@aztec/accounts 3.0.0-nightly.20251128 → 3.0.0-nightly.20251202
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
|
@@ -1894,7 +1894,7 @@
|
|
|
1894
1894
|
}
|
|
1895
1895
|
},
|
|
1896
1896
|
"bytecode": "H4sIAAAAAAAA/+zdCZzNVfw//nvNjH1fk+RKtmQnCdkSkj3Z933f933f9yVJmiRJKNmTJElCkiRJmiQkIUmS5n9emmmm+c7vO59zfOd1e/0f3cfjME33+pz3837uvZ/7+ZzzOn7fX7dA1N+tW7cdNqBj+9a9+rXu2mtAx3692vbo37p1x14D+g3t09v8Zldun++rnH/d129aSNTfSaL+jdi/i/479s8Z4rlfJtMqxfldVtPGxPldtnh+d088/17OeH53bzy/yxXP7wLxbCN3PL+7L57f5Ynnd/fHs4188fyuQDxWBeP53QPx/O7BeP69IvHcr2g8vysWz+9KxPPvlYrnfqXj+d1D8fzu4Xj+vUfiuV+5eH5XPp7fPRrPv1cpnvtVjud3VeL53WOmJY/zu2pRf4f6PNz8UX8Hov4u1qFOv4ji4QW31qu2eezYJi0LlDxXY+i2PnOrRlybf9n8/wMhMfdN4PbgnWznYMLbuS/2v53aF1OwP6qf+DuvL2bH9Uf9u9H3+9j8fMi0T0w7HPLPfzwkTn8TuPnzW9z34xDvDp969/7Hzbb/BSzue8ii/0dI/S9ocd9PLPr/mUX/49sPP43aD49E/f1Z1N+HY+2HR83Pn5t2zLQv7nA/fMDivkctHI6TnsdCFvf93KL/X5L6/6DFfY9Z9P/EHe6Hx6P2uy+j/j4R9fcXsfbDr8zPJ0372rRTd7gfFra471cWDt+QnsciFvc9adH/CFL/i1rc92uL/n97h/vhN1H7XUTU399G/X0q1n542vz8nWlnTPv+DvfDYhb3PW3hcJb0PBa3uO93Fv0/R+p/CYv7nrHo//k73A/PRu1356L+Ph/19/ex9sMfzM8XTPvRtIt3uB+WtLjvDxYOP5Gex1IW971g0f9LpP6Xtrjvjxb9v3yH++FPUfvdpai/L0f9fTHWfnjF/PyzaVdN++UO98OHLO57xcLhGul5LGNx358t+v8rqf8PW9z3qkX/r9/hfngtar/7Nerv61F//xJrP/zN/HzDtN9Nu3mH+2FZi/v+ZuHwB+l5fMTivjcs+n+L1P9yFvf93aL/f97hfvhH1H53K+rvP6P+vhlrP4wM+etBftOSxDnLZetQ3uK+kRYOIaGc57GCxX19od77H0rq/6MW9/Vb9D8s9M72Qzx/+Ds06u+wqL+xv0XfL6n5IZlpyU1LcYf7YUWL+ya1cEhJeh4rWdw3mUX/U5H6X9nivskt+p/6DvfDlFH7Xaqov1NH/Z0i1n6YxvyQ1rR0pqW/w/2wisV901g4ZCA9j1Ut7pvWov8ZSf1/zOK+6Sz6n+kO98MMUftdxqi/M0X9nT7WfpjZ/JDFtKymZbvD/bCaxX0zWzjcdYcOd0XVnSXq76xRf2eL5ZDd/HC3aTlMuyeOQ5KovwM+b13I5PNeW06vtfnrj7n9GRdVEx5XyXdn/bzfop/3en8O/LH7Gf240Kj/9sf3AMt++73fN+aGDiTz/d90IPYLPiG42NvLFXuvtN0gHhz3GU5o47ksnrWAxSvStYZA6P98XELbCli8+uELo5D/5T4Bn6db0tvvHHf2bzR0fFxHx8cNID+uq+Pjejk+rrPj4wKOjxvu+Lhijo8b6fi4gOPj2jo+rr/j4wKOj+vk+DjX15Hr4wKOj+vj+DjX52+o4+NcXfrF98nP+NT3u27M5kPH5d+/fVgUan/IZvMhndvysDn6kC2+x9keeNj08z6Lg5S///DZmeV2OPBokvPO9gFPh9Sh9l+z7rWwzWNhm9j1Btz2+SQ2+9L9lgeL0ft8QrUlcPPntny/iL2NRH1zCsbXnkuRkZGxt5f3Tr725LX82oON57XY6/MRvvbks3z3QQ35/vva89/Xnr9u/33tif8WcHzcf197/m8fF3B83H9fexK+cb/25LM8jLH993Gon8fhPGZ+4mFsQnd3/TpRwOEQETdbK5sDmoKJ/NULz/f9ifw194EgHQ1bzB76x/YKuR4N5496sO3jHkzkI1z068HQmF8EfPY32x0kv0VNhe9wJ0/whe37q37bGgpYbKNIIr8xw6iIw5taUcdzTLEfZ9tXvGk94OBt88ZYzPJNJbr9j41a9tHmTeVOtpPXx9lO/jvcbxN88/f9tU/Z7gshFve1mJ4X86C4PwQ8PcznL5LIYJhzWcThxVPE4sVT3LIG277442zDa822ViUS+bnAThi9A8d+XEKbcd15E+pPyUT+kIn+oIxbr5cPWK/3tTnYKZXIR78Fo7bhs3vc7Q+SsKgWb0cs+sD6QMnn42zH9oPL9tsT3idsvm3i/kVDE/+D8e8HWm7H5jWdJNbPpaP224dC7+DDrJTj0WHpOzg6xDZLO3zAlbJ44yjjWFeZ/4Mrqzb9fNjyDc7ltEwRhxdLYn7bK5vIH2KooYTDwcQjidwvvNG7HOSUI3iVdOhX+UTuFz5IXLwqJPbz6PhN/NEgnQazCI34x/Yqup4GKxz1YNvHVUrk02DoVyWHoz2XbeFDoIzDTtIqkc+N4wOnrEO/Wlv2K/pm+02issWHlYWV36L/8X6TSPCo1PfXvmX9rd1iG1US+Y0N9lUc9o2qjgdbVf8PDraqWLxnPGZ5sBV9s92HqwV/H759sz7dHWr3jRv3f9hhf3k8kc8+FbOso5hjHdUT+fVYKqpfiflFqQbh4NLFtmaQTu/bHCzdyXYsEtnuaDvV7vD5TfAyjC/xT+9bpE3FPCjuDwFPD/P5qyQyGCLEqji8qG0+6J6wfPEg6zRJfBu17KPXF21kZOQ38f0+4Et4G/gjdl9rRb3qnwz1/fPoolbUu07s3z0ZTwdtz+3X9PZEzDNPhL+WxZP2pCWe7Y6HHagW6dsP3vEfcXjXrx2a+P0q59CvOoR+lXfoV11Cvyo49KseoV+POvSrvmW//l/9S2g7DSy2g/eftKaFR/03XgPY3/DcwhF9bvBf+6+R2v9rn0/gFobPF3w22r5WGoZ6f60kiXqtxL0FfHY32/cbmz66buMpy224jMmIfWDo9UDV9vlsFGr33pfO999733/t39H+X68tL8fWFq/f21/m8DqxfQ3H3kZCfXo61O59NV08vw/4vPUr7g8BTw/jvK8+bbkN18+9xPxC35j3XMZ00O5x/saE57KJgEMDgkNTh23Et52E9rtmFu9pwfJuRvBuTvJu4X07SYLl3YLg3ZLk3cr7dkKC5d2K4N2a5N3G+3ZCg+XdhuDdluTdzvt2woLl3Y7g3Z7k3cH7dpIGy7sDwbsjybuT9+0kC5Z3J4J3Z5J3F+/bSR4s7y4E764k727et5MiWN7dCN7dSd49vG8nZbC8exC8e5K8e3nfTqpgefciePcmeffxvp3UwfLuQ/DuS/Lu5307aYLl3Y/g3Z/kPcD7dtIGy3sAwXsgyXuQ9+2kC5b3IIL3YJL3EO/bSR8s7yEE76Ek72Het5MhWN7DCN7DSd4jvG8nY7C8RxC8R5K8R3nfTqZgeY8ieI8meY/xvp3MwfIeQ/AeS/Ie5307WYLlPY7gPZ7kPcH7drIGy3sCwXsiyXuS9+1kC5b3JIL3ZJL3FO/buStY3lMI3lNJ3tO8byd7sLynEbynk7xneN/O3cHynkHwnknynuV9OzmC5T2L4D2b5D3H+3buCZb3HIL3XJL3PO/byRks73kE7/kk7wXet3NvsLwXELwXkrwXed9OrmB5LyJ4P0PyXux9O4FgeS8meD9L8l7ifTu5g+W9hOD9HMl7qfft3Bcs76UE7+dJ3su8bydPsLyXEbxfIHmHe9/O/cHyDid4v0jyXu59O3mD5b2c4P0SyXuF9+3kC5b3CoL3yyTvld63kz9Y3isJ3q+QvFd5306BYHmvIni/SvJe7X07BYPlvZrg/RrJe4337TwQLO81BO+1JO913rdTKFje6wjer1tsI1gOB0ISfxtvkPa79d63UzhY3usJ+92bJO8N3rdTJFjeGwjeG0nem7xvp2iwvDcRvDeTvLd4306xYHlvIXhvJXlv876d4sHy3kbwfovkvd37dkoEy3s7wfttkvcO79spGSzvHQTvd0jeO71vp1SwvHcSvN8lee/yvp3SwfLeRfB+j+S92/t2HgqW926C9/sk7z3et1MmWN57CN4fkLz3et/Ow8Hy3kvw/pDkvc/7dsoGy3sfwfsjkvd+79t5JFje+wneB0jeB71vp1ywvA8SvD8meR/yvp3ywfI+RPD+hOR92Pt2KgTL+zDB+1OS9xHv23k0WN5HCN6fkbyPet9OxWB5HyV4f07yPuZ9O5WC5X2M4P0Fyfu49+1UDpb3cYL3lyTvE963UyVY3icI3l+RvE96307VYHmfJHh/TfI+5X07jwXL+xTB+xuSd4T37VQLlncEwftbkvdp79t5PFjepwne35G8z3jfTvVgeZ8heH9P8j7rfTs1guV9luB9juR93vt2agbL+zzB+weS9wXv23kiWN4XCN4/krwvet9OrWB5XyR4/0TyvuR9O08Gy/sSwfsyyfuK9+3UDpb3FYL3zyTvq963UydY3lcJ3r+QvK95307dYHlfI3j/SvK+7n079YLlfZ3g/RvJ+4b37dQPlvcNgvfvJO+b3rfTIFjeNwnef5C8b3nfTsNged8ieP9J8o70vp2nguUdSfD2hXG8/d630yhY3v6wxN9GEpJ3iPftPB0s7xCCdyjJO8z7dhoHyzuM4J2U5J3M+3aaBMs7GcE7Ock7hfftNA2WdwqCd0qSdyrv22kWLO9UBO/UJO803rfTPFjeaQjeaUne6bxvp0WwvNMRvNOTvDN4307LYHlnIHhnJHln8r6dVsHyzkTwzkzyzuJ9O62D5Z2F4J2V5J3N+3baBMs7G8H7LpJ3du/baRss7+wE77tJ3jm8b6ddsLxzELzvIXnn9L6d9sHyzknwvpfkncv7djoEyzsXwTtA8s7tfTsdg+Wdm+B9H8k7j/ftdAqWdx6C9/0k77zet9M5WN55Cd75SN75vW+nS7C88xO8C5C8C3rfTtdgeRckeD9A8i7kfTvdguVdiOD9IMm7sPftdA+Wd2GCdxGSd1Hv2+kRLO+iBO9iJO/i3rfTM1jexQneJUjeJb1vp1ewvEsSvEuRvEt7307vYHmXJng/RPIu4307fYLlXYbg/TDJu6z37fQNlndZgvcjJO9y3rfTL1je5Qje5UneFbxvp3+wvCsQvB8leVf0vp0BwfKuSPCuRPKu7H07A4PlXZngXYXkXdX7dgYFy7sqwfsxknc179sZHCzvagTvx0ne1b1vZ0iwvKsTvGuQvGt6387QYHnXJHg/QfKu5X07w4LlXYvg/STJu7b37QwPlndtgncdkndd79sZESzvugTveiTv+t63MzJY3vUJ3g1I3g29b2dUsLwbEryfInk38r6d0cHybkTwfprk3dj7dsYEy7sxwbsJybup9+2MDZZ3U4J3M5J3c+/bGRcs7+YE7xYk75betzM+WN4tCd6tSN6tvW9nQrC8WxO825C823rfzsRgebcleLcjebf3vp1JwfJuT/DuQPLu6H07k4Pl3ZHg3Ynk3dn7dqYEy7szwbsLybur9+1MDZZ3V4J3N5J3d+/bmRYs7+4E7x4k757etzM9WN49Cd69SN69vW9nRrC8exO8+5C8+3rfzsxgefclePcjeff3vp1ZwfLuT/AeQPIe6H07s4PlPZDgPYjkPdj7duYEy3swwXsIyXuo9+3MDZb3UIL3MJL3cO/bmRcs7+EE7xEk75HetzM/WN4jCd6jSN6jvW9nQbC8RxO8x5C8x3rfzsJgeY8leI8jeY/3vp1FwfIeT/CeQPKe6H07zwTLeyLBexLJe7L37SwOlvdkgvcUkvdU79t5NljeUwne00je071vZ0mwvKcTvGeQvGd6385zwfKeSfCeRfKe7X07S4PlPZvgPYfkPdf7dp4Plvdcgvc8kvd879tZFizv+QTvBSTvhd6380KwvBcSvBdZbCPEtPSmhUf9d9NQn6+5aS1Na21aW9Pam9bRtM6mdTWtu2k9TettWl/T+ps20LTBpg01bbhpI00bbdpY08abNtG0yaZNNW26aTNNm23aXNPmm7bQtGdMe9a050x73rQXTHvRtJdMe9m0V0x71bTXTFtr2uumvWHam6ZtNG2zaVtNe8u0t017x7R3TXvPtPdN+8C0D037yLQDpn1s2iemfWraZ6Z9btoXpn1p2lemfW3aN6Z9a9p3pn1vGtaax/rnWJMb60Rj7WKsp4s1XrHuKNbCxPqMWDMQ69hhbTWs94U1qLAuEtbqwfoxWNME62xg7QesR4CMfOS2I0sc+dbIXL6dA2wa8lKR4YlcSWQdIn8PmXDIKUN2FvKckDGE3BtksSAfBJkVyFHA3H7MN8ccaMzLxVxRzF/EnDrM88LcI8yHwRwNzBvAWHaMr8aYX4xDxdhIjNfDGDKMa8JYG4z/wJgEXCfHtVtcT8Q1Llx3wbUAnJ/GOVOcx8O5JZzvwHdwfC/EdxUcP+OYDscZ+OzD+zHeI7DfRt+SWO7zhc0fVUK9v1fgvk1C7bfTxGIbz1i8DtGP9PH8PuDz1q+4PwQ8Pcznb0xYX9DGweHfD8NzWdP+uUxis78s5j2Xf99snReHJf42nr3D5zLBNQtxn6i/Yz8uoc2EWNy3mEV/lgg87w0Ir+HnBByaERyWCji0IDg8L+DQiuCwTMChDcHhBQGHdgSHcAGHDgSHFwUcOhEclgs4dCE4vCTg0I3gsELAoQfB4WUBh14Eh5UCDn0IDq8IOPQjOKwScBhAcHhVwGEQwWG1gMMQgsNrAg7DCA5rBBxGEBzWCjiMIjisE3AYQ3B4XcBhHMHhDQGHCQSH9QIOkwgObwo4TCE4bBBwmEZw2CjgMIPgsEnAYRbBYbOAwxyCwxYBh3kEh60CDgsIDtsEHBYRHN5SGPdCcNgu4LCE4PC2gMNSgsMOAYdlBId3BBzCCQ47BRyWExzeFXBYQXDYJeCwkuDwnoDDKoLDbgGH1QSH9wUc1hAc9gg4rCM4fCDgcCAk8bexV8BhPWF/+FDAYQPBYZ+AwyaCw0cCDlsIDvsFHLYRHA4IOGwnOBwUcNhBcPhYwGEnweGQgMMugsMnAg67CQ6HBRz2EBw+FXDYS3A4IuCwj+DwmYDDfoLDUQGHgwSHzwUcDhEcjgk4HCY4fCHgcITgcFzA4SjB4UsBh2MEhxMCDscJDl8JOJwgOJwUcDhJcPhawOEUweGUgEMEweEbAYfTBIcIAYczBIdvBRzOEhxOCzicJzh8J+BwgeBwRsDhIsHhewGHSwSHswIOVwgO5wQcrhIczgs4XCM4/CDgcJ3gcEHA4QbB4UcBh5sEh4sCDrcIDj8JOEQSHC4JOPgJ+cyXBRxCCA5XBBzCCA4/CzgkIzhcFXBIQXD4RcAhFcHhmoBDGoLDrwIO6QgO1wUcMhAcfhNwyERwuCHgkIXg8LuAQzaCw00Bh+wEhz8EHHIQHG4JOOQkOPwp4JCL4BAp4JCb4OBL+u93yENw8As45CU4JBFwyE9wCBFwKEhwCBVwKERwCBNwKExwSCrgUJTgkEzAoTjBIbmAQ0mCQwoBh9IEh5QCDmUIDqkEHMoSHFILOJQjOKQRcKhAcEgr4FCR4JBOwKEywSG9gENVgkMGAYdqBIeMAg7VCQ6ZBBxqEhwyCzjUIjhkEXCoTXDIKuBQl+CQTcChPsHhLgGHhgSH7AIOjQgOdws4NCY45BBwaEpwuEfAoTnBIaeAQ0uCw70CDq0JDrkEHNoSHAICDu0JDrkFHDoSHO4TcOhMcMgj4NCV4HC/gEN3gkNeAYeeBId8Ag69CQ75BRz6EhwKCDj0JzgUFHAYSHB4QMBhMMGhkIDDUILDgwIOwwkOhQUcRhIcigg4jCY4FBVwGEtwKCbgMJ7gUFzAYSLBoYSAw2SCQ0kBh6kEh1ICDtMJDqUFHGYSHB4ScJhNcCgj4DCX4PCwgMN8gkNZAYeFBIdHLBxCTMtgWnjUfz9n+rfUtOdNW2baC6aFm/aiactNe8m0Faa9bNpK014xbZVpr5q22rTXTFtj2lrT1pn2umlvmLbetDdN22DaRtM2mbbZtC2mbTVtm2lvmbbdtLdN22HaO6btNA3r02NtdqxLjjW5sR411mLGOsRYgxfrz2LtVaw7ijU3sd4k1lrEOoNYYw/ry2FtNawrhjW1sJ4U1lLCOkJYQwfrx2DtFKwbgjUzsF4E1krAOgHIyEc+PLLRkQuOTGzkQSMLGTnAyMBF/iuyT5H7icxL5D0i6xA5f8i4Q74bss2Q64VMK+Q5IcsIOT7IsEF+C7JLkNuBzArkNSCrAPP0MUcd87MxNxnzcjEnFfMxMRcR8/AwBw3zrzD3CPNuMOcE8y0w1wDj7DHGHOOrMbYY42oxphTjKTGWEOPoMIYM46cwdgjjZjBmBOMlMFYA18lvXyM2DdcGcV0M14RwPQTXAnAeHOeAcf4T5/5w3gvnfHC+A9/18T0X3/Hw/QbH9jiuxTEdjmfwWY7PMbyH4/0Lr13st9G3JHH2+WId6vSLKB5ecGu9apvHjm3SskDJczWGbuszt2rEtfmXzf+vEurzPev9teXH/ZeE/c/tJPS42NtIqE/lLN+PMsTz+4DPW7/i/hDw9DCff3FY4r8f2Tg4/PtheC5rhlo/lyFVQr0/l+V5z+XfN1vn8kkTfxsVBBwaELJLHxVwaEZwqCjg0ILgUEnAoRXBobKAQxuCQxUBh3YEh6oCDh0IDo8JOHQiOFQTcOhCcHhcwKEbwaG6gEMPgkMNAYdeBIeaAg59CA5PCDj0IzjUEnAYQHB4UsBhEMGhtoDDEIJDHQGHYQSHugIOIwgO9QQcRhEc6gs4jCE4NBBwGEdwaCjgMIHg8JSAwySCQyMBhykEh6cFHKYRHBoLOMwgODQRcJhFcGgq4DCH4NBMwGEewaG5gMMCgkMLAYdFBIeWAg6LCQ6tBByWEBxaCzgsJTi0EXBYRnBoK+AQTnBoJ+CwnODQXsBhBcGhg4DDSoJDRwGHVQSHTgIOqwkOnQUc1hAcugg4rCM4dBVwOBCS+NvoJuCwnrA/dBdw2EBw6CHgsIng0FPAYQvBoZeAwzaCQ28Bh+0Ehz4CDjsIDn0FHHYSHPoJOOwiOPQXcNhNcBgg4LCH4DBQwGEvwWGQgMM+gsNgAYf9BIchAg4HCQ5DBRwOERyGCTgcJjgMF3A4QnAYIeBwlOAwUsDhGMFhlIDDcYLDaAGHEwSHMQIOJwkOYwUcThEcxgk4RBAcxgs4nCY4TBBwOENwmCjgcJbgMEnA4TzBYbKAwwWCwxQBh4sEh6kCDpcIDtMEHK4QHKYLOFwlOMwQcLhGcJgp4HCd4DBLwOEGwWG2gMNNgsMcAYdbBIe5Ag6RBId5Ag5+Qvb0fAGHEILDAgGHMILDQgGHZASHRQIOKQgOzwg4pCI4LBZwSENweFbAIR3BYYmAQwaCw3MCDpkIDksFHLIQHJ4XcMhGcFgm4JCd4PCCgEMOgkO4gENOgsOLAg65CA7LBRxyExxeEnDIQ3BYIeCQl+DwsoBDfoLDSgGHggSHVwQcChEcVgk4FCY4vCrgUJTgsFrAoTjB4TUBh5IEhzUCDqUJDmsFHMoQHNYJOJQlOLwu4FCO4PCGgEMFgsN6AYeKBIc3BRwqExw2CDhUJThsFHCoRnDYJOBQneCwWcChJsFhi4BDLYLDVgGH2gSHbQIOdQkObwk41Cc4bBdwaEhweFvAoRHBYYeAQ2OCwzsCDk0JDjsFHJoTHN4VcGhJcNgl4NCa4PCegENbgsNuAYf2BIf3BRw6Ehz2CDh0Jjh8IODQleCwV8ChO8HhQwGHngSHfQIOvQkOHwk49CU47Bdw6E9wOCDgMJDgcFDAYTDB4WMBh6EEh0MCDsMJDp8IOIwkOBwWcBhNcPhUwGEsweGIgMN4gsNnAg4TCQ5HBRwmExw+F3CYSnA4JuAwneDwhYDDTILDcQGH2QSHLwUc5hIcTgg4zCc4fCXgsJDgcNLCIcS0jKaFR/33o+axFU2rZFpl06qYVtW0x0yrZtrjplU3rYZpNU17wrRapj1pWm3T6phW17R6ptU3rYFpDU17yrRGpj1tWmPTmpjW1LRmpjU3rYVpLU1rZVpr09qY1ta0dqZhfXqszY51ybEmN9ajxlrMWIcYa/Bi/VmsvYp1R7HmJtabxFqLWGcQa+xhfTmsrYZ1xbCmFtaTwlpKWEcIa+hg/RisnYJ1Q7BmBtaLwFoJWCcAGfnIh0c2OnLBkYmNPGhkISMHGBm4yH9F9ilyP5F5ibxHZB0i5w8Zd8h3Q7YZcr2QaYU8J2QZIccHGTbIb0F2CXI7kFmBvAZkFWCePuaoY3425iZjXi7mpGI+JuYiYh4e5qBh/hXmHmHeDeacYL4F5hpgnD3GmGN8NcYWY1wtxpRiPCXGEmIcHcaQYfwUxg5h3AzGjGC8BMYK4Do5rhHj+iiuDeK6GK4J4XoIrgXgPDjOAeP8J8794bwXzvngfAe+6+N7Lr7j4fsNju1xXItjOhzP4LMcn2N4D8f7F1672G+jb0ks9/lC5o8qsTILi3Wo0y+ieHjBrfWqbR47tknLAiXP1Ri6rc/cqhHX5l+Oum+FpPbbwWO8buPrpHbvRxnj+X3A561fcX8IeHqYz18+aeK/H31tuQ3Lfz8Mz2XNUOvnMtRmfznFey7/vtk6nyI8l98IODQgZJdGCDg0Izh8K+DQguBwWsChFcHhOwGHNgSHMwIO7QgO3ws4dCA4nBVw6ERwOCfg0IXgcF7AoRvB4QcBhx4EhwsCDr0IDj8KOPQhOFwUcOhHcPhJwGEAweGSgMMggsNlAYchBIcrAg7DCA4/CziMIDhcFXAYRXD4RcBhDMHhmoDDOILDrwIOEwgO1wUcJhEcfhNwmEJwuCHgMI3g8LuAwwyCw00Bh1kEhz8EHOYQHG4JOMwjOPwp4LCA4BAp4LCI4OBL9u93WExw8As4LCE4JBFwWEpwCBFwWEZwCBVwCCc4hAk4LCc4JBVwWEFwSCbgsJLgkFzAYRXBIYWAw2qCQ0oBhzUEh1QCDusIDqkFHA6EJP420gg4rCfsD2kFHDYQHNIJOGwiOKQXcNhCcMgg4LCN4JBRwGE7wSGTgMMOgkNmAYedBIcsAg67CA5ZBRx2ExyyCTjsITjcJeCwl+CQXcBhH8HhbgGH/QSHHAIOBwkO9wg4HCI45BRwOExwuFfA4QjBIZeAw1GCQ0DA4RjBIbeAw3GCw30CDicIDnkEHE4SHO4XcDhFcMgr4BBBcMgn4HCa4JBfwOEMwaGAgMNZgkNBAYfzBIcHBBwuEBwKCThcJDg8KOBwieBQWMDhCsGhiIDDVYJDUQGHawSHYgIO1wkOxQUcbhAcSgg43CQ4lBRwuEVwKCXgEElwKC3g4Cdk4T8k4BBCcCgj4BBGcHhYwCEZwaGsgEMKgsMjAg6pCA7lBBzSEBzKCzikIzhUEHDIQHB4VMAhE8GhooBDFoJDJQGHbASHygIO2QkOVQQcchAcqgo45CQ4PCbgkIvgUE3AITfB4XEBhzwEh+oCDnkJDjUEHPITHGoKOBQkODwh4FCI4FBLwKEwweFJAYeiBIfaAg7FCQ51BBxKEhzqCjiUJjjUE3AoQ3CoL+BQluDQQMChHMGhoYBDBYLDUwIOFQkOjQQcKhMcnhZwqEpwaCzgUI3g0ETAoTrBoamAQ02CQzMBh1oEh+YCDrUJDi0EHOoSHFoKONQnOLQScGhIcGgt4NCI4NBGwKExwaGtgENTgkM7AYfmBIf2Ag4tCQ4dBBxaExw6Cji0JTh0EnBoT3DoLODQkeDQRcChM8Ghq4BDV4JDNwGH7gSH7gIOPQkOPQQcehMcego49CU49BJw6E9w6C3gMJDg0EfAYTDBoa+Aw1CCQz8Bh+EEh/4CDiMJDgMEHEYTHAYKOIwlOAwScBhPcBgs4DCR4DBEwGEywWGogMNUgsMwAYfpBIfhAg4zCQ4jBBxmExxGCjjMJTiMEnCYT3AYLeCwkOAwxsIhxLRMpoVH/XdEUp/vW9NOm/adaWdM+960s6adM+28aT+YdsG0H027aNpPpl0y7bJpV0z72bSrpv1i2jXTfjXtumm/mXbDtN9Nu2naH6bdMu1P0yJN85l++01LYlqIaaGmhZmG9emxNjvWJcea3FiPGmsxYx1irMGL9Wex9irWHcWam1hvEmstYp1BrLGH9eWwthrWFcOaWlhPCmspYR0hrKGD9WNur51iGtbMwHoRWCsB6wQgIx/58MhGRy44MrGRB40sZOQAIwMX+a/IPkXuJzIvkfeIrEPk/CHjDvluyDZDrhcyrZDnhCwj5Pggwwb5LcguQW4HMiuQ14CsAszTxxx1zM/G3GTMy8WcVMzHxFxEzMPDHDTMv8LcI8y7wZwTzLfAXAOMs8cYc4yvxthijKvFmFKMp8RYQoyjwxgyjJ/C2CGMm8GYEYyXwFgBXCfHNWJcH8W1QVwXwzUhXA/BtQCcB8c5YJz/xLk/nPfCOR+c78B3fXzPxXc8fL/BsT2Oa3FMh+MZfJbjcwzv4Xj/wmsX+230LYnlPl8l1FjFyiws1qFOv4ji4QW31qu2eezYJi0LlDxXY+i2PnOrRlybf9n8f9z/m6T228FjvG5jbDK796NM8fw+4PPWr7g/BDw9zOc/lZTwHZrnELNRu8f5GxDyLscJODQjOIwXcGhBcJgg4NCK4DBRwKENwWGSgEM7gsNkAYcOBIcpAg6dCA5TBRy6EBymCTh0IzhMF3DoQXCYIeDQi+AwU8ChD8FhloBDP4LDbAGHAQSHOQIOgwgOcwUchhAc5gk4DCM4zBdwGEFwWCDgMIrgsFDAYQzBYZGAwziCwzMCDhMIDosFHCYRHJ4VcJhCcFgi4DCN4PCcgMMMgsNSAYdZBIfnBRzmEByWCTjMIzi8IOCwgOAQLuCwiODwooDDYoLDcgGHJQSHlwQclhIcVgg4LCM4vCzgEE5wWCngsJzg8IqAwwqCwyoBh5UEh1cFHFYRHFYLOKwmOLwm4LCG4LBGwGEdwWGtgMOBEIK1gMN6wv7wuoDDBoLDGwIOmwgO6wUcthAc3hRw2EZw2CDgsJ3gsFHAYQfBYZOAw06Cw2YBh10Ehy0CDrsJDlsFHPYQHLYJOOwlOLwl4LCP4LBdwGE/weFtAYeDBIcdAg6HCA7vCDgcJjjsFHA4QnB4V8DhKMFhl4DDMYLDewIOxwkOuwUcThAc3hdwOElw2CPgcIrg8IGAQwTBYa+Aw2mCw4cCDmcIDvsEHM4SHD4ScDhPcNgv4HCB4HBAwOEiweGggMMlgsPHAg5XCA6HBByuEhw+EXC4RnA4LOBwneDwqYDDDYLDEQGHmwSHzwQcbhEcjgo4RBIcPhdw8BPy048JOIQQHL4QcAgjOBwXcEhGcPhSwCEFweGEgEMqgsNXAg5pCA4nBRzSERy+FnDIQHA4JeCQieDwjYBDFoJDhIBDNoLDtwIO2QkOpwUcchAcvhNwyElwOCPgkIvg8L2AQ26Cw1kBhzwEh3MCDnkJDucFHPITHH4QcChIcLgg4FCI4PCjgENhgsNFAYeiBIefBByKExwuCTiUJDhcFnAoTXC4IuBQhuDws4BDWYLDVQGHcgSHXwQcKhAcrgk4VCQ4/CrgUJngcF3AoSrB4TcBh2oEhxsCDtUJDr8LONQkONwUcKhFcPhDwKE2weGWgENdgsOfAg71CQ6RAg4NCQ6+5P9+h0YEB7+AQ2OCQxIBh6YEhxABh+YEh1ABh5YEhzABh9YEh6QCDm0JDskEHNoTHJILOHQkOKQQcOhMcEgp4NCV4JBKwKE7wSG1gENPgkMaAYfeBIe0Ag59CQ7pBBz6ExzSCzgMJDhkEHAYTHDIKOAwlOCQScBhOMEhs4DDSIJDFgGH0QSHrAIOYwkO2QQcxhMc7hJwmEhwyC7gMJngcLeAw1SCQw4Bh+kEh3sEHGYSHHIKOMwmONwr4DCX4JBLwGE+wSEg4LCQ4JA7ud02bP/9KqE+X83Q//m4Yh3q9IsoHl5wa71qm8eObdKyQMlzNYZu6zO3asS1+ZfN/++TM3H79VhUv5JY9us+717+xK6hiPmjkqkhJM7jEqqhiMV9K4V6v28eC5u///B5f0zRqG347B7nMyX4wqJavB2x6ENhn8/6NemynQd9nO0U8tltJ+7rJaF/H6//qqF2r8tqoTG/CPjsb7YGSyzeZ5PE+vn+qH0xb/KYbVpv3OJFc/vfDon6+/6ox8EK/YjdMZcnqYblk1TD8kmKjIz8Lb7fB3wJbw9/xK4vXxR8/uS+f6Lki3omYv8ufyxgl0+vGg6fXv0In14u/epv2a/oW6j37cwz2/HnS+69T/ktPjUsXP1ea43eMW0t8cLN5/BpFN+2Ero77l/K4fkukMhHd/kd+1UwkfuVz7FfDyRyv0qGuvWrUCL3K6/PrV8PJnK/0KeHHPpVmNCvsg79KkLoV2mHfhW16Bc+VzObVinqv/Eeg9czXjvYT7FPwB+14t9tEPr/7xafj419Me/2yS0+/5L3T+RjEHz+FUtuv68Vtzzzkjme3wd8djfb2oonT/xtlLB8zWXx/feai/uas/2ig+coj8WxKe6L58l2OyUstlHS8vWQJZ7fB3ze+hX3h4Cnh3FeDyUdtoGb7fttqeC/3/r//sNn935byuH9tjRv/4rprN3j/KUJ+9dDAg54b/N4X+dtlBFwaEZweFjAoQXBoayAQyuCwyMCDm0IDuUEHNoRHMoLOHQgOFQQcOhEcHhUwKELwaGigEM3gkMlAYceBIfKAg69CA5VBBz6EByqCjj0Izg8JuAwgOBQTcBhEMHhcQGHIQSH6gIOwwgONQQcRhAcago4jCI4PCHgMIbgUEvAYRzB4UkBhwkEh9oCDpMIDnUEHKYQHOoKOEwjONQTcJhBcKgv4DCL4NBAwGEOwaGhgMM8gsNTAg4LCA6NBBwWERyeFnBYTHBoLOCwhODQRMBhKcGhqYDDMoJDMwGHcIJDcwGH5QSHFgIOKwgOLQUcVhIcWgk4rCI4tBZwWE1waCPgsIbg0FbAYR3BoZ2Aw4GQxN9GewGH9YT9oYOAwwaCQ0cBh00Eh04CDlsIDp0FHLYRHLoIOGwnOHQVcNhBcOgm4LCT4NBdwGEXwaGHgMNugkNPAYc9BIdeAg57CQ69BRz2ERz6CDjsJzj0FXA4SHDoJ+BwiODQX8DhMMFhgIDDEYLDQAGHowSHQZZ5O1l9MXk7yExAXgDmymOeOOZIY34w5sZiXijmRGI+IObCYR4Y5kBh/g/mvmDeB+Y8YLw/xrpjnDfGOGN8L8a2YlwnxjRiPB/GsmEcF8YwYfwOxq5g3AbGLOB6Pa5V4zotrlHi+hyuTeG6DK5J4Hw8zkXjPCzOQeL8G8494bwLzjng+za+a+J7Fr5j4Pgax5Y4rsIxBT5P8VmC91G8h+D1g30HbtE32xwcpOXa5u0gp8N2Ow9ZbGOw5eshazy/D/i89SvuDwFPD+PkoQx22AZutnk7Q7xvJ7Hydm7vTrY+2BfR97iPS6jeobz9K6azdo/zDyXsX8MEHBh5O8MFHBh5OyMEHBh5OyMFHBh5O6MEHBh5O6MFHBh5O2MEHBh5O2MFHBh5O+MEHBh5O+MFHBh5OxMEHBh5OxMFHBh5O5MEHBh5O5MFHBh5O1MEHBh5O1MFHBh5O9MEHBh5O9MFHBh5OzMEHBh5OzMFHBh5O7MEHBh5O7MFHBh5O3MEHBh5O3MFHBh5O/MEHBh5O/MFHBh5OwsEHBh5OwsFHBh5O4sEHBh5O88IODDydhYLODDydp4VcGDk7SwRcGDk7Twn4MDI21kq4MDI23lewIGRt7NMwIGRt/OCgAMjbydcwIGRt/OigAMjb2e5gAMjb+clAQdG3s4KAQdG3s7LAg6MvJ2VAg6MvJ1XBBwYeTurBBwYeTuvCjgw8nZWCzgw8nZeE3Bg5O2sEXBg5O2sFXBg5O2sE3Bg5O28LuDAyNt5Q8CBkbezXsCBkbfzpoADI29ng4ADI29no4ADI29nk4ADI29ns4ADI29ni4ADI29nq4ADI29nm4ADI2/nLQsHZIpk88Xk7SAzAXkBmCuPeeKYI435wZgbi3mhmBOJ+YCYC4d5YJgDhfk/mPuCeR+Y84Dx/hjrjnHeGOOM8b0Y24pxnRjTiPF8GMuGcVwYw4TxOxi7gnEbGLOA6/W4Vo3rtLhGietzuDaF6zK4JoHz8TgXjfOwOAeJ828494TzLjjngO/b+K6J71n4joHjaxxb4rgKxxT4PMVnCd5H8R6C1w/2HbhF32xzcB702eftIKfDdjvDLLax3fL1kC2e3wd83voV94eAp4dx8lC2O2wDN9u8nbe9byex8nZud9nWB/si+h73cQnVu4O3f8V01u5x/h2E/esdAQdG3s5OAQdG3s67Ag6MvJ1dAg6MvJ33BBwYeTu7BRwYeTvvCzgw8nb2CDgw8nY+EHBg5O3sFXBg5O18KODAyNvZJ+DAyNv5SMCBkbezX8CBkbdzQMCBkbdzUMCBkbfzsYADI2/nkIADI2/nEwEHRt7OYQEHRt7OpwIOjLydIwIOjLydzwQcGHk7RwUcGHk7nws4MPJ2jgk4MPJ2vhBwYOTtHBdwYOTtfCngwMjbOSHgwMjb+UrAgZG3c1LAgZG387WAAyNv55SAAyNv5xsBB0beToSAAyNv51sBB0bezmkBB0bezncCDoy8nTMCDoy8ne8FHBh5O2cFHBh5O+cEHBh5O+cFHBh5Oz8IODDydi4IODDydn4UcGDk7VwUcGDk7fwk4MDI27kk4MDI27ks4MDI27miMD+L4PCzgAMjb+eqgAMjb+cXAQdG3s41AQdG3s6vAg6MvJ3rAg6MvJ3fBBwYeTs3BBwYeTu/Czgw8nZuCjgw8nb+EHBg5O3cEnBg5O38aeGAgI67fDF5O8hMQF4A5spjnjjmSGN+MObGYl4o5kRiPiDmwmEeGOZAYf4P5r5g3gfmPGC8P8a6Y5w3xjhjfC/GtmJcJ8Y0YjwfxrJhHBfGMGH8DsauYNwGxizgej2uVeM6La5R4vocrk3hugyuSeB8PM5F4zwszkHi/BvOPeG8C8454Ps2vmviexa+Y+D4GseWOK7CMQU+T/FZgvdRvIfg9YN9B27RN9scnCVh9nk7yOmw3c47FtuItHw93BXP7wM+b/2K+0PA08M4eSiRDtvAzTZvx5fC83YSK28nFH/Y+mBfRN/jPi6hev0paPtXTGftHue36aPrNpIIODDydkIEHBh5O6ECDoy8nTABB0beTlIBB0beTjIBB0beTnIBB0beTgoBB0beTkoBB0beTioBB0beTmoBB0beThoBB0beTloBB0beTjoBB0beTnoBB0beTgYBB0beTkYBB0beTiYBB0beTmYBB0beThYBB0beTlYBB0beTjYBB0bezl0CDoy8newCDoy8nbsFHBh5OzkEHBh5O/cIODDydnIKODDydu4VcGDk7eQScGDk7QQEHBh5O7kFHBh5O/cJODDydvIIODDydu4XcGDk7eQVcGDk7eQTcGDk7eQXcGDk7RQQcGDk7RQUcGDk7Twg4MDI2ykk4MDI23lQwIGRt1NYwIGRt1NEwIGRt1NUwIGRt1NMwIGRt1NcwIGRt1NCwIGRt1NSwIGRt1NKwIGRt1NawIGRt/OQgAMjb6eMgAMjb+dhAQdG3k5ZAQdG3s4jAg6MvJ1yAg6MvJ3yAg6MvJ0KAg6MvJ1HBRwYeTsVBRwYeTuVBBwYeTuVBRwYeTtVLByQKZLdF5O3g8wE5AVgrjzmiWOONOYHY24s5oViTiTmA2IuHOaBYQ4U5v9g7gvmfWDOA8b7Y6w7xnljjDPG92JsK8Z1YkwjxvNhLBvGcd0ew2Qaxq5g3AbGLOB6Pa5V4zotrlHi+hyuTeG6DK5J4Hw8zkXjPCzOQeL8G8494bwLzjng+za+a+J7Fr5j4Pgax5Y4rsIxBT5P8VmC91G8h+D1g30HbtE32xycQj77vB3kdNhuJ3a2R0LbqGr5esgez+8DPm/9ivtDwNPDOHkoVR22gZtt3s5j3reTWHk7YfjD1gf7Ivoe93EJ1VuNt3/FdNbucf5qhP3rcQEHRt5OdQEHRt5ODQEHRt5OTQEHRt7OEwIOjLydWgIOjLydJwUcGHk7tQUcGHk7dQQcGHk7dQUcGHk79QQcGHk79QUcGHk7DQQcGHk7DQUcGHk7Twk4MPJ2Ggk4MPJ2nhZwYOTtNBZwYOTtNBFwYOTtNBVwYOTtNBNwYOTtNBdwYOTttBBwYOTttBRwYOTttBJwYOTttBZwYOTttBFwYOTttBVwYOTttBNwYOTttBdwYOTtdBBwYOTtdBRwYOTtdBJwYOTtdBZwYOTtdBFwYOTtdBVwYOTtdBNwYOTtdBdwYOTt9BBwYOTt9BRwYOTt9BJwYOTt9BZwYOTt9BFwYOTt9BVwYOTt9BNwYOTt9BdwYOTtDBBwYOTtDBRwYOTtDBJwYOTtDBZwYOTtDBFwYOTtDBVwYOTtDBNwYOTtDBdwYOTtjBBwYOTtjBRwYOTtjBJwYOTtjBZwYOTtjBFwYOTtjBVwYOTtjBNwYOTtjBdwYOTtTBBwYOTtTBRwYOTtTLJwQKbI3b6YvB1kJiAvAHPlMU8cc6QxPxhzYzEvFHMiMR8Qc+EwDwxzoDD/B3NfMO8Dcx4w3h9j3THOG2OcMb4XY1sxrhNjGjGeD2PZMI4LY5gwfgdjVzBuA2MWcL0e16pxnRbXKHF9DtemcF0G1yRwPh7nonEeFucgcf4N555w3gXnHPB9G9818T0L3zFwfI1jSxxX4ZgCn6f4LMH7KN5D8PrBvgO36JttDg4yS/Ja5u0gp8N2O7GzPRLaxmTL18Pd8fw+4PPWr7g/BDw9jJOHMtlhG7jZ5u1M8b6dxMrbSYo/bH2wL6LvcR+XUL1TeftXTGftHuefSti/plluw/Y1X8V8ZlT1/rnhf8zct1qo/fM5XeD5ZOQGzRBwYOQGzRRwYOQGzRJwYOQGzRZwYOQGzRFwYOQGzRVwYOQGzRNwYOQGzRdwYOQGLRBwYOQGLRRwYOQGLRJwYOQGPSPgwMgNWizgwMgNelbAgZEbtETAgZEb9JyAAyM3aKmAAyM36HkBB0Zu0DIBB0Zu0AsCDozcoHABB0Zu0IsCDozcoOUCDozcoJcEHBi5QSsEHBi5QS8LODByg1YKODByg14RcGDkBq0ScGDkBr0q4MDIDVot4MDIDXpNwIGRG7RGwIGRG7RWwIGRG7ROwIGRG/S6gAMjN+gNAQdGbtB6AQdGbtCbAg6M3KANAg6M3KCNAg6M3KBNAg6M3KDNAg6M3KAtAg6M3KCtAg6M3KBtAg6M3KC3BBwYuUHbBRwYuUFvCzgwcoN2CDgwcoPeEXBg5AbtFHBg5Aa9K+DAyA3aJeDAyA16T8CBkRu0W8CBkRv0voADIzdoj4ADIzfoAwEHRm7QXgEHRm7QhwIOjNygfQIOjNygjwQcGLlB+y0ckI2SwxeTG4TMBOQFYK485oljjjTmB2NuLOaFYk4k5gNiLhzmgWEOFOb/YO4L5n1gzgPG+2OsO8Z5Y4wzxvdibCvGdWJMI8bzYSwbxnFhDBPG72DsCsZtYMwCrtfjWjWu0+IaJa7P4doUrsvgmgTOx+NcNM7D4hwkzr/h3BPOu+CcA75v47smvmfhOwaOr3FsieMqHFPg8xSfJXgfxXsIXj/Yd+AWfYub7eElB8giP+R2VgtyOuJuJ6HHxd5GQn06kMLu9ZAjnt8HfN76FfeHgKeHcXJdDjhsAzfb3KCD3reTWLlByfCHrQ/2RfQ97uMSqvdj3v4V01m7x/k/JuxfhwQcGHk7nwg4MPJ2Dgs4MPJ2PhVwYOTtHBFwYOTtfCbgwMjbOSrgwMjb+VzAgZG3c0zAgZG384WAAyNv57iAAyNv50sBB0bezgkBB0bezlcCDoy8nZMCDoy8na8FHBh5O6cEHBh5O98IODDydiIEHBh5O98KODDydk4LODDydr4TcGDk7ZwRcGDk7Xwv4MDI2zkr4MDI2zkn4MDI2zkv4MDI2/lBwIGRt3NBwIGRt/OjgAMjb+eigAMjb+cnAQdG3s4lAQdG3s5lAQdG3s4VAQdG3s7PAg6MvJ2rAg6MvJ1fBBwYeTvXBBwYeTu/Cjgw8nauCzgw8nZ+E3Bg5O3cEHBg5O38LuDAyNu5KeDAyNv5Q8CBkbdzS8CBkbfzp4ADI28nUsCBkbfjS/nvd2Dk7fgFHBh5O0kEHBh5OyECDoy8nVABB0beTpiAAyNvJ6mAAyNvJ5mAAyNvJ7mAAyNvJ4WAAyNvJ6WAAyNvJ5WAAyNvJ7WAAyNvJ42AAyNvJ62AAyNvJ52FAzJF7vHF5O0gMwF5AZgrj3nimCON+cGYG4t5oZgTifmAmAuHeWCYA4X5P5j7gnkfmPOA8f4Y645x3hjjjPG9GNuKcZ0Y04jxfBjLhnFcGMOE8TsYu4JxGxizgOv1uFaN67S4Ronrc7g2hesyuCaB8/E4F43zsDgHifNvOPeE8y4454Dv2/iuie9Z+I6B42scW+K4CscU+DzFZwneR/EegtcP9h24Rd9sc3CQWXJ/8pj7e8nnOeSQt3PIIm8nveXr4Z54fh/weetX3B8Cnh7GyUOxcYh9s83byeB9O36LvB2/Rd6O/+8/fHb7Lvoe93EJ1ZvRwhX/dkjU3/E9ziXfyut9M6W084u+2T7/mYP//P/1AN8/+53Q3aPfu1ze86Lvm5BNFsd9JfbjbPtXxXzWPu7989b/WNT9bV8HWS3fX1zqqG5ZR3WHOrLxPi9iOmv3OEpu1F0CDozcqOwCDozcqLsFHBi5UTkEHBi5UfcIODByo3IKODByo+4VcGDkRuUScGDkRgUEHBi5UbkFHBi5UfcJODByo/IIODByo+4XcGDkRuUVcGDkRuUTcGDkRuUXcGDkRhUQcGDkRhUUcGDkRj0g4MDIjSok4MDIjXpQwIGRG1VYwIGRG1VEwIGRG1VUwIGRG1VMwIGRG1VcwIGRG1VCwIGRG1VSwIGRG1VKwIGRG1VawIGRG/WQgAMjN6qMgAMjN+phAQdGblRZAQdGbtQjAg6M3KhyAg6M3KjyAg6M3KgKAg6M3KhHBRwYuVEVBRwYuVGVBBwYuVGVBRwYuVFVBBwYuVFVBRwYuVGPCTgwcqOqCTgwcqMeF3Bg5EZVF3Bg5EbVEHBg5EbVFHBg5EY9IeDAyI2qJeDAyI16UsCBkRtVW8CBkRtVR8CBkRtVV8CBkRtVT8CBkRtVX8CBkRvVQMCBkRvVUMCBkRv1lIADIzeqkYADIzfqaQEHRm5UY8scC9t/H3khGR1yZqYlcv4J8mGQ3WKbQdPEIu8lsWtA5sd9yf9nZk1Cj6sS6r3ephb19rGo13TBl8wXU/M//qGovwM+b9st6f2+/9hes5R3sMFmKe0f1zyld3jXfjVPGfOLgM/7zeWFncXhhT0zkV8U01P8Ff5k269Zlv2KvtkGRrWweEFZWPln3WFgWEL9LuX7a9+K+4aZ0LZKWWyjZSJ/GMG+pcO+0coxyKrV/0HoWUuL94zWpNCzNsHfh2/fXMLLLIK7bh8kZHXYX9qmTPw6slnWkc2hjnaJ/HpEv5o4HIS1T8SDMJfnoqnlc9HU4bnoYPFchMZq/6MDcbabUH9tDq7uZDvFfZzttLnDfTqh5+kh31/vp7b7UYjFfR/y2Vv54/4Q8PQwn79lIoOV9v31IWcLZvPB2NHyxWNe03/353+rLaE+en3RRkZGfhPf7wO+hLeBP2L3tVPUF4DOKX3/PBrpFPWuE/t3nePpoO3XyQ7enoh55onwd7J40jpb4tnueNiBOjl+W3KJ8xyXzO6rfW2HOM8uhFjS8ZZ11HGooyuhjgmWddR1qKMboY6JlnXUc6ijO6GOSZZ11Heoo0ciH9GijsnJ7PvVk9CvKQ796kXo11SHfvUm9GuaQ7/6EPo13aFffQn9muHQr36Efs106Fd/Qr9mOfRrAKFfsx36NZDQrzkO/RpE6Ndch34NJvRrnkO/hhD6Nd+hX0MJ/Vrg0K9hhH4tdOjXcEK/Fjn0awShX8849GskoV+LHfo1itCvZx36NZrQryUO/RpD6NdzDv0aS+jXUod+jSP063mHfo0n9GuZQ78mEPr1gkO/JhL6Fe7Qr0mEfr3o0K/JhH4td+jXFEK/XnLo11RCv1Y49GsaoV8vO/RrOqFfKx36NYPQr1cc+jWT0K9VDv2aRejXqw79mk3o12qHfs0h9Os1h37NJfRrjUO/5hH6tdahX/MJ/Vrn0K8FhH697tCvhYR+veHQr0WEfq136NczhH696dCvxYR+bXDo17OEfm106NcSQr82OfTrOUK/Njv0aymhX1sc+vU8oV9bHfq1jNCvbQ79eoHQr7cc+hVO6Nd2h369SOjX2w79Wk7o1w6Hfr1E6Nc7Dv1aQejXTod+vUzo17sO/VpJ6Ncuh369QujXew79WkXo126Hfr1K6Nf7Dv1aTejXHod+vUbo1wcO/VpD6Ndeh36tJfTrQ4d+rSP0a59Dv14n9Osjh369QejXfod+rSf064BDv94k9OugQ782EPr1sUO/NhL6dcihX5sI/frEoV+bCf067NCvLYR+ferQr62Efh1x6Nc2Qr8+c+jXW4R+HXXo13ZCvz536NfbhH4dc+jXDkK/vnDo1zuEfh136NdOQr++dOjXu4R+nXDo1y5Cv75y6Nd7hH6ddOjXbkK/vnbo1/uEfp1y6NceQr++cejXB4R+RTj0ay+hX9869OtDQr9OO/RrH6Ff3zn06yNCv8449Gs/oV/fO/TrAKFfZx36dZDQr3MO/fqY0K/zDv06ROjXDw79+oTQrwsO/TpM6NePDv36lNCviw79OkLo108O/fqM0K9LDv06SujXZYd+fU7o1xWHfh0j9Otnh359QejXVYd+HSf06xeHfn1J6Nc1h36dIPTrV4d+fUXo13WHfp0k9Os3h359TejXDYd+nSL063eHfn1D6NdNh35FEPr1h0O/viX065ZDv04T+vWnQ7++I/Qr0qFfZwj9Qiqcbb++J/TL79Cvs4R+JXHo1zlCv0Ic+nWe0K9Qh379QOhXmEO/LhD6ldShXz8S+pXMoV8XCf1K7tCvnwj9SuHQr0uEfqV06NdlQr9SOfTrCqFfqR369TOhX2kc+nWV0K+0Dv36hdCvdA79ukboV3qHfv1K6FcGh35dJ/Qro0O/fiP0K5NDv24Q+pXZoV+/E/qVxaFfNwn9yurQrz8I/crm0K9bhH7d5dCvPwn9yu7Qr0hCv+526JcvVeL3K4dDv/yEft3j0K8khH7ldOhXCKFf9zr0K5TQr1wO/Qoj9Cvg0K+khH7lduhXMot+YT2EnKaFR/03MvaRT49sd+SiI1Mc+d3IykYuNTKgkbeMbGPkCCOzF/m4yKJF7isyVpFniuxQ5HQiExP5k8h6RK4iMgyRF4hsPuTgIXMO+W7IUkNuGTLCkMeF7CvkTCHTCflJyCpCLhAyeJB3g2wZ5LggMwX5JMgCQe4GMi6QJ4HsBuQkIJMA8/8x1x7z2jGHHPO1MTca85Ax5xfzazGXFfNGMUcT8yEx9xDz/DCnDvPXMFcM87IwBwrzjTC3B/NoMGcF80MwFwPzHjDHAOP5MXYe49QxJhzjrzHWGeOKMYYX42UxNhXjQDHmEuMbMZYQ4/YwRg7j0TD2C+OsMKYJ44cwVgfjYjAGBeM9MLYC4xgwZgDX53EtHNedcY0X11Nx7RLXCXFNDte/cK0J13VwDQXXK3BtAOfhcc4b55dxLhfnTXGOEucDce4N57lwTgnnb3CuBOclcA4A37fx3RbfI/GdDd+P8F0Ex/04xsbxLI4dcZyGYyIcf+CzHp+r+AzD5wXem/E+iPccvL7xWsJ+6/haCcN6F1irw/a1ktzitZIk6rUS9xbw2d1s3weSp0r8baSw3IbtGgjoT+yFahJ6XqIXzrF9PlNavvfd6/vvve+/975/13ufyyqKFq/f24tL4XVi+xqOvY2E+pTK8n313nh+H/B561fcHwKeHsZ5X02VuMeIf3/uJeYCY6l5z2VMB+0e509NeC7TCDg0CE38baQVcGhGcEgn4NCC4JBewKEVwSGDgEMbgkNGAYd2BIdMAg4dCA6ZBRw6ERyyCDh0IThkFXDoRnDIJuDQg+Bwl4BDL4JDdgGHPgSHuwUc+hEccgg4DCA43CPgMIjgkFPAYQjB4V4Bh2EEh1wCDiMIDgEBh1EEh9wCDmMIDvcJOIwjOOQRcJhAcLhfwGESwSGvgMMUgkM+AYdpBIf8Ag4zCA4FBBxmERwKCjjMITg8IOAwj+BQSMBhAcHhQQGHRQSHwgIOiwkORQQclhAcigo4LCU4FBNwWEZwKC7gEE5wKCHgsJzgUFLAYQXBoZSAw0qCQ2kBh1UEh4cEHFYTHMoIOKwhODws4LCO4FBWwOFASOJv4xEBh/WE/aGcgMMGgkN5AYdNBIcKAg5bCA6PCjhsIzhUFHDYTnCoJOCwg+BQWcBhJ8GhioDDLoJDVQGH3QSHxwQc9hAcqgk47CU4PC7gsI/gUF3AYT/BoYaAw0GCQ00Bh0MEhycEHA4THGoJOBwhODwp4HCU4FBbwOEYwaGOgMNxgkNdAYcTBId6Ag4nCQ71BRxOERwaCDhEEBwaCjicJjg8JeBwhuDQSMDhLMHhaQGH8wSHxgIOFwgOTQQcLhIcmgo4XCI4NBNwuEJwaC7gcJXg0ELA4RrBoaWAw3WCQysBhxsEh9YCDjcJDm0EHG4RHNoKOEQSHNoJOPjDEn8b7QUcQggOHQQcwggOHQUckhEcOgk4pCA4dBZwSEVw6CLgkIbg0FXAIR3BoZuAQwaCQ3cBh0wEhx4CDlkIDj0FHLIRHHoJOGQnOPQWcMhBcOgj4JCT4NBXwCEXwaGfgENugkN/AYc8BIcBAg55CQ4DBRzyExwGCTgUJDgMFnAoRHAYIuBQmOAwVMChKMFhmIBDcYLDcAGHkgSHEQIOpQkOIwUcyhAcRgk4lCU4jBZwKEdwGCPgUIHgMFbAoSLBYZyAQ2WCw3gBh6oEhwkCDtUIDhMFHKoTHCYJONQkOEwWcKhFcJgi4FCb4DBVwKEuwWGagEN9gsN0AYeGBIcZAg6NCA4zBRwaExxmCTg0JTjMFnBoTnCYI+DQkuAwV8ChNcFhnoBDW4LDfAGH9gSHBQIOHQkOCwUcOhMcFgk4dCU4PCPg0J3gsFjAoSfB4VkBh94EhyUCDn0JDs8JOPQnOCwVcBhIcHhewGEwwWGZgMNQgsMLAg7DCQ7hAg4jCQ4vCjiMJjgsF3AYS3B4ScBhPMFhhYDDRILDywIOkwkOKwUcphIcXhFwmE5wWCXgMJPg8KqAw2yCw2oBh7kEh9cEHOYTHNYIOCwkOKy1cAgxLZdp4VH/ndY8Np1p6U3LYFpG0zKZltm0LKZlNS2baXeZlt20u03LYdo9puU07V7TcmH7puU27T7T8ph2v2l5TctnWn7TCphW0LQHTCtk2oOmFTatiGlFTStmWnHTSpiG9emxNjvWJcea3FiPGmsxYx1irMGL9Wex9irWHcWam1hvEmstYp1BrLGH9eWwthrWFcOaWlhPCmspYR0hrKGD9WOwdgrWDcGaGVgvAmslYJ0AZOQjHx7Z6MgFRyY28qCRhYwcYGTgIv8V2afI/UTmJfIekXWInD9k3CHfDdlmyPVCphXynJBlhBwfZNggvwXZJcjtQGYF8hqQVYB5+pijjvnZmJuMebmYk4r5mJiLiHl4mIOG+VeYe4R5N5hzgvkWmGuAcfYYY47x1RhbjHG1GFOK8ZQYS4hxdBhDhvFTGDuEcTMYM4LxEhgrgOvkuEaM66O4NojrYrgmhOshuBaA8+A4B4zznzj3h/NeOOeD8x34ro/vufiOh+83OLbHcS2O6XA8g89yfI7hPRzvX3jtYr+NviWx3OdLmj9apoy5f7EOdfpFFA8vuLVetc1jxzZpWaDkuRpDt/WZWzXi2vzLUfdNk8p+O3iM122sS2X3fpQrnt8HfN76FfeHgKeH+fypUyX++9E6y21Y/vtheC47pLR+LpPY7C+v857Lv2+2zq8Tnss37vC5TMgZn0cPRf0d+3EJbSbE4r4PWfRnvcDz3oCQ1fqmgEMzgsMGAYcWBIeNAg6tCA6bBBzaEBw2Czi0IzhsEXDoQHDYKuDQieCwTcChC8HhLQGHbgSH7QIOPQgObws49CI47BBw6ENweEfAoR/BYaeAwwCCw7sCDoMIDrsEHIYQHN4TcBhGcNgt4DCC4PC+gMMogsMeAYcxBIcPBBzGERz2CjhMIDh8KOAwieCwT8BhCsHhIwGHaQSH/QIOMwgOBwQcZhEcDgo4zCE4fCzgMI/gcEjAYQHB4RMBh0UEh8MCDosJDp8KOCwhOBwRcFhKcPhMwGEZweGogEM4weFzAYflBIdjAg4rCA5fCDisJDgcF3BYRXD4UsBhNcHhhIDDGoLDVwIO6wgOJwUcDoQk/ja+FnBYT9gfTgk4bCA4fCPgsIngECHgsIXg8K2AwzaCw2kBh+0Eh+8EHHYQHM4IOOwkOHwv4LCL4HBWwGE3weGcgMMegsN5AYe9BIcfBBz2ERwuCDjsJzj8KOBwkOBwUcDhEMHhJwGHwwSHSwIORwgOlwUcjhIcrgg4HCM4/CzgcJzgcFXA4QTB4RcBh5MEh2sCDqcIDr8KOEQQHK4LOJwmOPwm4HCG4HBDwOEsweF3AYfzBIebAg4XCA5/CDhcJDjcEnC4RHD4U8DhCsEhUsDhKsHBl/rf73CN4OAXcLhOcEgi4HCD4BAi4HCT4BAq4HCL4BAm4BBJcEgq4OAnZP8nE3AIITgkF3AIIzikEHBIRnBIKeCQguCQSsAhFcEhtYBDGoJDGgGHdASHtAIOGQgO6QQcMhEc0gs4ZCE4ZBBwyEZwyCjgkJ3gkEnAIQfBIbOAQ06CQxYBh1wEh6wCDrkJDtkEHPIQHO4ScMhLcMgu4JCf4HC3gENBgkMOAYdCBId7BBwKExxyCjgUJTjcK+BQnOCQS8ChJMEhIOBQmuCQW8ChDMHhPgGHsgSHPAIO5QgO9ws4VCA45BVwqEhwyCfgUJngkF/AoSrBoYCAQzWCQ0EBh+oEhwcEHGoSHAoJONQiODwo4FCb4FBYwKEuwaGIgEN9gkNRAYeGBIdiAg6NCA7FBRwaExxKCDg0JTiUFHBoTnAoJeDQkuBQWsChNcHhIQGHtgSHMgIO7QkODws4dCQ4lBVw6ExweETAoSvBoZyAQ3eCQ3kBh54EhwoCDr0JDo8KOPQlOFQUcOhPcKgk4DCQ4FBZwGEwwaGKgMNQgkNVAYfhBIfHBBxGEhyqCTiMJjg8LuAwluBQXcBhPMGhhoDDRIJDTQGHyQSHJwQcphIcagk4TCc4PCngMJPgUFvAYTbBoY6Aw1yCQ10Bh/kEh3oCDgsJDvUtHEKi/t3wqP9+M5XPt8G0jaZtMm2zaVtM22raNtPeMm27aW+btsO0d0zbadq7pu0y7T3Tdpv2vml7TPvAtL2mfWjaPtM+Mm2/aQdMO2jax6YdMu0T0w6b9qlpR0z7zLSjpn1uGtanx9rsWJcca3JjPWqsxYx1iLEGL9afxdqrWHcUa25ivUmstYh1BrHGHtaXw9pqWFcMa2phPSmspYR1hLCGDtaPwdopWDcEa2ZgvQislYB1ApCRj3x4ZKMjFxyZ2MiDRhYycoCRgYv8V2SfIvcTmZfIe0TWIXL+kHGHfDdkmyHXC5lWyHNClhFyfJBhg/wWZJcgtwOZFchrQFYB5uljjjrmZ2NuMublYk4q5mNiLiLm4WEO2u35V6Zh3g3mnGC+BeYaYJw9xphjfDXGFmNcLcaUYjwlxhJiHB3GkGH8FMYOYdwMxoxgvATGCuA6Oa4R4/oorg3iuhiuCeF6CK4F4Dw4zgHj/CfO/eG8F8754HwHvuvjey6+4+H7DY7tcVyLYzocz+CzHJ9jeA/H+xdeu9hvo29J4uzzxTrU6RdRPLzg1nrVNo8d26RlgZLnagzd1mdu1Yhr8y+b/98ypc/3hvccXj/uvz7V/9xOQo+LvY2E+tTA8v0ovvsGfN76FfeHgKeH+fyvp0r89yMbB4d/PwzPZYeU1s9lCB4Xfd+EnsuGvOfy75utc8PUib+NpwQcGhCySxsJODQjODwt4NCC4NBYwKEVwaGJgEMbgkNTAYd2BIdmAg4dCA7NBRw6ERxaCDh0ITi0FHDoRnBoJeDQg+DQWsChF8GhjYBDH4JDWwGHfgSHdgIOAwgO7QUcBhEcOgg4DCE4dBRwGEZw6CTgMILg0FnAYRTBoYuAwxiCQ1cBh3EEh24CDhMIDt0FHCYRHHoIOEwhOPQUcJhGcOgl4DCD4NBbwGEWwaGPgMMcgkNfAYd5BId+Ag4LCA79BRwWERwGCDgsJjgMFHBYQnAYJOCwlOAwWMBhGcFhiIBDOMFhqIDDcoLDMAGHFQSH4QIOKwkOIwQcVhEcRgo4rCY4jBJwWENwGC3gsI7gMEbA4UBI4m9jrIDDesL+ME7AYQPBYbyAwyaCwwQBhy0Eh4kCDtsIDpMEHLYTHCYLOOwgOEwRcNhJcJgq4LCL4DBNwGE3wWG6gMMegsMMAYe9BIeZAg77CA6zBBz2ExxmCzgcJDjMEXA4RHCYK+BwmOAwT8DhCMFhvoDDUYLDAgGHYwSHhQIOxwkOiwQcThAcnhFwOElwWCzgcIrg8KyAQwTBYYmAw2mCw3MCDmcIDksFHM4SHJ4XcDhPcFgm4HCB4PCCgMNFgkO4gMMlgsOLAg5XCA7LBRyuEhxeEnC4RnBYIeBwneDwsoDDDYLDSgGHmwSHVwQcbhEcVgk4RBIcXhVw8BOy8FcLOIQQHF4TcAgjOKwRcEhGcFgr4JCC4LBOwCEVweF1AYc0BIc3BBzSERzWCzhkIDi8KeCQieCwQcAhC8Fho4BDNoLDJgGH7ASHzQIOOQgOWwQcchIctgo45CI4bBNwyE1weEvAIQ/BYbuAQ16Cw9sCDvkJDjsEHAoSHN4RcChEcNgp4FCY4PCugENRgsMuAYfiBIf3BBxKEhx2CziUJji8L+BQhuCwR8ChLMHhAwGHcgSHvQIOFQgOHwo4VCQ47BNwqExw+EjAoSrBYb+AQzWCwwEBh+oEh4MCDjUJDh8LONQiOBwScKhNcPhEwKEuweGwgEN9gsOnAg4NCQ5HBBwaERw+E3BoTHA4KuDQlODwuYBDc4LDMQGHlgSHLwQcWhMcjgs4tCU4fCng0J7gcELAoSPB4SsBh84Eh5MCDl0JDl8LOHQnOJwScOhJcPhGwKE3wSFCwKEvweFbAYf+BIfTAg4DCQ7fCTgMJjicEXAYSnD4XsBhOMHhrIDDSILDOQGH0QSH8wIOYwkOPwg4jCc4XBBwmEhw+FHAYTLB4aKAw1SCw08CDtMJDpcEHGYSHC4LOMwmOFwRcJhLcPhZwGE+weGqgMNCgsMvFg4hpuU2LTzqvxuZxz5tWmPTmpjW1LRmpjU3rYVpLU1rZVpr09qY1ta0dqa1N62DaR1N62RaZ9O6mNbVtG6mdTeth2k9TetlWm/T+pjW17R+pvU3bYBpA00bZNpg04aYNtQ0rE+PtdmxLjnW5MZ61FiLGesQYw1erD+LtVex7ijW3MR6k1hrEesMYo09rC+HtdWwrhjW1MJ6UlhLCesIYQ0drB+DtVOwbgjWzMB6EVgrAesEICMf+fDIRkcuODKxkQeNLGTkACMDF/mvyD5F7icyL5H3iKxD5Pwh4w75bsg2Q64XMq2Q54QsI+T4IMMG+S3ILkFuBzIrkNeArALM08ccdczPxtxkzMvFnFTMx8RcRMzDwxw0zL/C3CPMu8GcE8y3wFwDjLPHGHOMr8bYYoyrxZhSjKfEWEKMo8MYMoyfwtghjJvBmBGMl8BYAVwnxzViXB/FtUFcF8M1IVwPwbUAnAfHOWCc/8S5P5z3wjkfnO/Ad318z8V3PHy/wbE9jmtxTIfjGXyW43MM7+F4/8JrF/tt9C2J5T5f3PzRMmXM/Yt1qNMvonh4wa31qm0eO7ZJywIlz9UYuq3P3KoR1+ZfjrrvU6ntt4PHeN3GtdR270e54/l9wOetX3F/CHh6mM/fMHXivx9ds9yG5b8fhueyQ0rr5zLUZn/5lfdc/n2zdf6V8FxeF3BoQMgu/U3AoRnB4YaAQwuCw+8CDq0IDjcFHNoQHP4QcGhHcLgl4NCB4PCngEMngkOkgEMXgoMvzb/foRvBwS/g0IPgkETAoRfBIUTAoQ/BIVTAoR/BIUzAYQDBIamAwyCCQzIBhyEEh+QCDsMIDikEHEYQHFIKOIwiOKQScBhDcEgt4DCO4JBGwGECwSGtgMMkgkM6AYcpBIf0Ag7TCA4ZBBxmEBwyCjjMIjhkEnCYQ3DILOAwj+CQRcBhAcEhq4DDIoJDNgGHxQSHuwQclhAcsgs4LCU43C3gsIzgkEPAIZzgcI+Aw3KCQ04BhxUEh3sFHFYSHHIJOKwiOAQEHFYTHHILOKwhONwn4LCO4JBHwOFASOJv434Bh/WE/SGvgMMGgkM+AYdNBIf8Ag5bCA4FBBy2ERwKCjhsJzg8IOCwg+BQSMBhJ8HhQQGHXQSHwgIOuwkORQQc9hAcigo47CU4FBNw2EdwKC7gsJ/gUELA4SDBoaSAwyGCQykBh8MEh9ICDkcIDg8JOBwlOJQRcDhGcHhYwOE4waGsgMMJgsMjAg4nCQ7lBBxOERzKCzhEEBwqCDicJjg8KuBwhuBQUcDhLMGhkoDDeYJDZQGHCwSHKgIOFwkOVQUcLhEcHhNwuEJwqCbgcJXg8LiAwzWCQ3UBh+sEhxoCDjcIDjUFHG4SHJ4QcLhFcKgl4BBJcHhSwMFPyMKvLeAQQnCoI+AQRnCoK+CQjOBQT8AhBcGhvoBDKoJDAwGHNASHhgIO6QgOTwk4ZCA4NBJwyERweFrAIQvBobGAQzaCQxMBh+wEh6YCDjkIDs0EHHISHJoLOOQiOLQQcMhNcGgp4JCH4NBKwCEvwaG1gEN+gkMbAYeCBIe2Ag6FCA7tBBwKExzaCzgUJTh0EHAoTnDoKOBQkuDQScChNMGhs4BDGYJDFwGHsgSHrgIO5QgO3QQcKhAcugs4VCQ49BBwqExw6CngUJXg0EvAoRrBobeAQ3WCQx8Bh5oEh74CDrUIDv0EHGoTHPoLONQlOAwQcKhPcBgo4NCQ4DBIwKERwWGwgENjgsMQAYemBIehAg7NCQ7DBBxaEhyGCzi0JjiMEHBoS3AYKeDQnuAwSsChI8FhtIBDZ4LDGAGHrgSHsQIO3QkO4wQcehIcxgs49CY4TBBw6EtwmCjg0J/gMEnAYSDBYbKAw2CCwxQBh6EEh6kCDsMJDtMEHEYSHKYLOIwmOMwQcBhLcJgp4DCe4DBLwGEiwWG2gMNkgsMcAYepBIe5Ag7TCQ7zBBxmEhzmCzjMJjgsEHCYS3BYKOAwn+CwSMBhIcHhGQuHENPuMy086r9/S+3z3TDtd9NumvaHabdM+9O0SNN85t/2m5bEtBDTQk0LMy2paclMS25aCtNSmpbKtNSmpTEtrWnpTEtvWgbTMpqWybTMpmUxLatp2Uy7y7Tspt1tWg7T7jEN69Njbfbb65KbhvWosRYz1iHGGrxYfxZrr2LdUay5ifUmsdYi1hnEGntYXw5rq2FdMayphfWksJYS1hHCGjpYPwZrp2DdEKyZgfUisFYC1glARj7y4ZGNjlxwZGIjDxpZyMgBRgYu8l+RfYrcT2ReIu8RWYfI+UPGHfLdkG2GXC9kWiHPCVlGyPFBhg3yW5BdgtwOZFYgrwFZBZinjznqmJ+NucmYl4s5qZiPibmImIeHOWiYf4W5R5h3gzknmG+BuQYYZ48x5hhfjbHFGFeLMaUYT4mxhBhHhzFkGD+FsUMYN4MxIxgvgbECuE6Oa8S4Poprg7guhmtCuB6CawE4D45zwDj/iXN/OO+Fcz4434Hv+viei+94+H6DY3sc1+KYDscz+CzH5xjew/H+hdcu9tvoWxLLfb5lSmOTMub+xTrU6RdRPLzg1nrVNo8d26RlgZLnagzd1mdu1Yhr8y+b/4/7X09tvx08xus2Fqexez+6L57fB3ze+hX3h4Cnh/n8v6ZO/PcjGweXfx/PZYeUbvtM9H0Tei6ftagB/Q+J+jv6cXf4/P7j37Z4nL8BIcdzCW8/j9mo3eP8zQgOzwk4tCA4LBVwaEVweF7AoQ3BYZmAQzuCwwsCDh0IDuECDp0IDi8KOHQhOCwXcOhGcHhJwKEHwWGFgEMvgsPLAg59CA4rBRz6ERxeEXAYQHBYJeAwiODwqoDDEILDagGHYQSH1wQcRhAc1gg4jCI4rBVwGENwWCfgMI7g8LqAwwSCwxsCDpMIDusFHKYQHN4UcJhGcNgg4DCD4LBRwGEWwWGTgMMcgsNmAYd5BIctAg4LCA5bBRwWERy2CTgsJji8JeCwhOCwXcBhKcHhbQGHZQSHHQIO4QSHdwQclhMcdgo4rCA4vCvgsJLgsEvAYRXB4T0Bh9UEh90CDmsIDu8LOKwjOOwRcDgQkvjb+EDAYT1hf9gr4LCB4PChgMMmgsM+AYctBIePBBy2ERz2CzhsJzgcEHDYQXA4KOCwk+DwsYDDLoLDIQGH3QSHTwQc9hAcDgs47CU4fCrgsI/gcETAYT/B4TMBh4MEh6MCDocIDp8LOBwmOBwTcDhCcPhCwOEoweG4gMMxgsOXAg7HCQ4nBBxOEBy+EnA4SXA4KeBwiuDwtYBDBMHhlIDDaYLDNwIOZwgOEQIOZwkO3wo4nCc4nBZwuEBw+E7A4SLB4YyAwyWCw/cCDlcIDmcFHK4SHM4JOFwjOJwXcLhOcPhBwOEGweGCgMNNgsOPAg63CA4XBRwiCQ4/CTj4CbnwlwQcQggOlwUcwggOVwQckhEcfhZwSEFwuCrgkIrg8IuAQxqCwzUBh3QEh18FHDIQHK4LOGQiOPwm4JCF4HBDwCEbweF3AYfsBIebAg45CA5/CDjkJDjcEnDIRXD4U8AhN8EhUsAhD8HBl/bf75CX4OAXcMhPcEgi4FCQ4BAi4FCI4BAq4FCY4BAm4FCU4JBUwKE4wSGZgENJgkNyAYfSBIcUAg5lCA4pBRzKEhxSCTiUIzikFnCoQHBII+BQkeCQVsChMsEhnYBDVYJDegGHagSHDAIO1QkOGQUcahIcMgk41CI4ZBZwqE1wyCLgUJfgkFXAoT7BIZuAQ0OCw10CDo0IDtkFHBoTHO4WcGhKcMgh4NCc4HCPgENLgkNOAYfWBId7BRzaEhxyCTi0JzgEBBw6EhxyCzh0JjjcJ+DQleCQR8ChO8HhfgGHngSHvAIOvQkO+QQc+hIc8gs49Cc4FBBwGEhwKCjgMJjg8ICAw1CCQyEBh+EEhwcFHEYSHAoLOIwmOBQRcBhLcCgq4DCe4FBMwGEiwaG4gMNkgkMJAYepBIeSAg7TCQ6lBBxmEhxKCzjMJjg8JOAwl+BQRsBhPsHhYQGHhQSHsmnttpHE8t9vmdLn65DS+/1bR90/bh3FOtTpF1E8vODWetU2jx3bpGWBkudqDN3WZ27ViGvzL5v//4hlHdafJ+aP5qZfIZb9KmVx3+Ypvd+3nPd6/X//4bP43Ijahs/ucb5Q08KiWrwdsehDSZ/9/u+ynRI+znaK+xL/tdbK8rXWJmXMLwI++5utwfpUdu+70bfyUftihbQx27TeuMWL5va/HRL1d/mox2HnTh6nYy5PUnvLJ6m95ZMUGRn5W3y/D/gS3h7+iF3fo1HwFdP6/onyaNQzEft3FWMB2z450TC27/zrcibuO39rx369btmv6Fuo9+3MM9vxP5rWe58qWnxqWLj6vdYavWPaWuKF+6jDpxFuti/QPOYVfpfFC7SAuX8mh/2jUtrEryO7RR0FHeuoTKjjbos6HnCsowqhjhwWdRRyrKMqoY57LOp40LGOxwh15LSoo7BjHdUIddxrUUcRxzoeJ9SRy6KOoo51VE/kb4qoI+DQrxqEfuV26FdNQr/uc+jXE4R+5XHoVy1Cv+536NeThH7ldehXbUK/8jn0qw6hX/kd+lWX0K8CDv2qR+hXQYd+1Sf06wGHfjUg9KuQQ78aEvr1oEO/niL0q7BDvxoR+lXEoV9PE/pV1KFfjQn9KubQryaEfhV36FdTQr9KOPSrGaFfJR361ZzQr1IO/WpB6Fdph361JPTrIYd+tSL0q4xDv1oT+vWwQ7/aEPpV1qFfbQn9esShX+0I/Srn0K/2hH6Vd+hXB0K/Kjj0qyOhX4869KsToV8VHfrVmdCvSg796kLoV2WHfnUl9KuKQ7+6EfpV1aFf3Qn9esyhXz0I/arm0K+ehH497tCvXoR+VXfoV29Cv2o49KsPoV81HfrVl9CvJxz61Y/Qr1oO/epP6NeTDv0aQOhXbYd+DST0q45DvwYR+lXXoV+DCf2q59CvIYR+1Xfo11BCvxo49GsYoV8NHfo1nNCvpxz6NYLQr0YO/RpJ6NfTDv0aRehXY4d+jbboF8aF5jGtUtR/Y8wbxothrBXGKWGMD8bHYGwJxmVgDATGG+DaPq6j45o1rg/jWiyue+IaI67n4doZrlPhmhCuv+BaB64r4Bw+zpfj3DTOA+OcK85v4lwiztvhHBnOR+HcD86z4JwGzh/guzq+F+M7KL7v4bsVvsfgOwOOz3EsjONOHOPheArHLjhOwGcyPv/wWYP3dbyH4v0K7w14HWKfx/6F53J02vh9bOzHeLdPbjF+M/nriTyGFuM30XfbfW2s93pvjzfKE8/vAz67m21tNn103cY4y9fc/b7/XnNxX3O249HwHMWeMOBljDKeJ9vtjLPYxnjL18P98fw+4PPWr7g/BDw9jPN6GO+wDdxs328nBP/91v/3Hz6799sJDu+3E3n7V0xn7R7nn0jYvyYJODQITfxtTBZwaEZwmCLg0ILgMFXAoRXBYZqAQxuCw3QBh3YEhxkCDh0IDjMFHDoRHGYJOHQhOMwWcOhGcJgj4NCD4DBXwKEXwWGegEMfgsN8AYd+BIcFAg4DCA4LBRwGERwWCTgMITg8I+AwjOCwWMBhBMHhWQGHUQSHJQIOYwgOzwk4jCM4LBVwmEBweF7AYRLBYZmAwxSCwwsCDtMIDuECDjMIDi8KOMwiOCwXcJhDcHhJwGEewWGFgMMCgsPLAg6LCA4rBRwWExxeEXBYQnBYJeCwlODwqoDDMoLDagGHcILDawIOywkOawQcVhAc1go4rCQ4rBNwWEVweF3AYTXB4Q0BhzUEh/UCDusIDm8KOBwISfxtbBBwWE/YHzYKOGwgOGwScNhEcNgs4LCF4LBFwGEbwWGrgMN2gsM2AYcdBIe3BBx2Ehy2CzjsIji8LeCwm+CwQ8BhD8HhHQGHvQSHnQIO+wgO7wo47Cc47BJwOEhweE/A4RDBYbeAw2GCw/sCDkcIDnsEHI4SHD6wcECmSF5fTN4OMhOQF4C58pgnjjnSmB+MubGYF4o5kZgPiLlwmAeGOVCY/4O5L5j3gTkPGO+Pse4Y540xzhjfi7GtGNeJMY0Yz4exbBjHhTFMGL+DsSsYt4ExC7hej2vVuE6La5S4PodrU7gug2sSOB+Pc9E4D4tzkDj/hnNPOO+Ccw74vo3vmviehe8YOL7GsSWOq3BMgc9TfJbgfRTvIXj9YN+BW/TNNgcHqz3b5u0gp8N2O5MstrHX8vWQN57fB3ze+hX3h4Cnh3HyUPY6bAM327ydD71vJ7Hydm7vTrY+2BfR97iPS6jefbz9K6azdo/z7yPsXx8JODDydvYLODDydg4IODDydg4KODDydj4WcGDk7RwScGDk7Xwi4MDI2zks4MDI2/lUwIGRt3NEwIGRt/OZgAMjb+eogAMjb+dzAQdG3s4xAQdG3s4XAg6MvJ3jAg6MvJ0vBRwYeTsnBBwYeTtfCTgw8nZOCjgw8na+FnBg5O2cEnBg5O18I+DAyNuJEHBg5O18K+DAyNs5LeDAyNv5TsCBkbdzRsCBkbfzvYADI2/nrIADI2/nnIADI2/nvIADI2/nBwEHRt7OBQEHRt7OjwIOjLydiwIOjLydnwQcGHk7lwQcGHk7lwUcGHk7VwQcGHk7Pws4MPJ2rgo4MPJ2fhFwYOTtXBNwYOTt/CrgwMjbuS7gwMjb+U3AgZG3c0PAgZG387uAAyNv56aAAyNv5w8BB0bezi0BB0bezp8CDoy8nUgBB0beji/dv9+BkbfjF3Bg5O0kEXBg5O2ECDgw8nZCBRwYeTthAg6MvJ2kAg6MvJ1kAg6MvJ3kAg6MvJ0UAg6MvJ2UFg7IFMnni8nbQWYC8gIwVx7zxDFHGvODMTcW80IxJxLzATEXDvPAMAcK838w9wXzPjDnAeP9MdYd47wxxhnjezG2FeM6MaYR4/kwlg3juDCGCeN3MHYF4zYwZgHX63GtGtdpcY0S1+dwbQrXZXBNAufjcS4a52FxDhLn33DuCeddcM4B37fxXRPfs/AdA8fXOLbEcRWOKfB5is8SvI/iPQSvH+w7cIu+2ebglPDZ5+185JC385HFNlJZvh7yxfP7gM9bv+L+EPD0ME4eio1D7Jtt3k5q79tJrLyd21229cG+iL7HfVxC9abh7V8xnbV7nD9NusTfRloBB0beTjoBB0beTnoBB0beTgYBB0beTkYBB0beTiYBB0beTmYBB0beThYBB0beTlYBB0beTjYBB0bezl0CDoy8newCDoy8nbsFHBh5OzkEHBh5O/cIODDydnIKODDydu4VcGDk7eQScGDk7QQEHBh5O7kFHBh5O/cJODDydvIIODDydu4XcGDk7eQVcGDk7eQTcGDk7eQXcGDk7RQQcGDk7RQUcGDk7Twg4MDI2ykk4MDI23lQwIGRt1NYwIGRt1NEwIGRt1NUwIGRt1NMwIGRt1NcwIGRt1NCwIGRt1NSwIGRt1NKwIGRt1NawIGRt/OQgAMjb6eMgAMjb+dhAQdG3k5ZAQdG3s4jAg6MvJ1yAg6MvJ3yAg6MvJ0KAg6MvJ1HBRwYeTsVBRwYeTuVBBwYeTuVBRwYeTtVBBwYeTtVBRwYeTuPCTgw8naqCTgw8nYeF3Bg5O1UF3Bg5O3UEHBg5O3UFHBg5O08IeDAyNupJeDAyNt5UsCBkbdTW8CBkbdTxzJvJ78vJm8HmQnIC8BcecwTxxxpzA/G3FjMC8WcSMwHxFw4zAPDHCjM/8HcF8z7uD3nwTSMdcc4b4xxxvhejG3FuE6MacR4PoxlwzgujGHC+B2MXcG4DYxZwPV6XKvGdVpco8T1OVybwnUZXJPA+Xici8Z5WJyDxPk3nHvCeRecc8D3bXzXxPcsfMfA8TWOLXFchWMKfJ7iswTvo3gPwesH+w7com+2OTjrU9nn7SCnw3Y7sbM9EtpGXcvXQ/54fh/weetX3B8Cnh7GyUOp67AN3Gzzdup5305i5e2E4g9bH+yL6HvcxyVUb33e/hXTWbvH+esT9q8GAg6MvJ2GAg6MvJ2nBBwYeTuNBBwYeTtPCzgw8nYaCzgw8naaCDgw8naaCjgw8naaCTgw8naaCzgw8nZaCDgw8nZaCjgw8nZaCTgw8nZaCzgw8nbaCDgw8nbaCjgw8nbaCTgw8nbaCzgw8nY6CDgw8nY6Cjgw8nY6CTgw8nY6Czgw8na6CDgw8na6Cjgw8na6CTgw8na6Czgw8nZ6CDgw8nZ6Cjgw8nZ6CTgw8nZ6Czgw8nb6CDgw8nb6Cjgw8nb6CTgw8nb6Czgw8nYGCDgw8nYGCjgw8nYGCTgw8nYGCzgw8naGCDgw8naGCjgw8naGCTgw8naGCzgw8nZGCDgw8nZGCjgw8nZGCTgw8nZGCzgw8nbGCDgw8nbGCjgw8nbGCTgw8nbGCzgw8nYmCDgw8nYmCjgw8nYmCTgw8nYmCzgw8namCDgw8namCjgw8namCTgw8namCzgw8nZmCDgw8nZmCjgw8nZmCTgw8nZmCzgw8nbmCDgw8nbmCjgw8nbmWTggU6SALyZvB5kJyAvAXHnME8ccacwPxtxYzAvFnEjMB8RcOMwDwxwozP/B3BfM+8CcB4z3x1h3jPPGGGeM78XYVozrxJhGjOfDWDaM48IYJozfwdgVjNvAmAVcr8e1alynxTVKXJ/DtSlcl8E1CZyPx7lonIfFOUicf8O5J5x3wTkHfN/Gd018z8J3DBxf49gSx1U4psDnKT5L8D6K9xC8frDvwC36ZpuDU9xnn7eDnA7b7cTO9khoG/MtXw8F4vl9wOetX3F/CHh6GCcPZb7DNnCzzdtZ4H07iZW3E4Y/bH2wL6LvcR+XUL0LeftXTGftHudfSNi/Fgk4MPJ2nhFwYOTtLBZwYOTtPCvgwMjbWSLgwMjbeU7AgZG3s1TAgZG387yAAyNvZ5mAAyNv5wUBB0beTriAAyNv50UBB0beznIBB0bezksCDoy8nRUCDoy8nZcFHBh5OysFHBh5O68IODDydlYJODDydl4VcGDk7awWcGDk7bwm4MDI21kj4MDI21kr4MDI21kn4MDI23ldwIGRt/OGgAMjb2e9gAMjb+dNAQdG3s4GAQdG3s5GAQdG3s4mAQdG3s5mAQdG3s4WAQdG3s5WAQdG3s42AQdG3s5bAg6MvJ3tAg6MvJ23BRwYeTs7BBwYeTvvCDgw8nZ2Cjgw8nbeFXBg5O3sEnBg5O28J+DAyNvZLeDAyNt5X8CBkbezR8CBkbfzgYADI29nr4ADI2/nQwEHRt7OPgEHRt7ORwIOjLyd/QIOjLydAwIOjLydgwIOjLydjwUcGHk7hwQcGHk7nwg4MPJ2Dgs4MPJ2PhVwYOTtHBFwYOTtfCbgwMjbOSrgwMjb+dzCAZkiBX0xeTvITEBeAObKY5445khjfjDmxmJeKOZEYj4g5sJhHhjmQGH+D+a+YN4H5jxgvD/GumOcN8Y4Y3wvxrZiXCfGNGI8H8ayYRwXxjBh/A7GrmDcBsYs4Ho9rlXjOi2uUeL6HK5N4boMrkngfDzOReM8LM5B4vwbzj3hvAvOOeD7Nr5r4nsWvmPg+BrHljiuwjEFPk/xWYL3UbyH4PWDfQdu0TfbHBxkllSwzNtBToftdmJneyS0jWOWr4eC8fw+4PPWr7g/BDw9jJOHcsxhG7jZ5u184X07iZW3kxR/2PpgX0Tf4z4uoXqP8/avmM7aPc5/nLB/fWm5DdvXfMuUPl+rlN7v39rct01K++fzhMDzycgN+krAgZEbdFLAgZEb9LWAAyM36JSAAyM36BsBB0ZuUISAAyM36FsBB0Zu0GkBB0Zu0HcCDozcoDMCDozcoO8FHBi5QWcFHBi5QecEHBi5QecFHBi5QT8IODBygy4IODByg34UcGDkBl0UcGDkBv0k4MDIDbok4MDIDbos4MDIDboi4MDIDfpZwIGRG3RVwIGRG/SLgAMjN+iagAMjN+hXAQdGbtB1AQdGbtBvAg6M3KAbAg6M3KDfBRwYuUE3BRwYuUF/CDgwcoNuCTgwcoP+FHBg5AZFCjgwcoN86f/9DozcIL+AAyM3KImAAyM3KETAgZEbFCrgwMgNChNwYOQGJRVwYOQGJRNwYOQGJRdwYOQGpRBwYOQGpRRwYOQGpRJwYOQGpRZwYOQGpRFwYOQGpRVwYOQGpRNwYOQGpRdwYOQGZRBwYOQGZRRwYOQGZRJwYOQGZRZwYOQGZRFwYOQGZRVwYOQGZRNwYOQG3SXgwMgNyi7gwMgNulvAgZEblMPCAdkoD/hicoOQmYC8AMyVxzxxzJHG/GDMjcW8UMyJxHxAzIXDPDDMgcL8H8x9wbwPzHnAeH+Mdcc4b4xxxvhejG3FuE6MacR4PoxlwzgujGHC+B2MXcG4DYxZwPV6XKvGdVpco8T1OVybwnUZXJPA+Xici8Z5WJyDxPk3nHvCeRecc8D3bXzXxPcsfMfA8TWOLXFchWMKfJ7iswTvo3gPwesH+w7com9xsz285ABZ5Ifczmo54ZAb9KVFbtA9lq+HB+L5fcDnrV9xfwh4ehgn18XGIfbNNjcop/ftJFZuUDL8YeuDfRF9j/u4hOq9l7d/xXTW7nH+e9Mn/jZyCTgw8nYCAg6MvJ3cAg6MvJ37BBwYeTt5BBwYeTv3Czgw8nbyCjgw8nbyCTgw8nbyCzgw8nYKCDgw8nYKCjgw8nYeEHBg5O0UEnBg5O08KODAyNspLODAyNspIuDAyNspKuDAyNspJuDAyNspLuDAyNspIeDAyNspKeDAyNspJeDAyNspLeDAyNt5SMCBkbdTRsCBkbfzsIADI2+nrIADI2/nEQEHRt5OOQEHRt5OeQEHRt5OBQEHRt7OowIOjLydigIOjLydSgIOjLydygIOjLydKgIOjLydqgIOjLydxwQcGHk71QQcGHk7jws4MPJ2qgs4MPJ2agg4MPJ2ago4MPJ2nhBwYOTt1BJwYOTtPCngwMjbqS3gwMjbqSPgwMjbqSvgwMjbqSfgwMjbqS/gwMjbaSDgwMjbaSjgwMjbeUrAgZG300jAgZG387SAAyNvp7GAAyNvp4mAAyNvp6mAAyNvp5mAAyNvp7mAAyNvp4WAAyNvp6WAAyNvp5WAAyNvp7Vl3k4hX0zeDjITkBeAufKYJ4450pgfjLmxmBeKOZGYD4i5cJgHhjlQmP+DuS+Y94E5Dxjvj7HuGOeNMc4Y34uxrRjXiTGNGM+HsWwYx4UxTBi/g7ErGLeBMQu4Xo9r1bhOi2uUuD6Ha1O4LoNrEjgfj3PROA+Lc5A4/4ZzTzjvgnMO+L6N75r4noXvGDi+xrEljqtwTIHPU3yW4H0U7yF4/WDfgVv0zTYHB5kl5dPG3N9LPg9yOmy3EzvbI6FttLF8PRSK5/cBn7d+xf0h4OlhnDyUNg7bwM02b6et9+34LfJ2/BZ5O/6///DZ7bvoe9zHJVRvOwtX/NshUX/H9ziXfCuv922f3s4v+mb7/HcI/vP/1wN8/+x3QnePfu9yec+Lvm9CNh0d95XYj7PtX8uUZr9OafG5GXV/29dBJ8v3F5c62lnW0c6hjs68z4uYzto9jpIb1UXAgZEb1VXAgZEb1U3AgZEb1V3AgZEb1UPAgZEb1VPAgZEb1UvAgZEb1VvAgZEb1UfAgZEb1VfAgZEb1U/AgZEb1V/AgZEbNUDAgZEbNVDAgZEbNUjAgZEbNVjAgZEbNUTAgZEbNVTAgZEbNUzAgZEbNVzAgZEbNULAgZEbNVLAgZEbNUrAgZEbNVrAgZEbNUbAgZEbNVbAgZEbNU7AgZEbNV7AgZEbNUHAgZEbNVHAgZEbNUnAgZEbNVnAgZEbNUXAgZEbNVXAgZEbNU3AgZEbNV3AgZEbNUPAgZEbNVPAgZEbNUvAgZEbNVvAgZEbNUfAgZEbNVfAgZEbNU/AgZEbNV/AgZEbtUDAgZEbtVDAgZEbtUjAgZEb9YyAAyM3arGAAyM36lkBB0Zu1BIBB0Zu1HMCDozcqKUCDozcqOcFHBi5UcsEHBi5US8IODByo8IFHBi5US8KODByo5YLODByo14ScGDkRq0QcGDkRr0s4MDIjVop4MDIjXrFMsfC9t9HXkg7h5yZzxM5/wT5MB3S22fQrLLIe7GtIW5fEvr3kRHybBrv90dGyCNp7Z+LVy32EbPL+pL5Yrbxjw7E2W5C/S3r/b7/2N7q9HewwdXp7R/3mkVAl2u/Xksf84uAz/vN5QXb0eEF+2Uiv2BPpPsr1Mm2Xycs+xV9sw2CWmPxxmBh5T9xh0FgCfX7Ed9f+5btm88jFttYm8gfMrBf67BvrHMMqFr3fxBmttbiPeN1UpjZG8Hfh2/fXELJLAK5bn/4d3LYX9anT/w6OlvW0dmhjjcT+fWIfq1yOLja8C86uMJz8arlc/Gqw3Ox0fLgKrr9jw7E2W5C/bU5uLqT7ZTxcbbzxh3u0wk9T+V9f72f2u5HIRb3Le+zt/LH/SHg6WE+/9pEBivn++tDzhbM5oNxk+WLJ7kvpj//W20J9dHrizYyMvKb+H4f8CW8DfwRu6+bo74AbEnv++fRyOaod53Yv9sSTwfjHg0k1IGN3p6IeeaJ8G+2eNK2WOLZ7njYgTY7flty+Qq+xPIreBeHmM6t6RO/jucs6+jqUMc2Qh1LLevo5lDHW4Q6nreso7tDHdsJdSyzrKOHQx1vE+p4wbKOng517CDUEW5ZRy+HOt4h1PGiZR29HerYSahjuWUdfRzqeJdQx0uWdfR1qGMXoY4VlnX0c6jjPUIdL1vW0d+hjt2EOlZa1jHAoY73CXW8YlnHQIc69hDqWGVZxyCHOj4g1PGqZR2DHerYS6hjtWUdQxzq+JBQx2uWdQx1qGMfoY41lnUMc6jjI0Iday3rGO5Qx35CHess6xjhUMcBQh2vW9Yx0qGOg4Q63rCsY5RDHR8T6lhvWcdohzoOEep407KOMQ51fEKoY4NlHWMd6jhMqGOjZR3jHOr4lFDHJss6xjvUcYRQx2bLOiY41PEZoY4tlnVMdKjjKKGOrZZ1THKo43NCHdss65jsUMcxQh1vWdYxxaGOLwh1bLesY6pDHccJdbxtWcc0hzq+JNSxw7KO6Q51nCDU8Y5lHTMc6viKUMdOyzpmOtRxklDHu5Z1zHKo42tCHbss65jtUMcpQh3vWdYxx6GObwh17LasY65DHRGEOt63rGOeQx3fEurYY1nHfIc6ThPq+MCyjgUOdXxHqGOvZR0LHeo4Q6jjQ8s6FjnU8T2hjn2WdTzjUMdZQh0fWdax2KGOc4Q69lvW8axDHecJdRywrGOJQx0/EOo4aFnHcw51XCDU8bFlHUsd6viRUMchyzqed6jjIqGOTyzrWOZQx0+EOg5b1vGCQx2XCHV8allHuEMdlwl1HLGs40WHOq4Q6vjMso7lDnX8TKjjqGUdLznUcZVQx+eWdaxwqOMXQh3HLOt42aGOa4Q6vrCsY6VDHb8S6jhuWccrDnVcJ9TxpWUdqxzq+I1QxwnLOl51qOMGoY6vLOtY7VDH74Q6TlrW8ZpDHTcJdXxtWccahzr+INRxyrKOtQ513CLU8Y1lHesc6viTUEeEZR2vO9QRSajjW8s63nCow5ch8es4bVnHeoc6/IQ6vrOs402HOpIQ6jhjWccGhzpCCHV8b1nHRoc6Qgl1nLWsY5NDHWGEOs5Z1rHZoY6khDrOW9axxaGOZIQ6frCsY6tDHckJdVywrGObQx0pCHX8aFnHWw51pCTUcdGyju0OdaQi1PGTZR1vO9SRmlDHJcs6djjUkYZQx2XLOt5xqCMtoY4rlnXsdKgjHaGOny3reNehjvSEOq5a1rHLoY4MhDp+sazjPYc6MhLquGZZx26HOjIR6vjVso73HerITKjjumUdexzqyEKo4zfLOj5wqCMroY4blnXsdagjG6GO3y3r+NChjrsIddy0rGOfQx3ZCXX8YVnHRw513E2o45ZlHfsd6shBqONPyzoOONRxD6GOSMs6DjrUkZNQhy+tXR0fO9RxL6EOv2UdhxzqyEWoI4llHZ841BEg1BFiWcdhhzpyE+oItazjU4c67iPUEWZZxxGHOvIQ6khqWcdnDnXcT6gjmWUdRx3qyEuoI7llHZ871JGPUEcKyzqOOdSRn1BHSss6vnCoowChjlSWdRx3qKMgoY7UlnV86VDHA4Q60ljWccKhjkKEOtJa1vGVQx0PEupIZ1nHSYc6ChPqSG9Zx9cOdRQh1JHBso5TDnUUJdSR0bKObxzqKEaoI5NlHREOdRQn1JHZso5vHeooQagji2Udpx3qKEmoI6tlHd851FGKUEc2yzrOONRRmlDHXZZ1fO9Qx0OEOrJb1nHWoY4yhDrutqzjnEMdDxPqyGFZx3mHOsoS6rjHso4fHOp4hFBHTss6LjjUUY5Qx72WdfzoUEd5Qh25LOu46FBHBUIdAcs6fnKo41FCHbkt67jkUEdFQh33WdZx2aGOSoQ68ljWccWhjsqEOu63rONnhzqqEOrIa1nHVYc6qhLqyGdZxy8OdTxGqCO/ZR3XHOqoRqijgGUdvzrU8TihjoKWdVx3qKM6oY4HLOv4zaGOGoQ6ClnWccOhjpqEOh60rON3hzqeINRR2LKOmw511CLUUcSyjj8c6niSUEdRyzpuOdRRm1BHMcs6/nSoow6hjuKWdUQ61FGXUEcJyzp8qezrqEeoo6RlHX6HOuoT6ihlWUcShzoaEOoobVlHiEMdDQl1PGRZR6hDHU8R6ihjWUeYQx2NCHU8bFlHUoc6nibUUdayjmQOdTS2qAPrwz9oWnjUf2PNcazXjbWusU401ljG+sRY2xfr4mJNWazHirVMsQ4o1tDE+pNYuxHrHmLNQKy3h7XqsM4b1kjD+mJYmwvrWmFNKKynhLWIsI7PZ+n/Wj8Ga69g3RKs+YH1MrDWBNZpwBoHWB8A2frIpUemO/LQkSWOHG5kWCP/GdnJyB1GZi/ybpEVi5xVZJQi3xPZmMiVRCYj8gyRBYgcPWTQIb8N2WfIDUPmFvKqkPWEnCRkDCGfB9k2yIVBpgrySJDlgRwMZEggfwHZBZj3jznzmG+OudqY54w5wphfi7mpmNeJOZGYT4i5eJjHhjlgmD+FuUeYt4M5L5gvgrkWmKeAMf4YH4+x5bfHZWf4azwwxtJiHCrGcGL8I8YOYtwdxqxhvBfGSmGcEcboYHwLxoZgXAXGJOB6Pq6F4zoyrsHi+iWu/eG6Ga454XoNrnXgOgHOseP8NM7t4rwozinifBzOZeE8EM6h4PwDvrvjey++M+L7Fr6r4Dgfx8g4vsSxGY5rcEyAz1N8FuF9HO+BeP/Aaw/77d87f5x9PoFb2Frz3GxMb/9aaWLxWkkS9VqJewv47G6Wtflt+ui6jaaJ/N6H/mxK7/15KWfaWofns5nle19h33/vff+99/273vuSWO7zeJ1YvH79uD9eJ7av4djbSKhPzTPYva8Wjuf3AZ+3fsX9IeDpYZz31eaW23D93LN9LtdavBe34D2XMR20e5y/BeG5bCng0CA08bfRSsChGcGhtcLrguDQRsChFcGhrYBDG4JDOwGHdgSH9gIOHQgOHQQcOhEcOgo4dCE4dBJw6EZw6Czg0IPg0EXAoRfBoauAQx+CQzcBh34Eh+4CDgMIDj0EHAYRHHoKOAwhOPQScBhGcOgt4DCC4NBHwGEUwaGvgMMYgkM/AYdxBIf+Ag4TCA4DBBwmERwGCjhMITgMEnCYRnAYLOAwg+AwRMBhFsFhqIDDHILDMAGHeQSH4QIOCwgOIwQcFhEcRgo4LCY4jBJwWEJwGC3gsJTgMEbAYRnBYayAQzjBYZyAw3KCw3gBhxUEhwkCDisJDhMFHFYRHCYJOKwmOEwWcFhDcJgi4LCO4DBVwOFASOJvY5qAw3rC/jBdwGEDwWGGgMMmgsNMAYctBIdZAg7bCA6zBRy2ExzmCDjsIDjMFXDYSXCYJ+Cwi+AwX8BhN8FhgYDDHoLDQgGHvQSHRQIO+wgOzwg47Cc4LBZwOEhweFbA4RDBYYmAw2GCw3MCDkcIDksFHI4SHJ4XcDhGcFgm4HCc4PCCgMMJgkO4gMNJgsOLAg6nCA7LBRwiCA4vCTicJjisEHA4Q3B4WcDhLMFhpYDDeYLDKwIOFwgOqwQcLhIcXhVwuERwWC3gcIXg8JqAw1WCwxoBh2sEh7UCDtcJDusEHG4QHF4XcLhJcHhDwOEWwWG9gEMkweFNAQd/WOJvY4OAQwjBYaOAQxjBYZOAQzKCw2YBhxQEhy0CDqkIDlsFHNIQHLYJOKQjOLwl4JCB4LBdwCETweFtAYcsBIcdAg7ZCA7vCDhkJzjsFHDIQXB4V8AhJ8Fhl4BDLoLDewIOuQkOuwUc8hAc3hdwyEtw2CPgkJ/g8IGAQ0GCw14Bh0IEhw8FHAoTHPYJOBQlOHwk4FCc4LBfwKEkweGAgENpgsNBAYcyBIePBRzKEhwOCTiUIzh8IuBQgeBwWMChIsHhUwGHygSHIwIOVQkOnwk4VCM4HBVwqE5w+FzAoSbB4ZiAQy2CwxcCDrUJDscFHOoSHL4UcKhPcDgh4NCQ4PCVgEMjgsNJAYfGBIevBRyaEhxOCTg0Jzh8I+DQkuAQIeDQmuDwrYBDW4LDaQGH9gSH7wQcOhIczgg4dCY4fC/g0JXgcFbAoTvB4ZyAQ0+Cw3kBh94Ehx8EHPoSHC4IOPQnOPwo4DCQ4HBRwGEwweEnAYehBIdLAg7DCQ6XBRxGEhyuCDiMJjj8LOAwluBwVcBhPMHhFwGHiQSHawIOkwkOvwo4TCU4XBdwmE5w+E3AYSbB4YaAw2yCw+8CDnMJDjcFHOYTHP4QcFhIcLhl4RBiWhHTwqP+u5V5bGvT2pjW1rR2prU3rYNpHU3rZFpn07qY1tW0bqZ1N62HaT1N62Vab9P6mNbXtH6m9TdtgGkDTRtk2mDThpg21LRhpg03bYRpI00bZdpo08aYNta0caZhfXqszY51ybEmN9ajxlrMWIcYa/Bi/VmsvYp1R7HmJtabxFqLWGcQa+xhfTmsrYZ1xbCmFtaTwlpKWEcIa+hg/RisnYJ1Q7BmBtaLwFoJWCcAGfnIh0c2OnLBkYmNPGhkISMHGBm4yH9F9ilyP5F5ibxHZB0i5w8Zd8h3Q7YZcr2QaYU8J2QZIccHGTbIb0F2CXI7kFmBvAZkFWCePuaoY3425iZjXi7mpGI+JuYiYh4e5qBh/hXmHmHeDeacYL4F5hpgnD3GmGN8NcYWY1wtxpRiPCXGEmIcHcaQYfwUxg5h3AzGjGC8BMYK4Do5rhHj+iiuDeK6GK4J4XoIrgXgPDjOAeP8J8794bwXzvngfAe+6+N7Lr7j4fsNju1xXItjOhzP4LMcn2N4D8f7F1672G+jb0ks9/my5o+16WPuX6xDnX4RxcMLbq1XbfPYsU1aFih5rsbQbX3mVo24Nv9y1H1bZrDfDh7jdRt/ZrB7PyoSz+8DPm/9ivtDwNPDfP4WGRL//ehPy21Y/vtheC43prd+LpPY7C+RvOfy75utcyThufRlvLPnMiFnfB6Vj/o79uMS2kyIxX3LW/THn/Hf/7w3IGS1JhFwaEZwCBFwaEFwCBVwaEVwCBNwaENwSCrg0I7gkEzAoQPBIbmAQyeCQwoBhy4Eh5QCDt0IDqkEHHoQHFILOPQiOKQRcOhDcEgr4NCP4JBOwGEAwSG9gMMggkMGAYchBIeMAg7DCA6ZBBxGEBwyCziMIjhkEXAYQ3DIKuAwjuCQTcBhAsHhLgGHSQSH7AIOUwgOdws4TCM45BBwmEFwuEfAYRbBIaeAwxyCw70CDvMIDrkEHBYQHAICDosIDrkFHBYTHO4TcFhCcMgj4LCU4HC/gMMygkNeAYdwgkM+AYflBIf8Ag4rCA4FBBxWEhwKCjisIjg8IOCwmuBQSMBhDcHhQQGHdQSHwgIOB0ISfxtFBBzWE/aHogIOGwgOxQQcNhEcigs4bCE4lBBw2EZwKCngsJ3gUErAYQfBobSAw06Cw0MCDrsIDmUEHHYTHB4WcNhDcCgr4LCX4PCIgMM+gkM5AYf9BIfyAg4HCQ4VBBwOERweFXA4THCoKOBwhOBQScDhKMGhsoDDMYJDFQGH4wSHqgIOJwgOjwk4nCQ4VBNwOEVweFzAIYLgUF3A4TTBoYaAwxmCQ00Bh7MEhycEHM4THGoJOFwgODwp4HCR4FBbwOESwaGOgMMVgkNdAYerBId6Ag7XCA71BRyuExwaCDjcIDg0FHC4SXB4SsDhFsGhkYBDJMHhaQEHPyH7v7GAQwjBoYmAQxjBoamAQzKCQzMBhxQEh+YCDqkIDi0EHNIQHFoKOKQjOLQScMhAcGgt4JCJ4NBGwCELwaGtgEM2gkM7AYfsBIf2Ag45CA4dBBxyEhw6CjjkIjh0EnDITXDoLOCQh+DQRcAhL8Ghq4BDfoJDNwGHggSH7gIOhQgOPQQcChMcego4FCU49BJwKE5w6C3gUJLg0EfAoTTBoa+AQxmCQz8Bh7IEh/4CDuUIDgMEHCoQHAYKOFQkOAwScKhMcBgs4FCV4DBEwKEawWGogEN1gsMwAYeaBIfhAg61CA4jBBxqExxGCjjUJTiMEnCoT3AYLeDQkOAwRsChEcFhrIBDY4LDOAGHpgSH8QIOzQkOEwQcWhIcJgo4tCY4TBJwaEtwmCzg0J7gMEXAoSPBYaqAQ2eCwzQBh64Eh+kCDt0JDjMEHHoSHGYKOPQmOMwScOhLcJgt4NCf4DBHwGEgwWGugMNggsM8AYehBIf5Ag7DCQ4LBBxGEhwWCjiMJjgsEnAYS3B4RsBhPMFhsYDDRILDswIOkwkOSwQcphIcnhNwmE5wWCrgMJPg8LyAw2yCwzIBh7kEhxcEHOYTHMIFHBYSHF60cAgxrahp4VH/ncQ8NsS0UNPCTEtqWjLTkpuWwrSUpqUyLbVpaUxLa1o609KblsG0jKZlMi2zaVlMy2paNtPuMi27aXeblsO0e0zLadq9puVCf03Lbdp9puUx7X7T8pqWzzSsT4+12bEuOdbkxnrUWIsZ6xBjDV6sP4u1V7HuKNbcxHqTWGsR6wxijT2sL4e11bCuGNbUwnpSWEsJ6whhDR2sH4O1U7BuCNbMwHoRWCsB6wQgIx/58MhGRy44MrGRB40sZOQAIwMX+a/IPkXuJzIvkfeIrEPk/CHjDvluyDZDrhcyrZDnhCwj5Pggwwb5LcguQW4HMiuQ14CsAszTxxx1zM/G3GTMy8WcVMzHxFxEzMPDHDTMv8LcI8y7wZwTzLfAXAOMs8cYc4yvxthijKvFmFKMp8RYQoyjwxgyjJ/C2CGMm8GYEYyXwFgBXCfHNWJcH8W1QVwXwzUhXA/BtQCcB8c5YJz/xLk/nPfCOR+c78B3fXzPxXc8fL/BsT2Oa3FMh+MZfJbjcwzv4Xj/wmsX+230LUmcfb5Yhzr9IoqHF9xar9rmsWObtCxQ8lyNodv6zK0acW3+ZfP/16Y3f2T0/hrB/f0Z/+d2Enpc7G0k1KflGe3ej4rG8/uAz2O/4vwQ8PQwnz8yQ+K/H9k4OPz7YXguN6a3fi5D8Ljo+yb0XL7Eey7/vtk6v5Qx8bexQsChASG79GUBh2YEh5UCDi0IDq8IOLQiOKwScGhDcHhVwKEdwWG1gEMHgsNrAg6dCA5rBBy6EBzWCjh0IzisE3DoQXB4XcChF8HhDQGHPgSH9QIO/QgObwo4DCA4bBBwGERw2CjgMITgsEnAYRjBYbOAwwiCwxYBh1EEh60CDmMIDtsEHMYRHN4ScJhAcNgu4DCJ4PC2gMMUgsMOAYdpBId3BBxmEBx2CjjMIji8K+Awh+CwS8BhHsHhPQGHBQSH3QIOiwgO7ws4LCY47BFwWEJw+EDAYSnBYa+AwzKCw4cCDuEEh30CDssJDh8JOKwgOOwXcFhJcDgg4LCK4HBQwGE1weFjAYc1BIdDAg7rCA6fCDgcCEn8bRwWcFhP2B8+FXDYQHA4IuCwieDwmYDDFoLDUQGHbQSHzwUcthMcjgk47CA4fCHgsJPgcFzAYRfB4UsBh90EhxMCDnsIDl8JOOwlOJwUcNhHcPhawGE/weGUgMNBgsM3Ag6HCA4RAg6HCQ7fCjgcITicFnA4SnD4TsDhGMHhjIDDcYLD9wIOJwgOZwUcThIczgk4nCI4nBdwiCA4/CDgcJrgcEHA4QzB4UcBh7MEh4sCDucJDj8JOFwgOFwScLhIcLgs4HCJ4HBFwOEKweFnAYerBIerAg7XCA6/CDhcJzhcE3C4QXD4VcDhJsHhuoDDLYLDbwIOkQSHGwIOfkIW/u8CDiEEh5sCDmEEhz8EHJIRHG4JOKQgOPwp4JCK4BAp4JCG4ODL9O93SEdw8As4ZCA4JBFwyERwCBFwyEJwCBVwyEZwCBNwyE5wSCrgkIPgkEzAISfBIbmAQy6CQwoBh9wEh5QCDnkIDqkEHPISHFILOOQnOKQRcChIcEgr4FCI4JBOwKEwwSG9gENRgkMGAYfiBIeMAg4lCQ6ZBBxKExwyCziUIThkEXAoS3DIKuBQjuCQTcChAsHhLgGHigSH7AIOlQkOdws4VCU45BBwqEZwuEfAoTrBIaeAQ02Cw70CDrUIDrkEHGoTHAICDnUJDrkFHOoTHO4TcGhIcMgj4NCI4HC/gENjgkNeAYemBId8Ag7NCQ75BRxaEhwKCDi0JjgUFHBoS3B4QMChPcGhkIBDR4LDgwIOnQkOhQUcuhIcigg4dCc4FBVw6ElwKCbg0JvgUFzAoS/BoYSAQ3+CQ0kBh4EEh1ICDoMJDqUFHIYSHB4ScBhOcCgj4DCS4PCwgMNogkNZAYexBIdHBBzGExzKCThMJDiUF3CYTHCoIOAwleDwqIDDdIJDRQGHmQSHSgIOswkOlQUc5hIcqgg4zCc4VBVwWEhweMzCIcS0YqaFR/33yxl9vpWmvWLaKtNeNW21aa+Ztsa0taatM+11094wbb1pb5q2wbSNpm0ybbNpW0zbato2094ybbtpb5u2w7R3TNtp2rum7TLtPdN2m/a+aXtM+8C0vaZ9aNo+07A+PdZmx7rkWJMb61FjLWasQ4w1eLH+LNZexbqjWHMT601irUWsM4g19rC+HNZWw7piWFML60lhLSWsI4Q1dLB+DNZOwbohWDMD60VgrQSsE4CMfOTDIxsdueDIxEYeNLKQkQOMDFzkvyL7FLmfyLxE3iOyDpHzh4w75Lsh2wy5Xsi0Qp4TsoyQ44MMG+S3ILsEuR3IrEBeA7IKME8fc9QxPxtzkzEvF3NSMR8TcxExDw9z0DD/CnOPMO8Gc04w3wJzDTDOHmPMMb4aY4sxrhZjSjGe8vZYQtMwhgzjpzB2CONmMGYE4yUwVgDXyXGNGNdHcW0Q18VwTQjXQ3AtAOfBcQ4Y5z9x7g/nvXDOB+c78F0f33PxHQ/fb3Bsj+NaHNPheAaf5fgcw3s43r/w2sV+G31LYrnPlzF/rE0fc/9iHer0iygeXnBrvWqbx45t0rJAyXM1hm7rM7dqxLX5l6PuuyKj/XZWZPS+jWqW70fF4vl9wOetX3F/CHh6mM//UsbEfz+ycXD498PwXG5Mb/1chtrsL4/znsu/b7bOj2dK/G1UF3BoQMgurSHg0IzgUFPAoQXB4QkBh1YEh1oCDm0IDk8KOLQjONQWcOhAcKgj4NCJ4FBXwKELwaGegEM3gkN9AYceBIcGAg69CA4NBRz6EByeEnDoR3BoJOAwgODwtIDDIIJDYwGHIQSHJgIOwwgOTQUcRhAcmgk4jCI4NBdwGENwaCHgMI7g0FLAYQLBoZWAwySCQ2sBhykEhzYCDtMIDm0FHGYQHNoJOMwiOLQXcJhDcOgg4DCP4NBRwGEBwaGTgMMigkNnAYfFBIcuAg5LCA5dBRyWEhy6CTgsIzh0F3AIJzj0EHBYTnDoKeCwguDQS8BhJcGht4DDKoJDHwGH1QSHvgIOawgO/QQc1hEc+gs4HAhJ/G0MEHBYT9gfBgo4bCA4DBJw2ERwGCzgsIXgMETAYRvBYaiAw3aCwzABhx0Eh+ECDjsJDiMEHHYRHEYKOOwmOIwScNhDcBgt4LCX4DBGwGEfwWGsgMN+gsM4AYeDBIfxAg6HCA4TBBwOExwmCjgcIThMEnA4SnCYLOBwjOAwRcDhOMFhqoDDCYLDNAGHkwSH6QIOpwgOMwQcIggOMwUcThMcZgk4nCE4zBZwOEtwmCPgcJ7gMFfA4QLBYZ6Aw0WCw3wBh0sEhwUCDlcIDgsFHK4SHBYJOFwjODwj4HCd4LBYwOEGweFZAYebBIclAg63CA7PCThEEhyWCjj4CVn4zws4hBAclgk4hBEcXhBwSEZwCBdwSEFweFHAIRXBYbmAQxqCw0sCDukIDisEHDIQHF4WcMhEcFgp4JCF4PCKgEM2gsMqAYfsBIdXBRxyEBxWCzjkJDi8JuCQi+CwRsAhN8FhrYBDHoLDOgGHvASH1wUc8hMc3hBwKEhwWC/gUIjg8KaAQ2GCwwYBh6IEh40CDsUJDpsEHEoSHDYLOJQmOGwRcChDcNgq4FCW4LBNwKEcweEtAYcKBIftAg4VCQ5vCzhUJjjsEHCoSnB4R8ChGsFhp4BDdYLDuwIONQkOuwQcahEc3hNwqE1w2C3gUJfg8L6AQ32Cwx4Bh4YEhw8EHBoRHPYKODQmOHwo4NCU4LBPwKE5weEjAYeWBIf9Ag6tCQ4HBBzaEhwOCji0Jzh8LODQkeBwSMChM8HhEwGHrgSHwwIO3QkOnwo49CQ4HBFw6E1w+EzAoS/B4aiAQ3+Cw+cCDgMJDscEHAYTHL4QcBhKcDgu4DCc4PClgMNIgsMJAYfRBIevBBzGEhxOCjiMJzh8LeAwkeBwSsBhMsHhGwGHqQSHCAGH6QSHbwUcZhIcTgs4zCY4fCfgMJfgcEbAYT7B4XsBh4UEh7MWDiGmFTctPOq/a5jH1jTtCdNqmfakabVNq2NaXdPqmVbftAamNTTtKdMamfa0aY1Na2JaU9OamdbctBamtTStlWmtTWtjWlvT2pnW3rQOpnU0rZNpnU3rYlpX07qZ1t20HqZhfXqszY51ybEmN9ajxlrMWIcYa/Bi/VmsvYp1R7HmJtabxFqLWGcQa+xhfTmsrYZ1xbCmFtaTwlpKWEcIa+hg/RisnYJ1Q7BmBtaLwFoJWCcAGfnIh0c2OnLBkYmNPGhkISMHGBm4yH9F9ilyP5F5ibxHZB0i5w8Zd8h3Q7YZcr2QaYU8J2QZIccHGTbIb0F2CXI7kFmBvAZkFWCePuaoY3425iZjXi7mpGI+JuYiYh4e5qBh/hXmHmHeDeacYL4F5hpgnD3GmGN8NcYWY1wtxpRiPCXGEmIcHcaQYfwUxg5h3AzGjGC8BMYK4Do5rhHj+iiuDeK6GK4J4XoIrgXgPDjOAeP8J8794bwXzvngfAe+6+N7Lr7j4fsNju1xXItjOhzP4LMcn2N4D8f7F1672G+jb0ks9/m16Y1N+pj7F+tQp19E8fCCW+tV2zx2bJOWBUqeqzF0W5+5VSOuzb9s/j/uXz2T/XbwGK/bOJfJ7v2oeDy/D/i89SvuDwFPD/P5H8+U+O9H5yy3Yfvv47ncmN5tn4m+b0LP5XmLGtD/kKi/ox93h8/vP/5ti8f5GxByPH/g7ecxG7V7nL8ZweGCgEMLgsOPAg6tCA4XBRzaEBx+EnBoR3C4JODQgeBwWcChE8HhioBDF4LDzwIO3QgOVwUcehAcfhFw6EVwuCbg0Ifg8KuAQz+Cw3UBhwEEh98EHAYRHG4IOAwhOPwu4DCM4HBTwGEEweEPAYdRBIdbAg5jCA5/CjiMIzhECjhMIDj4Mv/7HSYRHPwCDlMIDkkEHKYRHEIEHGYQHEIFHGYRHMIEHOYQHJIKOMwjOCQTcFhAcEgu4LCI4JBCwGExwSGlgMMSgkMqAYelBIfUAg7LCA5pBBzCCQ5pBRyWExzSCTisIDikF3BYSXDIIOCwiuCQUcBhNcEhk4DDGoJDZgGHdQSHLAIOB0ISfxtZBRzWE/aHbAIOGwgOdwk4bCI4ZBdw2EJwuFvAYRvBIYeAw3aCwz0CDjsIDjkFHHYSHO4VcNhFcMgl4LCb4BAQcNhDcMgt4LCX4HCfgMM+gkMeAYf9BIf7BRwOEhzyCjgcIjjkE3A4THDIL+BwhOBQQMDhKMGhoIDDMYLDAwIOxwkOhQQcThAcHhRwOElwKCzgcIrgUETAIYLgUFTA4TTBoZiAwxmCQ3EBh7MEhxICDucJDiUFHC4QHEoJOFwkOJQWcLhEcHhIwOEKwaGMgMNVgsPDAg7XCA5lBRyuExweEXC4QXAoJ+Bwk+BQXsDhFsGhgoBDJMHhUQEHPyEXvqKAQwjBoZKAQxjBobKAQzKCQxUBhxQEh6oCDqkIDo8JOKQhOFQTcEhHcHhcwCEDwaG6gEMmgkMNAYcsBIeaAg7ZCA5PCDhkJzjUEnDIQXB4UsAhJ8GhtoBDLoJDHQGH3ASHugIOeQgO9QQc8hIc6gs45Cc4NBBwKEhwaCjgUIjg8JSAQ2GCQyMBh6IEh6cFHIoTHBoLOJQkODQRcChNcGgq4FCG4NBMwKEswaG5gEM5gkMLAYcKBIeWAg4VCQ6tBBwqExxaCzhUJTi0EXCoRnBoK+BQneDQTsChJsGhvYBDLYJDBwGH2gSHjgIOdQkOnQQc6hMcOgs4NCQ4dBFwaERw6Crg0Jjg0E3AoSnBobuAQ3OCQw8Bh5YEh54CDq0JDr0EHNoSHHoLOLQnOPQRcOhIcOgr4NCZ4NBPwKErwaG/gEN3gsMAAYeeBIeBAg69CQ6DBBz6EhwGCzj0JzgMEXAYSHAYKuAwmOAwTMBhKMFhuIDDcILDCAGHkQSHkQIOowkOowQcxhIcRgs4jCc4jBFwmEhwGCvgMJngME7AYSrBYbyAw3SCwwQBh5kEh4kCDrMJDpMEHOYSHCYLOMwnOEwRcFhIcJia2W4bSSz//bXpfb6N6b3f//Wo+8eto1iHOv0iiocX3Fqv2uaxY5u0LFDyXI2h2/rMrRpxbf5l8/+nWdZh6/SI+eM1068Qy349YnHf19J7v+907/X6//7D5/0x5aK24bN7nC/UtLCoFm9HLPpQ1me//7ts52EfZztlfIn/Wltn+Vp7I33MLwI++5utgT+j3ftu9G1G1L44M3PMNu0PPC3eJPBvh0T9PSPqcdi5k8fpmMuTtMHySdpg+SRFRkb+Ft/vA76Et4c/Ytc3Kwp+dmbfP1FmRT0TsX83Oxaw7ZMTDWP7zl88V+K+87/u2K8Slv2KvoV63848sx3/rMze+zTb4lPDwtXvtdboHdPWEi/cWQ6fRrjZvkDLpfX5uli8QCuZ+7d32D/mZE78Orpa1FHZsY65hDq6WdRRxbGOeYQ6ulvUUdWxjvmEOnpY1PGYYx0LCHX0tKijmmMdCwl19LKo43HHOhYR6uhtUUd1xzqeIdTRx6KOGo51LCbU0deijpqOdTxLqKOfRR1PONaxhFBHf4s6ajnW8RyhjgEWdTzpWMdSQh0DLeqo7VjH84Q6BlnUUcexjmWEOgZb1FHXsY4XCHUMsaijnmMd4YQ6hlrUUd+xjhcJdQyzqKOBYx3LCXUMt6ijoWMdLxHqGGFRx1OOdawg1DHSoo5GjnW8TKhjlEUdTzvWsZJQx2iLOho71vEKoY4xFnU0caxjFaGOsRZ1NHWs41VCHeMs6mjmWMdqQh3jLepo7ljHa4Q6JljU0cKxjjWEOiZa1NHSsY61hDomWdTRyrGOdYQ6JlvU0dqxjtcJdUyxqKONYx1vEOqYalFHW8c61hPqmGZRRzvHOt4k1DHdoo72jnVsINQxw6KODo51bCTUMdOijo6OdWwi1DHLoo5OjnVsJtQx26KOzo51bCHUMceiji6OdWwl1DHXoo6ujnVsI9Qxz6KObo51vEWoY75FHd0d69hOqGOBRR09HOt4m1DHQos6ejrWsYNQxyKLOno51vEOoY5nLOro7VjHTkIdiy3q6ONYx7uEOp61qKOvYx27CHUssaijn2Md7xHqeM6ijv6Odewm1LHUoo4BjnW8T6jjeYs6BjrWsYdQxzKLOgY51vEBoY4XLOoY7FjHXkId4RZ1DHGs40NCHS9a1DHUsY59hDqWW9QxzLGOjwh1vGRRx3DHOvYT6lhhUccIxzoOEOp42aKOkY51HCTUsdKijlGOdXxMqOMVizpGO9ZxyKIOzEsqYVqlqP/GnAvMV8BYf4yTxxhzjM/G2GaMC8aYWoxHxVhOjIPEGEKMv8PYNYz7wpgpjDfCWB2Mc8EYEYyvwNgEXNfHNXFcT8a1WFzHxDVAXD/DtSdct8E1D1wvwLl2nKfGOV6cH8W5RZyXwzktnA/CuRSch8B3eHz/xXdHfO/CdxYc7+NYGceZOEbD8Q2ODfC5is8kvJ/jvRDvI3gNYv/Fc38oc/w+NvafeLdPbjF/KHmJRJ7DhflD6LvtvnbYe723Xy8l4vl9wGd3s63Npo+u2/jU8jVX0vffay7ua872/RTPUewJq17myOF5st3OpxbbOGL5eigZz+8DPm/9ivtDwNPDOK+HIw7bwM32/faz4L/f+v/+w2f3fvuZw/vtUd7+FdNZu8f5jxL2r88FHBqEJv42jgk4NCM4fCHg0ILgcFzAoRXB4UsBhzYEhxMCDu0IDl8JOHQgOJwUcOhEcPhawKELweGUgEM3gsM3Ag49CA4RAg69CA7fCjj0ITicFnDoR3D4TsBhAMHhjIDDIILD9wIOQwgOZwUchhEczgk4jCA4nBdwGEVw+EHAYQzB4YKAwziCw48CDhMIDhcFHCYRHH4ScJhCcLgk4DCN4HBZwGEGweGKgMMsgsPPAg5zCA5XBRzmERx+EXBYQHC4JuCwiODwq4DDYoLDdQGHJQSH3wQclhIcbgg4LCM4/C7gEE5wuCngsJzg8IeAwwqCwy0Bh5UEhz8FHFYRHCIFHFYTHHxZ/v0OawgOfgGHdQSHJAIOB0ISfxshAg7rCftDqIDDBoJDmIDDJoJDUgGHLQSHZAIO2wgOyQUcthMcUgg47CA4pBRw2ElwSCXgsIvgkFrAYTfBIY2Awx6CQ1oBh70Eh3QCDvsIDukFHPYTHDIIOBwkOGQUcDhEcMgk4HCY4JBZwOEIwSGLgMNRgkNWCwdkipTyxeTtIDMBeQGYK4954pgjjfnBmBuLeaGYE4n5gJgLh3lgmAOF+T+Y+4J5H5jzgPH+GOuOcd4Y44zxvRjbinGdGNOI8XwYy4ZxXBjDhPE7GLuCcRsYs4Dr9bhWjeu0uEaJ63O4NoXrMrgmgfPxOBeN87A4B4nzbzj3hPMuOOeA79v4ronvWfiOgeNrHFviuArHFPg8xWcJ3kfxHoLXD/YduEXfbHNwyvrs83Y+d8jb+dxiG9ksXw+l4vl9wOetX744PwR8nm6UPBQbh9g327ydu7xvJ7Hydm7vTrY+2BfR97iPS6je7Lz9K6azdo/zZ8+S+Nu4W8CBkbeTQ8CBkbdzj4ADI28np4ADI2/nXgEHRt5OLgEHRt5OQMCBkbeTW8CBkbdzn4ADI28nj4ADI2/nfgEHRt5OXgEHRt5OPgEHRt5OfgEHRt5OAQEHRt5OQQEHRt7OAwIOjLydQgIOjLydBwUcGHk7hQUcGHk7RQQcGHk7RQUcGHk7xQQcGHk7xQUcGHk7JQQcGHk7JQUcGHk7pQQcGHk7pQUcGHk7Dwk4MPJ2ygg4MPJ2HhZwYOTtlBVwYOTtPCLgwMjbKSfgwMjbKS/gwMjbqSDgwMjbeVTAgZG3U1HAgZG3U0nAgZG3U1nAgZG3U0XAgZG3U1XAgZG385iAAyNvp5qAAyNv53EBB0beTnUBB0beTg0BB0beTk0BB0bezhMCDoy8nVoCDoy8nScFHBh5O7UFHBh5O3UEHBh5O3UFHBh5O/UEHBh5O/UFHBh5Ow0EHBh5Ow0FHBh5O08JODDydhoJODDydp4WcGDk7TQWcGDk7TQRcGDk7TQVcGDk7TSzzNsp7YvJ20FmAvICMFce88Rvz5E2DXNjMS8UcyIxHxBz4TAPDHOgMP8Hc18w7wNzHjDeH2PdMc4bY5wxvhdjWzGuE2MaMZ4PY9kwjgtjmDB+B2NXMG4DYxZwvR7XqnGdFtcocX0O16ZwXQbXJHA+HueicR4W5yBx/g3nnnDeBecc8H0b3zXxPQvfMXB8jWNLHFfhmAKfp/gswfso3kPw+sG+A7fom20OzsM++7wd5HTYbid2tkdC22hu+XooHc/vAz5v/Yr7Q8DTwzh5KM0dtoGbbd5OC+/bSay8ndtdtvXBvoi+x31cQvW25O1fMZ21e5y/JWH/aiXgwMjbaS3gwMjbaSPgwMjbaSvgwMjbaSfgwMjbaS/gwMjb6SDgwMjb6SjgwMjb6STgwMjb6SzgwMjb6SLgwMjb6SrgwMjb6SbgwMjb6S7gwMjb6SHgwMjb6SngwMjb6SXgwMjb6S3gwMjb6SPgwMjb6SvgwMjb6SfgwMjb6S/gwMjbGSDgwMjbGSjgwMjbGSTgwMjbGSzgwMjbGSLgwMjbGSrgwMjbGSbgwMjbGS7gwMjbGSHgwMjbGSngwMjbGSXgwMjbGS3gwMjbGSPgwMjbGSvgwMjbGSfgwMjbGS/gwMjbmSDgwMjbmSjgwMjbmSTgwMjbmSzgwMjbmSLgwMjbmSrgwMjbmSbgwMjbmS7gwMjbmSHgwMjbmSngwMjbmSXgwMjbmS3gwMjbmSPgwMjbmSvgwMjbmSfgwMjbmS/gwMjbWSDgwMjbWSjgwMjbWSTgwMjbeUbAgZG3s1jAgZG386yAAyNvZ4mAAyNv5zkBB0bezlIBB0bezvMCDoy8nWUWDgjoeMgXk7eDzATkBWCuPOaJY4405gdjbizmhWJOJOYDYi4c5oFhDhTm/2DuC+Z9YM4DxvtjrDvGeWOMM8b3YmwrxnViTCPG82EsG8ZxYQwTxu9g7ArGbWDMAq7X41o1rtPiGiWuz+HaFK7L4JoEzsfjXDTOw+IcJM6/4dwTzrvgnAO+b+O7Jr5n4TsGjq9xbInjKhxT4PMUnyV4H8V7CF4/2HfgFn2zzcHxZ7TP20FOh+12Ymd7JLSNFyxfDw/F8/uAz1u/4v4Q8PQwTh7KCw7bwM02byfc+3YSK28nFH/Y+mBfRN/jPi6hel/k7V8xnbV7nP9Fwv61XMCBkbfzkoADI29nhYADI2/nZQEHRt7OSgEHRt7OKwIOjLydVQIOjLydVwUcGHk7qwUcGHk7rwk4MPJ21gg4MPJ21go4MPJ21gk4MPJ2XhdwYOTtvCHgwMjbWS/gwMjbeVPAgZG3s0HAgZG3s1HAgZG3s0nAgZG3s1nAgZG3s0XAgZG3s1XAgZG3s03AgZG385aAAyNvZ7uAAyNv520BB0bezg4BB0bezjsCDoy8nZ0CDoy8nXcFHBh5O7sEHBh5O+8JODDydnYLODDydt4XcGDk7ewRcGDk7Xwg4MDI29kr4MDI2/lQwIGRt7NPwIGRt/ORgAMjb2e/gAMjb+eAgAMjb+eggAMjb+djAQdG3s4hAQdG3s4nAg6MvJ3DAg6MvJ1PBRwYeTtHBBwYeTufCTgw8naOCjgw8nY+F3Bg5O0cE3Bg5O18IeDAyNs5LuDAyNv5UsCBkbdzQsCBkbfzlYADI2/npIADI2/nawEHRt7OKQEHRt7ONwIOjLydCAEHRt7OtxYOyBQp44vJ20FmAvICMFce88QxRxrzgzE3FvNCMScS8wExFw7zwDAHCvN/MPcF8z4w5wHj/THWHeO8McYZ43sxthXjOjGmEeP5MJYN47gwhgnjdzB2BeM2MGYB1+txrRrXaXGNEtfncG0K12VwTQLn43EuGudhcQ4S599w7gnnXXDOAd+38V0T37PwHQPH1zi2xHEVjinweYrPEryP4j0Erx/sO3CLvtnm4MDQNm8HOR2224md7ZHQNk5bvh7KxPP7gM9bv+L+EPD0ME4eymmHbeBmm7fznfftJFbeThj+sPXBvoi+x31cQvWe4e1fMZ21e5z/DGH/+l7AgZG3c1bAgZG3c07AgZG3c17AgZG384OAAyNv54KAAyNv50cBB0bezkUBB0bezk8CDoy8nUsCDoy8ncsCDoy8nSsCDoy8nZ8FHBh5O1cFHBh5O78IODDydq4JODDydn4VcGDk7VwXcGDk7fwm4MDI27kh4MDI2/ldwIGRt3NTwIGRt/OHgAMjb+eWgAMjb+dPAQdG3k6kgAMjb8eX9d/vwMjb8Qs4MPJ2kgg4MPJ2QgQcGHk7oQIOjLydMAEHRt5OUgEHRt5OMgEHRt5OcgEHRt5OCgEHRt5OSgEHRt5OKgEHRt5OagEHRt5OGgEHRt5OWgEHRt5OOgEHRt5OegEHRt5OBgEHRt5ORgEHRt5OJgEHRt5OZgEHRt5OFgEHRt5OVgEHRt5ONgEHRt7OXQIOjLyd7AIOjLyduwUcGHk7OQQcGHk79wg4MPJ2cgo4MPJ27hVwYOTt5BJwYOTtBAQcGHk7uQUcGHk79wk4MPJ28gg4MPJ27hdwYOTt5BVwYOTt5LNwQKbIw76YvB1kJiAvAHPlMU8cc6QxPxhzYzEvFHMiMR8Qc+EwDwxzoDD/B3NfMO8Dcx4w3h9j3THOG2OcMb4XY1sxrhNjGjGeD2PZMI4LY5gwfgdjVzBuA2MWcL0e16pxnRbXKHF9DtemcF0G1yRwPh7nonEeFucgcf4N555w3gXnHPB9G9818T0L3zFwfI1jSxxX3T6mMA2fJXgfxXsIXj/Yd+AWfbPNwUFmyUzLvJ3vHfJ2vrfI28lv+Xp4OJ7fB3ze+hX3h4Cnh3HyUGwcYt9s83YKeN9OYuXtJMUftj7YF9H3uI9LqN6CvP0rprN2j/MXzJr423jAchu2r/m16X2+dem93/91c9830ts/n4UEnk9GbtCDAg6M3KDCAg6M3KAiAg6M3KCiAg6M3KBiAg6M3KDiAg6M3KASAg6M3KCSAg6M3KBSAg6M3KDSAg6M3KCHBBwYuUFlBBwYuUEPCzgwcoPKCjgwcoMeEXBg5AaVE3Bg5AaVF3Bg5AZVEHBg5AY9KuDAyA2qKODAyA2qJODAyA2qLODAyA2qIuDAyA2qKuDAyA16TMCBkRtUTcCBkRv0uIADIzeouoADIzeohoADIzeopoADIzfoCQEHRm5QLQEHRm7QkwIOjNyg2gIOjNygOgIOjNygugIOjNygegIOjNyg+gIOjNygBgIOjNyghgIOjNygpwQcGLlBjQQcGLlBTws4MHKDGgs4MHKDmgg4MHKDmgo4MHKDmgk4MHKDmgs4MHKDWgg4MHKDWgo4MHKDWgk4MHKDWgs4MHKD2gg4MHKD2go4MHKD2gk4MHKD2gs4MHKDOgg4MHKDOgo4MHKDOgk4MHKDOgs4MHKDugg4MHKDugo4MHKDugk4MHKDulvmBpX1xeQGITMBeQGYK4954pgjjfnBmBuLeaGYE4n5gJgLh3lgmAOF+T+Y+4J5H5jzgPH+GOuOcd4Y44zxvRjbinGdGNOI8XwYy4ZxXBjDhPE7GLuCcRsYs4Dr9bhWjeu0uEaJ63O4NoXrMrgmgfPxOBeN87A4B4nzbzj3hPMuOOeA79v4ronvWfiOgeNrHFviuArHFPg8xWcJ3kfxHoLXD/YduEXf4mZ7eMkBssgPuZ3VgpyOuNtJ6HGxt5FQn3pktXs9lI3n9wGft37F/SHg6WGcXJceDtvAzTY3qKf37SRWblAy/GHrg30RfY/7uITq7cXbv2I6a/c4fy/C/tVbwIGRt9NHwIGRt9NXwIGRt9NPwIGRt9NfwIGRtzNAwIGRtzNQwIGRtzNIwIGRtzNYwIGRtzNEwIGRtzNUwIGRtzNM4fsFwWG4gAMjb2eEgAMjb2ekgAMjb2eUgAMjb2e0gAMjb2eMgAMjb2esgAMjb2ecgAMjb2e8gAMjb2eCgAMjb2eigAMjb2eSgAMjb2eygAMjb2eKgAMjb2eqgAMjb2eagAMjb2e6gAMjb2eGgAMjb2emgAMjb2eWgAMjb2e2gAMjb2eOgAMjb2eugAMjb2eegAMjb2e+gAMjb2eBgAMjb2ehgAMjb2eRgAMjb+cZAQdG3s5iAQdG3s6zAg6MvJ0lAg6MvJ3nBBwYeTtLBRwYeTvPCzgw8naWCTgw8nZeEHBg5O2ECzgw8nZeFHBg5O0sF3Bg5O28JODAyNtZIeDAyNt5WcCBkbezUsCBkbfzioADI29nlYADI2/nVQEHRt7OagEHRt7OawIOjLydNQIOjLydtQIOjLyddQIOjLyd1y0ckCnyiC8mbweZCcgLwFx5zBPHHGnMD8bcWMwLxZxIzAfEXDjMA8McKMz/wdwXzPvAnAeM98dYd4zzxhhnjO/F2FaM68SYRoznw1g2jOPCGCaM38HYFYzbwJgFXK/HtWpcp8U1Slyfw7UpXJfBNQmcj8e5aJyHxTlInH/DuSecd8E5B3zfxndNfM/CdwwcX+PYEsdVOKbA5yk+S/A+ivcQvH6w78At+mabg4PMkhmZY+7vJZ8HOR2224md7ZHQNt6wfD08Es/vAz5v/Yr7Q8DTwzh5KG84bAM327yd9d6347fI2/Fb5O34//7DZ7fvou9xH5dQvW9auOLfDon6O77HueRbeb3vhqx2ftE32+d/Y/Cf/78e4PtnvxO6e/R7l8t7XvR9E7LZ5LivxH6cbf/Wpjf7dXqLz82o+9u+DjZbvr+41PGmZR1vOtSxhfd5EdNZu8dRcqO2CjgwcqO2CTgwcqPeEnBg5EZtF3Bg5Ea9LeDAyI3aIeDAyI16R8CBkRu1U8CBkRv1roADIzdql4ADIzfqPQEHRm7UbgEHRm7U+wIOjNyoPQIOjNyoDwQcGLlRewUcGLlRHwo4MHKj9gk4MHKjPhJwYORG7RdwYORGHRBwYORGHRRwYORGfSzgwMiNOiTgwMiN+kTAgZEbdVjAgZEb9amAAyM36oiAAyM36jMBB0Zu1FEBB0Zu1OcCDozcqGMCDozcqC8EHBi5UccFHBi5UV8KODByo04IODByo74ScGDkRp0UcGDkRn0t4MDIjTol4MDIjfpGwIGRGxUh4MDIjfpWwIGRG3VawIGRG/WdgAMjN+qMgAMjN+p7AQdGbtRZAQdGbtQ5AQdGbtR5AQdGbtQPAg6M3KgLAg6M3KgfBRwYuVEXBRwYuVE/CTgwcqMuCTgwcqMuCzgwcqOuCDgwcqN+FnBg5EZdFXBg5Eb9IuDAyI26JuDAyI36VcCBkRt13TLHwvbfR17Imw45M/sSOf8E+TAbs9pn0PxmkfdiW0PcviT07yMj5Hwm7/dHRsi0zPbPxQ2LfcTssr5kvpht/KMDcbabUH8rer/vP7b3e9Y72ODvWe0fd9MioMu1Xzezxvwi4PN+c3nBbnJ4wR5M5Bdsoax/hTrZ9utjy35F32yDoP6weGOwsPJ/fIdBYAn1u5Lvr33L9s2nksU2biXyhwzsbznsG386BlT9+X8QZnbL4j0jkhRm5ssW9H349s0llMwikOv2h/9mh/3Fny3x69hiWccWhzqSZEvc1yP69ZvDwVWIxf63j7BP3bB8Lm44PBehFs9FaKz2PzoQZ7sJ9dfm4OpOtlPBx9mO7w736YSepyq+v95PbfejEIv7VvHZW/nj/hDw9DCf/04/lBMCq+z760POFszmgzHM8sWT3BfTn/+ttoT66PVFGxkZ+U18vw/4Et4G/ojd16TZ/vo7WTbfP49G8D/8cX6XLJ4Oxj0aSKgDsYv8X56IeeaJ8CfN5v1JS2aJZ7vjYQeKxor9OC83l6/gP1h+Bd/qENOZPFvi13HBso5tDnWkINTxo2UdbznUkZJQx0XLOrY71JGKUMdPlnW87VBHakIdlyzr2OFQRxpCHZct63jHoY60hDquWNax06GOdIQ6fras412HOtIT6rhqWccuhzoyEOr4xbKO9xzqyEio45plHbsd6shEqONXyzred6gjM6GO65Z17HGoIwuhjt8s6/jAoY6shDpuWNax16GObIQ6fres40OHOu4i1HHTso59DnVkJ9Txh2UdHznUcTehjluWdex3qCMHoY4/Les44FDHPYQ6Ii3rOOhQR05CHb7MdnV87FDHvYQ6/JZ1HHKoIxehjiSWdXziUEeAUEeIZR2HHerITagj1LKOTx3quI9QR5hlHUcc6shDqCOpZR2fOdRxP6GOZJZ1HHWoIy+hjuSWdXzuUEc+Qh0pLOs45lBHfkIdKS3r+MKhjgKEOlJZ1nHcoY6ChDpSW9bxpUMdDxDqSGNZxwmHOgoR6khrWcdXDnU8SKgjnWUdJx3qKEyoI71lHV871FGEUEcGyzpOOdRRlFBHRss6vnGooxihjkyWdUQ41FGcUEdmyzq+daijBKGOLJZ1nHaooyShjqyWdXznUEcpQh3ZLOs441BHaUIdd1nW8b1DHQ8R6shuWcdZhzrKEOq427KOcw51PEyoI4dlHecd6ihLqOMeyzp+cKjjEUIdOS3ruOBQRzlCHfda1vGjQx3lCXXksqzjokMdFQh1BCzr+MmhjkcJdeS2rOOSQx0VCXXcZ1nHZYc6KhHqyGNZxxWHOioT6rjfso6fHeqoQqgjr2UdVx3qqEqoI59lHb841PEYoY78lnVcc6ijGqGOApZ1/OpQx+OEOgpa1nHdoY7qhDoesKzjN4c6ahDqKGRZxw2HOmoS6njQso7fHep4glBHYcs6bjrUUYtQRxHLOv5wqONJQh1FLeu45VBHbUIdxSzr+NOhjjqEOopb1hHpUEddQh0lLOvwZbCvox6hjpKWdfgd6qhPqKOUZR1JHOpoQKijtGUdIQ51NCTU8ZBlHaEOdTxFqKOMZR1hDnU0ItTxsGUdSR3qeJpQR1nLOpI51NGYUMcjlnUkd6ijCaGOcpZ1pHCooymhjvKWdaR0qKMZoY4KlnWkcqijOaGORy3rSO1QRwtCHRUt60jjUEdLQh2VLOtI61BHK0IdlS3rSOdQR2tCHVUs60jvUEcbQh1VLevI4FBHW0Idj1nWkdGhjnaEOqpZ1pHJoY72hDoet6wjs0MdHQh1VLesI4tDHR0JddSwrCOrQx2dCHXUtKwjm0MdnQl1PGFZx10OdXQh1FHLso7sDnV0JdTxpGUddzvU0Y1QR23LOnI41NGdUEcdyzrucaijB6GOupZ15HSooyehjnqWddzrUEcvQh31LevI5VBHb0IdDSzrCDjU0YdQR0PLOnI71NGXUMdTlnXc51BHP0IdjSzryONQR39CHU9b1nG/Qx0DCHU0tqwjr0MdAwl1NLGsI59DHYMIdTS1rCO/Qx2DCXU0s6yjgEMdQwh1NLeso6BDHUMJdbSwrOMBhzqGEepoaVlHIYc6hhPqaGVZx4MOdYwg1NHaso7CDnWMJNTRxrKOIg51jCLU0dayjqIOdYwm1NHOso5iDnWMIdTR3rKO4g51jCXU0cGyjhIOdYwj1NHRso6SDnWMJ9TRybKOUg51TCDU0dmyjtIOdUwk1NHFso6HHOqYRKijq2UdZRzqmEyoo5tlHQ871DGFUEd3yzrKOtQxlVBHD8s6HnGoYxqhjp6WdZRzqGM6oY5elnWUd6hjBqGO3pZ1VHCoYyahjj6WdTzqUMcsQh19Leuo6FDHbEId/SzrqORQxxxCHf0t66jsUMdcQh0DLOuo4lDHPEIdAy3rqOpQx3xCHYMs63jMoY4FhDoGW9ZRzaGOhYQ6hljW8bhDHYsIdQy1rKO6Qx3PEOoYZllHDYc6FhPqGG5ZR02HOp4l1DHCso4nHOpYQqhjpGUdtRzqeI5QxyjLOp50qGMpoY7RlnXUdqjjeUIdYyzrqONQxzJCHWMt66jrUMcLhDrGWdZRz6GOcEId4y3rqO9Qx4uEOiZY1tHAoY7lhDomWtbR0KGOlwh1TLKs4ymHOlYQ6phsWUcjhzpeJtQxxbKOpx3qWEmoY6plHY0d6njFog6sD1/OtPCo/8aa41ivG2tdY51orLGM9Ymxti/WxcWasliPFWuZYh1QrKGJ9SexdiPWPcSagVhvD2vVYZ03rJGG9cWwNtftda2y/bWeEtYiwjo+WAMH68dg7RWsW4I1P7BeBtaawDoNWOMA6wMgWx+59Mh0Rx46ssSRw40Ma+Q/IzsZucPI7EXeLbJikbOKjFLkeyIbE7mSyGREniGyAJGjhww65Lch+wy5YcjcQl4Vsp6Qk4SMIeTzINsGuTDIVEEeCbI8kIOBDAnkLyC7APP+MWce880xVxvznDFHGPNrMTcV8zoxJxLzCTEXD/PYMAcM86cw9wjzdjDnBfNFMNcC8xQwxh/j4zG2HOOyMaYZ44ExlhbjUDGGE+MfMXYQ4+4wZg3jvTBWCuOMMEYH41swNgTjKjAmAdfzcS0c15FxDRbXL3HtD9fNcM0J12twrQPXCXCOHeencW4X50VxThHn43AuC+eBcA4F5x/w3R3fe/GdEd+38F0Fx/k4RsbxJY7NcFyDYwJ8nuKzCO/jeA/E+wdee9hv/9754+zzCdzCbmX1+UKz2b9WVmXz/lpJEvVaiXsL+OxulrX5bfrouo1XsyXuex/6E5bN+/NS2TQ8p7bP5+psdu995X3/vff9997373rvS2K5z+N1YvH69eP+eJ3YvoZjbyOhPr2Wze59tXw8vw/4vPUr7g8BTw/jvK++ZrkN18892+cSj4u+b0LP5RrecxnTQbvH+dcQnsu1Ag4NQhN/G+sEHJoRHF4XcGhBcHhDwKEVwWG9gEMbgsObAg7tCA4bBBw6EBw2Cjh0IjhsEnDoQnDYLODQjeCwRcChB8Fhq4BDL4LDNgGHPgSHtwQc+hEctgs4DCA4vC3gMIjgsEPAYQjB4R0Bh2EEh50CDiMIDu8KOIwiOOwScBhDcHhPwGEcwWG3gMMEgsP7Ag6TCA57BBymEBw+EHCYRnDYK+Awg+DwoYDDLILDPgGHOQSHjwQc5hEc9gs4LCA4HBBwWERwOCjgsJjg8LGAwxKCwyEBh6UEh08EHJYRHA4LOIQTHD4VcFhOcDgi4LCC4PCZgMNKgsNRAYdVBIfPBRxWExyOKYwrJjh8IeCwjuBwXMDhQEjib+NLAYf1hP3hhIDDBoLDVwIOmwgOJwUcthAcvhZw2EZwOCXgsJ3g8I2Aww6CQ4SAw06Cw7cCDrsIDqcFHHYTHL4TcNhDcDgj4LCX4PC9gMM+gsNZAYf9BIdzAg4HCQ7nBRwOERx+EHA4THC4IOBwhODwo4DDUYLDRQGHYwSHnwQcjhMcLgk4nCA4XBZwOElwuCLgcIrg8LOAQwTB4aqAw2mCwy8CDmcIDtcEHM4SHH4VcDhPcLgu4HCB4PCbgMNFgsMNAYdLBIffBRyuEBxuCjhcJTj8IeBwjeBwS8DhOsHhTwGHGwSHSAGHmwQH313/fodbBAe/gEMkwSGJgIM/LPG3ESLgEEJwCBVwCCM4hAk4JCM4JBVwSEFwSCbgkIrgkFzAIQ3BIYWAQzqCQ0oBhwwEh1QCDpkIDqkFHLIQHNIIOGQjOKQVcMhOcEgn4JCD4JBewCEnwSGDgEMugkNGAYfcBIdMAg55CA6ZBRzyEhyyCDjkJzhkFXAoSHDIJuBQiOBwl4BDYYJDdgGHogSHuwUcihMccgg4lCQ43CPgUJrgkFPAoQzB4V4Bh7IEh1wCDuUIDgEBhwoEh9wCDhUJDvcJOFQmOOQRcKhKcLhfwKEawSGvgEN1gkM+AYeaBIf8Ag61CA4FBBxqExwKCjjUJTg8IOBQn+BQSMChIcHhQQGHRgSHwgIOjQkORQQcmhIcigo4NCc4FBNwaElwKC7g0JrgUELAoS3BoaSAQ3uCQykBh44Eh9ICDp0JDg8JOHQlOJQRcOhOcHhYwKEnwaGsgENvgsMjAg59CQ7lBBz6ExzKCzgMJDhUEHAYTHB4VMBhKMGhooDDcIJDJQGHkQSHygIOowkOVQQcxhIcqgo4jCc4PCbgMJHgUE3AYTLB4XEBh6kEh+oCDtMJDjUEHGYSHGoKOMwmODwh4DCX4FBLwGE+weFJAYeFBIfaFg4hplUwLTzqv9dl8/leN+0N09ab9qZpG0zbaNom0zabtsW0raZtM+0t07ab9rZpO0x7x7Sdpr1r2i7T3jNtt2nvm7bHtA9M22vah6btM+0j0/abdsC0g6Z9bNoh0z4x7bBpn5qG9emxNjvWJcea3FiPGmsxYx1irMGL9Wex9irWHcWam1hvEmstYp1BrLGH9eWwthrWFcOaWlhPCmspYR0hrKGD9WOwdgrWDcGaGVgvAmslYJ0AZOQjHx7Z6MgFRyY28qCRhYwcYGTgIv8V2afI/UTmJfIekXWInD9k3CHfDdlmyPVCphXynJBlhBwfZNggvwXZJcjtQGYF8hqQVYB5+pijjvnZmJuMebmYk4r5mJiLiHl4mIOG+VeYe4R5N5hzcnu+hWkYZ48x5hhfjbHFGFeLMaUYT4mxhBhHhzFkGD+FsUMYN4MxIxgvgbECuE6Oa8S4Poprg7guhmtCuB6CawH/X3vvASZVsT9/97LkICKSQRcRBSOImBGQLJJzjkuOS85RQEAyiIiIiIiIKCJJRERERDDnLOacEDPyfgt3ZJz/LjvdXOreet7fPE/Juntm6tRn8jnd1TgOjmPAOP6JY3847oVjPjjege/6+J6L73j4foPP9vhci890+DyD93K8j+E1HK9feO7icRu5ZPJ8zFe2/xwueGz7cl3rpxwov7zsloY1Nk2Y0LJdmQqf1x6xdcDcagcOzf8+ddv7C/n73F8ofo/6nq9HldL4fZKLb79if0iK62ouYW2hk/965MMh4Paz4L7M7H9fZvJ5vDTg3Zf/XHw5Nyh88j0anuB9mRFnvB9dl/pv9PUyskn02PY6j/1pJHC/NyZ0tTYW4NCawKGJAIe2BA5NBTi0J3BoJsChI4FDcwEOnQkcWghw6Erg0FKAQzcCh1YCHHoQOLQW4NCLwKGNAIc+BA5tBTj0I3BoJ8BhAIFDewEOKQQOHQQ4DCZw6CjAYSiBQycBDsMJHDoLcBhJ4NBFgMNoAoeuAhzGEjgkC3AYT+DQTYDDRAKH7gIcJhM49BDgMIXAoacAh2kEDr0EOEwncOgtwGEmgUMfAQ6zCBz6CnCYQ+DQT4DDPAKH/gIcFhA4DBDgsIjAYaAAh8UEDikCHJYQOAwS4LCUwGGwAIdlBA5DBDgsJ3AYKsBhBYHDMAEOKwkchgtwWEXgMEKAw2oCh5ECHNYQOIwS4LCWwGG0AId1BA5jBDjsTzz5HmMFOKwnPB7GCXDYQOAwXoDDRgKHCQIcNhM4TBTgsJXAYZIAh20EDpMFOGwncLhRgMMOAocpAhx2EjhMFeCwi8BhmgCH3QQONwlw2EPgMF2Aw14ChxkCHPYROMwU4PAsgcPNAhyeJ3CYJcDhRQKH2QIcXiZwmCPA4VUCh7kCHF4ncJgnwOFNAof5AhzeJnBYIMDhXQKHhQIc3idwWCTA4QCBwy0CHD4icFgswOETAodbBTh8RuCwRIDDFwQOtwlw+IrAYakAh28IHG4X4PAdgcMyAQ4/EDjcIcDhIIHDcgEOhwgc7hTg8AuBwwoBDr8RONwlwOEPAoeVAhwOEzjcLcDhCIHDKgEOCYTu/3sEOCQSOKwW4JCFwOFeAQ7ZCBzWCHDIQeBwnwCHXAQOawU45CFwuF+AQ14Ch3UCHPIRODwgwCE/gcODAhwKEDisF+BQiMDhIQEORQgcNghwKEbg8LAAhxIEDhsFOJxJ4LBJgENJAofNAhxKEThsEeBQmsBhqwCHcwkcHhHgUJbAYZsAh/MJHB4V4HAhgcN2AQ4XEzg8JsChPIHDDgEOFQgcHhfgUJHAYacAh8sJHJ4Q4HAlgcMuAQ5XEzg8KcChEoHDbgEOlQkcnhLgUJXAYY8Ah2oEDk8LcKhB4LBXgEMtAodnBDjUIXDYJ8ChLoHDfgEO9QgcnhXg0IDA4TkBDo0IHJ4X4NCEwOEFAQ7NCBxeFODQgsDhJQEOrQgcXhbg0IbA4RUBDu0IHF4V4NCBwOE1AQ6dCBxeF+DQhcDhDQEOyQQObwpw6E7g8JYAh54EDm8LcOhN4PCOAIe+BA7vCnDoT+DwngCHgQQO7wtwGETg8IEAhyEEDgcEOAwjcPhQgMMIAoePBDiMInD4WIDDGAKHTwQ4jCNw+FSAwwQCh88EOEwicPhcgMONBA5fCHCYSuDwpQCHmwgcvhLgMIPA4WsBDjcTOHwjwGE2gcO3AhzmEjh8J8BhPoHD9wIcFhI4/ODBIdF0rWl56v83tus2MTU1NTM1N7UwtTS1MrU2tTG1NbUztTd1MHU0dTJ1NnUxdTUlm7qZupt6mHqaepl6m/qY+pr6mfqbBpgGmlJMg0yDTUNMQ01Ynx5rs2NdcqzJjfWosRYz1iHGGrxYfxZrr2LdUay5ifUmsdYi1hnEGntYXw5rq2FdMayphfWksJYS1hHCGjpYPwZrp2DdEKyZgfUisFYC1glARz764dGNjl5wdGKjDxpdyOgBRgcu+l/RfYreT3Reou8RXYfo+UPHHfrd0G2GXi90WqHPCV1G6PFBhw36W9Bdgt4OdFagrwFdBZinjznqmJ+NucmYl4s5qZiPibmImIeHOWiYf4W5R5h3gzknmG+BuQYYZ48x5hhfjbHFGFeLMaUYT4mxhBhHhzFkGD+FsUMYN4MxIxgvgbECOE+Oc8Q4P4pzgzgvhnNCOB+CcwE4Do5jwDj+iWN/OO6FYz443oHv+viei+94+H6Dz/b4XIvPdPg8g/dyvI/hNRyvX3ju4nEbuWSKecyX61o/5UD55WW3NKyxacKElu3KVPi89oitA+ZWO3Bo/vf298MFnWtYOP7nCLZvVPj/9cnoetEeGe3Tj4X9Xo+uTeP3SS6+/Yr9ISmuq7mEBoVP/uvRj54enrefBfdl5kLe92UirhfZNqP78iDvvvzn4sv5IOG+/EmAQ2NCd+khAQ6tCRx+FuDQlsDhFwEO7QkcfhXg0JHA4TcBDp0JHH4X4NCVwOEPAQ7dCBz+FODQg8DhsACHXgQOfwlw6EPgcESAQz8CB1fkf5/DAAKHBAEOKQQOmQQ4DCZwSBTgMJTAIbMAh+EEDlkEOIwkcMgqwGE0gUM2AQ5jCRyyC3AYT+CQQ4DDRAKHnAIcJhM45BLgMIXAIbcAh2kEDnkEOEwncDhFgMNMAoe8AhxmETicKsBhDoFDPgEO8wgcThPgsIDAIb8Ah0UEDqcLcFhM4FBAgMMSAoeCAhyWEjgUEuCwjMChsACH5QQORQQ4rCBwKCrAYSWBQzEBDqsIHIoLcFhN4FBCgMMaAoczBDisJXA4U4DDOgKHJAEO+xNPvkdJAQ7rCY+HswQ4bCBwKCXAYSOBw9kCHDYTOJQW4LCVwOEcAQ7bCBzOFeCwncChjACHHQQOZQU47CRwOE+Awy4Ch/MFOOwmcLhAgMMeAocLBTjsJXC4SIDDPgKHiwU4PEvgUE6Aw/MEDuUFOLxI4HCJAIeXCRwqCHB4lcDhUgEOrxM4VBTg8CaBw2UCHN4mcLhcgMO7BA5XCHB4n8DhSgEOBwgcrhLg8BGBw9UCHD4hcLhGgMNnBA6VBDh8QeBwrQCHrwgcKgtw+IbAoYoAh+8IHKoKcPiBwOE6AQ4HCRyqCXA4ROBQXYDDLwQONQQ4/EbgUFOAwx8EDrUEOBwmcKgtwOEIgUMdAQ4JhC786wU4JBI41BXgkIXA4QYBDtkIHOoJcMhB4FBfgEMuAocGAhzyEDg0FOCQl8ChkQCHfAQOjQU45CdwaCLAoQCBQ1MBDoUIHJoJcChC4NBcgEMxAocWAhxKEDi0FOBwJoFDKwEOJQkcWgtwKEXg0EaAQ2kCh7YCHM4lcGgnwKEsgUN7AQ7nEzh0EOBwIYFDRwEOFxM4dBLgUJ7AobMAhwoEDl0EOFQkcOgqwOFyAodkAQ5XEjh0E+BwNYFDdwEOlQgceghwqEzg0FOAQ1UCh14CHKoROPQW4FCDwKGPAIdaBA59BTjUIXDoJ8ChLoFDfwEO9QgcBghwaEDgMFCAQyMChxQBDk0IHAYJcGhG4DBYgEMLAochAhxaETgMFeDQhsBhmACHdgQOwwU4dCBwGCHAoROBw0gBDl0IHEYJcEgmcBgtwKE7gcMYAQ49CRzGCnDoTeAwToBDXwKH8QIc+hM4TBDgMJDAYaIAh0EEDpMEOAwhcJgswGEYgcONAhxGEDhMEeAwisBhqgCHMQQO0wQ4jCNwuEmAwwQCh+kCHCYROMwQ4HAjgcNMAQ5TCRxuFuBwE4HDLAEOMwgcZgtwuJnAYY4Ah9kEDnMFOMwlcJgnwGE+gcN8AQ4LCRwWeHBINFU2LU/9/0OFnfvZ9IvpV9Nvpt9Nf5j+NB02/WU6YnLmk2DKZEo0ZTZlMWU1ZTNlN+Uw5TTlMuU25TGdYsprOtWUz3SaKb/pdFMBU0FTIVNhUxET1qfH2uxYlxxrcmM96qNrMZuwBi/Wn8Xaq1h3FGtuYr1JrLWIdQaxxh7Wl8PaalhXDGtqYT0prKWEdYSwhg7Wj8HaKVg3BGtmYL0IrJWAdQLQkY9+eHSjoxccndjog0YXMnqA0YGL/ld0n6L3E52X6HtE1yF6/tBxh343dJuh1wudVuhzQpcRenzQYYP+FnSXoLcDnRXoa0BXAebpY4465mdjbjLm5WJOKuZjYi4i5uFhDhrmX2HuEebdYM4J5ltgrgHG2WOMOcZXY2wxxtViTCnGU2IsIcbRYQwZxk9h7BDGzWDMCMZLYKwAzpPjHDHOj+LcIM6L4ZwQzofgXACOg+MYMI5/4tgfjnvhmA+Od+C7Pr7n4jsevt/gsz0+1+IzHT7P4L0c72N4DcfrF567eNxGLpk8H/OV7D+HCx7bvlzX+ikHyi8vu6VhjU0TJrRsV6bC57VHbB0wt9qBQ/O/T932p8L+PrhOvB4Li/i9HlVO4/dJLr79iv0hKa6ruYSDhQmveUX8PDxvPwvuy8yFvO/LzD6Pl0W8+/Kfiy/nRUVOvsctAhwaE7pLFwtwaE3gcKsAh7YEDksEOLQncLhNgENHAoelAhw6EzjcLsChK4HDMgEO3Qgc7hDg0IPAYbkAh14EDncKcOhD4LBCgEM/Aoe7BDgMIHBYKcAhhcDhbgEOgwkcVglwGErgcI8Ah+EEDqsFOIwkcLhXgMNoAoc1AhzGEjjcJ8BhPIHDWgEOEwkc7hfgMJnAYZ0AhykEDg8IcJhG4PCgAIfpBA7rBTjMJHB4SIDDLAKHDQIc5hA4PCzAYR6Bw0YBDgsIHDYpjH8gcNgswGExgcMWAQ5LCBy2CnBYSuDwiACHZQQO2wQ4LCdweFSAwwoCh+0CHFYSODwmwGEVgcMOAQ6rCRweF+CwhsBhpwCHtQQOTwhwWEfgsEuAw/7Ek+/xpACH9YTHw24BDhsIHJ4S4LCRwGGPAIfNBA5PC3DYSuCwV4DDNgKHZwQ4bCdw2CfAYQeBw34BDjsJHJ4V4LCLwOE5AQ67CRyeF+Cwh8DhBQEOewkcXhTgsI/A4SUBDs8SOLwswOF5AodXBDi8SODwqgCHlwkcXhPg8CqBw+sCHF4ncHhDgMObBA5vCnB4m8DhLQEO7xI4vC3A4X0Ch3cEOBwgcHhXgMNHBA7vCXD4hMDhfQEOnxE4fCDA4QsChwMCHL4icPhQgMM3BA4fCXD4jsDhYwEOPxA4fCLA4SCBw6cCHA4ROHwmwOEXAofPBTj8RuDwhQCHPwgcvhTgcJjA4SsBDkcIHL4W4JBA6ML/RoBDIoHDtwIcshA4fCfAIRuBw/cCHHIQOPwgwCEXgcOPAhzyEDgcFOCQl8DhJwEO+QgcDglwyE/g8LMAhwIEDr8IcChE4PCrAIciBA6/CXAoRuDwuwCHEgQOfwhwOJPA4U8BDiUJHA4LcChF4PCXAIfSBA5HBDicS+Dgiv7vcyhL4JAgwOF8AodMAhwuJHBIFOBwMYFDZgEO5QkcsghwqEDgkFWAQ0UCh2wCHC4ncMguwOFKAoccAhyuJnDIKcChEoFDLgEOlQkccgtwqErgkEeAQzUCh1MEONQgcMgrwKEWgcOpAhzqEDjkE+BQl8DhNAEO9Qgc8gtwaEDgcLoAh0YEDgUEODQhcCgowKEZgUMhAQ4tCBwKC3BoReBQRIBDGwKHogIc2hE4FBPg0IHAobgAh04EDiUEOHQhcDhDgEMygcOZAhy6EzgkCXDoSeBQUoBDbwKHswQ49CVwKCXAoT+Bw9kCHAYSOJQW4DCIwOEcAQ5DCBzOFeAwjMChjACHEQQOZQU4jCJwOE+AwxgCh/MFOIwjcLhAgMMEAocLBThMInC4SIDDjQQOFwtwmErgUE6Aw00EDuUFOMwgcLhEgMPNBA4VBDjMJnC4VIDDXAKHigIc5hM4XCbAYSGBw+UeHBJNVUzLU/9/cRHnbjUtMd1mWmq63bTMdIdpuelO0wrTXaaVprtNq0z3mFab7jWtMd1nWmu637TO9IDpQdN600OmDaaHTRtNm0ybTVtMW02PmLaZHjVhfXqszY51ybEmN9ajxlrMWIcYa/Bi/VmsvYp1R7HmJtabxFqLWGcQa+xhfTmsrYZ1xbCmFtaTwlpKWEcIa+hg/RisnYJ1Q7BmBtaLwFoJWCcAHfnoh0c3OnrB0YmNPmh0IaMHGB246H9F9yl6P9F5ib5HdB2i5w8dd+h3Q7cZer3QaYU+J3QZoccHHTbob0F3CXo70FmBvgZ0FWCePuaoY3425iZjXi7mpGI+JuYiYh4e5qBh/hXmHmHeDeacYL4F5hpgnD3GmGN8NcYWY1wtxpRiPCXGEmIcHcaQYfwUxg5h3AzGjGC8BMYK4Dw5zhHj/CjODR49L2bC+RCcC8BxcBwDxvFPHPvDcS8c88HxDnzXx/dcfMfD9xt8tsfnWnymw+cZvJfjfQyv4Xj9wnMXj9vIJZPnY/5wQftvoWPbl+taP+VA+eVltzSssWnChJbtylT4vPaIrQPmVjtwaP739ndsf0sRf59bisTvcYXn61GVNH6f5OLbr9gfkuK6mktYVOTkvx75cAi5fdyXmQuFPWYi22Z0X17pkQH7n5j6b+R6J3j//uu2Pa6X0JjQ43kV73F+zNTvegmtCRyuFuDQlsDhGgEO7QkcKglw6EjgcK0Ah84EDpUFOHQlcKgiwKEbgUNVAQ49CByuE+DQi8ChmgCHPgQO1QU49CNwqCHAYQCBQ00BDikEDrUEOAwmcKgtwGEogUMdAQ7DCRyuF+AwksChrgCH0QQONwhwGEvgUE+Aw3gCh/oCHCYSODQQ4DCZwKGhAIcpBA6NBDhMI3BoLMBhOoFDEwEOMwkcmgpwmEXg0EyAwxwCh+YCHOYROLQQ4LCAwKGlAIdFBA6tBDgsJnBoLcBhCYFDGwEOSwkc2gpwWEbg0E6Aw3ICh/YCHFYQOHQQ4LCSwKGjAIdVBA6dBDisJnDoLMBhDYFDFwEOawkcugpwWEfgkCzAYX/iyffoJsBhPeHx0F2AwwYChx4CHDYSOPQU4LCZwKGXAIetBA69BThsI3DoI8BhO4FDXwEOOwgc+glw2Eng0F+Awy4ChwECHHYTOAwU4LCHwCFFgMNeAodBAhz2ETgMFuDwLIHDEAEOzxM4DBXg8CKBwzABDi8TOAwX4PAqgcMIAQ6vEziMFODwJoHDKAEObxM4jBbg8C6BwxgBDu8TOIwV4HCAwGGcAIePCBzGC3D4hMBhggCHzwgcJgpw+ILAYZIAh68IHCYLcPiGwOFGAQ7fEThMEeDwA4HDVAEOBwkcpglwOETgcJMAh18IHKYLcPiNwGGGAIc/CBxmCnA4TOBwswCHIwQOswQ4JBB64WcLcEgkcJgjwCELgcNcAQ7ZCBzmCXDIQeAwX4BDLgKHBQIc8hA4LBTgkJfAYZEAh3wEDrcIcMhP4LBYgEMBAodbBTgUInBYIsChCIHDbQIcihE4LBXgUILA4XYBDmcSOCwT4FCSwOEOAQ6lCByWC3AoTeBwpwCHcwkcVghwKEvgcJcAh/MJHFYKcLiQwOFuAQ4XEzisEuBQnsDhHgEOFQgcVgtwqEjgcK8Ah8sJHNYIcLiSwOE+AQ5XEzisFeBQicDhfgEOlQkc1glwqErg8IAAh2oEDg8KcKhB4LBegEMtAoeHBDjUIXDYIMChLoHDwwIc6hE4bBTg0IDAYZMAh0YEDpsFODQhcNgiwKEZgcNWAQ4tCBweEeDQisBhmwCHNgQOjwpwaEfgsF2AQwcCh8cEOHQicNghwKELgcPjAhySCRx2CnDoTuDwhACHngQOuwQ49CZweFKAQ18Ch90CHPoTODwlwGEggcMeAQ6DCByeFuAwhMBhrwCHYQQOzwhwGEHgsE+AwygCh/0CHMYQODwrwGEcgcNzAhwmEDg8L8BhEoHDCwIcbiRweFGAw1QCh5cEONxE4PCyAIcZBA6vCHC4mcDhVQEOswkcXhPgMJfA4XUBDvMJHN4Q4LCQwOHNon4emTxv/3BB5zIXin/7I6nbx+Yo17V+yoHyy8tuaVhj04QJLduVqfB57RFbB8ytduDQ/O/t72955vDlVMX+84ftW6LnflXx2Ba3H++2b8efN+Gf/7j4r1M11cP5Xc9lNmVJVZo74rEPlZ3/4z/E51rH8ankTv5z7a+Cfs81V+jYL5Kc/8WXQaPCfq+7kcs7qY/Fd4se8/Q293jSHL3txNR/30m9Hh7c2WN2LOROSvR8QUz0vJOOHDnya1q/T3IZ++E/0fneSwX/flH3byjvpd4T0b97Pwqw750TAeP7yn92yZP7yn8kcL9Ke+5X5JI5fp955pPwXtH49+l9j3cND64J8WaNPDB9WeKJ+17AuxEuvk/QGac7t8XjVXSObb+hoH+mD4qe/BxbPXLMDcxxgJDjEY8c8wJzfEjIsc0jx/zAHB8RcjzqkWNBYI6PCTm2e+RYGJjjE0KOxzxyLArM8Skhxw6PHLcE5viMkONxjxyLA3N8Tsix0yPHrYE5viDkeMIjx5LAHF8ScuzyyHFbYI6vCDme9MixNDDH14Qcuz1y3B6Y4xtCjqc8ciwLzPEtIccejxx3BOb4jpDjaY8cywNzfE/Isdcjx52BOX4g5HjGI8eKwBw/EnLs88hxV2COg4Qc+z1yrAzM8RMhx7MeOe4OzHGIkOM5jxyrAnP8TMjxvEeOewJz/ELI8YJHjtWBOX4l5HjRI8e9gTl+I+R4ySPHmsAcvxNyvOyR477AHH8QcrzikWNtYI4/CTle9chxf2COw4Qcr3nkWBeY4y9Cjtc9cjwQmOMIIccbHjkeDMzhip38HG965FgfmCOBkOMtjxwPBebIRMjxtkeODYE5Egk53vHI8XBgjsyEHO965NgYmCMLIcd7Hjk2BebISsjxvkeOzYE5shFyfOCRY0tgjuyEHAc8cmwNzJGDkONDjxyPBObIScjxkUeObYE5chFyfOyR49HAHLkJOT7xyLE9MEceQo5PPXI8FpjjFEKOzzxy7AjMkZeQ43OPHI8H5jiVkOMLjxw7A3PkI+T40iPHE4E5TiPk+Mojx67AHPkJOb72yPFkYI7TCTm+8cixOzBHAUKObz1yPBWYoyAhx3ceOfYE5ihEyPG9R46nA3MUJuT4wSPH3sAcRQg5fvTI8UxgjqKEHAc9cuwLzFGMkOMnjxz7A3MUJ+Q45JHj2cAcJQg5fvbI8VxgjjMIOX7xyPF8YI4zPXJgXlJVd2z2LuZcYL4CxvpjnDzGmGN8NsY2Y1wwxtRiPCrGcmIcJMYQYvwdxq5h3BfGTGG8EcbqYJwLxohgfAXGJuC8Ps6J43wyzsXiPCbOAeL8Gc494bwNznngfAGOteM4NY7x4vgoji3iuByOaeF4EI6l4DgEvsPj+y++O+J7F76z4PM+PivjcyY+o+HzDT4b4H0V70l4PcdrIV5H8BzE4xf3PbilxceHfVL87LN7zB/K7jtXKvYxk9HmRyf+FfN/rJX0eKzh+VI1jd8nOb+LbzaffQz1OMvzOXed+7/nXOxzzvf1FPfR2x5z+7At7idfn+j7NiOPUp7Ph+vS+H2Si2+/Yn9IiutqnOdDqQAPXHxfb8/+77/eJvzzH+f3ent2wOttad7j69jO+l0voTTh8XWOAIfGmU++x7kCHFoTOJQR4NCWwKGsAIf2BA7nCXDoSOBwvgCHzgQOFwhw6ErgcKEAh24EDhcJcOhB4HCxAIdeBA7lBDj0IXAoL8ChH4HDJQIcBhA4VBDgkELgcKkAh8EEDhUFOAwlcLhMgMNwAofLBTiMJHC4QoDDaAKHKwU4jCVwuEqAw3gCh6sFOEwkcLhGgMNkAodKAhymEDhcK8BhGoFDZQEO0wkcqghwmEngUFWAwywCh+sEOMwhcKgmwGEegUN1AQ4LCBxqCHBYROBQU4DDYgKHWgIclhA41BbgsJTAoY4Ah2UEDtcLcFhO4FBXgMMKAocbBDisJHCoJ8BhFYFDfQEOqwkcGghwWEPg0FCAw1oCh0YCHNYRODQW4LA/8eR7NBHgsJ7weGgqwGEDgUMzAQ4bCRyaC3DYTODQQoDDVgKHlgIcthE4tBLgsJ3AobUAhx0EDm0EOOwkcGgrwGEXgUM7AQ67CRzaC3DYQ+DQQYDDXgKHjgIc9hE4dBLg8CyBQ2cBDs8TOHQR4PAigUNXAQ4vEzgkC3B4lcChm2ffTjV3rG8HnQnoC8BcecwTxxxpzA/G3FjMC8WcSMwHxFw4zAPDHCjM/8HcF8z7wJwHjPfHWHeM88YYZ4zvxdhWjOvEmEaM58NYNozjwhgmjN/B2BWM28CYBZyvx7lqnKfFOUqcn8O5KZyXwTkJHI/HsWgch8UxSBx/w7EnHHfBMQd838Z3TXzPwncMfL7GZ0t8rsJnCryf4r0Er6N4DcHzB48dcItcMnkyr+z8+3bQ0+HrE93tkZFHd8/nQ7U0fp/k4tuv2B+S4roapw+le4AHLr59Oz3i9zlZfTtHH06+fPBYxL7HXi+jvD15j69jO+t3vYSehMdXLwEOjL6d3gIcGH07fQQ4MPp2+gpwYPTt9BPgwOjb6S/AgdG3M0CAA6NvZ6AAB0bfTooAB0bfziABDoy+ncECHBh9O0MEODD6doYKcGD07QwT4MDo2xkuwIHRtzNCgAOjb2ekAAdG384oAQ6Mvp3RAhwYfTtjBDgw+nbGCnBg9O2ME+DA6NsZL8CB0bczQYADo29nogAHRt/OJAEOjL6dyQIcGH07NwpwYPTtTBHgwOjbmSrAgdG3M02AA6Nv5yYBDoy+nekCHBh9OzMEODD6dmYKcGD07dwswIHRtzNLgAOjb2e2AAdG384cAQ6Mvp25AhwYfTvzBDgw+nbmC3Bg9O0sEODA6NtZKMCB0bezSIADo2/nFgEOjL6dxQIcGH07twpwYPTtLBHgwOjbuU2AA6NvZ6kAB0bfzu0CHBh9O8sEODD6du4Q4MDo21kuwIHRt3OnAAdG384KAQ6Mvp27BDgw+nZWCnBg9O3cLcCB0bezSoADo2/nHgEOjL6d1QIcGH079wpwYPTtrPHgYIcJXXV3rG8HnQnoC8BcecwTxxxpzA/G3FjMC8WcSMwHxFw4zAPDHCjM/8HcF8z7wJwHjPfHWHeM88YYZ4zvxdhWjOvEmEaM58NYNozjwhgmjN/B2BWM28CYBZyvx7lqnKfFOUqcn8O5KZyXwTkJHI/HsWgch8UxSBx/w7EnHHfBMQd838Z3TXzPwncMfL7GZ0t8rsJnCryf4r0Er6N4DcHzB48dcItcfHtwrnX+fTvo6fD1ie72yMjjPs/nQ/U0fp/k4tuv2B+S4roapw/lvgAPXBJjfDLivTZ+n5PVt3N0l3354LGIfY+9XkZ57+c9vo7trN/1Eu4nPL7WCXBg9O08IMCB0bfzoAAHRt/OegEOjL6dhwQ4MPp2NghwYPTtPCzAgdG3s1GAA6NvZ5MAB0bfzmYBDoy+nS0CHBh9O1sFODD6dh4R4MDo29kmwIHRt/OoAAdG3852AQ6Mvp3HBDgw+nZ2CHBg9O08LsCB0bezU4ADo2/nCQEOjL6dXQIcGH07TwpwYPTt7BbgwOjbeUqAA6NvZ48AB0bfztMCHBh9O3sFODD6dp4R4MDo29knwIHRt7NfgAOjb+dZAQ6Mvp3nBDgw+naeF+DA6Nt5QYADo2/nRQEOjL6dlwQ4MPp2XhbgwOjbeUWAA6Nv51UBDoy+ndcEODD6dl4X4MDo23lDgAOjb+dNAQ6Mvp23BDgw+nbeFuDA6Nt5R4ADo2/nXQEOjL6d9wQ4MPp23hfgwOjb+UCAA6Nv54AAB0bfzocCHBh9Ox8JcGD07XwswIHRt/OJAAdG386nAhwYfTufCXBg9O18LsCB0bfzhQAHRt/OlwIcGH07XwlwYPTtfC3AgdG3840AB0bfzrceHFDQUcMd69tBZwL6AjBXHvPEMUca84MxNxbzQjEnEvMBMRcO88AwBwrzfzD3BfM+MOcB4/0x1h3jvDHGGeN7MbYV4zoxphHj+TCWDeO4MIYJ43cwdgXjNjBmAefrca4a52lxjhLn53BuCudlcE4Cx+NxLBrHYXEMEsffcOwJx11wzAHft/FdE9+z8B0Dn6/x2RKfq/CZAu+neC/B6yheQ/D8wWMH3CIX3x6cRoX9+3bQ0+HrE93tkZHHd57Phxpp/D7JxbdfsT8kxXU1Th/KdwEeuPj27Xwfv8/J6tvJjP/48sFjEfsee72M8v7Ae3wd21m/6yX8QHh8/SjAgdG3c1CAA6Nv5ycBDoy+nUMCHBh9Oz8LcGD07fwiwIHRt/OrAAdG385vAhwYfTu/C3Bg9O38IcCB0bfzpwAHRt/OYQEOjL6dvwQ4MPp2jghwYPTtuOL/+xwYfTsJAhwYfTuZBDgw+nYSBTgw+nYyC3Bg9O1kEeDA6NvJKsCB0beTTYADo28nuwAHRt9ODgEOjL6dnAIcGH07uQQ4MPp2cgtwYPTt5BHgwOjbOUWAA6NvJ68AB0bfzqkCHBh9O/kEODD6dk4T4MDo28kvwIHRt3O6AAdG304BAQ6Mvp2CAhwYfTuFBDgw+nYKC3Bg9O0UEeDA6NspKsCB0bdTTIADo2+nuAAHRt9OCQEOjL6dMwQ4MPp2zhTgwOjbSRLgwOjbKSnAgdG3c5YAB0bfTikBDoy+nbMFODD6dkoLcGD07ZwjwIHRt3OuAAdG304ZAQ6Mvp2yAhwYfTvnCXBg9O2cL8CB0bdzgQAHRt/OhQIcGH07FwlwYPTtXCzAgdG3U06AA6Nvp7wAB0bfziUeHNApUtMd69tBZwL6AjBXHvPEMUca84MxNxbzQjEnEvMBMRcO88AwBwrzfzD3BfM+MOcB4/0x1h3jvDHGGeN7MbYV4zoxphHj+TCWDeO4MIYJ43cwdgXjNjBmAefrca4a52lxjhLn53BuCudlcE4Cx+NxLBrHYY8egzTh2BOOu+CYA75v47smvmfhOwY+X+OzJT5X4TMF3k/xXoLXUbyG4PmDxw64RS6+PTiVnH/fzo8BfTs/evTtVPB8PtRM4/dJLr79iv0hKa6rcfpQfDhEX3z7di6N3+dk9e1kwX98+eCxiH2PvV5GeSvyHl/HdtbvegkVi598j8sEODD6di4X4MDo27lCgAOjb+dKAQ6Mvp2rBDgw+nauFuDA6Nu5RoADo2+nkgAHRt/OtQIcGH07lQU4MPp2qghwYPTtVBXgwOjbuU6AA6Nvp5oAB0bfTnUBDoy+nRoCHBh9OzUFODD6dmoJcGD07dQW4MDo26kjwIHRt3O9AAdG305dAQ6Mvp0bBDgw+nbqCXBg9O3UF+DA6NtpIMCB0bfTUIADo2+nkQAHRt9OYwEOjL6dJgIcGH07TQU4MPp2mglwYPTtNBfgwOjbaSHAgdG301KAA6Nvp5UAB0bfTmsBDoy+nTYCHBh9O20FODD6dtoJcGD07bQX4MDo2+kgwIHRt9NRgAOjb6eTAAdG305nAQ6Mvp0uAhwYfTtdBTgw+naSBTgw+na6CXBg9O10F+DA6NvpIcCB0bfTU4ADo2+nlwAHRt9ObwEOjL6dPgIcGH07fQU4MPp2+glwYPTt9BfgwOjbGSDAgdG3M1CAA6NvJ0WAA6NvZ5AAB0bfzmABDoy+nSECHBh9O0M9+3ZquWN9O+hMQF8A5spjnjjmSGN+MObGYl4o5kRiPiDmwmEeGOZAYf4P5r5g3gfmPGC8P8a6Y5w3xjhjfC/GtmJcJ8Y0YjwfxrJhHBfGMGH8DsauYNwGxizgfD3OVeM8Lc5R4vwczk3hvAzOSeB4PI5F4zgsjkHi+BuOPeG4C4454Ps2vmviexa+Y+DzNT5b4nMVPlPg/RTvJXgdxWsInj947IBb5OLbg4POknc9+3bQ0+HrE93tkZHHMM/nQ600fp/k4tuv2B+S4roapw9lWIAHLr59O8Pj9zlZfTtZ8R9fPngsYt9jr5dR3hG8x9exnfW7XsIIwuNrpKeH73P+cEHn/ioY//ZHbFtXyP/+HCVwfzJ6g0YLcGD0Bo0R4MDoDRorwIHRGzROgAOjN2i8AAdGb9AEAQ6M3qCJAhwYvUGTBDgweoMmC3Bg9AbdKMCB0Rs0RYADozdoqgAHRm/QNAEOjN6gmwQ4MHqDpgtwYPQGzRDgwOgNminAgdEbdLMAB0Zv0CwBDozeoNkCHBi9QXMEODB6g+YKcGD0Bs0T4MDoDZovwIHRG7RAgAOjN2ihAAdGb9AiAQ6M3qBbBDgweoMWC3Bg9AbdKsCB0Ru0RIADozfoNgEOjN6gpQIcGL1BtwtwYPQGLRPgwOgNukOAA6M3aLkAB0Zv0J0CHBi9QSsEODB6g+4S4MDoDVopwIHRG3S3AAdGb9AqAQ6M3qB7BDgweoNWC3Bg9AbdK8CB0Ru0RoADozfoPgEOjN6gtQIcGL1B9wtwYPQGrRPgwOgNekCAA6M36EEBDozeoPUCHBi9QQ8JcGD0Bm0Q4MDoDXpYgAOjN2ijAAdGb9AmAQ6M3qDNAhwYvUFbBDgweoO2CnBg9AY9IsCB0Ru0zYMDulFqu2O9QehMQF8A5spjnjjmSGN+MObGYl4o5kRiPiDmwmEeGOZAYf4P5r5g3gfmPGC8P8a6Y5w3xjhjfC/GtmJcJ8Y0YjwfxrJhHBfGMGH8DsauYNwGxizgfD3OVeM8Lc5R4vwczk3hvAzOSeB4PI5F4zgsjkHi+BuOPeG4C4454Ps2vmviexa+Y+DzNT5b4nMVPlPg/RTvJXgdxWsInj947IBb5BLb7RFPD5BHf8jRrhb0dMT6ZHS9aI+M9unR4n7Ph9pp/D7JxbdfsT8kxXU1Tq/LowEeuPj2Bm2P3+dk9QZlw398+eCxiH2PvV5GeR/jPb6O7azf9RIeIzy+dghwYPTtPC7AgdG3s1OAA6Nv5wkBDoy+nV0CHBh9O08KcGD07ewW4MDo23lKgAOjb2ePAAdG387TAhwYfTt7BTgw+naeEeDA6NvZJ8CB0bezX4ADo2/nWQEOjL6d5wQ4MPp2nhfgwOjbeUGAA6Nv50UBDoy+nZcEODD6dl4W4MDo23lFgAOjb+dVAQ6Mvp3XBDgw+nZeF+DA6Nt5Q4ADo2/nTQEOjL6dtwQ4MPp23hbgwOjbeUeAA6Nv510BDoy+nfcEODD6dt4X4MDo2/lAgAOjb+eAAAdG386HAhwYfTsfCXBg9O18LMCB0bfziQAHRt/OpwIcGH07nwlwYPTtfC7AgdG384UAB0bfzpcCHBh9O18JcGD07XwtwIHRt/ONAAdG3863AhwYfTvfCXBg9O18L8CB0bfzgwAHRt/OjwIcGH07BwU4MPp2fhLgwOjbOSTAgdG387MAB0bfzi8CHBh9O78KcGD07fwmwIHRt/O7AAdG384fAhwYfTt/CnBg9O0cFuDA6Nv5S4ADo2/niAcHdIrUccf6dtCZgL4AzJXHPHHMkcb8YMyNxbxQzInEfEDMhcM8MMyBwvwfzH3BvA/MecB4f4x1xzhvjHHG+F6MbcW4ToxpxHg+jGXDOC6MYcL4HYxdwbgNjFnA+Xqcq8Z5WpyjxPk5nJvCeRmck8DxeByLxnFYHIPE8Tcce8JxFxxzwPdtfNfE9yx8x8Dna3y2xOcqfKbA+yneS/A6itcQPH/w2AG3yMW3BwedJe8UPbZ9PP086Onw9Ynu9sjIw5Xwez7USeP3SS6+/Yr9ISmuq3H6UHw4RF98+3YS4vdJ8OjbSfDo20n45z/O77GLfY+9XkZ5M3lwxW0npv6b1vVC+q3i3TaxhB+/yMX3/s/837///76C+/d+Z7R55LUr5DUvsm1GbLIEPlair+e7f4cL2n8Kebxvpm7v+zzI6vn6EpIjk2eOTAE5svHeL47trN/1KL1R2QU4MHqjcghwYPRG5RTgwOiNyiXAgdEblVuAA6M3Ko8AB0Zv1CkCHBi9UXkFODB6o04V4MDojconwIHRG3WaAAdGb1R+AQ6M3qjTBTgweqMKCHBg9EYVFODA6I0qJMCB0RtVWIADozeqiAAHRm9UUQEOjN6oYgIcGL1RxQU4MHqjSghwYPRGnSHAgdEbdaYAB0ZvVJIAB0ZvVEkBDozeqLMEODB6o0oJcGD0Rp0twIHRG1VagAOjN+ocAQ6M3qhzBTgweqPKCHBg9EaVFeDA6I06T4ADozfqfAEOjN6oCwQ4MHqjLhTgwOiNukiAA6M36mIBDozeqHICHBi9UeUFODB6oy4R4MDojaogwIHRG3WpAAdGb1RFAQ6M3qjLBDgweqMuF+DA6I26QoADozfqSgEOjN6oqwQ4MHqjrhbgwOiNukaAA6M3qpIAB0Zv1LUCHBi9UZUFODB6o6oIcGD0RlUV4MDojbpOgAOjN6qaAAdGb1R1AQ6M3qgaAhwYvVE1BTgweqNqefZY+N4++kIyBfTMPFry5O4X+mHQ3eLbQVPbo+/FN0PsvmR0++gIubJo/NujI+Stov73RZ3ALiVfn+sz9skUfdu5TZmj/h/jZPBvtdT/b5z6/7jdyHZ17ecbTPVM9VN/n9Ud29fj7X8Gl4S6JcKfr/4v5M6d9CduloAn7uMn+Yk7qvjf5U6++7WzpP+dg4tvIVQDjxcID1YJHvuf8M9/nN/jqUEA14aBJU8N/wOFYDU8tm1EKgRr/N+//49eQoq9PEqtjr6BZg14vDQpcfJzZPPMkS0gR9OT/MEJ+1U74ANKs/+hDyi4L+p43hd1Au6L5oEfUHzZRm+bUZaajrNPCc7jw77j7FMmF/8+1XacfUp08e9THfef2aeMfK538e9/kcxh++T9Idad2GtCPO/Z0e8B8bxvNynhn+MGd/JzNPXM0TQgRz3HeSzWd/FnKUF6LDZwHJ+GjuPTyHF8GjuOTxPH8WnqOD7NHMenueP4tHAcn5aO49PKcXxaO45PG8fxaes4Pu0cx6e94/h0cByfjo7j08lxfDo7jk8Xx/Hp6jg+yY7j081xfLo7jk8Px/Hp6Tg+vRzHp7fj+PRxHJ++juPTz3F8+juOzwDH8RnoOD4pjuMzyHF8BjuOzxDH8RnqOD7DHMdnuOP4jHAcn5GO4zPKcXxGO47PGMfxGes4PuMcx2e84/hMcByfiY7jM8lxfCY7js+NjuMzxXF8pjqOzzTH8bnJcXymO47PDMfxmek4Pjc7js8sx/GZ7Tg+cxzHZ67j+MxzHJ/5juOzwHF8FjqOzyLH8bnFcXwWO47PrY7js8RxfG5zHJ+ljuNzu+P4LHMcnzscx2e54/jc6Tg+KxzH5y7H8VnpOD53O47PKsfxucdxfFY7js+9juOzxnF87nMcn7WO43O/4/iscxyfBxzH50HH8VnvOD4POY7PBsfxedhxfDY6js8mx/HZ7Dg+WxzHZ6vj+DziOD7bHMfnUcfx2e44Po85js8Ox/F53HF8djqOzxOO47PLcXyedByf3Y7j85Tj+OxxHJ+nHcdnr+P4POM4Pvscx2e/4/g86zg+zzmOz/OO4/OC4/i86Dg+LzmOz8uO4/OK4/i86jg+rzmOz+uO4/OG4/i86Tg+bzmOz9uO4/OO4/i86zg+7zmOz/uO4/OB4/gccByfDx3H5yPH8fnYcXw+cRyfTx3H5zPH8fnccXy+cByfLx3H5yvH8fnacXy+cRyfbx3H5zvH8fnecXx+cByfHx3H56Dj+PzkOD6HHMfnZ8fx+cVxfH51HJ/fHMfnd8fx+cNxfP50HJ/DjuPzl+P4HHEcH1whzm1jrujnk0DyyUTySST5ZCb5ZCH5ZCX5ZCP5ZCf55CD55CT55CL55Cb55CH5nELyyUvyOZXkk4/kcxrJJz/J53SSTwGST0GSTyGST2GSTxGST1GSTzGST3GSTwmSzxkknzNJPkkkn5Ikn7M8fWJvP57u3boBXbqlSPnPJuRvHJC/NCn/OSSfc0k+ZUg+ZUk+55F8zif5XEDyuZDkcxHJ52KSTzmST3mSzyUknwokn0tJPhVJPpeRfC4n+VxB8rmS5HMVyedqks81JJ9KJJ9rST6VST5VSD5VST7XkXyqkXyqk3xqkHxqknxqkXxqk3zqkHyuJ/nUJfncQPKpR/KpT/JpQPJpSPJpRPJpHOhzIut7ZrRPTTz3yXdfsJZhdo/1vj4omvY6tRnlaErIkcMjx4HAHM0IOXJ65PgwMEdzQo5cHjk+CszRgpAjt0eOjwNztCTkyOOR45PAHK0IOU7xyPFpYI7WhBx5PXJ8FpijDSHHqR45Pg/M0ZaQI59Hji8Cc7Qj5DjNI8eXgTnaE3Lk98jxVWCODoQcp3vk+DowR0dCjgIeOb4JzNGJkKOgR45vA3N0JuQo5JHju8AcXQg5Cnvk+D4wR1dCjiIeOX4IzJFMyFHUI8ePgTm6EXIU88hxMDBHd0KO4h45fgrM0YOQo4RHjkOBOXoScpzhkePnwBy9CDnO9MjxS2CO3oQcSR45fg3M0YeQo6RHjt8Cc/Ql5DjLI8fvgTn6EXKU8sjxR2CO/oQcZ3vk+DMwxwBCjtIeOQ4H5hhIyHGOR46/AnOkEHKc65HjSGCOQYQcZTxyuGJhOQYTcpT1yJEQmGMIIcd5HjkyBeYYSshxvkeOxMAcwwg5LvDIkTkwx3BCjgs9cmQJzDGCkOMijxxZA3OMJOS42CNHtsAcowg5ynnkyB6YYzQhR3mPHDkCc4wh5LjEI0fOwBxjCTkqeOTIFZhjHCHHpR45cgfmGE/IUdEjR57AHBMIOS7zyHFKYI6JhByXe+TIG5hjEiHHFR45Tg3MMZmQ40qPHPkCc9xIyHGVR47TAnNMIeS42iNH/sAcUwk5rvHIcXpgjmmEHJU8chQIzHETIce1HjkKBuaYTshR2SNHocAcMwg5qnjkKByYYyYhR1WPHEUCc9xMyHGdR46igTlmEXJU88hRLDDHbEKO6h45igfmmEPIUcMjR4nAHHMJOWp65DgjMMc8Qo5aHjnODMwx/yTnwFyUZh45GpX4e3vfHAtOco7DBe1ze9H4tz9i22cv5J9jISHH1Z45cgTkWETIcY1njpwBOW4h5KjkmSNXQI7FhBzXeubIHZDjVkKOyp458gTkWELIUcUzxykBOW4j5KjqmSNvQI6lhBzXeeY4NSDH7YQc1Txz5AvIsYyQo7pnjtMCctxByFHDM0f+gBzLCTlqeuY4PSDHnYQctTxzFAjIsYKQo7ZnjoIBOe4i5KjjmaNQQI6VhBzXe+YoHJDjbkKOup45igTkWEXIcYNnjqIBOe4h5KjnmaNYQI7VhBz1PXMUD8hxLyFHA88cJQJyrCHkaOiZ44yAHPcRcjTyzHFmQI61hByNPXMkBeS4n5CjiWeOkgE51hFyNPXMcVZAjgcIOZp55igVkONBQo7mnjnODsixnpCjhWeO0gE5HiLkaOmZ45yAHBsIOVp55jg3IMfDhBytPXOUCcixkZCjjWeOsgE5NhFytPXMcV5Ajs2EHO08c5wfkGMLIUd7zxwXBOTYSsjRwTPHhQE5HiHk6OiZ46KAHNsIOTp55rg4IMejhBydPXOUC8ixnZCji2eO8gE5HiPk6OqZ45KAHDsIOZI9c1QIyPE4IUc3zxyXBuTYScjR3TNHxYAcTxBy9PDMcVlAjl2EHD09c1wekONJQo5enjmuCMixm5Cjt2eOKwNyPEXI0cczx1UBOfYQcvT1zHF1QI6nCTn6eea4JiDHXkKO/p45KgXkeIaQY4BnjmsDcuwj5BjomaNyQI79hBwpnjmqBOR4lpBjkGeOqgE5niPkGOyZ47qAHM8TcgzxzFEtIMcLhBxDPXNUD8jxIiHHMM8cNQJyvETIMdwzR82AHC8TcozwzFErIMcrhBwjPXPUDsjxKiHHKM8cdQJyvEbIMdozx/UBOV4n5BjjmaNuQI43CDnGeua4ISDHm4Qc4zxz1AvI8RYhx3jPHPUDcrxNyDHBM0eDgBzvEHJM9MzRMCDHu4QckzxzNArI8R4hx2TPHI0DcrxPyHGjZ44mATk+IOSY4pmjaUCOA4QcUz1zNAvI8SEhxzTPHM0DcnxEyHGTZ44WATk+JuSY7pmjZUCOTwg5ZnjmaBWQ41NCjpmeOVoH5PiMkONmzxxtAnJ8TsgxyzNH24AcXxByzPbM0S4gx5eEHHM8c7QPyPEVIcdczxwdAnJ8TcgxzzNHx4Ac3xByzPfM0Skgx7eEHAs8c3QOyPEdIcdCzxxdAnJ8T8ixyDNH14AcPxBy3OKZIzkgx4+EHIs9c3QLyHGQkONWzxzdA3L8RMixxDNHj4Achwg5bvPM0TMgx8+EHEs9c/QKyPELIcftnjl6B+T4lZBjmWeOPgE5fiPkuMMzR9+AHL8Tciz3zNEvIMcfhBx3euboH5DjT0KOFZ45BgTkOEzIcZdnjoEBOf4i5FjpmSMlIMcRQo67PXMMCsiBHYtz2+AcqzxzDA7IkUDIcY9njiEBOTIRcqz2zDE0IEciIce9njmGBeTITMixxjPH8IAcWQg57vPMMSIgR1ZCjrWeOUYG5MhGyHG/Z45RATmyE3Ks88wxOiBHDkKOBzxzjAnIkZOQ40HPHGMDcuQi5FjvmWNcQI7chBwPeeYYH5AjDyHHBs8cEwJynELI8bBnjokBOfIScmz0zDEpIMephBybPHNMDsiRj5Bjs2eOGwNynEbIscUzx5SAHPkJObZ65pgakON0Qo5HPHNMC8hRgJBjm2eOmwJyFCTkeNQzx/SAHIUIObZ75pgRkKMwIcdjnjlmBuQoQsixwzPHzQE5ihJyPO6ZY1ZAjmKEHDs9c8wOyFGckOMJzxxzAnKUIOTY5ZljbkCOMwg5nvTMMS8gx5mEHLs9c8wPyJFEyPGUZ44FATlKEnLs8cyxMCDHWYQcT3vmWBSQoxQhx17PHLcE5DibkOMZzxyLA3KUJuTY55nj1oAc5xBy7PfMsSQgx7mEHM965rgtIEcZQo7nPHMsDchRlpDjec8ctwfkOI+Q4wXPHMsCcpxPyPGiZ447AnJcQMjxkmeO5QE5LiTkeNkzx50BOS4i5HjFM8eKgBwXE3K86pnjroAc5Qg5XvPMsTIgR3lCjtc9c9wdkOMSQo43PHOsCshRgZDjTc8c9wTkuPQk58A67s0913FvHrCOe0XPHP9c0dPnMpLP5SSfK0g+V5J8riL5XE3yuYbkU4nkcy3JpzLJpwrJpyrJ5zqSTzWST3WSTw2ST02STy2ST22STx2Sz/Ukn7oknxtIPvVIPvVJPg1IPg1JPo1IPo1JPk1IPk1JPs1IPs1JPi1IPi1JPq1IPq1JPm1IPm1JPu1IPu1JPh1IPh1JPp1IPp1JPl1IPl1JPskkn24kn+4knx4kn54kn14kn94knz4kn74kn34kn/4knwEkn4EknxSSzyCSz2CSzxCSz1CSzzCSz3CSzwiSz0iSzyiSz2iSzxiSz1iSzziSz3iSzwSSz0SSzySSz2SSz40knykkn6kkn2kkn5tIPtNJPjNIPjNJPjeTfGaRfGaTfOaQfOaSfOaRfOaTfBaQfBaSfBaRfG4h+Swm+dxK8llC8rmN5LOU5HM7yWcZyecOks9yks+dJJ8VJJ+7SD4rST53k3xWkXzuIfmsJvncS/JZQ/K5j+SzluRzP8lnHcnnAZLPgySf9SSfh0g+G0g+D5N8NpJ8NpF8NpN8tpB8tpJ8HiH5bCP5PEry2U7yeYzks4Pk8zjJZyfJ5wmSzy6Sz5Mkn90kn6dIPntIPk+TfPaSfJ4h+ewj+ewn+TxL8nmO5PM8yecFks+LJJ+XSD4vk3xeIfm8SvJ5jeTzOsnnDZLPmySft0g+b5N83iH5vEvyeY/k8z7J5wOSzwGSz4ckn49IPh+TfD4h+XxK8vmM5PM5yecLks+XJJ+vSD5fk3y+Ifl8S/L5juTzPcnnB5LPjySfgySfn0g+h0g+P5N8fiH5/Ery+Y3k8zvJ5w+Sz58kn8Mkn79IPkdIPi6R45NA8slE8kkk+WQm+WQh+WQl+WQj+WQn+eQg+eQk+eQi+eQm+eQh+ZxC8slL8jmV5JOP5HMaySc/yed0kk8Bkk9Bkk8hkk9hkk8Rkk9Rkk8xkk9xkk8Jks8ZJJ8zST5JJJ+SJJ+zSD6lSD5nk3xKk3zOIfmcS/IpQ/IpS/I5j+RzPsnnApLPhSSfi0g+F5N8ypF8ypN8LiH5VCD5XEryqUjyuYzkcznJ5wqSz5Ukn6tIPleTfK4h+VQi+VxL8qlM8qlC8qlK8rmO5FON5FOd5FOD5FOT5FOL5FOb5FOH5HM9yacuyecGkk89kk99kk8Dkk9Dkk8jkk9jkk8Tkk9Tkk8zkk9zkk8Lkk9Lkk8rkk9rkk8bkk9bkk87kk97kk8Hkk9Hkk8nkk9nkk8Xkk9Xkk8yyacbyac7yacHyacnyacXyac3yacPyacvyacfyac/yWcAyWcgySeF5DOI5DOY5DOE5DOU5DOM5DOc5DOC5DOS5DOK5DOa5DOG5DOW5DOO5DOe5DOB5DOR5DOJ5DOZ5HMjyWcKyWcqyWcayecmks90ks8Mks9Mks/NJJ9ZJJ/ZJJ85JJ+5JJ95JJ/5JJ8FJJ+FJJ9FJJ9bSD6LST63knyWkHxuI/ksJfncTvJZRvK5g+SznORzJ8lnBcnnLpLPSpLP3SSfVSSfewJ9MsX4lOtaP+VA+eVltzSssWnChJbtylT4vPaIrQPmVjtwaP739vezXfz7tNpzn3z3pYapYYn4t29k2zYu4c/2XtJ9uIbkcx/psZLZxb9Pa0n7lMXFv0/3k/Ypq4t/n9aR9imbi3+fHiDtU3YX/z49SNqnHC7+fVpP2qecLv59eoi0T7lc/Pu0gbRPuV38+/QwaZ/yuPj3aSNpn05x8e/TJtI+5XXx79Nm0j6d6uLfpy2kfcrn4t+nraR9Os3Fv0+PkPYpv4t/n7aR9ul0F/8+PUrapwIu/n3aTtqngi7+fXqMtE+FXPz7tIO0T4Vd/Pv0OGmfirj492knaZ+Kuvj36QnSPhVz8e/TLtI+FXfx79OTpH0q4eLfp92kfTrDxb9PT5H26UwX/z7tIe1Tkot/n54m7VNJF/8+7SXt01ku/n16hrRPpVz8+7TPY58SU/cF40hwqWmqZaptqmO63lTXdIOpnqm+qYGpoamRqbGpiampqZmpuamFqaWplam1qY2pramdqb2pg6mjqZOps6mLqasp2dTN1N3Uw9TT1MvU29TH1NfUz9TfNMA00JRiGmQabBpiGmoaZhpuGmEaaRplGm0aYxprGmcab5pgmmiaZJpsuhEcTFNN00w3maabZphmmm42zTLNNs0xzTXNM803LTAtNC0y3WJabLrVtMR0m2mp6XbTMtMdpuWmO00rTHeZVpruNq0y3WNabbrXtMZ0n2mt6X7TOtMDpgdN600PmTaYHjZtNG0ybTZtMW01PWLaZnrUtN30mGmH6XHTTtMTpl2mJ027TU+Z9pieNu01PWPaZ9pvetb0nOl50wumF00vmV42vWJ61fSa6XXTG6Y3TW+Z3ja9Y3rX9J7pfdMHpgOmD00fmT42fWL61PSZ6XPTF6YvTV+ZvjZ9Y/rW9J0Jz4kfTD+aDpp+Mh0y/Wz6xfSr6TfT76Y/TH+aDpv+Mh0x4aBugimTKdGU2ZTFlNWUzZTdlMOU05TLlNuUx3SKKa/pVFM+02mm/KbTTQVMBU2FTIVNRUxFTcVMxU0lTGeYzjQlmUqazjKVMp1tKm06x3SuqYyprOk80/mmC0wXmi4yXWwqZypvusRUwXSpqaLpMtPlpitMV5quMl1tusZUyXStqbKpiqmq6TpTNVN1Uw1TTVMtU21THdP1prqmG0z1TPVNDUwNTY1MjU1NTE1NzUzNTS1MLU2tTK1NbUxtTe1M7U0dTB1NnUydTV1MXU3Jpm6m7qYepp6mXqbepj6mvqZ+pv6mAaaBphTTINNg0xDTUNMw03DTCNNI0yjTaNMY01jTONN40wTTRNMk02TTjaYppqmmaaabTNNNM0wzTTebZplmm+aY5prmmeabFpgWmhaZbjEtNt1qWmK6zbTUdLtpmekO03LTnaYVprtMK013m1aZ7jGtNt1rWmO6z7TWdL9pnekB04Om9aaHTBtMD5s2mjaZNpu2mLaaHjFtMz1q2m56zLTD9Lhpp+kJ0y7Tk6bdpqdMe0xPm/aanjHtM+03PWt6zvS86QXTi6aXTC+bXjG9anrN9LrpDdObprdMb5veMb1res/0vukD0wHTh6aPTB+bPjF9avrM9LnpC9OXpq9MX5u+MX1r+s70vekH04+mg6afTIdMP5t+Mf1q+s30u+kP05+mw6a/TEdMeNNLMGUyJZoym7KYspqymbKbcphymnKZcpvymE4x5TWdaspnOs2U33S6qYCpoKmQqbCpiKmoqZipuKmE6QzTmViLwFTSdJaplOlsU2nTOaZzTWVMZU3nmc43XWC60HSR6WJTOVN50yWmCqZLTRVNl5kuN11hutJ0lelq0zWmSqZrTZVNVUxVTdeZqpmqm2qYappqmWqb6piuN9U13WCqZ6pvamBqaGpkamxqYmpqamZqbmphamlqZWptamNqa2pnam/qYOpo6mTqbOpi6mpKNnUzdTf1MPU09TL1NvUx9TX1M/U3DTANNKWYBpkGm4aYhpqGmYabRphGmkaZRpvGmMaaxpnGmyaYJpommSabbjRNMU01TTPdZJpummGaabrZNMs02zTHNNc0zzTftMC00LTIdItpselW0xLTbaalpttNy0x3mJab7jStMN1lWmm627TKdI9ptele0xrTfaa1pvtN60wPmB40rTc9ZNpgeti00bTJtNm0xbTV9IgJa9Nj3Xis6Y711rEWOtYpxxriWN8ba29jXWysWY31pLHWM9ZhxhrJWL8Yawtj3V+syYv1crGWLdaZxRqwWJ8Va6diXVOsOYr1QLFWJ9bRxBqXWH8Sa0Ni3UasqYj1DrEWIdYJxBp+WF8Pa99hXTqsGYf13LDWGtZBwxplWD8Ma3th3S2siYX1qrCWFNZ5whpMWB8JaxdhXSGs+YP1eLBWDtaxwRozWP8Fa7Ng3RSsaYL1RrAWCD74Yg0NrG+BtSewLgTWbMB6CljrAOsQYI0A9PejWx+99+ikR188utzRs44OdPSTozscvd7o3EYfNrqq0SONjmf0L6MbGb3F6BRG3+/RLl4TOmzRL4vuV/SyojMVfaboGkUPKDo60Z+Jbkv0TqITEn2N6FJEzyE6CNEPiO4+9Oqh8w59dOiKQ48bOtbQf4ZuMvSGodMLfVvowkJPFTqk0O+E7iX0IqGzCH1C6PpBDw86ctBfg24Z9L6gkwV9KegyQc8IOkDQz4HuDPRaoHMCfRDoakCPAjoO0D+AbgDM28ecesx3x1x0zBPHHG7Mr8bcZ8xLxpxhzOfFXFvMg8UcVcwfxdxOzLvEnEjMV8RcQszzwxw8zI/D3DXMK8OcL8zHwlwpzGPCHCPM/8HcHMybwZwWzDfBXBDM08AcCsxvwNwDzAvAmH18D8JYd4xDxxhxjN/G2GqMe8aYZIwXxlhejLPFGFiMT8XYUYzrxJhLjIfEWEWMI8QYP4y/w9g4jFvDmDKM98JYLIyTwhgmjC/C2B+My8GYGYxnwVgTjO3AuAiMWcB4Apy/x/lynJ/G+WCcf8X5TpxfxPk8nD/D+SqcH8L5GJz/wPkGHN/H8XQcv8bxYhyfxfFQHH/E8T4cX8PxLBw/wvEaHB/B8Qh8/8f3bXy/xfdJPGXw3TBySX0LPfr9EeMQcN4f59lxXhvnkXHeFudJcV4S5wFx3g3nuXBeCedxcN4E5ylwXgDH4XHcG8eZcVwXx1Fx3BLHCXFcDsfBcNwJx3kix1VKur+/p5dyf4+ZKW06x3SuqYyprOk80/mmC0wXmi4yXWwqZypvusRUwXSpqaLpMtPlpitMV5quMl1tusZUyXStqbKpiqmq6TpTNVN19/dYmdjLWVE/N039d073p/b99FW2F6K3a36cv7U7zt8GHudvw1P//XZWzsnvffXW7Oi/jT7O9WYe52+3pv47/pyWea66oOKG6L+NyZy+35TM6V9vUtb0/aYe52+vHudvH2ZN3y8pZ/rX25Uz/Qz7c6Z/mwl50r/NLMf5W5Pj/K1jnvT9lp2a/vWq5ks/w/X50r/NcfnTv81Jx/nbi8f523v50/crXij96+0olH6Gpwulf5uHi6R/mwlF0/9b/XT+liP13zKp/3YaNCg5ZXCHLv37Dug0uGfnPskd+qd06mL/DE1OGdSzf78Ow1I6DRiQnFIwdfvsqf9miuyD+/v1MsnFdUnIHnU9/+uPr5499ga9ru+OXj/Bhfr/nT/yPhFy/ayRHYm6fvS+RG4X7zm5on7OE+MfuP/VT3T/TzvOPkfum2pR2ye5uC6Z8VKEnKkvA0ezn53685DBPfv0HDyi6tGHarV/HqkNjj5Qm//9OI29wYSY/6+Wzu9zRu135qht4mcyvHrkNhNT/80S9XP0JXPMv5FtCqT+myPKP/JvPOMh39p96LWHr7+kb76Y6+MSuW+QM/Wlyw1KHtxhUHK/rskpHbr1T+kwuFP3Qf8jT+8aJ/j0rnGCD++E7FHXCbh+mk/v2H3BJbf799Mo+jrZUv8e+fk/9NSvcTKf+mk9fVPf1dyAlJ5DOw1ObpI8uMnRB13N/ilN7SEXe/MJMT8npPH7iNUJPmNrqDxjz0j9uWty5yHdO/Tp371Dp5SUTiMi79Gp783NUrf6Lz9525/gk7d95AEadq+6opHrZwm7fppP3uh9idxuYsx2sdeJfqJHf4eqkc420d9Ba6azTa2obWqls03tqG1qp7NNnaht6qSzzfVR21yfzjZ1o7apm842N0Rtc0M629SL2qZeOtvUj9qmfjrbNIjapkE62zSM2qZhOts0itqmUTrbNI7apnE62zSJ2qZJOts0jdqmaTrbNIvaplk62zSP2qZ5Otu0iNqmRTrbtIzapmU627SK2qZVOtu0jtqmdTrbtInapk0627SN2qZtzDbHewM9wTe6Gif4OlI4sm+Zo36ZELNvWcNuu0ha74qJMb+Lvv0c7oReUxMSYm4v4hebL8I6d9Q2Eb/Yv2VOYz8jf4tmHvkZHywqRW0Xe99Gbu8EP7y1O8H7PeEk3u+ZFO/3xJi//Sfu9+jbzxy1Xe2onyPvayf4gbn9yfzAnBC1v5FLYsy/uERYRDhlT2P7yN9yRP0tmjUuOaN+n5jGbWWLuV5k+8hnjVNS/41+PESunzcN/+jHuUtnv6N/F8slRxrb50hje/Cp4o7tc+SLSIMoj//E8yBLzP5E35ex+5/e8yYxje3xRSnCL/U4R3V82L+hf3cXc4l9WUmI+Tmyi4Vjtsuczq4lHOd2o28/+vext52YxrbRt/0f+LLWPnJboV/WIh+tTvaXtWtSf+7Xf3DPbiM64ChL3579OqQk26HUvw+tDurZNblDcrduyV1wxHVIv8F2BObfX+Ui35n/7zjMCb2Vx30cJqOvcvh7Rsdq8kT9HHmZVDhWE3k84yXootSfU4/V1D/6ELYjNvV69mv8z+O3iT18axx99Fb7+8Eb65rWK0Zav090/xuHcSJHPU/2K8MFqT+nvjIk9xs4JHlIctcOA4Z07tOzS4duQ/p1GYxzLV069ekTeSUolnqd//IrQe0TfCWofYIfqjOf4AfnNF8Jovcl8veMDsYkuowPxuByvFeL2C8vuNSI+VtiGv5pfbGI+EY/k/Hzaak/n+ArUG3GK1DkMCpegc5N/flfr0A1Up8pDY8+UWqmPk+q2dMk1i69D0ex1tFRov8/cxq3E3uJfUOKRDnBl7HaJ/oylnqql3Y0+ujLVOr9dOzFqyfeEfp16nNx6lb/5Reuuif4wlX3BF94skSuny3s+mm+cEXvS+R2MzrSHM8LV/Q26R1FxoX94hb5W5Y09in6BQQ/F4y6Di6xR7ej/xZ9VDv67PUJfOSsc4LfNDOd5v5f/+hv48hY1h3LEf14iGzvonIEPu4So59v//wy5nfRt5/DndDz5J9v2LFHQmLzRX9jjrzipb4I4Q2h4d8/Rt4jovc0+tYzpZEk4d979K9jCy6d7XzeUyL/nyWN203v+rG/i713w14Vj9GO9oqlHX37p7i0PwZEXy+tY73Rrypp7W+sd6Y0vCPbnmDmTJHrZk7D93iZ03om5nbpf6xJ69h05Db+A58T6p7o54TIl7yT/Tkh8lEu9etOl5Rke2J27dBvSJ8+Pbv1/H+Oefzf2JO/N/+/sSfpX3zHnpRI/flf3yaq/f1ArB95HMaaxL6+J6Tx+4jh/19GoESgdu2ZYsd9eg5Nts/5OB4U8c0esz+hT9rTw67/r08ILmZfom839sXFeXhELtH3Vewlcrux91P2mH8T/P0T0tuPhDQ2jnz9Pz3qdxEekU9N0ffl4OTu9oI8cIg9QZL7DY7d25xRTj7vuJHr5wq7fpr3as6on3PFGqb+m9a394R0/j9TzL/H2zbhOLebO42/RW4zcm9E728kx/8HuG640jV1GwA=",
|
|
1897
|
-
"debug_symbols": "rZ3fjuPJcazfZa/34lcZmVlVfhXDMGRbNgQsJEOWD3Bg6N1P/2F+MdqDaax3dbPM6dmpINmMILuZ/OJ/fvi33//Lf//HP//hj//+p//64R/+8X9++Jc//+Gnn/7wH//805/+9Xd/+cOf/vj21f/54Xn/z8of/mHprz/+sPjT2x/i/Q/7/Q/x4w+7Xpf9utzvl2//lz7+yfvfvv+b/PjTffvT8/anev9TvP0fejstPy/q86I/L/bnxfm8ePt3/Xbi83mxPi/ersZ+u9DnRX5evJ1y3y768+LtlPsm13Pt469vf5qb+c9/+fPvf//+N9/c7rd74z9/9+ff//EvP/zDH//7p59+/OH//O6n//74n/7rP3/3x4/Lv/zuz29/+/z4w+//+G9vl28H/vsffvr9+/TXH/2vn+//0/U83a9/vp71XI5YJ37pIXFarzPiPvVrjuica3E+vmGvA3r/0gPOXa8D7tPfPSC/f4C6XgdoJwfo/O0B9cW9kHNAvKl+74Bfdg2OvnvAF/fB1XwbbuZ374PzW2/CF9cg930d0FrfXIP7ix9KXTFXYS/9miPUMY8l9f7mjoz1y12xFqbobx5Ov/yeOLVzHtEt35nr7UZ9e8TKrx7Tc19c5a+5EhELY8a3j+qsv70S/Xc4Y3/xsDg5j4s85ftT+/y6M/qLM+5vvy3x1WOj75yxdn1xxvrijFtnzrh7ffe2fHU9Oh6spu/fG198Z1ecPddCz/Orzvhl1+Krh2iuuSsiW9/1SXz1EM3HZ2w///z83vzi0XUezQ05z7fZp78NjfgiPffuuRr7rPr+GV88QkX85fJjPPJvn0j1pefP+CT0xPfP+OrxuXquxlqnft0Zei6PrjjfP0NfPKHxfPRmmF91wnoinORf3JL6KnlWOb2+eXVyf80N2fXrvq19Hp6br75/xvk7fEvub/6W3N96X3xpknswya+8N/dqXmbo+e4Z+dVDa28/EdzvGy3zt96bX57wTIbf6F91wi+1SO7fbJEv787rB+eN79+dXz6XXF6/1rcv2372XFJfvvQr8vPt7rh+bPzsFejXh+z9cMj55geSX/4ydmXzGjSvX2fUL38VW0TGqnu+d0J99SPJ4rGhpW+O+NvvSdWXP2F+c1c4uN5eBv7NEf3bn5xr//Yn5zq/9cm57m9/cu7ntz85f/19LX5Gim/yr/4XR/iHRX37WvpnR7R++w97X52hJ2N+0Hqbv8me/9UhiuVD+rt+7f7SsLbbOt/9ufPrO/XOGW8PzPjunfrVg1TPOT5j7e/eli8P0ea7q7ck+t4h+8s45kfgqPz+t/fLO+Ttisz1yPXrHqgZ3JSs7z5Q99/j8bHztz8+9t/BMV/fHxvv17O+e3/sr35y3N/85Jjfy/T9xSOsnGL19krK98bz/C+uhniqjm9eP/38anx1hH/ptvJbw/3tEeeLH3R2dc6D423+5nr87Jty4qtfF3WMa9/m2r/mkFhVvABa9c2r658f8vXNuc3N2d8P1K8P2fxKeNdd3zXM+SJQ7zfPc6rvPta//Pb24du7v3kZ9r95hJzN1fj2hvz8EfLFs/7bbyGfOaP3t97/+b3x5SHFo/1t3t99YXq/+L703fMo63u/SfVffjVO81ujt2nlr7ot7d+OdreeX/UYe/vd09yrb7O++0C99dXNOb5Dvnnron/5CdffltvrV53wS74pX35bf9mtWL/1Vnz5tOJvqfY31+FnTytvv1r/7S/01xO//ZX+evRbX+qvJ3/77xjefuL87b9kePtR9bf+luHLI37pLwnWc37zbwm+vkN+4a8Jvnyo7nX9Xl9/96G61pfPtevxc21+97l2rfjy2zumeXuz9Nv3eP5XV6Vjc1U68/tXJf8Or0C+POUXvwT56q2zOLx19vbK+29/jfNPb3/83b/+4c9/uyDw/ub6+2NL7+/Rv78ffz8v83ldrtdlvC71uszXZb0u+3W5X5ev8/J1Xr3Oq9d59TqvXufV67x6nVev8+p1Xr3Oq9d5/TqvX+f167x+ndev8/p1Xr/O69d5/TqvX+ft13n7dd5+nbdf5+3Xeft13n6dt1/n7dd5+3XeeZ131rtl3y7jdan3l+1vl/m6rHf3vF326/LtvHoLrnPe3yJ6u7yfl/d5Xb6vTbw9Zm+8PzDeLvW6zNdlvS77dblfl2/n7Te9+3be+8uyt18uzbBmeF/FqPfhfRmj34ecoT5/QntLsBnezn1/y/ottma4r2E97w+/92HNEDNohreT3x+r63215P1l0dsvZN7d8z68nfP+pLzimWG9/7b2fYgZ9P7O7vuQM9QMPcP7gR//832d/L558vGV992Tj9v1sX3yfp0/9k8+hpyhXlf1fQvlc9gznBnua8i5yTk3Oecmvxvm45bm3OR3y3wOPcN+3Qnvbnn/GWK92+VzWDPEDJrh/ba//6t3z3wOPcOe4cxwX8O7cT6HNUPMoBnm5J6Te07uObnn5J6T95y85+Q9J+85ec/Je07ec/Kek/ecvOfkMyefOfnMyWdOPnPymZPPnHzm5DMnnzn5zsl3Tr5z8p2T75x85+Q7J985+c7J93VyPM8Ma4aYQTPkDDVDz7BnODPMyWtOXnPympPXnLzm5DUnrzl5zclrTl5zcszJMSfHnBxzcszJMSfHnBxzcszJMSdrTtacrDlZc7LmZM3JmpM1J2tO1pycc3LOyTkn55ycc3LOyTkn55ycc3LOyTUn15xcc3LNyePBGA/GeDDGgzEejPFgjAdjPBjjwRgPxngwxoMxHozxYIwHYzwY48EYD8Z4MMaDMR6M8WCMB2M8GOPBGA/GeDDGgzEejPFgjAdjPBjjwRgPxngwxoMxHozxYIwHYzwY48EYD8Z4MMaDMR6M8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8WCOB3M8mOPBHA/meDDHgzkezPFgjgdzPJjjwRwP5ngwx4M5HszxYI4HczyY48EcD+Z4MMeDOR7M8WCOB3M8mOPBHA/meDDHgzkezPFgjgdzPJjjwRwP5ngwx4M5HszxYI4HczyY48EcD+Z4MMeDOR7M8WCOB3M8mOPBHA/meDDHgzkezPFgjgdzPJjjwRwP5ngwx4M5HszxYI4HczyY48EcD+Z4MMeDOR7M8WCOB3M8mOPBHA/meDDHgzkezPFgjgdzPJjjwRwP5ngwx4M5HszxYI4HczyY48EcD+Z4MMeDOR7M8WCOB3M8mOPBHA/WeLDGgzUerPFgjQdrPFjjwRoP1niwxoM1HqzxYI0HazxY48EaD9Z4sMaDNR6s8WCNB2s8WOPBGg/WeLDGgzUerPFgjQdrPFjjwRoP1niwxoM1HqzxYI0HazxY48EaD9Z4sMaDNR6s8WCNB2s8WOPBGg/WeLDGgzUerPFgjQdrPFjjwRoP1niwxoM1HqzxYI0HazxY48EaD9Z4sMaDNR6s8WCNB2s8WOPBGg/WeLDGgzUerPFgjQdrPFjjwRoP1niwxoM1HqzxYI0HazxY48EaD9Z4sMaDNR6s8WCNB2s8WOPBGg/WeLDGgzUerPFgjwd7PNjjwR4P9niwx4M9HuzxYI8HezzY48EeD/Z4sMeDPR7s8WCPB3s82OPBHg/2eLDHgz0e7PFgjwd7PNjjwR4P9niwx4M9HuzxYI8HezzY48EeD/Z4sMeDPR7s8WCPB3s82OPBHg/2eLDHgz0e7PFgjwd7PNjjwR4P9niwx4M9HuzxYI8HezzY48EeD/Z4sMeDPR7s8WCPB3s82OPBHg/2eLDHgz0e7PFgjwd7PNjjwR4P9niwx4M9HuzxYI8HezzY48EeD/Z4sMeDPR7s8WCPB3s82OPBHg/2eLDHgz0e7PFgjwd7PNjjwR4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD94PD573Yc9wZriv4cODH8OaIWbQDDlDzTAn3zn5zsn3dfL7hzuYFlMwiSmZiqmZNtNhQmOhsdBYaCw0FhoLjYXGQmOhsdAINAKNQCPQCDQCjUAj0Ag0Ag2hITSEhtAQGkJDaAgNoSE0Eo1EI9FINBKNRCPRSDQSjUSj0Cg0Co1Co9AoNAqNQqPQKDQajUaj0Wg0Go1Go9FoNBqNRmOjsdHYaGw0NhobjY3GRmOjsdE4aBw0DhoHjYPGQeOgcdA4aBw0LhoXjYvGReOicdG4aFw0Lhr4fOHzhc8XPl/4fOHzhc8XPl/4fOHzhc8XPl/4fOHzhc8XPl/4fOHzhc8XPl/4fOHzhc8XPl/4fOHzhc8XPl/4fOHzhc8XPl/4fOHzhc8XPl/4fOHzhc8XPl/4fOHzhc8XPl/4fOHzhc8XPl/4fL37/HxOs7n0ub7zfEyL6V3jYz/qw+efUzIVUzNtpsP0Ad/5OPDd6DMuj+FRHtNjeWyP2+PxaLVttW21bbVttW21bbVttW21bbVttWO1Y7VjtWO1Y7VjtWO1Y7VjtWO1a7VrtWu1a7VrtWu1a7VrtWu1i9rHZtCMy2N4lMf0WB7b4/Z4PFptWW1ZbVltWW1ZbVltWW1ZbVltWS2sFlYLq4XVwmphtbBaWC2sFlaT1WQ1WU1Wk9VkNVlNVpPVZLW0WlotrZZWS6ul1dJqabW0WlqtrFZWK6uV1cpqZbWyWlmtrOYsCWdJOEvCWRLOknCWhLMknCXhLAlnSThLwlkSzpJwloSzJJwl4SwJZ0k4S8JZEs6ScJaEsyScJeEsCWdJOEvCWRLOknCWhLMknCXhLAlnSThLwlkSzpJwloSzJJwl4SyRs0TOEjlL5CyRs0TOEjlL5CyRs0TOEjlL5CyRs0TOEjlL5CyRs0TOEjlL5CyRs0TOEjlL5CyRs0TOEjlL5CyRs0TOEjlL5CyRs0TOEjlL5CyRs0TOEjlL5CyRs0TOEjlL5CyRs0TOEjlL5CyRs0TOEjlL5CyRs0TOEjlL5CyRs0TOEjlL5CyRs0TOEjlL5CyRs0TOEjlL5CyRs0TOEjlL5CyRs0TOEjlL5CyRs0TOEjlL5CyRs0TOEjlL5CyRs0TOEjlL5CyRs0TOEjlL5CyRs0TOEjlL5CyRs0TOEjlL5CxJZ0k6S9JZks6SdJaksySdJeksSWdJOkvSWZLOknSWpLMknSXpLElnSTpL0lmSzpJ0lqSzJJ0l6SxJZ0k6S9JZks6SdJaksySdJeksSWdJOkvSWZLOknSWpLMknSXpLElnSTpL0lmSzpJ0lqSzJJ0l6SxJZ0k6S9JZks6SdJaksySdJeksSWdJOkvSWZLOknSWpLMknSXpLElnSTpL0lmSzpJ0lqSzJJ0l6SxJZ0k6S9JZks6SdJaksySdJeksSWdJOkvSWZLOknSWpLMknSXpLElnSTpL0lmSzpJ0lqSzJJ0l6SxJZ0k6S9JZks6ScpaUs6ScJeUsKWdJOUvKWVLOknKWlLOknCXlLClnSTlLyllSzpJylpSzpJwl5SwpZ0k5S8pZUs6ScpaUs6ScJeUsKWdJOUvKWVLOknKWlLOknCXlLClnSTlLyllSzpJylpSzpJwl5SwpZ0k5S8pZUs6ScpaUs6ScJeUsKWdJOUvKWVLOknKWlLOknCXlLClnSTlLyllSzpJylpSzpJwl5SwpZ0k5S8pZUs6ScpaUs6ScJeUsKWdJOUvKWVLOknKWlLOknCXlLClnSTlLyllSzpJylpSzpJwl5SwpZ0k5S8pZUs6ScpaUs6ScJeUsaWdJO0vaWdLOknaWtLOknSXtLGlnSTtL2lnSzpJ2lrSzpJ0l7SxpZ0k7S9pZ0s6Sdpa0s6SdJe0saWdJO0vaWdLOknaWtLOknSXtLGlnSTtL2lnSzpJ2lrSzpJ0l7SxpZ0k7S9pZ0s6Sdpa0s6SdJe0saWdJO0vaWdLOknaWtLOknSXtLGlnSTtL2lnSzpJ2lrSzpJ0l7SxpZ8nn7l58TM20mQ7TnenjnRZ9TIspmN5/k5wfU/K1YmqmzXSY7kwHjYPGQePjnZbPCY2DxkHjoHHQOGhcNC4aF42LxkXjonHRuGhcNO5ofK73fU6LKZjElEzF1Eyb6TChsdBYaCw0FhoLjYXGQmOhsdBYaAQagUagwWefNx9+3nz6efPx58/Nv88JjUBDaAgNoSE0hIbQEBpCQ/PY/dwC/JgSjXf/f3yq+mMR8DWJKV+flf7YBXxNzbSZDtOd6d32r2kxxetz1R87ga8pmYqpXx+7/lwH7I/pzvTxPurntJiC6bVXsFgKXGwFLtYCF3uBi8XAtf2JaX9k2p+Z9oem/alpf2zan5v+5oPTaPij03x2miXBxZbgYk1wsSe4WBRcbAouVgUXu4KLZcHFtuBiXXCxL7hYGFxsDC5WBhc7g4ulwcXW4GJtcLE3uFgcXGwOLlYHF7uDi+XBxfbgYn1wsT+4WCBcbBAuVggXO4SLJcLFFuFijXCxR7hYJFxsEi5WCRe7hItlwsU24WKdcLFPuFgoXGwULlYKFzuFi6XCxVbhYq1wsVe4WCxcbBYuVgsXu4WL5cLFduFivXCxX7hYMFxsGC5WDBc7hoslw8WW4WLNcLFnuFg0XGwaLlYNF7uGi2XDxbbhYt1wsW+4WDhcbBwuVg4XO4eLpcPF1uFi7XCxd7hYPFxsHi5WDxe7h4vlw8X24WL9cLF/uFhAXGwgLlYQFzuIiyXExRbiYg1xHTMSDEkwJcGYBHMSDEowKcGohG9YCWjgc1YSFzuJi6XExVbiYi1xsZe4WExcbCYuVhMXu4mL5cTFduJiPXGxn7hYUFxsKC5WFBc7ioslxcWW4mJNcbGnuFhUXGwqLlYVF7uKi2XFxbbiYl1xsa+4WFhcbCwuVhYXO4uLpcXF1uJibXGxt7hYXFxsLi5WFxe7i4vlxcX24mJ9cbG/uFhgXGwwLlYYFzuMiyXGxRbjYo1xsce4WGRcbDIuVhkXu4yLZcbFNuNinXGxz7hYaFxsNC5WGhc7jYulxsVW42KtcbHXuFhsXGw2LlYbF7uNi+XGxXbjYr1xsd+4WHBcbDguVhwXO46LJcfFluNizXGx57hYdFxsOi5WHRe7jotlx8W242LdcbHvuFh4XGw8rovPLz6/+PyaimIsirkoBqOYjGI0itkohqOYjvINHuWlEY8BKSakGJFiRoohKaakGJNiTopBKZBSHlApD6yUB1jKAy3lAZfywEt5AKY8EFMekCkPzJQHaMoDNeUBm/LATXkApzyQUx7QKQ/slAd4ygM95QGf8sBPeQCoPBBUHhAqDwyVB4jKA0XlAaPywFF5AKk8kFQeUCoPLJUHmMoDTeUBp/LAU3kAqjwQVR6QKg9MlQeoygNV5QGr8sBVeQCrPJBVHtAqD2yVB7jKA13lAa/ywFd5AKw8EFYeECsPjJUHyMoDZeUBs/LAWXkArTyQVh5QKw+slQfYygNt5QG38sBbeQCuPBBXHpArD8yVB+jKA3XlAbvywF15AK88kFce0CsP7JUH+MoDfeUBv/LAX3kAsDwQWB4QLA8+X/h84fOFzxc+X/h84fOFzxc+X/h8mYj0DRIJDUORTEUyFslcJIORTEYyGgmfL3y+8PnC5wufL3y+8PnC5wufL3y+8PnC5wufL3y+8PnC5wufL3y+8PnC5wufL3y+8PnC5wufL3y+8PnC5wufL3y+8PnC5wufL3y+8DkIs4BhFkDMAopZgDELOGYByCwgmQUos4BlFsDMAppZgDMLeGYB0CwgmgVIs4BpFkDNAqpZgDULuGYB2CwgmwVos4BtFsDNArpZgDcL+GYB4CwgnAWIs4BxFkDOAspZgDkLOGcB6CwgnQWos4B1FsDOAtpZgDsL884MPDPxzMgzM88MPTP1zNgzc88MPjP5zOgzs88MPzP9zPgz888MQDMBzQi0bxhohqB9Q0FDwxw0g9BMQjMKzSw0w9DwuXFo5qEZiGYimpFoZqIZimYqmrFo5qIZjGYymtFoZqMZjmY6mvFo5qMZkGZCmhFpZqQZkmZKmjFp5qQZlGZSmlFpZqUZlmZamnFp5qUZmGZimpFpZqYZmmZqmrFp5qYZnGZymtFpZqcZnmZ6mvFp5qcZoGaCmhFqZqgZomaKmjFq5qgZpGaSmlFqZqkZpmaamnFq5qkZqGaimpFqMNUCqFpAVQuwagFXLQCrBWS1AK0WsNUCuFpAVwvwagFfLQCsBYS1ALEWMNYCyFpAWQswawFnLQCtBaS1ALUWsNYC2FpAWwtwawFvLQCuhUw9NPbQ3MNvwIdoGH1o9qHhh6YfGn+Iz4GvBfS1AL8W8NcCAFtAYAsQbAGDLYCwBRS2AMMWcNgCEFtAYgtQbAGLLYCxBTS2AMcW8NgCIFtAZAuQbAGTLYCyBVS2AMsWcNkCMFtAZgvQbAGbLYCzBXS2AM8W8NkCQFtAaAsQbQGjLYC0BZS2ANMWcNoCUFtAagtQbQGrLYC1BbS2ANcW8NoCYFtAbAuQbQGzLYC2BdS2ANsWcNsCcFtAbgvQbQG7LYC3BfS2AN8W8NsCgFtAcAsQbgHDLYC4BRS3AOMWcNwCkFtAcgtQbgHLLYC5BTS3AOcW8NwCoFtAdAuQbgHTLYC6BVS3AOsWcN0CsFtAdgvQbgHbLYC7BXS3AO8Wac6pQacmnRp1+g3rFA3TTo07Ne/UwFN8DuotYL0FsLeA9hbg3gLeWwB8C4hvAfItYL4F0LeA+hZg3wLuWwB+C8hvAfotYL8F8LeA/hbg3wL+WwCACwhwAQIuYMAFELiAAhdg4AIOXACCC0hwAQouYMEFMLiABhfg4AIeXACEC4hwARIuYMIFULiAChdg4QIuXACGC8hwARouYMMFcLiADhfg4QI+XACICwhxASIuYMQFkLiAEhdg4gJOXACKC0hxASouYMUFsLiAFhfg4gJeXACMC4hxATIuYMYF0LiAGhdg4wJuXACOC8hxATouYMcF8LiAHhfg4wJ+XACQCwhyAUIuYMgFELmAIhdg5AKOXACSC0hyAUouYMkFMLkok42NNjbb2HBj042/wRujYcCxCcdGHONzwHIBWS5AywVsuQAuF9DlArxcwJcLAHMBYS5AzAWMuQAyF1DmAsxcwJkLQHMBaS5AzQWsuQA2F9DmAtxcwJsLgHMBcS5AzgXMuQA6F1DnAuxc1HwOOWo+hxw1n0OOms8hR83nkKPmc8hR8znkqPkcctR8Djl6PoccPZ9Djp7PIUfP55Cj53PI0fM55Oj5HHL0fA45ej6HHP2gsdBYaCw0FhoLjYXGQmOhsdBYaAQagUagEWgEGoFGoBFoBBqBhtAQGkJDaAgNoSE0hIbQEBqJRqKRaCQaiUaikWgkGolGolFoFBqFRqFRaBQahUahUWgUGo1Go9FoNBqNRqPRaDQajUajsdHYaGw0NhobjY3GRmOjsdHYaBw0DhoHjYPGQeOgcdA4aBw0DhoXDXze+LzxeePzxueNzxufNz5vfL7x+cbnG59vfL7x+cbnG59vfL7x+cbnG59vfL7x+cbnG59vfL7x+cbnG59vfL7x+cbnG59vfL7x+cbnG59vfL7x+cbnG59vfL7x+cbnG59vfL7x+cbnG59vfL7x+cbnG59vfL7x+cbnG59vfL7x+cbnG59vfL7x+cbnn1twn1MxvWs8H9Nmete4H9Od6cPnn9NiCiYxJdPs1sZmcz42m/Ox2ZyPzeZ8bDbnY7M5H5vN+dhszsdmcz72ttq22rbattq22rHasdqx2rHasdqx2rHasdqx2rHatdq12rXatdq12rXatdq12rUam/Nx2JyPw+Z8HDbn47A5H4fN+Thszsdhcz4Om/Nx2JyP81htWW1ZbVltWW1ZbVltWW1ZbVltWS2sFlYLq4XVwmphtbBaWC2sFlaT1WQ1WU1Wk9VkNVlNVpPVZLW0WlotrZZWS6ul1dJqabW0WlqtrFZWK6uV1cpqZbWyWlmtrFZWa6u11dpqbbW2mrPkOEuOs+Q4S46z5DhLjrPkOEuOs+Q4S46z5DhLjrPkOEuOs+Q4S46z5DhLjrPkOEuOs+Q4S46z5DhLjrPkOEuOs+Q4S46z5DhLjrPkOEuOs+Q4S46z5DpLrrPkOkuus+Q6S66z5DpLrrPkOkuus+Q6S66z5DpLrrPkOkuus+Q6S66z5DpLrrPkOkuus+Q6S66z5DpLrrPkOkuus+Q6S66z5DpLrrPkOkuus+Q6S66z5DpLrrPkOkuus+Q6S66z5DpLrrPkOkuus+Q6S66z5DpLrrPkOkuus+Q6S66z5DpLrrPkOkuus+Q6S66z5DpLrrPkOkuus+Q6S66z5DpLrrPkOkuus+Q6S66z5DpLrrPkOkuus+Q6S66z5DpLrrPkOkuus+Q6S66z5DpLrrPkOkuus+Q6S66z5DpLrrPkOkuus+Q6S66z5DpLrrPkOksuWaKHLNFDlughS/SQJXrIEj1kiR6yRA9Zoocs0fNYbVltWW1ZbVltWW1ZbVltWW1ZbVktrBZWC6uF1cJqYbWwWlgtrBZWk9VkNVlNVpPVZDVZTVaT1WS1tFpaLa2WVkurpdXSamm1tFparaxWViurldXKamW1slpZraxWVmurtdXaam21tlpbra3WVmurtdW21bbVttW21bbVttW21bbVttW21Y7VjtWO1Y7VjtWO1Y7VjtWO1Y7VrtWu1a7VrtWu1a7VrtWu1a7VnCXLWbKcJctZspwly1mynCXLWbKcJctZspwly1mynCXLWbKcJctZspwly1mynCXLWbKcJctZspwly1mynCXLWbKcJctZspwly1mynCXLWbKcJctZspwly1mynCXLWbKcJctZspwly1mynCXLWbKcJctZspwly1mynCXLWbKcJctZspwly1mynCXLWbKcJctZspwly1liMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxn1uUEZH9NhujN9vEPzOS2m93cd9DGJKZne3z3Jj6n52mY6THem4RToc4Pyc0Ij0Ug0Pt6h+ZzQSDQSjUSj0Cg0Co1Co9AoNAqNQqPQKDQajUaj0Wg0Go1Go9FoNBqNRmOjsdHYaGw0NhobjY3GRmOjsdE4aBw0DhoHjYPGQeOgcdA4aBw0LhoXjYvGReOicdG4aFw0LhrDI9HnBmV8TIsp+Ft98i/0sUH5moqpP2kW+tigfE2H6c70bvzXtJiCSUz5Sb3Qxwbla2qmzXQ+mRj63Jvsj2kxBZOYkum19yL2JsXepNibFHuTYm9S7E2KvUmxNyn2JsXepNibFHuTYm9S6W5ql1O7ndr11N/0U6PhhmpXVLuj2iXVtFSzNyn2JsXepNibFHuTYm9S7E2KvUmxNyn2JsXepNibFHuTYm9S7E2KvUmxNyn2JsXepNibFHuTYm9S7E2KvUmxNyn2JsXepNibFHuTYm9S7E2KvUmxNyn2JsXepNibFHuTYm9S7E2KvUmxNyn2JsXepNibFHuTYm9S7E2KvUmxNyn2JsXepNibFHuTYm9S7E2KvUmxNyn2JsXepNibFHuTYm9S7E2KvUmxNyn2JsXepNibFHuTYm9S7E2KvUmxNyn2JsXepNibFHuTYm9S7E2KvUmxNyn2JsXepNibFHuTYm9S7E2KvUmxNyn2JsXepNibFHuTYm9S7E2KvUmxNyn2JsXepMpt9K6jdx+9C+ndSP9NJT0aLqV3K71r6fE5e5Nib1LsTYq9SbE3KfYmxd6k2JsUe5Nib1LsTYq9SbE3KfYmxd6k2JsUe5Nib1LsTYq9SbE3KfYmxd6k2JsUe5Nib1LsTYq9SbE3KfYmxd6k6OsVhb2isVdU9orOXlHaK1p7RW2v6O0Vxb2iuVdU94ruXlHeK9p7RX2v6O8VBb6iwVdU+IoOX1HiK1p8RY2v6PEVRb6iyVdU+YouX1HmK9p8RZ2v6PMVhb6i0VdU+opOX1HqK1p9Ra2v6PUVxb6i2VdU+4puX1HuK9p9Rb2v6PcVBb+i4VdU/IqOX1HyK1p+Rc2v6PkVRb+i6VdU/YquX1H2K9p+Rd2v6PsVhb+i8VdU/orOX1H6K1p/Re2v6P0Vxb+i+VdU/4ruX1H+K9p/Rf2v6P8VBcCiAVhUAIsOYFECLFqARQ2w6AEWRcCiCVhUAYsuYFEGLNqARR2w6AMWhcCiEVhUAotOYFEKLFqBRS2w6AUWxcCiGVhUA4tuYFEOLNqBRT2w6AcWBcGiIVhUBIuOYFESLFqCRU2w6AkWRcGiKVhUBYuuYFEWLNqCRV2w6AsWhcGiMVhUBovOYFEaLFqDRW2w6A0WxcGiOVhUB4vuYFEeLNqDRX2w6A8WBcKiQVhUCIsOYVEiLFqERY2w6BEWRcKiSVhUCYsuYVEmLNqERZ2w6BMWhcKiUVhUCotOYVEqLFqFRa2w6BUWxcKiWVhUCwuOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo6g4AgKjqDgCAqOoOAICo5gwhFMOIIJRzDhCCYcwYQjmHAEE45gwhFMOIIJRzDhCCYcwYQjmHAEE45gwhFMOIIJRzDhCCYcwYQjmHAEE45gwhFMOIIJRzDhCCYcwYQjmHAEE45gwhFMOIIJRzDhCCYcwYQjmHAEE45gwhFMOIIJRzDhCCYcwYQjmHAEE45gwhFMOIIJRzDhCCYcwYQjmHAEE45gwhFMOIIJRzDhCCYcwYQjmHAEE45gwhFMOIIJRzDhCCYcwYQjmHAEE45gwhFMOIIJRzDhCCYcwYQjmHAEE45gwhFMOIIJRzDhCCYcwYQjmHAEE45gwhFMOIIJRzDhCCYcwYQjmHAEE45gwhFMOIIJRzDhCL690fUwLaZgElMyFVMzbabDhAY+hyOYcAQTjmDCEUw4gglHMOEIJhzBhCOYcAQTjmDCEUw4gglHMOEIJhzBhCOYcAQTjmDCEUw4gglHMOEIJhzBhCOYcAQTjmDCEUw4gglHMOEIJhzBhCOYcAQTjmDCEUw4gglHMOEIJhzBhCOYcAQTjmDCEUw4gglHMOEIJhzBhCOYcAQTjmDCEUw4gglHMOEIJhzBhCOYcAQTjmDCEUw4gglHMOEIJhzBhCOYcAQTjmDCEUw4gglHMOEIJhzBhCOYcAQTjmDCEUw4gglHMOEIJhzBhCOYcAQTjmDCEUw4gglHMOEIJhzBhCOYcAQTjmDCEUw4gglHMOEIJhzBhCOYcAQTjmDCEUw4gglHMOEIJhzBhCOYcAQTjmDCEUw4gglHMOEIJhzBhCOYcAQTjmDCEUw4gglHMOEIJhzBhCOYcAQTjmDCEUw4gglHMOEIJhzBhCOYcAQTjmDCEUw4gglHMOEIJhzBhCOYcAQTjmDCEUw4gglHMGM+v5wxnIKM4RRkDKcgYzgFGcMpyBhOQcZwCjKGU5AxnIKMRqPRaDQajUaj0Wg0NhobjY3GRmOjsdHYaGw0NhobjYPGQeOgcdA4aBw0DhoHjYPGQeOicdG4aFw0LhoXjYvGReOiMZyC1HAKUsMpSA2nIDWcgtRwClLDKUgNpyA1nILUcApSDxoLjYXGQmOhsdBYaCw0FhoLjYVGoBFoBBqBRqARaAQagUagEWgIDaEhNISG0BAaQkNoCA2hkWgkGolGopFoJBqJRqKRaCQahUahUWjgc+Fz4XPhc+Fz4XPhc+Fz4XPhc+Fz4XPhc+Fz4XPhc+Fz4XPhc+Fz4XPhc+Fz4XPhc+Fz4XPhc+Fz4XPhc+Fz4XPhc+Fz4XPhc+Fz4XPhc+Fz4XPhc+Fz4XPhc+HzxOeJzxOfJz5PfJ74PPF54vPE54nPE58nPk98nvg88Xni888tuM9pM71rPB/TnenD5/djWkzBJKZkKqZmmt3adHdwujs43R2c7g5Odwenu4PT3cHp7uB0d3C6OzjdHZzuDk53B6e7g9Pdwenu4HR3cLo7ON0dnO4OTncHp7uD093B6e7gdHdwujs43R2c7g5Odwenu4PT3cHp7uB0d3C6OzjdHZzuDk53B6e7g9Pdwenu4HR3cLo7ON0dnO4OTncHp7uD093B6e7gdHdwujs43R2c7g5Odwenu4PT3cHp7uB0d3C6OzjdHZzuDk53B6e7g9Pdwenu4HR3cLo7ON0dnO4OTncHp7uD093B6e7gdHdwujs43R2c7g5Odwenu4PT3cHp7uB0d3C6OzjdHZzuDk53B6e7g9Pdwenu4HR3cLo7ON0dnO4OTncHp7uD093B6e7gdHdwujs43R2c7g5Odwenu4PT3cHp7uB0d3C6OzjdHZzuDk53B6e7g9Pdwenu4HR3cLo7ON0dnO4OTncHp7uD093B6e7gdHdwujs43R2c7g5Odwenu4PT3cHp7uB0d3C6OzjdHZzuDk53B6e7g9Pdwenu4HR3cLo7ON0dnO4OTncHp7uD093B6e7gdHdwujs43R2c7g5Odwenu4PT3cHp7uB0d3C6OzjdHZzuDk53B6e7g9Pdwenu4HR3cLo7ON0dnO4OTncHp7uD093B6e7gdHdwujs43R2c7g5Odwenu4PT3cHp7uB0d3C6OzjdHZzuDk53B6e7g9Pdwenu4HR3cLo7ON0dnO4OTncHp7uD093B6e7gdHdwujs43R2c7g5Odwenu4PT3cHp7uB0d3C6OzjdHZzuDk53B6e7g9Pdwenu4HR3cLo7ON0dnO4OTncHp7uD093B6e7gdHdwujs43R2c7g5Odwenu4PT3cHp7uB0d3C6OzjdHZzuDk53B6e7g9Pdwenu4HR3cLo7ON0dnO4OTncHZztL2lnSzpJ2lrSzpJ0l7SxpZ0k7S9pZ0s6Sdpa0s6SdJe0saWdJO0vaWdLOknaWtLOknSXtLGlnSTtL2lnSzpJ2lrSzpJ0l7SxpZ0k7S9pZ0s6S7SzZzpLtLNnOku0s2c6S7SzZzpLtLNnOku0s2c6S7SzZzpLtLNnOku0s2c6S7SzZzpLtLNnOku0s2c6S7SzZzpLtLNnOku0s2c6S7SzZzpLtLNnOku0s2c6S7SzZzpLtLNnOku0s2c6S7SzZzpLtLNnOku0s2c6S7SzZzpLtLNnOku0s2c6S7SzZzpLtLNnOku0s2c6S7SzZzpLtLNnOku0sMZkxTWZMkxnTZMY0mTFNZkyTGdNkxjSZMU1mTJMZ02TGNJkxTWZMkxnTZMY0mTFNZkyTGdNkxjSZMU1mTJMZ02TGNJkxTWZMkxnTZMY0mTFNZkyTGdNkxjSZMU1mTJMZ02TGNJkxTWZMkxnTZMY0mTFNZkyTGdNkxjSZMU1mTJMZ02TGNJkxTWZMkxnTZMY0mTFNZkyTGdNkxjSZMU1mTJMZ02TGNJkxTWZMkxnTZMY0mTFNZkyTGdNkxjSZMU1mTJMZ02TGNJkxTWZMkxnTZMY0mTFNZkyTGdNkxjSZMU1mTJMZ02TGNJkxTWZMkxnTZMY0mTFNZkyTGdNkxjSZMU1mTJMZ02TGNJkxTWZMkxnTZMY0mTFNZkyTGdNkxjSZMU1mTJMZ02TGNJkxTWZMkxnTZMY0mTFNZkyTGdNkxjSZMU1mTJMZ02TGNJkxTWZMkxnTZMY0mTFNZkyTGdNkxjSZMU1mTJMZ02TGNJkxTWZMkxnTZMY0mTFNZkyTGdNkxjSZMU1mTJMZ02TGNJkxTWZMkxnTZMY0mTFNZkyTGdNkxjSZMU1mTJMZ02TGNJkxTWZMkxnTZMY0mTFNZkyTGdNkxjSZMU1mTJMZ02TGNJkxTWZMkxnTZMY0mTFNZkyTGdNkxjSZMU1mTJMZ02TGNJkxTWZMkxnTZMY0mTFNZkyTGdNkxjSZMU1mTJMZ02TGNJkxTWZMkxnTZMY0mTFNZkyTGdNkxjSZMU1mTJMZ02TGNJkxTWZMkxnTZMY0mTFNZkyTGdNkxjSZMU1mTJMZ02TGNJkxTWZMkxnTZMY0mTFNZkyTGdNkxvzcoIz36eMdms9pMQWTmN7fddDHVEzN9P7uSX5Mh6/dz6k+Nyg/p8UUTGJKpmJqps10mNBYaCw0FhoLjYXGQmOhsdBYaCw0Ao1AI9AINAKNQCPQCDQCjUBDaAgNoSE0hIbQEBpCQ2gIjUQj0Ug0Eo1EI9FINBKNRCPRKDQKjUKj0Cg0Co1Co9AoNAqNRqPR6Ndjtz43KD8nNN79/86/qI8Nyte0mc4nzaI+Nig/p3frv6bFFExiSqZi6k/qRX1sUL6mw3Rnejf8OxOjPvcm+2MSUzIVUzO99l6Kvclib7LYmyz2Jou9yWJvstibLPYmi73JYm+y2Jss9ibf3t94mBZTMIkpmYqpmTbTYUJjobHQWGgsNBYaC42FxkJjobHQCDQCjUAj0Ag0Ao1AI9AINAINoSE0hIbQEBpCQ2gIDaEhNBKNRCPRSDQSjUQj0Ug0Eo1Eo9AoNAqNQqPQKDQKjUKj0Cg0Go1Go9FoNBqNRqPRaDQajUZjo7HR2GhsNDYaG42NxkZjo7HROGgcNA4aB42DxkHjoIHP2Zss9iaLvclib7LYmyz2Jou9yWJvstibLPYmi73JYm+y2Jss9iaLvclib7LYmyz2Jou9yWJvstibLPYmi73JYm+y2Jss9iaLvclib7LYmyz2Jou9yWJvstibLPYmi73JYm+y2Jss9iaLvclib7LYmyz2Jou9yWJvstibLPYmi73JYm+y2Jss9iaLvclib7LYmyz2Jou9yWJvstibLPYmi73JYm+y2Jss9iaLvclib7LYmyz6l4v+5aJ/uehfLvqXi/7lon+56F8u+peL/uWif7noXy76l4v+5aJ/uehfLvqXi/7lon+56F8u+peL/uWif7noXy76l4v+5aJ/uehfLvqXi/7lon+56F8u+peL/uWif7noXy76l4v+5aJ/uehfLvqXi/7lon+56F8u+peL/uWif7noXy76l4v+5aJ/uehfLvqXi/7lon+56F8u+peL/uWif7noXy76l4v+5aJ/uehfLvqXi/7lon+56F8u+peL/uWif7noXy76l4v+5aJ/uehfLvqXi/7lon+56F8u+peL/uWif7noXy76l4v+5aJ/uehfLvqXi/7lon+56F8u+peL/uWif7noXy76l4v+5aJ/uehfLvqXi/7lon+56F8u+peL/uWif7noXy76l4v+5aJ/uehfLvqXi/7lon+56F8u+peL/uWif7noXy76l4v+5aJ/uehfLvqXi/7lon+56F8u+peL/uWif7noXy76l4v+5aJ/uehfLvqXi/7lon+56F8u+peL/uWif7noXy76l4v+5aJ/uehfLvqXi/7lon+56F8u+peL/uWif7noXy76l4v+5aJ/uehfLvqXi/7lon+56F8u+peL/uWif7noXy76l4v+5aJ/uehfLjiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew4AgWHMGCI1hwBAuOYMERLDiCBUew7nx+ue5wCuoOp6DucArqDqeg7nAK6g6noO5wCuoOp6DucArqBhqBRqARaAQaQkNoCA2hITSEhtAQGkJDaCQaiUaikWgkGolGopFoJBqJRqFRaBQahUahUWgUGoVGoVFoNBqNRqPRaDQajUaj0Wg0Go3GRmOjsdHYaGw0NhobjY3GRmOjcdA4aBw0DhoHjYPGQeOgcdA4aFw0LhoXjYvGReOicdG4aFw0hlPQz3AK+hlOQT/DKehnOAX9DKegn+EU9DOcgn6GU9DPcAr6edBYaCw0FhoLjYXGQmOhsdBYaCw0Ao1AI9AINAKNQCPQCDQCjUBDaAgNoSE0hIbQEBpCQ2gIjUQj0Ug0Eo1EI9FINBKNRCPRKDQKjUKj0Cg0Co1Co9AoNAqNRqPRaDQajUaj0Wg0Go1Go9HYaGw0NhobjY3GRmOjsdH42IL7nO5MHz5/PqbF9K5xPyYxJVMxNdNmOkyzW9vuDm53B7e7g9vdwe3u4HZ3cLs7uN0d3O4ObncH92Jzvt0d3O4ObncHt7uD293B7e7gdndwuzu43R3c7g5udwe3u4Pb3cHt7uB2d3C7O7jdHdzuDm53B7e7g9vdwe3u4HZ3cLs7uN0d3O4ObncHt7uD293B7e7gdndwuzu43R3c7g5udwe3u4Pb3cHt7uB2d3C7O7jdHdzuDm53B7e7g9vdwe3u4HZ3cLs7uN0d3O4ObncHt7uD293B7e7gdndwuzu43R3c7g5udwe3u4Pb3cHt7uB2d3C7O7jdHdzuDm53B7e7g9vdwe3u4HZ3cLs7uN0d3O4ObncHt7uD293B7e7gdndwuzu43R3c7g5udwe3u4Pb3cHt7uB2d3C7O7jdHdzuDm53B7e7g9vdwe3u4HZ3cLs7uN0d3O4ObncHt7uD293B7e7gdndwuzu43R3c7g5udwe3u4Pb3cHt7uB2d3C7O7jdHdzuDm53B7e7g9vdwe3u4HZ3cLs7uN0d3O4ObncHt7uD293B7e7gdndwuzu43R3c7g5udwe3u4Pb3cHt7uB2d3C7O7jdHdzuDm53B7e7g9vdwe3u4HZ3cLs7uN0d3O4ObncHt7uD293B7e7gdndwuzu43R3c7g5udwe3u4Pb3cHt7uB2d3C7O7jdHdzuDm53B7e7g9vdwe3u4HZ3cLs7uN0d3O4ObncHt7uD293B7e7gdndwuzu43R3c7g5udwe3u4Pb3cHt7uB2d3C7O7jdHdzuDm53B7e7g9vdwe3u4HZ3cLs7uN0d3O4ObncHt7uD293B7e7gdndwuzu43R3c7g5udwe3u4Pb3cHt7uB2d3C7O7jdHdzuDm53B7e7g9vdwe3u4HZ3cLs7uN0d3O4ObncHt7uD293B7e7gdndwuzu43R3c7g5uOUvkLJGzRM4SOUvkLJGzRM4SOUvkLJGzRM4SOUvkLJGzRM4SOUvkLJGzRM4SOUvkLJGzRM4SOUvkLJGzRM4SOUvkLJGzRM4SOUvkLJGzRM4SOUvkLJGzRM4SOUvkLJGzRM4SOUvkLJGzRM4SOUvkLJGzRM4SOUvkLJGzRM4SOUvkLJGzRM4SOUvkLJGzRM4SOUvkLJGzRM4SOUvkLJGzRM4SOUvSWZLOknSWpLMknSXpLElnSTpL0lmSzpJ0lqSzJJ0l6SxJZ0k6S9JZks6SdJaksySdJeksSWdJOkvSWZLOknSWmMzYJjO2yYxtMmObzNgmM7bJjG0yY5vM2CYztsmMbTJjm8zYJjO2yYxtMmObzNgmM7bJjG0yY5vM2CYztsmMbTJjm8zYJjO2yYxtMmObzNgmM7bJjG0yY5vM2CYztsmMbTJjm8zYJjO2yYxtMmObzNgmM7bJjG0yY5vM2CYztsmMbTJjm8zYJjO2yYxtMmObzNgmM7bJjG0yY5vM2CYztsmMbTJjm8zYJjO2yYxtMmObzNgmM7bJjG0yY5vM2CYztsmMbTJjm8zYJjO2yYxtMmObzNgmM7bJjG0yY5vM2CYztsmMbTJjm8zYJjO2yYxtMmObzNgmM7bJjG0yY5vM2CYztsmMbTJjm8zYJjO2yYxtMmObzNgmM7bJjG0yY5vM2CYztsmMbTJjm8zYJjO2yYxtMmObzNgmM7bJjG0yY5vM2CYztsmMbTJjm8zYJjO2yYxtMmObzNgmM7bJjG0yY5vM2CYztsmMbTJjm8zYJjO2yYxtMmObzNgmM7bJjG0yY5vM2CYztsmMbTJjm8zYJjO2yYxtMmObzNgmM7bJjG0yY5vM2CYztsmMbTJjm8zYJjO2yYxtMmObzNgmM7bJjG0yY5vM2CYztsmMbTJjm8zYJjO2yYxtMmObzNgmM7bJjG0yY5vM2CYztsmMbTJjm8zYJjO2yYxtMmObzNgmM7bJjG0yY5vM2CYztsmMbTJjm8zYJjO2yYxtMmObzNgmM7bJjG0yY5vM2CYztsmMbTJjm8zYJjO2yYxtMmObzNgmM7bJjG0yY5vM2CYztsmMbTJjm8zYJjO2yYxtMmObzNgmM7bJjG0yY39uUMbHFExiSqZien/XQR/TZjpM7++e5Ps0nILu4RT05wbl5ySmZComNBqNRuPjHZqPaaOx0dhobDQ2GhuNjcZGY6Ox0ThoHDQOGgeNg8ZB46Bx0DhoHDQuGheNi8ZF46Jx0bhoXDQuGsMj6T08kt7DI+k9PJLewyPpPTyS3sMj6T08kt7DI+k9PJLeDxoLjYXGQmOhsdBYaCw0FhoLjYVGoBFoBBqBRsxj93OD8nNC49P/92M8Ht89sj7+hw//r/oYl8fwKI/psTy2x3e11R/j8XgZP/y/+q8//vB/fvfnP/zuX376/X/98A//8/bHf//vP/7rX/7wpz++/viX//uf8zf/8uc//PTTH/7jn//zz3/619//23//+ff//NOf/vX973543v/z/q34x7fDY/3T2/+8/v8vxfuX3m7DP/b6ca9/+vHzr/f98eT7X8v/Yv8Y8f6l5Euxfox+/1LxpVw/5seX+udSf/3rP/31/wE=",
|
|
1897
|
+
"debug_symbols": "rb3RjiPIcaz9Lnu9F6yMzKwqv4phGLIsGwIWkiFLB/hh6N3/Zjfzi949mD7rHd0sc3p2Kkg2I8huJr/4nx/+/Q//9rf//Nc//uk//vzfP/zTP//PD//2lz/+9NMf//Nff/rz73/31z/++U9vX/2fHx7P/6z84Z+W/v7jD4s/vf0hnn/Yzz/Ejz/sel3263I/L9/+L73/k+ffPv9Nvv/pvv3p8fanev4p3v4PvZ2WHxf1cdEfF/vj4nxcvP27fjvx8XGxPi7ersZ+u9DHRX5cvJ1y3y764+LtlPsm13Pt4+9vf5qb+a9//csf/vD8m0+3++3e+K/f/eUPf/rrD//0p7/99NOPP/yf3/30t/f/6b//63d/er/86+/+8va3jx9/+MOf/v3t8u3A//jjT394Tn//0f/68e1/uh6R/frnb/O5HLFO/NpD4m69ztBj1W85orkW5/0b9jqg96894Nz1OuA++psH5LcPUNfchp0coHN+dkB9cS/kHBBvqt864Nddg6NvHvDFfXA134ab+c374HzvTfjiGuS+rwNa69M1uL/6odQVcxX20m85Qh3zWFLvT3dkrF/virUwRX96OJ1f/3isnfOIbvnOXG836vMRK796TM99cZW/5UpErHlERHx+VGf9/Er0P+CM/cXD4uQ8LvKU70/t+9vO6C/OuN9/W+Krx0bfOWPt+uKM9cUZt86ccff65m356np0PLCavn1vfPGdXXH2XAs9Hr/pjF93Lb56iOaau+LtmUjf9El89RDNh8/Yfv7ZP8+t+OLRdR6aG3Ien7NPPw+N+CI99+65Gvt8ehr8v8744hEq4i+XH+ORP38i1ZeeP+OT0CO+fcZXj8/VczXWOvXbztDj8uiK8+0z9MUTGs9Hb4b5TSe8vaYJJ/kXt6S+Sp5VTq9Pr07ub7khu37bt7XPg+fmq2+fcf4B35L73d+S+733xZcmuQeT/MZ7c6/mZYYe3zwjv3po7e0ngvtto2V+77355QmPyfAb/ZtO+LUWyf3dFvny7rx+cN749t355XPJ5fVrfX7Z9ovnkvrypV+Rn293x/Vj4xevQL8+ZO8Hh5xPP5D8+pexK5vXoHn9OqN+/avYIjJW3fOtE+qrH0kWjw0tfTri59+Tqq/ui8enu8LB9fYy8GdH9Pc/Odf+/ifnOt/75Fz3+5+c+/H9T85ff1+Ln5HiU/7V/+II/7Coz6+lf3FE6/t/2PvqDD0ykl8+5Kfs+V8dolg+pL/p1+4vDWu7rfPNnzu/vlPvnPH2wIxv3qlfPUj1OMdnrP3N2/LlIdp8d/WWRN86ZH8Zx/wIHJXf/vZ+eYe8XZG5Hrl+2wM1g5uS9c0H6v5HPD52fv/jY/8DHPP1/bHxfj3WN++P/dVPjvvTT475rUzfXzzCyilWb6+kfG88Hv+LqyGequPT66dfXo2vjvAv3VZ+NtzPjzhf/KCzq3MeHG/zp+vxi2/Kia9+XdQxrn2ba/+WQ2JV8QJo1adX17885Oubc5ubs78dqF8fslscctc3DXO+CNT76XlO9c3H+pff3j58e/enl2H/m0fI2VyNzzfkl4+QL571334L+Zgzen/2/i/vjS8PKR7tb/P+5gvT+8X3pe+eR1nf+ynVf/3VOM1vjd6mlb/ptrR/O9rdevymx9jb757mXn2b9c0H6q2vbs7xHfKob9whX55w/W25vX7TCb/mm/Llt/XX3Yr1vbfiy6cVf0u1P12HXzytvP1q/ftf6K9HfP8r/fXQ977UX4/8/t8xvP3E+f2/ZHj7UfV7f8vw5RG/9pcE63G++7cEX98hv/LXBF8+VPe6fq+vv/lQXevL59r18HNtfvO5dq346smF336vt2D95jun/4+r0rG5Kp357auS/4BXIF+e8qtfgnz11lkc3jp7e+X981/j/MvbH3/3+z/+5ecLAs8315+PLT3fo3++H38/LvPxulyvy3hd6nWZr8t6Xfbrcr8uX+fl67x6nVev8+p1Xr3Oq9d59TqvXufV67x6nVev8/p1Xr/O69d5/TqvX+f167x+ndev8/p1Xr/O26/z9uu8/Tpvv87br/P267z9Om+/ztuv8/brvPM676ynZd8u43Wp58v2t8t8XdbTPW+X/bp8O6/eguuc51tEb5f34/I+XpfPtYm3x+yN5wPj7VKvy3xd1uuyX5f7dfl23n7Tu2/nPV+Wvf1yaYY1w3MVo57Dcxmjn0POUB8/ob0l2Axv5z7fsn6LrRnua1iP58PvOawZYgbN8Hby87G6nqslz5dFb7+QebrnObyd83xSXvGYYT1/W/scYgY939l9DjlDzdAzPA98/5/v6+Tn5sn7V567J++363375Hmd3/dP3oecoV5X9bmF8jHsGc4M9zXk3OScm5xzk5+Geb+lOTf5aZmPoWfYrzvh6ZbnzxDraZePYc0QM2iG521//qunZz6GnmHPcGa4r+FpnI9hzRAzaIY5uefknpN7Tu45uefkPSfvOXnPyXtO3nPynpP3nLzn5D0n7zn5zMlnTj5z8pmTz5x85uQzJ585+czJZ06+c/Kdk++cfOfkOyffOfnOyXdOvnPyfZ0cj8cMa4aYQTPkDDVDz7BnODPMyWtOXnPympPXnLzm5DUnrzl5zclrTl5zcszJMSfHnBxzcszJMSfHnBxzcszJMSdrTtacrDlZc7LmZM3JmpM1J2tO1pycc3LOyTkn55ycc3LOyTkn55ycc3LOyTUn15xcc3LNyePBGA/GeDDGgzEejPFgjAdjPBjjwRgPxngwxoMxHozxYIwHYzwY48EYD8Z4MMaDMR6M8WCMB2M8GOPBGA/GeDDGgzEejPFgjAdjPBjjwRgPxngwxoMxHozxYIwHYzwY48EYD8Z4MMaDMR6M8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8aDGgxoPajyo8WCOB3M8mOPBHA/meDDHgzkezPFgjgdzPJjjwRwP5ngwx4M5HszxYI4HczyY48EcD+Z4MMeDOR7M8WCOB3M8mOPBHA/meDDHgzkezPFgjgdzPJjjwRwP5ngwx4M5HszxYI4HczyY48EcD+Z4MMeDOR7M8WCOB3M8mOPBHA/meDDHgzkezPFgjgdzPJjjwRwP5ngwx4M5HszxYI4HczyY48EcD+Z4MMeDOR7M8WCOB3M8mOPBHA/meDDHgzkezPFgjgdzPJjjwRwP5ngwx4M5HszxYI4HczyY48EcD+Z4MMeDOR7M8WCOB3M8mOPBHA/WeLDGgzUerPFgjQdrPFjjwRoP1niwxoM1HqzxYI0HazxY48EaD9Z4sMaDNR6s8WCNB2s8WOPBGg/WeLDGgzUerPFgjQdrPFjjwRoP1niwxoM1HqzxYI0HazxY48EaD9Z4sMaDNR6s8WCNB2s8WOPBGg/WeLDGgzUerPFgjQdrPFjjwRoP1niwxoM1HqzxYI0HazxY48EaD9Z4sMaDNR6s8WCNB2s8WOPBGg/WeLDGgzUerPFgjQdrPFjjwRoP1niwxoM1HqzxYI0HazxY48EaD9Z4sMaDNR6s8WCNB2s8WOPBGg/WeLDGgzUerPFgjwd7PNjjwR4P9niwx4M9HuzxYI8HezzY48EeD/Z4sMeDPR7s8WCPB3s82OPBHg/2eLDHgz0e7PFgjwd7PNjjwR4P9niwx4M9HuzxYI8HezzY48EeD/Z4sMeDPR7s8WCPB3s82OPBHg/2eLDHgz0e7PFgjwd7PNjjwR4P9niwx4M9HuzxYI8HezzY48EeD/Z4sMeDPR7s8WCPB3s82OPBHg/2eLDHgz0e7PFgjwd7PNjjwR4P9niwx4M9HuzxYI8HezzY48EeD/Z4sMeDPR7s8WCPB3s82OPBHg/2eLDHgz0e7PFgjwd7PNjjwR4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD+7x4B4P7vHgHg/u8eAeD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ+e8eAZD57x4BkPnvHgGQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD97x4B0P3vHgHQ/e8eAdD953D57nsGc4M9zX8O7B92HNEDNohpyhZpiT75x85+T7Ovn54Q6mxRRMYkqmYmqmzXSY0FhoLDQWGguNhcZCY6Gx0FhoLDQCjUAj0Ag0Ao1AI9AINAKNQENoCA2hITSEhtAQGkJDaAiNRCPRSDQSjUQj0Ug0Eo1EI9EoNAqNQqPQKDQKjUKj0Cg0Co1Go9FoNBqNRqPRaDQajUaj0dhobDQ2GhuNjcZGY6Ox0dhobDQOGgeNg8ZB46Bx0DhoHDQOGgeNi8ZF46Jx0bhoXDQuGheNiwY+X/h84fOFzxc+X/h84fOFzxc+X/h84fOFzxc+X/h84fOFzxc+X/h84fOFzxc+X/h84fOFzxc+X/h84fOFzxc+X/h84fOFzxc+X/h84fOFzxc+X/h84fOFzxc+X/h84fOFzxc+X/h84fOFzxc+X0+fn49pNpc+1nce79Niemq870e9+/xjSqZiaqbNdJje4TvvBz6NPuPyGB7lMT2Wx/a4PR6PVttW21bbVttW21bbVttW21bbVttWO1Y7VjtWO1Y7VjtWO1Y7VjtWO1a7VrtWu1a7VrtWu1a7VrtWu1a7qL1vBs24PIZHeUyP5bE9bo/Ho9WW1ZbVltWW1ZbVltWW1ZbVltWW1cJqYbWwWlgtrBZWC6uF1cJqYTVZTVaT1WQ1WU1Wk9VkNVlNVkurpdXSamm1tFpaLa2WVkurpdXKamW1slpZraxWViurldXKas6ScJaEsyScJeEsCWdJOEvCWRLOknCWhLMknCXhLAlnSThLwlkSzpJwloSzJJwl4SwJZ0k4S8JZEs6ScJaEsyScJeEsCWdJOEvCWRLOknCWhLMknCXhLAlnSThLwlkSzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzpJ0lqSzJJ0l6SxJZ0k6S9JZks6SdJaksySdJeksSWdJOkvSWZLOknSWpLMknSXpLElnSTpL0lmSzpJ0lqSzJJ0l6SxJZ0k6S9JZks6SdJaksySdJeksSWdJOkvSWZLOknSWpLMknSXpLElnSTpL0lmSzpJ0lqSzJJ0l6SxJZ0k6S9JZks6SdJaksySdJeksSWdJOkvSWZLOknSWpLMknSXpLElnSTpL0lmSzpJ0lqSzJJ0l6SxJZ0k6S9JZks6SdJaksySdJeksSWdJOkvSWZLOknSWpLMknSXpLElnSTpL0lmSzpJ0lqSzJJ0l6SwpZ0k5S8pZUs6ScpaUs6ScJeUsKWdJOUvKWVLOknKWlLOknCXlLClnSTlLyllSzpJylpSzpJwl5SwpZ0k5S8pZUs6ScpaUs6ScJeUsKWdJOUvKWVLOknKWlLOknCXlLClnSTlLyllSzpJylpSzpJwl5SwpZ0k5S8pZUs6ScpaUs6ScJeUsKWdJOUvKWVLOknKWlLOknCXlLClnSTlLyllSzpJylpSzpJwl5SwpZ0k5S8pZUs6ScpaUs6ScJeUsKWdJOUvKWVLOknKWlLOknCXlLClnSTlLyllSzpJylpSzpJwl5SwpZ0k5S8pZUs6Sdpa0s6SdJe0saWdJO0vaWdLOknaWtLOknSXtLGlnSTtL2lnSzpJ2lrSzpJ0l7SxpZ0k7S9pZ0s6Sdpa0s6SdJe0saWdJO0vaWdLOknaWtLOknSXtLGlnSTtL2lnSzpJ2lrSzpJ0l7SxpZ0k7S9pZ0s6Sdpa0s6SdJe0saWdJO0vaWdLOknaWtLOknSXtLGlnSTtL2lnSzpJ2lnzs7sX71Eyb6TDdmd7fadH7tJiC6fmb5Hyfkq8VUzNtpsN0ZzpoHDQOGu/vtHxMaBw0DhoHjYPGQeOicdG4aFw0LhoXjYvGReOicUfjY73vY1pMwSSmZCqmZtpMhwmNhcZCY6Gx0FhoLDQWGguNhcZCI9AINAINPvu8+fDz5tPPm48/f2z+fUxoBBpCQ2gIDaEhNISG0BAamsfuxxbg+5RoPP3//qnq90XA1ySmfH1W+n0X8DU102Y6THemp+1f02KK1+eq33cCX1MyFVO/Pnb9sQ7Y79Od6f191I9pMQXTa69gsRS42ApcrAUu9gIXi4Fr+xPT/si0PzPtD037U9P+2LQ/N/3pg9No+KPTfHaaJcHFluBiTXCxJ7hYFFxsCi5WBRe7gotlwcW24GJdcLEvuFgYXGwMLlYGFzuDi6XBxdbgYm1wsTe4WBxcbA4uVgcXu4OL5cHF9uBifXCxP7hYIFxsEC5WCBc7hIslwsUW4WKNcLFHuFgkXGwSLlYJF7uEi2XCxTbhYp1wsU+4WChcbBQuVgoXO4WLpcLFVuFirXCxV7hYLFxsFi5WCxe7hYvlwsV24WK9cLFfuFgwXGwYLlYMFzuGiyXDxZbhYs1wsWe4WDRcbBouVg0Xu4aLZcPFtuFi3XCxb7hYOFxsHC5WDhc7h4ulw8XW4WLtcLF3uFg8XGweLlYPF7uHi+XDxfbhYv1wsX+4WEBcbCAuVhAXO4iLJcTFFuJiDXEdMxIMSTAlwZgEcxIMSjApwaiET6wENPA5K4mLncTFUuJiK3GxlrjYS1wsJi42ExeriYvdxMVy4mI7cbGeuNhPXCwoLjYUFyuKix3FxZLiYktxsaa42FNcLCouNhUXq4qLXcXFsuJiW3GxrrjYV1wsLC42Fhcri4udxcXS4mJrcbG2uNhbXCwuLjYXF6uLi93FxfLiYntxsb642F9cLDAuNhgXK4yLHcbFEuNii3GxxrjYY1wsMi42GRerjItdxsUy42KbcbHOuNhnXCw0LjYaFyuNi53GxVLjYqtxsda42GtcLDYuNhsXq42L3cbFcuNiu3Gx3rjYb1wsOC42HBcrjosdx8WS42LLcbHmuNhzXCw6LjYdF6uOi13HxbLjYttxse642HdcLDwuNh7XxecXn198fk1FMRbFXBSDUUxGMRrFbBTDUUxH+YRHeWnEw4AUE1KMSDEjxZAUU1KMSTEnxaAUSCkPUCkPWCkPYCkPaCkPcCkPeCkPgCkPiCkPkCkPmCkPoCkPqCkPsCkPuCkPwCkPyCkP0CkP2CkP4CkP6CkP8CkP+CkPACoPCCoPECoPGCoPICoPKCoPMCoPOCoPQCoPSCoPUCoPWCoPYCoPaCoPcCoPeCoPgCoPiCoPkCoPmCoPoCoPqCoPsCoPuCoPwCoPyCoP0CoP2CoP4CoP6CoP8CoP+CoPACsPCCsPECsPGCsPICsPKCsPMCsPOCsPQCsPSCsPUCsPWCsPYCsPaCsPcCsPeCsPgCsPiCsPkCsPmCsPoCsPqCsPsCsPuCsPwCsPyCsP0CsP2CsP4CsP6CsP8CsP+CsPACwPCCwPECwPfL7w+cLnC58vfL7w+cLnC58vfL7w+TIR6RMSCQ1DkUxFMhbJXCSDkUxGMhoJny98vvD5wucLny98vvD5wucLny98vvD5wucLny98vvD5wucLny98vvD5wucLny98vvD5wucLny98vvD5wucLny98vvD5wucLny98vvA5CLOAYRZAzAKKWYAxCzhmAcgsIJkFKLOAZRbAzAKaWYAzC3hmAdAsIJoFSLOAaRZAzQKqWYA1C7hmAdgsIJsFaLOAbRbAzQK6WYA3C/hmAeAsIJwFiLOAcRZAzgLKWYA5CzhnAegsIJ0FqLOAdRbAzgLaWYA7C/PODDwz8czIMzPPDD0z9czYM3PPDD4z+czoM7PPDD8z/cz4M/PPDEAzAc0ItE8MNEPQPlHQ0DAHzSA0k9CMQjMLzTA0fG4cmnloBqKZiGYkmplohqKZimYsmrloBqOZjGY0mtlohqOZjmY8mvloBqSZkGZEmhlphqSZkmZMmjlpBqWZlGZUmllphqWZlmZcmnlpBqaZmGZkmplphqaZmmZsmrlpBqeZnGZ0mtlphqeZnmZ8mvlpBqiZoGaEmhlqhqiZomaMmjlqBqmZpGaUmllqhqmZpmacmnlqBqqZqGakGky1AKoWUNUCrFrAVQvAagFZLUCrBWy1AK4W0NUCvFrAVwsAawFhLUCsBYy1ALIWUNYCzFrAWQtAawFpLUCtBay1ALYW0NYC3FrAWwuAayFTD409NPfwE/gQDaMPzT40/ND0Q+MP8TnwtYC+FuDXAv5aAGALCGwBgi1gsAUQtoDCFmDYAg5bAGILSGwBii1gsQUwtoDGFuDYAh5bAGQLiGwBki1gsgVQtoDKFmDZAi5bAGYLyGwBmi1gswVwtoDOFuDZAj5bAGgLCG0Boi1gtAWQtoDSFmDaAk5bAGoLSG0Bqi1gtQWwtoDWFuDaAl5bAGwLiG0Bsi1gtgXQtoDaFmDbAm5bAG4LyG0Bui1gtwXwtoDeFuDbAn5bAHALCG4Bwi1guAUQt4DiFmDcAo5bAHILSG4Byi1guQUwt4DmFuDcAp5bAHQLiG4B0i1gugVQt4DqFmDdAq5bAHYLyG4B2i1guwVwt4DuFuDdIs05NejUpFOjTj+xTtEw7dS4U/NODTzF56DeAtZbAHsLaG8B7i3gvQXAt4D4FiDfAuZbAH0LqG8B9i3gvgXgt4D8FqDfAvZbAH8L6G8B/i3gvwUAuIAAFyDgAgZcAIELKHABBi7gwAUguIAEF6DgAhZcAIMLaHABDi7gwQVAuIAIFyDhAiZcAIULqHABFi7gwgVguIAMF6DhAjZcAIcL6HABHi7gwwWAuIAQFyDiAkZcAIkLKHEBJi7gxAWguIAUF6DiAlZcAIsLaHEBLi7gxQXAuIAYFyDjAmZcAI0LqHEBNi7gxgXguIAcF6DjAnZcAI8L6HEBPi7gxwUAuYAgFyDkAoZcAJELKHIBRi7gyAUguYAkF6DkApZcAJOLMtnYaGOzjQ03Nt34E94YDQOOTTg24hifA5YLyHIBWi5gywVwuYAuF+DlAr5cAJgLCHMBYi5gzAWQuYAyF2DmAs5cAJoLSHMBai5gzQWwuYA2F+DmAt5cAJwLiHMBci5gzgXQuYA6F2DnouZzyFHzOeSo+Rxy1HwOOWo+hxw1n0OOms8hR83nkKPmc8jR8znk6PkccvR8Djl6PoccPZ9Djp7PIUfP55Cj53PI0fM55OgHGguNhcZCY6Gx0FhoLDQWGguNhUagEWgEGoFGoBFoBBqBRqARaAgNoSE0hIbQEBpCQ2gIDaGRaCQaiUaikWgkGolGopFoJBqFRqFRaBQahUahUWgUGoVGodFoNBqNRqPRaDQajUaj0Wg0GhuNjcZGY6Ox0dhobDQ2GhuNjcZB46Bx0DhoHDQOGgeNg8ZB46Bx0cDnjc8bnzc+b3ze+LzxeePzxucbn298vvH5xucbn298vvH5xucbn298vvH5xucbn298vvH5xucbn298vvH5xucbn298vvH5xucbn298vvH5xucbn298vvH5xucbn298vvH5xucbn298vvH5xucbn298vvH5xucbn298vvH5xucbn298vvH5xucbn298/rEF9zEV01Pj8T5tpqfGfZ/uTO8+/5gWUzCJKZlmtzY2m/Ox2ZyPzeZ8bDbnY7M5H5vN+dhszsdmcz42m/Oxt9W21bbVttW21Y7VjtWO1Y7VjtWO1Y7VjtWO1Y7VrtWu1a7VrtWu1a7VrtWu1a7V2JyPw+Z8HDbn47A5H4fN+Thszsdhcz4Om/Nx2JyPw+Z8nIfVltWW1ZbVltWW1ZbVltWW1ZbVltXCamG1sFpYLawWVgurhdXCamE1WU1Wk9VkNVlNVpPVZDVZTVZLq6XV0mpptbRaWi2tllZLq6XVympltbJaWa2sVlYrq5XVympltbZaW62t1lZrqzlLjrPkOEuOs+Q4S46z5DhLjrPkOEuOs+Q4S46z5DhLjrPkOEuOs+Q4S46z5DhLjrPkOEuOs+Q4S46z5DhLjrPkOEuOs+Q4S46z5DhLjrPkOEuOs+Q4S66z5DpLrrPkOkuus+Q6S66z5DpLrrPkOkuus+Q6S66z5DpLrrPkOkuus+Q6S66z5DpLrrPkOkuus+Q6S66z5DpLrrPkOkuus+Q6S66z5DpLrrPkOkuus+Q6S66z5DpLrrPkOkuus+Q6S66z5DpLrrPkOkuus+Q6S66z5DpLrrPkOkuus+Q6S66z5DpLrrPkOkuus+Q6S66z5DpLrrPkOkuus+Q6S66z5DpLrrPkOkuus+Q6S66z5DpLrrPkOkuus+Q6S66z5DpLrrPkOkuus+Q6S66z5DpLrrPkOkuus+Q6S66z5DpLrrPkOkuus+Q6S66z5DpLrrPkkiV6kCV6kCV6kCV6kCV6kCV6kCV6kCV6kCV6kCV6PKy2rLastqy2rLastqy2rLastqy2rBZWC6uF1cJqYbWwWlgtrBZWC6vJarKarCaryWqymqwmq8lqslpaLa2WVkurpdXSamm1tFpaLa1WViurldXKamW1slpZraxWViurtdXaam21tlpbra3WVmurtdXaattq22rbattq22rbattq22rbattqx2rHasdqx2rHasdqx2rHasdqx2rXatdq12rXatdq12rXatdq12rOkuUsWc6S5SxZzpLlLFnOkuUsWc6S5SxZzpLlLFnOkuUsWc6S5SxZzpLlLFnOkuUsWc6S5SxZzpLlLFnOkuUsWc6S5SxZzpLlLFnOkuUsWc6S5SxZzpLlLFnOkuUsWc6S5SxZzpLlLFnOkuUsWc6S5SxZzpLlLFnOkuUsWc6S5SxZzpLlLFnOkuUsWc6S5SxZzpLlLDGZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjDKZUSYzymRGmcwokxllMqNMZpTJjPrYoIz36TDdmd7fofmYFtPzXQe9T2JKpue7J/k+NV/bTIfpzjScAn1sUH5MaCQaicb7OzQfExqJRqKRaBQahUahUWgUGoVGoVFoFBqFRqPRaDQajUaj0Wg0Go1Go9FobDQ2GhuNjcZGY6Ox0dhobDQ2GgeNg8ZB46Bx0DhoHDQOGgeNg8ZF46Jx0bhoXDQuGheNi8ZFY3gk+tigjPdpMQV/qw/+hd43KF9TMfUHzULvG5Sv6TDdmZ7Gf02LKZjElB/UC71vUL6mZtpM54OJoY+9yX6fFlMwiSmZXnsvYm9S7E2KvUmxNyn2JsXepNibFHuTYm9S7E2KvUmxNyn2JpXupnY5tdupXU/9qZ8aDTdUu6LaHdUuqaalmr1JsTcp9ibF3qTYmxR7k2JvUuxNir1JsTcp9ibF3qTYmxR7k2JvUuxNir1JsTcp9ibF3qTYmxR7k2JvUuxNir1JsTcp9ibF3qTYmxR7k2JvUuxNir1JsTcp9ibF3qTYmxR7k2JvUuxNir1JsTcp9ibF3qTYmxR7k2JvUuxNir1JsTcp9ibF3qTYmxR7k2JvUuxNir1JsTcp9ibF3qTYmxR7k2JvUuxNir1JsTcp9ibF3qTYmxR7k2JvUuxNir1JsTcp9ibF3qTYmxR7k2JvUuxNir1JsTcp9ibF3qTYmxR7k2JvUuxNir1JsTcp9ibF3qTYmxR7k2JvUuxNir1JsTcp9iZVbqN3Hb376F1I70b6T5X0aLiU3q30rqXH5+xNir1JsTcp9ibF3qTYmxR7k2JvUuxNir1JsTcp9ibF3qTYmxR7k2JvUuxNir1JsTcp9ibF3qTYmxR7k2JvUuxNir1JsTcp9ibF3qTYmxR7k6KvVxT2isZeUdkrOntFaa9o7RW1vaK3VxT3iuZeUd0runtFea9o7xX1vaK/VxT4igZfUeErOnxFia9o8RU1vqLHVxT5iiZfUeUrunxFma9o8xV1vqLPVxT6ikZfUekrOn1Fqa9o9RW1vqLXVxT7imZfUe0run1Fua9o9xX1vqLfVxT8ioZfUfErOn5Fya9o+RU1v6LnVxT9iqZfUfUrun5F2a9o+xV1v6LvVxT+isZfUfkrOn9F6a9o/RW1v6L3VxT/iuZfUf0run9F+a9o/xX1v6L/VxQAiwZgUQEsOoBFCbBoARY1wKIHWBQBiyZgUQUsuoBFGbBoAxZ1wKIPWBQCi0ZgUQksOoFFKbBoBRa1wKIXWBQDi2ZgUQ0suoFFObBoBxb1wKIfWBQEi4ZgUREsOoJFSbBoCRY1waInWBQFi6ZgURUsuoJFWbBoCxZ1waIvWBQGi8ZgURksOoNFabBoDRa1waI3WBQHi+ZgUR0suoNFebBoDxb1waI/WBQIiwZhUSEsOoRFibBoERY1wqJHWBQJiyZhUSUsuoRFmbBoExZ1wqJPWBQKi0ZhUSksOoVFqbBoFRa1wqJXWBQLi2ZhUS0sOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4goIjKDiCgiMoOIKCIyg4gglHMOEIJhzBhCOYcAQTjmDCEUw4gglHMOEIJhzBhCOYcAQTjmDCEUw4gglHMOEIJhzBhCOYcAQTjmDCEUw4gglHMOEIJhzBhCOYcAQTjmDCEUw4gglHMOEIJhzBhCOYcAQTjmDCEUw4gglHMOEIJhzBhCOYcAQTjmDCEUw4gglHMOEIJhzBhCOYcAQTjmDCEUw4gglHMOEIJhzBhCOYcAQTjmDCEUw4gglHMOEIJhzBhCOYcAQTjmDCEUw4gglHMOEIJhzBhCOYcAQTjmDCEUw4gglHMOEIJhzBhCOYcAQTjmDCEUw4gglHMOEIJhzBhCOYcAQTjmDCEUw4gglHMOEIJhzBhCP49kbXg2kxBZOYkqmYmmkzHSY08DkcwYQjmHAEE45gwhFMOIIJRzDhCCYcwYQjmHAEE45gwhFMOIIJRzDhCCYcwYQjmHAEE45gwhFMOIIJRzDhCCYcwYQjmHAEE45gwhFMOIIJRzDhCCYcwYQjmHAEE45gwhFMOIIJRzDhCCYcwYQjmHAEE45gwhFMOIIJRzDhCCYcwYQjmHAEE45gwhFMOIIJRzDhCCYcwYQjmHAEE45gwhFMOIIJRzDhCCYcwYQjmHAEE45gwhFMOIIJRzDhCCYcwYQjmHAEE45gwhFMOIIJRzDhCCYcwYQjmHAEE45gwhFMOIIJRzDhCCYcwYQjmHAEE45gwhFMOIIJRzDhCCYcwYQjmHAEE45gwhFMOIIJRzDhCCYcwYQjmHAEE45gwhFMOIIJRzDhCCYcwYQjmHAEE45gwhFMOIIJRzDhCCYcwYQjmHAEE45gwhFMOIIJRzDhCCYcwYQjmHAEE45gwhFMOIIJRzDhCCYcwYQjmHAEE45gwhFMOIIZ8/nljOEUZAynIGM4BRnDKcgYTkHGcAoyhlOQMZyCjOEUZDQajUaj0Wg0Go1Go7HR2GhsNDYaG42NxkZjo7HR2GgcNA4aB42DxkHjoHHQOGgcNA4aF42LxkXjonHRuGhcNC4aF43hFKSGU5AaTkFqOAWp4RSkhlOQGk5BajgFqeEUpIZTkHqgsdBYaCw0FhoLjYXGQmOhsdBYaAQagUagEWgEGoFGoBFoBBqBhtAQGkJDaAgNoSE0hIbQEBqJRqKRaCQaiUaikWgkGolGolFoFBqFBj4XPhc+Fz4XPhc+Fz4XPhc+Fz4XPhc+Fz4XPhc+Fz4XPhc+Fz4XPhc+Fz4XPhc+Fz4XPhc+Fz4XPhc+Fz4XPhc+Fz4XPhc+Fz4XPhc+Fz4XPhc+Fz4XPhc+Fz4XPk98nvg88Xni88Tnic8Tnyc+T3ye+DzxeeLzxOeJzxOfJz7/2IL7mDbTU+PxPt2Z3n1+36fFFExiSqZiaqbZrU13B6e7g9Pdwenu4HR3cLo7ON0dnO4OTncHp7uD093B6e7gdHdwujs43R2c7g5Odwenu4PT3cHp7uB0d3C6OzjdHZzuDk53B6e7g9Pdwenu4HR3cLo7ON0dnO4OTncHp7uD093B6e7gdHdwujs43R2c7g5Odwenu4PT3cHp7uB0d3C6OzjdHZzuDk53B6e7g9Pdwenu4HR3cLo7ON0dnO4OTncHp7uD093B6e7gdHdwujs43R2c7g5Odwenu4PT3cHp7uB0d3C6OzjdHZzuDk53B6e7g9Pdwenu4HR3cLo7ON0dnO4OTncHp7uD093B6e7gdHdwujs43R2c7g5Odwenu4PT3cHp7uB0d3C6OzjdHZzuDk53B6e7g9Pdwenu4HR3cLo7ON0dnO4OTncHp7uD093B6e7gdHdwujs43R2c7g5Odwenu4PT3cHp7uB0d3C6OzjdHZzuDk53B6e7g9Pdwenu4HR3cLo7ON0dnO4OTncHp7uD093B6e7gdHdwujs43R2c7g5Odwenu4PT3cHp7uB0d3C6OzjdHZzuDk53B6e7g9Pdwenu4HR3cLo7ON0dnO4OTncHp7uD093B6e7gdHdwujs43R2c7g5Odwenu4PT3cHp7uB0d3C6OzjdHZzuDk53B6e7g9Pdwenu4HR3cLo7ON0dnO4OTncHp7uD093B6e7gdHdwujs43R2c7g5Odwenu4PT3cHp7uB0d3C6OzjdHZzuDk53B6e7g9Pdwenu4HR3cLo7ON0dnO4OTncHp7uD093B6e7gdHdwujs43R2c7g5Odwenu4PT3cHp7uB0d3C6OzjdHZzuDk53B6e7g9Pdwenu4HR3cLo7ON0dnO4OTncHp7uD093B6e7gdHdwujs43R2c7g5Odwenu4PT3cHp7uB0d3C2s6SdJe0saWdJO0vaWdLOknaWtLOknSXtLGlnSTtL2lnSzpJ2lrSzpJ0l7SxpZ0k7S9pZ0s6Sdpa0s6SdJe0saWdJO0vaWdLOknaWtLOknSXtLNnOku0s2c6S7SzZzpLtLNnOku0s2c6S7SzZzpLtLNnOku0s2c6S7SzZzpLtLNnOku0s2c6S7SzZzpLtLNnOku0s2c6S7SzZzpLtLNnOku0s2c6S7SzZzpLtLNnOku0s2c6S7SzZzpLtLNnOku0s2c6S7SzZzpLtLNnOku0s2c6S7SzZzpLtLNnOku0s2c6S7SzZzpLtLNnOku0s2c6S7SzZzhKTGdNkxjSZMU1mTJMZ02TGNJkxTWZMkxnTZMY0mTFNZkyTGdNkxjSZMU1mTJMZ02TGNJkxTWZMkxnTZMY0mTFNZkyTGdNkxjSZMU1mTJMZ02TGNJkxTWZMkxnTZMY0mTFNZkyTGdNkxjSZMU1mTJMZ02TGNJkxTWZMkxnTZMY0mTFNZkyTGdNkxjSZMU1mTJMZ02TGNJkxTWZMkxnTZMY0mTFNZkyTGdNkxjSZMU1mTJMZ02TGNJkxTWZMkxnTZMY0mTFNZkyTGdNkxjSZMU1mTJMZ02TGNJkxTWZMkxnTZMY0mTFNZkyTGdNkxjSZMU1mTJMZ02TGNJkxTWZMkxnTZMY0mTFNZkyTGdNkxjSZMU1mTJMZ02TGNJkxTWZMkxnTZMY0mTFNZkyTGdNkxjSZMU1mTJMZ02TGNJkxTWZMkxnTZMY0mTFNZkyTGdNkxjSZMU1mTJMZ02TGNJkxTWZMkxnTZMY0mTFNZkyTGdNkxjSZMU1mTJMZ02TGNJkxTWZMkxnTZMY0mTFNZkyTGdNkxjSZMU1mTJMZ02TGNJkxTWZMkxnTZMY0mTFNZkyTGdNkxjSZMU1mTJMZ02TGNJkxTWZMkxnTZMY0mTFNZkyTGdNkxjSZMU1mTJMZ02TGNJkxTWZMkxnTZMY0mTFNZkyTGdNkxjSZMU1mTJMZ02TGNJkxTWZMkxnTZMY0mTFNZkyTGdNkxjSZMU1mTJMZ02TGNJkxTWZMkxnTZMY0mTFNZkyTGdNkxjSZMU1mTJMZ02TGNJkxTWZMkxnTZMY0mTFNZkyTGdNkxjSZMU1mTJMZ02TGNJkxTWbMjw3KeE7v79B8TIspmMT0fNdB71MxNdPz3ZN8nw5fux9TfWxQfkyLKZjElEzF1Eyb6TChsdBYaCw0FhoLjYXGQmOhsdBYaAQagUagEWgEGoFGoBFoBBqBhtAQGkJDaAgNoSE0hIbQEBqJRqKRaCQaiUaikWgkGolGolFoFBqFRqFRaBQahUahUWgUGo1Go9Gvx259bFB+TGg8/f/kX9T7BuVr2kzng2ZR7xuUH9PT+q9pMQWTmJKpmPqDelHvG5Sv6TDdmZ6GfzIx6mNvst8nMSVTMTXTa++l2Jss9iaLvclib7LYmyz2Jou9yWJvstibLPYmi73JYm/y7f2NB9NiCiYxJVMxNdNmOkxoLDQWGguNhcZCY6Gx0FhoLDQWGoFGoBFoBBqBRqARaAQagUagITSEhtAQGkJDaAgNoSE0hEaikWgkGolGopFoJBqJRqKRaBQahUahUWgUGoVGoVFoFBqFRqPRaDQajUaj0Wg0Go1Go9FobDQ2GhuNjcZGY6Ox0dhobDQ2GgeNg8ZB46Bx0DhoHDTwOXuTxd5ksTdZ7E0We5PF3mSxN1nsTRZ7k8XeZLE3WexNFnuTxd5ksTdZ7E0We5PF3mSxN1nsTRZ7k8XeZLE3WexNFnuTxd5ksTdZ7E0We5PF3mSxN1nsTRZ7k8XeZLE3WexNFnuTxd5ksTdZ7E0We5PF3mSxN1nsTRZ7k8XeZLE3WexNFnuTxd5ksTdZ7E0We5PF3mSxN1nsTRZ7k8XeZLE3WexNFnuTxd5ksTdZ7E0We5NF/3LRv1z0Lxf9y0X/ctG/XPQvF/3LRf9y0b9c9C8X/ctF/3LRv1z0Lxf9y0X/ctG/XPQvF/3LRf9y0b9c9C8X/ctF/3LRv1z0Lxf9y0X/ctG/XPQvF/3LRf9y0b9c9C8X/ctF/3LRv1z0Lxf9y0X/ctG/XPQvF/3LRf9y0b9c9C8X/ctF/3LRv1z0Lxf9y0X/ctG/XPQvF/3LRf9y0b9c9C8X/ctF/3LRv1z0Lxf9y0X/ctG/XPQvF/3LRf9y0b9c9C8X/ctF/3LRv1z0Lxf9y0X/ctG/XPQvF/3LRf9y0b9c9C8X/ctF/3LRv1z0Lxf9y0X/ctG/XPQvF/3LRf9y0b9c9C8X/ctF/3LRv1z0Lxf9y0X/ctG/XPQvF/3LRf9y0b9c9C8X/ctF/3LRv1z0Lxf9y0X/ctG/XPQvF/3LRf9y0b9c9C8X/ctF/3LRv1z0Lxf9y0X/ctG/XPQvF/3LRf9y0b9c9C8X/ctF/3LRv1z0Lxf9y0X/ctG/XPQvF/3LRf9y0b9c9C8X/ctF/3LRv1z0Lxf9y0X/ctG/XPQvF/3LRf9y0b9c9C8X/ctF/3LRv1z0Lxf9y0X/ctG/XPQvF/3LRf9y0b9c9C8X/ctF/3LRv1z0Lxf9ywVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAIFhzBgiNYcAQLjmDBESw4ggVHsOAI1p3PL9cdTkHd4RTUHU5B3eEU1B1OQd3hFNQdTkHd4RTUHU5B3UAj0Ag0Ao1AQ2gIDaEhNISG0BAaQkNoCI1EI9FINBKNRCPRSDQSjUQj0Sg0Co1Co9AoNAqNQqPQKDQKjUaj0Wg0Go1Go9FoNBqNRqPR2GhsNDYaG42NxkZjo7HR2GhsNA4aB42DxkHjoHHQOGgcNA4aB42LxkXjonHRuGhcNC4aF42LxnAK+jGcgn4Mp6Afwynox3AK+jGcgn4Mp6Afwynox3AK+jGcgn480FhoLDQWGguNhcZCY6Gx0FhoLDQCjUAj0Ag0Ao1AI9AINAKNQENoCA2hITSEhtAQGkJDaAiNRCPRSDQSjUQj0Ug0Eo1EI9EoNAqNQqPQKDQKjUKj0Cg0Co1Go9FoNBqNRqPRaDQajUaj0dhobDQ2GhuNjcZGY6Ox0XjfgvuY7kzvPn+8T4vpqXHfJzElUzE102Y6TLNb2+4ObncHt7uD293B7e7gdndwuzu43R3c7g5udwf3YnO+3R3c7g5udwe3u4Pb3cHt7uB2d3C7O7jdHdzuDm53B7e7g9vdwe3u4HZ3cLs7uN0d3O4ObncHt7uD293B7e7gdndwuzu43R3c7g5udwe3u4Pb3cHt7uB2d3C7O7jdHdzuDm53B7e7g9vdwe3u4HZ3cLs7uN0d3O4ObncHt7uD293B7e7gdndwuzu43R3c7g5udwe3u4Pb3cHt7uB2d3C7O7jdHdzuDm53B7e7g9vdwe3u4HZ3cLs7uN0d3O4ObncHt7uD293B7e7gdndwuzu43R3c7g5udwe3u4Pb3cHt7uB2d3C7O7jdHdzuDm53B7e7g9vdwe3u4HZ3cLs7uN0d3O4ObncHt7uD293B7e7gdndwuzu43R3c7g5udwe3u4Pb3cHt7uB2d3C7O7jdHdzuDm53B7e7g9vdwe3u4HZ3cLs7uN0d3O4ObncHt7uD293B7e7gdndwuzu43R3c7g5udwe3u4Pb3cHt7uB2d3C7O7jdHdzuDm53B7e7g9vdwe3u4HZ3cLs7uN0d3O4ObncHt7uD293B7e7gdndwuzu43R3c7g5udwe3u4Pb3cHt7uB2d3C7O7jdHdzuDm53B7e7g9vdwe3u4HZ3cLs7uN0d3O4ObncHt7uD293B7e7gdndwuzu43R3c7g5udwe3u4Pb3cHt7uB2d3C7O7jdHdzuDm53B7e7g9vdwe3u4HZ3cLs7uN0d3O4ObncHt7uD293B7e7gdndwuzu43R3c7g5udwe3u4Pb3cHt7uB2d3C7O7jdHdzuDm53B7e7g9vdwe3u4HZ3cLs7uN0d3O4ObncHt7uD293B7e7gdndwuzu43R3c7g5udwe3u4Pb3cHt7uB2d3C7O7jdHdzuDm45S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S+QskbNEzhI5S9JZks6SdJaksySdJeksSWdJOkvSWZLOknSWpLMknSXpLElnSTpL0lmSzpJ0lqSzJJ0l6SxJZ0k6S9JZks6SdJaYzNgmM7bJjG0yY5vM2CYztsmMbTJjm8zYJjO2yYxtMmObzNgmM7bJjG0yY5vM2CYztsmMbTJjm8zYJjO2yYxtMmObzNgmM7bJjG0yY5vM2CYztsmMbTJjm8zYJjO2yYxtMmObzNgmM7bJjG0yY5vM2CYztsmMbTJjm8zYJjO2yYxtMmObzNgmM7bJjG0yY5vM2CYztsmMbTJjm8zYJjO2yYxtMmObzNgmM7bJjG0yY5vM2CYztsmMbTJjm8zYJjO2yYxtMmObzNgmM7bJjG0yY5vM2CYztsmMbTJjm8zYJjO2yYxtMmObzNgmM7bJjG0yY5vM2CYztsmMbTJjm8zYJjO2yYxtMmObzNgmM7bJjG0yY5vM2CYztsmMbTJjm8zYJjO2yYxtMmObzNgmM7bJjG0yY5vM2CYztsmMbTJjm8zYJjO2yYxtMmObzNgmM7bJjG0yY5vM2CYztsmMbTJjm8zYJjO2yYxtMmObzNgmM7bJjG0yY5vM2CYztsmMbTJjm8zYJjO2yYxtMmObzNgmM7bJjG0yY5vM2CYztsmMbTJjm8zYJjO2yYxtMmObzNgmM7bJjG0yY5vM2CYztsmMbTJjm8zYJjO2yYxtMmObzNgmM7bJjG0yY5vM2CYztsmMbTJjm8zYJjO2yYxtMmObzNgmM7bJjG0yY5vM2CYztsmMbTJjm8zYJjO2yYxtMmObzNgmM7bJjG0yY5vM2CYztsmMbTJjm8zYJjO2yYxtMmObzNgmM7bJjG0yY5vM2CYztsmMbTJjm8zYJjO2yYxtMmObzNgmM7bJjG0yY5vM2CYztsmMbTJjf2xQxvsUTGJKpmJ6vuug92kzHabnuyf5nIZT0D2cgv7YoPyYxJRMxYRGo9FovL9D8z5tNDYaG42NxkZjo7HR2GhsNDYaB42DxkHjoHHQOGgcNA4aB42DxkXjonHRuGhcNC4aF42LxkVjeCS9h0fSe3gkvYdH0nt4JL2HR9J7eCS9h0fSe3gkvYdH0vuBxkJjobHQWGgsNBYaC42FxkJjoRFoBBqBRqAR89j92KD8mND48P99H4/Hp0fW+//w7v9V7+PyGB7lMT2Wx/b4VFv9Ph6Pl/Hd/6v//uMP/+d3f/nj7/7tpz/89w//9D9vf/yPv/3p93/945//9PrjX/+//5q/+be//PGnn/74n//6X3/58+//8O9/+8sf/vWnP//++Xc/PJ7/eX4r/vnt8Fj/8vY/r//7S/H80ttt+OdeP+71Lz9+/PW+P558/rX8L/aPEc8vJV+K9WP080vFl3L9mO9f6l9K/f3v//L3/x8=",
|
|
1898
1898
|
"verification_key": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOQAAAAAAAAAAAAAAAAAAAAwrJ0T13Nz9rZCSfd33S+WNwAAAAAAAAAAAAAAAAAAAAAABAocsHAy/pap2ZRxYSHwwAAAAAAAAAAAAAAAAAAADu9rB/aXJUxhxGLM+bBTscbAAAAAAAAAAAAAAAAAAAAAAAgtaO888vSz3BH41eDPyEAAAAAAAAAAAAAAAAAAACgcFznAsrJUIc+NjrFQuDqOAAAAAAAAAAAAAAAAAAAAAAAH9ULxcBFeKVAKV8wn3f2AAAAAAAAAAAAAAAAAAAArQ61PdLHvUyst1jkb/fsuegAAAAAAAAAAAAAAAAAAAAAACMZSnc85D19s5WD0XPowAAAAAAAAAAAAAAAAAAAAGTopzhHS7KP8plDhu5w1Eg1AAAAAAAAAAAAAAAAAAAAAAAe/J19NXjVFuVFCHIGHvcAAAAAAAAAAAAAAAAAAACrMDbwmnxxajvTP1Kykms7SAAAAAAAAAAAAAAAAAAAAAAAGUqOJwwp4GMbEkfn0U47AAAAAAAAAAAAAAAAAAAAYLAzqPm3CgswITtGIcZtFSkAAAAAAAAAAAAAAAAAAAAAAB4zCkkRmifn+uHeY8XpjgAAAAAAAAAAAAAAAAAAAFRsBfI4mkdT0Egz0GAcyRLnAAAAAAAAAAAAAAAAAAAAAAAEhGVh4euctDpdLcA6ZkMAAAAAAAAAAAAAAAAAAAAF26ZUkBr6BqKxdgee0da2uQAAAAAAAAAAAAAAAAAAAAAAECPCy0mwU3Kcfv39NbPiAAAAAAAAAAAAAAAAAAAAOSSTbV1eM9AwuHOPNR1tiR8AAAAAAAAAAAAAAAAAAAAAABCR1yuWIA8qFOuXWeCzOAAAAAAAAAAAAAAAAAAAAG8z10amGrSEiZXvU4ETB9WnAAAAAAAAAAAAAAAAAAAAAAAWkj4Jrf+MfbblNgV8IjYAAAAAAAAAAAAAAAAAAAChKKC+92fO1E6Ga4ozL2bzKwAAAAAAAAAAAAAAAAAAAAAAIbnrTc2mX/1cshDi2c81AAAAAAAAAAAAAAAAAAAAJzF9LwqADNbKcfUoT8KtTa8AAAAAAAAAAAAAAAAAAAAAAA518y3hD5iLVkztpJIXywAAAAAAAAAAAAAAAAAAAB5J8PjTkTM7ZuCKjl4o1N0dAAAAAAAAAAAAAAAAAAAAAAAGAYYZQRXqMgE23QeNvXEAAAAAAAAAAAAAAAAAAACDqQDTFOp4DIDArZuFIzoM8wAAAAAAAAAAAAAAAAAAAAAACWWBWtbJb0b3DJB/sUm/AAAAAAAAAAAAAAAAAAAAzddxH9m3Wxos0sgmUx2zSUoAAAAAAAAAAAAAAAAAAAAAACslai25UE7q+UTCKPoK+AAAAAAAAAAAAAAAAAAAAAXRFEYaBiUoWA88TRkg5/yeAAAAAAAAAAAAAAAAAAAAAAAEvsIjeS5ggBG0sSeLbsEAAAAAAAAAAAAAAAAAAAB5OAUzP/7RqLw40bEVvoFziQAAAAAAAAAAAAAAAAAAAAAAH3DCGwkwJutkJ7jxpduCAAAAAAAAAAAAAAAAAAAAq3M3fZT9mPfUGTefTB7q4yMAAAAAAAAAAAAAAAAAAAAAAAFCL4nApDrcBpPwU6piwwAAAAAAAAAAAAAAAAAAALt4nN6WeWlZOH8PUcvfbLPhAAAAAAAAAAAAAAAAAAAAAAAN49c1RiUX3tGQ76oIAzUAAAAAAAAAAAAAAAAAAABOqxBEkU9Kmu3OsYuo3C/ziwAAAAAAAAAAAAAAAAAAAAAALpR6C72sfnRwSaHoQPpNAAAAAAAAAAAAAAAAAAAAz8bPQ9BoAQKKn68L5mUuK/YAAAAAAAAAAAAAAAAAAAAAAC/qbZTXAneI2I8NP76u2AAAAAAAAAAAAAAAAAAAADaj00oZ1+gUxSKGymYzqDhVAAAAAAAAAAAAAAAAAAAAAAAYN3P78GvJvbIyk8sr7HsAAAAAAAAAAAAAAAAAAAD9+eKUty9xIAvKbFvNmGCKMwAAAAAAAAAAAAAAAAAAAAAAEU9qi6K7Qk9DVnaobHX6AAAAAAAAAAAAAAAAAAAAcraU4m5uN73jQJ0tRbilGzsAAAAAAAAAAAAAAAAAAAAAACXkxIVhaa/XqvLf5wFrPAAAAAAAAAAAAAAAAAAAAICvAHqFl9kolkU6kHw2sj0yAAAAAAAAAAAAAAAAAAAAAAAS3CxioekIpyAFLwh7TYIAAAAAAAAAAAAAAAAAAABKVJ1fSybXTybJeNw6IAiybwAAAAAAAAAAAAAAAAAAAAAAL7ABK5kvQIg0RxjQa3rjAAAAAAAAAAAAAAAAAAAAdkHIZLq6gfIFI759w8AGmYEAAAAAAAAAAAAAAAAAAAAAAAqfVfhoqtOdOtySlySz0AAAAAAAAAAAAAAAAAAAAE5M0O7WTv/FtTdOwzSC6Q0pAAAAAAAAAAAAAAAAAAAAAAAQ9qMLffSEo+RuUvFJuFgAAAAAAAAAAAAAAAAAAACOvlP4VNROo9OWPVlFS77SDQAAAAAAAAAAAAAAAAAAAAAAEDzRKz0dM3oYS/ntBwoFAAAAAAAAAAAAAAAAAAAAjod1WZwjDoG43T31Is+5tDYAAAAAAAAAAAAAAAAAAAAAAAcsoqTmm1hj9n7KWFB+FAAAAAAAAAAAAAAAAAAAAHSi/g+C+RFbzgBaknCC68L7AAAAAAAAAAAAAAAAAAAAAAAKEq1zU+z4bs1aRBdkarIAAAAAAAAAAAAAAAAAAACnhlQYACj0RvPn44JW9Rm7LwAAAAAAAAAAAAAAAAAAAAAAKfrO7z36LIf+h07o3ftGAAAAAAAAAAAAAAAAAAAAhsH9uMOfiMYTco3d1YzCl+IAAAAAAAAAAAAAAAAAAAAAACiwfZ8jOiOAxGEloZvfZAAAAAAAAAAAAAAAAAAAAGymsv+mjhbXSnIOClcC8DCPAAAAAAAAAAAAAAAAAAAAAAAr90liH/2mUbULadUTW0MAAAAAAAAAAAAAAAAAAABHGbphUl7qE41SI2wf9jLrAwAAAAAAAAAAAAAAAAAAAAAAAnn+X3IAHqWVlff31rQ0AAAAAAAAAAAAAAAAAAAA+eWs5kQlDnX+2U8JYeuZeWgAAAAAAAAAAAAAAAAAAAAAAC7mVEkPbfr8KUWbFH2cWwAAAAAAAAAAAAAAAAAAAJzGLYOs5QkHKVDfnQ4ixoBAAAAAAAAAAAAAAAAAAAAAAAAl02VNhtfzmTlgjQ0VzIQAAAAAAAAAAAAAAAAAAABB1B0YeslraaAf3jQRPEHt3gAAAAAAAAAAAAAAAAAAAAAAE7JOSEkVEOe7ozXWXGKUAAAAAAAAAAAAAAAAAAAANIYuzyFiP9Nl7hDP7kKu498AAAAAAAAAAAAAAAAAAAAAABIkUH1+u9mfElHoFY8YcwAAAAAAAAAAAAAAAAAAAJJnUK9n7mhhDsDUms1e8e/sAAAAAAAAAAAAAAAAAAAAAAAP8OM1CMK8N88OgKVEUBwAAAAAAAAAAAAAAAAAAABGxvPk4rQ/7ESvRQnTMHP94gAAAAAAAAAAAAAAAAAAAAAAB+ixVutxzIsKZxARJSeqAAAAAAAAAAAAAAAAAAAA1T97BLCkgqeZR/u43GkypJcAAAAAAAAAAAAAAAAAAAAAAB1GGCbaghU+l8clmIs49gAAAAAAAAAAAAAAAAAAACKg/pNRxdd3rHYKzMW9VvqpAAAAAAAAAAAAAAAAAAAAAAAL4lX/XQCtftBG+8FlxGEAAAAAAAAAAAAAAAAAAAA0vbFGo36Su07B7IqZmeE+zAAAAAAAAAAAAAAAAAAAAAAAATIVWfwENAjvu5AtH017AAAAAAAAAAAAAAAAAAAAuEQOWkC++kma2N1+7ypTP18AAAAAAAAAAAAAAAAAAAAAAADyCLaKijfT23BRFm6ngwAAAAAAAAAAAAAAAAAAAJW12Le0pjsF32UrDRDvFG0mAAAAAAAAAAAAAAAAAAAAAAAJnjvVoKAKt/4YBAEFubMAAAAAAAAAAAAAAAAAAAAhKa86Y39aYioyRA+GDR4qfwAAAAAAAAAAAAAAAAAAAAAAABW40lFdduLM7Jnc0ZRZAAAAAAAAAAAAAAAAAAAAIiuIgQjcJdGqRQ4LS8ISw34AAAAAAAAAAAAAAAAAAAAAABuRdReSC609i8AclZUJKgAAAAAAAAAAAAAAAAAAAEghQcfr5CAAodWMy3Q4H20ZAAAAAAAAAAAAAAAAAAAAAAAwXomSsUju2yLm6ZIHeoQAAAAAAAAAAAAAAAAAAAA47Y2iN1GGtRjHNFxgsRNLLQAAAAAAAAAAAAAAAAAAAAAABh9kSXmW6JFXIlAenjZ5AAAAAAAAAAAAAAAAAAAAKtPXy1l5LhHA0mkfMX/VDm4AAAAAAAAAAAAAAAAAAAAAABuE04M5Mh9AXrr2ovgwhAAAAAAAAAAAAAAAAAAAACjt0afkbIQNnJQ/30VSHGTOAAAAAAAAAAAAAAAAAAAAAAAEPQY7Ewrfs3NCr0XQFVoAAAAAAAAAAAAAAAAAAACTMJUq50xXPRaG2ctKAHM4VAAAAAAAAAAAAAAAAAAAAAAAJhUixAiTMGRq/5ZzYZSUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABvVTrA8mbPwe1J5d9myezSTAAAAAAAAAAAAAAAAAAAAAAADumm1k31ZrUFPmQoSvO+AAAAAAAAAAAAAAAAAAAApXSODnpNKIaHSZx+Ett0SocAAAAAAAAAAAAAAAAAAAAAABRnwLE5ZVK7B2Xsk/YxwAAAAAAAAAAAAAAAAAAAAGvMegX/lalrKJQkxfczZw2WAAAAAAAAAAAAAAAAAAAAAAAAxDcm91tv2g3iLODg36sAAAAAAAAAAAAAAAAAAAAdCgnXF47JO614WPluZPC0jQAAAAAAAAAAAAAAAAAAAAAAL5tuC04sAZaN5cMkgqp9AAAAAAAAAAAAAAAAAAAAFLmaKhz1vbFNGPy31tW7G0MAAAAAAAAAAAAAAAAAAAAAABibwBFKqYLGRXSxHbsAPgAAAAAAAAAAAAAAAAAAAIFYESpGMQpiuEn23VYsLIaUAAAAAAAAAAAAAAAAAAAAAAASkF6WwsjbCGXWk491oyQ="
|
|
1899
1899
|
},
|
|
1900
1900
|
{
|
|
@@ -2052,8 +2052,8 @@
|
|
|
2052
2052
|
}
|
|
2053
2053
|
}
|
|
2054
2054
|
},
|
|
2055
|
-
