+POWpubl9nxCRo/RS5wYmRPTCmIy8LLtRGbL2VU5jxC7VV2GdcBtRdkF6tmOfoMf9V24juOfPJ9uy9m3jKU/18Y36tren9FFYDnVaUh0rwv5tbZPzz9MOfev0mZ99Q2+r5p9d5Zlvq334NRflmX826u9/2am//yTEpA+M9fdj/T3IHOvvm+vv/xDa1lfG+vsRGEqvsf7+pfRy6e+/0qL+/pdhvakVZ8pi+paEvv0RfWOxH7EGCAv5s+wTN9kndmexkeoTS8XklbLahdfPYntomMdtTu119Ag5CqvbCStJy9scS7Vpq49GZ9H+ndp7CfLUeRwekxr9f0O/+V/Ub6K/qX159l+WORBG6uj9thiPc9AP+dxWlr0ltB2WzW5+4DFH58KXPhvthzity3arvg9tlKUdxsY2aiyk1t6rRK/6RXX2JqvfxM6OoZ//+89R35SlPym6h5KlXIjv1Z80sgv3J+OELupNT/ZjFQeUH1dF3vIxrEJYzfRNCxaO5GnUN3F8NfpFC4f5jqh/9+qb0t4ORvqfh75pQ/2T+6bj927fNO7nvW9q1NcsAHtupNdT1dpdgGdp52iT9FqS30W8ITQ938j8u5c832j2/ZWsa3B55htJavdxvfJ/rsuC642Z11P5XaSCvlPK217VuQw+b4Jtme2v2rla9/p5wcL2H1tnz1KvSo7aG2j1mXyOmeMc5SDWGpLD51HVZ1Y5iHUrySkLHZLyr6FxjTpHh7zcNxv9gzCued3CkTSm+1qguZPej8My52jLFXWWx5I6M8V+q9aT1Tup7B+4RtpDeXiVxDqg49RJf6MdEnlZfutP2bLgu4ZtZcus9rKyJpiP57jlG/3NyoRj7Vg7QLncDjaDj++ktqX2WVR7tueNznLG3oMw3h7Bl8MnJnDdYlJ1yz6Bdcs+gVeosE/gPRfcvvBqGN5Tx6T8xeyQp33tTImRJoNjJK/1qHczMPYWPRewo7v6yBc7Vn+6VecO3vgn69/3P5N+9RuN8K1+ir4nb7jmH51huO7QruhbIYzs7/j+hYLvjQ+VUb0/hWMP3s82+g8uHInDY2J8liRs80niNo+fKLcf9AvEmxWrh7DGNYGFe4FMPy4nVk8Eq5uwKgJLjWGTuntXvW6Suvr/JpgrqgACBgA=",
|
|
4276
|
-
"debug_symbols": "tf3djiQ7cqaN3ksf6yBopBmNupXBQNBoegYNNFqDlrSBDUH3/oUbSXvfzFKyPCNynXQ9vrrKHv+hWbiTdPp//ul///l//cf//ae//O3//Ou//ekf/8d//ul//f0vf/3rX/7vP/31X//ln//9L//6t+d//c8/Pa7/KbX/6R/rPzz/9D/9o11/jj/9Y3/+2R7rz7L+lPVnXX+29aeuP2392defvv5c8XTF0xVPVzxd8fQZb1x/6vrT1p99/enrzzH/tMf6s6w/Zf1Z158rnq14tuLZimcrnq14fcXrK15f8fqK11e8vuL1Fa+veH3F6yuer3i+4vmK5yuer3i+4vmK5yuer3i+4o0Vb6x4Y8UbK95Y8caKN1a8seKNFW/MePJ4rD/L+lPWn3X92dafuv609Wdff/r6c8UrK15Z8cqKV1a8suKVFa8845VyQd/gG8YCecYs7YKyQTY8w5Z+wTOuxF/WDbahb/ANY0F9Rha5oGyQDXVD26AbbEPf4BvGgrYjX4kj9QLZUDc8I5frJFzJM8E2XJEDfMNYcGXQhLJBNtQNbYNusA07su7IuiNfuVSv03Il0wTZUDe0DbrBNvQNvmEs6Dty35H7jtx35L4j9x2578h9R+47ct+RfUf2Hdl3ZN+RfUf2HfnKsnpdgivNJviGseDKtAllg2yoG9oG3bAjjx157MhjRa6Px4ayQTbUDW2DbrANfYNv2JHLjlx25LIjlx257MhlRy47ctmRy45cdmTZkWVHlh1ZdmTZkWVHlh1ZdmTZkWVHrjty3ZHrjlx35Loj1x257sh1R647ct2R247cduS2I7cdue3IbUe+crDaBX2DbxgLrhycUDbIhrqhbdANO7LuyLojXzlYnzlYIwcDyoZn5NYuqBvaBt1gG/oG3zAWXDk4oWzYkfuO3HfkvupG7bahb/ANq25Uf2woG2RD3dA27Mi+I/uOfOVg6xeMBVcOTigbZEPd0DboBtvQN+zIY0Vuj8eGsuGK7BfUDW2DbrANfYNvGAuuHJxQNuzIZUcuO/KVg1ousA19wzOy6gVjwZWDE8oG2VA3tA26wTb0DTuy7Mh1R647ct2R645cd+S6I9cdue7IdUeuO3LbkduO3HbktiO3HbntyG1Hbjty25Hbjqw7su7IuiPrjqw7su7IuiPrjqw7su7ItiPbjmw7su3ItiPbjmw7su3ItiPbjtx35L4j9x2578h9R+47ct+R+47cd+S+I/uO7Duy78i+I/uO7Duy78i+I/uO7Dvy2JHHjjx25LEjjx157MhjRx478tiRx4qsj8eGskE21A1tg26wDX2Db9iRy45cduSyI5cduezIZUcuO3LZkXcO6s5B3TmokYP9AtlQN7QNusE29A2+YSyIHAzYkeuOXHfkuiPXHbnuyHVHrjty3ZHbjtx25LYjtx257chtR247ctuR247cdmTdkXVH1h1Zd2TdkXVH1h1Zd2TdkXVHth3ZdmTbkW1Hth3ZdmTbkW1Hth3ZduS+I/cdue/IfUfuO3LfkfuO3HfkviP3Hdl3ZN+RfUf2Hdl3ZN+RfUf2Hdl3ZN+Rx448duSxI48deezIY0ceO/LYkceOPFZkezw2lA2yoW5oG3SDbegbfMOOXHbksiOXHbnsyGVHLjty2ZHLjlx25LIjy468c9B2DtrOQds5aDsHbeeg7Ry0nYO2c9B2DtrOQds5aDsHbeeg7Ry0nYO2c9B2DtrOQds5aDsHbeeg7Ry0nYO2c9B2DtrOQbty0OSCseDKwQllg2yoG9oG3WAb+oYdWXdk25FtR7Yd2XZk25FtR7Yd2XZk25FtR+47ct+R+4585aC1C9oG3WAb+gbfMBZcOTihbJANO7LvyL4jXzloekHf4BuuyNeZv3JwQtkgG+qGtkE32Ia+wTesyP3x2FA2yIa6oW3QDbahb/ANO3LZkcuOXHbksiOXHbnsyGVHLjty2ZHLjiw7suzIsiPLjnzloPkFusE2XJHHBb5hLLhysMsFZYNsqBvaBt1gG/oG3zAWtB257chtR247ctuR247cduS2I7cdue3IuiPrjqw7su7IuiPrjqw7su7IuiPrjmw7su3ItiPbjmw7su3ItiPbjmw7su3IfUfuO3LfkfuO3HfkviP3HbnvyH1H7juy78i+I/uO7Duy78i+I/uO7Duy78i+I48deezIY0ceO/LYkceOPHbksSOPHXmsyP54bCgbZEPd0DboBtvQN/iGHbnsyGVHLjty2ZHLjlx25LIjlx257MhlR5YdWXZk2ZFlR5YdWXZk2ZFlR5YdWXbknYO+c9B3DvrOQd856DsHfeeg7xz0nYO+c9B3DvrOQd856DsHfeeg7xz0nYO+c9B3DvrOQd856DsHfeeg7xz0nYO+c9B3DvrOQd856DsHfeeg7xz0nYO+c9B3DvrOQd856DsHfeeg7xz0nYO+c9B3DvrOQd856DsHfeeg7xz0nYO+c9B3DvrOQd856DsHfeeg7xz0nYO+c9B3DvrOQd856DsHfeeg7xz0nYO+c9B3DnrkoF7gG8aEETkYUDbIhrqhbdANtqFv8A07cuTg44KyQTbUDW2DbrANfYNvGAtkR5YdWXZk2ZFlR5YdWXZk2ZFlR5Ydue7IdUeuO3LdkeuOXHfkuiPXHbnuyHVHbjty25Hbjtx25LYjtx257chtR247ctuRdUfWHVl3ZN2RdUfWHVl3ZN2RdUfWHdl2ZNuRbUe2Hdl2ZNuRbUe2Hdl2ZNuR+47cd+S+I/cdue/IfUfuO3LfkfuO3Hdk35F9R/Yd2Xdk35F9R/Yd2Xdk35F9Rx478tiRx448duSxI48deezIY0ceO/JYkcvj8UgqSVfwHlSTWtIV34MsqSd50tgU6TipJElSTWpJ6SjpKOko6SjpkHRIOiQdkg5Jh6RD0iHpkHRIOmo6ajpqOmo6ajpqOmo6ajpqOmo6WjpaOlo6WjpaOlo6WjpaOlo6Wjo0HZoOTYemQ9Oh6dB0aDo0HZoOS4elw9Jh6biS2KPVXVm8yJKeDq9BnjQ2Xam8qCRJUk1qSZpkSeno6ejp8HR4Ojwdng5Ph6fD0+Hp8HR4OkY6RjpGOkY6RjpGOkY6RjpGOsZ2lMcjqSRJUk1qSZpkST3Jk9JR0lHSUdJR0lHSUdJR0lHSUdJR0iHpkHRIOiQdkg5Jh6RD0iHpkHTUdNR01HTUdNR01HTUdNR01HTUdLR0tHS0dLR0tHS0dLR0tHS0dLR0aDo0HZoOTYemQ9Oh6dB0aDo0HZYOS4elw9Jh6bB0WDoyz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs9r5nnNPK+Z5zXzvGae18zzmnleM89r5nnNPK+Z5zXzvGae18zzmnleM89r5nnNPK+Z5zXzvGae18zzmnleM89r5nnNPK+Z5zXzvGae18zzmnleM89j0pHHzNfI80ktSZMsqSd50tgUeT6pJKWjpaOlo6WjpaOlo6WjpUPToenQdGg6NB2aDk1H5PkI8qSxKSbYPoJKkiTVpJakSZbUkzxpbOrp6Ono6ejp6Ono6ejp6Ono6ejp8HR4Ojwdng5Ph6fD0+Hp8HR4OkY6RjpGOkY6RjpGOkY6RjpGOsZ2xMSlRSVJkmpSS9IkS+pJnpSOko6SjpKOko6SjpKOko6SjpKOkg5Jh6RD0iHpkHRIOiQdkg5Jh6SjpqOmo6ajpqOm48rzIUGW1JMuhwaNTVeeLypJklSTWpImWVJPSkdLh6ZD06Hp0HRoOjQdmg5Nh6ZD02HpsHRYOiwdlg5Lh6XD0mHpsHT0dPR09HT0dPR09HT0dPR09HT0dHg6PB2eDk+Hp8PT4enwdHg6PB0jHSMdIx0jHSMdIx0jHSMdIx1jO2Jy1KKSJEk1qSVpkiX1JE9KR0lHSUdJR0lHSUdJR0lHSUdJR0mHpEPSIemQdEg6JB2SDkmHpEPSUdNR01HTUdNR01HTUdNR05F5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPI85YMODJKkmtSRNsqSe5EljU+T5pHS0dLR0tHS0dLR0tHS0dLR0aDo0HZoOTceV588BmUAFGrADHTgSr2zfWIACrEDYDDaDzWAz2Ay2DluHrcPWYeuwddg6bB22DluHzWFz2Bw2h81hc9gcNofNYXPYBmwDtgHbgG3ANmAbsA3YBmwjbTHtbGMBCrACG1CBBuxAB8JWYCuwFdgKbAW2AluBrcBWYCuwCWwCm8AmsAlsApvAJrAJbAJbha3CVmGrsFXYKmwVtgpbha3C1mBrsDXYGmwNtnjR91ECDdiBDhyJ+gAWoAArsAFhU9gUNoVNYTPYDDaDzWAz2Aw2g81gM9gMtg5bh63D1mHrsHXYOmwdtg5bh81hc9gcNofNYXPYHDaHzWFz2AZsA7YB24BtwDZgG7AN2AZsI23j8QAWoAArsAEVGLYa2IEODNv1yzxmLZlYgAKswAZUoAE70IGwCWwCm8AmsAlsApvAJrAJbAJbha3CVmGrsFXYKmwVtgpbha3C1mBrsDXYGmwNtgZbg63B1mBrsClsCpvCprApbAqbwqawKWwKm8FmsBlsBpvBZrAZbAabwWawddg6bB22DluHrcPWYeuwddg6bA6bw+awOWwOm8PmsDlsDpvDNmAbsA3YBmwDtgHbgG3ANmAb2yaPxwNYgAKswAZUoAE70IGwFdgKbAW2AluBrcBWYCuwFdgKbAKbwCawCWwCm8AmsAlsApvAVmGrsFXYKmwVtgpbha3CVmGrsDXYGmwNtgZbg63B1mBrsDXYGmwKm8KmsClsCpvCprApbAqbwmawGWwGm8FmsBlsBpvBZrAZbB22DluHrcPWYeuwddg6bB22DpvD5rA5bA6bw+awOWwOm8PmsA3YBmwDtgHbgG3ANmAbsA3YUEsKaklBLSmoJQW1pKCWFNSSglpSUEsKaklBLSmoJQW1pKCWFNSSglpSUEsKaklBLSmoJQW1pKCWFNSSglpSUEsKaklBLSmoJQW1pKCWFNSSglpSUEsKaklBLSmoJQW1pKCWFNSSglpSUEsKaklBLSmoJQW1pKCWFNSSglpSUEsKaklBLSmoJQW1pKCWFNSSglpSUEsKaklBLSmoJQW1pKCWFNSSglpSUEsKaklBLSmoJQW1pKCWFNSSglpSUEsKaklBLSmoJQW1pKCWFNSSMmuJB47EWUsmFqAAK7ABFWjADoRt1pJrAa4ya8nEAhRgBTagAg3YgQ5MmzwewAIUYAU2oAIN2IEOhK3AVmArsBXYCmwFtgJbga3AVmAT2AQ2gU1gE9gENoFNYBPYBLYKW4WtwlZhq7BV2CpsFbYKW4WtwRa1pDwCBViBDahAA3agA0di1JKFsClsClvUklIDFWjADnTgSIxasrAABViBsBlsBlvUkuKBDhyJUUvWunYFKMDLFkvPxbzIjQo0YAc6cCRGLVlYgAKEzWFz2Bw2h81hc9gGbAO2AduAbcA2YBuwDdgGbCNtMWNyYwEKsAIbUIEG7EAHwlZgK7AV2ApsBbYCW4GtwFZgK7AJbAKbwCawCWwCm8AmsAlsAluFrcJWYauwVdgqbBW2CluFrcLWYGuwNdgabA22BluDrcHWYGuwKWwKm8KmsClsCpvCprApbAqbwWawGWwGm8EWtUQ80IA9MZLsWuOxzhybeMWK9RBjRuJGBRqwAx04Nsa8xI0FKMAKbEAFGrADHQhbga3AVmArsBXYCmwFtgJbga3AJrAJbAKbwCawCWwCm8AmsAlsFbYKW4WtwlZhq7BV2CpsFbYKW4OtwdZga7A12BpskU21BXagA0diZNPCAgybBlZgAyrQgB3owJEY2bSwAGGLbLoWYJSY17gxbD3QgB3owJEYv8wLC/CytUdgBTbgZWsSaMAOvGwt9jd+mSfGL/PCAhRgBYYtji1+mRcasAMdOBKjaiwsQAFWIGxRS1qch6glC/vGmOX4fI4MjLgeeEXQR+AVQedfMGAHOnAkRn1YeMXVFijACmxABRqwAx04EqM+LIQt6sO1VpzENMeNYYvDjPqw0IAd6MCRGPVB53q/BSjACmxABRqwAx04EhtsUR8sLkvUh4WXzUpgAyrQgJfN4jxEfVg4EqM+LCxAAYbNAhtQgQbsQAeOxKgPCwtQgLBFfbBotFEfFhowbNHkoj4sHImR8wsjQlzNyO4eZydeSrog3kkKuPaqR2uKzF5YgQ2oQAN2oANHYmT2QtgGbAO2AduAbcA2YBuwjbTFbMeNBSjACmxABRqwAx0YtuuaxbzHjQUowApsQAUasAMdCJvAJrAJbAKbwCawCWwCm8AmsFXYogpcb89LzIbcWIENqEADdqADR2JUgYWwNdgabA22BluDrcEWVeBaRkJieuTCqAILC1CAFRi2WL48qsBCA142l0AHXjaPBhNVYGEBCrACG1CBBuxAB8LWYYu7BI+jiLuEhTiKqA0eJyp++SfGL//CAhRgBTagAg3YgbA5bAO2AduAbcA2YBuwDdgGbAO2kbaYJVmuF88kpkluFGAFNmBPjJy/XuaRmAT57JQMFGAFNqACDdiBDhyJkfMLYRPYBDaBTWAT2AQ2gU1gq7BV2CpsFbYKW4WtwlZhq7BV2BpsDbYGW4OtwdZga7A12BpsDTaFTWFT2BQ2hU1hU9gUNoVNYTPYDLbI+VEDK7ABFWjADnTgSIycX1iAsHXYOmwdtg5bh63D1mFz2Ob9gwSGrQWGzQIbUIEG7EAHjsSoDwsLUICwDdgGbFEfRiRv1IeFT5s8Io+v+jAx5ktuLEABVmADKtCAHehA2ApsBbYCW4GtwFYi7tWiYg7kc3giMCL0QAFWYETwQAUasAMdOBLjcyYLC1CAFQhbha3CVmGLz5s8LHAkxidOFhagACuwARVowA6ErcEWHzl5jMArQvTex7zGjR3owJF45fzGAhRgBTZg2OISmgE70IEjsT+AYauBAqzABlSgATvQgSMxPsGwEDaHzWFz2Bw2h80j7lUqYq7iczwrMCJEexgNqEADdqADx8aYq7jx2l95BAqwAi9bjG3EXMWNBuxAB47EyOOFBSjACoStwFbCJoEd6MCRGDm/sAAFWIENGLYaGLYWGDYNDJsFhu2qGmN+wijO5PyI0UQBhm0ENuBlq3F+I+cXXrbo1Yu5is9O/sCRGDm/Pn1TgJctuvLG/LhR7G9kd/SoxVREqSGOlJ4YXzJaWIACrMBr11vsWaT/QgN2oANHYqT/wgIUYMSNw4yUXhgR4lRH8kYPVUwk3NiAESH2N5J3oQOvYNE7FPMEJbqEYp7gxga8gmmcvsjNhddhRmdKzBMUm//1ihvdEDEjcOMVN3oZYkbgRgUasC+sMfdvY5yoR6AAKzDijkAFGrADr/3t85+NxMjNhQV42a5ekRpz/+R61qsx90967FnkZo+4kZs+/9ll8/nPHHjZrse+GnP/5Frwo8bcv+fvQ6AAK7ABFRi22J3IzYUOHImRmwsv2whx5OZ1J1Zj7p+MiBu5ed0Q1Zj792wrgZdtxBFHbo444vjU0SOOLT52NDE+d7SwAAVYL4x9iM8eLVSgATswkjf2YSZv4EzeiQUowApsQAUasANhU9gMNoPNYDPYDDaDzWAz2Aw2g63D1mHrsHXYOmwdtg5bhy0+X/aIyx0fMJsYnzBbWIACrMAGVKABOzBs0aLio2YT47NmCwswbNEm4+NmCxtQgQbsQAeOjTH3b2MBCjBsI7ABFWjADnTgSIzPny0sQAHCVmArsBXYCmwFtgKbwCawCWwCm8AmsAls8YG064azxty/jSMxPpO2sAAFWIENqEADwlZhq7A12BpsDbYGW4OtwdZga7A12BpsCpvCprApbAqbwqawKWwKW3xg7bodr2V+5nBiAQqwAhtQgQbsQAfC1mHrsHXYOmwdtg5bh63D1mHrsDlsDpvD5rA5bA6bw+awRdW4ng5qzOerJZI36sP1dFBjPt9GA3agA8fGmM+3sQAFWIENqEADhs0Cw9YDR2LUh4UFKMAKbEAFGrADYSuwCWwCm8AmsAlsApvAJrAJbLM+XL8tMuvDxAIUYAU2oAIN2IEODNtVrmTWh4mX7XqEqTGfb2MFNqACDdiBDrxs1/NQjfl8GwtQgBXYgAo0YAc6EDaDzWAz2Aw2gy0qwfXQVufHTSXaZOSxRJuMPJa4bpHHCx04EiOPFxagACsw7kAmKjBscd0ijydGHsfHFmMCXTyeVZkP8fO/Xv9sfaCzAx04Nq7vmE4sQAFWYAMq0IAdGDYLHInz26YTC1CAFdiACjTgZYtHmPmt04UjMZJ3YQEKsAIbUIEGhE1gi+RtccSRvAsLUIAV2IAKNGAHxpnsgWG72uT8LurCAhRgBTZg2OL0RfIuDFsoNBvX/C7q9VBc55dRF1ZgxJ1/V4EG7MDrKDTOWaTpxEjThZft+mhmrfORIPZsPhJMbMArrkpgxI0TFT/YE+MHe2EBCrACGzATvc5En9iBDhyJM9EnFqAAK/CKe/Ue1FiHcKMDR2IkusZ1i9v8hQKswAZUoAE70DfGNL969UrUmOa3sQKvuNckkRrT/DZeca8ejBrT/Or11a8a0/zqNTmixjS/en2Wq8Y0v2phi5xfKMAKDFuII+cXWooj5xc6cCRGzi+8gvWJV7DoiohZfBs7ME5JD7yC9TigSOmFBSjACmxABRqwAx0IW4OtwdZga7A12BpskdI9LkCk9EIHjsRI9IUFKMAKbEAFwqawKWyR6D0aQST6wgIUYAU2oAIN2IEOhK3D1mHrsHXYOmwdtg5bh63D1mFz2Bw2h813b12NmXm1R1uPRJ8Yib4wIkSzj0RfWIENGD/5858ZsAMdODbq7LefWIACrMA4Dz2wAx0YR3EdW8zX21iAAqzABlSgATvQgbDFz3h0HsbMvBqdhzEzb6MCDdiBDhyJdY/2VZ3jbxMFWIENqEAD9sS2Z0XUOQdvoQArsAHjKEqgA0di5PHC66xHx2jMtttYgXF2WqACDdiBDhyJkccLC1CAFQibwRZ5HN2wc7bdiLM+x9wnjsT+ABagACuwARVoQNg6bB02h81hc9gcNofNYXPYHDaHzWEbsA3YBmwDtgHbgG3ANmAbsI20zTl7CwtQgBXYgAo0YAc6ELYCRdlTu+qakjfRgNHkLNCB0eSuChNT8jYWYCSOBFZgA8bkpfl3o8mFbab/xMs2dzLSf2L85C+8bNekkhpT8jZWYAMq0IAd6MCRGD/5C2FrsDXYGmwNtgZbg63B1mBT2BQ2hU1hU9gUNoVNYVPYFDaDzWAz2Aw2g81gM9jiJ3/EhY2f/Inx4x4DMjH5bmMFNqACI240jfhxX+jAkRg/7gsLMGweWIENqEADdqADR2LcCCwsQNjiRiAGkGKi3kYFPm3tEe33KgobHTguvE5fTNRrMT4UE/VaDDnERL2NFdiACjRgxL12MqbvbSxAAVZgS7yS9/mIEKjASxEdmDGLrkWvZcyi21iAAqzAltjiv8b+tgZUoAE70IEjUR/AAhQgbAqbwqawKWwKm0VcC4wIPTAijEADduAV4Zp4UWMG28Lr13RjAQqwAq+4EhegR4S4AB4RYs+8AAUYEeJUX8mwUYEG7EAHhi2OeDyAYYuDHwKswIgbzSgaePRgxEyzjRGhBl4RrrkSNWaabWxABV5xr8kUNWaabXTgZbvmVdSYabaxAGErsBXYCmzFgH1fi1iZb2NezZiVtrEABaj7EsZMs3kJY6bZvFgx02xjAcq+FjHTbGMDKtCAHej7usVMs4XtsS9WzDTbKEDdlzBmj63r1nA1I9/mJYx8mydKcX4V51dxfiPf5sVSXE3F1Yx8mxdLcTUNV9NgM9gMNoPNcDUjGWqckkiGhQqM3YmzE8mw0IEjMZJhYQEKsAIb8LJFV2VM7drYgQ4cG2Nq18bL1lqgACuwAcOmgQbswLBZ4EiMxFkYth4owApswLB5YMQdgSMxUmRhAV5xo6MxJnG16EeMSVwtegFjEtdGA3bgZYsuupjEtTDSaWEBhi2OLXJIY38jhzR2J3IoutJi5laz+c8cOBIjhxYWoAAr8LJFr1qsMrcxbLE78fu20IEjMfJtYQEKsAIbUIGwKWwKm8JmsBlsBpvBZrAZbAabwRa/hRYNJn4LJ8Zv4cICFGAFNmDEjUvYHTgS4xdyYQEKsAIbUIEGhM1hc9gGbAO2AduAbcA2YBuwDdgGbGPbWswp21iAAqzABlSgATvQgbAV2ApsBbYCW4GtwFZgK7AV2ApsApvAJrAJbAKbwCawCWwCm8BWYauwVdgqbBW2CluFrcJWYauwNdgabA22BluDrcHWYGuwNdgabAqbwqawKWwKm8KmsClsCpvCZrAZbAabwWawGWwGm8FmsBlsHbYOW4etw9Zh67B12DpsHbYOm8PmsDlsDpvD5rA5bA6bw+awDdiillwDJy3mlG2sQF0VsT1mAZnYgQ7cRbeVxwNYgAKswAZUoAE70IGwFdgKbAW2AluBrcBWYCuwFdgKbAKbwCawCWwCm8AmsAlsApvAVmGrsFXYKmwVtgpbha3CVmGrsDXYGmwNtgZbg63B1mBrsDXYGmwKm8KmsClsCpvCprApbAqbwmawGWwGm8FmsBlsBpvBZrAZbB22DluHrcPWYeuwddg6bB22DpvD5rA5bA6bw+awOWwOm8PmsA3YBmwDtgHbgA21pKCWFNSSglpSUEsEtSQmnbVrxLHFpLONFXjZruG1FpPONhrwsl1jdS0mnW0ciVFLFhagAMPmgQ2owLDF/kYtWejAkRi1ZGEBXrZrjKrFpLONDXjZrpGgFpPONnagJ0bVuDrKW0wkax4nKurDQgNGhDhRUR8WjsSoD1e/fYuJZBsFWIFhiwOK+rDQgD0xKoHH6Yucv/rtW0wO26jAOL+hiJxf6MCRGDm/sAAFeNlGnNTI+YUKNGAHOnAkRs4vLEABwtZh67B12DpsHbYOm8PmsDlskfMjGkFk94hGENm90IEjMbJ7YQEKsAIbUIGwDdgGbCNtMSttYwEKsAIbUIEG7EAHwlZgK7AV2ApsBbYCW4GtwFZgK7AJbAKbwCawCWwCm8AmsAlsAluFrcJWYauwVdgqbBW2CluFrcLWYGuwNdgabA22BluDrcHWYGuwKWwKm8KmsClsCpvCprApbAqbwWawGWwGm8FmsBlsBpvBZrB12DpsHbYOW4etw9Zh67B12DpsDpvD5rA5bA6bw4ZaUlFLKmpJRS2pqCUVtaSillTUkjprSQ1UoAE70IFjY5u1ZGIBCrACw2aBCjRg2FqgA0firCUTC1CAFdiACjQgbAW2WUuun8U2a8nEAmzAiNADHfiMoNcYYIspbhsLUIAV2IB6YZySqz5s7EAHhi3E7QEswLDF/rYKbMCwjUADdqADL9v1vkiLKW5aYn+vSqAlrvFVCTYq0IBX3Gv8rcVkNi1xFBpxY3cs4obtqgQbBViBl01id65KsNGAHXjZJPb3Sn+V2J0r/VXiyl/prxK7c6W/Sih6AyrQgB3owJF4pb/W2Icr/TfWbEaOFjVzfqIBO9CBaKkDLXWgpc6cnwjbgG3ANmAbsF05rzXO2ZXzE2OK28Y4oBoowApsQAUasAMdOBLLAwhbga2ETQMbUIEG7EAHjkR5AAtQgLAJbAKbwCawCWxRH64xqqbzTqEEVmADKtCAHejAkTjvFCYWIGwNtgZbg63B1mBrsDXYFDaFTWFT2BQ2hU1hU9gUNoXNYDPYDDaDzWAz2Aw2g81gM9g6bB22DluHrcPWYeuwddg6bB02h81hc9jwfKEOm8PmsDlsDpvDNmAbsA3YBmwDtgHbgG3ANmAbabPHA1iAAqzABlSgATvQgbAV2ApsBbYCW4GtwFZgK7AV2ApsApvAJrAJbAKbwCawCWwCm8BWYauwoZYYaomhlhhqiaGWGGqJoZYYaomhlhhqiaGWGGqJoZYYaomhlhhqiaGWGGqJoZYYaomhlhhqiaGWGGqJoZYYaomhlhhqiaGWGGqJoZYYaomhlhhqiaGWGGqJoZYYaomhlhhqiaGWGGqJoZYYaomhlhhqiaGWGGqJoZYYaomhlhhqiaGWGGqJoZYYaomhlhhqiaGWGGqJoZYYaomhlhhqiaGWGGqJoZYYaklHLemoJR21pKOWdNSSjlrSUUs6aklHLemoJR21pKOWdNSSjlrSUUs6aklHLemoJR21pKOWdNSSjlrSUUs6aklHLemoJR21pKOWdNSSjlrSUUs6aklHLemoJTHVT6+ZLy0WzNtowA504EiMJ5SFBSjACoStwdZga7A12BpsCpvCprApbLPf0wMVGLYe2IEOHInx3LKwAAUYthHYgAq8bNe8oBbTDTc6MGyxZ/EIs7AAo1c4gvUKbEAFGrADHTgSo5YsLMCIK4EKjKOIBuMd6MCReFWNjQUowOucXW9qtlgab6MCw9YCO9CBYbv2LCYsbizAOGc1sAIbUIEG7EAHjsSoGgsLMI5CAxVowDgKC3TgSIwnlGuOVoupiRvjnHlgBTZg2EagATvQgSMxejAWFuBlu94sbTGNcWMDKtCAHbgnIbY1YbEExoy7iRXYgAo0YAc6cE83bHNy48ICFGBMxpzYgAo0YAc6cCTGXcXCAsSVN1x5w5U3XHnDlTdc+Y4r33HlO658x5XvuPIdV77jyndc+Y4r33HlHVfeceUdV95x5R1X3nHlHVfeceUdV37gyg9c+YErP3DlB678wJUfuPIDV37klZ9zLRcWoADzys+5lgsVaMAOdGBe+TnXcmEBxtkpgQo0YAde10LnPxuJkfMLCzAmw/fACmxABRqwAx04Euf0/4lxjWtgAyrQgB3owJEYv/4LC1CAsDXYGmwNtgZbgy1+/TV2PX79FxagACuwAcPmgQbsQAeOxPj1X1iAAqzABoQtKsE1a7XFBMuNDrxsFq0kKsE1E7XFBMuNAqzABlSgATvQgWG7ClNMu9wYNgsUYAU2YNhi16MSLOxAB47EuCdYWIACvGwxVSqmXW68bD3OTtwTLOxAB46FGnMt9Xq/W2Ou5cYKbEAFhkIDO9CBIzE6MBcWYNgssAIbUIEG7EAHjsQoFQsLELa4PbgmPWjMtdyowLB5YAc68LJdsyI05lqqx5mM2wOPsxO3BwsrsAEVaMDrVa2INRfPCSpJklST2qbI4OsWS2Oy40YD9mtxwCBPGpti9bxJJUmSImILvE6DxxWMV+Lj/4834ieVpGt343TFG3OTWpImWVJPCklcrUjDiZGGHpco0nChAGM3I0KklseORGpNnG/CB10BRlzCyKyFFdiACrR9SkaezpGnc+zTGXMRF5Wktk9izC6cJzFmF+r1eKkxu3BhpMw1RKkxu3Bj7GkNjDv1oJakSZbUk3xTpMWIHYkEGLEjkQAhj/Y/qSfFEFjQ2DQH94JKkiTVpJBYoAIvyzVgqDFFcKMnxk/kiD2OH8MRZzF+DBfGY35QzxMTv4ULR2L8Fi58hrVH7Nj1W7ixAlue8MikhQaETWFT2Aw2g81gM9gMNoPNYDPYDDaDrcMWv4ULZTX1mPQ3m29M+tuoQAP2xOt3yh6xC1cybRyJkUzhipdJJ0lSTWpJmmRJPcmTxqK5+NukkiRJNakl6bWDLdCAHRgHY4Ej8Uo4e0SEUoACrMAGVKABwzYCHTgSJWw9sAAFeNmuYWaNKXgbFXidwNjzeOd8kieNTfHC+aSSFBFL4LWn1xi2xuQ7K7H/1+/QwuuHaGMBXnt6jWFrTL7b2IAKNOC1q3ERWshib9pI1AcwZB4owAq8ZBLn4srSjZdM4tCuLN3owHh/66J4SJ1UkiSpJrWkiBgn68o5kzgXV86ZxF+4cm5jBTZg7GkcYDdgBzpwJEbvU7SL6HyaJEkx8TWoJWmSJfUkTwpJhBkPYAE2YOxmnPzhwOuEXld3zqqbVJKuM3KN92vMqdvYgNcZuR5ENebUbbxUkc8xp27jtbPRfmJOndVQRLpGw445dRZ3HzGnbmMDKtCAHejAkRjp2mJ/I12vrjmNOXXWYn8jXVvs5JWYFu0lZs9tdOBIrA9gAQowgsVhRqYudOBIjExdWIACjGBxoiLnovXELLeNBSjAuF0OakmaZEk9yZPGpvhJnFSSJCkdlg5Lh6XD0mHpsHT0dPR09HT0dPR09HT0dPR09HT0dMw+n6CWpEmW1JM8aWyKR7xJJUmS0jHSMdIx0jHSMdIxtiMmpi0qSZJUk1qSJllST/KkdERiXG+iakwQs7jfi6+e2voLV8Jd76fqnNMlQZbUN83WG1SSJOlq/HEBYi7WxpEYrfjqJdBYbswiZjTiSTWpJWmSJfUkTxqb7JGUDkvH1V7N4gRcjdOujgqNZcMsdjF+MiaVJEmqSS1JkyypJ3lSOjwdng5Ph6fD0+Hp8HTEnZ8HedLYFL8TcabjZ2KSJMVZiBMSPxLXen0ac6csLmXMndpYgAKswAZUoAE70IGwFdgKbPE7cfXnaMyd2tiACjRgBzpwJEY6LCxA2AQ2gU1gu349ohMipk4t8qSx6frlWFSSIqIFxp7O//r81/HwG9OjJl3Jtuj5r+OBOeZGLapJLUmTLCkOPMJEpl3dUBpTnTY2YDSzEmjADnTgSIyMW1iAAqzABoTNYIvbt+uVHY2pThtH4szQuA4zRSeGLU7rTNI4rTNL4+Bnmk40YCRRiCNTF0YaXekRU50sumZiqpNFz8BcDyxu8ed6YAsbUIEG7ImRn9G3ENOXLPpOYvqSzesWKbrQgLG/seuRuAvHxpi+tLEAr7jxwBhTkiy6L2JKksXja0xJWhjJuLAABViBDahAA4atBjpwJEYyRi9HTEnaKMAKDJsGKtCA1/mNJ4j5rc2FI3F+3z7Ow/y+/UQBVmADKvC6mvF0Yfl9e7X8vr3GlCSLvpOYkrSxAAWowDg7PXAkzhWDgjTJkq5CE3t1ZeCikiRJNaklaZIl9SRPCkdgfwALMILHofcGVGDEj4vdO9CBlyL+6pVsi0qSJNWklqRJltSTPCkdIx0jHSMdIx0jHSMdIx0jHSMdYzti3s+ikiRJNaklxflqgQbswDhfFjgSywMYl8QDBXi5ohMhpvxsVKABO/CyRYdDTPlZeOVqj66FmPLTS+zZlas9eg5iys/GBgxb7GT8cC7swMs2/+rYFD+dk0qSJNWkiNgDY0/jsFvs6QgsQAFWYFyEOOymQAN2oAMvW8iuu9r4hYjpO10mxuWOXdQKDFfsrYYr9kANeLliqCCm7/Q6g43EK6ujkM9PWD7ir8bCmbOdxMKZE2PhzIXXjtWJAqzABlSgATswdiwOIlJ3YuTuQsk9i1/HhQ0Yux7HE7+OCzvwUsSjfEzDWRipu/A6oHiqj2k4G68DitoY03A2KjBscSlitcyFDhwbYxrOxgIUYAU2oAIN2IEOhK3AVmArsBXYCmwFtgJbga3AVmCLTI6ekJics1GAcSZbYAMq8GoabQbrQAeOxMjl6NKIyTk9eixick6JKhWTczY2YNgmGrADHTgSI/cXFqAAK7ABYWuwNdjia7fR7xtTdhbG124XFqAAK7ABFWjADoRNYYvf+RhMiSk7GwVYgQ2oQAN2oANHYvzgR2dBTOTZKEAFRg2XwCji0YyiKCwsQAFGIY8WFT/qCxVowA504EiM+rCwAAUI24BtwDZgG7AN2OI3PjpNYsrOxrBZoAArMJ4MaqACDdiBDhyJ8ZsevSgxOadfkzE0Juf06FCJyTkbHTgSI+ejuyMm52wUYAU24GWLB/KYnLOxAx04EiPnF4YtTlT8gi+swAZUoAE70IEjMXJ+IWyR8/GoHVN2NjZg2OJMRs7HY3JM2dkYD/WPwJGo8VgfZyd+8RcKsAIbUIEG7EAHjkSDzWAz2Aw2g81gM9gMNoPNYOuwddg6bB22DluHrcPWYeuwddgcNofNYXPYHDaHzWFz2Bw2h23ANmCL+hB34TFlZ2MDKjCe/qLBxP3DQgeOhRYrpW0sQAFWYAPGUdQL4+7+WlrEYkbOxthfDazABlSgATvQE6MSXN0mFrNs4pRYzLKJI7bH7Oqa2IEOjPPbL5zdXRMLUIA1FRW2qkADdqADR2Lk/NyHyPmFAqzAlvsQOb/QgLA12BpsmfP2yJy3R+a8PRTHpi3FijOpOJOKMzlzPvZBcSYNZ9JgM9gMNsOZNJxJw5k0HJvh2GbOxz50nMmOM9lxJjvO5Mz5aKkz5yeGbQR2oANHYuS8R7DI+YUCrMAGVKABO/CyeSRO5PzEgQYeie6RQ5HoCxtQgWgacSOwEBdr5MWKWUQbC1CAebFidtFGBRqwAx2YDbGUB7AA4yg0UIEGjBNlgXGiYs/i9mBi3B4sLEABVmADKtCAEfdqGjH9aGMBCjDijsAGVKAB4yZn/jMHjsQoCgsLUIAV2IAR9xHowJEY6T/iVEf6L7ziXv2YFjOTNjbgdRRX56XFzKSNHXjZRlyhSP+Jkf4LC1CAFdiACjRgB8J2JfqIQ+uSVJOeQa8OXIsJSIssKSLGiYsUXzgSI8VHXLFI8YUCvEyxH1eGL9IkS+pJnjQ2Xb/ni0qSJKVjpGOkY6RjpGOkY2xHTG1aVJIkqSa1JE2ypJ7kSddAz9WHajGtaWMBXmM9Vx+qxbSmjddoz9VLYjGtaaMB+4WhuDJ9Y9iuNhfTmjYWYNh6YAWGzQIVaMCwjUAHXrarK9FiatPGy1biKK7831iB10n0IE2ypJ7kSWNTjIyVOAMxDFbiqGIcrMQZuHJ8owNHYvTjlThsLUABVmADXjaJK3bl+MYOdOBIvHJ842WTOEVXjm+swAZUoAE70IEjsT+AsPWwxanvFdiAYYsz2cMWJ6p3YNiiJfSR6GGLs+MFKMAKbEAFGrADHTgSB2wDtgHbgG3ANmAbsA3YBmwjbTF/amMBCrACG1CBBuxAB8JWYCuwFdgKbAW2AluBrcAWlSEeOGIG1cKoDAsLMAY7J1ZgAyrQgB3owJEYg3EL4yhG4LW/16wzi8lUG6/9vfrFLSZTLYwR8oUFKMAKbMCIezXwmFe1ToniiCPnF1ZgA17n9+qQt5hatbEDHYirabAZrqbhahqupuFqGq6m4WrOnI/dMVxNw9XsuJodxxY5f3XkW8y12hhnRwMVaMAOjGObwUZi5PzCAhRgBTagAsMWjSByfuHIixWJ3qI9RKIvFGAFtrwAAxdr4GINXKyBixWJHhgzszbmxWpI9IZEb0j0hkRvSPSGRG9I9IZEj8XB/BqksFgcbGMDXnGvYQ6LxcG8xZ5FSi904EiMlF5YgAKswAaMuC3QgSMxftYXRlwNFGAFNmD+NMf8so0d6MCRGIm+sAAFWIHxuBDUkzwp7oMuitSfVJJi/+MvRuIvbMC4xQ6ypJ4Up2riSIysXxiZESRJNaklaZIl9SRPGpv6IykdPR09HT0dPR09HT0dPR09HZ4OT4enw9Ph6YjsjieomLi2sQNjQHX+3ZEYia7R7CPRFwowhlQjcUYDxpCqBRqwA2PkckYYG2Oum19DFxZz3TYK8DoyC2pJmmRJPck3xa/2NdZhMXPNr2EEi5lrfo0dWMxc29iBDrzO/9XzbzFzbWMBCrACw+aBCjRgDDY9Ah04EuP3eWEBCrACG1CBBoStwlZha7A12BpsDbYGW4OtwdZga7A12CL5r3ERi7XANgqwAhtQgQbswLjw0WqiAkyMCrDwslnsQ5SAhRUYTSxaSVSBhQYcibF4RvyrWDtjUvyjuMKR1ws70IEjMXJ74bWL0dsX89w2VmADXrborY55bhs78LJFx3Us6bUwEnxh2KKlR4IvrMAGDFvkVfySR0mP2W8eBThmv20sQAHGrMkSGNMmJTDmTbbAmDipgR3owJEYN+eR5jFTbqMAKzBsHhiK2J3I+OhyielxHv0rMT3Oo5MgpsdtLEABVmADKvCyjdiH+FFfmI0o5sRtLEABVmADhiIOKH7JF3ZgHFAc5pzTGjgntU4sQAFWYAMq0IAdCFuD7Urz8YjLrQUowApsQAUasAMdOBINNoPNYDPYDDaDzcIW7cEibrSH/gAWoAAjbg1sQAUasO9foZiDt3EkRiVYWIACrMAGVGCcnYkjMXrrFhZgHEW01OiwW9iACoy5XtG44kd9oQP3DDCbU/AWFqAAKzDOjgV2oANHYnkACzD2twdGhIhbIsIIHInyAF4RrvnAFrPoNl7nIXrMYhbdRgVe+xs9ZjGLbqMDR+KV3RsLUIBhq4ENqEADdqAD93xVixl26zy0CsTZaRG3BRqwAx04EiOPo5cu5thtFGAFxlGELfJ4oQHDFhcg8njhSIw8jq65WCJrowDDFlc+8jh602JC3oh+s1gia8S9bCyRtdETI4+jYy0m5G2swAaMuHFs3bNx9ZHoD2ABVqCt6d8Wk+w2OnCsSeHW54sjEwtQgBXYgAo04J5sbjGdbsRteEyn2yjACoyD74EKNGAH+po9bzGdbmFMYl9YgAKswAZUoAH3KxTm892RiXEUHijACmzAOIr5zwzYgQ4ciZG8C8t6S8Ni4tzGCmxABRqwAx04EmO6+sLrKOrEBlSgAa+jiCepmCK3cSRG8i4s640XiylyGyuwARVowA70xEjT6CSKyXAbK7ABFWjA9TaVxVy4RWNTvHMyqSRJUmREUEvSJEvqSb4pEjZ6mWIC3IjuuJgAt9GAcezz7zpwJEbuLixAAVZgAyrQgLAN2EbaxuMBLEABVmADRnvRQAeOxPiJXRhnxwIFWIENqEADdqADw3Y1nZgWt7EABRg2D2xABRqw74sV0+I2jsTI6IUFKMAKbEAFRtwROBLbA3jFjWfBmAA3ovswJsBtbEAFXkcR/YsxAW6jA0diZHR06MUEuNHiRMXP8cIKbEAFGrADHTgS4+d4IWyR59GJFBPgNjagAg3YgQ4ciXGzvTBGfKPRxo909MfEBLiNDahAA3agA0di/HQvLEDY5kh5NK45VD5RgQbsQAeOxDlgPrEAL5tFI4hb8IUNqEADdqADx8IeE+DG9bDYYwLcRgFWYAMq0IAdeFUjDRqb4vd+UkmSpJoUESfGntqFUQMWRiWL/Z9vhE6swAZUoAE70IEjMbL9+t3qMSFuXD8iPSbEbVSgATvQgSMxasD1q9JjQtxGAVbgZbt+63tMiNtowA504EiMGrDwsvU4tqgBV9dQjwlxGxtQgQbsQM9robhChisUNWChACuwARVowOtaSFyAuULIxAKMo4jGFtm+MI4iIkS2LzRgHMWM4MCRGNne4wJEti8UYAU24GXzODuR7Qs70IEjMbJ9YQEKMOLWwKulXveqPeawjaszrMccto0VGLM0NFCBsWcW2IEOjD27zkPMYdtYgAKswAZUYNhif+MXfqEDR2Jk98IClDzi+C2/OuR6zGHb2IEOvOJeD009ZrZtLEABXlXjet7rMbNtowIN2IEOHIlxd77wOjvXU1WPOWwbFWjA6yiubsUeM9s2jsTI44VXBpSJAqzABlSgATvQEyNjR+x6ZOzCCoyjiMYVGbvQgHEU0c7iV3thHEU0rvjVXliAYYsGE3m8sAEVaMAOdGDYosFEHi8sQAFWYAPqWhStx3Q2ncc21+qKBhP37wsLUIAV2IAKtLUiWY95bRsdODbG1LZYVa7H3LaNAqzABlSgATvQE2NVvKgaMZttxMHHbLaNDahAA3agA+dIznXIMZ0tuRALcV0r+fWY0bZRgQbsQAeOxLmY5MQCnGNSJViJjXgOS8XZX6Ngkwd4jYPV4EI8DyfO5RoKm9yIpzf2Z42GTe7ETjzA80W2xYV4ei24EjdiJTbiThznMq6eoVUYWoWhVRhahaFVGFqFoVUYWoVRq+jUKjq1ik6toqNVdLSKjlbR0So6WkVHq+hoFY5W4WgVVxo/y3xcwSuPkytxS67zjdCr07PX+Uro1SPW63wndLEQV+K4InEHU+d7oYuNuBM78QDPhFpciIW4EpNXyCvkFfIKeYW8c7w5fpLrHHBeHPFrHOPMrMVGHPHrjOPEAzwzq0bMmVmLhXjGH8ER53qS7nVmyuSZHfPvzOy4nqB7ndmxuBErcezz9RTd68yOxU48wPYgLsRCPL3RfqwRK/H0RruyTjy9Gjy9cT7Xu+OTC/H0xvnslbgRK/H0xrntndiJB9gfxIVYiKc3zv98qXyxEodX43rN98o1zr+HV+O8+QCPB67vKMSS3GbbvsYxnjyrnAdH/DL/jhMP8GzbiwuxEFfiRqzERkze2eav4aHeZpufPNv84kIsxJW4ESuxEXdi8jbyKnnXr8kIFuJK3IiV2Ig7sRMP8MyXxeQ18q6FE67r3mY7v8axepvtfLEQV+JGrMRG3ImdeIBn244639ZyCZMrcSNWYiPuxE6M35E22/bi6dLgGdOCjbgTz5jR5ufaCME6F0dYXIiFuBI3YiU24k5Mrvkbdw3Vdp2/cdcwXdf5G7fYiDuxE8/fmitfdP2WleBK3IiV2Ijnb5kEO/EAr9+yyYVYiCvx9NZgJTbiTuzEAzzzfXEhnq4W3IiV2Ig7sRMP8MzxxYVYiMmr5J05fg1qdp05vrgTO/EAzxxfXHBdjK6p0TU1uqYzvyzO+cyvxUpsxJ3YiWN/4p5NZ34tLsRCXIkbsRIbcSd2Ynht5mD0idrMwcVCPL0a3IiVeHp78PR68PSO4PBGH5/N+9LFhViIK3EjDm/0htnM2cWd2IkHeN6XLi7EQlyJGzF5hbxCXiGvkLeSt5K3kreSt5K3kreSt5J35mx09dnM2cUCnnl0TVLuNvNoccT3OLczjxZ3Yice4JlHiwuxEFfiRjy9Ejy90SbnveViJx7g+Zu7uBALcSVuxEpM3k7eTt5OXievk9fJ6+R18jp5nbxOXievk3eQd5B3kHeQd9aBeD62me/xLNkfaIf9UYiFeLZDC27ESmzEndiJpzd45vviuf/hmvm+uBLP/ffgGedqw33m7+K5/3FcM3+jLfWZv4sbsRJH/Ohi7TN/Fzsx2nmvD+JCTN5K3kreSt6Zv5Pn7+OY7MQDPHMtejj7zLXFhTj2IToC+8y1xY049iE61PrMtcVzH+K6zFxbPMAz16IDs89cWyzElbgRK7ERT29c35lriwd45triQizEFe3B0ebXOmDzOjpd05lTk2dOLS7EQlyJUbv6UGIj7sSOvKMcXIuCLS7EQlyJG7ESGzhyJ+al97m012YlNuJO7MQDHLm2uRALMXmFvEJeIa+QV8gr5K3kreSduRbddGu1r8WNWImNuBM78QDP39DFhZi8jbyNvI28jbyNvI28jbxKXiWvklfJq+RV8ip5lbxKXiWvkdfIa+Q18hp5jbxGXiOvkdfI28nbydvJ28nbydvJ28nbydvJ28nr5HXyOnmdvE5eJ6+T18nr5HXyDvIO8g7yDvIO8g7yDvIO8g7yDnjH40FciIW4EjdiJTbiTuzE5C3kLeQt5C3kLeQt5C3kLeQt5C3kFfIKeYW8Ql4hr5BXyCvkFfIKeSt5K3mpXg2qV4Pq1aB6NaheDapXg+rVoHo1qF4NqleD6tWgejWoXg2qV4Pq1aB6NaheDapXg+rVoHo1qF4NqleD6tWgejWoXg2qV4Pq1aB6NaheDapXg+rVoHo1qF4NqleD6tWgejWoXg2qV4Pq1aB6NaheDapXg+rVoHo1qF4NqleD6tWgejWoXg2qV4Pq1aB6NaheDapXg+rVoHo1qF4NqleD6tWgejWoXg2qV4Pq1aB6NaheDapXg+rVQL3yB+qVP1Cv/IF65Q/UK3+gXvkD9cofqFf+QL3yB+qVPx7kLeQt5C3kLeQt5C3kLeQt5C3kXfdX5eJ1fyXBhViIK3EjVmIj7sROPMCVvOv+SoOFuBJPbw1WYiOe3h7sxAMc9SqWrveYXPbkOA9RrzZX4kasxEbciZ14gPVBTF4lr5JXyavkVfIqeZW8Sl4jr5HXyGvkNfIaeY28Rl4jr5G3k7eTt5O3k7eTt5O3k7eTt5O3k9fJ6+R18jp5nbxOXievk9fJ6+Qd5B3kHeQd5B3kHeQd5B3kHeQd8MaabcmFWIgrcSNWYiPuxE5M3kLeQt5C3kLeQt5C3kLeQt5C3kJeIa+QV8gr5BXyCnmFvEJeIa+Qt5K3kreSt5K3kreSt5K3kreSt5K3kZfqVaF6VaheFapXhepVoXpVqF4VqleF6lWhelWoXhWqV4XqVaF6VaheFapXhepVoXpVqF4VqleF6lWhelWoXhWqV4XqVaF6VaheFapXhepVoXpVqF4VqleF6lWhelWoXhWqV4XqVaF6VaheFapXhepVoXpVqF4VqleF6lWhelWoXhWqV4XqVaF6VaheFapXhepVoXpVqF4VqleF6lWhelWoXgnVK6F6JVSvhOqVUL0SqldC9UqoXgnVK6F6JVSvhOqVUL0SqldC9UqoXgnVK6F6JVSvhOqVUL0SqldC9UqoXgnVK6F6JVSvhOqVUL0SqldC9UqoXgnVK6F6JVSvhOqVUL0SqldC9UqoXgnVK6F6Jate1eBK3IiVeHotuBM78QCvejW5EAtxJW7E09uDjbgTO/EAr3o1uRALcSVuxORd9WoEd2InHuBVryYXYiGe98+TG7ESG3EnduIBnvVqcSEWYvI6eZ28Tl4nr5PXyTvIO8g7yDvIO8g7yDvIO8g7yDvgrY8HcSEW4krciJXYiDuxE5O3kLeQt5C3kLeQt5C3kLeQt5C3kFfIK+QV8gp5hbxCXiGvkFfIK+St5K3kreSt5K3kreSt5K3kreSt5G3kbeRt5G3kbeRt5G3kbeRt5G3kVfIqeZW8Sl4lr5JXyavkVfIqeY28Rl4jr5HXyGvkNfIaeY28Rt5O3k7eTl6qV5XqVaV6ValeVapXlepVpXpVqV5VqleV6lWlelWpXlWqV5XqVaV6ValeVapXlepVpXpVqV5Vqld11qtrjpPXWa8WG3EnduKR3Ga9WlyIhbgSN2IlNuJO7MTkLeQt5C3kLeQt5C3kLeQt5C3kLeQV8gp5hbxCXiGvkFfIK+QV8gp5K3kreSt5K3kreSt5K3kreSt5K3kbeRt5G3kbeRt5G3kbeRt5G3kbeZW8Sl4lr5JXyavkVfIqeZW8Sl4jr5HXyGvkNfIaeY28Rl4jr5G3k7eTt5O3k7eTt5O3k7eTt5O3k9fJ6+R18jp5nbxOXievk9fJ6+Qd5B3kHeQd5KV61aheNapXjepVo3rVqF4p1SuleqVUr5TqlVK9UqpXSvVKqV4p1SuleqVUr5TqlVK9UqpXSvVKqV4p1SuleqVUr5TqlVK9UqpXSvVKqV4p1SuleqVUr5TqlVK9UqpXSvVKqV4p1SuleqVUr5TqlVK9UqpXSvVKqV4p1SuleqVUr5TqlVK9UqpXSvVKqV4p1SuleqWrXnlwIRbi6R3BjViJw3st+uJzTu9mJw7vtaqFzzm95XrPwuec3s1CXIkbsRIbcSd24gHu5O3k7eSd9arF+Zn1arESG3EnduIBnvVqcSEWYvI6eZ28Tl4nr5PXyTvIO8g7yDvIO8g7yDvIO8g7yDvgnXOVNxdiIa7EjXh6NdiIO7ETD/CsV4sLsRBX4kZM3vUc14Pn/a0FG3EnduIBXs9rkwuxEFfiRkzeSt5K3kreSt5G3kbeRt5G3kbeRt5G3kbeRt5GXiWvklfJq+RV8ip5lbxKXiWvktfIa+Q18hp5jbxGXiOvkdfIa+Tt5O3k7eTt5O3k7eTt5O3k7eTt5HXyOnmdvE5eJ6+T18nr5HXyOnkHeQd5B3kHeQd5B3kHeQd5B3kHvP3xIC7EQlyJG7ESG3EndmLyFvIW8hbyFvIW8hbyFvIW8hbyFvIKeef9T5ssxJW4ESuxEXdiJ5718/odn3OnNxfi6e3BlbgRYy5Bp7kEfdWiyYVYiCtxxLze3/Q+a9FiI45jud7l9Dkfe/MAz1p0refkfdaixUJciRuxEhtxJ3biATbyGnlnLbqWefI597tc6zH5nPu9WYmNuBM78QDPWrS4EAsxeWct0ri+sxYtNuJO7MQDPGvR4kIsxJWYvLMWWVyvWYsWd2InHuBZixYXYiGuxOG1aPOzFi225DmXu1zvRvmcy71ZiTHW4zSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5mtMLa5FNeJOjDEmrxhj8vYgnu3Bg4W4EjdiJTbiTuzEGGNyfRAX4umdXIkbsRIbcSd24gGedeZaRcvnnPDNQlyJG7ESG3EndmI8M/rqt4nzsPptJnfi+bwZ+7n6bYJXv83kuc8Rc9aKxZU49jmeH+e87s1GPPe5BTvxAM9asbgQC3ElbsTzXEW7mrVicSd24pE853VvLsRCXImndwRH/Ou9P18fiV48wLNWXO/R+JyPvdmIZxwNduIBnrVicSEW4krciJXYiMm7vgjlwQO8vgk1uRALcSVuxEpsxOEdcX5mrVg8wLNWLA7viHM1a8XiShzeEccya8ViI+7ETjzAs1YsLsRCXInJO2vFiGOctWJxJ3biAZ61YnEhFuJKfMWRmPs650tLzB2d86U3K7EFRxuOOrDZiUdwxI86sLkQC3ElbsRKbMSd2InJG3VA4rdmzpfeLMSVuBErsRF3YicO7zVPY6yPQy8uxEI8vT24ESvx9HpwJ3biAS4P4kIsxJW4ESsxeaOeyPV+/ZjzpTcPcNSTzYVYiCtxI1biGT/OjwxwfRAXYiGuxDN+C1biOK5rbYEx50Vvnl4LHuA2vXEtWiGe3jg/rRJP7whW4vBeC2qPOS96c3hrHHvUjcVRN+RaunrMedGbw1vjGKNubA5vjWOMurF5euMYtRNPbxyjDrBNbxyjFeLpjWO0Sjy9cYymxOFtcYxxj7E5+2nHA/2044F+2vFAP+14oJ92rHnRi8Pb4lzNurTYiKc3zsOsS4sHeNalxYVYiCtxI1ZiIyavk3fWnxbnf9aZFud81pkW53nWmcWd2IlH8pznPOPPec6bhbgSN2IlNuJO7MQ4b6WQt5B31pM4xjlveR7jnLe89rnQ/s+6sbgQCzHtv9D+C+2/0P4L7b/Q/gvtf6X9r7T/lc5bJW8l76wb8xhnfZjH2Gj/G+3/rA+LG7ES0/432v9G+99o/5X2X2n/lfZfaf+V9l/pvCl5lbyzDsxjnPk+j9Fo/43234y4E9N1N7rufcb34EKc4wWjYFxmFIzLjIJxmVFWXl81Z84TlmtNsDHnCYvG/s/8XdyIY/81jmvm7+JO7MQDPO8rFhdiIa7EjZi8g7yDvDPfNa7FzPfgOU94cyEW4krciJXYiDuxE5N33j9cX54bc96vXH1KY8773dyJnXiAZ74vLsRCXIkbcXivNbbHnPe7uRM78QDPfF9ciIW4Ejdi8s77h6t/acx5v5udeIBnfVhciIW4EjdiJSbvrA/X2j5jzvvdPMCzPiwuxEJciRuxEk/vCO7E4b2WBx9z3q/0OD+W43FjzftdLMSVuBErsRF3Yice4E7eTt6oJ3L1LYw573dzI1ZiI+7ETjzA8/5hcSGe3sidWX8WN2IlNuIOnnWjR/ufdWOxEXdiJx7Jc76uXP0MY87X3Rx//+pbGHOe7eL5+744/v7VtzDmPNvNlTj20yPmrA+LjTj2c8yYTjzAsz4sLsRCXIkbsRIbMXmFvELeWR88ztWsD4uFuBI3YiU24k7sxAPcyNvIO+vDtcT3mPNsNzdiJTbiTuzEAzzrw+JCTF4lr5JXyavkVfIqeZW8Rl4jr5HXyGvkNfIaeY28Rl4jbydvJ++sD9d6PmPOs93ciJXYiDuxEw/wrA+LC/H0avD0xnWf9WGxEhtxJ3biAZ73J4sLsRCTd65R/IhzEnVmsxF3YiceyXOe7eZCLMQ5T3g0zPMfDfP8R8M8/zHnzdar32nMebObK3EjVmIj7sROPMDyICavkFfIK+QV8gp5hbxCXiFvJW8lb51eCZ5jChbciJV4eltwJ3biAW4P4kIsxJW4ESsxedv09mAnHmB9EBdiIa7EjViJw1uiXUX92ezE4S1xDqP+bC7EQlyJG7ESG3EndmLy9unV4EIsxJW4ESuxEXdiJ57eaA8uxJV4xvdgJZ7xI++8EztxxL/WWR1zfuzmQizElbgRK7ERd2InhnfOj91ciIW4EjdiJTbiTuzE5C3kLeQt5J11Kfoz5/zYzUpsxJ3YwWtOiAfPmBLciJV4xqzBndiJB3jWnMWFWIgrcSNWYvLO2hJ9rXOOa43+1TnHdbMQV+JGrMRGPJ8x4zzPe5vFAzzvbRYXYiGuxI0YfTtzLmuNfuA5l3XxrCGLC/E8rh5ciRuxEhtxJ3bi2WcS8fuDuBALcSVuxEpsxOijU0efz5yzuo5r1pDFlbgR03E5HZfTcTkd16ohwauGTC7EdFyDjov6TnXQcQ06rkHHtfpOJ+N82uNBXPPY7YHjslUrJhtxJ8Zx2QPHZeVBXIiFuBI3YhzXXEd3cyd2YjouoeOSQizEldhw7ELHJU6M9m/1QUzHVem4Kh1XpeOqSmzEnZiOq9JxUV+rNTquRsfV6LhaI6bz2eh8Ym78MLzLMwzv8ow5l7XGOM6cy7q5ESuxEXdiJx7gVU8mF2LyGnmNvEZeI6+R18hr5O3k7eSd9yExrjTnr25WYiPuxE4crhiHmvNXNxdiIa7EjViJjbgTOzF5Z22JMa85f3WzEE9vtL15f7I4vDHeNOevbg5vjDHN+aubw3t9s2PM+aubC7EQV+JGrMRG3ImdmLyFvIW8hbyFvIW8hbyFvIW8hbyFvEJeIa+QV8gr5BXyCnmFvEJeIW8lbyVvJW8lbyVvJW8lbyVvJW8lbyNvI28jbyNvI++8t4nxiznHdXMnduLpvdrqnOO6uRALcSVuxEpsxJ3Yiclr5DXyGnmNvEZeI6+R18g7a1HU5DlntcY40ZyzunnG8WAj7sROPMCz/iwuxDPmCKZrPWvIPP+zhiwuxEIc+xz3kHPe6WYlNmJqY4O8VEOcaohTDXGqIU41xFcNqcFKbMSd2HN/5vzVxbOGLCYv1RCnGuJUQ5xqiFMNcaohXtC2veA8uzyIC7Fgf6QSN2LyUg1xqiFONcSphjjVEKca4hXX11cNmUznudJ5rri+c/7qZjrPVEOcaohTDXGqIU41xKmGeKPjbXS8VEOcaog3Os9K51npPM8acs23H3P+6uZ5niP+rCGLjbgTz+PV4AGeNWRxIRbiStyIlXh6LbgTj8zluY5xjfHKuY7xZiGuxNSWuhLTNe10TTtd006545Q7TtfU6Zo6XVOna+p0TZ2uqVMbphrlTm1p1qIYJ/VViyY34nlccX5mLbLYz1mLFjvxSJ7zWjcXYiGuxI04Yka/95zLunjWmcUR85p7OeZaxJsrcSNWYiPuxE48wLPOLCavkHfWjeifn3NW67Xe/pjzVPd/n/vWg+e+ebASG3EnduIBnjVh8dy3ESzElfjytkec56gJLfrY5zzVFv3Gc55qi/7kOU91HcusCZOVjnHme4wPzjmom424EzvxAM98X1yIhbgShzfGHOeawNXjWGa+L+7EThxej+Odub+4EAtxJW7ESmzgmdce53Dmb4x7zrmp1aM9zJz1OIczZxc78QDPnF0840Rbmrm5eMZ5tofro5ZzJ8bcmK3sMTeMNzpvzAte5sagjZV+a6OQZyXg+n8qbzTeUN6wfVKujc4bzhuDNiRPwLVR91FfG403lDZmctkMMLPrmqlwbXTecN4YtDEzbG/MUjb3YP6+2vTMH9i9YbzRecN5Y3rmSZwZtTcKbwhvVN5ovKG8MfdgXvqZfHvDeWPQxsy/vVF4Q3ij8sbM99l2ZuLtjc4bzhuDNmby7Y3CG8IblTcab/AedN6D+fvbZ3ubP8B7Y9DGTNW9UXhDeKPSlXO+9M6X3vnSz4y93pC5NuaO1rlhvNF5w3lj7mg0vjl3MzcKbwhvVN5ovKG8Ybwx96DNDeeNQRuzBOyNwhvCG5U3FOdgLlNbu82NQRvzR3Ye9pzZmRvCG5U35sH1uaG8YbwxD87nhvPGoGiV96DyHlTeg8p7MH/G94byhvFG5w3nDd6DxtL1pbwxN65oj/qYG503nDcGbcwl9us88XON/b0hvFF5o/GG8obxRueNuQdlbgzamIvt743CG8IblTcabxidg7nMfp1nZ66nvzcKHfZcUX9vVN5ovDEPbrbRuar+3ui8MQ9uZslcWH9tzJX1V7TBezB4DwbvweA9mMvr7w2+wIMv8OALPOgCz7mduSG8EdG0zo3OGxFN29wYtDFXzt8bhTcitOrcqLzReEN5w3ij84bzxqCN+c2PvVF4g/dAeA+E90B4D4T3QHgP5jc+1ObGjNbnxgzgc2MGGHOj84bzxqCN+RmPvVF4Q3iDpfNTHntDecN4o/OG88agjflBj71ReEOpHSi3kFlQ1tVWbiHK18f4+hhfH+PrY3x9jK+P8fUxvj7G18e4hRjvQec96LwHnfeg8x503oPOe9B5D+bHOlajmDVknbdZNlajmGVjXUbnFuLcQpxbiHMLGdxCBreQwdLBLWRwCxncQga3kMEtZHALGdRC5jKr8dnqayNCP3xuROjymBvGG503nDcGbcwasjcKbwhvVN5ovMF7sL7hW+ZG5w3njUEbs4bsjcIbwhuVNxpvKG/wHgjvgfAezA8IPeIyrq/W743CG8IblTcabyhvGG903nDe4D1ovAfrY94yN+Ze17kxaGN9n3ttFN4Q3qi80XhDecN4o/PGlEZ1WR+z3xuFN4Q3Km803lDeMN7ovOG0sb7wrXNjhra50XhDeWOGnimzPue9Npw3Bm3MO5S9UXhDeKPyRuMN5Y0l/a//+oc//fVf/+Wf//0v//q3f/r3v//5z3/6x//M//Bvf/rH//Gff/p///z3P//t3//0j3/7j7/+9R/+9P/757/+R/ylf/t///y3+PPf//nvz//3mWJ//tv/fv75DPh//vLXP1/0X/+Af/34+p8+bzN1/evnPaJngOfd/YcQ5esQfvXiRYRnTxgCuH8IIId9iNyb+/B87vwyxOEwRsujeD6Kf3kU7esILSM02oVeP/x7/frfR7dE/PtnryZ2oJfbV+LRdoRr8uuXx3C8mNckvXUxjS+mfAjhX4d43oDs8/C8/egIIbdDPBPR9ql4js9RCP3YpA5HEqPz62wqNYhyO4KVnRVWEaF+OoxyapbNdojnifWvY9RTq5A8F/ZsTF/FOJ3OoY88F96+Pp2Hxvm8m945+rxJxm6UNj7GsHcvyfFAxj6QZ6d1/fpADjHU6o7xRFwT+9QwxumyjkwSVfkqhBzaVu/7ojpXPBu3I3jbh/EcDfsywu3D6F8exvFk9seuu08cX56JdioXV7f4KhetfBlC3z0VcmiZ8shfoOeTL4p3+5hj1wSzL3fi6mqdOzH61ztxOJkjFh+YP4PPJ1lketP7B1KuyUfrQLR8dSD10LDE9yWtjy8DnDNsWDaKUr+6olXeL3qnGC3mqs9i8bzr/LJY1HYs4JIpQmfj2Z3wMcahdarvK2IPpQh6v2E0zYahlGWfG0Y9NM/nkNvIGAMt/Hkz+zHG6ZcdP8vPR2fEsG9ck8ySxpXz8zVpp1uUngXj2YdHvyP14y1rO9xwPm9URwaxbrQn9WMLa/J+62j13dZxPpaRNypPtvr1sZx+32PlrlU4fNCefLyDbvZ2++jvl8BjjJvZ0sb72aKPd8/G8cr2mF4yr2xv5etWqqdaWnre/ZVOV/ZzjHr6ka77yeLZDYmW/nxE/Rjj9HhkvebzEbWwX2Kc9kO15M3COOzHoZWa5H48bwX1yxjfuTL29ZXxt+869HQP1+3huSO9+Zc7YqcnnVg+aZ2SDyX1U4zDKWklU7cVuo/71gm5d/di9c27l9NxaGn7ojyxvnY+az4s2fMn7+sYdrqLyp9KNX8xRs/npSeW12K4ZAyXr2Mcf7LHY8d4Djn1L3+y+/G2tGayuH39s99P11byQVhl8Dkt92O47Xb+rED96xj1/RuH3t69cTjWjuubvXknxfn2+dp2e3c/zle2Z4fRKO211jEEMU6t43Q+Rs3mUa51BL74yT7vRz7YP3v7/cv98OMNXT78XPemdJP88VnS5diDVrMHjZ9HvxGjdcmbdadW+kuMH3iAcv1jW7riyl5fWfiypfvhxvJaMDR/9J8lrX3RPvztR6h+7NfMW7HnoE95KVtqzRuP2trjyxij/LHZ8rzXyF9rO2T+ON4S+m6lzxFlbun9Y4xDK/V4zX51x7m+FON6+W4/MnQ7xLD3s2X0d7PlXH/wszD88WXej0PGiaEeO49mfIpxbB3oqX12Aj1ea+mG+8Eu8mWM8pB3+62Pu0HleIgdduNUS2NRrXldnj8udE79G0FG67gVexyC2Kmt665B1zubeIT6VE3jCw1fBslf/UE/cs9B6ftlfcSSFbsEfbix/Lwj492MOZ5VETzJtXK4NKW8n/3lNOR072COBdVyHFL6aF8WslLOzSxPyIPukj+PLZyGnPAj1R5f96iX04iTxFrJczekc3/S51N6/N1/ZJSL29fdQcfGOgRldeihsZ4GbSQmq65xuMFX+NNpkbe7ps770bLTUfgW4pf9OKZNK47unEMxkmMPKh6Unx1+X49Myg+0V3m/vcpPtFf5kfZ6HsXRHMUx+3Jczo/PDzkhwu3x9WjtaTSqxlcJ1u3u4/F1NToGqegC/fAT/ksQeXvUt9T67rDvMcTNcd/bR3IY+L17StvDXr0uj55ByuGn5jQqdX+SxXh/wPF8OD27qJ5PZofDOXUteyw1Py/w9bP9ZTk7B8lbRZdxqImtvt/gW3u7wZ9C3Gzwt4/k0OCPpzSWp1uHUl+9LpYd3NdHnA5BTncS2tDlz7Ng/Bv520reOj8z71BXtbzfQk7DUzdbyCnEzRZy+0heLImt5PS7dsm/PqX2A6e0v39K+/un1P7oU0qttJfXfmVaycHcJo/DdbHTc9XNaWP2AwXV3i+o9n5BtR8oqOcz+u4NphbMPit6mA5oh2pq1vOJ2fuhJJ/6dwb6IR78c+u35+5qy6fuZ9PAGdVPZ7QfZ0EPmgY9eEBntE9hTneYI8e2ry9EIYj6N4K476s7PgwH/xLk8ETVPPuHlXuYi9f7QbTmnmjjIZlfgvS3n5iP+9Eq9sPaiwej+cSs2g5B/Njt/sjeyEZDup8fDk+j/ZK3uk20vHY+ME1Q2+G6+KkQmebzYTF7CD0y63fCoNPrOeYmfgijPxPm8MuJ8VCnYvLs+Ll/cjteBegP9dcaW39kZ2J/jFeDYD5FL2qHIPVUX/OW9/q4zGsl6WOQ/nWQcaqxnsNvz54J/2qGyanSG1LY6viq0p8iaHa/ay9f/1aM03y/Z8fKyI5EoSd4bd+K0igK9cD/EuV0vzqynT3Hme3r4YRxuhnQB8oJDbHU74TIOZCqNLT6nRCWnbxPbK+FqCND0F1ivX9C/ZE3q/6glv75hMbXGA93mruddi96CHK418REKJ4kJ61+CnGcmTpyzh/fvv8a5DRLRfKc0uj/90KMvE+ks/G9Q4nP861DafJikF5wK3I4mFMB6ZgH1WkQ8FMBkdNoFV7bUKGCbLdfNbtmk+0I/vUd7zFCFh91ugn5TgTLouE0kHk/gsVXvlezGOXrU3lsnP7fT0v79P7jaZDqebeRUw4/TAP1+0eCSaDyODSK8fZeHGPgRcwP48LjOyFG/kY/5MUY5eH5TFfoR/Z7QUrmauHJpK8HoXu514NY/YFz8kaQvDrczr4XRHLGTuFe8m8GyZ/JIi9fHcEzt9AT2TeDYC6VvHxiJX+wnwOo5dUgWVOfQeTlc4LD8VcPp+U8/WfX7at7UvOh+1rn8Osg9fjwnxMhnw//h0t8GqZqmkXp+fRPvZD2jRg1+6paHePrHWnHp/9sJk98NYjmLOgntheDYDSk2il1TmM7XfvOv648XeVzjNNdasscfiJdm/4pxmn0/4FOlQfd+f8Sw44j9/mw/GSeRfit05p3qrUXffHa9Hw8/DCB+HtBHIPE3g9BTu9R3b3Ap+Gduxf4+B7VzQt8en/phy7wwDjzaP7itRmWF3j4i63kWVIx56Uc7rSOw1V3L7D/wAUe71/g05s/P3OB2wMzZx71UKJP4yt3T+tpnOfuaT0NN90+rfrHn1Zqre3lJp/VtZVHffFmoOUkj9bqy0Hy57O1Zq8GyTLQWvdX721avvt3vBvox1nWBZO0yinID9wN9B+4G+g/cDfQf+Ru4HhtLCd8N7NXm5plP8nz7rH8QJChrwahw3k5SM8r/HzIKD8QpL26J56ziprL4Q7p9JKV4oXm8nitkXi2tMYvV/66G/ZH7oY+ZF9cfbTT2fAfqCM+3q8j4/F+HTm9ZXW3jhyHrH6kjjyHV7Kr9PFqCVD0/ejj9AB7N0gp9dUgOJzXgxRMCiqvloAPQV4t0Colz4nUr3/G6+PxhyawKEYFDg989fS61c3dOHbYZBfHsw/LDrvR7nbY2FcdNt+Icej0OR3MwHjPONxc1dPLViJ4S7LyC2jjU4zTu6ua1fmJ/loMy3r2fGiQ12J0vCTBo1efY5xGr6o2vHn6eLy4HzkJ7jmA82KMgZetBr3w8b0Yj9yPwb8z34hRMTxQC89u/laMBxaa4cnN34qB61L4vfUXY8jX1+U3SZcrZ9THoQ+tnl6zujmuF99rfndE7XQwzxKVF/d4W3UO0vNFnMdpYO4YpOA92FLbq0FyhLCefzBPQST7AqrIq4MluMN7ju69OvbTFEMUh+G909Bty9NqjRb4/DR0W4/L/knzfAXuWaZpYlL7FOXQXO9O5an1PNf6xgyY437cnQFT63mu9a0ZMPW0/N+9GTCni6slZxioydcX99Tae04prB/mFP5yJP4T13a8f239B67t6U2c29f2tADg+9fW8ifTjAZKP1/b4/tRhsWz6ceu356IYz2XELNur0yjsZ4T58xfnDpSUH5KG68WZH0oxoxfrupD3x94psM5Bjn/0inuyuzlIIYgr/9wox+Clxb/5i1EFpDrXvHwJHO620VXlbi+eNft2f0u/uE1iY8xTqNWTfKMPDvzv36iOo1aYTd4KvGnvp2qx7dXLFNXX4rQ8zA6P21/K0JO8JbDPpzOZcV414f3PL5zPWquXP9OjPJ2jKZ5LM3ttRhYnbaZfP1EZ/2YJxVt/OvWZccnfsTgcZ1fYowf6H38zZ5gAVLlDzz072R9Xl35sJLhtypHzsARf/H59NmJjv34+pn/OG3VMXV2vDbxlSP0L3+xjxORK/pyKv3YfnNKNL2G8Ph6SvRvpsw3vEqoL07cz7R9tq8vJ+6f33QpeNOFxnK++bpMRxBesvNTkHpaue/uOzfHID/witdTPnAw+vUZ8fOCd/mkXuln8htvq9184e384p3ixTvzwyk9VyB0KmWIz2vznyKYZz+uDVrgyb4RYuQTmA0rr4Xo2Ivx5fk8v/3bkbL+4hvE974+UcdxCaJ8bUh4CZJfYujxgeHOe931tPTfvfe6jyHuvdd9/0i6vHZG4/vj+4zaazFUsM53/fITEvG18i9bx0BFHzZejJG3HacYv2lhtz5w0h5vv/V/DHGvdbTH+x8XaceBqDsl8LwX91ZNb6cl/+59rKWdvw6V73IZL6BS+8tB9MUgLVdRMv51+zXIu+um/+ZYclj+ia8ei+R8fRPuHvxekOztNBmvXpqabwtb5W6TX4Kc1qZ6oK/yYro4n79GUX7gy0C/CZJj0aOW8WIQLPo7qtmLQe5+oeO07N/dT3S048en7n2j47gfWB9/OC1C8ut+3A1ij1eD5A/NE+21IPF18WyxH/oLP4c5XmLNwjb4RuKbjc3R2DiPvxckJ7g+g3ydgN/4Df9y9Z92XPsv35jp/ctfrd/cM9/6sFY7DUfdXQzpHKTlsTTuq/81yHlJlVwiurfD0fjbd97tNCJ1897qFOLmvdVpPOruXc1pOOrmXc3pbarn2DoGC/TwI377qvTDVTlP4crz0b29FKOirX+YTPLNGI+3Y1TcXHEd+14MvLVX/esYpzep7j4RnWPceiI6H0tDI2vm78d4sY1VwYtyzb++tnpe8icHC7scsu48PI/vIHT7uhSexgxuX9z+B19cTIuvp8Q9vkX1yP6lUmhw/psnNe93qx9a2ekX996Szu24VN7IjsNn/Tg8nZ32o2EZRB6W+uV0nH6zFd25evhOxjkIvjbWercXg2jOJGt6uns4DW/dXfW32Q+s+ns8HF6FUA4f/mi9/MDhdPmjDwcDMsqfx/v1cNqb97rn3bBsrtr1cJ96eoOqFYxg8CctP5/Ttxf+O+9Ftf8meX/di/HuWMwxRHl4rlTzZG+vBRlOK10OfSnItSY9RoSp7+w7JzWHydo4XNrTa1M/EOJ5InNhqWtxlC8P5TdB7l2Zc5CbV+YY5O6VOWZux0JZ0vS134gPfZq1vRok+5nMDt8OOAfpeU9kp+86nYNYNhPj1/x+CTLaD/xGnEZ4fuQ3wjAHy9xOh3P6BVcMRD6Z3o75RmPrlo9n3XiJyl/2ZLzdE6Gnd6du9kToo7zbE3EMca8nQk/r/t39Ku1xsOlWT4SeJobc7Ym4f1UOT4nn1nGvJ+IU425PxG9iPN6Oce9BU8vdMVF97Zze7RE5x7jVI6Knz1TdfGj+TYx7D83HY2n5CtfHCSqf96P/0ftxr2fmdowXc+5mz4xKeb9n5jeN/WYDKX/whbnXq6Kn71Pd7lU578itXhU9faDqXq+Kir/fq3Lcj5u9Kr+5iem4KXsOu31xE6Onl5We/xAr9+mgz2V+I8jNR8TfHMzN/TiUQxu5okX/sOrBL3dkpwmMOX0R7ePThNDfPcgIPtXLSyh972mo0XfU7PHl6fD3H6mOQX7i8f/uGflNkHtnpMkPnJH29uTU34x008E8HjxI/b0B8weWmHyGOc0AGD8y7n4Kc29+6DnErfmhvwlxZ37ob6bf4M047ob85kSgfI/iGeTrOTy/+fBXrkfhlR8xv/XhL7wp7K1+HSRW9v+yjfR8sf2JX9+M6PtzVVXfnqt6DHHzOfX2kfTDkRw/+5nPIWWMr5+H7P0R0d/sx63Pj+r7Y1Vq51qWHSHt8PlRfX+s6ng6nl0QD3RB+EunVAq+LVsOd8z2/o2q/cSNqr19o/qbLw/m6XD+MMUvVez4jsytOfvy/nR77e9/Rk372xOqjyFulrDbR9JfO6H3ZtvL+5Pt9XRnePc5+RzjViE9PeLeu6zyIzN25Qfm2soPTLU9zYG4Ozn1dozD3NRzjHtTU08x7t8hyw9MTD3vyd02cjwndyem9j/2aO621fOx3JwWPt5vq7djnOZRj/fbavuRp7nzWb03/1nen7lsx3GpO7M56vGWMPOlfXgf9dOHOu00LnXvPdBziFvvgdppWOpex8PxZDyyaXz6pu3nk/ED05/suFDazbHg2t49pcfB5Hy3xT5M0tH7EfJOjNdp/CXC6flLH/jWCH2LSsTux2iYCqJSv4xh5fggiEr6ZB6i+9Tt8Xbf2HHoRAXfsVTur/i0PJKV/nbGHkPcy9jy/typQ8Z+WDiiyJfzFN5t48cIt9r4sd/1Zhs/xrjbxo/jUHfb+HHZiJyIKkLfnxPx+zE0z6moHmKcMqXToFrnlZF+yRQZb2eKjLczpf6xhePj6aCerM+n4/ilFXxUtBb63pK8HMPfj8FTNz/HOM2mqblCk1Raoql6+3RhTlUQH519/js7BDkvV4tFr6hT7XtBvGDNW34T9ZtBsCeiPxCEFr77HOTUC62GRT2sj9cuTkMZadr91Svs+KTP4+vzeurxbNaxapS3l87Ic3w4Xw/88FWgzzGOaUMTlfzrtLHmxy7gO7PQrB2r6gOzjGjR61925Ac+P2U/8Pkp+4HPT9mPfH7qN6cVqxJWGqD/9foegwyaAXaoraen7B6rqO0BMer9LN+Kog9EUZr/+ctP+GktPyTO84GfLrF/vlU9JB+9KdBqP9x0H0paxccR6vj6jNjxQx4PfF+cXwH5ToyRi5zph4XNv3VlehaB0j8ssf6tKN5wT+L69Tk5vW9w7w7+GOHWHbyfHvrLoJkTo341vG927JrOz6MM+fo+8Rwi2+kQ+3KW0OmaeMeRePcXM9dHDmo9+fSYev7w1K2b72OIezffp+Gkezff3zgdzV8+qR1RtL0aJZd+e3I/PBd1f//S+NuX5rQC3Y9cGj4dPl6+NIYo48V6OB74qRpFvq7v5bSE0r2CeA5xqyKejwXvkpZh7eszYt7f7eA5hnj+Vj0wOaeX9loQPF49WfTFIK3R791L9Xl0jHCNU30ux0Wwx8hW8mTtr4URyXtFqTQR4/nfXwxS5MUgmp+eEKVR/28FeR5CFrUHPx/J57XYDjtS8ldchL/X8nwS/tBShv/AIML4iXeoT0eDGaHCH+b8fDT97VGq0zvYd4/kFENRjz7dOpf7MXrWRe28OvnnGMfXp279cp5D3Prl7I/+7i/n+WRkr5V6HYeTcfyhyX6eZ6dDPVyVd7+Odt4Nzfuz52P648VjiVlvK4jry0HozdjxcpB8C9Q+dPV+CnLokVDPrNVxitHefjRr796IHGdy3RxcOc8Guze40k/fnLo7uHJc+bk5vk48+BWO8WlH3n6qOoe4V4Dk7aeq48lQrHXG3bu/ngx7/2TY+yfD/9CTgYXWm/Gsx88no769oPc5xL2TUd9+g6SfdmLg446P0g53LacYOcTUHh86MD/FqPr+fVwsZfLu3U85fbrTCl7a0MN++E8czPiJgzm+/5XXtwh/q/LT+HA/jYjSi87Uy937N3bD8DkintP2eTfKadHkuz8LxyADpfBafRVn9Zd+g1MQy8/FDL5r+G6QnPdoPP/ylyDHaZz0/pfxBEz/zp7kb+Ww8erhREbMIF0fLwZxnFg/fJ6tn0aqfiTIh1cvqn15Ys9BJKe2Pm/EHi8GqbmyjvAaAb9c4nJcm+vWLP34+sebvWXHELduUs9HcvMu9Ten4+Ztqv3AbWqR99+H6yY3L+7XL5P002tT9946OIa49zLJ/SM5NFN5/324bu+vQ1FON7ti+Fy1Oc9Jt28EQT/KE8trQe6+EnfeE63/7Xe0fg1yHP17uGHwnlbF+Dyn/DdhFMsuPZu8vxwGn1p8hrRDmNOZqQOnl39vvnV6Gz7K1fg3+Jcgx4Wxb71jJ++/tniOce+1xX78YtKt1xb76YtJd19bPO7H3VN6vLR5y/m8yvXVzCmYzlw+fHf6e01eGjJH7OUEFHw1uvCnI38Jc7wdoB68+uodRb7oT0Xp1yG8451rfmrjOUz09Wd0+3i/Q2C83yEw5A8NcfOTaecTmvNmnue2fXlCR3n7Kfz0LanbT+Gn9WTuPoWfFj3sIx8DOq829nk5mVMM7zko8xyHLy/FGCUnaA5efe1zDD8NUd1r6OfdyBlvQw7L4h5jCB5ZZYzDobQ/9FAqSge/3fbrbtgfuhst100d+jjtxtvzVM4hbpUfL2/PUxnH3gyqPofFTk9Zf+9R9xjh1pPusXzdfNA9l8B7z7lefqLfrbz/nOvl/S+leHn7SynHEPeec+8fyak75v3nXD8t/HT3Obf8xHNu+Ynn3PITz7nlJ55zy88855afec4tP/OcW37iObf8xHNuef85t/zAc255/znXj0NWt55z/biUw83n3ON+3D2lP/GcW37mObf8zHNu+ZHn3OO9wK3H3PPdxJ2n3NPCNPeep7z9wPOUtx94nvLjN0LyDaDKZ/TzCL6fV/jKge/KC8l+J0bLCdHtwwvmn2OcP+CQX6Pxx9ezEfzt1Qf87dUH/AdWH/AfWH3A9QfuVk/zQYs5pvz648uLclxyffDXaOW1GJ63ifUhX++HH4ep7qat/cC80uMsW6zeWh8qh6M5TlK798WFep4Ohc9Ida4fn9q7nd68v/fBBTd7/4HmNFR184HmFOLmA83pK1Q3X3X10zyiex9c8OP055sfXLh/Vfrhqhxbx60PLhxj3Pzgwu9iPN6Oce+DC97vDqjqa+f05gcXfhPj1gcX3N//BOVvYtx68D4fy70PLsRSYH/sftz64ML9GC/m3M0PLvjxxaObH1z4TWO/10B6/4MvzL0PLvhpHObuBxd+syO3Prjgo779oHz8+NTdB+XTftx7UP7dPcytDy74T3zo4Bjk5mzq3xzMrf0Yp28c1YfT4hIvPgXdeso+PwXdespu7+7D+TWOW+PZ5xf80CGrzg+E33lL0PCqoY36YhDP73AKr+T/zVcN6bFBvj4cOw7j3nxf8Rjk3ocJziFufZjgNyHufJjgfF3wPcCr4/3Fi/shSHs1iCBI/fq6jPL+AGp5+82UUfwPDXFz7sX5hGK2cKdXfb55VbIcSx+vVhDek5eDeN5KPfHlIPgywTHI+U3BW3OVzq9w3qntv1m2JGMMsRdXPslb3CH9q+6x4yow937l7P0zcbg/xusG2rnX4jvr+2BRHeXv3n5vjaDsWH/ii+sMecd+vLrekedVfYZ7db0jeuZoL58PR4zDdTmtIaVOH1eXH4jx2jpUDZ2ejTs9vxUDS2q0fmpjxxh49nn2oH0ZY5wWX+0jb1788fj6rZjRjsvz5QyyZkO/Hg37zZ703JNy2pPjsod5I6VGHUr1/n44VsD3h/XDfvix+3Wf1uePph6CnG5x8yV0HleXT1+LOzaRkY/67bQ0zzi9aXS7iaj8QBP5zZ7cayKntSRvNpHTftxuIr/51NS9JqL9j2wi+siRRv24QMnn3Th930RyOX8V/qn6+C7aOA1IWbwwP3/9O6/w5d84lpzwqOXx9S/EOL1sdPtY6h97LOiif+Jrv3Zac9KS1mavxRDsh/QfiOGPF48lJyspf8vje/uBFVfq4+VzOnBO9cUYDTHs6zuI8zLh+Yrv8waZ77c/tdP+9ocnziHuPd92/UND3Fzf+3Q+K9a/qv1xOJ9+fPzYaf/1QjrHvWh4xG7Dv96L4yjSzQp2ekvqZgU7L0IvmDIp+uWxnGMoPuBlX58POy0Ocnc1/GOQm718xxD3evnOIW59frS++5R+/l7Dnaf0+naffH27T/78HaPb38g9R7n5iVwdP/JRpWOYe230HOJWG/1NiDtt9Px9uJtfhzrGeP8bZPfbyO++qXazjfjPtBF/v434+23E324jx1UiMc+qcE3/9OhzDpGDDIWryHdCYDhMaLG5zyGel/349IS7wcerMXKSg9Gz5HcOhRcloSWBvhPCMm0/Dg5+I0TPZYCfndCvXVYxrB/aXwtR84b0eVbKa3uBMU5+1PhGiOetYM4p4LVuy7gboeDjdKXQTdw3dqIUw2cV/KWWVWq2zcJfGf9OCBXMjGj9tRCG6Xs+XjuQnFn1fFJ77UAqFjCu+tqBGCbuWn9tL3o+p5Q+XmqcZeBcDHkpRM/ht97slQCj4fXW187DIx9yPnwy5NfSe/y21Nt5Oh548/m1M5FJOrq+eSpfC6BIL1WqulfC3w4x8hvcPDbznRB450H5U+DfCpHN8omvhUB6affXzoV17AVNTHk5xIun0+ir6P52iFcvKsYwO/2Ufi/E490QHXdpPDnm5RAvNi008E69j6+G0Ff3QhBivBYiP8Xxcgh9oF5Q3fxGzcIHhZQfEe8HQIqpvxLgq3p1P8CdwaxzuUN+6kuHgFnN3Bdz/0655WWUVr6cjvz8gT6+zXTrlZlrMczjiNwe1Tu8M3OOce+lmW8czNez3o8PMMNxTu2VCCroeK31cELvzhw5XpVjkFvT5r+xJ18HOTZT/tp4+Xo3Tu8y3W1hx/ehbraw00edbr6X9Qxymihx68WsZ4zjEjWKdXcf48teumeUQ2/wtWRvRhmHdQwe/bjYREXfA31Lzb5zYkvt6JYqhxN7/v7nHg57nEK0c5/jA32OtZzObHu/F/U3UTT7lgYXtG9GkfyxfGJ7OUqOAQ8eR/7ueVH0UJu92m49uzWGaz2127tRaBXt70bJ+vZEezHK/U7q353feyMAtwv210t5PMa7X9753Sm5O4jw2zg3hxHK42fGEc5x7g0k/CbGrZGE38V4cyih+AOfnhN+7/vzbozx7q/HsUct73PK4K/xyjdCZA+KPKS8FMLzd+Pj96p+WUf7cfzey73FBcrx8wB3Vxc4j2rkGI+Ynw7n9Oq3daSwdf16qbPfRMnHxSeP8XWU483ByMkypbTTEZ2TNz+1NHg21ePxjSjPHtwsj629HMVyEmPv/BLnL1F+YMXX85507Al/R/6/2ZNTs214Qf/Dt7B+afynxayeg5r5qeIny+Gu6bw3mPxSdehpb46p2Ohl/3GKcpoVfXMm8fkqPe+U8inK+EN0v1wlOa7MmzPfPpS5zyGOH3AzfMCNqlz59fMJx6+f52Khz/ElO0Q5nhRMgPPOX3T59aScX4XGD8iH17rb5yiHpqs5S5v7tP6bGPYTSXRckPobSXTcm9tJdIxyO4lOH4i6n0Ry/LBSxcJMj9NVOi2ZI7kr/N3RX1aHq6elJjDArM9xSRzO41vNH+/CPB9eTjXhNKvs2UJymOBh7XSBjgvF4APgjfZlfP6BPk0aEnyB63kmHofTcvrilFTMQmgPuoPSz62/Hl/6vruU53lfGvp5+Snol31pP/AKyDOKvNtxf75CVTKDKs+y/fUKnV6dUjwc6qNzHt69xX0Wylxuzj9Uym+EyMGYZ4jTXfJpDb/7N/2nN6duf9/st/fane61v3w8Lfr4iTt2fXvt6vNd/zfOynEidPa2ivH7D79cZ727RurhxaXfRRH0lNoxiv1EOTi9RXVvJPE3MW6NxJ2P5u57ZaXYeZDh1otlzyinNdNuvVn2m1aLOYXPElkO7e30MpXgqUx4maD/5njaT7SU05JFd1vK6V7l2eVWsZqUVXv1ye7DLXJ//Zns5nk5RbnfcvuPtNz+Ay33/uNHf/1W/ea5PUX5xrnVHzm39gPn9vTuRr4J3PmzsL88eJyGyBpuJlvt/fDQfH58ySWEeOLB+MbBDIxJcYH75WBO71rdL3CnZYfvN7bjyn83C9wxxs2fwtPR3G/0bj/R6L3/sY3+ml+agy78ZZpfW8ppln/Bc4vwstC/9jgd9yVvvQovh/rrvozjB0gfmOHuhw/VlvEjrXb8QKsdP9Bqx4+02vEjrXb8RKs99Qc6Fmvi3rP/pqWc1rGIx8ZVZ8eh5MtpMcD2yMGtZweLHNr+cV/wKnqt/I7ur/si7w4L/2ZHqAO6Hk9K+4GfDnnoDyShnJ65bybhOca9JDweze0klPNY0M0klNN3q+4m4bGl4AMaVcshCeU0Ptaw6GIbtb6aPprra9UPazD9ui/tB346pPxIqy0/0GrLD7Ta8iOttvxIq5UfaLXHXvCaPVaF11P43AsucvyUBpYvosbWxzdiqGG6+8sxsjNRaWrU92JYrvj1YW2Il2PoqzHyfNjL58PyfNjL5wMroPWXzwfHePV88G/5q+cDnc395fPheSz+8vngGK+eD8/vJH5YVO57MXJI2/3V/YiVoeeT9cvng2O8vB/4OuqpBp1H0G5/x+4YRQqW/Dl+sP009lVs4OVPPUY5rXeeDwZcmZ/dZt85nttfjqvnJThuft7vuC+3v+93Hle89xx6jHHrnaDfxbj3LNt+YJG7Z1dD+YkbktPqgTdvSERPwwh312qQ4+qB99ZqOMe4tVbDb47m5nINv4lyc7mF34yEPzCvRfjtys8j4XJaQ/D+7by9/VLgb2LcvJ0/Hc397DkNfd3PHms/cDt/nO2gNJSnh2t8eg3r2eNCPe761WyH68uM5/Gz/AGjF5tL/xzktJBWvpZsvCzyd0L0XCTk4w3st0LkUIh8vRe/mUAi+Xrcg28+P5/Sfvz0Wc42avypvzeCjC+D3J5VUx+HeU9yfFeiZTsrjSe0/HI8p9XIH/m2nj1How5Bjp8KbUof2X34j4Thb6HYtx7KsRTLeWraaQy85lOGVj1MhhQ/viibE/ZoHZRfJoOJ33ss//Bu2ucU9PdvZM/7gSmMo51i/MT4rPj747NyGu66f6Pk/v6N0jHGzRul49HcXIjpN1Hu3ygdMyc//63tNKtAjp+8ytGURsfzS7/aOE7nzxVr+Puh3b9zMI1e/PfjwfzEBC4Z70++Ou7J/Tu28RMdsPXxAx2wt18UqocXhepppOs50J+TmZ3eomzfmjV183H0dBN7+/LUh/7I5bE/9vI8jTnBu3o9XR7/gZGU+viJR69a3n/0Ose411KOR3O/pZSfePSqpf3RLYU+YNlOs3ZPUVrBLOSip/Z2+vL9z0S5+erwOca9V4d/E+PWN9POXSg314r8XXfOzbuU33T73VnM53cx7qzn85vOVIxYP7tk66tdsi1v76Xx0mG/RDm+XlcGlrh/HF7Sq6fVhDveUMVP4P2VPC2rdDNazaC0T4MItR5Xbcxutid+vRBOPS1WeHehpFqPw123lrE5xri5jM39g+mngzm+NJ/LrZQx6iHI++sL/W5P8EG6R+mHIKdfi1sfxC31R174qj8y6FV/ZHin/sjwTv2RAbh66rF7/k5nmIspTv9mnHycvLi/HEfzp/SaD+qvx3lQH1U9LCxSf2RYsP7Ir8cxm+591vmc1h/el3r4a7VBSn5AT8rXH+1+PrHX92uD/sDXss97cvu8/sRdxm9abckHsSfX17MR3+C83i15PRslv9l2xfw6i85N7tb6bvW4lOG99d2qHe++8o608lTzz63l7dcnjyt/51onhd96vD54dDeEZfdfeT6hvhTCcwCt8CrR3wkxei5m83iUV0I8h2czZx6tvrQXH4bfXjuQnstTFi8vHcizHGaIMl7bi5r93M/xovZSiEYfuedOgk8hnkNep89nvr/Qf80Xe5+q185Ge+Sh8Ee4Xj2hr4Wogveche8gvN0PodmxJryy8Ish6PfpWyFy4cQqNML8nRC1ooeQV5z+RojWMV378dq5qDlSXj80rVdDvHZRKz3F0zckvnUuBN1o9bWL2nLlocrjN98KUbJdNH3xouYMzSe+tBfPwp0/iZ2HLL8RwvNAnmME5csQz6JwWihO8D0MMSp93/ldFfyu6muHklM8n4/g/loIwxqCr2VJ8XxMKONRXjwQ3Js/5O0Q5dW96AjxUro/f9FxLlp/ey8+X9T/+dz853/5y9//6a//+i///O9/+de//dvzX/7XFezvf/nn//XXP6/N//Mff/sX+n///f////b/87/+/pe//vUv//ef/t/f//Vf/vy//+Pvf74iXf/fnx7rf/7Hs/ej/cO1Qt7//Ic/led2edTn8GN5PLvQn/+lXn/jGtN8jib362/EP5FnWj7/Z1z/4fo3XfvjH57/I//zv66d/v8A"
|
|
4276
|
+
"debug_symbols": "tf3djiQ7cqaN3ksf6yBopBmNupXBQNBoegYNNFqDlrSBDUH3/oUbSXvfylSyPCNynXQ9vrrKHv+hWbiTdPp//ul///l//cf//ae//O3//Ou//ekf/8d//ul//f0vf/3rX/7vP/31X//ln//9L//6t+d//c8/Pa7/KbX/6R/rPzz/9D/9o11/jj/9Y3/+2R7rz7L+lPVnXX+29aeuP2392defvv5c8XTF0xVPVzxd8fQZb1x/6vrT1p99/enrzzH/tMf6s6w/Zf1Z158rnq14tuLZimcrnq14fcXrK15f8fqK11e8vuL1Fa+veH3F6yuer3i+4vmK5yuer3i+4vmK5yuer3i+4o0Vb6x4Y8UbK95Y8caKN1a8seKNFW/MePJ4rD/L+lPWn3X92dafuv609Wdff/r6c8UrK15Z8cqKV1a8suKVFa8845VyQd/gG8YCecYs7YKyQTY8w5Z+wTOuxF/WDbahb/ANY0F9Rha5oGyQDXVD26AbbEPf4BvGgrYjX4kj9QLZUDc8I5frJFzJM8E2XJEDfMNYcGXQhLJBNtQNbYNusA07su7IuiNfuVSv03Il0wTZUDe0DbrBNvQNvmEs6Dty35H7jtx35L4j9x2578h9R+47ct+RfUf2Hdl3ZN+RfUf2HfnKsnpdgivNJviGseDKtAllg2yoG9oG3bAjjx157MhjRa6Px4ayQTbUDW2DbrANfYNv2JHLjlx25LIjlx257MhlRy47ctmRy45cdmTZkWVHlh1ZdmTZkWVHlh1ZdmTZkWVHrjty3ZHrjlx35Loj1x257sh1R647ct2R247cduS2I7cdue3IbUe+crDaBX2DbxgLrhycUDbIhrqhbdANO7LuyLojXzlYnzlYIwcDyoZn5NYuqBvaBt1gG/oG3zAWXDk4oWzYkfuO3HfkvupG7bahb/ANq25Uf2woG2RD3dA27Mi+I/uOfOVg6xeMBVcOTigbZEPd0DboBtvQN+zIY0Vuj8eGsuGK7BfUDW2DbrANfYNvGAuuHJxQNuzIZUcuO/KVg1ousA19wzOy6gVjwZWDE8oG2VA3tA26wTb0DTuy7Mh1R647ct2R645cd+S6I9cdue7IdUeuO3LbkduO3HbktiO3HbntyG1Hbjty25Hbjqw7su7IuiPrjqw7su7IuiPrjqw7su7ItiPbjmw7su3ItiPbjmw7su3ItiPbjtx35L4j9x2578h9R+47ct+R+47cd+S+I/uO7Duy78i+I/uO7Duy78i+I/uO7Dvy2JHHjjx25LEjjx157MhjRx478tiRx4qsj8eGskE21A1tg26wDX2Db9iRy45cduSyI5cduezIZUcuO3LZkXcO6s5B3TmokYP9AtlQN7QNusE29A2+YSyIHAzYkeuOXHfkuiPXHbnuyHVHrjty3ZHbjtx25LYjtx257chtR247ctuR247cdmTdkXVH1h1Zd2TdkXVH1h1Zd2TdkXVHth3ZdmTbkW1Hth3ZdmTbkW1Hth3ZduS+I/cdue/IfUfuO3LfkfuO3HfkviP3Hdl3ZN+RfUf2Hdl3ZN+RfUf2Hdl3ZN+Rx448duSxI48deezIY0ceO/LYkceOPFZkezw2lA2yoW5oG3SDbegbfMOOXHbksiOXHbnsyGVHLjty2ZHLjlx25LIjy468c9B2DtrOQds5aDsHbeeg7Ry0nYO2c9B2DtrOQds5aDsHbeeg7Ry0nYO2c9B2DtrOQds5aDsHbeeg7Ry0nYO2c9B2DtrOQbty0OSCseDKwQllg2yoG9oG3WAb+oYdWXdk25FtR7Yd2XZk25FtR7Yd2XZk25FtR+47ct+R+4585aC1C9oG3WAb+gbfMBZcOTihbJANO7LvyL4jXzloekHf4BuuyNeZv3JwQtkgG+qGtkE32Ia+wTesyP3x2FA2yIa6oW3QDbahb/ANO3LZkcuOXHbksiOXHbnsyGVHLjty2ZHLjiw7suzIsiPLjnzloPkFusE2XJHHBb5hLLhysMsFZYNsqBvaBt1gG/oG3zAWtB257chtR247ctuR247cduS2I7cdue3IuiPrjqw7su7IuiPrjqw7su7IuiPrjmw7su3ItiPbjmw7su3ItiPbjmw7su3IfUfuO3LfkfuO3HfkviP3HbnvyH1H7juy78i+I/uO7Duy78i+I/uO7Duy78i+I48deezIY0ceO/LYkceOPHbksSOPHXmsyP54bCgbZEPd0DboBtvQN/iGHbnsyGVHLjty2ZHLjlx25LIjlx257MhlR5YdWXZk2ZFlR5YdWXZk2ZFlR5YdWXbknYO+c9B3DvrOQd856DsHfeeg7xz0nYO+c9B3DvrOQd856DsHfeeg7xz0nYO+c9B3DvrOQd856DsHfeeg7xz0nYO+c9B3DvrOQd856DsHfeeg7xz0nYO+c9B3DvrOQd856DsHfeeg7xz0nYO+c9B3DvrOQd856DsHfeeg7xz0nYO+c9B3DvrOQd856DsHfeeg7xz0nYO+c9B3DvrOQd856DsHfeeg7xz0nYO+c9B3DnrkoF7gG8aEETkYUDbIhrqhbdANtqFv8A07cuTg44KyQTbUDW2DbrANfYNvGAtkR5YdWXZk2ZFlR5YdWXZk2ZFlR5Ydue7IdUeuO3LdkeuOXHfkuiPXHbnuyHVHbjty25Hbjtx25LYjtx257chtR247ctuRdUfWHVl3ZN2RdUfWHVl3ZN2RdUfWHdl2ZNuRbUe2Hdl2ZNuRbUe2Hdl2ZNuR+47cd+S+I/cdue/IfUfuO3LfkfuO3Hdk35F9R/Yd2Xdk35F9R/Yd2Xdk35F9Rx478tiRx448duSxI48deezIY0ceO/JYkcvj8UgqSVfwHlSTWtIV34MsqSd50tgU6TipJElSTWpJ6SjpKOko6SjpkHRIOiQdkg5Jh6RD0iHpkHRIOmo6ajpqOmo6ajpqOmo6ajpqOmo6WjpaOlo6WjpaOlo6WjpaOlo6Wjo0HZoOTYemQ9Oh6dB0aDo0HZoOS4elw9Jh6biS2KPVXVm8yJKeDq9BnjQ2Xam8qCRJUk1qSZpkSeno6ejp8HR4Ojwdng5Ph6fD0+Hp8HR4OkY6RjpGOkY6RjpGOkY6RjpGOsZ2lMcjqSRJUk1qSZpkST3Jk9JR0lHSUdJR0lHSUdJR0lHSUdJR0iHpkHRIOiQdkg5Jh6RD0iHpkHTUdNR01HTUdNR01HTUdNR01HTUdLR0tHS0dLR0tHS0dLR0tHS0dLR0aDo0HZoOTYemQ9Oh6dB0aDo0HZYOS4elw9Jh6bB0WDoyz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs9r5nnNPK+Z5zXzvGae18zzmnleM89r5nnNPK+Z5zXzvGae18zzmnleM89r5nnNPK+Z5zXzvGae18zzmnleM89r5nnNPK+Z5zXzvGae18zzmnleM89j0pHHzNfI80ktSZMsqSd50tgUeT6pJKWjpaOlo6WjpaOlo6WjpUPToenQdGg6NB2aDk1H5PkI8qSxKSbYPoJKkiTVpJakSZbUkzxpbOrp6Ono6ejp6Ono6ejp6Ono6ejp8HR4Ojwdng5Ph6fD0+Hp8HR4OkY6RjpGOkY6RjpGOkY6RjpGOsZ2xMSlRSVJkmpSS9IkS+pJnpSOko6SjpKOko6SjpKOko6SjpKOkg5Jh6RD0iHpkHRIOiQdkg5Jh6SjpqOmo6ajpqOm48rzIUGW1JMuhwaNTVeeLypJklSTWpImWVJPSkdLh6ZD06Hp0HRoOjQdmg5Nh6ZD02HpsHRYOiwdlg5Lh6XD0mHpsHT0dPR09HT0dPR09HT0dPR09HT0dHg6PB2eDk+Hp8PT4enwdHg6PB0jHSMdIx0jHSMdIx0jHSMdIx1jO2Jy1KKSJEk1qSVpkiX1JE9KR0lHSUdJR0lHSUdJR0lHSUdJR0mHpEPSIemQdEg6JB2SDkmHpEPSUdNR01HTUdNR01HTUdNR05F5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPI85YMODJKkmtSRNsqSe5EljU+T5pHS0dLR0tHS0dLR0tHS0dLR0aDo0HZoOTceV588BmUAFGrADHTgSr2zfWIACrEDYDDaDzWAz2Ay2DluHrcPWYeuwddg6bB22DluHzWFz2Bw2h81hc9gcNofNYXPYBmwDtgHbgG3ANmAbsA3YBmwjbTHtbGMBCrACG1CBBuxAB8JWYCuwFdgKbAW2AluBrcBWYCuwCWwCm8AmsAlsApvAJrAJbAJbha3CVmGrsFXYKmwVtgpbha3C1mBrsDXYGmwNtnjR91ECDdiBDhyJ+gAWoAArsAFhU9gUNoVNYTPYDDaDzWAz2Aw2g81gM9gMtg5bh63D1mHrsHXYOmwdtg5bh81hc9gcNofNYXPYHDaHzWFz2AZsA7YB24BtwDZgG7AN2AZsI23j8QAWoAArsAEVGLYa2IEODNv1yzxmLZlYgAKswAZUoAE70IGwCWwCm8AmsAlsApvAJrAJbAJbha3CVmGrsFXYKmwVtgpbha3C1mBrsDXYGmwNtgZbg63B1mBrsClsCpvCprApbAqbwqawKWwKm8FmsBlsBpvBZrAZbAabwWawddg6bB22DluHrcPWYeuwddg6bA6bw+awOWwOm8PmsDlsDpvDNmAbsA3YBmwDtgHbgG3ANmAb2yaPxwNYgAKswAZUoAE70IGwFdgKbAW2AluBrcBWYCuwFdgKbAKbwCawCWwCm8AmsAlsApvAVmGrsFXYKmwVtgpbha3CVmGrsDXYGmwNtgZbg63B1mBrsDXYGmwKm8KmsClsCpvCprApbAqbwmawGWwGm8FmsBlsBpvBZrAZbB22DluHrcPWYeuwddg6bB22DpvD5rA5bA6bw+awOWwOm8PmsA3YBmwDtgHbgG3ANmAbsA3YUEsKaklBLSmoJQW1pKCWFNSSglpSUEsKaklBLSmoJQW1pKCWFNSSglpSUEsKaklBLSmoJQW1pKCWFNSSglpSUEsKaklBLSmoJQW1pKCWFNSSglpSUEsKaklBLSmoJQW1pKCWFNSSglpSUEsKaklBLSmoJQW1pKCWFNSSglpSUEsKaklBLSmoJQW1pKCWFNSSglpSUEsKaklBLSmoJQW1pKCWFNSSglpSUEsKaklBLSmoJQW1pKCWFNSSglpSUEsKaklBLSmoJQW1pKCWFNSSMmuJB47EWUsmFqAAK7ABFWjADoRt1pJrAa4ya8nEAhRgBTagAg3YgQ5MmzwewAIUYAU2oAIN2IEOhK3AVmArsBXYCmwFtgJbga3AVmAT2AQ2gU1gE9gENoFNYBPYBLYKW4WtwlZhq7BV2CpsFbYKW4WtwRa1pDwCBViBDahAA3agA0di1JKFsClsClvUklIDFWjADnTgSIxasrAABViBsBlsBlvUkuKBDhyJUUvWunYFKMDLFkvPxbzIjQo0YAc6cCRGLVlYgAKEzWFz2Bw2h81hc9gGbAO2AduAbcA2YBuwDdgGbCNtMWNyYwEKsAIbUIEG7EAHwlZgK7AV2ApsBbYCW4GtwFZgK7AJbAKbwCawCWwCm8AmsAlsAluFrcJWYauwVdgqbBW2CluFrcLWYGuwNdgabA22BluDrcHWYGuwKWwKm8KmsClsCpvCprApbAqbwWawGWwGm8EWtUQ80IA9MZLsWuOxzhybeMWK9RBjRuJGBRqwAx04Nsa8xI0FKMAKbEAFGrADHQhbga3AVmArsBXYCmwFtgJbga3AJrAJbAKbwCawCWwCm8AmsAlsFbYKW4WtwlZhq7BV2CpsFbYKW4OtwdZga7A12BpskU21BXagA0diZNPCAgybBlZgAyrQgB3owJEY2bSwAGGLbLoWYJSY17gxbD3QgB3owJEYv8wLC/CytUdgBTbgZWsSaMAOvGwt9jd+mSfGL/PCAhRgBYYtji1+mRcasAMdOBKjaiwsQAFWIGxRS1qch6glC/vGmOX4fI4MjLgeeEXQR+AVQedfMGAHOnAkRn1YeMXVFijACmxABRqwAx04EqM+LIQt6sO1VpzENMeNYYvDjPqw0IAd6MCRGPVB53q/BSjACmxABRqwAx04EhtsUR8sLkvUh4WXzUpgAyrQgJfN4jxEfVg4EqM+LCxAAYbNAhtQgQbsQAeOxKgPCwtQgLBFfbBotFEfFhowbNHkoj4sHImR8wsjQlzNyO4eZydeSrog3kkKuPaqR2uKzF5YgQ2oQAN2oANHYmT2QtgGbAO2AduAbcA2YBuwjbTFbMeNBSjACmxABRqwAx0YtuuaxbzHjQUowApsQAUasAMdCJvAJrAJbAKbwCawCWwCm8AmsFXYogpcb89LzIbcWIENqEADdqADR2JUgYWwNdgabA22BluDrcEWVeBaRkJieuTCqAILC1CAFRi2WL48qsBCA142l0AHXjaPBhNVYGEBCrACG1CBBuxAB8LWYYu7BI+jiLuEhTiKqA0eJyp++SfGL//CAhRgBTagAg3YgbA5bAO2AduAbcA2YBuwDdgGbAO2kbaYJVmuF88kpkluFGAFNmBPjJy/XuaRmAT57JQMFGAFNqACDdiBDhyJkfMLYRPYBDaBTWAT2AQ2gU1gq7BV2CpsFbYKW4WtwlZhq7BV2BpsDbYGW4OtwdZga7A12BpsDTaFTWFT2BQ2hU1hU9gUNoVNYTPYDLbI+VEDK7ABFWjADnTgSIycX1iAsHXYOmwdtg5bh63D1mFz2Ob9gwSGrQWGzQIbUIEG7EAHjsSoDwsLUICwDdgGbFEfRiRv1IeFT5s8Io+v+jAx5ktuLEABVmADKtCAHehA2ApsBbYCW4GtwFYi7tWiYg7kc3giMCL0QAFWYETwQAUasAMdOBLjcyYLC1CAFQhbha3CVmGLz5s8LHAkxidOFhagACuwARVowA6ErcEWHzl5jMArQvTex7zGjR3owJF45fzGAhRgBTZg2OISmgE70IEjsT+AYauBAqzABlSgATvQgSMxPsGwEDaHzWFz2Bw2h80j7lUqYq7iczwrMCJEexgNqEADdqADx8aYq7jx2l95BAqwAi9bjG3EXMWNBuxAB47EyOOFBSjACoStwFbCJoEd6MCRGDm/sAAFWIENGLYaGLYWGDYNDJsFhu2qGmN+wijO5PyI0UQBhm0ENuBlq3F+I+cXXrbo1Yu5is9O/sCRGDm/Pn1TgJctuvLG/LhR7G9kd/SoxVREqSGOlJ4YXzJaWIACrMBr11vsWaT/QgN2oANHYqT/wgIUYMSNw4yUXhgR4lRH8kYPVUwk3NiAESH2N5J3oQOvYNE7FPMEJbqEYp7gxga8gmmcvsjNhddhRmdKzBMUm//1ihvdEDEjcOMVN3oZYkbgRgUasC+sMfdvY5yoR6AAKzDijkAFGrADr/3t85+NxMjNhQV42a5ekRpz/+R61qsx90967FnkZo+4kZs+/9ll8/nPHHjZrse+GnP/5Frwo8bcv+fvQ6AAK7ABFRi22J3IzYUOHImRmwsv2whx5OZ1J1Zj7p+MiBu5ed0Q1Zj792wrgZdtxBFHbo444vjU0SOOLT52NDE+d7SwAAVYL4x9iM8eLVSgATswkjf2YSZv4EzeiQUowApsQAUasANhU9gMNoPNYDPYDDaDzWAz2Aw2g63D1mHrsHXYOmwdtg5bhy0+X/aIyx0fMJsYnzBbWIACrMAGVKABOzBs0aLio2YT47NmCwswbNEm4+NmCxtQgQbsQAeOjTH3b2MBCjBsI7ABFWjADnTgSIzPny0sQAHCVmArsBXYCmwFtgKbwCawCWwCm8AmsAls8YG064azxty/jSMxPpO2sAAFWIENqEADwlZhq7A12BpsDbYGW4OtwdZga7A12BpsCpvCprApbAqbwqawKWwKW3xg7bodr2V+5nBiAQqwAhtQgQbsQAfC1mHrsHXYOmwdtg5bh63D1mHrsDlsDpvD5rA5bA6bw+awRdW4ng5qzOerJZI36sP1dFBjPt9GA3agA8fGmM+3sQAFWIENqEADhs0Cw9YDR2LUh4UFKMAKbEAFGrADYSuwCWwCm8AmsAlsApvAJrAJbLM+XL8tMuvDxAIUYAU2oAIN2IEODNtVrmTWh4mX7XqEqTGfb2MFNqACDdiBDrxs1/NQjfl8GwtQgBXYgAo0YAc6EDaDzWAz2Aw2gy0qwfXQVufHTSXaZOSxRJuMPJa4bpHHCx04EiOPFxagACsw7kAmKjBscd0ijydGHsfHFmMCXTyeVZkP8fO/Xv9sfaCzAx04Nq7vmE4sQAFWYAMq0IAdGDYLHInz26YTC1CAFdiACjTgZYtHmPmt04UjMZJ3YQEKsAIbUIEGhE1gi+RtccSRvAsLUIAV2IAKNGAHxpnsgWG72uT8LurCAhRgBTZg2OL0RfIuDFsoNBvX/C7q9VBc55dRF1ZgxJ1/V4EG7MDrKDTOWaTpxEjThZft+mhmrfORIPZsPhJMbMArrkpgxI0TFT/YE+MHe2EBCrACGzATvc5En9iBDhyJM9EnFqAAK/CKe/Ue1FiHcKMDR2IkusZ1i9v8hQKswAZUoAE70DfGNL969UrUmOa3sQKvuNckkRrT/DZeca8ejBrT/Or11a8a0/zqNTmixjS/en2Wq8Y0v2phi5xfKMAKDFuII+cXWooj5xc6cCRGzi+8gvWJV7DoiohZfBs7ME5JD7yC9TigSOmFBSjACmxABRqwAx0IW4OtwdZga7A12BpskdI9LkCk9EIHjsRI9IUFKMAKbEAFwqawKWyR6D0aQST6wgIUYAU2oAIN2IEOhK3D1mHrsHXYOmwdtg5bh63D1mFz2Bw2h813b12NmXm1R1uPRJ8Yib4wIkSzj0RfWIENGD/5858ZsAMdODbq7LefWIACrMA4Dz2wAx0YR3EdW8zX21iAAqzABlSgATvQgbDFz3h0HsbMvBqdhzEzb6MCDdiBDhyJdY/2VZ3jbxMFWIENqEAD9sS2Z0XUOQdvoQArsAHjKEqgA0di5PHC66xHx2jMtttYgXF2WqACDdiBDhyJkccLC1CAFQibwRZ5HN2wc7bdiLM+x9wnjsT+ABagACuwARVoQNg6bB02h81hc9gcNofNYXPYHDaHzWEbsA3YBmwDtgHbgG3ANmAbsI20zTl7CwtQgBXYgAo0YAc6ELYCRdlTu+qakjfRgNHkLNCB0eSuChNT8jYWYCSOBFZgA8bkpfl3o8mFbab/xMs2dzLSf2L85C+8bNekkhpT8jZWYAMq0IAd6MCRGD/5C2FrsDXYGmwNtgZbg63B1mBT2BQ2hU1hU9gUNoVNYVPYFDaDzWAz2Aw2g81gM9jiJ3/EhY2f/Inx4x4DMjH5bmMFNqACI240jfhxX+jAkRg/7gsLMGweWIENqEADdqADR2LcCCwsQNjiRiAGkGKi3kYFPm3tEe33KgobHTguvE5fTNRrMT4UE/VaDDnERL2NFdiACjRgxL12MqbvbSxAAVZgS7yS9/mIEKjASxEdmDGLrkWvZcyi21iAAqzAltjiv8b+tgZUoAE70IEjUR/AAhQgbAqbwqawKWwKm0VcC4wIPTAijEADduAV4Zp4UWMG28Lr13RjAQqwAq+4EhegR4S4AB4RYs+8AAUYEeJUX8mwUYEG7EAHhi2OeDyAYYuDHwKswIgbzSgaePRgxEyzjRGhBl4RrrkSNWaabWxABV5xr8kUNWaabXTgZbvmVdSYabaxAGErsBXYCmzFgH1fi1iZb2NezZiVtrEABaj7EsZMs3kJY6bZvFgx02xjAcq+FjHTbGMDKtCAHej7usVMs4XtsS9WzDTbKEDdlzBmj63r1nA1I9/mJYx8mydKcX4V51dxfiPf5sVSXE3F1Yx8mxdLcTUNV9NgM9gMNoPNcDUjGWqckkiGhQqM3YmzE8mw0IEjMZJhYQEKsAIb8LJFV2VM7drYgQ4cG2Nq18bL1lqgACuwAcOmgQbswLBZ4EiMxFkYth4owApswLB5YMQdgSMxUmRhAV5xo6MxJnG16EeMSVwtegFjEtdGA3bgZYsuupjEtTDSaWEBhi2OLXJIY38jhzR2J3IoutJi5laz+c8cOBIjhxYWoAAr8LJFr1qsMrcxbLE78fu20IEjMfJtYQEKsAIbUIGwKWwKm8JmsBlsBpvBZrAZbAabwRa/hRYNJn4LJ8Zv4cICFGAFNmDEjUvYHTgS4xdyYQEKsAIbUIEGhM1hc9gGbAO2AduAbcA2YBuwDdgGbGPbWswp21iAAqzABlSgATvQgbAV2ApsBbYCW4GtwFZgK7AV2ApsApvAJrAJbAKbwCawCWwCm8BWYauwVdgqbBW2CluFrcJWYauwNdgabA22BluDrcHWYGuwNdgabAqbwqawKWwKm8KmsClsCpvCZrAZbAabwWawGWwGm8FmsBlsHbYOW4etw9Zh67B12DpsHbYOm8PmsDlsDpvD5rA5bA6bw+awDdiillwDJy3mlG2sQF0VsT1mAZnYgQ7cRbeVxwNYgAKswAZUoAE70IGwFdgKbAW2AluBrcBWYCuwFdgKbAKbwCawCWwCm8AmsAlsApvAVmGrsFXYKmwVtgpbha3CVmGrsDXYGmwNtgZbg63B1mBrsDXYGmwKm8KmsClsCpvCprApbAqbwmawGWwGm8FmsBlsBpvBZrAZbB22DluHrcPWYeuwddg6bB22DpvD5rA5bA6bw+awOWwOm8PmsA3YBmwDtgHbgA21pKCWFNSSglpSUEsEtSQmnbVrxLHFpLONFXjZruG1FpPONhrwsl1jdS0mnW0ciVFLFhagAMPmgQ2owLDF/kYtWejAkRi1ZGEBXrZrjKrFpLONDXjZrpGgFpPONnagJ0bVuDrKW0wkax4nKurDQgNGhDhRUR8WjsSoD1e/fYuJZBsFWIFhiwOK+rDQgD0xKoHH6Yucv/rtW0wO26jAOL+hiJxf6MCRGDm/sAAFeNlGnNTI+YUKNGAHOnAkRs4vLEABwtZh67B12DpsHbYOm8PmsDlskfMjGkFk94hGENm90IEjMbJ7YQEKsAIbUIGwDdgGbCNtMSttYwEKsAIbUIEG7EAHwlZgK7AV2ApsBbYCW4GtwFZgK7AJbAKbwCawCWwCm8AmsAlsAluFrcJWYauwVdgqbBW2CluFrcLWYGuwNdgabA22BluDrcHWYGuwKWwKm8KmsClsCpvCprApbAqbwWawGWwGm8FmsBlsBpvBZrB12DpsHbYOW4etw9Zh67B12DpsDpvD5rA5bA6bw4ZaUlFLKmpJRS2pqCUVtaSillTUkjprSQ1UoAE70IFjY5u1ZGIBCrACw2aBCjRg2FqgA0firCUTC1CAFdiACjQgbAW2WUuun8U2a8nEAmzAiNADHfiMoNcYYIspbhsLUIAV2IB6YZySqz5s7EAHhi3E7QEswLDF/rYKbMCwjUADdqADL9v1vkiLKW5aYn+vSqAlrvFVCTYq0IBX3Gv8rcVkNi1xFBpxY3cs4obtqgQbBViBl01id65KsNGAHXjZJPb3Sn+V2J0r/VXiyl/prxK7c6W/Sih6AyrQgB3owJF4pb/W2Icr/TfWbEaOFjVzfqIBO9CBaKkDLXWgpc6cnwjbgG3ANmAbsF05rzXO2ZXzE2OK28Y4oBoowApsQAUasAMdOBLLAwhbga2ETQMbUIEG7EAHjkR5AAtQgLAJbAKbwCawCWxRH64xqqbzTqEEVmADKtCAHejAkTjvFCYWIGwNtgZbg63B1mBrsDXYFDaFTWFT2BQ2hU1hU9gUNoXNYDPYDDaDzWAz2Aw2g81gM9g6bB22DluHrcPWYeuwddg6bB02h81hc9jwfKEOm8PmsDlsDpvDNmAbsA3YBmwDtgHbgG3ANmAbabPHA1iAAqzABlSgATvQgbAV2ApsBbYCW4GtwFZgK7AV2ApsApvAJrAJbAKbwCawCWwCm8BWYauwoZYYaomhlhhqiaGWGGqJoZYYaomhlhhqiaGWGGqJoZYYaomhlhhqiaGWGGqJoZYYaomhlhhqiaGWGGqJoZYYaomhlhhqiaGWGGqJoZYYaomhlhhqiaGWGGqJoZYYaomhlhhqiaGWGGqJoZYYaomhlhhqiaGWGGqJoZYYaomhlhhqiaGWGGqJoZYYaomhlhhqiaGWGGqJoZYYaomhlhhqiaGWGGqJoZYYaklHLemoJR21pKOWdNSSjlrSUUs6aklHLemoJR21pKOWdNSSjlrSUUs6aklHLemoJR21pKOWdNSSjlrSUUs6aklHLemoJR21pKOWdNSSjlrSUUs6aklHLemoJTHVT6+ZLy0WzNtowA504EiMJ5SFBSjACoStwdZga7A12BpsCpvCprApbLPf0wMVGLYe2IEOHInx3LKwAAUYthHYgAq8bNe8oBbTDTc6MGyxZ/EIs7AAo1c4gvUKbEAFGrADHTgSo5YsLMCIK4EKjKOIBuMd6MCReFWNjQUowOucXW9qtlgab6MCw9YCO9CBYbv2LCYsbizAOGc1sAIbUIEG7EAHjsSoGgsLMI5CAxVowDgKC3TgSIwnlGuOVoupiRvjnHlgBTZg2EagATvQgSMxejAWFuBlu94sbTGNcWMDKtCAHbgnIbY1YbEExoy7iRXYgAo0YAc6cE83bHNy48ICFGBMxpzYgAo0YAc6cCTGXcXCAsSVN1x5w5U3XHnDlTdc+Y4r33HlO658x5XvuPIdV77jyndc+Y4r33HlHVfeceUdV95x5R1X3nHlHVfeceUdV37gyg9c+YErP3DlB678wJUfuPIDV37klZ9zLRcWoADzys+5lgsVaMAOdGBe+TnXcmEBxtkpgQo0YAde10LnPxuJkfMLCzAmw/fACmxABRqwAx04Euf0/4lxjWtgAyrQgB3owJEYv/4LC1CAsDXYGmwNtgZbgy1+/TV2PX79FxagACuwAcPmgQbsQAeOxPj1X1iAAqzABoQtKsE1a7XFBMuNDrxsFq0kKsE1E7XFBMuNAqzABlSgATvQgWG7ClNMu9wYNgsUYAU2YNhi16MSLOxAB47EuCdYWIACvGwxVSqmXW68bD3OTtwTLOxAB46FGnMt9Xq/W2Ou5cYKbEAFhkIDO9CBIzE6MBcWYNgssAIbUIEG7EAHjsQoFQsLELa4PbgmPWjMtdyowLB5YAc68LJdsyI05lqqx5mM2wOPsxO3BwsrsAEVaMDrVa2INRfPCSpJklST2qbI4OsWS2Oy40YD9mtxwCBPGpti9bxJJUmSImILvE6DxxWMV+Lj/4834ieVpGt343TFG3OTWpImWVJPCklcrUjDiZGGHpco0nChAGM3I0KklseORGpNnG/CB10BRlzCyKyFFdiACrR9SkaezpGnc+zTGXMRF5Wktk9izC6cJzFmF+r1eKkxu3BhpMw1RKkxu3Bj7GkNjDv1oJakSZbUk3xTpMWIHYkEGLEjkQAhj/Y/qSfFEFjQ2DQH94JKkiTVpJBYoAIvyzVgqDFFcKMnxk/kiD2OH8MRZzF+DBfGY35QzxMTv4ULR2L8Fi58hrVH7Nj1W7ixAlue8MikhQaETWFT2Aw2g81gM9gMNoPNYDPYDDaDrcMWv4ULZTX1mPQ3m29M+tuoQAP2xOt3yh6xC1cybRyJkUzhipdJJ0lSTWpJmmRJPcmTxqK5+NukkiRJNakl6bWDLdCAHRgHY4Ej8Uo4e0SEUoACrMAGVKABwzYCHTgSJWw9sAAFeNmuYWaNKXgbFXidwNjzeOd8kieNTfHC+aSSFBFL4LWn1xi2xuQ7K7H/1+/QwuuHaGMBXnt6jWFrTL7b2IAKNOC1q3ERWshib9pI1AcwZB4owAq8ZBLn4srSjZdM4tCuLN3owHh/66J4SJ1UkiSpJrWkiBgn68o5kzgXV86ZxF+4cm5jBTZg7GkcYDdgBzpwJEbvU7SL6HyaJEkx8TWoJWmSJfUkTwpJhBkPYAE2YOxmnPzhwOuEXld3zqqbVJKuM3KN92vMqdvYgNcZuR5ENebUbbxUkc8xp27jtbPRfmJOndVQRLpGw445dRZ3HzGnbmMDKtCAHejAkRjp2mJ/I12vrjmNOXXWYn8jXVvs5JWYFu0lZs9tdOBIrA9gAQowgsVhRqYudOBIjExdWIACjGBxoiLnovXELLeNBSjAuF0OakmaZEk9yZPGpvhJnFSSJCkdlg5Lh6XD0mHpsHT0dPR09HT0dPR09HT0dPR09HT0dMw+n6CWpEmW1JM8aWyKR7xJJUmS0jHSMdIx0jHSMdIxtiMmpi0qSZJUk1qSJllST/KkdERiXG+iakwQs7jfi6+e2voLV8Jd76fqnNMlQZbUN83WG1SSJOlq/HEBYi7WxpEYrfjqJdBYbswiZjTiSTWpJWmSJfUkTxqb7JGUDkvH1V7N4gRcjdOujgqNZcMsdjF+MiaVJEmqSS1JkyypJ3lSOjwdng5Ph6fD0+Hp8HTEnZ8HedLYFL8TcabjZ2KSJMVZiBMSPxLXen0ac6csLmXMndpYgAKswAZUoAE70IGwFdgKbPE7cfXnaMyd2tiACjRgBzpwJEY6LCxA2AQ2gU1gu349ohMipk4t8qSx6frlWFSSIqIFxp7O//r81/HwG9OjJl3Jtuj5r+OBOeZGLapJLUmTLCkOPMJEpl3dUBpTnTY2YDSzEmjADnTgSIyMW1iAAqzABoTNYIvbt+uVHY2pThtH4szQuA4zRSeGLU7rTNI4rTNL4+Bnmk40YCRRiCNTF0YaXekRU50sumZiqpNFz8BcDyxu8ed6YAsbUIEG7ImRn9G3ENOXLPpOYvqSzesWKbrQgLG/seuRuAvHxpi+tLEAr7jxwBhTkiy6L2JKksXja0xJWhjJuLAABViBDahAA4atBjpwJEYyRi9HTEnaKMAKDJsGKtCA1/mNJ4j5rc2FI3F+3z7Ow/y+/UQBVmADKvC6mvF0Yfl9e7X8vr3GlCSLvpOYkrSxAAWowDg7PXAkzhWDgjTJkq5CE3t1ZeCikiRJNaklaZIl9SRPCkdgfwALMILHofcGVGDEj4vdO9CBlyL+6pVsi0qSJNWklqRJltSTPCkdIx0jHSMdIx0jHSMdIx0jHSMdYzti3s+ikiRJNaklxflqgQbswDhfFjgSywMYl8QDBXi5ohMhpvxsVKABO/CyRYdDTPlZeOVqj66FmPLTS+zZlas9eg5iys/GBgxb7GT8cC7swMs2/+rYFD+dk0qSJNWkiNgDY0/jsFvs6QgsQAFWYFyEOOymQAN2oAMvW8iuu9r4hYjpO10mxuWOXdQKDFfsrYYr9kANeLliqCCm7/Q6g43EK6ujkM9PWD7ir8bCmbOdxMKZE2PhzIXXjtWJAqzABlSgATswdiwOIlJ3YuTuQsk9i1/HhQ0Yux7HE7+OCzvwUsSjfEzDWRipu/A6oHiqj2k4G68DitoY03A2KjBscSlitcyFDhwbYxrOxgIUYAU2oAIN2IEOhK3AVmArsBXYCmwFtgJbga3AVmCLTI6ekJics1GAcSZbYAMq8GoabQbrQAeOxMjl6NKIyTk9eixick6JKhWTczY2YNgmGrADHTgSI/cXFqAAK7ABYWuwNdjia7fR7xtTdhbG124XFqAAK7ABFWjADoRNYYvf+RhMiSk7GwVYgQ2oQAN2oANHYvzgR2dBTOTZKEAFRg2XwCji0YyiKCwsQAFGIY8WFT/qCxVowA504EiM+rCwAAUI24BtwDZgG7AN2OI3PjpNYsrOxrBZoAArMJ4MaqACDdiBDhyJ8ZsevSgxOadfkzE0Juf06FCJyTkbHTgSI+ejuyMm52wUYAU24GWLB/KYnLOxAx04EiPnF4YtTlT8gi+swAZUoAE70IEjMXJ+IWyR8/GoHVN2NjZg2OJMRs7HY3JM2dkYD/WPwJGo8VgfZyd+8RcKsAIbUIEG7EAHjkSDzWAz2Aw2g81gM9gMNoPNYOuwddg6bB22DluHrcPWYeuwddgcNofNYXPYHDaHzWFz2Bw2h23ANmCL+hB34TFlZ2MDKjCe/qLBxP3DQgeOhRYrpW0sQAFWYAPGUdQL4+7+WlrEYkbOxthfDazABlSgATvQE6MSXN0mFrNs4pRYzLKJI7bH7Oqa2IEOjPPbL5zdXRMLUIA1FRW2qkADdqADR2Lk/NyHyPmFAqzAlvsQOb/QgLA12BpsmfP2yJy3R+a8PRTHpi3FijOpOJOKMzlzPvZBcSYNZ9JgM9gMNsOZNJxJw5k0HJvh2GbOxz50nMmOM9lxJjvO5Mz5aKkz5yeGbQR2oANHYuS8R7DI+YUCrMAGVKABO/CyeSRO5PzEgQYeie6RQ5HoCxtQgWgacSOwEBdr5MWKWUQbC1CAebFidtFGBRqwAx2YDbGUB7AA4yg0UIEGjBNlgXGiYs/i9mBi3B4sLEABVmADKtCAEfdqGjH9aGMBCjDijsAGVKAB4yZn/jMHjsQoCgsLUIAV2IAR9xHowJEY6T/iVEf6L7ziXv2YFjOTNjbgdRRX56XFzKSNHXjZRlyhSP+Jkf4LC1CAFdiACjRgB8J2JfqIQ+uSVJOeQa8OXIsJSIssKSLGiYsUXzgSI8VHXLFI8YUCvEyxH1eGL9IkS+pJnjQ2Xb/ni0qSJKVjpGOkY6RjpGOkY2xHTG1aVJIkqSa1JE2ypJ7kSddAz9WHajGtaWMBXmM9Vx+qxbSmjddoz9VLYjGtaaMB+4WhuDJ9Y9iuNhfTmjYWYNh6YAWGzQIVaMCwjUAHXrarK9FiatPGy1biKK7831iB10n0IE2ypJ7kSWNTjIyVOAMxDFbiqGIcrMQZuHJ8owNHYvTjlThsLUABVmADXjaJK3bl+MYOdOBIvHJ842WTOEVXjm+swAZUoAE70IEjsT+AsPWwxanvFdiAYYsz2cMWJ6p3YNiiJfSR6GGLs+MFKMAKbEAFGrADHTgSB2wDtgHbgG3ANmAbsA3YBmwjbTF/amMBCrACG1CBBuxAB8JWYCuwFdgKbAW2AluBrcAWlSEeOGIG1cKoDAsLMAY7J1ZgAyrQgB3owJEYg3EL4yhG4LW/16wzi8lUG6/9vfrFLSZTLYwR8oUFKMAKbMCIezXwmFe1ToniiCPnF1ZgA17n9+qQt5hatbEDHYirabAZrqbhahqupuFqGq6m4WrOnI/dMVxNw9XsuJodxxY5f3XkW8y12hhnRwMVaMAOjGObwUZi5PzCAhRgBTagAsMWjSByfuHIixWJ3qI9RKIvFGAFtrwAAxdr4GINXKyBixWJHhgzszbmxWpI9IZEb0j0hkRvSPSGRG9I9IZEj8XB/BqksFgcbGMDXnGvYQ6LxcG8xZ5FSi904EiMlF5YgAKswAaMuC3QgSMxftYXRlwNFGAFNmD+NMf8so0d6MCRGIm+sAAFWIHxuBDUkzwp7oMuitSfVJJi/+MvRuIvbMC4xQ6ypJ4Up2riSIysXxiZESRJNaklaZIl9SRPGpv6IykdPR09HT0dPR09HT0dPR09HZ4OT4enw9Ph6YjsjieomLi2sQNjQHX+3ZEYia7R7CPRFwowhlQjcUYDxpCqBRqwA2PkckYYG2Oum19DFxZz3TYK8DoyC2pJmmRJPck3xa/2NdZhMXPNr2EEi5lrfo0dWMxc29iBDrzO/9XzbzFzbWMBCrACw+aBCjRgDDY9Ah04EuP3eWEBCrACG1CBBoStwlZha7A12BpsDbYGW4OtwdZga7A12CL5r3ERi7XANgqwAhtQgQbswLjw0WqiAkyMCrDwslnsQ5SAhRUYTSxaSVSBhQYcibF4RvyrWDtjUvyjuMKR1ws70IEjMXJ74bWL0dsX89w2VmADXrborY55bhs78LJFx3Us6bUwEnxh2KKlR4IvrMAGDFvkVfySR0mP2W8eBThmv20sQAHGrMkSGNMmJTDmTbbAmDipgR3owJEYN+eR5jFTbqMAKzBsHhiK2J3I+OhyielxHv0rMT3Oo5MgpsdtLEABVmADKvCyjdiH+FFfmI0o5sRtLEABVmADhiIOKH7JF3ZgHFAc5pzTGjgntU4sQAFWYAMq0IAdCFuD7Urz8YjLrQUowApsQAUasAMdOBINNoPNYDPYDDaDzcIW7cEibrSH/gAWoAAjbg1sQAUasO9foZiDt3EkRiVYWIACrMAGVGCcnYkjMXrrFhZgHEW01OiwW9iACoy5XtG44kd9oQP3DDCbU/AWFqAAKzDOjgV2oANHYnkACzD2twdGhIhbIsIIHInyAF4RrvnAFrPoNl7nIXrMYhbdRgVe+xs9ZjGLbqMDR+KV3RsLUIBhq4ENqEADdqAD93xVixl26zy0CsTZaRG3BRqwAx04EiOPo5cu5thtFGAFxlGELfJ4oQHDFhcg8njhSIw8jq65WCJrowDDFlc+8jh602JC3oh+s1gia8S9bCyRtdETI4+jYy0m5G2swAaMuHFs3bNx9ZHoD2ABVqCt6d8Wk+w2OnCsSeHW54sjEwtQgBXYgAo04J5sbjGdbsRteEyn2yjACoyD74EKNGAH+po9bzGdbmFMYl9YgAKswAZUoAH3KxTm892RiXEUHijACmzAOIr5zwzYgQ4ciZG8C8t6S8Ni4tzGCmxABRqwAx04EmO6+sLrKOrEBlSgAa+jiCepmCK3cSRG8i4s640XiylyGyuwARVowA70xEjT6CSKyXAbK7ABFWjA9TaVxVy4RWNTvHMyqSRJUmREUEvSJEvqSb4pEjZ6mWIC3IjuuJgAt9GAcezz7zpwJEbuLixAAVZgAyrQgLAN2EbaxuMBLEABVmADRnvRQAeOxPiJXRhnxwIFWIENqEADdqADw3Y1nZgWt7EABRg2D2xABRqw74sV0+I2jsTI6IUFKMAKbEAFRtwROBLbA3jFjWfBmAA3ovswJsBtbEAFXkcR/YsxAW6jA0diZHR06MUEuNHiRMXP8cIKbEAFGrADHTgS4+d4IWyR59GJFBPgNjagAg3YgQ4ciXGzvTBGfKPRxo909MfEBLiNDahAA3agA0di/HQvLEDY5kh5NK45VD5RgQbsQAeOxDlgPrEAL5tFI4hb8IUNqEADdqADx8IeE+DG9bDYYwLcRgFWYAMq0IAdeFUjDRqb4vd+UkmSpJoUESfGntqFUQMWRiWL/Z9vhE6swAZUoAE70IEjMbL9+t3qMSFuXD8iPSbEbVSgATvQgSMxasD1q9JjQtxGAVbgZbt+63tMiNtowA504EiMGrDwsvU4tqgBV9dQjwlxGxtQgQbsQM9robhChisUNWChACuwARVowOtaSFyAuULIxAKMo4jGFtm+MI4iIkS2LzRgHMWM4MCRGNne4wJEti8UYAU24GXzODuR7Qs70IEjMbJ9YQEKMOLWwKulXveqPeawjaszrMccto0VGLM0NFCBsWcW2IEOjD27zkPMYdtYgAKswAZUYNhif+MXfqEDR2Jk98IClDzi+C2/OuR6zGHb2IEOvOJeD009ZrZtLEABXlXjet7rMbNtowIN2IEOHIlxd77wOjvXU1WPOWwbFWjA6yiubsUeM9s2jsTI44VXBpSJAqzABlSgATvQEyNjR+x6ZOzCCoyjiMYVGbvQgHEU0c7iV3thHEU0rvjVXliAYYsGE3m8sAEVaMAOdGDYosFEHi8sQAFWYAPqWhStx3Q2ncc21+qKBhP37wsLUIAV2IAKtLUiWY95bRsdODbG1LZYVa7H3LaNAqzABlSgATvQE2NVvKgaMZttxMHHbLaNDahAA3agA+dIznXIMZ0tuRALcV0r+fWY0bZRgQbsQAeOxLmY5MQCnGNSJViJjXgOS8XZX6Ngkwd4jYPV4EI8DyfO5RoKm9yIpzf2Z42GTe7ETjzA80W2xYV4ei24EjdiJTbiThznMq6eoVUYWoWhVRhahaFVGFqFoVUYWoVRq+jUKjq1ik6toqNVdLSKjlbR0So6WkVHq+hoFY5W4WgVVxo/y3xcwSuPkytxS67zjdCr07PX+Uro1SPW63wndLEQV+K4InEHU+d7oYuNuBM78QDPhFpciIW4EpNXyCvkFfIKeYW8c7w5fpLrHHBeHPFrHOPMrMVGHPHrjOPEAzwzq0bMmVmLhXjGH8ER53qS7nVmyuSZHfPvzOy4nqB7ndmxuBErcezz9RTd68yOxU48wPYgLsRCPL3RfqwRK/H0RruyTjy9Gjy9cT7Xu+OTC/H0xvnslbgRK/H0xrntndiJB9gfxIVYiKc3zv98qXyxEodX43rN98o1zr+HV+O8+QCPB67vKMSS3GbbvsYxnjyrnAdH/DL/jhMP8GzbiwuxEFfiRqzERkze2eav4aHeZpufPNv84kIsxJW4ESuxEXdi8jbyKnnXr8kIFuJK3IiV2Ig7sRMP8MyXxeQ18q6FE67r3mY7v8axepvtfLEQV+JGrMRG3ImdeIBn244639ZyCZMrcSNWYiPuxE6M35E22/bi6dLgGdOCjbgTz5jR5ufaCME6F0dYXIiFuBI3YiU24k5Mrvkbdw3Vdp2/cdcwXdf5G7fYiDuxE8/fmitfdP2WleBK3IiV2Ijnb5kEO/EAr9+yyYVYiCvx9NZgJTbiTuzEAzzzfXEhnq4W3IiV2Ig7sRMP8MzxxYVYiMmr5J05fg1qdp05vrgTO/EAzxxfXHBdjK6p0TU1uqYzvyzO+cyvxUpsxJ3YiWN/4p5NZ34tLsRCXIkbsRIbcSd2Ynht5mD0idrMwcVCPL0a3IiVeHp78PR68PSO4PBGH5/N+9LFhViIK3EjDm/0htnM2cWd2IkHeN6XLi7EQlyJGzF5hbxCXiGvkLeSt5K3kreSt5K3kreSt5J35mx09dnM2cUCnnl0TVLuNvNoccT3OLczjxZ3Yice4JlHiwuxEFfiRjy9Ejy90SbnveViJx7g+Zu7uBALcSVuxEpM3k7eTt5OXievk9fJ6+R18jp5nbxOXievk3eQd5B3kHeQd9aBeD62me/xLNkfaIf9UYiFeLZDC27ESmzEndiJpzd45vviuf/hmvm+uBLP/ffgGedqw33m7+K5/3FcM3+jLfWZv4sbsRJH/Ohi7TN/Fzsx2nmvD+JCTN5K3kreSt6Zv5Pn7+OY7MQDPHMtejj7zLXFhTj2IToC+8y1xY049iE61PrMtcVzH+K6zFxbPMAz16IDs89cWyzElbgRK7ERT29c35lriwd45triQizEFe3B0ebXOmDzOjpd05lTk2dOLS7EQlyJUbv6UGIj7sSOvKMcXIuCLS7EQlyJG7ESGzhyJ+al97m012YlNuJO7MQDHLm2uRALMXmFvEJeIa+QV8gr5K3kreSduRbddGu1r8WNWImNuBM78QDP39DFhZi8jbyNvI28jbyNvI28jbxKXiWvklfJq+RV8ip5lbxKXiWvkdfIa+Q18hp5jbxGXiOvkdfI28nbydvJ28nbydvJ28nbydvJ28nr5HXyOnmdvE5eJ6+T18nr5HXyDvIO8g7yDvIO8g7yDvIO8g7yDnjH40FciIW4EjdiJTbiTuzE5C3kLeQt5C3kLeQt5C3kLeQt5C3kFfIKeYW8Ql4hr5BXyCvkFfIKeSt5K3mpXg2qV4Pq1aB6NaheDapXg+rVoHo1qF4NqleD6tWgejWoXg2qV4Pq1aB6NaheDapXg+rVoHo1qF4NqleD6tWgejWoXg2qV4Pq1aB6NaheDapXg+rVoHo1qF4NqleD6tWgejWoXg2qV4Pq1aB6NaheDapXg+rVoHo1qF4NqleD6tWgejWoXg2qV4Pq1aB6NaheDapXg+rVoHo1qF4NqleD6tWgejWoXg2qV4Pq1aB6NaheDapXg+rVQL3yB+qVP1Cv/IF65Q/UK3+gXvkD9cofqFf+QL3yB+qVPx7kLeQt5C3kLeQt5C3kLeQt5C3kXfdX5eJ1fyXBhViIK3EjVmIj7sROPMCVvOv+SoOFuBJPbw1WYiOe3h7sxAMc9SqWrveYXPbkOA9RrzZX4kasxEbciZ14gPVBTF4lr5JXyavkVfIqeZW8Sl4jr5HXyGvkNfIaeY28Rl4jr5G3k7eTt5O3k7eTt5O3k7eTt5O3k9fJ6+R18jp5nbxOXievk9fJ6+Qd5B3kHeQd5B3kHeQd5B3kHeQd8MaabcmFWIgrcSNWYiPuxE5M3kLeQt5C3kLeQt5C3kLeQt5C3kJeIa+QV8gr5BXyCnmFvEJeIa+Qt5K3kreSt5K3kreSt5K3kreSt5K3kZfqVaF6VaheFapXhepVoXpVqF4VqleF6lWhelWoXhWqV4XqVaF6VaheFapXhepVoXpVqF4VqleF6lWhelWoXhWqV4XqVaF6VaheFapXhepVoXpVqF4VqleF6lWhelWoXhWqV4XqVaF6VaheFapXhepVoXpVqF4VqleF6lWhelWoXhWqV4XqVaF6VaheFapXhepVoXpVqF4VqleF6lWhelWoXgnVK6F6JVSvhOqVUL0SqldC9UqoXgnVK6F6JVSvhOqVUL0SqldC9UqoXgnVK6F6JVSvhOqVUL0SqldC9UqoXgnVK6F6JVSvhOqVUL0SqldC9UqoXgnVK6F6JVSvhOqVUL0SqldC9UqoXgnVK6F6Jate1eBK3IiVeHotuBM78QCvejW5EAtxJW7E09uDjbgTO/EAr3o1uRALcSVuxORd9WoEd2InHuBVryYXYiGe98+TG7ESG3EnduIBnvVqcSEWYvI6eZ28Tl4nr5PXyTvIO8g7yDvIO8g7yDvIO8g7yDvgrY8HcSEW4krciJXYiDuxE5O3kLeQt5C3kLeQt5C3kLeQt5C3kFfIK+QV8gp5hbxCXiGvkFfIK+St5K3kreSt5K3kreSt5K3kreSt5G3kbeRt5G3kbeRt5G3kbeRt5G3kVfIqeZW8Sl4lr5JXyavkVfIqeY28Rl4jr5HXyGvkNfIaeY28Rt5O3k7eTl6qV5XqVaV6ValeVapXlepVpXpVqV5VqleV6lWlelWpXlWqV5XqVaV6ValeVapXlepVpXpVqV5Vqld11qtrjpPXWa8WG3EnduKR3Ga9WlyIhbgSN2IlNuJO7MTkLeQt5C3kLeQt5C3kLeQt5C3kLeQV8gp5hbxCXiGvkFfIK+QV8gp5K3kreSt5K3kreSt5K3kreSt5K3kbeRt5G3kbeRt5G3kbeRt5G3kbeZW8Sl4lr5JXyavkVfIqeZW8Sl4jr5HXyGvkNfIaeY28Rl4jr5G3k7eTt5O3k7eTt5O3k7eTt5O3k9fJ6+R18jp5nbxOXievk9fJ6+Qd5B3kHeQd5KV61aheNapXjepVo3rVqF4p1SuleqVUr5TqlVK9UqpXSvVKqV4p1SuleqVUr5TqlVK9UqpXSvVKqV4p1SuleqVUr5TqlVK9UqpXSvVKqV4p1SuleqVUr5TqlVK9UqpXSvVKqV4p1SuleqVUr5TqlVK9UqpXSvVKqV4p1SuleqVUr5TqlVK9UqpXSvVKqV4p1SuleqWrXnlwIRbi6R3BjViJw3st+uJzTu9mJw7vtaqFzzm95XrPwuec3s1CXIkbsRIbcSd24gHu5O3k7eSd9arF+Zn1arESG3EnduIBnvVqcSEWYvI6eZ28Tl4nr5PXyTvIO8g7yDvIO8g7yDvIO8g7yDvgnXOVNxdiIa7EjXh6NdiIO7ETD/CsV4sLsRBX4kZM3vUc14Pn/a0FG3EnduIBXs9rkwuxEFfiRkzeSt5K3kreSt5G3kbeRt5G3kbeRt5G3kbeRt5GXiWvklfJq+RV8ip5lbxKXiWvktfIa+Q18hp5jbxGXiOvkdfIa+Tt5O3k7eTt5O3k7eTt5O3k7eTt5HXyOnmdvE5eJ6+T18nr5HXyOnkHeQd5B3kHeQd5B3kHeQd5B3kHvP3xIC7EQlyJG7ESG3EndmLyFvIW8hbyFvIW8hbyFvIW8hbyFvIKeef9T5ssxJW4ESuxEXdiJ5718/odn3OnNxfi6e3BlbgRYy5Bp7kEfdWiyYVYiCtxxLze3/Q+a9FiI45jud7l9Dkfe/MAz1p0refkfdaixUJciRuxEhtxJ3biATbyGnlnLbqWefI597tc6zH5nPu9WYmNuBM78QDPWrS4EAsxeWct0ri+sxYtNuJO7MQDPGvR4kIsxJWYvLMWWVyvWYsWd2InHuBZixYXYiGuxOG1aPOzFi225DmXu1zvRvmcy71ZiTHW4zSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5jSm5mtMLa5FNeJOjDEmrxhj8vYgnu3Bg4W4EjdiJTbiTuzEGGNyfRAX4umdXIkbsRIbcSd24gGedeZaRcvnnPDNQlyJG7ESG3EndmI8M/rqt4nzsPptJnfi+bwZ+7n6bYJXv83kuc8Rc9aKxZU49jmeH+e87s1GPPe5BTvxAM9asbgQC3ElbsTzXEW7mrVicSd24pE853VvLsRCXImndwRH/Ou9P18fiV48wLNWXO/R+JyPvdmIZxwNduIBnrVicSEW4krciJXYiMm7vgjlwQO8vgk1uRALcSVuxEpsxOEdcX5mrVg8wLNWLA7viHM1a8XiShzeEccya8ViI+7ETjzAs1YsLsRCXInJO2vFiGOctWJxJ3biAZ61YnEhFuJKfMWRmPs650tLzB2d86U3K7EFRxuOOrDZiUdwxI86sLkQC3ElbsRKbMSd2InJG3VA4rdmzpfeLMSVuBErsRF3YicO7zVPY6yPQy8uxEI8vT24ESvx9HpwJ3biAS4P4kIsxJW4ESsxeaOeyPV+/ZjzpTcPcNSTzYVYiCtxI1biGT/OjwxwfRAXYiGuxDN+C1biOK5rbYEx50Vvnl4LHuA2vXEtWiGe3jg/rRJP7whW4vBeC2qPOS96c3hrHHvUjcVRN+RaunrMedGbw1vjGKNubA5vjWOMurF5euMYtRNPbxyjDrBNbxyjFeLpjWO0Sjy9cYymxOFtcYxxj7E5+2nHA/2044F+2vFAP+14oJ92rHnRi8Pb4lzNurTYiKc3zsOsS4sHeNalxYVYiCtxI1ZiIyavk3fWnxbnf9aZFud81pkW53nWmcWd2IlH8pznPOPPec6bhbgSN2IlNuJO7MQ4b6WQt5B31pM4xjlveR7jnLe89rnQ/s+6sbgQCzHtv9D+C+2/0P4L7b/Q/gvtf6X9r7T/lc5bJW8l76wb8xhnfZjH2Gj/G+3/rA+LG7ES0/432v9G+99o/5X2X2n/lfZfaf+V9l/pvCl5lbyzDsxjnPk+j9Fo/43234y4E9N1N7rufcb34EKc4wWjYFxmFIzLjIJxmVFWXl81Z84TlmtNsDHnCYvG/s/8XdyIY/81jmvm7+JO7MQDPO8rFhdiIa7EjZi8g7yDvDPfNa7FzPfgOU94cyEW4krciJXYiDuxE5N33j9cX54bc96vXH1KY8773dyJnXiAZ74vLsRCXIkbcXivNbbHnPe7uRM78QDPfF9ciIW4Ejdi8s77h6t/acx5v5udeIBnfVhciIW4EjdiJSbvrA/X2j5jzvvdPMCzPiwuxEJciRuxEk/vCO7E4b2WBx9z3q/0OD+W43FjzftdLMSVuBErsRF3Yice4E7eTt6oJ3L1LYw573dzI1ZiI+7ETjzA8/5hcSGe3sidWX8WN2IlNuIOnnWjR/ufdWOxEXdiJx7Jc76uXP0MY87X3Rx//+pbGHOe7eL5+744/v7VtzDmPNvNlTj20yPmrA+LjTj2c8yYTjzAsz4sLsRCXIkbsRIbMXmFvELeWR88ztWsD4uFuBI3YiU24k7sxAPcyNvIO+vDtcT3mPNsNzdiJTbiTuzEAzzrw+JCTF4lr5JXyavkVfIqeZW8Rl4jr5HXyGvkNfIaeY28Rl4jbydvJ++sD9d6PmPOs93ciJXYiDuxEw/wrA+LC/H0avD0xnWf9WGxEhtxJ3biAZ73J4sLsRCTd65R/IhzEnVmsxF3YiceyXOe7eZCLMQ5T3g0zPMfDfP8R8M8/zHnzdar32nMebObK3EjVmIj7sROPMDyICavkFfIK+QV8gp5hbxCXiFvJW8lb51eCZ5jChbciJV4eltwJ3biAW4P4kIsxJW4ESsxedv09mAnHmB9EBdiIa7EjViJw1uiXUX92ezE4S1xDqP+bC7EQlyJG7ESG3EndmLy9unV4EIsxJW4ESuxEXdiJ57eaA8uxJV4xvdgJZ7xI++8EztxxL/WWR1zfuzmQizElbgRK7ERd2InhnfOj91ciIW4EjdiJTbiTuzE5C3kLeQt5J11Kfoz5/zYzUpsxJ3YwWtOiAfPmBLciJV4xqzBndiJB3jWnMWFWIgrcSNWYvLO2hJ9rXOOa43+1TnHdbMQV+JGrMRGPJ8x4zzPe5vFAzzvbRYXYiGuxI0YfTtzLmuNfuA5l3XxrCGLC/E8rh5ciRuxEhtxJ3bi2WcS8fuDuBALcSVuxEpsxOijU0efz5yzuo5r1pDFlbgR03E5HZfTcTkd16ohwauGTC7EdFyDjov6TnXQcQ06rkHHtfpOJ+N82uNBXPPY7YHjslUrJhtxJ8Zx2QPHZeVBXIiFuBI3YhzXXEd3cyd2YjouoeOSQizEldhw7ELHJU6M9m/1QUzHVem4Kh1XpeOqSmzEnZiOq9JxUV+rNTquRsfV6LhaI6bz2eh8Ym78MLzLMwzv8ow5l7XGOM6cy7q5ESuxEXdiJx7gVU8mF2LyGnmNvEZeI6+R18hr5O3k7eSd9yExrjTnr25WYiPuxE4crhiHmvNXNxdiIa7EjViJjbgTOzF5Z22JMa85f3WzEE9vtL15f7I4vDHeNOevbg5vjDHN+aubw3t9s2PM+aubC7EQV+JGrMRG3ImdmLyFvIW8hbyFvIW8hbyFvIW8hbyFvEJeIa+QV8gr5BXyCnmFvEJeIW8lbyVvJW8lbyVvJW8lbyVvJW8lbyNvI28jbyNvI++8t4nxiznHdXMnduLpvdrqnOO6uRALcSVuxEpsxJ3Yiclr5DXyGnmNvEZeI6+R18g7a1HU5DlntcY40ZyzunnG8WAj7sROPMCz/iwuxDPmCKZrPWvIPP+zhiwuxEIc+xz3kHPe6WYlNmJqY4O8VEOcaohTDXGqIU41xFcNqcFKbMSd2HN/5vzVxbOGLCYv1RCnGuJUQ5xqiFMNcaohXtC2veA8uzyIC7Fgf6QSN2LyUg1xqiFONcSphjjVEKca4hXX11cNmUznudJ5rri+c/7qZjrPVEOcaohTDXGqIU41xKmGeKPjbXS8VEOcaog3Os9K51npPM8acs23H3P+6uZ5niP+rCGLjbgTz+PV4AGeNWRxIRbiStyIlXh6LbgTj8zluY5xjfHKuY7xZiGuxNSWuhLTNe10TTtd006545Q7TtfU6Zo6XVOna+p0TZ2uqVMbphrlTm1p1qIYJ/VViyY34nlccX5mLbLYz1mLFjvxSJ7zWjcXYiGuxI04Yka/95zLunjWmcUR85p7OeZaxJsrcSNWYiPuxE48wLPOLCavkHfWjeifn3NW67Xe/pjzVPd/n/vWg+e+ebASG3EnduIBnjVh8dy3ESzElfjytkec56gJLfrY5zzVFv3Gc55qi/7kOU91HcusCZOVjnHme4wPzjmom424EzvxAM98X1yIhbgShzfGHOeawNXjWGa+L+7EThxej+Odub+4EAtxJW7ESmzgmdce53Dmb4x7zrmp1aM9zJz1OIczZxc78QDPnF0840Rbmrm5eMZ5tofro5ZzJ8bcmK3sMTeMNzpvzAte5sagjZV+a6OQZyXg+n8qbzTeUN6wfVKujc4bzhuDNiRPwLVR91FfG403lDZmctkMMLPrmqlwbXTecN4YtDEzbG/MUjb3YP6+2vTMH9i9YbzRecN5Y3rmSZwZtTcKbwhvVN5ovKG8MfdgXvqZfHvDeWPQxsy/vVF4Q3ij8sbM99l2ZuLtjc4bzhuDNmby7Y3CG8IblTcab/AedN6D+fvbZ3ubP8B7Y9DGTNW9UXhDeKPSlXO+9M6X3vnSz4y93pC5NuaO1rlhvNF5w3lj7mg0vjl3MzcKbwhvVN5ovKG8Ybwx96DNDeeNQRuzBOyNwhvCG5U3FOdgLlNbu82NQRvzR3Ye9pzZmRvCG5U35sH1uaG8YbwxD87nhvPGoGiV96DyHlTeg8p7MH/G94byhvFG5w3nDd6DxtL1pbwxN65oj/qYG503nDcGbcwl9us88XON/b0hvFF5o/GG8obxRueNuQdlbgzamIvt743CG8IblTcabxidg7nMfp1nZ66nvzcKHfZcUX9vVN5ovDEPbrbRuar+3ui8MQ9uZslcWH9tzJX1V7TBezB4DwbvweA9mMvr7w2+wIMv8OALPOgCz7mduSG8EdG0zo3OGxFN29wYtDFXzt8bhTcitOrcqLzReEN5w3ij84bzxqCN+c2PvVF4g/dAeA+E90B4D4T3QHgP5jc+1ObGjNbnxgzgc2MGGHOj84bzxqCN+RmPvVF4Q3iDpfNTHntDecN4o/OG88agjflBj71ReEOpHSi3kFlQ1tVWbiHK18f4+hhfH+PrY3x9jK+P8fUxvj7G18e4hRjvQec96LwHnfeg8x503oPOe9B5D+bHOlajmDVknbdZNlajmGVjXUbnFuLcQpxbiHMLGdxCBreQwdLBLWRwCxncQga3kMEtZHALGdRC5jKr8dnqayNCP3xuROjymBvGG503nDcGbcwasjcKbwhvVN5ovMF7sL7hW+ZG5w3njUEbs4bsjcIbwhuVNxpvKG/wHgjvgfAezA8IPeIyrq/W743CG8IblTcabyhvGG903nDe4D1ovAfrY94yN+Ze17kxaGN9n3ttFN4Q3qi80XhDecN4o/PGlEZ1WR+z3xuFN4Q3Km803lDeMN7ovOG0sb7wrXNjhra50XhDeWOGnimzPue9Npw3Bm3MO5S9UXhDeKPyRuMN5Y0l/a//+oc//fVf/+Wf//0v//q3f/r3v//5z3/6x//M//Bvf/rH//Gff/p///z3P//t3//0j3/7j7/+9R/+9P/757/+R/ylf/t///y3+PPf//nvz//3mWJ//tv/fv75DPh//vLXP1/0X/+Af/34+p8+bzN1/evnPaJngOfd/S8hytch/OrFiwjPnjAEcP8lgBz2IXJv7sPzufPLEIfDGC2P4vko/uVRtK8jtIzQaBd6/eXf69f/Prol4t8/ezWxA73cvhKPtiNck1+/PIbjxbwm6a2LaXwx5ZcQ/nWI5w3IPg/P24+OEHI7xDMRbZ+K5/gchdBfm9ThSGJ0fp1NpQZRbkewsrPCKiLUj/twapbNdojnifWvY9RTq5A8F/ZsTF/FOJ3OoY88F96+Pp2Hxvm8m945+rxJxm6UNn6NYe9ekuOBjH0gz07r+vWBHGKo1R3jibgm9qFhjNNlHZkkqvJVCDm0rd73RXWueDZuR/C2D+M5GvZlhNuH0b88jOPJ7I9dd584vjwT7VQurm7xVS5a+TKEvnsq5NAy5ZG/QM8nXxTv9mvJuiaYfbkTV1fr3InRv96Jw8kcsfjA/Bl8Pski05vfP5ByTT5aB6LlqwOph4Ylvi9pfXwZ4Jxhw7JRlPrVFa3yftE7xWgxV30Wi+dd55fForZjAZdMETobIr9e1nponer7ithDKYLfbxhNs2EoZdnHhlEPzfM55DYyxkALf96l/hrj9MuOn+XnozNi2DeuSWZJ48r58Zq00y1Kz4Lx7MOj35H66y1rO9xwPm9URwaxbrQn9deG3uT91tHqu63jfCwjb1SebPXrYzn9vsfKXatwONqY1F+zttnb7aO/XwKPMW5mSxvvZ4s+3j0bxyvbY3rJvLK9la9bqZ5qael591c6X9lfc07r6Ue67ieLZzckWvrzQfTXGKfHI+s1n4+ohX2KcdoP1ZI3C+OwH4dWapL78bwV1C9jfOfK2NdXxt++69DTPVy3h+eO9OZf7oidnnRi+aR1Sn4pqR9iHE5JK5m6rdB93LdOyL27F6tv3r2cjkNL2xflifW181nzYcmeP3lfx7DTXVT+VKr5izF6Pi89sbwWwyVjuHwd4/iTPR47xnPIqX/5k92Pt6U1k8Xt65/9frq2kg/CKoPPabkfw22382cF6l/HqO/fOPT27o3DsXZc3+zNOynOt4/Xttu7+3G+sj07jEZpr7WOIYhxah2n8zFqNo9yrSPwxU/2eT/ywf7Z2+9f7ocfb+jy4ee6N6Wb5F9bh8uxB61mDxo/j34jRuuSN+tOrfRTjB94gHL9Y1u64speX1n4sqX74cbyWjA0f/SfJa190T787UeofuzXzFux56BPeSlbas0bj9ra48sYo/yx2fK818hfaztk/jjeEvpupc8RZW7pv97OjUMr9XjNfnXHub4U43r5bj8ydDvEsPezZfR3s+Vcf/CzMPzxZd6PQ8aJoR47j2Z8/IU7tQ701D47gR6vtXTD/WAX+TJGeci7/dbH3aByPMQOu3GqpbGo1rwuzx8XOqf+jSCjddyKPQ5B7NTWddeg651NPELVj+Mzp+f0/NUf9CP3HG2+X9ZHLFmxS9AvN5Yfuisf492MOZ5VETzJtXK4NKW8n/3lNOR072COBdVyHFL6aF8WslLOzSxPyIPukj+OLZyGnPAj1R5f96iX04iTxFrJczekc3/SxyDH3/1HRrm4fd0ddGysQ1BWhx4a62nQRmKy6hqHo2okH4PI211T5/1o2ekofAvxaT+OadOKozvnUIzk2IOKB+Vnh9/XI5PyA+1V3m+v8hPtVX6kvZ5HcTRHccy+HJfz4/NDTohwe3w9WnsajarxVYJ1u/t4fF2NjkEqukB/+Qn/FETeHvUttb477HsMcXPc9/aRHAZ+757S9rBXr8ujZ5By+Kk5jUrdn2Qx3h9wPB9Ozy6q55PZ4XBOXcseS83PCyyiX5ezc5C8VXQZh5rY6vsNvrW3G/wpxM0Gf/tIDg3+eEpjebp1KPXV62LZwX19xOkQ5HQnoQ1d/jwLxr+Rv63krfMz8w51Vcv7LeQ0PHWzhZxC3Gwht4/kxZLYSk6/a5f861NqP3BK+/untL9/Su2PPqXUSnt57VemlRzMbfI4XBc7PVfdnDZmP1BQ7f2Cau8XVPuBgno+o+/eYGrB7LOih+mAdqimZj2fmL0fSvKpf2egH+LBP7d+e+7us6bvM6ra8PjwoTskZml8fSiPfUafz/B0TzY+PNidxqauD0Tt5jF4Orf6N4K47z0ZvwwGfwpyeJ5qnr3Dyv3Lxev9IFpzT7TxgMynIP3t5+XjfrSK/bD24sFoPi8/G8khiB873R/ZF9loQPfDwZx6iJvkjW4TLa+dD0wS1Ha4Ln4qQ6b5dFierV/ogdm/EwZdXs8RN/FDGP2ZMIffTYyGOpWS+vHm7nRyO14E6A/11xpbf2RXYn+MV4NgNkUvaocg9VRd84b3+rTMayXp1yD96yDj9OTsOfj27Jfwr+aXnOq8tYpfvfZVnT9FwNw07fXrX4pxmu337FYZ2Y0o9Pyu7VtRGkWh/vdPUU53qyPb2XOU2b4eTBinWwF9oJzQAEv9ToicAalKA6vfCWGCi8vTF78ToubVNbpHrPdPqD/yVtUf1NI/ntD4FuPhPnOnS/eihyCHO01Mg+IpctLsQ4jjvNSRM/745v1zkNMcFclzSmP/3wsx8i6Rzsb3DiU+zrcOpcmLQXrBrcjhYE4FpOcvjDoNEn0oIHIaq8JLGypUkO3+TnjLhPWv73ePEXrLCDSC+J0I2baeow/1hQhWss/fpNjXp/LYOP2/n5T24QWB0xDV824j9+OXSaB+/0jyehh3O346kvH2Xhxj4DVMHhVuj2/sxhj5G/2QF2OUh+cTXaGJ198LUjJXC08lfT0I3cu9HsTqD5yTN4Lk1REaz/leEMn5OoUb6zeD5M/kc2iwvrwnBUHaq0Ewk0pePrGSP9jP4dPyapC8oXsGkZfPCQ7HXz2clrP0nx23r+5JzYfua5XDr4PU48N/ToN8PvwfLvFpkKppFqXn0z/1Qdo3YtTsqWp1jK93pB2f/rOZPPHVIJpzoJ/YXgyCsZBqp9Q5jex07Tv/uvJklQ8/OacBpufQY8EoJF2b/iHGaez/gU6VB935f4phx3H7fFh+Ms8h9O+c1rxTrb3oi9em5+PhL9OHvxfEMUTs/RDk9BbV3Qt8Gty5e4GPb1HdvMCnt5d+6AIPjDKP5i9em2F5gYe/2EqeJRUzXsrhTus4WHX3AvsPXODx/gU+vffzMxe4PTBv5lEPJfo0unL3tJ5Gee6e1tNg0+3Tqn/8aaXW2l5u8lldW3nUF28GWk7xaK2+HCR/Pltr9mqQLAOtdX/13ia7NNvxbqAf51gXTNEqpyA/cDfQf+BuoP/A3UD/kbuB47WxnO7dzF5tama5koKdHi1uBxn6ahA6nJeD9LzCz4eM8gNB2qt74jmnqLkc7pBOr1gpXmcuj9caiWdLa/xq5efdsD9yN/Qh++Lqo53Ohv9AHfHxfh0Zj/fryOkdq7t15Dhk9SN15Dm8kt21j1dLgKLvRx+nB9i7QUqprwbB4bwepGBKUHm1BPwS5NUCrVLynEj9+me8Ph5/aAKLYlTg8MBXTy9b3dyNY4dNdnE8+7DssBvtboeNfdVh840Yh06f08EMjPeMw81VPb1qJYJ3JCu/fvZh7Z/H6c1Vzer8RH8thmU9ez40yGsxOl6R6PwC24cYp9Grqg3vnT4eL+5HToF7DuC8GGPgVatBr3t8L8Yj92Pw78w3YlQMD9TCc5u/FeOBZWZ4avO3YuC6FH5r/cUY8vV1+U3S5boZ9XHoQ6unl6xujuvF15rfHVE7HcyzROXFPd5WnYPkYOsT7cUgBW/BltpeDZIjhPX8g3kKItkXUEVeHSzBHd5zdO/VsZ+mGKI4DO+dhm6b7upuvODVh6Hbelz0T5rnC3DPMk1R2ocoh+Z6dypPreeZ1jdmwBz34+4MmFrPM61vzYCpp8X/7s2AOV1czbt3U+9fX9xTa8eEj/rLnMJPR+I/cW3H+9fWf+Dant7DuX1tT8v/vX9tsUiC9Yd/eW2Pb0cZls6mH7t+fyewNIF1f2UajXXMjfIXp44UlJ/SxqsFWR+KMeOXq/rQ9wee6XCOQc6/dIq7Mns5iCHI6z/c6IfghcW/eQuRBeS6Vzw8yZzudtFVJa4v3nV7dr8/Y5QvY5xGrZrkGWnSvn6iOo1aYTd4KvGHvp2qx3dXcs5W15ci9DyMzk/b34qQE7zlsA+nc1kx3vXLex7fuR41161/J0Z5O0bTPJbm9loMrE3bTL5+orN+zJOKNv5167LjEz9i8LjOpxjjB3off7MnWH5U+fMO/TtZn1dXflnH8FuVI2fgiL/4fPrsRMd+fP3Mf3qwHJjrPspLE185Aq2K9PEX+zgRuaIvp9KP7TenRNNrCI+vp0T/Zso8phKbvjhxP9P2l7cyvvWmS8GbLjSW883XZTqC8IKdH4LU07p9d9+5OQb5gVe8nvKBg9Gvz4ifl7vLJ/VKP5PfeFvt5gtv5xfvFC/emR9O6bkCoVMJtz9yP4J59uPaoJn79o0QI5/AbFh5LUTHXowvz+f53d+OlPUX3x++9+2JOo4LEGUhFF6A5FMMPT4w3Hmru54W/rv3VvcxxL23uu8fSZfXzmh8fXyfUXsthgpW+a5ffkAivlX+9U8cKvqw8WKMvO04xfhNC7v1eZP2ePud/2OIe62jPd7/tEg7DkTdKYHnvbi3Zno7Lfh371Mt7fxtqHyXy3j5lOdv6qtB9MUgLddQMv51+xzk3VXTf3MsOSz/xFePRSpeQuLuwe8Fyd5Ok/Hqpan5trBVXp7yU5DTylQP9FVeTBfn47coyg98F+g3QXIsetQyXgyCJX9Hpeew7wW5+32O06J/dz/Q0Y6fnrr3hY7jfmB1/OG0BMnn/bgbhN5v/2aQ/KF5or0WJL4tni2W+ws/hTleYs3CNvhG4puNzdHYOI+/FyQnuD6DfJ2A3/gN/3Ltn3Zc+S/fmOn9y1+t39wz3/qsVjsNR91dCukcpOWxNO6r/xzkvKRKLhDd2+Fo/O0773Yakbp5b3UKcfPe6jQedfeu5jQcdfOu5vQ2VcVLwM/Bh8OP+O2r0g9X5TyFK89H9/ZSjIq2/stkkm/GeLwdo+LmiuvY92Lgrb3qX8fQx/tPROcYt56IzsfS0Mia+fsxXmxjVfCiXPOvr62el/zJwcIuh6w7D8/jKwjdvi6FpzGD2xe3/8EXF9Pi6ylxj29RPbJ/qRQanP/mSc373eqHVnb6xb23oHM7LpQ3suPwWT8OT2en/WhYBJGHpT6djtNvtqI7Vw9fyTgHwbfGWu/2YhDNmWRNT3cPp+Gtu2v+NvuBNX+Ph8NrEMrhsx+tlx84nC5/9OFgQEb543ifD6e9ea973g3L5qpdD/eppzeoWsEIBi0c9Omcvr3w33kvqv03yft5L8a7YzHHEOXhlt8ueri314IMp3Uuh74U5FqRHiPC1Hf2nZOaw2RtHC7t6bWpHwjxPJG5sNS1OMqXh/KbIPeuzDnIzStzDHL3yhwzlyaDSdPXfiN+6dOs7dUg2c9kdvhywDlIz3siO33V6RzEspkYv+b3KchoP/AbcRrh+ZHfCMMcLHM7Hc7pF1wxEPlkejvmG42tWz6edeMlKj/tyXi7J0JP707d7InQR3m3J+IY4l5PhJ7W/bv7TdrjYNOtngg9TQy52xNx/6ocnhLPreNeT8Qpxt2eiN/EeLwd496Dppa7Y6L62jm92yNyjnGrR0RPH6m6+dD8mxj3HpqPx9LyFa5fJ6h83I/+R+/HvZ6Z2zFezLmbPTMq5f2emd809psNpPzBF+Zer4qevk51u1flvCO3elX09Hmqe70qKv5+r8pxP272qvzmJqbjpuw57PbFTYyeXlZ6/kOs3KeDPpb5jSA3HxF/czA39+NQDm3kihb9l1UPPt2RnSYw5vRFeluxfutBRvChXl5C6XtPQ42+omaPL0+Hv/9IdQzyE4//d8/Ib4LcOyNNfuCMtLcnp/5mpJsO5vHgQervDZg/sMTkM8xpBsD4kXH3U5h780PPIW7ND/1NiDvzQ38z/SZfJjfuhvzmRKB8j+IZ5Os5PL/57FeuR+GVHzG/9dkvvCnsrX4dRPVUkHq+2P7Er29G9P25qqpvz1U9hrj5nHr7SPrhSI4f/cznkDLG189D9v6I6G/249bHR/X9sSq1cy3LjpB2+Piovj9WdTwdzy6IB7og/KVTKgVfli2HO2Z7/0bVfuJG1d6+Uf3NdwfzdDh/mOJTFTu+I3Nrzr68P91e+/sfUdP+9oTqY4ibJez2kfTXTui92fby/mR7Pd0Z3n1OPse4VUhPj7j3Lqv8yIxd+YG5tvIDU21PcyDuTk69HeMwN/Uc497U1FOM+3fI8gMTU897creNHM/J3Ymp/Y89mrtt9XwsN6eFj/fb6u0Yp3nU4/222n7kae58Vu/Nf5b3Zy7bcVzqzmyOerwlzHxpv7yP+mHQ0U7jUvfeAz2HuPUeqJ2Gpe51PBxPxiObxocv2n48GT8w/cmOC6XdHAuu7d1TehxMzndb7JdJOn4/Qt6J8TqNnyKcnr/0gW+N0OvwIuN+jIapICr1yxhWjg+CqKRP5iG6D90eb/eNHYdOVPAdS+X+iiofDqa/nbHHEPcytrw/d+qQsb8sHFHky3kK77bxY4RbbfzY73qzjR9j3G3jx3Gou238uGxETkQVoe/PSS33Y2ieU1E9xDhlSqdBtc4rI33KFBlvZ4qMtzOl/rGF49fTQT1ZH0/H8Usr+KhoLfS9JfmwNtv9GP5+DJ66+THGaTZNzRWapHbux+4fLsypCuKjs9WbHYKcl6vFolfUqfa9IF6w5i2/ifrNINgT0R8IUh9fBjn1QqthUQ/r47WL01BGmnZ/9Qo7Punz+Pq8nno8m3WsGuXtpTPyHB/O1wOHf31pzmlDE5X867Sx5scu4Duz0Kwdq+oDs4xo0etPO/IDn5+yH/j8lP3A56fsRz4/9ZvTilUJKw3Qf76+xyCDZoAdauvpKbvHKmp7QIx6Pz/92hyj6ANRlOZ/fvoJP63lh8R5PvDTJfaPt6qH5KM3BVrth5vuQ0mr+DhCHV+fETt+yCOncDxRX4sxDF/W5UXOvnVlehaB0n9ZYv1bUbzhnsT163Nyet/g3h38McKtO3g/PfSXQTMnRv1qeN/s2DWdn0cZ8vV94jlEttMh9uUsodM18Y4jcV509ltX1kcOaj359Jh6/vDUrZvvY4h7N9+n4aR7N9/fOB3NXz6pHVG0vRoll357cj88F3V//9L425fmtALdj1waPh0+Xr40hijjxXo4HvipGkW+ru/ltITSvYJ4DnGrIp6PBe+SlmHt6zNi3t/t4DmGeP5WPTA5p5f2WhA8Xj1Z9MUgrdHv3Uv1eXSMcI1TfS7HRbDHyFbyZO2vhRHJe0WpD77hfDUIXePvBdH89IQojfp/K8jzELKoPX55Pvq4gtlhR0r+iovw91qeT8K/tJThPzCIMH7iHerT0WBGqPCHOT8eTX97lOr0DvbdIznFUNSjD7fO5X6MnnVRO69O/jHG8fWpW7+c5xC3fjn7o7/7y3k+GdlrpV7H4WQcf2jwfZTm9XBV3v062nk3tOAzLfythm8dS8x6W0FcXw5Cb8aOl4PkW6D2S1fvhyCHHgn1zFodpxjt7Uez9u6NyHEm183BlfNssHuDK/30zam7gyvHlZ+b4+vEg1/h+Lgjbz9VnUPcK0Dy9lPV8WQo1jrj7t3PJ8PePxn2/snwP/RkYKH1Zjzr8VMzf3tB73OIeyejvv0GST/txMDHHR+lHe5aTjFyiKk9funA/BCj6vv3cbGUybt3P+X06U4reGlDD/vhP3Ew4ycO5vj+V17fIvytyk+/LKebSrzoTL3cvX9jNwyfI+I5beXTo7a9/7NwDDJQCq/VV3FWq34jiOXnYgbfNXw3SM57NJ5/+SnIcRonvf9Fxax++AjGb/YkfyuHjVcPJzJiBun6eDGI48T64fNs/TRS9SNBfnn1otqXJ/YcRHJqqwifk28FqbmyjvAaAZ8ucTmuzXVrln58/ePN3rJjiFs3qecjuXmX+pvTcfM21X7gNrXI++/DdZObF/frl0n66bWpe28dHEPce5nk/pEcmqm8/z5ct/fXoSinm10xfK7anOekj28EQT/KE8trQe6+EnfeE63/7Xe0Pgc5jv493DB4T6tifJxT/pswimWXnk3eXw6DTy0+Q9ohzOnM1IHTy7833zq9DR/lavwb/CnIcWHsW+/YyfuvLZ5j3HttsR+/mHTrtcV++mLS3dcWj/tx95QeL23ecj6vcn01cwqmMxf+7vQ3m7w0ZI7Yywko+Gp04U9HfgpzvB2gHrz66h1FvuhPRUm+81wx8GHh5zDR15/R7eP9DoHxfofAkD80xM1Ppp1PaM6beZ7b9uUJHeXtp/DTt6RuP4Wf1pO5+xR+WvSwj3wM6Lza2MflZE4xvOegzHMcvrwUY5ScoDl49bWPMfw0RHWvoZ93I2e8DTksi3uMIXhklTEOh9L+0EOpKB38dtvn3bA/dDdarps69HHajbfnqZxD3Co/Xt6epzKOvRlUfQ6LnZ6y/t6j7jHCrSfdY/m6+aB7LoH3nnO9/ES/W3n/OdfL+19K8fL2l1KOIe49594/klN3zPvPuX5a+Onuc275iefc8hPPueUnnnPLTzznlp95zi0/85xbfuY5t/zEc275iefc8v5zbvmB59zy/nOuH4esbj3n+nEph5vPucf9uHtKf+I5t/zMc275mefc8iPPucd7gVuPuee7iTtPuaeFae49T3n7gecpbz/wPOXHb4TkG0CVz+jHEXw/r/CVA9+VF5L9ToyWE6LbLy+Yf4xx/oBDfo3GH1/PRvC3Vx/wt1cf8B9YfcB/YPUB1x+4Wz3NBy3mmPLrjy8vynHJ9cFfo5XXYnjeJtaHfL0ffhymupu29gPzSo+zbLF6a32oHI7mOEnt3hcX6nk6FD4j1bl+fDwjpzfv731wwc3ef6A5DVXdfKA5hbj5QHP6CtXNV139NI/o3gcX/Dj9+eYHF+5flX64KsfWceuDC8cYNz+48LsYj7dj3Pvggve7A6r62jm9+cGF38S49cEF9/c/QfmbGLcevM/Hcu+DC7EU2B+7H7c+uHA/xos5d/ODC3588ejmBxd+09jvNZDe/+ALc++DC34ah7n7wYXf7MitDy74qG8/KB8/PnX3Qfm0H/celH93D3Prgwv+Ex86OAa5OZv6Nwdzaz/G6RtH9eG0uMSLT0G3nrLPT0G3nrLbu/twfo3j1nj2+QU/dMgqdch+7y1Bw6uGNuqLQTy/wym8kv83XzWkxwb5+nDsOIx7833FY5B7HyY4h7j1YYLfhLjzYYLzdcH3AK+O9xcv7i9B2qtBBEHq19dllPcHUMvbb6aM4n9oiJtzL84nFLOFe/dXr0qWY+nj1QrCe/JyEM9bqSe+HARfJjgGOb8peGuu0vkVzju1/TfLlmSMIfbiyid5izukf9U9dlwF5t6vnL1/Jg73x3jdQDv3WnxnfR8sqqP83dvvrRGUHetPfHGdIe/Yj1fXO/K8qs9wr653RM8c7eXz4YhxuC6nNaTU6ePq8gMxXluHqqHTs3Gn57diYEmN1k9t7BgDzz7PHrQvY4zT4qt95M2LPx5fvxUz2nF5vpxB1oy+z/xpNOw3e9JzT8ppT47LHuaNlBp1KNX7++FYAd8f1g/74cfu131anz+aeghyusXNl9B5XP0abrzdREY+6rfT0jzj9KbR7Sai8gNN5Dd7cq+JnNaSvNlETvtxu4n85lNT95qI9j+yiegjRxr11wVKPjaR0/dNJJfzV+Gfqo/z2k5fNIsX5uevf+cVvvwbx5ITHrU8vv6FGKeXjW4fS/1jjwVd9E987ddOa05a0trstRiC/ZD+AzH88eKx5GQl5W95fG8/sOJKfbx8TgfOqb4YoyGGfX0HcV4mPF/xFVF+RC4f5o+8/eGJc4h7z7dd/9AQN9f3Pp3PivWvan8czqcfHz922n+9kM5xLxoesdvwr/fiOIp0s4Kd3pK6WcHOi9ALpkyKfnks5xiKD3jZ1+fDTouD3F0N/xjkZi/fMcS9Xr5ziFufH63vPqWfv9dw5ym9vt0nX9/ukz9/x+j2N3LPUW5+IlfHj3xU6RjmXhs9h7jVRn8T4k4bPX8f7ubXoY4x3v8G2f028rtvqt1sI/4zbcTfbyP+fhvxt9vIcZVIzLMqXNPbd0LkIEPhKvKdEBgOE1ps7mOI52U/Pj3hbvDxaoyc5GD0LPmdQ+FFSWhJoO+EsEzbXwcHvxGi5zLAz07o1y6rGNYP7a+FqHlD+jwr5bW9wBgnP2p8I8TzVjDnFPBat2XcjVDwcbpS6CbuGztRiuGzCv5Syyo122bhr4x/J4QKZka0/loIw/Q9H68dSM6sej6pvXYgFQsYV33tQAwTd62/thc9n1NKHy81zjJwLoa8FKLn8Ftv9kqA0fB662vn4ZEPOb98MuRz6T1+W+rtPB0PvPn82pnIJB1d3zyVrwVQpJcqVd32KPdDjPwGN4/NfCcE3nlQ/hT4t0Jks3ziayGQXtr9tXNhHXtBE1NeDvHi6TT6Krq/HeLVi4oxzE4/pd8L8Xg3RMddGk+OeTnEi00LDbxT7+OrIfTVvRCEGK+FyE9xvBxCH6gXVDfr/QD4oJDyI+L9AEgx9VcCfFGvvhHgzmDWudwhP/WlQ8CsZu6LuR1AWl5GaeXL6cjPH+jj20y3Xpm5FsM8jsjtUb3DOzPnGPdemvnGwXw96/34ADMc59ReiaCCjtdaDyf07syR41U5Brk1bf4be/J1kGMz5a+Nl6934/Qu090Wdnwf6mYLO33U6eZ7Wc8gp4kSt17MesY4LlGjWHf3Mb7spXtGOfQGX0v2ZpRxWMfg0Y+LTVT0PdC31Ow7J7bUjm6pcjix5+9/7uGwxylEO/c5PtDnWMvpzLb3e1F/E0Wzb2lwQftmFMkfyye2l6PkGPDgceTvnhdFD7XZq+3Ws1tjuNZTu70bhVbR/m6UrG9PtBej3O+k/t35vTcCcLtgf72Ux2O8++Wd352Su4MIv41zcxihPH5mHOEc595Awm9i3BpJ+F2MN4cSij/w6Tnh974/7sYY7/56HHvU8j6nDP4ar3wjRPagyEPKSyE8fzd+/V7Vx5NRHsfvvdxbXKAcPw9wd3WB86hGjvGI+elwTq9+W0cKW9evlzr7TZR8XHzyGF9HOd4cjJwsU0o7HdE5efNTS4NnUz0e34jy7MHN8tjay1EsJzH2zi9xforyAyu+nvekY0/4O/L/zZ6cmm3DC/q/fAtLPr6cclrM6jmomZ8qfrIc7prOe4PJL1WHnvbmmIqNXvYfpyinWdE3ZxKfr9LzTimfoow/RPfpKslxZd6c+fZLmfsY4vgBN8MH3KjKlc+fTzh+/TwXC32OL9khyvGkYAKcd/6iy+eTcn4VGj8gv7zW3T5GOTRdzVna3Kf138Swn0ii44LU30ii497cTqJjlNtJdPpA1P0kkuOHlSoWZnqcrtJpyRzJXeHvjn5aHa6elprAALM+xyVxOI/2neaPd2GeDy+nmnCaVfZsITlM8LB2ukDHhWLwAfBG+zI+/kCfJg0JvsD17AR4HE7L6YtTUjELoT3oDko/tv56fOn77lKe531p6Oflp6BP+9J+4BWQZxR5t+P+fIWqZAZVnmX7+QqdXp1SPBzqo3Me3r3FfRbKXG7Of6mU3wiRgzHPEKe75NMafvdv+k9vTt3+vtlv77U73Wt/+Xha9PETd+z69trV57v+b5yV40To7G0V4/cfPl1nvbtG6uHFpd9FEfSU2jGK/UQ5OL1FdW8k8Tcxbo3EnY/m7ntlpdh5kOHWi2XPKKc10269WfabVos5hc8SWQ7t7fQyleCpTHiZoP/meNpPtJTTkkV3W8rpXuXZ5VaxmpRVe/XJ7pdb5P76M9nN83KKcr/l9h9puf0HWu79x4/++q36zXN7ivKNc6s/cm7tB87t6d2NfBO482dhPz14nIbIGm4mW+398NB8fnzJJYR44sH4xsEMjElxgft0MKd3re4XuNOyw/cb23Hlv5sF7hjj5k/h6WjuN3q3n2j03v/YRn/NL81BF/4yzeeWcprlX/DcIrws9Ocep+O+5K1X4eVQP+/LOH6A9IEZ7n74UG0ZP9Jqxw+02vEDrXb8SKsdP9Jqx0+02lN/oGOxJu49+29aymkdi3hsXHV2HEq+nBYDbI8c3Hp2sMih7R/3Ba+i18rv6H7eF3l3WPg3O0Id0PV4UtoP/HTIQ38gCeX0zH0zCc8x7iXh8WhuJ6Gcx4JuJqGcvlt1NwmPLQUf0KhaDkkop/GxhkUX26j11fTRXF+r/rIG0+d9aT/w0yHlR1pt+YFWW36g1ZYfabXlR1qt/ECrPfaC1+yxKryewsdecJHjpzSwfBE1tk/fJD3FUMN095djZGei0tSo78WwXPHrl7UhXo6hr8bI82Evnw/L82Evnw+sgNZfPh8c49Xzwb/lr54PdDb3l8+H57H4y+eDY7x6Pjy/k/jLonLfi5FD2u6v7kesDD2frF8+Hxzj5f3A11FPNeg8gnb7O3bHKFKw5M/xg+2nsa9iAy9/6jHKab3zfDDgylz18Z3juf3luHpeguPm5/2O+3L7+37nccV7z6HHGLfeCfpdjHvPsu0HFrl7djWUn7ghOa0eePOGRPQ0jHB3rQY5rh54b62Gc4xbazX85mhuLtfwmyg3l1v4zUj4A/NahIYVP42Ey2kNwfu38/b2S4G/iXHzdv50NPez5zT0dT97rP3A7fxxtoPSUJ4ervHpNaxnjwv1uOtXsx2uLzOex8/yB4xebC79Y5DTQlr5WrLxssjfCdFzkZBfb2C/FSKHQuTrvfjNBBLJ1+MefPP58ZT246fPcrZR40/9vRFkfBnk9qya+jjMe5LjuxIt21lpPKHl0/GcViN/5Nt69hyNOgQ5fiq0KX1k9+E/Eoa/hfK9h3IsxXKemnYaA6/5lKFVD5MhxY8vyuaEPVoH5dNkMPF7j+X8btrHm1Dx929kz/uBKYz04sZ/E+MnxmfF3x+fldNw1/0bJff3b5SOMW7eKB2P5uZCTL+Jcv9G6Zg5+flvbadZBXL85FWOpjQ6nk/9auM4nT9XrOHvh3b/zsE0evHfjwfzExO4ZLw/+eq4J/fv2MZPdMDWxw90wN5+UageXhSqp5Gu50B/TmZ2eovy01jXcdbUzcfR003s7ctTH/ojl8f+2MtTa37iqFavp8vjPzCSUh8/8ehVy/uPXucY91rK8Wjut5TyE49etbQ/uqXQByzbadbuKUormIVc9NTeTl++/5koN18dPse49+rwb2Lc+mbauQvl5lqRv+vOuXmX8ptuvzuL+fwuxp31fH7TmYoR62eXbH21S7bl7b00WmHkc5Tj63VlYIn7x+ElvXpaTbjjDVX8BN5e4qhZVulmtJpB+XgktR5Xbcxutid+vRBOPS1WeHehpFqPw123lrE5xri5jM39g+mngzm+NJ/LrZQx6iHI++sL/W5P8EG6R+mHIKdfi1sfxC31R174qj8y6FV/ZHin/sjwTv2RAbh66rF7/k5nmIspTv9mnHycvLi/HEfzp/SaD+qvx3lQH1U9LCxSf2RYsP7Ir8cxm+591vmc1r+8L/Xw12qDlPyAnpSvP9r9fGKv79cG/YGvZZ/35PZ5/Ym7jN+02pIPYk+ur2cjvsF5vVvyejZKfrPtivl1Fp2b3K313epxKcN767tVO9595R1p5anmH1vL269PHlf+zrVOCr/1WPX24n/Pm8WstM8n1JdCeA6gFV4l+jshRs/FbB6P8kqI5/Bs5syj1Zf24pfht9cOpOfylMXLSwfyLIcZoozX9qJmP/dzvKi9FKLRR+65k0A/luXTYmc/sNB/zRd7n6rXzkZ75KHwR7hePaGvhaiC95yF7yC83w+h2bEmtLLwqyHo9+lbIXLhxCpdXwpRK3oIacXp74RoHdO1H6+di5oj5fWXpvVqiNcuaqWnePqGxLfOhaAbrb52UVuuPFR5/OZbIUq2i6YvXtScofnEl/biWbjzJ7HzkOU3QngeyHOMoHwZ4lkUTgvFCb6HIUalz7/xuyr4XdXXDiWneD4fwf21EIY1BF/LkuL5mFDGo7x4ILg3f8jbIcqre9ER4qV0f/6i41y0/vZefLyo//O5+c//8pe//9Nf//Vf/vnf//Kvf/u357/8ryvY3//yz//rr39em//nP/72L/T//vv////t/+d//f0vf/3rX/7vP/2/v//rv/z5f//H3/98Rbr+vz891v/8j2fvR/uHa4W8//kPfyrP7fKoz+HH8nh2oT//S73+xjWm+RxN7tffiH8iz7R8/s+4/sP1b7r2xz88/0f+539dO/3/AQ=="
|
|
4277
4277
|
},
|
|
4278
4278
|
{
|
|
4279
4279
|
"name": "verify_private_authwit",
|
|
@@ -6253,8 +6253,8 @@
|
|
|
6253
6253
|
}
|
|
6254
6254
|
},
|
|
6255
6255
|
"bytecode": "H4sIAAAAAAAA/+xdB5gURdPuvdtLcHDkrCxRJChgzndkkCRBxECQJEjOIMqRRMGE+TPnnDPmnHPWz5yzmLP+3ToNdXU1s1O93b33/dLPU7d70931VndXv10z0zObEP+kjsHn6NFjF8+dMG709NmjJ0+fO2H29LFT54wePX/C7MkTF42eOXvy/LFzJ4weO2/uIQsmz326SIjB1f+pl5CSG3zmSEmhY/oTfq9NlKsrpRQdayClHB1rSBxrRujbgji2JXGsOXEsRWC0II61JI61Io61DnQmRYyUCD5TwWfn8QNnv9vlvK1vG9zzlmXL9juo3Xaf9Fm0fua67u/+cNIGmX9V7qayaVLHTHCujo+TUXuuSY+TA3UXi00dq/5X/aE+2wT/Xx38r/TqctfK79dJuV7KDbm08pSI17y6jLbdGLcPE/uUQwdS9UpFZna2FvHtvCn+WCegnbpeUmya9JUqMO1m2FIB72bMQDcHjqCMqyaya9wtuRkA3pLLr3drbvzRN7XrVjCTUiJ+4mLdHGDlonrp2nUzow84/XUbY7Zs/MO0m2pvnH6KW5bT3vW5bsdX+dLNufx+ut3SCpWueC7DJkU2OcIO2SSEQftssh2nLMS7w5TtdGXuWncHw/PvdMyM6s+dBox9J8Obq8Ig35XJIN9l0EF3MQeuAqCIX/fu+AOxjYl+le40cHIOxj2egvd70+PkQd04eL878IN7gs8mwfF7QfB+n/x+v5QHpDyIgnfuEtmUUfY+hr89ZNjfXPvbMMrez7D/YWZci8fxoWD8Hg4+Hwg+HwTj+Ij8/qiUx6Q8HhxX7c8JwRCMthotlSCl4hVL5IN/nggG78ng86ng8+ng85ng81l8YqIyCpFmTAbpBozR4MRTnsjgOWZcbIrzfHqcfKgbO+tzgXM+EXw+GXw+D5z1Bfn9RSkvSXk5Q9LhjNULjEn7iuG4cheeFxk2vWroA9w+fZqB8xLD/tcyJMJXAl96Nfh8Lfh8GfjW6/L7f6W8IeXNXLvR3DMx2/r1X3/9CfHeMo3mFOBbuTwCU+BvMQbwbWbkZ9KGt3N5RKTa8LYnYn0nPk4yE5x30+PkQt3Y+d/J3XQZUMnrwf/vAud/T35/X8oHUj7M3VQX2pkmVfnx+ig+Ti7Vjx8FbXs2+HyP6MeP5fdPpHwq5TPLJMKJpiDe56Ykkggqc+t94ZgYVPkvwOqfEvET12mUc36RYR9wEjcKuInR11/m8vpYR8a6XlJsuqdQqQLT7keYK7r+LA2+fyXrfy1lg5RvpHwr5Tsp30v5QcqPUn6S8rOUX6T8KuU3Kb9L+UPKn1L+yv2nQQkpOVJypSSl5EnJl1IgpVBKkZRqUqpLKZZSQ0pNKSVSakmpLaWOlLpS6kmpL6WBlIZSGklpLKWJlKZSmknZQsqWUppLSUlpIaWllFZSWktpI6WtlK2ktJOytZT2UjpI6Silkx4IdfPXxnnaV4bOKlg4iQq2bhNQ5rbao7S3qYwf0TFVCJ+bcWPTr+LHYAllQ5yyGwLbYtpQIXHPLTk2dYY2pSkM+7lz0PecZYtjdxxbdOqSzABQVa5EpWkqdok/kImujMEwbYPCSDDb0JXpjFym2DawS/DqWWWrr7PAVtsHbd4Bs9X2BFvtYIGtvmaw1fYMZ9zBE1txbNrRkK12dMBW2xuy1U7JDAB3MmCrnRhstbNjtlJt2NmArXZ2zFY7BHYJXj2rbLUhC2y1a9Dm3TBb7Uqw1W4W2GoDg612ZTjjbp7YimPT7oZstbsDttrVkK32SGYAuIcBW+3BYKs9HbOVasOeBmy1p2O22i2wS/DqWWWrb7LAVqVBm8swW5USbFVmga2+YbBVKcMZyzyxFcemboZs1c0BW5UaslX3ZAaA3Q3YqjuDrXo4ZivVhh4GbNXDMVuVBXYJXj2rbPVtFtiqV9Dm3pitehFs1dsCW33LYKteDGfs7YmtODb1MWSrPg7YqpchW/VNZgDY14Ct+jLYqp9jtlJt6GfAVv0cs1XvwC7Bq2eVrb7LAlv1D9o8ALNVf4KtBlhgq+8YbNWf4YwDPLEVx6aBhmw10AFb9Tdkq0HJDAAHGbDVIAZbDXbMVqoNgw3YarBjthoQ2CV49ayy1fdZYKshQZuHYrYaQrDVUAts9T2DrYYwnHGoJ7bi2DTMkK2GOWCrIYZsNTyZAeBwA7YazmCrfR2zlWrDvgZsta9jthoa2CV49ayy1Q9ZYKv9gjaPxGy1H8FWIy2w1Q8MttqP4YwjPbEVx6b9DdlqfwdstZ8hWx2QzADwAAO2OoDBVgc6ZivVhgMN2OpAx2w1MrBL8OpZZasfs8BWo4I2j8ZsNYpgq9EW2OpHBluNYjjjaE9sxbFpjCFbjXHAVqMM2WpsMgPAsQZsNZbBVgc7ZivVhoMN2Opgx2w1OrBL8OpZZaufssBW44M2T8BsNZ5gqwkW2OonBluNZzjjBE9sxbFpoiFbTXTAVuMN2WpSMgPASQZsNYnBVoc4ZivVhkMM2OoQx2w1IbBL8OpZZaufs8BWU4I2H4rZagrBVodaYKufGWw1heGMh3piK45NUw3ZaqoDtppiyFbTkhkATjNgq2kMtprumK1UG6YbsNV0x2x1aGCX4NWzyla/ZIGtZgZtnoXZaibBVrMssNUvDLaayXDGWZ7YimPTbEO2mu2ArWYastWcZAaAcwzYag6DreY6ZivVhrkGbDXXMVvNCuwSvHpW2erXLLDV/KDNCzBbzSfYaoEFtvqVwVbzGc64wBNbcWxaaMhWCx2w1XxDtlqUzABwkQFbLWKw1WLHbKXasNiArRY7ZqsFgV2CV88qW/2WBbZaErT5cMxWSwi2OtwCW/3GYKslDGc83BNbcWw6wpCtjnDAVksM2WppMgPApQZstZTBVuWO2Uq1odyArcods9XhgV2CV88qW/2eBbZaHrR5BWar5QRbrbDAVr8z2Go5wxlXeGIrjk0rDdlqpQO2Wm7IVquSGQCuMmCrVQy2OtIxW6k2HGnAVkc6ZqsVgV2CV88qW/2RBbY6Kmjz0ZitjiLY6mgLbPUHg62OYjjj0Z7YimPTGkO2WuOArY4yZKu1yQwA1xqw1VoGWx3jmK1UG44xYKtjHLPV0YFdglfPKlv9mQW2Oi5o8/GYrY4j2Op4C2z1J4OtjmM44/Ge2Ipj0wmGbHWCA7Y6zpCt1iUzAFxnwFbrGGx1omO2Um040YCtTnTMVscHdglePats9VcW2OrkoM2nYLY6mWCrUyyw1V8MtjqZ4YyneGIrjk2nGrLVqQ7Y6mRDtjotmQHgaQZsdRqDrU53zFaqDacbsNXpjtnqlMAuwatnla2E4YQTLJyKbHVG0OYzMVudQbDVmRbYSsR0MMVWZzCc8UxPbMWx6SxDtjrLAVudYchWZyczADzbgK3OZrDVOY7ZSrXhHAO2OscxW50Z2CV49ayyVSILbHVe0ObzMVudR7DV+RbYKsFgq/MYzni+J7bi2HSBIVtd4ICtzjNkqwuTGQBeaMBWFzLY6iLHbKXacJEBW13kmK3OD+wSvHpW2SonC2x1SdDmSzFbXUKw1aUW2CqHwVaXMJzxUk9sxbHpMkO2uswBW11iyFaXJzMAvNyArS5nsNUVjtlKteEKA7a6wjFbXRrYJXj1rLJVbhbY6qqgzVdjtrqKYKurLbBVLoOtrmI449We2Ipj0zWGbHWNA7a6ypCtrk1mAHitAVtdy2Cr6xyzlWrDdQZsdZ1jtro6sEvw6lllq2QW2OqGoM03Yra6gWCrGy2wVZLBVjcwnPFGT2zFsekmQ7a6yQFb3WDIVjcnMwC82YCtbmaw1S2O2Uq14RYDtrrFMVvdGNglePWsslVeFtjqtqDN6zFb3Uaw1XoLbJXHYKvbGM643hNbcWy63ZCtbnfAVrcZstUdyQwA7zBgqzsYbHWnY7ZSbbjTgK3udMxW6wO7BK+eVbbKzwJb3R20+R7MVncTbHWPBbbKZ7DV3QxnvMcTW3FsuteQre51wFZ3G7LVfckMAO8zYKv7GGx1v2O2Um2434Ct7nfMVvcEdglePatsVZAFtnowaPNDmK0eJNjqIQtsVcBgqwcZzviQJ7bi2PSwIVs97ICtHjRkq0eSGQA+YsBWjzDY6lHHbKXa8KgBWz3qmK0eCuwSvHpW2aowC2z1eNDmJzBbPU6w1RMW2KqQwVaPM5zxCU9sxbHpSUO2etIBWz1uyFZPJTMAfMqArZ5isNXTjtlKteFpA7Z62jFbPRHYJXj1rLJVURbY6tmgzc9htnqWYKvnLLBVEYOtnmU443Oe2Ipj0/OGbPW8A7Z61pCtXkhmAPiCAVu9wGCrFx2zlWrDiwZs9aJjtnousEvw6lllq2pZYKuXgza/gtnqZYKtXrHAVtUYbPUywxlf8cRWHJteNWSrVx2w1cuGbPVaMgPA1wzY6jUGW73umK1UG143YKvXHbPVK4FdglfPKltVzwJbvRG0+U3MVm8QbPWmBbaqzmCrNxjO+KYntuLY9JYhW73lgK3eMGSrt5MZAL5twFZvM9jqHcdspdrwjgFbveOYrd4M7BK8elbZqjgLbPVe0Ob3MVu9R7DV+xbYqpjBVu8xnPF9T2zFsekDQ7b6wAFbvWfIVh8mMwD80ICtPmSw1UeO2Uq14SMDtvrIMVu9H9glePWsslWNLLDVJ0GbP8Vs9QnBVp9aYKsaDLb6hOGMn3piK45Nnxmy1WcO2OoTQ7b6PJkB4OcGbPU5g62+cMxWqg1fGLDVF47Z6tPALsGrZ5WtamaBrb4K2vw1ZquvCLb62gJb1WSw1VcMZ/zaE1txbNpgyFYbHLDVV4Zs9U0yA8BvDNjqGwZbfeuYrVQbvjVgq28ds9XXgV2CV88qW5Vkga2+D9r8A2ar7wm2+sECW5Uw2Op7hjP+4ImtODb9aMhWPzpgq+8N2eqnZAaAPxmw1U8MtvrZMVupNvxswFY/O2arHwK7BK+eVbaqlQW2+jVo82+YrX4l2Oo3C2xVi8FWvzKc8TdPbMWx6XdDtvrdAVv9ashWfyQzAPzDgK3+YLDVn47ZSrXhTwO2+tMxW/0W2CV49ayyVe0ssJXIC47miYozRmVgtlKFMmWr2gy2UjbEKbshsC2mDRUSl604NuXkmbFVTp59thJMW3TKzcsAUFXmslVu/IFMJBmDYdoGhcFlqyTTGblMkQjsErx6VtmqThbYKj9ocwFmq3yCrQossFUdBlvlM5yxwBNbcWwqNGSrQgdslW/IVkV5GQAWGbBVEYOtqjlmK9WGagZsVc0xWxUEdglePatsVTcLbFUctLkGZqtigq1qWGCrugy2KmY4Yw1PbMWxqaYhW9V0wFbFhmxVkpcBYIkBW5Uw2KqWY7ZSbahlwFa1HLNVjcAuwatnla3qZYGt6gRtrovZqg7BVnUtsFU9BlvVYThjXU9sxbGpniFb1XPAVnUM2ap+XgaA9Q3Yqj6DrRo4ZivVhgYGbNXAMVvVDewSvHpW2ap+FtiqUdDmxpitGhFs1dgCW9VnsFUjhjM29sRWHJuaGLJVEwds1ciQrZrmZQDY1ICtmjLYqpljtlJtaGbAVs0cs1XjwC7Bq2eVrRpkga22DNrcHLPVlgRbNbfAVg0YbLUlwxmbe2Irjk0pQ7ZKOWCrLQ3ZqkVeBoAtDNiqBYOtWjpmK9WGlgZs1dIxWzUP7BK8elbZqmEW2Kp10OY2mK1aE2zVxgJbNWSwVWuGM7bxxFYcm9oaslVbB2zV2pCttsrLAHArA7baisFW7RyzlWpDOwO2aueYrdoEdglePats1SgLbNU+aHMHzFbtCbbqYIGtGjHYqj3DGTt4YiuOTR0N2aqjA7Zqb8hWnfIyAOxkwFadGGy1jWO2Um3YxoCttnHMVh0CuwSvnlW2apwFtuoctLkLZqvOBFt1scBWjRls1ZnhjF08sRXHpq6GbNXVAVt1NmSr7fIyANzOgK22Y7DV9o7ZSrVhewO22t4xW3UJ7BK8elbZqkkW2GrHoM07YbbakWCrnSywVRMGW+3IcMadPLEVx6adDdlqZwdstaMhW+2SlwHgLgZstQuDrXZ1zFaqDbsasNWujtlqp8Auwatnla2aZoGtdg/avAdmq90JttrDAls1ZbDV7gxn3MMTW3Fs2tOQrfZ0wFa7G7LVXnkZAO5lwFZ7Mdiq1DFbqTaUGrBVqWO22iOwS/DqWWWrZllgq25Bm7tjtupGsFV3C2zVjMFW3RjO2N0TW3Fs6mHIVj0csFU3Q7bqmZcBYE8DturJYKtejtlKtaGXAVv1csxW3QO7BK+eVbbaIgts1Sdoc1/MVn0Ituprga22YLBVH4Yz9vXEVhyb+hmyVT8HbNXHkK32zssAcG8DttqbwVb9HbOVakN/A7bq75it+gZ2CV49q2y1ZRbYamDQ5kGYrQYSbDXIAlttyWCrgQxnHOSJrTg2DTZkq8EO2GqgIVvtk5cB4D4GbLUPg62GOGYr1YYhBmw1xDFbDQrsErx6VtmqeRbYaljQ5uGYrYYRbDXcAls1Z7DVMIYzDvfEVhyb9jVkq30dsNUwQ7YakZcB4AgDthrBYKv9HLOVasN+Bmy1n2O2Gh7YJXj1rLJVKgtstX/Q5gMwW+1PsNUBFtgqxWCr/RnOeIAntuLYdKAhWx3ogK32N2Srg/IyADzIgK0OYrDVKMdspdowyoCtRjlmqwMCuwSvnlW2apEFthoTtHksZqsxBFuNtcBWLRhsNYbhjGM9sRXHpoMN2epgB2w1xpCtxuVlADjOgK3GMdhqvGO2Um0Yb8BW4x2z1djALsGrZ5WtWmaBrSYGbZ6E2WoiwVaTLLBVSwZbTWQ44yRPbMWx6RBDtjrEAVtNNGSryXkZAE42YKvJDLaa4pitVBumGLDVFMdsNSmwS/DqWWWrVllgq6lBm6dhtppKsNU0C2zVisFWUxnOOM0TW3Fsmm7IVtMdsNVUQ7aakZcB4AwDtprBYKuZjtlKtWGmAVvNdMxW0wK7BK+eVbZqnQW2mh20eQ5mq9kEW82xwFatGWw1m+GMczyxFcemuYZsNdcBW802ZKt5eRkAzjNgq3kMtprvmK1UG+YbsNV8x2w1J7BL8OpZZas2WWCrhUGbF2G2Wkiw1SILbNWGwVYLGc64yBNbcWxabMhWix2w1UJDtjosLwPAwwzY6jAGWy1xzFaqDUsM2GqJY7ZaFNglePWsslXbLLDVEUGbl2K2OoJgq6UW2Kotg62OYDjjUk9sxbGp3JCtyh2w1RGGbLUsLwPAZQZstYzBVssds5Vqw3IDtlrumK2WBnYJXj2rbLVVFthqZdDmVZitVhJstcoCW23FYKuVDGdc5YmtODYdachWRzpgq5WGbLU6LwPA1QZstZrBVkc5ZivVhqMM2Ooox2y1KrBL8OpZZat2WWCrNUGb12K2WkOw1VoLbNWOwVZrGM641hNbcWw6xpCtjnHAVmsM2erYvAwAjzVgq2MZbHWcY7ZSbTjOgK2Oc8xWawO7BK+eVbbaOgtsdULQ5nWYrU4g2GqdBbbamsFWJzCccZ0ntuLYdKIhW53ogK1OMGSrk/IyADzJgK1OYrDVyY7ZSrXhZAO2OtkxW60L7BK8elbZqn0W2OrUoM2nYbY6lWCr0yywVXsGW53KcMbTPLEVx6bTDdnqdAdsdaohW/0nLwPA/xiw1X8YbHWGY7ZSbTjDgK3OcMxWpwV2CV49q2zVIQtsdVbQ5rMxW51FsNXZFtiqA4OtzmI449me2Ipj0zmGbHWOA7Y6y5Ctzs3LAPBcA7Y6l8FW5zlmK9WG8wzY6jzHbHV2YJfg1bPKVh2zwFYXBG2+ELPVBQRbXWiBrToy2OoChjNe6ImtODZdZMhWFzlgqwsM2erivAwALzZgq4sZbHWJY7ZSbbjEgK0uccxWFwZ2CV49q2zVKQtsdVnQ5ssxW11GsNXlFtiqE4OtLmM44+We2Ipj0xWGbHWFA7a6zJCtrszLAPBKA7a6ksFWVzlmK9WGqwzY6irHbHV5YJfg1fvboYrFpkmbiQ2P5PpgK7pYSsRJiY1tSoA618h+u1bKdVKul3KDlBul3CTlZim3SLlVym1S1ku5XcodUu6UcpeUu6XcI+VeKfdJuV/KA1IelPKQlIelPCLlUSmPSXlcyhNSnpTyFGbZawJGhceuJY5dRxy7njh2A3HsRuLYTcSxm4ljtxDHbiWO3UYcW08cu504dgdx7E7i2F3EsbuJY/cQx+4ljt1HHLufOPYAcexB4thDxLGHiWOPEMceJY49Rhx7nDj2BHHsSeLYU8Tq3SL4TIlYqcKkT0ee18QkZ7XSXxu7rEhcF7estPf6eGVPVIveDbHKfv/3AnljnLLv/LOY3hSjbLdg4b05fdkT9CJ9S9qyMzYu6LemK3vbpsX/tjRlF4JAYX102d4wqLg9suzHFQKQO6LKdq0YrNwZUXYrFNjcFV72QBwE3R1adkSlgOmesLLllYOre0PKlhOB2H102ZupoO1+smwPMsB7gCo7iA4GHyTK3hoSOD5UuWy7sCDz4Uplzw0NSB/BZTuHB6+PorLvRAS6j1UsOysqKH68QtkBkQH0E7DsuOhg+0lQdts0gflTjMCSc/aQJlXATcPlz0G8p8POHuIAPp3HOz1T4E/H76DEMzEbFXb2EKcNz+TxzjpUG55hDrKt6w8M53qWOpgSsWAq2Pps4CDP4cj42aDj4LHnLFx/YHhy4lmGgzzH7Dzu4CineJbpTMquZ7PEGE/G7+ezId7zpoyhAJ/nM8bZzzMY4wXHjKHa8AKfMc5+IUuM8WR83LOogykRC6aCrS8GDvISZowXCcZ4yQJjMDw58SLDQV4y7DzuFUuOTS8zJsPGPwxbngkcvNJFwTRYnKX6FcZkoNqQrrjqo1cMmPiVLDHxE/H990aI96opEyvAV/lMfOOrDOd7zTETqza8xmfiG1/L0PniTKBXHE+g15lt0IlLTJwx/C/DN2yucE/Ex72BOpgSsWAq2PpGMPHexCvcG8QK96aFFY7BEIk3GIP2pmHncR2JY9NbGa5w6eqoyfNfg9Xhbcerlmr32x7s0ok7hm8zxvAdx2MYRrJxyDlu2XeZhGYrGng8/lw/HuK9ZxoNKMD3+NHA8e8xOuh9x9GAasP7/Gjg+PcdRwNqIryb53ayfcCcbDpxbeKM4YdZigYej497HHUwJWLBVLD1o2DifYyjgY+IaOBjC9EAgyESHzEG7WPDzuM6EsemTxyvJGryfGiw6n7qOBpQ7f7Ug106ccfwU8YYfuZ4DMNINl09Dsl+nqVrA4/Fn+spiPeFaTSgAL/gRwOpLxiD/KXjaEC14Ut+NJD60nE0oCbC53luJ9tXnqIBzhh+naVo4LH4uM2pgykRC6aCrRuCifcNjgY2ENHANxaiAQZDJDYwBu0bw87jOhLHpm8dryRq8nxtsOp+5zgaUO3+zoNdOnHH8DvGGH7veAzDSDZdPQ7J/pClaODR+HP9WYj3o2k0oAB/5EcDz/7IGOSfHEcDqg0/8aOBZ39yHA2oifBDntvJ9rOnaIAzhr9kKRp4ND7uM9TBlIgFU8HWX4OJ9xuOBn4looHfLEQDDIZI/MoYtN8MO4/rSBybfne8kqjJ84vBqvuH42hAtfsPD3bpxB3DPxhj+KfjMQwj2XT1OCT7V5aigUfiz/WxFfDyMwBUlZnRwFhVJxUTI5HvNhpQbVAYzGhgbCJ+G0i74kyEv/LcTrYcxjjAf7g2ccYwl2GTzWjgkfiTdgx1MCViwVSwNRlMvLx8UXHlT+ZXjgZUoUyjAQZDJJKMQcvLN+s8riNxbMpnOjfXYdTkyc3nT+yCDIkjXXHV7gIPdunEHcMCxhgWOh7DMJJNV49DskWMfrUZDTwcf66/CvGqmUYDCrAaPxp4tRpjkKs7jgZUG6rzo4FXqzuOBtREKMp3O9mKPUUDnDGskaVo4OH40cAr1MGUiAVTwdaawcQrwdFATSIaKLEQDTAYIlGTMWgl+Wadx3Ukjk21HK8kavLUMFh1azuOBlS7a3uwSyfuGNZmjGEdx2MYRrLp6nFItm6WooGH4s/1vhCvnmk0oADr8aOBvvUYg1zfcTSg2lCfHw30re84GlAToW6+28nWwFM0wBnDhlmKBh6KHw30oQ6mRCyYCrY2CiZeYxwNNCKigcYWogEGQyQaMQatcb5Z53EdiWNTE8criZo8DQ1W3aaOowHV7qYe7NKJO4ZNGWPYzPEYhpFsunockt0iS9HAg/Hn+vUQb0vTaEABbsmPBq7fkjHIzR1HA6oNzfnRwPXNHUcDaiJske92sqU8RQOcMWyRpWjgwfjRwHXUwZSIBVPB1pbBxGuFo4GWRDTQykI0wGCIREvGoLXKN+s8riNxbGrteCVRk6eFwarbxnE0oNrdxoNdOnHHsA1jDNs6HsMwkk1Xj0OyW2UpGngg/ly/E+K1M40GFGA7fjRwZzvGIG/tOBpQbdiaHw3cubXjaEBNhK3y3U629p6iAc4YdshSNPBA/GjgDupgSsSCqWBrx2DidcLRQEciGuhkIRpgMESiI2PQOuWbdR7XkTg2beN4JVGTp4PBqrut42hAtXtbD3bpxB3DbRlj2NnxGIaRbLp6HJLtkqVo4P74c31viNfVNBpQgF350cDeXRmDvJ3jaEC1YTt+NLD3do6jATURuuS7nWzbe4oGOGO4Q5aigfvjRwP9qIMpEQumgq07BhNvJxwN7EhEAztZiAYYDJHYkTFoO+WbdR7XkTg27ex4JVGTZweDVXcXx9GAavcuHuzSiTuGuzDGcFfHYxhGsunqcUh2tyxFA/fFn+vlEG9302hAAe7OjwbKd2cM8h6OowHVhj340UD5Ho6jATURdst3O9n29BQNcMZwryxFA/fFjwaWUgdTIhZMBVtLg4lXhqOBUiIaKLMQDTAYIlHKGLSyfLPO4zoSx6ZujlcSNXn2Mlh1uzuOBlS7u3uwSyfuGHZnjGEPx2MYRrLp6nFItmeWooF7DaOBXqbRgALsZRAN9GIMcm/H0YBqQ2+DaKC342hATYSe+W4nWx9P0QBnDPtmKRq4NwvRQL9g4u2No4F+RDSwt4VogMEQiX6MQdvbUzTAsam/45VETZ6+BqvuAMfRgGr3AA926cQdwwGMMRzoeAzDSDZdPQ7JDspSNHBP/Ll+OcQbbBoNKMDB/Gjg8sGMQd7HcTSg2rAPPxq4fB/H0YCaCIPy3U62IZ6iAc4YDs1SNHBP/GjgMupgSsSCqWDrsGDiDcfRwDAiGhhuIRpgMERiGGPQhuebdR7XkTg27et4JVGTZ6jBqjvCcTSg2j3Cg106ccdwBGMM93M8hmEkm64eh2RHZikauDv+XL8I4u1vGg0owP350cBF+zMG+QDH0YBqwwH8aOCiAxxHA2oijMx3O9kO9BQNcMbwoCxFA3fHjwYupA6mRCyYCraOCibeaBwNjCKigdEWogEGQyRGMQZtdL5Z53EdiWPTGMcriZo8BxmsumMdRwOq3WM92KUTdwzHMsbwYMdjGEay6epxSHZclqKBu+LP9dcg3njTaEABjudHA6+NZwzyBMfRgGrDBH408NoEx9GAmgjj8t1OtomeogHOGE7KUjRwV/xo4FXqYErEgqlg6yHBxJuMo4FDiGhgsoVogMEQiUMYgzY536zzuI7EsWmK45VETZ5JBqvuoY6jAdXuQz3YpRN3DA9ljOFUx2MYRrLp6nFIdlqWooE748/1pyHedNNoQAFO50cDT09nDPIMx9GAasMMfjTw9AzH0YCaCNPy3U62mZ6iAc4YzspSNHBn/GjgKepgSsSCqWDr7GDizcHRwGwiGphjIRpgMERiNmPQ5uSbdR7XkTg2zXW8kqjJM8tg1Z3nOBpQ7Z7nwS6duGM4jzGG8x2PYRjJpqvHIdkFWYoG7og/1xtDvIWm0YACXMiPBhovZAzyIsfRgGrDIn400HiR42hATYQF+W4n22JP0QBnDA/LUjRwR/xooBF1MCViwVSwdUkw8Q7H0cASIho43EI0wGCIxBLGoB2eb9Z5XEfi2HSE45VETZ7DDFbdpY6jAdXupR7s0ok7hksZY1jueAzDSDZdPQ7JLstSNHB7/Lm+HuItN40GFOByfjSwfjljkFc4jgZUG1bwo4H1KxxHA2oiLMt3O9lWeooGOGO4KkvRwO3xo4HbqIMpEQumgq1HBhNvNY4GjiSigdUWogEGQySOZAza6nyzzuM6EsemoxyvJGryrDJYdY92HA2odh/twS6duGN4NGMM1zgewzCSTVePQ7JrsxQNrI8/14+CeMeYRgMK8Bh+NHDUMYxBPtZxNKDacCw/GjjqWMfRgJoIa/PdTrbjPEUDnDE8PkvRwPr40cBq6mBKxIKpYOsJwcRbh6OBE4hoYJ2FaIDBEIkTGIO2Lt+s87iOxLHpRMcriZo8xxusuic5jgZUu0/yYJdO3DE8iTGGJzsewzCSTVePQ7KnZCkauC3+XO8D8U41jQYU4Kn8aKDPqYxBPs1xNKDacBo/GuhzmuNoQE2EU/LdTrbTPUUDnDH8T5aigdviRwO9qYMpEQumgq1nBBPvTBwNnEFEA2daiAYYDJE4gzFoZ+abdR7XkTg2neV4JVGT5z8Gq+7ZjqMB1e6zPdilE3cMz2aM4TmOxzCMZNPV45DsuVmKBm6NP9fXQbzzTKMBBXgePxpYdx5jkM93HA2oNpzPjwbWne84GlAT4dx8t5PtAk/RwPkMmy7MUjRwa/xo4ATqYErEgqlg60XBxLsYRwMXEdHAxRaiAQZDJC5iDNrF+Wadx3Ukjk2XOF5J1OS50GDVvdRxNKDafakHu3TijuGljDG8zPEYhpFsunockr08S9HALfHn+kyId4VpNKAAr+BHAzOvYAzylY6jAdWGK/nRwMwrHUcDaiJcnu92sl3lKRrgjOHVWYoGbokfDcygDqZELJgKtl4TTLxrcTRwDRENXGshGmAwROIaxqBdm2/WeVxH4th0neOVRE2eqw1W3esdRwOq3dd7sEsn7hhezxjDGxyPYRjJpqvHIdkbsxQN3Bx/rt8N8W4yjQYU4E38aODumxiDfLPjaEC14WZ+NHD3zY6jATURbsx3O9lu8RQNcMbw1ixFAzfHjwbuog6mRCyYCrbeFky89TgauI2IBtZbiAYYDJG4jTFo6/PNOo/rSBybbne8kqjJc6vBqnuH42hAtfsOD3bpxB3DOxhjeKfjMQwj2XT1OCR7V5aigZviz/UUxLvbNBpQgHfzo4HU3YxBvsdxNKDacA8/Gkjd4zgaUBPhrny3k+1eT9EAZwzvy1I0cFP8aKA5dTAlYsFUsPX+YOI9gKOB+4lo4AEL0QCDIRL3MwbtgXyzzuM6EsemBx2vJGry3Gew6j7kOBpQ7X7Ig106ccfwIcYYPux4DMNINl09Dsk+kqVo4Mb4c70Y4j1qGg0owEf50UDxo4xBfsxxNKDa8Bg/Gih+zHE0oCbCI/luJ9vjnqIBzhg+kaVo4Mb40UB16mBKxIKpYOuTwcR7CkcDTxLRwFMWogEGQySeZAzaU/lmncd1JI5NTzteSdTkecJg1X3GcTSg2v2MB7t04o7hM4wxfNbxGIaRbLp6HJJ9LkvRwA3x5/p0iPe8aTSgAJ/nRwPTn2cM8guOowHVhhf40cD0FxxHA2oiPJfvdrK96Cka4IzhS1mKBm6IHw1Mow6mRCyYCra+HEy8V3A08DIRDbxiIRpgMETiZcagvZJv1nlcR+LY9KrjlURNnpcMVt3XHEcDqt2vebBLJ+4YvsYYw9cdj2EYyaarxyHZ/2YpGrg+/lyvDfHeMI0GFOAb/Gig9huMQX7TcTSg2vAmPxqo/abjaEBNhP/mu51sb3mKBjhj+HaWooHr40cDtaiDKRELpoKt7wQT710cDbxDRAPvWogGGAyReIcxaO/mm3Ue15E4Nr3neCVRk+dtg1X3fcfRgGr3+x7s0ok7hu8zxvADx2MYRrLp6nFI9sMsRQPXxSe0CngfmUYDCvCjfH69jx2v8Mquj/M3HUiJ+Ik7iZTDfpjvdlJ84mnV5ozLpxlO1Dht/tRgDG1OqGsNJ9RnphNKAX5mMKE+dzyhlF2fW5pQ6Yqrgf8838xhUvEwrDrJNXnxbYR4X5g6iQL8woBxvmDM2C8dO5Rqw5cGg/yl43Mw5URfGoQHnzD66yvH4aDq268MJ6tOXN/6itH+rx2HeGErcrp6nBV5g+MxVH20wWAh4IyDiV1PyPNPJdx59Q2zv7j+p2xiYCSelOWfNGjHt/ExattcZBi4FfC+M11kFOB3Bg74vWMHVHZ9nyG5Faapiwfs+GQEDip8SlRZVPjMyLIVC58fXbZC4UvTlIWFr05XFtT6NBl/bFcUmY1NteAzFVlqUwNuTG//xsLrY7RVF74nTr8EhR+K1Yf/FH4iXn//Xfi5mGOjCr8Sdxxl4Tdjj3lCvM8Y85WGY46vaabD+YFB9Aw/THDst0nuPxiS+4+m5K4AfzQg958ck7uy6yfP5L4tg9x3YJD7bgxyL2OQe28GuQ9gkPvRjIm+xhO5D2WQ+0gGuY9mkPsEBrkfyiD3WQxyX8Ag98MZ5L6CMeZrPZH7zwxyZ/hhYm2WyP1nQ3L/xZTcFeAvBuT+q2NyV3b9miG5105TFw/YoLz45D48Lz65H5AXn9zH5sUn90npLjiDwtPSXpzeVHhO+gvZGwsvinHRWxdeGucCeVB4VayL6f8UXhvvwvvfhdfFvEivCp8W94K+LHx27Iv/CXFh/BsFicsZ14t/y9I17d8MSet3U9JSgL8bkNYfjklL2fWHZ9L6mhGR/sCISH9jRKQJBmkVMEirBoO06jJIqzGDtJozSKsNg7Q6MEirC4O0dmKQ1h4M0urOIK2+DNL6M0uk9achaf1lSloK8C8D0hIFbklL2aUwBK8eiZXOvp+CqI5bL1HA6C/B1/9H0AfcejkMu5Tz5gl6M2IthEs2CqTNpP9P2kz6VZP0OYnr+5vP0v5Jm8/SquZZWnrNm1KuWnO4C7ZaDHMMFmyFozeL5xILF3fxS0Ysfqctm7LukFmPH7t76pgGry75o3cmOHkROLhuJjj5ETjb5rzU8tn3T2mysKxRp+t++fW4THAKInDGPHrWh/ePKx0687y103JzrrsjE5zCCJyHV+510y7DR19609iLehw9/6eXMsEpisBZ1/Hz/S48+Z3D2214rtXKlUWNMsGpFoEzKu+Knuc/0n77Dcs7HzD2ux+aZYJTPQLnvnW7PLHy4fJL3i1r8Hp+3tj5meAUR+D8sLreK9V2/v7+jhfcOXvXmd+OywSnRgTONz8cteeEn1PP/mfdgSesPnL9C4of1BlWcZB/de4/oua6modqjij/Vb6lxl2Nieov1ZYaBZX1M3dV5eQyTnZqxg++/06mPMvt7xLHdql2lxjYVYthlxq3asTxlOAlbttqFbjHqM3AsPgEWU5uDNy//kk/UHmp6Kob4wpoa51gTtYtEBUDgDqBA8FjqlAp0sp8gizOBD4hcMhEHcZkr8vsPJNJW8fSVZA06e8+UnjcLacljP6q9z8w2et5mOz1mZNdXQiy8bhobYO2qbT5bHjT181nw/+us+EGIKhhTzhO1AUXPQiaBhPPvb9JvIFBJHYlc3eMyUaGyP4giCG6/yqTQ5r+rkQQ6cYHk0Ta8UREkX78K5JFDH+pQBhx/AuSRix/BMQRz383kUdMf99IIHHnhyaR2PMpIJL48+8fMmHM178JhRP8qLK1C/jPhTRk2MSZw5BvFEZ5cNzkXj9nXv+Q5M3r35K8eZ1gzusC5ryuwZzXdZnzujFzXjdnzus2zHndgTmvuzDn9U7Meb0Hc153Z87rvgbzur7BvG4EMLbYbsCZ9w2Zct2xu5b07lrthcNfOHLKdi8ff/Ty9t+Vj1iU3+pE03ndKJjXNk8iGHxEplTIcXx1Hs7RxtkIwhpnGIQ1NgjCnmYGYVz9yi41gOmuoODB4EyIJozJ9rShYzcBC5ZJHzSK0QdYD6cPmjImt2kfNAV9oBN3q3ozxli5eg4JJq79WzDsd7XVXo2FemQH7LGMjUOUzXmm7qh5+RcdNK7TVjV6ftOozskr9nrw2OV7bdWRofdvxfoh5ydzWTb9vVhoHc0CDtuiYFOgqBcW9anmxJZSmqtxKPinrr6qS9nEsCOxJfNqoU4tgiumLQtQIe6Lx7ZkTPgW4WUPRGUTLZmX/2ztLmwZYeNPz/znpdNXPztp7bpr35x+xKUXQbxWBRkAtkofGlUCb8WY1a0Zg2TahtbpV/JKbWjNHOS4swa3MZW7fMs6ZaU/PzPn4lmjjrj04ihcXBfOmjbBILfFN2XaBMsMPNbWYOmJMjTdwLVhzK62jA5QHa+oO0eEp1TIcYwL87hO1oYZouq0FR6srQoqexF3TY0wppKDbsUYxHYFsTuzQpvaWYhz2jLs5LRpa4azwTZtDU7M8Mzn3oFTE6kFw2ZVvmVBZstHugQnVPuAWTpgZ21PMEsHMNjcjmgRULUun64jNLVz44KWDIz2DObqwFwyqgJztTdkro7YGTpaYK72DObqyBjETobM1ckCc3Vg2Mlp0zaGzLUNYK4wB3S5/GWCY+qs22Jn3ZZw1iTTmDaGLBJh50Zj4+rtzCgL29+ZcGxu+zlLMmcScNrfxfDSYJeI5RuW5/SHOl2PWbbCpOsaLK/bFaBC3GUNGpCu47oylrXtsnS6u53h6e72pqe7CnB7g9Pd7Rmnuzs4Pt1VbdjB4HR3hyyd7u5geLq7YzDIO2Fq35EISneycLrLGbgdGbNrp//B090dDdfhnfFg7WwhaNyRsbbuzBjEXQyDxl0sBI07MezktGlXw6BxV4unu2oidWXYrMpvV5DZ8pEuwQm1W8Asu2Nn3Y1glt0zON3tGlC1Lp+uIzS1c+OC7RgYuzGYa/f/wdPd3QyZaw/sDHtYYK7dGMy1B2MQ9zRkrj0tMNfuDDs5bdrLkLn2cnC6y1n+MsExddZS7KylFk53dzRkkQg7NxobV2+Z4elumYXTXc6SzJkEnPZ3Mzzd7ebgdPdJw9Pd7sHy2qMAFeIua08yTne7M5a1Hlk63e1heLrb0/R0VwH2NDjd7ck43