@aztec/accounts 3.0.0-nightly.20251125 → 3.0.0-nightly.20251126

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1906,7 +1906,7 @@
1906
1906
  }
1907
1907
  },
1908
1908
  "bytecode": "H4sIAAAAAAAA/+y9C7wN1f//vzfOOQhJKuliKxWS3JIkJCRJ0k3uQqLck5SEJClJkpRKkiSVbkJIkiRJkqSILtJdiqSL/7xqn+yzG+15r3Pmtb+v/+8zj8cyp2lmr/f7uS7znpm1Xisa+XuLxfcdOnS6/pqunTv06tehe69ruvbr1enq/h06dO11Tb9BfXp7R747LhJ55Zi/z416KX98ny/+G4nHsveJfx/kc97BXqqfdOxQLw1NOnaYz7EjfX7vKJ9jR/scK+NzLOaTR1mfY8f4HDvW51g5nzyO9zlW3odVBZ9jFX2OVfL5vco+553sc6yKz7FqPr9Xw+e8U3yO1fQ5Vsvn92r7nHe6z7E6Psfq+vxefZ/zzvQ51sDnWEMvFUw61ii+LxAJsEXj+1h8X6VL835bqk6pMLdFoznDhrVqV776tiaD5vUZd9aWneO3e/9/Zf5956bYKuUmn7dT53NM4m8XiexzOBq3E/vjIvsqbjT+u9nnrfL+fsdLq730bv6cP54/yd4UW/QEw7mr8gfnsCY47xyb1f7yhnPfMdj/Hsn+CoZzVxvsX2uw368eronXw/fi+7Xx/bsJ9fB97+91XvrAS+tzWQ8rGs5938DhQ1I5nmg4d53B/g0k+ysZzv3AYP9HuayHH8br3Yb4/qP4fn1CPfzY+3ujlzZ56ZNc1sOTDOd+bOCwmVSOlQ3nbjTYv4Vk/8mGczcZ7P80l/Vwc7zebYnvP43vP0moh595f3/upS+8tDWX9bCK4dzPDBy+JJVjVcO5nxvs30ayv5rh3C8M9n+Vy3r4ZbzebYvvv4rvtybUw6+9v7/x0rde+i6X9bC64dyvDRy+J5VjDcO53xjs/4Fk/ymGc7812L89l/Xw+3i9+yG+3x7ff5dQD3/0/t7hpZ+89HMu62FNw7k/GjjsJJXjqYZzdxjs30Wyv5bh3J8M9v+Sy3q4M17vdsX3v8T3PyfUw93e3796aY+XfstlPTzNcO5uA4ffSeVY23Durwb7/yDZf7rh3D0G+//MZT38PV7v/ojv/4zvf0uoh3vz/31R1Ev5kt5yWTnUMZy718AhfwFOOZ5hODdSILj9BUj21zWcGzXYn1Egd/UQ5Yd9gfg+I75Hfcs+L9P7I8tLBb1UKJf1sJ7h3EwDh8KkcqxvODfLYP8BJPvPNJxb0GB/kVzWw8LxendAfF8kvi+UUA+Len8U89KBXiqey3rYwHBuUQOHg0jleJbh3GIG+0uQ7G9oOPdAg/0H57IeHhSvdyXi+4Pj++IJ9bCk98chXjrUS4flsh42Mpxb0sChVC45lIr7fUh8f2h8f1gCh8O9P0p76QgvHZnEIV98H4sEM+HgSHDfjgrqW/SCoX/d4+I+4br6kdzZWc5g59HByyCaaGf2dQXi/x31u8BodzT4ufv5haQMUzlfJrjzx+Qmn1jqfGKJv51c0cvEK3byB9RYQkUv6/1xjJeO9VK5XDZ4ywfUsoYGfxyp47Z8QD3GYP/xJPstH1CPNdh/Qi473OPi9fD4+P6E+L5cQj0s7/1RwUsVvXRiLuuh5QNqeQOHSqRytHxArWCw/ySS/ZYPqBUN9lfOZT2sFK93J8X3leP7ExPq4cneH1W8VNVL1XJZDy0fUE82cKhOKkfLB9QqBvtrkOy3fECtarD/lFzWw+rxelcjvj8lvq+WUA9ren+c6qVaXjotl/XQ8gG1poFDbVI5Wj6gnmqw/3SS/ZYPqLUM9tfJZT2sHa93p8f3deL70xLq4RneH3W9VA8PGLmsh5YPqGcYOJxJKkfLB9S6BvsbkOy3fECtZ7D/rFzWwzPj9a5BfH9WfF8/oR429P5o5KXGXjo7l/XQ8gG1oYFDE1I5Wj6gNjLYfw7JfssH1MYG+5vmsh42ide7c+L7pvH92Qn18Fzvj2ZeOs9LzXNZDy0fUM81cDifVI6WD6jNDPa3INlv+YB6nsH+C3JZD8+P17sW8f0F8X3zhHrY0vvjQi9d5KWLc1kPLR9QWxo4XEIqR8sH1AsN9l9Kst/yAfUig/2tclkPL4nXu0vj+1bx/cUJ9fAy74/WXmrjpba5rIeWD6iXGTi0I5VjfcO5rQ32tyfZf6bh3DYG+zvksh62i9e79vF9h/i+bUI97Oj90clLl3upcy7roeUDakcDhy6kcrR8QO1ksL9rLsuxS7zcusb3l8f3nRPK8Qrvj25eutJL3ePH80Xy5kPRFQb7iyX83SNu3FXx/dXxfc/4vld83zu+7xPf943v+8X3/eP7a+L7AdnPOfF8rvX+e6CXrvPSIC9d76UbvDTYSzd6aYiXbvLSUC8N89JwL93spRFeusVLI710q5dGeek2L4320u1eusNLY7x0p5fGeukuL43z0t1eGu+le7w0wUv3emmil+7z0iQv3e+lB7w02UsPeukhLz3spSleesRLU730qJemeekxL0330uNemuGlJ7w000tPemmWl57y0tNeesZLs730rJee89LzXnrBSy/GmczBHlCyvxheXWDfl8LsY719jvXzOTbA5xggJ0+3HOhz7DqfY4N8jl3vc+wGn2ODfY7d6HNsiM+xm3yODfU5Nszn2HCfYzf7HBvhc+wWn2MjfY7d6nNslM+x23yOjfY5drvPsTt8jo3xOXanz7GxPsfu8jk2zufY3T7Hxvscu8fn2ASfY/f6HJvoc+w+n2OTfI7d73PsAZ9jk32OPehz7CGfYw/7HJvic+wRn2NTfY496nNsms+xx3yOTfc59rjPsRk+x57wOTbT59iTPsdm+Rx7yufY0z7HnvE5Ntvn2LM+x57zOfa8z7EXfI69GD+GPrVIZF8gkbhF4/tYJNBmuon6bbFcnBaLBNmi//gUTbjmJc/uuV6a56X5XnrZSwu8tNBLi7z0ipcWe+lVLy3x0mteWuql1720zEtveGm5l9700govveWllV5620urvPSOl1Z76V0vrfHSe15a66X3vbQu+ab2kk9hzfU5Ns/n2HyfYy/7HFvgc2yhz7FFPsde8Tm22OfYqz7Hlvgce83n2FKfY6/7HFvmc+wNn2PLfY696XNshc+xt3yOrfQ59rbPsVU+x97xObba59i7PsfW+Bx7z+fYWp9j7/scWxc/lriVje9jkUBbjkaf6inhpYDn/rB3b3Ru4HMj0XlBz/XsnR/s3Ls9e6MvBzr3Z/gWXRDk3M1/cYguDHBug7+ZRRelPveuON/oKynP7Z1dFtHFqc6d+0+5RV9Nce51+8o4uuS/zz07oT5EX/vPc79MrDvRpf91brUc9Sz6+n+ce0LOOhldtv9z2ybV3+gb+z330uS6Hl2+v3OH/qtdRN/cz7lD/92Goiv8z33Rp71F3/I9t6Ff24yu9Dv3fN92HH3b59yX/Nt8dNW/zy2/n/4h+s6/zn14f31JdHXyuVX22+9E3006d/P++6jompzn9v2P/iz6Xo5zz/uvvi+6NvHczv/ZT0bfTzj35P/uU6PrDEEXYo2ikX2BXeJmDfbWBe/L303M74MCucgQFyePXU6V+QfBAUXXG25mrj4gj6jRh/XGQsYrqnx+BiTlG8TegOeu9jsYiwTKJoetH8YryIbkyPjDOLjEYxt8IhjrO1FDTY5+aKggG4zwrIWDSvGhsTL9JfaTph7j/eCcH0zM7yPXHgMZfmTvMR78yNBjfBxyjwEfPrb3GA9+nKYe4/3g+U72OxiLBMomh60b4xVkU3KPsdGnx9iUBz2GoSZHNxoqyCZHeJYKjnwsNn1iaAz//GOwZX28glunJFlu1ZsNjcHPh1Sng9Fmh554c5p64rXB6+/zifltce2JkeEWe0/8/BZD5fs05J4YPnxq74mf/zSXlS9IA9occgP6zOhD9mbtmCxl+LmhbuTlHW5t8Hyf8zsYiwTKJoetX8Qb3tbkO9wXPne4rXlwhzP0ENEvDIW21RGetSJZbPoyl3e4VNeg8XzucHfYFvJdC35vI9iVvVnLcJuhDL8KuQz318kG6ZyDnvu1sUPLq2jgveBtfWxift+4RgPI8Bt7NDD2GwOgb0OOBuDDt/ZoYOy3IUcDaAhfFwi3sX1nbGzZm9UmSxl+n6Zo4L3g+d7pdzAWCZRNDlt/iDe87cnRwA8+0cD2PIgGDD1E9AdDoW13hGetSBabfgz5ToLG873DXXdHyNEA/N5BsCt7s5bhDkMZ/hRyGe6vk011naWT/TlN7wbWBG/rscT8drpGA8hwpz0aiO00FPKukKMB+LDLHg3EdoUcDaAh/Fwg3Mb2CykasJTh7jRFA2uC51vG72AsEiibHLb+Gm94e5KjgV99ooE9eRANGHqI6K+GQtvjCM9akSw2/RbynQSNZ7fDXff3kKMB+P07wa7szVqGvxvK8I+Qy3B/nWyq6yyd7J9pigbeDd7WVyfmt9c1GkCGe+3RwOq9lkLOCDcagA/IwxgNrE60K5gjwX8/uyH8WSDcxhbNsDW27M1qk6UM8xlsysto4N3gdfIdv4OxSKBsctiaP+PvfYGMSM47f/6Mf0cDOCm30YChh4jmNxRagQw3eNaKZLEpw1i5rRUGjSdfhr1hZ+ay40h1OvzOJNiVvVnLMNNQhlkhl+H+OtlU11k62YIGrnkZDawO3tY7JeZXKCMXGeJiYzTQqZChkAuHHA3Ah8L2aKBT4ZCjATSEghnhNrYDSNGApQyLpCkaWB08GujodzAWCZRNDluLxhteseRooKhPNFAsD6IBQw8RLWootGIZbvCsFcli04Eh30nQeIo43HWLhxwNwO/iBLuyN2sZFjeU4UEhl+H+OtlU11k62RJpigbeCd7W1yfmd7BrNIAMD7ZHA+sPNhRyyZCjAfhQ0h4NrC8ZcjSAhlAiI9zGdggpGrCU4aFpigbeCR4NfOB3MBYJlE0OWw+LN7xSydHAYT7RQKk8iAYMPUT0MEOhlcpwg2etSBabDg/5ToLGc6jDXbd0yNEA/C5NsCt7s5ZhaUMZHhFyGe6vk011naWTPTJN0cCq4G39nMT8jnKNBpDhUfZo4JyjDIV8dMjRAHw42h4NnHN0yNEAGsKRGeE2tjKkaMBShrE0RQOrgkcDTfwOxiKBsslha9l4wzsmORoo6xMNHJMH0YChh4iWNRTaMRlu8KwVyWLTsSHfSf5qPA533XIhRwPwuxzBruzNWoblDGV4XMhluL9ONtV1lk72+DRFA28Hb+vPJuZ3gms0gAxPsEcDz55gKOTyIUcD8KG8PRp4tnzI0QAawvEZ4Ta2CqRowFKGFdMUDbwdPBqY7XcwFgmUTQ5bT4w3vErJ0cCJPtFApTyIBgw9RPREQ6FVynCDZ61IFptOCvlOgsZT0eGuWznkaAB+VybYlb1Zy7CyoQxPDrkM99fJprrO0slWSVM0sDJ4W1+QmF9V12gAGVa1RwMLqhoKuVrI0QB8qGaPBhZUCzkaQEOokhFuY6tOigYsZVgjTdHAyuDRwMt+B2ORQNnksPWUeMOrmRwNnOITDdTMg2jA0ENETzEUWs0MN3jWimSx6dSQ7yRoPDUc7rq1Qo4G4Hctgl3Zm7UMaxnK8LSQy3B/nWyq6yydbO00RQNvBW/r5ybmd7prNIAMT7dHA+eebijkOiFHA/Chjj0aOLdOyNEAGkLtjHAb2xmkaMBShnXTFA28FTwaaOp3MBYJlE0OW+vFG1795Gignk80UD8PogFDDxGtZyi0+hlu8KwVyWLTmSHfSdB46jrcdRuEHA3A7wYEu7I3axk2MJThWSGX4f462VTXWTrZhmmKBlYEb+tDE/Nr5BoNIMNG9mhgaCNDITcOORqAD43t0cDQxiFHA2gIDTPCbWxnk6IBSxk2SVM0sCJ4NHCT38FYJFA2OWw9J97wmiZHA+f4RANN8yAaMPQQ0XMMhdY0ww2etSJZbDo35DsJGk8Th7tus5CjAfjdjGBX9mYtw2aGMjwv5DLcXyeb6jpLJ9s8TdHAm47RwPmu0QAyPN8hGjjfUMgtQo4G4EMLh2igRcjRABpC84xwG9sFpGjAUoYt0xQNvJmGaODCeMO7KDkauNAnGrgoD6IBQw8RvdBQaBeRogGLTReHfCdB42npcNe9JORoAH5fQrAre7OW4SWGMrw05DLcXyeb6jpLJ9sqTdHA8uBt/YnE/C5zjQaQ4WX2aOCJywyF3DrkaAA+tLZHA0+0DjkaQENolRFuY2tDigYsZdg2TdHA8uDRwAy/g7FIoGxy2Nou3vDaJ0cD7XyigfZ5EA0YeohoO0Ohtc9wg2etSBabOoR8J0Hjaetw1+0YcjQAvzsS7MrerGXY0VCGnUIuw/11sqmus3Syl6cpGngjeFuflphfZ9doABl2tkcD0zobCrlLyNEAfOhijwamdQk5GkBDuDwj3MbWlRQNWMrwijRFA28EjwYe9TsYiwTKJoet3eIN78rkaKCbTzRwZR5EA4YeItrNUGhXZrjBs1Yki03dQ76ToPFc4XDX7RFyNAC/exDsyt6sZdjDUIZXhVyG++tkU11n6WSvTlM0sCx4W/8wMb+ertEAMuxpjwY+7Gko5F4hRwPwoZc9GviwV8jRABrC1RnhNrbepGjAUoZ90hQNLAseDaz3OxiLBMomh6194w2vX3I00NcnGuiXB9GAoYeI9jUUWr8MN3jWimSxqX/IdxI0nj4Od91rQo4G4Pc1BLuyN2sZXmMowwEhl+H+OtlU11k62WvTFA28Hrytr0rMb6BrNIAMB9qjgVUDDYV8XcjRAHy4zh4NrLou5GgADeHajHAb2yBSNGApw+vTFA28HjwaeNvvYCwSKJsctt4Qb3iDk6OBG3yigcF5EA0YeojoDYZCG5zhBs9akSw23RjynQSN53qHu+6QkKMB+D2EYFf2Zi3DIYYyvCnkMtxfJ5vqOksnOzRN0cDS4G398MT8hrlGA8hwmD0aOHyYoZCHhxwNwIfh9mjg8OEhRwNoCEMzwm1sN5OiAUsZjkhTNLA0eDRQyu9gLBIomxy23hJveCOTo4FbfKKBkXkQDRh6iOgthkIbmeEGz1qRLDbdGvKdBI1nhMNdd1TI0QD8HkWwK3uzluEoQxneFnIZ7q+TTXWdpZMdnaZo4LXgbX1eYn63u0YDyPB2ezQw73ZDId8RcjQAH+6wRwPz7gg5GkBDGJ0RbmMbQ4oGLGV4Z5qigdeCRwNz/Q7GIoGyyWHr2HjDuys5GhjrEw3clQfRgKGHiI41FNpdGW7wrBXJYtO4kO8kaDx3Otx17w45GoDfdxPsyt6sZXi3oQzHh1yG++tkU11n6WTvSVM0sCR4Wx+VmN8E12gAGU6wRwOjJhgK+d6QowH4cK89Ghh1b8jRABrCPRnhNraJpGjAUob3pSkaWBI8GrjV72AsEiibHLZOije8+5OjgUk+0cD9eRANGHqI6CRDod2f4QbPWpEsNj0Q8p0Ejec+h7vu5JCjAfg9mWBX9mYtw8mGMnww5DLcXyeb6jpLJ/tQmqKBV4O39SaJ+T3sGg0gw4ft0UCThw2FPCXkaAA+TLFHA02mhBwNoCE8lBFuY3uEFA1YynBqmqKBV4NHA2f7HYxFAmWTw9ZH4w1vWnI08KhPNDAtD6IBQw8RfdRQaNMy3OBZK5LFpsdCvpOg8Ux1uOtODzkagN/TCXZlb9YynG4ow8dDLsP9dbKprrN0sjPSFA0sDt7WxyXm94RrNIAMn7BHA+OeMBTyzJCjAfgw0x4NjJsZcjSAhjAjI9zG9iQpGrCU4aw0RQOLg0cDd/kdjEUCZZPD1qfiDe/p5GjgKZ9o4Ok8iAYMPUT0KUOhPZ3hBs9akSw2PRPynQSNZ5bDXXd2yNEA/J5NsCt7s5bhbEMZPhtyGe6vk011naWTfS5N0cArwdt6n8T8nneNBpDh8/ZooM/zhkJ+IeRoAD68YI8G+rwQcjSAhvBcRriN7UVSNGApwzlpigZeCR4N9PY7GIsEyiaHrS/FG97c5GjgJZ9oYG4eRAOGHiL6kqHQ5ma4wbNWJItN80K+k6DxzHG4684PORqA3/MJdmVv1jKcbyjDl0Muw/11sqmus3SyC9IUDSwK3tYXJea30DUaQIYL7dHAooWGQl4UcjQAHxbZo4FFi0KOBtAQFmSE29heIUUDljJcnKZoYFHwaGCh38FYJFA2OWx9Nd7wliRHA6/6RANL8iAaMPQQ0VcNhbYkww2etSJZbHot5DsJGs9ih7vu0pCjAfi9lGBX9mYtw6WGMnw95DLcXyeb6jpLJ7ssTdHAwuBtPZaY3xuu0QAyfMMeDcTeMBTy8pCjAfiw3B4NxJaHHA2gISzLCLexvUmKBixluCJN0cDC4NFAGb+DsUigbHLY+la84a1Mjgbe8okGVuZBNGDoIaJvGQptZYYbPGtFstj0dsh3EjSeFQ533VUhRwPwexXBruzNWoarDGX4TshluL9ONtV1lk52dZqigQXB23qRxPzedY0GkOG79migyLuGQl4TcjQAH9bYo4Eia0KOBtAQVmeE29jeI0UDljJcm6ZoYEHwaOAAv4OxSKBsctj6frzhrUuOBt73iQbW5UE0YOghou8bCm1dhhs8a0Wy2PRByHcSNJ61Dnfd9SFHA/B7PcGu7M1ahusNZfhhyGW4v0421XWWTnZDmqKBl4O39V6J+X3kGg0gw4/s0UCvjwyF/HHI0QB8+NgeDfT6OORoAA1hQ0a4jW0jKRqwlOGmNEUDLwePBnr6HYxFAmWTw9ZP4g1vc3I08IlPNLA5D6IBQw8R/cRQaJsz3OBZK5LFpi0h30nQeDY53HU/DTkagN+fEuzK3qxl+KmhDD8LuQz318mmus7SyX6epmhgfvC2flBifl+4RgPI8At7NHDQF4ZC3hpyNAAfttqjgYO2hhwNoCF8nhFuY/uSFA1YynBbmqKB+cGjgeJ+B2ORQNnksPWreMP7Ojka+MonGvg6D6IBQw8R/cpQaF9nuMGzViSLTd+EfCdB49nmcNf9NuRoAH5/S7Are7OW4beGMvwu5DLcXyeb6jpLJ/t9mqKBecE7tBz5/eAaDSDDHzLs120P+Q4Pu7Zn7DsQiwTfrI0IFfb7jHAbxY+ku7alXHbksqEG8XmHQxnmZYOa69igfnJtUMjwJ4cG9XPIDQp2/ZxHDSrV6Sj4nzPcKkwsWB55WkleKhDcxsT8drpWEmS406HH2WlosbtCrlDwYZdDIe8K+RkMlWiXQ3jwo4HXLyGHg2D7i2Njzd6sdesXg/+7Qw7x9ndHTnWd5Y78a8hlCEa/OtwILOXgYldPrFNZwN6u9hh5WesfbDLkEe2FtSoL7DsQC3bdQYn/UTDFtck3l5H/FU0knXzrf0YeOU8e9d9RSo6Tb0sR0SSePDpV9JNw8u3BI6XoBMMNs0lZt/6rcHwf+8+z9jlwR2r7/zl5TABfs0++MwiX+MljAzH8++S7gvH+6+RxAcsGJ98dtBy9k8cHLvNo5B5DmZ/jWObJr8ZS5fObob8w1MOoxf68DEQN/uTI73fXQBQZ/u5wk/oj5JsU7PojlwGQtXO/1tC5DzR07tcZOvdBhs79ekPnfoOhc7/F0NDPJ3Xugw2d+42Gzn2IoXO/ydC5DzV07sMMnftwQ+d+s6FzH2Eo8xakzv1PQ+duqIdRi/152bn/6di573Xt3JHhXofOPZIZbucOu5BHxHadb16p7PsjF3llbwVSXJtcOaYbbiSPG24kMwyN9IKy4fiabNQThhvWTMMN60mDry3D8zWHUbMMN6GnDDehpw2+Xhiqr/uMesZws5ttuNk9a/D1orB9jRv1nOGm+rzhpvqCwdeLHX3Niu9jwU6Pvmh51Z0Z/HcN/U3U0F6jhvoeNdSXqIV3XgYBBqY58suXmYsMcbH1uvwhBwGwKz/5xnyv4cY80XBjvs/QqFqRbsyTDDfm+w035gcMvl5GujFPNtyYHzTcmB8y+No6VF/3GfWw4cY8xXBjfsTga5uwfY0bNdVwY37UcGOeZvC1LenG/JjBpgKGG7Ohv4ka2mvUUN+jhvoStfDOyxtzAccbc4brjRkZZjjcmDNDvjHDrkzS03l+x7xQ8Hid5DeGuHiK30pHUJDqZMbNOtXJjJtoqpMZN7dUJzNuOqlOfiz4uTk2a91nvKlKdTLjDVKqkxlvdlKdzHjjkupkxpuQVCe/aKj7iXUjKzN+IHvuRZbPHd16gypoiApyk0+h/8hn4rAe467su2JMndgdh64f/MfZucmn8H/kk3xtbvI54D/yOTnf+8es/mxC6evOLHXS7F/33JmbfIr8Rz4dl0/+Yknn+hf2mXJ7z/z5Zr+cm3yK/kc+y0bUe+G0izs8/kKnaQ1vu/aX93OTT7H/yGdcpW9aPXrP5hvLb3/32BEjCpXKTT4H/kc+7TNmNnrkjYo1tg+v0qbTTzuPzE0+xf8jn1fHnfbWiGVDp28589ANmRmdrs1NPgf9Rz47by35QeFaPy+pNHVBv9p9dnTOTT4l/iOfH3eOqtt1d2z1pHFt77p15Lz30A8d4aUi8f+PvgQJbR3tEG0E9Rd1C+WOMgEv+FIi89+/bxwMmS/L8KBwsKGfyxf3K3mLRWxbMvtUp1tsdM2jpCEPPITk1UTGIL7t/Xvb6ff/Yv996T/3yURbD4nXsUOTb5w4UD/pF6yTFg9OXfnuile+6CGGinqoIyhrQz/E8cZvHbF8sMH3wwyvfdLVSA8jNNJSxkaKlBeNtKRjnfjfU9m+P//3VPb/1lPZ4ck3l8Mz/13hC8X3sYjdmFSd5n802mQz/rIt6O+W/t/H8b9PjuwrWzAZmvT/rWVr+Q5SylBelrI94n/fV/4+ObKvbI+Il21e3lBLO95QIynySX5jktjQj0zukI706ZCsQ1VLGzqZIw0V8ahMm5PZPh3l0xCtPh1hsNPi09GGV1CJPh2dBz6VMTTssOaLJG5W+2MG+8MaEo2ywNSKxDcUseCXJp+b752D2w/InNau80knFG30Y6kS99xcb+mY4fVOqGT43b9+OHtOY/acwFjAawsk/EaZeF8Qy9x3Q8vu/Ay/GS3rnX+Ml47N/Pv3s6WC/Oy2/m7Ac3N00OXi9h+X/FrJ+lhf1tDQy+3/3LZJ50aPMz7S5dVX/+P+w8Zf3pn0/n23ru52+7hnNvYa8vi0xPyOd/3qjwxxcYrZsf/K/HhDyz/BUEiuPpyQmfKdyr98OMFYyEFbTbKPsfzDjy5xZv3d7/R/rG/7IY8/doLhjpPYasrHC7lCcshQPn4rSjxWweH29F+Gpiq48obWVcEAAODhb77I/rfYfo4n55v4/6yVrLzjeJyKyYVVMQ/iu/KG+K6ioRBPzAwMM4dPJ+ZBLFTBYKfFp0qO8V2lhAeM5JZvfauKhlTOYDPOPy4zd7ePVFtigzop3rNUTq6sJ/n0LJUTCtsKoly8q84+PxWI7K7dGhccZ8jjJEPPVdl4y/i/0HOd5NhznZxcGU7Og57rJEPPdbKhEKs49lxV8qDnqmyw0+JTVceeq2pCz7W/Chjm7S83+bhW1mrJlbWaT2W1jPeOJDmdlxW7muF3qxvOTfS/uk/FtvpvuSVbGoHF/xrGCpHtf43/uH0nnm/h0dPw0SGx0Z0Sv73WzEw6yXpb62l4GX2K4bZWM02PuzUdH3dPdX3cRYanOjzunmp43K0V8uMufKjl8LhbK02Pu7UcH3dPixdy7eSu/TSfoLR2HjzuWgruNEPrqi34uHua43349OTCOj0PgsbTDPfW0w2FWMcxaKyTB0FjbYOdFp/OcAwaz8jDx100pFMMNuP8mpm5u32k2hIbVN14z1IvubLW9elZ6uXicfeUeFedfX4qENlduzUuqGnIo66h56on+Lhb17Hnqp9cGernQc9V19Bz1TcU4pmOPdeZedBz1TPYafGpgWPP1SCEx13L7S83+bhW1rOSK+tZefC4e5pjL/Ifdv5jbNDfbej4uNswDx53LbdkSyOw+N/I8XG3UQiPu70cH3cbx2+vZ2cmnWS9rfUyPO42NtzWzk7T4+7Zjo+7TVwfd5FhE4fH3SaGx91zQn7chQ/nODzunpOmx91zHB93m8YL+dzkrr2pT1B6bh487loKrqmhdZ0r+Ljb1PE+3Cy5sJrlQdDY1HBvbWYoxPMcg8bz8iBoPNdgp8Wn5o5BY/M8fNxFQ2pssBnnn52Zu9tHqi2xQZ0f71laJFfW8316lha5eNxtHO+qs89PBSK7a7fGBWcb8jjf0HO1EHzcPd+x57oguTJckAc91/mGnusCQyG2dOy5WuZBz9XCYKfFpwsde64LQ3jctdz+cpOPa2W9KLmyXpQHj7tNHXuR/7DzH2OD/u7Fjo+7F+fB467llmxpBBb/L3F83L0k4c6Fwd9FEs6LxfcF6w46aP0pha6tsD1zQNXfD1nxx6AZD3z/1ml31et+aaXOvZu2Tjy39E3t9zx1U9W2xz1R6qciyz+oXm/lk9d/8OaBJTcNW/B6+V/Ht0s8N8iWfW5G0xk9+r81ukbL9m0Wrfv89EcOv3PkgR1Oa3H82L6fNBq38PN8iefGHnznlUq/XfrrrgK9G35Qetme3f0ueuaN+oMLfHN56ctvXfHq8YnnWmw4suGOx2KDhy0ZfXPZx4a13fZs1eLlXv7u4FKHv7xh59SnZpzdJPHc/DO/r7m1QcWjouM6V1x22f1fffPYrEqHzXgzNrPOM7ff9vruGYnnWmw4afe8+l/cVqz5wQM3X9h/z9b7jxpwfvdTtj4+dM4V91xTdcfbbyeeW/ntUe9e1m3BhXNvGVe56KEjO100a87MJe/tbn/CiiE/PPfqXTcnnptqy15zAfWkXLzPyB5Yd0p8n/3loXF8n/3aIhYJtOU3nGv53eilnh2tvHRZ5t9tu0hk380rx4kOvxvwXN8tlovTYpEgW/Qfn6IJ17T27G7jpbZeauel9l7q4KWOXurkpcu91NlLXbzU1UtXeKmbl670Uncv9fDSVV662ks9vdTLS7291MdLfb3Uz0v9vXSNlwZ46VovDfTSdV4alHwDgjEFk4618TnW1udYO59j7X2OdfA51tHnWCefY5f7HOvsc6yLz7GuPseu8DnWzefYlT7Huvsc6+Fz7CqfY1f7HOvpc6yXz7HePsf6+Bzr63Osn8+x/j7HrvE5NsDn2LU+xwb6HLvO59igzH8v2l02vo9FAm05Gn2qm3LrgOdige82gc+NRNsGPdezt12wc+/G41P7QOf+/NejVocg527++7GsY4BzG8Qf4TqlPvcffZHLU57b+59Hw86pzp277zGyS4pzr0t45Oz63+eenfh4esV/nvtljkfZbv91brWcj71X/se5JyQ9Inc3PMb32O+5lybX9ehV+zt36L/aRfTq/Zw79N9tKNrT/9wXfdpbtJfvuQ392ma0t9+55/u242gfn3Nf8m/z0b7/Prf8fvqHaL9/nfvw/vqSaP/kc6vst9+JXpN07ub991HRATnP7fsf/Vn02hznnvdffV90YOK5nf+zn4xel3Duyf/dp0YHGYKuvPzkNCh4X/5uYn7XZ+YiQ1xsWW4TmV8fHFD0BsPNzNWHGzL/fV0qH24wFnJeqXUZKtdqv4OxSKBsctg6OF5BbkyOjAfHwSUeu9EngrG+9DXU5OhgQwW50QjPWjioFIONlQl2DU5Tj3FdcM4PJuY3xLXHQIZD7D3Gg0MMPcZNIfcY8OEme4/x4E1p6jGuC57vZL+DsUigbHLYOjReQYYl9xhDfXqMYXnQYxhqcnSooYIMc4RnXYHaYtNwQ2P45x+DLTfEK7j1k6DlVn2zoTH4+ZDqdDC62aEnvjlNPfHA4PX3+cT8Rrj2xMhwhL0nfn6EofLdEnJPDB9usffEz9+Sy8oXpAHdHHIDGmn0IXuzdkyWMrzVUDfy8g43MHi+z/kdjEUCZZPD1lHxhndb8h1ulM8d7rY8uMMZeojoKEOh3eYIz1qRLDaNzuUdLtU1aDy3Otwdbg/5rgW/byfYlb1Zy/B2QxneEXIZ7q+TDdI5Bz13jLFDy6to4NrgbX1sYn53ukYDyPBOezQw9k4DoLEhRwPwYaw9Ghg7NuRoAA1hTGa4je0uY2PL3qw2WcpwXJqigWuD53un38FYJFA2OWy9O97wxidHA3f7RAPj8yAaMPQQ0bsNhTbeEZ61IllsuifkOwkazziHu+6EkKMB+D2BYFf2Zi3DCYYyvDfkMtxfJ5vqOksnOzFN7wYGBG/rscT87nONBpDhffZoIHafoZAnhRwNwIdJ9mggNinkaAANYWJmuI3tflI0YCnDB9IUDQwInm8Zv4OxSKBsctg6Od7wHkyOBib7RAMP5kE0YOghopMNhfagIzxrRbLY9FDIdxI0ngcc7roPhxwNwO+HCXZlb9YyfNhQhlNCLsP9dbKprrN0so+kKRq4JnhbX52Y31TXaAAZTrVHA6unGgr50ZCjAfjwqD0aWP1oyNEAGsIjmeE2tmmkaMBSho+lKRq4Jni+7/gdjEUCZZPD1unxhvd4cjQw3ScaeDwPogFDDxGdbii0xx3hWSuSxaYZId9J0Hgec7jrPhFyNAC/nyDYlb1Zy/AJQxnODLkM99fJprrO0sk+maZooH/wtt4pMb9ZrtEAMpxljwY6zTIU8lMhRwPw4Sl7NNDpqZCjATSEJzPDbWxPk6IBSxk+k6ZooH/wfDv6HYxFAmWTw9bZ8Yb3bHI0MNsnGng2D6IBQw8RnW0otGcd4VkrksWm50K+k6DxPONw130+5GgAfj9PsCt7s5bh84YyfCHkMtxfJ5vqOksn+2KaooF+wdv6+sT85rhGA8hwjj0aWD/HUMgvhRwNwIeX7NHA+pdCjgbQEF7MDLexzSVFA5YynJemaKBf8Hw/8DsYiwTKJoet8+MN7+XkaGC+TzTwch5EA4YeIjrfUGgvO8KzViSLTQtCvpOg8cxzuOsuDDkagN8LCXZlb9YyXGgow0Uhl+H+OtlU11k62VfSFA30Dd7Wz0nMb7FrNIAMF9ujgXMWGwr51ZCjAfjwqj0aOOfVkKMBNIRXMsNtbEtI0YClDF9LUzTQN3i+TfwOxiKBsslh69J4w3s9ORpY6hMNvJ4H0YChh4guNRTa647wrBXJYtOykO8kaDyvOdx13wg5GoDfbxDsyt6sZfiGoQyXh1yG++tkU11n6WTfTFM00Cd4W382Mb8VrtEAMlxhjwaeXWEo5LdCjgbgw1v2aODZt0KOBtAQ3swMt7GtJEUDljJ8O03RQJ/g+c72OxiLBMomh62r4g3vneRoYJVPNPBOHkQDhh4iuspQaO84wrNWJItNq0O+k6DxvO1w13035GgAfr9LsCt7s5bhu4YyXBNyGe6vk011naWTfS9N0UDv4G19QWJ+a12jAWS41h4NLFhrKOT3Q44G4MP79mhgwfshRwNoCO9lhtvY1pGiAUsZfpCmaKB38Hxf9jsYiwTKJoet6+MN78PkaGC9TzTwYR5EA4YeIrreUGgfOsKzViSLTRtCvpOg8XzgcNf9KORoAH5/RLAre7OW4UeGMvw45DLcXyeb6jpLJ7sxTdFAr+Bt/dzE/Da5RgPIcJM9Gjh3k6GQPwk5GoAPn9ijgXM/CTkaQEPYmBluY9tMigYsZbglTdFAr+D5NvU7GIsEyiaHrZ/GG95nydHApz7RwGd5EA0Yeojop4ZC+8wRnrUiWWz6POQ7CRrPFoe77hchRwPw+wuCXdmbtQy/MJTh1pDLcH+dbKrrLJ3sl2mKBnoGb+tDE/Pb5hoNIMNt9mhg6DZDIX8VcjQAH76yRwNDvwo5GkBD+DIz3Mb2NSkasJThN2mKBnoGz/cmv4OxSKBsctj6bbzhfZccDXzrEw18lwfRgKGHiH5rKLTvHOFZK5LFpu9DvpOg8XzjcNf9IeRoAH7/QLAre7OW4Q+GMtwechnur5NNdZ2lk/0xTdHA1Y7RwA7XaAAZ7nCIBnYYCvmnkKMB+PCTQzTwU8jRABrCj5nhNrafSdGApQx3pikauDoN0cCueMP7JTka2OUTDfySB9GAoYeI7jIU2i+kaMBi0+6Q7yRoPDsd7rq/hhwNwO9fCXZlb9Yy/NVQhntCLsP9dbKprrN0sr+lKRq4KnhbfyIxv99dowFk+Ls9Gnjid0Mh/xFyNAAf/rBHA0/8EXI0gIbwW2a4je1PUjRgKcO9aYoGrgqe7wy/g7FIoGxy2poVP5oVyXnnx/9IjgZwUm6jAUMPEYUNQc7dHrctoA054FkrksWmfFm2ym2tMGg8ex3uuvmD27XPuEhwu+B3/qzw7crerGWY31CGBUIuw/11sqmus3SyGQaueRkN9Aje1qcl5peZlYsMcbExGpiWaSjkLEPlcfUhy9h44ENWLht1kIaQkRVuYytobGzZm9UmSxkWMtiUl9FAj+DRwKN+B2ORQNnksLVwvOEdkBwNFPaJBg7Ig2jA0ENECxsK7YAsN3jWimSxqUjIdxI0nkIOd92iIUcD8Lsowa7szVqGRQ1lWCzkMtxfJ5vqOksne2CaooHuwdv6h4n5FXeNBpBhcXs08GFxQyEfFHI0AB8OskcDHx4UcjSAhnBgVriNrQQpGrCU4cFpiga6B48G1vsdjEUCZZPD1pLxhndIcjRQ0icaOCQPogFDDxEtaSi0Q7Lc4FkrksWmQ0O+k6DxHOxw1z0s5GgAfh9GsCt7s5bhYYYyLBVyGe6vk011naWTPTxN0cCVwdv6qsT8SrtGA8iwtD0aWFXaUMhHhBwNwIcj7NHAqiNCjgbQEA7PCrexHUmKBixleFSaooErg0cDb/sdjEUCZZPD1qPjDa9McjRwtE80UCYPogFDDxE92lBoZbLc4FkrksWmWMh3EjSeoxzuumVDjgbgd1mCXdmbtQzLGsrwmJDLcH+dbKrrLJ3ssWmKBroFb+uHJ+ZXzjUaQIbl7NHA4eUMhXxcyNEAfDjOHg0cflzI0QAawrFZ4Ta240nRgKUMT0hTNNAteDRQyu9gLBIomxy2lo83vArJ0UB5n2igQh5EA4YeIlreUGgVstzgWSuSxaaKId9J0HhOcLjrnhhyNAC/TyTYlb1Zy/BEQxlWCrkM99fJprrO0smelKZo4IrgbX1eYn6VXaMBZFjZHg3Mq2wo5JNDjgbgw8n2aGDeySFHA2gIJ2WF29iqkKIBSxlWTVM0cEXwaGCu38FYJFA2OWytFm941ZOjgWo+0UD1PIgGDD1EtJqh0KpnucGzViSLTTVCvpOg8VR1uOueEnI0AL9PIdiVvVnL8BRDGdYMuQz318mmus7SyZ6apmiga/C2Pioxv1qu0QAyrGWPBkbVMhTyaSFHA/DhNHs0MOq0kKMBNIRTs8JtbLVJ0YClDE9PUzTQNXg0cKvfwVgkUDY5bK0Tb3hnJEcDdXyigTPyIBow9BDROoZCOyPLDZ61IllsqhvynQSN53SHu269kKMB+F2PYFf2Zi3DeoYyrB9yGe6vk011naWTPTNN0UCX4G29SWJ+DVyjAWTYwB4NNGlgKOSzQo4G4MNZ9migyVkhRwNoCGdmhdvYGpKiAUsZNkpTNNAleDRwtt/BWCRQNjlsbRxveGcnRwONfaKBs/MgGjD0ENHGhkI7O8sNnrUiWWxqEvKdBI2nkcNd95yQowH4fQ7BruzNWobnGMqwachluL9ONtV1lk723DRFA52Dt/Vxifk1c40GkGEzezQwrpmhkM8LORqAD+fZo4Fx54UcDaAhnJsVbmNrTooGLGV4fpqigc7Bo4G7/A7GIoGyyWFri3jDuyA5GmjhEw1ckAfRgKGHiLYwFNoFWW7wrBXJYlPLkO8kaDznO9x1Lww5GoDfFxLsyt6sZXihoQwvCrkM99fJprrO0slenKZo4PLgbb1PYn6XuEYDyPASezTQ5xJDIV8acjQAHy61RwN9Lg05GkBDuDgr3MbWihQNWMrwsjRFA5cHjwZ6+x2MRQJlk8PW1vGG1yY5GmjtEw20yYNowNBDRFsbCq1Nlhs8a0Wy2NQ25DsJGs9lDnfddiFHA/C7HcGu7M1ahu0MZdg+5DLcXyeb6jpLJ9shTdFAp+BtfVFifh1dowFk2NEeDSzqaCjkTiFHA/Chkz0aWNQp5GgADaFDVriN7XJSNGApw85pigY6BY8GFvodjEUCZZPD1i7xhtc1ORro4hMNdM2DaMDQQ0S7GAqta5YbPGtFsth0Rch3EjSezg533W4hRwPwuxvBruzNWobdDGV4ZchluL9ONtV1lk62e5qigY7B23osMb8ertEAMuxhjwZiPQyFfFXI0QB8uMoeDcSuCjkaQEPonhVuY7uaFA1YyrBnmqKBjsGjgTJ+B2ORQNnksLVXvOH1To4GevlEA73zIBow9BDRXoZC653lBs9akSw29Qn5ToLG09Phrts35GgAfvcl2JW9Wcuwr6EM+4VchvvrZFNdZ+lk+6cpGugQvK0XSczvGtdoABleY48GilxjKOQBIUcD8GGAPRooMiDkaAANoX9WuI3tWlI0YCnDgWmKBjoEjwYO8DsYiwTKJoet18Ub3qDkaOA6n2hgUB5EA4YeInqdodAGZbnBs1Yki03Xh3wnQeMZ6HDXvSHkaAB+30CwK3uzluENhjIcHHIZ7q+TTXWdpZO9MU3RQPvgbb1XYn5DXKMBZDjEHg30GmIo5JtCjgbgw032aKDXTSFHA2gIN2aF29iGkqIBSxkOS1M00D54NNDT72AsEiibHLYOjze8m5OjgeE+0cDNeRANGHqI6HBDod2c5QbPWpEsNo0I+U6CxjPM4a57S8jRAPy+hWBX9mYtw1sMZTgy5DLcXyeb6jpLJ3trmqKBdsHb+kGJ+Y1yjQaQ4Sh7NHDQKEMh3xZyNAAfbrNHAwfdFnI0gIZwa1a4jW00KRqwlOHtaYoG2gWPBor7HYxFAmWTw9Y74g1vTHI0cIdPNDAmD6IBQw8RvcNQaGOy3OBZK5LFpjtDvpOg8dzucNcdG3I0AL/HEuzK3qxlONZQhneFXIb762RTXWfpZMelKRpoa1hkNzG/u12jAWR4d5b9uvEh3+Fh1/isfQdikeCbtRGhwo7LCrdR3EO6a1vKZUIuG2oQnyc4lGFeNqg2jg3qXtcGhQzvdWhQE0NuULBrYh41qFSno+AnZrlVmFiwPPK0krQ2rG6bmN99rpUEGd7n0OPcZ2ixk0KuUPBhkkMhTwr5GQyVaJJDeHCPgdf9IYeDYHu/Y2PN3qx1636D/w+EHOLt746c6jrLHXlyyGUIRpMdbgSWcsBvoyOsn2DjoPgS7dfF9wPj+2vj+wHx/TXxff/4vl983ze+7xPf947ve8X3PeP7q+P7q+L7HvF99/j+yvi+W3x/RXzfNb7vEt93ju8vj+87xfcd4/sO8X37+L5dfN82vm8T37eO79cV+Hv/fny/Nr5/L75fE9+/G9+vju/fie9Xxfdvx/cr4/u34vsV8f2b8f3y+P6N+H5ZfP96fL80vn8tvl8S378a3y+O71+J7xfF9wvj+wXx/cvx/fz4fl58Pze+f8nbP+jVnYe89LCXpnjpES9N9dKjXprmpce8NN1Lj3tphpee8NJMLz3ppVleespLT3vpGS/N9tKzXnrOS8976QUvveilOV56yUtzvTTPS/O99LKXFmQlVeT4PhYJtEWPNURqiZu1n7u3QHCbHiQ9Xk802PQQyab7DDY9TLJpksGmKSSb7jfY9AjJpgcMNk0l2TTZYNOjJJseNNg0jWTTQwabHiPZ9LDBpukkm6YYbHqcZNMjBptmkGyaarDpCZJNjxpsmkmyaZrBpidJNj1msGkWyabpBpueItn0uMGmp0k2zTDY9AzJpicMNs0m2TTTYNOzJJueNNj0HMmmWQabnifZ9JTBphdINj1tsOlFkk3PGGyaQ7JptsGml0g2PWuwaS7JpucMNs0j2fS8wab5JJteMNj0MsmmFw02LXC0KWq0aWHwfGrkJp9FqfMpmvjbRSJ/v0vO/u+F8XfXPeLvF6/Kfj+Zte+8V7y/F3vpVS8tSXr/Zx3mdLWhrF4xvCN/zbFcrfb3NNi/2GD/UpL9vQz2v2qw/3WD/X718LV4PVwa378e3y9JqIfLvL/f8NJyL72Zy3rY28BhmYHDClI59jHY/4bB/rdI9vc12L/cYP/KXNbDFfF691Z8vzK+fzOhHr7t/b3KS+94aXUu62E/A4e3DRzeJZVjf4P9qwz2ryHZf43B/ncM9r+Xy3r4brzerYnv34vvVyfUw7Xe3+97aZ2XPshlPRxg4LDWwGF9Ljmsj/v9fny/Lr7/IIHDh97fG7z0kZc+TvF9MpW9G4Pbe2Bu8tmUOp/8ib+dzGVjnMOH8f2ceNy2KYHLJ97fm720xUufxo9nRPbZ+l/2p9iinxjKNXFc/Wfx8vk8K55p9hh6/I+hScc+jx9L3KwV+xNDZf1s/+e2TTo3+rkBAMB7370j+f7jnNh+jifnm/j/rIX2mbExZm9fJBfWF1n/rkXJBWOB/R95/2NA0N/dmhUYZg6ftgaobKny/txgp8WnL//Dp+RrE336MqFRFUzwJ9GnFFvU59x87xzcfkDmtHadTzqhaKMfS5W45+Z6S8cMr3dCJcPv/tMYsht/doO32LbNO/8rL32d4u6Xiq/lqW6body+MXYSeTXU9RvHhv5tVi4y/DbLft13Bpiudn2XUDliEftmrUyWR+yvDP5/n6bK9L1jZfrBtTIhwx8cKtP2kCsT7NruWJlcGsb2LHtc+aOxsArF99vieX0V33+d9d/Hkc8OL/3kpZ9T9L6pzNiWZeOSfW4qFjuzbGWUvVnfP/9osGmXwdfE8tmZUA6JtqX8kcjfdzfsexWwXwt7f/HSbi/9mlTOVk5fGzjtMXDysyXVNdn1N+j52Rys7fE3Uh1MfJ+Z6tzfQ2aL+va1IQ+U9W8ObP8wsrX6AaaWvglc/3DwIxpJz429odHG7O1P1xt7w/jF1sr9p6EQ9oYcBMCHvQ6FvNcYvYFx/v84JxYJtGXCzlK5+40LHa/r6njdNeTrujte18vxum6O18Ucr7vB8boqjtfd6HhdzPG6To7X9Xe8LuZ43RWO17m2I9frYo7X9XG8zrX8Bjle58qlH/rSaNJB6/3DcrNPzsOc2V5jhGT9/aML/H1js0ZWppt0QdsTS/a7T7/rrIGHxc5ocDuj//wTsTGDT9bAY0TZ3NWBVL+fXQesT/1HG55Y8hnYhu0vfHWo8/ksdSm/oc4jWCwYyZsnAktb23eRY2bWiJj92PPD3r17E/MrUDAXGeJioxbf3gKGWp9R0NCjOvqQYex94EOGsSb/77GHdt3/Hnv8t/899vhvMcfr/vfY47/977En1UWumWUYwxizMwX/DkmtjxOZxDA21emujxNZDiEiNisrS0BTMORHL5R3/oLhPuYWMgZKeRUNnxD83Bz5FXaNhk+IX2y97oCQI1zYdUCCim8sYt+sFSTT4FORXFbyVL9fPvK3/1YfyhvyKBpyxwxGRR06tWKO75gSr7Paik6rkANvS8d4oLFTKRTZN3o4R6ZGGy2dSm7yOS7CySczl/U2VTlVjPxdp6x1Ib/h3IoROyvnCKxoyMAqRP5u6FZgRQ2Np7jRB6st0aQ8gvpsZXVQyGWBSphdgROvS5WNa+VNZU+JkG8y2TdK67hQy43SEuwcHHL0WyGeR8R23V83ksKRv6ec+BpisIF1Qzk+wsnHeuOyPj2hn7A8beL8YgXDvzH+c6ExH0ubTpxlUzJebw8pmIub2cGO0WHJXESHyLOkww3uYEPHcaijX4fmwZdVi52HGTs4l9cyRR0aS5hPe6VCvonBh4McgonDQ7YLHb1LkFOawKuEg11HhGwXbiQuvI4M2a5Mxyfxo9L0Guyk4OfmyO9o19dgJ8Uvtl5XJuTXYLCrjEO055IXbgKHOlSS0WXDtQs3nFIOdt1utCt7sz5JxAw3KwOrqMF+3yeJVHZXjvxdt6w3zsqGPMqG3LGBfVmHunGMY7B1TB4EW2UNfcaxxmAre7PW4XLpr8N/bda6iO9flidunH+YQ305LuS3Twca/TjQ0Y/jQ26PB8ftCvNB6QRCcOnCtnyaXu9bgqXc5HNihJNPuVyWb6pyqhIJ//U+8ohFbFs0+Y9YoMsi0bIhAzs58vdNywrMcqOrYGw8ebWabdBGu3fv3s1+x2OR1Hngn0RbK8YD+hMLRnJGFxXjvU7isRN9DLS+2y8frCDuhqJNRUOhnWiEZ614qEAVSU8/6PEPd+j1KxUM367SDnadRLDrCAe7KhPsOtLBrpMJdh3lYFcVg13oF/B9aEr8v1E3UQ/AHP7htwpm/i/9L3GSY1vJQL9f3qGtVDV+l6rgczwWsW3WfqBqwfDzqEYYK1HBECdkB5DW8qxu7PswLmFK/L//1/f9L6Uz7a9tBYl5De33r4es6g4PZ9UM7beGsV+t6HM8FglmV/IfsUCXcfrVGuHGiP/c98J80D6FV5b7DLRdFz2FUJY1BTigHwl4rnMepzqw9ssnVb2rZejT0sW7FqHenUbiXTt4PvnSxbs2gffpJN51gueTP1286xB4n0HiXTd4PgXSxbsugXc9Eu/6wfPJSBfv+gTeZ5J4NwieT2a6eDcg8D6LxLth8Hyy0sW7IYF3IxLvxsHzKZgu3o0JvM8m8W4SPJ9C6eLdhMD7HBLvpsHzKZwu3k0JvM8l8W4WPJ8D0sW7GYH3eSTezYPnUyRdvJsTeJ9P4t0ieD5F08W7BYH3BSTeLYPnUyxdvFsSeF8o8J7UsEyccx4XkerdxcHzKZ4u3hcT6t0lJN6XBs/noHTxvpTAuxWJ92XB8ymRLt6XEXi3JvFuEzyfg9PFuw2Bd1sS73bB8ymZLt7tCLzbk3h3CJ7PIeni3YHAuyOJd6fg+RyaLt6dCLwvJ/HuHDyfw9LFuzOBdxcS767B8ymVLt5dCbyvIPHuFjyfw9PFuxuB95Uk3t2D51M6Xby7E3j3IPG+Kng+R6SL91UE3leTePcMns+R6eLdk8C7F4l37+D5HJUu3r0JvPuQePcNns/R6eLdl8C7H4l3/+D5lEkX7/4E3teQeA8Ink8sXbwHEHhfS+I9MHg+ZdPFeyCB93UC37nKFAg/j0Gkend98HyOTRfv6wn17gYS78HB8ymXLt6DCbxvJPEeEjyf49LFewiB900k3kOD53N8ungPJfAeRuI9PHg+J6SL93AC75tJvEcEz6d8uniPIPC+hcR7ZPB8KqSL90gC71tJvEcFz6diuniPIvC+jcR7dPB8TkwX79EE3rcLPPetzB9+HneQ6t2Y4PmclC7eYwj17k4S77HB86mcLt5jCbzvIvEeFzyfk9PFexyB990k3uOD51MlXbzHE3jfQ+I9IXg+VdPFewKB970k3hOD51MtXbwnEnjfR+I9KXg+1dPFexKB9/0CcfFCwryfB0j1bnLwfE5JF+/JhHr3IIn3Q8HzqZku3g8ReD9M4j0leD6npov3FALvR0i8pwbPp1a6eE8l8H6UxHta8HxOSxfvaQTej5F4Tw+eT+108Z5O4P04ifeM4Pmcni7eMwi8nyDxnhk8nzrp4j2TwPtJEu9ZwfM5I128ZxF4P0Xi/XTwfOqmi/fTBN7PkHjPDp5PvXTxnk3g/SyJ93PB86mfLt7PEXg/T+L9QvB8zkwX7xcIvF8k8Z4TPJ8G6eI9h8D7JRLvucHzOStdvOcSeM8j8Z4fPJ+G6eI9n8D7ZRLvBcHzaZQu3gsIvBeSeC8Knk/jdPFeROD9Con34uD5nJ0u3osJvF8l8V4SPJ8m6eK9hMD7NRLvpcHzOSddvJcSeL9O4r0seD5N08V7GYH3GyTey4Pnc266eC8n8H6TxHtF8HyapYv3CgLvt0i8VwbP57y0jYMn8H6bxHtV8Hyap4v3KgLvd0i8VwfP5/x08V5N4P0uifea4Pm0SBfvNQTe75F4rw2ezwXp4r2WwPt9Eu91wfNpmS7e6wi8PyDxXh88nwvTxXs9gfeHJN4bgudzUbp4byDw/ojE++Pg+VycLt4fE3hvJPHeFDyfS9LFexOB9yck3puD53NpunhvJvDeQuL9afB8WqWL96cE3p+ReH8ePJ/L0sX7cwLvL0i8twbPp3W6eG8l8P6SxHtb8HzapIv3NgLvr0i8vw6eT9t08f6awPsbEu9vg+fTLl28vyXw/o7E+/vg+bRPF+/vCbx/IPHeHjyfDunivZ3A+0cS7x3B8+mYLt47CLx/IvH+OXg+ndLF+2cC750k3ruC53N5unjvIvD+hcR7d/B8OqeL924C719JvPcEz6dLunjvIfD+jcT79+D5dE0X798JvP8g8f4zeD5XpIv3nwTee0m8I4UC59MtXbwNNiZcZMsjWojDO1/wfK5MF+98BN75SbwLBM+ne7p4FyDwziDxzgyeT4908c4k8M4i8S4YPJ+r0sW7IIF3IRLvwsHzuTpdvAsTeB9A4l0keD4908W7CIF3URLvYsHz6ZUu3sUIvA8k8S4ePJ/e6eJdnMD7IBLvEsHz6ZMu3iUIvA8m8S4ZPJ++6eJdksD7EBLvQ4Pn0y9dvA8l8D6MxLtU8Hz6p4t3KQLvw0m8SwfP55p08S5N4H0EifeRwfMZkC7eRxJ4H0XifXTwfK5NF++jCbzLkHjHguczMF28YwTeZUm8jwmez3Xp4n0MgfexJN7lguczKF28yxF4H0fifXzwfK5PF+/jCbxPIPEuHzyfG9LFuzyBdwUS74rB8xmcLt4VCbxPJPGuFDyfG9PFuxKB90kk3pWD5zMkXbwrE3ifTOJdJXg+N6WLdxUC76ok3tWC5zM0XbyrEXhXJ/GuETyfYeniXYPA+xQS75rB8xmeLt41CbxPJfGuFTyfm9PFuxaB92kk3rWD5zMiXbxrE3ifTuJdJ3g+t6SLdx0C7zNIvOsGz2dkunjXJfCuR+JdP3g+t6aLd30C7zNJvBsEz2dUung3IPA+i8S7YfB8bksX74YE3o1IvBsHz2d0ung3JvA+m8S7SfB8bk8X7yYE3ueQeDcNns8d6eLdlMD7XBLvZsHzGZMu3s0IvM8j8W4ePJ8708W7OYH3+STeLYLnMzZdvFsQeF9A4t0yeD53pYt3SwLvC0m8Lwqez7h08b6IwPtiEu9Lgudzd7p4X0LgfSmJd6vg+YxPF+9WBN6XkXi3Dp7PPeni3ZrAuw2Jd9vg+UxIF++2BN7tSLzbB8/n3nTxbk/g3YHEu2PwfCami3dHAu9OJN6XB8/nvnTxvpzAuzOJd5fg+UxKF+8uBN5dSbyvCJ7P/enifQWBdzcS7yuD5/NAunhfSeDdncS7R/B