"bytecode": "H4sIAAAAAAAA/+29C5xlV1UnvE/dW9V1q6vr9vud9O10Oul03k8CRKRJ593vTndih5B0J0XS6XdX9ZMERERm0IiIqIgifIqggnyODMroOIpGPwb5fODAyENAdAQVDAMog6jDIWdV/etf/7PvOeeu6r6ka/9+3ffW2Wv919prr7328+ybhGfSmuzzgQd2nx4dfuiBg0cf2HtwdPjowd37Rx54YOTUwYceOHx07/Hdo8MPjIx+6/+UNsl46qFiSioK/9flz9D3Z3w9gFf71r9WKCa+n/Qox/+9L+9nwFL84dv8Sagq/5nypzwVyx/6TBHgR10Md8a3/s2E77eR/Ir6v7xT/edGdLa6uRnoW6FQqhvvesX71ZGP/cKHnvy133/n6Dve/uNzPj7rTTMvG3jFq1/9j8u+tPynnn71zxnvLaBTEgrL7jP+W5XsF/x6bdejv/qNQzNve9V7Tnz8LzYdm7V89wdW/Ie373rq9Su+8MAPGO9tivfzP/TmVzTf86NvbV364a/13fa6f3jgK3f03vjxDz++5Pe+75tfePoNxnu74v2zXd/81Hubbzh98sn3v+zGNfN2v+sNH/vy3/3hh36l+ZXPvvvIx6433jugzPVQzo/TdGc1/rF2fFc1/h7j3wD8VeLIxmr8s41/Ezxs2ZdX/vw7P7XuyQ9f9blvDrx24+7vP3ntD37kni+eXvyO1X/z2LuXv2uO8W5WvH81evPrRxcduOGL/X/85NVvW3bep7/6jvf+7T+dGr7xH/728+9b+RXj3SJ4F19z8XMP/+SfzP/kmgs+8cLfedcVP7bkqxfe9MnfuP1tT3/jg18P43W2tVqZx2y+rRr/WBvdXo2/Zvx3w8NWnMfCzFjZd1STPca/s7hsS73Ge4/mTV51wchPNJ5MNn7g+y5/7+DAB76w7mdfdPOHP/T9r13RfNfPGu+9gnftTY2n3/7al786fOYdf//D/7T2t154+Zzz18254s/f/NFlB4/et+Rp4/0eExRKlXm58e8CftI9moz/vjBZ96K8L64me6x9319e9hjvS8rzjrWRBwwslLL5gPE/WI1/pvHvrsY/aPx7gL9EX9gy/oeq8V9l/A9X47/a+IeBv0T5X2j8L60mf53xP1KN/1bjf7Qa/93Gv7ca/27jf6wa/0PGv68a/8PGv78a/7DxH6jG/1LjP1iN/xHjP1SN/1HjP1yNf6/xH6nGv9/4j1bjP2D8I9X4Dxr/aDX+Q8Z/rBr/YeM/Xo3/qPGfqMY/Yvwnq/GPGv+pavzHjP90Nf7jxv+yavynjP/xavwvM/4nqvE/MRCemS+vX/TMg3QOfWGWeWx07/69o6fWjYwMHx29+dCBw7tH9+7ZP7z56O6H9g/vHD46svfQQQZM6O+bc56nchZPlHPb8OiOZ77dfOhbSysnR3sJN6G/e+jvGv1dp78NrzeHj3naJVsb6CMdW8XYtwxm9DNIH8TuJz1boVA6LyG8ECaWMxB+g3QpKS9JCM/kcfmszqzsDaFLU+SxjRtCTkPIaYq8/Y5Yxx2xDjhijTpieZbxqCPWYUesEUesg45YexyxPG3v2YZOdCnWXkcsT5/wtL2nf+1zxPJs254+8ZgjlmeMPu2I1a39o42xbeyAY40k59Pk8DOT0yCsquMeVa5+IS9GPyNCP1AQPx1XN7Pv2bh6/fCeY49sOPRIoMRD3VtyVFxOdDsiqjFuQv/4+XJ6VhO0mNLiLcy+Z8W7dXj0oUfv3v3II8MPf6uQI8zBSOtznvOAFGlsMD5AmrZCodRTxCkRv0G6VHVK5TSqsaVWnZt9z6y64dDuh2/efXjk2P5hnmbhFIGtgqj4TNVpAprhsxrRrae/Nwi+ILDTfKu5QXreCoXSLPOKWSLT8oYAewblNSEPa5NTTehvOqeYdy4ax2U61gfrY4jyZkJeE2RzvQ4IOaZ/j6CfSVgDgs9s305eTfDxtDQ2dS7S2qwcaWoKGSZ7CqPC/G6PCla+mdXkzUuIH+Uhpuljth4UeYZl7bAvB8t460T/3uyzSXRpuo9kDAp98ZnZJ11Geg/pjrZlP+nEjohneuEzxG+EjvwyidUblo/9pGKMnVvE7qgPx2S2Lca9vhws460T/e9mn80wOe6zn8wS+uIz9JPfIt3RtuwnFe24rqifGH4jdOSXSazesHzsJ7OqyXthEbujPqp/RttiH9iXg2W8daL//7PPJtGlif1kSOiLz9BPPph978/RtxUKpRNq3MJ+hnYpc0yiqJ8ZfiN0VO9JzI6qvamxl/E2RR4vLTeFnKaQ0xR5xx2xRh2xHnPE2u+IdaJLsQ47Yo04Yh10xNrjiHXEEcvT77vRXrF+qCxWmjx99aQj1iFHLE9f9SzjXkesbm3bjztiPeSIZUceeJxn+GnqD5PbXtm5CeKZnvgM8RukS9WxjrKLGjNa+WZXkzcnIX6Uh5imj9l6jsgzLFtJ7MvBMt460S/KDNokujTxmHqO0Bef4ZjaKnFI6MvrC2X9EfnZRsjH/thJfSGe6YnPEL8ROvL/JOYfyi5WvjnV5M0uUr+oj9l6rsgzrHnZ3305WMZbJ/qLyR/ngk7sj3OFvvgM/fGCZKLuaFv2k4p2vKWonxh+I3Tkl0ms3rB87Cdzq8lbX8TuqI/Zep7IM6z52d99OVjGWyf668hP5oFO7CfzhL74DP3kygy3P0ffViiWuI0YBmKjXYrXQ/Llon5m+I3QUb0nMTuq9mblm19JXvI0+wbKQ0zTx2y9QOQZlu1f9uVgGW+d6F9EfoYy2DcsD/XFZ+hn30XxCG3LflLNjmOqt/UTw2+ETvxy3E9Uvan2ZuVbUE3euiJ2R33M1gtFnmFlW34T/ASxjLdO9JvJTxaCThyPFgp98Rn6yZ0Z7pDQl9ffY+0FcZuC3+iUz5WIew+oOi3Bf8T4F1bjP2l1vAgecntaDM9L+NvVRduT4TdIl6rtaTHJ4/LxGuwSoUuT8tL0KNBxXk0864lgHXLE2u+ItccR6zFHrCOOWHsdsQ47Yh11xPL0iX1OWCpOdqLXCUe9Fjhhpem4I9ZJRyzPtv24I5ZnLPRsjyOOWJ71+IQjlqdPeNreq20H5zJ6+sSoI1a3xglPvc6FMdN0n3b2bO/ZHg84YnmVMf2+0AnLU680eY0nvMvI+3c4t0yyz36hQ4l56wsSwjM98RniN0iXkvKSmF2wfDxPXip0aVJemnievFTIWSrkKKxDjlj7HbH2OGJ5lvGwI9aII9ZJRyxP2z/uiDVdj+WwnnDE8vSJfY5Yo45YnvHrhCOWp+09fdXT9t0avzx91dO/jjpiedajp395tiFP/zruiLXXEcuzjN06lvMso+d4olvrsRvHcun3hU5YaerWcY7nGHN6PPHsaEOeccJTLy//Sr8vcMJK0ylHLE/be44BrK/lc2OGnyZ1DqXEmtTKhPBMT3yG+I0wuS6rrIGps0XqDFqHa3ythPhRnlq7VGtu3Ccty/7uy8Ey3jrR35oVSrUNPqNX1G/Ss1frsj+GhL7c5oqe6VLnCNlGyMf+WLG+akX9kddkK/p/dE1W2aXMmqxnzEOsoTDZxp3uOS0Q5RkUfFzPqF8Juxd+V8HwG6Ejv0pi9ld2sfItqyZvNscKlIeYpo/ZernIM6zzsr/7crCMt070eyjuoAyOO8uFvvgM4879FHdUm6jq9yqePtvkDAo+bl8V/a+3aPsy/EboqD0nMX9XdlH+brzKT9n+Rf30OxHL/G9ZRE4srig5yL9sWk5HcgYFH7dbrNfi7Sj5TNF2a/iN0FGcSGJ+q+xi5Tuvkrzk09yXoTzENH3M1ueLPMNakf3dl4NlvHWifz31iyiD+0XLQ33xGfaLP9QzUXe+xzBNndkxNIv6ieE3Qid+Oe4nqt5UfLPynV9N3lARu6M+ZusVIs+wWtnffTlYxlsn+reQn6wAnfidmRVCX3yGfvKm7I/+Nvq2SZuUrUvwf7Y/TLZdCf639hN9Sf5LjH9lNf7fMP4LqvHfYvyrqvG/z/gvrMb/SuNfXY3/XuO/qBr//cZ/cTX+Nca/phr/tcZ/STX+zxv/2mr8txv/pdX432/8l1Xjf73xX16N/2bjv6Ia/9eM/8pq/G8w/quq8T9t/FdX40+M/1rgL7NGaPzXV+Ovmb7X4UOhk+FbX3UN0Cc5n4bFeSarQVgldU9iuqN+PC6+DuRhGfOwriuJ1S/yqtTJtSG/XIg/GNGF9UzTQ0DXSZnTtM8JK/1+nhNWmo476nW+E1aaHnbUa4UjVssRa6UjVp8j1gWOWKscsS7sUqzVjlgXOWJd7Ii1xhHrEkestU5YaXqZo16XOmGl6ZijXpc5Yl3uiOXVd6Tfr3DEutIR6ypHrDldimXj+w7XK+7ocL3ieR2uV2zscL1ie4frDbd1uN6wvsP1gg02Vr4YHibZp1oLKDFu35QQXgh6/mP4DdKlpLyx+c8aksfl432rS4QuTZHHPn6JkHOJkNMUeSOOWKcdsfY6Yh1xxDrsiLXPEWuPI9ZRR6z9jlgnuhTL01cPOmJ52V71i93iq57t8aQjVre2x1OOWJ5tqFttf8gRyzNOePa1njHa0/ae9upW//Icm3jWo6ftz4U48bgTVvq95Yh1gSPWyi7EStNLHfVa5Yjlafv5XarXakesPiesNHn6xHmOWBc6YnnWo6denr7acsTysleaHnXE8vRVr3r01CtN3WovT1+9yBHLs217xa80PeGI5Tn+OuCI5bmm4Dkm95wreK492vje1rFXQ16SfXa4hj+UEJ7pic8Qv0G6lJQXXcPH8pld1HnDEvJmFakH1MdsvVbkGZbtCfflYBlvnej/U2bYJtGlic8mrxX64jOzT3o2+d21ibqjbdlPKtqx8G+FGn4jdOSXSazesHy817NW6NIUeTwmLmpvVXfHHbFGHbEec8Ta74h1okuxDjtijThiHXTE2uOIdcwRy7MNedbjaUesvY5YJx2xPNu2p395tiHPuHou2P6oI5ZnjLZYaO+P4nimn+SUHXsjv9F1+L7Ltg7fd9nZ4fsum21cdBk8TLJP9S5KiTHaKxPCC0GPCQ2/QbqUlDc2JryC5HH5eEx4pdClKfL4/M+VQs6VQk5T5I04Yp12xNrriHXEEeuwI9Y+R6w9jljHHLGOO2J52r5bffWkI9Z+RyxP//KMOaOOWOeC7Y86YnmW8USXYnm27YOOWF62T7+vcMJKk6evdusYwBNrut+e7re/U/qO6X57ut+e7refnbbvVl895YjlaS/PmONp+0OOWJ5tyLPf7tYY3a3jCc8yeo59PevR0/bnQpx43Akr/d7niHWJI5bXOnn6fa0TVppe6oj1qBNW+v0CR6z5jljnOWJd6oSVpnPB9i1HrJWOWKscsTztdbkjlpeverahNHWr33drGZ/tsdBbr+m+4zu/70jTI456eY7lPO11kSPWhY5YKx2xPNujp726te94whFrjyPWAUcszz0dz3UAz/UJz/M5/I4Mng1Lsk91Z3IqpxUKpcGE8ExPfIb4DdKlpLwkZhcsn9lF3elcQt7MhPhRHmKaPmbrq0WeYdl9vH05WMZbJ/re3mc+m0SXJn5H5mqhLz4z+/SO/Tf5TKDhpalDO15Y1E8MvxE68sskVm+q/ah6M96myOP1p6L2VnV33BFr1BHrMUes/Y5YJ7oU67Aj1ogj1kFHrD2OWMccsfY6Ynm2x5OOWJ7+5WmvI45Ynv7l2YY846qnT3jG1W5t257t0bMNnXbE8myP54J/HXXE8hwD8DtYOF7md7BicwolB/mNblDwJdmn+j2aEmPo1yeEZ3riM8RvhMllrjJmV/ZXdrGyXyt0aYo8Xs9Tv6lyrZDTFHkjjlinHbH2OmIdccQ67Ii1zxFrjyPWMUes445YnrbvVl896Yi13xHL079GHLFGHbHOBdsfdcTyLOOJLsXybNsHHbG8bJ9+X+GElSZPX+3WMYAnVrf225629xwDeMZoz/FEt/rqdL999vq06TF5OazpMfnZ86/pceHZ869uHBemydNe3eqrpxyxPO3lGXM8bX/IEcuzDXn2Hd0ao7u1T/Mso+fY17MePW1/LsSJx52w0u99TlhpeqmjXpc4YaXpUUe9PPeHPO11kSPWfEes8xyxLnXCSpOnT1zgiOVpe6+27dkePdtQ+n2tE1aavNpjms4F/2o5Yq10xFrliOVpr8sdsbxioWeMTlO3+n23lvHZ3td66zU9NvnO7zvS9IijXp7jCU97eY7JL3TEWumI5dkePe3VrX3HE45YexyxDjhiee5bea4zea5/eZ4v5Hcw8Wxrkn32h8l+mcpphUJpZkJ4pic+Q/wG6VJSXhKzizonbWW/TujSpLw08buM1wk51wk501jTWGcLi8+iG36a+sNk/y/R3i4r2r4NvxE6iidJzC4q7lnZrxe6NEUej3euF3KuF3KaIu+wI9YJR6zHHLFGHbFOO2Ltd8Q63qV67XPE2uOI9bgj1kOOWE84Ynnaa8QRy7M9nnTE8vR7z1joWY8HHLE8Y46nTxx1xPK0/d4u1euYI5anT3iOTTz7bc967Nb45elfnu2xW2O0J5anfx10xDLb83qE4aepn/iSUGrudF5CeKYnPkP8BulSUl4Ss4uaw1rZbxC6NEUenzO4Qci5QchpirzjjlijjliPOWLtd8Q60aVYhx2xRhyxDjpi7XHEOuaI5dmGPOvxtCPWXkesk45Ynm3b07889fKsR0+9POOEp0941uNRRyzPeM932uDYiO+0KTs+Q36jGxR8SfbZHyaPUUqMl16dEJ7pic8QvxEml7nK+EzZX9nFyv4coUtT5PH5iOcIOc8Rcpoib8QR67Qj1l5HrCOOWIcdsfY5Yu1xxDrmiHXcEcvT9t3qqycdsfY7Ynn6l6denvXoqZdnXPX0Cc96POqI5Wn7E12K5RknDjpiedk+/b7CCStNnr7areMJT6zpMcD0GGAq4+r0GGB6DDA9BpgeA7TD8rRXt/rqKUcsT3t1a5w45Ijl2Ya6te/o1rFvt/qX5zjasx49bX8uxInHnbDS732OWJc4Ynmt36ff1zphpemljliPOmGl3y9wxJrfpXp51aO3Xuc5YaXJ0yc867HliLXSEWuVI5anvS53xLrUEatbfXW6PZ6dMnarf033Q9N+r/R6xFEvzzGmZz1e5Ih1oSPWSkcsz7btaa9ubY9POGLtccQ64IjluW/luT7huW7ieZ7pRPZpZ+P6IC/JPu1cILa3VE4rFEr1hPBMT3yG+A3SpaS8sXOB80kel8/sYmU/T+jSpLw08R0H5wk55wk5ZwpL1Vf6rxUKpR39QceeVjH+fWbP8+Eh+xKeXyhRt4uL+pLhN0iXqr60guRx+diXWkKXpsiL1VFNPOvJwUrTiBNWu7o/W3qladQJK/0+6ISVJs8y7nHEOuqIdcIR66Ajlqe9TjpivcwR65gj1n5HLE/bH3bE2ueI5VnGxx2xHnLEsrmB9V84dkqyTzUuKNGXzkoIz/TEZ4jfCJP7yCp9txpTYfnMLh2OTQYT4kd5iGn6qLEC97srs7/7crCMt070P5C9/KPqmsecLaEvPjP79H7r3ysz3CGh7xWEW3Ysi/xGp+Ss7lDOaiGnX/C17MtXRz72Cx968td+/52j73j7j8/5+Kw3zbxs4BWvfvU/LvvS8p96+tU/36Hf3GP8rWr884x/ZTX+ucZ/QTX+Oca/qhr/euO/qBr/OuO/pBJ/Mlb3a+FpqxDveNkvrSQ7rOjsnbvkaePHNaOewvyh3/hvrMZ/g/E/txr/c4z/ecBfwn4t439+Nf6x8t9UiT/5tPF/FyqVfV740f8y459/6XX1//Q/nz504mtr3/Dfb3vyt3/5ph/98OUv+N7tn/vxL2003hdUkh1mGf93C9lt9B7z+ReOPSkle8j415WWHZ5vvC9SvC/49dquR3/1G4dm3vaq95z4+F9sOjZr+e4PrPgPb9/11OtXfOGB1xjvzYr3z3Z981Pvbb7h9Mkn3/+yG9fM2/2uN3zsy3/3hx/6leZXPvvuIx+7Ie2/3k79V5Kxpp8z4Lv5cZpSPhun7CCaNNWJ/vVD43y/mMkbJJ4QJo+reuB5ibpYgmWwpMZVht8Ik8teZVzVQ/K4fLwmUhe6NCkvTTxGrgs5dSFHYT3hiLXHEeuYI9Z+R6wRR6x9jliHHbE8y3jQEatb/WuvI9ZxR6yTjlie/uVpryOOWJ7+5dmGRh2xPH3CM67yPhvm8TigF56X6Jd7io4DDL8RJvfLVcYBvSQvzy4zv/Vvbvb92Oje/XtHT204tPvhm3cfHjm2fxhHEzhCYCkJoeKzJEwsPebV6FmN6G6lvzcIviCw03yruRn0vBUKpSvNK64UmZZ3FWDzyAp/bQBrk1NN6G86p593LhrHZTrWB+vjKsrDndurQTbXa6+QY/r3CPo+wuoVfGb7dvLO5Zao6sl4myKP22LRkX+VCNHMvmcRYv3wnmOPbDj0SKBUp79vyVFxMdFtyFEtEbgJ/ePni+mZMgVixyaBRVwmTdzJYN4OkjPdyUx3MmNpupMR+k91J1MTfLzMw8s/aWrZl1f+/Ds/te7JD1/1uW8OvHbj7u8/ee0PfuSeL55e/I7Vf/PYu5e/a24qa37jGdIhoS/7rJWtt0356kS/CZa0Fmfy0paWVaW1tBcd279v2/Do0b3Dx4e/FbNHAqV2zWMT/b1Z8KlkLqGaq5m3YgAqHPAMvxF0NbdCoTQW8NRsA8tXLeCxQ3BD9g54m+nvKgGv4jnA0gGPu2kMeFibnFTAM53LBjysDw542FA54ClPDEL/HkHfS1ixYNVO3vTQ45k0PfSAND30EPpP9dCD+XrD5JZrvHWivTnr4jtssWEO8LGO0332M2m6z4Y03WcL/ae6z1aRJCGMqVy6QNnRydBfjd78+tFFB274Yv8fP3n125ad9+mvvuO9f/tPp4Zv/Ie//fz7Vn61w6ixs8NotyPlewlNxvhuDPxuPVPe+QLjrRP9w41xvj0wGVud5WcRZefu/Xsf3j06fMvBI8eGjw0/vOnQ6PDIuoMP33J8+OBo6anZbfT37YJPpYEwXmA+yImFTBOvzS3I/rbDj0zDBjL6RzOjpAbbmjVk5XSmzyDxhzC5K1pIurdCoVS4KzL8BulStStaSPK4fNW6InZntAqi4jMOG5h3JrqixfS8FQql0l1RH+VhV4S1yUl1RaZz2a4I64O7okWQx10R1utCIcf07xH0iwhroeDjrihPXk3w8VAioee4ljVfyOa1rO+F6HD3onw74BFxxrS/1eCd7W35aerQJ+8pGk0MvxEm132VaLKY5HH5qkUT9BSUspNQjQZpMe0EzZCe/+baqws+ToZTJ53fBJ3wa6nTx3INkd7K2/EZD5KQ3+iUnJkdypkp5JgnzwC+XZTXH8lrAOYQ5c0CPt63akIe/wj4bMCcSXlzIphzBWZadzcOjOOl/9TLG+jp1gNZHeCLpciLf/cSbZruzz7rRPsu8Ku3kF9hK2a/WtRG75hfLQr5cmZ2KGemkMO9VZrYdxaLslreEuDjel4Keew7y0S5LG95BFO9ZJ3Wz5UDE+m4/tPU4csdO4tG/Fb2vUG6VI34LZLH5eMJ26pq8nYkxI/yELOVfTdbrxZ5hnVx9ndfDpbx1on+/Vl74xeF0sQvTa0W+uIzPDz+3sZE3VtAl+R8Gi4/y3uJD+tHvYC/A/T57cbEsmCcqoXJcc0mxByrng+7gr9LsQr5W6SXaidVy79ClHEoTLbNAHzP8+9WRM5ApDzI51mfAyQH4yzW54epPldBHsfo9PvK7Hud6C+E+vwTqk/VFpWduV+yvBCK2XlIyJlqO3P/stpRDmLxyyNrCIvtbPVkdr4Y8tYQH778hnQ461oDzy8RshW+YbTzwc82dNnyfNBk1Ym+AT741xV9cDXlYV/BP5xieqAdkH5l0OXqy6HPK9ffw6zznkUTMY0fbYV1wfHX6L8EmLsWaT2xXOrCEqNX/rBGlEvZlC/tVbLRzhtyZPeFuC/Wif5rwqbcLyC/akfzSJeL2+jO7Rv5jW5Q8HUaR5TO7drkv5Vsk/YCLvvu/541zpdkndJQaO8jqDPPI8raeaaQM9V25jnCJY5yEIv7hUsJi+1s9WR2xsskLyW+yyAP6bBfwJeXLxOyFX7RfmHugC5bng+arDrRfwx8cAH5oOpXlA9eQnloU+4X2sVDvjDQ9O4L8f62TvTLs7KofkG1V4y13C8Y/QrA5H5hrShXrF9QvrhWlEvZlC+FPV9goZ25X1A2xfKfT+U3+ouETVW/YPxqPeLFlIfrEasobwnktShvKeStpjxcj+C1keWQx/EOL8NAH+H1iBmR8vQDBq/34brdYsqbBXlLKK8JeUspD9ftllEeHhNZTnlzIe88KKut2/Hm6POz5x3u28mjK7F10STnM4Ri/QEfrUI5Cx3lINatJGeRoxzecUA5S4Qcq6+lxNcKhVLhfVbDb4TJbbfKOtlSksflq7YzgtGGrYKo+CwJE0uPeVO5z2pyl0GesgSvnGOZluXwoS2CeNYj6JcS1lLBZ7rXIvyIgXzsMQk9z9uPNIw60d8NvdX91FsrWWgP7jFN97wTE6yD0d8LOmxdpDHrOeVakoO5b2DcHvcNaMwgMFW5llG5WIelpIPRPyBGAjWiYX3Us/RvHBkty9FP1RPrir1cXnm4nox+OFJPi4UO2CY3tNGBaZbl6LBX6CCi282HDp/KolugxIfDOTqx5XnfdrHAyUuGn3qheaQ6ZbBE8PH7fT1Cp7TkVnNjryzuHx4dzil7j9BNyewJOvF41PjS1B866tMK96GG3wja81qhUEo4ypk8Lh8fB18qdGmKPKxf9qOYnLRObY0lq9Pto4eO5lVp0c41EWqFkN/JJmFiVSCPVXXFe41LH27iIdzVQM/DyGuAD4MaJy43licNLg+WOPiENuWDT+ieV1MeNpVrKA9d6VrKw4B/HeXh1O16ysOpm935prbMcAqGeWmKTdubgv/8iJzZHcqZLeSo7Uf224rb04VD1HfK/d98SM2m5TOztce023ojTetjd/RXfEPnhqJ2NXyvO/pnkDwuH9u1X+jSpLw0PQJ0nFcTz3oiWKOOWKccsUYcsfY5Yu1xxPIso2c9epbxMUcszzIedcQ65oh1xBFrvyPWSUesw45Ynj7h2R4925CnT3ja66Aj1glHLE/bH3DE8rT9cUcsT3t5xsK9jlie9urWWOhpL8+Ycy6MmTx9wrPf9rJ9+n3QCStNnn7vaftDjliefu9ZRs844TkG8LTX445Yds+2rTHhOgT/Rqqa88+IyEH+GQWw1PpBrIxqHcfxJkJT8Xqi25CjWiJwE/rHz6+nZzVBi9j4qvoUvr1yTUJ4IehlpVb2/Uy/vWJlXyV0aYo8/kn2VULOKiGnKfJGHbGOOmIdc8Q64oi13xHrpCPWYUcsT58YccTa44jl6ROe9jroiOVprwOOWJ72OuWI5emr+xyxzoV6PO6I5Wkvz35oryOWp726tR/ytJdnvPf0L8+Y49kePX3Cc8zkZfv0+6ATVpo8/d7T9occsTz93rOMnnGiW8dfjzti8TJJC7B5maQl5LQictQb9zEsNR+OlXGKl0la2d9XE92GHNUSgZvQP35+NT2rCVrGTr/b0szLslM5tixS8VSRfLmET2nhchAfNy67Uof8/RE5jQ7lNArKuaJDOVcIOYOCL8n5NDn8LLayfwXJOd9Rjrqow+yGS2HsB7FfmlZykH9FDhbeRvkg0Cwn+lb2d11gpmkX5CP967M2lC6LXpcdzVSX9+BLpG+YGdcVeVFXvrDk/fAS6Y9nmMrOVu/KD/g03/lCrsLktlW27hpChxgW1tcsom9lf/fl0Bse191boe74ZVXjz/OfFTk6oP/gJUx5/vPzFfznF2bGdWX/mUWyjf7N4D+/SP6DNo75zyzKUxeIqZjJJ3XLxszZQj8lJ3YZGPtR2cvAZgk51pei/5XoS0ufZJ9NeXhN5xzKw5PscynvWsjjPug6yOMXaK+HPLQHpxr9jTZKff854PtMF0gm1iGfjke/N1tY3eM4BTEwz3TlZ1z3yD8nBwtfMVNtuU70v5kVPm2PfzBzYrnwwj+zSYe+dm2R/h3xG6RLSXkJxyuTx+Xj7SzVJ6l4cyF8xzyUEzv9j3mHHbFOOGI95og16oh12hFrvyPW8S7Va58j1h5HrMcdsR5yxHrCEcvTXiOOWJ7t8aQjlqffe8ZCz3o84IjlWY+e8cvTXsccsfY6Ynnay7MNeY4nPO11xBFrOq6evbjqZfv0+6ATVpo8/d7T9occsTz93rOMnnHioCNWt45XH3bE4q0xnKPz2oOaDy+PyEH+5Tl86XdccyjyFnsLnpeY19cSwjN98Bnie73F3iJ5efVT9lgs7w1U3SJNvxe5tEOtfcR8Q5XRcevSVLyG6LbmqNYjcBP6x8+voWd5W5eGbc0Il554+wjNGDOt2j6aG5Ezq0M5swrKaXQop1FQzuwO5cwuKGdRh3IWCTl8x2KacGtky6CWiVsjuFzLN20Z/Q/CUuz2wYllxO2FGVR+fKGD71fE34jh0NuE5yVCYeELRAy/ESb7ZJXQ2yR5XD4MS8XvCeQWgFZBVHyWhMlRIwHN8Blvps8gvir3BM6GPGUJvicQyzQ7hw9tEcSzHkHfJKym4DPdaxF+xEA+9piEnufdE2gYdaIfzlqVuidQyUJ78CEa0z3v7jfWwej3gg58/1wTeFS5uDXPpr/Rt+7Pkf9yiDIHBrX8IORz+TCq5d3B1yQdjP4I2IDvFJwj+EPOM+4Z5lDenAgt/w6j+o089EW+f9AiTF7Zuf6N/mSk/htCh9ive7IOTNOXo8PjQofO7h/kKMe1xDXREDh5yayReqx5L1uHWwfLsb+VB3R6/2B/jsyeoBPfEW18IYz3zRX7ysJ9s+E3gva8ViiUEo6eJo/Lx9OiptClKfLyWmk7OR3eP5jXaatgwfyBeBPxLE3qt46npxr5cs6FqQZjqSlEmsyBObD/DAR2/tmCuaCHwtxOOqhVAHUyyejVytVyUUazJa5SnF9ANtqSO8JWSV1XCfoW0PApRNRvVUldt55hXecKXc/0CTE+zYUnxPg01zWQxz+HgCfEFlAenhCbRXl4Qox/0u8GyDuf8p4DeTz9vxHympT3XMjD+0k5cT+BdZK22blLx3GZDr/nxRtszxtIxzmibLh80Q/YKKcVCqWLjb+nGv8e469V47/cyslD0zQZdi88L+H/D6FNLKlhleE3SJeS8saGVb0kj8vHw6o+oUuT8tL0UqDjPDXx6Ilg7XHEOuaItdcR67gj1klHrMOOWJ72OuKI5elfI45Yo45Ynj6x3wnL+L30OuGI5ekTjzliefrEUUcsz7jq2ba9fDVN3RpXPX3CM355tiFPn/C010FHLE977XPE8vRVT72m++2zZy/P8apnjPYcA5xyxPKMX93qE55xolv7Ic85jGcZX+aINR1Xnx3xy6sekzB5za1b7NWtMadbx4UHHLE826NnX+tZj904Xk3C5DXsbvEvz7h6yBHLM0506zqTp16etu/WOOE5Jj8X5rWe/fbpLtXLc17rWY+e7dFzDuO57uuJ5ekT3IaS7G/cJ90F318M+UhvNxOpfewSe7cPDwJPAAzErrgP/XBCeCFMHGsEwh/MkZemhsirF9DlP7/w/n1/2fra+Qnxmy78DO2YV9dqT9tsVfH3OPcMgoxAsi0P9+d7KQ/tYjqkn/+6dKJ+fRX1K2I/xG8K+vuArkxdzAkTfQH9Xb09yLddtSCPz26tEjog/VKiX5393ZdDb3h1on9b1l7xEPkQ0aTfGznyUD98xrEG+VfnYOXdgnZBju7vAN35nN7FQj91xNXo1wj6i4HG9FG2WRO0bCwP1ueDVB6jf7coj2p/5lP9gGN5JdrOYCqnf9m4HLYbtp92NkoT2/QSQY+2Mps0iR7ta3n46tbFlIdtp0U6qHOF+HYtn+9StzfizX2xWxq7qV3/t4LtelmOPNQv1q6Rv0y7TtMDObo/VbJdLxP6dVO7/lDBdm0+Nd2u27drddNo0XaNt7byja6XQp7h4hnzi7LvdaL/eMRnLxO6os3ZvlcK+suAhm/GvBTyrqQ85LuY8q6EvEtIh6uEHVCv4eyzTvR/BXZYDj5oZQmkV4e+vk75+lVAwL6ON2/XBD3XxTWCHs9hm02aRM/1gn8jFtqUz+ObjfoEPeLVif6LIvabfhj7riLdLymp+yKhu7rpE9vU3IFnvpsPYtzgm3kvichU8Xlt9ndfDr3h1Yn+n4W9ODZiO0A79RKm0X8jEg9MLpZL3QwRs/1aUS5l00spD3U3X1Dt0+g6bJ8vUu0Ty8/tM1bWNLFtVGxF37X6b4bJ8XAN5WHbWEtyVB9Z1P/Rh/6toXHz+puV2Xf2r8GhZz6Vf6l2g+MUtqHyR/QT7m/Qv9ZSHvK1KA9tymNF1e8iPc8BjX4+2CHW3zj581zlz+iz7M8x/0xT2b7fbNIMk/sDjofKZ7Guub8xG/UFXQeGVyf6FVAH3N+0gP9S0n11Sd2rtLfP0ruhq4CO+5vVEZnMi/Eir78xPJ4PXCLslZAMbAdoJ+5vjP6ySDxQc6ZYf9NuzmT6KJuuoTzUvZV9V+3T6Dpsn/PO9tyH+xuMhzwvakHexSRHrRMU9X/0oQ9Tf8PzJsRCv4j5I7Ybqyf2x++O+GOsnaWJba78F/2Kf60A/ZHnPKh7K/s+hXPxncofsfzsj7GypqlsW7X6bIbJvhrzR+6f1XwbYwj7I/oRzrd/O/NHW/fH9ylL2LX0u7Q1ysN54K2Uh3M4rB9ONfoby5PW+4O01hMElnrnkH8ZAfdurqY8XD+5hvJwzf1aysP7Bq6jvCbkXU95+F7/DZQX+6UDvNSlRD0XvorD8L1+6WA+yePyWTssd00W/94EWgVR8VkSJntfAprhM/bITfT3BsEXBHaabzW3kJ63QqFUuoXyb57gKgvWJifVCk3ntOXcWaIVYn1wK8SbFq4G2Vyv84UcvDWC6RcQ1nzBZ7ZvJ68m+DjCKr4kTOxZuC744qE09YfJdinhH4XvHjX8Ruioxxhr2eoeT/V7MVb2hUKXZtBtw75jHspZKOQorD7C6iuoc4cX9vDf83PU6BH8gXi5qRY5wBC7nETdkoZubnh8S9orxWRLNSPUZ1A8Y7ev2MEU7tAMvxEmu0QVt1cXXajDQSoUGm9T5OX9hFI7OY6umqZNOWqonjIQViKeYZ5yVTwPUsRV1VkUdtXXRdZREsGfYs6n+d0dQFcLk8vHut5Juioa1NXo3wi6biVdcbxq+gwSfwiTm9RdpHsrFEqFm5ThN0iXqk3qLpLH5as2RmTvQ6sgahC0QeS1aznr6e8qY8SN9LwVCqVN5hWbRKblbQbshPK2QB7WJic1RjSdy44RsT42Ux62nC0gm+v1LiHH9O8R9BsI6y7BZ7ZvJ68m+BLCSOg5rv7cIWTzKdB3Q3S4mzpdlHVHmJhUhDhP6Mn2DmFyNKnok/cWjSaG3wiT675KNNlI8rh81aIJegpKuYdQjQZpMd0DmiE9/821t0LwcTKcOun8B5kXpd7369n3oTDZewdIb9QhFpebgt/olJyZHcqZKeSYJ2M97KK8uigrn0lO0w7Kw8h+H+XdIsplebdGMG+LYN4u8lL97mpOpMNolOR8pqkmnrFN7xK6Wt1hBODzq6q1bYzIQX6jGxR8nZZH6azGTnh1/p8OjfNgb4pRG/24lX2vE/3li8b5/pzaG46vTUdlZ26LZe08IORMtZ25TW12lINYO4A+/beVsNjOrey72RlHO1uJbxvkIR2OCPAOzW1CtsI3jHY++DdDumx5Pmiy6kQ/F3zw8xV9cDPl4QiS+0PTA+2A9K2gy9WXQ59Xrn+MzO3uEvxKd76Td3NE9zSxLyI/j1ynwudRZjv/+Tr5zxbIU/6zKvteJ/p/WTjO9y/kPzhCm4ryx9o1juTse6xdq/jBfNhG5xXQYavQuSn4jW5Q8HXqG0rndr7RaI7zYOzK8w0+o2v0fw2+MZhhDoXJ8dN0VHbmMWBZO88Ucqbazjy+2+4oB7G4f9tBWGxnqyez892Qt4P4dkIe0mH/hvJ3CtkKv2j/dl5Tly3PB01Wneg/CD7YIh9E/pgPbqc8tCmvlmwXdlB1kJDefTn026lcRn9xVhZ1pkm1V7wnnWO50a8FTD5DYnKxXGq2HPPFu0W5lE3Zr5VstPOGHNl9QZc/z1eujtjU+HtzysM2NfrrIjZVNorZVLWxHaJcQ6LMOwlrg8BCOxexKZZ/A5Xf6J8vbKrGLdzXonweQ6pxGNKvInrVxtTYhNvYuojusVVJXFt4MeXh2sImysM9C56LrYe8LZSHawu8znEr5HH/dxvkbaO82yEPfd/WFupU1k3Z8w73FibtIyGWsm+S8xlCsf6U35dHOVOxbqLkbHCUg1jmM2rOxr+fUnbdAPljc8N6h3LqQg5jWUxOE8ZDPrtr9A9Cu16xbCLmJqEfvue/IVJWbs+IZXVm7QNj31TsvRl+g3QpKS+JxVwsH29nbxG6NEVeXp2iHPVziWX1cvzVV1NxGdFtyFEtEbgJ/ePny+iZ2lpG7DPV9M6mnKEO5QwJOVO91DlEcvKmO6dputNuSfmC7DsvKf86THeeiEx38pod+lrsyIXJyzvG0Juj3/dB6OXfEewVZb4govMmkMFy07QrR4fX0FClYiiWQxVeCsUhHV9VgqGMN4dxiFMTz9jn7hRyGCuvmzS78pDuh0t2k+jbGyJl3UR52DWxHZQcFd6VHWJymh3KaQo5sW6/aixROvNUIk0YS95MsWQz5KkhDde/0b8dYslbIrGEj4LxUIPja14/mRdL8vT7uUgsUUPDjRGdcQrIctO0K0eHd1Is4a2gViiWVCzhrQnUn396r2xfiPxnqi/knyab6m0/tdzP8UVtR22JyFFbau3a4/uaWqZqj9yvIf0BaI/vp/bosVWX1yZCKLbdtUnIyYtBaYr1QUb/u5E+qN3QPzZVy9MPD1Yh/Rwocx5WEM+MHvs/Xr7YQrSbI7SsN/r22uy7xSLeUm6FQmmb+fM2kclbGqiT5eEyIurHiY8ooc5pfV9Ar5cHgaWmm9tzMFWbv59orcw9Ape3i7Ads73uy9GB6zhNtjTL7f0zzXH8j1I/g8vlJep2u9qSssT1x7bjpOrP9Errb0vF+rub8tSVmDyf4vr4u7NkL57zYzob9uLl53b2sjwrb4/g40OoJq85exzvi4RXB1ns/3wdJG7PMH+aeCxm9F+GvuLNmS2HwuT+dTHJQ2w1PuZ+bnGOXqqcGCe3kt5GO5jZrT9M9qcSvrrO6ngH6YTYOytiJ4QXgl52NPxBIc/0aoi8Ile4Hvzn3dfu7jv9wYT4TRd+xvPgewT9YkFvtroX+EvY6rsGQUYg2ZaH/riT8nDNwHRQV7jeU1G/IvZD/KagfwnQlamLppBzpyPW5opYdrWs2k7lmJsm7odU35/W4+VZ21ZxiH+KvWwcQv4ycYjHuka7luJQxfHjdWocyHFoR0XsonGIj1Grem2IvCJx6NFvrjv8gW0fOS8Jk+NtTTwrso2vruPosJ1fpeIQxxr0xx2Uh3HIdFBxqGKfclUR+yF+U9BzHCpaF00h505HrM0VsSwOqTG4ikM8vtsmyoNxiOcY18GY7crZE7GKjLvTxK8lbI7kbRWYqeybZ48/x3hlr17ieJfnaOpYkf2Nz9DXkYfXHoz+JrDNc0k/nP9jOVE/NVbHdckXzM6n2xahKzq+5y1Z9Eleu2pXL9xX3Ep9RcWXv+S6p2GlW7b2kn62ZXvb8Oj2R3cfHX54+/BDR4dHcUalekFeycRXBPOSacJYt9Pf/OIVr2ZuFTjtZKrV9QXwneWqnReOSguEzmdTzsIO5SwUclRUSnI+TQ4/i630LiQ5uCqHK707Zo/zoE/gSi/y8ozQ6P9uwTjfvZERZMzOS8JEXcraecm0nCmVs7RDOUuFnKluB3x5O0Z9tlvZHSnk33iG5bRr1yOztcyi7drofwba9fEC7TpWxtihtNhJj81tsPggfNHdozsLyIntHt1ZUE6R8sTknM3yGJbadcQ62B7RawthbW2DtY2w1I6G8kHWuezqBPLXI3K2dChnS0E5Z6o8mzqUs6mgnCUdylki5KgZRqf9h9K5Xbz9aYq36uVW5OUZnNH/IMTbn6V4i6tbz3Y7b3OUg1i8ypZXn79M9aleponVp9GPQH3+SoH6VLbZGikP9y2qrtXLhonAip0mYTsgvepTpnBFdU4RP0D8BulSUt7YgfLYC4NpwoPbdv9Ztgqwbnjk6mtuXP+tJYBTh0fzVldno1DQn+kD/c18qW58wrkuZKSJ/Wcb0XG923PGL6JTO9p2+SrW3Z1TzhCKxTrkz7NZ3gkg+84rTb+TKVz0BJB6iS02HuB2x3Q1UYaBHL7nB60flnlDpMxG/4eRMm9pU2Ye06mxI8cmpquJMvQHfVqNTyliHv/YWVl/Qv4z1XcuIzl5fdpHqE9Tp/ow1tyUfecV+AehT/so9WlqLDjV5c87zYvluglo8uY2CjNNfHrD6D/ts/soV5R5B6VH6P/tH6+gOlVlj9Wp0W+DOv3rAnUaax/qFHosFmyM0Ku5olpjio0brX5wR7l4/SSfKeKjiN8gXUr6w9h4Q71EjuWrOt4w3E9DgVD/duMN5ouNN5g2r+3xGGArPW833lA65dF2Mt7YllPOEIr1D8hvdOafFS8bbZkuG0EP0wV9Pu9NlZ4wuS0qejXGQHyOw3jqTtmGxxJG/3UYS7wlcipueY5+IRSrC+Q/U33VcpIzFeveaYpddHcNfMc8k5MXk5uCP7buva1DOduEnKK+/rzse7sx0cCcibjt+k+e54+1Ieg/Z2WYsTdPy+6NcfnL7r3E2nXRdqrGA/yjRGXfSkP+vHGcslGa8t6WvCyzf4dvS25Rp1es/XU45ttSpI0j/qCQZ3o1RF6RU2FfaNz03//+1978xwnxmy78rMjakfphrM7GX2GjOhWGJ1bSpNbL1Kkw00GdCqs4XttYxH6I3xT09wNdmbpQWBsqYtlJLjXHPlsxKW/txeqbxw7XZG2/6BvA6i3P2BujHNO4jBxz0tQKOv07JcMz+88QsvgkrNE+F8r9tmUTdc3bI6znlGcz6ckYebZhGertsO8KE3XbUkA3tR6EGHn7limG2kNkvy37RuVGoY+Ss7pDOauFnFifxJ8mh5/F9iNXk5y8cdNdNG6K7Xel31+Qfef9rqfnj/NtonET8vOeq7r9QZ0vYNvnvbHN8cTot0O74je2eX0Yyxnzs7qQm6a8daZ7aTwzFetMXKZ6mBxb03RHTpkwTiMm22CroN8RoVf7TeiTHLPVRYSMlbe2zbJ3tJHN69bq8kjeG+gHf99Dbaid7fPeYvuXueOYwyUx78rBPD5nHPPRSLvkHwMtewsI8vNaHvKZz/aTniXbQOHLqAy/ESaXucpanlqbUHZRF+vx3jDmFTkjEvsh396CejleRmX5i4huQ45qicBN6B8/X0TP1HIgYqeyXp41TXNz1Ps6wr8FMGriGbs58hudktPfoZx+ISeGdZ3AMvpbBX2/oHd0Dft7OdHtiKjGuO1cYzk9y3MNSzWSmX7n+2K4aljHIYFRxNz4jKu6R8hScq7vUM71Qg6fcvlpGqGg/BLR8jV8zadhIHbFVfLXFI38eSeTUS/182BFVlzW/vYT/8/zVz26OSF+04WfsY+oGez1gr7Dla/vVysueGdUmtSqnFpxMR3UisumivoVsR/iqxVyXnEpu3qh7g4ri2UrLnitbawtn6mYMRVyYlixu7bMNn1B71JxTDL6X4CZG/+qp7J3EM96wuR4xFdWI1Zfju5KtuGnqSn4jW4KY2Jv2ZjYCJPLXGU0rNqHsgvfT4e8fPo4TXwvR9ndiG7HQt/k67ItX32aHH7GcrCt9pGcqXpDp4ifV5WDWHzyl1ct1WdROeq00FTsPllSu0HsF+q9anUXFtsfVzE2UR6Ow9fBd041+pvHAT9f4N4gdRqQ+6Wyb7ioU1Tt7sL7yBwtM+8uvLx74T4HqzQfnZNfRt4FVauGWMa8VcNPnIFVw2eTj1fx409U9GMee6ldEPWWgJVDxevNlKfuzeK4iPgqlr0Y6Dieqh0MXo29Veiuxk09BeTExk09BeXM71DOfCFnKvstlNkuTn2d4hTvoDLv7uyTV4X/FOLUv1CcwhiEOvLfRcb1Jq/oHbpj449MP7Ujo3aNd0d0RhmB5YTJsXXsLdpMhw7nsTK2cp+r7rbtUG7hVXDDb5AuJeWNjfvb7cDjkmLxHzDOO9eYECo+S8LkiJ+AZvisl+hup783CL4gsNP8Dm9d3sq9IqayvSLfCINJ9Xx4LqHMz6FjffBNM9grbgfZXK+bhBzTv0fQ87symwSf2b6dPLXqwDNuxZf+fbPg8ZxRsR09sKbgvNu8ohHH8Buho3YyFnHU2Sd15kK1nbz3LjEmJJSHctRZfYV1ixNWmu6bxprGmsaaxjoLWEVmnthP8fkZjIP8vk/ZjXDkj224r+5QzmohZ1DwVe2TmxGd1eoB263smUP1nmy7s4D3zNUy8+5K2J198orVB2DmuWvuRJ3VzDNNapaP9WAYzNsPOlheifHFUDoG7ofVH7Yrjw9i45D0u50b5PPcWHblC0XraJjqSJ1djJ3XNPpfhjp6NPuuzoUVOZek5HE77Muh5/OaRn8AVgds10/pd2eOvLxV3ZU58o6AvF00J0K/w535ECr73Tzldxhn2O/UCpeKZ7F4gW2LfRF9mHd61VnA2Bld4+8Lug4Mr070j4s6L+rnXK9G/4qC9Wq2nIp6RVtxvapddPWuY8wP1I6/WoFcT1jrBZY6k1u0LRset63XRurV+LFeUU+uV6N/smC94ru5IfjWK9qK61WNP9R5zJgfYP9gNlE7BrdTHsZElqPiN/pBkTrH+smL328Sdc5jR44L7fqXECauLM7Lvmcri9tHDx0dzpYWA6XYUmD6d97VaXMFfyDehJ7NpTwVPmML6iY776AMh0+jf6sweSz8pqnIEW2s7qlYnDZ8ryPa7cIaLxXFmllsKnMWXDVNt+eokQj+QFiJeBaCPjat9qmLRDdlKnX2C+kNj89+/b+RnqPdHiZHPjVyV3uXqvw8w0W+O3PkYI+GbrSSymr0v16wR3Oa+cgeDW1UZGU09laxeuNHrZY2iR5tr3q0vDedUI4axXCoQ141s2p3uymXN2Yf5V/qzn11ViA2C8bzGyH4zoKxPOwLsbpNE9tG3YCD9c2jVjzXwStP2Jb4Zgo16ynqC7jawSsh6pxjbAakbp9AH+ZZudH/DxEDDHNzm7IVmQGqN4jVbRD8Nizy4XkJww5E16E/zvJclUlT2bbK8Qf9jM+iY1/AqzjqPAKe8VCxoEg9xlb+lE/zGbbPg5/l3WyYt4LyghzMv4/4brt2WaSvjt22jP7JZ9rO1A49n2lTNzapc2t8/gjPZvIZkrzfG+PEY0C0Q9Fzm7G4o2Kf8nn0pY+Qz+O04kqSqYbw+Ix9HvmNTsnp71BOv5ATw7pSYBm9GkNP8Wt5puIqotsRUY1xE/rHz1fRs5qgxaSqqSdH7xCKVZNalGIsPFqmDtOoTaarCKvsJhPy85TH9GplU8V+Ib9E+HpD7LUCw674+scbEsILQc/s845Wol7qVZQir+D9l3dunfWRD9w49gpZ0SOgRq+GdFcJ+g6PRv+IGibxa3ZqU6zsK3gVXx36kSL2Q/ymoOdX8Moex8W87RWx7BU8XBjlDeOpjjE8pV+dtWUcZp1pXcyea7tAFxuCXCl0icVUHCryD5Sg7rEDAkW631sKlism5+oO5Vwt5Ez1QYSrSQ7297j5fNO8cR5sa3lH0x/IPnmj72vzxvm+O/uult3yrhVIgl5J59jBG5FMszFHv/Xgn3w0ncuM5VQ63wYyAmGkiY+mG/0dNA6oGN/l0XSejkzBK6mFV//P1iup5Y6m85Y4WgVR8VkSJpYe89ot8vPLzFWOplccsezgiSgmNRHliS/+aDDWJic1ScURTpmj6Vgf/EPwuHd2D8jmer1TyDH9ewT9RsJSL8Oa7dvJUyMuvnxD8aV/v0jweL5UHHuBpSqWOube4YJN4Z+T4etWK7aTsYgTW2hNE5ddXf2qjovxzLXqVaLp922OWHc7Ym1ywkrTfdNY01jTWC5YRV5Mxv6ANzDVEaGE8lC/2IwS+WOLu1d0KOcKIWdQ8FXt+5oRndUmHNut7GUjyM8bCXnHi39inpaZdwScZ3hG/79ghvdT8ybqrGZ4aVKzaawHw2DeDjcbB9VmI9qVNxvVhgjSP5h9xo67KV8oWkdvpzrCQwyqjh7MPvm82B9DHb2TZuG42lHkpwmVPG6HRY+AG/27YRYeOwJ+a468vFWJjTnyfhXknYEj4HOU32GcKXKkVMWzWLxQ59n4woj0Ox8pRRvzuLTs8XB1pFSdT+Qjpf9V+AP3RewbefopuzkfKeVzYSZmdvaJ/JiMHtPsHCzDSZ/hIkeRI6Xq7BuHiN8XJo9VWZqmj5R+xx0pvTVHjUTwB8JKxLMQ2h8p5V4lZmJlqqovI/y5cOlYhFUjrNhIQO05xI7UqlHPrTly1EsSacq7quoTBXs0p5GU7NHQRtyjFV05Mfp2x4K4qcWOdKmZTdFmWPRIKY/U2h2lKXuEj/2r6BG+2Kja6Qjf4Nk+wsezodgRPuyO+Acq1CiqqC/g7OkncvbOEBd9IW8fHGMA+jAfyzP6/yNigGHe2aZsReIdDnP4OjQcYnC8U/v0yh+NrkN/nKn8EctfZJYXu9K5XVvl+IN+xtfBYV/Aw8h2fhM7jod7lzfRjA/lrCGZZa9UXiP0V3L6O5TTL+TEsNYIrFg7n+LjeKbiMqLbEVGNcRP6x8+X0bOaoMWkqilP7xCKVZNyZyWnyBGtmJyegnIu61DOZULOpCMu2dC3w230V6kFKau7Djd6X5UQXgh6NmX4g0Ie3yzHIa8V4ulLzR1P7f/qL/xSLOzGhoTqt30uE/RmK9y4LmGr71VdE95EnCY1vFfH+EwHdYxvR0X9itgP8ZuCno/xFa0LhbW1ItacMNGvzkbM4GN812VtWR2dO1O62HDwuWdRFyXnig7lXCHkeN6r14zo3O642/r54zzok3kLyw9mn7wZ8in4rbDbIksieUMY7Ldx043bmMnD427qN9xYvw3gU3zcbeymVMB8MKLzJpDBctOU91u/W6m/rNinyeNuPPVQv+PM5Q1B2zy2yWZ0Z/oAFh8TxQNYfCDoXsjj4/nfA3m9lLcL8vjuT9yA5qVDTLyMiDZKfe85i8dxmS6QTKxDPvCFfYfZQi2zXQvfMc905Wdc98gfOxK8sUM5G4UctdyIY8QpfP2j8Cq84TdIl5LyxlbhY3fffFux7FONU3mKjXl5x4xRzrVCTlm9puAH1i4lug05qiUCN6F//PxSepY3dbS/z+b1f1PRxNrtw5+er2WqfXjuGpH+fTA8eAK+8+4JYt1FtkA78QoQ7hRwCKj4dlnhEGD4DdKlaggougde7nR33k57Qqj4LNYSeL+N+bl1lzndbXLVOuB6gRnbX2I+tEUQz3oEfaxD6iXdaxF+xEA+9piEnmNru0PI5lMePwKD3ftpsKtkoT3anWRgGtbB6H8sMuDG90JVubg1cwePvnV/jvxfhCjzkzlRLAj5XD7sYfpy9L2FdDD6nwYbxH7WDfVRz9AGyJv3N++t4nf8W/ki/2j27W3KzvVv9D8Xqf9eoYPplaYNbXRQNEqHdwgdRNS8+dDhUzmnCngswVGOa4lrolfg5CWzRspj3svW4dbBcuxv5QFpye0HWsaGZvuHR/NOVHBZ83qUnqDTYNC6pelsHZLprSYvekgGy1f1kExeK20np8NDMnmdtgoWzB+INxHPQqb227Ndpmfb8Jmx1LA4TVYR3En9NwhQu3I6yZ4czCIvkatVHaNXq9WqU1Kb2ZsLyEZbcrDeUlLXdodi+He01F05RXXdeoZ1vUXo2uHqRenVNV4Jw9U1XgnD1bW7KQ9X13hVDlfX6pSHq2u8Qo6/68a7dLibw1Pal0DeesrDl5nxrklOajXP6iRts3OXjuMyHX7PizdFD9lgfDmds2KPuDjcyNulwliFq4l5d199NhKrvO++Mn1i7VkdCONLR2oCs9sPfal7B2OH/LAf4NeX1K9bFPWb2CEb3CXiHSRVXuXnRr8NsFR5X5h9rxP9VyP+qGwYi9nt7m5kn8ODdvwb28iHd+UZdiC6qbjXEsvD/qhOEyA922anoMcdfB4nYb+yjfLQB7nvQLl4v+xdcybSqdeq+dN05Wex3fz7SJ8tjnIQaxfJwXaIS68DC8Zx2SYqbj8v+847+xctGOeblX2PHablXcvZGc+3+7vl+fy8A6kOBqq7IIvcLYz0L8wp50LQcznd/VcTenbY7ppl7xZWMSZ2t3CsnaJNmmFym+RXzlWsV7+Fy2OEvhDvn3mMsBLqgF9fQjvzr9XdWVL3KoeTB+huRs+rA9Qv8TGWmsdhu+V6rwXdHzK9+QQupqr4XCf6K6CuFizXmCFHh005Ovfl0N9NOhj9NcJfYnEA/X87YRr99YDJF2+1w7wpB/NGwOSxhmqnsXui2/WnPJ5AO+6kPNSd+8UdIJ9pv5vkYx7fBcs65+mrdp1j+nJ/Y3mbob+6Ofve4cnGWqyurhH6Fq2rTZHyMZbx1cNkf4y1EbTHnQs0Zm9JzI2iT1djlRcD/uac8UiaeDySJo7LGDOwHQ7QmETdgcxjkh2iPaq+3rA66+uTz5R9fb6dbTxf9JlDeWqe5t2Xfnb2RNzY/D/9fgHp0W6Md0P2nePww5E4rGwYs3m7327gl8uwPviCRuWzZ9ofu+W3DHhsh2Wcqt8y+Ejmj2oOznOPuyP6tBtz5/XlfTn0HPON/lRk3HOP0CE2T7hX0N8jdB4iHZCXZWO7RJvw6Vqjf0XBeOy05iFfwkW7sf/HbJQmtun3CHq0Fb9hgOveOykPy3gP5al1pFibLdo2jDe1wy9TrPZen+NYbfSvi8RqVbZYrJ6q9blYrJ5KX+3W9TksY9H1uZ8uMBaIvQDebi+A41dsLwD5eI+y7G+MIP+WiJwlHcpZIuRM5RokylRjGy5P2bUQ5N9K5dnqWB6lM5+cTxPOkX6V5jAqtiEv93dG/yGYk72X5i94TiB2QUHMd/PWRPPOAqCdQ5iKMWfoPdtjTh5XYn/JZzvUGy7oe9h3Gk0gHafCXmdyn9Bs0Ok+obJl0XEIvlk1Mru9/rG3YNv5B/+oSRft0Z31MQD7Qtk9Oo6XKEfFS65jjK9YL7xnZfSfiIwdlR+UfXtazQGVb+ygPLXOP4UxpKv9Zjvlxa5Pbuc3HEPQj7CPtv47tkZm39VYEunz9ld47JnQ8wF4jnzPoTLzGImxbyR6K2dfDr3h8Vjkf0fWEra10eG5pMP2NjpsIx2M/p+EDjH7pyk2JuwPk9tiiXZTTwjP9MFniN8I2j9aoVBK2H4mT/lBmrgtq/ak9kpiMVC1c4VVd8Tit4Er1tfdKrZZ4rOMHHs5jm2nPFznwTOInGr0N5Yn9evFy8dxmY51xfrC/Vz2sW2Cd5vAPlvtYVs1edH2oOYAZdsD77Gf6+2Bz+h2W3vA+jK9lY3S1ArFUpH2gnVTwv4ri7YXw/dqL8r3VHvp8CadVjoVGwiTY9Ul8F3tY2B9edWfWuM6W/VX8WdZovWn5vCe9Ydtq0z9qbW/BfAd87A8sbU/5D9Ta38LSA7OBXHt78aF4zxoB5ybIi+v/Rn97QvH+Z6ffa+6vjeF63W1sucTY2cQ0lR2/5zrrOj6U5FbtYquP+G7Djty1p8SwH2e4OW2jfTbhR5Gz2fimIbPr42dzcl8Sr04q3wW9cpbT9kCmGf6/Bramc+D5Y3pDTuEyWMGK5/llekXVJvA8nCbUHvxSF92L579HveU+X0+bl9p2iiwYrpu6UBXrkesKz43YLTol1ge9kuj3yP8UtW/2Xwq6j+2nqZsGltPa2dTntPEzhTE1tParZ1zTNwsdMA+Ua1v8h6U6h9UnFAxndeNzC+PQv3zWV0836P2kTfmYB6LxDpVhtiFx+36uNh7DdsjfNgu+4Wsln3593gyPPOPGUIW9zNG+wTY6W3LtC4J69MmTeGcrJUQXgjPqjnZCo85mRrn4Rj4NTQGVm0M445dj8Vt7EkYA782BzME3W5j7xWiPu9rTsSdqv1k1XZjYxjeZ1Rn8E0HtL0ar/HZKaN/I7TN2LtMPvuTyZdVv4jjQu4XY2PANHFdxMZRaJMm0XO95PkX1jWPw3FPQ9UBv4dg9G+FOoj9FFPebcNFdc87l8BtEdsGt2M1R1JtLtbuUe8Lsu/c7n8x0reqtYJY39ruzDu/T6j2odQahp0jVO0F71ew8llep/uyZ/IsDL8DHnsvEN8B4HViLD/Old9MsVe9N4B1m/f+YN67qiuz7/z+4G9G/Mv7XGGZOwaQz9r+FK7dzD3bazdWt0XWbjAW8pqfeq/z23dYkH+pfhJ5L8q+cz/5RxF/2RkpY5rK9lF8QziOv/gGXuRjX1LzQdPhXmEH1Gs4+6wT/Z8XHC84zaPXKf/EuS/7Z+w8fZq4LnYJejxjz+focR+Lf1lErW+hTTl2qXc67hH4/E7HpyPjBeyf7iXdt5fUXcVd1d6wTZ2XtTc1z+cx6/aITObFvqcvhz5v/vkFYS+OZ3nrSasI0+j/IRIPVJ+6AZ6VPTfG+yhoFz43puYdUzeeDy862+fGuP+InTcse26sqP+jDzXI/7E/v4tkxsaxzIty8vw/79xWyPxT+X+7efkKwjT6GmAWWfuK+X+7MUJsjBTbY8Q7vAybMTv0/1vO9vic/T82Psf4W+T9yKL+jz709aGJuOr9W+RtZd/5/dsFJf2rk/dvebwVe/8W+Xh9Ro1duR7z+pmVYaIdjP48sENsvOV0Dnje2Y7nvG+hxrex+BnbJ1XxU/WXHD/XiPip5iSx+ymK6F60vWGb+pusval7kri/2RyRybzYrvP6G8PjvuGaSH+DczO1HsT9jdFfH4kHKnbF+pt283VeD1L3Sai5fGy+7nQX1Pyz/UOw3N/EfghWvZ/GfoByivo/+tCfZv7fmV1PvjwBXQy7Jijr9Gk0d2Q+2QD59lkvoMfHn/raR9975zUH5hB/mqyO0j2btP7Xk//j2lTs3Ir5bI10U3wJ6cD0PYLecNX5mDqUoaqNlv3W8J989yf/7pPtbFQV/z9eU5/zw9+z8fapwv+TGX//1Q/9wSM/MlX4f92/5Zae//xDK6YK/ye/uun6Vy1e9Y9lfNR8YRbQGp/tYw7B8xKxsPDV7IbfIF1Kyhvbpx0ieVw+s0W5n00ZhO9sFUTFZ3mt1DQLOXQcIdK0QfAFgZ3mW83NpuetUCjNMa+YIzItby5gD1LePMjD2uRUE/qbzqmX3kkngYLAMplYH3Mprwl580A21+uQkGP69wj6JmENCT6zfTt5NcE3SBgJPcdRWk3IrhP9SRil3b0oTCjnIJUb/e9+0lH1KiHnGZeD3/RguWnqDx1FgjlFI4/hN4K2dysUSmORZxbJ4/JVizzc55uU2YRqNEiLaTZoFnLoVI1uFHycjG8wBzNN/WGyp5aw8syitWrPGqRL1VqtkTwuH3s0e22ammGyh+Bd93neo/qtaaxprLOFZT2K0b4z60W+ff9P9n0o6LiF33uELj0RXZCf2xvOr/hO7V5RBsvri+TNiOT1R/Jw7J5Q3gDw7aC8mQIz1f2faZzOsVt9hjA5LqaJ60ONPrC34nkpxrUhwmq2weJ1GeRvEtbsNli85ov8swlrThssPj+E/HyfZk3wqZEy93c4Ui7R/wwW7e8Mv0G6VO3v5pI8Lh+fc51XTd7MhPhRHmLyaH6+yDMsewesLwfLeOtE/zu0bjwfdOI4Ol/oi8/MPmn7/U1qv2jbqu23GSaX3eqH13bShPv/T9Ha1BzIU3H4weyzTvTnLR7n+/8o7qP/mY5DQdcXfld+h89ifQL7yFTZmWN64igH8/j8h/I5bJMPZp9mZ+XzxofvZnLbZX9GesRQ+IbRzgf/YpEum/JBlFUn+h7wwU9Gxh7sg+ifCeUlVBakU/6JdfYg0ZvefYIe8epE/7nI/ozxo61QL34Xxuj/V2R/RsVfNWuN+aKK18qm8wlrUGBheXiPUNlUrUSxTb8Y2SOsCX41tnwx5eFezizK64O8IcqbAXlNyuuHvNmUh2NLHgMPQB73BTMhD/3HxpZ1Kus3suf9QbeJViiWeB06Fj/Rnsq+DcpDn+yjPLT9AOVhXc+gPKyXmZSH+1ZWRwOhWAxL04PZJ8ew3iyGqXap4q4ahxn9QkGPsZ7vT8W2uJDykI/b80KSi99tURHtgHrZ7+3ViX4W2CF2jsL06nCfdqbap4UF0Un7tIshrybouS6WCPrFQGM2UXelcoxU8RZtyjFSjYEXCnweAy+GOuAYiTF2EemelNS96Dv72Kb+IjLG5H56XkQm86KcvlBu/HGBsFdCMrAdoF7cTxv96kg8ULaM9dMqfswX5VI2XUB5efMxw2bMqfhtRSw/t89YWdNUNVY2w+T2w+sC2DbY/9X6Q1H/Rx96qsPzC2/8/ctv/8etXzy/yt4wrncZn40NUJ8S9fu7qL8ltbZh+A3SpaS8sbWNBsnj8vHaxkA1eb+TED/KQ8wGyZtZTV5N7T3wWqSNQ/tydOFdQ6O/K4tJvGOHPM0wOR7xuoka66v4daaxYuviWCdpO1yX2UL5f/qvFQqla9SaMLetir5wT9G2ZfiN0JGvj7WtmSSPy5e384u8qr5eCnSd1v3JLsXa74h11BHrmCOWp70OO2KNOGIddMTa44jlWcbRLtXrMUcsz/boWY/7HLE829AJRyzPevT01dOOWJ7+ddwR62WOWJ5+360xx7OMjztiPeSI9YQjlqe9PMcmnv7VreNCT7/v1rHcXkesI45Y58JYrlv93nNsMt2nlcPq1rFct8ZCz7GcZyz0rEdPe3Xr+OthR6xuHX8dcMTybNuebcjTXp79kGcb6lbbe8Yvz3W5/Y5Y3epfnmPfbh1jdmPfkX5vOGGlyfqOoRxs/K72RhsROYnQuSbk4H73YPYM94oMpz9MtkWJfajCv21l+A3SpaS8JFY/WD7e91JveDZFHtdV1fd30u91Ryw+e6HuN1D7fgnxI72y18wwfj4ye0ty/fCeY49sOPRIoFSnv2/JUXEn0W3PUa0mcBP6x8930rOaoEXsoTC5avpy9A6Ap646bQr+ekRO0qGcRMgZFHzctNF1SjS1S4o2bcNvhMllrtK0lasqu1jZG0KXJuWl6VGgqxJ6Me+QI9ZhR6wTjlh7HLEec8QadcQaccQ66Yh13BFrryOWZz162svTV/c5Ynn66n5HrG6NE57t0dP23eqrpxyxPH3C01c97XXMEcszRnuOAU47Yu11xPJsQ93qX+dC/JqKfsjG8ngFBL6+un/JRJm9kFcj3gRk1on+U0vG+Q4tmSg7Adn2vZ/wklBqTnNZQngh6DmU4TdIl5LyxuZQPSSPy8dzqJrQpUl5aXoE6DivJp7FsEYdsU45Yo04Yu1zxNrjiHXaEWuvI9YRR6zDjljdWo+evurZHj31eswRa78j1glHLE+fOOCI5ekTxx2xPO3lGb889TrpiOVZj556dWvf4VmPnrb3bNueZXzcEeshR6wnHLHOhX7bs21PRV+rrhrqJzlq7tMTkYP8PC9CviT77PBK1cJXdNuzRphc5hLyoleqKrvwniLyNikvTfxqr5KTCDmJwIrp5bg1bSpeSnQbclRLBG5C//j5pfRMmQKx1c1N/UKWpZhpmzn8aRqMyFFub8swA0E3P94+L9v8kN/yztRtpmxXtZyUpuHsc9INX9kSEt4cUhPyEKtIaKm4ZV/4NA5v2XcaWtSWfSy09Ald2B/S9BKg47yaeBbzrZojllNX0Gv26BWZylZsR/Qr/hV6vGEDf6GTU43+xvKk+IuXj+MyHeuKPmZ6q7bMx2LKtmXk78nBUjcUp+nFkI/0c5c+89lhna5Vdcr+0lcRu2j7jt3Oxm2fjy+1QjztuuXxj7zlnX+5tmw7MvoZgl4d7zFbVbx9Zs0gyAgk2/LUMTDLwxhsOqT8/0p+MqOifkXsh/gqPvLQq2hdzAm6nwlh+pdqcLjZnb9Uk6bb6O8Ngi8I7DR/+pdqJuY1Ie87+Zdq+gVfy758/ofe/Irme370ra1LP/y1vtte9w8PfOWO3hs//uHHl/ze933zC0//GOschM5cj4NEqz5Nd37GI5khR6zZAstsU/Ge9gVFo5XhN0JHbWwsWqm77LB8XHZ1P3lT5HEMKnsPOGL1OGLVHLHqTlhpum8aaxprGmsa6yxg8Ttm2AdYHvaf27JPNfPm94jKzryR/wwsls8q2u+ercVyK1/VO3cT4kd5agGexziqz7R+vy8Hy3j5HuT92cy2SXRpYr9WvxekxiWpvzyydKLuPLdRnyHEx3q8SYT1c6b9Ht+jw0OLo0u1TFxlRt4Hs09emfrS0nG+E0sn6qxWMNI0JPRGHwphou2MrsM7pGepO6RRL64HdX8p0u/OPptEj2VXvtAH5ekg/syP7YikZXkV1XEd8pRfWXn49x8+BnX8A9l35cf8G2DtNs92E73ZP+/e9TrpZ/Q/mOmE964r/QZz5KE9VFxjea8Debtonq/afId+u0D5La7gst+qlTak5zlRzM+VL6OfzyAsFbvQDzbk6JrXH+CKOdL/lKjzIn6u6tXof6ZgvTrFI1mvaKsi9apWp41erWarHZtmmFyXvDvbbhetSL2qPo/r9Z2RelV9lOpDuI/65YL1aracinpFWxWpV9XfF61X3rXEem0QlorRWNdF6hXLwzHa6N8Xqdeqcfj9XRCHcbzI9araDNJzvcbitorD6neN1HyMx+BlY7Tql2Mx2uifEnXOc0KOC3n6Kbul/ZCtiWe7INtHDx0dzrZBAqXYtkUSJi61oxrzBX+IYCFPrEi4scMmN1l9QS+vs8mN/o+EydmErE+RKXLFJlN4I83wvabIRc9t8XBKNTPVxXA9tZPj6Kppui1HjUTwhzZY9jeeocLq5lF9bCTAvOk/Gy0WHQkY/ScjPUa7mRlHFLUigKNYnp2rFYkhwTeYI6foCMXoP1ewJzPZU9GToY24Jyu602P0sV8MRpvEdkZiK4tFm7mFVQ5xyBubKSNubAal/AvrxupNzUrZv/JW1kKYktHqrLPtC/xLL2r3Tq2isC+oLhbjBPuCav+8MpYmHm3jp/EYbpr6BT3eMGaJz+8OwPOawJpBfEY/I6s7/DWnQPxNIR9HjyFHb/VLWInAqolnaNOwbFxnpSf3X1jWmqDnc3RjZ6eWjcscol+N5H7Lni2L0CU5n0pn1Cdmo5qgN9kDgt7y0JexTSIN2guxGpCP9EvJd7C+cUbB8nF1IOTonXfjG2PVxDP0nXnLJpah4vnjZCBMnP3aZ5Fzhb92/WXPm3XvRd/b7tfyquLPeuo3Nn/264cvqvJrfOp6taL+mnd2NU33Z58dngvtUWcRQ3H+pMiZ1YrnMP+9iJ0QvxH0mK4VCqWx6QnH2rzxRYe/qvhvaR9pv0qMbRDrEm2Hcvg8ak3wYNxhjJT/ieUTy1FxWvdvHfrgv6rVGtwpuWHZOC6WHcfxavpcJ/rnQ//zXIithmv82IcPhcntg9u02btH0PIKPJ/5VXZDequvvpyy9lFZjX5dVr5U3tZFGrPoFShGvx4w+ddu1S9nlt3VwF80NH3UTbgziU+toAbxTNVPQrSoQ5ruFzrl/d0QOHk69Asc9Y4Crwir1WVsNzyOrgk52Kawz+pwOan0OykJ5WHZ7gE6TjX6G3VOMS6gMWMQWMo+/O6DR99tz3vhOcvl9aQ+ouU5HurYyXg4dlKhj3BnRPRPCKcu+GJXJVXVNxH6TuVJkTTdm3122Octa3c6YF+BPk+NGbjPOwx93sGCfZ7l8bgtTd8Dzzim8zgIMdLEy+gWI/sAH2n6qUxGf0z0bSqGGNa3T7+QPfshL9aP1In+jWDP02RPtBdf58xxPMDfA6AL0qbp/hwbfB/o8Ypl+bJwnppXxhTj+5dpOtQB6Rijar+mxlfcdouMr9QaVH9EBsfjvL5brUcX/ZXwIJ71CPr+nPIGIbvRBledElDxvUF5icjj2IPlLbqOi3FrX6S9JGFiuQaoXP2RciWCj9s56j4joruyH8aPqmsIr/mrf/+fP/SyJV+aqjWK7/rZE/9x8Pr3/OpU4b975p+96L/+bP9LyqyBWD2r00rsW3mnEXdBPtL/UlYfHa4xBC6Pihux+RmvhbL+23P0/z2I379C7ULNT1Sbyet/ewvqYvS/JuZ1sXdgO9zTqKs9DYxrPN5V8VatZRt9u7ml2USdmCtySgRtymMas1Ff0PN73k81+t+GOuDTGCo2Wx6WneNiTchVa4nWxlKaj1O7qji+naHGEZb4ngEsI/sDltHyBkgnzFOnfBOhg5pDWllTnT9RYA6p4gO3V7WuEhsvqnaHJ5JD6J52Z77fDJPrhf2tqA/njeeUPLQD9tUfh/0stSaPbRrnXH9Jc4Q+yFNrWhxPjf5rENs/S7FdvQ2g/KjIKcTYnSNqLq9O1Vu9dHgnQS/WL+qJzxBf3SFRZa1ejU1ja/UVxwl17mNRnqqH2UHbVK3n81xRrffE5kmxeKLaH7dNtY6g+pDYfM5k45p5kXFT3lmcvPWM/wNtq7l8YvlVrI3VG/oO08diH+qqbD9AeWrub99nRuQovQYF/cyIXhiT+a17/lW3WBmK9lVOY8Re1VdhnXAbUXaJ/aqZ+kU1PMvEbQSPd/KZmKJ9G58CVn18u77NfD7WL6gT4uooJfZvf9nh/Pb5q3948bIPHhmcqvlnb33Zm1rveXBDmfmniis9hIt24PX2NN2dfRbZ567Ydxa+e437zk73uYv2nWq8zn0BrrPcB3Scp9aFe84wlpqbcF1WHCcUHgfxmYWKvhM9s6D6NzW/4nkj9j9s/05+sqMbsbD9x8bHRepVyVFj+qneu+M9txmOchBrB8nhdWv1WVSOuoNQ7cvi/G0d9Y1qPQx589bD9i4f51u/fCKN6X4r0GylczRY5hJtuaHm5JbU2gf7rRoH8o1Lyj9wbMP3ueLtEHgWgpNaTzG6VN7rCtwFibYscqctnzNNCI/Xjo1+J9UX78W3QrGk1o4N69nkC1Xq+w8K1Leq49jdnzy3ic1N1Zpc7EYGjm+Ir2LSiwkf7RHbI1NlNl7ce4/FLvZ9pN8Pcek0xUM1p1Ux2J63W0eP7XHjuzDMV6IdzGR/xqT8mduB+iVsjm2qHeDrhhwT8d0Gns9gUm1k7L2AUDwmns7p10wG1kWaeM6n9t2xv7TyVT1DnACm6WRlR734nlRsT/y+TMUztWO2U2dLcLzFa29G/8PLJ+KoMzCx9y7U2fmakKves5hZEqufsGZ0gIXrFkw/o6JeCovfaynznsors7o5k/vMb6SxwnfaPvOvQH/wpsh6aUK6TMU+81sy+dP7zGdvn/kXoQ7O5j7zU9SuztV95jLj5Ol95sn1cjb3mZ/K6Y/a7TN/MGcNv+w+82cgtv8RxfbpfeZn0vQ+8/Q+cwjl95n/GtrWN6b3mSdgKL2m95mfSc+WfeZvTNE+s/V9/xfeFYR7hUwEAA==",
|
|
2056
|
-
"debug_symbols": "tb3dziS5ca57L3OsgyQjgj+6lYUFQ/bSMgQIkiHLG9gwfO+7GJkRT3X3LnZ21Tcn6kcz0+/LJBlRmWQk879/+z9//tf/+vd/+cvf/u/f//O3P/6v//7tX//xl7/+9S///i9//fu//emff/n73x7/9L9/O9b/9PrbH+UPv3X57Y/t8Yf+9sfx+MPOP9r5Rz//GOcf0/8Yx/lHOf+o5x9y/nGqjFNlnCrjVBmnyjhV5qkyT5V5qsxTZZ4q81SZp8o8VeapMk+VchzXn+X6s15/yvWnXn/a9We7/uzXn+P689Irl1659MqlVy69cumVS69ceuXSK5deufTqpVcvvXrp1UuvXnr10quXXr306qVXLz259OTSk0tPLj259OTSk4deORb0gBEwL9CHZpEFJaAGPGRLW/DQrf4fW0AL6AEjYF5gD+VaFpSAGiABGmABLaAHjIB5QQvltpTrghogAQ/lsjqhWUALWMoOI2Be0I+AElADJEADLKAFhHIP5R7KK3BkdcsKnRNqgARogAW0gB4wAuYFM5RnKM9QnqE8Q3mG8gzlGcozlOelXI8joATUAAnQAAtYynVBDxgB84IVaSeUgBogARpgAaFcQrmEcgnlGso1lGso11CuoVxDuYZyDeUayjWUJZQllCWUJZQllCWUJZQllCWUJZQ1lDWUNZQ1lDWUNZQ1lDWUNZQ1lC2ULZQtlC2ULZQtlC2ULZQtlC2UWyi3UG6h3EK5hXIL5RWDYgt6wAiYF6wYPKEE1AAJ0AALCOUeyj2UVwzKIwarx6BDCXgoqyyQAA2wgBbQA0bAvGDF4AklIJRnKM9QnlfeqLMF9IARcOUNOY6AElADJEADLKAF9IDV5rZgXrBi8IQSUAMkQAMsoAX0gFAuoVxDuYbyikHtCyRAAyygBfSAETAvWDF4QgkIZQllCeUVg3YsaAE94KFsumBesGLwhBJQAyRAAyygBfSAUNZQtlC2ULZQtlC2ULZQtlC2ULZQtlBuodxCuYVyC+UWyi2UWyi3UG6h3EK5h3IP5R7KPZR7KPdQ7qHcQ7mHcg/lEcojlEcoj1AeoTxCeYTyCOURyiOUZyjPUJ6hPEN5hvIM5RnKM5RnKM9LWY8joATUAAnQAAtoAT1gBIRyCeUSyiWUSyiXUC6hXEK5hHIJ5RLKNZRrKNdQrqFcQ7mGcg3lGso1lGsoSyhLKEsoSyhLKEsoSyhLKEcMasSgRgxqxKB6DLYFEqABFtACesAImBd4DDqUgFC2ULZQtlC2ULZQtlC2UG6h3EK5hXIL5RbKLZRbKLdQbqHcQrmHcg/lHso9lHso91DuodxDuYdyD+URyiOURyiPUB6hPEJ5hPII5RHKI5RnKM9QnqE8Q3mG8gzlGcozlGcoz0vZjiOgBNQACdAAC2gBPWAEhHIJ5RLKJZRLKJdQLqFcQrmEcgnlEso1lGso11CuoVxDuYZyDeUayjWUayhLKEsoSyhLKEsoSyhLKEsoSyhLKGsoayhHDFrEoEUMWsSgRQxaxKBFDFrEoEUMWsSgRQxaxKBFDFrEoEUMWsSgRQxaxKBFDFrEoEUMWsSgRQxaxKBFDFrEoEUMmsfgfIDHoEMJqAESoAEW0AJ6wAgI5RHKI5RHKI9QHqE8QnmE8gjlEcojlGcoz1CeoTxDecVgOxZYQAt4KLe6YATME9qKwRNKQA2QAA2wgBbQA0ZAKJdQLqFcQrmEcgnlEsollEsol1AuoVxDuYZyDeUayjWUayjXUK6hXEO5hrKEsoTyisEmCyRAA5ayLmgBPWAptwXzghWDJyzluaAGSMBDuZcFFtACesAImBesGDyhBNQACQhlC2UL5RWDfbV5xeAJ84IVgyeUgBogARpgAS0glFsot1BeMdhtQQmoARKgARbQAnrACJgXjFAeoTxCeYTyCOURyiOURyiPUB6hPEN5hvIM5RnKM5RnKM9QnqE8Q3leyv04AkpADZAADbCAFtADRkAol1AuoVxCuYRyCeUSyiWUSyiXUC6hXEO5hnIN5RrKNZRrKNdQrqFcQ7mGsoSyhLKEsoSyhLKEsoSyhLKEsoSyhrKGsoayhrKGsoayhrKGsoayhrKFsoWyhbKFsoWyhbKFsoWyhbKFcgvlFsotlFsot1BuodxC2WPQ1/9HwLzAY9ChBNQACdAAC2gBodxDuYfyCOURyiOURyiPUB6hPEJ5hPII5RHKM5RnKM9QnqE8Q3mG8gzlGcozlOelPI4joATUAAnQAAtoAT1gBIRyCeUSyiWUSyiXUC6hXEK5hHIJ5RLKNZRrKNdQrqFcQ7mGcg3lGso1lGsoSyhLKEsoSyhLKEsoSyhLKEsoSyhrKGsoayhrKGsoayhrKGsoayhrKFsoWyhbKFsoWyhbKFsoWyhbKFsot1BuodxCuYVyC+UWyi2UIwZHxOCIGBwRgyNicEQMjojBETE4IgZHxOCIGBwRgyNicEQMjojBETE4IgZHxOCIGBwRgyNicEQMjojBETE4IgZHxOCIGBwRgyNicEQMjojBETE4IgZnxOCMGJwRgzNicEYMzojBGTE4IwZnxOCMGJwRgzNicEYMzojBGTE4IwZnxOCMGJwRgzNicEYMzojBGTE4IwZnxOCMGJwRgzNicEYMzojBGTE4IwZnxOD0zcGyQAMsoAX0gBEwL1gxeEIJqAGhrKGsobxicNQFPWAEzAtWDJ5QAmqABGiABYSyhbKFsoVyC+UWyi2UWyi3UG6h3EK5hXIL5RbKPZR7KPdQ7qHcQ7mHcg/lHso9lHsoj1AeoTxCeYTyCOURyiOURyiPUB6hPEN5hvIM5RnKM5RnKM9QnqE8Q3leyo/99yOpJNUkSdKkpa9OLaknLYvuNIN8U/6kklSTJEmTLKkl9aT0KOlR06OmR02Pmh41PWp61PSo6VHTo6aHpIekh6SHpIekh6SHpIekh6SHpIemh6aHpoemh6aHpoemh6aHpoemh6WHpYelh6WHpYelh6WHpYelh6VHS4+WHi09Wnq09Gjp0dKjpUdLj5YePT16evT06OnR06OnR0+Pnh49PXp6jPQY6THSY6THSI+RHiM9RnqM9BjpMdNjpsdMj5keMz1mesz0mOkx02OGx1loc1JJqkmSpEmW1JJ60khKj4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeM85rxnnNOK8Z5zXjvGac14zzmnFeM85rxnnNOK8Z5zXjvGac14zzmnFeM85rxnnNOK8Z5zXjvGac14zzmnFeM85rxnnNOK8Z5zXjvGac14zzmnFeM85rxnnNOK8Z5zXjvGac14zzmnFeM85rxnnNOK8Z5zXjvGac14zzmnFeM85rxnnNOK8Z5zXjvGac14zzmnFeM85rxnnNOK8Z5zXjvGac14zzmnFeM85rxnnNOK8Z5zXjvGac14zzmnHuhUPzcJIkTbKkltSTRtIMWnF+UUlKj5EeIz1WnM/i1JJ60kiaQSvOLypJNUmSNCk9ZnrM9JjpMcPDi4ouKkk1SZI0yZJaUk8aSelR0qOkR0mPkh4lPUp6lPQo6VHSo6RHTY+aHjU9anrU9KjpUdOjpkdNj5oekh6SHpIekh6SHpIekh6SHpIekh6aHpoemh6aHpoemh6aHpoemh6aHpYelh6WHpYelh6WHpYelh6WHpYeK86nOJWkmrQ8mpMmWVJL6kkjaQatOL+oJNWk9Ojp0dOjp0dPj54ePT1Geoz0GOkx0mOkx0iPkR4jPUZ6jPSY6THTY6bHTI+ZHjM9ZnrM9JjpMcPDC5cuKkk1SZI0yZJaUk8aSelR0qOkR0mPkh4lPUp6lPQo6VHSo6RHTY+aHjU9anrU9KjpUdOjpkdNj5oekh6SHpIekh6SHpIekh6SHpIekh6aHpoemh6aHpoemh6aHpoemh6aHpYelh6WHpYelh6WHpYelh6WHpYeLT1aerT0yDjXjHPNONeMc80414xzzTjXjHPNONeMc80414xzzTjXjHPNONeMc80414xzzTjXjHPNONeMc80414xzzTjXjHPNONeMc80414xzzTjXjHPNONeMc80414xzzTi3jHPLOLeMc8s4t4xzyzi3jHPLOLeMc8s4t4xzyzi3jHPLOLeMc8s4t4xzyzi3jHPLOLeMc8s4t4xzyzi3jHPLOLeMc8s4t4xzyzi3jHPLOLeMc8s4t4xzyzi3jHPLOLeMc8s4t4xzyzi3jHPLOLeMc8s4t4xzyzi3jHPLOLeMc8s4t4xzyzi3jHPLOLeMc8s4t4xzyzi3jHPLOLeMc8s4t4xzyzi3jHPLOLeMc8s4t4xzyzi3jHPLOLeMc8s4t4xzyzi3jHPLOLeMc8s4t4xzyzi3jHPLOLeMc8s4t4xzyzi3jHPLOLeMc8s4t4xzyzi3jHPLOLeMc8s4bxnnLeO8ZZy3jPOWcd4yzlvGecs4bxnnLeO8ZZy3jPOWcd4yzlvGecs4bxnnLeO8ZZy3jPOWcd4yzlvGecs4bxnnLeO8ZZy3jPOWcd4yzlvGecs4bxnnLeO8ZZy3jPOWcd4yzlvGecs4bxnnLeO8ZZy3jPOWcd4yzlvGecs4bxnnLeO8ZZy3jPOWcd4yzlvGecs498KtOZ160kiaQR7nJ5WkmiRJmmRJ6dHSo6VHS4+eHj09enr09Ojp0dOjp0dPj54ePT1Geqw4fyxWO1ZQQAUNbGAHBzgTV8AH4jZxm7hN3CZuE7eJ28RtppvXfQUWsIICKmhgAzs4QNwKbgW3glvBreBWcCu4FdwKbgW3ilvFreJWcau4VdwqbhW3ilvFTXAT3AQ3wU1wE9wEN8FNcBPcFDfFTXFT3BQ3xU1xU9wUN8XNcDPcDDfDzXAz3Aw3w81wM9wabg23hlvDreHWcGu4Ndwabg23jlvHrbtbdRRQQQMb2MEBzsRxgAXEbeA2cBu4DdwGbgO3gdvEbeI2cZu4TdwmbhO3idvEbabbOA6wgBUUUEEDG9jBAeJWcCu4FdwKbgW3glvBreBWcCu4VdwqbhW3ilvFreJWcau4VdwqboKb4Ca4nblEHRU00N2aYwcHOBPPXHJiASsooIIG4qa4KW6Km+FmuBluhpvhZrgZboab4Wa4Ndwabg23hlvDreHWcGu4Ndwabh23jlvHrePWceu4ddw6bh23jtvAbeA2cBu4DdwGbgO3gdvAbeA2cZu4TdwmbhO3idvEbeI2cZvpNo8DLGAFBVTQwAZ2cIC4FdwKbgW3glvBreBWcCu4FdwKbhW3ilvFreJWcau4VdwqbhW3ipvgJrgJboKb4Ca4kUsmuWSSSya5ZJJLJrlkkksmuWSSSya5ZJJLJrlkkksmuWSSSya5ZJJLJrlkkksmuWSSSya5ZJJLJrlkkksmuWSSSya5ZJJLJrlkkksmuWSSSya5ZJJLJrlkkksmuWSSSya5ZJJLJrlkkksmuWSSSya5ZJJLJrlkkksmuWSSSya5ZJJLJrlkkksmuWSSSya5ZJJLJrlkkksmuWSSS2bmknpkLqlH5pJ6ZC6pR+aSemQuqUfmknpkLqlH5pJ6ZC6px4Fbwa3gVnAruBXcCm4Ft4Jbwa3gVnGruFXcKm4Vt4pbxa3iVnGruAlugpvgJrgJboKb4Ca4CW6Cm+KmuCluipviprgpboqb4qa4GW6Gm+FmuBluhpvhZrgZboZbw63h1nBruDXcGm4Nt4Zbw63h1nHruHXcOm4dt45bx63j1nHruA3cBm4Dt4HbwG3gNnAbuA3cBm4Tt4nbxG3iNnGbuE3cJm4TN3JJIZcUckkhlxRySSGXlDOXTMcGdnCAM/HMJScWsIICKojbmUvMsYMDnIlnLjmxgBUUUEEDcau4VdwqboKb4Ca4CW6Cm+AmuAlugpvgprgpboqb4qa4KW6Km+KmuCluhpvhZrgZboab4Wa4GW6Gm+HWcGu4Ndwabg23hlvDreHWcPNcUupCzyUXFrCCAipoYAM7OEDcBm4DN88lpTsKqOByq+LYwB7oBYHr1LbqBYGP6ezo/745DnAmeoRcWMAKCqiggQ3EreJWcRPcBDfBTXAT3AQ3wU1wE9wEN8VNcVPcFDfFTXFT3BQ3xU1xM9wMN8PNcDPcDDfDzXAz3Ay3hlvDreHWcGu4Ndwabg23hlvDzSOkTscCVlBABQ1cbn7qnVcOBg5wJnqEXFjACgqooIG4eYRIcRygu63I8zLCwAJWUEAFDXQ3c+zgAN1thbEXFAYWcLnp4SigggY2sIPLTYvjTPRf2wsLWEEBFTSwgR3EzXOJrn7wIsPAAnqfDUfXFUdXMEdX8P/A88OFBayggAq67nRsYAcHOBM9P1xYwAoKqCBunh/MB8Dzw4XLzfwyPT+c6PnhwgJWUMDlts51ql5bGNjADg5wJnp+uLCAFRQQN88P5sPi+eFCd2uOA5yJnh8uXG7N+8Hzw4UCKmhgA5db88nl+eHCmej54cICVlBABQ1sIG6eH5pPWs8PJ3p+uNB70qec54cLBRygK6zR9ELCso4pqV4/+LghcTSwgR0c4BJbB4tUryIMLGAFBVRwufXq2MAODnAmekhfWMAKCqggbn570L0f/PbgwgG625p9XlkYWEB38+7z8O/eJR7+fToa2MAODnAmeqAPb6QH+oUKGtjAnuhROMxxgMtieHs93sZwFFBBAxvYEz0uhrfX4+LCAc5Ej4sLC1hBARU0ELeB28Bt4DZxm7j5L+Sq6K9eiVemzz6Pi+nD7XHh6MV4gUthqmMFBVTQwAa67hoAL7Yrq66jerVdWYUO1cvtAg10heHYwQHORA+GCwtY1zHOh6OAurA4GtjAuXBNIy+qeywTOQro7e2OruCXKQ3s4ABd1/th/b4FFtDdvHdUQAVxU9wUN8XtPMPa0X/fzrEwRtMYTWM0jdE0RtNj6BxC/806h9Bj6Bysxmg2RtNj6ByLxmg2RrMxmo3R7Iymn2F9jltnNP0c63OwOqPZGU0/u/ocwlFy3Aaj6fF2DuHQ7KhB/w76d9C/Y+RgDUZzMpqz5GBNRnMymhO3idvEbeI2czS9Ku2xEuXYwQGu5qzT0KtXpgUWsIICKmhgAzu43Io3x0PkRDnAAlZQQHfz9nrgXNjADrrbdJyJHjgXLrfqLfPAuVDA5bbOWK9eshbYwA4ut3XoevUSteoP7l6jFiiggq5rjq7bHF23Ow5wJvrh7xe6m1/xeQD8iQIquNz82cnr1Op1HPWyEG+OnwF/nU29LPze3mvVAisooIIGNtDdvNc9si5cbv6M40VrgQWsoIAKGtjADg4Qt4nbxG3iNnGbuE3cJm4Tt4nbTDevWqv+ROVVa4EVFFBBAxvoumvcvD4tsIAVFFBBAxvYwQHiVnGruFXcKm4Vt4pbxa3iVnGruAlugpvgJrgJboKb4Ca4CW6Cm+KmuCluipviprgpboqb4qa4GW6Gm+FmuBluhpvhZrgZboZbw63h1nBruDXcGm4Nt4Zbw63h1nHruHXcOm4dt45bx63j1nHruA3cBm4Dt4HbwG3gNnAbuA3cBm4Tt4nbxG3iNnGbuE3cJm4Tt5lu4zjAAlZQQAUNbGAHB4gbuWSQSwa5ZJBLBrlkkEsGuWSQSwa5ZJBLBrlkkEsGuWScuUQdFTSwR0YcZwI5cSbKARawggIqaGADcRPcBDfFTXFT3BQ3xU1xU9wUN8VNcTPcDDfDzXAz3Aw3w81wM9wMt4Zbw63h1nBruDXcGm4Nt4Zbw63j1nHruHXcOm4dt45bx63j1nEbuA3cBm4Dt4HbwG3gNnAbuA3cJm4Tt4nbxG3iNnGbuE3cJm4z3Sa3HZPbjsltx+S2Y3LbMbntmNx2zKODA8St4FZwK7gV3ApuBbeCW8Gt4FZwq7hV3CpuFbeKW8Wt4kYumeSSSS6Z5JJJLpnkknnmku6ooIHuNh07OEB3W/fK88wlJxawggIquNysOjawg8vNvL2eS070XHJhASso4HLzxWQvSgtsoLuZ4wBnoueSC123ObqCd5TnhwsH6AreUZ4fLizgaq8vMXuhWaCCBi43XxX2QrPAAc5EzwS+QOzFY9UXfb14LLCD3l638Jg/0WP+wgJWUEAF3c071WP+wg4OcF4oXjwWWMAKCqiggQ3s4ABxK7h5zDdzdN3maGADOzjAmejRfWEBKyggbhW3ilvFreJWcRPcBDfBTXAT3AQ3wU1wE9wEN8VNcVPcFDfFTXFT3BQ3xU1xM9wMN8PNcDPcDDfDzXAz3Ay3hlvDreHWcGu4Ndwabg23hlvDrePWceu4ddw6bh23jlvHrePWcRu4DdwGbgO3gdvAbeA2cBu4DdwmbhO3idvEbeI2cZu4TdwmbjPdynGABayggAoa2MAODhC3glvBreBWcCOXFHJJIZcUckkhlxRySSGXFHJJOXNJdxRQQQMb2MEBzsQzl5xYwOXWD0cBFXS34djADg5wJp655MQCVlBABXFT3DyXrH09OT9jeeFM9Kxx4VJYm49yfqryQlfw/vX8cOFM9PxwYQEruNo7vEs8P1xoYAOX23Dj8xOWJ87E8zOW3t7zQ5YnVtDdxFFBAxvoburobt5ezwTDx9gzwYUCKui603HpTr8KzwTTm+OZYLqbZ4ITPRNcWMDlNr05ngkuVNBAd/P2evhPb46H/9oikesLl4djWSiOFRRQQQMb2MGxUB1nose8TyM/8S5QQAUNbGAHB5gz1QvfAnGruFXcKm4VN/8U5tpvkfNjmBcO0C9o9eT5ScwLC1hBARU0sIEdHCBuipt/KHMVzsr5qcwLBVTQwAZ2cIAz0T+deSFuhpvhZrgZbv4ZzcPn2XmnsO4R63mncGIBKyigggY2sIMDxK3j1nHruHXcOm4dt45bx63j1nEbuA3cBm4Dt4HbwG3gNnAbuA3cJm4Tt4nbxG3iNnGbuE3cJm4z3c4PcV5YwAoKqKCBDezgAHEruPF8IQW3glvBreBWcCu4FdwKbhW3ilvFreJWcau4VdwqbhW3ipvgJrgJboKb4Ca4CW6Cm+AmuCluipviprgpboqb4qa4KW6Km+FmuBluhpvhZrgZboab4UYuEXKJkEuEXCLkEiGXCLlEyCVCLhFyiZBLhFwi5BIhlwi5RMglQi4RcomQS4RcIuQSIZcIuUTIJUIuEXKJkEuEXCLkEiGXCLlEyCVCLhFyiZBLhFwi5BIhlwi5RMglQi5RcomSS5RcouQSJZcouUTJJUouUXKJkkuUXKLkEiWXKLlEySVKLlFyiZJLlFyi5BIllyi5RMklSi5RcomSS5RcouQSJZcouUTJJUouUXKJkkuUXKLkEiWXKLlEySVKLlFyiZJLlFyi5BIllyi5RMklSi5RcomSS5RcouQSJZcouUTJJUouUXKJkkuUXKLkEiWXKLlEySVe6iermkW81C/QwAZ2cIAz0T/yfWEBK4hbx63j1nHruHXcOm4Dt4HbwO3MJdVRQXcrjg3s4ABn4jzAArqbOAqooLupYwM76G7esjkDvdww0MdNHCsooIIGNrCDA5yJZy45MVaxxYsQA/0qzLGBHRzgTKwHWEDvs+4ooILuNhwb2EF385b5c8uJ/txyoa9Mu5hnjQsFVNDABnZwgDPRs8aFfhXTUUED11WsEizx0sTAAa6rWHVX4qWJgavPqk8Cf0K5UMDlVn3c/AnlwgZ2cIAzsR2gu6ljBQVU0MAGeh2ei50Fiz7cZ8HiiRUUUEEDG9hBr+/zMfa7ihP9ruLCAkZprVzFjScqaGADOzjAmejFxBcy8pORn4z8ZOQnIz8Z+Zkj7+cABubI+0mAgQLmyPthgIEN7OAAc+T9RMDAHHk/EzBQQAUNbGCOfKs58met5XFiBQVU0MAGdjBH/qy1PFEOsIA58l5rGaiggQ3s4ABz5L3WMtB7x1vmMX+hgQ30sTj/2gBn4hnzJ5arEF3aWY58ooAKGtjADg5wJp7R3R0FVNDABnZwgDPRf/0vLCBuHbeOW8et4+a//uLt9V//C2ei//pfWMAKLjfxaFkxH2hgAzs4wJnov/4XFrCCuHkmEA8GzwQXNtDdfGp4JlglpeIFlid6gWVgASsooIIGNtDdpuMAl9sq5xQvuwwsYAWX23oVTrzsMtDABnZwgDPR7wkudDd1rKC7maOCBjawg26xYshrLQMLWEEB3cK7xBcwL2xgBwc4E30B07yjfAHzwgoKqKCBDezgAGei4ea3B6uQQbzWMlBAd6uOBjbQ3bzX/fbAvCf99sDv+7zWMrCAFRRQQV+GdRpJM8jzxEklqQZ5BPt9lRc7Biro+w5OLaknjaQZ5MsAJ7niid4NPoIej+c/HEnzIq9bXG++ipctXlSTJEmTLGmZrCoN8YrFwOWy6jHEKxYv9DC8cIn604pXIYrfmnsVYqArOLnAGkIvQgwsYAUF1KtLzhrEk1pSTxpJ0Z1ec3h2olcXnp3o1YXiz5ReXRjoDfWWesic6CHjW4leXagn1SRJ0iRLakmu6A3xAGjekBUAHiBeKniRJa2/ff53PWkkzaA18y8qST7qLuPz/kIfdx83/+G8sIGrmb4N42V/0n0I/cfwwnWVfhn+W3h2jP8WXtjBAbqsj6b/Fl5YwJod7pF0oYK4DdwGbgO3gdvEbeI2cZu4TdwmbhO3idvEzaPP0av+fKp70d85fb3oL1BABS3Rf6d8O9Yr8gI76HczTjPIY+mkklSTJEmTLKkl9aT0qOkh6SHpIenhv1HrW6/iJXiBBi4b3zr2ErzAZdS95zzgTvSAu7CAFRRQweXm+8VeghfYQc+XxXEm+m/UhcvNt5m9BC9QQE/sTpbUknrSSJpBHo/jRG+pD6dHnm9Re/Fd4ABnov8U+R62F98FVlBABf1Gy2mZ+c63194FDnCZ+X64H/IWWMBl5hvbfshb4DLzpyiv0wts4Mpe3oQVpBfNoBWiF5WkmuSK3lkec76B7lV3sjbQ1avuAgtYwZWh1w67etVdoIEN7OBqanOaQetn76LVVHOqSZKkSZbUktykOA5wJq7gDfRmVscGLgV1GkkzaMWqHicWsILeI34doqBbdccGemO9I8UbOx2XWfF+WuGqa/1QvaYusIICKmhgAzu43Iq3V93N+87czdtr7uaNNNf1RpqBDezgAGei/4Re6GJ+mc3ABnZwgDOxH+ASq95RK+a0+qiumAuciSvmAh/XZn6VK+QukiRNsqSW1JNG0gxa0XZResz0mOkx02Omx0yPmR4zPWZ4eEnbRSWpJkmSJllSSwoPr1Rbd/7qhWoXSZImWVJL6kkjaQatn86L0qOmR02Pmh41PWp61PSo6VHTQ9JD0kPSQ9JD0kPSQ9JD0sMDY93dqheIafV/6oGxjgRSPzFM1wOKek2Xrt9o9ZquQAPXtBZXWNPaXGDN6otm0JrTF5WkmiRJmmRJLSk9enoMz/rm6G30MV8zu3kT18y+qCeNpBm0ZvZFJakmSZImpcdMj5keMz1meHi11kUlqSYtD3HSJEtaHurUk0aQ/6CsBzH1Gixdz3PqNVi6FkHUa7ACOzjAmVgPsIAVFFBB3CpuFbfz1+ZwnIn+e3NhASsooIIGNrCDuAluipviprgpbuv3Zt3Qq5dgXdSSetJImkHmisXRW+pDvH5TmvfF+km5aCStv+0Dt35PLipJNUmSNMkv3OeC/374vYKXTAVW0C/Rm+k/MBca2MAODnAm+s/OhQWsIG4Dt+Fu3vTRwA4uN/Nx8Ju9E/1uz7xb/XbPvFv9fs/Tm5dMBSro91FuPBu43MyDZrqbG69wXU+z6hVTF5WkmiRJmuSKazDlvNk7HFdLPca9ACpQwNVSD3MvgApsYAdHogenx78XNelah1AvalKfhF7UFNjBAc5ED8MLC1hBAd2tOxrYQHcbjgOciR6GF7qb95mH4YUCru71q1xheFFLelh1744VhhfNoPW7dlFJqklrCL3T1i3gRZbkqy8+gn4DeOEAZ2KroC/f+HTwn8cLXcFH2+/6LpyJK2q7d8gK2otqkiRpkiW1pJ40kmbQSI+RHiM9RnqM9BjpMdJjpMdIj5EeMz1mesz0mOkx02Omh8fmOTQemxcO0PtrjY6XIAUW0MehOwroq06Ho4EN7OAAl9t6uFcvQQpcbqsKXb0ESdfygHoJkq7nfPUSpEAD3c0b6dF84QAfbqeDf/37pJJUkyRJk1xxxaYXFOnwy/Y4XudVqRcUBQqo4Grp9Mv2OL6wgwOcif6Bb++L+MC3ejmRzvMfLq/p1+8Pbxe6l7fWH978QdvLiS6MT/2qnsfXulYeVKuaB9Wq5kG1queK5koZei5pnljACgqooIHrpvM09jvbC0fiedL1iQWsoDfdL/g86fpEA93Cm+43thcOcN0++3O0FwAFrhtof+b2AqBAAd3tRAMb2MEBzsQ86Vo1T7pWzZOuVfOka9WJ28Rt4jZxm7jlSddqedK1Wp50rZYnXavlSddqedK1Wp6ar5an5qvlqfnqBUDmaw9eAHRhOUDvyelYQQHX04ivU3hZUGADO7jcVqWUelmQrYomPc8mO8XOk65PrOBy8yULLwsKNLCBHRzgTPRnxQsLWEHcBDfB7Tzp2nvnPOn6xAHOxPOk6xMLWEEBFTQQN8VN/drUcSbaARawggIqaGADO+hu5jgT2wEK6Ard0RW8vZ4ULpyJ/sR7obfXh9ufeS8UUEEDG9jBAc5Ezw8X4jZwG7gN3AZuAzdfAvJVJy8LClxuvr7kZUGBBVwjf057zw8XKmhgA3uglwVZPXG1d9XsqBcAmS9TeAFQYAM76O1tjjPRY/7CAlbQ3aajggY2sIMDXG6+auJlQYEFrKCAChrYwA4OEDeP+VUGol4WFFhBd/Oe9Jj35RovCwp0N3PsoLt578hM1AMsYAUFVNDABnYQN8XNcDPcDDfDzXAz3Aw3w81wM9wabg23hlvDreHWcGu4Ndwabg23jlvHrePWceu4ddw6bh23jlvHzfODrw95CVFgBQVcEXuGXp5ury1Pt9eWp9vr+WXRC2ei3z9cWMAK+lUMR2+vx5AvATt6WZD5KoyXBQVWUEAFDWygL6auYPBSn7NLvNTnvGIv9Qk0sIG+fFodBzgTz5XgE3M0e8WtCqiggQ3s4Mg2nDHvKAdYwJptOJeFT1QQN8FNcCPmOzHfiflOzHfNudOVnlR6UulJj/mzDUpPKj1JzHdivhPznZjvxHwn5jsx34n5fsa8t8HoSaMnGz3Z6EmP+bWBqF71E+g9qY4GNrCDfm2n2Ez0mL+wgBUUUEED3W04dpAJ7oGuHkMe6BdWUECmht8IXMhgDQZrMFiDaT+Z9pPBmgzWZLAmgzUZrMlgTSbiZCLOnBpeimS+Dui1SIEKLl1fHfRyJPPVQS9HChzgTPTbgwsLWEEBFXRdcRzgTPSkcKHrqmMFBVTQbzvOv9bADg5wJnpSuLCAFfSbPXNsYAf9KryrPfxP9PD3pVGvYAqsoF/FdFTQQN+U8xHy8L9wgDPRw//CAlZQQAUNxM0/EO7ToR1JJekhOr1n/APhJ2mSK57YwA56+33EPMRP9BC/sJyfMVevhbpIkjTJklpSTxpJM8g/E35Seoz0GOkx0mOkx0iPkR4jPUZ6zPSY6THTY6bHTI+ZHudOr8+pc6v3xAF6h62MNs/d3hN9wJtjBQX0AZ+OBrrbcOzgAJebL8P6UWeBy82XFf2os8Dl5ivLftRZoIHt/ES7el3VRSNpBq3gv6gkuaI5rpZ2vyoPZ1+o9IqpCz2cLyygt9TF/Df+QgUNbOBy83U6r5oKnIke5BcWsILLzZc6vWoq0MAGdnCAM9GD/MICVhA3D3JfQvWyqcAGupv3pP/G+yKkl05d6L/xvsrpX9MMdDfvHf+Nv1BBAxvYwQHORE8AFxYQt45bx63j1nHruHXcOm4Dt4HbwG3gNnAbuA3cBm4Dt4HbxG3iNnGbuE3cJm4Tt4nbxG2Gm3lplq1lZvPSrMAKCuirDN3RwAZ2cIAz0T/gcWEBK+gFCcXRqw+q40z0n/v142F+9FlgBQVU0MAGuq4ulJpdIlyxx/yFBjbQiyXMcYAz0WP+wpIWipsKqKCBDezgAGc2xxhNYzSN0TSuzWN+/ZSYF2QF+rX5WHjMXzjAmegb6IeL+Q76hRUUUEEDG9jBtVl/+CRYMX/hWdPig9XdwudDF1BBA1sOQGewOoPVGazBYHmgX1hBBmswWIPBGgzWYLAGgzUIvQx0OyZTw0tfDp+eXvtyYQO9o7wfvPzl8JZ5/Yujl3YFFrCCAipoYANdd00NP5cssIAVdN3uqKCBDYyfZjuLvi6ciR7oFxawggIqaOA4t83MC71OkiNpbaWpU02SpNX+tedgXukV2MBH+9dvp/nRYxfNoBX1be1TmB88FlhBOTfyzM8du8iSWlJPGkkzaIX7RSWpJqWHpYelh6WHpYelh6VHS4+WHi09Wnq09Gjp0dLDo7t4x3t0XzgTvZ5mnlhA30z0HvN6mgsVjF1O8wq2QHfzkegDnIl+b+/j6Pf2J9UkSdIkS3JFnyVexFY8TryKrbi7l7FdqKCBPo2GYwcHOAPParYL3W06VlBA3/8pjgY2sIMDnInnF2pPLGAFBcSt4FZwK7gV3ApuFbeKW8WtekHg4aiggQ3s4ABnohygFwaKYwUFdDdvg4f/hQ10N3Mc4Ez0WL/Qq+ydepL/pRNnoh1gASsooJcvemvNwAZ2cLmtfQg7y99O9J/vC5ebeGv95/tCAd2tORrYwA66W3d0N2+v/2ard7//Zl+ooIFehlkdvQ7Tr8JDWb05HsrqbiuUAwtYQXfz5gwFDWygu3l7vWjVvDletWo+7h7x5s3xiDe38Ii/UEEDG9jBAbrbaoMXxAXmJPJCuEAFDWxgB91iOs5E/yW/cF3QWsgxL5sLFFBBAxvYwQHOxBXmgbhV3DzMV5GeeYldoIEN7OAAZ6KH+YUFrCBugpvgJrgJbh7m63VK82K6ttanzIvpAgVU0HXVsYEdHKCnfR83zwQXFrCCAipoYAN7osd8O7GAFRTQr6I5GtjADo6rIMrOcrsT+wEWsIICKmig986JM9Fj/sICVlBAb+9wdAWf9h7S3Wefh/SFFVwK3YfbQ/rC1Q/d54OH9IUdXO3tPvIe0o5eRhdYwAoKqKC7qWMDOzjAmejRfWG5aiNNzzgejgY20HXNcYAz0eP4wgL6VTRHARU00K/C3TyOLxygF2evAfASu8ACen22X5DH8YUKult3XG5+s+8lds1vzb3ErvlNvpfYXeg37Be6rl+bx/GFBjbQdf3aPGJ9cvk5XIEVFNDAcZUX21lad6KX1l1YrqJjO0vrLhRQQQMb2MEBzkT/afZ483q6QAUN9Iv3wfKf5gsHOBNHVGeb19MFVlBABQ1sYAdHotenq3eU16df6Ffh/evBe6GBDfR3BE6xAc5Ar5wLLGAFvfbeHBU0sIEdHOBMLAdYwAquq/CHH6+RC+zgAP0qVgR4jVxgASvoV3GiggY2sIMDnInn6yYnrrHw5Tavhgs0sIEdHKDfRC7yKD2pJNUkSdIkv81zakk9aSTNII/jk7zlJ3obvf/Pd0pOHKC/2LNmvVe1BRawggIqaGADOzhA3DpuHbeOW8et49Zx67h57PojtNe6BRawgt473VFBAxvYwQHORP85vtDdvDn+c3yhgAq623RsYAcHOGOw2hnRJxawggIqaGADcz54BVz3JUyvgAus4CrM90dbr4DrvkLpFXCBDezgegPAF/+8Au7CeoAFdLfm6G7DUUEDG9jBAc5EOcACVhA38Vd1/DJXnAc2sIMDnIl6gAWsoL8XpI7u5lfsr65c2MAODnAm+vsrFxawggLi5i+x+MqLV8AFdnCAM7EdYAErKOByqz4JVn4IbGAHBzgT/Y2XCwu43PwJ0SvgAhU0sIEdHOBM9KzhU92Txkk1SZI0yZJc0XvWX2pZ53aZ17MFeiY7/wMFDWxgBwc4A732LbCA3gPD0XtgOjawgwOciZ4DLiygvw11OAqooIHLbVWVmlfEBQ5wJnoOuLCAFXS36uhu4mhgAzs4wJnoOcDHwiviAisooIIGNrCDI9HfU/MM6bVvgQL6VZijgX4Vp0IHB+hX4QN7vq12YgHXVfjqk9e+BSpoYAOXmy9Pee1b4Ez0aL+wgBUUUEHXXfnN69n8TAnzyrXut4FeuRZooLfMp7LH6oXeMu8Hj9UT/T21C71l3g/+ptqFAipoYAM76G4+7f2FtRP9jbULC1hBATWveMVx91U4L1cLnIF+mlbg0vVlOi9iCxRQQbvOKbHzTK0LOzjAmehnal1YwAqu3lmVa+YnbQV2cIB+FWu4vYgtsIAVlOs8GvMitkADG9jBAc5EPyjoQu8ddVTQQL8Kc+zgAP0qXMx/tS/0q/Au8V/tCwV0t+FoYAM7OMCZ6HF8obtNxwoKqKCBDezX6VnmVWx+Cph5GZsfR2XXWV0nCqiggQ3s4LiOrrLzBK8T/cSgCwu43HyB4DzX60IFDWxgBwc4E/3IoAuX7tl9Ht3+I+wlbIEN7OAAZ6JH94VrLHyd1CvZAgVUcF3FOQB5fJ6dR3hdOMAZeB7hdWEBKyigX0V17OAA/SrWyHvdWmAB/SrUUUC/CnM0sIHu1hwHOBM95i8sYAUFdLfuaGADOzjAmegxf16Q5Mh7Tds5bl7TFtjADg4wR95r2gJz5L2mLVBABXPkz5PALuzgABl5Y+SNkTdG3hh535r2OPaCs0ADW6JPe1/49VKtwA4OcCb6tL9wXbyvtHqpVqCAChrYwA4OcF7YvFQrsIDuVh0FVNDdxLGBHXQ3c3S3ttCDYS2kNi/V6qvGsXmpVqCAChrYwOU23MKD4cKZ6MFwYQErKKCCBjYQt4pbxU1wE9wEN8FNcBPcBDfBTXAT3BQ3xc2DYXj/+g/ghS3Rf53WQmrzSqxAt/BO9bvME/0u88ICVlBABQ1cbms9s3klVp8+ufyZ8sKZ6M+UFxawggIqaGADceu4ddwGbgO3gZsH7/S57mE6fVYPBmAyAJMBOM9LUEcBFTSwgR10txNnoJdf9bUg1Lz8KrCC3t7m6ArdcSZ66K3diuaFVueweKFVoIAKuu5wbGAHc+6UknOn1APEreJWcau4eeiduOJiHCc2sCd6PdN6fmtnQdOFA1zlRuuOv501TRcWcFUcHd4lXtZ04crrh/e6FzZd2EB381732qYLZ6JXN11YwAoK6G4+bv4rcmEDOzjAmXgGjo/xGSJ+bWeI+Ah1hrAzhJ0hPEPkxJl4hsiJGf5lVFBABS2ixQ/wCuzgAGeih9OFBaygBHr50lirgs3LlwIrKKCCBjawgwOciQW3glvBreBWcCu4FdwKbgU3P0BklTA2L18KLGAFBVTQwAZ2cIC4CW6Cm+AmuAlugpvgJrgJboKb4qa4KW6Km+KmuCluipviprgZboab4Wa4GW6Gm+FmuBluhlvDreHWcGu4Ndwabg23hlvDreHWceu4ddw6bh23jlvHrePWceu4DdwGbgO3gdvAbeA2cBu4DdwGbhO3idvEbeI2cZu4TdwmbhO3mW5yHGABKyigggY2sIMDxK3gVnAruBXcCm4Ft4Jbwa3gRi4RcomQS4RcIuQSIZcIuUTIJUIuEXKJkEuEXCLkEiGXCLlEyCVCLhFyiZBLhFwi5BIhlwi5RMglQi4RcomQS4RcIuQSIZcIuUTIJUIuEXKJkEuEXCLkEiGXCLlEyCVCLhFyiZBLhFwi5BIhlwi5RMglQi4RcomQS4RcIuQSIZcIuUTIJUIuEXKJkEuEXCLkEiGXCLlEyCVCLhFyiZBLhFwi5BIhlwi5RMglQi4RcomQS4RcIuQSIZcIuUTIJUIu0TOXTMfltor6m1dkBQqooIEN7OAAZ6Lnkgtx81yy6tGbH2wWqKC7FccGdtDdzHEmniebnehuw7GCAipoYAM7OMCZ6LnkQtwEN8FNcBPcBDfBTXAT3BQ3xU1xU9wUN8VNcVPcFDfFzXAz3Aw3w81wM9wMN8PNcDPcGm4Nt4Zbw63h1nBruDXcGm4Nt45bx63j1nHruHXcOm4dt45bx23gNnAbuA3cBm4Dt4HbwG3gNnCbuE3cJm4Tt4nbxG3iNnGbuM108wKxwAJWUEAFDcw4tjM/qGMFBVTQwAZ2cIAz8cwPJ+JWcau4VdwqbhW3ilvFreImuAlugpvgJrgJboKb4Ca4CW6Km+KmuCluipviprgpboqb4ma4GW6Gm+FmuBluhpvhZrgZbg23hlvDreHWcGu4Ndwabg23hlvHrePWceu4ddw6bh23jlvHreM2cBu4DdwGbgO3gdvAbeA2cBu4TdwmbhO3idvEbeI2cZu4TdxmurXjAAtYQQEVdLfp2MAODnAmnvcaJxZwua3an+ZFaIEKLrf1dlTzIrTAnnimCnOsoIAKGthAF/NrO1/NPHEmni9nNsflVr3pniouFFBBAxvYwQHOxPNU1RNx81Qh3iWeKi5U0MAGdnCAM9FTxYX5I9G4lWjcSniN2RDvEk8VFzawgwOciZ4qLixgBQXEreHWcGu4Ndwabh23jlvHrePm+UH8Mj0/XNjBAc5Ezw8XuoUPlueHCwVU0MAGdnCAM9Hzw4W4eX5QDwbPDxcquNzUx9jzw4XLTT0CPD9cuNxWeU7zUrTA5bZqcpofwxYooIIGNrCDA5yJnh8uxK3gVnAruBXcCm4Ft4Jbwa3iVnGruFXcKm4Vt4pbxa3iVnET3AQ3wU1wE9wEN8FNcBPcBDfFTXFT3BQ3xU1xU9w8gawCquZla4Ez0RPIhctt1Tw1L1sLFFBBAxvYwQHORE8gF+LWcGu4Ndwabg23hlvDreHmqWIVZjUvZhurPqp5MVugK4jjAGei54cLC1hBAV1sZSOvSrsGwAP97N8z0E8UUEFvpDk2sIMDzAkzjgMsYAUFVNDAFm0YRwcHmBPGa9XONnitWmAFcSPQB4E+CPRBoA8CfRDoo+b0HLWAFRRQsw3VwAbiRqAPAn0Q6INAHwT6INCH5LiNM9BPpCeFnpQcN69ru1DpSQJ9EOiDQB8E+iDQB4E+lGtTro1AHwS617UF0pNGT56B3hwN9J503TPQTxzgTPRAX/U7zavdAisooIIGNrCDy23V+jSvdrvQbw889LzEbawSrOYlboEKGsjU6B1ksDqDNRiswbQfTPvBYA0GazBYg8EaDNZgsAYTkQQyJlPDU8Uqtmpe4hbYQO8o7wdPFc1b5qnC0UvcAgtYQQEVNLAlrik31zEbzcuqAmfi+SkAdSxgBQVU0MAGdnCAM7Hh1nBrruDtbf7frqnsp3td/9TP91unRDU/3Wv6vbKf7hVoYAM7OMCZ6GeB+FOSn+4VWMHl5g9BfrrXXCdANC8Zm/7s5CVjcx0c0bxk7Gq6n/d3IRfkPyjTdX2WXGhgAzs4wHlh94qwwAJWcDV91WB0rwibq9qie0VYYAM7uJq+Ci+6V4RduH5QAgtYQQEVNNDFZGH1v6aO/t+ao/+3zbGBHRyJUkBX6I4GusJwdGPvEvUJ412iBjbQh9D74YyWE2eiR8upe0bL+U8rKKCCllfs0XJhB0di49r8AM3zgvwEzQu5Yp/g1f+aT/DqPekT/ESf4BcWsII+wd3tnMqu61P5wgHORD+88kLX9S7x4ysvFFBBAxvYQXfzwZoz0MuqAgtYQQEVNHBZrHdsutddBc5En+AXFrCCAipoYANxK7h5BKxXc7rXXQUWsIICKmjR6/51w8AO5mD5KVZzLTp0r8aa6zWe7gdWBc5EPUBvjjlWUEAFDWxgBwfobmumepVXYAErKKCCBva8Ng+c9QJX9yKuwJoXdB49e6KCBnrTvc9aBwfoTV/T04u4AksqdNw6bh23jpv/Ol3IsHSGpTMsg2EZuA0s/Ael+QT3H5Tu88x/ULr3jv+gXNjBAc7As1zrwgJWUEAFDXQ3cezgAGeiP6FcWMAKCqiggbgV3Apu/oSyCqX7Wa51YQErKKCCBjawgwPETXDzZ5H1Dkg/i61WqXU/i61O9OeLCwtYQQEVNLCBHXSLNX/PCqt1xkY/K6wurKCAbjEdDWxgBwc4E88z404sYAUFxK3h1nBruDXcGm6+/LiOB+lnhdWFy2L4APjjw/Dp6Y8PFw5wiQ2fMP74cGEBKyigggY2sIMjcabFWU60ion7WU60KpP7WU50oYEN7KDrroR3Fg6t2vF+Fg5dKKCCBrrucOzgAGeiz+oLC1hBd5uOChrYwA4OcCZ6XFzo97SHo4AKGtjADg5wJnpcXFhA3Aw3j4tVct7PaqELG9jBAc5Ej4uz1xuD1RisxmD5BF8Fwv0s8Jk+YXxWX6iggd4cnxo+1y8c4Ez0uX5hASsooLv5TPW5fmEDOzjAmejT/sKa13Y+D/n8PZ98Tux5QeeTz4kz8KzfudCb3h0rKKA3fTga2FDo4ABxK7j5D9WFFRRQQQNxK6fF//zPH37769//7U///Mvf//Yv//zHn//82x//O//Bf/72x//137/9x5/+8ee//fO3P/7tv/761z/89v/86a//5f/Rf/7Hn/7mf/7zT/94/NvH3Pzz3/7P48+H4P/9y1//vOh//sDfPl7/1eLH2vrfftwNjRR43NJ+I1FeS/gwusLjvgyB0b8RqJs2HOvx6GzD0dpLic1lTM2reDzmvrwKfa2gqaBPTej1m79vr/++rLUc//uPuU0D+i+MxFpruEaiPY9E+Uaib3pBQqBI/n2Vu39d/NS38xoez5e0oOo3EnMjIakw7Wkgj7sCfrauCzw2dVPg8cP27WzcTMfi50Kd3WBlvNaou55Yz8LndTw2fF5q7DrTb02urngaju87s2zm5OPOM0LrcQv5pKHjWw37dER2FzILFyL19YVsNNbhMZfGOu8lNdq3rVirca+HdWZ4mNWXEpu55a81usJ4TlRt3FbwXd5ToZXXCncvo7++jF1n+vlBZ2c+1kdeSazVyJcTy7+me04s0/JSQj/tirqZmY/nwJzd5Snd6Lc5d0Xiy0asd3fPRsz+uhG7lFlr9MQDmRWPG8v7F1LWCsF1IVZeXshmYtURQyrHS4F9hM2Wk+Ip3Xw3olI+T3o7Da38jD4eg14mC5FtAq8ZIk+98ciG32psZqd/kuT8GTnsSUHvTwy1nBj2FGXfTwzZTM9p+Rvw2P2gNx53699qbNrxeIqNUamP/XsG9hfGZEZnrK8avx6TzfwsvmV3jsljG+NJY357g7W9wamD3KfPN5vy7QzT8vns0Prp7Nhfi3/w4GpGs/n6Wna/76WTAcd8asm3N75qH8+P9nkK3GrcjBYdn0eLzk97Yz+yU7l/nM/3TN+NrO1yaekh8sCnkf1eo+5+pCVi7rG6x0x/PJN/q7HJpernCF+PNU8z7AeNXTv8U3/XzcLctGMzS9c7jnlf/xRz32tsR2a9gJlPSPL8g/99r/ZdS46aLanttcZmpqp/Wf7s1cd2zVsaVjLq1tdL3rsWkexVLa/7o5XdjYPOvDVvb2r4QSTXzUev72kM7mrH8VpjP0P8+Mlrhjxu91+3xH7XX4e1TRXteKzzv84hbTO6j03DbMlj1/BpWePbbNbG75oPu6+mX9cy7fXI9ON37dOhucLy4Pn67qHvcpn0kU/U87kl3z4ydPm0T7et0FzleOzmHC9bsb0j67k28Nj1Gy/vyHrbZXaZmdmf4/Z7jd2DR7V8tK/zOeKO+xpeE3VqzG/y2Hca8/P7wvHxLN336Mg7ulbLe6PSBI3NqIzdM9Rjvz2j9rEbLq9m6bYduUggR7XX7bDd3ZQyKs/rot/N9LFpx2N/JR+O2zftuK+hqvkMZPV4rTG+YIbN33OGyaEsFYz34l6OXIR67DT2lxqz/r4z7LG3GdlYZBMtc/cMpbkG9Ehnz9fybTvmZpb2kfn48WtX39KYR412PJZ7Nxr98xk2x6czbB+zLFGOb9YLvlvmPI5dIszbucePpLwU2U4PyXW1B/X3prqMnGKPhZCXGuWQj9fQd83QfKh8hIpsmrEbmKfnn8fm+5NI/wWRmZmwHuPYiOwWx1ouB83Wn/ZYvrsVK8fueb/H1cynO/XHhv39i6mVJeTHvuzriynH51FXSvk07LaJzFT52deXCaSU7e9+/t7W4+lO6vvthd2uk2SfPrbFX29ylO24lNxfqP15Sen7Lm2755+jsKF5FH25IrSfI1r4gZibCb/btlnfwok7VHu65/9hJ263e3R3cOrx8eDU8gWDU+uXDM5218Iaiw8v96H6boErM5H2MV/vTu42cORg8758kxPbL4jwICSPn7yNSP98l7OOj7c5dxI39zlvX8lmo/N2l36zm/Qr41IyNUudm7z6kz2pe0UFu02puxts+8vxr+VeItvLabsbXuGG9/lO4vt0thfJVb9H5G1yonzBtr58vq8vn2/syxfs7G+7dPIgMvXNcRlVIzMPLfO1yG5r6vHgniup/ZCXN737uTqzuEyPusmr2j6fIdo/niE7iZsz5PaVvJkSH/2Yv3eHztddauXzLt3tCt3s0p3EzS69fSXv/so8z1Ir7/3KPP7mTJGxG5cvKJOyL0io9nlCtc8Tqn1BQrXf9QbTDsbkGJvyt6a7TcfBRl3fpOTdvpS/BHt2x/H8HDN+qT86/THe7NN79Wdluy+lWT7xeD7T1xrz85m+25e6OdN3Ejdn+u0r2cz0bY/KHPRoe0/DKjv9Iq97dLd7OnPr02abb2pk5cNWYz/DbpU4lv75k1T//Elqtyt1s7ywjN0z/636wm0r7lVrlt2u1L1yzTJ2mbRIXEkrT1unj33dd0XsTRE9cslPnzYvfhTpH4/L9lqG5rWMd6+l5pb2OnT9XZFc0F3ngr8pIvncsY4qfi2y3Zs6+NFe/DQ439WjbWXuFsb9RGTmUrmU+aYIe22Prbb2psjNGr2y26K6W6RX5sdVKft2+JmEZzvG0/7Sj+24K9KOd0Xyh+aB7T2Rxwpq3qg+uO9kdkNsmdjm843EL062wWR7juNfE2kTkU0A3v8Nf/k8VHdbVT1LS57rwb7PsPZ5aX095uePh3sRyYUdlf76QbXuNqpqz83Mx+L/66vZvR5188677naq7t1bbSVuvoJSvuAdlPL5Syi7fRDxdaNrA8Je/4jfH5W+GZXt7Mi90NqHvqWxCp7zYmZ/V+P4WEO4uXrOY7+m0ahQGa81dm9K3Xwi+onGrSei/bUok0zb+FzjzTkmvI/yuNl7Pba796UKr6qWXndRt2tIz8L2x63m61S4e7nm7uDuNb5gcHvhWjaBu9ufKkcWx5b15vSbnZr3uzI2s2y3g3Fvk7vuXpsqM0vLHvnj9dPZth1aeCdcXrdj+5utuV2nuilP+4lIFjE99rvbuyLslOvu7kG/4OVq34L6dB90fzkzs7s9P8P/eDn2FZfTfufLsZL3y/b8GP/j5YwP73X3zbCcro8diM19qh27sMkpX59favuuO6x8+oS4b0UqPAfvj63YvT1VhSt5Wnlr9yXKMVq+xHGMoe+JzPG09v9Ug/grIqtKJ9P78bR29iudmi8sPm42N506fleJR0fWSafa60sZXzEy4ytGZnzByGwjt3UqEEd57zeiUTqwPlv4rki+5ru+7PSmiOUDwPpmxpsimneJ63sHr0Xa+ILfiN0Oz5f8RqwvI8TlfFOT8f3l9N0v+Pp2e17PfCoh+IWO7Zp3V103hVn1J+9R3VqJ6Pr5SsRut+nmSsRO4uZKxO4dqLsrEdvNppvHYcwvWIm4PSqbp8T97Li3ErHTuLsS8RON42ONmw+a4+6eqL3Xp3dXRPYa91ZEdm9S3X1o3mvce2jeXoseOT+et/C+15jl927HvZWZ2xpvxtzdlZnde1C3V2aGfcEEsd95YG6uqsz5Basq+4bcWlWRo3y6qiJH/XxVZduOm6sqP7mJ6U+HdDy9BvndsSfH/j23TGXrnbf6jsjNR8SfXMzNdmzS4foWUdyR1WOzztR25cc1lw+4/5BfepCpnFhwyHzzaUif3ixpr56GpNTPH6m2Il/x+H+7R+QreqR9RY+0T3vkJzvdTxdzHM+b1L+2YX5Ie5J5XQFQD/mKffetTBu5QLu+wPLykWonwWPZ+ijKexI8H875cnT25TcH528eb1cTzafDfjY1PPtXIfLefXxzpOsvvQpxlJ4i+lpEdi9DlZ5v3D/w5Y2E1M9rVUU+rlXdStx7Tr1/Ja/vM/c9ytp9mfP1YYXy+Y7oT9px64VM+XyvSmSfy3IhRDcvZMrne1Xb7ngsQRwsQYy3urQW3rYtr++YRT+/UdWvuFHVj29Uf/IuVr6uM6ocr7PY5zX7+/Neb5Xbi37+aqroxwXVW4mbKez2lfT3OvRetf1W4l6xvezuDG8+J/9E495zsn6+grq/nbtXsbs/zPdere1W42ap7fY0zJvFqbc1NrWpe417pak7jV+4Q96WDd8rTN235O4c2fbJzcLU/bm+n1/N3bm6v5Z7c3V76urNuXpbYzNX9xr35qqOr5ir+169V/98/4D117dS232pO9Uc24Ofvyk6fq4p+W6K7falRPKR/3E//nKhbSuhh/z/LrN/JzE/XXjYnm7ORr0+ssfrzhhfUP4k4ws+LiEfV6bI/pWf3Ol/LsPQ+wp5J/bYZ3+tsFt9sZwYxZ7O0f3hpPftyRyUgliV1xrbo/1uHma3Pyj13oGcPzkivR5PV/P6WGCZ5eOY3Urci9n58RzV/VuLeYs8yqt18d1z4L1ZvlW4Ncu3NZM3Z/m+7vLmLN/uRN2d5dtP0uQJy7XW56Nr+30Nyz6tZhuNbaT0PJGr2DheH7Gs+5P97kTKXuJWpOjnm0i/0B3P3xv6pVPrlXoJI/nUtzXG5xrPxZu/cnq+tFzykL45cX5bzD6Ebden8P9RZNcS9m7reFpW+zWRkV9hquP5XdRfFKEl1b5A5GlJ61c+B2Atl+ceq1vzvcFR0ohaH++OcB7YLM9HrL//kQV9q0eU7Q6d4/XQ3P7oxHgdNro72O9mHZrWbVY9qDN6+sbCjw3ZLSoZx4vZ80Fn4zuN3dE+Sv3GN0dhffdDU7eHJR9Px2Dra42+38GtTzu49vpq9sfQ5oPD83m4P3brVmQ+1YBtJsn2OwslJ0lpdffju3sku/WA+5N2pMRqx+aLQrtHCELvsWjwNEnGt/dW26J2LXxjqbxux/aLIJKVU/bNcce/9DWPfMp9YHtPg12xtb68ubHajYzmoSUP1rdV+GJU080XX5p9+gywVbj1DLD/lsd8qr6YYi9vvXfztObpgLO+vtPcS2TVxKytvvWYK3nuSVnfEn5vZPvTHky3svt+1seLU3uJe7fv+vHi1C90R32/Uzm00eTNoOvcVz34aTn3BxX7/MnKPn+yst/3yerb7ujH20PTn1TKS5XdUWP3MtlW4d5qxvY7PBye9OBNTtb2+dLOTqJ0DqJ7cNH3RHiwenC1N0Xy7PYH21t5dVRuQ4Zsgnf3ZaEv+kpSzXvEKk8lGD98JemuRqnvaVh+TbRaK29pPNqfeeh4fij6XqN/vmK//caRcYJ8/+aO+Re+k0SRr/Xnk0q/09Ddyzk3E/NW4l5i7h9Xku47I5dVbDy/qvxDZ+zKpnmR7XGvKRuR3auXfNuwHC+f7LbNsKyaavZcJvRL12L5gv9jecXeFsmLacd8WyS/sdje/J7X3W+CjY9/L8fHv5fb75LdXP3ff9vs3uq/ji9Y/d9+RquOp1f7n98y+G6yf747pZ/vTunnu1PbzuB5XWUcm86wzzvDPu+M/nE23q2ScS8m/c0P3wmHNT80Xn8kyY7j8y16O77gU+jbr0a1Qim9bdohX3ExX/HZie3LUiV/bUvV52Ow+3ct2Q0wr58+rTz29gvNaHlWe3muNPqlr1fdzYT7T2BZ4zTN5y2MHz6Btf2OVn6MeD7/UP6qSFajteequF/5GNfzK0bH88em9Zc+Czb4LNh893K65If0+tPu8K+JDDp2PNXnyg+7kO13FvmmIF5ef+dsL1Lzmfvxm3+8KSJ53kl9/r36YYj3H0u7d1T5bs/t3m3ZXuLWfdn+Sm7emP2kO+7dmVm1L8hH24+L3XtLyb7g61P2+den7POvT9lXfH1q/7m2W28pmdTdXsq9k+y332tr+XLhA58rhe0XRFg6eGB5T+Tui0r7lphQGtve//zcaGyoPp1V8MNbpHsZvoD94KdylV+VyY5ZkpvTm7c9I5Puff69+aXu1TwHqj7vmP0osj3B7dabT7voufky2V7j3stkptuv+9x5mcy23226+TLZth03u3Q/tHnL+RhleTdySmUnsoi+O+WrEjm1vR2ANfcBluQmcra3A0+LVvLuHUW+fv2UlH6Q2N+5Pn3R9rmG5/v7Rft4QWAvcWtBwKz/rhI3zwrYd2h++f3Rt/qyQ3cH0d98Cm9fUPVv7Quq/rffKe+5V/XojtfH8+00Rs2yqsem1XhPo+V5VqO118e/WWufTvRtM3oWqozHnuqmGeN3bcbI1e4x2qYZu43Zm2G/lbgXs/3jE0+2X8M4aj69F6mvp9f49Plwq3Dr8XB7vsjNp8Otxt2Hw/4Fr6bsPwt+8+Fw3H3y3zwc7t6fuvlwuJO4+XA4vmINQz5/OPyCE8r2X1q/+3C4Fbn7cLgTuf1wuG3J3YfDnxx1dPfhcC9z++HwJzJ3Hw63PXP34XArcvfhsOjnD4fyBQ+H8vnD4e534ubD4f6lqpsPh7t23O1S+4KHw/1cvf1wuJe5/XD4E5mbD4fbe4Fbz4b7u4k7j4bj463AdnzBMdTt+IJjqHfb3o/tgnzLROfzTu+4rzGpIygqrzW2JfeaJfdWX2+/j/npneZW4dad5vbd45t3mluNm3earXzJtuh2V4V7qzFez46tSB2cyzW6vCnSM2DqriWtfsGjf6tf8Oj/kz7hRm8W2VyObkfn1uHv21MlNAs71Y7XH8Ruu5eqbp793r5gt6p9vlvVPt+tavL5t3Xbbljunf3edptVd89+b1+w8/aT2XHr7Petxs2z33+mcXysce/s9yZ3zzq39/r05tnvP9G4dfZ7088/mPYTjVsPzvtruXf2e1P9vdtx6+z3+xpvxtzNs9/b9vylm2e//2Sy35sgtwPm3YG5d/Z7s+2HqO+d/f6Thtw6+72Zfvqg28w+f9DdtuPeg+7P7mFunf3etoeM3zxzfStyb7X8Zxdzrx3bd6l4YVeqyXtPQreekvdPQreeko+P23B82ob9K0fcZtt4fib8hdeWGq8+tSnvaYx887k+nyj+a68+5dnzD3x9Lbr7OsHd96e2IvfOR99L3Dof/ScSd85H345Kz9+V+rwB+0sj+42GvqlR0ZDXg9I+P9mvfX6yX9t+cOpziZtvL2z7k9LY/nSUzK+NSd5g1z7fzBzP7XhXY+T90wPf1XhagNlpfJzN+8fZ/CfnHaTGrO3NIxPypnbWLi9vFD7tif0BFHd6YnuoB6Uj1p/f3/iVg0H46qYNKW9q5G/jA988oGQY7Xj3oJSRj0wPuXcPSik8qdS3+2Oi8Xpctvehxoto1uULNN47wOaxVpor8s30TQ12Bvpmju2/MMt5XMN2Ry3sjp+aecsyjuP1yx99e7Df09W0aS/3r37WEj5iUnYt2X5EIG+fHiP9dGT1/XYMjt8eR+ubdsztgmt+OXSU1zWSfffWhRi7R0+bLt8tl26nyOCBeG7O9Oi7k/BuT5EiXzBFftKSe1Ok2MdTZNeO21Nktw91f4qM33OK2JELhI9tjte/EH1XSG81zxK3+vxz9/292O6xpdd8m74/V2yOX7iWPAzTjiGba5EvuBb9fa+l5IL6A9/7tTPJ07hMan9Po9KOal+g0cqbGlnsZHIcb2pk5fpD7t0+zaOrTTbxstcQNPT1HcT+hOJ8k7U+r4Z9f7pwl48PSdlL3Hqw7dJ+V4mbB2Dt+lM4hEf6senPj49I2bVCebp+Ptboh1Zs941uZrDteeD3Mtj+/OtKkWO1l9ey1zC+HtRe94ce+/OVbh7EXT9e29tK3Fvb20vcWdvbDuytp/T9UfF3ntK3n1S41Yb9RxlurZlsTwK4+4HOn6jc/D6n9C/5PudW5t4c3UvcmqM/kbgzR/cfp7r5aZqtxucfQLo/R372Qaebc6R9zRxpn8+R9vkcaR/PkV0t0b1P/fW2LSe8VVnV2/5BP54EN5VVW4l7lVX3r+R1ZcSuP+996e/Y/tzf+dBf73crTTYjste4VVhxvx2vNbbz8/nLWOV1Kz6u2ttK3Jxb4/OqvT4+rtrru89JTTUOIjpef0iu7wrU1xFGKTJfZ9C+++5z7ZnOH8+T7dXjyrZPSx4bXsvT48oPfbqrHqTQ7dgo1P0P070vDe5H5uYv7V7k5rcG9yI1nzhmff56yK+J3Pti4U/65N4nC/ez9eY3C++LbD5a+BORe18t3Ircv4H5Sdfeuzm8nZxflpr13QtRt77q8JP+uHt3+TOZm7eXffsW7/3R2cncu73cS9y6vfyJxIe3l4Uqh9Kfj5f+/m2V3WbUvR+KXSsm+fn5NuT7Vmwl+tMLvO0ticEbr8c3byB91xflC94wGeUL3jDZhX7N7Y61grq5mF0542NJjA+ydHt5xuxPRDpfl3kug/leZHsTQKn60Xdjsz0EgLPh29MiWym3u1V73nRrH29Ns+fPS/XnDyF9fyn1C45FHfULjkX96fD2p+F9lQrHbi/qa+aIVWo9n+tIfuhY2z4F8CrzZrfyJyKV2962E+mfbwKP3dtM9zaBt+24uwk8dq9E3d0EHttv/t7aBN6ngGJPX+6ypwLtOb9ryGa65lx9mmUqtxNAzYdulee3CPS7+m7Zle/fOwJkbBfs7q0LDemfPrtvJe49u9+/kr65ku0LEbeOABlf8CbTT9pBseZR+ut27D61c+v9kLHdkbp5Esle5OZJJFuRuyeR7Fty8ySSvUgt7EVvW7I7YeLx1JE3VQ9+fSjDz2RunoryE5m7p6L8TObmqSj7Dr55Kspe5OapKNsIuvdm0zaQb56Kste4dyrKsI9PRfEi3Nc56d7LYtt23OzS/dDeOxXlJ3P17qkoP5G5eyrKz2Runory+dr12B3gd2/teuw+i3j3jfP9irGxYny8vMvbSyh33/qeBK981adF+B/uNfu2PCVvveV4UyJf4m1PN4q/ciHPJ80/vSfwKxIt1yG/ff3tFyR6YYFo2xftdxZ5PPcfPGeON0UoSH8smtU3RWYu0JTnNwV+aXA5EqX292JFsiTtMVPKe63g1UY53roQHfw0PH9ur8zba3eFFcSi451GlNJ4MhxvRVsRvgop871WWGVhR/t7Eo2HoTHfuxAmp9T3LkT4hqLYWxfCebBd2zsCM0sdp713EUdWB37zme8fIn3q7zm7Z76IM+t7HZFTe3b7sCffE5DKWmN9fjwYcl8iP4j3wPmxxNNN6C9JZHRJfeqLX5GQvEF50PGWhObGj3xTJfArrWhPn5+vn0u8N6g8nchzyvylvuC9eJX3BlWFE1ekvydROIDG3hzUPB/9gW+1ovTBl2ufNhd+ReLpC7rPr4V+LzG35+lWsv/zh8nLuN+MXO19oL13Jfku1mNRbbwnkTO8jPeCpIzJ5uZR3rwQHr+P+rFEebcVHYm3ov1xp0tfaP+4Fe8N6r2XKLZ3WERZex6P7z69tZNo+TRTmsy3JIbx5W57rxUzv2Jcj6O8I/HY68oniEPlrVZQY7K+2f2eRJZ1PvLXWxfyuOnncKf5Xisklw2KHvqWhD4dIPS8UfadxJTf9Y7zccueQ/LNzcGvXMmRV/L8ttO7/fm9xP9+/N8//dtf/vEvf/37v/3pn3/5+9/+8/E3/2eJ/eMvf/rXv/75+r//97/+9m9P//af/+9/xL/513/85a9//cu//8t//OPv//bn//Nf//jzUlr/7rfj+p//1Va+WnU6//sPv5XH/+91yh+6lOPx/8X//eM5qc3i/379BZvW/vDY+inrHxT/L3QpaP3f/7Oa/P8B"
|
|
2055
|
+
"bytecode": "H4sIAAAAAAAA/+29CZhdV3Umuk/VrVLdUqmuSvOIrizLgzzKEwaMg0d50GgNnmNLsizLmlWlEZuEAI80iTsQOjSETshAYsIzEBIyNt3pEEhCaJI0pAMNSRMSOkDC4DB1kkfC48RnVf3113/2PefcVdLFqv19Ut179lr/Wnvttdcez75JeC5dkP196KHtp0Z27XzowJGH9hwY2XXkwPZ9ww89NHzywM6HDh3Zc2z7yK6Hhke++39Km2Q8tVAxJRWFr1r6HH1fxtcFeN3f/dcMxcT3kR7l+H/wFX0MWIo//Bt/EqrKf678KU/F8odeUwT4URfDnfbdf9Ph8xqSX1H/V7Sr/6yIzlY3NwF9MxRKNeO9WfF+Y/gTv/iRp371g+8YefoX3jT0qRlvmX5x/w+85jVfXfyVJT/57Gt+3nhvAZ2SUFh2r/HfqmRf/xvd9z323n8+OH3Nq95z/FP/a/3RGUu2f2DZD//CfR96w7IvPvT/GO8axfuFH33rDzTe8+M/07zoo9/sXfNjX3ro67f3XPupjz6x8Pd+6NtffPaNxnub4v3Yfd/+y/c13njqxFO/9fJrL5i9/Zk3fuIf/u4PPvLuxtc/+67Dn7jaeG+HMtdCOT9O0x3V+Efb8Z3V+LuMfy3wV4kj66rxzzT+9fCwaR9e+fZ3/OUNT3308r/5dv/r1m1/9Ykrf+Tjd3/51IKnV/6fx9+15Jkh492geP965KY3jMzff82X+/7kqdU/u3jpZ77x9Ps+/62Tu6790ue/8OvLv268GwXvgivOf9GhN//pnL+44JxPv+y/PXPpf1j4jXOv+4vfvO1nn/3nD/9jGKuzTdXKPGrzu6rxj7bRzdX4u41/CzxsxnkszIyWfWs12aP824rLttRjvHdr3uRV5wz/x/pTyboP/NAl7xvo/8AXb3jbjTd99COvft2yxjNvM957BO+q6+rP/sLrXvGa8FdP//2//9aq97/skqEX3DB06Z+99c8XHzhy/8JnjfdeExRKlXmJ8d8H/KR7NBn//WGi7kV5H6gme7R9P1he9ijv95fnHW0jDxlYKGXzUV95uBp/3fi3V+PvN/4dwF+iL2wa/85q/Jcb/yPV+Fcb/y7gL1H+lxn/o9Xk32D8u6vx32r8j1Xj32L8e6rxbzf+x6vx7zT+vdX4HzH+fdX4dxn//mr8jxr/gWr8u43/YDX+x4z/UDX+PcZ/uBr/PuM/Uo1/v/EPV+M/YPwj1fgPGv/RavyHjP9YNf4jxn+8Gv+w8Z+oxj9i/Cer8R81/lPV+I8Z/8ur8Z80/ieq8b/c+J+sxv9kf3huvrx9/nMP0jn0uVnm0ZE9+/aMnLxheHjXkZGbDu4/tH1kz459uzYc2b5z365tu44M7zl4gAET+n5TzvNUzoLxctbsGtn63KebDn53aeXESA/hJvS9i7530/cafTe8nhw+5mmVbG2gl3RsFmPfOJDRTyN9ELuP9GyGQmlpQnghjC9nIPw66VJSXpIQnsnj8lmdWdnrQpeGyGMb14WcupDTEHn7HLGOOWLtd8QaccTyLOMRR6xDjljDjlgHHLF2OGJ52t6zDR3vUKw9jliePuFpe0//2uuI5dm2PX3icUcszxh9yhGrU/tHG2Pb2AHHGknOX5PDz0xOnbCqjntUufqEvBj9tAh9f0H8dFzdyD5n4+qbd+04unvtwd2BEg91b8lRcQnRbY2oxrgJ/ePnS+hZt6DFlBZvXvY5K96tu0Z2PrZl++7dux75biGHmYORbs55zgNSpLHBeD9p2gyFUlcRp0T8OulS1SmV06jGllp1VvY5s+rag9sfuWn7oeGj+3bxNAunCGwVRMVnqk4T0AyfdRPdzfR9reALAjvNt5oboOfNUCjNMK+YITItbxCwp1FeA/KwNjl1C/1N5xRz9/wxXKZjfbA+BilvOuQ1QDbXa7+QY/p3CfrphNUv+Mz2reR1Cz6elsamzkVam5UjTQ0hw2RPYlSY0+lRwco3vZq82QnxozzENH3M1gMiz7CsHfbmYBlvjejfl/1tEF2a7icZA0JffGb2SZeR3kO6o23ZT9qxI+KZXvgM8euhLb9MYvWG5WM/qRhjZxWxO+rDMZlti3GvNwfLeGtE/7vZ30aYGPfZT2YIffEZ+sn7SXe0LftJRTveUNRPDL8e2vLLJFZvWD72kxnV5L2siN1RH9U/o22xD+zNwTLeGtH/cfa3QXRpYj8ZFPriM/STD2ef+3L0bYZC6bgat7CfoV3KHJMo6meGXw9t1XsSs6Nqb2rsZbwNkcdLyw0hpyHkNETeMUesEUesxx2x9jliHe9QrEOOWMOOWAccsXY4Yh12xPL0+060V6wfKouVJk9fPeGIddARy9NXPcu4xxGrU9v2E45YOx2x7MgDj/MMP019YWLbKzs3QTzTE58hfp10qTrWUXZRY0Yr38xq8oYS4kd5iGn6mK2HRJ5h2Upibw6W8daIfn5m0AbRpYnH1ENCX3yGY2qrxEGhL68vlPVH5GcbIR/7Yzv1hXimJz5D/Hpoy/+TmH8ou1j5hqrJm1mkflEfs/UskWdYs7PvvTlYxlsj+vPJH2eBTuyPs4S++Az98ZxkvO5oW/aTina8paifGH49tOWXSazesHzsJ7Oqybu5iN1RH7P1bJFnWHOy7705WMZbI/qryE9mg07sJ7OFvvgM/eSyDLcvR99mKJa4jRgGYqNditdD8g9F/czw66Gtek9idlTtzco3p5K85Fn2DZSHmKaP2XquyDMs27/szcEy3hrR30h+hjLYNywP9cVn6GcvpXiEtmU/qWbHUdVb+onh10M7fjnmJ6reVHuz8s2tJu+GInZHfczW80SeYWVbfuP8BLGMt0b0G8hP5oFOHI/mCX3xGfrJHRnuoNCX199j7QVxG4Lf6JTPlYh7D6k6LcF/2PjnVeM/YXU8Hx5ye1oAz0v42+qi7cnw66RL1fa0gORx+XgNdqHQpUF5aXoM6DivWzzrimAddMTa54i1wxHrcUesw45YexyxDjliHXHE8vSJvU5YKk62o9dxR73mOmGl6Zgj1glHLM+2/YQjlmcs9GyPw45YnvX4pCOWp0942t6rbQfnMnr6xIgjVqfGCU+9zoYx01SfduZs79ke9ztieZUx/TzPCctTrzR5jSe8y8j7dzi3TLK/fUKHEvPW6xPCMz3xGeLXSZeS8pKYXbB8PE9eJHRpUF6aeJ68SMhZJOQorIOOWPscsXY4YnmW8ZAj1rAj1glHLE/bP+GINVWP5bCedMTy9Im9jlgjjlie8eu4I5an7T191dP2nRq/PH3V07+OOGJ51qOnf3m2IU//OuaItccRy7OMnTqW8yyj53iiU+uxE8dy6ed5Tlhp6tRxjucYc2o88fxoQ55xwlMvL/9KP891wkrTSUcsT9t7jgGsr+VzY4afJnUOpcSa1PKE8ExPfIb49TCxLqusgamzReoMWptrfM2E+FGeWrtUa27cJy3OvvfmYBlvjehvzQql2gaf0SvqN+nZqxuyL4NCX25zRc90qXOEbCPkY3+sWF/dRf2R12Qr+n90TVbZpcyarGfMQ6zBMNHG7e45zRXlGRB8XM+oXwm7F35XwfDroS2/SmL2V3ax8i2uJm8mxwqUh5imj9l6icgzrOxXY8bFHcQy3hrR76C4gzI47iwR+uIzjDsPUtxRbaKq36t4+nyTMyD4uH1V9L+eou3L8OuhrfacxPxd2UX5u/EqP2X7F/XT70Us87/FETmxuKLkIP/iKTltyRkQfNxusV6Lt6Pkr4q2W8Ovh7biRBLzW2UXK9/SSvKSz3BfhvIQ0/QxW79A5BnWsux7bw6W8daI/g3UL6IM7hctD/XFZ9gv/mjXeN35HsM0tWfH0CjqJ4ZfD+345ZifqHpT8c3K94Jq8gaL2B31MVsvE3mG1cy+9+ZgGW+N6H+a/GQZ6MTvzCwT+uIz9JO3ZF/6WujbIq1Xti7B/9m+MNF2Jfh/po/oS/JfaPzLq/H/pvGfU43/FuNfUY3/143/3Gr8rzT+ldX47zH+86rxP2j851fjv8D4L6jGf6XxX1iN/wvGv6oa/23Gf1E1/t8y/our8b/B+C+pxn+T8V9ajf+bxn9ZNf43Gv/l1fifNf7V1fgT478S+MusERr/1dX4u03fq/Ch0Mnwra+6AuiTnL+GxXkmq05YJXVPYrqjfjwuvgrkYRnzsK4qidUn8qrUyZUhv1yIPxDRhfVM006ga6fMadrrhJV+XuqElaZjjnq9wAkrTY846rXMEavpiLXcEavXEescR6wVjljndijWSkes8xyxznfEusAR60JHrFVOWGl6uaNeFzlhpemoo14XO2Jd4ojl1Xekny91xLrMEetyR6yhDsWy8X2b6xW3t7le8eI21yvWtblesbnN9YY1ba433NzmesFaGyufDw+T7K9aCygxbl+fEF4Iev5j+HXSpaS80fnPBSSPy8f7VhcKXRoij338QiHnQiGnIfKGHbFOOWLtccQ67Ih1yBFrryPWDkesI45Y+xyxjncolqevHnDE8rK96hc7xVc92+MJR6xObY8nHbE821Cn2v6gI5ZnnPDsaz1jtKftPe3Vqf7lOTbxrEdP258NceIJJ6z0c9MR6xxHrOUdiJWmRx31WuGI5Wn7OR2q10pHrF4nrDR5+sRSR6xzHbE869FTL09fbTpiedkrTY85Ynn6qlc9euqVpk61l6evnueI5dm2veJXmp50xPIcf+13xPJcU/Ack3vOFTzXHm18b+vYKyEvyf62uYY/mBCe6YnPEL9OupSUF13Dx/KZXdR5wxLyZhSpB9THbL1K5BmW7Qn35mAZb43ofyUzbIPo0sRnk1cJffGZ2Sc9m/yu7vG6o23ZTyrasfBvhRp+PbTll0ms3rB8vNezSujSEHk8Ji5qb1V3xxyxRhyxHnfE2ueIdbxDsQ45Yg07Yh1wxNrhiHXUEcuzDXnW4ylHrD2OWCccsTzbtqd/ebYhz7h6Ntj+iCOWZ4y2WGjvj+J4po/klB17I7/Rtfm+y11tvu+yrc33XTbYuOhieJhkf9W7KCXGaK9MCC8EPSY0/DrpUlLe6JjwUpLH5eMx4WVCl4bI4/M/lwk5lwk5DZE37Ih1yhFrjyPWYUesQ45Yex2xdjhiHXXEOuaI5Wn7TvXVE45Y+xyxPP3LM+aMOGKdDbY/4ojlWcbjHYrl2bYPOGJ52T79vMwJK02evtqpYwBPrKl+e6rf/l7pO6b67al+e6rffn7avlN99aQjlqe9PGOOp+0POmJ5tiHPfrtTY3Snjic8y+g59vWsR0/bnw1x4gknrPRzryPWhY5YXuvk6edVTlhpetQR6zEnrPTzOY5YcxyxljpiXeSElaazwfZNR6zljlgrHLE87XWJI5aXr3q2oTR1qt93ahmf77HQW6+pvuN7v+9I025HvTzHcp72Os8R61xHrOWOWJ7t0dNendp3POmItcMRa78jlueejuc6gOf6hOf5HH5HBs+GJdlfdWdyKqcZCqXpCeGZnvgM8eukS0l5ScwuWD6zi5X9cqFLg/LSxO+aXC7kXC7kTGFNYZ0pLD7LafhpUneal2hv5xZt34ZfD23FkyRmFxX3rOyrhS4NkcfrhquFnNVCTkPkHXPEGnHEetwRa58j1vEOxTrkiDXsiHXAEWuHI9ZRR6w9jlie7fGEI5anf3na67Ajlqd/ebYhz7jq6ROecbVT27Zne/RsQ6ccsTzb49ngX0ccsTzHAPzuHI6X+d25smN25De6AcGXZH/V7wiVGEO/ISE80xOfIX49TCxzlTG7sr+yi5X9SqFLQ+TxOqz6LZwrhZyGyBt2xDrliLXHEeuwI9YhR6y9jlg7HLGOOmIdc8TytH2n+uoJR6x9jlie/jXsiDXiiHU22P6II5ZnGY93KJZn2z7giOVl+/TzMiesNHn6aqeOATyxOrXf9rS95xjAM0Z7jic61Ven+u0z16dNjcnLYU2Nyc+cf02NC8+cf3XiuDBNnvbqVF896YjlaS/PmONp+4OOWJ5tyLPv6NQY3al9mmcZPce+nvXoafuzIU484YSVfu51wkrTo456XeiElabHHPXy3B/ytNd5jlhzHLGWOmJd5ISVJk+fOMcRy9P2Xm3bsz16tqH08yonrDR5tcc0nQ3+1XTEWu6ItcIRy9NelzhiecXCJPjF6DR1qt93ahmf732tt15TY5Pv/b4jTbsd9fIcT3jay3NMfq4j1nJHLM/26GmvTu07nnTE2uGItd8Ry3PfynOdyXP9y/N8Ib87i2dbk+xvX5jol6mcZiiU+hPCMz3xGeLXSZeS8pKYXdQ5aSv7VUKXBuWlid9tvErIuUrImcKawiqDxefHDT9NfWGiz5ZoIxcXbZOGXw9txYAkZhcVq6zsVwtdGiKPxyhXCzlXCzkNkXfIEeu4I9bjjlgjjlinHLH2OWId61C99jpi7XDEesIRa6cj1pOOWJ72GnbE8myPJxyxPP3eMxZ61uN+RyzPmOPpE0ccsTxtv6dD9TrqiOXpE55jE89+27MeOzV+efqXZ3vs1BjtieXpXwccscz2vIZg+GnqI74klJo7LU0Iz/TEZ4hfJ11KyktidlFzWCv7NUKXhsjjswHXCDnXCDkNkXfMEWvEEetxR6x9jljHOxTrkCPWsCPWAUesHY5YRx2xPNuQZz2ecsTa44h1whHLs217+penXp716KmXZ5zw9AnPejziiOUZ7/keGhwb8T00ZcdnyG90A4Ivyf72hYljlBLjpdckhGd64jPEr4eJZa4yPlP2V3axsr9Q6NIQeXym4YVCzguFnIbIG3bEOuWItccR67Aj1iFHrL2OWDscsY46Yh1zxPK0faf66glHrH2OWJ7+5amXZz166uUZVz19wrMejzhiedr+eIdiecaJA45YXrZPPy9zwkqTp6926njCE2tqDDA1BpjMuDo1BpgaA0yNAabGAK2wPO3Vqb560hHL016dGicOOmJ5tqFO7Ts6dezbqf7lOY72rEdP258NceIJJ6z0c68j1oWOWF7r9+nnVU5YaXrUEesxJ6z08zmOWHM6VC+vevTWa6kTVpo8fcKzHpuOWMsdsVY4Ynna6xJHrIscsTrVV6fa45kpY6f611Q/NOX3Sq/djnp5jjE96/E8R6xzHbGWO2J5tm1Pe3Vqe3zSEWuHI9Z+RyzPfSvP9QnPdRPP80zHs792Nq4X8pLsr50LxPaWymmGQqmWEJ7pic8Qv066lJQ3ei5wDsnj8pldrOxLhS4NyksT33GwVMhZKuScLixVX+m/ZiiUtvYFHXuaxfj3mj1fAA/Zl/D8Qom6XVDUlwy/TrpU9aVlJI/Lx77UFLo0RF6sjrrFs64crDQNO2G1qvszpVeaRpyw0s8DTlhp8izjDkesI45Yxx2xDjhiedrrhCPWyx2xjjpi7XPE8rT9IUesvY5YnmV8whFrpyOWzQ2s/8KxU5L9VeOCEn3pjITwTE98hvj1MLGPrNJ3qzEVls/s0ubYZCAhfpSHmKaPGitwv7s8+96bg2W8NaJ/ffbyj6prHnM2hb74zOzT891/P5LhDgp9LyXcsmNZ5Dc6JWdlm3JWCjl9gq9pH74x/Ilf/MhTv/rBd4w8/QtvGvrUjLdMv7j/B17zmq8u/sqSn3z2NW9v02/uNv5mNf7Zxr+8Gv8s4z+nGv+Q8a+oxn+z8Z9Xjf8G47+wEn8yWver4GmzEO9Y2S+qJDssa++du+RZ48c1o67C/KHP+K+txn+N8b+oGv8Ljf/FwF/Cfk3jf0k1/tHyX1eJP/mM8b8Ulcr+nvvnvz3t/77zx2q/8slnDx7/5qo3/tGap/7r/3vdj3/0kut/cPPfvOkr64z3+kqywwzj/z4hu4Xeoz7/stEnpWQPGv8NpWWHlxjvjYr3+t/ovu+x9/7zwelrXvWe45/6X+uPzliy/QPLfvgX7vvQG5Z98aHXGu9N1fQeMP6bleyP3fftv3xf442nTjz1Wy+/9oLZ25954yf+4e/+4CPvbnz9s+86/Ilr0v7vl6n/S0CPafDZ2kGaesLYOGcr0aSpRvRvGxzje18mb4B4Qpg4LuuC5yVsshDLYEmNywy/HiaWvcq4rIvkcfl4TaUmdGlQXpp4jF0TcmpCjsJ60hFrhyPWUUesfY5Yw45Yex2xDjlieZbxgCNWp/rXHkesY45YJxyxPP3L016HHbE8/cuzDY04Ynn6hGdc5X06zONxQA88L9EvdxUdBxh+PUzsl6uMA3pIXp5dpn/336zs89GRPfv2jJxce3D7IzdtPzR8dN8uHE3gCIGlJISKz5IwvvSY103PuonuVvq+VvAFgZ3mW81No+fNUChdZl5xmci0vMsBm0dW+AsDWJucuoX+pnP6d/f8MVymY32wPi6nPNz5XQ2yuV57hBzTv0vQ9xJWj+Az27eSdza3RFVPxtsQedwWi478q0SIRvY5ixA379pxdPfag7sDpRp9vyVHxQVEtzZHtUTgJvSPny+gZ8oUiB2bBBZxmTRxJ4N5W0nOVCcz1cmMpqlORug/2Z1Mt+DjZR5e/klT0z688u3v+Msbnvro5X/z7f7Xrdv+6hNX/sjH7/7yqQVPr/w/j79ryTOzUlnL6s+RDgp92WetbD0tylcj+vthSWtFJi9taVlVWku78ei+vXftGjmyZ9exXd+N2cOBUqvmsZ6+bxB8KplLqOZq5q0YgAoHPMOvB13NzVAojQY8NdvA8lULeOwQ3JC9A94G+l4l4FU8R1g64HE3jQEPa5OTCnimc9mAh/XBAQ8bKgc85YlB6N8l6HsIKxasWsmbGno8l6aGHpCmhh5C/8keejBfT5jYco23RrTrsy6+zRYbhoCPdZzqs59LU302pKk+W+g/2X22iiQJYUzm0gXKjk6G/nrkpjeMzN9/zZf7/uSp1T+7eOlnvvH0+z7/rZO7rv3S57/w68u/0WbU2NZmtNua8u2hyRjfrYGfrWfKO19gvDWiP1gf49sPk7GVWX4WUbZt37fnke0ju245cPjorqO7Hll/cGTX8A0HHrnl2K4DI6WnZmvo+22CT6X+MFZgPgiKhUwTr83Nzb7b4UmmYQMZ/XBmlNRgB7KGrJzO9Bkg/hAmdkXzSPdmKJQKd0WGXyddqnZF80gel69aV8TujFZBVHzGYQPzTkdXtICeN0OhVLor6qU87IqwNjmprsh0LtsVYX1wVzQf8rgrwnqdJ+SY/l2Cfj5hzRN83BXlyesWfDyUSOg5rmXNEbJ5LetHIDocnp9vBzxizpj2XQ3e2d6Wn6Y2ffLuotHE8OthYt1XiSYLSB6Xr1o0QU9BKdsI1WiQFtM20Azp+TvXXk3wcTKcGun8duiEf4I6fSzXIOmtvB2f8SAJ+Y1OyZneppzpQo558jTgu4/y+iJ5dcAcpLwZwMf7Vg3I4x8RnwmY0ylvKII5S2CmdXdT/xhe+k+9/IGebj2Q1QG+mIq8+L2HaNP0YPa3RrS/AX71S+RX2IrZr+a30DvmV/NDvpzpbcqZLuRwb5Um9p0FoqyWtxD4uJ4XQR77zmJRLstbEsFUL2mn9fPi/vF0XP9pavPlkG1FI34z+1wnXapG/CbJ4/LxhG1FNXlbE+JHeYjZzD6brVeKPMM6P/vem4NlvDWi/2DW3vhFozTxS1crhb74DA+P/059vO5NoEty/houP8t7CRDrR73AvxX0+XB9fFkwTnWHiXHNJsQcq26DXcH/TrEK+Zukl2onVcu/TJRxMEy0TT98zvPvZkROf6Q8yOdZn/0kB+Ms1ucnqT5XQB7H6PTz8uxzjehXQ31+mupTtUVlZ+6XLC+EYnYeFHIm287cv6x0lINY/PLIBYTFdrZ6MjufD3kXEB++PId0OOu6AJ5fKGQrfMNo5YNfquuy5fmgyaoR/Tzwwa9W9MGVlId9Bf/wiumBdkD65UGXqzeHPq9c34JZ58j88ZjGj7bCuuD4a/T/BJjH52s9sVzqwhOjV/5wgSiXsilf+qtko53X5sjuDXFfrBG9BUi0KfcLyK/a0WzS5fwWunP7Rn6jGxB87cYRpXOrNlmnuU2rNmkv8LLvfmfGGN9AhjkYWvsI6szziLJ2ni7kTLadeY5woaMcxOJ+4SLCYjtbPZmd8TLKi4jvYshDOuwX8OXni4VshV+0X1jar8uW54Mmq0b0nwMfbJIPqn5F+eCFlIc25X6hVTzkCwdN794Q729rRH++iGGx9oqxlvsFo18FmNwvrBLlivULyhdXiXIpm/Klsi8QWGhn7heUTbH8L6DyG/3qgv2C8av1iAcoD9cjVlDeQshrUt4iyFtJebgewWsjSyCP4x1epoE+wusR0yLl6QMMXu/DdbsFlDcD8hZSXgPyFlEertstpjw8JrKE8mZB3lIoq63b8ebordnzNvft5NGV2LpokvM3hGL9AR+tQjnzHOUg1q0kZ76jHN5xQDkLhRyrr0XE1wyFUuF9VsOvh4ltt8o62SKSx+WrtjOC0Yatgqj4LAnjS495k7nPanIXQ56yBK+cY5kW5/ChLYJ41iXoFxHWIsFnundH+BED+dhjEnqetx9pGDWifwh6q1PUWytZaA/uMU33vBMTrIPR7wQdDszXmLWcci3MwTzWP2aPR/s1ZhCYqlyLqVyswyLSwegfFyOBbqJhfdSz9DuOjBbn6KfqiXXFXi6vPFxPRn8oUk8LhA7YJte20IFpFufoMCJ0ENHtpoOHTmbRLVDiw+EcndjyvG+7QODkJcNPvdA8Up0yWCj4+P2+LqFTWnKrudFXFvftGtmVU/YuoZuS2RV04vGo8aWpL7TVpxXuQw2/HrTnNUOhlHCUM3lcPj4Ovkjo0hB5WL/sRzE5aZ3aGktWp5tHDh7Jq9KinWsi1Aohv5NNwviqQJ4276wrfbiJh3CrgZ6HkVcAHwY1TlxuLE8aXJ4scfAJbcoHn9A9V1MeNpUrKA9d6UrKw4B/FeXh1O1qysOp2zWUh1tmL8w+22AJ6xmnZ5iXpthWbUPwL4vImdmmnJlCziRulRcOX83s8+neKreyrxC6NEQeH2CzKfv8bF0y7dJ+lqb8sfv/K769c01Ruxq+1/3/00gel4/t2id0aVBemnYDHed1i2ddEawRR6yTjljDjlh7HbF2OGJ5ltGzHj3L+LgjlmcZjzhiHXXEOuyItc8R64Qj1iFHLE+f8GyPnm3I0yc87XXAEeu4I5an7fc7Ynna/pgjlqe9PGPhHkcsT3t1aiz0tJdnzDkbxkyePuHZb3vZPv084ISVJk+/97T9QUcsT7/3LKNnnPAcA3ja6wlHLLuD29aYcB2Cj92oOf+0iBzkn1YAS60fxMqo1nEcbyk0Fa8murU5qiUCN6F//PxqetYtaBEbX2OPnbzuyz6vIOxmKJSuSAgvBL2sZPh10qWkvNFlpRUkj8vHy0orhS4Nkcc/9170DZGGyBtxxDriiHXUEeuwI9Y+R6wTjliHHLE8fWLYEWuHI5anT3ja64Ajlqe99jtiedrrpCOWp6/udcQ6G+rxmCOWp708+6E9jlie9urUfsjTXp7x3tO/PGOOZ3v09AnPMZOX7dPPA05YafL0e0/bH3TE8vR7zzJ6xolOHX894YjFyyQrAJuXSdQcdkVEDvKvKIDVFFixMk7yMompuJro1uaolgjchP7x89X0rNUyCZ/KeW12KseWRSqeKpIvnvApLVwOwtNmmBdCsZU65O+LyKm3KadeUM6lbcq5VMgZEHxJzl+Tw89iK/uXkpwzccEF+0GT5OQ1a+UHzRysnjCm83ag4V+9tvZaE5hpug/ykf6nsjaULos+nB3b5BOXacIXTN82Pa4r8qKuNaL/fXjB9OcyTGVnq3flB03KU78arjC5bVleCMXqri50iGFhfc0gequL3hx6w+O6ewbqjl9kxRf3lP80c3RA/8FLmPL855cr+M+vTI/ryv4zg2Qb/TvAf36N/AdtHPOfGZSnfilexUw+qVs2Zs4U+ik5sYvC2I/KXhQ2Q8ixvhT9r0RfWvqU+0zKwys8hygPT7nPorwrIY/7oKsgj1+gvRry0B6cuuk72ij1/Z3g+0wXSCbWIZ+