e3l+HRXtaGXweluryyd7vYyPN3tHQxyH0ztvYmgtI+F013OwPVmzK4+/4Onu70N1+G+eLD6WggaezPW1r6MQexnGDT2sxA09mHYyWnT3oZB494WT3fVROrOsFmV71GQ2fKRLsEJ1T9glgHYWfsTzDIgg9Pd7gFV6/LpOkJTOzcu6MHA6M9grgH/g6e7/Q2ZayB2hoEWmKs/g7kGMgZxkCFzDbLAXAMYdnLaNNiQuQY7ON3lLH+Z4Jg66z7YWfexcLrb25BFIuzcaGxcvUMMT3eHWDjd5SzJnEnAaf9Qw9PdoWDlUpOgGJRLBZ+Fey6q/eoORfO33pA/r8vv9R//Y9FlZ371xC4n7DV5RMdxM/rtD8s2WTrq16uXdjmwzeWNvit+9JXt9nryysWvPFZS761ldz7U7peTDoJl4yRdNq/fZVPmPLFm+yGjDrj75Q92O7/xcUeWjN5lcNvjZ73dc91dH+TAsqmzn7mn428jfvkxOaPHK00e/vXn2cOufaR0SfLzg5scvPrx+9rCshwbmvX49uLUkmX3r1nR4uJlB35yfZdare/4sm6jxne8/sMFV1/Wuw8sm3vFVzt+1K39Fol149o/PPKMTz+/+KqODS97LHXF7teuPfqhny+DZTk2dPp5femHR9ccWHfBO0Pn/PrRGVvMGzR5h48uLb9l4slzu3z71FOw7DZPHfXcyEl3Dr1t1bptajQ4cuywq2654v4Xfh611eNHfH3DfSesgGXTJf07HcpPWgScoTfWdQ0+9Z2H7sGnvmyRErFSLqMsR29imLRjuJR9C/6Z28Vi0+L1dwEDfSUFbDvIlMqgWErESYmN7UuAOiOk/ftJGSllfykHSDlQykFSRkkZLWWMlLFSDpYyTsp4KROkTJQyScohUiZLmSLlUClTpUyTMl3KDCkzpcySMlvKHClzpcyTMh8vQsqYQnRsP+LYSOLY/sSxA4hjBxLHDiKOjSKOjSaOjSGOjSWOHUwcG0ccG08cm0Acm0gcm0QcO4Q4Npk4NoU4dihxbCpxbBpxbDpxbAZxbCZxbBZxbDZxbA5xbC5xbB5xbH5BRTJTKSVipb+frhwGFlr9mW5xHhFzIf/6r78S+8UuKxIj45aVtu8fr+yJ6jTqgFhlv//7lOvAOGXf+ef07KAYZbsFp3Kj0pfd+B6r0WnLzth4ijgmXdnbNp1Ojk1TdiE49Tw4umxveJo6LrLsxxVOacdHle1a8fR3QkTZrdCp8kTG6fyk0LIjsK8nDgkrW15pXiQmh5QtrzyHElPosjcT8y1xKFm2BzU3E1OpsoPIeZyYRpS9lZ7ziemVy7YL4YfEjEplzw3jksRMXLZzKO8kZqGy74RzVGJ2xbKzIvgsMadC2QFR3JeYC8uOi+TJxDxQdttoTk3MZ5zw2Lz1ND8+lz8H8RYUZACoKnPeuaDAF8TvoMTCmI0yvfWk2rCwoHK9dG1YyBxkS2+K5DjXs9TBlIgFU8HWRYGDLMbR8aKg4+CxxSCK0Yl78ZfhyYlFDAdZbNh53JeKcGw6jDEZNv5h2FISOLjLN0ouYUwGqg3piqs+WlLAb/uSLDHxvPj+ezbEO9yUiRXg4XwmPvtwhvMd4ZiJVRuO4DPx2Udk6HxxJtASxxNoKbMNOnGJiTOG5QzfsLnCzYuPexZ1MCViwVSwdVkw8ZbjFW4ZscItt7DCMRgisYwxaMsNO4/rSBybVmS4wqWroyZPucHqsNLxqqXavbIK2rUksIt7l3RJgVkb0pVdxSQaW6v03Phz8EaId6TpKq0Aj+Sv0jceyeig1Y5XadWG1fxV+sbVjp1arbarDCbbUZ5WXs64HJ2llXdufNwbqIMpEQumgq1rgsm0Fq+8a4iVd62FlZcx6xNrGIO21rDzuI7EsekYxyuvmjxHG0y6Yx2TgWr3sR7s0ok7hscyxvA4x9cHwqKBdFiMc+sEJxo43vHpnOrP4wvcjtkJWYpo5sTntuMh3jrTiEYBruNHNMevY3TQiY4jGtWGE/kRzfEneohoTjAgsZM8kRhnXE7OUkQzJz7ucdTBlIgFU8HWU4LJdCqOaE4hIppTLUQ0jFmfOIUxaKcadh7XkTg2neY4olGT52SDSXe6YzJQ7T7dg106ccfwdMYY/sfxGIat8OnqcVb4MxxHKaqPzihwOw5nZilKmR2fr1IQ7yzTKEUBnsWPUlJnMTrobMdRimrD2fwoJXW2hyjlTANiOscTMXHG5dwsRSmz4+M2pw6mRCyYCraeF0ym83GUch4RpZxvIUphzPrEeYxBO9+w87iOxLHpAscrnJo85xpMugsdk4Fq94Ue7NKJO4YXMsbwIsdjGLbCp6vHWeEvdhylqD66uMDtOFySpShlVny+ehbiXWoapSjAS/lRyrOXMjroMsdRimrDZfwo5dnLPEQplxgQ0+WeiIkzLldkKUqZFR/3GepgSsSCqWDrlcFkugpHKVcSUcpVFqIUxqxPXMkYtKsMO4/rSBybrna8wqnJc4XBpLvGMRmodl/jwS6duGN4DWMMr3U8hmErfLp6nBX+OsdRiuqj6wrcjsP1WYpSZsbnq7EQ7wbTKEUB3sCPUsbewOigGx1HKaoNN/KjlLE3eohSrjcgpps8ERNnXG7OUpQyMz7uGOpgSsSCqWDrLcFkuhVHKbcQUcqtFqIUxqxP3MIYtFsNO4/rSBybbnO8wqnJc7PBpFvvmAxUu9d7sEsn7hiuZ4zh7Y7HMGyFT1ePs8Lf4ThKUX10R4HbcbgzS1HKjPh89SrEu8s0SlGAd/GjlFfvYnTQ3Y6jFNWGu/lRyqt3e4hS7jQgpns8ERNnXO7NUpQyIz7uK9TBlIgFU8HW+4LJdD+OUu4jopT7LUQpjFmfuI8xaPcbdh7XkTg2PeB4hVOT516DSfegYzJQ7X7Qg106ccfwQcYYPuR4DMNW+HT1OCv8w46jFNVHDxe4HYdHshSlTI/PV30h3qOmUYoCfJQfpfR9lNFBjzmOUlQbHuNHKX0f8xClPGJATI97IibOuDyRpShlenzcPtTBlIgFU8HWJ4PJ9BSOUp4kopSnLEQpjFmfeJIxaE8Zdh7XkTg2Pe14hVOT5wmDSfeMYzJQ7X7Gg106ccfwGcYYPut4DMNW+HT1OCv8c46jFNVHzxW4HYfnsxSlTIvPV9dDvBdMoxQF+AI/Srn+BUYHveg4SlFteJEfpVz/ooco5XkDYnrJEzFxxuXlLEUp0+LjXkcdTIlYMBVsfSWYTK/iKOUVIkp51UKUwpj1iVcYg/aqYedxHYlj02uOVzg1eV42mHSvOyYD1e7XPdilE3cMX2eM4X8dj2HYCp+uHmeFf8NxlKL66I0Ct+PwZpailKnx+epOiPeWaZSiAN/iRyl3vsXooLcdRymqDW/zo5Q73/YQpbxpQEzveCImzri8m6UoZWp83DuogykRC6aCre8Fk+l9HKW8R0Qp71uIUhizPvEeY9DeN+w8riNxbPrA8QqnJs+7BpPuQ8dkoNr9oQe7dOKO4YeMMfzI8RiGrfDp6nFW+I8dRymqjz4ucDsOn2QpSjk0Pl/tDfE+NY1SFOCn/Chl708ZHfSZ4yhFteEzfpSy92ceopRPDIjpc0/ExBmXL7IUpRwaH7cfdTAlYsFUsPXLYDJ9haOUL4ko5SsLUQpj1ie+ZAzaV4adx3Ukjk1fO17h1OT5wmDSbXBMBqrdGzzYpRN3DDcwxvAbx2MYtsKnq8dZ4b91HKWoPvq2wO04fJelKGVKfL4qh3jfm0YpCvB7fpRS/j2jg35wHKWoNvzAj1LKf/AQpXxnQEw/eiImzrj8lKUoZUp83KXUwZSIBVPB1p+DyfQLjlJ+JqKUXyxEKYxZn/iZMWi/GHYe15E4Nv3qeIVTk+cng0n3m2MyUO3+zYNdOnHH8DfGGP7ueAzDVvh09Tgr/B+OoxTVR38UuB2HP7MUpUw2jFL+Mo1SFOBfBlHKXxxHLXQbpag2KAxulALtiteQivrTFVdRyp8GxJRg2qUTd0JwxiWnkDchbEUpk7MQpeQGUUcS/7ZsbmHlKEUVyjRKYcz6RC5j0JKFZp3HdSSOTXkMR9r4R8SvoyZPTiF/0uU7JgPV7nwPdunEHcN8xhgWOB7DsBU+XT3OCl+Y4XjH6SOF4XIcipikbCtKOSQ+X10O8aqZ/jC3AqxWyI5SLq/G6KDqjqMU1Ybq/Cjl8uoeopQiA2Iq9kRMnHGpkaUo5ZD4Ucpl1MGUiAVTwdaawWQqwVFKTSJKKbEQpTBmfaImY9BKCs06j+tIHJtqOV7h1OSpYTDpajsmA9Xu2h7s0ok7hrUZY1jH8RiGrfDp6nFW+LqOoxTVR3UL3Y5DvSxFKZPi89VFEK++aZSiAOvzo5SL6jM6qIHjKEW1oQE/SrmogYcopZ4BMTX0REyccWmUpShlUvwo5ULqYErEgqlga+NgMjXBUUpjIkppYiFKYcz6RGPGoDUpNOs8riNxbGrqeIVTk6eRwaRr5pgMVLubebBLJ+4YNmOM4RaOxzBshU9Xj7PCb+k4SlF9tGWh23FonqUoZWJ8vnoN4qVMo5S/AflRymspRge1cBylqDa04Ecpr7XwEKU0NyCmlp6IiTMurbIUpUyMH6W8Sh1MiVgwFWxtHUymNjhKaU1EKW0sRCmMWZ9ozRi0NoVmncd1JI5NbR2vcGrytDKYdFs5JgPV7q082KUTdwy3YoxhO8djGLbCp6vHWeG3dhylqD7autDtOLTPUpQyIT5fPQ3xOphGKQqwAz9KeboDo4M6Oo5SVBs68qOUpzt6iFLaGxBTJ0/ExBmXbbIUpUyIH6U8RR1MiVgwFWzdNphMnXGUsi0RpXS2EKUwZn1iW8agdS406zyuI3Fs6uJ4hVOTZxuDSdfVMRmodnf1YJdO3DHsyhjD7RyPYdgKn64eZ4Xf3nGUovpo+0K347BDlqKU8fH5qjHE29E0SlGAO/KjlMY7MjpoJ8dRimrDTvwopfFOHqKUHQyIaWdPxMQZl12yFKWMjx+lNKIOpkQsmAq27hpMpt1wlLIrEaXsZiFKYcz6xK6MQdut0KzzuI7EsWl3xyucmjy7GEy6PRyTgWr3Hh7s0ok7hnswxnBPx2MYtsKnq8dZ4fdyHKWoPtqr0O04lGYpShkXn6/WQ7wy0yhFAZbxo5T1ZYwO6uY4SlFt6MaPUtZ38xCllBoQU3dPxMQZlx5ZilLGxY9SbqMOpkQsmAq29gwmUy8cpfQkopReFqIUxqxP9GQMWq9Cs87jOhLHpt6OVzg1eXoYTLo+jslAtbuPB7t04o5hH8YY9nU8hmErfLp6nBW+n+MoRfVRv0K347B3lqKUg+Pz1VEQr79plKIA+/OjlKP6MzpogOMoRbVhAD9KOWqAhyhlbwNiGuiJmDjjMihLUcrB8aOU1dTBlIgFU8HWwcFk2gdHKYOJKGUfC1EKY9YnBjMGbZ9Cs87jOhLHpiGOVzg1eQYZTLqhjslAtXuoB7t04o7hUMYYDnM8hmErfLp6nBV+uOMoRfXR8EK347BvlqKUsfH5qg/EG2EapSjAEfwopc8IRgft5zhKUW3Yjx+l9NnPQ5SyrwExjfRETJxx2T9LUcrY+FFKb+pgSsSCqWDrAcFkOhBHKQcQUcqBFqIUxqxPHMAYtAMLzTqP60gcmw5yvMKpybO/waQb5ZgMVLtHebBLJ+4YjmKM4WjHYxi2wqerx1nhxziOUlQfjSl0Ow5jsxSljInPV+sg3sGmUYoCPJgfpaw7mNFB4xxHKaoN4/hRyrpxHqKUsQbENN4TMXHGZUKWopQx8aOUE6iDKRELpoKtE4PJNAlHKROJKGWShSiFMesTExmDNqnQrPO4jsSx6RDHK5yaPBMMJt1kx2Sg2j3Zg106ccdwMmMMpzgew7AVPl09zgp/qOMoRfXRoYVux2FqlqKU0fH5aibEm2YapSjAafwoZeY0RgdNdxylqDZM50cpM6d7iFKmGhDTDE/ExBmXmVmKUkbHj1JmUAdTIhZMBVtnBZNpNo5SZhFRymwLUQpj1idmMQZtdqFZ53EdiWPTHMcrnJo8Mw0m3VzHZKDaPdeDXTpxx3AuYwznOR7DsBU+XT3OCj/fcZSi+mh+odtxWJClKGVUfL66G+ItNI1SFOBCfpRy90JGBy1yHKWoNiziRyl3L/IQpSwwIKbFnoiJMy6HZSlKGRU/SrmLOpgSsWAq2LokmEyH4yhlCRGlHG4hSmHM+sQSxqAdXmjWeVxH4th0hOMVTk2ewwwm3VLHZKDavdSDXTpxx3ApYwzLHY9h2Aqfrh5nhV/mOEpRfbSs0O04LM9SlHJQfL5KQbwVplGKAlzBj1JSKxgdtNJxlKLasJIfpaRWeohSlhsQ0ypPxMQZlyOzFKUcFD9KaU4dTIlYMBVsXR1MpqNwlLKaiFKOshClMGZ9YjVj0I4qNOs8riNxbDra8QqnJs+RBpNujWMyUO1e48EunbhjuIYxhmsdj2HYCp+uHmeFP8ZxlKL66JhCt+NwbJailAPj81UxxDvONEpRgMfxo5Ti4xgddLzjKEW14Xh+lFJ8vIco5VgDYjrBEzFxxmVdlqKUA+NHKdWpgykRC6aCrScGk+kkHKWcSEQpJ1mIUhizPnEiY9BOKjTrPK4jcWw62fEKpybPOoNJd4pjMlDtPsWDXTpxx/AUxhie6ngMw1b4dPU4K/xpjqMU1UenFbodh9OzFKUcEJ+vpkO8/5hGKQrwP/woZfp/GB10huMoRbXhDH6UMv0MD1HK6QbEdKYnYuKMy1lZilIOiB+lTKMOpkQsmAq2nh1MpnNwlHI2EaWcYyFKYcz6xNmMQTun0KzzuI7EselcxyucmjxnGUy68xyTgWr3eR7s0ok7hucxxvB8x2MYtsKnq8dZ4S9wHKWoPrqg0O04XJilKGX/+HxVG+JdZBqlKMCL+FFK7YsYHXSx4yhFteFifpRS+2IPUcqFBsR0iSdi4ozLpVmKUvaPH6XUog6mRCyYCrZeFkymy3GUchkRpVxuIUphzPrEZYxBu7zQrPO4jsSx6QrHK5yaPJcaTLorHZOBaveVHuzSiTuGVzLG8CrHYxi2wqerx1nhr3Ycpag+urrQ7Thck6UoZWR8Uq6Ad61plKIAry3k17vOceSh7LoOsH9KxE8m0cQ1BgRyvScC4fT1DRkSSJw232AwLjYnyX6Gk+RG00miAG80mCQ3OZ4kyq6bPE0SNfA3OZ4kNp1kREF8GyHezaZOogBvNliWbmbM2FscO5Rqwy0Gg3yL4yVfOdEtBmHL9Yz+utVxmKr69lbDyaoT17duZbT/NsehZ1jYlq4eJ2xb73gMVR+tN2gDZxxu93Dt5HaDOV7CXHUVmZeC/+cX/PM5L/icG3zOCT5nB5+zgs+ZweeM4HN68Dkt+JwafB4afE4JPicHn4cEn5OCz4nB54Tgc3zwOS74PDj4HBt8jgk+Rwefo4LPg4LPA4PPA4LP/YPPkcHnfsHniODzqbx/Pp8MPp8IPh8PPh8LPh8NPh8JPh8OPh8KPh8MPh8IPu8PPu8LPu8NPu8JPu8OPu8KPu8MPu8IPm8PPtcHn7cFn7cGn7cEnzcHnzcFnzcGnzcEn9cHn9cFn9cGn9fIzzukv90p5S4pd0u5R8q9Uu6Tcr+UB6Q8KOUhKQ9LeUTKo1Iek/K4lCekPCnlKSlPS3lGyrNSnpPyvJQXpLwo5SUpL0t5RcqrUl6T8jq6hoQvIaXz+6+T8efWHYx5/t8sBUYcXIj3hmlgpADfMIie33Qc7Ci73rQUPaez7/t8WbaAv3D8XS8mxluGp6PcCfEDY0LcyRjDt7M0Id42nBDvmE4IBfiOwYR41/GEUHa96+l0Uk28twyikPc8OflvDCe/izEu72fJyd83dPIPTJ1cAX5g4OQfOnZyZdeHnpxcTab3DJz8I09OnsiL35a7GePycZac/GNDJ//E1MkV4CcGTv6pYydXdn3qycnVZPrIwMk/8+TkBQwnv4cxLp9nyck/N3TyL0ydXAF+YeDkXzp2cmXXl56cXE2mzwyc/CtPTl6D4eT3Msbl6yw5+deGTr7B1MkV4AYDJ//GsZMru77x5ORqMn1l4OTfenLyugwnv48xLt9lycm/M3Ty702dXAF+b+DkPzh2cmXXD56cXE2mbw2c/EdPTt6Y4eT3M8blpyw5+U+GTv6zqZMrwJ8NnPwXx06u7PrFk5OryfSjgZP/6snJmzOc/AHGuPyWJSf/zdDJfzd1cgX4u4GT/+HYyZVdf3hycjWZfjVw8j89OXkbhpM/yBiXv7Lk5H8ZOrkoygBQVebWSxS5dXJlV6Jo04GUiJ9MJuyfBk6eU+THyTswnPwhhpPnFmXHyTm4EC9p6uQKMGng5HmOnVzZlefJydVkyiniO3m+JyfvwnDyhxlOXpAlJy8wdPJCUydXgIUGTl7k2MmVXUWenFxNpnwDJ6/mycl3Yjj5Iwwnr54lJ69u6OTFpk6uAIsNnLyGYydXdtXw5ORqMlUzcPKanpx8D4aTP8pw8pIsOXmJoZPXMnVyBVjLwMlrO3ZyZVdtT06uJlNNAyev48nJuzOc/DGGk9fNkpPXNXTyeqZOrgDrGTh5fcdOruyq78nJ1WSqY+DkDTw5eV+Gkz/OcPKGWXLyhoZO3sjUyRVgIwMnb+zYyZVdjT05uZpMDQycvIknJx/EcPInGE7eNEtO3tTQyZuZOrkCbGbg5Fs4dnJl1xaenFxNpiYGTr6lJycfznDyJxlO3jxLTt7c0MlTpk7+N6CBk7dw7OTKrhaenFxNpi0NnLylJyc/gOHkTzGcvFWWnLyVoZO3NnVyBdjawMnbOHZyZVcbT06uJlNLAydv68nJxzKc/GmGk2+VJSffytDJ25k6uQJsZ+DkWzt2cmXX1p6cXE2mtgZO3t6Tk09iOPkzDCfvkCUn72Do5B1NnVwBdjRw8k6OnVzZ1cmTk6vJ1N7Aybfx5OTTGE7+LMPJt82Sk29r6OSdTZ1cAXY2cPIujp1c2dXFk5OrybSNgZN39eTkcxhO/hzDybfLkpNvZ+jk25s6uQLc3sDJd3Ds5MquHTw5uZpMXQ2cfEdPTr6I4eTPM5x8pyw5+U6GTr6zqZMrwJ0NnHwXx06u7NrFk5OrybSjgZPv6snJlzKc/AWGk++WJSffzdDJdzd1cgW4u4GT7+HYyZVde3hycjWZdjVw8j09OfkqhpO/yHDyvbLk5HsZOnmpqZMrwFIDJy9z7OTKrjJPTq4m054GTt7Nk5OvZTj5Swwn754lJ+9u6OQ9TJ1cAfYwcPKejp1c2dXTk5OrydTNwMl7eXLydQwnf5nh5L2z5OS9DZ28j6mTK8A+Bk7e17GTK7v6enJyNZl6GTh5P09OfhrDyV9hOPneWXLyvQ2dvL+pkyvA/gZOPsCxkyu7BnhycjWZ+hk4+UBPTn42w8lfZTj5oCw5+SBDJx9s6uQKcLCBk+/j2MmVXft4cnI1mQYaOPkQT05+IcPJX2M4+dAsOflQQycfZurkCnCYgZMPd+zkyq7hnpxcTaYhBk6+rycnv5zh5K8znHxElpx8hKGT72fq5ApwPwMnH+nYyZVdIz05uZpM+xo4+f5Fbu1S7d/fwK4DDCcf175EAc8HTHFymDjc39tQr+tm/E7C37/FcIDBnOG8FlyRShFoS0LQBBMXv/frT82Jqlvt7vKmjX9+qVenRjMO/fXUpgcOmVtY46QL9xyRP/CLgXnrfnxlY4VkhDHcDvky14ztDiwKDugfnTwQjAbXiPVSye25/Fl2UJaWiIMMl4hRpkuEAhxl4O6jHS8Ryq7RBksE9XOs3MEPc5p0Nsf0+LCZHrsubNuYoI/G4lkzpmjTVNbHxoJBM+0U7s+9wk6JwDhRYiTGMJxqbBGvs00cXNnDXW84bTg4/mxPbPwj4tdRzHmwQYwxznHsc5P0idsMWHl8hnal02/aXxMcj6PpKjaRuYqF/Y41dw4wlv7EeOY8xikl4tWF7ZoUkOYhmDQnEaR5CGFgEoG76pB0hDmJQTaHOCZMNXmUPdyz/AMZbeC0d3KGkzKO3VR74/RT3LKc9k5hkiP3d4/UosAg4L/9eIIBmR7quB1qLjIWuIRqw0SDdkw1PFHntufmXLO5lolNcSL+lIiVEm2FH5sSIr5NWwk/NuWI+Da1E2Y2cXl8a8EbZ524ftuegXNtrp+2dwBl21z89IhHdn78/bU7vdzvyM/3EC/d886uHzXouuseJxX1/Gx6UftMcDoKP+3pJOz4cTqcbUT8sbyROZZcW16X+t9mcKIq+3EuH2dbER/j9Vw/49CZYdNNTJu4vqfKv53rlqe7CD/zqKvwg7Od8IOzvfCDs4Pwg7Oj8IOzk/CDs7Pwg7OL8IOzq/CDs5vwg7O78IOzh/CDs6fwg7OX8INTKvzglAk/ON2EH5zuwg9OD+EHp6fwg9NL+MHpLfzg9BF+cPoKPzj9hB+cvYUfnP7CD84A4QdnoPCDM0j4wRks/ODsI/zgDBF+cIYKPzjDhB+c4cIPzr7CD84I4QdnP+EHZ6Twg7O/8INzgPCDc6Dwg3OQ8IMzSvjBGQ3KutxUOUb4ac9Y4QfnYOEHZ5zwgzNe+MGZIPzgTBR+cCYJPziHCD84k4UfnCnCD86hwg/OVOEHZ5rwgzNd+MGZIfzgzBR+cGYJPzizhR+cOcIPzlzhB2ee8IMzX/jBWSD84CwUfnAWCT84i4UfnMOEH5wlwg/O4cIPzhHCD85S4QenXPjBWSb84CwXfnBWCD84K4UfnFXCD86Rwg/OauEH5yjhB+do4QdnjfCDs1b4wTlG+ME5VvjBOU74wTle+ME5QfjBWSf84Jwo/OCcJPzgnCz84Jwi/OCcKvzgnCb84Jwu/OD8R/jBOUP4wTlT+ME5S/jBOVv4wTlH+ME5V/jBOU/4wTlf+MG5QPjBuVD4wblI+MG5WPjBuUT4wblU+MG5TPjBuVz4wblC+MG5UvjBuUr4wbla+MG5RvjBuVb4wblO+MG5XvjBuUH4wblR+MG5SfjBuVn4wblF+MG5VfjBuU34wVkv/ODcLvzg3CH84Nwp/ODcJfzg3C384Nwj/ODcK/zg3Cf84Nwv/OA8IPzgPCj84Dwk/OA8LPzgPCL84Dwq/OA8JvzgPC784Dwh/OA8KfzgPCX84Dwt/OA8I/zgPCv84Dwn/OA8L/zgvCD84Lwo/OC8JPzgvCz84Lwi/OC8KvzgvCb84Lwu/OD8V/jBeUP4wXlT+MF5S/jBeVv4wXlH+MF5V/jBeU/4wXlf+MH5QPjB+VD4wflI+MH5WPjB+UT4wflU+MH5TPjB+Vz4wflC+MH5UvjB+Ur4wfla+MHZIPzgfCP84Hwr/OB8J/zgfC/84Pwg/OD8KPzg/CT84Pws/OD8Ivzg/Cr84Pwm/OD8Lvzg/CH84Pwp/OD8JfzgqAoxy6KKPJyEJ5wcTzi5nnCSnnDyPOHke8Ip8IRT6AmnyBNONU841T3hFHvCqeEJp6YnnBJPOLU84dT2hFPHE05dTzj1POHU94TTwBNOQ084jTzhNPaE08QTTlNPOM084WzhCWdLTzjNPeGkPOG08ITT0hNOK084rT3htPGE09YTzlaecNp5wtnaE057TzgdPOF09ITTyRPONp5wtvWE09kTThdPOF094WznCWd7Tzg7eMLZ0RPOTp5wdvaEs4snnF094ezmCWd3Tzh7eMLZ0xPOXp5wSj3hlHnC6eYJp7snnB6ecHp6wunlCae3J5w+nnD6esLp5wlnb084/T3hDPCEM9ATziBPOIM94ezjCWeIJ5yhnnCGecIZ7glnX084Izzh7OcJZ6QnnP094RzgCedATzgHecIZ5QlntCecMZ5wxnrCOdgTzjhPOOM94UzwhDPRE84kTziHeMKZ7AlniiecQz3hTPWEM80TznRPODM84cz0hDPLE85sTzhzPOHM9YQzzxPOfE84CzzhLPSEs8gTzmJPOId5wlniCedwTzhHeMJZ6gmn3BPOMk84yz3hrPCEs9ITzipPOEd6wlntCecoTzhHe8JZ4wlnrSecYzzhHOsJ5zhPOMd7wjnBE846TzgnesI5yRPOyZ5wTvGEc6onnNM84ZzuCec/nnDO8IRzpiecszzhnO0J5xxPOOd6wjnPE875nnAu8IRzoSecizzhXOwJ5xJPOJd6wrnME87lnnCu8IRzpSecqzzhXO0J5xpPONd6wrnOE871nnBu8IRzoyecmzzh3OwJ5xZPOLd6wrnNE856Tzi3e8K5wxPOnZ5w7vKEc7cnnHs84dzrCec+Tzj3e8J5wBPOg55wHvKE87AnnEc84TzqCecxTziPe8J5whPOk55wnvKE87QnnGc84TzrCec5TzjPe8J5wRPOi55wXvKE87InnFc84bzqCec1Tzive8L5ryecNzzhvOkJ5y1POG97wnnHE867nnDe84TzviecDzzhfOgJ5yNPOB97wvnEE86nnnA+84TzuSecLzzhfOkJ5ytPOF97wtngCecbTzjfesL5zhPO955wfvCE86MnnJ884fzsCecXTzi/esL5zRPO755w/vCE86cnnL884YgcPzgJTzg5nnByPeEkPeHkecLJ94RT4Amn0BNOkSecap5wqnvCKfaEU8MTTk1POCWecGp5wqntCaeOJ5y6nnDqecKp7wmngSechp5wGnnCaewJp4knnKaecJp5wtnCE86WnnCae8JJecJp4QmnpSecVp5wWnvCaeMJp60nnK084bTzhLO1J5z2nnA6eMLp6AmnkyecbTzhbOsJp7MnnC6ecLp6wtnOE872nnB28ISzoyecnTzh7OwJZxdPOLt6wtnNE87unnD28ISzpyecvTzhlHrCKfOE080TTndPOD084fT0hNPLE05vTzh9POH09YTTzxPO3p5w+nvCGeAJZ6AnnEGecAZ7wtnHE84QTzhDPeEM84Qz3BPOvp5wRnjC2c8TzkhPOPt7wjnAE86BnnAO8oQzyhPOaE84YzzhjPWEc7AnnHGecMZ7wpngCWeiJ5xJnnAO8YQz2RPOFE84h3rCmeoJZ5onnOmecGZ4wpnpCWeWJ5zZnnDmeMKZ6wlnniec+Z5wFnjCWegJZ5EnnMWecA7zhLPEE87hnnCO8ISz1BNOuSecZZ5wlnvCWeEJZ6UnnFWecI70hLPaE85RnnCO9oSzxhPOWk84x3jCOdYTznGecI73hHOCJ5x1nnBO9IRzkieckz3hnOIJ51RPOKd5wjndE85/POGc4QnnTE84Z3nCOdsTzjmecM71hHOeJ5zzPeFc4AnnQk84F3nCudgTziWecC71hHOZJ5zLPeFc4QnnSk84V3nCudoTzjWecK71hHOdJ5zrPeHc4AnnRk84N3nCudkTzi2ecG71hHObJ5z1nnBu94RzhyecOz3h3OUJ525POPd4wrnXE859nnDu94TzgCecBz3hPOQJ52FPOI94wnnUE85jnnAe94TzhCecJz3hPOUJ52lPOM94wnnWE85znnCe94TzgiecFz3hvOQJ52VPOK94wnnVE85rnnBe94TzX084b3jCedMTzluecN72hPOOJ5x3PeG85wnnfU84H3jC+dATzkeecD72hPOJJ5xPPeF85gnnc084X3jC+dITzleecL72hLPBE843nnC+9YTznSec7z3h/OAJ50dPOD95wvnZE84vnnB+9YTzmyec3z3h/OEJ509POH95whG5fnASnnByPOHkesJJesLJ84ST7wmnwBNOoSecIk841TzhVPeEU+wJp4YnnJqecEo84dTyhFPbE04dTzh1PeHU84RT3xNOA084DT3hNPKE09gTThNPOE094TTzhLOFJ5wtPeE094ST8oTTwhNOS084rTzhtPaE08YTTltPOFt5wmnnCWdrTzjtPeF08ITT0RNOJ08423jC2dYTTmdPOF084XT1hLOdJ5ztPeHs4AlnR084O3nC2dkTzi6ecHb1hLObJ5zdPeHs4QlnT084e3nCKfWEU+YJp5snnO6ecHp4wunpCaeXJ5zennD6eMLp6wmnnyecvT3h9PeEM8ATzkBPOIM84Qz2hLOPJ5whnnCGesIZ5glnuCecfT3hjPCEs58nnJGecPb3hHOAJ5wDPeEc5AlnlCec0Z5wxnjCGesJ52BPOOM84Yz3hDPBE85ETziTPOEc4glnsiecKZ5wDvWEM9UTzjRPONM94czwhDPTE84sTzizPeHM8YQz1xPOPE848z3hLPCEs9ATziJPOIs94RzmCWeJJ5zDPeEc4QlnqSecck84yzzhLPeEs8ITzkpPOKs84RzpCWe1IU4Owuk8fuDsd7uct/Vtg3vesmzZfge12+6TPovWz1zX/d0fTtog81uL+DYdZcmmdDhH58a3/0umTdz+UfonF8UvP0WWPbSIP95rHLdjYhG/HVMN2rHWk98mRXybjvFkU56Ib9OxnmzKF/FtOs6TTQUivk3He7KpUMS36QRPNhWJ+Dat82RTNRHfphM92VRdxLfpJE82FYv4Np3syaYaIr5Np3iyqaaIb9OpnmwqEfFtOs2TTbVEfJtO92RTbRHfpv94sqmOiG/TGZ5sqivi23SmJ5vqifg2neXJpvoivk1ne7KpgYhv0zmebGoo4tt0riebGon4Np3nyabGIr5N53uyqYmIb9MFnmxqKuLbdKEnm5qJ+DZd5MmmLUR8my72ZNOWIr5Nl3iyqbmIb9OlnmxKifg2XebJphYivk2Xe7KppYhv0xWebGol4tt0JcOmXPHP9S11TVeltlK2ktJOytZS2kvpIKWjlE5StpGyrbJXShcpXaVsJ2V7KTtI2VHKTlJ2lrKLlF2l7CZldyl7SNlTyl5SSqWUSekmpbuUHlJ6SuklpbeUPlL6SuknZW8p/aUMkDJQyiApg6XsI2WIlKFShkkZLmVfKSOk7CdlpJT9pRwg5UApB0kZJWW0lDFSxko5WMo4KeOlTJAyUcokKYdImSxlipRDpUyVMk3KdCkzpMyUMkvKbClzpMyVMk/KfCkLpCyUskjKYimHSVki5XApR0hZKqVcyjIpy6WskLJSyio1DlJWSzlKytFS1khZK+UYKcdKOU7K8VJOkLJOyolSTpJyspRTpJwq5TQpp0v5j5QzpJwp5SwpZ0s5R8q5Us6Tcr6UC6RcKOUiKRdLuUTKpVIuk3K5lCukXCnlKilXS7lGyrVSrpNyvZQbpNwo5SYpN0u5RcqtUm6Tsl7K7VLukHKnlLuk3C3lHin3SrlPyv1SHpDyoJSHpDws5REpj0p5TMrjUp6Q8qSUp6Q8LeUZKc9KeU7K81JekPKilJekvCzlFSmvSnlNyutS/ivlDSlvSnlLyttS3pHyrpT3pLwv5QMpH0r5SMrHUj6R8qmUz6R8LuULKV9K+UrK11LUnPxGyrdSvpPyvZQfpPwo5ScpP0v5RcqvUn6T8ruUP6T8KeUvKWrSJaTkSMmVkpSSJyVfSoGUQilFUqpJqS6lWEoNKTWllEipJaW2lDpS6kqpJ6W+lAZSGkppJKWxlCZSmkppJmULKVtKaS4lJaWFlJZSWklpLaWNlLZStpLSTsrWUtpL6SClo5ROUraRsq2UzlK6SOkqZTsp20vZQcqOUnaSsrOUXaTsKmU3KbtL2UPKnlL2klIqpUxKNyndpfSQ0lNKLym9pfSR0ldKPyl7S+kvZYCUgVIGSRksZR8pQ6QMlTJMynAp+0oZIWU/KSOl7C/lACkHSjlIyigpo6WMkTJWysFSxkkZL2WClIlSJkk5RMpkKVOkHCplqpRpUqZLmSFlppRZUmZLmSNlrpR5UuZLWSBloZRFUhZLOUzKEimHSzlCylIp5VKWSVkuZYWUlVJWSTlSymopR0k5WsoaKWulHCPlWCnHSTleyglS1kk5UcpJUk6WcoqUU6WcJuV0Kf+RcoaUM6WcJeVsKedIOVfKeVLOl3KBlAulXCTlYimXSLlUymVSLpdyhZQrpVwl5Wop10i5Vsp1Uq6XcoOUG6XcJOVmKbdIuVXKbVLWS7ldyh1S7pRyl5S7pdwj5V4p90m5X8oDUh6U8pCUh6U8IuVRKY9JeVzKE1KelPKUlKelPCPlWSnPSXleygtSXpTykpSXpbwi5VUpr0l5Xcp/pbwh5U0pb0l5W8o7Ut6V8p6U96V8IOVDKR9J+VjKJ1I+lfKZlM+lfCHlSylfSflaygYp30j5Vsp3Ur6X8oOUH6X8JOVnKb9I+VXKb1J+l/KHlD+l/CVFBQAJKTlScqUkpeRJyZdSIKVQSpGUalKqSymWUkNKTSklUmpJqS2ljpS6UupJqS+lgZSGUhpJaSyliZSmUppJ2ULKllKaq/eSSmkhpaWUVlJaS2kjpa2UraS0k7K1lPZSOkjpKKWTlG2kbCuls5QuUrpK2U7K9lJ2kLKjlJ2k7CxlFym7StlNyu5S9pCyp5S9pJRKKZPSTUp3KT2k9JTSS0pvKX2k9JXST8reUvpLGSBloJRBUgZL2UfKEClDpQyTMlzKvlJGSNlPykgp+0s5QMqBUg6SMkrKaCljpIyVcrCUcVLGS5kgZaKUSVIOkTJZyhQph0qZKmWalOlSZkiZKWWWlNlS5kiZK2WelPlSFkhZKGWRlMVSDpOyRMrhUo6QslRKuZRlUpZLWSFlpZRVUo6UslrKUVKOlrJGylopx0g5VspxUo6XcoKUdVJOlHKSlJOlnCLlVCmnSTldyn+knCHlTCnqN+zV78ur335Xv8t+nhT1e+bqt8bV74Cr3+hWv5+tftta/e60+k1o9XvN6reU1e8cq98gVr8PrH67V/2urvrNW/V7tOq3YtXvuKrfWFW/f6p+m1T9bqj6TU/1e5vqtzDV71Sq35BUv++ofntR/S7ivVLU7wmq3/pTv8OnfiNP/X6d+m059btv6jfZ1O+lqd8yU78zpn4DTP0+l/rtLPW7Vuo3p9TvQanfalK/o6R+40j9/pD6bSD1uz3qN3XU792o36JRvxOjfsNF/b6K+u0T9bsk70hRv+ehfmtD/Q6G+o0K9fsR6rcd1O8uqN9EUL9XoH5LQL3nX72DX70fX727Xr1XXr3zXb2PXb0rXb3HXL1jXL3/W72bW703W73TWr1vWr0LWr2nWb1DWb3fWL17WL0XWAXe6n266l236j206h2x6v2t6t2q6r2n6p2k6n2h6l2e6j2b6h2Y6v2U6t2R6r2O6p2L6n2I6l2F6j2C6h1/6v176t146r116p1y6n1v6l1s6j1p6h1m6v1i6t1ff7+XS4p6n5V615R6D5R6R5N6f5J6t5F675B6J5B6X496l456z416B416P4x6d4t6r4p654l6H4l6V4h6j4d6x4Z6/4V6N4V6b4R6p4N634J6F4J6T4F6h4B6vl89e6+ei1fPrKvnydWz3uo5bPWMtHp+WT1brJ77Vc/kqudl1bOs6jlT9Qyoej5TPTupnmtUzxyq5wHVs3rqOTr1jJt6/kw9G6ae21LPVKnnndSzSOo5IfUMj3q+Rj37op5LUc+MqOc51LMW6jkI9YyCen5A7e1X++7Vnni1X13tJVf7vNUebLU/Wu1dVvuK1Z5ftR9X7ZVV+1jVHlO1/1PtzVT7JtWeRrXfUO0FVPv01B46tb9N7T1T+8LUni21n0rtdVL7kNQeIbV/R52HqX0vap+J2gOi9kSo/QTq/r26X67uT6v7wer+q7rfqe4vqvt56v6Zul+l7g+p+zHq/oe636Cu76vr6er6tbperK7Pquuh6vqjut6nrq+p61nq+pG6XqOuj6jrEer8X51vq/NbdT6pXFadG+oULGF/nz+qfQjqvr+6z67ua6v7yOq+rbpPqu5LqvuA6r6bus+l7iup+zjqvom6T6HuC6jr8Oq6t7rOrK7rquuo6rqluk6orsup62DqupO6zqOvq7QQ/5yntxL/7N9pIyqnbcH3+sHnCZMefuL7zwueheUaRuSlgs+HXz2wWav6jV+FeZ2Dz5MHDWjd9Je9V8C8HsHnQ+Nynl9dkn8izOsVgac4R6Xm+T1fHtLhgf/CvNuSQd4xN+f0HFz4Acy7J8gbVXjuXd2er341zLsvIu/hiLxHI/Kej8h7ISLv1Yi81yPy3ojIezMi772IvA8i8j6JyPssIu+biLxvI/J+isj7JSLvt4i83yPyEnnhebkReQUReUURebUi8mpH5DWIyGsUkdckIq9pRF4qIq9lRF7biLx2EXl7B3nUfL+64J/P5BtHd+oxcNDRMO+aiLxrI/IeDfJuPG3whAkHTJp1kAhPKRErDc6g7iEZ1B2bQd05GdSdkEHdVOyDldO4DOpmq5+nZ1B3UgZ1szVG4zOom4nNczOomwluJj6ZLZszGaNU7IOV04wM6mYyj1KxD1ZOEzOoOy+Dupm0N1s+OTmDuv+LvrEgg7qZ9FUmY5TJOpiKfbBymplB3c0xkvAy9zPp52ytoYdmUHebDOqmYh+snPpmUDeT9SgV+2DllC3OyYQnM5m/qdgHK6f/RZszmb8LM6ibybqwOW6PX7djBnVTsQ9WTpnEwP+L62+rDOoekEHdTGLgTGLvzXGd8MI5/7bY7KAM6v59r02ldsHn2DlzJsyeO3rcjGkzx86dfPDUCaNnzB47Tn7MnzB7zuQZ00cvmD125swJsxsE5QuDz+BW1N/3+nLj4ycKQT1+/fIehVghq774u35CmOL/0359f9Okfr42BNSHtmi96lJ8dfC9BsI3tL9HpvbXibBZj013UD4lYqWkuh+s2lkrOKDa3jr4Pm/u5KmT5y4q+9tVu2/01EF/O+q+//gpVphA/3cPOV4N2J0EZeL3ycIeWmdu8JkHvsOURJ+6jL7/XATw9Wec5/hff+iHl2/q13VabVRfJT02qp36nvTkOaPnTB4/YfSEiRMnjFNzf970uRNmj549Qc75ChwQzP3GQb0sz/1eGc79Xhn6fqIQ1DGoT859bIsAnz1A3R6oXLGoOA9hGTWPaoLvJcH34uCzJ9Cl62fYNz0z7JtEHRHeH5ob6gb/Q26YOXvy/LFzJ/SdM1R6dM+/Hbr7P/48ZKM7wz7CGAJ9x8fCjlNjAHVb4JVemfJKo+DTNa9o/ho/ec64GbLTR0+fsGD0tAlz5oydNGHOhiDszzJ5HJsheRxbVcjjGFCfmiwUMeg6BWITCajv+wbfMwwqjq2qQYWu24Oq+/2cVy554tgbH7xs7qUXn1r79Rr/qd6x2tJVq75u+lWzMzasulDXxWSZErFSvq7fi8Le89bc/Q+5/tcZ1XuvuHbB668NnFej2dj7mx918f4PrWv+6egjdd3eVN1Pjjlzacm1J56X6vDUD/m9j/9i9Hd983Z+/akljR9Y/vunG07SdftQdZ/f//c3byo5afHCY9cftnO7umOvOumVbz575IlrSr579+pZr+yg6/YFbTaZo/3M6tfS9fcG9RkvMtroK/3N6m+0f4BZ/RxdfyA4mNJfll102Ztlxz7V+f3fq60ZMHblwu3WvjDiy8WNLm3z4ZSrm11VW9cdRNV9b273dXMbTtvxy8Jnju1yftMt3v7+0ps+/nHRhJ2/+PiTW1p8p+sOpuqmSbruPkTdRl232mXm6c/We6Ndy/+W3nvVNic3/r717m/c1uf8Db8+9jOoOyT4ZI73xv4aalZ/4/weZlY/V9cfDuoz5vhGf9nXrP5G/BFm9Tf2337gYCq6zsZlQdcdCTK4J8Iq7R8fW6c8XfcAum5iRcs5pxUdmxhw//JONxVXu//TsnO7dX/qiZVrmpdcda6ueyBRt/3uRRsuXnPEKvHOpZ8f92P7O0s71d6yrPY2L575ctPpsw9ovEHX1VdQmG1upuuPAvWR7ZFJ1x9tVn+jv40BB1OCV3csv+5GPztYKxOsfts43uPM6m9cS8eb1S/U9SeY1S/S9Sea1a+m608yq19d1z/ErH6xrj/ZrH4NXX8KqM/gqZSuf6hZ/U66/lSz+p11/Wlm9bvo+tNBfUb/ler6M8zwy3T9mWb1e+r6s8zqb7zwMtus/kBdf45Z/dG6/lyz+mN1/Xlm9Q/W9eeb1R+n6y8wqz9e119oVn+Crr/IrP5EXX+xWf1Juv5hZvUP0fWXmNWfrOsfblb/UF3/CLP6U3X9pWb1p+n65Wb1p+v6y8zqz9D1l5vVn6nrrzCrP1vXX2lWf46uv8qs/lxd/0iz+vN0/dVm9efr+keZ1V+o6x9tVn+Rrr/GrP5huv5as/qH6wvAG4Kn8ajrTQx9g/U1MngxNSEq6ja7aPv3ezQq6BOi4jU/gfQXIVuYeIkE0qfxcPt0X+m25xG2lBB5uI/zCJw8AqeEyFtoUdcKi7oWWdS1zKIum21calHXEou6yi3qWmxR1xSLumz2vc05tLKK6pprUZdNn7DZ9zb9a4FFXTbntk2fmG9R1zKLulZb1FVV10cdN+rYAcYaiZBPjYOPaZwipMs07qHalSTwosrnRpTPj6lfbUrQGy2CDUs9Jhw8b1L/GZWeVU2i/3uGmNgMlRsZYRrWm0CCjzdDx3KJsjCp5uk9gEHzek2YO+6QYWMnTZowXjay0s5RrKlHyHEckMIyOhjPR5amRKyUE8cpof4iZIupU1JOQ0021at1gu9Br/afMXZ897Ez58ybOiEHqhYVLce9ArXCY9SYJoBlIqJcD/R/X6KeIHSrfD1yheh4SsRKRdoriohMnVcN6YZ51UEeHE2ccgn7tc3qlPPHhpv04nLYHjge1VBeAcirDrDxuOYTONr+HKJ8AdKVT9TTddLh5YbUg9+jTp3jzDbdDpVKCAyN7ZAV6lV1VtDtKzDDq5tA9SEe1Knt0X1dSORpXXoe5ofognvdYPn7gs8SVE6lwQijkLAXHtP9o/rsTmQ77FvsJ5n0I9Sn7YLHoP4ikZFfJqLGDbYP+4khx9aJ0+/QHszJuG8h7+WH6NJ1k6j808FniajM+9hPigh74THoJ48h22HfYj8x7MeyuH6i9ReJjPwyETVusH3YT4rM8Erj9Du0h1qfYd/CNTA/RJeum0Tl9UuQSlA5lbCfVCPshcegn7wcfC8MsTclYqUFVNyC/QzHLSkRKzWL62daf5HIaNwTUf1IzTcq9tJ1S4g8fKpVncCpTuCUEHkrLOpaZlHXfIu6FlrUtbKK6lpiUVe5RV2LLeqaYlHXERZ12fT7qthfUesQV5dKNn11lUVdh1nUZdNXbbZxrkVdVXVur7Goa6pFXWuDTxznaf0qFYrKc497bgL1aTvhMai/CNliGutQ/ULFjLp9xWZ4tROoPsSDOrU9uq9rEHlal37mLz9El66bROVbBx1agsqphGPqGoS98BiMqZsHemsS9uLrC1x/hPVxH8F62B8zGS+oT9sJj0H9RSIj/09E+QfVL7p9NczwasUZX2iP7uuaRJ7WpW+H5Ifo0nWTqPz2yB9rApuwP9Yk7IXHoD9um6hoO+xb7CeG/dgzrp9o/UUiI79MRI0bbB/2k5pmeD3i9Du0R/d1CZGndeln/vNDdOm6SVS+DPlJCbAJ+0kJYS88Bv1k90BvYYi9KREv4TmidUDdsF/ij0Pim7h+pvUXiYzGPRHVj9R80+2rZYSX2IB9A+JBnfDZdvV/bSJP69J32vJDdOm6SVR+EPIziIF9Q+dBe+Ex6Gf9EB/BvsV+YtaPf/+EVgV92i54DOovEpn45SY/ocaNmm+6fbXN8Mri9Du0R/d1HSJP69LvGcgP0aXrJlH5A5Gf1AE2YT6qQ9gLj0E/GRHorUnYi6+/R80XqLeEqK/LUT7H4L1h1Jgy6s/CY6R1QNvqguMMf+kSdz5o/UWisr+YzIe6CC9svHXb6xG2lBB5eIzqETj1CJwSIu8wi7oWWtQ1xaKu+RZ1HWFR11yLupZY1LXUoi6bPrHAoq45FnWttKSL4s9M7FphUdcqi7pszu01FnXZ5EKb87Hcoi6b47jWoi6bPmGz723NbWG5jeUWdS2zqKuq8oRNu/4NMdPmNS17fb/Moq5FFnXZbONRVdQum/GEzTbi+2/w3DIRfBaKynOPcd66ZwLp03bCY1B/EbKFiZeI6hfYPnyeXJ+wpYTIw+fJ9Qmc+gROCZF3mEVdCy3qmmJRl802LrGoq9yirlUWddns+zUWdW0eR56utRZ12fSJBRZ1LbOoyyZ/rbSoy2bfl1vUZbPvqyp/2fRVm/611KIum+NYblGXzTlk079WWNQ116Ium22sqrGczTbajCeq6jhW1VjuKIu6qmqcYzPG3BxP/P+YQzZ5wqZdtvxLfa9tSZdKR1rUZbPvbcYAeq3F+760fpUyvAbWIoH0aTvhMai/SFQeS1vXwKg9ZLp99c3wUnHGAdqj+7oBkad1Ba9LqLB3CurSdZOo/JCgUSUEBt5jp/OgvfAY3Ds1IPinJmFvpvciYH3cR7Ae9kfD8cqN649af5HIyP8TUf5B9QvlH7ouNa64/+OOa5QufF1Y56tUSNRj9EdJ3P7X+otERuOdiOoXiid1+xqa4dXEcxjiQZ3aHt3XjYg8rUv/dlh+iC5dN4nKH4r4oBGwCe+lbETYC49BPpiI+MCmP8L6uI9gPeyPhuMV+5kUrb9IZOT/iSj/oPpFt6+RGV6tOOML7dF93ZjI07qaBP/nh+jSdZOo/GHIHyEGXp90HrQXHoP+OB/5IzXP4sxLqJfiR13u/xtOMVEPzy9D/8uLO7/g76xlMJ8TUf5O9Qvl77ou5adh3AxxKD/9X9Sl/S9qbYq7blD+18gzDuXLSlIiVuqr6zc2q7+rrt/ErP4AXb+pWf2hun4zs/q9df0tzOrvp+tvaVZ/4+/uNjer37+YKI95rgU4zuCdgXF5TusvQraY8lwLhIfbh3muJWFLCZGH50hLAqclgVNC5JVb1LXaoq65FnUdYVHXEou6FljUNcWirqUWdS20qGtlFdVl01cXW9Rlq++pdbWq+KrN+bjKoq6qOh+PtKjL5hyqqn1/mEVdNnnC5lprk6Nt9r3N/qqq/mUzNrE5jjb7/t/AE2ss6VLfm1jSpdJMi3Y1rYK6VJph0a5mlnSpZKvvVZpTBe1S37ewqCvHki6VbPmESrMt6VLft7SkSyWb42jTLlu+WpW5sJYlXSrZ5C+b42jTrqrYXyrZ9NXmlnSpZHPtsMVfKq21qMtm/LXIoi6b1xRsxuQ2zxVsXnvU8b2+jt0C5CWCz0JReb5w925AfdpOeAzqL0K2MPESUf0C26f7RbevlRlejQSqD/GgTm2P7uvWRJ7W1Sb4Pz9El66bROX3Djq2BJVTCe9NaU3YC4/p/lF7AXoFegtD7E2JWKljsajcV9jPYL8wxqFjXD/T+otERuOeiOpH2D7dj7rtbQhbSlCeSrNAOZyXSxzLidC1zKKuIy3qKreoa4FFXVMs6lpiUVe5RV2rLeqaa1HXERZ12ez7qupfSy3qWmhR18oqqsumry62qMtm39v0r0UWda2wqGuZRV0255DNvl9lUddRFnXZbOMai7qmWtS11pIu9b2lJV0qVdXYxCYXllvUtcyiLpv8VVXjQj2Oev8o9F28f5R77QHWx+fDsF4i+MzwnDD279Lhc0LDax2R54RUv3DOCROi8n2W/49r8XyLuv4N8WxV55GqtuYtt6irqq4HVfXcfpVFXVX1fKncoq5lFnX9G/re5nmcTY7GMRWMZ5IIJ+51+RKivi5HxU1KUiJWGlIoKscejPr76vptzeoP0vW3MqvfXcdV7cDBRPCpdW8NjjNivGUJpE8IOqbU+ouQLUy8jTHl1ggPtw/HlO0JW0qIPPxMSnsCpz2BU0LklVvUtdqirrkWdR1hUdcSi7oWWNQ1xaKu5RZ1rbCoy2bfV1VfXWVR10KLumz6V7lFXcss6vo39P1Si7pstnFlFdVlc24vtqjLVt+r740t6VLJpq9W1RjApq7N6/bmdft/Ze0ot6hrmUVdm9ftzev2v23dVslmf1VVXz3Soi6b/WWTc2z2/WEWddmcQzbX7arK0VU1nrDZRpuxr81xtNn3/waeWGNJV0JU3uOQia7WFnXZuk6uvrexpEulGRbtqmVJl0ozLeqaY1HXbEu61Pe2FnX9f+979b2JRV1NLepqZkmXSjb7ayuLumz5qko251BV9fuq2sb/71xo0y6VNq8d//trh0qzLOlS323uebDVX+p7c4u6trSoy9Zaq5LN9dFWf6lUFdcOldZa1DXFoq5FFnXZvKdj8zqAzesTNvfn4Pc2wL1hieCzUFSeLwonJWKl6gmkT9sJj0H9RcgWJl4iql9g+3S/6LZ3IGwpQXkq4fcfdCBwOhA4m3Vt1pUtXXq/MJzD+BksLo/A+rpcMVEP8wicZ4x53Touj2j9RSIj3kpE9T/VL7rtHQlbSog8fH2yI4HTkcApIfJWWNS1zKKu+RZ1LbSoa2UV1bXEoq5yi7oWW9Q1xaKu5RZ1zbWoy+Z8XGVRl03/stlfR1jUZdO/yi3qWmZRl02fsMmrVXVu25yPNufQaou6bM7Hf4N/LbWoy2YMgJ/xg/EyfsaPe24A6+tyxUS9RPBZiOxLCFYMvS6B9Gk74TGov0hUbrNJzE71P9Uvuu2dCFtKiDx8vbcTgdOJwCkh8sot6lptUddci7qOsKhriUVdCyzqmmJR13KLulZY1GWz76uqr66yqGuhRV02/avcoq5lFnX9G/p+qUVdNtu4sorqsjm3F1vUZavv1ffGlnSpZNNXq2oMYFNXVV23bfa9zRjAJkfbjCeqqq9uXrezt6Ztjsl5ujbH5Nnzr81xYfb8qyrGhSrZ7K+q6qtHWtRls79sco7Nvj/Moi6bc8jm2lFVObqqrmk222gz9rU5jjb7/t/AE2ss6UqIynuUMrFrhkW7WlvUVcuiLpv3h2z2V3NLulSaY1HXbEu61Pe2FnXZ8gmVZlrUZavvbc5t2/PR1hxS39tY0qWSzfn4b/CvJhZ1NbWoq5klXSrZ7K+tLOqyxYUq2eToqur3VbWN/9/XWpt2qbQ5NvnfXztUmmVJl814QiVb/aW+24rJ1fctLeqytdaqZHN9tHkOUxXXDpXWWtRl85rCIou6bN63snmdyeb1L5v7C/EzunBvayL4LBSV54vCSYlYqVoC6dN2wmNQfxGyhYmXiOoXap+0bvs2hC0lKE8l/AzlNgTONgTOZl2bdXF04f3jWr9KhaKyzzLmSOzfodf6i0RGHJCI6heKq3TbtyVsKSHycIyyLYGzLYFTQuQtsahrpUVd8y3qWmZR12qLuhZa1LWiitq1wKKuKRZ1rbGoa6pFXWst6rLZX+UWdS2zqGuVRV02/d4mF9ocx0UWddnkHJs+sdSiLpt9P7eK2rXcoi6bPmEzNrG5btscx6rKXzb9y+Z8rKocbVOXTf9abFGX7nt8DUHrV6kQ1UsI1rnTFgmkT9sJj0H9RcgWJl4iql+oc1jd9s6ELSVEHt4b0JnA6UzglBB5KyzqWmZR13yLuhZa1LWyiupaYlFXuUVdiy3qmmJR13KLumzOIZvjuNqirrkWda2yqMvm3LbpXzbtsjmONu0qt6jLpk/YHMelFnXZ5Hv8HhoYG+H30HDjM1hflysm6iWCz0JROUZhxEurEkifthMeg/qLROU2m8RnVP9T/aLb3oWwpYTIw3sauhA4XQicEiKv3KKu1RZ1zbWo6wiLupZY1LXAoq4pFnUtt6hrhUVdNvu+qvrqKou6FlrUZdO/bNplcxxt2lVuUZdNn7A5jkst6rLZ9yurqC6bPLHYoi5bfa++N7akSyWbvlpV4wmbujbHAJtjAJe8ujkG2BwDbI4BNscA6XTZ7K+q6qtHWtRls7+qKk8cZlGXzTlUVdeOqhr7VlX/shlH2xxHm33/b+CJNZZ0JUTlfQyZ6GptUZet6/fqextLulSaYdGuWpZ0qTTToq45VdAu2+Nos79mW9Jl2ydsjaP63sSirqYWdTWzpEslm/21lUVdbS3pUqmq+urm+Zi9NlZF/1Jp8zq02e9x3ixLutR3m3tEbPpXc4u6trSoy9a6rZLNtdZWf6lUFeejSmst6rJ5LrrIoi6b961sXp+wed3E5n4m/N6LWiAvEXzqfYGQ6xROSsRKyQTSp+2Ex6D+IlF5/WDgbdwX2Ajh4fbpftFtb0zYUoLyVBoMyuG8XOJYjmdd1HgpSYlYaTjuD60D6obncoyxaRTXF7T+IlF5bEx8oQnCC+tX3famhC0lRB7u46YETlMCp4TIK7eo6/AqatcyS7rU90JLumy3cYpFXUst6lppUddii7ps9tcqi7qOtqhruUVdCy3qstn3SyzqWmBRl802rrGoa6pFXTq21+sXjH3srN2Jd0zXbsO4MXLthu3T/aLb19QIL/F2nHGA9ui+bkbkaV36vDI/RJeum0Tl1waLWwmBUQNh6DxoLzym+ydPypGFFW2HfYv9xKwfRY24fqL1F4lM/HKTn1DjBtuH/aSZGV5xnH6H9ui+bk7kaV36vmd+iC5dN4nKn478pDmwCZ9bNCfshcegn5wU6K1J2Ls10svlLVhfl6Nw6meIU5/AoXxbSUrESu9SvsOof56u39ys/ta6fmuz+rfp+m3M6t+i67c1q7+MesaQUf8gXb+LWf12un5Xs/rb6frbmdX/RNff3qx+H11/B7P663X9Hc3qr9P1dzKr/4Ouv7NZ/ZN0/V3M6m/Q9XcD9Rncn9L19zCrn6vt3R0eJGzS+vXasSsonwj51LpwnsYqQrpM11nKdmgf5uHdAR5sY5iu3Zm6Cok8kzHZTYS3C+ovjrAF26kSjvNN26zSAou6ZlvUtcKSLmptzsSuaRbtamZRV3OLulpb1JVjSZdKMy3a1cairrZVVNcWFnV1tqiri0VdXS3q2s6iru0t6VLpaIt27WBJl0rLLdq1o0VdW1nUZWvtUN93sqhrZ4u6drGoq0YV1KXS8OBTXxeA61ILhJND4ORE4MD6+JoQrJfSX76f88olTxx744OXzb304lNrv17jP9U7Vlu6atXXTb9qdsaGVRdleL1sRIbXo+rq+luY1a9DXZNg1K9NXZNg1O9BXZNg1C+jrkkwrvtWeu+REPy2dzHCFs2p6xEM2zdQ1yNyYtcXhdT1CEb9HanrEYz6O+HrEQLUbf3y7QU/XXF88oZXN8xY8EP7kx7vfezdV+5+4lOd9iwf+v6pXw2grkWYnMvvbFa/Jr4WIeLX3S2z6xCJt/E5bwXsPW/N3f+Q63+dUb33imsXvP7awHk1mo29v/lRF+//0Lrmn45eja9hVKj7/P6/v3lTyUmLFx67/rCd29Ude9VJr3zz2SNPXFPy3btXz3pl43jvSdWNtvnv68r1iv75T/P6XhtzK167UFIa/J8H8kaCMrpuEpcv2VSvUYCnz9lzKlj0Tyok8Bl+0DiB9AmkC+pUqUhUXtNMrsPkIrywdU+3PUnYUoLyVML3OJMETpLAoXSttahrikVdyy3qWmhRV7lFXQss6lpiUVe5RV2LLeqqqv4116KuFRZ1rbKoy6Z/2eyvIyzqsulf5RZ1LbOoy6ZP2OTVlcFnMZGH44A8cJyxLufEjQO0/iJBr8spESttjAPyEF5Yv1SXUif4Pm/u5KmT5y7qP2Ps+O5jZ86ZN3UCjoxwNAZ7BWqFxxKiYuthXi46hsv1Qv/3JeoJQrfK1yNXHR1PiVipvfaK9kSmzuuAdMM8+AuNcDRxyiXs1zYXSPmx4Sa9uBy2B45HB5RXBPI6Amw8rnkEjrY/hyhfhHTlEfV0nXR4/+aZSI2TrltC5OG5GDfyN2GI4ORJM0SPCQfPm9R/xiSBUhL93zPExEaoXN8Q0xKE3gQSfBxvcswV0RQUdRIYx2WEqLzIQF0jEc7mRWbzIrMxbV5kCPtdLzK5IfXgd3z5R6WU/rLsosveLDv2qc7v/15tzYCxKxdut/aFEV8ubnRpmw+nXN3sqjoKawW6pAXtxUSs25aXpn1JVP6+mpvqrQ4OqjENhlLPtG7zph46ZMLc2ZMnzJ8gOXuOQCnd9BiI/h9E1KOSdgmsXyXdvYYEFJvwtP4iQQ9zSsRKGwmPOtuA7TMjPOwQeCLbJrxB6H8TwsORSErESmzCw9ER/t1z/R0nivC0zVzCg+OBCQ9OVEx4cFyTBI62MYcon4d0RZFVOrzNocc/aXPoAdLm0IOw33XogevlicozV9dNorI3BIZkOGNFbVAP27h5zf4nbV6zQdq8ZhP2u16zKSbBLOHy0gXEjjwZem9u93VzG07b8cvCZ47tcn7TLd7+/tKbPv5x0YSdv/j4k1tafJ8ha+ybIdsNV/WeQidjcB7geaxXprD9BbpuEpV/oWhTvefAyVibID9glH3HTp08fuzcCT2nz5o3Yd6E8QNnzJ0wp2z6+J7zJ0yfyz41643+70PUo1I1oK8e0J+LGqkSvjanH6DTDyXiMriDdPlXggw1kf8IJjLldNqeYlRf56uknaIBsj0lYqXYS5HWX4RsMV2KGiA83D6zpQi6M+4VqBUey/ZSZPj4N3spKkJ5cCmCo4kTtRRpm7lLERwPvBQ1BHl4KYLj2oDA0fbnEOUbIl0NiHp4KQrDyyXq4VAigY7Da1n1CGx8LetrwA66oym76gkR2g/QHmwn7m+dr1KGPjkiLpvgV1k1NMOLfJUVbJ8Zm0BPgSj7Iq26DCwL077AMhFSjhq9JFEPJ91jSWRzYbV/PpX3/YIWfdiuasgeytvhMRwkwfq6HIVTkCFOAYGjPbk6qDcK5RVH5MEN+dVQXk1QD9+3gi9JG4zy4CllAcqrE6GzLqFTjd2l1TbpU9ISlKM8Xa9AegxaAHtgXfh/Hiqr0pjgM4nKNgV+VaNaRSw4i7FfNUxjd5RfNRThOAUZ4hQQOHi1Ugn7TiOirdSL4fA4wxduYN9pSrQLv0SF0pkidKrxOadaxXJ4/FXSjN8KHOeclMRlfK2/CNliyvitEB5uH35wpbUZ3vAEqg/xoE5tj+7rtkSe1tUu+D8/RJeum0Tl2wXjWYLKqYRfZtKWsBce0/2j/KQV8hPYt4mQT60XH8PzC7Zdj4/GaQHqjQT2dArhPBhJQV7TJ8SYq64BdwU7I66C9fHYUfPEtP0tiTbWFJX7Jh98D/PvVhE4+RHtcTWe+QgH8iwcz93ReLYGeZij1Xf9oFYSlT8NjOdeaDypuUj1M16XuP1cjcBx3c94fWlrEQfqghd3lLRHunA/63HS/dwO5LVH9eCZKCwHz7rag+MdCGxKv9aRzgcHV6PbFuaDGiuJyi8BPjjU0Afbojy4VsB1EdoB+wGWxw/FazvzQ8qHtWv/oC0q7shtVFGnrg/7Co4F5l9d/iCgM78RbSdsVwtwDF+MpPyhPdEuqk87iPTYsJ/7hmDni2hfTKLy44k+xesCrE/NoxJkS7s0tuP5DevrcsVEvUx5hLI53ZycxpyT+gIy9t0JYE7ORHMyykegzfg8gtvPBQSO637G5wgdLOJAXXhd6IR04X7W46T7GV5p7ITqbQPy8M2xXFQHloc6KP1x14Vl1ei2hfmgxkqi8v2AD66MOC+O8sEOKA/2KV4X0vEhfiGMtjtfRK+3SVR+bcS6QM1XyLV4XdDlj4tYFzQubFcLcAyvC5QvdiTaRfVpJ6SrBaEL9jNeF6g+he1vgdqvy58Sc13Q9anrEaNRHrwe0RrlwZfD45gVvlS0LcqD1yPwtRH4MgbMdymQB30EX4+oHtGeYqADX++D1+0aobyaIK8xyoM/mIBfUguv2+EXk9YBec1QXl2QlwJt1dft8M3RK4LjGd63I7euRF0XTYR8ChFvPYBbqxIIp4FFHKirF8JpaBEHcjJuj4Mfdoh9nzVbP+zAuzOCf9YB9grUCo/BnsZ5UXdGVMrkPqvWR70etzGhU68UsE1NQ+rBvhDEsRyifBOkqwlRT9ueG1Ef6oD1sMck0PGw+5FaRxKVfwCsVkVotaawYH/gFVPbHrZjAtugyz8CbNA7JrDOZEi7GofofB3cyXi8Gq1TEDqpdjVF7cI2NEE26PJPE5FALiqD7aGO6f4XRF38P+Uz9VD5Zmnag8dJl38xYpwaETbAOdk3jQ24TNMQG14lbCDYrfuMmYsCdhMoUc/Ywf9xz+P7to0IPWFJ94byQu2R1C6DxkQ96vk+bJNquR65jY8sTp0wd0JI2zFzJ0IwcwSdcDwqROU11HBNi72Gav22fmCB+tEp6gcWqJha1y0h8vAL3OvHxFFjquPOYEyHzp0xO2xI4y6uCcIsXF+k0YWH2vA2H3tzUwLlwdNIHEbC0z5IajjhdsP2KHIpbrRJLy6HbYV9ijc+QffsiPLgVOmE8qArbYPyIOFvi/LgqVtnlJcCeV1QXguQp9/HpoMlOM74PYfUlgXqVm0JUb9lBE7tDHFqEzgOb5XHpq9s3SrXbaduY5QQeXgDm54HhwXnimpJy6teUTfcTov71fDpnR3j9qvWX4RsMe3X6ggPtw/3azFhSwnKU2kWKIfzcoljORG6llnUdaRFXeUWdS2wqGuKRV3lFnXZHEebbZxvUZfNNi61qGu5RV1HWNS10KKuVRZ1LbGoy6ZPlFvUZXMO2fQJm/212KKulRZ12ez7RRZ12ez7FRZ12ewvm1w416Ium/1VVbnQZn/Z5Jx/Q8xk0ydsrtu2+l59L7SkSyWbfm+z7w+zqMum39tso02esBkD2OyvNRZ1rQ0+9TUmeB2iJcKhzvmrR+DA+tVj6KKuH0S1kbqOY/EthdrEHVC5viGmJQi9CST4+A7oWC5RFuqGj7EXB8dbE+Uy+9kL0TWB9AlBX1bS+ouQLUy8jZeVqCc3YPvwZaV2hC3UbkH8M0LcHY4wb5lFXUst6lpuUdcRFnUttKhrlUVdSyzqsukT5RZ1TbGoy6ZP2OyvxRZ12eyvRRZ12eyvIy3qKreoa4FFXf+GcVxhUZfN/rK5Ds21qMtmf1XVdchmf9nke5v+VW5R1zKLumz6hM2YyVbfq++FlnSpZNPvbfb9YRZ12fR7m220yRNVNf5aY1EXvkwS9dRq3LcPUJdJ2sbQRZ0PR7XR8WUSbWIXVK5viGkJQm8CCT7eBR1Ld5kE78r5PLiWUygqdznjMgX54InWVRNhqu/4V+G5V+pg/eIInBoZ4tSIibN1hjhbEzjFRL1EyKfGwceiruxvjXBaWsSBuvALLuClMOwHUS9UoXBg/dYhuuCbKieCMilUHr5gRRDYo0B+BUoKOlXt/vwa7P5UZVqB+vAB09ziaFthXWgrfvlFR/CAaX6gk+pnPe6UH7RGeS0JXEonnlvcsatB2BClKwXK1ETl9Vjkh5TX+vDY1QJjhx9k1fXD/Kd1iA3Qf7QOlcL8p56B/zQojrYV+09NhK3L1wT+0xj5D+zjKP+pifKg/+g+ojgT79TlcmZtwj4KJ+pFYdiPuC8Kq0ngZLiWsne510Z5HUFeHZQHd7nXRXnwoXu8Bm0L8vDDtZ1BHn64Fv7CN364Fv56N364Fv4yd02UB391G85BnHLR/3BM1Fz7lrFTH/oM3qmfAnm677WvwYeE8cOldZCt+Bj2NVi/Togu+LhbCugaCfJh+c4BCav5v2txxXbBlw/qPtG+jR8dS4lYabsE0icEfftM6y9CtjDxNt4+ox7zhO3Dt89aErZQ/LYl+A7zIA51mkHFSUss6lppUdd8i7qWWdS12qKuhRZ1raiidi2wqGuKRV1rLOqaalHXWou6bPZXuUVdyyzqWmVRl02/t8mFNsdxkUVdNsfRJn/Z7K/lFnXNtajLZn/ZnEM24wmb/XWERV2beTV7vGqr79X3Qku6VLLp9zb7/jCLumz6vc022uSJxRZ1VdV4dZpFXfhWHPWitgTKgzhNI3Bg/aYh9dT3FNARdV9BX0doBY4zzutzE0iftgceg/qz9dQ89cL3EiIPv5qHe6sU6orzAhHq2keUb1BttHirVJvYFZUbEmJaDqE3gQQf74qOhd0q1br1NIKXnvDtKtiNUV1L3a6qG4FTM0OcmjFxamSIUyMmTu0McWrHxGmYIU5DAkdPZep3WtRl0weLaUx4KwZerk0F35Oo/F/Fm+o9gm7FwNsZ1VH74QMk+F2P8PdqMPXC914yqDD2C0u0/iJR2SdNqLcWwsPtg7QU/52FeAbAXoFa4bGEqMwaCWAZPIZv3ldH9UzeWVgb5FE9gd9ZCNtUO6Qe7AtBHMshytdCumoR9bTtuRH1oQ5YD3tMAh0Pe2eh1pFE5V8DN1rxOwspLNgfeNOOtj3sPXTYBl3+TWADfhdeLVCHaheezbXR/9C3xoTgfwtY5t1iGl8Q+Lh9kNXC3gdYC9mgy39I3HSnmBLaQx2DfQDrhv0Py+LfhKR+rw/6In4XYt00bcfjr8t/ETH+NQgbon5pFNuAyxSF2LCBsCGzdyFilsOjhEeiBqEnLOneUB6rvRf3Dp4dGEf/T3lApu9CLA7BzBF0Kha0bSoViozWythrs9ZfJGjPS4lYKYHZU+Ph9uHTolqELSVEXtgsTYeT4bsQwxZtiixwfYHqJohjKlG/u7z5VCMc599wqoF1UacQKk0PPjGx1w46ifoJhbrADkrnMGQDdRWA2gmly1NXrpoSbdR9Ca9StIyBDfsSL4StmLZSV1fglaimyFZoX1umrUM821qXsDXDXTvsHWl49xjckYZ3j8EdaXj3GNyRhnePbQvy6qM8uCMN7x6DO9LwT2LAHWktUd52IA9fGoA70mqhvB1AXgvwHSe8hsDxUvN519Qmvbgc/B7GRXCu90U2wqAbco++tFEIdEOclIiVttI41Mm01g3DFIZvjoM26USFPPpYEbKFibcx5MlFeLh9OORJEraUoDyVZoByOC+XOJYToWuKRV3LLeqaa1HXCou6VlnUtcSiLpv9dYRFXTb9q9yirmUWddn0iYWWdOn6tuxaaVGXTZ+Yb1GXTZ9YalGXTV61Obdt+apKVZVXbfpEuUVdNueQTZ+w2V+LLeqy2V8LLOqy6as27dq8bmevv2zGqzY5eqVFXUda1GWTv6qqT9jkiXKLumy20eY5TLlFXUdb1LWZV/9/8JfNcZxnUZfN/qqqnFNV48JFFnUts6jL5lpbblFXVY1XD62idtnk1cMs6rLJEyst6rLZ9zbtstn3yyzqqqox+b/hvNbmur26itq1wqIum+Nocz7aPIdZXkV12fSJcqQrEfwPy4wC30eDfFhev6Uow3vF4/G9WK0D6s4z1J1A+oSoaKdA+osJPG1XUUheSkSnm0sPOvSt1A9bJlB9bQs+hvea5BPlqXvauq8KQH1GXx1cDDAEwtZ5SZCXh/Jgv2gb1GebFhXtyze0L07/Qf0lRPnBoBxnLGqLir4A/V3v8UmBPPzmq6gXcFIvwaSeUNPl9X6f/JDyWl8Sla8XzFe4wbsmKqO+1wjBg/bBY1F7AtuH6Ap7I1rzENubANvxHroOhH3U9lNdviNRHu6T0vZQfdNR0NiwPXA8J6L26PIpoj3U/EsF3wuBHp3HmDvVFU7nFptwcL/B+ZOuj1TCfdqJKA/7SvdJCSoP+1fnwceqOqC8qD1/KcKGVuAY3l8F/U7XhW/xi3pjY1Wa111jzutmIXjQvqh5Detz5rVKE0Js35k5r5sR9lWleb1nzHmtfWrzvE4/r1sTNsSd17ou9XbXTjAvOAb3f7cJvidR+QERPruNqGwrNad0+W2J8nB/LX5LJuzfbVEerNcO5cF9uR2QDZ2JfoB24X3tuvxw0A89gA/qtghkV4a+Xkb5emdQAPs6fAt3LlEej0VXojzcl6z7pASVx+MSNm9gn+K98rqP8onyUF8SlR9DcL+2D77BvDOyvQPT9oaE7dRbOOGcWlbtn+8U3+K1skMEJrXeaA7KDymv9SVR+SlEf0WtYbCf8pBOXX5aBB9QfNsCHOPyrbaH6tNOKA/arn2Bmp+6XIbzsxs1P2H78fyMaqtKuG8oboW+q8e/RFTmQ7wWwbmB134qLorr/9CHplWj9YatN1sE37F/LWXGSHC95MZIeL2hYiTKv3BsBfsUr+fUugvL43NAXX51zPXGkj/XofwZ+iz25yj/VIm79us+KRGV14Ow+BvqgmON1xvdR/mCHgOtD8e3J0asNzDu6oRsb8u03WS+DUbrDTxvw+tN2whMXBfyRdh6A98yD8ufFbHeVIhNReV+wuuNLn9uBB9Q55wtwDHsg1TftyPaRfVpe5RHndtS8xM+/6bbp/MY87MuNT9h+/H8jGqrSrhvKG6FvovXG8iHrVEenBvtEA51fhPX/6EP7Y7Wm5ZIL9QF/SLKH+G80eOE/fGGCH+Mmmcq4T5Pd81E20P5Iz7ngbZH+aMul6E/7kv5I2w/9seotqrEnat6PEtEZV+N8ke8PrckcFqAY9gfoR+1BG3tFPijvu5v+LZ49nOuCZQH18FeKA/Gj3B8cMpF/8P2qHEvZvxqAXxPAf7VAvhOg44oD14/6YTy4DX3bVAefBfAtigPvtahM8qDz9x3QXnw2dSuKA++nEa3X/sAfL6c4QOxX6Gh9RchW5h4G58npd7SB9un5yjv9Vb4zQKwV6BWeAx6Ns7LRcdwuYHof87rrfTINUTHUyJWYs9e/BQ3jErhaOJEzVBts5qhPzbcpBeXw/bA8cAztAHI6wiw8bjWJ3C0/TlE+QZIV32inu77dHi5RD3MvlQ9nIfHIuq3RxogHSkRK8V+Z6jWb+u3RxogPNw+PQepqEvXLSHy8Hzl/nYR1BXnRTuUzRm+aCeB/q8fYkYOUV9E6IJ1opoU9XazdG/4Cnu71g/EiRg1jaA9xcQx7PaGC0zsBU3rLxKVXcLE7eshPNw+7PYUDZUQeWEvy0mHY9FVVRoYYga1Uoo0uvBMplwV7hWJ46owxgxz1dySfz6payw5RH2lc0VRRew+oJzG3kuE29oX2YrL7IVs1XlFwFb90roSgCuQPcWovs5XSU+pfsj2lIiVYk8prb8I2WI6pfohPNw+sxhxL/Ad9wrUCo9FeXG6mdMD/W8SI/ZHx1MiVhqgvWIAkanz4MzeC+UNAnlwNHGiYkRtMzdGhOMxEOXtDfIGAWw8rv0IHG1/DlF+b6SrH1FP9306vFyi3l5IRwIdh1eG+hDYSVS+BWAH0Si8H/oIEdoP+v8cwk7c3zpfpQx9cr+4bKL1F4nKY2/CJv0RHm6fGZtAT4EoI5BWXQaWhWkEsEyElKNGrylRDyfdY0lk866BFynv6xB8rykqe28+sgfaEMXLJUR9/LJmiFOQIU4BgaM9uRTUG4XyykTltuq8bqDeSJTXHeQNRnk9iHbpvJ4ROntF6OxN5Kmxu6ekYjnIRomQT5VyiWO4T/sRtuqxgwyAr8FSs61/BA6sr8sVE/UybQ9lMxU7wVfe9yzZVAeuppC1oR/rvXRJVP61hpvq9UHzbQCor22k+hnPRW4/5xM4rvsZz6mBFnGgrpGgvJLBSBfuZz1Oup9htDMY1dsH5MFyMCKAe+D3IbAp/VpHOh8cWUK3LcwHNVYSlb8b+OCBhj44EOXBCBKvh9oO2A+wPN47q+3MDykf1q5xEed2/Yj6lO3FyJaBEbarhH0R1seRqwufh5jp/Gcq8p9BII/yH31fK4nKXwr8ZwbyHxihuWh/1LyGkRyOMah5R/EHrgfnaEkMGwYTNpcQ9fG6Dutl6huUzel843DkG/uAPMo38P5dXf4E4BvlyDcgf2obqX7GMSC3nwsIHNf9jOO7IRZxoC68vg1DunA/63HS/TwU5A1D9YaDPFgOrm/wndnDCWxKf9z1bV0J3bYwH9RYSVR+HvDBkyPOaaJ8cAjKg32Kr4MOIfqBGoMEsjs/pPwQ1C5d/kxifYuar/A93JjLdflzgE68v0TjwnZRZ8tRvjiUaBfVp/hd7BQ27Oe+Idj5gm5/mK9cHNGnun5eSHtwn+ryl0X0KdVHUX1KzbFhRLtqEm0ejnTtTeiC/RynT2H790bt1+WvjYjDBhL1qdgBx5BUHAbL4z2F1ByjYhM8x26OGUPi2KYU2Dca5ZWBegNQXjeQh8/FuoO8QSgPXlvA1zl6gjy8/vUCefugvN4gD/q+vraQRG29Pzie4b2FCnthBNJF9W8i5FOIeOtpKSiTQDgurptQOHtbxIG6tF9Q52xFyB7udQNYP+rcsCxDnDICB+vSnKwSjIn0fEqi8i+Ced27RUWdAwj7ysCxvhFtxfMZ6tJjpucH5D4X9960/iJkCxMvEcW5sH34dvYgwpYSIi9sTCEOdTuba5fFX2vVJjZF5fqGmJYg9CaQ4ONN0bFcoizU7WvqZROnWoY41Qgc15c6qyGcsNOdr5iXlPGjO7r8OHC6803E6U7YtIO+Bm91YN/WeGHbGLqF2PcjsY0hgerANjePsHkAwMC4Ko0KseE3FKoYUjEZquBLoTCkK0V5pSAP928pwMkljmGf60vgYF1hy6TuVxzS5QR7luMuk9C38TJZCvAGoDy4NIX5GcSh6J3qhyic6hniVCdwopZ9Uy6hbManEipBLimptakO9Ek4r2BdHZomUfl9AJfUCXRSXAJtxP9TvBy2ToZxSf8Q+xoC/8RcQoWG/SJshqeAGFelUSE2NAts0FyCbwWlRLxEcQm+NQH5ryayn7sWwvq+1sKaCMf1bT/qcj/2Pep21KAIHOqWWrr52L4WjUnNR7yuwfKNwXzshOajjVt1YXNCiHi3uwYQOGEcpFLUGqTL7xCxBqUL/aNO1cLsg6/eg+VrgDaH6RLEMV2+FOSVorKDUNmBEWWx3dC39WNFmovwLeWUiJX20f68D5GJb2lAm3QevIwIL+vihLcoQZvVePdrsUkvLoftgf0wJEQnNefHoLLa3hxCL75dBOcx7q/BITbgMVZp/+ATz/dhtTbp74fWGdivjLEdgscPJjx+uO9wosZP26XGb6Hh+A1FeWWgPN6qRfGx6q9RWeovfM4PUzb6C19+TtdfOk+3N4eohzeharwVwF/HIn1lAAv7P56f8PYMrq8SjsV0+QlgrXgg6MuaovL6ip+ggLqp+Bivc3VD7KLaCXlyMLJbly1Hvopvt6ZErFSmx3gYsgnqHm6oO4H0CUFfdtT6iwk8bVcRkRfn9a7Tfxq73dj8xY8lUH1tCz6GLxXuS5SnHurSfTUC1Gf01R7FAEMgbJ0HfXs4yoNbH7UN1Otd9zW0L07/Qf0lRPmxoBxnLEoInL4WdQ001KVfO0vdTsWcqxJeh6i1X43j+ShOLwP66yBbywhbo3gI1ufwEI51ddlzEA8Zxo/bU3Eg5qFhhrrj8pDWXyzCx7WIyIvDQ4f8Xjbz/iEvbJEQlfk2lzgW5zZ+HaJ8hvO8M8VDmGsgDw1DeZCHtA0UDxmuKZ3j9B/UX0KUHwvKccaihMDpa1HXQENdmoeoGJziIRzf7UO0B/IQPse4DMRsF9aqqKsM4ITF3YKwb2BE3mBCp8K+NST+1FvFYbvwORq1rUj/D49BX4d18LUHXf460DdXI/vg+T9sJ7SPitXhdckbaoWX2yeiHByXqPi+FOVR26bjjgu1TQtfL6K2uMNjUdeLdDm8Jj0AxuDOiLUUPzlfRtgStZbC+roctd0Ez4P+hA3UPIXXA0+sXbEc7KNEyKduBz6G20GNj7pvoF+kENz67j1h7tBDxs6eMH7ohHGzJ8zNRRbgOxh4Vg1FFlFJW4nvevdG/+MH2PBV4cGEnnSY1F0KeIUd41J3sHDP1iZsziZOvQxx6hE4FLtn6pGUzemumL/EvIOFN8nq8qc22FTv1Ygr5lH9DF+3YtLPDTbjOMVpmCFOQwLH9TzAL3+FKzPuN+5dGFh/oGecdPP6O0vzui+Y1z/GmNdRbYy6Y9SXaKPWNTiNLrzBHdaPetigbwycqAde4j7UEKc9UTjZbI/WRT1sAcdgWIRdQ5CuoWl0RW2ux3kDImzm7jSB9aN2tAzJEGdITBxf7dkH5cEzNsxd1NgNjbAB1sdX+airVqacT9mcjiOb1N5URwn14BOsi3fv6PI7AY7cItBJ9TP23f9v/TzMIg7UhV/UEDaeW6PxHA7y4oynLt8cjGfHGONJ9c2AiPbgBxTS8WGcB76GRJSnroJS64DuX3j3Ro9RhndqasfxA6i/CNnCxNu4mX4/hIfbBzet63Om4My9bMKcLl137iFP2xfNnIv7VOutBUFF5ZfP6PIC/Y/rKduSqMxQAkMl7D/DUDk87vo41h/HpnRl0+VT82ZfVJa7rsH6YTsiw3Y/6fHBO5X3DOY5tfuJiqOgD/WNaCt+mcXgENtziTZUE/R8HS9o+2Cb+0a0WZfvGdHmIWnajGNuKt7D3ITL5RJtKBSVfSBB4EXFL/DKXCNRsV3cK6eNCBzXVxMbIZwyUA+ud0PQekc9OFsG9O4WfMdX34vBejc8Yr3z1f50cxq2BfsUbFeS0KkS3tWiy48K2p7h7hByh3HYziE8f8egMaXaHjWmuvyf9TfVGxdjTKPmR1QsQvHEwIjyVKxDXTNyt8Mm8U4cH4X6qbvXJrEItSuGujPJjUW03rdBg6D96WIRXI+KRfYJwQibezg+wLFMuliEsimsLDcWgWsjfgEC95omdVdb+6fhg6ApbctAYAe1awjzJNz5iuciVb4vsg/rD7v+kBR034wE+bD8AhBnPNzin+/UWNQPsU+IeGMB6/u6vozvRLp4Ikkl/KQFHNddwXeYp3HCOLmEqB91HXtYhjhRuzbS+fpOwfd0MdHRaP3EsTGsC3FxbHwNWD+PQesnrB91HRs/rVYqNiW8mwDe3S5DeYMIPHh3m7ILP8EJ+4u6FhL1NJEuh59avLj2JltOQ7aUgvqtkC2lhC2lEbbA+roc1ad6LhWKyv3B4N/YD/5r/UWicptN4gNqjEqhYcGnbns3wpYSIq87+B6G04rASSBd6eyy+OC/NrEDKtc3xLQEoTeBBB/vgI5RIQbU/fclxvqbcGA3XIZOHfDSmhLxEnXqEPWAL57mpUBXnKkF65eG6ILLPbXRhqK+FNLFXcph/b4hupKE7Srh0ztd/iE0Robh2eCohyoz3NA7OC71hG32g3YVEXlxNt1+WrT745/feOYzCVRf24KPYbqgTiFTRHndV/DyEKOvBlCbbuElCpWgjwxGeXDTrbaB2nRr+EDTgDj9B/WXEOXHgHKcsaB0md4e1htlqVOJbHFS2OVdzU+Yn5+IuNRJcRP1ED3V1r6oHrUpVCXMOSqlBJ3+Qknr0/1fQGDhB5l12edBux9rUdHWAYStmiNyIzAEcSwhwvsGY+QQdXcUFW0bGMM26iFoqKM0xE6lgzq9wX7LPb2J+/B3iwxxWhA4Lh/0h5jpTr8+YJx+qTQ5+MSnX2eB06+PI05z8Gkk9XIdGLNwX4iB+USX/wLMK/xCDLzVCraT8jOIgdulEo5ndPlvUDxjGHOQMSe+9ANPkzG3qrS3oNsE+wCe/uM+oG5hjYwoT112hn6FOZt6zyvWFXb7DGMPS4ONb1WFvZsX/g+xh0Rg75sGG2/Doh4yxL58Rb1NNvyJ5m8PUIcad/xAhy5/Wt1NOhN1eDoHhOisU2eTzmSdiu0sBe1sLCriQd1x4g9YX5fbfLkh/uUGHBNQOI0JnATSlc4uB5cbGqJyNi83NETHOJcbtJvD189ug/TDHzvLJY5hN4f18etLIU4yQ5wkgROlaxtCly7fkyifJMpbdA1tYjNUbmSEaVhvOtdoho6FuYZOuQhTfcdXnPDQYBtrEjrKRHibcoljeKjLCCwKZ9sMcbYlcPDN/J2DFaKQwGew5WrNfvDXoTDzG17tWx2X+cNuZkG7ioi8OFd72t99+AW7tTpkUALV17bgY3hKUpu3tiXKZ/gKyJXU1R54g0UlSDV9UR682gPPpPHVHsOrgivj9B/UX0KUHwPKccaC0tXXUJe+2gPfWB41l8sQjivOcIETpYu6AqTL677JJ8pTnKTLdws4ifrBZqq/BXEsR1TmI70ZtSahq1aI7RS21q9SCVFfl3PIiXlcTiwSldtsEg1T84PqF3yjH9albtxn+hBHVdcFfbNYVPbfRMinxsHHMA6cq7UQjqtNHXH83BQH6sIPNrjaPKKvIGW4Bg+iHrfXiboThf2CemUG9ZpD3P/UgxXU62Z2Ad9xykX/w35QfPxki016cTmdqKu5ZeA7zNOY+FjUuoSv5paCevAq64w6NCa8yloK9OKrNLr8UnCVZnad8DbiM3rTK5YLUEzu4orl/ycfN/Hj3Jab9OJyOlFjjGMvatMRtdlft4Pi64Eoj7qyjnkR6qe4bDQoh/k06oo/FVP2QnnQhrIYOFFxU1lMnCYZ4jQhcFyuWxAzHU+djHgKbl6jruwdEnzinRvTAE+dhniK6ucE8X+cuF7/H/f16DrvLBDX47tBuM2wnZTNEEMgHSphbtXlz0fcangeS3IrXnNhH+pyGeLGvgqu9RchW5h4G+N+Ku6F7YOXFPWr49L/Nj32LMzouDwsK4i8XHSsGyrXB/3fl6gnCN0qP8MX6g/GqyJM3FURjiZO1MqnbVYz78eGm/TictieqMea4KqIH2VLtx9C259DlB+IdFEvktd9nw6PuuqAz7ipeur/PYg6Ns+obO5FoKIxzDiGUWTduIyj9ReJjObJRsah9l3B9uG2U7/fSz02B29OwTyIE/WoI9TVw5IuISpfadisa7Ouzbo26/KhK86ZJ1yn8N4dyINlyD7ujXBYP+qGe4sMcVoQOMVEPdM1uSTCZurqAe63QUR7BkXgwPqDUHtKQb0Krz+rQ2PGPfPU5UeBM88f61S0GdoFz7Sps3w4DloHrlsIbNB5jPiipoqBO7fYhIP7Fd4BhbGEtgeXnxx84r3ksO2UL8Qdo0TdivaUgTxqjPBeUV2+NxijZPCd2heG94qWAd1ReHge5gv6KmsZsk+XLwpsgnf9ovaSY7ywRxe3CMGrAfD076BTflcafM/Q7+pSfgd5BvsddYWL4rMovqCu1JWIytyD7/SWErqgH+Ax0PXzBT0GWl8SlW9EjHkcP6fGVZdvGnNcdV+6GFfYV3hcqbvosDweV8oP4HiVBt+pK5Ddka7uhK5ScCxsboXNZa0Pz622EeOq68NxhXbicdXlt445rrovXYxrKSiAx5WKP2D5OJv04Pqg+4S6Y9Ab5VHP00TxN/SDOGMOxyeMv3cgxpx6RqIshn2l4Bi8sqh/HCe4sjh07ozZE4JLiwKlqEuB6v+w7bd1iPoC1U2gY/h3U0qRHepY1AV1jR22UUbrw1S3O9HlUfSrUpwt2nC4XVyc1vptbdFOR2v4UlHUNIs6lcmCq6rUJ8SMBFFfIF0J4phK1LZpqBdHgVHsRnUVtfcLlodPN8Dy/SNWjnT3MDHDUpE7XB1LRXj78QuEYb2wJ0ThigbdCK9ouvzQmCuapTMfckWDfYRXNOrKQtQTzdTTRtTV0hJUHvY9taLhKx7ppiG+Wl9K4FBnVpS/lEW0N6p/KP+CETd+GR+sF3UWDPdvqGTzLBi2B/tC1NiqhPuGeoEZHO/S4Dv1Ulh85QnOJfwiNuqspxQci/IFeLXju5B78On06vLUC+igDnxWrsvPIjhA66T2SEX5I9UXkMejXsA5COXBenC/hNYtULkM/bGG7asypnOVusuD96LDtSDsKg7sb7jHw9eVP7yHbSXws7CfrY57RUmXXx3hu1Qbonw3ajwpLoX+ife0+bpDj/e0QX7DvAP5De8/gnsz8R6SsJ+SxAnHgLAf4u7bjOKdUnAsilOhL81APg9PK9ojTCqEh8ewz8P6uhyFk8wQJ0ngROlqT+jS5akY2vFjedrEVqjcyAjTsN4EEny8FTqWS5SFiRqmshC7hYg3TLB+2DBBeoNn4/j3BmC40QHp4t5kgvXDnuqkXEwlvIVNl78roN0MH9k7Kc7jKYbb1E5KIH1CiMhtatSGI/zIHn45SUpEp9sv26fGC/fvvPGRs7iPbkTRYAeifIa/inpCVFhFPbKHH+eDoVHUr6IabvU+IU7/Qf3UduQxoBxnLChdQw111RYV/QrOHV+chC8B3E+EZb5t0WHLI1XAFh0KPVkFbNHh03MRoTO1HpSBY3htgbZHbW7A7XK1iaJjhjgdCRzXmyg6IpxSUA/eOH8LXd7pCfKosFZfl8U3KU8DL355F904p/o5QfwfFXdg++C2+qhfBdblPwL+ibfV4zbDdlI29wIYAulQCcckuvznKCYx3G5ObqvXuuLEK4a4se9caP22Hqftj/Bw+8y21eOzANgrUCs8lhAVWw/zctExfIOiF/rfZFu9YXSyr/aKfYlMnQd/jQmftO8H8uBo4kSdYMMHyjjb6uF4jEB5MKLaD2Djce1P4Gj7c4jyA5Cu/kQ93ffp8HKJevgshKqn/t+dqGPzgWjcjzZ0Rb3C1vBiU+xf+tL6i0RG82Qj40RdJFYJt30wYQu11Q1GNjAP4sR5Bav6vo9FXUMt6hpuUVdfS7qEqHyDbLOuzbr+TbriPFQN14ODg09fZ5QUztYZ4mxN4BQT9UzXvpIIm6lX2eN+476UCdYPu8GgEjzD26UejRn3DE+XPwqc4e1er6LN0C54RkudTcNx0Dpw3QxvlFanbpTCfsU3SqmrmLD8xOAzaqse5Qtxx6g3GqMykEeNkbYH73WbBcaoX/Cd2h4e57WapQQenodxt6/r8oMCm9JtXw+7Q0NtX1epXwjeUIDnYft6bcrvIM/E2Q5L8VkUX1BXxKgNQng7LOxjHJeWEjiwv+Nsh4WcoPXhuzSjCX/AaxH2jTD7qH6zvB22f4gZtYj6AtVNoGO1QnRpPeoYvGQQZzsstW8PU8REosujhkylzdth/+e2w/YKMSNB1BdIV4I4plK67bB4VYnqYqqrTB+kmE+4dBTDRr2ClIoE4PCWivD24x9qgPV6huBQD3iohFc0Xf7wmCuapUiKXNFgH+EVLe6VE10+3ZYmPNWiHhykzmziTsO422FxpGZ7+2Fp8J06e4jafhgVVVvafli9Km8/xK/NhMvRIIQTd9tquu2K+MyqZxq9+CpbL6Arl9CBtxTq8mcSHKB1Uvf5o/yR8l/qdZzUFn/Md3D+RW3P1uUy9MdqlD/C9sc5y4va2xJ3rlIPi+JX2cG1AK+T6fwmyh/hvcu30H1XiNMSYXL3lrQk7KdwkhniUHt4onS1JHRFjbfjrYTaxKao3MgI07DeBBJ8vCk6lkuUhYkaph4hdgsRb5god6ZwyjLEKYuJ0y5DnHYETqUtLgHtZrjtb0WcG2aG2+RWJJA+IeizKa2/mMDTdhUReXG2FH5VMvyhqd9fckUC1de24GN42o4gyrcjyuu+gjenGX1VTi1N8EazSpCO9kV5cHnRNlBbCkcY2hen/6D+EqL8GFCOMxaUrmGGuuL85qNrzsBbCl8GIRTeOufLFr2l8L9VwBY9tu9k0RYKZ+sMcbYmcGxufiiJsDndRf/PQ04l41701+WPBr9v+BW66E/1c0LQ65f6hBtR8HzXeHDrHfU7fNi+74BP4a13/VGbYTspm7VOyMvQZrz1Tpf/Ga3dhhtSyK13+LQcXiXG84TaIES9IZaaJ7pchm1gbwbDW1bheos3J8E4Fz/BtT/I64byDgB5+B2qB4K8oSjvIJA3HOWNAnn4FAq++bsM5Y0Bedy3p8Onyb5Fl+cEoSvOZje4buJfZ4FxeCfwHeZpW/Ex7GuwftR26P4Z4vQncKhLrTA+jtr8pueD4TbT2Hcg8KM2ho8UbbwDEfXOor8NCz7xDWxYl7rRF7bFGuJ0InC4djn4YbwOqFzYjyUlCL0JJPh4B3Qs7LRZ/5/NJw5cTLF04Uib+jRm2KvF4FIMy48F4Ug78B3fOYK69N0OKmzZG9nfXWxKmALw0wQpESvFpgCtvwjZYkoBce//83a2dwPfca9ArfBY1EzA9xpL0f9lqB5nZ7vGpa6Bdid0Rt1bw/VgXwjiWA5RPmpB6oZsz42oD3XAethjEug4nG19CGy8w2W3YFapgKMI3QugsGB/pNvFgctgG3T5vYANOMCHz+9S7cKzGS/w0LfGhOAPAyzTPYTFBIGP2wdXmPwQe3sgG3T53qAPon6OD9pDHYN9AOuG/Q/L7oXaAv+nfBG/Mqt3mrbj8dflB0aMfzfCBm2XSn3T2IDL7BViwxDCBoI1u8+YuShkRwWOJUrR/3iU8Eh0I/SEJd0bymO19+LewbMD4+j/KQ9QLQ/OeDeFZlMnzA3bTYJXhNIQzBxBp2JB26ZStjYIdTPDi9wgBNtnukEobJamw8lwg1Ap+r8sxAxq0ReoboI4ppJy53pF/3z//xY+Y11hV+mmB594kZoCCCo/ZJNSTohOfCWOOkOjriLp8lG/R0r1JaSUvjGwYV/i8oOYtqbbEIR//yzqHXjpbB3i2dYehK0ZXr1gX83DV97g1Tx85Q1ezcNX3uDVPHzlDV7Nw1cI4dW8MpQHr+bhq/Vxr+bh090xIK87yhsL8nqD7zhRV/r0eKn5vGtqk15cDn4P46JScCxqswfkHny6nu59VJhD4Hv9cgkdePORLn9sBI9x3w1JvS8RzmG8wQjOLfzrGtTdRd+b4aLeExrVVpVw3wwjyke9GxKOL34EFV7Fxhxp6z1m+G5WOl/A68Q+QBflCzsH35Oo/HkR/kj1eRSfp3sfJ37fLdyAiF9iAuvhFxVBf9TlXLyrFLYH+yPlX7A87pvhRHnoc3psS1B52E/U41N4XSkDefCdwR/UrlgObhZNhHxqW/ExHO9Rv/aD31doAwfqGoVw4HyBl2VvQTw/FORR82Sn4HsSlX8eXCRZjy7FwvpDUH2ddyeYZ7u2DK+P39lLbdKl5gi+00u1E5bfOaSd9wM7e7T45zs177RdGc67Eu68o3bNRM07ajcU3P2j+6QElae4nuJk6JNhnJwvovkQc/JTxMUw6k7VUGT7AKbtZYTt6Xjk6IBHaiIbMJ+FrQfUWFFr8NAQXTmE/XDe4nHPJbCp8ton4IVW6AtlIB+Wfx2M1R4taZ0ixIbBITbnh5TfF9mgy79F+EsUD0D/H4506vLvAp34hWTpdO4WovODiFiDmqdwjcXzej+iPBwvbQ/lp3gXALQdr4sjAD4uuyfCh3nQzzGuiLCXejgjyl683ui838B69XXwPcMdn7lRY7UrYW/csRoc0T6sS9dLisr+GDVHYH/8WJ/WmcfU+QuxplOxymig/7eQeEQl6rwG8zL12hkY51CxwT7I/o3rRINN9kc9DGcnxk68w33ghOqbqAdOomJyyOHUelMD5VHvZk8QNnDXUvgO/zG1K+odEqFXfW+O7EgX43UNvmMerkWMe1QfRvV5uvMafJ0BjsdwlEf5rG9/hO3H/hjVVpVw31DrPzyvw/5IrR+UP+I4K8pvVIryxyGgrUNQbDecsIfiaGxPupi7DJXXHJ8fUh5zvi7fBvgxjntGEjZE+fH+RPmRhM01kQ2wLsaG8xL2CX44WZfvEJOP9bi4eDgZ9hv2/6g+Ugn36QFEedhX+MkLeN17P5QHeWMkyoP+ty+ygZqzZeBY1NzQdf/efoW4elhMvQlCF8WTmKt1+d0iuJrilygfTzcvtT3U/B+B8iiuonxVl3Phq7A92FejYk6VcN9QfAHnuB7bElGZG4ajPOireDcy9K9hwPYmMWKBqLFNd+0V8xcVR1LrMD5HHRKBA+2iXjgwJAKnQYY4DQgcl9cgISYV2+D2cK+FwPr4Gu9Qi+2hbKaesIRr2kENNtXBfkzdC8PrnS6/oMGmemOC79T9KOw3cX0Xc3DUNSQhKvqNEC5iTpGX7ZgTx5XUk6sJUXkMKZ+Fa6cuI5CNLvoLzuc454wUb0T1L5wT+BWPsC/xqyGhv+G9EeledBIVh8D7hN/VSm9/1H3RdP6B7xlTsRUVH0TNHZfxKmwP9oWoeEcl7jVF7AswPhiG8uD445iUih0pvsRjHBY74ntWuvxqZuwY5Tc2Y0fqOr9DDqnSfhMVO3L9BnMI5HO4Ruv1O+oaWUJUXCfDXncddn9lMNKTQMergeOw3naozThGwrq3R+V1O/NDymt9OBY5J+JawrA0NuyAbBiexoZhyAZd/gLChqj+VykqJiwUleciY94kE0iftgceg/qLBO0fKRErJXD/aTzKD1TCc5maTzAPn8uYvs1BfR9gUReMLTMYL/ZeRnxeAXlsGMqD58dwLyFOueh/2B7l16UtN+nF5bCtcLzg/VzsY8OIusMI3dmaD8PM8CLnA3UOwJ0P+B77v30+YJ+vavOBuq5E9ZFKKREvxZkvhm9TahF3vmj9tuYL5XvUfMnwDUMpdSpWTVTmqrbgO3UfA46XrfGDsXu2x2+wGV7k+FHnJjbHD84tzvhR1/7gW05gHmxP1LU/WN/Xtb/aCCfs2t8H6NofdW4ade1Pl/8eXPv7OOLaH76+R/28DXXuCJ8P0fg6j7PnpSrvC8bnldTewISoPCaZXH96KeT6UwLo3Ymoi+c2LD+csEOXx3vicBm8f23j3hxwLoUfqqV8FtoVdj3l94jrKa73r8F+xvvBwmJ6rVuIyjGDbp/O46wL1JyA7cFzIuremkrce/HY76lnqcLml0r9CF1Rtg7OwFY8jnCs8L4BXRb6JWwP9suNugP/TrdvQPe5i/GPup5G9WnU9bR0fYrPaaL2FERdT6O4N+71NMghH6D1i9qzn0B5EBMew2s0rI/38Q0K/t8SjD/eq0s9p1YG8PqF6GxB+FRUG6J+FGBIRJuhPVHPqVH14POmhQRWSn/5KzppfdpXCggsvM9Wl90a9NNjLWhbEtieNCnqGZ1CUdmvOTFvAukTgo7ptf4iUbkvTGJ6Kgam/F63z/AcsDmM6aEfwZg+7JkFvG8g7Jmi7VA8Qc0xGKd2Cb7jObZLw031dgzRKQQ/XoP2tEfxWtRcVCnTZ/pgn0fdm++P8qh7rtoGan8BLI/3TunyZWBuRj3LZGk/6TdV+d4+/hEHyr+oe/vYb8KeTdH6kqh8fzAG+Fkm+J4IfP90INP2uHvm4dzA8zjuOVLUvId26/3aeN4Pj1hbqee0otbWdD/6EfUMOH7WENaLegbc0rk1eV8WtifOM+CZcJceWypWjHoGHL/nAXIvPFcuQdxLPTcAxxb7F/VGY2jHFsF3/LbeSRH+lW5d4b6jA799Gvp/1Nqg5z7lX7pchv5Vh/uOgai5pBI3rsU/qkM9005xIX6GGvoFfH7kq5KK9lDrJKzbJviO18mFEf4yPKKNKnHXKPwMc9z9RVHPiOG9ViOIfoB2TQ8+8TWj8pjxgqX9TGXZ3tOMnzmE59j4mQ7quibs07D97mHPdITtgVgbES9Q94OpuRXHdop3qfkG59S6YL5R5/k4Zh0SgYnrwrUnP6R82PnnKUR/YT4Lez6sNdKpy58ewQfUmro3OMZ9Jg/v7aWec4ral+4unhfdsn3tH68fUe8ECdufBctCnLj+D33ocOT/cD3Hexaj4lhcF+KE+X/YuxKuivD/dOflTZFOXf5a5rWvKP9PFyNExUhR+96j3oljKT7vme34HPt/VHwO+RdzKxXzxvV/6ENTUbwF34tB+Wyz4Dt+F8x9TP+Keu4nbgwa9a4ainvx9RkqdsXjGLbO4PMUXf6xmPGWpXfN1M02n+N3zVDxbRR/unjXzIsxr8/ga0sDmbbHnW9wTo1E6w0898XrzcAITFwXzuuw9Qa/nl+XfytivYHnZtT1ILze6PLvMs/Xo9abdOfr+HoQ9c4g6lw+6nzd0jsB62X7B3LxekO9A4KaGziWiXudJ935fc/A/zPr14XHJoAtWncuUTKJPnWZHwL/LAL4+jMZw47XH/rh5Zv6dZ1WG9VXSY+Rumejxn8DuiYLXweu+xK+Rhuvb7nINqpeAtmAy+cQ5bXeYiIvCdpg2kdN75zw7F5vfPZGuj4y1X9012Tt40YO6ONK/7MFn3//xMOTTnCl/4PCwT1zbj6muSv9p38/cIcVjVp9zfFR7Qs1QVldT9/HLAHHGVwY+7XtWn8RsoWJt/E+bQnCw+2Dr1OvE3xP/5MqNcB33CtQKzwWNku1ZSKkHGYIlTg/qaJHrjY6nhKxUh3tFXWITJ1XF+iugfLqgTw4mjjlEvZrm5WX/gi8FJfD9sDxqIvyaoG8egAbj2sJgaPtzyHK10K6Soh6uu/T4eUS9WogHQl0HEZpuQR2EpVvHURmqm9FI1GhnTVExf+h/41BNlKrigg5htuBn/TAuCoVioyYoHZc5tH6iwTd3ykRK21knpoID7fPjHnwmq9RaiGtugwsCxP0VhFSjhrRfkQ9nHS94hCdKhWKyp7K6OVqcUdVHytCtpiOai7Cw+3DHo29VqUSUdlD8Dkn5T3UurVZ12ZdHF16FdBlhwbMr1aPXsH3moLmGvg9h7AlJ8IWWB/PEXhOhN+DnUe0QeflR+QVROQVRuQVReRVA21IoLzqoN5IlFdM6FTtur5RxXKYi6lPISrznEp4rKhoAq4++DwT8lQJ0lUrjS583RXWr4V01U6jC98jg/Xxc0h10ujC+/Vg/TpIV900ug5GumB9XVf7ei5Rr5jAwWshjJQZa1P1uGuh1l+EbDFdC+shPNw+PM/rE7aUoDyVMO/VJ3DqEzibdW3WlS1d+GxX66c+NQ4+hnEgH+CzWLjWwr3cR6Dr7XVBHrVOTww+k6j8qyAuWIbiAsgb2saahM0J9J3ii3oR7ae4y3U/43U9YREH5o1EmA2QLtjPKulx0v0MubQBqtcQ5MFy8MoDfB9fQwKb0q91pPPBExvRbaN8EGIlUfm7gA+eEhGbYh+E/plAeQnUFliO8k84ZhNReW13PlEe6kui8meBKy/4npuuD/sK2oWfb9LlzwU68T03it+oKxFRvkit3VSf4vdE1iB0wfbg+75Un8L5WQO1X5e/hOhTHI/B+tS5x2iUB+/P1UR5+SCvBOUVgLxaKK8Q5OFn1OG1/jooD5574LiqOsjD60QxyIO+pc89kqgfbgqOFwp6vqREvITvO0RxK+xrqu+LUB7013yUB8elGsqDflCA8uCYVUd58D5lIcqD46n7upqIx30q4fVXl783Yj5TfE3F3bp8I6I8XCN0+Zqi8hxuhPJgPcwDjRAu/N44+B/2A7RrQvCZROUfBf0QtadG25XhPftq1D37xqAAvmffBOTlEuXxWDQlyjcBZXSflKDyFLdSPA37FHOr7qN8ojzUl0TlX4jgVsjNjZHtCabt1H1was7DOXViRGyK1/f6EZi4LsTJF7y45c2I9Z2Kx6FdeH3X5d+J4AOqL6PWd4o/GhDtovq0Icqj4gJqfupyLn5nE7Yfz8+otqpkypUlovL8wdeB4NzA/k9db4rr/9CH9Pme6T6BUx7s1Ofrfb7c0mSfALyuqevpuMHw7tl90H6dqGtZWn8RsoWJt/FaFhWnwvbh57kN70bem0D1IR51tzfDfRe5eqxqE7q1LTrWzA+xRddN4vIB4VN31nWdEpSnEr7+Ql1fhsdysqSLulYN+1GPiZqHv6Nr+dSd7Di+TdkIx0v7ZNQcNMWBuvT5POXvSlIiVuqKd2RoHVA39BuGb4+IyxVaf5HIaC4lonwMtg+fn9UmbMHvRlNpBiiXzv8gDqVrVRXVtdCirqUWdS23qMtmfy2xqKvcoq7FFnVNsair3KKuZVXUrvkWddmcjzbHcYFFXTbn0EqLumyOo01fXW1Rl03/WmFR19EWddn0+6rKOTbbuMairqkWda21qMtmf9mMTWz6V1WNC8st6qqqsdxci7qOsKjr3xDLVVW/txmbbF7TeLqqaixXblGXTb+3GcvZ5EKb42izv6pq/DXNoq6qGn8tsqhrmUVdNueQzf6yuQ7ZnENVte9t8pfN63JV9dqQTf+yGfva9K//72uH+l7Tki6V9NpRM0Q3/M59jipB2EzdJ4X37/E9UQH0ZPhEduzfbdP6i5AtTLxE1PhQ91bxE+OwbgmRh8eKeq6nDoFD6Upa1JWPdFF+Q9334/ZXdaAneAK4x4SD503qP2OSQCmJ/u8ZYiL+ibhhIablEnoTSPDxfdGxXKIs1E1NyaIQu4WINyVh/ZoROC6mPv4/L/g/6rFCB7e/x8Wlgf+V298zQblMl4OjLOpablGXzZCqqp6q2myjzduAVfWSfFW9fHG4RV3/Bp8ot6hrmUVdVXVuV9VLzDYv99hso81T1ap6u83m5Qubfn+YRV1V9VKuTZ/YHH/9/+Bom2vtHIu6/g1cWFVvh8yzqOtIi7qq6iVTm2vaMou6/g23J/8Nt4ZtzqGquq1o89rx/2Pt2HwrPXs+UVXXjqp6TcFmG21uN19uUVdV7XubW2Wr6vVCm3FOuUVdyyzqqqo8YTOe2MwT2ev7qsoTceIv+KpZ/DpW7mtPoS78OlZYH79WCupKBJ/6vrTh60FzE0ifthMeg/qLkC1MvI33palXalBbPagfJoh6dQd+hS33NYZQV21kw795e1BdwpYSIg+/0oUaZ+r1V5SufIu68CvE4Ouo8VjC14sx+jb2z6Zo/UWicjtNxrIA4eH24bGsTdhC8eIYVA/iWPL/3Uz933CMIv0fts/E/1WaBcpl4rMqzbWoa4lFXUdY1LXQoq4FFnVNsahrlUVdyyzqstnG+RZ12WzjUou6llvUdaRFXTb9y+Z8tOlfNrnQpl3lFnXZ9Pt/g08cZlGXTf9aaVGXzTba7PtFFnXZ9PsVFnVt5on/Hzxhs41HW9RlM56oqn2/xqKucou6llnUVVXn0ByLujbPoez1vc1zd5vnyPq6OXUNSElKxEqLHf7cVv8E0icEfX3pf+XntmaDcjgvlziWE6FrmUVdqyzqWmhR1xSLug6zqGuuRV0rLeqy2V8222jLLoqnqoqvrrCoa5lFXTZ9otyirs38tZm/XLbRZt/Pt6jLpt8faVFXuUVdVXU+2uToqrrWllvUtcCirn/DOvRvaGO5RV02ebWqrtuHVlG7bPbXURZ1LbGoy2ZsUlXXtHKLuv4N89FmG6vqul1uUdcyi7psziGbPjHPoq6q6vfLLeqyGUfb9K/VFnW54OiofeIJlAdxovbCU6/+o3BqZYhTKyZOfoY4+QQO/l+/Bw6+Sw+/B4762Xp9P6I+OM64P1AjgfQJQd+P0PqLkC1MvESU71H74HX7GpjhFSdQfZU0HvWzpbqvGxJ5Wpf+2c78EF26bhKV/zz4Pd4SVE4l/POB1E+PwmO6f5TffBToxb6gUkrESttTP4eKfQz2CWMMasb1Ma2/SGQ05omoPqR+vlW3vRFhSwmRF+YPEKcRgVNC5P1fe98CZddVnrfPvXcedx46o4eFwZZ0R4P1YCRLsiTbEZItWy9kG1sxXkDaorEsTe1hCcmWxjKmLtg8Spua0CSkhZWweKVlrVJCWSSUdkHatHWzQpM2gdWQpllhQduQF+SFE8iKIZzo/HO/+e539t3ncUejcPdas86ds//9///+9//Y73Oij6uPq4+rElwB/q/2P1effHzwp193evvm8SN/cu2q97zt9v/6rrfevnkb+33jDfGiD8jhj4LPVBn+pivlbyOfTFUM4U/VY9mY8pL0IMBxXl28q2XgUr60KK4knUyfJeJgnds6R9l4WPDUCirq9lrZl6Qvcrb5kJW/Lpz2wleGrez1ouzqXe5LG76898nptTefv+/S27/8wMffvOYjW78WX/uNx/df+vZvnbey60TZjGSqv6B3o5Bpnw5O+jWtlCHTjfWQV6eyyW/TjQbBv+f6drmp6xfTRptke6/B+xxtsS3U3g1/k3gpau81osf1Y3uvC15iyksSnyGrCzp1QUfheqZCXP+oQlxPV4jriQpxvb5CXO+sENd8hbjeXCGupyrEtVzb8ekKcT2zTPm6VCGuN1aI6+0V4qpSJ56sEFeVOvG2CnFVKa8q/VeVfL2jQlxVtmOVfC3X2FFlO1Yp+yptu8o6/nCFuM5WiOufVojr+yFuV2nbvYi1tiaD47FxyqtD3hjl4WedasRfQ/DX8PCH5RsZ5bgeNt4agHdR+rSxZsE7V4LveDH8TeIlJ72FseYg0eP68VhzSPASizz+BJdqn0jQyctXhZ/NsvxpgjuewVok8Eb0x++n6Z0SBeJeQflK9VllskQbZ5RP0piHzpgoZ6o5AjxOQj5/2mtS8Djp4RHLG5yiE5WkEwk6jEtNUyXpXPpsEPz706mpxBwGr12Mc6Pgz2cGUwJ+I8AYP0o2VnZM0I4ynkbHOb8OIQ/DRGeqQjpTANMgOi+tkM5LAWac6NxQIZ0bAGYMyiX/b4I81DPjY7Pgw8LOFnifIwwEL2kY/ibxkpPeQtjZQvS4fux7tgpeYspLEi9HbRV0tgo6S4VrzHXWn9sS69qLtjT8TVdKdyKfXLB+3JYvE7zElJekUwDHeXXxrpaBy+pVFS6z05Lt9TKWBybLmwbcWyhvG8A/QHnbIe8k4OBUp/+xPkn8OrixjZfhmFf0X8b3CtepY+g7snyB0p9YlDc4i8H2Oc7/BUtFv0ZLResB90mqwwbIY5ttibwE/64N2XVtlqxrU9RV0YlL0okFHcbVAFwjgOt+yEf451O5l7STh5WdsM+cLog71GcafmWXxldT5DUCeGn84kd+4T+8/psnIipvvPA77iNuE/CxgDdZbYfyOWT1EPZXHNG2PBz2TVMeDlWNh8TH3DC5mL9tBfkLkR/ij0Ueb2MIbYtY5N1fES60typwDRfEtdJlx2/lk3j7cF6fhOV9vm+iJJ0JQWepYztfyY02gPxx6ha/35sjfqNMOX6jHHgbdd5+8aDg1eTNfbaWC0rTLFNMSqaDlIc+EeXAScnbeE7k/Us55I0yNd5KxrNtqm/IdLGuWynvRoA/TXk7IC9vn9Lqk8jo2zlkhPqwnWCNd9tyvwnyrX/WINipVrvMS9YtpoU6+2riA9tjE9Bdl+IwO9kBcOz/UH518c7n/wxO0ZkoSWcikM6WknS2BNIZLElnUNAxu9oJeTnsapfpwS6RaXk3uc46WN5uyMvrX4znvP4FZWq8LbUcdlDeboBn/7IH8vL6F5TRtwvGPOQbeW84HeteTfkGfzj1CYl/OLAuG6e9x6NEJzNwHlzXrt8PTi2uA8Y1niNAnzlDeTdCOeMn4flNHp/GY/e8tonlWTewnLVVSX0NnhMz/E3XWecic2I7iV6WXNiesGzsOm3tEMBxXl28q2XgwjavAhf3m5eDf+E5sar8y8Er7F9mUvssKetFRyMd4erb/vKy/eQ3z02UsdfpCnH1bT/c9vPGbJ6fxvEZzkG/ydPPUL7lNZRv8G+Bvss/XJddn21A+9PrFuMy/t9KfqqgXUk/xeMHHNOyn0J51sU7n58yONU27KcK1i/YTxn+puuscxE/pfy3kovVfafgJXadPo/7KMof7hR0YkHnxgpx8RwL4s4hvx0qZllSsmIdQv/GfuomyMvrp6w+ef0U+iLkG3kP9SMG/36y/YKylrZvuNTcJNt+3rlJLM9zY1iObb+gLQbbvuFvus46F7F95ROVXNRY0crGIo/7KDcKOjcKOgrXdIW42PYLrjFtV3HAkpIV6xD6DLZ99GN5bd/qk9f2UcY3Up5aD8B4r+bc2S4Kyjn4qgnDr9Zei9iFWktVa2HJ/izby5VuOz02O3/i8YfOzp2+e/bJi3ecO3Pi1IX5uVNn7zhz5sLsxYvINBIah/eYj4lh7PeAeI84tnepzPH0ucJ1NtZ2wnVjF1z8vVksz0F8RxdcDxAuLM8DRft/wHXyaR3kWgAeNkDF16uIL+zwceDc1QXXQ4QLy+8iXDd1wXWacGF5LIv/D7hOPllePjzJ3x4PX8nvlxBfOAm+h3Dt9eBK0hnCheX3Eq6bu+CaJVxYHsvi/wOuk0+Wlw9P8ndLF77+PvF1M5S/hXDd2gXXw4QLy99KuH6gC65HCBeWx7L4/4Dr5JPl5cOT/O3rwtcc8fUDUH4f5aFeriE6eTdTYPmsjUGWr55Gh9/5Nm2sITr7KqSDuH4IyiV5L4fy6FvVhITRsOC/H973olNs+JvES056C8F/P9Hj+nGn+IDgJRZ5GFcxD+kcEHQUru0V4no51QcHAHh/x/M0ubQf8tTgweJ3g+DHWu1y36JFJtSVfQF13C/oGfxt6f+DAh7xNQj+BVhkq6cHN2LB04EMXjiesp4YTJKGiXavbMTwN11n+xexkduIXpa+Wd1vF7zEIg/7UpiHdG4XdBSunRXiWtBd57eRsfWLaRa1kec3tMvFKc7lZCNrUp7K2Aj2ocbEO7aRgjobbCOGv0m8FLUR1RZYP7aR2wQvscjD/nOWLd4m6ChceyrEFWojU2QjuyEvxEYM/rfBRjaRjaCM2EbUeEUtGhm8tdmggEd8DYKfDrSRPRm8JL+x36wWsdhGCupssI0Y/qbr1J8iNqLGe1g/tpFbBS+xyMMxE8uxLt7VPLhCxlyhuHZTfbJsZF9FNvKLYCMHlqGN3JnTRhTvvRh7qfkFvL82S0ZKd2NRfg/lTQs63XTknvWanywdsfF7g+B/DnTkPo+O8GZw5JkXXPKOpTcLOiETywX9z0CovzP8VU0s++bKksT+bq/gJXadvpMPqSq/qvoeVwuu5LfdhemLg3ntPHaderSZ6OytkA7WZynmjJL0Q0SH5yTVM5QO4uJNKll+6xz5rVsgT/ktm99rEPy/BL/1WIpzmGBy2ul+432/yFTzPXsoD/vDeykPx5Pc9gchD/sunNSin9U1iaEPTLXxMhzXA337Acrrgc8N7mP2fW41uPrjhcW2xOMFzMO7wNmv1cW7mgfX7gpx2VpGyfaqzK8liTcs4Bxa3g0LVp+8GxaU72I7YTiML2rdUPEVCTxsT5an1v/sDm61xvgiopHX5l8k+A2ZR0P9yqFD9VCbN/xVzaMp+/HNo90ieIlFHs99qXXZWwQdhYvH9ThWvtLxc3cxet74qb47UIV+ZbXDXg+9W4vRqxk9te69W9CbcJfnN7gNs9bn1bo2tleWzSNt3puTd78D4uK9OXsz6pDVBmr+x7dHoUF5v5z20RM//Nn1i2FsX8l/ApifT38rn49zHZ8nON6jkqSS44Jg2zP8TeKlqO2pdsD6oW4OOb+OYBtl7VnaJerCOruzC0+ss4qWalPcw8VtihtdcS70f3jgdgg4lWd9A0c4+FDEr8Fc5RumFtcR6fI+t7ybj9XGUUVnuiSdaUEnZJNzwf0VwXNuhr+qTc5qz6Jvk/MOwUtMeUniMVveg3DLHVfy274D49vnE9Kuio7a5N3r/VMhel6UjprvUhu+y9JBXPyNpIKH7nKPD3mTOM57cVvivBfL/yDk8UG+OyBvG/zmpMaVeFjv0YA5sZIb1Ze9/HC/GCclPzxI0Jff4v2PnKqUX8EDRDvV4RFLfOBMyQ/7qSw/7KOx/LCviXGDk5IRXv6WZ94adczqNOraFzq2D2LcPfvkq0+dnTtzan7u/Ln7Zx97fPbiPF/TzRFgOoNL+98kx9eIZ3GdpBrlbaP8EwIO05goZzSu1LHTgpbuPXaK9Sty7DT5jV8jZIuoi3e+o6JbKsRlerPUx063Ud5yO3aKMubRIV7RytfWbIByL6O8FuQZ/m5XtOJXCzAvSXXxjtt6SNBUdFLRdHzV8K6Ut2GCy6kfB0JGcAWv1zsQ6iu4PdRVkU2RF3JN6l+sPrj9Tz/4Jz8ZUXnjhd/xNalqZ8qQgC/Zo9k3BjSc64ysScKrd15GeTgjgb0Jvia14OrovhD5If5YwD8IcHnaIhZ0thTEZdeR4iyB2Y7Z33rIm6I8tDPexbRR8LDRU5/NgocxUY7tcQre9yJ2G/6mK+VbFmL3FNHLkovy8VY2dp0+9RDAFfHBSGd9hbgs1pRsry0sD0xqBpN1CPWfYzf6tbyx2+qTN3ajjHmmsm9XvberzYIXJbNr4DfmIR312Q2Fa1OFuEx/SrbXZpYHJuWDWIfUTmplc1fCrrYQrPE+IGAn098Ngn0Kdsp9mPrAWN4+f6M+I3QD5aGur6e8KcFTRDRwNwbq/Tmqg8G/LeU7keXhSY2zloET29S5xbZs9RgGupaXQwd/IeFr52SbDsosSdify7IbhOd+q+9TOSgDFb/YZpX/xc8o2Qqekpfx2At5IQ8sr01deGZ5KfmiHEwGyi9tIFwbBC6UoU9exmMv5IU8sLxu6MIzy0vJFz9TZTKIXacsW4RLyQvt8TjBW/lBAY/4GgT/AfAJfHoE/Rq39aTAjb4xIhxYj1FRjzHKw7IJ3tb1i/GqE0Rqx4nBqxsQcHcJ971wl4OVLblbZlntjFYz9FhnTio2mxxCZ+gjomN4Uf5JYp3YKnhUu+D3BOI1+G67fWoBfOOOENahvYJvtdtnOoOO2m2ZpLn0ybv5Pwe2bJ9LVP7UaJf0pyuUP0UZsT9VNqt2B4baLO8sx9NuvFMZZWw0lX7hrqh7cpz2U7vQ1I4b1r3BDHjD17EDTPhrnz6rnd1F9RnrUFafUV6PUF0N/otLq8/jvdZndSuK7zQunvTfTXlKnyPX6cPy+lfcGbav5GlXn/5b3bL0n0+7Gvz/9ei/kq/a9Wrwvpseuun/AcrDctMZdLL8Oeu/wf9+oP4b7V7oP8qI9T/0BhODV7eHqJsU1O0hPv0/QHSq0v+pHLeG3OahyWWxbln6b/gaBP+XHv1X8vW1x0EBr3Z6qPofpDzV/2Q6qP8oL9Z/g49abqGuPv032r3Q/4MAwPp/B+TVBTzL+04BfwfA8K0+d0Ie34qFMj5IdJQfDNV/vG1nrOStOT79V7fmIHzWrTkrW5efSv+VDapbx0L9kU//b6c8tXuK6aD+o7xY/w3+2la7rj79N9q90H+UEev/QcirC3iW9x0C/iDA8I09aBs+/b+d6FSl/8/TzWoRwK0mmpGgie94Dp/LK1y4P+ok/J6BfITf17r8tHkKlH8OPXjlGJRxgANxF9SxV2JdLdXpHeIfy6CXpKbIC9n/cOlzG5790Jt3jUdU3njhd6zHAwJ+tYA3WQ0S7y0XlO5Wtm601f6HBuWhvRoPav/DQEH+QuSH+GMBzzvtQ9tipVusC6jvSR3/OD1eZ/qzAnCwLsfwPkf9a6G6bPibxEtOegtrnDHR4/qZHJK5VPv0Ybqj857zp84cOvXoxcfPzvKOSrwbm6WCWPEdeh/OY+/BcMfo/+OinBO4k3xruZX0vuWC0irTilUi0/LQQ49T3hrIw9bkpGZNjedES/8ctJThmB9sj9WUNwF5a4A2t2ss6Bj/NQE/QbhiUc5k341eXZQbJxzDolzLfvzusz/5lvgTP/bB1vSvPD947N1/OPNnxwdu/c1feerF/+Wtf/V7f/we5tkJnrkdxwlWPY13fsc7CeIKca0UuEw2+DHTHDp/Tai3MvxNV8rGFrzVKqLH9eO6rxa8hPSaVgs6KiorXLUKcdUrxNWoENdARbiSdKKPq4+rj6uPKxCX5WG8X0l5GD8fSp828kb/zB+1rgn+ah7+sDzHHtXHtbiLfj1HHBwLjbs8qi04el+Iu3WilyWXkiP60YjKIz01ajdZD4g8w2W6Mej8I8oGwb+ndfkZE1ySWK/VKB7fmXySd+9uLeZdzYyEtDPijV1n3S1vqfUexx94z+BPtTRNnMnEsvbdlQbBr51sl/tAazHP2K54isRkoPTENzNSchZ0TM2CDgIA96OQ57qAfzh9qlNODcrD+gxCfUr4nzXKt2Ebf6zlFtUHP2Cu9Mrq0yD477ba5X4m/a30GMdjWX5D0WO7HRTwiK9B8J9qXX7iyoHibzyDHspD+TWm9+9abXq+2Xv0w84V1ttrlN6iP2O9RR31+b8QPVe6jHo+TLiU70I9OJ7Ba1Y8MHwNgv/PrctPtVrk03PVrgb/HOD0tWtF/ki2K8oqpF19s9nd2pXjCLZrk3CpmIptHdKuyB/HeYP/1dblp2pXFaNUDOEY9UXA6WtXk2Uv2hVlFdKuKt6HtivPymO7jhAu5aOxrUPaFevDPtrgf7t1+anatagf/grgvFJ+GPuL3K7KZhCe29Xnt5UfxjYfpTyef0U6eX20iss+H23wX29dfqod6LEo7+NPyS2ps41J01WQV82fvzCbLoM4Sr5li+T3RAYba0R558GFZXxVwoUdFrnRGnR6ep1FbvDfbF1+oshZhMxPyBC5oMkEL6QZ/qqGyN26njxM8pmZbzgbOhSvUFWTdCyDjUiUd11w2f9JZLBeMzY39+p9PQEui9EntCdg8I3Jy08VMbqNzNijjAl4jIo8Osc6jFEelhvPoBPaQzH4UairL5IZ7V5EMpQRRzJc1VGzAyxv38oQyiQmeGV+KOMxotPNzHk/kNJT30gZ8fr0S9mET4eU/ivd882KVNRbHcs7ulS64BtddtMFq5vSBd+MGvOlQizqKOvCmKDDM2NJYl+DTyvjAN+wgLe8JuRheyVpBN7XBa4hKmfwO9K2s+4B6qmVx30qjuAignUZ9GsE3xTwTQGfyGfLZJtnxSfHL6xrXcBj9wfh90y2ad4MOm3vmF7y7pAHLsp4Kp6RH5+M6gLeaI8I+IUYAXmo+wiD8kJcTchH+DtJd7C9rXws6OOsj8vgG9+x7owK+FEBn9Tz5ZOL61BwT1s04hbPatgzZF/hp/Zu2zf+2k1Pr6TyyGsZ/OPPfea+r3zr0U3d8Kv9bxir8uor+1fE9WD6LLnXsWblsd/kwstHKiZFxNtwMd6+GyInxN90uk/XckFpYXjCvjYrhlr9msXofScZ0o64zj4HtiXKDulYe6m+xzDlNQSOpPxHpxbXo+Cw7jsldfAFNVuDKyUnJ9t4se7Yj1fDZx6znIb4cwp8q+G18hjD1biCbdrkXROwfDcf/q9mB3kIa+01mFHXQaqrwc+l9UvovfAijRPlp8ZbjPMs4BykMR/HmCybMfhRAY+zn8bPCtep+6NUTs2MO/FOtU9EsMhDkh4UPGX93xR4sngYFnjYzzNOpsn6kCTuR6vxKdoUxqyS00kDKhY44odX0zEP6/Z3AY5Tnf5HnhMcd0228TIc86NsqcrYbe8H4D3T5fmkQYLlsRTyWKY/zP0LdW7B/h/y8B8RHrWzYMxpe1PPUH4jwW8vd4ok6e+lz5Ix77puuwN+fLKNNyvmqT4Dx7z3TrbL/fPAmGd53G9L0uvgHft07gchjiTxNLr5yEHAjzDDVCeDfz/4rheovz0k6P3N7heS5zDk+eJIg+A/B/L8MMkT5WXyVPGLbWAEeEHYJD3otAz+NfDx0clsWjhOzapjguPfTGo45AHhGEfRuKb6V2y7If0rNQc17KHB/jgrdptujHbJHxF1c+JdTcAPZ9TXCdrNLnjV7g/l35uUF4k89j1Y39B5XPRbP+6xl8gtrtcI1WvYU69IlGM7R96HPLwr+aH/KDqH8M6vfvc3nv0HL/5Gr+YoDnzgiX8ytvcTn+wV/o+PfuHOz31g+GSeORBrZ7VbiXUL32Pf4yTkI/wX0vYoOcfguD7Kb/jGZzwXyvw/kMH/H4D//nWyCzU+UTaTFX8HAnkx+P+T0l+i9a2GWtNAv8b9XeVv1Vy2wXcbW5pMYtfpX0N2iaBMuU+j1lPV7h/Wh9+BNuDdGMo3Wx7Wnf2iWo9Rc4lmYwlMbePl3yX7t0OqH2FpzGX7f9YHrKPljRBPmIdtyfP9mNQYEs9q1ze28TKcJeUf2F5969iqv6jsDnckO7d87M50P3ad7cL6FqrDWf05RQ/lgLHadDhrTh5tGsdcgxvb+FDuar9AktifGvy6je1yzfS32lXP+qD8BPPinH/N2zeWV7vqrV3UOkCeuR9sX+QT3yH+pivlXyL2t0aP24jn6gv2ExocY5GeaocJp2Wq5vN5rKjme3zjJJ8/UfbHtqnmEVQM8Y3njDbOmYf0m7L24mTNZ0yCbd1CtqV8ra/dUHcY3uf7kFcl+xHKU2N/+z3qoaP4UnulRj18oU/Gsky7Wx1CY1VFfcQBFauwTdhGlFyy1riTv3EBj3tO2EZwnxPv5g2NbSOUp2J8t9h2S0aMwnqoHeJqKyXGN4t9RceHL7/hR6697pceG+vV+HOgcd37Wp948J4840/lV2qEF+XA8+1Jem36DFnnLhg7g7/ZwbGz7Dp3aOxU/XWOBTjPwic+1RyM2ru0VLjU2ITbsmA/IbgfxHsWCuqOd8+Cim9qfMXjRow/LH8VR1W8ulpwof37+sch7aroqD59r9fueM1tqEI6iIu/FM3z1uoZSgdxnSQ6DcFDUv85io1qPgzLZs2HvR36mGc3LoYx3s8BzJM0Z4J1zmHLTTUmt6TmPlhvVT9Q7adl/cC+zTDl4TGYBwGOk5pPMbiEXsh3CpQsC+5JWlayDJWX1TXBmeerwqhvVidcx/XZAdJlO3gn6PhPkG2p8ZGyZ3vfbU7Wt15qZYdFuRw6Mcpti0m1LesEti3rBB7/Yp3AMzpsX3isjfvGmJS+mBzy2NdPZPhIo8E+kscPag0XfW+v9sAav2q8Ewl+1VwKz9MOdcF1P+HC8iH7WkqOCwZDZIT4m65U/IlC5VJkXMBtgXlIJ6Qvr9pyuY0xqsSl5gSsPbrtnf0k2XsEeWr/IPeJDP7TEAt+lubdUN/UPiLWX6Z5P9Wr6hP3PE+q+sp51qpRdli3h9Inz1n+PPhG3/pqRes8g2ruDGUUYoe+uVEVM9RanhprZa1Dsp8M0RvfXlfU809eRbEpJJ4UXZMNqRfiryqedJMLx5MhwUss8liPlR9QeqzGsif6uArhKhObvpozNrF/NfivQWz6/xXHpqwbVhD+aohNp9Mnx6Y/WtrYNHS1x6ZusearItb01yFk6q9DuM76c1v21yEup/46hH4aHX7XX4eohk6RdYiNU2282MZZ6xAcmw3+wFS73A1Ti2GM980Ac1P6u78O0U4ohzzzpCzL/jpEJxzXA/WtynWIg6Dj95Jt9dchFuddLesQ92b4SKPBPjJ0HcJ8b9F9Rj82GL/zC7XTzxU55zJAtOw3tiG+x7jL51wM/u+QHyrYP5PnXHCvHvOfZ75R9VcsqTmdiPLUmRbVP6xTnrLbUJ21uiZ8/fsAnQ3Zm6tu7/Xt212KvblJmiGecezJcxJJ4nnKSNSrzF6+p375wke/s/Jjv7NczpJdIhsrOOa6YmfJ3g3x8U1Ti+kt9Vmyt6T0+2fJrtxZsh+GNriSZ8n+FdnV9+tZsjzxpX+WrLNdruRZMtPhEXhf9K61CPC6tKzxhDaE/X3nFs9B8L2izWK8LMhQ3cGBforPKBn8Z6YW4+GYie+ShO2SJHXHYF3QVfdRjubENUy4hkrgQn1j+KGcuIY9uPj+z6bApeJW0nYfA53Nc/7xszQmK3r+8YvQH/mP1B/pn3+8nPrnH/vnH53Lf/7xS2BbX/f09UPWRfvnHxf/76tD//xjO+9Knn/8ekaMwnoUOf/4WZo3vDQ3+8TMufPzs59Oa2dMFFwIiHgSPl/5p+8fZoS5yrv7h12n0PN0Xq18QYVeEPZdVN65TqNCpcIylocTWHenz8RgVsPv66BMku4BWhHlvRLyapR3r+DX8u7L4D9JuDA8QHk/CHk4IFMBruWC0j0lA/zgKpcdrO15qBjuBd0/DC9bLixZ2SPFaNes/NFi5RtW/lix8nUr/wooH7n8sjtejP7CIOAfp0pf5cbXpivlExY6sWpirCHohSy0KFyqQ6wCzcAS06lyA0ZVm7G6BVTfoC1r0Qtx+QZtauK+T2d501GTuzn8WyWHpDBWOef3IQbfzAk/khNeDWwGPPBjOfGP54RfkRM+zgk/EQhvPg8/VGT+zHQBPzJUZII1Il7wHeJvEi95feYY4UM6VpfVxXAHH9Yw/E1XSnZRSX4X4scat5hflq/hjwmeeUdYhStJplOjrq2v6ff7js3O3/u90dvFWgZKFCuSZnj+bWkwA0/ddao2w9Tof99ZRnzfzHg/kvF+NOP9WMb78Yz3KzLexxnvJ5xOh+j/4/T/KzzwGCJWuuwU0R+/79X/bglpVcGr6ar6HXlgQs6nFZwiCXZ53OWNitFbcFlqPwzywKFL7VlUa+GHAY7zfCHy+xGX8oNV8KWmjKKMp9Hhd0xHxQifXRSlg3m8JwvltpL4ySs3LB8yzEX/e8jDV8hZroYHF5bn/R3duu9HCJdadzJc3br2xwgXluf75ke74DpKuLA87y/GdY28a5HJn2+IgPiNF5z/52/nruiCi88qYvkVVA73IY8RnTqVQfgkDYtySWq5oBSpM6lmW4m+vYX4iSGvTmWT39ZvbBD8fVG73FuJ90Yx3oPO/hWc/h0O8VGIv6rpJuUTfGf/Qs6LKT9W5ozX4T6uYFwqjlfBV5XT1nmnfn1TnhHlVXnfjYp/JffqD3Xzfx/K4DnL//E+hQV48H8/nb7zncmPBF+qL859BB5rIK5GF1zcR6h7+Op2hwX3EXz92uEuuLiPgOVD+kEoX47xeftBiItjvK8f1A0X29uQwKXOMSZ/LReUjipbyVH+lDrnlaP8nOrH5Sh/1sqPFys/a+VXFCt/xsrHxcq3rPxEsfLzVn5lsfLn1XRyjvIPqynRHOXPma/FKVHTZcN9DbzP4cevQZuwpPprhr9JvOSkt9Bfu4bocf24v7ZW8BKLPLbxtYLOWkFH4RqoENdIhbhGK8Q1XiGuFRXiiivENVEhrpXLtI6rKsRVpU5UKfsq5VWlbVfJ1+oKcVWpq1W2o+mX9fUN9jvpU/XXcsSYtSHzGwXP3K9FniypeGn41fkw46sp8kLOva5dt/fzE+/73wux1Pcd0SSFbClQsVf1G3PIao3a12y0LQ/HNyOUhzZqPCT9+x+JFvNXcH5zTYj8EH8s4Hm+I7QtVjrth5Kk7sGoU54aO/O5lOQ3392AusBbZdVeabXf2cZreEZBnQH27dtX89Y8Jg2VZSzKZ40js+Yf8AwJwo9H7XL3RNn1ChlPNwN5b2bgagjek3SceDf41Sm/iQ68L1qMU8kW5xMOuey6smzHu+Di+REsH7I+gLh4fkStDxiuuAsunh9RawWGa8KDC33EClGeY+fKLrh4fgTLr6S80PMkvAW74Fbb4YS3n4radLg+7M9wS5Nv3S8m+Mi166Hqs7KH9RnOWR+l66o+TU99etk+vvPUShcR/hjVB/uUHK+VP13q9unm145SfZQvWk7t0+38XFbfBP3Z1dI+6PtUfWJPfZZr+wx46jNBeVl3Ud1DsVvN+2N/wHyq6iviOsyH0t++OOOLf/jOtxfE4Hht+wHon/xbqmMMZUL6PAb/GsBpfR4Vk3ldRvUVYk/9sHycUQ5tMIL/WdbcX+Y5APy9BupdJ/gksVwM/kGQy6dAv41vR3yVtKMhZUfI50BGvYwfhud+As4/87E4rM/qHtZnImd9EP6Ipz449rLyzi3v9jnmqY+v37Nc2+eopz6+fs9ybB/VT8D6+OJqL9sn9tRHxRv0q9xPQH86Tnk45xFTXgR0suIm5uHernIyeeP9RrsOuOsCskFPg3lXiqDo/Xm/+dzzv/6zd930hm7359l7viMEn8Z/ktR9Q3XKwz4V72Mbgfd1gYvv5zP490K8TxLutcA9Xkyfz2Aovn13EOW5U+dHozbPRdvt/w2fOFL7uWc3dGs3JYc6leG7Ahke79JF+A+mCJI6fRjs2t4xveTdJzxwUcZT8Yz8+NqgLuCN9oiAtzycH0e/hDAoL8TVzKD3M6SbqE94nwXTx7GRy+A7a66fcdXFO9TNj5I/Kbons4xujz/3mfu+8q1HN/Xq+9+f2rtt3/hrNz3dDb/Fk4dn52dOPT7/yMwTc/PnZi9evDF9f4Wv8XjHMCPMVd69o+QZm6jkNSALPuYwlFd78NR5CCvDV3VgnwbxOdfuQ6j2LlmXI2o/do7yB1W/i68PYdyYp64XSOSxLv1dsq2PlJTPwVUuu33tWokt6f++czYl+bgjJLYg/qYrZyOR6+xH1l1n/fD4qe1tah8/veN73uc1l50PMomID8J7zMfEMAzH8GoR8mrsFG5On8u5U9hybZ5LDireUXZQsZ147dWgwtpjZiYJsY89fn5+bvbc/KvSt1c4vN5dMrzeXdJVVXZL1iuovCO8Kry+gvLQVdn0YmJteA3qGiiTpLuAFrvvgm16V0mZRr4wZO19qCDuPDdT/YtnXv+jjzz2+Xftbz279jeeeuEY30zlK7vzzL0XvrLrg1s/c+LIp5955rWv41upPGXZwbuSN1IthG6+Va0XR2uQzypvO1JHZCKiE1VIR0XTknYxyDfnuPCyUbepro3AU/KnrhtV3dYGwd8A5Xg7iPq0gP1vOjpIsEk6TLQMdivQ2pGBzwl8POUbiXKK54EMGpGA5esp1dEs5DsPPSUjkzXL6BjQ2u3C+Ed8Pv5D2rXpoXGYaESinKNyJtejHtimB5brzMvJXB/eLsb+P5HLgfS3kkcjg16S6q5TJocIHutSF/iHiT+DvzN9JrC+T++iLqKusO1Gok4jTrcr+wusl1qqRl9jfqhk7/juCHgx3Hl6x/elz173jovi/9WhP/jmf/9vD/+zbvitXt/rfc+/OP19hfvcx0r2uY8tlz73YSrvCK9vSkv1uc3muM/Ny3bozwx3yb7F0V72ua3/iMuamD8oylq9fFukKxhFHyvrJ9Kv5SzZKPrM7Onzb3j0/MXZmUfmzs2vT9/+bbHoq32S2me1RwBfRHlHBd0rPFldW+WyPZtZtGm/GiGgLuEoQsnViXeRwMOywXZopc/Vu9yXNnx575PTa28+f9+lt3/5gY+/ec1Htn4tvvYbj++/9O3fOs91qXl4982N+g5aLAfPZIsCvfZMVs+z85d90mT6f7+XUcr++r2MzhTUy7gOC7i2nAZcti03CHYtlFmdgW/QdfcN9Qw+sCfOOJLUckEpUnQiQWe596Ja6bPXvsrWiC7On78wOzN3bmb2jbOnv7cCd/7czOlTpx+ZnTl/4dTps7MzT1w49eijsxeWyR6AoyVd2dGrxZUpc8hB53BJPuUkKbu+gntlgq+a5jPDRV1lRPiMHteP9x9kdYOSpO6/6rY34VqAy3JB3cLUFPx+afq7pK4cLRnK3CqX7f4j4NfSclwyt8m25bxkfh3wzHtITP51woftgviSfRfXp78fvTB36dT87KuSSHD83BGLA4eSMOAo1TLoIQ1sfzWR4UQZq1fJ8Hu0bPhdqq0AttfuzNyF2dPzc5eSEHxp9sI8n1EreMfRQpwteGeR/B493l9keLk/4HLQsIRtxYn34rJNcX8iB/0oi49IANuZVjxzYPJ4SfrEtpyffXj2wsIWD+a24E0cCx9kKnj7g2xV3EnLt96z9DFlWTNbvg828uAdE3mG01oD+R2hvHZrzJ+fuXDqzNwb+fx0wf7LosXHAuUXbLPgZ1vqqhUxvlq9snwz0jRemsV4GfHFd16MdAJGaVaN/m/Q+3oArNIsy1NxPGRvvYr7SktZ7qhvChf3SVg/yrbRKipvOJL010OJ51dMjwsA",
|
|
6256
|
-
"debug_symbols": "tf3dju08cqUL30sd14FIxg/Dt2JsGNVu70YBhXKjbG/gg9H3/k0FFTFi5erJVM4535PK512VGUOkFEMkFaL++0//89/+x3/9r3/569//33//jz/90z//95/+xz/++re//fV//cvf/v1f//Kff/33vz/+9b//dJz/0+hP/9T6GP/nz39q/t/i/90f/93P/576+O8//2nO9cP8hx3rR1s/+vox1g9aP3j9kPVjRbEVxVaUdhzXz3b97NfPcf2k6ydfP+X6qdfPef284rUrXrvitSteu+K1K1674rUrXrvitSteu+L1K16/4vUrXr/i9Stev+L1K16/4vUrXr/ijSveuOKNK9644o0r3rjijSveuOKNK9644tEVj654dMWjKx5d8eiKR1c8uuLRFY8e8cbjJx/Xz3b97NfPRzw5f9L1k6+fj3h2/jzj+S/OALtAjoAW0APOo6QTKIADJEADZoBdoEdAC+gBEVnPyHwCB0jAGflsvM4Au2A+IneHFtADRgAFcIAEaMAMsAssIltEtoh8Zk8/u+XMnwUcIAEaMANsQT9TaUEL6AEjgAI4QAI0YAZE5BaRW0RuEblF5BaRW0RuEblF5BaRz+zqj1PQz/Ra0AJ6wAigAA6QAA2YARF5ROQRkUdEHhF5ROQRkUdEHhF5ROQRkSkiU0SmiEwRmSIyRWSKyBSRKSJTROaIzBGZIzJHZI7IHJE5InNE5ojMEVkiskRkicgSkSUiS0SWiCwRWSKyRGSNyBqRNSJrRNaIrBFZI7JGZI3IZw72+QDPQYcW0ANGAAVwgARowAyIyBaRLSKfOTjaCSOAAh6Rh5wgARowA2zBOHNwQQvoASOAAjhAAjTg8o1xXL4x2hHQAnrACKAADpAADYjILSL3iHzm4LATesAIoAAOkAANmAF2wZmDCyLyiMgjIo+IfOYgHSdIgAbMALvgzMEFLaAHjAAKiMgUkSkinzlI4wS74MzBBWdkPaEHjAAK4AAJ0IAZYBecObggIktElogsEVkiskRkicgSkSUia0TWiKwRWSOyRmSNyBqRNSJrRNaIPCPyjMgzIs+IPCPyjMgzIs+IPCPyjMgWkS0iW0S2iGwR2SKyRWSLyBaR7YpMxxHQAnrACKAADpAADZgBEblF5BaRW0RuEblF5BaRW0RuEblF5BaRe0TuEblH5B6Re0TuEblH5B6Re0TuEXlE5BGRR0QeEXlE5BGRR0QeEXlE5BGRKSJTRKaITBGZIjJFZIrIFJEpIlNE5ogcOUiRgxQ5SJ6DdgIHSIAGzAC7wHPQoQX0gBEQkSUiS0SWiCwRWSKyRmSNyBqRNSJrRNaIrBFZI7JGZI3IMyLPiDwj8ozIMyLPiDwj8ozIMyLPiGwR2SKyRWSLyBaRLSJbRLaIbBHZrsh8HAEtoAeMAArgAAnQgBkQkVtEbhG5ReQWkVtEbhG5ReQWkVtEbhG5R+QekXtE7hG5R+QekXtE7hG5R+QekUdEHhF5ROQRkUdEHhF5ROQRkUdEHhGZIjJFZIrIFJEpIlNEpohMEZkiMkVkjsgckTkic0SOHOTIQY4c5MhBjhzkyEGOHOTIQY4c5MhBjhzkyEGOHOTIQY4c5MhBjhzkyEGOHOTIQY4c5MhBjhzkyEGOHOTIQY4c5DMHmU7oASOAAjhAAjRgBtgFZw4uiMgWkS0iW0S2iGwR2SKyRWS7IstxBLSAHjACKIADzshyggbMALvgzMEFLaAHjAAK4ICI3CJyi8hnDvLD1eXMwQUt4IxsJ4wACuAACdCAGWAXnDm4oAVE5BGRR0QeEXlE5BGRR0QeEZkiMkVkisgUkSkiU0SmiEwRmSIyRWSOyByROSJzROaIzBGZI/KZg3KcMAPsgjMHpZ3QAnrAudJzXglnDi7gAAnQgBlgF5w5uKAF9ICIrBFZI7JGZI3IGpE1Is+IPCPyjMgzIs+IPCPyjMgzIs+IPCOyRWSLyBaRLSJbRLaIbBHZIrJFZLsi63EEtIAeMAIogAMkQANmQERuEblF5BaRW0RuEblF5BaRW0RuEblF5B6Re0TuEblH5B6Re0TuEblH5B6Re0QeEXlE5BGRR0QeEXlE5BGRR0QeEXlEZIrIFJEpIlNEpohMEZkiMkVkisgUkTkic0TmiMwRmSMyR2SOyByROSJzRJaILBFZInLkoEYOauSgRg5q5KBGDmrkoEYOauSgRg5q5KBGDmrkoEYOauSgRg5q5KBGDmrkoEYOauSgRg5q5KBGDmrkoEYOauSgRg5q5KBGDmrkoEYOauSgRg5q5KBGDmrk4IwcnJGDM3JwRg7OyMEZOTgjB2fk4IwcnJGDM3JwRg7OyMEZOTgjB2fk4IwcnJGDM3JwRg7OyMEZOTgjB2fk4IwcnJGDM3JwRg7OyMEZOTg9B/WEFtADRgAFcIAEaMAMsAsoIlNEpojsOdhPoAAOkAANmAF2geegQwvoARGZIzJHZI7IHJE5InNElogsEVkiskRkicgSkSUiS0SWiCwRWSOyRmSNyBqRNSJrRNaIrBFZI7JG5BmRZ0SeEXlG5BmRZ0SeEXlG5BmRZ0S2iGwR2SKyRWSLyBaRLSJbRLaIbFdkO46AFtADRgAFcIAEaMAMiMgtIreI3CJyi8gtIreI3CJyi8gtIreI3CNyj8g9IveI3CNyj8g9IveI3CNyj8gjIo+IPCLyiMgjInsO2gkSoAGPyHqcYBecObigBfSAEUABHCABGhCRKSJzROaIzBGZIzJHZI7IHJE5InNE5ogsEVkiskRkicgSkSUiS0SWiCwRWSKyRmSNyBqRNSJrRNaIrBFZI7JGZI3IMyLPiDwj8ozIMyLPiDwj8ozIMyLPiGwR2SKyRWSLyBaRLSJbRD5zUM/L5szBBbbg8aj9DM1OLaknjSRK4iRJ0qSZZEEtNVpqtNRoqdFSo6VGS42WGi01Wmr01Oip0VOjp0ZPjZ4aPTV6avTU6KkxUmOkxkiNkRojNUZqjNQYqTFSY6QGpQalBqUGpQalBqUGpQalBqUGpQanBqcGpwanBqcGpwanBqcGpwanhqSGpIakhqSGpIakhqSGpIakhqSGpoamhqaGpoamhqaGpoamhqaGpsZMjZkaMzVmaszUmKkxU2OmxkyNmRqWGpYalhqWGpYalhqWGpYalhoWGi3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8+9YkinkyRp0kyyIM/zRS2pJ40kSkoNTQ1NDU0NTY2ZGjM1ZmrM1JipMVNjpsZMjZkaMzXOPJ+rwLMl9aSHxuxOlMRJkqRJM8ku8qKii1pSTxpJlMRJkqRJMyk1Wmq01Gip0VKjpUZLjZYaLTVaarTU6KnRU6OnRk+Nnho9NXpq9NToqdFTY6TGSI2RGiM1RmqM1BipMVJjpMZIDUoNSg1KDUoNSg1KDUoNSg1KDUoNTg1ODU4NTg1ODU4NTg1ODU4NTg1JDUkNSQ1JDUkNSQ1JDUmNM88nOVnQmecXnRrq1JNGEiVxkiRp0kyyoDPPL0qNmRozNWZqzNSYqTFTY6bGTA1LDUsNSw1LDUsNSw1LDUsNSw0LDS9cuqgl9aSRREmcJEmaNJNSo6VGS42WGi01Wmq01Gip0VKjpUZLjZ4aPTV6avTU6KnRU6OnRk+Nnho9NUZqjNQYqTFSY6TGSI2RGiM1RmqM1KDUoNSg1KDUoNSg1KDUoNSg1KDU4NTg1ODU4NTg1ODU4NTg1ODU4NSQ1JDUkNSQ1JDUkNSQ1JDUkNSQ1NDUyDynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTz3Ai47nDhJkjRpJlnQmecXtaSeNJJSQ1NDU0NTQ1NDU2OmxkyNmRozNWZqzNSYqXHmuXWnmWRBZ55f1JJ60kiiJE6SpNSw1LDQ8CKvi1pSTxpJlMRJkqRJMyk1Wmq01Gip0VKjpUZLjZYaLTVaarTU6KnRU6OnRk+Nnho9NXpq9NToqdFTY6TGSI2RGiM1RmqM1BipMVJjpMZIDUoNSg1KDUoNSg1KDUoNSg1KDUoNTg1ODU4NTg1ODU4NTg1ODU4NTg1JDUkNSQ1JDUkNSQ1JDUkNSQ1JDU0NTQ1NDU0NTQ1NDU0NTQ3P8+FkQZ7ni1pSTxpJlMRJkqRJqTFTw1LDUsNSw1LDUsNSw1LDUsNSw0LDC8kuakk9aSRREidJkibNpNRoqdFSo6VGS42WGi01Wmq01Gip0VKjp0ZPjZ4aPTV6avTU6KnRU6OnRk+NkRojNUZqjNQYqTFSY6TGSI2RGp7n56qzF5xd1JJODXUaSZTESZKkSTPJgjzPF7Wk1ODU4NTg1ODU4NTg1ODUkNSQ1JDUkNSQ1JDUkNSQ1JDUkNTQ1NDU0NTQ1NDU0NTQ1NDU0NTQ1JipMVNjpsZMjZkaMzVmaszUmKkxU8NSw1LDUsNSw1LDUsNSw1LDUsNCw4vVLmpJPWkkURInSZImzaTUaKnRUqOlRkuNlhotNVpqtNRoqdFSo6dGT42eGj01emr01Oip0VOjp0ZPjZEaIzVGaozUGKkxUmOkxkiNkRojNSg1KDUyzy3z3DLPLfPcMs8t89wyzy3z3DLPLfPcMs8t89wyzy3z3DLPLfPcMs8t89wyzy3z3DLPLfPcMs8t89wyzy3z3DLPLfPcMs8t89wyzy3z3DLPLfPcMs8t89wyzy3z3DLPLfPcMs8t89wyzy3z3DLPLfPcMs8t89wyzy3z3DLPLfPcMs8t89wyzy3z3DLPLfK8H5Hn/Yg870fkeT8iz/sRed6PyPN+RJ73I/K8H5Hn/ThSo6VGS42WGi01Wmq01Gip0VKjpUZLjZ4aPTV6avTU6KnRU6OnRk+Nnho9NUZqjNQYqTFSY6TGSI2RGiM1RmqM1KDUoNSg1KDUoNSg1KDUoNSg1KDU4NTg1ODU4NTg1ODU4NTg1ODU4NSQ1JDUkNSQ1JDUkNSQ1JDUkNSQ1NDU0NTQ1NDU0NTQ1NDU0NTQ1NDUmKkxU2OmxkyNmRozNWZqzNSYqTFTw1LDUsNSw1LDUsNSw1LDUsNSI/O8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWeb52njoOxw4cQAIyUIAKnEBL9E2pLoSap7w4jSRK4iRJ0qSZZEGe8otaUmqM1BipMVJjpMZIjZEaIzUoNSg1KDUoNSg1KDUoNSg1KDUoNTg1ODU4NTg1ODU4NTg1ODU4NTg1JDUkNSQ1JDUkNSQ1JDUkNSQ1JDU0NTQ1NDU0NXzHq6M7MlCACpxAS5wHsAE7cAChNqE2oea7xx3sOIGW6DvJXdiAHTiABGSgAKFmULNU86K5R7Y6NmAHnmrn7mTdC+cCGXiqnXuLda+dC5xAS/Tt6C5swA4cQAIyEGoNag1qDWodah1qHWodah1qHWodah1qHWodagNqA2oDagNqA2oDagNqA2oDagNqBDWCGkGNoEZQI6gR1AhqBDWCGkONocZQY6gx1BhqDDWGGkONoSZQE6gJ1ARqAjWBmkBNoCZQE6gp1BRqCjWFmkJNoaZQU6gp1BRqE2oTahNqE2oTahNqE2oTahNqE2oGNYOaQc2gZlAzqBnUDGruJd39wb3E0QvzLlzp5HTG6gv9r4ajJXreXNiAHTiABGSgABUItQE1ghpBjaBGUCOoEdQIagQ1ghpBjaHGUGOoMdQYagw1hhpDjaHGUBOoCdQEagI1gZpATaAmUBOoCdQUago1hZpCTaGmUFOoKdQUagq1CTXPmy6OHTiABGSgAF1NHSfQEj1vLmzADhxAAjJQgFBbeTMdLZBW3phjA3bgABKQgQI81UZ3nEBL9HvwIMcG7MBTbagjARkoQAVOoKt52/wefGEDduAAEpCBAlTgBELNvWR4P7iXXNiBHpcdz7jnrnfda9we4+wT3R/If8H94cIOHEACMtDjiqMCJ9AS3R8ubMAOHEACMhBq7g/kJ8D94cJTjb2Z7g8XNmAHDiABTzVujgJU4ARaovvDhQ3YgQNIQKitnWn9tLg/XOhqw9ES3R8ubEBX835wf7iQgAwUoAJdzS8u94eF7g8XNmAHDiABGShABULN/eHct6Z7gVxgA7oaOw4gAS3Rc/7c6aZ7rdtjBuZ4Hs65C0L3GrdABU6gJXpKy3RswA4cQAIy0NW8FZ7SF06gJXpKX9iAHTiABGQg1Hx4oN4PPjy40BI9/bU5NmAHnmrq3efpr94lnv4qjgJU4ARaoqf/hR7XD9IT/UIGClCBM9Gz8Kw8716fdqFn4fTj9Xybfj14vl3IQAEqcCZ6Xkw/Xs+LCy3R8+LCBuzAASQgAwUINYOapZoXlAU2YAd6XHX0CNPxjHAWy3QvFwtswDOCNccBJCADBaiJniJnBUD3erB2PqrtXhDWfFHCK8ICBegR2HECLdGT4cIG7EBX8xZ7Mlzoat54T4YLNdEvezPHR4TuK2he+BXoEchRzn/1ZvrezRdOoCX6Ds6+7uH1X4Ed6GreO76T84UMhBpDjaHGUPNdnS9seS4EZ1NwNgVnU3A2BWfTc2idQr9nrVPoObROluJsKs6m59A6F4qzqTibirM5cTYnzqbfs9Z5mzibfs9aJ2vibE6cTc/CdQp9B/V13gxn0/NtnULfR311lKF/Df1r6F/fT91Plhd2BTZgj5PltV2BBEw1L+8KVOAE5tn0wqnui1ReORVoib6l+aGODdiBA0hABgpQgRN4qvk81quoAhuwAweQgKda8+P1xLlQgRPoaudl5PVUgQ3oan5knjgXEtDVpqMAFTiBrnZeMF5F1X3i7mVUgQRk4Bm3+5n3bdB9Tua1VI8VI0dL9M3QL2xAV/MW+5boFxKQga7mbfMd0X2O47VUj+WGE31XdJ/YeDVV97G9l1MFDiABGShABZ5qvpm5V1Vd6Dul+xzH66oCO3AACchAASpwAi1wHgewATtwAAnIQAEqcAKh1qDWoLa+bLC2nR9AAjJQgAqcif5VA5+IeYFV4AASkIECVOAEWqKbwoVQG1AbUBtQG1AbUBtQG1AbUCOoEdQIagQ1ghpBjaBGUCOoEdQYagw1hhpDjaHGUGOoMdQYagw1gZpATaAmUBOoCdQEagI1gZpATaGmUFOoKdQUago1hZpCTaGmUJtQm1CbUJtQm1CbUJtQm1CbUJtQM6gZ1AxqBjWDmkHNoGZQM6hZqtlxABuwAweQgAwUoAInEGoNag1qDWoNag1qDWoNag1qDWoNah1q8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJV3Q91sAcBahAC0e0ZSALG7ADB5CADBSgAicQagw1hhpDjaHGUGOoMdQYagw1hppATaAmUBOoCdQEagI1gZpATaCmUFOoKdQUago1hZpCTaGmUFOoTahNqE2oTahNqE2oTahNqE2oTagZ1AxqBjWDmkHNoGZQM6gZ1CzUxnEcwAbswAEkIAMFqMAJhFqDWoNag1qDWoNag1qDWoNag1qDWodah1qHWodah1qHWodah1qHWofagNqA2oDagNqA2oDagNqA2oDagBpBjaBGUCOoEdTcS4gcBajAU43Wp3os0b3kwlPtXPweXjsWOIAEZKAAXc0cJ9AS3UvIj9e95MIOHEACMvBUY/+G0Pp808IJPNXOJeZxrI84LWzADjzjnkvM41gfavKOcn9Y6P5woUdYXzHqwAE8j/dcbR5eMBYoQAW6mjfI/WGh+8OFDehxvfs858/13+EVYYEW6DVh3b8b40VhgR04gARkoABdbX2laQIt0XP+wgbswAEkIAMFCLUGtQa1DrUOtQ61DrUOtQ61DjXP+XMj0uEFYf1cSR9eERbYgQNIQAYKUIETaIkENYIaQY2gRlAjqBHUCGoENYIaQ42hxlBjqDHUGGoMNYYaQ42hJlATqAnUBGoCNYGaQE2gJlATqCnUFGoKNYWaQk2hplBTqCnUFGoTahNqE2oTahNqE2oTahNqE2oTagY1g5pBzaBmUDOoGdQMagY1S7X1icULG7ADB5CADBSgAicQag1qDWoNag1qDWoNag1qDWoNag1qHWodah1qHWodah1qHWodah1qHWrwkg4v6fCSDi/p8JIOL+nwkg4vWZ9rPB/bjfXBxoXLSxY2YAcOIAEZKEAFupo6WuLykoWuxo4dOIAEZKAAFTiBlri8ZCHUBGrLS8yRgAycicsfpmMHnhHU+9f94UIGClCBE3ger3qXuD9c2IAd6Gou7P5wIQNdzY/X/eHCCTzV5nmfvz71uLABO/BUm/75Q/eH6cfrTjD9HLsTXGiBXvoV6HHF0eOqo8c1xzPu+aRt+MZsgQJU4Kl2PpAZ69OPC90JLmzAU+18TDPWlx/ND8fT/3yyMtbXH80P50z/cbjEmf6Blnimf2ADduAA0ol+DP49yAs1LqPRJ9ASV84vbMAOHEACMlCAUBtQG1AjqBHUyBvkfUYDSEBvkPfkmfOBCpxAS/TvJl/YgB04gASEGkONXc2vKJ5AS5QD2IAdOIAEZKAAoSZQE6gp1BRqCjV1Nb/k1kihOypwAi1xjRQWNmAHDiABGQi1CbUJtQk1g5pBzaBmUDOoGdQMagY1g5qlGh0HsAE7cAAJyEABKnACodag1qDWoNag1qDWoNag1qDWoNag1qHWodah1qHWodah1qGG+QV1qHWoDagNqA2oDagNqA2oDagNqA2oDagR1AhqBDWCGkGNoEZQI6gR1AhqDDWGGkONocZQY6gx1BhqDDWGmkBNoCZQE6gJ1ARqAjWBmkBNoKZQU6gp1BRqCjWFGryE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7ipX7jrHwZvv3chfMANmAHDiABGShABUJtQs2gZlAzqBnUDGoGNYOaQc29xFdDvYRwoZcQPiYZjg3YgQNIQAYK8FQ735obXm4YaImnl4yzLmh4uWFgB7qaH1kjIAP9vK1gCpzAXNOV5SULG7ADB5CADPQ+G46W6J+xb92xATtwAAnIQAF6n5HjBFoiuRo7NmAHupofmc9bLmSgr6SvYAqcwFy3XwWLFzZgBw4gARnorRBHS/QZyoXeCnXswAH0VvgV5TOUC73P/CLwGcqFE3iqdT9vPkO5sAE7cAAJyMBTrfs1efpD4ARaovvDhQ0YRYjjKlj00+2jimOhAifQEu0ANmAHRrnh8OLGQAYKUK8azuHFjYEW6MWNgQ3YgQNIQAbmmdcjz7y2A5hnXlsHDmCeed+uLjDPvG9YFziBeeZ9z7rABuzAASQgA/PMewVm4ATmmfcKzMAGzDOvI8/8VWu5UIETmGd+1Vpe2IAdmGd+1VpeyEAB5pn3WstAnHnGmWececaZZ5x5xplnnHnP+e5H5jm/0HP+wgb0c+F/5jl/IQEZKFfR+vBay8AJtMRV6L+wATtwAAno55gcJ9ASV3YvbMAOHEACMlCAUJtQm1AzqBnUDGp+9+9+6H73v5CBAlTgBLramTheYBnYgB04gARkoAAVOIFQcyc4q1aHF1gGduCpdtayDi+wHGcl6vACy0ABKnACLdGd4MIG7EBXE0cCupo6ClCBE3iqkR+6O8GFDdiBA0hABgrwVDtLpYaXXQa6mveOjwkubMAOHECXGI4CVOAEWqIvYHp5g9daBnbgABKQga7mHeULmBdOoCW6VVzYgB04gARkINR8eOBFD15rGWiJPjzwugqvtQzswFPNqyK81nJ40YPXWg4fAnqtZaACJ9AS3UAu9AIUJ0riJEnSpBnkGexDLC92XOjFjoFeJ+/Uk0YSJXGSJHnEMy28dHF4YYatO7MTJXGSD/ydNGkmWdB6kuDUklxEHQfQ+3o6MlCAfpjnKfIqxOGjdK9CDPTnHk5nAC9Z8CLEQAVOoCWutxycsjspu5OyOym7k7I7PZFWJ3rKrE70lPHppVcXBp5N9UeUXl0Y6EfqZ/NMGXcDLy68yILOfLmoJfUkj+gH4gkgfiBnAnhue6ngRS3p/Gs/tPPiv4iSOEmSNMlF/BT6db/Qr3t/YOglgoEd6IfpZ8tvhuoH7zfDhefN0L3Pq/6ujvF74YUDSMAzrK4/E6ACZ3a4Z9KJ5FV/gaFGXvUXOIAEDDXyqr9ABU7EhVqDWoNag1qDWoOaZ9+Fsi518qI/v3zJi/4CLdEz8MKW6Pcp9UPwZLpwAH1+58RJkqRJM8mCPI8WtaSeNJJSg1KDUoNSg1LD71Hq6PeoCxvQG6OOA3h2onrPecJdKEAFTqAl+j3qwlPtfF5MXoIXOICuNh0ZKMBTbfp58BS90BJ9ict/1Ve4FvWkkURJnOQR+4meedNPp2fe9OP3IeuFBGTgeaTnM2zy4rvACbREH7Je6MssTi7mPe9ZeiEBXcyvX8/SCxV4ipn3hWepo9fpjXNCRV6nF9iBnjdOlMRJkqRJM8gz8ZzRkFfdjfMBOnnV3TgfoJNX3QUqcAL9SM8GetVdYAN24AC6mhMnSZJ3itNMsiAfeS5qST3JRRYSkIEz0YeS5pI+lLzQc8iJkjjpvB0cfmpIgRPo9yzvUz6Aftfy7uUOPO88h3fkma50+Fk505UOVzvTlc6lRPKausAJtES/RV7YgB04gKda8+M905WaX0rian684mp+kH7zbH6Qfve8sAMHkIAMlMTpwbyZswE7cAAJyEBJXLdL7yjzP/OzagRkoADPtvmpPlPuIrvIS9wuakk9aSRREidJkibNpNRoqdFSo6VGS42WGi01Wmq01Gip0VKjp0ZPjZ4aPTXOZDunEeSFahdZ0JlsF7WknjSSKImTJCk1RmqM1KDUoNSg1KDUoNSg1KDUoNSg1KDU4NTg1ODU4NTwxPD7rheI0TnQJd9djNznfR8x6v6759DvLJgnL+m6qCU9IrH/yXnxXiRB542D/ObltViBA3geyDl3IN+ciz3meRFfpEkzyS7y4qyLWlJPGkmUxEmS5OPnswO80orOhQryT2GeMxLymquLOEmSNGkmWdB5dV7UknpSavTU6KnRU6OnRk+NnhojNc5r95wvkRdbXTSSHho+QvRKq4skyXvhNEWvnaLhfeNX5bmsQl47FchAASpwAi3RL84LG7ADocZQY6j5fcLv6V47FTiBluj3iQsbsAMHkIAMhJpATaAmUDvvHuIn4bx5XNSTRhIlcZJHPHPN66PI7/Dry5Z+avxLWIso6fHXPiRdX7ZcpEkzyYL8S1iLzobTwrOJ5BH9dnHhBHrynxnhpU6BDdiBA0hABgpQgRMItQY1v3m423ipU+AAupo4MtDV1NHVpuOpdu7/RF7qdKHfRS481diF/T5y4al2LvaQlzqRW4eXOtG5MkBrN69j/a4CJ9ASfbeTCxvQ4/qh+42E/dD9TuLp7eVLF/q95MLzeD3DvXwpcAAJyMAzrqe+lySR+DF4Mvr01UuSAgnIQAEqcAIt0ZPxQlfz7vNkvHAAXc071ZPxQgEq0NW8zzwZF/pQ7sKzf32st3bounAAz0cGPi5cO3RdKEAFTqAl5s6XRLnzJVHufElekkTiZ9PHehcyUICW6DdM8YvWM/ZCX6Z2sou8cOii02i6EyVxkiRp0kyyoDP3LmpJPclHEc2RgAz0IYofj2fbhZbo2eYzbi8GCuzAsxmLKImTJEmTZpIFnWl2UUvqSakxUmOkxkiNkRojNUZqUGpQalBqUGpQalBqUGpQalBqrEHdeZXzGtUtbEDvL3UcQAL6KTFHAZ5nxxcRvOQn0BI9Vy9swFPNFxy85CfwVPOlBS/5oelH5rnqKwde8hM4ga7mB+m5emEDnl24aCRREidJkgb5KPV8CEhewEO+7OAFPHTW3pMX8AQKUIE+z/Bmez4u9GnYhQ3YgQ819QDnqHadJJ+a+XqDl++QefvX1Gyha/nR+sD2fL5MXr4TeA4c/Q7h5TvsU2ov3wk8BwDr/38E8GUOL73x+F55cxElnWNMn4973U2gAifQEn0we2ED+kFNxwEkoMRRxaekSOJTUuT1N77G4uU3F7WkM7hP4L34JpCAZ1Pcyb34JvBsiruzF98EWmJ8goIkPkFBEp+gIIlPUJDEJyhI4hMUJPEJCpL4BAVJfIKCJD5BQcKpwanBqcGpwanBqcGpwanBqcGpIakhqSGpIakh3mN+uQgDBeg95n0uE2iJZ56yr0d46U1gBw6gq7mwuppfB2tner+m1870CyfQ1c5s9dKbwAbswAEkIAMFqMAJhJpBzaDmn6dYNJIoiZMkSZNmkl20Ph+5qCX1pJF0tuesWSEvwgkUoAIn0BLP+3dgA3bgALpac2SgAC3RU/18aklebsNn5QJ5uU0gAwXox8uOE2iJPoO9sAE7cAAJyEABQm1AbUCNoEZQI6iRq4kjAV1NHQWoQL+SVwRL9CKcCxuwAwfQ405HP16/Hs4cZ18i8XKbwA4cwPN4fQHDy20CBajACTzVfIrt5TaBDdiBA0hAV/OOUgEqcAIt0fP8wgbswAEkINQ8z33y7EU4gRPoat6Tnuc+8fUinEBfMfIL3AbQ14y8d9bC1EIBKnACLXCu1amFDdiBA0hABgpQgRMItQa1BrUGtQa1BrUGtQa1BrUGtQa1DrUOtQ61DrUOtQ61DrUOtQ61DrUBtQG1AbUBtQG1ATX3h/OBOHkRTuAEWuLaSf9wbMAOHEACMlCACpyJ7K0gRz9edmSgH684KnACLdH94cIG7ECPq47oX0GLPecvbMAO9P6djgRkoABxNhVqirM5cTYnzubE2Zw4m57z6xg85y/E2Zw4m57z6xg85xeunF8INYOaQQ05P5HzEzk/kfPTcO1Y9qQdB7ABexyDHQNIwFQz5Lwh5w05b8h5Q84bct6Q87Zy3o+hEZCBAlSgq5mjJXrO+xqZF/wEduAAnmq+XOYVP4ECVOAEWqLn/IUN6GrkOIB5gXtNEPuKnNcEBU6gJVJeGl4UFIiTRThZhJNFDBQgThbhZBFOFuNkMU4W42TxABIQl4anvy8QesXQhZ7+F3pHeT94+rMfmQ8PLiQgAwWowAm0RLeKCz2uXxpuChcyUIBnXF949KKiQEt0U7jQB2X+Z24KFw4gARkoQAXORE9/H8h6rVHgAPqjLO9qT/8L/WGWX2ee/hdOoLficUWx1xoFNuCpdi5HstcaBRKQgQJU4ARaoqf/hQ0ItTPRz5UB9qKiizTpfEhAThZ05vhFHtEcO3AAz+M/lzvYdxELFOCppE4zyYLO/L6oJfWkkURJnCRJqTFSY6QGpQalBqUGpQalBqUGpQalBqUGpQanBqcGp4bn9Lkqyl6oFMhA76/hqMDzfKufB8/0hZ7pF55nR/0ke6Zf6Gp+zXmmX8hAV5uOCnQ1P17P9IWe6ReeatNPqg8KLjzV1qXk+X/hqTa9FZ7/FyrwnBqvABbkX6Bc1JJ60kjyiN4Dfouf3iq/xU/vAc/xCztwAP1Ivdme4xcKUIET6E9bzzPmlUqBDdiBA0hAf67bHQWowAm0RM/xCxuwAweQgFBbj6qHowIn0NXOnmzrcbU4NqCrqeMAutp0ZKAAFTiBlrgeXC9swA4cQKgNqA2oDagNqA2oEdQIagQ1ghpBjaBGUCOoEdQIagw1hhpDjaHGUGOoMdQYagw1hppATaDmznCuKbHXRAUSkIH+wOtwVOAEWuL6sNzCBuzAASTguUJ/OJ75LofnxWxAL1rwi3YOIAEZKEAFzkTzuH6BG/rX0GLP+QsVOIHnQ55ziZ29WCqwATswz2Y/CMhAASpwAvNs9nYAWxxObx04gARkoPcOOyrQe0ccLbEfwAb0tnkwfxh3IQEZKEAFTqAl+jM5vx680ipwxMnqq0qlOTJQgAqceQIGThbhZBFOFuFk+VO5CwmIk4VE70j0jkTvSPSORO9I9I5E70h03+5LzgcQ7Nt9BU7g2Yrm/SDeUX5k0oAdOIAEZKAAFTgTvVKl+aXhz9suHEACely/NPyZ24UKnMC8NXvFWGADduAAEpCBAtTE85bvo0yvMLuoJ50P4rxD/UHcIk7y4/er0RQ4gY/j99GZF5hd1JL8QfjhOIAE5PXwj73G7CJNmkkWdCb8RS2pJ40kSkqNlhotNVpqtNToqdFTo6dGT42eGj01emr01Oip4dndvW88uy9swH49A2WvRgv0HuuODBSgXk9G2Xf+CvQHsucIxHf+CmxAfx7pEfyOfqGrDUcGCvBsmSuceX6RBZ1ZflFL6kke0Vvlydy9XzyZz2cH7LVogQ3YgX4leTBP5gsZKEAFupo5WqLXol14Dqe9A/wL0otGEiVxkiRp0kyyIB+yL0qNmRozNWZqzNSYqTFTY6bGTA1LDUsNSw1LjTPLZXjynWkeKEAFTqAFem1bYAOeJ+gsrGGvbQskoKs1RwEq0NXY0RK9vubCATxfB+hOM8n/6DyVXqIW2IAdOIAE9HITP9pVN7NQgRPoZS3ndUyrdmZhA3plix/tKp9ZSEBXE0cBKnACXe3MWVpVNH68fnNm737P2QsZKMAzLntHed0MeyvOrBX2wznTVtjVzrwN7MABdDU/HM/nCwWoQFfz4/XUFj8cT23x8+6pLX44ntq+HuOVbYEMFKACJ9ASPbXFj8Hv3hfiIvJb9oUMFKACcXGqS3iDfGx+YQN6QY4308fmFxKQgQJU4ARa4pnigQ0INYOap7nfw32HrUABKnACLdAL5QIbsAMHkIAMFKACJxBqnuY+aPCaOfG1Ha+ZC2SgAD0uOU6gJboTXOh3E3bswAEkIAMFqMAJtETPeV04gARkoLdCHBU4gZbod++zNou9dC6wAweQgAwUoCZ6zvu6lRfLBXbgABKQgX685w3WC+BEPa6ntK98eQFcIAHPCNNPt6f0hWc/+NKYF8AFWqKntC+NeQFcYAcOIAEZKEBX80vDs/tCS/TsvrABOzBKTZlXHi9UIHrH89gH5F4cF9iAHTiA3gq/CDyPLxSgAr0VruZ57OjlcYFebn84duAAesV9c2SgAF1NHU81H1N4LZ34ApnvbiU+aPXdrQI70OOyowAVOIEe92ybV86ti8sr5wIJyEBN9HeV/DbjhXKBHTiuem72SrlABgpQgRNoiZ6mFzagd6r3md+aLxSgAr3xfrL81rzQ0/TCBvSKe/8zr2m9kIAMFKACJ9ASvab1wnj7gb0qLtBb4f3ryXuhAifwnBb4QpZXxQU2YAcOIAH9LQU/WSpABU6gJa73rxY2YAcOIAHPqc2xcAItcc2mF3or/Byv+fTCASSgvyrj581rWy9U4ARaoNfBBTZgB54TT18N8qq3QAVOoCX6LPpCX/dx6kkjiZI4SZJ8TcBpJlmQ33sXtaSe5EdOjn6M7GiJ4wB62/13RwcOIAEZKEAFTqAleu5eCDWCGkGNoEZQI6gR1AhqPh32JUOvaQscQAJ676ijABU4gZYoB7ABO9DV/NIRAjJQgK5mjhNoiSujF7Y8WSujFw4gARkoQAXielBcD2fuqq+BeqVbIAHPuL7a6ZVu6uuEXukWOIGW6BntC4le6RbYgQPoan6GfJGseUeZABU4gRY41zLZwgbswAEkIANPNV8t8kq3wAm0RM/zCxuwAweQgL4ASI6uJo4KnEBL9HWzCxuwAweQgAyEmi+f+cqMV7oFWqL7w4UN2IEDSEAGnmq+eOCVboETaImnPwQ2YAcO4Knmk0WvdAsUoAIn0BJ9De3CBvTH104jiZI4SZI0yJ1heM+6B4z1rwR0J/PjXy9zLlTgBFri2kdnYQN24AB6D/hF7Nnuqy5e+RZoifMANmAHDuDZCh+beOVboAAVeKr5vd4r3y50D7iwATtwAAnoat429wBfGvLKt8AJtECvfAtswB7nwivfAgnIQAEqcAIt0T3gwnFtdMFrN6sLGeitYEcFeitWBEv0bL/QW+ERPNsvHEBfKT8cGShABU6gL8l773i2X9iAHTiABGSgAD3u6W+Wu3ywF6upL4Z5sVqgAv3IxNESPVc9ybxYLbAD/ci8H/wOfyEDBajACbREz2NfTvMStsAOHEACMlCyxX4v96GcF6sFNmAHnnF96OYlbIEMFKBeO8fw2hfrQkv0fbEubMAOHEACnr3jsyovVgu0RM/jC70Vfro9jy8cQALytUMQr+2yLlTgBNqFsrbLurABO9B7hxwFqEBvBTtaomfshd4KcexAb4U6EpCBrjYdFTiBluh5fGEDdqCrmSMBGShABU7g2WfnwqSsbbZW29Y2W82RgAwUoAIn0BJ9O0jxXvc9fC7swAE81VZP+i4+FwpQgRNoib7r1oUN2IFnXPZmenavxnt2XziBlujZfWEDduB5LlaLPbsvZKAAz1awH47vr3WhJfoekBc2YAcOIAEZ6K3ojpbo9+4LvRXe637vvnAAvRWeDH7vvtBb4d3nOX/hBLqaH4Pn/IUN2IEDSEAGuponjt+7L5xAC/SStsAG9DN/OOaZ9+K1dd68eC1wAvPMe/FaYAN2YJ55L14LZKAA88yvjbkuzDO/Nua6sAE7cAAJmGfeK8seEV1uSGEtPMHnpT/NW3Je+oGWeF76gQ3YgWcN6gp2XvqBDBSgAifQEvUANmAHQk1drTsyUICuNhwn0BKnq/k1MV3Nu9B3LTG/fnzbkvOeLF7DFchAASpwAr1A1CX8UfCFDdiBA0hABgpQgROYal7vFdiAHTiABGSgABU4gVBrUGtQ89e1zwUO8cquQEn0t6nPVQ3xWqtAj3t2n9daBTZgBw4gARkoQAVO4Kl2rlSIl13ZuVIhXnYV2IEDSEAGClCBE2iJDDWGGkONocZQY6gx1BhqDDWGmkBNoCZQE6gJ1ARqAjWBmnrc7ugRhiOuKMUVpbiivDLjXGaUvqqpF1riqqde2IAd6GoLCejH6xJeonGhJnoWnktF4jVW1vxC9Hy70I/XW+H5ti4Nz7cLJzCvHa+zsnMlSLzQKrAD80odBwEZKAimwAmEmufbwu51JQs7cCR6ipwLSOIFS4EM9FqW7qjACfRylrNLvGAp0IXJsQMH0NXYkYECVOAEWqKnyIWuJo4dOIAEZKAANc7xkLxoh+BkCU7WSoaFBGSgABWYtuLFTBfqAWzAHtkykDirnulCBgpQgRNoiZ44F3r/+pGt2qSFlriqkxY2YAcOIAEZKECoGdQs1bxCKbABO3AACchAV1NHBU6gJXqKXNiAHTiABGQg1BrUGtQa1DrUOtQ61DrUOtQ61DrUOtQ61DrUBtQG1AbUBtQG1AbUBtQG1AbUBtQIagQ1ghpBjaBGUCOoEdQIagQ1hhpDjaHGUGOoMdQYagw1hhpDTaAmUBOoCdQEagI1gZpATaAmUFOoKdQUago1hZpCTaGmUFOoKdQm1CbUJtQm1CbUJtQm1CbUJtQm1AxqBjWDmkHNoGZQM6gZ1Axqlmp8HMAG7MABJCADBajACYQavIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML+HlJeZ4qp3FzuKlWIECVOAEWqCXYgU2YAcOIAFdbTgKUIGu1hwt0b3kQldjxw4cQFebjq5mjgJU4ARaonvJhQ3YgQNIQKh1qHWodah1qA2oDagNqA2oDagNqA2oDagNqA2oEdQIagQ1ghpBjaBGUCOoEdQIagw1hhpDjaHGUGOoMdQYagw1hppATaAmUBOoCdQEagI1gZpATaCmUFOoKdQUago1hZpCTaGmUFOoTahNqE2oTahNqE2oTahNqE2oTagZ1AxqBjWDmkHNoGZQM6gZ1CzV1g5pFzZgBw4gARkoQAVOINQa1BrUGtQa1BrU4CUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReMuElE14y4SUTXjLhJRNeMuElE14y4SUTXjLhJRNeMuElE14y4SUTXuI1aXZW4IjXpAVOoCW6l5xvZInXpAV24AASkIECVOAEuto5jvKatMAG7MABJCADBajACYSae8lZgSNekxbYgQNIQAYK0M/bwgm0xOUlCxuwAweQgAwUINQYagw1gZpATaAmUBOoCdQEagI1gZpATaGmUFOoKdQUago1hZpCTaGmUJtQm1CbUJtQm1CbUJtQm1CbUJtQM6gZ1AxqBjWDmkHNoGZQM6hZqtlxABuwAweQgAwUoAInEGoNag1qDWoNag1qDWoNag1qDWoNah1qHWodah1qHWodah1qHWodah1qA2oDagNqA2oDagNqA2oDagNqA2oENYIaQY2gRlAjqBHU4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXuLbvtn5iVTxSroL3UsubMAOHEACMlCACoSaQm1CbUJtQm1CbUJtQm1CbUJtQm1CzaBmUDOoGdQMagY1g5pBzaBmoaZeXxfYgB04gARkoAAVOIFQa1BrUGtQa1BrUGtQa1BrUGtQa1DrUOtQ61DrUOtQ61DrUOtQ61DrUBtQG1AbUBtQG1AbUBtQG1AbUBtQI6gR1AhqBDWCGkGNoEZQI6gR1BhqDDWGGkONocZQY6gx1BhqDDWBmkBNoCZQE6gJ1ARqAjWBmkBNoaZQU6gp1BRqCjWFmkJNoaZQm1CbUJtQm1CbUJtQm1CbUJtQm1AzqBnUDGoGNYOaQc2gZlAzqMFLGrykwUsavKTBSxq8pMFLGrykwUsavKTBSxq8pMFLGrykwUsavKTBSxq8pMFLGrykwUsavKTBSxq8pMFL2vIScWSgAF1NHSfQEpeXmGMDduCpdhZhq29FZ2cVsXrBYKAAFTiBluhecmEDduAAQo2gRlBbH6HwflhfoVhoies7FAsbsAMHkIAMFCDUGGoMNYGaQE2gJlATqAnUBGoCNYGaQE2hplBTqCnUFGoKNYWaQk2h5l5y1vWqlzwGNmAHDiABGShABU4g1CzVVj3i+VRDV+Xh+e6lrsrDCxkoQAVOoCWuqcbCBuxAqDWoNag1qDWoNag1qHWodah1qHWodah1qHWodah1qHWoDagNqA2oDagNqA2oDagNqA2oDagR1AhqBDWCGkGNoEZQI6gR1AhqDDWGGkONocZQY6gx1BhqDDWGmkBNoCZQE6gJ1ARqAjWBmkBNoKZQU6gp1BRqCjWFmkJNoaZQU6hNqE2oTahNqE2oTahNqE2oTahNqBnUDGoGNYOaQc2gZlAzqBnUfHhwvnCgq6rywgbswAEkIAMF6HaljhNoie4l54sM6rvYBXaghImNZRULJ9AS+wFsQA9mjgNIwPPQz91Y1PesC1TgqXZuzKK+bd2FbhUXNmAHDiABGShABUJtQM2t4nyXSlcV6LnRia4q0AsHkIAMFKACJ9AS3SouhJpbxfTz5lZxIQEZKEAFTqAlulVc2IBQc6swPxduFRcyUIAKnEBLdKu4sAFPNfOL1q3iQkr0RDe/ojzRLxzAWKHXkc86dOSzDh35rENHPuvQkc86dOSzDh35rENHPuvQkc86dBjUDGoGNYOaQS2fdSjlsw6lfNahlM86lPJZh1I+61DKZx1K+axDKZ91KOWzDqUDag1qDWoNai2ePuiqDb2QgfE8QFdt6IUT6Of4vFJXbeiFDdiBA0hABgrQ1dRxAi3RncAWNmAHDiABGShABU7/ytnhbGD/1kxwK9wLj8JUmAtL4ZxarWpPnwKtas8LGehzJD9EVuAEroP1aHIUboVzmrQKPi8k4DrS7iyFtfAsbGA9CrfCvfDqIb90lApzYSmshWdhA8+jcCu8dL1z5oo/naWwgs1/v/lx2ihMhT3OWXauXseZrIVnYUv2Ws7kVrgXHoWpMBdeuuKshWdhA7ejcCvcC4/CVHjpTmcprIVnYdc9X6dQr+9MboVdt3tb+ihMhbmwFNbCs7CBr282L26Fi+5Yut7GQYW5sBTWwrOwgZdDXNwKrzhnfvH6sNxZFqe8vix38Sjsx+PjKC/RTJbCfjzD4/MsbOBlAhe3wr3wKEyFubAULrrLB/xGwssHFi8fuLgV7oVHYSrMhaWw65L3z/KBiw28fOBi1/VbFC8fuHgUdl3ytix/uFgKa+FZ2MB2FG6Fe+FRuOguPyFv4/KTi7XwLGzJsvzk4la4Fx6FPb7fbmT5xsWzsIGXb1zcCnv8czNXleUbF3u7zi0uVJZvXLx0yVkLL112NvDyDb/ryfKNi5euOo/CS3c6c+Gl621fvnGx656vS6ss31i8fEO8jcs3LnZdX1GU5RsXu654G5dvXOy64m1cvnHx0vU2Lt9YvHxDvI3LNy5eut7GNbK4eOl6G9fI4uJcaVxVnhdOYK5rrirPCxtwKXovLUe6mAq7onoPLEe6WAvPwgZejnRxK9wLj8JUuOhK0V3O44tvshzGZ8GyHMbns7Ic5mIuLIW1cDl+Lcc/y/HPcvyzHP8sxz/L8c9y/LMc/yz9NovuLLrLSVYbl2OsNlo5fivHvxzjYkvW5RgX4/j16IVHYSrMhaWwFp6FcfzajsJFtxXd5RjeRl3O4G3UVo6/l+NfznBxLzwKl+Pv5fh7Of5ejr+X4+/l+Ec5/lGOf5TjH6XfRtEdRXc5wGrjyvTVRirHT+X4iQpzYSmshVd8cTYwnisonisonisonivoldPqvGKc3qArd30xRFfuXtwL+7FPb9PK3Yu5sBTWwrOwgddo4uJWuBcuulp0teiuXJ9+HlauXzwLG3jl+sWtcC88ClNhLlx0Z9Fdo4bp522NDny9R9fo4GIuLIW18CxsyXPl+sWtcC+8dM2ZCnNhKayFZ2EDr1y/uBXuhYvuGjX4etBcHnCxFNbCs7CBlzdc3Ar3wqNw0V3ecG6WoXN5w8VaeBY28PKGi1vhXngUXrrqzIWX7nReut4/I584rdrLhXQAG7ADB5CADBSgAqFGUPMvYzdfQvDiy+ReeBSmwlxYCmvhWdjAsnS7cyvcC4/CVJjB1wev/Jq/vni1mApzYSmshddx+vlSA8/1+37uphaehf33fRXBayKTW2E/zuYx3ROCqbAfp8+2vTIyWQvPwpbs1ZHJrXAvPApTYS4shbXw0hVnA7ejcCvcC4/CVJgLS2EtXHRb0e1L15xb4V54FKbCXFgKa+FZ2MCj6I6iO4ruKLqj6I6iO4ruKLqj6I6iS0WXii4VXSq6VHSp6FLRpaJLRZeK7vKHcxuOB7fCvfAoTIW5sBTWwrOwgZc/+IqOLX/wFRdb/nDxKEyFubAU1sKzsIHXZ/UuLrrLZ3ylx5bPXEyFubAU1sKzsIHnUTjKQ9WyHFsty7HVshxbbXmPry7Z8p6LW+FeeBSmwlxYCmvhWTh153EchVvhXngUpsJcWApr4Vm46C7vOV9lnauw8nyyNFdh5YUDuES7MxeWwlp4FjbwMp6LW+FeeBQuust4zmW+eSzjuVgLz8IGXsZzcSvcC4/CS9ecubAUdl3yDlzGc7GBl/Fc3Ar3wqMwFebCUrjoLuM5N6qdxzKexct4Lm6Fe+FRmApzYSm8dP16WAZzcSu84ovzKLziqzMXlsIr/nSehQ28DObiVrgXHoWpMBeWwkVXi64W3Vl0Z9GdRXcW3Vl0Z9GdRXcW3Vl0Z9G1ortMifzaW6Z08ShMhbmwFHb/O09LW35zbuo72/Kbi0dhD3mucM62/OZiKayFZ2EDL7+5uBXuhUfhorus5VxNnW1Zy7mCOtuylsXLWi5uhXvhUZgKrzWE6SyFtfAsbOBrDWRxK9wL5xrOvHZlPFd657Ur48WzsIGXhZwrwLMtC7m4Fx6FqTAXlsKrXSv+LGxgPgq3wr3wKEyFufBE27m0a1nIxa1wL1zaJaVdUtolpV3LQi6ehQ2spV1a2qWlXVrapaVdWtp1rZEuLv2ppT+vtVBv+yztWlZxMRXmwqVds7RrlnbN0i4r14mV68TKdWKlXVbaZaVdVtplpV1W2mW4TvpxFG6FKdveD7SrH1JYC8/CaFdvR+FWuBcehakwF0a7etPCs3BpVy/t6qVdvRcehalw1C/Mni9+zJ4vfsy+xiPnY5rZ13jk4l54FKbCXFgKa+FZ2MBUdKnoUtGloktFl4ouFV0qulR0qeiuMYh429cY5OJRmApzYSnsWudjptnX5OdiAy9jubgV7oVHYSrMhaVw0V3GIn5hL2NZvMYmFy9dv/DW2OTipTudqfDSNWcp7LrnTsOzr7HJxQZeY5OLW+FeeBSmwlxYChfdWXRn0bWia0XXiq4VXSu6VnSt6FrRtaJr0B3HUbgV7oVHYSrMhaWwFp6Fi24ruq3otqLbim4ruq3otqLbim4ruq3o9qLbi24vumtgcz6omGMNbC7mwlJ46Q7nWdjAy6MuboV74VGYCnNhKVx0R9EdRZeKLhVdKrpUdKnoUtFdXuSGPJb/nA+D5lj+c/GKI85UmAtLYS08Cxt4ecv5oGgOKed6ecjq/+UhFxt4ecjF65incy88ClPhco1p0S0eMoqHjOIho3jIKB4yLg/x45nlGpvlGpvlGrs8xI/n8pDFs3DRLR4yioeM4iGjeMgoHjKKhwwr17aVfrbSz4Z+pstDpnMr3AtDl4qHUPEQKh5CxUOoeAgVD6GG80uXhyzuhUdhnF+6PGSxFC66xUOoeAgVD6HiIVQ8hHppby/tLR5CxUOoa+FZuPTz5SHm3Aq77vT4y0MupsJc2HXPh6mTlodcPAsbeHnIxa1wLzwKL11y5sKauUzLT84Hk5PW2GbxWmu5uBUu1xKPwuWccjmnXM4pa+FZuJxTKedUyjmVck6lnFMp51TKNVw8iqRcS8uLzgeic5WtBvfCqw+9f5YXTT/O5UUXS2EtPAsbeHnRxa1wT17lkf1c7J6rPDKYC4tzd9bCs7CB/VoNboV74VGYCnPhojuKLq04w3n9Pjlr+fd1bOy8ju3sZ9/IMrkV7oVHYSrMhdexqbMWnoWXrvezLF1zdl1fMF6lkt0Xklep5NUWocKljX6P64fH9+squBXuhUdhKsyFpbAWnoWXrrdlLl1vy2yFe+FR2HWbt9fvccFSWAvPwgb2e1xwK7xieh/a+tvzOlnli/0saZ6rfLGfW9vPVb4YPApTYQW3FYedW+EVR5zXMZx9tcoL+/nAcq7ywuBeeOmaMxXmwoL4K++uf5+FDbzy7uKGflh5d/EoTIVLe8dEG4eBqfTD8mHzv10+bN7Py4cvlsJaeBZ2v/JnI6tIr5nHX357MRXmwlJ4xfe+WmPCiw28fPjiVrgXHoWXrp/T5cMXS2EtPAsbePnwxa3w0vLrYY0DL+bCUlgLz8IGXuPAi1vhXrjoWtFd40Dz62eNAy/WwrOwJa/Cv+CW52UV/gWPwjinq3ivny+sTN9n8cHNmQpzYSm8/Go4z8IGXvl4cSvcC4/CVHjpdmcprIVnYQOvfLy4FR5o78rB80McU1cOXjzRxpWDi1cOXtwKr7Z4f9IoTIVXW8RZCmuJU3Sp6HLR5aK77psXl3PH5dxxOXdczh0XXS5a/hkjf8TitXnTH594ad70JxdemRc4gARkoAAVOIGW6J8xuhBq/hkjf7zh5XiBBGSgABU4gZZoB7ABoWZQM6iZq3lHmQAVOIEW6NV6gQ3YgQNIQAYK0OOeF6pX101fGPbiukABKnACLbEfwAbswAF0CXEUoAIn0BLHAWzADhxAArqEOnqw0ya9Mi6wAT2YOQ4gARkoQAVOoCXyAWxASPiHx3xS41VugWcEnyJ6jVtgA3bgGcynh17fFshAASpwAi3RM/bCBuxAqCnUFGoKNYWaQs1zc/qF6Fl4lrtOL5GbPgn1Crnp804vkAu0RE+9CxuwAwcQEp56FwpQgRNogV4UF9iAHShx3rzYLXDGGfJStwtb9q8XugV24AASkIECVOAE5tn0+rZAqHWodah1qHWodah1qHlC+in0MrWrHwbHKfTCtHUCvC4tcALzbHpRWmADdiAkiIAMFKACJxBnk3E2z5vculF5kdm6UXmN2bp1eIlZ4ATmHcfrywIbsAMHkIAMhJrkHcfrygLzjmN6ABuwAweQgAwUINQUagq1mXccmw3YgQNIQAYKUIETmPc3M6gZ1NZ90y8CizuOHccBbMAOHEACMlCACpyJLe445jVhgR04gARkoAAVOIGWuO6b6ujBpiMDBRh3HDv6BFriOIAN2IEDSEAGChAShLZ5vokfjufbhRNoiZ5v4hH8BnhhBw4gARkoQAVOoCUK1ARqAjWBmkBNoOYJeS78mRdiXeiZJQv9z5ojAwWowAn0g+wneg6dz0fNa6UCCchAAXpccpxAS/QcurABO3AAXc2vdb8tXihABU6gBfqOdYEN6BLiSEAGClCBE2iJnoUXNmAHQq1BzbPwfBXSfJu6QAVOoCX6zfLCFr3uZVOBA5gny+uG5rnKb14eNM83ucyrgwIHkIDnQZ4P5cz3ZAtU4ARa4hoNLmzADnQ1PzK/wC9koAAVOIGW6LeZ1Ta/zaifY7/sL5RskF/2F06gJfoNRf0M+Q3lwg70Q/cT4MlwISMC1CbUJtQm1DwZLsRpMZwWw2kxnBaDmi2J//PnPz1+87//5G57rhC6157gTuvQAnrACKAADpAADYjIIyJTRKaITBGZIjJFZIrIFJEpIlNEpojMEZkjMkdkjsgckTkic0T26/NcovSr08Eu8CvToQX0gBFAARwgARFZIrJEZI3IGpE1ImtE1oisEVkjskZkjcgakWdE9guye2lNwAigAA6QAA2YAXaBX34OEdkiskVki8gWkS0iW0R27z2f47jznrCMd1FL6kkjycP3kzhJklyBT5pJrvE4zct5F7WknjSSKImTJEmTZlJq9NToqeFuez5aWWa7SOOYPeHOhy1eYHpRTxpJlMRJkqRJM8mCKDUoNSg1KDUoNSg1KDUoNSg1KDU4NTg1ODU8D89S/3W7WMRJkqRBnnGL/C/GSf4XdJIkadJMsiBPs0UtqSeNJEpKDU0NTQ1NDU2NmRozNWZqzNSYqTFTY6bGTI2ZGjM1LDUsNSw1LDUsNSw1LDUsNSw1LDS82POiltSTRhIlcZIkadJMSo2WGi01Wmq01Gip0VKjpUZLjZYaLTV6avTU6KnRU6OnRk+Nnho9NXpq9NQYqTFSY6TGSI2RGitr5SRJ0qSZZEEra51aUk8aSZSUGpQalBqUGpQanBqcGpwanBqZjV5pedFIoiRO8iM4hxYrG09a2ejUkjyenTSSKOmMd74O45WTF2nSTLIgz8ZFLaknjSRKSo2ZGp6N5646fWXjOMmCVjY6taSeNJIoiZMkSZNSw0JjHEdSS+pJI4mSOEmSNGkmpUZLjZYaLTVaarTUaKnRUqOlRkuNlho9NXpq9NToqdFTo6dGT42eGj01emqM1BgZecT4wGsUL9Ikv3KcLMjz7XwdyisTL+pJPj7gkyiJk/xIj5P8yvF/m0muIeeA+UhqSa7hw+mRREmcJEmaNJMsyAeti1pSakhqSGpIakhqSGpIakhqaGpoamhqaGpoamhqaGpoamhqaGrM1JipMVNjpsZMjZkaMzVmangmn69beZXigx6zIPJZ0CO8nkvZ53W5YARQAAeIw+NvOf920vW3DiOAAjhAAjRgBtgFw/+K11Rqwfk7554N52X5eC63Jk4LRsD5V2fpw3lJLtAA//NrdqTnY3XuASPA/9zW7GjB2YHnc1+/1o6cHR0xFzpiLtRiLtRiLtRiLtRiLtRi5tNiwtMeHShnB7qPNHn8p8Z/6rkK3zTAu+gcCHoXnS55ODz+ZGaEs6PWQwJ9/Lud/+4dqPPqQJ3/5/F//O3f//Uv//nXf//7v/znP/7t385fin/4jz/90z//95/+91/+8W9//88//dPf/+tvf/vzn/6/v/ztv/yX/uN//+Xv/vM///KPx//7aPq//f1/Pn4+Av6/f/3bv530f/6Mvz6e/+nj1svXXz/uvZoBHpOEuyEe2SVXiEcC1RD8S4i+CTHiIIYxAsx2N4C06AMZCDC+NIKeB3hMKyLCY74wn4bgTSOkZz+Ijqchdl1pfGRHTHralbo5of180LFO6Bg4isfM6JcQ892zsW2GRTPo8ZzgaTPaJgbLiBgPxAmRX4/iTODn5/Q0juuccn8aYnNdqcYpfQya0Q6x2xF8+LYiSHse4W4z9Hkzdp2pZ9XI6kw97GkI2RnF6XSXUVB7GkLf7orNlfmYuOXF/VhmyRj0a4adi01PD+J8YrIOwvTpQfRNZ5qXz3qIB+KqeIy+7jeknXONqyHcnjWkby6sPuOUPgbkT3tim2EmeVG08eyMdnrf8nYxaLSIQY+B5PPbh2zdu2eKlN54TJ9/jbG5OnnGGZGDSwS+f2EQ54XBJcu+Xhh9c3k+HodbxjBc4Y9B6i8xxu6ejhvyY76KGPKDc5JZQtU5v56Tsbk+m6ZhPFaayn1k/Do4OSdHT2MIWwY5vyJcovx6hQ16/+oY/O7VsW+L5SClnZ8bfN6W3e29KRxwWjmS+WuM+fb1Ye9b4DbGzWyh9n62UH+3N7Zn9vzQQ5zZc2f/p2eWdl7qb8IsL21azuzXGLy7SZ95sNpC5R77mJL+GmPjpSQa54WkXGG/xdgdB3PLwYJtjmNzlUrP43gMBflpjJ+cGXl6Zvh4e9TBuzHcucFzHojSfH4gu1lO7y275BdL/RJj0yXUMnWplXHcjzrk3uiF+c3Ry64d3ChOygPHa/05cq4kj1ve8xhzN4rKWyXLfDGG5nzpge21GP48csV4PNR8fnPZ3bLtiBiPhyX69JYt22HpyGSZ8vy2L7tz23MazN1qn7b7MbxyZMWwps9j8PsDB5F3Bw5b75hHGUnVfPt6bmW+exz7M6u5VGSNXrs6rCPG5urQXX/YyMvjwWUgJT84jpzYj9Hm8+PYDuhy8nOOTcsg+de5pNJ27Wzk2lmdj/4gBmnPwfosV+lvMT4wgVL9Y690xpk939V7eqXrZmB5vrabN/2HpdGT62O+PYWS7ZJmDsUeD3faS9nyeBYUZ+XxkOd4GmOOPzZbHmONvFvLJvPndkg44yp9PJStV7r+GmNzlZ7bn+Ry3OSXYphItOXhAZsY8/1smfZutuz9B7cFm8fTvLdNxj2enqcfT+tPY2yvDqzUPhaBjteudMF4UHt/GsPo3WXr7VEUN7Yuz49i56Rd4jDa49ZSenTej+FfV4tx2PE8xtxd5xz+Y6LlgcYXJ7XdFD1v+Fbub4/nyPcd3UZjuM8vY8qvK5Xt3WTZdWnvmMNRe35a2jHez/t20Ltt2VqpSM7y1eiphfl+6ZtrLDvkKOPj354q6O45T8/HPM/X0n3r9efnpeVjha51Jelrl27v+EdGOZmeLgTtr1XrMFTjzbW6e1zTh+aNrhpR718f+by9KLU/Dsrlxl4HD1+PY5s11CbWcZ4bUWvbpVPMkB8rfU+fSLb2gcu1vX+5tk9cru0jl+v+8Q3n4xuRpw/kju3EgXPiIMfzx7S7x1DDNy+6xrnH8dyMtkEG1j5/uXn/FoQ+8LiX33/ey28/5bzdks0T37tdSoe8el4OzSBtc6fZPY66W1rhW8W/+6Rx3xzNtanHlGzXnM0gYPouQ+sEn3ftp3a2D5KjxHNvy00Qfv+CH/L2Bb8LcfOCv92SzQW/7dJx5HkZ49XzIrmyPWd7Xj3Tdk+lGhPW+mv5y/xB/lLLgfMj8za+SuP9K2T3XOrmFbILcfMKud2SFy2R/CCvLhXbdOn8QJfa+11q73fp/KO7tFyl2l67y1DLp7jUj8154d206ma9GH/AUPl9Q+X3DZU/YKj7Hn13gMkNZWeNN3WAsnFTEc0J89SNJe9WdgyrEEe93c4f9YeiP+aLfXq3EG/7kP8QLGXQ8xjy/pUu+vaVLu9XBN5uyeZK3/bosIkelddicEfJw3haTeflO0+vDmPOmbLYizHyucM2xv4Ku1nr+f5MSt+fSam+XangG96+VaqwP4qbZau7J1L36lbb3Dmpz7CWk9Yh5ePJ46tB+MUglPNKoVKs8HsQeve87NuSaxcPfLUtPZfqHg9T+qtBcqld6nzwZ0FGzjtk1AX734LsFqeOIwdSJ5eT81t98wcqBL8JYvkMYzR7MQiefz4ef8qLQW4WK7bdA6q71Yq+5eebK8Pb40CpkM0yLPv9OO4GkePVIHmjeaC8FuQxyMyB6oN1E2Z7ijmNzepA4ocX28TFVvP4Z0HEEGSTgPfv4U/nQ333qEqzhEr1+V1rP2a+947B7knV3enhPghlW4isbYLsC6fzabnSpjX29si775b+742ttiHuja369hnVvVGNPzF5b1Tje24/fwBBuTL86NGnd737Z+X5LOKbqyOfDned9FKMgWv9ccPTV2Mcb8cYGFxVH/tZjDy5j3DPY/T29ozomxi3ZkT7thAuMpL5fowXr7HRDQ9k5vNzu31ZSlChon33DtzuQBQlYSrPrbDPD5zc+QefXG1oyyZxd8+n1sc3r0e6jV/t1Bzvjrm5ynZPMO495O7b96WMsy2mz2dn2+MgLAzXV51+647dPZvzcR3xpmRwHwQvXpCqvBiENZ8c8G70MOb7z0E7He8/B902p67L9k0NZN+9N3W/OeOPbk6fcdPk+qbQ783hN8e6+8OQvFxZeTNOJd2lTV7yvb7d97VP33+9b3sUGaEm729HsXtHiDqSt5eVN7kfoh2+U+g1sZuTXgtis6z9l+KSnwQ5q3TS3o+ydvaTTs03Nx+DzU2n8h8a4tGR3dCp/LQp3wS5eWb4E2eGP3BmtpmrOaqSTvzaPeKXNc1BrwbJdSaRTTXVPojmmEh2Je77IJKXyeNh1+bm+80LVPfuEbsnPB+5R8jM+kF5XLub5uzu4I/RJqaJRvbKxaaS0zMVm8+PRI/3VyL0/e1Rur69P8o2xM2ViN0bUHdXIrYPm+6tROxeorq9EnH7rGxmifur495KxC7G3ZWIb2Icb8e4OdGcd5+J8mt9endFZB/j3orIrvj/7qR5H+PepHnbFjry+qiP8H47jvlHH8e9lZnbMV7MubsrM9Y/sDIz+wcukP4Hn5ibqyrbF6HurqrsD+Teqsrubaqbqyq7l6lur6rsjuPmqso3gxjFoOzx2O3JIGYcfRskrezB5c3BHwS5OUX8pjE3j2Njh2JZOazUNhP33X4DOTMrOyA+BmY/mch0vLV8DHtxNkTlzRI5nnaHvT+l2gb5xPT/do8cH+iR3VOq2z2yC3KvR7550l0acxz1IfXPHpgfQ0qY5xUA/gHO95+7b8PIzBfDH4n4dBFgGwLTssfz5vZaCMVR2NOzsy+/ObAJ6fFyNZGVXY82NTz7VyFy66Q56hTzR69CUN6/z0/fPw0ydi9DnZsu5YiGng4kRn+/VnX0t2tVtyHuzVPvt0Q3Ldn1qOU8pJk9nQ+N8f4T0W+O49YLmeP9Z1Vj7L0sF0Jo80LmeP9Z1bY7HksQB5Yg5ktd2hvetm3PR8xjzPe79AMD1e1x3OvSb97Fyu44v//+3MW2L8neq9nfvgN9q9x+0Puvpg56u6B6G+Kmhd1uib7WoXer7Tch7hXbj93I8OY8+ZsY94rt374z9WM/nLtXsbvf1fhere02xs1S2+22oDeLU2/H2NSm7mPcK03t9pkR8uZIbham9o9UdfcPFKZ2+2Nbc/ta/UBZ+Hb72ZvX6u0Ym2t1H+Petbp9afn+tfqJ+ufbO80/H0ptn0vdqubYbarXMl8eQ5laNvRlx+ft7n4D+w0MerrQtg1Bx/i/LrN/CSFvL8XsOuPIS+PLW75fO+MD5U9jt7ff7WfB8m6X7qaCku+2yC9FOnw/Qo7EhOR5hN1ckrMVjcuOab9teb+dj6IUhPt4GmPM7UTw3gaD4+21sW92is9tOR48nm+wPOZ8O2O3Ie5lrL1dOzX278blAHm2p6vi/O41vo1w6xrfTu5vXuP7zf9vXuP7DfluXuPbD/NkIWp/cDmQeT8GZ58+ngNsYmz3RC8P1bTVF2q+7jR/HO9myj7ErUyh9x8h/aA72vNd3/ab9xOqJRjzuP5yjPl+jFq6+ZOPCAzJBY+hzzfep20p+8T2t7Ok/+9BNnf7jie3fZZFtZ8F8W9PX0Hqm6g/DIIj6fyBIGVz4598FYGFsd282msnh2AjxDpfPcMzDaBusvz6tybopR4hw+uBNjen5u63N+YmbXbb+t2sQqO+ddUDVUZlB9rfDmT3wpOyRhDluj/o/BJju+Uzqjd+eSauX2LslvcP+PtRF3C/xqD989tent/y89Zsu5Wx3Xt5QP97t26DWKkAe36R7L8DcvuDJNsofCAKb75+QdvJuqIQvJ7i+WXP1N3AvbwpQOP5vXP7JY+RuzDwsFe/oJElHA/k12JY7gzOpvTimdE0gabzOF6MMssOcpOf94nMd0fw2wi3RvD7vfitVE7YePZ4n8Z2uS93srX+fJy4D5HXqXV5Nh/af5tA0ZKp88XMnZYPtR68mabS9rWpe4PvbYh7g+/dQPHe4PsH3bH7LNI3URRRmF6NwoYoupkX7Tbmu3tq7O1Ts2vMR05N7Y5pL58aQRR70Q/twK3KWn/u79td5O8Z4j7ELUfctwXvkjYTet4jxPPdBZ5tiMe96kBxjjZ6LQimVw/u/GKQ3JnzvN+95M+meMJlO3/e7pr+qU3ge44V+yiFGL9vAn83SOsvBmHCB76lvRbk0YQ0taPOj/rXEpnNgTTsR9/H808/kdj7DxFIP/AO9bY1qAjtx+brpvT2Uyr5wOvT2w+lwY++DJ1/8LE1JXzA7pcPlLUvvSFv3zn17Uc7tHtMde/Oue+MXLXiOex5Z+y2+xPKdR6hOTZBdnV++IJmO55OnLeHwTk+ezxUOV5sC+enaB6rV/xykPJmrL0cJN8ClRc/Cnj7w4Ly9tRM3h2IbN/NvflwZf9+772HK2Qf+J7f9ht4lGsIVF+N//odK7L3Z1X2/qzK3p5VbTuDsddZXd79vTP0/c7Q9zvD/tDOEMJeFvL864i8G/bf64x9iFudwcfbT8m3HzizvDXR8eInPIflI6ZHjOcfSeND3h/H8fbzUzdHP7t3YaThnQ3eHMYHxqTcPjAm3T6lbnl2W6f6Mb+vH2zbnV685lzWuFXvH4VYvsT661eF7n+87u4tYfsBPLjgufEqevTrB/C2H9E7IuOsjhd+GCMLHqUWXv7gQ3z1JbajftedfvJBwIkPAtqLbdERw0HTUn/woxgTfTqLf4zfPtzd/+Agv7xvMTYfONwG6VnP+hh9HS8GGbmdTq8bA3wN8s3XCe+V5u92fL27REbvjkz3Lbk5NP2mO+6NTXl8YGy6/3bdvZfgeLz/JR8eb3/JZxvi3hsk91uyuUz3XwO89RIcj/c3n9h/DlDKR41nLUSXHwTB4skD22tB7r4Htz8SHqi8lte/bjgFT+zLVhi/vaS8D8PYa+lxyc+Xw2THnCE3m4Nve2YYurfeb37UvZRfsulU78C/BdluEHjrxbptgf29dxX3Me69q8i7Jft77yr6ks3macqtdxW3x3G3S7enNgebj7M8Xs2chhrm1ga9esl3QuZ0eTkBez5iOkNuMmc7HCjLduPVEUW+3V9M6bevP2/HreVL1rVG7OtwUd5fBJD3FwFk/KEh7q0j7PszS2UeXUtP+3OOt2feu89H3Z5574pc7s68525PP8tJgNYNxr7uILOLMTWfwzwevbeXYljLmkyrG659jcHa373O94eRRW7WNzvhbmN0TFe72aYp/Ic2ZcA5hh2bw9A/9DAot0o1PnaH8XZpyj7EPfeZb5emzO1KRnGfzf6mu2+s3JvobiPcmufO+f40dxvj7ix36gdmuccHZrnz/Y+jsL39cZRtiJuz3Nst2S3GfGCWu1vfvjvLPT4xyz0+Mcs9PjHLPT4xyz0+M8s9PjPLPT4zyz0+Mcs9PjHLPd6f5R4fmOUe789yZfuU6tYsV7aX/c1ZrnyiSz8xyz0+M8s9PjPLPT4yy92OBW5NcvejiTtzXG3vzqekfWA+Je0D86ntrgeSL/2M2qNfH9pvH/y3rDqiUfeO/UkMyhpo+uWd8q8xdu+4ac8P0MzjeQGCvr3hgL694YB+YMMB/cCGA9I/MFrd1hzJRJXvPJ6elF2MbvUDtP21GDOHiePoz49Dtg+p7qbtrqD1dgHCtkw4N2wdB/dNa7Yv/d/8yMK+AgpfjtLnH56Xsbv53/vGggx9e0IjuwdV9yY02xD3JjSy+/DUzbdbZbfH0L1vLMjuq1N3v7Fw/6zo5qxsr45b31jYxrj5jYXvYhxvx7j3jQWhu49T+bU+vfmNhW9i3PrGgvD7X538Jsatife+Lfe+sSBMf/Rx3PrGwv0YL+bczW8syPZdo5vfWPjmYr93gdxOmFdPzL1vLMiunvPuNxa+OZBb31h4zG3enihv69HvTpSF3p0ofzeGufWNBfnEtw22Qe6+zkIfOA7dDg1n2U/ixVnQrVn2fhZ0Z5a9fe/i1jHs39y4cwzfvNOHBVmedUL4kxcDBW8Xio0Xg8z89Gavm/f/8O3CMm3oz5tD28e4N19R3Aa59y2CfYhb3yL4JsStbxFszws+AXguvL94cn8JQq8G6Qgynp8XmW8/QN2HuPXkUqb9oSFufgRk36GoFdbyds8Pz0racVd71UHqkbwcZOZQ6oEvB8HHCLZBtu/236xUau96+zc7lWQM6/LiZic5xLWu4+l1+vZdbr7bE/stffJdA9a6avGTLX2wjw7XT93+bFugXFh/4ItbC03Fcby6xdHMs/oI9+oWR2XOQS/3x0SMzXnZVaDxLN9T7x+I8drWU4RFT6qLnj+KgV00SHfX2DYG5j5Tn8fwLYierhNaDl7mcTx/J0bb7u1TyQoyEuOnT8O+OxLNI2m7I9ncsFlyIMVSFpTG/eOY2PR+HqKb47Dt8mt06+Om+bx2VLd7x+V75/W5ev/ygbjtJWI51afdbjy6e8/o9iXSxwcukW+O5N4lsvtgzs1LZHccty+Rb74udfMSmX/kJcJHPmnkX/ck+XIYY/dJk547+HOvt6r5JcZuGORdvu7+Wjf1mj9oSxY8cjv6pi3jA22hP7YtWKJ/4Gt3Ox5ZtMSD5LUYHcfR9QMx5vFiW7JYievnO352HNhkZRwv96mhT/nFGIQY8nwEsd8ZPN/ufQyQ63j7y3VKb39rYh/i1vxWSf7QEDe39N7158CWV0OPTX/advoRaf9875ztURCm2GTz+VFsnyLddLDdO1I3HWy/73xHyWTnp23Zx2B8s0ue98fYvQh/ewP8XZB7q3z7ELdW+b4JcWeVb/uBhVuz9P0nGu7M0vvba/L97TX5/aeL7n4W95soN7+KO/QjX8Xdhrl5jerbX8X9JsSda3T/Sbh7H4Tax3j/s2P3r5HvPqN28xqRz1wj8v41Iu9fI/L2NbKbceSDm1+2ZNN+NwC+F8a1hE5uH8HMRxSz3h9/fZtItxvL5SczpC7N/SCC5sBJ63jjRxHyE/T96TFsP8eCyhkqBQnnF6TvhsCeO+OXVyt+EMIrt1YIoechdPs+5r0vIOj+gdGtLyDo9ltQ976AoHP/psm9LyBsOxWFM1oXKH5wXjSf9A6tr3X8IMREqdrU5yF0t8Pe3VNr9P6p3W3Td/fU7jfs+sCpNcz76gbqPzkvlvfX8csXVO6HoONA8U5dzvsSYu6+B3Xz1M79Nnu3Tu3cfVTq5qmd292HPnBq6ehZiXQM23Qqf6BT5QOdqh/o1PlHd2q5UunFiz3dlNoxXkq5kQ8VH/j8Ljd3W/XdPbVtvH9qd49Z7p7a3XOnT5zaabntwAPLQI7vh5j5Vqe1+nCTv/bpruZu5krHr2uCc9wPwiOPhKnN50F2M6fH0//8lJuWz8jID44DX/hhEnqxMdhGmpk2QfrbO5/M7Xsh9/Ye2PeHCZqyOy/bPTLx8PoxTzmefwb7mzBeyHqFeTxd2oSZnwmzGajO3Clj1om+/iBz9MjvQOjB87WLTY98tKiHvRqkpR3pL99//hJkt2zRsvjEWt0I9b4d/RpCn9vRbpGv4VOMrc5vv7y58013NHRHrZr/WZ8qgpSVgt+CjA+cmG2QD/jAQ9zQGH7R0u5tDNPffmjzjTvjm5J1Zf63ptD+i8M5BmhPr7FdhHvLWfsQt5azvgnx5nJWb3htsNVHFDR+ECJrZltdFP9JCFR39/K5hK8h5v7pE55tHi+GyKGylHWHnzSk7q9bNrX+SQjJNehfK91/EEIbBlLjtZPaBd+/0ddCjMz1R6+0144CBfv1ufkPQtDECzL1W03N7kZoDZ9qasX2fnAQrQmmC/OlK6uNvDbbsNeOgjte8yF9LYTgXdRprzUkXxNso7/WkIEPcA1+rSGCt9BFXzsKzYfuTe2li7MZ+sL6SyEUAwySVwIYYa+21/rhyCf2v0yFf3NeHX9kmtqBXfxe64jMUVN+sydfC8D+FYpraFMa8YMA+Dgt12eP9wPkoPcR65UA2PzjgfRKgDtVktsA+eruI8BLTcDrsvUh/w+mUnihob3waAuvhf7yXc8v61PzD16q75QXY6f29G3dud/v79aGEnPuK5pjor7ZUGIb4t6GEvdb8vyF8O1wyCb6U16JwB01SePpxgfz9g57mzOyj3HrffL5gZ3+ttfnRJUXtedH8fZmJdsQ964tO97frMSOtzcrsd2DpMftC5+gOezpsprtniQZ5yYhxva8VMR2W2jfWwje92nLB/OPeW173qfy5iLBtkvPCpwcZj64bTp1d2ZulhTtg3BOTa062M+C9Ly9P5BeDZLV0FYrqn/YJ4xSLZEXr9aZM6LHo+SxuVrvBpHj1SDpZg+U14Lcr9T6pmvvVcHdNuenO2zY9lWmO9+b/aY/7pbRfRfmZh2dbfcrvH92dmHuLTzuQ9xaePwmxJsLj20e+NR6r5uefTmKXTXuvRvFdgKeQ5lm9aF0/0GIfMTWjzre/0GImXeJXz/P/LUvPrGvnn1iX739EmguB/e6Pv9bY3a7uIgic0X56a6J3wTJ2eyDzZ4G2Q4CLJ9YtEab5uxzNr8pbLVu4TjuB3ms9KQhEr0aRPLFPdW6cdHXILvd9W5+4mR7HIrjmGW/49+PY3e1Enak++V7z799UnP/+bYjVxP56JuR0fZY8K7H4PqE7bdj2aYfla3tbBNk+3mPe6/Nbs/PYzSUUyOp31n/7fzsCkrxvPAXV/sSYftek+Dr5LWu5OtAgnflS0c+63+sPcvzINsOwUPYqfVzpV875JsPQOFe8cvuZfQlyO4lviwYqAtsv4egDyQO80cSZ3ssdxOH6QOJs9sr4nbi8PaDgQMbDx+b87N7S6HngYyyVe/Xyfzu202MJ07cavXy8ZNrHhs9POYkGxOQ/Xve+VLgUUuyfvtW8O5WTi0vNSpHYl9uwrvt9jo+J/3oheN5l+z2Q+sDTySpVlPyl0t+9yWou5+o+OZICOuzdWrz25HY9pK/tbGB6dsPDbbnZvTMmlHfHP3t3Ow+BcWY7fGhNfVuPyzWXOV9TGCPV8by5NuERIjN8Hf3JajbY/nd9uW398j+bgytZQz9dL6p8wMDcX27Cmo7lr/fI7u841wm7bUW8rcTPPt2yTdnfG2zB8c3QTrWOGUX5AO739jkdx9c7kPceu63bcrd3VFs7h8J3NodxbZ7793aHWV/raKS6OGIz5cVbLthP2ZZvW50+/vX3D+w+Y3tXoS6eYVs90F/LAhiM2QZ8uJE7Zexr748x7rXJ7sgt69X+8T1au9fr/enFPryCPxet+6C3O3WduwWfe/2azsOer9jd18enagglqfTicdh7HYpwViRhurzGfB+UpJvZdZyALvfFMPDo+povzfF3re0xwr78f6F9ojS3jW1b2Lcuu/tW3P/it/ug3f7it+9GvWBK/4sWMnnJPVjqr9dKNsd+VC/z71+yei3paPtoeQQq9UPePxfDmV3zaLk8TF/bJue7R+5ZvsHrtn+gWu2f+Sa7R+5ZvsHrtndyt7E7sJ1Kez3C2X3POthrPBY27n97g0pOvKJ1GPZpD+98r85Fuyddr7/uTmW3QZ9tx7ifncgZRl57Dpl92Tr/n1jt0ff/RzcTarv5uA2xs0c3LXmfg4O/UQOjrc3lPzmSqGyoUfbJSFt3xjIJT6yMV5NH84Noccvmwb/fiz9E3cO+shVSx+4arcxbl619JGrlj5y1dLbV+1+aXvkolSr+//Z1++C7h5xEWG73XKtqf0gBnbDqeVhP4yRi4Vciph+FkNyh+pf9jJ8OQa/GiP7Q17uD8n+kJf7Azt268v9UWO82h/1Vv5qf2AxWV/uj5ltmS/3R43xan9MyRj68nHgLfT56nF4HeyaVb/cHzXGy8eRCxW28aD9g7Gbn13fB+kNG9RuP7u+3RlRDG938TbKZqZEOSuovvxYK/tBc25+5nwb5O6n6PdHcvNT9N88LLy1EKxvv2P0TYhbTxt2j07vD0P0A/v1t2O3md7dwfPcPSu4+Q72I8ruGeytl7C/iXHrLexvWnPzRexvotx8kXr/bPtAbUqvm6ccX+cTuw3+7o/h53x/DL+NcXMMv2vN/eTZPd66nzzW3x/Db8sXuDys480p3m70146yws7P6hceQXj/lCzvW7PuUPo1yO6rf3c2CN2HuLVD6HchbmwR+k1FSO5Jx0cdcH79gtnuVSLirBui+jn6N4LYsyC3i2TG8byA6XEk2wK1vMoa1QKV35qz23fkyDfnpNV9cH8Lst1FjVB93/iYHwlTP9cpP5mGY3+FbYXZ/lMR2EqNn5cyPtqzfVs1i+7K3gZfy7paa/fm4b+8L6ZfY7w9dv3mOFCFaLSL8Yknsa29/ST2/KbwB4ZIrcnbQ6R9jHtDpH1rbm6u8k2U20OkbeKU7QM3xQOt9e1uqnnBluZ8XUdrfVuAn7tQ1M25v+wKt28Lle0D5rYtHyjLekR5u6hqfyS3h2rtEx+dekR5f7n19vs84/n7PGvXn+eP+27tUrcvibo3B7X+iXMzPmKwg/7Qc/MQzArtMcfu3MgHnpm08Yn5Vhvvz7f2MW4m8fjEfKvRJ+ZbjfoffKFgh3iiTQ3uLgg1FBQ33l1txH90lHsv9X4T49Zbvd/FuPUx7/2iyc19375bwLk3Ovlmme/OXkDfhLizG9B+3RSPpR+Lr+PFxVfKIX2n+kWDr0G2b8I1ww6ex/PX6Zq/qf7UBvAGKW589zfkk7RnkrK7QKOvn9DeFXk2zUW1Bz7dP6b5vqfPp8K3tid6jMS3j7Tu7CGzj3FvE5kfNEY3jdl2q+WeJ81sbHrk/b19vjsSfCT9KCsMvx/J7j6BDxUfujs3H3hZ65soN59s7aPcfYzzzbHcfI7zTZS7j9naboXusXqQYU4ucfSHcXIKebK+HIfzLnpWfM7X4xxlUWrIJs4nnv59E+XmzWOfTYQtGut3AuQnvv3Li0/HfM0bessN+vtj+vU8yG6Acdcb5v597pl2qSWr1X5wJHf79RNjjO+u2pYzsHNR7vVs7IQs6vJ6Nvb84McZ83kWvb+92uMc7RZlb+2v1pptR185Gh21mPzr1bIbPN16CXK7gW/5lMMvX3K4vTHkY7CYTiv1Qz8/CIFvjrS62+tPQpjmNjPH0V4J8XgYmzlz0HjpKH552vZaQzT3hXy4xEsNeVy6GaLZa0cxcmn78YCIXgqBL/I9nsLw0xCt7zYf+8B+3SNf0H2sibzWG3RkU+pnCl7t0NdCjI7XlXsdQUy6H4JzRa2zvR2i3J9+FAKfbOvlgfJPQoyBpUE6XgpBiors47W+GPlgfPxyab0a4rWTOsosvmwF/6O+6FhAG6+dVHxqadRnNj8K0fK6IH7xpAq+CCYvHcXDuPOWqPUp5Q9CzGzI48lAexri8Qxot4Nbx7b2XYr1/eS+2nFf5deakmWc7ZcvNP4khGBrv9ey5DEWyw0w7GgvNgRj86O/HaK9ehSKEC+l++OOjr4gffsoXjup3fBuzVHfrdHj9lEcGMwfUj+GdP+Ld5yjvin1QXH7mmi7R1Uz/dPqkt38wd7omID+Mmf7/TB2D6owynjM2ZCtXyeP/SNPdvr4wC4CjyhvbyPwsLnj/XX/R5Sdld784Mo3x3KztuERZVdwdfM7Icv+n0W595mOfYy7X+o4Z9pvj9C/6ZT3v3zyWGJgLGPKJgl3Owy2g/OCe3RKeSDxxdi+C6P5uuxZqy3PwuweNeHxNw/eNYi33wPGkTye8Qx+3qB9GAwERqtPwH8W5rGKlAO0x+RUX+iXx0rHkYse9tz0t8seGKBJ3ZS23d7X9jHozoZYWXrh9rU7dq9mM1Yda+UWf03A7ZOejrWP9vDIzamR7dA507iVGPxqc8qbGL81R3b7C916Rfyb48AVomN3HLuvDjzW53Dr6eURAn/Nv12V7v0b8m6t/f4NWfT9G7LMT9yQd2/L3L8hb6Pc/HZY67uXsu7eSncx7t9KP/DVq9vNUX71JN8e6ex2HLw/0lH9wOnR9/tE9ROneB6fOMXy/mjpG5dUvINQd7f8zSXn7pLtWb5MdV+6326D2536LJ+EzF+23bevTju3L1bl5tCPEUrpWp4/iYIv1oxfppQ/i6J5mofWvUd/j7Ir9bu1tXPr270Hb26F/BhFfGJ7nv6RF7T6+y9oPWKMT9zFdm9o3b+LbaPcvovt3o66a5O7GPctbrcF4W2Lu9mcrWNvT/Ldu9jYfUrr9l1sfPM1rTun526MXZ+M/Seobp7isXvH6u4p3nfs7bvYziNv7oc4jt0Ve3M/xP2R3NzOcLTtEtPNbanG7lWt2249Wv+AW4/d61o33Xo0+kQiN/5EIrf3fXYb434Stg/47L5TPpKEt7doHNt9BG9u0fjdsdzco3H03b3j7lsj4yMvS43da1v3E7HL+4m4/8DW3UTs8xOJ2O39ROz2iUTcfWrrdiJuO+UziXjzcyNt7B6I3freyCPE7lXDmx8c+e5Abuwx/N1MLL9eOH7Z3OnrTGxstyM8P3iSYWYp7fq6xjp2T8QmS8/CQRbW50u120k3t8xlLtUvv0+6d0EkP49BUt5UeiOIvRjEstCBrDy5+RpkbLcS7HmeuX4ypH09zdv3nTT9QLQ8GP89yHZTw7wBsQz+QJBSjPjDIFnixGKvBsEz9ge+2px54MNdx/Ozs79OZpZGUp0B/Xad8M1JVKm/sK+t2X5yS9IMWGstyU+jHB+Igkv2cXbs5Sj5mZrvouz6NhcUW30M9X8JMj/SufMjnTs/0rnzj+7cx2NkvEHS+qtRGqq1Wy1yfj1KfSnm9SgyPtEvr0fpeUttvWwv9NMo+L53pzeOpSEKvRyFcSxv9AuquHudB/0wCt7/6LO/3i9o0Xy5RQNfb6a6bdJvUXS7z0kO5Pov+0H+HmX7IY58EYuG2atRKAtF6Jfq3R9GGXksRPJqFMaA8JeXCX8WRbB3i8jLLcK+ZSTba/d2FONPtOj1KJrOQDraJ6LQy8eCIR3Nrpsou53/OJcCftnd+WcHkq8GU/0s5f/lQOwPPRDGytNj7q0v9isfeb3x8fJV+/jTHHAfLztLjdLa+ECL3ojS8t7K7eWr9pcoLzsL9/z+KPexG//Y/GMvuZ4vN3HXzSVHx/H+gWzvhzlOeNzgZXcgu7e9bu6t+IMgT/dW/KY9hpVO293H6NjvqZa9MkqvfF0ZpGO7RVXe3h8rXW0TRHd1GrkLC9UXZ38WZOT+mTRqnfvPgmTt5VtB2vtBsDUb0Xy1T9iwAtbteZDdQ7I+c9T0OMVl3Um/BtktlmItrgvzJsj2eRDeljQ9XgvSsazeD9odydsjg2+OA6Z01Geyvx2H/bHH0VBt0uvql/4syPhEkOP9IEi+PnhzjfT9Bqs5bacyKPhZEMK+e0QfCaKvBsEr7CTycpCc4NJsH2jOy0E4t65t3I4PBBkvB8HOTnVC+VuQMd7O4f1xZPo12WXO9qnYTS/ZunzWJ3bZedr227l3XX4X5LbLj/fddX8cN11+94bYJ47jrst/E2R8IsjxfpC7Lr97Oey2y2+D3HX5+0H01SA3Xf6bIPdc/nZzXg5y1+VvBxkvB7np8vy+u+6P46bLs/6xLq+cO3SpbTp1+2LY3eTb7yN4M/nuB9FXg9xMvm+C3Eu+2815Ocjd5LsdZLwc5GbyyduLWd8cx83k07fXsvYLLijFeiwD2WurNqPlN9RGXfT8YRC8vFFfln05SC8PvH4rT9uvhxneIm6b1VfaL1feK9Kh3YtYd4t09kdys0jnfpBNkc43Qe4V6eyD3CzS2Qe5WaSzvVBGywKb8c0C+/bbNvmxn9H7y4+dCQ/Sabz8IJ2wBQ5Z+0AUfr18g1A6u4vyiS8Zkr39xbzdPsl4Bf9xFJutW8i2n/E+8pOZ/fFY8/l2DbR9U+jm1itknyj2JvtEsTfZ+8XeZNsdfW++I0e7h1y335H75jw3wYbJ1RG+nmc+tps25Fp9fQait3d9YOa87OunlH67avn4yJ4c34SZE5sw2eivhsFq0Lm1xxtHc2+HkG2J9M1PDuwP5QO7jDDnnk6PM/18T6fdS7M9n57PcXwJ8f88/vMv//rXf/zL3/79X//yn3/997//x/mXjf90FpE9/KHJSWfRSNOkmWRB/fjTVerVW1J3enRBH0nk9DjRnZNc45xSd02aSRZ/O474t9GSlsbDg8bSeBzLcI1zB77BSZLkGufuHmMmucY5dqEjqSX1JNc4d00mSuIk1zg3/CZNco2z9IRc49wNn4+klnRqjHP8zCOJkjhJ/nS9qcuaNJNODX+wKUdSS3KNc9QqrnFu2iuU5BpnUZpIkia5xrlQJ65xblClR5JrnON7dY3zCaCOJEriJEnSpJlkQfNIakmpMVNjpsZMjZkaMzVmaszUsNSw1LDUsNSw1LDUsNSw1LDUsNR4TMOADdiBA0hABgpQgRMItQa1BrUGtQa1BrUGtQa1BrUGtQa1DrUOtQ61DrUOtQ61DrUOtQ61DrUBtQG1AbUBtQG1AbUBtQG1AbUBNYIaQY2gRlAjqBHUCGoENYIaQY2hxlBjqDHUGGoMNYYaQ42hxlATqAnUBGoCNYGaQE2gJlATqAnUFGoKNRhGg2M0WEaDZzSYRoNrNNhGg280GEeDczRYR4N3NJhHg3s02EeDfzQYSIODNFhIg4c0mEiDizTYSIOPNBhJg5M0WEmDl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5cMeMmAlwx4yYCXDHjJgJcMeMmAlwx4yYCXDHjJgJcMeMmAlwx4yYCXDHjJgJcMeMmAlwx4yYCXDHjJgJcMeMmAlwx4yYCXDHjJgJcMeMmAlwx4yYCXDHjJgJcMeMmAlwx4yYCXDHjJgJcMeMmAlwx4yYCXDHjJgJcMeMmAlwx4yYCXDHjJgJcMeMmAlwx4yYCXDHjJgJcMeMmAlwx4yYCXDHjJgJcMeMmAlwx4yYCXDHjJgJcMeMmAlwx4yYCXDHjJgJcMeMmAlwx4yYCXDHjJgJcMeMmAlwx4yYCXDHjJgJcMeMmAlwx4yYCXDHjJgJcMeMmAlwx4yYCXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWX6OUlcuIAEpCBAlTgBFri5SWODQi1DrUOtQ61DrUOtQ61DrUBtQG1AbUBtQG1AbUBtQG1AbUBNYIaQY2gRlAjqBHULi+ZJypwApeanc85D2ADduAAUka4vMQRapeX+O9OINQEagI1gZpATaAmUBOoCdomaJtATaGmUFOoKdQuL3FkoADRNoXa5SUnXl7i2IAdCLUJtQm1CbUJtYmenGiboW2GthnULi9xRE8aetLQkwY1g5ql2jwOYAN24AASkIGpNg8FTmD25GwHEGoNag1qDWoNak2ACpxAtK1DrTdgBw4gAaHWodah1qHWoTbQkwNtG2jbQNsG1AYD0ZMDPTnQkwNqBDWCGkGNoEboSULbCG0jtA1eMgnnjdGTjJ5k9CS8ZDLUGGoMNXjJhJdMeMmEl0x4yRSoCc4bvGTCSya8ZArUBGrwkgkvmfCSCS+Z8JIJL5nwkqlQU5w3eMmEl0x4yZxQm1CDl0x4yYSXTHjJhJdMeMmEl0yDmuG8wUsmvGTCS6ZBzaAGL5nwkgkvMXiJwUsMXmLwEjtSzQ4GClCBEwi1BjV4icFLDF5i8BKDlxi8xOAl1qDW8rwZvMTgJQYvsQ61DjV4icFLDF5i8BKDlxi8xOAlNqA2BhA9CS8xeIkNqA2owUsMXmLwEoOXGLzE4CUGLzGMSwzjEoOXGLzE4CWGcYlhXGLwEoOXGLzE4CUGLzF4icFLTKAmOG/wEoOXGLzEBGoCNXiJwUsMXmLwEoOXGLzE4CWmUFOcN3iJwUsMXmIKtQk1eInBSwxeYvASg5cYvMTgJTahNnHe4CUGLzF4iRnUDGrwEoOXGLzE4CUGL2kHzOTBrXAKPngUpsJcWApriTMLF91WdFvRhbE8eBSmwly46DYtPAsbGAbz4KLbi24vur3o9qILmzm3fy9c2ttLe0fRHa1w6edR+nmUfh5FdxTdUXRH0R1Fl0o/U2kvlfZSaS8VXSrnl0o/U+lnKv1MRZeLLhddLrpcdLn0M5f2cmkvl/Zy0eVyfqX0s5R+ltLPUnSl6ErRlaIrRVdKP0tpr5b2ammvFl0t51dLP2vpZy39rEVXi64W3Vl0Z9GdpZ9nae8s7Z2lvbPoznJ+Z+nnWfrZSj9b0bWia0XXiq4VXSv9bKW9Vtpb/CqKa6dzK9wLj8JUmEscKayFZ+GiW/yqFb9qxa9a8asotXXdxoWlsBaehYtuL7rFr1rxq1b8qhW/asWvWvGrVvwqCm9dt+P8tuJXrfhVK37VRtEdRbf4VSt+1YpfteJXrfhVK37Vil9FGa7rUjm/xa9a8atW/KpR0S1+1ai0l0t7i181LrpcdLnoFr9qxa9a8avGpb3Lr873HNpVmHtuQN2uytzze5rtKs29eBSmwq4rfgzLry7WwrOwgZdfXbx0/diWX108ClNhLiyFXVe9XcuvLjbw8quLXff8BEu7ynUvHoWpsOueb2e0q2T34qXrfbL86uKl621cfnVxK9wLj8JUmAtLYS08C0P3KuC9uBXuhUdhKsyFpbAWnoWX7nkurlLei133fBG6XcW8F7vu9L9dfnUxF3ZdW7+vhV33/PZeu2p6Fy+/MtddfnVxL3zq0rF+nwqz83CWwlp4OvuxuV/5G7dtlffSuaV2W/W9wb2w657bLLZV4kvN47hfUfd2uV9Rdy33Kzp3IGyrzDfYdc8dGdoq9A123eHx3a+CXXe4lvsVkWu5XxH5sblfEXl89yvyt65WwW+w67LHdL8Kdl32+O5Xwa4rruV+Fey6nrOr8DfYdT03V+lvsKHP5UCfS+lnKf0sozChz92vrj4XQZ+Los+l9LP71cVa+llb4dLPOgoT+lwZfa6CPldFn2vpZ/eri2fp59kKl352vwou/Ty5cOln96vg0s/uVxe7X119bg19bqWfrfSzUWFGn7tfXX1uij63iT439PMqEg5GP68y4WD08yoUDubs81UqvPp81QqvPl/FwqvPV7Xw6udVLhyMfl4Fw8Ho51UyHIx+XkXDwejnVTYcjH5ehcPBruv3lFU6TO6rq3Y4mApzYSmshWdhAy+/urgVLrqj6I6iO4ruKLqj6I6iO4ouFV0qulR0qehS0aWiS0WXii4VXSq6XHS56HLR5aLLRZeL7vIrv3+t6uLgWdh1p5/T5VcXt8K98ChMhblw0ZWiK0V3+dXi5VcXF10tulp0tehq0V1+dbEWXrqeU1p0Z9FdfnVxLzwKF91ZdGfRnUV3+dXFpZ+t9LOV9lpp7/KrdczLr9YxLL+6uPSzlX620s8G3VWIHNwK98KjMBXmwlJYC6OfV0XyOoZVkhzcCvfCo3DRbUW3Fd1WdNssXNrbS3t7aW8v7e3o51WgfB1D58JSWAvPwkV3FN1RdEfRHaWfR2nvKO0dpb2jtHeUfh6ln6n0M5V+ptLPVPqZii4VXSq6VHSp9DOV9nJpL5f2cmkvl37m0s9c+rn4FRW/ouJXVPyKil9R8SsqfkXFr6j4FRW/IintldJeKf1c/IqKX5GWftbSz1r6ufgVFb+i4ldU/Iq09LOW9s7S3lnaO0t7Z+nnWfp5ln6epZ9n6edZ+rn4FRW/ouJXVPyKrPSzlfZaaa+V9lppr5V+NvQzH0fhVrgXHoWhy8WvuPgVF7/iYxZGe7kdhVvhXhj9zA39zI0LS2EtPAsX3eJXXPyKi19xH4VLe3tpby/t7aW9Hf3MvfTzKP08Sj+P0s+j9HPxKy5+xcWvuPgVj9LPo7SXSnuptJdKe6n0M5V+ptLPVPqZSj9T6efiV1z8iotfcfEr5tLPXNrLpb1c2sulvVz6mUs/S+lnKf0spZ+l9HPxKy5+xcWvuPgVS+lnKe3V0t4yvuIyvmIt/ayln7X0s5Z+1tLPWvq5+BUXv+LiV1z8imfp5zK+4jK+4jK+4jK+4ln6eZZ+ttLPVvrZSj9b6efiV1z8iotfcfErttLPZXwlZXwlZXwlZXwlB/pZDvSzHFxYCmvhWbjoFr+S4ldS/EraKEyFubAU1sLoZ2noZ+lH4Va4Fx6Fi27xKyl+JcWvpM/Cpb1lfCVlfCVlfCWj9PMo/TxKP4/Sz6P08yj9XPxKil9J8SspfiVU+rmMr6SMr6SMr6SMr4RKP1PpZy79zKWfufQzl34ufiXFr6T4lRS/Ei79XMZXUsZXUsZXUsZXIqWfpfSzlH4u80Ep80Ep80EpfiXFr6T4lRS/kjIflDK+kjK+kjK+kjK+kjIflDIflDIflDIflDIflDIflOJXUvxKil9J8Ssp80Ep4ysp4ysp4ysp4ysp80Ep80Ep80Ep80Ep80Ep80EpfqXFr7T4lRa/0jIf1DK+0jK+0jK+0jK+0jIf1DIf1DIf1DIf1DIf1DIf1OJXWvxKi19p8Sst80Et4yst4yst4yst4yst80Et80Et80Et80Et80Et80EtfqXFr7T4lRa/0jIf1DK+0jK+0jK+0jK+0jIf1DIf1DIf1DIf1DIf1DIf1OJXWvxKi19p8Sst80Et4yst4yst4yst4yst80Et80Et80Et80Et80Et80EtfqXFr7T4lRa/0jIf1DK+0jK+0jK+0jK+0jIf1DIf1DIf1DIf1DIf1DIf1OJXWvxKi19p8Sst80Et4yst4yst4yst4yst80Et80Et80Et80Et80Et80EtfqVlfKVlfKVlfKVlPqjFr7T4lRa/0jK+0jK+0uJXs/jVvPxqOPfCS5edl+505sJSWAsvXXM2/PvlV4tb4V544G9b0W1FtxXdVnRb0W1FtxfdXnR70e1FtxfdXnR70e1FtxfdXnRH0R1FdxTdUXRH0R1FdxTdUXRH0R1Fl4ouFV0qulR0qehS0aWiS0WXii4VXS66XHS56HLR5aLLRZeLLhddLrpcdKXoStGVoitFV4quFF0pulJ0pehK0dWiq0VXi64WXS26WnS16GrR1aKrRXcW3Vl0Z9GdRXcW3Vl0Z9GdRXcW3Vl0reha0bWia0XXiq4VXSu6VnSt6Bp07TgKt8K9MHSt+JUVv7LiV1b8yopfWfErK35lxa+s+JUVv7LiV1b8yopfWfErK35lxa+s+JUVv7LiV1b8yopfWfErK35lxa+s+JUVv7LiV1b8yopfWfErK35lxa+s+JUVv7LiV1b8yopfWfErK35lxa+s+JUVv7LiV1b8yopfWfErK35lxa+s+JUVv7LiV1b8yopfWfErK35lxa+s+JUVv7LiV1b8yi6/Wnzqdr9Hr/L1YC186vo3M9qqYGevY1kl7MHNmZx74VGYCrMzO0thLTwLL93zGfoqZufDd/SdrXAvvOrcDuel6/0wubAU1sKz/K2Br3rRxUXXlu75zYv/7y//+Otf/sff/u0//vRP/31uXfxff//X2Kb48Z//+f/73/H//I9//PVvf/vr//qX//2Pf//Xf/uf//WPfzu3ND7/vz8dvqXx43//ucmfezu3PG74J/tzp/Of+vWr/zzPLc0ft0f+f/z3/vnhJvrnh3XQ47+H//+PQdfjl/z/P//gsfw0//xYdxrnP5x/8fhjjzDPuCPinnUYj6dkV5Tzk7yP54gR4/FI9M+PR5sR4fx82+NJ2Pn3dP79+RfdHr8Rv//oM+Lz/+ZsidKf1fIQjj/Pfv7/8ntLNf+p05+7nf808U/65+F/aKlLfx70RffcOPr/Dw==",