8JqeLdw8C76tIvK8Ons+D6eJ9NYF3TxLvXsHzeShdvHsRePcm8e4TPJ+H08W7D4F3X0Me+b10opemxP/71IKRyGleOt1LZ3ipnpfO9NJZXmrkpbO9dI6XzvXSeV4630sXeOlCL13kpUu81MpLrb3U1kvtvdTRS5d7qYuXrvDSlV7q4aWrvdTLS3281M9L13jpWi9d56VBXrrBSzd66SYvDfPSzV66xUu3euk2L93upTu8dKeX7vLS3V66x0v3euk+L93vpQe89KCXHvbSI1561EuPeelxLz3hpSe99JSXnvHSs1563ksveuklL83z0steWuilV7z0qpew1jzWP8ea3FgnGmsXYz1drPGKdUexFibWZ8SagVjHDmurYb0vrEGFdZGwVg/Wj8GaJlhnA2s/YD0CaORDtx1a4tC3huYydIChTQu9VGh4QlcSWofQ34MmHHTKoJ0FPSdoDEH3Blos0AeBZgV0FDC3H/PNMQca83IxVxTzFzGnDvO8MPcI82EwRwPzBjCWHeOrMeYX41AxNhLj9TCGDOOaMNYG4z8wJgHfyfHtFt8T8Y0L313wLQDvp/HOFO/x8G4J7zvwDI7nQjyrIH5GTIc4A/c+9MfoI1Bvs7d8xjp/kvdP2YLB+wqcW7OgPZ+ahjz6Gdoh7DjR53gsEsyu5D9igS6LRE8h6M9aODj8fgbKsry9LPNZ6kt/Xln+s1k59y8Ufh7X5LIsU3HG/ahKfJ94Xaps8hvOrWKwZ4BAuRfMDD+PawU41CL0ZQMFONQmcLhOgEMdAodBAhzqEjhcL8ChPoHDDQIcGhA4DBbg0JDA4UYBDo0JHIYIcGhC4HCTAIemBA5DBTg0I3AYJsChOYHDcAEOLQgcbhbg0JLAYYQAh41Z4edxiwCHiwn1YaQAh0sJHG4V4HAZgcMoAQ5tCBxuE+DQjsBhtACHDgQOtwtw6ETgcIcAh84EDmMEOHQlcLhTgEM3AoexAhy6EzjcJcDhKgKHcQIcehI43C3AoTeBw3gBDn0JHO5RGO9B4DBBgMMAAod7BTgMJHCYKMChTIHw87hPgMP1hPowSYDDYAKH+wU4DCFweECAw1ACh8kCHIYTODwowGEEgcNDAhxGEjg8LMBhFIHDFAEOowkcHhHgsDJ/+HlMFeAwhlAfHhXgMJbAYZoAh3EEDo8JcBhP4DBdgMMEAofHBThMJHCYIcBhEoHDEwIcFhLGic0U4DCZUB+eFODwEIHDLAEOUwgcnhLgMJXA4WkBDtMIHJ4R4DCdwGG2AIcZBA7PCnCYSeDwnACHWQQOzwtweJrA4QUBDrMJHF4U4PAcgcMcAQ4vEDi8JMBhDoHDXAEOcwkc5glwmE/gMF+AwwICh5cFOCwicFggwGExgcNCAQ5LCBwWCXBYSuDwigCHZQQOiwU4LCdweFWAwwoChyUK40AIHF4T4LCKwGGpAIfVBA6vC3BYQ+CwTIDDWgKHNwQ4rCNwWC7AYT2Bw5sCHDYQOKwQ4PAxgcNbAhw2ETisFOCwmcDhbQEOnxI4rBLg8DmBwzsCHLYSOKwW4LCNwOFdAQ5fEzisEeDwLYHDewIcvidwWCvAYTuBw/sCHHYQOKwT4PAzgcMHAhx2ETisF+Cwm8DhQwEOewgcNghw+J3A4SMBDn8SOHwswCFCWC9sowCHfAQOmwQ4FCBw+ESAQyaBw2aFdeUIHLYIcChM4PCpAIciBA6fCXAoRuDwuQCH4gQOXwhwKEHgsFWAQ0kChy8FOBxK4LBNgEMpAoevBDiUJnD4WoDDkQQO3whwOJrA4VsBDjECh+8EOBxD4PC9AIdyBA4/CHA4nsBhuwCH8gQOPwpwqEjgsEOAQyUCh58EOFQmcPhZgEMVAoedhf7vc6hG4LBLgEMNAodfBDjUJHDYLcChFoHDrwIcahM47BHgUIfA4TcBDnUJHH4X4FCfwOEPAQ4NCBz+FODQkMBhrwCHxgQOkcL/9zk0IXCICnBoSuCQT4BDMwKH/AIcmhM4FBDg0ILAIUOAQ0sCh0wBDhcROGQJcLiEwKGgAIdWBA6FBDi0JnAoLMChLYHDAQIc2hM4FBHg0JHAoagAh8sJHIoJcOhC4HCgAIcrCByKC3C4ksDhIAEOPQgcSghwuJrA4WABDr0IHEoKcOhD4HCIgUN+L1Xy0pT4f1/r2TfQS9d5aZCXrvfSDV4a7KUbvTTESzd5aaiXhnlpuJdu9tIIL93ipZFeutVLo7x0m5dGe+l2L93hpTFeutNLY710l5fGeeluL4330j1emuCle7000Uv3eWmSl+73Etanx9rsWJcca3JjPWqsxYx1iLEGL9afxdqrWHcUa25ivUmstYh1BrHGHtaXw9pqWFcMa2phPSmspYR1hLCGDtaPwdopWDcEa2ZgvQislYB1AqCRD314aKNDFxya2NCDhhYydIChgQv9V2ifQvcTmpfQe4TWIXT+oHEHfTdom0HXC5pW0HOClhF0fKBhA/0WaJdAtwOaFdBrgFYB5uljjjrmZ2NuMublYk4q5mNiLiLm4WEOGuZfYe4R5t1gzgnmW2CuAcbZY4w5xldjbDHG1WJMKcZTYiwhxtFhDBnGT2HsEMbNYMwIxktgrAC+k+MbMb6P4tsgvovhmxC+h+BbAN6D4x0w3n/i3R/ee+GdD9534Fkfz7l4xsPzDWJ7xLWI6RDP4F6O+xj6cPRfaLuot9lbvqQ6X6VL835bqk6pMLdFoznDhrVqV776tiaD5vUZd9aWneO3e/+/bMFI5JpCwdsIzh9Q6N/5pLouMY9UNh1q7I8q+RyPRYLZlfxHLNBlkWj/QuH3RxYODr+fgbIsX9BclvnLFgxelofxyvKfzcr5sMLh51FKgEPBzPDzOFyAQy2CZkZpAQ61CRyOEOBQh8DhSAEOdQkcjhLgUJ/A4WgBDg0IHMoIcGhI4BAT4NCYwKGsAIcmBA7HCHBoSuBwrACHZgQO5QQ4NCdwOE6AQwsCh+MFOLQkcDhBgMPGrPDzKC/A4WJCfaggwOFSAoeKAhwuI3A4UYBDGwKHSgIc2hE4nCTAoQOBQ2UBDp0IHE4W4NCZwKGKAIeuBA5VBTh0I3CoJsChO4FDdQEOVxE41BDg0JPA4RQBDr0JHGoKcOhL4HCqAIf+BA61BDgMIHA4TYDDQAKH2gIcyhQIP4/TBThcT6gPdQQ4DCZwOEOAwxACh7oCHIYSONQT4DCcwKG+AIcRBA5nCnAYSeDQQIDDKAKHswQ4jCZwaCjAYWX+8PNoJMBhDKE+NBbgMJbA4WwBDuMIHJoIcBhP4HCOAIcJBA5NBThMJHA4V4DDJAKHZgIcFhLGiZ0nwGEyoT40F+DwEIHD+QIcphA4tBDgMJXA4QIBDtMIHFoKcJhO4HChAIcZBA4XCXCYSeBwsQCHWQQOlwhweJrA4VIBDrMJHFoJcHiOwOEyAQ4vEDi0FuAwh8ChjQCHuQQObQU4zCdwaCfAYQGBQ3sBDosIHDoIcFhM4NBRgMMSAodOAhyWEjhcLsBhGYFDZwEOywkcughwWEHg0FVhHAiBwxUCHFYROHQT4LCawOFKAQ5rCBy6C3BYS+DQQ4DDOgKHqwQ4rCdwuFqAwwYCh54CHD4mcOglwGETgUNvAQ6bCRz6CHD4lMChrwCHzwkc+glw2Erg0F+AwzYCh2sEOHxN4DBAgMO3BA7XCnD4nsBhoACH7QQO1wlw2EHgMEiAw88EDtcLcNhF4HCDAIfdBA6DBTjsIXC4UYDD7wQOQwQ4/EngcJMAhwhhLbShAhzyETgME+BQgMBhuACHTAKHmxXWlSNwGCHAoTCBwy0CHIoQOIwU4FCMwOFWAQ7FCRxGCXAoQeBwmwCHkgQOowU4HErgcLsAh1IEDncIcChN4DBGgMORBA53CnA4msBhrACHGIHDXQIcjiFwGCfAoRyBw90CHI4ncBgvwKE8gcM9AhwqEjhMEOBQicDhXgEOlQkcJgpwqELgcJ8Ah2oEDpMEONQgcLhfgENNAocHBDjUInCYLMChNoHDgwIc6hA4PCTAoS6Bw8MCHOoTOEwR4NCAwOERAQ4NCRymCnBoTODwqACHJgQO0wQ4NCVweEyAQzMCh+kCHJoTODwuwKEFgcMMAQ4tCRyeEOBwEYHDTAEOlxA4PCnAoRWBwywBDq0JHJ4S4NCWwOFpAQ7tCRyeEeDQkcBhtgCHywkcnhXg0IXA4TkBDlcQODwvwOFKAocXBDj0IHB4UYDD1QQOcwQ49CJweEmAQx8Ch7kGDvm9dJKXpsT/+3Dv2tJeOsJLR3rpKC8d7aUy+E0vlfXSMV461kvlvHScl4730gleKu+lCl6q6KUTvVTJSyd5qbKXTvZSFS9V9VI1L1X3Ug0vneKlml461Uu1vHSal2p76XQv1fHSGV7C+vRYmx3rkmNNbqxHjbWYsQ4x1uDF+rNYexXrjmLNTaw3ibUWsc4g1tjD+nJYWw3rimFNLawnhbWUsI4Q1tDB+jFYOwXrhmDNDKwXgbUSsE4ANPKhDw9tdOiCQxMbetDQQoYOMDRwof8K7VPofkLzEnqP0DqEzh807qDvBm0z6HpB0wp6TtAygo4PNGyg3wLtEuh2QLMCeg3QKsA8fcxRx/xszE3GvFzMScV8TMxFxDw8zEHD/CvMPcK8G8w5wXwLzDXAOHuMMcf4aowtxrhajCnFeEqMJcQ4Oowhw/gpjB3CuBmMGcF4CYwVwHdyfCPG91F8G8R3MXwTwvcQfAvAe3C8A8b7T7z7w3svvPPB+w486+M5F894eL5BbI+4FjEd4hncy3EfQx+O/gttF/U2e8tnrPMnev+UTZgjXqVL835bqk6pMLdFoznDhrVqV776tiaD5vUZd9aWneO3x88tVdieD64Jmse8wrb+6CSf47FIMLuS/4gFuiwSPaxw+P3RPGMext/PQFmWL2guywKW+jKfV5b/bFbO8wll+bIAh4KZ4eexQIBDLYJmxkIBDrUJHBYJcKhD4PCKAIe6BA6LBTjUJ3B4VYBDAwKHJQIcGhI4vCbAoTGBw1IBDk0IHF4X4NCUwGGZAIdmBA5vCHBoTuCwXIBDCwKHNwU4tCRwWCHAYWNW+Hm8JcDhYkJ9WCnA4VICh7cFOFxG4LBKgEMbAod3BDi0I3BYLcChA4HDuwIcOhE4rBHg0JnA4T0BDl0JHNYKcOhG4PC+AIfuBA7rBDhcReDwgQCHngQO6wU49CZw+FCAQ18Chw0CHPoTOHwkwGEAgcPHAhwGEjhsFOBQpkD4eWwS4HA9oT58IsBhMIHDZgEOQwgctghwGErg8KkAh+EEDp8JcBhB4PC5AIeRBA5fCHAYReCwVYDDaAKHLwU4rMwffh7bBDiMIdSHrwQ4jCVw+FqAwzgCh28EOIwncPhWgMMEAofvBDhMJHD4XoDDJAKHHwQ4LCSME9suwGEyoT78KMDhIQKHHQIcphA4/CTAYSqBw88CHKYROOwU4DCdwGGXAIcZBA6/CHCYSeCwW4DDLAKHXwU4PE3gsEeAw2wCh98EODxH4PC7AIcXCBz+EOAwh8DhTwEOcwkc9iro5BA4RA74v89hAYFDVIDDIgKHfAIcFhM45BfgsITAoYAAh6UEDhkCHJYROGQKcFhO4JAlwGEFgUNBAQ4rCRwKCXBYReBQWIDDagKHAwQ4rCFwKCLAYS2BQ1EBDusIHIoJcFhP4HCgAIcNBA7FBTh8TOBwkACHTQQOJQQ4bCZwOFiAw6cEDiUFOHxO4HCIAIetBA6HCnDYRuBwmACHrwkcSglw+JbA4XABDt8TOJQW4LCdwOEIAQ47CByOFODwM4HDUQIcdhE4HC3AYTeBQxkBDnsIHGICHH4ncCgrwOFPAodjBDhECGszHivAIR+BQzkBDgUIHI4T4JBJ4HC8AIeCBA4nCHAoTOBQXoBDEQKHCgIcihE4VBTgUJzA4UQBDiUIHCoJcChJ4HCSAIdDCRwqC3AoReBwsgCH0gQOVQQ4HEngUFWAw9EEDtUEOMQIHKoLcDiGwKGGAIdyBA6nCHA4nsChpgCH8gQOpwpwqEjgUEuAQyUCh9MEOFQmcKgtwKEKgcPpAhyqETjUEeBQg8DhDAEONQkc6gpwqEXgUE+AQ20Ch/oCHOoQOJwpwKEugUMDAQ71CRzOEuDQgMChoQCHhgQOjQQ4NCZwaCzAoQmBw9kCHJoSODQR4NCMwOEcAQ7NCRyaCnBoQeBwrgCHlgQOzQQ4XETgcJ4Ah0sIHJoLcGhF4HC+AIfWBA4tBDi0JXC4QIBDewKHlgIcOhI4XCjA4XICh4sEOHQhcLhYgMMVBA6XCHC4ksDhUgEOPQgcWglwuJrA4TIBDr0IHFoLcOhD4NDGwCG/lyp7aUr8vxcUjkQWemmRl17x0mIvveqlJV56zUtLvfS6l5Z56Q0vLffSm15a4aW3vLTSS297aZWX3vHSai+966U1XnrPS2u99L6X1nnpAy+t99KHXtrgpY+89LGXNnppk5c+8dJmL2F9eqzNjnXJsSY31qPGWsxYhxhr8GL9Way9inVHseYm1pvEWotYZxBr7GF9OaythnXFsKYW1pPCWkpYRwhr6GD9GKydgnVDsGYG1ovAWglYJwAa+dCHhzY6dMGhiQ09aGghQwcYGrjQf4X2KXQ/oXkJvUdoHULnDxp30HeDthl0vaBpBT0naBlBxwcaNtBvgXYJdDugWQG9BmgV/DVP30uYn425yZiXizmpmI+JuYiYh4c5aJh/hblHmHeDOSeYb4G5BhhnjzHmGF+NscUYV4sxpRhPibGEGEeHMWQYP4WxQxg3gzEjGC+BsQL4To5vxPg+im+D+C6Gb0L4HoJvAXgPjnfAeP+Jd39474V3PnjfgWd9POfiGQ/PN4jtEdcipkM8g3s57mPow9F/oe2i3mZv+Yx1vmxBj03CHPEqXZr321J1SoW5LRrNGTasVbvy1bc1GTSvz7iztuwcv937/zj/5cL2fF4uHDyPtsb+qLLP8VgkmF3Jf8QCXRaJzi8cfn9E5LAvU9t10YKZ4efRToBDLYLOQnsBDrUJHDoIcKhD4NBRgENdAodOAhzqEzhcLsChAYFDZwEODQkcughwaEzg0FWAQxMChysEODQlcOgmwKEZgcOVAhyaEzh0F+DQgsChhwCHlgQOVwlw2JgVfh5XC3C4mFAfegpwuJTAoZcAh8sIHHoLcGhD4NBHgEM7Aoe+Ahw6EDj0E+DQicChvwCHzgQO1whw6ErgMECAQzcCh2sFOHQncBgowOEqAofrBDj0JHAYJMChN4HD9QIc+hI43CDAoT+Bw2ABDgMIHG4U4DCQwGGIAIcyBcLP4yYBDtcT6sNQAQ6DCRyGCXAYQuAwXIDDUAKHmwU4DCdwGCHAYQSBwy0CHEYSOIwU4DCKwOFWAQ6jCRxGCXBYmT/8PG4T4DCGUB9GC3AYS+BwuwCHcQQOdwhwGE/gMEaAwwQChzsFOEwkcBgrwGESgcNdAhwWEsaJjRPgMJlQH+4W4PAQgcN4AQ5TCBzuEeAwlcBhggCHaQQO9wpwmE7gMFGAwwwCh/sEOMwkcJgkwGEWgcP9AhyeJnB4QIDDbAKHyQIcniNweFCAwwsEDg8JcJhD4PCwAIe5BA5TBDjMJ3B4RIDDAgKHqQIcFhE4PCrAYTGBwzQBDksIHB4T4LCUwGG6AIdlBA6PC3BYTuAwQ4DDCgKHJxTGgRA4zBTgsIrA4UkBDqsJHGYJcFhD4PCUAIe1BA5PC3BYR+DwjACH9QQOswU4bCBweFaAw8cEDs8JcNhE4PC8AIfNBA4vCHD4lMDhRQEOnxM4zBHgsJXA4SUBDtsIHOYKcPiawGGeAIdvCRzmC3D4nsDhZQEO2wkcFghw2EHgsFCAw88EDosEOOwicHhFgMNuAofFAhz2EDi8KsDhdwKHJQIc/iRweE2AQ4Swnt9SAQ75CBxeF+BQgMBhmQCHTAKHNxTWlSNwWC7AoTCBw5sCHIoQOKwQ4FCMwOEtAQ7FCRxWCnAoQeDwtgCHkgQOqwQ4HErg8I4Ah1IEDqsFOJQmcHhXgMORBA5rBDgcTeDwngCHGIHDWgEOxxA4vC/AoRyBwzoBDscTOHwgwKE8gcN6AQ4VCRw+FOBQicBhgwCHygQOHwlwqELg8LEAh2oEDhsFONQgcNgkwKEmgcMnAhxqEThsFuBQm8BhiwCHOgQOnwpwqEvg8JkAh/oEDp8LcGhA4PCFAIeGBA5bBTg0JnD4UoBDEwKHbQIcmhI4fCXAoRmBw9cCHJoTOHwjwKEFgcO3AhxaEjh8J8DhIgKH7wU4XELg8IMAh1YEDtsFOLQmcPhRgENbAocdAhzaEzj8JMChI4HDzwIcLidw2CnAoQuBwy4BDlcQOPwiwOFKAofdAhx6EDj8KsDhagKHPQIcehE4/CbAoQ+Bw+8H2PKw/n7ZgpFI+YL/vq5Kl+b9tlSdUmFui0Zzhg1r1a589W1NBs3rM+6sLTvHb/f+/+Sy4dp1bNyufEa7/gjOKxq2D6iTZTwf8iddl8qHyoZzyxQMfu6fBjb//BMJfs3J8TwitusiBbxU2EsZfj9qtOGkiK1MXfOpFOHkc2LElk9ye0n1+2j/xxS0tctyBfcdiEXsm5XBAEM/my/h773ZdbHIvjzNmRsazV+/nT++3xu/DpW7WJJhLoV0grGQTjAW0t69e3f7HY9FUueHfxL9ixb5e5+vSCQnlGi8JBKP4aRY4i9F7GCsd6+HCHcvF7seNtqVvRUIns/dXj7RaJHgNiWWTyq/DVyjQX3NrphWlmi42RUx8bpAxtmuieL8gx3KO3+RcO06wdGuAiHbdbyjXRkh21WioJtdmSHbdVzEza6skO2CTYc42FWQYFcpB7sKEewq6WBXYYNduK8iEq+f/d9F/m7PaDuop6gT4A9f8bsFM///nfz4WNgfEJx9QcP9r6D1Xu8SuB5QxF7XihjqGoK+k32OxyK2zepbkSLh51HU2OaqRP7X5pLbnPVBB2WU+MAVJMZDOVnzKWqIf4sZ20MVn+OxSDC7kv+IBbqM0x6KOeSBzdrfHpj+/jb6zz8RW397oEN/W5xXv/YZa7suWpxQvw4S4IC+LeC5znmUEOBQi6DgebAAh9oEDiUFONQhcDhEgENdAodDBTjUJ3A4TIBDAwKHUgIcGhI4HC7AoTGBQ2kBDk0IHI4Q4NCUwOFIAQ7NCByOEuDQnMDhaAEOLQgcyghwaEngEBPgsDEr/DzKCnC4mFAfjhHgcCmBw7ECHC4jcCgnwKENgcNxAhzaETgcL8ChA4HDCQIcOhE4lBfg0JnAoYIAh64EDhUFOHQjcDhRgEN3AodKAhyuInA4SYBDTwKHygIcehM4nCzAoS+BQxUBDv0JHKoKcBhA4FBNgMNAAofqAhzKFAg/jxoCHK4n1IdTBDgMJnCoKcBhCIHDqQIchhI41BLgMJzA4TQBDiMIHGoLcBhJ4HC6AIdRBA51BDiMJnA4Q4DDyvzh51FXgMMYQn2oJ8BhLIFDfQEO4wgczhTgMJ7AoYEAhwkEDmcJcJhI4NBQgMMkAodGAhwWEsaJNRbgMJlQH84W4PAQgUMTAQ5TCBzOEeAwlcChqQCHaQQO5wpwmE7g0EyAwwwCh/MEOMwkcGguwGEWgcP5AhyeJnBoIcBhNoHDBUa9naqRfXo70EyAXgDmymOeOOZIY34w5sZiXijmRGI+IObCYR4Y5kD9Nf/HS5j3gTkPGO+Pse4Y540xzhjfi7GtGNeJMY0Yz4exbBjHhTFMGL+DsSsYt4ExC/hej2/V+E6Lb5T4PodvU/gug28SeB+Pd9F4D4t3kHj/hndPeO+Cdw543sazJp6z8IyB+BqxJeIqxBS4n+Jegn4UfQjaD+oOuGVvVh0cqOVa9Xag02HNJ1HbI1UeLY3toarP8VgkmF3Jf8QCXcbRQ2npkAc2q97OhcHzCUtv56/qZOWDugjbk69L5e9FvPr1z2b17SJC/bpYgANDb+cSAQ4MvZ1LBTgw9HZaCXBg6O1cJsCBobfTWoADQ2+njQAHht5OWwEODL2ddgIcGHo77QU4MPR2OghwYOjtdBTgwNDb6STAgaG3c7kAB4beTmcBDgy9nS4CHBh6O10FODD0dq4Q4MDQ2+kmwIGht3OlAAeG3k53AQ4MvZ0eAhwYejtXCXBg6O1cLcCBobfTU4ADQ2+nlwAHht5ObwEODL2dPgIcGHo7fQU4MPR2+glwYOjt9BfgwNDbuUaAA0NvZ4AAB4bezrUCHBh6OwMFODD0dq4T4MDQ2xkkwIGht3O9AAeG3s4NAhwYejuDBTgw9HZuFODA0NsZIsCBobdzkwAHht7OUAEODL2dYQIcGHo7wwU4MPR2bhbgwNDbGSHAgaG3c4sAB4bezkgBDgy9nVsFODD0dkYJcGDo7dwmwIGhtzNagANDb+d2AQ4MvZ07BDgw9HbGCHBg6O3cKcCBobczVoADQ2/nLgEODL2dcQIcGHo7dwtwYOjtjBfgwNDbuUeAA0NvZ4KBAzRFqkX26e1AMwF6AZgrj3nimCON+cGYG4t5oZgTifmAmAuHeWCYA4X5P5j7gnkfmPOA8f4Y645x3hjjjPG9GNuKcZ0Y04jxfBjLhnFcGMOE8TsYu4JxGxizgO/1+FaN77T4Ronvc/g2he8y+CaB9/F4F433sHgHifdvePeE9y5454DnbTxr4jkLzxiIrxFbIq5CTIH7Ke4l6EfRh6D9oO6AW/Zm1cGpFLHr7UCnw5pPorZHqjzuNbaHaj7HY5FgdiX/EQt0GUcP5V6HPLBZ9XYmBs8nLL2dv0y28kFdhO3J16Xy9z5e/dpnrO266H2E+jVJgANDb+d+AQ4MvZ0HBDgw9HYmC3Bg6O08KMCBobfzkAAHht7OwwIcGHo7UwQ4MPR2HhHgwNDbmSrAgaG386gAB4bezjQBDgy9nccEODD0dqYLcGDo7TwuwIGhtzNDgANDb+cJAQ4MvZ2ZAhwYejtPCnBg6O3MEuDA0Nt5SoADQ2/naQEODL2dZwQ4MPR2ZgtwYOjtPCvAgaG385wAB4bezvMCHBh6Oy8IcGDo7bwowIGhtzNHgANDb+clAQ4MvZ25AhwYejvzBDgw9HbmC3Bg6O28LMCBobezQIADQ29noQAHht7OIgEODL2dVwQ4MPR2FgtwYOjtvCrAgaG3s0SAA0Nv5zUBDgy9naUCHBh6O68LcGDo7SwT4MDQ23lDgANDb2e5AAeG3s6bAhwYejsrBDgw9HbeEuDA0NtZKcCBobfztgAHht7OKgEODL2ddwQ4MPR2VgtwYOjtvCvAgaG3s0aAA0Nv5z0BDgy9nbUCHBh6O+8LcGDo7awT4MDQ2/lAgANDb2e9AAeG3s6HBg4Q6Kge2ae3A80E6AVgrjzmiWOONOYHY24s5oViTiTmA2IuHOaBYQ4U5v9g7gvmfWDOA8b7Y6w7xnljjDPG92JsK8Z1YkwjxvNhLBvGcWEME8bvYOwKxm1gzAK+1+NbNb7T4hslvs/h2xS+y+CbBN7H41003sPiHSTev+HdE9674J0DnrfxrInnLDxjIL5GbIm4CjEF7qe4l6AfRR+C9oO6A27Zm1UHZ0Ahu94OdDqs+SRqe6TKY4OxPVT3OR6LBLMr+Y9YoMs4eigbHPLAZtXb+Sh4PmHp7RTAP1Y+qIuwPfm6VP5+zKtf+4y1XRf9mFC/NgpwYOjtbBLgwNDb+USAA0NvZ7MAB4bezhYBDgy9nU8FODD0dj4T4MDQ2/lcgANDb+cLAQ4MvZ2tAhwYejtfCnBg6O1sE+DA0Nv5SoADQ2/nawEODL2dbwQ4MPR2vhXgwNDb+U6AA0Nv53sBDgy9nR8EODD0drYLcGDo7fwowIGht7NDgANDb+cnAQ4MvZ2fBTgw9HZ2CnBg6O3sEuDA0Nv5RYADQ29ntwAHht7OrwIcGHo7ewQ4MPR2fhPgwNDb+V2AA0Nv5w8BDgy9nT8FODD0dvYKcGDo7USK/t/nwNDbiQpwYOjt5BPgwNDbyS/AgaG3U0CAA0NvJ0OAA0NvJ1OAA0NvJ0uAA0Nvp6AAB4beTiEBDgy9ncICHBh6OwcIcGDo7RQR4MDQ2ykqwIGht1NMgANDb+dAAQ4MvZ3iAhwYejsHCXBg6O2UEODA0Ns5WIADQ2+npAAHht7OIQIcGHo7hwpwYOjtHCbAgaG3U0qAA0Nv53ABDgy9ndICHBh6O0cIcGDo7RwpwIGht3OUgQM0RWpE9untQDMBegGYK4954pgjjfnBmBuLeaGYE4n5gJgLh3lgmAOF+T+Y+4J5H5jzgPH+GOuOcd4Y44zxvRjbinGdGNOI8XwYy4ZxXBjDhPE7GLuCcRsYs4Dv9fhWje+0+EaJ73P4NoXvMvgmgffxeBeN97B4B4n3b3j3hPcueOeA5208a+I5C88YiK8RWyKuQkyB+ynuJehH0Yeg/aDugFv2ZtXBOTFi19vZ6KC3s9Ggt3O0sT3U8DkeiwSzK/mPWKDLOHooFg6Jm1Vvp0zwfMLS28nAP1Y+qIuwPfm6VP7GePVrn7G266KxouHnUVaAA0Nv5xgBDgy9nWMFODD0dsoJcGDo7RwnwIGht3O8AAeG3s4JAhwYejvlBTgw9HYqCHBg6O1UFODA0Ns5UYADQ2+nkgAHht7OSQIcGHo7lQU4MPR2ThbgwNDbqSLAgaG3U1WAA0Nvp5oAB4beTnUBDgy9nRoCHBh6O6cIcGDo7dQU4MDQ2zlVgANDb6eWAAeG3s5pAhwYeju1BTgw9HZOF+DA0NupI8CBobdzhgAHht5OXQEODL2degIcGHo79QU4MPR2zhTgwNDbaSDAgaG3c5YAB4beTkMBDgy9nUYCHBh6O40FODD0ds4W4MDQ22kiwIGht3OOAAeG3k5TAQ4MvZ1zBTgw9HaaCXBg6O2cJ8CBobfTXIADQ2/nfAEODL2dFgIcGHo7FwhwYOjttBTgwNDbuVCAA0Nv5yIBDgy9nYsFODD0di4R4MDQ27lUgANDb6eVAAeG3s5lAhwYejutBTgw9HbaCHBg6O20FeDA0NtpJ8CBobfTXoADQ2+ngwAHht5ORwEODL2dTka9nVMi+/R2oJkAvQDMlcc8ccyRxvxgzI3FvFDMicR8QMyFwzwwzIHC/B/MfcG8D8x5wHh/jHXHOG+Mccb4XoxtxbhOjGnEeD6MZcM4LoxhwvgdjF3BuA2MWcD3enyrxndafKPE9zl8m8J3GXyTwPt4vIvGe1i8g8T7N7x7wnsXvHPA8zaeNfGchWcMxNeILRFXIabA/RT3EvSj6EPQflB3wC17s+rgQLMkYtDCwfnQ6bDmk6jtkSqPy43t4RSf47FIMLuS/4gFuixC0UO53CEPbFa9nc7B8wlLbycT/1j5oC7C9uTrUvnbhVe/9hlruy7ahVC/uhrzMLd5755xTPD7RvRY79xyBe3leYVAeTJ0g7oJcGDoBl0pwIGhG9RdgANDN6iHAAeGbtBVAhwYukFXC3Bg6Ab1FODA0A3qJcCBoRvUW4ADQzeojwAHhm5QXwEODN2gfgIcGLpB/QU4MHSDrhHgwNANGiDAgaEbdK0AB4Zu0EABDgzdoOsEODB0gwYJcGDoBl0vwIGhG3SDAAeGbtBgAQ4M3aAbBTgwdIOGCHBg6AbdJMCBoRs0VIADQzdomAAHhm7QcAEODN2gmwU4MHSDRghwYOgG3SLAgaEbNFKAA0M36FYBDgzdoFECHBi6QbcJcGDoBo0W4MDQDbpdgANDN+gOAQ4M3aAxAhwYukF3CnBg6AaNFeDA0A26S4ADQzdonAAHhm7Q3QIcGLpB4wU4MHSD7hHgwNANmiDAgaEbdK8AB4Zu0EQBDgzdoPsEODB0gyYJcGDoBt0vwIGhG/SAAAeGbtBkAQ4M3aAHBTgwdIMeEuDA0A16WIADQzdoigAHhm7QIwIcGLpBUwU4MHSDHhXgwNANmibAgaEb9JgAB4Zu0HQDB2ij1Izs0w2CZgL0AjBXHvPEMUca84MxNxbzQjEnEvMBMRcO88AwBwrzfzD3BfM+MOcB4/0x1h3jvDHGGeN7MbYV4zoxphHj+TCWDeO4MIYJ43cwdgXjNjBmAd/r8a0a32nxjRLf5/BtCt9l8E0C7+PxLhrvYfEOEu/f8O4J713wzgHP23jWxHMWnjEQXyO2RFyFmAL3U9xL0I+iD0H7Qd0Bt+wtWdsjiA6QQT/kL60W6HQk55PqusQ8Utn0eFFbe6jpczwWCWZX8h+xQJdxdF0ed8gDm1U3aEbwfMLSDcrCP1Y+qIuwPfm6VP4+watf+4y1XRd9glC/ZgpwYOjtPCnAgaG3M0uAA0Nv5ykBDgy9nacFODD0dp4R4MDQ25ktwIGht/OsAAeG3s5zAhwYejvPC3Bg6O28IMCBobfzogAHht7OHAEODL2dlwQ4MPR25gpwYOjtzBPgwNDbmS/AgaG387IAB4bezgIBDgy9nYUCHBh6O4sEODD0dl4R4MDQ21kswIGht/OqAAeG3s4SAQ4MvZ3XBDgw9HaWCnBg6O28LsCBobezTIADQ2/nDQEODL2d5QIcGHo7bwpwYOjtrBDgwNDbeUuAA0NvZ6UAB4beztsCHBh6O6sEODD0dt4R4MDQ21ktwIGht/OuAAeG3s4aAQ4MvZ33BDgw9HbWCnBg6O28L8CBobezToADQ2/nAwEODL2d9QIcGHo7HwpwYOjtbBDgwNDb+UiAA0Nv52MBDgy9nY0CHBh6O5sEODD0dj4R4MDQ29kswIGht7NFgANDb+dTAQ4MvZ3PBDgw9HY+F+DA0Nv5QoADQ29nqwAHht7OlwIcGHo72wQ4MPR2vhLgwNDb+drAAZoip0b26e1AMwF6AZgrj3nimCON+cGYG4t5oZgTifmAmAuHeWCYA4X5P5j7gnkfmPOA8f4Y645x3hjjjPG9GNuKcZ0Y04jxfBjLhnFcGMOE8TsYu4JxGxizgO/1+FaN77T4Ronvc/g2he8y+CaB9/F4F433sHgHifdvePeE9y5454DnbTxr4jkLzxiIrxFbIq5CTIH7Ke4l6EfRh6D9oO6AW/Zm1cGBZsneA/adH0SfBzod1nwStT1S5fGNsT2c6nM8FglmV/IfsUCXcfRQvnHIA5tVb+fb4PlEDXo7UYPeTvSffyK2ugvbk69L5e93Bq747fzxvd91LvpWQc/9vqiNX/ZmLf8f0l/+f18QyWl3qtOz+y6XPi/73FRstjvWlcTrrPaV9e61xwW/30aPjZ9vbQc/GvsXFz+ON/pxvIMfO3j3i33G2q6j6Eb9JMCBoRv1swAHhm7UTgEODN2oXQIcGLpRvwhwYOhG7RbgwNCN+lWAA0M3ao8AB4Zu1G8CHBi6Ub8LcGDoRv0hwIGhG/WnAAeGbtReAQ4M3ahIsf/7HBi6UVEBDgzdqHwCHBi6UfkFODB0owoIcGDoRmUIcGDoRmUKcGDoRmUJcGDoRhUU4MDQjSokwIGhG1VYgANDN+oAAQ4M3agiAhwYulFFBTgwdKOKCXBg6EYdKMCBoRtVXIADQzfqIAEODN2oEgIcGLpRBwtwYOhGlRTgwNCNOkSAA0M36lABDgzdqMMEODB0o0oJcGDoRh0uwIGhG1VagANDN+oIAQ4M3agjBTgwdKOOEuDA0I06WoADQzeqjAAHhm5UTIADQzeqrAAHhm7UMQIcGLpRxwpwYOhGlRPgwNCNOk6AA0M36ngBDgzdqBMEODB0o8oLcGDoRlUQ4MDQjaoowIGhG3WiAAeGblQlAQ4M3aiTBDgwdKMqC3Bg6EadLMCBoRtVRYADQzeqqgAHhm5UtWK2PKy/D72Q7xx0ZuaUDdcu6MP8UNSuQVM9OK9o2D5A8+OPA/6tWZPqurIFg/tbw+DvZIO/BbwE6a2o3w/F97FIsHyrBz83R36nFMtFhrjYel3NYsHBu9pVs9i+A7FI8M2lYW93aNjzQm4UVxT9W/zJatd8o13Zm1Uw6lRDgzKwihrsj/7zj8HuGpG/61Zyh5kqrxqGPGqFfDMC+1rF7L6fZrALv50tZOV3nfWGU8vQZ9QuZqsD2Zu1Dp+e/jr81+YiXmYQ7vorSPjRoS+pUyx8P3YY/djh4McZIbdH2FW9mL1N1A0xCHMpC0uQBJ9rOPRB9QxlgeCqUHz/LwOS8k1lryW4yk0+VSOcfE7PZZ1OVU4QGEZ/aq1H+Q3n1gx+7r6Lkv+IBbosEq0VMrBTIn/f5KzALDfG+sbGgxg6n1+mRhuDNtq9e/du9jsei6TOA/8k2npm/AGgQbFIzmjkzHivk3isgY+B1sfJesEK4m6vIKJnGgqtgRGeteKhAp3p+LTkIufZ7oDg5+PRvpKDnOdZxcL3o73Rj5Mc/GhI8KOD0Y/KDn40IvjR0ejHyQ5+NCb40cnoRxUHP84OOaKFH5cfYLerCcGuzg52nUOwq4uDXU0JdnV1sOtcgl1XONjVjGBXNwe7ziPYdaWDXc0JdnV3sOt8gl09HOxqQbDrKge7LiDYdbWDXS0JdvV0sOtCgl29HOy6iGBXbwe7LibY1cfBrksIdvV1sOtSgl39HOxqRbCrv4NdlxHsusbBrtYEuwY42NWGYNe1Dna1Jdg10MGudgS7rnOwqz3BrkEOdnUg2HW9g10dCXbd4GBXJ4Jdgx3supxg140OdnUm2DXEwa4uBLtucrCrK8GuoQ52XUGwa5iDXd0Idg13sOtKgl03O9jVnWDXCAe7ehDsusXBrqsIdo10sOtqgl23OtjVk2DXKAe7ehHsus3Brt4Eu0Y72NWHYNftDnb1Jdh1h4Nd/Qh2jXGwqz/Brjsd7LqGYNdYB7sGEOy6y8Guawl2jXOwayDBrrsd7LqOYNd4B7sGEey6x8Gu6wl2TXCw6waCXfc62DWYYNdEB7tuJNh1n4NdQwh2TXKw6yaCXfc72DWUYNcDDnYNI9g12cGu4QS7HnSw62aCXQ852DWCYNfDDnbdQrBrioNdIwl2PeJg160Eu6Y62DWKYNejDnbdRrBrmoNdowl2PeZg1+0Eu6Y72HUHwa7HHewaQ7BrhoNddxLsesLBrrEEu2Y62HUXwa4nHewaR7BrloNddxPsesrBrvEEu552sOsegl3PONg1gWDXbAe77iXY9ayDXRMJdj3nYNd9BLued7BrEsGuFxzsup9g14sOdj1AsGuOg12TCXa95GDXgwS75jrY9RDBrnkOdj1MsGu+g11TCHa97GDXIwS7FjjYNZVg10IHux4l2LXIwa5pBLtecbDrMYJdix3smk6w61UHux4n2LXEwa4ZBLtec7DrCYJdSx3smkmw63UHu54k2LXMwa5ZBLvecLDrKYJdyx3seppg15sOdj1DsGuFg12zCXa95WDXswS7VjrY9RzBrrcd7HqeYNcqB7teINj1joNdLxLsWu1g1xyCXe862PUSwa41DnbNJdj1noNd8wh2rXWwaz7Brvcd7HqZYNc6B7sWEOz6wMGuhQS71jvYtYhg14cOdr1CsGuDg12LCXZ95GDXqwS7PnawawnBro0Odr1GsGuTg11LCXZ94mDX6wS7NjvYtYxg1xYHu94g2PWpg13LCXZ95mDXmwS7PnewawXBri8c7HqLYNdWB7tWEuz60sGutwl2bXOwaxXBrq8c7HqHYNfXDnatJtj1jYNd7xLs+tbBrjUEu75zsOs9gl3fO9i1lmDXDw52vU+wa7uDXesIdv3oYNcHBLt2ONi1nmDXTw52fUiw62cHuzYQ7NrpYNdHBLt2Odj1McGuXxzs2kiwa7eDXZsIdv3qYNcnBLv2ONi1mWDXbw52bSHY9buDXZ8a7MJ6CLW8NCX+39DYhz49tN2hiw5Nceh3QysbutTQgIbeMrSNoSMMzV7o40KLFrqv0FiFnim0Q6HTCU1M6E9C6xG6itAwhF4gtPmggwfNOei7QUsNumXQCIMeF7SvoDMFTSfoJ0GrCLpA0OCB3g20ZaDjAs0U6JNACwS6G9C4gJ4EtBugkwBNAsz/x1x7zGvHHHLM18bcaMxDxpxfzK/FXFbMG8UcTcyHxNxDzPPDnDrMX8NcMczLwhwozDfC3B7Mo8GcFcwPwVwMzHvAHAOM58fYeYxTx5hwjL/GWGeMK8YYXoyXxdhUjAPFmEuMb8RYQozbwxg5jEfD2C+Ms8KYJowfwlgdjIvBGBSM98DYCoxjwJgBfJ/Ht3B8d8Y3XnxPxbdLfCfENzl8/8K3JnzXwTcUfK/AtwG8h8c7b7xfxrtcvDfFO0q8D8S7N7znwjslvL/BuxK8l8A7ADxv49kWz5F4ZsPzEZ5FEPcjxkY8i9gRcRpiIsQfuNfjvop7GO4X6JvRD6LPQftGW0K9dWwrGVjvAmt1WNvKZ8WCt5V88baSvMUits3aD1hsdM3jc2Me1jUQYE/iQjWpyiV74RxreX5RzNb3nRb5X9/3v77v/1bf57KKoqH9/rW4FNqJtQ0n5pHKpq3FbP3qaT7HY5FgdiX/EQt0Gadf3WrMw/W+F+YCY1/yynKfgbbrol8SynKbAIeCmeHn8ZUAh1oFw8/jawEOtQkcvhHgUIfA4VsBDnUJHL4T4FCfwOF7AQ4NCBx+EODQkMBhuwCHxgQOPwpwaELgsEOAQ1MCh58EODQjcPhZgENzAoedAhxaEDjsEuDQksDhFwEOG7PCz2O3AIeLCfXhVwEOlxI47BHgcBmBw28CHNoQOPwuwKEdgcMfAhw6EDj8KcChE4HDXgEOnQkcIgf+3+fQlcAhKsChG4FDPgEO3Qkc8gtwuIrAoYAAh54EDhkCHHoTOGQKcOhL4JAlwKE/gUNBAQ4DCBwKCXAYSOBQWIBDmQLh53GAAIfrCfWhiACHwQQORQU4DCFwKCbAYSiBw4ECHIYTOBQX4DCCwOEgAQ4jCRxKCHAYReBwsACH0QQOJQU4rMwffh6HCHAYQ6gPhwpwGEvgcJgAh3EEDqUEOIwncDhcgMMEAofSAhwmEjgcIcBhEoHDkQIcFhLGiR0lwGEyoT4cLcDhIQKHMgIcphA4xAQ4TCVwKCvAYRqBwzECHKYTOBwrwGEGgUM5AQ4zCRyOE+Awi8DheAEOTxM4nCDAYTaBQ3kBDs8ROFQQ4PACgUNFAQ5zCBxOFOAwl8ChkgCH+QQOJwlwWEDgUFmAwyICh5MFOCwmcKgiwGEJgUNVAQ5LCRyqCXBYRuBQXYDDcgKHGgIcVhA4nKIwDoTAoaYAh1UEDqcKcFhN4FBLgMMaAofTBDisJXCoLcBhHYHD6QIc1hM41BHgsIHA4QwBDh8TONQV4LCJwKGeAIfNBA71BTh8SuBwpgCHzwkcGghw2ErgcJYAh20EDg0FOHxN4NBIgMO3BA6NBTh8T+BwtgCH7QQOTQQ47CBwOEeAw88EDk0FOOwicDhXgMNuAodmAhz2EDicJ8DhdwKH5gIc/iRwOF+AQ6RQ+Hm0EOCQj8DhAgEOBQgcWgpwyCRwuFCAQ0ECh4sEOBQmcLhYgEMRAodLBDgUI3C4VIBDcQKHVgIcShA4XCbAoSSBQ2sBDocSOLQR4FCKwKGtAIfSBA7tBDgcSeDQXoDD0QQOHQQ4xAgcOgpwOIbAoZMAh3IEDpcLcDiewKGzAIfyBA5dBDhUJHDoKsChEoHDFQIcKhM4dBPgUIXA4UoBDtUIHLoLcKhB4NBDgENNAoerBDjUInC4WoBDbQKHngIc6hA49BLgUJfAobcAh/oEDn0EODQgcOgrwKEhgUM/AQ6NCRz6C3BoQuBwjQCHpgQOAwQ4NCNwuFaAQ3MCh4ECHFoQOFwnwKElgcMgAQ4XEThcL8DhEgKHGwQ4tCJwGCzAoTWBw40CHNoSOAwR4NCewOEmAQ4dCRyGCnC4nMBhmACHLgQOwwU4XEHgcLMAhysJHEYIcOhB4HCLAIerCRxGCnDoReBwqwCHPgQOowwc8nuptpemxP/7q2KRyNde+sZL33rpOy9976UfvLTdSz96aYeXfvLSz17a6aVdXvrFS7u99KuX9njpNy/97qU/vPSnl/Z6KeLZFfVSPi/l91IBL2V4KdNLWV4q6KVCXirspQO8VMRLRb2E9emxNjvWJcea3FiPGmsxYx1irMGL9Wex9irWHcWam1hvEmstYp1BrLGH9eX+WlvNS1hTC+tJYS0lrCOENXSwfgzWTsG6IVgzA+tFYK0ErBMAjXzow0MbHbrg0MSGHjS0kKEDDA1c6L9C+xS6n9C8hN4jtA6h8weNO+i7QdsMul7QtIKeE7SMoOMDDRvot0C7BLod0KyAXgO0CjBPH3PUMT8bc5MxLxdzUjEfE3MRMQ8Pc9Aw/wpzjzDvBnNOMN8Ccw0wzh5jzDG+GmOLMa4WY0oxnhJjCTGODmPIMH4KY4cwbgZjRjBeAmMF8J0c34jxfRTfBvFdDN+E8D0E3wLwHhzvgPH+E+/+8N4L73zwvgPP+njOxTMenm8Q2yOuRUyHeAb3ctzH0Iej/0LbRb3N3vIZ63x1759axfadX6VL835bqk6pMLdFoznDhrVqV776tiaD5vUZd9aWneO3x8/dVsyezzZDHrcdaOuPavscj0WC2ZX8RyzQZZHol8XC748sHBx+PwNlWc9elvks9WU0ryz/2aycRx8Yfh6357IsU3HG/ahmfJ94Xaps8hvOrWmw5w6Bci+YGX4eYwQ41CJohNwpwKE2gcNYAQ51CBzuEuBQl8BhnACH+gQOdwtwaEDgMF6AQ0MCh3sEODQmcJggwKEJgcO9AhyaEjhMFODQjMDhPgEOzQkcJglwaEHgcL8Ah5YEDg8IcNiYFX4ekwU4XEyoDw8KcLiUwOEhAQ6XETg8LMChDYHDFAEO7QgcHhHg0IHAYaoAh04EDo8KcOhM4DBNgENXAofHBDh0I3CYLsChO4HD4wIcriJwmCHAoSeBwxMCHHoTOMwU4NCXwOFJAQ79CRxmCXAYQODwlACHgQQOTwtwKFMg/DyeEeBwPaE+zBbgMJjA4VkBDkMIHJ4T4DCUwOF5AQ7DCRxeEOAwgsDhRQEOIwkc5ghwGEXg8JLCeHICh7kCHFbmDz+PeQIcxhDqw3wBDmMJHF4W4DCOwGGBAIfxBA4LBThMIHBYJMBhIoHDKwIcJhE4LBbgsJAwTuxVAQ6TCfVhiQCHhwgcXhPgMIXAYakAh6kEDq8LcJhG4LBMgMN0Aoc3BDjMIHBYLsBhJoHDmwIcZhE4rBDg8DSBw1sCHGYTOKwU4PAcgcPbAhxeIHBYJcBhDoHDOwIc5hI4rBbgMJ/A4V0BDgsIHNYIcFhE4PCeAIfFBA5rBTgsIXB4X4DDUgKHdQIclhE4fCDAYTmBw3oBDisIHD5UGAdC4LBBgMMqAoePBDisJnD4WIDDGgKHjQIc1hI4bBLgsI7A4RMBDusJHDYLcNhA4LBFgMPHBA6fCnDYRODwmQCHzQQOnwtw+JTA4QsBDp8TOGwV4LCVwOFLAQ7bCBy2CXD4msDhKwEO3xI4fC3A4XsCh28EOGwncPhWgMMOAofvBDj8TODwvQCHXQQOPwhw2E3gsF2Awx4Chx8FOPxO4LBDgMOfBA4/CXCIENai/FmAQz4Ch50CHAoQOOwS4JBJ4PCLwrpyBA67BTgUJnD4VYBDEQKHPQIcihE4/CbAoTiBw+8CHEoQOPwhwKEkgcOfAhwOJXDYK8ChFIFDpPj/fQ6lCRyiAhyOJHDIJ8DhaAKH/AIcYgQOBQQ4HEPgkCHAoRyBQ6YAh+MJHLIEOJQncCgowKEigUMhAQ6VCBwKC3CoTOBwgACHKgQORQQ4VCNwKCrAoQaBQzEBDjUJHA4U4FCLwKG4AIfaBA4HCXCoQ+BQQoBDXQKHgwU41CdwKCnAoQGBwyECHBoSOBwqwKExgcNhAhyaEDiUEuDQlMDhcAEOzQgcSgtwaE7gcIQAhxYEDkcKcGhJ4HCUAIeLCByOFuBwCYFDGQEOrQgcYgIcWhM4lBXg0JbA4RgBDu0JHI4V4NCRwKGcAIfLCRyOE+DQhcDheAEOVxA4nCDA4UoCh/ICHHoQOFQQ4HA1gUNFAQ69CBxOFODQh8ChkoFDfi+d7qUp8f8ec2AkcqeXxnrpLi+N89LdXhrvpXu8NMFL93ppopfu89IkL93vpQe8NNlLD3rpIS897KUpXnrES1O99KiXpnnpMS9N99LjXprhpSe8NNNLT3pplpee8tLTXnrGS7O99KyXsD491mbHuuRYkxvrUWMtZqxDjDV4sf4s1l7FuqNYcxPrTWKtRawziDX2sL4c1lbDumJYUwvrSWEtJawjhDV0sH4M1k7BuiFYMwPrRWCtBKwTAI186MNDGx264NDEhh40tJChAwwNXOi/QvsUup/QvITeI7QOofMHjTvou0HbDLpe0LSCnhO0jKDjAw0b6LdAuwS6HdCsgF4DtAowTx9z1DE/G3OTMS8Xc1IxHxNzETEPD3PQMP8Kc48w7wZzTjDfAnMNMM4eY8wxvhpjizGuFmNKMZ4SYwkxjg5jyDB+CmOHMG4GY0YwXgJjBfCdHN+I8X0U3wbxXQzfhPA9BN8C8B4c74Dx/hPv/vDeC+988L7jr2d9L+EZD883iO0R1yKmQzyDeznuY+jD0X+h7aLeZm/5kup8lS7N+22pOqXC3BaN5gwb1qpd+erbmgya12fcWVt2jt/u/f9axSKR24PPr4ji/DsO/Hc+qa5LzCOVTScZ+6PTfY7HIsHsSv4jFuiySHT0geH3RxYODr+fgbKsV8xclvlxXfa5qcqyMq8s/9msnCsXDz+PkwU4FMwMP48qAhxqETQzqgpwqE3gUE2AQx0Ch+oCHOoSONQQ4FCfwOEUAQ4NCBxqCnBoSOBwqgCHxgQOtQQ4NCFwOE2AQ1MCh9oCHJoROJwuwKE5gUMdAQ4tCBzOEODQksChrgCHjVnh51FPgMPFhPpQX4DDpQQOZwpwuIzAoYEAhzYEDmcJcGhH4NBQgEMHAodGAhw6ETg0FuDQmcDhbAEOXQkcmghw6EbgcI4Ah+4EDk0FOFxF4HCuAIeeBA7NBDj0JnA4T4BDXwKH5gIc+hM4nC/AYQCBQwsBDgMJHC4Q4FCmQPh5tBTgcD2hPlwowGEwgcNFAhyGEDhcLMBhKIHDJQIchhM4XCrAYQSBQysBDiMJHC4T4DCKwKG1AIfRBA5tBDiszB9+Hm0FOIwh1Id2AhzGEji0F+AwjsChgwCH8QQOHQU4TCBw6CTAYSKBw+UCHCYROHQW4LCQME6siwCHyYT60FWAw0MEDlcIcJhC4NBNgMNUAocrBThMI3DoLsBhOoFDDwEOMwgcrhLgMJPA4WoBDrMIHHoKcHiawKGXAIfZBA69BTg8R+DQR4DDCwQOfQU4zCFw6CfAYS6BQ38BDvMJHK4R4LCAwGGAAIdFBA7XCnBYTOAwUIDDEgKH6wQ4LCVwGCTAYRmBw/UCHJYTONwgwGEFgcNghXEgBA43CnBYReAwRIDDagKHmwQ4rCFwGCrAYS2BwzABDusIHIYLcFhP4HCzAIcNBA4jBDh8TOBwiwCHTQQOIwU4bCZwuFWAw6cEDqMEOHxO4HCbAIetBA6jBThsI3C4XYDD1wQOdwhw+JbAYYwAh+8JHO4U4LCdwGGsAIcdBA53CXD4mcBhnACHXQQOdwtw2E3gMF6Awx4Ch3sEOPxO4DBBgMOfBA73CnCIENZmnCjAIR+Bw30CHAoQOEwS4JBJ4HC/wrpyBA4PCHAoTOAwWYBDEQKHBwU4FCNweEiAQ3ECh4cFOJQgcJgiwKEkgcMjAhwOJXCYKsChFIHDowIcShM4TBPgcCSBw2MCHI4mcJguwCFG4PC4AIdjCBxmCHAoR+DwhACH4wkcZgpwKE/g8KQAh4oEDrMEOFQicHhKgENlAoenBThUIXB4RoBDNQKH2QIcahA4PCvAoSaBw3MCHGoRODwvwKE2gcMLAhzqEDi8KMChLoHDHAEO9QkcXhLg0IDAYa4Ah4YEDvMEODQmcJgvwKEJgcPLAhyaEjgsEODQjMBhoQCH5gQOiwQ4tCBweEWAQ0sCh8UCHC4icHhVgMMlBA5LBDi0InB4TYBDawKHpQIc2hI4vC7AoT2BwzIBDh0JHN4Q4HA5gcNyAQ5dCBzeFOBwBYHDCgEOVxI4vCXAoQeBw0oBDlcTOLwtwKEXgcMqAQ59CBzeMXDI76U6XpoS/+8q3rVVvVTNS9W9VMNLp3ipppdO9VItL53mpdpeOt1Ldbx0hpfqeqmel+p76UwvNfDSWV5q6KVGXmrspbO91MRL53ipqZfO9VIzL53npeZeOt9LLbx0gZdaeulCL13kJaxPj7XZsS451uTGetRYixnrEGMNXqw/i7VXse4o1tzEepNYaxHrDGKNPawvh7XVsK4Y1tTCelJYSwnrCGENHawfg7VTsG4I1szAehFYKwHrBEAjH/rw0EaHLjg0saEHDS1k6ABDAxf6r9A+he4nNC+h9witQ+j8QeMO+m7QNoOuFzStoOcELSPo+EDDBvot0C6Bbgc0K6DXAK0CzNPHHHXMz8bcZMzLxZxUzMfEXETMw8McNMy/wtwjzLvBnBPMt8BcA4yzxxhzjK/G2GKMq8WYUoynxFhCjKPDGDKMn8LYIYybwZgRjJfAWAF8J8c3YnwfxbdBfBfDNyF8D8G3ALwHxztgvP/Euz+898I7H7zvwLM+nnPxjIfnG8T2iGsR0yGewb0c9zH04ei/0HZRb7O3fMY6X9X7p1axfedX6dK835aqUyrMbdFozrBhrdqVr76tyaB5fcadtWXn+O3xc08ubs8H1wTNY3VxW39Ux+d4LBLMruQ/YoEui0QrFw+/P1ptzMP4+xkoy3rFzGVZwFJf3uWV5T+blfO7hLJcI8ChYGb4ebwnwKEWQTNjrQCH2gQO7wtwqEPgsE6AQ10Chw8EONQncFgvwKEBgcOHAhwaEjhsEODQmMDhIwEOTQgcPhbg0JTAYaMAh2YEDpsEODQncPhEgEMLAofNAhxaEjhsEeCwMSv8PD4V4HAxoT58JsDhUgKHzwU4XEbg8IUAhzYEDlsFOLQjcPhSgEMHAodtAhw6ETh8JcChM4HD1wIcuhI4fCPAoRuBw7cCHLoTOHwnwOEqAofvBTj0JHD4QYBDbwKH7QIc+hI4/CjAoT+Bww4BDgMIHH4S4DCQwOFnAQ5lCoSfx04BDtcT6sMuAQ6DCRx+EeAwhMBhtwCHoQQOvwpwGE7gsEeAwwgCh98EOIwkcPhdgMMoAoc/BDiMJnD4U4DDyvzh57FXgMMYQn2IHPR/n8NYAoeoAIdxBA75BDiMJ3DIL8BhAoFDAQEOEwkcMgQ4TCJwyBTgsJAwTixLgMNkQn0oKMDhIQKHQgIcphA4FBbgMJXA4QABDtMIHIoIcJhO4FBUgMMMAodiAhxmEjgcKMBhFoFDcQEOTxM4HCTAYTaBQwkBDs8ROBwswOEFAoeSAhzmEDgcIsBhLoHDoQIc