cR783W1jd4zgFMTDPdOVnXPfIP5SDha+fqbZcI/o/zAqftsePTR9fLrwM0GzSpq9dmRBeCHo7y/DrpEtJeQnHK5PH5ePtLNUnqXhzLnzGPJQTO/2PeYccsY47Yj3uiDXiiHXKEWufI9axDtVrryPWDkesJxyxdjpiPemI5WmvYUcsz/Z4whHL0+89Y6FnPe53xPKsR8/45Wmvo45YexyxPO3l2YY8xxOe9jrsiDUVV89cXPWyffp5wAkrTZ5+72n7g45Ynn7vWUbPOHHAEatTx6uPOGLx1hjO0XntQc2Hl0bkIP/SHL70M645FHmLfQU8LzGv704Iz/TBZ4jv9Ra72gZU9VP2WCzvDbRzNKDIhR5q7SPmG6qMjluXpuIVRLcpR7UugZvQP35+BT3L27o0bGtGuPTE20doxphp1fbRrIicGW3KmVFQTr1NOfWCcma2KWdmQTnz25QzX8jh+xfThFsjDwxombg1gsu1fGOU0f9HWIp9aGB8GXF7YRqVH1/o4LsX8fdjOPQ24HmJUFj4AhHDr4eJPlkl9DZIHpcPw1LxOwS5BaBVEBWfJWFi1EhAM3zGm+nTiK/KHYIzIU9Zgu8QxDLNzOFDWwTxrEvQNwirIfhM9+4IP2IgH3tMQs+xhc0RsmtEfzhrVeoOQSUL7cGHaEz3vHvhWIfRjhJ04LvpGsCjysWteSZ9R996MEf+6yDKnBzQ8oOQz+XDqJZ3P1+DdDD6J8EGfN/gkOAPOc+4ZxiivKEILf9Go/r9PPRFvpvQIkxe2bn+jf7VkfqvCx1iv/zJOjBNb44OPyx0aO9uQo5yXEtcE3WBk5fMGqnHmveydbh1sBz7rjyg3bsJ+3JkdgWd+P5o4wthrG+u2FcW7psNvx605zVDoZRw9DR5XD6eFjWELg2Rl9dKW8lp827CvE5bBQvmD8SbiGdpSt2Zfwd5aqqRL+dsmGowlppCpMkcmAP7L0Fg5580mAV6KMzNpINaBVAnk4xerVwtFWU0W+IqxbICstGW3BGuKKmrWl3BlSg+hYj6rSyp66bTrOssoevpPiHGp7nwhBj/VMIVkMcnvfCEGP9UAp4Qm0t56oSY5V0DeU3KeyHkLaO8ayGPlwZeBHkNynsx5OHdpZy4D8H6Stvz9YvGcJkOP+fFImzra0nHIVE2XNroA2yU0wyF0vnGz77dDIXSDuPvrsZ/iZWTh61pMuweeF6ibexEm1hSQy7Dr5MuJeWNDrl6SB6Xj4dcvUKXBuWl6VGg4zw1KemKYO1wxDrqiLXHEeuYI9YJR6xDjlie9jrsiOXpX8OOWCOOWJ4+sc8Jy/i99DruiOXpE487Ynn6xBFHLM+46tm2vXw1TZ0aVz19wjN+ebYhT5/wtNcBRyxPe+11xPL0VU+9pvrtM2cvz/GqZ4z2HAOcdMTyjF+d6hOecaJT+yHPOYxnGV/uiDUVV58f8curHpMwcc2tU+zVqTGnU8eF+x2xPNujZ1/rWY+dOF5NwsQ17E7xL8+4etARyzNOdOo6k6denrbv1DjhOSY/G+a1nv32qQ7Vy3Ne61mPnu3Rcw7jue7rieXpE9yGkuw77pPeB58fgHykt1uL1D52ib3bRwaAJwAGYlfch34kIbwQxo81AuEP5MhLU13k1Qro8msve3Dv/25+8wUJ8Zsu/AztmFfXak/bbFXxtzp3DICMQLItD/fneygP7WI6pH9XLR6vX29F/YrYD/Ebgv5+oCtTF0NhvC+gv6s3C/kmrBWQx+e6Wp1l4h+MPz/73ptDb3g1on931l7xgPkg0aSf6znyUD98xrEG+c/Pwcq7Ie2cHN3fB7rzGb4LhH7q+KvRXyjoLwAa00fZ5sKgZWN5sD63U3mM/rdFeVT7M5/qAxzLK9F2pqdyrl48Jofthu2nlY3SxDZdJejRVmaTBtGjfS0PX+u6gPKw7awgHdSZQ3zzls93qZsd8Va/2A2OndSu/3vBdr0kRx7qF2vXyF+mXafp4RzdP1ayXS8R+nVSu/5kwXbdzD5PtevW7bopdCjaro1X3fZ6EeQZLp4/Py/7XCP6z0d89uIwUdeYfS8T9BcDDd+aeRHkXUZ5yHc+5V0Geezrlws7oF58rt7ovwp2uB180MoSSK82ff0G5euXAwH7Ot7K3S3ouS6uEPR4Rtts0iB6rhf8jlhoUz6rbzbqFfSIVyP6fxax3/TD+HY56X5hSd3nC93VLaDYppb2P/fZfBBjMfeVF0ZkMi/Gmd4cesOrEX1t8Lm/6qZhFfPRTj2EafTTAJPjgYqfL4Bn7IPK9qtEuZRNL6I81N18QbVPo2uzfd6o2ieWn9tnrKxpYtuo2Iq+a/XfCBPjIfc32DZWkRw17ijq/+hD9X6Nm9ffLM8+s38tjPiXajcr4FnZ/pz7G/SvVZSHfE3KQ5vyu0Gq30V6ngMa/XKwQ6y/cfLnWcqf0WfZn2P+maayfb/ZpBEm9gccD5XPYl1zf2M26g26DgyvRvQXi/hp+jWB/yLSfWVJ3au0ty/Re6Nl52aIy2NQNTdD+ry52TWR/mYF6M5zDNXfGP2LIvFAzeli/Y2y/fmiXMqmF1Ae6t7MPqv2ie/fWfksr0T7nK3aJ5af22esrGkqO5/k/gbj4QrKa0Iez51XCDlF/R996JP18bj87ilioV/E/BHbjdUT++PaiD/G2lma2ObKf9GvTB/ljzznQd2b2Wflj0bXpj9uU/6I5Wd/jJU1TWXbqtVnI0z01Zg/cv+s3lnGGML+iH60DMr64cwfbd2/4m31pd+z7aY8nAfeSnk4h8P64dRN37E8ab0/SWs9QWCpdw75VxNw72Y15eH6yRWUh2vuV1Ie3kVwFeU1IO9qysN3/q+hPHw39oWUh5fjWPnNB/D99hI+UPgKD8Ovky4l5Y2+T6puCcTyWRstd70W32yAVkFUfJaEiZ6ZgGb4jL11PX1fK/iCwE7zrebm0/NmKJRKt15+ixxXYLA2OakWajqnrWp3iRaK9cEtdB7krQbZXK9zhRzTv0vQzyOsuYLPbN9KXrfg4+ir+JIwvtfhuoj99sk8wm+GQqnwnaWG7/XbJ/NIHpfP7KBGXcbbCLpt2GfMQzmx3zJCrF7C6i2oc5sX/fD3uTlqdAn+QLzcVIscbojdrtbqhjHD40tgfkxMxFQzQn0GxDN2+4odTOEOzfDrYaJLVHH7OSSPy8dur8JQQ+TlXdbTSo6jq6ZpfY4aqqcMhJWIZ5inXBXPihRxVXVOhV31pyJrLIngTzGX0dzvDqDrDhPLx7reSboqGtTV6H8edD1AuuJY1vQZIP4QJjaptaR7MxRKhZuU4ddJl6pNai3J4/JVGyOy96FVEDUI2iDyWrWcm+l7lTHienreDIXSBvOKDSLT8jYCdkJ5eJsU1iYnNUY0ncuOEbE+NlLeOsjbBLK5XtcKOaZ/l6BfR1hrBZ/ZvpW8bsGXEEZCz3Fl6A4hm0+I/meIDoep00VZd4TxSUUIvgs+TWzvECZGk4o+eU/RaGL49TCx7qtEk/Ukj8tXLZpwLDcpdxOq0SAtprtBM6Tn71x7ywQfJ8Opkc5/lnlR6n0fyj4Phone2096ow6xuNwQ/Ean5ExvU850Icc8GevhPsqribLyeeU0baW8WyDvfsq7VZTL8tZEMG+LYN4u8lL97m2Mp8NolOT8TVO3eMY2XSt0tbrDCMBnW1VrWx+Rg/xGNyD42i2P0lmNnfDK/c8MjvFgb4pRG/24mX2uEf0d88f4/pra2wbgNx2VnbktlrVzv5Az2XbmNrXRUQ5ibQX69N9dhMV2bmafzc442rmL+PC+UqTDEcFd8HyzkK3wDaOVD359UJctzwdNVo3oLwMf/FZFH9xIeTiC5P7Q9EA7IH0z6HL15tDnletfInO7tYJf6c53+W6M6J4m9kXk55HrZPg8ymzlP72NMR60Q57/rMg+14h+AfhPPcM0W+IIbTLKH2vXOJKz+o61axU/mA/b6OwCOtwldG4IfqMbEHzt+obSuZVvzCff2Ax5yjf4/O5obATfWES+gfHTdFR25jFgWTtPF3Im2848vtviKAexuH/bRlhsZ6snszPybyO+uyEP6bB/2wbP7xayFX7R/u2ihi5bng/yL8wb/d/OG+O7lHwQ+WM+uIXy0Ka8WrJF2EHVQUJ69+bQb6FyGf3VWVnUeSfVXrcAJsdyo78WMPl8icnFcqnZcswXt4pyKZtuC61lo53X5sjuDbr8eb7yfRGbGn9PTnnYpkZ/Y8SmykYxm6o2tk2Ua1CU+W7CWiew0M5FbIrlX0flN/rbhU3VuGUd6Y5jB9ZFjcOQfgXRqzamxibcxjZEdI+tSuLawgOUh2sLGygP9yx4LnYL5G2iPFxb4HWONZDH/d9tkLeZ8m6HPPR9W1uoUVkfyJ63ubcw7rxLICxl3yTnbwjF+lN+lx7lTMa6iZKzzlEOYtlOg5qz8e+ulF03QP7Y3LDWppyakMNYFpPThDGJz/Ua/QFo12sXj8fcIPTDOwDWRsrK7RmxrM6sfWDsm4y9N8Ovky4l5SWxmIvl4+3sTUKXhsjLq1OUo35msaxejr8WayouJrq8bioRuAn94+eL6ZnaWkbs09X0zqScwTblDAo5k73UOUhy8qY7P0zTnVZLyudkn3lJ+c9guvMjkelOXrNDX4sduTB5eccYenL0ez2EXv79wR5R5nMiOm8AGSw3Tffl6PATNFSpGIrlUIWXQnFIx9eYYCjjzWEc4nSLZ+xzdwo5jJXXTZpdeUj3n0p2k+jbayNl3UB52DWxHZQcFd6VHWJyGm3KaQg5sW6/aixROvNUIk0YS36JYslGyFNDGp66Gf0HIJY8E4klqCN/V3E5r5/MiyXrc/R7bySWqKHhuojOOAVkuWm6L0eHX6dYwltBzVAsqVjCWxMY//gUYNm+EPlPV1/Ih5wne9tPLfdzfFHbUZsictSWWqv2+MECWy1qWYC3Wl4H7fEPqD16bNXltYkQim13bRBy8mJQmmJ9kNH/SaQPajX0j03V8vTDg1VIPwRlzsMK4pnRY//HyxebiHZjhJb1Rt+214otFvGWcjMUSpvNnzeLTN7SQJ0sD5cReQ6EiY8ooc5pfW+gV8+DwFLTzS05mKrNP0i0VuYugcvbRdiO2V735+jAdZwmWyrl9v6Vxhj+56ifweXyEnW7RW1JWeL6Y9txUvVnev3bq3oV64+PQKnrMnk+xfXxj2fIXmX9fbLtxcvPrexleVbeLsHHh1BN3tKZY3j/H+HVQBb7P18VidszzJ8mHosZ/Xegr/jDzJaDYWL/uoDkIbYaH3M/tyBHL1VOjJN3kd5GuyizW1+Y6E8lfPUGq+NtpBNi310ROyG8EPSyo+EPCHmmV13kFbne9cD/3X7l9t5TH06I33ThZzwPvkfQLxD0Zqt7gb+ErV46ADICybY89Me7KQ/XDEwHdb3rPRX1K2I/xG8I+u8HujJ10RBy7nTE2lgRy66dVdupHHPTxP2Q6vvTenxJ1rZVHJpPupaNQ8hfJg7xWNdor6U4VHH8eJUaB3Ic2lYRu2gcMvyBkF+vdZFXJA499u0bDn3gro8vTcLEeNstnhXZxlcvqrbZzi9XcYhjDfrjNsrDOGQ6qDhUsU+5vIj9EL8h6DkOFa2LhpBzpyPWxopYFofUGFzFIR7fbRblwTjEc4wbYcz20pnjsYqMu9PEryVsjOTdJTBT2Ztmjj3HeGWvXqI9eY6mjhXZd3yGvh5bezD6O8A2a0g/nP9jOVE/NVbHdcm1M/PpNkfoio7veUtWHZsuWi/cV2yhvoL3j5qhWFLrnoaVbtnaBQDZlu2aXSObH9t+ZNcjm3ftPLJrBGdUqhfklUx8RTAvmSaMdTt95xeveDXzLoHTSqZaXZ8Ln1mu2nnhqDRX6Hwm5cxrU848IUdFpSTnr8nhZ7GV3nkkB1flcKV358wxHvQJXOlFXn55weinwUrvo5ERZMzOC8N4XcraeeGUnEmVs6hNOYuEnMluB4uoPBj12W5ld6SQf/1pltOqXb9yppZZtF0b/W/PHeN7dYF2HStj7FBa7KTHxhZYsV3H2O7RnQXkxHaP7iwop0h5YnLOZHkMS+06Yh1sjui1ibDuaoHFLzaoHQ3lg6xz2dUJ5K9F5GxqU86mgnJOV3k2tClnQ0E5C9uUs1DIUTOMdvsPpXOrePtOirfq5Vbk5RMsRv8OiLfvoniLq1vPdztvdpSDWLxCmlefv0X1qV6midWn0b8e6vP9BepT2eauSHnwhFBeXauXDROBFTtNwnZAetWnTOKK6lARP0D8OulSUt7ogfLYC4NpwoPbdh9atgpww67h1Vdce/N3lwBOHhrJW12diUJBf6YP9J35Ut34hHNNyEgT+89mouN6t+eMX0SnVrSt8lWs25pTzhCKxTrkz7NZ3gkgPgVh9H+cKVz0BJB6iS02HuB2x3Tdogz9OXwvCVo/LPPaSJmN/n9GyrypRZljFxrwFVnqJQ0usz3vC/q0GsvDPP7htbL+hPynq+9cTHLy+rTPUp+mTvVhrLku+8wr8E9Cn/Y56tPUWHCyy593mhfLdR3Q5M1tFGaa+PSG0X/ZZ/dRrijzDkqX0D8t31epTlXZY3Vq9AehTr9WoE5j7UOdQo/FgvURejVXVGtMsXGj1Q/uKBevn+Svivgo4tdJl5L+MDreUC+RY/mqjjcM9zNQINS/1XiD+WLjDabNa3s8BriLnrcabyid8mjbGW9szilnCMX6B+Q3OvNPvqaxGQqlpumyHvQwXdDn895U6QoT26KiV2MMxOc4jKfulG34UoPRi2azgJiOJT4SORW3JEe/EIrVBfKfrr5qCcmZjHXvNMUuursCPmOeycmLyQ3BH1v33tymnM1CTlFff3H2udWYaMHQeNxW/SfvvBv9Mug/F2eYyiaxdZvY3guXv+zeS6xdF22najzAP1hU9q005M8bxykbpSnvbckXZ/Zv823Jjer0irW/Nsd8G4u0ccQfEPJMr7rIK3Iq7Iv16/7o73/1rX+SEL/pws+KrB2pH81qb/wV1qlTYXhiJU1qvUydCjMd1KmwiuO1dUXsh/gNQf8g0JWpC4W1tiKWneRSc+wzFZPy1l6svnns8DIYOxR5A1i95Rl7Y5RjGpeRY06amkGn71AyPLP/NCGLT8Ia7Roo9x8vHq9r3h5hLac8sbfDkpBvG5ah3g57aRiv26YCuqn1IMTI27dMMdQeIvtt2Tcq1wt9lJyVbcpZKeTE+iT+a3L4WWw/ciXJyRs33Uvjpth+V/r5+uwz73fNgHHTAzRuQn7ec+XTexgT0pR3iWveG9scT4x+O7QrfmOb14exnDE/qwm5acpbZ3qUxjOTsc7EZaqFibE1TbfnlAnjdGzcfpeg3xqhV/tN6JMcs9VFhIyVt7bNsre1kM1tP+/ySPyOsmMx6Z4Wsvm8hXoLhvclls0Z02GY2m+rer8jB3Ng9hjmsZKYeW/lvXZoDPNkJCbwj5SWvYEE+XkdEfmsvfSRniXbX+GLsAy/HiaWuco6oloXUXZRl/rxvjTmFTmfEvuB4Z6Cek0PbhdhWf58olubo1oicBP6x8/n0zO1FInYqayfzJqmuTnej3gV4d8KGN3iGbs58hudktPXppw+ISeGdZXAMvo1gr5P0Du6hqm4hOi2RlRj3FausYSe5bmGpW6SmX7eQPxcNazjoMAoYm58xlXdJWQpOVe3KedqIYdP2LyLRkcov0S0fC1fMWoYiF1xhf61RSN/3qlo1Ev9NFmR1Z5V//XJn3vJisc2JMRvuvAz9hE1e75a0Le56vZqtdqD91WlSa0IqtWe0bcTwsTVng0V9StiP8RXq/O82lN25UTdW1YWy1Z78ErdWFs+XTFjMuTEsNQKkNGbbXqD3iHjmGT0vwGzRv5FUWXvIJ51hYnxiK8gR6zeHN2VbMNPU0PwG90kxsSesjGxHiaWucpoWLUPZRe+Gw95+eRzmvhOkLI7IZ2Ohb7JV3VbvvprcvgZy8G22ktyJuvtoCJ+XlUOYvGpY14xVX+LylEnldrsgzepVUZLaieK/UK9063u4WL741h7A+XhisoN8JlTN33nccD/KHBnkTqJyP1S2bdr1AmuVvfwfW5Iy8y7hy/vTrpvzBrj+/xQfhl5B1atWGIZ81Ysv3QaViyfTz5exY/7lozhMp0lVcc89lI7MOoNBSuHitcbKU/d2cVxEfFVLHsA6Dieqt0TXgleI3RX46auAnJi46augnLmtClnjpAzmf0WymwVp+qzxniw/vPi1E3ZZ14V/muIUwPZZ3VSBnXk70XG9aMnzUJ8J4D1G8p0UrtBqsw3RXRGGYEw0sSx1ejnZTq0OY+VsZX7XLSh0bUpt/AquOHXSZeS8kbH/a12/3FJMTNxgR9PzjtTmRAqPkvC+NJjXjc96yG62+j7WsEXBHaa3+aNz3dxr4ipbK+ItclJ9Xx4JqLMT7FjffAtN9grbgHZXK8bhBzTv0vQ83s6GwSf2b6VPLXqwDNuxZd+v1nweM6o2I4eWJNw1m520Yhj+PXQVjsZjTjq3JU676HaTt47nxgTEspDOeo9AYV1qxNWmu6fwprCmsKawjoDWEVmnthP8dkdjIP8rlHZjXDkj224r2xTzkohZ0DwVe2TGxGd1eoB263seUf1jm6rc4iPzdIy884h3pR95hWrj8PMc++s8TqrmWcIepaP9WAYzNsHOlheifHFYDoGvhpWMdmuPD6IjUPSz3Zmkc+SY9mVLxSto2NUR+rcZOysqNG/H+roJK0OqNVVlhdayON22JtDz2dFjf4VsDpgu35Kvztz5OWtlizPkfdDIO84zYnQ73BnPoTKfjdb+R3GGfY7tcKl4lksXmDbYl9EH+adXnUWMHY+2Ph7g64Dw6sR/VOizov6Oder0b++YL2aLSejXtFWXK9qF129ZxnzA7Xjr1Yg+ZTWLQJLnQcu2pYNj9vWWyP1avxYr6gn16vR/3TBesX3gkPwrVe0FderGn+o85gxP8D+wWyidgxupzyMiSxHxW/0gyJ1jvWTF7/fKeqcx44cF1r1LyGMX1mcnX3OVhY3jxw8sitbWgyUYkuB6fcNOWrMEvyBeBN6xj/OpsJnbEHdZOcdlOHwafTvFSaPhd80FTmijdU9GYvThu91RLtVWOOlolgzi01lzoCrpum2HDUSwR8IKxHPQtDHptU+dZHopkylzn4hveHx2a/fjfQcrfYwOfKpkbvau1Tl55syke/OHDnYo6EbLaeyGv0fFuzRnGY+skdDGxVZGY290azeNlKrpQ2iR9urHi3vLSuUo0YxHOqQV82sWt2syuWN2Uf5l7rvX50ViM2C8fxGCL6zYCwP+0KsbtPEtlG372B986gVz3XwyhO2Jb4VQ816ivoCrnY8lrMHj7ixGdAGwFK7UjwrN/q/FTHAMDe2KFuRGaB6e1ndRBG7RQ7PSxh2ILo2/XGG56pMmsq2VY4/6Gd8Fh37Al7FUecR8IyHigVF6jG28qd8ms+w/RP4Wd6tinkrKNfnYH474rut2mWRvjp20zP6J59pO1079HymTd0Wpc6t8fkjPJvJZ0jyfuuME48B0Q5Fz23G4o6Kfcrn0Zc+R2clcVpxGclUQ3h8xj6P/Ean5PS1KadPyIlhXSawjF6NoSf5tTz7voLotkZUY9yE/vHzFfSsW9BiUtXUlaN3CMWqSS1KMRaGN5yN81AfhxuXE1bZTSbkz3ursyZ0TxMfYTP6K7KpZZuv7L1xEl9PeWNCeCHolYDJfGXvt9+xacbHP3BtoVfO0lTkiPrlgr7Nn+17fWxYVfaVvdjP9lU86v36IvZD/Iag93xl766KWEVe2ZvsmMRLAC/M2jIOy063LjZsua4DdLGh0A0doIsNn24VusT6Axzmct+CuscONxQZOtxasFwxOavblLNayJnsQxSrSU7esfrNs8d4sK2raU6aHs7+8iblAFz8si3DVEuGef17EuLjDtYPj9Ujzfoc/e4H/+Rj9VxmLKfS+TaQEQgjTTwmMfqHaUxScdwgj9XzGGESxiuFdy7O1Ou05Y7V83Y+WgVR8VkSxpce81ptUPDsocqx+oqjk3vMK+4RmZaHP+zOk/b7IA9rk5OaYOMLZWWO1WN93Et5uO93H8jmer1TyDH9uwT9esJSI22zfSt5ajOFZyGKL/1+o+DxfCE69vJNVSx1RL/NxabCP8PD19RWbCejESe2SJwmLru6MlcddeNZd9UrWNPPmx2xtjpi3e2ItcEJK033T2FNYZ3FWEVeqsb+4KHsr5qV8UGGsjNKtZqn5FzappxLhZwBwVe172tEdC7y0zZlL0pBft4EyTsa/e7ZWqY6Mpqmh7O/vAn7L3AN53tnj9dZzfDSpGbTWA+GwbxtbpROVxulaFfeKFWrmEi/PfsbO6qnfKFoHb2f6ih2rBf14bNufwt19Ds0C8fVDr4KttVhke1Eb2Usenzd6D8Is/DY8fU1OfLyViXW5cj7Q5B3Go6vDym/wzhT5DisimdGr+KFOovHl12kn/k4LNqYx6Vlj7ar47Cxo+1G/2fCH7gvYt/I00/Zzfk47J05aswU/IF4E3o2MwfLcNJnuMhR5DisOrfHIeLTwuSxKkvT1HHY77njsLfmqJEI/kBYiXgWQuvjsNyrxEysTFX1RYq/Fy4di7BqhGX0aiSg9hxix4HVqGdNjhz1gkeauEcz+q8V7NGcRlKyR0MbcY9WdOXE6FsdaeKmFjuOpmY2RZth0eOwPFJrdQyo7PFD9q+ixw9jo2qn44fTz/TxQ54NxY4fYnfEP+yhRlFFfQFnT+/O2TtDXPQF3su6DbDUajIfKTT6mVkMVkcK72xRtiLxDoc5vPePQwyOd6h77Hi20bXpj/3KH7H8RWZ5sbMtrdpq7GVRvsoO+wIeRrbym9hRQty73EwzPpRzAckse7bkAqG/ktPXppw+ISeGdYHAirXzST5KaCouJrqtEdUYN6F//HwxPesWtJhUNd2ao3cIxapJubOS09WmnK6Cci5uU87FQs6EIy5Z2G1zG/1VakHK6q7Njd5XJYQXgp5N8e2w6oZWtZlW5EjhVxpbP7TvG7/4zljYjQ0J1e8SXSzozVa4cV3CVj+ouiaTrY4U8nFD7F5MB3WksOKRxx8sYj/Ebwh6PlJY9kZhzNtcEcuOFOJQ9nTHDD5SeCcMofjo3OnSxY4UbuwAXexI4dYzqIuSc2mbci4VcjzvJ2xEdG519O7hOWM82D7yFrm3Z395Y+af4ejdzsjyTN5wKgn66B23d5OHR+/U7/Cxfo+BT/HRu/VUZiyn0nkDyGC5acr7veb91HdX7F/l0TueBuEyGC9xoa7K5rENP6M73YfB+MgqHgbjw0m4cc1vcOFt2z2Uh/0U/5LB90MeL2Ni4iVNtFHqezsXjOEyXSCZWId8+Az7MbOFWvK7Ej5jnunKz7jukT92PHl9m3LWCzlq6RPHq7HDaOafFY99Ft4R4FdfKr7iM7ojELtD6N8Uy/6qMTNP9zEv78gzyrlSyCmrl+M01lS8iOjW5qiWCNyE/vHzi+hZ3jTWvp/JaxQno4m1OhPwpjlapjoTwF0j0n8Mhgdvgc+8k4NY/EMHaKd1pL86R9MXJtpwMkKA4ddJl6ohoOh+fLmT5nm7/gmh4rNYS+C9P+bn1l3mpLnJVWuStwjM2F4X86EtgnjWJehjHVIP6d4d4UcM5GOPSeg5trY7hGw+cfIMDHZP0WBXyUJ7tDpVwTSsg9H/cmTAje/TqnJxa+YOHn3rwRz5H4Io876cKBaEfC4f9jC9OfrmXZH0m2CD2M/j8VsZ/AxtgLx533mfFz/jd+WLdxD97S3KzvVv9L8Tqf8eoYPplaa1LXRQNEqH3xM6iKh508FDJ3NOOPBYgqMc1xLXRI/AyUtmjZTHvJetw62D5dh35QFpye2HbkaHZvt2jeSd7uCy5vUoXUGngaB1S9OZOrDTU01e9MAOlq/qgZ28VtpKTpsHdvI6bRUsmD8QbyKehUztX852vJ5vw2fGyjsqaxXBndSnI5vot4IeCpNXxtQMTa3qGL1aOVedktpY31hANtqSg/Wmkrq2OqDDv0em7hwqquum06zrrULXNlcvSq+u8UoYrq7xrwnh6hqvkuHq2t2Uh6trvGKnVtcs7yHI49XzhyGPdxO3Qx5Pd3dA3i2UtxPybofPnNRKn9VX2p6vXzSGy3T4OS8WFT0MhLHnTTmr+YiLQ5G83TSMY7jSmHe/2L9G4pj3/WKmT6ytq4NrfBlLt8Ds9MNp6m7H2GFEvOesyG9XFvWb2GEg3EHi3SVVXuXnRr8ZsFR5X5Z9rhH90Nzn/ip/VDaMxfNW92Oyz2Gb2kp5yIf3ERp2ILrJuDsUy8P+uA3yugU92+ZuQY935PEYCl/L3Ux56IPcr6BcvMP33qHxdB6/0KZOHdxP+mxylINY95EcbIe4LHv+3DFctomK2y/OPvMJhJvmjvGtyj7HDv3yjuYl0M6+b0k+P+9OqgOM6r7NIvc3I/3Lcsp5Jeh5O92v2C30bLPdNcre36xiTOz+5lg7RZs0wsQ2ya+zq1ivfm+Yxwi9Id4/8xjheqgDfs0K7cy/CHhnSd2rHKJeQPdfel5xoH7tkLHUHA/bLdd7d9D9IdObT+BCq4rPNaK/E+rqxiUaM+TosCFH594c+q2kg9FvEP4SiwPo/1sI0+jvAky+IKwV5nU5mFsjYw3VTmN3cbfqT3k8oa68GBS6c7+4DeQz7feRfMzj+3ZZ5zx91Y50TF/ubyxvH/RXD2ef+wivZKzujtXVFULfonW1IVI+xjK+Wpjoj7E2gvbYPVdj9pTEfFz06Wqs8gDg78sZj6SJxyNp4riMMQPb4fk0JlH3TPOY5Ihoj6qvN6z2+vrkr8q+5t/KNp4vJA1RnpqnefelX505Hjc2/08/n0N6tBrjXZN95jj8ykgcVjaM2bzV72PwS3BYH1soT/ns6fbHTvm9CB7bYRkn6/ciPpv5o5qD89xja0SfVmPuvL68N4eeY77Rvyky7lFvJcTmCfcK+nuEzoOkA/KybGyXaBN+Wdjo/1PBeOy05iFfFka7sf/HbJQmtul9gh5tZTZpED3aV/k/v0Gh1pFibbZo2zDe1A6/RbHae32OY7XRP1NyfS4WqydrfS4WqyfTVzt1fQ7LWHR97p0FxgKxF9Vb7QVw/IrtBSAf71+W/R0X5N8UkbOwTTkLhZzJXINEmWpsw+UpuxaC/HdRee5yLI/SmU/VpwnXVP+Y5jAqtiEv93dG/wWYk/0Pmr/gGYLYRQox381bE807JxDbZ/AZc4aeMz3m5HEl9pd87kO9/YK+h32n0QTScTLsdTr3Cc0G7e4TKlsWHYfgW1evnNla/9jbuq38w2R14B7dGR8DsC+U3aPjeIlyVLzkOsb4ivXCe1ZG/4+RsaPyg5jftJrT8W8/om9sozy1zj+JMaSj/WYL5cWueW7lNxxDMJ5jH239d2yNzD6rsSTS5+2v8Ngzoef98Bz5Xkhl5jESY19L9FbO3hx6w+OxSGPec3/VWsLmFjq8iHTY0kKHzaSD0c8WOsTsn6bYmLAvTGyLJdpNLSE80wefIX49aP9ohkIpYfuZPOUHaeK2rNqT2iuJxUDVzhVWzRGL3xSuWF9bVWyzZHkYl3hegXGMzzLiOg+u03Dqpu9YntSvb1kyhst0rCvWF+7nso9tFrybBfaZag+bq8mLtgc1ByjbHniP/WxvD+zzndYesL5Mb2WjNDVDsVSkvWDdlLD/8qLtxfC92ovyPdVerHzbqslrplOx/jAxVl0In9U+BtaXV/2pNa4zVX8Vfz4mWn9qDu9Zf9i2ytSfWvubC58xD8sTW/tD/tO19jeX5OBcENf+ts4b40E74NwUeXntz+h3zRvjuyf7XHV9bxLX67rLnk+MnUFIU9n9c66zoutP3Lerd5iKrj/huw47c9afEsB9seDlto30W4QeRs9n4piGz6+Nns2BudSBnH2zvPNreesp+wHzdJ9fQzvzebC8Mb1hhzBxzGDls7wy/YJqE1gebhNqLx7py+7Fs9/jnvIWwuL2laZ1Aium66Y2dOV6xLricwMYZ9XaLPul0f+A8EtV/2bzyaj/2HqasmlsPa2VTXlOEztTEFtPa7V2zjFxo9AB+0S1vsl7UKp/UHFCxXReNzK//DGofz6ri+d71D7yuhzMH4/EOlWG2MXMrfq42HsNWyJ82C77hKymffhOPBme+cc0IYv7GaP9SbDTHy/WuiSsT4s0iXOyZkJ4ITyv5mTLPOZkapyHsfntNAZWbQzjjl2dxW3snTAGfjoHMwTdbmPvFaI+H2yMx52s/WTVdmNjGN5nVGfwTQc8n63Ga3x2yuh/Bdpm7F0mn/3J5B9Uv4jjQu4XY2PANHFdxMZRaJMG0XO95PkX1jWPw3FPQ9UBv4dg9P9F7GmoeyK4395YUve8cwncFrFtcDtu9eMgeXczqLlv+vmc7DO3+9+P9K1qrSDWt7Y6887vE6p9KLWGYecIVXvBuxesfJbX7r7s6TwLw++Ax94LxHcAeC1Y3Tqe6v5LFHvVewNYt3nvD+a9q7o8+8zvD34y4l/e5wrL3DGAfNb2J3HtZtaZXruxui2ydoOxkNf81Hudqe4/TP6l+knkPS/7zP3kFyP+cnekjGkq20fx7eE4/rqH8pCPfUnNB02He4UdUK9d2d8a0f9DwfGC0zz6BuWfOPdl/4ydp08T18X9gh73qvgcPd5Xs42w1PoW2pRjl3qn4x6Bz+90fDsyXsD+6V7SfUtJ3VXcVe0N29RFWXtT83wes26JyGRe7Ht6c+jz5p+9mY1i51by1pNWEKbR1wGzyLmxdfCs7Lkx3kdBu/C5MTXvmLzxfLjxTJ8b4/4jdt6w7Lmxov6PPjSf/B/7c27/sXEs86KcPP/PO7e1NOL/reblywjT6JsR/1e2jPl/qzFCbIwU22PkX7eZhPH5LWd6fM7+HxufY/wt8n5kUf9HH+ql8ZZ6/xZ5m9lnfv/2ipL+1c77tzzeir1/q34dRMXevD29vH5meRhvB6N/MdghNt5yOgc8+0zHc963UOPbWPyM7ZOq+Kn6S46ft4j4qeYksfspiuhetL1hm/r64HOf1T1JeXNlJZN5sV3n9TeGx33Dhkh/g3MztR7E/Y3R3xWJByp2xfqbVvN1Xg9S90mouXxsvu50F9ScM/2DtdzfxH6wVr2fxn6Acor6P/rQZzL/b8+uJ16RgC6G3S0oa/TXaB7NfLIO8u1vrYAen/rQN//8fXdcsX+I+NNkdZTu2aT1v538H9emYudWzGe7STfFl5AOTN8l6A1XnY+pQRmq2mjx+3f96ff9xd/9RSsbVcX/d1fUhv79vetumyz8P53299/4yO/vfv1k4X+ub+MtXb/2o8smC//N31h/9asWrPhqGR81XxgEWuOzfcwGPC8RCwtf2274ddKlpLzRfdoGyePymS3K/aTKDPjMVkFUfJbXSk2zkEPHESJNawVfENhpvtXcED1vhkJplnnFLJFpebMBewblzYE8rE1O3UJ/0zn10t10EigILJOJ9TGb8mZC3hyQzfXaEHJM/y5BP5OwGoLPbN9KXrfgm0EYCT3HUVq3kF0j+p+AUdrh+WFcOWeE8d/R/x4kHVWvEnKecTn4TQ+Wm6a+0FYkGCoaeQy/HrS9m6FQGo08gySPy1ct8nCfb1JmEqrRIC0m9NaQQ6dqdJ3g42R8AzmYaeoLEz21hJX7i9aqPauTLlVrtZvkcfnYo9lr09QIEz0E9yryvEf1W1NYU1hlsKwXMNoPZpE/7T1+I/s8GHSswc9dQpeuiC7Iz20E50R8D3aPKIPl9UbypkXy+iJ59UheP5QhobzpwMd3JA0IzLRc5ywYT8exWP0NYWKcSxPXlRpNYO/D80yMUw3CmtkCi++zQf6ZhDXUAovP8CD/EGHNaoHF6z/IP4uwZrfAeoiwkN94zde7Bd+AkMN9IY6US/RN04v2hYZfJ12q9oVzSB6Xj9v5XKELvyOWJo57c4WcuULOFNYU1pnC4tmu4au/JoefsRyMBzyLxb4W96u+SuuNsyFP9dPbs781or99wRjf12hcgHHDdBwUOif0WcWLOZHyq9g12Xbmfj1xlIN5fKZhHmGhndNk9WR2xlg6j/jmQx7S4crDPHg+X8hW+IbRyge7F+iyKR9EWTWivxR8sHfB+PIjP/sg+mdCeQmVBemUf2KdbSd607tX0CNejehnZGVRe27Gj7ZCvfj9JqOfCZi856bim1qJiPmi6ruVTecR1gyBheXhfU9lU2yfM6j8Rj9f2JTHY8iv5h4PUB7uzw1SXi/kNShvGuTNpLw+yBuiPFzrn0V5OPfgcdV0yON+YgDy0Lds7lEjO6zMnvcF3V6aoVjifYdYbEVbK9vXKQ/9tZfysF76KQ/9YBrlYZ1Npzzcp+yjPKxPs3V/KBb70rQ9+8uxb3WkPat4rcbdRr9A0GMfwXfpYhteQHnIx3FgAcnFz3YXK9oB9Xo4+1sj+heBHWJnakyvNvfs+9We/UIg4D37RZDXLei5LhYL+kVAYzZpEL2KrSpOo005tpqNegU94tWI/uZIbMXYvJB0T0rqXvT+hnFtisYFPKdFmXMjMpkX5fSGcuOW9ZH+XY3HUS/u341+UyQeKFvG+ncVP+aJcimbzqc8NS5Q7dPoJuN3NrH83D5jZU1T1VjZCBPbD68DYdtg/1frTUX9H33oq22eZfmJD15y21c3ffkFVc4J4Dqq8dm4AfUpUb+/i/pbUmtZhl8nXUrKG13LqpM8Lh+/z91fTd5/S4gf5SFmneRNryavm3dWuW7Sfza27c3RhcfcRn+c1q8HBE+D8tLE6y+Y1y2edZ0hLDV3QTtanaTtcD+Nm9nGzVAoXcHjfcNA7Iq+cHfRtmX49dCWr4+2rekkj8vH85kBoYuqr0eBrt26P9GhWPscsY44Yh11xPK01yFHrGFHrAOOWDscsTzLONKhej3uiOXZHj3rca8jlmcbOu6I5VmPnr56yhHL07+OOWK93BHL0+87NeZ4lvEJR6ydjlhPOmJ52stzbOLpX506LvT0+04dy+1xxDrsiHU2jOU61e89xyZTfVo5rE4dy3VqLPQcy3nGQs969LRXp46/HnHE6tTx135HLM+27dmGPO3l2Q95tqFOtb1n/PJcl9vniNWp/uU59u3UMWYn9h3p57oTVpqs7xjMwcbPam+0HpGTCJ27hRzc7x7InuFekeH0hYm2KLEPVfh3zgy/TrqUlJfE6gfLx/teM4QuDZHHdRXbp0Q5CqvmiMVnL9RdF2rfLyF+pFf2mh7Gzlxmb8zevGvH0d1rD+4OlGr0/ZYcFbcR3eYc1boFbkL/+Pk2etYtaBF7MEysmt4cvQPgqWtvG4K/FpGTtCknEXIGBB83bXSdEk3twqJN2/DrYWKZqzRt5arKLlb2utClQXlpegzoqoRezDvoiHXIEeu4I9YOR6zHHbFGHLGGHbFOOGIdc8Ta44jlWY+e9vL01b2OWJ6+us8Rq1PjhGd79LR9p/rqSUcsT5/w9FVPex11xPKM0Z5jgFOOWHscsTzbUKf619kQvyajH7KxPF4tgq+9vnnheJk9kNdNvAnIrBF9fdEY31sXjpedgGz73Ed4SSg1p7k4IbwQ9BzK8OukS0l5o3OoLpLH5eM5VLfQpUF5adoNdJzXLZ7FsEYcsU46Yg07Yu11xNrhiHXKEWuPI9ZhR6xDjlidWo+evurZHj31etwRa58j1nFHLE+f2O+I5ekTxxyxPO3lGb889TrhiOVZj556dWrf4VmPnrb3bNueZXzCEWunI9aTjlhnQ7/t2bYno69VVxT1kRw19+mKyEF+nhchX5L9bfN63cLXtduzephY5hLyotfrKrvwniLyNigvTfxqr5KTCDmJwIrp5bg1bSpeRHRrc1RLBG5C//j5RfRMmQKx1Y1PfUKWpZhpGzn8aRqIyFFub8sw/UE3P94+L9v8kN/yTtctuWxXtZyUpl3ZX74ZbFa2nIQ3h3QLeYhVJLRU3LIvfBqHt+zbDS1qyz4WWnqFLuwPafp+oOO8bvEs5lvdjlhOXUGP2aNHZCpbsR3Rr/iXpvGGDfwlV07d9B3Lk+LfsmQMl+lYV/Qx01u1ZT4WU7YtI39XDpa6+TpND0A+0l+fteU263SVqlP2l96K2EXbd+zmNm77fHypGeLpvlue+PhPv+N/ryrbjox+mqBXx3vMVhVvn7lgAGQEkm156hiY5WEMNh1S/lWLx+s3raJ+ReyH+Co+8tCraF0MBd3PhDD1q0U43OzMXy1K0xr6vlbwBYGd5k/9atH4vOfLrxb1Cb6mffjCj771Bxrv+fGfaV700W/2rvmxLz309dt7rv3UR59Y+Hs/9O0vPvsfWOcgdOZ6VL8oVKRVp4lHMg1HrCGBZbbB3xYo4fNzi0Yrw6+HttrYaLRSv8OA5eOyzxa6NEQexyB1Z56691RhdTlidTti1Ryxepyw0nT/FNYU1hTWFFZBLMvD/n6I8rD/5N/TmezVuklcLB8o2u+eqcVyK1/VO3cT4kd5agGeVxdUn2m+0ZuDZbw1on9ztgLSILo0sV+rFT98ZvZJn71x0XjdeW6j/oYQH+vxJhHWz+n2e5x/4KHFn1mkZeIqM/Juz/7yytTixWN8P79ovM5Yr7iyYjZQftLmKtR0tbLSA9hWhgrYA+oOaiwXj8PUe6C4ImNlbBA92k750jQoTxvxa05sRyUtyy+Tj9Qgj/0Sy8O/LVEDH/nVDFO1A5zP5cWdWLsx++fd246/C4/0vwk7JSOR30KckSMP7aHiIst7v9iZUX6LcTyEyn47V/ktxkP2W7VSp+Kn0atVU/XiaSNMbANFNsjRD9bm6JrXn+CKO9L/gajzon7O9Wr0f1SwXp3ikaxXtFWRelWr20XrlfshrNc6YbXahStSr6gfjxOM/n9G6lX1caoP4j7ukwXr1Ww5GfWKtipSr2q8ULReedcT65V/C1XFaKzrIvWK5eEYbfR/E6nXqnH4bzsgDuN4k+tVtRmk53qNxW0Vh7HO+b51Xr9FOWVjtOqXYzHa6L8m6pznlBwX8vRTdkvLbHPabBdl88jBI7uybZRAKbbtkX6emaPGHMEfIljIEysSbgyxyU1Wb9DL82xyo/8nYXI2IetTZIpdsckU3ogzfK8pdtFzX2rKy80sNh0uOpV3dNU0rclRIxH8oQWWfcczWFjdPKqPjQSYN/1nEbnoSGD0Np8s0qoeIzYzC2FiRFG/Xo2zNZ7dYxmGKA/5ZuTIKTpCMfqZUNZYT2bPJqMnQxtxT1Z0p8jo1cok7o7xCEXtrMRWJos2cwurHOKQNzZTRtzYuZPYtTJYb2pW2kN5eStzIUzKaHWg7OxStaXY7DLmO2ibRpjoJ7EVOdZLdbEYJ9gXVPvnlbU08Wgb/xpPCBPbJtLhDWWW+PxvPzzvFljTiM/or8rqDn8NKhA/nnMJRJcQbciR30X0dUGvXs1O7XPJ4jGdlZ7cf2FZuwU9n8Mz+hfBStVL6FcnuY3as9sidEnOX6Uz6hOzUbegN9n9gt7y8EY19H2kQXshVh3ykX4N+Q7Wt/E3hHxc9Qk5eufdGMdY3eIZ+s7LFo8vQ8Xzy0l/GL+qYX+LnEv81asvfvGMe877wVa/tlcVf8aHfnPDZ//x0HlVfs1PXc9W1F/zzr6m6cHsb5sr+l3qLGMozp8UOfNa8Rznd4rYCfHrQY/pmqFQGp2ecKzN60Pb/FXGf02ntParxnkr72g7lMPnWbsFD8Ydxkj537lkfDkqTuv+tU0f/Be1WoM7JTsXj+Fi2XEcr6bPNaJ/DPqfRyG2Gq7xYx8+GCa2D27TZu8uQYuf+btaHeQprNVXb05ZeVfI6A/AnOXAfI1Z9AoVoz8s5kGGqX55MzbujP16IeqjbtKdTnxqZTyIZ6p+EqJFHdL0oNAp73td4OTp0Cdw1DsOvNKvVpex3fA4Wu1sYpvCPqvN5aTS77QklIdluxvoOHXTd9Q5xdhAY8YgsJR9+N0Jj77bnvfAc5bL60m9RMtzKdSxnfEwjy96hA72fVpE/4Rw1MmE2FVLVfVNhL6TedIkTfdkf9vs8xa3Oh3w5gJ9Xux0gNH/FPR5by3Y51kej9vSdC8845jO4yDESBMvo1uM7AV8pOmjMhn9z4m+TcUQw0rL/nayZx/kxfqRGtF/AOz5NNkT7cXXQXMcD/C9H3RB2jQ9mGOD94AezyzOl4Xz1LwyphjvjZy8eVDQMUbVfk2Nr7jtFhlfqTWovogMjsd5fbf5xvQW+epXxoN41iXo+3LKG4TsegtcdfpDxfc65SUij2MPlrfoOi7GrTdH2ksSxpern8rVFylXIvi4naPu0yK6K/th/Ki6hvDav/7OJ3/05Qu/MllrFC992/F/N3D1e947Wfjvmv6xG//L2/q+v8waiNWzOq3EvqXex0zTfZCP9J+gdzErrjEELo+KG7H5Ga+Fsv6bc/R/FuL3p6ldqPmJajN5/W9PQV2M/q8K7m/hyUjDsbwSNq+pPQ2MazzeVfFWrWUbfau5JZ8Mxfha5JQI2pTHNGaj3qDn97yfavR/L/ZTY7HZ8rDsHBfVfoxaS7Q2ltJMozWhiuPbaWocYYnvKcAysj9gGS2vn3TCPKxLXu/HpOaQVtZU574Cdx+o+MDtVa2rxMaLqt0Zfqe1O/P9RphYL+xvRX04bzyn5KEdsK82H85bk8c2jXOu6UvG8NDu6rxAmjieGv05S8b4BrPP6lQ++4OKE6xLCPE979hcfkDwWb20eadBD9Yv6onPEF/dQVFlrV6NTWNr9RXHCTXuY1GeqoeZQdtUrefzXFGt98TmSbF4otoft021jhB7MyLW/nDNvMi4Ke8sTt56xnnQtq6jtqVibazeYmeSYrEPdVW276c8Nfe3z9MjcpRe6mzV9IheGJORl2W3KkPRvsppjNij+iqskyJvA8V+FU39IhueOeE2guec+DRv0b6tn/JUH9+qb7sup4/CcqgT4uooJfZv1vdVnR++ZOW/X7D4w4cHJmv+2VNb/Jbmex5eW2b+qeJKF+GiHXi9PU1bsr9F9rkr9p2F727jvrPdfe6ifacar3NfgOss9wMd56l14a7TjKXmJlyXFccJhcdBfGahou9Ezyyo/k3Nr3jeiP0P27+dn/zoRCxs/7HxcZF6VXLUmH6y9+54z22aoxzE2kpyeN1a/S0qR91hqPZlcf52gPpGtR6GvHnrYW+CMebhJeNpTPdhoHkFrZlgmUu05bqak1tSax/st2ocqM7Tsn/g2Ibvg8XXYPAsBCe1nmJ0qbz3F1hPQVsWuROXz5kmhMdrx0b/Kqov3otvhmJJrR0b1vPJF6rU99dLrJ8lohxFzuLH5qZqTU7Fyrz4hvgqJj1A+GiP2B6ZKrPx4t57LHax7yP9WyAuPU3xUM1pVQy2563W0WN73MbbJ/hKtIPp7M+YlD9zO1C/pM2xTbUDfK+KYyK+isjzGUyqjZgdysTEp3P6NZOBdZEmnvOpfXfsL618Vc8QJ4BpOlnZUS++ZxXbE78vU/FM7ajt1NkSHG/x2pvR/+cl43HUGZjYexfq7Hy3kKves5heEquPsKa1gYXrFkw/raJeCovfaynznsq7c9b1J3Of+QM0Vvhe22f+NPQHvx9ZL01Il8nYZ/5IJn9qn/nM7TP/OdTBmdxn/trUPnPpcfLUPvPEejmT+8xfq7jP/C2nfeYZS8f4/mlqn3lc3U/tM499ntpnLr/PPARt6/yl48s/tc88tc9s+jD982Wf2Xw+1i9U2We2vu//B7Ilh9WxUgQA",
|
|
2056
|
+
"debug_symbols": "tb3RziS5cYX5LnOtiyQZEST1KoZhyLZsCBhIhiwvsDD87luMzIivumeLnX9Vz43608z0OUySEZVkRjL/95d///O//s9//stf/voff/vvX/74T//7y7/+/S+//vqX//yXX//2b3/6x1/+9tfHP/3fX471P73+8sf2h196++WP9vhDfvnjePyh5x92/tHPP8b5x/Q/xnH+Uc4/6vlHO/84VcapMk6VcaqMU2WcKvNUmafKPFXmqTJPlXmqzFNlnirzVJmnSjmO689y/VmvP9v1p1x/6vWnXX/2689x/XnplUuvXHrl0iuXXrn0yqVXLr1y6ZVLr1x69dKrl1699OqlVy+9eunVS69eevXSq5deu/TapdcuvXbptUuvXXrtoVeOBT1gBMwL5KFZ2oISUAMessUWPHSr/8caYAE9YATMC/ShXMuCElADWoAEaIAF9IARMC+wULalXBfUgBbwUC6rE0wDLGApO4yAeUE/AkpADWgBEqABFhDKPZR7KK/AaatbVuicUANagARogAX0gBEwL5ihPEN5hvIM5RnKM5RnKM9QnqE8L+V6HAEloAa0AAnQgKVcF/SAETAvWJF2QgmoAS1AAjQglEsol1AuoVxDuYZyDeUayjWUayjXUK6hXEO5hnIL5RbKLZRbKLdQbqHcQrmFcgvlFsoSyhLKEsoSyhLKEsoSyhLKEsoSyhrKGsoayhrKGsoayhrKGsoayhrKFsoWyhbKFsoWyhbKKwabLugBI2BesGLwhBJQA1qABGhAKPdQ7qG8YrA9YrB6DDqUgIeytAUtQAI0wAJ6wAiYF6wYPKEEhPIM5RnK88obdVpADxgBV95oxxFQAmpAC5AADbCAHrDabAvmBSsGTygBNaAFSIAGWEAPCOUSyjWUayivGJS+oAVIgAZYQA8YAfOCFYMnlIBQbqHcQnnFoB4LLKAHPJRVFswLVgyeUAJqQAuQAA2wgB4QyhLKGsoayhrKGsoayhrKGsoayhrKGsoWyhbKFsoWyhbKFsoWyhbKFsoWyj2Ueyj3UO6h3EO5h3IP5R7KPZR7KI9QHqE8QnmE8gjlEcojlEcoj1AeoTxDeYbyDOUZyjOUZyjPUJ6hPEN5XspyHAEloAa0AAnQAAvoASMglEsol1AuoVxCuYRyCeUSyiWUSyiXUK6hXEO5hnIN5RrKNZRrKNdQrqFcQ7mFcgvlFsotlFsot1BuodxCOWJQIgYlYlAiBsVj0Ba0AAnQAAvoASNgXuAx6FACQllDWUNZQ1lDWUNZQ1lD2ULZQtlC2ULZQtlC2ULZQtlC2UK5h3IP5R7KPZR7KPdQ7qHcQ7mHcg/lEcojlEcoj1AeoTxCeYTyCOURyiOUZyjPUJ6hPEN5hvIM5RnKM5RnKM9LWY8joATUgBYgARpgAT1gBIRyCeUSyiWUSyiXUC6hXEK5hHIJ5RLKNZRrKNdQrqFcQ7mGcg3lGso1lGsot1BuodxCuYVyC+UWyi2UWyi3UG6hLKEsoRwxqBGDGjGoEYMaMagRgxoxqBGDGjGoEYMaMagRgxoxqBGDGjGoEYMaMagRgxoxqBGDGjGoEYMaMagRgxoxqBGDGjGoHoPzAR6DDiWgBrQACdAAC+gBIyCURyiPUB6hPEJ5hPII5RHKI5RHKI9QnqE8Q3mG8gzlFYN2LNAAC3goW10wAuYJtmLwhBJQA1qABGiABfSAERDKJZRLKJdQLqFcQrmEcgnlEsollEso11CuoVxDuYZyDeUayjWUayjXUK6h3EK5hfKKQWsLWoAELGVZYAE9YCnbgnnBisETlvJcUANawEO5lwUaYAE9YATMC1YMnlACakALCGUNZQ3lFYN9tXnF4AnzghWDJ5SAGtACJEADLCCULZQtlFcMdl1QAmpAC5AADbCAHjAC5gUjlEcoj1AeoTxCeYTyCOURyiOURyjPUJ6hPEN5hvIM5RnKM5RnKM9QnpdyP46AElADWoAEaIAF9IAREMollEsol1AuoVxCuYRyCeUSyiWUSyjXUK6hXEO5hnIN5RrKNZRrKNdQrqHcQrmFcgvlFsotlFsot1BuodxCuYWyhLKEsoSyhLKEsoSyhLKEsoSyhLKGsoayhrKGsoayhrKGsoayhrKGsoWyhbKFsoWyhbKFsoWyx6Dv/4+AeYHHoEMJqAEtQAI0wAJCuYdyD+URyiOURyiPUB6hPEJ5hPII5RHKI5RnKM9QnqE8Q3mG8gzlGcozlGcoz0t5HEdACagBLUACNMACesAICOUSyiWUSyiXUC6hXEK5hHIJ5RLKJZRrKNdQrqFcQ7mGcg3lGso1lGso11BuodxCuYVyC+UWyi2UWyi3UG6h3EJZQllCWUJZQllCWUJZQllCWUJZQllDWUNZQ1lDWUNZQ1lDWUNZQ1lD2ULZQtlC2ULZQtlC2UI5YnBEDI6IwRExOCIGR8TgiBgcEYMjYnBEDI6IwRExOCIGR8TgiBgcEYMjYnBEDI6IwRExOCIGR8TgiBgcEYMjYnBEDI6IwRExOCIGR8TgiBgcEYMjYnBGDM6IwRkxOCMGZ8TgjBicEYMzYnBGDM6IwRkxOCMGZ8TgjBicEYMzYnBGDM6IwRkxOCMGZ8TgjBicEYMzYnBGDM6IwRkxOCMGZ8TgjBicEYMzYnBGDE5/OFgWSIAGWEAPGAHzghWDJ5SAGhDKEsoSyisGR13QA0bAvGDF4AkloAa0AAnQgFDWUNZQ1lC2ULZQtlC2ULZQtlC2ULZQtlC2UO6h3EO5h3IP5R7KPZR7KPdQ7qHcQ3mE8gjlEcojlEcoj1AeoTxCeYTyCOUZyjOUZyjPUJ6hPEN5hvIM5RnK81J+PH8/kkpSTWpJkrT0xcmSetKy6E4zyB/Kn1SSalJLkiRNsqSelB4lPWp61PSo6VHTo6ZHTY+aHjU9anrU9Gjp0dKjpUdLj5YeLT1aerT0aOnR0kPSQ9JD0kPSQ9JD0kPSQ9JD0kPSQ9ND00PTQ9ND00PTQ9ND00PTQ9PD0sPSw9LD0sPSw9LD0sPSw9LD0qOnR0+Pnh49PXp69PTo6dHTo6dHT4+RHiM9RnqM9BjpMdJjpMdIj5EeIz1mesz0mOkx02Omx0yPmR4zPWZ6zPA4C21OKkk1qSVJkiZZUk8aSemRcV4yzkvGeck4LxnnJeO8ZJyXjPOScV4yzkvGeck4LxnnJeO8ZJyXjPOScV4yzkvGeck4LxnnJeO8ZJyXjPOScV4yzkvGeck4LxnnJeO8ZJyXjPOScV4yzkvGeck4LxnnJeO8ZJyXjPOScV4yzkvGeck4LxnnJeO8ZJyXjPOScV4yzkvGeck4LxnnJeO8ZJyXjPOScV4yzkvGeck4LxnnJeO8ZJyXjPOScV4yzkvGeck4LxnnJeO8ZJyXjPOScV4yzkvGeck4LxnnJeO8ZJyXjPOScV4yzkvGeck4LxnnJeO8ZJyXjPOScV4yzmvGec04rxnnNeO8ZpzXjPOacV4zzmvGec04rxnnNeO8ZpzXjPOacV4zzmvGec04rxnnNeO8ZpzXjPOacV4zzmvGec04rxnnNeO8ZpzXjPOacV4zzmvGec04rxnnNeO8ZpzXjPOacV4zzmvGec04rxnnNeO8ZpzXjPOacV4zzmvGec04rxnnNeO8ZpzXjPOacV4zzmvGec04rxnnNeO8ZpzXjPOacV4zzmvGec04rxnnNeO8ZpzXjPOacV4zzr1waB5OLUmSNMmSetJImkErzi8qSekx0mOkx0iPkR4jPUZ6jPSY6THTY6bHTI+ZHjM9ZnqsOJ/FaSTNi7yo6KKSVJNakiRpkiX1pJGUHiU9SnqU9CjpUdKjpEdJj5IeJT1KetT0qOlR06OmR02Pmh41PWp61PSo6dHSo6VHS4+WHi09Wnq09Gjp0dKjpYekh6SHpIekh6SHpIekh6SHpIekh6aHpoemh6aHpoemh6aHpoemh6aHpYelh6WHpYelh6WHpYelh6WHpUdPj54eHufNqSVJ0vIwJ0vqSSNpBnmcn1SSalJLkqT0GOkx0mOkx0iPmR4zPWZ6zPSY6THTY6bHTI+ZHjM8vHDpopJUk1qSJGmSJfWkkZQeJT1KepT0KOlR0qOkR0mPkh4lPUp61PSo6VHTo6ZHTY+aHjU9anrU9Kjp0dKjpUdLj5YeLT1aerT0aOnR0qOlh6SHpIekh6SHpIekh6SHpIekh6SHpoemh6aHpoemh6aHpoemh6aHpoelh6WHpYelh6WHpYelh6WHpYelR0+Pnh49PXp69PTIOJeMc8k4l4xzyTiXjHPJOJeMc8k4l4xzyTiXjHPJOJeMc8k4l4xzyTiXjHPJOJeMc8k4l4xzyTiXjHPJONeMc80414xzzTjXjHPNONeMc80414xzzTjXjHPNONeMc80414xzzTjXjHPNONeMc80414xzzTjXjHPNONeMc80414xzzTjXjHPNONeMc80414xzzTjXjHPNONeMc80414xzzTjXjHPNONeMc80414xzzTjXjHPNONeMc80414xzzTjXjHPNONeMc80414xzzTjXjHPNONeMc80414xzzTjXjHPNONeMc80414xzzTjXjHPNONeMc80414xzzTjXjHPNONeMc80414xzzTjXjHPNONeMc80414xzzTjXjHPNONeMc80414xzzTjXjHPNONeMc80414xzzTi3jHPLOLeMc8s4t4xzyzi3jHPLOLeMc8s4t4xzyzi3jHPLOLeMc8s4t4xzyzi3jHPLOLeMc8s4t4xzyzi3jHPLOLeMc8s4t4xzyzi3jHPLOLeMc8s4t4xzyzi3jHPLOLeMc8s4t4xzyzi3jHPLOLeMc8s4t4xzyzi3jHPLOLeMc8s4t4xzyzi3jHPLOLeMc8s4t4xzyzi3jHPLOLeMc8s4t4xzyzi3jHPLOPcirjmdZpDH+UklqSa1JEnSJEvqSenR02Okx0iPkR4jPUZ6jPQY6THSY6THSI+ZHivOHxvijhVsoIAKGtjBAc5Ar/YKLGAFGyigggZ2cIC4FdwKbgW3glvBreBWcCu4FdwKbhW3ilvFreJWcau4VdwqbhW3ilvDreHWcGu4Ndwabg23hlvDreEmuAlugpvgJrgJboKb4Ca4CW6Km+KmuCluipviprgpboqb4ma4GW6Gm+FmuBluhpvhZrgZbh23jlvHrePWceu4ddw6bh23jtvAbeA23K06NlBABQ3s4ABn4jzAAuI2cZu4TdwmbhO3idtMt3EcYAEr2EABFTSwgwPEreBWcCu4FdwKbgW3glvBreBWcKu4VdwqbhW3ilvFreJWcau4Vdwabg23hlvDreHWcGu4Ndwabg03wU1wE9zOXCKOAirobubYwQHOxDOXnFjACjZQQAVxU9wUN8XNcDPcDDfDzXAz3Aw3w81wM9w6bh23jlvHrePWceu4ddw6bh23gdvAbeA2cBu4DdwGbgO3gdvAbeI2cZu4TdwmbhO3idvEbeI2020eB1jACjZQQAUN7OAAcSu4FdwKbgW3glvBreBWcCu4FdwqbhW3ilvFreJWcau4VdwqbhW3hlvDreHWcGu4Ndwabg23hlvDTXAT3AQ3wU1wE9zIJZNcMsklk1wyySWTXDLJJZNcMsklk1wyySWTXDLJJZNcMsklk1wyySWTXDLJJZNcMsklk1wyySWTXDLJJZNcMsklk1wyySWTXDLJJZNcMsklk1wyySWTXDLJJZNcMsklk1wyySWTXDLJJZNcMsklk1wyySWTXDLJJZNcMsklk1wyySUzc0k9MpfUI3NJPTKX1CNzST0yl9Qjc0k9MpfUI3NJPTKX1OPAreBWcCu4FdwKbgW3glvBreBWcKu4VdwqbhW3ilvFreJWcau4Vdwabg23hlvDreHWcGu4Ndwabg03wU1wE9wEN8FNcBPcBDfBTXBT3BQ3xU1xU9wUN8VNcVPcFDfDzXAz3Aw3w81wM9wMN8PNcOu4ddw6bh23jlvHrePWceu4ddwGbgO3gdvAbeA2cBu4DdwGbgO3idvEbeI2cZu4TdwmbhO3iRu5pJBLCrmkkEsKuaSQSwq5pJBLCrmkkEsKuaSQSwq5pJBLCrmkkEvKmUumo4EdHOBMPHPJiQWsYAMFxO3MJerYwQHOxDOXnFjACjZQQAVxa7g13BpugpvgJrgJboKb4Ca4CW6Cm+CmuCluipviprgpboqb4qa4KW6Gm+FmuBluhpvhZrgZboab4dZx67h13DpuHbeOW8et49Zx81xS6kLPJRcWsIINFFBBAzs4QNwmbhM3zyWlOzZQwOVWm6OBPdDLANfJcNXLAB/B47iaUM1xJnpYXFjACjZQQAUN7CBuDTfBTXAT3AQ3wU1wE9wEN8FNcFPcFDfFTXFT3BQ3xU1xU9wUN8PNcDPcDDfDzXAz3Aw3w81w67h13DpuHbeOW8et49Zx67h13AZuHhZ1OlawgQIqaOBy85P1vF4wcCZ6WFxYwAo2UEAFDcTNf2JbcZyBXjtYrgPxCljBBgqooIHupo4DnIn+E9u6YwEruNzkcBRQQQM7OMDlJn5t/hN7YQEr2EABFTSwgwPEzXOJeD94Lrmwgt5nw9F1m6MreO94fhD/Dzw/XFjBBgqooOtOxw4OcCZ6friwgBVsoIAK4ub5QX0APD9cuNzUL9Pzw4UFrGADBVxu6+yo6hWFgR0c4Ez0/HBhASvYQAFx8/ygPiyeHy50N3OciZ4fLizgcjPvB88PFwqooIEdXG7mk8vzw4meHy4sYAUbKKCCBnYQN88P6wyU6jWHgQX0nhyODRRwJnrMr1NTqpcPlnUUSvWqwcftj6OBHRzgTPSQXoeXVK8dDKxgAwVUcLl1vwoP6QsHOBM9pC8sYAUbKKCCuPntQfd+8NuDC2eih/86I6V6PWFgBd3Nu8/Dv3uXePj36WhgBwc4Ez38L1y6wxvpgX6hggZ2cCR6FA51nIkehcPb6/E2fD54vF2ooIEdHIkeF8Pb63Fx4Uz0uLiwgBVsoIAKGojbxG2mm9foBRawgkt3Ve9Xr78rq7S5egFeWXXM1SvwAgu4FKY4NlBABQ3siR4iUx1dwRxdwVvmwXChga4wHAc4Ez0YLixgBds6KtqveAVDoC70i1/BENgT17Sv69FX9VK6x6aUo4De3u7oCn6Z51HVJw5wJvqB1b7E8ZK6wAq6m/eOH1x9oYK4KW6Km+Lmh1hfWHIsjNE0RtMYTWM0jdH0GDqH0H+zziH0GDoHqzOandH0GDrHojOandHsjOZgNAejOWqO22A0h+RgDUZzMJpj5hDOmuM2GU2Pt3MI/bjcs6Mm/Tvp30n/+rG5PlheKxdYwBqD5eVygQKmm1fMBXZwgDmaXov22PdyHOBMXMFQ14nr1evRAivYQAEVNLCDA1xuxZvjIXJhASvYQAHdzdvrgXNhBwfobmsa2XnS+4kFXG7VW+aBc6GAy22d4169UC2wgwNcbutg92rnWe/NsYECKui6PvJ+6ruvybw87bFec5yJfvb7hQV0N79iPwH+QgEVXG6+dvLqtHoeee1HwDdvzoqheh17vSz83t4r1AIbKKCCBnbQ3bzXPbJOXL9v1dc4XqoWWMEGCqiggR0c4Az0UrXAAlawgQIqaGAHB4hbwa3gVtytODZQQAUN7OBIrK5bHSvYQAEVNLCDA5yJnhQuxK3h1nBruDXcGm4Nt4Zbw01wE9wEN8FNcBPcBDfBTXAT3BQ3xU1xU9wUN8VNcVPcFDfFzXAz3Aw3w81wM9wMN8PNcDPcOm4dt45bx63j1nHruHXcOm4dt4HbwG3gNnAbuA3cBm4Dt4HbwG3iNnGbuE3cJm4Tt4nbxG3iNtNtHAdYwAo2UEAFDezgAHEruBXcCm4Ft4Jbwa3gVnAruBXcKm7kkkEuGeSSQS4Z5JJBLhnkkkEuGeSSQS4Z5JJBLhnkkkEuGWcuEUcDOzgjI44zgZxYwAo2UEAFDezgAHFT3BQ3xU1xU9wUN8VNcVPcFDfDzXAz3Aw3w81wM9wMN8PNcOu4ddw6bh23jlvHrePWceu4ddwGbgO3gdvAbeA2cBu4DdwGbgO3idvEbeI2cZu4TdwmbhO3idtMt3kcYAEr2EABFTSwgwPEreBWcOO2Y3LbMbntmNx2TG47Jrcdk9uOWXCruFXcKm4Vt4pbxa3iVnGruFXcGm4Nt4Zbw63h1nBruDXcGm7kkkkumeSSSS6Z5JJJLplnLumOBnbQ3abjTDxzyYnuNhwr2EABFTRwuWl1HOBM9Fyi3l7PJRdWsIECKrjcfF/ZK9ECB+huayXhlWiBBayg65qjK3hHeX440fPDha7gHeX54cIGrvb6brNXlwUa2MHl5hvEXl12oeeHCwvout59HvO+/+sVY4HzwuYVY9W/4+IVY4EVbKCAChrobuI4wJnoMX9hASvYQAEVNBC3glvBreJWcau4ecybOrquOXZwgDPRo/vCAlawgQIqiFvDreHWcBPcBDfBTXAT3AQ3wU1wE9wEN8VNcVPcFDfFTXFT3BQ3xU1xM9wMN8PNcDPcDDfDzXAz3Ay3jlvHrePWceu4ddw6bh23jlvHbeA2cBu4DdwGbgO3gdvAbeA2cJu4TdwmbhO3idvEbeI2cZu4zXTz2rDAAlawgQIqaGAHB4hbwa3gVnAruBXcCm4Ft4Jbwa3gVnGruFXcKm4Vt4obuaSQSwq5pJBLCrmkkEsKuaSQS8qZS7qjggZ2cIAz8cwlJxawgg1cbv1wVNBAdxuOA5yJZy45sYAVbKCAChqIm+LmuWQ94mvnlywvLKCAS2E9h2zn1yovdAXvX88PFxawgg0UcLV3eJecX688sYMDXG7DjT0/XFjA5Ta8vZ4fLhTQ3ZqjgR0coLutnzqv96rD2+uZYPgYeya4UEEDXXc6Lt3pV+GZYK7m+DF3dT09a37OXWAFG7jc1kOW5mfdBRrYQXdb7fVT7up6ftH8mLu6npa08yOX6xFJOz9zebiFf+jyQgUN7OAAZ6J/9PLwNvhnLy9sMY28wi1QQQM7OMCcqV74FljACuLWcGu4Ndwabv41zMP7zL+HeaJ/EfNCvyDvSf8q5oUNFFBBAzs4wJnoX8m8EDfFzb+VuWpo2/m1zAsVNLCDA5yJ/uXMCwtYQdwMN8PNcDPcDDf/lubhU+68U1DHBgqooIEdHOBMPO8UTiwgbgO3gdvAbeA2cBu4DdwmbhO3idvEbeI2cZu4TdwmbjPdzm9uXljACjZQQAUN7OAAcSu4FdwKbgW3glvBreBWcCu4FdwqbhW3ihvri1Zxq7hV3CpuFbeKW8Ot4dZwa7g13BpuDbeGW8Ot4Sa4CW6Cm+AmuAlugpvgJrgJboqb4qa4KW6Km+KmuCluipviZrgZboab4Wa4GW6Gm+FmuBluHbeOG7mkkUsauaSRSxq5pJFLGrmkkUsauaSRSxq5pJFLGrmkkUsauaSRSxq5pJFLGrmkkUsauaSRSxq5pJFLGrmkkUsauaSRS4RcIuQSIZcIuUTIJUIuEXKJkEuEXCLkEiGXCLlEyCVCLhFyiZBLhFwi5BIhlwi5RMglQi4RcomQS4RcIuQSIZcIuUTIJUIuEXKJkEuEXCLkEiGXCLlEyCVCLhFyiZBLhFwi5BIhlwi5RMglQi4RcomQS4RcIuQSIZcIuUTIJUIuEXKJkEuEXCLkEiGXCLlEyCVCLhFyiZBLhFwi5BIhlwi5RMglQi4RcomQS4RcIuQSIZcIucRL/dqqcWle6hc4wJno3/i+sIAVbKCACuI2cBu4DdwmbhO3idvEbeI2cTtzSXXsoLsVxxnoJYSBBaxgAwV0t+ZoYAfdTRxnYjlAd6uOFWygj5uLnbnkRAM7OMDc09Uzl5xYwAo20HdvzbGDfhXqOBPbARawgg0U0PusOxrYQXcbjjPR1y0Xupu3zNctFzbQd6ZdzLPGhQZ2cIAzUQ+wgBVsoF/FdOzgANdVrMKs5qWJgQVcV1F9RvkK5cLVZ9Unga9QLjRwuVUfN1+hXDgT+wEWsIINdDefk11BAzs4wJno9xq+avaCRS+abFfB4okKGtjBAc7EeYBebuhjPCvYQAH1qtZsXtwY2MEBzkAvbgwsYAUbmCNvRwcHmCPvh/8FFjBH3s//C8yR9xMAAw3MkfdDAANz5P0YwMACVrCBOfJ+FmCggR0cYI78WYHpI++1lufIn7WWx4kKGtjBAebIn7WWF+bIn7WWFzZQwBx5r7UM7OAAGXll5JWRV0ZeGXmP+eot85i/cIAz8Yx5/2tnzJ9YwQbKVZ7e7CxHPtHADg5wJnqh/4UFrKCPcXc0sIMDnIn+639hASvYQAFxG7gN3AZuA7eJm//6N2+6//pf2EABFTRwuTUPHP/1v3AGeoFlYAEr2EABFTSwg+7WHGeiZ4IL3U0d3W04NlBABQ3s4ABnomeCC91tOlZwua0iz+Zll4EKGrjcxJvumeDCmej3BBcWsIINFNDdxNFAd/Pe8XuCC2ei3xNcWEC3MEcBFTSwg27hXeIbmCf6BuaFBaxgA5ebP/r2WstAAzs4wJnoqeLCAlawgbj57cEqb2heaxnYQXfzOem3Byf67cGF7ua97rcH6j3ptwd+C+i1loEKGtjBkeipwtvomeKkliRJmmRBHsF+i+XFjoED9OcZDzprHU8qSTWpJUmSKzp6PK4SjOali+38hzWpJa3mdidNsqSeNJJmkIfhqt1oXrEYuFxWlUbzisVAAZeoL1y8CrH5XbpXIQa6gpMLiKOAChrYwRFd0rI7JbtTsjslu1OyOz2Qzk70kDk70UPGl5deXRjoDfWWeshc6C31HlohIydZUk8aSTNoRctFrugN8QAwb8gKAA8QLxW8aAat2e9x63WCF9WkliRJmuSjfsp00Mfdx81/OE/0H84LVzP94YyX/bXuQ+g/hheuq/TL8N/Cs2P8t/DCAlbQZX00/bfwQgUtO9wj6cIBpptX/QUWsILp5lV/gQqmm1f9BQ4Qt4Jbwa3g5tF3oVxT3Yv+zunrRX+BHRzgTPTfKX9I6xV5gQX0uxmnliRJmmRJPWkkzSD/fTqpJKWHpIekh6SHpIf/Rq0PzjYvwQuciR5w/kDZS/ACl1H3nvOAu1BABQ3s4ACXmz9F9hK8wAJ6viyODRRwufnDZy/BC+ygJ3anGXT+QjmVpJrUklzxRG+pD6dHnj+49uK7wAo20Fs6HRU0sIMD9ButRR6l/jzca+8CK7jM/Cm5V+QFKrjM/HG31+kFLjNfUHmdnqN4nV7gyl7NqSa1JEnSJEtyRVvoMbceq4tX3bX1WF286i5QQQNXhl7P3cWr7gJn4vrhCyzgaqr7rt+9iyRpNdUvbt17XtSTRtIMWvF8kZsUxwo20EBvZl0oB7gUxKkmtaTVyuNEBQ30HvHrkAG6lXevHqA31jtSvbHTcZkV76cVrlJ8rPz38UIDOzjAmeg/khcWcLkVb6+5m/eduZu319zNG2mu6420meg/nxcWsIINFNDF/DL7TBwHWMAKNlDAJVa9o1bMSfVRXTEX2EABH9emfpUr5C7qSSNpXuQFbheVpJrUkiRJkyypJ42k9CjpUdKjpEdJj5IeJT1KepT0KOlR0qOmR02PFWzrzl+8UO2injSSZtAKtotKUk1qSZKUHi09Wnq09GjpIekh6SHpIekh6SHpIekh6SHpIemh6aHp4YGx7m7FDw+Tev5TnzzTcQXcWqCI13TJ+o0Wr+kKnIk+rZsrrGmtLrBm9UUtSZI0yZJ60kiaQeuH56L0mOkxPeuro7fRx3zN7LWqEC/Yuqgk1aSWJEmaZEk9aSSlR0mPkh4lPUp6lPQo6VHSY83steYRr9S6aAatmb3u8sTLtC6qSd4L3dF7YTj6SK1u8hqswAJWsIECKmhgBweIm+AmuJ2/NodjAwVU0MAODnAm+u/NhQXETXFT3BQ3xU1xW78364ZevATrpPVrc1FJqkktyRWLo7fUh3j9ppj3xfpJuagmrb/tA7d+Ty7SJEvqSSPIf1X8B9xLpsTvFbxkKtBAv0Rvpv/AXDgT5wEWsIINFFBBA3GbuE13W033kqnAAi63tZAVL5kKXG5ry0e8ZErW5o54yZR4evOSqcAB+n3UMvaSqcDltnZaxEumRN14hWt3hxWuF2mSJfWkEeQ3gJ6X2nmz54324PQY9wKowA6ulnqYewHUhR6yFxawgq7rF+hhuPYhxIuaxCehFzUFFrCCDRRQQQM76G7ecR6GJ3oYXuhu3p0ehhc2UEB38z7zMLywg6t7/SpXGJ60wvCih1X37lhheFFLkiRNsqQ1hN5p6xbwohnkN4DdR9BvAC+sYAMN9O0bnw7+83ihK/ho+13fhQ1cLfUOWUF7kSX1pJE0g1a8XlSSalJLSo+ZHjM9ZnrM9Jjh4cVIF5WkmtSSJEmTLKknjaT08Nj0ofESpMAKen+po4AK+jh0xw76rtPhOBN94XZhASu43NbiXrwEKXC5rdp08RIkGd4yj+a1zhcvQQqciR7Nwxvp0XxhBR9up4N/9vskTbKknjSCPLrXnoB4QZEMv2yP4+E963F8YQcHuFo6/bI9ji8sYAUbuJrqfRFf9hYvJ5J5/sPlNf36ffF2oXt5a33x5gttLycKXHd3vo72ciL1ZauXEwU+dKdf+Xlmrf/DPJ1WJE+nFcnTacVrgfTw4eodHOBMXKEbWMAKesP8Ivzm9kIFe7YsP+Ejkp/wkfMMMV9Sn2eIXVhBt5iOAiq4Lqh4P/jy7sJ1Qb669gKgE70AKNDdzLGCDRRQQQM7OMCZmMdbixbcCm4Ft4Jbwa3gVnAruBXcKm4Vt4pbxa3i5gvDVYQkXhYU2EHvyeY4E311eOGaGr7L4GVBgQ0U0N3U0d28Defx1tNxgDPR14m+T+FlQYEVbKCAChrYwQHORMVNcVPczuOth6OAChrYwQHOxPN46xMLWEHcDDfzazvRwA4OcCb2AyxgBRsooLv5WHgCubAneqq4cCn4HoyXBWn1aeRJ4UIDO7jaW31G+bL3RF/3XljACjZQQAUN7CBuM928LCiwgBVsoLuJo4Lupo4dHOAaeY8sLxYKLGAFGyig667A8QIgXQUU4gVA6lsaXgAU2EABV3t9d8MLgAI7OMCZ6DHf/OI95i+sYAMFVNDdvKN8Y+jCAc5Ej/kLC1jBBgqoIG4e875B4mVBgTPRY973DrwsSH3vwMuCAt1tOgro21HeO2pgBwc4E+0AC1jBBgqIm+FmuBluhlvHrePWceu4ddw6bh23jlvHreM2cBu4DdwGbgO3gdvAbeA2cBu4TdwmbhO3idvEbeI2cfP84PsVXkIUOAO9hChwRaxngvNzohc2UEAFDezgAGei7wv7nomXBamc/9RAb684DnAmen64sIAVbKDrqmP2b29c8bkNfGIFG+j9a44KGtjBgQVucoAFrGADBdRsw7krfGIHBzizDefO8IkFxE1xU9yI+U7Md2K+E/NdmTtGTxo9afTkGfPeBqMnjZ4k5jsx34n5Tsx3Yr4T852Y78R8P2Pe29DpyU5Pdnqy05NnzK+U2c+YP9HdhmMFGyjgcvONLC8ICuzgAGeix/yFBazgcvNdMT9hLZAJ7oGuHkMe6BfOQC81Csyp4cVGgQ0UUEEDO5iD5ceqXVgOsIAVbKCAChroV7FC2suRAgvoHaWO3lHeMr89uFBBAzs4wJnoqeLCArpud1TQwA667nCciZ4ULiyg3+T4X/OkcKGAChrYwQHOxPM2fzo2UEB/Hudd7eF/oT+Rq44DnIke/r5l6eejBVbQn/35CHn4X6iggR0c4Ez08L+wgBXEzT8OXpx60kh6iE5voH8c/KSS5IrecR7iFwro7fcR8xC/sIPj/Oi5eDHUSf6J8JNKUk1qSZKkSZbUk9JjhodXQF1UkmpSS5IkTbKknjSS0qOkR0mPkh4lPc6HvdNRQQNXf/keqhc9Ba7x9o1TP+kssIBrdHyH2E86C1xuvpXoJ50FGuhu3jKP9AvdbaUNr6sKLKC7DccGLjffSvTSqsDl5tt2XlwVOMB5fiVevLzqopJUk1qSJLmi94D/xPvmpBdNqW9DetFUYAMF9Jb6ZXuMX9jBAc5Ej/HhbfAYv7CCDRRQQX8c7F3kMX7hAGeix/iFBaxgAwVUEDf/ifeI9zPOAmei/8R70M/zKbd31PmY+0R385lwPug+0d28d85H3Sd2cIAz8XzcfWIBK9hAAXGbuE3cJm4z3NTrrAILWMEGCqiggR0cIG4Ft4Jbwa3gVnAruBXcCm4Ft4Jbxa3iVnHzzLBKwtRrswIVNHAtWcqJA5yJ/smCCwtYwQYKqKBfxVjov/YrpNVrtALXA+K1L65epRWooIEdHOBMXJnAVpmYeuXV1SXKFXvMXzjAmejPwtdetnrlVWAFG8hoGm7GaBqjaYymMZqd0eyM5hnz3pzOaHZGszOanWvzR+hrI1+9YCvQe0cWjgMsYAX92lxsCKiggR0c4EycB+huPglmBSUHa7qFz4dpYAcHOGMAvMIrsIAVbKCACuZgFQK9EOiFQC8EeiHQC4FeCPRCoHtxl62HFOrVXYEz0atg1mMO9QIvK94yr4O5sIECKmhgBwc4E5vrNscGCqig64pjBwc4EyV+mvUs/rqwgg0UUEEDOzgS10/+8ItYcX5RS1qP7bwp/tjuJEvy9nfHAc7EFfinzYr7i2qSd9VwFFBBOx8VqteaXTSSZtCK+ItKUk1qSZKkSenR06OnR0+PkR4jPUZ6jPQY6THSY6THSI+RHiM9PLrXCkq9gi2wgu16Yqp+Qlmg14j5tPdAv7CD43qOql7vdqIXvMm6A1GveAusoD9WPBwFdLfiaGAH113++Z/OIL/LP6kk1aSW5IrV0avm1kQ5S9rWswM9a9ourGADvXTOL9CD+UIDOzhAd1uj4BVwgQX0h01+gedXaU8UUEEDOzjAmXh+lfbEAuImuAlugpvgJrgJboKb4qZ+bcOxgg0UUEEDOzhAr0R0C//dv7CA7jYdGyjgcms+8isDBPZEr4670MvynTTJ/5KPmv98XzjAmeg/3xcW0OslvbX+832hgAouN/Ep6z/fFw5wuYm31gP8wgK6m8/e2UABFXQ3D08P8LWhqF4ZZ2u/UL0yLrCCDVy6q0hOvTLO1nagemWcrc089co4W9tg6pVxgTPRq1gvXG5rn0y9Mi6wgQK6m7fXf77Vm+M/36sSTv0EMTNvjke8uYVH/IUVbKCAChq43Mzb4BF/YstJ5FVzgRVsoIAKuoVfkP+SXzhAvyC/TDnAAlawgQIqaGAHB4ib4uZh3n24PcwvbKCAChrYwQHORA/zC3Ez3Aw3w81wM9w8zM3ng4d59/ngVbAXVrCBrlsdFTSwg56sfAh7/sh4DV5gASvYQAEVNNB7x9Fj/sICVtCvwmeqx/yFChrYr6It9dq7wBno1XeBBaxgAwX03lHHAc5Ej/kLC1hBb685uoLrekivTS71KrrAArrCdGyglzUfjgoa6JXNxXGAM9Gj+8ICVrCB7lYdFTSwgwOciRL1m+pHdl394HF8Ib3jcew3wF5hFzjAmehxfKFfhThWsIEC+lW4m8fxhR10Nx8Aj+MTPY4vdDcfC4/jCxvobj7yHsd+++ZHdtn0fvA49vtTP7IrcCae5ex+bR7HFwqooOv6tXnEnpPLI/bCAlZQwH6VQKsX2QXORC9l918GL7ILrGADBVTQwA5GwbV6OZ3NEyvYQAH94s3RwA4O0K9iDYCX0wUWsIINFFBBA3uil8D6HYgXzgX6VXTHBgqooF/FcOzgAGeiB++FBfTXCrx3/B2UCwVU0MAODnAmevBeWEC/iumooIEdXCXKvjryErkLV/AGFtCvojo2UEAFDezgAGeiF7X7nb0XwwUKqKCBHbxeJlKvhTvpvNN2Kkk1qSX5zaqTJllSTxpJM2h4y/0ivKLdt9i8AC6wg/HOknoB3IUeuxcWsIINFFBBAzuI20w3L4ALLGAFGyiggj5fxHEmlgMsoPeOOjZQQAUN7OAAZ2J1N3MsYAUb6G7dUUEDOzhisLws7sJ2gAWsYAMFVNBA1/WelAMsoOtOR39J53AUUEED/UWd4jjAmegRfeFy8006L4DrxTtKGyigggZ2cIAz0V9dubCAuHmc+8aQF8AFKmhgBwc4E/sBFnC5+X6MF8B132PxArhABQ3s4ABn4vrpDixgBXHzF158E8YL4AIN7OAAZ6K/9nJhASvo7wH5JPBXXy5U0MAODnAGegFcoL9z1Bwr2EABFTSwgwP07fpFfl9+UkmqSS1Jklxx9ayXvvVV26le+hbomcwcGyigggZ2cIAz8Xyz9ETvgRO9B7qjggZ2cIAz0XPAhX4Vw7GCDRTQ3aajgR0c4Ez0HHBhAZebeP96DvCtIS+IC1TQwA4OcOZYGCNkjND5AtuJDRRQQQN7or+y5j/7XvoWWEG/Cp9sHu0X+lWcCgZ20K/CB9aj/USP9gvXVfhGlJe+BTZQQAWXm+9Ueelb4ABnokf7hQWsYANdtzqumeq3IV7D1n0zzGvYAgVcLfMdMK9hC/SWqeMAZ6L/wq+SL/UatsAKNlBABQ10t+44wJno0X1hASvY8or9t9w35LyGLXCAM9F/y33HzmvYAivYQLnOUtHz/K0LDezgAGeinxx0YQFX73g+8xq2QAM7uK7CtxW9hu1Cj+MLC1ivM3P0PJvrQgEVNLCDA5yJHrHmXe0Re6GAfhU+uTxiL+ygX4XPM//VPtF/tX116TVsgRV0N2+Dx/GFChrYwQHORI9j39r08rbACjZQQAXtOuFLr3O9fEb5iUG+wXWe63VhBRsooIIG9ut4LeVcL73O9Vp4net14nLzzcbrXK8TGyigggZ2cIAz0U8T8sDxYrZuJwqooIEdHOBM9Og+LTy6L6xgA9dV6IkKGtjBAc5EPyXswgJWcF2F7+B63VpgB9dV+BaZ161d6L/dF66r8A1aL10LXFfhE8aL1wIVdDdx7OAAZ6LH/IUFrKC7qaOAChrYwQH6yHvLjJE3Rt4YeWPkjZE3Rt4YeWPkOyPfGfnOyHdGvjPynZHvjHxn5Dsj3xn5wcgPRn4w8tMfgns4zQYKqBeal2r1tfFrXqoVaGAHBzgTfdqvTWLzUq3ACjZQQAUN7OAAZ2LDzX/q1uazealWYAOX29pQNi/VCjRwua3NXPMCrr72as1P3uprI9X85K2+9uPNy7oCK9hAARVcbtMtPBguHOBM9GC4sIAVbKCACuKmuCluipvhZrgZboab4Wa4GW6Gm+HmwTC9Jz0YLmyJ/pM0fSL6T9KFruvd57eWFw5wJvqt5YUFrGADBVTQ3Xwq+0Jy+uTyheSFM9ArsQILWMEGCqiggR0cIG4Ft4Jbwa3gVnAruBXcCm4Ft4Jbxa3iVnGruFXcVsSOtZFqfvbWWIsV88O3zknglViBDXSF6qiggR0c4EwUdzuxgCv3HW6xYjNQQG/vCnQ/Y2usvTc7a64u9Pb6VZzxNhwFVNBA1zXHAc5Ey5larIAVxM1wM9wMtzPeHL006jhxJnpx1InT0QdrFrCCq6OKD6H/SFyo4KqWKt4lK0QCl3HxXl8hcqLXMAUut1ViZ17DFNhAARU0sIPuJo4zsRxgASvYQIkx9vO6zknrB3adI+T1TRfWAyxgBRsoYKYVr28K7OAAZ0RLJXC8vimwgg0UUEEDe6JP++ItEwUN7OAAZ6KHyIUFrGADcVPcFDfFTXFT3Aw3w81wM3fzITQBFTSwgwOciV6jeGEBK4hbx63j1nHruHXcOm4Dt4HbwG3gNnAbuA3cBm4Dt4HbxG3iNnGbuE3cJm4Tt4nbxG2mWzsOsIAVbKCAChrYwQHiVnAruBXcCm4Ft4Jbwa3gVnAruFXcKm4Vt4pbxa3iVnGruFXcKm4Nt4Zbw63h1nBruDXcGm4Nt4ab4Ca4CW6Cm+AmuAlugpvgJrgpboqb4qa4KW6Km+KmuCluipvhZrgZbuSSRi5p5JJGLmnkkkYuaeSSRi5p5JJGLmnkkkYuaeSSRi5p5JJGLmnkkkYuaeSSRi5p5JJGLmnkkkYuaeSSRi5p5JJGLmnkkkYuaeSSRi5p5JJGLmnkkkYuaeQSIZcIuUTIJUIuEXKJkEuEXCLkEiGXCLlEyCVCLhFyiZBLhFwi5BIhlwi5RMglQi4RcomQS4RcIuQSIZcIuUTIJUIuEXKJkEuEXCLkEiGXCLlEyCVCLhFyiZBLhFwi5BIhlwi5RMglQi6RM5d0R3cbjgZ2cIAz8cwlJxawgg0UEDfPJas83rwMK3CA7rZukOXMJScW0N/OaI4NFHC5rWJ28zKswA4OcCZ6LrmwgBVsoIC4ddw6bh23jtvAbeA2cBu4DdwGbgO3gdvAbeA2cZu4TdwmbhO3idvEbeI2cZvp5genBRawgg0UUEEDOzhA3ApuBbeCW8Gt4FZwK7gV3ApuBbeKW8Wt4lZxq7hV3CpuFbeKW8Wt4dZwa7g13BpuDbeGW8Ot4dZwE9wEN8FNcBPcBDfBTXAT3AQ3zTj2Sq+xiitMz/xwYgcHOBM9P1xYwAo2UEDcDDfDzXAz3DpuHbeOW8et49Zx67h13DpuHbeB28Bt4DZwG7gN3AZuA7eB28Bt4jZxm7hN3CZuE7eJ28Rt4jbTzY4DLGAFGyigggZ2cIC4FdwKbgW3glvBreBWcCu4FdwKbhW3ilvFreJWcau4VdwqbhW3ilvDreHWcGu4Ndwabg23hlvDreEmuAlugpvgJrgJboKb4Ca4nflh3aJ4jVlgASvYQAEVXG6r/si8xixwgO627kvszCUnFlAjR9mZKk7s4ABn4pkqTlxiza/NU8WFDVxNX1VI5iVko3nTPVVc2MEBzkRPFRcWsIINFBA3TxXiXeKp4sIBzkRPFRcWsIINFDB/JIxbCeNWwkvIhniXeKpw9BKywAJWsIECKmhgBweIW8Gt4FZwK7gV3ApuBbeCm+eHVfZjXmkWWMAKNlBAt+iOBnZwgDPR88OFBaxgAwXEzfPDKj0yrz8LHOByW2/RmdefBS63VSJkXn8WuNxWiZB5/Vngclt1Qeb1Z4EdHOBM9PxwYQEr2EABcVPcFDfFTXEz3Aw3w81wM9wMN8PNcDPcDLeOW8et49Zx67h13DpuHbeOW8dt4DZwG7gN3AZuA7eB28Bt4DZwm7h5AlGf4J5ALmyggO7mU84TyIUdHOAM9LPZAgtYwQYKqKCBHRwgbgW3glvBreDmqWJVDpjXqo1Vo2Veqxa4FFY1lnmtWmADBVTQwA6ORA//VWxlXop2joWXop1d7aVogQOciR7oq7bDvBQtsIINzAkzCPRBoA8CfRDog0AfBPrQnDBDK9hAATXb4IF+YQdxI9AHgT4I9EGgDwJ9EOjjDHQ3NnrS6EmjJz3QzzZ0erLTkwT6INAHgT4I9EGgDwJ9EOijM25noJ9ITw56cjBuHugX0pME+iDQB4E+CPRBoI9JT06ubXJtBPqY9OSkJyc9OelJD/RVAGhezBboPamOFWyggH5tw9HADg5wJnqgX1jACrrbdBTQIvS8rm2sijDzurbAmeiZ4MKcGrNWsIECKmhgB3OwvK7twnaABaxgAwVU0EC/ipVsvK4tsIBeKuX94Kmie8s8VVyooIEdHOBM9FRxYUn00wCr96QfB3ihgLrQm+MnAl7YwQHOC7ufBBZYwAo2UEAFLdGPA1lrhu7FYXO98tG9Iiz+qTdHHb055jgT6wEWsIINFNCb0x0N7KC7DUd3mwvXhJlrGdW9ImyuIy26V4RdTW8N5ILWD8o8XNdP7TvRj+27sIAVbKCAChrYQXfzpou7edP1AAtYweVW/NrWD0qgggZ2cIAzcf2gBLqYd9T5PQ4fefP/1se4+3/rHbV+DgIr2EADXcGnhp+7eaEr+BgPN/Yu8YMzi3eJn5x5YQHdzfvBo+VCATV1PVquf9rBAc5AL+I6r9iLuAIr2MC8Ni/XOi/Iy7UC84q9VGo2/2s+wdeLQd1LpQIVNLCDS7e52zmVXden8oUNFFBB1zXHDg5wJvpcv7CAFXS37iigggZ2cIAz0ef6hW4xHBsooIIGdnCAM9En+IUFxM1w8whoPh9MQQM7OMCZ6CFy9npnsDqD1Rksj4u1/9D9hKq53irqfkRVoIAKruaIT411kxM4wJnoMXRhASvYQHfzmeoxdKGBHRzgDPQqr8Aa1+alXXO9iN69iCuwxwWdB1FdOBP9KKoLvenqWMEGetPNUUFDAbeCW8Gt4ua/ThdWsIECKohbxcJXKOtog17P2441z/wwqTG8d/y248IKNlBABQ3s4ABnouLmtx3DW+YrlAsbKKCCBnZwgDPRVygX4ma4GW6+Qll12/0s17rQwA4OcCaeR8qdWMAKNhC3jpuvRYZPWl9frMrvfhZbXaiggR0c4Ez09cWFBaygW/j89UXF8Enri4oLOzhAt1gz6qywurCAFWyggAoa2MEB4lZwK7gV3ApuBTffflynlfSzwupCt1gDcBZQrXNJ+llAdWEDl9iqve1nAdWFBnZwgDPRlw8XFrCCDcTC5/qqK+5nOdEqUu5nOdGJPtcvLGAFXVccvb3q2MEBzkSf1Re6rjlWsIECKmhgB93Nh8XX3Sf6uvvCAlawgQIq6BY+sB4MF85ED4YLC1jBBgqooIG4Tdw8Llb1eT+rhS4sYAUbKKBGr5/VQhd2MAfLy37mqhXuXuAzV2lt9wKfwJnovy0X+g19c6xgAwVU0MAODtDd1kz1Ap/AAlawgQIq2PPazvXQmr9yrnxOrHlB58rnRAEV9KZ7n50rnxMH6E1f01POlc+JJRUUN8VNcVPc/MbwQoZFGRZlWIxhMdzstPi///vDL7/+7d/+9I+//O2v//KPv//5z7/88X/zH/z3L3/8p//95b/+9Pc///Ufv/zxr//z669/+OX/+dOv/+P/0X//15/+6n/+409/f/zbRzf++a///vjzIfgff/n1z4v+7w/87eP1Xy1+7rj/7cft6EiBUvQbifJawrOXKzxWEAiM/o1A3bThWAvCsw2H2UuJzWX4PdqlcMjLq5DXCpIK8tSEXr/5+/r677e18eZ//5FyaED/wkisReI1EvY8EuUbib7phRYCpeXfl3b3rzc/huG8hscjE1pQ5RuJuZFomr2gTwN53BXwI5td4PGIPgUev9/fzsbNdCx+TNXZDVrGa426G8yaPfF4vvdSY9eZU4/siiEvO7Ns5uTj1j9Cqz5uH9CQ8a2Gfjoi2wuZcSGPH732+kI2GuvQn0vjgYyJfduKtfvyelhnhodqfSmxmVu9x6CO50Rl47aCP8k/Fay8Vrh7Gf31Zew608/oOjvzsb30SmJtmb6cWP4B4nNiqZSXEvJpV9TNzHwsxHN2P/I+CevbnLsi8WUj1pOGsxGzv27ELmXWGj3xQGZFE7l/IWXtLl0XouXlhWwmVh0xpI9V1iuBfYRNy0nxlP2/G9FWPk96O431rftIFo+lzctk0do2gdcMkafeeGTDbzU2s1NHjIgd+qQg9yeGaE4MfYqy7ydG20zPqX2mxmSGP1ZO32ps2lH5UX7sKKBhXxiTjBJ5zpy/GZPN/CxeqHKOyWPj+0ljfnuDtb3BqYPcJ883m+3bGSbl89kh9dPZsb8WOyybYTpfX8vu9710MuCYTy359sZX9OP5YZ+nwK3GzWiR8Xm0yPy0N/YjO4X7x/l8z/TdyOoul5aed3+PPXhG9nuNuvuRbhFzj61YZvpjf+RbjU0uFT9X+lrWPM2w32js2uFfibxuFuamHZtZul5pzfv6p5j7XmM7Mut921whtecf/O97te9actRsSbXXGpuZKuWIkZHHw7e3NLRk1K2vzrx3La1lrz62iF5qWNndOMjMW3N7U8OP7bluPnp9T2NwVzuO1xr7GeKHfl4z5HG7/7ol+rv+OqwHidGOx0OZ1znENqNbysiWlMdTNnmRzWz8rvmw+2Od61qmvh6ZfvyufTokd1gePF/fPfRdLmt95Ip6Prfk2yVDb5/26bYVkrscj0dvx8tWbO/Ieu4NPJ6qjpd3ZN12mb3NzOzPcfu9xm7hUXOfY32R5GlUjvsaXpd1asxv8th3GvPz+8Lx8Szd9+jIOzqr5b1RsYbGZlTGbg31ePyfUTsfj4hezdJtO3KT4PG8T1+3Q/e/2STk53XDtzN92HZbMtvRn3/1v6AhveYaaBzltcb4CTNs/p4z7PGQla2C8V7cP564zrw7lf5SY9bfd4Y9ntvGqLS2iZYp24jLjG7f7Dh82465maWjlZo7g0Pf0pj+taJz9dJto9E/n2FzfDrD9jGbcV/mOF7GSjmOXfKocQf0WPXXlyLb6dFyX+1B/b2p3nJ6tMcTzJca5Wgf76HvmiG5qHyESts0YzcwT+uf1p7DpX9BZEpuVh7fjO73IrvNMcvtoGn96RnLd7di5dit97sSME87Bl+4mFrZQpay6ZFyfB51pZRPw26byCzvb2uf8jKBlLL93ZfskOPpTur7xwu7p04t+1SO15vqpWzHpeTzhdqft5S+71LbrX+OwgPNo8jLHaH9HJEy2L7YTPiyzaq5h7qOjn39JG739Oju4NTj48Gp5ScMTq0/ZXC2Ty3U2Hx4+Ryqb2/s8rn9sOPl5nbZPcBpZeTD+3Ycr0NvK9LY8vvmZ+I3Iv3zp5x1fPyYcydx8znn7SvZPOi826Vy2LvjcuRdhJRNXv3BM6l7RQW7h1J3H7DtL6fn6rCN7eXsnpvWGhN+1Oel3ffpbC+StyOjzk1ObD/hsX77/Ll++/zBfvsJT/a3XdpyY3m09u64WN42j1E2VSO7R1OPB3S5k9qfqz7GF+JX/Cbh2ieXTV4V+3yGSP94huwkbs6Q21fyZkoUH7WrS22+7lItn3fp7qnQzS7dSdzs0ttX8naXPs3SXt77lXn8zWiI1GM3Lj+hTEp/QkLVzxOqfp5Q9SckVP1dbzC18Fyq6Kb8zTbZ1PzLo+fycPRNSt49l5qFGtfnn9vxpf7o9Md4s0/v1Z+V7XMpyfKJ+nxT9huN+flM3z2XujnTdxI3Z/rtK9nM9G2PtjnoUXtPQytP+lt73aO7p6czH32uL5W8qZGVD1uN/Qy7VeJY+ucrqf75Smr3VOpmeWEZuzX/rfrCbSvuVWuW3VOpe+Wavhh/mUlLiyux51vKx5Ohd0X0TRHJdeU6VHcj0j8el+215N7FA9+9lpqPtNcZ+++K5IauPa8HvybSct2xTqZ+LbJ9NnUceSO1+GlwvqtH28rcLYz7gcjMrfJW5psiPGt7PGqzN0Vu1uiV3SOqu0V6ZX5clbJvx6jZI+Pptuy37bgrYse7IvlD80B7T+Rxk5k3qg/uO5ndEGsmtvl8I/HFyTaYbM9x/DURm4hsAvD+b/jL9VDdParqWVryXA/2fYbVz0vr6zE/Xx7uRSSvRWS+XqjW3YOq2vNh5mPz//XV7F6PunnnXXdPqu7dW20lbr6CUn7COyjl85dQds9Bmu8bXQUZ+vpH/P6o9M2obGdHPgutfchbGo25/vjB6+9qHB9rNG6unvPY1zSMCpXxWmP3ptTNFdEPNG6tiPbXIkwysfG5xptzrNXJA5nxemx370sVs6cC213U7RrSs7D98Sv7OhXuXq65O7h7jZ8wuL1wLZvA3T2fKkcWx5b15vSbnZr3u21sZtnuCca9h9x199pUmVla9sgfr1dn23YIG8NP0+M37dj+Zms+rhPdlKftRSzL2uWbqvYviWjPJwe6u3uQn/BydZX2+XPQ7eU878vWTb1d3b08df9y7Pe+HN6N0+cXZH57OePDe919M6g91q6b+1Q9dmGTU74+v9T2XXdo+XSFuG9FKjwH729bsXt7qhK89Wnnze5LlGNYvsRxjCHviczxtPf/VFzyFZFVpZPp/XjaO/tKp+YLi4+bzU2njt9V4tGRddKp+vpSxs8YmfEzRmb8hJHZRm7Pu6r1zc33fiO+2dNs8q5I7jOtD528KdLznsh25dR7Ectpsk4Cfy1i4yf8Ruye8PyU3wgbWT+4ztV+fTl99wuus7FMnDLfmWzdcnnW7flVrN+0pH2+E9Hl852I3dOmmzsRO4mbOxG7d6Du7kRsHzbdPA5j/oSdiNujslkl7mfHvZ2IncbdnYgfaBwfa9xcaI67z0T1vT69uyOy17i3I7J7k+ruonmvcW/RvL0WOXJ+PD/C+15jlt+7Hfd2Zm5rvBlzd3dmpv6EnZmhP2GC6O88MDd3Veb8Cbsq+4bc2lVpR/l0V6Ud9fNdlW07bu6q/OAmpj8d0vH0GuR3x55s34R6TIuByNNLal8QublE/MHF3GzHJh3azMrhdS7o5lZ3s5ORK7Onl+2+Oz7wRwuZyokFR5tvrobk6c0Se7UaaqV+vqTaivyM5f/tHmk/o0fsZ/SIfdojP3jS/XQxx/H8kPprD8yPZk8yrysA6tF+xnP3rYyNfMt0fU/n5ZJqJ8Gy7PG8ubwn0WnFfDk6+/Kbg/M3j7eriebTYT+bGp79qxB5YtBoz0vML70KIfn7PaS9Fmm7l6FKzzfuH/jyRqLVz2tVW/u4VnUrcW+dev9KXt9n7nt05jqkzPn6sML2+RPRH7Tj1guZ7fNnVa3tc1luhMjmhcz2+bOqbXc8tiAOtiDGW11aC2/bltd3zE0+v1GVn3GjKh/fqP7gXazsjmHPp3x9n8U+r9nfn/d6q9y+yeevpjb5uKB6K3Ezhd2+kv5eh96rtt9K3Cu2b7s7w5vr5B9o3Fsny+c7qPvbuXsVu/vDfO/V2m41bpbabk/DvFmceltjU5u617hXmrrT+MId8rZs+F5h6r4ld+fItk9uFqbuz/X9/GruztX9tdybq9tTV2/O1dsam7m617g3V2X8jLm679V79c/3D1h/fSu1fS51p5pje/BzyXh53Mo8lw19N8V2z6Va47yBJi832rYScrT/32327yTmpxsP2844cmp895bvd50xfkL5Uxs/4eMS7ePKlLZ/5SfLBZ7LMOS+Qt6Jmdhrhd3ui+bEKPp0ju5vTnrfnsxBKYjW9lpje7TfzcPs9gel3juQ8wdHpNfj6WpeHwvcZvk4ZrcS92J2fjxHZf/WYt4ij/JqX3y3Drw3y7cKt2b5tmby5izf113enOXbJ1F3Z/n2kzRZilof/NSQfl9Ds0+r6kZjGyk9y1mLjuP1EcuyP9nvTqTsJW5Finz+EOkL3fF86suXTq0X6iWU5FPf1hifazwXb37l9PxmueXxuM3iV/b7E+e3xeyj8dj1Kfx/K7JrCc9u63jaVvuayMivg9Xx/C7qF0VoSdWfINKOlyK7zwGo5fbcY3drvjc4QhoR7ePdEc4Dm9vzEevvf2RB3uoRmbwgOMfrobn90YnxOmxkd7DfzTo0qduselBn9PSNhd82ZLeppPlRga7P52GO7zR2h6Xx/Kd981T8ux+auj0s+Xg6Bltea/T9E9z69ARXX1/N/hjaXDg8n4f7227disynGrDNJNl+Z6HkJClWdz++uyXZrQXuD9qREqsdmy8K7ZYQhN5j0+Bpkoxv7622Re1S4jH/A1+3Y/tFkJaVU/rNccdf+ppHlqM/0N7T4KnY2l/e3FjtRkby0JIHy9sqfDHKZPPFF9NP1wBbhVtrgP23POZT9cVs+vLWezdPa342YtbXd5p7iayamNXqW8tcztMs6xPP741sf3oG07Xsvp/18ebUXuLe7bt8vDn1he6o73cqhzZqezPoOvdVD34+U/d7Ff18ZaWfr6z0911Zfdsd/Xh7aPqTSnmpsjtq7F4m2yrc283YfoeHw5MevMnJYp9v7ewkSucgugcXeU+EhdWDq74pkqdyPljfyqujchvy7eGvX/i+0U/6SlLNe8TankowfvOVpLsapb6noflR7qpW3tJ4tD/z0PG8KPpeo3++Y7/9xhGvXz+SyPPofuE7ST3DV7uWlxqyeznnZmLeStxLzP3jStJ9Z+S2io42N52xK5uW3Ih43Gu2jcj21ctMy+V4ubLbNkOzTMi0HW9ei+ZHOR7bK/q2yNPLm/NtkXxR0d78ntfdb4KNj38vx8e/l9vvkt3c/d9/2+ze7r+Mn7D7v/2MluRhg/L89vb3X/WRz59OyedPp+Tzp1PbzlCO43ref/xtZ+jnnaGfd0b/XTvDhOMWrGw6Y37eGfPTztDt+0n3fpq2X6xj/7O/+RXAxsnVD43XX4zSQz6vV9Dd06nbn63YvptQeK9AN+3oP+Nixs+4GN3u5uRNdpXnj5v17zbrd1/y4V3cp23Yr3zZqNjMVy2//fbNFz7ldfdnYf89MFLhOiCUXv3N98C2HxXLLzPP57uGr4pkaZ49lwh+5ctkz+9bHc9f3pYvfSNt8I20+e7l9BY3hrM/PSr/msigY8dTsXL7zePU43cW+ebtgPb6o297kZobEI8boONNkZaHv9Tn19h/M8T7L8fdO7d99wDy3j3qXuLWTer+Sm7epf6gO+7dpmr9Cbep+y+t3XtlS9vnH0nx891ePuG6VRi/lbj3vsP9K9lN0+2w3HplS3eFtXeP9d9+vM6ePvc6nsum9Qsi7KM8sLwncvetrX1LtFEnbO9/i28YT5efDm74zSu1exk+B/7gp9qdr8pkxyzJzVHW255pk+59/r35UvdKfnelPj8+/K3I9ji7W6+B7aLn5pt1e417b9bp7knVvTfrdHcC3N0367btuNml+6HNW87HKLd3I6dUHsuWJu9O+SpETrW3A7DmQ5EluYmc7e3A0w5ee/eOIt9Ff0pKv5HY37k+fd73uaDp+/tF/XhDYC9xb0PAyu8qcfPghH2HPn1g/Pn35rsO3Z3Kf3MVbj/hyFS1n3Bk6m7bq89cBvTnA7G+9OF3qmbH1PKWxixZQTi/eRz6nYbunsvem+j7ZmjPyo7Nya1bjcqStc65uZT2u15KI3W0eWyaob9rMyRrqaYeu2Z8XKGin78+pZ+/PrX9yok9ZZ/NeZy7z77cW+puFW6tdLfnxtxc6G417q5zd8eT3V/nts/XuePz9/p1fPxe/1bi5jr39pXs1rnt83Xu7lf27jp3+2GSu+vcrcjdde5O5PY6d9uSu+vcHxxhdXedu5e5vc79gczdde62Z+6uc7cid9e5RT5f57afsM5tH69zbfvI6tY61w77fJ27bcfdLtWfsM7dz9Xb69y9zO117g9kbq5zt/cCt5a5+7uJO6vc8fFTTSs/YT1l5Sesp8ZWI8v+23OPfv8Ef+wPocr6kPZ81ulXNETzTShtr8sqxv4bA/nBlHG8rkbY1cvcLB6an96tbt9Lv3m3utW4ebdq9WfcrR7b1znyUIzHbdbxclS2InU+fzK1viky8k6xHfV1S2x/Et7NyN2dyHe/HmEnwiGj7dDXfWK7B013PwywPWRDja8d9dcfS7fduRI3vwtgTT9e1NjucdW9RY3tz5+8s6ixtj+U7877mNY2M/XedwFsV55+97sA90elb0ZlOztufRdgq3HzuwA/0jg+1rj3XQCTuw9V9b0+vfldgB9o3PougO0eC908zu4HGrcW3/trufddANP6e7fj1ncB7mu8GXM3vwvgFYuvf/zvfRfgB5P95gSx33lg7n0XwGx3N3TzuwA/aMit7wKY1Y8Xy9Z+wmJ51457i+Uf3cPc+i6A7R5O3T2Pfytyb8f9Rxdzsx27x5/HeDoB4c2V0K2V9n4ldGulfXzchuPTNuxfR2NPVsfzmvALr7QZr8XZbO9pjHwrvj6fNv+11+Kelgz19bXI7ssVd9+t24rcOzt/L3Hr7PwfSNw5O387Knyxbu27vzey32jImxoVjfZ6UGx8/PR0L3HrsaWN/rtK3HyZY9ufVAr3p9d8vjYmmYVrn29mjud2vKsx8v7pge9qcGj+VuPjbN4/zuY/OAsjNWa1N4/TyJvaWfurTbHt0SK3emJ/OMmdntge+NLzFXjtz6+zfOXQGL7IqqOVNzXyt/GBbx5eM5R2vHuIzsgl00Pu3UN0CiuV+nZ/TDRej8v2YCLNGfrtjtzbGu8dbvTYK80DkkzlTY2stHo8CSvvaXTOahu6OYZjdwRen3nLMo7j9bswvbR7V2NTXz4D+1FLerak7FqyPY0vb58eI/10nPn9dgyOZh+H9U07+nbDNbr18XupG5HdC3756vnz0/T63XbpdooMFsRzc95L3xWN354iuxrn21PkBy25N0V2p8bdnCK7dtyeIlV/whTZnuj38RTRIzcI9ai2mSI7kZrnzGt9/rn7/l5s+5nsmict9OdDp8cXriUPStVjvP6F6LsHP3evZbff8TOupeSG+gPf+7XTlie1aav9PY1KO6r+BA0rb2pkwZS243hTI6txH3Lv9mkea65tEy97jYaGvL6D2J9enS/2Ph5/P99vf/vWZ9+dCH5vbbyXuLWw7SK/q8TNw9F2/dk4oKn1Y9Of24N87hyfs2uFsLp+PvLqt62Yn2ew3btRNzPY/mz0SqFk1ZfXstdQvixlr/tDjv3ZWzcPaa8f7+1tJe7t7e0l7uztbT8CcGuVvv+MwJ1V+vZzG7fasP9gx609k+3BCHc/3voDlZvfbm39p3y7dStzb47uJW7N0R9I3Jmj+w+X3fxs0Vbj849j3Z8jP/rY1805Yj9njtjnc8Q+nyP28RzZlb3d+wxk351LdLOyqvf9Qj9WgpvKqq3Evcqq+1fyujJie4jIra9AHtuf+zsfgezjbqXJZkT2GrcKK+6347XGdn4+fzWtvG7Fx1V7W4mbc2t8XrXXx8dVe33uDu0R5Vym4/VHBvvusL2pWS03db7OoH3un2xm6ulPe+r2hT4teaR8LU/Lle/7dO5ujZ+Lh18rHPsfpntfodyPzM1f2r3Ize9Q7kVqrjhmff6yzNdE7n3N8gd9cu9zlvvZevN7lvdFNh+0/IHIvS9abkXu38D8oGvv3RzeTs4vS83G7gyDW1/8+EF/3L27/JHMzdvLsT2B7/bobGXu3V7uJW7dXv5A4sPbyzLy9rKMb46s/O5tlf07q3d+KPYH1GSh6Xz+btB3rdhKzGzD8c35nfclRv5K1OP58ye/6Yuf8IbJqD/hDZP9iXtZUlRtvL6Y7ek2jy0xPtbT9eX5wz8Q6Xx56LkM5nuR7U3AzK3TUmRzObvQV74bYM99Um53q/RcgMjzl9S+MM2k892h0XYjM37GNJufT7MfDm9/Gt6XqXB73N1PmSOcg17tqK87tt19HXrztPIHIpXbXtuJ6OcPgcf2/L5bD4G37bj7EHi08flD4LF7J+reQ+B9CljfQoqJVvrTSy/z27L3sfu0a87Vp2olabcTgOWTaLHns3Lku/pu+fwYkSHy8b7QEP107b6VuLd2v38lfXMlnx8jMn7Cm0w/aAfFmkd5+ebO2H5W8tb7IWP7Mdabp5nsRW6eZrIVuXuayb4lN08z2YvUwrPobUv2H5ZMlcWvD3b4kczNk1V+IHP3ZJUfydw8WWXfwTdPVtmL3DxZZRtB995s2gbyzZNV9hr3TlYZ25P77iWD7bcQb74stm3HzS7dD+29k1V+MFfvnqzyA5m7J6v8SObmySrHx3vXY/eFqHt712N7gN/NN863x81zkkB5rmH47lL2EsLdt7wnwStf9WkT/jf3mtvPIVFe3443JfIlXnu6af7KhTwfvP/0nsBXJCz3Ib99/e0LEr2wQbTri3WW5e8qUox1sz2/GfQlEQrSS5/1TZGZq4Dy/KbAlwY3L+ZxO/JerLQsSXvMlPJeK3i1sR1vXYgMfhqeP8VYbqeNRxpnWSfjnUaUYnzve7wVbaXxxdA232uFVjZ2pL8nYSyGxnzvQpicrb53IY3vazZ960J6LoS62DsCUzgN9r2LOLI68JtPwH8vMXe1bJ/P7nlwTvB7HZFTe3b9sCffE2iVvcb6vDwYcl8iTyprz8clvyvxdBP6JYmMrlaf+uIrEi1vUB50vCUh+eCnfVMl8JVW5EsErT0/lHtX4r1BZXXSnlPml/qC9+KlvTeo0jhxpfX3JAoH0Oibg2oc/GBvtWJ91phbE3lL4unrys+vhX4vMbdfWqlk/+eP1n9XVr1tRu72PlDfu5J8F+uxqTbekzCej74XJGVMjuE7ypsXwvL7qB9LlHdb0ZF4K9ofd7r0hfSPW/HeoN57iWJ7h0WUPT9p+v5LZNuDFXM1U6zNtySG8lV3fa8VMz+mUI+jvCPxeNbVeGre3moFNSbre+7vSWRZ5yN/vXUhj5t+Dnea77Wi5bZBkUPekpCnA4SeH5R9JzHld73jfNyy55B8c3PwlSs58kqe33Z6tz+/l/jnx//907/95e//8uvf/u1P//jL3/7634+/+X9L7O9/+dO//vrn6//+x//89d+e/u0//t//in/zr3//y6+//uU//+W//v63f/vzv//P3/+8lNa/++W4/uefbJr+weaQf/7DL+Xx/3t7POTsTfXx/5v/+8f95OM/8n+//oLOoX/QOY/1D4r/F8MV+j//32ry/wc="
|
|
2057
2057
|
},
|
|
2058
2058
|
{
|
|
2059
2059
|
"name": "verify_private_authwit",
|
|
@@ -4105,8 +4105,8 @@
|
|
|
4105
4105
|
}
|
|
4106
4106
|
}
|
|
4107
4107
|
},
|
|
4108
|
-
"bytecode": "H4sIAAAAAAAA/+29C5hdR3UmWrtPq91H3eqjly0byVZLFn7INviNwQYsbGOMJEuWZNmSn21bWLZsS9bDsrHzBBLCKySem0zInWTIDY9kINyER0KGSTIkJDdhGEjIDQmBQMjkCwwBzPCaMEwYyt5L/fff/65Te591pAPu+j7p7N616l+rVq1a9a5dhKdCp/zdt3/vnbsOHLjt/u/9N3X3ruu/96ooo4bL3+PK3/h+UZgZjHYyZIWiBu3MRDV4FKH/PIZC/3m0Qv95DIf+85gX+s9jJPSfx3Gh/zxGQ/95tEP/ecwP/ecxFvrPYzz0n8eC0H8eE6H/PDqh/zwWhvo8mvBZFI4On8X5tE9iXy7e1eG3JPS/jJaG/vM4PvSfxwmh/zyWhf7zODH0n8dJof88nhH6z2N56D+PFaH/PE4O/edxSug/j5Wh/zwmQ/95rAr957E69J/HqaH/PNaE/vN4Zug/j9NC/3mcHvrP44zQfx5nhv7zWBv6z+Os0H8eZ4f+8zgn9J/Hs0L/eTw79J/HuaH/PM4L/edxfug/jwtC/3lcGPrP46LQfx4Xh/7zeE7oP49LQv95PDf0n8fzQv95XBr6z+Oy0H8ezw/95/GC0H8eLwz953F56D+PdaH/PF4U+s/jitB/HleG/vO4KvSfx4tD/3lcHfrP4yWh/zyuCf3n8dLQfx7rQ/95bAj957Ex9J/HtaH/PDaF/vPYHPrP47rQfx5bQn0eTfhsDUeHz7ZwdPhcHxrw2U4M44aGuOEgbgiIC/ZxQT0ueMcF6bhgHBd044JrXBCNC5ZxQTEu+MUFubhYFhey4uJSXPyJizNx8SQubsTFh7g4ECfv4+R6nPyOk9Nx8tgmd1d971+cvIyTi3HyL07OxcmzOLkVJ5/i5FCcvImTK3HyI05OxMmDOLiPg+84OI6D1zi4jIO/ODiLg6c4uImDjzg4iJ332LmOnd/YOY2dx9i5u/x7/2LnKHZeYuciNv6xcY6NZ2zcYuMTG4fovKNzjc4vOqfoPGLljpUvVo5ovNGwYqFfH6qDFW7F/pvNa556PVpGD0GyGvtBilFiVy/9j358lAFrpQ9Ppo9pRpul327p283SP2m+MfwQpEdZDLdV/r4B0r6BeBrNx4DmY0Rj8jbTd/ihHvO7aDzMzKNhBJBtfjPsxZgnCy16h/jt0FPZFwXhGT/On9WNcaAxfgXFDQs5LW4exJn+o+tbC3RctqMUZ7LE8AaKa0HcT5e/ViYoVw0dvbFHe7m8j/ay7vvRXoYpzsNeEIPtxTBi+BjFjUDcn1PccRD3F8D7InjeVz736JOO+PCGbdCTXQLmj1gmr4UW/cZgejLdjwp6i2tDHOo+hvnwviWwjqN0Rn9h+TtR/mLZWPqO4D9C/JXcyjYLgdUS74w+6ucckNkwrwDaSXv4+oFPvPXDr3/3H7394Nve8nOLPrngF8bOnv8jr3rVV5Z/ecWbnnjV/2NprwRZipBd3iOW/irF+wW/3dq5+ze/vXfs6le86/An/+baQwtWTH1w5avfsvNDP7PyC7f9hKV9sUr7+df94o903vWz/37yrI98Y+Tqn/7n2752zbxLPvmRx076wx//zheeeNzSXq3S/sXO73z6PZ3HX/7w69//6CVnLJl6x+Of+Op//5MP/0bna3//zgc/cZGlfQnkuc6eWEt/TbP0R/ppL22WfsjSr4f0TfqJG5qlX2jpN8LLSXv4sV99+6fXvf4j5/7Dd+a/ZuPUKx++4LUfv+FLLz/xbc/8x3vfueIdiyzttSrt5w5e8TMHl91/8ZdGP/r68968/OTPfP1t7/mnbz6y65J//qfPv2/V1yztJpH2xPNPf+6+f/uxpZ86Y/XfXv4H73jWvznp62su+9TvvOTNT3z7T/9nmC6zzc3yfETn1zVLP2zptzRL37L0W+HlZDrNkabY0m5rxvtI+uvzeVuYZ2m367TFK1Yf+Pn264uNH/zxc94zPv+DX1j3yy+64iMffuVrVnbe8cuW9gaRdu1l7Sfe8pofflX47Nu++IZvrv3A5ecsOmXdomf95S/+1fIH9t900hOW9kZjFGrleYWl3wHpSfZksPQ7w2zZc9Pe1Iz3kfp9c33eR9LeUj/tkTpyq4GFWjqfb+lva5Z+zNLf3iz9uKWfgvQ12sJJS39Hs/TnWvo7m6U/z9LfBenrjA8s/a5m/NdZ+pc1S/9iS393s/TbLP3uZumnLP09zdLfaenvbZb+Lku/p1n6XZb+vmbpX2bp72+W/m5L/0Cz9Lst/d5m6e+x9Puapb/P0j/YLP39ln5/s/QPWPoDzdLvtfQHm6XfZ+kPNUu/39I/1Cz9AUt/uFn6g5b+4WbpD1n6R5qlf8jSv7xZ+kcs/aPN0j9q6R9rlv6H4lgyjol/5ZSnXsSp/xPLyEMH77nvnoOPXL3r4PVPPV2x94GDux4+iHMakRfPLbXp7/n09xj9zfMt9l7N2+QEm89YAOlr6GSzzcFMkDyI3SE5J0NWOLkgvBD0nBnONaAsNfkdmTPrED/OH86ZxbiFQpaOiGMdLxR8Fgo+HRG3xxHrkCPWfY5YBxyxPPP4oCPWXkes/Y5Y9ztiTTlieeresw49NKBYux2xPG3CU/ee9nWvI5Zn3fa0iXscsTx99COOWIPaPlrf1/oO2NcoKn6ND78zPm3CatrvUfnqCH4p+okE/aJM/DF4X/arr9x1x6G7N+y9O1Dgru6VFSKuILptCdEYt6B//H4FvWsJWgwxeyeUz2X2Xrzr4J27t03dffeuu76XyQOcgpGuqHjPHVKksc74IpJ0MmSFoRyjRPw2ydLUKJXRqMoWtbq4fC61umHv1F1XTO07cOi+XbgVAc2UuRSEiu9UmRYgGb6bT3RX0N/rRbogsHEbzRJ6PxmywlKziqUi0uKOB+wJijsB4rA0ObSE/CZzHDa//ZRpXKZjebA8jqe4xRB3AvDmclXXMpn8Q4J+MWEtEulM9934tUQ6Hpamhs45tc3yEUNH8DDeffQKSwfdK1j+Fjfjt6Sg9MgPMU0e0/USEWdYVg9HKrAs7TDRf6r87RBdDDuJxxIhL77DrRKfINlRt2wnvegR8UwufIf47dCTXRapcsP8sZ009LGLc/SO8rBPZt2i3xupwLK0w0T/hfK3E2b7fbaTpUJefId28t9IdtQt20lDPWZvkzP8dujJLotUuWH+2E6WNuN3eY7eUR7VPqNusQ0cqcCytMNE/83yt0N0MbCdHC/kxXdoJ18tn0cr5J0MWeGw6rewnaFe6mxfyLUzw2+Hnsq9SOlR1TfV97K0HRHHU8snCD4nCD4dEXfIEeuAI9Y9jlh7HLEeGlCsvY5Y+x2x7nfEmnLE2ueI5Wn3g6ivVDtUFysGT1s97Ij1gCOWp6165nG3I9ag1u1HHbHucMSyrQjczzP8GEbD7LpXd2yCeCYnvkP8NslSk1+R0ovqM1r+ljXjt6ig9MgPMU0e0/WJIs6wTir/HqnAsrTDRP/CUqEdoouB+9QnCnnxHfapn1fiTgh5eX6hrj1ietYRpmN77KW8EM/kxHeI3w492X+Rsg+lF8vfic34LcwpX5THdH2SiDOsZ5R/j1RgWdphot9E9ngSyMT2eJKQF9+hPb60mCk76pbtpKEer8q1E8Nvh57sskiVG+aP7eSkZvyuzNE7ymO6foaIM6zl5d8jFViWdpjobyY7eQbIxHbyDCEvvkM7uaHEHa2QdzLkBa4jhoHYqJf8cii+mmtnht8OPZV7kdKjqm+Wv+WN+BVPsG0gP8Q0eUzXK0ScYZ1c/j1SgWVph4n+XrIz5MG2sULIi+/QznaRP0Ldsp0002N4Ua6dGH479GKX03aiyk3VN8vfimb81uXoHeUxXZ8s4gyrXPKbYSeIZWmHif4w2cnJIBP7o5OFvPgO7WR/iTsh5OX591R9QdyOSG90yuZq+L3bVJnWSP+gpT+5WfqHrYxPgZdcn1bC+xr2dl5ufTL8NsnStD6tJH6cP56DnRSydMJsPaaO5bTEu6EE1gOOWHscsaYcse5xxNrniLXbEWuvI9aDjlieNnGvE1Y3P1lXrocc5VrhhBXDIUesw45YU45YjzpiefpCz/q43xHLsxwfc8TytAlP3XvV7Rg88+hpEwccsQbVT3jK9XToM821acdO95718T5HLK88xueTnbA85YrBqz/hnUdev8OxZVH+jgoZaoxbX1AQnsmJ7xC/TbLU5Fek9IL543HyKiFLh+Ji4HHyKsFnleCjsB5wxNrjiDXliOWZx72OWPsdsQ47Ynnq/lFHrLlyrIf1mCPWlCPWvY5YBxyxPP3XQ45Ynrr3tFVP3Q+q//K0VU/7etARy7McPe3Lsw552tchR6zdjlieeRzUvpxnHj37E4Najp669+rLxeeTnbBiGNR+jmcfc64/8YNRhzz9hKdcXvYVn1c4YcXwsCOWp+49+wDW1vK+McOPQe1DqTEntaogPJMT3yF+O8wuyyZzYGpvkdqD1uMc32RB6ZEfYpo8as6N26TV5d8jFViWdpjoHygzpeoG79HLtZu49+qe8o8JIS/Xudw9XWofIesI07E9TsL7GuXVyrXHyfK5HXqy/yJlH0ovdeZkPX0eYk2E2Trudc1phcjPuEjH5Yzy1dB79lkFw2+HnuyqSOl/Et6x31ndjN9C9hXIDzFNHtP1qSLOsMqvdc3wO4hlaYeJ/jXkd5AH+x2LQ3nxHfqdV5HfUXWiqd1jeqP7QeMzLtJx/Wpof/Ny65fht0NP9blI2bvSi7J3S6vsdBKe69jp9yOW2d/qBJ+UX1F8MP3qOT498RkX6bjeYrnm16Pis7n11vDboSc/UaTsVunF8remEb/iMwWlR36IafKYrp8p4gzrtPLvkQosSztM9O+ndhF5cLtocSgvvsN28T1DM2VH3bKdNNNj6OTaieG3Qy92OW0nqtyUf7P8PbMZv4kcvaM8puvTRJxhnV7+PVKBZWmHif6PyU5OA5n4zMxpQl58h3byn8s/RivknQxZ4Vql6xrp/340zNZdjfT/3tKf3iz9mZb+jGbpf8fSn9ks/VWWfm2z9O+z9Gc1S/9jlv7sZulvtPTnNEt/i6V/VrP0Z1j6ZzdLf4GlP7dZ+s9b+vOapX+JpT+/Wfr3W/oLmqX/GUt/YbP0V1j6i5ql/4alv7hZ+sct/XOapX/C0l/SLH1h6Z8H6evMEVr6y5qlb5m8l+JLIZPhW1v1XKAvKn4Ni+OMV5uwmrbrSnaUj/vFlwI/zGMV1qU1sUZFXJMyeV6ozhfijydkYTljuAPoeslzDPc6YcXnNU5YMRxylOuZTlgx3Oko12mOWKc7Yp3hiLXAEetMR6y1jlhnDSjW2Y5Y5zhiPcsR69mOWOc6Yp3nhBXDyx3lOt8JK4aDjnJd4Ih1oSOWV9sRny9yxLrYEes5jlgnDiiW9e97nK+4psf5iuf1OF+xscf5iq09zjdc3eN8w5U9zhdssL7ys+BlUf6quYAa/fZrC8ILQY9/DL9NstTkd2T882zix/njdatzhSwdEcc2fq7gc67g0xFx+x2xHnHE2u2Itc8Ra68j1r2OWFOOWA86Yu1xxHpoQLE8bfV+Rywv3at2cVBs1bM+HnbEGtT6+LAjlmcdGlTdP+CI5eknPNtaTx/tqXtPfQ2qfe1zxPIsR0/dPx38xKNOWPH5dEesMx2xzhhArBh2Ocq11hHLU/fLB1Susx2xFjhhxeBpE2scsc5yxPIsR0+5PG11EH1hDHc7Ynnaqlc5esoVw6Dqy9NWz3HE8qzbXv4rhsccsaYcse5zxNrriOXZJ9/niOU592j9e5vHPhviivK3xzn8iYLwTE58h/htkqUmv+QcPuaP9yaf24zfgpxyQHlM1+eJOMOyNeGRCixLO0z0nywV2yG6GHhv8nlCXnyHe5P//9ZM2VG3bCcN9Zj9rVDDb4ee7LJIlRvmj9d6zhOydEQc94lz9a3K7pAj1gFHrHscsfY4Yj00oFh7HbH2O2Ld74g15Yh10BHLsw55luMjjli7HbEOO2J51m1P+/KsQ55+9emg+wcdsTx9tPlCOz+K/ZkO8anb98b0RtfjeZctPZ532d7jeZdN1i+6AF4W5a86i1Kjj/ZjBeGFoPuEht8mWWryO9InvIj4cf64T3ixkKUj4nj/z8WCz8WCT0fE7XfEesQRa7cj1j5HrL2OWPc6Yk05Yh10xDrkiOWp+0G11cOOWHscsTzty9PnHHDEejro/kFHLM88PjSgWJ51+35HLC/dx+fTnLBi8LTVQe0DeGJ56muu3Z5rt+fa7bl2uxvWXLv9/d9ux+Cpr0G11YcdsTz15elzPHX/gCOWZx3ybLcH1UcPan/CM4+efV/PcvTU/dPBTzzqhBWfFzhineuI5TVPHp/Pc8KKYZcj1t1OWPH5TEes5Y5YaxyxznfCiuHpoPvTHbHOcMRa64jlqa8LHbG8bNWzDsUwqHY/qHn8QfeF3nLNtR3f/21HDC9zlMuzL+epr3Mcsc5yxPJsaz3ro6e+BrXteMwRa8oR6z5HrL2OWJ7zAJ7zE577cx4qf22vF+4NK8pfdWdy5DMZssJ4QXgmJ75D/DbJUpNfkdIL5s/0ou50rsFvrKD0yA8xTR7T9SUizrDsPt6RCixLO0z058x76rdDdDHwGZlLhLz4zvQTIc+YN1N21C3bSUM9rsm1E8Nvh57sskiVm6o/qtwsbUfE8fxTrr5V2R1yxDrgiHWPI9YeR6yHBhRrryPWfkes+x2xphyxDjpi7XbE8qyPhx2xPO3LU1/7HLE87cuzDnn6VU+b8PSrg1q3PeujZx16xBHLsz4+HezrQUcszz4An8HC/nKH+KTGFIoPpje6cZGuKH/V92hq9KF/piA8kxPfIX47zM5zkz670r/Si+X9eUKWjojj+Tz1TZXnCT4dEbffEesRR6zdjlj7HLH2OmLd64g15Yh10BHrkCOWp+4H1VYPO2LtccTytC9Pn3PAEevpoPsHHbE88/jQgGJ51u37HbG8dB+fT3PCisHTVge1D+CJ5akvz3bbU/eefQBPH+3ZnxhUW/W0r7l2+wejbs/1yefsi+Pm+oXHzr4GsV8Yg6e+BtVWH3bE8tSXp8/x1P0Djliedciz7RhUHz2obZpnHj37vp7l6Kn7p4OfeNQJKz4vcMKKYZejXOc6YcVwt6NcnutDnvo6xxFruSPWGkes852wYvC0iTMdsTx171W3PeujZx2Kz+c5YcXgVR9jeDrY1+mOWGc4Yq11xPLU14WOWF6+0NNHxzCodj+oefxBb2u95Zrrm3z/tx0xvMxRLs/+hKe+PPvkZzlieba1nvXRU1+D2nY85og15Yh1nyPWXkcsz3kmz/kvz/2FfAYT97YW5e9omG2Xkc9kyApjBeGZnPgO8dskS01+RUovap+05f1SIUuH4mLYCXQc1xLvhuaw5rCOMRbvRTf8GEbDbPuvUd/Ozq3fht8OPfmTIqUX5fcs75cJWToijvs7lwk+lwk+HRG31xHrIUesexyxDjhiPeKItccR69CAynWvI9aUI9ajjlh3OGI95ojlqa/9jlie9fGwI5an3Xv6Qs9yvM8Ry9PneNrEg45YnrrfPaByHXTE8rQJz76JZ7vtWY6D6r887cuzPg6qj/bE8rSv+x2xTPc8H2H4MYxSuiLUGjudXBCeyYnvEL9NstTkV6T0osawlvfnC1k6Io73GTxf8Hm+4NMRcYccsQ44Yt3jiLXHEeuhAcXa64i13xHrfkesKUesg45YnnXIsxwfccTa7Yh12BHLs2572penXJ7l6CmXp5/wtAnPcnzQEcvT3/OdNtg36hCfuv0zTG904yJdUf6Ohtl9lBr9pVcVhGdy4jvEb4fZeW7SP1P6V3qxvL9AyNIRcbw/4gWCzwsEn46I2++I9Ygj1m5HrH2OWHsdse51xJpyxDroiHXIEctT94Nqq4cdsfY4Ynnal6dcnuXoKZenX/W0Cc9yfNARy1P3Dw0olqefuN8Ry0v38fk0J6wYPG11UPsTnlie+prrA8z1Aeb6AHN9gG5Yc32AuT5AP/U1qLb6sCOWp74G1U884IjlWYcGte3w1P2g9k088+jZj/YsR0/dPx38xKNOWPF5gSPWuY5YXvP38fk8J6wYdjli3e2EFZ/PdMRaPqByeZWjt1xrnLBi8LQJz3I83RHrDEestY5Ynvq60BHrfEesQbXVufp4bPI4qPY11w7N2b2S62WOcnn2MT3L8RxHrLMcsTzbbc+67amvQa2PjzliTTli3eeItdcRy3N+wnPexHM/E9+hsQDiivLX9gVifYt8JkNWGC4Iz+TEd4jfJllq8juyL3A58eP8mV4s72uELB2Ki4HvOFgj+KwRfI4Wliqv+G8yZIXrR4P2PZN56feYPp8JL9mWcP9CjbI9MdeWDL9NsjS1pdOIH+ePbel0IUtHxHEZnS74nC74dETcficsVfaDIFcMB5yw4vMSJyzvPE45Yj3oiPWQI9b9jlie+jrsiPVyR6yDjlh7HLE8db/XEeteRyzPPD7qiHWHI5aNDaz9wr4Tt93YNtRoSxfktt2G3w6z28gmbbfqU2H+TC899k3GU30FxDR5VF+B210bL49UYFnaYaL/jdGnflVZc58z127mfe/fr5W4E0Leiwi3bl8W0xud4nN2j3zOFnxGRbpJe/j6gU+89cOvf/cfvf3g297yc4s+ueAXxs6e/yOvetVXln95xZueeNWv9mg3N1j605ulX2Lpz2iWfrGlP7NZ+kWWfm2z9Fda+nOapV9n6c9tlL44UvbnwdvJrLTTeT+/Ee+wsrczd8UTlh7njIay04dRS//CZukvtvSXN0v/HEu/DtLX0N+kpX9Rs/RH8n9Fo/TFZyz9lShU+bvmr373uG/9+k8P/9ZfP7H38DfWPv5nV7/+9/7DZT/7kXNe8KNb/+HnvrzR0l7ViHdYYOlfLHh3kfuIzV995E0t3hOW/iW1eYdLLe01Ku0Lfru1c/dvfnvv2NWveNfhT/7NtYcWrJj64MpXv2Xnh35m5Rdu+0lL+1KV9i92fufT7+k8/vKHX//+Ry85Y8nUOx7/xFf/+598+Dc6X/v7dz74iYtj+/URar/KP598noDn+K9d/h3TWT9lG9BY2mGi/8rx0+n+vCQapzSGEcJ029OG9zXK4qTcfpXht8PsvDfpV7WJH+eP50TGhCwdiouB+8hjgs+Y4KOwHnPEmnLEOuiItccRa78j1r2OWHsdsTzzeL8j1qDa125HrEOOWIcdsTzty1Nf+xyxPO3Lsw4dcMTytIk9jli8zoZx3A8Yh/c12uWh3H6A4bfD7Ha5ST9gnPhV6SW+W1w+Hzp4z333HHxkw96pu66Y2nfg0H27hhA6zOwNsVYQFd8VYWbuMa5F7+YT3VX093qRLgjsGG8lt5DeT4assN6sYr2ItLgNgN2muI0Qh6XJoSXkN5mP+96/t58yjct0LA+WxwaKw570RuDN5ar4mPxDgn6CsMZFOtN9N35P55qoysnSdkQc18Xcnn8TD9Epn0sPceWuOw7dvWHv3YHCMP19ZYWIJxLd+grRCoFb0D9+fyK9a4W0C0oNAnNMJgZuZBBrG/GZa2TmGplpVnONzGz5+93ItEQ6nubh6Z8YJu3hx3717Z9e9/qPnPsP35n/mo1Tr3z4gtd+/IYvvfzEtz3zH+9954p3LI5TTJeVCSeEvDjFg3mb1yV/w0T/DpjSurzkF2mXlfFlTXvRofv2bNl1cP89ux7a9T2ffSBQ6FY9NtLf14p0KphJtAk/htHQkwPKdniG3w66mCdDVjji8NRoA/PXzOGxQXBF9nZ419LfTRzeBL2fDFmhtsMbpTh0eFiaHJTDM5nrOjwsD3Z4WFHZ4WG5jgk+Jv+QoB8nrJSz6sZvruvxVJjreiCrua7HbPn73fXgdPPC7JpraYeJdk8Z0WONDYsgHcs412Y/FebabGQ112bPlr/fbbbyJLw23M+pC+SdHAx97uAVP3Nw2f0Xf2n0o68/783LT/7M19/2nn/65iO7Lvnnf/r8+1Z9vUevsb1Hb3d99LA/QYMxrAdcj61lqtpfYGmHif53Fk6new0Mxuw8QulRtk/dd89dUwd3XfXAg4d2Hdp117V7D+46sO6Bu656aNcDB2sPzV5Mf18t0qlgiuDuDj6r6UTlNjsifdXUZJVSDYs3bfxM+RAr/7tOmYmpKgsa9vpEXscobozk7cYntcBUZPI5oUc+Jwg+qY5+U4egZFaOx8ozlvEvtafTYOXFGQ5Maw56mOjfCpXqzVSJleMsgnY2aGMxVM0324Zephmqkg/s87fIPocoz5hPJfM48GC+MeyokOE/ULewYSMvu4WGNUHyxOeTwkz5UValc7YrTM9LIFWdJ/w1PvyO+SiZuSPgwQexrC7kNDgTxIffpRroCcpPIWSI9vf+tuaJ9VH5LZ5xfADq4weoPqI9m8zKbsYprmo4xTptiXcpXzVegZXbBhn9HyXaoG6TENwGDWXINxxm16n4fCLkuQoriHdqSMvDuwmiHU/Qstxo27ZZ+2hPTfDwFaesNwEdh25TE++tMeBAPWyowFR1/maiNT88JHAXEi3WY0wbw84KGbiMY7i+/OX6/g/tafy/oXYG24t+li3qjoMqP5Mrlt8/9Fh+yq/uoDjlj6O+vnSM9MVTlhiOhb5uorhu+rI4m4pRA23e5G38Fs+fxnuC8ArgxfbPh6+WAD6nj4H7Ykb/dWgrnrXyqecJSh9/VxIuYquxDLdznD4k8rkY4haS3EbbKfU2SvmpaavrrIyXkkyIfXxDbNSfBTV9aPjjgp/J1RZxwxmyPPCtqQumRl7+pwWlN1n4HW+5OUHQrxT0pqtlkL6Grp6PE1GBeKtxxvEUNw/iTIZo02tJvhMaypejP8TvCPpbgK5OWXQEn1FHrPGGWIvCTBvFesg+NwZuh1TbH8vx3LJuKz90CslaCFlTfojTB/G38kOqrxvDOeSHGvYfLzSdLCGZEHtpQ+xcP2T446G6XNsiLscP7f7Oun0f3PLxk4sw29+2xDv2Q8omTxH0Pdbzc5UfYl+DfmgpxaEfMhmUH2rYppyboz/E7wh69kO5ZdERfEYdscYbYpkfwj6A1UPlh7h/t0jkB/0QjzGeA3228+fPxMI6VtXvjmEnxY0n4hYKzMj7xTC5jv5qpPzFcSSP0ZaIdAHyYO/Q1jENzz0Y/QtBN5eRfFinMZ8on+qr47zkuvnVdIsSdFguqf49bxlAm+S5q27lwm3FNdRWNFwmlvOehhXncszvlAs4V+86uHX31P5dd23ddef+XQd5haagv6tmWngkFoguBt71fBz9zct+PJu5UOB046lm11fAM/NVs/nslVYImY8ln5N75HOy4NPvpdiTiY+aue6x17QqR07Eb4fZtbrJBo2FxI/zx72RhjMpkwWlR36Iya2dGkEblnnxkQos9PxIf2fpvTqCx4nEY7GQF9+hR7+VPDWupOCKwK75M3moFQFMu5nyYfRf7Eyn200jDWyhUvVxMsyUpW59nJzj01c+q3rks0rw6be/XEV8UhvaGvqvRbn+0vC9NrSpVSe1M6PHFeGF7BuQnzqkxj051i36xpEKLJ6hNPpXk79EHuwvVXuC79BfvoJ8llr5Suk9tRqpNoF2W6l9/XzNU63UxsB+2eh/CfzyGzP8ciqPaueE8hNVK4NVWJsJS40OjtYKuuKTk58Un2OZn1RdwDLYkpCL+zqLumBdR1iYfhHFDSVkrruTRI1uFZ+FPfJZmMnnaOVnrEc+uTs22j3yaQs+/d7pwzMPVf72feRveacip91Q/vJOxdeBv30/+du6+e9xnJPdLzH8dpitvyb9km7+gfsli5vxO9IvSY2LUB5eDWDdxn82EzpSgYUrwkj/J9QvQR7cL1ki5MV32C/5II3jULe91hPM+9GojzHwKfiq+vhRqo+LIS6nPhr9QaiPf5Goj4tIZtRNO5Ef3HFR5RNVnzxVVxYm6JWtqz5BH1e+sv0Kr7I33E1wxK+o1SpVb8aAdzlbu27XgfPOv+TK703VPrLvYNUqGO+qWkq4bHP2N6eLsvGOkSHBIwa2n0VEx+XOc7l1ZOpG2y1e9QmWVOQzhLw+gVr9YKyqnZpWPsNE/9/Keq52aqrTDGhDqZ2abUrXrpC9JfIwvyLdi4KWD/O8PpFno/9iIs8TXfLM46/Uoceqi2daIg+jYbYNIIbS8eowU/a69oTpj1YfczXxqWrTvpUx14ryXFE+81zrFLRp36Y2TfXl+53/qlMXmK8rgIbHEXiUijFj4F12R2yyJOpxvUOu/PHcfyHkj/mbNzYzLyrvqTI1+q1QpqPly1SZpuqHOi2U8gXjCXo1b6DmeFP90976+cVnc2wU8dskS017ONLfUP10zF/T/obhfgYyhPJ3629wulR/g2mr6h73ARbS+279DSVTFW0v/Y1FFfkMIa99UGMes08+VjsZssIkt3utoMeOVUfFh4LuGzC96mMgPvth3B2tdLMN4pF+RQkU+xLn0e5llOHUCvlCyCsLTH+02qpTiU8/1p1i4JNfWK7PhWeMMz78jvlg+naCz6Ie+agxcK6tryufu/WJnlWz/ay6FKMF7ed51H6qfnrdtWnOf921z1S9zq2nqj/wLMKqe3oY01f144aF7DFwv8zoN1O/rOG66ma1y9Bsocc+3+acOo74ak3T5GqLuJzdu19oX/ZnX3z3L36U2z2Thd/lzB09S9D3OM+6Ue3exTnVGNBGFlIc7t41GdTu3Yb9tY05+kP8jqC/GejqlIXCWt8Qy3bcqrXHY+WTck/JGv126Dvk3NSA7U9qTXmM0o0J2UOY7XNimAw6fJeC4eFVM8yLTywY7S2Q7wtXzpR1XMhqPqKV4BHEuyJU64Z5DIm0V4aZsk1kyKbWrxGjau1/OOj15KoxiJLL8hGDstvUevrZPfI5W/BJtUn8a3z4XWqd92zig+mw37SX+k18XU1B8lxVPvN1NV+dmE63n/pNmJ7XstXcn9ofwrrPvVnD6A9Dvep2swbmM2VnuTdrGP1jR2GeifM0HGb71hheEnSe0E9vBhrWQbdrjZherTehTbLPVnteGatqbpt5L+3Cm+etcS2ham3gYrD3n6A61E3311RgnrlgGvOnamK+tALzTWPTmK9L1Mtnhpn82PfwO/Y9nD4G5XvseZTkrFkHsi//M/x2mJ3nJnN5am5C6WUceLAsHRHH7bLi80zBpyCsbnKNBbfL9w1yGdGtrxCtELhF0CZnfy+jdypriP3kFpyyapqZo5u+lPBRlpZ4x0WG6Y1O8en0yKcj+KSwLhVYRj9P0HcEvaNpWPwKotuWEI1xu5nGCnpXZRoWWsQzPlddt4oqRxknBEaRyFNLvOOiLgQvxeeyHvlcJvjwLpc/oB4K8q/hLX/SvN8IvGTP33CW/CdRXxaU5686GYBytUVczozL2t/7oV+59NTdmwpKb7LwO66SagR7maDvcebrlWrGBe/2i0HNyqkZF3unZlwaXsb5yhz9Ib6aIecZl7qzFxi3viGWzbiMQPpUXT5aPqMffFJYahbG6E03I0GvUrFPMvo/g5Hbc2hGROk7iHdDYbY/2lr+TgisBRWyK96GH0NHpDe6PvrEeVhOKCe+Q/x2mJ3nJr1hVT+UXizvarZNfUiP70+quxox6Fhom+Nhtv0WFb/Gh98xH6yrC4hPv07I5dh5Uz6IlfP9q6Z81G6hHtvg2vetsV3gZefcp7kW4lj/myCO7/PFmR2cCeLQor9RD9EfP2/lNC7TWVCnsbhdqnsSrhDydDuh/K0xzVOdUMa2iU/CLYJZmm+PVeeRV0EXAB7LHgPPGhr9d6lPjjOoNewweR/vD5KNN7HjBxvaMfe9Foh8qBUFy4fy1+MUhz52AcVh+z1BcejLbgI69qctwo6BZ2PnCdlVv6nI4JPqNxWZfJb3yGe54NPPdgt5dvNTK8an02D5V92kcHv5y7PC3x2fTreyfFa7Vbj8uE+IvjCGqjFS1YpMu0K+NaVMakVGrRrfnpAZeQTCiIF9q9GfWcrQ4zhW+lZuc1M3BjTkO/cJnIBeg+Na9I6/dnE1/b1epAsCuxWmS24BvZ8MWeGYfgLHZJ77BM7sEbdKF/9+qUjjOaJiPXpgLRBYPfYil+R6HN7T1rCeHPE4as8F5o/z3hGyqMWV+fCMcchHLZbkLNQ0xYph5xzWHNYc1hzWMcDKGXliO8X7Z9S+qILiUL7UQjimN7pxkY7bt4btzURu+2b47TA7z03atwXEr0ovPbbfC1LtKWLyrHFHxBmW7QWruoPL0vKewR8qjcjTruOI8eHxmbKrflBOOSOuWtlJbQDpp92jfDhz8KpxzbPqrovby99hon8CZg5ePT5TZjVzEIPSAdqQYXCe8MyKxdWpr0+OYWD2juXiVUtl9zibcFX5rPbU1lnlqyqjx6mM1N7TQsjD+/r+Bsro52h2B9Pn7CtT/NiGRiroeb+t0f8izO48J/HlktEKflWz8mdU8Ptl4PcBms1tEY8Qera7JcrusD6z3akZSlX/U+0B2mnKFpl3IbBSe6wt/UjQZWB4w0T/66LMc+2cy9Xo35lZrk7+RJYr6ipnF4Q6q5qyA7VjQ80gsx23BBaWNZdrt7pseFy3fidRrpYeyxXl5HI1+v+YWa7Y7zEclHcyZAVZrqgrLgPVXiN9ziZLljUGteJzHMWxT8Rn5b/RDnLKXOmXy/xPRJlz31/5hdz90XF+zfbZlzPDWw/u3b+rnBoOFFJTuUWovrpwsUgfKG1B7/i4gXKfqQUR41210Yndp9H/V6HylPuNIWeLPRZ3PxYX7J3XFvtubo2n+lLVLNUlPwamGsPVFWIUIn0grEK8i0Fte0dc7gWmvJtSlfUuqloOw+O9C3+XaDlSPZwgZEjNAKM8qRtUU+v0zAdbNDQjbtGM/h8zWzTj3Y8WDXXELZoaQatTi0avThur2e4O0aPuVYuWc5st2rm5V3Z1mFaNrJS9pHpmKf0o+1LHPdRej9QoGPffhOA7Csb8sC2kyjYG1k3qdknUTYfolZ1g3esQRrdeV8oWcOT4qoo9FIibGgGp20PQhnlUfuRUeZk59AGGOd4lbzkjQPTjvL8Iu0ALKA7T4UyFYQei69EeFyh7xPzkzMqo1b3cuppapeOzBGrfN4/8UN+4R0e1JwU9L8jMm9oDhXsGsXxOADur+oZ41QzKVRWYJyVsV+UhZbvd2mqjV/bJexKP1g6Lo73vFvPMgfuAqIfcfbcpv6N8n7J5tKVv0V5X9BsXE0/Vhcd3bPOY3ugUn06PfDqCTwrrYoGVaqtUG+p4rNJEPJXotiVEY9yC/vH7U+mdqu4YVDEVFXKHkFdMBfFXWLg1cAvQ8EVm2IQ9h7DqLspgeh7ymCzXlvV0VPCv4b4et+qojoUYdsPjO4+jfi206J1ybeq4lTpKlHOE8nffft2Cj3/wkiNHAHO38Bq96tI9R9D3uLX9jaqbxMcksYy5e5V7hLLh0a835ugP8TuCno9Q1t1OjXFbGmLZEUrUFy+w9tvH8AL1VtHNOtqy2GzkjQMgy5FLqhLdz25DOP5AkFrEUb6b81XXdxeZfC7pkc8lgk9qwwr/Gh9+x3yUzN2OFty7YDoN1rWqowW3lr+80HcqXH5zf4mppt2qbq4ogp5JZ9/BC5FM066Qbz/YJx8t4DxjPpXMI8AjEEYMfLTA6A9TP6Chf5dHC3g40ocjxdmz/8fqSHG9owU84YBaQVR8V4SZuce4bpP8V9HfTY4WNOyxvNSs4qUikgfFqBs1KMbS5KAGqdjDqXO0AMuDB6S4drYBeHO5jgo+Jv+QoOfPcKjDzKb7bvxUj4svT1Hp4t/XiDSp3n9OzYyB18najljqmEKPEzbZnwPirZcN60ly6yXmj/OuJvfVdjHuldW9NhKxFjliLXHEGnPCimHnHNYc1hyWC5baZsQHy7E94E+tou/imZe6I0pM30rwuahHPhcJPuMiXdO2r5OQWS3Csd7qXhaD6XkhAeXDEd6HFmieVVvAeYRn9EthhPf/LZgpsxrhxaBG01gOIejRfo+LjeNqsRH1yn1/tSCC9LeVv6ntbsoWcsvo41RGqa2xKA/vF/vfcBHJX9EoHG0753O7ih/Xw9wt4Eb/tzAKT20Bn1fBr2pWYkMFv8+IBcw+bgFfpOwO/UzOllLlz1L+Qu1n64TZvoe3lFaNRbjslb5ztpSq/Ym8pfSLwh64LWLbqJJP6c15S+lohRgLRfpAaQt6t7ACy3Di3zjJkbOlVN27wi7ifwiVp4oshrktpd93W0qvqhCjEOkDYRXiXQzdtpRyjU2pWKmq6WGEoVImtaVUeVjVwzJ61RNQaw6pLbWq11PV41CHJGLgFs3o25DXo3D4RbZoqCPOV+7MidF32xbEVS21pUuNbHKrYe6WUu6pddtKU3cLH9tX7ha+VK/aaQvf+LHewme6ydnCh/nnrXiqF5VrCzh6+lDF2hnioi1UrYOjD0Ad8rY8oz9d+ADDHO2Stxx/h90cvs4Ouxjs79Q6vbJHo+vRHseUPWL+c0Z5qSu5u9VV9j/q8K/qInA3spvdpLbj4drlvTTiQz7PJp51r8R+tpBf8en0yKcj+KSwni2wUvW8z9vxTMTlRLctIRrjFvSP3y+nd6qaY1DFNFwhdwh5xaTMWfEpeuRTZPK5oEc+Fwg+s7a4lA89LqO/Qk1IWT57XOh9BerLghpNGf644Mc3A2Jczja+L3eu/9B9X3/rr6fcbqpLqNzuBYLedMU7eCdDVvjR1EkstY1vnOKweTEZ1Da+houfP5qjP8TvCHrexpdbFqk7fepi2TY+ddP70fIZvI3vDuhC8da5oyWLbVW5+xjKorpN7Isa3kQ6nuuL2N809KvJm0iVXnr0tWO59ZMXARaIOMOytmYkpOs6t02HywfuisbAi4m5p4+if9s/MVP2ftysr+yxarviYxMz88K3AnNaXigx+r+DxawfSUxpcfmwbcZfXDRlH2npcbui+oYiL7a9EnwCb1dsU54xn8pnjAEP5htD1be2f4r6Ow3ridyuyENH9R11zm8IWuepRVKj6zEPl5pdXioiLQ6/psXbfJ8Pcbyh6wUQx8crXghx8ynucohbRHHrII6nfjHwNDDqKNre72ecKlOb8i6jOKxHpgs1Tfo8eMY4k5Xfcdlj+tSW7naPfNqCj5ouRn/Zx+M72aso/JWzec34HWlrU3cXPSlY+avGGTxFwuMMe64qn+cJPnXl6sMHDs8iuvUVohUCt6B//P4selc19Le/lelXrbqEkGf6aq/H0api3fZR/NaE5ll1xRg2jUj/29A9eC882+rX/PCDp9scncVwV/nLOvuDxKz0kZW6CsycE2KqyTd61QXn04cxqJnq8QzeqEuuzwtqytptxYs/cqIOwufKuvkoyzosZO2xaVtqdX6piLS44wGbu0knQBx3k5ZB3BKKOxHiuMt2EsRxE/cMiONhDX5khqfgVkAc+7uTIa5FcadA3HHwzEF19axMYro3rZrGZTp8rvI3SJd7KctvVQznEBeHc1VTULmXshj95xK+yvtiC57qUvVZTffgtIFhM+b3+4puavWH9yarlfBcu0mtoOEUAk8vqEuRlJ3b+0WA1SKM+GwXvQ0T/TcS9rhYyJDy2UsEPd5faPJMkAyYdkKks3JT9mh0/bi0CvPD9ohtQkvQs26OF/RLiSaGDtGjnlLnZ5S/Wwiy7x2bSYe+tqj4NVn5XWqqfifJM+HIB7F2EB8c7mK/fKwzjcs64V1Z8Xld+czT9qd3ptNNlM9qp8wEpbe4RWWaaGevWl2dnqen1Kr/RJhtBzz1pvKJ9FdX5HMZyPnqUs4+7uzpqHqHvo/rnfIxSM/1LlVPUSedMLtO8hSsmt5Hm2SfbDqq+hQBjwGNfjWUAe9NxvwtJNlHa8qu2pNuO4+eRRcvYRvD5wJVG6bKSl3Ut7ACS43jsN5yubeCbg+Z3mxiOKT98zDRPxvK6rWrNWaokGGsQuaRCvolJIPRXyDsJeUH0P4XE6bRXwyYfKtGN8wrKjCfC5jc11D1FC96rNuecn8C9Xg8xaHs3C4uBf5M+2Lij3Fo58w3JORVU5Ipebm9sbjN0F5dWT6PEl5NX91KldVzhby5ZTWWyB9jWbrhMNseU3UE9bG+ozHn1cS8VrTpqq9yE+BvruiPxMD9kRjYL6PPwHo4Rn0SNdbhPsl2UR9VW4/zKYZjcfn2U3y27tm4brphn9DLxbAnUlxqKdarLZ03NhN3IoEbf88kObr18Wy5i/3wroQfVjpM6VyNEVGvPM+A5bGY4pTNHm17xPyzPabyGkL98TDbo2o/lD3m3L+Qa48TkNdvlROYagxuPJWPrtvnLujZfPxIBT37fKN/eaLfc4KQITV3sUzQn0A0mH9sl5YFzRvrJepkA+XH6H800x87zXnIEzaoN7b/lI5iYJ2eJOhRV6aTDtGjfpWvPoHikC/bmaqzuXXD0kY9fHT+TNx2Ji77VbQJXAtjX230b0z4apW3lK/u5o/4ttLc+bmUr+6nrQ7q/JyyR2VfuJ3qfWRfqu+TOt2V2/dRbS37dkzH6351x/SYfmGCT7tHPm3BR80nFRW/xoffMR8ls6ovnB9VPosy88Nrh4sc86NkVnPEM/Y60BgG/WRLpOX2zuj/C4zJ3kvjFxz/st3k2i7PiS4CHSifvTlM5z+Emfoz3B792Dzlx9CP58x3In3dvhf7KvRxvB9B7W1A28O202hCcPX78+rOD6f8YAw5bSLWCV4LTM0do72x71W6RNtL9UNwrfn187vLP5HIbzf74PUHbOeXUpwaryhbMLp+9AEwP2wLqTY9BtaNGjNgO8+2gOODxRSH5c/9CNVvU/6Syxj9K5bLuvKZ5wA/VXO+NWU33fpHPJZXc3ipceXR7jsOit3wvC/6nrp2wz4E/Tm20dZ+K383RM+qL4n0rQoc/gBXQe/nw3tM9wLKM/eRGPuFRG/5HKmgNzzui3wtMZewuIsMl5MMS7rIwGsuRv8tIUNK/zGk+oSjYXZdrFFvhrENssB9SsRvB20fkyErFKw/46fsIAauy6o+YRy3ycoHqnqusApHLD4q0rC8an9kiMcVG4F+C8VdC3E7AINDi/7G/ES7fsPqaVymY1mxvDYAPtvYYpF2scA+VvVhcTN+yfqgxgB16wPPIz/d68Niihu0+oDlZXIrHcUwGfJCTn3Bsqmh/1W59cXwveqLsj1VX3pcD5+M/ml+mO2rzoVn1B3yWUIy9Fp+ao7rWJXfwmb8kuWnxvCe5Yd1q075qbk/nkepO/eH6Y/W3B+fCcCxIM79PXfhdBrUg1qDjoHn/oz+moXT6S4rn5vO7/Vxvq51rNeIucxy559y1ohz96njGvGuivmnAnDXibRct5F+iZDD6HltmGl4b47RX1sagDrGrmwW5VpHmEZ/HWDyfIqaM0jN03abM0jNtZ1AcWotStUJo+uxTqw61uvGbPe4bszrv1y/YtggsFKyLuxBVi5HLKuTCAv3oam5WbZLo79T2KUqf9N5P8o/NZ+mdJqaT+umUx7T5O4b4PFKt7lz9onq3AW2iaovULUGhTxTfQHl0/kKlgNQ/rxXF323WnfYUIH5UMLXqTykbjPstkfM5FHt/+JEOiyrUcFr0h6+mw6Gh+My5lU1Z/fDoKcLV2pZCpanS+jjnN5kQXghDNacXo9jlpXYp0c7wj692luG5aXGVNgHfjX1gVUdw37q+eUz17E3QB/4tRWYIdRfL0R53t+eievdP02tzefsGUrtwc9tF3nvlNH/HNTN1Fkmn3Wm4qvHep2J20VcZ+J+jrKvVD8c11VUGfA5BKN/M5RB6iwT7wUcryn7QiG7mkfGusH1WK3RjwrcVL1HuW2/Ntf7X0+0rd3O/dbd98Xr+blj69QZcKex9aJjPbY2+XPG1ngGgOdksI+GezV+iXwvjjtS/U2jt/nnqrEv1zmj/4AY+6r+5AbKB853m81Ze3wtyT4ZskL29VCG3yZZavI70t+4lvhx/vAapvwvt7InQq0gKr7jGoxxLXrH39K4lv5u8uXWzfR+MmSF68wqrhORFoe350xQ3FaIw9LkoFZITOa6X27F8uAVm00QtxV4c7leK/iY/EOCfhNhXSvSme678WuJdBOEkWp9Ngje3Pr8JXiHr62u1sOGUK0H+7st5GR9W3wMPdrkDbnexPDbYXbZN/Emm4kf56+ZN0FLQS7bCdVokBbDdpAM6fkjUlx6YyIdB9PYMMn8JRi7/B3Nf2C++PymsnZ8x/MfmN7oFJ/FPfJZLPiocSDfO7E0EYdzVsdT3BpIt43iToM4vk/jdMDk8eraBOZ6gRnL7nWLpvHivxuATlm64VgZbAd5MC3+PY9oY7DrwYc57aLpNP+D7AprMdvVpi5yp+xqU6jms7hHPosFn9QeAovbLPKqWmQu5y0Qx7azVeTL4rYlMK8XmLF8XrFoJh2Xfwzm8W+E9zU88PZcj2/4bZKlqce/kfhx/ni+akczftcXlB75IabJY7reKeIMy86bj1RgWdphol9QlmeH6EKYfZX3TiEvvjP9RDsZJTtB3RYVv4bL77h+Yd6tfIwP+hucv1tc4fOwJ4V+zXqe7Kt+4fjpdMeXmMovctmpetI0/zeIPE6E2brh+XZl3zcm+CxK5Kdf5cnjbPSzWJ6rqDx3QBz76Ph8Rvk8TPQ/DuW5hspT1UWlZ26X6ur5eMGn33rm9mWnIx/E4k8R3UxYrGcrJ9PzTRB3M6W7BeKQDkdd+EmSWwRvhW8Y3WzwokU6b1U2aLyGif5usMFLGtrgTopD343tIsqBekD6M4LO10gFfVW+XljmRe2vxz6FKgv2v0b/IsDkeVRlW9ge8FyhsoebRb6UTm8J3XmjntdX8B4JaVscJvprhE65XcD0qh49g2S5qYvsXL8xvdGNi3S9+hElc7c6uaVmnTynfGbb3Qx18nqqkykbQZl5HFFXz4sFn37rmccItzjyQSxuF24jLNazlZPp+VaIu43S3Q5xSIftAn7C5HbBW+HntgsvW6TzVmWDxmuY6C8CG7yHbFC1K8oGb6E41Cm3C9384TlEb3KPhHR7O0z0+xLtgqqv6Gu5XTD6A4l2wfhivlLtgrLFW0W+lE5vI6ztAgv1zO2C0inmfzvl3+hfntkuWHo1H8E+BucjeK7iOojjPiuuEKTmI3huBH0Cy3I9xKGN8HzEwkR+cN8Hz/fhvN1milsDcddR3GkQx6sPOG+3leLWQlzVvB3mG+ft+G6vny7f97huJz+dlJoXLSp+Q8hrD3Dtme/Rv9aRD2JdRXw2OfLZlMjPdYKPlRfWl36ssxp+O8yuu03mybYQP85fs5UR9DasFUTFd0WYmXuM6+c6q/HdCnFKEzxzjnnaWpEOdRHEuyFBv4Wwtoh0JnsrkR4xMB1bTEHvq9YjDWOY6N8OrdU3V0/TV/FCfXCLabJX7ZhgGYz+HSADnxbYAmlUvq6rwPx9WMl41yKNGQSmytdWyhfLsIVkMPp3i55Ai2hYHvUu/o1rvVsr5FPlxLJiK1eVHy4no39/opw2CxmwTq7vIgPTbK2Q4T8JGYR3u2LvvkdK7xYo4DdM2BspzfO67WaBUxVMG9EKzSLVLoPrRLrN9HdbyBRzbn2pI58xu2/XwV0VeWfPPb+C51DQgfujli6G0dBTm5bdhhp+O2jLmwxZoWAvZ/w4f3y+e4uQpSPisHzZjlJ8YpnaXriyTLce3Lu/qkhzG9dCiMXpA2EV4l0MVtS4zFJnI4lairHA0+2YJ4vD5TruRuLUIDo1DpxvzE90Lv9S42g46pSHYLlDNx6eoSnx8Akd/s0Uh0O3WygOh242XFVLZnylqho6q2F7R6TfnuBzeo98Thd81PIj223D5elsF2X47dBTPTniotS2EKUXVXcsrVp64k1q1pTcVramsdn6Ag3rccss67Xh0fOLc/Vq+G2Spale1XZvdQ2XmrbgK6JxK9LLgI7jWuLdUALrgCPWw45Y+x2x7nXEmnLE8syjZzl65vEeRyzPPD7oiHXQEWufI9YeR6zDjlh7HbE8bcKzPk45YnnahKe+7nfEesgRy1P39zlieer+kCOWp74OOmLtdsTy1Neg+kJPfXn6HE/7GtQ+k6dNeLbbXrqPz0ucsGLwtHtP3T/giOVp95559PQTnn0AT3096oj1WPmrjlJvJz51P22B6RdmYKn5g1Qe1TzOWMk/hiPT+nccunvD3rsDBV6FuLJCxIuIbn2FaIXALegfv7+I3rUELWLHaaWfKJcz+nh65fyC8ELQ00rH6vQKT2dj2o6IuxCeMQ757BB8OiLugCPWg45YBx2x9jli7XHEOuyItdcRy9Mm9jtiTTliedqEp77ud8Ty1Nd9jlie+nrYEcvTVu91xHo6lOMhRyxPfXm2Q7sdsTz1NajtkKe+PP29p315+hzP+uhpE559Ji/dx+clTlgxeNq9p+4fcMTytHvPPHr6iUHtfz3qiMXTJDiu5mmSuien1Yn7FJYaD6fy2OdpEhPxPKJbXyFaIXAL+sfvz6N33aZJeFfOR8tdOT3uvpOHS3iXFk4H8XbjujN1mH5pgs+yHvmoi7/HRTrLd496HEf9oZz4DvHbYXaem0wvqV1ySi897nYbK8LsqtoSmLzzLuVWrP7g1nPEsrR8OcTnStvnXWwx8OUoua4rTkN+usRN7RrMKWfEVS4xxx6b8kGsbeWv1S/ULdfjVLkqPpj+hgosO34SAx7A3Eb0WM5B8N4B8Uj/lbK84g7dj5z61DPvmA1h5iHgry5Oy4ppUVa+cGYZHAL+eomp9GzlruyAd2MuFXwVJvvGumW3TMiQwsLyWkP0VhYjFfSGx2X3r1B2fNgYy0vZzw0VMqD9GEYMVfYztGRahlz7GV6SlpXtZw3xNvp/WTqd7rgScyLM1nHKftZQHNqP6Ui1rbzTum7biulTbfgmitskZC8oDmXYlJBhjeBjbRzaX4027kZ1uY8FtTxzOsVh27OW4vDwP1+KjQfVuW3AQ+Z8ABoPv6M+OLTob9RRtP3fpw+VBIHFB3NRF6kD5lb2eLAaMTDOZOV3XPaYfm0FFh4RVHV5mOhPgvq4ZsnMfOGFjaaTHm3tgpz2HfHbJEtNfgX7K+PH+ePlyO1CFuWLzoJnjEM+qdMbGLfXEeshR6x7HLEOOGI94oi1xxHr0IDKda8j1pQj1qOOWHc4Yj3miOWpr/2OWJ718bAjlqfdP+SI5VmO9zlieZajp//y1NdBR6zdjlie+vKsQ579CU997XPE8rSvOb96bHQfn5c4YcXgafeeun/AEcvT7j3z6Okn7nfE8tSXZ3/1TkcsXtrEMfom4qPGw9sSfDD9top08RnnHHJuIWi4rblVEJ7Jg+8Q3+sWArWuosqn7rZmXhvoZWtHzqUrau4jZRsqj45Lzybi+US3uUK0IYFb0D9+fz69q1p6NmyrRupGpiLMVmNKtWr5aH2Cz5oe+azJ5LOsRz7LMvmc3iOf0zP5bOqRzybBh+/IjAGXP35jieaJSyM4Xcs3pRn9F5ZMp/tNWhrB5QX+3ikeyOH7MfEbP+x68a7QGq4w+wIYw2+H2TbZxPWeRvw4f+iW8u955BqAWkFUfFeE2V6jAMnwHS9yL6R0Te55PB3ilCa4hmCeTq9Ih7oI4t2QoD+NsE4T6Uz2ViI9YmA6tpiC3lfd82gYw0T/h7Dwyfc8Kl6oD94EZbJX3d3HMhj9n4AMfH/gaZBG5Ytr8+n0N9rWzRX8PwVe5sNLNP8g+HP+0KtV3aF4Gslg9B8FHfCdkGtF+lDxjluGtRS3NkFb9UVfVf6cL/TaVXnn8jf6v0qU/zIhQ+rrrCwD00xUyPBJIUNv90eyl+NS4pJYJnCqgmkjWqxZL2uHawfzsb+VBfR6f+TSCp5DQQe+49vSxTAaemors9tmw28HbXmTISsU7D2NH+ePh0WnCVk6Iq6qlnbj0+P9kVWNtnIWnD5Q2kK8iwEPAM8NNbrzeToMNRhLDSFiuKv8Zcf+v8Cx82cn1oMcCnMLyaBmAdTOJKNXM1fbRB5NlzhLsT2DN+qS9XVjTVnV7ArORPEuRJRvR01ZNx9lWdcLWY/2DjHezYU7xHg3F+4Q489Z4A6xjRSHO8TWUBzuELuB4nBH5XaKux3iePg/BXGnUdwdEIf3y3LgdgLLJNbZN62axmU6fK7yN1ifq6Yv2L/Y9MUoYCOfyZAVTrf0Q83S32HpW83Sn2P55K5pDIY9D97XsP87UScWVLfK8NskS01+R7pV84gf54+7VSNClg7FxbAL6DiuJd4NJbCmHLEOOmLtdsQ65Ih12BFrryOWp772OWJ52td+R6wDjlieNrHHCcvSe8n1kCOWp03c44jlaRMPOmJ5+lXPuu1lqzEMql/1tAlP/zXliOVpE576ut8Ry1Nf9zpiedqqp1ye+no6tNue+vLsr3r6aM8+wMOOWJ7+a1BtwtNPDGo75DmG8czjyx2x5vzqD4b/8irHIsyecxsUfQ2qzxnUfuF9jlie9dGzrfUsx0HsrxZh9hz2oNiXp199wBHL008M6jyTp1yeuh9UP+HZJ386jGs92+1HBlQuz3GtZzl61kfPMYznvK8nlqdNcB0qyr9xnRT3UNwE8UhvNxOpdewaa7d3jUOaABiI3XAd+q6C8EKY2dcIhD9ewS+GtogbzpDlvZffsufvJr9xSkHpTRZ+lzM2UWvapqvjSPbJkBXuGAcegXhbHK7Pz6M41IvJEH/XknwjDeXL0R/idwQ93/qXWxaLwkxbQHtXpwe3UxzuP1pKMnTbr8T7zCwPIxX0fIuZ0X+3ZIybyCeIJj4vq+CH8uG71L7DnRVYVbegnVkh+7zjp2XnfXo3CfnUFlejv1nQ454qk0fp5uageWN+sDxvo/wY/ZjIj6p/ZlOjgGNxNerOeOTzduDDesP6001HMbBObxH0qCvTSYfoUb8Wh3sHb6I4rDt8YbDaV4ina3l/l7q9EW/uS93SOEj1+mSwpVS93lrBD+VL1WtMX6dex3Brheyn1qzXW4V8g1Svz8ys12ZTc/W6e71WN43m1mu8tZVvdL0N4gx3E6Q9p3weJvpLEjZ7e5gtK+qc9Tsl6G8HGpNngmTAtBMi3U0UNwVxt5AMd5R/ox5QLt47b/SXgx5evfqpZ2Xrt5fPPdr6OmXrdwAB2/qdENcS9FwWdwn6O4HGdNIhei4X/BuxUKe8H//28u8RQY94w0S/Xvh+kw993x0k+y01Zd8kZFc3fWKdell5ZbzZIPoNvpn3lgRP5Z+tPRmpoDe8YaK/XuiLfSPWA9TTOGEa/Y0Jf2B8MV/qZoiU7m8V+VI6vY3iUHazBVU/ja7H+vkiVT8x/1w/U3mNgXVzu6BH27Xy74TZ/vBmisO6cSvxUW1krv2jDW1ZpHGr2pszyme2r3sT9qXqjbr1JGWPaCfc3qB93UpxmO5GikOdcl9RtbtIz2NAo9+f2d442fNiZc9os2zPt0NcS9DXbftNJ50wuz1gf6hsFsua2xvT0UjQZcCH4Y3+hxLtDfbbbiPZd9aUvUl9u4jaGzxfxe3NzgRPTov+oqq9MTweD/xkor3ZAbLz+Eu1N0b/mppjplR7023MxLdzo15upjiU3WxB1U+j67F+LjnWYx9ub9Af8rgI68ZNxEfNE+TaP9rQKmpveNyEWGgXKXvEejNWPrM9/ruEPabqWQysc2W/aFf8tQK0Rx7zqC/E9HEsvl3ZI+af7TGV1xjq1lUrz06Ybaspe+T2WY230YewPaId4Xh7cWmPNu+P5ylr6HW9ul0/kAwbAHs+xeFtbldR3LWQbhyeObTob8xPLPd/of5IEFjGE+9C2EBxeG8Cn9/FORK+tgrn3DdRHN43wGeJT4M4PkuM5/q3UNx6kcfRMLssapRz9lUchu/1pYMNxI/zZ/Ww3jVZ/L0J1Aqi4rsizLa+AiTDd/OJbiP9XeeaLCu5a+n9ZMgKm7hlwmBxeKqfv3lyHcRhaXJQtdBkftL7njKNy3QsD5YH1wq8aeE64M3lukHwwVsjmH4jYW0Q6Uz33fi1RDr2sCpd/Lst0qhL+7hmbyT8yZAVsu8eNfx26KnFOFKz1T2e6nsxqjWwtB0RNx+eMQ75XCv4KKycC3uUzD1e2DOf/t5QIcaQSB8oLVfVoQosw2EHm3NLWuqWLqP/jBhsqWqE8oyLd2z2DRuY7AbN8Nthtkk0MXt10QXmj81euaGOiKv6hFI3Po6mGsPGCjFUSxkIqxDvME6ZKrYmOaaK/cgqU/1SYh5lVKSP/enL2jN5Y4vaorRK1utIVqYZJVmN/msgq11+1wmzTZVb0etAFq5SW0j2yZAVsquU4bdJlqZVagvx4/w16yNiSbNWEBXfpay4W825gv5u0kdseCPS9WYV14tINZIcpTgczWNpclB9RLwxqE4fEcuDbz5S3zXlWsiWw/IPCfqthLVFpDPdd+PXEulGCaOg9zj7s1nwHib6sROe+o26/drqaj1sDtV6sL/XCDlZ3xYfQu+3dOV6E/623tZm/JLf1lM7W+p5k6r76G4gVKNBWgxozUjPXUYuvdNEOg6msWGSeU1pRdH6ji+fJ8Js611EcqMMKb/cEemNTvFZ3COfxYKPWXIb0vGXMcdEXi0OPdY2isMu306K2yDypebGGPPaBOYmERfL7tdOmEmH3qio+I2hJd6xTtXXOdXeW757tO6XOzA96wTT9ZofJbPqO+HexGefMJ0GW1P02mjHNoc3TPSvPWU63flU3/A+vpSeuS7W1fMiwaffeuY6td2RD2JVfbncsFjPVk6ptQte32c67BGofaOIofANo5sNXnGCzluVDVZ92Xsf2OCLG9og78fFHiS3h6l1DSwDztdIBX1VvjZCj4jHdmpvopKd9+DX/coRpueeaz9sHnl2s5/tZD+4ZqTsB7/UjPQ7wH52kP1gD60f+U/Va+zJ8R2+qt4p/8HpsI4+I0OGG4XMHZEe10U5Xa+2oWTuZht3k22oNWm0Dd6ja/QvAtu4l2xDfWFK6Zn7gHX1vFjw6beeuX+305EPYnH7ptamUc9WTqZnXLe+mdKpfYvcvuHattqnofBz27dHT9B5q7JBPh9p9KeDDf5wYkyTssHU/hvev6H2WqgyKEjukQr6qj1NrxLtW6q+4v4C9uVG/2rA7Pc5kJw9TSneqOf1FbxHgs5/la38dEKn6mwN5od1avQ/m9Cp0lFKp932QvHeG8wznzfYKrBQzzk6xfxvpfwb/S8k+mHbRXrVd+A+pOqHIT0vkag6pvomXMd+ObMPyX0bnFu4ieJwbuF6isM1i6q5hfjMd8Pj3ALPc+A6Dbd/uALKcyBqXyXOLQxTXt9Rvu9xbWHGeDQQltJvUfEbQl57iqvwvGepH/Mmis9WRz6IdUX5q8ZsfE6y7rwBpk+NDcd65DMm+DCW+eRANLx31+J+D+r1u+hjVtcL+cbgHY8JkB/XZ8SyMrP60fCLrtlrb4bfJllq8itSPhfzx8vZ6rxuR8RVlSnyWSr41JVrrOQfQ49ffTURlxPd+grRCoFb0D9+v5zetQQtYh+tqncs+RzfI5/jBZ9+T3UeT3yqhjt/XXNKmY/nGP3xMNz528Rwp6raoa2ltlwYv6ptDOMV8n0WXC9/R3Bc5PnMhMzXAw/mG8OOChn+kboqDV2x7KrwVCh26doUh10PLBuMC2FaF/iObe46wYexqppJe+Yu3T/XbCbRttcn8no9xWHTxHpQfJR7V3pI8TmhRz4nCD6pZr+pL1Ey81AiBvQl/0K+ZDvEqS6NDR+Gib4FvuQ7CV+CMvLfyi9XtZNVvmRbhXxFOdetfInqGm5IyIxDQOYbw44KGUZKGcyX8FLQZMgLypfw0gTW2ZPCTPnrtoWY/mi1hScRn34v+6npfvYvajnqhgQftaTWrT4uXaZ5qvrI7RrSf/jk6XTLls3Mo8dSXVWdCCFvuet6wafKB4WQboOMfiXUcW6DunX9U0O1Kvnwej2kPxHyXIUVxDujx/aPpy9uINrtCVqWG237vPLZfBEvKU+GrLDD7HmHiOQlDZRJHf/EaSQOvEUJZY7l/d4amwRRDzsrMFWdv5loLc9DApeXi7Aes76qZOAyjqGqvr9g2TT+hdTO4HR5jbLdqZakLHD5se44qPIzuWL5/UPD8quaMg1h9jSl8sdRXy85RvriMT+GY6EvjuumL4uz/A6JdLwJ1fjdD/a6nvDGgBfbPx99xeUZTh8D98WMfhO0Fc+iK9iwfV1J/BBb9Y+5nVtZIZfKpzqOz3q7l2yVl1snQ1ZYZ2XMPg2xb2mIXRBeCHra0fDHBT+Tqy3icq5wfeBbUxdMjbz8TwtKb7Lwu5xrV1YKetMVXmtTQ1fPV8fbjTfOi4QwW2cx4BF1k0Fd4XprQ/ly9If4HUHPy4m5ZdERfK5zxNreEMuullXLqexzY+B2SLX9sRxfS/109EOnkKx1/RCmr+OHuK9rtK8mP9Sw/3ih6geyH7q5IXauHzL88VBdrm0Rl+OHdn9n3b4Pbvn4yUWY7W9b4l3OMv4pgr7Hen6u8kPsa9AP3Uxx6IdMBuWHGrYp5+boD/E7gp79UG5ZdASf6xyxtjfEMj+k+uDKD7GP2iHyg36Ixxg/C3221y+biZXT746BjyVsT8TdKDAj7zdX9D/tGnF13Y71TdW2Ivsb36GtYxqeezD6N4Fufp7kw/E/5hPlU311nBf6v5dV0+1I0OX279sUp7ZN55YLtxW/Sm1Fw8Nfct7TsCIvm/Mul2yv3nVw6+6p/bvu2rrrzv27DuKISrWCPJOpDlVxMEl4tXYT/c0Hr3g280aB042nml1fAc/MV628sFdaIWQ+lnxO7pHPyYKP8kpFxa/x4Xepmd6TiQ/OymGNfjfN9KqVF0xrxzF51vMlMNP7vkQPMqXnyTBTlrp6npzj01c+q3rks0rw6Xc9WEX5Qa8/GWbmp+6KFKbfdpT5dKvXf75M88yt10b/v1ZMp/vLjHqdymNqU1pqp8f2LlibCSt39ei6DD6p1aPrMvnk5CfF51jmx7DUqiOWwZaEXHyJ6o1dsNgHqRUNZYMsc93ZCUw/luBzQ498bsjkc7Tyc32PfK7P5DPZI59JwUeNMHptP5TM3fztt8nfqsOtmHZD+cuHQL8A/vZ/k7/F2a0fdD3vcOSDWLntZ/vEadz4Tx2mSZWn0f85lOd4iZkqT6WbGxP54fvXVFmrw4aFwErtJmE9IL1qU/o4o7ooxw4Qv02y1OR3ZEN56sBgDLhxe2n5XM4CrNt14LzzL7nye1MAj+w7WDW7uhCZgvxMH+hvThdlGyaaMcEjBrafHUTH5W7vGT9Hpm603eKVr7upIp8h5Pk6TD9WgVW1A4gvuzf6U8p6nrsDSB1iS/UHuN4xXUvkYX5FuhcFLR/meX0iz0b/zESeb+iSZ+6/q74j+yama4k8jAa9W413KWLc6jBT9rr2hOmPVtu5mvhUtWnnUZumdvXhrq8rymeegf89aNMupDZN9QX7nf+q3byYryuApmpsMywwY+DdG0b//DLvPa4+yhllXkFpC/lj/l5IZarynipTo/9/oUxflFGmqfqhdqGnfMG2BL0aK6o5plS/0coHVzzyy6f4bI6NIn6bZKlpD0f6G+oQufpIT93+huF+BjKE8nfrb3C6VH+DaavqHvcBbqT33fobSqYq2l76Gzsq8hlCXvuA6Y3O7JOvaZwMWWHSZNkGcpgsaPNVJ1WGwuy6qOhVHwPx2Q/jrjulG17FNPrt0Jc4L7Er7tQK+ULIKwtMf7TaqlOJTz/mvWNIzUc/F54xzvhU+eSOSJ/is6NHPjsEn1xbX1c+d+sT7a7ZfrLNGv3t0H7uofZTnTytuzbG+a+79pKq17n1VPUHnkVYdU+lYfqqftywkD2GqtOSr6F+WcPTkpvV7hWrfz32+Tbn1HHEHxf8TK62iMvZFfaF9mV/9sV3/+JHC0pvsvC7nLmjZwn63vpfYaPaFYY7VmJAG+GPNuGuMJNB7Qpr2F/bmKM/xO8Ier5AqO6lYRi3viGW7eRKfbj8aPukqrkX80/cd3hjYh5C+SZ1yjN1YpR9GueRfU4Mk0GH71IwPNP/cYIX74Q12p+HfF9I37CoWiMcrshP6nRYEap1wzzU6bArw0zZbsiQTc0HIUbVumXEUGuIbLd1T1RuE/IoPmf3yOdswSfVJvGv8eF3qfXIs4lPVb/p16jflFrvis9Xlc+83nUt9JveQf0mTM9rrur2B7W/gHVfdWKb/YnR/ybUKz6xzfPDmM+UneWeEjL69x2FeSbO03CY7VtjeEnQeUI/jdf/V11o3O1UrdGr9Sa0SfbZ6iJCxqqa2865nFLtmUldTslrAy9bPi3DH1Ad6qb7ayowdzxjGvMPa2K+tALzL0+cxvzjRL18ZpjJr+4tIJied/+qS9NGSc6adSD7MirDb4fZeW4yl6fmJpRe1MV6vDaMcTl7RJ4p+BSE1U2useB2GZWJuIzo1leIVgjcgv7x+2X0Tk0HInY080+VVdPMHJdGLyX8DYDREu/YzDG90Sk+nR75dASfFNalAsvo1VfwOoLe0TRMxBVEty0hGuN2M40V9K7KNCy0iGd85vtiuGhYxgmB0U7kqSXepa6B3Jjgc1mPfC4TfHiXy7eph9Lwg48/ad7vWnjJnr/hLPlP5nr+qp3JKJf6PFjOjMva3/uhX7n01N2bCkpvsvA7rpJqBHuZoO9x5uuVasYF74yKQc3KqRkXk0HNuDS84vGVOfpDfDVDzjMudWcv1N1hdbFsxkV9QPRY+ox+8Elhpe7aMt2MBL1KxT7J6IfLy5vUVz2VvoN4NxRm+yO+9hmxFlTIrngbfgwdkd7o+ugT59X1ie0wO89NesOqfii98P10mJZ3H8fAI766qxGDjoW2yddlW7z6NT78jvlgXV1AfPp1QifHzpvyQSze+duPOw9jsBmIHtvgG9RMnwW1GsR2oc5Vq7uwWP84i8H3RGKbiTNBHFr0N/cDnrdyGpfpLKjdgNwu1T3honZRdbsL77yTNM+qu/Cq7oVbB7M0F55UnUdeBVWzhpjHqlnD55Y8+jlr+INk403s+MGGdsx9L7UKok4JWD6Uv+Yry9W9WewXEV/5Mt5drfozWHY8G7tRyK76Te0MPql+UzuTz/Ie+SwXfPrZbiHPbn5qO/kpXkHltLeXvzwr/GzwUzvIT6GfQxn575x+vfHLvUPX6G+Ffj2vyKhV49sTMiOPQBgxsG81+jvJtzYcx0rfym2uutu2R77Zs+CG3yZZavI70u/vtgKPU4r5HzCu2tdYECq+K8Jsj1+AZPiOvfvV9Pd6kS4I7Bjf463LN3KriKFuq8g3wmBQLR/uS6jzOXQsD75pBlvFncCby/V6wcfkVzc+8lkZdduw6b4bPzXrwCNulS7+/VKRxnNExXr0wOrDfrcluR7H8Nuhp3pyxOOovU9qz4WqO1XnLtEnFBSHfNRefYW1wQkrhp1zWHNYc1hzWMcAK2fkie0U759BP8jnzOouhGP61IL72T3yOVvwGRfpmrbJnYTMavaA9VZ3z6E6J9ttL+B7T9I8q+5KuL385RmrSRh5/s5JM2VWI88Y1Cgfy8EwOO0oyGBxNfoXE0/2gWH2h/WKK6Dd+iHx2fYN8n5uzLuyhdwy+kMqI7V3MbVf88h+KCijP6bZATW7yvxCF35cD0cq6Hm/ptF/WKz6Kfl4zGjpq2Z1zyifmd9Hgd8HaDYQ7c5492h3S5TdoZ9hu1MzXMqfpfwF1i22RbRhXulVewFTe3Qt/UjQZWB4w0T/SVHmuXbO5Wr0n84sV9NlP8oVdcXlqlbR1VnHlB2oFX81A8nltF5gqT25uXXZ6LlufT5RrvyFOJaTy9Xov5hZrng213AsrtdyRV1xuar+h9qPmbIDbB9MJ2rFYBPFqZt4U/4b7SCnzFP77Y3+W6LMue/IfqFb+xIDziwuKZ/LmcWtB/fu31VOLQYKqanA+HfV1WmLRfpAaQt6t5jilPtMTagb76qNMuw+jf5fExtllPuNIWeLNsrXj8lpw/faot3NrfFUUaqapYYyx8BUY7i6QoxCpA+EVYh3Maht0+rGohzvplSl9n4hPd+6dmTtr+ylqpaj2xpmzg0kau1S5Z9vq8R011XwwRYNzYhbNKM/HvKaatGcRj6yRUMdcYumZhZSp4rViR81W9ohetS9atGqTjohH9WLYVeHadXIqtvtpjmnqFFWti91577aK5AaBeP+jRg8R8GYH7aFVNnGUHVTDdJjeXOvFfcr8MwT1iW+mUKNenJtAWc73luxBo+4qRFQt29o86jc6C8QPsAwt3fJW84IUJ0gVrdB8GlYTIf7JQw7EF2P9rjAc1Ymhrp1lf0P2hnvRce2oOq7rKhv3OOhfAH32OvO/Cmb5j1sLwY7q7rZsGoG5aoKzGsSttutXua01anbltE+eU/b0Vqh5z1t6sYmtW+N9x/h3kzeQ1L1vTEO3AdEPeTu20z5HeX7lM2jLZ1HNo8+82Liqbrw+I5tHtPz3jXk0+mRT0fwSWFdLLCMXvWh+3wsz0Q8lei2JURj3IL+8ftT6V1L0GJQxdSukDuEvGJSk1KMhVvLtgANX5KE3Y3nEFbdRSZMz0Mek+uHSzc6KvjXcF+Pp44VGHbD4x+PF4QXgh7ZV22tRLnUUZScI3i/+/brFnz8g5ccOUKWuwXU6FWX7jmCvset0W9U3SQ+ZofdJO5e5R7Ba3h06I05+kN8dSSDj+DV3Y6LcVsaYtkRPJwY5QXjfvsYHtK/QnSzjrYs1g159QDIYl2Q1ye6n90mzvkDJSh7aoMA56uu725n8rmkRz6XCD793ohwCfHB7h0uPr/pGdNpsK5VbU23T3fyQt9WuDzl35WYatqNN9RxW4jtdQzsO3ghkmm2Vcj3K2CfvDWd84z5VDJfCzwCYcTAW9ON/m3UD2jo3+XWdB6O9OFIavbs/7E6klpvazoviaNWEBXfFWFm7jGu2yT/VfR3k63pDXssN/NAFIMaiPLAF2sDliYHNUjFHk6drelYHvwheBzd3Aq8uVyvE3xM/iFBv42w1GFY0303fqrHxZdvqHTx72tEmlTvP6dmxsDrZNscsdQ29x4nbLI/J8PXrTasJ0c8TmqiNQbOu7r6VW0X45Fr06tE4/MOR6ybHLGud8KKYecc1hzWHJYLVs7BZGwPeDFJbREqKA7lS40oMX1qcveiHvlcJPiMi3RN275OQma1CMd6q3vZCKbnhYSq7cXfeIbmWbUFnEd4Rn8ljPD+5zNmyqxGeDGo0TSWg2Fw2h4XG8fVYiPqlRcb1YII0t9W/qa2uylbyC2j1vKZ8qS2xqI8vF/sHCijEdr8oz6VwPxCF35cD3O3gBv9WClTty3gGyv4Vc1KVM28d4DfUdgCvkjZHfqZnC2lyp+l/IXaz6YuJ9pEcahj7pfW3R6utpSq/Ym8pXS5sAdui9g2quRTenPeUnpdhRgLRfpAaQt6t7ACy3DiO5zkyNlSqva+sYtYLVSeKrIY5raUft9tKb2qQoxCpA+EVYh3MXTbUsqtSkrFSlVNDyOcL0w65WFTH8FTPQG15pDaUqt6PRsr+KhDEiHMbtGM/rmZLZpTT0q2aKgjbtFyZ06Mvtu2IK5qqS1damSTWw1zt5RyT63bVpq6W/jYvnK38KV61U5b+MaP9RY+3lKa2sKHzRF/oEL1onJtAUdP36hYO0NctIWqdXD0AWjDvC3P6G8QPsAwr+uStxx/h90cvg4Nuxjs79Q6vbJHo+vRHseUPWL+c0Z5qSudu9VV9j9oZ3wdHLYF3I3sZjep7Xi4dvkmWndFPs8mnnWvVH62kF/x6fTIpyP4pLCeLbBS9bzP2/FMxOVEty0hGuMW9I/fL6d3LUGLQRXThgq5Q8grJmXOik+7Rz7tTD4X9MjnAsFn1haXUvE9LqO/Qk1IWdn1uND7ioLwQtCjKb5hVd1yqhbTcrbxfblz/Yfu+/pbfz3ldlNdQvVtnwsEvekKF65r6OpHVdNkvNU2vu0Uh82LyaC28d3cUL4c/SG+useFt/HVvZVX3QlTF8u28ambwo+Wz+BtfD8LXSjeOne0ZLGFmZ8/hrIoPhf1yOciwUd1z4qKX+PD71I3lV9EfKq2u/0KDd/UYgim5Yl2o78Uvo33lsSUSFUXBtttXHTjOmb8cLub+oYby/frYFO83W3GwgPlU8msvvWLMld96/dd1F42bNPkdjceeqjvj3J+Q9A6Ty2yGd3R3oDF20RxAxZvCMKy4+35t0PcOMVNQRzf/XkHxPHUIQaeRkQdRdv7/YxTSWpTF2/4wrbDdKGm2Z4HzxhnsvI7LntMn9oSvK1HPtsEHzXdiH3EPh7/yJ6FN/w2yVKT35FZ+NTdN08KVv6qfioPsTGuapsx8nme4FNXLseho4l4FtGtrxCtELgF/eP3Z9G7qqGj/X0sr//rRxXrtg7/18s1z6orqrBpRPql0D34W1iT/1RiTZ5PQaCetpL8au9Kj6fLsl2A4bdJlqYuIHcNvN7u7nF4Zq0gKr5L1QReb+Ol0DFKV2d3t/FV84DrBWZqfYnToS6CeDck6FMN0jjJ3kqkRwxMxxZT0HusbZsFb97l8WXo7H5z9TR9FS/UR7edDEzDMhj9/0h0uHEtT+WLazM38GhbN1fwPw48zjcrvFgQ/Dl/2MKMVMjLa5NG/+3E1gJ1CWioeIc6wLRVfyPtKOUF/1a2yAOuTV3yzuVv9MWK6bxz+Y8LGUyuGNZ3kYFpRitkmCdkEF7zir37HqnYVcB9CfZyXEpcEuMCpyqYNqLFmvWydrh2MB/7W1lAzPnS8vlI1+y+XQerdlRwi9Cu4DkUdBgPWrYQjt0mmfFm/JKbZDB/TTfJVNXSbnx63CRT1WgrZ8HpA6UtxLsYojl/pAT6Qes+M1bV9tS7yl9upE4GB/WBio06QxWYOYfI1ayO0avZatUoqcXs7Rm8UZfs0G+oKWu3TTFH7tIT8t1YU9bNR1nWDULWHmcvas+u8UwYzq7xTBjOrt1EcbdDHM/KTUHcGMXh7BrPkN8JcbxKdxfE8ZB2F8TxhoGXQdwmeOagZvOsTGKdfdOqaVymw+cqf5O7yQb9y19XzNgjLnaQq1ap0FfhbGLV3VcvTPgq77uvTJ5UfVYbwvjSkZbAHPRNX+rewdQmPzwalfNdxVy7SW2ywVUiXkFS+U3duL0DsFR+ry6fh4l+S8IelQ5TPrvb3Y1sc7jR7iaKw3R4V55hB6Lrx72WmB+2R7WbAOlZN7cIelxF502I2K7soDi0QW470N/h/bK/duJMOo+vh6nV/J0kzw2OfBCL21Oshzj1unvFNC7rRPntdeUzr+y/EiZC9pTPqc20vGr5ANSzV62uTs8rkGpjoLoLMuduYaS/uiKfB0HOV5dyqnrntPm3U/duYeVjUncLp+op6qQTZtdJPnKufL36Fi73EUZCun3mPsKPQBnw8SVsP/hrddfVlL3J5uTdpR9R9w/3enWA+hIfY6lxHNZbLvdW0O0h05tN4GSq8s/DRP86KKvXrtaYoUKG6ytkHqmgv4lkMPo3CntJ+QG0/52EafSPAyZfvNUN84oKzJ9L9DVUPU3dE92tPeX+BOrxFopD2bldvBn4M+2LiT/G8V2wLHOVvGrVOSUvtzcW905or95cPve4s7GVKqvnCnlzy+r6RP4YixcqcusI6uPtKzTmvJqY/0G06aqvchPgv7OiPxID90diYL+MPgPr4W7qk6g7kLlP8m5RH1Vbb1i9tfXFZ+sen++mG8+DPidSnBqnebelLzxxJm5q/B+fzyQ5uvXxnl8+sx/+YMIPKx2mdN7t2w18uAzLYyfFKZs92vY4KN8y4L4d2mO/vmVwHvXt1Hc2lI9mebr1uXnHsfn4kQp69vlG/4lEv+dWIUNqnHCboL9VyDxBMmBa5o31EnXCC91G/+lMf+w05yEP4aLe2P5TOoqBdXq7oEdd8QmD2yHuFopD+7+V4tQ8UqrO5tYNSxv10CZf7T0/x77a6L9Uc34u5av7NT+X8tX9tNVBnZ9DW82dn/v2spnyKJ+eOgDebS2A/VdqLQDT8Rpl3W+MYPobEnwme+QzKfj0cw4Seaq+zSTlp+5cCKa/kfJzo2N+lMy8cz6EmXOqnZOn01T5NkzL7Z3Rn3nydLrF5bM6eZG6oCBlu1VzolV7ATZD/kPoR58zzDvWfU7uV2J7yXs71AkXtL3U5RAmYz/0dTTXCU0Hva4TKl3m9kOw7v35su7yp07BdrMP/qjJAK3RHfM+ANtC3TU69pfIR/lLLmP0r1gu68pnPgH63NKnqr6jsoO6p6fVGFDZxs0Up+b5++hDBtpu+BrV1PXJ3eyGfQj6c2yjrf1OzZEVYWY7ifaM9FXrKzcQTkHv58N7TPcCyjP3kRj7hURv+RypoDc87otshrrynMScmMK8nGTY2UUGPtlq9NuEDCn9x5DqE46G2XWxRr0ZLgjP5MF3iN8O2j4mQ1YoWH/GT9lBDFyXVX1SayUpH6jqucIac8Ti08ANy+sm5dss8F5G9r3sx7ZQHM7zoP/m0KK/MT/Rrt9AewqCwOJ+HsqtfM0OkXaHwD5W9WFHM37J+qDGAHXrA6+xP93rA+8pGrT6gOVlcisdxTAZ8kJOfcGyqaH/Vbn1xfC96ouyPVVferxJZzLetTs/zPZV58KzWsfA8vIqPzXHdazKr+FnWZLlp8bwnuWHdatO+am5vxXwjHGYn9TcH6Y/WnN/K4gPjgVx/uHnaO5PjU0xLc/9Gf1bYe7vF2jur+78Xh/n61p19yem9iDEUHf9nNcdcuefuG3v9k341PwTnnV4d8X8UwG460RarttIv1PIYfS8J45peP/akb05MJbig7PKZlGudYRp9L+RmE/p9/411DPvB6vq0xt2CLP7DJY/i6vTLqg6gfnhOqHW4pG+7lo82z2uKfMnbrh+xbBBYKVkvaEHWbkcsax43wDuE1Nzs2yXRv8Hwi5V+ZvO+1H+qfk0pdPUfFo3nfKYJrWnIDWf1m3unH3idiEDtolqfpPXoFT7oPyE8uk8b2R2+TEof96ri/t71DryhgrMjyd8ncpD6sLjbm1c6lzDzkQ6rJejgtekPXw3HQzP7OM4wYvbGaP9W9DThSu1LAXL0yX0cUw2WRBeCD9QY7KVHmMy1c/DPvA/Uh9Y1TH0O+eXz1zHvgh94M9XYIag623qXCHKszRjvdBjPVnV3VQfhtcZ1R58kwH3Z6v+Gu+dMvqvQd1MnWXyWZ8svqraRewXcruY6gPGwGWR6kehTjpEz+VSZV9Y1twPxzUNVQZ8DsHo/1Wsaai7IKpuG86VvWpfAtdFrBtcj7t9dKPq/gU19o3Ptl+b6/1xZRut2lY1V5BqW7vteefzhGodSs1h4CfmDDsQXT/WZY/mXhg+A546F4hnAHieWH2sJ8r+LyfMlEedG8CyrTo/WHVW9Yzymc8PnpSwL+99hXXuGMB0Vvf7OHez+FjP3VjZ5szdoC/kOT91rvPJOyzIvlQ7iWnPKZ+5nVybsJdbEnmMoW4bxTeEY/+Lb+DFdGxLajxoMtwm9IBy3VX+DhP9+aCHVH/BaRy9Ttknjn3ZPm+HuJag57KYEvS3Aw3vo5+COL7hX81voU7Zd6kzHbcKfD7T8XwoA+4vYPvEn07dWVN25XdVfcM69WhZ39Q4n/usOxM8OS22PSMV9FXjz6uFvtifVc0nrSVMo39pwh+oNnUrvKu7b4zXUVAvvG9MjTv6158PLzrW+8a4/UjtN6y7byzX/tGG7ib7x/ac71FL9WM5LfKpsv+qfVu3Juy/27j8NMI0+qmE/Stdpuy/Wx8h1UdKrTHyV2P60D+/6lj3z9n+U/1z9L855yNz7R9taDv1t9T5W0x7evnM528P1LSvXs7fcn8rdf4W0/H8jOq7cjlWtTM8TjH6RzP7W077gJcca3/O6xaqf5vyn6l1UuU/VXvJ/vMnEv0tHJOk7qfIkT23vmGduoLaGxz7cnvT7YOTfIbf6nVVe2N43Da8MdHeqK/+oJ64vTH6x2uO11PtTbfxOs8Hqfsk1Fg+NV53ugtq6bH+ECy3N6kPwarzaWwHyCfX/tGGnl3af296ffjjBchi2C1BOUy/RvO20j5xT4j95ny575Mf+sZfveel59/PX1yKwcoortnE8v8VWr/EK79Nl3hVNn+8oEWyqXQFycD0Q4LecMdF3DDkoamOFnzodzb9/f/cd1o3HTXFX/6BXR974af++6fqlMF4mF0GRcVvDK0Edkdg8R7WEUhfw28MWfrjiP9kVvJQWD7n4UuSbbSZbN/N0RPit0mWmvyOrLeqq88xf7ze2m7G719xvRXrBJYl6g75WHmpNmWU4oYFRkz/sVNn5mOoYT56tMH/PR5m+okYcM34T8mvHQdxrTDbd1k+hon+v54yne6/0Fcd2SfEMB/ijxPx9rfpe0jQ4jP/bbKz3pDeymukIq8jlFej/0voF/EePqNB/aFcQxWYn0j0teaH6ZCqM0Y/JujnA43Joz7LNEbpUHbcl8nvVPkURIsyxHCzkKnq77bAqZJhVOCwn2dM5sn2EAP3j1qCD9YpbLNGBf8a9XieagsCyTNC+cE4zBv2nzlw/wtljhjvhTaY6VgeVZc82257Pw/eM98W0Y4QLffdUcZ5DjJ2BJ8Rwj0uIX9BOMMi3XjQ9U395spbCHlVW9IrH8TC9VXluydDVljOfeEYsM3714w2T/UZuM1rrZxOV5TP3do8i+N+Www45mOfzv0gxIiB513MR+Z+VMnoR8t8YNumfAh+vGw+tVejEJdqR4aJ/gzQ5wLSJ+rL9Knar6o2Zx7RxnBzhQ6OBzkWr6zmxWMvlceIsWylpkMZkI4xmrZrqn/FdTenf8V1FdMpHuyPq9pu3udRFT9f5C2Id0OCfrQiv0HwbnfBPU7gKP/OZ2MKEce+B/Or5hHU+B791r9Sn5s/OYX5mk/5Gk3kqxDpuJ6j7MclZFf6Q//RdA7hJz/33b9+3aMnfblfcxTP/+XDPzV+0bt+s1/47xz7ixf9p18evbVf+B877otf//Af3/3GOnMsZkcjxMuesTzxPfZt+FyA0V9O+9EbzmHIL6WzX0qN/1B+Hi/GsKVC/h3QPlxJ7YMa/6g6WdW+z8uUxeivgfY6dcbG5OpxLnxYzYWj3+T+tPLnqW8HdRu7mk7UnYbMe57AQp1yn8l0NBL0/IHhsT1sgzLgtSrl+y0O885+tyX4qrlK3Aexj+pVw/7zcaqfYmE8VLcv6owm3wExn2TCOCxLtE8OaoxqeY0yP0j1IAgs5R+4vqp5m1R/VNU7wx+0esefq8RyYXvLteGq/qLih3rAvoDZcNWcP9ZpHNMdpDHICMSpOTP2p0b/WvDth8m3o47ZHpSfYFlC0H4oZ65gXKSzclHrDHXmlrB8UU58h/jt0JN/KdjfGj8uI14LaNhPGOY2FvmpclgYtE7VegGPRdV8UmoclvInqv5x3VTzFKoNSY0XjTfOyef0m1TdwrTcTv401K23JPpNVX2jEPQ4g+lTvg9lVbqfT3FqbsGexxJ8lFzjgn4sIRf6ZEzLvLvlIbetcuojyrtRsUy4jii9ID3rcYGgHwcariMLII7P1uS2bfMpTrXx3dq2t1S0UZgP9H88flZ1DNu+ifId41qaGHjMw/S4PoX074C6+xvUv+J+tr37jwm6ouJXyYzy2Lu2oG8JeuM9X9BbHNYl1DHSoL4Qq13B73epTHCuBG2J+WNdDRVyV9UNxmqJd0b/5J0pNO/SdG2/l7mJ/za6+aqh975uZZP9HzyXF0LP+wb+c449In479NQ3KVJtHOaP+0Lzm/H7g1QbqeZZjd9YM34tK6sFAttkQb+lZLG0w0T/cWpjxkWaTpjdxvC5LNX+4LuhY4Sl2jnVlj255kxjf9bxZMgK56v2mutWQ1u4IbduGX479GTrRaqfpnyosiPuL2B57QK6Xsv+8IBi7XHEetAR66Ajlqe+9jpi7XfEut8Ra8oRyzOPBwZUrnscsTzro2c53uuI5VmHHnLE8ixHT1t9xBHL074OOWK93BHL0+4H1ed45vFRR6w7HLEec8Ty1Jdn38TTvga1X+hp94Pal9vtiLXPEcvT7ge1Lzeodu/ZN/Esx6dDmzaofblB9YWefTlPX+hZjp768rRVz/7XnY5Yg9r/us8Ry7Nue9YhT315tkOedWhQde/pvzzn5QZ1bsjTvjz7voPax/TUvVfbEZ/bTlgxWNuRs89GrY22E3wKIXNL8MFzFuPlO95XE8NomK2LGutQ2d9nM/w2yVKTX5EqH7UXwPK+QMii9tBwWaXWKZGPwhp2xOJ9ReqOjtS+IrVfXOlrLEzv3Th08J777jn4yJW77jh094a9dwcKw/T3lRUibie6LRWitQRuQf/4/XZ61xK0iD0RZhfNSIXcAfDwHReTOkai+BQ98ikEn3GRjqt2w60vZ+ZWbcNvh9l5blK1lakqvVje1fbHDsXFcDfQNXG9GPeAI9ZeR6yHHLGmHLHuccQ64Ii13xHrsCPWIUes3Y5YnuXoqS9PW73XEcvTVvc4Yg2qn/Csj566H1RbfdgRy9MmPG3VU18HHbE8fbRnH+ARRyzPtsOzDg2qfT0d/Fc/2iHry+PRJzwC+fXJmTznQVyL0hbAc5jod62aTvetyZm8C+Btzz1ecXd2QXgh6DGU4bdJlpr8joyhhogf54/HUC0hS4fiYngZ0HFcS7xLYR1wxHrYEWu/I9a9jlhTjliPOGLtdsTa54i11xFrUMvR01Y966OnXPc4Yu1xxHrIEcvTJu5zxPK0iUOOWJ768vRfnnIddsTyLEdPuQa17fAsR0/de9Ztzzw+6oh1hyPWY45Ynvoa1Hbbs273o621dTUcj/F1TWrsM5Tgo64uGxfpivJ3lOSz58mQFYYKwjM58R3it8PsPNfgV6T0r/TCa4qYtkNxMfDRXsWnEHwKgZWSy3Fp2kQ8i+jWV4hWCNyC/vH7s+idUgViq9t1RwUvCynVdirSxzCe4KPM3qZh8AYdLEJePq9b/TC9xSk+RY98CsGH9aqmk2K4q/wdJvoHVj31izcUtgQ/xMpxLQ2X7LN34/CSfa+uRS3Zp1yLulGM7SEG/FoXx7XEu5RttRyxnJqC2jffsx7RrrZQHN6wgV9V4tCivzE/Ef8Nq6dxmY5lRRszuVVd5m0xdesyph+qwFI3ScZwE8Qj/ZtWPfXbY5muVWXK9tLwdrm1ufW76mY9Vfd5+9JkSIedVz328V96+9+trVuPjF7djKe29/R4M94Z48AjEG+LU9vALA59sMkQ068l+RreTHhGjv4QX/lH7nrllsWioNuZEPRtRLhLkW15gjAmQ1bI7gYbfptkadpWTRA/zh92NxeXz2V3c8PeqbuumNp34NB9u7j1xv2zrBVExXdFmO2RC5AsJOheTH+vF+mCwI7xVnIL6f1kyAqLzCoWiUiLWwzY4xS3BOKwNDmolslkfvIevhrfa8HyWExxHYhbAry5XCcEH5N/SNB3CGtCpDPdd+PXEul4z/aoSDdpD59/3S/+SOddP/vvJ8/6yDdGrv7pf77ta9fMu+STH3nspD/88e984Yl/wzIHITOX4zjRql+Tnd9xT2bCEWuhwDLd4F1sNWz++FxvZfjt0FMdO+KtFhE/zh/nfbGQpSPi2ActFnwWCz4Ka8gRq+WINeyEFcPOOaw5rDmsOaxjgGVx2N4vpDhsP/n78+if+RxR3ZG3uie+j5PlC3Lb3WM1Wd7jtw/HC0qP/NQEPPdxVJtp7f5IBZalHSb6r6966rdDdDGwXS8U8qp+SbSXr6yaKTuPbdRvCOm+Hi8SYfkcbbvHc3S4afE7qzRPnGXGtLeVvzwz9dDq6XTfXTVTZjWDEYO6sx9tKISZujO6Hu9HX6DuR0e5uBzU/aVIf3v52yF6zLuyBfw2SQ/+Z2lqRSTmZWz1zPwMQ5yyq9vL32Givw3KeKJ8VnaM47Eqv6H4Gb3pf0TQIx5vnF1SyoTfAVLyjVfwQ30ov8b8lgG/1Lef0A+H0Nhuj1d2izO4Od89qfvdYnVwVNk5f3dL+S60g/UVsla1BzhjjvSrRZnn2LkqV6N/Zma5OvkjWa6oq5xyVbPTRq9ms9WKTSfMLktene22ipZTrqrN43I9N1Guqo1SbQi3URdklqvpsh/lirrKKVfV3ueWK69aqu+jpny0+hZGqlwxP+yjjf4FiXJt6ofXDYAfxv5iznfwkJ7LNeW3lR/GMufvpPD8K/Kp66NVu5zy0Ua/UZQ5jwnZL1TJp/QW2yGbEy9XQbYe3Lt/V7kMEiikli2KMHOqHcVYKtKHBBamSWUJF3ZY5cZrJOjpdVa50W8TKmcVsjw5Q+SGVSZ7Ic3wvYbIufu2uDulqplqYricuvFxNNUYXlwhRiHShy5Y9jfuocLi5l59qifAaeM/6y3m9gSM/q5Ei9FtZMYeRc0IYC+WR+dqRmJCpBuv4JPbQzH6PZktmfHuR0uGOuKWLHelx+jVzCKubnEPRa2MpGYWc6t56iveOEqoGikjbmoEpewLy8bKTY1K2b6qZtZC6EtvdcGxtgX+0otavVOzKGwLqolFP8G2oOo/zoxhT9l+c/YgXfrMN5y4/E8fHO/XV8XffdHZz1tw42k/2i/8ecPLf2HyXbdvqPNlMOXrhggXffRQmF2ntpa/OXvUGu5ryt6Dyl9cbfqFtoLwjF+VP+H9kZiW903HwDPfo4KP+prZ0cJSe0G5LBvuocv+eq7ht0NPtlOk9KK+iqquAOOvjeN1A6z/Xq4uGEQsrP9q9r2o+DU+/I75qBmQlC9pygd9wXHE5zhHPuq6CbV/ulc+ai+2mo3ElYXfpv5SG+LUjMKW8neY6D8DKwu/u3omjcn+AaD5k/J5FHiHULsut7luYrA4/Pod2636ejDvPFP2gUN4PteCq+Q3Ax0HHtuhHiK/z506jct0FlCXOWd7cLqBecawA+KR/r9QeTVc6QrcF0GsHyRbaFLeJ62ZxmU6C6qMU2cg+IvYLZGP1NmT1Mq0mpVuURz6pJsIv9uUy/pEni3t/JDnu9j2kf5z4JeeIH+ovvKqfLC9T30pE+VRtzbjnACnq1EPxtSOAQvKnrkeqBuB1Q5nrgc47co+Ecd4PJ7BoOqI6aGOT3yiol0zHlgWMfCYcljIi+1l0zHZT50/vOgNOza+pF9jvn/79WsvesWJp36lydeg585fDNL5C/aGMcydv5hJx/I8Hc5fFPQeW7uW4D1M9ItKDxp1+7XVYUY++awF2t/NJKPahxEq3nE+eGTNfGMYDT15gkW5nsfw20HrezJkhSOeR92/j/lr5nm4n2FcFhKq0SAthoUgWaigUyW6QaTjYOnGKzBj6HH8MJZbqvbO66pD1VdVbavqQ3GfGC2kzhfrkc8c1hzWscLiuYF1ZYsSW6KLyuejdbeGmt/iua95Ig9q3jI1181xqTly3pmFcTie5LnAMYEZZX/jqTPp2Her3xDSc4Ymm+p9YGvFY3D0a7yfoNMFazNhYXresrOwC9YWwsL0vJ64qAsWn2TB9Hy6sSXSqZ4yt3d8+nAyZIXx3PbO8NskS9P2LrXWGwPuxItxS5rxGysoPfJDTO7NLxVxhnV8+fdIBZalHSb6HWU96xBdDOxHlwp58R2uQ2+j+ou6bVp/1Rq7lU+30wS3njozL4sgTvlhPjFi9O8Dvz9Ffh/tz2ScCLq88LnuSTZVB/qtZ/bphSMfjNtGPJXNYZ20cjI9K5u3dMdDHNddtmekRwyFbxjdbHD/qTpvVTv9jdcw0f8i2OChRN+DbRDts6C4gvKCdMo+scxuI3qTe0TQI94w0T8Go3TeM2fpUVco1wbCNPofAcwPrNRyYr7UqDVli8pfK53yltpxgYX54S21SqdqJop1+hNCp2o/Es9kYd/yJorDdZEFFIfrKRMUh2smHYrDNaSFFId9S+4D43oBtwW4toX2Y31LPkHzePm+xzU5ud5X5T9Rn0q/bYpDm0zdRTWf4tQamCqXMYrDNQErI1x/SvmwGLgdNfpfStRL5XdVP8zoTxD06Ot5fyzWxRMoDtNxfT6B+OLzsvJv1APKdWv5O0z0bwU9vLqcmVT7JU2uHvdLjqn9ksuAgPdLnghxLUHPZXGSoD8RaEwnHaJXPlL5W9Qp+0jVBz5B4HMf+DcTPhJ97DKSvagpe+7eXqxT+xN9TG6nlyR4clrkU7W3var/8R8T7bTqV6Nc3E4b/e8l/IHSZaqdVv5jqciX0unxFFc1HjNsxuyxfo6r+on55/qZymsMTX1lJ8yuP6lbj9j+1fxDrv2jDdm4rena8P/1R+e85CvXfemUbmvDVm4N748cwv5FCNNjihBm9qX4LkScU+M98e1mshzJ43zg2SL5EH+Y6P/+1Jk4vMcV38WAZRcD7wfBX+Q7AfIFSpuLNUpYx/WAZXJ1BP1xNbFGE1gjhNUWWGpPaiy7vyzLhvczmL9SJ9+tTloeqm624H1wRv956hc33PMs+8VYfix/KyF/K8yWf0uF/EW5xyzq75+pPeUbADBOXV9vdGrfVUoWo/+qaOdUe2Jy9dieDKv2BG2L2xO190vZotF32/tlOlG3L+ScOEadcn/PdDQi6BGP7eE7if4e2mabZMe88174luCrrvS3OhZpTiztsse7i49TazcW1Pi6oLjc8XWL4tSNMYWQoUV/Y17r7gFV+zVVXeYx36iQVdU7vN0mhMGpd2b7nTC7XNjecm2Y98K2EvzUPADacNX+OqzTOBe6Ys00HupdnT2Ngf2p0V8Avn1l+axuaGJ7UH6CZQlB+6HUmYqcMyI9ngPLPjvE58Aa+pfa58B67CcMcxuL/FQ5LAxap8if+7rKRlL+pEVxyp+o+sd1U83fqTaE62bVPFydflPVuW5Ly+3kc6BubaS6pXxtqtzUGbMc34eyKt3Ppzi1D8GexxJ8lFxqjn4sIRf6ZN7dN0Z/p/KQ21Y59RHnqbYKy4TriNIL0lft20N63HHIdQT3W/D56ty2jW+UUW18t7ZtY0UbhflQtw2peXxs36zt+z8ZTY2O3HsFAA==",
|
|
4109
|
-
"debug_symbols": "tb3Rjiy7jaX9Lr7uixAlklK/ymDQcPd4BgYMu+F2/8CPRr/7pCiRi1V7UhWVWfvG+/M5Z6+lkIJMScFQ/Ncf/tef/vU//8+//Pmv//tv//GHf/4f//WHf/37n//ylz//n3/5y9/+7Y//+PPf/vr4p//1h2v+Tyn1D/9c/+nxZ/vDP/P8k/efsv/U/Wfff471J137z7L/pP1n3X9uPdp6tPVo69HWo61Xt17denXr1a1Xt17denXr1a1Xt17dem3rta3Xtl7bem3rta3Xtl7bem3rta3HW4+3Hm893nq89Xjr8dbjrcdbj7eebD3ZerL1ZOvJ1pOtJ1tPtp5sPdl6uvV06+nW062nW0+3nj70dP6p+8++/xzrz/7QK9eE4kAOD8ky75n+0Cz2H7ODOKhDdxgbxlTuE4oDOVSH5sAO4qAO3WEsoOtymMpjAjlUh6nME9hBHB7KZNAdxoZyORQHcqgOzYEdxMGViysXV55xRDqhOJBDdWgO7CAO6tAdxobqytWVqytXV66uXF25unJ15erK1ZWbKzdXbq7cXLm5cnPlGWE0h2CG2ILuMDbMKFtQHMihOjQHdnBldmV2ZXZlcWVxZXFlcWVxZXFlcWVxZXFlcWV1ZXVldWV1ZXVldWV1ZXVldWV15e7K3ZW7K3dX7q7cXbm7cnfl7srdlYcrD1cerjxcebjycOXhysOVhyuPrVyvy6E4kEN1aA7s8FCuNEEdusPYMGNwQXEgh+rQHNjBlYsrF1eeMVgfMVhnDC4oDg/ldk2oDs2BHcRBHbrD2DBjcEFxcOXqytWV684btYqDOnSHnTdquxyKAzlUh+bgys2VmyvPGGx1wtgwY3BBcSCH6tAc2EEc1MGV2ZXFlcWVZwy2NqE6NAd2EAd16A5jw4zBBcXBldWV1ZVnDDadIA7qMH9Vy4SxYcbgguJADtWhObCDOKiDK3dXHq48XHm48nDl4crDlYcrD1cerjy2crsuh+JADtWhObCDOKhDd3Dl4srFlYsrF1curlxcubhyceXiysWVyZXJlcmVyZXJlcmVyZXJlcmVyZWrK1dXrq5cXbm6cnXl6srVlasrV1durtxcublyc+Xmys2Vmys3V26u3FyZXZldmV2ZXZldmV2ZXZldmV2ZXVlcWVxZXFlcWVxZXFlcWVxZXFlcWV1ZXVldWV1ZXVldWV1ZXdljsHkMNo/B5jHYLAbrhOrQHNhBHNShO4wNFoMGxcGVhysPVx6uPFx5uPJw5bGV+bocigM5VIfmwA7ioA7dwZWLKxdXLq5cXLm4cnHl4srFlYsrF1cmVyZXJlcmVyZXJlcmVyZXJlcmV66uXF25unJ15erK1ZWrK1dXrq5cXbm5cnPl5srNlZsrN1durtxcublyc2V2ZXZldmV2ZXZldmV2ZXZldmV2ZXFlcWVxZXFlcWVxZXFlcWVxZXFldWV1ZXVldWV1ZXVldWV1ZXVldeXuyt2VPQbZY5A9BtljkD0G2WOQPQbZY5A9BtljkD0G2WOQPQbZY5A9BtljkD0G2WNQPAbFY1A8BsVjUDwGxWNQPAbFY1A8BsViUB5gMWhQHMihOjQHdhAHdegOrkyuTK5MrkyuTK5MrkyuTK5MrkyuXF25unJ15erKFoM6gR3EYSqPCd1hbLAYNCgO5FAdmgM7iIMrN1dursyuzK7MrsyuzK7MrsyuzK7MrsyuLK4sriyuLK4sriyuLK4sriyuLK6srqyuPGNQrgnVoTk8lKVMEAd1eCjLvOtmDBrMGFzwUJY5XjMGF1SHqdwnsIM4qEN3GBtmDC4oDuRQHVx5uPJw5RmDOts8Y3DBWKAzBhcUB3KoDs2BHcRBHbqDK88YVJpQHMihOjQHdhAHdegOYwO5MrkyuTK5MrkyuTK5MrkyuTK5cnXl6srVlasrV1eurlxdubpydeXqys2Vmys3V26u3Fy5uXJz5ebKzZWbK7MrsyuzK7MrsyuzK7MrsyuzK7MriyuLK4sriyuLK4sriyuLK4sriyurK6srqyurK6srqyurK6srqyurK3dX7q7cXbm7cnfl7srdlbsrd1furjxcebjycOXhysOVhysPVx6uPFx5bOV+XQ7FgRyqQ3NgB3GYyjyhO4wNFoMGxYEcqkNzYAdxcOXiysWVyZXJlcmVyZXJlcmVyZXJlcmVyZWrK1dXrq5cXbm6cnXl6srVlasrV1durtxcublyc+Xmys2Vmys3V26u3FyZXZldmV2ZXZldmV2ZXZldmV2ZXVlcWVxZXFlcWVxZXFlcWVxZXFlcWV1ZXVldWV1ZXVldWV1ZXVldWV25u3J35e7K3ZW7K3dX7q7cXbm7cnfl4crDlYcrD1cerjxcebjycOXhymMrj+tyKA7kUB2aAzuIgzp0B1f2GBweg8NjcHgMDo/B4TE4PAaHx+DwGBweg8NjcHgMDo/B4TE4PAaHx+DwGBweg8NjcHgMDo/B4TE4PAaHx+DwGBweg8NjcHgMDo/B4TE4PAaHx+DwGBweg8NjcHgMDo/B4TE4PAaHx+DwGBweg8NjcHgMDo/B4TE4PAaHx+DwGBweg8NjcHgMDo/B4TE4PAaHx+DwGBweg8NjcHgMDo/B4TE4PAaHxWCf0BzYQRzUoTuMDRaDBsWBHFy5u3J3ZYvBMUEdusPYYDFoUBzIoTo0B3Zw5eHKw5XHVi7XdQWVIAqqQS2IgyRIg3pQeJTwKOFRwqOERwmPEh4lPEp4lPAo4UHhQeFB4UHhQeFB4UHhQeFB4UHhUcOjhkcNjxoeNTxqeNTwqOFRw6OGRwuPFh4tPFp4tPCYEduLkQRp0MOjN6PhNMN2UwmioBrUgjhIgjQoPDg8JDwkPCQ8JDwkPCQ8JDwkPCQ8JDw0PDQ8NDw0PDQ8NDw0PDQ8NDw0PHp49PDo4dHDo4dHD48eHj08enj08BjhMcJjhMcIjxEeIzxGeIzwGOEx3KNcV1AJoqAa1II4SII0qAeFRwmPEh4lPEp4lPAo4VHCo4RHCY8SHhQeFB4UHhQeFB4UHhQeFB4UHhQeNTxqeNTwqOFRw6OGRw2PGh41PGp4tPBo4dHCo4VHC48WHi08WnhEnJeI8xJxXiLOS8R5iTgvEecl4rxEnJeI8xJxXiLOS8R5iTgvEecl4rxEnJeI8xJxXiLOS8R5iTgvEecl4rxEnJeI8xJxXiLOS8R5iTgvEecl4rxEnJeI8xJxXiLOS8R5iTgvEecl4rxEnJeI8xJxXiLOS8R5iTgvEecl4rxEnJeI8xJxXiLOKeKcIs4p4pwizininCLOKeKcIs4p4pwizininCLOKeKcIs4p4pwizininCLOKeKcIs4p4pwizininCLOKeKcIs4p4pwizininCLOKeKcIs4p4pwizininCLOKeKcIs4p4pwizininCLOKeKcIs4p4pwizininCLOKeKcIs4p4pwizininCLOKeKcIs4p4pwizininCLOKeKcIs4p4pwizininCLOKeKcIs4p4pwizininCLOKeKcIs4p4pwizininCLOKeKcIs4p4pwizininCLOKeKcIs4p4pwizininCLOKeKcIs4p4pwizininCLOKeKcIs4p4pwizmvEeY04rxHnNeK8RpzXiPMacV4jzmvEeY04rxHnNeLcCoy6GtWgFsRBEqRBPWg4WZwvKkHhQeFB4WFx3o0kSIN60HCyOF9UgiioBrWg8KjhUcOjhkcNjxYeLTxaeLTwaOHRwqOFRwuPFh4tPDg8ODw4PDg8ODw4PDg8ODw4PDg8JDwkPCQ8JDwkPCQ8JDwkPCQ8JDw0PDQ8NDw0PDQ8NDw0PDQ8NDw0PHp49PDo4dHDo4dHD48eHj08enj08BjhMcJjhMcIjxEeIzxGeIzwGOEx3MMKl8ZlVIIo6OExqlEL4iAJ0qAeNJxmnG8qQRQUHiU8SniU8CjhUcKjhAeFB4UHhQeFB4UHhQeFB4UHhQeFRw2PGh41PGp41PCo4VHDo4ZHDY8aHi08Wni08Gjh0cKjhUcLjxYeLTxaeHB4cHhweHB4cHhweHB4cHhweHB4SHhIeEh4SHhIeEh4SHhIeEh4SHhoeGh4aHhoeGh4aHhoeGh4aHhoePTw6OHRw6OHRw+PHh49PHp49PDo4THCY4THCI8RHiM8RniM8BjhMcJjuIcVR20qQRRUg1oQB0mQBvWg8Ig454hzjjjniHOOOOeIc44454hzjjjniHOOOOeIc44454hzjjjniHOOOOeIc44454hzjjjniHOOOOeIc44454hzjjjniHOOOOeIc44454hzjjjniHOOOOeIc44454hzjjjniHOOOOeIc44454hzjjjniHOOOOeIc44454hzjjjniHOOOOeIc44454hzjjjniHOOOOeIc44454hzjjjniHOOOOeIc44454hzjjjniHOOOOeIc44454hzjjjniHOOOOeIc44454hzjjjniHOOOOeIc44454hzjjjniHOOOOeIc4k4l4hziTiXiHOJOJeIc4k4l4hziTiXiHOJOJeIc4k4l4hziTiXiHOJOJeIc4k4l4hziTiXiHOJOJeIc4k4l4hziTiXiHOJOJeIc4k4l4hziTiXiHOJOJeIc4k4l4hziTiXiHOJOJeIc4k4l4hziTiXiHOJOJeIc4k4l4hziTiXiHOJOJeIc4k4l4hziTiXiHOJOJeIc4k4l4hziTiXiHOJOJeIc4k4l4hziTiXiHOJOJeIc4k4l4hziTiXiHOJOJeIc4k4l4hziTiXiHOJOJeIc4k4l4hziTiXiHOJOJeIc4k4l4hziTiXiHOJOJeIcyvwGmKkQT1obLIir00liIJqUAviIAnSoB4UHiU8SniU8CjhUcKjhEcJjxIeJTxKeFB4WJx3IwqqQS2IgyRIg3rQcLI4XxQeNTxqeNTwqOFRw6OGRw2PGh4tPFp4tPBo4dHCo4VHC48WHi08WnhweHB4cHhweHB4cHhweHB4cHhweEh4SHhIeEh4SHhIeEh4SHhIeEh4aHhoeGh4aHhoeGh4aHhoeGh4aHj08Ojh0cOjh0cPjx4ePTx6ePTw6OExwmOExwiPER4jPEZ4jPAY4THCY7iHFZJtKkEUVINaEAdJkAb1oPAo4VHCw+J8GNWgFsRBEqRBPWg4WZwvKkHhQeFB4UHhQeFB4UHhQeFRw6OGRw2PGh41PGp41PCo4VHDo4ZHC48WHi08Wni08Gjh0cKjhUcLjxYeHB4cHhweHB4cHhweHB4cHhweHB4SHhIeEh4SHhIeEh4SHhIeEh4SHhoeGh4aHjPOHw+LDRuQgTKxGiqwA0fgend+YQESsAIbkIFw63DrcOtwG3AbcBtwG3AbcBtwG3AbcBtwG+FmdWyOBUjACmxABgpQgR0ItwK3ArcCtwK3ArcCtwK3ArcCtwI3ghvBjeBGcCO4EdwIbgQ3ghvBrcKtwq3CrcKtwq3CrcKtwq3CrcKtwa3BrcGtwa3BrcGtwa3BrcGtwY3hxnBjuDHcGG4MN4Ybw43hxnATuAncBG4CN4GbwE3gJnATuAncFG4KN4Wbwk3hpnBDLhnIJQO5ZCCXDOSSgVwykEsGcslALhnIJQO5ZCCXDOSSgVwykEsGcslALhnIJQO5ZCCXDOSSgVwykEtG5BK6IpfQFbmErsgldEUuoStyCV2RS+iKXEJX5BK6IpfQdcGtwK3ArcCtwK3ArcCtwK3ArcCtwI3gRnAjuBHcCG4EN4IbwY3gRnCrcKtwq3CrcKtwq3CrcKtwq3CrcGtwa3BrcGtwa3BrcGtwa3BrcGtwY7gx3BhuDDeGG8ON4cZwY7gx3ARuAjeBm8BN4CZwE7gJ3ARuAjeFm8JN4aZwU7gp3BRuCjeFm8Ktw63DrcOtw63DrcOtw63DrcOtw23AbcBtwG3AbcBtwG3AbcBtwA25pCCXFOSSglxSkEsKcklBLinIJQW5pCCXFOSSglxSkEsKcklBLinIJQW5pCCXFOSSglxSkEsKcklBLinIJQW5pCCXFOSSglxSkEsKcklBLinIJQW5pCCXFOSSglxSkEsKcklBLinIJQW5pCCXFOSSglxSkEsKcklZuUQMBajADhyBK5csLEACVmADwm3lEjJUYAeOwJVLFhYgASuwARkIN4GbwE3gpnBTuCncFG4KN4Wbwk3hpnBTuHW4dbh1uHW4dbh1uHW4dbh1uHW4DbgNuA24DbgNuA24DbgNuA24jXBb54htLEACVmADMlCACuxAcxsTVy5ZWIAErMAGZKAAFdiBcCO4Edwsl5RmWIENON3oMhSgBlrgsNH8W1QM7d9Xww4cgRYhGwuQgBXYgAwUINwEbgI3hZvCTeGmcFO4KdwUbgo3hZvCrcOtw63DrcOtw63DrcOtw63DrcNtwG3AbcBtwG3AbcBtwG3AbcBthJsV5DkWIAErsAEZKEAFdiDcLEJIDAuQgBXYgAw0t3UYngI7cARahGwsQAJWYAMyEG4rQrphB5rbjDwr13MsQAJWYAMycLrNA83IqvYcO3C61RnGVrjnWIDTra7zACuwARkoQAWam12b/doutF/bjQVIwApsQAYKUIFws1xSrR8sl2wsQNNlw6k7T1ojK9R7TDIMp0Kz/8Dyw8YCJGAFNqDp2n1m+WGjAjtwBFp+2FiABKzABoSb5Ye2zmhU4HRju0zLDwstP2wsQAJW4HSb5yyR1fA5ClCBHTgcrZDPsQAJWIENaG5kKEBzq4YdOAItP2w0t3U2JQErsAEZKEBz64YdOAItP2wsQAJWYAMyUIBws/wwzwshq/LbaPlho7mxIQErsAOnwjxhhKxgr4j1jkX3PCaErGTPkYGzZWLNseje2IFTV03XonvjbJnaYFl0b6zA6abNkIECVGAHjkCbE6hdm8WxWnvt11/X6aIK7MARaNGt1pMW3RsJWIENON26XYVF90YFTrdu969F90KL7o0FSMAKnG7dRsiie6MAR+A6K9e6ZJ2Wu9AUbCzWibkLBWjttT5b5+YuHI68zs7thgVobsOwAqfbKIbTbZDhdJt1A2SVeY9ptmEHjkCL2I0FSMAKbEBzs5ZZxA5rjp2ue12GfaI1x87TtcWileQ5VmADMlCAGmhH6F7NkIAV2IAMFKAG2omdtpq0grrHCsGQgQJUoF2bXbydl7vQTszdWIAErMAGZKAAFQg3hpvATeAmcBO4CdwEbgI3gZvATeCmcFO4KdwUbgo3O0jX1jVWUrfRDtPdWIAErMAGZKAAFQi3DrcBtwG3AbcBtwG3AbcBtwG3AbcRblZn51iABKzAcLNCuMfi0XC6FTKcbvOkbrK6N7ITta08jWypZ/VpjgScFmQKFgx2urXVqDkKUIEdOALtdNuNBUjACoRbg5vFkE3+rV7NsQNHoMXQxgIkYAU2IAPhxnBjuFm02JLAitLI1gFWlfZY6RgKUIEdOAItLjYWIAErsAHhpnBTuCncFG4dbh1uHW4WOLUYNiADBajADhyBFjgbC5CAcBtwG3CzwLGVj1WtOXZHq1F7rIoMTaEZmgIbClCBHTgC7WT4jQVIwApsQLgVuBW42S9ZFcMRaAG5sQAJWIENyEABKhBuBLcKtwq3CrcKN4t5W5NZvZqjABXYgSPQotsWbVaNRrZSs3I0ajZYFscbO3AEWhxvLEACVmADMhBuDDeGm/0W2sLRitMcC5CAFdiApmtjbHFsSzmrPXMkoCmoYQMyUIAK7MARaHG8sQAJCLcON4vjZsNicbxRgdPN1m9WjbbR4tjWb1aPRrY8s4I0shWKVaQ5NuB0s4WYFaU5TjdbJVlZGtl6yOrSaB6VSFaY5liABKzABpy6MhtpZWdkqySrO3skb0MCVqApiCEDBajAHmgRK2poCt3QFIahABXYgSPQYnNjARKwAqeb2hWv7zwsFOB0s5VaX197WDgC1xcfFk43tY5aX31YWIHmZh21vv2wUIDm1gw7cARaHG8sQAKam3WqxfFGBpqbdbXF8cYOHIEWsRtNwYbFfo83TgVbqVlhmeMItDi2xaDVljkSsAIbkIECVGAHjsAOtw63DrcOtw63DrcOtw63DrcOtwG3AbcBtwG3AbcBN4tjW7xadZljB5rbvDWsusyxAM1NDStwus03Q2ms70gsFKACO3C62eLVqsscp5utY626jGwda9Vlj91ywwZkoLmJoQI70NzmbWTVZY4FSMAKbEDTnXFsFWPVFrpWMVYva/qMeccKbECeaBc0Y95RgR04Apu52WU2c7Neb+ZmzZkx/9iQN2zA6VaWwnSzh0JWMbZxRne1VYdVgVVbali9V7WlhtV7OXbgbJl9wsfqvRwLkIAV2IAMnG62WLF6L8ceqFe0TAuQgNOCrHdmSDsy0CzWf6vADpwXtL+icgGnm60OrMjLsQKnm028rcjLUYAK7MAROEPasQAJWIFwG3AbcBtwG3Ab7latyMuxAAlYgQ3IQAEq0NyK4Qi0j8RsNLdqSMAKNLdmyEABKtDc2NDcxL5sY27dsAAJaG7DsAEZKEAFduAItPDfWIAEhFuFW4Wbhf98YlOtyMuxA0eghf/GAiRgBTYgA+HW4DZ/8qt978aKvDZaUthYgASswAZkoAAVaG52P1gCWWgJZGMFmoLdGpYU7GMxVrjlOAItP2y09tqtYflhYwU2IAMFqMAOHIGWHzbCrcOtw63DrcOtw83yQ7P71/LDRnOzm9byw8YCnG5snWr5YWMDMlCA6mglWtW+VGPFWHWuDqoVY9W5OqhWjOUoQAXO9s6FQrVirI0W8xsLkIDTTawNFvMbGShABXbgdBNrusX8xgIkYAU2IAMFqMAOhJvFvFhHWcxvJKC5NUNzU0MGmls3VKC5DcMRaDG/sQAJWIENyEABKhBuDW4MN4Ybw43hxnBjuDHcGG4MN4abwE3gJnATuAncBG4CN4GbwE3gpnBTuCncFG4KN4Wbwk3hpnBTuFl+ULtTLT9sJGAFTje1e8fyw0YBKrADR6Dlh40FSMAKhNuA24DbgNuA2wg3K8ZyLEACmm41NIVmOAItP8ylZ7UCK0cCVmADMlCApjtTJlGMphVNrf61oilHBgrQrlgNO3AEWsxvjHuHKtxqBTYgAwWowB5tsJhf2C5gAVK0wWJ+YwPCDTFPiHlCzBNinhDzhJi389u2MaMnGT3J6EmL+dUGRk8yehIxT4h5QswTYp4Q84SYJ8Q8IeatvGy3QdCTgp5U9KSiJy3m50ZCtfIyR7s207WY3yhABU63bve6xfxCi/mNBUjACmxABk63boFjMb8RN7gFercYskDfSMAKxK2xAn0hBmtgsAYGa8RtX68LGINlNWWOFdiADBSgAjswbo317ci5vVDX1yM3NqB1lBhaR1nLbHqwsQNHoE0PNhYgASuwAU23G3bgCLSksNF07SosKWyswAa0KRUZClCBHTgCLSlsLEAC2tSyGApQgVN3LByBFv5zb6VaRZgjAedVzL2VahVhjgycbsNGyMJ/YweOQAv/jQVIwApsQAbCzQK92P2gF7AATddG0wJ9YwPy/NCnfenTvjy5UYF9ovXDDPSNM9Ady0TrhxnojhXYgAwUoAI7cASOCwi3AbcBtwG3AbcBtwG3AbcRblYn5liABKzABmSgubGhAjvQ3OYAWJ2Yo7mJIQEr0NyGIQPNrRsqsAOn29wIq1Yn5jjd5p5YtToxx+lWrJH2ddmNDJxuxdpr35jd2IEj0L40u7EATddaVk3BrmLGfJtP7avViW2cMe9YgLO9c0+sWvWYYwMyUIDTjawn7QuzG0egfWV2YwES0NzsKuxrsxsZKEAFduAItC/PbixAAsLNvkBL1mf2DdqNApxutglllWbNdpOs0myjfY3W9o2s0sxxutkWklWaOTYgAwWowA4cgZYfNhYg3DrcOtw63DrcOtw63DrcBtwG3AbcBtwG3AbcBtwG3AbcRrhZVZpjARKwAhuQgQJUYAfCzfKD7exZVZojASvQ3LohAwWowA4cgZYfNhYgAU13GE4F29Gyk+E2Wszbz60VqDkSsAIbkIECNN0ZvHb02+6Shiu2mN/IQAHOK96fh+7AEWgxvxGjyXBjjCZjNBmjyRhNxmgyRnN9a9qaIxhNwWgKRlNwbeur082QgdY7pru+Pb2wA0fg+gK1jdv6BvVCAlZgAzJQgAo0N7sJLOYXWqCvwbJAtw02q2BzbEAGSgxAx2B1DFbHYA0MlgX6RgJisBDojEBnBDoj0BmBzgh0QaALAt1q1ZrtGNrBcI4CnLo2I7Wz4ZptE9rhcBstpDcWIAErsAEZKEDTnbeGVcY5FiABTdeuwn7cNzJQgPHTLOvHfeEIXD/uCwuQgBXYgAy0R3zWsvWIzzAe8VUrs2uz2qJamZ1jBU5d2w21MjtHAdpYiGEHjkALf9vWtDI7RwLa40tzs8n/RgYKUIEdOAJt8r+xAAkIN4GbwE3gJnATuAncFG4KN4Wbwk3hpnBTuFn42/auleQ5jkBb+9uM1EryHM2tG1ZgA/qj2WoleY7mZjeBZYKNI9AygdgQWibYSMAKbEAGClCBHTgc7Sw5xwIkYAU2IANNd/akleQ12/G2krxma38ryXNsQAbO9s7SmGoleY4dOAItE2ycbrYTaSV5jhU43WxT0kryHAWowA4cgZYJNhYgASsQbhVuFW4VbhVuFW4Nbg1uDW6WH2xj1M6Sc2SgABXYgSPQ8sNGc7Nxs/ywsQLNzYbbpgcbBTjd5rsP1cr3HEegTQQ24r8V/LeC/9Z+3DcWIBTsx9121axQz5GBs2W2wWaFeo4dOAJtQr+xAAlYgQ3IQLh1uFl02+aWFepttOjeWIAErMAGZKAAFQi3EW5WqOdYgAQ0t2ZoumKowA4cgfY7b1tpVr7nSMAKbJ4U+or5hQJUYAeOQIv5jQVIQOudhQJUYAfaVcy8Y0V9jgVIQMvrl2EDMlCACuzAEdgu4OydsbABGShABfZAi1jb5LOSvDZrqaqV5DXb2bOSPEcFmoINt8XmQpu627abHQjnSEBrr428Td03MlCACuzAEWjRbVt0Vr7nSMAKbEAGerFgtUK93Q8WxxvROxbHw/5bi+ONDchAAdpV2E1gcbxxBFocb3y48WVuM44dK7BNtAGYcewoQJ1oYzHj2HE4WqEe271jhXpse21WqMe2f2aFemzTGSvUc2Sg6XbDEVguYAGa7jBkv7ms+M5RgT3QwnRj3bW3ddXWbWSg7IrcuiruNnbgCFy1twsLkIAV2ICzU4v12QxIxxE4A9JxXrxtHlrFnWMFNqBdRTUUoAI7cATyBSxAAlagVX7bGLMC7Sqsf3kEygUsQLsKE5MKbEAGClCBVtVuN5fV3i6MGvo6ooa+jqihr2PV0C9sQAYKUAO7XYXd670ACViBdhXWJZ2BAlSgXYWNsVXZLrQq240FSMAKbEAG2lhY0y1MJzYrvnMsQAJWoL9N066LgQJUYAeOwPUuDBkWIAErsAEZaFehE8na2w0JWIH+7k671vstCwWowA4cgev9loUFSMAKhFuFW4VbhVuFW4Vbg1uD24rjYchAASpw9s7clm9WOrdxxrFjARKwAhuQgdONbAhndDt24Ai06CYbLIvujQSswBaDtaJ7oQAV2IEjUC8g7gfF/aB2FdVQgAq0q7CuVrsKnmjRvbEACWhXYXFh0b2RgQI0NxuhGd28gmFG98YZ3Y4FSMAKbEAGClCBcLOYtzvKyuwcC5CAFdiADBSgAs1NDc1tXrEV3zkWIAErsAEZKEAFdiDc5i86z33PZsV3jgSswAZkoAAV2IHTbf6+NSu+cyxAAlZgAzJQgObWDTtwBNqv/8YCJGAFNuDMRnYjlnjntZV457WVeOe1lXjntZV457VZmR0361/LBHOvuFlBnaMpmJu9N7PQ3n/bWIAErMAGZKAAZz/MPd1mpXPMNhYW8xsJWIENyEAB2lVUww4cgZYJNpqb3euWCTZWYAMyUIAKNDcbecsEbF1tmWBjARKwAhuQYywGRmhghCwTbByOVjrnWIAErEDZR0y0dWLZxg403TlYVlDnOHXFFCzmN1bgvIq5vdusoM5RgPMqxCws5jeOQIv5jQVobmJYgQ3IQAEqsANHoEX3XBI0K6iz8zWalc6x2BVbxC60iN1oLRuGBJwtU+sHi9iNDJwtU+sH+53f2IEj0H7nNxYgAc2NDBuQgQJUYAeOuGL7RVfravtF39iADDTd9dcU2IEjcJ3CYl29TmFZSMAKbEAGClADLY7n5mGzcjhHAlZgA9pV2GBZHG9UYAeOQIvjjdOt22haHG+swAZkoAAV2IHD0SrjHAvQ3IphBTaguZGhABVobs3Q3GaX2GlrPHfKmp225kjACmxABk7dYY20OF5ocbyxAAlYA+2Hde4QNStmc5wWw9prATm3b5qVrW20gNxYgASsgRY4w9prgbOxARkoQAV24Ai0CfLGAoSbwE3gJnATuAnc7Gdx7gU1Ky/judXTrLxMLhvuGSKOAtSJNtzzB9BxBM7AcSxAApquDUA3BRuAbgrWsnEBC9AUrKtnMDg2IAMFqEBzsysew9FKxmTuBTUrGXMk4NSduyjNysBkbpI0KwPbWEyBDafC3KBoVgbmWIENaLrVUIAKNLdmOALnbe8IN4IbwY3gRgwUHwsrA3PswBhNKwNzLMDmQ2hlYGsIrQxsDZaVgW1sF7D4WFgZmGMFNiADBagxbq0DRwwWYzQZo8kthpA1xo0xmjxiCOWKjhL0r6B/Bf0rLQZLMJqC0RSNwRKMpmA0FW4KN4Wbwk0xmhYMts1i9VGODWjNsd6xYNiowA4cjlYf5ViABKzA6WYLc6uPchSgAjtwBFrg2JrB6qMcCViB5qaGDBSguVnLLHA2jkALHFtWW32UIwErcLrNkrxmp3aJLYqtaspxBFqIbJy6s2avWdWU2ELXqqZkFqA0q5pyZKAAzc2u2MJp4wi0cNpobnZtFkPN2msx1Kw5FkPNmmMx1NZfU2AHjkCLoY0FSEBzs163yNpobtYcFqACO3AEWrxtLEACVmADwk3gJnATuAncFG4KN4Wbwk3hpnCz30Jb3VpZlWMHjkD7LdxYgAScurZgsloqRwV24Ai0X8iNBUjACmxAuA24DbgNuI1ws1oqxwIkYAU2IAMFqMAOhFuBW4FbgVuBW4FbgVuBW4FbgVuBG8GN4EZwI7gR3AhuBDeCG8GN4FbhVuFW4VbhVuFW4VbhVuFW4Vbh1uDW4Nbg1uDW4Nbg1uDW4Nbg1uDGcGO4MdwYbgw3hhvDjeHGcGO4CdwEbgI3gZvATeAmcBO4CdwEbgo3hZvCTeGmcFO4KdwUbgo3hVuHW4dbh1uHW4cbcokglwhyiSCXCHKJIJcIcokglwhyiSCXCHKJIJcIcokgl8jKJfMnX1cuWViA1TOilWA5MlCACuzASLp2gppjARIQbgVuBW4FbgVuBW4FbgQ3ghvBjeBGcCO4EdwIbgQ3gluFW4VbhVuFW4VbhVuFW4VbhVuFW4Nbg1uDW4Nbg1uDW4Nbg1uDW4Mbw43hxnBjuDHcGG4MN4Ybw43hJnATuAncBG4CN4GbwE3gJnATuCncFG4KN4Wbwk3hhmmHYtqhmHYoph2KaYdi2qGYdljBlyPcOtw63DrcOtw63AbcBtwG3AbcBtwG3AbcBtwG3Ea4WcGXYwESsAIbkIECVGAHWrqa0/G+JiMLC9CSoxpWYANachRDASqwA0fgmowsnG62421lYI4V2IAMFKACO3AEWi7ZCLcKtwq3NRmx3lmTkYUCVGAHjkDLJbPauNmJb44ENLdq2IAMFKBdxVxc2SluW8Hyw8YGNAXrVMsPGxVovWPjZvlhoeWHjQVobt2wAhuQgaZrF28xbzv0VgbmWIHWv/bX1qRhoQAV2IEjcE0aFppbMSRgBTYgAwWowA4cgRbzG+E24DbgNuA24DbgZjFvDwysDEzsIYCVgTkSsAIbkIECVGAHjsACtwK3ArcCtwK3ArcCtwK3ArcCN4IbwY3gRnAjuBHcCG4EN4Ibwa3CrcKtwq3CrcKtwq3CrcKtwq3CrcGtwa3BrcGtwa3BrcGtwa3BrcGN4cZwY7gx3BhuDDeGG8ON4cZwE7gJ3ARuAjeBm8BN4CZwE7gJ3BRuCjeFm8JN4aZwU7gp3BRuCrcOtw63DrcOtw63DrcOtw63DrcOtwG3AbcBtwG3AbcBtwG3AbcBt+FufEUu4StyCV+RS/iKXMJX5BK+IpfwFbmEr8glfK1c0gxH4MolCwuQgBXYgAwUoALNTQ1H4MolC82NDQlYgQ3IQAEqsANH4MolC+FW4bZyyTBsQAb2wJUfuiEBp0K3/rX8sJGBAlRgB872dusSyw8bC5CA5mbGlh82MtDcrL2WHzZ24HSbzxbZKtgcC5CA020Wa7NVsMmw9lomGDbGlgk2jkDLBBtNVwxN167CMsGw5sxMoJe5zUzgKEAF9onWnJkJNs5M4FiANNHa283CmtPNwka+m4U1Z4a/FrOY4e84Amf4OxYgAStwuhVrwwx/R43baOCOWjE/sayYX1iABKzABmSgABXYgXArcCtwK3ZB1bACG9AuqBkKUIEdOALpAhYgASuwAeFGcCNzE8MOHIH1AhYgASuwARkoQLhVuFW4Nbg1uDVzY0MbITIUoAI7cASumcLCAiRgBTYg3BhuDDeGG8NN4CZwE7gJ3ARuAjeBm8BN4CZwU7gp3BRuCjeFm8JN4aZwU7gp3DrcOtw63DrcOtw63DrcOtw63DrcBtwG3AbcBtwG3AbcBtwG3AbcRrjRdQELkIAV2IAMFKACOxBuBW4FbgVuBW4FbgVuBW4FbgVuBW4EN4IbwY3gRnAjuBHcCG4EN4JbhVuFW4VbhVuFW4VbhVuFW4VbhVuDW4Nbg1uDW4MbcgkhlxByCSGXEHIJIZcQcgkhlxByCSGXEHIJIZcQcgkhlxByCSGXEHIJIZcQcgkhlxByCSGXEHIJIZcQcgkhlxByCSGXEHIJIZcQcgkhlxByCSGXEHIJIZcQcgkhlxByCSGXEHIJIZcQcgkhlxByCSGXEHIJIZcQcgkhlxByCSGXEHIJIZcQcklFLqnIJRW5pCKXVOSSilxSkUsqcklFLqnIJRW5pCKXVOSSilxSkUsqcklFLqnIJRW5pCKXVOSSilxSkUsqcklFLqnIJRW5pCKXVOSSilxSkUsqcklFLqnIJRW5pCKXVOSSilxSkUsqcklFLqnIJRW5pCKXVOSSilxSkUsqcklFLrFz63S+jMR2bp1jARKwAhuQgQJUYAfCTeAmcBO4CdwEbgI3gZvATeBmuWRudrIVFjqaWzckYAU2IAMFqMDpNl8wYis33Gjrlo3Tbb5VxFZu6FiB5mYtsyXMRgHauC2xDhyBK5csLEACVmADMlCAvovNqwhxo10FGRKwAhuQgQJUoPXZ0h2B5QKaGxsSsALNrRoyUIC2k25uljU2jkC6gAVIwApsQAYK0K5irg6sNNGxAO0q1LACG9CuohsK0PpsGHbgCLQVyqwIYytjdCRgBTYgAwU43WbJGFsZo+MItPywsQAJaHV4C6080saCvXiUd3HjwhG4ihsXFiABK9CqCe0uWcWNCwWoQC/k5VXcuNAywcYCJGAFNiADBYiR7xj5jpHvGPmOke8Y+Y6R7xj5jpHvGPmOkR8Y+YGRHxj5gZEfGPmBkR8Y+YGRHxj5ESNvFZiOBUjAGPlVa2kjv2oty8IOjJFftZYbC5CAFRgjv2otNwpQgTHyq9ZyIV3AAiRgBTYgAwVovTPD32otHQuQgDYWdhUW8xsZKEDdZe/Mq/x/4Qhc5f8LC5CAFdiADLQxtqtY0W24onthARKwAhuQgQJUINwYbgI3gZvAzX79Zx0pW4GlIwMFqMAONDe7Yr2ABUjACmxABgpQgR0IN8sEs+6VrcDSkYDTrdmtYZlgvjvJVnbpKEAFduAItEywsQAJaG5i2IDmpoYCVGAHTrdZNcVWdulYgASswAZkoACn23wfkq3s0tHcZu9Y2aVjARKwAs2iGgpQgR04Am0Dc5Y3sNVaOhKwAhuQgeamhgrswBFoqWJjARKwAhuQgXCz6cF8us5Wa+k4Am16MCsd2GotHQk43cR63aYHNp2xWksV6x2bHmxUYAeOQEsgG+s8KsaoBXGQBGlQd7IItlmnFTtutAje+LgUmwaKHYCxqAa1IA6SIFM0tHgUG0E7SG79wxbEQTLP+zbSoB40nNYXZYxKkJnYdVkYbrS+tiGyMNwoQGvmHCI7E05tam4FiY6zndVoCsySBbZ6REcFduAItFMs2KgEUVANakEc1L0TrbpwdaJVF6qtKa260HFeqj2itOpCR2tpM3y0tC3qQcNpHf5qVIIoyBStIRYAag1ZR7tNWie7GZWg+bftv7PjoBa1IA6SIA0ykyUzAu2+tweGViLoSEBrpo2m/Rh2G0L7MVxoJ0HZZdhv4eoY+y3cWIENOGW7jab9Fm5UYI8Ot0haaJG0EW4KN4Wbwk3hpnBTuCncFG4dbh1uHW4dbh1u9lu4UfxW77ipO27qjpvafgo3FkeryFN7HGsVeY4VOO/xYcRBEqRBPWg4ra8rGpUgCqpB4VHCo4RHCY8SHvYbNV9WZSvBcyxAuxg1rMDZifN1V7YSPEcBKrADR6D9Rm2cbva82ErwHCvQ3LohAwU43ewxs5XgOY5AO5+NjEoQBdWgFsRBpmhokWfPsK34Tu0RtRXfOTYgA2dL7Rm2Fd85duAItCnrxtlU6wCLUnvybbV3jg1oZjaiFqUbFfgw6/Zg245r2zijtF92aTNKHQk4s5c1wU5rW8RBEqRB3ambonXWjLluKxqruuv2AN2q7hwV2IHWUrvAcQELkIAVOJtqvusEZSMJmk21i7NjFReNTVaFt6kEUZCZdMMGZGAPLNbMYUjA2aHFqAVx0OyRslCBHTh7xFaqVlPnOK1sTWo1dY6zsfYI2Wrquj1Ytpq6bhuXVlPXbf/QauocO3AEznB1LEACVuB0s21Hq6nrth9nNXXd9s2spq7bJpxVz3X7wbfqOUcCVmADMlAC2cTsMrkACViBDchACRQTs44S+2s2qtKADBTgXFnbVdqhDYuGk715vqgEUVANakEcJEHhoeGh4dHDo4dHD48eHj08enj08Ojh0cOjh8cIjxEeIzxGeNh5DHYnrEPVjMYi2UeqGZUgCqpBLYiDJEiDelB4lPAo4VHCo4RHCY8SHiU8SniU8CjhQeFB4UHhQeFhgTGn+2IFYr2ufzpvnvlaq9gRZ32eCyVW09XnSl+spsuxAOdt3UzBDl0wATtzYREHSZAG9aDhZKctLCpBFBQeEh7zXu8zM4pVbPWZYGWdLmZNtDt7UQ1qQRwkQRrUg4aT3dmLwqOHRw+PHh49PHp49PDo4bGOYJi0TmAwKkG2VWhUg1qQ9cIjm4nVYPU5xxarwepzQi9Wg+VYgQ3IQAEqsANHYLmAcCtwK3Ar5qaGDBSgAjtwBNrvzcYCJGAFwo3gRnAjuBHcCG7rzXKjEkRBNagFcZAp9on2mzJfbZGy3rcwqkEtyF49MJIgDepBw2m99Gk0L9wi3Eqm+twpEiuZcuzAeYlszbQfmI0FSMAKbEAGClCBHQg3hZtN9diablO9jRVobjYOykBzs25Vc7NunXHaLRCsZGrjjFTH6bYGZsaq43QTCxqbHK6etDIHc7Aqh0Ua1IOGk4XrIlO0wZyTvS7WaAtOsZaODhyOVgDV53aHWAGUIwErsAGn7lz5iRU19bkPIVbU1Oc6VKyoybECG5CBAlRgB45AC8O5ZhUranIkoLmxYQMyUIDmJoYdOAJXKaRRCaKguRax7rAV2iIOkiAN6kH2lGmS7R8uKkF2PWpYgQ3IwB5oP49zO0SsOMnRFGy0bda3kYG222mkQT1oONnabFEJoqAa1II4KDwkPCQ8JDw0PDQ8NDw0PDQ8NDw0PDQ8NDw0PHp49PCw2Ow2NBabGxtw9le30bGF20YFznHodg/awm2hLdy6jY4t3DYSsAIb0Nxs+CyaN5qbjZlF87CWWTTPdb5YCZJjAU63uYIXK0FybEDbVTCSIA3qQcPJnhksMsVqOFs6l/xiBUV9HrAuVlDkOAItjjdaS9WQgBXYgAy0hb6R/Zoamdf6hw+vcdn1zyh2LBOttTOOx2UtmIHsaL1tNAVMakZjuaynZjQ6NiDPvy+GAlRgB45AvoAFaO0yY67ABhRv2AzXTT1ozGbZxc54dSzAqV+s3TNkHRtwXk2x/pxR6zi9ivXcjFvHEWjH8a2uteP4NhKwAhuQgQJUYAeOwA63DrcOtw63DrcOtw63DrcOtw63AbcBtwG3AbdhPWk302CgAK0nbaxHBw5HKwkac49CrCTIkYAVaG7d0NyGoV3bElNgB063uV0hVhLkWIAErMAGZKAAFdiBcCO4EdzIepINK7ABGShABXbgCKwXsADhVuFW7dqKIQMFqMAOHIHtAhYgASvQ3MiQgQIcgZYR5n6RWPHPIGuvZYSNDBSgtdeG29LDxhEoF7AACViBDchAAcJN4CZwU7gp3BRuam52V2sDmpvd4CpABdrI222/8oPhyg8LC5CAFWi6C2d7q92TM+aHbVFY8Y8jAStwtnc+PxEr/nEUoAI70NzmxVvxj2MBErACG9Dc1FCACuzAEWgxv7EACViBDQg3i/lZAiJWEuTYgdNt7oSLlQQN26qxkiDH6Wa7J1YS5DjdbCPFSoIcBajADhyB9mu/sQAJWIFwq3CrcKtwq3CrcGtwa3BrcGtwa3BrcGtwa3BrcGtwY7gx3BhuDDeGG8ON4cZwY7gx3ARuAjeBm8BN4CZws/xge0NWPuTYgSPQ5g/2c2DlQ44ErMAGZKAAFdgDu10FG1p7LYY6A629doN3BXbgCLT8sLEACWi6FgwD/Tviiq3Mx7EACWj9OwwbkIECjNG0Mh/HGE0r83EsQAJWYIs2WMxvFKACe7RhxbzhivmFcCO4EdwQ84KYF8S8IOaF4t4RQk9W9GRFT66YtzZU9GRFTyLmBTEviHlBzAtiXhDzgpgXxLysmLc2NPRkQ0829GRDT1rMz6ItsYqfjRbztr1mp6s5ErACpxubmMX8RgEqsANHoMX8xgI0NzaswLjB7Ui1YbvidqSaYweOQMWtYROBjRgsxWApBktx2ytue8VgKQZLMVgdg9UxWB2D1XEjdtyIHbeGhb/tAVod0kYL/43WUdYPFv62M2ilSI4NyEABKrADh6MdnuY4dW1j3gqUHBkowKlr+5BWoeQ4Ai0pbLSJgP21NRFYWIENyEABKrAHrmk+GRKwAu0qqiED7SrYUIEdaFcx7ygrYHIswOlm26B2NppjAzJQgArswBFo4b+xAOFmm3PdSII0yPYCjIbT2gkwmoq6kIAVONtv+49W8uQoQBsFox40nCy+F5UgCqpBLYiDJCg8JDwkPDQ8NDw0PDQ8NDw0PDQ8NDw0PDQ8enj08LCgtg1UK3hybEDrsGYowGmkS6EDR6CFum0IW8WTo7nZrWihvrEBzc3G3EJ943SzLUU75sxxus0SL7FjzhwL0G4voxrUgjhIgtTJgtw2Ka1WasyCLLFiqWHbZlYt5ShABVpLl9gItN/4jQVIQHMbhg3IQAEqsANtE252kVVMORYgASuwARkoQAV2INwsyG371EqmHAlobtaT9htv+55WNuVobmyoQHOz3rHwX2jxv7EACViBDchAASoQbgw3gZvATeAmcBO4CdwEbgI3gZvATeGmcFO4KdwUbgo3hZvCTeGmcOtw63DrcOtw63DrcLPMYFvMVpbl2IEj0PYFbX/UyrIcCViBDchAASqwO1od1pgfaxCruRq2y2s1V462HzYPeJGxNvs298QDXK7EJTEltu022y+28qvVNVZ+ta7cyq8cC5CAtr9i++NjbeRt5sSSOEbWSrAcY2RHvYAFSMAKbECOJlUBKrADcX1t9VI1LolXL9nQrIcBm1tiTrwucWlq4p54gPlKXBJT4pp4+dr9wZxYMYK8vOxuWY8HFq/nA5tLYsKwSBpGScMoaRglDaNo4p4YA4mEMJAQBhLCQEIYSAgDCWEgIQwkhLG2/IrdwGvPbzMltssp1i3rsYA98xjrucBmSayJe+IBXg8HNpfElHjp2y00JLEm7omX/uMWUisTCy6JKbH/rqtVizkyUIAK7MARuOYLCwuwredtahVimyTI6jWNetBwonUJalwSU2IrLjVqQRy0Oq0ba+KeeKzngGrHlm0qQRRUg1oQB0mQBvWg8Gjh0cKjhUcLjxYeLTxaeLTwaOHRwoPDg8ODw2PlgWL9v/LAZk4s+4moWvmboz0ntU6zipyFVpGz0Z+TqtXAOa6nnzYgKxls5sRWXmGkQT1oOFlBzqIStDTtlllPAOcKUa+1xU/WhrXHv3hF/OaSeD2wZeOauCXmxJJ4+YpxTzzAtiCwfrL1wCIKqkEtiIMkSIN60NhUriuoBFFQDWpBHCRBGtSD1pXMHi9rMrC5JKbENXFLzIkl8Xqaehn3xAO8EgJZe1ZC2EyJ1zNVMm6JOXEHzwCfT0XU6uM2rb+3mBNLYk3cEw/wmg40a/uaDmymxDWx+c4HHVrWdGCzJDbfZm1f04HNA7ymA3MfSsuaDmymxDXx8m3Gy9fav6YAzcZnTQEWrynA5pJ46Q/j9YzUrmtFPVvbVtSz+a4pwGZN3BOv57LWtlUssLkkpsTL19q/qgTY2rbKBNjukZUlxNq2soSY18oSi1eW2FwSU+KauCU2X7H2rCyxOd13u07AeBcKLC6JKXG6r8fysmtcc4TNknhdo137miNsHsG05gibS2JKXBO3xJxYEmvinnj5znuDVv7YXBJT4pq4JebEklgT98TJl5IvJV9KvpR8V/6YlZJKa/owd9OUVv7YPMCrcGCz6c/NNaVVOrC5Jm6JV14kY0msiXviAV55ZnNJTIlrYtPXxZq4Jx7glU/mtpbSyiebKXFN3HZJl66CwY0CVGAHjsA1qVhYgKu/FnNiSayJe+IBXvli7rfp+rDnNTfndH3Z81K7X1eO2NwTLx27J1aO2Lz6xe6blSM218TWfpua0soRmyWxJu6JB3jli83maxNmWvlic03cEnNiSay79FPrSgvWPXWlhc2UeMmTcUvMiSWxJl6XVY0HeKWFzSXxuizzXWlhc0u8fNVYEmvi5WvXuNLC4pUWNi/fZrx8h/Eq/LiMzXdu6Gld04rNkngVldj1rrSwuSSmxEvfrneFv92SdYX/5p54gFfIb267xFrrqvZdKEAbZ/NcNcALRyBfwAIkYAU2IANXbY314Zo2LF7Ths0l8eoHG8c1bdjcEnNir1RXqy907MARaAuGjQVIwApsQKvVtw6zWv2N62Kso3ep0OKSmBKvizHFFfubObEk1sQ9sb2RYH1rlcEbC5CAFdiADBSgAv1tC20r5G3W31bIb66JW+J1NcNYEmvintgWqobrZZyFBUjACmxABgpwjk6ZW5FqBYPBJTElrolbYl6vMOn+8KmRBvWg4bQ+empU1gtOauWCm2pQC+IgCVrtN26rnTYerSZuia0X2FCACuzAEcgXsAAJWIENCDeGG8ON4cZwE7gJ3ARuFthWBKtWGBisiXvi1UszcVhxYHBJTIlr4paYE0vi5Wtt0554gPuVePmKMSWuiVtixgh2SayJe+IBXg8ONpfE6W4Z6W5Zjwnmlq+29Zxgc0+89GckWzlhsfJGtXrCYEpcE9t1zT1StZrCYEmsic137lWq1RU+ePahFRYGl8SUuCZuiTmxJNbEPXHyXVnCtgF5ZYnNlLgmbok5sSTWxD2x+doulRUbPtj6wSYEzpS4Jm6JObEk1sQ98QC35NuWrxhT4pq4JebEklgT98QDzMvX7hkuiSlxTdwSc2JJrInN19bGVonobBMO55KYEtfELTEnfvjaLoLVI27qQcPJXlRfVIKWpvX5yi3z+CFdBYbOli/tP7F3ADcWIAErsAEZKEANXKmj2m2/UodtUfFKHZtr4paYE0tiTbwuxy55pRRjWSllc0m8fLtxTdwSc2JJrIl74uU7bwlZKcW21WSllM2UuCZuiTmxxDBJ0cQ98QCvlLK5JKbENXFLPIfLMrEVLDqOwJU3bI9PVt7YvC7KRFbe2NwSr4tiY0msidcDZBuglTcWr7yxuSSmxOZr+32y8sZmTiyJNXFPPMArb2xe+sV43uL2EyQr3G3iKivcN5fE1kzbTpQV7ptXM617VrhvlsSrmdY9axqyeYDXNGRzSUyJa+LlK8acWBJr4p54gC1XrG5Ysw3LOLJmG5s5sSRe8nZXrdnG5gFeKWPzzEU2QZJ1fMzCCmxABgpQgd1RV0qYJYqqKyVsrolbYrsem2vrSgmbNXFPPPbZQ2pFi44FSMAKbEAGCtD6yebtukJ+c0ls1zPP7VNdIb+5JV7XY5prFrF5XY/10ZpFbB7glQ1mWaPqygabKXFN3BJzYkm8fMW4Jx7glQ02l8SUuO4T1NSqGe0kOLVyRjuSTNd5bRtHoJ3XtrEACViBbR9fpvsUt4UCVOB0sw2SdbbbQnszeWMBErACG5CBApy6qxNXPrCNBF35YDMlrolbYk4sidfAdOOeeIDXsmTzvKA1FnGaoq4T3TY2IAMFqMAOHIFr6mA75bqmDptbYrsc2xHXNXXYrIntcmx3StfUwbivqYNtKfWVJzZTYvO1Qe4rT2zmxJJYE/fEA7ymDrZT3NfUYTMlrolbYk5sN8dlGDdHJ9wcnUpiSlwTt8ScWBLj5ujUE+Pm6PVKHDfHOjtuYwU2IAMFqMAOjJvDyhQfKw0bJPsZdy6JCWy/0WRLJSskDG6J7aUdKxiwWsJgTdwTD/B6T2hzSUyJa+KWOPlq8u1Lx27Wvv57u5Yu6Z+vttmN1Vfb7OboAzyuxCUxJa6JW+LVNru1hiTWxMvXxmUs33nb2LFtD+7Gy3cYU1yLHd4W3BKv96PYeIDLlbgkpsQ1cUvMiSWxJl6+Yrx87VroSlwSU+Lla9dLLTEnlsSauCce4HolXprWh/ZDSrbtYQWCD573w6oQpGJ9aD+ezpS4JpbES2feS6viz3npNOMVL9ZXvP576yu5EpfEy9f6Z8fd4paYob/ibv9zTdwTD/CKu9UPK+42U+KaOF3veh1vXeN6H29z6od1/9fF9ndtLbVK5Jx74uHcV4mc88pLbGzXPte13YrhgiWxJu6Jl75OXrGwuSSmxDVxS8yJl2831sQ98QCvWNhcElPimnh5DWNJrIl74gFe9//mkpgS18QtcfKtyXfFzlx/d6uhCx7gFUebS2JKXDEuLY1pS2Pa0piu36NZZtNXNRzN5XW3arhgTdwTr7bZvbRibXNJTIlr4paYE0vi5VuNe+IBXrG2uSSmxDUx43pX3DW7/1d8Le4XrnH93m2mxDXxuhbrz86JJfG6Fru312/i5gGdkXxH8h3JdyTf9Zu4OY3dSGM30tiNNHYDvuWC1yoTo/lwqZd1zy9e9/zmkpgS18QtMSeWxJo4+dbk25JvS74t+bbk25JvS74t+bbl24174gFevzWbS2JKXBO3xJxYEidfTr6cfCX5SvKV5CvJV5KvJF9JvpJ8JflK8tXkq8lXk68mX02+mnw1+Wry1eSrybcn3558e/Ltybcn3558e/Ltybcn3558R/IdyXck35F8R/IdyXck35F8R/Id8F3lZ84lMSWuiVtiTiyJNXFPnHxL8i3JtyTfknxL8i3JtyTfknxL8i3Jl5IvJV9KvpR8KflS8qXkS8mXki8l35p8a/Ktybcm35p8a/Ktybcm35p8a/Jtybcl35Z8W/Jtybcl35Z8U76ilK8o5StK+YpSvqKUryjlK0r5ilK+opSvKOUrSvmKUr6ilK8o5StK+YpSvqKUryjlK0r5ilK+opSvKOUrSvmKUr6ilK8o5StK+YpSvqKUryjlK0r5ilK+opSvKOUrSvmKUr6ilK8o5StK+YpSvqKUryjlK0r5ilK+opSvKOUrSvmKUr6ilK8o5StK+YpSvqopX9WUr2rKVzXlq5ryVU35qqZ8VVO+qilf1ZSvaspXNeWrmvJVTfmqpnxVU76qKV/VlK9qylc15aua8lVN+aqmfFVTvqopX9WUr2rKVzXlq7ry1Xy801e9HM3HO33VyzmXxJS4Jm6JObEk1sQ9cfJd+Wo+9+mrps6ZEi9fMm6JOfHyFWNN3BMv3zkHqytfbS6JKXFN3BJzYkmsiXvi5CvJV5KvJF9JvpJ8JflK8pXkK8lXkq8mX02+mnw1+Wry1eSryVeTryZfTb49+fbk25NvT749+fbk25NvT749+fbkO5LvSL4j+Y7kO5LvSL4j+Y7kO5LvgG+7rsQlMSWuiVtiTiyJNXFPnHxL8i3JtyTfknxL8i3JtyTfknxL8i3Jl5IvJV9KvpR8KflS8qXkS8mXki8l35p8a/Ktybcm34r80Hb+mWvttvPP4pKYEtfELTEnlsSauCdOvpx8Ofly8uXky8mXky8nX06+nHw5+UryleQryVeSryRfSb6SfCX5SvKV5KvJV5OvJl9Nvpp8Nflq8tXkq8lXk29Pvj359uTbk29Pvj359uTbk29Pvj35juQ7ku9IviP5juQ7ku9IviP5juQ74MvXlbgkpsQ1cUvMiSWxJu6Jk29JviX5luRbkm9JviX5luRbkm9JviX5UvKl5EvJl5IvJV9KvpR8KflS8qXkW5NvTb41+a78M4si+iondObEklgT98QDvPLVLFjoq5zQmRIv32LcEnPiEfmQdy5aXBJT4pq4JV6adr0rF23WxOta1Nh81a5l5aLNJTElrolbYk4siTVxT5x8Vy5S66uVizZT4pq4JebEklgT98T4zeI0F+I0F+KVi9T6auWizS0xJ5bEmrgnHuCVizaXxMl3JN+RfEfyHcl3JN+RfAd8Vx2ic0m8vIZxS8yJJbEm7onNa1a89FV76FwSU+KauCXmxJJYE/fEyXfln1kd01ftoTMlXr7VuCVevmIsiZevGvfEy3eu41ZZonNJTIlr4paYE0tiTdwTJ9+WfFvybcm3Jd+WfFvybcm3Jd+WfFvy5eTLyZeTLydfTr6cfDn5cvLl5MvJV5KvJF9JvpJ8JflK8pXkK8lXkq8kX02+mnw1+Wry1eS7clS3GFk5arMm7onNd9i9unLU5pKYEtfELTEnlsSauCdOviP5juQ7ku9IviP5juQ7ku+Ar65cNN/766vQkWZRYV+Fjs5LpxlLYk3cEw/wyj+bS+KlycYYa905ZPa/7hyyuCSmxKvNYtwSc2JJjHtMKfmmHKIph2jKIZpyiKYcojuHWHsqJ5bEmrijPSuHLF45ZHPyTTlEUw7RlEM05RBNOURTDtGGe1tb6mdO/cypn1cOWe3h1M+c+jnlEE05RFMO0ZRDNOUQTTlEUw5RSeO7c8ji1M+S+lnS+K4csjn1c8ohmnKIphyiKYdoyiGacohqul5N15tyiKYcsmoiN/fUzz31884halwTr342/Z1DFktiTTx962VxbTlks+UQ55KYEtfELTEnFmPLFZZDnEfE8iqUrPP1uL4KJZ0pcU2Me6lfnFgSa+KeGLHTy5UYY9oLJa6JW2JOLIk1cU+Me2mVStZZQN5XqaRzS7z60PqHVh9aO0kT98QDXK/EJTElrokbeL3WYHPLvl5r0PXPV4GptX+91rC5JKbENXFLzIklsSbuiZPvej/C5qt9vR+xmRLXxC0xJ5bEmrgnHmBNvpp8Nfmueuh5xEJftZfOnFgSa+KeeIBXPfTmkpgSJ9+efNcLEjav3icz2vx5H824uSXmxJJYE/fEI3jVYTqXxMurGi+vZsyJJbEmXl5sPMCruHlzSUyJa+KWmBNLYk2cfEvypeRLyZeSLyXfVfZsa5BVn+m8vOYYrdrLYjlhrBcgNlPipTmMW2JOLIk1cU88wOsFiM0lMSVOXrzyw2JOLIk1cU88wBa/ddZJ9lXD6UyJa+KWmBNLYk3cEw+wJl9dvnZ/KiWuiZcvGXNiSbx87V7V5WvjrsvXxrovXxvHXhJT4pq4JebE5kvmZXHt3BMP8Prt3lwSU+KauCXmxMl3JN+RfEf4jlWP6lwSU+KauCXmxJJYE/fEybck37L0xbglZvD6bZ015GPVizovr27cEw/w+m3dXBJT4pq4JV6+w9h857FwY9WLOvfEA2wx61wSU+KauCXmxMm3Jd+WfFvy5eTLyXflhPkdoLFqSut8D2KsmtI9FpzGSNIYrdif7xSMVVPqXBO3xJxYEi/fxT3xar95rdjfXBKv9rPx0rF7Y8Xy5tV+u64Vy2vsVixvpsQ18dK3+2rF8mZJnO63nu63nu63kXxH8h3JdyTfHcuTy4qvupgTC3jFxaw3Hus4Q2dNbG2bdbZjHWe42X4Tna1ts+50rOMMna1ts173wS0xJ16+zVgT98QDvGJwc0lMiZcvG7fEnFgSa+KeeMT9UHas2fXuWFPjlpgTS2JN3BMPMCO3rDpVZ0pcE7eIu1Wn6iyJNXFPPMArNjeXxARe88lh98N64XZYP6wXbhevF243l8SU2OYzwzTXPHPYPbDmmZt74hG86i2dl34zpsQ1cUvMiSWxJl6+bDzAa865uSSmxDVxS8yJl5cY98QDvOaZm0tiSlwTt8ScWBInX0q+6/W6uW8wVo2lc0lMiWvilpgxLlUSa2KM6aqTLHP/Yax6yDIPVhqrHtJ5gNd6c/N6N6oYU+KauCXmxJJYE/fE692oeZ/vesjNJTElrolbYk6suN61vzT3QMauddxMuMa1ltzcEnPidS3Wn/uzX4t74nUtdm+vfaTNBTo9+fbk25NvT77rJfzNaex6Gruexm6ksRvJd+eB8d///U9/+Mvf/u2P//jz3/76L//4+5/+9Id//q/4B//xh3/+H//1h3//49//9Nd//OGf//qff/nLP/3h//vjX/7T/qP/+Pc//tX+/Mcf//74t4+e/tNf/9fjz4fg//7zX/406b//CX/7ev5X594H7b8+1wASEtY+aJTnGm3+XJhCE/x9pQ9/n57//Trfibe/XwfF3y/6jYso8+2UfRGPeHt2Ee25xgzPJVBq/PVW7/71KuKdUB+b/rgKah8k5CAxdw52N6AJKnf/vhS/Dx5P5uLvVyofBPqhG5u4wuM3uD+VGKduIB+I+niu9FTi1JP2jfLdD2ksPvdkOdyRZNWcpvHI3Emj9Y8ap7uyxoAOdOdjW+n2hdineX1A6fmFHDRYqg/JAzEk8rEVc/39fFTHiFFleipxuLPsmARTeOyX4jqk31bozS/jsXv5XOHuZejzyzh1pl4eYQ8czyTokGkev9OeJx4/teWpRHm3K+hwZ5KdO7oaUVKuaZ8ybj00Yh4msBox9HkjTvnSXow3iTkTQ6S3dv9C7ECpfSFcnl7I4cYiJM3rqcA5wobETZHSzecR7e8nvZNGI/yIPiYaT5NFvY75O37KOfXGIxt+1Djcndx9ROTipNDu3xiN48bgFGWfb4x6uD0fW6ojNAZ6o+qnKzm04zGV9FF5zB6hId8Yk+Gd0Vovz8fkcH8+tsR9cvNYBeZx/TgzmYHwVIPtwece2Mb4GXhMfD6q9B+4O8a7d8f5WuSKqRoLj6fX0k6/73aEzE4cfaSW6EcNevf+ON6lN1PgUeNmtDR+P1qavN0bx5EdDdPHkedMn0f2lEvtYKGVSx+PFzGynzXG6Ue6esxRS7+xtX+czvMhlzbRGouadId91ji2g7nEZGEc2nG4S4WiHY+pID/VOI6MUCxOitT8g/+pV7mdWnJRtITkucbhTm12UO/q1cdW6UsaXCLquKSo+9a12G75upZWDv3RTxOHNmJqLi9qqGJGqvSaRsestl/PNc53iF497pDHdP+pitBv/XVQO2ZxtWN+V+N5Ow6jO58fa6zmH890nmQz4d+aD7X3yIc6+PnIiP7WPp0v33g75gsfz9txymVVe6yoR27JxyWDXu/26bEVLfY4Hjup19NWHGdkGnsDj73v/nRGpvWU2euIzJ7j9rPGaeFhb8+uuKWRI+66r9ElcuH4kMc+acj780J9+y4992iPGZ1QeW1UpELjMCr9tIYaNYblwVKf3KXndsQmQX08cH/eDjrNphpGJe+KfrrT+6EdlSUWx/KhHfc1WmuxBmK6nmvw+3dYl995h1X7CNself5a3NcrNqEeW876fGTH773Dqh3tu9pRD9EyTmuoFntAj3SWr+VjO8bhLp0Hbm6Nx68dvaQx7ON/a/VS6kGjvX+HDX73DjvHLLYo+4f9go+xMvSUB2M29/iNrE81jndHjW21B+lrd3rtcYc99kGeath3V956onFsRYsl5SNQ6qEVp2FJq59a87DoN0RG5MHHs/LrIHLaGpPYDBqi6QHLp4mYfZ7kqYj61Yw0T6/tGxdDhA3kVk49ou/HnH2f5L2gO6Yxbg0/+u1p+rDPmBxGNzrkSvOozw8XTs+cavRpu55vqZdyHJcSTxdI84bSpy4t9bT6uQqeZV6lPd0POt8jreDnYRxu+NNDG27qg8OcZvy/PIc7PTu6PTj6/uD0nxic8SODc3xmwYKth6dPodppeysyUdM+nj+bPD2+qRce3JcPOVG+IYJlUH384h1E2vvPOInffsh5krj5lPP2lRwec97u0g/Pkr4zLiVSc6VxyKtfPJG6VVFQTo+k7j5eO1+OFAqR4+XU03S3YrqbZxKf09lZJPb85rHfB5EfeKhf33+qX99/rF9/4Ln+sUsHliGjvTgu3U7WXRfTyngucnow9Vi2xz6qXvVp2cj5Xh0jngVfdMirrb5/h7T29h1ykrh5h9y+khdT4qMf4/fuauPQpf0HunS836Xj/S7tv/lXJt+lXF77lXn8zREi/TAu/BNFUj+QUPn9hMo/UCf1AwmVf+sEky+MydUPxW9STo8cOx7T6SEln55KjRKr/yuvY/o3ykuJ43lSbR0LiM81ssenUjcrQcrpsdTdhxdnEbaPoOxbhOrzZ6jl9Giq1thurzW1Rb4h0a6KXabyVOKQDRtFKxrxc4lzf9ysr7GvGz1dIPYSW3e90LOWnCRu76mcNs3u7akcJSQesQuNFyUik0mTg8RxMhV3x7xlD71x7FIa6V4/iPT39+y/uM3ulj6V0xOqu7VP9iL6e49iz+2gKBkgouvQjuu4excPdJkPIueO1dhmejwYufjQsfx2PjtK3MtnXX9zPvvQH7mG/pf8fpS5W9Bl78Y930hoeGbG+K2h10X6D4ikGP6myL0CtXJ6XkVVIvyqPq/qKqcHVo//OLbfesqxv4oc6/5GbJ/3q78o0uNNB+q5EPKbImgJ8Q+I1Osgchqdm3V79trcYQrdYwqt47UhbkiPjbW/ep9EaUXNxVDf65ObNZV0enT1saiyvdaxbUS1axudXxO5W1b5jcs5DfHdfNKfJyU6Pb+6+0bI8flVjSfPNdd3/tqQU0EAY3OT8zbrpxdLyvGhb8yj64eNOP2kcXr36rpSCU57rsHHZzWowXn0Kj+/mmO3xlL6w8P4X7v1KDIwNuPwy3X8PZcSd8ljxXyYJtHpEZZGyVmuE/38xs0XDQmN2ZDn6y06vUiFPPB4kJZuk87facrd0mii43rpXm00nR793C2OPorcrY4+t6QVvPhS+ostqdGz/KEK5Vsde7NQ275++vyn+F6l9lnkZqn2WeRmrfYXl9OjY6XLiyJ4qM6D+cUVgrSoNHpwe10G+y+PsdJXZe4WsVN9u5b1KHFv++QscW/75LxXeLeYno6PtG5W09P7L1t90Y4Rc/t5mgY/FTm+tRpPCucZI69JxKXM4zBeWqBrvaJLtep48YbXtNWvXMZhgPu7+x5niVv7HnR84eoH9j0+9ge90a14iMv11aymWLw9WK7no3N6FHNzdI4SN0dHfvPofOgPvV4fHU0y5VWZu2/n2Acz3vyxOEnc/LE4SvzAj0W3GpzVH/MToIf+aO8+AzlKFMUxDQ8u7TURbEk9mPhFkagtfTC/lus7YZ0yv3H34v16+y0uOr2C9UMyRLEepZoKKj+/h3VfpNCLIjffSyN9/6iAYztuvpl2FuE4BOKRjctrIo/xiB+MK28o0eeH5u3958x2bz+/nHtvydHpCdH9wzVOafrmu3ZnEUYxs37YPfmOiEauZs1VM7+IvD8n6O/PCfrbc4IveiOePnCv49Ab/fTrFzvtj4VkPYgcl/fxK1yupxt9x2ZwFMwL1+vFa+EoEnk8P+CXReJi5Bovi8SWlhxeLT2P7833U+n8YtYPiNytrKDx/tbAeH9rYLy9NXDujZuVFV906b3Kinp+r+peZcUXPzT3Xh4+i9x8a7dex46999qufXHiaW6++d7uUaRRR3bO0/lfRN7eGjhL3PqhqeXtrYFzb2AzutX+/DXmej4R8FZvHCVu9kZ7+2f3dKvffRX6LHLzLdOzyM0XPM8iWDBWfTX8K0peHyLPW1LpB953qfQD77t8MTr33t+tp6cvt97fPSrcO5O0Ev9En8r7fVpPbwCus7JXSx673alP9VNL+rt9emzGzfeZzyIS1fuly/WiyM2Xoi1vvjsDOIoMFhyjlqttPh+CdBSReIo78pT3uyIlRNLofFPk3ovi9fQI6d6L4keJxxPpmCdeueqn6XcupuNixqvdqjVOidBUKPo9kY4B7qkE/xeR9rtFqODt6lIPo3MUodiyfcy5rxdFqkQM55nRLyLnd6PvHShQ2+noi3unwR41bh9y2d4/5fIkcW+Zd5a4tcw798bNZd4XXXpzmXd6BHU7yR/vsptHEtTTk6y7RxJUPp7t1vCIoj09Sbry+28TVn77bcKjxL03zu5fiR6u5NSjI+ZFZYynxzBXOb34MqJGlR+/NC+249ZhE/X0rObeYRNWAn7YjIhb/UNp6afDJs4i2Gt+YHlNpFxXPJNoh2Mvzi3himPT5VWRmwdw1OPrQLcP4PhKpgtk0iuB35TBI5IHpxcbvisTgzQlDwdmHzu4Dgx1ntl8a5Saxq94LuX6VeR4Tiy+KFIPSek0m7hG3Pzl6i8lgw+ztFSv/lnj+PzqXjI4vaxVRjzgeDyYT3Gs/X47bnbpeWhjkfUY5fpqABZCGVepLwcgNUQOycsBSFGwMCVPR82f5mrpgUt9dbo3QqI9lzivkdKKL78Z8Xllcnwf4d4m51Hi3ibnoN8qcXPX+NyhsRH/6Nv2tEO/2Gy9d2ZkHfID8+fx9geC6viBTwTV8QMfCTp3680jMNv1A2dgttMjLNUoNXrcJNeLIjdP0jyKdIoa9d4+VG18R0Ti7bcuIgcReTeLnNuhMRPvyqex6b+3HT0ehM9Ppj9vR3k7q54lbqXEVt5OicfeuHtaazs9wvoRkbtbPa28fazwUeLeVs9Z4tZWz7k3bm71fNGl97Z6GpX3f6rOifnmqZ7t9PDp5i5N+4GTBdv7Jwu2908WbD9wsuC5R+/t0rTzm0e3dmm+aMetXZpW3z6vtZ3mh3d3ac4iN3dpjiJ3d2nOLbm5S3MWublL047PnW7v0nwlc3OX5guZu7s0X8nc3KU5d/DNXZqzyM1dmmME3dtSOAbyzV2as8a9XZp2+vzVzWRwfE5yc5fm2I6bXXoe2nu7NF/cq3d3ab6QubtL85XMzV2a8zTr1i7NFzO1O7s0X9QZ3vtKSeMf2A84itzbD2j8A/sBjX9gP+BcNNlwjkYbzz++cBYZKJosrb4mcveTKU3qbxa5vUSSt7+LcZS4uUQ6StxbIh174+4S6dylN5dI+gMfGfqi1Pje10aa0m8WufvNkrNIx5S+66siGumIzpcjP5DTTl/Euv0h9HOfYH3x8VPony9nHIcYs1ceeR38LRFNZ8H1pztYx+dYj/Veh8igV0Ru7mF9cTE323F6ZxBL0Eqnm/6Y1e7NSM6J8daM5PhCya1WfPFOyr150fHlR9zs/OFcy++8QSl4p1RGfVGkx3EkNC5+TaReFOXxF50u57R9ffNdzqOIIItIvhz5hgRSiAwpr0koWjGeS5y/H9mwU/LqO7YfRNqrIgSR+nxc+Hr7mcBZ4tYzAb7ot0rcfSPl2KGoQtVU8PzNUemYh4xXM0huycsiPU7eeeDLImlGdBI5Hg1xL7efT5e4ldvPZ+aExiB58dideOthkD59TbC+/ztX3/+dOx8kFo+LWdvLB4nFMoQ/fInmeyIDp5GNVw8S64yW6KuHq/UW3xvo/PKRZrF5xoNe75MBkRcP4XvsusQ2Hmv9CZEXD+F7LGViG0H41eMABbsierzZTiKKw1I7PxdhOoSfjpjK9Ot6/u4Fn97Aypcj6ciQz3uJX7VEoyWHt0D49HksloqDCdPDxXq/HR3f2eiX6KEdxwqWWA89fkL5IHL82jC2ztIOzecjaI/3SMc2/DgcEMWnD0rdvkdOH7a6fY980ZKb90h/+x45teP2PdKuH7hHTmf4/cA98pgPR39ch6NW+fRJKab+/z4P5tP0/TQheezdxwEZmout+ncuJs6B56vXw8XID1yM/uaLKVE49sAXf/W4xiGPj5SlL4oQWkL8EyJSXhWJB9CPX4LrVZGo633ovdyx8c0ffvmI4scPAETa4btB5w+HNFQIcJ6If3yNi/ntjw+dJe6tfI9Prt6XuHmy4rFDK44Nq/r8Iyp8+kzWrQOQzs1oWH7nk+V+bUZ7P5kdt0TvJbMvPkxDqIUhfnoxX4ikD0lIP4gcv0Zx8xM5J5F7e4BniVt7gF9I3NkDPH9W6tYa/osvU91Zw3/xfTzF9/H6i9/Yw6klD3xaB8d6fCMnvihFrbTnGsf3e29VOPJpc/deheNR4l6F4/0rUXqtR2uc/fuhuupbGkwI+/q0SpL78V1WxmbG8yrJLzRuVVp+cYd15MFWnrfj7e9iHiVu3h2nA+1uHi/Ap1MCCYe3XAeFUyvufamFx2EV1WMl1sfzYjU+vRwlOO1XSnqU8rlY7Rsi/KJIix0qyVOoX0X43XE5X0scUiKlv3otOBpeKK/VvycSs32h8erQ1PgOtdR8+ssnETk9XSoXNg4m59rkdl9mUEylBuWvg31PJM5eGrWMF0VQdjOqyIsijXHU0HVqyeGGnYcUhch4Xs8o1/H9/jvHFp/b0WNVOHpai/3ajrsicr0qEj80D5TXRMpV4hS3B+tJ5jTEHIlt5InEN2+2jpstx/H3RGRA5HkAfuM3/GmRtZw+hnXvq0/nOfOIObOW+rwVp49j3vxc+Fmkxv5Dq1oOIuMYe4wygudXcz4t8NbMW05vW92bWx0l7s2t5Isy/juzGjntLd2b1cjpLanH3mEU3RV+/iN+f1SeryK+uDui8Jb0+SsJR435ddG4mKGvalxva6QTC3Me+56G4GXt/lzj9JDq5oroC41bK6LztTTcZE36+xov3mOV4jsoH75J/0t/nFbMIukLUYeoOzZEGcevyvNUWMcPDO74zYOr+PbkKXDb8V282OUqJT0p+2anDnzc93CXnZ5Q3XupSdppQnXzpaZjO+691HT+zbb32pdGOxzU8IVIbII2YXlVJI7mbO00ezgd9nK3xNyOYng6vDdLzM+Xgzd6Oa/hf7kcrj9xOe03Xw6XmC9zXsb/ejny5lz33AyO23U+vz8041SnUtIB7mmf+nOfjrdXiMdWhEL7sOH+qRXyxZlreJnwSttN8g2Rq0dh5oN7e01kxLczHzz4pR5RFKkcxuV4vtn7Eo8+wJtIV+fnnco/0an8A50q/AP3yDHsRPGuWi+vJXjB4+nHVtz1qki8QiCtvvhTIxyzd5Hr1ctpMcWT/MjsFxH9gTPYReU3J3gRPELU63Q5p7dWb74SdWyJ4rNDj4fMhyHu1/vbCMfXqm5uI3R6exvhJHFzG+H4qPvmNkLnt7cRTg+bbm8j3B6VwxLvfHfc20Y4nj95cxvhC43rbY2bq8Rxd/nOr/Xp3e2Ms8a97YzjV61urnjPGvdWvP38ClHcHx9KmD63o//udtzbVrmt8WLM3dxW0eNHre5uq4wf2O8a9JsH5t6WiF7yA1si54bc2hLR43mAt7ZE9Brvb4kc23FzS+SLScytV7K1nN//v/UqtL5/rOBXF3OzHce6v5iCKF2HTaJTdViszNK7TK1+ayETL/4+uI4XV0MtnX8l19PueLs49Shxc2S/WPzf7I/yA/1xPDTu5hLzKHKzR84PqfNXda78fPl7z7qvKknm8PC+lB95ZH6SuVdgepa4VWD6hcSdAtMvKmcunIp0vVwINCpEnpfflNMLVTpi5t4ftwzSWfuGSL8K3kFqz0X09ALRzYM0tcrbq1Q9Pa66t0o9Stxbpd6/Ej1cyfG5yq2DNPX0MtXNyd0X7bh1kKaeXqa6Oac6PSG6e3zlsR335lTH7rh5HOFZ495xhNren6a2n5imtrenqecERHFURqf8WezPWez9cns6vpxyq1Je+f2zgJXfPgv4KHEzhd2+En2tQ+8VytP5HZs7dfJ6Opzi5ir5C41bifT9Miw6p8CbxbZ0PCXjXpnsUeNmlewp6u/Wld7WOJSVnjXuVZWeNO7PkI+9erOm9NySu/fIsU9u1pQeNX7gau7eq+druXevth+ogb6tcbhX2w9UQLcfKYA+9+q90uXzD+6tomM9PpW6U4hxPOrjQ71wLgdpn1pxKky59arxWeLeVszpodTNQ7aOk8p4TN9Kfhf9l874gQN/tf/Igb9vT2FO55ff/EjrSeHeN1pPl3H3E63Hrrh3Jq2O40rw5pm0x8+ixvkej4Vl/v7QuK/x6IUrXc3zQwZ0vP3hn7PEraDtp9c3bn6D7PS+YI+nLw98ti1e3/8U8ftfIu4/cJf39+/yfv3Euemnb9PQFSsfoucv5Lfz921uvdR/jhSNTxkX7mmv8nOk9Pc/TdXf/zRVf/8Z0je6ozw/J+W481IayiXSgWn0skZ/XyMXXn7WOFV/1jhdiOb0L35me/00MKeG9IqnrvnLC7+IHOtQY6pPPe2rfU+kx8GJ1PN7pN8UQUuIf0Ak7Wl9FuHTo3mJ/bnH9tZ4bXAa0siHMwK/OcJx1tljsv+8X/n0Qyc43U96e6lHGp53tNGfD805bFKlUn8eNv10BuTNMrRej1n1QplROm7pl4acppfK8T1H5ZFmQv2TxvF8X5RvtLTKLvpJ47TDfyG/XynyftFo50e4lB7h8vOrOXZrLG9rTU/of+3Wo8hIJWDPb5Lzm1MlbpIidPrxPU1qbq1wv2hHSMx2PD8ntJ9O90PoPXYN0k3SPx13eKppb/Gk8YHP23HS4BqFU1wPh8ny8cDEWOY+UF7TwGOxucH8VOM8Mi0OHHlwe1klKskfPJ73idC7awChd9cAckwAI5VfjPqsRqDz8RiI+GbRoOczzbNElE0MEnppmVvjzJIHpx/vb42sph0M5fJcpfPbu1NniXvTd357d+ob3UGvd2qHSn0x6BTzqgfL83Mbu7y/spL3V1bye1dWH7vjcDDvV0OjSeX5iZqib2cyfXs343QlHQcfPfiQk+1lhPe2do4SRXGI3INLe00EC6sHE78oEl/sfTC/lFc7YRrymJA+D145FT48VqnRkp4PovyOChE+JFNTDcbnjy/c1ij0mgbjbE+W8pLG3a/I6A+8nXvSYI4NmkcSyaN73ddAjS/rh2PkP2r007s5NxPzUeJeYu5vl5KeOyO2Vbjn14x/6YzjB6RiI+Ix16wHkdMZ1HdOjz03g6NsSjjXCX3rWjhezn9sr/DLIjhj9Bovi8QZtFL0+b1+/Dh9LO14nDTe/r3Ut38vjx/Uu7n7f/4o383d//EDu//nqO3ptfz8ksGnm/39p1P9/adT4/2nU8fOwHq95RfhPnfGOH6B6lZnjPc/YvXY3Hw7G592yTAXq5q/P/Pp6edRQ7C/pVSfaoxL339GP45vSt38wS+nO+zeF4ZHuX7gYkr5iYuh4wZGzCspf7jp0zO7UU4DjLdP086jyjeaIfH995JLjT43o5zu9ruZ8CgyWHASZn6E8flrAEcRuTzuRv6h/K5IlKNJLov7ReRYO5Vey5FcF6ffaUmcIztkvHo5Wn0uNDQ9Hf6eSEfH9sPXZwbV3yzyoSK+ytOOPYtQrLkfv/nXiyIVH/fLv1e/DrGeLufWQdLllF3vTcvOErfmZccruTsxO4vcnJmN01Oq2/moyHGH6c5rSqO+X+M/6ts1/keJezX+96/keYHcuUfvvaY0fuBYvnJ6RE2CbwNLz6XC/A0RbB08sLwmcvdNpXNL7ENqvqlzEhnHB6rxbaHJ6bdGvyXDOAvnccv3l2WiY6akHGROPVMHujf/3nyre1scA0X5idmvIqeD8e69+nSKnptvk5017r1NNk6FFffeJhvHE/5uvk12bMfdLj0ObUw5H6NcX42cQngSWVKO/uYtj6/aPlheDkCK5wBT8hA5x+nAvQ/jnGcUtz6Mc565xscLhvbnXwkc8v6GgLy/ISDtt0rc/LbXuUMlVjaaf28+P2kab6/C5QfK/of8QNn/OB5UFs+qNH8D/vMZHyeNx2Mm79PHQ6v+mobEcVZd5Pnpb+O423PvRj81Q6NQpSvroRn8W5vRY7f78Zjg1Iy3P+l3lrgXs/r2kSfjFLIXxeq9VHreGfzu+vCocGt5eLqOu6vDo8bdxWH/gVdTynEf8ebisL//qbTR3/5U2lHi5uLw9pWcFofX+4vDHzigrJxeHbi/OKSfWBzSTywO6ScWh/VnFof1ZxaH9WcWh/QTi0P6icVheX8lc/3A4vB6e3G4bsv3VocPDXl/eXhuyd1epZ9YH9afWR/Wn1kf1p9YHx6nA7eWh+cJxZ3VYX/7aeB8hf39hchD5QeOoj49+348M4hXTdrIj3v7fY2BYoLS6nONY919i7p7pufP4E/lO/emm0eFW9PN4yzv5nTzqHFzuvl4wPoDD0fH8dEKJli9P787ThrUcThX1/qahka80Kkd5aL+E1FHP7H+P/YJJnuj1MP1nF6sunsA/PFsiRbVnY2vvMz7vF92erXq5gHwD5H3H1o9RN5+anXWuLcyeWjocWJ05+27h8hpiXTrFPh5HOnhdr15DPw3xkZPY3O8S24dBH8WuXkS/Jci1/si986Cf2yM3j38nF/s2JunwX8lcus4+MflHF85u3WQ2Vci95bT58u5dyJ8ubj89pbcOhP+GyKvBuDNU+EffXKandw8Fv6r+/7ujcK/e3junQxfrtMnqu4eDf9VU26dDT/rut5fCQv9xEpY3t9f+GqOc+t8+Pku9lHl1sHsZ5W7D8K+uJ67LTk9QMabvZW4vrZaurWWPq+W7qylj1X5t9pwruu/04bzu0mYi3PP68ZvvN8keEdKRn1No8cr0pTPHv/eO1JxSv0Dn19LP33F4O6LVkeReyepnyVunaT+hcSdk9Tl/O3BhpXN9drIftBoL2oQNOrzQXlswr79mvUXGreeTq6d+9+pcfMbBufvW8cmuqZzZ743LjH1Jh0vZo/cjlc1esynHviqRtqpOWm8ndHl7Yz+xeEIoTFIXjxfIWa5g/TZ3tnxrIl7PUHv9sTxBBDUmbDmlz2+c4oIvtDJvZYXNeL38YEvnmbSGe149VSVHquoh9yrp6oUrFzo5f4Y0DiMy2k2ynhrjbX+gMZrp908NlVj5164vaiBJwh6useOX6PF4V2dn2uU4zNRHTFv6df1/FWRcnyAl69HBh8emX3RFnz1pBzbcvzsQEyjHqOdDrn+Rks6Tuzul+ipJXLcm41vjfbCJ5VTdRTjYVN6RvNpY/V4p3QskcfhHJByrHi9f6fQ9SN3yviJO4XoB+6U8RN3yunZ1f07hfh33il8xSbi4+GIHO4UOn3QmeIgcqb86/dLScBpKaMUr+JrLvfs37iaOEmTr14PV3M6d+721RyPnP6Bqymx/f7A137/uMZhXlxJX9MgtIP4BzSkvKgRtVJcr+tFjSh8f8i92qdx8jXXQ8ycNSo02vM5xfmA43gRlvIe2efDiR8/nm8fsvKFxr3Vbmn192rcWzEf+7TiHJ+q16lP3z1m5diMhkV3Phrp/9GM/gOJ7HQ68c1Edj5Fm1AqSfz0as4ajI8QyfMe6df5lKZbx3kfRW5u/B0l7m38nSXubPwdj4u/tXw/Hzh/Z/l+/JW814bybhvaj3zns/3IZz71VHt3/8MwR5l79+hZ4tY9+oXEnXv0/I2rm1+4OWq8/x2l+/fIV9+FunmP6M/cI/r+PaLv3yP69j1yLK5GZVbJOf3TKugsEY8eSs4i35HA8zFKh5F9lngs/I/rqIEJ7qsaUQEhaV35nUvJJ3ikLdXvSEiE7cenhd+Q0CJ4HHTqjE6/W6UIyiolP0b5ngq274oOelVlxIK95I3Vbw0wak1JX4uYGpP1x91SXmsFngbX66ULeUySGRuiaZN53FVYGwGrN0vrrzTisSGI8/L7SxFXKk7creO1VnD6GlPT1yQEFZB9vHYhuDkrvXYhFefTVn7pQvCurTZ5RWDEGnDwaxdxxZrpwycUfgl1un7r7T3iwcWg13oi7u2h/GZXviZQCcXoVJ9/1+YoEaeNPnC8LZFWKt+SiPB6bMTxSxIV3/ip7XpJosV0q/L1Wl/gc0W15pnwqxKvDSqqAGvOmd/qC9QStfraoLaKotWqr0kUlPHyi4Mq+HaMvNSKoh3Hgo/2kkQ6njw/Rv8sUeh4zAoh/+fPPnzabjq2A1837MyvXUr/f34g8VsScYuX/lqUlD7wetNVXrwQlLle9LZEebUVComXwv0x10VfNH27Fa8N6t13Xuj0eOnmOy902vW6+87LaXahMf9u/Xq+oXGcMSJpSJb4dEzjSUJigVakjpckOuMrD/xaK0aceP+YkZVXJOjCHvfV6kutwFem5vcdXpPAZ1V6eelCHosYFPqP11qBD3eVlr9U9w2JlorI8/PxzyeA0vF50PsLxBo71OXDZOc7lxLfIS35wdarHfqiBMo4502Crvj8yi2149mMFfspqbxM7kcaFtz5hZbPzTgHazrPRF6S6DgA5PrwLvbnzjidk3f7bVvi41Hi9962PW6lxLJ7PhM+Xc7xtSfFHrcoPz2+5ysVxQf3crHvLyrH14fxqt6lxwHq7z4OPv5GRs3x4+fypVstf3EzT6x/vZLTi0b3b7XjaXt3j1f/coQ1jTA/HeHjZ+Z+5j5hwqstuWT21969ewDoqRjrCxXCedNyVDmdO3W30I1Ohe43C92OLbld6GbH9D29nruFbqSnO/dWods5GzxGNn3ZlNPUZozPTTlV7sXmIrqk3V5BPFKSzzRbza9Rts/Tf33/BO2HyPunpD1E3j4m7axx8zSC+xejp4t5/xjtQv0Hjkr7oiV4UeUqemjJ6T2me+/J0umkltuHtp1V7p7adlS5fWzbuS13z207q1BB7d2xLeO41rpCZvLhBKuvdO4eI/eFzu1z5L7SuXuQ3LmX754kd1a5e5TcMZpuvut9DOu7h8mdRW6eJkdjvJ0b6nVciN18h/7Ykrv9eh7hm8fJfXHX3j5P7gud2wfKfaVz80S509qwXYIQen631OsHpgr1en+qcNS4OVW4fzHPpwrH6ofYZfuQlr6hwIRq1vp8plFPJw7ePVnnC5F7x5Tcb8lzkeNt2vGr3MqhGfr+HXbSuHuHnZ5h3X1MUOn9xwSVyvHpO778lZ/2fip9fKgcZrTzo2GhMg6/5ZXqu1uHX3TszU861dNLU4SjpK6TRDnORLGN+eBy6tnT+NwsTf1ChaNgb/CHPepvqVA8wBizfPpVlTjgZzyG8uV+YZT9irx63/Z4Zjg619N9e1clfcfvuyqR3x4oL6rcr/z9qn/vlVXfTtjPp7L1dPwfHnipntLk+Szvm5XZX+rcrM1+XJL8zBCddO5VZ3+hcas8+yuNp/XZ//Pxf/74b3/++7/85W//9sd//Plvf/2Px9/77yn19z//8V//8qf9f//3f/7139K//cf//+/+b/7173/+y1/+/H/+5d///rd/+9P/+s+//2kqzX/3h2v/z//o86sr/fEw/H/+0x/K4/+Pxw/gP43Hc97H/6+P///YJmGa/27+xzqP93j8j85/MP/rPn/NH/9D//O/Z3P/Lw=="
|
|
4108
|
+
"bytecode": "H4sIAAAAAAAA/+29CZhdR3UuWrtPq91H3eqjlmRJtmSrZQvLlm3wgAewMRa2MViSLWu0JA9q28KSJVuyRhubhAQIN2FICLl5SUhuhkcSch8ZIXNu7g2XJC/JJZCQBEIIITOEORCSm8sLj7LPUv/997/r1N5nHemAu75POrt3rfrXqlWrVs21i/BMaLV/Dx0++MCeI0fue+Rr/00+tGfr114V7ajB9u8Z7d/4fjxMD0Y7EbJCUYF2eqIKPIrQex4Dofc8GqH3PAZD73nMCb3nMRR6z+OM0Hsew6H3PJqh9zzmht7zGAm95zEaes9jXug9j7HQex6t0Hse80N1HnX4jIdTw2dBPu3T2DeKd1X4LQy9L6NFofc8zgy957E49J7HktB7HktD73mcFXrP4+zQex7LQu95LA+953FO6D2Pc0PveawIvecxEXrPY2XoPY/zQu95nB96z2NV6D2P54Te87gg9J7H6tB7HheG3vO4KPSex5rQex4Xh97zuCT0nselofc8nht6z+N5ofc8Lgu953F56D2PK0LveVwZes/j+aH3PK4Kvedxdeg9j2tC73lcG3rP4wWh9zxeGHrP47rQex7Xh97zeFHoPY8bQu95vDj0nseNofc81obe83hJ6D2Pm0Lvedwces/jltB7Hi8Nvedxa+g9j5eF3vN4eeg9j9tC73msC73nsT70nseG0Hset4fe87gj9J7HxtB7HneG3vPYFKrzqMNnczg1fLaEU8Nna6jBZxsxjBsa4oaDuCEgLtjHBfW44B0XpOOCcVzQjQuucUE0LljGBcW44BcX5OJiWVzIiotLcfEnLs7ExZO4uBEXH+LiQJy8j5PrcfI7Tk7HyWOb3F35tX9x8jJOLsbJvzg5FyfP4uRWnHyKk0Nx8iZOrsTJjzg5EScP4uA+Dr7j4DgOXuPgMg7+4uAsDp7i4CYOPuLgIHbeY+c6dn5j5zR2HmPn7sav/Yudo9h5iZ2L2PjHxjk2nrFxi41PbByi847ONTq/6Jyi84iVO1a+WDmi8UbDioW+NZQHK9yS/TdvX/XM6+F29AAkq7AfpBgmdtXSv/qDwwxYKX14On1MM1wv/TZL36yX/mnzjeFVkB5lMdxG+/fNkPbNxNNoPgA0HyAak7eevsOruszv+GiYnkfDCCDb3HrYCzBPFhr0DvGboauyLwrCM36cP6sbo0Bj/AqKGxRyWtwciDP9R9e3Bui4bIcpzmSJ4c0U14C472z/WpmgXBV09F1d2suNPbSXtV+P9jJIcR72ghhsL4YRwwcobgji/ojizoC4PwbeV8HzofZzlz7ppA+v2QY93SVg/ohl8lpo0G8MpifT/bCgt7gmxKHuY5gL7xsC6wxKZ/TPb/+OtX+xbCx9S/AfIv5KbmWbhcBqiHdGH/VzKchsmDcB7YQ9fOnIh37iD970rve+4+hP/vj3jn9k3vePXDL3m1/3us8t++zyH/j86/5vS3szyFKE7PIesvS3KN43/HJj596f//eDI7e+5mdPfOTPbz82b/nke1b8px/f+dtvWfHJ+77N0r5Upf3EG9/2za2f/e4fmbj4ff8ydOt3fvq+L758zrUfed9TZ/3Pb/3KJz//Vkt7q0r7xzu/8pfvbr31lY+/6VefvPbChZPvfOuHvvBPv/sHP9P64l//9GMfusrSvgzyXGVPrKV/eb30J/tpt9VLP2Dp10H6Ov3E9fXSz7f0G+DlhD18y9vf8Zdr3/S+y/72K3O/Y8Pkax+/8g0f3P6ZVy79yef8/cM/vfyd45b2dpX2b47e9JajSx65+jPD73/T5T+67Jy/+tJPvvsfv/zEnms//Y+f+KWVX7S0d4i0S69Y/YJD3/eBRR+98Ly/uPF/vPO533PWl1Zd/9FfedmPfv7ff+/fwlSZbayX55M6v7Ne+kFLv6le+oal3wwvJ9JpTjbFlnZLPd4n02/N521hjqXdptMWrznvyP/VfFOx4T3feum7R+e+55Nrf/glN73vD177HSta7/xhS7tdpF1zffPzP/4d3/S68PGf/NSbv7zmN268dPzctePP/ZO3/dmyRw/vOuvzlvYuYxQq5Xm5pd8B6Un2ZLD0O8NM2XPT7qrH+2T9vrs675Np76me9mQdudfAQiWdn7SV++qlb1r63fXSz7X0k5C+Qls4Yenvr5f+Mkv/QL30l1v6ByF9lfGBpd9Tj/9aS/+Keulfaukfqpd+i6XfWy/9pKXfVy/9A5b+4XrpH7T0++ul32PpD9RL/wpL/0i99A9Z+kfrpd9r6Q/WS7/P0h+ql/6ApX+sXvpHLP3heukftfRH6qU/aOmP1kt/yNIfq5f+sKU/Xi/9EUt/ol76o5b+8Xrpj1n6J+qlP27pX1kv/ROW/sl66Z+09E/VS/+qOJaMY+J/OPeZF3Hqf2k78tjRfQf2HX3i1j1Htz7zdNPBR4/uefwozmlEXjy31KS/59LfI/Q3z7fYezVvkxNsPmMepK+gk402BzNG8iB2i+ScCFnhnILwQtBzZjjXgLJU5HdyzqxF/Dh/OGcW4+YLWVoijnU8X/CZL/i0RNx+R6xjjlgHHLGOOGJ55vExR6yDjliHHbEeccSadMTy1L1nHTrep1h7HbE8bcJT95729bAjlmfd9rSJfY5Ynj76CUesfm0fre9rfQfsaxQlv8aH3xmfJmHV7feofLUEvxT9WIJ+PBN/BN63+9U377n/2EPrDz4UKHBX9+YSEZcT3ZaEaIxb0D9+v5zeNQQthpi9xe3ndvZeuufoA3u3TD700J4Hv5bJI5yCkW4qec8dUqSxzvg4SToRssJAjlEifpNkqWuUymhUZYtaXdB+bmt1/cHJB2+aPHTk2IE9uBUBzZS5FISK71SZFiAZvptLdDfR3+tEuiCwcRvNQno/EbLCIrOKRSLS4s4E7DGKWwxxWJocGkJ+kzkOmz997hQu07E8WB5nUtwCiFsMvLlc1bVMJv+AoF9AWOMinem+E7+GSMfD0tTQOae2WT5iaAkexruHXmFRv3sFy9+CevwWFpQe+SGmyWO6XijiDMvq4VAJlqUdJPqPtn9bRBfDTuKxUMiL73CrxIdIdtQt20k3ekQ8kwvfIX4zdGWXRarcMH9sJzV97IIcvaM87JNZt+j3hkqwLO0g0X+y/dsKM/0+28kiIS++Qzv5O5Iddct2UlOP2dvkDL8ZurLLIlVumD+2k0X1+N2Yo3eUR7XPqFtsA4dKsCztINF/uf3bIroY2E7OFPLiO7STL7Sfh0vknQhZ4YTqt7CdoV6qbF/ItTPDb4auyr1I6VHVN9X3srQtEcdTy4sFn8WCT0vEHXPEOuKItc8Ra78j1vE+xTroiHXYEesRR6xJR6xDjliedt+P+kq1Q1WxYvC01ROOWI86Ynnaqmce9zpi9WvdftIR635HLNuKwP08w49hOMyse1XHJohncuI7xG+SLBX5FSm9qD6j5W9JPX7jBaVHfohp8piul4o4wzqr/fdQCZalHST6F7cV2iK6GLhPvVTIi++wT/3CNu6YkJfnF6raI6ZnHWE6tsduygvxTE58h/jN0JX9Fyn7UHqx/C2tx29+TvmiPKbrs0ScYZ3d/nuoBMvSDhL9HWSPZ4FMbI9nCXnxHdrjbcV02VG3bCc19XhLrp0YfjN0ZZdFqtwwf2wnZ9Xjd3OO3lEe0/XZIs6wlrX/HirBsrSDRH832cnZIBPbydlCXnyHdrK9jTtcIu9EyAtcRwwDsVEv+eVQfCHXzgy/Gboq9yKlR1XfLH/LavErPs+2gfwQ0+QxXS8XcYZ1TvvvoRIsSztI9A+TnSEPto3lQl58h3a2h/wR6pbtpJ4ew0ty7cTwm6Ebu5yyE1Vuqr5Z/pbX47c2R+8oj+n6HBFnWO0lv2l2gliWdpDoT5CdnAMysT86R8iL79BODrdxx4S8PP+eqi+I2xLpjU7ZXAW/d58q0wrpH7P059RL/7iV8bnwkuvTCnhfwd4uz61Pht8kWerWpxXEj/PHc7ATQpZWmKnH1LGchng3kMB61BFrvyPWpCPWPkesQ45Yex2xDjpiPeaI5WkTDzthdfKTVeU67ijXciesGI45Yp1wxJp0xHrSEcvTF3rWx8OOWJ7l+JQjlqdNeOreq27H4JlHT5s44ojVr37CU65nQ59ptk07fbr3rI8HHLG88hifz3HC8pQrBq/+hHceef0Ox5ZF+3dYyFBh3HpDQXgmJ75D/CbJUpFfkdIL5o/HySuFLC2Ki4HHySsFn5WCj8J61BFrvyPWpCOWZx4POmIddsQ64YjlqfsnHbFmy7Ea1lOOWJOOWA87Yh1xxPL0X8cdsTx172mrnrrvV//laaue9vWYI5ZnOXral2cd8rSvY45Yex2xPPPYr305zzx69if6tRw9de/Vl4vP5zhhxdCv/RzPPuZsf+Ibow55+glPubzsKz4vd8KK4XFHLE/de/YBrK3lfWOGH4Pah1JhTmplQXgmJ75D/GaYWZZ15sDU3iK1B63LOb6JgtIjP8Q0edScG7dJ57X/HirBsrSDRP9oO1OqbvAevVy7iXuv9rX/GBPycp3L3dOl9hGyjjAd2+MEvK9QXo1ce5xoPzdDV/ZfpOxD6aXKnKynz0OssTBTx92uOS0X+RkV6bicUb4Kes8+q2D4zdCVXRUp/U/AO/Y759XjN599BfJDTJPHdH2+iDOs9te6pvkdxLK0g0T/HeR3kAf7HYtDefEd+p3Xkd9RdaKu3WN6o/tG4zMq0nH9qml/c3Lrl+E3Q1f1uUjZu9KLsndLq+x0Ap6r2OnXI5bZ33kJPim/ovhg+vNm+XTFZ1Sk43qL5Zpfj4qP59Zbw2+GrvxEkbJbpRfL36pa/Iq/Kig98kNMk8d0/RwRZ1gXtP8eKsGytINE/6vULiIPbhctDuXFd9guvntguuyoW7aTenoMrVw7Mfxm6MYup+xElZvyb5a/59TjN5ajd5THdH2BiDOs1e2/h0qwLO0g0f8O2ckFIBOfmblAyIvv0E5+q/3HcIm8EyEr3K50XSH9Xw+HmbqrkP5HLP3qeukvsvQX1kv/K5b+onrpb7H0a+ql/yVLf3G99N9i6S+pl/4uS39pvfT3WPrn1kt/oaV/Xr30V1r6y+ql/4Slv7xe+pdZ+ivqpf9VS39lvfRvsfTPr5f+Jkt/Vb30/2Lpr66X/q2W/pp66T9v6a+tl76w9C+E9FXmCC399fXSN0ze6/ClkMnwra16AdAXJb+GxXHGq0lYddt1JTvKx/3i64Af5rEM67qKWMMirk6ZvDCU5wvxRxOysJwx3A903eQ5hoedsOLzKiesGI45yvUcJ6wYHnCU6wJHrNWOWBc6Ys1zxLrIEWuNI9bFfYp1iSPWpY5Yz3XEep4j1mWOWJc7YcXwSke5rnDCiuGoo1xXOmI93xHLq+2Iz1c5Yl3tiHWNI9bSPsWy/n2X8xUv73K+4oVdzlds6HK+YnOX8w23djnfcHOX8wXrra/8XHhZtH/VXECFfvvtBeGFoMc/ht8kWSryOzn+eR7x4/zxutVlQpaWiGMbv0zwuUzwaYm4w45YTzhi7XXEOuSIddAR62FHrElHrMccsfY7Yh3vUyxPW33EEctL96pd7Bdb9ayPJxyx+rU+Pu6I5VmH+lX3jzpiefoJz7bW00d76t5TX/1qX4ccsTzL0VP3zwY/8aQTVnxe7Yh1kSPWhX2IFcMeR7nWOGJ56n5Zn8p1iSPWPCesGDxtYpUj1sWOWJ7l6CmXp632oy+M4SFHLE9b9SpHT7li6Fd9edrqpY5YnnXby3/F8JQj1qQj1gFHrIOOWJ598kOOWJ5zj9a/t3nsSyCuaP92OYc/VhCeyYnvEL9JslTkl5zDx/zx3uTL6vGbl1MOKI/p+nIRZ1i2JjxUgmVpB4n+I23FtoguBt6bfLmQF9/h3uQ/bUyXHXXLdlJTj9nfCjX8ZujKLotUuWH+eK3nciFLS8RxnzhX36rsjjliHXHE2ueItd8R63ifYh10xDrsiPWII9akI9ZRRyzPOuRZjk84Yu11xDrhiOVZtz3ty7MOefrVZ4PuH3PE8vTR5gvt/Cj2Z1rEp2rfG9MbXZfnXTZ1ed5lW5fnXe6wftGV8LJo/6qzKBX6aN9SEF4Iuk9o+E2SpSK/k33Cq4gf54/7hFcLWVoijvf/XC34XC34tETcYUesJxyx9jpiHXLEOuiI9bAj1qQj1lFHrGOOWJ6671dbPeGItd8Ry9O+PH3OEUesZ4PuH3PE8szj8T7F8qzbjzhieek+Pl/ghBWDp632ax/AE8tTX7Pt9my7Pdtuz7bbnbBm2+2v/3Y7Bk999autPu6I5akvT5/jqftHHbE865Bnu92vPrpf+xOeefTs+3qWo6funw1+4kknrPg8zxHrMkcsr3ny+Hy5E1YMexyxHnLCis8XOWItc8Ra5Yh1hRNWDM8G3a92xLrQEWuNI5anvp7viOVlq551KIZ+tft+zeM3ui/0lmu27fj6bztieIWjXJ59OU99XeqIdbEjlmdb61kfPfXVr23HU45Yk45YBxyxDjpiec4DeM5PeO7POd7+tb1euDesaP+qO5Mjn4mQFUYKwjM58R3iN0mWivyKlF4wf6YXy/s1QpYWxcXAZ02uEXyuEXxmsWaxThcW7+U0/BjUneYV6tuq3Ppt+M3QlT8pUnpRfs/yfq2QpSXieN7wWsHnWsGnJeKOOWIdccTa54i13xHreJ9iHXTEOuyI9Ygj1qQj1lFHrL2OWJ718YQjlqd9eerrkCOWp3151iFPv+ppE55+tV/rtmd99KxDTzhiedbHZ4N9PeaI5dkH4LNz2F9uEZ+qfXZMb3SjIl3R/lXfEarQh35LQXgmJ75D/GaYmec6fXalf6UXy/sLhSwtEcfzsOpbOC8UfFoi7rAj1hOOWHsdsQ45Yh10xHrYEWvSEeuoI9YxRyxP3ferrZ5wxNrviOVpX54+54gj1rNB9485Ynnm8XifYnnW7Uccsbx0H58vcMKKwdNW+7UP4InlqS/PdttT9559AE8f7dmf6Fdb9bSv2Xb7G6Nuz/bJZ+2L42b7hafPvvqxXxiDp7761VYfd8Ty1Jenz/HU/aOOWJ51yLPt6Fcf3a9tmmcePfu+nuXoqftng5940gkrPs9zwophj6NclzlhxfCQo1ye60Oe+rrUEWuZI9YqR6wrnLBi8LSJixyxPHXvVbc966NnHYrPlzthxeBVH2N4NtjXakesCx2x1jhieerr+Y5YXr7Q00fH0K923695/EZva73lmu2bfP23HTG8wlEuz/6Ep748++QXO2J5trWe9dFTX/3adjzliDXpiHXAEeugI5bnPJPn/Jfn/kI+O4t7W4v273CYaZeRz0TICnMLwjM58R3iN0mWivyKlF7UPmnL+3VClhbFxbAT6DiuId4NzGLNYtXA4v3jhh/DcJhpsxXqyCW5ddLwm6ErH1Ck9KJ8leX9eiFLS8RxH+V6wed6wacl4g46Yh13xNrniHXEEesJR6z9jljH+lSuhx2xJh2xnnTEut8R6ylHLE99HXbE8qyPJxyxPO3e0xd6luMBRyxPn+NpE485Ynnqfm+fynXUEcvTJjz7Jp7ttmc59qv/8rQvz/rYrz7aE8vTvh5xxDLd8xyC4ccwTOmKUGnsdE5BeCYnvkP8JslSkV+R0osaw1reXyRkaYk43hvwIsHnRYJPS8Qdc8Q64oi1zxFrvyPW8T7FOuiIddgR6xFHrElHrKOOWJ51yLMcn3DE2uuIdcIRy7Nue9qXp1ye5egpl6ef8LQJz3J8zBHL09/zPTTYN2oRn6r9M0xvdKMiXdH+HQ4z+ygV+kuvKwjP5MR3iN8MM/Ncp3+m9K/0Ynm/QcjSEnG8p+EGwecGwacl4g47Yj3hiLXXEeuQI9ZBR6yHHbEmHbGOOmIdc8Ty1H2/2uoJR6z9jlie9uUpl2c5esrl6Vc9bcKzHB9zxPLU/fE+xfL0E484YnnpPj5f4IQVg6et9mt/whPLU1+zfYDZPsBsH2C2D9AJa7YPMNsH6KW++tVWH3fE8tRXv/qJRx2xPOtQv7Ydnrrv176JZx49+9Ge5eip+2eDn3jSCSs+z3PEuswRy2v+Pj5f7oQVwx5HrIecsOLzRY5Yy/pULq9y9JZrlRNWDJ424VmOqx2xLnTEWuOI5amv5ztiXeGI1a+2OlsfT08e+9W+ZtuhWbtXcr3CUS7PPqZnOV7qiHWxI5Znu+1Ztz311a/18SlHrElHrAOOWAcdsTznJzznTTz3M/G9F/Mgrmj/2r5ArG+Rz0TICoMF4Zmc+A7xmyRLRX4n9wUuI36cP9OL5X2VkKVFcTHwHQerBJ9Vgs+pwlLlFf9NhKywdTho3zORl36/6fM58JJtCfcvVCjbpbm2ZPhNkqWuLV1A/Dh/bEurhSwtEcdltFrwWS34tETcYScsVfb9IFcMR5yw4vNCJyzvPE46Yj3miHXcEesRRyxPfZ1wxHqlI9ZRR6z9jlieuj/oiPWwI5ZnHp90xLrfEcvGBtZ+Yd+J225sGyq0pfNy227Db4aZbWSdtlv1qTB/ppcu+yajqb4CYpo8qq/A7a6Nl4dKsCztINH/yvAzv6qsuc+ZazdzvvbvXW3cMSHvVYRbtS+L6Y1O8bmkSz6XCD7DIt2EPXzpyId+4g/e9K73vuPoT/74945/ZN73j1wy95tf97rPLfvs8h/4/Ove3qXdbLf0q+ulX2jpL6yXfoGlv6he+nFLv6Ze+pst/aX10q+19JfVSl+cLPvL4e1EVtqpvF9Ri3dY0d2Zu+Lzlh7njAay04dhS//ieumvtvQ31kt/jaVfC+kr6G/C0r+kXvqT+b+pVvriryz9zShU+3fVn/3aGf/6X79z8Bc+/PmDJ/5lzVt//9Y3/eb/c/13v+/SG169+W+/97MbLO0ttXiHeZb+pYJ3B7lP2vytJ99U4j1m6V9WmXe4ztK+XKW94ZcbO/f+/L8fHLn1NT974iN/fvuxecsn37PiP/34zt9+y4pP3vd6S3tbPblHLf06xfuPd37lL9/deusrH3/Trz557YULJ9/51g994Z9+9w9+pvXFv/7pxz50dWz/Pkzt3zDIMQbP8V+z/fecMNXP2QI0lnaQ6Fctnkr30TbRKKUxjBCm2q4mvK+gk7Ny+2WG3wwz816nX9Ykfpw/nlMZEbK0KC4G7mOPCD4jgo/CesoRa9IR66gj1n5HrMOOWA87Yh10xPLM4yOOWP1qX3sdsY45Yp1wxPK0L099HXLE8rQvzzp0xBHL0yb2O2LxOh3GcT9gFN5XaJcHcvsBht8MM9vlOv2AUeJXppf4bkH7+djRfQf2HX1i/cHJB2+aPHTk2IE9AwgdpveGWCuIiu+KMD33GNegd3OJ7hb6e51IFwR2jLeSm0/vJ0JWWG9WsV5EWtwGwG5S3O0Qh6XJoSHkN5nP+Nq/T587hct0LA+WxwaKw5707cCby1XxMfkHBP0YYY2KdKb7TvyezTVRlZOlbYk4rou5Pf86HqLVfm57iJv33H/sofUHHwoUBunvm0tEXEp060pEKwRuQf/4/VJ61whpF5QaBOaYTAzcyCDWFuIz28jMNjInw2wjI+TvdSPTEOl4moenf2KYsIdvefs7/nLtm9532d9+Ze53bJh87eNXvuGD2z/zyqU/+Zy/f/inl79zQZxiurWdcEzIi1M8mLc5HfI3SPQfP3Mq3bo2v0i7pB3frmkvOXZg/6Y9Rw/v23N8z9d89pFAoVP12EB/3y7SqWAm0ST8GIZDVw4o2+EZfjPoYp4IWeGkw1OjDcxfPYfHBsEV2dvh3U5/13F4Y/R+ImSFyg5vmOLQ4WFpclAOz2Su6vCwPNjhYUVlh4flOiL4mPwDgn6UsFLOqhO/2a7HM2G26wFhtush5O9114PTzQkza66lHSTa4+2ILmtsGId0LONsm/1MmG2zIcy22UL+XrfZypPw2nAvpy6Qd3Iw9DdHb3rL0SWPXP2Z4fe/6fIfXXbOX33pJ9/9j19+Ys+1n/7HT/zSyi916TW2denttkYP+xYajGE94HpsLVPZ/gJLO0j0H5s/le4/w2DMzjO0Pcq2yQP7Hpw8uueWRx87tufYngdvP3h0z5G1jz54y/E9jx6tPDR7Kf19q0ingimCuzv4rKYTldtsifRlU5NlSjUs3rTxg+2HWPm/eO50TFVZ0LDXJfI6QnEjJG8nPqkFpiKTz+Iu+SwWfFId/boOQcmsHI+VZyzjn2pOpcHKizMcmNYalkGi/19Qqd5JlVg5ziJoZ4M2FkPZfLNtCGaagRL5fh7s88tknwOUZ8ynknkUeDDfGHaUyPBL1C2s2cjLbqFhjZE88fmsMF1+lFXpnO0K0/MSSFnnCX+ND79jPkpm7gh48EEsqws5Dc4Y8eF3qQZ6jPJTCBmi/b23qXlifVR+i2ccvwfq4+9SfUR7NpmV3YxSXNlwinXaEO9Svmq0BCu3DTL69yfaoE6TENwGDWTINxhm1qn4vBTyXIYVxDs1pOXh3RjRjiZoWW60bdvsfaqnJnj4ioOlO4COQ6epif9dYcCBethQgqnq/N1Ea354QODOJ1qsx5g2hp0lMnAZx7C1/cv1/bPNKfy/o3YG24teli3qjoMqP5Mrlt/qFVO4TMc8Vfkpv7qD4pQ/jvr6t9OkL56yxHA69LWL4jrpy+JsKkYNtHmTt/E7Z+4U3v8hvAJ4sf3z4a2FgM/pY+C+mNF/FdqKw21djlH6+LuCcBFbjWW4neP0IZHPBRA3n+Q22rPbehum/FS01bVWxotIJsQ+syY26s+Cmj40/FHBz+RqirjBDFke/dfJKyeHXvl7BaU3Wfgdb7lZLOhXCHrT1RJIX0FXL8KJqEC81TjjTIqbA3EmQ7TpNSTf4pry5egP8VuC/h6gq1IWLcFn2BFrtCbWeJhuo1gP2efGwO2QavtjOV7XrtvKD51LshZC1pQf4vRB/K38kOrrxnAt+aGa/cfnm04WkkyIvagmdq4fMvzRUF6uTRGX44f2fmXtofds+uA5RZjpbxviHfshZZPnCvou6/llyg+xr0E/tIji0A+ZDMoP1WxTLsvRH+K3BD37odyyaAk+w45YozWxzA9hH8DqofJD3L8bF/lBP8RjjJdAn+1Fc6djYR0r63fHsJPiRhNx8wVm5H0nTK6jvxpq/+I4ksdoC0W6AHmwd2jrmIbnHoz+NtDNrSQf1mnMJ8qn+uo4L7l+bjndeIIOyyXVv+ctA2iTPHfVqVy4rdhCbUXNZWI572lYcS7H/E57AefWPUc37508vOfBzXseOLznKK/QFPR32UwLj8QC0cXAu57PoL952Y9nM+cLnE481ez6cnhmvmo2n73SciHz6eRzTpd8zhF8er0Uew7xUTPXXfaaVubIifjNMLNW19mgMZ/4cf64N1JzJmWioPTIDzG5tVMjaMMyLz5UgoWeH+kfbXuvluCxlHgsEPLiO/To+8hT40oKrggcmjudh1oRwLQbKR9GPw4rAkdopIEtVKo+ToTpslStjxOzfHrKZ2WXfFYKPr32lyuJT2pDW03/NZ7rL3nra7cb2tSqk9qZ0eWK8Hz2DchPHVLjnhzrFn3jUAkWz1Aa/VvJXyIP9peqPcF36C/fTD5LrXyl9J5ajVSbQDut1H7fXM1TrdTGwH7Z6N/bmkr3tgy/nMqj2jmh/ETZymAZ1kbCUqODU7WCrvjk5CfF53TmJ1UXsAw2JeTivs54B6w7CQvTj1PcQELmqjtJ1OhW8ZnfJZ/5mXxOVX5GuuSTu2Oj2SWfpuDT650+PPNQ5m9/i/wt71TktOvbv7xT8RfA376X/G3V/Hc5zsnulxh+M8zUX51+SSf/wP2SBfX4neyXpMZFKA+vBrBu4z+bCR0qwcIVYaT/Y+qXIA/ulywU8uI77Je8j8ZxqNtu6wnm/VTUxxj4FHxZffwI1ccFEJdTH43+B6A+/mWiPo6TzKibZiI/68N0OZVPVH3yVF2Zn6BXtq76BD1c+cr2K7zKXnM3wUm/olarVL0ZAd7t2dq1e45cfsW1N39tqvaJQ0fLVsF4V9UiwmWbs785XZSNd4wMCB4xsP2MEx2XO8/lVpGpE22neNUnWFiSzxDy+gRq9YOxynZqWvkMEv3n2vVc7dRUpxnQhlI7NZuUrlkie0PkYW5JupcELR/meV0iz0b/5USexzrkmcdfqUOPZRfPNEQehsNMG0AMpePzwnTZq9oTpj9VfczziE9ZmzYwMpUG9VC2+/qm9jPPtb4e2rQ5bczU7ute57/s1AXm6yag4XEEHqVizBh4l91J+2kTdbneIVf+eO6/EPLH/M2nMlV5T5Wp0T8BZbowo0xT9UOdFkr5gtEEvZo3UHO8qf5pd/384uM5Nor4TZKloj2c7G+ofjrmr25/w3D/CjKE8nfqb3C6VH+DacvqHvcB5tP7Tv0NJVMZbTf9jfGSfIaQ1z6oMY/ZJx+rnQhZYYLbvUbQY8eyo+IDQfcNmF71MRCf/TDujla62QLxSL+6DRT7Esdo9zLKcH6JfCHklQWmP1Vt1fnEpxfrTjHwyS8s1xfAM8YZH37HfDB9M8FnvEs+agyca+tr28+d+kQvqNh+ll2KcRG0n9dT+6n66VXXpjn/Vdc+U/U6t56q/sBzCavq6WFMX9aPGxSyx8D9MqPfRf2ymuuqG9UuQ7OFLvt8G3PqOOKrNU2TqynicnbvfrJ5/e9/6l1vez+3eyYLv8uZO3quoO9ynnWD2r2Lc6oxoI3MpzjcvWsyqN27NftrG3L0h/gtQX830FUpC4W1riaW7bhVa4+nyyflnpI1+knoO+Tc1IDtT2pNeYTSjQjZQ5jpc2KYCDp8lYLhmf7PELz4xILR7oV8P75iuqyjQlbzEY0EjyDeFaFcN8xjQKS9OUyXbSxDNrV+jRhla/+DQa8nl41BlFyWjxiU3abW0y/pks8lgk+qTeJf48PvUuu8lxAfTIf9pldSv4mvqylInlvaz3xdzRLoN72K+k2Yntey1dyf2h/Cus+9WcPovxXqVaebNTCfKTvLvVnj5HzbKZhn4jwNhpm+NYaXBZ0n9NObgIZ10OlaI6ZX601ok+yz1Z5Xxiqb22beizrw5nlrXEtYVIKFvDcmeC/uwJv3y6jTirwucdvYlAzfQ/W3U7m/vATzmnlTmP9XRczbSjDfMTKF+QMJn/CcMJ0f+z1+x36P08eg/J49D5OcFetf9sWDht8MM/NcZx5RzYsovYwCD5alJeK4T6D4PEfwKQirk1yOF/8b5BKiW1ciWiFwi6BNzv5eQu9U1hA7mvlftKummTk2EdcRPsrSEO+4yDC90Sk+rS75tASfFNZ1Asvo5wj6lqB3NA2LX050WxKiMW4n01hO78pMw0KDeMbnsqteUeUo45jAKBJ5aoh3XNSF4KX4XN8ln+sFH95h84fUO0L+Fbzl6837DcFL9vw1Z+hfj/qyoDx/2akElKsp4nJme9b85qt+7Lrz995RUHqThd9xlVSj5+sFfZezbq9Vsz14r2AMakZQzfbYOzXbU/Mi0Nfm6A/x1ew8z/ZUnTnBuHU1sWy2ZwjSp+ryqfIZveCTwlIzQEZvuhkKeoWMfZLRfxhGjU/SbIzSdxDvBsJMf7S5/TsmsOaVyK54G34MLZHe6HroE+dgOaGc+A7xm2Fmnuv0hlX9UHqxvKuZPvURP767qepKSL9joW2Ohpn2W5T8Gh9+x3ywrs4jPr06nZdj53X5IFbOt7fq8lE7lbpsgyvf9cZ2cTvEcZ/mDohj/eOMCN8lfCfE4SwUhwb9jXqI/vibMu6WUyfBuF2qegqvEPJ0Oh09Z1TzVKejsW3iU3grYJZmeLQ8j7wCOw/wWPYYeMbS6Oe1ibo8+Zm8C/gbycbr2PEv1rRj7nvNE/lQqxmWD+WvRykOfew8isP2e4zi0JftAjr2pw3CjoFngucI2VW/qcjgk+o3FZl8lnXJZ5ng08t2C3l28lNryE/x6i37KZ75Nfp54KcuJT+F6bn8uE+IvjCGsjFS2WpQs0S+K9oyqdUglefbEjIjj0AYMbBvNfpryLfWHMdK38ptbuq2gpp8Zz+/c5I2iLgGveMvbdxKf68T6YLAboSpkptH7ydCVjitn98xmWc/vzNzxK3Sxb/XiTSeIyrWowfWPIHVZS9yYa7H4f10NevJSY+j9ntg/jjvLSGLWlyZC88Yh3zUYknOQk1drBh2zmLNYs1izWKdBqyckSe2U7x3R+3JKigO5UsthGN6oxsV6bh9q9nejOW2b4bfDDPzXKd9m0f8yvTSZfs9L9WeIibPGrdEnGHZPrSy+78sLe9XfEPbiDztOo4Yv210uuyqH5RTzoirVnZSG0B6afcoH84cvHVU8yzbR8ozB0b/H6NT6b53dLrMauYglOgAbcgwOE94XsbiqtTXp8cwMHvHcvGqpbJ7nE24pf2s9vNWWeUrK6MfpTJS+14LIQ/v6/tHKKO30+wOps/ZV6b4sQ0NldDzXl+j/ymY3Xky8dWU4RJ+ZbNdF5bw+2ngZ8aj7A7biRBq291CZXdYn9nu1Aylqv+p9gDtNGWLzLsQWKn93ZZ+KOgyMLxBov8VUea5ds7lavS/nlmuTv5ElivqKmcXhDonm7IDtWNDzSCzHTcEFpY1l2unumx4XLd+J1Gulh7LFeXkcjX638ssV+z3GA7K207aKchyRV1xGaj2GulzNlmyrDGoFZ8zKI59Ij4r/412kFPmSr9c5n8qypz7/sov5O6PjvNrtse/PTO8+ejBw3vaU8OBQmoqtwjl1yYuEOkDpS3oHR91UO4ztSBivMs2OrH7NPqPCpWn3G8MOVvssbh7sbhg77y22HdyazzVl6pmqS75aTDVGG4tEaMQ6QNhFeJdDGrbO+JyLzDl3ZSqrHdR1nIYHu9d+HSi5Uj1cIKQITUDjPKkbm9NrdMzH2zR0Iy4RTP6L2a2aMa7Fy0a6ohbNDWCVicmjV6ddFaz3S2iR92rFo1PH3aqhuZe2dVhWjWyUvaS6pml9KPsSx33UHs9UqNg3H8Tgu8oGPPDtpAq2xhYN6mbLVE3LaJXdoJ1r0UYnXpdKVvAkeNbS/ZQIG5qBKRuLkEb5lG50Y+3M4c+wDBHO+QtZwSIfpz3F2EXaB7FYTqcqTDsQHRd2uM8ZY+Yn5xZGbW6l1tXU6t0fJZA7fvmkR/qG/foqPakoOd5mXlTe6BwzyCWzyqws7Lvl5fNoNxSgrk6YbsqDynb7dRWG72yT96TeKp2WJzqfbeYZw7cB0Q95O67Tfkd5fuUzaMtzSGbR79xNfFUXXh8xzaP6Y1O8Wl1yacl+KSwrhZYqbZKtaGOxypNxPOJbktCNMYt6B+/P5/eqeqOQRVTUSJ3CHnFVBB/hYXuDUfj/MEKbMKuIayqizKYvuxUrhqNxsBbEI3unna97vLI5VtT21e7PF70ViwPCw16p9yk55HLX3vHnfM++J5rs44MxsDVVbnBawR9l83Od6W6Vfabe+QSXT4fuay5Vf+7cvSH+C1B73nk8s6aWDlHLnvtk3hB+37RLTvVstjs5UN9IItd1HKgD2SxbuVjia5zp+Enty0oe2ozAOerartTZPK5tks+1wo+qc02/Gt8+B3zUTJ3OhbxTfOm0mBdV8OcGO5r//Ii5TVwcc+3tDHVlGFZ+16EdL+D5cNjEUjTLJHv28A++VgE5xnzqWQeAh6BMGLgPonRv4H6JDX7DfJYBPcRetBfyV65OF3Hoasdi+DJEtQKouK7IkzPPcY16B0vUNxCf9c5FlGzd3KbWcVtItLicLKOB+3rIQ5Lk4MaYOOBwCrHIrA8eDCN637rgTeX67DgY/IPCHr+fInqaZvuO/FriHQ8ClHp4t8vF2lGw0xPU7fFYD16YKkjFl32+rM/o8TbRmvWk+S2Ucwf510tTKitbtwrq3rdJmKNO2ItdMQ60xFrxAkrhp2zWLNYz2IstUWKZyOwPbi3/atGZTwLVHVEiekbCT5XdcnnKsFnVKSr2/a1EjKrBUTWW9WLbjA9L4KgfDjC+/N5mqfaMhoDj/CM/kIY4X103nSZ1QgvBjWaxnIIQY/2u1woHVELpahX7vurWUyk393+TW3VU7aQW0b/SGWU2taL8vBet3Eoo3+iUTjads5nihU/roe529eN/nMwCk9tX59Twq9sVmJ9Cb8visXXHm5fH1d2h34mZzus8mcpf6H24rXCTN/D22HLxiJc9krfOdth1d5KXqX5qrAHbovYNsrkU3pz3g47XCLGfJE+UNqC3s0vwTKc+DdOcuRsh1V3xrCLGGq7iNntsNP5cf6+zrfD3lIiRiHSB8IqxLsYOm2H5RqbUrFSVd2DFIuFSac8rOphGb3qCag1h9R2YNXrKetxqAMeMXCLZvTnQF5TLZpTT0q2aKgjzlfuzInRd9rSxFUttR1NjWxyq2HudljuqXXaBlR1+yHbV+72w1Sv2mn74cjp3n5ousnZfoj5522EqheVaws4evrzkrUzxEVb4LWsIcBSs8m8pdDorxM+wDCHO+Qtx99hN4fX/rGLwf4OZcd1TsNmzC7tca6yR8x/zigvtbelU11l/6MOLqsuAncjO9lNaishrl1+E434kM/ziGfVvSXPE/IrPq0u+bQEnxTW8wRWqp73eCuhibiM6LYkRGPcgv7x+2X0TlVzDKqYBkvkDiGvmJQ5Kz5Fl3yKTD5XdsnnSsFnxhaX9kOXy+ivURNSls8uF3pfg/qyoEZTuHWO+fGthhiXs6Xws62tv33gSz/xX1NuN9UlVG73SkFvuuLdxxMhK7w6dYpMbSkcpThsXkwGtaWw5uLnq3P0h/gtQc9bCnPLQmFtqollWwrVLfWnymfwlsLj0IXirXOnShbbqvJkH8hiWwpffRplUV049os1b3QdQX4oZyBZ2PfV9PHJG12VXlJ+WNVFXiDspl7PYs1inQqsVL8np34qPqpN4WFSDNPuihqbSoPpyhaXdrd/B4l+sDWV7u2JaVHexMI+Jf7iwju3s5Yet7yq75fygu1PgS/nLa9NyjPmU/n6EeDBfGMo+879z1CfuWa/Vm555ekHnH7mPiXKqnSeWmg3ui7zcJ3Z5XUi0uLwa3K8VfxFEMebAm+AOD45+WKIm0txN0LcQopbC3G8fICBlxJQR9H2GhNTuEwXiCeW4fUUh/XIdKGm2l8IzxhnsvI7LntMnzoW0OyST1PwUUsO6C9Tm0DNPmtut85eieMjZzWP1p3sI6Xu7npasPav6iPxNBuPVe25rHxeKPhUlasHH/i8mOjWlYhWCNyC/vH7i+ld2fSR/a1Mv2zlLoQ801f7hU5VFeu0F+dDY5pn2RV72DQi/UdhL85H4NlWUOeGbzzd5ugshgfbv6yzv0+sbAyCHAqTu02q+qom3+hVF3dI5FGtdoxm8EZdcn2eV1HWTqum/JEflG+soqwbT7Gsg0LWLpu2xVbnF4tIi1sC2NxNWgpx4xR3FsRxF+psiDuT4vBjSdydWw5x3PydA3E85DkX4niKdwXEsS+cgLgGxa2EuDPgmYPqBlp5xXQfWzmFy3T4XOaLkC73wqIPlQz1EBeHemVTnLkXFp1caW/3B07FpS88larquprC4w8WNwTm1/uOgdTq4ijFqZ0WuXaTWqHF6QWeelAXhik7t/fjgNUgjPh8a/t5kOiXJexxgZAh5c8XCnq829PkGSMZMO2YSGflpuzR6HpxoRvmh+1xEcQ1BD3r5kxBv4hoYmgRPeopdT5L+bv5IPsrR6bToa8tSn5NVn5XZUpvzJEPYu0gPjgUxj775a0pXNYJ7/qLz2vbz7wstAGm9J7fflY7scYovcVdA/Xs988rT89TV2pXyViYaQc8LafyifS3luTzRSDn+9py9nDnWEvVO/R9XO+Uj0F6rnepeoo6aYWZdZKnZ9WSDdok+2TTUdlnOnh8aPQvgzLgve+Yv/kk+3BF2VV70mln2wvaf4yFmW0MnztVbZgqK3WJ5fwSLDXGw3rL5d4Iuj1kerOJwZD2z4NEvxXK6gPnacxQIsNIicxDJfQLSQaj3yHsJeUH0P4XEKbR3w2YfGtLJ8ybSjDvS/Q1VD3FS1Crtqfcn0A9nklxKDu3i4uAP9O+lPhjHNo58w0JedV0ZUpebm8s7ji0Vw+3n4cJr6KvbqTK6gVC3tyyGknkj7Es3WCYaY+pOoL6eKylMedUxDwq2nTVV9kF+MdL+iMxcH8kBvbL6DOwHl5OfRI11uE+yVOiPqq2HudaDMfi8u2n+HjVs5eddMM+oZtLk5dSXGqZ1qstnT8yHXcsgRt/LyI5OvXxbCmM/fAbEn5Y6TClczVGRL3yPAOWxwKKUzZ7qu0R88/2mMprCNXHw2yPqv1Q9phzv0euPY5BXgeob7dA8FQ+umqfu6Bn8/FDJfTs843+RxL9nsVChtTcxRJBv5hoMP/YLi0JmjfWS9TJesqP0f9Epj92mvOQJ7hQb2z/KR3FwDo9S9CjrkwnLaJH/SpfvZjikC/bmaqzuXXD0j69Tjd3Om4zE5f9qrpFV/lqo/+livNzKV/dyR+ZPFXn51K+upe22q/zc8oelX3hVqvfIvtSfZ/U6cHcvo9qa9m3YzpeE6w6psf08xN8ml3yaQo+aj6pKPk1PvyO+SiZVX3h/KjyGc/MD68rjjvmR8ms5ohxTvXDNIZBP9kQabm9M/p/hjHZX9D4Bce/bDe5tstzouOgA+WzN4ap/IcwXX+G26Ufm6P8GPrxnPlOpK/a92JfhT6O9yqofQ9oe9h2Gk0Irn5/TtX54ZQfjCGnTcQ6wWuBqbljtDf2vUqXaHupfgiuNX/f3M7yjyXy28k+eP0B2/lFFKfGK8oWjK4XfQDMD9tCqk2PgXWjxgzYzrMt4PhgAcVh+XM/QvXblL/kMkb/iuWytv3Mc4ADbSFy51tTdtOpf8RjeTWHlxpXnuq+Y7/YDc/7ou+pajfsQ9CfYxtt7bfydwP0rPqSSN8oweGP0xX0fi68x3Q3UJ65j8TYLyZ6y+dQCb3hcV/kLKgrPJewoIMMN5IMCzvIwGsuRn+OkCGl/xhSfcLhMLMuVqg3g9gGWeA+JeI3g7aPiZAVCtaf8VN2EAPXZVWfMI7bZOUDVT1XWIUjFh8jqVlelT/AxeOK24F+E8XdAXE7AINDg/7G/ES7/uB5U7hMx7JieW0AfLaxBSLtAoF9uurDgnr8kvVBjQGq1geeR36214cFFNdv9QHLy+RWOophIuSFnPqCZVNB/ytz64vhe9UXZXuqvnS5Hj4R/dPcMNNXXQbPqDvks5Bk6Lb81BzX6Sq/+fX4JctPjeE9yw/rVpXyU3N/PI9Sde4P05+quT8+E4BjQZz7u2/+VBrUg1qDjoHn/oz+4PypdPe3n+vO7/Vwvq5xuteIucxy559y1ohz96njGvGhkvmnAnDXirRct5F+oZDD6HltmGl4b47RH4WxFB9xVzaLcq0lTKM/kZhPUXMGqXnaTnMGqbm2xRSn1qJUnTC6LuvEytO9bsx2r85ZldWvGNYLrJSs87uQlcsRy+oswsJ9aGpulu3S6L9d2KUqf9N5L8o/NZ+mdJqaT+ukUx7T5O4b4PFKp7lz9onq3AW2iaovULYGhTxTfQHl0/n6ue+H8ue9uui71brD+hLMH0z4OpWH1G2ZnfaImTyq/V+QSIdlNSx4TdjDV9PB8HBcxrzK5uzeDnp6fIWWpWB5OoQezulNFIQXQn/N6XU5ZlmBfXq0I+zTq71lWF5qTIV94J+hPrCqY9hPvaL9zHXs3dAH/vkSzBCqrxeiPO9tTsf17p+m1uZz9gyl9uDntou8d8rofwPqZuosk886U/GF073OxO0irjNxP0fZV6ofjusqqgz4HILR/65Y01D7pHgv4GhF2ecL2dU8MtYNrsdqjX5Y4KbqPcpt+7W53n8g0bZ2Ovdbdd8Xr+fnjq1TZ8Cdxtbjp3tsbfLnjK3xDADPyWAfDfdq/BT5XpxrTvU3jf729t9lY1+uc0b/N2Lsq/qTGygfON9tNmft8R0k+0TICtlXRxl+k2SpyO9kf+MO4sf5wyua8r8MzJ4ItYKo+I5rMMY16B1/q+V2+rvOl4HvpPcTIStsMqvYJCItbjNgj1EcXmyOpclBrZCYzFW/DIzlsZniNkLcFuDN5XqH4GPyDwj6jYR1h0hnuu/EryHSjRFGqvXZIHhz6/Pv4B2uPT+U6mFDKNeD/d0UcrK+LT6GLm1ye643MfxmmFn2dbzJncSP81fPm6ClIJdthGo0SIthG0iG9PyRMi69EZGOg2lskGRe2G4Eo/UNtp/Hwsx88flNZe34juc/ML3RKT4LuuSzQPBR40C+d2JRIg7nrPiOp1WQbgvFXQBxfJ/GasDk8eqaBOZ6gRnL7hfGp/Div7uATlm6tUBWBttBHkyLf88h2hjs+vlBor0A7Gop2RXWYrarjR3kTtnVxlDOZ0GXfBYIPqk9BBZ3p8irapG5nDdDHNvOFpEvi9uawNwmMJ/u345Pp+Pyj8E8Pu6RqOCBt+V6fMNvkix1Pf4O4sf54/mqnfX4bS0oPfJDTLaPXSLOsKxuDZVgWdpBor+yXZ4togth5rXfu4S8+M70E+3kuWQnqNui5Ndw+R3XL8y7lY/xQX+D83fXlvg87EmhX7OeJ/uq9505le468lWYnstO1ZO6+b9L5HEszNQNz7cr+96R4DOeyE+vypPH2ehnsTxvpfJEH8U+Oj5f2H4eJPpfgvK8jcpT1UWlZ26Xqur5TMGn13rm9mWXIx/E4k9d3UNYrGcrJ9MzfrLmHkp3L8QhHY667oH39wreCt8wOtngrnGdtzIb5P6P0b8NbPDemja4i+KwrcB2EeVAPSD9hUHna6iEvixfe9p5Ufvr8X4UVRbsf41+L2Bag5uyLWwPeK5Q2cM9Il9Kp/eGzrxRz+tKeA+FtC0OEv1BoVNuFzC9qkdnkyx3d5Cd6zemN7pRka5bP6Jk7lQnH69YJy9tP7Ptvhbq5JNUJ1M2gjLzOKKqnhcIPr3WM48R7nXkg1jcLuwmLNazlZPp+T6I203pJiEO6bBd2A3vJwVvhZ/bLrxxXOetzAaN1yDR7wMb/M7EuDhlg/dSHOqU24VO/vBSoje5h0K6vR0k+u9NtAuqvqKv5XbB6L8/0S4YX8xXql3YLejvE/lSOt1NWNsFFuqZ2wWlU8y/4bFOfySzXbD0aj5iF8XhfATPK+Dd2NxnxRUCxsR6z3MjWyGO/d02iEMb4fmI+Yn84L4Pnu/Debs7KW4VxPGZkAsgjlcfcN6O51fWQNxWilsPcdsgrzZvx3d7/WL7fZfrdvKzSql50aLkN4S89gDXnvmO/Tsc+SDWLcRnoyOfjYn8bBJ8rLywvvRindXwm2Fm3a0zT7aZ+HH+6q2MoLdhrSAqvivC9NxjXC/XWY3vFohTmuCZc8zTlpJ0qIsg3g0I+s2EtVmkM9kbifSIgenYYgp6X7YeaRiDRP+H0Fpdd/4UfRkv1Ae3mCZ72Y4JlsHo/xhk4NMCmyGNytemEsy/h5WMPx3XmEFgqnxtoXyxDJtJBqP/c9ETaBANy6Pexb9xrXdLiXyqnFhWbOXK8sPlZPR/lSinO4UMWCfXdZCBabaUyPC3Qgbh3W46eOiJtncLFPAbJuyNlOZ53fZOgVMWTBvRCs0i1S6DTSLdnfR3U8gUc259qZOfODuw5+iekryz555bwnMg6MD9UUsXw3Doqk3LbkMNvxm05U2ErFCwlzN+nD8+371ZyNIScVi+bEcpPrFMbS9cu0w3Hz14uKxIcxvXQojF6QNhFeJdDFbUNZf5dqgpdQsWh9Ot3IXDaW3uRuKQG50aB8435ic6lxvOn8JlOpYVdcrDMzRPHgZhVeFhFprSPRSHDv9eisOh230Uh0O33RSHS2aT7WfrLGE583WrasuCWqptifR3Jfis7pLPasGnh0vl2e7rdC2Vq3plaVsijjewWTPzbe2W9ukrtBdMx8bttKzXmsfSr87Vq+E3SZa6elVbwdUVXWpKg6+Pxm1KrwA6jmuIdwMJrCOOWI87Yh12xHrYEWvSEcszj57l6JnHfY5Ynnl8zBHrqCPWIUes/Y5YJxyxDjpiedqEZ32cdMTytAlPfT3iiHXcEctT9wccsTx1f8wRy1NfRx2x9jpieeqrX32hp748fY6nffVrn8nTJjzbbS/dx+eFTlgxeNq9p+4fdcTytHvPPHr6Cc8+gKe+nnTEeqr9q45Z87abqp+9wPTzM7DU/EEqj2oeZ6TNP4aTU/73H3to/cGHAgVeobi5RMSriG5diWiFwC3oH7+/it41BC1ix2mlt7SXOlI7r7s8+XFFQXgh6Gklw2+SLBX5nZxWUidN1I50ddLE0rZE3PPhGeOQjzoh0hJxRxyxHnPEOuqIdcgRa78j1glHrIOOWJ42cdgRa9IRy9MmPPX1iCOWp74OOGJ56utxRyxPW33YEevZUI7HHLE89eXZDu11xPLUV7+2Q5768vT3nvbl6XM866OnTXj2mbx0H58XOmHF4Gn3nrp/1BHL0+498+jpJ/q1//WkIxZPk+C4mqdJUrclKD6YfmcGlhoPp/LY42kSE/FyoltXIlohcAv6x+8vp3edpkl4V86X2ztxutyZJw+e8C4tnA7C3WYYF0LeTB2mX5Tgs6RLPupS8FGRzvLdpR5HUH8oJ75D/GaYmec600tql5zSC0+tYdpWmFkNudpWvVhhFmsW61Rj9fLCl1w/UpcPYm1p/6rLJtj/VtUbpt9RgmVHimLYDTTbiN70PigwAzzzxS/ntfvccdf1yvYJT97pHML0g92rFqZlxbQo6yDRr4OD3avbmErP7BvvEnlUq67GV2Fym1a17JYIGVJYWF6riN7KYqiEvqzsLoey4wPkeGBW2c+OEhnQfvDyszIZrqphP9csTMvK9rOKeBv9pWA/LyT7QR2n7GcVxaH98EUzGMc75Kv2iTB9qu+VuqCP7ajqBX2rBB/re6H9VegL7eSd7hjUstpqisMTJGsoDi8YWE9xeDkAtw14aQEfXN8NcagPDg36G3UUbb8xMYXLdIF4Yhnuoji0e77QAg/LIwbGmaz8jsse068pwcJjn6ouDxL9hrbiY33cvnB6vvASTtNJl7Z2ZU77jvhNkqUiv4L9lfHj/HE//y4hi/JFF8MzxiGf1KkbjDvoiHXcEWufI9YRR6wnHLH2O2Id61O5HnbEmnTEetIR635HrKccsTz1ddgRy7M+nnDE8rR7T1/oWY4HHLE8y9HTf3nq66gj1l5HLE99edYhz/6Ep74OOWJ52tesXz09uo/PC52wYvC0e0/dP+qI5Wn3nnn09BOPOGJ56suzv/qAIxYvSeMYnece1Hh4W4IPpt9Wki4+45xDzu0RNbejNwrCM3nwHeJ73R6hlt9V+VTdjs5rA91sycm5SEfNfaRsQ+XRccuAiXgF0ZWZ7YDALegfv7+C3pVtGTBsq0Y49cTLR6jGlGrV8tH6BJ9VXfJZlclnSZd8lmTyWd0ln9WZfDZ2yWej4MP3nsaASyN/vVDzxKURnK7lqVijXw5TsX9HSyO4vMDfsMWDVHeQzPjdJna9eP9rBVeYfXGP4TfDTJus43ovIH6cP3RL+Xd3cg1ArSAqvivCTK9RgGT4jhe551O6Ond3roY4pQm+uxPztLokHeoiiHcDgv4CwrpApDPZG4n0iIHp2GIKel92d6dhDBL9l2Hhk+/uVLxQH7x5zWQvu4+RZTD6fwcZ+E7ICyCNyhfX5tX0N9rW3SX8W+Bl/mOh5h8Ef84ferWyezEvIBmMfqAtg7rnc41IH0reccuwhuLWJGjLvtKsyp/zhV67LO9c/kbfhLxz+S8RMqS+uMsyMM1YiQzzhAzd3QnKXo5LiUtiicApC6aNaLFmvawdrh3Mx/5WFtDtnaCLSngOBB343nZLF8Nw6KqtzG6bDb8ZtOVNhKxQsPc0fpw/HhZdIGRpibiyWtqJT5d3gpY12spZcPpAaQvxLgY8uD071OjM59kw1GAsNYSI4cH2Lzv254JjtzrMmAMlmJtIBjULoHYmGb2audom8mi6xFmKuzJ4oy65IdxZUVY1u4IzUbwLEeXbVVHWjadY1vVC1lO9Q4x3c+EOMf5ECe4Q451euEOMP1GCO8Rup7jdELeK4iYhjj//cj/E3UVxD0AcTw08CHEXUNweiNsOzxy4DcHyivX5YyuncJkOn8t8Edb1dSTjGpE3nNoYBmzkMxGywmpLP1Av/f2WvlEv/aWWT+62xmDYc+B9hbrxAOrEgupyGX6TZKnI72SXaw7x4/xxl2tIyNKiuBjQXjmuId4NJLAmHbGOOmLtdcQ65oh1whHroCOWp74OOWJ52tdhR6wjjlieNrHfCcvSe8l13BHL0yb2OWJ52sRjjlieftWzbnvZagz96lc9bcLTf006YnnahKe+HnHE8tTXw45YnrbqKZenvp4N7banvjz7q54+2rMP8Lgjlqf/6leb8PQT/doOeY5hPPP4SkesWb/6jeG/vMqxCDPn3PpFX/3qc/q1X3jAEcuzPnq2tZ7l2I/91SLMnMPuF/vy9KuPOmJ5+ol+nWfylMtT9/3qJzz75M+Gca1nu/1En8rlOa71LEfP+ug5hvGc9/XE8rQJrkNF+29cJ8Wbn3ZBPNLbrUVqHbvC2u2Do5AmAAZi11yHfrAgvBCm9zUC4Y+W8IuhKeIGM2T5xRvv2f+xiX85t6D0Jgu/yxmbqDVt09UZJPtEyAr3jwKPQLwtDtfn51Ac6sVkiL9rSL6hmvLl6A/xW4KebwjMLYvxMN0W0N7VycK7KA75LiIZOu1l2kL0tm9oqISe66vRX9mur7jBfIxo4vOSEn4oH75L7Um8uwSr7Ia0i0pkfwHIbgZjmPeEmfKp7a9Gf6+gx/1WfFMi5uHeoHljfrA8d1N+jP7FIj+q/plNDQOOxVWoOyORz6dXTPFhvWH96aSjGFin9wl61JXppEX0qF8+vYs8LQ7rDtdltecQT97y/i51syPe6pe6wbGf6vWdmfV6awk/lC9VrzF9lXodw30lsm+vWK+3Cvn6qV7fk1mvzaZm63Xneq1uIc2t13ijK9/2uhviDBf3JV/afh4k+gMJm50MM2VN6fd+QT8JNHxr5m6Iu5/iMB3fuHg/xLGtP9D+G/WAcvG+eqM/Cnp433nPPCtbN7m6tPW1ytYfAAK29QchriHouSz2CHrcw2w6aRE9lwv+jVioU96rbzoaEvSIN0j03yx8v8mH/u0Bkv3eirJvFLKrW0AtbSyLN7Y/A2A2iL6Yzzbcm+DJadHPDJXQG94g0X+70FfK56OeRgnT6N+Y8AfKf26Hd2yDuwX9fSJfSqe7KQ5lN1tQ9dPouqyfL1H1E/PP9XM3xDUEPetmUtDvBhor/1aY6Q+5vcG6cR/xUf2OXPtHG3p8XOOWtTcXtp/Zvv5Lwr5UvVEfUUnZI9oJtzdoX/dRHKbjG6ZRp3w2aHf7b9QD0vMY0Oh/IrO9cbLnBcqedwMB23PKPmOo2vabTlphZnvA/lDZLJY1tzemo6Ggy8DwBon+5xPtDY6TdpPsuyrKXqe+7aL2JvXxoV0JnpwW/UVZe1M2Nvv1RHuzE2TnMYZqb4z+NxP+QI3pUu2N0v3dIl9Kp/dQHMqOZ8gMmzG7rJ8LVf3E/HP9TOU1hqrjSW5v0B/yrVZYN3js3OnsY8r+0YZupfaGz54iFtpFyh6x3oy0n9ke/yhhj6l6FgPrXNkv2lVq/oXHPCh7yh6Nrkt73KbsEfPP9pjKawxV66qVZyvMtNWUPXL7rM4sow9he0Q7ugvyem3bHm3eH8/gVtDrBuOzQURaHJ6bnktxdwD9LRSHdWkUnjk06G/MTyz3G86fwmU6lhXvSeAzuqlrq9TXNPjajPjMZ4nxLgI+S3wBxPFZYjzzv4Xi8GzsVorDcrL8D4eZ5VTBBrKv8DD8JslSkd/J86TqlkDMn9XRatdr8c0GqBVExXdFmGmZBUiG7+YSHdecKtdrWcltpPcTISvcaVZxp4i0OLxlgU+Rb4Y4LE0OqoaazE975nOncJmO5cHy4BpzB8RtBt5crrcLPib/gKC/g7BuF+lM9534NUQ69r4qXfy7KdKM0t8WH8NwmKmXCvaRfWep4Xt9++QO4sf5szqoWgpL2xJxc+EZ45BP6ltGiJVz0Y+SucuLfubS37eXiDEg0gdKy1V1oATLcNjBdrrdi8287HavRYuf+VW3q60X6WMYFe/Y7Gs2MNkNmuE3w0yTqGP2G4gf54/NXrmhlogru6ynEx9HUw2h/EI61VIGwirEO4xTpoqtSY6pYh+zzFTPE6ZqKh8W6Z8e+zWn874T6BqUVsm6iWRlmmGS1egvBFnt0rxWmGmq3CfdBLJwldpMsk+ErJBdpQy/SbLUrVKbiR/nr14fEUuatYKo+C5lxZ1qzk30d50+4lZ6PxGywjazim0iUo0yhykOR/pYmhxUH9FkrtpHxPLYTnG4An0X8OZy3Sz4mPwDgn4LYW0W6Uz3nfg1RLphwijoPc4M3Sl4DxL9jeAdrj0/lOqBxwbKQ6wScrK+LT6Erm3yrlxvYvjNMLPs63iTrcSP81fPm6ClIJfthGo0SIthO0iG9Nxl5NK7QKTjYBobJJl3tK0oWt9t7eexMNN6x0lulCHll1sivdEpPgu65LNA8DFLbkI6vodtROTV4tBj8VwNdsX4q9YbRL6466cw70hgbhRxsew+tng6HXqjouQ3hoZ4xzrdLGS1skMPwHeWqtq2NcEH0/O8F6brNj9KZtV3wiv3H1w8lQZbU/TaaMc2v8dfI37/uVPpHqL6hnucTUalZ66LVfU8Lvj0Ws9cp7Y78kEs3vfZ6SvbVk6pdQ1e+2c67BHg3H/qyy1MG+M72eDji3XeymzQePEX1d8NNvhkTRvcTnHYg+T2MLXmgWXA+RoqoS/L17cmxnabRXolO+/P356QPYbU/nzuufbC5pFnJ/t5A9kPricp+8EvPCP9D4H9vJnsB+tfL/Kfqtdq32qqXiv/wemwjp6dIcMOIXNLpOf+B6br1jaUzJ1s4wfJNtR6NdoG7981+m8D2/hhsg30n7ynCWXmPmBVPS8QfHqtZ+7f7XLkg1jcvql1a9SzlZPal38PpVN7Grl9w3VvtYdD4ee2bz+3WOetzAb5gyNGvx9s8F2JMU3KBlN7c3hvR6ezKJcSfd2zKL8m2rdUfcW9B+zLjf6/AWaY0HJivtRoOWWLVfc7pXijnteV8B4KOv9ltvLehE4t/ZyS/LBOjf53EzpVOkrptNM+Kd6Xg3nmswhbBBbqOUenmH/+rJjR/2GiH7ZdpFd9B+5Dqn4Y0q8helXHVN+E69ifZPYhuW+Dcwu7KA7nFrZRHK5Z8FgM11f4bnicW+B5Dlw64vYPV5LL5hbY9m1uYZDy+tft912uLUwbjwbCUvotSn5DyGtPcRWe9zP1Yt5E8dniyAexbmr/qjEbn6GsOm+A6VNjw5Eu+YwIPoxlPjkGrNe8r9fovwj1+ov0ESx1tnUE3q1L5JXrM2JZmVn9QN/Xi7U3w2+SLBX5FSmfq77Yq1aKeL8kxpWVKfJZJPhUlcvxa7Em4jKiW1ciWiFwC/rH75fRu4agRexTVfVOJ58zu+RzpuDT66nOM4lP2XBn3pKpNGjCZcMdPrpj9DtguDO/jamGO2XVDm0tteXC+JVtYxgtke/Mtkzq+4OjIs8XJWTeBjyYbww7SmQ4uy1Dl65YdlV4KhS7dE2Kw64Hf/4KuzgN8Y5tbpPgw1hlzaTplbt0K6GscppJtO11ibzyJ6Owacr5DFjqQ/GbMvks7pLPYsEn1ezX9SVKZh5KxIC+5LnkS7ZDnOrS2NBikOhvBV9yecKX8MfjuavB/rWsnSzzJVtL5Ls64UtU13B9QmYcAjLfGHaUyHAd+RJeCpoIeUH5El6aQP93Vpguf9W2ENOfqrbwLOLT62U/Nd3P/kUtR92V4KOW1DrVx5cv0TxVfeR2DelbUB/XU330WKorqxMh5C13bRN8ynxQDKk2yOi3JNqgTl3/1FCtTD68eg/pl0Key7CCeGf02P7x9MVdRLs9Qctyo21f3n42X8RLyhMhK1T+3CJPf+E0Ik4xceAtSihzLO//XWGToPpEJmOqOn830VqeBwQuLxdhPWZ97SyRgcs4BrZ9wz2yZAp/H7UzOF1eoWx3qSUpC1x+rDsOqvxMrlh+q+GIJtMxT9Tz3RSHfpWnMJU/jvp61WnSF4/5MZwOffH0cyd9WZylGxDpeBOq8fsxsNdXE94I8GL7L7sCYFCkj4H7Ykb/WmgrDtP1bNi+riB+iK36x9zOrSiRS+VTHdVnvf0w2Sovt06ErLDWyvgekgmx762JXRBeCHra0fBHBT+Tqynicq53ffRfJ6+cHHrl7xWU3mThdzlXsqwQ9Kar3ZC+gq5eNAo8AvHGeZEQZuosBjy+vrv9rK53va+mfDn6Q/yWoOcl2tyyaAk+mxyxttfEsmtn1XIq+9wYuB1SbX8sx/9B/XT0Q+eSrFX9EKav4oe4r2u0/438UM3+4/NVP5D90D01sXP9kOGPhvJybYq4HD+09ytrD71n0wfPKcJMf9sQ73KW8c8V9F3W88uUH2Jfg37oHopDP2QyKD9Us025LEd/iN8S9DlXHKmyaAk+mxyxttfEMj+k+uDKD3H/bqfID/ohHmP8LvTZ3rNkOlZOvzuEmVsHtifidgjMyPvPSvqfdsW42qpgfVO1rcj+xndo6+q6Xt66837Qzf8i+XD8j/lE+VRfHecl/2hJOd3OBF1u/75JcWrbdG65cFvx59RW1Dz8Jec9DSvysjnv9pLtrXuObt47eXjPg5v3PHB4z1EcUalWkGcy8YhgWTBJeLV2I/3NB694NnOHwOnEU82uL4dn5qtWXtgrLRcyn04+53TJ5xzBR3mlouTX+PC71EzvOcQHZ+VwpvcTGSsvmNZsimc933jOVLpPJXqQKT1PhOmyVNXzxCyfnvJZ2SWflYJPr+vBSsoPev2JMD0/VVekMP3WU8ynU70eWqp55tZro38x1Ovm0ul5VPU6lcfUprTUTo/tHbD4Ytrc1aNNGXxSq0ebMvnk5CfF53Tmx7DUqiOWwaaEXHzB6o4OWHcSllrRUDbIMledncD0Iwk+d3XJ565MPqcqP9u65LMtk89El3wmBB81wui2/VAyd/K3zyN/qw63Ytr17V8+BHop+NsryN/i7NY3up53OvJBLL6soKw8b6DyVIdpUuVp9GdCea7NKE+lmx2J/PDdWqqs1WHDQmCldpOwHpBetSk9nFEdz7EDxG+SLBX5ndxQnjowGANu3LYN4O1ZgLV7jlx+xbU3f20K4IlDR8tmV+cjU5Cf6QP9zemibINEMyJ4xMD2s5PouNztPePnyNSJtlO88nV3l+QzhDxfh+lHSrDKdgDxRfhGv7ldz3N3AKlDbKn+ANc7pmuIPMwtSfeSoOXDPK9L5NnodybyfFeHPHP/XfUd2TcxXUPkYTjo3Wq8SxHjzgvTZa9qT5j+VLWd5xGfsjbtFdSmqV19uOvrpvYzz8APQJu2j9o01Rfsdf7LdvNivm4CmrKxzaDAjIF3QRj94Xbeu1x9lDPKvHrRFPLH/B2lMlV5T5Wp0X9p+VS6Exllmqofahd6yhdsTdCrsaKaY0r1G618cEU5v3yKj+fYKOI3SZaK9nCyv6EOkasP+FTtbxjuX0GGUP5O/Q1Ol+pvMG1Z3eM+wA5636m/oWQqo+2mv7GzJJ8h5LUPmN7ozD5rXjY6YbJsBTlMFrT5spMqA2FmXVT0qo+B+OyHcded0g0fwDf6N0Bf4lhiV9z5JfKFkFcWmP5UtVXnE59ezHvHkLro7gXwjHHGp8wnt0T61Lz3zi757BR8cm19bfu5U5/ohyq2n7zybvRvh/bzR6j9VCdPq66Ncf6rrr2k6nVuPVX9gecSVtVTaZi+rB83KGSPoey05H+nflnN05Ib1e4Vq39d9vk25tRxxB8V/EyupojL2RX2yeb1v/+pd73t/QWlN1n4Xc7c0XMFfXf9r2c+8mM8AvFWu8L4g064K8xkULvCavbXNuToD/Fbgp7nMapeGoZx62pi2U4uNcY+XT6pbO7F/BP3HX47MQ+hfJM65Zk6Mco+jfPIPieGiaDDVykYnun/DMGLd8Ia7f+CfD9O37AoWyMcLMlP6nRYEcp1wzzU6bCbw3TZ7sqQTc0HIUbZumXEUGuIbLdVT1RuFfIoPpd0yecSwSfVJvGv8eF3qfXIS4hPWb/pYxXWu+LzLe1nXu/6bug3/TX1mzA9r7mq2x/U/gLWfdmJbfYnRv8PUK/4xDbPD2M+U3aWe0rI6D91CuaZOE+DYaZvjeFlQecJ/XSqjdgh6Lck6NV6E9ok+2x1ESFjlc1tM+97OvDmeeuyyyPxb+S9McH7vg68eaygTsHwusTbl03J8G9UfzuV+8tLMN9y9hTm/6mIeVsJ5uhZU5j/kfAJzwnT+VW9gQTT885jdWHbMMlZsf5lX4Rl+M0wM8915hHVvIjSi7rUj9elMS5nf8pzBJ+CsDrJNRLcLsIyEZcQ3boS0QqBW9A/fr+E3qmpSMSOZr6i3QyameP9iNcRvvpMl/ruZEukNzrFp9Uln5bgk8K6TmAZ/e2CviXoHU3DRFxOdFsSojFuJ9NYTu/KTMNCg3jGZ76rhouGZRwTGM1EnhriXeoKytsTfK7vks/1gg/vsLmi3Vp0+RnZ1/MVo4aB2DVn6F+f6/nLdkWjXOrTZDmzPWt+81U/dt35e+8oKL3Jwu+4SqrR8/WCvstZt9eq2R68ryoGNSOoZntMBjXbU/N6ydfm6A/x1ew8z/ZUnTlR95ZVxbLZHjynlqrLp8pn9IJPCit1z5fpZijoFTL2SUZ/fdsnqS+KKn0H8W4gzPRHdiXvmMCaVyK74m34MbREeqProU+cU9UnNsPMPNfpDav6ofTCd+NhWt75HAOvdlVdCel3LLRNvqrb4tWv8eF3zAfr6jzi06vTQTl2XpcPYvGu417ctxiDza502QbfpWYZLaiVKLYLdaZb3cPF+sd2ke+oxBkVnIXi0KC/uR/wTRl3FqmdiNwuVT1do3ZwdbqHb99ZmmfZPXxld9I9AbM0B84qzyOvwKoZS8xj2YzlY9Qn78WM5TeSjdex41+sacfc91IrMOqEguVD+evtFKfu7GK/iPjKl/HsrerPYNnxTPDtQnbVb2pm8En1m5qZfJZ1yWeZ4NPLdgt5dvJTbyY/xau37Kd45tfoHwI/9RbyU5geZeS/c/r1xi/3/l6j/17o1/NqkMrzbQmZkUcgjBjYtxr928i31hzHSt/Kba66V7dLvtmz4IbfJFkq8jvZ7++0+o9Tigvaz50/nly2p7IgVHxXhOm5x7gGvWPvfiv9vU6kCwI7xnd54/MOdfOKhaqtIt9Gg0G1fLgnosqn2LE8ym79QdlSMzlByK9um+RzOuqmY9N9J35q1oFH3Cpd/HudSOM5omI9emD1YK/dwlyPY/jN0FU9Oelx1L4rtd9D1Z2yM5/oEwqKQz7qnIDC2uCEFcLMmYZZrFmsWaxZrFOBlTPyxHaK9+6gH+QzblUXwjF9asH9ki75XCL4jIp0ddvkVkJmNXvAequ631Gd0e20D/EzZ2meZfsQeeRp9HedPZXu82dNl1mNPEPQo3wsB8PgtMMgg8VV6F+MPd0Hhtkf1iuugHbqh8Rn27PIe8kx78oWcsvo/1AZqX2Tqb2iRr8Wyug/aHZAza4yv9CBH9fDoRJ63itq9I22fLjqp+TbVMKvbLbkwhJ+ZwA/Mx5ld8a7S7tbqOwO/QzbnZrhUv4s5S+wbrEtog3zSq/aC5jaH2zph4IuA8MbJPoFosxz7ZzL1ejPzCxX02UvyhV1xeWqVtHVOcuUHagVfzUDuZ6w1gsstR84ty7zvT1GP5EoV/46HcvJ5Wr052eWK54LNhyL67ZcUVdcrqr/ofZjpuwA2wfTiVox2Ehx6hbglP9GO8gpcyyfMv/9PFHm3Hdkv9CpfYkBZxYXtp/bM4ubjx48vKc9tRgopKYC499l17YtEOkDpS3o3QKKU+4zNaFuvMs2yrD7NPqrhcpT7jeGnC3aWNy9mJw2fK8t2p3cGk8VpapZaihzGkw1hltLxChE+kBYhXgXg9o2rW5LyvFuSlVq7xfSGx7v/XppouXotIaZc/uJWrtU+eebMjHdphI+2KKhGXGLZvQbMls0p5GPbNFQR9yiqZmF1IlmddpIzZa2iB51r1q0slNWyEf1YtjVYVo1sup0s2rOCW6Ule1L3fev9gqkRsG4fyMGz1Ew5odtIVW2MZTdkoP0WN7ca8V9HTzzhHWJZ7/UqCfXFnC24zMla/CImxoBdfp+N4/KjX6/8AGGub1D3nJGgOr0srqJgk/iYjrcL2HYgei6tMd5nrMyMVStq+x/0M54Lzq2BWXfhEV94x4P5Qu4x1515k/ZNO9h+yaws7JbFctmUG4pwfyWhO12qpc5bXXqpme0T97TdqpW6HlPm7otSu1b4/1HuDeT95CUfeuMA/cBUQ+5+zZTfkf5PmXzaEv7yOZxWHE18VRdeHzHNo/pjU7xaXXJpyX4pLCuFlhGr/rQLUHveCzPRDyf6LYkRGPcgv7x+/PpXUPQYlDF1CyRO4S8YlKTUoyF7g1H43xhPnY3riGsqotMmL7sVOegkD0G3sJm9L/cdrtdHtl7a2r7Y5fHU95aEF4Ieiagl0f2fu0dd8774HuuzTpyFgNXV+UGrxH0XX6277tS3aqqR/ZSn+2rudX7u3L0h/gtQe95ZO/Omlg5R/Z67ZN4CuA3RLfsVMti3Zbf6gNZrCv0O30gi3Wf/iDRde406c9tC8qe2tzA+ara7jQz+VzbJZ9rBR+1uFmU/BoffpfaRHEt8SnbVv/hs6fSYF1Xw5wY+OIXo38LXPzyF21MNWVY1r4XId3vYPlwWz3SbC2R7+Ngn7ytnvOM+VQy3wE8AmHEwH0So/976pPU7DfIbfXcR+hBfyV75eJ0Haettq2el/NRK4iK74owPfcY12mB4hb6u862+pq9k/vMKu4TkRa3G7B50D4JcViaHNQAGw+UVdlWj+Wxm+Jw3W8SeHO5bhJ8TP4BQb+VsFRP23TfiZ9aTOFRiEoX/365SON5IJr16IGltuh3OdmU/Rkevqa2Zj056XFSk8QxcN7VlblqqxuPuutewRqfdzpieV0NG5/vdcTa5oQVg5e+ZrFmsb4esXIOVWN7YPVYjcp4I0PVESWmT01MX9Uln6sEn1GRrm7b10rIrBYQWW9VL0pRnyTqtDX6ymWaZ9lnBnmEZ/TfCiO8q5dNl1mN8GJQo2ksB8PgtF0ulI6ohVLUKy+UqllMpN/d/k1t1VO2kFtGa6mMUtt6UR7e67Yfyujm9rPaHs5XwXbaLLKb6C2PudvXjf7lbZk6bV+/vYRf2azE+hJ+G4CfGU8Pt6+PK7tDP5OzHVb5s5S/UHvx+LKL+MzbYVHH3C+turVdbYdNbW03+h3CHrgtYtsok0/pzXk77KYSMeaL9IHSFvRufgmW4cR3OMmRsx1W7dtjF7FbqDxVZDEo92X5md0O25fbYW8pEaMQ6QNhFeJdDJ22w3KrklKxUlXdgxSHhEmnPGzq44GqJ6DWHFLbgVWv5/YSPuqARxB5NfoTmS2aU09KtmioI27RcmdOjL7TliauaqntaGpkk1sNc7fDck+t0zagqtsP2b5ytx+metVO2w9HTvf2Q94Om9p+iM0Rf9hD9aJybQFHTzyy6nRojdey7gAsNZvMWwqN/j8LH2CYmzrkLcffYTeH1/6xi8H+DmVPbc82ui7tca6yR8x/zigvtbelU11NHRa9g+KwLeBuZCe7SW0lxLXLD9O6K/J5HvGsurfkeUJ+xafVJZ+W4JPCep7AStXzHm8lNBGXEd2WhGiMW9A/fr+M3jUELQZVTBtK5A4hr5iUOSs+zS75NDP5XNklnysFnxlbXNqK73IZ/TVqQsrKrsuF3tcUhBeCHk3x7bDqhla1mJazpfCzra2/feBLP/FfU2431SVU3yW6UtCbrnZD+gq6erVqmoy32lLI2w2xedndflZbCmtueXx1jv4QvyXoeWGv6o3CGLepJpZtKVS3nJ8qn8FbCj8AXSjeOneqZLEthX/aB7LYlsKPnEZZFJ+ruuRzleCjuopFya/x4XdlW2+RZ6etd3+fsTCDaXe3f3lh5pvh+4afoEl/ddKqCLr9ir+4AFh27yhuvUOasu9WfwZsirfebaU8Yz6LhAyDgm8MO0pk+Gdqu2u2r3LrHQ+D1Le4Ob8haJ2nFvyM7lRvBuMtq5MQx5uT7oe4OyjuAYgbpbgHIe5uitsDcTyNiYGnNFFH0fYaE1O4TBeIJ5bhborDdsx0oab8XgjPGGey8jsue0yf2p68tUs+WwUfNfWJ/dXUZjSzz5rbPrNXBPjoS80jPidXBFJ3CD0tWPtX9Zl5uI9xZVuekc8LBZ+qcvXgQ3UXE926EtEKgVvQP35/Mb0rG8ba36fzGsVeVLFOewKWLdc8y676wqYR6bdD9+BceOaVHMTij0ChnvhDM2ofzXCYqcNeuADDb5IsdV1A7np8tZ3mo/DMWkFUfJeqCbz2x8uyI5Suyk5z46vmJNcLzNRaF6dDXQTxbkDQpxqkUZK9kUiPGJiOLaag91jb7hS8ecfJ5e1aFTsc150/RV/GC/XRaVcF07AMRn8VyPDlkrNYgyX54trMDTza1t0l/G8DL/OCEi8WBH/OH7YwQyXyll2R9CLQQerzeHymm9+hDjBt2d9IO0x5wb+VLfL60MYOeefyN/qbE+U/KmQwuWJY10EGphkukeFlQgbhNW86eOiJkh0O3JdgL8elxCUxKnDKgmkjWqxZL2uHawfzsb+VBcScL2o/n+yaHdhztGx3B7cIzRKeA0GH0aBlC+H0bdgZrccvuWEH81d3w05ZLe3Ep8sNO2WNtnIWnD5Q2kK8i+HpRcE20Dda95mxyrbK2swCN1K7wUGZLTLmQAkmz0qpEZqa1TF6NXOuGiW1sL49gzfqkh36XRVl7bRB5w6SVd05lCvrxlMs6wYha5ezF5Vn13gmbBLidlIczq7xLNkDEHcvxeHsGs/Yqdk1i3sFxPHs+UMQx6uJeyGOh7v7IG49xT0McWgLHNRMn5VXrM8fWzmFy3T4XOaLcjcDoe/h4brafICd57LVNPRjONNYdr/YaxJ+zPt+MZMnVdfVxjW+jKUhMPt9c5q62zG1GRHvOcv5dmWu3aQ2A+EKEq8uqfymbjXfCVgqv7e2nweJ/nsT9qh0mPLnne7HZJvDDYF3Uxymw/sIDTsQXS/uDsX8sD3eA3ENQc+6uVfQ4x15vFkSj+XykUC0QW5X0N/hHb4fWzqdzuMLbWrXAbeBdznyQawdxAfrIU7LvpP8vLrXGH3f2vYz70D4f2GS5GdpKlZt+uUVzV+Aevb755Wn59VJtYFR3beZc38z0t9aks9fATnf15azh5uUW1Xvb1Y+JnV/c6qeok5aYWad5OPsyter7w1zH2EopNtn7iP8TzEZpsZw/EXATRVlr7OJ+ofafkTd8dztMeidIm+MpcZ4WG+53BtBt4dMj5OjKf88SPQfgLL6wHkaM5TIsK1E5qESep7ANfo/EfaS8gNo/7sI0+g/BJh8QVgnzJtKMD+S6Guoepq6i7tTe8r9CXXlxZiQndvFe4A/076U+GMc37fLMpfJq1akU/Jye2NxX4D26u/bz8OEV9FXN1Jl9QIhb25ZbUvkj7Es3WCYaY+pOoL6+PRyjTmnIubnRJuu+iq7AP8LJf2RGLg/EgP7ZfQZWA/fSX0Sdc8090n+VdRH1dYbVndtffHxqsf8O+nG80DSUopT4zTvtvTo0um4qfF/fL6I5OjUx3tR+5n98NA5z/wqP6x0mNJ5p+9j8CE4LI9dFKds9lTbY798L4L7dmiPvfpexCuob6e+ZaJ8NMvTqc/Nu5HNxw+V0LPPN/plYMfc71GnElLjhN2C/j4h8xjJgGmZN9ZL1Ml6yo/RrxT1sodzHvKwMOqN7X83xDUEPet0UtDvBhrTSYvoUb/K/vkEhZpHStXZ3LqB7fYN5Ku95+fYVxv95QlfrfKW8tW9mp9L+epe2mq/zs+hrebOzz0voy+QOqjeaS2A/VdqLQDT8fpl1e+4YPq7EnwmuuQzIfj0cg4Seaq+zQTlp+pcCKbnuc4djvlRMvOu+hhwTnXzOVNpynwbpuX2zugfOWcq3bb2szqVkbpIIWW7ZXOiZfsENkL+Q+hFnzPMOd19Tu5XYnvJ+z7U6Re0PWw7jSaQjL3Q16lcJzQddLtOqHSZ2w/BU1dDSzvLnzqt28k+jFcfrtGd9j4A20LVNTr2l8hH+UsuY/SvWC5r2898UvVVib6jsoOU3XQa0/G3H9E27qE4Nc/fQx/S13azi+JS1zx3shv2IejPsY229js1R1aE6e0k2jPSl62v3EU4Bb2fC+8x3Q2UZ+4jMfaLid7yOVRCzydOjf57EnMJOzvIcCPJsKuDDDtJBqP/PiFDSv8xpPqEw2FmXaxQbwYLwjN58B3iN4O2j4mQFQrWn/FTdhAD12VVn9RaScoHqnqusEYcsfikcM3yulv5NgsWh36JxxXox3j/IM7zYPlyaNDfmJ9o1x+kPQVBYHE/D+VWvmanSLtTYJ+u+rCzHr9kfVBjgKr1gdfYn+31gfcu9Vt9QD4mt9JRDBMhL+TUFyybCvpfmVtfDN+rvijbU/XF8ndPPX4T8U7guWGmr7oMntU6BpaXV/mpOa7TVX41Px+TLD81hvcsP6xbVcpPzf0th2eMw/yk5v4w/ama+1tOfHAsiHN/H6G5PzU2xbQ892f0/wRzf39Jc39V5/d6OF/XqLo/MbUHIYaq6+e87pA7/8RtuzrDlDv/hGcdPrFEy18A7lqRlus20u8Schg974ljGt6/dnJvDoyl+FCtslmUay1hGv0/J+ZTer1/DfXM+8HK+vSGHcLMPoPlz+KqtAuqTmB+uE6otXikr7oWz3a/G+J2ERbXrxjWC6yUrHd1ISuXI5bVbsIyWrRLzA/b5cl9aW377rRvwHTei/JPzacpnabm03YLetQpj2l2QxzvKUjNp3WaO2efuF3IgG2imt/kNSjVPig/oXw6zxuZXS6C8ue9uri/R60jry/BXCJsKpWH1MXMndq41LmGXYl0WC+HBa8Je/hqOhie2ccZghe3M0a7AvT0+AotS8HydAg9HJNNFIQXwjfUmGyFx5hM9fOwD3xRRh1Dv3NF+5nr2PPOnUp3SQlmCLreps4VojwvL+mvIa7HerKqu6k+DK8zqj34JgPuz1b9Nd47ZfTXQN1MnWXyWZ8svqDaRewXcruY6gPGkHPTMq4l8RkCbDN57lvZF5Y198NxTUOVAZ9DMPqXQBmkPhnF7fb2irKX7Uvguoh1g+txp4+DlN3NoMa+8dn2a3O9X5doW9VcQapt7bTnnc8TqnUoNYeBn8Iz7EB0vViXPZV7YfgMeOpcIJ4B4Hli9VGhKPtzyfeqcwNYtmXnB8vOql7Yfubzg/ck7Mt7X2GVOwYwndX9Hs7dLDjdczdWtjlzN+gLec5PneuMss8j+1LtJKa9tP3M7eSjCXu5N5HHGKq2UXx7OPa/7qM4TMe2pMaDJsPu9t+oB5TrwfbvINEfz+wvOI2j1yr73A0EbJ+TENcQ9FwW9wv6SaDhffT3Q9w9hKXmt1Cn7LvUmY77BD6f6fiWRH8B26fdJPuuirIrv6vqG9apn1v8zLMa53OfdVeCJ6fFtmeohL5s/PkGoS/2Z2XzSWsI0+jfnPAHqk3dAu+q7hvjdRTUC+8bU+OO3vXnw0tO974xbj9S+w2r7hvLtX+0oR8k+8f2fDPxTPVjOS3yKbP/sn1bP5aw/07j8gsI0+h/vOLcV8r+O/URUn2k1Bojf92mB/3zW053/5ztP9U/R/+bcz4y1/7Rht6weDquOn+LaVe3n/n87S9XtK9uzt9yfyt1/hbT8fyM6rtyOZa1MzxOMfr/ntnfctoHvPB0+3Net1D925T/TK2TKv+p2kv2n7+fOT+Tup8iR/bc+oZ16nFqb3Dsy+1Npw9j8hl+q9dl7Y3hcdvwJ4n2Rn0RCPXE7Y3Rf6jieD3V3nQar/N8kLpPQo3lU+N1p7ugFp3uD9Zye5P6YK06n8Z2gHxy7R9t6MG2/Xen18c/WIAsht0QlIP0azSfatsn7gmx35wvDH7kt//lz9592xWP8NeYYrAyims2sfz/geZk8Tpw0yVeo80fNmiQbCpdQTIw/YCgN9xRETcIeairo3m//St3/PW/Hbqgk47q4i/7jT0fePFH/+mjVcpgNMwsg6LkN4ZGArslsKxNsTW/IUhfwW8MWPozIH3IT19YPufgS5JtuJ5sX83RE+I3SZaK/E6ut6pr0TF/vN7arMfvP3C9FesEliXqDvlYeak2ZZjiBgVGTL9q1fR8DNTMR5c2+P+Nhul+IgZcM55HfYUzIK4RZvouy8cg0S9YMZVufvt5LEz3aeyTxsLM+sF12vQ9IGjxmf822VlvSG/lNVSS1yHKq9EvbedP7eEzGtQfyjVQgrkMMK1wDXNumAqpOmP0I4J+LtCYPOqTTSOUDmXHfZn8TpVPQbQoQwx3C5nK/m4KnDIZhgUO+3nGZJ5sDzFw/6gh+GCdwjZrWPCvUI/nqLYgkDxDlB+Mw7xh35oD979Q5ojxv6ENZjqWR9Ulz7bb3s+B98y3QbRDRMt9d5RxjoOMLcFniHDPSMhfEM6gSDcadH1Tv7nyFkJe1ZZ0ywexcLymfPdEyArLuC8cA7Z5L8lo81Sfgdu8W6HNuyWzzbM47rfFwGeTUUbuByFGDDzvYj4y94NLRr9etG3KhxhWzPvtpM9hiEu1I4NEfwD0eSfpE/Vl+lTtV1mbM4doY7i7RAc7QI5tK8p58dhL5TFi7Fqh6VAGpGOMuu2a6l9x3c3pX3FdxXSKB/vjsrab93mUxc8VeQvi3YCgHy7JbxC8mx1wzxA4yr/z2ZhCxLHvwfyqeQQ1vke/9ZJEfSnC9HzNpXwNJ/JViHRcz1H2MxKyK/2h/6g7h/D6v/nqh9/45Fmf7dUcxYt++MS3j171sz/fK/yfHvnjl/y3Hx6+t1f4HzjjU1/6g9956LuqzLGYHQ0RL3vG8sT32LfhuX2jfy3tR685hyG/os5+KTX+Q/l5vBjDphL5fwjah/9E9U6Nf1SdLGvf52TKYvRvEuNGNW9hcnU5Fz6o5sLRb3J/Wvnz1LeDOo1dTSfqTkPmPUdgoU65z2Q6Ggp6/sDw2B6+D8qA16qU77c4zDv73Ybgq+YqcV3q3VSvavafz1D9FAujobx9UWc0+Q6IuSQTxmFZon1yUGNUy2uU+RfBPpnOgvIPXF/VvE2qP6rqneH3W70z22+FmeXC9pZrw2X9RcUP9YB9AbPhsjl/rNM4pvsVGoMMQZyaM2N/avTvB9/+6+TbUcdsD8pPsCwhaD+UM1cwKtJZuah1hipzS1i+KCe+Q/xm6Mq/FOxvjR+XEa8F1OwnDHIbi/xUOcwPWqdqvYDHomo+KTUOS/kTVf+4bqp5CtWGpMaLxhvn5HP6TapuYVpuJz8IdeuTiX5TWd8oBD3OYPqU70NZle7nUpyaW7DnkQQfJdeooB9JyIU+GdMy7055yG2rnPqI8m5ULBOuI0ovSM96nCfoR4GG68g8iOOzNblt21yKU218p7btkyVtFOYD/R+Pn1Udw7ZvrP2OcS1NDDzmYXpcn0L6z0Pd/WfqX3E/2959NUFXlPwqmVEee9cU9A1Bb7znCnqLw7qEOkYa1BdiNUv4/QeVCc6VoC0xf6yroUTusrrBWA3xzuhjPv+V5l3qru13Mzfxd8Mbbxn4xTeuqLP/g+fyQuh638Bv5dgj4jdDV32TItXGYf64LzS3Hr//kWoj1Tyr8Rupx69hZTVPYJss6LeULJZ2kOiXTDzzazxGRZpWmNnG8D5s1f7gu4HThKXaOdWWPb3mPPHMs7L/+G8iZIUrVHvNdaumLWzPrVuG3wxd2XqR6qcpH6rsiPsLWF57gK7bsj/Rp1j7HbEec8Q66ojlqa+DjliHHbEeccSadMTyzOORPpVrnyOWZ330LMeHHbE869BxRyzPcvS01SccsTzt65gj1isdsTztvl99jmcen3TEut8R6ylHLE99efZNPO2rX/uFnnbfr325vY5YhxyxPO2+X/ty/Wr3nn0Tz3J8NrRp/dqX61df6NmX8/SFnuXoqS9PW/Xsfz3giNWv/a8DjliedduzDnnqy7Md8qxD/ap7T//lOS/Xr3NDnvbl2fft1z6mp+692o743HTCisHajpx9NmpttJngUwiZG4IPnrMYbb/jfTUxDIeZuqiwDpX9fTbDb5IsFfkVqfJRewEs7/OELGoPDZdVap0S+SisQUcs3lek7uhI7StS+8WVvkbC1N6NY0f3Hdh39Imb99x/7KH1Bx8KFAbp75tLRNxGdJtKRGsI3IL+8ftt9K4haBF7LMwsmqESuQPg4TsuJnWMRPEpuuRTCD6jIh1X7ZpbXy7KrdqG3wwz81ynaitTVXqxvKvtjy2Ki+EhoKvjejHu0favB9ZBR6zjjliTjlj7HLGOOGIddsQ64Yh1zBFrryOWZzl66svTVh92xPK01f2OWP3qJzzro6fu+9VWH3fE8rQJT1v11NdRRyxPH+3ZB3jCEcuz7fCsQ/1qX88G/9WLdsj68nj0CY9AXrtyOs85ENegtAXwHCT6n1o5le66ldN5F8Dbnru84u6SgvBC0GMow2+SLBX5nRxDDRA/zh+PoRpClhbFxfAKoOO4hniXwjriiPW4I9ZhR6yHHbEmHbGecMTa64h1yBHroCNWv5ajp6161kdPufY5Yu13xDruiOVpEwccsTxt4pgjlqe+PP2Xp1wnHLE8y9FTrn5tOzzL0VP3nnXbM49POmLd74j1lCOWp776td32rNu9aGttXQ3HY3xdkxr7DCT4qKvLRkW6ov07TPLZ80TICgMF4Zmc+A7xm2FmnivwK1L6V3rhNUVM26K4GPhor+JTCD6FwErJ5bg0bSJeTHTrSkQrBG5B//j9xfROqQKx1e26w4KXhZRqWyXpYxhN8FFmb9MweIMOFiEvn1etfpje4hSfoks+heDDelXTSTE82P4dJPpfWPnML95Q2BD8ECvHtdRcss/ejcNL9t26FrVkn3It6kYxtocY+KuiVW8bS9301A2WU1NQ+eZ71iPa1SaKwxs28ItLHBr0N+Yn4n/wvClcpmNZ0cZMblWXeVtM1bqM6QdKsNRNkjHwV12N/mMrn/ntskzXqDJle6l5u9ya3PpddrOeqvu8fWkipMPOW5764H95x8fWVK1HRq9uxlPbe7q8Ge/CUeARiLfFqW1gFoc+2GSI6deQfDVvJrwwR3+Ir/wjd71yy2I86HYmBH0b0RhgsC23CGMiZIXsbrDhN0mWum1Vi/hx/rC7uaD93O5urj84+eBNk4eOHDuwh1tv3KvJWkFUfFeEmR65AMlCgu6l9Pc6kS4I7BhvJTdO7ydCVlhgVrFARFrcQsCeR3GLIA5Lk4NqmUzmp+/hq/C9FiyPhRQ3H+IWAW8u15bgY/IPCPr5hNUS6Uz3nfg1RLp5hDEs0k3Ywyfe+LZvbv3sd//IxMXv+5ehW7/z0/d98eVzrv3I+546639+61c++fnvYZmDkJnLcR7Rql+Tnd9xT6bliDUusEw3C+B9BZs/M9dbGX4zdFXHTnqrBcSP88d5XyhkaYk49kELBZ+Fgo/CGnDEajhiDTpizXHCimHnLNYs1izWLFYmlsVhez9Ocdh+2jfOT9VsXQ8ny0dz293TNVne5bcPRwpKj/zUBDzPLqg202xjqASLv/Vh9Nee98xvi+hiYLtWM37qfvv47srzpsvOYxv1G0K6r8eLRFg+p9rucfyBmxZvPE/zxFlmTLu7/cszU79+3lS6m86bLrP6ZmIM6s5+01WXs1AjamZlDmBbHmpgj6r71TFfOfer44wM31+O51z5WwRqpqhL/7UotaIS87KRbGQQ4tguMT+DRP92sJHN7WdVD3A8V+Z3UvXG9D9UQj9I8hn9XW2Z8DtCSr55JfxQH8ovMr+7gZ8VlrJb9OMh1LbbM5Xdoj/M+W5K6rvHatZUHTxthZl1IGeBHO1gXYmsZe0Jzrgj/UOizHPtnMvV6B/OLFcnfyTLFXWVU65qdju3XLkdUt/h5LqCWFjWOeWK8nE/weiPJcpVtXGqDeI27vHMcjVd9qJcUVc55ar6C7nlyqueWK78LUrlo9W3NFLlivlhH230r0mUa10//G194Iexv5nzHT2k53JN+W3lh7HM+b51nr9FPlV9tGqXUz7a6L9blDmPKdkvlMmn9BbzbGPa9irK5qMHD+9pL6MECqllj/g8v0SMRSJ9SGBhmlSWcGGIVW68hoKenmeVG/33C5WzClmenCF2zSqTvRBn+F5D7Nx9X2rIy9UsNRzOHco7mmoMLy0RoxDpQwcs+xv3YGFxc68+1RPgtPGfeeTcnoDR/1SixUiNzEKY6VHGBT2O1nh0j3kYpzhMN6+ET24Pxeh/LrMls3e9aMlQR9yS5a4UGb2amcTVMe6hqJWV1MxkbjVPfQUcRwllI2XETe07SV0rg+WmRqX89bqymbkQetJbHa06ulR1KTW6TNkO6qYVZtpJakaO5VJNLPoJtgVV/3FmDUdA9puzh+m657x56bLfe2y0V18lf9dVl7xw3l0XvLpX+HMGl33/xM/uXl/ly2LK1w0QLtahgTDTbja3f3P2uNXcF5W9h5W/2Fr3C28F4Rm/sjrD+ysxLe+7joFnzocFH/U1tFOFpWZZuSxr7sHL/vqu4TdDV7ZTpPSi+h7qCjH+WjleV8D67+bqg37EwvrPe0ctXv0aH36XWkWZQ3y6+YIm80FfcAbxOcORj7quQu2/7paP2sutZiNxZeEr1F9qQpyaUeCvhhv9qvOn0n31vOk0J2UHmtH28zDwDqFyXW5y3cRgcThTxnarvj6s+hVsH9iX5XMxOB1wN9Bx4LEd6iHyu3rVFC7TWUBd5pwNwukG5hnDDohH+nEqr5orXYH7Ioj1jWQLdcr7kYzyVmWcOkPBYxK1epk6u6J8ZWq1oUFx6JN2EX6nKZd1iTxb2rkhz3ex7SP9avBLV50/XUb1lVjlg+196kubKI+69dnSdvmF2xG2ZwzKnrkeqBuF2bepeoDzS+wTcUqWxzMYVB0xPVTxiVyOqq+jZsq5vWS7+kqXY8pvv2Jw/M07NrysV2O+7/vS7Ve9Zun5n6vzNenZ8xv9dH6DvWEMs+c3ptOxPM+G8xsFvcfWriF4DxL9trZnjLq99vwwLZ98VgPt726SUe3DCCXvOB88slZnRIZDV55gPNfzGH4zaH1PhKxw0vOMET/OXz3Pw/0M4zKfUI0GaTGgtYYSOlWi60U6DpaOz/mGMLNUa44f5uaWqr3zuipR9VVV26r6SdwnRgvhORllPardmsWaxaqCxeP518GY53GaP2Bfg89qbWYgIQum5zqizt6reT6egx5KxJ2RiEvNazcTcbzTCuNwjMVze6MCM+brb8+fTse+WP2GkJ4DNNlUbwJbHx5To5/i/QHzO2BtJCxMz1twxjtgbSIsTM9rxQs6YN1JWJh+AWEt7IDFp2QwvaXlNU1MNyr4cFuIPeUq4/zcttDwmyRL3bZwEfHj/HE9P1PI0qK4GNjvnSn4nCn4zGLNYp0uLB7tGr76NT78jvmgP+BRLLa1uI7zczTftRDiVDu9u/07SPRzV02lexf1C9BvmIxjQuaCnpW/wHepPsMiyn+v9MzteuHIB+O2EM/FhIV6jmF3+9f0jL50MaVbAnFIhzMPi+H9EsFb4RtGJxt87/k6b2WnN4zXINF/Dvqmv5vom7INqpsLUmsHKfvEMttN9Cb3kKBHvEGi/0OYeeF9kJYedYVyrSdMo/8jwLSGPOXf1ExEyhZV2610upiw1FcMMT+8TVrpFOun4bFOPyx0qvaY8ewkjj12URyudY1RHK6RtSgO18HmUxyuC45THM71L6A4HHtwvwrXK7mdwPUdtC0be/CJqX+g9V2uLxMhL6j13TLfirpWum9SHNpr6u6yuRSn1jxVmY1QHK4B8XoWlqfpGtciU74vht3tX/Z9/5yoz8pfq3630S8V9NhG8F5prMNLKQ7TsR9YSnzx+az236gHlOu+9u8g0f876OF95z3zrPbOmlxd7p2dq/bOngUEvEf1bIhrCHoui2WC/mygMZ20iF75VuWnUafsW01HQ4Ie8QaJfk67L6h8K/rms0j2oqLsufu8sU69N9E35fb9zARPTot8ys45lPVbWkJfBfHAeoBycftu9AsAk/2B0mWqfVf+Y7HIl9LpEopT/QJVP42uy/o5ouon5p/rZyqvMdT1la0ws/7wPBDWDbZ/Nd+Ua/9oQzbeq7tP4D+/99KXfe7Oz5zbaZ+AlVvNWyBOrv/j55vNPrAPxvdq4lwtn49o1pPlZB7nAs8GyYf4g0R/1arpOLzfGd/FgGUXA+8Nwl/kOwbyBUqbizVMWGd0gWVytQT9GRWxhhNYQ4TVFFhqf3IsuwvbZcN7W8xfqVsQrE5aHtQ9rzHwnkijv37VVJ64T9htnxnLj+VvJORvhJnybyqRfyvM9dy4ajq/M4gHxqlPIRid2oOXksXobxHtnGpP8MYVw7G4CjofVO0J2ha3J2ofoLJFo++0D5BvnFF7Twv6G7FQp9zfMx0NCXrEY3vYmOjvoW02SXbMO5+LaAi+fD93DFbHIs0Bqlc1254z1JqgBTWOKygO2xkee/PeTIzDskT75NCgvzGvVfcDq727qi7zmG9YyKrqneH3W70z22+FmeXC9pZrw7wvupHgp+YI0IbL9lpincY51EPQx0C9q3PIMbA/NfrXg28/Qr5d7eVWdpRzu0nqWwiYPue8UJdnArPPkfGZwJr+pfKZwC77CYPcxiI/VQ7zg9Yp8ue+rrKRlD9pUJzyJ6r+cd1Uc3upG9dS9Q/vP8jpN5Wd8edb1Iz+DVC3fjTRbyrrGwXgl7rrIOX7UFal+7kUx7dA4fNIgo+SS93ZMJKQC30ypmXenfKQ21Y59RHnqLYKy4TriNIL0rMe1RoJzttzHcGdqXxLUG7bNpfiVBvfqW370ZI2CvOhbp5Sc/zYvlnb9/8Dj7CQ0ViHBQA=",
|
|
4109
|
+
"debug_symbols": "tf3Rri27beUPv4uvc1EiJVLKqzQagZN2NwwYduA4H/AhyLv/pyiRg2vtTK1ac6594/3zOWePoZJEziqJpfqvP/yfP/3rf/6/f/nzX//v3/7jD//8v/7rD//69z//5S9//n//8pe//dsf//Hnv/318U//6w/X/J9S+A//zP/0+LP+4Z/b/LPtP2X/qfvPvv8c60+69p9l/0n7T95/bj3aerT1aOvR1qOtx1uPtx5vPd56vPV46/HW463HW4+3Xt16devVrVe3Xt16devVrVe3Xt16deu1rde2Xtt6beu1rde2Xtt6beu1rde2nmw92Xqy9WTrydaTrSdbT7aebD3Zerr1dOvp1tOtp1tPt54+9HT+qfvPvv8c68/+0CvXhOJADg/JMudMf2gW+4+bgzioQ3cYG8ZU7hOKAzmwQ3VoDuKgDt1hLKDrcpjKYwI5sMNUbhOagzg8lMmgO4wN5XIoDuTADtWhOYiDKxdXLq4844h0QnEgB3aoDs1BHNShO4wN7MrsyuzK7MrsyuzK7MrsyuzK7MrVlasrV1eurlxdubryjDCaQzBDbEF3GBtmlC0oDuTADtWhObhyc+Xmys2VxZXFlcWVxZXFlcWVxZXFlcWVxZXVldWV1ZXVldWV1ZXVldWV1ZXVlbsrd1furtxdubtyd+Xuyt2Vuyt3Vx6uPFx5uPJw5eHKw5WHKw9XHq48tjJfl0NxIAd2qA7N4aHMNEEdusPYMGNwQXEgB3aoDs3BlYsrF1eeMciPGOQZgwuKw0O5XhPYoTo0B3FQh+4wNswYXFAcXJldmV2Zd95gFgd16A47b3C9HIoDObBDdXDl6srVlWcMVp4wNswYXFAcyIEdqkNzEAd1cOXmyuLK4sozBmudwA7VoTmIgzp0h7FhxuCC4uDK6srqyjMGq04QB3WYv6plwtgwY3BBcSAHdqgOzUEc1MGVuysPVx6uPFx5uPJw5eHKw5WHKw9XHlu5XpdDcSAHdqgOzUEc1KE7uHJx5eLKxZWLKxdXLq5cXLm4cnHl4srkyuTK5MrkyuTK5MrkyuTK5MrkyuzK7MrsyuzK7MrsyuzK7MrsyuzK1ZWrK1dXrq5cXbm6cnXl6srVlasrN1durtxcublyc+Xmys2Vmys3V26uLK4sriyuLK4sriyuLK4sriyuLK6srqyurK6srqyurK6srqyu7DFYPQarx2D1GKwWgzyBHapDcxAHdegOY4PFoEFxcOXhysOVhysPVx6uPFx5bOV2XQ7FgRzYoTo0B3FQh+7gysWViysXVy6uXFy5uHJx5eLKxZWLK5MrkyuTK5MrkyuTK5MrkyuTK5MrsyuzK7MrsyuzK7MrsyuzK7MrsytXV66uXF25unJ15erK1ZWrK1dXrq7cXLm5cnPl5srNlZsrN1durtxcubmyuLK4sriyuLK4sriyuLK4sriyuLK6srqyurK6srqyurK6srqyurK6cnfl7soeg81jsHkMNo/B5jHYPAabx2DzGGweg81jsHkMNo/B5jHYPAabx2DzGGweg81jUDwGxWNQPAbFY1A8BsVjUDwGxWNQPAbFYlAeYDFoUBzIgR2qQ3MQB3XoDq5MrkyuTK5MrkyuTK5MrkyuTK5MrsyuzK7MrsyubDGoE5qDOEzlMaE7jA0WgwbFgRzYoTo0B3Fw5erK1ZWbKzdXbq7cXLm5cnPl5srNlZsrN1cWVxZXFlcWVxZXFlcWVxZXFlcWV1ZXVleeMSjXBHaoDg9lKRPEQR0eyjJn3YxBgxmDCx7KMsdrxuACdpjKfUJzEAd16A5jw4zBBcWBHNjBlYcrD1eeMaizzTMGF4wFOmNwQXEgB3aoDs1BHNShO7jyjEGlCcWBHNihOjQHcVCH7jA2kCuTK5MrkyuTK5MrkyuTK5MrkyuzK7MrsyuzK7MrsyuzK7MrsyuzK1dXrq5cXbm6cnXl6srVlasrV1eurtxcublyc+Xmys2Vmys3V26u3Fy5ubK4sriyuLK4sriyuLK4sriyuLK4srqyurK6srqyurK6srqyurK6srpyd+Xuyt2Vuyt3V+6u3F25u3J35e7Kw5WHKw9XHq48XHm48nDl4crDlcdW7tflUBzIgR2qQ3MQh6ncJnSHscFi0KA4kAM7VIfmIA6uXFy5uDK5MrkyuTK5MrkyuTK5MrkyuTK5MrsyuzK7MrsyuzK7MrsyuzK7MrtydeXqytWVqytXV66uXF25unJ15erKzZWbKzdXbq7cXLm5cnPl5srNlZsriyuLK4sriyuLK4sriyuLK4sriyurK6srqyurK6srqyurK6srqyurK3dX7q7cXbm7cnfl7srdlbsrd1furjxcebjycOXhysOVhysPVx6uPFx5bOVxXQ7FgRzYoTo0B3FQh+7gyh6Dw2NweAwOj8HhMTg8BofH4PAYHB6Dw2NweAwOj8HhMTg8BofH4PAYHB6Dw2NweAwOj8HhMTg8BofH4PAYHB6Dw2NweAwOj8HhMTg8BofH4PAYHB6Dw2NweAwOj8HhMTg8BofH4PAYHB6Dw2NweAwOj8HhMTg8BofH4PAYHB6Dw2NweAwOj8HhMTg8BofH4PAYHB6Dw2NweAwOj8HhMTg8BofH4LAY7BOqQ3MQB3XoDmODxaBBcSAHV+6u3F3ZYnBMUIfuMDZYDBoUB3Jgh+rQHFx5uPJw5bGVy3VdQSWIgjioBrUgCdKgHhQeJTxKeJTwKOFRwqOERwmPEh4lPEp4UHhQeFB4UHhQeFB4UHhQeFB4UHhweHB4cHhweHB4cHhweHB4cHhweNTwqOFRw6OGRw2PGbG9GEmQBj08ejUaTjNsN5UgCuKgGtSCJEiDwqOFh4SHhIeEh4SHhIeEh4SHhIeEh4SHhoeGh4aHhoeGh4aHhoeGh4aHhkcPjx4ePTx6ePTw6OHRw6OHRw+PHh4jPEZ4jPAY4THCY4THCI8RHiM8hnuU6woqQRTEQTWoBUmQBvWg8CjhUcKjhEcJjxIeJTxKeJTwKOFRwoPCg8KDwoPCg8KDwoPCg8KDwoPCg8ODw4PDg8ODw4PDg8ODw4PDg8OjhkcNjxoeNTxqeNTwqOFRwyPivEScl4jzEnFeIs5LxHmJOC8R5yXivEScl4jzEnFeIs5LxHmJOC8R5yXivEScl4jzEnFeIs5LxHmJOC8R5yXivEScl4jzEnFeIs5LxHmJOC8R5yXivEScl4jzEnFeIs5LxHmJOC8R5yXivEScl4jzEnFeIs5LxHmJOC8R5yXivEScl4jzEnFOEecUcU4R5xRxThHnFHFOEecUcU4R5xRxThHnFHFOEecUcU4R5xRxThHnFHFOEecUcU4R5xRxThHnFHFOEecUcU4R5xRxThHnFHFOEecUcU4R5xRxThHnFHFOEecUcU4R5xRxThHnFHFOEecUcU4R5xRxThHnFHFOEecUcU4R5xRxThHnFHFOEecUcU4R5xRxThHnFHFOEecUcU4R5xRxThHnFHFOEecUcU4R5xRxThHnFHFOEecUcU4R5xRxThHnFHFOEecUcU4R5xRxThHnFHFOEecUcU4R5xRxThHnFHFOEecUcU4R5xRxThHnFHFOEecUcU4R5xRxzhHnHHHOEecccc4R5xxxzhHnHHHOEecccc4R5xxxbgVGXY04qAa1IAnSoB40nCzOF5Wg8KDwoPCg8KDwoPCg8KDw4PDg8ODw4PDg8ODw4PCwOO9GPWg4WZwvKkEUxEE1qAVJUHjU8Kjh0cKjhUcLjxYeLTxaeLTwaOHRwqOFh4SHhIeEh4SHhIeEh4SHhIeEh4SHhoeGh4aHhoeGh4aHhoeGh4aHhkcPjx4ePTx6ePTw6OHRw6OHRw+PHh4jPEZ4jPAY4THCY4THCI8RHiM8hntY4dKmEkRBHFSDWpAEaVAPCo8SHiU8ZpyPy4iDatDDY7CRBGlQDxpOM843lSAK4qAaFB4UHhQeFB4UHhweHB4cHhweHB4cHhweHB4cHhweNTxqeNTwqOFRw6OGRw2PGh41PGp4tPBo4dHCo4VHC48WHi08Wni08GjhIeEh4SHhIeEh4SHhIeEh4SHhIeGh4aHhoeGh4aHhoeGh4aHhoeGh4dHDo4dHD48eHj08enj08Ojh0cOjh8cIjxEeIzxGeIzwGOExwmOExwiP4R5WHLWpBFEQB9WgFiRBGtSDwqOERwmPEh4lPEp4RJy3iPMWcd4izlvEeYs4bxHnLeK8RZy3iPMWcd4izlvEeYs4bxHnLeK8RZy3iPMWcd4izlvEeYs4bxHnLeK8RZy3iPMWcd4izlvEeYs4bxHnLeK8RZy3iPMWcd4izlvEeYs4bxHnLeK8RZy3iPMWcd4izlvEeYs4bxHnLeK8RZy3iPMWcd4izlvEeYs4bxHnLeK8RZy3iPMWcd4izlvEeYs4bxHnLeK8RZy3iPMWcd4izlvEeYs4bxHnLeK8RZy3iPMWcd4izlvEeYs4bxHnLeK8RZy3iPMWcd4izlvEuUScS8S5RJxLxLlEnEvEuUScS8S5RJxLxLlEnEvEuUScS8S5RJxLxLlEnEvEuUScS8S5RJxLxLlEnEvEuUScS8S5RJxLxLlEnEvEuUScS8S5RJxLxLlEnEvEuUScS8S5RJxLxLlEnEvEuUScS8S5RJxLxLlEnEvEuUScS8S5RJxLxLlEnEvEuUScS8S5RJxLxLlEnEvEuUScS8S5RJxLxLlEnEvEuUScS8S5RJxLxLlEnEvEuUScS8S5RJxLxLlEnEvEuUScS8S5RJxLxLlEnEvEuUScS8S5RJxLxLlEnEvEuUScS8S5RJxLxLlEnEvEuUScS8S5RJxLxLlGnGvEuUaca8S5RpxrxLlGnGvEuRV7DTEaThbni0oQBXFQDWpBEqRB4VHCg8KDwoPCg8KDwoPCg8KDwoPCg8KDw8PivBtREAfVoBYkQRrUg4aTxfmi8KjhUcOjhkcNjxoeNTxqeNTwaOHRwqOFRwuPFh4tPFp4tPBo4dHCQ8JDwkPCQ8JDwkPCQ8JDwkPCQ8JDw0PDQ8NDw0PDQ8NDw0PDQ8NDw6OHRw+PHh49PHp49PDo4dHDo4dHD48RHiM8RniM8BjhMcJjhMcIjxEewz2skGxTCaIgDqpBLUiCNKgHhUcJjxIeJTxKeJTwKOFRwqOERwmPEh4UHhQeFufDiINqUAuSIA3qQcPJ4nxRCQoPDg8ODw4PDg8ODw4PDo8aHjU8anjU8KjhUcOjhkcNjxoeNTxaeLTwaOHRwqOFRwuPFh4tPFp4tPCQ8JDwkPCQ8JDwkPCQ8JDwkPCQ8NDw0PDQ8NDw0PDQ8NDw0PDQ8NDw6OHRw6OHh703fxXDCmxAmciGCuzAEWhv0W8sQAIysAIbEG4DbgNuI9yses2xAAnIwApsQAEqsAPhVuBW4FbgVuBW4FbgVuBW4FbgVuBGcCO4EdwIbgQ3ghvBjeBGcCO4MdwYbgw3hhvDjeHGcGO4MdwYbhVuFW4VbhVuFW4VbhVuFW4VbhVuDW4Nbg1uDW4Nbg1uDW4Nbg1uDW4CN4GbwE3gJnATuAncBG4CN4Gbwk3hpnBTuCncFG4KN4Wbwk3h1uHW4dbh1uHW4dbhhlwykEsGcslALhnIJQO5ZCCXDOSSgVwykEsGcslALhnIJSNyCV2RS+iKXEJX5BK6IpfQFbmErsgldEUuoStyCV2RS+i64FbgVuBW4FbgVuBW4FbgVuBW4FbgRnAjuBHcCG4EN4IbwY3gRnAjuDHcGG4MN4Ybw43hxnBjuDHcGG4VbhVuFW4VbhVuFW4VbhVuFW4Vbg1uDW4Nbg1uDW4Nbg1uDW4Nbg1uAjeBm8BN4CZwE7gJ3ARuAjeBm8JN4aZwU7gp3BRuCjeFm8JN4dbh1uHW4dbh1uHW4dbh1uHW4dbhNuA24DbgNuA24DbgNuA24DbghlxSkEsKcklBLinIJQW5pCCXFOSSglxSkEsKcklBLinIJQW5pCCXFOSSglxSkEsKcklBLinIJQW5pCCXFOSSglxSkEsKcklBLinIJQW5pCCXFOSSglxSkEsKcklBLinIJQW5pCCXFOSSglxSkEsKcklBLinIJQW5pCCXFOSSglxSkEsKcklBLinIJQW5pCCXFOSSsnKJGApQgR04AlcuWViABGRgBcJt5RIyVGAHjsCVSxYWIAEZWIENCDeFm8JN4dbh1uHW4dbh1uHW4dbh1uHW4dbhNuA24DbgNuA24DbgNuA24DbgNsJtnR62sQAJyMAKbEABKrAD4VbgVuBW4FbgVuBW4FbgVuBW4LZyyZi4csnCAiQgAyuwAQWowA6EG8ON4Wa5pFRDBlbgdKPLUIAaaNHSjOw/LYazCcSGI9DCYmMBEpCBFdiAAlQg3BRuHW4dbh1uHW4dbh1uHW4dbh1uHW4DbgNuA24DbgNuA24DbgNuA24j3Kz2zrEACcjACmxAASqwA+FW4FbgVuBW4FbgVuBW4FbgVuBW4EZws7AgMSQgAyuwAQVobuucvQ4cgRYWGwuQgAyswAYUINzsJ5a64Qi0n1g7m82K9BwJyMAKbEABTrd5aBpZrZ7jCLSfWK6GBUjA6cbrqMEKbEABKrADzc2uzX5iNxYgARlYgQ0oQAV2INwsl7D1g+WSjQQ03WY4dedpbmTleY9bmomWH6r9B5YfNhKQgRXYgKZr88zyw8YOHIGWHzYWIAEZWIENCDfLD3Ud/9iB063Ny7SaPccCJCADK3C6zbOcqK4DOBcqsANHoOWHjQVIQAZWINwsPzQyVKC5seEItPywsQDNbR17ycAKbEABKtDcuuEItPywsQAJyMAKbEABKhBulh/mmSRktX2OBWhuzZCBFTgCLebFRtOiW6x3LLrnUSRkhXqOApwtE2uORffGEWjRraZr0b1xtkxtsCy6N1bgdNNqKEAFduAItOjeaLp2bRbHau21X3+1cbNf/40j0KJ7o7XXetKieyMDK7ABp1u3q7Do3tiB063b/F3H5y4sQAIysAKnW7cRWkfpLlTHtg7PXWgK1bACTeEyFKACrb1iOAItYjdae7shAc1tGFbgdBvFcLoNMpxuwxppETvUcARaxG4sQAIysAIb0NysZRaxw5pjx+tedpl2wK7dYVsdHtnDohXiOVZgAwpQgT3Qzu+8rKvtBM+NFdiAAlRgD7Rjc+1p0sroHs8jhgJUYAfatdnF24G5GwuQgAyswAYUoAI7EG4KN4Wbwk3hpnBTuCncFG4KN4Vbh1uHW4dbh1uHW4ebnaRrzzVWSOdYgARkYAU2oAAV2IHhZiV1jgVIQAZWYAMKUIEdCLcCtwK3ArcCtwK3Ajc7qbqI4XQrZDjd5mngZNVuZKd2W1Ea2aOeVaU5MnBakClYMNgJ2laZ5qjADhyBdsD0xgIkIAMrEG4NbhZDdvNvVWqOI9BiaGMBEpCBFdiAAoSbwE3gZtFijwRWikb2HGC1aI9HLEMFduAItLjYWIAEZGAFNiDcOtw63DrcBtwG3AbcBtwscLgYNqAAFdiBw9Fq1BwLkIAMrMAGFKC5kWEHjkALEWZDU6iGptAMFdiBI9AOht9YgARkYAU2INwIbgQ3+yXjOXesKs2xAAnIwApsQAEqsAPhVuFW4VbhVuFW4WYxb89kVqXmqMAOHIEW8xtNdxhOBXtSsyI0qjZYFscbR6DF8cYCJCADK7ABBQg3gZvAzX4L7cHRStIcCcjACmxA07Uxtji2RzmrOHNkoCmoYQMKUIEdOAItjjcWIAEZCLcBN4vjasNicbyxA6ebPb9ZDZrjdLPnN6tCI3s8szI0sicUq0NzbMDpZg9ifX3yYeF0s6ekvj77MI2tGo3E3OwHcCMBGViBDTh1xRppcWxPSVZt9vipMGRgBZqCGApQgR04Ai1ixS7IYtOeqKye7JEMDRXYgSPQYnNjARKQgRU43dSu2GJzowKnmz2pWXHZRovNjQU43dQ6yiJ2YwWam3WUxfFGBZpbNRyBFscbC5CADDQ361SL440CNDfraovjjSPQ4ngjA03BhsV+jzdOBXtSs3KyjfZ7vHG21x4GraLMkYEV2IACVGAHjkCL441wG3AbcBtwG3AbcBtwG3Ab4WYlZY4FSEAGVmADCtDc2LADR6DFcW+GBUhAc1PDCpxu8y1QspIyRwV24Ai03257eLWSMsfpZs+xVlJG9hxrJWWPZXrDBhSguYlhB45A++22J1YrKXMkIAMrsAFNd8axlYmxPehamRhf1vQZ844V2IAy0S5oxrxjB47AGfOO5maX2czNer2ZmzVnxvxjJ8CwAadbWQrTzTaFrEzMcbrZ84WVibF9+sfKxBynrj1UWOkX216SFXmxPV9YkZcjAWfLbMPAirwcG1CACuzAEdjNzYawFyABa7SsN6AAzcKGsHfgCJwhzXbLapVdjgScF2T3qVbZ5Tjd7EbWKrscFTjd7J7WKrsM2Sq7HAuQgAyswAYUoAI7EG4FbgVuBW4FbgVuBW4FbgVuBW4FbgQ3ghuZWzNkYAWamxoKUIHm1g1HIF/AAjS3YTjd7KsxVtnF876PrbLLUYDTzT63YpVdjiNw/uQ7FiABGViBDShAuFW4VbhZ+NdiWIAEZGAFNqAAFdiBI1DgJnATc7MhFAZWYAMKUIEdOAItgWwsQHOz+WAJZGMFaqAlBfsWjVVrPbbbDAnIwAq09trUsPywUYEdOAItP2wsQAIysALhNuA24DbgNsLNqrUcp9vcCWKr1nKcbvOGnq1ay7EBp1urhgrswBFo+WFjAZpuMzQFMTQFNRyB67tQCwvQ2mtXYTG/sQIbUIDTTawNFvMbR6DF/MYCJOB0E2u6xfzGBhSgAjtwBFrMbyxAAsLNYl6soyzmNwrQ3LrhdJt3/GwVWBst5tWG0GJ+43SbN/RsFViOFdiAAlRgB45Ai/mNBQg3gZvATeAmcBO4CdwEbgo3hZvCTeGmcFO4KdwUbgo3hVuHW4dbh1uHW4dbh1uHW4dbh1uH24DbgNuA24Cb5Qe1mWr5YaMAFWhuNncsPxhaBZZjARKQgRXYgAJUYAfCrcCtwK3ArcCtwK3ArcDNssZ8wGOrquL5VMdWVeVoCsOwAQWowA4cgZYfNk7dvr5PF6NplVKrf+1wNscRaDG/cV7xfLJkO6DNkYEVGHPHDmlzVGAHxtyhdgELkKINK+YXVmADSrTBYn5jB8INMU+IeULME2KeEPOEmCeJmUqCnhT0pKAnLeZXGxQ9qehJxDwh5gkxT4h5QswTYp4Q84SYpxXz1oaOnuzoyY6e7OhJi/n5qMxWXuZoPbl0R6DF/MYCtGuzuW4xv7ECG1CACuzA4WjlZTwfttnKyxxjgltNGc+dYraaMkcBKjCmxvps5MJyAQuQgAyswBis9RHJjQrswBis9THJjQVIQAbaVQxDBXbg1B3rc5FTd1jL7PZgIwEZWIENKEAF9kBLCnOBgq1OzJGBFWi6dhWWFDYqsAPtlsqG25LCxgIkIAMrsAEFaLeW8xaF123+wgK0q1jIQLsKm2cW/hsFaFdhM8rCf+MItPAfNkIW/hsJyMAKbEABKrADR2CHmwU62XzoFdiAMj8maqM5A92xA8fEmRSsTsyxAGmi9cMMdMcKbBOtH4YAFdiBw9HqxBwLkIAMrMAGFKACOxBuBW4FbgVuBW4FbgVuBW4FbgVuBW4ENzK3YUhABk63uYzFVifmON3m3jhbnZhjB063WSfNVifmON3mQhhbnZgjA81NDBvQ3JqhAjvQ3OyC6gWcbjbPrE7McbqRNXLmB8cGnG5k7Z35wbEDR6B9fHZjAZqutcw+L0t2FfaB2bnfzVY9ttE+MruxAK29NgD2qdmNFdiAApxubD1pH53dOALtw7MbC5CA080Wi+zkN8cGFKACO3AE9gtYgASEWzc367PegAI0N+sdyw+2mmSVZhstP9h6iVWaOU43W1iySjPHCmxAASqwA4ej1Z85FiABGViBDShABXYg3ArcCtwK3ArcCtwK3ArcCtwK3ArcCG4EN4IbwY3gRnAjuBHcCG4EN8sP+3vNBUhABppbM2xAASqwA0eg5YeNBUhA0xVDU1DDEWgxb8tYdjScIwEZWIENKEDTncHbBP0ruOL1gemFDSjAecW2HmW1ao4j0GJ+I0ZT4aYYTcVoKkZTMZqK0VSMpsX8/oo2RrNjNDtGs+PaLObtW9BWq+Y43Wz9zI6Ec+zAEWgxb8tjVszmSEAGVmADClCB5maTwGLeUFagD0OzUEMGVmADig+AVbA5dmAMllWwORYgAWOwBIEuCHRBoAsCXRDogkAXBLog0O1YuDpLC9jOhXMUoF2F9YOFtFjLLKQXWkhvLEACMrACG1CApjunhh0I51iABDRduwr7cd/YgAKMn2ZZP+4LR+D6cV9YgARkYAU2oG0oVsMRaDf/G+0qFhKQgXYVNo0s/DcKcF7FLNJgK7NzHIEW/rbYaSfDORLQti9NzG7+NzagABXYgSPQbv43FiAB4dbh1uHW4dbh1uHW4TbgNuA24DbgNuA24DbgZuEvNqst/DcORyvJs31etpI8x9mTs+afrSTPsQJtI5gNBWgbwWTYgSPQlgHmnjDbCXKO5rb+AwZW4Jwltopi5XuOCuzAEWiZYGMBEpCBFQg3ghvBjeBGcGO4MdwYbgw3hhvDjeHGcGO4Mdwq3CrcKtwsP8xCHLaSvGprpFaSV22N1EryHAuQgNZemw+WCTY2oAAVON1s+cbK9zbaI8HG6WarX1a+58jACmxAASqwA0eg5YeNcFO4KdwUbgo3hZvCTeGmcLPbA1uis1I/RwIysAIbUIAKNDcbN7s9WGi3BxvNzYbbbg82MtDcumEDCnA4WqGeYwMKUIEdCAX7nbeVMivUcyTgbJmtc1mhnmMDClCBHTgCLbo3FiAB4UZws+i2NTEr6nNUYAeOQIvujQVIQAZWINwYbgw3hhvDrcLNotvW+6zUr86CJLZSP0cBKtB0m+EItJjfWIDk+aGvmF9YgQ0oQAV24Ai0mN9ovbOwAhtQgHYVatiBI9Cie6OXSrEdJOfIwApsQAEqsAdaHNtCo5X6OTKwAhtQgNbemRGtfK8t3RmbzVYBrXzPsQFlog33/O127BNtPsyIXWjle45lYjUkIAMrsAEFqEBza4YjsFzAAiQgA+uuquSx4ngYdmD0jhXqtfmaFFuhniMBGViBdhVqKEAFdqBdhbnxBSzA6WargFao51iB083uYezsN0cFmptd8YzjZjdEdvZbs2VCK+prtrJnRX2ODDRdu7aqwA4cgc107doa++SyQj3HBhRgD7TaW7vbtuPaHBlYd+ky23FtjgJUYAeOQKu93ViABLROXShABXagXbwNVr+ABUhAuwobAKvI3diAAlRgB45Aq8jdWIBWQ2/jtmroF86rsBVZK9Rz7MCxsVqhXpslhNUK9RwJyMAKbECr2BdDBXbgCLTa240FSEAGVmAD2lWQ4Qi04N1YgHYVbMjACmxAfwekWkmeYweOQKuy3ViABGSgjUU1VGAHjkAL040F6O8l1Wu9C7OwAhtQgAq0d2GsS9a7MIbrXZiFBUhABtpVNENrr42FXMACNAVrusXxxgpsQAEqsANHoMXxxgKEm8JN4aZwU7gp3BRuCjeL47lhUK3MzrECG9B6pxsqsANH4LiABUhABprbMGxAASpwurFNOYtuQyuzcyxA8sEqK7oXVmADClCBHRjzwcrsHKeuzT4rs3NswKlrk8uK79rcIqlWfOc4Ai26N9pVVEMCMrACzU0NzW0YKrADR6D9NG8sQAIysAIbEG4W89Uu02J+4wi0mN9YgARkYAU24HSbib9a8V2rdsX2g71xBNoP9sYCJCADK7ABBQg3+0VvNrksPyy0/LCxAAnIwApsQAFOt2aTQDpwBOoFLEACMrACzc0mrf36b1RgB45A+/XfWIAEnNloBYP9+m9sQAEqsAdafmjWv5YJ5gJxtYI6R1NYqMAOHI5WUOdYgARkYAVaPwzD2Q9z2bha6dxGi/mNBUhABlbgvIq5rlytdM5RgR1obnOu2+FljgVIQAZWYAOaGxuaWzXswBFomWBjARKQfSzs8DLHBhSgAjtwBFom2FiAdZ/FUa34zlGAdhVi2IF2FaZgMb+xAO0qbGAt5jdW4LwKtQGwmN+owA4cgRbzar1jMb+RgAyswAYUoAZadM91xLrOa+vrn9p/a1dsEbuxA61lM4asdM7RWmb9YBG7kYHWMusH+53fKEAFduAItN/5jdOt27S33/mNDKzABhSg+hVbkVybC5jViuQcCchA0yXDBhSgAvs+5aauM9gW2oktGwuQgAyswAacvWMz1SrjNlocbyxAAtpVqGEFNqAAFdiB5jZH0+rlHAuQgAyswAYUoAI7EG4Wx7Nmr1oVnSMBp9tciaxWRefYgNNt2LBYdA/rEovuuVJWrYpuo0X3xgIkIANN1xppcbyxA0egxfHGEjh/WOWyyTV/WB15orV3BqRcNlNnQDp24AicAelYAof9U2vvKEACMrACG1CACuzA4WilaI4FSEAGVmADmu6c61ZeJnOpp1p5mcxFnWrlZY4VOBXKZShABXbgCJyB4zh157JQtZIxmQtA1UrGpFjLqANHIJtCNSxAAjKwAhvQ3OyKWYHmZhfPI7BeQNPthqZg/VAVaApsOBVsgcLKwBwLkIBT15YirDjMsQGnm60IWMmYYwfCTeAmcBO4CQNrjIVgNAWjKRhNwWgKRtNiaA2hthhCi6E1WIrRVIymxdAai47R7BjNjtHsGM2O0ewtxq1jNLvGYHWMZsdoWhSuIbR4W+M2MJoWb2sILd5WR43oXyvtcixA8sGy0i7HCmw+WFba5ajADjG4FbgVuJUYTauPEltmsfooRwJac8SwAhtQgArswBFowbCxAKebPZjbYV+OFdiAAlTgdLNnXqul2miBs7EAza0ZMrACzc1aZoGzUYHmpoYj0AJnYwGaWzc03WEoQAV24NStNvLzvk/sQdcqrGRWN1WrsHJkYAVOt2pXbOG0UYEdaG52bRZD1dprMVStORZDzZpjMdTsr1kMbRSgAjtwBNrv28bp1qzXLbI2mps1x37fNjagABXYgcPRzghzLEACMrACG1CACuxAuBW4FbgVuBW4FbjZb6E96FqFlaMCO3AE2m/hxgI03W7YgAJUYAeOQEsKGwuQgAyEG8ON4cZwY7gx3CrcKtwq3CrcKtwq3CrcKtwq3CrcGtwa3BrcGtwa3BrcGtwa3BrcGtwEbgI3gZvATeAmcBO4CdwEbgI3hZvCTeGmcFO4KdwUbgo3hZvCrcOtw63DrcOtw63DrcOtw63DrcNtwG3AbcBtwG3AbcBtwG3AbcBthJteF7AACcjACmxAASqwA+FW4FbgVuBW4FbgVuBW4FbgVuBW4EZwI7gR3AhuyCWKXKLIJYpcosglilyiyCWKXKLIJYpcosglilyiyCWKXGLVWGJLaVaNtdFyyUbyjKgrgSyswAYUoAI7MJKutgtYgHBrcGtwa3BrcGtwa3BrcBO4CdwEbgI3gZvATeAmcBO4CdwUbgo3hZvCTeGmcFO4KdwUbgq3DrcOtw63DrcOtw63DrcOtw63DrcBtwG3AbcBtwG3AbcBtwG3AbcRbv26gAVIQAZWYAMKUIEdCLcCtwK3ArcCtwI33HZ03HZ03HZ03HZ03HZ03HZ03HZ0ghvBjeBGcCO4EdwIbgQ3hhvDjeHGcGO4MdwYbgw3hhvDrcKtwg25pCOXdOSSjlzSkUs6comVgYmtulsZ2EbLJRun2zxioloZmCMDp5utulsZmKMAFdiBI9ByiS1+24lvjgRkYAU2oAAV2IEjUOGmcFO4KdwUbgo3hZvCTeGmcOtw63DrcOtw63CzXCI2QpZLNiqwA0eg5ZKN023WYlcrL3Nk4HSzrQErL3MUoDpaIZnMUutqJWNLwUrGHBvQFKqhAjtwttc2DKxkzLEACWhuYliBDShA050Xb8VhYhsGVhzmWIHWv/bXLOY3KrADR6DF/MYCNLdhyMAKbEABKrADR6DF/MYChFuFW4VbhVuFW4WbxbztX9jZbmJ7Ena2myMDK7ABBajADhyBFt0b4SZwE7gJ3ARuAjeBm8BN4KZwU7gp3BRuCjeFm8JN4aZwU7h1uHW4dbh1uHW4dbh1uHW4dbh1uA24DbgNuA24DbgNuA24DbgNuA13a1Z/5liABGRgBTagABXYgXArcCtwK3ArcCtwK3ArcCtwK3ArcCO4EdwIbgQ3ghvBjeBGcCO4EdwYbgw3hhvDjeHGcGO4MdwYbgy3CrcKtwq3CrcKtwq3CrcKtwq3CrcGtwa3BrcGtwa3BrcGtwa3BreVS2jiyiULC5CADKzABhSgAjvQ3NrElUsWFqC5sSEDK7ABBajADhyBK5csLEC4dbitXKKGDSjAEbjygxgycCoM61/LDxsFqMAOHI5WwSZz+7JZBZsjARlobmLYgAI0NzXswBFo+WFudTY7KM6RgAw0t2H4cNPL2jszgc690GYVbBtnJnAsQJpYDXmiXcXMBHpZc8h0zW1mAkcFdqC5WXP4AhYgAadbsfbO8NdizZnhr3PzplnZmhZrzgx/LWYxw3/jDH/HAiQgAyvQ3KwNVYDdp1GpMaPKivmFBUhABlZgAwpQgXBrcBO4CdwEbjPmlazPZsw7NuC8ILKenDHv2IEjcMa8YwESkIEV2IBwU7ipudmM0hHYL2ABEpCBFdiAAlQg3DrcBtwG3AbcBtyGudmUW3cKl2EHDkdadwoLC5CADKzABhSgAjsQbgVuBW4FbgVuBW4FbgVuBW4FbgVuBDeCG8GN4EZwI7gR3AhuBDeCG8ON4cZwY7gx3BhuDDeGG8ON4VbhVuFW4VbhVuFW4VbhVuFW4Vbh1uDW4Nbg1uDW4Nbg1uDW4Nbg1uAmcBO4CdwEbgI3gZvATeAmcBO4KdwUbgo3hZvCTeGmcFO4KdwUbh1uHW4dbh1uHW4dbh1uHW4dbh1uA24DbgNuA24DbgNuA27IJYRcQsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJRW5xEoIdb4m1ayE0JGBFdiAAlRgB47AcgHhVuBW4FbgVuBW4FbgVuBW4EZws1wy1z1bXeueC81NDCuwAQWowA4cgfbcMt87aFaa6EhAcxuGFdiA5mYts0eYjR1o654mttY9FxYgARlYgQ0oQAX2QMsac0G7rYLFjfMq2CbMzBqODShABXbgCJxZQ9l0Z9ZwJKC5sWEFNqC5FUMFdqD1mblZ1thYgARkYAU2oAAV2APtCWXWqjUrY3RkoF2FzUl7QtkoQLsKm1H2hLLR+swmgT2hbCxAc7NxsyeUjRXYgAJUYAea25yTVvLoWIAEZGAFeoFlW8WN9ri+ixsNV3HjwgIkIAMrsAG9lLLZuXWOHTgCV+HxwgIkIAMrsAEFqMAeyDHyVoHpyMAYeavAdBRgjLxVYDrGyFsFpmMBxshbBaZjBTagABXYgRj5hpFvGPmGkW8Y+YaRbxj5hpFvGHnByAtGXjDygpEXjLxg5AUjLxh5wcgLRl4x8oqRV4y8YuQVI68YecXIK0ZeMfIW8/N96WZll44MrMA5FtWuwmJ+owI70Ar9bYzXawULC5CADKzABhSgOlqBpc761GYFlo4EZGAFNqAAFdiBI7DArcCtwK3ArcCtwM1+/Wexa7MCS8cOHIH267+xAM3NLt5+/TdWYAMKUIEdOALt139jAcLNMsEszm1WdunYgNNtvi3arOxS5wuezcouHUegZYKNBUhABlZgA5pbNVSguTXDEWiZYGMBmps13TLBxgpsQAEqsANHoN0TzJc2m5VdOk43sd6xe4KNFdiAApwW80XMZrWWG20Bc2MBEtAsrEtsAXNjAwpQgR1obtZRtoC5sQAJyMAKbEABKrAD4Wa3B2Jz3W4PNhLQ3GxO2u3BxgY0N+t1uz2wOxurtVS13rHbA0OrtXQsQAIyUOZ5NkYa1IOGkx2zsag4WQTbDagVOzoy8HEpdqu/Phy7SII0qAcNJ4vSeZB9s9JFnSUYzUoXef17DepBYx7OPml9dMqoBFEQB9UgMzEZC8ON1tdi2IEj0ALOHlysIFHtLt0KEh1nO+0yLLJmIUOzesSNFlkbC5CA7F0i0Z0S3SnRnRLdKdGdFkirEy1kVidayNjjpVUXOs5LtY1Lqy50nC21DcZ1GJwJrKNijSiIg2pQCzJFa4gFQLd/ake7Wd/ZyW6LatD829bJdqzbIg3qQWOT1QhuMpNmSMA5Nfv6DyqwAa2Z093K/nS+ftms7M9xttO07LfQOsaq/hwFqECTHYYj0H4LNxbvcKv6c2Qg3AhuBDeCG8GN4MZwY7gx3BhuDDeGG8ON4Wa/hRvHnupW9LemrxX9ORKQgTXQfqdsk9Yq8hwFOOf4+k970HCyD7AuKkEUxEE1qAVJUHhIeEh4aHhoeNhv1LALt9+ojRVoF2PTxgJu4+zEYT1nAbdxBNpv1MYCJCADzc3mqP1GbRSgudkst2DcOALtN8o2n60Ez5GAM2uamR3OuqgFSZAG9U12iluf53M1K77rtrNtxXf9Wv+BABXYgWPiTBtWfOdYgARk4Gyq+RYza4YCVKCZqeEIpAtoZsOQgNOsmMWMUscGnNlrkQb1oOFkBzEuKkGmaJ01Y67bw41V3XXbVrequ40z6BwLcLbU9t2t6s6xAhtQgLOpS6AHDad11rJRCaIgDqpBLchMxFCBPVAK0JppnS8NODvU+sQOVFzUg6xHbGj0Ahbg7BF7aLWaOsdpZY+nVlPnOBtru8lWU9dtj9lq6rr9wlpNXbelRKupcyxAAjKwAhtQgOZm7Z3h2tccnuHabQnNaur6Cq4ZmN0Sr1XPOTagABXYgWOjWHFcn7dEYsVxjg0oQAV24Ai0QJz3ZmJVbn2unohVuTl24AhcpzMZlSAK4qAa1IIkSIN60HDi8ODw4PDg8ODw4PDg8ODw4PDg8KjhUcOjhkcNjxoeNTxqeKwjEY1KEAVxUA1qQRKkQT1oOEl4SHhIeEh4SHhIeEh4SHhIeEh4aHhoeGh4aHhoeGh4aHhYYFTrmBUYw3BOnmpzbv5i9XmPJlbT1efNpFhNl2MFzmk938iVdSqZGGlQDxpO63QioxJEQRxUg1pQeJTwsN+XucIgVrHV7SrXmWPWLpvZiyRIg3rQcLKZvagEURAHhQeHB4cHhweHB4dHDY8aHrbPYRdi2xyLapAt3hlJkDo16wUytF5gwzlScxFErAbLUYAK7MARKBewAAnIQLgJ3ARuYm42s6QDR6D93mwsQAIysAIbUIBwU7gp3DrcOtw63GwH1DrSNkAXtSAJ0qDuNEzRZqj9pjSLF1u7XP9QgjTIXgAyGptWidWiEkRBHGQXPgznJdqksZIpxwKcl2jzxkqmHCuwAQWowA4cgRaKGwsQbgQ3u9WzrrKSKUcBmptdG3Wguc3espKpPhd3xEqmutjFMwEZON3UjGesOk63udIiVjLV1YxXmYPRcFpFDkYliII4yBSr4WypWqMtONVaOn+BHAk4W6qmYCG7sQEFqIEWnGoXaGHYbXQtDLtdoIXhRgEqsANHoIXhxgIkoLlZx1kYbmxAc7PutDDc2IEj0MKwW59ZGG4koNWtGtWgFmRVuEYa1IOGkz2eLSpBto9txEE1yK7HRtBuADcqsDtayZKj9YgYNqApqKECO9AWiyfZjsKiEkRBHFSDWpAEaVAPCg8KDwoPCg8KDwoPCg8KDwoPCg8KDw4PDg8ODw4PDg+LzblQJFaC5KjA2V/zRC6xEqSN9uC2cY7DfKIXK0FynPN1mIU9uG1sQAEq0Nxs+CyaF1o0Dxszi+ZhLbNons/5YiVIjhX4cBuXNXJGs6MCbSHIaDjZ4uaiEkRBHGSKxXBMtMuecTzmKfBiBUWOBGRgnWiXrQ0oQAV2oK1/TLIwrkbmZR3UzWv9ewZOr2KtnXE8irVgBrLj9CpmMEN5lCU2Au0e1a58Bunq4BmNZV34/PlcaKVAjrNds+hdrBTIkYEV2IACVOBs13zyFSsF2jhD15F2w6z8Z1MNarNZ6z8UoAJNvxqOQLqA82pmkY5Y8Y/j9JpP1mLFP44NaG5sqMAOHIF8AQuQgAyswAaEG8ON4cZwq3CrcKtwq3CrcKtwq3CrcKtwq3Br1pNqWIAEtJ60sW4V2IBzXpCNpkXxxg4cgTOOx1yCECsJGmxjLHZtNm7CwAqcbmyT1yJ8owI7cARa3G8sQAIysALhpnBTuKn1pE0jHYH9AhYgARlYgQ0oQAXCrcNt2LXZEI4CJCADK7ABBajADhyOVig0bCnGCoUcCdiApiCGpjCnkZUEORYgAa293bACG1CACuzAEWj5YWMBEhBuBDeCG8GN4EZwI3Obs9qOanOcbnPJVaxQyJGBNvLrv21AASqwA0dgNd1iONs7V0PFin+GLWdY8Y9jB45Ai3lb2bDiH0cCMrACzc0u3mJ+owI7cARazG80N7sKISADK7ABBajADhyBFvMb4WYxb4sjVhLkWIHTzdYNrCRo2LqBlQQ5Tjd7fLdD2TbOmB/2kGyFQo4EZGAFNqAAFdiBI3DAbcBtwG3AbcBtwG3AbcBtwG2Em5UPORYgARlYgQ0oQAV2INwK3ArcCtwK3ArcCtwK3ArcCtwK3AhuBDfLD7ZWYeVDjhXYgDNi50mNYuVDjh04Au3+YWMBEpCBFWhXMZOjlQSNWUEjVhLkaO0dhgyswAYUoAJ7oGUCWxexMp/dJQ1XbDG/UYEdOPvXVjWszMexAAmI0RS4CUZTMJqC0RSMpmA0LeZXGyzmN2I0FaNpMb/aYDG/UYBwU7gp3BDzgpgXxLwg5qVj7nT0ZEdPdvSkxfxqQ0dPDvQkYl4Q84KYF8S8IOYFMS+IeUHMy4r52Qa9LmABEpCB1pNk2IDWk2yowA4cgRbztohlxUCOBGRgBTagABVobmo4AikmuFUZDVupsiojxwpswJgaVmjk2IExWHakmmMBEjAGy45Uc2xAASqwA2Miar2ABWhXMQwbUIBT19Z9rBRp2PKRlSJttNuDjQVIQAZWYAMK0HRtalhS2FiABDRdmxqWFDY2oADtRmD9tQ4cgetGYGEBEpCBFWg3e9WwA0eghb8t01j5kqNdhc0zC/+NFWhXYTPKwn+jAm0sbIQs/Bda+G8sQAIysAIbUIAKDLe+luyMKIiDbD3EqAVJ0FS0pU4reXIcgRbitr5phVCOBLQbcaMa1IIkSIN60HBa9/tGJYiCwoPCg8KDwoPCg8KDwoPDg8ODw4PDg8ODw4PDg8ODw8Ni2taMrODJsQCtv8SQgdPIFk3tlDNHAdro2CBbpG80Nxtci/SNBWgrNsWQgbZmY6Nukb5RgNNtXZDdFGycbraMaGVVjtPNlhGtsMqRgZbFjFqQBGlQDxpOFuO2MGkFU8MWJq1gatiikxVMOXbgCFyP8rYA1dez/GZKzIlrYnuqu2zc1gP9Zk3cEw/wuBIvX+uuQYk5cU3cEktiTdwTj+CxFgc3l8TLV4w5cU28fLvx8h3Gmth8ZxWTWP2Vs33D47IVUKvACqbEnLgmboklsSbuiQeYki8lX0q+lHwp+VLypeRLyZeSLyVfTr6cfDn5cvLl5MvJl5MvJ19Ovpx8a/Ktybcm35p8a/Ktybcm35p819LirCmTsdYWF7crcUk8fedx/2I1Xo4V2IACVGAHjsCZYRzX5bDxavb655p4NdumugywXolLYkrMiWvipW+h0VO393T5K41s5sQ18ep2NZbEmrgnTsM9ku9Iwz3ScI803CMN90jDPdJwrzSy2jbScI8Ybr2uK3FJvHy7MSdevsO4JZbEmnjtbCzNAV5pZHNJTIk5cU3cEpvvrNLTa6WRzcPHVK+VOubWg14rdWymxJy4+hjpRS2xJNbEPfEA79SxOMZUL6QOvZA69ELq0AupQy+kDr2QOvRC6tALqUOvlSLmnoleK0VsrolXH1r/rBRB1s6VIjb3xAO8UsTmkpgSc+KaeOnbXGo98QDLlXjp21xaew6bOXFN7HcParVpjgrswBFoTx4bC5CADJS1b6jXquI26kFWgjrJdhUXlaC1JWRTd6WRzTWxFSsbSZAGrS0hm+QrgSxeCWRzWfuZugvijDioBrUgCdKgHjQ22flpm0oQBXFQDWpBEqRBPSg8SniU8CjhUcKjhMdKCLxYEmti2/hVwxG4UsOsUtWyUsNmSmy7rMWwAm2X9TIUoAJt93cpjMC9LynGJTEltpIaoxrUgiRIg7rT3n5cvCZVN15dNIwlsSbuiW1qVbvUFe+bS2JKzInNdz6bq9XuBUtie84x6kHDyR47FpUgCuKgGtSCJCg8JDwkPDQ8NDw0PDQ8NDw0PHRdCRtr4p54gNddxeaSmBJz4tWDNhvWXcVmSbx8bXKvpLB5gFdSqNbmdVexmRK3xPMtnqlutXub1sYoGVNiTlwTt8SSeG2PLs2eeIDXXcHm5avGlJgTL99u3BJL4uU7jHviAV5pYLP5zkVHpZUGxNq/7gTmKqjSuhPYrIl7YtOfpX9KK+rFrmtFvVjbVtSL+a47gc01cUtsvmptW3cCm3viAV4PEWrtX3cFam1bdwWz2E/XJ0EvtbatLGE/ZOujoM6auCce4JUlNpfE5ms/XrSyxGbMO9qZYbEm7okHWK7E5tXtGtcdwmZObNfY7dqlJZbEmrgnHuD1lLG5JKbEnDj5avJd+aPb3Fj5Y3NPPMArf2wuiSkxJ66JW+Lk25NvT749+Y7kO5Lvyh/240srf3SbP+vpY7Mm7omX/oxfXk8fm0tiSrxuk7pxTdwSS2JN3BMP8Mozm0vi1W+LW2JJrInXdQ3jAV75ZHNJbDVlZMjACmxAASqwA0fgyiNzTU955ZHNNXFLLIkVvPLFXDxUXjlimP7KEXN1UHnliM2SeOlU4554lUHMecMrR2wuiVf7xZgT18QtsSTWxD3x8rU5tPLF5pKYEnPimtgLYZVXWljds9LCYk3dttKC3SbwSgubOXFN3BKvy7KpstLC5p54gC0tWNGdWuViMCW2xZrLhsjSgnNLbOs1lw2XpQXnntiWbC6bJmP52tCN5Wv9M5avddvgxDXx0rfrHT3xCF6Fj85LfxjXmJJ1hf9mSayJB9ieIOwXyYoaHSuw7TJ0tbJGRwV24Ai0Fwc2FiABGWj9XBZr4p54gO22odjzxqpidKbEnNiuphk2oAAV2IEj0MqRNxYgAe19FeuwKsB1MdbRtSce4HYlXhfDxpSYE9fELbEkthctrK/sHaCNI1AuYAESkIEV2IACXFczw8HqFINLYkq8rsb6TWvillgS21s/atiBI3C99bOwAAnIwApcoyPGPfEAr5DeXBJT4v1ql9Z1pJFRC5IgDepBY73upeubrYtKEAVxUA1a7Z/XYjWJD+7GJTEl9rfI1MoSHRtQgArswBG43tFbWIAEhBvBjeBGcCO4EdwIbgy3HdjDuCZuiSWx9dIsQ9JVheg8wPb77lwSU2JOXBObL9mI2O++sybuiZfvjPe2Yn9zSUyJGSO4Y39xSyyJNXFPPMCSZouk2SLruqyfpSWWxOu6qvG6rmY8wCsLbC6J13WJMSeuiVvi5WvjaD/8ha0P7YffeYDXD//mkpgSc+KauCWWxMl3ZQlbOGsrSyxeWWJzSUyJOXFN3BJL4uVr0b1uCGwFqq0bAmNZNwSbS2JKzIlr4pZYEmvinnjtTc05KSvbbC6JKTEnrolbYkmsideWWDMeYLoSl8SUmBPXxC3x8u3GmrgnHuB1w7G5JKbEnPjha78xdm7aJgnSoB40nFbOqdbnK7fMsl6VlVs2W74shh04Ate7wwsLkIAMrMAGtK7YbF1hy1WyUsfmkpgSc+KauCVel8PGmrgnHuCVUmapsspKKZspMSeuiVtiSbx8bUqslGJLbLJSyuKVUjaXxJSYE1cMU0/D19PwrZSyuSce4JVSNpfElHgOl92DWGWkowKXuM3JlTeMdeUNuwPRlTc2U2K7KLvT0JU3NrfEdlG2rqcrb2zuiQd45Y3Ny1eMKTEnrolbYkmsiTt45YdZL6m6DqFZuP5z64YV7psHeIW7LS3qCvfN1kxbQtQV7ptrYmumWves25DNmrgnHuB1G7K5JF6+ZMyJa+KWWBJr4h7dsO42bNVT193GZk5cEy/5aiyJNXFPbNt95mrPGhsLkIAMrMAGFODqrhmyulLC5pKYEq/rsRmxUsLmllgS24ai9bo9a2wcgfassbEACcjAClz9ZH2/Qn7zAK+QV5uCK+Q3U+J1PTYd113EZrsee5zWdRexWRObr2246soGxn1lg80lMSXmxDXx8iVjSayJe+IBXtlgc9nnyek+RY4N2z6gTfcpcgsV2IEjME6R032K3ELah7kpTpHTfYrcwgaUfSCf7lPkFnbgCFynyC0sQAIysAKnrgVXX/lgXfLKB4tXPthcElNiTlwTr4Exq5UPNmvinnhekMWulVI6FiABGViBDShADVy3DrZS3tetw2ZKvC5HjGvilnhdjhpr4nU5NolWnli88sTm5WsTYuWJzZy4Jm6JJbEmNl9bKe7r1mHxunXYXBJTYk5sfWnN7JgcPU2OnibHSJNjpMkx0uQYaXKMNDlGmhwjTY6RJsdIk2PE5BjXBSxAAjKwAhtQgDE5Vq0j2e3zqnV0HmC7/d+8XkSyR6VVf+hMie1dJNuuXfWHzi2xJNbEPfEA1ytxSUyJk29NvnXpzMm66gbJtldWtaD/89W2YWxtmy9b6ioYdO6JB1iuxCUxJba2WUGCHSUX3BIvXzJevmy8fK1vZfnOoF1FhvtatCRO12jBQ7YEsgoLnXviAbbgcS6JKTEnrolb4uVr19KXr11L74kHeFyJl69d76DEnLgmboklsSbuzn0VE9JcGumraJDmskdfhYI0C8P6KhSkWfTVV6Hg5nIlLolr4qUzjHviNQ+vybTGqBiv+U/GPfEA77hj45KYEjP0d9ytf94SS2JN3NEPK+4Wr7jbXBKn660N11glceqHPf8X299t1s41/zdLYk3cE1vbmvXbmufN+sd+SJxr4pZYEi99u/YVC5sHeMXC5pKYEnPi5WtzbMXCZkmsiXviAV6xsLkkXl42b9f839wSS2JN3BOPYKugCy6JKTEnromXrxhLYk3cEw/wiqPNJcbFKuuCOTHGdFXJ0Vy26VYN9+BuXBO3xJLY2jYftXtZsbZ5gFesbS6JKTEnromX7zCWxJq4Jx7gFWubS2LG9a64m8sAfRXLOXdc4/q9W9yuxCXxuhbrz8aJa2K7lrls0FexnLMmneTbkq8kX0m+6zdxcxo7SWMnaewkjZ0kX0lea86Lzck15zf3xCOY1pzfXBJTYk5cE7fEklgT98TJtyTfknxL8i3JtyTfsnyrsSTWxD3xAK942VwSU2JOXBMnX0q+lHwp+VLy5eTLyZeTLydfTr6cfDn5cvLl5MvJtybfmnxr8q3Jtybfmnxr8q3Jtybfmnxb8m3JtyXflnxb8m3JtyXflnxb8m3JV5KvJF9JvpJ8JflK8pXkK8lXkq8kX02+mnw1+Wry1eSryVeTryZfTb6afHvy7cm3J9+efHvy7cm3J9+efHvy7cl3JN+RfEfyHcl3JN+RfEfyHcl3JN8BX76uxCUxJebENXFLLIk1cU+cfEvyLcm3JN+SfEvyTfmKU77ilK845StO+YpTvuKUrzjlK075ilO+4pSvOOUrTvmKU77ilK845StO+YpTvuKUrzjlK075ilO+4pSvOOUrTvmKU77ilK845StO+YpTvuKUrzjlK075ilO+4pSvOOUrTvmKU77ilK845StO+YpTvuKUrzjlK075ilO+4pSvOOUrTvmKU77ilK845StO+YpTvuKUrzjlK075ilO+4pSvOOUrTvmKU77ilK845StO+YpTvuKUrzjlK075ilO+4pSvOOUrTvmKU77ilK845StO+YpTvuKUrzjlK075ine+EuPlq8Y98QiuO18tLokpMSeuiVtiSayJzXfu+/RVU7d55avNy7cbU2JObL5zj6avUwSdJbH5zk2NXle+2jzAK19tLokpMSeuiVtiSZx8KflS8uXky8mXky8nX06+nHw5+XLy5eTLybcm35p8a/Ktybcm35p8a/Ktybcm35p8W/Jtybcl35Z8W/Jtybcl35Z8W/JtyVeSryRfSb6SfCX5SvKV5CvJV5KvJF9Nvpp8Nflq8tXkq8lXk68mX02+mnx78u3Jtyffnnx78u3Jtyffnnx78u3JdyTfkXxH8h3JdyTfkXxH8h3JdyTfAd92XYlLYuSHVfRHc1+4t51/Fg/wzj+LS2JKzIlr4pZYEiffknxL8qXkS8mXki8lX0q+lHwp+VLypeRLyZeTLydfTr6cfDn5cvLl5MvJl5MvJ9+afGvyrcm3Jt+afGvyrcm3Jt+afGvybcm3Jd+WfFvybcm3Jd+WfFvybcm3JV9JvpJ8JflK8pXkK8lXkq8kX0m+knw1+Wry1eSryVeTryZfTb6afDX5avLtybcn3558e/Ltybcn3558e/Ltybcn35F8R/IdyXck35F8R/IdyXck35F8B3zluhIvXzGmxJy4Jm6JJbEmXr7DeIB3vlq8fNWYEnNijXwoOxctHuCdixaXxJTYNLtd78pFm1tiu5a5bdr36YjdrmXlos0DvHLR5pKYEnPimrgllsTJd+Wibn21ctHilYs2l8SUmBPXxC2xJMZvlqR7IUn3QrJy0bC+WrloMyXmxDVxSyyJNXFPPMCSfCX5SvKV5CvJV5KvJF9JvpJ8Jfmu/DPs2lf+2cyJa+KWWBIvLxvTlX82D/DKP5tLYkrMiWvillgSJ9+Vf4bF1Mo/i1f+2bx8bT6s/LN5+vJlcWT5x7kZW7xY/nFW42rcE4/gVZboXBJTYk5cE7fEklgT98TJtyTfknxL8i3JtyTfknxL8i3JtyTfknwp+VLypeRLyZeSLyVfSr6UfCn5UvLl5MvJl5MvJ19Ovpx8Ofly8uXky8m3Jt+afGvyrcu3GdfELbEkXr5q3BMPcLsSl8SUmBPXxC2xJE6+Lfm25CvJV5KvJF9JvpJ8JfnK0p9rBavQked7f30VOjqbznw/rq9CR+eWWBJr4p54gC3/OC/NYpzGuneMRR/gcSUuia3Ns5izr2JG55q4JU5zLOUQTTlEUw7pKYf0lEN6yiH9whzrV03cEktijfasYkbnAU45pKcc0lMO6SmH9JRDesohPeWQvnOItaH0xOjnTlfigvYQJebEyTflkJ5ySE85pKcc0lMO6SmHdMb49p1DFqd+5tTPjPHtK4dsTv2cckhPOaSnHNJTDukph/Sa+rmm663pelMO6TX1c039XFM/t9TPK4fMVy17Xzlk8+pn0185ZHNLLInX9apxTzzAK4dsLokpMSeuiZdvN5bEPWJ5FUryfFWur0JJ55KYEqe5pDVxGlNNY6ppTDXFjqbY6WlMexrTnsa0pzHtaUx7GtOe5nDKUb2nubRy0Xx1r69SSWdObPpk/bNyEVk7Vy7arIl74hG8zqJ0LokpMYPXaw12n7nqIctY/3wVmFbjAV6vQ20uiSkxJ66JW2JJrImT73o/wu5dV+2lc0lMiTlxTdwSS2JN3BMn35p8a/Jd9dDzuIW+ai+da+KWWBJr4p54gNdrmptL4uTbku96QcLusVcdZrF76VWH6cyJa+KWWBJr4p54gFeh8+blNYztGWGeUdDXAY/OLbEktmeEy+bhejbZPMDr2WRzSUyJOXFN3BJL4uTbk29PviP5juQ7ku9aG7HnkV2fuXl52RitdY+ZE8Y67NG5JF6azZgT18QtsSTWxD3xAK91j80lcfJav920uCZuiSWxJu6JV16Syeu3e3NJTIk5cU3cEktiTdwTJ9/12z3rWseq4XSmxMu3G9fELbH5zvrSsWo7edavjnUwI8861bEOZmS2cVy/3ZtLYkrMiWti863mtX67N2vinniA12/35pKYEnPimjj5SvKV5CvJV5KvJl9Nvpp8Nflq8tXkq8lXk+/6va7Wz+v3ejOB1+/prBsfq0bUeelb367f082auCcewatG1LkkpsScuCZevs14+YqxJu6JB3jd228uiSkxJ66JW+LkW5JvSb4l+VLypeRLyZeSLyVfSr6UfCn5UvKl5MvJl5MvJ19OvisPzM9Hj1VHyvMdjbHqSNecWXWkzpR4xd0wrolbYkmsiXvi5Wu84n2z+TbzWvG+mROb/qzlHqt2lGd971i1o84rb9h17fi1ubTjd3FNnObbit9Zmz1W7ahzT5zmuaZ5rmmea/LV5KvJV5Pvjl/jdT/cFvfEA7xibdZCj1Wb6lwSrz5UY05cE1sbZk3sWLWpzqsNw7gnHuAVa7OGeazaVGdKzIlr4pZYEpvvrE8eqzbVeYBXrG0uiSkxx3wgwpxfNahrHFcNqvMAr5jaXBJTYk6M3LVqUJ0lsSbuEXeUYpB2DC4uiSkxJ66JW2IBrzXwy+bDWgO/rB/2febimrgllsTrHsk09/2kzYF9P7mYEnPimtj0i431up/crIl74gFe95ObS2LzLTbu635yc03cEktiTdwTj+BdPzmff8eun9zMiWvillgSa+KeeIDXfebm5FuS77rnnOsYY9dPbm6JJbEm7olHjMuun9xcElPi9XfnHN61jvPQp7FrHTdz4pp4tU2NJbEm7okHeO2XbS6JKfHyFeOauCWWxJq4Jx7gtUe2rnftkc01mbHrGDcLrnHthW3uiQd47YUV68+1F7aZEq931i7jmrglneQryVeSryTftS+/OY2dprHTNHaaxk6Tr26v//7vf/rDX/72b3/8x5//9td/+cff//SnP/zzf8U/+I8//PP/+q8//Psf//6nv/7jD//81//8y1/+6Q//vz/+5T/tP/qPf//jX+3Pf/zx749/+7iyP/31/zz+fAj+3z//5U+T/vuf8Lev5391Pi/5X5/PGDUkxvigUZ5r1PmTawpVJP6+0oe/T8//Ps9yR/v7PCj+/uO24P5F2NPLvohK8uwi6nONuZSxBArHX698968/Bl78Ih6bDbgKqh8k5CAxd+B3N6AJKnf/vhQfyMfOevz9Ryb6INAP3VglpkIr/anEOA0lRTc89oifSpx6csSE5McyytOeLIcZSfbGmmk87jLQjMct9EeN06zkFs1Ad5Z+3b+Q4RdSH+spzy/koNGEXeOBGBL52IqZV56P6lwV26Pa6KnEYWap+qA+9jVwHdJvK/Tql/FY1X+ucPcy9PllnDpTL4+wB45nEnTINFS75wlqtTyVKO92BR1mJtlZpqsRj4d7ZKtPGZcPjZiV2KsRQ5834pQv7aVxk3ggZsXjzuH+hdh5b/tCWnl6IYeJRUia11OBc4QNiUmRUv/nEe3vJ72TRuXiGvVxE/Q0WfB1zN8UIZJ645ENP2ocZmfrPiJytaRQ70+M2mJitBRlnycGH6bnaDpCY2CG86dfQz60g/CL/Hgig4Z8Y0wiSmrOnL+MyWF+lt7izuSx6pE0Pt6ZzEB4qtGsQG0PbG34GXgsV31U6T8wO8a7s+N8LXJJNEPaeHot9fT7bid87cTRR2qJftSgd+fHcZbeTIFHjZvRUtv70VLl7d44juyouH0c+Z7p88iecqmdK7dyadE0sp81xulHOp4GHus4mOncP/ZpO+TSKsrxUJNm2GeNYztaK3GzMA7tOMxSoWjH41awPdU4jozYy+xrZITzD/6nXm311JKLoiXpEesXjcNMrXaK/OrVxxP5SxqtRNS1kqLuW9fCHL1ay6E/+unGoY64NZcXNVRxR6r0mkbHXW2/nmucZ4hePWbI43b/qYrQb/11UDuedLVjfvPmeTsOozsPP9N4mh9pTePTs3T7rflQ7bj/fS2jPR8Z0d/ap/PFOG/HfBnreTtOuYy1xxP1yC35+Mig17t9emxFjTWOx8r99bQVxzsyjbWBMmp/ekemfMrsPCKz57j9rHF68MDCW6ORI+66r9ElcuH4kMc+acj794X69iw992iPOzqh8tqoCEPjMCr99Aw1GOuhcxn5ySw9tyMWCR57He15O+j8m42EnJ8bPs70zsc1yWiH5l/9b2hUpXgG6ld5rtHen2FdfucMY/ss4R6V/lrc8xWLUI9dI30+suP3zjC2g61XO/gQLaMcIy4yunxYcfjYjnGYpd0qWvfKYG8vaQwRH5ehctCo78+w0d6dYeeYjbgvo19PY2XoKXeQ3wA9HvrpqcZxdnAsqz1IX5vpHLPjsaEynmrYp6De2tE4tqLGI+UjUPjQitOwpKefx55rEtFviIwaS5XXh7H9LHJaGpNYDBqiaYPl042YfVPrqYg2hEtaL/jGxRBhAbmWU4/o+zFnH/B6L+iOaUzi7pZ01Kfpw76ldRjd6JAr3Ud93lw47Tlx9Gm9ni+pl3IclxK7C6R5QelTlxY+Pf1cBXuZV6lP14POc6SWjsWLw4Qvx5waK6jtsbz1fB/utHd0e3D0/cHpPzE440cG57hn0QRLD093oerxti727LtcT5e2y2n7hu247P07c13PQ+8owljw+7DR+otIfX+Pk9rbm5wniZu7nLev5LDNebdL6yWvjssVNxG1HPLqFztStyoKymlL6u722vlyNJ4NH3clp8s57ZraQdZrgCk/2H1OZ2eRuB2ZRxseRH5gU5/f39Xn97f1+Qf29Y9dyrGsPE8EfHFcJO6a56urz0VOG1OP7blYR9Vc89G/Eb/VflP3Knk95NXK78+QWt+eISeJmzPk9pW8mBKrNXJ3qYxDl/Yf6NLxfpeO97u0/+4uTbNUy2u/MrXE1mWl6zAu7SeKpH4gobb3E2r7gTqpH0io7bfeYLaCXanSDsVvcsimj221eDzsekjJp12pEdN0ft78aUY+lpeiwvXxc6j4gflcI3vclbpZCVJO21J3Ny/OIs2KofcUIX6+h1pOW1PMuKXi1Bb5hkS9GKtM5anEIRtWilZUas8lzv1xs77GPlD39AGxl9ju74WeteQkcXtN5bRodm9N5SghscUuNF6UiEwmVQ4Sx5upmB1zyh5649ilNNJcP4j099fsv5hmd0ufymmH6m7tk32x7r2t2HM7KEoG6MGHdpxEWkwTau0gcu5Y+6jW7th+tUPHtrfz2VHiXj7r+pvz2Yf+yM8yv+T3o8zdgi77oNvzVaKKPbOG3xp6XaT/gEiK4W+K3CtQK6f9KmKJ8GN9XtVVThtW3KPM7fH35CByrPsbsXzer/6iSC9RDtFzIeQ3RdASaj8gwtdB5DQ6N+v27PiNwy10LH2LjteGuCI91qb91XkSpRWci6G+1yc3ayrptHX1saiyvtaxdeCRcfT2msjdsspvXM5piO/mk/48KdFp/+ruGyHH/SuOJzbO9Z2/NuTwsKUtChq15d24Ty+WlOOmb9xHPzDdJeknjdO7V9eVSnDqc4123KuJjacH59KE/p1ujUfpD5vxv3brUWRgbMbhl+v4ey4lZsnjiflwm0SnLSyNkrNcJ/r5jZsvGhIasyHPn7fo9CIV8sBjrSFNk96+05S7pdFEx+ele7XRdNr6uVscfRS5Wx19bkkt/gj5wP5iSzh6tn2oQvlWx94s1LavXT7/Kb5XqX0WuVmqfRa5Wav9xeX06Fjp8qIINtUfO/PtxScEqbFn8uD6ugzWXx5jpa/K3C1iJ367lvUocW/55Cxxb/nkvFZ4t5iejltaN6vp6f2Xrb5ox4h7+3nyYHsqcnxrNQrI57k3r0nEpQwSeukBXbG5/mAdL054TUv92so4DHB/d93jLHFr3YOOL1z9wLrHx/6gN7oVm7iNX81qioe3B+cim8+jc9qKuTk6R4mboyO/eXQ+9Ider4+OJpnyqszdt3PsA8Nv/licJG7+WBwlfuDHolsNzuqP+TnfQ3/Ud/dAjhJFcUzDg0t9TQRLUg+m9qJIVA08uL2W6zvhOeVjdcq35uvtt7jo9ArWD8kQxfMocSqo/Pwe1n2RQi+K3HwvjfT9owKO7bj5ZtpZpMU+8yMbl9dEHuMRPxhXXlCiz5vm9f19Zpvbzy/n3ltydNohun+4xilN33zX7izSYlfl8evVXhTRyNVNWzmIvH9P0N+/J+hv3xN80Rux+9A6j0Nv9NOvX6y0Px4k+SByfLyPX+FyPV3oOzajRcG8NL5evJYWRSKP/YP2skhcjFzjZZFY0pLDq6Xn8b35fiqdX8z6AZG7lRU03l8aGO8vDYy3lwbOvXGzsuKLLr1XWcHn96ruVVZ88UNz7+Xhs8jNt3b5+mI9GUtQz1/b5et0EODN93aPIrXGyxn18Vh8EHl7aeAsceuHhsvbSwPn3miRQz5spP7SG+cTAW/1xlHiZm/U39sbUuOwsVze+WtvyPu9Ie/3Rn/7JuQU+HdfDD+L3Hzn9ixy83XXswgen1lfTYaMAuCHyPOW8Pldpntv//Dpnarb9//n0bn3NrN9lON5HcWNt5mPCvdOaOXTvs3tPuUfeKbiU+n++lLSaslj7T/1qX5qCb3dpz/wdvdZREaIfHwd8jsiN18R5+PpNDfvh44iA79282w4jO/nI6GOIhJ72iM/AHxXJA53kDQ63xS599o812O1wJ3X5o8Sj/35uGu+cg1U1e9cTMfFjFe7VbnH1aSy2e+JdAxwTy8k/Nqtv1uECt41L3wanZMIxQL24wnkelGEJWKY+0GEfuB4BfsEy/M+uXU27lHj9pGf7e3XCY4S9x56zxK3HnrPvXHzofeLLr350Nt+4HWC8yy7eUADn/ev7h3QwKfXtB5bctiwqU/P1ebTW1o3379jOcyRe+/fHSXuvX93/0r0cCWnHh1xX1TG4Ocap8WqERW7bch4sR23jt7g0wta947e4OO+iKSjqnKh7aejN84iWHl/YHlNpFxX7NDUwyEg55Y0xiHy8qrIzeNIWM8lrjePI/lKpgtkur4qgw2jB6fXPL4rE4M0JQ/Hh593FgeGOt/ZfGuUarzBSrmw7ReR4yuOeNE6/VT8mpROdxNXfIuCytVfSgYf7tJS9f5njeO2071kcDxNcMR2Txmp/GOWUd1ux80uPQ9tPGQ9RplfDcBCKGor/HIAUkXkkLwcgBTlG1PyEDnHe7W0/cSv3u6NkKjPJc7PSOmJL78n8vnJZLy903qWuLfIOeS3StxcNT53aDqoMf/i8HdW4m6eoFmvHzik9ShybzGuHjevbi7G2fD93gXOmweC1tPm1d0TQetpb0FHPIZ/LKv7jsjdc0XPIngLdn7H/DWRUWJrcXyoivssctrAupdFvmhH8xuJQW28eDGEtScaB5HCv/diGKmZx3VoR/u97ajxJsXj4ffUjrePwThL3Mrvtbx9DMa5N24exFuPL2X9hMjddatKb69bVXp73eoscWvd6twbN9etvujSe+tWlX5g3er8K3PzwNZ6PFjw3pJT5fL2klM97V/dW3I6Stxbcrp/JXq4kuvtJad6ukO8ueT0RTtuLTnV06eu7j1lVh7vLzmdRW4uOR1F7i45nVtyc8npLHJzyanW+hNLTl/J3Fxy+kLm7pLTVzI3l5zOHXxzyekscnPJ6RhB99ZHjoF8c8nprHFvyamelhJuJoPTC1R3l5yO7bjbpeP9Jacv5urdJacvZO4uOX0lc3PJ6XybdWvJ6Ys7tTtLTl+UkN77AE09bUHdvsk6idxc3JD2A4sbIu8vbpzrYSVuCTgP7/fqYUsUkTzupdqLIrXF2TON+4siNz+pU0/H2v2IyO3nrPePG6zvHzdY3z9usP7EcYP1J44brD9x3OAXpej3vkZTj5/D+gmRu9+0OYuM/KXnV0U6Vp8vOl3OD5S11v4DZa3Hy3lcQxQdX+3UJ+fvtuIWuI38MP0tEU1nBfany2DHL2M9Hho7RAa9InJzIeyLi7nXjtNnrfjq6RSrU4J+/7ZG37+tOb5wdKsVX7yzdO/m6rq3O9E+nHv6nTdsBe8cy+AXRXocV0Pjaq+JfIhdOl3OaaHj5ru+R5HHSke8uJgvR74hgRQiQ8prEopWjOcS5++LYmXx5XewP4jUV0UIIvx8XNr7L1+191++ase9q/cl7r6jc+xQ1OVqKgH/5qhESn48xr2aQXJLXhbpDXdE7WURrJQeRY5Hh9zL7efTR27l9vOZSqExSF48lineAxmkT18j5fd/5/j937nzQXNxcknT+vJBc/EY0jqXV0UGTqsbrx401xtaoq8evtfjhcWH3stH3sUKXBv0ep8MiLx4SGNtMVdrU/4JkRcPaXw8ysRJj9JePS5SokbicStaXhRRHKbb23ORdvqYlI64lenX9fxtlMZy73IkHSnzeUHyq5bE16SucmrJ6euYwji4Mj3f8f129Cu+jdMvef66kZ3Nddjl9G59/IS2g8jpDNs4TyJvbdDnI4qPc6RjLX8cDhBrp89J3Z4jtf7AHPmiJffmyOmNpZtz5NSO+3Ok/8QcGb91jrTriv64DkfxttNbPo36/3xe0Kfb93ZYAHhsAMQBKpqPUOrfuZj4TkC7Oh8upv7AxbTffDGl/c+fhPreqcJxCGhj0hdFCC2h9hMiUl4ViV3s9uETqt8TiXK6h97LHRvfhGovH2HdGF9i43r4rtT5wzIVZQYt34h/fLGtydvVgWeJe0++73/f6ihx8+TNY4cyjpVjff6RnabHo7puHJB1bkbF43c+efDXZtD7yey4JHovmX3x4SJCQQ21pxfzhUj60Ij0g8jxayU3P6F0Erm3BniWuLUG+IXEnTXA8v6KeXl/xfyL7ycqvp/YX/wGI85xeeDTYrp2nBs1vjhG+SPOv2i8/2XM1t/+MuZR4l6Z5P0rUXqtRznOhv5QovUtjUYIe35aatnG6Q51NCxmPC+1/ELjVrnmFzOsIw/W8rwdb39m+Chxc3YcPx1178CFdtrmorxH/Vzh1Ip7X/Jp4/SB4HgS6+N5xZucX46Kt3gkf4L6c8XbN0TaiyI1Vqgk30L9KsJvjssX1xKvzkjpr14LPh0glJ/VvycSd/uSvx//PRGO75QL5/NwfhE5lalcWDiYnAuc632ZQXErNSh/Pe57InEa1eAyXhRB2c1gkRdFasPhS9ehJaeXrOaxTSEynhdFSnn7WOtzO3o8FY6ensV+bcddEbleFYkfmgfKayLlKnGu3YP1IHMc4haJbeQbiW9Oto7JluP4eyIyIPI8AL/xG/60UltO1bP3vgp2vmcecc+shZ+34vRFvpufkz+LoMq61lEOInqMvYYygsPV9LfvvOW0X3Xv3uooce/eSri8fVcjx/ek7t3V8OlVgBLbiFza4Uf89qjoYVSOsyMKb0mfv9dw1GDMdc5vJn9T43pbI53hmPPY9zQEr6/35xqnTaqbT0RfaNx6IjpfS8Ukq9Lf13hxjjHFd3IeN3vPx7Yea4glfUHsEHXHhmjDgbTyPBVW/YHB1d88uIpvk54Ctx3PkIpVrlLymwjf69SBjz8fZtlph+rem1HSji+r3Hsz6tiOe29GnX+zG1bJ2+HoirOIxPcD64fPB35LBF8Jqe1099BOFcg3S8ylHc9wvldifrycVq60y/X8fX6R8gOXczpX72cuh6J0t+XvPv96OfXNe91zM/CiWNPDaR4ixzeasDGUq/8+96m+/YR4bAXL/xC8v7biVPc/XwOOjHil5Sb5hsjVozDzwb2+JjLiRJAHj/ZSjyiKVA7jctqC+AGJRx/gTaSrt6ed+oXIvU49i9zs1KPI3TlyDDuNWyKh2l5L8B8WJLm+KpI/0XO9KIJSdTmdtXIWkZgmj52qwy9n5x9I8MezAX8iwQuKoqXL6XJOh7DffCXq2BKVeLZSyR/a+6Ul/f1lhONrVTeXEcb19jLCSeLmMsLpnaq7ywiD315GOJ7od3cZ4faoHB7xzrPj3jLCSePuMsIXGtfbGveeEvW6+/jeXuvTu8sZZ41byxl62rK6+cT7hca9J95+foUo5seHEqbP7ZDf3Y57yyq3NV6MuZvLKlqu95dVvpjsNyfI9ZsH5t6SiJ52qm4viZwbcmtJRI9fpLq1JKKnw/zuLokc23FzSeSLm5hbr2QrXUeRW69CH0XulTB+dTE323Eq7BqXTxCt5fDU3Q9rGfFklt5lqvytB5l48ffBPF58GqrpEC25nnbH28WpR4mbI/vFw/+9/vhC5F5/HE/Ru/mIeRS52SPnTer8naEr7y9/b6/7Ykkyp8378SNb5ieZewWmZ4lbBaZfSNwpMP2icubC0UrXy4VAgyHyvPymnHYzO0dJduf8gPnp2y1nkRq/3r3ycxE9vUB08zROPR4Edu8pVU/bVfeeUo8S955S71+JHq7kuK9y6zROrePtm7sv2nHrNE49vUx1857qtEN09wzMYzvu3VMdu+PmmYZnjXtnGmp7/za1/cRtanv7NvWcgCS6o0uq/vsli71fbk/Hl1NuVcrrD3zDSt//hpW+/w0r/YFvWNH58zl3CuXp/I7NnTp5e/H03afks8atRHo6fvvesB4/pnu72JaOp2TcK5M9atyskuUfqCu9rXEoK+UfqCrlHykqPfbqzZpS5p+YI8c+uVlTetT4gau5O1fP13Jvrp5uCe/O1dsah7l61rg3V48FXbfn6rlX75Uun39wbxUd63FX6k4hBh2PuY54edzK5Iqf+qkVp8KUW68anyXuLcWcNqVuHrJ16owrpkYtWg6dIe/vBOvpNar7pwa/fQtzWsu5+dnacqwViFKBw1drjwuwNz9ae+yKe2fS9usHjqU+nY5VNM73eDxY5i3xcV/j0QtXuprnhwz045nSt4L2LHEraPvp9Y2bX2U7bQH3WL954LNl8dOh8jdn+Xh7lvcfmOX9B2b5cSPq7uHrp5cdKMpIiej5C/lHjZsv9Z8jBR9AK63nasfPkVLePobyLHEvUt7fQ/pGd5Tn56TUY6lDRblEOjCNXtbo72vkwsvPGsfPjcTpQsSalrJ7/TQwpyzYGbuu+fMNv4gc61DjVp96Wlf7nkiPgxOp5/dIvymCllD7ARG+noqcljybxPrcY3lrvDY4FWnkwxmB3xzhOOvscbP/vF9P7zxUwel+0utLPVIHXu4b/fnQ1LuVSv152PRTJrlZhtaPn6jiC2VG6bilXxtyermvaXxrs+VPqX1cVur1eL5vSeeUp01x/aRxWuG/kN+vvIb7WYPOW7iUtnDb06s5d2s8wzCnHfpfu/UoMlIJ2PNJcvy1eexDxuUInX58T6f73XrC/aIdITHb0Q/tOL1nrKglz5Okf7y3asfXakscNVrL83acNBpH4VTjw2Gy7XioZlSjP1Be08C22FxgfqpxHpkaB448uL6sEm+0PHg875PTev+9Z4Cjwq1nADl+CWqk8ovBz2oEejseAxEfPhr0/E7zLBFlE4OEXnrM5XhF4MHpx/tbI6tpBeOxsflcpcvbq1NniXu37/L26tQ3uoNe79QOFX4x6BT3VQ+W6zA07z9ZyftPVvp7n6w+dsfhYN6vhkaTyvMTNU9vtN3MZPr2asbpSjoOPnrwISd3lXeXdo4SRXGI3INLfU0ED1YPpvaiSK0QaS/l1U64Del8CN5jreDjhita0vNBlN9RIcKHZDjVYHz++MJtjUKvaTSc7dmkvKRx9ysy+gMvb500Gl6dfiSRPLrXfQ18crfph2PkP2r007s5NxPzUeJeYh5vl5KeOyOWVVrn8bwzxvE4zFiIeNxr8kHk2JIbp8eem9GiTkgaXy9eS4uPQD6WV9rLIundzfGySLynKEWfz/XTazU9Hu3aOGm8/Xupb/9eHn8bbq7+HzVurv7bKwDvrv6fXoWtNQ4KrPnl7c/ffRvv706N93enxvu7U8fOaDhK68M3Sj53xvELVPc64/2PWI1Cv7UzpOKoBCmHzqjvd0Z9vzPk7Z+m01FcuDFlzR/j+bQVfNQQLPYp8VONcXy/4WbBwjjtTt29+ynnI0bxYkE7tIN+4mL4Jy7muJwbtx6F8lesPm1gjtMr9OlV3LQM+6lQ6dwMGfGmZa67+tyM8hM/C0eRgVQ4D/dEr37+NMJRRC6Pu5HvGr4rErV5kmsEfxE5FpKld5QkFwnqd1oSv5VDxquXo+w3hkPTVvn3RDo6th8+xTO4/WaRD68HsDzt2LMIxQLE4wboelGE8aXD/Bb7r0N82iu7d6p2Od2H3LtHPUvcukk9Xsndu9SzyN3b1PoT+agcF2RuvbM16vGm+9YLD+N0Kt+9yvijxL0XHu5fyfNqwXOP3ntna7T3j+Qvp2obEnwoWXqum27fEME6ygPLayJ3X9s6t6QxCoXlJHJ+QTg+tDQ5/dZ8vp04yzQcDPSY8v1lmeiYKSkHmVPP8ED35t+bb3Vv1UjQefvwV5HTe+D33gMr5w8f3Hm17qxx79W6cdqpuvdq3Th9OOruq3XHdtzt0uPQxi3nY5T51cgphG3ZknL0N6c8PvH7YHk5ACk2RabkIXKOtwP3vhJ0vqO49ZWg851rfMlhaH/+ycSh7y8I6PsLAiq/VeLmh87OHSrxZKP59+bzttt4+ym8Xz/wFH46Z+TuU/jptRId8Rig+TyszweenDQ6qmb7aOUljVGignB82A79rNHf/qLfuRlNo7LjcOrqUYPwyErjoNH7b70URurIb2D90oxx/dZm1KilGu06NePtCpXx/vtT4/33p8ZxNSNln8NxnKO9+6g72rtPuqfruPuge9S4+Zz7eEK4fuJB93r7QffRkvdf7S/X9fa7/WeNe8+637iY08Pu9fbD7jx46AeeduknnnbpJ552f+CQknNLbj/t8s887fLPPO3yzzzt0k887dJPPO2+fZDMMXxuP+1ebz/tPvZHrncfdx8a5f3n3XNL7vYq/cQDL//MAy//zAMv/8QD7/Gm4Nbz7vm24s7jbn97e7Nc/ANPVg+VH3i06sdN0ngDgHOfft7MPxYElKhGqpxPPf2ORm3xUlTj5xUWpyerqhTfPenX88KE0wGd925cjwq3blyP3/e9eeN6/kbw3RvX+gM3ruP4ZkcckPG42bqejsrxe7Qjf/iUXtPocbfIFz1vx6NH6k9E7un4ktuLIqfDJXDeKF+NTtdz3A2894mA44EbTfDRIs055JdFxFMF8L1PBDx28++elnF6vmlvH3J11rj7fNPOp/TdeT/zIXL6ovSt7wQ8NE7T9eaHAr4xNofHtS9mya1PBZxFbn4r4EuR632Re18LmKUpNx8/24sde/N7AV+J3PpgwONyTjXW9466+0rk3iP5+XLufTPg0RL97S259dWAb4i8GoA3vxtQLj09ad38cMBX8/7uRCm/e3jufTvg0SnHUrR7Hw/4qim3vh7wMNP3n6a1/8TTtL6/I//VPc6tLwg8FjDKUeXW0f1nldu7g/ojLTntll49HZjw4tPSrefx89PSnefx43sbt9pwfvPjThvOb69h8bb1/Nz4jTfgBG/RyeDXNHq8RE/5dPrvvUWXnivo+bX007DefRXvKHLvrP2zxK2z9r+QuHXW/vnJpuLJ5nptZD9o1Bc1CBr8fFDKsbz/3jbnFxq39jnLsST+JzRufuXi/DwSC/Ga3gz63rhEJiYdL2aP3I5XNXrcTz3wVQ0ctH/UeDujy9sZ/YvjM0JjkLx4Akfc5Q7SZ2tnx9NI7vUEvdsTxzNiNN6ab5rfgPnOOTP4hmvrXF7UiN/HB7543k1vaMer5+70eIp6yL167k7Bkwu93B8DGodxOX7kO2box5W7lzVeOw/psagaZypJqy9qRHHWY8+svKahON6tt+cajx2s06sAI+5b+nU9f3/modLvXY+MdtpsPrdFoy3l1JbTflWTuI16jHY6Bv0bLek4071foqeW0HFt1vv28avZTiqnXa94aT3vwNOnhdXjTOl4RB6Hk2Ie7Wg/MVNYfmKmfNGWuzOlvz9TTi25P1Pq9RMz5Xgk4NszpV2xiNguksNMOX1tp1EcVd8o//p9vnU/bV6JUhzWoPnc6v6Nq4mzVtvV+XQ18hNXo7/3akosvz/wtd+/xnHcW2PS1zQI7aD2AxpSXtSIeqvG1/WiRpT0PuRe7dM4G73xIWbOGgyN+vye4nwEdrwd/Ng4z3fgn14dLadPVN19Ym5vf+TyoTF+r8a9J+ZjnzJOemK9Dn16eq65dRDPsRkVD9358Kz/oRn1BxLZ6T2rm4nsfM46odyS2tOrOWs0fKZKnvdIP71Bd/fA96PIzYW/o8S9hb+zxJ2Fv+MHBW49vp8/SXDn8f346Y57bSjvtuH8tZ67X4L9QuXmh2C1H1/mvfvpoKPMvTl6lrg1R7+QuDNHz19Bu/kNpKPG+1/auj9Hvvpy2M05oj8zR/T9OaLvzxF9e44cC7RRmVVyTv/0FHSWiK2HkrPIdySwP0bpuLrPEvPM5dMP9sAN7qsaUQEh6bnyO5eSjzVJS6rfkZAI24+7hd+Q0CLYDjp2Rv/dKkVQVil5G+V7Kli+KzroVZURD+wlL6x+a4Djch43Pq9FDMfN+mO2lNdagd3gx1buKxKPm+SGBdG0yDzuKhR8mq6U2l9pxHoS2BL9pYgrjDOZ8zfGvyPR0ve6qr4mIaiA7OO1C8HkZHrtQhgnGHN76UI0Nvm0yisCo+J929cu4opnpg8f2fgl1Ol4/t/b03tceBX7tZ6IuT20vdmVrwkwoRid+PmXj44S8QYI5zfSX5VITyrfkojweizEtZckGF+B4nq9JFHjdovb9Vpf4INWzPlO+FWJ1wYVVYCcc+a3+gK1RJVfG9TKKFplfU2ioIy3vTiogmI5eakV8+R43JzUlyTSAfZ5G/2zRKHT9koh5P/8YZBPy03HduD7l7211y6l/4+f0PyWREzx0l+LktIHXm+6yosXgjLXi96WKK+2QiHxUriXgfubUfXtVrw2qHffeaHT9tLNd17otLt0952X082zxv137dfzBY3jHSOShmSJT2dXniQkHtCK8HhJojd8B6S91ooRx+/QdZVXJOjCGvdV+aVW4Dtk8wsgr0ngwzu9vHQhj4cYFPqP11qBT7s9NsHrSxI1FZHn/fHPx6LScT/o/QdEjhXq8uFm5zuXEl+qLXlj69UOfVHCvrK8Z8aHY7w/vXJLpx2lxyIK1lNSedn9lIG3YsrIH1P81IyjxIg2XB8ONb8v0eOx/xGs7dQZx28h33zblo4V7Tfftj2v2EX6IumHyzm/9qRY4xZtT88B+kpF8UnGXOz7i8rp5VL7rMf+fSv1dEVvnzZ1/I0c+I3Mn0O5P9Wq4oOMnY9joz8x1U5r7bfPnP9yhDWNcHs6wsfj+35mnuArMZTvQH7t3U7H2zqcE3MqxvpChXAItxxVDnP2dqEbnQ5YuFnodmzJ7UI36ueTp+8VutHxLL9bhW7nbFDmFyPjzkbTC8Dj0zt/dDrPL2ZtqtCufDsdSKyQVslHCtbPt/+nk/junrZGp42iu6cR0OkIupunERw1bp5GcP9i9HQxp269edwajWP1/L1Xdr9oCV5Uucrz95j5ev/UKftG9mEn797Bb2eVuye/HVVuH/12bsvds9/OKlRQe3duy+kw+8f2fdxyPfhwCtZXOnePovtC5/ZZdF/p3D2M7tzLd0+jO6vcPY7uGE033/U+hvXdA+nOIjdPpOPS3s8N508x3HyH/tiSm/36xQjfPJLui1l7+0y6L3RuH0r3lc7NU+lOz4Y1nvsfIXSYLfQDtwpM798qHDVu3ircv5jntwrH6odYZfuQlr6h0AjVrMyHDh037zSOo3IUuXdMyf2WPBc5TtOOX+X6/DAb5veP/j1q3J1hx2863dwmYH5/m4BP33J+7L7jc2h5t/dT6eND5fSmcIsDqUYbp99yHu8uHX7RsTe/c8XHSvJ8Wt9hbPR4J4pHyQeXU8+exudmaeoXKi0K9kb7sEb9LRWKDYwxy6dfVYkDfgaX8XK/NJT9irw6b3vsGY7e+DRv76qkjxt+VyXy2wPlRZX7lb9f9e+9surbCfv5rSyfjv/DhpfqKU2ev351szL7S52btdnFFqN+YohOOveqs7/QuFWe/ZXG0/rs//34P3/8tz///V/+8rd/++M//vy3v/7H4+/995T6+5//+K9/+dP+v//3P//6b+nf/uP//+/+b/7173/+y1/+/P/+5d///rd/+9P/+c+//2kqzX/3h2v/z//q5bHe1sso//uf/lAe/3887pz+aTw2VB7/nx///7FM0mj+u/kf6/w88eN/2vwH87/us1i2j1L+93/P5v5/"