|
|
6257
|
-
"verification_key": "
|
|
6256
|
+
"debug_symbols": "tb3fjuw8cuX7Ln3dFyIZfxh+FePA6PH4DBpo2IO2PcCBMe9+UkFFrNi1nSxVZn43Xb9vd1UskVIskVSI+q8//c9/+R//+b/+6a//+v/+27//6R/+8b/+9D/+/te//e2v/+uf/vZv//yX//jrv/3r41//60/H+T+N/vQPrY/xf//8p+b/Lf7f/fHf/fzvqY///vOf5lw/zH/YsX609aOvH2P9oPWD1w9ZP1YUW1FsRWnHcf1s189+/RzXT7p+8vVTrp96/ZzXzyteu+K1K1674rUrXrvitSteu+K1K1674rUrXr/i9Stev+L1K16/4vUrXr/i9Stev+L1K9644o0r3rjijSveuOKNK9644o0r3rjijSseXfHoikdXPLri0RWPrnh0xaMrHl3x6BFvPH7ycf1s189+/XzEk/MnXT/5+vmIZ+fPM57/4gywC+QIaAE94DxKOoECOEACNGAG2AV6BLSAHhCR9YzMJ3CABJyRz8brDLAL5iNyd2gBPWAEUAAHSIAGzAC7wCKyRWSLyGf29LNbzvxZwAESoAEzwBb0M5UWtIAeMAIogAMkQANmQERuEblF5BaRW0RuEblF5BaRW0RuEfnMrv44Bf1MrwUtoAeMAArgAAnQgBkQkUdEHhF5ROQRkUdEHhF5ROQRkUdEHhGZIjJFZIrIFJEpIlNEpohMEZkiMkVkjsgckTkic0TmiMwRmSMyR2SOyByRJSJLRJaILBFZIrJEZInIEpElIktE1oisEVkjskZkjcgakTUia0TWiHzmYJ8P8Bx0aAE9YARQAAdIgAbMgIhsEdki8pmDo50wAijgEXnICRKgATPAFowzBxe0gB4wAiiAAyRAAy7fGMflG6MdAS2gB4wACuAACdCAiNwico/IZw4OO6EHjAAK4AAJ0IAZYBecObggIo+IPCLyiMhnDtJxggRowAywC84cXNACesAIoICITBGZIvKZgzROsAvOHFxwRtYTesAIoAAOkAANmAF2wZmDCyKyRGSJyBKRJSJLRJaILBFZIrJGZI3IGpE1ImtE1oisEVkjskZkjcgzIs+IPCPyjMgzIs+IPCPyjMgzIs+IbBHZIrJFZIvIFpEtIltEtohsEdmuyHQcAS2gB4wACuAACdCAGRCRW0RuEblF5BaRW0RuEblF5BaRW0RuEblH5B6Re0TuEblH5B6Re0TuEblH5B6RR0QeEXlE5BGRR0QeEXlE5BGRR0QeEZkiMkVkisgUkSkiU0SmiEwRmSIyRWSOyJGDFDlIkYPkOWgncIAEaMAMsAs8Bx1aQA8YARFZIrJEZInIEpElImtE1oisEVkjskZkjcgakTUia0TWiDwj8ozIMyLPiDwj8ozIMyLPiDwj8ozIFpEtIltEtohsEdkiskVki8gWke2KzMcR0AJ6wAigAA6QAA2YARG5ReQWkVtEbhG5ReQWkVtEbhG5ReQWkXtE7hG5R+QekXtE7hG5R+QekXtE7hF5ROQRkUdEHhF5ROQRkUdEHhF5ROQRkSkiU0SmiEwRmSIyRWSKyBSRKSJTROaIzBGZIzJH5MhBjhzkyEGOHOTIQY4c5MhBjhzkyEGOHOTIQY4c5MhBjhzkyEGOHOTIQY4c5MhBjhzkyEGOHOTIQY4c5MhBjhzkyEE+c5DphB4wAiiAAyRAA2aAXXDm4IKIbBHZIrJFZIvIFpEtIltEtiuyHEdAC+gBI4ACOOCMLCdowAywC84cXNACesAIoAAOiMgtIreIfOYgP1xdzhxc0ALOyHbCCKAADpAADZgBdsGZgwtaQEQeEXlE5BGRR0QeEXlE5BGRKSJTRKaITBGZIjJFZIrIFJEpIlNE5ojMEZkjMkdkjsgckTkinzkoxwkzwC44c1DaCS2gB5wrPeeVcObgAg6QAA2YAXbBmYMLWkAPiMgakTUia0TWiKwRWSPyjMgzIs+IPCPyjMgzIs+IPCPyjMgzIltEtohsEdkiskVki8gWkS0iW0S2K7IeR0AL6AEjgAI4QAI0YAZE5BaRW0RuEblF5BaRW0RuEblF5BaRW0TuEblH5B6Re0TuEblH5B6Re0TuEblH5BGRR0QeEXlE5BGRR0QeEXlE5BGRR0SmiEwRmSIyRWSKyBSRKSJTRKaITBGZIzJHZI7IHJE5InNE5ojMEZkjMkdkicgSkSUiRw5q5KBGDmrkoEYOauSgRg5q5KBGDmrkoEYOauSgRg5q5KBGDmrkoEYOauSgRg5q5KBGDmrkoEYOauSgRg5q5KBGDmrkoEYOauSgRg5q5KBGDmrkoEYOauSgRg7OyMEZOTgjB2fk4IwcnJGDM3JwRg7OyMEZOTgjB2fk4IwcnJGDM3JwRg7OyMEZOTgjB2fk4IwcnJGDM3JwRg7OyMEZOTgjB2fk4IwcnJGD03NQT2gBPWAEUAAHSIAGzAC7gCIyRWSKyJ6D/QQK4AAJ0IAZYBd4Djq0gB4QkTkic0TmiMwRmSMyR2SJyBKRJSJLRJaILBFZIrJEZInIEpE1ImtE1oisEVkjskZkjcgakTUia0SeEXlG5BmRZ0SeEXlG5BmRZ0SeEXlGZIvIFpEtIltEtohsEdkiskVki8h2RbbjCGgBPWAEUAAHSIAGzICI3CJyi8gtIreI3CJyi8gtIreI3CJyi8g9IveI3CNyj8g9IveI3CNyj8g9IveIPCLyiMgjIo+IPCKy56CdIAEa8Iisxwl2wZmDC1pADxgBFMABEqABEZkiMkdkjsgckTkic0TmiMwRmSMyR2SOyBKRJSJLRJaILBFZIrJEZInIEpElImtE1oisEVkjskZkjcgakTUia0TWiDwj8ozIMyLPiDwj8ozIMyLPiDwj8ozIFpEtIltEtohsEdkiskXkMwf1vGzOHFxgCx6P2s/Q7NSSetJIoiROkiRNmkkW1FKjpUZLjZYaLTVaarTUaKnRUqOlRk+Nnho9NXpq9NToqdFTo6dGT42eGiM1RmqM1BipMVJjpMZIjZEaIzVGalBqUGpQalBqUGpQalBqUGpQalBqcGpwanBqcGpwanBqcGpwanBqcGpIakhqSGpIakhqSGpIakhqSGpIamhqaGpoamhqaGpoamhqaGpoamhqzNSYqTFTY6bGTI2ZGjM1ZmrM1JipYalhqWGpYalhqWGpYalhqWGpYaHRMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3z3CuGdDpJkibNJAvyPF/UknrSSKKk1NDU0NTQ1NDUmKkxU2OmxkyNmRozNWZqzNSYqTFT48zzuQo8W1JPemjM7kRJnCRJmjST7CIvKrqoJfWkkURJnCRJmjSTUqOlRkuNlhotNVpqtNRoqdFSo6VGS42eGj01emr01Oip0VOjp0ZPjZ4aPTVGaozUGKkxUmOkxkiNkRojNUZqjNSg1KDUoNSg1KDUoNSg1KDUoNSg1ODU4NTg1ODU4NTg1ODU4NTg1ODUkNSQ1JDUkNSQ1JDUkNSQ1DjzfJKTBZ15ftGpoU49aSRREidJkibNJAs68/yi1JipMVNjpsZMjZkaMzVmaszUsNSw1LDUsNSw1LDUsNSw1LDUsNDwwqWLWlJPGkmUxEmSpEkzKTVaarTUaKnRUqOlRkuNlhotNVpqtNToqdFTo6dGT42eGj01emr01Oip0VNjpMZIjZEaIzVGaozUGKkxUmOkxkgNSg1KDUoNSg1KDUoNSg1KDUoNSg1ODU4NTg1ODU4NTg1ODU4NTg1ODUkNSQ1JDUkNSQ1JDUkNSQ1JDUkNTY3Mc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMc8k8l8xzyTyXzHPJPJfMcy/gssOJkyRJk2aSBZ15flFL6kkjKTU0NTQ1NDU0NTQ1ZmrM1JipMVNjpsZMjZkaZ55bd5pJFnTm+UUtqSeNJEriJElKDUsNCw0v8rqoJfWkkURJnCRJmjSTUqOlRkuNlhotNVpqtNRoqdFSo6VGS42eGj01emr01Oip0VOjp0ZPjZ4aPTVGaozUGKkxUmOkxkiNkRojNUZqjNSg1KDUoNSg1KDUoNSg1KDUoNSg1ODU4NTg1ODU4NTg1ODU4NTg1ODUkNSQ1JDUkNSQ1JDUkNSQ1JDUkNTQ1NDU0NTQ1NDU0NTQ1NDU8DwfThbkeb6oJfWkkURJnCRJmpQaMzUsNSw1LDUsNSw1LDUsNSw1LDUsNLyQ7KKW1JNGEiVxkiRp0kxKjZYaLTVaarTUaKnRUqOlRkuNlhotNXpq9NToqdFTo6dGT42eGj01emr01BipMVJjpMZIjZEaIzVGaozUGKnheX6uOnvB2UUt6dRQp5FESZwkSZo0kyzI83xRS0oNTg1ODU4NTg1ODU4NTg1JDUkNSQ1JDUkNSQ1JDUkNSQ1JDU0NTQ1NDU0NTQ1NDU0NTQ1NDU2NmRozNWZqzNSYqTFTY6bGTI2ZGjM1LDUsNSw1LDUsNSw1LDUsNSw1LDS8WO2iltSTRhIlcZIkadJMSo2WGi01Wmq01Gip0VKjpUZLjZYaLTV6avTU6KnRU6OnRk+Nnho9NXpq9NQYqTFSY6TGSI2RGiM1RmqM1BipMVKDUoNSI/PcMs8t89wyzy3z3DLPLfPcMs8t89wyzy3z3DLPLfPcMs8t89wyzy3z3DLPLfPcMs8t89wyzy3z3DLPLfPcMs8t89wyzy3z3DLPLfPcMs8t89wyzy3z3DLPLfPcMs8t89wyzy3z3DLPLfPcMs8t89wyzy3z3DLPLfPcMs8t89wyzy3z3DLPLfPcMs8t89wiz/sRed6PyPN+RJ73I/K8H5Hn/Yg870fkeT8iz/sRed6PIzVaarTUaKnRUqOlRkuNlhotNVpqtNToqdFTo6dGT42eGj01emr01Oip0VNjpMZIjZEaIzVGaozUGKkxUmOkxkgNSg1KDUoNSg1KDUoNSg1KDUoNSg1ODU4NTg1ODU4NTg1ODU4NTg1ODUkNSQ1JDUkNSQ1JDUkNSQ1JDUkNTQ1NDU0NTQ1NDU0NTQ1NDU0NTY2ZGjM1ZmrM1JipMVNjpsZMjZkaMzUsNSw1LDUsNSw1LDUsNSw1LDUyz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nna+ep43DswAEkIAMFqMAJtETflOpCqHnKi9NIoiROkiRNmkkW5Cm/qCWlxkiNkRojNUZqjNQYqTFSg1KDUoNSg1KDUoNSg1KDUoNSg1KDU4NTg1ODU4NTg1ODU4NTg1ODU0NSQ1JDUkNSQ1JDUkNSQ1JDUkNSQ1NDU0NTQ1PDd7w6uiMDBajACbTEeQAbsAMHEGoTahNqvnvcwY4TaIm+k9yFDdiBA0hABgoQagY1SzUvmntkq2MDduCpdu5O1r1wLpCBp9q5t1j32rnACbRE347uwgbswAEkIAOh1qDWoNag1qHWodah1qHWodah1qHWodah1qE2oDagNqA2oDagNqA2oDagNqA2oEZQI6gR1AhqBDWCGkGNoEZQI6gx1BhqDDWGGkONocZQY6gx1BhqAjWBmkBNoCZQE6gJ1ARqAjWBmkJNoaZQU6gp1BRqCjWFmkJNoTahNqE2oTahNqE2oTahNqE2oTahZlAzqBnUDGoGNYOaQc2g5l7S3R/cSxy9MO/ClU5OZ6y+0P9qOFqi582FDdiBA0hABgpQgVAbUCOoEdQIagQ1ghpBjaBGUCOoEdQYagw1hhpDjaHGUGOoMdQYagw1gZpATaAmUBOoCdQEagI1gZpATaGmUFOoKdQUago1hZpCTaGmUJtQ87zp4tiBA0hABgrQ1dRxAi3R8+bCBuzAASQgAwUItZU309ECaeWNOTZgBw4gARkowFNtdMcJtES/Bw9ybMAOPNWGOhKQgQJU4AS6mrfN78EXNmAHDiABGShABU4g1NxLhveDe8mFHehx2fGMe+56173G7THOPtH9gfwX3B8u7MABJCADPa44KnACLdH94cIG7MABJCADoeb+QH4C3B8uPNXYm+n+cGEDduAAEvBU4+YoQAVOoCW6P1zYgB04gASE2tqZ1k+L+8OFrjYcLdH94cIGdDXvB/eHCwnIQAEq0NX84nJ/WOj+cGEDduAAEpCBAlQg1Nwfzn1ruhfIBTagq7HjABLQEj3nz51uute6PWZgjufhnLsgdK9xC1TgBFqip7RMxwbswAEkIANdzVvhKX3hBFqip/SFDdiBA0hABkLNhwfq/eDDgwst0dNfm2MDduCppt59nv7qXeLpr+IoQAVOoCV6+l/ocf0gPdEvZKAAFTgTPQvPyvPu9WkXehZOP17Pt+nXg+fbhQwUoAJnoufF9OP1vLjQEj0vLmzADhxAAjJQgFAzqFmqeUFZYAN2oMdVR48wHc8IZ7FM93KxwAY8I1hzHEACMlCAmugpclYAdK8Ha+ej2u4FYc0XJbwiLFCAHoEdJ9ASPRkubMAOdDVvsSfDha7mjfdkuFAT/bI3c3xE6L6C5oVfgR6BHOX8V2+m79184QRaou/g7OseXv8V2IGu5r3jOzlfyECoMdQYagw139X5wpbnQnA2BWdTcDYFZ1NwNj2H1in0e9Y6hZ5D62QpzqbibHoOrXOhOJuKs6k4mxNnc+Js+j1rnbeJs+n3rHWyJs7mxNn0LFyn0HdQX+fNcDY939Yp9H3UV0cZ+tfQv4b+9f3U/WR5YVdgA/Y4WV7bFUjAVPPyrkAFTmCeTS+c6r5I5ZVTgZboW5of6tiAHTiABGSgABU4gaeaz2O9iiqwATtwAAl4qjU/Xk+cCxU4ga52XkZeTxXYgK7mR+aJcyEBXW06ClCBE+hq5wXjVVTdJ+5eRhVIQAaecbufed8G3edkXkv1WDFytETfDP3CBnQ1b7FviX4hARnoat423xHd5zheS/VYbjjRd0X3iY1XU3Uf23s5VeAAEpCBAlTgqeabmXtV1YW+U7rPcbyuKrADB5CADBSgAifQAudxABuwAweQgAwUoAInEGoNag1q68sGa9v5ASQgAwWowJnoXzXwiZgXWAUOIAEZKEAFTqAluilcCLUBtQG1AbUBtQG1AbUBtQE1ghpBjaBGUCOoEdQIagQ1ghpBjaHGUGOoMdQYagw1hhpDjaHGUBOoCdQEagI1gZpATaAmUBOoCdQUago1hZpCTaGmUFOoKdQUagq1CbUJtQm1CbUJtQm1CbUJtQm1CTWDmkHNoGZQM6gZ1AxqBjWDmqWaHQewATtwAAnIQAEqcAKh1qDWoNag1qDWoNag1qDWoNag1qDWoQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDl3hF12MNzFGACrRwRFsGsrABO3AACchAASpwAqHGUGOoMdQYagw1hhpDjaHGUGOoCdQEagI1gZpATaAmUBOoCdQEago1hZpCTaGmUFOoKdQUago1hdqE2oTahNqE2oTahNqE2oTahNqEmkHNoGZQM6gZ1AxqBjWDmkHNQm0cxwFswA4cQAIyUIAKnECoNag1qDWoNag1qDWoNag1qDWoNah1qHWodah1qHWodah1qHWodah1qA2oDagNqA2oDagNqA2oDagNqA2oEdQIagQ1ghpBzb2EyFGACjzVaH2qxxLdSy481c7F7+G1Y4EDSEAGCtDVzHECLdG9hPx43Usu7MABJCADTzX2bwitzzctnMBT7VxiHsf6iNPCBuzAM+65xDyO9aEm7yj3h4XuDxd6hPUVow4cwPN4z9Xm4QVjgQJUoKt5g9wfFro/XNiAHte7z3P+XP8dXhEWaIFeE9b9uzFeFBbYgQNIQAYK0NXWV5om0BI95y9swA4cQAIyUIBQa1BrUOtQ61DrUOtQ61DrUOtQ85w/NyIdXhDWz5X04RVhgR04gARkoAAVOIGWSFAjqBHUCGoENYIaQY2gRlAjqDHUGGoMNYYaQ42hxlBjqDHUGGoCNYGaQE2gJlATqAnUBGoCNYGaQk2hplBTqCnUFGoKNYWaQk2hNqE2oTahNqE2oTahNqE2oTahNqFmUDOoGdQMagY1g5pBzaBmULNUW59YvLABO3AACchAASpwAqHWoNag1qDWoNag1qDWoNag1qDWoNah1qHWodah1qHWodah1qHWodahBi/p8JIOL+nwkg4v6fCSDi/p8JL1ucbzsd1YH2xcuLxkYQN24AASkIECVKCrqaMlLi9Z6Grs2IEDSEAGClCBE2iJy0sWQk2gtrzEHAnIwJm4/GE6duAZQb1/3R8uZKAAFTiB5/Gqd4n7w4UN2IGu5sLuDxcy0NX8eN0fLpzAU22e9/nrU48LG7ADT7Xpnz90f5h+vO4E08+xO8GFFuilX4EeVxw9rjp6XHM8455P2oZvzBYoQAWeaucDmbE+/bjQneDCBjzVzsc0Y3350fxwPP3PJytjff3R/HDO9B+HS5zpH2iJZ/oHNmAHDiCd6Mfg34O8UOMyGn0CLXHl/MIG7MABJCADBQi1AbUBNYIaQY28Qd5nNIAE9AZ5T545H6jACbRE/27yhQ3YgQNIQKgx1NjV/IriCbREOYAN2IEDSEAGChBqAjWBmkJNoaZQU1fzS26NFLqjAifQEtdIYWEDduAAEpCBUJtQm1CbUDOoGdQMagY1g5pBzaBmUDOoWarRcQAbsAMHkIAMFKACJxBqDWoNag1qDWoNag1qDWoNag1qDWodah1qHWodah1qHWodaphfUIdah9qA2oDagNqA2oDagNqA2oDagNqAGkGNoEZQI6gR1AhqBDWCGkGNoMZQY6gx1BhqDDWGGkONocZQY6gJ1ARqAjWBmkBNoCZQE6gJ1ARqCjWFmkJNoaZQU6jBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJV7qN87Kl+Hbz104D2ADduAAEpCBAlQg1CbUDGoGNYOaQc2gZlAzqBnU3Et8NdRLCBd6CeFjkuHYgB04gARkoABPtfOtueHlhoGWeHrJOOuChpcbBnagq/mRNQIy0M/bCqbACcw1XVlesrABO3AACchA77PhaIn+GfvWHRuwAweQgAwUoPcZOU6gJZKrsWMDdqCr+ZH5vOVCBvpK+gqmwAnMdftVsHhhA3bgABKQgd4KcbREn6Fc6K1Qxw4cQG+FX1E+Q7nQ+8wvAp+hXDiBp1r38+YzlAsbsAMHkIAMPNW6X5OnPwROoCW6P1zYgFGEOK6CRT/dPqo4FipwAi3RDmADdmCUGw4vbgxkoAD1quEcXtwYaIFe3BjYgB04gARkYJ55PfLMazuAeea1deAA5pn37eoC88z7hnWBE5hn3vesC2zADhxAAjIwz7xXYAZOYJ55r8AMbMA88zryzF+1lgsVOIF55let5YUN2IF55let5YUMFGCeea+1DMSZZ5x5xplnnHnGmWececaZ95zvfmSe8ws95y9sQD8X/mee8xcSkIFyFa0Pr7UMnEBLXIX+CxuwAweQgH6OyXECLXFl98IG7MABJCADBQi1CbUJNYOaQc2g5nf/7ofud/8LGShABU6gq52J4wWWgQ3YgQNIQAYKUIETCDV3grNqdXiBZWAHnmpnLevwAstxVqIOL7AMFKACJ9AS3QkubMAOdDVxJKCrqaMAFTiBpxr5obsTXNiAHTiABGSgAE+1s1RqeNlloKt57/iY4MIG7MABdInhKEAFTqAl+gKmlzd4rWVgBw4gARnoat5RvoB54QRaolvFhQ3YgQNIQAZCzYcHXvTgtZaBlujDA6+r8FrLwA481bwqwmsthxc9eK3l8CGg11oGKnACLdEN5EIvQHGiJE6SJE2aQZ7BPsTyYseFXuwY6HXyTj1pJFESJ0mSRzzTwksXhxdm2LozO1ESJ/nA30mTZpIFrScJTi3JRdRxAL2vpyMDBeiHeZ4ir0IcPkr3KsRAf+7hdAbwkgUvQgxU4ARa4nrLwSm7k7I7KbuTsjspu9MTaXWip8zqRE8Zn156dWHg2VR/ROnVhYF+pH42z5RxN/Diwoss6MyXi1pST/KIfiCeAOIHciaA57aXCl7Uks6/9kM7L/6LKImTJEmTXMRPoV/3C/269weGXiIY2IF+mH62/GaofvB+M1x43gzd+7zq7+oYvxdeOIAEPMPq+jMBKnBmh3smnUhe9RcYauRVf4EDSMBQI6/6C1TgRFyoNag1qDWoNag1qHn2XSjrUicv+vPLl7zoL9ASPQMvbIl+n1I/BE+mCwfQ53dOnCRJmjSTLMjzaFFL6kkjKTUoNSg1KDUoNfwepY5+j7qwAb0x6jiAZyeq95wn3IUCVOAEWqLfoy481c7nxeQleIED6GrTkYECPNWmnwdP0Qst0Ze4/Fd9hWtRTxpJlMRJHrGf6Jk3/XR65k0/fh+yXkhABp5Hej7DJi++C5xAS/Qh64W+zOLkYt7znqUXEtDF/Pr1LL1QgaeYeV94ljp6nd44J1TkdXqBHeh540RJnCRJmjSDPBPPGQ151d04H6CTV92N8wE6edVdoAIn0I/0bKBX3QU2YAcOoKs5cZIkeac4zSQL8pHnopbUk1xkIQEZOBN9KGku6UPJCz2HnCiJk87bweGnhhQ4gX7P8j7lA+h3Le9e7sDzznN4R57pSoeflTNd6XC1M13pXEokr6kLnEBL9FvkhQ3YgQN4qjU/3jNdqfmlJK7mxyuu5gfpN8/mB+l3zws7cAAJyEBJnB7MmzkbsAMHkIAMlMR1u/SOMv8zP6tGQAYK8Gybn+oz5S6yi7zE7aKW1JNGEiVxkiRp0kxKjZYaLTVaarTUaKnRUqOlRkuNlhotNXpq9NToqdFT40y2cxpBXqh2kQWdyXZRS+pJI4mSOEmSUmOkxkgNSg1KDUoNSg1KDUoNSg1KDUoNSg1ODU4NTg1ODU8Mv+96gRidA13y3cXIfd73EaPuv3sO/c6CefKSrota0iMS+5+cF+9FEnTeOMhvXl6LFTiA54GccwfyzbnYY54X8UWaNJPsIi/Ouqgl9aSRREmcJEk+fj47wCut6FyoIP8U5jkjIa+5uoiTJEmTZpIFnVfnRS2pJ6VGT42eGj01emr01OipMVLjvHbP+RJ5sdVFI+mh4SNEr7S6SJK8F05T9NopGt43flWeyyrktVOBDBSgAifQEv3ivLABOxBqDDWGmt8n/J7utVOBE2iJfp+4sAE7cAAJyECoCdQEagK18+4hfhLOm8dFPWkkURInecQz17w+ivwOv75s6afGv4S1iJIef+1D0vVly0WaNJMsyL+EtehsOC08m0ge0W8XF06gJ/+ZEV7qFNiAHTiABGSgABU4gVBrUPObh7uNlzoFDqCriSMDXU0dXW06nmrn/k/kpU4X+l3kwlONXdjvIxeeaudiD3mpE7l1eKkTnSsDtHbzOtbvKnACLdF3O7mwAT2uH7rfSNgP3e8knt5evnSh30suPI/XM9zLlwIHkIAMPON66ntJEokfgyejT1+9JCmQgAwUoAIn0BI9GS90Ne8+T8YLB9DVvFM9GS8UoAJdzfvMk3GhD+UuPPvXx3prh64LB/B8ZODjwrVD14UCVOAEWmLufEmUO18S5c6X5CVJJH42fax3IQMFaIl+wxS/aD1jL/Rlaie7yAuHLjqNpjtREidJkibNJAs6c++iltSTfBTRHAnIQB+i+PF4tl1oiZ5tPuP2YqDADjybsYiSOEmSNGkmWdCZZhe1pJ6UGiM1RmqM1BipMVJjpAalBqUGpQalBqUGpQalBqUGpcYa1J1XOa9R3cIG9P5SxwEkoJ8ScxTgeXZ8EcFLfgIt0XP1wgY81XzBwUt+Ak81X1rwkh+afmSeq75y4CU/gRPoan6QnqsXNuDZhYtGEiVxkiRpkI9Sz4eA5AU85MsOXsBDZ+09eQFPoAAV6PMMb7bn40Kfhl3YgB34UFMPcI5q10nyqZmvN3j5Dpm3f03NFrqWH60PbM/ny+TlO4HnwNHvEF6+wz6l9vKdwHMAsP7/RwBf5vDSG4/vlTcXUdI5xvT5uNfdBCpwAi3RB7MXNqAf1HQcQAJKHFV8SookPiVFXn/jayxefnNRSzqD+wTei28CCXg2xZ3ci28Cz6a4O3vxTaAlxicoSOITFCTxCQqS+AQFSXyCgiQ+QUESn6AgiU9QkMQnKEjiExQknBqcGpwanBqcGpwanBqcGpwanBqSGpIakhqSGuI95peLMFCA3mPe5zKBlnjmKft6hJfeBHbgALqaC6ur+XWwdqb3a3rtTL9wAl3tzFYvvQlswA4cQAIyUIAKnECoGdQMav55ikUjiZI4SZI0aSbZRevzkYtaUk8aSWd7zpoV8iKcQAEqcAIt8bx/BzZgBw6gqzVHBgrQEj3Vz6eW5OU2fFYukJfbBDJQgH687DiBlugz2AsbsAMHkIAMFCDUBtQG1AhqBDWCGrmaOBLQ1dRRgAr0K3lFsEQvwrmwATtwAD3udPTj9evhzHH2JRIvtwnswAE8j9cXMLzcJlCACpzAU82n2F5uE9iAHTiABHQ17ygVoAIn0BI9zy9swA4cQAJCzfPcJ89ehBM4ga7mPel57hNfL8IJ9BUjv8BtAH3NyHtnLUwtFKACJ9AC51qdWtiAHTiABGSgABU4gVBrUGtQa1BrUGtQa1BrUGtQa1BrUOtQ61DrUOtQ61DrUOtQ61DrUOtQG1AbUBtQG1AbUBtQc384H4iTF+EETqAlrp30D8cG7MABJCADBajAmcjeCnL042VHBvrxiqMCJ9AS3R8ubMAO9LjqiP4VtNhz/sIG7EDv3+lIQAYKEGdToaY4mxNnc+JsTpzNibPpOb+OwXP+QpzNibPpOb+OwXN+4cr5hVAzqBnUkPMTOT+R8xM5Pw3XjmVP2nEAG7DHMdgxgARMNUPOG3LekPOGnDfkvCHnDTlvK+f9GBoBGShABbqaOVqi57yvkXnBT2AHDuCp5stlXvETKEAFTqAles5f2ICuRo4DmBe41wSxr8h5TVDgBFoi5aXhRUGBOFmEk0U4WcRAAeJkEU4W4WQxThbjZDFOFg8gAXFpePr7AqFXDF3o6X+hd5T3g6c/+5H58OBCAjJQgAqcQEt0q7jQ4/ql4aZwIQMFeMb1hUcvKgq0RDeFC31Q5n/mpnDhABKQgQJU4Ez09PeBrNcaBQ6gP8ryrvb0v9AfZvl15ul/4QR6Kx5XFHutUWADnmrnciR7rVEgARkoQAVOoCV6+l/YgFA7E/1cGWAvKrpIk86HBORkQWeOX+QRzbEDB/A8/nO5g30XsUABnkrqNJMs6Mzvi1pSTxpJlMRJkpQaIzVGalBqUGpQalBqUGpQalBqUGpQalBqcGpwanBqeE6fq6LshUqBDPT+Go4KPM+3+nnwTF/omX7heXbUT7Jn+oWu5tecZ/qFDHS16ahAV/Pj9Uxf6Jl+4ak2/aT6oODCU21dSp7/F55q01vh+X+hAs+p8QpgQf4FykUtqSeNJI/oPeC3+Omt8lv89B7wHL+wAwfQj9Sb7Tl+oQAVOIH+tPU8Y16pFNiAHTiABPTnut1RgAqcQEv0HL+wATtwAAkItfWoejgqcAJd7ezJth5Xi2MDupo6DqCrTUcGClCBE2iJ68H1wgbswAGE2oDagNqA2oDagBpBjaBGUCOoEdQIagQ1ghpBjaDGUGOoMdQYagw1hhpDjaHGUGOoCdQEau4M55oSe01UIAEZ6A+8DkcFTqAlrg/LLWzADhxAAp4r9Ifjme9yeF7MBvSiBb9o5wASkIECVOBMNI/rF7ihfw0t9py/UIETeD7kOZfY2YulAhuwA/Ns9oOADBSgAicwz2ZvB7DF4fTWgQNIQAZ677CjAr13xNES+wFsQG+bB/OHcRcSkIECVOAEWqI/k/PrwSutAkecrL6qVJojAwWowJknYOBkEU4W4WQRTpY/lbuQgDhZSPSORO9I9I5E70j0jkTvSPSORPftvuR8AMG+3VfgBJ6taN4P4h3lRyYN2IEDSEAGClCBM9ErVZpfGv687cIBJKDH9UvDn7ldqMAJzFuzV4wFNmAHDiABGShATTxv+T7K9Aqzi3rS+SDOO9QfxC3iJD9+vxpNgRP4OH4fnXmB2UUtyR+EH44DSEBeD//Ya8wu0qSZZEFnwl/UknrSSKKk1Gip0VKjpUZLjZ4aPTV6avTU6KnRU6OnRk+Nnhqe3d37xrP7wgbs1zNQ9mq0QO+x7shAAer1ZJR9569AfyB7jkB856/ABvTnkR7B7+gXutpwZKAAz5a5wpnnF1nQmeUXtaSe5BG9VZ7M3fvFk/l8dsBeixbYgB3oV5IH82S+kIECVKCrmaMlei3ahedw2jvAvyC9aCRREidJkibNJAvyIfui1JipMVNjpsZMjZkaMzVmaszUsNSw1LDUsNQ4s1yGJ9+Z5oECVOAEWqDXtgU24HmCzsIa9tq2QAK6WnMUoAJdjR0t0etrLhzA83WA7jST/I/OU+klaoEN2IEDSEAvN/GjXXUzCxU4gV7Wcl7HtGpnFjagV7b40a7ymYUEdDVxFKACJ9DVzpylVUXjx+s3Z/bu95y9kIECPOOyd5TXzbC34sxaYT+cM22FXe3M28AOHEBX88PxfL5QgAp0NT9eT23xw/HUFj/vntrih+Op7esxXtkWyEABKnACLdFTW/wY/O59IS4iv2VfyEABKhAXp7qEN8jH5hc2oBfkeDN9bH4hARkoQAVOoCWeKR7YgFAzqHma+z3cd9gKFKACJ9ACvVAusAE7cAAJyEABKnACoeZp7oMGr5kTX9vxmrlABgrQ45LjBFqiO8GFfjdhxw4cQAIyUIAKnEBL9JzXhQNIQAZ6K8RRgRNoiX73Pmuz2EvnAjtwAAnIQAFqoue8r1t5sVxgBw4gARnox3veYL0ATtTjekr7ypcXwAUS8Iww/XR7Sl949oMvjXkBXKAlekr70pgXwAV24AASkIECdDW/NDy7L7REz+4LG7ADo9SUeeXxQgWidzyPfUDuxXGBDdiBA+it8IvA8/hCASrQW+FqnseOXh4X6OX2h2MHDqBX3DdHBgrQ1dTxVPMxhdfSiS+Q+e5W4oNW390qsAM9LjsKUIET6HHPtnnl3Lq4vHIukIAM1ER/V8lvM14oF9iB46rnZq+UC2SgABU4gZboaXphA3qnep/5rflCASrQG+8ny2/NCz1NL2xAr7j3P/Oa1gsJyEABKnACLdFrWi+Mtx/Yq+ICvRXev568FypwAs9pgS9keVVcYAN24AAS0N9S8JOlAlTgBFriev9qYQN24AAS8JzaHAsn0BLXbHqht8LP8ZpPLxxAAvqrMn7evLb1QgVOoAV6HVxgA3bgOfH01SCvegtU4ARaos+iL/R1H6eeNJIoiZMkydcEnGaSBfm9d1FL6kl+5OTox8iOljgOoLfdf3d04AASkIECVOAEWqLn7oVQI6gR1AhqBDWCGkGNoObTYV8y9Jq2wAEkoPeOOgpQgRNoiXIAG7ADXc0vHSEgAwXoauY4gZa4Mnphy5O1MnrhABKQgQJUIK4HxfVw5q76GqhXugUS8Izrq51e6aa+TuiVboETaIme0b6Q6JVugR04gK7mZ8gXyZp3lAlQgRNogXMtky1swA4cQAIy8FTz1SKvdAucQEv0PL+wATtwAAnoC4Dk6GriqMAJtERfN7uwATtwAAnIQKj58pmvzHilW6Aluj9c2IAdOIAEZOCp5osHXukWOIGWePpDYAN24ACeaj5Z9Eq3QAEqcAIt0dfQLmxAf3ztNJIoiZMkSYPcGYb3rHvAWP9KQHcyP/71MudCBU6gJa59dBY2YAcOoPeAX8Se7b7q4pVvgZY4D2ADduAAnq3wsYlXvgUKUIGnmt/rvfLtQveACxuwAweQgK7mbXMP8KUhr3wLnEAL9Mq3wAbscS688i2QgAwUoAIn0BLdAy4c10YXvHazupCB3gp2VKC3YkWwRM/2C70VHsGz/cIB9JXyw5GBAlTgBPqSvPeOZ/uFDdiBA0hABgrQ457+ZrnLB3uxmvpimBerBSrQj0wcLdFz1ZPMi9UCO9CPzPvB7/AXMlCACpxAS/Q89uU0L2EL7MABJCADJVvs93IfynmxWmADduAZ14duXsIWyEAB6rVzDK99sS60RN8X68IG7MABJODZOz6r8mK1QEv0PL7QW+Gn2/P4wgEkIF87BPHaLutCBU6gXShru6wLG7ADvXfIUYAK9FawoyV6xl7orRDHDvRWqCMBGehq01GBE2iJnscXNmAHupo5EpCBAlTgBJ59di5Mytpma7VtbbPVHAnIQAEqcAIt0beDFO9138Pnwg4cwFNt9aTv4nOhABU4gZbou25d2IAdeMZlb6Zn92q8Z/eFE2iJnt0XNmAHnuditdiz+0IGCvBsBfvh+P5aF1qi7wF5YQN24AASkIHeiu5oiX7vvtBb4b3u9+4LB9Bb4cng9+4LvRXefZ7zF06gq/kxeM5f2IAdOIAEZKCreeL4vfvCCbRAL2kLbEA/84djnnkvXlvnzYvXAicwz7wXrwU2YAfmmffitUAGCjDP/NqY68I882tjrgsbsAMHkIB55r2y7BHR5YYU1sITfF7607wl56UfaInnpR/YgB141qCuYOelH8hAASpwAi1RD2ADdiDU1NW6IwMF6GrDcQItcbqaXxPT1bwLfdcS8+vHty0578niNVyBDBSgAifQC0Rdwh8FX9iAHTiABGSgABU4ganm9V6BDdiBA0hABgpQgRMItQa1BjV/Xftc4BCv7AqURH+b+lzVEK+1CvS4Z/d5rVVgA3bgABKQgQJU4ASeaudKhXjZlZ0rFeJlV4EdOIAEZKAAFTiBlshQY6gx1BhqDDWGGkONocZQY6gJ1ARqAjWBmkBNoCZQE6ipx+2OHmE44opSXFGKK8orM85lRumrmnqhJa566oUN2IGutpCAfrwu4SUaF2qiZ+G5VCReY2XNL0TPtwv9eL0Vnm/r0vB8u3AC89rxOis7V4LEC60COzCv1HEQkIGCYAqcQKh5vi3sXleysANHoqfIuYAkXrAUyECvZemOCpxAL2c5u8QLlgJdmBw7cABdjR0ZKEAFTqAleopc6Gri2IEDSEAGClDjHA/Ji3YITpbgZK1kWEhABgpQgWkrXsx0oR7ABuyRLQOJs+qZLmSgABU4gZboiXOh968f2apNWmiJqzppYQN24AASkIEChJpBzVLNK5QCG7ADB5CADHQ1dVTgBFqip8iFDdiBA0hABkKtQa1BrUGtQ61DrUOtQ61DrUOtQ61DrUOtQ21AbUBtQG1AbUBtQG1AbUBtQG1AjaBGUCOoEdQIagQ1ghpBjaBGUGOoMdQYagw1hhpDjaHGUGOoMdQEagI1gZpATaAmUBOoCdQEagI1hZpCTaGmUFOoKdQUago1hZpCbUJtQm1CbUJtQm1CbUJtQm1CbULNoGZQM6gZ1AxqBjWDmkHNoGapxscBbMAOHEACMlCACpxAqMFLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvASXl5ijqfaWewsXooVKEAFTqAFeilWYAN24AAS0NWGowAV6GrN0RLdSy50NXbswAF0tenoauYoQAVOoCW6l1zYgB04gASEWodah1qHWofagNqA2oDagNqA2oDagNqA2oDagBpBjaBGUCOoEdQIagQ1ghpBjaDGUGOoMdQYagw1hhpDjaHGUGOoCdQEagI1gZpATaAmUBOoCdQEago1hZpCTaGmUFOoKdQUago1hdqE2oTahNqE2oTahNqE2oTahNqEmkHNoGZQM6gZ1AxqBjWDmkHNUm3tkHZhA3bgABKQgQJU4ARCrUGtQa1BrUGtQQ1eovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUTXjLhJRNeMuElE14y4SUTXjLhJRNeMuElE14y4SUTXjLhJRNeMuElXpNmZwWOeE1a4ARaonvJ+UaWeE1aYAcOIAEZKEAFTqCrneMor0kLbMAOHEACMlCACpxAqLmXnBU44jVpgR04gARkoAD9vC2cQEtcXrKwATtwAAnIQAFCjaHGUBOoCdQEagI1gZpATaAmUBOoCdQUago1hZpCTaGmUFOoKdQUagq1CbUJtQm1CbUJtQm1CbUJtQm1CTWDmkHNoGZQM6gZ1AxqBjWDmqWaHQewATtwAAnIQAEqcAKh1qDWoNag1qDWoNag1qDWoNag1qDWodah1qHWodah1qHWodah1qHWoTagNqA2oDagNqA2oDagNqA2oDagRlAjqBHUCGoENYIaQQ1eYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlvu2bnZ9IFa+ku9C95MIG7MABJCADBahAqCnUJtQm1CbUJtQm1CbUJtQm1CbUJtQMagY1g5pBzaBmUDOoGdQMahZq6vV1gQ3YgQNIQAYKUIETCLUGtQa1BrUGtQa1BrUGtQa1BrUGtQ61DrUOtQ61DrUOtQ61DrUOtQ61AbUBtQG1AbUBtQG1AbUBtQG1ATWCGkGNoEZQI6gR1AhqBDWCGkGNocZQY6gx1BhqDDWGGkONocZQE6gJ1ARqAjWBmkBNoCZQE6gJ1BRqCjWFmkJNoaZQU6gp1BRqCrUJtQm1CbUJtQm1CbUJtQm1CbUJNYOaQc2gZlAzqBnUDGoGNYMavKTBSxq8pMFLGrykwUsavKTBSxq8pMFLGrykwUsavKTBSxq8pMFLGrykwUsavKTBSxq8pMFLGrykwUsavKQtLxFHBgrQ1dRxAi1xeYk5NmAHnmpnEbb6VnR2VhGrFwwGClCBE2iJ7iUXNmAHDiDUCGoEtfURCu+H9RWKhZa4vkOxsAE7cAAJyEABQo2hxlATqAnUBGoCNYGaQE2gJlATqAnUFGoKNYWaQk2hplBTqCnUFGruJWddr3rJY2ADduAAEpCBAlTgBELNUm3VI55PNXRVHp7vXuqqPLyQgQJU4ARa4ppqLGzADoRag1qDWoNag1qDWoNah1qHWodah1qHWodah1qHWodah9qA2oDagNqA2oDagNqA2oDagNqAGkGNoEZQI6gR1AhqBDWCGkGNoMZQY6gx1BhqDDWGGkONocZQY6gJ1ARqAjWBmkBNoCZQE6gJ1ARqCjWFmkJNoaZQU6gp1BRqCjWF2oTahNqE2oTahNqE2oTahNqE2oSaQc2gZlAzqBnUDGoGNYOaQc2HB+cLB7qqKi9swA4cQAIyUIBuV+o4gZboXnK+yKC+i11gB0qY2FhWsXACLbEfwAb0YOY4gAQ8D/3cjUV9z7pABZ5q58Ys6tvWXehWcWEDduAAEpCBAlQg1AbU3CrOd6l0VYGeG53oqgK9cAAJyEABKnACLdGt4kKouVVMP29uFRcSkIECVOAEWqJbxYUNCDW3CvNz4VZxIQMFqMAJtES3igsb8FQzv2jdKi6kRE908yvKE/3CAYwVeh35rENHPuvQkc86dOSzDh35rENHPuvQkc86dOSzDh35rEOHQc2gZlAzqBnU8lmHUj7rUMpnHUr5rEMpn3Uo5bMOpXzWoZTPOpTyWYdSPutQOqDWoNag1qDW4umDrtrQCxkYzwN01YZeOIF+js8rddWGXtiAHTiABGSgAF1NHSfQEt0JbGEDduAAEpCBAlTg9K+cHc4G9m/NBLfCvfAoTIW5sBTOqdWq9vQp0Kr2vJCBPkfyQ2QFTuA6WI8mR+FWOKdJq+DzQgKuI+3OUlgLz8IG1qNwK9wLrx7yS0epMBeWwlp4FjbwPAq3wkvXO2eu+NNZCivY/PebH6eNwlTY45xl5+p1nMlaeBa2ZK/lTG6Fe+FRmApz4aUrzlp4FjZwOwq3wr3wKEyFl+50lsJaeBZ23fN1CvX6zuRW2HW7t6WPwlSYC0thLTwLG/j6ZvPiVrjojqXrbRxUmAtLYS08Cxt4OcTFrfCKc+YXrw/LnWVxyuvLchePwn48Po7yEs1kKezHMzw+z8IGXiZwcSvcC4/CVJgLS+Giu3zAbyS8fGDx8oGLW+FeeBSmwlxYCrsuef8sH7jYwMsHLnZdv0Xx8oGLR2HXJW/L8oeLpbAWnoUNbEfhVrgXHoWL7vIT8jYuP7lYC8/ClizLTy5uhXvhUdjj++1Glm9cPAsbePnGxa2wxz83c1VZvnGxt+vc4kJl+cbFS5ectfDSZWcDL9/wu54s37h46arzKLx0pzMXXrre9uUbF7vu+bq0yvKNxcs3xNu4fONi1/UVRVm+cbHrirdx+cbFrivexuUbFy9db+PyjcXLN8TbuHzj4qXrbVwji4uXrrdxjSwuzpXGVeV54QTmuuaq8rywAZei99JypIupsCuq98BypIu18Cxs4OVIF7fCvfAoTIWLrhTd5Ty++CbLYXwWLMthfD4ry2Eu5sJSWAuX49dy/LMc/yzHP8vxz3L8sxz/LMc/y/HP0m+z6M6iu5xktXE5xmqjleO3cvzLMS62ZF2OcTGOX49eeBSmwlxYCmvhWRjHr+0oXHRb0V2O4W3U5QzeRm3l+Hs5/uUMF/fCo3A5/l6Ov5fj7+X4ezn+Xo5/lOMf5fhHOf5R+m0U3VF0lwOsNq5MX22kcvxUjp+oMBeWwlp4xRdnA+O5guK5guK5guK5gl45rc4rxukNunLXF0N05e7FvbAf+/Q2rdy9mAtLYS08Cxt4jSYuboV74aKrRVeL7sr16edh5frFs7CBV65f3Ar3wqMwFebCRXcW3TVqmH7e1ujA13t0jQ4u5sJSWAvPwpY8V65f3Ar3wkvXnKkwF5bCWngWNvDK9Ytb4V646K5Rg68HzeUBF0thLTwLG3h5w8WtcC88Chfd5Q3nZhk6lzdcrIVnYQMvb7i4Fe6FR+Glq85ceOlO56Xr/TPyidOqvVxIB7ABO3AACchAASoQagQ1/zJ28yUEL75M7oVHYSrMhaWwFp6FDSxLtzu3wr3wKEyFGXx98Mqv+euLV4upMBeWwlp4HaefLzXwXL/v525q4VnYf99XEbwmMrkV9uNsHtM9IZgK+3H6bNsrI5O18CxsyV4dmdwK98KjMBXmwlJYCy9dcTZwOwq3wr3wKEyFubAU1sJFtxXdvnTNuRXuhUdhKsyFpbAWnoUNPIruKLqj6I6iO4ruKLqj6I6iO4ruKLpUdKnoUtGloktFl4ouFV0qulR0qegufzi34XhwK9wLj8JUmAtLYS08Cxt4+YOv6NjyB19xseUPF4/CVJgLS2EtPAsbeH1W7+Kiu3zGV3ps+czFVJgLS2EtPAsbeB6FozxULcux1bIcWy3LsdWW9/jqki3vubgV7oVHYSrMhaWwFp6FU3cex1G4Fe6FR2EqzIWlsBaehYvu8p7zVda5CivPJ0tzFVZeOIBLtDtzYSmshWdhAy/jubgV7oVH4aK7jOdc5pvHMp6LtfAsbOBlPBe3wr3wKLx0zZkLS2HXJe/AZTwXG3gZz8WtcC88ClNhLiyFi+4ynnOj2nks41m8jOfiVrgXHoWpMBeWwkvXr4dlMBe3wiu+OI/CK746c2EpvOJP51nYwMtgLm6Fe+FRmApzYSlcdLXoatGdRXcW3Vl0Z9GdRXcW3Vl0Z9GdRXcWXSu6y5TIr71lShePwlSYC0th97/ztLTlN+emvrMtv7l4FPaQ5wrnbMtvLpbCWngWNvDym4tb4V54FC66y1rO1dTZlrWcK6izLWtZvKzl4la4Fx6FqfBaQ5jOUlgLz8IGvtZAFrfCvXCu4cxrV8ZzpXdeuzJePAsbeFnIuQI827KQi3vhUZgKc2EpvNq14s/CBuajcCvcC4/CVJgLT7SdS7uWhVzcCvfCpV1S2iWlXVLatSzk4lnYwFrapaVdWtqlpV1a2qWlXdca6eLSn1r681oL9bbP0q5lFRdTYS5c2jVLu2Zp1yztsnKdWLlOrFwnVtplpV1W2mWlXVbaZaVdhuukH0fhVpiy7f1Au/ohhbXwLIx29XYUboV74VGYCnNhtKs3LTwLl3b10q5e2tV74VGYCkf9wuz54sfs+eLH7Gs8cj6mmX2NRy7uhUdhKsyFpbAWnoUNTEWXii4VXSq6VHSp6FLRpaJLRZeK7hqDiLd9jUEuHoWpMBeWwq51PmaafU1+LjbwMpaLW+FeeBSmwlxYChfdZSziF/YylsVrbHLx0vULb41NLl6605kKL11zlsKue+40PPsam1xs4DU2ubgV7oVHYSrMhaVw0Z1FdxZdK7pWdK3oWtG1omtF14quFV0rugbdcRyFW+FeeBSmwlxYCmvhWbjotqLbim4ruq3otqLbim4ruq3otqLbim4vur3o9qK7Bjbng4o51sDmYi4shZfucJ6FDbw86uJWuBcehakwF5bCRXcU3VF0qehS0aWiS0WXii4V3eVFbshj+c/5MGiO5T8XrzjiTIW5sBTWwrOwgZe3nA+K5pByrpeHrP5fHnKxgZeHXLyOeTr3wqMwFS7XmBbd4iGjeMgoHjKKh4ziIePyED+eWa6xWa6xWa6xy0P8eC4PWTwLF93iIaN4yCgeMoqHjOIho3jIsHJtW+lnK/1s6Ge6PGQ6t8K9MHSpeAgVD6HiIVQ8hIqHUPEQaji/dHnI4l54FMb5pctDFkvhols8hIqHUPEQKh5CxUOol/b20t7iIVQ8hLoWnoVLP18eYs6tsOtOj7885GIqzIVd93yYOml5yMWzsIGXh1zcCvfCo/DSJWcurJnLtPzkfDA5aY1tFq+1lotb4XIt8ShczimXc8rlnLIWnoXLOZVyTqWcUynnVMo5lXJOpVzDxaNIyrW0vOh8IDpX2WpwL7z60PtnedH041xedLEU1sKzsIGXF13cCvfkVR7Zz8Xuucojg7mwOHdnLTwLG9iv1eBWuBcehakwFy66o+jSijOc1++Ts5Z/X8fGzuvYzn72jSyTW+FeeBSmwlx4HZs6a+FZeOl6P8vSNWfX9QXjVSrZfSF5lUpebREqXNro97h+eHy/roJb4V54FKbCXFgKa+FZeOl6W+bS9bbMVrgXHoVdt3l7/R4XLIW18CxsYL/HBbfCK6b3oa2/Pa+TVb7Yz5LmucoX+7m1/Vzli8GjMBVWcFtx2LkVXnHEeR3D2VervLCfDyznKi8M7oWXrjlTYS4siL/y7vr3WdjAK+8ubuiHlXcXj8JUuLR3TLRxGJhKPywfNv/b5cPm/bx8+GIprIVnYfcrfzayivSaefzltxdTYS4shVd876s1JrzYwMuHL26Fe+FReOn6OV0+fLEU1sKzsIGXD1/cCi8tvx7WOPBiLiyFtfAsbOA1Dry4Fe6Fi64V3TUONL9+1jjwYi08C1vyKvwLbnleVuFf8CiMc7qK9/r5wsr0fRYf3JypMBeWwsuvhvMsbOCVjxe3wr3wKEyFl253lsJaeBY28MrHi1vhgfauHDw/xDF15eDFE21cObh45eDFrfBqi/cnjcJUeLVFnKWwljhFl4ouF10uuuu+eXE5d1zOHZdzx+XccdHlouWfMfJHLF6bN/3xiZfmTX9y4ZV5gQNIQAYKUIETaIn+GaMLoeafMfLHG16OF0hABgpQgRNoiXYAGxBqBjWDmrmad5QJUIETaIFerRfYgB04gARkoAA97nmhenXd9IVhL64LFKACJ9AS+wFswA4cQJcQRwEqcAItcRzABuzAASSgS6ijBztt0ivjAhvQg5njABKQgQJU4ARaIh/ABoSEf3jMJzVe5RZ4RvApote4BTZgB57BfHro9W2BDBSgAifQEj1jL2zADoSaQk2hplBTqCnUPDenX4iehWe56/QSuemTUK+Qmz7v9AK5QEv01LuwATtwACHhqXehABU4gRboRXGBDdiBEufNi90CZ5whL3W7sGX/eqFbYAcOIAEZKEAFTmCeTa9vC4Rah1qHWodah1qHWoeaJ6SfQi9Tu/phcJxCL0xbJ8Dr0gInMM+mF6UFNmAHQoIIyEABKnACcTYZZ/O8ya0blReZrRuV15itW4eXmAVOYN5xvL4ssAE7cAAJyECoSd5xvK4sMO84pgewATtwAAnIQAFCTaGmUJt5x7HZgB04gARkoAAVOIF5fzODmkFt3Tf9IrC449hxHMAG7MABJCADBajAmdjijmNeExbYgQNIQAYKUIETaInrvqmOHmw6MlCAccexo0+gJY4D2IAdOIAEZKAAIUFom+eb+OF4vl04gZbo+SYewW+AF3bgABKQgQJU4ARaokBNoCZQE6gJ1ARqnpDnwp95IdaFnlmy0P+sOTJQgAqcQD/IfqLn0Pl81LxWKpCADBSgxyXHCbREz6ELG7ADB9DV/Fr32+KFAlTgBFqg71gX2IAuIY4EZKAAFTiBluhZeGEDdiDUGtQ8C89XIc23qQtU4ARaot8sL2zR6142FTiAebK8bmieq/zm5UHzfJPLvDoocAAJeB7k+VDOfE+2QAVOoCWu0eDCBuxAV/Mj8wv8QgYKUIETaIl+m1lt89uM+jn2y/5CyQb5ZX/hBFqi31DUz5DfUC7sQD90PwGeDBcyIkBtQm1CbULNk+FCnBbDaTGcFsNpMajZkvi/f/7T4zf/60/utucKoXvtCe60Di2gB4wACuAACdCAiDwiMkVkisgUkSkiU0SmiEwRmSIyRWSKyByROSJzROaIzBGZIzJHZL8+zyVKvzod7AK/Mh1aQA8YARTAARIQkSUiS0TWiKwRWSOyRmSNyBqRNSJrRNaIrBF5RmS/ILuX1gSMAArgAAnQgBlgF/jl5xCRLSJbRLaIbBHZIrJFZPfe8zmOO+8Jy3gXtaSeNJI8fD+JkyTJFfikmeQaj9O8nHdRS+pJI4mSOEmSNGkmpUZPjZ4a7rbno5Vltos0jtkT7nzY4gWmF/WkkURJnCRJmjSTLIhSg1KDUoNSg1KDUoNSg1KDUoNSg1ODU4NTw/PwLPVft4tFnCRJGuQZt8j/Ypzkf0EnSZImzSQL8jRb1JJ60kiipNTQ1NDU0NTQ1JipMVNjpsZMjZkaMzVmaszUmKkxU8NSw1LDUsNSw1LDUsNSw1LDUsNCw4s9L2pJPWkkURInSZImzaTUaKnRUqOlRkuNlhotNVpqtNRoqdFSo6dGT42eGj01emr01Oip0VOjp0ZPjZEaIzVGaozUGKmxslZOkiRNmkkWtLLWqSX1pJFESalBqUGpQalBqcGpwanBqcGpkdnolZYXjSRK4iQ/gnNosbLxpJWNTi3J49lJI4mSznjn6zBeOXmRJs0kC/JsXNSSetJIoqTUmKnh2XjuqtNXNo6TLGhlo1NL6kkjiZI4SZI0KTUsNMZxJLWknjSSKImTJEmTZlJqtNRoqdFSo6VGS42WGi01Wmq01Gip0VOjp0ZPjZ4aPTV6avTU6KnRU6OnxkiNkZFHjA+8RvEiTfIrx8mCPN/O16G8MvGinuTjAz6JkjjJj/Q4ya8c/7eZ5BpyDpiPpJbkGj6cHkmUxEmSpEkzyYJ80LqoJaWGpIakhqSGpIakhqSGpIamhqaGpoamhqaGpoamhqaGpoamxkyNmRozNWZqzNSYqTFTY6aGZ/L5upVXKT7oMQsinwU9wuu5lH1elwtGAAVwgDg8/pbzbyddf+swAiiAAyRAA2aAXTD8r3hNpRacv3Pu2XBelo/ncmvitGAEnH91lj6cl+QCDfA/v2ZHej5W5x4wAvzPbc2OFpwdeD739WvtyNnREXOhI+ZCLeZCLeZCLeZCLeZCLWY+LSY87dGBcnag+0iTx39q/Keeq/BNA7yLzoGgd9HpkofD409mRjg7aj0k0Me/2/nv3oE6rw7U+X8f/8ff/u2f//Iff/23f/2n//j7v/zL+UvxD//+p3/4x//60//+y9//5V//40//8K//+be//flP/+cvf/tP/6V//99/+Vf/+R9/+fvj/300/V/+9X8+fj4C/r9//du/nPR//4y/Pp7/6ePWy9dfP+69mgEek4S7IR7ZJVeIRwLVEPxLiL4JMeIghjECzHY3gLToAxkIML4cAT0P8JhWRITHfGE+DcGbRkjPfhAdT0PsutL4yI6Y9LQrdXNC+/mgY53QMXAUj5nRLyHmu2dj2wyLZtDjOcHTZrRNDJYRMR6IEyK/HsWZwM/P6Wkc1znl/jTE5rpSjVP6GDSjHWK3I/jwbUWQ9jzC3Wbo82bsOlPPqpHVmXrY0xCyM4rT6S6joPY0hL7dFZsr8zFxy4v7scySMehXszoXm54exPnEZB2E6dOD6JvONC+f9RAPxFXxGF/db0g75xpXQ7g9a0jfXFh9xil9DMif9sQ2w0zyomjj2Rnt9L7l7WLQaBGDHgPJ57cP2bp3zxQpvfGYIP8aY3N18owzIgeXCPP+hUGcFwaXLPt6YfTN5fl4HG4Zw3CFP4ahv8QYu3s6bsiP+SpiyA/OSWYJVef8ek7G5vpsmobxWGkq95Hx6+DknBw9jSFsGeT8inCJ8uuFPuj9q2Pwu1fHvi2Wg5R2fm7weVt2t/emcMCJa+yx7PNrjPn29WHvW+A2xs1sofZ+tlB/tze2Z/b80EOc2XNn/6dnlnZe6m/CLC9tWs/sl0Es727SZx6stlC5xz4mnb/G2HgpicZ5ISlX2G8xdsfB3HKwYJvj2Fyl0vM4HkNBfhrjJ2dGnp4ZPt4edfBuDHdu8JwHojSfH8hultN7yy75xVK/xNh0CbVMXWplHPejDrk3emF+c/Syawc3ipPywPFaf46cK8njlvc8xtyNovJWyTJfjKE5X3pgey2GP49cMR4PNZ/fXHa3bDsixuNhiT69Zct2WDoyWaY8v+3L7tz2nAZzt9qn7X4MrxxZMazp8xj8/sBB5N2Bw9Y75lFGUjXfvp5bme8ex/7Mai4VWaPXrg7riLG5OnTXHzby8nhwGUjJD44jJ/ZjtPn8OLYDupz8nGPTMkj+9epQ2q6djVw7q/PRH8Qg7TlYn+Uq/S3GByZQqn/slc44s+e7ek+vdN0MLM/XdvOm/7A0enJ9zLenULJd0syh2OPhTnspWx7PguKsPB7yHE9jzPHHZstjrJF3a9lk/twOCWdcpY+HsvVK/3U4NzdX6bn9SS7HTX4pholEWx4esIkx38+Wae9my95/cFuweTzNe9tk3OPpefrxtP40xvbqwErtYxHoeO1KF4wHtfenMYzeXbbeHkVxY+vy/Ch2TtolDqM9bi2lR+f9GP51tRiHHc9jzN11zuE/JloeaHyZTtpuip43fCv3t8eT4vuObqMx3OeXMeXXlcr2brLsuvSRmjkspfb8tLRjvJ/37aB327K1UpGc5avRUwvz/dI311h2yFHGx789VdDdc56ej3mer6X71uvPz0vLxwpd60rS1yDbO/6RUU6mpwtB+2vVOgzVeHOt7h7X9KF5o6tG1H8L8vai1P44KJcbex08fD2ObdZQm1jHeW5ErW2XTjFDfqz0PX0i2doHLtf2/uXaPnG5to9crvvHN5yPb0SePpA7thMHzomDHM8f0+4eQw3fvOga5x7HczPaBhlY+/zl5v1bEPrA415+/3kvv/2U83ZLNk9873YpHfLqeTk0g7TNnWb3OOpuaYVvFf/uk8Z9czTXph5Tsl1zNoOA6bsMrRPcOz+3s32QHCWee1tugvD7F/yQty/4XYibF/ztlmwu+G2XjiPPyxivnhfJle052/PqmbZ7KtWYsNZfy1/mD/KXWg6cH5m38VUa718hu+dSN6+QXYibV8jtlrxoieQHeXWp2KZL5we61N7vUnu/S+cf3aXlKtX22l2GWj7FpX5szgvvplU368X4A4bK7xsqv2+o/AFD3ffouwNMbig7a7ypA5SNm4poTpinbix5t7JjWIU46u12/qg/FP0xX+zTu4V424f8h2Apg57HkPevdNG3r3R5vyLwdks2V/q2R4dN9Ki8FoM7Sh7G02o6L995enUYc86UxV6Mkc8dtjH2V9jNWs/3Z1L6/kxK9e1KBd/w9q1Shf1R3Cxb3T2Rule32ubOSX2GtZy0DinH7K8G4ReDUM4rhXrbBKF3z8u+Lbl28cBX29Jzqe7xMKW/GiSX2qXOB38WZOS84zGNkU2Q3eLUceRA6uRycn6rb/5AheA3QSyfYYxmLwbB88/H4095McjNYsW2e0B1t1rRt/x8c2V4exwoFbJZhmW/H8fdIGXx8IdB8kbzQHktyGOQmQPVB+smzPYUcxqb1YHEDy+2iYut5vHPgoghyCYB79/Dn86H+u5RlWYJlerzu9Z+zHzvHYPdk6q708N9EMq2EFnbBNkXTufTcqVNa+ztkXffLf3fG1ttQ9wbW/XtM6p7oxp/YvLeqMb33H7+AIJyZfjRo0/vevfPyvNZxDdXRz4d7jrppRgD1/rjhqevxjjejjEwuKo+9rMYeXIf4Z7H6O3tGdE3MW7NiPZtIVxkJPP9GC9eY6MbHsjM5+d2+7KUoEJF++4duN2BKErCVJ5bYZ8fOLnzDz652tCWTeLunk+tj29ej3Qbv9qpOd4dc3OV7Z5g3HvI3bfvSxlnW0yfz862x0FYGK6vOv3WHbt7NufjOuJNyeA+CF68IFV5MQhrPjng3ehhzPefg3Y63n8Oum1OXZftmxrIvntv6n5zxh/dnD7jpsn1TaHfm8NvjnX3hyF5ubLyZpxKukubvOR7eQfstz59//W+7VFkhJq8vx3F7h0h6kjeXlbe5H6IdvhOodfEbk56LYjNsvZfikt+EuSs0kl7P8ra2U86Nd/cfAw2N53Kf2iIR0d2Q6fy06Z8E+TmmeFPnBn+wJnZZq7mqEo68Wv3iF/WNAe9GiTXmUQ21VT7IJpjItmVuO+DSF4mj4ddm5vvNy9Q3btH7J7wfOQeITPrB+Vx7W6as7uDP0abmCYa2SsXm0pOz1RsPj8SPd5fidD3t0fp+vb+KNsQN1cidm9A3V2J2D5surcSsXuJ6vZKxO2zspkl7q+OeysRuxh3VyK+iXG8HePmRHPefSbKr/Xp3RWRfYx7KyK74v+7k+Z9jHuT5m1b6Mjroz7C++045h99HPdWZm7HeDHn7q7MWP/AyszsH7hA+h98Ym6uqmxfhLq7qrI/kHurKru3qW6uquxeprq9qrI7jpurKt8MYhSDssdjtyeDmHH0bZC0sgeXNwd/EOTmFPGbxtw8jo0dimXlsFLbTNx3+w3kzKzsgPgYmP1kItPx1vIx7MXZEJU3S+R42h32/pRqG+QT0//bPXJ8oEd2T6lu98guyL0e+eZJd2nMcdSH1D97YH4MKWGeVwD4Bzjff+6+DSMzXwx/JOLTRYBtCEzLHs+b22shFEdhT8/OvvzmwCakx8vVRFZ2PdrU8Oxfhcitk+aoU8wfvQpBef8+P33/NMjYvQx1brqUIxp6OpAY/f1a1dHfrlXdhrg3T73fEt20ZNejlvOQZvZ0PjTG+09EvzmOWy9kjvefVY2x97JcCKHNC5nj/WdV2+54LEEcWIKYL3Vpb3jbtj0fMY8x3+/SDwxUt8dxr0u/eRcru+P8/vtzF9u+JHuvZn/7DvStcvtB77+aOujtguptiJsWdrsl+lqH3q2234S4V2w/diPDm/Pkb2LcK7Z/+87Uj/1w7l7F7n5X43u1ttsYN0ttt9uC3ixOvR1jU5u6j3GvNLXbZ0bImyO5WZjaP1LV3T9QmNrtj23N7Wv1A2Xh2+1nb16rt2NsrtV9jHvX6val5fvX6ifqn2/vNP98KLV9LnWrmmO3qV7LfHkMZWrZ0JcdsLe7+w3sNzDo6ULbNgQd479dZv8SQt5eitl1xpGXxpe3fL92xgfKn8Zub7/bz4Ll3S7dTQUl322RX4p05v0IORITkucRdnNJzlY0Ljum/bbl/XY+ilIQ7uNpjDG3E8F7GwyOt9fGvtkpPrflePB4vsHymPPtjN2GuJex9nbt1Ni/G5cD5Nmerorzu9f4NsKta3w7ub95je83/795je835Lt5jW8/zJOFqP3BOJCvO/fvYnD26eM5wCbGdk/08lBNW32h5utu9cfxbqbsQ9zKFHr/EdIPuqM93/Vtv3k/oVqCqZwYfjHGfD9GLd38yUcEhuSCx9DnG+/TtpR9YvvbSbIJsrnbdzy57bMsqv0siH97+gpS30T9YRAcSecPBBnH8yDb7eYZ282rvXZyCDZCrPPVMzzTAOomy69/a4Je6hEyvB5oc3Nq7n57Y27SZret380qNOpbVz1QZVR2oP3tQHYvPClrBFGu+4N+mdlut0rD05/xyzPxL53ad8v7B/z9qAu4X2PQ/vltL89v+Xlrtt3K2O69PKD/vVu3QaxUgD2/SPbfAbn9QZJtFD4QhTdfv6DtZF1RCF5P8fz17rn9mkh5U4DG83vn9kseI3dh4GGvfkEjSzgeyK/FsNwZnE3pxTOjaQJN53G8GGWWHeQmP+8Tme+O4LcRbo3g93vxW6mcsPHs8T6N7XJf7mRr/fk4cR8ir1Pr8mw+tP82gaIlU+eLmTstH2o9eDNNpe1rU/cG39sQ9wbfu4HivcH3D7pj91mkb6IoojC9GoUNUXQzL9ptzHf31Njbp2bXmI+cmtod014+NYIo9qIf2oFblbX+3N+3u8jfM8R9iFuOuG8L3iVtJvS8R4jnuws82xCPe9WB4hxt9FoQTK8e3PnFILkz53m/e8mfTfGEy3b+vN01/VObwPccK/Zx1AHnq0HKOf5ZECZ84Ls89f9RkEcT0tSOX+ZH9z8u1hv2o+/j+aefSOz9hwikH3iHetsaVIT2Y/N1U3r7KZV84PXp7YfS4Edfhs4/+NiaEj5g98sHytqX3pC375z69qMd2j2munfn3HdGrlrxHPa8M3bb/QnlOo/QHJsguzo/fEGzHU8nztvD4ByfPR6qHC+2hfNTNI/VK345SHkz1l4Okm+ByosfBbz9YUF5e2om7w5Etu/m3ny4sn+/997DFbIPfM9v+w08yjUEqq/Gt98O5P1Zlb0/q7K3Z1XbzmDsdVaXd3/vDH2/M/T9zrA/tDOEsJeFPP86Iu+G/fc6Yx/iVmfw8fZT8u0HzixvTXS8+AnPYfmI6RHj+UfS+JD3x3G8/fzUzdHP7l0YaXhngzeH8YExKbcPjEm3T6lbnt3WqX7M7+v0dHd68ZpzWeNWvX8UYvkS669fFbr/8bq7t4TtB/DggufGq+jRrx/A235E74iMszpe+GGMLHiUWnj5gw/x1ZfYjvpd9y+f4tsfx8QHAe3FtuiI4aBpqT/4UYyJPp3FP77G4N3jqY8E+eV9i7H5wOE2SM961t5rl/woyMjtdHrdGOBrkG++TnivNH+34+vdJTJ6d2S6b8nNoek33XFvbMrjA2PT/bfr7r0Ex+P9L/nwePtLPtsQ994gud+SzWW6/xrgrZfgeLy/+cT+c4BSPmo8ayH6T74piMWTB7bXgtx9D25/JDxQeS2vf91wCp7Yl60wfntJeR+GsdfS45KfL4fJjjlDbjYH3/bMMHRvvd/8qHspv2TTqd6Bfwuy3SDw1ot12wL7e+8q7mPce1eRd0v2995V9CWbzdOUW+8qbo/jbpduT20ONh9nebyaOQ01zK0NevWS74TM6fJyAvZ8xHSG3GTOdjhQlu3GqyOKfLu/mFL/ycewtXzJutaIfR0uyvuLAPL+IoCMPzTEvXWEfX9mqcyja+lpf87x9sx79/mo2zPvXZHL3Zn33O3pZzkJ0LrB2NcdZHYxpuZzmMej9/ZSDGtZk2l1w7WvMVj7u9f5/jCyyM36ZifcbYyO6Wo32zSF/9CmDDjHsGNzGPqHHgblVqnGx+4w3i5N2Ye45z7z7dKUuV3JKO6z2d90942VexPdbYRb89w535/mbmPcneVO/cAs9/jALHe+/3EUtrc/jrINcXOWe7slu8WYD8xyd+vbd2e5xydmuccnZrnHJ2a5xydmucdnZrnHZ2a5x2dmuccnZrnHJ2a5x/uz3OMDs9zj/VmubJ9S3ZrlyvayvznLlU906SdmucdnZrnHZ2a5x0dmuduxwK1J7n40cWeOq+3d+ZS0D8ynpH1gPrXd9UDypZ9Re/TrQ/vtg/+WVUc06t6xP4lBWQNNv7xT/jXG7h037fkBmnk8L0DQtzcc0Lc3HNAPbDigH9hwQPoHRqvbmiOZqPKdx9OTsovRrX6Atr8WY+YwcRz9+XHI9iHV3bTdFbTeLkDYlgnnhq3j4L5pzfal/5sfWdhXQOHLUfr8w/Mydjf/e99YkKFvT2hk96Dq3oRmG+LehEZ2H566+Xar7PYYuveNBdl9deruNxbunxXdnJXt1XHrGwvbGDe/sfBdjOPtGPe+sSB093Eqv9anN7+x8E2MW99YEH7/q5PfxLg18d635d43FoTpjz6OW99YuB/jxZy7+Y0F2b5rdPMbC99c7PcukNsJ8+qJufeNBdnVc979xsI3B3LrGwuPuc3bE+VtPfrdibLQuxPl78Ywt76xIJ/4tsE2yN3XWegDx6HboeEs+0m8OAu6Ncvez4LuzLK3713cOob9mxt3juGbd/qwIMtlQfZnLwYK3i4UGy8GmfnpzV437//h24Vl2tCfN4e2j3FvvqK4DXLvWwT7ELe+RfBNiFvfItieF3wC8Fx4f/Hk/hKEXg3SEWQ8Py8y336Aug9x68mlTPtDQ9z8CMi+Q1ErrDpfPStpx13tVQepR/JykJlDqQe+HAQfI9gG2b7bf7NSqb3r7d/sVJIxrMuLm53kENe6jqfX6dt3ufluT+y39Ml3DVjrqsVPtvTBPjpcP3X7s22BcmH9gS9uLTQVx/HqFkczz+oj3KtbHJU5B73cHxMxNudlV4HGs3xPvX8gxmtbTxEWPakuev4oBnbRIN1dY9sYmPtMfR7DtyB6uk5oOXiZx/H8nRhtu7dPJSvISMonmb8+DfvuSDSPpO2OZHPDZsmBFEtZUBr3j2Ni0/t5iG6Ow7bLr9Gtj5vm89pR3e4dl++d1+fq5+PG25eI5VSfdrvx6O49o9uXSB8fuES+OZJ7l8jugzk3L5Hdcdy+RL75utTNS2T+kZcIH/mkkX/dk+TLJTJ2nzTpuYM/93qr+jLL3j2QEu/ydffXuqnX/EFbsuCR29E3bRkfaAv9sW3BEv0DX7vb8ciiJR4kr8XoOI6uH4gxjxfbksVKXD/f8bPjwCYr43i5Tw19yi/GIMSQ5yOI/c7g+XZv71ynyO1LpcLb35rYh7g1v1WSPzTEzS29d/05sOXV0GPTn7adfkTaP987Z3sUhCk22Xx+FNunSDcdbPeO1E0H2+8731Ey2flpW/YxGN/skuf9MXYvwt/eAH8X5N4q3z7ErVW+b0LcWeXbfmDh1ix9/4mGO7P0/vaafH97TX7/6aK7n8X9JsrNr+IO/chXcbdhbl6j+vZXcb8Jceca3X8S7t4HofYx3v/s2P1r5LvPqN28RuQz14i8f43I+9eIvH2N7GYc+eDmly3ZtN8NgO+FcS2hk9tHMPMRxaz3x1/fJtLtxnL5yQypS3M/iKA5cNI63vhRhPwEfX96DNvPsaByhkpBAh3tdgjsuTPqqxU/CeGVWyuE0PMQun0f894XEHT/wOjWFxB0+y2oe19A0Ll/0+TeFxC2nYrCGS0LFD85L5pPeh8mpS+FmChVm/o8hO522Lt7ao3eP7W7bfruntr9hl0fOLWGeV/dQP0n58Xy/jrqF1R+EIKOA8U7Zfnqa4i5+x7UzVM799vs3Tq1c/dRqZundm53H/rAqaWjZyXSMWzTqfyBTpUPdKp+oFPnH92p5UqlFy/2dFNqx3gp5UY+VHzg87vc3G3Vd/fUtvH+qd09Zrl7anfPnT5xaqfltgMPLAM5vh9i5lud1urDTf7ap7uau5krHb+uCc5xPwiPPBKmNp8H2c2cHk//81NuWj4jIz84Dnzhh0noxcZgG2lm2gTpb+98Mrfvhdzbe2DfHyZoyu68bPfIxMPrxzzleP4Z7G/CeCHrFebxdGkTZn4mzGagOnOnjFkn+rPd71w98jsQevB87WLTIx8t6mGvBmlpR/rL95+/BNktW7QsPrFWN0K9b0e/htDndrRb5Gv4FGOr89svb+580x0N3VGr5n/Wp4ogZaXgtyDjAydmG+QDPvAQNzSGX7S0exvD9Lcf2nzjzvimZF2Z/60ptP/icI4B2tNrbBfh3nLWPsSt5axvQry5nNUbXhts9REF/SRE1sy2uij+kxCo7u7lcwlfQ8z90yc82zxeDJFDZSnrDj9pSN1ft2xq/ZMQkmvQv1a6/yCENgykxmsntQu+f6OvhRiZ649eaa8dBQr263PzH4SgiRdk6reamt2N0Bo+1dSK7f3gIFoTTBfmS1dWG3ltPvC1o+CO13xIXwsheBd12msNydcE2+ivNWTgA1yDX2uI4C100deOQvOhe1N76eJshr6w/lIIxQCD5JUARtir7bV+OPKJ/S9T4d+cV8cfmaZ2YBe/1zoic9SU3+zJ1wKwf4XiGtqURoz7AfBxWq7PHu8HyEHvI9YrAbD5xwPplQB3qiS3AfLV3UeAl5qA12XrQ/4fTKXwQkN74dEWXgv95bueX9an5h+8VN8pL8ZO7enbunO/39+tDSXm3Fc0x0R9s6HENsS9DSXut+T5C+Hb4ZBN9Ke8EoE7apLG040P5u0d9jZnZB/j1vvk8wM7/W2vz4kqL2rPj+LtzUq2Ie5dW3a8v1mJHW9vVmK7B0mP2xc+QXPY02U12z1JMs5NQozteamI7bbQvrcQvO/Tlg/mH/Pa9rxP5c1Fgm2XnhU4Ocx8cNt06u7M3Cwp2gfhnJpadbCfBel5e38gvRokq6GtVlT/sE8YpVoiL16tM2dEj0fJY3O13g1SVk5/GCTd7IHyWpD7lVrfdO29Krjb5vx0hw3bvsp053uz3/TH3TK678LcrKOz7X6F98/OLsy9hcd9iFsLj9+EeHPhsc0Dn1rvddOzL0exq8a9d6PYTsBzKNOsPpTuPwiRj9j6Ucf7Pwgx8y7x6+eZv/bFJ/bVs0/sq7dfAs3l4F7X539rzG4XF1Fkrig/3TXxmyA5m32w2dMg20GA5ROL1mjTnH3O5jeFrdYtHMf9II+VnjREoleDSL64p1o3LvoaZLe73s1PnGyPQ3Ecs+x3/Ptx7K5Wwo50v3zvuX+5SdD+821Hriby0Tcjo+2x4F2PwfUJ22/Hsk0/Klvb2SbI9vMe916b3Z6fx2gop0ZSv7P+2/nZFZTieeEvrvYlwva9JsHXyWtdydeBBO/Kl4581v9Ye5bnQbYdgoewU+vnSr92yDcfgMK94pfdy+hLkN1LfFkwUBfYfg9BH0gc5o8kzvZY7iYO0wcSZ7dXxO3E4e0HAwc2Hj4252f3lkLPAxllq96vk/ndt5sYT5y4lerlcdAPrnls9PCYk2xMQPbveedLgUctyfp6ana73DVqealRORL7chPebbfX8Tnpx3z+eN4lu/3Q+sATSSrVlONLjYvtvgR19xMV3xwJYX22Tm1+OxLbXvK3NjYwffuhwfbcjJ5ZM+qbo7+dm92noBizPT60pt7th8Waq7yPCezxyliefJuQCLEZ/u6+BHV7LL/bvvz2HtnfjaG1jKGfzjd1fmAgrm9XQW3H8vd7ZJd3nMukvdZC/naCZ98u+eaMr2324PgmSMcap+yCfGD3G5v87oPLfYhbz/22Tbm7O4rN/SOBW7uj2HbvvVu7o+yvVVQSPRzx+bKCbTfsxyyr141uf/+a+wc2v7Hdi1A3r5DtPuiPBUFshixDXpyo/TL21ZfnWPf6ZBfk9vVqn7he7f3r9f6UQl8egd/r1l2Qu93ajt2i791+bcdB73fs7sujExXE8nQ68TiM3S4lGCvSUH0+A95PSvKtzFoOYPebYnh4VB3t96bY+5b2WGE/3r/QHlHau6b2TYxb9719a+5f8dt98G5f8btXoz5wxZ8FK/mcpH5M9bcLZbsjH+r3udcvGf22dLQ9lBxitfoBj//mUHbXLEoe+6gTpN96tn/kmu0fuGb7B67Z/pFrtn/kmu0fuGZ3K3sTuwvXpbDfL5Td86yHscJjbef2uzek6MgnUo9lk/70yv/mWLB32vn+5+ZYdhv03XqI+92BlGXkseuU3ZOt+/eN3R5993NwN6m+m4PbGDdzcNea+zk49BM5ON7eUPKbK4XKhh5tl4S0fWMgl/jIxng1fTg3hB6/bBr8+7H0T9w56CNXLX3gqt3GuHnV0keuWvrIVUtvX7X7pe2Ri1Kt7v9nX6/83SMuImy3W661374tyvvK6zg1+nKMXCzkUsT0sxiSO1T/spfhyzH41RjZH/Jyf0j2h7zcH9ixW1/ujxrj1f6ot/JX+wOLyfpyf8xsy3y5P2qMV/tjSsbQl48Db6HPV4/D62DXrPrl/qgxXj6OXKiwjQftH4zd/Oz6Pkhv2KB2+9n17c6IYni7i7dRNjMlyllB9eXBxw+ac/Mz59sgdz9Fvz+Sm5+i/+Zh4a2FYH37HaNvQtx62rB7dHp/GKIf2K+/HbvN9O4OnufuWcHNd7AfUXbPYG+9hP1NjFtvYX/TmpsvYn8T5eaL1Ptn2wdqU3rdPOX4OhPYbfB3fww/5/tj+G2Mm2P4XWvuJ8/u8db95LH+/hh+W77A5WEdb07xdqO/dpQVdn5Wv/AIwvunZHnfmnWH0q9Bdl/9u7NB6D7ErR1CvwtxY4vQbypCck86PuqA8+sXzHavEhFn3RDVz9G/EcSeBbldJDOO5wVMjyPZFqjlVdaoFqj81pzdviNHvjknre6D+1uQ7S5qhOr7xsf8SJj6uc4fTcOxv8K2wmz/qQhspcbPSxkf7dm+rZpFd2Vvg69lXa21e/Pw+r7Yl3Fn236m7t7Y9ZvjQBViebviv4nxiSexrb39JPb8pvAHhkitydtDpH2Me0OkfWtubq7yTZTbQ6Rt4pTtAzfFA6317W6qecGW5nxdR2t9W4Cfu1DUzbl1/qAtVLYPmNu2fKAs6xHl7aKq/ZHcHqq1T3x06hHl/eXW2+/zjOfv86xdf54/7ru1S92+JOreHNT6J87N+IjBDvpDz80YubX9GHPszo184JlJG5+Yb7Xx/nxrH+NmEo9PzLcafWK+1aj/wRcKdogn2tTg7oJQQ0Fx493VRvxHR7n3Uu83MW691ftdjFsf894vmtzc9+27BZx7o5Nvlvnu7AX0TYg7uwHt103xWPqx+DpeXHylHNJ3Klt8/BZk+yZcM+zgeTx/na75m+pPbQBvkOLGd3t3JJK0Z5Kyu0D7urDedkWeTXNR7YFP949pvu/p86nwre2JHiPx7SOtO3vI7GPc20TmB43RTWO23Wq550kzG5seeX9vn++OBB9JP8oKw+9HsrtP4EPFh+7OzQde1vomys0nW/sodx/jfHMsN5/jfBPl7mO2tluhe6weZJiTSxz9YZycQp6sL8fhvIueFZ/z9ThHWZQasonziad/30S5efPYZxNhi8b6nQD5iW//8uLTMV/zht5yg/7+mH49D7IbYNz1hrl/n3umXWrJ6tl/cCR3+/UTY4zvrtqWM7BzUe71bOyELOryejb2/ODHGfN5Fr2/vdrjHO0WZW/tr9aabUdfORodtZj869WyGzzdeglyu4Fv+ZRDfRjJtzfeewwW02mlfOjnJyHwzZFWd3v9SQjT3GbmONorIR4PYzNnDhovHcUvT9tea4jmvpAPl3ipIY9LN0M0e+0oRi5tPx4Q0Ush8EW+x1MYfhqi9d3mYx/Yr3vkC7qPNZHXeoOObEr9TMGrHfpaiNHxunKvI4h5/yuJnXNFrbO9HaLcn34UAp9s68ovhRgDS4N0vBSCFBXZx2t9MfLB+Pjl0no1xGsndZRZfNkK/kd90bGANl47qfjU0qjPbH4UouV1QfziSRV8EUxeOoqHcectUetTyh+EmNmQx5OB9jTE4xnQbge3jm3tuxTrmz+4r3bcV/m1pmQZZ6tfaPxRCMHWfq9lyWMslhtg2NFebAjG5kd/O0R79SgUIV5K98cdHX1B+vZRvHZSu+HdmqO+W6PH7aM4MJg/pH4M6f4X7zhHfVPqg+L2pQSm7x5VzfRPq0t28wfbm2IC+suc7ffD2D2owijjMWdDtn6dIvWPPNnp4wO7CDyivL2NwMPmjvfX/R9RdlZ684Mr3xzLzdqGR5RdwdXN74Qs+38W5d5nOvYx7n6p45xpvz1C/6ZT3v/yyWOJgbGMKZsk3O0w2A7OC+7RKeWBxBdj+y6M5uuyZ622PAuze9SEx988eNcg3n4PGEfyeMYz+HmD9mEwEBitPgH/WZjHKlIO0B6TU32hXx4rHUcuethz098ue2CAJnVT2nZ76WUYVm+sDNx/m93uVi6JsepYK7d4fA2yu9Y61j7awyM3p0a2Q+dM41Zi8KvNKW9i/NYc2e0vdOsV8W+OA1eIjt1x7L468Fifw62nl0cI/DX/dlW692/Iu7X2+zdk0fdvyDI/cUPevS1z/4a8jXLz22Gt717Kunsr3cW4fyv9wFevbjdH+dWTfHuks9tx8P5IR/UDp0ff7xPVT5zieXziFMv7o6VvXFLxDkLd3fI3l5xjezPOIKNtboO7nfoezyCxU2fdM99+69rti1W5OfRjhFK69mup/D4KvlgzfplS/iyK5mkeWvce/T3KrtTv1tbOrW/3Hry5FfJjFPGJ7Xn6R17Q6u+/oPWIMT5xF9u9oXX/LraNcvsutns76q5N7mLct7jdFoS3Le5mc7aOvT3Jd+9iY/cprdt3sfHN17TunJ67MXZ9MvafoLp5isfuHau7p3jfsbfvYjuPvLkf4jh2V+zN/RD3R3JzO8PRtktMN7elGrtXtW679Wj9A249dq9r3XTr0egTidz4E4nc3vfZbYz7Sdg+4LP7TvlIEt7eonFs9xG8uUXjd8dyc4/G0Xf3jrtvjYyPvCw1dq9t3U/ELu8n4v4DW3cTsc9PJGK39xOx2ycScfeprduJuO2UzyTizc+NtLF7IHbreyOPELtXDW9+cOS7A7mxx/B3M7H8euH4ZXOnrzOxsd2OcE5BmKlP160fYXZlg2WvmvnL21u/LdVuJ92cXzMlLpft75PuXRBJV6H6yfvXg5TS258FMcEOi2Xo9DXI2G4l2PM8c/1kSPt6mrfvO2n6gWh5MP57kO2mhnkDYhn8gSClGPGHQbLEicVeDYJn7A98tTnzwIe7judn55vrBBs9HWXDi9+uE745iSqPF47fYmxf1c3hDmtZPfhxlOMDUXDJPs6OvRwlP1PzXZRd3+aCYquPof6bIPMjnTs/0rnzI507/+jOfTxGxhskrb8apaFauxVfeSNKGX29EUXGJ/rl9Si95Uiwl+2FfhoF3/fu9MaxNEShl6MwjuWNfkEVdy/zoJ9GwfsfffbX+wUtmi+3aODrzVTuIr9H0e0+Jz2Ltep+kP9NlO2HOPJFLBpmr0ahLBShWr370ygYVBLJq1E4P7pG9WXCH0YR7N0i8nKLsG/ZY3DaPhHF+BMtej2KpjOQjvaJKPTysWBIR7PrJspu5z/OpYBfdneePzqQfDWY6mcp/5sDsT/0QBgrT4+5t77Yr3zk9cbHy1ft409zwH287Cw1SmvjAy16I0rLeyu3l6/aX6K87Czc8/uj3Mdu/GPzj73ker7cxF03lxwdx/sHsr0f5jjhcYOX3YHs3va6ubfiD4I83Vvxm/YYVjptdx+jY7+nWvbKKL3ydWWQju0WVXl7f6x0tU0Q3dVp5C4sVF+c/VmQkftn0qh17j8LkrWXbwVp7wfB1mxE89U+4dxAjKTb8yC7h2R95qjpcYrLupN+DbJbLBUEEeZNkO3zILwtaXq8FqRjWb0ftDuSt0cG3xwHTOmoz2R/Ow77Y4+jodqk19Uv/VmQ8Ykgx/tBkHx98OYa6fsNVnPaTmVQ8LMghH33iD4SRF8NglfYSeTlIDnBpdk+0JyXg3BuXdu4HR8IMl4Ogp2d6oTytyBjvJ3D++PI9Guyy5ztU7GbXrJ1+axP7LLztO23c++6/C7IbZcf77vr/jhuuvzuDbFPHMddl/8myPhEkOP9IHddfvdy2G2X3wa56/L3g+irQW66/DdB7rn87ea8HOSuy98OMl4OctPl+X133R/HTZdn/WNdXjl36FLbdOr2xbC7ybffR/Bm8t0Poq8GuZl83wS5l3y3m/NykLvJdzvIeDnIzeSTtxezvjmOm8mnb69l7RdcUIr1WAay11ZtRstvqI266PnDIHh5o74s+3KQXh54/Vaetl8PM7xF3Darr7RfrrxXpEO7F7HuFunsj+Rmkc79IJsinW+C3CvS2Qe5WaSzD3KzSGd7oYyWBTbjmwX27bdt8mM/o/eXHzsTHqTTePlBOmELHLL2gSj8evkGoXR2F+UTXzIke/uLebt9kvEK/uMoNlu3kG0/433kJzP747Hm8+0aaPum0M2tV8g+UexN9olib7L3i73Jtjv63nxHjnYPuW6/I/fNeW6CDZOrI3w9z3xsN23Itfr6DERv7/rAzHnZ108p/XbV8vGRPTm+CTMnNmGy0V8Ng9Wgc2uPN47m3g4h2xLpm58c2B/KB3YZYc49nR5n+vmeTruXZns+PZ/j+BLi/3n851/++a9//6e//ds//+U//vpv//rv5182/tNZRPbwhyYnnUUjTZNmkgX1409XqVdvSd3p0QV9JJHT40R3TnKNc0rdNWkmWfztOOLfRktaGg8PGkvjcSzDNc4d+AYnSZJrnLt7jJnkGufYhY6kltSTXOPcNZkoiZNc49zwmzTJNc7SE3KNczd8PpJa0qkxzvEzjyRK4iT50/WmLmvSTDo1/MGmHEktyTXOUau4xrlpr1CSa5xFaSJJmuQa50KduMa5QZUeSa5xju/VNc4ngDqSKImTJEmTZpIFzSOpJaXGTI2ZGjM1ZmrM1JipMVPDUsNSw1LDUsNSw1LDUsNSw1LDUuMxDQM2YAcOIAEZKEAFTiDUGtQa1BrUGtQa1BrUGtQa1BrUGtQ61DrUOtQ61DrUOtQ61DrUOtQ61AbUBtQG1AbUBtQG1AbUBtQG1AbUCGoENYIaQY2gRlAjqBHUCGoENYYaQ42hxlBjqDHUGGoMNYYaQ02gJlATqAnUBGoCNYGaQE2gJlBTqCnUYBgNjtFgGQ2e0WAaDa7RYBsNvtFgHA3O0WAdDd7RYB4N7tFgHw3+0WAgDQ7SYCENHtJgIg0u0mAjDT7SYCQNTtJgJQ1e0uElHV7S4SUdXtLhJR1e0uElHV7S4SUdXtLhJR1e0uElHV7S4SUdXtLhJR1e0uElHV7S4SUdXtLhJR1e0uElHV7S4SUdXtLhJR1e0uElHV7S4SUdXtLhJR1e0uElHV7S4SUdXtLhJR1e0uElHV7S4SUdXtLhJR1e0uElHV7S4SUdXtLhJR1e0uElHV7S4SUdXtLhJR1e0uElHV7S4SUdXtLhJR1e0uElHV7S4SUdXtLhJR1e0uElHV7S4SUdXtLhJR1e0uElHV7S4SUdXtLhJR1e0uElHV7S4SUdXtLhJR1e0uElHV7S4SUdXtLhJR1e0uElHV7S4SUdXjLgJQNeMuAlA14y4CUDXjLgJQNeMuAlA14y4CUDXjLgJQNeMuAlA14y4CUDXjLgJQNeMuAlA14y4CUDXjLgJQNeMuAlA14y4CUDXjLgJQNeMuAlA14y4CUDXjLgJQNeMuAlA14y4CUDXjLgJQNeMuAlA14y4CUDXjLgJQNeMuAlA14y4CUDXjLgJQNeMuAlA14y4CUDXjLgJQNeMuAlA14y4CUDXjLgJQNeMuAlA14y4CUDXjLgJQNeMuAlA14y4CUDXjLgJQNeMuAlA14y4CUDXjLgJQNeMuAlA14y4CUDXjLgJQNeMuAlA14y4CUDXjLgJQNeMuAlA15C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxheIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6il5fIiQNIQAYKUIETaImXlzg2INQ61DrUOtQ61DrUOtQ61AbUBtQG1AbUBtQG1AbUBtQG1AbUCGoENYIaQY2gRlC7vGSeqMAJXGp2Puc8gA3YgQNIGeHyEkeoXV7ivzuBUBOoCdQEagI1gZpATaAmaJugbQI1hZpCTaGmULu8xJGBAkTbFGqXl5x4eYljA3Yg1CbUJtQm1CbUJnpyom2GthnaZlC7vMQRPWnoSUNPGtQMapZq8ziADdiBA0hABqbaPBQ4gdmTsx1AqDWoNag1qDWoNQEqcALRtg613oAdOIAEhFqHWodah1qH2kBPDrRtoG0DbRtQGwxETw705EBPDqgR1AhqBDWCGqEnCW0jtI3QNnjJJJw3Rk8yepLRk/CSyVBjqDHU4CUTXjLhJRNeMuElU6AmOG/wkgkvmfCSKVATqMFLJrxkwksmvGTCSya8ZMJLpkJNcd7gJRNeMuElc0JtQg1eMuElE14y4SUTXjLhJRNeMg1qhvMGL5nwkgkvmQY1gxq8ZMJLJrzE4CUGLzF4icFL7Eg1OxgoQAVOINQa1OAlBi8xeInBSwxeYvASg5dYg1rL82bwEoOXGLzEOtQ61OAlBi8xeInBSwxeYvASg5fYgNoYQPQkvMTgJTagNqAGLzF4icFLDF5i8BKDlxi8xDAuMYxLDF5i8BKDlxjGJYZxicFLDF5i8BKDlxi8xOAlBi8xgZrgvMFLDF5i8BITqAnU4CUGLzF4icFLDF5i8BKDl5hCTXHe4CUGLzF4iSnUJtTgJQYvMXiJwUsMXmLwEoOX2ITaxHmDlxi8xOAlZlAzqMFLDF5i8BKDlxi8pB0wkwe3win44FGYCnNhKawlzixcdFvRbUUXxvLgUZgKc+Gi27TwLGxgGMyDi24vur3o9qLbiy5s5tz+vXBpby/tHUV3tMKln0fp51H6eRTdUXRH0R1FdxRdKv1Mpb1U2kulvVR0qZxfKv1MpZ+p9DMVXS66XHS56HLR5dLPXNrLpb1c2stFl8v5ldLPUvpZSj9L0ZWiK0VXiq4UXSn9LKW9Wtqrpb1adLWcXy39rKWftfSzFl0tulp0Z9GdRXeWfp6lvbO0d5b2zqI7y/mdpZ9n6Wcr/WxF14quFV0rulZ0rfSzlfZaaW/xqyiunc6tcC88ClNhLnGksBaehYtu8atW/KoVv2rFr6LU1nUbF5bCWngWLrq96Ba/asWvWvGrVvyqFb9qxa9a8asovHXdjvPbil+14let+FUbRXcU3eJXrfhVK37Vil+14let+FUrfhVluK5L5fwWv2rFr1rxq0ZFt/hVo9JeLu0tftW46HLR5aJb/KoVv2rFrxqX9i6/Ot9zaFdh7rkBdbsqc8/vabarNPfiUZgKu674MSy/ulgLz8IGXn518dL1Y1t+dfEoTIW5sBR2XfV2Lb+62MDLry523fMTLO0q1714FKbCrnu+ndGukt2Ll673yfKri5eut3H51cWtcC88ClNhLiyFtfAsDN2rgPfiVrgXHoWpMBeWwlp4Fl6657m4Snkvdt3zReh2FfNe7LrT/3b51cVc2HVt/b4Wdt3z23vtquldvPzKXHf51cW98KlLx/p9KszOw1kKa+Hp7MfmfuVv3LZV3kvnltpt1fcG98Kue26z2FaJLzWP435F3dvlfkXdtdyv6NyBsK0y32DXPXdkaKvQN9h1h8d3vwp23eFa7ldEruV+ReTH5n5F5PHdr8jfuloFv8Guyx7T/SrYddnju18Fu664lvtVsOt6zq7C32DX9dxcpb/Bhj6XA30upZ+l9LOMwoQ+d7+6+lwEfS6KPpfSz+5XF2vpZ22FSz/rKEzoc2X0uQr6XBV9rqWf3a8unqWfZytc+tn9Krj08+TCpZ/dr4JLP7tfXex+dfW5NfS5lX620s9GhRl97n519bkp+twm+tzQz6tIOBj9vMqEg9HPq1A4mLPPV6nw6vNVK7z6fBULrz5f1cKrn1e5cDD6eRUMB6OfV8lwMPp5FQ0Ho59X2XAw+nkVDge7rt9TVukwua+u2uFgKsyFpbAWnoUNvPzq4la46I6iO4ruKLqj6I6iO4ruKLpUdKnoUtGloktFl4ouFV0qulR0qehy0eWiy0WXiy4XXS66y6/8/rWqi4NnYdedfk6XX13cCvfCozAV5sJFV4quFN3lV4uXX11cdLXoatHVoqtFd/nVxVp46XpOadGdRXf51cW98ChcdGfRnUV3Ft3lVxeXfrbSz1baa6W9y6/WMS+/Wsew/Ori0s9W+tlKPxt0VyFycCvcC4/CVJgLS2EtjH5eFcnrGFZJcnAr3AuPwkW3Fd1WdFvRbbNwaW8v7e2lvb20t6OfV4HydQydC0thLTwLF91RdEfRHUV3lH4epb2jtHeU9o7S3lH6eZR+ptLPVPqZSj9T6WcqulR0qehS0aXSz1Tay6W9XNrLpb1c+plLP3Pp5+JXVPyKil9R8SsqfkXFr6j4FRW/ouJXVPyKpLRXSnul9HPxKyp+RVr6WUs/a+nn4ldU/IqKX1HxK9LSz1raO0t7Z2nvLO2dpZ9n6edZ+nmWfp6ln2fp5+JXVPyKil9R8Suy0s9W2mulvVbaa6W9VvrZ0M98HIVb4V54FIYuF7/i4ldc/IqPWRjt5XYUboV7YfQzN/QzNy4shbXwLFx0i19x8SsufsV9FC7t7aW9vbS3l/Z29DP30s+j9PMo/TxKP4/Sz8WvuPgVF7/i4lc8Sj+P0l4q7aXSXirtpdLPVPqZSj9T6Wcq/Uyln4tfcfErLn7Fxa+YSz9zaS+X9nJpL5f2culnLv0spZ+l9LOUfpbSz8WvuPgVF7/i4lcspZ+ltFdLe8v4isv4irX0s5Z+1tLPWvpZSz9r6efiV1z8iotfcfErnqWfy/iKy/iKy/iKy/iKZ+nnWfrZSj9b6Wcr/Wyln4tfcfErLn7Fxa/YSj+X8ZWU8ZWU8ZWU8ZUc6Gc50M9ycGEprIVn4aJb/EqKX0nxK2mjMBXmwlJYC6OfpaGfpR+FW+FeeBQuusWvpPiVFL+SPguX9pbxlZTxlZTxlYzSz6P08yj9PEo/j9LPo/Rz8SspfiXFr6T4lVDp5zK+kjK+kjK+kjK+Eir9TKWfufQzl37m0s9c+rn4lRS/kuJXUvxKuPRzGV9JGV9JGV9JGV+JlH6W0s9S+rnMB6XMB6XMB6X4lRS/kuJXUvxKynxQyvhKyvhKyvhKyvhKynxQynxQynxQynxQynxQynxQil9J8SspfiXFr6TMB6WMr6SMr6SMr6SMr6TMB6XMB6XMB6XMB6XMB6XMB6X4lRa/0uJXWvxKy3xQy/hKy/hKy/hKy/hKy3xQy3xQy3xQy3xQy3xQy3xQi19p8SstfqXFr7TMB7WMr7SMr7SMr7SMr7TMB7XMB7XMB7XMB7XMB7XMB7X4lRa/0uJXWvxKy3xQy/hKy/hKy/hKy/hKy3xQy3xQy3xQy3xQy3xQy3xQi19p8SstfqXFr7TMB7WMr7SMr7SMr7SMr7TMB7XMB7XMB7XMB7XMB7XMB7X4lRa/0uJXWvxKy3xQy/hKy/hKy/hKy/hKy3xQy3xQy3xQy3xQy3xQy3xQi19p8SstfqXFr7TMB7WMr7SMr7SMr7SMr7TMB7XMB7XMB7XMB7XMB7XMB7X4lZbxlZbxlZbxlZb5oBa/0uJXWvxKy/hKy/hKi1/N4lfz8qvh3AsvXXZeutOZC0thLbx0zdnw75dfLW6Fe+GBv21FtxXdVnRb0W1FtxXdXnR70e1FtxfdXnR70e1FtxfdXnR70R1FdxTdUXRH0R1FdxTdUXRH0R1FdxRdKrpUdKnoUtGloktFl4ouFV0qulR0uehy0eWiy0WXiy4XXS66XHS56HLRlaIrRVeKrhRdKbpSdKXoStGVoitFV4uuFl0tulp0tehq0dWiq0VXi64W3Vl0Z9GdRXcW3Vl0Z9GdRXcW3Vl0Z9G1omtF14quFV0rulZ0reha0bWia9C14yjcCvfC0LXiV1b8yopfWfErK35lxa+s+JUVv7LiV1b8yopfWfErK35lxa+s+JUVv7LiV1b8yopfWfErK35lxa+s+JUVv7LiV1b8yopfWfErK35lxa+s+JUVv7LiV1b8yopfWfErK35lxa+s+JUVv7LiV1b8yopfWfErK35lxa+s+JUVv7LiV1b8yopfWfErK35lxa+s+JUVv7LiV1b8yopfWfEru/xq8anb/R69yteDtfCp69/MaKuCnb2OZZWwBzdncu6FR2EqzM7sLIW18Cy8dM9n6KuYnQ/f0Xe2wr3wqnM7nJeu98PkwlJYC8/ytwa+6kUXF11buuc3L/7PX/7+17/8j7/9y7//6R/+69y6+D//9Z9jm+LHf/7H//e/4//5H3//69/+9tf/9U//++//9s//8j//8+//cm5pfP5/fzp8S+PH//5jkz/3dm553PBP9udO5z/161f/cZ5bmj9uj/z/+O/948NN9M8P66DHfw///x+Drscv+f9//sFj+Wn++bHuNM5/OP/i8cceYZ5xR8Q96zAeT8muKOcneR/PESPG45Honx+PNiPC+fm2x5Ow8+/p/PvzL7o9fiN+/9FnxOf/zdkSpT+r5SEcf579/P/l95Zq/lOnP3c7/2nin/TPw//QUpf+POiL7rlx9P8P",
|
|
6257
|
+
"verification_key": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuqAAAAAAAAAAAAAAAAAAAANwh1Hp/tyXxZ9TzkSWRg2+MAAAAAAAAAAAAAAAAAAAAAABLGlsggzWajYODDqFjyXgAAAAAAAAAAAAAAAAAAALa2U+Oet9DZSJWz4r+1i5l/AAAAAAAAAAAAAAAAAAAAAAAPso/FhwAx/4nmxWFpAwUAAAAAAAAAAAAAAAAAAAAtKhEZq6I53V0Nih/YbHs5ZQAAAAAAAAAAAAAAAAAAAAAAAodfI8LnG2/IuR3F6aoOAAAAAAAAAAAAAAAAAAAAm2aKOCjmnCUgSHMLR4SXuzIAAAAAAAAAAAAAAAAAAAAAACeP2fvw0CfzHOagCH0b9AAAAAAAAAAAAAAAAAAAALEh+x1aSi49ld8ln1Hrc9zCAAAAAAAAAAAAAAAAAAAAAAAQXTRr0QpK+xLJEWDxnwIAAAAAAAAAAAAAAAAAAAA7anXyQDNabHdbGsGNSZQQkwAAAAAAAAAAAAAAAAAAAAAACNEpw+ZjnSQ4TNBRibbvAAAAAAAAAAAAAAAAAAAADGpU5nK77xHcb8p9fIF7q3AAAAAAAAAAAAAAAAAAAAAAAAbYlNIlc7lZOGxW2dye3gAAAAAAAAAAAAAAAAAAAJNEyoiKkyN9zNt/WSEfvcJmAAAAAAAAAAAAAAAAAAAAAAAAa3opGkhqbnhZP6MeHwkAAAAAAAAAAAAAAAAAAADI6Oq1wZ+NyGtG5nuVXvw04wAAAAAAAAAAAAAAAAAAAAAAHql5boYZ3DdnICptcPCkAAAAAAAAAAAAAAAAAAAAhok8IS46dABskI1RAOLm6UoAAAAAAAAAAAAAAAAAAAAAACkXjx2NuTKusxMXhYHwrQAAAAAAAAAAAAAAAAAAAIWKQ49+MAbK/uA0k2qYlQVPAAAAAAAAAAAAAAAAAAAAAAAbXCa4Pxy04KY0BrcsnR0AAAAAAAAAAAAAAAAAAAB1EeXPVuWARYqS+BZ6/YZu4wAAAAAAAAAAAAAAAAAAAAAALYcVOMRWQ5gGNebozYkxAAAAAAAAAAAAAAAAAAAAJzF9LwqADNbKcfUoT8KtTa8AAAAAAAAAAAAAAAAAAAAAAA518y3hD5iLVkztpJIXywAAAAAAAAAAAAAAAAAAAB5J8PjTkTM7ZuCKjl4o1N0dAAAAAAAAAAAAAAAAAAAAAAAGAYYZQRXqMgE23QeNvXEAAAAAAAAAAAAAAAAAAAAzpcVM8SnGYpeM2ojUpKIsMgAAAAAAAAAAAAAAAAAAAAAAJZIxBoI9tXMYA4VtZhUfAAAAAAAAAAAAAAAAAAAAbjlCWKFs7BJFf3D9DZXyj+MAAAAAAAAAAAAAAAAAAAAAAALih/kciGzAHY5nYkJ5sQAAAAAAAAAAAAAAAAAAAA/pCMlTXFagYL9ZXFd+xhJ7AAAAAAAAAAAAAAAAAAAAAAAU/HNrhUDTCisv2Z14Y6IAAAAAAAAAAAAAAAAAAADAevLM8lulmjBQV2TgJ83TqAAAAAAAAAAAAAAAAAAAAAAAAJsB9rbnC7aO4cTt64g3AAAAAAAAAAAAAAAAAAAASDD+NkSYdbOquy08zXOO8K8AAAAAAAAAAAAAAAAAAAAAACyp9JGv6ySvNIkjitDwbAAAAAAAAAAAAAAAAAAAABg7GXPsyWHlehjrQJSxPYnMAAAAAAAAAAAAAAAAAAAAAAAUg4N1y+YDZq1m/cipn94AAAAAAAAAAAAAAAAAAACgXRbvowwoxTKfffuvDF8WHwAAAAAAAAAAAAAAAAAAAAAAHaWFVtdpTi7BxiCk9lUsAAAAAAAAAAAAAAAAAAAAhWaRquVWjHxZ9CY2Dw5H4CwAAAAAAAAAAAAAAAAAAAAAABwOl4iA/rm8CHhJdERJAgAAAAAAAAAAAAAAAAAAAKrAgAsaNVYKDAfDXh5gCWGnAAAAAAAAAAAAAAAAAAAAAAABPRi3tzo8+9N2WXLqRkEAAAAAAAAAAAAAAAAAAABJdjJ5BkM/h53ZiQH0jtGVnQAAAAAAAAAAAAAAAAAAAAAAG/OeHdq0piV8pRISJJjpAAAAAAAAAAAAAAAAAAAAFb+SgqCmzoVyWr1MjY9jdxMAAAAAAAAAAAAAAAAAAAAAACUqfWKLiR9CiVhMqoQXoQAAAAAAAAAAAAAAAAAAABGbHl0VDZklcctnxGRrnr+IAAAAAAAAAAAAAAAAAAAAAAADs35i+xFOrmKwK69QqMYAAAAAAAAAAAAAAAAAAAD6j0tAPmYsis/lL3gcvz8bigAAAAAAAAAAAAAAAAAAAAAAJtK4TVfyuhy/nioarVFkAAAAAAAAAAAAAAAAAAAAx0qlnsvq69ju53BGSHyKW18AAAAAAAAAAAAAAAAAAAAAABG6ovVfuuSnFsqR2AvGVAAAAAAAAAAAAAAAAAAAAGdpYGIG2pSf5kOszUWzi7S4AAAAAAAAAAAAAAAAAAAAAAAkEEijrHYKvsI7n76d1zMAAAAAAAAAAAAAAAAAAAAE7acb/NEBQKYcMQobfUQ4uQAAAAAAAAAAAAAAAAAAAAAAEgzGPO6W13nAeJ1wRfwuAAAAAAAAAAAAAAAAAAAABJhbQjeU5NqqaSDIxWOyuccAAAAAAAAAAAAAAAAAAAAAAC74dwFNv1lQsS9IIBp/4AAAAAAAAAAAAAAAAAAAAKDT8KvKxNvN87BjkMuMvmd+AAAAAAAAAAAAAAAAAAAAAAAKBP0TiqD6PbhNkEQuZxkAAAAAAAAAAAAAAAAAAACL5YyIjYakvRyo8QlxIgedigAAAAAAAAAAAAAAAAAAAAAACfS5XqQDx0cKZdVsmovdAAAAAAAAAAAAAAAAAAAA9E/GYTrZFIHLKpz5aqcXkssAAAAAAAAAAAAAAAAAAAAAACpWeYnm2G4UecuQk8ybAgAAAAAAAAAAAAAAAAAAAEXcqAebelQK/vCuzYBzNNQAAAAAAAAAAAAAAAAAAAAAAAAODcrowtNIKh0c6wC6sVoAAAAAAAAAAAAAAAAAAACGOkSaOSEq6rFh7XTzrFKaqQAAAAAAAAAAAAAAAAAAAAAAKFZ83ENIPBbNm/cFJJoQAAAAAAAAAAAAAAAAAAAAldD2S+e9KKJfg8YiSBuBI28AAAAAAAAAAAAAAAAAAAAAACZ6l4/xrh1QC3Sn0q+xjgAAAAAAAAAAAAAAAAAAAKh8yVtbjc1uoeELawMpaSAYAAAAAAAAAAAAAAAAAAAAAAAwJOQxkASMyXb7ct3zJuQAAAAAAAAAAAAAAAAAAAD4In0Kv02be4dGBIrqf4oyVQAAAAAAAAAAAAAAAAAAAAAABDdZMWFQBvb8jVNkM/mtAAAAAAAAAAAAAAAAAAAAYJNaD0+m+w/Jdmi43oLmfYUAAAAAAAAAAAAAAAAAAAAAACkKOKwkT6uKkmn/K36oMwAAAAAAAAAAAAAAAAAAAL9tRER7VzaDFjYDNo5vhrE6AAAAAAAAAAAAAAAAAAAAAAAktOYcYe99yPD9jvmlmIkAAAAAAAAAAAAAAAAAAABSLo/tH9UbdZskqCxYB2AaYQAAAAAAAAAAAAAAAAAAAAAAHFjdG1s9TrxkLKhrTXQZAAAAAAAAAAAAAAAAAAAAPnzf1KA+fmUG8NNslVaXPowAAAAAAAAAAAAAAAAAAAAAAAY3mxQGsSVkpWugUSLdmgAAAAAAAAAAAAAAAAAAAJINJxSmlrdAYq8mVLgwOTUMAAAAAAAAAAAAAAAAAAAAAAAVSrDr9qGBVrT6lRJxY9cAAAAAAAAAAAAAAAAAAADdLlTqlgMxDBdAXe38BRHSrQAAAAAAAAAAAAAAAAAAAAAAL5ZYMB1oQNHFl9tV00sZAAAAAAAAAAAAAAAAAAAADqS7xVt/ig2PVofyl37+jcEAAAAAAAAAAAAAAAAAAAAAACGpYKtseCc9RpvHI+JJ/QAAAAAAAAAAAAAAAAAAAOwOwVZK5Ys5wO3Shn8hX+XaAAAAAAAAAAAAAAAAAAAAAAAUd8mKwF7lV45Sl/SZiYkAAAAAAAAAAAAAAAAAAADRm7356gtlZbPuda3U/vDBgAAAAAAAAAAAAAAAAAAAAAAAIna5XPqaJCJZ9WNKv6HJAAAAAAAAAAAAAAAAAAAAD2c7beACg9vkK95AWHKnSnQAAAAAAAAAAAAAAAAAAAAAAA/FsR+JqaUgJy/b1ewsRQAAAAAAAAAAAAAAAAAAAEKF/X3nDkSYscibqResWKzyAAAAAAAAAAAAAAAAAAAAAAAia16VsAtzFWE9b9eCVR4AAAAAAAAAAAAAAAAAAACfr8PQSX4ivwm3fN2kY2Z/CgAAAAAAAAAAAAAAAAAAAAAAEWpT7nl6PedV2vtrbYaOAAAAAAAAAAAAAAAAAAAAhUuF9c3cB2w9T+DJgfmIrLsAAAAAAAAAAAAAAAAAAAAAAClbjLiEl3aDmC2mrjZl8wAAAAAAAAAAAAAAAAAAACqsbCcAtn2MArxTHstyVRmlAAAAAAAAAAAAAAAAAAAAAAASOZAncT+gKXzeXOzkWpUAAAAAAAAAAAAAAAAAAAAaUVWcnuDlzcZyaP8QdxLcwQAAAAAAAAAAAAAAAAAAAAAAHkHX3dqx8KmIe+9yRs7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbPWvqMVHRAFqR92u0w9eeRQAAAAAAAAAAAAAAAAAAAAAABhJWVAqtstd7+JjL2luHAAAAAAAAAAAAAAAAAAAAwiCUxU4bUbxhQ50KCABcm5kAAAAAAAAAAAAAAAAAAAAAABCd5HiqifLbJsgZ3imNOwAAAAAAAAAAAAAAAAAAAGvMegX/lalrKJQkxfczZw2WAAAAAAAAAAAAAAAAAAAAAAAAxDcm91tv2g3iLODg36sAAAAAAAAAAAAAAAAAAAAdCgnXF47JO614WPluZPC0jQAAAAAAAAAAAAAAAAAAAAAAL5tuC04sAZaN5cMkgqp9AAAAAAAAAAAAAAAAAAAAFLmaKhz1vbFNGPy31tW7G0MAAAAAAAAAAAAAAAAAAAAAABibwBFKqYLGRXSxHbsAPgAAAAAAAAAAAAAAAAAAAIFYESpGMQpiuEn23VYsLIaUAAAAAAAAAAAAAAAAAAAAAAASkF6WwsjbCGXWk491oyQ="
|
|
6258
6258
|
},
|
|
6259
6259
|
{
|
|
6260
6260
|
"name": "process_message",
|
|
@@ -6532,7 +6532,7 @@
|
|
|
6532
6532
|
}
|
|
6533
6533
|
},
|
|
6534
6534
|
"bytecode": "H4sIAAAAAAAA/+29C5xd1XUfvM/cq9HceV2NhB7oeUcSIJB4CAPGDzAYMCIGy4DBhASIDDIQYcRDAhnxGAsJ8TQ4zpe0cfvFiePYaZz4S+KmSdrk5zxcJ3HdJnFbN65dO4nr+JE4uLabNHWcL9vcNfOf//zPvuecu650QbN/P+meOXut/1p77bXXfpx99snCC6nZ/r3rnt0377z33pve9k//7bh15zX/dCtrZ9Xbvwvbv/H+RJidjLYVCqWsBO1sphIystB7GQOh9zJqofcy6qH3MhaE3ssYDL2XsTD0XsZQ6L2MRui9jOHQexkjofcyRkPvZYyF3ssYD72X0Qy9l7EolJdRRc5EODJyFhen/R72BeJeGXlLQu/r6LjQexlLQ+9lLAu9l7E89F7GitB7GceH3stYGXovY1XovYzVofcy1oTey1gbei9jXei9jFbovYzJ0HsZ60PvZWwIvZexMfRexgmh9zJODL2XcVLovYxNofcyTg69l3FK6L2MzaH3MraE3ss4NfRexmmh9zJOD72XcUbovYytofcyzgy9l/Gy0HsZZ4Xeyzg79F7GOaH3Ml4eei/j3NB7Ga8IvZfxytB7Ga8KvZfx6tB7GeeF3ss4P/RexmtC72VcEHov48LQexmvDb2XcVHovYyLQ+9lXBJ6L+N1ofcyLg29l7Et9F7GZaH3Mr4v9F7G60PvZVweei/jitB7GW8IvZexPfRexhtD72VcGXov46pQXkYVOVeHIyPnTeHIyLkmVJBzLQmMGxrihoO4ISA+sI8P1OMD7/hAOj4wjg904wPX+EA0PrCMDxTjA7/4QC4+LIsPsuLDpfjwJz6ciQ9P4sON+PAhPhyIi/dxcT0ufsfF6bh4bIu7k//0Ly5exsXFuPgXF+fi4llc3IqLT3FxKC7exMWVuPgRFyfi4kGc3MfJd5wcx8lrnFzGyV+cnMXJU5zcxMlHnBzEwXscXMfBbxycxsFjHNxd8E//4uAoDl7i4CJ2/rFzjp1n7Nxi5xM7hxi8Y3CNwS8Gpxg8YuOOjS82jui80bFipV8T8pNVbs7+m4mNL9weamcPAFuJ/SDZEIkrxz/1l0MMWIo/fI8/8gxV47/W+BvV+L/nvjG9C/hRF8OttX9/Gnh/mmQazReB5otEY/pWs3d4V5flnRgNs8toGAF0G66GvRjLZKlG9xC/Ebqq+ywjPJPH5bO2MQo0Ji+jvLrQ0/IWQJ7ZP4a+U4CO63aI8kyXmH6a8mqQ9772r9UJ6lXCRj/Tpb9c0EN/ufDF6C91yvPwF8RgfzGMmL5IeYOQ9z8pbyHkfQlknw3XB9vXXcak6RhesQ/63pCA5SOW6WupRr8xmZ3M9kOC3vIakIe2j2kY7tcE1kLiM/qz2r/j7V+sG+NvCvmDJF/prXwzE1g1cc/oo31OBZ0N8yKgbdnFt+799M9+4plf+b0P7vnA+39s4jNj/3xky/Ajhw79zaqvr/6J5w+9z3gvBl2yULi+B43/EiX7/H9Tu/62X/r73SOXPvrh+z/zp2/YO7Z6x++se/z913/sXeu+ctNjxvs6xfvlp9/zSPPDP/Le1uZPfnvw0mf/6qZvXrbg3M988sHjf/fAd77y/LuN91LF+yfXf+dzH2m++4F9z/z6/nM3LdnxoXd/+htf/fgnfrH5zT/7hbs/fbbxboMyVxlnXVaNf5Hxfx/wl9mTa/yvr8Y/rf/l1fgHjP8KuNmyi3f8zAc/d+EznzzjL74z/OQVOw7ue9lTn3rzXz+w4gMn/M8f/oXVH5ow3jco3j/fc9G79ix/2zl/PfSfntn6U6vWfP5bH/jIX/7vt+8896/+8su/OvlN492ueDsk432j4F1x5kmvuOuf/dFxn920/r9f8NEPnfajx39r46s/+2vbfur5v/+DvwPeK9u/Jet72l5XVeOvG//V1fhrxv8m4C/Rxqf95Zpq/NPyr63GP22/N8PNVppnehhivNdBRpn+zPi/v7hsSwuM93rNmz26/t4fbzyTXfE7B079yOjw73zlwp987UWf/MTBJ9c1P/STxvsDgveUVzeef/+TDx8KX/jA1975v0/5dxecOrH2wonT/vN7/uuqO+/5geOfN94fNEGhVJlXG/8NwE+6J5Px31iNf9rfboKbrVAoTfP+UHneaT/bYWChlN2m6/st1fin+9Kbq/EPGf8t1fgbxr+zGv+w8b+1Gv+I8d9ajX/U+G+rxj9m/LdX45/u2364Gv9i498F/CXiZMv476jGf6rxv60a/xnGf2c1/q3Gvxv4y8xvjf+uavIvNP67q/FfZPz3VOO/2PjvrcZ/ifHvqcb/OuPfW43/DcZ/XzX+Nxr//dX4bzL+fdX4dxj/26vxv8X4H6jGf7Px76/Gf4vxP1iNf6fxP1SN/63G/3A1/luN/5Fq/LcZ/1Q1/tuN/x3V+HcZ/4Fq/HcY/6PV+N9m/Aer8d9p/Ieq8e82/seq8d9l/Ier8d9j/I9X47/X+J+oxr/H+J+sxr/X+J+qxn+f8T9djf9+43+mGv8+439nNf63G/+z1fj3G/9z1fgfimtpcU3wTe1Ft/joc0U7c++e2++4fc/bL92555oXri7afeeenfv24JpulMVr6w36e5j+HqG/eb3Z7qt16yLJ1pDHCC+EmbXicZLTCoXSmozwQtBr/obfIF1Kypte8x8neVw+XPOPeU2hS5PyYuJxS1PIaQo5CutBR6zDjlgPOWIdcsTyLOOjjlhTjlgHHbEedsTa5YjlaXvPNvR4n2Ltc8Ty9AlP23v6135HrClHLE+feMARyzNGP+WI1a/9o41dbeyAY40s59fk8D2T0whdjbOyVLnGhbwU/ViCflFB/BHAbo+LL975lr23Xr771kCJh6oX56i4muiuS6jGuBn94/ur6V5N0GKKxVvWvm4X73U799x825t23Hrrzlv+qZD3MgcjXZRzP+VUNhhvkqatUCgNFHFKxD/SThmturh93bbq5bt33HLRjrvu3XvHTtxKhW7KUjJCxXuqTjPQDO8NE91F9Pc2wRcENm4DnKD7rVAoLTavWCwyLW8JYI9R3nGQh7XJqSb0N53jtPf6xgwu07E+WB9LKG8R5B0Hsrlem0KO6T8g6BcRlprWme07yasJPp6WpqbORVqblSOEma5mTOjcw6hwXL9HBSvfomrylqS6LsQ0fczWEyLPsKwdDuZgGW+d6P+m/dskupi2k4wJoS/ew61eXyXd0bbsJ93YEfFML7yH+I3QlV9mqXpTQ7VuY2wRu6M+HJPZthj3BnOwjLdO9N9p/zbD3LjPfrJY6Iv30E/+lnRH27KfVLRj4W2+ht8IXflllqo3LB/7yeJq8i4oYnfUR/XPaFvsAwdzsIy3TvSNtkGbRBcT+8kSoS/eQz+pZ7N1R9uyn1S04+qifmL4jdCVX2apelNxVdWb8Sp789JwUXsrrMOOWIccsR5wxHrQEevxPsWacsQ66Ij1sCPWLkesA45Ynn7fr/Z62hFryhHrCUesRxyxPG3vWcZ9jlj96qvPOmK9zRHLtgKoNRYe6+BYoOzcAvFMT7yH+I3Q1dgqS9lFzQ2sfMdVkzeRET/KQ0xeB1oq8gzL1lcHc7CMt070V7YN2iS6mHhMvFToi/dwTHx5G3dc6MvrA2X9MbVWhnzsjxXr65Ki/jg9zwhd+X+W8g9lFyvf0mryLi5Sv6iP2XqZyDOs5e2/B3OwjLdO9DvIH5eBTuyPy4S+eA/98Qez2bqjbdlPKtrxtUX9xPAboSu/zFL1huVjP1lWTd6FReyO+pitl4s8w7LtYIM5WMZbJ/o7yU+Wg07sJ8uFvngP/eR2iluoL69XFY2HTcFvdEOCr2UX6VdNf6bL+nyz8S+vxr/E+FdU47/Y+I+vxn9hrK/7qb6GAIufednWwQVhpl3ic1HjrRP9Uwtn+PZTHOHtiSHM1GnFYwWOLxpHDN/r1X9+XZrLx2s9I0KXJuXFxGPZESFnRMhRWM85Yu1yxHrMEetBR6yDjlj7HbGmHLE8y/iwI1a/+tc+R6zDjlhPOGJNOWJ52uuAI5anf3m2oUOOWJ4+4RlXbd17VOTxOGAU7pfolwvvQMKjW7hfrjIOGCV5eXYptwMJR0NsFUTFe1mYXXrMq9E93oF0Cf1dZQdSxV0bK80rVopMy1sF2A3KWw15WJucakJ/07nsDiSsj1WUhyPp1SCb61XJMf0HBP0YYY0KPrN9J3nHcktU9WS8aqcUt8WiI/8qEcJpY6upuILotuWolgncjP7x/RV0rxbSISg1CSziMjFxJ4NY15Gc+U5mvpOZTvOdjNC/151MTfDxMg8v/8TUsov0aV6L4xLTl9qGGxf64hIPlm1Bh/LVif5SWNL6altepLWlwHZLe+3eO3ZdtXPPPbfvvG+n2qffqXlcQX+/QfCpZC7BL/vGNBS6CkCFA57hN4Ku5lYolKYDnpptqMMIywU8dghuyN4B7w30d5WAV/F15dIBb4jyMOBhbXJSAc90LhvwsD444GFD5YCH9Toi5Jj+A4J+lLBSwaqTvPmhxwtpfugBaX7oIfTv9dCD+RaEuS3XeOtEu7TtfF222Fm7iVnH+T77hTTfZ0Oa77OF/r3us1Uk4WfDvVy6QNnJyVD6eOJvdRk1ru0y2l0TI+wZ7ULaZAzbAbdj65ny9hcYb53oLxqY4TurfR3LfEI7vx1Rrt1xx+237Niz85I77967c+/OW96we8/Oey+885ZL7tt5557SU7PX0d+XCj6VzKgVNxuMqAGlJdXIhimPN3VgHg5neGmUX6zDPNyYU6c87PIWUB5uOB2kPNz8txCuOanAZbaNfDsKBK7hMGMPDKYWCPCFW14vtSBmG7CYhp3W6C8dmNFxU3vhVAUCDqB8eEAIMz61hnRvhUKp8PDA8BthbudSZXiwhuRx+Xxe1UerICrew9bAeUdieLCO7rdCodQyr1D0ljcJ2Pyq/nrIw9rkpFqZ6Vx2eID1MUl5ayFvPcjmel0j5Jj+6lX9tYS1RvDx8CBPXk3w8fAuo/u4vrhKyOb1xZsgOmxekW+HVSHfDva3mlCxvS0/pi598s1Fo4nhN8Lcuq8STdaRPC5ftWiCnoJSriVUo0FaTNeCZkjP5y9y7Y0IPk5msTrpvA8GRrfTQAzLtZj0Vt6O93jgivxGp+Qs6lLOIiGHxy4x3UB5E4k89cItvzASEz9LVBvr1YZtfoF/RQJzpcCMdbe8NoMX/50IdMrTrQeyOjgB9EFe/HsB0cZk3zuoE+1T4FcPkV9hK2a/WttB75RfrQ35chZ1KWeRkMO9VUzsO+tEWVWPzPU8CXnsO+tFuSxvQwJzo8CM9TNem03H9R+TRfyT4H6ZiWLRiG/4DdKlasQ/ieRx+fjFjU3V5F2TET/KQ0zTx2x9ssgzLPtO22AOlvHWif6ftQvVJLqY+MWNk4W+eA9f3Hj3wGzd0bZZzq/h8j1uX1h2qx+Tg/HmOtDnXw7MLgvGqVqYG9ds5Mmx6ix4UvteilXIz3Wn2knV8p8oyjge5tqGX+xT/n1SQk4zUZ5e1ScfZIRxFuvzQ1SfmyBPxWj7Zkmd6NdAfX6Y6lO1RWVn7pfK2nmxkNNrO3P/crKjHMTigw43ExbHQasns/MpwL+Z+LZAHtLhrGsz3N8iZCt8w+jkgx8d0GVTPoiy6kQ/AD74uxV98GTKw74C+0XUA+2AdfbDQZdrUNCnyvWHMOs8bcVsTONHW2FdcPw1+k8C5tYVWk8sF/YHvG1S+cNmUS5l0y2hs2y087Yc2YMh7Yt1ov/PwqbcLyC/akf8cvApHXTn9o38/H1Y5Os2jiidO7XJz5Vsk/ayI/vu1wZn+L5AbTLlI6gzzyPK2nmRkNNrO/McYYujHMTifuE0wmI7Wz2ZnU+FvNOI73TIQzrsF06D+6cL2Qq/aL/wjQFdtjwfNFl1ov8j8MFvJebFKR/cQnloU+4XOsXD44ne9B4M6f62TvT/N9EvqPaKsZb7BaP/bqJfMLlYrlS/oHzxVFEuZdPTCOsEgYV25n5B2RTLfwKV3+gX1GbKn+oXjF+tR9xIebgesYnyWpDHY9ZJyDuZ8nA9gtdGNkAex7uNkIc+wusR44ny4LNDXu/Ddbt1lIeHDrQoD1/2n6Q8XLdbT3n4kv4GylsJeRuhrLZuxw+sV7bvd/ncTm4nSq2LZjm/IRTrD/D5MD9XXuMoB7EuITlrHeWsTZSnJeRYfWF76cVzVsNvhLltt8o62STJ4/JVezKC0Yatgqh4LwuzS495vXzOanLXQ56yBK+cY5nW5/ChLYK4NyDoJwlrUvCZ7rUEP2IgX4swMrqf9zzSMOpE/zLorc6i3lrJQntwj2m65+2YYB2M/uWgw6YVGrOeU65WDub31Wbs8cqaxgwCU5VrPZWLdZgkHYz+fDESqBEN66Puxb/xWe/6HP1UPbGu8d+GDuXhejL6ixP1tE7ogG1yWwcdmGZ9jg7bhA4iul20+663t6NboMTvPfJzWrY8P7ddJ3DyklkjeqF5pNpl0BJ86+jvhtApltzm49Ovkd6xc8/OnLJz5B7OkTkQdOLxqPHFNBS66tMK96Gt9nUjaM9rhUIp4yhn8rh8vF9uUujSFHlYv+xHKTmxTm0M3K7Tq/fsvievSot2rplQi/kDYWXiXkxW1RUf852kltQtWR4ut/IQDpdIeRiJU24Mapy43FieGFxevmIGl+lYV7QpT8/QPXkK1oI8nmahK22mPAz4WygPp26nUh5O3U6jPHxkZsswNljCeubzNdWWBfWotin4T0zIWd6lnOVCTg8flRcOX0frUblqV8bbFHm8gc2mpF+DgdVemvL34NOv5xS169H+9OuE0EV9n2UP0HFeTdwbSGAdcsR60hHroCPWfkesXY5YnmX0rEfPMj7giOVZxkcdsR5zxDrgiPWgI9YTjlhTjliePuHZHj3bkKdPeNrrYUesxx2xPG3/kCOWp+0PO2J52sszFu5zxPK0V7/GQk97ecacY2HM5OkTnv22p+2fdsSacsTytP0jjlietvcso2ec8BwDeNrrWUcsOxfd1phwHYK33ag5/3hCDvKPF8BKfRJdlVGt4zieHGkqnk1023JUywRuRv/4/tl0ryZoERuPFuAlK6SzZaWTCbsVCqUzM8ILQS8rGX6DdCkpb3pZSb25geXjZaVThC68WzCmu4GO82ri3kAC65Aj1qOOWI85Yh1wxHrQEesJR6wpRyxPnzjoiLXLEcvTJzzt9bAjlqe9HnLE8rTXk45Ynr663xHrWKjHw45Ynvby7If2OWJ52qtf+yFPe3nGe0//8ow5nu3R0yc8x0yetn/aEWvKEcvT9o84Ynna3rOMnnGiX8dfzzpi8TJJ6q3VoqcPqGWSkwtgqflwqow9XiYxFbcS3bYc1TKBm9E/vr+V7nVaJuFdOT/QFtblzrw5Sz2INU4y4/WGMLscZVfqkH8iIWdJl3KWCDmjgs/K3aUdR9B+qCfeQ/xGmFvmKstLapecsovaDWa8vBsspu1Ax3mpZjuPNY91tLB6eeBL0ThSVQ5i8cEy2GY5/pa1G/JvysHCU3t3As1GoseDjYKQfQPkI/3hNkPcdb2y/Waz2iGOL3Y/UU/riryoKx8688vwYvfTbUxlZ46NJ4oyct2hXIXJfVrZulsidEhhYX3x18atLgZz6A2P6+7HoO74BXJ8YVb5z6YcHdB/8PCzPP/5iQr+8y/qaV3Zf5aSbKP/UfCfnyT/QRun/Gcp5aH/mI3UmIh3yJcdEyF/auyVOqCP/ajsAX1LhZyhMNdGJcZCJ6u3RCypx2rLKQ8PEVhBeXgAwErKw4MJuG/Awwj4pfbTIa9FeWdA3iTlbYW89ZR3JuQtpbyXQR62QU41+hvrJLa1NdDWmC6QTHVIRupAAfM1fDkfMTDPdOV77GvIvyIHC18zxdhzHeQj/a+2Tz7/3iFU9dnlwkM/zSbm2+vhfgnffllGeCHoeYXhN0iXkvKm5xXrSR6Xj+cVJwpdOPbFdA/QcV5qeq+wphyxHnfEesAR65Aj1lOOWA86Yh3uU732O2LtcsR61hHrbY5YzzliedrroCOWZ3t8whHL0+89Y6FnPT7kiOVZj57xy9Nejzli7XPE8rSXZxuacsTytNcBR6z5uHr04qqn7Z92xJpyxPK0/SOOWJ629yyjZ5x42BGrX8erdzpi8SPw9YDNaw9qPrw+ISf1+SOUg2sOPTytopYRnumD9xD/aJ1WoT600BR5aEPMQzmpLQqIVeTgHrX2kfINVUbHLQqm4plEd2WOagMCN6N/fP9Mupe3RcGwrRnh0tMGwkQzpkyrHletTMhZ2qWcpQXlLOlSzpKCcpZ3KWd5QTlru5SzVsjhc1Zjwkcx37dAy8RHMbhcy4/yjP4QLMVesWB2GfFxxjiVH1/c4jNW8TtRHHrxvNkSobDwQUGG3whzfbJK6F1G8rh8GJaKnxXKLQCtgqh4Lwtzo0YGmuE9fqg+TnzbBF8Q2BitlkOesgSfFYplWp7Dh7YI4t6AoF9GWMsEn+leS/AjBvKxx2R0P++sUMOoE/1N7ValzgpVstAevFnOdB8MM3W3LaGD0d8MOvAZlMuAR5WLW/Ny+ht966Yc+fsgyty6QMsPQj6XD6PaYI6+y0gHo98FNuBzRVcI/pBzj3uGFZS3IkHL32JV38lEX+QzSFd2KDvXv9Hfk6j/JUKH1Bd+WQemGcvR4T6hQ3dnkHKU41rimlgicPKSWSMqbd7L1uHWwXLsb+UB3Z5BOpEjcyDoxOfEG19MQ6GrvrJw32z4jaA9rxUKpYyjp8nj8vG0aJnQpSny8lppJzldnkGa12mrYMH8gXgzcS8m9Q36+alGvpxjYarBWGoKEdPu9i8H9h+HwM6fLlkJeijMq0kHtQqgdkIZvVq5Wi/KaLbEVYoTC8hGW3JHeFJJXdXqCq5ErSddUb+TS+p65RHWdaXQtctdO6V3pPHuMdyRxrvHcEdai/JwR9ok5eGOtNWUdzrk8e4x3JHGZx3jjrQTKQ93pPHSAO5IW0Z5Z0HeCXDNifsQrK/Ynt/amsFlOrzOi0XY1reRjjjoxthjSxtDgI1yWqFQmj4vW02mDRuHKSV882bUyZIa8ti9BulSUt70kKdG8rh8POSpC12alBfTXUDHeTVxbyCBtcsR6zFHrH2OWIcdsZ5wxJpyxPK01wFHLE//OuiIdcgRy9MnHnTCMn4vvR53xPL0iQccsTx94lFHLM+46tm2vXw1pn6Nq54+cdARy7MNefqEp70edsTytNd+R6ypPtVrvt8+evbyHK96xmjPMcCTjlie8atffWLKEcuzPXqW0XMO41nGdzpizcfVl0b88qzHtztiedpryhHL01f7dVz4kCOWZ3v07Gs967Ffx6t39KlennH1EUesKUesfo3Rnnp52r5f44TnmPxYmNd69ttP9alenvNaz3r0bI+ecxjPdV9PLE+f4DaUtf9Gmhvg+kbIR3o7pajLZ8W38LNYw0DsBRWxM8ILYbaegfBHhTzTq5GT1wrp9K8vuGHX/2h9e21G/KYL3+O9JoOCXj3TNlstBP4StnrLKMgIJNvy6pC3gPLQLqZD/D2F9BusqF8R+yF+U9BvB7oydTERZvsC+rvt8dkIeSdSHu5PmiAd1OGz6g01o7d9O4M59IZXJ/qfaBsGN3iPE028XpIjD/XDe6k9gZtzsNSJaDHdnqP7e0F33kO3Reintp8a/amCHvc7mT7KNqcGLRvLg/W5k8pj9D8ryqPan/nUEOBYXom2MxLlXDk5I4fthu2nk41iYpueJujRVmaTJtGjffntWZRpedh2eM/fRqED+hbvr1InOeIpfqkTG/upXf9awXa9IUce6pdq18hftl3fkqP7b5Vs1xuEfv3Urn+vYLs2n5pv153btTp1tGi7xhNc+XTX0yDPcHH/d/sgwuk6NvpPJXz2dKGralNGf4agx32yfEom2vcMykO+UygP99duIR22CjugXrvbv3Wi/+9gh53gg1aWQHp16esXKl/HE+7Z1/HV8pqg57p4maDH/cVmkybRc73ktRu0Ke+VNxsNCnrEqxP9l0TsN/1w7/dW0n1LSd3XCt3VKZzYpr7RNrCKt/xuwZaETNXfWAwazKE3vDrRPy/slerD0E6jhGn030zEAxVvT4B7ZeOt6aNsehrloe54OqphM2aX7fO1qn1i+bl9psoaE9tGxVb0Xav/ZpgbD7kvwrbBfb8aFxX1f/Shzw1o3AU5uD/c/mX/WtCeTBcdI6U+dNJpjMT9jRojKf/isRXalPtz1e+iXjwHNPoxsEOqv3Hy58XKn9Fn2Z9T/hlT2b7fbNIMc/uDvPE3YqFNub8xGw0GHWcMj8e3K6AOuL/BcddppPvJJXWv0t4+Sv2NmrdlpI+SybwYL/L6GzxlHunXC3tlJAPbAdqJ+xujPyERD9ScM9XfKNufIsqlbMqnaqu5rWqf+P6blc/ySrTPJap9Yvm5fabKGhPbRsVW9F3ubzAe8tcbsG2cQnLU/Kao/6MPfYj6G373E7HQL1L+iO1mpH3N/nhuwh9T7SwmtnmnNRNef0F/5DkP6p7yR6Pr0h+vVf6I5Wd/TJU1prJt1eqzGeb6asofuX9W7wxjDGF/RD86Ecr6L9sFsHX/iqfFrzI5q0Sm5eF7y8OUtwboL6E8bEujcM2pRn9jeWK9v5zWeoLAMpl4TgG/I5s6Nkp9PYOPrYjX/C4vngXQojw81mGS8vCd+/WUh++mbqA8rCcr/1CYW08lfKDwERqG3yBdSsqbfp9UndKH5bM2Wu54Kz5ZAK2CqHgvC3M9MwPN8N4w0V1Bf5c53spqbi3db4VCaZ15xTqRaXktwOa3uCchD2uTk2qhpnNsodc3ZnCZjvXB+mhR3hrImwTZXK+rhRzTf0DQryGs1YLPbN9JXk3wcfRVfPHvhuAp8u2RNYTfCoVS4TNDDd/r2yNrSB6Xz9qg6imMtynyhuEa81BO6ttFiFXkoB2lc5cH7QzT36tz1BgQ/IF4uakO5GAZDgfYTqdrsZvnna61X0zEVDNCfUbFPXb7ih1M4Q7N8BthrktUcftVJI/Lx26vwlBT5OUdltNJjqOrxnRFjhqqpwyElYl7mKdcFXuTIq6KY8w8V30iscYyJPjjWPtL2WzZ64CuRrxK1xbpyjRDpKvRPwu6biJd0VV5TNqaUWVOk5ok3ZE2kQo3KcNvkC5Vm9QkyePyVRsjYk2zVRAV76W8uFPLuYj+rjJG3ED3W6FQ2sjfbMOkZplDlIcz/RZcc1JjRNO57BgR6+MEylsPeSeCbK7XSSGn1b4eEPTrCWtS8JntO8mrCb4hwsjoPq4MrROy60T/AYgOm6nTRVk8N1ARYqnQk+1t+SF07ZPXFY0mht8Ic+u+SjTZQPK4fNWiCXoKSnkzoRoN0mJ6M2iG9DxkbNHfywQfJ7NYnXT+aNuLovf9Uvt6PMz13ibp3QLsVFxuCn6jU3IWdSlnkZBjntwAvhsobyTMLavlYcS6jvJwKLad8laJcvHQT2GuSWCuFXmx7i4Zmk03CXRZzm9MNXGPbTopdLW6wwjAZ4aq1rYhIQf5ed0L+botj9JZjZ3wyPtPLJzhif9wT6OK9ra+Vyf68xozfP+R2hvucTYdlZ25LZa1c1PI6bWduU2d4CgHsa4D+vhPnT2JdrZ6Sj3X4Gf/TIcjArU/DjEUvmF08sHPL9Rly/NBk1Un+vXgg39e0QdPoDwcQU6G2XqmnnlgHXC5BnPo88r1lcTcblLwK915f/4JCd1jSu3P55FrL3weZXbyn/9F/oPPk5T/4BeWkX4E/Ofb5D84QutF+VPtGkdy/EEI1e5U/GA+bKPHFdDhJKFzU/DjM1Pm69Y3lM6dfKM2NMODsSvPN3j/rtF/a2iGb7B9rZ4n854m1JnHgGXtvEjI6bWdeXx3sqMcxOL+TT23RjtbPZmd8Zn2ZuLbAnlIh/0bPvdWezgUftH+bfmQLlueD+a9s/Gn4IMryQeRP+WDqb05vLdD7cNQdZCR3oM59Hn7nSbbZamy34ljudFvBMwi+53UbDnli2X3O6Vko5235cgu+37P5oRNjX9BTnnYpkZ/WsKmykYpm3baJ8X7crDM/C7CeoGFdi5iUyz/eiq/0Z8tbKrGLetJdxw7TJIuahyG9CuIXrUxNTbhNvaqhO6Tgl+tLdxIebi2sJHy8JkFz8Xw+QqfzY5rCy3Kw0dH3P/hk2Q+C17tucS1hTqVdVv7fpfPFmbtvQmEpeyb5fyGUKw/xafwvJ9p0lHOZELOekc5iHVR+1fN2fgdyrLrBsifmhuOdClnRMhhLIvJMeGYiPf1Gv310K5vm5yNqd5tHYF72xJl5faMWFZn1j4w9vXi2ZvhN0iXkvKyVMzF8vHj7BOFLur9xLw6RTkTQk5ZvRy/1moq8jbJbTmqZQI3o398n7f21QQtYh+ppnc05SzuUs5iIafXS52LSU4L+HC6s4emO6kl5Zj41R2j/zhMd+6n6U4qlLbgb5OX2nJh/HnbGPJC74MQevn7f6NUZiwn64iYdSE3phtydHgHDVUqhkY5VDGscdInXttQY4j+Lil3g/JZS9z1oA7qAf8I5akH/LxcEq95wyJO31ZRnvo4N79GEq95G7Z6BQTbnaUa/Y22jX62o8Bmg/Ewt04mKQ/bD2/TTm3YPNI717rdsKl2ruVtfiz+YBxbAlsFUfFeFubWeAaa4T2eFIwQX5ltNia306fjeTCIZVqdw8dRiu+pLcurCGuV4DPdawl+xEA+9piM7udtR+Eob/Q/BVH+rJwP8RXtaUz3oj2N0b8/0dOsAh5VLm7NvHUbfeumHPm/AT3xzw1p+UHI5/JhZBzM0XcV6WD0vyAWMGpEw/qoe2gD5M37G2l5e53a+oS+uI7o13YoO9e/0X+kwEgDdUht2mQdmGYoR4dfEzp096VhjnJcS1wTowInL5k1osea97J1uHWwHPtbeUC3Xxpu5MgcCDqN5ugWQtevyhXumw2/EbTntUKhlHH0NHlcPp6GqxdTmiIvr5V2ktPlrvK8TlsFC+YPxJuJezF9byqUzaZTqzwtuJc3lceOEDH4RAmj/0Ri9V/thMCOpchTbhyu89QDh/n8dEutwPTwjV15wgOWZwHgxn+bIC/1lNfoOz11a7Wv1SkJvDqFU2NeMW9BHk7R95R8WslPzI3+swl/2RLyyxhT2RNIWu3ro3kCye72L59A8kWwwxE4geTC+RNI5p5A8jeJp1+eJ5C0hO6qvWGbWp7YTVLkiTzibiJ69bQQ6fOeyP+fHjyR/06fPZE/SieQvPZon0DSal/34gSSFtxL+f8sHyL/x/58kmSelJDJvCgnz/8Nj311UXswp/xf7S5EOy0jTKNfAphbc9oUlivl/53GCKkxErcN1B2f/hs2Y3bp/5co/8fys/+nyhpT2dNgWu1rdarbiZSH8ZdjqxrztuBeyv/Rh/5Xyd3PvAPf6E8o6V/qyWJR/2q1r8vuMNtAeWrsyvWo+pmYeJ5i9KeCHVLjLdOrS38+6idKmU1UPD+JsFT8TO0+U/FT9ZdzTncS8VPNSfgk4BNK6t4Suqv2hm3q84k3AyZJ5gkJmcyL7Tqvv+HdWUb/2kR/ox6fop24vzH6SxLxQMWuVH/Tab7Ob02gXbgvQt1T83Wj67J9HqfaJ5af22eqrDGxbVLze9XfYDzcSHnYNngsU3Sdp9P83t746s6u+/4yA10MW61p1enXaL6/7Z/4mNJ+i3wh5TMf+/Z//cj3nfk2fnQdk9VR3J0Wi/umxgyN4QfQJwuzl175YViNdFN8GenA9AOC3nBHRV49pwymE54ZwzoMi/LhPd7mgfzDOVh5O9PsXp3ob4P4wzvTRoR+KfujTiOUh+usbAclR61LKjvwdgLks3q2pfeKS+ET6POoJ95D/EaYW+YqS++jJC/PLla+igfILMqIH+UhJm/rGBd5hmU73wZzsIy3TvQPtP2R38qNaTvJGBf64j2zT2wTexuzdVePaIrUM+I2w9yysz/i8wbcfvUIxboRyKsJ3svav3WiX7Zihu8AxR6M2Vw/7Jv2a4nHmMaf90CS44vRH4b4wg9FVZ90GWCO5OhQF3JjuiFHh6fbOnTZTuT2K8MaCnP7IO77U6nIo8NqemffKBq/DN/r0WGnU5U4fo1Xkpc9XyQeoD5m66bIMyx7o24wB8t460T/ExS/mlQmlGF5qC/ew/j1/1D8UgeXVY1fqRjfizgZE5/kgLbFuNWpXpUc5De6Ln1smr9ZiT+sM/5F1eQ/z2PPmLA/+SD1JxOQp8bAfOKz0f+P5TN8P0/9CcZj85nxkO9DaktqXkwPIR0j1Nbt0RysvDEwn8pm9L+SGAOrGJZ6O2NUyMty5KsYa2XOwwrintHj+JtP7WkS7ZigHRKyWqFQmjAsfstHxdgu29JiawuLRabl4UkIE5R3HNC/Eeg48TwZdY6+smtyBpfpWB+095IcTOVzNxGtlVnVY5No8RRBttf2HB0MF9+A+f72b51wPwUnMfwBjbHw1Ycy67Rcf5i4/th2nFT9mV6x/v55xfrjUw0wJvPJTtgXYX187ijZS63DWDoa9uK3VTvZy/KsvAOCj1974JMzWqFQepPxL63Gf7e1FyvvVDvQfu/kGyoPjvW4/fG8F9eSmT8mngcZ/Zegn/si1CXzW30OEX9J3zw/I7wQ9LzD8BukS0l5GdvH5HH5eMvicqFLU+SxHy0XcpYLOU2R94gj1oOOWLscsTzLOOWIddAR6wlHLE/bP+uINV+P5bCec8Ty9In9jliHHLE849fjjlietvf0VU/b92v88vRVT/961BHLsx49/cuzDXn612FHrH2OWJ5l7NexnGcZPccT/VqP/TqWe8YRq1/HOVOOWPPjiZdGG/KME556eflXvF7qhBXTk45Ynrb3HAM8CNdoP1uDw2cI/LzXaB9qr+l1uVZ2Ia9FGQZir6iInRFeCHodzvBHhTzTqyHyiuwDvPNvd7xsx+ADf5ARv+nC93iP2PGCXq3pdfma9Xlqj6vJVvtPVlAe7lPFr4ieQvodX1G/IvZD/Kag/yGgK1MXTSGn4Yg1URFrIsyNhdYO1X4Jfkajnot9rx5HZtOhv3HbrPgsc2vRtmn4Xmvkau9Jao18mdClKfJ4jVytxS8Tcpoi7xFHrAcdsXY5Yj3giHXAEWufI9aUI9ajjliePrHfEet+R6zHnbBwzOOh12FHrCccsTzb9rOOWJ6xcMoR66Ajlmc9PueI5ekTU45YXm07Js8yevrEIUesfo0TnnodC2Om+T7t6Nnesz0+5IjlWcZn+lQvz/GEZxmfg+sszMwP1TqazfH5va9/oHU0bJcl5rdn8XzVMBB7eUXsjPBC0HN1w0/tL2uIvCLraLd958K7fueqT63JiN904Xu8jqbWVFLraBXXqc5Q62i8VobraMspD9fRTAe1jlZxTfSMIvZDfLV+/ENAV6Yu1Np9wxFroiKWraOp/lGto/He3cWiPLiOxvvHF47M0Awk1try9lTHtJ3ymom8CYEZZS+DFzowXg22f/EdAd5/v1Tw2d94D30defgwWaNvgm1GST98LwTLifqpfdjYtiZG8ukWJ+iwXlJ7t/mLM7g+yu/hdaqX8TDXv/g9IlzDrYl73F5GRHnVejD3HdiXlYg3zaJ9h+E3wtwyV1nnXULy8uzSZb87nhE/ylNtRK0r89dPLUYN5mAZb53oT2xXrhqrbCcZRcc90R8n27hDOfq2QqF0Xbe25vcKtkKsOIXaDPb//DkTbMupsUBT8PPzAXzfjOP1qNBB9Sf4PuMvjs6mU+O5Im1KlQN9zuLACNxvHyt86c49V9+2456dt1y98+Z7du6pkQZ80gQ/uV1BGqlkWvKh20P0N59a3KS/JwROJ5mjOdghdP1Ua7JotOOnWhU/UJJ8qoXl42g3UU1eKyN+lIeYpo/Z+niRZ1j2tHgwB4tP8DX611K04xE7ylBP0fEeRrvzKJKgvjxaVXZvCtym4GcbsW/H1GV91Yr6o+E3Qlf+n6X8Q9lF+Yfxqnpl+xet1xRWKh4UsZ+Sc4TrebLf67nLWXWrSH2jPmbrlSLPsPhzJ4xlvPy5kRsp7vCOG5ShPiKgPvAT48730ygL9Y10rVAoDSlbl+A/R+0kKsH/8i4/xtTqdOLDLSMzuDjeUCc+xHRl+7dO9D+wfIbvVor5OEsqEie6O2Wj+Elbhu81blAnjKTGDRXjxaIi/SXqwzNktm38p2ZJiMUrrka/l9ovx1yUkRrnxITt9y7yoV6f7PJSkzMq+Lh9VfS/BUXbF4/LK7bn5Lhc2UX5O+82wzy2f1E/fTFi9Xp8dgT8r3B8P1r+1+X4c1GR+kZ91BMinhdaP503LzRe7tffQ/Gdn3qhjKJPCGJ8/7HEvJD7prLzQnXCWqdx0HtHtMyi4yCjH4dx0PsKjINSZUydEKXmRCm/GRG6K9tPUJ5nPGoUlFOkPCk5R7M8qbaAdXB1Qq/lhLWiA9ZVhKWePCofZJ3LnqCL/KmTepd3KWd5QTlHqjzLKA+fHnPsKvsmA/LnvUlj+erX5PC91BsT3GfnxciPU4wchzwVIy9r/9aJ/jvLZvj+MBEjufypsUTFJ/iFxxKG7zWWUH6RGktUXOuZHkt0WuthW68UeYZlH8ksutZj9P+tR2s9n6Kny0eqnYw7ykGs60hOXnv8ArXH4yGvSHs0+i9Ce/yLAu1R2WYkUZ7Lwmw91fw29QVJ1VZSu5OUr6t+nH3dMGKydocfhO1FXDH8RtBtohUKpem4sobk5bUb8VHbC3feu/XMcy/+p8eUb79rD9vUcBehUNCf6QP9zXxRtzrRjAsZMbH/rCA6rne7z/hFdOpE2ylftZuVRFt2XIL8IzlYeafVWv3wie/fbl+o02pV+0x9Ph51Gie+8Rzda6IMw0H3hTcHrR+WeVuizNPjjkSZJzqUmedMWK4J4stbZ62JMgyFuT6AGKnxp9r5xPFrGclvhSIp+0LR+MU7USuueSRPXVSxu7tduNnnM+JHeak3gFeIPI4/gyG9C5T73/H2LhXVr/K4qOh8IraNxhHa/WL10926V/b5TuOd40ZncNG2eaeT5z2z+GMY7yxvYxZpZ9xfqN8QitkP+5NOMT0VU1DPusCMKe8k11a77F3uaJdftODd6wNC/1i+9VSnquypOjX634U6PSFRp9yPY50WGYuq+NRM0Kv4op4JpuYu3c0Bi8dyw1enc1SJ5WoOp2JV2bGo4X4eCoT6dxqLMp8aiy7KkZHX9tivltP9TmNRpVMebdmxKK5T8lwefTHln6pv4hOyK36pqmW64NhRrStwnGyCjp3Gm2wHhc/rzvh1C2Wb6yAf6V/Rjj9xnPmXky9cq7pYnKNfyJGX2kl7pJ7v8c7bEUc5iGW2VXtB4r9WKJT+TD1rLMH/XvXFlRL8J6uT+Uvw/5oax5fg/1XVt5fgf4fav1SC/wa1jlKCf5Pxr6nG/zLjX1uN/8vGv64a/7Yhoi/J/+vGP1mN/13Gv74a/7eNf0M1/ncb/8Zq/M8bP34htUzfYvybqvHXTN9OX8U1fIuLJwB9mbiIshqEVVL3LKU76sdxGL9oy1+mVVgnlcQaEnlV6uTERLkQfzShC+sZ09uArpsyx7TfEWuvI9ZhJyzVN3ej152OejUdsRY5Yi12worpPkese52w4vUyR6zlfYq1xBFrpSPWakesNY5Yax2x1jlhxfROR71aTlgxPeao16QTVkx3O+rl1XfE6/WOWBscsTY6YtX6ECumN7V/xwU2rznVhJxaQk7qeUgNcNSajr03w+sIMbVCkZR13IfxflrDTu0dRZ157+i9sIb9QVrDRn5bj1G25i+H4xvVfNICvlHN69D8lWjT6xcTevGXVMu+Ga70qVM5Vo7N6PIr9PwiI/mtUChtKXIyL9q4xFxlC+pkqUb3EN/rZF7VxpTtrewLhC5NyotpD9BxXk3cG0hgHXLEetIR66Aj1n5HrF2OWFOOWJ72esoRa58j1gFHrClHrH71r0cdsR50xHq8T7E8ffVhRyxP23v610OOWIcdsQ45Ynm2IU/bP+GI9YwjlmcZn3XEepsj1nNOWMbvpVe/jk08Y6HnOMczTnjGrylHLE97WT2Ohtm+G+C6y7naALYH1BPvIX4jzG1HXnM11KHKXC1e854jJUfNCTPi76TXSJhZw2jv37p451v23nr57lsDJT5a7OIcFTcT3bYc1TKBm9E/vr+Z7qmiIXY06QnLZuTE+7Ycsaa9HNGl68ktlIallnl4qaXsktqokMNYuO1JHbBnZebXaFuhULrM+Ier8b9SbTsrwX9Fl1uLru5ya9GlXW4turzI9v+KB3++oWgoNHyv7f/qANbUq1vLhC5qizr7aL98mOIpRyzPjy0dcMSacsTy/ECS56H6jzpieX4ww/PjLp5Ynr76sCOWl+1Vv9YvvjrliNWvHxjxbI9POmJ5tqF+tb3nx4M844RnX9uvHzXytFe/+pfn2MSzHj1tfyzEiWedsOL1iBNWTPc66jXeh1gx3eWoV9MJKyYv28d0fx/qFa+XOGHFdJ8jlpdPxLTXEeseRyxP//LUy8tX+zkWen7U29NXPevRM672q708fXWRE1ZMnm3bM37160eEPT+cOeWI5Tkm95wreK498vje1q7xuRY+v+EjPIz+s/T8qeKHxd7Yww9evjEjvBD0s4RefvDyK41X/+HXfuU9/ykjftOF7/GjUHXsTupYoorHNV7R5x+8vKKI/RC/KehvAroydaGwtlXEUh+ptLZztJ63LoBrPMLNnr3Wif7P2xlFjzMbhXvbEmVNHWeGZeRnjDG1gk7/SMnwzOYLhSyMiUj7FSj3Vydn68rPO+26nlOexaQnY+TZhp/3Y9k3/tffWPi3/+rZ+i//t+d33//tU979h5c+81s//+of+eSp509d/Rc/9vUruOwDCd1VuZbklKuWU64ithkX2Ozz6iOQeC/l8/zBRv7IaUzdHVn3wscjEc/0xHuqL6nYZyaPrFN26bIfHSsae02fXh5Zl7UXo5pEF9N2klHmyLrvjM3WXY1HitQz4qbWYDq92jU4PrssSyCvJnhva/9yzNqxbIav0cZUr1Bx/XC/gf1BTNz/4UeHa4JmLEe/8bZOMaZuWjEbc4zKjOVMxYm6kBvTDTk6LGnr0OWHTeVeqqVBl6ke5o6pY/q+9m8qXpX1Q694oz6Oq+IN02P9XQ00XH/LBP11CfpOH4PnsYaKL4yFsrclZK/sIJuPbVXHlDMWyr4yIXt1B9n8iQf8hJvxdnk80lVdHo90bZfHI23nj7F/t+2I0YYnUey0uUlem3t9+9fsNQg68Zr5IPDVxD2O/cg/CHqgXtdOzOh+akndL8/B3D0+g3kGxbeMytQKhdI1RV5X5XWEViiUVhSJaYjv9bqq2mqstiarLdDG2+tXHDy3s7+jT/U65Ij1tCOWZxn79TVHz9cJPV976ddXx97piPWYI1a/vjI55YjVr68dP+uI1YvX9oq8vlSx7y78+hL33Vk1ecm+G3Wo2nfnrZOiHDVGKKtXD15fWk50nq8vLad7qmiIja8vcRUgnbnfIGG3QqG0pqj7GX4j6CpvhUJp2v3UVEA1Syv7QqFLk/Jiug/oOK8m7g0ksA47Yh1yxHrAEetBR6zH+xRryhHroCPWw45YuxyxHnPE8mxDU45YTzli7XPEesIRy7Nte/qXp16e9eipl2ec8PQJz3p81BHLM95bXD1SS5JlxzSpMqpHAo5DXVNxNdFdl1CNcTP6x/dX0728oa4lNnu85t0LbE42t6pqNnfZqh4QskYFn5XLhuILSfdWKJQOZYRneuI9xG+EuWWuMhRXbqjsog6ZNN6myOO3t8eEnDEhpynyDjpiPeWItc8R64Aj1pQj1n5HrF2OWI85Yh12xJpyxOpXX33CEetBRyxP//LUy7MePfXyjKuePuFZj486Ynna/vE+xfKMEw87YnnZPl4PO2HF5Omr/Tqe8MSaHwPMjwF6GVfnxwDzY4D5McD8GKATlqe9+tVXn3TE8rRXv8aJRxyxPNtQv/Yd/Tr27Vf/8hxHe9ajp+2PhTjxrCPWfU5Y8Xq1I5bX+n28XuOEFdNdjnod54QV072OWPf3oV7e9ehpLz75o198wqse4/WII9a4I1bTCSsmT7+/2wkrXq91woqpX311vj0evTL2o3/FNN8Pzfs95+1xworXnntEPP1rkRNWTPc46uXVb8fkOTbxtFc/tseYnnPE8pyLPuSINeWI5bk+ccARy3M/k6112BvkdhLCn7YHxV3uCTxse+4acDMLs7GHK2JnhBfa/HgP8UeFPNOrIfKKnPB2ym899NOv2nDb9oz4TRe+NwD48d+IoFd7F81WGLNK2OqgOuENP9odE74eNkx5uG/VdFAnvI1U1K+I/RC/Kej5hLeidaGwtlXEshPecFxgbedI7fE9UnJSWOrUN6M3ewwKesSrE/1ftGNS/Pu0FbPlqdfrgrg3QPQxvbn9OyryOFZhvZbw73rRWMXxqGLcnd4b3SB5XD6r11RsVO1jO9B129Z6gdXDfmdB2X6nEbrynSxlFywf1+WI0KVJeTGx/VWfNCLkvFiwsP2n3n8oUq9KDsbDhSRnoaMcjAUNktNwlINY15GcYUc5iGWns/E4IqZWKJRe1eUYadzKOC4yLa8J2OxTOIdkP8D3gbju8IRMHqvi61roz5xq9DfaIery15MzuExnaVzIKTJeTbXBAaG/lQ11xtMPj1+kZeLph+hfOH5F+vPhZK3Vi/LLmLeXti50j4lPEjT6ybYM9YXPEn4oTxI0rC7H2WP8DhQm9n/l4+j/7OPo/+zjWCa0Nyflx1bWKG/j+hlcprOk6pjHxmOiHJY3LsqhYj3PRTA+j1Ee9v3jlIdx8EagQ8yY1NyeTzkcTJQL9RsoICf1uuqAkNPD8fNYkT4G8Y/0+LnLMeVoFub6gpr/crsaEXkcxwZDei7NceyidkP2HJPFGHz+otm692LMovwxr5/ZRv3MQsirCV57WZnnpVugn3k99TOoO9cP+yb2ZTHxvNn4807Z5X7Q6N/Y1inK41N2G1RmLCfriP5TF+WKiftGo7+G+saK/ZfsG3lcocaoXcotfMqV4av1xCrxR7UvNReOdDaObL9if/nuHbdctOOue/fesXMAocNcT+SRJdMjbRB5NbrHdJfS39sEXxDYMf9Ij+o5wuKopuzIBUfg1zdmcJmO9cH6aFIerpQtAtlcryNCjuk/IOhHCStvhFwrIC/Vc3G9ypnen1z/nc99pPnuB/Y98+v7z920ZMeH3v3pb3z145/4xeY3/+wX7v70OaxzCPm9oWdvw/XjgTUmsLqcQSwpGq0MvxG6amPT0Wqc5HH5uOxNoUtT5HEMago5TSFHYS1wwopp+zzWPNY81jzWUcBSMx9edcB+ir9JkDrztOyZs8hvdEUO/aw6pivavxm+16GfaqeFskuX/fdYqj9FTNNH9ado2/jPxoqDOVjGWyf6f0WrAR5+HW32floNUOOgIvWMuM0wt+xWP0fa73EOhasOv7xIy8z7tg+vOhj9Glh1+NeLZuuMeuFqlbIB+lAIukxDoEMI5dtr1OHKyRk5rBePyZTfI/1t7d9m0O0M89RKb6c6+ijVUQ3yVB3x95eMfhDq6HdpZUg9GWF5oYM89qFBQY947EO/DytDtqNC6dfIkZe3UvbDOfL+A8jb2pan/A7jqOFgWVqhUFqi/A7bM/udWgVPHYCo+gNe1YtJ+SLvohkQWGhTXg00/sGg273h1Yn+06LOi/o516vRf6ZgvTrFE1mvaCuuV7VDCemLPA1Ru6nUk586YXX6xgzXa6e2bHjctv5nol6x360Jvbhejf7LBevVrntRr2grrlfVXyN9kV1vqe8CYJ0PUR7GRJaj4jfau0idq28yc51/S9Q5j/05LhTpX3BV2XYgtFeVr96z+56d7WXlQCm1DByv8z5nu1jwhwQW8qTCZ2pD53QXHfRyJYdPo/+/wuSp8BtTDz+dVfnzGwPV5PX801l94KoxXZqjRib4Qwcs+xs/iaGeD/IoMBXdlKnU816kNzx+3jvSHqWqniM1wglhbuRLrQCjPqr845SXes/KaLFHQ3txj2b0i6GsqR7NZPeiR0MbFVmNRnq29yJBr1a7m0SPtk/tUSnaDC28cqhDXjWzUv6SGpml7KP8C+3bpLy8lZQQtF/2YhaM5WFfSNVtTGwb9fV1rG8eteKzdPYTbHtNktNp1JXyBZw5/nLO/gvETc2AhgErtUrAexHOEDHAMEc6lK3IDBDjOO/BwiHGGOXlPb007EB0XfrjmPJHLE+RVRn1dK9oW+X4g37G+9XVKjfP/NDeuL9H9SdF6jH1Dt2A0If3n14Efnbb5Gx5qT2tMd2Wg/m6hO+qMqR8t1Nfbfoo/+T9qPN7rmfboeie61TcUbFP+Tz60vG0qs7fvYjJ6qzi05CNGeGZzngP8RukS0l5WarfwfLxlGNQ6MIz+5j4/Kqy78Zh3mFHrEOOWA84Yj3oiPV4n2JNOWIddMR62BFrlyPWY45Y+xyxPNvjE45YU45YnvY64Ijl6V+ebcgzrnr6hGdc7de27dkepxyxnnLE8myPx4J/PeqI5TkG4M/w4XiZP8NXducI8hd5qqXGuaky9vgzfKbiBqK7LqEa42b0j+9voHs1QYvJqgmnGWwq9dRCmVZN8/Me7OIUHqd6V7V/e/j163dlhBeCnooZfj9//ToL+a9IoZyj8QXTfv3a7gFHrClHrP2OWPNfhn5p+Oqx8GVoz5hzyBHrWLD9o45YnmX0/DK0J5Zn237YEcvL9vF62AkrJk9f7dcxgCdWv/bbnrY/7IjlGaOnHLH61Vfn++2j16fNj8nLYc2PyY+ef82PC4+ef/XjuDAmT3v1q68+6YjlaS/PmONp+0ccsTzbkGff0a8xul/7NM8yeo59PevR0/bHQpx41hHrPkesu5yw4vVqR6zjHLE8nw952muRE1ZM9zti7XXCitdrHbG8fCKmex2xPG3v1ba926NXG4rXa5ywYvJsjy91/4rXI45Y445YTSesmDzb491OWJ6xMCbPGN2vft+vZXyp97WeesU0PzZ58fcdMe1xwvIcT8TkZa947Tkmv8dRL6++NibP8YSnvfqx74jpOUcszzWFhxyxphyxPNeZDjhiee4vzNsyjvt9cY8wH3Fv9F9qv1Pa5Scz393DT5e9OyO80ObHe4jfi09m/sYHrxz71O+cW+iTjzENAH78p16VTR3CWfHV5Of6/JOZzxWxH+I3Bb3nJzOvqohV5JOZvd7Tb225fTpP+Fq7LUc97NX9I62LfYr3+T7QZWX772/3gS5L23//vdDF5HU6osR8VemeOjCWy1X2tZ8BIaeH74cMF433L4b3Q2LaDnScV7bfn8eax8rD6vVnQrnt14APDyJetWSGB/nyjo25pf3LB0V+bckM39r2tTqCDXVUcSAL+h03bveDgIs0/Ikqo9/Q1inWBX+iapDKjOVkHbE+66JcMfH43eg3tXXo8lN18hNVfPwM+hzH+opyC58EebQ+kVfuE1XsiWgVRMV7WZhdesyr0T2mu4T+rvKJqooj+dXmFatFpuXhk7ZBysPVT6xNTjWhP35cs8wnqrA+1lAezj7Wgmyu14aQY/oPCPphwlIzBrN9J3m1kD/y4HpFvpZdnP9vatff9kt/v3vk0kc/fP9n/vQNe8dW7/iddY+///qPvWvdV246zDoHoTPXo0dvc6Q+d2W2wTN9S/j8RNFoZfiN0FUbm45WoySPy8dlHxO6NEUevx1e9kA5xFruiHW8I9YqR6wJJ6yYts9jzWMdw1hqhsGrftgf7Gj/qtWPGulXduUG+Y2uyGGEFeP6SNF+hD/M2u1hhGoVOnUY4ajQpUl5MbF/qP5qVMiZx5rHOlpYnp9FbYa58cDa1ZGOVzjHxFWZZ5ZomXmfzeFVGaP/LKzKPLdkts6oF66cKhvwUylVpi4Pix6J86Qyn1JSfoX0O9u/7FdYduULRT+z9h6qoxrkqToyffh7Hx+DOvp/aeUMV/N5F0xNlF/JYx8aFPSIxz70Plg5S33CazBHXt5K4mU58j4A8o7AJ7wmlN9he+728LTU0+ROvsifBEIb83xwQMhBexf5JJCyL6/0/orwBx4Dsm/k6afs5vxJoOEcNRYJ/pDAQp5UkXBhssgngXB5iE1u9L8hTJ6qspjmPwn0ovsk0CU5amSCP3TAsr87fRKIe5WUiZWpLFrl9Sr8bN3o/1C4dJGIGcLcyJJacUN9VPlHKQ/5BnPk5H3kjns0o//jgj2a02c3ZI+GNuIeTa0QqBG60Xf6rAM3tdQnOdDGeV9vQznYDIt+EohHaspfaonypuyj/AvrjT/BombpyhfsXi9G1UfyEyw8G2pCHvsJtj3+uHSn0J/yBRyJPpPzvBtx0Rf4+fNCwFKxiT+rYvR/I2KAYTY6lI1trva9YRzn/UU4xBimPKx/fFpk2IzZpT8OK3/E8rM/psoaU5HRNu9ljUn53ELKU0/2ivpN6nMquMfC9l+otpm1f224tpjK0QqF0uqM8ExnvIf4jTC3DVYZri0meXmxxMq+TujSpLyY+L3XdULOOiFHYR12xDrkiPWAI9aDjliP9ynWlCPWQUeshx2xdjliPeaI5dmGphyxnnLE2ueI9YQjlmfb9vQvzzbkGVePBds/6ojlGaP5cxc4nuHPXaixw+KEHORfXAArNadRZezx5y5MxVVEd11CNcbN6B/fX0X3aoIWk/qqZZGlg9TmAvXK0pH6emYPh9jvyAjP9MR7iH+0htiqmagmxNOdJUKOahJNkXfQEespR6x9jlgHHLGmHLH2O2LtcsR6zBHrsCPWlCNWv/rqE45YDzpiefqXZ8w55Ih1LNj+UUcszzI+3qdYnm37YUcsL9vH62EnrJg8fbVfxwCeWPP99ny//WLpO+b77fl+e77ffmnavl999UlHLE97ecYcT9s/4ojl2YY8++1+jdH9Op7wLKPn2NezHj1tfyzEiWcdse5zworXqx2xvNbJ4/UaJ6yY7nLU6zgnrJjudcS63xFrrxNWvF7riPVSt328HnHEGnfEajphxeTpq3c7YXn6akyebahf/b5fy/hSj4WeesU033e8+PuOmPY4YcVrzz0PXvaK14ucsGK6x1Evr742Js/xhKe9+rHviOk5RyzPOd9DjlhTjlie6wAHHLE89+fYmgIfY3xT+6LL4x8f5cP3DAOxKx6y82hGeKHNj/cQf1TIM73UQW5Fjo3/evOaj93xrZ/9Vxnxmy58bwDwMR4ivdqLZ7bC+UUJW02p17NMtjo2nl8zxD2YpoM6Nn68on5F7If4TUF/E9CVqQuFdXVFLDs2Xn2aYDzMbUvsD+q1vkZC5wEhh4+Nv6XdltXx6EdKFzs2/vY+0MWOjb/zKOrSw89pFD58jGNfxRg/va+46GuXqTis2uJ2oOu2Xc9jzWMdCazUuKdI+1RyVJ/CrwrHhAdOPbt0hgf58g5Y4gOnjP4Ny2b4fqSNqY7G4D17HFOyMPsoBe5njR+PakcaPqrd6H8cYjkf1T5MZcZyso5Yn+ozOjHxUe1G/y9ozFzxEGJ5VDsfOaJeT0/F4dTnclT9dVmG0oeH8wFquKbFB1LjK98LKa8FeRnlTULecspbD3nHU94GyFtFeRshb4LyToC8GuWdCHl8iDymGv2NdRLLvub4GVymCyQTfYYPR8e+eC3l9eATMFuKxEDE7/dPwHh9ijGmKUesxx2xHnDEOuSI9ZQjluenBQ/3qV6enync5Yj1rCPW2xyx+vXznAcdsTzb4xOOWJ5+7xkL+/Uzq4cdsTx94lFHLE/b7+tTvR5zxPL0iSlHLM9+27Me+zV+efqXZ3vs1xjtieXpXw87YpntbV1AfZgqozyUM5iQg/yDOXzxGte/eN5kNDF1uaZQ+ARh/jjTwmrykh9nUvVT9uNMfFRs0blpWb0cj5wxFTcT3bYc1TKBm9E/vr+Z7tUELWKrUyl5SazsF3GRP/Xl3eEu5QwLOZ2+ITC5TMtU3xDA5slnsp8IS7ob4dpOfh4OLz3bFrFZTLvbv2yz09u2ic2MT2RdAHooTF7qVmE/9YX5VHNXtkydkqxkoy25PY+V1LXTac8LSVfUb7ykrlceYV0XCF2HQlddTenl8ozycLmcl7ZxuZyXtluQx0vbk5DHS/DrIY+XtjdAHj+mwuXyUcrD5XKOhbhczt/DOQnyhuCak1pKt/qKv29tzeAyHV7nxSJs66mTpTH2cCxXWwtQ77xtKRjHEINPljb6qxJxbKxD2cq2H97+orbzqG0X1mbV1iWje7GfdG5lahI92kn1Z3zSeSe/SZ0sjY+E+XGx2lqo/NzolwNWjTDitW0vrBP9zoQ/rhA6pL40cLygXwE0ps846YC844LPtlMpfzS6Lv1xXPkjlof9cSXk1QQ922aVoF8JNDyGwm+rLqe8ZZDH/QrKXQK6D47PplsE+mQ5v6Yr32NdEWs76bPYUQ5i3UBysL3jmH0/xfllkFcLc9u+2Z238v04jNMfpi+0IP9i4re8d0A7+4H1+fxmy3H6W8VzPP6SX8tT5UT6pTnlPAx67px84Vq1O9Ory3bXVO1uGRBwu1sOeTVBz+1OtVOMO3ysJrbJJmGpPgV9kmOy2Wgw6DowvDrR/wjUQeqbXctI95GSuhcdNxlvrIv3t51hPMyNRStI5jIhU9VVM+THfMZSczyOl1iPNSFb0ZtP1EM6PnP/+ZNQVzeu15ghR4dmjs6DOfTLSQejf5/wl1QcUP0ux4GfBUzbolsUcyIH8+cSYw3VTnH8we16taDH+jJ9lJ+upjzUnfvFlSCfacdJPuahn7PckNCX+9RO+nJ/Y3kfhf7qI+3rIcIrGatrqbo6QehbtK6aifIxlvHVw1x/TLURtMe/XaYxF5TE/C3Rp6uxyo2A/9Gc8UhMPB6JieMyxgxsh/tpTIL6LyL9rZ/496I9qr7esLrr67MvqL4eH2EU6etTr/So+Qr6Uqq/4fkgtj8eW6ltykX7Ulw3WD/aubyIe3vQ5c2Lw1zvRv9fEnFYzeFSNk/Ng1QcRpuvpDwVP5U/Gl0v/NFzztcp7rE/YqxbQXlqzlfUb1L+iOsGx9HY7nihz7gox3jFchu9ra8O5tAbXp3ov5oY96wVOqT8WH1FYq3QeZx0QF6Wje0SbXIZlcfony8Yj61eevHlSbQb+3/KRjGxTVuCHm1lNmkSPdpXxeq1lIf+t5J0UPGsaNsw3miHL4zMxh0viJsJLLUeybF6Wu92Ay06Zk75eKd2yWvC2P55DIp8VjfKV42uF76K5WFfXQN5qg2ybVS8wDbOsRpjw/GUh75qMpV/jYPuHyf/6tXYx+oPX3Xh2K7mcim9lgu9moJ/eULOeJdyxoWcUcGX5fyaHL7HcpTOamzD5VH1s6JgeVZQeVY4lkfp3GlNdf3yGZ682Ia83N8Z/auXz/Cd0L5Wa6LsN0V9l18vWwE2UDH7Sih/CL0Yc4YFR3vMyeNKHHMWWTNE38O+02gC6dgLe2F7Znul4mBMReYv2CbMBmp9eILy0N+Wkxyv9df3jnTWfyLkl7fsWkzRMQDGXMMO4aU1BmBfSI0BUmtYakyq4iXXMcZXrBd+ZmX0lyfGjsoPUn6TsiXqo3xjDeWpeeWRnuf0i9+spDw1dizqN6m1Quyjrf9OjXPtWtU10tdycFYTDvvdMNxHPh5vYl0MhHy/47oYzKE3PJ573wxtJbWWoDB5zrmugw5rSQejv1XokLJ/TKPiXtb+HSL8ku2mnhGe6YP3EL8RtH+0QqGUsf1MnvKDmNReOuNVawrcnlpCTkvIUVgjjlg4tuyivlpsD0xqbyG/ir4e6K+mvA2QdwNgcKrR31ie6Nc71s/gMh3rivU1CfjsY2sF71qBfbTaw9pq8pLtQa27lW0PvK+1JeS0hJyXanvg4xf6rT1gfZneykYxtUKxVKS9tOB+CftPFm0vrfa1V3tpkby89mLlm6wmrxXXbIfD3FiFazctuEY560iHbuuP9xYgdgvuH4n6q7i/IFl/avztWX/YtsrUn3oexOsoaj6hxjNqLzL30WqcV6SelByls1pjxLW/n6O1v3WQp9aIeO3P6H8d1v4+RGt/OAfiuSP6Fr7jwGU2ui7njjU1d8Q64Lljai4YU9Xnjs0wN07wWh6uP3HfrtbFiq4/4T6DW0a0/hngrhK83LaRfp3Qw+jbpp91LBnSGG+d6H8L5lJ8LJny2RZg8nqK0f92Yj3F5IYQCj0bXS/oMb602tfjYa6d11Me8mG8MOwQ5o4ZrHyWV6ZfUG0Cy8NtAsdKNUHPttko6DcADfs9vtvEz+K5fcV0mcBK6bq6C11b7WtVVxsJy2jRL7E87JdG/ynhl6r+zea9qP8WEBSpf6Qva1Oe06AdJykP42CL5KjYm/d8g30FY8jPUf/l+ZkC5Dc6q39bK/sLqH/eqzsBeqq4f1kO5pcSsU6VQR03a/THhfwyoz7q+d5xCT5crx4Sslp28Y/pZHj2TsRCIctw+bj2r4OdvjqpdclYnw5pNMy1c0blXAr3y4x5M8ILQY/pDb8R5tqiyph+KcnL83sr37Jq8tbhmB79CMf0aDuUY/Wl3l3CMfDf0RhYtbHUex5G/10YA//fHMwQyo/XUJ8PNmbjptpiCHPbrqo39Gsrp2q7SykP+cYoD+uE35lX7xsgPe+dMvrBdtzq9C6T6dXlftJv9Ppdpk57fMwm6lkSP1dR/oV1zeNws9Fg0HXA73wY/QTUAb/LhO/S8rtMoyV1V+9hcTvmtsHtWO3rbgjcjPRHv0QM269dJ/qVYBPuWzvtKyz7nrPpMx7m2pyf9SMfnhFg2IHoevFcFsvD7QXfzVHPP9k2yk/U+5Rqr9oY5aE/8loJjtFwf/8j7Qw+Zjj+FvnEyap/t/OPXvPZr36Wj6UOUNbhLvCfOLM+8c7vv2Jbr/D/aOHXvvWJf3/rc73C/+LQGy8Z+NdPr+sV/j/71hvOfnTFhr/phB/9+E1tIeYT2I6Nr8tPyRQ+hsvwG2Fuu64ydkvFmO8p1v6Nvm+xtn3c1eW7d9xy0Y677t17x06MYhyJ2CqIiveyMLv0mFejexn9PUB82wRfENgx32pugu63QqG0WI0oLfFoH21jeThywtrkpJ42mc7RS68HL2U61gfrYwnlYRTlGZrqYYLQf0DQLyKspuAz23eSp3rDMcJI9eSqx+OefDv05JtXzC7nGJUb/e8m0nGA9ArEy749JnBHc+TG1OVHoiaKRh7DbwRt71YolLLUaEid+lIu8vA4waQsIlSjQVpM6K0hh07V6GWCj5PxjeZgxjQU5npqCSsPF61Vu9cgXarWao3kcfnYo1Pn9qCHbAe6PO9R/dY81jxWGSzrBYz24Xbkj73H3e3r8aBjDV4PCF0GErogP7cRPOeTz8ZZIMpgeYOJvIWJvKFEXiORx2dLYh7Ona+jvFGBGcv12RWz6TgWq98Q5sa5mIrMrbH3sRGkmj/zHoBFHbCuJCx1JpBhTXTAupqwkJ/XUhZ3wLqKsJB/MWEt6YC1g7CQ33jN12uCr8i6OI6US/RNhT/dZ/he6+JF12Ot7EuFLk3Ki4njnlrHXSrkzGPNYx0tLJ7tGr76NTl8j+VgPOBZLPa1s/Y45TzvzHuGurP9Wyf62vEzfB+icYF6tqiek2R0reLFcYnyq9jVaztzv545ysG860imOksHY6nVk3rmtIz41HMVi/H8rAbpESPvOSPO6/J88DcLnOM1IHTkZ2BfhrHpRxNjU/ZB9M+M8jIqC9Ip/8Q620n0pvegoEc8fu7+cfFcKSN+tBXqxXsejP4PE89lVHxLnT+rfFH13cqmfPadOhcYy8PPpZRN1bNXtukfJ57V1QS/mnvcSHnqzG6ee2Rh7jMVPM97EeXhWdP86Udc619MeTj34HEVvr/A/QQ/jw5h9tyjTnb4fPv+UNDtpRWKJfU50rzYirZWtufzwNFf+Yxx9SkTnl9hHak6G6E8fEY4RHlYn2br4VAs9sXE/a/Rfy3RnlW8Tu2DKHu+hjoXU51RwHGA9yPitTpnAfW6pf3L5yx8s+A+CKczDoaP9lnKvD8U9yPnnSuKWGoPIPvNoKBHPD6P8buJ2Iqxmd8jz0rqXnSPELap30yMTbl/X5qQybwoZzCUG7cMtQ2h+nc1Hke9uH83+hHA3JozvsJypfr3Tme78t4ntAufZ6LGBap9Gl0vzt4/kvuUUmfQ8DoQtg32/6Jn5Cv/Rx+y+V7VfQL/z++duu1vrvzrtVX2CeC6pvHZuKHi07PfRv0tqbUsw2+QLiXlTa9lqXEqlo/3eFZ8GvnRjPhRnnra2+W+i5rVldofZLrYWHMwRxfeH2f0W+Ez4vG+WqttUl5MvP6i1pfx3sBRwlJr1WhHPNvmJLKFepJdxLeVjurTcKk2WFUOYtl8Xvl7/NcKhdKZam8cxwr0mxK+/eaiscLwG6GrtpSlfEzt5VNtz3h5315MdwFdJ/9DOQrriT7FetAR61FHrMccsTztNeWIddAR62FHrF2OWJ5lPNSnej3giOXZHj3rcb8j1pQj1uOOWJ716OmrTzliefrXYUesdzpiefp9v8YczzI+64j1Nkes5xyxPO3lOTbx9K9+HRd6+n2/juX2OWIdcMQ6FsZy/er3nmOT+T6tHFa/juX6NRZ6juU8Y6FnPXraq1/HX3c6YvXr+OshRyzPtu3Zhjzt5dkPebahfrW9Z/zyXJfr17UhT//yHPv26xjT0/ZefUe8HnfCisn6jvEcbLwu+x5VJnRWz0nx+T0/Ew2A0+Ub2YXPcjb8BulSUl6Wqh/1bDV1dklT5HFdqfd6Fgs5CqvuiDVIWMpv1HO/svYaAZz2G8AX73zL3lsv331roFSnvy/OUfFaors6R7WawM3oH9+/lu7VBC1iqybZyNE7hGJNEvnHE3J60fT5b/v0buq1wh48/r65aBh4sTz+vhfouu0OnnHE8lx+9RxS9etU1bOMno8BPYdBnj7Rr8sX73DEOhZ8Yn65+ujZ3tNenss9nmX0nKr26+M2z+ULT79/xBGrH6fjMXn6xPz466URoz372vsdsY6FWNivj0Pe7oj1pCNWvy6ZevZp80vM5bCOhUfDnm2oX7cVzfcdL42+Y/5R+tHzifk1haNXRs/t5v06H/K0/ZQjVr+uF3qOc+bjxNEbT8zHiaNn+ylHLM84UWT8pT7PUvXYU8S6krCQn4+VQqys/WvPpSseD1rLCM/0xHuI3yBdSsqbfi6tjtRQWz3UhwlSR3fwEbZljzFErAnS4VjeHqQ+h9cUeXykS9nPECLWoCMWHyGGx1FzXeLxYiVsW/izKYbfCHPLWaUuF5I8Lh/X5YTQRcXFm4gP5Tj5/6uq+n/FOkr6P5aviv/HtAfouvHZmPY5Yk05Yh1wxHrQEWu/I9YuR6wnHLEOOWJ5lvEBRyzPMj7qiPWYI9aTjlie/uXZHj39yzMWeup10BHL0++PBZ94xBHL078ed8TyLKOn7R9yxPL0+8OOWPNx4qURJzzL+E5HLM/xRL/a/llHrPk2VA7rfkes+TZ09Gw/5YjlOUe2dXO1BhT/tUKh9EAPP7d1eUZ4Iej1pRfL57b2Ah3n1cS9gQTWIUesJxyxHnTE2uWI9Ygj1j5HrMcdsTzt5VlGL71UnOoXXz3siOXZtj194qAj1nz8mo9fvSyjp+0fcMTy9PsnHbE823a/tkfPGN2vfa1nPe53xDoW+qFjoYyeennG1X7tt+/oU7087fWMI9aUI5bn2KRf+7T59nj0ytiv/faxME/z9Im3O2L1q98/5ojVr2sdTzli9SJGp/aJZ5SHclJ74dXRf0rOoi7lLCooZ7BLOYNCDv9t58DhWXrb27+pz9bb84ilcL/E84GxjPBC0M8jDL9BupSUl6V8T+2Dt/ItqyZvNCN+lKc+W2q2Xi7yDMs+2zmYg2W8daJftvqF3ybRxbSdZKhPj+I9s0/0m4k2LvtCTK1QKJ2lPofKPoY2KVEH40V9zPAboas6z1I2VJ9vtbKvELo0RV6eP6CcFUJOU+Rtn8eax5rHcsEqEP8G/tOSG/cO/swNN5960tgl31ix+Ecffc3vPXPgNSdt4bhvuiEuxoAS8ajwO1WG3whdxdssZVPVh/Cn6pG3SXkx3QR0nFcT9wZysFQsrYoV0w3t3y76wTrXdQne2pDQqVWINTSNd2V53rONd1X7Rkl/WWj8q4vLnv5CsfGuEbxLtoZPr/v82W/fvOyc3dvvO/j5N/3Cw8e97+S/bK74+t5X3/d/PrvbeNcK3pxkzWbaZ0cg87r2bxwTXd4ujPnVOsirEW+8Nr+qE/1HV8/wbV89Wza2Z44VA3C/RF1sKRorDL9BulSNFQMkj8vHsaImdGlSXkz8/llNyKkJOQrrkCPWk45YBx2x9jti7XLEesoRa58j1gFHrClHrH6tR09f9WyPnno94Ij1oCPW445Ynj7xkCOWp08cdsTytJdn/PLU6wlHLM969NSrX/sOz3r0tL1n2/Ys47OOWG9zxHrOEetY6Lc923Yv+lp7noPzsTHKq0HeKOXhJ6EGSL+60K+e0A/56zl8XA6bby2Ae1n71+aaFc9rKXw+jOE3SJeS8qbnmoMkj8vHc82FQpemyOPPd6n6yYScsno5fnLL8jcT3bYc1TKBm9E/vr+Z7ilTIPY45SvXZ5fJM20zhz+m0YScUcFnrjkMOq6HfP4s2Hqh4/qEjshvdEpO1qWcTMhhLLVMFdPu9m+d6P+gvTQVm8PWFbMxNwj9Us1go6DfADSmj7KN8Y4K2VnOr8kJIe1DqMMQydnoKGcj0NRJzgmOck4AmjGSc6KjnBOBZhT44t8nQR76memxSehh3c7JcL9EN1D4cYjhN0iXqt3OySSPy8ex5xShS5PyYtoOdJxXE/cGjjDWaJhbfq5LLGsv6tLwG6Er38lSdsHycV1uFro0KS+mHwI6zquJewM5WFYuLyxrp13W12a2BybL2wLYJ1PeqUB/NeWdBnk3AAanGv2N5Yn91471M7hMx7pi/DK9x8NcH8PYkRcLlP80Bb/RWR88/cnQ9jOw2Hf/Az0qWgfYN1AZWpDHbXZS5EX8G9bll7XRZVkboqxKTrNLOU0hh7HqgDUMWFdCPtJPtuugy3Zyq2onHDO3VMQuGjMNX7VL06sh8uoFdKl//H2//Rs//K03ZsRvuvA9HiOeKuibgt5sdRrwl7DVW3C8Eki25eG0bwvl4VTVdIgx5hTS79SK+hWxH+I3RR5uKylTF02Rd6UTFrY3D6yhilgTIeT23yom8dbjsjEJ+VOxb1GXchYJOUe6b+fjvLENoH6cOvXfv16i/0abcv+NduAt2GXHxYNCV7M3j9laoVDawjbFpGw6SHkYE9EOnJS9Tedo76+WsDfa1HTrsj87VY0NWS6W9RTKOx3o30J5Z0Be2TGllSfaaOWGGVymY13RH04jWtPdtuufBPk2PqsT7fbWDM/r1syWhT57DemB9XESyL2sjWHt5Ayg4/iH9quJe6n4Z3RKzqIu5SwqKOfkLuWcXFDOYJdyBoUca1dbIa9EuzrT/OBMkWl5Lwtzy2B5Z0Fe2fhiOpeNL2hT0+1I2+EMyjsL6Dm+nA15ZeML2qhMfMG6QL1R93rQfd01lG/0d8Hc8/Y1+Zh2H19DuiEH8441M+W7Z8PsMmC/xmsEGDNvpLzTgc/0iTr/bCKm8dy9bNtEfvYN5LO66tJfC6+JGX4jzC1zlTWxrSQvzy7cnpC3KfJ4i/aZQs6ZQo7Cqjti8bi5H+ILr4l5xZcdFcfUXvHlKVpXqWjrWa9VBsKab/v91/Z5baKb9rrFEWu+7Rdv+2X7bF6fxvkZrkH/bGKcoWLLtZRv9D8PY5efW5NfnlNB9p+vmY1l+v8ixamK7UrGKZ4/4JyW4xTasybupeKU0am64ThVsXyF45ThN8LcMleJUyp+K7tY2bcKXZoij8coKh5uFXIU1umOWLzGgtgl7HeG6rMsKVuxD2F84zj1MsgrG6esPGXjFMYi1Bt1LxpHjP4PqO1XtLVs+4al1ia57Zddm0R+XhtDPm77Fdti4bZv+I0wt8xV2r6Kicouaq5ovE2Rx2OU04Wc04UchbXFEYvbfsVnTKepfsCSshX7EMYMbvsYx8q2fStP2baPNj6d8tTzAOzv1Zo7t4uKdi58TIXhq2evVdqFepaqnoXF/Vm2Z6y97fTSnXveuPctd9x+8+t3vv3eC++85Y077tlz+447Lrzllnt23nsvKo2CxuA+5mNiGrteIO4jxmkdCmMbW8fD3Mo6jbBO74B1JWEhP3fiZ3TAupqwkJ8nivb3gjBXTxsgDxTA4Qao9LqK9MIBH3ecZ3bA2kFYyH8mYb2sA9ZbCAv5kRf/XhDm6sn2SuHEf2cn9IrXq0gvXAQ/m7DOSWDFdDNhIf85hPXyDli3EBbyIy/+vSDM1ZPtlcKJ/87toNdO0uvlwH8uYb2iA9ZbCQv5X0FYr+yAdSthIT/y4t8Lwlw92V4pnPjvVR30uo30eiXwv4ry0C+PIzllN1Mgf97GIMtXvyaH76U2bRxHcl7lKAexrgO+mPdq4MfYqhYkTIZ1/ufB/V4Mig2/QbqUlDfd+Z9H8rh8PCg+X+jSFHnYr2IeyjlfyFFYpzlivZrKgxMAPL9jcu1smedBnpo8WP9dJ/pzWzN8G9uY42Gur7yqQBnPE/KM/jXtvwcFPeLVif7ktk5xEH1aeybTFDqdn6ML96fsJ0YT0xDJ7lUbMfxGmFv/VdrIa0henr9Z2S8QujRFHo6lMA/lXCDkKKytjljnUXny2si5Tm1ksjXD96o+bCMXOLQRHEONinvcRir6bOE2YvgN0qVqG1F1geXjNvIaoUtT5OH4Oa8tvkbIUVhnO2IVbSPbqY2cBXlF2ojRD7dm+K6iNoI24jai5ivqoZHRW50NCnrEqxP9mwu2kbNzdInXOG5WD7G4jVT02cJtxPAbYa7/VGkjar6H5eM28gqhS1Pk4ZyJ7VgT9wYSWEXmXEWxzqLy5LWRtzq1kW+um+G7vQ/byJ0l24jSvRdzL7W+gGff5tlI+W5T8J9NeVuEnE4+sm+t1ifPR2z+Xif6PwMf2Z/wEd4MjjrzA5eyc+lNQk6RheWK8WdB0Xhn+F4Ly6m1spg43p0jdGmGubFzO9DlxVU19nixYMVrOwsz1Q+WbefNMNePNpGccxzlYHmOxJpRTNeRHF6TVL9F5SAWb1LJi1s/QXHrXMhTccvW9+pE/8cQt/5lG3OIaEq20/NM9/NEplrvOZvycDx8DuVdAHlc9xdCHo5dOKmHflbW2Ifu3TCDy3RcDozt51NeD2Ju4THmfMz1wZqfL8xuSzxfwDw8/5rjWk3cG0hgneWIZc8yuqwvt7gWE29YuADyym5YsPKU3bCgYhe3E6bD/kU9N1R6ZQKH25Plqed/dga3esa4nGSUbfPLhb5F1tHQv0r4UK1omzd8r3U01X5S62jnCl2aIo/XvtRz2XOFHIXF83qcKx/t/vOsavKS/af6ZoGHf+XVwzkJea+oJm/A5Knn3mcJeYvCC+sbXId5z+fVc22sr7w2j7J5b07Z/Q6IxXtzzskpQ14dqPWf1B6FOuX9XXuMHuPwl9fOprF9JX8FNF9tX6uYj2sd/5voeI9KTF3OCwq3PcNvkC5V256qBywf+ubCkPYRrKO8PUtnirKwz27toBP7rJKl6hT3cHGd4kZXXAv9+wTdGYJO5dnYIBAGvxTxD7BW+c4Ns8uIck+Ha8yLSc1vUxtW+WANlLOlSzlbhBw1d+c2VHF/ReE1N8P32uSs9iymNjmfIXRpUl5MPGcr+yJcv2PFa2s2qX0+RepVyVGbvHu9f6qIn1eVo9a72Kc85KgDOLp86a70/JA3ieO6F9flBZDH9r8Q8vhFvtdCHu6d4qTmlfiy3rsKrIl1uVG97+2H+8U4KfvhiwTz9pu9/5GTp/0qvkC01XTeKjItD8d2bD8cp7L9cIzG9sOxJvYbnJSN8PC3MuvW6GNWpvgihvVVMy9ivH7n26/dccftt+zYc/vuO6/aeffenffu4WO6uQfYkqOl/W2W42PE87SOaYDy+Fim7YIO06jgMxlH67XTii09+doplq/qa6cr4ZpbRE3cS70qerIjlvnNkX7t9FTK67fXTtHGPDvEI1pvpLwW8G2mvEnIM/xOR7TiVwswL6aauMd1vVDIVHLagW7OVw3va18MEV3VnjQ1g6t4vN55RWMF14c6KrIh8oock/q3Sy449X+99xvvyYjfdOF7fEzqFkG/UNB3OaJ55SjICGFuzxoTHr2zmfJwRQJHE3xUYsWno68sYj/Ebwp6/upsN8dpn1wRy44jxVUCazvW/tZB3kbKw3bGu5g2CB02JMqzSegwKvi4PeLnDXrRdxt+I3QVW6b77tTnKGLivvtkoUtT5C2Fa8xDOakYjFjrHLFa7esu6+tktgcmtYLJPoT+z303xrWyfbeVp2zfjTbmlcr5dtX7drVJ6KJsxscxbBJy1Gc3FNZJjljmP13W1ya2ByYVg9iH1E5q1eaORrviT4SY7gsEbVvE9NjSaD8IO+X+I42Bkd+OMlCfETqR8tDX11HeRqFTRjJwNwb6/W4qg9F/uC0k2nLnpMYcyMHEOg1hdlu2cgyBXMsr4YO/HfW6cnJGDtosJhzP5bUbpOdxa+pTOWgD1X9xm1XxFz+jZE/wlL1Mx17YC3Vge53UQWe2l7Iv2sFsoOJSi7BaAgttmLKX6dgLe6EObK8TO+jM9lL2xc9UtdrXzTDXlpOE1RJY2B63Eb3xDwp6xKsT/ScgJvDbIxjXuK7XC2yMjRlhYDlGRDlGKQ95I+7lq2fjqjeI1I4To1cnIODuEh574S4H4+1yt0xf7YxWK/RYZk6qbzY7FF2hz0iO4aL9Y2KfOEXoqHbBn10Q1+g77fYZKKA37ghhHzpH6K12+2zJkaN2W8Z0W/uXd/N/BdqyfS5RxVOT3WU8HVfxFG3E8VS1WbU7sGib5Z3l+LYb71RGG5tM5V+4K2pfibf91C40teOGfW8wh97w5uwAE/E65c9qZ3dVf8YydOvPaC9+q87o//HI+vNYr/1ZnYqSehsX3/Q/i/KUP2dhbgwrG19xZ9hbu3zbNeX/VrY8/+e3XadPhWm98Kv8X9lX7Xo1+tRJD538/3zKQ74tOXLy4jn7v9Eva82UNeX/JrsX/o82Yv8veoKJ0V8g6NVJCur0kJT/n09yvPx/e4lTQ16TkMm8WLY8/ze8OtGf2HrhV/n/BUKHVH1cKOgvABr2fyzDhZSHfFty5KD/o73Y/43+1FaYLmvK/y9oX/fC/9FG7P+vhbyaoGd7XyTocfzNp/pcBHl8Khba+EKSo+JgUf/H03bO7fLUnJT/q1NzkD7v1JzzWi/8Kv9XbRB3W5aNRyn/v4Dy1O4ploP+j/Zi/zf6i1thuqwp/zfZvfD/C4CA/f9CyKsJerZ3qr2gTZphbttI+f8FJMfL/yfJ/zOgW0IyMyET7/EaPvMrLNwfdQNc3wj5SP/W1gu/tk6B9i/hB1eMAk8ADMSu6GNXYFkt1ege4o/myIupIfKK7H+47zfXPf1TD28dy4jfdOF77McLBP0SQW+2GiTdW6FQer1q6yZb7X+oUx62V9NB7X9YUFG/IvZD/Kag5532RetiIsz2BfT3WMY3NV64Nv8ZBwz25SbcL1H+gaK+bPgN0qWkvOlnnE2Sx+UzO8S1VPv0YXtH5+W7d9xy0Y677t17x07eUYlnY7NVEBXvYfThPI4eTPc6+nub4AsCO+ZbzU3Q/VYolBabVywWmZaHEXqM8o6DPKxNTmrV1HSOXno9eCnTsT5YH0sobxHkHQeyuV6bQo7pPyDoFxFWU/CZ7TvJqwm+McIYEnwtu/jy0+95pPnhH3lva/Mnvz146bN/ddM3L1tw7mc++eDxv3vgO195/kdZ5yB05nocI1r1a7rzPd5J0HTEmhBYZhv8mGkJn19aNFoZfiN01camo9Viksfl47IvEboUGTUtEXJUr6ywBhyxao5YdUesBU5YMW2fx5rHmseaxyqIZXnY309QHvafO9q/NvPG+MwftR4Q+g0k9EN+7nvUGNf6XYzrJfrB0aL9Ls9qK87ep/vdGsnLs0uXM/qRjPhRnpq1m60XiDzDMt8YDOkZZZ3oP9p64bdJdDGxX6tZPN4z+8R7/7Y1W3e1MlKknhG3GeaW3fKOtN/j/APPGfz9lpaJK5nIu7P9Wyf6107O8H2iNVtnrFd8i8RsoPwktTLS5SroqFoFHQQCHkehzjVBb9+PUW851SkPyzMI5eki/hynYhvW8adbYVZ58APmyq+sPHWi3wx1/Jk2pvJjnI/lxQ0lj9vtoKBHvDrRf771wi8+OVD6jeXIQ3uouMby/qI1Iy+1eo9xOITKfrtU+S3GM/Zb9NFU/Cvi58qX0c+HCEvFLvSDbTm65vUHhlcn+q+3XvhVT4tSfq7q1ei/AZipenWKR7Je0VZF6jW1mt2pXlNvaTYIS/WpWNdF6hX1437e6L/TeuFX1avqo1Qfwn3UPwJmql7Nlr2oV7RVkXpV/X3ReuVVeazXYcJSMRrruki9Ynk4Rhv9cNseql6rxuExwDxacRjHi1yvqs0gPddrKm6rOIx1PkJ5vP6KcsrGaNUvp2K00R8v6pznhBwX8vRTdotltjlp+ynI1Xt237Oz/RgkUEo9tojXi3LUOE7whwQW8qSKhA922OQmazDo5XU2udG3hMnZhKxPkSlyxSZT+EGa4XtNkTsNPXmalGpmqels0am4o6vG9LocNTLBHzpg2d+xZ7BRM1Y3j+pTIwHmxd6n6EjA6M8QrsyYqANGT44oo4Iee0WenWMZRikP+cZy5BQdoRj9y6GsqZ7MZPeiJ0MbcU+GT3XU6gDbO/VkCG3SJHrV/NDGoySnUzPn/UDKT1MzZcRN+ZdqEykfUv6vfC+1KuI0Wh0tO7tUvpCaXXbyBSub8oXUihrrpbpY9FH2hVEhB1fGrLvlUZnxxGTtsR5md9mWsJtG+msmZ+S9GWxv91hevHdLgi7L+VU6oz52ryHoa4LeZA8LesvDdwCxjpAG7YVYDchH+pvbZbc6GQIe428K+bg6EXL0xnsDRD8i6EcEfSznD07OLkPFvVfZcJg9+7bfIvvffuXsLa8cu+7EqQniR127wR/72K9t/7O/u+vETvhqnxbG1LL+ynEAseycnS735A0YP/bvoTh/pmJnRroNVdPtH4vYCfEbQY89WqFQmh5GD5G8vFhv5WtUk/fdOPUaDnP7RqxLtB3KsfpSfeQQ5dUFRuT//Q2zy1Fx+vHdLn3wH9SqAq7oPzI5g4tlx/Gmmubx2Pog9D8HILYarvGbvXBuoJ5y2N9m7wFBy2fI4d9qFYunWlZfgzllHaSyGv2T7fJFeZtWaEy0n5oXMOYzgLmVMLmP6TQ+GhH0uEpn+oyHub4/QnxqBTeIe6p+MqJFHWK6SeiU93dD4OTpMCRwOM4zJstkf4iJx3tqHoVtCvusLpc9Fqi+IJA+/NQX87Bs1wMdpxr9jTpHjF2TM7hMx/qotuTZd9v9BXCf5fK6xyDR8pgfdexmPMzjC7W/3v5emNA/Ixz1BHw06Pamfovqmwl9e7mjIaYfaP922eet6vQU+yOTM7h5fZ4aM3Cf9+uTM3z/pmCfZ3k8bovpB+Eex3QeByFGTLzcazFyEPCRZojKZPS/BbFrE6wbcQwxrFj2j5I9hyAv1Y/Uif5/gD1/l+yJ9jJ7qv6L28Aw6IK0Md2UY4NPgB6/P5kvC+epeWWMGJ+c1HSoA9IxRtV+TY2vuO0WGV+ptZKhhAyOx3l9t/nGSIf8YVG2IO4NCPqhnPIGIbvRAVftUlDxvUF5mcjj2IPlLbreiHHrI4n2koXZ5Rqmcg0lypUJPm7nqPvChO7Kfhg/qq4hHP7zf/xvT+8//uu9WqM47yfvf2L07A//Uq/wf2HkT177mz85dGOZNRCrZ7Wrhn0L7+PY4wbIR/pvtuujyzWGwOVRcSM1P+O1UNb/6hz9R9e/8Bt962+pXaj5iWozef3vgoK6GP132vKP0HOYulp7x7jG410Vb5G+7NzSbNIMc+Nrkd0MaFMe06jnfmqXCvvDwrY/qF0DKjZbHpad46J6bqDWEq2NRZoNbT26HN8uVOMIS6MhP/6zP2AZLW+YdMI8rEte78ek5pD4TvHG9TO4TGdJxQdur6nnrWq8qNod7pwNoX/anfl+M8ytF/a3oj6cN55T8tAO2FebD+etyWObxjnXSetn8NDu6rl2TBxPjf58iO2ntK/V7m/2BxUnWJcQ0s9mU3N5tfvb6kU9Byiz9oP1i3riPcRvhK7iS8bx1uRxHfFafcVxQp37WJSn6mFR0DZV6/k8V1TrPal5UiqeqPbHbVOtI6g+JDWfM9m4Zl5k3JS3ZyRvPeO10Lauo7alYm2q3tB3mD4V+1BXZfthylNzf7seSchReqk9PSMJvTAmIy/L7lSGon2V0xhxgeqrsE64jSi75D3jjv/GBD3ujeA2gvtxeNdp0b5tmPJUH9+pb7sup4/CcqidzGrLH/Zv1vdVnR++6oR3rlj1B3eP9mr+uaC+6p+3PvxDl5eZf6q4MkC4aAdeb4/pze3fIs+5K/adhb8twX1nt8+5i/adarzOfQGus2wHOs5T68IDRxhLzU24LiuOEwqPg3jPQkXfSe5ZUP2bml/xvBH7H7a/6kdVf/ViwcL2nxofF6lXJUeN6Xv97I6fuS10lINY/EVjXrdWv0XlINYNJKcudIjlf5L6RrUehrx562HvhzHmM+tn05juzwLNT9CaCZa5RFtuqDm5JbX2wX6rxoFq3yf7B45thigPX9fAvRCc1HqK0UV5Rc7TV7asuCepr2xZ1F5W1ohZ5uu36G9WJnyOm2oHKJfbwQfBx3+V2paaH6n2bPc7rcmmnpca75DgK+ETI1y3mFTdsk9g3bJP4GtK7BP4Lgm3L3z9isfGmJS/mB3KtK9fzYmRJoNjJM8f1DNcjL292gNr+qr5Tib0VWspvE67sAPWlYSF/EX2tXQ5LxgsYiPEb4Su+p+sqF2qzAu4LjAP5RQZy6u67Lc5hieWWhOw+ui0d/ZPqL1nkKf2D/KYyOg/DX3Bf6F1N/Q3tY+I/ZdlXknl8n4znNdJ1Vi5zLNqtB2WbUf7l9csPw+xMfV81ek5z6BaO0MbFWmHqbVR1WeoZ3lqrpX3HJLjZBG/4b6pJnTANvBi6JuK9CdVn8kWKRfie/UnnezC/clCoUtT5LEfqzig/FjNZbfPY1XC6qZvqm2YzdOpb9rR/uW+aWjDDN9g+9qrb+L9HS/Wvukt7V/umxa17XWE+qaFL/a+qVNfUwN7zj+HSKb55xBhbvm5LuefQ7yQ5p9D6F+Tw/fmn0P4yKnyHOIiGtd0eg7BfbPR3wjjmtdtmE1jum8Dmqvb1/PPIWYS2qHMOinbcv45xFw6Lgf6m+dziB3g47upbc0/h5id92J5DrE7J0aaDI6RRZ9DWOytus/oRwabh/9k4OaPVXnPZQHJsmusQ7yP/S6/52L0+ykOVRyfyfdccK8e619mvVGNVyypNZ2M8tQ7LWp8WKM81W6L+qyVNer1mQI+W2RvrjplNrVv90jszY3pRtIZ5568JhETr1Nmolzd7OV78D/c84HvTvz8l/rlXbIfpzZWcc511N4l+/+gf3wPrX8d6XfJ3ltwPWn+XbL8dsf+UPZdsp+HOjia75J9nNrVsfouWZn+Zf5dsrn1cjTfJTMfHob7Vc9aywA3tHlNJ2xDON4PYfYaBJ9/WfHssWkbqjM4ME7xO0pG/6cbZuNwn4n3YsJ6iUmdMVgTctV5lCMlsYYIa2EXWOhvTL+wJNZQAmuQsBoCS/Vbse7+A/hsmfcfP0dzsqrvP34LxiNfoPHI/PuPL6T59x/n338Mofz7j38HbWt84+zyq/FBqt7m33+c/XeqDPPvP87kHc33H83nU/1Clfcfre/7/wG73Og5JXUFAA==",
|
|
6535
|
-