5hM4HCbAYQGBQykBDosIHA4X4LCYwKG0AIclBA5HCHBYSuBwpACHZQQORwlwWE7gcLQAhxUEDmUEOKwkcIgJcFhF4FBWgMNqAodjBDisIXA4VoDDWgKHcgIc1hE4HCfAYT2Bw/ECHDYQOJwgwOFjAofyAhw2EThUEOCwmcChogCHTwkcThTg8DmBQyUBDlsJHE4S4LCNwKGyAIevCRxOFuDwLYFDFQEO3xM4VBXgsJ3AoZoAhx0EDtUFOPxM4FBDgMMuAodTBDjsJnCoKcBhD4HDqQIcfidwqCXA4U8Ch9MEOEQIazPWFuCQj8DhdAEOBQgc6ghwyCRwOEOAQ0ECh7oCHAoTONQT4FCEwKG+AIdiBA5nCnAoTuDQQIBDCQKHswQ4lCRwaCjA4VACh0YCHEoRODQW4FCawOFsAQ5HEjg0EeBwNIHDOQIcYgQOTQU4HEPgcK4Ah3IEDs0EOBxP4HCeAIfyBA7NBThUJHA4X4BDJQKHFgIcKhM4XCDAoQqBQ0sBDtUIHC4U4FCDwOEiAQ41CRwuFuBQi8DhEgEOtQkcLhXgUIfAoZUAh7oEDpcJcKhP4NBagEMDAoc2AhwaEji0FeDQmMChnQCHJgQO7QU4NCVw6CDAoRmBQ0cBDs0JHDoJcGhB4HC5AIeWBA6dBThcRODQRYDDJQQOXQU4tCJwuEKAQ2sCh24CHNoSOFwpwKE9gUN3AQ4dCRx6CHC4nMDhKgEOXQgcrhbgcAWBQ08BDlcSOPQS4NCDwKG3AIerCRz6CHDoReDQV4BDHwKHfgYO+b10hpemxP/7veKRyFovve+ldV76wEvrvfShlzZ46SMvfeyljV7a5KVPvLTZS1u89KmXPvPS5176wktbvfSll7Z56Ssvfe2lb7z0rZe+89L3XvrBS9u99KOXdnjpJy/97KWdXtrlpV+8hPXpsTY71iXHmtxYjxprMWMdYqzBi/VnsfYq1h3FmptYbxJrLWKdQayxh/XlsLYa1hXDmlpYTwprKWEdIayhg/VjsHYK1g3BmhlYLwJrJWCdAGjkQx8e2ujQBYcmNvSgoYUMHeC/NHC9BO1T6H5C8xJ6j9A6hM4fNO6g7wZtM+h6QdMKek7QMoKODzRsoN8C7RLodkCzAnoN0CrAPH3MUcf8bMxNxrxczEnFfEzMRcQ8PMxBw/wrzD3CvBvMOcF8C8w1wDh7jDHH+GqMLca4WowpxXhKjCXEODqMIcP4KYwdwrgZjBnBeAmMFcB3cnwjxvdRfBvEdzF8E8L3EHwLwHtwvAPG+0+8+8N7L7zzwfsOPOvjORfPeHi+QWyPuBYxHeIZ3MtxH0Mfjv4LbRf1NnvLZ6zztYp5bIrtO79Kl+b9tlSdUmFui0Zzhg1r1a589W1NBs3rM+6sLTvHb/f+P85fU9yez5riwfPob+yPzvA5HosEsyv5j1igyyLRd4uH3x9ZOLj8PsqyXjG3OpN9bqqyvMbgA+zPH99nX5fL8s3x24brogUzw89jAK+e78vUdl20FkE/4loBDrUJHAYKcKhD4HCdAIe6BA6DBDjUJ3C4XoBDAwKHGwQ4NCRwGCzAoTGBw40CHJoQOAwR4NCUwOEmAQ7NCByGCnBoTuAwTIBDCwKH4QIcWhI43CzAYWNW+HmMEOBwMaE+3CLA4VICh5ECHC4jcLhVgEMbAodRAhzaETjcJsChA4HDaAEOnQgcbhfg0JnA4Q4BDl0JHMYIcOhG4HCnAIfuBA5jBThcReBwlwCHngQO4wQ49CZwuFuAQ18Ch/ECHPoTONwjwGEAgcMEAQ4DCRzuFeBQpkD4eUwU4HA9oT7cJ8BhMIHDJAEOQwgc7hfgMJTA4QEBDsMJHCYLcBhB4PCgAIeRBA4PCXAYReDwsACH0QQOUwQ4rMwffh6PCHAYQ6gPUwU4jCVweFSAwzgCh2kCHMYTODwmwGECgcN0AQ4TCRweF+AwicBhhgCHhYRxYk8IcJhMqA8zBTg8RODwpACHKQQOswQ4TCVweEqAwzQCh6cFOEwncHhGgMMMAofZAhxmEjg8K8BhFoHDcwIcniZweF6Aw2wChxcEODxH4PCiAIcXCBzmCHCYQ+DwkgCHuQQOcwU4zCdwmCfAYQGBw3wBDosIHF4W4LCYwGGBAIclBA4LBTgsJXBYJMBhGYHDKwIclhM4LBbgsILA4VWFcSAEDksEOKwicHhNgMNqAoelAhzWEDi8LsBhLYHDMgEO6wgc3hDgsJ7AYbkAhw0EDm8KcPiYwGGFAIdNBA5vCXDYTOCwUoDDpwQObwtw+JzAYZUAh60EDu8IcNhG4LBagMPXBA7vCnD4lsBhjQCH7wkc3hPgsJ3AYa0Ahx0EDu8LcPiZwGGdAIddBA4fCHDYTeCwXoDDHgKHDwU4/E7gsEGAw58EDh8JcIgQ1in8WIBDPgKHjQIcChA4bBLgkEng8IkAh4IEDpsFOBQmcNgiwKEIgcOnAhyKETh8JsChOIHD5wIcShA4fCHAoSSBw1YBDocSOHwpwKEUgcM2AQ6lCRy+EuBwJIHD1wIcjiZw+EaAQ4zA4VsBDscQOHwnwKEcgcP3AhyOJ3D4QYBDeQKH7QIcKhI4/CjAoRKBww4BDpUJHH4S4FCFwOFnAQ7VCBx2CnCoQeCwS4BDTQKHXwQ41CJw2C3AoTaBw68CHOoQOOwR4FCXwOE3AQ71CRx+F+DQgMDhDwEODQkc/hTg0JjAYa8AhyYEDpES//c5NCVwiApwaEbgkE+AQ3MCh/wCHFoQOBQQ4NCSwCFDgMNFBA6ZAhwuIXDIEuDQisChoACH1gQOhQQ4tCVwKCzAoT2BwwECHDoSOBQR4HA5gUNRAQ5dCByKCXC4gsDhQAEOVxI4FBfg0IPA4SABDlcTOJQQ4NCLwOFgAQ59CBxKlrDlkc/4+7WKRSL1igU/v3b8/GQ/qnRp3m9L1SkV5rZoNGfYsFbtylff1mTQvD7jztqyc/x27/8fYvTDyqmG909Nz678RrtqGM6tWSz4uYcG9zf6zz+R4NecEs8jYrsuUsBLhb2U4fejRhuqR+z13yWfahFOPlUj4be104xt7fRi+w7EIvbNyuCOA239bvZ2WLwuliqxL09z5oZG89dv54/vD4tfh8pdLMkwl0KqayykusZC2rt3726/47FI6vzwT6J/h8fBly4RyQnl8HhJJB4rnQDYWjjZYKw9/4ay4fb8tR3t+shoV/ZWIHg+d3v5RA8vEdym0oa7hoFrNKiv2RXTyhIN93CHuxE2awP984BI5Keiwc/PXyQS+b6o3acjSoTvx88GPwo4+nEkwY+dBj8yHP04iuDHLoMfmY5+HE3w4xeDH1mOfpQh+LHb4EdBRz9iBD9+NfhRyNGPsgQ/9hj8KOzoxzEhPynCj98c7DqWYNfvDnaVI9j1h4NdxxHs+tPBruMJdu11sOsEgl0Rhzi5PMGuqINdFQh25XOwqyLBrvwOdp1IsKuAg12VCHZlONh1EsGuTAe7KhPsynKw62SCXQUd7KpCsKuQg11VCXYVdrCrGsGuAxzsqk6wq4iDXTUIdhV1sOsUgl3FHOyqSbDrQAe7TiXYVdzBrloEuw5ysOs0gl0lHOyqTbDrYAe7TifYVdLBrjoEuw5xsOsMgl2HOthVl2DXYQ521SPYVcrBrvoEuw53sOtMgl2lHexqQLDrCAe7ziLYdaSDXQ0Jdh3lYFcjgl1HO9jVmGBXGQe7zibYFXOwqwnBrrIOdp1DsOsYB7uaEuw61sGucwl2lXOwqxnBruMc7DqPYNfxDnY1J9h1goNd5xPsKu9gVwuCXRUc7LqAYFdFB7taEuw60cGuCwl2VXKw6yKCXSc52HUxwa7KDnZdQrDrZAe7LiXYVcXBrlYEu6o62HUZwa5qDna1NtiFcaF1vVQ//t8Y84bxYhhrhXFKf43xKfH32BKMy8AYCIw3wLd9fEfHN2t8H8a3WHz3xDdGfM/DtzN8p8I3IXx/wbcOfFfAO3y8L8e7abwHxjtXvN/Eu0S8t8M7MryPwrsfvGfBOw28P8CzOp6L8QyK5z08W+E5Bs8MiM8RCyPuRIyHeAqxC+IE3JNx/8O9Bv06+lD0V+gb0A5R51G/UJatS/jzsbBvE5x9QcP4zYLWsarWuobxm7DdWtfaBvf3r/FGdX2OxyK2zeqbxUbXPNoZ21y9yP/aXHKbs45HQxklThgIMkYZ5WTNp50hj/bG9lDP53gsEsyu5D9igS7jtIf2Dnlgs/a3HdLf30b/+Sdi6287OPS3HXn1a5+xtuuiHQn1q5MAh4KZ4edxuQCHWoTVXjsLcKhN4NBFgEMdAoeuAhzqEjhcIcChPoFDNwEODQgcrhTg0JDAobsAh8YEDj0EODQhcLhKgENTAoerBTg0I3DoKcChOYFDLwEOLQgcegtwaEng0EeAw8as8PPoK8DhYkJ96CfA4VICh/4CHC4jcLhGgEMbAocBAhzaEThcK8ChA4HDQAEOnQgcrhPg0JnAYZAAh64EDtcLcOhG4HCDAIfuBA6DBThcReBwowCHngQOQwQ49CZwuEmAQ18Ch6ECHPoTOAwT4DCAwGG4AIeBBA43C3AoUyD8PEYIcLieUB9uEeAwmMBhpACHIQQOtwpwGErgMEqAw3ACh9sEOIwgcBgtwGEkgcPtAhxGETjcIcBhNIHDGAEOK/OHn8edAhzGEOrDWAEOYwkc7hLgMI7AYZwAh/EEDncLcJhA4DBegMNEAod7BDhMInCYIMBhIWGc2L0CHCYT6sNEAQ4PETjcJ8BhCoHDJAEOUwkc7hfgMI3A4QEBDtMJHCYLcJhB4PCgAIeZBA4PCXCYReDwsACHpwkcpghwmE3g8IiBAzRF6scTNmgmQC8Ac+UxTxxzpDE/GHNjMS8UcyIxHxBz4TAPDHOgMP8Hc18w7wNzHjDeH2PdMc4bY5wxvhdjWzGuE2MaMZ4PY9kwjgtjmDB+B2NXMG4DYxbwvR7fqvGdFt8o8X0O36bwXQbfJPA+Hu+i8R4W7yDx/g3vnvDeBe8c8LyNZ008Z+EZA/E1YkvEVYgpcD/FvQT9KPoQtB/UHXDL3qw6OFjt2aq3A50Oaz6dDHlMNbaH+j7HY5FgdiX/EQt0GUcPZapDHtisejuPBs8nLL2dv6qTlQ/qImxPvi6Vv9N49WufsbbrotMI9esxAQ4MvZ3pAhwYejuPC3Bg6O3MEODA0Nt5QoADQ29npgAHht7OkwIcGHo7swQ4MPR2nhLgwNDbeVqAA0Nv5xkBDgy9ndkCHBh6O88KcGDo7TwnwIGht/O8AAeG3s4LAhwYejsvCnBg6O3MEeDA0Nt5SYADQ29nrgAHht7OPAEODL2d+QIcGHo7LwtwYOjtLBDgwNDbWSjAgaG3s0iAA0Nv5xUBDgy9ncUCHBh6O68KcGDo7SwR4MDQ23lNgANDb2epAAeG3s7rAhwYejvLBDgw9HbeEODA0NtZLsCBobfzpgAHht7OCgEODL2dtwQ4MPR2VgpwYOjtvC3AgaG3s0qAA0Nv5x0BDgy9ndUCHBh6O+8KcGDo7awR4MDQ23lPgANDb2etAAeG3s77AhwYejvrBDgw9HY+EODA0NtZL8CBobfzoQAHht7OBgEODL2djwQ4MPR2PhbgwNDb2SjAgaG3s0lhPi+BwycCHBh6O5sFODD0drYIcGDo7XwqwIGht/OZAAeG3s7nAhwYejtfGDhAU+TMyD4W0EyAXgDmymOeOOZIY34w5sZiXijmRGI+IObCYR4Y5kBh/g/mvmDeB+Y8YLw/xrpjnDfGOGN8L8a2YlwnxjRiPB/GsmEcF8YwYfwOxq5g3AbGLOB7Pb5V4zstvlHi+xy+TeG7DL5J4H083kXjPSzeQeL9G9494b0L3jngeRvPmnjOwjMG4mvEloirEFPgfop7CfpR9CFoP6g74Ja95TMyrxax6+1Ap8Oaz2OGPLYa28OZPsdjkWB2Jf8RC3QZRw9lq0Me2Kx6O18GzycsvZ2/TLbyQV2E7cnXpfJ3G69+7TPWdl10G6F+fSXAgaG387UAB4bezjcCHBh6O98KcGDo7XwnwIGht/O9AAeG3s4PAhwYejvbBTgw9HZ+FODA0NvZIcCBobfzkwAHht7OzwIcGHo7OwU4MPR2dglwYOjt/CLAgaG3s1uAA0Nv51cBDgy9nT0CHBh6O78JcGDo7fwuwIGht/OHAAeG3s6fAhwYejt7BTgw9HYiB//f58DQ24kKcGDo7eQT4MDQ28kvwIGht1NAgANDbydDgANDbydTgANDbydLgANDb6egAAeG3k4hAQ4MvZ3CAhwYejsHCHBg6O0UEeDA0NspKsCBobdTTIADQ2/nQAEODL2d4gIcGHo7BwlwYOjtlBDgwNDbOViAA0Nvp6QAB4beziECHBh6O4cKcGDo7RwmwIGht1NKgANDb+dwAQ4MvZ3SAhwYejtHCHBg6O0cKcCBobdzlAAHht7O0QIcGHo7ZQQ4MPR2YgIcGHo7ZQU4MPR2jhHgwNDbOVaAA0Nvp5wAB4beznECHBh6O8cLcGDo7ZwgwIGht1NegANDb6eCgQMEOhpE9untQDMBegGYK4954pgjjfnBmBuLeaGYE4n5gJgLh3lgmAOF+T+Y+4J5H5jzgPH+GOuOcd4Y44zxvRjbinGdGNOI8XwYy4ZxXBjDhPE7GLuCcRsYs4Dv9fhWje+0+EaJ73P4NoXvMvgmgffxeBeN97B4B4n3b3j3hPcueOeA5208a+I5C88Yf8XXXkJchZgC91PcS9CPog9B+0HdAbfszaqDc8eBdr2drxz0dr4y5FHR2B4a+ByPRYLZlfxHLNBlHD0UC4fEzaq3c2LwfMLS2ymAf6x8UBdhe/J1qfytxKtf+4y1XRetdHD4eZwkwIGht1NZgANDb+dkAQ4MvZ0qAhwYejtVBTgw9HaqCXBg6O1UF+DA0NupIcCBobdzigAHht5OTQEODL2dUwU4MPR2aglwYOjtnCbAgaG3U1uAA0Nv53QBDgy9nToCHBh6O2cIcGDo7dQV4MDQ26knwIGht1NfgANDb+dMAQ4MvZ0GAhwYejtnCXBg6O00FODA0NtpJMCBobfTWIADQ2/nbAEODL2dJgIcGHo75whwYOjtNBXgwNDbOVeAA0Nvp5kAB4beznkCHBh6O80FODD0ds4X4MDQ22khwIGht3OBAAeG3k5LAQ4MvZ0LBTgw9HYuEuDA0Nu5WIADQ2/nEgEODL2dSwU4MPR2WglwYOjtXCbAgaG301qAA0Nvp40AB4beTlsBDgy9nXYCHBh6O+0FODD0djoIcGDo7XQU4MDQ2+kkwIGht3O5AAeG3k5nAQ4MvZ0uAhwYejtdBTgw9HauEODA0NvpJsCBobdzpQAHht5OdwEODL2dHgIcGHo7VwlwYOjtXC3AgaG309Oot3NWZJ/eDjQToBeAufKYJ4450pgfjLmxmBeKOZGYD4i5cJgHhjlQmP+DuS+Y94E5Dxjvj7HuGOeNMc4Y34uxrRjXiTGNGM+HsWwYx4UxTBi/g7ErGLeBMQv4Xo9v1fhOi2+U+D6Hb1P4LoNvEngfj3fReA+Ld5B4/4Z3T3jvgncOeN7Gsyaes/CMgfgasSXiKsQUuJ/iXoJ+FH0I2g/qDrhlb/mMzKtG7Ho70Omw5pOo7ZEqj17G9nCWz/FYJJhdyX/EAl3G0UPp5ZAHNqveTu/g+YSlt5OBf6x8UBdhe/J1qfztw6tf+4y1XRftQ6hffQU4MPR2+glwYOjt9BfgwNDbuUaAA0NvZ4AAB4bezrUCHBh6OwMFODD0dq4T4MDQ2xkkwIGht3O9AAeG3s4NAhwYejuDBTgw9HZuFODA0NsZIsCBobdzkwAHht7OUAEODL2dYQIcGHo7wwU4MPR2bhbgwNDbGSHAgaG3c4sAB4bezkgBDgy9nVsFODD0dkYJcGDo7dwmwIGhtzNagANDb+d2AQ4MvZ07BDgw9HbGCHBg6O3cKcCBobczVoADQ2/nLgEODL2dcQIcGHo7dwtwYOjtjBfgwNDbuUeAA0NvZ4IAB4bezr0CHBh6OxMFODD0du4T4MDQ25kkwIGht3O/AAeG3s4DAhwYejuTBTgw9HYeFODA0Nt5SIADQ2/nYQEODL2dKQIcGHo7jwhwYOjtTBXgwNDbeVSAA0NvZ5oAB4bezmMCHBh6O9MFODD0dh4X4MDQ25khwIGht/OEAAeG3s5MAQ4MvZ0nBTgw9HZmCXBg6O08JcCBobfztAAHht7OMwIcGHo7swU4MPR2njVw8F4TRhpG9untQDMBegGYK4954pgjjfnBmBuLeaGYE4n5gJgLh3lgmAOF+T+Y+4J5H5jzgPH+GOuOcd4Y44zxvRjbinGdGNOI8XwYy4ZxXBjDhPE7GLuCcRsYs4Dv9fhWje+0+EaJ73P4NoXvMvgmgffxeBeN97B4B4n3b3j3hPcueOeA5208a+I5C88YiK8RWyKuQkyB+ynuJehH0Yeg/aDugFv2ZtXBgWZJKaPeDnQ6rPkkanukyuM5Y3to6HM8FglmV/IfsUCXcfRQnnPIA1v+pHxS8X4+eD5h6e1k4h8rH9RF2J58XSp/X+DVr33G2q6LvkCoXy8a87C2+VrFIpHTigU/v7Z37unF7OU5R6A8GbpBLwlwYOgGzRXgwNANmifAgaEbNF+AA0M36GUBDgzdoAUCHBi6QQsFODB0gxYJcGDoBr0iwIGhG7RYgANDN+hVAQ4M3aAlAhwYukGvCXBg6AYtFeDA0A16XYADQzdomQAHhm7QGwIcGLpBywU4MHSD3hTgwNANWiHAgaEb9JYAB4Zu0EoBDgzdoLcFODB0g1YJcGDoBr0jwIGhG7RagANDN+hdAQ4M3aA1AhwYukHvCXBg6AatFeDA0A16X4ADQzdonQAHhm7QBwIcGLpB6wU4MHSDPhTgwNAN2iDAgaEb9JEAB4Zu0McCHBi6QRsFODB0gzYJcGDoBn0iwIGhG7RZgANDN2iLAAeGbtCnAhwYukGfCXBg6AZ9LsCBoRv0hQAHhm7QVgEODN2gLwU4MHSDtglwYOgGfSXAgaEb9LUAB4Zu0DcCHBi6Qd8KcGDoBn0nwIGhG/S9AAeGbtAPAhwYukHbBTgwdIN+FODA0A3aIcCBoRv0kwAHhm7QzwIcGLpBOwU4MHSDdhk4QBulUWSfbhA0E6AXgLnymCeOOdKYH4y5sZgXijmRmA+IuXCYB4Y5UJj/g7kvmPeBOQ8Y74+x7hjnjTHOGN+Lsa0Y14kxjRjPh7FsGMeFMUwYv4OxKxi3gTEL+F6Pb9X4TotvlPg+h29T+C6DbxJ4H4930XgPi3eQeP+Gd09474J3DnjexrMmnrPwjIH4GrEl4irEFLif4l6CfhR9CNoP6g64ZW/J2h5BdIAM+iF/abVApyM5n1TXJeaRyqZfDra1h0Y+x2ORYHYl/xELdBlH1+UXhzywWXWDdgfPJyzdoCz8Y+WDugjbk69L5e+vvPq1z1jbddFfCfVrjwAHht7ObwIcGHo7vwtwYOjt/CHAgaG386cAB4bezl4BDgy9nUjJ//scGHo7UQEODL2dfAIcGHo7+QU4MPR2CghwYOjtZAhwYOjtZApwYOjtZAlwYOjtFBTgwNDbKSTAgaG3U1iAA0Nv5wABDgy9nSICHBh6O0UFODD0dooJcGDo7RwowIGht1NcgANDb+cgAQ4MvZ0SAhwYejsHC3Bg6O2UFODA0Ns5RIADQ2/nUAEODL2dwwQ4MPR2SglwYOjtHC7AgaG3U1qAA0Nv5wgBDgy9nSMFODD0do4S4MDQ2zlagANDb6eMAAeG3k5MgANDb6esAAeG3s4xAhwYejvHCnBg6O2UE+DA0Ns5ToADQ2/neAEODL2dEwQ4MPR2ygtwYOjtVBDgwNDbqSjAgaG3c6IAB4beTiUBDgy9nZMEODD0dioLcGDo7ZwswIGht1NFgANDb6eqAAeG3k41AQ4MvZ3qAhwYejs1BDgw9HZOEeDA0NupKcCBobdzqgAHht5OLQEODL2d0wQ4MPR2ahs4QFOkcWSf3g40E6AXgLnymCeOOdKYH4y5sZgXijmRmA+IuXCYB4Y5UJj/g7kvmPeBOQ8Y74+x7hjnjTHOGN+Lsa0Y14kxjRjPh7FsGMeFMUwYv4OxKxi3gTEL+F6Pb9X4TvvXN0ov4dsUvsvgmwTex+NdNN7D4h0k3r/h3RPeu+CdA5638ayJ5yw8YyC+RmyJuAoxBe6nuJegH0UfgvaDugNu2ZtVBweaJYeV2Hd+EH2ePQ56O3sMejunG9tDY5/jsUgwu5L/iAW6jKOHYuGQuFn1duoEzydq0NuJGvR2ov/8E7HVXdiefF0qf88wcMVv54/v/a5z0bcKem7dkjZ+2Zu1/Oulv/z/viCS0+5Up2f3XS59Xva5qdjUd6wriddZ7atVzKvXxQz3zfj51nZwprF/cfHjDKMfZzj40YB3v9hnrO06im7UWQIcGLpRDQU4MHSjGglwYOhGNRbgwNCNOluAA0M3qokAB4Zu1DkCHBi6UU0FODB0o84V4MDQjWomwIGhG3WeAAeGblRzAQ4M3ajzBTgwdKNaCHBg6EZdIMCBoRvVUoADQzfqQgEODN2oiwQ4MHSjLhbgwNCNukSAA0M36lIBDgzdqFYCHBi6UZcJcGDoRrUW4MDQjWojwIGhG9VWgANDN6qdAAeGblR7AQ4M3agOAhwYulEdBTgwdKM6CXBg6EZdLsCBoRvVWYADQzeqiwAHhm5UVwEODN2oKwQ4MHSjuglwYOhGXSnAgaEb1V2AA0M3qocAB4Zu1FUCHBi6UVcLcGDoRvUU4MDQjeolwIGhG9VbgANDN6qPAAeGblRfAQ4M3ah+AhwYulH9BTgwdKOuEeDA0I0aIMCBoRt1rQAHhm7UQAEODN2o6wQ4MHSjBglwYOhGXS/AgaEbdYMAB4Zu1GABDgzdqBsFODB0o4YIcGDoRt0kwIGhGzVUgANDN2qYAAeGbtRwo46F9fehF3KGg85MvmPCtQv6MNBusWrQ3GzQe7H6kGxLqt+HRsg1BwU/Hxohh5Swl8UIQx0p4KWikX155DAgKd9U9p4W/Nwc+d1SMhcZ3lLS4cNSyeAwXe0aWXLfgVgk+ObSYOs7NNjMkBvsnIP/FnWy2pVltCt7swpB3WroGAysogb7o//8Y7C7duTvumXtfGob8hgV8k0G7Ec51I3bHAWqbssDMbNRhj5jNEnM7Pb01+G/NhdRMoMg1183/zMd6ssdJcP3o4HRjwYOfowJuT3Crpsdgqs7/w8FVyiLEcayGOFQFmONwVWh+P5fBiTlm8peS3CVm3xOjXDyuT2XdTql0Gfk7/7UWo/yG86tE7Gziib/EQt0WSQ6KmRgp0f+vslZgVlujHcZG4/3APSPPf/lWyobgzbavXv3bvY7HoukzgP/JNo6Lv4AcHfJSM5oZFy810k8drePgcnRQCoDxgYriLu9goiOMxTa3UZ41oqHCjTO8WnJ5RF8gPER/CwHmc7xBLnRa41+NHTw4x6CHwONfjRy8GMCwY/rjH40dvDjXoIfg4x+nO3gx0SCH9cb/Wji4Md9BD9uMPpxjoMfkwh+DDb60dTBj/sJftxo9ONcBz8eIPgxxOhHMwc/JhP8uMnox3kOfjxI8GOo0Y/mDn48RPBjmNGP8x38eJjgx3CjHy0c/JhC8ONmox8XOPjxCMGPEUY/Wjr4MZXgxy1GPy508ONRgh8jjX5c5ODHNIIftxr9uNjBj8cIfowy+nGJgx/TCX7cZvTjUgc/Hif4MdroRysHP2YQ/Ljd6MdlDn48QfDjDqMfrR38mEnwY4zRjzYOfjxJ8ONOox9tHfyYRfBjrNGPdg5+PEXw4y6jH+0d/Hia4Mc4ox8dHPx4huDH3UY/Ojr4MZvgx3ijH50c/HiW4Mc9Rj8ud/DjOYIfE4x+dHbw43mCH/ca/eji4McLBD8mGv3o6uDHiwQ/7jP6cYWDH3MIfkwy+tHNwY+XCH7cb/TjSgc/5hL8eMDoR3cHP+YR/Jhs9KOHgx/zCX48aPTjKgc/Xib48ZDRj6sd/FhA8ONhox89HfxYSPBjitGPXg5+LCL48YjRj94OfrxC8GOq0Y8+Dn4sJvjxqNGPvg5+vErwY5rRj34Ofiwh+PGY0Y/+Dn68RvBjutGPaxz8WErw43GjHwMc/Hid4McMox/XOvixjODHE0Y/Bjr48QbBj5lGP65z8GM5wY8njX4McvDjTYIfs4x+XO/gxwqCH08Z/bjBwY+3CH48bfRjsIMfKwl+PGP040YHP94m+DHb6McQBz9WEfx41ujHTQ5+vEPw4zmjH0Md/FhN8ON5ox/DHPx4l+DHC0Y/hjv4sYbgx4tGP2528OM9gh9zjH6McPBjLcGPl4x+3OLgx/sEP+Ya/Rjp4Mc6gh/zjH7c6uDHBwQ/5hv9GOXgx3qCHy8b/bjNwY8PCX4sMPox2sGPDQQ/Fhr9uN3Bj48Ifiwy+nGHgx8fE/x4xejHGAc/NhL8WGz0404HPzYR/HjV6MdYBz8+IfixxOjHXQ5+bCb48ZrRj3EOfmwh+LHU6MfdDn58SvDjdaMf4x38+IzgxzKjH/c4+PE5wY83jH5McPDjC4Ify41+3Ovgx1aCH28a/Zjo4MeXBD9WGP24z8GPbQQ/3jL6McnBj68Ifqw0+nG/gx9fE/x42+jHAw5+fEPwY5XRj8kOfnxL8OMdox8POvjxHcGP1UY/HnLw43uCH+8a/XjYwY8fCH6sMfoxxcGP7QQ/3jP68YiDHz8S/Fhr9GOqgx87CH68b/TjUQc/fiL4sc7oxzQHP34m+PGB0Y/HHPzYSfBjvdGP6Q5+7CL48aHRj8cd/PiF4McGox8zHPzYTfDjI6MfTzj48SvBj4+Nfsx08GMPwY+NRj+edPDjN4Ifm4x+zHLw43eCH58Y/XjKwY8/CH5sNvrxtIMffxL82GL04xkHP/YS/PjU6MdsBz8ih4Tvx2dGP5518CNK8ONzox/POfiRj+DHF0Y/nnfwIz/Bj61GP15w8KMAwY8vjX686OBHBsGPbUY/5jj4kUnw4yujHy85+JFF8ONrox9zHfwoSPDjG6Mf8xz8KETw41ujH/Md/ChM8OM7ox8vO/hxAMGP741+LHDwowjBjx+Mfix08KMowY/tRj8WOfhRjODHj0Y/XnHw40CCHzuMfix28KM4wY+fjH686uDHQQQ/fjb6scTBjxIEP3Ya/XjNwY+DCX7sMvqx1MGPkgQ/fjH68bqDH4cQ/Nht9GOZgx+HEvz41ejHGw5+HEbwY4/Rj+UOfpQi+PGb0Y83Hfw4nODH70Y/Vjj4UZrgxx9GP95y8OMIgh9/Gv1Y6eDHkQQ/9hr9eNvBj6MIfkRK2PxY5eDH0QQ/okY/3nHwowzBj3xGP1Y7+BEj+JHf6Me7Dn6UJfhRwOjHGgc/jiH4kWH04z0HP44l+JFp9GOtgx/lCH5kGf1438GP4wh+FDT6sc7Bj+MJfhQy+vGBgx8nEPwobPRjvYMf5Ql+HGD040MHPyoQ/Chi9GODgx8VCX4UNfrxkYMfJxL8KGb042MHPyoR/DjQ6MdGBz9OIvhR3OjHJgc/KhP8OMjoxycOfpxM8KOE0Y/NDn5UIfhxsNGPLQ5+VCX4UdLox6cOflQz+IH14c/20pT4f2PNcazXjbWusU401ljG+sRY2xfr4mJNWazHirVMsQ4o1tCcUvLvtRux7iHWDMR6e1irDuu8YY00rC+GtbmwrhXWhMJ6SliLCOv4YA0crB+DtVewbgnW/MB6GVhrAus0YI0DrA8AbX3o0kPTHXro0BKHDjc0rKH/DO1k6A5Dsxd6t9CKhc4qNEqh7wltTOhKQpMReobQAoSOHjTooN8G7TPohkFzC3pV0HqCThI0hqDPA20b6MJAUwV6JNDygA4GNCSgvwDtAsz7x5x5zDfHXG3Mc8YcYcyvxdxUzOvEnEjMJ8RcPMxjwxwwzJ/C3CPM28GcF8wXwVwLzFPAGH+Mj8fYcozLxphmjAfGWFqMQ8UYTox/xNhBjLvDmDWM98JYKYwzwhgdjG/B2BCMq8CYBHzPx7dwfEfGN1h8v8S3P3w3wzcnfK/Btw58J8A7dryfxrtdvBfFO0W8j8O7LLwH+usdyiF/P7vjuRfPjHjewrMK4nzEyIgvEZshrkFMgPsp7kXox9EHov9A20O9/afyJ9X5FFvGKI/D2JL2tlLd0FbyxdtK8haL2Dajb1GLja551Ai574M9d5UMXi6ne2mUQ3meYuz7mkT+1/f9r+/7v9X35TPWebQTQ/uN4ny0E2sbTswjlU01D7H1q018jsciwexK/iMW6DJOv1rTmIfrfc9alqMMffGpvLLcZ6DtuuiphLKsJcChYGb4eZwmwKFWwfDzqC3AoTaBw+kCHOoQONQR4FCXwOEMAQ71CRzqCnBoQOBQT4BDQwKH+gIcGhM4nCnAoQmBQwMBDk0JHM4S4NCMwKGhAIfmBA6NBDi0IHBoLMChJYHD2QIcNmYR7kkCHC4m1IdzBDhcSuDQVIDDZQQO5wpwaEPg0EyAQzsCh/MEOHQgcGguwKETgcP5Ahw6Ezi0EODQlcDhAgEO3QgcWgpw6E7gcKEAh6sIHC4S4NCTwOFiAQ69CRwuEeDQl8DhUgEO/QkcWglwGEDgcJkAh4EEDq0FOJQpQHi2F+BwPaE+tBXgMJjAoZ0AhyEEDu0FOAwlcOggwGE4gUNHAQ4jCBw6CXAYSeBwuQCHUQQOnQU4jCZw6CLAYWX+8PPoKsBhDKE+XCHAYSyBQzcBDuMIHK4U4DCewKG7AIcJBA49BDhMJHC4SoDDJAKHqwU4LCSME+spwGEyoT70EuDwEIFDbwEOUwgc+ghwmErg0FeAwzQCh34CHKYTOPQX4DCDwOEaAQ4zCRwGCHCYReBwrQCHpwkcBgpwmE3gcJ0Ah+cIHAYJcHiBwOF6AQ5zCBxuEOAwl8BhsACH+QQONwpwWEDgMESAwyICh5sEOCwmcBgqwGEJgcMwAQ5LCRyGC3BYRuBwswCH5QQOIwQ4rCBwuEVhHAiBw0gBDqsIHG4V4LCawGGUAIc1BA63CXBYS+AwWoDDOgKH2wU4rCdwuEOAwwYChzECHD4mcLhTgMMmAoexAhw2EzjcJcDhUwKHcQIcPidwuFuAw1YCh/ECHLYRONwjwOFrAocJAhy+JXC4V4DD9wQOEwU4bCdwuE+Aww4Ch0kCHH4mcLhfgMMuAocHBDjsJnCYLMBhD4HDgwIcfidweEiAw58EDg8LcIgUCj+PKQIc8hE4PCLAoQCBw1QBDpkEDo8qrCtH4DBNgENhAofHBDgUIXCYLsChGIHD4wIcihM4zBDgUILA4QkBDiUJHGYKcDiUwOFJAQ6lCBxmCXAoTeDwlACHIwkcnhbgcDSBwzMCHGIEDrMFOBxD4PCsAIdyBA7PCXA4nsDheQEO5QkcXhDgUJHA4UUBDpUIHOYIcKhM4PCSAIcqBA5zBThUI3CYJ8ChBoHDfAEONQkcXhbgUIvAYYEAh9oEDgsFONQhcFgkwKEugcMrAhzqEzgsFuDQgMDhVQEODQkclghwaEzg8JoAhyYEDksFODQlcHhdgEMzAodlAhyaEzi8IcChBYHDcgEOLQkc3hTgcBGBwwoBDpcQOLwlwKEVgcNKAQ6tCRzeFuDQlsBhlQCH9gQO7whw6EjgsFqAw+UEDu8KcOhC4LBGgMMVBA7vCXC4ksBhrQCHHgQO7wtwuJrAYZ0Ah14EDh8IcOhD4LDewCG/l87x0pT4f5/mXVvbS6d7qY6XzvBSXS/V81J9L53ppQZeOstLDb3UyEuNvXS2l5p46RwvNfXSuV5q5qXzvNTcS+d7qYWXLvBSSy9d6KWLvHSxly7x0qVeauWly7zU2kttvNTWS+28hPXpsTY71iXHmtxYjxprMWMdYqzBi/VnsfYq1h3FmptYbxJrLWKdQayxh/XlsLYa1hXDmlpYTwprKWEdIayhg/VjsHYK1g3BmhlYLwJrJWCdAGjkQx8e2ujQBYcmNvSgoYUMHWBo4EL/Fdqn0P2E5iX0HqF1CJ0/aNxB3w3aZtD1gqYV9JygZQQdH2jYQL8F2iXQ7YBmBfQaoFWAefqYo4752ZibjHm5mJOK+ZiYi4h5eJiDhvlXmHuEeTeYc4L5FphrgHH2GGOO8dUYW4xxtRhTivGUGEuIcXQYQ4bxUxg7hHEzGDOC8RIYK4Dv5PhGjO+j+DaI72L4JoTvIfgWgPfgeAeM959494f3Xnjng/cdeNbHcy6e8fB8g9gecS1iOsQzuJfjPoY+HP0X2i7qbfaWz1jnT/P+GVVy3/lVujTvt6XqlApzWzSaM2xYq3blq29rMmhen3Fnbdk5fnv83FqH2PPBNUHz+PAQW390js/xWCSYXcl/xAJdFomeekj4/dGHxjyMv5+Bshxb0lyW+Sz1ZQOvLP/ZrJw3EMryo1yWZSrOuB/Vie8Tr0uVTX7DuXUM9nwsUO4FM8PPY6MAh1oFw89jkwCH2gQOnwhwqEPgsFmAQ10Chy0CHOoTOHwqwKEBgcNnAhwaEjh8LsChMYHDFwIcmhA4bBXg0JTA4UsBDs0IHLYJcGhO4PCVAIcWBA5fC3BoSeDwjQCHjVnh5/GtAIeLCfXhOwEOlxI4fC/A4TIChx8EOLQhcNguwKEdgcOPAhw6EDjsEODQicDhJwEOnQkcfhbg0JXAYacAh24EDrsEOHQncPhFgMNVBA67BTj0JHD4VYBDbwKHPQIc+hI4/CbAoT+Bw+8CHAYQOPwhwGEggcOfAhzKFAg/j70CHK4n1IfIof/3OQwmcIgKcBhC4JBPgMNQAof8AhyGEzgUEOAwgsAhQ4DDSAKHTAEOowgcsgQ4jCZwKCjAYWX+8PMoJMBhDKE+FBbgMJbA4QABDuMIHIoIcBhP4FBUgMMEAodiAhwmEjgcKMBhEoFDcQEOCwnjxA4S4DCZUB9KCHB4iMDhYAEOUwgcSgpwmErgcIgAh2kEDocKcJhO4HCYAIcZBA6lBDjMJHA4XIDDLAKH0gIcniZwOEKAw2wChyMFODxH4HCUAIcXCByOFuAwh8ChjACHuQQOMQEO8wkcygpwWEDgcIwAh0UEDscKcFhM4FBOgMMSAofjBDgsJXA4XoDDMgKHEwQ4LCdwKC/AYQWBQwWFcSAEDhUFOKwicDhRgMNqAodKAhzWEDicJMBhLYFDZQEO6wgcThbgsJ7AoYoAhw0EDlUFOHxM4FBNgMMmAofqAhw2EzjUEODwKYHDKQIcPidwqCnAYSuBw6kCHLYRONQS4PA1gcNpAhy+JXCoLcDhewKH0wU4bCdwqCPAYQeBwxkCHH4mcKgrwGEXgUM9AQ67CRzqC3DYQ+BwpgCH3wkcGghw+JPA4SwBDpFC4efRUIBDPgKHRgIcChA4NBbgkEngcLYAh4IEDk0EOBQmcDhHgEMRAoemAhyKETicK8ChOIFDMwEOJQgczhPgUJLAobkAh0MJHM4X4FCKwKGFAIfSBA4XCHA4ksChpQCHowkcLhTgECNwuEiAwzEEDhcLcChH4HCJAIfjCRwuFeBQnsChlQCHigQOlwlwqETg0FqAQ2UChzYCHKoQOLQV4FCNwKGdAIcaBA7tBTjUJHDoIMChFoFDRwEOtQkcOglwqEPgcLkAh7oEDp0FONQncOgiwKEBgUNXAQ4NCRyuEODQmMChmwCHJgQOVwpwaErg0F2AQzMChx4CHJoTOFwlwKEFgcPVAhxaEjj0FOBwEYFDLwEOlxA49Bbg0IrAoY8Ah9YEDn0FOLQlcOgnwKE9gUN/AQ4dCRyuEeBwOYHDAAEOXQgcrhXgcAWBw0ABDlcSOFwnwKEHgcMgAQ5XEzhcL8ChF4HDDQIc+hA4DDZwyO+lpl6aEv/vjYdEIpu89ImXNntpi5c+9dJnXvrcS194aauXvvTSNi995aWvvfSNl7710nde+t5LP3hpu5d+9NIOL/3kpZ+9tNNLu7z0i5d2e+lXL+3x0m9e+t1Lf3jpTy/t9VLE8yPqJaxPj7XZsS451uTGetRYixnrEGMNXqw/i7VXse4o1tzEepNYaxHrDGKNPawvh7XVsK4Y1tTCelJYSwnrCGENHawfg7VTsG4I1szAehF/rZXgJWjkQx8e2ujQBYcmNvSgoYUMHWBo4EL/Fdqn0P2E5iX0HqF1CJ0/aNxB3w3aZtD1gqYV9JygZQQdH2jYQL8F2iXQ7YBmBfQaoFWAefqYo4752ZibjHm5mJOK+ZiYi4h5eJiDhvlXmHuEeTeYc4L5FphrgHH2GGOO8dUYW4xxtRhTivGUGEuIcXQYQ4bxUxg7hHEzGDOC8RIYK4Dv5PhGjO+j+DaI72L4JoTvIfgWgPfgeAeM959494f3Xnjng/cdeNbHcy6e8fB8g9gecS1iOsQzuJfjPoY+HP0X2i7qbfaWL6nOV+nSvN+WqlMqzG3RaM6wYa3ala++rcmgeX3GnbVl5/jt3v8fVTIS+eiQ4G0E5398yL/zSXVdYh6pbLrxUFt/1NTneCwSzK7kP2KBLotENxwSfn9k4eDw+xkoy7ElzWWZH9dln5uqLIfwyvKfzcp5yKHh53GTAIeCmeHnMVSAQy2CZsYwAQ61CRyGC3CoQ+BwswCHugQOIwQ41CdwuEWAQwMCh5ECHBoSONwqwKExgcMoAQ5NCBxuE+DQlMBhtACHZgQOtwtwaE7gcIcAhxYEDmMEOLQkcLhTgMPGrPDzGCvA4WJCfbhLgMOlBA7jBDhcRuBwtwCHNgQO4wU4tCNwuEeAQwcChwkCHDoRONwrwKEzgcNEAQ5dCRzuE+DQjcBhkgCH7gQO9wtwuIrA4QEBDj0JHCYLcOhN4PCgAIe+BA4PCXDoT+DwsACHAQQOUwQ4DCRweESAQ5kC4ecxVYDD9YT68KgAh8EEDtMUxssRODwmwGEogcN0AQ7DCRweF+AwgsBhhgCHkQQOTwhwGEXgMFOAw2gChycFOKzMH34eswQ4jCHUh6cEOIwlcHhagMM4AodnBDiMJ3CYLcBhAoHDswIcJhI4PCfAYRKBw/MCHBYSxom9IMBhMqE+vCjA4SEChzkCHKYQOLwkwGEqgcNcAQ7TCBzmCXCYTuAwX4DDDAKHlwU4zCRwWCDAYRaBw0IBDk8TOCwS4DCbwOEVAQ7PETgsFuDwAoHDqwIc5hA4LBHgMJfA4TUBDvMJHJYKcFhA4PC6AIdFBA7LBDgsJnB4Q4DDEgKH5QIclhI4vCnAYRmBwwoBDssJHN4S4LCCwGGlwjgQAoe3BTisInBYJcBhNYHDOwIc1hA4rBbgsJbA4V0BDusIHNYIcFhP4PCeAIcNBA5rBTh8TODwvgCHTQQO6wQ4bCZw+ECAw6f/X3vvASZF8XZ997JLjiLJJTWICIhIUERERLJkyTlnyUEEEQEREUVEREQREREVc0LMOeeMqARFREREBEVU+OrgjrT9n92dqnWPfb73meu62WE63HV+U93T3VV1isBhgwCHbQQOnwlw2E7gsFGAww4Ch88FOOwkcPhCgMMuAocvBTjsJnDYJMBhD4HDZgEOewkctghw2EfgsFWAwy8EDl8JcDhA4PC1AIeDBA7bBDj8QeDwjQCHQwQO2wU4eIS5Gb8V4JCDwGGHAIcUAofvBDjkInDYqTCvHIHD9wIc8hE47BLgUIDA4QcBDoUIHHYLcChC4PCjAIeiBA57BDgUI3D4SYBDCQKHvQIcShE4/CzAIZXAYZ8AhzIEDvsFOJQjcPhFgINP4PCrAIeKBA4HBDhUInD4TYBDZQKHgwIcqhA4/C7AoRqBwx8CHKoTOPwpwKEGgcMhAQ41CRwOC3CoTeDglYw+h1MJHJIEONQlcMghwKEegUOyAIf6BA4pAhwaEDjkFODQkMAhlwCHRgQOuQU4NCZwyCPAoSmBQ14BDs0JHPIJcGhJ4JBfgEMrAocCAhzaEDgUFODQjsChkACHDgQOhQU4dCRwKCLAoTOBwzECHLoSOBQV4NCdwOFYAQ49CRyKCXDoTeBQXIBDXwKHEgIc+hM4lBTgMJDAoZQAh8EEDscJcBhK4JAqwGE4gUNpAQ4jCRzKCHAYReBQVoDDGAKHcgIcxhE4lLfgkGyitYmVaf+fWcLzZpmYbeJSE3NMXGZironLTcwzcYWJ+SauNHGViQUmrjax0MQ1JhaZuNbEYhPXmVhi4noTS03cYGKZiRtN3GRiuYmbTawwcYuJlSZuNbHKxG0mVpvA/PSYmx3zkmNObsxHjbmYMQ8x5uDF/LOYexXzjmLOTcw3ibkWMc8g5tjD/HKYWw3zimFOLcwnhbmUMI8Q5tDB/DGYOwXzhmDODMwXgbkSME8APPLhDw9vdPiCwxMbftDwQoYPMDxw4f8K71P4fsLzEn6P8DqEzx887uDvBm8z+HrB0wp+TvAygo8PPGzg3wLvEvh2wLMCfg3wKsA4fYxRx/hsjE3GuFyMScV4TIxFxDg8jEHD+CuMPcK4G4w5wXgLjDVAP3v0MUf/avQtRr9a9ClFf0r0JUQ/OvQhQ/8p9B1Cvxn0GUF/CfQVQDs52ojRPoq2QbSLoU0I7SFoC8BzcDwDxvNPPPvDcy8888HzDtzr4z4X93i4v8G1Pa5rcU2H6xn8luN3DOdwnL9w7KLexl45LOv86eafecWOrl9zcLsJW2utrLq+Q7N1s2Z171Olzo6WUx8ft6jJ1v2L96Ste0kJ+zzYJtEcvuX5qHWcz30vsXKF3/gJbeYlzSiR/ecjGw4O+8+J73JhMevvMsWmvlTgfZd/v2w5VyiZ/TkqCnDIkyv7cxwvwKEewTOjkgCH+gQOJwhwaEDgUFmAQ0MChxMFODQicKgiwKExgUNVAQ5NCRyqCXBoTuBwkgCHlgQO1QU4tCJwOFmAQxsChxoCHNoROJwiwKEDgUNNAQ4dCRxqCXD4Mnf256gtwKELoT7UEeDQjcDhVAEOPQgcThPg0IvAoa4Ahz4EDqcLcOhH4FBPgMMAAoczBDgMInCoL8BhCIHDmQIchhE4NBDgMILA4SwBDucTODQU4DCawOFsAQ5jCRwaCXAYT+BwjgCHiQQOjQU4TCZwaCLAYQqBQ1MBDuVTsj9HMwEO0wj1obkAh+kEDi0EOMwgcGgpwGEmgcO5AhxmEzi0EuAwh8ChtQCHuQQObQQ4zCNwaCvAYT6BQzsBDm8lZ3+O9gIcFhDqQwcBDgsJHM4T4LCIwKGjAIfFBA6dBDgsIXDoLMBhKYFDFwEOywgcugpweJrQT6ybAIflhPrQXYDDCgKHHgIcVhI49BTgsIrAoZcAh9UEDr0FOKwhcOgjwOFOAoe+AhzWEjj0E+BwD4FDfwEO9xE4DBDg8ACBw0ABDg8ROAwS4PAIgcNgAQ7rCByGCHBYT+AwVIDDEwQOwwQ4PEXgMFyAwzMEDiMEODxH4DBSgMMLBA7nC3B4icBhlACHVwgcRgtweI3AYYwAhzcIHMYq9AMhcBgnwOEdAofxAhzeI3CYIMDhAwKHiQIcPiJwmCTA4RMCh8kCHDYQOFwgwGEjgcMUAQ5fEDhcKMBhE4HDVAEOWwgcpglw+IrA4SIBDtsIHKYLcNhO4HCxAIcdBA4zBDjsJHC4RIDDLgKHmQIcdhM4zBLgsIfAYbYAh70EDpcKcNhH4DBHgMMvBA6XCXA4QOAwV4DDQQKHywU4/EHgME+AwyEChysEOHiEuRnnC3DIQeBwpQCHFAKHqwQ45CJwWKAwrxyBw9UCHPIROCwU4FCAwOEaAQ6FCBwWCXAoQuBwrQCHogQOiwU4FCNwuE6AQwkChyUCHEoROFwvwCGVwGGpAIcyBA43CHAoR+CwTICDT+BwowCHigQONwlwqETgsFyAQ2UCh5sFOFQhcFghwKEagcMtAhyqEzisFOBQg8DhVgEONQkcVglwqE3gcJsAh1MJHFYLcKhL4HC7AId6BA5rBDjUJ3C4Q4BDAwKHOwU4NCRwuEuAQyMCh7UCHBoTONwtwKEpgcM9AhyaEzjcK8ChJYHDfQIcWhE43C/AoQ2BwwMCHNoRODwowKEDgcNDAhw6Ejg8LMChM4HDIwIcuhI4PCrAoTuBwzoBDj0JHB4T4NCbwGG9AIe+BA6PC3DoT+DwhACHgQQOTwpwGEzg8JQAh6EEDk8LcBhO4PCMAIeRBA7PCnAYReDwnACHMQQOzwtwGEfg8IIFh2QTbUysTPv/8WbbSiZOMFHZxIkmqpioaqKaiZNMVDdxsokaJk4xUdNELRO1TdQxcaqJ00zUNXG6iXomzjBR38SZJhqYOMtEQxNnm2hk4hwTjU00MdHURDMTzU20MIH56TE3O+Ylx5zcmI8aczFjHmLMwYv5ZzH3KuYdxZybmG8Scy1inkHMsYf55TC3GuYVw5xamE8KcylhHiHMoYP5YzB3CuYNwZwZmC8CcyVgngB45MMfHt7o8AWHJzb8oOGFDB9geODC/xXep/D9hOcl/B7hdQifP3jcwd8N3mbw9YKnFfyc4GUEHx942MC/Bd4l8O2AZwX8GuBVgHH6GKOO8dkYm4xxuRiTivGYGIuIcXgYg4bxVxh7hHE3GHOC8RYYa4B+9uhjjv7V6FuMfrXoU4r+lOhLiH506EOG/lPoO4R+M+gzgv4S6CuAdnK0EaN9FG2DaBdDmxDaQ9AWgOfgeAaM55949ofnXnjmg+cduNfHfS7u8XB/g2t7XNfimg7XM/gtx+8YzuE4f+HYRb2NvXJY1vl5xQybYkfXrzm43YSttVZWXd+h2bpZs7r3qVJnR8upj49b1GTr/sV7zHKsX7GkfR5sk2iOF0vanY/axPnc9xIrV/iNn9BmXlKFktl/PnrRMoft/vFdLizmVmdi62b2Xb5koQHlT077G9sui9/vP/ZtsV1SnlzZn+NlXj0/mtRuu6R6BP+IVwQ41CdweFWAQwMCh9cEODQkcHhdgEMjAoc3BDg0JnB4U4BDUwKHtwQ4NCdweFuAQ0sCh3cEOLQicHhXgEMbAof3BDi0I3B4X4BDBwKHDwQ4dCRw+FCAw5e5sz/HRwIcuhDqw8cCHLoROHwiwKEHgcOnAhx6EThsEODQh8DhMwEO/QgcNgpwGEDg8LkAh0EEDl8IcBhC4PClAIdhBA6bBDiMIHDYLMDhfAKHLQIcRhM4bBXgMJbA4SsBDuMJHL4W4DCRwGGbAIfJBA7fCHCYQuCwXYBD+ZTsz/GtAIdphPqwQ4DDdAKH7wQ4zCBw2CnAYSaBw/cCHGYTOOwS4DCHwOEHAQ5zCRx2C3CYR+DwowCH+QQOewQ4vJWc/Tl+EuCwgFAf9gpwWEjg8LMAh0UEDvsEOCwmcNgvwGEJgcMvAhyWEjj8KsBhGYHDAQEOTxP6if0mwGE5oT4cFOCwgsDhdwEOKwkc/hDgsIrA4U8BDqsJHA4JcFhD4HBYgMOdBA5eqehzWEvgkCTA4R4ChxwCHO4jcEgW4PAAgUOKAIeHCBxyCnB4hMAhlwCHdQQOuQU4rCdwyCPA4QkCh7wCHJ4icMgnwOEZAof8AhyeI3AoIMDhBQKHggIcXiJwKCTA4RUCh8ICHF4jcCgiwOENAodjBDi8ReBQVIDDOwQOxwpweI/AoZgAhw8IHIoLcPiIwKGEAIdPCBxKCnDYQOBQSoDDRgKH4wQ4fEHgkCrAYROBQ2kBDlsIHMoIcPiKwKGsAIdtBA7lBDhsJ3AoL8BhB4GDL8BhJ4FDBQEOuwgcKgpw2E3gcLwAhz0EDpUEOOwlcDhBgMM+AofKAhx+IXA4UYDDAQKHKgIcDhI4VBXg8AeBQzUBDocIHE4S4OAR5imsLsAhB4HDyQIcUggcaghwyEXgcIoAhzwEDjUFOOQjcKglwKEAgUNtAQ6FCBzqCHAoQuBwqgCHogQOpwlwKEbgUFeAQwkCh9MFOJQicKgnwCGVwOEMAQ5lCBzqC3AoR+BwpgAHn8ChgQCHigQOZwlwqETg0FCAQ2UCh7MFOFQhcGgkwKEagcM5AhyqEzg0FuBQg8ChiQCHmgQOTQU41CZwaCbA4VQCh+YCHOoSOLQQ4FCPwKGlAIf6BA7nCnBoQODQSoBDQwKH1gIcGhE4tBHg0JjAoa0Ah6YEDu0EODQncGgvwKElgUMHAQ6tCBzOE+DQhsChowCHdgQOnQQ4dCBw6CzAoSOBQxcBDp0JHLoKcOhK4NBNgEN3AofuAhx6Ejj0EODQm8ChpwCHvgQOvQQ49Cdw6C3AYSCBQx8BDoMJHPoKcBhK4NBPgMNwAof+AhxGEjgMEOAwisBhoACHMQQOgwQ4jCNwGFzKLkcOy/3PK+Z5C4slvv78tPXDOmoObjdha62VVdd3aLZu1qzufarU2dFy6uPjFjXZun/xHrN8iKUOW071zT9zTbmSLctV32LducUSX3do4nqT/v7HS3ybM9NyeHbbeSkm8pnIGW+nlmU4w7Ov/y556nmcPKd72X+sXWF5rF1Z7OgHvmf/smXwRXG7827sNSytLg4vdTSn/YWnxUkC+05O+zssbTtU7kKhgrl8SVdbfklXW35Jhw8fPhDvc9/LPB/+CeobkQZ+ZCnvn1BGpH0Twc9GBgDbfjkxMLZn/j7HZ++Zf75jufpaliv2Skk8z7UmT9KIUomXaaTFr4YF16REtcYqpi1LHLgjHH6N8LI9QEsU9bwmFgdoabN+Q4f6cX6p7NfR1EJHGUcdowg6mlnoKOuoYzRBR3MLHeUcdYwh6GhhoaO8o46xBB0tLXT4jjrGEXSca6GjgqOO8QQdrSx0VHTUMYGgo7WFjuMddUwk6GhjoaOSo45JBB1tLXSc4KhjMkFHOwsdlR11XEDQ0d5Cx4mOOqYQdHSw0FHFUceFBB3nWeio6qhjKkFHRwsd1Rx1TCPo6GSh4yRHHRcRdHS20FHdUcd0go4uFjpOdtRxMUFHVwsdNRx1zCDo6Gah4xRHHZcQdHS30FHTUcdMgo4eFjpqOeqYRdDR00JHbUcdswk6elnoqOOo41KCjt4WOk511DGHoKOPhY7THHVcRtDR10JHXUcdcwk6+lnoON1Rx+UEHf0tdNRz1DGPoGOAhY4zHHVcQdAx0EJHfUcd8wk6BlnoONNRx5UEHYMtdDRw1HEVQccQCx1nOepYQNAx1EJHQ0cdVxN0DLPQcbajjoUEHcMtdDRy1HENQccICx3nOOpYRNAx0kJHY0cd1xJ0nG+ho4mjjsUEHaMsdDR11HEdQcdoCx3NHHUsIegYY6GjuaOO6wk6xlroaOGoYylBxzgLHS0dddxA0DHeQse5jjqWEXRMsNDRylHHjQQdEy10tHbUcRNBxyQLHW0cdSwn6JhsoaOto46bCTousNDRzlHHCoKOKRY62jvquIWg40ILHR0cdawk6JhqoeM8Rx23EnRMs9DR0VHHKoKOiyx0dHLUcRtBx3QLHZ0ddawm6LjYQkcXRx23E3TMsNDR1VHHGoKOSyx0dHPUcQdBx0wLHd0dddxJ0DHLQkcPRx13EXTMttDR01HHWgsdGJfU1kSjtP9jzAXGK6CvP/rJo485+mejbzP6BaNPLfqjoi8n+kGiDyH636HvGvp9oc8U+huhrw76uaCPCPpXoG8C2vXRJo72ZLTFoh0TbYBoP0PbE9pt0OaB9gI8a8dzajzjxfNRPFvEczk808LzIDxLwXMI3MPj/hf3jrjvwj0LrvdxrYzrTFyj4foG1wb4XcVvEs7nOBfiPIJjEPUX3/3aUvH52LC/O3H2eSzGD+Xpm81juDB+CGW3rWv3JK73yPHSNs7nvmf3stVmU0bXHPdaHnPtvP875sLHnO35FN9RcMBqImPk8D3Z5rnXIsd9lsdDuzif+15i5Qq/8RPajHM83OeQAy/b8+39//35Nunvfzy78+39DufbB3j162hh7bZLeoBQvx4U4JAnV/bneEiAQ7082Z/jYQEO9QkcHhHg0IDA4VEBDg0JHNYJcGhE4PCYAIfGBA7rBTg0JXB4XIBDcwKHJwQ4tCRweFKAQysCh6cEOLQhcHhagEM7AodnBDh0IHB4VoBDRwKH5wQ4fJk7+3M8L8ChC6E+vCDAoRuBw4sCHHoQOLwkwKEXgcPLAhz6EDi8IsChH4HDqwIcBhA4vCbAYRCBw+sCHIYQOLwhwGEYgcObAhxGEDi8JcDhfAKHtwU4jM6T/TneEeAwlsDhXQEO4wkc3hPgMJHA4X0BDpMJHD4Q4DCFwOFDAQ7lU7I/x0cCHKYR6sPHAhymEzh8IsBhBoHDpwIcZhI4bBDgMJvA4TMBDnMIHDYKcJhL4PC5AId5BA5fCHCYT+DwpQCHt5KzP8cmAQ4LCPVhswCHhQQOWwQ4LCJw2CrAYTGBw1cCHJYQOHwtwGEpgcM2AQ7LCBy+EeDwNKGf2HYBDssJ9eFbAQ4rCBx2CHBYSeDwnQCHVQQOOwU4rCZw+F6AwxoCh10CHO4kcPhBgMNaAofdAhzuIXD4UYDDfQQOexT8HwgcfrLgAE+R9t5Rvx14JsAvAGPlMU4cY6QxPhhjYzEuFGMiMR4QY+EwDgxjoDD+B2NfMO4DYx7Q3x993dHPG32c0b8XfVvRrxN9GtGfD33Z0I8LfZjQfwd9V9BvA30W0F6Ptmq006KNEu1zaJtCuwzaJPA8Hs+i8RwWzyDx/A3PnvDcBc8ccL+Ne03cZ+EeA9fXuLbEdRWuKfB7it8SnEdxDsHxg7oDbrGXrQ/OGZ693w58OmzzPGiRY6/l8dA+zue+l1i5wm/8hDbj+KHsdciBl63fzs+J58kuv50j1cmWD+oiyh7eLjO9+3j162hh7bZL2keoX/sFODD8dn4R4MDw2/lVgAPDb+eAAAeG385vAhwYfjsHBTgw/HZ+F+DA8Nv5Q4ADw2/nTwEODL+dQwIcGH47hwU4MPx2vOOiz4Hht5MkwIHht5NDgAPDbydZgAPDbydFgAPDbyenAAeG304uAQ4Mv53cAhwYfjt5BDgw/HbyCnBg+O3kE+DA8NvJL8CB4bdTQIADw2+noAAHht9OIQEODL+dwgIcGH47RQQ4MPx2jhHgwPDbKSrAgeG3c6wAB4bfTjEBDgy/neICHBh+OyUEODD8dkoKcGD47ZQS4MDw2zlOgAPDbydVgAPDb6e0AAeG304ZAQ4Mv52yAhwYfjvlBDgw/HbKC3Bg+O34AhwYfjsVBDgw/HYqCnBg+O0cL8CB4bdTSYADw2/nBAEODL+dygIcGH47JwpwYPjtVBHgwPDbqSrAgeG3U02AA8Nv5yQBDgy/neoCHBh+OycLcGD47dQQ4MDw2zlFgAPDb6emAAeG304tAQ4Mv53aAhwYfjt1BDgw/HZOFeDA8Ns5zYIDPEU6eEf9duCZAL8AjJXHOHGMkcb4YIyNxbhQjInEeECMhcM4MIyBwvgfjH3BuA+MeUB/f/R1Rz9v9HFG/170bUW/TvRpRH8+9GVDPy70YUL/HfRdQb8N9FlAez3aqtFOizZKtM+hbQrtMmiTOPI83gSew+IZJJ6/4dkTnrvgmQPut3Gvifss3GPg+hrXlriuwjUFfk/xW4LzKM4hOH5Qd8At9rL1wann2fvt7Hfw29lvkaOu5fHQIc7nvpdYucJv/IQ24/ih2HAIvmz9dk5PPE92+e0cKbItH9RFlD28XWZ66/Hq19HC2m2XVO+47M9xhgAHht9OfYX6QPj9PVOAA8Nvp4EAB4bfzlkCHBh+Ow0FODD8ds4W4MDw22kkwIHht3OOAAeG305jAQ4Mv50mAhwYfjtNBTgw/HaaCXBg+O00F+DA8NtpIcCB4bfTUoADw2/nXAEODL+dVgIcGH47rQU4MPx22ghwYPjttBXgwPDbaSfAgeG3016AA8Nvp4MAB4bfznkCHBh+Ox0FODD8djoJcGD47XQW4MDw2+kiwIHht9NVgAPDb6ebAAeG3053AQ4Mv50eAhwYfjs9BTgw/HZ6CXBg+O30FuDA8NvpI8CB4bfTV4ADw2+nnwAHht9OfwEODL+dAQIcGH47AwU4MPx2BglwYPjtDBbgwPDbGSLAgeG3M1SAA8NvZ5gAB4bfznABDgy/nRECHBh+OyMFODD8ds4X4MDw2xklwIHhtzNagAPDb2eMAAeG385YAQ4Mv51xAhwYfjvjBTgw/HYmCHBg+O1MFODA8NuZJMCB4bczWYADw2/nAgEODL+dKQIcGH47FwpwYPjtTLX02znPO+q3A88E+AVgrDzGiWOMNMYHY2wsxoViTCTGA2IsHMaBYQwUxv9g7AvGfWDMA/r7o687+nmjjzP696JvK/p1ok8j+vOhLxv6caEPE/rvoO8K+m2gzwLa69FWjXZatFGifQ5tU2iXQZsEnsfjWTSew+IZJJ6/4dkTnrvgmQPut3Gvifss3GPg+hrXlriuwjUFfk/xW4LzKM4hOH5Qd8At9rL1wfmiuL3fDnw6bPMEvT0yyzHN8ng4L87nvpdYucJv/IQ24/ihTHPIgZet385FiefJLr+dFPxjywd1EWUPb5eZ3um8+nW0sHbbJU0n1K+LBTgw/HZmCHBg+O1cIsCB4bczU4ADw29nlgAHht/ObAEODL+dSwU4MPx25ghwYPjtXCbAgeG3M1eAA8Nv53IBDgy/nXkCHBh+O1cIcGD47cwX4MDw27lSgAPDb+cqAQ4Mv50FAhwYfjtXC3Bg+O0sFODA8Nu5RoADw29nkQAHht/OtQIcGH47iwU4MPx2rhPgwPDbWSLAgeG3c70AB4bfzlIBDgy/nRsEODD8dpYJcGD47dwowIHht3OTAAeG385yAQ4Mv52bBTgw/HZWCHBg+O3cIsCB4bezUoADw2/nVoV+YgQOqwQ4MPx2bhPgwPDbWS3AgeG3c7sAB4bfzhoBDgy/nTsEODD8du4U4MDw27lLgAPDb2etAAeG387dAhwYfjv3CHBg+O3cK8CB4bdznwAHht/O/QIcGH47DwhwYPjtPCjAgeG385AAB4bfzsMCHBh+O48IcGD47TwqwIHht7NOgAPDb+cxAQ4Mv531AhwYfjuPC3Bg+O08IcCB4bfzpAAHht/OUwIcGH47T1twgKdIR++o3w48E+AXgLHyGCeOMdIYH4yxsRgXijGRGA+IsXAYB4YxUBj/g7EvGPeBMQ/o74++7ujnjT7O6N+Lvq3o14k+jejPh75s6MeFPkzov4O+K+i3gT4LaK9HWzXaadFGifY5tE2hXQZtEngej2fReA6LZ5B4/oZnT3jugmcOuN/GvSbus3CPgetrXFviugrXFPg9xW8JzqM4h+D4Qd0Bt9jL1gfndM/ebwc+HbZ5gt4emeV4xvJ46Bjnc99LrFzhN35Cm3H8UJ5xyIGXrd/Os4nnyS6/nZz4x5YP6iLKHt4uM73P8erX0cLabZf0HKF+PS/AgeG384IAB4bfzosCHBh+Oy8JcGD47bwswIHht/OKAAeG386rAhwYfjuvCXBg+O28LsCB4bfzhgAHht/OmwIcGH47bwlwYPjtvC3AgeG3844AB4bfzrsCHBh+O+8JcGD47bwvwIHht/OBAAeG386HAhwYfjsfCXBg+O18LMCB4bfziQAHht/OpwIcGH47GwQ4MPx2PhPgwPDb2SjAgeG387kAB4bfzhcCHBh+O18KcGD47WwS4MDw29kswIHht7NFgAPDb2erAAeG385XAhwYfjtfC3Bg+O1sE+DA8Nv5RoADw29nuwAHht/OtwIcGH47OwQ4MPx2vhPgwPDb2SnAgeG3870AB4bfzi4BDgy/nR8EODD8dnYLcGD47fwowIHht7NHgAPDb+cnAQ4Mv529AhwYfjs/C3Bg+O3sE+DA8NvZL8CB4bfziwAHht/OrwIcGH47BwQ4MPx2fhPgwPDbOSjAgeG387sAB4bfzh8CHBh+O38KcGD47RwS4MDw2zkswIHht+OlRp8Dw28nyYIDPEU6eUf9duCZAL8AjJXHOHGMkcb4YIyNxbhQjInEeECMhcM4MIyBwvgfjH3BuA+MeUB/f/R1Rz9v9HFG/170bUW/TvRpRH8+9GVDPy70YUL/HfRdQb8N9FlAez3aqtFOizZKtM+hbQrtMmiTwPN4PIvGc1g8g8TzNzx7wnMXPHPA/TbuNXGfhXsMXF/j2hLXVbimwO8pfktwHsU5BMcP6g64xV62PjjwLBlu6bcDnw7bPEFvj8xy5LA8HjrF+dz3EitX+I2f0GYcPxQbDsGXrd9OcuJ5sstvJxf+seWDuoiyh7fLTG8Kr34dLazddkkpqdmfI6dlDttjfl4xz7uiWOLrzzfrXlnM/vvMJfB9MnyDcgtwYPgG5RHgwPANyivAgeEblE+AA8M3KL8AB4ZvUAEBDgzfoIICHBi+QYUEODB8gwoLcGD4BhUR4MDwDTpGgAPDN6ioAAeGb9CxAhwYvkHFBDgwfIOKC3Bg+AaVEODA8A0qKcCB4RtUSoADwzfoOAEODN+gVAEODN+g0gIcGL5BZQQ4MHyDygpwYPgGlRPgwPANKi/AgeEb5AtwYPgGVRDgwPANqijAgeEbdLwAB4ZvUCUBDgzfoBMEODB8gyoLcGD4Bp0owIHhG1RFgAPDN6iqAAeGb1A1AQ4M36CTBDgwfIOqC3Bg+AadLMCB4RtUQ4ADwzfoFAEODN+gmgIcGL5BtQQ4MHyDagtwYPgG1RHgwPANOlWAA8M36DQBDgzfoLoCHBi+QacLcGD4BtUT4MDwDTpDgAPDN6i+AAeGb9CZAhwYvkENBDgwfIPOEuDA8A1qKMCB4Rt0tgAHhm9QIwEODN+gcwQ4MHyDGgtwYPgGNRHgwPANairAgeEb1EyAA8M3qLmlb1Bn76hvEDwT4BeAsfIYJ44x0hgfjLGxGBeKMZEYD4ixcBgHhjFQGP+DsS8Y94ExD+jvj77u6OeNPs7o34u+rejXeaRPown0ZUM/LvRhQv8d9F1Bvw30WUB7Pdqq0U6LNkq0z6FtCu0yaJPA83g8i8ZzWDyDxPM3PHvCcxc8c8D9Nu41cZ+FewxcX+PaEtdVuKbA7yl+S3AexTkExw/qDrjFXmFvj0R8gCz8Q454tcCnI5wns+2COTIrU4tUu+Ohc5zPfS+xcoXf+AltxvF1aeGQAy9b36CWiefJLt+g3PjHlg/qIsoe3i4zvefy6tfRwtptl3QuoX61EuDA8NtpLcCB4bfTRoADw2+nrQAHht9OOwEODL+d9gIcGH47HQQ4MPx2zhPgwPDb6SjAgeG300mAA8Nvp7MAB4bfThcBDgy/na4CHBh+O90EODD8droLcGD47fQQ4MDw2+kpwIHht9NLgAPDb6e3AAeG304fAQ4Mv52+AhwYfjv9BDgw/Hb6C3Bg+O0MEODA8NsZKMCB4bczSIADw29nsAAHht/OEAEODL+doQIcGH47wwQ4MPx2hgtwYPjtjBDgwPDbGSnAgeG3c74AB4bfzigBDgy/ndECHBh+O2MEODD8dsYKcGD47YwT4MDw2xkvwIHhtzNBgAPDb2eiAAeG384kAQ4Mv53JAhwYfjsXCHBg+O1MEeDA8Nu5UIADw29nqgAHht/ONAEODL+diwQ4MPx2pgtwYPjtXCzAgeG3M0OAA8Nv5xIBDgy/nZkCHBh+O7MEODD8dmYLcGD47VwqwIHhtzNHgAPDb+cyAQ4Mv525AhwYfjuXC3Bg+O3ME+DA8Nu5QoADw29nvgUHeIp08Y767cAzAX4BGCuPceIYI43xwRgbi3GhGBOJ8YAYC4dxYBgDhfE/GPuCcR8Y84D+/ujrjn7e6OOM/r3o24p+nejTiP586MuGflzow4T+O+i7gn4b6LOA9nq0VaOdFm2UaJ9D2xTaZdAmgefxeBaN57B4Bonnb3j2hOcueOaA+23ca+I+C/cYuL7GtSWuq3BNgd9T/JbgPIpzCI4f1B1wi71sfXDgWTKs1NH1E/HngU+HbZ6gt0dmOa60PB66xPnc9xIrV/iNn9BmHD+UKx1y4GXrt3NV4nmSLPx2kiz8dpL+/sezq7soe3i7zPQusOCKfSen/Y23nYu/VaLrXp1qxy/2sv3+F/733/9fG3j/LHdmq8fOXS7nvNi6mbG5xrGuBLezLd+8YqZeF7P43Uxb3/Y4WGR5fnHRscBSxwIHHdfyfi+OFtZuO4pv1GIBDgzfqOsEODB8o5YIcGD4Rl0vwIHhG7VUgAPDN+oGAQ4M36hlAhwYvlE3CnBg+EbdJMCB4Ru1XIADwzfqZgEODN+oFQIcGL5RtwhwYPhGrRTgwPCNulWAA8M3apUAB4Zv1G0CHBi+UasFODB8o24X4MDwjVojwIHhG3WHAAeGb9SdAhwYvlF3CXBg+EatFeDA8I26W4ADwzfqHgEODN+oewU4MHyj7hPgwPCNul+AA8M36gEBDgzfqAcFODB8ox4S4MDwjXpYgAPDN+oRAQ4M36hHBTgwfKPWCXBg+EY9JsCB4Ru1XoADwzfqcQEODN+oJwQ4MHyjnhTgwPCNekqAA8M36mkBDgzfqGcEODB8o54V4MDwjXpOgAPDN+p5AQ4M36gXBDgwfKNeFODA8I16SYADwzfqZQEODN+oVwQ4MHyjXhXgwPCNek2AA8M36nUBDgzfqDcEODB8o94U4MDwjXpLgAPDN+ptAQ4M36h3BDgwfKPeFeDA8I16T4ADwzfqfQEODN+oDyx9LGz3D7+QBQ4+M/uz2f8E/jALU+09aD608Hux1RAuS2b7h0fISyUTXx8eIUNK2X8XH1nUkRQTBb2jOf5RgFDezMp7duLr/iPfx6lZSPhxqv12n1gYdLmW65PUox/4XuIvlwP2GocD9rdsPmBzpf5l6mRbroOW5Yq9bI2gPrU4MViwSjqYRSOwzMrdyPurbtmefBpZ5NiQzT8yYL/BoW585mhQ9dm/YGa2weKcsZFkZvb5f1+Hj7xcTMksDLmO/PgvcqgvX6Rmv45rLXVc66Djy2w+HlGuDx0urjZF6OIK38VHlt/FRw7fxWbLi6u8aX//pwChvJmV1+biKit5zvI4eT7PYp3O7Htq7P11PrWtR8kW6zb27Fklhd/4CW3mJW3IZmDneH/9yNkCs/lh3GJ58BTyjpYnI22ZlTHRg/bw4cNb4n3ue5nnwD/Bsm5NuwH4KtX759XI1rSzTvCzr+IUMHw1kFkBNif2RVxrvoikrRZf2leW8GwrHirQVse7JZdb8Jctb8EXO9h0fp2a/TpesdRxnYOObQQdr1rqWOKg4xuCjtcsdVzvoGM7QcfrljqWOuj4lqDjDUsdNzjo2EHQ8aaljmUOOr4j6HjLUseNDjp2EnS8banjJgcd3xN0vGOpY7mDjl0EHe9a6rjZQccPBB3vWepY4aBjN0HH+5Y6bnHQ8SNBxweWOlY66NhD0PGhpY5bHXT8RNDxkaWOVQ469hJ0fGyp4zYHHT8TdHxiqWO1g459BB2fWuq43UHHfoKODZY61jjo+IWg4zNLHXc46PiVoGOjpY47HXQcIOj43FLHXQ46fiPo+MJSx1oHHQcJOr601HG3g47fCTo2Weq4x0HHHwQdmy113Oug40+Cji2WOu5z0HGIoGOrpY77HXQcJuj4ylLHAw46vNLZr+NrSx0POuhIIujYZqnjIQcdOQg6vrHU8bCDjmSCju2WOh5x0JFC0PGtpY5HHXTkJOjYYaljnYOOXAQd31nqeMxBR26Cjp2WOtY76MhD0PG9pY7HHXTkJejYZanjCQcd+Qg6frDU8aSDjvwEHbstdTzloKMAQcePljqedtBRkKBjj6WOZxx0FCLo+MlSx7MOOgoTdOy11PGcg44iBB0/W+p43kHHMQQd+yx1vOCgoyhBx35LHS866DiWoOMXSx0vOegoRtDxq6WOlx10FCfoOGCp4xUHHSUIOn6z1PGqg46SBB0HLXW85qCjFEHH75Y6XnfQcRxBxx+WOt5w0JFK0PGnpY43HXSUJug4ZKnjLQcdZQg6DlvqeNtBR1mCDq+UnY53HHSUI+hIstTxroOO8gQdOSx1vOegwyfoSLbU8b6DjgoEHSmWOj5w0FGRoCOnpY4PHXQcT9CRy1LHRw46KhF05LbU8bGDjhMIOvJY6vjEQUdlgo68ljo+ddBxIkFHPksdGxx0VCHoyG+p4zMHHVUJOgpY6tjooKMaQUdBSx2fO+g4iaCjkKWOLxx0VCfoKGyp40sHHScTdBSx1LHJQUcNgo5jLHVsdtBxCkFHUUsdWxx01CToONZSx1YHHbUIOopZ6vjKQUdtgo7iljq+dtBRh6CjhKWObQ46TiXoKGmp4xsHHacRdJSy1LHdQUddgo7jLHV866DjdIKOVEsdOxx01CPoKG2p4zsHHWcQdJSx1LHTQUd9go6yljq+d9BxJkFHOUsduxx0NCDoKG+p4wcHHWcRdPiWOnY76GhI0FHBUsePDjrOJuioaKljj4OORgQdx1vq+MlBxzkEHZUsdex10NGYoOMESx0/O+hoQtBR2VLHPgcdTQk6TrTUsd9BRzOCjiqWOn5x0NGcoKOqpY5fHXS0IOioZqnjgIOOlgQdJ1nq+M1Bx7kEHdUtdRx00NGKoONkSx2/O+hoTdBRw1LHHw462hB0nGKp408HHW0JOmpa6jjkoKMdQUctSx2HHXS0J+iobanDK26vowNBRx1LHUkOOs4j6DjVUkcOBx0dCTpOs9SR7KCjE0FHXUsdKQ46OhN0nG6pI6eDji4EHfUsdeRy0NGVoOMMSx25HXR0I+iob6kjj4OO7gQdZ1rqyOugowdBRwNLHfkcdPQk6DjLUkd+Bx29CDoaWuoo4KCjN0HH2ZY6Cjro6EPQ0chSRyEHHX0JOs6x1FHYQUc/go7GljqKOOjoT9DRxFLHMQ46BhB0NLXUUdRBx0CCjmaWOo510DGIoKO5pY5iDjoGE3S0sNRR3EHHEIKOlpY6SjjoGErQca6ljpIOOoYRdLSy1FHKQcdwgo7WljqOc9AxgqCjjaWOVAcdIwk62lrqKO2g43yCjnaWOso46BhF0NHeUkdZBx2jCTo6WOoo56BjDEHHeZY6yjvoGEvQ0dFSh++gYxxBRydLHRUcdIwn6OhsqaOig44JBB1dLHUc76BjIkFHV0sdlRx0TCLo6Gap4wQHHZMJOrpb6qjsoOMCgo4eljpOdNAxhaCjp6WOKg46LiTo6GWpo6qDjqkEHb0tdVRz0DGNoKOPpY6THHRcRNDR11JHdQcd0wk6+lnqONlBx8UEHf0tddRw0DGDoGOApY5THHRcQtAx0FJHTQcdMwk6BlnqqOWgYxZBx2BLHbUddMy20IH54buaWJn2f8w5jvm6Mdc15onGHMuYnxhz+2JeXMwpi/lYMZcp5gHFHJqYfxJzN2LeQ8wZiPn2MFcd5nnDHGmYXwxzc2FeK8wJhfmUMBcR5vHBHDiYPwZzr2DeEsz5gfkyMNcE5mnAHAeYHwDe+vClh6c7/NDhJQ4fbnhYw/8Z3snwHYZnL/xu4RULn1V4lMLfE96Y8JWEJyP8DOEFCB+9Ix50pf/yPoNvGDy34FcFryf4JMFjCP488LaBLww8VeBHAi8P+GDAQwL+C/AuwLh/jJnHeHOM1cY4Z4wRxvhajE3FuE6MicR4QozFwzg2jAHD+CmMPcK4HYx5wXgRjLXAOAX08Uf/ePQtR79s9GlGf2D0pUU/VPThRP9H9B1Evzv0WUN/L/SVQj8j9NFB/xb0DUG/CvRJQHs+2sLRjow2WLRfou0P7WZoc0J7Ddo60E6AZ+x4Po1nu3guimeKeB6HZ1l4DoRnKHj+gHt33PfinhH3W7hXwXU+rpFxfYlrM1zX4JoAv6f4LcJ5HOdAnD9w7KHe/l35Q3U+k1fODaYebU61P1YuLZ34sZIj7VgJv3zP7mWpLcmmjK455pTO3nMfyrMlNfHv5RwTGxy+z8tK2537unn/d+77v3NftM59OSzrPI4Ti+M3CevjOLE9hoM5MivT3NJ259VucT73vcTKFX7jJ7QZ57w61zKH6++e7Xe5weJcfDnvuzxaQLvtki4nfJfzBDjkyZX9Oa4Q4FAvT/bnmC/AoT6Bw5UCHBoQOFwlwKEhgcMCAQ6NCByuFuDQmMBhoQCHpgQO1whwaE7gsEiAQ0sCh2sFOLQicFgswKENgcN1AhzaETgsEeDQgcDhegEOHQkclgpw+DJ39ue4QYBDF0J9WCbAoRuBw40CHHoQONwkwKEXgcNyAQ59CBxuFuDQj8BhhQCHAQQOtwhwGETgsFKAwxACh1sFOAwjcFglwGEEgcNtAhzOJ3BYLcBhNIHD7QIcxhI4rBHgMJ7A4Q4BDhMJHO4U4DCZwOEuAQ5TCBzWCnAon5L9Oe4W4DCNUB/uEeAwncDhXgEOMwgc7hPgMJPA4X4BDrMJHB4Q4DCHwOFBAQ5zCRweEuAwj8DhYQEO8wkcHhHg8FZy9ud4VIDDAkJ9WCfAYSGBw2MCHBYROKwX4LCYwOFxAQ5LCByeEOCwlMDhSQEOywgcnhLg8DShn9jTAhyWE+rDMwIcVhA4PCvAYSWBw3MCHFYRODwvwGE1gcMLAhzWEDi8KMDhTgKHlwQ4rCVweFmAwz0EDq8IcLiPwOFVAQ4PEDi8JsDhIQKH1wU4PELg8IYAh3UEDm8KcFhP4PCWAIcnCBzeFuDwFIHDOwIcniFweFeAw3MEDu8JcHiBwOF9AQ4vETh8IMDhFQKHDwU4vEbg8JEAhzcIHD5W6AdC4PCJAId3CBw+FeDwHoHDBgEOHxA4fCbA4SMCh40CHD4hcPhcgMMGAocvBDhsJHD4UoDDFwQOmwQ4bCJw2CzAYQuBwxYBDl8ROGwV4LCNwOErAQ7bCRy+FuCwg8BhmwCHnQQO3whw2EXgsF2Aw24Ch28FOOwhcNghwGEvgcN3Ahz2ETjsFODwC4HD9wIcDhA47BLgcJDA4QcBDn8QOOwW4HCIwOFHAQ5eXsI1igCHHAQOPwlwSCFw2CvAIReBw88K88oROOwT4JCPwGG/AIcCBA6/CHAoRODwqwCHIgQOBwQ4FCVw+E2AQzECh4MCHEoQOPwuwKEUgcMfAhxSCRz+FOBQhsDhkACHcgQOhwU4+AQOXpnoc6hI4JAkwKESgUMOAQ6VCRySBThUIXBIEeBQjcAhpwCH6gQOuQQ41CBwyC3AoSaBQx4BDrUJHPIKcDiVwCGfAIe6BA75BTjUI3AoIMChPoFDQQEODQgcCglwaEjgUFiAQyMChyICHBoTOBwjwKEpgUNRAQ7NCRyOFeDQksChmACHVgQOxQU4tCFwKCHAoR2BQ0kBDh0IHEoJcOhI4HCcAIfOBA6pAhy6EjiUFuDQncChjACHngQOZQU49CZwKCfAoS+BQ3kBDv0JHHwBDgMJHCoIcBhM4FBRgMNQAofjBTgMJ3CoJMBhJIHDCQIcRhE4VBbgMIbA4UQBDuMIHKpYcEg20d3EyrT/X1Ha8+abuNLEVSYWmLjaxEIT15hYZOJaE4tNXGdiiYnrTSw1cYOJZSZuNHGTieUmbjaxwsQtJlaauNXEKhO3mVht4nYTa0zcYeJOE3eZWGvibhP3mLjXBOanx9zsmJccc3JjPmrMxYx5iDEHL+afxdyrmHcUc25ivknMtYh5BjHHHuaXw9xqmFcMc2phPinMpYR5hDCHDuaPwdwpmDcEc2ZgvgjMlYB5AuCRD394eKPDFxye2PCDhhcyfIDhgQv/V3ifwvcTnpfwe4TXIXz+4HEHfzd4m8HXC55W8HOClxF8fOBhA/8WeJfAtwOeFfBrgFcBxuljjDrGZ2NsMsblYkwqxmNiLCLG4WEMGsZfYewRxt1gzAnGW2CsAfrZo485+lejbzH61aJPKfpToi8h+tGhDxn6T6HvEPrNoM8I+kugrwDaydFGjPZRtA2iXQxtQmgPQVsAnoPjGTCef+LZH5574ZkPnnfgXh/3ubjHw/3NkWt7E7imw/UMfsvxO4ZzOM5fOHZRb2OvHJZ1/mzzz4bUo+vXHNxuwtZaK6uu79Bs3axZ3ftUqbOj5dTHxy1qsnX/4j1p684rbZ9nXunEc1S1PB91j/O57yVWrvAbP6HNvKTLS2f/+ciGg8P+c+K73Jxq/V3msKkv1Xjf5d8vW87VymR/jpOy+F1mxhm/R43T/ga3yyxNssW6jS3KU13ge8+TK/tznCzAoR7BI6SGAIf6BA6nCHBoQOBQU4BDQwKHWgIcGhE41