|
|
4110
4110
|
},
|
|
4111
4111
|
{
|
|
4112
4112
|
"name": "public_dispatch",
|
|
@@ -4417,15 +4417,15 @@
|
|
|
4417
4417
|
},
|
|
4418
4418
|
"124": {
|
|
4419
4419
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/messages/discovery/mod.nr",
|
|
4420
|
-
"source": "use protocol_types::{address::AztecAddress, debug_log::{debug_log, debug_log_format}};\n\npub mod nonce_discovery;\npub mod partial_notes;\npub mod private_events;\npub mod private_notes;\npub mod process_message;\n\nuse crate::{\n messages::{\n discovery::{\n private_notes::MAX_NOTE_PACKED_LEN, process_message::process_message_ciphertext,\n },\n processing::{\n get_private_logs, pending_tagged_log::PendingTaggedLog,\n validate_enqueued_notes_and_events,\n },\n },\n utils::array,\n};\n\npub struct NoteHashAndNullifier {\n /// The result of NoteHash::compute_note_hash\n pub note_hash: Field,\n /// The result of NoteHash::compute_nullifier_unconstrained (since all of message discovery is unconstrained)\n pub inner_nullifier: Field,\n}\n\n/// A function which takes a note's packed content, address of the emitting contract, note nonce, storage slot and note\n/// type ID and attempts to compute its note hash (not hashed by note nonce nor siloed by address) and inner nullifier\n/// (not siloed by address).\n///\n/// This function must be user-provided as its implementation requires knowledge of how note type IDs are allocated in a\n/// contract. The `#[aztec]` macro automatically creates such a contract library method called\n/// `_compute_note_hash_and_nullifier`, which looks something like this:\n///\n/// ```\n/// |packed_note,
|
|
4420
|
+
"source": "use protocol_types::{address::AztecAddress, debug_log::{debug_log, debug_log_format}};\n\npub mod nonce_discovery;\npub mod partial_notes;\npub mod private_events;\npub mod private_notes;\npub mod process_message;\n\nuse crate::{\n messages::{\n discovery::{\n private_notes::MAX_NOTE_PACKED_LEN, process_message::process_message_ciphertext,\n },\n processing::{\n get_private_logs, pending_tagged_log::PendingTaggedLog,\n validate_enqueued_notes_and_events,\n },\n },\n utils::array,\n};\n\npub struct NoteHashAndNullifier {\n /// The result of NoteHash::compute_note_hash\n pub note_hash: Field,\n /// The result of NoteHash::compute_nullifier_unconstrained (since all of message discovery is unconstrained)\n pub inner_nullifier: Field,\n}\n\n/// A function which takes a note's packed content, address of the emitting contract, note nonce, storage slot and note\n/// type ID and attempts to compute its note hash (not hashed by note nonce nor siloed by address) and inner nullifier\n/// (not siloed by address).\n///\n/// This function must be user-provided as its implementation requires knowledge of how note type IDs are allocated in a\n/// contract. The `#[aztec]` macro automatically creates such a contract library method called\n/// `_compute_note_hash_and_nullifier`, which looks something like this:\n///\n/// ```\n/// |packed_note, owner, storage_slot, note_type_id, contract_address, randomness, note_nonce| {\n/// if note_type_id == MyNoteType::get_id() {\n/// assert(packed_note.len() == MY_NOTE_TYPE_SERIALIZATION_LENGTH);\n///\n/// let note = MyNoteType::unpack(aztec::utils::array::subarray(packed_note.storage(), 0));\n///\n/// let note_hash = note.compute_note_hash(owner, storage_slot, randomness);\n/// let note_hash_for_nullification = aztec::note::utils::compute_note_hash_for_nullification(\n/// RetrievedNote{ note, contract_address, metadata: SettledNoteMetadata::new(note_nonce).into() },\n/// storage_slot\n/// );\n///\n/// let inner_nullifier = note.compute_nullifier_unconstrained(owner, note_hash_for_nullification);\n///\n/// Option::some(\n/// aztec::messages::discovery::NoteHashAndNullifier {\n/// note_hash, inner_nullifier\n/// }\n/// )\n/// } else if note_type_id == MyOtherNoteType::get_id() {\n/// ... // Similar to above but calling MyOtherNoteType::unpack_content\n/// } else {\n/// Option::none() // Unknown note type ID\n/// };\n/// }\n/// ```\npub type ComputeNoteHashAndNullifier<Env> = unconstrained fn[Env](/* packed_note */BoundedVec<Field, MAX_NOTE_PACKED_LEN>, /* owner */ AztecAddress, /* storage_slot */ Field, /* note_type_id */ Field, /* contract_address */ AztecAddress, /* randomness */ Field, /* note nonce */ Field) -> Option<NoteHashAndNullifier>;\n\n/// Performs the message discovery process, in which private logs are downloaded and inspected to find new private\n/// notes, partial notes and events, etc., and pending partial notes are processed to search for their completion logs.\n/// This is the mechanism via which a contract updates its knowledge of its private state.\n///\n/// Note that the state is synchronized up to the latest block synchronized by PXE. That should be close to the chain\n/// tip as block synchronization is performed before contract function simulation is done.\n///\n/// Receives the address of the contract on which discovery is performed along with its\n/// `compute_note_hash_and_nullifier` function.\npub unconstrained fn discover_new_messages<Env>(\n contract_address: AztecAddress,\n compute_note_hash_and_nullifier: ComputeNoteHashAndNullifier<Env>,\n) {\n debug_log(\"Performing message discovery\");\n\n // First we process all private logs, which can contain different kinds of messages e.g. private notes, partial\n // notes, private events, etc.\n let mut logs = get_private_logs(contract_address);\n logs.for_each(|i, pending_tagged_log: PendingTaggedLog| {\n debug_log_format(\n \"Processing log with tag {0}\",\n [pending_tagged_log.log.get(0)],\n );\n\n // We remove the tag from the pending tagged log and process the message ciphertext contained in it.\n let message_ciphertext = array::subbvec(pending_tagged_log.log, 1);\n\n process_message_ciphertext(\n contract_address,\n compute_note_hash_and_nullifier,\n message_ciphertext,\n pending_tagged_log.context,\n );\n logs.remove(i);\n });\n\n // Then we process all pending partial notes, regardless of whether they were found in the current or previous\n // executions.\n partial_notes::fetch_and_process_partial_note_completion_logs(\n contract_address,\n compute_note_hash_and_nullifier,\n );\n\n // Finally we validate all notes and events that were found as part of the previous processes, resulting in them\n // being added to PXE's database and retrievable via oracles (get_notes) and our TS API (PXE::getPrivateEvents).\n validate_enqueued_notes_and_events(contract_address);\n}\n"
|
|
4421
4421
|
},
|
|
4422
4422
|
"125": {
|
|
4423
4423
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/messages/discovery/nonce_discovery.nr",
|
|
4424
|
-
"source": "use crate::messages::discovery::{ComputeNoteHashAndNullifier, private_notes::MAX_NOTE_PACKED_LEN};\n\nuse dep::protocol_types::{\n address::AztecAddress,\n constants::MAX_NOTE_HASHES_PER_TX,\n debug_log::debug_log_format,\n hash::{compute_note_hash_nonce, compute_siloed_note_hash, compute_unique_note_hash},\n traits::ToField,\n};\n\n/// A struct with the discovered information of a complete note, required for delivery to PXE. Note that this is *not*\n/// the complete note information, since it does not include content, storage slot, etc.\npub struct DiscoveredNoteInfo {\n pub note_nonce: Field,\n pub note_hash: Field,\n pub inner_nullifier: Field,\n}\n\n/// Searches for note nonces that will result in a note that was emitted in a transaction. While rare, it is possible\n/// for multiple notes to have the exact same packed content and storage slot but different nonces, resulting in\n/// different unique note hashes. Because of this this function returns a *vector* of discovered notes, though in most\n/// cases it will contain a single element.\n///\n/// Due to how nonces are computed, this function requires knowledge of the transaction in which the note was created,\n/// more specifically the list of all unique note hashes in it plus the value of its first nullifier.\npub unconstrained fn attempt_note_nonce_discovery<Env>(\n unique_note_hashes_in_tx: BoundedVec<Field, MAX_NOTE_HASHES_PER_TX>,\n first_nullifier_in_tx: Field,\n compute_note_hash_and_nullifier: ComputeNoteHashAndNullifier<Env>,\n contract_address: AztecAddress,\n storage_slot: Field,\n randomness: Field,\n note_type_id: Field,\n packed_note: BoundedVec<Field, MAX_NOTE_PACKED_LEN>,\n) -> BoundedVec<DiscoveredNoteInfo, MAX_NOTE_HASHES_PER_TX> {\n let discovered_notes = &mut BoundedVec::new();\n\n debug_log_format(\n \"Attempting nonce discovery on {0} potential notes on contract {1} for storage slot {2}\",\n [unique_note_hashes_in_tx.len() as Field, contract_address.to_field(), storage_slot],\n );\n\n // We need to find nonces (typically just one) that result in a note hash that, once siloed into a unique note hash,\n // is one of the note hashes created by the transaction.\n unique_note_hashes_in_tx.for_eachi(|i, expected_unique_note_hash| {\n // Nonces are computed by hashing the first nullifier in the transaction with the index of the note in the\n // new note hashes array. We therefore know for each note in every transaction what its nonce is.\n let candidate_nonce = compute_note_hash_nonce(first_nullifier_in_tx, i);\n\n // Given note nonce, note content and metadata, we can compute the note hash and silo it to check if it matches\n // the note hash at the array index we're currently processing.\n // TODO(#11157): handle failed note_hash_and_nullifier computation\n let hashes = compute_note_hash_and_nullifier(\n packed_note,\n storage_slot,\n note_type_id,\n contract_address,\n randomness,\n candidate_nonce,\n )\n .expect(f\"Failed to compute a note hash for note type {note_type_id}\");\n\n let siloed_note_hash = compute_siloed_note_hash(contract_address, hashes.note_hash);\n let unique_note_hash = compute_unique_note_hash(candidate_nonce, siloed_note_hash);\n\n if unique_note_hash == expected_unique_note_hash {\n // Note that while we did check that the note hash is the preimage of the expected unique note hash, we\n // perform no validations on the nullifier - we fundamentally cannot, since only the application knows\n // how to compute nullifiers. We simply trust it to have provided the correct one: if it hasn't, then\n // PXE may fail to realize that a given note has been nullified already, and calls to the application\n // could result in invalid transactions (with duplicate nullifiers). This is not a concern because an\n // application already has more direct means of making a call to it fail the transaction.\n discovered_notes.push(\n DiscoveredNoteInfo {\n note_nonce: candidate_nonce,\n note_hash: hashes.note_hash,\n inner_nullifier: hashes.inner_nullifier,\n },\n );\n\n // We don't exit the loop - it is possible (though rare) for the exact same note content to be present\n // multiple times in the same transaction with different nonces. This typically doesn't happen due to\n // notes containing random values in order to hide their contents.\n }\n });\n\n debug_log_format(\n \"Found valid nonces for a total of {0} notes\",\n [discovered_notes.len() as Field],\n );\n\n *discovered_notes\n}\n\nmod test {\n use crate::{\n messages::discovery::{NoteHashAndNullifier, private_notes::MAX_NOTE_PACKED_LEN},\n note::{\n note_interface::{NoteHash, NoteType},\n note_metadata::SettledNoteMetadata,\n retrieved_note::RetrievedNote,\n utils::compute_note_hash_for_nullification,\n },\n oracle::random::random,\n test::mocks::mock_note::MockNote,\n utils::array,\n };\n\n use dep::protocol_types::{\n address::AztecAddress,\n hash::{compute_note_hash_nonce, compute_siloed_note_hash, compute_unique_note_hash},\n traits::{FromField, Packable},\n };\n\n use super::attempt_note_nonce_discovery;\n\n // This implementation could be simpler, but this serves as a nice example of the expected flow in a real\n // implementation, and as a sanity check that the interface is sufficient.\n unconstrained fn compute_note_hash_and_nullifier(\n packed_note: BoundedVec<Field, MAX_NOTE_PACKED_LEN>,\n storage_slot: Field,\n note_type_id: Field,\n contract_address: AztecAddress,\n randomness: Field,\n note_nonce: Field,\n ) -> Option<NoteHashAndNullifier> {\n if note_type_id == MockNote::get_id() {\n let note = MockNote::unpack(array::subarray(packed_note.storage(), 0));\n let note_hash = note.compute_note_hash(storage_slot, randomness);\n\n let note_hash_for_nullification = compute_note_hash_for_nullification(\n RetrievedNote {\n note,\n contract_address,\n randomness,\n metadata: SettledNoteMetadata::new(note_nonce).into(),\n },\n storage_slot,\n );\n\n let inner_nullifier = note.compute_nullifier_unconstrained(note_hash_for_nullification);\n\n Option::some(NoteHashAndNullifier { note_hash, inner_nullifier })\n } else {\n Option::none()\n }\n }\n\n global VALUE: Field = 7;\n global FIRST_NULLIFIER_IN_TX: Field = 47;\n global CONTRACT_ADDRESS: AztecAddress = AztecAddress::from_field(13);\n global STORAGE_SLOT: Field = 99;\n global RANDOMNESS: Field = 99;\n\n #[test]\n unconstrained fn no_note_hashes() {\n let unique_note_hashes_in_tx = BoundedVec::new();\n let packed_note = BoundedVec::new();\n\n let discovered_notes = attempt_note_nonce_discovery(\n unique_note_hashes_in_tx,\n FIRST_NULLIFIER_IN_TX,\n compute_note_hash_and_nullifier,\n CONTRACT_ADDRESS,\n STORAGE_SLOT,\n RANDOMNESS,\n MockNote::get_id(),\n packed_note,\n );\n\n assert_eq(discovered_notes.len(), 0);\n }\n\n #[test(should_fail_with = \"Failed to compute a note hash\")]\n unconstrained fn failed_hash_computation() {\n let unique_note_hashes_in_tx = BoundedVec::from_array([random()]);\n let packed_note = BoundedVec::new();\n let note_type_id = 0; // This note type id is unknown to compute_note_hash_and_nullifier\n\n let discovered_notes = attempt_note_nonce_discovery(\n unique_note_hashes_in_tx,\n FIRST_NULLIFIER_IN_TX,\n compute_note_hash_and_nullifier,\n CONTRACT_ADDRESS,\n STORAGE_SLOT,\n RANDOMNESS,\n note_type_id,\n packed_note,\n );\n\n assert_eq(discovered_notes.len(), 0);\n }\n\n struct NoteAndData {\n note: MockNote,\n note_nonce: Field,\n note_hash: Field,\n unique_note_hash: Field,\n inner_nullifier: Field,\n }\n\n unconstrained fn construct_note(value: Field, note_index_in_tx: u32) -> NoteAndData {\n let note_nonce = compute_note_hash_nonce(FIRST_NULLIFIER_IN_TX, note_index_in_tx);\n\n let retrieved_note = MockNote::new(value)\n .contract_address(CONTRACT_ADDRESS)\n .randomness(RANDOMNESS)\n .note_metadata(SettledNoteMetadata::new(note_nonce).into())\n .build_retrieved_note();\n let note = retrieved_note.note;\n\n let note_hash = note.compute_note_hash(STORAGE_SLOT, RANDOMNESS);\n let unique_note_hash = compute_unique_note_hash(\n note_nonce,\n compute_siloed_note_hash(CONTRACT_ADDRESS, note_hash),\n );\n let inner_nullifier = note.compute_nullifier_unconstrained(\n compute_note_hash_for_nullification(retrieved_note, STORAGE_SLOT),\n );\n\n NoteAndData { note, note_nonce, note_hash, unique_note_hash, inner_nullifier }\n }\n\n #[test]\n unconstrained fn single_note() {\n let note_index_in_tx = 2;\n let note_and_data = construct_note(VALUE, note_index_in_tx);\n\n let mut unique_note_hashes_in_tx = BoundedVec::from_array([\n random(), random(), random(), random(), random(), random(), random(),\n ]);\n unique_note_hashes_in_tx.set(note_index_in_tx, note_and_data.unique_note_hash);\n\n let discovered_notes = attempt_note_nonce_discovery(\n unique_note_hashes_in_tx,\n FIRST_NULLIFIER_IN_TX,\n compute_note_hash_and_nullifier,\n CONTRACT_ADDRESS,\n STORAGE_SLOT,\n RANDOMNESS,\n MockNote::get_id(),\n BoundedVec::from_array(note_and_data.note.pack()),\n );\n\n assert_eq(discovered_notes.len(), 1);\n let discovered_note = discovered_notes.get(0);\n\n assert_eq(discovered_note.note_nonce, note_and_data.note_nonce);\n assert_eq(discovered_note.note_hash, note_and_data.note_hash);\n assert_eq(discovered_note.inner_nullifier, note_and_data.inner_nullifier);\n }\n\n #[test]\n unconstrained fn multiple_notes_same_preimage() {\n let first_note_index_in_tx = 3;\n let first_note_and_data = construct_note(VALUE, first_note_index_in_tx);\n\n let second_note_index_in_tx = 5;\n let second_note_and_data = construct_note(VALUE, second_note_index_in_tx);\n\n // Both notes have the same preimage (and therefore packed representation), so both should be found in the same\n // call.\n assert_eq(first_note_and_data.note, second_note_and_data.note);\n let packed_note = first_note_and_data.note.pack();\n\n let mut unique_note_hashes_in_tx = BoundedVec::from_array([\n random(), random(), random(), random(), random(), random(), random(),\n ]);\n unique_note_hashes_in_tx.set(first_note_index_in_tx, first_note_and_data.unique_note_hash);\n unique_note_hashes_in_tx.set(second_note_index_in_tx, second_note_and_data.unique_note_hash);\n\n let discovered_notes = attempt_note_nonce_discovery(\n unique_note_hashes_in_tx,\n FIRST_NULLIFIER_IN_TX,\n compute_note_hash_and_nullifier,\n CONTRACT_ADDRESS,\n STORAGE_SLOT,\n RANDOMNESS,\n MockNote::get_id(),\n BoundedVec::from_array(packed_note),\n );\n\n assert_eq(discovered_notes.len(), 2);\n\n assert(discovered_notes.any(|discovered_note| {\n (discovered_note.note_nonce == first_note_and_data.note_nonce)\n & (discovered_note.note_hash == first_note_and_data.note_hash)\n & (discovered_note.inner_nullifier == first_note_and_data.inner_nullifier)\n }));\n\n assert(discovered_notes.any(|discovered_note| {\n (discovered_note.note_nonce == second_note_and_data.note_nonce)\n & (discovered_note.note_hash == second_note_and_data.note_hash)\n & (discovered_note.inner_nullifier == second_note_and_data.inner_nullifier)\n }));\n }\n}\n"
|
|
4424
|
+
"source": "use crate::messages::discovery::{ComputeNoteHashAndNullifier, private_notes::MAX_NOTE_PACKED_LEN};\n\nuse dep::protocol_types::{\n address::AztecAddress,\n constants::MAX_NOTE_HASHES_PER_TX,\n debug_log::debug_log_format,\n hash::{compute_note_hash_nonce, compute_siloed_note_hash, compute_unique_note_hash},\n traits::ToField,\n};\n\n/// A struct with the discovered information of a complete note, required for delivery to PXE. Note that this is *not*\n/// the complete note information, since it does not include content, storage slot, etc.\npub struct DiscoveredNoteInfo {\n pub note_nonce: Field,\n pub note_hash: Field,\n pub inner_nullifier: Field,\n}\n\n/// Searches for note nonces that will result in a note that was emitted in a transaction. While rare, it is possible\n/// for multiple notes to have the exact same packed content and storage slot but different nonces, resulting in\n/// different unique note hashes. Because of this this function returns a *vector* of discovered notes, though in most\n/// cases it will contain a single element.\n///\n/// Due to how nonces are computed, this function requires knowledge of the transaction in which the note was created,\n/// more specifically the list of all unique note hashes in it plus the value of its first nullifier.\npub unconstrained fn attempt_note_nonce_discovery<Env>(\n unique_note_hashes_in_tx: BoundedVec<Field, MAX_NOTE_HASHES_PER_TX>,\n first_nullifier_in_tx: Field,\n compute_note_hash_and_nullifier: ComputeNoteHashAndNullifier<Env>,\n contract_address: AztecAddress,\n owner: AztecAddress,\n storage_slot: Field,\n randomness: Field,\n note_type_id: Field,\n packed_note: BoundedVec<Field, MAX_NOTE_PACKED_LEN>,\n) -> BoundedVec<DiscoveredNoteInfo, MAX_NOTE_HASHES_PER_TX> {\n let discovered_notes = &mut BoundedVec::new();\n\n debug_log_format(\n \"Attempting nonce discovery on {0} potential notes on contract {1} for storage slot {2}\",\n [unique_note_hashes_in_tx.len() as Field, contract_address.to_field(), storage_slot],\n );\n\n // We need to find nonces (typically just one) that result in a note hash that, once siloed into a unique note hash,\n // is one of the note hashes created by the transaction.\n unique_note_hashes_in_tx.for_eachi(|i, expected_unique_note_hash| {\n // Nonces are computed by hashing the first nullifier in the transaction with the index of the note in the\n // new note hashes array. We therefore know for each note in every transaction what its nonce is.\n let candidate_nonce = compute_note_hash_nonce(first_nullifier_in_tx, i);\n\n // Given note nonce, note content and metadata, we can compute the note hash and silo it to check if it matches\n // the note hash at the array index we're currently processing.\n // TODO(#11157): handle failed note_hash_and_nullifier computation\n let hashes = compute_note_hash_and_nullifier(\n packed_note,\n owner,\n storage_slot,\n note_type_id,\n contract_address,\n randomness,\n candidate_nonce,\n )\n .expect(f\"Failed to compute a note hash for note type {note_type_id}\");\n\n let siloed_note_hash = compute_siloed_note_hash(contract_address, hashes.note_hash);\n let unique_note_hash = compute_unique_note_hash(candidate_nonce, siloed_note_hash);\n\n if unique_note_hash == expected_unique_note_hash {\n // Note that while we did check that the note hash is the preimage of the expected unique note hash, we\n // perform no validations on the nullifier - we fundamentally cannot, since only the application knows\n // how to compute nullifiers. We simply trust it to have provided the correct one: if it hasn't, then\n // PXE may fail to realize that a given note has been nullified already, and calls to the application\n // could result in invalid transactions (with duplicate nullifiers). This is not a concern because an\n // application already has more direct means of making a call to it fail the transaction.\n discovered_notes.push(\n DiscoveredNoteInfo {\n note_nonce: candidate_nonce,\n note_hash: hashes.note_hash,\n inner_nullifier: hashes.inner_nullifier,\n },\n );\n\n // We don't exit the loop - it is possible (though rare) for the exact same note content to be present\n // multiple times in the same transaction with different nonces. This typically doesn't happen due to\n // notes containing random values in order to hide their contents.\n }\n });\n\n debug_log_format(\n \"Found valid nonces for a total of {0} notes\",\n [discovered_notes.len() as Field],\n );\n\n *discovered_notes\n}\n\nmod test {\n use crate::{\n messages::discovery::{NoteHashAndNullifier, private_notes::MAX_NOTE_PACKED_LEN},\n note::{\n note_interface::{NoteHash, NoteType},\n note_metadata::SettledNoteMetadata,\n retrieved_note::RetrievedNote,\n utils::compute_note_hash_for_nullification,\n },\n oracle::random::random,\n test::mocks::mock_note::MockNote,\n utils::array,\n };\n\n use dep::protocol_types::{\n address::AztecAddress,\n hash::{compute_note_hash_nonce, compute_siloed_note_hash, compute_unique_note_hash},\n traits::{FromField, Packable},\n };\n\n use super::attempt_note_nonce_discovery;\n\n // This implementation could be simpler, but this serves as a nice example of the expected flow in a real\n // implementation, and as a sanity check that the interface is sufficient.\n unconstrained fn compute_note_hash_and_nullifier(\n packed_note: BoundedVec<Field, MAX_NOTE_PACKED_LEN>,\n owner: AztecAddress,\n storage_slot: Field,\n note_type_id: Field,\n contract_address: AztecAddress,\n randomness: Field,\n note_nonce: Field,\n ) -> Option<NoteHashAndNullifier> {\n if note_type_id == MockNote::get_id() {\n let note = MockNote::unpack(array::subarray(packed_note.storage(), 0));\n let note_hash = note.compute_note_hash(owner, storage_slot, randomness);\n\n let note_hash_for_nullification = compute_note_hash_for_nullification(\n RetrievedNote {\n note,\n contract_address,\n randomness,\n metadata: SettledNoteMetadata::new(note_nonce).into(),\n },\n owner,\n storage_slot,\n );\n\n let inner_nullifier =\n note.compute_nullifier_unconstrained(owner, note_hash_for_nullification);\n\n Option::some(NoteHashAndNullifier { note_hash, inner_nullifier })\n } else {\n Option::none()\n }\n }\n\n global VALUE: Field = 7;\n global FIRST_NULLIFIER_IN_TX: Field = 47;\n global CONTRACT_ADDRESS: AztecAddress = AztecAddress::from_field(13);\n global OWNER: AztecAddress = AztecAddress::from_field(14);\n global STORAGE_SLOT: Field = 99;\n global RANDOMNESS: Field = 99;\n\n #[test]\n unconstrained fn no_note_hashes() {\n let unique_note_hashes_in_tx = BoundedVec::new();\n let packed_note = BoundedVec::new();\n\n let discovered_notes = attempt_note_nonce_discovery(\n unique_note_hashes_in_tx,\n FIRST_NULLIFIER_IN_TX,\n compute_note_hash_and_nullifier,\n CONTRACT_ADDRESS,\n OWNER,\n STORAGE_SLOT,\n RANDOMNESS,\n MockNote::get_id(),\n packed_note,\n );\n\n assert_eq(discovered_notes.len(), 0);\n }\n\n #[test(should_fail_with = \"Failed to compute a note hash\")]\n unconstrained fn failed_hash_computation() {\n let unique_note_hashes_in_tx = BoundedVec::from_array([random()]);\n let packed_note = BoundedVec::new();\n let note_type_id = 0; // This note type id is unknown to compute_note_hash_and_nullifier\n\n let discovered_notes = attempt_note_nonce_discovery(\n unique_note_hashes_in_tx,\n FIRST_NULLIFIER_IN_TX,\n compute_note_hash_and_nullifier,\n CONTRACT_ADDRESS,\n OWNER,\n STORAGE_SLOT,\n RANDOMNESS,\n note_type_id,\n packed_note,\n );\n\n assert_eq(discovered_notes.len(), 0);\n }\n\n struct NoteAndData {\n note: MockNote,\n note_nonce: Field,\n note_hash: Field,\n unique_note_hash: Field,\n inner_nullifier: Field,\n }\n\n unconstrained fn construct_note(value: Field, note_index_in_tx: u32) -> NoteAndData {\n let note_nonce = compute_note_hash_nonce(FIRST_NULLIFIER_IN_TX, note_index_in_tx);\n\n let retrieved_note = MockNote::new(value)\n .contract_address(CONTRACT_ADDRESS)\n .randomness(RANDOMNESS)\n .note_metadata(SettledNoteMetadata::new(note_nonce).into())\n .build_retrieved_note();\n let note = retrieved_note.note;\n\n let note_hash = note.compute_note_hash(OWNER, STORAGE_SLOT, RANDOMNESS);\n let unique_note_hash = compute_unique_note_hash(\n note_nonce,\n compute_siloed_note_hash(CONTRACT_ADDRESS, note_hash),\n );\n let inner_nullifier = note.compute_nullifier_unconstrained(\n OWNER,\n compute_note_hash_for_nullification(retrieved_note, OWNER, STORAGE_SLOT),\n );\n\n NoteAndData { note, note_nonce, note_hash, unique_note_hash, inner_nullifier }\n }\n\n #[test]\n unconstrained fn single_note() {\n let note_index_in_tx = 2;\n let note_and_data = construct_note(VALUE, note_index_in_tx);\n\n let mut unique_note_hashes_in_tx = BoundedVec::from_array([\n random(), random(), random(), random(), random(), random(), random(),\n ]);\n unique_note_hashes_in_tx.set(note_index_in_tx, note_and_data.unique_note_hash);\n\n let discovered_notes = attempt_note_nonce_discovery(\n unique_note_hashes_in_tx,\n FIRST_NULLIFIER_IN_TX,\n compute_note_hash_and_nullifier,\n CONTRACT_ADDRESS,\n OWNER,\n STORAGE_SLOT,\n RANDOMNESS,\n MockNote::get_id(),\n BoundedVec::from_array(note_and_data.note.pack()),\n );\n\n assert_eq(discovered_notes.len(), 1);\n let discovered_note = discovered_notes.get(0);\n\n assert_eq(discovered_note.note_nonce, note_and_data.note_nonce);\n assert_eq(discovered_note.note_hash, note_and_data.note_hash);\n assert_eq(discovered_note.inner_nullifier, note_and_data.inner_nullifier);\n }\n\n #[test]\n unconstrained fn multiple_notes_same_preimage() {\n let first_note_index_in_tx = 3;\n let first_note_and_data = construct_note(VALUE, first_note_index_in_tx);\n\n let second_note_index_in_tx = 5;\n let second_note_and_data = construct_note(VALUE, second_note_index_in_tx);\n\n // Both notes have the same preimage (and therefore packed representation), so both should be found in the same\n // call.\n assert_eq(first_note_and_data.note, second_note_and_data.note);\n let packed_note = first_note_and_data.note.pack();\n\n let mut unique_note_hashes_in_tx = BoundedVec::from_array([\n random(), random(), random(), random(), random(), random(), random(),\n ]);\n unique_note_hashes_in_tx.set(first_note_index_in_tx, first_note_and_data.unique_note_hash);\n unique_note_hashes_in_tx.set(second_note_index_in_tx, second_note_and_data.unique_note_hash);\n\n let discovered_notes = attempt_note_nonce_discovery(\n unique_note_hashes_in_tx,\n FIRST_NULLIFIER_IN_TX,\n compute_note_hash_and_nullifier,\n CONTRACT_ADDRESS,\n OWNER,\n STORAGE_SLOT,\n RANDOMNESS,\n MockNote::get_id(),\n BoundedVec::from_array(packed_note),\n );\n\n assert_eq(discovered_notes.len(), 2);\n\n assert(discovered_notes.any(|discovered_note| {\n (discovered_note.note_nonce == first_note_and_data.note_nonce)\n & (discovered_note.note_hash == first_note_and_data.note_hash)\n & (discovered_note.inner_nullifier == first_note_and_data.inner_nullifier)\n }));\n\n assert(discovered_notes.any(|discovered_note| {\n (discovered_note.note_nonce == second_note_and_data.note_nonce)\n & (discovered_note.note_hash == second_note_and_data.note_hash)\n & (discovered_note.inner_nullifier == second_note_and_data.inner_nullifier)\n }));\n }\n}\n"
|
|
4425
4425
|
},
|
|
4426
4426
|
"126": {
|
|
4427
4427
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/messages/discovery/partial_notes.nr",
|
|
4428
|
-
"source": "use crate::{\n capsules::CapsuleArray,\n messages::{\n discovery::{ComputeNoteHashAndNullifier, nonce_discovery::attempt_note_nonce_discovery},\n encoding::MAX_MESSAGE_CONTENT_LEN,\n processing::{\n enqueue_note_for_validation, get_pending_partial_notes_completion_logs,\n log_retrieval_response::LogRetrievalResponse,\n },\n },\n utils::array,\n};\n\nuse protocol_types::{\n address::AztecAddress,\n debug_log::debug_log_format,\n hash::sha256_to_field,\n traits::{Deserialize, Serialize},\n};\n\n/// storage slot, randomness, note_completion_log_tag\nglobal PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NON_NOTE_FIELDS_LEN: u32 = 3;\nglobal PARTIAL_NOTE_PRIVATE_MSG_CONTENT_STORAGE_SLOT_INDEX: u32 = 0;\nglobal PARTIAL_NOTE_PRIVATE_MSG_CONTENT_RANDOMNESS_INDEX: u32 = 1;\nglobal PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NOTE_COMPLETION_LOG_TAG_INDEX: u32 = 2;\n\n/// Partial notes have a maximum packed length of their private fields bound by extra content in their private message\n/// (e.g. the storage slot, note completion log tag, etc.).\npub global MAX_PARTIAL_NOTE_PRIVATE_PACKED_LEN: u32 =\n MAX_MESSAGE_CONTENT_LEN - PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NON_NOTE_FIELDS_LEN;\n\n/// The slot in the PXE capsules where we store a `CapsuleArray` of `DeliveredPendingPartialNote`.\npub global DELIVERED_PENDING_PARTIAL_NOTE_ARRAY_LENGTH_CAPSULES_SLOT: Field = sha256_to_field(\n \"AZTEC_NR::DELIVERED_PENDING_PARTIAL_NOTE_ARRAY_LENGTH_CAPSULES_SLOT\".as_bytes(),\n);\n\n/// A partial note that was delivered but is still pending completion. Contains the information necessary to find the\n/// log that will complete it and lead to a note being discovered and delivered.\n#[derive(Serialize, Deserialize)]\npub(crate) struct DeliveredPendingPartialNote {\n pub(crate) note_completion_log_tag: Field,\n pub(crate) storage_slot: Field,\n pub(crate) randomness: Field,\n pub(crate) note_type_id: Field,\n pub(crate) packed_private_note_content: BoundedVec<Field, MAX_PARTIAL_NOTE_PRIVATE_PACKED_LEN>,\n pub(crate) recipient: AztecAddress,\n}\n\npub unconstrained fn process_partial_note_private_msg(\n contract_address: AztecAddress,\n recipient: AztecAddress,\n msg_metadata: u64,\n msg_content: BoundedVec<Field, MAX_MESSAGE_CONTENT_LEN>,\n) {\n // We store the information of the partial note we found in a persistent capsule in PXE, so that we can later search\n // for the public log that will complete it.\n let pending = decode_partial_note_private_msg(msg_metadata, msg_content, recipient);\n\n CapsuleArray::at(\n contract_address,\n DELIVERED_PENDING_PARTIAL_NOTE_ARRAY_LENGTH_CAPSULES_SLOT,\n )\n .push(pending);\n}\n\n/// Searches for logs that would result in the completion of pending partial notes, ultimately resulting in the notes\n/// being delivered to PXE if completed.\npub unconstrained fn fetch_and_process_partial_note_completion_logs<Env>(\n contract_address: AztecAddress,\n compute_note_hash_and_nullifier: ComputeNoteHashAndNullifier<Env>,\n) {\n let pending_partial_notes = CapsuleArray::at(\n contract_address,\n DELIVERED_PENDING_PARTIAL_NOTE_ARRAY_LENGTH_CAPSULES_SLOT,\n );\n\n debug_log_format(\n \"{} pending partial notes\",\n [pending_partial_notes.len() as Field],\n );\n\n // Each of the pending partial notes might get completed by a log containing its public values. For performance\n // reasons, we fetch all of these logs concurrently and then process them one by one, minimizing the amount of time\n // waiting for the node roundtrip.\n let maybe_completion_logs =\n get_pending_partial_notes_completion_logs(contract_address, pending_partial_notes);\n\n // Each entry in the maybe completion logs array corresponds to the entry in the pending partial notes array at the\n // same index. This means we can use the same index as we iterate through the responses to get both the partial note\n // and the log that might complete it.\n assert_eq(maybe_completion_logs.len(), pending_partial_notes.len());\n\n maybe_completion_logs.for_each(|i, maybe_log: Option<LogRetrievalResponse>| {\n // We clear the completion logs as we read them so that the array is empty by the time we next query it.\n // TODO(#14943): use volatile arrays to avoid having to manually clear this.\n maybe_completion_logs.remove(i);\n\n let pending_partial_note = pending_partial_notes.get(i);\n\n if maybe_log.is_none() {\n debug_log_format(\n \"Found no completion logs for partial note with tag {}\",\n [pending_partial_note.note_completion_log_tag],\n );\n\n // Note that we're not removing the pending partial note from the capsule array, so we will continue\n // searching for this tagged log when performing message discovery in the future until we either find it or\n // the entry is somehow removed from the array.\n } else {\n debug_log_format(\n \"Completion log found for partial note with tag {}\",\n [pending_partial_note.note_completion_log_tag],\n );\n let log = maybe_log.unwrap();\n\n // Public fields are assumed to all be placed at the end of the packed representation, so we combine the\n // private and public packed fields (i.e. the contents of the private message and public log plaintext to get\n // the complete packed content.\n let complete_packed_note = array::append(\n pending_partial_note.packed_private_note_content,\n log.log_payload,\n );\n\n let discovered_notes = attempt_note_nonce_discovery(\n log.unique_note_hashes_in_tx,\n log.first_nullifier_in_tx,\n compute_note_hash_and_nullifier,\n contract_address,\n pending_partial_note.storage_slot,\n pending_partial_note.randomness,\n pending_partial_note.note_type_id,\n complete_packed_note,\n );\n\n // TODO(#11627): is there anything reasonable we can do if we get a log but it doesn't result in a note\n // being found?\n if discovered_notes.len() == 0 {\n panic(\n f\"A partial note's completion log did not result in any notes being found - this should never happen\",\n );\n }\n\n debug_log_format(\n \"Discovered {0} notes for partial note with tag {1}\",\n [discovered_notes.len() as Field, pending_partial_note.note_completion_log_tag],\n );\n\n discovered_notes.for_each(|discovered_note| {\n enqueue_note_for_validation(\n contract_address,\n pending_partial_note.storage_slot,\n pending_partial_note.randomness,\n discovered_note.note_nonce,\n complete_packed_note,\n discovered_note.note_hash,\n discovered_note.inner_nullifier,\n log.tx_hash,\n pending_partial_note.recipient,\n );\n });\n\n // Because there is only a single log for a given tag, once we've processed the tagged log then we\n // simply delete the pending work entry, regardless of whether it was actually completed or not.\n pending_partial_notes.remove(i);\n }\n });\n}\n\nfn decode_partial_note_private_msg(\n msg_metadata: u64,\n msg_content: BoundedVec<Field, MAX_MESSAGE_CONTENT_LEN>,\n recipient: AztecAddress,\n) -> DeliveredPendingPartialNote {\n let note_type_id = msg_metadata as Field; // TODO: make note type id not be a full field\n\n assert(\n msg_content.len() > PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NON_NOTE_FIELDS_LEN,\n f\"Invalid private note message: all partial note private messages must have at least {PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NON_NOTE_FIELDS_LEN} fields\",\n );\n\n // If PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NON_NOTE_FIELDS_LEN is changed, causing the assertion below to fail, then the\n // destructuring of the partial note private message encoding below must be updated as well.\n std::static_assert(\n PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NON_NOTE_FIELDS_LEN == 3,\n \"unexpected value for PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NON_NOTE_FIELDS_LEN\",\n );\n\n // We currently have three fields that are not the partial note's packed representation,\n // which are the storage slot, the randomness, and the note completion log tag.\n let storage_slot = msg_content.get(PARTIAL_NOTE_PRIVATE_MSG_CONTENT_STORAGE_SLOT_INDEX);\n let randomness = msg_content.get(PARTIAL_NOTE_PRIVATE_MSG_CONTENT_RANDOMNESS_INDEX);\n let note_completion_log_tag =\n msg_content.get(PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NOTE_COMPLETION_LOG_TAG_INDEX);\n\n let packed_private_note_content: BoundedVec<Field, MAX_PARTIAL_NOTE_PRIVATE_PACKED_LEN> = array::subbvec(\n msg_content,\n PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NON_NOTE_FIELDS_LEN,\n );\n\n DeliveredPendingPartialNote {\n note_completion_log_tag,\n storage_slot,\n randomness,\n note_type_id,\n packed_private_note_content,\n recipient,\n }\n}\n"
|
|
4428
|
+
"source": "use crate::{\n capsules::CapsuleArray,\n messages::{\n discovery::{ComputeNoteHashAndNullifier, nonce_discovery::attempt_note_nonce_discovery},\n encoding::MAX_MESSAGE_CONTENT_LEN,\n processing::{\n enqueue_note_for_validation, get_pending_partial_notes_completion_logs,\n log_retrieval_response::LogRetrievalResponse,\n },\n },\n utils::array,\n};\n\nuse protocol_types::{\n address::AztecAddress,\n debug_log::debug_log_format,\n hash::sha256_to_field,\n traits::{Deserialize, FromField, Serialize},\n};\n\n/// [ owner, storage slot, randomness, note_completion_log_tag ]\nglobal PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NON_NOTE_FIELDS_LEN: u32 = 4;\nglobal PARTIAL_NOTE_PRIVATE_MSG_CONTENT_OWNER_INDEX: u32 = 0;\nglobal PARTIAL_NOTE_PRIVATE_MSG_CONTENT_STORAGE_SLOT_INDEX: u32 = 1;\nglobal PARTIAL_NOTE_PRIVATE_MSG_CONTENT_RANDOMNESS_INDEX: u32 = 2;\nglobal PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NOTE_COMPLETION_LOG_TAG_INDEX: u32 = 3;\n\n/// Partial notes have a maximum packed length of their private fields bound by extra content in their private message\n/// (e.g. the storage slot, note completion log tag, etc.).\npub global MAX_PARTIAL_NOTE_PRIVATE_PACKED_LEN: u32 =\n MAX_MESSAGE_CONTENT_LEN - PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NON_NOTE_FIELDS_LEN;\n\n/// The slot in the PXE capsules where we store a `CapsuleArray` of `DeliveredPendingPartialNote`.\npub global DELIVERED_PENDING_PARTIAL_NOTE_ARRAY_LENGTH_CAPSULES_SLOT: Field = sha256_to_field(\n \"AZTEC_NR::DELIVERED_PENDING_PARTIAL_NOTE_ARRAY_LENGTH_CAPSULES_SLOT\".as_bytes(),\n);\n\n/// A partial note that was delivered but is still pending completion. Contains the information necessary to find the\n/// log that will complete it and lead to a note being discovered and delivered.\n#[derive(Serialize, Deserialize)]\npub(crate) struct DeliveredPendingPartialNote {\n pub(crate) note_completion_log_tag: Field,\n pub(crate) owner: AztecAddress,\n pub(crate) storage_slot: Field,\n pub(crate) randomness: Field,\n pub(crate) note_type_id: Field,\n pub(crate) packed_private_note_content: BoundedVec<Field, MAX_PARTIAL_NOTE_PRIVATE_PACKED_LEN>,\n pub(crate) recipient: AztecAddress,\n}\n\npub unconstrained fn process_partial_note_private_msg(\n contract_address: AztecAddress,\n recipient: AztecAddress,\n msg_metadata: u64,\n msg_content: BoundedVec<Field, MAX_MESSAGE_CONTENT_LEN>,\n) {\n // We store the information of the partial note we found in a persistent capsule in PXE, so that we can later search\n // for the public log that will complete it.\n let pending = decode_partial_note_private_msg(msg_metadata, msg_content, recipient);\n\n CapsuleArray::at(\n contract_address,\n DELIVERED_PENDING_PARTIAL_NOTE_ARRAY_LENGTH_CAPSULES_SLOT,\n )\n .push(pending);\n}\n\n/// Searches for logs that would result in the completion of pending partial notes, ultimately resulting in the notes\n/// being delivered to PXE if completed.\npub unconstrained fn fetch_and_process_partial_note_completion_logs<Env>(\n contract_address: AztecAddress,\n compute_note_hash_and_nullifier: ComputeNoteHashAndNullifier<Env>,\n) {\n let pending_partial_notes = CapsuleArray::at(\n contract_address,\n DELIVERED_PENDING_PARTIAL_NOTE_ARRAY_LENGTH_CAPSULES_SLOT,\n );\n\n debug_log_format(\n \"{} pending partial notes\",\n [pending_partial_notes.len() as Field],\n );\n\n // Each of the pending partial notes might get completed by a log containing its public values. For performance\n // reasons, we fetch all of these logs concurrently and then process them one by one, minimizing the amount of time\n // waiting for the node roundtrip.\n let maybe_completion_logs =\n get_pending_partial_notes_completion_logs(contract_address, pending_partial_notes);\n\n // Each entry in the maybe completion logs array corresponds to the entry in the pending partial notes array at the\n // same index. This means we can use the same index as we iterate through the responses to get both the partial note\n // and the log that might complete it.\n assert_eq(maybe_completion_logs.len(), pending_partial_notes.len());\n\n maybe_completion_logs.for_each(|i, maybe_log: Option<LogRetrievalResponse>| {\n // We clear the completion logs as we read them so that the array is empty by the time we next query it.\n // TODO(#14943): use volatile arrays to avoid having to manually clear this.\n maybe_completion_logs.remove(i);\n\n let pending_partial_note = pending_partial_notes.get(i);\n\n if maybe_log.is_none() {\n debug_log_format(\n \"Found no completion logs for partial note with tag {}\",\n [pending_partial_note.note_completion_log_tag],\n );\n\n // Note that we're not removing the pending partial note from the capsule array, so we will continue\n // searching for this tagged log when performing message discovery in the future until we either find it or\n // the entry is somehow removed from the array.\n } else {\n debug_log_format(\n \"Completion log found for partial note with tag {}\",\n [pending_partial_note.note_completion_log_tag],\n );\n let log = maybe_log.unwrap();\n\n // Public fields are assumed to all be placed at the end of the packed representation, so we combine the\n // private and public packed fields (i.e. the contents of the private message and public log plaintext to get\n // the complete packed content.\n let complete_packed_note = array::append(\n pending_partial_note.packed_private_note_content,\n log.log_payload,\n );\n\n let discovered_notes = attempt_note_nonce_discovery(\n log.unique_note_hashes_in_tx,\n log.first_nullifier_in_tx,\n compute_note_hash_and_nullifier,\n contract_address,\n pending_partial_note.owner,\n pending_partial_note.storage_slot,\n pending_partial_note.randomness,\n pending_partial_note.note_type_id,\n complete_packed_note,\n );\n\n // TODO(#11627): is there anything reasonable we can do if we get a log but it doesn't result in a note\n // being found?\n if discovered_notes.len() == 0 {\n panic(\n f\"A partial note's completion log did not result in any notes being found - this should never happen\",\n );\n }\n\n debug_log_format(\n \"Discovered {0} notes for partial note with tag {1}\",\n [discovered_notes.len() as Field, pending_partial_note.note_completion_log_tag],\n );\n\n discovered_notes.for_each(|discovered_note| {\n enqueue_note_for_validation(\n contract_address,\n pending_partial_note.owner,\n pending_partial_note.storage_slot,\n pending_partial_note.randomness,\n discovered_note.note_nonce,\n complete_packed_note,\n discovered_note.note_hash,\n discovered_note.inner_nullifier,\n log.tx_hash,\n pending_partial_note.recipient,\n );\n });\n\n // Because there is only a single log for a given tag, once we've processed the tagged log then we\n // simply delete the pending work entry, regardless of whether it was actually completed or not.\n pending_partial_notes.remove(i);\n }\n });\n}\n\nfn decode_partial_note_private_msg(\n msg_metadata: u64,\n msg_content: BoundedVec<Field, MAX_MESSAGE_CONTENT_LEN>,\n recipient: AztecAddress,\n) -> DeliveredPendingPartialNote {\n let note_type_id = msg_metadata as Field; // TODO: make note type id not be a full field\n\n // The following ensures that the message content contains at least the minimum number of fields required for a\n // valid partial note private message. (Refer to the description of\n // PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NON_NOTE_FIELDS_LEN for more information about these fields.)\n assert(\n msg_content.len() >= PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NON_NOTE_FIELDS_LEN,\n f\"Invalid private note message: all partial note private messages must have at least {PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NON_NOTE_FIELDS_LEN} fields\",\n );\n\n // If PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NON_NOTE_FIELDS_LEN is changed, causing the assertion below to fail, then the\n // destructuring of the partial note private message encoding below must be updated as well.\n std::static_assert(\n PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NON_NOTE_FIELDS_LEN == 4,\n \"unexpected value for PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NON_NOTE_FIELDS_LEN\",\n );\n\n // We currently have four fields that are not the partial note's packed representation,\n // which are the owner, the storage slot, the randomness, and the note completion log tag.\n let owner = AztecAddress::from_field(msg_content.get(\n PARTIAL_NOTE_PRIVATE_MSG_CONTENT_OWNER_INDEX,\n ));\n let storage_slot = msg_content.get(PARTIAL_NOTE_PRIVATE_MSG_CONTENT_STORAGE_SLOT_INDEX);\n let randomness = msg_content.get(PARTIAL_NOTE_PRIVATE_MSG_CONTENT_RANDOMNESS_INDEX);\n let note_completion_log_tag =\n msg_content.get(PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NOTE_COMPLETION_LOG_TAG_INDEX);\n\n let packed_private_note_content: BoundedVec<Field, MAX_PARTIAL_NOTE_PRIVATE_PACKED_LEN> = array::subbvec(\n msg_content,\n PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NON_NOTE_FIELDS_LEN,\n );\n\n DeliveredPendingPartialNote {\n note_completion_log_tag,\n owner,\n storage_slot,\n randomness,\n note_type_id,\n packed_private_note_content,\n recipient,\n }\n}\n"
|
|
4429
4429
|
},
|
|
4430
4430
|
"127": {
|
|
4431
4431
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/messages/discovery/private_events.nr",
|
|
@@ -4433,7 +4433,7 @@
|
|
|
4433
4433
|
},
|
|
4434
4434
|
"128": {
|
|
4435
4435
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/messages/discovery/private_notes.nr",
|
|
4436
|
-
"source": "use crate::{\n messages::{\n discovery::{ComputeNoteHashAndNullifier, nonce_discovery::attempt_note_nonce_discovery},\n encoding::MAX_MESSAGE_CONTENT_LEN,\n processing::enqueue_note_for_validation,\n },\n utils::array,\n};\nuse protocol_types::{\n address::AztecAddress, constants::MAX_NOTE_HASHES_PER_TX, debug_log::debug_log_format,\n};\n\n/// The number of fields in a private note message content that are not the note's packed representation.\n// See the call to `std::static_assert` below to see what's in these fields.\nglobal PRIVATE_NOTE_MSG_CONTENT_NON_NOTE_FIELDS_LEN: u32 =
|
|
4436
|
+
"source": "use crate::{\n messages::{\n discovery::{ComputeNoteHashAndNullifier, nonce_discovery::attempt_note_nonce_discovery},\n encoding::MAX_MESSAGE_CONTENT_LEN,\n processing::enqueue_note_for_validation,\n },\n utils::array,\n};\nuse protocol_types::{\n address::AztecAddress, constants::MAX_NOTE_HASHES_PER_TX, debug_log::debug_log_format,\n traits::FromField,\n};\n\n/// The number of fields in a private note message content that are not the note's packed representation.\n// See the call to `std::static_assert` below to see what's in these fields.\nglobal PRIVATE_NOTE_MSG_CONTENT_NON_NOTE_FIELDS_LEN: u32 = 3;\nglobal PRIVATE_NOTE_MSG_CONTENT_OWNER_INDEX: u32 = 0;\nglobal PRIVATE_NOTE_MSG_CONTENT_STORAGE_SLOT_INDEX: u32 = 1;\nglobal PRIVATE_NOTE_MSG_CONTENT_RANDOMNESS_INDEX: u32 = 2;\n\n/// The maximum length of the packed representation of a note's contents. This is limited by private log size,\n/// encryption overhead and extra fields in the message (e.g. message type id, storage slot, randomness, etc.).\npub global MAX_NOTE_PACKED_LEN: u32 =\n MAX_MESSAGE_CONTENT_LEN - PRIVATE_NOTE_MSG_CONTENT_NON_NOTE_FIELDS_LEN;\n\npub unconstrained fn process_private_note_msg<Env>(\n contract_address: AztecAddress,\n tx_hash: Field,\n unique_note_hashes_in_tx: BoundedVec<Field, MAX_NOTE_HASHES_PER_TX>,\n first_nullifier_in_tx: Field,\n recipient: AztecAddress,\n compute_note_hash_and_nullifier: ComputeNoteHashAndNullifier<Env>,\n msg_metadata: u64,\n msg_content: BoundedVec<Field, MAX_MESSAGE_CONTENT_LEN>,\n) {\n let (note_type_id, owner, storage_slot, randomness, packed_note) =\n decode_private_note_msg(msg_metadata, msg_content);\n\n attempt_note_discovery(\n contract_address,\n tx_hash,\n unique_note_hashes_in_tx,\n first_nullifier_in_tx,\n recipient,\n compute_note_hash_and_nullifier,\n owner,\n storage_slot,\n randomness,\n note_type_id,\n packed_note,\n );\n}\n\n/// Attempts discovery of a note given information about its contents and the transaction in which it is\n/// suspected the note was created.\npub unconstrained fn attempt_note_discovery<Env>(\n contract_address: AztecAddress,\n tx_hash: Field,\n unique_note_hashes_in_tx: BoundedVec<Field, MAX_NOTE_HASHES_PER_TX>,\n first_nullifier_in_tx: Field,\n recipient: AztecAddress,\n compute_note_hash_and_nullifier: ComputeNoteHashAndNullifier<Env>,\n owner: AztecAddress,\n storage_slot: Field,\n randomness: Field,\n note_type_id: Field,\n packed_note: BoundedVec<Field, MAX_NOTE_PACKED_LEN>,\n) {\n let discovered_notes = attempt_note_nonce_discovery(\n unique_note_hashes_in_tx,\n first_nullifier_in_tx,\n compute_note_hash_and_nullifier,\n contract_address,\n owner,\n storage_slot,\n randomness,\n note_type_id,\n packed_note,\n );\n\n debug_log_format(\n \"Discovered {0} notes from a private message\",\n [discovered_notes.len() as Field],\n );\n\n discovered_notes.for_each(|discovered_note| {\n enqueue_note_for_validation(\n contract_address,\n owner,\n storage_slot,\n randomness,\n discovered_note.note_nonce,\n packed_note,\n discovered_note.note_hash,\n discovered_note.inner_nullifier,\n tx_hash,\n recipient,\n );\n });\n}\n\nfn decode_private_note_msg(\n msg_metadata: u64,\n msg_content: BoundedVec<Field, MAX_MESSAGE_CONTENT_LEN>,\n) -> (Field, AztecAddress, Field, Field, BoundedVec<Field, MAX_NOTE_PACKED_LEN>) {\n let note_type_id = msg_metadata as Field; // TODO: make note type id not be a full field\n\n assert(\n msg_content.len() > PRIVATE_NOTE_MSG_CONTENT_NON_NOTE_FIELDS_LEN,\n f\"Invalid private note message: all private note messages must have at least {PRIVATE_NOTE_MSG_CONTENT_NON_NOTE_FIELDS_LEN} fields\",\n );\n\n // If PRIVATE_NOTE_MSG_CONTENT_NON_NOTE_FIELDS_LEN is changed, causing the assertion below to fail, then the\n // destructuring of the private note message encoding below must be updated as well.\n std::static_assert(\n PRIVATE_NOTE_MSG_CONTENT_NON_NOTE_FIELDS_LEN == 3,\n \"unexpected value for PRIVATE_NOTE_MSG_CONTENT_NON_NOTE_FIELDS_LEN\",\n );\n\n // We currently have two fields that are not the note's packed representation, which are the owner and the storage slot.\n let owner = AztecAddress::from_field(msg_content.get(PRIVATE_NOTE_MSG_CONTENT_OWNER_INDEX));\n let storage_slot = msg_content.get(PRIVATE_NOTE_MSG_CONTENT_STORAGE_SLOT_INDEX);\n let randomness = msg_content.get(PRIVATE_NOTE_MSG_CONTENT_RANDOMNESS_INDEX);\n let packed_note = array::subbvec(msg_content, PRIVATE_NOTE_MSG_CONTENT_NON_NOTE_FIELDS_LEN);\n\n (note_type_id, owner, storage_slot, randomness, packed_note)\n}\n"
|
|
4437
4437
|
},
|
|
4438
4438
|
"129": {
|
|
4439
4439
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/messages/discovery/process_message.nr",
|
|
@@ -4449,7 +4449,7 @@
|
|
|
4449
4449
|
},
|
|
4450
4450
|
"148": {
|
|
4451
4451
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/messages/processing/mod.nr",
|
|
4452
|
-
"source": "pub(crate) mod event_validation_request;\npub mod message_context;\npub(crate) mod note_validation_request;\npub(crate) mod log_retrieval_request;\npub(crate) mod log_retrieval_response;\npub(crate) mod pending_tagged_log;\n\nuse crate::{\n capsules::CapsuleArray,\n event::event_selector::EventSelector,\n messages::{\n discovery::{\n partial_notes::DeliveredPendingPartialNote, private_events::MAX_EVENT_SERIALIZED_LEN,\n private_notes::MAX_NOTE_PACKED_LEN,\n },\n processing::{\n log_retrieval_request::LogRetrievalRequest,\n log_retrieval_response::LogRetrievalResponse,\n note_validation_request::NoteValidationRequest, pending_tagged_log::PendingTaggedLog,\n },\n },\n oracle,\n};\nuse event_validation_request::EventValidationRequest;\nuse protocol_types::{address::AztecAddress, hash::sha256_to_field};\n\n// Base slot for the pending tagged log array to which the fetch_tagged_logs oracle inserts found private logs.\nglobal PENDING_TAGGED_LOG_ARRAY_BASE_SLOT: Field =\n sha256_to_field(\"AZTEC_NR::PENDING_TAGGED_LOG_ARRAY_BASE_SLOT\".as_bytes());\n\nglobal NOTE_VALIDATION_REQUESTS_ARRAY_BASE_SLOT: Field = sha256_to_field(\n \"AZTEC_NR::NOTE_VALIDATION_REQUESTS_ARRAY_BASE_SLOT\".as_bytes(),\n);\n\nglobal EVENT_VALIDATION_REQUESTS_ARRAY_BASE_SLOT: Field = sha256_to_field(\n \"AZTEC_NR::EVENT_VALIDATION_REQUESTS_ARRAY_BASE_SLOT\".as_bytes(),\n);\n\nglobal LOG_RETRIEVAL_REQUESTS_ARRAY_BASE_SLOT: Field = sha256_to_field(\n \"AZTEC_NR::LOG_RETRIEVAL_REQUESTS_ARRAY_BASE_SLOT\".as_bytes(),\n);\n\nglobal LOG_RETRIEVAL_RESPONSES_ARRAY_BASE_SLOT: Field = sha256_to_field(\n \"AZTEC_NR::LOG_RETRIEVAL_RESPONSES_ARRAY_BASE_SLOT\".as_bytes(),\n);\n\n/// Searches for private logs emitted by `contract_address` that might contain messages for one of the local accounts,\n/// and stores them in a `CapsuleArray` which is then returned.\npub(crate) unconstrained fn get_private_logs(\n contract_address: AztecAddress,\n) -> CapsuleArray<PendingTaggedLog> {\n // We will eventually perform log discovery via tagging here, but for now we simply call the `fetchTaggedLogs`\n // oracle. This makes PXE synchronize tags, download logs and store the pending tagged logs in a capsule array.\n oracle::message_processing::fetch_tagged_logs(PENDING_TAGGED_LOG_ARRAY_BASE_SLOT);\n\n CapsuleArray::at(contract_address, PENDING_TAGGED_LOG_ARRAY_BASE_SLOT)\n}\n\n/// Enqueues a note for validation by PXE, so that it becomes aware of a note's existence allowing for later retrieval\n/// via `get_notes` oracle. The note will be scoped to `contract_address`, meaning other contracts will not be able to\n/// access it unless authorized.\n///\n/// In order for the note validation and insertion to occur, `validate_enqueued_notes_and_events` must be later called.\n/// For optimal performance, accumulate as many note validation requests as possible and then validate them all at the\n/// end (which results in PXE minimizing the number of network round-trips).\n///\n/// The `packed_note` is what `getNotes` will later return. PXE indexes notes by `storage_slot`, so this value\n/// is typically used to filter notes that correspond to different state variables. `note_hash` and `nullifier` are\n/// the inner hashes, i.e. the raw hashes returned by `NoteHash::compute_note_hash` and\n/// `NoteHash::compute_nullifier`. PXE will verify that the siloed unique note hash was inserted into the tree\n/// at `tx_hash`, and will store the nullifier to later check for nullification.\n///\n/// `recipient` is the account to which the note was
|
|
4452
|
+
"source": "pub(crate) mod event_validation_request;\npub mod message_context;\npub(crate) mod note_validation_request;\npub(crate) mod log_retrieval_request;\npub(crate) mod log_retrieval_response;\npub(crate) mod pending_tagged_log;\n\nuse crate::{\n capsules::CapsuleArray,\n event::event_selector::EventSelector,\n messages::{\n discovery::{\n partial_notes::DeliveredPendingPartialNote, private_events::MAX_EVENT_SERIALIZED_LEN,\n private_notes::MAX_NOTE_PACKED_LEN,\n },\n processing::{\n log_retrieval_request::LogRetrievalRequest,\n log_retrieval_response::LogRetrievalResponse,\n note_validation_request::NoteValidationRequest, pending_tagged_log::PendingTaggedLog,\n },\n },\n oracle,\n};\nuse event_validation_request::EventValidationRequest;\nuse protocol_types::{address::AztecAddress, hash::sha256_to_field};\n\n// Base slot for the pending tagged log array to which the fetch_tagged_logs oracle inserts found private logs.\nglobal PENDING_TAGGED_LOG_ARRAY_BASE_SLOT: Field =\n sha256_to_field(\"AZTEC_NR::PENDING_TAGGED_LOG_ARRAY_BASE_SLOT\".as_bytes());\n\nglobal NOTE_VALIDATION_REQUESTS_ARRAY_BASE_SLOT: Field = sha256_to_field(\n \"AZTEC_NR::NOTE_VALIDATION_REQUESTS_ARRAY_BASE_SLOT\".as_bytes(),\n);\n\nglobal EVENT_VALIDATION_REQUESTS_ARRAY_BASE_SLOT: Field = sha256_to_field(\n \"AZTEC_NR::EVENT_VALIDATION_REQUESTS_ARRAY_BASE_SLOT\".as_bytes(),\n);\n\nglobal LOG_RETRIEVAL_REQUESTS_ARRAY_BASE_SLOT: Field = sha256_to_field(\n \"AZTEC_NR::LOG_RETRIEVAL_REQUESTS_ARRAY_BASE_SLOT\".as_bytes(),\n);\n\nglobal LOG_RETRIEVAL_RESPONSES_ARRAY_BASE_SLOT: Field = sha256_to_field(\n \"AZTEC_NR::LOG_RETRIEVAL_RESPONSES_ARRAY_BASE_SLOT\".as_bytes(),\n);\n\n/// Searches for private logs emitted by `contract_address` that might contain messages for one of the local accounts,\n/// and stores them in a `CapsuleArray` which is then returned.\npub(crate) unconstrained fn get_private_logs(\n contract_address: AztecAddress,\n) -> CapsuleArray<PendingTaggedLog> {\n // We will eventually perform log discovery via tagging here, but for now we simply call the `fetchTaggedLogs`\n // oracle. This makes PXE synchronize tags, download logs and store the pending tagged logs in a capsule array.\n oracle::message_processing::fetch_tagged_logs(PENDING_TAGGED_LOG_ARRAY_BASE_SLOT);\n\n CapsuleArray::at(contract_address, PENDING_TAGGED_LOG_ARRAY_BASE_SLOT)\n}\n\n/// Enqueues a note for validation by PXE, so that it becomes aware of a note's existence allowing for later retrieval\n/// via `get_notes` oracle. The note will be scoped to `contract_address`, meaning other contracts will not be able to\n/// access it unless authorized.\n///\n/// In order for the note validation and insertion to occur, `validate_enqueued_notes_and_events` must be later called.\n/// For optimal performance, accumulate as many note validation requests as possible and then validate them all at the\n/// end (which results in PXE minimizing the number of network round-trips).\n///\n/// The `packed_note` is what `getNotes` will later return. PXE indexes notes by `storage_slot`, so this value\n/// is typically used to filter notes that correspond to different state variables. `note_hash` and `nullifier` are\n/// the inner hashes, i.e. the raw hashes returned by `NoteHash::compute_note_hash` and\n/// `NoteHash::compute_nullifier`. PXE will verify that the siloed unique note hash was inserted into the tree\n/// at `tx_hash`, and will store the nullifier to later check for nullification.\n///\n/// `owner` is the address used in note hash and nullifier computation, often requiring knowledge of their\n/// nullifier secret key.\n///\n/// `recipient` is the account to which the note message was delivered (i.e. the address the message was encrypted to).\n/// This determines which PXE account can see the note - other accounts will not be able to access it (e.g. other\n/// accounts will not be able to see one another's token balance notes, even in the same PXE) unless authorized. In most\n/// cases `recipient` equals `owner`, but they can differ in scenarios like delegated discovery.\npub(crate) unconstrained fn enqueue_note_for_validation(\n contract_address: AztecAddress,\n owner: AztecAddress,\n storage_slot: Field,\n randomness: Field,\n note_nonce: Field,\n packed_note: BoundedVec<Field, MAX_NOTE_PACKED_LEN>,\n note_hash: Field,\n nullifier: Field,\n tx_hash: Field,\n recipient: AztecAddress,\n) {\n // We store requests in a `CapsuleArray`, which PXE will later read from and deserialize into its version of the\n // Noir `NoteValidationRequest`\n CapsuleArray::at(contract_address, NOTE_VALIDATION_REQUESTS_ARRAY_BASE_SLOT).push(\n NoteValidationRequest {\n contract_address,\n owner,\n storage_slot,\n randomness,\n note_nonce,\n packed_note,\n note_hash,\n nullifier,\n tx_hash,\n recipient,\n },\n )\n}\n\n/// Enqueues an event for validation by PXE, so that it can be efficiently validated and then inserted into the event\n/// store.\n///\n/// In order for the event validation and insertion to occur, `validate_enqueued_notes_and_events` must be later\n/// called. For optimal performance, accumulate as many event validation requests as possible and then validate them\n/// all at the end (which results in PXE minimizing the number of network round-trips).\npub(crate) unconstrained fn enqueue_event_for_validation(\n contract_address: AztecAddress,\n event_type_id: EventSelector,\n serialized_event: BoundedVec<Field, MAX_EVENT_SERIALIZED_LEN>,\n event_commitment: Field,\n tx_hash: Field,\n recipient: AztecAddress,\n) {\n // We store requests in a `CapsuleArray`, which PXE will later read from and deserialize into its version of the\n // Noir `EventValidationRequest`\n CapsuleArray::at(contract_address, EVENT_VALIDATION_REQUESTS_ARRAY_BASE_SLOT).push(\n EventValidationRequest {\n contract_address,\n event_type_id,\n serialized_event,\n event_commitment,\n tx_hash,\n recipient,\n },\n )\n}\n\n/// Validates all note and event validation requests enqueued via `enqueue_note_for_validation` and\n/// `enqueue_event_for_validation`, inserting them into the note database and event store respectively, making them\n/// queryable via `get_notes` oracle and our TS API (PXE::getPrivateEvents).\n///\n/// This automatically clears both validation request queues, so no further work needs to be done by the caller.\npub(crate) unconstrained fn validate_enqueued_notes_and_events(contract_address: AztecAddress) {\n oracle::message_processing::validate_enqueued_notes_and_events(\n contract_address,\n NOTE_VALIDATION_REQUESTS_ARRAY_BASE_SLOT,\n EVENT_VALIDATION_REQUESTS_ARRAY_BASE_SLOT,\n );\n}\n\n/// Efficiently queries the node for logs that result in the completion of all `DeliveredPendingPartialNote`s stored in\n/// a `CapsuleArray` by performing all node communication concurrently. Returns a second `CapsuleArray` with Options for\n/// the responses that correspond to the pending partial notes at the same index.\n///\n/// For example, given an array with pending partial notes `[ p1, p2, p3 ]`, where `p1` and `p3` have corresponding\n/// completion logs but `p2` does not, the returned `CapsuleArray` will have contents\n/// `[some(p1_log), none(), some(p3_log)]`.\npub(crate) unconstrained fn get_pending_partial_notes_completion_logs(\n contract_address: AztecAddress,\n pending_partial_notes: CapsuleArray<DeliveredPendingPartialNote>,\n) -> CapsuleArray<Option<LogRetrievalResponse>> {\n let log_retrieval_requests =\n CapsuleArray::at(contract_address, LOG_RETRIEVAL_REQUESTS_ARRAY_BASE_SLOT);\n\n // We create a LogRetrievalRequest for each PendingPartialNote in the CapsuleArray. Because we need the indices in\n // the request array to match the indices in the partial note array, we can't use CapsuleArray::for_each, as that\n // function has arbitrary iteration order. Instead, we manually iterate the array from the beginning and push into\n // the requests array, which we expect to be empty.\n let mut i = 0;\n let pending_partial_notes_count = pending_partial_notes.len();\n while i < pending_partial_notes_count {\n let pending_partial_note = pending_partial_notes.get(i);\n log_retrieval_requests.push(\n LogRetrievalRequest {\n contract_address,\n unsiloed_tag: pending_partial_note.note_completion_log_tag,\n },\n );\n i += 1;\n }\n\n oracle::message_processing::bulk_retrieve_logs(\n contract_address,\n LOG_RETRIEVAL_REQUESTS_ARRAY_BASE_SLOT,\n LOG_RETRIEVAL_RESPONSES_ARRAY_BASE_SLOT,\n );\n\n CapsuleArray::at(contract_address, LOG_RETRIEVAL_RESPONSES_ARRAY_BASE_SLOT)\n}\n"
|
|
4453
4453
|
},
|
|
4454
4454
|
"167": {
|
|
4455
4455
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/oracle/call_private_function.nr",
|
|
@@ -4485,7 +4485,7 @@
|
|
|
4485
4485
|
},
|
|
4486
4486
|
"182": {
|
|
4487
4487
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/oracle/notes.nr",
|
|
4488
|
-