"debug_symbols": "tb3Rjuy6cX/9LufaFyJZVSz6VYIgcBwnMGDYgeN8wIcg7/5vlkQu7tlpjqZ79k3OyvGZWhIl/iRRbOp/fvu3P/3rf//Hv/z5r//+t//67ff/9D+//evf//yXv/z5P/7lL3/74x/+8ee//fXxb//nt6P/n1TKb78vv3v8U377vfZ/6vVPu/5Zr3/69c92/lOO65/p+me+/lmuf1715KonVz256slVT656etXTq55e9fSqp1c9verpVU+venrV06ueXfXsqmdXPbvq2VXPrnp21bOrnl317KpXr3r1qlevevWqV6969apXr3r1qlevevWq51c9v+r5Vc+ven7V86ueX/X8qudXPb/qtateu+q1q1676rWrXnvUq/2fdv2zXv/065+Peun43W/5OAakAY+SqXR41Ey1gwzQATagDvABvbI/IB0D0oA8oAyQATrABtQBPmBUzr1y65AG5AG9snaQATrgUTkH1AE+oF1QjgFpQB5QBsgAHTAql1G5jMq9H+XeLL0jnZAG5AFlgAzQATagDvABo7KOyjoq66iso7KOyjoq66iso7KOyjoq26hso7KNyjYq26jce1juh6B3sRPqAB/QLujd7IQ0IA8oA2TAqFxH5Toq11G5jso+Kvuo7KOyj8o+Kvuo7KOyj8o+Kvuo3EblNiq3UbmNym1UbqNyG5XbqNxG5XZVLscxIA3IA8oAGaADbEAd4ANG5TQqp1E5jcppVE6jchqV06icRuU0KqdROY/KeVTOo3IelXsfLLmDDrABdYAPaBf0PnhCGpAHlAGjchmVy6jc+2DRDj6gXSBX7y6SBuQBZYAM0AE2oA7wAVduFB2VdVTWUbn3wWIdZIAOsAF1gA9oF/Q+eEIakAeMyjYq26jc+2Dph6D3wRP8gnrlYem9SY4OD5f0put954Q0IA8oA2SADrABdYAPGJXbqNxG5TYqt1G5jcptVG6jchuV26jcrspyHAPSgDygDJABOsAG1AE+YFROo3IaldOonEblNCqnUTmNymlUTqNyGpXzqJxH5Twq51E5j8p5VM6jch6V86icR+UyKpdRufcd0Q5lgAzQATagDuiVrUO7oPedE9KAPKAMkAE6wAbUAaNy7zvyuHBI7zsn9MreIQ8oA2SADrABdUC/VUod2gVxcxjQ75ZKhzygDOg3TH174g4xwAbUAT6gXRC3iX2b4z4xIA8oA2SADrABdYAPaBf4qBx3jH2/4pYxoAzodaRDr/Po1NL7l/U97f3L+v/U+9cJZYAM0AE24FHH+nHv/euEdoL2/nVCGpAHlAEyQAfYgDqgV7YO7YLev6x1SAPygDJABuiAfkN7dKgDfEC7oPevE9KAPKAMkAE6YFTu/aumDj6gV370Ju3964Q0IA/olft+9f51gg6wAXWAD+iVH4dbe/86IQ3IA8oAGaADbEAd4ANG5d6/qndIA/KAXlk6yAC9oPedE/pf9ZbvPcX7nvae4qWDDagDfEC7oPeUE9KAPKAMkAGjch2V66jcO4j37ekd5IQ0IA8oA3rBvoP9InWCDagDfEC7oHci73vaO9EJeUAZIAN0gA2oA3xAO8GOY8Cjcjs65AFlwKNySx10gA14VG6lw6Nykw6Pyu1x/ljvRCekAXlAGSADep2+Gb3LnNAu6F3mhDQgX9DP8HTkTmVSf7o6+ib1Uzod2skntUFyTEqT8iCNf9e3TPOkMkkm6SSbVCf5pDbIjknTYdNh02HTYdNh02FR79GHrMbfeqf+t/052fpZe5FO6n+b+jHrJ+5FPqkN6ifxRWlS1Out6/G3vXU9/rZvi7dB7ZgUf9tbsp+oF5VJMkkn2aRw9H1rPikcj72sMSpwUpoU9Vqn/rf56OST4m8f52aN5/6cOqVJeVKZ1Ovl3Ekn2aRwlE4+qQ3K05GnI09Hno4YBThJr3au2SbVST5pHKNajknlOjK12HVkapz3/SjU4pPGMapx3vd2rpIm5UllkkzSSXYdjyp1ko+jIPMY6TxG0WfiyET/iOOh8xhF/4gjE/0jWsNm+9lsP5vtF/0jjoLNY2TzGEX/iKNg8xjZPEY2HXU66nTU6ajzGMVZ3B+VapzFJ5VJsQW9DeIsPskm1Uk+qV3kcRaflCblSd1RUieZpJNsUp3kk7qjP1N6nO0npUl5Ujisk0zSSeHo2xJn+0k+KRyP4+txtp+UJuVJ4Wider3+SOdxZp/kk9qgOLP704H325jHWG6nXk+kU5kkk3RSOPq+RQ84ySe1QdED+m29x3kvffvivNe+BXHea9+COO81/sIm1Uk+qQ2K8/6kNKk7+p25R184KRx9C+L6cZJNqpN8UhsU/eOkNClPKpOmw6bDpsOmw6bDpqNOR52OOh11Oup01OmI60x/FvC4zpzkk9qguM6clCblSVGvHxm3SXWST2qD4tpzUpqUJ5VJMmk62nS06WjT0YajHcekNClPKpNkkk6ySXWST5qONB1pOtJ0pOlI05GmI01Hmo40HWk68nTk6cjTkacjT0eejjwdeTrydOTpKNNRpqNMR5mOMh1lOsp0lOko01GmQ6ZDpkOmQ6ZDpkOmQ6ZDpkOmQ6ZDp0OnQ6dDp0OnQ6dDp0OnQ6dDp8Omw6bDpsOmw6bDpsOmw6bDpsOmo05HnY46HXU66nTU6ajTUaejTkedDp8Onw6fDp8On47Zz9vs52328zb7eZv9vM1+3mY/b7Oft9nP2+znbfbzNvt5m/28zX7eop/3oYp0REe/MIHliqcHCqiggRV0sE1MB5jADGJL2BK2hC1hS9gStowtY8vYMraMLWPL2DK2jC1jK9gKtoKtYCvYCraCrWAr2Ao2wSbYBJtgE2yCTbAJNsEm2BSbYlNsik2xKTbFptgUm2IzbIbNsBk2w2bYDJthM2yGrWKr2Cq2iq1iq9gqtoqtYqvYHJtjc2yOzbE5Nsfm2BybY2vYGraGrWFr2Bq2hq1ha9jatKXjABOYwQIKqKCBFXQw4ko6RpZcmMBu6+OZDyyggN3Wh0AfaGAFHWwTI0suDFsLzGABBVTQwAo62CZGllyIrWAr2Aq2gq1gK9gKtoJNsAk2wSbYBJtgiyyxOEKRJRc62CZGllyYwG7rg7sp5p4MFDDmOuRAAyvoEyM1agmkQuTDhQZGhTiwkQ8XtomRDzXOnciHCzNYwLDVQAUNrBMjCWrsfPT5Gi0Zff5CBaN9zz+roINtYvT5CxOYwZjtcQQKqKCBFXSwDTznq1yYwAwWUEAFDaygg9gStoQtYTtnsqTAqJsDK+hgmxi9+8IEZrCAAiqILWPL2DK2gq1gK9gKtoKtYCvYCraCrWATbIJNsAk2wSbYBJtgE2yCTbEpNsWm2BSbYlNsik2xKTbDZtgMm2EzbIbNsBk2w2bYKraKrWKr2Cq2iq1iq9gqtorNsTk2x+bYHJtjc2yOzbE5toatYWvYGraGrWFr2Bq2hq1NWzkOMIEZLKCAChpYQQexJWwJW8KWsCVsCRtZUsiSQpYUsqSQJYUsKWRJIUvKmSUxEfTMkhMNrKCDbeKZJScmMIMFDJsFKmhg2CTQwTbxzJITE5jBAgqooIHYBNuZJf2yWM4sOTGBAkaFGuhgr9CifSMfLkxgBgsoYN/eFk0S+XBhBR0MW4gjHy5MYNhieyMfLhQwbC3QwAo62Gc4Hf1SF7OD8hHbGzPpjjjGMZfuQgUN7LOm+uu+FPOC8hF7EbPqjticmFd3hC1m1l2YwQJ2W4rNiRl2FxpYwW7rb21STBLK/bVNimlCub8NSTFRKPfXNSmmCuX+BiXFZKGBChpYQQfbxJh011+9pJg6NLCM00iSgAoaWEEH55kq+QATmEFsGVvGlrFlbDEjNkebxZzYE2NW7IWxQ9GSMTP2wgIKqKCBFXSwTYxZehdiE2wxV6+/HEox42igggZW0ME2MWbuXZjADGJTbIpNsSk2xRbzaXOccuedQgosoIAKGlhBB9vE807hxARiq9gqtoqtYqvYKraKzbE5Nsfm2BybY3Nsjs2xObaGrWFr2Bq2hq1ha9gatoatTZseB5jADBZQQAUNrKCD2BK2hC1h4/lCE7aELWFL2BK2hC1jy9gytowtY8vYMraMLWPL2Aq2gq1gK9gKtoKtYCvYCraCTbAJNsEm2ASbYBNsgk2wCTbFptgUm2JTbIpNsSk2xabYDJthI0uULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLInZcY+BpkAFDaygg21i/M7nwgRmsIDYKraKrWKr2Co2x+bYHJtjO8c9PVDBsNXACjrYJsZzy4UJzGDYWqCACnZbOQIr6GDY+pbFjLyBCYxR4RZYQAEVNLCCDraJkSUXJjDqlkAFYy9SYAUdbBPjV0MXJjCDvc1K1O2pMVDBsElgBR0MW39YiRl8AxM4R/7PiX0XCqiggRV0sE2M1LgwgbEXGqiggbEXFuhgmxhPKH1G2AMTGG0WJ0E8oVwoYNjiuMUTyoUVdLBNjN/8XZjAbutzx1JMDhwooIIGVnDMFE3ndMB4ML/mA55YQAEVNLCCDo7poY/OfIAJzGBMmTxRQAUNrKCDbeI5I/fEBHLkG0e+ceQbR75x5Ns88jF/8TzcMYFx4DzyMYVxoIDzyMcsxoEVdHAe+ZjJODCB88jHZMaBAipoYAXnkT+nL8aRP+cv5hMLKKCCBlbQwXnkz7mNFyYwg/PIn/MbL1TQwAo6OI/8OcvxwgRG66RABQ2sYD8WEnsRff7E6PMXJnDMQk/nNMcLBVTQwAo62Caes+VPjGMce3H27hMVNLCCDraJcfW/MIEZxFaxVWwVW8VWscXVX6JfxNX/wgRmsIAChi12Pq7+F1bQwTYxrv4XJjCDBRQQWySBRCeLJLjQwW7rv19LMScy9598pZgUOTCDBRRQQQMr6GDYzrUFDjBsFpjBAgoYthZoYAUdbBPjnuDCBGaw2+wIFLDbYspYzJYcWEEH28S4EbAcmMECCqhgKM6VFiroYJsYA5gXJjBs0VAxgHmhgAoaWEEH28SIigsTiC1uD+JNfEyfHKhg2Dywgg52W41WP5cEiJY8FwWI1jmXBTixgAIqaGDU7RRJcVKalCeVSTIoenDcgMb0xoEGxnkX5JPaoOi+J6VJeVJUjG4R/bGe/7advyPPMXPxojTp8df9DjTHDMaLZJJOskl1UkgssE2MbtjnbuSYvDgwg7GZHhgVWmCb2LtWiaU8omf5ubxHBgsooIJ2Nkk+5qIZx1w145jLZhxz3YxjLpwRcw6jEXPMLoxGzDG7MPfHyxyzCy+MLtNfUeaYXTgwtjS2v3eZEq3Se8xFOskm1Uk+KLqFx4ZEB/DYkPgVfrRS/Az/pDqp/3W0bPwSPyh+in9SmpQnlUkhCXWc9xf2pvQ4bnHhvNAnxpnvUSFOc48NiYvhhX07z/+0zoaJa+GFbWJcCy/sZVsczXMljBMLKLPBoyddaCA2x+bYGraGrWFr2Bq2hq1ha9gatjZtMetvYALzdarHpL/z9I1JfwMVNLBOPNe6yIEOtoljxYucxpIXOY01L3Iai17kmI13kU6ySXWST2qDynSU6SjTUaajTEdco/pvQnNMwRtYwdBYYJsYHa5Fe0WHuzCDBRRQQQPDFpsT16gL28S4RvW30zmm4A3MYO88RxyHWCbjQgXtXN4jxwy8i3xSGxR99KQ0KSqmwP7Hx/lv+18fsf39OnRhvxANTGA/ufo77ByT7wYKqKCBYQsKWbR8bRP9ABOYwQIKqKCBFcTm2Bq2hq1h6720xBJQMU9voIIGVtDBbusv13PM0xuYwAyGTQMFVDBsFlhBB8PWz5+YpzcwgRkMmwd2W38ezTFPr/QfIeaYpzewTYwL6IVxPpXAXjfHXvRuX3JszrnaTdjO9W5ONLCCYYvNOde9CTxXvjkxgZFssb2x7E2JzYmFb+L8jsl5JW4kYnJeiWtETM4b2CbKASYwgwUMW2xDXGovDEULdLBN1APsColN1wwWUEAdXTNm5A2soINtYnT4CxOYwbjzijaLVXEurGCvK+d/2yZGEFwYexFHPoLgwtiLaPUIggsVDFucyhEEFzrYJkYSXJjADIYtzrNIggsVNLCCDrZxI3GuWxU3RJkr87V21YkKGlhBB9vAcx2ruIqfK1ldmMECzjuxc0WrCw2soINtYtweX5jADI67+Bzz6Up/3s8xn26gg21i9PkLE5jBOBYeKKCCBs4735hPN7BNjCv+hQnMYAEFVDD2ogW2idHRL4xnlDhC0dEvLGDfiz7QkGPm3MC+FxoHK/r8hQ7G81DvDDFzbmACM1hAARUMWxys6PMXOtgmRp+/MIHRZrHHxpE3jrxx5I0jbxz5ypGvHPnKka8c+cqRrxz5ypGvHPnKka8ceefIO0feOfLOkXeOvHPkY5HH6McxBW5gBX1gTHYrfZwmx2S3gQLGsfBAAysYD1RHYJsYV94+RpJjstvADMaTW2xDXHkvVNDACjrYJkbfvDCBGcSWsWVsGVvGlrHFlbcP2eSYy1YsWicut324JMdctoEVdDC2t5+IMZdtYAIzWMBuq9Fm0QsvNLCCDraJ0QsvTGAGC4hNsSk2xRa9sA/65JjLdmH0wgsTmMEChq0EKmgTo5NdGP9BHIvziffE2Jw45eISemGbGJfQGDiJSWkDMxibE6dyXEIvDFscgLiEXthtMTQRk9JKXLNiUlqJx82YlDYwBgPiyMfN9IUFFFBBAyvoYNj6RsaktBLX7piUVuJyG5PSSjybxvSzEg9jMf1sYAUdbBOj816YwCgmgQZW0ME2MfrmhQmMYv0AxISwEs97MSFsYAYL2Nusxc5H17vQwAo62CZG17swgRksIDbBJtgEm2ATbIpNsSk2xabYFJtiU2yKTbEZNsNm2AybYTNshs2wGTbDVrFVbBVbxVaxVWwVW8VWsVVsjs2xOTbH5tgcm2NzbI7NsTVsDVvD1rA1bA1bw9awNWxt2mJC2MAEZrCAAipoYAUdxJawJWwJW8KWsCVsCVvClrAlbBlbxpaxZWwZW8aWsWVsGVvGVrAVbAVbwUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImdUdEC28QzKk5MYAYLKKCCBlYQW5u2ehxgAjNYQAEVNLCCDmJL2BK2hC1hS9gStoQtYUvYEraMLWPL2DK2jC1jy9gytowtYyvYCraCrWAr2Aq2gq1gK9gKNsEm2ASbYBNsgk2wCTbBJtgUm2JTbIpNsSk2xabYFJtiM2yGzbAZNsNm2AybYTNshq1iq9gqtoqtYqvYKraKrWKr2BybY3Nsjs2xOTbH5tjIkkqWVLKkkiWVLKlkSSVLKllSyZJKllSypJIlTpY4WeJkiZMlTpY4WeJkiZMlTpY4WeJkiZMlTpbEfC+JVw4x30tinDbme0lfbDPHzC7p85FyTLsq8YIupl1dGJ3swodC4nMVsdDcwAIKqKCBFXSwTYwFqi/EptgUm0YFDWwT7QBjG2LnzcAKRoXY+d4ZJN4+xFSqgQnMYAEFVNDACjqIzbE5Nsfm2BybY3Nsjs2xObaGrWFr2Bq2hq1ha9jOpeLjjDoXiz+xDWzngvEnJjCDBRRQQQMr6CC2czn4Ehj/tj8Ut3MBeAtMYAYLKKCCBlbQwTaxYCvYCraCrWAr2Aq2gq1gK9gEm2ATbIJNsAk2wSbYBJtgU2yKTbEpNsWm2BSbYot+HO/qYvbThdGPL0xgBgsooIIGVhCbYavYzj7vgRksYNRtgb1CvC+MpeIk3hfGWnEDM1hAARU0sIIOtokNW8PWsEU/jneWsXDcQAUNrKCD7cISc7AGJjCDBRRQQQPDJoEOtonxMYgLE5jBqKuBUcECo0KLL7ocYAIzWEABFTSwgg5iK9gKtujz/TVuicXhBgqooIF1YvTu/t60xJQsiY9xxJysgQr2Cv1laYlpWQMdbBOjH1+YwAwWUEAFsSm26McShyX68YnRjy8MWw3MYNhij6MfSzRf9GONnY9+fGEFu01DHP34xOjHGmdJ9GMNcfRjjbMk+rGGLa7dFypoYAUdbBOjz1+YwAxic2yOzbE5NscWXVqjSaLz9jdBJeZwicWRj857oYN9I603SczhGpjADBYw6kpgVOjNF6uxSX83U2I1toEZLKCAChpYQQfD1s+HmPs1MIFh88ACCqhg2FpgBR0cN5wlZoENTGDccObAAgqooIEV7Lb+tqTEVLALo0tfmMAMFlBABQ2sIDbBptgUm2JTbIpNsSk2xabYFJthM2yGzbAZNsNm2AybYTNsFVvFVrFVbBVbxVaxVWwVW8Xm2BybY3Nsjs2xOTbH5tgcW8PWsDVsDVvD1rA1bA1bw9amLWaPDUxgBgsooIIGVtBBbAlbwpawJWwJW8KWsCVsCVvClrFlbBlbxpaxZWwZW8aWsWVskSX9JWyJOWUDM1jAOvEMhRyYwJgYoIEV9Ilnly6BGSyggAoaWEEH28SzS5+IzbAZNsNm2AybYTNshq1iq9gqtoqtYqvYKraKrWKr2BybY3Nsjs2xOTbH5tgcm2Nr2Bq2hq1ha9gatoatYWvY2rSV4wATmMECCqiggRV0EFvClrAlbAlbwpawJWwJW8KWsGVsGVvGlrFlbBlbxpaxZWwZW8FWsBVsBVvBVrAVbAVbwVawCTbBJtgEm2ATbIJNsAk2wXbeHlhgAjMYCg9U0MCu6GODJWaPDWwTI0D63I4Ss8cGZrCAAipoYAUdbBMrtoqtYqvYKraKrWKr2Cq2is2xOTbH5tgcm2NzbI7NsTm2hq1ha9gatoatYWvYGraGrU3b+aXHCxOYwQIKqKCBFXQQW8KWsCVsCVvClrAlbAlbwpawZWwZW8aWsWVsGVvGlrFlbBlbwVawFWwFW8FWsBVsBVvBVrAJNsEm2ASbYBNsgk2wCTbBptgUm2JTbIpNsSk2xabYFBtZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKluiZJTmwTTyz5MSwSWAGCxg2C1QwbC2wgg62iWeWnNhtfZJniUl9A7utxfZGlrTYssiSC7utz+EsMalvoIPd1vqTWkzqG5jAsNXAAgqooIEVdLBNjCy5MIHYHJtjc2yOzbFFavRJOyUm6kmL5uv5oEe0Wc+HgQZW0DtG8/V8ODEm6g1MYAZLxxIYNg1U0MAKhs0Du63/bK7ERD2NIbqYqDew2/pv5UpM1NP+erjERL2B3ZaiWM8HzWexOrF3dO2vRUvMuNMc29s7+kAD++bksPXOq/Ht8phFN1BABQ2soINtYu+8AxOITbAJNsEm2ASbYBNsik2xKTbFptgUm2JTbIpNsRk2w2bYDJthM2yGzbAZNsNWsVVsFVvFVrFVbBVbxVaxVWyOzbE5NsfmYYvT0xU0sIIOtontAMPWAjNYQJ0nbfTuCyvo4DzBY27dwARmsIACKmhgBR3ElrAlbAlbwpawJWwJW8KWsCVsGVvGlrFlbBlbxpaxZWwZG1ERc+sGYivYCraCrWAr2Aq2gq1gE2yCTbAJNsEm2ASbYBNsgk2xKTbFptgUm2KLAOmvvkvMrRvoYLfF++OYWzcwgd0Wr5Lr+cX6E7st3jXH3LqBBoatBjrYJkaAXJjADBZQQAUNxFaxVWyOzbE5Nsfm2BybY3Nsjs2xNWwNW8PWsDVsDVvD1rA1bG3aYm7dwARmsIACKmhgBR3ElrAlbAlbwpawJWwJW8KWsCVsGVvGlrFlbBlbxpaxZWwZW8ZWsBVsBVvBVrAVbAVbwVawFWyCTbAJNsEm2ASbYBNsgk2wKTbFptgUm2JTbIpNsSk2xWbYDJthM2yGzbAZNrLEyRInS5wscbLEyRInS5wscbLEyRInS5wscbLEyRInS5wscbLEyRInS5wscbLEyRInS5wscbLEyRInS5wscbLEyRInS5wscbKkkSWNLGlkSSNLGlnSyJJGljSypJEljSxpZEkjSxpZ0siSRpY0sqSRJY0saWRJI0saWdLIkkaWNLKkkSWNLGlkSSNLGlnSyJJGljSypJEljSxpZEkjSxpZ0siSRpY0sqSRJY0saWRJI0saWdLIkkaWNLKkkSWNLGlkSSNLGlnSyJJGljSypJEljSxpZEkjSxpZ0siSRpY0sqSRJY0saWRJI0saWdLIkkaWNLKkkSWNLGlkSSNLGlnSyJJGljSypJEljSxpZEkjSxpZ0siSRpY0sqSRJY0saWRJI0saWdLIkkaWNLKkkSWNLGlkSZtZIsfMEjlmlsgxs0SOmSVyzCyRY2aJHDNL5JhZIsfMEjkObAlbwpawJWwJW8KWsCVsCVvClrFlbBlbxpaxZWwZW8aWsWVsBVvBVrAVbAVbwVawFWwFW8Em2ASbYBNsgk2wCTbBJtgEm2JTbIpNsSk2xabYzizxQAfbxMiSvtqPxLTLgRnstj67VGLa5UAFDey2PtFUYtql9vmeEtMutc/slJh2OTCBGSyggAoaWEEHsUWW9JV2JKZdDsxgAQVU0MAKOtgmNmwNW8MWWdLXIZJYcW+gggZW0ME2MGZrDkxgBgsoYNhqoIEVdLBNjCy5MIEZLKCA2CJL+uxdiZmdA31ipMaFvUJfBkditqb2ibwSszUHVtDBvr19GRyJ2ZoDE5jBAgqooIEVdBCbYBNsgk2wCbbIhz4dWWK25sCwaaCDbWLkg0ajRj5cmMECCqiggRV0sE00bIbNsBk2w2bYIgk0Dmz0+T5JWWIGploc4+jzFwqoYN9eizaLPn+hg21i9PkLu81iG6LPX1hAARU0MGyx6dHnL2wTo89fmMAMFlBABQ3EFn3eoqGizwfGDMyB3danBUrMwBzYbX1tFokZmAO7ra9OJDEDc2C39fk7EjMwB7aJ0ecvTGAGCyigggZiS9gStowtY8vYMraMLWPL2DK2jC1jK9gKtoKtYCvYCraCrWAr2Ao2wSbYBJtgE2yCTbAJNsEW+dBXIJZY629gAjMYtjiNIh8uVNDACjrYJkY+XJjADGIzbIbNsBk2w2bYKraKLVKjTySTmM6pHp0h8uHCXqG/NJaYzjkwgRksoIAKRt2e1TFF8zoAjfaNPn+hgAr2Pfbom9HnL3SwDYwpmqeiHAnMYAEFVNDAOrahnH3+xHnulHSAaW5D9PkLC4iNPl/o84U+X+jzhT5f6PMlzzO15AwWUECd25ANrCA2+nyhzxf6fKHPF/p8oc8X+nw5+3xsQ6ElCy1ZaEmhJaPP9+UPJaZoDoyWjLrR5y9U0MDYtxboYJsYff7CBGawgAJ2W5/IIDFbc+A8wWOKpvbpDRJTNAcmMIOcGtHRL+RgGQfLOFjmIKd95WBVDlblYFUOVuVgVQ5W5USsnIiVUyO6f5+kITEZc2ABe90W7RDdv8WWxe3BhRV0sE2M24MLE5jBAkbdODUiFC50sA2MaZfaF/CSmHY5MIMFjJuyFqiggRV0sE2MULgwgXGb74EKGhh7caKDj7rWp3lITLAcmMDcMQUWUEDtmAMNrKCDbWI5wARmsIACYjtfgMY2nC9AA88XoCcmMIMFFFBBAyuITbApNsWm2BSbYlNsik2xKTbFZtgMm2EzbIbNsBk2w2bYDFvFVrFVbBVbxVaxVWwVW8VWsTk2x+bYHJtjc2yOzbE5NsfWsDVsDVvD1rA1bA1bw9awtWnT4wATmMECCqiggRV0EFvClrAlbOdkihIooILRjzWwgg5GP+4BomdqnJjA6MctsIACKmhgBR1sE8/UODGB2Aq2gq1gK9gKtoKtYBNsgk2wCTbBJtgEm2ATbIJNsSk2xabYFJtiU2yKTbEpNsNm2AybYTNshs2wGTbDZtgqtoqtYqvYKraKrWKr2Cq2is2xOTbH5tgcm2NzbI7NsTm2hq1ha9gatoatYWvYGraGrU1bTLscmMAMFlBABQ2soIPYEraELWFL2BK2hC1hS9gStoQtY8vYyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLEyBIjSypZUsmSSpZUsqSSJZUsqWRJJUsqWVLJkkqWVLKkkiWVLKlkSSVLKllSyZJKllSypJIllSypZEklSypZUsmSSpZUsqSSJZUsqWRJJUsqWVLJkkqWVLKkkiWVLKlkSSVLKllSyZJKllSypJIllSypZEklSypZUsmSSpZUsqSSJZUsqWRJJUsqWVLJkkqWVLKkkiWVLKlkSSVLKllSyZJKllSypJIllSypZEklSypZUsmSSpZUsqSSJZUsqWRJJUsqWVLJkkqWVLKkkiWVLKlkSSVLKllSyZJKllSypJIllSypZEklSypZUsmSSpZUssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLYpKn9V/TSEzyvDCy5MJu6z+skZjkObDb+vI6EpM8ByrYbX3lRolJngPDJoFtYmTJhWGrgRkMmwUKqGDYYociSy7stni6jUmeF0aWxCNtTPIcmMFuy7G9kSUXKmhgBR1sEyNLLkxgBrFVbBVbxVaxVWwVm2NzbI7NsTk2x+bYHJtji9TI0eqRDzmOUORDX1FPYuLmwAo62Le3r7MnMXFzYAIzWMBu67P7JSZuDjSwgg62iZEPfaK/xMTNgRksoIAKGlhBB9vEjC3yof8EQWLi5sAChs0DFey2mLQTEzcHdlvM34mJmxdGPsRUnpi4OTCDBRRQQQMr6GCbKNgEm2ATbIJNsAk2wSbYBJtiU2yKTbEpNsWm2BSbYlNshs2wGTbDZtgMm2EzbJEPMcEnJm5eGPlwYQLDFqdG5MOFAipoYAUdbBMjHy5MIDbH5tgcm2NzbI7NsTVsDVvD1rA1bA1bw9awNWxt2DQmbg5MYAajbg2MCh7YJkY+9BULNSZjDsxgAQVU0MBet8+P0phgGSeBxgTLOMYaEywHKmhg3+M+a0pjguXANjH6/IVpKgq22ef1mH1ej9nn9Zh9Xo/Z5/WYfV6P0ubmyAEmMIPsW/T5PoFKY4LlwG7TqBt9/kIH28To8xrHLfr8hRksoIAKGljBsMVJEH3+xOjo58GKjq5xPkRHv1BABW0eAONgGQfLOFiVgxUd/cIMcrAqB6tysCoHq3KwKgertol+gJwa0aU1Ts/o0hca2OtatEN0aYstiy59YnTpCxOYwQIKqKCBUbefGjFTcmACMxh1S6CAChoYtx010ME2MTr6hQnMYAEFVLC/ZDnCFnMlToy5EhcmMIMFFFBBAyuILWMr2Aq2gq1gK9gKtoKtYCvYCjbBJtgEm2ATbIJNsAk2wSbYFJtiU2yKTbEpNsWm2BSbYjNshs2wGTbDZtgMm2EzbIatYqvYKraKrWKr2Cq2eIXa37/pOdfywjYxkqCvy6ox13JgBsMmgQIqGD0rTvszH050MGw9Ec+5lhcmMIMFFFBBAyvo4LSdcy0vTGAGCyigggZW0EFsCVvClrAlbAlbwpawJWwJW8KWsWVsGVvGlrFlbBlbxpaxZWwFW8FWsBVsBVvBVrAVbAVbwSbYBJtgE2yCTbAJNsEm2ASbYlNsik2xKTbFptgUm2JTbIbNsBk2w2bYDJthM2yGzbBVbBVbxVaxVWwVW8VWsVVsFZtjc2yOzbE5Nsfm2BybYyNLMlmSyZJMlmSyJJMlmSzJZEkmSzJZksmSQpYUsqSQJYUsKWRJIUsKWVLIkkKWFLKkkCWFLClkSSFLCllSyJJClhSypJAlhSwpZEkhSwpZUsiSQpYUsqSQJYUsKWRJIUsKWVLIkkKWFLKkkCWFLClkSSFLCllSyJJClhSypJAlhSwpZEkhSwpZUsiSQpYUsqSQJYUsKWRJIUsKWVLIkkKWFLKkkCWFLClkSSFLCllSyJJClhSypJAlhSwpZEkhSwpZUsiSQpYUsqSQJYUsKWRJIUsKWVLIkkKWFLKkkCWFLClkSSFLCllSyJJClhSypJAlhSwpZEkhSwpZUsiSQpYUsqSQJYUsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS4QsEbJEyBIhS2KaqNmJGSxgt/WXTXpOE70wnjpaYAUd7Lb+1kjPaaIX9n3rr6D0nCZ6YQHDFuLIkgu7rf8+S2Oa6EAH++hBjQoxBnJhAjNYQAEVNLCCDk5bTBMdmMAMFlBABQ2soIPYEraELWFL2BK2hC1hiyHQ/vM2Pad+9t+06Tn1s8/u13Pq54UKGhjb64EOtokxBHphArut/9ZIz6mfFwrYbf1nR3pO/bywgg62iTEEemECM1hAAbEJNsEm2ASbYlNsik2xKTbFptgUm2JTbIbNsBk2w2bYDJthM2yGzbBVbBVbxVaxVWwVW8VWsVVsFZtjc2yOzbE5Nsfm2BybY3NsDVvD1rA1bA1bw9awNWwNW5u2c+rnhQnMYAEFVNDACjqILWFL2BK2hC1hS9gStoQtYUvYMraMLWPL2DK2jC1jy9gytoytYCvYCraCrWAjS4wsMbLEyBIjS4wsMbLEyBIjS4wsMbLknPrZf+6o59TPCx1sE88sOTGBGSxg2DRQQQPDVgIdbBPPLKmBCcygTqz8t5X/tvLfnklwooBLhdiyFlhBB/uW9Z/N6Tlx88IEZrCAAipoYAUdxNawRRK0aN9IggsLKKCCBlbQwTbwnLh5YQIzWEABFTQwbP08O6do9p/Y6TlF88IMFjDqSqCCBlYwruga2CZGn78wgRksoIAKGhitExi9+8IEZjD2wgIFVNDAeq2ZrDEZc2CbGOttX5jADBZQwGidGuhgmxj9+MIEZjC21wOjQtTtfbP2n+5pTKUcmMDcMQ53v84PlI5xPvQeO9DA2jGOfL/OD2wT6wEmMIMFDFucGlVBAyvoYJt4fgYotuzsx9EOZz8+kdbxqBtH3ivoYJvYDjD2Ik6ClsECChh7EbZmYAW7LR53YtLkiTFpcmC3pRSYwQKGrQZ2W5+dpzFpssbjTkyarPFoFJMmB7aJKepqYAEFVDDqWmAbJ9c5EfLCBGZQwN5xLMTnJ/xObBNjWXwLWyyLf2EGCyigggZW0CdKNGq0mWSwgALGznuggRV0MPYijlssgH9hAjNYQAEVNLBOPL+/GUf+/P7mibEX0b7ReS8UUMG+F/ksVkEH28TovBcmsO+FxHkWS91fKKCCBlbQwTYxOu+FCex7kWM3e+cdaGAFYy/OP2sTo/NemMC+FyVO5fPruicKqKCBFXSwDYy5i7XPI9WYuzhQQAUNrGCvG7MMru9hB8anMC5MYAYL2Peiz7XUmLs40MAKOtgm5tgLCYzt1UADKxjtcAS2ied3dE9MYAYLKKCCBlYQW8Em2ASbYBNsgk2wRT/OcQilTdQDTGC0TjS1FlBABQ2soINtYlyazwMQl+YLM1jAsLVABQ2soM+DdfbuwLN3n5jADBZQQM6HyvkQF+GzJXs/HpjAXrcv3q0xx7D2z0drzDEcqKCBfS9K9Ivo3Re2idG7LwxbHKG4NJdoqLg0XyigggZW0MF2ocUcw4EJzGC39VS2WBxyoIIGVtDBNrH3+YEJ7LY+zc5iPmLtkxst5iMOVNDACjrYJuYDTGAGseWwtUAFDaygg21iOcAEZrDb+rxBi7mLAxU0sIIOtok9HwZ2W1+kzWLu4sACCqiggRV0MNIzFHH1vzCBGSyggFE32jeSoE9NtJiaODAqxJGPT9pcKKCCBlbQwTYxPmlzYbRDnMrR5zWORfT5Cw2soINtYiTBhX0v+j2MxdKOAwsoYLdZnOuRBBdW0ME2MZLgwgSGLdo3kqDPELSYmjhQQQMr6GAbxyImLA5MYAYLKKCCBtaJvc+XPnxuMTVxYAZjLzRQwNiLs4KBFYy98MA2Mfr8hX0v+qdvLSYsDiyggAp227ll0ecvdLBNjD5/YQIzWMCoK4Gt73xg9Ngaexw99kIBY8ss0MDYsmiH6LEXtolxna/RDnGdvzCDBRRQQQPD1gIdbBOjd1+YwAyWucdxRfdo6riiX+hgmxhX9D42aDGxcGAGC/jYi2LROr13DzSwgg62ib13D0wDY0re43SV4LRwXrgsLAvrwhaswXVhX7jB6Vg4LZwXLgvLwrrw4k2nN/Yr+cINzqe3BqeF88KntwWHt98TWczVe3AKDm+/kbGYrTfZF25wORZOC4e3hKuUhWVhXdgWrgv7wg2WY+G08OKVxSuLVxavLF5ZvLJ4ZfHq4tXFq4tXF68uXo36cfcUk/YmN7hG/f7MaTGTbnLUl2jbWhaWhXVhW7gu7As32I+F08KnN/qCn944J10W1oVt4bqwL9zgdiycFs4LL962eNvibYu3Ld62eBvechwLp4XzwmVhWVgXtoXrwr7w4k2L98yBuJMtZ3/vvwqykjgPS/KFOQ/L2d/jZr+c/f3ivHBZWBbWhU/vyXXhc/tPV4PP/n5x1O8/V7Fy9t/+CxIrZ/+9+Nz+2K+z/8a5VM7+e3FaOC981s/BsrAuzHlepC7sCy9eXby6eHXxnv33ZDu9J+vCBp99LW6/y9nXLvaFYxvirrqcfe3itHBsQ9x/lbOvXXxuQxyXs69dbAuf3jguZ1+7uMFnX7s4LZwXLguHN26Gy9nXLraF68K+cJssZ1+L80EOznk5OKZy6MK2cF3YF27w2acuJrsk5YXLwrKwzn4nSx+Usw9e7As3+OyDF6eF88IF7n3Hj2iGfqkcmMECCqiggRV0sE0UbIJNsAk2wSbYBJtgE2wStjjGeoAJzGABBVTQwAo6iM2wGTbDZtgMm2EzbIbNsBm2iq1iq9gqtoqtYqvYKraKrWJzbI7NsTk2x+bYHJtjc2yOrWFr2Bq2hq1ha9gatoatYWvTFpPIBiYwgwUUUEEDK+ggtoQtYUvYEraELWFL2BK2hC1hy9gytowtY8vYMraMLWPL2DK2gq1gK9gKtoKtYCvYCraCrWATbIJNsAk2wSbYBJtgE2xkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYoWaJkiZIlSpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpYYWWJkiZElRpbYmSU5MGwl0ME28cySExOYwQIKqKCB2M4sscA28cySE8MmgRksYNg8UEEDu61PeLCYcOYp9jiy5MTIkgsTmMECCqiggRXEZtgqtoqtYqvYIksuxFaxVWwVW8Xm2BybY3Nsjs2xOTbH5tgcW8PWsDVsDVvD1rA1bA1bw9amLaasDUxgBgsooIIGVtBBbAlbwpawJWwJW8KWsCVsCVvClrFlbBlbxpaxZWwZW8aWsWVsBVvBVrAVbAVbwVawFWwFW8Em2ASbYBNsgk2wCTbBJtgEm2JTbIpNsSk2xabYFBtZUsmSSpZUsqSSJZUsqWRJJUsqWVLJkkqWVLKkkiWVLKlkSSVLKllSyZJKllSypJIllSypZEklSypZUsmSSpZUsqSSJZUsqWRJJUsqWVLJkkqWVLKkkiWVLKlkSSVLKllSyRInS5wscbLEyRInS5wscbLEyRInS5wscbLEyRInS5wscbLEyRInS5wscbLEyRInS5wscbLEyRInS5wscbLEyRInS5wscbLEyRInS5wscbLEyRInS5wscbLEyRInS5wscbLEyRInS5wscbLEyRInS5wscbLEyRInS5wscbLEyRInS5wscbLEzyzpdzZ+ZsmJCcxg2GqggAoaWEEH28QzS05MYNg8sIACKmhgBR1sE88sOTGB2CJL+pxBi1l8AxU0sIIOtolnlpyYwAwWUEAFDaygg21gOw4wgRksoIAKGlhBB7ElbAlbwpawJWwJW8KWsCVsCVvGlrFlbBlbxpaxZWwZW8aWsRVsBVvBVrAVbAVbwVawFWwFm2ATbIJNsAk2wSbYBJtgE2yKTbEpNsWm2BSbYlNsik2xGTbDZtgMm2EzbIbNsBk2w1axVWwVW8VWsVVsFVvFVrFVbI7NsTk2x+bYHJtjc2yOzbGRJY0saWRJI0saWdLIkkaWNLKkkSVtZkk9ZpbUY2ZJPWaW1GNmST1mltRjZkk9ZpbUY2ZJPWaW1OPAlrBFlvTZFDXmDA4soIAKGlhBB9vEyJILsWVsGVvGlrFlbBlbxpaxFWwFW8FWsBVsBVvBVrAVbAWbYBNsgk2wCTbBJtgEm2ATbIpNsSk2xabYFJtiU2yKTbEZNsNm2AybYTNshs2wGTbDVrFVbBVbxVaxVWwVW8VWsVVsjs2xOTbH5tgcm2NzbI7NsTVsDVvD1rA1bA1bw9awNWxt2mLW4cAEZrCAAipoYAUdxJawkSWJLElkSSJLElmSyJJEliSyJJEliSxJZEkiSxJZksiSRJYksiSRJYksSWRJIksSWZLIkkSWJLIkkSWJLElkSSJLElmSyJJEliSyJJEliSxJZEkiSxJZksiSRJYksiSRJYksSWRJIksSWZLIkkSWJLIkkSWJLElkSSJLElmSyJJEliSyJJ1Z0gIdbBMjS/r0uRpzHAdmsNv6jwdqzHEcqGC39XW5a8xx9D7/q8Ycx4FtYmTJhQnMYAEFVNBAbI7NsUWWSLRDZMmFGSyggAoaWEEH28CYqTkwgRksoIAKGlhBB7ElbAlbwpawJWwJW8KWsCVsCVvGlrFFlvQpMDWmZA4UUEEDK+hgmxhZcmECsRVs55sVD4x3KDXQwTbxfIdyYgIzWEABFTQQm2JTbIbNsBk2w2bYDJthM2yGzbBVbBVbxVaxVWwVW8VWsVVsFZtjc2yOzbE5Nsfm2BybY3NsDVvD1rA1bA1bw9awNWwNW5u2chxgAjNYQAEVNLCCDmJL2BK2hC1hS9gStoQtYUvYEraMLWPL2DK2jC1jy9gytowtYyvYCraCrWAr2Aq2gq1gK9gKNsEm2ARb3BPIiQIqaGAFHWwTI0su7LY+e7TG7MuBBQybBypoE8+oODGBGSyggAr2Yn3mYI11CQc62De9LwVfY13CgQmMTZfAAgqooIEVdLBNjKi4MIHYHFtERZ9DWmN+qPfpmzWmhw6soINtYkTFhQnMYAEFxBZRYXHcIioudLANjAmhAxOYwQIKqKCBYSuBDraJERUXJjCDBRRQwbDVwAr6xOjo/fdLNVYVHFjBMSxfZb7gqDJfcFSZLziqzBccVeYLjirzBUeV+YKjynzBUWW+4KhSsBVsgk2wCTbBJtgEm2ATbIJNsCk2xabYFJtiU2yKTccrh3pOCL2wTbTxEqCeE0IvzGAc4xYooIIGVtDBNjGS4MJ41IgT8RxIOLGA3VZPVNDACjrYJkYSXJjAbqtxekYSXCigggZW0ME2MZLgwvkYdc7sjCefc2bnhfN56JzZGU8+58zOCzMYGymBAioYz0M5sIIOxkb2B6ZzZueFCcxgAQVU0MBoEg90sE2Mq/+FCcxgAQVUsNs82iG6f//tWz3ncF6YwPhvY8uiS1/oYFToaX/Oy7wwgRksoIAKGlhBB7FFl/Y43NGlL8xgAQVU0MAKOthtLdohuvSFCcxgt7VokujSFyrYbS02Pbr0hQ62idGlL0xgBgsooILYoku32KHo0he2idGlL0xgBgsooE7s3bQd0S/6Rbgd0Yf6RXhgBb1jnIi9x54Y8ycHpo4tMIMFFFBBAyvoYJuYDhBb77EtIj7mTw4UUEEDK+hgm9h77MBu6y+5a8yfHFhAAcMWTZINrGDYYtNzm1gOMIEZLKCAChpYQWy9z7ccO9T7/MAEZrCAAipoYJ2oUTfaQROYwQIKqGDU1cAK9r3oP1KtMVPyQgtbDUxg2KKprYBhi3YwBbstri0xU3Jgt/WfstaYKXlh790triIxU3Jgt/Wfq9aYKTmw20rsUO/dA8MWO1QrGLbYodomethihzyBYYsd8gKGLXbIFew2iR3qF+yB3RZDdDFT8sI2xwbPmZIXZrCAAioYtmiSSI0LHQxb3+OYKTkwgRksoIAKGlhBB7ElbJEPMXYVsx9bPEPG7McWD4Mx+3FgmxhJcGEC2d7M9ma2N7O9me3NbG9mezPbW9jeQusUbAVb9Plzh6J3nzskbK+wvdG7LyyggGyvsL3C9grbK2yvsr3K9irbq2yv0jqKTbFF7z53KPrxuUPG9hrbG/34QgM5msb2Gttb2d7K9la2t7K9le2tbG9leyutU7FVbNFjzx2KvnnukLO9zvY6Z59z9jWOZuNotqjbAgs4R5srI+mVkfTKSHrMMWwxSBKzCVv/bWWN2YQthgFiNuFAA/v29t+U1phNOLBNjP52YQIzWEABFTQQW8KWsEXf7D+PrTGbcGAGCyigggZW0ME2sWAr2OJ63H9CW2OGYIvBjJghOLBNjL55YQIzWEABFTSw2/qCMDVmCA5sE6NvXpjADBZQQAUNxBbX4xjXiBmCF8b1+MIEZrCAAipoYAWxRT+2OBGjH1+YwAwWUEAFDaxgt8XzccwQvDCuxzW6SFyPa7SDz/ci5wzBCwVU0MAKOjjfwpwzBC9MILaGrff5Fo+/MUNwoIEVdLANjBmCAxOYwQKGTQMVNLCCDraJ0bv72jA15vcNdLBNjN59YQL7lsWTcMzvuzD6Zjz+xuy8gRmM/za2IXrshQr2LWtnsQo62LcsHhxjdt7ABGawgAIqaGAFHcSm2BRb9ON45o3ZeQMFVNDACjrYJkY/vjCB2Axb9OO+zHKN2XkDDaygg21i9OMLE5jBAmKr2Cq2iq1iq9gcm2NzbI7NsTk2x+bYHJtja9gatoatYYt+3FeerjE7b6CBFXSwXegxO29gAjNYwLBZYNhaoIEVdLBNjOv8hQnMYAEFxBZrJRx9AMJjet5kX7jBsVbC4LRwXrgsLAuPaYV+zGm8fsxpvH7MabweU+8efyfBsrAubAvXhX3hBsuxcFo4L7x4ZfHK4pXFK4tXFq8sXl28unh18eri1dMb50gMuvWXE35OyLuwgqdUgxtsx8Jp4bxwWVgW1oVt4brw4rXT653rsXBaOC9cFpaFdWFbuC4c3hQnVCzGcnEsxjI4vCkaMBZjGVwWloV1YVu4LuwLN7gdCy/ednqjd7eysCysC9vCdWFfuE2OqXuTT28NloV14bN+C64LR/3+jsNjrt7gWIxlcNTviyJ7TNebXBaWhXVhW7gu7As3+AyYixdvXrx58ebFmxdvXrx58ebFmxdvWbxl8ZbFWxZvWbxnKPXhN09nKF1cF/aFG3yG0sXxxjsOy5k3fQVnT2feXFwXPktKcIPPvLk4LZwXLgvLwrqwLVwXXrxntPQRQk9ntOQ4Jc9ouVgW1oVt4bqwLxyPbdHKcZNyYQIzWEABFTRwDHJ4OpMjRy85k+PivHBZ+NwdD9aFbeG6sC/c4DM5Lo5RhSjfMlhAARU0sIIOjhEpz8cYBfFzwcRzb84FEwfrwrYwe5MPX5i9yelYOC2cFy4Lzx2KSXkDDaygg+zQOSR4YgIzqHOP87I3Vxqc7As3uCx7U5a9KcvelGVviiysC9vC7FBhhwo7JOyQsEPCDkkBaT6h+c7RwdhjWfZGj4XTwnnhZW902Rtd9kaXvdHlnNDlnNDlnDB2yNghY4eMHTJ2yNgh43wwms9ovvkDAM/zBwCe5w8A/FxY8egvFfxcWHGwLVwX9oUbfKbExWnhvHBZePH64vXF64vXF68v3rZ42+Jti7ct3vOeosS+n/cUF9eFfeE2+VxMcfDp0uC8cFlYFtaFbeG6sC/c4DM7Ll68Z3b0lzF+LrI4WBY+vR5sC4e3vxjxc/HFweHt70P8XHxxcHj7YnJ+Lr44uCwsC+vCtnBd2Bdu8JkuFy/esnjL4i2LtyzesnjL4i2LtyxeWbyyeGXxyuKVxSuLVxavLF5ZvLJ4dfHq4tXFq4tXF68uXl28unh18eritcVri9cWry1eW7y2eG3xnjcqEn3kvFG5uMHnM9DFpzfO1fMZ6OKysCysC9vCdWFfuMFnRl28eH3x+uL1xeuL1xevL15fvL54zyyKQD4XmDwk+uCZPxefdVqwL9wmnwtMDk4L54XLwlGzvz/xc/HI8xidi0ee7X8uHjm4LCwLxzbHjeG5eOTgurAvzDkmefEuGSJLhsiSIbJkiCwZIleGxPbkurAvzDkmZ4ac23NmyMV54cW7ZIgsGSJLhsiSIbJkiCwZIsK5LbK0syztLEs7nxlybo8s7SxLOy8ZIkuGyJIhsmSILBkiS4bIkiGiy/G9MuTkpZ11aWddju+ZISfb0s5LhsiSIbJkiCwZIkuGyJIhYsv+2rK/S4bIkiFSl3auSzvXpZ3PDOmTnV3ODLn4bOeof2bIxb5wg88M6e8ZXc4MuTgvXBaWhXVhW7gufHprcIPPe5uzL5950t/muZz3NhfLwrrwci61pc+25Zg2jqkex8Jp4bwwx1QPWVgXtoXrwr4w57AuGaUpLXzuVwvWhW3hqN+nSrueWWSxnWcWnXxm0cVp4bxwWVgW1oUNjv6SYjBSz4XPL/aFW3C/Z4vpfpPTwnnhsrAsrAvbwnVhX3jx1sV7LqDeV4tzPRdv7r+AcD0XbD7//blgc4wp6rlgcwy86Llg88WysC5sC9eFfeHYthjM1nPB5ovTwuFN0c7ngs0xfqnngs0xjqjngs19XpvruWDzuS/ngs0Xs492nsP9XZnbeQ5fLAvrwrZwXdgXbvB5Dl+cFj69Kfj05mBZWBe2hU9vCfaFG3ye2xenhfPCZWFZ+KzZ29DOa2WfWOp2Xh/jDYyd18cWbXheHy+2hSt8XgcvPut4sCx81mnB5zGKtjoXJj+irc4PC1ysC5/HOtrn6ncn+8KN+le/i39/9buT88JlYaEdzuvUxbZwheuyv+f16NzH83p08dIO8akdjz+NT+14tHJ8aufCNjE+tXNhAnPHEMZHdTzqxkd1Lqygg21gTHKr/R2pxyS3gRksoIAKGthtca7HJLeBbWJ8XuvCBGawgAJ2RfSbmAU30ME2Mb6vc2ECM1hAARXElrHF93WiL8YsuAvj+zoXJjCDBZTZ6kVBA+fBiqlvNXpmTHKr0TFjkttAB9vE+KhOdNaY5DYwgwUUUEEDKxg2DWwT46M6FyYwgwUU0Oa+xfd1osOcn629MM0dii/pXFhAAWPTo83iO1kXVjA2PU7P+E7WifGdrLOCY3Nsjs2xxXeyLuSwOIfFOSzOYWnY2lT4eRnqM5Xcz8tQnzzkfl6G+kem3M/L0MW2cF3YF27weRm6OC2cFy4LL97zMtRnGrmfl6GL68K+cIOvW6yT08J54bKwLLx48+LNi/e8VFm04fm4d/L5uHdxWjgvXBaWhXVhW7guvHjL4j0f6+JVs5+Paf2HcO7nY9rFDT4f0y5OC+eFy8KysC5sC5+uFtzg89Hs4rRwXrgsLAvrwrZwXThcfe6Z+3mZ65PP3M/L3MWycNSscc6fj10X14V94Qafj10Xp4XzwmVhWXhxXbeacZ5ft5onn7eacY5dt5ony8K6cNx+xKtjP281L/aF2+R2fhvk4rRwXrgsLAvrwrZwXdgXXrxp8abFe34bpP/aw9v5DZB43d2ub231Y9qub22l4LRwXrgsLAvrwrbw4jq/vXNxg89v71ycFs4Ll4VlYV24zePb5Fg4zePYJC+8tL8s7S9L+8vS/rK0vyztL0v769L+urS/LsddF68uXl28unh18eri1cVri/e8rT2P9fnYeLbP+ah4HuvzUfE8RnU57nU57nU57nU57nU57nU57nVx1eW41+W41+W4+3LcfTnuvhx3X477OWwS19B2DpvENbQ518HWjoXTwnnhsrAsrAvbwnVhX3h623HM62A7jrRwXrgsLAvrwrZwXdgXbnBavGnxpsWb5nWwHUkW1oVt4bqwL9zgfCycFs4LL968eK/re+1c5nWwXXPcLpaFdWFbuC7sCzdYjoXTwvM62K55bRfrwrZwXdgXbrAeC6eF88LndeoIPq+DKdgXbrDN62C7pq1dnBcuC8vCurAtXBf2hRtcF1dd9ve8Rnts23mNvjgtnBeObfOoc16jL9aFbeG6sC/c4LOPX5wWzgsv3rZ42+Jti7ct3rZ4zz7uj5xp1xSzi8/2PPlsTwn2hRt89tOL08LncdTg83hZsC1cF/aFG3z2x/611XZNE7s4L1wWloV1YVv49HqwL9zg8z784rRwXrgsLAufrhZcF/aFG3z25YvTwnnhsrAsrAsvXlm8Z7/uM/fbNX/s5LNfX5wWzguXhYXjossx1eWY6nJMr74T58PVR+J8uPrIybZwXfjc5rNOg68+cnJaOC9cFpaFdeHlPD/7yMW+cJt8fp92cFo4Lyxzf68pVn1Uq11TqS5ucx+vqVQXp4Xzwue+eLAsrAufbdiC68K+1Fm8efHmxZsX79mnLpaFdWFbuC68eMvl+t///d1vf/nbH//wjz//7a//8o+//+lPv/3+f+a/+K/ffv9P//Pbf/7h73/66z9++/1f//svf/ndb//fH/7y3/Ef/dd//uGv8c9//OHvj//1cSb+6a//9vjno+C///kvf+r0v7/jr4/nf/rovDr+/NF5D5klHhH4Q5H0vIj03xpGicervlmglh/+Pj//+9LvFeLvH6/T2YCa7u9FKTL34vE++eleyPMiWdrYjUebVErkfLdEqX1izrknj7GqpYT+UMI2Jfq19GqLQlvWu39vaRzOx1D+/PvyYR9805Zi84R4vG17WqLtjmeezfAYGH9aYteSbZ6Wpbk8bcm0OS0fHTOPA/o4Qagh7ccau1Oz6NwMmvMR4/d3pI0dkcdTwfMd2dR4vDQcNR7IIbEft6I/AT8/qn189Dqqmp+W2JxZ8QH4qPAYYWM/rN2u4DJ24zFm9bzC3d2oz3dj15j1GD3sge1ZiXzskqLfGF5JIelpifRuU+TNmZnjBeK5EY9b1FlDfuxjfbr8043oz0fnRrT6fCM2jdkvileJfk2kp4ve35H4tPK1I5qe7sjmxMqE5vG0wL6HNZsnRSpPj6i/H3q7GlLSqCFFn18/yrHN7zy7yNIaj1uTH2tszk71cUQe78uXCnr/xBCdJ4YuvezjiVE2p+djMKzNGo0zvNQPe7K7qHNFzo93YBzY+1tx8xTf1rjbGvUbWsPfbY19R9HZUcyeRt+mgtQ87xYfrzGenuOyOT9L8nnHWI61Rr1fo9R5h/HDtf1jjfL2VVXk3avqrsK9S8nt3Xh+Vb3bmrJcjb52RI46ayR5XqO9f/eqxzfcvqbtk8BI4ccd/fN90c2F8fFidZzl/Qc9T+9f9zVMZ412PK8hb5/lqu+e5bsK987y27vx/CzftmY55hEp5cUjYvN2p7+mf1rDdtd4lXHnlur6UOH3e6zEG7Mzhx/DbU/PUMtvnxlW3j0zdhXunRm3d+O1/Hs0oczWtPa8Nev7relvt6a/3Zr1F7fmcm7W9NLV5PGHYzMkH8+PSC1vP3jX98Ozvh2e9e3wrO+H574x37111MSj+2MU/umto2+is38lejzbeH0ev745tdo8O/sM4Kfpux2wZMz08W6k6tMBy32LVlrUXzso90ZDXHejIcd8qFhv2z6WsLc7idd3O8muwr1Ocns3nneSbWOW5jSmvVRCc5qjU+XpWEbbXBA1VpY7z4pm7bUSc0R+V2J/Yt0aZmtvR2d7OzpbfXt8q/mb41vbbbg3WBhz9N8bLYyIfv5yoowdsfWes9SXi+iLRWQ+a5rktCki7w477vdlDmQ88NV9yXNUx/KSnl8sUnUWaa8emjKfS6yPSz0vsnuEP45519U5PR0u25a5O273SZE2jk8rqb1YpMx3Wa0sL0i/VuTmEGLajd7dHUNMu3cwNwcRt9sRH5Y4t8OXG7mft+NuETteLTKvMQ+014o8+sS8te1rTm3KbA+xzmBr6+3DF08252Rb+/HXilijyPMOeP/q/fyl5e4tQrVRotanF639HfKt9zpp93Lp7oPkvojMXRFpaVNkP3w/ZyhU2exNe/9F8O4V0803wbsSN18Fl/dfgKby9hvQtHvDVJLM0eJHiz6/5t0+Kpv32vuzY774y9XlpRqFc/1xuauv1jjerrFMg1lT7Gs15sF9lHteYzeIdPNB6JMat56E9vsinGRi/n6NF8+xkhuvaPz5sZXdU7LNVxKp5k2v225I1XmCPK4SzzfEv+Hg+i8+uDWxL5uOq2l3C1LnG4HH3durjTrvdotvzjLdJGqZoSzH5thuX9TEYvbnvrS6eTbbbYcwgrycHj83x+6arfMdnugPszG+cuG3Y+yMrDcxXyuidb5d0N3dg37DxL5k3/BudLs76zju4/3k893Zv7S5uzvlV+9O9nHR1HLsdkffvNXdb4bN01Wrbu5Tdy9vJM1TPlMi/9Sm708y2W7FrLB23p+2ou5G2B/n2JwS/BjFOZ5tx7bIEStNXw92vmbzV4rE+v7jfcEy1eQrLVLncWmb41Lll5bov5RptIc+b1T5jkaVb2jUbZG758i229V5S2RZ9LWA/2E4ssirReYQkdlmVtS+SJ03NI+3S6/ujs3T5PFeanPldPmGgN+NQnxLwJtLnrtju93ZvRbX+DDatT9N2isnW/8M3LhMWPPNlrT3hxHa8f4wQktvDyO0t6dRp1beH0Zo8vYwwu490+1hhNtHZfOItz877g0j7GrcHUb4pMbxdo17T4n5uPv4rq+16d3hjH2NW8MZeffC6uYT7yc17j3xbvdFjnl+rG/fftqO+qu3496wyu0aL/a5m8Mqefdrp7vDKp+c7DdPkPSLD8y9IZG8/a3Q3SGR/YbcGhLJqb47JJKTvz8kst2Om0Min9zEVG7KHm/MntzE5N1vnx5/OKPswctPPr9QRDKDM3mZVWFf2pmb27GJQ2tzSnCVtHnq9s1YxnwyW34zKuVLDzK58iBT2otPQ1IoYsfT5tgOMh/l/0z2+yVuHtlPHv5vtsfxDe2xe0l19xFzW+Rmi+xfUS87cxzr2+Wvvek+ii1lNq/u8/EtL8x3Zcx9Tjdpx9MhgG0JHsoer4rTayUqW9GeltjPmzn41fbx8jSgVijyfPLN/gcOtcxnsvX58is/cJB57e5LqT+tkXc/anokVZp3M/L8RkTe/81zlrd/9LwtcfOnvrf3pG72ZPtWZT6DpNaePwvtfhl189buk+2YgymP28jn97q7U+zmHdXu/dD5/b5zM6Su08Ps/nbcu6PaNkc+5voAj+EHf6lJcywAd9XY3C3r+zep+h03qfr2Ter+B1azNfpS2E/zZ/8z11sz6/eLBNyaFp/t/d+XZnv7B6bbEjcTzN7/iem2Qe9Njd+WuDc1Plt7/xF5X+Nejqb3L0z7e7l782z3K0DcmyG7rXFzguz2J/Y3p5TerrGZUbqvcW9CaSnfcXu8bdWb00n3W3L3HNm2yc3ppPvFIN7fm7vn6n5fbp6r9RvO1foN52r9hnO1fse5um/Ve7OW76/K8/xOavtK6s4sjO3gRZr95XEns073+bAju1dSpbB4QJGnY2zbEvfGYXZvpO6NOmwb45inxoef8X5sjPr+a+DcvmFxnvL+y7Wy/6XOnCqwTsHQ+xXmrZiJPa+wXTtgnhlJc15q2BeagmkgmsumxvZBkCh98Pp67v4ZxksxWW+QfzrDdjXUmOZXn/+quOzeRt18p14Of/tuv+x+uXHvtnBb4t7dftmuvHfvnXpJ+d136iWV99+p3z8qm26/PztuvVPf1rj5Tv2zGsfbNe69Uy/p7vOPvtamN9+pf1Lj1jv1kt//rfQnNW49D+735d479ZL1V2/HrXfq92u82OduvlMv25/l3Hyn/snJfu8ESe0XH5h779TL/nnw3jv1Tzbk1jv1WHr1veHKUuz94crtdtwbrtze0S2TNsuL94TzFZbJ8wr1O94OflLl5svB7O1bRj92Ze69HNyXuPVy8JMSd14O7gfHbj4ay68dgPnCOVK+5Ryp33OO1PfPkfr+OVLfPkd2j2N1jnw8Xv8sqVx+XEuo6NuP+9sSyXSuWPjg9d1v+XDnv30VdWv4Y1/i1vBH0far22O+kk+PN0r5eXvY7mnK54X7gc9mKW1L3F4UePcO596qwNsSNwdAtiXujYBsW+PuEMi+SW+OgZi/PwbyyWnW5qL/D17vQz6eZrv5TjlVHtp9PTr+oUjajoPcWW95ux15/mIyP3izHds3ffM0yaqbItuGrcvtbk3r2g8/Nay+nWfbEvfyrNZfm2c/tscyeePnfN+Wiey+ykjaxOJuJb/H6A4DIrrc+L5exL+hyHoT/7Uiy9hMbZsiu5kgxWb3K8uqgo8/+lBkd7J54flsydifi+yW5OchL/syr+VrRTy1WWRdw+mLRdiSrN9QpBybIrujo8r0g/U2/GOR3SsqtfnYqracJ186xEI8Psa8/dXzxGeutUNebBOZJ1sW27XJbndsTlt8DDnJaw0rjXV+mutrRSzXZRKmfsfu7A7x3Tzx56EkuzX/bg7ky7Ff1p2B2uXTTD9vyG6GvNZRpGpb3mz4hxrbd6IMgP0wVf/DosK7l1bl4EJ8rJPLPtbYXf/SMadA9onl+nxvts06n4BLWX438HOzbou0ZRB9c+X6yvXcnl7PZffe6e65lnZPwq3NJ4wH6/M7FNm+vyrzPiev34bI+cNHFXYvsO7dCu+b5N7SoZLeXaRy36j3j+++jB6UUSmbMrtJK5UVCNZO7PaVTWFVllSr+GZTdgM3eU4ntPLDuMuHIrtpK49zaIZ9Wla5/VIRTTNRHlhe3JJl2Q0p9cUtKXNFUy3NXmzYMr/cZo+N2mzJ7mWWGTdK/mqROqdnPzC9WIS5Wg98tUidPzR7oL5YpNlceacts96/2JHrTOrH0OO60sTXyvjyFQvXV2PFj2X0c03Jn8qUtwe3tiXuDW7tS9wa3PqkPZQhJbeyOTrblznJnZ/Qrbf3H3L2/e9NfbIdbfkBXSvPBulFNm3Svys73n/kp8Mnn5SYu9KyPRuE/eTIVHbFq798wrf5A4cHb0bZZfejkXujUvsSt0alZPfjqHujUl9pj+3F/JMylTIqL5fRRpn6fMxQtt+gund0tiXuHR3Nv/rorO3h7fWjY5Rpr15z2sHtY/8a+qtlCp8AefTAzb3S7i3VzWvOrsTNa862xDdccxoLFKZmsjk677/o2pZ43Jsc/HC0JnmtCOOOD876YpH5Sah+e/PaJaNVfn/R9peM9Osfi/McLchlmXbz82Px3SIpv1hE5gU9ixwvFlHhg9+WXivyaIcZ1Mc6zPahyD6U5s4cP2TJ7c+450R75PJ8BoDUb1hwTeo3LLi2HXRkrP2Q3c7svgd055ccsls7/jHOP8ej3Hab8R2fQt8V0Tzv6DX/8EydvlCEiP7w/PiVIlV4HP7hUetDEX/75y37Evfubfzt+S6ftMZ8x6Ve2qY1tpff+T7HxMumyG4Zat46pOPpcPJ2M3TeRJv+8ND4lX1RnYtHquvLRZZlLNvLReYIkv3wovorZ7vPEHm8rtsU2a0N+C1F7s7fkWZv327uSty83Wz29u3mtjVuzt/5pEnvzd/RY3tjdW/+zicXmvnppce9kWwuNLsiLVNkc7XS7/hJ1idbUnkxlXyzJduPBMzrZp85R5EPt1W6n2he5lWirj8i+koRkTmgLevCyT8Xae9e8vYlbl3yNL29Ztq+NZTv2KwTB35qjfT2DcC+xM3W0F/bGiYsVL7+WO6n1qjvt0Z9vzXenu667fiPHZnzhoqn13Ks8MuOIj8MJHxIj93vqb4lxwof/33cuh8v7s4SQS3bi0XavM98vM2XV4vMSWqPIrZp2G/4Mbbmb/gx9idHh/faNefnu7P7HfPyE8Jl8kOt9ytYYuE2fd4c5Rs+ZKHlGz5koXk7MWWeZynL+mtq/7Al+m6bbjcj86u7UtLzzcj7SdHKW7DjxSJNKiMzmyKlvR9G2yKN627/iCPHt+QvFLFjZGtbH4q+WmQuxGLrgjBfKzIfFJut8w8/Ftm9fmrztrmtPwASv19iXeLzWGcfin9lZ5ydaa82ay0+92aZsP61Is4B9iXjf27WX13khyXpyu7o7IrkuebP4/nweLFImV8byetvvH8qsguCx2juHAt8DAc/DwJ9dybWtsLdYQDVt4cBtiXuDQPsS9waBti3xs1hgE+a9OYwgH3DMMD+HBO6jLbNxWb/Gy0mPbWly/y0gKu9v/iq2vuLr6q9vfjqtsS9xUzu70nd7Mn7i69qfX/x1U+249biq1rfXnxVt0NENn93m3+Y4P5h8dV9Ed5FPDC9VuTuMrD7LdHCymP2apGcZpG83ZLd7wnTkZY1y5dnxY+/i/6sjBtllneSXyyjfPLokQL+cpl5kHpJ25TZNXBpHOr1vuZLRyleOl5F1nu9n4q8vWzwtiPfXDZ4X+PessHqby8brP4NywZvt+Nmk+4P7XzEehzl8moHTPwEPqXycgfMQs/J9nIHzHNGTS+56Tnbe7VbS5R8crt3Z42ST56Qlue99fdZH59L2vuDre39wdbWfmmJm6PX+wadk8EfbSvPG3Q31HpvAMyO8v4AmG1/mPUtg4rC2ma2GWi13aurrMvNzeazwbZ7s1DbfPSt7YeFDb9QxMv8mqsX1xeL1DlvxJum14q0NH8q2lLbtMl2qtWtvvvJdsxfMj3el7YXdyYz3pPbpkiSX7szhUAs7dhsh/3a7ZD5KdbHI+duO/zt7Uhvf3vItj+BupWq+9awJVU3H1C1Xap+S5G7o0WW5d3Rom2Je6NF+xK3Rov2rXFztOiTJr03WmT5G14I7K8yZnOSZG3PvxhsJb090GP711e3Bnps9/bq3kDPtsS9gZ77e1I3e5LeHuix8v6XLT/ZjlsDPba7P7z3bGe7X03dHejZF7k50LMtcnegZ78lNwd69kVuDvSY6HcM9HxW5uZAzydl7g70fFbm5kDPvoFvDvTsi9wc6Nn2oHujEtuOfHOgZ1/j3kCP7d6T3AyD7ToRNwd6tttxs0n3h/beQM8n5+rdgZ5Pytwd6PmszM2Bnv1t1q2Bnk/u1G4N9Owe5W8OKdg3/JTF7Bt+yrKfg2rzQlzWRv3aHNQ0p0tIWZdd/tpE1vlDTPlhbc4vFal5fnDBj+czHm33Jutbitx+utmNxN98utmVuPl0sy1x7+mmfsNXPT5p0ptPN7sfXt1+F76f/s2aDu2HiVcfz5D2i4tkY169t/xikbZO/Xi1iM/Hk3Lkze74d4y1+jeMtW53p/CJ5nLopk12y/IlZfnlB8uzDz1/VuTWR81t+xbr5sfEt0VuDj99sjP3tqNtf9Tqy0ppu4DOb99M7IPxzs3E/udGt7bik18s3dqK/U+NeQ7WH9bW/crvlY1fTlsrLxZxn0tqtkNfK/JD382b3dnOI7n5y+ltkXsruO9L3FrB/ZMSd1Zw3x+XyjqY9eVftP9QRF4tkilSnh+Xerz9nrUeb79nre//Zmpb4u4SKNsGZQZqXSY7f/GozEh+jPe+miDrlrxcxJU7In25COOT2yLblUvuZft+8ZNb2b5fGWrWaNleXFxq/uKh5fr010rblcPutcV+8bFbbbFfpG7OYtdqLy+XN9eFU9fjxSKsif/AV5fL88qWtFeXEPR5cB/1Xl64b3knIK+3CZODX11qUpTfw2rL31HkxaUmhccQWR9DvlaE9YKkbk+2bRFGR70+LxKX56cvwdq8lfHjeP67i7r9HpXNiRZiTZ8OA362JXVuSdptye4tls3bKrXl+a7c3w7n49N+WN1sx/6LmKNZH5fQ59PG6i6gWY90faGQpXzhHGlzhFZ2y6BVyd9wjkj5hnPkky25d46Ivn2O7Lbj9jki9TvOEf+l54gec2BUj82CwnW37p9m/79XC/IPNXbL2Nc8l0/5YXlk/8rOzGlBmo682ZnyDTsjv3hnWE3/gS9e9bTM18daxF4sktmSXL+jiB+v7s58W6sltVe3hDWUyvF6wzYaVl8tIhR5+SNKWXi5r+uN+IcT1t6eG7gvce/Jd/fTqW8ocfObQ9sGLSzSV+qxadDtQl03lsfab4bw+P24fD/fjN3Hse6G2Xao6V6YffJxrMw0lqxPd+aTIsvHbMw3RbZfxLn5ma5dkXtjgPsSt8YAPylxZwxw/2m7e5+Ctbef4d//4kv1tz/dXv0bPt2+fSibI92Pt8zPP1e6favqfM9yLfHht+O7Esa6xVbaSyV89rS0riP7lRKtsqTmkV4pkQ9C45Dy0lawKGdfVve1Eo21vtNLO9JXth8lUnttK/hsTpL1y1dfKCHLa7r1keNDibr9UJQzG2o9M9L9tWfLzJxU6muNIXxLZb1PeLU9XyzhB+uD53WezY+93befu7r1vYL9QtisC/7DrOwvlGhzG471YyFfKOGFBYXX2+Gf2uIbplD58YtXA86808rmm53ZTUqxKsuXePXZEPtnReYbywe39rTIfhbHvKtO6fkZ4rtlwR93PHOd1bY+eR3H/SKPYZW5RLLIq0VsjnrUuk4M/anI2zct++2obMf6ucmft2P7ldX5cYDywxq4H0/5tJ2AccwP9Tw4r5mqX9gW7oyLNt1sy7b7CYukWdsUae+POW6Pj+tMVl+n2v10fPL2B4AsDbi2yIcKu/l+1VixeV2b9MNUaM9lO3FB58SF9THuY5Ftg/Bo7HVda+2nBtnPqOZasb7kMvlQ5N56QOsHDX8qUb+h42T/lo6z3Za7HSfXb+g4u2n3tzvO7ugkKUzsPDbHp2xXGPZ5zVkmhLUPFXY/A0zGB+aWr032lazun/O8JvMfVtT/eM4X246Rz0GUw2RzaLbrWPIlJlm2pH24CG8/bsWqnI9WOJ43SdmuTsZ0rMd4G0X0wyn/Hb+y+mRL5hN3lvVJ4Kct+Ya3Qr57P6U6b7NUl3Vky/1jUzLLrq4jbT8dm+3bKRYH1GP9WN7tG/FHLDIE8UMufqHE/CrVo8Tm9nf3aur2vbx8w6csPr2Hrss99LPROt+9nbp9I65vL4a9vZe/fWy2DwR87iCvY0w/Fdn9tOqHX4ltXmB+UiTztVnbFanfkAC6+5yFzod51WXV5PKFErdeLW935e6rZd8tDXj31bJbfvfV8vY0K6yl+UjE58MKvl0xiqes7OabndFvOEN2b5ZuniGffAS4zMGaB9uLD2o/3PvWl5+x7rXJrsjt87V+x/la3z9f7z9S1JfvwO81667I/Wa172jW+n6z7n7LMKf+1HUN+I8PE7sf7gg3irJ+eP6nx9/9E8n8AcH6jb52f0/4ot36tu2nPfH8DXG2e1N1+xzb/aLqZpxtS9y74O125faZ7t8wl8rdf+mZ/nh5OdP9WFdp+niGtP20n/koktdfqv40XrTdksyXlHUzStN252o55oPi+nGNn5q1fce52t4/V9v752r7jnO1fce52r7hXN2N4zm/y1gHvj6eIW338uoRpGRqs02R3VPRMd8+PYZI8tMTfr8lzC4rZZ1w89OW7M7VOx9w/GQzlvHismsQff8a0XY/Z77b79ru0flev9uXuNXvtrtyt9+1/duae/2ubX+EeKvf7c8QVgIpmjb9bvf2SvhFpbRSXuwyOn84U374VcVPW6LvXyNa+o5zNb1/rqb3z9X0Hedq/o5zNb99ru6HrAtfxFsnQn4Ysm67N1ci/ARhOcc+zKnaluA7NOsSaV8rMUcAdf2g9VdK8A2aHyZ0vlpCXywx28JebQubbWGvtgU/YKqvtsVa4sW2WC/XL7YFI8P11bbwuSP+alusJV5sC5+Ld/7wY7AvlZivmN1f3Aq+Kt5ebYu1xKtbwcK/m8jx71j/z79j1b22ezOVrDGBUXdFdiuYzXt9+WH2Yf3Cztxc4c6/Y0VE/44VET954XfriXJbgmWYdJ3G8KUStx5Kv+PHaE3zN9xw7H43dfPmePu5qsRyI3n5DvfPRXbvUDO/qTleLNHq/3Gh/tqurB8SW55qv1akJiaHbnZm/2L6YGJJXmeUf3gx3ez4hlv03Yupm7fo2xL3btF3u3K7x+xeS93uMdvV/m7eom9nHejyjk03B3c3yJ+OZWhcn806iFWedq+25nVqWdQ11Q812u7m1ubNrb5Uoc7fj/14Y/qVCvNtRX66DZ/M4ZjLt+mx3lV+aM3dVyFE+fzuukDf6zXasxq3J7WU4/mEo1a388nm6ZVknbPwcWd2i6Ycc71uS6k+r7H9NI3ostbv4d9RZV2qzL7yaN1ok91ssN0L6TKfG7To82mHbfvDqbkoji8fDvk4A6v5vYfrlp7eXTZ/+wZ1vxXMFmyyKfENb0ybv/3GtO1eRd2+DfL29m3QtsS926DtrmQmG66/tf5akdu3QdveMpcdV9m83W9t+xvneZ4uO/NxPKxt58fPn0+tC2pW/8KeEEBqvtuTb5g01drbM56223H3buzx6PgNI6aPKu8Pmd7+rU15/lubx4bsHvp9/gAp+fKLa/nKdKV7z5a7+9MvHBv7lmNTf+mxeQjn7OniZXds2vtvPNKRvuF56lHl7QeqT2rcOk/2e3P/REnyHSdK0l98oswLXxHZzI/dztRNTPZNujvbdh+Y+p4q95Yr+KTGrfUKPqtxZ8GC/ZBImY94jxGW9OrgzL27kk8G7+aktEfHSa+N/y1Xcns+hPgNX5bw7/jyyP43aqmxhMzx/Idu6dh9qary204uez+2x3Z9vhnOYu35t8jT8Q3fqHoUef8jVY8ib3+lal/j3meqvrAzdbcz73+o6lHk/S9VfbYltz5V9Sjy9req0vEdP6P6pMrNt1X7KndfznyyLTffznxS5ears0eVb/li1ad1bn6y6rM6d79Z9Wmdmx+t+qSVb77T+6TKzYvHvjfd+8jSvlvf/HDVJ0XufbkqHe9/uupR4xu+XbXfkrvt+h33GJ+dtXc/X/VZnbvfr/q0zs0PWO2aJs0f9OSkz4em9iXmaiNpXYziKyXuDRimY/dO696I4Sc1bg0ZHu+/N91fVGcM/PDRii+UuDniuN2R+QPYxyXstRI3n3WO9590tvcFc/m//gOHl0qkOT7weH3ir5Xg21vJX9uK5Z1Laa9thWZ+1Sz1tRLGrbS313ZkPuU8hgde25EiM4uLvrYjxi+8rb62FbXy0ri9dnY22qLll0rU+TBQxV4p0ISPkfsmOLdva99eV60dfGf+td2YPaxVfbMdXitQMr/3z+ttrcv9EvO7hQ9sb5dYbpq+VGJ28pKXtvhKiVIYrV4+v/CVElKZ4X+81hZlzskoPyzW92qJ1w5qWYaWluT+Ulvw/Sgprx1UmQtKlfUN4pdKpHleiL54UI0PpdlLW/F42yjErrxUwueOPF5WpaclHo/LuwX/MlehbEvofWWh0nlb4Kqv7cqcL/wYF/LXShgrQb7WS5LPZ9fHJS29uCM8MB757RLp1a2olHipu6fGXVaT+vZWvHZQ771c2xaY3Ux/mBlzv8CdVYl2BW5NUT7efTl4vPuS5Hj3Fcl28OJgkan0fDwn5W8YzE/5/cH8bY2bg/n3d+b5YP5+4ND/r4HDL1TQzFLupWwa1G++C9gelW0RTrDdC4X7W/K8yPY0dcbNlzH8nzaj5PfPsJLfP8N2S/fdXNE9pd13pe4t6f6oYdsnkrlkxw93wB+W23lU2bxzajoXhmnaNqPtabt4362Vnj9p2NjOMdyYnjfsdjh3/TL05ths15dgxkfntGvZ3fEp8zmplfZyFZ1jhk1rfrVKZnmXvF4sv1hlzrpu6xdqvtou84PmjyayV89bn/dRzZfJI//HeXu3ih0vV5n59kB7sUqf+jPvtB9vbrd1tu3rtO8yT+Bj+94O7Ocvm5K+u+LEZ03CmpF9Cl1+uWmPYkud3emyXSnxC4do+z2we3OW9jXuzVn6pMbTOUv//Ph//vDHP//9X/7ytz/+4R9//ttf/+vxd//bS/39z3/417/86fp///2///rH5X/9x///n+N/+de///kvf/nzf/zLf/79b3/807/999//1Cv1/+234/o//+T9rYw/TrB//t1v6fH/Px6pjt+1x8Dp4/8vj///MXapuf9v/T/O5dFmj5uz0v9Fir+W/tea/vl/++b+Pw=="
|
|
6535
|
+
"debug_symbols": "tb3Rju04cmb9LnXdF5tkRDDoVxkMjLanx2ig0W202z/ww/C7z2ZQ5OI5x8lU7p1141qurowlUeInieKm/uu3//Onf/nPf/vnP//1//7tP377p//1X7/9y9///Je//Pnf/vkvf/vXP/7jz3/76/Pf/tdvj/5/Uim//VP5w/Of8ts/af+nXv+065/1+qdf/2zjn/K4/pmuf+brn+X651VPrnpy1ZOrnlz15KqnVz296ulVT696etXTq55e9fSqp1c9verZVc+uenbVs6ueXfXsqmdXPbvq2VXPrnr1qlevevWqV6969apXr3r1qlevevWqV696ftXzq55f9fyq51c9v+r5Vc+ven7V86teu+q1q1676rWrXrvqtWe92v9p1z/r9U+//vmslx5/+C0/HhPShGfJVDo8a6baQSboBJtQJ/iEXtmfkB4T0oQ8oUyQCTrBJtQJPmFWzr1y65Am5Am9snaQCTrhWTkH1Ak+oV1QHhPShDyhTJAJOmFWLrNymZV7P8q9WXpHGpAm5AllgkzQCTahTvAJs7LOyjor66yss7LOyjor66yss7LOyjor26xss7LNyjYr26zce1juh6B3sQF1gk9oF/RuNiBNyBPKBJkwK9dZuc7KdVaus7LPyj4r+6zss7LPyj4r+6zss7LPyj4rt1m5zcptVm6zcpuV26zcZuU2K7dZuV2Vy+MxIU3IE8oEmaATbEKd4BNm5TQrp1k5zcppVk6zcpqV06ycZuU0K6dZOc/KeVbOs3KelXsfLLmDTrAJdYJPaBf0PjggTcgTyoRZuczKZVbufbBoB5/QLpCrdxdJE/KEMkEm6ASbUCf4hCs3is7KOivrrNz7YLEOMkEn2IQ6wSe0C3ofHJAm5Amzss3KNiv3Plj6Ieh9cIBfUK88LL03yaPD0yW96XrfGZAm5AllgkzQCTahTvAJs3Kbldus3GblNiu3WbnNym1WbrNym5XbVVkejwlpQp5QJsgEnWAT6gSfMCunWTnNymlWTrNympXTrJxm5TQrp1k5zcp5Vs6zcp6V86ycZ+U8K+dZOc/KeVbOs3KZlcus3PuOaIcyQSboBJtQJ/TK1qFd0PvOgDQhTygTZIJOsAl1wqzc+448LxzS+86AXtk75AllgkzQCTahTui3SqlDuyBuDgP63VLpkCeUCf2GqW9P3CEG2IQ6wSe0C+I2sW9z3CcG5AllgkzQCTahTvAJ7QKfleOOse9X3DIGlAm9jnTodZ6dWnr/sr6nvX9Z/596/xpQJsgEnWATnnWsH/fevwa0Adr714A0IU8oE2SCTrAJdUKvbB3aBb1/WeuQJuQJZYJM0An9hvbRoU7wCe2C3r8GpAl5QpkgE3TCrNz7V00dfEKv/OxN2vvXgDQhT+iV+371/jVAJ9iEOsEn9MrPw629fw1IE/KEMkEm6ASbUCf4hFm596/qHdKEPKFXlg4yQS/ofWdA/6ve8r2neN/T3lO8dLAJdYJPaBf0njIgTcgTygSZMCvXWbnOyr2DeN+e3kEGpAl5QpnQC/Yd7BepATahTvAJ7YLeibzvae9EA/KEMkEm6ASbUCf4hDbAHo8Jz8rt0SFPKBOelVvqoBNswrNyKx2elZt0eFZuz/PHeicakCbkCWWCTOh1+mb0LjOgXdC7zIA0IV/Qz/D0yJ3Kov509eib1E/p9NBOvqhNkseitChP0vh3fcs0LyqLZJEuskV1kS9qk+yxaDlsOWw5bDlsOWw5LOo9+5DV+Fvv1P+2PydbP2sv0kX9b1M/Zv3EvcgXtUn9JL4oLYp6vXU9/ra3rsff9m3xNqk9FsXf9pbsJ+pFZZEs0kW2KBx935ovCsdzL2uMCgxKi6Je69T/Nj86+aL42+e5WeO5P6dOaVFeVBb1ejl30kW2KBylky9qk/Jy5OXIy5GXI0YBBunVzjXborrIF81jVMtjUbmOTC12HZka530/CrX4onmMapz3vZ2rpEV5UVkki3SRXcejSl3k8yjIOka6jlH0mTgy0T/ieOg6RtE/4shE/4jWsNV+ttrPVvtF/4ijYOsY2TpG0T/iKNg6RraOkS1HXY66HHU56jpGcRb3R6UaZ/Ggsii2oLdBnMWDbFFd5IvaRR5n8aC0KC/qjpI6ySJdZIvqIl/UHf2Z0uNsH5QW5UXhsE6ySBeFo29LnO2DfFE4nsfX42wflBblReFonXq9/kjncWYP8kVtUpzZ/enA+23Mcyy3U68n0qkskkW6KBx936IHDPJFbVL0gH5b73HeS9++OO+1b0Gc99q3IM57jb+wRXWRL2qT4rwflBZ1R78z9+gLg8LRtyCuH4NsUV3ki9qk6B+D0qK8qCxaDlsOWw5bDlsOW466HHU56nLU5ajLUZcjrjP9WcDjOjPIF7VJcZ0ZlBblRVGvHxm3RXWRL2qT4tozKC3Ki8oiWbQcbTnacrTlaNPRHo9FaVFeVBbJIl1ki+oiX7QcaTnScqTlSMuRliMtR1qOtBxpOdJy5OXIy5GXIy9HXo68HHk58nLk5cjLUZajLEdZjrIcZTnKcpTlKMtRlqMshyyHLIcshyyHLIcshyyHLIcshyyHLocuhy6HLocuhy6HLocuhy6HLocthy2HLYcthy2HLYcthy2HLYctR12Ouhx1Oepy1OWoy1GXoy5HXY66HL4cvhy+HL4cvhyrn7fVz9vq523187b6eVv9vK1+3lY/b6uft9XP2+rnbfXztvp5W/28RT/vQxXpER39wgSWK56eKKCCBlbQwbYwPcAEZhBbwpawJWwJW8KWsGVsGVvGlrFlbBlbxpaxZWwZW8FWsBVsBVvBVrAVbAVbwVawCTbBJtgEm2ATbIJNsAk2wabYFJtiU2yKTbEpNsWm2BSbYTNshs2wGTbDZtgMm2EzbBVbxVaxVWwVW8VWsVVsFVvF5tgcm2NzbI7NsTk2x+bYHFvD1rA1bA1bw9awNWwNW8PWli09HmACM1hAARU0sIIORlxJx8iSCxPYbX0884kFFLDb+hDoEw2soINtYWTJhWFrgRksoIAKGlhBB9vCyJILsRVsBVvBVrAVbAVbwVawCTbBJtgEm2ATbJElFkcosuRCB9vCyJILE9htfXA3xdyTiQLGXIccaGAFfWGkRi2BVIh8uNDAqBAHNvLhwrYw8qHGuRP5cGEGCxi2GqiggXVhJEGNnY8+X6Mlo89fqGC07/izCjrYFkafvzCBGYzZHo9AARU0sIIOtoljvsqFCcxgAQVU0MAKOogtYUvYErYxkyUFRt0cWEEH28Lo3RcmMIMFFFBBbBlbxpaxFWwFW8FWsBVsBVvBVrAVbAWbYBNsgk2wCTbBJtgEm2ATbIpNsSk2xabYFJtiU2yKTbEZNsNm2AybYTNshs2wGTbDVrFVbBVbxVaxVWwVW8VWsVVsjs2xOTbH5tgcm2NzbI7NsTVsDVvD1rA1bA1bw9awNWxt2crjASYwgwUUUEEDK+ggtoQtYUvYEraELWEjSwpZUsiSQpYUsqSQJYUsKWRJGVkSE0FHlgw0sIIOtoUjSwYmMIMFDJsFKmhg2CTQwbZwZMnABGawgAIqaCA2wTaypF8Wy8iSgQkUMCrUQAd7hRbtG/lwYQIzWEAB+/a2aJLIhwsr6GDYQhz5cGECwxbbG/lwoYBha4EGVtDBPsPp0S91MTsoP2J7YybdI45xzKW7UEED+6yp/rovxbyg/Ii9iFl1j9icmFf3CFvMrLswgwXsthSbEzPsLjSwgt3W39qkmCSU+2ubFNOEcn8bkmKiUO6va1JMFcr9DUqKyUITFTSwgg62hTHprr96STF1aGKZp5EkARU0sIIOrjNV8gNMYAaxZWwZW8aWscWM2BxtFnNiB8as2Atjh6IlY2bshQUUUEEDK+hgWxiz9C7EJthirl5/OZRixtFEBQ2soINtYczcuzCBGcSm2BSbYlNsii3m0+Y45cadQgosoIAKGlhBB9vCcacwMIHYKraKrWKr2Cq2iq1ic2yOzbE5Nsfm2BybY3Nsjq1ha9gatoatYWvYGraGrWFry6aPB5jADBZQQAUNrKCD2BK2hC1h4/lCE7aELWFL2BK2hC1jy9gytowtY8vYMraMLWPL2Aq2gq1gK9gKtoKtYCvYCraCTbAJNsEm2ASbYBNsgk2wCTbFptgUm2JTbIpNsSk2xabYDJthI0uULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLDGyxMgSI0uMLInZcc+BpkAFDaygg21h/M7nwgRmsIDYKraKrWKr2Co2x+bYHJtjG+OeHqhg2GpgBR1sC+O55cIEZjBsLVBABbutPAIr6GDY+pbFjLyJCYxR4RZYQAEVNLCCDraFkSUXJjDqlkAFYy9SYAUdbAvjV0MXJjCDvc1K1O2pMVHBsElgBR0MW39YiRl8ExO4Rv7HxL4LBVTQwAo62BZGalyYwNgLDVTQwNgLC3SwLYwnlD4j7IkJjDaLkyCeUC4UMGxx3OIJ5cIKOtgWxm/+Lkxgt/W5YykmB04UUEEDKzhniqYxHTAezK/5gAMLKKCCBlbQwTk99NmZH2ACMxhTJgcKqKCBFXSwLRwzcgcmkCPfOPKNI9848o0j39aRj/mL43DHBMaJ68jHFMaJAq4jH7MYJ1bQwXXkYybjxASuIx+TGScKqKCBFVxHfkxfjCM/5i/mgQUUUEEDK+jgOvJjbuOFCczgOvJjfuOFChpYQQfXkR+zHC9MYLROClTQwAr2YyGxF9HnB0afvzCBcxZ6GtMcLxRQQQMr6GBbOGbLD4xjHHsxevdABQ2soINtYVz9L0xgBrFVbBVbxVaxVWxx9ZfoF3H1vzCBGSyggGGLnY+r/4UVdLAtjKv/hQnMYAEFxBZJINHJIgkudLDb+u/XUsyJzP0nXykmRU7MYAEFVNDACjoYtrG2wAMMmwVmsIAChq0FGlhBB9vCuCe4MIEZ7DZ7BArYbTFlLGZLTqygg21h3AhYDsxgAQVUMBRjpYUKOtgWxgDmhQkMWzRUDGBeKKCCBlbQwbYwouLCBGKL24N4Ex/TJycqGDYPrKCD3Vaj1ceSANGSY1GAaJ2xLMDAAgqooIFRt1MkxaC0KC8qi2RS9OC4AY3pjRMNjPMuyBe1SdF9B6VFeVFUjG4R/bGOf9vG78hzzFy8KC16/nW/A80xg/EiWaSLbFFdFBILbAujG/a5GzkmL07MYGymB0aFFtgW9q5VYimP6Fk+lvfIYAEFVNBGk+THWjTjsVbNeKxlMx5r3YzHWjgj5hxGI+aYXRiNmGN2Ye6PlzlmF14YXaa/oswxu3BibGlsf+8yJVql95iLdJEtqot8UnQLjw2JDuCxIfEr/Gil+Bn+oLqo/3W0bPwSPyh+ij8oLcqLyqKQhDrO+wt7U3oct7hwXugL48z3qBCnuceGxMXwwr6d4z+tq2HiWnhhWxjXwgt72RZHc6yEMbCAsho8etKFBmJzbI6tYWvYGraGrWFr2Bq2hq1ha8sWs/4mJjBfp3pM+hunb0z6m6iggXXhWOsiBzrYFs4VL3KaS17kNNe8yGkuepFjNt5FusgW1UW+qE0qy1GWoyxHWY6yHHGN6r8JzTEFb2IFQ2OBbWF0uBbtFR3uwgwWUEAFDQxbbE5coy5sC+Ma1d9O55iCNzGDvfM84jjEMhkXKmhjeY8cM/Au8kVtUvTRQWlRVEyB/Y8f49/2v37E9vfr0IX9QjQxgf3k6u+wc0y+myigggaGLShk0fK1LfQHmMAMFlBABQ2sIDbH1rA1bA1b76UlloCKeXoTFTSwgg52W3+5nmOe3sQEZjBsGiiggmGzwAo6GLZ+/sQ8vYkJzGDYPLDb+vNojnl6pf8IMcc8vYltYVxAL4zzqQT2ujn2onf7kmNzxmo3YRvr3Qw0sIJhi80Z694EjpVvBiYwki22N5a9KbE5sfBNnN8xOa/EjURMzitxjYjJeRPbQnmACcxgAcMW2xCX2gtD0QIdbAv1AXaFxKZrBgsooM6uGTPyJlbQwbYwOvyFCcxg3HlFm8WqOBdWsNeV8d+2hREEF8ZexJGPILgw9iJaPYLgQgXDFqdyBMGFDraFkQQXJjCDYYvzLJLgQgUNrKCDbd5IjHWr4oYoc2W+1q4aqKCBFXSwTRzrWMVVfKxkdWEGC7juxMaKVhcaWEEH28K4Pb4wgRmcd/E55tOV/ryfYz7dRAfbwujzFyYwg3EsPFBABQ1cd74xn25iWxhX/AsTmMECCqhg7EULbAujo18YzyhxhKKjX1jAvhd9oCHHzLmJfS80Dlb0+QsdjOeh3hli5tzEBGawgAIqGLY4WNHnL3SwLYw+f2ECo81ij40jbxx548gbR9448pUjXznylSNfOfKVI1858pUjXznylSNfOfLOkXeOvHPknSPvHHnnyMcij9GPYwrcxAr6xJjsVvo4TY7JbhMFjGPhgQZWMB6oHoFtYVx5+xhJjsluEzMYT26xDXHlvVBBAyvoYFsYffPCBGYQW8aWsWVsGVvGFlfePmSTYy5bsWiduNz24ZIcc9kmVtDB2N5+IsZctokJzGABu61Gm0UvvNDACjrYFkYvvDCBGSwgNsWm2BRb9MI+6JNjLtuF0QsvTGAGCxi2EqigLYxOdmH8B3EsxhPvwNicOOXiEnphWxiX0Bg4iUlpEzMYmxOnclxCLwxbHIC4hF7YbTE0EZPSSlyzYlJaicfNmJQ2MQYD4sjHzfSFBRRQQQMr6GDY+kbGpLQS1+6YlFbichuT0ko8m8b0sxIPYzH9bGIFHWwLo/NemMAoJoEGVtDBtjD65oUJjGL9AMSEsBLPezEhbGIGC9jbrMXOR9e70MAKOtgWRte7MIEZLCA2wSbYBJtgE2yKTbEpNsWm2BSbYlNsik2xGTbDZtgMm2EzbIbNsBk2w1axVWwVW8VWsVVsFVvFVrFVbI7NsTk2x+bYHJtjc2yOzbE1bA1bw9awNWwNW8PWsDVsbdliQtjEBGawgAIqaGAFHcSWsCVsCVvClrAlbAlbwpawJWwZW8aWsWVsGVvGlrFlbBlbxlawFWwFW8FGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJjahogW3hiIqBCcxgAQVU0MAKYmvLVh8PMIEZLKCAChpYQQexJWwJW8KWsCVsCVvClrAlbAlbxpaxZWwZW8aWsWVsGVvGlrEVbAVbwVawFWwFW8FWsBVsBZtgE2yCTbAJNsEm2ASbYBNsik2xKTbFptgUm2JTbIpNsRk2w2bYDJthM2yGzbAZNsNWsVVsFVvFVrFVbBVbxVaxVWyOzbE5Nsfm2BybY3NsZEklSypZUsmSSpZUsqSSJZUsqWRJJUsqWVLJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLYr6XxCuHmO8lMU4b872kL7aZY2aX9PlIOaZdlXhBF9OuLoxOduFTIfG5ilhobmIBBVTQwAo62BbGAtUXYlNsik2jgga2hfYAYxti583ACkaF2PneGSTePsRUqokJzGABBVTQwAo6iM2xOTbH5tgcm2NzbI7NsTm2hq1ha9gatoatYWvYxlLxcUaNxeIHtoltLBg/MIEZLKCAChpYQQexjeXgS2D82/5Q3MYC8BaYwAwWUEAFDaygg21hwVawFWwFW8FWsBVsBVvBVrAJNsEm2ASbYBNsgk2wCTbBptgUm2JTbIpNsSk2xRb9ON7VxeynC6MfX5jADBZQQAUNrCA2w1axjT7vgRksYNRtgb1CvC+MpeIk3hfGWnETM1hAARU0sIIOtoUNW8PWsEU/jneWsXDcRAUNrKCD7cISc7AmJjCDBRRQQQPDJoEOtoXxMYgLE5jBqKuBUcECo0KLL7o8wARmsIACKmhgBR3EVrAVbNHn+2vcEovDTRRQQQPrwujd/b1piSlZEh/jiDlZExXsFfrL0hLTsiY62BZGP74wgRksoIAKYlNs0Y8lDkv044HRjy8MWw3MYNhij6MfSzRf9GONnY9+fGEFu01DHP14YPRjjbMk+rGGOPqxxlkS/VjDFtfuCxU0sIIOtoXR5y9MYAaxOTbH5tgcm2OLLq3RJNF5+5ugEnO4xOLIR+e90MG+kdabJOZwTUxgBgsYdSUwKvTmi9XYpL+bKbEa28QMFlBABQ2soINh6+dDzP2amMCweWABBVQwbC2wgg7OG84Ss8AmJjBuOHNgAQVU0MAKdlt/W1JiKtiF0aUvTGAGCyigggZWEJtgU2yKTbEpNsWm2BSbYlNsis2wGTbDZtgMm2EzbIbNsBm2iq1iq9gqtoqtYqvYKraKrWJzbI7NsTk2x+bYHJtjc2yOrWFr2Bq2hq1ha9gatoatYWvLFrPHJiYwgwUUUEEDK+ggtoQtYUvYEraELWFL2BK2hC1hy9gytowtY8vYMraMLWPL2DK2yJL+ErbEnLKJGSxgXThCIQcmMCYGaGAFfeHo0iUwgwUUUEEDK+hgWzi69EBshs2wGTbDZtgMm2EzbBVbxVaxVWwVW8VWsVVsFVvF5tgcm2NzbI7NsTk2x+bYHFvD1rA1bA1bw9awNWwNW8PWlq08HmACM1hAARU0sIIOYkvYEraELWFL2BK2hC1hS9gStowtY8vYMraMLWPL2DK2jC1jK9gKtoKtYCvYCraCrWAr2Ao2wSbYBJtgE2yCTbAJNsEm2MbtgQUmMIOh8EAFDeyKPjZYYvbYxLYwAqTP7Sgxe2xiBgsooIIGVtDBtrBiq9gqtoqtYqvYKraKrWKr2BybY3Nsjs2xOTbH5tgcm2Nr2Bq2hq1ha9gatoatYWvY2rKNLz1emMAMFlBABQ2soIPYEraELWFL2BK2hC1hS9gStoQtY8vYMraMLWPL2DK2jC1jy9gKtoKtYCvYCraCrWAr2Aq2gk2wCTbBJtgEm2ATbIJNsAk2xabYFJtiU2yKTbEpNsWm2MgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMgSIUuELBGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyRMkSJUuULFGyREeW5MC2cGTJwLBJYAYLGDYLVDBsLbCCDraFI0sGdluf5FliUt/EbmuxvZElLbYssuTCbutzOEtM6pvoYLe1/qQWk/omJjBsNbCAAipoYAUdbAsjSy5MIDbH5tgcm2NzbJEafdJOiYl60qL5ej7oI9qs58NEAyvoHaP5ej4MjIl6ExOYwdKxBIZNAxU0sIJh88Bu6z+bKzFRT2OILibqTey2/lu5EhP1tL8eLjFRb2K3pSjW80HzKFYX9o6u/bVoiRl3mmN7e0efaGDfnBy23nk1vl0es+gmCqiggRV0sC3snXdiArEJNsEm2ASbYBNsgk2xKTbFptgUm2JTbIpNsSk2w2bYDJthM2yGzbAZNsNm2Cq2iq1iq9gqtoqtYqvYKraKzbE5Nsfm2DxscXq6ggZW0MG2sD3AsLXADBZQ10kbvfvCCjq4TvCYWzcxgRksoIAKGlhBB7ElbAlbwpawJWwJW8KWsCVsCVvGlrFlbBlbxpaxZWwZW8ZGVMTcuonYCraCrWAr2Aq2gq1gK9gEm2ATbIJNsAk2wSbYBJtgU2yKTbEpNsWm2CJA+qvvEnPrJjrYbfH+OObWTUxgt8Wr5Dq+WD+w2+Jdc8ytm2hg2Gqgg21hBMiFCcxgAQVU0EBsFVvF5tgcm2NzbI7NsTk2x+bYHFvD1rA1bA1bw9awNWwNW8PWli3m1k1MYAYLKKCCBlbQQWwJW8KWsCVsCVvClrAlbAlbwpaxZWwZW8aWsWVsGVvGlrFlbAVbwVawFWwFW8FWsBVsBVvBJtgEm2ATbIJNsAk2wSbYBJtiU2yKTbEpNsWm2BSbYlNshs2wGTbDZtgMm2EjS5wscbLEyRInS5wscbLEyRInS5wscbLEyRInS5wscbLEyRInS5wscbLEyRInS5wscbLEyRInS5wscbLEyRInS5wscbLEyRInSxpZ0siSRpY0sqSRJY0saWRJI0saWdLIkkaWNLKkkSWNLGlkSSNLGlnSyJJGljSypJEljSxpZEkjSxpZ0siSRpY0sqSRJY0saWRJI0saWdLIkkaWNLKkkSWNLGlkSSNLGlnSyJJGljSypJEljSxpZEkjSxpZ0siSRpY0sqSRJY0saWRJI0saWdLIkkaWNLKkkSWNLGlkSSNLGlnSyJJGljSypJEljSxpZEkjSxpZ0siSRpY0sqSRJY0saWRJI0saWdLIkkaWNLKkkSWNLGlkSSNLGlnSyJJGljSypJEljSxpZEkjSxpZ0siSRpa0lSXyWFkij5Ul8lhZIo+VJfJYWSKPlSXyWFkij5Ul8lhZIo8HtoQtYUvYEraELWFL2BK2hC1hy9gytowtY8vYMraMLWPL2DK2gq1gK9gKtoKtYCvYCraCrWATbIJNsAk2wSbYBJtgE2yCTbEpNsWm2BSbYlNsI0s80MG2MLKkr/YjMe1yYga7rc8ulZh2OVFBA7utTzSVmHapfb6nxLRL7TM7JaZdTkxgBgsooIIGVtBBbJElfaUdiWmXEzNYQAEVNLCCDraFDVvD1rBFlvR1iCRW3JuooIEVdLBNjNmaExOYwQIKGLYaaGAFHWwLI0suTGAGCyggtsiSPntXYmbnRF8YqXFhr9CXwZGYral9Iq/EbM2JFXSwb29fBkditubEBGawgAIqaGAFHcQm2ASbYBNsgi3yoU9HlpitOTFsGuhgWxj5oNGokQ8XZrCAAipoYAUdbAsNm2EzbIbNsBm2SAKNAxt9vk9SlpiBqRbHOPr8hQIq2LfXos2iz1/oYFsYff7CbrPYhujzFxZQQAUNDFtsevT5C9vC6PMXJjCDBRRQQQOxRZ+3aKjo84ExA3Nit/VpgRIzMCd2W1+bRWIG5sRu66sTSczAnNhtff6OxAzMiW1h9PkLE5jBAgqooIHYEraELWPL2DK2jC1jy9gytowtY8vYCraCrWAr2Aq2gq1gK9gKtoJNsAk2wSbYBJtgE2yCTbBFPvQViCXW+puYwAyGLU6jyIcLFTSwgg62hZEPFyYwg9gMm2EzbIbNsBm2iq1ii9ToE8kkpnOqR2eIfLiwV+gvjSWmc05MYAYLKKCCUbdndUzRvA5Ao32jz18ooIJ9jz36ZvT5Cx1sE2OK5lCURwIzWEABFTSwzm0oo88PXOdOSQ8wrW2IPn9hAbHR5wt9vtDnC32+0OcLfb7kdaaWnMECCqhrG7KBFcRGny/0+UKfL/T5Qp8v9PlCny+jz8c2FFqy0JKFlhRaMvp8X/5QYormxGjJqBt9/kIFDYx9a4EOtoXR5y9MYAYLKGC39YkMErM1J64TPKZoap/eIDFFc2ICM8ipER39Qg6WcbCMg2UOctpXDlblYFUOVuVgVQ5W5WBVTsTKiVg5NaL790kaEpMxJxaw123RDtH9W2xZ3B5cWEEH28K4PbgwgRksYNSNUyNC4UIH28SYdql9AS+JaZcTM1jAuClrgQoaWEEH28IIhQsTGLf5HqiggbEXAx181rU+zUNiguXEBOaOKbCAAmrHHGhgBR1sC8sDTGAGCyggtvECNLZhvAANHC9AByYwgwUUUEEDK4hNsCk2xabYFJtiU2yKTbEpNsVm2AybYTNshs2wGTbDZtgMW8VWsVVsFVvFVrFVbBVbxVaxOTbH5tgcm2NzbI7NsTk2x9awNWwNW8PWsDVsDVvD1rC1ZdPHA0xgBgsooIIGVtBBbAlbwpawjckUJVBABaMfa2AFHYx+3ANER2oMTGD04xZYQAEVNLCCDraFIzUGJhBbwVawFWwFW8FWsBVsgk2wCTbBJtgEm2ATbIJNsCk2xabYFJtiU2yKTbEpNsVm2AybYTNshs2wGTbDZtgMW8VWsVVsFVvFVrFVbBVbxVaxOTbH5tgcm2NzbI7NsTk2x9awNWwNW8PWsDVsDVvD1rC1ZYtplxMTmMECCqiggRV0EFvClrAlbAlbwpawJWwJW8KWsGVsGRtZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmSJkSVGlhhZYmRJJUsqWVLJkkqWVLKkkiWVLKlkSSVLKllSyZJKllSypJIllSypZEklSypZUsmSSpZUsqSSJZUsqWRJJUsqWVLJkkqWVLKkkiWVLKlkSSVLKllSyZJKllSypJIllSypZEklSypZUsmSSpZUsqSSJZUsqWRJJUsqWVLJkkqWVLKkkiWVLKlkSSVLKllSyZJKllSypJIllSypZEklSypZUsmSSpZUsqSSJZUsqWRJJUsqWVLJkkqWVLKkkiWVLKlkSSVLKllSyZJKllSypJIllSypZEklSypZUsmSSpZUsqSSJZUsqWRJJUsqWVLJkkqWOFniZImTJU6WOFniZImTJU6WOFniZImTJU6WOFniZImTJU6WOFniZImTJU6WOFniZImTJU6WOFniZImTJU6WOFniZImTJU6WOFniZImTJU6WOFniZElM8rT+axqJSZ4XRpZc2G39hzUSkzwndltfXkdikudEBbutr9woMclzYtgksC2MLLkwbDUwg2GzQAEVDFvsUGTJhd0WT7cxyfPCyJJ4pI1JnhMz2G05tjey5EIFDaygg21hZMmFCcwgtoqtYqvYKraKrWJzbI7NsTk2x+bYHJtjc2yRGjlaPfIhxxGKfOgr6klM3JxYQQf79vZ19iQmbk5MYAYL2G19dr/ExM2JBlbQwbYw8qFP9JeYuDkxgwUUUEEDK+hgW5ixRT70nyBITNycWMCweaCC3RaTdmLi5sRui/k7MXHzwsiHmMoTEzcnZrCAAipoYAUdbAsFm2ATbIJNsAk2wSbYBJtgU2yKTbEpNsWm2BSbYlNsis2wGTbDZtgMm2EzbIYt8iEm+MTEzQsjHy5MYNji1Ih8uFBABQ2soINtYeTDhQnE5tgcm2NzbI7NsTm2hq1ha9gatoatYWvYGraGrU2bxsTNiQnMYNStgVHBA9vCyIe+YqHGZMyJGSyggAoa2Ov2+VEaEyzjJNCYYBnHWGOC5UQFDex73GdNaUywnNgWRp+/MC1Fwbb6vD5Wn9fH6vP6WH1eH6vP62P1eX2UtjZHHmACM8i+RZ/vE6g0JlhO7DaNutHnL3SwLYw+r3Hcos9fmMECCqiggRUMW5wE0ecHRkcfBys6usb5EB39QgEVtHUAjINlHCzjYFUOVnT0CzPIwaocrMrBqhysysGqHKzaFvoD5NSILq1xekaXvtDAXteiHaJLW2xZdOmB0aUvTGAGCyigggZG3X5qxEzJiQnMYNQtgQIqaGDcdtRAB9vC6OgXJjCDBRRQwf6S5RG2mCsxMOZKXJjADBZQQAUNrCC2jK1gK9gKtoKtYCvYCraCrWAr2ASbYBNsgk2wCTbBJtgEm2BTbIpNsSk2xabYFJtiU2yKzbAZNsNm2AybYTNshs2wGbaKrWKr2Cq2iq1iq9jiFWp//6ZjruWFbWEkQV+XVWOu5cQMhk0CBVQwelac9iMfBjoYtp6IY67lhQnMYAEFVNDACjq4bGOu5YUJzGABBVTQwAo6iC1hS9gStoQtYUvYEraELWFL2DK2jC1jy9gytowtY8vYMraMrWAr2Aq2gq1gK9gKtoKtYCvYBJtgE2yCTbAJNsEm2ASbYFNsik2xKTbFptgUm2JTbIrNsBk2w2bYDJthM2yGzbAZtoqtYqvYKraKrWKr2Cq2iq1ic2yOzbE5Nsfm2BybY3NsZEkmSzJZksmSTJZksiSTJZksyWRJJksyWVLIkkKWFLKkkCWFLClkSSFLCllSyJJClhSypJAlhSwpZEkhSwpZUsiSQpYUsqSQJYUsKWRJIUsKWVLIkkKWFLKkkCWFLClkSSFLCllSyJJClhSypJAlhSwpZEkhSwpZUsiSQpYUsqSQJYUsKWRJIUsKWVLIkkKWFLKkkCWFLClkSSFLCllSyJJClhSypJAlhSwpZEkhSwpZUsiSQpYUsqSQJYUsKWRJIUsKWVLIkkKWFLKkkCWFLClkSSFLCllSyJJClhSypJAlhSwpZEkhSwpZUsiSQpYUsqSQJYUsKWRJIUsKWVLIkkKWFLKkkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImRJTBM1G5jBAnZbf9mkY5rohfHU0QIr6GC39bdGOqaJXtj3rb+C0jFN9MIChi3EkSUXdlv/fZbGNNGJDvbRgxoVYgzkwgRmsIACKmhgBR1ctpgmOjGBGSyggAoaWEEHsSVsCVvClrAlbAlbwhZDoP3nbTqmfvbftOmY+tln9+uY+nmhggbG9nqgg21hDIFemMBu67810jH180IBu63/7EjH1M8LK+hgWxhDoBcmMIMFFBCbYBNsgk2wKTbFptgUm2JTbIpNsSk2xWbYDJthM2yGzbAZNsNm2AxbxVaxVWwVW8VWsVVsFVvFVrE5Nsfm2BybY3Nsjs2xOTbH1rA1bA1bw9awNWwNW8PWsLVlG1M/L0xgBgsooIIGVtBBbAlbwpawJWwJW8KWsCVsCVvClrFlbBlbxpaxZWwZW8aWsWVsBVvBVrAVbAUbWWJkiZElRpYYWWJkiZElRpYYWWJkiZElY+pn/7mjjqmfFzrYFo4sGZjADBYwbBqooIFhK4EOtoUjS2pgAjOoCyv/beW/rfy3IwkGCrhViC1rgRV0sG9Z/9mcjombFyYwgwUUUEEDK+ggtoYtkqBF+0YSXFhAARU0sIIOtolj4uaFCcxgAQVU0MCw9fNsTNHsP7HTMUXzwgwWMOpKoIIGVjCu6BrYFkafvzCBGSyggAoaGK0TGL37wgRmMPbCAgVU0MB6rZmsMRlzYlsY621fmMAMFlDAaJ0a6GBbGP34wgRmMLbXA6NC1O19s/af7mlMpZyYwNwxDne/zk+UjnE+9B470cDaMY58v85PbAvrA0xgBgsYtjg1qoIGVtDBtnB8Bii2bPTjaIfRjwfSOh5148h7BR1sC9sDjL2Ik6BlsIACxl6ErRlYwW6Lx52YNDkwJk1O7LaUAjNYwLDVwG7rs/M0Jk3WeNyJSZM1Ho1i0uTEtjBFXQ0soIAKRl0LbPPkGhMhL0xgBgXsHcdCPD7hN7AtjGXxLWyxLP6FGSyggAoaWEFfKNGo0WaSwQIKGDvvgQZW0MHYizhusQD+hQnMYAEFVNDAunB8fzOO/Pj+5sDYi2jf6LwXCqhg34s8ilXQwbYwOu+FCex7IXGexVL3FwqooIEVdLAtjM57YQL7XuTYzd55JxpYwdiL8WdtYXTeCxPY96LEqTy+rjtQQAUNrKCDbWLMXax9HqnG3MWJAipoYAV73ZhlcH0POzA+hXFhAjNYwL4Xfa6lxtzFiQZW0MG2MMdeSGBsrwYaWMFoh0dgWzi+ozswgRksoIAKGlhBbAWbYBNsgk2wCTbBFv04xyGUtlAfYAKjdaKptYACKmhgBR1sC+PSPA5AXJovzGABw9YCFTSwgr4O1ujdgaN3D0xgBgsoIOdD5XyIi/Boyd6PJyaw1+2Ld2vMMaz989EacwwnKmhg34sS/SJ694VtYfTuC8MWRyguzSUaKi7NFwqooIEVdLBdaDHHcGICM9htPZUtFoecqKCBFXSwLex9fmICu61Ps7OYj1j75EaL+YgTFTSwgg62hfkBJjCD2HLYWqCCBlbQwbawPMAEZrDb+rxBi7mLExU0sIIOtoU9HyZ2W1+kzWLu4sQCCqiggRV0MNIzFHH1vzCBGSyggFE32jeSoE9NtJiaODEqxJGPT9pcKKCCBlbQwbYwPmlzYbRDnMrR5zWORfT5Cw2soINtYSTBhX0v+j2MxdKOEwsoYLdZnOuRBBdW0MG2MJLgwgSGLdo3kqDPELSYmjhRQQMr6GCbxyImLE5MYAYLKKCCBtaFvc+XPnxuMTVxYgZjLzRQwNiLUcHACsZeeGBbGH3+wr4X/dO3FhMWJxZQQAW7bWxZ9PkLHWwLo89fmMAMFjDqSmDrOx8YPbbGHkePvVDA2DILNDC2LNoheuyFbWFc52u0Q1znL8xgAQVU0MCwtUAH28Lo3RcmMINl7XFc0T2aOq7oFzrYFsYVvY8NWkwsnJjBAj73oli0Tu/dEw2soINtYe/dE9PEmJL3PF0lOG2cNy4by8a6sQVrcN3YN25wemycNs4bl41lY91486bhjf1KvnGD8/DW4LRx3nh4W3B4+z2RxVy9J6fg8PYbGYvZeot94waXx8Zp4/CWcJWysWysG9vGdWPfuMHy2DhtvHll88rmlc0rm1c2r2xe2by6eXXz6ubVzaubV6N+3D3FpL3FDa5Rvz9zWsykWxz1Jdq2lo1lY93YNq4b+8YN9sfGaePhjb7gwxvnpMvGurFtXDf2jRvcHhunjfPGm7dt3rZ52+Ztm7dt3oa3PB4bp43zxmVj2Vg3to3rxr7x5k2bd+RA3MmW0d/7r4KsJM7DknxjzsMy+nvc7JfR3y/OG5eNZWPdeHgH143H9g9Xg0d/vzjq95+rWBn9t/+CxMrovxeP7Y/9Gv03zqUy+u/FaeO88aifg2Vj3ZjzvEjd2DfevLp5dfPq5h39d7AN72Dd2ODR1+L2u4y+drFvHNsQd9Vl9LWL08axDXH/VUZfu3hsQxyX0dcuto2HN47L6GsXN3j0tYvTxnnjsnF442a4jL52sW1cN/aN22IZfS3OB3lwzsuDYyoP3dg2rhv7xg0efepisktS3rhsLBvr6ney9UEZffBi37jBow9enDbOGxe49x1/RDP0S+XEDBZQQAUNrKCDbaFgE2yCTbAJNsEm2ASbYJOwxTHWB5jADBZQQAUNrKCD2AybYTNshs2wGTbDZtgMm2Gr2Cq2iq1iq9gqtoqtYqvYKjbH5tgcm2NzbI7NsTk2x+bYGraGrWFr2Bq2hq1ha9gatrZsMYlsYgIzWEABFTSwgg5iS9gStoQtYUvYEraELWFL2BK2jC1jy9gytowtY8vYMraMLWMr2Aq2gq1gK9gKtoKtYCvYCjbBJtgEm2ATbIJNsAk2wUaWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImRJUaWGFliZImNLMmBYSuBDraFI0sGJjCDBRRQQQOxjSyxwLZwZMnAsElgBgsYNg9U0MBu6xMeLCaceYo9jiwZGFlyYQIzWEABFTSwgtgMW8VWsVVsFVtkyYXYKraKrWKr2BybY3Nsjs2xOTbH5tgcm2Nr2Bq2hq1ha9gatoatYWvY2rLFlLWJCcxgAQVU0MAKOogtYUvYEraELWFL2BK2hC1hS9gytowtY8vYMraMLWPL2DK2jK1gK9gKtoKtYCvYCraCrWAr2ASbYBNsgk2wCTbBJtgEm2BTbIpNsSk2xabYFJtiI0sqWVLJkkqWVLKkkiWVLKlkSSVLKllSyZJKllSypJIllSypZEklSypZUsmSSpZUsqSSJZUsqWRJJUsqWVLJkkqWVLKkkiWVLKlkSSVLKllSyZJKllSypJIllSypZEklSypZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOljhZ4mSJkyVOlvjIkn5n4yNLBiYwg2GrgQIqaGAFHWwLR5YMTGDYPLCAAipoYAUdbAtHlgxMILbIkj5n0GIW30QFDaygg23hyJKBCcxgAQVU0MAKOtgmtscDTGAGCyigggZW0EFsCVvClrAlbAlbwpawJWwJW8KWsWVsGVvGlrFlbBlbxpaxZWwFW8FWsBVsBVvBVrAVbAVbwSbYBJtgE2yCTbAJNsEm2ASbYlNsik2xKTbFptgUm2JTbIbNsBk2w2bYDJthM2yGzbBVbBVbxVaxVWwVW8VWsVVsFZtjc2yOzbE5Nsfm2BybY3NsZEkjSxpZ0siSRpY0sqSRJY0saWRJW1lSHytL6mNlSX2sLKmPlSX1sbKkPlaW1MfKkvpYWVIfK0vq44EtYYss6bMpaswZnFhAARU0sIIOtoWRJRdiy9gytowtY8vYMraMLWMr2Aq2gq1gK9gKtoKtYCvYCjbBJtgEm2ATbIJNsAk2wSbYFJtiU2yKTbEpNsWm2BSbYjNshs2wGTbDZtgMm2EzbIatYqvYKraKrWKr2Cq2iq1iq9gcm2NzbI7NsTk2x+bYHJtja9gatoatYWvYGraGrWFr2NqyxazDiQnMYAEFVNDACjqILWEjSxJZksiSRJYksiSRJYksSWRJIksSWZLIkkSWJLIkkSWJLElkSSJLElmSyJJEliSyJJEliSxJZEkiSxJZksiSRJYksiSRJYksSWRJIksSWZLIkkSWJLIkkSWJLElkSSJLElmSyJJEliSyJJEliSxJZEkiSxJZksiSRJYksiSRJYksSWRJGlnSAh1sCyNL+vS5GnMcJ2aw2/qPB2rMcZyoYLf1dblrzHH0Pv+rxhzHiW1hZMmFCcxgAQVU0EBsjs2xRZZItENkyYUZLKCAChpYQQfbxJipOTGBGSyggAoaWEEHsSVsCVvClrAlbAlbwpawJWwJW8aWsUWW9CkwNaZkThRQQQMr6GBbGFlyYQKxFWzjzYoHxjuUGuhgWzjeoQxMYAYLKKCCBmJTbIrNsBk2w2bYDJthM2yGzbAZtoqtYqvYKraKrWKr2Cq2iq1ic2yOzbE5Nsfm2BybY3Nsjq1ha9gatoatYWvYGraGrWFry1YeDzCBGSyggAoaWEEHsSVsCVvClrAlbAlbwpawJWwJW8aWsWVsGVvGlrFlbBlbxpaxFWwFW8FWsBVsBVvBVrAVbAWbYBNsgi3uCWSggAoaWEEH28LIkgu7rc8erTH7cmIBw+aBCtrCERUDE5jBAgqoYC/WZw7WWJdwooN90/tS8DXWJZyYwNh0CSyggAoaWEEH28KIigsTiM2xRVT0OaQ15od6n75ZY3roxAo62BZGVFyYwAwWUEBsERUWxy2i4kIH28SYEDoxgRksoIAKGhi2EuhgWxhRcWECM1hAARUMWw2soC+Mjt5/v1RjVcGJFZzD8lXWC44q6wVHlfWCo8p6wVFlveCosl5wVFkvOKqsFxxV1guOKgVbwSbYBJtgE2yCTbAJNsEm2ASbYlNsik2xKTbFpth0vnKoY0LohW2hzZcAdUwIvTCDcYxboIAKGlhBB9vCSIIL41EjTsQxkDCwgN1WBypoYAUdbAsjCS5MYLfVOD0jCS4UUEEDK+hgWxhJcOF6jBozO+PJZ8zsvHA9D42ZnfHkM2Z2XpjB2EgJFFDBeB7KgRV0MDayPzCNmZ0XJjCDBRRQQQOjSTzQwbYwrv4XJjCDBRRQwW7zaIfo/v23b3XM4bwwgfHfxpZFl77QwajQ037My7wwgRksoIAKGlhBB7FFl/Y43NGlL8xgAQVU0MAKOthtLdohuvSFCcxgt7VokujSFyrYbS02Pbr0hQ62hdGlL0xgBgsooILYoku32KHo0he2hdGlL0xgBgsooC7s3bQ9ol/0i3B7RB/qF+GJFfSOcSL2Hjsw5k9OTB1bYAYLKKCCBlbQwbYwPUBsvce2iPiYPzlRQAUNrKCDbWHvsRO7rb/krjF/cmIBBQxbNEk2sIJhi03PbWF5gAnMYAEFVNDACmLrfb7l2KHe5ycmMIMFFFBBA+tCjbrRDprADBZQQAWjrgZWsO9F/5FqjZmSF1rYamACwxZNbQUMW7SDKdhtcW2JmZITu63/lLXGTMkLe+9ucRWJmZITu63/XLXGTMmJ3VZih3rvnhi22KFawbDFDtW20MMWO+QJDFvskBcwbLFDrmC3SexQv2BP7LYYoouZkhe2NTY4ZkpemMECCqhg2KJJIjUudDBsfY9jpuTEBGawgAIqaGAFHcSWsEU+xNhVzH5s8QwZsx9bPAzG7MeJbWEkwYUJZHsz25vZ3sz2ZrY3s72Z7c1sb2F7C61TsBVs0efHDkXvHjskbK+wvdG7LyyggGyvsL3C9grbK2yvsr3K9irbq2yv0jqKTbFF7x47FP147JCxvcb2Rj++0ECOprG9xvZWtreyvZXtrWxvZXsr21vZ3krrVGwVW/TYsUPRN8cOOdvrbK9z9jlnX+NoNo5mi7otsIBrtLkykl4ZSa+MpMccwxaDJDGbsPXfVtaYTdhiGCBmE040sG9v/01pjdmEE9vC6G8XJjCDBRRQQQOxJWwJW/TN/vPYGrMJJ2awgAIqaGAFHWwLC7aCLa7H/Se0NWYIthjMiBmCE9vC6JsXJjCDBRRQQQO7rS8IU2OG4MS2MPrmhQnMYAEFVNBAbHE9jnGNmCF4YVyPL0xgBgsooIIGVhBb9GOLEzH68YUJzGABBVTQwAp2WzwfxwzBC+N6XKOLxPW4Rjv4ei8yZgheKKCCBlbQwfUWZswQvDCB2Bq23udbPP7GDMGJBlbQwTYxZghOTGAGCxg2DVTQwAo62BZG7+5rw9SY3zfRwbYweveFCexbFk/CMb/vwuib8fgbs/MmZjD+29iG6LEXKti3rI1iFXSwb1k8OMbsvIkJzGABBVTQwAo6iE2xKbbox/HMG7PzJgqooIEVdLAtjH58YQKxGbbox32Z5Rqz8yYaWEEH28LoxxcmMIMFxFaxVWwVW8VWsTk2x+bYHJtjc2yOzbE5NsfWsDVsDVvDFv24rzxdY3beRAMr6GC70GN23sQEZrCAYbPAsLVAAyvoYFsY1/kLE5jBAgqILdZKePQBCI/peYt94wbHWgmT08Z547KxbDynFfpjTeP1x5rG6481jddj6t3z7yRYNtaNbeO6sW/cYHlsnDbOG29e2byyeWXzyuaVzSubVzevbl7dvLp5dXjjHIlBt/5ywseEvAsrOKQa3GB7bJw2zhuXjWVj3dg2rhtvXhte71wfG6eN88ZlY9lYN7aN68bhTXFCxWIsF8diLJPDm6IBYzGWyWVj2Vg3to3rxr5xg9tj483bhjd6dysby8a6sW1cN/aN2+KYurd4eGuwbKwbj/otuG4c9fs7Do+5epNjMZbJUb8viuwxXW9x2Vg21o1t47qxb9zgETAXb968efPmzZs3b968efPmzZs3b96yecvmLZu3bN6yeUco9eE3TyOULq4b+8YNHqF0cbzxjsMy8qav4Oxp5M3FdeNRUoIbPPLm4rRx3rhsLBvrxrZx3XjzjmjpI4SeRrTkOCVHtFwsG+vGtnHd2DeOx7Zo5bhJuTCBGSyggAoaOAc5PI3kyNFLRnJcnDcuG4/d8WDd2DauG/vGDR7JcXGMKkT5lsECCqiggRV0cI5IeX7MURAfCyaOvRkLJk7WjW1j9iY/fGP2JqfHxmnjvHHZeO1QTMqbaGAFHWSHxpDgwARmUNce521vrjQY7Bs3uGx7U7a9KdvelG1vimysG9vG7FBhhwo7JOyQsEPCDkkBaT6h+cboYOyxbHujj43TxnnjbW902xvd9ka3vdHtnNDtnNDtnDB2yNghY4eMHTJ2yNgh43wwms9ovvUDAM/rBwCe1w8AfCys+OgvFXwsrDjZNq4b+8YNHilxcdo4b1w23ry+eX3z+ub1zeubt23etnnb5m2bd9xTlNj3cU9xcd3YN26Lx2KKk4dLg/PGZWPZWDe2jevGvnGDR3ZcvHlHdvSXMT4WWZwsGw+vB9vG4e0vRnwsvjg5vP19iI/FFyeHty8m52PxxcllY9lYN7aN68a+cYNHuly8ecvmLZu3bN6yecvmLZu3bN6yeWXzyuaVzSubVzavbF7ZvLJ5ZfPK5tXNq5tXN69uXt28unl18+rm1c2rm9c2r21e27y2eW3z2ua1zTtuVCT6yLhRubjB4xno4uGNc3U8A11cNpaNdWPbuG7sGzd4ZNTFm9c3r29e37y+eX3z+ub1zeubd2RRBPJYYPIh0QdH/lw86rRg37gtHgtMTk4b543LxlGzvz/xsXjkOEZj8cjR/mPxyMllY9k4tjluDMfikZPrxr4x55jkzbtliGwZIluGyJYhsmWIXBkS25Prxr4x55iMDBnbMzLk4rzx5t0yRLYMkS1DZMsQ2TJEtgwR4dwW2dpZtnaWrZ1Hhoztka2dZWvnLUNkyxDZMkS2DJEtQ2TLENkyRHQ7vleGDN7aWbd21u34jgwZbFs7bxkiW4bIliGyZYhsGSJbhoht+2vb/m4ZIluGSN3auW7tXLd2HhnSJzu7jAy5eLRz1B8ZcrFv3OCRIf09o8vIkIvzxmVj2Vg3to3rxsNbgxs87m1GXx550t/muYx7m4tlY914O5fa1mfbdkwbx1Qfj43Txnljjqk+ZGPd2DauG/vGnMO6ZZSmtPHYrxasG9vGUb9PlXYdWWSxnSOLBo8sujhtnDcuG8vGurHB0V9SDEbqWPj8Yt+4Bfd7tpjutzhtnDcuG8vGurFtXDf2jTdv3bxjAfW+WpzrWLy5/wLCdSzYPP79WLA5xhR1LNgcAy86Fmy+WDbWjW3jurFvHNsWg9k6Fmy+OG0c3hTtPBZsjvFLHQs2xziijgWb+7w217Fg89iXsWDzxeyjjXO4vytzG+fwxbKxbmwb14194waPc/jitPHwpuDhzcGysW5sGw9vCfaNGzzO7YvTxnnjsrFsPGr2NrRxrewTS93G9THewNi4PrZow3F9vNg2rvC4Dl486niwbDzqtOBxjKKtxsLkj2ir8WGBi3Xjcayjfa5+N9g3btS/+l38+6vfDc4bl42FdhjXqYtt4wrXbX/H9Wjs47geXby1Q3xqx+NP41M7Hq0cn9q5sC2MT+1cmMDcMYTxUR2PuvFRnQsr6GCbGJPcan9H6jHJbWIGCyigggZ2W5zrMcltYlsYn9e6MIEZLKCAXRH9JmbBTXSwLYzv61yYwAwWUEAFsWVs8X2d6IsxC+7C+L7OhQnMYAFltXpR0MB1sGLqW42eGZPcanTMmOQ20cG2MD6qE501JrlNzGABBVTQwAqGTQPbwviozoUJzGABBbS1b/F9negw47O1F6a1Q/ElnQsLKGBserRZfCfrwgrGpsfpGd/JGhjfyRoVHJtjc2yOLb6TdSGHxTkszmFxDkvD1pbCx2Woz1RyH5ehPnnIfVyG+kem3Mdl6GLbuG7sGzd4XIYuThvnjcvGm3dchvpMI/dxGbq4buwbN/i6xRqcNs4bl41l482bN2/evONSZdGG43Fv8HjcuzhtnDcuG8vGurFtXDfevGXzjse6eNXs4zGt/xDOfTymXdzg8Zh2cdo4b1w2lo11Y9t4uFpwg8ej2cVp47xx2Vg21o1t47pxuPrcM/dxmeuTz9zHZe5i2Thq1jjnx2PXxXVj37jB47Hr4rRx3rhsLBtvrutWM87z61Zz8LjVjHPsutUcLBvrxnH7Ea+OfdxqXuwbt8VtfBvk4rRx3rhsLBvrxrZx3dg33rxp86bNO74N0n/t4W18AyRed7frW1v9mLbrW1spOG2cNy4by8a6sW28uca3dy5u8Pj2zsVp47xx2Vg21o3bOr5NHhundRyb5I239pet/WVrf9naX7b2l639ZWt/3dpft/bX7bjr5tXNq5tXN69uXt28unlt847b2nGsx2PjaJ/xqDiO9XhUHMeobse9bse9bse9bse9bse9bse9bq66Hfe6Hfe6HXffjrtvx9234+7bcR/DJnENbWPYJK6hzbkOtvbYOG2cNy4by8a6sW1cN/aNl7c9Hus62B6PtHHeuGwsG+vGtnHd2DducNq8afOmzZvWdbA9kmysG9vGdWPfuMH5sXHaOG+8efPmva7vtXNZ18F2zXG7WDbWjW3jurFv3GB5bJw2XtfBds1ru1g3to3rxr5xg/Wxcdo4bzyuU4/gcR1Mwb5xg21dB9s1be3ivHHZWDbWjW3jurFv3OC6ueq2v+Ma7bFt4xp9cdo4bxzb5lFnXKMv1o1t47qxb9zg0ccvThvnjTdv27xt87bN2zZv27yjj/szZ9o1xezi0Z6DR3tKsG/c4NFPL04bj+OoweN4WbBtXDf2jRs8+mP/2mq7poldnDcuG8vGurFtPLwe7Bs3eNyHX5w2zhuXjWXj4WrBdWPfuMGjL1+cNs4bl41lY91488rmHf26z9xv1/yxwaNfX5w2zhuXjYXjotsx1e2Y6nZMr74T58PVR+J8uPrIYNu4bjy2edRp8NVHBqeN88ZlY9lYN97O89FHLvaN2+LxfdrJaeO8saz9vaZY9VGtdk2luritfbymUl2cNs4bj33xYNlYNx5t2ILrxr7V2bx58+bNmzfv6FMXy8a6sW1cN9685XL993//4be//O1f//iPP//tr//8j7//6U+//dN/rX/xH7/90//6r9/+/Y9//9Nf//HbP/31P//ylz/89v/98S//Gf/Rf/z7H/8a//zHH//+/F+fZ+Kf/vp/nv98Fvy/f/7Lnzr99x/468fHf/rsvDr//Nl5H7JKPCPwhyLp4yLSf2sYJZ6v+laBWn74+/zx35d+rxB//3ydzgbUdH8vSpG1F8/3yR/uhXxcJEubu/Fsk0qJnO+WKLVPzBl78hyr2kroDyXsUKJfS6+2KLRlvfv3lubhfA7lr78vP22AH9pSbJ0Qz7dtH5Zop+OZVzM8B8Y/LHFqybZOy9JcPmzJdDgtnx0zzwP6PEGoIe3HGqdTs+jaDJrzGeP3d6TNHZHnU8HHO3Ko8XxpOGs8kUNiP25FfwL++Kj28dHrqGr+sMThzIoPwEeF5wgb+2HtdgWXuRvPMauPK9zdjfrxbpwasz5mD3ti+6hEfpySot8YXkkh6cMS6d2myIczM8cLxLERz1vUVUN+TKs+Xf7DjejPR2MjWv14Iw6N2S+KV4l+TaSni9/fkfi08rUjmj7ckcOJlQnNx4cFzj2s2TopUvnwiPr7oXeqISXNGlL04+tHeRzzO68usrVGzj8e1nI4O9XnEXm+L98q+P0TQ3SdGLr1sp9PjHI4PZ+DYW3VaJzhpf60J6eLOlfk/HwHxoG9vxU3T/FjjbutUb+hNfzd1jh3FF0dxezD6DtUkJrX3eLzNcaH57gczs+SfN0xlsdeo96vUeq6w/jh2v5zjfL2VVXk3avqqcK9S8nt3fj4qnq3NWW7Gn3tiDzqqpHk4xrt/btXfXzD7Ws6PgnMFH7e0X+8L3q4MD5frM6zvP+g58P713MN01WjPT6uIW+f5arvnuWnCvfO8tu78fFZfmzN8lhHpJQXj4it253+mv7DGna6xqvMO7dU94cKv99jJd6YjRx+Drd9eIZafvvMsPLumXGqcO/MuL0br+Xfswlltaa1j1uzvt+a/nZr+tutWX/n1tzOzZpeupo8/3BuhuTHx0eklrcfvOv74VnfDs/6dnjW98Pz3Jjv3jpq4tH9OQr/4a2jH6KzfyV6Ptt4/Th+/XBqtXV29hnAH6bvccCSMdPnu5GqHw5Ynlu00qL+2kG5NxriehoNeayHiv227ecS9nYn8fpuJzlVuNdJbu/Gx53k2JilOY1pL5XQnNboVPlwLKMdLogaK8uNs6JZe63EGpE/lTifWLeG2drb0dnejs5W3x7fav7m+NZxG+4NFsYc/fdGCyOiP345UeaO2H7PWTy/WkRfLCLrWdMkp0MReXfY8bwvayDjia/uS16jOpa39PxikaqrSHv10JT1XPJ8yrFDkdMj/OOx7ro6pw+Hy45l7o7bfVKkzePTSmovFinrXVYr2wvSrxW5OYSYTqN3d8cQ0+kdzM1BxON2xIclxnb4diP363bcLbINJH6xyLrGPNFeK/LsE+vWtq85dShzPMS6gq3ttw9fPNmck23vx18rYo0iH3fA+1fvj19ant4iVJslav3wonW+Q771XiedXi7dfZA8F5G1KyItHYqch+/XDIUqh71p778IPr1iuvkm+FTi5qvg8v4L0FTefgOaTm+YSpI1Wvxs0Y+vebePyuG99vnsWC/+cnV5qUbhXH9e7uqrNR5v19imwewp9rUa6+A+y31c4zSIdPNB6JMat56EzvsinGRi/n6NF8+xkhuvaPzjYyunp2RbryRSzYded9yQqusEeV4lPt4Q/4aD67/zwa2JfTl0XE2nW5C63gg8795ebdR1t1v8cJbpIVHLCmV5HI7t8UVNLGY/9qXVw7PZaTuEEeTt9Pi1OU7XbF3v8ER/mI3xlQu/PebOyH4T87UiWtfbBT3dPeg3TOxL9g3vRo+7s4/jPt9Pfrw755c2d3en/N67k31eNLU8Trujb97qnjfD1umqVQ/3qaeXN5LWKZ8pkX9p0/cnmRy3YlXYO+8vW1FPI+zPc2xNCX6O4jw+2o5jkUesNH092PmezV8pEuv7z/cF21STr7RIXcelHY5Lld+1RP+lTKM99ONGle9oVPmGRj0WuXuOHLtdXbdElkVfC/gfhiOLvFpkDRGZHWZFnYvUdUPzfLv06u7YOk2e76UOV06Xbwj40yjEtwS8ueS1O3bandNrcY0Po13706S9crL1z8DNy4Q1P2xJe38YoT3eH0Zo6e1hhPb2NOrUyvvDCE3eHkY4vWe6PYxw+6gcHvHOZ8e9YYRTjbvDCJ/UeLxd495TYn7cfXzX19r07nDGucat4Yx8emF184n3kxr3nniP+yKPdX7sb99+2Y76e2/HvWGV2zVe7HM3h1Xy6ddOd4dVPjnZb54g6Xc+MPeGRPLxt0J3h0TOG3JrSCSn+u6QSE7+/pDIcTtuDol8chNTuSl7vjH74CYmn3779PzDFWVP3n7y+YUikhmcydusCvvSztzcjkMcWltTgqukw1O3H8Yy1pPZ9ptRKV96kMmVB5nSXnwakkIRe3zYHMdB5kf5H5P9fombR/aTh/+b7fH4hvY4vaS6+4h5LHKzRc6vqLedeTz2t8tfe9P9KLaVOby6z49veWF+KmPua7pJe3w4BHAswUPZ81Vxeq1EZSvahyXO82Ye/Gr78fI0oFYo8vHkm/MPHGpZz2T78+VXfuAg69rdl1L/sEY+/ajpmVRp3c3Ixzci8v5vnrO8/aPnY4mbP/W9vSf1sCfHtyrrGSS19vGz0OmXUTdv7T7ZjjWY8ryN/Phe93SK3byjOr0fGt/vG5shdZ8e1u5vx707qmNz5MdaH+A5/OAvNWmOBeCuGoe7ZX3/JlW/4yZV375JPf/AarVGXwr7w/w5/8z11sz68yIBt6bFZ3v/96XZ3v6B6bHEzQSz939iemzQe1PjjyXuTY3P1t5/RD7XuJej6f0L0/le7t482/MKEPdmyB5r3Jwge/yJ/c0ppbdrHGaUnmvcm1BaynfcHh9b9eZ00vOW3D1Hjm1yczrpeTGI9/fm7rl63peb52r9hnO1fsO5Wr/hXK3fca6eW/XerOX7q/J8fCd1fCV1ZxbGcfAirf7yvJPZp/v8tArM6ZVUKSweUOTDMbZjiXvjMKc3UvdGHY6N8Vinxk8/4/25Mer7r4Fz+4bFecr7L9fK+Zc6a6rAPgXD71dYt2Im9nGF49oB68xImvNWo32hKZgGorkcahwfBInSJ++v5+6fYbwUk/0GOX1l0SU1pvnVj39VXE5vo26+Uy8Pf/tuv5x+uXHvtvBY4t7dfjmuvHfvnXpJ+d136iWV99+p3z8qh25/PjtuvVM/1rj5Tv2zGo+3a9x7p17S3ecffa1Nb75T/6TGrXfqJb//W+lPatx6Hjzvy7136iXr770dt96p36/xYp+7+U69HH+Wc/Od+icn+70TJLXf+cDce6dezs+D996pf7Iht96px9Kr7w1XlmLvD1cet+PecOXxjm6btFlevCdcr7BMPq5Qv+Pt4CdVbr4czN6+ZfTjVObey8FziVsvBz8pcefl4Hlw7Oajsfy+AzBfOEfKt5wj9XvOkfr+OVLfP0fq2+fI6XGsrpGP5+ufLZXLj2sJFX37cf9YIpmuFQufvL/7LT9l6vFV1K3hj3OJW8MfRdvv3R7rlXx6vlHKH7eHnZ6mfF24n/jRLKVjiduLAp/e4dxbFfhY4uYAyLHEvRGQY2vcHQI5N+nNMRDz98dAPjnN2lr0/8n7fcjPp9lpvlNOlYd2345O+em+rKbjOMid9ZaP25HXLybzkw/bcXzTt06TrHoocmzYut3u1rSv/fBLw+rbeXYscS/Pav198+zH9tgmb/ya78cykd1XGUmHWDyt5Pcc3WFARLcb36KvFvFvKLLfxH+tyDY2U9uhyGkmSLHV/UrdR7zqT0VOJ5sXns/EDkVOS/LzkJd9m9fytSKe2iqyr+H0xSJsSdZvKFIehyKno6PK9IP9NvznIqdXVGrrsVVtO0++dIiFeHyOefur54mvXGsPebFNZJ1sWezUJqfdsTVt8TnkJK81rDTW+WmurxWxXLdJmPodu3M6xHfzxD8OJTmt+XdzIF8e52XdGajdPs3064acZshrnUWqtu3Nhv9U4/hOlAGwH6bq/7So8OmlVXlwIX7sk8t+rnG6/qXHmgLZJ5brx3tzbNb1BFzK9ruBX5v1WKRtg+iHK9dXruf24fVcTu+d7p5r6fQk3Np6wniyfnyHIsf3V2Xd5+T92xD5lyL53Vvhc5PcWzpU0ruLVJ4b9f7xPZfRB2VUyqHMadJKZQWCvRO7fWVTWJUl1Sp+2JTTwE1e0wmt/DDu8lOR07SV5zm0wj5tq9x+qYimlShPLC9uybbshpT64paUtaKplmYvNmxZX26z50YdtuT0MsuMGyV/tUhd07OfmF4swlytJ75apK4fmj1RXyzSbK2807ZZ71/syHUl9XPocV9p4mtlfPuKheurseKPbfRzT8lfypS3B7eOJe4Nbp1L3Brc+qQ9lCElt3I4OseXOcmdn9Dtt/c/5ez735v6ZDva9gO6Vj4apBc5tEn/rux8/5E/HD75pMTalZbto0HYT45MZVe8+ssnfFs/cHjyYZRdTj8auTcqdS5xa1RKTj+Oujcq9ZX2OF7MPylTKaPychltlKkfjxnK8RtU947OscS9o6P59z46e3t4e/3oGGXaq9ec9uD2sX8N/dUyhU+AtOKHe6XTW6qb15xTiZvXnGOJb7jmNBYoTM3kcHTef9F1LPG8N3nww9Ga5LUijDs+OeuLRdYnofrtzWuXjFb5/UU7XzLS7/9YnNdoQS6PengsvltkO8hfKyLrgp5FHi8WUeGD39vQ45eKPNthBfXjh2G2fPv1fVu//n6++qofvr4/vrujPXL5eAaA1G9YcE3qNyy4dhx0ZKz9IaedOX0P6M4vOeS0dvxznH+NR7mdNuM7PoV+KqJ53dFr/uGZOn2hCBH90/PjV4pU4XH4h0etn4r42z9vOZe4d2/jb893+aQ11jsu9dIOrXG8/K73OSZeDkVOy1Dz1iE9PhxOPm6Grpto0x8eGr+yL6pr8Uh1fbnItoxle7nIGkGyH15Uf+Vs9xUiz9d1hyKntQG/pcjd+TvS7O3bzVOJm7ebzd6+3Ty2xs35O5806b35O/o43ljdm7/zyYVmfXrpeW8khwvNqUjLFDlcrfQ7fpL1yZZUXkwlP2zJ8SMB67rZZ85R5Jejc5xoXtZVou4/IvpKEZE1oC37wsm/FmnvXvLOJW5d8jS9vWbauTWU79jsEwd+aY309g3AucTN1tDftzVMWKh8/7HcL61R32+N+n5rvD3d9djxnzuy5g0VT6/lWOGXHUV+GEj4KT1Ov6f6lhwrfPz3eev+eHF3tghq2V4s0tZ95vNtvrxaZE1SexaxQ8N+w4+xNX/Dj7E/OTq81645f7w7p98xbz8h3CY/1Hq/giUWbtOPm6N8w4cstHzDhyw0HyemrPMsZdl/Te0/bYm+26bHzcj86q6U9PFm5POkaOUt2OPFIk0qIzOHIqW9H0bHIo3rbv+II8e36BeK2GNma9sfir5aZC3EYvuCMF8rsh4Um+3zD38ucnr91NZtc9t/AKTpfol9ic/HPvvw5yLnnXF2pr3arLX42pttwvrXijgH2LeM/7VZf+8iPyxJV05H51QkrzV/ct7b5EtFyvraSN5/4/1LkVMQPB8K11jgczj44yDQd2diHSvcHQZQfXsY4Fji3jDAucStYYBza9wcBvikSW8OA9g3DAOczzGhy2g7XGzOv9Fi0lPbuswvC7ja+4uvqr2/+Kra24uvHkvcW8zk/p7Uw568v/iq1vcXX/1kO24tvqr17cVX9ThEZOt3t/mHCe7ylSK8i3hieq3I3WVgz1uihZXH7NUiOa0i+bglp98Tpkfa1izfnhV//l30Z2XcKLO9k/xiGeWTR88U8JfLrIPUS9qhzKmBS+NQ7/c1XzpK8dLxKrLf6/1S5O1lg48d+eayweca95YNVn972WD1b1g2+LgdN5v0fGjXI9bzKJdXO2DiJ/AplZc7YBZ6TraXO2BeM2p6yUPPOd6r3Vqi5JPbvTtrlHzyhLQ97+2/z/r5uaS9P9ja3h9sbe13LXFz9PrcoGsy+LNt5eMGPQ213hsAs0d5fwDMjj/M+pZBRWFtMzsMtNrp1VXW7ebm8NlgO71ZqG09+tb2w8KGXyjiZX3N1Yvri0XqmjfiTdNrRVpaPxVtqR3a5DjV6lbf/WQ71i+Znu9L24s7kxnvye1QJMnvuzOFQCztcdgO+323Q9anWJ+PnKft8Le3I7397SE7/gTqVqqeW8O2VD18QNVOqfotRe6OFlmWd0eLjiXujRadS9waLTq3xs3Rok+a9N5okeVveCFwvsqYrUmStX38xWAr6e2BHju/vro10GOnt1f3BnqOJe4N9Nzfk3rYk/T2QI+V979s+cl23BrosdP94b1nOzv9auruQM+5yM2BnmORuwM95y25OdBzLnJzoMdEv2Og57MyNwd6Pilzd6DnszI3B3rODXxzoOdc5OZAz7EH3RuVOHbkmwM95xr3Bnrs9J7kZhgc14m4OdBz3I6bTXo+tPcGej45V+8O9HxS5u5Az2dlbg70nG+zbg30fHKndmug5/Qof3NIwb7hpyxm3/BTlvMcVFsX4rI36tfmoKY1XULKvuzy1yayrh9iyg9rc36pSM3rgwv++HjGo53eZH1LkdtPN6eR+JtPN6cSN59ujiXuPd3Ub/iqxydNevPp5vTDq9vvws/Tv1nTof0w8ernLWm/c5FszKv3ll8s0vapH68W8fV4Uh75sDv+HWOt/g1jrcfdKXyiuTz00CanZfmSsvzyk+WjDz1/VuTWR83t+Bbr5sfEj0VuDj99sjP3tqMdf9Tq20ppp4DOb99MnIPxzs3E+edGt7bik18s3dqK80+NeQ7WH9bW/crvlY1fTlsrLxZxX0tq7kuef/FHz1vfzYfdOc4jufnL6WOReyu4n0vcWsH9kxJ3VnA/H5fKOpj15V+0/1BEXi2SKVI+Pi718fZ71vp4+z1rff83U8cSd5dAOTYoM1Br9VePyork53jvqwmyb8nLRVy5I9KXizA+eSxyXLnkXrafFz+5le3nlaFWjZbtxcWl1i8eWq4f/lrpuHLYvbY4Lz52qy3Oi9StWexa7eXl8ta6cOr6eLEIa+I/8dXl8ryyJe3VJQR9HdxnvZcX7tveCcjrbcLk4FeXmhTl97Da8ncUeXGpSeExRPbHkK8VYb0gqceT7ViE0VGvHxeJy/OHL8HaupXxx+Pj313U4/eobE20ENtWrv15GPCzLalrS9JpS05vsWzdVqltz3fl/nY4H5/2h9XDdpy/iDmb9XkJ/XjaWD0FNOuR7i8U+jjr/XOkrRFaOS2DViV/wzki5RvOkU+25N45Ivr2OXLajtvniNTvOEf8dz1H9LEGRvVxWFC4ntb90+z/82pB/lON0zL2Na/lU35YHtm/sjNrWpCmRz7sTPmGnZHfeWdYTf+JL171tKzXx1rEXiyS2ZJcv6OIP17dnfW2Vktqr24JayiVx+sN22hYfbWIUOTljyhl4eW+7g/PP75rrfb23MBziXtPvqefTn1DiZvfHDo2aGGRvlIfhwY9LtR1Y3ms82YIj9/Py/fHm3H6ONbdMDsONd0Ls08+jpWZxpL1w535pMj2MRvzQ5HjF3FufqbrVOTeGOC5xK0xwE9K3BkDPH/a7t6nYO3tZ/j3v/hS/e1Pt1f/hk+3Hx/K1kj38y3zx58rPb5Vdb5nuZf46bfjpxLGusW2rRH4lRK+elra15H9SolWWVLzkV4pkR+ExmP7xMRXtoJFOfuyuq+VaKz1nV7akb6y/SyR2mtbwWdzkuxfvvpCCdle0+2PHD+VqMcPRTmzofYzI90/w8vKnFTqa40hfEtlv094tT1fLOEP1gfP+zybHwPYj5+7uvW9gvNC2KwL/sOs7C+UaGsbHvvHQr5QwgsLCu+3w7+0xTdMofLH77wacOadVjY/7MxpUopV2b7Eqx8NsX9WZL2xfHJrHxY5z+JYd9UpfXyG+GlZ8Ocdz1pnte1PXo/H/SLPYZW1RLLIq0VsjXrUuk8M/aXI2zct5+2obMf+uclft+P4ldX1cYDywxq4Of9U5DgB47E+1PPkbS7Wz19bP28Ld8ZFmx625dj9hEXSrB2KtPfHHI/Hx3Ulq+9T7X45Pvn4A0CWBtxb5KcKp/l+1VixeV+b9Kep0J7LceKCrokL+2Pcz0WODcKjsdd9rbVfGuQ8o5prxf6S69mNfixybz2g/YOGv5So39Bxsn9Lxzluy92Ok+s3dJzTtPvbHed0dJIUJnY+DsenHFcY9nXN2SaEtZ8qnH4GmIwPzG1fmywP+cI5z2sy/2FF/Z/P+WLHMfI1iPIwORya4zqWfIlJti1pP12Ejx+3YlXO8tiGlX5pknJcnYzpWM/xtu3O96dT/jt+ZfXJlqwn7iw/PAn8vCXf8FbIT++nVNdtluq2jmy5f2xKZtnVfaTtl2NzfDvF4oD62D+Wd/tG/BmLDEH8kItfKLG+SvUscbj9Pb2aun0vL9/wKYtP76Hrdg/90Widn95O3b4R17cXwz7ey98+NscHAj53kPcxpl+KnH5a9cOvxA4vMD8pkvnarJ2K1G9IAD19zkLXw7zqtmpy+UKJW6+Wj7ty99Wyn5YGvPtq2S2/+2r5eJoV1tJ8JuLHwwp+XDGKp6zs5oed0W84Q05vlm6eIZ98BLiswZon24sPaj/c+9aXn7HutcmpyO3ztX7H+VrfP1/vP1LUl+/A7zXrqcj9ZrXvaNb6frOefsuwpv7UfQ34nx8mTj/cEW4UZf/w/C+Pv+cnkvUDgv0bfe3+nvBFu/1t2y974vkb4uz0pur2OXb6RdXNODuWuHfBO+3K7TPdv2Eulbv/rmf68+XlSvfHvkrTz2dIO0/7WY8ief+l6i/jRcctyXxJWQ+jNO10rpbHelDcP67xS7O27zhX2/vnanv/XG3fca627zhX2zecq6dxPOd3GfvA189nSDu9vHoGKZna7FDk9FT0WG+fnkMk+cMT/rwlzC4rZZ9w88uWnM7VOx9w/GQztvHicmoQff8a0U4/Z77b79rp0flevzuXuNXvjrtyt9+189uae/2uHX+EeKvfnc8QVgJ5vmo+9LvT2yvhF5XSSnmxy+j64Uz54VcVv2yJvn+NaOk7ztX0/rma3j9X03ecq/k7ztX89rl6HrIufBFvnwj505B1O725EuEnCNs59tOEqGMJvkOzL5H2tRJrBFD3D1p/pQTfoPlhQuerJfTFEqst7NW2sNUW9mpb8AOm+mpb7CVebIv9cv1iWzAyXF9tC1874q+2xV7ixbbwtXjnDz8G+1KJ9YrZ/cWt4Kvi7dW22Eu8uhUs/HuIHP+O9f/8O1bda6c3U8kaExj1VOS0gtm615cfZh8+vrAzN1e48+9YEdG/Y0XET1743XqiPJZgGSbdpzF8qcSth9Lv+DFa0/wNNxyn303dvDk+fq4qsdxI3r7D/WuR0zvUzG9qHi+WaPV/uFB/bVf2D4ltT7VfK1ITk0MPO3N+Mf1gYkneZ5T/9GK62eMbbtFPL6Zu3qIfS9y7RT/tyu0ec3otdbvHHFf7u3mLfpx1oNs7Nj0c3NMgf3psQ+P60ayDWOXp9GprXae2RV1T/alGO93c2rq51Zcq1PX7sR9vTL9SYb2tyB9uwydzONbybfrY7yp/as3TVyFE+fzuvkDf6zXaRzVuT2opj48nHLV6nE+2Tq8k+5yFn3fmtGjKY63XbSnVj2scP00juq31+/DvqLIvVfalR+tGm5xmg51eSJf13KBFP5522I4/nFqL4vj24ZCfZ2A1v/dw3dKHd5fN375BPW8FswWbHEp8wxvT5m+/MW2nV1G3b4O8vX0bdCxx7zbouCuZyYb7b62/VuT2bdCxt6xlx1UOb/dbO/7GeZ2n2878PB7WjvPj18+n9gU1q39hTwggNT/tyTdMmmrt7RlPx+24ezf2fHT8hhHTZ5X3h0xv/9amfPxbm+eGnB76ff0AKfn2i+ufXkWdpyvde7Y83Z9+4djYtxyb+rsem1LWKoOleDkdm/b+G4/0SN/wPPWs8vYD1Sc1bp0n5725f6Ik+Y4TJenvfKKsC18ROcyPPc7UTUz2TXo6204fmPqeKveWK/ikxq31Cj6rcWfBgvOQSFmPeM8RlvTq4My9u5JPBu/WpLRnx0mvjf9tV3L7eAjxG74s4d/x5ZHzb9RSYwmZx8c/dEuP05eqKr/t5LL3Y3sc1+db4SzWPv4WeXp8wzeqnkXe/0jVs8jbX6k617j3maov7Ew97cz7H6p6Fnn/S1WfbcmtT1U9i7z9rar0+I6fUX1S5ebbqnOVuy9nPtmWm29nPqly89XZs8q3fLHq0zo3P1n1WZ2736z6tM7Nj1Z90so33+l9UuXmxePcm+59ZOncrW9+uOqTIve+XJUe73+66lnjG75ddd6Su+36HfcYn521dz9f9Vmdu9+v+rTOzQ9YnZomrR/05KQfD02dS6zVRtK+GMVXStwbMEyP0zuteyOGn9S4NWT4eP+96fmiumLgh49WfKHEzRHH446sH8A+L2Gvlbj5rPN4/0nneF+wlv/rP3B4qURa4wPP1yf+Wgm+vZX8ta3Y3rmU9tpWaOZXzVJfK2HcSnt7bUfWU85zeOC1HSmysrjoazti/MLb6mtbUSsvjdtrZ2ejLVp+qURdDwNV7JUCTfgYuR+C8/i29u111dqD78y/thurh7Wqb7bDawVK5vf+eb+t9Xq/xPpu4RPb2yW2m6YvlVidvOSqL5UohdHq7fMLXykhlRn+j9faoqw5GeWHxfpeLfHaQS3b0NKW3F9qC74fJeW1gyprQamyv0H8Uom0zgvRFw+q8aE0e2krnm8bhdiVl0r42pHny6r0YYnn4/Jpwb/MVSjbFnp+fzvWcP8T9bVdWfOFn+NC/loJYyXI13pJ8vXs+rykpRd3hAfGR367RHp1KyolXuruqXGX1aS+vRWvHdR7L9eOBVY30x9mxtwvcGdVolOBW1OUH+++HHy8+5Lk8e4rkuPgxYNFptLH4zkpf8NgfsrvD+Yfa9wczL+/Mx8P5p8HDv1/Gjj8QgXNLOVeyqFB/ea7gONRORbhBDu9ULi/JR8XOZ6mzrj5Nob/y2aU/P4ZVvL7Z9hp6b6bK7qndPqu1L0l3Z817PhEspbs+OEO+Kfldp5VDu+cmq6FYZq2w2h7Oi7ed2ul508aNrZzDjemjxv2OJy7fxn6cGyO60sw46NzOrXs6fiU9ZzUSnu5iq4xw7YH2herZJZ3yfvF8otV1qzrtn+h5qvtsj5o/mwie/W89XUf1XybPPI/nLd3q9jj5Sor355oL1bpU3/Wnfbzze2xzrF9nfbd5gn83L63A/vjl01J311x4rMmYc3IPoUuv9y0j2JbndPpclwp8QuH6Pg9sHtzls417s1Z+qTGh3OW/vfz//njv/757//8l7/96x//8ee//fU/nn/3373U3//8x3/5y5+u//f//udf/3X7X//x///7/F/+5e9//stf/vxv//zvf//bv/7p//zn3//UK/X/7bfH9X/+l/e3Mv48wf73H35Lz///+Uj1+EN7Dpw+///y/P+fY5ea+//W/+Ncnm32vDkr/V+k+Gvpf63pf/9339z/Bw=="
|
|
6536
6536
|
},
|
|
6537
6537
|
{
|
|
6538
6538
|
"name": "sync_private_state",
|
|
@@ -6717,7 +6717,7 @@
|
|
|
6717
6717
|
}
|
|
6718
6718
|
},
|
|
6719
6719
|
"bytecode": "H4sIAAAAAAAA/+29C7xd1VUvPNfZ+5ycnZxk50USSEJ2CIEAARIglEKhAQIEyPsBaSvQAJGmUALkRZJCTh5AQXu1Unu99uuteq14r639+lm9eq96tVq9tfZTW7Xa29pqr69qW6rgo7fa22XWOOd//ue/5l5r7XGSDTnz90v2PmuO8R9jjjnmmM81dxJOpOnZ5+4DD993zyOP7dy3fc+Oe3bv+c7/6dMky62HiilpK+bFRSdy+jOKHuCsfedfKxQT1E8Sy/EPfk8/A5biD//Gn4Sq8k+UP+WpWP7QZ4oAP+piuBO+828SfN9C8ivq/z2d6j89orPVzY1A37IvL+3+7E988p0/8+s/ueeFD7xn2ucm/4dJSycefuqpr8/92rwffvGp/2S8qwA3CYX16jP+m5Ts6/5r7Y1v+cg3d0265diH93/uj9ftnTxv+8cWvOMDb/z4uxb89T1PG+/Nivevvve9h5sf/oEfaV30qZf7bvm+v73n72/tvepzn3r7mb929Ft//eLzxnuL4v30G7/1hY82nz/4+Dt/4dBVS2Zs/+Dzn/3GV37zkz/d/Ps//dCjn11hvKuhzFXa0q3V+Kca/23AXw/l2kKabq/GP6T/mmr8Pca/Fh627MuRH//JL1z/zk8t+/K3Jj63dvvxxy//ns/c+dWDc15Y/Odv/dC8D04z3nWK98/23PiuPbPfduVX+3/nnct/dO78L770wkf/8h8O7Ljqb//yr35u4d8b73rF2yYZ7wbBO+ey81/7yA/97szPLznnf638lQ9e8u4zXzr3dZ//+dU/+uI3P/FPwLsx+yxZ30P22lSNv278m6vx14x/C/CXaOND/rK1Gv+Q/Duq8Q/Z70542IrzWJgcqrttkFG230nTG4rLttRrvG/UvMmxc3b/+8Y7k7UfO3rxRwcmfuyvr3//DTd+6pPHn1vQ/OD7jfdNgvfC1zVe/MBzTz4VvvTC3/y7f7jwF1dePO3s66dd8vvv/cO5Dz/2pjNfNN7vMkGhVJnnGf9dwE+6R5Px312Nf8jf7oGHrVAoDfG+uTzvkJ9tN7BQym5D9X1vNf6hvvS+avz9xn9/Nf6G8e+oxj/R+L+7Gv8k43+gGv+A8b+lGv9k498J/CXiVMv431qN/2Ljf7Aa/zLjf6ga/3Ljfxvwl7DfSuN/uJr8641/VzX+m4z/kWr8Nxv/o9X41xn/Y9X47zH+3dX4txv/nmr89xr/3mr89xn/vmr89xv//mr8O4z/8Wr83238B6rxP2D8B6vxv8X4D1Xj32n8b6/G/6DxP1GN/yHjf7Ia/9uM/3A1/oeNf7Aa/y7jP1KN/xHjP1qN/zHjP1aNf7fxH6/Gv8f4n6rGv9f4n67Gv8/4n6nG/7jxv6Ma/wHjf7Ya/yHjf64a/xMTw4k1p6/PPvEgXYeak2Xu3bPzoZ17DtyyY8/WE99u3PXwnh2P7+kFAJOHf/fQ3zX6u05/G15vDh/ztEu27tVHOraKsW8YyOgnkD6I3U96tkKhND8hvBBGljMQfoN0KSkvSQjP5HH5rM6s7A2hS1PksY0bQk5DyGmKvP2OWEcdsR53xBp0xPIs45OOWIccsQ47Yh1wxNrpiOVpe882dKxLsXY7Ynn6hKftPf1rnyOWZ9v29Im9jliDjlhPO2J1a/9oY18bO+BYI8n5NDn8zOQ0CKvquEeVq1/Ii9FPiNBPLIifjqub2fdsXL1qx717H1iz64FAiYe6q3JUnEd02yKqMW5C//j5PHpWE7SY0uLNyr5nxbt5x5773rJl+wMP7Lj/O4XczRyMdGPOcx6QIo0NxieSpq1QKPUUcUrEb5AuVZ1SOY1qbKlV7ZhGZtU1u7bff+P2R3bvfWgHT7NwisBWQVR8puo0Ac3wWY3obqS/Vwu+ILDTfKu5AXreCoXSZPOKySLT8qYA9gTKa0Ie1ianmtDfdE4xX549jMt0rA/WxxTKmwR5TZDN9TpRyDH9ewT9JMKaKPjM9u3k1QQfT0tjU+circ3KkaamkGGyxzAqzOz2qGDlm1RN3oyE+FEeYpo+ZusBkWdY1g77crCMt070v5J9NokuTetJxoDQF5+ZfdJlpP9OuqNt2U86sSPimV74DPEboSO/TGL1huVjP6kYY6cXsTvqwzGZbYtxry8Hy3jrRP+p7LMZRsd99pPJQl98hn7yP0l3tC37SUU7Xl/UTwy/ETryyyRWb1g+9pPJ1eStLGJ31Ef1z2hb7AP7crCMt070n8s+m0SXJvaTKUJffIZ+8gfZ9/4cfVuhUNqvxi3sZ2iXMkdoivqZ4TdCR/WexOyo2psaexlvU+Tx0nJTyGkKOU2Rd9QRa9ARa68j1n5HrGNdinXIEeuwI9YBR6ydjlhPOGINOmJ1o71i/VBZrDR5+upxR6yDjlievupZxt2OWN3atp91xHrQEcuOIvA4z/DT1B9Gt72ycxPEMz3xGeI3SJeqYx1lFzVmtPJNrSZvWkL8KA8xTR+z9TSRZ1i2ktiXg2W8daJflBm0SXRpWk8ypgl98RmOqc/OcKcIfXl9oaw/Ij/bCPnYHzupL8QzPfEZ4jdCR/6fxPxD2cXKN62avKlF6hf1MVtPF3mGNSP7uy8Hy3jrRH85+eN00In9cbrQF5+hP16SjNQdbct+UtGONxX1E8NvhI78MonVG5aP/WR6NXmritgd9TFbzxB5hjUz+7svB8t460S/kvxkBujEfjJD6IvP0E+uyXD7c/RthWKJ24hhIDbapXg9JN8o6meG3wgd1XsSs6Nqb1a+mZXkJS+yb6A8xDR9zNZniDzDsv3Lvhws460T/TryM5TBvmF5qC8+Qz+7leIR2pb9pJodww1F/cTwG6ETvxz2E1Vvqr1Z+c6oJu/6InZHfczWs0SeYWVbfiP8BLGMt070byI/mQU6cTyaJfTFZ+gnd2S4U4S+vP4eay+I2xT8Rqd8rkTc26LqtAT/o1xHhoG6zYbnJfxledH2YPiNMNpfqrSH2SQvr76t7HOELk2Rx3U0R8iZI+Q0Rd5BR6z9jlg7HbH2OmI94Yi12xHrkCPWk45Ynj6xzxHrMUesY05YKn52otdRR6zjjliebftZRyzPWOjZHg87YnnW43OOWJ4+4Wl7r7YdnMvo6RODjljdGic89Todxkzjfdqps/2gI9bjjlieZXymS/XyHE94lpH333BumWSf/WF02ysxb70uITzTE58hfoN0KSkvidkFy8fz5DOFLk2Rx/PkM4WcM4Wcpsg76Ii13xFrpyOWZxkPOWIddsQ67ojlaftnHbHG67Ec1nOOWJ4+sc8Ra9ARyzN+HXPE8rS9p68OOmJ1a/zy9FVP/3rSEWvQEcvTvzzbkKd/HXXE2u2I5VnGbh3LeZbRczzRrfXYrWO5ZxyxunWc4znGHB9PvDrakGec8NTLy7/S72c4YaXpKUcsT9t7jgGsr+VzX4afpg7XwBYmhGd64jPEb4TRdem1BqbOkFn5zqwmr1WkHlAfs/VZIs+w5mZ/9+VgGW+d6DdmhWoKGXzGzvJQX3yGZ6fWZH9MEfp2uheB/Gwj5GN/rFhftaL+aPiN0JH/JzH/UHZR/mG8ql7Z/kXrNYbF68KWn6Z+wVfCHs2i9jf8RuiovpOYXVSctPLNrSZvCrdhlIeYpo/Zep7IM6z52d99OVjGWyf6t1I8wPuK1pOMeUJffIbxYAfFA09/RH62EfKxP1asr8LvpBh+I3Tk/0nMP5RdrHzzqsmbWqR+UR+z9XyRZ1hnZ3/35WAZb53oD5I/ogzunywP9cVn6I97yR9VOyvSLhFXxUeje7XJGRB83L4q+l9v0fZl+I3QUXtOYv6u7KL83XiVn+bFZpSj/PSViGX+F+ubivYbyv/mnWQ5ypfTf61QKN1q/POr8V9t/GdX419r/Auq8W/uJ/qS/LcY/8Jq/NuM/5xq/KuMf1E1/jXW1s+FhxznFsPzEnFnXdE4Z/gN0qVqnFtM8rh8HOfOE7o0RR63kfOEnPOEnKbIO+yI9bQj1m5HrCccsQ45Yu1zxNrpiPWkI9Z+R6xjXYrl6asHHLG8bK/61W7xVc/2eNwRq1vb41OOWJ5tqFttf9ARyzNOPO2I5RmjPW3vaa9u9S/PsYlnPXra/nSIE886YaXfz3bCStMuR70WdCFWmh521KvlhJUmL9un6bEu1Cv9vtARq88JK01ePpGmR52w0u/nOGGlybMePfXy8tVujoUznbDS5Bm/POvRU69utFeaPH11kRNWmjz7Dq/4labnHLE8x1+PO2J5ril4jsk95wqea482vrd1bFz3TrLP/jC6vZQ9u4F4pic+Q/wG6VJSXhKzC5aPzwKcX03e5IT4UR5imj5m6yUiz7AuyP7uy8Ey3jrR35YZtkl0aVpPMpYIffEZngW4KcPtz9G3FQqlpQNhtK3Yz9AuJephaVE/M/xG6Kjek5gdsXy8V3SB0KVJeWl6BOg4ryae9USwBh2xnnLEOuyItc8Ra6cj1iFHLE97Pe2ItdsR6wlHLE/bd6t/PemItd8R61iXYnn66gFHLE/be/rX445YRx2xBh2xPNuQp+2PO2I944jlWcZnHbEedMR6zgkr/X6eE1aaunVs4hkLPcc5g45YnvGrW8eFVo92fhR9l8+Pll17QH6eDyNfkn12OCcs/Lt0PCesuNYRnRMqu5SZE6bf++D7q7Uv3uuIdTqMZ7s9jnRbn3fEEatb+4Nundt7jme7db7UrWOX08H2nvM4zxjNYyocz/STnKLr8k3Bb3Rq3JT+a4VCaVN/GD32KMF/h/FfWI1/vfFfVI3/RhtXLYWHSfZp2BfD8xJjvCMJ4YWgx5SG3yBdSsobGlNeTPK4fDymvETo0hR5/E7KJULOJUJOU+QddsR62hFrtyPWE45Yhxyx9jli7XTEOuKIddQRy9P23eqrxx2x9jtiefqXZ8wZdMQ6HWz/pCOWZxmPdSmWZ9s+4IjlZfv0+3wnrDR5+mq3jgE8scb77fF++5XSd4z32+P99ni//eq0fbf66lOOWJ728ow5nrY/6Ijl2YY8++1ujdHdOp7wLKPn2NezHj1tfzrEiWedsNLvfY5YSxyxvNbJ0+8XOGGl6WFHvWY6YaVplyPWY45Yjzphpd8vdMR6tds+/X62I9YCR6yWE1aaPO11kSOWl6+mybMNdavfd2sZX+2x0FOvNI33Ha/8viNNjzhhpd89zzx42Sv9vsgR6xxHLK++Nk2e/aOXvdLUjX1Hmp5zxPKc8z3uiOW5p+O5DuC5PuF5PudY9mlnvfBsWJJ99ofR7SWV0wqF0qSE8ExPfIb4DdKlpLwkZhcsn9nFyn6p0KVJeWlaD3ScVxPPesaxxrFOMdaUMLoN8ztYZeMI8hvdgODjOILtrES7PrdoHDH8RugobiUx+yu7WNmXCV2aIo/XJ5cJOcuEnKbIO+qINeiItdcRa78j1rEuxTrkiHXYEeuAI9ZOR6wjjli7HbE82+NxRyxP//K01xOOWJ7+5dmGBh2xPH3CM652a9v2bI+ebehpRyzP9ng6+NeTjlieYwB+xw/Hy/yOX9m5AfIb3YDgS7LPftIvCaXG0O9KCM/0xGeI3wijy1xlzK7sr+xiZV8udGmKPF7vXS7kLBdymiLvsCPW045Yux2xnnDEOuSItc8Ra6cj1hFHrKOOWJ6271ZfPe6Itd8Ry9O/PGPOoCPW6WD7Jx2xPMt4rEuxPNv2AUcsL9un3+c7YaXJ01e7dQzgidWt/ban7T3HAJ4x2nM80a2+Ot5vn7o+bXxMXg5rfEx+6vxrfFx46vyrG8eFafK0V7f66lOOWJ728ow5nrY/6Ijl2YY8+45ujdHd2qd5ltFz7OtZj562Px3ixLNOWOn3PiesND3sqNcSR6yZjlie+0Oe9lrkhJWmxxyxHnXCSr9f6Ijl5RNp2uWI5WV7z7bt3R692lD6/QInrDR5tsfTwb/OdsRa4IjVcsJKk6e9LnLE8oqFaXrUUa9u9ftuLeOrva9Nk5deaRofm7zy+440PeKE5TmeSJOXvdLvXmPy9Ps5jlhefW2aPPtHL3ulqRv7jjQ954jluabwuCOW576V5zqT5/qX5/nCY9knv19m+GnqD6PbSyqnFQqliQnhmZ74DPEbpEtJeUnMLuqctJX9MqFLk/LStB7oOK8mnvWMY41jVcDi8+OGn6b+MNpnS7SRwr9Db/iN0FEMSGJ2UbHKyn650KUp8niMcrmQc7mQ0xR5hxyxjjli7XXEGnTEetoRa78j1tEu1WufI9ZOR6xnHbEedMR6zhHL016HHbEGHbGOO2J5+r1nLPSsx8cdsTxjzqAj1pOOWJ62392leh1xxPL0Cc+xiWe/7VmP3Rq/PP3Lsz12a4z2xPL0rwOOWGZ7XkMw/DT1E18SSs2d5ieEZ3riM8RvkC4l5SUxu6g5rJX9CqFLU+Tx2YArhJwrhJymyDvqiDXoiLXXEWu/I9axLsU65Ih12BHrgCPWTkesI45Ynm3Isx6fdsTa7Yh13BHLs217+penXp716KmXZ5zw9AnPenzSEcsz3vM9NDg24ntoyo7PkN/oBgRfkn32h9FjlBLjpacSwjM98RniN8LoMlcZnyn7K7tY2VcIXZoij880rBByVgg5TZF32BHraUes3Y5YTzhiHXLE2ueItdMR64gj1lFHLE/bd6uvHnfE2u+I5elfnnp51qOnXp5x1dMnPOvxSUcsT9sf61IszzhxwBHLy/bp9/lOWGny9NVuHU94Yo2PAcbHAGMZV8fHAONjgPExwPgYoB2Wp7261VefcsTytFe3xomDjliebahb+45uHft2q395jqM969HT9qdDnHjWCSv93ueItcQRy2v9Pv1+gRNWmh521GumE1aadjliPdaFennXo6e9HnXC8vYJr3pMv5/tiLXAEavlhJUmT3td5Ih1oRNWmrrVV8fb46krYzf6V5rG+6Fxv+e8R5yw0u+eZ0Q8/WuRI9Y5jlhe/XaaPPtaL3ulqRvbY5qec8TynIs+7ojluW/luT7huW7ieZ7pWPZpZ+NmQl6Sfdq5QIx1qZxWKJTqCeGZnvgM8RthdP9RQt7QucB5JI/LZ3axss8XujQpL03rgY7zauJZz0nGUvWV/muFQmkr28MwEBvnciXqZk5RXzD8RhhdN1V84WySl2dXK/sCoUtT5LGNFwg5C4Scpsg77Ij19i7Va9AJK/0+4ITlXcadjlhPOmIdc8Q64Ijlaa/jjljvcMQ64oi13xHL0/aHHLH2OWJ5lvFZR6wHHbFsbG/9F459fPru5EtV++6K48Zo343lM7tY+RZUkpd8sUg9oD5m65bIM6xF2d99OVjGWyf657KXd5pCxjSSYXmoLz4z+/R+599T/SN1R9uyn1SzY5hc1E8MvxE68cthP1H1huVjP2lVkzdQxO6oj9l6kcgzLNv37MvBMt460f978pNFoBPPLRYJffEZ+skPZLhThL4XE27ZuIX8RqfknNmhnDOFHOXbXJeR9KfKd0rw/4jxL6rGf4HxL6nG//PGf0E1/p8z/gur8R9R7xiW4L/L+FdU419i/FdW47/c+F9Tjf+vjP+qavyrjf+11fh/wfivrsb/LuO/phr/y8b/umr8zxv/tdX4XzT+1wN/idjfMv7rq/HXTN+V+FDoZPjWd1wH9EnOp2Fx3srse4OwqvazK8No3VE/jsMrQR6WMQ9rZUmsfpFXpU5eL3RBW63Mvg9EdGE908Tj/JVCDj7riWDtc8R61BHrqBOW6purYqXpIUe9Wo5Yixyxljhi9TlhpWmXo14XOGJd2KVYCx2xrnDEWuGIdaUj1mscsa5ywkrTOxz1eq0TVpqOOOp1tSPWRY5YXn1H+v0aR6zXOWJd64g1rQux0rQl+7R1AeyXFpOcPiGnLyIH+Y2uX/C17MtLuz/7E59858/8+k/ueeED75n2ucn/YdLSiYefeurrc78274dffOrHO1wvu7PD9agZxr+wGv90tSZRgn+aWpMowb9KrUmU4L9erUmUWPcdde9RCOXLvqKS7LBArUeU0P1FtR7RU5g/9Kv1iBL8V6r1iBL8r+H1iAC85/7hf5vwj//l++r/3x+9uGv/yxc+/1u3vPOXf+p1P/Cpi68b3Pzl93xtrVqLqDKXf101/im8FhGK817T2TpE8kWe846Qfd1/rb3xLR/55q5Jtxz78P7P/fG6vZPnbf/Ygnd84I0ff9eCv77nGV7DGMH76Td+6wsfbT5/8PF3/sKhq5bM2P7B5z/7ja/85id/uvn3f/qhRz87VN83KN64zv+2rjyjceIvi+vJUG4IE+C7+VGaUj5b19hGNGmqE329Ocw3O5M3QDwBvvcTf0k/OBPLYEmtwxh+I4wue5V1mB6Sx+WzfCt7XejSpLw08R5nXcipCzkK6zlHrJ2OWEccsfY7Yh12xNrniHXIEcuzjAccsbrVv3Y7Yh11xDruiOXpX572esIRy9O/PNvQoCOWp094xtVj2eeAyONxQC88L9Ev9xQdBxh+I4zul6uMA3pJXp5dJn3n3/Ts+949Ox/auefAml3b779x+yO79z60A0cTOEJgKQmh4rMkjCw95tXoWY3obqK/Vwu+ILDTfKu5CfS8FQqlS8wrLhGZlncpYPPICn+hEWuTU03obzqnny/PHsZlOtYH6+NSysPVkmUgm+u1V8gx/XsEfR9h9Qo+s307eadzS1T1ZLxNkcdtsejIv0qEyCZPFiFW7bh37wNrdj0QKNXp71U5Ks4hutU5qiUCN6F//HwOPVOmQOzYJLCIy6SJOxnM20ZyxjuZ8U5mKI13MkL/se5kaoKPl3l4+SdNLfty5Md/8gvXv/NTy778rYnPrd1+/PHLv+czd3714JwXFv/5Wz8074PTU1lHaUkL9WWftbL1tilfneh/Zcow39OZvLSlZVVpLe2GvQ89uGnHnsd27ti34zsxe3eg1K55rKW/1wk+lcwlVHM181YMQIUDnuE3gq7mViiUhgKemm1g+aoFPHYIbsjeAW8d/V0l4PXR81YolEoHPO6mMeBhbXJSAc90LhvwsD444GFD5YCnPDEI/XsEfS9hxYJVO3njQ48TaXzoAWl86CH0H+uhB/P1htEtd2jHimg/knXxHbbYEScyWMfxPvtEGu+zIY332UL/se6zVSRJCGMsly5QdnQy9Gd7bnzXntlvu/Kr/b/zzuU/Onf+F1964aN/+Q8Hdlz1t3/5Vz+38KUOo8YdHUa7rSnfb9NkjM8z43frmfLOFxhvneg/3Rjm+12YjC3O8rOIcsf2h3bev33PjpsefnTvjr077l+3a8+O3dc/fP9N+3Y8vKf01Oxm+vsWwafSxDBcYL5QBQuZJl6bOyP7215KZBo2kNH/YWaU1GDfyhqycjrTZ4D4QxjdFc0i3VuhUCrcFRl+g3Sp2hXNInlcvmpdEbszWgVR8RmHDcw7GV3RHHreCoVS6a6oj/KwK8La5KS6ItO5bFeE9cFd0WzI464I63WWkGP69wj62YQ1S/BxV5Qnryb4eCiR0HNcy5opZPNa1tcgOnx7dr4d8KomxrS/1eCd7W35aerQJ+8sGk0MvxFG132VaDKH5HH5qkUT9BSUcgehGg3SYroDNEN6/ptrry74OBlOnXSeMPHEZ+p9/0SdPpZrCumtvB2f8SAJ+Y1OyZnUoZxJQo558gTgu4vy+iN5DcCcQnmTgY/3rZqQt57ypgLmJMqbFsGcLjDTuvuJicN46T/1kj96uvVAVgd4aQTy4t+9RJume7LPOtGeBX41MHGkLGzF7Fez2+gd86vZIV/OpA7lTBJyuLdKE/vOHFFWyzsT+Liez4I89p25olzqwhrGVJfcpfXzvokj6bj+09ThyxV3FI34rex7g3SpGvFbJI/LxxO2c6vJ25oQP8pDzFb23Wy9WOQZ1nnZ3305WMZbJ/rzs/rkF3XSxJeZLBb64jM8PH4O+UkL6JKcT8PlZ9y+WkDDF75gvNkG+izNiXk4ksK4ZhNijlUfgl3BSylWIX+L9FLtpGr5F4gyTgmjbTMRvuf5dysiZ2KkPMjnWZ8TSQ7GWazPa6g+z4U8jtHp94XZ9zrRvwfq8zqqT9UWlZ25X7K8EIrZeYqQM9Z25v5lsaMcxOKXR84nLLaz1ZPZ+TzIO5/4lkAe0uGs63x4vkTIVviG0c4H10/UZcvzQZNVJ/pD4IObKvrgYsrDvoJf0DU90A5IvzDocvXl0OeV6w1ZWdKxdM+ckZjGj7bCuuD4a/TfBZi9c7SeWC51GZnRK384X5RL2ZQvgFCy0c6rc2T3hbgv1on+PmFT7heQX7WjGaTLeW105/aN/EY3IPg6jSNK53Zt8qGSbdJegGXfvR/a5C5qkzEfQZ15HlHWzpOEnLG2M88RljjKQSzuF5YSFtvZ6snsjC8eLyW+SyCPX1CuEQ/SI4bCL9ovDE7UZcvzQZNVJ/pbwQePRebFMR9cQnlo07wLEdEOqg4S0rsvxPvbOtE/F+kXVHvFWMv9gtG/M9IvmFwsV6xfUL54oSiXsulSwlIXqaKduV9QNsXyn03lN/p3F+wX+CJVXI+4m/JwPeJcysOLHluUdxbkLaY8XI/gtRG8tJbjHV5Gjz7C6xETIuXpBwxe78N1uzmUNxnyzqS8JuSdRXm4bjeX8vCYyDzKmw5586Gstm7Hm6P/OXve4b6dPLoSWxdNcj5DKNYf8NEqlDPLUQ5i3URyZjvK4R0HlHOmkGP1dRbxtUKhVHif1fAbYXTbrbJOdhbJ4/JV2xnBaMNWQVR8loSRpce8sdxnNblzIU9ZglfOsUxzc/jQFkE86xH0ZxHWWYLPdK9F+BED+dhjEnqetx9pGHWi/xj0Vv3UWytZaA/uMU33vBMTrIPR/wboYCcmGLOeU64zczD/GHYyPjFRYwaBqco1l8rFOpxFOhj9p8RIoEY0rI96lv6NI6O5OfqpemJdsZfLKw/Xk9F/JlJPc4QO2CZXt9GBaebm6PBZoYOIbjfueuRAFt0CJT4cztGJLc/7tnMETl4y/NQLzSPVKYMzBR+/39cjdEpLbjU39MriQzv27Mgpe4/QTcnsCTrxeNT40tQfOurTCvehht8I2vNaoVBKOMqZPC4fHwc/S+jSFHlYv+xHMTlpndoaS1anm/fseiyvSot2rolQK4T8TjYJI6sCeTq886304SYewi0Deh5GLgc+DGqcuNxYnjS4TJozjMt0rCvalA8+oXsuozxsKsspD13pMsrDgH855eHU7QrKw6nbCsrDLTO7j039LgFOzzAvTbGt2qbgj/3+wdQO5UwVcsZwq7xw+Gpl30/2VrmVXW1jNEUeH2CzKfvBbF0y7dLqk0Zi43FatmvFt3euLGpXw2+QLlXtOoHkcfnYrv1ClyblpYl/f7dfyOkXchTWoCPWU45Yhx2x9jli7XTE8izjoCOWZxn3OmINOmI96Yh1xBHrCUes/Y5Yxx2xDjliDTpiebZHzzbk6RODjlgHHLGOOWJ52v5xR6xBR6yjjlie9jriiLXbEcvTXt0aCz3t5RlzTocxk6dPePbbXrZPvw84YaXJ0+89bX/QEcvT7z3L6BknPMcAnvZ61hHruezT1phwHYKP3ag5/4SIHOSfUABLrR/EyqjWcRxvKTQVVxDd6hzVEoGb0D9+voKe1QQtYuNr7LxkhXT92ffFhN0KhdJlCeGFoJeVDL9BupSUN7SspN7cwPLxstJ5Qhd1WpB/RqjsCUfMG3TEetIR64gj1hOOWPsdsY47Yh1yxBp0xDrsiLXTEcvTJwYdsQ44Ynna63FHrEFHrKccsTx9dZ8j1ulQj0cdsTztdcQRa7cjlqe9urUf8rSXZ7z39C/PmDPoiOXpE55jJi/bp98HnLDS5On3nrY/6Ijl6feeZfSME906/nrWEYuXSWJvrRa9fUAtkywugKXmw7EyjvEyiam4nOhW56iWCNyE/vHz5fSs3TIJn8r5SnYSx5ZFKp4qki+e8CktXA7C02aYF0KxlTrk74/IaXQop1FQzsUdyrlYyBkQfEnOp8nhZ7GV/YtJzsm64AKXwtgPYheqKDnIf24OFt5UuQNo5hM9XrAShOy7IB/pre9Pl0W/Bqc/U5oW8OMLpj0DcV2RF3Xlyy8ughdMezNMZWerd+UH51LeAiFXYXLbKlt3DaFDDAvrazLRW1305dAbHtddE+qOX2TFF/eU/5ybowP6D17ClOc/Myr4zxkDcV3ZfyaTbKOfDP4zh/wHbRzzn8mUh/5jNlIxk0/qlo2ZU4V+Sk7sojD2o7IXhU0WcjrsS0ufcp9KeXiF5zTKw1Pu0ynvMsjjPuhyyOOXa6+APH65Fn/hm1+uxV/v5pdrXwN5kynvKsjDNsipRn9jnaRt7RslTuqjz/BJfYwzZnvzNRwXIQbmma78jH0N+aflYOHrbhh7tkE+0l+aGTdt/68dGFkuvHzQbGK+za+OtUKhdHlCeCHo7TPDb5AuJeUNbZ+p1zyxfLx9tkDoouLbOfAd81BO7G0DzDvkiHXMEWuvI9agI9bTjlj7HbGOdqle+xyxdjpiPeuI9aAj1nOOWJ72OuyINeiIddwRy9PvPWOhZz0+7og16IjlGb887XXEEWu3I5anvTzbkOd4wtNeTzhijcfVUxdXvWyffh9wwkqTp9972v6gI5an33uW0TNOHHDE6tbx6kOOWLwVpy5qSygP5cyNyEH+uTl86XdccxjDt+ZrCeGZPvgM8U/VW/PqwvemyOOrecpulSJWkQtE1NpHzDdUGR23Sk3Fy4huY45qPQI3oX/8/DJ6lrdVatjWjHDpiber0Iwx06rtqukROZM7lDO5oJxGh3IaBeVM7VDO1IJyZncoZ7aQw/c9pgm3Yn5tQMvErRhcruWtPKP/14Fhvt+grRjczphA5ccXSPiuR/y9Gg69TXheIhQWvrDE8BthtE9WCb1Nksflw7BU/M5CbgFoFUTFZ0kYHTUS0Ayf8eb9BOJbLfiCwMZoNRXylCUM0zwEyzQ1hw9tEcSzHkHfJKym4DPdaxF+xEA+9piEnufdWWgYdaL/I9ho5TsLlSy0Bx/aMd1tw5lpWAej/zzowHfhNYFHlYtb81T6G33rnhz534Ao86UBLT8I+Vw+jGp9Ofo2SQej/99i011FStRHPeOeYRrlTYvQ9lFZ8G/li3wXokWYvLJz/Rv930TqvyF0ML3StLqNDkzTl6PD14UOnd2FyFGOa4lroiFw8pJZI/VY8162DrcOlmN/Kw/o9C7E/hyZPUEnvq/a+EIY7psr9pWF+2bDbwTtea1QKCUcPU0el4+nRU2hS1Pk5bXSdnI6vAsxr9NWwYL5A/Em4lma1O8uj0818uWcDlMNxlJTiDS9LfvkwD41qwz1EwrTQQ+FuZl0UKsA6iSU0auVq7mijGZLXKVYUEA22pI7wlZJXdXqSgto5pKuqN/ikrpuPMm6The6dnhqp/SJND49hifS+PQYnkjj02OXQR6fHsMTaWdQHp5I49NjeCLtXMrDE2kLKA9PpPHSAJ5Ia1LeayEP70rlxH0I1lfanq9uDeMyHX7Pi0XY1leTjjjoxthjSxv9gI1yWqFQOt/kqMm0YeMwpYRv3oc6WVJDHnvWIF1Kyhsa8tRIHpePhzx1oUuT8tL0MNBxXk0864lg7XTEOuKItdsR66gj1nFHrEOOWJ72esIRy9O/DjtiDTpiefrEfics4/fS65gjlqdP7HXEGnTEetIR64gjlmfb9vLVNHVrXB10xPKMX55tyNMnBh2xDjhiedprnyOWp6966jXeb586e3mOVz1jtOcY4ClHLM/41a0+4RknurUf8pzDeJbxHY5Y43H11RG/POtxjyOWp726NeZ067jwcUesQUcsz77Wsx67dbz61i7V67gj1kFHLM840a0x2lMvT9sPOmJ165j8dJjXevbbT3epXkcdsTzr0bM9es5hjnQplqdPcBtKsr+R5i74fjfkI73dUtThXvH9vBdrGIjdWxE7IbwQRuoZCH9AyDO9Gjl5rRBPP7vyrgf/pPXy2Qnxmy78jM+aqON1ak/bbFXxtznvHQAZgWRbXh3yeikP7WI6pJ+LF47Ur6+ifkXsh/hNQb8e6MrUxbQw0hfQ3+2MD944xDdfxS7gVJdgqjfUjP787O++HHrDqxP9jKy94gHvKUSTfm/kyEP98FnsTOD5OVh5N6ItytH9TNCdz9AtEfqp46dGf6GgXwI0rey7ss2FQcvG8mB97qDyGP0CUR7V/syn+gHH8kq0nUmpnGULh+Ww3bD9tLNRmtimSwU92sps0iR6tK/l4WtVSygvduZvvtChBc/4fFUL+PGmvjMK3NjYTe16ecF2PS9HHuoXa9fIX6Zdp+n+HN1fU7JdzxP6dVO7vrZguzafGm/X7dv1uUKHFjyLtWvjVbe7LoU8w8Xz3xdk3+tEvybis5cIXVWbMvpLBf0lQMO3ZKJ9L6U85DuP8vAc8BLSYZmwA+rF59qNfgvYYRX4oJUlkF4d+vr1yteXAQH7Ot7CXRP0XBeXCXo8B202aRI910teu0Gb8ll5s1GfoEe8OtHfI2K/6Yc3mC8j3ZeU1H220F3dwoltanDiie8q3nJfuSQiU/U3FoP6cugNr070O4W9Yn0Y2qmXMI3+oUg8UPH2bHhWNt6aPsqmSykPdTdfUO3T6Dpsnzeo9onl5/YZK2ua2DYqtqLvWv03w+h4yH0Rtg3u+9W4qKj/ow89NFHj5vU3melG+deTJcdI2F+WHSNxf6PGSMq/WpSHNuX+XPW7SL8ojLSD0T9dsL9x8ufpyp/RZ9mfY/6ZprJ9v9mkGUb3B3njb8TCuub+xmzUF3QdGB6Pb98V6W9awL+UdF9cUvcq7W099Tc4b+P+ZnFEJvNivMjrb/CWeaR/b6S/wbGpmu9xf2P0/zESD9ScM9bfKNufJ8qlbHo+5am5rWqf+P6blc/ySrTPGap9Yvm5fcbKmia2jYqt6Lvc32A8PJfyWpB3HslR85ui/o8+dA31N/zuJ2KhX8T8EduN1RP740ci/hhrZ2lim7dbMzF9lD/ynAd1b2XflT8aXYf+eIfyRyw/+2OsrGkq21atPpthtK/G/JH7Z/XOMMYQ9kf0owVQ1qWZP9q6f8Xb4ku/51qjPJzz3UR5OL/D+uFUo7+xPGm9TyrxqwW4/3Ep5U2AvGWUh+snyykP19wvozy8C+ByymtC3hWUh+/cr6A8fDf1SsrDy2ms/OYD+H55CR8ofIWG4TdIl5Lyht4nVbf0YfmsjZa73opvFkCrICo+S8Joz0xAM3zG3rqW/i5zvZXV3Gx63gqFUunWy29x41vqWJucVAs1ndNW9fLsYVymY32wPriFzoK8ZSCb6/UMIcf07xH0swjrDMFntm8nryb4OPoqviSM7HW4LmK/PTKL8FuhUCp8Z6jhe/32yCySx+XjN8VnC12aQbcN+455KCf220WIVeSiHaVzhxft8N9n5KjRI/gD8XJTLXK4IXa7WbsbvvJu13pJTMRUM0J9BsQzdvuKHUzhDs3wG2G0S1Rx+5kkj8vHbq/CUFPk5V2W006Oo6umaW2OGqqnDISViGeYp1wVz4oUcVV1ToVdtScblKk1lkTwp5hHGyNloy61MLp8rOutpKuiQV2Nvh90tUvrTFccy/Kc4VbQhZvUbaR7KxRKhZuU4TdIl6pN6jaSx+WrNkZk70OrIGoQtEHktWs5N9LfVcaIa+h5KxRKa80r1opMy1sH2Anl4akurE1OaoxoOpcdI2J9rKO82yFvPcjmer1NyDH9ewT97YR1m+Az27eTVxN8CWEk9BxXhlYL2XxCtAXR4duzR8pFWavDyKQiBI+F0sT2DmF0NKnok9uKRhPDb4TRdV8lmqwheVy+atEEPQWl3EmoRoO0mO4EzZCe/+baWyD4OBlOnXR+beZFqfddmH2fEkZ770TSG3WIxeWm4Dc6JWdSh3ImCTnqLq67KK8uysrnldO0jfIwsq+nvFWiXJZ3UwTz5gjmLSIv1e+XmyPpMBolOZ9pqolnbNPbhK5WdxgB+Gyram1rInKQ3+gGBF+n5VE6q7ETXnm/qjnMg70pRm3041b2vU70fzR7mO8Wam84vjYdlZ25LZa180QhZ6ztzG1qnaMcxNoG9Om/DYTFdm5l383OONrZQHx4ryXS4YhgAzzfKGQrfMNo54PbmrpseT5osupE/0vgg2+q6IPrKA9HkNwfmh5oB6RvBV2uvhz6vHLdG5nb3Sb4le58l+66iO5pYl9Efh65joXPo8x2/vMg+Q/2H8p/+JyX0f8E+M/D5D84QhuL8sfaNY7k+AchVLtT8YP5sI3OKKDDBqFzU/Ab3YDg69Q3lM7tfOPt5BsbIU/5Bp/fNfrvA984TL6B8dN0VHbmMWBZO08Scsbazjy+2+QoB7G4f9tCWGxnqyezM955vYX4tkIe0mH/tgWebxWyFX7R/u37m7pseT5osupEvwd88PnInCbmg5soD23KqyWbhB1UHSSkd18O/SYql9H/sOjfYu11E2ByLDf69wEmny8xuVguNVuO+eJmUS5l0y2hvWy08+oc2X1Blz/PV348YlPj780pD9vU6F+I2FTZKGZT1ca2iHJNEWXeSli3Cyy0cxGbYvlvp/Ib/U9HxmHrBL8aO/AYUo3DkJ7fu1BtTI1NuI19tOAYksc2uLZwN+Xh2sJaysM9C56L3Qh5sbUFXue4CfK4/7sZ8jZS3i2Qh75vawt1KuuvZs873FsYcd4lEJayb5LzGUKx/rSH9EQ5Y7FuouTc7igHscxn1JyNf/ek7LoB8sfmhvUO5dSFHMaymJwmHBPxuV6j/wy061sWjsRcK/TD+xJWR8rK7RmxrM6sfWDsG4u9N8NvkC4l5SWxmIvl4+3s9UKXpsjLq1OUo37msKxejr/WairOJbrVOaolAjehf/x8Lj2rCVrEPllN71TKmdKhnClCzlgvdU4hOXnTna+WXFJelH3nJeV7YbrzYmS6k9fs0NdiRy5MXt4xht4c/V4WxxgS4sEyL4rovBZksNw03ZWjwzdpqFIxFMuhCi+F4pCuh/IwlPHmMA5xauIZ+9ytQg5j5XWTZlce0iXZWmLRbhJ9e3WkrGspD7smtoOSo8K7skNMTrNDOU0hJ9btV40lSmeeSqQJY8mUqcM86JPYrpCXDxUY/QaIJdMyTBVL+CgYDzU4vub1k3mxZE2OfrPAPzmWqKFhTGecArLcNN2Vo8PcTAeLJbwV1ArFkoolvDWB8Y9PAZbtC5H/ZPWFfMh5rLf91HI/xxe1HbU+IkdtqbVrjxdM1TJVe+R+DennQHtcSu3RY6sur02EUGy7a62QkxeD0hTrg4z+ikgf1G7oH5uq5emHB6uQfhqUOQ8riGdGj/0fL1+sJ9p1EVrWG33bXiuyWMRbyq1QKG00f94oMnlLA3WyPFxGRB048REl1Dmt79sWDuMyHeuDdtiUg6na/D1Ea2XuEbi8XYTtmO21PkcHruM0vSH75Pa+eeow/q3Uz+ByeYm63cT1h4nrj23HSdWf6ZXW3+MV628z5anrMnk+xfVx1ymyF8/5MZ0Ke/Hyczt7WZ6Vt0fw8XjR5B0Ff30z4dVBFvs/lgXLUxf8aeKxmNHfD33Fr2W2nBJG96/808WIrcbHsReHeE2Hy4lxcgPpbbSHyVd5u7UVCqXrrY63kE6IvbUidkJ4IehlR8MfEPJMr4bIK3K968P/uP3y7X0HP5EQv+nCz3gefIegVy+Ima3uBP4Strp2AGQEkm156I9bKQ/XDEwHdb3rHRX1K2I/xG8K+jcDXZm6aAo5tzpirauIZdfOqu1Ujrlp4n5I9f1pPf4IjdOx3meRrmXjEPKXiUM81jXa91Ecqjh+vEKNAzkObamIXTQOGf5AyK/XhsgrEofe8q3rH/nYps/MT8LoeFsTz4ps488S9B2282UqDnGsQX/cQnkYh0wHFYcq9inLitgP8ZuC/s1AV6YumkLOrY5Y6ypiWRxSY3AVh3h8t1GUB+MQzzFegDHbj00diVVk3B3C6HWQdZG8DQIzlf1zOeNPexlJHaW2sak6VmR/4zP0deThtQej/zDY5oOkH87/sZyonxqr47rkR6bm022M0BUd3/OWrDo2XbRe1DEtXi9SR9zxWWy9yOi4T/oY1MF/j/SlZ5IuZftS5Dc6ddyE28EaoYNqp7ge+K5pI+nQRknOp5WDn3E5VP2kW9/Wv2Rb37fs2LP5Ldsf23H/5h33PbZjT4004B0MblWbSSOVTEsemdxCf/MLbLwqvEHgtJOpdin4boWyL5OdIXQ+lXLmdChnjpCjonunHql0brdi/vsld7A4ehj9D84a5vtsZMU8Zuezwkhdytr5rHE5Yypnbody5go5Y90O5lJ5sGdmu5XdhUH+dSdZTrt2/XdO7Xo1tOuXC7TrWBljO0a3ijIa1oY2WBsJC/ljLxvcWkBO7IWXoi81FClPTM6pLI9hqZctsA42R/TaRFib22DxCwvqhQLlg6xz2ZMmyB870bKpQzmbCso5WeXh9oMzNo5dqu42R3RAfl7lU6tWVWO+0rldjDxz2jBP+k+9+BQ7vWP0V0KMnJdhKjuz777a7LzFUQ5i8UUNefW5hOpzK+QVqU+jPxvq86IC9alsszZSHo7T7eJhkRe+NkXo1Sqo6gfMvrh7Y3XU4U7NtCJ+gPgN0qWkvKHD9NtIHpcPD63bXXDZzP36HbuXX3bVqu9M2w88sodtarhTUWgYffmM0Qf6m/lS3fh092YhI015q6f8Ev1Wes74RXRqR9suX7WbO4i2bL+G/HknIvNOP1n98Enla7N2rk4/qXEU+tDqSFn5MosNObrXRBkmBt1e7wtaPyzz6kiZjX5VpMyb2pSZxwxqvMexielqogz9YbQPIEaR8QuuzPEPxJVdOZ0n5Iz1auI8kpPX322k/k69OItt/vXZd159nwT93ZZIf3eyyt+uTWNZ2KewXOqkZ5r4VIvR35WVvcPTIfKEcd7JIW6/91CdqrLH6tTo/+WMYb57C9RprH3ExiIqTqyL0KuxjlozGrsTNsmXivgo4qvd6ypjEXUqRu1Mlh2LGO4XoUCof7uxCPOpscjGHBl5bY/HBzyWaTcWUTrl0ZYdi+D4iS9AKLumqXa1zT8rvgjaMl3WgR7q1BDHSTz5ym1R0d9K+jF+3vpDPWjbbIN8pN8H44zfWHjiu6qLM3P0C6FYXSD/yVpf5p3IsXgjKU38pgXW63XwHfNMTl5Mbgr+2Dr2lg7lxE5ttPP1a7Lv7cZE76D+k8fGyItyeWz8Ieg/v4f6T+SP7Zfw22qxyypwd5t3xdcLebi7rfTiNzjL7tIrffitxR+fNqzLe0gX7HP4x9HKvnGJ/Dw+QD5rS/1htD1KxN/CL/4bfiOMLnOV8YGqI2UXK3uv0KUp8m6E73lyzhdyEsJqp5fji/+WfxHRrc5RLRG4Cf3j5xfRMzXEQOx/W2I8Y1gOmuEFmjpw19oKxZKaOnCIwerhZl62aSF/3svM2N2rgzYq9J1LWGW7cuS/NQerLnRPE0/vjP7XqY4qDs82xF6q7PBA74aioSfvfj3UqyHyihy6/evG637rb37mvb/DXajpws/Yb9QU8lxBb7bC5aEStlqrDt3iEkWa1DRbHbo1HdSh24ovNK0tYj/Ebwr6e4CuTF0orNUVseygrJpKnKqYlLe8a/GJ4/NvRZY6VWxSL9Grst5KfOpQaJo45qSpFXT6NiXDM/tPELL4RWaj/T0o9ycWjtR1rdDVYkQtIiOIZ0nItw3L6BG8V4eRuq0roJt6CRoxenL0TDHU9Ib9tuz0pujL34s7lLNYyBnLF/1RZrvp15dLTL/S9Jbsk6df74Xp119Epjk8jVSX6+CYpeyFGBxPjP5voF3xhRh81ArLqfwMZXC50sTjGaN/kcYzFccccszJSz84TebYmqa8u8fRBupFgDw/SdO2CL1adka/4pit7nllrLztM5a9pY3s2HGaLTlYKHtjRPYdbWTzERP1kiH78n+eOazDv1D7XQU8qt75LlKjf8+MYUy7jaQo5poczGnThzFr00eWE2P9/DBSXtnxB/KPLzeUX27gMYGSM1/ISQirnV5jsNwwm+g8lxtm07Myyw3m5qj3ZYS/CjBq4hm7OfIbnZLT36GcfiEnhnWZwDL6mwR9v6B3dA37ex7RbYuoxrjtXGMePctzDUs1kpl+5xUnrhrWcYrAqEfKVBPPuKrrQpaSc3mHci4Xcngz/zVZD9Ev5JeIls9Y9MNfh+LIX3G175mikT9vMwv1aoi8Iqs9F/7yEz92zaK3rE+I33ThZ9wk1eGtywV9h1dAHlerPbjBkia1MaNWe3Amzas9FVcFjxexH+I3BT2v9pRdNVXXQpbFstUevLE81pZPVswYCzkxLLUCZPRmmz5Br2KS0V+fxST1g83K3kE86wmj45Ed8JsisGbm6K5kG36amoLf6MYwJvaWjYmNMLrMVUbDqn0ou/BGP/KqjXvcvM2Ll7HDrt2Ohb45EEb7b5LzaXL4GcvBtjqT5IzVoY4ifl5VDmLxiw1jdXjEVpA67IPXq9ftLamdKPYLdWWGuuaQ7a9erFDXzVwL3znV6G8eB/z2wmFcprOkVnO5Xyq7mqtW/dRqA66yPjxdy8RVVrUjwys/T8IqzaPT88vIM/qqK5b7aEw+FiuWryYfr+LHtXOGcZnOkqpjHnupQ0fqsL+VQ8XrdZSnrkTkuIj4KpbdDXQcT2Mr/mpMeTPloQ71AnJi46Z6QTlndyjnbCFnLPstlNkuTj1PcQoPr6mVPVuc4ZMbD0Gceg/FKWXnRPxdZFxv8opej27074VxPe8GcZmxnEpnlBEII00cW43+Ryi2VpzHytjKfS7a0Og6lFt4FdzwG6RLSXlD43417sXy4ZJiZuICv03PZ5Y4oqt9hCSMjvgJaIbPeonuFvp7teALAjvN7/BC/Q3cK2Iq2ytibXJSPZ/pnLa8l2cP4zId6xN7rQl7RX6Vrd15CNO/R9CvIyx1kbzZvp08terAM27Fl/59veDxnFF5nkVQozGOOBVHkTOKRhzDb4SO2slQxFHnrrB8XHb1+73qtTlc4cQ8lBN71RGxVjlhhTB6pWEcaxxrHGsc62RgFZl5Yj/FZ3cwDvKMsOxGOPLHNtwXdyhnsZAzIPiq9snNiM5q9YDttl6UZ31EDvKvp/LkzTz/brqWWXTmafR3wczz5ekjdVYzzzSpWT7Wg2Ewbz/oYHklxhdT0jHwsoXDctiuPD5oNw6xM4t8lhzLrnyhaB2FGSP1qUOeqiM+K2r0N0Md1bLv6lwYnxVtd/7pLURvZewLepWVX5Mz+v5MJ9z1i50lZ3l5ry4uzJE3APLsd9CV3+HOfAiV/W6G8juMM+x3aoVLxbNYvFArdc0wOvbwTq86C6jOjSbE3xd0HeA7Ukg/W9R5ET9X9Wr0ZxWs1yG/AxzL67Re0VZcr2oXHem5XpUfYH3FViBvJKwbBRbWNddru7ZseNy2Fkfqld9NYT25Xo1+ScF6NVuORb2irbhe1fhDnceM+QH2D2YTtWNwC+Wp92li8Rv9oEidY/3kxe8rRJ3z2JHjQpH+BVcWMxG2srh5z67HdmRLi4FSbCkw/Tvv+O10wR+IN6Fn/NuXKnzGFtRNdt5BGQ6fRn+NMHks/KapyBFtrO6xWJw2fK8j2u3CGi8VxZpZbCpzClw1TbfkqJEI/kBYiXgWgj42rfapi0Q3ZSp19gvpDY/Pft0e6Tna7WFy5FMjd+wdjV6Vny8QRr68C4SxR0M3WkhlNfpNBXs0p5mP7NHQRkVWRmNvNKu3jdRqaZPo0faqR+O3rNo1QwuvHOqQV82slL/ERmYx+yj/whF37GLA2CwYz2+E4DsLxvKwL8TqNk1sG3WBGdY3j1rxXAevPGFb4ovY1KynqC/gasff5ezBt8M1enUBHWLwrNzoHxExwDDVGamYPypbYBzn8yk4BFpPeciH5yUMOxBdh/442XtVpmpbVbs8fBYd+4K8VRy0N57xOFkrf3yG7Rj4Wd7PVhddUTL6pyO+q8oQ891YfapYiv7JZ9pO1g49n2nD+MY7xhjf+PwRns3kMyR5PyXJiceAaIei5zZjcadoTEVfeph8HqcVl5BMNYTHZ+zzyG90Sk5/h3L6hZwY1iUCy+jVGHqMX8szFRcR3baIaoyb0D9+voie1QQtJlVN9Ry9QyhWTcifV00Y3nA2zncmow0vJayym0zIvyoHS+meJj7CZvS/mIXdDl/Ze77I6ykVj6k9nxBeCCF6TE0dOOJX9vhyklaIp//2kxsnf+ZjVw29clb01Y1YGLxU0Hf4q6jfHxtWqVf2+HU+HBrFfhW14lHv7y9iP8RXx5H5lb1OXsmp+rsy08JIv8K2c7JiEi8B/KoYlp1sXcyev9EFuthQ6JNdoIsNn343MnRW/QH2ndy3oO6xww1crrL9Tr2gnGUdylkm5Iz1IYplJCdv4/wLtLxzE+SpYe392SdvUr4HLn75Em2cKzsn4u/YuIP1w2P16tAv6/fn4J98rJ7LjOVUOt8MMgJhpInHJEb/FRqTVDxuLo/VG1aR8UpFuYV3Lgzf63XaNSSPy1ftWD1v56NVEBWfJWFk6TGvRs94g4JfxK5yrL7i6OQO84o7RKbl4a8x8aQdZ0JYm5zUBBtfKCtzrB7r407KwxHVNpDN9bpGyDH9ewT9WsJaI/jM9u3k1QQfz0IUX/r3SsHj+UI029EDSx3R73CxqfAvfRl+I3TUToYiTmyROE1c9g1CF3XUDUc2mIdyilzBmn7f6Ii12RFrqyPWrU5YaVo/jjWOdRpjqSNSsdWI7dnnyZpRKjkXdyjnYiFnQPBV7fuaEZ3VVfZst7KXMiE/b57kzfCumqllFp3hGf0zMMO7ZuZIndUML01qNo31YBjM2+FG6SS1UYp25Y1StYqJ9HYaKXZUT/lC0Tq6meoID2CoOjJ9+KzbI1BHt2bf1fHwItdqKnncDoseXzf6dZlO7Y6v35QjTx1fT9OtOfI2gbyTcHx9mvI7jDNFjsOqeBaLF2pFTB0Q4uOwaGMel5Y92q6Ow6qzlbxLc7fwB+6L2Dfy9FN2cz4OuyZHjamCPxBvQs+m5mAZTvoMFzmKHIdV5/Y4ROwQJo9VWZrGj8O+4o7D3pSjRiL4A2El4lkI7Y/Dcq8SM7EylYoiRV6k2CtcOhZhY1eQqpEAVm/sOCz/UAPy3ZQjR73gEcLoHs3o316wR3MaSckeDW3EPVrRlROjb3ekiZta7MVBNbMp2gyLHoflkZr38UP2L/WysTreFRtVOx0/nNTNxw/52kzsjng2XfTYarvjijyzuqkNLu9l3QxYNYHBRwqN/odFDDBMtc8f80flv+o6TnXEn+Mdtj/c5zRsxuzQHycqf8TyF5nlxc62FG2r6mVRvsoO+wLuJ9v5Tcwfce/yC7TvinLOI5llz5acJ/RXcvo7lNMv5MSwzhNYsfoe46OEpuJcotsWUY1xE/rHz+fSs5qgxaSqKU/vEIpVk3JnJafeoZx6QTlLO5SzVMgZdcQlC7sdHvs7VmTDrOIxuWMJ4YWgZ1OGPyDkmV4NkVfkSOHXmls//tBLP/FfEuI3XfgZN9s7Bf1SQW+2wrZVwlaDqmvCjeY0of/dQXnYvZgO6kjhnRX1K2I/xG8Kej5SWLQuFNbmilhFfvNxrGMGHyn8AxhC8dG5k6WLDQc/1wW62JHCL55CXZScizuUc7GQ43n4oRnRud2i/1dyppJFF/2N/h3w+4ZfpUX/2PIM91/pJx5E4fZu8vDonfodPtbv78Cn+OjdGiozllPpvA5ksNw03ZWjwz9S313xQIo8esfTclwl5naiDgipG2JVOzG6DstQ+jDYKsrD/pYPJ70B8vgNrjdCXi/lvQny+A7V74K8zZR3F+RtpTy83Zs34rBfrFPemyGv7O3p+DbZN2h5LgisIofdsN/k30nHcfhy+I55pis/Y19D/thx6DUdylkj5KilVhwfxw6/WXuoeMy08A4Ev2pT8ZWioR2I2J1F/6ZY9skb2MirNvryjlijnOVCTlm9xuCH8S4iurwfS0oEbkL/+PlF9Cxv2mx/n8o3DsaiibUbjpx7hpaZd7UYdsVI/2YYjpwP33nnCLFuI1ugnW4n/W8Mw4lDANpwLEKA4TdIl6ohoOj+f7mT7XmnDBJCxWexlsB7jczPrbvMyXaTq9ZAbxSYsb015kNbBPGsR9DHOqRe0r0W4UcM5GOPSeg5trbVQjafcLk6a1XpgKOf9gKULLRHu1McoY0ORn8d6MAD/FXAo8rFrZk7ePSte3Lkb4Yoc0NOFAtCPpcPe5i+HH1XkQ5GfzPYIPZzfKiPeoY2QN68v3lfGb/j38oXuey3tCk717/Rr43Uf6/QwfQKBXRQNEqHjUIHETVv3PXIgZwTFTyW4CjHtcQ10Stw8pJZI+Ux72XrcOtgOfa38oC05PYDd0NDs4d27Mk7TcJlzetReoJOA0HrlqZTdUCot5q86AEhLF/VA0J5rbSdnA4PCOV12ipYMH8g3kQ8C5naMxonvr/ahs+MlbdK97bskzupnRCgenMOKfXkYPJKnJqhqVUko4/9HqmyJYaUWwvIRltysF5fUtd2B4L4989id+C107XIPWmeuq4Suna4elF6NY9X3nA1j1fecDWPV95wNY9X3nA1j1cIcTWPV95wNY9X64uu5vF0982QdyPlbYc8vD+Uk1rps/pK2/PVrWFcpsPvebGo6GEPjD08XW93HxXHELzXryYw+PCR0X9vJI6VvRtS3ZeIbZgPGGHb4ksj1O7iyT4MF7snNFbWNLFttgj62N2QeD8av/KFq9gcI73uMePdrHa+wP3ERsBSvvC67Hud6N8f8Udl81g8b3cfJ993i/3HZspDPr6oCP3R6MbirlIsD/uj8i+kZ9tsFfToc6Z3k+jRTur1Ke5XsPx4Z/CXp42kw8OiSc6n6crP8g6Spmk96bPJUQ5i3UVysL3gsuzPUpzfDHmqnVyTfa8T/e/BIsnP01Is8m8ifsv779DOrj4nn5/v7FWHdFUb4Z1eVU6kf11OOX8V9Fy18MR31e5Mrw7bXbNsu1OnZmLtTp2GwtM/ZpMm0atYr2Iy+mReTO4L8XjIMfm3xWKY2qnaTLqvLam76k/axZF3ZHFkCunA8SyvP1B1pfrgzTlYPUJ/bLdc7zUhW9GbT+BCK/pCHfKR/o+hrq49R2OGHB025Ojcl0N/B+lg9F8Q/hKLA+j/WwnT6L8EmHwhWTvM1+dgfjky1lDtFPtYbtfbBD3Wl+mj/JRPAaDu3C/eCfKZ9gaSj3no5yw3RPRVL2fE9OX+xvK+Cf3V17LvHZ74rMXq6jqhb9G62hApH2MZXz2M9sdYG0F7vHyGxuwtiflPok9XY5W7Af+bOeORNKl5Dcdlde0MjnPU2GAj6T90cm/WsP6xl+F8xtjJl8q+cKJsE3vhJDYmxxiu+ptplKfuZk+EDmX7UrzD/55pI3E3RXDT74tIj3ZjvCuz7xyHm6LeYzaM2bzdvIbXGbA+tlKe8tmT7Y9YfvbHWFnTxLZR/T/O69gfVf+h/JHHWTG/SVPMHzdBWTfS2G6r0EfFaNan3Zib9zEsxvfl0HPMN/pzwY953PMGoUPMj98o6N8gdJ5COiAvy8Z2iTbhl5ON/sKC8djqZSxeTka7sf/HbJQmtumbBD3ait+8wHXvbZSHceMNlIf+dwfpoNps0bZhvP92/Ipi9ZaCuInAUnGSY7XRXx2J1Sq+xHy8Xbs0fVT7v5PyVKxSvmp0Y+GrWB721diYM01sGxUvsI1zrMbYsJXy0Ff5NDKWfwvofmaBsUCsbtutvXL8UuNI1Q/zHHVTRA7qpS4c2BSRc1aHcs4ScsZyDRJlqrENl6fsWgjy8xrvZsfyKJ3VG5a4pvpds4Z52I/VXhj3d0a/b9Yw3z3Zd7UfxX5T1Hd57z22hpSmsR9zht5TPebkcaV6czUJo+tQ+Sz2nUYTSMexsBe25yJzRhU3YvbFNsFXPKItN1Ae+htfVtHuopPYOAT3Cf9uanv9Y/ui7fyD94zV2EqNDzDmGnYgurEYA2B52Bdi4500lV1TZF/A8cEWysP65zGpGjuqeMl1nDd25D0ro3+65Ngx5jeeY0e1zj+GMaSr/SY2dizrNxxDMJ5jH239d2yNLAkj+8m8667z9lf44qGEnk+E58j3Giozj5EY+yqit3L25dAbHo9F3hdZS9jSRofXkg5b2+iwhXQw+h8VOsTsn6bYmLA/jG6LJdpNPSE80wefIX4jaP9ohUIpYfuZPOUHaeK2rNoT5vFcpuptDun3tY5YOLbsoL5Kn2XkeQXGMc7D+TGeM+RUo7+xPKlfrzxnGJfpWFesL9zPZR/bIni3COxT1R62VJMXbQ9qDlC2PVS9keTV2h62UF63tQe1rqRslKZWKJaKtJeKtyktLNpeDN+rvSjfU+2lwxuGWulUbGIYHasuhO9qHwPry6v+cOx+qutvQzV50fpTcxPP+sO2Vab+1NrfGfAd87A8sbU/5D9Za39nkJy8tb8v09qfmpvG1v6M/u9h7e8vImt/vL6nft5GzR3x/RCTb3llzrx087lgnleqs4FJGF0nnaw//X7O+lMCuNcIXm7bSL9V6GH0fCaOafj82tDZHJhL8Uu1ymdRr7z1lP8TWU8Z6/NraGc+D5Y3pjfsEEaPGax8llemX1BtAsvDbSK2t5amsnvx7PfqXaq89pWmWwVWTNcNHejK9Yh1xecGjBb9EsvDfmn0kzP/bnduwGw+FvUfW09TNo2tp7WzKc9pYmcKYutpKvYWXU/DGPJl6r/Umf2E8lAmPuM+Gvn5HJ+9azEf6p/P6qr31DDu35qD2RI+FStD7EcBNkXKjPrE3lNTfPi+ab+Q1bIv344nwzNfmSBk8Tlbo10CdvrEQq1Lwvq0SbF3dPrDaL8uM+ZNCC8EPaY3/EYYbYsqY3o1BlZ+b+WrOAdcgGN69CMc0+e9s8DnBvLeKbqMxhOqjeE4dUX2ndvYVbOH+VbkYIZQfryG+lxA47VYW0xTp+/0oc1je/NrKE/tuZoO6nwB0l+Zfec1/ZXQNmPvMjmdJ/1GN+/t8484KP9Se/vsN3nvphhenehvhzrgd5nwngjeP11XUveiZ+axbXA7LjpHirV71HtR9p3b/ZZI36re04r1re1+9CP2Dji/a4h8sXfAnebWcl8Wy1PkHfBOYhfPrZU/q3fr+J6HvLnyFIq96r0BrFv2L3WjMeqRmW7Ubb3fHfGvdv1K2Ts6+PZp9P9Y32BtX/mX0XXoX9PL3jEQa0tpKjuu5R/VUe+0q1hoMtXNpfj+yFebI/VR/STyXpB9535yf8RftkbKmKayfRS/w1z0fFHsHTE+a3WnsAPqxXcMGf3hguMFp/NM15/qM838ziHOsfmdDrWuiTbNO++e905H3hmI5yLjBbUfrNpWEd1V3FXtDdvU92ftTc3zecy6KSKTebHv6cuhz5t/vlvYi+NZ3vthSwjT6P99JB6oPvV2eFb2nTw+26vec4qdSx+78Xy44VSv/XP/EbsTJO98FtKinKL+jz70dvJ/7M9vI5mxcSzzopw8/8+7K+GnIv7fbl6+gDCN/qdLrn3F/L/dGCE2Roqde4/dieM0Pr/pVI/P2f9j43OMv0XupSvq/+hDD9J4C+/FUD7byr7zXTC/UtK/Yu/9FB2Dxu6qUbGX12fU2JXrMa+fWUh2MPr/WXC85XTXzIxTHc/5rhk1vo3Fz7G4a+YzBddneG1pXUndi7Y3bFPbqL/BuS/3N+siMpkX23Vef8PX8xv9FyL9Dc7N1HoQ9zdG/6WS8/VYf9Nuvs7rQerOIDWXj83Xne4EnHmqfyCX+xt1B4RqGzyWKbrO025+vyrz/87s+vj3JKCLYdcEZZ0+jealzD8bIN8+6wX0+NzHX/7Dj9522dumEX+arI7SPZu0/r9Oa7K4NmW2VPcrms/WSDfFl5AOTN8j6A1X3eNYhzJUtdHcX9zxu6///Fc+385GVfGfvaw+7d+9Ye3qscL/3Ql/89Inf+OB7x8r/P/dv+Gmnp/93gVjhf9DL61bcWzOoq+X8VHzhSlAa3y2j9mE5yViYeFr2w2/QbqUlDe0T9skeVy+aj+pMhm+s1UQFZ/ltVLTLOTQcYRIU5mfVLGam0bPW6FQmm5eMV1kWt4MwJ5MeTMhD2uTU03obzqnXvoyeCnTsT5YHzMobyrkzQTZXK9NIcf07xH0UwmrKfjM9u3k1QTfZMJI6DmO0mpCdp3oF2Ujs9S2354dRpRzchj5N/rfPaSj6lVCzjMuB7/pwXLT1B86igTTikYew28Ebe9WKJSGIs8UksflqxZ5uM83KVMJ1WiQFhN6a8ihUzV6q+DjZHwDOZhp6g+jPbWElScWrVV71iBdqtZqjeRx+dij2WvT1AyjPYTH3Mp7VL81jjWOVQbLegGj3ZT1AmnvcVP2fUrQsQa/9whdeiK6ID+3EZwT8T3YvaIMltcXyZsQyeuP5DUieROhDAnlTQK+bZQ3IDDTcv2/c0bScSxWnyGMjnNp4rpSownsfXieiXGqSVhT22DxuRvkn0pY09pg8Rk75J9GWNPbYPF6MPJPJ6wZbbC2ExbyG6/5ek3wDQg53BfiSLlE3zSpaF9o+A3SpWpfOJPkcfm4nZ8hdOF3xNLEce8MIecMIWccaxzrVGHxbNfw1afJ4WcsB+MBz2Kxr8Wz3E/QevsMyFP99I7ss070n4VxwSCNCzBumI5ThM4JfVfxYmak/Cp2jbWduV9PHOVgHt8DPouw0M5psnoyO2MsnUV8syEP6XDlYRY8ny1kK3zDaOeD75qjy6Z8EGXVif4XwQffHRmbsg+ifyaUl1BZkE75J9bZDqI3vfsEPeLVif69sPLCe27Gj7ZCvfj9JqP/j4DJe24qvqmViJgvqr5b2XQWYU0WWFge3vdVNsX2OZnKb/QfEDbl8Rjyq7nH3ZSH+3NTKK8P8pqUNwHyplJeP+RNozxc659OeTj34HHVJMjjfmIA8tC3bO5RJzv8TPa8P+j20grFEu87xGIr2lrZvkF56K99lIf1MpHy0A8mUB7W2STKw33KfsrD+jRbTwzFYl+auP81+v8Rac8qXqtxt9HPEfTYRxj9lDC6Dc+hPOTjODCH5OL3M7O/0Q6o1/3ZZ53ofxPsEDtTY3p1uGc/Ue3ZnwkEvGd/FuTVBD3XxVxBj3fjmk2aRK9iq4rTaFOOrWajPkGPeHWi/3QktmJsPpN0T0rqrvbBVZvHNvWuyNiU+/czIjKZF+X0hXLjls9H+nc1Hke9uH83+i9G4oGyZax/V/FjliiXsulsylPjAtU+jW4sfmcTy8/tM1bWNFWNlc0wuv3wOhC2DfZ/td5U1P/Rh2y+V/WcwA/++sWrv77xq2dXOSeA65rGZ+OGirtnv4r6W1JrWYbfIF1Kyhtay1LjVCwfv89dcTfyVxLiR3lqt7fDcxc1q6tpAtt0sbFmX44uxlsn+t4s4Kuddf79IVxD5vUXtb6Mz3pOEZZaq0Y7Wp2k7fD/0Fq+2sku4ttKR6wv88lYG6wqB7HwbhX2h/RfKxRKl/GJDMNAbPSbEr59Z9FYYfiN0FFbSmI+huXj+dk0oUszjPaxh4Gunf+hHIV1vEux9jtiPemIdcQRy9NehxyxDjtiHXDE2umI5VnGwS7Va68jlmd79KzHfY5Ynm3omCOWZz0OOmI97Yjl6V9HHbHe4Yjl6feDjlieMcezjM86Yj3oiPWcI5anvY44Yg06YnXruNDT77t1LLfbEesJR6zTYSzXrX7vOTYZ79PKYXXrWK5bY6HnWM4zFnrWo6e9unX89ZAjVreOvx53xBp0xPJsQ5728uyHPNvQoCNWt8Yvz3W5bl0b8vQvz7HvoCPWq73vSL9PccJKk/UdU3Kw8XvZ96gSobPaJ8X9e94TDYDT4RvZhX+3zfAbpEtJeUmsftTeKr8xjrxNkcd1pd7rmS7kKKy6I1YfYSm/Uft+Ze01CXCyN4BX7bh37wNrdj0QKNXp71U5KvJPxG3OUa0mcBP6x8/voGc1QYvYqkk2cvQOoViTRP4pETlj0fT5797s79hrhWOw/X1f0TDwStn+3gV0nXYHzzhiHXHE8hxSdetU1bOMntuA3bok363LF293xDodfGJ8ufrU2X7QEctzucezjJ5T1W7dbvNcvvD0+4OOWN26lOvpE+Pjr1dHjPbsax9zxDodYmG3bofsccR6yhGrW5dMPfu0QUes02F78nTYGvZsQ916rGi873h19B3jW+mnzicGHbFOhzUFzzJ6Hjc/4ojVrbb3PCrbreuFnuOc8Thx6sYT43Hi1Nm+W+NEkfEXXjXL17GWvfYUsTYSFvLztVKIlWSfti9d8XrQWkJ4pic+Q/wG6VJS3tC+tLpSQx31UD9MELu6g6+wLXuNIWJNIx1O5+NBM4QuTZHHV7qoelbXXymsPkcsvkIMr6PmusTrxUrYtvDPphi+1SWWs0pd4vXZtTC6fFyX04QuKi7eQ3wox8n/r6nq/xXrKOr/WL4q/p+mR4CuE59N025HrEOOWE84Yu13xNrniLXTEeu4I9agI5ZnGfc6Yg06Yj3piHXEEespRyxP//Jsj57+tbtL9TrsiDXoiHU6+MRBRyxP/zrmiOVZRk/bP+6INeiIddQRazxOvDrihGcZ3+GIdcQRq1tt/6wj1ngbKof1mCPWeBs6dbb3nLt7zpFt3VytAaX/WqFQOjiGP7e1JiG8EPT60ivl57YeBTrOq4lnPRGsQUes445Y+x2xdjpiHXTE2u2IdcwRy9NenmX00kvFqW7x1aOOWIOOWJ4+cdgRa9ARazx+vTril2cZPW2/1xFr0BHrKUcsz7bdre3RM0Z3a1/rWY/7HLFOh37odCijp157HbG6td9+a5fq5WmvZxyxDjlieY5NurVPG2+Pp66M3dpvnw7zNE+f2OOI1a1+f8QRy3McPeiI9bQj1ljE6Ng58YTyUE7sLLy6+k/JmdqhnKkF5fR1KKdPyOG/7R44vEtvffYZ+9l62484A56X2B+YnBBeCHo/wvAbpEtJeUnM99Q5eCvfrGryBhLiR3nqZ0vN1rNFnmHZz3b25WAZb53ov5L9Hm+T6NK0nmSonx7FZ2af1G/+PMNlX0hTKxRKV6ifQ2UfQ5uUqIMpRX3M8BuhozpPYjZUP99qZZ8jdGmKvDx/QDlzhJymyFs/jjWONY7lglUg/vX8zoy79/b9+F33XXz+5Ju+MWf6u4+9/tffefT15y/luG+6IS7GgBLxqPA7VYbfCB3F2yRmU9WH8E/VI2+T8tJ0D9BxXk0868nBUrG0Klaa7so+O+gH61zXJXhr/UKnViHW0DTes8rzrjDebBhQ1l8mGP+84rKHfqHYeOcL3hnLw2cXfHHFgYtmXblr/b7jX9zyoSdn/qcL/rI552t7X7fvnz+/y3jPFrw5yZrNkM9Ogsxt2Wc6JmplhTG/WgB5NeJNv5tf1Yn+3fOG+RbNGykb2zPHih54XqIulhaNFYbfIF2qxooeksfl41hRE7o0KS9N/P5ZTcipCTkKa9AR6ylHrMOOWPscsXY6Yj3tiLXbEesJR6xDjljdWo+evjrYpXrtdcTa74h1zBHL0yced8QadMQ66ojlaS/P+OWp13FHrMEu1atb+w7Pehx0xPJs255lfNYR60FHrOccsU6HftuzbY9FX2v7OTgfm0x5NcgboDz8Sage0q8u9KtH9EP+eg4fl8PmW73wLMk+ba5Z8b6WwvfDGH6DdCkpb2iu2UfyuHw815wgdGmKPP75LlU/iZBTVi/Hn9yy/IuIbnWOaonATegfP7+InilTIPYUyleuzy6TZ9pmDn+aBiJyBgSfueZE0PEcyG+QjHOEjudEdER+o1Nykg7lJEIOY6llqjS9LfusE/37sqWptDn0zhmJuUjoF2sG5wr6RUBj+ijbGO+AkJ3kfJqcEOI+hDr0k5xzHeWcCzR1krPYUc5ioJlMcs5zlHMe0AwAX/r3+ZCHfmZ6LBF6WLdzATwv0Q0U3g4x/AbpUrXbuYDkcfk49lwodGlSXprWAx3n1cSznpOMNRBGl5/rEss6FnVp+I3Qke8kMbtg+bguLxK6NCkvTW8GOs6riWc9OVhWLi8sa6cd1tdFbA9MlrcUsC+gvIuBfjPlXQJ5dwEGpxr9jeVJ+6+V5wzjMh3rivHL9J4SRvsYxo68WKD8pyn4jc76YPspzz+AraLfo62iBYB9F5WhBXncZheKvBR/+YL8sjY6LGtDlFXJaXYopynkMFYdsCYC1kbIR/qXM7t32E4eUO2EY+bSithFY6bhq3ZpejVEXr2ALvXf/E+/+t/e+tKGhPhNF37GY8SLBX1T0JutLgH+Era6F8crgWRbHk77llIeTlVNhzTGLF44Ur+LK+pXxH6I3xR5eKykTF00Rd5GJyxsbx5Y/RWxpoX8/lvFJD56XDYmIX8s9k3tUM5UIedk9+18nTe2AdSPU7v++4dK9N9oU+6/0Q58BLvsuLhP6Gr25jFbKxRKS9mmmJRN+ygPYyLagZOyt+mc2vsTJeyNNjXdOuzPLlZjQ5aLZb2Q8i4F+nspbxnklR1TWnlSG/1zCRuhP1xCtKa7Hdc/H/JtfFYn2kWtYZ6z5o+UhT67lfTA+jgf5M7PMKydLAM6jn9ov5p4Fot/RqfkTO1QztSCci7oUM4FBeX0dSinT8ixdrUc8kq0q8vMDy4TmZZ3eRhdBsu7AvLKxhfTuWx8QZuabifbDsso7wqg5/iyAvLKxhe00T9X7PNQb9S9HnRft5XyjX5VFhPS+HDt/HxMe46vId2Vg7ly/nD5Ni4aWQbs13iNAGPm3ZR3KfCZPqnOByMxjefuZdsm8rNvIJ/VVYf+WnhNzPAbYXSZq6yJLSd5eXbh9oS8TZHHR7QvE3IuE3IUVt0Ri8fN3RBfeE3MK76sPMXx5Z6sfXZo6xGvVQbCGm/73df2eW2ik/a61BFrvO0Xb/tl+2xen8b5Ga5BH4yMM1RsuYPyjf4wjF2emJ9fnotB9s/NH4ll+h+lOFWxXck4xfMHnNNynEJ71sSzWJwyOlU3HKcqlq9wnDL8Rhhd5ipxSsVvZRcr+3KhS1Pk8RhFxcPlQo7CutQRi9dYELuE/ZapPsuSshX7EMY3jlOXQ17ZOGXlKRunMBah3qh70Thi9O+jtl/R1rLtG5Zam+S2X3ZtEvl5bQz5uO1XbIuF277hN8LoMldp+yomKruouaLxNkUej1EuFXIuFXIU1lJHLG77FfeYLlH9gCVlK/YhjBnc9jGOlW37Vp6ybR9tfCnlqf0A7O/Vmju3i4p2LnxNheGrvdcq7ULtpaq9sPR8lp0Zy46d3rJjz4a99z60877bdxzYff3D92/Y/tiendsfuv7++x/bsXs3Ko2CJsNzzMfENPa9VzxHjEvaFMYOtk4JoyvrEsK6tA3WRsJCfu7El7XB2kxYyM8TRfu7N4zW0wbIPQVwuAEqvTaRXjjg447zsjZY2wkL+S8jrMvbYN1LWMiPvPh3bxitJ9srhpP+WxHRK/0+l/TCRfAVhHVlBCtN9xEW8l9JWK9pg3U/YSE/8uLfvWG0nmyvGE7676o2eu0gvV4D/FcR1mvbYH03YSH/awnr6jZYDxAW8iMv/t0bRuvJ9orhpP+uaaPXW0ivq4H/GspDv5xJcsoepkD+vINBlq8+TQ4/ix3amElyrnGUg1jbgC/Nex3wY2xVCxImwzr/a+H5WAyKDb9BupSUN9T5X0vyuHw8KL5O6NIUedivYh7KuU7IUViXOGK9jsqDEwC8v+NlWly6FvLU5MH67zrRD7SG+f6JNpnQV64pUMZrhTyjf332d5+gR7w60f8LbLL1ZDOZptDpuhxduD9lPzGaNPWT7LFqI4bfCKPrv0obeT3Jy/M3K/tKoUtT5OFYCvNQzkohR2Etd8Qa8t0QbyMDZ4+UWbWNvLxgmK+ZYXZTG5mZ6dRJG8Ex1IB4xm2kos8WbiOG3yBdqrYRVRdYPm4jrxe6NEUejp/z2uLrhRyFtcIRq2gbWURt5ArIK9JGjP5PoI2cR20EbcRtRM1X1KaR0Vud9Ql6xKsT/UUF28iKHF3S7zhuVptY3EYq+mzhNmL4jTDaf6q0ETXfw/JxG3mt0KUp8nDOxHasiWc9Eawic66iWFdQefLayNVObeQ3oY1c24Vt5IaSbUTpPhZzL7W+gHff5tlI+W5T8K+gvKVCTjsfWXO21ifPR2z+Xif6nwUfWR/xET4MjjrzhkvZufQSIafIwnLF+NNbNN4ZvtfCcmytLE0c764UujTD6Ni5Hujy4qoae7xSsNLvdhdmrB8s286bYbQfLSE5VzrKwfKcjDWjNG0jObwmqT6LykEsPqSSF7ceprh1FeSpuGXre3Wi/wDErUczzH6iKdlOrzXdrxWZar1nBeXhePhKylsJeVz310Mejl04qU0/K2vah25ZNIzLdFwOjO3XUd4YxNzCY8zxmOuDNT5fGNmWeL6AeXj/Nce1mnjWE8G6whHL9jI6rC+3uJYmPrCwEvLKHliw8pQ9sKBiF7cTpsP+Re0bKr0SgcPtyfLU/p/dwa32GGeTjLJtfrbQt8g6GvpXCR+qFW3zhu+1jqbaT2wd7SqhS1Pk8dqX2pe9SshRWDyvx7nyqe4/r6gmL9p/qt8s8PCvvHq4MiLvtdXk9Zg8te99hZA3NZxY3+A6zNufV/vaWF95bR5l89mcsucdEIvP5lyZU4a8OlDrP7EzCnXK++1sjJ7G4V88eySNnSv5FaD55ey7ivm41vFbRMdnVNLU4bygcNsz/AbpUrXtqXrA8qFvTghxH8E6yjuzdJkoC/vs8jY6sc8qWapO8QwX1ykedMW10P8/QrdM0Kk8GxsEwuCXIn4P1irftmhkGVHupfAd89Kk5rexA6t8sQbKWdqhnKVCjpq7cxuqeL6i8Jqb4XsdclZnFmOHnJcJXZqUlyaes5V9Ea7bsdLv1mxi53yK1KuSow55j/X5qSJ+XlWOWu9in/KQoy7g6PClu9LzQz4kjuteXJcrIY/tfz3k8Yt8N0Aenp3ipOaV+LLeIwXWxDo8qN719sPzYpyU/fBFgnH7jTz/yMnTfhVfIFpuOi8XmZaHYzu2H45T2X44RmP74VgT+w1OykZ4+VuZdWv0MStT+iKG9VXDL2LcvuPAHdsf2nn/9j07dz28aceje3fs3sPXdHMPsDRHS/vbLMfXiOdpnaYeyuNrmdYLOkwDgs9knKrXTiu29Ohrp1i+qq+dngXfuUXUxLPYq6IXOGKZ35zs104vprxue+0UbcyzQ7yi9W7KawHfRZS3EPIMv90VrfirBZiXppp4xnU9QchUcrJAN+pXDW/LvvQTXdWeNDaDq3i93rVFYwXXh7oqsiHyilyT+o8zVl78dz/yjfcmxG+68DO+JnWpoJ8g6Dsc0Vw9ADJCGN2zpgmv3rmI8nBFAkcTfE1qxd3Rq4vYD/Gbgp5/dbaT67QvqIhl15HiKoG1HWt/CyDvXMrDdsanmBYJHRZFyrNE6DAg+Lg94s8bjEXfbfiN0FFsGeq7Yz9HkSbuuy8QujRF3hnwHfNQTiwGI9YCR6xW9r3D+rqA7YFJrWCyD6H/c9+Nca1s323lKdt3o415pXK8XY19u1oidFE24+sYlgg56mc3FNb5jljmPx3W1xK2ByYVg9iH1Elq1eZORbvinwgx3XsFbSZiaGxptG+Hk3I/RmNg5LerDNTPCJ1HeejrCyjvXKFTQjLwNAb6Pf+cktEfy4Sktly1UGP25GBinYYwsi1bOfpBruWV8MFfTfVatnBYDtosTTiey2s3SM/j1thP5aANVP/FbVbFX/wZJdvBU/YyHcfCXqgD2+v8NjqzvZR90Q5mAxWXWoTVElhow5i9TMexsBfqwPY6r43ObC9lX/yZqlb2vRlG23IhYbUEFrbH1URv/H2CHvHqRP9+iAn89gjGNa7rcwQ2xsaEMLAck0Q5BigPeVPc1ryRuOoNInXixOjVDQh4uoTHXnjKwXg7PC3TVSej1Qo9lpmT6pvNDkVX6BOSY7ho/zSxT1wodFSn4FcUxDX6dqd9egrojSdC2IeuFHqr0z5Lc+So05Zpekv2yaf5fwnasv1cooqnJrvDeDpFxVO0EcdT1WbV6cCibZZPluPbbnxSGW1sMpV/4amoNSXe9lOn0NSJG/a9vhx6wxt1AkzE65g/q5PdVf0Zy9CpP6O9+K06o//MyfXnyWPtz+pWlNjbuPim/xWUp/w5CaNjWNn4iifDru7wbdeY/1vZ8vyf33Y1+i9H/F/ZV516NfrYTQ/t/P86ykO+pTly8uI5+7/Rf6Wg/5vssfB/tBH7f9EbTIx+paBXNymo20Ni/n8dyfHy/0Ulbg15fUQm82LZ8vzf8OpE/82I/68UOsTq43pBvxJo2P+xDNdTHvItzZGD/o/2Yv83+qQVhsoa8/+V2fex8H+0Efv/DZBXE/Rs7xsFPY6/+VafGyGPb8VCG19PclQcLOr/eNvOQIe35sT8X92ag/R5t+ZMa534VP6v2iCetiwbj2L+v5Ly1OkploP+j/Zi/zf6Oa0wVNaY/5vssfD/lUDA/n895NUEPds71l7QJs0wum3E/H8lyfHy/5fpZrUE6GaQzETIxGe8hs/8CgvPR90F3++GfKS/unXi09Yp0P4l/GDtAPAEwEDsij62FstqqUbPEH8gR16aGiKvyPmHfb+04Ht/9MnlkxPiN134Gftxr6CfIejNVn2keysUSrertm6y1fmHOuVhezUd1PmH3or6FbEf4jcFPZ+0L1oX08JIX0B/T8v49ez1OvOfKYDBvtyE5yXK31PUlw2/QbqUlDe0x9kkeVw+s0O6lmo/fZid6Fyza/v9N25/ZPfeh3bwiUq8G5utgqj4DKMP53H0YLqb6e/Vgi8I7DTfam4aPW+FQmm6ecV0kWl5GKEnU95MyMPa5KRWTU3n1EtfBi9lOtYH62MG5U2FvJkgm+u1KeSY/j2CfiphNQWf2b6dvJrgm0wY/YKvZV/+6nvfe7j54R/4kdZFn3q575bv+9t7/v7W3qs+96m3n/lrR7/11y++m3UOQmeux8lEqz5Nd37GJwmajljTBJbZBn/MtITPn1E0Whl+I3TUxoai1XSSx+Xjss8QuhQZNc0QclSvrLB6HLFqjlh1R6xeJ6w0rR/HGscaxxrHKohledjfT6M87D+3Z58288b4zD9q3SP064noh/zc96gxrvW7GNdL9IMDRftdntVWnL0P9bs1kpdnlw5n9JMS4kd5atZutu4VeYZlvtEX4jPKOtG/u3Xis0l0aWK/VrN4fGb2SZ99X2uk7mplpEg9I24zjC675Z1sv8f5B94z+P+0tExcyUTeHdlnnehnLRzme39rpM5Yr/gWidlA+UlsZaTDVdABtQraBwQ8jkKda4Lefj9GveVUpzwsTx+Up4P4M1PFNqzjn2qFEeXBHzBXfmXlqRP9t1vDfD+dfVd+jPOxvLih5HG77RP0iFcn+p9pnfjEnQOl3+QceWgPFddY3n9tDcuLrd5jHA6hst+eofwW4xn7LfpoLP4V8XPly+jn/YSlYhf6weocXfP6A8OrE/3HWic+1W5RzM9VvRr9xwEzVq9O8UjWK9qqSL3GVrPb1WvsLc0GYak+Feu6SL2iftzPG/3vtk58qnpVfZTqQ7iP+gxgxurVbDkW9Yq2KlKvqr8vWq+8Ko/1OpGwVIzGui5Sr1gejtFG/yetE5+qXqvG4T8FzFMVh3G8yPWq2gzSc73G4raKw1jnkyiP119RTtkYrfrlWIw2+q+2TnyqE+hNwR/TT9ktLbPNSbNdkM17dj22I9sGCZRi2xbp96k5aswU/CGChTyxIuHGDpvcZPUFvbzOJjf6l1onPtHkbELWp8gUuWKTKbyRZvheU+R2Q0+eJsWaWWw6W3Qq7uiqabo5R41E8Ic2WPZ32jPYqBmrm0f1sZEA82LvU3QkYPT1hSc+VY/RbmbGEWVA0GOvyLNzLMMA5SHf5Bw5RUcoRj8JyhrryUz2WPRkaCPuyXBXR60OsL1jO0NokybRq+aHNh4gOe2aOZ8HUn4amykjbsy/VJuI+ZDyf+V7sVURp9HqQNnZpfKF2OyynS9Y2ZQvxFbUWC/VxaKPsi8MCDm8MpYmjjX4aTwB8PoFveU1IA/rK00T4XlNYE0gPqO/NKs7Gx6gnxo/nlMJRJcQbciR30P0DUHfEPSpfZYsHNZZ6cn9F5a1Juhx+IP0Vywclnkl+LQ9Y3npsxsjdEnOp9IZ9YnZqCboTfZEQT/UR0Ae+j7SoL0QqwH5SH8D+Q7Wt/E3hXxc9Qk5euMz9p1Jgn6SoE/Lec3CkWWoeKYtmRhGrmrYZ5FzhT+zYunVk7edNziN+FHXTvAnf/zn1//pPz1yXjt8df4N+6qy/srxFbHs/qIOzzr2GD+Om0Jx/kT1SQnp1l9Nt28XsRPiN4Ie07VCoTQ0PeFYm9eHWvka1eT9azqlnRhGjzmwLtF2KMfqS409+imvLjBS/hcWjSxHxWndv3bog/+iVmtwp+TuhcO4WHYcx6vpM89Z7oP+ZzvEVsM1fuzD1byC27TZu0fQ8t18+LdaHeQprNVXX05Z+6isRr8zK18q71uzNSbaT823GPMhwOylOR/3MXltxugnCXpc/TR9poTRvj+J+NTKeBDPVP0kRIs6pOkeoVPe3w2Bk6dDv8DhOM+YLJP9IU08jlbzU2xT2Gd1uJzUq/qCQPrwbjrmYdneCHScavQ36pxi3LZwGJfpWB/Vljz7bnveC89ZLq8n9REtz6VQx07Gwzy+UO8t2N8TIvonhKNOFgwE3d7UZ1F9E6HvWJ4USdObss8O+7y57U4HPL9wGDevz1NjBu7zfmjhMN97CvZ5lsfjtjR9FzzjmM7jIMRIEy+jW4zsA3yk6acyGf37IHZ9i8bbE4S8fzv9Qvbsh7xYP1In+l8Ce/4Y2RPtZfZU/Re3gYmgC9Km6Z4cG/wX0OOFhfmycJ6aV8YU44MLNR3qgHSMUbVfU+MrbrtFxldqDao/IoPjcV7fbb4xqU3+RFG2IJ71CPr+nPIGIbvRBled/lDxvUF5icjj2IPlLbqOi3Hr+Uh7ScLIck2kcvVHypUIPm7nqPuEiO7Kfhg/qq4hPPNn3/6j7z105tfGao3i2vfvf3ZgxYc/Mlb4H5r06Rt+6f39d5dZA7F6VqeV2LfwOY497oJ8pP90Vh8drjEELo+KG7H5Ga+Fsv6bc/T/G4jff0jtQs1PVJvJ6397C+pi9P8rk3+S9rfqak8D4xqPd1W8VWvZRt9ubmk2aYbR8bXIKRG0KY9p1H6qOv3D/vAXUAd8GkPFZsvDsnNcVPsxai3R2lhK03POie8djm8nqHGEpYGQH//ZH7CMljeRdMI8rEte78ek5pD4rnbtnGFcprOk4gO319g+thovqnaHJ5JD6J52Z77fDKPrhf2tqA/njeeUPLQD9tXmw3lr8timcc7Vd84wHtpdnRdIE8dTo59/zjBfI/uuTtWzP6g4wbqEEN/zjs3l1al6qxe1D1Bm7QfrF/XEZ4jfCB3Fl4TjrcnjOuK1+orjhDr3sShP1cPUoG2q1vN5rqjWe2LzpFg8Ue2P26ZaR1B9SGw+Z7JxzbzIuCnvLE7eesZCaFuvobalYm2s3tB3mD4W+1BXZfuJlKfm/vZ9UkSO0kudlZoU0QtjMvKy7HZlKNpXOY0Re1VfhXXCbUTZJW+PO/03WdDjmRNuI3jOiU/zFu3bJlKe6uPb9W2vyemjsBzqhLg6Son9m/V9VeeH1yz+d3PmfuLRgbGaf/bW5/6H1offvKbM/FPFlR7CRTvwenua7sw+i+xzV+w7C/9mB/edne5zF+071Xid+wJcZ1kPdJyn1oV7TjKWmptwXVYcJxQeB/GZhYq+Ez2zoPo3Nb/ieSP2P2x/1Y+q/uqVgoXtPzY+LlKvSo4a04/13h3vuU1wlINY/EvRvG6tPovKQay7SE5d6JCWfyf1jWo9DHnz1sOOwxjzoXNG0pjuDwPNAVozwTKXaMsNNSe3pNY+2G/VOFCdp2X/wLFNP+XhazB4FoKTWk8xulRekd8pULaseCapq2xZ1F5W1hSzzK8Ko79ZmXAfN9YOUC63g2fAx3+Q2paaH6n2bM/brcnG9kuNt1/wlfCJSVy3mFTdsk9g3bJP4Otf7BP4jg63L3ytjcfGmJS/mB3KtK8fzImRJoNjJM8f1B4uxt6xOgNr+qr5TiL0VWspvE47oQ3WRsJC/iLnWjqcF/QVsRHiN0JH/U9S1C5V5gVcF5iHcoqM5VVddtscwxNLrQlYfbQ7O/sRau8J5KnzgzwmMvqfg77go7Tuhv6mzhGx/7LMjVQu7zfueZ1UjZXL7FWj7bBs27NPXrP8ZYiNsf1Vp32ePrV2hjYq0g5ja6Oqz1B7eWqulbcPyXGyiN9w31QTOmAbeCX0TUX6k6p7skXKhfhe/Uk7u3B/MkHo0hR57McqDig/VnPZ9eNYlbA66Zv+rGTftD375L7pL6Fv+nPnvonPd7xS+6Z7s0/um75+cvumCa/0vqldX/Nnoq8Z34eQaXwfIowuP9fl+D7EiTS+D6E/TQ4/G9+H8JFTZR/inEXDuFjHefsQ3Dcb/bWLhvkWLxpJY7qfDzSXZd/H9yGGE9qhzDop23J8H2I0HZcD/c1zH2Il+Pg6alvj+xAj814p+xDrcmKkyeAYWXQfwmJv1XNGP9DXfObTPfd9vMp7Lr0ky75jHeJz7Hf5PRejfyPFoYrjM/meC57VY/3LrDeq8YoltaaTUJ56p0WND2uUp9ptUZ+1sqZ6/UIBny1yNlfd3hs7t3syzuam6W7SGeeevCaRJl6nTES5OjnL9/bffuyFf532U3/RLe+S7aM2VnHOdcreJfs+6B8PLhop72S/S3Y4kz/+Ltmpe5fsOaiDU/ku2U9Quzpd3yUr07+Mv0s2ul5O5btk5sMT4XnVu9YSwA0Zr+mEbQjH+yGMXIPge0Ur3j02ZEN1BwfGKX5Hyeh/ftFIHO4z8VmasF7SpO4YrAm56j7KSSWx+glrQgdY6G9MP6EkVn8Ei+//bAgs1W+ldfdT4LNl3n/8RZqTVX3/8TMwHvkfNB4Zf//xRBp//3H8/ccQyr//+FloW1+NjPWL7IuOv/848u9YGcbffxzOO5XvP341p4/CclR5/9H6vv8LsCMX09dKBQA=",
|
|
6720
|
-
"debug_symbols": "tb3briw5cqb5LnmtCzfSDqRepdEQqtXVjQIKVUJJGmAg6N0naKTZz71ygstXRORN7a8yc9vnJ7Nwp5uT//Xb//7z//rP//svf/nb//n7v//2z//jv377X//4y1//+pf/+y9//fu//uk//vL3vz3+6X/9do3/afLbP9d/+q3pb/8sjz9s/tHmH93/6Nf8g+YfZf5R5x88/5D5x4zSZ5Q+o/QZha5r/Unrz7L+rOtPXn/K+lPXn7b+bOvPFY9WPFrxaMWjFY9WPFrxaMWjFY9WPFrxyopXVryy4pUVr6x4ZcUrK15Z8cqKV1a8uuLVFa+ueHXFqyteXfHqildXvLri1RWPVzxe8XjF4xWPVzxe8XjF4xWPH/Fs/Nnnn3KtP2n9+YhH14AawAGPkFQHPGKS/8cW0AL6Ar0CKGBEbgNqAAdIgAZYQAvoC+wKoICIbCNyH8ABEjAijwNgFtACHpHLgHYFUEAJqAEcIAEaYAEtICL3iNwj8kigMg7LSKEJHCABGmABLaBPKCOfJlBACagBHCABGmABLSAiU0SmiEwRmSIyRWSKyBSRKSKPDCt9QF8wcmwCBZSAGsABEqABFhCRS0SuEblG5BqRa0SuEblG5BqRa0SuEblGZI7IHJE5InNE5ojMEZkjMkdkjsgckSUiS0SWiCwRWSKyRGSJyBKRJSJLRNaIrBFZI7JGZI3IGpE1ImtE1oisEdkiskVki8gWkS0iW0S2iGwReeRgLQP6gpGDEyigBNQADpAADbCAiNwico/IIwerDCgBNeARma8BEqABFtAC+oQ6cnACBZSAGsABEqABq27UqwWsulHpCqCAElADOEACNCAiU0SmiDxykOsACigBNYADJEADLKAF9AU1IteIXCNyjcgjB5kHSIAGWEAL6AtGDk6ggBJQAyIyR2SOyCMH2Qa0gL5g5KDQAAooATWAAyRAAyygBfQFGpE1ImtE1oisEVkjskZkjcgakTUiW0S2iGwR2SKyRWSLyBaRLSJbRLaI3CJyi8gtIreI3CJyi8gtIreI3CJyi8g9IveI3CNyj8g9IveI3CNyj8g9IvcVma8rgAJKQA3gAAnQAAtoARGZIjJFZIrIFJEpIlNEpohMEZkiMkXkEpFLRC4RuUTkEpFLRC4RuUTkEpFLRK4RuUbkGpFrRK4RuUbkGpFrRK4RuUZkjsgckTkic0TmiMwRmSMyR2SOyByRIwc5cpAjB9lzsA7gAAnQAAtoAX2B56ADBZSAiKwRWSOyRmSNyBqRNSJbRLaIbBHZIrJFZIvIFpEtIltEtojcInKLyC0it4jcInKLyC0it4jcInKLyD0i94jcI3KPyD0i94jcI3KPyD0i9xVZriuAAkpADeAACdAAC2gBEZkiMkVkisgUkSkiU0SmiEwRmSIyReQSkUtELhG5ROQSkUtELhG5ROQSkUtErhG5RuQakWtErhG5RuQakWtErhG5RmSOyByROSJzROaIzBGZIzJHZI7IHJElIktElogcOSiRgxI5KJGDEjkokYMSOSiRgxI5KJGDEjkokYMSOSiRgxI5KJGDEjkokYMSOSiRgxI5KJGDEjkokYMSOSiRgxI5KJ6DbQAFlIAawAESoAEW0AL6gh6Re0TuEblH5B6Re0TuEblH5B6R+4qs1xVAASWgBnDAI7JeAzTAAlpAXzBycAIFlIAawAERmSIyReSRg0oD+oKRgxNG5DqgBNQADpAADbCAFtAXjBycEJFrRK4RuUbkGpFrRK4RuUbkGpE5InNE5ojMEZkjMkdkjsgckTkic0SWiCwRWSKyRGSJyBKRRw4qD7CAFjAiP+75deTgBAoYkceVMHJwAgdIgAZYQAvoC0YOTqCAiGwR2SKyRWSLyBaRLSJbRG4RuUXkFpFbRG4RuUXkFpFbRG4RuUXkHpF7RO4RuUfkHpF7RO4RuUfkHpH7imzXFUABJaAGcIAEaIAFtICITBGZIjJFZIrIFJEpIlNEpohMEZkiconIJSKXiFwiconIJSKXiFwiconIJSLXiFwjco3INSLXiFwjco3INSLXiFwjMkdkjsgckTkic0TmiMwRmSMyR2SOyBKRJSJLRJaILBFZIrJEZInIEpElImtE1ogcOWiRgxY5aJGDFjlokYMWOWiRgxY5aJGDFjlokYMWOWiRgxY5aJGDFjlokYMWOWiRgxY5aJGDFjlokYMWOWiRgxY5aJGDFjlokYMWOWiRgxY5aJGDFjlokYMWOWiRgy1ysEUOtsjBFjnYIgdb5GCLHGyRgy1ysEUOtsjBFjnYIgdb5GCLHGyRgy1ysEUOtsjBFjnYIgdb5GCLHGyRgy1ysEUOtsjBFjnYIgfbyEF7/LC2kYMTKKAE1AAOkAANsIAWEJE5InNE9hzUATWAAyRAAyygBfQFnoMOFBCRJSJLRJaILBFZIrJEZInIGpE1ImtE1oisEVkjskZkjcgakTUiW0S2iGwR2SKyRWSLyBaRLSJbRLaI3CJyi8gtIreI3CJyi8gtIreI3CJyi8g9IveI3CNyj8g9IveI3CNyj8g9IvcVuV9XAAWUgBrAARKgARbQAiIyRWSKyBSRKSJTRKaITBGZIjJFZIrIJSKXiFwiconIJSKXiFwiconIJSKXiFwjco3INSLXiOw5WAdIgAaMHOQBLaAv8Bx0oIASUAM4QAI0ICJzROaILBFZIrJEZInIEpElIktElogsEVkiskZkjcgakTUia0TWiKwRWSOyRmSNyBaRLSJbRLaIbBHZIrJFZIvIFpEtIreI3CJyi8gtIreI3CJyi8gtIreI3CJyj8g9IveI3CNyj8g9Io8ctHHZjByc0AJG5O7v268kSipJNYmTJEmTLKklpYPSQemgdFA6KB2UDkoHpYPSQeko6SjpKOko6SjpKOko6SjpKOko6ajpqOmo6ajpqOmo6ajpqOmo6ajp4HRwOjgdnA5OB6eD08Hp4HRwOiQdkg5Jh6RD0iHpkHRIOiQdkg5Nh6ZD06Hp0HRoOjQdmg5Nh6bD0mHpsHRYOiwdlg5Lh6XD0mHpaOlo6WjpaOlo6WjpaOlo6WjpaOno6ejp6Ono6ejp6Ono6ejp6OnIPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTz3hqFWnCRJkyypJfWgkeeLKKkk1aR0WDosHZYOS4elo6WjpaOlo6WjpaOlo6WjpaOlY+R5m72dVxIlDYc61SROkiRNsqSW1Bd5U9EiSipJNYmTJEmTLKklpYPSQemgdFA6KB2UDkoHpYPSQeko6SjpKOko6SjpKOko6SjpKOko6ajpqOmo6ajpqOmo6ajpqOmo6ajp4HRwOjgdnA5OB6eD08Hp4HRwOiQdkg5Jh6RD0iHpkHRIOiQdkg5Nh6ZD06Hp0HRoOjQdnufNqSX1oJHnnZwoqSTVJE6SJE2ypJbUg1o6WjpaOlo6WjpaOlo6WjpaOlo6ejp6Ono6ejp6Ono6ejp6Ono6eji8cWkRJZWkmsRJkqRJltSS0kHpoHRQOigdlA5KB6WD0kHpoHSUdJR0lHSUdJR0lHSUdJR0lHSUdNR01HTUdNR01HTUdNR01HTUdNR0cDo4HZwOTgeng9PB6eB0cDo4HZIOSYekQ9Ih6ZB0SDokHZIOSYemQ9Oh6dB0aDo0HZoOTYemQ9ORec6Z55x5zpnnnHnOmeecec6Z55x5zpnnnHnOmeecec6Z55x5zpnnnHnOmeecec6Z55x5zpnnnHnOmeecec6Z55x5zpnnnHnOmeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5Lpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaee79W52dOEmSNMmSWlIP8jyfREklKR2WDkuHpcPSYemwdLR0tHS0dLR0tHS0dHieq5MltaQe5Hk+iZJKUk3iJElKR09HT0cPhzd5LaKkklSTOEmSNMmSWlI6KB2UDkoHpYPSQemgdFA6KB2UjpKOko6SjpKOko6SjpKOko6SjpKOmo6ajpqOmo6ajpqOmo6ajpqOmg5OB6eD08Hp4HRwOjgdnA5OB6dD0iHpkHRIOiQdkg5Jh6RD0iHp0HRoOjQdmg5Nh6ZD06Hp0HRoOiwdlg5Lh6XD0mHpsHR4nptTS+pBnueTKKkk1SROkiRNSkdLR0tHT0dPR09HT0dPR09HT0dPR09HD4c3ki2ipJJUkzhJkjTJklpSOigdlA5KB6WD0kHpoHRQOigdlI6SjpKOko6SjpKOko6SjpKOko6SjpqOmo6ajpqOmo6ajpqOmg7P8+7UgzzPJ9H4MJ0cC7ACGShABRqwAXviSPhA2AQ2gU1gE9gENoFNYBPYFDaFTWFT2BQ2hU1hU9gUNoXNYDPYDDaDzWAz2Aw2g81gM9gabA22BluDrcHWYGuwNdgabA22DluHrcPWYeuwddg6bB22DltPm/e5BRKwACuQgQJUoAEbEDaCjWAj2Ag2go1gI9gINoKNYCuwFdgKbAW2AluBrcBWYCuwFdgqbBW2CluFrcJWYauwVdgqbBU2hg21pKOWdNSSjlrSUUs6aklHLemoJR21pKOWdNSSjlrSUUs6aklHLemoJR21pKOWdNSSjlrSUUs6aklHLemoJR21pKOWdNSSjlrSUUs6aklHLemoJR21pKOWdNSSjlrSUUs6aklHLemoJR21pKOWdNSSjlrSUUs6aklHLemoJR21pKOWdNSSjlrSUUs6aklHLemoJR21pKOW9Kwl5cpaUq6sJeXKWlKurCXlylpSrqwl5cpaUq6sJeXKWlKuCzaCjWAj2Ag2go1gI9gINoKNYCuwFdgKbAW2AluBrcBWYCuwFdgqbBW2CluFrcJWYauwVdgqbBU2ho1hY9gYNoaNYWPYGDaGjWET2AQ2gU1gE9gENoFNYBPYBDaFTWFT2BQ2hU1hU9gUNoVNYTPYDDaDzWAz2Aw2g81gM9gMtgZbg63B1mBrsDXYGmwNtgZbg63D1mHrsHXYOmwdtg5bh63DhlpCqCWEWkKoJYRaQqglhFpCqCWEWkKoJYRaQrOWsCMBC7ACGShABRqwAXtigW3WksuxACuQgQJUoAEbsCfOWjIRtgpbha3CVmGrsFXYKmwVNoaNYWPYGDaGjWFj2Bg2ho1hE9gENoFNYBPYBDaBTWAT2AQ2hU1hU9gUNoVNYVPYFDaFTWEz2Aw2g23WEnVkoAAVaMAG7ImzlkwkYAHC1mBrsM1a0h0N2IA9cdaSiQQswApkoABh67B12LyW0EgybzsMJOCwjdndinceBjJw2MbcbMWbDwMN2IA90WvJQgIWYAUyEDaCjWAj2Ai2AluBrcBWYCuwFdgKbAW2AluBrcJWYauwVdgqbBW2CluFrcJWYWPYGDaGjWFj2Bg2ho1hY9gYNoFNYBPYBDaBTWAT2AQ2gU1gU9gUNoVNYVPYFDaFTWFT2BQ2g81gM9gMNoPNYDPYDDaDzWBrsDXYGmwNtgZbg63B1mBrsDXYOmwdtg5bh63D1mHrsHktKV4fvJYs7IHe9DdmXize9Edlov8tc2zAnuh5s5CABViBDBSgAmGrsFXYGDaGjWFj2Bg2ho1hY9gYNoZNYBPYBDaBTWAT2AQ2gU1gE9gUNoVNYVPYFDaFTWFT2BQ2hc1gM9gMNoPNYDPYDDaDzWAz2Dxv6uVIwAKsQAYKcNgqORqwAXui581CAhZgBTJQgLB53vgMhd4oGOi2+k9jCsoLSMACrEAGCtBt6mjABnTbSGNvGgwk4LAxOVYgAwWoQAMOGxfHnui/wQsJWIAVyEABKtCAsHktYT8OXksWEtCPWXf0uOzoEfzoeH1g/w+8PiwkYAFWIANHXLkcFWjABuyJXh8WErAAK5CBsHl9ED8BXh8Wus130+vDRK8PCwlYgBXoNnEUoAIN2IA90evDQgIWYAXC5vVB/LTMuX0nus0cG7Anen1YOGzqx8Hrw8IKZKAAFThs6heX14eFPdHrw0ICFmAFMlCACoTN64P6Rev1wdFbDAP9SHbHAqzABvQI42x6s+DjqcrRN6c5ClCBBmzAEczGRnqnYCABC7ACGThs5nvhKb3QgA3YEz2lFxKwACuQgbD57YH5cfDbg4UN6LZx9Xn3YCAB3eaHz9Pf/JB4+rfLUYAKNGAD9kRP9OYb6Ym+kIECVKAlzvm01bEBXeHbO+fQ9uvB820hAwWoQEv0vOi+vZ4XCxuwJ3peLCRgAVYgAwUIW4etw9bT5i15gQT0uOToEYqjR2DHnui/hQs9gjgWYAUyUIAK9LjjBHhDHY133cU76ooPSnhLXaAAPUJ3NGAD9kRPhoUELCOY77HPhr3Qbb7zPiP2QgX2geMy8sa54qNu3jkX6HvcHD2C76bPfb3QgA3ocf04+BzYCwnoNj86PhP2QgbCJrAJbAKbz4o90X/f5rlQnE3F2VScTcXZVJxNz6F5Cv03a55CnwN7nizD2TSczTkbvZ8Lw9k0nE3D2TSczYaz6TPTz/PWcDZ9dvp5shrOZsPZ9Bnp5yn0Gejnees4mzPf/BT6PPTzQHUc347j23F8fT76ebJ6nk1vjQukOFneHBdYgWnz/rhABRowz6Z3nhUfpPLWs8AGHJtD4+h491kgAQuwAhkoQAUacNj8Odbb0Bb6RPELCViAFeg2315PnIUKNOCwlcuxJ3riLBy24lvmibOwAoet+GzrnjgLFWhAt40LxtvQij+4ex9aYAUy0OP6mfdp5P2ZzJvRHsMNjg3YE306+YVu8z32dFpYgQwcNn928l604s843oz2eLh2HAp/sPF2tOL39t6PFliAFchAASpw2HwOeG9LCxw2f8bxxrRAAhZgBTJQgAo0YAOmzVvUAglYgBXIQAEq0IANCBvB5rPS85ytvwArkIECVKAl+qoQ/iDmHWqBBViBDBSgAg3YgD2xwlZhq7BV2CpsFbYKW4WtwlZhY9gYNoaNYWPYGDaGjWFj2Bg2gU1gE9gENoFNYBPYBDaBTWBT2BQ2hU1hU9gUNoVNYVPYFDaDzWAz2Aw2g81gM9gMNoPNYGuwNdgabA22BluDrcHWYGuwNdg6bB22DluHrcPWYeuwddg6bD1t/bqABCzACmSgABVowAaEjWAj2Ag2go1gI9gINoKNYCPYUEs6aklHLemoJR21pKOWdNSSjlrSUUs6aklHLemoJR21pKOW9FlL5qIjAlRgi4rYZwFxnAVkIgELsAIZKEAFGhA2hk1gE9gENoFNYBPYBDaBTWAT2BQ2hU1hU9gUNoVNYVPYFDaFzWAz2Aw2g81gM9gMNoPNYDPYGmwNtgZbg63B1mBrsDXYGmwNtg5bh63D1mHrsHXYOmwdtg5bD1u9rgtIwAKsQAYKUIEGbEDYCDaCjWAj2Ag2go1gI9gINoKtwFZgK7AV2ApsBbYCW4GtwFZgq7BV2CpsFbYKW4WtwlZhq7BV2Bg2ho1hY9hmLWmOAlTgsMlc4agBe+KsJd2RgAVYgQwU4LCNCfmrt6oFNqDbfHu9liwkYAFWIAOHTXzpJa8lCw3oNnXsiV5LFhLQ45qjR/AD5fVhYU/0+qB+oLw+LCzAsb1jtLl6+1mgABU4bOo75PVhYU/0+rDQ4/rh85wf47/VW8oCG9C3dyi8pSyQgAVYgQwUoNvm4lYGbMCe6Dm/kIAFWIEMFCBsBBvBRrAV2ApsBbYCW4GtwOY5PyZyrd48VsZIevXmsUACFmAFMlCACjRgA8LGsDFsDBvDxrAxbAwbw8awMWwCm8AmsAlsApvAJrAJbAKbwKawKWwKm8KmsClsCpvCprApbAabwWawGWwGm8FmsBlsBpvB1mBrsDXYGmwNtgZbg63B1mBrsHXYOmwdtg5bh63D1mHrsHXYetrmIpULCViAFchAASrQgA0IG8FGsBFsBBvBRrARbAQbwUawFdgKbAW2AluBrcBWYCuwFdhQSwpqSUEtKaglBbWkoJYU1JKCWjKXuxyv7epc8HJhT5y1ZCIBC7ACGShABQ7bmCG+zkUwF/bEWUu6IwELsAIZKEAFGrABe6LCprB5LRmvA+tcInMhAy3R68N4Z1nnMpgLPYIfX68PCxkoQAUacGxv80Pi9WGi14eFBBy25mKvDwsZOGzNt9frw0IDuo0de6LXh4UEdJsvH+n1ofn2eiVofo69EixswB7os9qV8f6t+rR2Zbx/qz6v3SOi44g73rRVn9kuUIAKHLbxQqbOpTMX9kSvBAvdZo6u8M3x9B9vVqrPbFcv35yR/vVyxUj/wAbsiSP9AwlYgHWgb8NI/0CNy8gb3wIbsCd6zi8kYAFWIAMFCFuFrcJWYWPY2HfIjxkXYAX6DvmRZAEq0IAN2BPlAhKwACsQNoFt5Hwlv6JGzgc2YE8cOR9IwAKsQAYKEDaFTWFT2Aw2g8183/ySm3cK6qhAAzZgT5x3ChMJWIAVyEDYGmwNtgZbg63D1mHrsHXYOmwdtg5bh63D1tPG1wUkYAFWIAMFqEADNiBsBBvBRrARbAQbwUawEWwEG8FWYCuwFdgKbAW2AhueL7jAVmArsFXYKmwVtgpbha3CVmGrsFXYKmzzTmEibAwbw8awMWwMG8PGsDFsApvAJrAJbAKbwCawCWwCm8CmsClsCpvCprApbAqbwqawKWwGm8FmsBlsBhtqCaOWMGoJo5YwagmjljBqCaOWMGoJo5YwagmjljBqCaOWMGoJo5YwagmjljBqCaOWMGoJo5YwagmjljBqiaCWCGqJoJYIaomglghqiaCWCGqJoJYIaomglghqiaCWCGqJoJYIaomglghqiaCWCGqJoJYIaomglghqiaCWCGqJoJYIaomglghqiaCWCGqJoJYIaomglghqiaCWCGqJoJYIaomglghqiaCWCGqJoJYIaomglghqiaCWCGqJoJYIaomglghqiaCWCGqJoJYIaomglghqiaCWCGqJoJYIaomglghqiaCWCGqJoJYIaomglghqiaCWCGqJoJYIaomglnirXx2dL9Xn7wvsie0CErAAK5CBAlQgbA22BluHrcPWYeuwddg6bB22WUuqYwO6bTxGeQthIAELsAIZKEC3saMBG9Bt4+nA2w0DCei26liBDPTz5sFIgQZswJ44a8lEAhZgBTLQx7bNsQF9L8YF402IgQQswApkoAD9mDVHAzag28bNtM/zF0hAt/mW+XPLQgb6yLQH86qx0IANmOP2s2FxIQELsAIZOPZitGtVb00M7In+hDLataq3JgYW4NiL4leUP6EsHMes+EXgTygLDeg2P2/+hDLRn1AWErAAK5CBbvNr0hRowAbsiV4fFkYTYvWGRW+lrKthcaICDdiAPbFfQAJGu2H15sZABgpQVw9n1dlMPLEBe6DNZuKJBCzACmRgnnlvYwzMM+9z/c1z7JP9BRZgnnmf7y8wz7zP+BdowDzzPunfwnIBCViAFcjAPPPegRlowAbMM+8dmIF55r3Xcp752Wt5TVSgARswz/zstVxIwDzzs9dyIQMFmGfeey0DGxBnXnDmBWdecOYFZ15w5mfO+5bNnJ/YE2fOT/Rz4X9t5vzECmSgrKb16r2WgQZswJ7on9ssJGABVqCf4+ZowAbsiTO7JxKwACuQgQKErcHWYGuwddg6bP7rX33T/dd/IQMFqEADDlv1xPFff0dvsAwkYAFWIAMFqEADNqDbRl54g2UgAd2mjm7rjgwUoAIN2IA90SvBQgIO22hrrd52GThso/WzettloAINOGzsm+6VYKJXgoUELMAKZKAA3SaOBnSbHx2/J5jo9wQLCViArjBHASrQgA04FN7e4L2WgQQswApk4LD5C3HvtQw0YAP2RC8VCwlYgBXIQNj89sCbHrzXMrAB3ebXpN8eLCSg2/yo++2BNz14r2X1W0DvtQxUoAEbsCf6oMOkmsRJkqRJFuQZ7LdY3uwY2ANns6M4UVJJqkmcJEkecaSFty5Wb8zw1sXq/97TcRIn+dXkpEmW1JJ6kOfhJJeQYwEOi/dueMdioABHUH9w8S7E6nfp3oUY6GXDyQP4hnpmLVSgARuwxyHhPJych5PzcHIeTs7D6Yk0D6KnzDyInjL+eOndhYG+q+bIQN9SP5sjZbwaeHPhopbUg0a6LKIkj+gb4glgviEjATy3vVVw0rj8F42/7Zs2Lv5FNYmTJEmTXOKn0K/7heO8+wtDbxEMJODYTH8N421/1Xzj/cdw4dhOP7T+WzgPjP8WLizACvSw868JUIGWB9wzaWFfyN7158HYu/4CC7ACw8be9ReoQEPcBoSNYCPYCDaCzbNvocxLnb3pzy9f9qa/wAbsiZ6CE/13ynwTPJkWFqC/RHTiJEnSJEtqST3I82gSJZWkdHA6OB2cDk6H/0bZxJ7oCbdw7Mx4dczeghc4DqL5kfOEWyhABRqwAXui/0aN98XsLXiBBThs4+00ewteoACHrfl58BRd2IB+IzhoPsE6UVJJqkmc5BF1oGde89Ppmdd8+/2WdWEFMnBs6XiHzd58F2jABuyJnqaThqz7kfcsXViBQ9b9+vUsXahAl/mx8Cxd6LKxa96nF0jAUb0up5rESZKkSRbkmTieaNi77up4gc7edVfHC3T2rrtABRpw1Njxhp29627hSLpAAhbg2NTqxEmSNDa1OFlSS+pBI6EXUZJLJlYgAy2RfTNdyQQcEXwrR64u4iQ/oOKoQAP6EfFjyj1RXOWHVwjoG+sHUtzlZ0Vc5raRrjyGEtl76gIN2IA90X8jFxKwAN3m26tu80tJ3ebbq27zjfQfT/KN9F/PhQQswApkoAD95PlutgtIwAKsQAYK0IP5ger+1/ys9gpkoAAf+yZ+qkfKLWpJfZF3uC2ipJJUkzhJkjTJklpSOigdlA5KB6WD0kHpoHRQOigdlI6SjpKOko6RbOMxgr1RbVFL6kEj2RZRUkmqSZwkSemo6ajpqOngdHA6OB2cDk4Hp4PTwengdHA6JB2SDkmHJ4b/7nqDGI8bXfbZxdjrvM8jxtX/23HrNxrm2Vu6JvlFPekRSf2vjIt3kQSNHw72Hy/vxQosQK+Q7Dj21mOOi3iRJllSS+qLvDdrESWVpJrESZLkuzoOgHda8RioYF9LdDyRsPdcLeIkSdIkS2pJPWhcnYsoKR0lHSUdJR0lHSUdJR0lHePaHc9L7M1Wi0rScPhujmt3kST5URhF0XunuPqx8R+JMazC3jsVyEABKtCADdgT/XdiIQFhE9gENv+d8N/0Op+jJhqwAXvifJaaSMACrEAGwqawKWwKmy8I7ifBFwSfREklqSZxkkccueb9Uey/8N4f5beM3h61qCY9/rbfknpv1CJNsqSW1IM8/Xii76JH7Ao0oO+iZ0Tvgd7qFEjAAqxABgpQgQZsQNjIbc2RgAU4bGNwir3VKXDYvNx5qxOPMSL2Vice8z+xtzoF9kS/qRMX+03dwmEbgz3srU7spcNbnXiMDPCczeua/60CDdiAPXHOzjvRn8p906s/gvum+32cp7e3LwX2RL+78wz39qXAAqxABnrccY69JYnVt8GT0R9fvSUpsAIZKEAFGrABe6Inoz/qektSYAG6zQ+qJ+NCASpw2MyP2RwGmdgT58yXLp4zX04swPHKwO8L5wxdCwWoQAM24Dibfg/JOfMlc858yd6SxOZn0+/1FjJQgC3RfzDNL1rP2IX+DOvUkvoi7xDyM+kNQos4SZI0yZJaUg8aqbeIknxjxLECGTjOjw81eDNQYAP6+RnHxpuBAgk4dmNSTeIkSdIkS2pJPch/GCdRUjpqOmo6ajpqOmo6ajpqOjgdnA5OB6eD08Hp4HRwOvyH00c+vOVnoefqwnG8fBDEW34CK3CcktEpz97yEzjOjg8ieMtPYAP2RM/VhW7z0+e5utBtvr2eq823zHPVRw685SfQgMPm4wXe8rPQH7sWjp/OSSWpJnGSJGmSRxzJ4g087MMO3sDDo/eevYEnUIAK9C313fZ8XNgT/bZ2IQHHpnqAcVc7T5I/mvl4g7fvyOX777e1C8d9rT+ne/uOXDNAD/T2HfFfCG/fEX+k9vadQJkrm7PG+lw8Z/pywZzpa2EFjhthfyT31ptABRqwAXuiP24t9CeM4liAFSixYbEcF2ssx8Vzec0ZqAf5clyTPLg4FmAF+lOSR5qPYhP9OckPy3wYm9iA/iM8rhjNBTBYcwEM1lwAgzUXwGDNBTBYcwEM1lwAgzUXwGDNBTBYGTaBTWAT2AQ2gU1gE9gENoFNYFPYFDaFTf1I+pWkDBSgH0k/F2rABhwXhQ9VeFdOIAELcNh8LMO7csSHKubkYvNyn5PWTzTgsI2mEPaunIXtAhKwACuQgQJUoAFha7B12Oak9RMLsAIZKEAFGrABe+Ds1VlIwAL0fWNHBgpQgQZswJ7o4zMLCViAbhNHBgqwJXo5GC832btyZDQ4sHflBDJQgL693dGADdgTfZRmIQELsAIZKEDYKmwVtgobw8aw+YiNj5Z4r06gj2CRowAV6Gd+RmjAnjjrw0QCFqDHLY4+DubXg/hAmJ8svYAELEDfXnVkoAAVaEC3+TZ4zk/0nF9IwAKswGHzJ2afAS1QgQZswJ7oOb+QgAVYgbB5zvsztvfqBBrQbX4kPef9+dh7dQLd5hd4L0C3+dHx8auFAlSgARuwB3qvTiABC7ACGShABRqwAWEj2Ag2go1gI9gINoKNYCPYCLYCW4GtwFZgK7AV2ApsBbYCW4GtwlZhq7BV2CpsXh/Ge3P2Xp1AAzbgyFgvjm1OuD+RgAVYgQwUoAIt0cdwfYjDW3FkzCnC3ooTOLbXRzu8FSfQgA3YE70+LCTgiOvjJd5esw6JYo895yd6zi8k4Di+Pszi7TWBDBQgzqbBZjibhrPZcDYbzmbD2Zw579swc34izmbD2fScn9vgOb+wJ3bYOmwdNuR8Q8435HxDzreOa6fjSPY8kv26gBTb4P09gRWYto6c78j5jpzvyPmOnO/I+Y6c7zPnfRuoAhkoQAX6kayODehHcly/3hcUSMAC9H3zYJ7zCwWoQAM2YE/0nF/otuZYgHmBe+uQ+MCdtw4FGrAB89Lw3qFAnCzGyWKcLGagAHGyGCeLcbIYJ0twsgQnSwqwAnFpePr7OKI3FgX2RE9/H1303iJR3zK/PVhYgQwUoAIN2IA90YuCD1V631EgAwXocf3S8KKwsAF7ohcFv/Xx3qPAAqxABgpQgZY4b/PFkYAF6Hvhh9rTf6HvhV9nnv4LDeh74VeUp/9A8ZakwGEbo5biLUmBFchAASrQgA3YEz39F8I2En0MIIj3Hi3SpPEuoTm1pB7kKT5eY4hPNhZYgL797MhAAY4RAXKypJbUg3xEYBIllaSaxEmSlI6ajpqOmg5OB6eD08Hp4HRwOjgdnA5OB6dD0iHp8Jweg6fi/UyBDPTjZY4K9PPt58EzfWFP9ExvfpI90xe6za85z/SFDPR3o8VRgf4G1rfXM31hT/SbguYn1W8KFvprWL+UPP8X+otY3wvP/4UKHAdxBmhJPWgk/yJKKkke0Y+A/8Q33yv/ie9+BDzHFxKwAMeWdt9tz/GFAlSgAYet+xnzHHf0hqZAAhZgBbpNHQWoQAM2YE/0HF9IwAKsQNj8J36Mx4m3QAUa0G3dcQx6j3FE8RaowDHsPcaUxFugAr0/oDgyUIAKNGAD9kQfx19IwAKErcJWYauwVdgqbBU2ho1hY9gYNoaNYWPYGDaGjWET2AQ2gU1gE9gENoFNYBPYBDaFTd1WHQuwAhno78XYUYEGbMCeON/CTSRgAVag78VE317Pi3YBfXv9om0FWIEMFKACLbF7XL/AO45vxx53ASrQgH58m2MP9KaqQALm2fS+qkAGClCBBmzAPJveXjU3x/urAguwAhnotu6owGEbLXribVaBPdFzfuGwkQfznF9YgQwUoAIN2IBuGxeBN2QFljhZ3oilY/xfvBMrUIAKtDwBtQFxshgni3GyZqJPrECcLCR6QaIXJHpBohckekGiFyR6QaL7rGA6XlKIzwoWaEA/UH4cPKXJt8xTeiEBC7ACGShABVqieVy/NIyABViBI27xS2P8rAcq0ID50+yNZQv9tn4hAQuwAhkoQAX2+UZOvBFtESWN93V+QP193SRO8u33q9ETf6EBH9vvd2feh+bkfWiLxqEawzjijWiBFcjzHaF4K9oiTbKkltSDRr4voqSSVJPSQemgdFA6KB2UjpKOko6SjpKOko6SjpKOkg7P7uLHxrN7omf3QlqvSsWb1gL9iKkjAwXo7yyLowH9nSU59kR/fl/o71I9gj+/L3SbOTJQgOO5yA0jzxe1pB40knwRJXlE3ytP5uLHxZN5vDsQb1lb6Mm8kIDeMOjBPJkXMlCACvSuwerYgD1xpLjfBnrP2qKSVJM4SZI0yZJaUg9q6WjpaOlo6WjpaOlo6WjpaOlo6ejp6Ono6fAf+OrJ5z/wCwWoQAM2YA/0FrhAP0HmWIAV6DZxFKAC3dYdG7Anzm7Uif5VkJMljb80Xl6Id7It9N/phQQswAocm8i+tf47vVCBBnRbc+yJs/l0ott8a2f76cQK9AbUy1GACjTgsI1RO/GuNxXfXv9xFj/8nrMLGShAj+sHyn+cxffCf5zFN8d/nNVt/uO8kIAF6H1VvjmezwsFqEDvrfLt9dRW3xxPbfXz7qmtvjme2j4e4w1wgQwUoAIN2IDDZr4N/uu9EBeR/2QvZKAAFYiL01zhO+T35hP93nzh2CH/dfWut8AKZKAAFWjABuyJfse+ELYOm6e5/4b7RFyBAlSgARuwB/pEXIEELMAKZKAAFWjABnTbuB68tU59bMdb6wIZKECP2xwN2IA90SuB/9x4l11gAVYgAwWoQAO2RM95m1iAFchAb3y7HBVowAbsq4VLvMMukIAFWIEMFKACvXFv5IX31AUSsAArkIG+veMH1vvktHlcT2kf+fI+ucAK9Ah+uj2lF/px8OvBU3phA/r2+pn3lF5IwAKsQAYK0G1+aXh2L2zAnujZvZCA0ZEq3kO3joPn8UIcHc9jvyH3HrqFnscLCViAYy98OM676AIFqMBh8zE476IL7IHeRac+OuhddIEF6DZxZKAA3UaOblNHt5mj28bR8UmwAgnocbujABVowHFH7uNq3l03Ly6dfbETK5CBCuyrwVu8mS6QgGW1fYvO1vOJDBSgAg3YgD2RL+B4SvD7be+bCxSgAseTgt+8e99cYE8caRpIqz9edLapT6xABgpQgQZswJ44vw7xS2N+HTLR98KPrwpQgQb0vZh/rSf65yELCViAFeifTvjJMgEq0IAN2BPn9yQTCViAFeh7MdGADdgT/XHaH5m8Fy6wACvQ98LP2/zcZKICDdiAPdCuC0hAPxfmKEAFGrABeyKt76XEm94WlaSaxEmS5DeVTpbUknqQ//ROoiTf8ubo29gdG7Aneu5W/28rAQuwAhkoQAUasAF7IsPGsDFsDBvDxrAxbAyb564PGXpPW2ABVqB3d5OjABVowAbsiXoBCeg2v3S0AhkoQLdVRwM2YE+cGe0na2b0xAKsQAYKUIG4HgzXQ/O98OuuFWAF+l74xdV8L9RRgQZsQN8LzwXP6IUELMBh85E773Sz4gdqZHSgAg3YgD3QO90CCViAFchAt4mjAg3YgD3Rh8sWErAAK9BtzXHYfODFO90CDdiAPdEHzhYSsAArkIGw+fCZj8x4p1tgA/bEegEJWIAVyEC3qaMCDdiAPZEvIAEL0G3dkYECVKABG7AnetVY6CPPTiWpJnGSJGmSjwL7kfUawP5PvQYs9Erm2z8/gZ6oQAM2YE/0T1cWErAAxxHw3y3vfDMfdfHOt8AG7IntAhKwAH0v2JGBAlSg2/wq9xqwsCfOQfKJBCzACnSb75vXAB8a8s63QAM2YA/0zrdAinPhnW+BFchAASrQgA3YE/2rNb979B63QAZ63O6owBFXZoQG7Ime7eIRPNsXFuDYCx+I8h63QAEq0IBu86Pj2T7Rs30hAQuwAhkoQI876lvPyUDEm9XMB8O8WS1QgWPLfATMm9UCx5Z5knmzWiAB/RWLHwf/hV/IQAEq0IAN6DbfXv+FX0jAAqxABkrusf+W+62cN6st9N/yhQT0uOJYgQwUoK4JZmROn7WwAXuiT+KzkIAFWIF+dNTRgA3YEz2PfVjRW9gCC7ACeU0kJHNWrYUKNGAD9oU6Z9VaSEA/Os1RgAr0veiODdgT/Vd7jGeqN6sFjr0Y45nq82cFMnDYxsiEehNboAEbsCd6Hi8koNuqYwUyUIAKNGBb057pnI1r7tucjUscK5CBAlSgARuwrznH1BvYAglYgG7zI+kTSC4UoAIN2IA9cU7ONZGAI674bnp2z5337F5owAbsiZ7dCwno58L32LN7IQMF6C9JfHN8Gq6FDdgTfR6uhQQswApkoO+FOjZgT/TfbvOj7r/dCwvQ98KTwX+7F/pe+OHznF9owGFrvg2e8xM95xcSsAArkIHD1jxx/Ld7oQEbsAd6S1ugHzN2zDPvzWvzvHnzWqABGzDPPNEFJGCeeaIKZKAA88zP+bsWNmCeeSoXkIAFWIF55r2z7LFNvvdVNtaNDSz+ztj/qhiwAXuiXkACloEebFz6gQwUoAIN2IA90S4gAWEztxVHBgrQbdXRgA3oNj81zW3q6DZzdJtfND69yUIGClCBBhy2OhU9cSREIAELsAIZKEAFGhC2njbv9wokYAFWIAMFqEADNiBsBBt5XHNkoCQWj9scDehxu2NPrBeQgAVYgQwUoAINOGzjCUy97aqNW3L1tqtAAhZgBTJQgAo0YAPCJrAJbAKbwCawCWwCm8AmsAlsCpvCprApbAqbwqawecaOh0f1tqs2Hv3U267WRWC4ogxXlOfmaFFQb7sKbMCe6Lm5kIBum1iBvr2umJMPTVSgb+9IdO+xauwXoufbQt9e3wvPt3lpeL4tNCCuHc+30WKg3mgVSMC8UutVgQxMm/daBRqwAXvi+KFoMpGAJdFTZDwQqjcsBTJwiMcDoXrDUqABh3j0Nqg3LC30FBkPhOoNS4EF6DZxZKAAFWjABuyJniKjUUJn19LCAqxABgpQ4xxXyYu2Kk6W4mTNZJhYgQwUoAKzrHgzU2AWMW9mCqTIlorE8X6mQAYKUIEGbMCe6Je9+Jb5T9LCBuyJ/pO0kIAFWIEMFCBsHbYOW0+bdygFErAAK5CBbjNHBRqwAXui/yQtJGABViADYSPYCDaCjWArsBXYCmwFtgJbga3AVmArsBXYKmwVtgpbha3CVmGrsFXYKmwVNoaNYWPYGDaGjWFj2Bg2ho1hE9gENoFNYBPYBDaBTWAT2AQ2hU1hU9gUNoVNYVPYFDaFTWEz2Aw2g81gM9gMNoPNYDPYDLYGW4OtwdZga7A12BpsDbYGW4Otw9Zh67B12DpsHbYOW4etw9bTJtcFJGABViADBahAAzYgbKglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKzlnTHYfPBD2/FChSgAg3YgD3QW7ECCViAFei26ihABbqNHBuwJ3otGUPz6q1YgQXotubotu4oQAUasAF7oteShQQswAqErcBWYCuwFdgKbBW2CluFrcJWYauwVdgqbBW2ChvDxrAxbAwbw8awMWwMG8PGsAlsApvAJrAJbAKbwCawCWwCm8KmsClsCpvCprApbAqbwqawGWwGm8FmsBlsBpvBZrAZbAZbg63B1mBrsDXYGmwNtgZbg63B1mHrsHXYOmwdtg5bh63D1mHrabPrAhKwACuQgQJUoAEbEDaCjWAj2Ag21BJDLTHUEkMtMdQSQy0x1BJDLTHUEkMtMdQSQy0x1BJDLTHUEkMtMdQSQy0x1BJDLTHUEkMtMdQSQy0x1BJDLTHUEkMtMdQSQy0x1BJDLTHUEkMtMdQSQy0x1BJDLTHUEkMtMdQSQy0x1BJDLTHUEkMtMdQSQy0x1BJDLTHUEkMtMdQSQy0x1BJDLTHUEkMtMdQSQy0x1BJDLTHUEkMtMdQSQy0x1BJDLTHUEkMtMdQSQy0x1BJDLTHUEkMtMdQSQy0x1BJDLTHUEkMtMdQSQy0x1BJDLWmoJQ21pKGWNNSShlrSUEsaaklDLWmoJQ21pKGWNNSShlrSUEsaaon3pDV/0e09aYEGbMBh8zdo3pMWSMACrEAGClCBBnSbOPZEryULCViAFchAASrQgLB5LfHXqN6TFkjAAqxABgrQz9tEAzZgT5y1ZCIBC7ACGShA2AQ2gU1gU9gUNoVNYVPYFDaFTWFT2BQ2g81gM9gMNoPNYDPYDDaDzWBrsDXYGmwNtgZbg63B1mBrsDXYOmwdtg5bh63D1mHrsHXYOmw9bf26gAQswApkoAAVaMAGhI1gI9gINoKNYCPYCDaCjWAj2ApsBbYCW4GtwFZgK7AV2ApsBbYKW4WtwlZhq7BV2CpsFbYKW4WNYWPYGDaGjWFj2FBLOmpJRy3pqCUdtaSjlnTUko5a0lFLOmpJRy3pqCUdtaSjlnTUko5a0lFLOmpJRy3pqCUdtcSnfWveAOKddIE90WvJQgIWYAUyUIAKhM1gM9gabA22BluDrcHWYGuwNdgabA22DluHrcPWYeuwddg6bB22DlsPm3l/XSABC7ACGShABRqwAWEj2Ag2go1gI9gINoKNYCPYCLYCW4GtwFZgK7AV2ApsBbYCW4GtwlZhq7BV2CpsFbYKW4WtwlZhY9gYNoaNYWPYGDaGjWFj2Bg2gU1gE9gENoFNYBPYBDaBTWBT2BQ2hU1hU9gUNoVNYVPYFDaDzWAz2Aw2g81gM9gMNoPNYGuwNdgabA22BluDrcHWYGuwNdg6bB22DluHrcPWYeuwddg6bKglhFpCqCWEWkKoJYRaQqglhFpCqCWEWkKoJYRaQqglhFpCqCWEWkKoJYRaQqglhFpCqCWEWkKoJYRaQrOWqCMDBeg2czRgA7qtD5y1ZCIBh218cWw+FV0bvdvmDYOBAlSgARuwJ3otWUjAAoSNYWPYfHrKy4+Dz0+5sAF7ok9RuZCABViBDBQgbAKbwCawKWwKm8KmsClsCpvCprApbAqbwWawGWwGm8FmsBlsBptPeTM+LTBveVzok94sJGABViADBahAA8LW0jabEMdbDZvthqMr12a74UIBKtCADdgT5/PFRAIWIGwEG8FGsBFsBBvBVmArsBXYCmwFtgJbga3AVmArsFXYKmwVtgpbha3CVmGrsFXYKmwMG8PGsDFsDBvDxrAxbAwbwyawCWwCm8AmsAlsApvAJrAJbAqbwqawKWwKm8KmsClsCpvCZrAZbAabwWawGWwGm8FmsBlsDbYGW4OtwdZga7A12BpsDbYGW4etw9Zh67B12DpsHbYOW4ete9UY6K2UgQQswApkoAAV6DXKHBuwJ5LbxJGABahRxOosFRMbsCeWC0hAD9YdK5CBY9PHx+ZW5+zTEw04Nn18NW51TkDtOGegnkjAAqxABgpQgQaErcI256Kujm5TxwKsQAYKUIEGbMCeOGelngib/+STnzf/yV/IQAEq0IAN2BP9J38hAWHzn/zi58J/8hcKUIEGbMCe6D/5Cwk4bMUvWv/JX8iJ/oNd/IryH+yFFRjD8lbzBYfVfMFhNV9wWM0XHFbzBYfVfMFhNV9wWM0XHFbzBYfVDluHrcPWYeuw5QsO43zBYZwvOIzzBYdxvuAwzhccxvmCwzhfcBjnCw7jfMFhfMFGsBFsBBvFKwebDaELBRgvAWw2hC5sQD/H40r1htBAAhZgBTJQgAp0mzk2YE/0SlAmErAAK5CBAlSgAcf1O+YAMG8IXeiVYCEBC7ACGShABeZj1Ozs9Cef2dm5UID5PDQ7Oxc2oG+kB/OUXkhAf/ry0z1HBCYy0DeyOCrQgA3YEz2lFxKwAP2Q+FXiKb1QgAo0YAP2RL+LX0hAt/lx8Pv18WGNeQ9noCX6JJTsWzZSOpCBI8LoKDfvyww0YAP2QO/LDCRgAVYgAwXoNnU0YAP2RP/tXkjAAqxABrqtOSrQgA04bOOLCPO+zEACDpv4pntKL2SgABVowAbsiZ7SCwkIm6e0+A55Si8UoAIN2IA90VN6IQE9wsgL75/so4PNvH8ysALHNvj9jvdPBipwbIN6XP8RXtgTPWMXErAAK5CBAlQgbJ6xXuK9f3LhnGJ2IgELsAIZKEAFDpv5cfCMXdgTPWMXDpv/Xnj/ZGAFDpv5pnseL1SgARuwJ/q0swsJWIAVCJvnvPkOec4vNGAD9kDvnwwkYAFW4Ijr1d47JQMbsCd6di8k4Ig75vEz75QMHHsx5pkz75QMdBs7GtBt4tgTPbv9Z8Y7JQPdZo4V6LbmKEC3+W56di8ctjEpoK3VZB3ncrK+Q57dC4fNR+u8UzJw2LrvkGf3wmHrvkOe3Qvd5jvk2T3Rs7v7Dnl2L3Sb75D/YC90m++Q/2AvzLHB2Sm5sAFzbHB2Si4koNv8kHjVWMhA8cWAfZfngrKLbeO2cQfPRWUX08Zl47oxb7x5dfPqjO8H22YcP8Q24/iBNd5YNtaNbeNt+23b/rZtf9u2v23b37btb9v2t23727b9bTtubfO2zTsXi537ONeFnfvYt+3v2/bPpWEX9+S1OOxibP9aHnZx3Zg3lo11Y9u4bYzt9wbI5M1Lm5ck99EbG9c+emdjbHPZtr/QxmXjuvG2/WXb/rJtf9m2v2zbX7btr9v2123767b9dTtudfPWzVsb9nGuGD33kbft5237mTeWjXVj23jGV+cOxsC8YWDeMDBvGJi3ldPmPGOMwmBrQWjf9rUi9OSysW87+T7N3F0sG+vGtnHbuIPt2pg2LhtvXtu8tnlnrpOfh5nri9vGHTxzfTFtXDauG/PGsvHmbZu3z/h+3uYK0D52YnMJ6MWysW5sG7eNe3Kbub6YNi4bT2935o1lY93YNm4bd/DM9cW0cdl485J7fWylzRqwWDe2jdvGHTxrw2LauGxcN968szaMiSeszdqw2DZuG3fwrA2LaeOycd14es1ZNp7e5jy9fnxqvrLx5sWFfAEJWIAVyEABKtCAsDFsc2lpfzRvc23pxWXjujFvLBvrxrZx27iDZ83xJ/M2a87isnHdmDcW8KwV1a/5WSsW88aysW5sG8/t9PM1a8XkmeP+yN5mji9uG/t/70/tbeb+YtrYt5M95qwJi3lj305/6m2zJiy2jdvGPbnPmrCYNi4b1415Y9lYN7aNp1edO3jWhMW0cdm4bswby8a6sW28eWnzzpowZuSzPmvC4rJx3Zg3lo11Y9u4bdzBdfPWzVs3b928dfPWzVs3b928dfPWzcublzcvb17evLx5efPy5uXNy5uXN++sD2NKC+uzPiwuG9eNeWPZWDe2jdvGHTzrg4+z9FkffECkz/qwuG7MG8vGurFt3Dbu4HlPsnjzzjrjIzF91pnFvLFsrBvbxm3jDp73JIujv9J69jNbz35m69nPbH3WHh8A6rP2LKaNy8Z1Y95YNtaNbeO2cXrbdV0b08Zl47oxbywb68a2cdt4887aMz4Lbd6Z6G9pmncmBlbglBZn2Vg3to3bxh08C89i2rhsXDfevLPwjMG4ds3Cs9g2bht38Cw8i2njsnHdeHq7s2ysG7vX/ADOwrO4g2fhWUwbl43rxryxbKwbb95ZeMbMiO2ahWfyLDyLaeOycd2YN5aNdePp9ethFpjFtPGMr8514xnfnGVj3XjGb85t4w6eBWYxbVw2rhvzxrKxbrx5bfPa5m2bt23etnnb5m2bt23etnnb5m2bt23evnlnUTK/9mZRWlw35o1lY93Y6984LTTrzZi5sNGsN4vrxh5yDF42mvVmsW5sG7eNO3jWm8W0cdm4brx5Z2kZQ6WNZmkZA6SNZmmZPEvLYtq4bFw35o3nGEJz1o1t47ZxB68xkMm0cdk4x3DanNXwGkO5bc5qGNw27uBZQsYgb6NZQhaXjevGvLFsrBvP/Zrx28YdPEvIYtq4bFw35o1l44Z9l22/ZglZTBuXjbf90m2/dNsv3fZrlpDFbeMOtm2/bNsv2/bLtv2ybb9s2681Rjp5O562Hc81Fur73rb9mqViMW8sG2/71bb9att+tW2/+nad9O066dt10rf96tt+9W2/+rZffduvvu1Xx3VSrmtj2phz38uF/SqXbmwbt42xX4WujWnjsnHdmDeWjbFfhWzjtvG2X2Xbr7LtVykb141542gKaCW/nGglv5xoZRaN8TamlVk0FpeN68a8sWysG9vGbeMO5s3Lm5c3L29e3ry8eXnz8ublzcubdxaQ7vs+C8jiujFvLBvrxu4a75VamYVlcQfPwrKYNi4b1415Y9lYN968s7B0v7BnYZk8C8vi6fULbxaWxdPbnHnj6e3OuvHw0li3qnknZXIH+71JMG1cNq4b88aysW68edvmbZu3b96+efvm7Zu3b96+efvm7Zu3b94Or/dXJtPGZeO6MW8sG+vGtnHbePPS5qXNS5uXNi9tXtq8tHlp89Lmpc1bNm/ZvGXzluklZ95YNtaNp7c6t407uF4b08Zl47oxbywb68abt27eunl58/Lm5c3Lm5c3L29envFHQfYezAeLc9l4xlFn3lg21o1t47ZxB+uMac7buVbD8de2cQfbtfHc5uZcNq4b88bbNWabd6shdashdashdashdashddUQ3562XWNtu8bado2tGuLbs2rI5Lbx5t1qSN1qSN1qSN1qSN1qSN1qSO3btd2349y349xxnHnVkOZMG5eN4eWthvBWQ3irIbzVEN5qCG81hAnnl1cNmVw2rhvj/PKqIZN148271RDeaghvNYS3GsJbDeGy7W/Z9nerIbzVEC62cdt4O86rhnRn2ti95PFnDVnMG8vG7h0vUxvPGrK4bdzBs4Yspo3LxnXj6WVn2dgyl3nWk/FisvmEn8FybUwbb9eS1I23cyrbOZXtnIpt3Dbezqlu51S3c6rbOdXtnOp2TnW7hrcaxbpdS7MWjReijWctWlw2nsfQj8+sReTbOWvRYt3YNm4bd/CsRYtp45Is81odg91N5rW6WDZ27+hybDKv1cVt4w6e1+pi2rhsXDfmjWXjzVs377z2xqB8k3mNjSmnm8xrbP3zuW3iPLdtHGeZ19hi2rhsXDfmjWXjuW3mbBu3jafXj/O8xsbAepN5jfmAscxrzAeSZV5jc1/mNbZ428f5G1c9/ryuFtPGZeO6MW8sG+vGtnHbeHp9X+Z1VX1f5nW1uGxcN3Yv+/7O37jFurFt3Dbu4Pkbt5g2njH9GM7fqfGys+n8bRrdxE3nb9OYJr7p/G1aXDfmjQ08f2vGDPJN52/N4hlHnec2jGOl8zdivLBsOn8jFpeNp7c788aysSL+zLv1z9vGHTzzbjHhOMy8W1w35o23/Z2/BXMf52/BZN6Ow8yR4n935kjx4zxzZLFubBu3jT2+vxuZTXpUPP7MhcW8sWysG8/4fqzmPeHiDp75spg2LhvXjafXz+nMl8W6sW3cNu7gmS+LaePp8uth5shi2Vg3to3bxh08c2QxbVw23rx98848Kn79zPvAxbZx27gnz8a/YMrzMhv/guvGOKezeY/GVyDN5j3baM5oNu/ZFsvGuvGsV9W5bdzBMx8X08Zl47oxbzy9xVk3to3bxh0883ExbVyxvzMHx6IWzWYOLm7Yx5mDk2cOLqaN57748Zz3Y4t547kv6qwb2xZn8/Lmlc0rm3f+bi7ezp1s5062cyfbuZPNK5vLl73zdxRzCVt/tTCXsPURyLmE7cIKZKAAFWjABuyJvjDWQth8YazmR8oXxlrIQAEq0IAN2BPnwlgTCQhbh63DNhfG8otkLow10YAN2APnwrYLCViAFchAASrQ444iNpelHX3vbS5Lu1CBBmzAnugL3C0kYAFWoCu6owIN2IA90VenXEjAAqxABg7F6NNvc6lZHzqdS80uJOAI5uOac6nZhQwUoAIN2IA90ZevXEhAKPwDOPJt8A/gFo4hcvL/wD9/X0jAAhwfwPnj25yqb6EAFWjABuyJ/vn7QgIWIGwGm8FmsBlsBpt/6O6PlXP6PX9KnHPu+cPUnHPPn6XmnHsLe6J/3rqQgAVYgVD4560LFWjABuyBc869hQQsQI3zNqfUW9jiDM0p9SZSHt85pd7CAqxABgpQgQZswDybc0q9hbAV2ApsBbYCW4GtwOaTW/gpnNPkzePgc1f4KZxz4/kJmHPjLWzAPJtzbryFBCxAKJiBAlSgARsQZ1NwNn25WP+hmsvF+g/VXC62zf/AgA2YvzhzudiFBCzACmSgAGHT/MWZi8guzF+cuYjsQgIWYAUyUIAKhM1gM9ha/uL0RsACrEAGClCBBmzA/H2bS8suhG3+bvpF0OMXp1/XBSRgAVYgAwWoQAO2RIpfnD7XiF1YgBXIQAEq0IAN2BP9d3P8UPW5BOz4SepzCdiFCoxfnO5NXoE9sV5AAhZgBTJQgAqEgrFvnm+Xb47n28IG7Imeb5dH8K/IFhZgBTJQgAo0YAP2RIVNYVPYFDaFTWHzH8vx4qTP+eMmemb1iX7M2FGACjRgA/oZkoGeQ+PbvT6Xal3IQAEq0OOaYwP2RM+hhQQswAp0m1/rfke6UIEGbMAeSJ6FCwnoiu7IQAEq0IAN2BM9CxcSsABhI9j8x3KM3fY5z9tCAzZgT/Qfy4UUR93bpgIrME8Wzct+nGOaF7g4FmAFMtA30hwVaMAG7InzAp9IwAJ0m2/ZvMAnClCBBmzAnui3gHPf/Bbw8nPsN3sLNXfIb/YWNmBP9LmOLj9Dfgu4sAD9d95PwLwxnCiIAFuDrcHWYPN7xIU4LR2npeO0dJyWDlufiv/+73/67a9//9c//cdf/v63f/mPf/z5z7/983/lP/j33/75f/zXb//2p3/8+W//8ds//+0///rXf/rt//nTX//T/6N//7c//c3//I8//ePxbx978+e//e/Hn4+A/+cvf/3zoP/+J/zt6/lffVyFY2zG//qDW80QjzT8JQg9D8Jj6M9DPF51ZACrv/z98vzv+2LM/vcfryWxAUb396IWyb14vK97uhf8PEjhHjGKXFuIUu6GeLw51tiTx6jCFkJ+CaGHEFXyWAgCNLobQCkuB60IUL/sRDscTNaI8Kg77WmIfjqhJY/DY+T0aYjToexy5YFo/PRQ0uG6LGW8F5pntNbt0ub+a4zy7vk47kiPHXm8FK/Pd+QQ4/EGKGI8EKdEf92K8fDx/Kz2zPPHS62nIQ5Xlq8S7xEeYyHYD+23I/jitDPCw/s0wt3dsOe7cTqYNu4f58G0qz8LUa5TqRhPdKtUMD0NQe8einK4Mot3y82NeNz8ZAz+NcfG65SnGzFWEZsb0e35RhwO5uORP47EA3FVVJb7O+KvEteOCD3dkcOFVVqc0no9DXDOsK55UVB9ekbb+0XvFIMrRQyu8vwHpF7H+l0yRbajUYr+GuNwdUqLM6KXbBHk/oXBkheGbFn29cKoh8vzMUzSM0bHFV7ty56cftXxk1weLxlwYn9wTjJLeK+cvzsnh+uTLAvG4w50+x2pv96ejER4GmOsahhBxvJMW5Rfr7DaPnB19HevjvO+9LxNobGOw9N94dPv++PZIQtH69uWtF9jlHevj+NVerMEHmPczBaW97OF9e2jcTqzYzLNOLNj9sTnZ/ZUS8ny7u/xpIcz+zVGP/1I13isKLz9xtbH3eQeQw61lNVqPtpsV9jXGMftEKG8WeiH7ThcpVpyOx63gvI0xk/OjD49M8Jv33XI6R5uzOeVG/J4s/x8Q07POaVQHpJfSuqXGIdDwpSpy7Tdx/3ogNy7e5H+5t3LaT/Em3Xm3Qtxfe141nxYGqu/P42h5XQXlT+Vou3FGJbPSw+k12K0kjEe746f/1CefrL7FTHKY4T06U+2Hm9LaybL473p8xinc1vyQVhK348p3Y/haw/PGH0fHfkao79/42DXuzcOx9rRru1Oas+3r+fWyrvbcT6zloNFj5Ha166OXhDjcHXY6Xg83o3mjdTj5Wh98pN93o58sK+V2vPtON7Q5cPPuDfdbpJ/fZa0dhw9qzl6tj+P/iAGW8mb9bZdpV9jtA88QDX6Y690wZkdPZxPr/R2uLF8vJHILXm8krj4yfXR3n6E0uOgZt6K1dropWypNW88KvP1NEazPzZbHvca+Wuth8xvx1vCFldp0V8e8+3XIdbDVTo+i8vhuCYvxeiqsS+PGnCIUd7Pll7fzZZz/cHPQm/X07zvh4wrinrc9hcRX2Icrw6M1D4Gga7XrnTF/aCV8jRGb2+/RtB71bgXfboV/i3L8xczmu9lHr8t2yFtPwjS2XAndh2ClNOlLlGCutr2VuNLMfVPG58GyR/9vv3GVW73q3qvJKhAv9xXft0QeTdhjkf18d4v702ZTqfG3k9+/7jqvZ051lPNN4jFOj+tY/6t2+EyywNybTfJX18tnN444TeKr+cD6nR64fR4rM13C8X24aQvh5SOP/tXRhnMT0eDzhdrL6iqXQ4X6+mdTamWv3Z7NSrl62F5e2TqvB2cY45lv4P43XYc04apYTTnUIzoOICK5+THeN/hxeQHrtfy/vVaPnG9lo9cr+eXOJIvcVSfvpbj4+NDtjI0vZ6/rD29jHo8Q+Fu97qeV6NjkIoR0F9+wn8XpL3/0rf0t9/6nkLcfO17e08O733vHlK+9NXzclkGocNPzeml1N0WC/8+5933jefdsRyhejyYnXbncBcwpuaJEzx+tp+Ws3OQvFUcM58cgvT3L3i+3r7gTyFuXvC39+RwwR8Pab3yvNT66nnRHN9ujQ5NNKd3UySMEf+9Cab9IH+Z8tb5kXmHusr2gSukvX+FtLevkNt78mJJZP+ydx1S7c8PqZT3D6nUtw/pKcTd5qLyRx/S7So1eu1X5vE3Y0O4XKfzcnquuts19oGCqu8XVH2/oMoHCur5iL57gymE5rPH1fz8BlMP1VTV8om52aEkn8Z3OsYhrv3ntv3oeBiOR3vxmN5rxyM9vuq/FGMZ/DSGXe9f6UZvX+n2dl/g/T05XOnHI1p7wxHV12JIQeNDrc+P6OEqfTweSz4pa38xRr59OMY4X2G3Oj69bL97dbz/JNXo7X4FauXNhoXzVtxrI6HTe6l73avUTpXUZxaYlXS/pXy8f3w1iLwYhPO5UnlrWfh9kPb2eTnuS45dPPDVfSk5Vvd4pVJeDZKD7bo/D/4sSM3nDq37kP3XIKe3U2OO3Xxcf/B2cr605x3D3O0T/CZIz9cYlfqLQfAW9PESVF8McrNlkU6vqe72LFLvbw8NH7cDDUO9bbdlv9+Ou0H0ejVI/tA8UF8LMlb3ynaMx9jwKcyx/zoLW99vJH54sTVcbHse/yyIdgQ5JOD93/Cnz0Pl9K7KspHK7Pmv1vme+d6XBqdXVXcfD89BOPeFudMhyLl9Ot+ZGx/2pr59511OQ//37q2OIW5+kXN8SXXzkxyyd+9qCh27pzlHhh9H9Omv3v2zYoezcrw68vVwscYvxai41h8/ePZqjOvtGBU3V3sd+1mMPLmPcM9jFHn7ieibGLeeiM77wrjIWNv7MV68xmrpeCHTnp/b4ydTijYVK6esO22IoTHM9HkprOX9k3uO8YGTa4R9OSTu6f3UXFVnvdIlefWg5v1ubYer7PQG495L7nL8aqpL7ku3509nx+1gDAzvHzz97nCcfrMlX9exHBoHz0Hw+QWb6YtBxPLNgZzuHri8/x60ML//HvS4O/u4bDl0QpbT11P3d8f+6N0pLX40Zf9e6Pe709+81z1vhublKiaH+1Q5zS6Rfa5c9m/8vmyHvP2R33krMsKevL/filNzSUHylm3kTe+HoMvXVVwPdq3xa0F628b+t+aSnwSZq1uv8n5tY2c/Oaj5/ebjZvNwUPsfGmKse9ZxUOX5rvRPnJn+iTPTP3BmjplreVelheW134hfxjQrvxokx5lUD91U5yCW90R6anQ/B9G8TB4vuw4/vt98RnXvN+L0hucjvxHasn9QH9fu8905fUn1eOVa8ZjYub9ysZnm45lpb4ct4fdHIuz9SVKKvT1LyjHEzZGI03dQd0ciji+b7o1EnD6luj0ScfusHJ4Sz1fHvZGIU4y7IxHfxLjejnHzQbPdfScqrx3TuyMi5xj3RkRO3f93H5rPMe49NB/3ha+8PvZXeF9j9PJHb8e9kZnbMV7MubsjM10/MDLT9AMXiP7BJ+beqEo9fgx1d1TlvCG3RlXq6YOqe6Mq9fQ51d1RleN23BxV+eYmxnBT9njt9uQmpl56DJKl7MHb94M/CHLzEfGbnbm5HYdyqD07h43p8OB+mnUgn8y2mRC5/uhBpuDb5av2F5+GePuyRJ89DdXvPqe680h1DPKJx//bR4Q/cUTsE0fE3j0i37zp3nbmuvaX1D97YX5V3cI87wAoF3/ivfsxjLb8PPyRiE8HAY4h8Fj2eN9Mr4UwbEV/enbO7TcXJiO9Xu4m6tvcR4cenvOnEDmB0lizEgXtR59CcP5+j4URnwapp4+hxtRLeUfDT28kan2/V7XWt3tVjyHuPafe35Pn95nnI9rzOYR6r8+PxvtvRL/ZjlsfZNb331XVeq5lORDChw8y6/vvqo6H4zEEcWEIor10SAvha1s63DHz+zeq/IkbVX77RvWbb7HycIzVAZ9XseNHsrd69s/T395qt6/8/qepld9uqD6GuFnCbu+JvXZA73XbH0Pca7avpzvDm8/J38S42X3w9ggqn2/n7nXsnuc2vtdre4xxs9X2ODnozebU2zEOvannGPdaU2v9yB3y6ajebEytH+nqrh9oTK31j92bu9dq/UBb+HES2pvX6u0Yh2v1HOPetXr8aPn2tVo/0P98f77557dSx/dSt7o5TlPrUebL41Zmbxv6Ou/zcV4qzDdQ+elA2zEEX/X/d5j91xCn11I3h2JOB+PKS+PLV75fDkb7QPtTPc3wd/dd8Okp7OYhpdNDej6j/9KkI/cj5J2Ysj6PcHqWlNwLkm3etN9NbX58HkUriJT6PEY7Pgjem2awvj029s188Tktx4Pr82mWay9vZ+wxxL3Lq7/dO1XP38blDXKjp6Pi/e1rvL99jbcPXOPt/Wucz5Py3bvGj/P3l2xELQ/eNqTdjyF5TIvI8xjnmdG3l2pG+wc1X+ebv/jdTDmHuJUp/P4rpB8cDno+7dt5Cn9Gt4TgOa68HKO9H2Nv3fzJUgJVc8Cj2vPp9/nYyt4wCW7b0v/3QQ6/9gVvbkvbBtV+FqRRzyD7l6g/DIItKfKBINsUxz9ZG0FUMOm89ddODqOMsFh79Qy3LAD7VMuvrzjBLx0R7vg8sLfDqbm7Akc7pM1pWr+bXWhcjlX1QpfRNg/t7zfk8ChnYhHEZJ8g9OtCMceJn9G98cs7cfsS4zS8f6G+X/sA7tcY7fz+tmzvb+X53hwPq2DS9+0F/e8P6zFI3zrAnl8k59VAbi9LcowiF6LIYQ0MPj6sGxrB91Pcvkyaerpx374U4Pr8t/O4nkfNWRik9lfX0cgWjgfKazF6zg8u3fjFM2NZBMjadb0YpW0zyDV5fkysvHsHf4xw6w7+PCN/3zonen32ep/5ONyXU9n28vw+8Rwir9Ne9Nnz0HmFAsOeNGsvZm7r+VLrwYfHVD5+NnXv5vsY4t7N9+lG8d7N9w8Ox2lxpG+iGKIIvxpFOqLY4bnoNDHfzVNzDHHv1Jx25iOnZj8crb98ahRR+ov1cKz7no/fVJ7X9+M88vcK4jnErYp43hd8S0pd+fkRYS3vDvAcQzx+qy405xjxa0HwePXgIi8GyZk5x+/dS/W5G95w9VN9Pk6b/qlZ4EveK5a6NWL8fhb4u0GovBhEGAt9K70W5LELWdSu/fnoS5DTEmOFMCF9qc8XgGKr779EYPvAN9THvUFHaLn4tDfvvqXSD3w+fVwuDfXoy63zD5ZcM8Yydr8sU/ZlrtDj51P3fjnb2692+PSa6t4v5/lg5KiVtNoPB+PUj8o5zqPc6iHIqc8P62jS9fTB+bgZkvdnj5cq14v7IrkazWP0Sl4Osn0Z218Okl+B6otLA95dXvD0SevNR7Pr3RuR47e5N1+unL/vvflypX9gVb/jSnicYwi8fxr/dTUr7u8/VfX3n6r6209Vx4MhmOtsH979ejDkoncPxjnErYMhV/1DD4Yy5rJQOhwMef9gyPsH4+235Mdlznr+NPH14kKejzfXHTGeL5UmdL1/HyfH9adu3v2cvoVRwjcbctiM+ol9+cA96XntOMrTS4X3Nf2+rNl2mtZv+855G+Q2+8FmaM/PWH9dV+gHS9jd/VU4r4OHSjgmX8VR/d2wwXExvSvSru83DT8Nkm2Purdf/mRFvv1btmtf5J1/tDZgw9qA/dXdsRr3hd22RoSfBWk4sG2rJF+DyOlF1UeC/PLlRT0sdngMUrKz9XEfdr0YpObEOmWfIuD3p/gDi6Wc5n69O1jW3r1HPe/JzZvUbw7HvbtUqR+4Sz2vYnfvczip76/pI/XtNX2OIe59S3J/T04L0Bw7s259Dif8/jQU54UBdVvkuO0t6fqDIBhGeSC9FuTuF3HnLZGKHmx9fZ3Dpnh3v02K8bvPlc9hBLMuPS759nKYPDAj5GGa8OORqR2Hd/+9+dHh5VzTpvD+G/y7IMepAm99Yndstb/31eI5xr2vFuU0eH/vq0URPb5XufXV4nE77h7S46nNW87HWa6vZg6hm5mo8quXfGFkTtGXE7Dky6YR8pA5x9uBbQCvvnpHkd/5b0Xp9yGOd67bstZ7u9jX+0V9fzxA3x8PUPtDQ9yclOJ8QLNt5nFs+ekBbfb2U/hpKanbT+GnhpfbIwqn+f16PgbYPtnY19lkTjGa5TuZx2t4eilGp+zP7Pvka19jiOm7F/p5M7LhrZfDrLjHGAWPrKX3w670P3RXKkpH7c8n55RGf+hmcE6b2uU6bcbbbSrnEPfKT3u7TaUfRzO26nOY6/S03sq9R91jhFtPur28/6B7jHH3ObfTB55z6QPPuf39hVKkv71QyjHEzefc23tyeM6lDzznnsa67z7n0ieec+kTz7n0iedc+sRzLn3mOZc+85xLn3nOpU8859InnnPp/edc+sBzLr3/nKvHN1a3nnP1eNnffM7VTxzSTzzn0meec+kzz7n0kefc473Arcfc893Enadck3efp7R84HlKyweep44zIGh+AFT3I/r1Bf6xCYCyA4nrPo/sT2Jw9kPzL9+Xf4lxnIrBSi5G067nzQjt7ckH2tuTD7QPTD7QPjD5gNYP3K0e+4+0oeO3XU9PyilG6ftitOW1GC1vE+tVnm+HHl9T3U3bU3Pr7WGQY8twTt5aLymHvTlOAHBzwYVzNxRWkbLni9B7Vjy/Y7213oIyvf1Ao6dXVfceaI4h7j3Q6GkRqptfuuppvqF76y3oaQWqu+st3D8rdjgrx6vj1noLxxg311v4Lsb1dox76y2o3H2hKq8d05vrLXwT49Z6Cyrvr0D5TYxbD97nfbm33oJK+6O349Z6C/djvJhzN9db0ON3RzfXW/jmYr95gZQ/+MTcW29BT72dd9db+GZDbq23oNreflA+9qbffVDW9u6D8nf3MLfWW9BPrHNwDHKzf/ibnbm5Hcdbw7bNLfHiU9Ctp+zzU9Ctp+zr3W04f8Vx6332+fs+DMhK2x8If/KRoOJLQ+31xSAtl+Es+0T+P/zScHtsKM93h4+vcW9+rngMcm9dgnOIW+sSfBPi1roEx/OC5QDHwPuLJ/eXIPxqkIIg9fl50f72C9RziFtvLrXXPzTEzd6L8wFFt7BtX/r88KxkOS7WX60g+5a8HKTlrdQDXw6ChQmOQY7f+d/sVZJ3a/s3s5ZkjF70xYlP8ha3F3v6aV15+1euvHskztP75OcGYvuoxU+m98GcOrIve/uzKYJyYP2BL04z1Azb8ep0Ry3P6iPcq9Mdbc8c/PLxaIjx/Lwcp5CStq2tXj4Q47VpqBiDnrwPev4oBmbUYDtcY+cYePZp9jyG0anBv+fNS7uu51/FGJ2+RNXsIGPt8vRt2HdbYrklh+9z7PQySjRvpES3AaV6fzsaJsBvl9phO+px+DUO6+NHUw5BTp/65Tfo+3v18mWxuOMl0vNRn08z89jpS6Pbl0ixD1wi32zJzUukv32JnLbj9iXyzUpT9y6RWv7IS0SufNMov85P8nUzTsublJzNX8r+U9W+xDjdBlnJKRdsn+Cr/WBfsuFR6CqHfbEP7Ev7Y/cFQ/QPfO3XTmo2LUllfS1GwXYU+0CMdr24L9msJPtSHj/bDky4Uq+Xj2nHMZUXYzBi6GFSzuMs4fmJ7+MGeb/f/nKd8tvrTpxD3Hq+Nbn+0BD3HpGPx7Ni+qtqz2dMt9OEfPfm0TltBeMRm3s7bIW8X8FOX0ndrGDnOegLWiaLPN2XcwzB+l36/Hjw6Wv4u5PhH4PcHOU7hrg3yncOcWeU77jYwq2n9PNyDXee0uvbY/L17TH58zJGd5fI/SbKzRVyq31khdxjmHvX6DnErWv0mxB3rtHz8nA3F4c6xnh/CbL718h3S6rdvEb0M9eIvn+N6PvXiL59jRybrNFnRXtN//Locw6RLxloryI/CYHXYWWba+5rCGvHhyfcDF4vhsgWB92eJH+yI/uUJNuEQD8JoZm0v74a/EEIyzmAH0PQr53Uopg81F4LUfN29HFU6LWtwBvO/UHjByEeN4LZUbBPdEv9bgTCynRE2y3cDzaCSLGmQnvpyqKa1ybtS4z/JIQU9EWwvRZC0bzX+ms7kn1Vj+e013akYvbiKq/tiKJtV+21rbB8SiHrL12c1HEsenkphOXLN2N9JUBnfNz62nG48hHnl/VCvoZox3Wl3k7TfuGz59cOROZoN3nzSL4W4PFQlYtny7YTPwiAlT1kv1m7HyAbOR6xXgmAryVkX0P8BwHuDCsfAzBWIJeXdgH9hftT0f1frXsLmDd6fwHzRm8vYH4Mca93/f6ePO89Pd5I3Fq//DoOodxZvryVu0uPH85IeX8J9Pvb8TzG8frc1/ul51vx9oRmxxA3r616/sz0zncR7TQEcu+7iHZ6e9RZMOvl9Xx57HZepzu/R+jSnz+VttMLpMftPu78t2WM9AfHlKrhiZCeH9PTpIr7x1nPI5w/Nr+5fvr5zNwcvTgHubmC+jlIyR/GB/KrQe6tw/7NMbm3EPv5ar25Evv9IIel2L8Jcm8t9nYeW7o7KPTNob034Ha7OD9t5m+ndaJuLXPRPjNi1z4zZNdOS2f94OycwtwbsjuHuDVk902IN4fsqF1Y4ans31d+2YrTq9N7PxTHR9e8laG+r3lZfhCi5zZchV4K0fJX4tdVYb4eC/3Al/dNP/Dl/XnwMAdSi7bDzpyGtx+vGStGNuRZB+p3QfI58MG9Pw1yvAno+TqaiA+7c87ZXMqk7+0K13U/iHH+9hrzq0E0e4TM9m+kvgZ5//uT83YYtmNfo/n323G6Whkfv/6yzMzXS/64NpRcuQjog8vhzui4LXitXKXLYVuO6cfbV7T9EOQDHXrH8/O4G8pHI92Xd/rd+Tk2lGQ/yS9V7UuEU3ueKRZF2ooafb2ROC7vdOUEfI9RW30e5HhA0FPSbF8k4esBaedZePBb8cuHkvwlyKmtJNse96Gp34fgDyTOaRa+HyTOcVvuJs4xyN3EaR/ofj6eHeKKOU6uw/k5zdVYckP2Bfy+PsyfvlUSvKsR2pauHk+y96959JQ/nkkOReD0vdLjysj+o0v5+ak5TadHjFV0eduS/uVH+DzZCj4wvraGrN8dkn5caAHv8vjabpDkyyV/Wu7p7mx432wJY3x2f7T53Zb04yV/q4e6X28Ptx/PTS2ZNXVvUvt6bvppSmHB055c+0rct2/EH2UxJ2tqv9TFH4TIRYUfIZ7f/vbrA9Px9OsD0/F8ew9t2z30s+fNfpp/++6N+DHIvabO4738/SNyyjusKFh0bxv+eoKP0+DtMwse2v2/CVIwxqmnIPyBCnD6ePLeK79ziFtvzI67cvdDjE7nVwK3PsTopxdO9z7EOF+r6MF5VMTnwwr99AFUwVNW2efU+N3OnGbju32FnD6BuneFHO9GHiNmFfOuaNUXH9R+ufe1l5+xbh2TY5Db12v5xPVa3r9e7z9S2Mt34PcOa/vAJ3u9fuCTvV75/cN6bDTPYZJ90cQvDxP99BqLcaPI1ez54+/5iSTn19h7Afr9PcEC6ft48e/3pH+gnPH1gXJ2+hLh5g8ev/1x6nFXbl/pzB+40k+d7x+40kfXVb4d2Vdr+HqF8Pk7uXwUKftMqb8bLzpuSd5X0T5B4O+35HStokHw8cz4fOXGLp+4VuX9a1Xev1blE9eqfOJalQ9cq6dxvIZpS/aBr99dIaeXV49CipraD8X9NDcfX/n26TFEUp5e8OctwReZte6fqn3dEr3efF37zWZs48X1cEC0fOA3QusH8u706Hwz744h7uXdaVdu5935bc3NvDtOzncr785XCGaPr0KHvLNjL30O4XGv9cWUkZxapv4y/cjvtqR84DfCPnGt2vvXqr1/rdonrlX7xLVqb1+r5yHrmoNNtH9C/GXIuh8nfmdM2LFdY1+mojyGwFLWe9PXz0LkCKBsnUk/CoFlrH/5FPrVEPJiiDwW+uqx0DwW+uqxwGQ/9uqx2EO8eCz2n+sXjwVGhu3VY9FyR9qrx2IP8eKxaLkY2C8zJ/0oRL5ibu3FrfB3LPMB+dVjsYd4dSuw/N+h5Jxfb91cp+kcpBBmtDit03Rdxw+kOr5ukmOU07o3ebe/l+HHiNcPdufmukjHIHfXrjpvyc21q7555XfrfuF6+xubb0LcueU4vgC9e8vxOPT9/XsOuk5LRd276XjEOI343/wG+RHl9Cb11kfI38S49RXyN3tz80Pkb6Lc/JD4/Ib6QodJ2V77fX1DPTp7379Zf0Rp72bfNzFu5c55b+4nT6FPJE95e+6zb5oQZHvlJodTfJynj65tqFyedSE8gsj5XVf+bm3LFJB9DXKatUc1b3fltRCWH7//eq/6oxD5BqM83Ypv+jpKfm927XeaX4/o6YMgluz+4X39qjeC9GdBbre61Os6XGXHbxI4rzLivc3kd7tzmnfjyu/flMgOQU6X6uMi3xaOvNpHwuzz++tPHroxv8CxT+z0qrrmE4VUed6Q+Nif4zen2Tq3fdv/tTmLLr734P3LV19f04/fvnf9ZjvQS9j5FKN+osrz229UHzHkE7dIp1Wk7t4iHWPcvEU67s3NyUW+iXL7FumYOLmerfChBYAuOc6ynxfstjv9ay2RYxt9zsKwL4hn7Qf7wtvn8+24Lx9ornpEebs16rwl92/VxD6RxPL+4Ortr3Lq869yHi+Vz99dZVdx275S5J80Nt0b9j7dut4/N/qRAqv8h56bhzD7rGurp3Oj778beUT5yPOWfuB5Sz/wvKUfed6yjzxvWfmDL5RtLTZ+3kl7DMKEtmCS09V2WlvqM1HufZr7TYxb3+Z+F+PW6j/nQZOb8559N4Bz7+7km2G+O3PhfBPizmw453HTmyuXfxPk3sr25+/ZqGOe5uv5R3F0tdNzOb4DxQ/f/QnpNMsz6zZHAPHX5XJOrZpkOaj2wKezwDyCnFbsuzfJEF39+C7rzkww5xj3poL5wc7YYWeOhxXLSlPv9XBE3p+h57stwapKF9lhS06/E7dWdXzE+MAnV99Euflm6xzl7mucb7bl5nucb6Lcfc1GpxG6x7/NMIO3OPbDOPkIOdhejiNYAPxRFNrrca5tUKo+n7Ljm6N88+3fN1Fu/nics+ne2qTntP7l86WrvVYbCuUqUIWerzxLdLrBuFkbiM5fZd9a8vW8JXeP6yfuMb67aimfwB5cX89GLCT3YH09G0suPDRiPs+i9ydJe+zvaVD21ixpj2083n3dWz7+dPN061PG4wS2OZ8I7d8gjlU77obQHPGjx6PpSyFavi+jfbbTn4TwlsJ1f3DRKyEeL2MzZx4j0C9txS9v217bEcvZHanRSzvyKIdYRbu/thU1h7YfL4j4pRC8rdS8jw58CUF0mkLsA/NV1/zMlqq9djT4yl3ZV5J59YC+FqIWfHRc9juIxvdDSI6olW1t0ldDbL9PPwqRsxDWsr1Q/kmIWjE0uC0e+ZMQbGi8vl47FjVfjNdfLq1XQ7x2Uuv2FL9Nhf6jY4FVr7m+dlI55/mp+zubH4WgvC5YXjypiqXd9aWtIMNPou1vKX8QouWOPN4M0NMQ4/X0IUrBtO5Ft9L3k9/Vgt9VeW1Xso3z8QjeXguhmKDvtSyhlo8J1C96cUdwb36Vt0PQq1thCPFSuj9+0XEs2N7eiq8n9X8+/u+f/vUv//iXv/79X//0H3/5+9/+/fE3/3sE+8df/vS//vrn9X//z3/+7V+3f/sf/++/xb/5X//4y1//+pf/+y//9o+//+uf//d//uPPI9L4d79d63/+R+PHg+Xjpk/+5z/9Ro//3+lRfzoxP/5/9X/f5J8e/5H/+/EXdPwH+rhTGP9g/I3HX/YI7X/+99jk/w8="
|
|
6720
|
+
"debug_symbols": "tb3briw5cqb5LnmtCzfSDqRepdEQqtXVjQIKVUJJGmAg6N0naKTZz71ygstXRORN7a8yc9vnJ7Nwp5uT//Xb//7z//rP//svf/nb//n7v//2z//jv377X//4y1//+pf/+y9//fu//uk//vL3vz3+6X/9do3/afLbP9d/+q3pb/8sjz9s/tHmH93/6Nf8g+YfZf5R5x88/5D5x4zSZ5Q+o/QZha5r/Unrz7L+rOtPXn/K+lPXn7b+bOvPFY9WPFrxaMWjFY9WPFrxaMWjFY9WPFrxyopXVryy4pUVr6x4ZcUrK15Z8cqKV1a8uuLVFa+ueHXFqyteXfHqildXvLri1RWPVzxe8XjF4xWPVzxe8XjF4xWPH/Fs/Nnnn3KtP2n9+YhH14AawAGPkFQHPGKS/8cW0AL6Ar0CKGBEbgNqAAdIgAZYQAvoC+wKoICIbCNyH8ABEjAijwNgFtACHpHLgHYFUEAJqAEcIAEaYAEtICL3iNwj8kigMg7LSKEJHCABGmABLaBPKCOfJlBACagBHCABGmABLSAiU0SmiEwRmSIyRWSKyBSRKSKPDCt9QF8wcmwCBZSAGsABEqABFhCRS0SuEblG5BqRa0SuEblG5BqRa0SuEblGZI7IHJE5InNE5ojMEZkjMkdkjsgckSUiS0SWiCwRWSKyRGSJyBKRJSJLRNaIrBFZI7JGZI3IGpE1ImtE1oisEdkiskVki8gWkS0iW0S2iGwReeRgLQP6gpGDEyigBNQADpAADbCAiNwico/IIwerDCgBNeARma8BEqABFtAC+oQ6cnACBZSAGsABEqABq27UqwWsulHpCqCAElADOEACNCAiU0SmiDxykOsACigBNYADJEADLKAF9AU1IteIXCNyjcgjB5kHSIAGWEAL6AtGDk6ggBJQAyIyR2SOyCMH2Qa0gL5g5KDQAAooATWAAyRAAyygBfQFGpE1ImtE1oisEVkjskZkjcgakTUiW0S2iGwR2SKyRWSLyBaRLSJbRLaI3CJyi8gtIreI3CJyi8gtIreI3CJyi8g9IveI3CNyj8g9IveI3CNyj8g9IvcVma8rgAJKQA3gAAnQAAtoARGZIjJFZIrIFJEpIlNEpohMEZkiMkXkEpFLRC4RuUTkEpFLRC4RuUTkEpFLRK4RuUbkGpFrRK4RuUbkGpFrRK4RuUZkjsgckTkic0TmiMwRmSMyR2SOyByRIwc5cpAjB9lzsA7gAAnQAAtoAX2B56ADBZSAiKwRWSOyRmSNyBqRNSJbRLaIbBHZIrJFZIvIFpEtIltEtojcInKLyC0it4jcInKLyC0it4jcInKLyD0i94jcI3KPyD0i94jcI3KPyD0i9xVZriuAAkpADeAACdAAC2gBEZkiMkVkisgUkSkiU0SmiEwRmSIyReQSkUtELhG5ROQSkUtELhG5ROQSkUtErhG5RuQakWtErhG5RuQakWtErhG5RmSOyByROSJzROaIzBGZIzJHZI7IHJElIktElogcOSiRgxI5KJGDEjkokYMSOSiRgxI5KJGDEjkokYMSOSiRgxI5KJGDEjkokYMSOSiRgxI5KJGDEjkokYMSOSiRgxI5KJ6DbQAFlIAawAESoAEW0AL6gh6Re0TuEblH5B6Re0TuEblH5B6R+4qs1xVAASWgBnDAI7JeAzTAAlpAXzBycAIFlIAawAERmSIyReSRg0oD+oKRgxNG5DqgBNQADpAADbCAFtAXjBycEJFrRK4RuUbkGpFrRK4RuUbkGpE5InNE5ojMEZkjMkdkjsgckTkic0SWiCwRWSKyRGSJyBKRRw4qD7CAFjAiP+75deTgBAoYkceVMHJwAgdIgAZYQAvoC0YOTqCAiGwR2SKyRWSLyBaRLSJbRG4RuUXkFpFbRG4RuUXkFpFbRG4RuUXkHpF7RO4RuUfkHpF7RO4RuUfkHpH7imzXFUABJaAGcIAEaIAFtICITBGZIjJFZIrIFJEpIlNEpohMEZkiconIJSKXiFwiconIJSKXiFwiconIJSLXiFwjco3INSLXiFwjco3INSLXiFwjMkdkjsgckTkic0TmiMwRmSMyR2SOyBKRJSJLRJaILBFZIrJEZInIEpElImtE1ogcOWiRgxY5aJGDFjlokYMWOWiRgxY5aJGDFjlokYMWOWiRgxY5aJGDFjlokYMWOWiRgxY5aJGDFjlokYMWOWiRgxY5aJGDFjlokYMWOWiRgxY5aJGDFjlokYMWOWiRgy1ysEUOtsjBFjnYIgdb5GCLHGyRgy1ysEUOtsjBFjnYIgdb5GCLHGyRgy1ysEUOtsjBFjnYIgdb5GCLHGyRgy1ysEUOtsjBFjnYIgfbyEF7/LC2kYMTKKAE1AAOkAANsIAWEJE5InNE9hzUATWAAyRAAyygBfQFnoMOFBCRJSJLRJaILBFZIrJEZInIGpE1ImtE1oisEVkjskZkjcgakTUiW0S2iGwR2SKyRWSLyBaRLSJbRLaI3CJyi8gtIreI3CJyi8gtIreI3CJyi8g9IveI3CNyj8g9IveI3CNyj8g9IvcVuV9XAAWUgBrAARKgARbQAiIyRWSKyBSRKSJTRKaITBGZIjJFZIrIJSKXiFwiconIJSKXiFwiconIJSKXiFwjco3INSLXiOw5WAdIgAaMHOQBLaAv8Bx0oIASUAM4QAI0ICJzROaILBFZIrJEZInIEpElIktElogsEVkiskZkjcgakTUia0TWiKwRWSOyRmSNyBaRLSJbRLaIbBHZIrJFZIvIFpEtIreI3CJyi8gtIreI3CJyi8gtIreI3CJyj8g9IveI3CNyj8g9Io8ctHHZjByc0AJG5O7v268kSipJNYmTJEmTLKklpYPSQemgdFA6KB2UDkoHpYPSQeko6SjpKOko6SjpKOko6SjpKOko6ajpqOmo6ajpqOmo6ajpqOmo6ajp4HRwOjgdnA5OB6eD08Hp4HRwOiQdkg5Jh6RD0iHpkHRIOiQdkg5Nh6ZD06Hp0HRoOjQdmg5Nh6bD0mHpsHRYOiwdlg5Lh6XD0mHpaOlo6WjpaOlo6WjpaOlo6WjpaOno6ejp6Ono6ejp6Ono6ejp6OnIPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTwvmecl87xknpfM85J5XjLPS+Z5yTz3hqFWnCRJkyypJfWgkeeLKKkk1aR0WDosHZYOS4elo6WjpaOlo6WjpaOlo6WjpaOlY+R5m72dVxIlDYc61SROkiRNsqSW1Bd5U9EiSipJNYmTJEmTLKklpYPSQemgdFA6KB2UDkoHpYPSQeko6SjpKOko6SjpKOko6SjpKOko6ajpqOmo6ajpqOmo6ajpqOmo6ajp4HRwOjgdnA5OB6eD08Hp4HRwOiQdkg5Jh6RD0iHpkHRIOiQdkg5Nh6ZD06Hp0HRoOjQdnufNqSX1oJHnnZwoqSTVJE6SJE2ypJbUg1o6WjpaOlo6WjpaOlo6WjpaOlo6ejp6Ono6ejp6Ono6ejp6Ono6eji8cWkRJZWkmsRJkqRJltSS0kHpoHRQOigdlA5KB6WD0kHpoHSUdJR0lHSUdJR0lHSUdJR0lHSUdNR01HTUdNR01HTUdNR01HTUdNR0cDo4HZwOTgeng9PB6eB0cDo4HZIOSYekQ9Ih6ZB0SDokHZIOSYemQ9Oh6dB0aDo0HZoOTYemQ9ORec6Z55x5zpnnnHnOmeecec6Z55x5zpnnnHnOmeecec6Z55x5zpnnnHnOmeecec6Z55x5zpnnnHnOmeecec6Z55x5zpnnnHnOmeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5Lpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaee79W52dOEmSNMmSWlIP8jyfREklKR2WDkuHpcPSYemwdLR0tHS0dLR0tHS0dHieq5MltaQe5Hk+iZJKUk3iJElKR09HT0cPhzd5LaKkklSTOEmSNMmSWlI6KB2UDkoHpYPSQemgdFA6KB2UjpKOko6SjpKOko6SjpKOko6SjpKOmo6ajpqOmo6ajpqOmo6ajpqOmg5OB6eD08Hp4HRwOjgdnA5OB6dD0iHpkHRIOiQdkg5Jh6RD0iHp0HRoOjQdmg5Nh6ZD06Hp0HRoOiwdlg5Lh6XD0mHpsHR4nptTS+pBnueTKKkk1SROkiRNSkdLR0tHT0dPR09HT0dPR09HT0dPR09HD4c3ki2ipJJUkzhJkjTJklpSOigdlA5KB6WD0kHpoHRQOigdlI6SjpKOko6SjpKOko6SjpKOko6SjpqOmo6ajpqOmo6ajpqOmg7P8+7UgzzPJ9H4MJ0cC7ACGShABRqwAXviSPhA2AQ2gU1gE9gENoFNYBPYFDaFTWFT2BQ2hU1hU9gUNoXNYDPYDDaDzWAz2Aw2g81gM9gabA22BluDrcHWYGuwNdgabA22DluHrcPWYeuwddg6bB22DltPm/e5BRKwACuQgQJUoAEbEDaCjWAj2Ag2go1gI9gINoKNYCuwFdgKbAW2AluBrcBWYCuwFdgqbBW2CluFrcJWYauwVdgqbBU2hg21pKOWdNSSjlrSUUs6aklHLemoJR21pKOWdNSSjlrSUUs6aklHLemoJR21pKOWdNSSjlrSUUs6aklHLemoJR21pKOWdNSSjlrSUUs6aklHLemoJR21pKOWdNSSjlrSUUs6aklHLemoJR21pKOWdNSSjlrSUUs6aklHLemoJR21pKOWdNSSjlrSUUs6aklHLemoJR21pKOW9Kwl5cpaUq6sJeXKWlKurCXlylpSrqwl5cpaUq6sJeXKWlKuCzaCjWAj2Ag2go1gI9gINoKNYCuwFdgKbAW2AluBrcBWYCuwFdgqbBW2CluFrcJWYauwVdgqbBU2ho1hY9gYNoaNYWPYGDaGjWET2AQ2gU1gE9gENoFNYBPYBDaFTWFT2BQ2hU1hU9gUNoVNYTPYDDaDzWAz2Aw2g81gM9gMtgZbg63B1mBrsDXYGmwNtgZbg63D1mHrsHXYOmwdtg5bh63DhlpCqCWEWkKoJYRaQqglhFpCqCWEWkKoJYRaQrOWsCMBC7ACGShABRqwAXtigW3WksuxACuQgQJUoAEbsCfOWjIRtgpbha3CVmGrsFXYKmwVNoaNYWPYGDaGjWFj2Bg2ho1hE9gENoFNYBPYBDaBTWAT2AQ2hU1hU9gUNoVNYVPYFDaFTWEz2Aw2g23WEnVkoAAVaMAG7ImzlkwkYAHC1mBrsM1a0h0N2IA9cdaSiQQswApkoABh67B12LyW0EgybzsMJOCwjdndinceBjJw2MbcbMWbDwMN2IA90WvJQgIWYAUyEDaCjWAj2Ai2AluBrcBWYCuwFdgKbAW2AluBrcJWYauwVdgqbBW2CluFrcJWYWPYGDaGjWFj2Bg2ho1hY9gYNoFNYBPYBDaBTWAT2AQ2gU1gU9gUNoVNYVPYFDaFTWFT2BQ2g81gM9gMNoPNYDPYDDaDzWBrsDXYGmwNtgZbg63B1mBrsDXYOmwdtg5bh63D1mHrsHktKV4fvJYs7IHe9DdmXize9Edlov8tc2zAnuh5s5CABViBDBSgAmGrsFXYGDaGjWFj2Bg2ho1hY9gYNoZNYBPYBDaBTWAT2AQ2gU1gE9gUNoVNYVPYFDaFTWFT2BQ2hc1gM9gMNoPNYDPYDDaDzWAz2Dxv6uVIwAKsQAYKcNgqORqwAXui581CAhZgBTJQgLB53vgMhd4oGOi2+k9jCsoLSMACrEAGCtBt6mjABnTbSGNvGgwk4LAxOVYgAwWoQAMOGxfHnui/wQsJWIAVyEABKtCAsHktYT8OXksWEtCPWXf0uOzoEfzoeH1g/w+8PiwkYAFWIANHXLkcFWjABuyJXh8WErAAK5CBsHl9ED8BXh8Wus130+vDRK8PCwlYgBXoNnEUoAIN2IA90evDQgIWYAXC5vVB/LTMuX0nus0cG7Anen1YOGzqx8Hrw8IKZKAAFThs6heX14eFPdHrw0ICFmAFMlCACoTN64P6Rev1wdFbDAP9SHbHAqzABvQI42x6s+DjqcrRN6c5ClCBBmzAEczGRnqnYCABC7ACGThs5nvhKb3QgA3YEz2lFxKwACuQgbD57YH5cfDbg4UN6LZx9Xn3YCAB3eaHz9Pf/JB4+rfLUYAKNGAD9kRP9OYb6Ym+kIECVKAlzvm01bEBXeHbO+fQ9uvB820hAwWoQEv0vOi+vZ4XCxuwJ3peLCRgAVYgAwUIW4etw9bT5i15gQT0uOToEYqjR2DHnui/hQs9gjgWYAUyUIAK9LjjBHhDHY133cU76ooPSnhLXaAAPUJ3NGAD9kRPhoUELCOY77HPhr3Qbb7zPiP2QgX2geMy8sa54qNu3jkX6HvcHD2C76bPfb3QgA3ocf04+BzYCwnoNj86PhP2QgbCJrAJbAKbz4o90X/f5rlQnE3F2VScTcXZVJxNz6F5Cv03a55CnwN7nizD2TSczTkbvZ8Lw9k0nE3D2TSczYaz6TPTz/PWcDZ9dvp5shrOZsPZ9Bnp5yn0Gejnees4mzPf/BT6PPTzQHUc347j23F8fT76ebJ6nk1vjQukOFneHBdYgWnz/rhABRowz6Z3nhUfpPLWs8AGHJtD4+h491kgAQuwAhkoQAUacNj8Odbb0Bb6RPELCViAFeg2315PnIUKNOCwlcuxJ3riLBy24lvmibOwAoet+GzrnjgLFWhAt40LxtvQij+4ex9aYAUy0OP6mfdp5P2ZzJvRHsMNjg3YE306+YVu8z32dFpYgQwcNn928l604s843oz2eLh2HAp/sPF2tOL39t6PFliAFchAASpw2HwOeG9LCxw2f8bxxrRAAhZgBTJQgAo0YAOmzVvUAglYgBXIQAEq0IANCBvB5rPS85ytvwArkIECVKAl+qoQ/iDmHWqBBViBDBSgAg3YgD2xwlZhq7BV2CpsFbYKW4WtwlZhY9gYNoaNYWPYGDaGjWFj2Bg2gU1gE9gENoFNYBPYBDaBTWBT2BQ2hU1hU9gUNoVNYVPYFDaDzWAz2Aw2g81gM9gMNoPNYGuwNdgabA22BluDrcHWYGuwNdg6bB22DluHrcPWYeuwddg6bD1t/bqABCzACmSgABVowAaEjWAj2Ag2go1gI9gINoKNYCPYUEs6aklHLemoJR21pKOWdNSSjlrSUUs6aklHLemoJR21pKOW9FlL5qIjAlRgi4rYZwFxnAVkIgELsAIZKEAFGhA2hk1gE9gENoFNYBPYBDaBTWAT2BQ2hU1hU9gUNoVNYVPYFDaFzWAz2Aw2g81gM9gMNoPNYDPYGmwNtgZbg63B1mBrsDXYGmwNtg5bh63D1mHrsHXYOmwdtg5bD1u9rgtIwAKsQAYKUIEGbEDYCDaCjWAj2Ag2go1gI9gINoKtwFZgK7AV2ApsBbYCW4GtwFZgq7BV2CpsFbYKW4WtwlZhq7BV2Bg2ho1hY9hmLWmOAlTgsMlc4agBe+KsJd2RgAVYgQwU4LCNCfmrt6oFNqDbfHu9liwkYAFWIAOHTXzpJa8lCw3oNnXsiV5LFhLQ45qjR/AD5fVhYU/0+qB+oLw+LCzAsb1jtLl6+1mgABU4bOo75PVhYU/0+rDQ4/rh85wf47/VW8oCG9C3dyi8pSyQgAVYgQwUoNvm4lYGbMCe6Dm/kIAFWIEMFCBsBBvBRrAV2ApsBbYCW4GtwOY5PyZyrd48VsZIevXmsUACFmAFMlCACjRgA8LGsDFsDBvDxrAxbAwbw8awMWwCm8AmsAlsApvAJrAJbAKbwKawKWwKm8KmsClsCpvCprApbAabwWawGWwGm8FmsBlsBpvB1mBrsDXYGmwNtgZbg63B1mBrsHXYOmwdtg5bh63D1mHrsHXYetrmIpULCViAFchAASrQgA0IG8FGsBFsBBvBRrARbAQbwUawFdgKbAW2AluBrcBWYCuwFdhQSwpqSUEtKaglBbWkoJYU1JKCWjKXuxyv7epc8HJhT5y1ZCIBC7ACGShABQ7bmCG+zkUwF/bEWUu6IwELsAIZKEAFGrABe6LCprB5LRmvA+tcInMhAy3R68N4Z1nnMpgLPYIfX68PCxkoQAUacGxv80Pi9WGi14eFBBy25mKvDwsZOGzNt9frw0IDuo0de6LXh4UEdJsvH+n1ofn2eiVofo69EixswB7os9qV8f6t+rR2Zbx/qz6v3SOi44g73rRVn9kuUIAKHLbxQqbOpTMX9kSvBAvdZo6u8M3x9B9vVqrPbFcv35yR/vVyxUj/wAbsiSP9AwlYgHWgb8NI/0CNy8gb3wIbsCd6zi8kYAFWIAMFCFuFrcJWYWPY2HfIjxkXYAX6DvmRZAEq0IAN2BPlAhKwACsQNoFt5Hwlv6JGzgc2YE8cOR9IwAKsQAYKEDaFTWFT2Aw2g8183/ySm3cK6qhAAzZgT5x3ChMJWIAVyEDYGmwNtgZbg63D1mHrsHXYOmwdtg5bh63D1tPG1wUkYAFWIAMFqEADNiBsBBvBRrARbAQbwUawEWwEG8FWYCuwFdgKbAW2AhueL7jAVmArsFXYKmwVtgpbha3CVmGrsFXYKmzzTmEibAwbw8awMWwMG8PGsDFsApvAJrAJbAKbwCawCWwCm8CmsClsCpvCprApbAqbwqawKWwGm8FmsBlsBhtqCaOWMGoJo5YwagmjljBqCaOWMGoJo5YwagmjljBqCaOWMGoJo5YwagmjljBqCaOWMGoJo5YwagmjljBqiaCWCGqJoJYIaomglghqiaCWCGqJoJYIaomglghqiaCWCGqJoJYIaomglghqiaCWCGqJoJYIaomglghqiaCWCGqJoJYIaomglghqiaCWCGqJoJYIaomglghqiaCWCGqJoJYIaomglghqiaCWCGqJoJYIaomglghqiaCWCGqJoJYIaomglghqiaCWCGqJoJYIaomglghqiaCWCGqJoJYIaomglghqiaCWCGqJoJYIaomglghqiaCWCGqJoJYIaomglnirXx2dL9Xn7wvsie0CErAAK5CBAlQgbA22BluHrcPWYeuwddg6bB22WUuqYwO6bTxGeQthIAELsAIZKEC3saMBG9Bt4+nA2w0DCei26liBDPTz5sFIgQZswJ44a8lEAhZgBTLQx7bNsQF9L8YF402IgQQswApkoAD9mDVHAzag28bNtM/zF0hAt/mW+XPLQgb6yLQH86qx0IANmOP2s2FxIQELsAIZOPZitGtVb00M7In+hDLataq3JgYW4NiL4leUP6EsHMes+EXgTygLDeg2P2/+hDLRn1AWErAAK5CBbvNr0hRowAbsiV4fFkYTYvWGRW+lrKthcaICDdiAPbFfQAJGu2H15sZABgpQVw9n1dlMPLEBe6DNZuKJBCzACmRgnnlvYwzMM+9z/c1z7JP9BRZgnnmf7y8wz7zP+BdowDzzPunfwnIBCViAFcjAPPPegRlowAbMM+8dmIF55r3Xcp752Wt5TVSgARswz/zstVxIwDzzs9dyIQMFmGfeey0DGxBnXnDmBWdecOYFZ15w5mfO+5bNnJ/YE2fOT/Rz4X9t5vzECmSgrKb16r2WgQZswJ7on9ssJGABVqCf4+ZowAbsiTO7JxKwACuQgQKErcHWYGuwddg6bP7rX33T/dd/IQMFqEADDlv1xPFff0dvsAwkYAFWIAMFqEADNqDbRl54g2UgAd2mjm7rjgwUoAIN2IA90SvBQgIO22hrrd52GThso/WzettloAINOGzsm+6VYKJXgoUELMAKZKAA3SaOBnSbHx2/J5jo9wQLCViArjBHASrQgA04FN7e4L2WgQQswApk4LD5C3HvtQw0YAP2RC8VCwlYgBXIQNj89sCbHrzXMrAB3ebXpN8eLCSg2/yo++2BNz14r2X1W0DvtQxUoAEbsCf6oMOkmsRJkqRJFuQZ7LdY3uwY2ANns6M4UVJJqkmcJEkecaSFty5Wb8zw1sXq/97TcRIn+dXkpEmW1JJ6kOfhJJeQYwEOi/dueMdioABHUH9w8S7E6nfp3oUY6GXDyQP4hnpmLVSgARuwxyHhPJych5PzcHIeTs7D6Yk0D6KnzDyInjL+eOndhYG+q+bIQN9SP5sjZbwaeHPhopbUg0a6LKIkj+gb4glgviEjATy3vVVw0rj8F42/7Zs2Lv5FNYmTJEmTXOKn0K/7heO8+wtDbxEMJODYTH8N421/1Xzj/cdw4dhOP7T+WzgPjP8WLizACvSw868JUIGWB9wzaWFfyN7158HYu/4CC7ACw8be9ReoQEPcBoSNYCPYCDaCzbNvocxLnb3pzy9f9qa/wAbsiZ6CE/13ynwTPJkWFqC/RHTiJEnSJEtqST3I82gSJZWkdHA6OB2cDk6H/0bZxJ7oCbdw7Mx4dczeghc4DqL5kfOEWyhABRqwAXui/0aN98XsLXiBBThs4+00ewteoACHrfl58BRd2IB+IzhoPsE6UVJJqkmc5BF1oGde89Ppmdd8+/2WdWEFMnBs6XiHzd58F2jABuyJnqaThqz7kfcsXViBQ9b9+vUsXahAl/mx8Cxd6LKxa96nF0jAUb0up5rESZKkSRbkmTieaNi77up4gc7edVfHC3T2rrtABRpw1Njxhp29627hSLpAAhbg2NTqxEmSNDa1OFlSS+pBI6EXUZJLJlYgAy2RfTNdyQQcEXwrR64u4iQ/oOKoQAP6EfFjyj1RXOWHVwjoG+sHUtzlZ0Vc5raRrjyGEtl76gIN2IA90X8jFxKwAN3m26tu80tJ3ebbq27zjfQfT/KN9F/PhQQswApkoAD95PlutgtIwAKsQAYK0IP5ger+1/ys9gpkoAAf+yZ+qkfKLWpJfZF3uC2ipJJUkzhJkjTJklpSOigdlA5KB6WD0kHpoHRQOigdlI6SjpKOko6RbOMxgr1RbVFL6kEj2RZRUkmqSZwkSemo6ajpqOngdHA6OB2cDk4Hp4PTwengdHA6JB2SDkmHJ4b/7nqDGI8bXfbZxdjrvM8jxtX/23HrNxrm2Vu6JvlFPekRSf2vjIt3kQSNHw72Hy/vxQosQK+Q7Dj21mOOi3iRJllSS+qLvDdrESWVpJrESZLkuzoOgHda8RioYF9LdDyRsPdcLeIkSdIkS2pJPWhcnYsoKR0lHSUdJR0lHSUdJR0lHePaHc9L7M1Wi0rScPhujmt3kST5URhF0XunuPqx8R+JMazC3jsVyEABKtCADdgT/XdiIQFhE9gENv+d8N/0Op+jJhqwAXvifJaaSMACrEAGwqawKWwKmy8I7ifBFwSfREklqSZxkkccueb9Uey/8N4f5beM3h61qCY9/rbfknpv1CJNsqSW1IM8/Xii76JH7Ao0oO+iZ0Tvgd7qFEjAAqxABgpQgQZsQNjIbc2RgAU4bGNwir3VKXDYvNx5qxOPMSL2Vice8z+xtzoF9kS/qRMX+03dwmEbgz3srU7spcNbnXiMDPCczeua/60CDdiAPXHOzjvRn8p906s/gvum+32cp7e3LwX2RL+78wz39qXAAqxABnrccY69JYnVt8GT0R9fvSUpsAIZKEAFGrABe6Inoz/qektSYAG6zQ+qJ+NCASpw2MyP2RwGmdgT58yXLp4zX04swPHKwO8L5wxdCwWoQAM24Dibfg/JOfMlc858yd6SxOZn0+/1FjJQgC3RfzDNL1rP2IX+DOvUkvoi7xDyM+kNQos4SZI0yZJaUg8aqbeIknxjxLECGTjOjw81eDNQYAP6+RnHxpuBAgk4dmNSTeIkSdIkS2pJPch/GCdRUjpqOmo6ajpqOmo6ajpqOjgdnA5OB6eD08Hp4HRwOvyH00c+vOVnoefqwnG8fBDEW34CK3CcktEpz97yEzjOjg8ieMtPYAP2RM/VhW7z0+e5utBtvr2eq823zHPVRw685SfQgMPm4wXe8rPQH7sWjp/OSSWpJnGSJGmSRxzJ4g087MMO3sDDo/eevYEnUIAK9C313fZ8XNgT/bZ2IQHHpnqAcVc7T5I/mvl4g7fvyOX777e1C8d9rT+ne/uOXDNAD/T2HfFfCG/fEX+k9vadQJkrm7PG+lw8Z/pywZzpa2EFjhthfyT31ptABRqwAXuiP24t9CeM4liAFSixYbEcF2ssx8Vzec0ZqAf5clyTPLg4FmAF+lOSR5qPYhP9OckPy3wYm9iA/iM8rhjNBTBYcwEM1lwAgzUXwGDNBTBYcwEM1lwAgzUXwGDNBTBYGTaBTWAT2AQ2gU1gE9gENoFNYFPYFDaFTf1I+pWkDBSgH0k/F2rABhwXhQ9VeFdOIAELcNh8LMO7csSHKubkYvNyn5PWTzTgsI2mEPaunIXtAhKwACuQgQJUoAFha7B12Oak9RMLsAIZKEAFGrABe+Ds1VlIwAL0fWNHBgpQgQZswJ7o4zMLCViAbhNHBgqwJXo5GC832btyZDQ4sHflBDJQgL693dGADdgTfZRmIQELsAIZKEDYKmwVtgobw8aw+YiNj5Z4r06gj2CRowAV6Gd+RmjAnjjrw0QCFqDHLY4+DubXg/hAmJ8svYAELEDfXnVkoAAVaEC3+TZ4zk/0nF9IwAKswGHzJ2afAS1QgQZswJ7oOb+QgAVYgbB5zvsztvfqBBrQbX4kPef9+dh7dQLd5hd4L0C3+dHx8auFAlSgARuwB3qvTiABC7ACGShABRqwAWEj2Ag2go1gI9gINoKNYCPYCLYCW4GtwFZgK7AV2ApsBbYCW4GtwlZhq7BV2CpsXh/Ge3P2Xp1AAzbgyFgvjm1OuD+RgAVYgQwUoAIt0cdwfYjDW3FkzCnC3ooTOLbXRzu8FSfQgA3YE70+LCTgiOvjJd5esw6JYo895yd6zi8k4Di+Pszi7TWBDBQgzqbBZjibhrPZcDYbzmbD2Zw579swc34izmbD2fScn9vgOb+wJ3bYOmwdNuR8Q8435HxDzreOa6fjSPY8kv26gBTb4P09gRWYto6c78j5jpzvyPmOnO/I+Y6c7zPnfRuoAhkoQAX6kayODehHcly/3hcUSMAC9H3zYJ7zCwWoQAM2YE/0nF/otuZYgHmBe+uQ+MCdtw4FGrAB89Lw3qFAnCzGyWKcLGagAHGyGCeLcbIYJ0twsgQnSwqwAnFpePr7OKI3FgX2RE9/H1303iJR3zK/PVhYgQwUoAIN2IA90YuCD1V631EgAwXocf3S8KKwsAF7ohcFv/Xx3qPAAqxABgpQgZY4b/PFkYAF6Hvhh9rTf6HvhV9nnv4LDeh74VeUp/9A8ZakwGEbo5biLUmBFchAASrQgA3YEz39F8I2En0MIIj3Hi3SpPEuoTm1pB7kKT5eY4hPNhZYgL797MhAAY4RAXKypJbUg3xEYBIllaSaxEmSlI6ajpqOmg5OB6eD08Hp4HRwOjgdnA5OB6dD0iHp8Jweg6fi/UyBDPTjZY4K9PPt58EzfWFP9ExvfpI90xe6za85z/SFDPR3o8VRgf4G1rfXM31hT/SbguYn1W8KFvprWL+UPP8X+otY3wvP/4UKHAdxBmhJPWgk/yJKKkke0Y+A/8Q33yv/ie9+BDzHFxKwAMeWdt9tz/GFAlSgAYet+xnzHHf0hqZAAhZgBbpNHQWoQAM2YE/0HF9IwAKsQNj8J36Mx4m3QAUa0G3dcQx6j3FE8RaowDHsPcaUxFugAr0/oDgyUIAKNGAD9kQfx19IwAKErcJWYauwVdgqbBU2ho1hY9gYNoaNYWPYGDaGjWET2AQ2gU1gE9gENoFNYBPYBDaFTd1WHQuwAhno78XYUYEGbMCeON/CTSRgAVag78VE317Pi3YBfXv9om0FWIEMFKACLbF7XL/AO45vxx53ASrQgH58m2MP9KaqQALm2fS+qkAGClCBBmzAPJveXjU3x/urAguwAhnotu6owGEbLXribVaBPdFzfuGwkQfznF9YgQwUoAIN2IBuGxeBN2QFljhZ3oilY/xfvBMrUIAKtDwBtQFxshgni3GyZqJPrECcLCR6QaIXJHpBohckekGiFyR6QaL7rGA6XlKIzwoWaEA/UH4cPKXJt8xTeiEBC7ACGShABVqieVy/NIyABViBI27xS2P8rAcq0ID50+yNZQv9tn4hAQuwAhkoQAX2+UZOvBFtESWN93V+QP193SRO8u33q9ETf6EBH9vvd2feh+bkfWiLxqEawzjijWiBFcjzHaF4K9oiTbKkltSDRr4voqSSVJPSQemgdFA6KB2UjpKOko6SjpKOko6SjpKOkg7P7uLHxrN7omf3QlqvSsWb1gL9iKkjAwXo7yyLowH9nSU59kR/fl/o71I9gj+/L3SbOTJQgOO5yA0jzxe1pB40knwRJXlE3ytP5uLHxZN5vDsQb1lb6Mm8kIDeMOjBPJkXMlCACvSuwerYgD1xpLjfBnrP2qKSVJM4SZI0yZJaUg9q6WjpaOlo6WjpaOlo6WjpaOlo6ejp6Ono6fAf+OrJ5z/wCwWoQAM2YA/0FrhAP0HmWIAV6DZxFKAC3dYdG7Anzm7Uif5VkJMljb80Xl6Id7It9N/phQQswAocm8i+tf47vVCBBnRbc+yJs/l0ott8a2f76cQK9AbUy1GACjTgsI1RO/GuNxXfXv9xFj/8nrMLGShAj+sHyn+cxffCf5zFN8d/nNVt/uO8kIAF6H1VvjmezwsFqEDvrfLt9dRW3xxPbfXz7qmtvjme2j4e4w1wgQwUoAIN2IDDZr4N/uu9EBeR/2QvZKAAFYiL01zhO+T35hP93nzh2CH/dfWut8AKZKAAFWjABuyJfse+ELYOm6e5/4b7RFyBAlSgARuwB/pEXIEELMAKZKAAFWjABnTbuB68tU59bMdb6wIZKECP2xwN2IA90SuB/9x4l11gAVYgAwWoQAO2RM95m1iAFchAb3y7HBVowAbsq4VLvMMukIAFWIEMFKACvXFv5IX31AUSsAArkIG+veMH1vvktHlcT2kf+fI+ucAK9Ah+uj2lF/px8OvBU3phA/r2+pn3lF5IwAKsQAYK0G1+aXh2L2zAnujZvZCA0ZEq3kO3joPn8UIcHc9jvyH3HrqFnscLCViAYy98OM676AIFqMBh8zE476IL7IHeRac+OuhddIEF6DZxZKAA3UaOblNHt5mj28bR8UmwAgnocbujABVowHFH7uNq3l03Ly6dfbETK5CBCuyrwVu8mS6QgGW1fYvO1vOJDBSgAg3YgD2RL+B4SvD7be+bCxSgAseTgt+8e99cYE8caRpIqz9edLapT6xABgpQgQZswJ44vw7xS2N+HTLR98KPrwpQgQb0vZh/rSf65yELCViAFeifTvjJMgEq0IAN2BPn9yQTCViAFeh7MdGADdgT/XHaH5m8Fy6wACvQ98LP2/zcZKICDdiAPdCuC0hAPxfmKEAFGrABeyKt76XEm94WlaSaxEmS5DeVTpbUknqQ//ROoiTf8ubo29gdG7Aneu5W/28rAQuwAhkoQAUasAF7IsPGsDFsDBvDxrAxbAyb564PGXpPW2ABVqB3d5OjABVowAbsiXoBCeg2v3S0AhkoQLdVRwM2YE+cGe0na2b0xAKsQAYKUIG4HgzXQ/O98OuuFWAF+l74xdV8L9RRgQZsQN8LzwXP6IUELMBh85E773Sz4gdqZHSgAg3YgD3QO90CCViAFchAt4mjAg3YgD3Rh8sWErAAK9BtzXHYfODFO90CDdiAPdEHzhYSsAArkIGw+fCZj8x4p1tgA/bEegEJWIAVyEC3qaMCDdiAPZEvIAEL0G3dkYECVKABG7AnetVY6CPPTiWpJnGSJGmSjwL7kfUawP5PvQYs9Erm2z8/gZ6oQAM2YE/0T1cWErAAxxHw3y3vfDMfdfHOt8AG7IntAhKwAH0v2JGBAlSg2/wq9xqwsCfOQfKJBCzACnSb75vXAB8a8s63QAM2YA/0zrdAinPhnW+BFchAASrQgA3YE/2rNb979B63QAZ63O6owBFXZoQG7Ime7eIRPNsXFuDYCx+I8h63QAEq0IBu86Pj2T7Rs30hAQuwAhkoQI876lvPyUDEm9XMB8O8WS1QgWPLfATMm9UCx5Z5knmzWiAB/RWLHwf/hV/IQAEq0IAN6DbfXv+FX0jAAqxABkrusf+W+62cN6st9N/yhQT0uOJYgQwUoK4JZmROn7WwAXuiT+KzkIAFWIF+dNTRgA3YEz2PfVjRW9gCC7ACeU0kJHNWrYUKNGAD9oU6Z9VaSEA/Os1RgAr0veiODdgT/Vd7jGeqN6sFjr0Y45nq82cFMnDYxsiEehNboAEbsCd6Hi8koNuqYwUyUIAKNGBb057pnI1r7tucjUscK5CBAlSgARuwrznH1BvYAglYgG7zI+kTSC4UoAIN2IA9cU7ONZGAI674bnp2z5337F5owAbsiZ7dCwno58L32LN7IQMF6C9JfHN8Gq6FDdgTfR6uhQQswApkoO+FOjZgT/TfbvOj7r/dCwvQ98KTwX+7F/pe+OHznF9owGFrvg2e8xM95xcSsAArkIHD1jxx/Ld7oQEbsAd6S1ugHzN2zDPvzWvzvHnzWqABGzDPPNEFJGCeeaIKZKAA88zP+bsWNmCeeSoXkIAFWIF55r2z7LFNvvdVNtaNDSz+ztj/qhiwAXuiXkACloEebFz6gQwUoAIN2IA90S4gAWEztxVHBgrQbdXRgA3oNj81zW3q6DZzdJtfND69yUIGClCBBhy2OhU9cSREIAELsAIZKEAFGhC2njbv9wokYAFWIAMFqEADNiBsBBt5XHNkoCQWj9scDehxu2NPrBeQgAVYgQwUoAINOGzjCUy97aqNW3L1tqtAAhZgBTJQgAo0YAPCJrAJbAKbwCawCWwCm8AmsAlsCpvCprApbAqbwqawecaOh0f1tqs2Hv3U267WRWC4ogxXlOfmaFFQb7sKbMCe6Lm5kIBum1iBvr2umJMPTVSgb+9IdO+xauwXoufbQt9e3wvPt3lpeL4tNCCuHc+30WKg3mgVSMC8UutVgQxMm/daBRqwAXvi+KFoMpGAJdFTZDwQqjcsBTJwiMcDoXrDUqABh3j0Nqg3LC30FBkPhOoNS4EF6DZxZKAAFWjABuyJniKjUUJn19LCAqxABgpQ4xxXyYu2Kk6W4mTNZJhYgQwUoAKzrHgzU2AWMW9mCqTIlorE8X6mQAYKUIEGbMCe6Je9+Jb5T9LCBuyJ/pO0kIAFWIEMFCBsHbYOW0+bdygFErAAK5CBbjNHBRqwAXui/yQtJGABViADYSPYCDaCjWArsBXYCmwFtgJbga3AVmArsBXYKmwVtgpbha3CVmGrsFXYKmwVNoaNYWPYGDaGjWFj2Bg2ho1hE9gENoFNYBPYBDaBTWAT2AQ2hU1hU9gUNoVNYVPYFDaFTWEz2Aw2g81gM9gMNoPNYDPYDLYGW4OtwdZga7A12BpsDbYGW4Otw9Zh67B12DpsHbYOW4etw9bTJtcFJGABViADBahAAzYgbKglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKoJYJaIqglgloiqCWCWiKzlnTHYfPBD2/FChSgAg3YgD3QW7ECCViAFei26ihABbqNHBuwJ3otGUPz6q1YgQXotubotu4oQAUasAF7oteShQQswAqErcBWYCuwFdgKbBW2CluFrcJWYauwVdgqbBW2ChvDxrAxbAwbw8awMWwMG8PGsAlsApvAJrAJbAKbwCawCWwCm8KmsClsCpvCprApbAqbwqawGWwGm8FmsBlsBpvBZrAZbAZbg63B1mBrsDXYGmwNtgZbg63B1mHrsHXYOmwdtg5bh63D1mHrabPrAhKwACuQgQJUoAEbEDaCjWAj2Ag21BJDLTHUEkMtMdQSQy0x1BJDLTHUEkMtMdQSQy0x1BJDLTHUEkMtMdQSQy0x1BJDLTHUEkMtMdQSQy0x1BJDLTHUEkMtMdQSQy0x1BJDLTHUEkMtMdQSQy0x1BJDLTHUEkMtMdQSQy0x1BJDLTHUEkMtMdQSQy0x1BJDLTHUEkMtMdQSQy0x1BJDLTHUEkMtMdQSQy0x1BJDLTHUEkMtMdQSQy0x1BJDLTHUEkMtMdQSQy0x1BJDLTHUEkMtMdQSQy0x1BJDLTHUEkMtMdQSQy0x1BJDLWmoJQ21pKGWNNSShlrSUEsaaklDLWmoJQ21pKGWNNSShlrSUEsaaon3pDV/0e09aYEGbMBh8zdo3pMWSMACrEAGClCBBnSbOPZEryULCViAFchAASrQgLB5LfHXqN6TFkjAAqxABgrQz9tEAzZgT5y1ZCIBC7ACGShA2AQ2gU1gU9gUNoVNYVPYFDaFTWFT2BQ2g81gM9gMNoPNYDPYDDaDzWBrsDXYGmwNtgZbg63B1mBrsDXYOmwdtg5bh63D1mHrsHXYOmw9bf26gAQswApkoAAVaMAGhI1gI9gINoKNYCPYCDaCjWAj2ApsBbYCW4GtwFZgK7AV2ApsBbYKW4WtwlZhq7BV2CpsFbYKW4WNYWPYGDaGjWFj2FBLOmpJRy3pqCUdtaSjlnTUko5a0lFLOmpJRy3pqCUdtaSjlnTUko5a0lFLOmpJRy3pqCUdtcSnfWveAOKddIE90WvJQgIWYAUyUIAKhM1gM9gabA22BluDrcHWYGuwNdgabA22DluHrcPWYeuwddg6bB22DlsPm3l/XSABC7ACGShABRqwAWEj2Ag2go1gI9gINoKNYCPYCLYCW4GtwFZgK7AV2ApsBbYCW4GtwlZhq7BV2CpsFbYKW4WtwlZhY9gYNoaNYWPYGDaGjWFj2Bg2gU1gE9gENoFNYBPYBDaBTWBT2BQ2hU1hU9gUNoVNYVPYFDaDzWAz2Aw2g81gM9gMNoPNYGuwNdgabA22BluDrcHWYGuwNdg6bB22DluHrcPWYeuwddg6bKglhFpCqCWEWkKoJYRaQqglhFpCqCWEWkKoJYRaQqglhFpCqCWEWkKoJYRaQqglhFpCqCWEWkKoJYRaQrOWqCMDBeg2czRgA7qtD5y1ZCIBh218cWw+FV0bvdvmDYOBAlSgARuwJ3otWUjAAoSNYWPYfHrKy4+Dz0+5sAF7ok9RuZCABViBDBQgbAKbwCawKWwKm8KmsClsCpvCprApbAqbwWawGWwGm8FmsBlsBptPeTM+LTBveVzok94sJGABViADBahAA8LW0jabEMdbDZvthqMr12a74UIBKtCADdgT5/PFRAIWIGwEG8FGsBFsBBvBVmArsBXYCmwFtgJbga3AVmArsFXYKmwVtgpbha3CVmGrsFXYKmwMG8PGsDFsDBvDxrAxbAwbwyawCWwCm8AmsAlsApvAJrAJbAqbwqawKWwKm8KmsClsCpvCZrAZbAabwWawGWwGm8FmsBlsDbYGW4OtwdZga7A12BpsDbYGW4etw9Zh67B12DpsHbYOW4ete9UY6K2UgQQswApkoAAV6DXKHBuwJ5LbxJGABahRxOosFRMbsCeWC0hAD9YdK5CBY9PHx+ZW5+zTEw04Nn18NW51TkDtOGegnkjAAqxABgpQgQaErcI256Kujm5TxwKsQAYKUIEGbMCeOGelngib/+STnzf/yV/IQAEq0IAN2BP9J38hAWHzn/zi58J/8hcKUIEGbMCe6D/5Cwk4bMUvWv/JX8iJ/oNd/IryH+yFFRjD8lbzBYfVfMFhNV9wWM0XHFbzBYfVfMFhNV9wWM0XHFbzBYfVDluHrcPWYeuw5QsO43zBYZwvOIzzBYdxvuAwzhccxvmCwzhfcBjnCw7jfMFhfMFGsBFsBBvFKwebDaELBRgvAWw2hC5sQD/H40r1htBAAhZgBTJQgAp0mzk2YE/0SlAmErAAK5CBAlSgAcf1O+YAMG8IXeiVYCEBC7ACGShABeZj1Ozs9Cef2dm5UID5PDQ7Oxc2oG+kB/OUXkhAf/ry0z1HBCYy0DeyOCrQgA3YEz2lFxKwAP2Q+FXiKb1QgAo0YAP2RL+LX0hAt/lx8Pv18WGNeQ9noCX6JJTsWzZSOpCBI8LoKDfvyww0YAP2QO/LDCRgAVYgAwXoNnU0YAP2RP/tXkjAAqxABrqtOSrQgA04bOOLCPO+zEACDpv4pntKL2SgABVowAbsiZ7SCwkIm6e0+A55Si8UoAIN2IA90VN6IQE9wsgL75/so4PNvH8ysALHNvj9jvdPBipwbIN6XP8RXtgTPWMXErAAK5CBAlQgbJ6xXuK9f3LhnGJ2IgELsAIZKEAFDpv5cfCMXdgTPWMXDpv/Xnj/ZGAFDpv5pnseL1SgARuwJ/q0swsJWIAVCJvnvPkOec4vNGAD9kDvnwwkYAFW4Ijr1d47JQMbsCd6di8k4Ig75vEz75QMHHsx5pkz75QMdBs7GtBt4tgTPbv9Z8Y7JQPdZo4V6LbmKEC3+W56di8ctjEpoK3VZB3ncrK+Q57dC4fNR+u8UzJw2LrvkGf3wmHrvkOe3Qvd5jvk2T3Rs7v7Dnl2L3Sb75D/YC90m++Q/2AvzLHB2Sm5sAFzbHB2Si4koNv8kHjVWMhA8cWAfZfngrKLbeO2cQfPRWUX08Zl47oxb7x5dfPqjO8H22YcP8Q24/iBNd5YNtaNbeNt+23b/rZtf9u2v23b37btb9v2t23727b9bTtubfO2zTsXi537ONeFnfvYt+3v2/bPpWEX9+S1OOxibP9aHnZx3Zg3lo11Y9u4bYzt9wbI5M1Lm5ck99EbG9c+emdjbHPZtr/QxmXjuvG2/WXb/rJtf9m2v2zbX7btr9v2123767b9dTtudfPWzVsb9nGuGD33kbft5237mTeWjXVj23jGV+cOxsC8YWDeMDBvGJi3ldPmPGOMwmBrQWjf9rUi9OSysW87+T7N3F0sG+vGtnHbuIPt2pg2LhtvXtu8tnlnrpOfh5nri9vGHTxzfTFtXDauG/PGsvHmbZu3z/h+3uYK0D52YnMJ6MWysW5sG7eNe3Kbub6YNi4bT2935o1lY93YNm4bd/DM9cW0cdl485J7fWylzRqwWDe2jdvGHTxrw2LauGxcN968szaMiSeszdqw2DZuG3fwrA2LaeOycd14es1ZNp7e5jy9fnxqvrLx5sWFfAEJWIAVyEABKtCAsDFsc2lpfzRvc23pxWXjujFvLBvrxrZx27iDZ83xJ/M2a87isnHdmDcW8KwV1a/5WSsW88aysW5sG8/t9PM1a8XkmeP+yN5mji9uG/t/70/tbeb+YtrYt5M95qwJi3lj305/6m2zJiy2jdvGPbnPmrCYNi4b1415Y9lYN7aNp1edO3jWhMW0cdm4bswby8a6sW28eWnzzpowZuSzPmvC4rJx3Zg3lo11Y9u4bdzBdfPWzVs3b928dfPWzVs3b928dfPWzcublzcvb17evLx5efPy5uXNy5uXN++sD2NKC+uzPiwuG9eNeWPZWDe2jdvGHTzrg4+z9FkffECkz/qwuG7MG8vGurFt3Dbu4HlPsnjzzjrjIzF91pnFvLFsrBvbxm3jDp73JIujv9J69jNbz35m69nPbH3WHh8A6rP2LKaNy8Z1Y95YNtaNbeO2cXrbdV0b08Zl47oxbywb68a2cdt4887aMz4Lbd6Z6G9pmncmBlbglBZn2Vg3to3bxh08C89i2rhsXDfevLPwjMG4ds3Cs9g2bht38Cw8i2njsnHdeHq7s2ysG7vX/ADOwrO4g2fhWUwbl43rxryxbKwbb95ZeMbMiO2ahWfyLDyLaeOycd2YN5aNdePp9ethFpjFtPGMr8514xnfnGVj3XjGb85t4w6eBWYxbVw2rhvzxrKxbrx5bfPa5m2bt23etnnb5m2bt23etnnb5m2bt23evnlnUTK/9mZRWlw35o1lY93Y6984LTTrzZi5sNGsN4vrxh5yDF42mvVmsW5sG7eNO3jWm8W0cdm4brx5Z2kZQ6WNZmkZA6SNZmmZPEvLYtq4bFw35o3nGEJz1o1t47ZxB68xkMm0cdk4x3DanNXwGkO5bc5qGNw27uBZQsYgb6NZQhaXjevGvLFsrBvP/Zrx28YdPEvIYtq4bFw35o1l44Z9l22/ZglZTBuXjbf90m2/dNsv3fZrlpDFbeMOtm2/bNsv2/bLtv2ybb9s2681Rjp5O562Hc81Fur73rb9mqViMW8sG2/71bb9att+tW2/+nad9O066dt10rf96tt+9W2/+rZffduvvu1Xx3VSrmtj2phz38uF/SqXbmwbt42xX4WujWnjsnHdmDeWjbFfhWzjtvG2X2Xbr7LtVykb141542gKaCW/nGglv5xoZRaN8TamlVk0FpeN68a8sWysG9vGbeMO5s3Lm5c3L29e3ry8eXnz8ublzcubdxaQ7vs+C8jiujFvLBvrxu4a75VamYVlcQfPwrKYNi4b1415Y9lYN968s7B0v7BnYZk8C8vi6fULbxaWxdPbnHnj6e3OuvHw0li3qnknZXIH+71JMG1cNq4b88aysW68edvmbZu3b96+efvm7Zu3b96+efvm7Zu3b94Or/dXJtPGZeO6MW8sG+vGtnHbePPS5qXNS5uXNi9tXtq8tHlp89Lmpc1bNm/ZvGXzluklZ95YNtaNp7c6t407uF4b08Zl47oxbywb68abt27eunl58/Lm5c3Lm5c3L29envFHQfYezAeLc9l4xlFn3lg21o1t47ZxB+uMac7buVbD8de2cQfbtfHc5uZcNq4b88bbNWabd6shdashdashdashdashddUQ3562XWNtu8bado2tGuLbs2rI5Lbx5t1qSN1qSN1qSN1qSN1qSN1qSO3btd2349y349xxnHnVkOZMG5eN4eWthvBWQ3irIbzVEN5qCG81hAnnl1cNmVw2rhvj/PKqIZN148271RDeaghvNYS3GsJbDeGy7W/Z9nerIbzVEC62cdt4O86rhnRn2ti95PFnDVnMG8vG7h0vUxvPGrK4bdzBs4Yspo3LxnXj6WVn2dgyl3nWk/FisvmEn8FybUwbb9eS1I23cyrbOZXtnIpt3Dbezqlu51S3c6rbOdXtnOp2TnW7hrcaxbpdS7MWjReijWctWlw2nsfQj8+sReTbOWvRYt3YNm4bd/CsRYtp45Is81odg91N5rW6WDZ27+hybDKv1cVt4w6e1+pi2rhsXDfmjWXjzVs377z2xqB8k3mNjSmnm8xrbP3zuW3iPLdtHGeZ19hi2rhsXDfmjWXjuW3mbBu3jafXj/O8xsbAepN5jfmAscxrzAeSZV5jc1/mNbZ428f5G1c9/ryuFtPGZeO6MW8sG+vGtnHbeHp9X+Z1VX1f5nW1uGxcN3Yv+/7O37jFurFt3Dbu4Pkbt5g2njH9GM7fqfGys+n8bRrdxE3nb9OYJr7p/G1aXDfmjQ08f2vGDPJN52/N4hlHnec2jGOl8zdivLBsOn8jFpeNp7c788aysSL+zLv1z9vGHTzzbjHhOMy8W1w35o23/Z2/BXMf52/BZN6Ow8yR4n935kjx4zxzZLFubBu3jT2+vxuZTXpUPP7MhcW8sWysG8/4fqzmPeHiDp75spg2LhvXjafXz+nMl8W6sW3cNu7gmS+LaePp8uth5shi2Vg3to3bxh08c2QxbVw23rx98848Kn79zPvAxbZx27gnz8a/YMrzMhv/guvGOKezeY/GVyDN5j3baM5oNu/ZFsvGuvGsV9W5bdzBMx8X08Zl47oxbzy9xVk3to3bxh0883ExbVyxvzMHx6IWzWYOLm7Yx5mDk2cOLqaN57748Zz3Y4t547kv6qwb2xZn8/Lmlc0rm3f+bi7ezp1s5062cyfbuZPNK5vLl73zdxRzCVt/tTCXsPURyLmE7cIKZKAAFWjABuyJvjDWQth8YazmR8oXxlrIQAEq0IAN2BPnwlgTCQhbh63DNhfG8otkLow10YAN2APnwrYLCViAFchAASrQ444iNpelHX3vbS5Lu1CBBmzAnugL3C0kYAFWoCu6owIN2IA90VenXEjAAqxABg7F6NNvc6lZHzqdS80uJOAI5uOac6nZhQwUoAIN2IA90ZevXEhAKPwDOPJt8A/gFo4hcvL/wD9/X0jAAhwfwPnj25yqb6EAFWjABuyJ/vn7QgIWIGwGm8FmsBlsBpt/6O6PlXP6PX9KnHPu+cPUnHPPn6XmnHsLe6J/3rqQgAVYgVD4560LFWjABuyBc869hQQsQI3zNqfUW9jiDM0p9SZSHt85pd7CAqxABgpQgQZswDybc0q9hbAV2ApsBbYCW4GtwOaTW/gpnNPkzePgc1f4KZxz4/kJmHPjLWzAPJtzbryFBCxAKJiBAlSgARsQZ1NwNn25WP+hmsvF+g/VXC62zf/AgA2YvzhzudiFBCzACmSgAGHT/MWZi8guzF+cuYjsQgIWYAUyUIAKhM1gM9ha/uL0RsACrEAGClCBBmzA/H2bS8suhG3+bvpF0OMXp1/XBSRgAVYgAwWoQAO2RIpfnD7XiF1YgBXIQAEq0IAN2BP9d3P8UPW5BOz4SepzCdiFCoxfnO5NXoE9sV5AAhZgBTJQgAqEgrFvnm+Xb47n28IG7Imeb5dH8K/IFhZgBTJQgAo0YAP2RIVNYVPYFDaFTWHzH8vx4qTP+eMmemb1iX7M2FGACjRgA/oZkoGeQ+PbvT6Xal3IQAEq0OOaYwP2RM+hhQQswAp0m1/rfke6UIEGbMAeSJ6FCwnoiu7IQAEq0IAN2BM9CxcSsABhI9j8x3KM3fY5z9tCAzZgT/Qfy4UUR93bpgIrME8Wzct+nGOaF7g4FmAFMtA30hwVaMAG7InzAp9IwAJ0m2/ZvMAnClCBBmzAnui3gHPf/Bbw8nPsN3sLNXfIb/YWNmBP9LmOLj9Dfgu4sAD9d95PwLwxnCiIAFuDrcHWYPN7xIU4LR2npeO0dJyWDlufiv/+73/67a9//9c//cdf/v63f/mPf/z5z7/983/lP/j33/75f/zXb//2p3/8+W//8ds//+0///rXf/rt//nTX//T/6N//7c//c3//I8//ePxbx978+e//e/Hn4+A/+cvf/3zoP/+J/zt6/lffVyFY2zG//qDW80QjzT8JQg9D8Jj6M9DPF51ZACrv/z98vzv+2LM/vcfryWxAUb396IWyb14vK97uhf8PEjhHjGKXFuIUu6GeLw51tiTx6jCFkJ+CaGHEFXyWAgCNLobQCkuB60IUL9sQTscTNaI8Kg77WmIfjqhJY/DY+T0aYjToexy5YFo/PRQ0uG6LGW8F5pntNbt0ub+a4zy7vk47kiPHXm8FK/Pd+QQ4/EGKGI8EKdEf92K8fDx/Kz2zPPHS62nIQ5Xlq8S7xEeYyHYD+23I/jitDPCw/s0wt3dsOe7cTqYNu4f58G0qz8LUa5TqRhPdKtUMD0NQe8einK4Mot3y82NeNz8ZAz+tVyN1ylPN2KsIjY3otvzjTgczMcjfxyJB+KqqNzu74i/Slw7IvR0Rw4XVmlxSuv1NMA5w7rmRUH16Rlt7xe9UwyuFDG4yvMfkHod63fJFNmOxuOH/tcYh6tTWpwRvWSL0O5fGCx5YciWZV8vjHq4PB/DJD1jdFzh1b7syelXHT/J5fGSASf2B+cks4T3yvm7c3K4PsmyYDzuQLffkfrr7clIhKcxxqqGEWQsz7RF+fVCr+0DV0d/9+o470vP2xQa6zg83Rc+/b4/nh2ycDRcY6V++XUu714fx6v0Zgk8xriZLSzvZwvr20fjdGbHZJpxZsfsic/P7KmWkuXd3+NJbzuzX24g++lHusZjReHtN7Y2+yWGHGopq9V8tNmusK8xjtshQnmz0A/bcbhKteR2PG4F5WmMn5wZfXpmhN++65DTPdyYzys35PFm+fmGnJ5zSqE8JL+U1C8xDoeEKVOXabuP+9EBuXf3Iv3Nu5fTfog368y7F+L62vGs+bA0Vn9/GkPL6S4qfypF24sxLJ+XHkivxWglYzzeHT//oTz9ZPcrYpTHCOnTn2w93pbWTJbHe9PnMU7ntuSDsJS+H1O6H8PXHp4x+j468jVGf//Gwa53bxyOtaNd253Unm9fz62Vd7fjfGYtB4seI7WvXR29IMbh6rDT8Xi8G80bqcfL0frkJ/u8HflgXyu159txvKHLh59xb7rdJH+5Otpx9Kzm6Nn+PPqDGGwlb9bbdpV+jdE+8ADV6I+90gVndvRwPr3S2+HG8vFGIrfk8Uri4ifXR3v7EUqPg5p5K1Zro5eypda88ajM19MYzf7YbHnca+SvtR4yvx1vCVtcpUV/ecz/9XauH67S8VlcDsc1eSlGV419edSAQ4zyfrb0+m62nOsPfhZ6u57mfT9kXFHU47a/iPgS43h1YKT2MQh0vXalK+4HrZSnMXp7+zWC3qvGvejTrfBvWZ6/mNF8L/P4bdkOaftBkM6GO7HrEKScLnWJEtTVtrcaX54o/dPGp0HyR79vv3FV6H5V75UEFeiX+8ovo5WXvJswx6P6yM+8N2U6nRp7P/n946r3duZYTzXfIBbr/LSO+bduh8ssD8i13SR/fbVweuOE3yi+ng+o0+mF0+OxNt8tFNuHk74GOf7sXxllMD8dDTpfrL2gqnY5XKyndzalWv7a7dWo/C7I2yNT5+3gHHMs+x3E77bjmDZMDaM5h2JExwFUPCc/xvsOLyY/cL2W96/X8onrtXzkej2/xJF8iaP69LUcHx8fspWh6fX8Ze3pZdTjGQp3u9f1vBodg1SMgP7yE/67IO39l76lv/3W9xTi5mvf23tyeO9795Dypa+el8syCB1+ak4vpe62WPj3Oe++bzzvjuUI1ePB7LQ7h7uAMTVPnOBS5Hk5OwfJW8Ux88khSH//gufr7Qv+FOLmBX97Tw4X/PGQ1ivPS62vnhfN8e3W6NBEc3o3RcIY8d+bYNoP8pcpb50fmXeoq2wfuELa+1dIe/sKub0nL5ZE9i971yHV/vyQSnn/kEp9+5CeQtxtLip/9CHdrlKj135lHn8zNoTLdTovp+equ11jHyio+n5B1fcLqnygoJ6P6Ls3mEJoPntczc9vMPVQTVUtn5ibHUryaXynYxzi2n9u24+Oh+F4tBeP6b12PNLjq/5LMZbBT2PY9f6VbvT2lW5v9wXe35PDlX48orU3HFF9LYYUND7U+vyIHq7Sx+Ox5JOy9hdj5NuHY4zzFXar49PL9rtXx/tPUo3e7legVt5sWDhvxb02Ejq9l7rXvUrtVEl9ZoFZSfdbytrKq0HkxSCcz5XKhQ5B2tvn5bgvOXbxwFf3peRY3eOVSnk1SA626/48+LMgNZ87Ho8x+jzI6e3UmGM3H9cfvJ2cL+15xzB3+wS/CdLzNUal/mIQvAV9vATVF4PcbFmk02uquz2L1PvbQ8PH7UDDUG/bbdnvt+NukG3w8IdB8ofmgfpakLG6V7ZjPMaGT2GO/ddZ2Pp+I/HDi63hYtvz+GdBtCPIIQHv/4Y/fR4qp3dVlo1UZs9/tc73zPe+NDi9qrr7eHgOwrkvzJ0OQc7t0/nO3PiwN/XtO+9yGvq/d291DHHzi5zjS6qbn+SQvXtXU+jYPc05Mvw4ok9/9e6fFTuclePVka+HizV+KUbFtf74wbNXY1xvx6i4udrr2M9i5Ml9hHseo8jbT0TfxLj1RHTeF8ZFxtrej/HiNVZLxwuZ9vzcHj+ZUrSpWDll3WlDDI1hps9LYS3vn9xzjA+cXCPsyyFxT++n5qo665UuyasHNe93aztcZac3GPdecpfjV1Ndcl+6PX86O24HY2B4/+Dpd4fj9Jst+bqO5dA4eA6Czy/YTF8MIpZvDuR098Dl/feghfn996DH3dnHZcuhE7Kcvp66vzv2R+9OafGjKfv3Qr/fnf7mve55MzQvVzE53KfKaXaJ7HPlsn0J9vVwyNsf+Z23IiPsyfv7rTg1lxQkb9lG3vR+CLp8XcX1YNcavxakt23sf2su+UmQubr1Ku/XNnb2k4Oa328+bjYPB7X/oSHGumcdB1We70r/xJnpnzgz/QNn5pi5lndVWlhe+434ZUyz8qtBcpxJ9dBNdQ5ieU+kp0b3cxDNy+Txsuvw4/vNZ1T3fiNOb3g+8huhLfsH9XHtPt+d05dUj1euFY+JnfsrF5tpPp6Z9nbYEn5/JMLenySl2NuzpBxD3ByJOH0HdXck4viy6d5IxOlTqtsjEbfPyuEp8Xx13BuJOMW4OxLxTYzr7Rg3HzTb3Xei8toxvTsico5xb0Tk1P1/96H5HOPeQ/NxX/jK62N/hfc1Ri9/9HbcG5m5HePFnLs7MtP1AyMzTT9wgegffGLujarU48dQd0dVzhtya1Slnj6oujeqUk+fU90dVTlux81RlW9uYgw3ZY/Xbk9uYuqlxyBZyh68fT/4gyA3HxG/2Zmb23Eoh9qzc9iYDg/up1kH8slsmwmR648eZAq+Xb5qf/FpiLcvS/TZ01D97nOqO49UxyCfePy/fUT4E0fEPnFE7N0j8s2b7m1nrmt/Sf2zF+ZX1S3M8w6AcvEn3rsfw2jLz8Mfifh0EOAYAo9lj/fN9FoIw1b0p2fn3H5zYTLS6+Vuor7NfXTo4Tl/CpETKI01K1HQfvQpBOfv91gY8WmQevoYaky9lHc0/PRGotb3e1VrfbtX9Rji3nPq/T15fp95PqI9n0Oo9/r8aLz/RvSb7bj1QWZ9/11VredalgMhfPggs77/rup4OB5DEBeGINpLh7QQvralwx0zv3+jyp+4UeW3b1S/+RYrD8dYHfB5FTt+JHurZ/88/e2tdvvK73+aWvnthupjiJsl7Pae2GsH9F63/THEvWb7erozvPmc/E2Mm90Hb4+g8vl27l7H7nlu43u9tscYN1ttj5OD3mxOvR3j0Jt6jnGvNbXWj9whn47qzcbU+pGu7vqBxtRa/9i9uXut1g+0hR8nob15rd6OcbhWzzHuXavHj5ZvX6v1A/3P9+ebf34rdXwvdaub4zS1HmW+PG5l9rahL/NgH+f4q5hvoPLTgbZjCL7q/+8w+68hTq+lbg7FnA7GlZfGl698vxyM9oH2p3qa4e/uu+DTU9jNQ0qnh/R8Rv+lSafdj5B3Ysr6PMLpWVJyL0i2edN+N7X58XkUrSBS6vMY7fggeG+awfr22Ng388XntBwPrs+nWa69vJ2xxxD3Lq/+du9UPX8blzfIjZ6Oive3r/H+9jXePnCNt/evcT5PynfvGj/O31+yEbU8GBvydf7+UwzJY1pEnsc4z4y+vVQz2j+o+Tpn/cXvZso5xK1M4fdfIf3gcNDzad/OU/gzuiWEtxMjL8Zo78fYWzd/spRA1RzwqPZ8+n0+trI3TILbWA9BDr/2BW9uS9sG1X4WpFHPIPuXqD8Mgi0p8oEg9XoaRI6Tzgsmnbf+2slhlBEWa6+e4ZYFYJ9q+fUVJ/ilI8Idnwf2djg1d1fgaIe0OU3rd7MLjcuxql7oMtrmof39hhwe5UwsgpjsE4R+ebI9TpWGtz/1l3fiXw5qOQ3vX6jv1z6A+zVGO7+/Ldv7W3m+N8fDKpj0fXtB//vDegzStw6w5xfJeTWQ28uSHKPIhShyWAODjw/rhkbw/RS3X389j2uKbF8KcH3+23lcz6PmLAxS+6vraGQLxwPltRg95weXbvzimbEsAmTtul6M0rYZ5Jo8PyZW3r2DP0a4dQd/npG/b50TvT57vc98HO7LqWx7eX6feA6R12kv+ux56LxCgWFPmrUXM7f1fKn14MNjKh8/m7p3830Mce/m+3SjeO/m+weH47Q40jdRDFGEX40iHVHs8Fx0mpjv5qk5hrh3ak4785FTsx+O1l8+NYoo/cV6ONZ9z8dvKs/r+3Ee+XsF8RziVkU87wu+JaWu/PyIsJZ3B3iOIR6/VReac4z4tSB4vHpwkReD5Myc4/fupfrcDW+4+qk+H6dN/9Qs8CXvFUu99hvOV4Ns5/hnQYSx0Pf21v9HQR67kEXt+uX56P4SY4UwIX2pzxeAYqvvv0Rg+8A31Me9QUdoufi0N+++pdIPfD59XC4N9ejLrfMPllwzxjJ2vyxT9mVs8/j51L1fzvb2qx0+vaa698t5Phg5aiWt9sPBOPWjco7zKLd6CHLq88M6mnQ9fXA+bobk/dnjpcr14r5IrkbzGL2Sl4NsX8b2l4PkV6D64tKAd5cXPH3SevPR7Hr3RuT4be7Nlyvn73tvvlzpH1jV77gSHucYAu+fxtPvNuT9p6r+/lNVf/up6ngwBHOd7cO7Xw+GXPTuwTiHuHUw5Kp/6MFQxlwWSoeDIe8fDHn/YLz9lvy4zFnPnya+XlzI8/HmuiPG86XShK737+PkuP7Uzbuf07cwSvhmQw6bUT+xLx+4Jz2vHUd5eqnwvqbfl+fT07R+23fO2yC32Q82Q3t+xvrrukI/WMLu7q/CeR08VMIx+SqO6u/WwTsupndF2vX9puGnQbLtUff2y5+syLd/y3bti7x/WZPvmy1pWBuwv7o7VuO+sNvWiPCzIA0Htm2V5GsQOb2o+kiQX768qIfFDo9BSna2lrIfkx8FqTmxTtmnCPj9Kf7AYimnuV/vDpa1d+9Rz3ty8yb1m8Nx7y5V6gfuUs+r2N37HE7q+2v6SH17TZ9jiHvfktzfk9MCNMfOrFufwwm/Pw3FeWFA3RY5bntL+k9WF8QwygPptSB3v4g7b4lU9GDr6+scNsW7+21SjN99rnwOI5h16XHJt5fD5IEZIQ/ThB+PTO04vPvvzY8OL+eaNoX33+DfBTlOFXjrE7tjq/29rxbPMe59tSinwft7Xy2K6PG9yq2vFo/bcfeQHk9t3nI+znJ9NXMI3cxElV+95Asjc4q+nIAlXzaNkIfMOd4ObAN49dU7ivzOfytK5UdLY9u2rPXeLvb1flHfHw/Q98cD1P7QEDcnpTgf0GybeRxbfnpAm739FH5aSur2U/ip4eX2iMJpfr+ejwG2Tzb2dTaZU4xm+U7m8RqeXorRKfsz+z752tcYYvruhX7ejGx46+UwK+4xRsEja+n9sCv9D92VitJR+/PJOaXRH7oZnNOmdrlOm/F2m8o5xL3y095uU+nH0Yyt+hzmOj2tt3LvUfcY4daTbi/vP+geY9x9zu30gedc+sBzbn9/oRTpby+Ucgxx8zn39p4cnnPpA8+5p7Huu8+59InnXPrEcy594jmXPvGcS595zqXPPOfSZ55z6RPPufSJ51x6/zmXPvCcS+8/5+rxjdWt51w9XvY3n3P1E4f0E8+59JnnXPrMcy595Dn3eC9w6zH3fDdx5ynX5N3nKS0feJ7S8oHnqeMMCJofANX9iH59gX9sAqDsQOK6zyP7kxic/dD8y/flX2Icp2KwkovRtOt5M0J7e/KB9vbkA+0Dkw+0D0w+oPUDd6vH/iNt6Pht19OTcopR+r4YbXktRsvbxHqV59uhx9dUd9P21Nx6exjk2DKck7fWS8phb44TANxccOHcDYVVpOz5IvSeFc/vWG+tt6BMbz/Q6OlV1b0HmmOIew80elqE6uaXrnqab+jeegt6WoHq7noL98+KHc7K8eq4td7CMcbN9Ra+i3G9HePeegsqd1+oymvH9OZ6C9/EuLXegsr7K1B+E+PWg/d5X+6tt6DS/ujtuLXewv0YL+bczfUW9Pjd0c31Fr652G9eIOUPPjH31lvQU2/n3fUWvtmQW+stqLa3H5SPvel3H5S1vfug/N09zK31FvQT6xwcg9zsH/5mZ25ux/HWsG1zS7z4FHTrKfv8FHTrKft6dxvOX3Hcep99/r4PA7KyDcj+7CNBxZeG2uuLQVouw1n2ifx/+KXh9thQnu8OH1/j3vxc8Rjk3roE5xC31iX4JsStdQmO5wXLAY6B9xdP7i9B+NUgBUHq8/Oi/e0XqOcQt95caq9/aIibvRfnA4puYbP26lnJclysv1pB9i15OUjLW6kHvhwECxMcgxy/87/ZqyTv1vZvZi3JGL3oixOf5C1uL/b007ry9q9cefdInKf3yc8NxPZRi59M74M5dWRf9vZnUwTlwPoDX5xmqBm249Xpjlqe1Ue4V6c72p45+OXj0RDj+Xk5TiElbVtbvXwgxmvTUDEGPXkf9PxRDMyowXa4xs4x8OzT7HkMo1ODf8+bl3Zdz7+KMTp9iarZQca6Lc/89W3Yd1tiuSWH73Ps9DJKNG+kRLcBpXp/OxomwG+X2mE76nH4NQ7r40dTDkFOn/rlN+j7e/XxuvH2JdLzUZ9PM/PY6Uuj25dIsQ9cIt9syc1LpL99iZy24/Yl8s1KU/cukVr+yEtErnzTKL/OT/LlEqmn5U1KzuYvZf+p+vLbf3oh9RiRyCkXbJ/gq/1gX7LhUegqh32xD+xL+2P3BUP0D3zt105qNi1JZX0tRsF2FPtAjHa9uC/ZrCT7Uh4/2w5MuFKvl49pxzGVF2MwYuhhUs7jLOH5iW8psj8if5ldhN9ed+Ic4tbzrcn1h4a494h8PJ4V019Vez5jup0m5Ls3j85pKxiP2NzbYSvk/Qp2+krqZgU7z0Ff0DJZ5Om+nGMI1u/S58eDT1/D350M/xjk5ijfMcS9Ub5ziDujfMfFFm49pZ+Xa7jzlF7fHpOvb4/Jn5cxurtE7jdRbq6QW+0jK+Qew9y7Rs8hbl2j34S4c42el4e7uTjUMcb7S5Ddv0a+W1Lt5jWin7lG9P1rRN+/RvTta+TYZI0+K9prOv8kRL5koL2K/CQEXoeVba65ryGsHR+ecDN4vRgiWxx0e5L8yY7sU5JsEwL9JIRm0v76avAHISznAH4MQb92Uoti8lB7LUTN29HHUaHXtgJvOPcHjR+EeNwIZkfBPtEt9bsRCCvTEW23cD/YCCLFmgrtpSuLal6btC8x/pMQUtAXwfZaCEXzXuuv7Uj2VT2e017bkYrZi6u8tiOKtl2117bC8imFrL90cVLHsejlpRCWL9+M9ZUAnfFx62vH4cpHnF/WC/kaoh3XlXo7TfuFz55fOxCZo93kzSP5WoDHQ1Uuni3bTtT7AbCyh+w3a/cDZCPHI9YrAfC1hOxriP8gwJ1h5WMAxgrk8tIuoL9wfyq6HeDmAuaN3l/AvNHbC5gfQ9zrXb+/J897T483ErfWL7+OQyh3li9v5e7S44czUt5fAv3+djyPcbw+9/V+6flWvD2h2THEzWurnj8zvfNdRDsNgdz7LqKd3h51Fsx6eT1fHrud1+nO7xG69OdPpe30Aulxu487/20ZI/3BMaVqeCKk58f0NKni/nHW8wjnj81vrp9+PjM3Ry/OQW6uoH4OUvKH8YH8apB767B/c0zuLcR+vlpvrsR+P8hhKfZvgtxbi72dx5buDgp9c2jvDbjdLs5Pm/nbaZ2oW8tctM+M2LXPDNm109JZPzg7pzD3huzOIW4N2X0T4s0hO2oXVngq+/eVX7bi9Or03g/F8dE1b2Wo72telh+E6LkNV6GXQrT8lfh1VZivx0I/8OV90w98eX8ePMyB1KLtsDOn4e3Ha8aKkQ151oH6XZB8Dnxw70+DHG8Cer6OJuLD7pxzNpcy6Xu7wnXdD2Kcv73G/GoQzR4hs/0bqa9B3v/+5Lwdhu3Y12j+/XacrlbGx6+/LDNTvvxIHNeGkisXAX1wOdwZHbcFr5WrdDlsyzH9ePuKth+CfKBD73h+HndD+Wik+/JOvzs/x4aS7Cf5pap9iXBqzzPFokhbUaOvNxLH5Z2unIDvMWqrz4McDwh6SprtiyR8PSDtPAsPfit++VCSvwQ5tZVk2+M+NPX7EPyBxDnNwveDxDluy93EOQa5mzjtA93Px7NDXDHHyXU4P6e5GktuyL6A39eH+dO3SoJ3NULb0tX14h9c8+gpfzyTHIrA6Xulx5WR/UeX8vNTc5pOjxir6PK2Jf3Lj/B5shV8YHxtDVm/OyT9uNAC3uXxtd0gyZdL/rTc093Z8L7ZEsb47P5o87st6cdL/lYPdb/eHm4/nptaMmvq3qT29dz005TCgqc9ufaVuO+/ZrUc5X08wF6v3Muz5aLCjxDPb3/79YHpePr1gel4vr2Htu0e+tnzZj/Nv333RvwY5F5T5/Fe/v4ROeUdVhQsurcNfz3Bx2nw9pkFD+3+3wQpGOPUUxD+QAU4fTx575XfOcStN2bHXbn7IUan8yuBWx9i9NMLp3sfYpyvVfTgPCri82GFfvoAquApq+xzavxuZ06z8d2+Qk6fQN27Qo53I48Rs4p5V7Tqiw9qv9z72svPWLeOyTHI7eu1fOJ6Le9fr/cfKezlO/B7h7V94JO9Xj/wyV6v/P5hPTaa5zDJvmjil4eJfnqNxbhR5Gr2/PH3/ESS82vsvQD9/p5ggfR9vPj3e9I/UM74+kA5O32JcPMHj9/+OPW4K7evdOYPXOmnzvcPXOmj6yrfjuyrNXy9Qvj8nVw+ipR9ptTfjRcdtyTvq2ifIPD3W3K6VtEg+HhmfL5yY5dPXKvy/rUq71+r8olrVT5xrcoHrtXTOF7DtCX7wNfvrpDTy6tHIUVN7Yfifpqbj698+/QYIilPL/jzluCLzFr3T9W+boleb76u/WYztvHiejggWj7wG6H1A3l3enS+mXfHEPfy7rQrt/Pu/LbmZt4dJ+e7lXfnKwSzx1ehQ97ZsZc+h/C41/piykhOLVN/mX7kd1tSPvAbYZ+4Vu39a9Xev1btE9eqfeJatbev1fOQdc3BJto/If4yZN2PE78zJuzYrrGvywq0cydynBV7NUSOAMrWmfSjEFjG+pdPoV8NIS+GyGOhrx4LzWOhrx4LTPZjrx6LPcSLx2L/uX7xWGBk2F49Fi13pL16LPYQLx6LlouB/TJz0o9C5Cvm1l7cCn/HMh+QXz0We4hXtwLL/x1Kzvn11s11ms5BCmFGi9M6Tdd1/ECq4+smOUY5rXuTd/t7Ga5y/WB3bq6LdAxyd+2q85bcXLvqm1d+t+4Xrre/sfkmxJ1bjuML0Lu3HI9D39+/56DrtFTUvZuOR4zTiP/Nb5AfUU5vUm99hPxNjFtfIX+zNzc/RP4mys0Pic9vqC90mJTttd/XN9Sjs/f9m/VHlPZu9n0T41bunPfmfvIU+kTylLfnPvumCUG2V25yOMXHefro2obK5VkXwiOInN915e/WtkwB2dcgp1l7VPN2V14LYfnx+6/3qj8KkW8wytOt+Kavo+T3Ztd+p/n1iJ4+CGLJ7h/e1696I0h/FuR2q0u9rsNVdvwmgfMqI97bTH63O6d5N678/k2J7BDkdKk+LvJt4cirfSTMPr//jx66Mb/AsU/s9Kq65hOFVHnekPjYn+M3p9k6t33b/7U5iy6+9+C9f/X15b6TLn773vWb7UAv4faNxP9PjPqJKs9vv1F9xJBP3CKdVpG6e4t0jHHzFum4NzcnF/kmyu1bpGPi5Hq2wocWALrkOMt+XrDb7vSveyPHNvqchWFfEM/aD/aFt8/n23FfPtBc9YjydmvUeUvu36qJfSKJ5f3B1dtf5dTnX+U8Xiqfv7vKruK2faX49aXVsbHp3rD36db1/rnRjxRY5T/03NSay3XU2urp3Oj770YeUT7yvKUfeN7SDzxv6Ueet+wjz1tW/uALZVuLjZ930h6DMKEtmOR0tZ3WlvpMlHuf5n4T49a3ud/FuLX6z3nQ5Oa8Z98N4Ny7O/lmmO/OXDjfhLgzG8553PTmyuXfBLm3sv35ezbqmKf5ev5RHF3t9FyO70Dxw3d7diDWLM+s2xwB9LuB9VOrJlkOqj3w6SwwjyCnFfvuTTJEVz++y7ozE8w5xr2pYH6wM3bYmeNhxbLS1Hs9HJH3Z+j5bkuwqtJFdtiS0+/ErVUdHzE+8MnVN1Fuvtk6R7n7Guebbbn5HuebKHdfs9FphO7xbzPM4C2O/TBOPkIOtpfjCBYAfxSF9nqcaxuUqs+n7PjmKN98+/dNlJs/Hudsurc26Tmtf/l86Wqv1YZCuQpUoecrzxKdbjBu1gai81fZt5Z8PW/J3eP6iXuM765ayiewB9fXsxELyT1YX8/GkgsPjZjPs+j9SdIe+3salL01S9pjG493X/eWjz/dPN36lPE4gW3OJ0L7N4hVbk+f97hZzEr7eDR9KUTL92W0z3b6kxDeUrjuDy56JcTjZWzmzGME+qWt+OVt22s7Yjm7IzV6aUce5RCraPfXtqLm0PbjBRG/FIK3lZr30QH5WpZPU4h9YL7qmp/ZUrXXjgZfuSv7SjKvHtDXQtSCj47LfgfR7H4IyRG1sq1N+mqI7ffpRyFyFsJaTF4KUSuGBrfFI38Sgg2N19drx6Lmi/H6y6X1aojXTmrdnuK3qdB/dCyw6jXX104q5zw/dX9n86MQlNcFy4snVbG0u760FWT4SbT9LeUPQrTckcebAXoaYryePkQpmNa96Fb62g9+Vwt+V+W1Xck2zscjeHsthGKCvteyhFo+JlC/6MUdwb35Vd4OQa9uhSHES+n++EXHsWB7eyu+ntT/+fi/f/rXv/zjX/7693/903/85e9/+/fH3/zvEewff/nT//rrn9f//T//+bd/3f7tf/y//xb/5n/94y9//etf/u+//Ns//v6vf/7f//mPP49I49/9dq3/+R+NHw+Wj5s++Z//9Bs9/n+nR/3pxPz4/9X/fZN/evxH/u/HX9DxH+jjTmH8g/E3Hn/ZI7T/+d9jk/8/"
|
|
6721
6721
|
},
|
|
6722
6722
|
{
|
|
6723
6723
|
"name": "public_dispatch",
|
|
@@ -7286,43 +7286,43 @@
|
|
|
7286
7286
|
"path": "std/hash/mod.nr",
|
|
7287
7287
|
"source": "// Exposed only for usage in `std::meta`\npub(crate) mod poseidon2;\n\nuse crate::default::Default;\nuse crate::embedded_curve_ops::{\n EmbeddedCurvePoint, EmbeddedCurveScalar, multi_scalar_mul, multi_scalar_mul_array_return,\n};\nuse crate::meta::derive_via;\n\n#[foreign(sha256_compression)]\n// docs:start:sha256_compression\npub fn sha256_compression(input: [u32; 16], state: [u32; 8]) -> [u32; 8] {}\n// docs:end:sha256_compression\n\n#[foreign(keccakf1600)]\n// docs:start:keccakf1600\npub fn keccakf1600(input: [u64; 25]) -> [u64; 25] {}\n// docs:end:keccakf1600\n\npub mod keccak {\n #[deprecated(\"This function has been moved to std::hash::keccakf1600\")]\n pub fn keccakf1600(input: [u64; 25]) -> [u64; 25] {\n super::keccakf1600(input)\n }\n}\n\n#[foreign(blake2s)]\n// docs:start:blake2s\npub fn blake2s<let N: u32>(input: [u8; N]) -> [u8; 32]\n// docs:end:blake2s\n{}\n\n// docs:start:blake3\npub fn blake3<let N: u32>(input: [u8; N]) -> [u8; 32]\n// docs:end:blake3\n{\n if crate::runtime::is_unconstrained() {\n // Temporary measure while Barretenberg is main proving system.\n // Please open an issue if you're working on another proving system and running into problems due to this.\n crate::static_assert(\n N <= 1024,\n \"Barretenberg cannot prove blake3 hashes with inputs larger than 1024 bytes\",\n );\n }\n __blake3(input)\n}\n\n#[foreign(blake3)]\nfn __blake3<let N: u32>(input: [u8; N]) -> [u8; 32] {}\n\n// docs:start:pedersen_commitment\npub fn pedersen_commitment<let N: u32>(input: [Field; N]) -> EmbeddedCurvePoint {\n // docs:end:pedersen_commitment\n pedersen_commitment_with_separator(input, 0)\n}\n\n#[inline_always]\npub fn pedersen_commitment_with_separator<let N: u32>(\n input: [Field; N],\n separator: u32,\n) -> EmbeddedCurvePoint {\n let mut points = [EmbeddedCurveScalar { lo: 0, hi: 0 }; N];\n for i in 0..N {\n // we use the unsafe version because the multi_scalar_mul will constrain the scalars.\n points[i] = from_field_unsafe(input[i]);\n }\n let generators = derive_generators(\"DEFAULT_DOMAIN_SEPARATOR\".as_bytes(), separator);\n multi_scalar_mul(generators, points)\n}\n\n// docs:start:pedersen_hash\npub fn pedersen_hash<let N: u32>(input: [Field; N]) -> Field\n// docs:end:pedersen_hash\n{\n pedersen_hash_with_separator(input, 0)\n}\n\n#[no_predicates]\npub fn pedersen_hash_with_separator<let N: u32>(input: [Field; N], separator: u32) -> Field {\n let mut scalars: [EmbeddedCurveScalar; N + 1] = [EmbeddedCurveScalar { lo: 0, hi: 0 }; N + 1];\n let mut generators: [EmbeddedCurvePoint; N + 1] =\n [EmbeddedCurvePoint::point_at_infinity(); N + 1];\n let domain_generators: [EmbeddedCurvePoint; N] =\n derive_generators(\"DEFAULT_DOMAIN_SEPARATOR\".as_bytes(), separator);\n\n for i in 0..N {\n scalars[i] = from_field_unsafe(input[i]);\n generators[i] = domain_generators[i];\n }\n scalars[N] = EmbeddedCurveScalar { lo: N as Field, hi: 0 as Field };\n\n let length_generator: [EmbeddedCurvePoint; 1] =\n derive_generators(\"pedersen_hash_length\".as_bytes(), 0);\n generators[N] = length_generator[0];\n multi_scalar_mul_array_return(generators, scalars, true)[0].x\n}\n\n#[field(bn254)]\n#[inline_always]\npub fn derive_generators<let N: u32, let M: u32>(\n domain_separator_bytes: [u8; M],\n starting_index: u32,\n) -> [EmbeddedCurvePoint; N] {\n crate::assert_constant(domain_separator_bytes);\n // TODO(https://github.com/noir-lang/noir/issues/5672): Add back assert_constant on starting_index\n __derive_generators(domain_separator_bytes, starting_index)\n}\n\n#[builtin(derive_pedersen_generators)]\n#[field(bn254)]\nfn __derive_generators<let N: u32, let M: u32>(\n domain_separator_bytes: [u8; M],\n starting_index: u32,\n) -> [EmbeddedCurvePoint; N] {}\n\n#[field(bn254)]\n// Decompose the input 'bn254 scalar' into two 128 bits limbs.\n// It is called 'unsafe' because it does not assert the limbs are 128 bits\n// Assuming the limbs are 128 bits:\n// Assert the decomposition does not overflow the field size.\nfn from_field_unsafe(scalar: Field) -> EmbeddedCurveScalar {\n // Safety: xlo and xhi decomposition is checked below\n let (xlo, xhi) = unsafe { crate::field::bn254::decompose_hint(scalar) };\n // Check that the decomposition is correct\n assert_eq(scalar, xlo + crate::field::bn254::TWO_POW_128 * xhi);\n // Check that the decomposition does not overflow the field size\n let (a, b) = if xhi == crate::field::bn254::PHI {\n (xlo, crate::field::bn254::PLO)\n } else {\n (xhi, crate::field::bn254::PHI)\n };\n crate::field::bn254::assert_lt(a, b);\n\n EmbeddedCurveScalar { lo: xlo, hi: xhi }\n}\n\npub fn poseidon2_permutation<let N: u32>(input: [Field; N], state_len: u32) -> [Field; N] {\n assert_eq(input.len(), state_len);\n poseidon2_permutation_internal(input)\n}\n\n#[foreign(poseidon2_permutation)]\nfn poseidon2_permutation_internal<let N: u32>(input: [Field; N]) -> [Field; N] {}\n\n// Generic hashing support.\n// Partially ported and impacted by rust.\n\n// Hash trait shall be implemented per type.\n#[derive_via(derive_hash)]\npub trait Hash {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher;\n}\n\n// docs:start:derive_hash\ncomptime fn derive_hash(s: TypeDefinition) -> Quoted {\n let name = quote { $crate::hash::Hash };\n let signature = quote { fn hash<H>(_self: Self, _state: &mut H) where H: $crate::hash::Hasher };\n let for_each_field = |name| quote { _self.$name.hash(_state); };\n crate::meta::make_trait_impl(\n s,\n name,\n signature,\n for_each_field,\n quote {},\n |fields| fields,\n )\n}\n// docs:end:derive_hash\n\n// Hasher trait shall be implemented by algorithms to provide hash-agnostic means.\n// TODO: consider making the types generic here ([u8], [Field], etc.)\npub trait Hasher {\n fn finish(self) -> Field;\n\n fn write(&mut self, input: Field);\n}\n\n// BuildHasher is a factory trait, responsible for production of specific Hasher.\npub trait BuildHasher {\n type H: Hasher;\n\n fn build_hasher(self) -> H;\n}\n\npub struct BuildHasherDefault<H>;\n\nimpl<H> BuildHasher for BuildHasherDefault<H>\nwhere\n H: Hasher + Default,\n{\n type H = H;\n\n fn build_hasher(_self: Self) -> H {\n H::default()\n }\n}\n\nimpl<H> Default for BuildHasherDefault<H>\nwhere\n H: Hasher + Default,\n{\n fn default() -> Self {\n BuildHasherDefault {}\n }\n}\n\nimpl Hash for Field {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self);\n }\n}\n\nimpl Hash for u1 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for u8 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for u16 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for u32 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for u64 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for u128 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for i8 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as u8 as Field);\n }\n}\n\nimpl Hash for i16 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as u16 as Field);\n }\n}\n\nimpl Hash for i32 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as u32 as Field);\n }\n}\n\nimpl Hash for i64 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as u64 as Field);\n }\n}\n\nimpl Hash for bool {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for () {\n fn hash<H>(_self: Self, _state: &mut H)\n where\n H: Hasher,\n {}\n}\n\nimpl<T, let N: u32> Hash for [T; N]\nwhere\n T: Hash,\n{\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n for elem in self {\n elem.hash(state);\n }\n }\n}\n\nimpl<T> Hash for [T]\nwhere\n T: Hash,\n{\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n self.len().hash(state);\n for elem in self {\n elem.hash(state);\n }\n }\n}\n\nimpl<A, B> Hash for (A, B)\nwhere\n A: Hash,\n B: Hash,\n{\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n self.0.hash(state);\n self.1.hash(state);\n }\n}\n\nimpl<A, B, C> Hash for (A, B, C)\nwhere\n A: Hash,\n B: Hash,\n C: Hash,\n{\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n self.0.hash(state);\n self.1.hash(state);\n self.2.hash(state);\n }\n}\n\nimpl<A, B, C, D> Hash for (A, B, C, D)\nwhere\n A: Hash,\n B: Hash,\n C: Hash,\n D: Hash,\n{\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n self.0.hash(state);\n self.1.hash(state);\n self.2.hash(state);\n self.3.hash(state);\n }\n}\n\nimpl<A, B, C, D, E> Hash for (A, B, C, D, E)\nwhere\n A: Hash,\n B: Hash,\n C: Hash,\n D: Hash,\n E: Hash,\n{\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n self.0.hash(state);\n self.1.hash(state);\n self.2.hash(state);\n self.3.hash(state);\n self.4.hash(state);\n }\n}\n\n// Some test vectors for Pedersen hash and Pedersen Commitment.\n// They have been generated using the same functions so the tests are for now useless\n// but they will be useful when we switch to Noir implementation.\n#[test]\nfn assert_pedersen() {\n assert_eq(\n pedersen_hash_with_separator([1], 1),\n 0x1b3f4b1a83092a13d8d1a59f7acb62aba15e7002f4440f2275edb99ebbc2305f,\n );\n assert_eq(\n pedersen_commitment_with_separator([1], 1),\n EmbeddedCurvePoint {\n x: 0x054aa86a73cb8a34525e5bbed6e43ba1198e860f5f3950268f71df4591bde402,\n y: 0x209dcfbf2cfb57f9f6046f44d71ac6faf87254afc7407c04eb621a6287cac126,\n is_infinite: false,\n },\n );\n\n assert_eq(\n pedersen_hash_with_separator([1, 2], 2),\n 0x26691c129448e9ace0c66d11f0a16d9014a9e8498ee78f4d69f0083168188255,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2], 2),\n EmbeddedCurvePoint {\n x: 0x2e2b3b191e49541fe468ec6877721d445dcaffe41728df0a0eafeb15e87b0753,\n y: 0x2ff4482400ad3a6228be17a2af33e2bcdf41be04795f9782bd96efe7e24f8778,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3], 3),\n 0x0bc694b7a1f8d10d2d8987d07433f26bd616a2d351bc79a3c540d85b6206dbe4,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3], 3),\n EmbeddedCurvePoint {\n x: 0x1fee4e8cf8d2f527caa2684236b07c4b1bad7342c01b0f75e9a877a71827dc85,\n y: 0x2f9fedb9a090697ab69bf04c8bc15f7385b3e4b68c849c1536e5ae15ff138fd1,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4], 4),\n 0xdae10fb32a8408521803905981a2b300d6a35e40e798743e9322b223a5eddc,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4], 4),\n EmbeddedCurvePoint {\n x: 0x07ae3e202811e1fca39c2d81eabe6f79183978e6f12be0d3b8eda095b79bdbc9,\n y: 0x0afc6f892593db6fbba60f2da558517e279e0ae04f95758587760ba193145014,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4, 5], 5),\n 0xfc375b062c4f4f0150f7100dfb8d9b72a6d28582dd9512390b0497cdad9c22,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4, 5], 5),\n EmbeddedCurvePoint {\n x: 0x1754b12bd475a6984a1094b5109eeca9838f4f81ac89c5f0a41dbce53189bb29,\n y: 0x2da030e3cfcdc7ddad80eaf2599df6692cae0717d4e9f7bfbee8d073d5d278f7,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4, 5, 6], 6),\n 0x1696ed13dc2730062a98ac9d8f9de0661bb98829c7582f699d0273b18c86a572,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4, 5, 6], 6),\n EmbeddedCurvePoint {\n x: 0x190f6c0e97ad83e1e28da22a98aae156da083c5a4100e929b77e750d3106a697,\n y: 0x1f4b60f34ef91221a0b49756fa0705da93311a61af73d37a0c458877706616fb,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4, 5, 6, 7], 7),\n 0x128c0ff144fc66b6cb60eeac8a38e23da52992fc427b92397a7dffd71c45ede3,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4, 5, 6, 7], 7),\n EmbeddedCurvePoint {\n x: 0x015441e9d29491b06563fac16fc76abf7a9534c715421d0de85d20dbe2965939,\n y: 0x1d2575b0276f4e9087e6e07c2cb75aa1baafad127af4be5918ef8a2ef2fea8fc,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4, 5, 6, 7, 8], 8),\n 0x2f960e117482044dfc99d12fece2ef6862fba9242be4846c7c9a3e854325a55c,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4, 5, 6, 7, 8], 8),\n EmbeddedCurvePoint {\n x: 0x1657737676968887fceb6dd516382ea13b3a2c557f509811cd86d5d1199bc443,\n y: 0x1f39f0cb569040105fa1e2f156521e8b8e08261e635a2b210bdc94e8d6d65f77,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4, 5, 6, 7, 8, 9], 9),\n 0x0c96db0790602dcb166cc4699e2d306c479a76926b81c2cb2aaa92d249ec7be7,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4, 5, 6, 7, 8, 9], 9),\n EmbeddedCurvePoint {\n x: 0x0a3ceae42d14914a432aa60ec7fded4af7dad7dd4acdbf2908452675ec67e06d,\n y: 0xfc19761eaaf621ad4aec9a8b2e84a4eceffdba78f60f8b9391b0bd9345a2f2,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 10),\n 0x2cd37505871bc460a62ea1e63c7fe51149df5d0801302cf1cbc48beb8dff7e94,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 10),\n EmbeddedCurvePoint {\n x: 0x2fb3f8b3d41ddde007c8c3c62550f9a9380ee546fcc639ffbb3fd30c8d8de30c,\n y: 0x300783be23c446b11a4c0fabf6c91af148937cea15fcf5fb054abf7f752ee245,\n is_infinite: false,\n },\n );\n}\n"
|
|
7288
7288
|
},
|
|
7289
|
-
"
|
|
7289
|
+
"196": {
|
|
7290
7290
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/state_vars/private_immutable.nr",
|
|
7291
|
-
"source": "use crate::{\n context::{PrivateContext, UtilityContext},\n keys::getters::{get_nsk_app, get_public_keys},\n note::{\n lifecycle::create_note,\n note_emission::NoteEmission,\n note_getter::{get_note, view_note},\n note_interface::{NoteHash, NoteType},\n },\n oracle::notes::check_nullifier_exists,\n state_vars::storage::HasStorageSlot,\n};\n\nuse protocol_types::{\n address::AztecAddress,\n constants::GENERATOR_INDEX__INITIALIZATION_NULLIFIER,\n hash::poseidon2_hash_with_separator,\n traits::{Hash, Packable},\n};\n\n/// PrivateImmutable\n///\n/// PrivateImmutable is a private state variable type for values that are set once\n/// and remain permanently unchanged.\n///\n/// You can declare a state variable of type PrivateImmutable within your contract's\n/// #[storage] struct:\n///\n/// E.g.:\n/// `your_variable: PrivateImmutable<YourNote, Context>`\n///\n/// The values of a PrivateImmutable are stored in the Aztec's private state and hence\n/// are represented as notes. While any number of notes can be created within\n/// a PrivateImmutable, at any moment, only one note exists per \"owner.\"\n/// To interact with a specific owner's note, call `PrivateImmutable::at(owner)`, which\n/// returns an OwnedPrivateImmutable handle for that owner.\n///\n/// The OwnedPrivateImmutable type facilitates: inserting the permanent note during\n/// initialization, and reading that note.\n///\n/// The methods of PrivateImmutable are:\n/// - `initialize`\n/// - `get_note`\n/// (see the methods' own doc comments for more info).\n///\n/// ## Example.\n///\n/// A contract's configuration parameters can be represented as a PrivateImmutable.\n/// Once set during contract deployment or initial setup, these parameters remain\n/// constant for the lifetime of the contract. To ensure there is only one configuration\n/// per contract you would consider valid only one view of the PrivateImmutable\n/// (most likely the view constructed with the contract's address).\n/// TODO(F-187): Update this ^\n///\n/// # Generic Parameters:\n///\n/// * `Note` - A single note of this type will represent the PrivateImmutable's\n/// value at the given storage_slot.\n/// * `Context` - The execution context (PrivateContext or UtilityContext).\n///\npub struct PrivateImmutable<Note, Context> {\n context: Context,\n storage_slot: Field,\n}\n\n// Private storage slots are not really 'slots' but rather a value in the note hash preimage, so there is no notion of a\n// value spilling over multiple slots. For this reason PrivateImmutable (and all other private state variables) needs\n// just one slot to be reserved, regardless of what it stores.\nimpl<T, Context> HasStorageSlot<1> for PrivateImmutable<T, Context> {\n fn get_storage_slot(self) -> Field {\n self.storage_slot\n }\n}\n\nimpl<Note, Context> PrivateImmutable<Note, Context> {\n /// Initializes a new PrivateImmutable state variable.\n ///\n /// This function is usually automatically called within the #[storage] macro.\n /// You typically don't need to call this directly when writing smart contracts.\n ///\n /// # Arguments\n ///\n /// * `context` - One of `PrivateContext`/`PublicContext`/`UtilityContext`. The\n /// Context determines which methods of this struct will be made\n /// available to the calling smart contract function.\n /// * `storage_slot` - A unique identifier for this state variable within the\n /// contract. The permanent note for this PrivateImmutable\n /// state variable will have this `storage_slot`.\n /// Usually, the #[storage] macro will determine an\n /// appropriate storage_slot automatically. A smart contract\n /// dev shouldn't have to worry about this, as it's managed\n /// behind the scenes.\n ///\n pub fn new(context: Context, storage_slot: Field) -> Self {\n assert(storage_slot != 0, \"Storage slot 0 not allowed. Storage slots must start from 1.\");\n Self { context, storage_slot }\n }\n\n /// Returns an OwnedPrivateImmutable scoped to the given `owner`'s note.\n pub fn at(self, owner: AztecAddress) -> OwnedPrivateImmutable<Note, Context> {\n OwnedPrivateImmutable::new(self.context, owner, self.storage_slot)\n }\n}\n\n/// A view of a note in a PrivateImmutable belonging to a specific `owner`.\n/// Obtained by calling `PrivateImmutable::at(owner)`.\npub struct OwnedPrivateImmutable<Note, Context> {\n context: Context,\n owner: AztecAddress,\n storage_slot: Field,\n}\n\nimpl<Note, Context> OwnedPrivateImmutable<Note, Context> {\n fn new(context: Context, owner: AztecAddress, storage_slot: Field) -> Self {\n Self { context, owner, storage_slot }\n }\n\n /// Computes the initialization nullifier using the provided secret.\n fn compute_initialization_nullifier(self, secret: Field) -> Field {\n poseidon2_hash_with_separator(\n [self.storage_slot, secret],\n GENERATOR_INDEX__INITIALIZATION_NULLIFIER,\n )\n }\n}\n\nimpl<Note> OwnedPrivateImmutable<Note, &mut PrivateContext> {\n /// Computes the nullifier that will be created when this PrivateImmutable is first initialized.\n ///\n /// This function is primarily used internally by the `initialize` method, but may also be useful for contracts that\n /// need to check if a PrivateImmutable has been initialized.\n ///\n fn get_initialization_nullifier(self) -> Field {\n let owner_npk_m = get_public_keys(self.owner).npk_m;\n let owner_npk_m_hash = owner_npk_m.hash();\n let secret = self.context.request_nsk_app(owner_npk_m_hash);\n self.compute_initialization_nullifier(secret)\n }\n\n /// Initializes an OwnedPrivateImmutable state variable instance with a permanent note.\n ///\n /// This function inserts the single, permanent note for this state variable. It can\n /// only be called once per OwnedPrivateImmutable. Subsequent calls will fail because\n /// the initialization nullifier will already exist.\n ///\n /// Unlike OwnedPrivateMutable, this note will never be nullified or replaced through\n /// the state variable interface - it persists for the lifetime of the state variable.\n ///\n /// # Arguments\n ///\n /// * `note` - The permanent note to store in this PrivateImmutable. This note\n /// contains the unchanging value of the state variable.\n ///\n /// # Returns\n ///\n /// * `NoteEmission<Note>` - A type-safe wrapper that requires you to decide\n /// whether to encrypt and send the note to someone.\n /// You can call `.emit()` on it to encrypt and log\n /// the note, or `.discard()` to skip emission.\n /// See NoteEmission for more details.\n ///\n /// # Advanced\n ///\n /// This function performs the following operations:\n /// - Creates and emits an initialization nullifier to mark this storage slot\n /// as initialized. This prevents double-initialization.\n /// - Inserts the provided note into the protocol's Note Hash Tree.\n /// - Returns a NoteEmission type that allows the caller to decide how to encrypt\n /// and deliver the note to its intended recipient.\n ///\n pub fn initialize(self, note: Note) -> NoteEmission<Note>\n where\n Note: NoteType + NoteHash + Packable,\n {\n // We emit an initialization nullifier to indicate that the struct is initialized. This also prevents\n // the value from being initialized again as a nullifier can be included only once.\n let nullifier = self.get_initialization_nullifier();\n self.context.push_nullifier(nullifier);\n\n create_note(self.context, self.owner, self.storage_slot, note)\n }\n\n /// Reads the permanent note of an OwnedPrivateImmutable state variable instance.\n ///\n /// If this OwnedPrivateImmutable state variable has not yet been initialized,\n /// no note will exist: the call will fail and the transaction will not\n /// be provable.\n ///\n /// # Returns\n ///\n /// * `Note` - The permanent note stored in this OwnedPrivateImmutable.\n ///\n /// # Advanced\n ///\n /// This function performs the following operations:\n /// - Retrieves the note from the PXE via an oracle call\n /// - Validates that the note exists and belongs to this contract address and\n /// storage slot by pushing a read request to the context\n /// - Returns the note content directly without nullification\n ///\n /// Since the note is immutable, there's no risk of reading stale data or\n /// race conditions - the note never changes after initialization.\n ///\n pub fn get_note(self) -> Note\n where\n Note: NoteType + NoteHash + Packable,\n {\n let storage_slot = self.storage_slot;\n let retrieved_note = get_note(self.context, self.owner, storage_slot).0;\n\n // Because the notes obtained from OwnedPrivateImmutable are not meant to be nullified and get_note(...) function\n // has already constrained the note (by pushing a read request to the context), we can return just the note\n // and skip the additional data in RetrievedNote.\n retrieved_note.note\n }\n}\n\nimpl<Note> OwnedPrivateImmutable<Note, UtilityContext>\nwhere\n Note: NoteType + NoteHash + Eq,\n{\n /// Computes the nullifier that will be created when this PrivateImmutable is first initialized.\n unconstrained fn get_initialization_nullifier(self) -> Field {\n let owner_npk_m = get_public_keys(self.owner).npk_m;\n let owner_npk_m_hash = owner_npk_m.hash();\n let secret = get_nsk_app(owner_npk_m_hash);\n self.compute_initialization_nullifier(secret)\n }\n\n /// Checks whether this OwnedPrivateImmutable has been initialized.\n ///\n /// # Returns\n ///\n /// * `bool` - `true` if the OwnedPrivateImmutable has been initialized (the initialization\n /// nullifier exists), `false` otherwise.\n ///\n pub unconstrained fn is_initialized(self) -> bool {\n let nullifier = self.get_initialization_nullifier();\n check_nullifier_exists(nullifier)\n }\n\n /// Returns the permanent note in this OwnedPrivateImmutable without consuming it.\n ///\n /// This function is only available in a UtilityContext (unconstrained environment)\n /// and is typically used for offchain queries, view functions, or testing.\n ///\n /// Unlike the constrained `get_note()`, this function does not push read requests\n /// or perform validation. It simply reads the note from the PXE's database.\n ///\n /// # Returns\n ///\n /// * `Note` - The permanent note stored in this OwnedPrivateImmutable.\n ///\n pub unconstrained fn view_note(self) -> Note\n where\n Note: Packable,\n {\n view_note(self.owner, self.storage_slot).note\n }\n}\n"
|
|
7291
|
+
"source": "use crate::{\n context::{PrivateContext, UtilityContext},\n keys::getters::{get_nsk_app, get_public_keys},\n note::{\n lifecycle::create_note,\n note_emission::NoteEmission,\n note_getter::{get_note, view_note},\n note_interface::{NoteHash, NoteType},\n },\n oracle::notes::check_nullifier_exists,\n state_vars::owned_state_variable::OwnedStateVariable,\n};\n\nuse protocol_types::{\n address::AztecAddress,\n constants::GENERATOR_INDEX__INITIALIZATION_NULLIFIER,\n hash::poseidon2_hash_with_separator,\n traits::{Hash, Packable},\n};\n\n/// PrivateImmutable is an owned state variable type that represents a private value that is set once and remains\n/// unchanged forever. Because it is \"owned,\" you must wrap a PrivateImmutable inside an Owned state variable when\n/// storing it:\n///\n/// ```noir\n/// #[storage]\n/// struct Storage<Context> {\n/// your_variable: Owned<PrivateImmutable<YourNote, Context>, Context>,\n/// }\n/// ```\n///\n/// For more details on what \"owned\" means, see the documentation for the [OwnedStateVariable] trait.\n///\n/// The value of a PrivateImmutable is stored in the Aztec's private state and hence is represented as a note.\n///\n/// The PrivateImmutable type facilitates: inserting the permanent note during initialization, and reading that note.\n///\n/// ## Example.\n///\n/// A contract's configuration parameters can be represented as a PrivateImmutable.\n/// Once set during contract deployment or initial setup, these parameters remain\n/// constant for the lifetime of the contract. The owner in this case would be an\n/// account with admin privileges.\n/// TODO(F-187): Update this ^\n///\n/// # Generic Parameters:\n///\n/// * `Note` - A single note of this type will represent the PrivateImmutable's\n/// value at the given storage_slot.\n/// * `Context` - The execution context (PrivateContext or UtilityContext).\n///\npub struct PrivateImmutable<Note, Context> {\n context: Context,\n storage_slot: Field,\n owner: AztecAddress,\n}\n\nimpl<Note, Context> OwnedStateVariable<Context> for PrivateImmutable<Note, Context> {\n fn new(context: Context, storage_slot: Field, owner: AztecAddress) -> Self {\n Self { context, storage_slot, owner }\n }\n}\n\nimpl<Note, Context> PrivateImmutable<Note, Context> {\n /// Computes the initialization nullifier using the provided secret.\n fn compute_initialization_nullifier(self, secret: Field) -> Field {\n poseidon2_hash_with_separator(\n [self.storage_slot, secret],\n GENERATOR_INDEX__INITIALIZATION_NULLIFIER,\n )\n }\n}\n\nimpl<Note> PrivateImmutable<Note, &mut PrivateContext> {\n /// Computes the nullifier that will be created when this PrivateImmutable is first initialized.\n ///\n /// This function is primarily used internally by the `initialize` method, but may also be useful for contracts that\n /// need to check if a PrivateImmutable has been initialized.\n ///\n fn get_initialization_nullifier(self) -> Field {\n let owner_npk_m = get_public_keys(self.owner).npk_m;\n let owner_npk_m_hash = owner_npk_m.hash();\n let secret = self.context.request_nsk_app(owner_npk_m_hash);\n self.compute_initialization_nullifier(secret)\n }\n\n /// Initializes a PrivateImmutable state variable instance with a permanent `note` and returns a [NoteEmission] that\n /// allows you to decide whether to encrypt and send the note to someone.\n ///\n /// This function inserts the single, permanent note for this state variable. It can only be called once per\n /// PrivateImmutable. Subsequent calls will fail because the initialization nullifier will already exist.\n ///\n /// Unlike PrivateMutable, this note will never be nullified or replaced through the state variable interface - it\n /// persists for the lifetime of the state variable.\n ///\n pub fn initialize(self, note: Note) -> NoteEmission<Note>\n where\n Note: NoteType + NoteHash + Packable,\n {\n // We emit an initialization nullifier to indicate that the struct is initialized. This also prevents\n // the value from being initialized again as a nullifier can be included only once.\n let nullifier = self.get_initialization_nullifier();\n self.context.push_nullifier(nullifier);\n\n create_note(self.context, self.owner, self.storage_slot, note)\n }\n\n /// Reads the permanent note of a PrivateImmutable state variable instance.\n ///\n /// If this PrivateImmutable state variable has not yet been initialized, no note will exist: the call will fail and\n /// the transaction will not be provable.\n ///\n /// Since the note is immutable, there's no risk of reading stale data or race conditions - the note never changes\n /// after initialization.\n ///\n pub fn get_note(self) -> Note\n where\n Note: NoteType + NoteHash + Packable,\n {\n let storage_slot = self.storage_slot;\n let retrieved_note = get_note(self.context, self.owner, storage_slot).0;\n\n // Because the notes obtained from PrivateImmutable are not meant to be nullified and get_note(...) function\n // has already constrained the note (by pushing a read request to the context), we can return just the note\n // and skip the additional data in RetrievedNote.\n retrieved_note.note\n }\n}\n\nimpl<Note> PrivateImmutable<Note, UtilityContext>\nwhere\n Note: NoteType + NoteHash + Eq,\n{\n /// Computes the nullifier that will be created when this PrivateImmutable is first initialized.\n unconstrained fn get_initialization_nullifier(self) -> Field {\n let owner_npk_m = get_public_keys(self.owner).npk_m;\n let owner_npk_m_hash = owner_npk_m.hash();\n let secret = get_nsk_app(owner_npk_m_hash);\n self.compute_initialization_nullifier(secret)\n }\n\n /// Returns whether this PrivateImmutable has been initialized.\n pub unconstrained fn is_initialized(self) -> bool {\n let nullifier = self.get_initialization_nullifier();\n check_nullifier_exists(nullifier)\n }\n\n /// Returns the permanent note in this PrivateImmutable without consuming it.\n ///\n /// This function is only available in a UtilityContext (unconstrained environment) and is typically used for\n /// offchain queries, view functions, or testing.\n ///\n /// Unlike the constrained `get_note()`, this function does not push read requests or perform validation. It simply\n /// reads the note from the PXE's database.\n pub unconstrained fn view_note(self) -> Note\n where\n Note: Packable,\n {\n view_note(self.owner, self.storage_slot).note\n }\n}\n"