"source": "use crate::note::{note_interface::NoteType, retrieved_note::RetrievedNote};\n\nuse dep::protocol_types::{address::AztecAddress, traits::Packable};\n\n/// Notifies the simulator that a note has been created, so that it can be returned in future read requests in the same\n/// transaction. This note should only be added to the non-volatile database if found in an actual block.\npub fn notify_created_note<let N: u32>(\n storage_slot: Field,\n randomness: Field,\n note_type_id: Field,\n packed_note: [Field; N],\n note_hash: Field,\n counter: u32,\n) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe\n // to call.\n unsafe {\n notify_created_note_oracle_wrapper(\n storage_slot,\n randomness,\n note_type_id,\n packed_note,\n note_hash,\n counter,\n )\n };\n}\n\n/// Notifies the simulator that a note has been nullified, so that it is no longer returned in future read requests in\n/// the same transaction. This note should only be removed to the non-volatile database if its nullifier is found in an\n/// actual block.\npub fn notify_nullified_note(nullifier: Field, note_hash: Field, counter: u32) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe to\n // call.\n unsafe { notify_nullified_note_oracle_wrapper(nullifier, note_hash, counter) };\n}\n\n/// Notifies the simulator that a non-note nullifier has been created, so that it can be used for note nonces.\npub fn notify_created_nullifier(nullifier: Field) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe to\n // call.\n unsafe { notify_created_nullifier_oracle_wrapper(nullifier) };\n}\n\nunconstrained fn notify_created_note_oracle_wrapper<let N: u32>(\n storage_slot: Field,\n randomness: Field,\n note_type_id: Field,\n packed_note: [Field; N],\n note_hash: Field,\n counter: u32,\n) {\n notify_created_note_oracle(\n storage_slot,\n randomness,\n note_type_id,\n packed_note,\n note_hash,\n counter,\n );\n}\n\n#[oracle(privateNotifyCreatedNote)]\nunconstrained fn notify_created_note_oracle<let N: u32>(\n _storage_slot: Field,\n _randomness: Field,\n _note_type_id: Field,\n _packed_note: [Field; N],\n _note_hash: Field,\n _counter: u32,\n) {}\n\nunconstrained fn notify_nullified_note_oracle_wrapper(\n nullifier: Field,\n note_hash: Field,\n counter: u32,\n) {\n notify_nullified_note_oracle(nullifier, note_hash, counter);\n}\n\n#[oracle(privateNotifyNullifiedNote)]\nunconstrained fn notify_nullified_note_oracle(_nullifier: Field, _note_hash: Field, _counter: u32) {}\n\nunconstrained fn notify_created_nullifier_oracle_wrapper(nullifier: Field) {\n notify_created_nullifier_oracle(nullifier);\n}\n\n#[oracle(privateNotifyCreatedNullifier)]\nunconstrained fn notify_created_nullifier_oracle(_nullifier: Field) {}\n\n#[oracle(utilityGetNotes)]\nunconstrained fn get_notes_oracle<Note, let M: u32, let MaxNotes: u32>(\n _storage_slot: Field,\n _num_selects: u8,\n _select_by_indexes: [u8; M],\n _select_by_offsets: [u8; M],\n _select_by_lengths: [u8; M],\n _select_values: [Field; M],\n _select_comparators: [u8; M],\n _sort_by_indexes: [u8; M],\n _sort_by_offsets: [u8; M],\n _sort_by_lengths: [u8; M],\n _sort_order: [u8; M],\n _limit: u32,\n _offset: u32,\n _status: u8,\n // This is always set to MAX_NOTES. We need to pass it to TS in order to correctly construct the BoundedVec\n _max_notes: u32,\n // This is always set to <RetrievedNote<Note> as Packable>::N. We need to pass it to TS in order to be able to\n // correctly construct the BoundedVec there.\n _packed_retrieved_note_length: u32,\n) -> BoundedVec<[Field; <RetrievedNote<Note> as Packable>::N], MaxNotes>\nwhere\n // TODO(https://github.com/noir-lang/noir/issues/9399): `Note: Packable` should work here.\n RetrievedNote<Note>: Packable,\n{}\n\npub unconstrained fn get_notes<Note, let M: u32, let MaxNotes: u32>(\n storage_slot: Field,\n num_selects: u8,\n select_by_indexes: [u8; M],\n select_by_offsets: [u8; M],\n select_by_lengths: [u8; M],\n select_values: [Field; M],\n select_comparators: [u8; M],\n sort_by_indexes: [u8; M],\n sort_by_offsets: [u8; M],\n sort_by_lengths: [u8; M],\n sort_order: [u8; M],\n limit: u32,\n offset: u32,\n status: u8,\n) -> [Option<RetrievedNote<Note>>; MaxNotes]\nwhere\n Note: NoteType + Packable,\n{\n let packed_retrieved_notes: BoundedVec<[Field; <RetrievedNote<Note> as Packable>::N], MaxNotes>\n = get_notes_oracle::<Note, M, MaxNotes>(\n storage_slot,\n num_selects,\n select_by_indexes,\n select_by_offsets,\n select_by_lengths,\n select_values,\n select_comparators,\n sort_by_indexes,\n sort_by_offsets,\n sort_by_lengths,\n sort_order,\n limit,\n offset,\n status,\n MaxNotes,\n <RetrievedNote<Note> as Packable>::N,\n );\n\n let mut notes = BoundedVec::<_, MaxNotes>::new();\n for i in 0..packed_retrieved_notes.len() {\n let retrieved_note = RetrievedNote::unpack(packed_retrieved_notes.get(i));\n notes.push(retrieved_note);\n }\n\n // At last we convert the bounded vector to an array of options. We do this because that is what the filter\n // function needs to have on the output and we've decided to have the same type on the input and output of\n // the filter and preprocessor functions.\n //\n // We have decided to have the same type on the input and output of the filter and preprocessor functions because\n // it allows us to chain multiple filters and preprocessors together.\n //\n // So why do we want the array of options on the output of the filter function?\n //\n // Filter returns an array of options rather than a BoundedVec for performance reasons. Using an array of options\n // allows setting values at known indices in the output array which is much more efficient than pushing to a\n // BoundedVec where the write position depends on previous iterations. The array can then be efficiently converted\n // to a BoundedVec using utils/array/collapse.nr::collapse function from Aztec.nr. This avoids expensive dynamic\n // memory access patterns that would be required when building up a BoundedVec incrementally. For preprocessor\n // functions we could use BoundedVec return value as there the optimization does not matter since it is applied in\n // an unconstrained context. We, however, use the same return value type to be able to use the same function as\n // both a preprocessor and a filter.\n let mut notes_array = [Option::none(); MaxNotes];\n for i in 0..notes.len() {\n if i < notes.len() {\n notes_array[i] = Option::some(notes.get_unchecked(i));\n }\n }\n\n notes_array\n}\n\n/// Returns true if the nullifier exists. Note that a `true` value can be constrained by proving existence of the\n/// nullifier, but a `false` value should not be relied upon since other transactions may emit this nullifier before the\n/// current transaction is included in a block. While this might seem of little use at first, certain design patterns\n/// benefit from this abstraction (see e.g. `PrivateMutable`).\npub unconstrained fn check_nullifier_exists(inner_nullifier: Field) -> bool {\n check_nullifier_exists_oracle(inner_nullifier)\n}\n\n#[oracle(utilityCheckNullifierExists)]\nunconstrained fn check_nullifier_exists_oracle(_inner_nullifier: Field) -> bool {}\n\n// TODO: Oracles below are generic private log oracles and are not specific to notes. Move them somewhere else.\n\n/// Returns the next app tag for a given sender and recipient pair.\n///\n/// This also notifies the simulator that a tag has been used in a note, and to therefore increment the\n/// associated index so that future notes get a different tag and can be discovered by the recipient.\n/// This change should only be persisted in a non-volatile database if the tagged log is found in an actual block -\n/// otherwise e.g. a reverting transaction can cause the sender to accidentally skip indices and later produce notes\n/// that are not found by the recipient.\npub unconstrained fn get_next_app_tag_as_sender(\n sender: AztecAddress,\n recipient: AztecAddress,\n) -> Field {\n get_next_app_tag_as_sender_oracle(sender, recipient)\n}\n\n#[oracle(privateGetNextAppTagAsSender)]\nunconstrained fn get_next_app_tag_as_sender_oracle(\n _sender: AztecAddress,\n _recipient: AztecAddress,\n) -> Field {}\n\n/// Gets the sender for tags.\n///\n/// This unconstrained value is used as the sender when computing an unconstrained shared secret\n/// for a tag in order to emit a log. Constrained tagging should not use this as there is no\n/// guarantee that the recipient knows about the sender, and hence about the shared secret.\n///\n/// The value persists through nested calls, meaning all calls down the stack will use the same\n/// 'senderForTags' value (unless it is replaced).\npub unconstrained fn get_sender_for_tags() -> Option<AztecAddress> {\n get_sender_for_tags_oracle()\n}\n\n#[oracle(privateGetSenderForTags)]\nunconstrained fn get_sender_for_tags_oracle() -> Option<AztecAddress> {}\n\n/// Sets the sender for tags.\n///\n/// This unconstrained value is used as the sender when computing an unconstrained shared secret\n/// for a tag in order to emit a log. Constrained tagging should not use this as there is no\n/// guarantee that the recipient knows about the sender, and hence about the shared secret.\n///\n/// Account contracts typically set this value before calling other contracts. The value persists\n/// through nested calls, meaning all calls down the stack will use the same 'senderForTags'\n/// value (unless it is replaced by another call to this setter).\npub unconstrained fn set_sender_for_tags(sender_for_tags: AztecAddress) {\n set_sender_for_tags_oracle(sender_for_tags);\n}\n\n#[oracle(privateSetSenderForTags)]\nunconstrained fn set_sender_for_tags_oracle(_sender_for_tags: AztecAddress) {}\n"
|
|
4488
|
+
"source": "use crate::note::{note_interface::NoteType, retrieved_note::RetrievedNote};\n\nuse dep::protocol_types::{address::AztecAddress, traits::Packable};\n\n/// Notifies the simulator that a note has been created, so that it can be returned in future read requests in the same\n/// transaction. This note should only be added to the non-volatile database if found in an actual block.\npub fn notify_created_note<let N: u32>(\n owner: AztecAddress,\n storage_slot: Field,\n randomness: Field,\n note_type_id: Field,\n packed_note: [Field; N],\n note_hash: Field,\n counter: u32,\n) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe\n // to call.\n unsafe {\n notify_created_note_oracle_wrapper(\n owner,\n storage_slot,\n randomness,\n note_type_id,\n packed_note,\n note_hash,\n counter,\n )\n };\n}\n\n/// Notifies the simulator that a note has been nullified, so that it is no longer returned in future read requests in\n/// the same transaction. This note should only be removed to the non-volatile database if its nullifier is found in an\n/// actual block.\npub fn notify_nullified_note(nullifier: Field, note_hash: Field, counter: u32) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe to\n // call.\n unsafe { notify_nullified_note_oracle_wrapper(nullifier, note_hash, counter) };\n}\n\n/// Notifies the simulator that a non-note nullifier has been created, so that it can be used for note nonces.\npub fn notify_created_nullifier(nullifier: Field) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe to\n // call.\n unsafe { notify_created_nullifier_oracle_wrapper(nullifier) };\n}\n\nunconstrained fn notify_created_note_oracle_wrapper<let N: u32>(\n owner: AztecAddress,\n storage_slot: Field,\n randomness: Field,\n note_type_id: Field,\n packed_note: [Field; N],\n note_hash: Field,\n counter: u32,\n) {\n notify_created_note_oracle(\n owner,\n storage_slot,\n randomness,\n note_type_id,\n packed_note,\n note_hash,\n counter,\n );\n}\n\n#[oracle(privateNotifyCreatedNote)]\nunconstrained fn notify_created_note_oracle<let N: u32>(\n _owner: AztecAddress,\n _storage_slot: Field,\n _randomness: Field,\n _note_type_id: Field,\n _packed_note: [Field; N],\n _note_hash: Field,\n _counter: u32,\n) {}\n\nunconstrained fn notify_nullified_note_oracle_wrapper(\n nullifier: Field,\n note_hash: Field,\n counter: u32,\n) {\n notify_nullified_note_oracle(nullifier, note_hash, counter);\n}\n\n#[oracle(privateNotifyNullifiedNote)]\nunconstrained fn notify_nullified_note_oracle(_nullifier: Field, _note_hash: Field, _counter: u32) {}\n\nunconstrained fn notify_created_nullifier_oracle_wrapper(nullifier: Field) {\n notify_created_nullifier_oracle(nullifier);\n}\n\n#[oracle(privateNotifyCreatedNullifier)]\nunconstrained fn notify_created_nullifier_oracle(_nullifier: Field) {}\n\n#[oracle(utilityGetNotes)]\nunconstrained fn get_notes_oracle<Note, let M: u32, let MaxNotes: u32>(\n _owner: AztecAddress,\n _storage_slot: Field,\n _num_selects: u8,\n _select_by_indexes: [u8; M],\n _select_by_offsets: [u8; M],\n _select_by_lengths: [u8; M],\n _select_values: [Field; M],\n _select_comparators: [u8; M],\n _sort_by_indexes: [u8; M],\n _sort_by_offsets: [u8; M],\n _sort_by_lengths: [u8; M],\n _sort_order: [u8; M],\n _limit: u32,\n _offset: u32,\n _status: u8,\n // This is always set to MAX_NOTES. We need to pass it to TS in order to correctly construct the BoundedVec\n _max_notes: u32,\n // This is always set to <RetrievedNote<Note> as Packable>::N. We need to pass it to TS in order to be able to\n // correctly construct the BoundedVec there.\n _packed_retrieved_note_length: u32,\n) -> BoundedVec<[Field; <RetrievedNote<Note> as Packable>::N], MaxNotes>\nwhere\n // TODO(https://github.com/noir-lang/noir/issues/9399): `Note: Packable` should work here.\n RetrievedNote<Note>: Packable,\n{}\n\npub unconstrained fn get_notes<Note, let M: u32, let MaxNotes: u32>(\n owner: AztecAddress,\n storage_slot: Field,\n num_selects: u8,\n select_by_indexes: [u8; M],\n select_by_offsets: [u8; M],\n select_by_lengths: [u8; M],\n select_values: [Field; M],\n select_comparators: [u8; M],\n sort_by_indexes: [u8; M],\n sort_by_offsets: [u8; M],\n sort_by_lengths: [u8; M],\n sort_order: [u8; M],\n limit: u32,\n offset: u32,\n status: u8,\n) -> [Option<RetrievedNote<Note>>; MaxNotes]\nwhere\n Note: NoteType + Packable,\n{\n let packed_retrieved_notes: BoundedVec<[Field; <RetrievedNote<Note> as Packable>::N], MaxNotes>\n = get_notes_oracle::<Note, M, MaxNotes>(\n owner,\n storage_slot,\n num_selects,\n select_by_indexes,\n select_by_offsets,\n select_by_lengths,\n select_values,\n select_comparators,\n sort_by_indexes,\n sort_by_offsets,\n sort_by_lengths,\n sort_order,\n limit,\n offset,\n status,\n MaxNotes,\n <RetrievedNote<Note> as Packable>::N,\n );\n\n let mut notes = BoundedVec::<_, MaxNotes>::new();\n for i in 0..packed_retrieved_notes.len() {\n let retrieved_note = RetrievedNote::unpack(packed_retrieved_notes.get(i));\n notes.push(retrieved_note);\n }\n\n // At last we convert the bounded vector to an array of options. We do this because that is what the filter\n // function needs to have on the output and we've decided to have the same type on the input and output of\n // the filter and preprocessor functions.\n //\n // We have decided to have the same type on the input and output of the filter and preprocessor functions because\n // it allows us to chain multiple filters and preprocessors together.\n //\n // So why do we want the array of options on the output of the filter function?\n //\n // Filter returns an array of options rather than a BoundedVec for performance reasons. Using an array of options\n // allows setting values at known indices in the output array which is much more efficient than pushing to a\n // BoundedVec where the write position depends on previous iterations. The array can then be efficiently converted\n // to a BoundedVec using utils/array/collapse.nr::collapse function from Aztec.nr. This avoids expensive dynamic\n // memory access patterns that would be required when building up a BoundedVec incrementally. For preprocessor\n // functions we could use BoundedVec return value as there the optimization does not matter since it is applied in\n // an unconstrained context. We, however, use the same return value type to be able to use the same function as\n // both a preprocessor and a filter.\n let mut notes_array = [Option::none(); MaxNotes];\n for i in 0..notes.len() {\n if i < notes.len() {\n notes_array[i] = Option::some(notes.get_unchecked(i));\n }\n }\n\n notes_array\n}\n\n/// Returns true if the nullifier exists. Note that a `true` value can be constrained by proving existence of the\n/// nullifier, but a `false` value should not be relied upon since other transactions may emit this nullifier before the\n/// current transaction is included in a block. While this might seem of little use at first, certain design patterns\n/// benefit from this abstraction (see e.g. `PrivateMutable`).\npub unconstrained fn check_nullifier_exists(inner_nullifier: Field) -> bool {\n check_nullifier_exists_oracle(inner_nullifier)\n}\n\n#[oracle(utilityCheckNullifierExists)]\nunconstrained fn check_nullifier_exists_oracle(_inner_nullifier: Field) -> bool {}\n\n// TODO: Oracles below are generic private log oracles and are not specific to notes. Move them somewhere else.\n\n/// Returns the next app tag for a given sender and recipient pair.\n///\n/// This also notifies the simulator that a tag has been used in a note, and to therefore increment the\n/// associated index so that future notes get a different tag and can be discovered by the recipient.\n/// This change should only be persisted in a non-volatile database if the tagged log is found in an actual block -\n/// otherwise e.g. a reverting transaction can cause the sender to accidentally skip indices and later produce notes\n/// that are not found by the recipient.\npub unconstrained fn get_next_app_tag_as_sender(\n sender: AztecAddress,\n recipient: AztecAddress,\n) -> Field {\n get_next_app_tag_as_sender_oracle(sender, recipient)\n}\n\n#[oracle(privateGetNextAppTagAsSender)]\nunconstrained fn get_next_app_tag_as_sender_oracle(\n _sender: AztecAddress,\n _recipient: AztecAddress,\n) -> Field {}\n\n/// Gets the sender for tags.\n///\n/// This unconstrained value is used as the sender when computing an unconstrained shared secret\n/// for a tag in order to emit a log. Constrained tagging should not use this as there is no\n/// guarantee that the recipient knows about the sender, and hence about the shared secret.\n///\n/// The value persists through nested calls, meaning all calls down the stack will use the same\n/// 'senderForTags' value (unless it is replaced).\npub unconstrained fn get_sender_for_tags() -> Option<AztecAddress> {\n get_sender_for_tags_oracle()\n}\n\n#[oracle(privateGetSenderForTags)]\nunconstrained fn get_sender_for_tags_oracle() -> Option<AztecAddress> {}\n\n/// Sets the sender for tags.\n///\n/// This unconstrained value is used as the sender when computing an unconstrained shared secret\n/// for a tag in order to emit a log. Constrained tagging should not use this as there is no\n/// guarantee that the recipient knows about the sender, and hence about the shared secret.\n///\n/// Account contracts typically set this value before calling other contracts. The value persists\n/// through nested calls, meaning all calls down the stack will use the same 'senderForTags'\n/// value (unless it is replaced by another call to this setter).\npub unconstrained fn set_sender_for_tags(sender_for_tags: AztecAddress) {\n set_sender_for_tags_oracle(sender_for_tags);\n}\n\n#[oracle(privateSetSenderForTags)]\nunconstrained fn set_sender_for_tags_oracle(_sender_for_tags: AztecAddress) {}\n"
|
|
4489
4489
|
},
|
|
4490
4490
|
"185": {
|
|
4491
4491
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/oracle/shared_secret.nr",
|
|
@@ -4555,19 +4555,19 @@
|
|
|
4555
4555
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/poseidon2.nr",
|
|
4556
4556
|
"source": "use crate::constants::TWO_POW_64;\nuse crate::traits::{Deserialize, Serialize};\nuse std::meta::derive;\n// NB: This is a clone of noir/noir-repo/noir_stdlib/src/hash/poseidon2.nr\n// It exists as we sometimes need to perform custom absorption, but the stdlib version\n// has a private absorb() method (it's also designed to just be a hasher)\n// Can be removed when standalone noir poseidon lib exists: See noir#6679\n\ncomptime global RATE: u32 = 3;\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct Poseidon2Sponge {\n pub cache: [Field; 3],\n pub state: [Field; 4],\n pub cache_size: u32,\n pub squeeze_mode: bool, // 0 => absorb, 1 => squeeze\n}\n\nimpl Poseidon2Sponge {\n #[no_predicates]\n pub fn hash<let N: u32>(input: [Field; N], message_size: u32) -> Field {\n Poseidon2Sponge::hash_internal(input, message_size, message_size != N)\n }\n\n pub(crate) fn new(iv: Field) -> Poseidon2Sponge {\n let mut result =\n Poseidon2Sponge { cache: [0; 3], state: [0; 4], cache_size: 0, squeeze_mode: false };\n result.state[RATE] = iv;\n result\n }\n\n fn perform_duplex(&mut self) {\n // add the cache into sponge state\n for i in 0..RATE {\n // We effectively zero-pad the cache by only adding to the state\n // cache that is less than the specified `cache_size`\n if i < self.cache_size {\n self.state[i] += self.cache[i];\n }\n }\n self.state = std::hash::poseidon2_permutation(self.state, 4);\n }\n\n pub fn absorb(&mut self, input: Field) {\n assert(!self.squeeze_mode);\n if self.cache_size == RATE {\n // If we're absorbing, and the cache is full, apply the sponge permutation to compress the cache\n self.perform_duplex();\n self.cache[0] = input;\n self.cache_size = 1;\n } else {\n // If we're absorbing, and the cache is not full, add the input into the cache\n self.cache[self.cache_size] = input;\n self.cache_size += 1;\n }\n }\n\n pub fn squeeze(&mut self) -> Field {\n assert(!self.squeeze_mode);\n // If we're in absorb mode, apply sponge permutation to compress the cache.\n self.perform_duplex();\n self.squeeze_mode = true;\n\n // Pop one item off the top of the permutation and return it.\n self.state[0]\n }\n\n fn hash_internal<let N: u32>(\n input: [Field; N],\n in_len: u32,\n is_variable_length: bool,\n ) -> Field {\n let iv: Field = (in_len as Field) * TWO_POW_64;\n let mut sponge = Poseidon2Sponge::new(iv);\n for i in 0..input.len() {\n if i < in_len {\n sponge.absorb(input[i]);\n }\n }\n\n // In the case where the hash preimage is variable-length, we append `1` to the end of the input, to distinguish\n // from fixed-length hashes. (the combination of this additional field element + the hash IV ensures\n // fixed-length and variable-length hashes do not collide)\n if is_variable_length {\n sponge.absorb(1);\n }\n sponge.squeeze()\n }\n}\n"
|
|
4557
4557
|
},
|
|
4558
|
-
"
|
|
4558
|
+
"376": {
|
|
4559
4559
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/traits.nr",
|
|
4560
4560
|
"source": "use crate::meta::{derive_deserialize, derive_packable, derive_serialize};\nuse crate::utils::field::field_from_bytes;\n\n// Trait: is_empty\n//\n// The general is_empty trait checks if a data type is is empty,\n// and it defines empty for the basic data types as 0.\n//\n// If a Field is equal to zero, then it is regarded as zero.\n// We will go with this definition for now, however it can be problematic\n// if a value can actually be zero. In a future refactor, we can\n// use the optional type for safety. Doing it now would lead to a worse devex\n// and would make it harder to sync up with the cpp code.\n// Preferred over Default trait to convey intent, as default doesn't necessarily mean empty.\npub trait Empty: Eq {\n fn empty() -> Self;\n\n fn is_empty(self) -> bool {\n self.eq(Self::empty())\n }\n\n // Requires this Noir fix: https://github.com/noir-lang/noir/issues/9002\n // fn assert_not_empty<let U: u32>(self, msg: str<U>) { // This msg version was failing with weird compiler errors.\n // // We provide a default impl but it's likely inefficient.\n // // The reason we include this function is because there's a lot of\n // // opportunity for optimisation on a per-struct basis.\n // // You only need to show one element is not empty to know that the whole thing\n // // is not empty.\n // // If you know an element of your struct which should always be nonempty,\n // // you can write an impl that solely checks that that element is nonempty.\n // assert(!self.is_empty(), msg);\n // }\n\n // This default impl is overwritten by types like arrays, because there's a much\n // more efficient approach.\n fn assert_empty<let S: u32>(self, msg: str<S>) {\n assert(self.is_empty(), msg);\n }\n}\n\nimpl Empty for Field {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\n\nimpl Empty for bool {\n #[inline_always]\n fn empty() -> Self {\n false\n }\n}\n\nimpl Empty for u1 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u8 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u16 {\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u32 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u64 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u128 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\n\nimpl<T, let N: u32> Empty for [T; N]\nwhere\n T: Empty,\n{\n #[inline_always]\n fn empty() -> Self {\n [T::empty(); N]\n }\n\n fn is_empty(self) -> bool {\n self.all(|elem| elem.is_empty())\n }\n\n fn assert_empty<let S: u32>(self, msg: str<S>) -> () {\n self.for_each(|elem| elem.assert_empty(msg))\n }\n}\n\nimpl<T> Empty for [T]\nwhere\n T: Empty,\n{\n #[inline_always]\n fn empty() -> Self {\n [T::empty()]\n }\n\n fn is_empty(self) -> bool {\n self.all(|elem| elem.is_empty())\n }\n\n fn assert_empty<let S: u32>(self, msg: str<S>) -> () {\n self.for_each(|elem| elem.assert_empty(msg))\n }\n}\nimpl<A, B> Empty for (A, B)\nwhere\n A: Empty,\n B: Empty,\n{\n #[inline_always]\n fn empty() -> Self {\n (A::empty(), B::empty())\n }\n}\n\nimpl<T> Empty for Option<T>\nwhere\n T: Eq,\n{\n #[inline_always]\n fn empty() -> Self {\n Option::none()\n }\n}\n\n// pub fn is_empty<T>(item: T) -> bool\n// where\n// T: Empty,\n// {\n// item.eq(T::empty())\n// }\n\n// pub fn is_empty_array<T, let N: u32>(array: [T; N]) -> bool\n// where\n// T: Empty,\n// {\n// array.all(|elem| is_empty(elem))\n// }\n\n// pub fn assert_empty<T>(item: T) -> ()\n// where\n// T: Empty,\n// {\n// assert(item.eq(T::empty()))\n// }\n\n// pub fn assert_empty_array<T, let N: u32>(array: [T; N]) -> ()\n// where\n// T: Empty,\n// {\n// // A cheaper option than `is_empty_array` for if you don't need to gracefully\n// // handle a bool result.\n// // Avoids the `&` operator of `is_empty_array`'s `.all()` call.\n// for i in 0..N {\n// assert(is_empty(array[i]));\n// }\n// }\n\npub trait Hash {\n fn hash(self) -> Field;\n}\n\npub trait ToField {\n fn to_field(self) -> Field;\n}\n\nimpl ToField for Field {\n #[inline_always]\n fn to_field(self) -> Field {\n self\n }\n}\n\nimpl ToField for bool {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u1 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u8 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u16 {\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u32 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u64 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u128 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl<let N: u32> ToField for str<N> {\n #[inline_always]\n fn to_field(self) -> Field {\n assert(N < 32, \"String doesn't fit in a field, consider using Serialize instead\");\n field_from_bytes(self.as_bytes(), true)\n }\n}\n\npub trait FromField {\n fn from_field(value: Field) -> Self;\n}\n\nimpl FromField for Field {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value\n }\n}\n\nimpl FromField for bool {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value != 0\n }\n}\nimpl FromField for u1 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u1\n }\n}\nimpl FromField for u8 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u8\n }\n}\nimpl FromField for u16 {\n fn from_field(value: Field) -> Self {\n value as u16\n }\n}\nimpl FromField for u32 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u32\n }\n}\nimpl FromField for u64 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u64\n }\n}\nimpl FromField for u128 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u128\n }\n}\n\n// docs:start:serialize\n/// Trait for serializing Noir types into arrays of Fields.\n///\n/// An implementation of the Serialize trait has to follow Noir's intrinsic serialization (each member of a struct\n/// converted directly into one or more Fields without any packing or compression). This trait (and Deserialize) are\n/// typically used to communicate between Noir and TypeScript (via oracles and function arguments).\n///\n/// # On Following Noir's Intrinsic Serialization\n/// When calling a Noir function from TypeScript (TS), first the function arguments are serialized into an array\n/// of fields. This array is then included in the initial witness. Noir's intrinsic serialization is then used\n/// to deserialize the arguments from the witness. When the same Noir function is called from Noir this Serialize trait\n/// is used instead of the serialization in TS. For this reason we need to have a match between TS serialization,\n/// Noir's intrinsic serialization and the implementation of this trait. If there is a mismatch, the function calls\n/// fail with an arguments hash mismatch error message.\n///\n/// # Associated Constants\n/// * `N` - The length of the output Field array, known at compile time\n///\n/// # Example\n/// ```\n/// impl<let N: u32> Serialize for str<N> {\n/// let N: u32 = N;\n///\n/// fn serialize(self) -> [Field; Self::N] {\n/// let bytes = self.as_bytes();\n/// let mut fields = [0; Self::N];\n/// for i in 0..bytes.len() {\n/// fields[i] = bytes[i] as Field; // Each byte gets its own Field\n/// }\n/// fields\n/// }\n/// }\n/// ```\n#[derive_via(derive_serialize)]\npub trait Serialize {\n let N: u32;\n\n fn serialize(self) -> [Field; N];\n}\n// docs:end:serialize\n\nimpl<let M: u32> Serialize for str<M> {\n let N: u32 = M;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let bytes = self.as_bytes();\n let mut fields = [0; Self::N];\n for i in 0..bytes.len() {\n fields[i] = bytes[i] as Field;\n }\n fields\n }\n}\n\n/// Implementation of Deserialize for BoundedVec.\n///\n/// This implementation deserializes a BoundedVec from an array of Fields. The array contains:\n/// 1. The serialized items, each taking up T::N Fields\n/// 2. The length of the BoundedVec as the last Field\n///\n/// # Type Parameters\n/// * `T` - The type of items stored in the BoundedVec, must implement Deserialize\n/// * `M` - The maximum length of the BoundedVec\n///\n/// # Fields Array Layout\n/// [item1_field1, item1_field2, ..., item2_field1, item2_field2, ..., length]\n/// Where:\n/// - itemN_fieldM: The M-th Field of the N-th item (T::N Fields per item)\n/// - length: The number of items in the BoundedVec (1 Field)\n///\n/// Total length N = T::N * M + 1, where:\n/// - T::N is the number of Fields needed to deserialize one item\n/// - M is the maximum length of the BoundedVec\n/// - +1 is for storing the length\n///\n/// # Note\n/// Not deriving this because it's not supported to call derive_deserialize on a \"remote\" struct (and it will never\n/// be supported).\nimpl<T, let M: u32> Deserialize for BoundedVec<T, M>\nwhere\n T: Deserialize,\n{\n let N: u32 = <T as Deserialize>::N * M + 1;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n let mut new_bounded_vec: BoundedVec<T, M> = BoundedVec::new();\n\n // Length is stored in the last field as we need to match intrinsic Noir serialization and the `len` struct\n // field is after `storage` struct field (see `bounded_vec.nr` in noir-stdlib)\n let len = fields[<T as Deserialize>::N * M] as u32;\n\n for i in 0..len {\n let mut nested_fields = [0; <T as Deserialize>::N];\n for j in 0..<T as Deserialize>::N {\n nested_fields[j] = fields[i * <T as Deserialize>::N + j];\n }\n\n let item = T::deserialize(nested_fields);\n new_bounded_vec.push(item);\n }\n\n new_bounded_vec\n }\n}\n\n// This may cause issues if used as program input, because noir disallows empty arrays for program input.\n// I think this is okay because I don't foresee a unit type being used as input. But leaving this comment as a hint\n// if someone does run into this in the future.\nimpl Deserialize for () {\n let N: u32 = 0;\n\n fn deserialize(_fields: [Field; Self::N]) -> Self {\n ()\n }\n}\n\n// Note: Not deriving this because it's not supported to call derive_serialize on a \"remote\" struct (and it will never\n// be supported).\nimpl<T, let M: u32> Serialize for BoundedVec<T, M>\nwhere\n T: Serialize,\n{\n let N: u32 = <T as Serialize>::N * M + 1; // +1 for the length of the BoundedVec\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let mut fields = [0; Self::N];\n\n let storage = self.storage();\n\n for i in 0..M {\n let serialized_item = storage[i].serialize();\n\n for j in 0..<T as Serialize>::N {\n fields[i * <T as Serialize>::N + j] = serialized_item[j];\n }\n }\n\n // Length is stored in the last field as we need to match intrinsic Noir serialization and the `len` struct\n // field is after `storage` struct field (see `bounded_vec.nr` in noir-stdlib)\n fields[<T as Serialize>::N * M] = self.len() as Field;\n\n fields\n }\n}\n\n// docs:start:deserialize\n/// Trait for deserializing Noir types from arrays of Fields.\n///\n/// An implementation of the Deserialize trait has to follow Noir's intrinsic serialization (each member of a struct\n/// converted directly into one or more Fields without any packing or compression). This trait is typically used when\n/// deserializing return values from function calls in Noir. Since the same function could be called from TypeScript\n/// (TS), in which case the TS deserialization would get used, we need to have a match between the 2.\n///\n/// # Associated Constants\n/// * `N` - The length of the input Field array, known at compile time\n///\n/// # Example\n/// ```\n/// impl<let M: u32> Deserialize for str<M> {\n/// let N: u32 = M;\n///\n/// #[inline_always]\n/// fn deserialize(fields: [Field; Self::N]) -> Self {\n/// str::<Self::N>::from(fields.map(|value| value as u8))\n/// }\n/// }\n/// ```\n#[derive_via(derive_deserialize)]\npub trait Deserialize {\n let N: u32;\n\n fn deserialize(fields: [Field; N]) -> Self;\n}\n// docs:end:deserialize\n\nimpl<let M: u32> Deserialize for str<M> {\n let N: u32 = M;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n str::<Self::N>::from(fields.map(|value| value as u8))\n }\n}\n\n/// Trait for efficiently packing and unpacking Noir types into and from arrays of Fields.\n///\n/// The `Packable` trait allows types to be serialized and deserialized with a focus on minimizing the size of\n/// the resulting Field array. This trait is used when storage efficiency is critical (e.g. when storing data\n/// in the contract's public storage).\n///\n/// # Associated Constants\n/// * `N` - The length of the Field array, known at compile time\n#[derive_via(derive_packable)]\npub trait Packable {\n let N: u32;\n\n /// Packs the current value into a compact array of `Field` elements.\n fn pack(self) -> [Field; N];\n\n /// Unpacks a compact array of `Field` elements into the original value.\n fn unpack(fields: [Field; N]) -> Self;\n}\n\n#[test]\nunconstrained fn bounded_vec_serialization() {\n // Test empty BoundedVec\n let empty_vec: BoundedVec<Field, 3> = BoundedVec::from_array([]);\n let serialized = empty_vec.serialize();\n let deserialized = BoundedVec::<Field, 3>::deserialize(serialized);\n assert_eq(empty_vec, deserialized);\n assert_eq(deserialized.len(), 0);\n\n // Test partially filled BoundedVec\n let partial_vec: BoundedVec<[u32; 2], 3> = BoundedVec::from_array([[1, 2]]);\n let serialized = partial_vec.serialize();\n let deserialized = BoundedVec::<[u32; 2], 3>::deserialize(serialized);\n assert_eq(partial_vec, deserialized);\n assert_eq(deserialized.len(), 1);\n assert_eq(deserialized.get(0), [1, 2]);\n\n // Test full BoundedVec\n let full_vec: BoundedVec<[u32; 2], 3> = BoundedVec::from_array([[1, 2], [3, 4], [5, 6]]);\n let serialized = full_vec.serialize();\n let deserialized = BoundedVec::<[u32; 2], 3>::deserialize(serialized);\n assert_eq(full_vec, deserialized);\n assert_eq(deserialized.len(), 3);\n assert_eq(deserialized.get(0), [1, 2]);\n assert_eq(deserialized.get(1), [3, 4]);\n assert_eq(deserialized.get(2), [5, 6]);\n}\n"
|
|
4561
4561
|
},
|
|
4562
|
-
"
|
|
4562
|
+
"379": {
|
|
4563
4563
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/type_serialization.nr",
|
|
4564
4564
|
"source": "use crate::traits::{Deserialize, Serialize};\n\nglobal U1_SERIALIZED_LEN: u32 = 1;\nglobal BOOL_SERIALIZED_LEN: u32 = 1;\nglobal U8_SERIALIZED_LEN: u32 = 1;\nglobal U16_SERIALIZED_LEN: u32 = 1;\nglobal U32_SERIALIZED_LEN: u32 = 1;\nglobal U64_SERIALIZED_LEN: u32 = 1;\nglobal U128_SERIALIZED_LEN: u32 = 1;\nglobal FIELD_SERIALIZED_LEN: u32 = 1;\nglobal I8_SERIALIZED_LEN: u32 = 1;\nglobal I16_SERIALIZED_LEN: u32 = 1;\nglobal I32_SERIALIZED_LEN: u32 = 1;\nglobal I64_SERIALIZED_LEN: u32 = 1;\n\nimpl Serialize for bool {\n let N: u32 = BOOL_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for bool {\n let N: u32 = BOOL_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> bool {\n fields[0] != 0\n }\n}\n\nimpl Serialize for u1 {\n let N: u32 = U1_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u1 {\n let N: u32 = U1_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u1\n }\n}\n\nimpl Serialize for u8 {\n let N: u32 = U8_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u8 {\n let N: u32 = U8_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u8\n }\n}\n\nimpl Serialize for u16 {\n let N: u32 = U16_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u16 {\n let N: u32 = U16_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u16\n }\n}\n\nimpl Serialize for u32 {\n let N: u32 = U32_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u32 {\n let N: u32 = U32_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u32\n }\n}\n\nimpl Serialize for u64 {\n let N: u32 = U64_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u64 {\n let N: u32 = U64_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u64\n }\n}\n\nimpl Serialize for u128 {\n let N: u32 = U128_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u128 {\n let N: u32 = U128_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u128\n }\n}\n\nimpl Serialize for Field {\n let N: u32 = FIELD_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self]\n }\n}\n\nimpl Deserialize for Field {\n let N: u32 = FIELD_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0]\n }\n}\n\nimpl Serialize for i8 {\n let N: u32 = I8_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u8 as Field]\n }\n}\n\nimpl Deserialize for i8 {\n let N: u32 = I8_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u8 as i8\n }\n}\n\nimpl Serialize for i16 {\n let N: u32 = I16_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u16 as Field]\n }\n}\n\nimpl Deserialize for i16 {\n let N: u32 = I16_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u16 as i16\n }\n}\n\nimpl Serialize for i32 {\n let N: u32 = I32_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u32 as Field]\n }\n}\n\nimpl Deserialize for i32 {\n let N: u32 = I32_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u32 as i32\n }\n}\n\nimpl Serialize for i64 {\n let N: u32 = I64_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u64 as Field]\n }\n}\n\nimpl Deserialize for i64 {\n let N: u32 = I64_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u64 as i64\n }\n}\n\nimpl<T, let M: u32> Serialize for [T; M]\nwhere\n T: Serialize,\n{\n let N: u32 = <T as Serialize>::N * M;\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let mut result: [Field; _] = std::mem::zeroed();\n for i in 0..M {\n let serialized_t = self[i].serialize();\n for j in 0..<T as Serialize>::N {\n result[i * <T as Serialize>::N + j] = serialized_t[j];\n }\n }\n result\n }\n}\n\nimpl<T, let M: u32> Deserialize for [T; M]\nwhere\n T: Deserialize,\n{\n let N: u32 = <T as Deserialize>::N * M;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n let mut reader = crate::utils::reader::Reader::new(fields);\n let mut result: [T; M] = std::mem::zeroed();\n reader.read_struct_array::<T, <T as Deserialize>::N, M>(Deserialize::deserialize, result)\n }\n}\n\nimpl<T> Serialize for Option<T>\nwhere\n T: Serialize,\n{\n let N: u32 = <T as Serialize>::N + 1;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let mut result: [Field; Self::N] = std::mem::zeroed();\n\n result[0] = if self.is_some() { 1 } else { 0 };\n\n let value_serialized = self.unwrap_unchecked().serialize();\n for i in 0..<T as Serialize>::N {\n result[1 + i] = value_serialized[i];\n }\n\n result\n }\n}\n\nimpl<T> Deserialize for Option<T>\nwhere\n T: Deserialize,\n{\n let N: u32 = <T as Deserialize>::N + 1;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n if fields[0] == 1 {\n let mut value_fields = [0; <T as Deserialize>::N];\n for i in 0..<T as Deserialize>::N {\n value_fields[i] = fields[1 + i];\n }\n\n Option::some(T::deserialize(value_fields))\n } else {\n Option::none()\n }\n }\n}\n\nmod test {\n use crate::traits::{Deserialize, Serialize};\n\n #[test]\n fn u16_serialization() {\n let a: u16 = 10;\n assert_eq(a, u16::deserialize(a.serialize()));\n }\n\n #[test]\n fn i8_serialization() {\n let a: i8 = -10;\n assert_eq(a, i8::deserialize(a.serialize()));\n }\n\n #[test]\n fn i16_serialization() {\n let a: i16 = -10;\n assert_eq(a, i16::deserialize(a.serialize()));\n }\n\n #[test]\n fn i32_serialization() {\n let a: i32 = -10;\n assert_eq(a, i32::deserialize(a.serialize()));\n }\n\n #[test]\n fn i64_serialization() {\n let a: i64 = -10;\n assert_eq(a, i64::deserialize(a.serialize()));\n }\n\n #[test]\n fn option_field_serialization() {\n let opt_some = Option::some(5);\n assert_eq(Option::<_>::deserialize(opt_some.serialize()), opt_some);\n\n let opt_none = Option::none();\n assert_eq(Option::<Field>::deserialize(opt_none.serialize()), opt_none);\n }\n\n #[test]\n fn array_serialization() {\n let array = [1, 2, 3, 4];\n\n let serialized: [Field; 4] = array.serialize();\n let deserialized: [Field; 4] = Deserialize::deserialize(serialized);\n assert_eq(deserialized, array);\n }\n\n #[test]\n fn nested_array_serialization() {\n let nested_array = [[1, 2, 3, 4], [5, 6, 7, 8]];\n\n let serialized: [Field; 8] = nested_array.serialize();\n let deserialized: [[Field; 4]; 2] = Deserialize::deserialize(serialized);\n\n assert_eq(deserialized, nested_array);\n }\n\n #[test]\n fn option_array_serialization() {\n let opt_some = Option::some([2, 5]);\n assert_eq(Option::<_>::deserialize(opt_some.serialize()), opt_some);\n\n let opt_none = Option::none();\n assert_eq(Option::<Field>::deserialize(opt_none.serialize()), opt_none);\n }\n}\n"
|
|
4565
4565
|
},
|
|
4566
|
-
"
|
|
4566
|
+
"384": {
|
|
4567
4567
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/utils/field.nr",
|
|
4568
4568
|
"source": "global KNOWN_NON_RESIDUE: Field = 5; // This is a non-residue in Noir's native Field.\n\npub fn field_from_bytes<let N: u32>(bytes: [u8; N], big_endian: bool) -> Field {\n assert(bytes.len() < 32, \"field_from_bytes: N must be less than 32\");\n let mut as_field = 0;\n let mut offset = 1;\n for i in 0..N {\n let mut index = i;\n if big_endian {\n index = N - i - 1;\n }\n as_field += (bytes[index] as Field) * offset;\n offset *= 256;\n }\n\n as_field\n}\n\n// Convert a 32 byte array to a field element by truncating the final byte\npub fn field_from_bytes_32_trunc(bytes32: [u8; 32]) -> Field {\n // Convert it to a field element\n let mut v = 1;\n let mut high = 0 as Field;\n let mut low = 0 as Field;\n\n for i in 0..15 {\n // covers bytes 16..30 (31 is truncated and ignored)\n low = low + (bytes32[15 + 15 - i] as Field) * v;\n v = v * 256;\n // covers bytes 0..14\n high = high + (bytes32[14 - i] as Field) * v;\n }\n // covers byte 15\n low = low + (bytes32[15] as Field) * v;\n\n low + high * v\n}\n\n// TODO to radix returns u8, so we cannot use bigger radixes. It'd be ideal to use a radix of the maximum range-constrained integer noir supports\npub fn full_field_less_than(lhs: Field, rhs: Field) -> bool {\n lhs.lt(rhs)\n}\n\npub fn full_field_greater_than(lhs: Field, rhs: Field) -> bool {\n rhs.lt(lhs)\n}\n\npub fn min(f1: Field, f2: Field) -> Field {\n if f1.lt(f2) {\n f1\n } else {\n f2\n }\n}\n\nglobal C1: u32 = 28;\nglobal C3: Field = 40770029410420498293352137776570907027550720424234931066070132305055;\nglobal C5: Field = 19103219067921713944291392827692070036145651957329286315305642004821462161904;\n\npub fn pow(x: Field, y: Field) -> Field {\n let mut r = 1 as Field;\n let b: [u1; 254] = y.to_le_bits();\n\n for i in 0..254 {\n r *= r;\n r *= (b[254 - 1 - i] as Field) * x + (1 - b[254 - 1 - i] as Field);\n }\n\n r\n}\n\n/// Returns Option::some(sqrt) if there is a square root, and Option::none() if there isn't.\npub fn sqrt(x: Field) -> Option<Field> {\n // Safety: if the hint returns the square root of x, then we simply square it\n // check the result equals x. If x is not square, we return a value that\n // enables us to prove that fact (see the `else` clause below).\n let (is_sq, maybe_sqrt) = unsafe { __sqrt(x) };\n\n if is_sq {\n let sqrt = maybe_sqrt;\n validate_sqrt_hint(x, sqrt);\n Option::some(sqrt)\n } else {\n let not_sqrt_hint = maybe_sqrt;\n validate_not_sqrt_hint(x, not_sqrt_hint);\n Option::none()\n }\n}\n\n// Boolean indicating whether Field element is a square, i.e. whether there exists a y in Field s.t. x = y*y.\nunconstrained fn is_square(x: Field) -> bool {\n let v = pow(x, -1 / 2);\n v * (v - 1) == 0\n}\n\n// Tonelli-Shanks algorithm for computing the square root of a Field element.\n// Requires C1 = max{c: 2^c divides (p-1)}, where p is the order of Field\n// as well as C3 = (C2 - 1)/2, where C2 = (p-1)/(2^c1),\n// and C5 = ZETA^C2, where ZETA is a non-square element of Field.\n// These are pre-computed above as globals.\nunconstrained fn tonelli_shanks_sqrt(x: Field) -> Field {\n let mut z = pow(x, C3);\n let mut t = z * z * x;\n z *= x;\n let mut b = t;\n let mut c = C5;\n\n for i in 0..(C1 - 1) {\n for _j in 1..(C1 - i - 1) {\n b *= b;\n }\n\n z *= if b == 1 { 1 } else { c };\n\n c *= c;\n\n t *= if b == 1 { 1 } else { c };\n\n b = t;\n }\n\n z\n}\n\n// NB: this doesn't return an option, because in the case of there _not_ being a square root, we still want to return a field element that allows us to then assert in the _constrained_ sqrt function that there is no sqrt.\nunconstrained fn __sqrt(x: Field) -> (bool, Field) {\n let is_sq = is_square(x);\n if is_sq {\n let sqrt = tonelli_shanks_sqrt(x);\n (true, sqrt)\n } else {\n // Demonstrate that x is not a square (a.k.a. a \"quadratic non-residue\").\n // Facts:\n // The Legendre symbol (\"LS\") of x, is x^((p-1)/2) (mod p).\n // - If x is a square, LS(x) = 1\n // - If x is not a square, LS(x) = -1\n // - If x = 0, LS(x) = 0.\n //\n // Hence:\n // sq * sq = sq // 1 * 1 = 1\n // non-sq * non-sq = sq // -1 * -1 = 1\n // sq * non-sq = non-sq // -1 * 1 = -1\n //\n // See: https://en.wikipedia.org/wiki/Legendre_symbol\n let demo_x_not_square = x * KNOWN_NON_RESIDUE;\n let not_sqrt = tonelli_shanks_sqrt(demo_x_not_square);\n (false, not_sqrt)\n }\n}\n\nfn validate_sqrt_hint(x: Field, hint: Field) {\n assert(hint * hint == x, f\"The claimed_sqrt {hint} is not the sqrt of x {x}\");\n}\n\nfn validate_not_sqrt_hint(x: Field, hint: Field) {\n // We need this assertion, because x = 0 would pass the other assertions in this\n // function, and we don't want people to be able to prove that 0 is not square!\n assert(x != 0, \"0 has a square root; you cannot claim it is not square\");\n // Demonstrate that x is not a square (a.k.a. a \"quadratic non-residue\").\n //\n // Facts:\n // The Legendre symbol (\"LS\") of x, is x^((p-1)/2) (mod p).\n // - If x is a square, LS(x) = 1\n // - If x is not a square, LS(x) = -1\n // - If x = 0, LS(x) = 0.\n //\n // Hence:\n // 1. sq * sq = sq // 1 * 1 = 1\n // 2. non-sq * non-sq = sq // -1 * -1 = 1\n // 3. sq * non-sq = non-sq // -1 * 1 = -1\n //\n // See: https://en.wikipedia.org/wiki/Legendre_symbol\n //\n // We want to demonstrate that this below multiplication falls under bullet-point (2):\n let demo_x_not_square = x * KNOWN_NON_RESIDUE;\n // I.e. we want to demonstrate that `demo_x_not_square` has Legendre symbol 1\n // (i.e. that it is a square), so we prove that it is square below.\n // Why do we want to prove that it has LS 1?\n // Well, since it was computed with a known-non-residue, its squareness implies we're\n // in case 2 (something multiplied by a known-non-residue yielding a result which\n // has a LS of 1), which implies that x must be a non-square. The unconstrained\n // function gave us the sqrt of demo_x_not_square, so all we need to do is\n // assert its squareness:\n assert(\n hint * hint == demo_x_not_square,\n f\"The hint {hint} does not demonstrate that {x} is not a square\",\n );\n}\n\n#[test]\nunconstrained fn bytes_field_test() {\n // Tests correctness of field_from_bytes_32_trunc against existing methods\n // Bytes representing 0x543e0a6642ffeb8039296861765a53407bba62bd1c97ca43374de950bbe0a7\n let inputs = [\n 84, 62, 10, 102, 66, 255, 235, 128, 57, 41, 104, 97, 118, 90, 83, 64, 123, 186, 98, 189, 28,\n 151, 202, 67, 55, 77, 233, 80, 187, 224, 167,\n ];\n let field = field_from_bytes(inputs, true);\n let return_bytes: [u8; 31] = field.to_be_bytes();\n assert_eq(inputs, return_bytes);\n // 32 bytes - we remove the final byte, and check it matches the field\n let inputs2 = [\n 84, 62, 10, 102, 66, 255, 235, 128, 57, 41, 104, 97, 118, 90, 83, 64, 123, 186, 98, 189, 28,\n 151, 202, 67, 55, 77, 233, 80, 187, 224, 167, 158,\n ];\n let field2 = field_from_bytes_32_trunc(inputs2);\n let return_bytes2: [u8; 31] = field.to_be_bytes();\n\n assert_eq(return_bytes2, return_bytes);\n assert_eq(field2, field);\n}\n\n#[test]\nunconstrained fn max_field_test() {\n // Tests the hardcoded value in constants.nr vs underlying modulus\n // NB: We can't use 0-1 in constants.nr as it will be transpiled incorrectly to ts and sol constants files\n let max_value = crate::constants::MAX_FIELD_VALUE;\n assert_eq(max_value, 0 - 1);\n // modulus == 0 is tested elsewhere, so below is more of a sanity check\n let max_bytes: [u8; 32] = max_value.to_be_bytes();\n let mod_bytes = std::field::modulus_be_bytes();\n for i in 0..31 {\n assert_eq(max_bytes[i], mod_bytes[i]);\n }\n assert_eq(max_bytes[31], mod_bytes[31] - 1);\n}\n\n#[test]\nunconstrained fn sqrt_valid_test() {\n let x = 16; // examples: 16, 9, 25, 81\n let result = sqrt(x);\n assert(result.is_some());\n assert_eq(result.unwrap() * result.unwrap(), x);\n}\n\n#[test]\nunconstrained fn sqrt_invalid_test() {\n let x = KNOWN_NON_RESIDUE; // has no square root in the field\n let result = sqrt(x);\n assert(result.is_none());\n}\n"
|
|
4569
4569
|
},
|
|
4570
|
-
"
|
|
4570
|
+
"388": {
|
|
4571
4571
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/utils/reader.nr",
|
|
4572
4572
|
"source": "pub struct Reader<let N: u32> {\n data: [Field; N],\n offset: u32,\n}\n\nimpl<let N: u32> Reader<N> {\n pub fn new(data: [Field; N]) -> Self {\n Self { data, offset: 0 }\n }\n\n pub fn read(&mut self) -> Field {\n let result = self.data[self.offset];\n self.offset += 1;\n result\n }\n\n pub fn read_u32(&mut self) -> u32 {\n self.read() as u32\n }\n\n pub fn read_u64(&mut self) -> u64 {\n self.read() as u64\n }\n\n pub fn read_bool(&mut self) -> bool {\n self.read() != 0\n }\n\n pub fn read_array<let K: u32>(&mut self) -> [Field; K] {\n let mut result = [0; K];\n for i in 0..K {\n result[i] = self.data[self.offset + i];\n }\n self.offset += K;\n result\n }\n\n pub fn read_struct<T, let K: u32>(&mut self, deserialise: fn([Field; K]) -> T) -> T {\n let result = deserialise(self.read_array());\n result\n }\n\n pub fn read_struct_array<T, let K: u32, let C: u32>(\n &mut self,\n deserialise: fn([Field; K]) -> T,\n mut result: [T; C],\n ) -> [T; C] {\n for i in 0..C {\n result[i] = self.read_struct(deserialise);\n }\n result\n }\n\n pub fn finish(self) {\n assert_eq(self.offset, self.data.len(), \"Reader did not read all data\");\n }\n}\n"
|
|
4573
4573
|
},
|
|
@@ -4617,7 +4617,7 @@
|
|
|
4617
4617
|
},
|
|
4618
4618
|
"99": {
|
|
4619
4619
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/macros/aztec.nr",
|
|
4620
|
-
"source": "use crate::macros::{\n calls_generation::{\n external_functions::{\n generate_external_function_calls, generate_external_function_self_calls_structs,\n },\n internal_functions::generate_call_internal_struct,\n },\n dispatch::generate_public_dispatch,\n internals_functions_generation::{create_fn_abi_exports, process_functions},\n notes::NOTES,\n storage::STORAGE_LAYOUT_NAME,\n utils::{\n get_trait_impl_method, is_fn_contract_library_method, is_fn_external, is_fn_internal,\n is_fn_test, module_has_storage,\n },\n};\n\n/// Marks a contract as an Aztec contract, generating the interfaces for its functions and notes, as well as injecting\n/// the `sync_private_state` utility function.\n/// Note: This is a module annotation, so the returned quote gets injected inside the module (contract) itself.\npub comptime fn aztec(m: Module) -> Quoted {\n // Functions that don't have #[external(...)], #[contract_library_method], or #[test] are not allowed in contracts.\n check_each_fn_macroified(m);\n\n // We generate new functions prefixed with `__aztec_nr_internals__` and we replace the original functions' bodies\n // with `static_assert(false, ...)` to prevent them from being called directly from within the contract.\n let functions = process_functions(m);\n\n // We generate structs and their implementations necessary for convenient functions calls.\n let interface = generate_contract_interface(m);\n let self_call_structs = generate_external_function_self_calls_structs(m);\n let call_internal_struct = generate_call_internal_struct(m);\n\n // We generate ABI exports for all the external functions in the contract.\n let fn_abi_exports = create_fn_abi_exports(m);\n\n // We generate `_compute_note_hash_and_nullifier`, `sync_private_state` and `process_message`\n // functions only if they are not already implemented. If they are implemented we just insert empty\n // quotes.\n let contract_library_method_compute_note_hash_and_nullifier = if !m.functions().any(|f| {\n f.name() == quote { _compute_note_hash_and_nullifier }\n }) {\n generate_contract_library_method_compute_note_hash_and_nullifier()\n } else {\n quote {}\n };\n let sync_private_state_fn_and_abi_export = if !m.functions().any(|f| {\n f.name() == quote { sync_private_state }\n }) {\n generate_sync_private_state()\n } else {\n quote {}\n };\n\n let process_message_fn_and_abi_export = if !m.functions().any(|f| {\n f.name() == quote { process_message }\n }) {\n generate_process_message()\n } else {\n quote {}\n };\n let public_dispatch = generate_public_dispatch(m);\n\n quote {\n $interface\n $self_call_structs\n $call_internal_struct\n $functions\n $fn_abi_exports\n $contract_library_method_compute_note_hash_and_nullifier\n $public_dispatch\n $sync_private_state_fn_and_abi_export\n $process_message_fn_and_abi_export\n }\n}\n\ncomptime fn generate_contract_interface(m: Module) -> Quoted {\n let calls = generate_external_function_calls(m);\n\n let module_name = m.name();\n\n let has_storage_layout = module_has_storage(m) & STORAGE_LAYOUT_NAME.get(m).is_some();\n let storage_layout_getter = if has_storage_layout {\n let storage_layout_name = STORAGE_LAYOUT_NAME.get(m).unwrap();\n quote {\n pub fn storage_layout() -> StorageLayoutFields {\n $storage_layout_name.fields\n }\n }\n } else {\n quote {}\n };\n\n let library_storage_layout_getter = if has_storage_layout {\n quote {\n #[contract_library_method]\n $storage_layout_getter\n }\n } else {\n quote {}\n };\n\n quote {\n pub struct $module_name {\n pub target_contract: dep::aztec::protocol_types::address::AztecAddress\n }\n\n impl $module_name {\n $calls\n\n pub fn at(\n addr: aztec::protocol_types::address::AztecAddress\n ) -> Self {\n Self { target_contract: addr }\n }\n\n pub fn interface() -> Self {\n Self { target_contract: aztec::protocol_types::address::AztecAddress::zero() }\n }\n\n $storage_layout_getter\n }\n\n #[contract_library_method]\n pub fn at(\n addr: aztec::protocol_types::address::AztecAddress\n ) -> $module_name {\n $module_name { target_contract: addr }\n }\n\n #[contract_library_method]\n pub fn interface() -> $module_name {\n $module_name { target_contract: aztec::protocol_types::address::AztecAddress::zero() }\n }\n\n $library_storage_layout_getter\n\n }\n}\n\n/// Generates a contract library method called `_compute_note_hash_and_nullifier` which is used for note\n/// discovery (to create the `aztec::messages::discovery::ComputeNoteHashAndNullifier` function) and to implement the\n/// `compute_note_hash_and_nullifier` unconstrained contract function.\ncomptime fn generate_contract_library_method_compute_note_hash_and_nullifier() -> Quoted {\n if NOTES.len() > 0 {\n // Contracts that do define notes produce an if-else chain where `note_type_id` is matched against the\n // `get_note_type_id()` function of each note type that we know of, in order to identify the note type. Once we\n // know it we call we correct `unpack` method from the `Packable` trait to obtain the underlying note type, and\n // compute the note hash (non-siloed) and inner nullifier (also non-siloed).\n\n let mut if_note_type_id_match_statements_list = &[];\n for i in 0..NOTES.len() {\n let typ = NOTES.get(i);\n\n let get_note_type_id = get_trait_impl_method(\n typ,\n quote { crate::note::note_interface::NoteType },\n quote { get_id },\n );\n let unpack = get_trait_impl_method(\n typ,\n quote { crate::protocol_types::traits::Packable },\n quote { unpack },\n );\n\n let compute_note_hash = get_trait_impl_method(\n typ,\n quote { crate::note::note_interface::NoteHash },\n quote { compute_note_hash },\n );\n\n let compute_nullifier_unconstrained = get_trait_impl_method(\n typ,\n quote { crate::note::note_interface::NoteHash },\n quote { compute_nullifier_unconstrained },\n );\n\n let if_or_else_if = if i == 0 {\n quote { if }\n } else {\n quote { else if }\n };\n\n if_note_type_id_match_statements_list = if_note_type_id_match_statements_list.push_back(\n quote {\n $if_or_else_if note_type_id == $get_note_type_id() {\n // As an extra safety check we make sure that the packed_note BoundedVec has the expected\n // length, since we're about to interpret its raw storage as a fixed-size array by calling the\n // unpack function on it.\n let expected_len = <$typ as $crate::protocol_types::traits::Packable>::N;\n let actual_len = packed_note.len();\n assert(\n actual_len == expected_len,\n f\"Expected packed note of length {expected_len} but got {actual_len} for note type id {note_type_id}\"\n );\n\n let note = $unpack(aztec::utils::array::subarray(packed_note.storage(), 0));\n\n let note_hash = $compute_note_hash(note, storage_slot, randomness);\n \n // The message discovery process finds settled notes, that is, notes that were created in prior\n // transactions and are therefore already part of the note hash tree. We therefore compute the\n // nullification note hash by treating the note as a settled note with the provided note nonce.\n let note_hash_for_nullification = aztec::note::utils::compute_note_hash_for_nullification(\n aztec::note::retrieved_note::RetrievedNote{ \n note,\n contract_address,\n randomness,\n metadata: aztec::note::note_metadata::SettledNoteMetadata::new(note_nonce).into()\n }, \n storage_slot,\n );\n\n let inner_nullifier = $compute_nullifier_unconstrained(note, note_hash_for_nullification);\n\n Option::some(\n aztec::messages::discovery::NoteHashAndNullifier {\n note_hash, inner_nullifier\n }\n )\n }\n },\n );\n }\n\n let if_note_type_id_match_statements = if_note_type_id_match_statements_list.join(quote {});\n\n quote {\n /// Unpacks an array into a note corresponding to `note_type_id` and then computes its note hash\n /// (non-siloed) and inner nullifier (non-siloed) assuming the note has been inserted into the note hash\n /// tree with `note_nonce`.\n ///\n /// The signature of this function notably matches the `aztec::messages::discovery::ComputeNoteHashAndNullifier` type,\n /// and so it can be used to call functions from that module such as `discover_new_messages`, \n /// `do_process_message` and `attempt_note_discovery`.\n ///\n /// This function is automatically injected by the `#[aztec]` macro.\n #[contract_library_method]\n unconstrained fn _compute_note_hash_and_nullifier(\n packed_note: BoundedVec<Field, aztec::messages::discovery::private_notes::MAX_NOTE_PACKED_LEN>,\n storage_slot: Field,\n note_type_id: Field,\n contract_address: aztec::protocol_types::address::AztecAddress,\n randomness: Field,\n note_nonce: Field,\n ) -> Option<aztec::messages::discovery::NoteHashAndNullifier> {\n $if_note_type_id_match_statements\n else {\n Option::none()\n }\n }\n }\n } else {\n // Contracts with no notes still implement this function to avoid having special-casing, the implementation\n // simply throws immediately.\n quote {\n /// This contract does not use private notes, so this function should never be called as it will\n /// unconditionally fail.\n ///\n /// This function is automatically injected by the `#[aztec]` macro.\n #[contract_library_method]\n unconstrained fn _compute_note_hash_and_nullifier(\n _packed_note: BoundedVec<Field, aztec::messages::discovery::private_notes::MAX_NOTE_PACKED_LEN>,\n _storage_slot: Field,\n _note_type_id: Field,\n _contract_address: aztec::protocol_types::address::AztecAddress,\n _randomness: Field,\n _nonce: Field,\n ) -> Option<aztec::messages::discovery::NoteHashAndNullifier> {\n panic(f\"This contract does not use private notes\")\n }\n }\n }\n}\n\ncomptime fn generate_sync_private_state() -> Quoted {\n quote {\n pub struct sync_private_state_parameters {}\n\n #[abi(functions)]\n pub struct sync_private_state_abi {\n parameters: sync_private_state_parameters,\n }\n\n #[aztec::macros::internals_functions_generation::abi_attributes::abi_utility]\n unconstrained fn sync_private_state() {\n let address = aztec::context::utility_context::UtilityContext::new().this_address();\n \n aztec::messages::discovery::discover_new_messages(address, _compute_note_hash_and_nullifier);\n }\n }\n}\n\ncomptime fn generate_process_message() -> Quoted {\n quote {\n pub struct process_message_parameters {\n pub message_ciphertext: BoundedVec<Field, aztec::messages::encoding::MESSAGE_CIPHERTEXT_LEN>,\n pub message_context: aztec::messages::processing::message_context::MessageContext,\n }\n\n #[abi(functions)]\n pub struct process_message_abi {\n parameters: process_message_parameters,\n }\n\n #[aztec::macros::internals_functions_generation::abi_attributes::abi_utility]\n unconstrained fn process_message(\n message_ciphertext: BoundedVec<Field, aztec::messages::encoding::MESSAGE_CIPHERTEXT_LEN>,\n message_context: aztec::messages::processing::message_context::MessageContext,\n ) {\n let address = aztec::context::utility_context::UtilityContext::new().this_address();\n\n aztec::messages::discovery::discover_new_messages(address, _compute_note_hash_and_nullifier); \n aztec::messages::discovery::process_message::process_message_ciphertext(\n address,\n _compute_note_hash_and_nullifier,\n message_ciphertext,\n message_context,\n );\n }\n }\n}\n\n/// Checks if each function in the module is marked with either #[external(...)], #[contract_library_method], or #[test].\n/// Non-macroified functions are not allowed in contracts.\ncomptime fn check_each_fn_macroified(m: Module) {\n for f in m.functions() {\n let name = f.name();\n if !is_fn_external(f)\n & !is_fn_contract_library_method(f)\n & !is_fn_internal(f)\n & !is_fn_test(f) {\n // We don't suggest that #[contract_library_method] is allowed because we don't want to introduce another\n // concept\n panic(\n f\"Function {name} must be marked as either #[external(...)], #[internal(...)], or #[test]\",\n );\n }\n }\n}\n"
|
|
4620
|
+
"source": "use crate::macros::{\n calls_generation::{\n external_functions::{\n generate_external_function_calls, generate_external_function_self_calls_structs,\n },\n internal_functions::generate_call_internal_struct,\n },\n dispatch::generate_public_dispatch,\n internals_functions_generation::{create_fn_abi_exports, process_functions},\n notes::NOTES,\n storage::STORAGE_LAYOUT_NAME,\n utils::{\n get_trait_impl_method, is_fn_contract_library_method, is_fn_external, is_fn_internal,\n is_fn_test, module_has_storage,\n },\n};\n\n/// Marks a contract as an Aztec contract, generating the interfaces for its functions and notes, as well as injecting\n/// the `sync_private_state` utility function.\n/// Note: This is a module annotation, so the returned quote gets injected inside the module (contract) itself.\npub comptime fn aztec(m: Module) -> Quoted {\n // Functions that don't have #[external(...)], #[contract_library_method], or #[test] are not allowed in contracts.\n check_each_fn_macroified(m);\n\n // We generate new functions prefixed with `__aztec_nr_internals__` and we replace the original functions' bodies\n // with `static_assert(false, ...)` to prevent them from being called directly from within the contract.\n let functions = process_functions(m);\n\n // We generate structs and their implementations necessary for convenient functions calls.\n let interface = generate_contract_interface(m);\n let self_call_structs = generate_external_function_self_calls_structs(m);\n let call_internal_struct = generate_call_internal_struct(m);\n\n // We generate ABI exports for all the external functions in the contract.\n let fn_abi_exports = create_fn_abi_exports(m);\n\n // We generate `_compute_note_hash_and_nullifier`, `sync_private_state` and `process_message`\n // functions only if they are not already implemented. If they are implemented we just insert empty\n // quotes.\n let contract_library_method_compute_note_hash_and_nullifier = if !m.functions().any(|f| {\n f.name() == quote { _compute_note_hash_and_nullifier }\n }) {\n generate_contract_library_method_compute_note_hash_and_nullifier()\n } else {\n quote {}\n };\n let sync_private_state_fn_and_abi_export = if !m.functions().any(|f| {\n f.name() == quote { sync_private_state }\n }) {\n generate_sync_private_state()\n } else {\n quote {}\n };\n\n let process_message_fn_and_abi_export = if !m.functions().any(|f| {\n f.name() == quote { process_message }\n }) {\n generate_process_message()\n } else {\n quote {}\n };\n let public_dispatch = generate_public_dispatch(m);\n\n quote {\n $interface\n $self_call_structs\n $call_internal_struct\n $functions\n $fn_abi_exports\n $contract_library_method_compute_note_hash_and_nullifier\n $public_dispatch\n $sync_private_state_fn_and_abi_export\n $process_message_fn_and_abi_export\n }\n}\n\ncomptime fn generate_contract_interface(m: Module) -> Quoted {\n let calls = generate_external_function_calls(m);\n\n let module_name = m.name();\n\n let has_storage_layout = module_has_storage(m) & STORAGE_LAYOUT_NAME.get(m).is_some();\n let storage_layout_getter = if has_storage_layout {\n let storage_layout_name = STORAGE_LAYOUT_NAME.get(m).unwrap();\n quote {\n pub fn storage_layout() -> StorageLayoutFields {\n $storage_layout_name.fields\n }\n }\n } else {\n quote {}\n };\n\n let library_storage_layout_getter = if has_storage_layout {\n quote {\n #[contract_library_method]\n $storage_layout_getter\n }\n } else {\n quote {}\n };\n\n quote {\n pub struct $module_name {\n pub target_contract: dep::aztec::protocol_types::address::AztecAddress\n }\n\n impl $module_name {\n $calls\n\n pub fn at(\n addr: aztec::protocol_types::address::AztecAddress\n ) -> Self {\n Self { target_contract: addr }\n }\n\n pub fn interface() -> Self {\n Self { target_contract: aztec::protocol_types::address::AztecAddress::zero() }\n }\n\n $storage_layout_getter\n }\n\n #[contract_library_method]\n pub fn at(\n addr: aztec::protocol_types::address::AztecAddress\n ) -> $module_name {\n $module_name { target_contract: addr }\n }\n\n #[contract_library_method]\n pub fn interface() -> $module_name {\n $module_name { target_contract: aztec::protocol_types::address::AztecAddress::zero() }\n }\n\n $library_storage_layout_getter\n\n }\n}\n\n/// Generates a contract library method called `_compute_note_hash_and_nullifier` which is used for note\n/// discovery (to create the `aztec::messages::discovery::ComputeNoteHashAndNullifier` function) and to implement the\n/// `compute_note_hash_and_nullifier` unconstrained contract function.\ncomptime fn generate_contract_library_method_compute_note_hash_and_nullifier() -> Quoted {\n if NOTES.len() > 0 {\n // Contracts that do define notes produce an if-else chain where `note_type_id` is matched against the\n // `get_note_type_id()` function of each note type that we know of, in order to identify the note type. Once we\n // know it we call we correct `unpack` method from the `Packable` trait to obtain the underlying note type, and\n // compute the note hash (non-siloed) and inner nullifier (also non-siloed).\n\n let mut if_note_type_id_match_statements_list = &[];\n for i in 0..NOTES.len() {\n let typ = NOTES.get(i);\n\n let get_note_type_id = get_trait_impl_method(\n typ,\n quote { crate::note::note_interface::NoteType },\n quote { get_id },\n );\n let unpack = get_trait_impl_method(\n typ,\n quote { crate::protocol_types::traits::Packable },\n quote { unpack },\n );\n\n let compute_note_hash = get_trait_impl_method(\n typ,\n quote { crate::note::note_interface::NoteHash },\n quote { compute_note_hash },\n );\n\n let compute_nullifier_unconstrained = get_trait_impl_method(\n typ,\n quote { crate::note::note_interface::NoteHash },\n quote { compute_nullifier_unconstrained },\n );\n\n let if_or_else_if = if i == 0 {\n quote { if }\n } else {\n quote { else if }\n };\n\n if_note_type_id_match_statements_list = if_note_type_id_match_statements_list.push_back(\n quote {\n $if_or_else_if note_type_id == $get_note_type_id() {\n // As an extra safety check we make sure that the packed_note BoundedVec has the expected\n // length, since we're about to interpret its raw storage as a fixed-size array by calling the\n // unpack function on it.\n let expected_len = <$typ as $crate::protocol_types::traits::Packable>::N;\n let actual_len = packed_note.len();\n assert(\n actual_len == expected_len,\n f\"Expected packed note of length {expected_len} but got {actual_len} for note type id {note_type_id}\"\n );\n\n let note = $unpack(aztec::utils::array::subarray(packed_note.storage(), 0));\n\n let note_hash = $compute_note_hash(note, owner, storage_slot, randomness);\n \n // The message discovery process finds settled notes, that is, notes that were created in prior\n // transactions and are therefore already part of the note hash tree. We therefore compute the\n // nullification note hash by treating the note as a settled note with the provided note nonce.\n let note_hash_for_nullification = aztec::note::utils::compute_note_hash_for_nullification(\n aztec::note::retrieved_note::RetrievedNote{ \n note,\n contract_address,\n randomness,\n metadata: aztec::note::note_metadata::SettledNoteMetadata::new(note_nonce).into()\n }, \n owner,\n storage_slot,\n );\n\n let inner_nullifier = $compute_nullifier_unconstrained(note, owner, note_hash_for_nullification);\n\n Option::some(\n aztec::messages::discovery::NoteHashAndNullifier {\n note_hash, inner_nullifier\n }\n )\n }\n },\n );\n }\n\n let if_note_type_id_match_statements = if_note_type_id_match_statements_list.join(quote {});\n\n quote {\n /// Unpacks an array into a note corresponding to `note_type_id` and then computes its note hash\n /// (non-siloed) and inner nullifier (non-siloed) assuming the note has been inserted into the note hash\n /// tree with `note_nonce`.\n ///\n /// The signature of this function notably matches the `aztec::messages::discovery::ComputeNoteHashAndNullifier` type,\n /// and so it can be used to call functions from that module such as `discover_new_messages`, \n /// `do_process_message` and `attempt_note_discovery`.\n ///\n /// This function is automatically injected by the `#[aztec]` macro.\n #[contract_library_method]\n unconstrained fn _compute_note_hash_and_nullifier(\n packed_note: BoundedVec<Field, aztec::messages::discovery::private_notes::MAX_NOTE_PACKED_LEN>,\n owner: aztec::protocol_types::address::AztecAddress,\n storage_slot: Field,\n note_type_id: Field,\n contract_address: aztec::protocol_types::address::AztecAddress,\n randomness: Field,\n note_nonce: Field,\n ) -> Option<aztec::messages::discovery::NoteHashAndNullifier> {\n $if_note_type_id_match_statements\n else {\n Option::none()\n }\n }\n }\n } else {\n // Contracts with no notes still implement this function to avoid having special-casing, the implementation\n // simply throws immediately.\n quote {\n /// This contract does not use private notes, so this function should never be called as it will\n /// unconditionally fail.\n ///\n /// This function is automatically injected by the `#[aztec]` macro.\n #[contract_library_method]\n unconstrained fn _compute_note_hash_and_nullifier(\n _packed_note: BoundedVec<Field, aztec::messages::discovery::private_notes::MAX_NOTE_PACKED_LEN>,\n _owner: aztec::protocol_types::address::AztecAddress,\n _storage_slot: Field,\n _note_type_id: Field,\n _contract_address: aztec::protocol_types::address::AztecAddress,\n _randomness: Field,\n _nonce: Field,\n ) -> Option<aztec::messages::discovery::NoteHashAndNullifier> {\n panic(f\"This contract does not use private notes\")\n }\n }\n }\n}\n\ncomptime fn generate_sync_private_state() -> Quoted {\n quote {\n pub struct sync_private_state_parameters {}\n\n #[abi(functions)]\n pub struct sync_private_state_abi {\n parameters: sync_private_state_parameters,\n }\n\n #[aztec::macros::internals_functions_generation::abi_attributes::abi_utility]\n unconstrained fn sync_private_state() {\n let address = aztec::context::utility_context::UtilityContext::new().this_address();\n \n aztec::messages::discovery::discover_new_messages(address, _compute_note_hash_and_nullifier);\n }\n }\n}\n\ncomptime fn generate_process_message() -> Quoted {\n quote {\n pub struct process_message_parameters {\n pub message_ciphertext: BoundedVec<Field, aztec::messages::encoding::MESSAGE_CIPHERTEXT_LEN>,\n pub message_context: aztec::messages::processing::message_context::MessageContext,\n }\n\n #[abi(functions)]\n pub struct process_message_abi {\n parameters: process_message_parameters,\n }\n\n #[aztec::macros::internals_functions_generation::abi_attributes::abi_utility]\n unconstrained fn process_message(\n message_ciphertext: BoundedVec<Field, aztec::messages::encoding::MESSAGE_CIPHERTEXT_LEN>,\n message_context: aztec::messages::processing::message_context::MessageContext,\n ) {\n let address = aztec::context::utility_context::UtilityContext::new().this_address();\n\n aztec::messages::discovery::discover_new_messages(address, _compute_note_hash_and_nullifier); \n aztec::messages::discovery::process_message::process_message_ciphertext(\n address,\n _compute_note_hash_and_nullifier,\n message_ciphertext,\n message_context,\n );\n }\n }\n}\n\n/// Checks if each function in the module is marked with either #[external(...)], #[contract_library_method], or #[test].\n/// Non-macroified functions are not allowed in contracts.\ncomptime fn check_each_fn_macroified(m: Module) {\n for f in m.functions() {\n let name = f.name();\n if !is_fn_external(f)\n & !is_fn_contract_library_method(f)\n & !is_fn_internal(f)\n & !is_fn_test(f) {\n // We don't suggest that #[contract_library_method] is allowed because we don't want to introduce another\n // concept\n panic(\n f\"Function {name} must be marked as either #[external(...)], #[internal(...)], or #[test]\",\n );\n }\n }\n}\n"
|
|
4621
4621
|
}
|
|
4622
4622
|
}
|
|
4623
4623
|
}
|