|
|
7292
7292
|
},
|
|
7293
|
-
"
|
|
7293
|
+
"225": {
|
|
7294
7294
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/utils/array/append.nr",
|
|
7295
7295
|
"source": "/// Appends the elements of the second `BoundedVec` to the end of the first one. The resulting `BoundedVec` can have any arbitrary maximum length, but it must be\n/// large enough to fit all of the elements of both the first and second vectors.\npub fn append<T, let ALen: u32, let BLen: u32, let DstLen: u32>(\n a: BoundedVec<T, ALen>,\n b: BoundedVec<T, BLen>,\n) -> BoundedVec<T, DstLen> {\n let mut dst = BoundedVec::new();\n\n dst.extend_from_bounded_vec(a);\n dst.extend_from_bounded_vec(b);\n\n dst\n}\n\nmod test {\n use super::append;\n\n #[test]\n unconstrained fn append_empty_vecs() {\n let a: BoundedVec<_, 3> = BoundedVec::new();\n let b: BoundedVec<_, 14> = BoundedVec::new();\n\n let result: BoundedVec<Field, 5> = append(a, b);\n\n assert_eq(result.len(), 0);\n assert_eq(result.storage(), std::mem::zeroed());\n }\n\n #[test]\n unconstrained fn append_non_empty_vecs() {\n let a: BoundedVec<_, 3> = BoundedVec::from_array([1, 2, 3]);\n let b: BoundedVec<_, 14> = BoundedVec::from_array([4, 5, 6]);\n\n let result: BoundedVec<Field, 8> = append(a, b);\n\n assert_eq(result.len(), 6);\n assert_eq(result.storage(), [1, 2, 3, 4, 5, 6, std::mem::zeroed(), std::mem::zeroed()]);\n }\n\n #[test(should_fail_with = \"out of bounds\")]\n unconstrained fn append_non_empty_vecs_insufficient_max_len() {\n let a: BoundedVec<_, 3> = BoundedVec::from_array([1, 2, 3]);\n let b: BoundedVec<_, 14> = BoundedVec::from_array([4, 5, 6]);\n\n let _: BoundedVec<Field, 5> = append(a, b);\n }\n}\n"
|
|
7296
7296
|
},
|
|
7297
|
-
"
|
|
7297
|
+
"228": {
|
|
7298
7298
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/utils/array/subarray.nr",
|
|
7299
7299
|
"source": "/// Returns `DstLen` elements from a source array, starting at `offset`. `DstLen` must not be larger than the number\n/// of elements past `offset`.\n///\n/// Examples:\n/// ```\n/// let foo: [Field; 2] = subarray([1, 2, 3, 4, 5], 2);\n/// assert_eq(foo, [3, 4]);\n///\n/// let bar: [Field; 5] = subarray([1, 2, 3, 4, 5], 2); // fails - we can't return 5 elements since only 3 remain\n/// ```\npub fn subarray<T, let SrcLen: u32, let DstLen: u32>(src: [T; SrcLen], offset: u32) -> [T; DstLen] {\n assert(offset + DstLen <= SrcLen, \"DstLen too large for offset\");\n\n let mut dst: [T; DstLen] = std::mem::zeroed();\n for i in 0..DstLen {\n dst[i] = src[i + offset];\n }\n\n dst\n}\n\nmod test {\n use super::subarray;\n\n #[test]\n unconstrained fn subarray_into_empty() {\n // In all of these cases we're setting DstLen to be 0, so we always get back an empty array.\n assert_eq(subarray::<Field, _, _>([], 0), []);\n assert_eq(subarray([1, 2, 3, 4, 5], 0), []);\n assert_eq(subarray([1, 2, 3, 4, 5], 2), []);\n }\n\n #[test]\n unconstrained fn subarray_complete() {\n assert_eq(subarray::<Field, _, _>([], 0), []);\n assert_eq(subarray([1, 2, 3, 4, 5], 0), [1, 2, 3, 4, 5]);\n }\n\n #[test]\n unconstrained fn subarray_different_end_sizes() {\n // We implicitly select how many values to read in the size of the return array\n assert_eq(subarray([1, 2, 3, 4, 5], 1), [2, 3, 4, 5]);\n assert_eq(subarray([1, 2, 3, 4, 5], 1), [2, 3, 4]);\n assert_eq(subarray([1, 2, 3, 4, 5], 1), [2, 3]);\n assert_eq(subarray([1, 2, 3, 4, 5], 1), [2]);\n }\n\n #[test(should_fail_with = \"DstLen too large for offset\")]\n unconstrained fn subarray_offset_too_large() {\n // With an offset of 1 we can only request up to 4 elements\n let _: [_; 5] = subarray([1, 2, 3, 4, 5], 1);\n }\n\n #[test(should_fail)]\n unconstrained fn subarray_bad_return_value() {\n assert_eq(subarray([1, 2, 3, 4, 5], 1), [3, 3, 4, 5]);\n }\n}\n"
|
|
7300
7300
|
},
|
|
7301
|
-
"
|
|
7301
|
+
"229": {
|
|
7302
7302
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/utils/array/subbvec.nr",
|
|
7303
7303
|
"source": "use crate::utils::array;\n\n/// Returns `DstMaxLen` elements from a source BoundedVec, starting at `offset`. `offset` must not be larger than the\n/// original length, and `DstLen` must not be larger than the total number of elements past `offset` (including the\n/// zeroed elements past `len()`).\n///\n/// Only elements at the beginning of the vector can be removed: it is not possible to also remove elements at the end\n/// of the vector by passing a value for `DstLen` that is smaller than `len() - offset`.\n///\n/// Examples:\n/// ```\n/// let foo = BoundedVec::<_, 10>::from_array([1, 2, 3, 4, 5]);\n/// assert_eq(subbvec(foo, 2), BoundedVec::<_, 8>::from_array([3, 4, 5]));\n///\n/// let bar: BoundedVec<_, 1> = subbvec(foo, 2); // fails - we can't return just 1 element since 3 remain\n/// let baz: BoundedVec<_, 10> = subbvec(foo, 3); // fails - we can't return 10 elements since only 7 remain\n/// ```\npub fn subbvec<T, let SrcMaxLen: u32, let DstMaxLen: u32>(\n bvec: BoundedVec<T, SrcMaxLen>,\n offset: u32,\n) -> BoundedVec<T, DstMaxLen> {\n // from_parts_unchecked does not verify that the elements past len are zeroed, but that is not an issue in our case\n // because we're constructing the new storage array as a subarray of the original one (which should have zeroed\n // storage past len), guaranteeing correctness. This is because `subarray` does not allow extending arrays past\n // their original length.\n BoundedVec::from_parts_unchecked(array::subarray(bvec.storage(), offset), bvec.len() - offset)\n}\n\nmod test {\n use super::subbvec;\n\n #[test]\n unconstrained fn subbvec_empty() {\n let bvec = BoundedVec::<Field, 0>::from_array([]);\n assert_eq(subbvec(bvec, 0), bvec);\n }\n\n #[test]\n unconstrained fn subbvec_complete() {\n let bvec = BoundedVec::<_, 10>::from_array([1, 2, 3, 4, 5]);\n assert_eq(subbvec(bvec, 0), bvec);\n\n let smaller_capacity = BoundedVec::<_, 5>::from_array([1, 2, 3, 4, 5]);\n assert_eq(subbvec(bvec, 0), smaller_capacity);\n }\n\n #[test]\n unconstrained fn subbvec_partial() {\n let bvec = BoundedVec::<_, 10>::from_array([1, 2, 3, 4, 5]);\n\n assert_eq(subbvec(bvec, 2), BoundedVec::<_, 8>::from_array([3, 4, 5]));\n assert_eq(subbvec(bvec, 2), BoundedVec::<_, 3>::from_array([3, 4, 5]));\n }\n\n #[test]\n unconstrained fn subbvec_into_empty() {\n let bvec: BoundedVec<_, 10> = BoundedVec::from_array([1, 2, 3, 4, 5]);\n assert_eq(subbvec(bvec, 5), BoundedVec::<_, 5>::from_array([]));\n }\n\n #[test(should_fail)]\n unconstrained fn subbvec_offset_past_len() {\n let bvec = BoundedVec::<_, 10>::from_array([1, 2, 3, 4, 5]);\n let _: BoundedVec<_, 1> = subbvec(bvec, 6);\n }\n\n #[test(should_fail)]\n unconstrained fn subbvec_insufficient_dst_len() {\n let bvec = BoundedVec::<_, 10>::from_array([1, 2, 3, 4, 5]);\n\n // We're not providing enough space to hold all of the items inside the original BoundedVec. subbvec can cause\n // for the capacity to reduce, but not the length (other than by len - offset).\n let _: BoundedVec<_, 1> = subbvec(bvec, 2);\n }\n\n #[test(should_fail_with = \"DstLen too large for offset\")]\n unconstrained fn subbvec_dst_len_causes_enlarge() {\n let bvec = BoundedVec::<_, 10>::from_array([1, 2, 3, 4, 5]);\n\n // subbvec does not supprt capacity increases\n let _: BoundedVec<_, 11> = subbvec(bvec, 0);\n }\n\n #[test(should_fail_with = \"DstLen too large for offset\")]\n unconstrained fn subbvec_dst_len_too_large_for_offset() {\n let bvec = BoundedVec::<_, 10>::from_array([1, 2, 3, 4, 5]);\n\n // This effectively requests a capacity increase, since there'd be just one element plus the 5 empty slots,\n // which is less than 7.\n let _: BoundedVec<_, 7> = subbvec(bvec, 4);\n }\n}\n"
|
|
7304
7304
|
},
|
|
7305
|
-
"
|
|
7305
|
+
"231": {
|
|
7306
7306
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/utils/conversion/bytes_to_fields.nr",
|
|
7307
7307
|
"source": "use std::static_assert;\n\n// These functions are used to facilitate the conversion of log ciphertext between byte and field representations.\n//\n// `bytes_to_fields` uses fixed-size arrays since encryption contexts have compile-time size information.\n// `bytes_from_fields` uses BoundedVec for flexibility in unconstrained contexts where sizes are dynamic.\n//\n// Together they provide bidirectional conversion between bytes and fields when processing encrypted logs.\n\n/// Converts the input bytes into an array of fields. A Field is ~254 bits meaning that each field can store 31 whole\n/// bytes. Use `bytes_from_fields` to obtain the original bytes array.\n///\n/// The input bytes are chunked into chunks of 31 bytes. Each 31-byte chunk is viewed as big-endian, and is converted\n/// into a Field.\n/// For example, [1, 10, 3, ..., 0] (31 bytes) is encoded as [1 * 256^30 + 10 * 256^29 + 3 * 256^28 + ... + 0]\n/// Note: N must be a multiple of 31 bytes\npub fn bytes_to_fields<let N: u32>(bytes: [u8; N]) -> [Field; N / 31] {\n // Assert that N is a multiple of 31\n static_assert(N % 31 == 0, \"N must be a multiple of 31\");\n\n let mut fields = [0; N / 31];\n\n // Since N is a multiple of 31, we can simply process all chunks fully\n for i in 0..N / 31 {\n let mut field = 0;\n for j in 0..31 {\n // Shift the existing value left by 8 bits and add the new byte\n field = field * 256 + bytes[i * 31 + j] as Field;\n }\n fields[i] = field;\n }\n\n fields\n}\n\n/// Converts an input BoundedVec of fields into a BoundedVec of bytes in big-endian order. Arbitrary Field arrays\n/// are not allowed: this is assumed to be an array obtained via `bytes_to_fields`, i.e. one that actually represents\n/// bytes. To convert a Field array into bytes, use `fields_to_bytes`.\n///\n/// Each input field must contain at most 31 bytes (this is constrained to be so).\n/// Each field is converted into 31 big-endian bytes, and the resulting 31-byte chunks are concatenated\n/// back together in the order of the original fields.\npub fn bytes_from_fields<let N: u32>(fields: BoundedVec<Field, N>) -> BoundedVec<u8, N * 31> {\n let mut bytes = BoundedVec::new();\n\n for i in 0..fields.len() {\n let field = fields.get(i);\n\n // We expect that the field contains at most 31 bytes of information.\n field.assert_max_bit_size::<248>();\n\n // Now we can safely convert the field to 31 bytes.\n let field_as_bytes: [u8; 31] = field.to_be_bytes();\n\n for j in 0..31 {\n bytes.push(field_as_bytes[j]);\n }\n }\n\n bytes\n}\n\nmod tests {\n use crate::utils::array::subarray;\n use super::{bytes_from_fields, bytes_to_fields};\n\n #[test]\n unconstrained fn random_bytes_to_fields_and_back(input: [u8; 93]) {\n let fields = bytes_to_fields(input);\n\n // At this point in production, the log flies through the system and we get a BoundedVec on the other end.\n // So we need to convert the field array to a BoundedVec to be able to feed it to the `bytes_from_fields`\n // function.\n let fields_as_bounded_vec = BoundedVec::<_, 6>::from_array(fields);\n\n let bytes_back = bytes_from_fields(fields_as_bounded_vec);\n\n // Compare the original input with the round-tripped result\n assert_eq(bytes_back.len(), input.len());\n assert_eq(subarray(bytes_back.storage(), 0), input);\n }\n\n #[test(should_fail_with = \"N must be a multiple of 31\")]\n unconstrained fn bytes_to_fields_input_length_not_multiple_of_31() {\n // Try to convert 32 bytes (not a multiple of 31) to fields\n let _fields = bytes_to_fields([0; 32]);\n }\n\n}\n"
|
|
7308
7308
|
},
|
|
7309
|
-
"
|
|
7309
|
+
"232": {
|
|
7310
7310
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/utils/conversion/fields_to_bytes.nr",
|
|
7311
7311
|
"source": "// These functions are used to facilitate the conversion of log plaintext represented as fields into bytes and back.\n//\n// `fields_to_bytes` uses fixed-size arrays since encryption contexts have compile-time size information.\n// `fields_from_bytes` uses BoundedVec for flexibility in unconstrained contexts where sizes are dynamic.\n//\n// Together they provide bidirectional conversion between fields and bytes.\n\n/// Converts an input array of fields into a single array of bytes. Use `fields_from_bytes` to obtain the original\n/// field array.\n/// Each field is converted to a 32-byte big-endian array.\n///\n/// For example, if you have a field array [123, 456], it will be converted to a 64-byte array:\n/// [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,123, // First field (32 bytes)\n/// 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,200] // Second field (32 bytes)\n///\n/// Since a field is ~254 bits, you'll end up with a subtle 2-bit \"gap\" at the big end, every 32 bytes. Be careful\n/// that such a gap doesn't leak information! This could happen if you for example expected the output to be\n/// indistinguishable from random bytes.\npub fn fields_to_bytes<let N: u32>(fields: [Field; N]) -> [u8; 32 * N] {\n let mut bytes = [0; 32 * N];\n\n for i in 0..N {\n let field_as_bytes: [u8; 32] = fields[i].to_be_bytes();\n\n for j in 0..32 {\n bytes[i * 32 + j] = field_as_bytes[j];\n }\n }\n\n bytes\n}\n\n/// Converts an input BoundedVec of bytes into a BoundedVec of fields. Arbitrary byte arrays are not allowed: this\n/// is assumed to be an array obtained via `fields_to_bytes`, i.e. one that actually represents fields. To convert\n/// a byte array into Fields, use `bytes_to_fields`.\n///\n/// The input bytes are chunked into chunks of 32 bytes. Each 32-byte chunk is viewed as big-endian, and is converted\n/// into a Field.\n/// For example, [1, 10, 3, ..., 0] (32 bytes) is encoded as [1 * 256^31 + 10 * 256^30 + 3 * 256^29 + ... + 0]\n/// Note 1: N must be a multiple of 32 bytes\n/// Note 2: The max value check code was taken from std::field::to_be_bytes function.\npub fn fields_from_bytes<let N: u32>(bytes: BoundedVec<u8, N>) -> BoundedVec<Field, N / 32> {\n // Assert that input length is a multiple of 32\n assert(bytes.len() % 32 == 0, \"Input length must be a multiple of 32\");\n\n let mut fields = BoundedVec::new();\n\n let p = std::field::modulus_be_bytes();\n\n // Since input length is a multiple of 32, we can simply process all chunks fully\n for i in 0..bytes.len() / 32 {\n let mut field = 0;\n\n // Process each byte in the 32-byte chunk\n let mut ok = false;\n\n for j in 0..32 {\n let next_byte = bytes.get(i * 32 + j);\n field = field * 256 + next_byte as Field;\n\n if !ok {\n if next_byte != p[j] {\n assert(next_byte < p[j], \"Value does not fit in field\");\n ok = true;\n }\n }\n }\n assert(ok, \"Value does not fit in field\");\n\n fields.push(field);\n }\n\n fields\n}\n\nmod tests {\n use crate::utils::array::subarray;\n use super::{fields_from_bytes, fields_to_bytes};\n\n #[test]\n unconstrained fn random_fields_to_bytes_and_back(input: [Field; 3]) {\n // Convert to bytes\n let bytes = fields_to_bytes(input);\n\n // At this point in production, the log flies through the system and we get a BoundedVec on the other end.\n // So we need to convert the field array to a BoundedVec to be able to feed it to the `fields_from_bytes`\n // function.\n // 113 is an arbitrary max length that is larger than the input length of 96.\n let bytes_as_bounded_vec = BoundedVec::<_, 113>::from_array(bytes);\n\n // Convert back to fields\n let fields_back = fields_from_bytes(bytes_as_bounded_vec);\n\n // Compare the original input with the round-tripped result\n assert_eq(fields_back.len(), input.len());\n assert_eq(subarray(fields_back.storage(), 0), input);\n }\n\n #[test(should_fail_with = \"Input length must be a multiple of 32\")]\n unconstrained fn to_fields_assert() {\n // 143 is an arbitrary max length that is larger than 33\n let input = BoundedVec::<_, 143>::from_array([\n 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,\n 25, 26, 27, 28, 29, 30, 31, 32, 33,\n ]);\n\n // This should fail since 33 is not a multiple of 32\n let _fields = fields_from_bytes(input);\n }\n\n #[test]\n unconstrained fn fields_from_bytes_max_value() {\n let max_field_as_bytes: [u8; 32] = (-1).to_be_bytes();\n let input = BoundedVec::<_, 32>::from_array(max_field_as_bytes);\n\n let fields = fields_from_bytes(input);\n\n // The result should be a largest value storable in a field (-1 since we are modulo-ing)\n assert_eq(fields.get(0), -1);\n }\n\n // In this test we verify that overflow check works by taking the max allowed value, bumping a random byte\n // and then feeding it to `fields_from_bytes` as input.\n #[test(should_fail_with = \"Value does not fit in field\")]\n unconstrained fn fields_from_bytes_overflow(random_value: u8) {\n let index_of_byte_to_bump = random_value % 32;\n\n // Obtain the byte representation of the maximum field value\n let max_field_value_as_bytes: [u8; 32] = (-1).to_be_bytes();\n\n let byte_to_bump = max_field_value_as_bytes[index_of_byte_to_bump as u32];\n\n // Skip test execution if the selected byte is already at maximum value (255).\n // This is acceptable since we are using fuzz testing to generate many test cases.\n if byte_to_bump != 255 {\n let mut input = BoundedVec::<_, 32>::from_array(max_field_value_as_bytes);\n\n // Increment the selected byte to exceed the field's maximum value\n input.set(index_of_byte_to_bump as u32, byte_to_bump + 1);\n\n // Attempt the conversion, which should fail due to the value exceeding the field's capacity\n let _fields = fields_from_bytes(input);\n }\n }\n\n}\n"
|
|
7312
7312
|
},
|
|
7313
|
-
"
|
|
7313
|
+
"235": {
|
|
7314
7314
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/utils/point.nr",
|
|
7315
7315
|
"source": "use protocol_types::{point::Point, utils::field::sqrt};\n\n// I am storing the modulus minus 1 divided by 2 here because full modulus would throw \"String literal too large\" error\n// Full modulus is 21888242871839275222246405745257275088548364400416034343698204186575808495617\nglobal BN254_FR_MODULUS_DIV_2: Field =\n 10944121435919637611123202872628637544274182200208017171849102093287904247808;\n\n/// Converts a point to a byte array.\n///\n/// We don't serialize the point at infinity flag because this function is used in situations where we do not want\n/// to waste the extra byte (encrypted log).\npub fn point_to_bytes(p: Point) -> [u8; 32] {\n // Note that there is 1 more free bit in the 32 bytes (254 bits currently occupied by the x coordinate, 1 bit for\n // the \"sign\") so it's possible to use that last bit as an \"is_infinite\" flag if desired in the future.\n assert(!p.is_infinite, \"Cannot serialize point at infinity as bytes.\");\n\n let mut result: [u8; 32] = p.x.to_be_bytes();\n\n if get_sign_of_point(p) {\n // y is <= (modulus - 1) / 2 so we set the sign bit to 1\n // Here we leverage that field fits into 254 bits (log2(Fr.MODULUS) < 254) and given that we serialize Fr to 32\n // bytes and we use big-endian the 2 most significant bits are never populated. Hence we can use one of\n // the bits as a sign bit.\n result[0] += 128;\n }\n\n result\n}\n\n/**\n * Returns: true if p.y <= MOD_DIV_2, else false.\n */\npub fn get_sign_of_point(p: Point) -> bool {\n // We store only a \"sign\" of the y coordinate because the rest can be derived from the x coordinate. To get\n // the sign we check if the y coordinate is less or equal than the curve's order minus 1 divided by 2.\n // Ideally we'd do `y <= MOD_DIV_2`, but there's no `lte` function, so instead we do `!(y > MOD_DIV_2)`, which is\n // equivalent, and then rewrite that as `!(MOD_DIV_2 < y)`, since we also have no `gt` function.\n !BN254_FR_MODULUS_DIV_2.lt(p.y)\n}\n\n/// Returns a `Point` in the Grumpkin curve given its x coordinate.\n///\n/// Because not all values in the field are valid x coordinates of points in the curve (i.e. there\n/// is no corresponding y value in the field that satisfies the curve equation), it may not be\n/// possible to reconstruct a `Point`. `Option::none()` is returned in such cases.\npub fn point_from_x_coord(x: Field) -> Option<Point> {\n // y ^ 2 = x ^ 3 - 17\n let rhs = x * x * x - 17;\n sqrt(rhs).map(|y| Point { x, y, is_infinite: false })\n}\n\n/// Returns a `Point` in the Grumpkin curve given its x coordinate and sign for the y coordinate.\n///\n/// Because not all values in the field are valid x coordinates of points in the curve (i.e. there\n/// is no corresponding y value in the field that satisfies the curve equation), it may not be\n/// possible to reconstruct a `Point`. `Option::none()` is returned in such cases.\n///\n/// @param x - The x coordinate of the point\n/// @param sign - The \"sign\" of the y coordinate - determines whether y <= (Fr.MODULUS - 1) / 2\npub fn point_from_x_coord_and_sign(x: Field, sign: bool) -> Option<Point> {\n // y ^ 2 = x ^ 3 - 17\n let rhs = x * x * x - 17;\n\n sqrt(rhs).map(|y| {\n // If there is a square root, we need to ensure it has the correct \"sign\"\n let y_is_positive = !BN254_FR_MODULUS_DIV_2.lt(y);\n let final_y = if y_is_positive == sign { y } else { -y };\n Point { x, y: final_y, is_infinite: false }\n })\n}\n\nmod test {\n use crate::utils::point::{point_from_x_coord, point_from_x_coord_and_sign, point_to_bytes};\n use dep::protocol_types::point::Point;\n use dep::protocol_types::utils::field::pow;\n\n #[test]\n unconstrained fn test_point_to_bytes_positive_sign() {\n let p = Point {\n x: 0x1af41f5de96446dc3776a1eb2d98bb956b7acd9979a67854bec6fa7c2973bd73,\n y: 0x07fc22c7f2c7057571f137fe46ea9c95114282bc95d37d71ec4bfb88de457d4a,\n is_infinite: false,\n };\n\n let compressed_point = point_to_bytes(p);\n\n let expected_compressed_point_positive_sign = [\n 154, 244, 31, 93, 233, 100, 70, 220, 55, 118, 161, 235, 45, 152, 187, 149, 107, 122,\n 205, 153, 121, 166, 120, 84, 190, 198, 250, 124, 41, 115, 189, 115,\n ];\n assert_eq(expected_compressed_point_positive_sign, compressed_point);\n }\n\n #[test]\n unconstrained fn test_point_to_bytes_negative_sign() {\n let p = Point {\n x: 0x247371652e55dd74c9af8dbe9fb44931ba29a9229994384bd7077796c14ee2b5,\n y: 0x26441aec112e1ae4cee374f42556932001507ad46e255ffb27369c7e3766e5c0,\n is_infinite: false,\n };\n\n let compressed_point = point_to_bytes(p);\n\n let expected_compressed_point_negative_sign = [\n 36, 115, 113, 101, 46, 85, 221, 116, 201, 175, 141, 190, 159, 180, 73, 49, 186, 41, 169,\n 34, 153, 148, 56, 75, 215, 7, 119, 150, 193, 78, 226, 181,\n ];\n\n assert_eq(expected_compressed_point_negative_sign, compressed_point);\n }\n\n #[test]\n unconstrained fn test_point_from_x_coord_and_sign() {\n // Test positive y coordinate\n let x = 0x1af41f5de96446dc3776a1eb2d98bb956b7acd9979a67854bec6fa7c2973bd73;\n let sign = true;\n let p = point_from_x_coord_and_sign(x, sign).unwrap();\n\n assert_eq(p.x, x);\n assert_eq(p.y, 0x07fc22c7f2c7057571f137fe46ea9c95114282bc95d37d71ec4bfb88de457d4a);\n assert_eq(p.is_infinite, false);\n\n // Test negative y coordinate\n let x2 = 0x247371652e55dd74c9af8dbe9fb44931ba29a9229994384bd7077796c14ee2b5;\n let sign2 = false;\n let p2 = point_from_x_coord_and_sign(x2, sign2).unwrap();\n\n assert_eq(p2.x, x2);\n assert_eq(p2.y, 0x26441aec112e1ae4cee374f42556932001507ad46e255ffb27369c7e3766e5c0);\n assert_eq(p2.is_infinite, false);\n }\n\n #[test]\n unconstrained fn test_point_from_x_coord_valid() {\n // x = 8 is a known quadratic residue - should give a valid point\n let result = point_from_x_coord(Field::from(8));\n assert(result.is_some());\n\n let point = result.unwrap();\n assert_eq(point.x, Field::from(8));\n // Check curve equation y^2 = x^3 - 17\n assert_eq(pow(point.y, 2), pow(point.x, 3) - 17);\n }\n\n #[test]\n unconstrained fn test_point_from_x_coord_invalid() {\n // x = 3 is a non-residue for this curve - should give None\n let x = Field::from(3);\n let maybe_point = point_from_x_coord(x);\n assert(maybe_point.is_none());\n }\n\n}\n"
|
|
7316
7316
|
},
|
|
7317
|
-
"
|
|
7317
|
+
"236": {
|
|
7318
7318
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/utils/random.nr",
|
|
7319
7319
|
"source": "use crate::oracle::random::random;\n\n/// Returns as many random bytes as specified through N.\npub unconstrained fn get_random_bytes<let N: u32>() -> [u8; N] {\n let mut bytes = [0; N];\n let mut idx = 32;\n let mut randomness = [0; 32];\n for i in 0..N {\n if idx == 32 {\n randomness = random().to_be_bytes();\n idx = 1; // Skip the first byte as it's always 0.\n }\n bytes[i] = randomness[idx];\n idx += 1;\n }\n bytes\n}\n"
|
|
7320
7320
|
},
|
|
7321
|
-
"
|
|
7321
|
+
"237": {
|
|
7322
7322
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/utils/remove_constraints.nr",
|
|
7323
7323
|
"source": "/// Calls a function and returns its return value, but removes any constraints associated with calling the function,\n/// behaving as if the function was unconstrained.\npub unconstrained fn remove_constraints<Env, T>(f: fn[Env]() -> T) -> T {\n f()\n}\n\n/// Calls a function and returns its return value, removing any constraints associated with calling the function if\n/// `condition` is true, behaving as if the function was unconstrained.\n///\n/// Requires `condition` to be a compile time constant.\npub fn remove_constraints_if<Env, T>(condition: bool, f: fn[Env]() -> T) -> T {\n // If `condition` is not a compile-time constant, then the compiler won't optimize away the branch not taken in the\n // if statement below, and we may end up with constraints for `f` regardless of the runtime value of `condition`.\n assert_constant(condition);\n\n if condition {\n // Safety: the purpose of this function is to execute `f` with no constraints when `condition` is true.\n unsafe {\n remove_constraints(f)\n }\n } else {\n f()\n }\n}\n\nmod test {\n use super::remove_constraints;\n\n fn return_unit() -> () {\n ()\n }\n\n fn return_field() -> Field {\n 5\n }\n\n #[test]\n fn returns_unit() {\n let expected = return_unit();\n // Safety: this is a test\n let actual = unsafe { remove_constraints(|| return_unit()) };\n assert_eq(actual, expected);\n }\n\n #[test]\n fn returns_original_value() {\n let expected = return_field();\n // Safety: this is a test\n let actual = unsafe { remove_constraints(|| return_field()) };\n assert_eq(actual, expected);\n }\n\n #[test]\n unconstrained fn returns_unit_unconstrained() {\n let expected = return_unit();\n let actual = remove_constraints(|| return_unit());\n assert_eq(actual, expected);\n }\n\n #[test]\n unconstrained fn returns_original_value_unconstrained() {\n let expected = return_field();\n let actual = remove_constraints(|| return_field());\n assert_eq(actual, expected);\n }\n}\n"
|
|
7324
7324
|
},
|
|
7325
|
-
"
|
|
7325
|
+
"246": {
|
|
7326
7326
|
"path": "/home/aztec-dev/nargo/github.com/noir-lang/poseidon/v0.1.1/src/poseidon2.nr",
|
|
7327
7327
|
"source": "use std::default::Default;\nuse std::hash::Hasher;\n\ncomptime global RATE: u32 = 3;\n\npub struct Poseidon2 {\n cache: [Field; 3],\n state: [Field; 4],\n cache_size: u32,\n squeeze_mode: bool, // 0 => absorb, 1 => squeeze\n}\n\nimpl Poseidon2 {\n #[no_predicates]\n pub fn hash<let N: u32>(input: [Field; N], message_size: u32) -> Field {\n Poseidon2::hash_internal(input, message_size, message_size != N)\n }\n\n pub(crate) fn new(iv: Field) -> Poseidon2 {\n let mut result =\n Poseidon2 { cache: [0; 3], state: [0; 4], cache_size: 0, squeeze_mode: false };\n result.state[RATE] = iv;\n result\n }\n\n fn perform_duplex(&mut self) {\n // add the cache into sponge state\n for i in 0..RATE {\n // We effectively zero-pad the cache by only adding to the state\n // cache that is less than the specified `cache_size`\n if i < self.cache_size {\n self.state[i] += self.cache[i];\n }\n }\n self.state = crate::poseidon2_permutation(self.state, 4);\n }\n\n fn absorb(&mut self, input: Field) {\n assert(!self.squeeze_mode);\n if self.cache_size == RATE {\n // If we're absorbing, and the cache is full, apply the sponge permutation to compress the cache\n self.perform_duplex();\n self.cache[0] = input;\n self.cache_size = 1;\n } else {\n // If we're absorbing, and the cache is not full, add the input into the cache\n self.cache[self.cache_size] = input;\n self.cache_size += 1;\n }\n }\n\n fn squeeze(&mut self) -> Field {\n assert(!self.squeeze_mode);\n // If we're in absorb mode, apply sponge permutation to compress the cache.\n self.perform_duplex();\n self.squeeze_mode = true;\n\n // Pop one item off the top of the permutation and return it.\n self.state[0]\n }\n\n fn hash_internal<let N: u32>(\n input: [Field; N],\n in_len: u32,\n is_variable_length: bool,\n ) -> Field {\n let two_pow_64 = 18446744073709551616;\n let iv: Field = (in_len as Field) * two_pow_64;\n let mut sponge = Poseidon2::new(iv);\n for i in 0..input.len() {\n if i < in_len {\n sponge.absorb(input[i]);\n }\n }\n\n // In the case where the hash preimage is variable-length, we append `1` to the end of the input, to distinguish\n // from fixed-length hashes. (the combination of this additional field element + the hash IV ensures\n // fixed-length and variable-length hashes do not collide)\n if is_variable_length {\n sponge.absorb(1);\n }\n sponge.squeeze()\n }\n}\n\npub struct Poseidon2Hasher {\n _state: [Field],\n}\n\nimpl Hasher for Poseidon2Hasher {\n fn finish(self) -> Field {\n let iv: Field = (self._state.len() as Field) * 18446744073709551616; // iv = (self._state.len() << 64)\n let mut sponge = Poseidon2::new(iv);\n for i in 0..self._state.len() {\n sponge.absorb(self._state[i]);\n }\n sponge.squeeze()\n }\n\n fn write(&mut self, input: Field) {\n self._state = self._state.push_back(input);\n }\n}\n\nimpl Default for Poseidon2Hasher {\n fn default() -> Self {\n Poseidon2Hasher { _state: &[] }\n }\n}\n"
|
|
7328
7328
|
},
|
|
@@ -7330,71 +7330,71 @@
|
|
|
7330
7330
|
"path": "std/array/mod.nr",
|
|
7331
7331
|
"source": "use crate::cmp::{Eq, Ord};\nuse crate::convert::From;\nuse crate::runtime::is_unconstrained;\n\nmod check_shuffle;\nmod quicksort;\n\nimpl<T, let N: u32> [T; N] {\n /// Returns the length of this array.\n ///\n /// ```noir\n /// fn len(self) -> Field\n /// ```\n ///\n /// example\n ///\n /// ```noir\n /// fn main() {\n /// let array = [42, 42];\n /// assert(array.len() == 2);\n /// }\n /// ```\n #[builtin(array_len)]\n pub fn len(self) -> u32 {}\n\n /// Returns this array as a slice.\n ///\n /// ```noir\n /// let array = [1, 2];\n /// let slice = array.as_slice();\n /// assert_eq(slice, &[1, 2]);\n /// ```\n #[builtin(as_slice)]\n pub fn as_slice(self) -> [T] {}\n\n /// Applies a function to each element of this array, returning a new array containing the mapped elements.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let b = a.map(|a| a * 2);\n /// assert_eq(b, [2, 4, 6]);\n /// ```\n pub fn map<U, Env>(self, f: fn[Env](T) -> U) -> [U; N] {\n let uninitialized = crate::mem::zeroed();\n let mut ret = [uninitialized; N];\n\n for i in 0..self.len() {\n ret[i] = f(self[i]);\n }\n\n ret\n }\n\n /// Applies a function to each element of this array along with its index,\n /// returning a new array containing the mapped elements.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let b = a.mapi(|i, a| i + a * 2);\n /// assert_eq(b, [2, 5, 8]);\n /// ```\n pub fn mapi<U, Env>(self, f: fn[Env](u32, T) -> U) -> [U; N] {\n let uninitialized = crate::mem::zeroed();\n let mut ret = [uninitialized; N];\n\n for i in 0..self.len() {\n ret[i] = f(i, self[i]);\n }\n\n ret\n }\n\n /// Applies a function to each element of this array.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let mut b = [0; 3];\n /// let mut i = 0;\n /// a.for_each(|x| {\n /// b[i] = x;\n /// i += 1;\n /// });\n /// assert_eq(a, b);\n /// ```\n pub fn for_each<Env>(self, f: fn[Env](T) -> ()) {\n for i in 0..self.len() {\n f(self[i]);\n }\n }\n\n /// Applies a function to each element of this array along with its index.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let mut b = [0; 3];\n /// a.for_eachi(|i, x| {\n /// b[i] = x;\n /// });\n /// assert_eq(a, b);\n /// ```\n pub fn for_eachi<Env>(self, f: fn[Env](u32, T) -> ()) {\n for i in 0..self.len() {\n f(i, self[i]);\n }\n }\n\n /// Applies a function to each element of the array, returning the final accumulated value. The first\n /// parameter is the initial value.\n ///\n /// This is a left fold, so the given function will be applied to the accumulator and first element of\n /// the array, then the second, and so on. For a given call the expected result would be equivalent to:\n ///\n /// ```rust\n /// let a1 = [1];\n /// let a2 = [1, 2];\n /// let a3 = [1, 2, 3];\n ///\n /// let f = |a, b| a - b;\n /// a1.fold(10, f); //=> f(10, 1)\n /// a2.fold(10, f); //=> f(f(10, 1), 2)\n /// a3.fold(10, f); //=> f(f(f(10, 1), 2), 3)\n ///\n /// assert_eq(a3.fold(10, f), 10 - 1 - 2 - 3);\n /// ```\n pub fn fold<U, Env>(self, mut accumulator: U, f: fn[Env](U, T) -> U) -> U {\n for elem in self {\n accumulator = f(accumulator, elem);\n }\n accumulator\n }\n\n /// Same as fold, but uses the first element as the starting element.\n ///\n /// Requires the input array to be non-empty.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr = [1, 2, 3, 4];\n /// let reduced = arr.reduce(|a, b| a + b);\n /// assert(reduced == 10);\n /// }\n /// ```\n pub fn reduce<Env>(self, f: fn[Env](T, T) -> T) -> T {\n let mut accumulator = self[0];\n for i in 1..self.len() {\n accumulator = f(accumulator, self[i]);\n }\n accumulator\n }\n\n /// Returns true if all the elements in this array satisfy the given predicate.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr = [2, 2, 2, 2, 2];\n /// let all = arr.all(|a| a == 2);\n /// assert(all);\n /// }\n /// ```\n pub fn all<Env>(self, predicate: fn[Env](T) -> bool) -> bool {\n let mut ret = true;\n for elem in self {\n ret &= predicate(elem);\n }\n ret\n }\n\n /// Returns true if any of the elements in this array satisfy the given predicate.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr = [2, 2, 2, 2, 5];\n /// let any = arr.any(|a| a == 5);\n /// assert(any);\n /// }\n /// ```\n pub fn any<Env>(self, predicate: fn[Env](T) -> bool) -> bool {\n let mut ret = false;\n for elem in self {\n ret |= predicate(elem);\n }\n ret\n }\n\n /// Concatenates this array with another array.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr1 = [1, 2, 3, 4];\n /// let arr2 = [6, 7, 8, 9, 10, 11];\n /// let concatenated_arr = arr1.concat(arr2);\n /// assert(concatenated_arr == [1, 2, 3, 4, 6, 7, 8, 9, 10, 11]);\n /// }\n /// ```\n pub fn concat<let M: u32>(self, array2: [T; M]) -> [T; N + M] {\n let mut result = [crate::mem::zeroed(); N + M];\n for i in 0..N {\n result[i] = self[i];\n }\n for i in 0..M {\n result[i + N] = array2[i];\n }\n result\n }\n}\n\nimpl<T, let N: u32> [T; N]\nwhere\n T: Ord + Eq,\n{\n /// Returns a new sorted array. The original array remains untouched. Notice that this function will\n /// only work for arrays of fields or integers, not for any arbitrary type. This is because the sorting\n /// logic it uses internally is optimized specifically for these values. If you need a sort function to\n /// sort any type, you should use the [`Self::sort_via`] function.\n ///\n /// Example:\n ///\n /// ```rust\n /// fn main() {\n /// let arr = [42, 32];\n /// let sorted = arr.sort();\n /// assert(sorted == [32, 42]);\n /// }\n /// ```\n pub fn sort(self) -> Self {\n self.sort_via(|a, b| a <= b)\n }\n}\n\nimpl<T, let N: u32> [T; N]\nwhere\n T: Eq,\n{\n /// Returns a new sorted array by sorting it with a custom comparison function.\n /// The original array remains untouched.\n /// The ordering function must return true if the first argument should be sorted to be before the second argument or is equal to the second argument.\n ///\n /// Using this method with an operator like `<` that does not return `true` for equal values will result in an assertion failure for arrays with equal elements.\n ///\n /// Example:\n ///\n /// ```rust\n /// fn main() {\n /// let arr = [42, 32]\n /// let sorted_ascending = arr.sort_via(|a, b| a <= b);\n /// assert(sorted_ascending == [32, 42]); // verifies\n ///\n /// let sorted_descending = arr.sort_via(|a, b| a >= b);\n /// assert(sorted_descending == [32, 42]); // does not verify\n /// }\n /// ```\n pub fn sort_via<Env>(self, ordering: fn[Env](T, T) -> bool) -> Self {\n // Safety: `sorted` array is checked to be:\n // a. a permutation of `input`'s elements\n // b. satisfying the predicate `ordering`\n let sorted = unsafe { quicksort::quicksort(self, ordering) };\n\n if !is_unconstrained() {\n for i in 0..N - 1 {\n assert(\n ordering(sorted[i], sorted[i + 1]),\n \"Array has not been sorted correctly according to `ordering`.\",\n );\n }\n check_shuffle::check_shuffle(self, sorted);\n }\n sorted\n }\n}\n\nimpl<let N: u32> [u8; N] {\n /// Converts a byte array of type `[u8; N]` to a string. Note that this performs no UTF-8 validation -\n /// the given array is interpreted as-is as a string.\n ///\n /// Example:\n ///\n /// ```rust\n /// fn main() {\n /// let hi = [104, 105].as_str_unchecked();\n /// assert_eq(hi, \"hi\");\n /// }\n /// ```\n #[builtin(array_as_str_unchecked)]\n pub fn as_str_unchecked(self) -> str<N> {}\n}\n\nimpl<let N: u32> From<str<N>> for [u8; N] {\n /// Returns an array of the string bytes.\n fn from(s: str<N>) -> Self {\n s.as_bytes()\n }\n}\n\nmod test {\n #[test]\n fn map_empty() {\n assert_eq([].map(|x| x + 1), []);\n }\n\n global arr_with_100_values: [u32; 100] = [\n 42, 123, 87, 93, 48, 80, 50, 5, 104, 84, 70, 47, 119, 66, 71, 121, 3, 29, 42, 118, 2, 54,\n 89, 44, 81, 0, 26, 106, 68, 96, 84, 48, 95, 54, 45, 32, 89, 100, 109, 19, 37, 41, 19, 98,\n 53, 114, 107, 66, 6, 74, 13, 19, 105, 64, 123, 28, 44, 50, 89, 58, 123, 126, 21, 43, 86, 35,\n 21, 62, 82, 0, 108, 120, 72, 72, 62, 80, 12, 71, 70, 86, 116, 73, 38, 15, 127, 81, 30, 8,\n 125, 28, 26, 69, 114, 63, 27, 28, 61, 42, 13, 32,\n ];\n global expected_with_100_values: [u32; 100] = [\n 0, 0, 2, 3, 5, 6, 8, 12, 13, 13, 15, 19, 19, 19, 21, 21, 26, 26, 27, 28, 28, 28, 29, 30, 32,\n 32, 35, 37, 38, 41, 42, 42, 42, 43, 44, 44, 45, 47, 48, 48, 50, 50, 53, 54, 54, 58, 61, 62,\n 62, 63, 64, 66, 66, 68, 69, 70, 70, 71, 71, 72, 72, 73, 74, 80, 80, 81, 81, 82, 84, 84, 86,\n 86, 87, 89, 89, 89, 93, 95, 96, 98, 100, 104, 105, 106, 107, 108, 109, 114, 114, 116, 118,\n 119, 120, 121, 123, 123, 123, 125, 126, 127,\n ];\n fn sort_u32(a: u32, b: u32) -> bool {\n a <= b\n }\n\n #[test]\n fn test_sort() {\n let mut arr: [u32; 7] = [3, 6, 8, 10, 1, 2, 1];\n\n let sorted = arr.sort();\n\n let expected: [u32; 7] = [1, 1, 2, 3, 6, 8, 10];\n assert(sorted == expected);\n }\n\n #[test]\n fn test_sort_100_values() {\n let mut arr: [u32; 100] = [\n 42, 123, 87, 93, 48, 80, 50, 5, 104, 84, 70, 47, 119, 66, 71, 121, 3, 29, 42, 118, 2,\n 54, 89, 44, 81, 0, 26, 106, 68, 96, 84, 48, 95, 54, 45, 32, 89, 100, 109, 19, 37, 41,\n 19, 98, 53, 114, 107, 66, 6, 74, 13, 19, 105, 64, 123, 28, 44, 50, 89, 58, 123, 126, 21,\n 43, 86, 35, 21, 62, 82, 0, 108, 120, 72, 72, 62, 80, 12, 71, 70, 86, 116, 73, 38, 15,\n 127, 81, 30, 8, 125, 28, 26, 69, 114, 63, 27, 28, 61, 42, 13, 32,\n ];\n\n let sorted = arr.sort();\n\n let expected: [u32; 100] = [\n 0, 0, 2, 3, 5, 6, 8, 12, 13, 13, 15, 19, 19, 19, 21, 21, 26, 26, 27, 28, 28, 28, 29, 30,\n 32, 32, 35, 37, 38, 41, 42, 42, 42, 43, 44, 44, 45, 47, 48, 48, 50, 50, 53, 54, 54, 58,\n 61, 62, 62, 63, 64, 66, 66, 68, 69, 70, 70, 71, 71, 72, 72, 73, 74, 80, 80, 81, 81, 82,\n 84, 84, 86, 86, 87, 89, 89, 89, 93, 95, 96, 98, 100, 104, 105, 106, 107, 108, 109, 114,\n 114, 116, 118, 119, 120, 121, 123, 123, 123, 125, 126, 127,\n ];\n assert(sorted == expected);\n }\n\n #[test]\n fn test_sort_100_values_comptime() {\n let sorted = arr_with_100_values.sort();\n assert(sorted == expected_with_100_values);\n }\n\n #[test]\n fn test_sort_via() {\n let mut arr: [u32; 7] = [3, 6, 8, 10, 1, 2, 1];\n\n let sorted = arr.sort_via(sort_u32);\n\n let expected: [u32; 7] = [1, 1, 2, 3, 6, 8, 10];\n assert(sorted == expected);\n }\n\n #[test]\n fn test_sort_via_100_values() {\n let mut arr: [u32; 100] = [\n 42, 123, 87, 93, 48, 80, 50, 5, 104, 84, 70, 47, 119, 66, 71, 121, 3, 29, 42, 118, 2,\n 54, 89, 44, 81, 0, 26, 106, 68, 96, 84, 48, 95, 54, 45, 32, 89, 100, 109, 19, 37, 41,\n 19, 98, 53, 114, 107, 66, 6, 74, 13, 19, 105, 64, 123, 28, 44, 50, 89, 58, 123, 126, 21,\n 43, 86, 35, 21, 62, 82, 0, 108, 120, 72, 72, 62, 80, 12, 71, 70, 86, 116, 73, 38, 15,\n 127, 81, 30, 8, 125, 28, 26, 69, 114, 63, 27, 28, 61, 42, 13, 32,\n ];\n\n let sorted = arr.sort_via(sort_u32);\n\n let expected: [u32; 100] = [\n 0, 0, 2, 3, 5, 6, 8, 12, 13, 13, 15, 19, 19, 19, 21, 21, 26, 26, 27, 28, 28, 28, 29, 30,\n 32, 32, 35, 37, 38, 41, 42, 42, 42, 43, 44, 44, 45, 47, 48, 48, 50, 50, 53, 54, 54, 58,\n 61, 62, 62, 63, 64, 66, 66, 68, 69, 70, 70, 71, 71, 72, 72, 73, 74, 80, 80, 81, 81, 82,\n 84, 84, 86, 86, 87, 89, 89, 89, 93, 95, 96, 98, 100, 104, 105, 106, 107, 108, 109, 114,\n 114, 116, 118, 119, 120, 121, 123, 123, 123, 125, 126, 127,\n ];\n assert(sorted == expected);\n }\n\n #[test]\n fn mapi_empty() {\n assert_eq([].mapi(|i, x| i * x + 1), []);\n }\n\n #[test]\n fn for_each_empty() {\n let empty_array: [Field; 0] = [];\n empty_array.for_each(|_x| assert(false));\n }\n\n #[test]\n fn for_eachi_empty() {\n let empty_array: [Field; 0] = [];\n empty_array.for_eachi(|_i, _x| assert(false));\n }\n\n #[test]\n fn map_example() {\n let a = [1, 2, 3];\n let b = a.map(|a| a * 2);\n assert_eq(b, [2, 4, 6]);\n }\n\n #[test]\n fn mapi_example() {\n let a = [1, 2, 3];\n let b = a.mapi(|i, a| i + a * 2);\n assert_eq(b, [2, 5, 8]);\n }\n\n #[test]\n fn for_each_example() {\n let a = [1, 2, 3];\n let mut b = [0, 0, 0];\n let b_ref = &mut b;\n let mut i = 0;\n let i_ref = &mut i;\n a.for_each(|x| {\n b_ref[*i_ref] = x * 2;\n *i_ref += 1;\n });\n assert_eq(b, [2, 4, 6]);\n assert_eq(i, 3);\n }\n\n #[test]\n fn for_eachi_example() {\n let a = [1, 2, 3];\n let mut b = [0, 0, 0];\n let b_ref = &mut b;\n a.for_eachi(|i, a| { b_ref[i] = i + a * 2; });\n assert_eq(b, [2, 5, 8]);\n }\n\n #[test]\n fn concat() {\n let arr1 = [1, 2, 3, 4];\n let arr2 = [6, 7, 8, 9, 10, 11];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, [1, 2, 3, 4, 6, 7, 8, 9, 10, 11]);\n }\n\n #[test]\n fn concat_zero_length_with_something() {\n let arr1 = [];\n let arr2 = [1];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, [1]);\n }\n\n #[test]\n fn concat_something_with_zero_length() {\n let arr1 = [1];\n let arr2 = [];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, [1]);\n }\n\n #[test]\n fn concat_zero_lengths() {\n let arr1: [Field; 0] = [];\n let arr2: [Field; 0] = [];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, []);\n }\n}\n"
|
|
7332
7332
|
},
|
|
7333
|
-
"
|
|
7333
|
+
"304": {
|
|
7334
7334
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/address/aztec_address.nr",
|
|
7335
7335
|
"source": "use crate::{\n address::{\n partial_address::PartialAddress, salted_initialization_hash::SaltedInitializationHash,\n },\n constants::{\n AZTEC_ADDRESS_LENGTH, GENERATOR_INDEX__CONTRACT_ADDRESS_V1, MAX_FIELD_VALUE,\n MAX_PROTOCOL_CONTRACTS,\n },\n contract_class_id::ContractClassId,\n hash::poseidon2_hash_with_separator,\n public_keys::{IvpkM, NpkM, OvpkM, PublicKeys, ToPoint, TpkM},\n traits::{Deserialize, Empty, FromField, Packable, Serialize, ToField},\n utils::field::{pow, sqrt},\n};\n\n// We do below because `use crate::point::Point;` does not work\nuse dep::std::embedded_curve_ops::EmbeddedCurvePoint as Point;\n\nuse crate::public_keys::AddressPoint;\nuse std::{\n embedded_curve_ops::{EmbeddedCurveScalar, fixed_base_scalar_mul as derive_public_key},\n ops::Add,\n};\nuse std::meta::derive;\n\n// Aztec address\n#[derive(Deserialize, Eq, Packable, Serialize)]\npub struct AztecAddress {\n pub inner: Field,\n}\n\nimpl Empty for AztecAddress {\n fn empty() -> Self {\n Self { inner: 0 }\n }\n}\n\nimpl ToField for AztecAddress {\n fn to_field(self) -> Field {\n self.inner\n }\n}\n\nimpl FromField for AztecAddress {\n fn from_field(value: Field) -> AztecAddress {\n AztecAddress { inner: value }\n }\n}\n\nimpl AztecAddress {\n pub fn zero() -> Self {\n Self { inner: 0 }\n }\n\n /// Returns an address's `AddressPoint`, which can be used to create shared secrets with the owner\n /// of the address. If the address is invalid (i.e. it is not a properly derived Aztec address), then this\n /// returns `Option::none()`, and no shared secrets can be created.\n pub fn to_address_point(self) -> Option<AddressPoint> {\n // We compute the address point by taking our address, setting it to x, and then solving for y in the\n // equation which defines our bn curve:\n // y^2 = x^3 - 17; x = address\n let x = self.inner;\n let y_squared = pow(x, 3) - 17;\n\n // An invalid AztecAddress is one for which no y coordinate satisfies the curve equation, which we'll\n // identify by proving that the square root of y_squared does not exist.\n let mut y_opt = sqrt(y_squared);\n if y_opt.is_none() {\n Option::none()\n } else {\n let mut y = y_opt.unwrap();\n\n // If we get a negative y coordinate (any y where y > MAX_FIELD_VALUE / 2), we pin it to the\n // positive one (any value where y <= MAX_FIELD_VALUE / 2) by subtracting it from the Field modulus\n // note: The field modulus is MAX_FIELD_VALUE + 1\n if (!(y.lt(MAX_FIELD_VALUE / 2) | y.eq(MAX_FIELD_VALUE / 2))) {\n y = (MAX_FIELD_VALUE + 1) - y;\n }\n\n Option::some(\n AddressPoint { inner: Point { x: self.inner, y, is_infinite: false } },\n )\n }\n }\n\n pub fn compute(public_keys: PublicKeys, partial_address: PartialAddress) -> AztecAddress {\n let public_keys_hash = public_keys.hash();\n\n let pre_address = poseidon2_hash_with_separator(\n [public_keys_hash.to_field(), partial_address.to_field()],\n GENERATOR_INDEX__CONTRACT_ADDRESS_V1,\n );\n\n let address_point = derive_public_key(EmbeddedCurveScalar::from_field(pre_address)).add(\n public_keys.ivpk_m.to_point(),\n );\n\n // Note that our address is only the x-coordinate of the full address_point. This is okay because when people want to encrypt something and send it to us\n // they can recover our full point using the x-coordinate (our address itself). To do this, they recompute the y-coordinate according to the equation y^2 = x^3 - 17.\n // When they do this, they may get a positive y-coordinate (a value that is less than or equal to MAX_FIELD_VALUE / 2) or\n // a negative y-coordinate (a value that is more than MAX_FIELD_VALUE), and we cannot dictate which one they get and hence the recovered point may sometimes be different than the one\n // our secret can decrypt. Regardless though, they should and will always encrypt using point with the positive y-coordinate by convention.\n // This ensures that everyone encrypts to the same point given an arbitrary x-coordinate (address). This is allowed because even though our original point may not have a positive y-coordinate,\n // with our original secret, we will be able to derive the secret to the point with the flipped (and now positive) y-coordinate that everyone encrypts to.\n AztecAddress::from_field(address_point.x)\n }\n\n pub fn compute_from_class_id(\n contract_class_id: ContractClassId,\n salted_initialization_hash: SaltedInitializationHash,\n public_keys: PublicKeys,\n ) -> Self {\n let partial_address = PartialAddress::compute_from_salted_initialization_hash(\n contract_class_id,\n salted_initialization_hash,\n );\n\n AztecAddress::compute(public_keys, partial_address)\n }\n\n pub fn is_protocol_contract(self) -> bool {\n self.inner.lt(MAX_PROTOCOL_CONTRACTS as Field)\n }\n\n pub fn is_zero(self) -> bool {\n self.inner == 0\n }\n\n pub fn assert_is_zero(self) {\n assert(self.to_field() == 0);\n }\n}\n\n#[test]\nfn compute_address_from_partial_and_pub_keys() {\n let public_keys = PublicKeys {\n npk_m: NpkM {\n inner: Point {\n x: 0x22f7fcddfa3ce3e8f0cc8e82d7b94cdd740afa3e77f8e4a63ea78a239432dcab,\n y: 0x0471657de2b6216ade6c506d28fbc22ba8b8ed95c871ad9f3e3984e90d9723a7,\n is_infinite: false,\n },\n },\n ivpk_m: IvpkM {\n inner: Point {\n x: 0x111223493147f6785514b1c195bb37a2589f22a6596d30bb2bb145fdc9ca8f1e,\n y: 0x273bbffd678edce8fe30e0deafc4f66d58357c06fd4a820285294b9746c3be95,\n is_infinite: false,\n },\n },\n ovpk_m: OvpkM {\n inner: Point {\n x: 0x09115c96e962322ffed6522f57194627136b8d03ac7469109707f5e44190c484,\n y: 0x0c49773308a13d740a7f0d4f0e6163b02c5a408b6f965856b6a491002d073d5b,\n is_infinite: false,\n },\n },\n tpk_m: TpkM {\n inner: Point {\n x: 0x00d3d81beb009873eb7116327cf47c612d5758ef083d4fda78e9b63980b2a762,\n y: 0x2f567d22d2b02fe1f4ad42db9d58a36afd1983e7e2909d1cab61cafedad6193a,\n is_infinite: false,\n },\n },\n };\n\n let partial_address = PartialAddress::from_field(\n 0x0a7c585381b10f4666044266a02405bf6e01fa564c8517d4ad5823493abd31de,\n );\n\n let address = AztecAddress::compute(public_keys, partial_address);\n\n // The following value was generated by `derivation.test.ts`.\n // --> Run the test with AZTEC_GENERATE_TEST_DATA=1 flag to update test data.\n let expected_computed_address_from_partial_and_pubkeys =\n 0x24e4646f58b9fbe7d38e317db8d5636c423fbbdfbe119fc190fe9c64747e0c62;\n assert(address.to_field() == expected_computed_address_from_partial_and_pubkeys);\n}\n\n#[test]\nfn compute_preaddress_from_partial_and_pub_keys() {\n let pre_address = poseidon2_hash_with_separator([1, 2], GENERATOR_INDEX__CONTRACT_ADDRESS_V1);\n let expected_computed_preaddress_from_partial_and_pubkey =\n 0x23ce9be3fa3c846b0f9245cc796902e731d04f086e8a42473bb29e405fc98075;\n assert(pre_address == expected_computed_preaddress_from_partial_and_pubkey);\n}\n\n#[test]\nfn from_field_to_field() {\n let address = AztecAddress { inner: 37 };\n assert_eq(FromField::from_field(address.to_field()), address);\n}\n\n#[test]\nfn serde() {\n let address = AztecAddress { inner: 37 };\n // We use the AZTEC_ADDRESS_LENGTH constant to ensure that there is a match between the derived trait\n // implementation and the constant.\n let serialized: [Field; AZTEC_ADDRESS_LENGTH] = address.serialize();\n let deserialized = AztecAddress::deserialize(serialized);\n assert_eq(address, deserialized);\n}\n\n#[test]\nfn to_address_point_valid() {\n // x = 8 where x^3 - 17 = 512 - 17 = 495, which is a residue in this field\n let address = AztecAddress { inner: 8 };\n let maybe_point = address.to_address_point();\n assert(maybe_point.is_some());\n\n let point = maybe_point.unwrap().inner;\n // check that x is preserved\n assert_eq(point.x, Field::from(8));\n\n // check that the curve equation holds: y^2 == x^3 - 17\n assert_eq(pow(point.y, 2), pow(point.x, 3) - 17);\n}\n\n#[test]\nunconstrained fn to_address_point_invalid() {\n // x = 3 where x^3 - 17 = 27 - 17 = 10, which is a non-residue in this field\n let address = AztecAddress { inner: 3 }; //\n let maybe_point = address.to_address_point();\n assert(maybe_point.is_none());\n}\n"
|
|
7336
7336
|
},
|
|
7337
|
-
"
|
|
7337
|
+
"307": {
|
|
7338
7338
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/address/partial_address.nr",
|
|
7339
7339
|
"source": "use crate::{\n address::{aztec_address::AztecAddress, salted_initialization_hash::SaltedInitializationHash},\n constants::GENERATOR_INDEX__PARTIAL_ADDRESS,\n contract_class_id::ContractClassId,\n hash::poseidon2_hash_with_separator,\n traits::{Deserialize, Empty, Serialize, ToField},\n};\nuse std::meta::derive;\n\n// Partial address\n#[derive(Deserialize, Eq, Serialize)]\npub struct PartialAddress {\n pub inner: Field,\n}\n\nimpl ToField for PartialAddress {\n fn to_field(self) -> Field {\n self.inner\n }\n}\n\nimpl Empty for PartialAddress {\n fn empty() -> Self {\n Self { inner: 0 }\n }\n}\n\nimpl PartialAddress {\n pub fn from_field(field: Field) -> Self {\n Self { inner: field }\n }\n\n pub fn compute(\n contract_class_id: ContractClassId,\n salt: Field,\n initialization_hash: Field,\n deployer: AztecAddress,\n ) -> Self {\n PartialAddress::compute_from_salted_initialization_hash(\n contract_class_id,\n SaltedInitializationHash::compute(salt, initialization_hash, deployer),\n )\n }\n\n pub fn compute_from_salted_initialization_hash(\n contract_class_id: ContractClassId,\n salted_initialization_hash: SaltedInitializationHash,\n ) -> Self {\n PartialAddress::from_field(poseidon2_hash_with_separator(\n [contract_class_id.to_field(), salted_initialization_hash.to_field()],\n GENERATOR_INDEX__PARTIAL_ADDRESS,\n ))\n }\n\n pub fn to_field(self) -> Field {\n self.inner\n }\n\n pub fn is_zero(self) -> bool {\n self.to_field() == 0\n }\n\n pub fn assert_is_zero(self) {\n assert(self.to_field() == 0);\n }\n}\n\nmod test {\n use crate::{address::partial_address::PartialAddress, traits::{Deserialize, Serialize}};\n\n #[test]\n fn serialization_of_partial_address() {\n let item = PartialAddress::from_field(1);\n let serialized: [Field; 1] = item.serialize();\n let deserialized = PartialAddress::deserialize(serialized);\n assert_eq(item, deserialized);\n }\n}\n"
|
|
7340
7340
|
},
|
|
7341
|
-
"
|
|
7341
|
+
"309": {
|
|
7342
7342
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/address/salted_initialization_hash.nr",
|
|
7343
7343
|
"source": "use crate::{\n address::aztec_address::AztecAddress, constants::GENERATOR_INDEX__PARTIAL_ADDRESS,\n hash::poseidon2_hash_with_separator, traits::ToField,\n};\n\n// Salted initialization hash. Used in the computation of a partial address.\n#[derive(Eq)]\npub struct SaltedInitializationHash {\n pub inner: Field,\n}\n\nimpl ToField for SaltedInitializationHash {\n fn to_field(self) -> Field {\n self.inner\n }\n}\n\nimpl SaltedInitializationHash {\n pub fn from_field(field: Field) -> Self {\n Self { inner: field }\n }\n\n pub fn compute(salt: Field, initialization_hash: Field, deployer: AztecAddress) -> Self {\n SaltedInitializationHash::from_field(poseidon2_hash_with_separator(\n [salt, initialization_hash, deployer.to_field()],\n GENERATOR_INDEX__PARTIAL_ADDRESS,\n ))\n }\n\n pub fn assert_is_zero(self) {\n assert(self.to_field() == 0);\n }\n}\n"
|
|
7344
7344
|
},
|
|
7345
|
-
"
|
|
7345
|
+
"319": {
|
|
7346
7346
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/contract_instance.nr",
|
|
7347
7347
|
"source": "use crate::{\n address::{aztec_address::AztecAddress, partial_address::PartialAddress},\n contract_class_id::ContractClassId,\n public_keys::PublicKeys,\n traits::{Deserialize, Hash, Serialize, ToField},\n};\nuse std::meta::derive;\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct ContractInstance {\n pub salt: Field,\n pub deployer: AztecAddress,\n pub contract_class_id: ContractClassId,\n pub initialization_hash: Field,\n pub public_keys: PublicKeys,\n}\n\nimpl Hash for ContractInstance {\n fn hash(self) -> Field {\n self.to_address().to_field()\n }\n}\n\nimpl ContractInstance {\n pub fn to_address(self) -> AztecAddress {\n AztecAddress::compute(\n self.public_keys,\n PartialAddress::compute(\n self.contract_class_id,\n self.salt,\n self.initialization_hash,\n self.deployer,\n ),\n )\n }\n}\n\nmod test {\n use crate::{\n address::AztecAddress,\n constants::CONTRACT_INSTANCE_LENGTH,\n contract_class_id::ContractClassId,\n contract_instance::ContractInstance,\n public_keys::PublicKeys,\n traits::{Deserialize, FromField, Serialize},\n };\n\n #[test]\n fn serde() {\n let instance = ContractInstance {\n salt: 6,\n deployer: AztecAddress::from_field(12),\n contract_class_id: ContractClassId::from_field(13),\n initialization_hash: 156,\n public_keys: PublicKeys::default(),\n };\n\n // We use the CONTRACT_INSTANCE_LENGTH constant to ensure that there is a match between the derived trait\n // implementation and the constant.\n let serialized: [Field; CONTRACT_INSTANCE_LENGTH] = instance.serialize();\n\n let deserialized = ContractInstance::deserialize(serialized);\n\n assert(instance.eq(deserialized));\n }\n\n}\n"
|
|
7348
7348
|
},
|
|
7349
|
-
"
|
|
7349
|
+
"325": {
|
|
7350
7350
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/debug_log.nr",
|
|
7351
7351
|
"source": "// TODO: Expose other wrapped functions than debug (info, warn)\n// ['silent', 'fatal', 'error', 'warn', 'info', 'verbose', 'debug', 'trace']\n\npub global SILENT_LOG_LEVEL: u8 = 0;\npub global FATAL_LOG_LEVEL: u8 = 1;\npub global ERROR_LOG_LEVEL: u8 = 2;\npub global WARN_LOG_LEVEL: u8 = 3;\npub global INFO_LOG_LEVEL: u8 = 4;\npub global VERBOSE_LOG_LEVEL: u8 = 5;\npub global DEBUG_LOG_LEVEL: u8 = 6;\npub global TRACE_LOG_LEVEL: u8 = 7;\n\n/// Utility function to console.log data in the acir simulator.\n/// Example:\n/// debug_log(\"blah blah this is a debug string\");\npub fn debug_log<let N: u32>(msg: str<N>) {\n debug_log_format(msg, []);\n}\n\n/// Same as debug_log, but allows to customize the log level.\n/// Consider changing just to 'log'\npub fn debug_log_with_level<let N: u32>(log_level: u8, msg: str<N>) {\n debug_log_format_with_level(log_level, msg, []);\n}\n\n/// Utility function to console.log data in the acir simulator. This variant receives a format string in which the\n/// `${k}` tokens will be replaced with the k-eth value in the `args` array.\n/// Examples:\n/// debug_log_format(\"get_2(slot:{0}) =>\\n\\t0:{1}\\n\\t1:{2}\", [storage_slot, note0_hash, note1_hash]);\n/// debug_log_format(\"whole array: {}\", [e1, e2, e3, e4]);\npub fn debug_log_format<let M: u32, let N: u32>(msg: str<M>, args: [Field; N]) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe\n // to call.\n unsafe { debug_log_array_oracle_wrapper(DEBUG_LOG_LEVEL, msg, args) };\n}\n\n/// Same as debug_log_format, but allows to customize the log level.\n/// Consider changing just to 'log_format'\npub fn debug_log_format_with_level<let M: u32, let N: u32>(\n log_level: u8,\n msg: str<M>,\n args: [Field; N],\n) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe\n // to call.\n unsafe { debug_log_array_oracle_wrapper(log_level, msg, args) };\n}\n\n/// Utility function to console.log data in the acir simulator. This variant receives a format string in which the\n/// `${k}` tokens will be replaced with the k-eth value in the `args` slice.\n/// Examples:\n/// debug_log_format(\"get_2(slot:{0}) =>\\n\\t0:{1}\\n\\t1:{2}\", [storage_slot, note0_hash, note1_hash]);\n/// debug_log_format(\"whole slice: {}\", [e1, e2, e3, e4]);\npub fn debug_log_format_slice<let M: u32>(log_level: u8, msg: str<M>, args: [Field]) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe\n // to call.\n unsafe { debug_log_slice_oracle_wrapper(log_level, msg, args) };\n}\n\n// We provide two versions of the debug log oracle: one that takes args as a slice and another one that takes args as an array.\n// We do this since conversion from array to slice generates overhead in public functions, since opcodes need to be emitted for the conversion.\n// By exposing the two flavors, we avoid conversions since the AVM is able to handle both arrays an slices in this oracle.\n\nunconstrained fn debug_log_slice_oracle_wrapper<let M: u32>(\n log_level: u8,\n msg: str<M>,\n args: [Field],\n) {\n debug_log_slice_oracle(log_level, msg, args);\n}\n\n// WARNING: sometimes when using debug logs the ACVM errors with: `thrown: \"solver opcode resolution error: cannot solve opcode: expression has too many unknowns x155\"`\n#[oracle(utilityDebugLog)]\nunconstrained fn debug_log_slice_oracle<let M: u32>(log_level: u8, msg: str<M>, args: [Field]) {}\n\nunconstrained fn debug_log_array_oracle_wrapper<let M: u32, let N: u32>(\n log_level: u8,\n msg: str<M>,\n args: [Field; N],\n) {\n debug_log_array_oracle(log_level, msg, N, args);\n}\n\n#[oracle(utilityDebugLog)]\nunconstrained fn debug_log_array_oracle<let M: u32, let N: u32>(\n log_level: u8,\n msg: str<M>,\n length: u32,\n args: [Field; N],\n) {}\n"
|
|
7352
7352
|
},
|
|
7353
|
-
"
|
|
7353
|
+
"335": {
|
|
7354
7354
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/hash.nr",
|
|
7355
7355
|
"source": "mod poseidon2_chunks;\n\nuse crate::{\n abis::{\n contract_class_function_leaf_preimage::ContractClassFunctionLeafPreimage,\n function_selector::FunctionSelector,\n note_hash::NoteHash,\n nullifier::Nullifier,\n private_log::{PrivateLog, PrivateLogData},\n transaction::tx_request::TxRequest,\n },\n address::{AztecAddress, EthAddress},\n constants::{\n CONTRACT_CLASS_LOG_SIZE_IN_FIELDS, FUNCTION_TREE_HEIGHT, GENERATOR_INDEX__NOTE_HASH_NONCE,\n GENERATOR_INDEX__OUTER_NULLIFIER, GENERATOR_INDEX__SILOED_NOTE_HASH,\n GENERATOR_INDEX__UNIQUE_NOTE_HASH, NULL_MSG_SENDER_CONTRACT_ADDRESS, TWO_POW_64,\n },\n merkle_tree::root_from_sibling_path,\n messaging::l2_to_l1_message::L2ToL1Message,\n poseidon2::Poseidon2Sponge,\n side_effect::{Counted, Scoped},\n traits::{FromField, Hash, ToField},\n utils::field::{field_from_bytes, field_from_bytes_32_trunc},\n};\n\npub use poseidon2_chunks::poseidon2_absorb_in_chunks_existing_sponge;\nuse poseidon2_chunks::poseidon2_absorb_in_chunks;\nuse std::embedded_curve_ops::EmbeddedCurveScalar;\n\npub fn sha256_to_field<let N: u32>(bytes_to_hash: [u8; N]) -> Field {\n let sha256_hashed = sha256::digest(bytes_to_hash);\n let hash_in_a_field = field_from_bytes_32_trunc(sha256_hashed);\n\n hash_in_a_field\n}\n\npub fn private_functions_root_from_siblings(\n selector: FunctionSelector,\n vk_hash: Field,\n function_leaf_index: Field,\n function_leaf_sibling_path: [Field; FUNCTION_TREE_HEIGHT],\n) -> Field {\n let function_leaf_preimage = ContractClassFunctionLeafPreimage { selector, vk_hash };\n let function_leaf = function_leaf_preimage.hash();\n root_from_sibling_path(\n function_leaf,\n function_leaf_index,\n function_leaf_sibling_path,\n )\n}\n\npub fn compute_note_hash_nonce(first_nullifier_in_tx: Field, note_index_in_tx: u32) -> Field {\n // Hashing the first nullifier with note index in tx is guaranteed to be unique (because all nullifiers are also\n // unique).\n poseidon2_hash_with_separator(\n [first_nullifier_in_tx, note_index_in_tx as Field],\n GENERATOR_INDEX__NOTE_HASH_NONCE,\n )\n}\n\npub fn compute_unique_note_hash(note_nonce: Field, siloed_note_hash: Field) -> Field {\n let inputs = [note_nonce, siloed_note_hash];\n poseidon2_hash_with_separator(inputs, GENERATOR_INDEX__UNIQUE_NOTE_HASH)\n}\n\npub fn compute_nonce_and_unique_note_hash(\n siloed_note_hash: Field,\n first_nullifier: Field,\n note_index_in_tx: u32,\n) -> Field {\n let note_nonce = compute_note_hash_nonce(first_nullifier, note_index_in_tx);\n compute_unique_note_hash(note_nonce, siloed_note_hash)\n}\n\npub fn compute_siloed_note_hash(app: AztecAddress, note_hash: Field) -> Field {\n poseidon2_hash_with_separator(\n [app.to_field(), note_hash],\n GENERATOR_INDEX__SILOED_NOTE_HASH,\n )\n}\n\n/// Computes unique note hashes from siloed note hashes\npub fn compute_unique_siloed_note_hash(\n siloed_note_hash: Field,\n first_nullifier: Field,\n note_index_in_tx: u32,\n) -> Field {\n if siloed_note_hash == 0 {\n 0\n } else {\n compute_nonce_and_unique_note_hash(siloed_note_hash, first_nullifier, note_index_in_tx)\n }\n}\n\n/// Siloing in the context of Aztec refers to the process of hashing a note hash with a contract address (this way\n/// the note hash is scoped to a specific contract). This is used to prevent intermingling of notes between contracts.\npub fn silo_note_hash(note_hash: Scoped<Counted<NoteHash>>) -> Field {\n if note_hash.contract_address.is_zero() {\n 0\n } else {\n compute_siloed_note_hash(note_hash.contract_address, note_hash.innermost())\n }\n}\n\npub fn compute_siloed_nullifier(app: AztecAddress, nullifier: Field) -> Field {\n poseidon2_hash_with_separator(\n [app.to_field(), nullifier],\n GENERATOR_INDEX__OUTER_NULLIFIER,\n )\n}\n\npub fn silo_nullifier(nullifier: Scoped<Counted<Nullifier>>) -> Field {\n let value = nullifier.innermost().value;\n // Q: shouldn't we be checking whether the _whole_ nullifier is empty?\n // A: We don't have to. The init and inner circuits add contract address to non-empty nullifiers.\n // So we know we should silo it if the contract address is not empty.\n if nullifier.contract_address.is_zero() {\n value // Return `value` instead of 0 because an already-siloed nullifier's contract address is zero.\n } else {\n compute_siloed_nullifier(nullifier.contract_address, value)\n }\n}\n\npub fn create_protocol_nullifier(tx_request: TxRequest) -> Scoped<Counted<Nullifier>> {\n Nullifier { value: tx_request.hash(), note_hash: 0 }.count(1).scope(\n NULL_MSG_SENDER_CONTRACT_ADDRESS,\n )\n}\n\npub fn compute_siloed_private_log_field(contract_address: AztecAddress, field: Field) -> Field {\n poseidon2_hash([contract_address.to_field(), field])\n}\n\npub fn silo_private_log(private_log: Scoped<Counted<PrivateLogData>>) -> PrivateLog {\n let log = private_log.innermost().log;\n if private_log.contract_address.is_zero() {\n log\n } else {\n let mut fields = log.fields;\n fields[0] = compute_siloed_private_log_field(private_log.contract_address, fields[0]);\n PrivateLog::new(fields, log.length)\n }\n}\n\npub fn compute_contract_class_log_hash(log: [Field; CONTRACT_CLASS_LOG_SIZE_IN_FIELDS]) -> Field {\n poseidon2_hash(log)\n}\n\npub fn compute_app_secret_key(\n master_secret_key: EmbeddedCurveScalar,\n app_address: AztecAddress,\n app_secret_generator: Field,\n) -> Field {\n poseidon2_hash_with_separator(\n [master_secret_key.hi, master_secret_key.lo, app_address.to_field()],\n app_secret_generator,\n )\n}\n\npub fn merkle_hash(left: Field, right: Field) -> Field {\n poseidon2_hash([left, right])\n}\n\npub fn compute_l2_to_l1_hash(\n contract_address: AztecAddress,\n recipient: EthAddress,\n content: Field,\n rollup_version_id: Field,\n chain_id: Field,\n) -> Field {\n let contract_address_bytes: [u8; 32] = contract_address.to_field().to_be_bytes();\n let recipient_bytes: [u8; 20] = recipient.to_be_bytes();\n let content_bytes: [u8; 32] = content.to_be_bytes();\n let rollup_version_id_bytes: [u8; 32] = rollup_version_id.to_be_bytes();\n let chain_id_bytes: [u8; 32] = chain_id.to_be_bytes();\n\n let mut bytes: [u8; 148] = std::mem::zeroed();\n for i in 0..32 {\n bytes[i] = contract_address_bytes[i];\n bytes[i + 32] = rollup_version_id_bytes[i];\n // 64 - 84 are for recipient.\n bytes[i + 84] = chain_id_bytes[i];\n bytes[i + 116] = content_bytes[i];\n }\n\n for i in 0..20 {\n bytes[64 + i] = recipient_bytes[i];\n }\n\n sha256_to_field(bytes)\n}\n\npub fn silo_l2_to_l1_message(\n msg: Scoped<L2ToL1Message>,\n rollup_version_id: Field,\n chain_id: Field,\n) -> Field {\n if msg.contract_address.is_zero() {\n 0\n } else {\n compute_l2_to_l1_hash(\n msg.contract_address,\n msg.inner.recipient,\n msg.inner.content,\n rollup_version_id,\n chain_id,\n )\n }\n}\n\n/// Computes sha256 hash of 2 input fields.\n///\n/// @returns A truncated field (i.e., the first byte is always 0).\npub fn accumulate_sha256(v0: Field, v1: Field) -> Field {\n // Concatenate two fields into 32 x 2 = 64 bytes\n let v0_as_bytes: [u8; 32] = v0.to_be_bytes();\n let v1_as_bytes: [u8; 32] = v1.to_be_bytes();\n let hash_input_flattened = v0_as_bytes.concat(v1_as_bytes);\n\n sha256_to_field(hash_input_flattened)\n}\n\n#[inline_always]\npub fn pedersen_hash<let N: u32>(inputs: [Field; N], hash_index: u32) -> Field {\n std::hash::pedersen_hash_with_separator(inputs, hash_index)\n}\n\npub fn poseidon2_hash<let N: u32>(inputs: [Field; N]) -> Field {\n poseidon::poseidon2::Poseidon2::hash(inputs, N)\n}\n\n#[no_predicates]\npub fn poseidon2_hash_with_separator<let N: u32, T>(inputs: [Field; N], separator: T) -> Field\nwhere\n T: ToField,\n{\n let inputs_with_separator = [separator.to_field()].concat(inputs);\n poseidon2_hash(inputs_with_separator)\n}\n\n/// Computes a Poseidon2 hash over a dynamic-length subarray of the given input.\n/// Only the first `in_len` fields of `input` are absorbed; any remaining fields are ignored.\n/// The caller is responsible for ensuring that the input is padded with zeros if required.\n#[no_predicates]\npub fn poseidon2_hash_subarray<let N: u32>(input: [Field; N], in_len: u32) -> Field {\n let mut sponge = poseidon2_absorb_in_chunks(input, in_len);\n sponge.squeeze()\n}\n\n// NB the below is the same as poseidon::poseidon2::Poseidon2::hash(), but replacing a range check with a bit check,\n// and absorbing in chunks of 3 below.\n#[no_predicates]\npub fn poseidon2_cheaper_variable_hash<let N: u32>(input: [Field; N], in_len: u32) -> Field {\n let mut sponge = poseidon2_absorb_in_chunks(input, in_len);\n // In the case where the hash preimage is variable-length, we append `1` to the end of the input, to distinguish\n // from fixed-length hashes. (the combination of this additional field element + the hash IV ensures\n // fixed-length and variable-length hashes do not collide)\n if in_len != N {\n sponge.absorb(1);\n }\n sponge.squeeze()\n}\n\n// This function is unconstrained because it is intended to be used in unconstrained context only as\n// in constrained contexts it would be too inefficient.\npub unconstrained fn poseidon2_hash_with_separator_bounded_vec<let N: u32, T>(\n inputs: BoundedVec<Field, N>,\n separator: T,\n) -> Field\nwhere\n T: ToField,\n{\n let in_len = inputs.len() + 1;\n let iv: Field = (in_len as Field) * TWO_POW_64;\n let mut sponge = Poseidon2Sponge::new(iv);\n sponge.absorb(separator.to_field());\n\n for i in 0..inputs.len() {\n sponge.absorb(inputs.get(i));\n }\n\n sponge.squeeze()\n}\n\n#[no_predicates]\npub fn poseidon2_hash_bytes<let N: u32>(inputs: [u8; N]) -> Field {\n let mut fields = [0; (N + 30) / 31];\n let mut field_index = 0;\n let mut current_field = [0; 31];\n for i in 0..inputs.len() {\n let index = i % 31;\n current_field[index] = inputs[i];\n if index == 30 {\n fields[field_index] = field_from_bytes(current_field, false);\n current_field = [0; 31];\n field_index += 1;\n }\n }\n if field_index != fields.len() {\n fields[field_index] = field_from_bytes(current_field, false);\n }\n poseidon2_hash(fields)\n}\n\n#[test]\nfn poseidon_chunks_matches_fixed() {\n let in_len = 501;\n let mut input: [Field; 4096] = [0; 4096];\n let mut fixed_input = [3; 501];\n assert(in_len == fixed_input.len()); // sanity check\n for i in 0..in_len {\n input[i] = 3;\n }\n let sub_chunk_hash = poseidon2_hash_subarray(input, in_len);\n let fixed_len_hash = poseidon::poseidon2::Poseidon2::hash(fixed_input, fixed_input.len());\n assert(sub_chunk_hash == fixed_len_hash);\n}\n\n#[test]\nfn poseidon_chunks_matches_variable() {\n let in_len = 501;\n let mut input: [Field; 4096] = [0; 4096];\n for i in 0..in_len {\n input[i] = 3;\n }\n let variable_chunk_hash = poseidon2_cheaper_variable_hash(input, in_len);\n let variable_len_hash = poseidon::poseidon2::Poseidon2::hash(input, in_len);\n assert(variable_chunk_hash == variable_len_hash);\n}\n\n#[test]\nfn smoke_sha256_to_field() {\n let full_buffer = [\n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,\n 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,\n 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,\n 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93,\n 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112,\n 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130,\n 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,\n 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159,\n ];\n let result = sha256_to_field(full_buffer);\n\n assert(result == 0x448ebbc9e1a31220a2f3830c18eef61b9bd070e5084b7fa2a359fe729184c7);\n\n // to show correctness of the current ver (truncate one byte) vs old ver (mod full bytes):\n let result_bytes = sha256::digest(full_buffer);\n let truncated_field = crate::utils::field::field_from_bytes_32_trunc(result_bytes);\n assert(truncated_field == result);\n let mod_res = result + (result_bytes[31] as Field);\n assert(mod_res == 0x448ebbc9e1a31220a2f3830c18eef61b9bd070e5084b7fa2a359fe729184e0);\n}\n\n#[test]\nfn compute_l2_l1_hash() {\n // All zeroes\n let hash_result =\n compute_l2_to_l1_hash(AztecAddress::from_field(0), EthAddress::zero(), 0, 0, 0);\n assert(hash_result == 0x3b18c58c739716e76429634a61375c45b3b5cd470c22ab6d3e14cee23dd992);\n\n // Non-zero case\n let hash_result = compute_l2_to_l1_hash(\n AztecAddress::from_field(1),\n EthAddress::from_field(3),\n 5,\n 2,\n 4,\n );\n assert(hash_result == 0xaab2a5828156782b12a1dc6f336e2bc627eb1b9514b02d511f66296990c050);\n}\n\n#[test]\nfn silo_l2_to_l1_message_matches_typescript() {\n let version = 4;\n let chainId = 5;\n\n let hash = silo_l2_to_l1_message(\n L2ToL1Message { recipient: EthAddress::from_field(1), content: 2 }.scope(\n AztecAddress::from_field(3),\n ),\n version,\n chainId,\n );\n\n // The following value was generated by `yarn-project/stdlib/src/hash/hash.test.ts`\n let hash_from_typescript = 0x0081edf209e087ad31b3fd24263698723d57190bd1d6e9fe056fc0c0a68ee661;\n\n assert_eq(hash, hash_from_typescript);\n}\n\n#[test]\nunconstrained fn poseidon2_hash_with_separator_bounded_vec_matches_non_bounded_vec_version() {\n let inputs = BoundedVec::<Field, 4>::from_array([1, 2, 3]);\n let separator = 42;\n\n // Hash using bounded vec version\n let bounded_result = poseidon2_hash_with_separator_bounded_vec(inputs, separator);\n\n // Hash using regular version\n let regular_result = poseidon2_hash_with_separator([1, 2, 3], separator);\n\n // Results should match\n assert_eq(bounded_result, regular_result);\n}\n"
|
|
7356
7356
|
},
|
|
7357
|
-
"
|
|
7357
|
+
"348": {
|
|
7358
7358
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/meta/mod.nr",
|
|
7359
7359
|
"source": "use utils::derive_serialization_quotes;\n\npub mod utils;\n\n/// Generates the generic parameter declarations for a struct's trait implementation.\n///\n/// This function takes a struct type definition and generates the generic parameter declarations\n/// that go after the `impl` keyword. For example, given a struct with generics `N: u32` and `T`,\n/// it generates `<let N: u32, T>`.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate generic declarations for\n///\n/// # Returns\n/// A quoted code block containing the generic parameter declarations, or an empty quote if the struct\n/// has no generic parameters\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Container<T, let N: u32> {\n/// items: [T; N],\n/// count: u32\n/// }\n/// ```\n///\n/// This function generates:\n/// ```\n/// <let N: u32, T>\n/// ```\ncomptime fn get_generics_declarations(s: TypeDefinition) -> Quoted {\n let generics = s.generics();\n\n if generics.len() > 0 {\n let generics_declarations_items = generics\n .map(|(name, maybe_integer_typ)| {\n // The second item in the generics tuple is an Option of an integer type that is Some only if\n // the generic is numeric.\n if maybe_integer_typ.is_some() {\n // The generic is numeric, so we return a quote defined as e.g. \"let N: u32\"\n let integer_type = maybe_integer_typ.unwrap();\n quote {let $name: $integer_type}\n } else {\n // The generic is not numeric, so we return a quote containing the name of the generic (e.g. \"T\")\n quote {$name}\n }\n })\n .join(quote {,});\n quote {<$generics_declarations_items>}\n } else {\n // The struct doesn't have any generics defined, so we just return an empty quote.\n quote {}\n }\n}\n\n/// Generates the `where` clause for a trait implementation that constrains non-numeric generic type parameters.\n///\n/// This function takes a struct type definition and a trait name, and generates a `where` clause that\n/// requires all non-numeric generic type parameters to implement the specified trait.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate the where clause for\n/// - `trait_name`: The name of the trait that non-numeric generic parameters must implement\n///\n/// # Returns\n/// A quoted code block containing the where clause, or an empty quote if the struct has no non-numeric\n/// generic parameters\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Container<T, let N: u32> {\n/// items: [T; N],\n/// count: u32\n/// }\n/// ```\n///\n/// And trait name \"Serialize\", this function generates:\n/// ```\n/// where T: Serialize\n/// ```\ncomptime fn get_where_trait_clause(s: TypeDefinition, trait_name: Quoted) -> Quoted {\n let generics = s.generics();\n\n // The second item in the generics tuple is an Option of an integer type that is Some only if the generic is\n // numeric.\n let non_numeric_generics =\n generics.filter(|(_, maybe_integer_typ)| maybe_integer_typ.is_none());\n\n if non_numeric_generics.len() > 0 {\n let non_numeric_generics_declarations =\n non_numeric_generics.map(|(name, _)| quote {$name: $trait_name}).join(quote {,});\n quote {where $non_numeric_generics_declarations}\n } else {\n // There are no non-numeric generics, so we return an empty quote.\n quote {}\n }\n}\n\n/// Generates a `Serialize` trait implementation for a struct type.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A quoted code block containing the trait implementation\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Log<N> {\n/// fields: [Field; N],\n/// length: u32\n/// }\n/// ```\n///\n/// This function generates code equivalent to:\n/// ```\n/// impl<let N: u32> Serialize for Log<N> {\n/// let N: u32 = <[Field; N] as Serialize>::N + <u32 as Serialize>::N;\n///\n/// #[inline_always]\n/// fn serialize(self) -> [Field; Self::N] {\n/// let mut serialized_params = [0; _];\n/// let mut offset = 0;\n///\n/// let serialized_member = Serialize::serialize(self.fields);\n/// let serialized_member_len = <[Field; N] as Serialize>::N;\n/// for i in 0..serialized_member_len {\n/// serialized_params[i + offset] = serialized_member[i];\n/// }\n/// offset += serialized_member_len;\n///\n/// let serialized_member = Serialize::serialize(self.length);\n/// let serialized_member_len = <u32 as Serialize>::N;\n/// for i in 0..serialized_member_len {\n/// serialized_params[i + offset] = serialized_member[i];\n/// }\n/// offset += serialized_member_len;\n///\n/// serialized_params\n/// }\n/// }\n/// ```\npub comptime fn derive_serialize(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n\n // We care only about the name and type so we drop the last item of the tuple\n let params = nested_struct.0.fields(nested_struct.1).map(|(name, typ, _)| (name, typ));\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Serialize` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_serialize_clause = get_where_trait_clause(s, quote {Serialize});\n\n let (function_body, params_len_quote, serialized_params_name) =\n derive_serialization_quotes(params, true);\n\n quote {\n impl$generics_declarations $crate::traits::Serialize for $typ\n $where_serialize_clause\n {\n let N: u32 = $params_len_quote;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n $function_body\n\n $serialized_params_name\n }\n }\n }\n}\n\n/// Generates a `Deserialize` trait implementation for a given struct `s`.\n///\n/// # Arguments\n/// * `s` - The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A `Quoted` block containing the generated trait implementation\n///\n/// # Requirements\n/// Each struct member type must implement the `Deserialize` trait (it gets used in the generated code).\n///\n/// # Example\n/// For a struct like:\n/// ```\n/// struct MyStruct {\n/// x: AztecAddress,\n/// y: Field,\n/// }\n/// ```\n///\n/// This generates:\n/// ```\n/// impl Deserialize for MyStruct {\n/// let N: u32 = <AztecAddress as Deserialize>::N + <Field as Deserialize>::N;\n///\n/// fn deserialize(serialized: [Field; Self::N]) -> Self {\n/// let mut offset = 0;\n/// let mut member_fields = [0; <AztecAddress as Deserialize>::N];\n/// for i in 0..<AztecAddress as Deserialize>::N {\n/// member_fields[i] = serialized[i + offset];\n/// }\n/// let x = <AztecAddress as Deserialize>::deserialize(member_fields);\n/// offset += <AztecAddress as Deserialize>::N;\n///\n/// let mut member_fields = [0; <Field as Deserialize>::N];\n/// for i in 0..<Field as Deserialize>::N {\n/// member_fields[i] = serialized[i + offset];\n/// }\n/// let y = <Field as Deserialize>::deserialize(member_fields);\n/// offset += <Field as Deserialize>::N;\n///\n/// Self { x, y }\n/// }\n/// }\n/// ```\npub(crate) comptime fn derive_deserialize(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n let params = nested_struct.0.fields(nested_struct.1);\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Deserialize` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_deserialize_clause = get_where_trait_clause(s, quote {Deserialize});\n\n // The following will give us:\n // <type_of_struct_member_1 as Deserialize>::N + <type_of_struct_member_2 as Deserialize>::N + ...\n // (or 0 if the struct has no members)\n let right_hand_side_of_definition_of_n = if params.len() > 0 {\n params\n .map(|(_, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n <$param_type as $crate::traits::Deserialize>::N\n }\n })\n .join(quote {+})\n } else {\n quote {0}\n };\n\n // For structs containing a single member, we can enhance performance by directly deserializing the input array,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let function_body = if params.len() > 1 {\n // This generates deserialization code for each struct member and concatenates them together.\n let deserialization_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let mut member_fields = [0; <$param_type as Deserialize>::N];\n for i in 0..<$param_type as Deserialize>::N {\n member_fields[i] = serialized[i + offset];\n }\n let $param_name = <$param_type as Deserialize>::deserialize(member_fields);\n offset += <$param_type as Deserialize>::N;\n }\n })\n .join(quote {});\n\n // We join the struct member names with a comma to be used in the `Self { ... }` syntax\n // This will give us e.g. `a, b, c` for a struct with three fields named `a`, `b`, and `c`.\n let struct_members = params\n .map(|(param_name, _, _): (Quoted, Type, Quoted)| quote { $param_name })\n .join(quote {,});\n\n quote {\n let mut offset = 0;\n\n $deserialization_of_struct_members\n\n Self { $struct_members }\n }\n } else if params.len() == 1 {\n let param_name = params[0].0;\n quote {\n Self { $param_name: $crate::traits::Deserialize::deserialize(serialized) }\n }\n } else {\n quote {\n Self {}\n }\n };\n\n quote {\n impl$generics_declarations $crate::traits::Deserialize for $typ\n $where_deserialize_clause\n {\n let N: u32 = $right_hand_side_of_definition_of_n;\n\n #[inline_always]\n fn deserialize(serialized: [Field; Self::N]) -> Self {\n $function_body\n }\n }\n }\n}\n\n/// Generates a `Packable` trait implementation for a given struct `s`.\n///\n/// # Arguments\n/// * `s` - The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A `Quoted` block containing the generated trait implementation\n///\n/// # Requirements\n/// Each struct member type must implement the `Packable` trait (it gets used in the generated code).\n///\n/// # Example\n/// For a struct like:\n/// ```\n/// struct MyStruct {\n/// x: AztecAddress,\n/// y: Field,\n/// }\n/// ```\n///\n/// This generates:\n/// ```\n/// impl Packable for MyStruct {\n/// let N: u32 = 2;\n///\n/// fn pack(self) -> [Field; 2] {\n/// let mut result: [Field; 2] = [0_Field; 2];\n/// let mut offset: u32 = 0_u32;\n/// let packed_member: [Field; 1] = self.x.pack();\n/// let packed_member_len: u32 = <Field as Packable>::N;\n/// for i in 0_u32..packed_member_len {\n/// {\n/// result[i + offset] = packed_member[i];\n/// }\n/// }\n/// offset = offset + packed_member_len;\n/// let packed_member: [Field; 1] = self.y.pack();\n/// let packed_member_len: u32 = <Field as Packable>::N;\n/// for i in 0_u32..packed_member_len {\n/// {\n/// result[i + offset] = packed_member[i];\n/// }\n/// }\n/// offset = offset + packed_member_len;\n/// result\n/// }\n///\n/// fn unpack(packed: [Field; 2]) -> Self {\n/// let mut offset: u32 = 0_u32;\n/// let mut member_fields: [Field; 1] = [0_Field; 1];\n/// for i in 0_u32..<AztecAddress as Packable>::N {\n/// member_fields[i] = packed[i + offset];\n/// }\n/// let x: AztecAddress = <AztecAddress as Packable>::unpack(member_fields);\n/// offset = offset + <AztecAddress as Packable>::N;\n/// let mut member_fields: [Field; 1] = [0_Field; 1];\n/// for i in 0_u32..<Field as Packable>::N {\n/// member_fields[i] = packed[i + offset];\n/// }\n/// let y: Field = <Field as Packable>::unpack(member_fields);\n/// offset = offset + <Field as Packable>::N;\n/// Self { x: x, y: y }\n/// }\n/// }\n/// ```\npub comptime fn derive_packable(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n let params = nested_struct.0.fields(nested_struct.1);\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Packable` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_packable_clause = get_where_trait_clause(s, quote {Packable});\n\n // The following will give us:\n // <type_of_struct_member_1 as Packable>::N + <type_of_struct_member_2 as Packable>::N + ...\n // (or 0 if the struct has no members)\n let right_hand_side_of_definition_of_n = if params.len() > 0 {\n params\n .map(|(_, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n <$param_type as $crate::traits::Packable>::N\n }\n })\n .join(quote {+})\n } else {\n quote {0}\n };\n\n // For structs containing a single member, we can enhance performance by directly returning the packed member,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let pack_function_body = if params.len() > 1 {\n // For multiple struct members, generate packing code that:\n // 1. Packs each member\n // 2. Copies the packed fields into the result array at the correct offset\n // 3. Updates the offset for the next member\n let packing_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let packed_member = $crate::traits::Packable::pack(self.$param_name);\n let packed_member_len = <$param_type as $crate::traits::Packable>::N;\n for i in 0..packed_member_len {\n result[i + offset] = packed_member[i];\n }\n offset += packed_member_len;\n }\n })\n .join(quote {});\n\n quote {\n let mut result = [0; Self::N];\n let mut offset = 0;\n\n $packing_of_struct_members\n\n result\n }\n } else if params.len() == 1 {\n let param_name = params[0].0;\n quote {\n $crate::traits::Packable::pack(self.$param_name)\n }\n } else {\n quote {\n [0; Self::N]\n }\n };\n\n // For structs containing a single member, we can enhance performance by directly unpacking the input array,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let unpack_function_body = if params.len() > 1 {\n // For multiple struct members, generate unpacking code that:\n // 1. Unpacks each member\n // 2. Copies packed fields into member array at correct offset\n // 3. Updates offset for next member\n let unpacking_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let mut member_fields = [0; <$param_type as $crate::traits::Packable>::N];\n for i in 0..<$param_type as $crate::traits::Packable>::N {\n member_fields[i] = packed[i + offset];\n }\n let $param_name = <$param_type as $crate::traits::Packable>::unpack(member_fields);\n offset += <$param_type as $crate::traits::Packable>::N;\n }\n })\n .join(quote {});\n\n // We join the struct member names with a comma to be used in the `Self { ... }` syntax\n let struct_members = params\n .map(|(param_name, _, _): (Quoted, Type, Quoted)| quote { $param_name })\n .join(quote {,});\n\n quote {\n let mut offset = 0;\n $unpacking_of_struct_members\n Self { $struct_members }\n }\n } else if params.len() == 1 {\n let param_name = params[0].0;\n quote {\n Self { $param_name: $crate::traits::Packable::unpack(packed) }\n }\n } else {\n quote {\n Self {}\n }\n };\n\n quote {\n impl$generics_declarations $crate::traits::Packable for $typ\n $where_packable_clause\n {\n let N: u32 = $right_hand_side_of_definition_of_n;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n $pack_function_body\n }\n\n #[inline_always]\n fn unpack(packed: [Field; Self::N]) -> Self {\n $unpack_function_body\n }\n }\n }\n}\n\nmod test {\n use crate::traits::{Deserialize, Packable, Serialize};\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct Empty {}\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct Smol {\n a: Field,\n b: Field,\n }\n\n #[derive(Deserialize, Eq, Serialize)]\n pub struct HasArray {\n a: [Field; 2],\n b: bool,\n }\n\n #[derive(Deserialize, Eq, Serialize)]\n pub struct Fancier {\n a: Smol,\n b: [Field; 2],\n c: [u8; 3],\n d: str<16>,\n }\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct HasArrayWithGenerics<T, let N: u32> {\n pub fields: [T; N],\n pub length: u32,\n }\n\n #[test]\n fn serde_on_empty() {\n let original = Empty {};\n let serialized = original.serialize();\n assert_eq(serialized, [], \"Serialized does not match empty array\");\n let deserialized = Empty::deserialize(serialized);\n assert_eq(deserialized, original, \"Deserialized does not match original\");\n }\n\n #[test]\n fn packable_on_empty() {\n let original = Empty {};\n let packed = original.pack();\n assert_eq(packed, [], \"Packed does not match empty array\");\n let unpacked = Empty::unpack(packed);\n assert_eq(unpacked, original, \"Unpacked does not match original\");\n }\n\n #[test]\n fn serde_on_smol() {\n let smol = Smol { a: 1, b: 2 };\n let serialized = smol.serialize();\n assert(serialized == [1, 2], serialized);\n let deserialized = Smol::deserialize(serialized);\n assert(deserialized == smol);\n\n // None of the struct members implements the `Packable` trait so the packed and serialized data should be the same\n let packed = smol.pack();\n assert_eq(packed, serialized, \"Packed does not match serialized\");\n }\n\n #[test]\n fn serde_on_has_array() {\n let has_array = HasArray { a: [1, 2], b: true };\n let serialized = has_array.serialize();\n assert(serialized == [1, 2, 1], serialized);\n let deserialized = HasArray::deserialize(serialized);\n assert(deserialized == has_array);\n }\n\n #[test]\n fn serde_on_fancier() {\n let fancier =\n Fancier { a: Smol { a: 1, b: 2 }, b: [0, 1], c: [1, 2, 3], d: \"metaprogramming!\" };\n let serialized = fancier.serialize();\n assert(\n serialized\n == [\n 1, 2, 0, 1, 1, 2, 3, 0x6d, 0x65, 0x74, 0x61, 0x70, 0x72, 0x6f, 0x67, 0x72, 0x61,\n 0x6d, 0x6d, 0x69, 0x6e, 0x67, 0x21,\n ],\n serialized,\n );\n let deserialized = Fancier::deserialize(serialized);\n assert(deserialized == fancier);\n }\n\n #[test]\n fn serde_on_contains_array_with_generics() {\n let struct_with_array_of_generics = HasArrayWithGenerics { fields: [1, 2, 3], length: 3 };\n let serialized = struct_with_array_of_generics.serialize();\n assert(serialized == [1, 2, 3, 3], serialized);\n let deserialized = HasArrayWithGenerics::deserialize(serialized);\n assert(deserialized == struct_with_array_of_generics);\n }\n\n #[test]\n fn packable_on_contains_array_with_generics() {\n let struct_with_array_of_generics = HasArrayWithGenerics { fields: [1, 2, 3], length: 3 };\n let packed = struct_with_array_of_generics.pack();\n assert(packed == [1, 2, 3, 3], packed);\n\n let unpacked = HasArrayWithGenerics::unpack(packed);\n assert(unpacked == struct_with_array_of_generics);\n }\n\n}\n"
|
|
7360
7360
|
},
|
|
7361
|
-
"
|
|
7361
|
+
"349": {
|
|
7362
7362
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/meta/utils.nr",
|
|
7363
7363
|
"source": "/// Generates serialization code for a list of parameters and the total length of the serialized array\n///\n/// # Parameters\n/// - `params`: A list of (name, type) tuples to serialize\n/// - `use_self_prefix`: If true, parameters are accessed as `self.$param_name` (for struct members).\n/// If false, parameters are accessed directly as `$param_name` (for function parameters).\n///\n/// # Returns\n/// A tuple containing:\n/// - Quoted code that serializes the parameters into an array named `serialized_params`\n/// - Quoted code that evaluates to the total length of the serialized array\n/// - Quoted code containing the name of the serialized array\npub comptime fn derive_serialization_quotes(\n params: [(Quoted, Type)],\n use_self_prefix: bool,\n) -> (Quoted, Quoted, Quoted) {\n let prefix_quote = if use_self_prefix {\n quote { self. }\n } else {\n quote {}\n };\n\n let params_len_quote = get_params_len_quote(params);\n let serialized_params_name = quote { serialized_params };\n\n let body = if params.len() == 0 {\n quote {\n let $serialized_params_name: [Field; 0] = [];\n }\n } else if params.len() == 1 {\n // When we have only a single parameter on the input, we can enhance performance by directly returning\n // the serialized member, bypassing the need for loop-based array construction. While this optimization yields\n // significant benefits in Brillig where the loops are expected to not be optimized, it is not relevant in ACIR\n // where the loops are expected to be optimized away.\n\n let param_name = params[0].0;\n quote {\n let $serialized_params_name = $crate::traits::Serialize::serialize($prefix_quote$param_name);\n }\n } else {\n // For multiple struct members, generate serialization code that:\n // 1. Serializes each member\n // 2. Copies the serialized fields into the serialize array at the correct offset\n // 3. Updates the offset for the next member\n let serialization_of_struct_members = params\n .map(|(param_name, param_type): (Quoted, Type)| {\n quote {\n let serialized_member = $crate::traits::Serialize::serialize($prefix_quote$param_name);\n let serialized_member_len = <$param_type as $crate::traits::Serialize>::N;\n for i in 0..serialized_member_len {\n $serialized_params_name[i + offset] = serialized_member[i];\n }\n offset += serialized_member_len;\n }\n })\n .join(quote {});\n\n quote {\n let mut $serialized_params_name = [0; $params_len_quote];\n let mut offset = 0;\n\n $serialization_of_struct_members\n }\n };\n\n (body, params_len_quote, serialized_params_name)\n}\n\n/// Generates a quoted expression that computes the total serialized length of function parameters.\n///\n/// # Parameters\n/// * `params` - An array of tuples where each tuple contains a quoted parameter name and its Type. The type needs\n/// to implement the Serialize trait.\n///\n/// # Returns\n/// A quoted expression that evaluates to:\n/// * `0` if there are no parameters\n/// * `(<type1 as Serialize>::N + <type2 as Serialize>::N + ...)` for one or more parameters\npub comptime fn get_params_len_quote(params: [(Quoted, Type)]) -> Quoted {\n if params.len() == 0 {\n quote { 0 }\n } else {\n let params_quote_without_parentheses = params\n .map(|(_, param_type): (Quoted, Type)| {\n quote {\n <$param_type as $crate::traits::Serialize>::N\n }\n })\n .join(quote {+});\n quote { ($params_quote_without_parentheses) }\n }\n}\n"
|
|
7364
7364
|
},
|
|
7365
|
-
"
|
|
7365
|
+
"350": {
|
|
7366
7366
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/point.nr",
|
|
7367
7367
|
"source": "pub use dep::std::embedded_curve_ops::EmbeddedCurvePoint as Point;\nuse crate::{hash::poseidon2_hash, traits::{Deserialize, Empty, Hash, Packable, Serialize}};\n\npub global POINT_LENGTH: u32 = 3;\n\n// Note: Not deriving this because it's not supported to call derive_serialize on a \"remote\" struct (and it will never\n// be supported).\nimpl Serialize for Point {\n let N: u32 = POINT_LENGTH;\n\n fn serialize(self: Self) -> [Field; Self::N] {\n [self.x, self.y, self.is_infinite as Field]\n }\n}\n\nimpl Hash for Point {\n fn hash(self) -> Field {\n poseidon2_hash(self.serialize())\n }\n}\n\nimpl Empty for Point {\n /// Note: Does not return a valid point on curve - instead represents an empty/\"unpopulated\" point struct (e.g.\n /// empty/unpopulated value in an array of points).\n fn empty() -> Self {\n Point { x: 0, y: 0, is_infinite: false }\n }\n}\n\nimpl Deserialize for Point {\n let N: u32 = POINT_LENGTH;\n\n fn deserialize(serialized: [Field; Self::N]) -> Self {\n Point { x: serialized[0], y: serialized[1], is_infinite: serialized[2] != 0 }\n }\n}\n\n// TODO(#11356): use compact representation here.\nimpl Packable for Point {\n let N: u32 = POINT_LENGTH;\n\n fn pack(self) -> [Field; Self::N] {\n self.serialize()\n }\n\n fn unpack(packed: [Field; Self::N]) -> Self {\n Self::deserialize(packed)\n }\n}\n"
|
|
7368
7368
|
},
|
|
7369
|
-
"
|
|
7369
|
+
"351": {
|
|
7370
7370
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/poseidon2.nr",
|
|
7371
7371
|
"source": "use crate::constants::TWO_POW_64;\nuse crate::traits::{Deserialize, Serialize};\nuse std::meta::derive;\n// NB: This is a clone of noir/noir-repo/noir_stdlib/src/hash/poseidon2.nr\n// It exists as we sometimes need to perform custom absorption, but the stdlib version\n// has a private absorb() method (it's also designed to just be a hasher)\n// Can be removed when standalone noir poseidon lib exists: See noir#6679\n\ncomptime global RATE: u32 = 3;\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct Poseidon2Sponge {\n pub cache: [Field; 3],\n pub state: [Field; 4],\n pub cache_size: u32,\n pub squeeze_mode: bool, // 0 => absorb, 1 => squeeze\n}\n\nimpl Poseidon2Sponge {\n #[no_predicates]\n pub fn hash<let N: u32>(input: [Field; N], message_size: u32) -> Field {\n Poseidon2Sponge::hash_internal(input, message_size, message_size != N)\n }\n\n pub(crate) fn new(iv: Field) -> Poseidon2Sponge {\n let mut result =\n Poseidon2Sponge { cache: [0; 3], state: [0; 4], cache_size: 0, squeeze_mode: false };\n result.state[RATE] = iv;\n result\n }\n\n fn perform_duplex(&mut self) {\n // add the cache into sponge state\n for i in 0..RATE {\n // We effectively zero-pad the cache by only adding to the state\n // cache that is less than the specified `cache_size`\n if i < self.cache_size {\n self.state[i] += self.cache[i];\n }\n }\n self.state = std::hash::poseidon2_permutation(self.state, 4);\n }\n\n pub fn absorb(&mut self, input: Field) {\n assert(!self.squeeze_mode);\n if self.cache_size == RATE {\n // If we're absorbing, and the cache is full, apply the sponge permutation to compress the cache\n self.perform_duplex();\n self.cache[0] = input;\n self.cache_size = 1;\n } else {\n // If we're absorbing, and the cache is not full, add the input into the cache\n self.cache[self.cache_size] = input;\n self.cache_size += 1;\n }\n }\n\n pub fn squeeze(&mut self) -> Field {\n assert(!self.squeeze_mode);\n // If we're in absorb mode, apply sponge permutation to compress the cache.\n self.perform_duplex();\n self.squeeze_mode = true;\n\n // Pop one item off the top of the permutation and return it.\n self.state[0]\n }\n\n fn hash_internal<let N: u32>(\n input: [Field; N],\n in_len: u32,\n is_variable_length: bool,\n ) -> Field {\n let iv: Field = (in_len as Field) * TWO_POW_64;\n let mut sponge = Poseidon2Sponge::new(iv);\n for i in 0..input.len() {\n if i < in_len {\n sponge.absorb(input[i]);\n }\n }\n\n // In the case where the hash preimage is variable-length, we append `1` to the end of the input, to distinguish\n // from fixed-length hashes. (the combination of this additional field element + the hash IV ensures\n // fixed-length and variable-length hashes do not collide)\n if is_variable_length {\n sponge.absorb(1);\n }\n sponge.squeeze()\n }\n}\n"
|
|
7372
7372
|
},
|
|
7373
|
-
"
|
|
7373
|
+
"358": {
|
|
7374
7374
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/public_keys.nr",
|
|
7375
7375
|
"source": "use crate::{\n address::public_keys_hash::PublicKeysHash,\n constants::{\n DEFAULT_IVPK_M_X, DEFAULT_IVPK_M_Y, DEFAULT_NPK_M_X, DEFAULT_NPK_M_Y, DEFAULT_OVPK_M_X,\n DEFAULT_OVPK_M_Y, DEFAULT_TPK_M_X, DEFAULT_TPK_M_Y, GENERATOR_INDEX__PUBLIC_KEYS_HASH,\n },\n hash::poseidon2_hash_with_separator,\n traits::{Deserialize, Hash, Serialize},\n};\n\nuse dep::std::embedded_curve_ops::EmbeddedCurvePoint as Point;\nuse std::{default::Default, meta::derive};\n\npub trait ToPoint {\n fn to_point(self) -> Point;\n}\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct NpkM {\n pub inner: Point,\n}\n\nimpl ToPoint for NpkM {\n fn to_point(self) -> Point {\n self.inner\n }\n}\n\n// Note: If we store npk_m_hash directly we can remove this trait implementation. See #8091\nimpl Hash for NpkM {\n fn hash(self) -> Field {\n self.inner.hash()\n }\n}\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct IvpkM {\n pub inner: Point,\n}\n\nimpl ToPoint for IvpkM {\n fn to_point(self) -> Point {\n self.inner\n }\n}\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct OvpkM {\n pub inner: Point,\n}\n\nimpl Hash for OvpkM {\n fn hash(self) -> Field {\n self.inner.hash()\n }\n}\n\nimpl ToPoint for OvpkM {\n fn to_point(self) -> Point {\n self.inner\n }\n}\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct TpkM {\n pub inner: Point,\n}\n\nimpl ToPoint for TpkM {\n fn to_point(self) -> Point {\n self.inner\n }\n}\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct PublicKeys {\n pub npk_m: NpkM,\n pub ivpk_m: IvpkM,\n pub ovpk_m: OvpkM,\n pub tpk_m: TpkM,\n}\n\nimpl Default for PublicKeys {\n fn default() -> Self {\n PublicKeys {\n npk_m: NpkM {\n inner: Point { x: DEFAULT_NPK_M_X, y: DEFAULT_NPK_M_Y, is_infinite: false },\n },\n ivpk_m: IvpkM {\n inner: Point { x: DEFAULT_IVPK_M_X, y: DEFAULT_IVPK_M_Y, is_infinite: false },\n },\n ovpk_m: OvpkM {\n inner: Point { x: DEFAULT_OVPK_M_X, y: DEFAULT_OVPK_M_Y, is_infinite: false },\n },\n tpk_m: TpkM {\n inner: Point { x: DEFAULT_TPK_M_X, y: DEFAULT_TPK_M_Y, is_infinite: false },\n },\n }\n }\n}\n\nimpl PublicKeys {\n pub fn hash(self) -> PublicKeysHash {\n PublicKeysHash::from_field(poseidon2_hash_with_separator(\n self.serialize(),\n GENERATOR_INDEX__PUBLIC_KEYS_HASH as Field,\n ))\n }\n}\n\npub struct AddressPoint {\n pub inner: Point,\n}\n\nimpl ToPoint for AddressPoint {\n fn to_point(self) -> Point {\n self.inner\n }\n}\n\nmod test {\n use crate::{\n point::POINT_LENGTH,\n public_keys::{IvpkM, NpkM, OvpkM, PublicKeys, TpkM},\n traits::{Deserialize, Serialize},\n };\n use dep::std::embedded_curve_ops::EmbeddedCurvePoint as Point;\n\n #[test]\n unconstrained fn compute_public_keys_hash() {\n let keys = PublicKeys {\n npk_m: NpkM { inner: Point { x: 1, y: 2, is_infinite: false } },\n ivpk_m: IvpkM { inner: Point { x: 3, y: 4, is_infinite: false } },\n ovpk_m: OvpkM { inner: Point { x: 5, y: 6, is_infinite: false } },\n tpk_m: TpkM { inner: Point { x: 7, y: 8, is_infinite: false } },\n };\n\n let actual = keys.hash();\n let expected_public_keys_hash =\n 0x0fecd9a32db731fec1fded1b9ff957a1625c069245a3613a2538bd527068b0ad;\n\n assert(actual.to_field() == expected_public_keys_hash);\n }\n\n #[test]\n unconstrained fn compute_default_hash() {\n let keys = PublicKeys::default();\n\n let actual = keys.hash();\n let test_data_default_hash =\n 0x1d3bf1fb93ae0e9cda83b203dd91c3bfb492a9aecf30ec90e1057eced0f0e62d;\n\n assert(actual.to_field() == test_data_default_hash);\n }\n\n #[test]\n unconstrained fn serde() {\n let keys = PublicKeys {\n npk_m: NpkM { inner: Point { x: 1, y: 2, is_infinite: false } },\n ivpk_m: IvpkM { inner: Point { x: 3, y: 4, is_infinite: false } },\n ovpk_m: OvpkM { inner: Point { x: 5, y: 6, is_infinite: false } },\n tpk_m: TpkM { inner: Point { x: 7, y: 8, is_infinite: false } },\n };\n\n // We use the PUBLIC_KEYS_LENGTH constant to ensure that there is a match between the derived trait\n let serialized: [Field; POINT_LENGTH * 4] = keys.serialize();\n let deserialized = PublicKeys::deserialize(serialized);\n\n assert_eq(keys, deserialized);\n }\n}\n"
|
|
7376
7376
|
},
|
|
7377
|
-
"
|
|
7377
|
+
"379": {
|
|
7378
7378
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/traits.nr",
|
|
7379
7379
|
"source": "use crate::meta::{derive_deserialize, derive_packable, derive_serialize};\nuse crate::utils::field::field_from_bytes;\n\n// Trait: is_empty\n//\n// The general is_empty trait checks if a data type is is empty,\n// and it defines empty for the basic data types as 0.\n//\n// If a Field is equal to zero, then it is regarded as zero.\n// We will go with this definition for now, however it can be problematic\n// if a value can actually be zero. In a future refactor, we can\n// use the optional type for safety. Doing it now would lead to a worse devex\n// and would make it harder to sync up with the cpp code.\n// Preferred over Default trait to convey intent, as default doesn't necessarily mean empty.\npub trait Empty: Eq {\n fn empty() -> Self;\n\n fn is_empty(self) -> bool {\n self.eq(Self::empty())\n }\n\n // Requires this Noir fix: https://github.com/noir-lang/noir/issues/9002\n // fn assert_not_empty<let U: u32>(self, msg: str<U>) { // This msg version was failing with weird compiler errors.\n // // We provide a default impl but it's likely inefficient.\n // // The reason we include this function is because there's a lot of\n // // opportunity for optimisation on a per-struct basis.\n // // You only need to show one element is not empty to know that the whole thing\n // // is not empty.\n // // If you know an element of your struct which should always be nonempty,\n // // you can write an impl that solely checks that that element is nonempty.\n // assert(!self.is_empty(), msg);\n // }\n\n // This default impl is overwritten by types like arrays, because there's a much\n // more efficient approach.\n fn assert_empty<let S: u32>(self, msg: str<S>) {\n assert(self.is_empty(), msg);\n }\n}\n\nimpl Empty for Field {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\n\nimpl Empty for bool {\n #[inline_always]\n fn empty() -> Self {\n false\n }\n}\n\nimpl Empty for u1 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u8 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u16 {\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u32 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u64 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u128 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\n\nimpl<T, let N: u32> Empty for [T; N]\nwhere\n T: Empty,\n{\n #[inline_always]\n fn empty() -> Self {\n [T::empty(); N]\n }\n\n fn is_empty(self) -> bool {\n self.all(|elem| elem.is_empty())\n }\n\n fn assert_empty<let S: u32>(self, msg: str<S>) -> () {\n self.for_each(|elem| elem.assert_empty(msg))\n }\n}\n\nimpl<T> Empty for [T]\nwhere\n T: Empty,\n{\n #[inline_always]\n fn empty() -> Self {\n [T::empty()]\n }\n\n fn is_empty(self) -> bool {\n self.all(|elem| elem.is_empty())\n }\n\n fn assert_empty<let S: u32>(self, msg: str<S>) -> () {\n self.for_each(|elem| elem.assert_empty(msg))\n }\n}\nimpl<A, B> Empty for (A, B)\nwhere\n A: Empty,\n B: Empty,\n{\n #[inline_always]\n fn empty() -> Self {\n (A::empty(), B::empty())\n }\n}\n\nimpl<T> Empty for Option<T>\nwhere\n T: Eq,\n{\n #[inline_always]\n fn empty() -> Self {\n Option::none()\n }\n}\n\n// pub fn is_empty<T>(item: T) -> bool\n// where\n// T: Empty,\n// {\n// item.eq(T::empty())\n// }\n\n// pub fn is_empty_array<T, let N: u32>(array: [T; N]) -> bool\n// where\n// T: Empty,\n// {\n// array.all(|elem| is_empty(elem))\n// }\n\n// pub fn assert_empty<T>(item: T) -> ()\n// where\n// T: Empty,\n// {\n// assert(item.eq(T::empty()))\n// }\n\n// pub fn assert_empty_array<T, let N: u32>(array: [T; N]) -> ()\n// where\n// T: Empty,\n// {\n// // A cheaper option than `is_empty_array` for if you don't need to gracefully\n// // handle a bool result.\n// // Avoids the `&` operator of `is_empty_array`'s `.all()` call.\n// for i in 0..N {\n// assert(is_empty(array[i]));\n// }\n// }\n\npub trait Hash {\n fn hash(self) -> Field;\n}\n\npub trait ToField {\n fn to_field(self) -> Field;\n}\n\nimpl ToField for Field {\n #[inline_always]\n fn to_field(self) -> Field {\n self\n }\n}\n\nimpl ToField for bool {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u1 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u8 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u16 {\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u32 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u64 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u128 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl<let N: u32> ToField for str<N> {\n #[inline_always]\n fn to_field(self) -> Field {\n assert(N < 32, \"String doesn't fit in a field, consider using Serialize instead\");\n field_from_bytes(self.as_bytes(), true)\n }\n}\n\npub trait FromField {\n fn from_field(value: Field) -> Self;\n}\n\nimpl FromField for Field {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value\n }\n}\n\nimpl FromField for bool {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value != 0\n }\n}\nimpl FromField for u1 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u1\n }\n}\nimpl FromField for u8 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u8\n }\n}\nimpl FromField for u16 {\n fn from_field(value: Field) -> Self {\n value as u16\n }\n}\nimpl FromField for u32 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u32\n }\n}\nimpl FromField for u64 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u64\n }\n}\nimpl FromField for u128 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u128\n }\n}\n\n// docs:start:serialize\n/// Trait for serializing Noir types into arrays of Fields.\n///\n/// An implementation of the Serialize trait has to follow Noir's intrinsic serialization (each member of a struct\n/// converted directly into one or more Fields without any packing or compression). This trait (and Deserialize) are\n/// typically used to communicate between Noir and TypeScript (via oracles and function arguments).\n///\n/// # On Following Noir's Intrinsic Serialization\n/// When calling a Noir function from TypeScript (TS), first the function arguments are serialized into an array\n/// of fields. This array is then included in the initial witness. Noir's intrinsic serialization is then used\n/// to deserialize the arguments from the witness. When the same Noir function is called from Noir this Serialize trait\n/// is used instead of the serialization in TS. For this reason we need to have a match between TS serialization,\n/// Noir's intrinsic serialization and the implementation of this trait. If there is a mismatch, the function calls\n/// fail with an arguments hash mismatch error message.\n///\n/// # Associated Constants\n/// * `N` - The length of the output Field array, known at compile time\n///\n/// # Example\n/// ```\n/// impl<let N: u32> Serialize for str<N> {\n/// let N: u32 = N;\n///\n/// fn serialize(self) -> [Field; Self::N] {\n/// let bytes = self.as_bytes();\n/// let mut fields = [0; Self::N];\n/// for i in 0..bytes.len() {\n/// fields[i] = bytes[i] as Field; // Each byte gets its own Field\n/// }\n/// fields\n/// }\n/// }\n/// ```\n#[derive_via(derive_serialize)]\npub trait Serialize {\n let N: u32;\n\n fn serialize(self) -> [Field; N];\n}\n// docs:end:serialize\n\nimpl<let M: u32> Serialize for str<M> {\n let N: u32 = M;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let bytes = self.as_bytes();\n let mut fields = [0; Self::N];\n for i in 0..bytes.len() {\n fields[i] = bytes[i] as Field;\n }\n fields\n }\n}\n\n/// Implementation of Deserialize for BoundedVec.\n///\n/// This implementation deserializes a BoundedVec from an array of Fields. The array contains:\n/// 1. The serialized items, each taking up T::N Fields\n/// 2. The length of the BoundedVec as the last Field\n///\n/// # Type Parameters\n/// * `T` - The type of items stored in the BoundedVec, must implement Deserialize\n/// * `M` - The maximum length of the BoundedVec\n///\n/// # Fields Array Layout\n/// [item1_field1, item1_field2, ..., item2_field1, item2_field2, ..., length]\n/// Where:\n/// - itemN_fieldM: The M-th Field of the N-th item (T::N Fields per item)\n/// - length: The number of items in the BoundedVec (1 Field)\n///\n/// Total length N = T::N * M + 1, where:\n/// - T::N is the number of Fields needed to deserialize one item\n/// - M is the maximum length of the BoundedVec\n/// - +1 is for storing the length\n///\n/// # Note\n/// Not deriving this because it's not supported to call derive_deserialize on a \"remote\" struct (and it will never\n/// be supported).\nimpl<T, let M: u32> Deserialize for BoundedVec<T, M>\nwhere\n T: Deserialize,\n{\n let N: u32 = <T as Deserialize>::N * M + 1;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n let mut new_bounded_vec: BoundedVec<T, M> = BoundedVec::new();\n\n // Length is stored in the last field as we need to match intrinsic Noir serialization and the `len` struct\n // field is after `storage` struct field (see `bounded_vec.nr` in noir-stdlib)\n let len = fields[<T as Deserialize>::N * M] as u32;\n\n for i in 0..len {\n let mut nested_fields = [0; <T as Deserialize>::N];\n for j in 0..<T as Deserialize>::N {\n nested_fields[j] = fields[i * <T as Deserialize>::N + j];\n }\n\n let item = T::deserialize(nested_fields);\n new_bounded_vec.push(item);\n }\n\n new_bounded_vec\n }\n}\n\n// This may cause issues if used as program input, because noir disallows empty arrays for program input.\n// I think this is okay because I don't foresee a unit type being used as input. But leaving this comment as a hint\n// if someone does run into this in the future.\nimpl Deserialize for () {\n let N: u32 = 0;\n\n fn deserialize(_fields: [Field; Self::N]) -> Self {\n ()\n }\n}\n\n// Note: Not deriving this because it's not supported to call derive_serialize on a \"remote\" struct (and it will never\n// be supported).\nimpl<T, let M: u32> Serialize for BoundedVec<T, M>\nwhere\n T: Serialize,\n{\n let N: u32 = <T as Serialize>::N * M + 1; // +1 for the length of the BoundedVec\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let mut fields = [0; Self::N];\n\n let storage = self.storage();\n\n for i in 0..M {\n let serialized_item = storage[i].serialize();\n\n for j in 0..<T as Serialize>::N {\n fields[i * <T as Serialize>::N + j] = serialized_item[j];\n }\n }\n\n // Length is stored in the last field as we need to match intrinsic Noir serialization and the `len` struct\n // field is after `storage` struct field (see `bounded_vec.nr` in noir-stdlib)\n fields[<T as Serialize>::N * M] = self.len() as Field;\n\n fields\n }\n}\n\n// docs:start:deserialize\n/// Trait for deserializing Noir types from arrays of Fields.\n///\n/// An implementation of the Deserialize trait has to follow Noir's intrinsic serialization (each member of a struct\n/// converted directly into one or more Fields without any packing or compression). This trait is typically used when\n/// deserializing return values from function calls in Noir. Since the same function could be called from TypeScript\n/// (TS), in which case the TS deserialization would get used, we need to have a match between the 2.\n///\n/// # Associated Constants\n/// * `N` - The length of the input Field array, known at compile time\n///\n/// # Example\n/// ```\n/// impl<let M: u32> Deserialize for str<M> {\n/// let N: u32 = M;\n///\n/// #[inline_always]\n/// fn deserialize(fields: [Field; Self::N]) -> Self {\n/// str::<Self::N>::from(fields.map(|value| value as u8))\n/// }\n/// }\n/// ```\n#[derive_via(derive_deserialize)]\npub trait Deserialize {\n let N: u32;\n\n fn deserialize(fields: [Field; N]) -> Self;\n}\n// docs:end:deserialize\n\nimpl<let M: u32> Deserialize for str<M> {\n let N: u32 = M;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n str::<Self::N>::from(fields.map(|value| value as u8))\n }\n}\n\n/// Trait for efficiently packing and unpacking Noir types into and from arrays of Fields.\n///\n/// The `Packable` trait allows types to be serialized and deserialized with a focus on minimizing the size of\n/// the resulting Field array. This trait is used when storage efficiency is critical (e.g. when storing data\n/// in the contract's public storage).\n///\n/// # Associated Constants\n/// * `N` - The length of the Field array, known at compile time\n#[derive_via(derive_packable)]\npub trait Packable {\n let N: u32;\n\n /// Packs the current value into a compact array of `Field` elements.\n fn pack(self) -> [Field; N];\n\n /// Unpacks a compact array of `Field` elements into the original value.\n fn unpack(fields: [Field; N]) -> Self;\n}\n\n#[test]\nunconstrained fn bounded_vec_serialization() {\n // Test empty BoundedVec\n let empty_vec: BoundedVec<Field, 3> = BoundedVec::from_array([]);\n let serialized = empty_vec.serialize();\n let deserialized = BoundedVec::<Field, 3>::deserialize(serialized);\n assert_eq(empty_vec, deserialized);\n assert_eq(deserialized.len(), 0);\n\n // Test partially filled BoundedVec\n let partial_vec: BoundedVec<[u32; 2], 3> = BoundedVec::from_array([[1, 2]]);\n let serialized = partial_vec.serialize();\n let deserialized = BoundedVec::<[u32; 2], 3>::deserialize(serialized);\n assert_eq(partial_vec, deserialized);\n assert_eq(deserialized.len(), 1);\n assert_eq(deserialized.get(0), [1, 2]);\n\n // Test full BoundedVec\n let full_vec: BoundedVec<[u32; 2], 3> = BoundedVec::from_array([[1, 2], [3, 4], [5, 6]]);\n let serialized = full_vec.serialize();\n let deserialized = BoundedVec::<[u32; 2], 3>::deserialize(serialized);\n assert_eq(full_vec, deserialized);\n assert_eq(deserialized.len(), 3);\n assert_eq(deserialized.get(0), [1, 2]);\n assert_eq(deserialized.get(1), [3, 4]);\n assert_eq(deserialized.get(2), [5, 6]);\n}\n"
|
|
7380
7380
|
},
|
|
7381
|
-
"
|
|
7381
|
+
"381": {
|
|
7382
7382
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/type_packing.nr",
|
|
7383
7383
|
"source": "use crate::traits::Packable;\n\nglobal BOOL_PACKED_LEN: u32 = 1;\nglobal U8_PACKED_LEN: u32 = 1;\nglobal U16_PACKED_LEN: u32 = 1;\nglobal U32_PACKED_LEN: u32 = 1;\nglobal U64_PACKED_LEN: u32 = 1;\nglobal U128_PACKED_LEN: u32 = 1;\nglobal FIELD_PACKED_LEN: u32 = 1;\nglobal I8_PACKED_LEN: u32 = 1;\nglobal I16_PACKED_LEN: u32 = 1;\nglobal I32_PACKED_LEN: u32 = 1;\nglobal I64_PACKED_LEN: u32 = 1;\n\nimpl Packable for bool {\n let N: u32 = BOOL_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> bool {\n (fields[0] as u1) != 0\n }\n}\n\nimpl Packable for u8 {\n let N: u32 = U8_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u8\n }\n}\n\nimpl Packable for u16 {\n let N: u32 = U16_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u16\n }\n}\n\nimpl Packable for u32 {\n let N: u32 = U32_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u32\n }\n}\n\nimpl Packable for u64 {\n let N: u32 = U64_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u64\n }\n}\n\nimpl Packable for u128 {\n let N: u32 = U128_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u128\n }\n}\n\nimpl Packable for Field {\n let N: u32 = FIELD_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0]\n }\n}\n\nimpl Packable for i8 {\n let N: u32 = I8_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as u8 as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u8 as i8\n }\n}\n\nimpl Packable for i16 {\n let N: u32 = I16_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as u16 as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u16 as i16\n }\n}\n\nimpl Packable for i32 {\n let N: u32 = I32_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as u32 as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u32 as i32\n }\n}\n\nimpl Packable for i64 {\n let N: u32 = I64_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as u64 as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u64 as i64\n }\n}\n\nimpl<T, let M: u32> Packable for [T; M]\nwhere\n T: Packable,\n{\n let N: u32 = M * <T as Packable>::N;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n let mut result: [Field; Self::N] = std::mem::zeroed();\n for i in 0..M {\n let serialized = self[i].pack();\n for j in 0..<T as Packable>::N {\n result[i * <T as Packable>::N + j] = serialized[j];\n }\n }\n result\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n let mut reader = crate::utils::reader::Reader::new(fields);\n let mut result: [T; M] = std::mem::zeroed();\n reader.read_struct_array::<T, <T as Packable>::N, M>(Packable::unpack, result)\n }\n}\n\n#[test]\nfn test_u16_packing() {\n let a: u16 = 10;\n assert_eq(a, u16::unpack(a.pack()));\n}\n\n#[test]\nfn test_i8_packing() {\n let a: i8 = -10;\n assert_eq(a, i8::unpack(a.pack()));\n}\n\n#[test]\nfn test_i16_packing() {\n let a: i16 = -10;\n assert_eq(a, i16::unpack(a.pack()));\n}\n\n#[test]\nfn test_i32_packing() {\n let a: i32 = -10;\n assert_eq(a, i32::unpack(a.pack()));\n}\n\n#[test]\nfn test_i64_packing() {\n let a: i64 = -10;\n assert_eq(a, i64::unpack(a.pack()));\n}\n"
|
|
7384
7384
|
},
|
|
7385
|
-
"
|
|
7385
|
+
"382": {
|
|
7386
7386
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/type_serialization.nr",
|
|
7387
7387
|
"source": "use crate::traits::{Deserialize, Serialize};\n\nglobal U1_SERIALIZED_LEN: u32 = 1;\nglobal BOOL_SERIALIZED_LEN: u32 = 1;\nglobal U8_SERIALIZED_LEN: u32 = 1;\nglobal U16_SERIALIZED_LEN: u32 = 1;\nglobal U32_SERIALIZED_LEN: u32 = 1;\nglobal U64_SERIALIZED_LEN: u32 = 1;\nglobal U128_SERIALIZED_LEN: u32 = 1;\nglobal FIELD_SERIALIZED_LEN: u32 = 1;\nglobal I8_SERIALIZED_LEN: u32 = 1;\nglobal I16_SERIALIZED_LEN: u32 = 1;\nglobal I32_SERIALIZED_LEN: u32 = 1;\nglobal I64_SERIALIZED_LEN: u32 = 1;\n\nimpl Serialize for bool {\n let N: u32 = BOOL_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for bool {\n let N: u32 = BOOL_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> bool {\n fields[0] != 0\n }\n}\n\nimpl Serialize for u1 {\n let N: u32 = U1_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u1 {\n let N: u32 = U1_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u1\n }\n}\n\nimpl Serialize for u8 {\n let N: u32 = U8_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u8 {\n let N: u32 = U8_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u8\n }\n}\n\nimpl Serialize for u16 {\n let N: u32 = U16_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u16 {\n let N: u32 = U16_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u16\n }\n}\n\nimpl Serialize for u32 {\n let N: u32 = U32_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u32 {\n let N: u32 = U32_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u32\n }\n}\n\nimpl Serialize for u64 {\n let N: u32 = U64_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u64 {\n let N: u32 = U64_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u64\n }\n}\n\nimpl Serialize for u128 {\n let N: u32 = U128_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u128 {\n let N: u32 = U128_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u128\n }\n}\n\nimpl Serialize for Field {\n let N: u32 = FIELD_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self]\n }\n}\n\nimpl Deserialize for Field {\n let N: u32 = FIELD_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0]\n }\n}\n\nimpl Serialize for i8 {\n let N: u32 = I8_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u8 as Field]\n }\n}\n\nimpl Deserialize for i8 {\n let N: u32 = I8_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u8 as i8\n }\n}\n\nimpl Serialize for i16 {\n let N: u32 = I16_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u16 as Field]\n }\n}\n\nimpl Deserialize for i16 {\n let N: u32 = I16_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u16 as i16\n }\n}\n\nimpl Serialize for i32 {\n let N: u32 = I32_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u32 as Field]\n }\n}\n\nimpl Deserialize for i32 {\n let N: u32 = I32_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u32 as i32\n }\n}\n\nimpl Serialize for i64 {\n let N: u32 = I64_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u64 as Field]\n }\n}\n\nimpl Deserialize for i64 {\n let N: u32 = I64_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u64 as i64\n }\n}\n\nimpl<T, let M: u32> Serialize for [T; M]\nwhere\n T: Serialize,\n{\n let N: u32 = <T as Serialize>::N * M;\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let mut result: [Field; _] = std::mem::zeroed();\n for i in 0..M {\n let serialized_t = self[i].serialize();\n for j in 0..<T as Serialize>::N {\n result[i * <T as Serialize>::N + j] = serialized_t[j];\n }\n }\n result\n }\n}\n\nimpl<T, let M: u32> Deserialize for [T; M]\nwhere\n T: Deserialize,\n{\n let N: u32 = <T as Deserialize>::N * M;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n let mut reader = crate::utils::reader::Reader::new(fields);\n let mut result: [T; M] = std::mem::zeroed();\n reader.read_struct_array::<T, <T as Deserialize>::N, M>(Deserialize::deserialize, result)\n }\n}\n\nimpl<T> Serialize for Option<T>\nwhere\n T: Serialize,\n{\n let N: u32 = <T as Serialize>::N + 1;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let mut result: [Field; Self::N] = std::mem::zeroed();\n\n result[0] = if self.is_some() { 1 } else { 0 };\n\n let value_serialized = self.unwrap_unchecked().serialize();\n for i in 0..<T as Serialize>::N {\n result[1 + i] = value_serialized[i];\n }\n\n result\n }\n}\n\nimpl<T> Deserialize for Option<T>\nwhere\n T: Deserialize,\n{\n let N: u32 = <T as Deserialize>::N + 1;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n if fields[0] == 1 {\n let mut value_fields = [0; <T as Deserialize>::N];\n for i in 0..<T as Deserialize>::N {\n value_fields[i] = fields[1 + i];\n }\n\n Option::some(T::deserialize(value_fields))\n } else {\n Option::none()\n }\n }\n}\n\nmod test {\n use crate::traits::{Deserialize, Serialize};\n\n #[test]\n fn u16_serialization() {\n let a: u16 = 10;\n assert_eq(a, u16::deserialize(a.serialize()));\n }\n\n #[test]\n fn i8_serialization() {\n let a: i8 = -10;\n assert_eq(a, i8::deserialize(a.serialize()));\n }\n\n #[test]\n fn i16_serialization() {\n let a: i16 = -10;\n assert_eq(a, i16::deserialize(a.serialize()));\n }\n\n #[test]\n fn i32_serialization() {\n let a: i32 = -10;\n assert_eq(a, i32::deserialize(a.serialize()));\n }\n\n #[test]\n fn i64_serialization() {\n let a: i64 = -10;\n assert_eq(a, i64::deserialize(a.serialize()));\n }\n\n #[test]\n fn option_field_serialization() {\n let opt_some = Option::some(5);\n assert_eq(Option::<_>::deserialize(opt_some.serialize()), opt_some);\n\n let opt_none = Option::none();\n assert_eq(Option::<Field>::deserialize(opt_none.serialize()), opt_none);\n }\n\n #[test]\n fn array_serialization() {\n let array = [1, 2, 3, 4];\n\n let serialized: [Field; 4] = array.serialize();\n let deserialized: [Field; 4] = Deserialize::deserialize(serialized);\n assert_eq(deserialized, array);\n }\n\n #[test]\n fn nested_array_serialization() {\n let nested_array = [[1, 2, 3, 4], [5, 6, 7, 8]];\n\n let serialized: [Field; 8] = nested_array.serialize();\n let deserialized: [[Field; 4]; 2] = Deserialize::deserialize(serialized);\n\n assert_eq(deserialized, nested_array);\n }\n\n #[test]\n fn option_array_serialization() {\n let opt_some = Option::some([2, 5]);\n assert_eq(Option::<_>::deserialize(opt_some.serialize()), opt_some);\n\n let opt_none = Option::none();\n assert_eq(Option::<Field>::deserialize(opt_none.serialize()), opt_none);\n }\n}\n"
|
|
7388
7388
|
},
|
|
7389
|
-
"
|
|
7389
|
+
"387": {
|
|
7390
7390
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/utils/field.nr",
|
|
7391
7391
|
"source": "global KNOWN_NON_RESIDUE: Field = 5; // This is a non-residue in Noir's native Field.\n\npub fn field_from_bytes<let N: u32>(bytes: [u8; N], big_endian: bool) -> Field {\n assert(bytes.len() < 32, \"field_from_bytes: N must be less than 32\");\n let mut as_field = 0;\n let mut offset = 1;\n for i in 0..N {\n let mut index = i;\n if big_endian {\n index = N - i - 1;\n }\n as_field += (bytes[index] as Field) * offset;\n offset *= 256;\n }\n\n as_field\n}\n\n// Convert a 32 byte array to a field element by truncating the final byte\npub fn field_from_bytes_32_trunc(bytes32: [u8; 32]) -> Field {\n // Convert it to a field element\n let mut v = 1;\n let mut high = 0 as Field;\n let mut low = 0 as Field;\n\n for i in 0..15 {\n // covers bytes 16..30 (31 is truncated and ignored)\n low = low + (bytes32[15 + 15 - i] as Field) * v;\n v = v * 256;\n // covers bytes 0..14\n high = high + (bytes32[14 - i] as Field) * v;\n }\n // covers byte 15\n low = low + (bytes32[15] as Field) * v;\n\n low + high * v\n}\n\n// TODO to radix returns u8, so we cannot use bigger radixes. It'd be ideal to use a radix of the maximum range-constrained integer noir supports\npub fn full_field_less_than(lhs: Field, rhs: Field) -> bool {\n lhs.lt(rhs)\n}\n\npub fn full_field_greater_than(lhs: Field, rhs: Field) -> bool {\n rhs.lt(lhs)\n}\n\npub fn min(f1: Field, f2: Field) -> Field {\n if f1.lt(f2) {\n f1\n } else {\n f2\n }\n}\n\nglobal C1: u32 = 28;\nglobal C3: Field = 40770029410420498293352137776570907027550720424234931066070132305055;\nglobal C5: Field = 19103219067921713944291392827692070036145651957329286315305642004821462161904;\n\npub fn pow(x: Field, y: Field) -> Field {\n let mut r = 1 as Field;\n let b: [u1; 254] = y.to_le_bits();\n\n for i in 0..254 {\n r *= r;\n r *= (b[254 - 1 - i] as Field) * x + (1 - b[254 - 1 - i] as Field);\n }\n\n r\n}\n\n/// Returns Option::some(sqrt) if there is a square root, and Option::none() if there isn't.\npub fn sqrt(x: Field) -> Option<Field> {\n // Safety: if the hint returns the square root of x, then we simply square it\n // check the result equals x. If x is not square, we return a value that\n // enables us to prove that fact (see the `else` clause below).\n let (is_sq, maybe_sqrt) = unsafe { __sqrt(x) };\n\n if is_sq {\n let sqrt = maybe_sqrt;\n validate_sqrt_hint(x, sqrt);\n Option::some(sqrt)\n } else {\n let not_sqrt_hint = maybe_sqrt;\n validate_not_sqrt_hint(x, not_sqrt_hint);\n Option::none()\n }\n}\n\n// Boolean indicating whether Field element is a square, i.e. whether there exists a y in Field s.t. x = y*y.\nunconstrained fn is_square(x: Field) -> bool {\n let v = pow(x, -1 / 2);\n v * (v - 1) == 0\n}\n\n// Tonelli-Shanks algorithm for computing the square root of a Field element.\n// Requires C1 = max{c: 2^c divides (p-1)}, where p is the order of Field\n// as well as C3 = (C2 - 1)/2, where C2 = (p-1)/(2^c1),\n// and C5 = ZETA^C2, where ZETA is a non-square element of Field.\n// These are pre-computed above as globals.\nunconstrained fn tonelli_shanks_sqrt(x: Field) -> Field {\n let mut z = pow(x, C3);\n let mut t = z * z * x;\n z *= x;\n let mut b = t;\n let mut c = C5;\n\n for i in 0..(C1 - 1) {\n for _j in 1..(C1 - i - 1) {\n b *= b;\n }\n\n z *= if b == 1 { 1 } else { c };\n\n c *= c;\n\n t *= if b == 1 { 1 } else { c };\n\n b = t;\n }\n\n z\n}\n\n// NB: this doesn't return an option, because in the case of there _not_ being a square root, we still want to return a field element that allows us to then assert in the _constrained_ sqrt function that there is no sqrt.\nunconstrained fn __sqrt(x: Field) -> (bool, Field) {\n let is_sq = is_square(x);\n if is_sq {\n let sqrt = tonelli_shanks_sqrt(x);\n (true, sqrt)\n } else {\n // Demonstrate that x is not a square (a.k.a. a \"quadratic non-residue\").\n // Facts:\n // The Legendre symbol (\"LS\") of x, is x^((p-1)/2) (mod p).\n // - If x is a square, LS(x) = 1\n // - If x is not a square, LS(x) = -1\n // - If x = 0, LS(x) = 0.\n //\n // Hence:\n // sq * sq = sq // 1 * 1 = 1\n // non-sq * non-sq = sq // -1 * -1 = 1\n // sq * non-sq = non-sq // -1 * 1 = -1\n //\n // See: https://en.wikipedia.org/wiki/Legendre_symbol\n let demo_x_not_square = x * KNOWN_NON_RESIDUE;\n let not_sqrt = tonelli_shanks_sqrt(demo_x_not_square);\n (false, not_sqrt)\n }\n}\n\nfn validate_sqrt_hint(x: Field, hint: Field) {\n assert(hint * hint == x, f\"The claimed_sqrt {hint} is not the sqrt of x {x}\");\n}\n\nfn validate_not_sqrt_hint(x: Field, hint: Field) {\n // We need this assertion, because x = 0 would pass the other assertions in this\n // function, and we don't want people to be able to prove that 0 is not square!\n assert(x != 0, \"0 has a square root; you cannot claim it is not square\");\n // Demonstrate that x is not a square (a.k.a. a \"quadratic non-residue\").\n //\n // Facts:\n // The Legendre symbol (\"LS\") of x, is x^((p-1)/2) (mod p).\n // - If x is a square, LS(x) = 1\n // - If x is not a square, LS(x) = -1\n // - If x = 0, LS(x) = 0.\n //\n // Hence:\n // 1. sq * sq = sq // 1 * 1 = 1\n // 2. non-sq * non-sq = sq // -1 * -1 = 1\n // 3. sq * non-sq = non-sq // -1 * 1 = -1\n //\n // See: https://en.wikipedia.org/wiki/Legendre_symbol\n //\n // We want to demonstrate that this below multiplication falls under bullet-point (2):\n let demo_x_not_square = x * KNOWN_NON_RESIDUE;\n // I.e. we want to demonstrate that `demo_x_not_square` has Legendre symbol 1\n // (i.e. that it is a square), so we prove that it is square below.\n // Why do we want to prove that it has LS 1?\n // Well, since it was computed with a known-non-residue, its squareness implies we're\n // in case 2 (something multiplied by a known-non-residue yielding a result which\n // has a LS of 1), which implies that x must be a non-square. The unconstrained\n // function gave us the sqrt of demo_x_not_square, so all we need to do is\n // assert its squareness:\n assert(\n hint * hint == demo_x_not_square,\n f\"The hint {hint} does not demonstrate that {x} is not a square\",\n );\n}\n\n#[test]\nunconstrained fn bytes_field_test() {\n // Tests correctness of field_from_bytes_32_trunc against existing methods\n // Bytes representing 0x543e0a6642ffeb8039296861765a53407bba62bd1c97ca43374de950bbe0a7\n let inputs = [\n 84, 62, 10, 102, 66, 255, 235, 128, 57, 41, 104, 97, 118, 90, 83, 64, 123, 186, 98, 189, 28,\n 151, 202, 67, 55, 77, 233, 80, 187, 224, 167,\n ];\n let field = field_from_bytes(inputs, true);\n let return_bytes: [u8; 31] = field.to_be_bytes();\n assert_eq(inputs, return_bytes);\n // 32 bytes - we remove the final byte, and check it matches the field\n let inputs2 = [\n 84, 62, 10, 102, 66, 255, 235, 128, 57, 41, 104, 97, 118, 90, 83, 64, 123, 186, 98, 189, 28,\n 151, 202, 67, 55, 77, 233, 80, 187, 224, 167, 158,\n ];\n let field2 = field_from_bytes_32_trunc(inputs2);\n let return_bytes2: [u8; 31] = field.to_be_bytes();\n\n assert_eq(return_bytes2, return_bytes);\n assert_eq(field2, field);\n}\n\n#[test]\nunconstrained fn max_field_test() {\n // Tests the hardcoded value in constants.nr vs underlying modulus\n // NB: We can't use 0-1 in constants.nr as it will be transpiled incorrectly to ts and sol constants files\n let max_value = crate::constants::MAX_FIELD_VALUE;\n assert_eq(max_value, 0 - 1);\n // modulus == 0 is tested elsewhere, so below is more of a sanity check\n let max_bytes: [u8; 32] = max_value.to_be_bytes();\n let mod_bytes = std::field::modulus_be_bytes();\n for i in 0..31 {\n assert_eq(max_bytes[i], mod_bytes[i]);\n }\n assert_eq(max_bytes[31], mod_bytes[31] - 1);\n}\n\n#[test]\nunconstrained fn sqrt_valid_test() {\n let x = 16; // examples: 16, 9, 25, 81\n let result = sqrt(x);\n assert(result.is_some());\n assert_eq(result.unwrap() * result.unwrap(), x);\n}\n\n#[test]\nunconstrained fn sqrt_invalid_test() {\n let x = KNOWN_NON_RESIDUE; // has no square root in the field\n let result = sqrt(x);\n assert(result.is_none());\n}\n"
|
|
7392
7392
|
},
|
|
7393
|
-
"
|
|
7393
|
+
"391": {
|
|
7394
7394
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/utils/reader.nr",
|
|
7395
7395
|
"source": "pub struct Reader<let N: u32> {\n data: [Field; N],\n offset: u32,\n}\n\nimpl<let N: u32> Reader<N> {\n pub fn new(data: [Field; N]) -> Self {\n Self { data, offset: 0 }\n }\n\n pub fn read(&mut self) -> Field {\n let result = self.data[self.offset];\n self.offset += 1;\n result\n }\n\n pub fn read_u32(&mut self) -> u32 {\n self.read() as u32\n }\n\n pub fn read_u64(&mut self) -> u64 {\n self.read() as u64\n }\n\n pub fn read_bool(&mut self) -> bool {\n self.read() != 0\n }\n\n pub fn read_array<let K: u32>(&mut self) -> [Field; K] {\n let mut result = [0; K];\n for i in 0..K {\n result[i] = self.data[self.offset + i];\n }\n self.offset += K;\n result\n }\n\n pub fn read_struct<T, let K: u32>(&mut self, deserialise: fn([Field; K]) -> T) -> T {\n let result = deserialise(self.read_array());\n result\n }\n\n pub fn read_struct_array<T, let K: u32, let C: u32>(\n &mut self,\n deserialise: fn([Field; K]) -> T,\n mut result: [T; C],\n ) -> [T; C] {\n for i in 0..C {\n result[i] = self.read_struct(deserialise);\n }\n result\n }\n\n pub fn finish(self) {\n assert_eq(self.offset, self.data.len(), \"Reader did not read all data\");\n }\n}\n"
|
|
7396
7396
|
},
|
|
7397
|
-
"
|
|
7397
|
+
"401": {
|
|
7398
7398
|
"path": "/home/aztec-dev/nargo/github.com/noir-lang/schnorr/v0.1.3/src/lib.nr",
|
|
7399
7399
|
"source": "use std::embedded_curve_ops::{EmbeddedCurvePoint, EmbeddedCurveScalar, multi_scalar_mul};\nuse std::hash::{blake2s, pedersen_hash};\n\n// the multiples of BN_P that are still less than 2^254 split into (lo, hi)\nglobal BN_P_m: [(Field, Field); 6] = [\n (0, 0),\n (201385395114098847380338600778089168199, 64323764613183177041862057485226039389),\n (62488423307259231297302594124410124942, 128647529226366354083724114970452078779),\n (263873818421358078677641194902499293141, 192971293839549531125586172455678118168),\n (124976846614518462594605188248820249884, 257295058452732708167448229940904157558),\n (326362241728617309974943789026909418083, 321618823065915885209310287426130196947),\n];\n\nglobal TWO_POW_128: Field = 0x100000000000000000000000000000000;\n\npub fn verify_signature<let N: u32>(\n public_key: EmbeddedCurvePoint,\n signature: [u8; 64],\n message: [u8; N],\n) -> bool {\n //scalar lo/hi from bytes\n let sig_s = scalar_from_bytes(signature, 0);\n let sig_e = scalar_from_bytes(signature, 32);\n // pub_key is on Grumpkin curve\n let mut is_ok = (public_key.y * public_key.y == public_key.x * public_key.x * public_key.x - 17)\n & (!public_key.is_infinite);\n\n if ((sig_s.lo != 0) | (sig_s.hi != 0)) & ((sig_e.lo != 0) | (sig_e.hi != 0)) {\n let (r_is_infinite, result) =\n calculate_signature_challenge(public_key, sig_s, sig_e, message);\n\n is_ok &= !r_is_infinite;\n for i in 0..32 {\n is_ok &= result[i] == signature[32 + i];\n }\n } else {\n is_ok = false;\n }\n is_ok\n}\n\npub fn assert_valid_signature<let N: u32>(\n public_key: EmbeddedCurvePoint,\n signature: [u8; 64],\n message: [u8; N],\n) {\n //scalar lo/hi from bytes\n let sig_s = scalar_from_bytes(signature, 0);\n let sig_e = scalar_from_bytes(signature, 32);\n\n // assert pub_key is on Grumpkin curve\n assert(public_key.y * public_key.y == public_key.x * public_key.x * public_key.x - 17);\n assert(public_key.is_infinite == false);\n // assert signature is not null\n assert((sig_s.lo != 0) | (sig_s.hi != 0));\n assert((sig_e.lo != 0) | (sig_e.hi != 0));\n\n let (r_is_infinite, result) = calculate_signature_challenge(public_key, sig_s, sig_e, message);\n\n assert(!r_is_infinite);\n for i in 0..32 {\n assert(result[i] == signature[32 + i]);\n }\n}\n\nfn calculate_signature_challenge<let N: u32>(\n public_key: EmbeddedCurvePoint,\n sig_s: EmbeddedCurveScalar,\n sig_e: EmbeddedCurveScalar,\n message: [u8; N],\n) -> (bool, [u8; 32]) {\n let g1 = EmbeddedCurvePoint {\n x: 1,\n y: 17631683881184975370165255887551781615748388533673675138860,\n is_infinite: false,\n };\n let reduced_sig_e = normalize_signature(sig_e);\n let r = multi_scalar_mul([g1, public_key], [sig_s, reduced_sig_e]);\n // compare the _hashes_ rather than field elements modulo r\n let pedersen_hash = pedersen_hash([r.x, public_key.x, public_key.y]);\n let pde: [u8; 32] = pedersen_hash.to_be_bytes();\n\n let mut hash_input = [0; N + 32];\n for i in 0..32 {\n hash_input[i] = pde[i];\n }\n for i in 0..N {\n hash_input[32 + i] = message[i];\n }\n\n let result = blake2s(hash_input);\n (r.is_infinite, result)\n}\n\nunconstrained fn __gt(a: Field, b: Field) -> bool {\n b.lt(a)\n}\n\n// gets the quotient of lo/hi when divided by BN254_Fq modulus\nunconstrained fn __get_quotient(hi: Field, lo: Field) -> u32 {\n let mut q: u32 = 0;\n let mut r_hi = hi;\n let mut r_lo = lo;\n let MODULUS = BN_P_m[1];\n\n for _ in 1..6 {\n // check if rhi, rlo is larger than BN_P\n let borrow = r_lo.lt(MODULUS.0);\n\n if borrow {\n r_lo = r_lo + TWO_POW_128;\n // rlo is always larger than BN_P lo now\n r_hi = r_hi - 1;\n }\n\n let MODULUS_hi = MODULUS.1;\n\n let gt_flag = !r_hi.lt(MODULUS_hi);\n\n if gt_flag {\n r_hi = r_hi - MODULUS.1;\n r_lo = r_lo - MODULUS.0;\n if TWO_POW_128.lt(r_lo) | TWO_POW_128.lt(r_hi) {\n break;\n }\n q += 1;\n }\n }\n q\n}\n\n// this method reduces the signature to the range [0, BN254_Fq_MODULUS)\nfn normalize_signature(sig_e: EmbeddedCurveScalar) -> EmbeddedCurveScalar {\n let mut hi = sig_e.hi;\n let mut lo = sig_e.lo;\n // get the quotient\n let q = unsafe { __get_quotient(hi, lo) };\n let MODULUSmq = (BN_P_m[q].0, BN_P_m[q].1);\n let MODULUS = BN_P_m[1];\n // remove MODULUS * q from lo/hi\n let borrow = unsafe { __gt(MODULUSmq.0, lo) };\n // rlo, rhi is the signature without the multiple of MODULUS\n let rlo = lo - MODULUSmq.0 + borrow as Field * TWO_POW_128;\n let rhi = hi - borrow as Field - MODULUSmq.1;\n // now we validate that rlo and rhi are positive\n rlo.assert_max_bit_size::<128>();\n rhi.assert_max_bit_size::<128>();\n // validate that rlo, rhi is smaller than MODULUS\n // if the lo is larger than the modulus lo we have to get a borrow\n let borrow = unsafe { __gt(rlo, MODULUS.0) };\n let rplo = MODULUS.0 - rlo + borrow as Field * TWO_POW_128;\n let rphi = MODULUS.1 - rhi - borrow as Field;\n // check that rplo and rphi are positive\n rplo.assert_max_bit_size::<128>();\n rphi.assert_max_bit_size::<128>();\n EmbeddedCurveScalar::new(rlo, rhi)\n}\n\n//Bytes to scalar: take the first (after the specified offset) 16 bytes of the input as the lo value, and the next 16 bytes as the hi value\nfn scalar_from_bytes(bytes: [u8; 64], offset: u32) -> EmbeddedCurveScalar {\n let mut v: Field = 1;\n let mut lo: Field = 0;\n let mut hi: Field = 0;\n for i in 0..16 {\n lo = lo + (bytes[offset + 31 - i] as Field) * v;\n hi = hi + (bytes[offset + 15 - i] as Field) * v;\n v = v * 256;\n }\n let sig_s = EmbeddedCurveScalar::new(lo, hi);\n sig_s\n}\n\nmod test {\n use super::normalize_signature;\n use super::verify_signature;\n use std::embedded_curve_ops::{EmbeddedCurvePoint, EmbeddedCurveScalar};\n\n #[test]\n fn test_zero_signature() {\n let public_key: EmbeddedCurvePoint = EmbeddedCurvePoint {\n x: 1,\n y: 17631683881184975370165255887551781615748388533673675138860,\n is_infinite: false,\n };\n let signature: [u8; 64] = [0; 64];\n let message: [u8; _] = [2; 64]; // every message\n let verified = verify_signature(public_key, signature, message);\n assert(!verified);\n }\n\n #[test]\n fn smoke_test() {\n let message: [u8; 10] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];\n let pub_key_x: Field = 0x04b260954662e97f00cab9adb773a259097f7a274b83b113532bce27fa3fb96a;\n let pub_key_y: Field = 0x2fd51571db6c08666b0edfbfbc57d432068bccd0110a39b166ab243da0037197;\n let signature: [u8; 64] = [\n 1, 13, 119, 112, 212, 39, 233, 41, 84, 235, 255, 93, 245, 172, 186, 83, 157, 253, 76,\n 77, 33, 128, 178, 15, 214, 67, 105, 107, 177, 234, 77, 48, 27, 237, 155, 84, 39, 84,\n 247, 27, 22, 8, 176, 230, 24, 115, 145, 220, 254, 122, 135, 179, 171, 4, 214, 202, 64,\n 199, 19, 84, 239, 138, 124, 12,\n ];\n\n let pub_key = EmbeddedCurvePoint { x: pub_key_x, y: pub_key_y, is_infinite: false };\n let valid_signature = verify_signature(pub_key, signature, message);\n assert(valid_signature);\n super::assert_valid_signature(pub_key, signature, message);\n }\n\n #[test]\n fn test_normalize_signature() {\n let sig_e = EmbeddedCurveScalar::new(\n 201385395114098847380338600778112493540,\n 64323764613183177041862057485226039389,\n );\n let normalized = normalize_signature(sig_e);\n let expected = EmbeddedCurveScalar::new(23325341, 0);\n assert(normalized == expected);\n }\n\n #[test]\n fn test_normalize_signature_2() {\n let sig_e = EmbeddedCurveScalar::new(\n 263873818421358078677641194902522618482,\n 192971293839549531125586172455678118168,\n );\n let normalized = normalize_signature(sig_e);\n let expected = EmbeddedCurveScalar::new(23325341, 0);\n assert(normalized == expected);\n }\n\n}\n\nmod bench {\n use super::{assert_valid_signature, verify_signature};\n use std::embedded_curve_ops::EmbeddedCurvePoint;\n\n #[export]\n pub fn bench_verify_signature(\n public_key: EmbeddedCurvePoint,\n signature: [u8; 64],\n message: [u8; 32],\n ) -> bool {\n verify_signature(public_key, signature, message)\n }\n\n #[export]\n pub fn bench_assert_valid_signature(\n public_key: EmbeddedCurvePoint,\n signature: [u8; 64],\n message: [u8; 32],\n ) {\n assert_valid_signature(public_key, signature, message)\n }\n}\n"
|
|
7400
7400
|
},
|
|
@@ -7412,7 +7412,7 @@
|
|
|
7412
7412
|
},
|
|
7413
7413
|
"51": {
|
|
7414
7414
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-contracts/contracts/account/schnorr_account_contract/src/main.nr",
|
|
7415
|
-
"source": "mod public_key_note;\n\n// Account contract that uses Schnorr signatures for authentication.\n// The signing key is stored in an immutable private note and should be different from the encryption/nullifying key.\nuse dep::aztec::macros::aztec;\n\n#[aztec]\npub contract SchnorrAccount {\n use dep::aztec::{\n authwit::{\n account::AccountActions,\n auth::{compute_authwit_message_hash, compute_authwit_nullifier},\n entrypoint::app::AppPayload,\n },\n context::PrivateContext,\n hash::compute_siloed_nullifier,\n macros::{\n functions::{external, initializer, noinitcheck, nophasecheck, view},\n storage::storage,\n },\n messages::message_delivery::MessageDelivery,\n oracle::{\n auth_witness::get_auth_witness,\n get_nullifier_membership_witness::get_low_nullifier_membership_witness,\n notes::{get_sender_for_tags, set_sender_for_tags},\n },\n protocol_types::address::AztecAddress,\n state_vars::PrivateImmutable,\n };\n\n use crate::public_key_note::PublicKeyNote;\n\n #[storage]\n struct Storage<Context> {\n // docs:start:public_key\n signing_public_key: PrivateImmutable<PublicKeyNote, Context>,\n // docs:end:public_key\n }\n\n // Constructs the contract\n #[external(\"private\")]\n #[initializer]\n fn constructor(signing_pub_key_x: Field, signing_pub_key_y: Field) {\n let pub_key_note = PublicKeyNote::new(signing_pub_key_x, signing_pub_key_y);\n\n // Safety: The sender for tags is only used to compute unconstrained shared secrets for emitting logs.\n // Since this value is only used for unconstrained tagging and not for any constrained logic,\n // it is safe to load from an unconstrained context.\n // TODO(#15752): Improve the sender_for_tags handling here when the original sender is undefined.\n let original_sender = unsafe { get_sender_for_tags().unwrap_or(self.address) };\n\n // We set the sender for tags to this contract because we don't want to force the user corresponding to this\n // account to add the account deployer as a sender to their PXE. By setting it to this contract, user's PXE\n // will manage to find the note even if the account deployer is not registered as a sender (i.e\n // `pxe.registerSender(accountDeployer)` was not called)\n\n // Safety: Comment from above applies here as well.\n unsafe { set_sender_for_tags(self.address) };\n self.storage.signing_public_key.at(self.address).initialize(pub_key_note).emit(\n self.address,\n MessageDelivery.CONSTRAINED_ONCHAIN,\n );\n // Safety: Comment from above applies here as well.\n unsafe { set_sender_for_tags(original_sender) };\n }\n\n // @dev: If you globally change the entrypoint signature don't forget to update account_entrypoint.ts file (specifically `getEntrypointAbi()`).\n // using noinitcheck is an optimization, it reduces gates by omitting a check that the contract has been initialized\n #[external(\"private\")]\n #[noinitcheck]\n #[nophasecheck]\n fn entrypoint(app_payload: AppPayload, fee_payment_method: u8, cancellable: bool) {\n // Safety: The sender for tags is only used to compute unconstrained shared secrets for emitting logs.\n // Since this value is only used for unconstrained tagging and not for any constrained logic,\n // it is safe to set from a constrained context.\n unsafe { set_sender_for_tags(self.address) };\n\n let actions = AccountActions::init(self.context, is_valid_impl);\n actions.entrypoint(app_payload, fee_payment_method, cancellable);\n }\n\n #[external(\"private\")]\n #[noinitcheck]\n #[view]\n fn verify_private_authwit(inner_hash: Field) -> Field {\n let actions = AccountActions::init(self.context, is_valid_impl);\n actions.verify_private_authwit(inner_hash)\n }\n\n #[contract_library_method]\n fn is_valid_impl(context: &mut PrivateContext, outer_hash: Field) -> bool {\n // docs:start:is_valid_impl\n // Load public key from storage\n let storage = Storage::init(context);\n let public_key = storage.signing_public_key.at(context.this_address()).get_note();\n\n // Load auth witness\n // Safety: The witness is only used as a \"magical value\" that makes the signature verification below pass.\n // Hence it's safe.\n let witness: [Field; 64] = unsafe { get_auth_witness(outer_hash) };\n let mut signature: [u8; 64] = [0; 64];\n for i in 0..64 {\n signature[i] = witness[i] as u8;\n }\n\n let pub_key = std::embedded_curve_ops::EmbeddedCurvePoint {\n x: public_key.x,\n y: public_key.y,\n is_infinite: false,\n };\n // Verify signature of the payload bytes\n schnorr::verify_signature(pub_key, signature, outer_hash.to_be_bytes::<32>())\n // docs:end:is_valid_impl\n }\n\n /**\n * @notice Helper function to check validity of private authwitnesses\n * @param consumer The address of the consumer of the message\n * @param message_hash The message hash of the message to check the validity\n * @return True if the message_hash can be consumed, false otherwise\n */\n #[external(\"utility\")]\n unconstrained fn lookup_validity(consumer: AztecAddress, inner_hash: Field) -> bool {\n let public_key = self.storage.signing_public_key.at(self.address).view_note();\n\n let message_hash = compute_authwit_message_hash(\n consumer,\n self.context.chain_id(),\n self.context.version(),\n inner_hash,\n );\n\n let witness: [Field; 64] = get_auth_witness(message_hash);\n let mut signature: [u8; 64] = [0; 64];\n for i in 0..64 {\n signature[i] = witness[i] as u8;\n }\n let pub_key = std::embedded_curve_ops::EmbeddedCurvePoint {\n x: public_key.x,\n y: public_key.y,\n is_infinite: false,\n };\n let valid_in_private =\n schnorr::verify_signature(pub_key, signature, message_hash.to_be_bytes::<32>());\n\n // Compute the nullifier and check if it is spent\n // This will BLINDLY TRUST the oracle, but the oracle is us, and\n // it is not as part of execution of the contract, so we are good.\n let nullifier = compute_authwit_nullifier(self.address, inner_hash);\n let siloed_nullifier = compute_siloed_nullifier(consumer, nullifier);\n let lower_wit =\n get_low_nullifier_membership_witness(self.context.block_number(), siloed_nullifier);\n let is_spent = lower_wit.leaf_preimage.nullifier == siloed_nullifier;\n\n !is_spent & valid_in_private\n }\n}\n"
|
|
7415
|
+
"source": "mod public_key_note;\n\n// Account contract that uses Schnorr signatures for authentication.\n// The signing key is stored in an immutable private note and should be different from the encryption/nullifying key.\nuse dep::aztec::macros::aztec;\n\n#[aztec]\npub contract SchnorrAccount {\n use dep::aztec::{\n authwit::{\n account::AccountActions,\n auth::{compute_authwit_message_hash, compute_authwit_nullifier},\n entrypoint::app::AppPayload,\n },\n context::PrivateContext,\n hash::compute_siloed_nullifier,\n macros::{\n functions::{external, initializer, noinitcheck, nophasecheck, view},\n storage::storage,\n },\n messages::message_delivery::MessageDelivery,\n oracle::{\n auth_witness::get_auth_witness,\n get_nullifier_membership_witness::get_low_nullifier_membership_witness,\n notes::{get_sender_for_tags, set_sender_for_tags},\n },\n protocol_types::address::AztecAddress,\n state_vars::{Owned, PrivateImmutable},\n };\n\n use crate::public_key_note::PublicKeyNote;\n\n #[storage]\n struct Storage<Context> {\n // docs:start:public_key\n signing_public_key: Owned<PrivateImmutable<PublicKeyNote, Context>, Context>,\n // docs:end:public_key\n }\n\n // Constructs the contract\n #[external(\"private\")]\n #[initializer]\n fn constructor(signing_pub_key_x: Field, signing_pub_key_y: Field) {\n let pub_key_note = PublicKeyNote::new(signing_pub_key_x, signing_pub_key_y);\n\n // Safety: The sender for tags is only used to compute unconstrained shared secrets for emitting logs.\n // Since this value is only used for unconstrained tagging and not for any constrained logic,\n // it is safe to load from an unconstrained context.\n // TODO(#15752): Improve the sender_for_tags handling here when the original sender is undefined.\n let original_sender = unsafe { get_sender_for_tags().unwrap_or(self.address) };\n\n // We set the sender for tags to this contract because we don't want to force the user corresponding to this\n // account to add the account deployer as a sender to their PXE. By setting it to this contract, user's PXE\n // will manage to find the note even if the account deployer is not registered as a sender (i.e\n // `pxe.registerSender(accountDeployer)` was not called)\n\n // Safety: Comment from above applies here as well.\n unsafe { set_sender_for_tags(self.address) };\n self.storage.signing_public_key.at(self.address).initialize(pub_key_note).emit(\n self.address,\n MessageDelivery.CONSTRAINED_ONCHAIN,\n );\n // Safety: Comment from above applies here as well.\n unsafe { set_sender_for_tags(original_sender) };\n }\n\n // @dev: If you globally change the entrypoint signature don't forget to update account_entrypoint.ts file (specifically `getEntrypointAbi()`).\n // using noinitcheck is an optimization, it reduces gates by omitting a check that the contract has been initialized\n #[external(\"private\")]\n #[noinitcheck]\n #[nophasecheck]\n fn entrypoint(app_payload: AppPayload, fee_payment_method: u8, cancellable: bool) {\n // Safety: The sender for tags is only used to compute unconstrained shared secrets for emitting logs.\n // Since this value is only used for unconstrained tagging and not for any constrained logic,\n // it is safe to set from a constrained context.\n unsafe { set_sender_for_tags(self.address) };\n\n let actions = AccountActions::init(self.context, is_valid_impl);\n actions.entrypoint(app_payload, fee_payment_method, cancellable);\n }\n\n #[external(\"private\")]\n #[noinitcheck]\n #[view]\n fn verify_private_authwit(inner_hash: Field) -> Field {\n let actions = AccountActions::init(self.context, is_valid_impl);\n actions.verify_private_authwit(inner_hash)\n }\n\n #[contract_library_method]\n fn is_valid_impl(context: &mut PrivateContext, outer_hash: Field) -> bool {\n // docs:start:is_valid_impl\n // Load public key from storage\n let storage = Storage::init(context);\n let public_key = storage.signing_public_key.at(context.this_address()).get_note();\n\n // Load auth witness\n // Safety: The witness is only used as a \"magical value\" that makes the signature verification below pass.\n // Hence it's safe.\n let witness: [Field; 64] = unsafe { get_auth_witness(outer_hash) };\n let mut signature: [u8; 64] = [0; 64];\n for i in 0..64 {\n signature[i] = witness[i] as u8;\n }\n\n let pub_key = std::embedded_curve_ops::EmbeddedCurvePoint {\n x: public_key.x,\n y: public_key.y,\n is_infinite: false,\n };\n // Verify signature of the payload bytes\n schnorr::verify_signature(pub_key, signature, outer_hash.to_be_bytes::<32>())\n // docs:end:is_valid_impl\n }\n\n /**\n * @notice Helper function to check validity of private authwitnesses\n * @param consumer The address of the consumer of the message\n * @param message_hash The message hash of the message to check the validity\n * @return True if the message_hash can be consumed, false otherwise\n */\n #[external(\"utility\")]\n unconstrained fn lookup_validity(consumer: AztecAddress, inner_hash: Field) -> bool {\n let public_key = self.storage.signing_public_key.at(self.address).view_note();\n\n let message_hash = compute_authwit_message_hash(\n consumer,\n self.context.chain_id(),\n self.context.version(),\n inner_hash,\n );\n\n let witness: [Field; 64] = get_auth_witness(message_hash);\n let mut signature: [u8; 64] = [0; 64];\n for i in 0..64 {\n signature[i] = witness[i] as u8;\n }\n let pub_key = std::embedded_curve_ops::EmbeddedCurvePoint {\n x: public_key.x,\n y: public_key.y,\n is_infinite: false,\n };\n let valid_in_private =\n schnorr::verify_signature(pub_key, signature, message_hash.to_be_bytes::<32>());\n\n // Compute the nullifier and check if it is spent\n // This will BLINDLY TRUST the oracle, but the oracle is us, and\n // it is not as part of execution of the contract, so we are good.\n let nullifier = compute_authwit_nullifier(self.address, inner_hash);\n let siloed_nullifier = compute_siloed_nullifier(consumer, nullifier);\n let lower_wit =\n get_low_nullifier_membership_witness(self.context.block_number(), siloed_nullifier);\n let is_spent = lower_wit.leaf_preimage.nullifier == siloed_nullifier;\n\n !is_spent & valid_in_private\n }\n}\n"
|
|
7416
7416
|
},
|
|
7417
7417
|
"53": {
|
|
7418
7418
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/authwit/account.nr",
|
|
@@ -7440,7 +7440,7 @@
|
|
|
7440
7440
|
},
|
|
7441
7441
|
"70": {
|
|
7442
7442
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/context/private_context.nr",
|
|
7443
|
-
"source": "use crate::{\n context::{\n inputs::PrivateContextInputs, note_hash_read::NoteHashRead, returns_hash::ReturnsHash,\n },\n hash::{hash_args, hash_calldata_array},\n keys::constants::{NULLIFIER_INDEX, NUM_KEY_TYPES, OUTGOING_INDEX, sk_generators},\n messaging::process_l1_to_l2_message,\n oracle::{\n block_header::get_block_header_at,\n call_private_function::call_private_function_internal,\n enqueue_public_function_call::{\n is_side_effect_counter_revertible_oracle_wrapper, notify_enqueued_public_function_call,\n notify_set_min_revertible_side_effect_counter, notify_set_public_teardown_function_call,\n },\n execution_cache,\n key_validation_request::get_key_validation_request,\n logs::notify_created_contract_class_log,\n notes::{notify_created_nullifier, notify_nullified_note},\n },\n};\nuse dep::protocol_types::{\n abis::{\n block_header::BlockHeader,\n call_context::CallContext,\n function_selector::FunctionSelector,\n gas_settings::GasSettings,\n log_hash::LogHash,\n note_hash::NoteHash,\n nullifier::Nullifier,\n private_call_request::PrivateCallRequest,\n private_circuit_public_inputs::PrivateCircuitPublicInputs,\n private_log::{PrivateLog, PrivateLogData},\n public_call_request::PublicCallRequest,\n validation_requests::{KeyValidationRequest, KeyValidationRequestAndGenerator},\n },\n address::{AztecAddress, EthAddress},\n constants::{\n CONTRACT_CLASS_LOG_SIZE_IN_FIELDS, MAX_CONTRACT_CLASS_LOGS_PER_CALL,\n MAX_ENQUEUED_CALLS_PER_CALL, MAX_INCLUDE_BY_TIMESTAMP_DURATION,\n MAX_KEY_VALIDATION_REQUESTS_PER_CALL, MAX_L2_TO_L1_MSGS_PER_CALL,\n MAX_NOTE_HASH_READ_REQUESTS_PER_CALL, MAX_NOTE_HASHES_PER_CALL,\n MAX_NULLIFIER_READ_REQUESTS_PER_CALL, MAX_NULLIFIERS_PER_CALL,\n MAX_PRIVATE_CALL_STACK_LENGTH_PER_CALL, MAX_PRIVATE_LOGS_PER_CALL,\n NULL_MSG_SENDER_CONTRACT_ADDRESS, PRIVATE_LOG_SIZE_IN_FIELDS,\n },\n hash::poseidon2_hash,\n messaging::l2_to_l1_message::L2ToL1Message,\n side_effect::{Counted, scoped::Scoped},\n traits::{Empty, Hash, ToField},\n utils::arrays::{ClaimedLengthArray, find_first_index, trimmed_array_length_hint},\n};\n\n/// # PrivateContext\n///\n/// The **main interface** between an #[external(\"private\")] function and the Aztec blockchain.\n///\n/// An instance of the PrivateContext is initialized automatically at the outset\n/// of every private function, within the #[external(\"private\")] macro, so you'll never\n/// need to consciously instantiate this yourself.\n///\n/// The instance is always named `context`, and it is always be available within\n/// the body of every #[external(\"private\")] function in your smart contract.\n///\n/// > For those used to \"vanilla\" Noir, it might be jarring to have access to\n/// > `context` without seeing a declaration `let context = PrivateContext::new(...)`\n/// > within the body of your function. This is just a consequence of using\n/// > macros to tidy-up verbose boilerplate. You can use `nargo expand` to\n/// > expand all macros, if you dare.\n///\n/// Typical usage for a smart contract developer will be to call getter\n/// methods of the PrivateContext.\n///\n/// _Pushing_ data and requests to the context is mostly handled within\n/// aztec-nr's own functions, so typically a smart contract developer won't\n/// need to call any setter methods directly.\n///\n/// > Advanced users might occasionally wish to push data to the context\n/// > directly for lower-level control. If you find yourself doing this, please\n/// > open an issue on GitHub to describe your use case: it might be that\n/// > new functionality should be added to aztec-nr.\n///\n/// ## Responsibilities\n/// - Exposes contextual data to a private function:\n/// - Data relating to how this private function was called.\n/// - msg_sender\n/// - this_address - (the contract address of the private function being\n/// executed)\n/// - See `CallContext` for more data.\n/// - Data relating to the transaction in which this private function is\n/// being executed.\n/// - chain_id\n/// - version\n/// - gas_settings\n/// - Provides state access:\n/// - Access to the \"Anchor block\" header.\n/// Recall, a private function cannot read from the \"current\" block header,\n/// but must read from some historical block header, because as soon as\n/// private function execution begins (asynchronously, on a user's device),\n/// the public state of the chain (the \"current state\") will have progressed\n/// forward. We call this reference the \"Anchor block\".\n/// See `BlockHeader`.\n/// - Enables consumption of L1->L2 messages.\n/// - Enables calls to functions of other smart contracts:\n/// - Private function calls\n/// - Enqueueing of public function call requests\n/// (Since public functions are executed at a later time, by a block\n/// proposer, we say they are \"enqueued\").\n/// - Writes data to the blockchain:\n/// - New notes\n/// - New nullifiers\n/// - Private logs (for sending encrypted note contents or encrypted events)\n/// - New L2->L1 messages.\n/// - Provides args to the private function (handled by the #[external(\"private\")] macro).\n/// - Returns the return values of this private function (handled by the\n/// #[external(\"private\")] macro).\n/// - Makes Key Validation Requests.\n/// - Private functions are not allowed to see master secret keys, because we\n/// do not trust them. They are instead given \"app-siloed\" secret keys with\n/// a claim that they relate to a master public key. They can then request\n/// validation of this claim, by making a \"key validation request\" to the\n/// protocol's kernel circuits (which _are_ allowed to see certain master\n/// secret keys).\n///\n/// ## Advanced Responsibilities\n///\n/// - Ultimately, the PrivateContext is responsible for constructing the\n/// PrivateCircuitPublicInputs of the private function being executed.\n/// All private functions on Aztec must have public inputs which adhere\n/// to the rigid layout of the PrivateCircuitPublicInputs, in order to be\n/// compatible with the protocol's kernel circuits.\n/// A well-known misnomer:\n/// - \"public inputs\" contain both inputs and outputs of this function.\n/// - By \"outputs\" we mean a lot more side-effects than just the\n/// \"return values\" of the function.\n/// - Most of the so-called \"public inputs\" are kept _private_, and never leak\n/// to the outside world, because they are 'swallowed' by the protocol's\n/// kernel circuits before the tx is sent to the network. Only the\n/// following are exposed to the outside world:\n/// - New note_hashes\n/// - New nullifiers\n/// - New private logs\n/// - New L2->L1 messages\n/// - New enqueued public function call requests\n/// All the above-listed arrays of side-effects can be padded by the\n/// user's wallet (through instructions to the kernel circuits, via the\n/// PXE) to obscure their true lengths.\n///\n/// ## Syntax Justification\n///\n/// Both user-defined functions _and_ most functions in aztec-nr need access to\n/// the PrivateContext instance to read/write data. This is why you'll see the\n/// arguably-ugly pervasiveness of the \"context\" throughout your smart contract\n/// and the aztec-nr library.\n/// For example, `&mut context` is prevalent. In some languages, you can access\n/// and mutate a global variable (such as a PrivateContext instance) from a\n/// function without polluting the function's parameters. With Noir, a function\n/// must explicitly pass control of a mutable variable to another function, by\n/// reference. Since many functions in aztec-nr need to be able to push new data\n/// to the PrivateContext, they need to be handed a mutable reference _to_ the\n/// context as a parameter.\n/// For example, `Context` is prevalent as a generic parameter, to give better\n/// type safety at compile time. Many `aztec-nr` functions don't make sense if\n/// they're called in a particular runtime (private, public or utility), and so\n/// are intentionally only implemented over certain\n/// [Private|Public|Utility]Context structs. This gives smart contract\n/// developers a much faster feedback loop if they're making a mistake, as an\n/// error will be thrown by the LSP or when they compile their contract.\n///\n#[derive(Eq)]\npub struct PrivateContext {\n // docs:start:private-context\n pub inputs: PrivateContextInputs,\n pub side_effect_counter: u32,\n\n pub min_revertible_side_effect_counter: u32,\n pub is_fee_payer: bool,\n\n pub args_hash: Field,\n pub return_hash: Field,\n\n pub include_by_timestamp: u64,\n\n pub note_hash_read_requests: BoundedVec<Scoped<Counted<Field>>, MAX_NOTE_HASH_READ_REQUESTS_PER_CALL>,\n pub nullifier_read_requests: BoundedVec<Scoped<Counted<Field>>, MAX_NULLIFIER_READ_REQUESTS_PER_CALL>,\n key_validation_requests_and_generators: BoundedVec<KeyValidationRequestAndGenerator, MAX_KEY_VALIDATION_REQUESTS_PER_CALL>,\n\n pub note_hashes: BoundedVec<Counted<NoteHash>, MAX_NOTE_HASHES_PER_CALL>,\n pub nullifiers: BoundedVec<Counted<Nullifier>, MAX_NULLIFIERS_PER_CALL>,\n\n pub private_call_requests: BoundedVec<PrivateCallRequest, MAX_PRIVATE_CALL_STACK_LENGTH_PER_CALL>,\n pub public_call_requests: BoundedVec<Counted<PublicCallRequest>, MAX_ENQUEUED_CALLS_PER_CALL>,\n pub public_teardown_call_request: PublicCallRequest,\n pub l2_to_l1_msgs: BoundedVec<Counted<L2ToL1Message>, MAX_L2_TO_L1_MSGS_PER_CALL>,\n // docs:end:private-context\n\n // Header of a block whose state is used during private execution (not the block the transaction is included in).\n pub anchor_block_header: BlockHeader,\n\n pub private_logs: BoundedVec<Counted<PrivateLogData>, MAX_PRIVATE_LOGS_PER_CALL>,\n pub contract_class_logs_hashes: BoundedVec<Counted<LogHash>, MAX_CONTRACT_CLASS_LOGS_PER_CALL>,\n\n // Contains the last key validation request for each key type. This is used to cache the last request and avoid\n // fetching the same request multiple times.\n // The index of the array corresponds to the key type (0 nullifier, 1 incoming, 2 outgoing, 3 tagging).\n pub last_key_validation_requests: [Option<KeyValidationRequest>; NUM_KEY_TYPES],\n\n pub expected_non_revertible_side_effect_counter: u32,\n pub expected_revertible_side_effect_counter: u32,\n}\n\nimpl PrivateContext {\n pub fn new(inputs: PrivateContextInputs, args_hash: Field) -> PrivateContext {\n let max_allowed_include_by_timestamp = inputs.anchor_block_header.global_variables.timestamp\n + MAX_INCLUDE_BY_TIMESTAMP_DURATION;\n PrivateContext {\n inputs,\n side_effect_counter: inputs.start_side_effect_counter + 1,\n min_revertible_side_effect_counter: 0,\n is_fee_payer: false,\n args_hash,\n return_hash: 0,\n include_by_timestamp: max_allowed_include_by_timestamp,\n note_hash_read_requests: BoundedVec::new(),\n nullifier_read_requests: BoundedVec::new(),\n key_validation_requests_and_generators: BoundedVec::new(),\n note_hashes: BoundedVec::new(),\n nullifiers: BoundedVec::new(),\n anchor_block_header: inputs.anchor_block_header,\n private_call_requests: BoundedVec::new(),\n public_call_requests: BoundedVec::new(),\n public_teardown_call_request: PublicCallRequest::empty(),\n l2_to_l1_msgs: BoundedVec::new(),\n private_logs: BoundedVec::new(),\n contract_class_logs_hashes: BoundedVec::new(),\n last_key_validation_requests: [Option::none(); NUM_KEY_TYPES],\n expected_non_revertible_side_effect_counter: 0,\n expected_revertible_side_effect_counter: 0,\n }\n }\n\n /// Returns the contract address that initiated this function call.\n ///\n /// This is similar to `msg.sender` in Solidity (hence the name).\n ///\n /// Important Note: Since Aztec doesn't have a concept of an EoA (\n /// Externally-owned Account), the msg_sender is \"null\" for the first\n /// function call of every transaction.\n /// The first function call of a tx is likely to be a call to the user's\n /// account contract, so this quirk will most often be handled by account\n /// contract developers.\n ///\n /// # Returns\n /// * `Option<AztecAddress>` - The address of the smart contract that called\n /// this function (be it an app contract or a user's account contract).\n /// Returns `Option<AztecAddress>::none` for the first function call of\n /// the tx. No other _private_ function calls in the tx will have a `none`\n /// msg_sender, but _public_ function calls might (see the PublicContext).\n ///\n pub fn msg_sender(self) -> Option<AztecAddress> {\n let maybe_msg_sender = self.inputs.call_context.msg_sender;\n if maybe_msg_sender == NULL_MSG_SENDER_CONTRACT_ADDRESS {\n Option::none()\n } else {\n Option::some(maybe_msg_sender)\n }\n }\n\n /// \"Unsafe\" versus calling `context.msg_sender()`, because it doesn't\n /// translate `NULL_MSG_SENDER_CONTRACT_ADDRESS` as\n /// `Option<AztecAddress>::none`.\n /// Used by some internal aztecnr functions.\n pub fn msg_sender_unsafe(self) -> AztecAddress {\n self.inputs.call_context.msg_sender\n }\n\n /// Returns the contract address of the current function being executed.\n ///\n /// This is equivalent to `address(this)` in Solidity (hence the name).\n /// Use this to identify the current contract's address, commonly needed for\n /// access control or when interacting with other contracts.\n ///\n /// # Returns\n /// * `AztecAddress` - The contract address of the current function being\n /// executed.\n ///\n pub fn this_address(self) -> AztecAddress {\n self.inputs.call_context.contract_address\n }\n\n /// Returns the chain ID of the current network.\n ///\n /// This is similar to `block.chainid` in Solidity. Returns the unique\n /// identifier for the blockchain network this transaction is executing on.\n ///\n /// Helps prevent cross-chain replay attacks. Useful if implementing\n /// multi-chain contract logic.\n ///\n /// # Returns\n /// * `Field` - The chain ID as a field element\n ///\n pub fn chain_id(self) -> Field {\n self.inputs.tx_context.chain_id\n }\n\n /// Returns the Aztec protocol version that this transaction is executing\n /// under. Different versions may have different rules, opcodes, or\n /// cryptographic primitives.\n ///\n /// This is similar to how Ethereum has different EVM versions.\n ///\n /// Useful for forward/backward compatibility checks\n ///\n /// Not to be confused with contract versions; this is the protocol version.\n ///\n /// # Returns\n /// * `Field` - The protocol version as a field element\n ///\n pub fn version(self) -> Field {\n self.inputs.tx_context.version\n }\n\n /// Returns the gas settings for the current transaction.\n ///\n /// This provides information about gas limits and pricing for the\n /// transaction, similar to `tx.gasprice` and gas limits in Ethereum.\n /// However, Aztec has a more sophisticated gas model with separate\n /// accounting for L2 computation and data availability (DA) costs.\n ///\n /// # Returns\n /// * `GasSettings` - Struct containing gas limits and fee information\n ///\n pub fn gas_settings(self) -> GasSettings {\n self.inputs.tx_context.gas_settings\n }\n\n /// Returns the function selector of the currently executing function.\n ///\n /// Low-level function: Ordinarily, smart contract developers will not need\n /// to access this.\n ///\n /// This is similar to `msg.sig` in Solidity, which returns the first 4\n /// bytes of the function signature. In Aztec, the selector uniquely\n /// identifies which function within the contract is being called.\n ///\n /// # Returns\n /// * `FunctionSelector` - The 4-byte function identifier\n ///\n /// # Advanced\n /// Only #[external(\"private\")] functions have a function selector as a protocol-\n /// enshrined concept. The function selectors of private functions are\n /// baked into the preimage of the contract address, and are used by the\n /// protocol's kernel circuits to identify each private function and ensure\n /// the correct one is being executed.\n ///\n /// Used internally for function dispatch and call verification.\n ///\n pub fn selector(self) -> FunctionSelector {\n self.inputs.call_context.function_selector\n }\n\n /// Returns the hash of the arguments passed to the current function.\n ///\n /// Very low-level function: You shouldn't need to call this. The #[external(\"private\")]\n /// macro calls this, and it makes the arguments neatly available to the\n /// body of your private function.\n ///\n /// # Returns\n /// * `Field` - Hash of the function arguments\n ///\n /// # Advanced\n /// * Arguments are hashed to reduce proof size and verification time\n /// * Enables efficient argument passing in recursive function calls\n /// * The hash can be used to retrieve the original arguments from the PXE.\n ///\n pub fn get_args_hash(self) -> Field {\n self.args_hash\n }\n\n /// Pushes a new note_hash to the Aztec blockchain's global Note Hash Tree\n /// (a state tree).\n ///\n /// A note_hash is a commitment to a piece of private state.\n ///\n /// Low-level function: Ordinarily, smart contract developers will not need\n /// to manually call this. Aztec-nr's state variables (see `../state_vars/`)\n /// are designed to understand when to create and push new note hashes.\n ///\n /// # Arguments\n /// * `note_hash` - The new note_hash.\n ///\n /// # Advanced\n /// From here, the protocol's kernel circuits will take over and insert the\n /// note_hash into the protocol's \"note hash tree\" (in the Base Rollup\n /// circuit).\n /// Before insertion, the protocol will:\n /// - \"Silo\" the `note_hash` with the contract address of this function,\n /// to yield a `siloed_note_hash`. This prevents state collisions\n /// between different smart contracts.\n /// - Ensure uniqueness of the `siloed_note_hash`, to prevent Faerie-Gold\n /// attacks, by hashing the `siloed_note_hash` with a unique value, to\n /// yield a `unique_siloed_note_hash` (see the protocol spec for more).\n ///\n /// In addition to calling this function, aztec-nr provides the contents\n /// of the newly-created note to the PXE, via the `notify_created_note`\n /// oracle.\n ///\n /// > Advanced users might occasionally wish to push data to the context\n /// > directly for lower-level control. If you find yourself doing this,\n /// > please open an issue on GitHub to describe your use case: it might be\n /// > that new functionality should be added to aztec-nr.\n ///\n pub fn push_note_hash(&mut self, note_hash: Field) {\n self.note_hashes.push(Counted::new(note_hash, self.next_counter()));\n }\n\n /// Pushes a new nullifier to the Aztec blockchain's global Nullifier Tree\n /// (a state tree).\n ///\n /// See also: `push_nullifier_for_note_hash`.\n ///\n /// Low-level function: Ordinarily, smart contract developers will not need\n /// to manually call this. Aztec-nr's state variables (see `../state_vars/`)\n /// are designed to understand when to create and push new nullifiers.\n ///\n /// A nullifier can only be emitted once. Duplicate nullifier insertions are\n /// rejected by the protocol.\n ///\n /// Generally, a nullifier is emitted to prevent an action from happening\n /// more than once, in such a way that the action cannot be linked (by an\n /// observer of the blockchain) to any earlier transactions.\n ///\n /// I.e. a nullifier is a random-looking, but deterministic record of a\n /// private, one-time action, which does not leak what action has been\n /// taken, and which preserves the property of \"tx unlinkability\".\n ///\n /// Usually, a nullifier will be emitted to \"spend\" a note (a piece of\n /// private state), without revealing which specific note is being spent.\n ///\n /// (Important: in such cases, use the below `push_nullifier_for_note_hash`).\n ///\n /// Sometimes, a nullifier might be emitted completely unrelated to any\n /// notes. Examples include initialization of a new contract; initialization\n /// of a PrivateMutable, or signalling in Semaphore-like applications.\n /// This `push_nullifier` function serves such use cases.\n ///\n /// # Arguments\n /// * `nullifier`\n ///\n /// # Advanced\n /// From here, the protocol's kernel circuits will take over and insert the\n /// nullifier into the protocol's \"nullifier tree\" (in the Base Rollup\n /// circuit).\n /// Before insertion, the protocol will:\n /// - \"Silo\" the `nullifier` with the contract address of this function,\n /// to yield a `siloed_nullifier`. This prevents state collisions\n /// between different smart contracts.\n /// - Ensure the `siloed_nullifier` is unique (the nullifier tree is an\n /// indexed merkle tree which supports efficient non-membership proofs).\n ///\n pub fn push_nullifier(&mut self, nullifier: Field) {\n notify_created_nullifier(nullifier);\n self.nullifiers.push(Nullifier { value: nullifier, note_hash: 0 }.count(self.next_counter()));\n }\n\n /// Pushes a nullifier that corresponds to a specific note hash.\n ///\n /// Low-level function: Ordinarily, smart contract developers will not need\n /// to manually call this. Aztec-nr's state variables (see `../state_vars/`)\n /// are designed to understand when to create and push new nullifiers.\n ///\n /// This is a specialized version of `push_nullifier` that links a nullifier\n /// to the specific note hash it's nullifying. This is the most common\n /// usage pattern for nullifiers.\n /// See `push_nullifier` for more explanation on nullifiers.\n ///\n /// # Arguments\n /// * `nullifier`\n /// * `nullified_note_hash` - The note hash of the note being nullified\n ///\n /// # Advanced\n /// Important: usage of this function doesn't mean that the world will _see_\n /// that this nullifier relates to the given nullified_note_hash (as that\n /// would violate \"tx unlinkability\"); it simply informs the user's PXE\n /// about the relationship (via `notify_nullified_note`). The PXE can then\n /// use this information to feed hints to the kernel circuits for\n /// \"squashing\" purposes: If a note is nullified during the same tx which\n /// created it, we can \"squash\" (delete) the note and nullifier (and any\n /// private logs associated with the note), to save on data emission costs.\n ///\n pub fn push_nullifier_for_note_hash(&mut self, nullifier: Field, nullified_note_hash: Field) {\n let nullifier_counter = self.next_counter();\n notify_nullified_note(nullifier, nullified_note_hash, nullifier_counter);\n self.nullifiers.push(Nullifier { value: nullifier, note_hash: nullified_note_hash }.count(\n nullifier_counter,\n ));\n }\n\n /// Returns the anchor block header - the historical block header that this\n /// private function is reading from.\n ///\n /// A private function CANNOT read from the \"current\" block header,\n /// but must read from some older block header, because as soon as\n /// private function execution begins (asynchronously, on a user's device),\n /// the public state of the chain (the \"current state\") will have progressed\n /// forward.\n ///\n /// # Returns\n /// * `BlockHeader` - The anchor block header.\n ///\n /// # Advanced\n /// * All private functions of a tx read from the same anchor block header.\n /// * The protocol asserts that the `include_by_timestamp` of every tx\n /// is at most 24 hours beyond the timestamp of the tx's chosen anchor\n /// block header. This enables the network's nodes to safely prune old txs\n /// from the mempool. Therefore, the chosen block header _must_ be one\n /// from within the last 24 hours.\n ///\n pub fn get_anchor_block_header(self) -> BlockHeader {\n self.anchor_block_header\n }\n\n /// Returns the header of any historical block at or before the anchor\n /// block.\n ///\n /// This enables private contracts to access information from even older\n /// blocks than the anchor block header.\n ///\n /// Useful for time-based contract logic that needs to compare against\n /// multiple historical points.\n ///\n /// # Arguments\n /// * `block_number` - The block number to retrieve (must be <= anchor\n /// block number)\n ///\n /// # Returns\n /// * `BlockHeader` - The header of the requested historical block\n ///\n /// # Advanced\n /// This function uses an oracle to fetch block header data from the user's\n /// PXE. Depending on how much blockchain data the user's PXE has been set\n /// up to store, this might require a query from the PXE to another Aztec\n /// node to get the data.\n /// > This is generally true of all oracle getters (see `../oracle`).\n ///\n /// Each block header gets hashed and stored as a leaf in the protocol's\n /// Archive Tree. In fact, the i-th block header gets stored at the i-th\n /// leaf index of the Archive Tree. Behind the scenes, this\n /// `get_block_header_at` function will add Archive Tree merkle-membership\n /// constraints (~3k) to your smart contract function's circuit, to prove\n /// existence of the block header in the Archive Tree.\n ///\n /// Note: we don't do any caching, so avoid making duplicate calls for the\n /// same block header, because each call will add duplicate constraints.\n ///\n /// Calling this function is more expensive (constraint-wise) than getting\n /// the anchor block header (via `get_block_header`). This is because the\n /// anchor block's merkle membership proof is handled by Aztec's protocol\n /// circuits, and is only performed once for the entire tx because all\n /// private functions of a tx share a common anchor block header. Therefore,\n /// the cost (constraint-wise) of calling `get_block_header` is effectively\n /// free.\n ///\n pub fn get_block_header_at(self, block_number: u32) -> BlockHeader {\n get_block_header_at(block_number, self)\n }\n\n /// Sets the hash of the return values for this private function.\n ///\n /// Very low-level function: this is called by the #[external(\"private\")] macro.\n ///\n /// # Arguments\n /// * `serialized_return_values` - The serialized return values as a field array\n ///\n pub fn set_return_hash<let N: u32>(&mut self, serialized_return_values: [Field; N]) {\n let return_hash = hash_args(serialized_return_values);\n self.return_hash = return_hash;\n execution_cache::store(serialized_return_values, return_hash);\n }\n\n /// Builds the PrivateCircuitPublicInputs for this private function, to\n /// ensure compatibility with the protocol's kernel circuits.\n ///\n /// Very low-level function: This function is automatically called by the\n /// #[external(\"private\")] macro.\n pub fn finish(self) -> PrivateCircuitPublicInputs {\n PrivateCircuitPublicInputs {\n call_context: self.inputs.call_context,\n args_hash: self.args_hash,\n returns_hash: self.return_hash,\n min_revertible_side_effect_counter: self.min_revertible_side_effect_counter,\n is_fee_payer: self.is_fee_payer,\n include_by_timestamp: self.include_by_timestamp,\n note_hash_read_requests: ClaimedLengthArray::from_bounded_vec(\n self.note_hash_read_requests,\n ),\n nullifier_read_requests: ClaimedLengthArray::from_bounded_vec(\n self.nullifier_read_requests,\n ),\n key_validation_requests_and_generators: ClaimedLengthArray::from_bounded_vec(\n self.key_validation_requests_and_generators,\n ),\n note_hashes: ClaimedLengthArray::from_bounded_vec(self.note_hashes),\n nullifiers: ClaimedLengthArray::from_bounded_vec(self.nullifiers),\n private_call_requests: ClaimedLengthArray::from_bounded_vec(self.private_call_requests),\n public_call_requests: ClaimedLengthArray::from_bounded_vec(self.public_call_requests),\n public_teardown_call_request: self.public_teardown_call_request,\n l2_to_l1_msgs: ClaimedLengthArray::from_bounded_vec(self.l2_to_l1_msgs),\n start_side_effect_counter: self.inputs.start_side_effect_counter,\n end_side_effect_counter: self.side_effect_counter,\n private_logs: ClaimedLengthArray::from_bounded_vec(self.private_logs),\n contract_class_logs_hashes: ClaimedLengthArray::from_bounded_vec(\n self.contract_class_logs_hashes,\n ),\n anchor_block_header: self.anchor_block_header,\n tx_context: self.inputs.tx_context,\n expected_non_revertible_side_effect_counter: self\n .expected_non_revertible_side_effect_counter,\n expected_revertible_side_effect_counter: self.expected_revertible_side_effect_counter,\n }\n }\n\n /// Designates this contract as the fee payer for the transaction.\n ///\n /// Unlike Ethereum, where the transaction sender always pays fees, Aztec\n /// allows any contract to voluntarily pay transaction fees. This enables\n /// patterns like sponsored transactions or fee abstraction where users\n /// don't need to hold fee-juice themselves. (Fee juice is a fee-paying\n /// asset for Aztec).\n ///\n /// Only one contract per transaction can declare itself as the fee payer,\n /// and it must have sufficient fee-juice balance (>= the gas limits\n /// specified in the TxContext) by the time we reach the public setup phase\n /// of the tx.\n ///\n pub fn set_as_fee_payer(&mut self) {\n dep::protocol_types::debug_log::debug_log_format(\n \"Setting {0} as fee payer\",\n [self.this_address().to_field()],\n );\n self.is_fee_payer = true;\n }\n\n pub fn in_revertible_phase(&mut self) -> bool {\n let current_counter = self.side_effect_counter;\n\n // Safety: Kernel will validate that the claim is correct by validating the expected counters.\n let is_revertible =\n unsafe { is_side_effect_counter_revertible_oracle_wrapper(current_counter) };\n\n if is_revertible {\n if (self.expected_revertible_side_effect_counter == 0)\n | (current_counter < self.expected_revertible_side_effect_counter) {\n self.expected_revertible_side_effect_counter = current_counter;\n }\n } else if current_counter > self.expected_non_revertible_side_effect_counter {\n self.expected_non_revertible_side_effect_counter = current_counter;\n }\n\n is_revertible\n }\n\n /// Declares the end of the \"setup phase\" of this tx.\n ///\n /// Only one function per tx can declare the end of the setup phase.\n ///\n /// Niche function: Only wallet developers and paymaster contract developers\n /// (aka Fee-payment contracts) will need to make use of this function.\n ///\n /// Aztec supports a three-phase execution model: setup, app logic, teardown.\n /// The phases exist to enable a fee payer to take on the risk of paying\n /// a transaction fee, safe in the knowledge that their payment (in whatever\n /// token or method the user chooses) will succeed, regardless of whether\n /// the app logic will succeed. The \"setup\" phase enables such a payment to\n /// be made, because the setup phase _cannot revert_: a reverting function\n /// within the setup phase would result in an invalid block which cannot\n /// be proven. Any side-effects generated during that phase are guaranteed\n /// to be inserted into Aztec's state trees (except for squashed notes &\n /// nullifiers, of course).\n ///\n /// Even though the end of the setup phase is declared within a private\n /// function, you might have noticed that _public_ functions can also\n /// execute within the setup phase. This is because any public function\n /// calls which were enqueued _within the setup phase_ by a private\n /// function are considered part of the setup phase.\n ///\n /// # Advanced\n /// * Sets the minimum revertible side effect counter of this tx to be the\n /// PrivateContext's _current_ side effect counter.\n ///\n pub fn end_setup(&mut self) {\n // Incrementing the side effect counter when ending setup ensures non\n // ambiguity for the counter where we change phases.\n self.side_effect_counter += 1;\n // dep::protocol_types::debug_log::debug_log_format(\n // \"Ending setup at counter {0}\",\n // [self.side_effect_counter as Field]\n // );\n self.min_revertible_side_effect_counter = self.side_effect_counter;\n notify_set_min_revertible_side_effect_counter(self.min_revertible_side_effect_counter);\n }\n\n /// Sets a deadline (an \"include-by timestamp\") for when this transaction\n /// must be included in a block.\n ///\n /// Other functions in this tx might call this setter with differing\n /// values for the include-by timestamp. To ensure that all functions'\n /// deadlines are met, the _minimum_ of all these include-by timestamps will\n /// be exposed when this tx is submitted to the network.\n ///\n /// If the transaction is not included in a block by its include-by\n /// timestamp, it becomes invalid and it will never be included.\n ///\n /// This expiry timestamp is publicly visible. See the \"Advanced\" section\n /// for privacy concerns.\n ///\n /// # Arguments\n /// * `include_by_timestamp` - Unix timestamp (seconds) deadline for inclusion.\n /// The include-by timestamp of this tx will be\n /// _at most_ the timestamp specified.\n ///\n /// # Advanced\n /// * If multiple functions set differing `include_by_timestamp`s, the\n /// kernel circuits will set it to be the _minimum_ of the two. This\n /// ensures the tx expiry requirements of all functions in the tx are met.\n /// * Rollup circuits will reject expired txs.\n /// * The protocol enforces that all transactions must be included within\n /// 24 hours of their chosen anchor block's timestamp, to enable safe\n /// mempool pruning.\n /// * The DelayedPublicMutable design makes heavy use of this functionality,\n /// to enable private functions to read public state.\n /// * A sophisticated Wallet should cleverly set an include-by timestamp\n /// to improve the privacy of the user and the network as a whole.\n /// For example, if a contract interaction sets include-by to some\n /// publicly-known value (e.g. the time when a contract upgrades), then\n /// the wallet might wish to set an even lower one to avoid revealing that\n /// this tx is interacting with said contract.\n /// Ideally, all wallets should standardize on an approach in order to\n /// provide users with a large anonymity set -- although the exact approach\n /// will need to be discussed. Wallets that deviate from a standard might\n /// accidentally reveal which wallet each transaction originates from.\n ///\n // docs:start:include-by-timestamp\n pub fn set_include_by_timestamp(&mut self, include_by_timestamp: u64) {\n // docs:end:include-by-timestamp\n self.include_by_timestamp = std::cmp::min(self.include_by_timestamp, include_by_timestamp);\n }\n\n /// Makes a request to the protocol's kernel circuit to ensure a note_hash\n /// actually exists.\n ///\n /// \"Read requests\" are used to prove that a note hash exists without\n /// revealing which specific note was read.\n ///\n /// This can be used to prove existence of both settled notes (created in\n /// prior transactions) and transient notes (created in the current\n /// transaction).\n /// If you need to prove existence of a settled note _at a specific block\n /// number_, use `note_inclusion::prove_note_inclusion`.\n ///\n /// Low-level function. Ordinarily, smart contract developers will not need\n /// to call this directly. Aztec-nr's state variables (see `../state_vars/`)\n /// are designed to understand when to create and push new note_hash read\n /// requests.\n ///\n /// # Arguments\n /// * `note_hash_read` - The note hash to read and verify\n ///\n /// # Advanced\n /// In \"traditional\" circuits for non-Aztec privacy applications, the merkle\n /// membership proofs to check existence of a note are performed _within_\n /// the application circuit.\n ///\n /// All Aztec private functions have access to the following constraint\n /// optimisation:\n /// In cases where the note being read was created earlier in the same tx,\n /// the note wouldn't yet exist in the Note Hash Tree, so a hard-coded\n /// merkle membership check which then gets ignored would be a waste of\n /// constraints.\n /// Instead, we can send read requests for all notes to the protocol's\n /// kernel circuits, where we can conditionally assess which notes actually\n /// need merkle membership proofs, and select an appropriately-sized\n /// kernel circuit.\n ///\n /// For \"settled notes\" (which already existed in the Note Hash Tree of the\n /// anchor block (i.e. before the tx began)), the kernel does a merkle\n /// membership check.\n ///\n /// For \"pending notes\" (which were created earlier in _this_ tx), the\n /// kernel will check that the note existed _before_ this read request was\n /// made, by checking the side-effect counters of the note_hash and this\n /// read request.\n ///\n /// This approach improves latency between writes and reads:\n /// a function can read a note which was created earlier in the tx (rather\n /// than performing the read in a later tx, after waiting for the earlier tx\n /// to be included, to ensure the note is included in the tree).\n ///\n pub fn push_note_hash_read_request(&mut self, note_hash_read: NoteHashRead) {\n let note_hash = note_hash_read.note_hash();\n let contract_address = note_hash_read.contract_address().unwrap_or(AztecAddress::zero());\n let side_effect = Scoped::new(\n Counted::new(note_hash, self.next_counter()),\n contract_address,\n );\n self.note_hash_read_requests.push(side_effect);\n }\n\n /// Asserts that a NoteHashRead has been requested to the kernel by this context.\n /// Asserts instead of returning a boolean to save on gates.\n ///\n /// # Arguments\n /// * `note_hash_read` - The note hash read to assert that has been requested.\n ///\n pub fn assert_has_been_requested(self, note_hash_read: NoteHashRead) {\n let note_hash = note_hash_read.note_hash();\n let contract_address = note_hash_read.contract_address().unwrap_or(AztecAddress::zero());\n\n // Safety: The index is constrained by the checks below.\n let hinted_index = unsafe {\n find_first_index(\n self.note_hash_read_requests.storage(),\n |r| (r.contract_address == contract_address) & (r.innermost() == note_hash),\n )\n };\n // This assertion is not necessary, since the .get would fail. But it enables us to have a more explicit error message.\n assert(\n hinted_index != self.note_hash_read_requests.max_len(),\n \"Note hash read has not been requested\",\n );\n\n let request = self.note_hash_read_requests.get(hinted_index);\n assert_eq(request.contract_address, contract_address);\n assert_eq(request.innermost(), note_hash);\n }\n\n /// Requests to read a specific nullifier from the nullifier tree.\n ///\n /// Nullifier read requests are used to prove that a nullifier exists without\n /// revealing which specific nullifier preimage was read.\n ///\n /// This can be used to prove existence of both settled nullifiers (created in\n /// prior transactions) and transient nullifiers (created in the current\n /// transaction).\n /// If you need to prove existence of a settled nullifier _at a specific block\n /// number_, use `nullifier_inclusion::prove_nullifier_inclusion`.\n ///\n /// Low-level function. Ordinarily, smart contract developers will not need\n /// to call this directly. Aztec-nr's state variables (see `../state_vars/`)\n /// are designed to understand when to create and push new nullifier read\n /// requests.\n ///\n /// # Arguments\n /// * `nullifier` - The nullifier to read and verify\n /// * `contract_address` - The contract address that emitted the nullifier\n ///\n /// # Advanced\n /// This approach improves latency between writes and reads:\n /// a function can read a nullifier which was created earlier in the tx\n /// (rather than performing the read in a later tx, after waiting for the\n /// earlier tx to be included, to ensure the nullifier is included in the tree).\n ///\n pub fn push_nullifier_read_request(\n &mut self,\n nullifier: Field,\n contract_address: AztecAddress,\n ) {\n let request = Scoped::new(\n Counted::new(nullifier, self.next_counter()),\n contract_address,\n );\n self.nullifier_read_requests.push(request);\n }\n\n /// Requests the app-siloed nullifier secret key (nsk_app) for the given\n /// (hashed) master nullifier public key (npk_m), from the user's PXE.\n ///\n /// Advanced function: Only needed if you're designing your own notes and/or\n /// nullifiers.\n ///\n /// Contracts are not allowed to compute nullifiers for other contracts, as\n /// that would let them read parts of their private state. Because of this,\n /// a contract is only given an \"app-siloed secret key\", which is\n /// constructed by hashing the user's master nullifier secret key with the\n /// contract's address.\n /// However, because contracts cannot be trusted with a user's master\n /// nullifier secret key (because we don't know which contracts are honest\n /// or malicious), the PXE refuses to provide any master secret keys to\n /// any app smart contract function. This means app functions are unable to\n /// prove that the derivation of an app-siloed nullifier secret key has been\n /// computed correctly. Instead, an app function can request to the kernel\n /// (via `request_nsk_app`) that it validates the siloed derivation, since\n /// the kernel has been vetted to not leak any master secret keys.\n ///\n /// A common nullification scheme is to inject a nullifier secret key into\n /// the preimage of a nullifier, to make the nullifier deterministic but\n /// random-looking. This function enables that flow.\n ///\n /// # Arguments\n /// * `npk_m_hash` - A hash of the master nullifier public key of the user\n /// whose PXE is executing this function.\n ///\n /// # Returns\n /// * The app-siloed nullifier secret key that corresponds to the given\n /// `npk_m_hash`.\n ///\n pub fn request_nsk_app(&mut self, npk_m_hash: Field) -> Field {\n self.request_sk_app(npk_m_hash, NULLIFIER_INDEX)\n }\n\n /// Requests the app-siloed nullifier secret key (nsk_app) for the given\n /// (hashed) master nullifier public key (npk_m), from the user's PXE.\n ///\n /// See `request_nsk_app` and `request_sk_app` for more info.\n ///\n /// The intention of the \"outgoing\" keypair is to provide a second secret\n /// key for all of a user's outgoing activity (i.e. for notes that a user\n /// creates, as opposed to notes that a user receives from others). The\n /// separation of incoming and outgoing data was a distinction made by\n /// zcash, with the intention of enabling a user to optionally share with a\n /// 3rd party a controlled view of only incoming or outgoing notes.\n /// Similar functionality of sharing select data can be achieved with\n /// offchain zero-knowledge proofs. It is up to an app developer whether\n /// they choose to make use of a user's outgoing keypair within their\n /// application logic, or instead simply use the same keypair (the address\n /// keypair (which is effectively the same as the \"incoming\" keypair)) for\n /// all incoming & outgoing messages to a user.\n ///\n /// Currently, all of the exposed encryption functions in aztec-nr ignore\n /// the outgoing viewing keys, and instead encrypt all note logs and event\n /// logs to a user's address public key.\n ///\n /// # Arguments\n /// * `ovpk_m_hash` - Hash of the outgoing viewing public key master\n ///\n /// # Returns\n /// * The application-specific outgoing viewing secret key\n ///\n pub fn request_ovsk_app(&mut self, ovpk_m_hash: Field) -> Field {\n self.request_sk_app(ovpk_m_hash, OUTGOING_INDEX)\n }\n\n /// Pushes a Key Validation Request to the kernel.\n ///\n /// Private functions are not allowed to see a user's master secret keys,\n /// because we do not trust them. They are instead given \"app-siloed\" secret\n /// keys with a claim that they relate to a master public key.\n /// They can then request validation of this claim, by making a \"key\n /// validation request\" to the protocol's kernel circuits (which _are_\n /// allowed to see certain master secret keys).\n ///\n /// When a Key Validation Request tuple of (sk_app, Pk_m, app_address) is\n /// submitted to the kernel, it will perform the following derivations\n /// to validate the relationship between the claimed sk_app and the user's\n /// Pk_m:\n ///\n /// (sk_m) ----> * G ----> Pk_m\n /// | |\n /// v We use the kernel to prove this\n /// h(sk_m, app_address) | sk_app-Pk_m relationship, because app\n /// | circuits must not be trusted to see sk_m.\n /// v |\n /// sk_app - - - - - - - - -\n ///\n /// The function is named \"request_\" instead of \"get_\" to remind the user\n /// that a Key Validation Request will be emitted to the kernel.\n ///\n fn request_sk_app(&mut self, pk_m_hash: Field, key_index: Field) -> Field {\n let cached_request = self.last_key_validation_requests[key_index as u32].unwrap_or(\n KeyValidationRequest::empty(),\n );\n\n if cached_request.pk_m.hash() == pk_m_hash {\n // We get a match so the cached request is the latest one\n cached_request.sk_app\n } else {\n // We didn't get a match meaning the cached result is stale\n // Typically we'd validate keys by showing that they are the preimage of `pk_m_hash`, but that'd require\n // the oracle returning the master secret keys, which could cause malicious contracts to leak it or learn\n // about secrets from other contracts. We therefore silo secret keys, and rely on the private kernel to\n // validate that we siloed secret key corresponds to correct siloing of the master secret key that hashes\n // to `pk_m_hash`.\n\n // Safety: Kernels verify that the key validation request is valid and below we verify that a request\n // for the correct public key has been received.\n let request = unsafe { get_key_validation_request(pk_m_hash, key_index) };\n assert_eq(request.pk_m.hash(), pk_m_hash, \"Obtained invalid key validation request\");\n\n self.key_validation_requests_and_generators.push(\n KeyValidationRequestAndGenerator {\n request,\n sk_app_generator: sk_generators[key_index as u32],\n },\n );\n self.last_key_validation_requests[key_index as u32] = Option::some(request);\n request.sk_app\n }\n }\n\n /// Sends an \"L2 -> L1 message\" from this function (Aztec, L2) to a smart\n /// contract on Ethereum (L1). L1 contracts which are designed to\n /// send/receive messages to/from Aztec are called \"Portal Contracts\".\n ///\n /// Common use cases include withdrawals, cross-chain asset transfers, and\n /// triggering L1 actions based on L2 state changes.\n ///\n /// The message will be inserted into an Aztec \"Outbox\" contract on L1,\n /// when this transaction's block is proposed to L1.\n /// Sending the message will not result in any immediate state changes in\n /// the target portal contract. The message will need to be manually\n /// consumed from the Outbox through a separate Ethereum transaction: a user\n /// will need to call a function of the portal contract -- a function\n /// specifically designed to make a call to the Outbox to consume the\n /// message.\n /// The message will only be available for consumption once the _epoch_\n /// proof has been submitted. Given that there are multiple Aztec blocks\n /// within an epoch, it might take some time for this epoch proof to be\n /// submitted -- especially if the block was near the start of an epoch.\n ///\n /// # Arguments\n /// * `recipient` - Ethereum address that will receive the message\n /// * `content` - Message content (32 bytes as a Field element).\n /// This content has a very specific layout.\n /// docs:start:context_message_portal\n pub fn message_portal(&mut self, recipient: EthAddress, content: Field) {\n let message = L2ToL1Message { recipient, content };\n self.l2_to_l1_msgs.push(message.count(self.next_counter()));\n }\n\n /// Consumes a message sent from Ethereum (L1) to Aztec (L2).\n ///\n /// Common use cases include token bridging, cross-chain governance, and\n /// triggering L2 actions based on L1 events.\n ///\n /// Use this function if you only want the message to ever be \"referred to\"\n /// once. Once consumed using this method, the message cannot be consumed\n /// again, because a nullifier is emitted.\n /// If your use case wants for the message to be read unlimited times, then\n /// you can always read any historic message from the L1-to-L2 messages tree;\n /// messages never technically get deleted from that tree.\n ///\n /// The message will first be inserted into an Aztec \"Inbox\" smart contract\n /// on L1.\n /// Sending the message will not result in any immediate state changes in\n /// the target L2 contract. The message will need to be manually\n /// consumed by the target contract through a separate Aztec transaction.\n /// The message will not be available for consumption immediately. Messages\n /// get copied over from the L1 Inbox to L2 by the next Proposer in batches.\n /// So you will need to wait until the messages are copied before you can\n /// consume them.\n ///\n /// # Arguments\n /// * `content` - The message content that was sent from L1\n /// * `secret` - Secret value used for message privacy (if needed)\n /// * `sender` - Ethereum address that sent the message\n /// * `leaf_index` - Index of the message in the L1-to-L2 message tree\n ///\n /// # Advanced\n /// Validates message existence in the L1-to-L2 message tree and nullifies\n /// the message to prevent double-consumption.\n ///\n pub fn consume_l1_to_l2_message(\n &mut self,\n content: Field,\n secret: Field,\n sender: EthAddress,\n leaf_index: Field,\n ) {\n let nullifier = process_l1_to_l2_message(\n self.anchor_block_header.state.l1_to_l2_message_tree.root,\n self.this_address(),\n sender,\n self.chain_id(),\n self.version(),\n content,\n secret,\n leaf_index,\n );\n\n // Push nullifier (and the \"commitment\" corresponding to this can be \"empty\")\n self.push_nullifier(nullifier)\n }\n\n /// Emits a private log (an array of Fields) that will be published to an\n /// Ethereum blob.\n ///\n /// Private logs are intended for the broadcasting of ciphertexts: that is,\n /// encrypted events or encrypted note contents.\n /// Since the data in the logs is meant to be _encrypted_, private_logs are\n /// broadcast to publicly-visible Ethereum blobs.\n /// The intended recipients of such encrypted messages can then discover and\n /// decrypt these encrypted logs using their viewing secret key.\n /// (See `../messages/discovery` for more details).\n ///\n /// Important note: This function DOES NOT _do_ any encryption of the input\n /// `log` fields. This function blindly publishes whatever input `log` data\n /// is fed into it, so the caller of this function should have already\n /// performed the encryption, and the `log` should be the result of that\n /// encryption.\n ///\n /// The protocol does not dictate what encryption scheme should be used:\n /// a smart contract developer can choose whatever encryption scheme they\n /// like.\n /// Aztec-nr includes some off-the-shelf encryption libraries that\n /// developers might wish to use, for convenience. These libraries not only\n /// encrypt a plaintext (to produce a ciphertext); they also prepend the\n /// ciphertext with a `tag` and `ephemeral public key` for easier message\n /// discovery. This is a very dense topic, and we will be writing more\n /// libraries and docs soon.\n ///\n /// > Currently, AES128 CBC encryption is the main scheme included in\n /// > aztec.nr.\n /// > We are currently making significant changes to the interfaces of the\n /// > encryption library.\n ///\n /// In some niche use cases, an app might be tempted to publish\n /// _un-encrypted_ data via a private log, because _public logs_ are not\n /// available to private functions. Be warned that emitting public data via\n /// private logs is strongly discouraged, and is considered a \"privacy\n /// anti-pattern\", because it reveals identifiable information about _which_\n /// function has been executed. A tx which leaks such information does not\n /// contribute to the privacy set of the network.\n ///\n /// * Unlike `emit_raw_note_log`, this log is not tied to any specific note\n ///\n /// # Arguments\n /// * `log` - The log data that will be publicly broadcast (so make sure\n /// it's already been encrypted before you call this function).\n /// Private logs are bounded in size (PRIVATE_LOG_SIZE_IN_FIELDS), to\n /// encourage all logs from all smart contracts look identical.\n /// * `length` - The actual length of the `log` (measured in number of\n /// Fields). Although the input log has a max size of\n /// PRIVATE_LOG_SIZE_IN_FIELDS, the latter values of the array might all\n /// be 0's for small logs. This `length` should reflect the trimmed length\n /// of the array. The protocol's kernel circuits can then append random\n /// fields as \"padding\" after the `length`, so that the logs of this\n /// smart contract look indistinguishable from (the same length as) the\n /// logs of all other applications. It's up to wallets how much padding\n /// to apply, so ideally all wallets should agree on standards for this.\n ///\n /// # Advanced\n ///\n pub fn emit_private_log(&mut self, log: [Field; PRIVATE_LOG_SIZE_IN_FIELDS], length: u32) {\n let counter = self.next_counter();\n let private_log = PrivateLogData { log: PrivateLog::new(log, length), note_hash_counter: 0 }\n .count(counter);\n self.private_logs.push(private_log);\n }\n\n // TODO: rename.\n /// Emits a private log that is explicitly tied to a newly-emitted note_hash,\n /// to convey to the kernel: \"this log relates to this note\".\n ///\n /// This linkage is important in case the note gets squashed (due to being\n /// read later in this same tx), since we can then squash the log as well.\n ///\n /// See `emit_private_log` for more info about private log emission.\n ///\n /// # Arguments\n /// * `log` - The log data as an array of Field elements\n /// * `length` - The actual length of the `log` (measured in number of\n /// Fields).\n /// * `note_hash_counter` - The side-effect counter that was assigned to the\n /// new note_hash when it was pushed to this\n // `PrivateContext`.\n ///\n /// Important: If your application logic requires the log to always be\n /// emitted regardless of note squashing, consider using `emit_private_log`\n /// instead, or emitting additional events.\n ///\n pub fn emit_raw_note_log(\n &mut self,\n log: [Field; PRIVATE_LOG_SIZE_IN_FIELDS],\n length: u32,\n note_hash_counter: u32,\n ) {\n let counter = self.next_counter();\n let private_log = PrivateLogData { log: PrivateLog::new(log, length), note_hash_counter };\n self.private_logs.push(private_log.count(counter));\n }\n\n pub fn emit_contract_class_log<let N: u32>(&mut self, log: [Field; N]) {\n let contract_address = self.this_address();\n let counter = self.next_counter();\n\n let log_to_emit: [Field; CONTRACT_CLASS_LOG_SIZE_IN_FIELDS] =\n log.concat([0; CONTRACT_CLASS_LOG_SIZE_IN_FIELDS - N]);\n // Note: the length is not always N, it is the number of fields we want to broadcast, omitting trailing zeros to save blob space.\n // Safety: The below length is constrained in the base rollup, which will make sure that all the fields beyond length are zero.\n // However, it won't be able to check that we didn't add extra padding (trailing zeroes) or that we cut trailing zeroes from the end.\n let length = unsafe { trimmed_array_length_hint(log_to_emit) };\n // We hash the entire padded log to ensure a user cannot pass a shorter length and so emit incorrect shorter bytecode.\n let log_hash = poseidon2_hash(log_to_emit);\n // Safety: the below only exists to broadcast the raw log, so we can provide it to the base rollup later to be constrained.\n unsafe {\n notify_created_contract_class_log(contract_address, log_to_emit, length, counter);\n }\n\n self.contract_class_logs_hashes.push(LogHash { value: log_hash, length: length }.count(\n counter,\n ));\n }\n\n /// Calls a private function on another contract (or the same contract).\n ///\n /// Very low-level function.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `args` - Array of arguments to pass to the called function\n ///\n /// # Returns\n /// * `ReturnsHash` - Hash of the called function's return values. Use\n /// `.get_preimage()` to extract the actual return values.\n ///\n /// This enables contracts to interact with each other while maintaining\n /// privacy. This \"composability\" of private contract functions is a key\n /// feature of the Aztec network.\n ///\n /// If a user's transaction includes multiple private function calls, then\n /// by the design of Aztec, the following information will remain private[1]:\n /// - The function selectors and contract addresses of all private function\n /// calls will remain private, so an observer of the public mempool will\n /// not be able to look at a tx and deduce which private functions have\n /// been executed.\n /// - The arguments and return values of all private function calls will\n /// remain private.\n /// - The person who initiated the tx will remain private.\n /// - The notes and nullifiers and private logs that are emitted by all\n /// private function calls will (if designed well) not leak any user\n /// secrets, nor leak which functions have been executed.\n ///\n /// [1] Caveats: Some of these privacy guarantees depend on how app\n /// developers design their smart contracts. Some actions _can_ leak\n /// information, such as:\n /// - Calling an internal public function.\n /// - Calling a public function and not setting msg_sender to Option::none\n /// (feature not built yet - see github).\n /// - Calling any public function will always leak details about the nature\n /// of the transaction, so devs should be careful in their contract\n /// designs. If it can be done in a private function, then that will give\n /// the best privacy.\n /// - Not padding the side-effects of a tx to some standardized, uniform\n /// size. The kernel circuits can take hints to pad side-effects, so a\n /// wallet should be able to request for a particular amount of padding.\n /// Wallets should ideally agree on some standard.\n /// - Padding should include:\n /// - Padding the lengths of note & nullifier arrays\n /// - Padding private logs with random fields, up to some standardized\n /// size.\n /// See also: https://docs.aztec.network/developers/resources/considerations/privacy_considerations\n ///\n /// # Advanced\n /// * The call is added to the private call stack and executed by kernel\n /// circuits after this function completes\n /// * The called function can modify its own contract's private state\n /// * Side effects from the called function are included in this transaction\n /// * The call inherits the current transaction's context and gas limits\n ///\n pub fn call_private_function<let ArgsCount: u32>(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n args: [Field; ArgsCount],\n ) -> ReturnsHash {\n let args_hash = hash_args(args);\n execution_cache::store(args, args_hash);\n self.call_private_function_with_args_hash(\n contract_address,\n function_selector,\n args_hash,\n false,\n )\n }\n\n /// Makes a read-only call to a private function on another contract.\n ///\n /// This is similar to Solidity's `staticcall`. The called function\n /// cannot modify state, emit L2->L2 messages, nor emit events. Any nested\n /// calls are constrained to also be staticcalls.\n ///\n /// See `call_private_function` for more general info on private function\n /// calls.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract to call\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `args` - Array of arguments to pass to the called function\n ///\n /// # Returns\n /// * `ReturnsHash` - Hash of the called function's return values. Use\n /// `.get_preimage()` to extract the actual return values.\n ///\n pub fn static_call_private_function<let ArgsCount: u32>(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n args: [Field; ArgsCount],\n ) -> ReturnsHash {\n let args_hash = hash_args(args);\n execution_cache::store(args, args_hash);\n self.call_private_function_with_args_hash(\n contract_address,\n function_selector,\n args_hash,\n true,\n )\n }\n\n /// Calls a private function that takes no arguments.\n ///\n /// This is a convenience function for calling private functions that don't\n /// require any input parameters. It's equivalent to `call_private_function`\n /// but slightly more efficient to use when no arguments are needed.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n ///\n /// # Returns\n /// * `ReturnsHash` - Hash of the called function's return values. Use\n /// `.get_preimage()` to extract the actual return values.\n ///\n pub fn call_private_function_no_args(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n ) -> ReturnsHash {\n self.call_private_function_with_args_hash(contract_address, function_selector, 0, false)\n }\n\n /// Makes a read-only call to a private function which takes no arguments.\n ///\n /// This combines the optimisation of `call_private_function_no_args` with\n /// the safety of `static_call_private_function`.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n ///\n /// # Returns\n /// * `ReturnsHash` - Hash of the called function's return values. Use\n /// `.get_preimage()` to extract the actual return values.\n ///\n pub fn static_call_private_function_no_args(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n ) -> ReturnsHash {\n self.call_private_function_with_args_hash(contract_address, function_selector, 0, true)\n }\n\n /// Low-level private function call.\n ///\n /// This is the underlying implementation used by all other private function\n /// call methods. Instead of taking raw arguments, it accepts a\n /// hash of the arguments.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `args_hash` - Pre-computed hash of the function arguments\n /// * `is_static_call` - Whether this should be a read-only call\n ///\n /// # Returns\n /// * `ReturnsHash` - Hash of the called function's return values\n ///\n pub fn call_private_function_with_args_hash(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n args_hash: Field,\n is_static_call: bool,\n ) -> ReturnsHash {\n let mut is_static_call = is_static_call | self.inputs.call_context.is_static_call;\n let start_side_effect_counter = self.side_effect_counter;\n\n // Safety: The oracle simulates the private call and returns the value of the side effects counter after\n // execution of the call (which means that end_side_effect_counter - start_side_effect_counter is\n // the number of side effects that took place), along with the hash of the return values. We validate these\n // by requesting a private kernel iteration in which the return values are constrained to hash\n // to `returns_hash` and the side effects counter to increment from start to end.\n let (end_side_effect_counter, returns_hash) = unsafe {\n call_private_function_internal(\n contract_address,\n function_selector,\n args_hash,\n start_side_effect_counter,\n is_static_call,\n )\n };\n\n self.private_call_requests.push(\n PrivateCallRequest {\n call_context: CallContext {\n msg_sender: self.this_address(),\n contract_address,\n function_selector,\n is_static_call,\n },\n args_hash,\n returns_hash,\n start_side_effect_counter,\n end_side_effect_counter,\n },\n );\n\n // TODO (fees) figure out why this crashes the prover and enable it\n // we need this in order to pay fees inside child call contexts\n // assert(\n // (item.public_inputs.min_revertible_side_effect_counter == 0 as u32)\n // | (item.public_inputs.min_revertible_side_effect_counter\n // > self.min_revertible_side_effect_counter)\n // );\n // if item.public_inputs.min_revertible_side_effect_counter\n // > self.min_revertible_side_effect_counter {\n // self.min_revertible_side_effect_counter = item.public_inputs.min_revertible_side_effect_counter;\n // }\n self.side_effect_counter = end_side_effect_counter + 1; // TODO: call `next_counter` instead, for consistency\n ReturnsHash::new(returns_hash)\n }\n\n /// Enqueues a call to a public function to be executed later.\n ///\n /// Unlike private functions which execute immediately on the user's device,\n /// public function calls are \"enqueued\" and executed some time later by a\n /// block proposer.\n ///\n /// This means a public function cannot return any values back to a private\n /// function, because by the time the public function is being executed,\n /// the private function which called it has already completed execution.\n /// (In fact, the private function has been executed and proven, along with\n /// all other private function calls of the user's tx. A single proof of the\n /// tx has been submitted to the Aztec network, and some time later a\n /// proposer has picked the tx up from the mempool and begun executing all\n /// of the enqueued public functions).\n ///\n /// # Privacy warning\n /// Enqueueing a public function call is an inherently leaky action.\n /// Many interesting applications will require some interaction with public\n /// state, but smart contract developers should try to use public function\n /// calls sparingly, and carefully.\n /// _Internal_ public function calls are especially leaky, because they\n /// completely leak which private contract made the call.\n /// See also: https://docs.aztec.network/developers/resources/considerations/privacy_considerations\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `args` - Array of arguments to pass to the public function\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n ///\n pub fn call_public_function<let ArgsCount: u32>(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n args: [Field; ArgsCount],\n hide_msg_sender: bool,\n ) {\n let calldata = [function_selector.to_field()].concat(args);\n let calldata_hash = hash_calldata_array(calldata);\n execution_cache::store(calldata, calldata_hash);\n self.call_public_function_with_calldata_hash(\n contract_address,\n calldata_hash,\n false,\n hide_msg_sender,\n )\n }\n\n /// Enqueues a read-only call to a public function.\n ///\n /// This is similar to Solidity's `staticcall`. The called function\n /// cannot modify state or emit events. Any nested calls are constrained to\n /// also be staticcalls.\n ///\n /// See also `call_public_function` for more important information about\n /// making private -> public function calls.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `args` - Array of arguments to pass to the public function\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n ///\n pub fn static_call_public_function<let ArgsCount: u32>(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n args: [Field; ArgsCount],\n hide_msg_sender: bool,\n ) {\n let calldata = [function_selector.to_field()].concat(args);\n let calldata_hash = hash_calldata_array(calldata);\n execution_cache::store(calldata, calldata_hash);\n self.call_public_function_with_calldata_hash(\n contract_address,\n calldata_hash,\n true,\n hide_msg_sender,\n )\n }\n\n /// Enqueues a call to a public function that takes no arguments.\n ///\n /// This is an optimisation for calling public functions that don't\n /// take any input parameters. It's otherwise equivalent to\n /// `call_public_function`.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n ///\n pub fn call_public_function_no_args(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n hide_msg_sender: bool,\n ) {\n let calldata_hash = hash_calldata_array([function_selector.to_field()]);\n self.call_public_function_with_calldata_hash(\n contract_address,\n calldata_hash,\n false,\n hide_msg_sender,\n )\n }\n\n /// Enqueues a read-only call to a public function with no arguments.\n ///\n /// This combines the optimisation of `call_public_function_no_args` with\n /// the safety of `static_call_public_function`.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n ///\n pub fn static_call_public_function_no_args(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n hide_msg_sender: bool,\n ) {\n let calldata_hash = hash_calldata_array([function_selector.to_field()]);\n self.call_public_function_with_calldata_hash(\n contract_address,\n calldata_hash,\n true,\n hide_msg_sender,\n )\n }\n\n /// Low-level public function call.\n ///\n /// This is the underlying implementation used by all other public function\n /// call methods. Instead of taking raw arguments, it accepts a\n /// hash of the arguments.\n ///\n /// Advanced function: Most developers should use `call_public_function`\n /// or `static_call_public_function` instead. This function is exposed for\n /// performance optimization and advanced use cases.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `calldata_hash` - Hash of the function calldata\n /// * `is_static_call` - Whether this should be a read-only call\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n ///\n pub fn call_public_function_with_calldata_hash(\n &mut self,\n contract_address: AztecAddress,\n calldata_hash: Field,\n is_static_call: bool,\n hide_msg_sender: bool,\n ) {\n let counter = self.next_counter();\n\n let mut is_static_call = is_static_call | self.inputs.call_context.is_static_call;\n\n notify_enqueued_public_function_call(\n contract_address,\n calldata_hash,\n counter,\n is_static_call,\n );\n\n let msg_sender = if hide_msg_sender {\n NULL_MSG_SENDER_CONTRACT_ADDRESS\n } else {\n self.this_address()\n };\n\n let call_request =\n PublicCallRequest { msg_sender, contract_address, is_static_call, calldata_hash };\n\n self.public_call_requests.push(Counted::new(call_request, counter));\n }\n\n /// Enqueues a public function call, and designates it to be the teardown\n /// function for this tx. Only one teardown function call can be made by a\n /// tx.\n ///\n /// Niche function: Only wallet developers and paymaster contract developers\n /// (aka Fee-payment contracts) will need to make use of this function.\n ///\n /// Aztec supports a three-phase execution model: setup, app logic, teardown.\n /// The phases exist to enable a fee payer to take on the risk of paying\n /// a transaction fee, safe in the knowledge that their payment (in whatever\n /// token or method the user chooses) will succeed, regardless of whether\n /// the app logic will succeed. The \"setup\" phase ensures the fee payer\n /// has sufficient balance to pay the proposer their fees.\n /// The teardown phase is primarily intended to: calculate exactly\n /// how much the user owes, based on gas consumption, and refund the user\n /// any change.\n ///\n /// Note: in some cases, the cost of refunding the user (i.e. DA costs of\n /// tx side-effects) might exceed the refund amount. For app logic with\n /// fairly stable and predictable gas consumption, a material refund amount\n /// is unlikely. For app logic with unpredictable gas consumption, a\n /// refund might be important to the user (e.g. if a hefty function reverts\n /// very early). Wallet/FPC/Paymaster developers should be mindful of this.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the teardown\n /// function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `args` - An array of fields to pass to the function.\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n pub fn set_public_teardown_function<let ArgsCount: u32>(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n args: [Field; ArgsCount],\n hide_msg_sender: bool,\n ) {\n let calldata = [function_selector.to_field()].concat(args);\n let calldata_hash = hash_calldata_array(calldata);\n execution_cache::store(calldata, calldata_hash);\n self.set_public_teardown_function_with_calldata_hash(\n contract_address,\n calldata_hash,\n false,\n hide_msg_sender,\n )\n }\n\n /// Low-level function to set the public teardown function.\n ///\n /// This is the underlying implementation for setting the teardown function\n /// call that will execute at the end of the transaction. Instead of taking\n /// raw arguments, it accepts a hash of the arguments.\n ///\n /// Advanced function: Most developers should use\n /// `set_public_teardown_function` instead.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the teardown\n /// function\n /// * `calldata_hash` - Hash of the function calldata\n /// * `is_static_call` - Whether this should be a read-only call\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n ///\n pub fn set_public_teardown_function_with_calldata_hash(\n &mut self,\n contract_address: AztecAddress,\n calldata_hash: Field,\n is_static_call: bool,\n hide_msg_sender: bool,\n ) {\n let counter = self.next_counter();\n\n let mut is_static_call = is_static_call | self.inputs.call_context.is_static_call;\n\n notify_set_public_teardown_function_call(\n contract_address,\n calldata_hash,\n counter,\n is_static_call,\n );\n\n let msg_sender = if hide_msg_sender {\n NULL_MSG_SENDER_CONTRACT_ADDRESS\n } else {\n self.this_address()\n };\n\n self.public_teardown_call_request =\n PublicCallRequest { msg_sender, contract_address, is_static_call, calldata_hash };\n }\n\n /// Increments the side-effect counter.\n ///\n /// Very low-level function.\n ///\n /// # Advanced\n ///\n /// Every side-effect of a private function is given a \"side-effect counter\",\n /// based on when it is created. This PrivateContext is in charge of\n /// assigning the counters.\n ///\n /// The reason we have side-effect counters is complicated. Consider this\n /// illustrative pseudocode of inter-contract function calls:\n /// ```\n /// contract A {\n /// let x = 5; // pseudocode for storage var x.\n /// fn a1 {\n /// read x; // value: 5, counter: 1.\n /// x = x + 1;\n /// write x; // value: 6, counter: 2.\n ///\n /// B.b(); // start_counter: 2, end_counter: 4\n ///\n /// read x; // value: 36, counter: 5.\n /// x = x + 1;\n /// write x; // value: 37, counter: 6.\n /// }\n ///\n /// fn a2 {\n /// read x; // value: 6, counter: 3.\n /// x = x * x;\n /// write x; // value: 36, counter: 4.\n /// }\n /// }\n ///\n /// contract B {\n /// fn b() {\n /// A.a2();\n /// }\n /// }\n /// ```\n ///\n /// Suppose a1 is the first function called. The comments show the execution\n /// counter of each side-effect, and what the new value of `x` is.\n ///\n /// These (private) functions are processed by Aztec's kernel circuits in an\n /// order that is different from execution order:\n /// All of A.a1 is proven before B.b is proven, before A.a2 is proven.\n /// So when we're in the 2nd execution frame of A.a1 (after the call to\n /// B.b), the circuit needs to justify why x went from being `6` to `36`.\n /// But the circuit doesn't know why, and given the order of proving, the\n /// kernel hasn't _seen_ a value of 36 get written yet.\n /// The kernel needs to track big arrays of all side-effects of all\n /// private functions in a tx. Then, as it recurses and processes B.b(), it\n /// will eventually see a value of 36 get written.\n ///\n /// Suppose side-effect counters weren't exposed:\n /// The kernel would only see this ordering (in order of proof verification):\n /// [ A.a1.read, A.a1.write, A.a1.read, A.a1.write, A.a2.read, A.a2.write ]\n /// [ 5, 6, 36, 37, 6, 36 ]\n /// The kernel wouldn't know _when_ B.b() was called within A.a1(), because\n /// it can't see what's going on within an app circuit. So the kernel\n /// wouldn't know that the ordering of reads and writes should actually be:\n /// [ A.a1.read, A.a1.write, A.a2.read, A.a2.write, A.a1.read, A.a1.write ]\n /// [ 5, 6, 6, 36, 36, 37 ]\n ///\n /// And so, we introduced side-effect counters: every private function must\n /// assign side-effect counters alongside every side-effect that it emits,\n /// and also expose to the kernel the counters that it started and ended\n /// with.\n /// This gives the kernel enough information to arrange all side-effects in\n /// the correct order.\n /// It can then catch (for example) if a function tries to read state\n /// before it has been written (e.g. if A.a2() maliciously tried to read\n /// a value of x=37) (e.g. if A.a1() maliciously tried to read x=6).\n ///\n /// If a malicious app contract _lies_ and does not count correctly:\n /// - It cannot lie about its start and end counters because the kernel\n /// will catch this.\n /// - It _could_ lie about its intermediate counters:\n /// - 1. It could not increment its side-effects correctly\n /// - 2. It could label its side-effects with counters outside of its\n /// start and end counters' range.\n /// The kernel will catch 2.\n /// The kernel will not catch 1., but this would only cause corruption\n /// to the private state of the malicious contract, and not any other\n /// contracts (because a contract can only modify its own state). If\n /// a \"good\" contract is given _read access_ to a maliciously-counting\n /// contract (via an external getter function, or by reading historic\n /// state from the archive tree directly), and they then make state\n /// changes to their _own_ state accordingly, that could be dangerous.\n /// Developers should be mindful not to trust the claimed innards of\n /// external contracts unless they have audited/vetted the contracts\n /// including vetting the side-effect counter incrementation.\n /// This is a similar paradigm to Ethereum smart contract development:\n /// you must vet external contracts that your contract relies upon, and\n /// you must not make any presumptions about their claimed behaviour.\n /// (Hopefully if a contract imports a version of aztec-nr, we will get\n /// contract verification tooling that can validate the authenticity\n /// of the imported aztec-nr package, and hence infer that the side-\n /// effect counting will be correct, without having to re-audit such logic\n /// for every contract).\n ///\n fn next_counter(&mut self) -> u32 {\n let counter = self.side_effect_counter;\n self.side_effect_counter += 1;\n counter\n }\n}\n\nimpl Empty for PrivateContext {\n fn empty() -> Self {\n PrivateContext {\n inputs: PrivateContextInputs::empty(),\n side_effect_counter: 0 as u32,\n min_revertible_side_effect_counter: 0 as u32,\n is_fee_payer: false,\n args_hash: 0,\n return_hash: 0,\n include_by_timestamp: 0,\n note_hash_read_requests: BoundedVec::new(),\n nullifier_read_requests: BoundedVec::new(),\n key_validation_requests_and_generators: BoundedVec::new(),\n note_hashes: BoundedVec::new(),\n nullifiers: BoundedVec::new(),\n private_call_requests: BoundedVec::new(),\n public_call_requests: BoundedVec::new(),\n public_teardown_call_request: PublicCallRequest::empty(),\n l2_to_l1_msgs: BoundedVec::new(),\n anchor_block_header: BlockHeader::empty(),\n private_logs: BoundedVec::new(),\n contract_class_logs_hashes: BoundedVec::new(),\n last_key_validation_requests: [Option::none(); NUM_KEY_TYPES],\n expected_non_revertible_side_effect_counter: 0,\n expected_revertible_side_effect_counter: 0,\n }\n }\n}\n"
|
|
7443
|
+
"source": "use crate::{\n context::{\n inputs::PrivateContextInputs, note_hash_read::NoteHashRead, returns_hash::ReturnsHash,\n },\n hash::{hash_args, hash_calldata_array},\n keys::constants::{NULLIFIER_INDEX, NUM_KEY_TYPES, OUTGOING_INDEX, sk_generators},\n messaging::process_l1_to_l2_message,\n oracle::{\n block_header::get_block_header_at,\n call_private_function::call_private_function_internal,\n enqueue_public_function_call::{\n is_side_effect_counter_revertible_oracle_wrapper, notify_enqueued_public_function_call,\n notify_set_min_revertible_side_effect_counter, notify_set_public_teardown_function_call,\n },\n execution_cache,\n key_validation_request::get_key_validation_request,\n logs::notify_created_contract_class_log,\n notes::{notify_created_nullifier, notify_nullified_note},\n },\n};\nuse dep::protocol_types::{\n abis::{\n block_header::BlockHeader,\n call_context::CallContext,\n function_selector::FunctionSelector,\n gas_settings::GasSettings,\n log_hash::LogHash,\n note_hash::NoteHash,\n nullifier::Nullifier,\n private_call_request::PrivateCallRequest,\n private_circuit_public_inputs::PrivateCircuitPublicInputs,\n private_log::{PrivateLog, PrivateLogData},\n public_call_request::PublicCallRequest,\n validation_requests::{KeyValidationRequest, KeyValidationRequestAndGenerator},\n },\n address::{AztecAddress, EthAddress},\n constants::{\n CONTRACT_CLASS_LOG_SIZE_IN_FIELDS, MAX_CONTRACT_CLASS_LOGS_PER_CALL,\n MAX_ENQUEUED_CALLS_PER_CALL, MAX_INCLUDE_BY_TIMESTAMP_DURATION,\n MAX_KEY_VALIDATION_REQUESTS_PER_CALL, MAX_L2_TO_L1_MSGS_PER_CALL,\n MAX_NOTE_HASH_READ_REQUESTS_PER_CALL, MAX_NOTE_HASHES_PER_CALL,\n MAX_NULLIFIER_READ_REQUESTS_PER_CALL, MAX_NULLIFIERS_PER_CALL,\n MAX_PRIVATE_CALL_STACK_LENGTH_PER_CALL, MAX_PRIVATE_LOGS_PER_CALL,\n NULL_MSG_SENDER_CONTRACT_ADDRESS, PRIVATE_LOG_SIZE_IN_FIELDS,\n },\n hash::poseidon2_hash,\n messaging::l2_to_l1_message::L2ToL1Message,\n side_effect::{Counted, scoped::Scoped},\n traits::{Empty, Hash, ToField},\n utils::arrays::{ClaimedLengthArray, find_first_index, trimmed_array_length_hint},\n};\n\n/// # PrivateContext\n///\n/// The **main interface** between an #[external(\"private\")] function and the Aztec blockchain.\n///\n/// An instance of the PrivateContext is initialized automatically at the outset\n/// of every private function, within the #[external(\"private\")] macro, so you'll never\n/// need to consciously instantiate this yourself.\n///\n/// The instance is always named `context`, and it is always be available within\n/// the body of every #[external(\"private\")] function in your smart contract.\n///\n/// > For those used to \"vanilla\" Noir, it might be jarring to have access to\n/// > `context` without seeing a declaration `let context = PrivateContext::new(...)`\n/// > within the body of your function. This is just a consequence of using\n/// > macros to tidy-up verbose boilerplate. You can use `nargo expand` to\n/// > expand all macros, if you dare.\n///\n/// Typical usage for a smart contract developer will be to call getter\n/// methods of the PrivateContext.\n///\n/// _Pushing_ data and requests to the context is mostly handled within\n/// aztec-nr's own functions, so typically a smart contract developer won't\n/// need to call any setter methods directly.\n///\n/// > Advanced users might occasionally wish to push data to the context\n/// > directly for lower-level control. If you find yourself doing this, please\n/// > open an issue on GitHub to describe your use case: it might be that\n/// > new functionality should be added to aztec-nr.\n///\n/// ## Responsibilities\n/// - Exposes contextual data to a private function:\n/// - Data relating to how this private function was called.\n/// - msg_sender\n/// - this_address - (the contract address of the private function being\n/// executed)\n/// - See `CallContext` for more data.\n/// - Data relating to the transaction in which this private function is\n/// being executed.\n/// - chain_id\n/// - version\n/// - gas_settings\n/// - Provides state access:\n/// - Access to the \"Anchor block\" header.\n/// Recall, a private function cannot read from the \"current\" block header,\n/// but must read from some historical block header, because as soon as\n/// private function execution begins (asynchronously, on a user's device),\n/// the public state of the chain (the \"current state\") will have progressed\n/// forward. We call this reference the \"Anchor block\".\n/// See `BlockHeader`.\n/// - Enables consumption of L1->L2 messages.\n/// - Enables calls to functions of other smart contracts:\n/// - Private function calls\n/// - Enqueueing of public function call requests\n/// (Since public functions are executed at a later time, by a block\n/// proposer, we say they are \"enqueued\").\n/// - Writes data to the blockchain:\n/// - New notes\n/// - New nullifiers\n/// - Private logs (for sending encrypted note contents or encrypted events)\n/// - New L2->L1 messages.\n/// - Provides args to the private function (handled by the #[external(\"private\")] macro).\n/// - Returns the return values of this private function (handled by the\n/// #[external(\"private\")] macro).\n/// - Makes Key Validation Requests.\n/// - Private functions are not allowed to see master secret keys, because we\n/// do not trust them. They are instead given \"app-siloed\" secret keys with\n/// a claim that they relate to a master public key. They can then request\n/// validation of this claim, by making a \"key validation request\" to the\n/// protocol's kernel circuits (which _are_ allowed to see certain master\n/// secret keys).\n///\n/// ## Advanced Responsibilities\n///\n/// - Ultimately, the PrivateContext is responsible for constructing the\n/// PrivateCircuitPublicInputs of the private function being executed.\n/// All private functions on Aztec must have public inputs which adhere\n/// to the rigid layout of the PrivateCircuitPublicInputs, in order to be\n/// compatible with the protocol's kernel circuits.\n/// A well-known misnomer:\n/// - \"public inputs\" contain both inputs and outputs of this function.\n/// - By \"outputs\" we mean a lot more side-effects than just the\n/// \"return values\" of the function.\n/// - Most of the so-called \"public inputs\" are kept _private_, and never leak\n/// to the outside world, because they are 'swallowed' by the protocol's\n/// kernel circuits before the tx is sent to the network. Only the\n/// following are exposed to the outside world:\n/// - New note_hashes\n/// - New nullifiers\n/// - New private logs\n/// - New L2->L1 messages\n/// - New enqueued public function call requests\n/// All the above-listed arrays of side-effects can be padded by the\n/// user's wallet (through instructions to the kernel circuits, via the\n/// PXE) to obscure their true lengths.\n///\n/// ## Syntax Justification\n///\n/// Both user-defined functions _and_ most functions in aztec-nr need access to\n/// the PrivateContext instance to read/write data. This is why you'll see the\n/// arguably-ugly pervasiveness of the \"context\" throughout your smart contract\n/// and the aztec-nr library.\n/// For example, `&mut context` is prevalent. In some languages, you can access\n/// and mutate a global variable (such as a PrivateContext instance) from a\n/// function without polluting the function's parameters. With Noir, a function\n/// must explicitly pass control of a mutable variable to another function, by\n/// reference. Since many functions in aztec-nr need to be able to push new data\n/// to the PrivateContext, they need to be handed a mutable reference _to_ the\n/// context as a parameter.\n/// For example, `Context` is prevalent as a generic parameter, to give better\n/// type safety at compile time. Many `aztec-nr` functions don't make sense if\n/// they're called in a particular runtime (private, public or utility), and so\n/// are intentionally only implemented over certain\n/// [Private|Public|Utility]Context structs. This gives smart contract\n/// developers a much faster feedback loop if they're making a mistake, as an\n/// error will be thrown by the LSP or when they compile their contract.\n///\n#[derive(Eq)]\npub struct PrivateContext {\n // docs:start:private-context\n pub inputs: PrivateContextInputs,\n pub side_effect_counter: u32,\n\n pub min_revertible_side_effect_counter: u32,\n pub is_fee_payer: bool,\n\n pub args_hash: Field,\n pub return_hash: Field,\n\n pub include_by_timestamp: u64,\n\n pub note_hash_read_requests: BoundedVec<Scoped<Counted<Field>>, MAX_NOTE_HASH_READ_REQUESTS_PER_CALL>,\n pub nullifier_read_requests: BoundedVec<Scoped<Counted<Field>>, MAX_NULLIFIER_READ_REQUESTS_PER_CALL>,\n key_validation_requests_and_generators: BoundedVec<KeyValidationRequestAndGenerator, MAX_KEY_VALIDATION_REQUESTS_PER_CALL>,\n\n pub note_hashes: BoundedVec<Counted<NoteHash>, MAX_NOTE_HASHES_PER_CALL>,\n pub nullifiers: BoundedVec<Counted<Nullifier>, MAX_NULLIFIERS_PER_CALL>,\n\n pub private_call_requests: BoundedVec<PrivateCallRequest, MAX_PRIVATE_CALL_STACK_LENGTH_PER_CALL>,\n pub public_call_requests: BoundedVec<Counted<PublicCallRequest>, MAX_ENQUEUED_CALLS_PER_CALL>,\n pub public_teardown_call_request: PublicCallRequest,\n pub l2_to_l1_msgs: BoundedVec<Counted<L2ToL1Message>, MAX_L2_TO_L1_MSGS_PER_CALL>,\n // docs:end:private-context\n\n // Header of a block whose state is used during private execution (not the block the transaction is included in).\n pub anchor_block_header: BlockHeader,\n\n pub private_logs: BoundedVec<Counted<PrivateLogData>, MAX_PRIVATE_LOGS_PER_CALL>,\n pub contract_class_logs_hashes: BoundedVec<Counted<LogHash>, MAX_CONTRACT_CLASS_LOGS_PER_CALL>,\n\n // Contains the last key validation request for each key type. This is used to cache the last request and avoid\n // fetching the same request multiple times.\n // The index of the array corresponds to the key type (0 nullifier, 1 incoming, 2 outgoing, 3 tagging).\n pub last_key_validation_requests: [Option<KeyValidationRequest>; NUM_KEY_TYPES],\n\n pub expected_non_revertible_side_effect_counter: u32,\n pub expected_revertible_side_effect_counter: u32,\n}\n\nimpl PrivateContext {\n pub fn new(inputs: PrivateContextInputs, args_hash: Field) -> PrivateContext {\n let max_allowed_include_by_timestamp = inputs.anchor_block_header.global_variables.timestamp\n + MAX_INCLUDE_BY_TIMESTAMP_DURATION;\n PrivateContext {\n inputs,\n side_effect_counter: inputs.start_side_effect_counter + 1,\n min_revertible_side_effect_counter: 0,\n is_fee_payer: false,\n args_hash,\n return_hash: 0,\n include_by_timestamp: max_allowed_include_by_timestamp,\n note_hash_read_requests: BoundedVec::new(),\n nullifier_read_requests: BoundedVec::new(),\n key_validation_requests_and_generators: BoundedVec::new(),\n note_hashes: BoundedVec::new(),\n nullifiers: BoundedVec::new(),\n anchor_block_header: inputs.anchor_block_header,\n private_call_requests: BoundedVec::new(),\n public_call_requests: BoundedVec::new(),\n public_teardown_call_request: PublicCallRequest::empty(),\n l2_to_l1_msgs: BoundedVec::new(),\n private_logs: BoundedVec::new(),\n contract_class_logs_hashes: BoundedVec::new(),\n last_key_validation_requests: [Option::none(); NUM_KEY_TYPES],\n expected_non_revertible_side_effect_counter: 0,\n expected_revertible_side_effect_counter: 0,\n }\n }\n\n /// Returns the contract address that initiated this function call.\n ///\n /// This is similar to `msg.sender` in Solidity (hence the name).\n ///\n /// Important Note: Since Aztec doesn't have a concept of an EoA (\n /// Externally-owned Account), the msg_sender is \"null\" for the first\n /// function call of every transaction.\n /// The first function call of a tx is likely to be a call to the user's\n /// account contract, so this quirk will most often be handled by account\n /// contract developers.\n ///\n /// # Returns\n /// * `Option<AztecAddress>` - The address of the smart contract that called\n /// this function (be it an app contract or a user's account contract).\n /// Returns `Option<AztecAddress>::none` for the first function call of\n /// the tx. No other _private_ function calls in the tx will have a `none`\n /// msg_sender, but _public_ function calls might (see the PublicContext).\n ///\n pub fn msg_sender(self) -> Option<AztecAddress> {\n let maybe_msg_sender = self.inputs.call_context.msg_sender;\n if maybe_msg_sender == NULL_MSG_SENDER_CONTRACT_ADDRESS {\n Option::none()\n } else {\n Option::some(maybe_msg_sender)\n }\n }\n\n /// \"Unsafe\" versus calling `context.msg_sender()`, because it doesn't\n /// translate `NULL_MSG_SENDER_CONTRACT_ADDRESS` as\n /// `Option<AztecAddress>::none`.\n /// Used by some internal aztecnr functions.\n pub fn msg_sender_unsafe(self) -> AztecAddress {\n self.inputs.call_context.msg_sender\n }\n\n /// Returns the contract address of the current function being executed.\n ///\n /// This is equivalent to `address(this)` in Solidity (hence the name).\n /// Use this to identify the current contract's address, commonly needed for\n /// access control or when interacting with other contracts.\n ///\n /// # Returns\n /// * `AztecAddress` - The contract address of the current function being\n /// executed.\n ///\n pub fn this_address(self) -> AztecAddress {\n self.inputs.call_context.contract_address\n }\n\n /// Returns the chain ID of the current network.\n ///\n /// This is similar to `block.chainid` in Solidity. Returns the unique\n /// identifier for the blockchain network this transaction is executing on.\n ///\n /// Helps prevent cross-chain replay attacks. Useful if implementing\n /// multi-chain contract logic.\n ///\n /// # Returns\n /// * `Field` - The chain ID as a field element\n ///\n pub fn chain_id(self) -> Field {\n self.inputs.tx_context.chain_id\n }\n\n /// Returns the Aztec protocol version that this transaction is executing\n /// under. Different versions may have different rules, opcodes, or\n /// cryptographic primitives.\n ///\n /// This is similar to how Ethereum has different EVM versions.\n ///\n /// Useful for forward/backward compatibility checks\n ///\n /// Not to be confused with contract versions; this is the protocol version.\n ///\n /// # Returns\n /// * `Field` - The protocol version as a field element\n ///\n pub fn version(self) -> Field {\n self.inputs.tx_context.version\n }\n\n /// Returns the gas settings for the current transaction.\n ///\n /// This provides information about gas limits and pricing for the\n /// transaction, similar to `tx.gasprice` and gas limits in Ethereum.\n /// However, Aztec has a more sophisticated gas model with separate\n /// accounting for L2 computation and data availability (DA) costs.\n ///\n /// # Returns\n /// * `GasSettings` - Struct containing gas limits and fee information\n ///\n pub fn gas_settings(self) -> GasSettings {\n self.inputs.tx_context.gas_settings\n }\n\n /// Returns the function selector of the currently executing function.\n ///\n /// Low-level function: Ordinarily, smart contract developers will not need\n /// to access this.\n ///\n /// This is similar to `msg.sig` in Solidity, which returns the first 4\n /// bytes of the function signature. In Aztec, the selector uniquely\n /// identifies which function within the contract is being called.\n ///\n /// # Returns\n /// * `FunctionSelector` - The 4-byte function identifier\n ///\n /// # Advanced\n /// Only #[external(\"private\")] functions have a function selector as a protocol-\n /// enshrined concept. The function selectors of private functions are\n /// baked into the preimage of the contract address, and are used by the\n /// protocol's kernel circuits to identify each private function and ensure\n /// the correct one is being executed.\n ///\n /// Used internally for function dispatch and call verification.\n ///\n pub fn selector(self) -> FunctionSelector {\n self.inputs.call_context.function_selector\n }\n\n /// Returns the hash of the arguments passed to the current function.\n ///\n /// Very low-level function: You shouldn't need to call this. The #[external(\"private\")]\n /// macro calls this, and it makes the arguments neatly available to the\n /// body of your private function.\n ///\n /// # Returns\n /// * `Field` - Hash of the function arguments\n ///\n /// # Advanced\n /// * Arguments are hashed to reduce proof size and verification time\n /// * Enables efficient argument passing in recursive function calls\n /// * The hash can be used to retrieve the original arguments from the PXE.\n ///\n pub fn get_args_hash(self) -> Field {\n self.args_hash\n }\n\n /// Pushes a new note_hash to the Aztec blockchain's global Note Hash Tree\n /// (a state tree).\n ///\n /// A note_hash is a commitment to a piece of private state.\n ///\n /// Low-level function: Ordinarily, smart contract developers will not need\n /// to manually call this. Aztec-nr's state variables (see `../state_vars/`)\n /// are designed to understand when to create and push new note hashes.\n ///\n /// # Arguments\n /// * `note_hash` - The new note_hash.\n ///\n /// # Advanced\n /// From here, the protocol's kernel circuits will take over and insert the\n /// note_hash into the protocol's \"note hash tree\" (in the Base Rollup\n /// circuit).\n /// Before insertion, the protocol will:\n /// - \"Silo\" the `note_hash` with the contract address of this function,\n /// to yield a `siloed_note_hash`. This prevents state collisions\n /// between different smart contracts.\n /// - Ensure uniqueness of the `siloed_note_hash`, to prevent Faerie-Gold\n /// attacks, by hashing the `siloed_note_hash` with a unique value, to\n /// yield a `unique_siloed_note_hash` (see the protocol spec for more).\n ///\n /// In addition to calling this function, aztec-nr provides the contents\n /// of the newly-created note to the PXE, via the `notify_created_note`\n /// oracle.\n ///\n /// > Advanced users might occasionally wish to push data to the context\n /// > directly for lower-level control. If you find yourself doing this,\n /// > please open an issue on GitHub to describe your use case: it might be\n /// > that new functionality should be added to aztec-nr.\n ///\n pub fn push_note_hash(&mut self, note_hash: Field) {\n self.note_hashes.push(Counted::new(note_hash, self.next_counter()));\n }\n\n /// Pushes a new nullifier to the Aztec blockchain's global Nullifier Tree\n /// (a state tree).\n ///\n /// See also: `push_nullifier_for_note_hash`.\n ///\n /// Low-level function: Ordinarily, smart contract developers will not need\n /// to manually call this. Aztec-nr's state variables (see `../state_vars/`)\n /// are designed to understand when to create and push new nullifiers.\n ///\n /// A nullifier can only be emitted once. Duplicate nullifier insertions are\n /// rejected by the protocol.\n ///\n /// Generally, a nullifier is emitted to prevent an action from happening\n /// more than once, in such a way that the action cannot be linked (by an\n /// observer of the blockchain) to any earlier transactions.\n ///\n /// I.e. a nullifier is a random-looking, but deterministic record of a\n /// private, one-time action, which does not leak what action has been\n /// taken, and which preserves the property of \"tx unlinkability\".\n ///\n /// Usually, a nullifier will be emitted to \"spend\" a note (a piece of\n /// private state), without revealing which specific note is being spent.\n ///\n /// (Important: in such cases, use the below `push_nullifier_for_note_hash`).\n ///\n /// Sometimes, a nullifier might be emitted completely unrelated to any\n /// notes. Examples include initialization of a new contract; initialization\n /// of a PrivateMutable, or signalling in Semaphore-like applications.\n /// This `push_nullifier` function serves such use cases.\n ///\n /// # Arguments\n /// * `nullifier`\n ///\n /// # Advanced\n /// From here, the protocol's kernel circuits will take over and insert the\n /// nullifier into the protocol's \"nullifier tree\" (in the Base Rollup\n /// circuit).\n /// Before insertion, the protocol will:\n /// - \"Silo\" the `nullifier` with the contract address of this function,\n /// to yield a `siloed_nullifier`. This prevents state collisions\n /// between different smart contracts.\n /// - Ensure the `siloed_nullifier` is unique (the nullifier tree is an\n /// indexed merkle tree which supports efficient non-membership proofs).\n ///\n pub fn push_nullifier(&mut self, nullifier: Field) {\n notify_created_nullifier(nullifier);\n self.nullifiers.push(Nullifier { value: nullifier, note_hash: 0 }.count(self.next_counter()));\n }\n\n /// Pushes a nullifier that corresponds to a specific note hash.\n ///\n /// Low-level function: Ordinarily, smart contract developers will not need\n /// to manually call this. Aztec-nr's state variables (see `../state_vars/`)\n /// are designed to understand when to create and push new nullifiers.\n ///\n /// This is a specialized version of `push_nullifier` that links a nullifier\n /// to the specific note hash it's nullifying. This is the most common\n /// usage pattern for nullifiers.\n /// See `push_nullifier` for more explanation on nullifiers.\n ///\n /// # Arguments\n /// * `nullifier`\n /// * `nullified_note_hash` - The note hash of the note being nullified\n ///\n /// # Advanced\n /// Important: usage of this function doesn't mean that the world will _see_\n /// that this nullifier relates to the given nullified_note_hash (as that\n /// would violate \"tx unlinkability\"); it simply informs the user's PXE\n /// about the relationship (via `notify_nullified_note`). The PXE can then\n /// use this information to feed hints to the kernel circuits for\n /// \"squashing\" purposes: If a note is nullified during the same tx which\n /// created it, we can \"squash\" (delete) the note and nullifier (and any\n /// private logs associated with the note), to save on data emission costs.\n ///\n pub fn push_nullifier_for_note_hash(&mut self, nullifier: Field, nullified_note_hash: Field) {\n let nullifier_counter = self.next_counter();\n notify_nullified_note(nullifier, nullified_note_hash, nullifier_counter);\n self.nullifiers.push(Nullifier { value: nullifier, note_hash: nullified_note_hash }.count(\n nullifier_counter,\n ));\n }\n\n /// Returns the anchor block header - the historical block header that this\n /// private function is reading from.\n ///\n /// A private function CANNOT read from the \"current\" block header,\n /// but must read from some older block header, because as soon as\n /// private function execution begins (asynchronously, on a user's device),\n /// the public state of the chain (the \"current state\") will have progressed\n /// forward.\n ///\n /// # Returns\n /// * `BlockHeader` - The anchor block header.\n ///\n /// # Advanced\n /// * All private functions of a tx read from the same anchor block header.\n /// * The protocol asserts that the `include_by_timestamp` of every tx\n /// is at most 24 hours beyond the timestamp of the tx's chosen anchor\n /// block header. This enables the network's nodes to safely prune old txs\n /// from the mempool. Therefore, the chosen block header _must_ be one\n /// from within the last 24 hours.\n ///\n pub fn get_anchor_block_header(self) -> BlockHeader {\n self.anchor_block_header\n }\n\n /// Returns the header of any historical block at or before the anchor\n /// block.\n ///\n /// This enables private contracts to access information from even older\n /// blocks than the anchor block header.\n ///\n /// Useful for time-based contract logic that needs to compare against\n /// multiple historical points.\n ///\n /// # Arguments\n /// * `block_number` - The block number to retrieve (must be <= anchor\n /// block number)\n ///\n /// # Returns\n /// * `BlockHeader` - The header of the requested historical block\n ///\n /// # Advanced\n /// This function uses an oracle to fetch block header data from the user's\n /// PXE. Depending on how much blockchain data the user's PXE has been set\n /// up to store, this might require a query from the PXE to another Aztec\n /// node to get the data.\n /// > This is generally true of all oracle getters (see `../oracle`).\n ///\n /// Each block header gets hashed and stored as a leaf in the protocol's\n /// Archive Tree. In fact, the i-th block header gets stored at the i-th\n /// leaf index of the Archive Tree. Behind the scenes, this\n /// `get_block_header_at` function will add Archive Tree merkle-membership\n /// constraints (~3k) to your smart contract function's circuit, to prove\n /// existence of the block header in the Archive Tree.\n ///\n /// Note: we don't do any caching, so avoid making duplicate calls for the\n /// same block header, because each call will add duplicate constraints.\n ///\n /// Calling this function is more expensive (constraint-wise) than getting\n /// the anchor block header (via `get_block_header`). This is because the\n /// anchor block's merkle membership proof is handled by Aztec's protocol\n /// circuits, and is only performed once for the entire tx because all\n /// private functions of a tx share a common anchor block header. Therefore,\n /// the cost (constraint-wise) of calling `get_block_header` is effectively\n /// free.\n ///\n pub fn get_block_header_at(self, block_number: u32) -> BlockHeader {\n get_block_header_at(block_number, self)\n }\n\n /// Sets the hash of the return values for this private function.\n ///\n /// Very low-level function: this is called by the #[external(\"private\")] macro.\n ///\n /// # Arguments\n /// * `serialized_return_values` - The serialized return values as a field array\n ///\n pub fn set_return_hash<let N: u32>(&mut self, serialized_return_values: [Field; N]) {\n let return_hash = hash_args(serialized_return_values);\n self.return_hash = return_hash;\n execution_cache::store(serialized_return_values, return_hash);\n }\n\n /// Builds the PrivateCircuitPublicInputs for this private function, to\n /// ensure compatibility with the protocol's kernel circuits.\n ///\n /// Very low-level function: This function is automatically called by the\n /// #[external(\"private\")] macro.\n pub fn finish(self) -> PrivateCircuitPublicInputs {\n PrivateCircuitPublicInputs {\n call_context: self.inputs.call_context,\n args_hash: self.args_hash,\n returns_hash: self.return_hash,\n min_revertible_side_effect_counter: self.min_revertible_side_effect_counter,\n is_fee_payer: self.is_fee_payer,\n include_by_timestamp: self.include_by_timestamp,\n note_hash_read_requests: ClaimedLengthArray::from_bounded_vec(\n self.note_hash_read_requests,\n ),\n nullifier_read_requests: ClaimedLengthArray::from_bounded_vec(\n self.nullifier_read_requests,\n ),\n key_validation_requests_and_generators: ClaimedLengthArray::from_bounded_vec(\n self.key_validation_requests_and_generators,\n ),\n note_hashes: ClaimedLengthArray::from_bounded_vec(self.note_hashes),\n nullifiers: ClaimedLengthArray::from_bounded_vec(self.nullifiers),\n private_call_requests: ClaimedLengthArray::from_bounded_vec(self.private_call_requests),\n public_call_requests: ClaimedLengthArray::from_bounded_vec(self.public_call_requests),\n public_teardown_call_request: self.public_teardown_call_request,\n l2_to_l1_msgs: ClaimedLengthArray::from_bounded_vec(self.l2_to_l1_msgs),\n start_side_effect_counter: self.inputs.start_side_effect_counter,\n end_side_effect_counter: self.side_effect_counter,\n private_logs: ClaimedLengthArray::from_bounded_vec(self.private_logs),\n contract_class_logs_hashes: ClaimedLengthArray::from_bounded_vec(\n self.contract_class_logs_hashes,\n ),\n anchor_block_header: self.anchor_block_header,\n tx_context: self.inputs.tx_context,\n expected_non_revertible_side_effect_counter: self\n .expected_non_revertible_side_effect_counter,\n expected_revertible_side_effect_counter: self.expected_revertible_side_effect_counter,\n }\n }\n\n /// Designates this contract as the fee payer for the transaction.\n ///\n /// Unlike Ethereum, where the transaction sender always pays fees, Aztec\n /// allows any contract to voluntarily pay transaction fees. This enables\n /// patterns like sponsored transactions or fee abstraction where users\n /// don't need to hold fee-juice themselves. (Fee juice is a fee-paying\n /// asset for Aztec).\n ///\n /// Only one contract per transaction can declare itself as the fee payer,\n /// and it must have sufficient fee-juice balance (>= the gas limits\n /// specified in the TxContext) by the time we reach the public setup phase\n /// of the tx.\n ///\n pub fn set_as_fee_payer(&mut self) {\n dep::protocol_types::debug_log::debug_log_format(\n \"Setting {0} as fee payer\",\n [self.this_address().to_field()],\n );\n self.is_fee_payer = true;\n }\n\n pub fn in_revertible_phase(&mut self) -> bool {\n let current_counter = self.side_effect_counter;\n\n // Safety: Kernel will validate that the claim is correct by validating the expected counters.\n let is_revertible =\n unsafe { is_side_effect_counter_revertible_oracle_wrapper(current_counter) };\n\n if is_revertible {\n if (self.expected_revertible_side_effect_counter == 0)\n | (current_counter < self.expected_revertible_side_effect_counter) {\n self.expected_revertible_side_effect_counter = current_counter;\n }\n } else if current_counter > self.expected_non_revertible_side_effect_counter {\n self.expected_non_revertible_side_effect_counter = current_counter;\n }\n\n is_revertible\n }\n\n /// Declares the end of the \"setup phase\" of this tx.\n ///\n /// Only one function per tx can declare the end of the setup phase.\n ///\n /// Niche function: Only wallet developers and paymaster contract developers\n /// (aka Fee-payment contracts) will need to make use of this function.\n ///\n /// Aztec supports a three-phase execution model: setup, app logic, teardown.\n /// The phases exist to enable a fee payer to take on the risk of paying\n /// a transaction fee, safe in the knowledge that their payment (in whatever\n /// token or method the user chooses) will succeed, regardless of whether\n /// the app logic will succeed. The \"setup\" phase enables such a payment to\n /// be made, because the setup phase _cannot revert_: a reverting function\n /// within the setup phase would result in an invalid block which cannot\n /// be proven. Any side-effects generated during that phase are guaranteed\n /// to be inserted into Aztec's state trees (except for squashed notes &\n /// nullifiers, of course).\n ///\n /// Even though the end of the setup phase is declared within a private\n /// function, you might have noticed that _public_ functions can also\n /// execute within the setup phase. This is because any public function\n /// calls which were enqueued _within the setup phase_ by a private\n /// function are considered part of the setup phase.\n ///\n /// # Advanced\n /// * Sets the minimum revertible side effect counter of this tx to be the\n /// PrivateContext's _current_ side effect counter.\n ///\n pub fn end_setup(&mut self) {\n // Incrementing the side effect counter when ending setup ensures non\n // ambiguity for the counter where we change phases.\n self.side_effect_counter += 1;\n // dep::protocol_types::debug_log::debug_log_format(\n // \"Ending setup at counter {0}\",\n // [self.side_effect_counter as Field]\n // );\n self.min_revertible_side_effect_counter = self.next_counter();\n notify_set_min_revertible_side_effect_counter(self.min_revertible_side_effect_counter);\n }\n\n /// Sets a deadline (an \"include-by timestamp\") for when this transaction\n /// must be included in a block.\n ///\n /// Other functions in this tx might call this setter with differing\n /// values for the include-by timestamp. To ensure that all functions'\n /// deadlines are met, the _minimum_ of all these include-by timestamps will\n /// be exposed when this tx is submitted to the network.\n ///\n /// If the transaction is not included in a block by its include-by\n /// timestamp, it becomes invalid and it will never be included.\n ///\n /// This expiry timestamp is publicly visible. See the \"Advanced\" section\n /// for privacy concerns.\n ///\n /// # Arguments\n /// * `include_by_timestamp` - Unix timestamp (seconds) deadline for inclusion.\n /// The include-by timestamp of this tx will be\n /// _at most_ the timestamp specified.\n ///\n /// # Advanced\n /// * If multiple functions set differing `include_by_timestamp`s, the\n /// kernel circuits will set it to be the _minimum_ of the two. This\n /// ensures the tx expiry requirements of all functions in the tx are met.\n /// * Rollup circuits will reject expired txs.\n /// * The protocol enforces that all transactions must be included within\n /// 24 hours of their chosen anchor block's timestamp, to enable safe\n /// mempool pruning.\n /// * The DelayedPublicMutable design makes heavy use of this functionality,\n /// to enable private functions to read public state.\n /// * A sophisticated Wallet should cleverly set an include-by timestamp\n /// to improve the privacy of the user and the network as a whole.\n /// For example, if a contract interaction sets include-by to some\n /// publicly-known value (e.g. the time when a contract upgrades), then\n /// the wallet might wish to set an even lower one to avoid revealing that\n /// this tx is interacting with said contract.\n /// Ideally, all wallets should standardize on an approach in order to\n /// provide users with a large anonymity set -- although the exact approach\n /// will need to be discussed. Wallets that deviate from a standard might\n /// accidentally reveal which wallet each transaction originates from.\n ///\n // docs:start:include-by-timestamp\n pub fn set_include_by_timestamp(&mut self, include_by_timestamp: u64) {\n // docs:end:include-by-timestamp\n self.include_by_timestamp = std::cmp::min(self.include_by_timestamp, include_by_timestamp);\n }\n\n /// Makes a request to the protocol's kernel circuit to ensure a note_hash\n /// actually exists.\n ///\n /// \"Read requests\" are used to prove that a note hash exists without\n /// revealing which specific note was read.\n ///\n /// This can be used to prove existence of both settled notes (created in\n /// prior transactions) and transient notes (created in the current\n /// transaction).\n /// If you need to prove existence of a settled note _at a specific block\n /// number_, use `note_inclusion::prove_note_inclusion`.\n ///\n /// Low-level function. Ordinarily, smart contract developers will not need\n /// to call this directly. Aztec-nr's state variables (see `../state_vars/`)\n /// are designed to understand when to create and push new note_hash read\n /// requests.\n ///\n /// # Arguments\n /// * `note_hash_read` - The note hash to read and verify\n ///\n /// # Advanced\n /// In \"traditional\" circuits for non-Aztec privacy applications, the merkle\n /// membership proofs to check existence of a note are performed _within_\n /// the application circuit.\n ///\n /// All Aztec private functions have access to the following constraint\n /// optimisation:\n /// In cases where the note being read was created earlier in the same tx,\n /// the note wouldn't yet exist in the Note Hash Tree, so a hard-coded\n /// merkle membership check which then gets ignored would be a waste of\n /// constraints.\n /// Instead, we can send read requests for all notes to the protocol's\n /// kernel circuits, where we can conditionally assess which notes actually\n /// need merkle membership proofs, and select an appropriately-sized\n /// kernel circuit.\n ///\n /// For \"settled notes\" (which already existed in the Note Hash Tree of the\n /// anchor block (i.e. before the tx began)), the kernel does a merkle\n /// membership check.\n ///\n /// For \"pending notes\" (which were created earlier in _this_ tx), the\n /// kernel will check that the note existed _before_ this read request was\n /// made, by checking the side-effect counters of the note_hash and this\n /// read request.\n ///\n /// This approach improves latency between writes and reads:\n /// a function can read a note which was created earlier in the tx (rather\n /// than performing the read in a later tx, after waiting for the earlier tx\n /// to be included, to ensure the note is included in the tree).\n ///\n pub fn push_note_hash_read_request(&mut self, note_hash_read: NoteHashRead) {\n let note_hash = note_hash_read.note_hash();\n let contract_address = note_hash_read.contract_address().unwrap_or(AztecAddress::zero());\n let side_effect = Scoped::new(\n Counted::new(note_hash, self.next_counter()),\n contract_address,\n );\n self.note_hash_read_requests.push(side_effect);\n }\n\n /// Asserts that a NoteHashRead has been requested to the kernel by this context.\n /// Asserts instead of returning a boolean to save on gates.\n ///\n /// # Arguments\n /// * `note_hash_read` - The note hash read to assert that has been requested.\n ///\n pub fn assert_has_been_requested(self, note_hash_read: NoteHashRead) {\n let note_hash = note_hash_read.note_hash();\n let contract_address = note_hash_read.contract_address().unwrap_or(AztecAddress::zero());\n\n // Safety: The index is constrained by the checks below.\n let hinted_index = unsafe {\n find_first_index(\n self.note_hash_read_requests.storage(),\n |r| (r.contract_address == contract_address) & (r.innermost() == note_hash),\n )\n };\n // This assertion is not necessary, since the .get would fail. But it enables us to have a more explicit error message.\n assert(\n hinted_index != self.note_hash_read_requests.max_len(),\n \"Note hash read has not been requested\",\n );\n\n let request = self.note_hash_read_requests.get(hinted_index);\n assert_eq(request.contract_address, contract_address);\n assert_eq(request.innermost(), note_hash);\n }\n\n /// Requests to read a specific nullifier from the nullifier tree.\n ///\n /// Nullifier read requests are used to prove that a nullifier exists without\n /// revealing which specific nullifier preimage was read.\n ///\n /// This can be used to prove existence of both settled nullifiers (created in\n /// prior transactions) and transient nullifiers (created in the current\n /// transaction).\n /// If you need to prove existence of a settled nullifier _at a specific block\n /// number_, use `nullifier_inclusion::prove_nullifier_inclusion`.\n ///\n /// Low-level function. Ordinarily, smart contract developers will not need\n /// to call this directly. Aztec-nr's state variables (see `../state_vars/`)\n /// are designed to understand when to create and push new nullifier read\n /// requests.\n ///\n /// # Arguments\n /// * `nullifier` - The nullifier to read and verify\n /// * `contract_address` - The contract address that emitted the nullifier\n ///\n /// # Advanced\n /// This approach improves latency between writes and reads:\n /// a function can read a nullifier which was created earlier in the tx\n /// (rather than performing the read in a later tx, after waiting for the\n /// earlier tx to be included, to ensure the nullifier is included in the tree).\n ///\n pub fn push_nullifier_read_request(\n &mut self,\n nullifier: Field,\n contract_address: AztecAddress,\n ) {\n let request = Scoped::new(\n Counted::new(nullifier, self.next_counter()),\n contract_address,\n );\n self.nullifier_read_requests.push(request);\n }\n\n /// Requests the app-siloed nullifier secret key (nsk_app) for the given\n /// (hashed) master nullifier public key (npk_m), from the user's PXE.\n ///\n /// Advanced function: Only needed if you're designing your own notes and/or\n /// nullifiers.\n ///\n /// Contracts are not allowed to compute nullifiers for other contracts, as\n /// that would let them read parts of their private state. Because of this,\n /// a contract is only given an \"app-siloed secret key\", which is\n /// constructed by hashing the user's master nullifier secret key with the\n /// contract's address.\n /// However, because contracts cannot be trusted with a user's master\n /// nullifier secret key (because we don't know which contracts are honest\n /// or malicious), the PXE refuses to provide any master secret keys to\n /// any app smart contract function. This means app functions are unable to\n /// prove that the derivation of an app-siloed nullifier secret key has been\n /// computed correctly. Instead, an app function can request to the kernel\n /// (via `request_nsk_app`) that it validates the siloed derivation, since\n /// the kernel has been vetted to not leak any master secret keys.\n ///\n /// A common nullification scheme is to inject a nullifier secret key into\n /// the preimage of a nullifier, to make the nullifier deterministic but\n /// random-looking. This function enables that flow.\n ///\n /// # Arguments\n /// * `npk_m_hash` - A hash of the master nullifier public key of the user\n /// whose PXE is executing this function.\n ///\n /// # Returns\n /// * The app-siloed nullifier secret key that corresponds to the given\n /// `npk_m_hash`.\n ///\n pub fn request_nsk_app(&mut self, npk_m_hash: Field) -> Field {\n self.request_sk_app(npk_m_hash, NULLIFIER_INDEX)\n }\n\n /// Requests the app-siloed nullifier secret key (nsk_app) for the given\n /// (hashed) master nullifier public key (npk_m), from the user's PXE.\n ///\n /// See `request_nsk_app` and `request_sk_app` for more info.\n ///\n /// The intention of the \"outgoing\" keypair is to provide a second secret\n /// key for all of a user's outgoing activity (i.e. for notes that a user\n /// creates, as opposed to notes that a user receives from others). The\n /// separation of incoming and outgoing data was a distinction made by\n /// zcash, with the intention of enabling a user to optionally share with a\n /// 3rd party a controlled view of only incoming or outgoing notes.\n /// Similar functionality of sharing select data can be achieved with\n /// offchain zero-knowledge proofs. It is up to an app developer whether\n /// they choose to make use of a user's outgoing keypair within their\n /// application logic, or instead simply use the same keypair (the address\n /// keypair (which is effectively the same as the \"incoming\" keypair)) for\n /// all incoming & outgoing messages to a user.\n ///\n /// Currently, all of the exposed encryption functions in aztec-nr ignore\n /// the outgoing viewing keys, and instead encrypt all note logs and event\n /// logs to a user's address public key.\n ///\n /// # Arguments\n /// * `ovpk_m_hash` - Hash of the outgoing viewing public key master\n ///\n /// # Returns\n /// * The application-specific outgoing viewing secret key\n ///\n pub fn request_ovsk_app(&mut self, ovpk_m_hash: Field) -> Field {\n self.request_sk_app(ovpk_m_hash, OUTGOING_INDEX)\n }\n\n /// Pushes a Key Validation Request to the kernel.\n ///\n /// Private functions are not allowed to see a user's master secret keys,\n /// because we do not trust them. They are instead given \"app-siloed\" secret\n /// keys with a claim that they relate to a master public key.\n /// They can then request validation of this claim, by making a \"key\n /// validation request\" to the protocol's kernel circuits (which _are_\n /// allowed to see certain master secret keys).\n ///\n /// When a Key Validation Request tuple of (sk_app, Pk_m, app_address) is\n /// submitted to the kernel, it will perform the following derivations\n /// to validate the relationship between the claimed sk_app and the user's\n /// Pk_m:\n ///\n /// (sk_m) ----> * G ----> Pk_m\n /// | |\n /// v We use the kernel to prove this\n /// h(sk_m, app_address) | sk_app-Pk_m relationship, because app\n /// | circuits must not be trusted to see sk_m.\n /// v |\n /// sk_app - - - - - - - - -\n ///\n /// The function is named \"request_\" instead of \"get_\" to remind the user\n /// that a Key Validation Request will be emitted to the kernel.\n ///\n fn request_sk_app(&mut self, pk_m_hash: Field, key_index: Field) -> Field {\n let cached_request = self.last_key_validation_requests[key_index as u32].unwrap_or(\n KeyValidationRequest::empty(),\n );\n\n if cached_request.pk_m.hash() == pk_m_hash {\n // We get a match so the cached request is the latest one\n cached_request.sk_app\n } else {\n // We didn't get a match meaning the cached result is stale\n // Typically we'd validate keys by showing that they are the preimage of `pk_m_hash`, but that'd require\n // the oracle returning the master secret keys, which could cause malicious contracts to leak it or learn\n // about secrets from other contracts. We therefore silo secret keys, and rely on the private kernel to\n // validate that we siloed secret key corresponds to correct siloing of the master secret key that hashes\n // to `pk_m_hash`.\n\n // Safety: Kernels verify that the key validation request is valid and below we verify that a request\n // for the correct public key has been received.\n let request = unsafe { get_key_validation_request(pk_m_hash, key_index) };\n assert_eq(request.pk_m.hash(), pk_m_hash, \"Obtained invalid key validation request\");\n\n self.key_validation_requests_and_generators.push(\n KeyValidationRequestAndGenerator {\n request,\n sk_app_generator: sk_generators[key_index as u32],\n },\n );\n self.last_key_validation_requests[key_index as u32] = Option::some(request);\n request.sk_app\n }\n }\n\n /// Sends an \"L2 -> L1 message\" from this function (Aztec, L2) to a smart\n /// contract on Ethereum (L1). L1 contracts which are designed to\n /// send/receive messages to/from Aztec are called \"Portal Contracts\".\n ///\n /// Common use cases include withdrawals, cross-chain asset transfers, and\n /// triggering L1 actions based on L2 state changes.\n ///\n /// The message will be inserted into an Aztec \"Outbox\" contract on L1,\n /// when this transaction's block is proposed to L1.\n /// Sending the message will not result in any immediate state changes in\n /// the target portal contract. The message will need to be manually\n /// consumed from the Outbox through a separate Ethereum transaction: a user\n /// will need to call a function of the portal contract -- a function\n /// specifically designed to make a call to the Outbox to consume the\n /// message.\n /// The message will only be available for consumption once the _epoch_\n /// proof has been submitted. Given that there are multiple Aztec blocks\n /// within an epoch, it might take some time for this epoch proof to be\n /// submitted -- especially if the block was near the start of an epoch.\n ///\n /// # Arguments\n /// * `recipient` - Ethereum address that will receive the message\n /// * `content` - Message content (32 bytes as a Field element).\n /// This content has a very specific layout.\n /// docs:start:context_message_portal\n pub fn message_portal(&mut self, recipient: EthAddress, content: Field) {\n let message = L2ToL1Message { recipient, content };\n self.l2_to_l1_msgs.push(message.count(self.next_counter()));\n }\n\n /// Consumes a message sent from Ethereum (L1) to Aztec (L2).\n ///\n /// Common use cases include token bridging, cross-chain governance, and\n /// triggering L2 actions based on L1 events.\n ///\n /// Use this function if you only want the message to ever be \"referred to\"\n /// once. Once consumed using this method, the message cannot be consumed\n /// again, because a nullifier is emitted.\n /// If your use case wants for the message to be read unlimited times, then\n /// you can always read any historic message from the L1-to-L2 messages tree;\n /// messages never technically get deleted from that tree.\n ///\n /// The message will first be inserted into an Aztec \"Inbox\" smart contract\n /// on L1.\n /// Sending the message will not result in any immediate state changes in\n /// the target L2 contract. The message will need to be manually\n /// consumed by the target contract through a separate Aztec transaction.\n /// The message will not be available for consumption immediately. Messages\n /// get copied over from the L1 Inbox to L2 by the next Proposer in batches.\n /// So you will need to wait until the messages are copied before you can\n /// consume them.\n ///\n /// # Arguments\n /// * `content` - The message content that was sent from L1\n /// * `secret` - Secret value used for message privacy (if needed)\n /// * `sender` - Ethereum address that sent the message\n /// * `leaf_index` - Index of the message in the L1-to-L2 message tree\n ///\n /// # Advanced\n /// Validates message existence in the L1-to-L2 message tree and nullifies\n /// the message to prevent double-consumption.\n ///\n pub fn consume_l1_to_l2_message(\n &mut self,\n content: Field,\n secret: Field,\n sender: EthAddress,\n leaf_index: Field,\n ) {\n let nullifier = process_l1_to_l2_message(\n self.anchor_block_header.state.l1_to_l2_message_tree.root,\n self.this_address(),\n sender,\n self.chain_id(),\n self.version(),\n content,\n secret,\n leaf_index,\n );\n\n // Push nullifier (and the \"commitment\" corresponding to this can be \"empty\")\n self.push_nullifier(nullifier)\n }\n\n /// Emits a private log (an array of Fields) that will be published to an\n /// Ethereum blob.\n ///\n /// Private logs are intended for the broadcasting of ciphertexts: that is,\n /// encrypted events or encrypted note contents.\n /// Since the data in the logs is meant to be _encrypted_, private_logs are\n /// broadcast to publicly-visible Ethereum blobs.\n /// The intended recipients of such encrypted messages can then discover and\n /// decrypt these encrypted logs using their viewing secret key.\n /// (See `../messages/discovery` for more details).\n ///\n /// Important note: This function DOES NOT _do_ any encryption of the input\n /// `log` fields. This function blindly publishes whatever input `log` data\n /// is fed into it, so the caller of this function should have already\n /// performed the encryption, and the `log` should be the result of that\n /// encryption.\n ///\n /// The protocol does not dictate what encryption scheme should be used:\n /// a smart contract developer can choose whatever encryption scheme they\n /// like.\n /// Aztec-nr includes some off-the-shelf encryption libraries that\n /// developers might wish to use, for convenience. These libraries not only\n /// encrypt a plaintext (to produce a ciphertext); they also prepend the\n /// ciphertext with a `tag` and `ephemeral public key` for easier message\n /// discovery. This is a very dense topic, and we will be writing more\n /// libraries and docs soon.\n ///\n /// > Currently, AES128 CBC encryption is the main scheme included in\n /// > aztec.nr.\n /// > We are currently making significant changes to the interfaces of the\n /// > encryption library.\n ///\n /// In some niche use cases, an app might be tempted to publish\n /// _un-encrypted_ data via a private log, because _public logs_ are not\n /// available to private functions. Be warned that emitting public data via\n /// private logs is strongly discouraged, and is considered a \"privacy\n /// anti-pattern\", because it reveals identifiable information about _which_\n /// function has been executed. A tx which leaks such information does not\n /// contribute to the privacy set of the network.\n ///\n /// * Unlike `emit_raw_note_log`, this log is not tied to any specific note\n ///\n /// # Arguments\n /// * `log` - The log data that will be publicly broadcast (so make sure\n /// it's already been encrypted before you call this function).\n /// Private logs are bounded in size (PRIVATE_LOG_SIZE_IN_FIELDS), to\n /// encourage all logs from all smart contracts look identical.\n /// * `length` - The actual length of the `log` (measured in number of\n /// Fields). Although the input log has a max size of\n /// PRIVATE_LOG_SIZE_IN_FIELDS, the latter values of the array might all\n /// be 0's for small logs. This `length` should reflect the trimmed length\n /// of the array. The protocol's kernel circuits can then append random\n /// fields as \"padding\" after the `length`, so that the logs of this\n /// smart contract look indistinguishable from (the same length as) the\n /// logs of all other applications. It's up to wallets how much padding\n /// to apply, so ideally all wallets should agree on standards for this.\n ///\n /// # Advanced\n ///\n pub fn emit_private_log(&mut self, log: [Field; PRIVATE_LOG_SIZE_IN_FIELDS], length: u32) {\n let counter = self.next_counter();\n let private_log = PrivateLogData { log: PrivateLog::new(log, length), note_hash_counter: 0 }\n .count(counter);\n self.private_logs.push(private_log);\n }\n\n // TODO: rename.\n /// Emits a private log that is explicitly tied to a newly-emitted note_hash,\n /// to convey to the kernel: \"this log relates to this note\".\n ///\n /// This linkage is important in case the note gets squashed (due to being\n /// read later in this same tx), since we can then squash the log as well.\n ///\n /// See `emit_private_log` for more info about private log emission.\n ///\n /// # Arguments\n /// * `log` - The log data as an array of Field elements\n /// * `length` - The actual length of the `log` (measured in number of\n /// Fields).\n /// * `note_hash_counter` - The side-effect counter that was assigned to the\n /// new note_hash when it was pushed to this\n // `PrivateContext`.\n ///\n /// Important: If your application logic requires the log to always be\n /// emitted regardless of note squashing, consider using `emit_private_log`\n /// instead, or emitting additional events.\n ///\n pub fn emit_raw_note_log(\n &mut self,\n log: [Field; PRIVATE_LOG_SIZE_IN_FIELDS],\n length: u32,\n note_hash_counter: u32,\n ) {\n let counter = self.next_counter();\n let private_log = PrivateLogData { log: PrivateLog::new(log, length), note_hash_counter };\n self.private_logs.push(private_log.count(counter));\n }\n\n pub fn emit_contract_class_log<let N: u32>(&mut self, log: [Field; N]) {\n let contract_address = self.this_address();\n let counter = self.next_counter();\n\n let log_to_emit: [Field; CONTRACT_CLASS_LOG_SIZE_IN_FIELDS] =\n log.concat([0; CONTRACT_CLASS_LOG_SIZE_IN_FIELDS - N]);\n // Note: the length is not always N, it is the number of fields we want to broadcast, omitting trailing zeros to save blob space.\n // Safety: The below length is constrained in the base rollup, which will make sure that all the fields beyond length are zero.\n // However, it won't be able to check that we didn't add extra padding (trailing zeroes) or that we cut trailing zeroes from the end.\n let length = unsafe { trimmed_array_length_hint(log_to_emit) };\n // We hash the entire padded log to ensure a user cannot pass a shorter length and so emit incorrect shorter bytecode.\n let log_hash = poseidon2_hash(log_to_emit);\n // Safety: the below only exists to broadcast the raw log, so we can provide it to the base rollup later to be constrained.\n unsafe {\n notify_created_contract_class_log(contract_address, log_to_emit, length, counter);\n }\n\n self.contract_class_logs_hashes.push(LogHash { value: log_hash, length: length }.count(\n counter,\n ));\n }\n\n /// Calls a private function on another contract (or the same contract).\n ///\n /// Very low-level function.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `args` - Array of arguments to pass to the called function\n ///\n /// # Returns\n /// * `ReturnsHash` - Hash of the called function's return values. Use\n /// `.get_preimage()` to extract the actual return values.\n ///\n /// This enables contracts to interact with each other while maintaining\n /// privacy. This \"composability\" of private contract functions is a key\n /// feature of the Aztec network.\n ///\n /// If a user's transaction includes multiple private function calls, then\n /// by the design of Aztec, the following information will remain private[1]:\n /// - The function selectors and contract addresses of all private function\n /// calls will remain private, so an observer of the public mempool will\n /// not be able to look at a tx and deduce which private functions have\n /// been executed.\n /// - The arguments and return values of all private function calls will\n /// remain private.\n /// - The person who initiated the tx will remain private.\n /// - The notes and nullifiers and private logs that are emitted by all\n /// private function calls will (if designed well) not leak any user\n /// secrets, nor leak which functions have been executed.\n ///\n /// [1] Caveats: Some of these privacy guarantees depend on how app\n /// developers design their smart contracts. Some actions _can_ leak\n /// information, such as:\n /// - Calling an internal public function.\n /// - Calling a public function and not setting msg_sender to Option::none\n /// (feature not built yet - see github).\n /// - Calling any public function will always leak details about the nature\n /// of the transaction, so devs should be careful in their contract\n /// designs. If it can be done in a private function, then that will give\n /// the best privacy.\n /// - Not padding the side-effects of a tx to some standardized, uniform\n /// size. The kernel circuits can take hints to pad side-effects, so a\n /// wallet should be able to request for a particular amount of padding.\n /// Wallets should ideally agree on some standard.\n /// - Padding should include:\n /// - Padding the lengths of note & nullifier arrays\n /// - Padding private logs with random fields, up to some standardized\n /// size.\n /// See also: https://docs.aztec.network/developers/resources/considerations/privacy_considerations\n ///\n /// # Advanced\n /// * The call is added to the private call stack and executed by kernel\n /// circuits after this function completes\n /// * The called function can modify its own contract's private state\n /// * Side effects from the called function are included in this transaction\n /// * The call inherits the current transaction's context and gas limits\n ///\n pub fn call_private_function<let ArgsCount: u32>(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n args: [Field; ArgsCount],\n ) -> ReturnsHash {\n let args_hash = hash_args(args);\n execution_cache::store(args, args_hash);\n self.call_private_function_with_args_hash(\n contract_address,\n function_selector,\n args_hash,\n false,\n )\n }\n\n /// Makes a read-only call to a private function on another contract.\n ///\n /// This is similar to Solidity's `staticcall`. The called function\n /// cannot modify state, emit L2->L2 messages, nor emit events. Any nested\n /// calls are constrained to also be staticcalls.\n ///\n /// See `call_private_function` for more general info on private function\n /// calls.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract to call\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `args` - Array of arguments to pass to the called function\n ///\n /// # Returns\n /// * `ReturnsHash` - Hash of the called function's return values. Use\n /// `.get_preimage()` to extract the actual return values.\n ///\n pub fn static_call_private_function<let ArgsCount: u32>(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n args: [Field; ArgsCount],\n ) -> ReturnsHash {\n let args_hash = hash_args(args);\n execution_cache::store(args, args_hash);\n self.call_private_function_with_args_hash(\n contract_address,\n function_selector,\n args_hash,\n true,\n )\n }\n\n /// Calls a private function that takes no arguments.\n ///\n /// This is a convenience function for calling private functions that don't\n /// require any input parameters. It's equivalent to `call_private_function`\n /// but slightly more efficient to use when no arguments are needed.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n ///\n /// # Returns\n /// * `ReturnsHash` - Hash of the called function's return values. Use\n /// `.get_preimage()` to extract the actual return values.\n ///\n pub fn call_private_function_no_args(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n ) -> ReturnsHash {\n self.call_private_function_with_args_hash(contract_address, function_selector, 0, false)\n }\n\n /// Makes a read-only call to a private function which takes no arguments.\n ///\n /// This combines the optimisation of `call_private_function_no_args` with\n /// the safety of `static_call_private_function`.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n ///\n /// # Returns\n /// * `ReturnsHash` - Hash of the called function's return values. Use\n /// `.get_preimage()` to extract the actual return values.\n ///\n pub fn static_call_private_function_no_args(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n ) -> ReturnsHash {\n self.call_private_function_with_args_hash(contract_address, function_selector, 0, true)\n }\n\n /// Low-level private function call.\n ///\n /// This is the underlying implementation used by all other private function\n /// call methods. Instead of taking raw arguments, it accepts a\n /// hash of the arguments.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `args_hash` - Pre-computed hash of the function arguments\n /// * `is_static_call` - Whether this should be a read-only call\n ///\n /// # Returns\n /// * `ReturnsHash` - Hash of the called function's return values\n ///\n pub fn call_private_function_with_args_hash(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n args_hash: Field,\n is_static_call: bool,\n ) -> ReturnsHash {\n let mut is_static_call = is_static_call | self.inputs.call_context.is_static_call;\n let start_side_effect_counter = self.side_effect_counter;\n\n // Safety: The oracle simulates the private call and returns the value of the side effects counter after\n // execution of the call (which means that end_side_effect_counter - start_side_effect_counter is\n // the number of side effects that took place), along with the hash of the return values. We validate these\n // by requesting a private kernel iteration in which the return values are constrained to hash\n // to `returns_hash` and the side effects counter to increment from start to end.\n let (end_side_effect_counter, returns_hash) = unsafe {\n call_private_function_internal(\n contract_address,\n function_selector,\n args_hash,\n start_side_effect_counter,\n is_static_call,\n )\n };\n\n self.private_call_requests.push(\n PrivateCallRequest {\n call_context: CallContext {\n msg_sender: self.this_address(),\n contract_address,\n function_selector,\n is_static_call,\n },\n args_hash,\n returns_hash,\n start_side_effect_counter,\n end_side_effect_counter,\n },\n );\n\n // TODO (fees) figure out why this crashes the prover and enable it\n // we need this in order to pay fees inside child call contexts\n // assert(\n // (item.public_inputs.min_revertible_side_effect_counter == 0 as u32)\n // | (item.public_inputs.min_revertible_side_effect_counter\n // > self.min_revertible_side_effect_counter)\n // );\n // if item.public_inputs.min_revertible_side_effect_counter\n // > self.min_revertible_side_effect_counter {\n // self.min_revertible_side_effect_counter = item.public_inputs.min_revertible_side_effect_counter;\n // }\n self.side_effect_counter = end_side_effect_counter + 1; // TODO: call `next_counter` instead, for consistency\n ReturnsHash::new(returns_hash)\n }\n\n /// Enqueues a call to a public function to be executed later.\n ///\n /// Unlike private functions which execute immediately on the user's device,\n /// public function calls are \"enqueued\" and executed some time later by a\n /// block proposer.\n ///\n /// This means a public function cannot return any values back to a private\n /// function, because by the time the public function is being executed,\n /// the private function which called it has already completed execution.\n /// (In fact, the private function has been executed and proven, along with\n /// all other private function calls of the user's tx. A single proof of the\n /// tx has been submitted to the Aztec network, and some time later a\n /// proposer has picked the tx up from the mempool and begun executing all\n /// of the enqueued public functions).\n ///\n /// # Privacy warning\n /// Enqueueing a public function call is an inherently leaky action.\n /// Many interesting applications will require some interaction with public\n /// state, but smart contract developers should try to use public function\n /// calls sparingly, and carefully.\n /// _Internal_ public function calls are especially leaky, because they\n /// completely leak which private contract made the call.\n /// See also: https://docs.aztec.network/developers/resources/considerations/privacy_considerations\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `args` - Array of arguments to pass to the public function\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n ///\n pub fn call_public_function<let ArgsCount: u32>(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n args: [Field; ArgsCount],\n hide_msg_sender: bool,\n ) {\n let calldata = [function_selector.to_field()].concat(args);\n let calldata_hash = hash_calldata_array(calldata);\n execution_cache::store(calldata, calldata_hash);\n self.call_public_function_with_calldata_hash(\n contract_address,\n calldata_hash,\n false,\n hide_msg_sender,\n )\n }\n\n /// Enqueues a read-only call to a public function.\n ///\n /// This is similar to Solidity's `staticcall`. The called function\n /// cannot modify state or emit events. Any nested calls are constrained to\n /// also be staticcalls.\n ///\n /// See also `call_public_function` for more important information about\n /// making private -> public function calls.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `args` - Array of arguments to pass to the public function\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n ///\n pub fn static_call_public_function<let ArgsCount: u32>(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n args: [Field; ArgsCount],\n hide_msg_sender: bool,\n ) {\n let calldata = [function_selector.to_field()].concat(args);\n let calldata_hash = hash_calldata_array(calldata);\n execution_cache::store(calldata, calldata_hash);\n self.call_public_function_with_calldata_hash(\n contract_address,\n calldata_hash,\n true,\n hide_msg_sender,\n )\n }\n\n /// Enqueues a call to a public function that takes no arguments.\n ///\n /// This is an optimisation for calling public functions that don't\n /// take any input parameters. It's otherwise equivalent to\n /// `call_public_function`.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n ///\n pub fn call_public_function_no_args(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n hide_msg_sender: bool,\n ) {\n let calldata_hash = hash_calldata_array([function_selector.to_field()]);\n self.call_public_function_with_calldata_hash(\n contract_address,\n calldata_hash,\n false,\n hide_msg_sender,\n )\n }\n\n /// Enqueues a read-only call to a public function with no arguments.\n ///\n /// This combines the optimisation of `call_public_function_no_args` with\n /// the safety of `static_call_public_function`.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n ///\n pub fn static_call_public_function_no_args(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n hide_msg_sender: bool,\n ) {\n let calldata_hash = hash_calldata_array([function_selector.to_field()]);\n self.call_public_function_with_calldata_hash(\n contract_address,\n calldata_hash,\n true,\n hide_msg_sender,\n )\n }\n\n /// Low-level public function call.\n ///\n /// This is the underlying implementation used by all other public function\n /// call methods. Instead of taking raw arguments, it accepts a\n /// hash of the arguments.\n ///\n /// Advanced function: Most developers should use `call_public_function`\n /// or `static_call_public_function` instead. This function is exposed for\n /// performance optimization and advanced use cases.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `calldata_hash` - Hash of the function calldata\n /// * `is_static_call` - Whether this should be a read-only call\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n ///\n pub fn call_public_function_with_calldata_hash(\n &mut self,\n contract_address: AztecAddress,\n calldata_hash: Field,\n is_static_call: bool,\n hide_msg_sender: bool,\n ) {\n let counter = self.next_counter();\n\n let mut is_static_call = is_static_call | self.inputs.call_context.is_static_call;\n\n notify_enqueued_public_function_call(\n contract_address,\n calldata_hash,\n counter,\n is_static_call,\n );\n\n let msg_sender = if hide_msg_sender {\n NULL_MSG_SENDER_CONTRACT_ADDRESS\n } else {\n self.this_address()\n };\n\n let call_request =\n PublicCallRequest { msg_sender, contract_address, is_static_call, calldata_hash };\n\n self.public_call_requests.push(Counted::new(call_request, counter));\n }\n\n /// Enqueues a public function call, and designates it to be the teardown\n /// function for this tx. Only one teardown function call can be made by a\n /// tx.\n ///\n /// Niche function: Only wallet developers and paymaster contract developers\n /// (aka Fee-payment contracts) will need to make use of this function.\n ///\n /// Aztec supports a three-phase execution model: setup, app logic, teardown.\n /// The phases exist to enable a fee payer to take on the risk of paying\n /// a transaction fee, safe in the knowledge that their payment (in whatever\n /// token or method the user chooses) will succeed, regardless of whether\n /// the app logic will succeed. The \"setup\" phase ensures the fee payer\n /// has sufficient balance to pay the proposer their fees.\n /// The teardown phase is primarily intended to: calculate exactly\n /// how much the user owes, based on gas consumption, and refund the user\n /// any change.\n ///\n /// Note: in some cases, the cost of refunding the user (i.e. DA costs of\n /// tx side-effects) might exceed the refund amount. For app logic with\n /// fairly stable and predictable gas consumption, a material refund amount\n /// is unlikely. For app logic with unpredictable gas consumption, a\n /// refund might be important to the user (e.g. if a hefty function reverts\n /// very early). Wallet/FPC/Paymaster developers should be mindful of this.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the teardown\n /// function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `args` - An array of fields to pass to the function.\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n pub fn set_public_teardown_function<let ArgsCount: u32>(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n args: [Field; ArgsCount],\n hide_msg_sender: bool,\n ) {\n let calldata = [function_selector.to_field()].concat(args);\n let calldata_hash = hash_calldata_array(calldata);\n execution_cache::store(calldata, calldata_hash);\n self.set_public_teardown_function_with_calldata_hash(\n contract_address,\n calldata_hash,\n false,\n hide_msg_sender,\n )\n }\n\n /// Low-level function to set the public teardown function.\n ///\n /// This is the underlying implementation for setting the teardown function\n /// call that will execute at the end of the transaction. Instead of taking\n /// raw arguments, it accepts a hash of the arguments.\n ///\n /// Advanced function: Most developers should use\n /// `set_public_teardown_function` instead.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the teardown\n /// function\n /// * `calldata_hash` - Hash of the function calldata\n /// * `is_static_call` - Whether this should be a read-only call\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n ///\n pub fn set_public_teardown_function_with_calldata_hash(\n &mut self,\n contract_address: AztecAddress,\n calldata_hash: Field,\n is_static_call: bool,\n hide_msg_sender: bool,\n ) {\n let counter = self.next_counter();\n\n let mut is_static_call = is_static_call | self.inputs.call_context.is_static_call;\n\n notify_set_public_teardown_function_call(\n contract_address,\n calldata_hash,\n counter,\n is_static_call,\n );\n\n let msg_sender = if hide_msg_sender {\n NULL_MSG_SENDER_CONTRACT_ADDRESS\n } else {\n self.this_address()\n };\n\n self.public_teardown_call_request =\n PublicCallRequest { msg_sender, contract_address, is_static_call, calldata_hash };\n }\n\n /// Increments the side-effect counter.\n ///\n /// Very low-level function.\n ///\n /// # Advanced\n ///\n /// Every side-effect of a private function is given a \"side-effect counter\",\n /// based on when it is created. This PrivateContext is in charge of\n /// assigning the counters.\n ///\n /// The reason we have side-effect counters is complicated. Consider this\n /// illustrative pseudocode of inter-contract function calls:\n /// ```\n /// contract A {\n /// let x = 5; // pseudocode for storage var x.\n /// fn a1 {\n /// read x; // value: 5, counter: 1.\n /// x = x + 1;\n /// write x; // value: 6, counter: 2.\n ///\n /// B.b(); // start_counter: 2, end_counter: 4\n ///\n /// read x; // value: 36, counter: 5.\n /// x = x + 1;\n /// write x; // value: 37, counter: 6.\n /// }\n ///\n /// fn a2 {\n /// read x; // value: 6, counter: 3.\n /// x = x * x;\n /// write x; // value: 36, counter: 4.\n /// }\n /// }\n ///\n /// contract B {\n /// fn b() {\n /// A.a2();\n /// }\n /// }\n /// ```\n ///\n /// Suppose a1 is the first function called. The comments show the execution\n /// counter of each side-effect, and what the new value of `x` is.\n ///\n /// These (private) functions are processed by Aztec's kernel circuits in an\n /// order that is different from execution order:\n /// All of A.a1 is proven before B.b is proven, before A.a2 is proven.\n /// So when we're in the 2nd execution frame of A.a1 (after the call to\n /// B.b), the circuit needs to justify why x went from being `6` to `36`.\n /// But the circuit doesn't know why, and given the order of proving, the\n /// kernel hasn't _seen_ a value of 36 get written yet.\n /// The kernel needs to track big arrays of all side-effects of all\n /// private functions in a tx. Then, as it recurses and processes B.b(), it\n /// will eventually see a value of 36 get written.\n ///\n /// Suppose side-effect counters weren't exposed:\n /// The kernel would only see this ordering (in order of proof verification):\n /// [ A.a1.read, A.a1.write, A.a1.read, A.a1.write, A.a2.read, A.a2.write ]\n /// [ 5, 6, 36, 37, 6, 36 ]\n /// The kernel wouldn't know _when_ B.b() was called within A.a1(), because\n /// it can't see what's going on within an app circuit. So the kernel\n /// wouldn't know that the ordering of reads and writes should actually be:\n /// [ A.a1.read, A.a1.write, A.a2.read, A.a2.write, A.a1.read, A.a1.write ]\n /// [ 5, 6, 6, 36, 36, 37 ]\n ///\n /// And so, we introduced side-effect counters: every private function must\n /// assign side-effect counters alongside every side-effect that it emits,\n /// and also expose to the kernel the counters that it started and ended\n /// with.\n /// This gives the kernel enough information to arrange all side-effects in\n /// the correct order.\n /// It can then catch (for example) if a function tries to read state\n /// before it has been written (e.g. if A.a2() maliciously tried to read\n /// a value of x=37) (e.g. if A.a1() maliciously tried to read x=6).\n ///\n /// If a malicious app contract _lies_ and does not count correctly:\n /// - It cannot lie about its start and end counters because the kernel\n /// will catch this.\n /// - It _could_ lie about its intermediate counters:\n /// - 1. It could not increment its side-effects correctly\n /// - 2. It could label its side-effects with counters outside of its\n /// start and end counters' range.\n /// The kernel will catch 2.\n /// The kernel will not catch 1., but this would only cause corruption\n /// to the private state of the malicious contract, and not any other\n /// contracts (because a contract can only modify its own state). If\n /// a \"good\" contract is given _read access_ to a maliciously-counting\n /// contract (via an external getter function, or by reading historic\n /// state from the archive tree directly), and they then make state\n /// changes to their _own_ state accordingly, that could be dangerous.\n /// Developers should be mindful not to trust the claimed innards of\n /// external contracts unless they have audited/vetted the contracts\n /// including vetting the side-effect counter incrementation.\n /// This is a similar paradigm to Ethereum smart contract development:\n /// you must vet external contracts that your contract relies upon, and\n /// you must not make any presumptions about their claimed behaviour.\n /// (Hopefully if a contract imports a version of aztec-nr, we will get\n /// contract verification tooling that can validate the authenticity\n /// of the imported aztec-nr package, and hence infer that the side-\n /// effect counting will be correct, without having to re-audit such logic\n /// for every contract).\n ///\n fn next_counter(&mut self) -> u32 {\n let counter = self.side_effect_counter;\n self.side_effect_counter += 1;\n counter\n }\n}\n\nimpl Empty for PrivateContext {\n fn empty() -> Self {\n PrivateContext {\n inputs: PrivateContextInputs::empty(),\n side_effect_counter: 0 as u32,\n min_revertible_side_effect_counter: 0 as u32,\n is_fee_payer: false,\n args_hash: 0,\n return_hash: 0,\n include_by_timestamp: 0,\n note_hash_read_requests: BoundedVec::new(),\n nullifier_read_requests: BoundedVec::new(),\n key_validation_requests_and_generators: BoundedVec::new(),\n note_hashes: BoundedVec::new(),\n nullifiers: BoundedVec::new(),\n private_call_requests: BoundedVec::new(),\n public_call_requests: BoundedVec::new(),\n public_teardown_call_request: PublicCallRequest::empty(),\n l2_to_l1_msgs: BoundedVec::new(),\n anchor_block_header: BlockHeader::empty(),\n private_logs: BoundedVec::new(),\n contract_class_logs_hashes: BoundedVec::new(),\n last_key_validation_requests: [Option::none(); NUM_KEY_TYPES],\n expected_non_revertible_side_effect_counter: 0,\n expected_revertible_side_effect_counter: 0,\n }\n }\n}\n"
|
|
7444
7444
|
},
|
|
7445
7445
|
"73": {
|
|
7446
7446
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/context/utility_context.nr",
|