Bbg0JjAoY4Ah6YEDqcKcGhO4HCaAIeWBA51BTi0InA4XYBDGwKHegIc2hE4nCHAoQOBQ30BDh0JHM4U4PBlbsI9jACHLoT6cJYAh24EDg0FOPQgcDhbgEMvAodGAhz6EDicI8ChH4FDYwEOAwgcmghwGETg0FSAwxACh2YCHIYRODQX4DCCwKGFAIfzCRxaCnAYTeBwrgCHsQQOrQQ4jCdwaC3AYSKBQxsBDpMJHNoKcJhC4NBOgEP5lOzP0V6AwzRCfeggwGE6gcN5AhxmEDh0FOAwk8ChkwCH2QQOnQU4zCFw6CLAYS6BQ1cBDvMIHLoJcJhP4NBdgMNbydmfo4cAhwWE+tBTgMNCAodeAhwWETj0FuCwmMChjwCHJQQOfQU4LCVw6CfAYRmBQ38BDk8T+okNEOCwnFAfBgpwWEHgMEiAw0oCh8ECHFYROAwR4LCawGGoAIc1BA7DBDjcSeAwXIDDWgKHEQIc7iFwGCnA4T4Ch/MFODxA4DBKgMNDBA6jBTg8QuAwRoDDOgKHsQIc1hM4jBPg8ASBw3gBDk8ROEwQ4PAMgcNEAQ7PEThMEuDwAoHDZAEOLxE4XCDA4RUChykCHF4jcLhQgMMbBA5TFfqBEDhME+DwDoHDRQIc3iNwmC7A4QMCh4sFOHxE4DBDgMMnBA6XCHDYQOAwU4DDRgKHWQIcviBwmC3AYROBw6UCHLYQOMwR4PAVgcNlAhy2ETjMFeCwncDhcgEOOwgc5glw2EngcIUAh10EDvMFOOwmcLhSgMMeAoerBDjsJXBYIMBhH4HD1QIcfiFwWCjA4QCBwzUCHA4SOCwS4PAHgcO1AhwOETgsFuDgEeaivE6AQw4ChyUCHFIIHK4X4JCLwGGpwrxyBA43CHDIR+CwTIBDAQKHGwU4FCJwuEmAQxECh+UCHIoSONwswKEYgcMKAQ4lCBxuEeBQisBhpQCHVAKHWwU4lCFwWCXAoRyBw20CHHwCh9UCHCoSONwuwKESgcMaAQ6VCRzuEOBQhcDhTgEO1Qgc7hLgUJ3AYa0AhxoEDncLcKhJ4HCPAIfaBA73CnA4lcDhPgEOdQkc7hfgUI/A4QEBDvUJHB4U4NCAwOEhAQ4NCRweFuDQiMDhEQEOjQkcHhXg0JTAYZ0Ah+YEDo8JcGhJ4LBegEMrAofHBTi0IXB4QoBDOwKHJwU4dCBweEqAQ0cCh6cFOHQmcHhGgENXAodnBTh0J3B4ToBDTwKH5wU49CZweEGAQ18ChxcFOPQncHhJgMNAAoeXBTgMJnB4RYDDUAKHVwU4DCdweE2Aw0gCh9cFOIwicHhDgMMYAoc3BTiMI3B4y4JDsokeJlam/f9ks20NE6eYqGmilonaJuqYONXEaSbqmjjdRD0TZ5iob+JMEw1MnGWioYmzTTQycY6JxiaamGhqopmJ5iZamGhp4lwTrUy0NtHGRFsT7Uy0N9HBxHkmMD895mbHvOSYkxvzUWMuZsxDjDl4Mf8s5l7FvKOYcxPzTWKuRcwziDn2ML8c5lbDvGKYUwvzSWEuJcwjhDl0MH8M5k7BvCGYMwPzRWCuBMwTAI98+MPDGx2+4PDEhh80vJDhAwwPXPi/wvsUvp/wvITfI7wO4fMHjzv4u8HbDL5e8LSCnxO8jODjAw8b+LfAuwS+HfCsgF8DvAowTh9j1DE+G2OTMS4XY1IxHhNjETEOD2PQMP4KY48w7gZjTjDeAmMN0M8efczRvxp9i9GvFn1K0Z8SfQnRjw59yNB/Cn2H0G8GfUbQXwJ9BdBOjjZitI+ibRDtYmgTQnsI2gLwHBzPgPH8E8/+8NwLz3zwvAP3+rjPxT0e7m9wbY/rWlzT4XoGv+X4HcM5HOcvHLuot7FXjlCdrzm43YSttVZWXd+h2bpZs7r3qVJnR8upj49b1GTr/sV7zPINqZ53UpnEjxGsX73M/+bJbLtgjszK9HYZu/NRjzif+15i5Qq/8RPazEuqVib7z0dvW+aw3H9OfJebU62/y2RsF1s3s+/yHd53+ffLlvM7hO/yXQEOeXJlf473BDjUI3hmvC/AoT6BwwcCHBoQOHwowKEhgcNHAhwaETh8LMChMYHDJwIcmhI4fCrAoTmBwwYBDi0JHD4T4NCKwGGjAIc2BA6fC3BoR+DwhQCHDgQOXwpw6EjgsEmAw5e5sz/HZgEOXQj1YYsAh24EDlsFOPQgcPhKgEMvAoevBTj0IXDYJsChH4HDNwIcBhA4bBfgMIjA4VsBDkMIHHYIcBhG4PCdAIcRBA47BTicT+DwvQCH0QQOuwQ4jCVw+EGAw3gCh90CHCYSOPwowGEygcMeAQ5TCBx+EuBQPiX7c+wV4DCNUB9+FuAwncBhnwCHGQQO+wU4zCRw+EWAw2wCh18FOMwhcDggwGEugcNvAhzmETgcFOAwn8DhdwEObyVnf44/BDgsINSHPwU4LCRwOCTAYRGBw2EBDosJHLyy0eewhMAhSYDDUgKHHAIclhE4JAtweJrQTyxFgMNyQn3IKcBhBYFDLgEOKwkccgtwWEXgkEeAw2oCh7wCHNYQOOQT4HAngUN+AQ5rCRwKCHC4h8ChoACH+wgcCglweIDAobAAh4cIHIoIcHiEwOEYAQ7rCByKCnBYT+BwrACHJwgciglweIrAobgAh2cIHEoIcHiOwKGkAIcXCBxKCXB4icDhOAEOrxA4pApweI3AobQAhzcIHMoIcHiLwKGsAId3CBzKCXB4j8ChvACHDwgcfAEOHxE4VBDg8AmBQ0UBDhsIHI4X4LCRwKGSAIcvCBxOEOCwicChsgCHLQQOJwpw+IrAoYoAh20EDlUFOGwncKgmwGEHgcNJAhx2EjhUF+Cwi8DhZAEOuwkcaghw2EPgcIoAh70EDjUFOOwjcKglwOEXAofaAhwOEDjUEeBwkMDhVAEOfxA4nCbA4RCBQ10BDh5hbsbTBTjkIHCoJ8AhhcDhDAEOuQgc6gtwyEPgcKYAh3wEDg0EOBQgcDhLgEMhAoeGAhyKEDicLcChKIFDIwEOxQgczhHgUILAobEAh1IEDk0EOKQSODQV4FCGwKGZAIdyBA7NBTj4BA4tBDhUJHBoKcChEoHDuQIcKhM4tBLgUIXAobUAh2oEDm0EOFQncGgrwKEGgUM7AQ41CRzaC3CoTeDQQYDDqQQO5wlwqEvg0FGAQz0Ch04CHOoTOHQW4NCAwKGLAIeGBA5dBTg0InDoJsChMYFDdwEOTQkceghwaE7g0FOAQ0sCh14CHFoROPQW4NCGwKGPAId2BA59BTh0IHDoJ8ChI4FDfwEOnQkcBghw6ErgMFCAQ3cCh0ECHHoSOAwW4NCbwGGIAIe+BA5DBTj0J3AYJsBhIIHDcAEOgwkcRghwGErgMFKAw3ACh/MFOIwkcBglwGEUgcNoAQ5jCBzGCHAYR+Aw1oJDsomeJlam/f+9Mp73vokPTHxo4iMTH5v4xMSnJjaY+MzERhOfm/jCxJcmNpnYbGKLia0mvjLxtYltJr4xsd3EtyZ2mPjOxE4T35vYZeIHE7tN/Ghij4mfTOw18bOJfSYwPz3mZse85JiTG/NRYy5mzEOMOXgx/yzmXsW8o5hzE/NNYq5FzDOIOfYwvxzmVsO8YphTC/NJYS4lzCOEOXQwfwzmTsG8IZgzA/NFYK4EzBMAj3z4w8MbHb7g8MSGHzS8kOEDDA9c+L/C+/SI76cJ+D3C6xA+f/C4g78bvM3g6wVPK/g5wcsIPj7wsIF/C7xL4NsBzwr4NcCrAOP0MUYd47MxNhnjcjEmFeMxMRYR4/AwBg3jrzD2CONuMOYE4y0w1gD97NHHHP2r0bcY/WrRpxT9KdGXEP3o0IcM/afQdwj9ZtBnBP0l0FcA7eRoI0b7KNoG0S6GNiG0h6AtAM/B8QwYzz/x7A/PvfDMB887cK+P+1zc4+H+Btf2uK7FNR2uZ/Bbjt8xnMNx/sKxi3obe+WwrPNnmX82pB5dv+bgdhO21lpZdX2HZutmzerep0qdHS2nPj5uUZOt+xfvSVv33TL2ed4tk3iOcZbno55xPve9xMoVfuMntJmX9E4ZwjmvrF0Oy/3nxHe5OdX6u0yxqS/jed/l3y9bzuPLZn+OCQIc8uTK/hwTBTjUI3hmTBLgUJ/AYbIAhwYEDhcIcGhI4DBFgEMjAocLBTg0JnCYKsChKYHDNAEOzQkcLhLg0JLAYboAh1YEDhcLcGhD4DBDgEM7AodLBDh0IHCYKcChI4HDLAEOX+bO/hyzBTh0IdSHSwU4dCNwmCPAoQeBw2UCHHoROMwV4NCHwOFyAQ79CBzmCXAYQOBwhQCHQQQO8wU4DCFwuFKAwzACh6sEOIwgcFggwOF8AoerBTiMJnBYKMBhLIHDNQrt/gQOiwQ4TCRwuFaAw2QCh8UCHKYQOFwnwKF8SvbnWCLAYRqhPlwvwGE6gcNSAQ4zCBxuEOAwk8BhmQCH2QQONwpwmEPgcJMAh7kEDssFOMwjcLhZgMN8AocVAhzeSs7+HLcIcFhAqA8rBTgsJHC4VYDDIgKHVQIcFhM43CbAYQmBw2oBDksJHG4X4LCMwGGNAIenCf3E7hDgsJxQH+4U4LCCwOEuAQ4rCRzWCnBYReBwtwCH1QQO9whwWEPgcK8AhzsJHO4T4LCWwOF+AQ73EDg8IMDhPgKHBwU4PEDg8JAAh4cIHB4W4PAIgcMjAhzWETg8KsBhPYHDOgEOTxA4PCbA4SkCh/UCHJ4hcHhcgMNzBA5PCHB4gcDhSQEOLxE4PCXA4RUCh6cFOLxG4PCMAIc3CByeVegHQuDwnACHdwgcnhfg8B6BwwsCHD4gcHhRgMNHBA4vCXD4hMDhZQEOGwgcXhHgsJHA4VUBDl8QOLwmwGETgcPrAhy2EDi8IcDhKwKHNwU4bCNweEuAw3YCh7cFOOwgcHhHgMNOAod3BTjsInB4T4DDbgKH9wU47CFw+ECAw14Chw8FOOwjcPhIgMMvBA4fC3A4QODwiQCHgwQOnwpw+IPAYYMAh0MEDp8JcPAIczNuFOCQg8DhcwEOKQQOXwhwyEXg8KXCvHIEDpsEOOQjcNgswKEAgcMWAQ6FCBy2CnAoQuDwlQCHogQOXwtwKEbgsE2AQwkCh28EOJQicNguwCGVwOFbAQ5lCBx2CHAoR+DwnQAHn8BhpwCHigQO3wtwqETgsEuAQ2UChx8EOFQhcNgtwKEagcOPAhyqEzjsEeBQg8DhJwEONQkc9gpwqE3g8LMAh1MJHPYJcKhL4LBfgEM9AodfBDjUJ3D4VYBDAwKHAwIcGhI4/CbAoRGBw0EBDo0JHH4X4NCUwOEPAQ7NCRz+FODQksDhkACHVgQOhwU4tCFw8MpFn0M7AockAQ4dCBxyCHDoSOCQLMChM4FDigCHrgQOOQU4dCdwyCXAoSeBQ24BDr0JHPIIcOhL4JBXgEN/Aod8AhwGEjjkF+AwmMChgACHoQQOBQU4DCdwKCTAYSSBQ2EBDqMIHIoIcBhD4HCMAIdxBA5FLTgkm+hlYmXa/yeaZ3qTTEw2cYGJKSYuNDHVxDQTF5mYbuJiEzNMXGJipolZJmabuNTEHBOXmZhr4nIT80xcYWK+iStNXGVigYmrTSw0cY2JRSauNbHYxHUmlpi43sRSE5ifHnOzY15yzMmN+agxFzPmIcYcvJh/FnOvYt5RzLmJ+SYx1yLmGcQce5hfDnOrYV4xzKmF+aQwlxLmEcIcOpg/BnOnYN4QzJmB+SIwVwLmCYBHPvzh4Y0OX3B4YsMPGl7I8AGGBy78X+F9Ct9PeF7C7xFeh/D5g8cd/N3gbQZfL3hawc8JXkbw8YGHDfxb4F0C3w54VsCvAV4FGKePMeoYn42xyRiXizGpGI+JsYgYh4cxaBh/hbFHGHeDMScYb4GxBuhnjz7m6F+NvsXoV4s+pehPib6E6EeHPmToP4W+Q+g3gz4j6C+BvgJoJ0cbMdpH0TaIdjG0CaE9BG0BeA6OZ8B4/olnf3juhWc+eN6Be33c5+IeD/c3uLbHdS2u6XA9g99y/I7hHI7zF45d1NvYK4dlnd+QatikHl2/5uB2E7bWWll1fYdm62bN6t6nSp0dLac+Pm5Rk637F+8xy7H+hLL2ebBNojmOtTwf9Yrzue8lVq7wGz+hzbyk8WWz/3xkw8Fl//guN6e61ZnYupl9l8UsNKD8yWl/Y9tl8fv9x74ttkvKkyv7cxTn1fOjSe22S6pH8I8oIcChPoFDSQEODQgcSglwaEjgcJwAh0YEDqkCHBoTOJQW4NCUwKGMAIfmBA5lBTi0JHAoJ8ChFYFDeQEObQgcfAEO7QgcKghw6EDgUFGAQ0cCh+MFOHyZO/tzVBLg0IVQH04Q4NCNwKGyAIceBA4nCnDoReBQRYBDHwKHqgIc+hE4VBPgMIDA4SQBDoMIHKoLcBhC4HCyAIdhBA41BDiMIHA4RYDD+QQONQU4jCZwqCXAYSyBQ20BDuMJHOoIcJhI4HCqAIfJBA6nCXCYQuBQV4BD+ZTsz3G6AIdphPpQT4DDdAKHMwQ4zCBwqC/AYSaBw5kCHGYTODQQ4DCHwOEsAQ5zCRwaCnCYR+BwtgCH+QQOjQQ4vJWc/TnOEeCwgFAfGgtwWEjg0ESAwyICh6YCHBYTODQT4LCEwKG5AIelBA4tBDgsI3BoKcDhaUI/sXMFOCwn1IdWAhxWEDi0FuCwksChjQCHVQQObQU4rCZwaCfAYQ2BQ3sBDncSOHQQ4LCWwOE8AQ73EDh0FOBwH4FDJwEODxA4dBbg8BCBQxcBDo8QOHQV4LCOwKGbAIf1BA7dBTg8QeDQQ4DDUwQOPQU4PEPg0EuAw3MEDr0FOLxA4NBHgMNLBA59BTi8QuDQT4DDawQO/QU4vEHgMEChHwiBw0ABDu8QOAwS4PAegcNgAQ4fEDgMEeDwEYHDUAEOnxA4DBPgsIHAYbgAh40EDiMEOHxB4DBSgMMmAofzBThsIXAYJcDhKwKH0QIcthE4jBHgsJ3AYawAhx0EDuMEOOwkcBgvwGEXgcMEAQ67CRwmCnDYQ+AwSYDDXgKHyQIc9hE4XCDA4RcChykCHA4QOFwowOEggcNUAQ5/EDhME+BwiMDhIgEOHmGewukCHHIQOFwswCGFwGGGAIdcBA6XCHDIQ+AwU4BDPgKHWQIcChA4zBbgUIjA4VIBDkUIHOYIcChK4HCZAIdiBA5zBTiUIHC4XIBDKQKHeQIcUgkcrhDgUIbAYb4Ah3IEDlcKcPAJHK4S4FCRwGGBAIdKBA5XC3CoTOCwUIBDFQKHawQ4VCNwWCTAoTqBw7UCHGoQOCwW4FCTwOE6AQ61CRyWCHA4lcDhegEOdQkclgpwqEfgcIMAh/oEDssEODQgcLhRgENDAoebBDg0InBYLsChMYHDzQIcmhI4rBDg0JzA4RYBDi0JHFYKcGhF4HCrAIc2BA6rBDi0I3C4TYBDBwKH1QIcOhI43C7AoTOBwxoBDl0JHO4Q4NCdwOFOAQ49CRzuEuDQm8BhrQCHvgQOdwtw6E/gcI8Ah4EEDvcKcBhM4HCfAIehBA73C3AYTuDwgACHkQQODwpwGEXg8JAAhzEEDg8LcBhH4PBIObscOSz3vyHV8zanJr7+xrT1wzpqDm43YWutlVXXd2i2btas7n2q1NnRcurj4xY12bp/8R6z/FFLHbacGpl/PjHlSrYsVyOLdT9JTXzddYnrTfr7Hy/xbc5Jy+HZbeelmMhnIme8nVqW4WzPvv675GnocfKc5WX/sfaZ5bH2eerRD3zP/mXLoHoZu/Nu7PVYWl1cX+5oTuvkFgfNkX0np/19LG07VO5CoYK5fEmbLL+kTZZf0uHDhw/E+9z3Ms+Hf4L6Hk8D/0Q5759QHk/7JoKfPREAbPvlxMDYnvk7nJC9Z/6NjuU6z7JcsVdK4nmuNXmSHi+XeJmesPjVsOCalKjWWMW0ZYkD93GHXyO8bA/QoaU8b7HFAXq+Wf9qh/rxZLns13GdhY5RjjqeIuhYYqFjtKOOpwk6rrfQMcZRxzMEHUstdIx11PEsQccNFjrGOep4jqBjmYWO8Y46nifouNFCxwRHHS8QdNxkoWOio44XCTqWW+iY5KjjJYKOmy10THbU8TJBxwoLHRc46niFoOMWCx1THHW8StCx0kLHhY46XiPouNVCx1RHHa8TdKyy0DHNUccbBB23Wei4yFHHmwQdqy10THfU8RZBx+0WOi521PE2QccaCx0zHHW8Q9Bxh4WOSxx1vEvQcaeFjpmOOt4j6LjLQscsRx3vE3SstdAx21HHBwQdd1vouNRRx4cEHfdY6JjjqOMjgo57LXRc5qjjY4KO+yx0zHXU8QlBx/0WOi531PEpQccDFjrmOerYQNDxoIWOKxx1fEbQ8ZCFjvmOOjYSdDxsoeNKRx2fE3Q8YqHjKkcdXxB0PGqhY4Gjji8JOtZZ6LjaUccmgo7HLHQsdNSxmaBjvYWOaxx1bCHoeNxCxyJHHVsJOp6w0HGto46vCDqetNCx2FHH1wQdT1nouM5RxzaCjqctdCxx1PENQcczFjqud9SxnaDjWQsdSx11fEvQ8ZyFjhscdewg6HjeQscyRx3fEXS8YKHjRkcdOwk6XrTQcZOjju8JOl6y0LHcUccugo6XLXTc7KjjB4KOVyx0rHDUsZug41ULHbc46viRoOM1Cx0rHXXsIeh43ULHrY46fiLoeMNCxypHHXsJOt600HGbo46fCTrestCx2lHHPoKOty103O6oYz9BxzsWOtY46viFoONdCx13OOr4laDjPQsddzrqOEDQ8b6FjrscdfxG0PGBhY61jjoOWujAuKTe3l+jMPHCmAuMV0Bff/STRx9z9M9G32b0C0afWvRHRV9O9INEH0L0v0PfNfT7Qp8p9DdCXx30c0EfEfSvQN8EtOujTRztyWiLRTsm2gDRfoa2J7TboM0D7QV41o7n1HjGi+ejeLaI53J4poXnQXiWgucQuIfH/S/uHXHfhXsWXO/jWhnXmbhGw/UNrg3wu4rfJJzPcS7EeQTHIOovvvuD5eLzsWH/e+Ls81iMH8pzXjaP4cL4IZTdtq79kbjeI8dL7zif+57dy1abTRldc/xpecz18f7vmAsfc7bnU3xHwQGriYyRw/dkm+dPixyHLI+HPnE+973EyhV+4ye0Ged4OOSQAy/b8+3h//58m/T3P57d+faww/nWK0+rX0cLa7ddkk0Zj25klyNJgEOeXNmfI4cAh3p5sj9HsgCH+gQOKQIcGhA45BTg0JDAIZcAh0YEDrkFODQmcMgjwKEpgUNeAQ7NCRzyCXBoSeCQX4BDKwKHAgIc2hA4FBTg0I7AoZAAhw4EDoUFOHQkcCgiwOHL3Nmf4xgBDl0I9aGoAIduBA7HCnDoQeBQTIBDLwKH4gIc+hA4lBDg0I/AoaQAhwEEDqUEOAwicDhOgMMQAodUAQ7DCBxKC3AYQeBQRoDD+QQOZQU4jCZwKCfAYSyBQ3kBDuMJHHwBDhMJHCoIcJhM4FBRgMMUAofjBTiUT8n+HJUEOEwj1IcTBDhMJ3CoLMBhBoHDiQIcZhI4VBHgMJvAoaoAhzkEDtUEOMwlcDhJgMM8AofqAhzmEzicLMDhreTsz1FDgMMCQn04RYDDQgKHmgIcFhE41BLgsJjAobYAhyUEDnUEOCwlcDhVgMMyAofTBDg8TegnVleAw3JCfThdgMMKAod6AhxWEjicIcBhFYFDfQEOqwkczhTgsIbAoYEAhzsJHM4S4LCWwKGhAId7CBzOFuBwH4FDIwEODxA4nGPBAZ4ifb2jfjvwTIBfAMbKY5w4xkhjfDDGxmJcKMZEYjwgxsJhHBjGQGH8D8a+YNwHxjygvz/6uqOfN/o4o38v+raiXyf6NKI/H/qyoR8X+jAd6b9jAv020GcB7fVoq0Y7Ldoo0T6Htim0y6BNAs/j8Swaz2HxDBLP3/DsCc9d8MwB99u418R9Fu4xcH2Na0tcV+GaAr+n+C3BeRTnEBw/qDvgFnvZ+uCc7dn77cCnw9rXp3ziORpbHg9943zue4mVK/zGT2gzj+KH0tghB162fjtNEs+TXX47R6qTLR/URZQ9vF1mepvy6tfRwtptl9SUUL+aCXBg+O00F+DA8NtpIcCB4bfTUoADw2/nXAEODL+dVgIcGH47rQU4MPx22ihcPxA4tBXgwPDbaSfAgeG3016AA8Nvp4MAB4bfznkCHBh+Ox0FODD8djoJcGD47XQW4MDw2+kiwIHht9NVgAPDb6ebAAeG3053AQ4Mv50eAhwYfjs9BTgw/HZ6CXBg+O30FuDA8NvpI8CB4bfTV4ADw2+nnwAHht9OfwEODL+dAQIcGH47AwU4MPx2BglwYPjtDBbgwPDbGSLAgeG3M1SAA8NvZ5gAB4bfznABDgy/nRECHBh+OyMFODD8ds4X4MDw2xklwIHhtzNagAPDb2eMAAeG385YAQ4Mv51xAhwYfjvjBTgw/HYmCHBg+O1MFODA8NuZJMCB4bczWYADw2/nAgEODL+dKQIcGH47FwpwYPjtTBXgwPDbmSbAgeG3c5EAB4bfznQBDgy/nYsFODD8dmYIcGD47VwiwIHhtzNTgAPDb2eWAAeG385sAQ4Mv51LBTgw/HbmCHBg+O1cZsEBniL9vKN+O/BMgF8AxspjnDjGSGN8MMbGYlwoxkRiPCDGwmEcGMZAYfwPxr5g3AfGPKC/P/q6o583+jijfy/6tqJfJ/o0oj8f+rKhHxf6MKH/DvquoN8G+iygvR5t1WinRRsl2ufQNoV2GbRJ4Hk8nkXjOSyeQeL5G5494bkLnjngfhv3mrjPwj0Grq9xbYnrKlxT4PcUvyU4j+IcguMHdQfcYi9bH5yGnr3fDnw6bPMEvT0yyzHX8njoF+dz30usXOE3fkKbcfxQ5jrkwMvWb+fyxPNkl9/OkSLb8kFdRNnD22Wmdx6vfh0trN12SfMI9esKAQ4Mv535AhwYfjtXCnBg+O1cJcCB4bezQIADw2/nagEODL+dhQIcGH471whwYPjtLBLgwPDbuVaAA8NvZ7EAB4bfznUCHBh+O0sEODD8dq4X4MDw21kqwIHht3ODAAeG384yAQ4Mv50bBTgw/HZuEuDA8NtZLsCB4bdzswAHht/OCgEODL+dWwQ4MPx2VgpwYPjt3CrAgeG3s0qAA8Nv5zYBDgy/ndUCHBh+O7cLcGD47awR4MDw27lDgAPDb+dOAQ4Mv527BDgw/HbWCnBg+O3cLcCB4bdzjwAHht/OvQIcGH479wlwYPjt3C/AgeG384AAB4bfzoMCHBh+Ow8JcGD47Tys0K+YwOERAQ4Mv51HBTgw/HbWCXBg+O08JsCB4bezXoADw2/ncQEODL+dJwQ4MPx2nhTgwPDbeUqAA8Nv52kBDgy/nWcEODD8dp4V4MDw23lOgAPDb+d5AQ4Mv50XBDgw/HZeFODA8Nt5SYADw2/nZQEODL+dVwQ4MPx2XhXgwPDbeU2AA8Nv53ULDjDo6O8d9duBZwL8AjBWHuPEMUYa44MxNhbjQjEmEuMBMRYO48AwBgrjfzD2BeM+MOYB/f3R1x39vNHHGf170bcV/TrRpxH9+dCXDf240IcJ/XfQdwX9NtBnAe31aKtGOy3aKNE+h7YptMugTQLP4/EsGs9h8QwSz9/w7AnPXfDMAffbuNfEfRbuMXB9jWtLXFfhmgK/p/gtwXkU5xAcP6g74BZ72frgVC9j77cDnw7bPEFvj8xyvGF5PPSP87nvJVau8Bs/oc04fihvOOTAy9Zv583E82SX304K/rHlg7qIsoe3y0zvW7z6dbSwdtslvUWoX28LcGD47bwjwIHht/OuAAeG3857AhwYfjvvC3Bg+O18IMCB4bfzoQAHht/ORwIcGH47HwtwYPjtfCLAgeG386kAB4bfzgYBDgy/nc8EODD8djYKcGD47XwuwIHht/OFAAeG386XAhwYfjubBDgw/HY2C3Bg+O1sEeDA8NvZKsCB4bfzlQAHht/O1wIcGH472wQ4MPx2vhHgwPDb2S7AgeG3860AB4bfzg4BDgy/ne8EODD8dnYKcGD47XwvwIHht7NLgAPDb+cHAQ4Mv53dAhwYfjs/CnBg+O3sEeDA8Nv5SYADw29nrwAHht/OzwIcGH47+wQ4MPx29gtwYPjt/CLAgeG386sAB4bfzgEBDgy/nd8U+pkT/HYOCnBg+O38LsCB4bfzhwAHht/OnwIcGH47hwQ4MPx2DgtwYPjtYMUE1/3PODD8dpL86HNg+O3k8KPPgeG3k+xHnwPDbyfFjz4Hht9OTj/6HBh+O7n86HNg+O3k9qPPgeG3k8ePPgeG305eP/ocGH47+fzoc2D47eT3o8+B4bdTwI8+B4bfTkE/8RzmMaE3wDvqtwPPBPgFYKw8xoljjDTGB2NsLMaFYkwkxgNiLBzGgWEMFMb/YOwLxn1gzAP6+6OvO/p5o48z+veibyv6daJPI/rzoS8b+nGhDxP676DvCvptoM8C2uvRVo12WrRRon0ObVNol0GbBJ7H41k0nsPiGSSev+HZE5674JkD7rcBIMkE7jFwfY1rS1xX4ZoCv6f4LcF5FOcQHD+oO+AWe9n64Jzl2fvtvO3gt/O2hd9OId/ueBgQ53PfS6xc4Td+Qptx/FBsOARfyaE8mfEunHie7PLbyYl/bPmgLqLs4e0y01vEp9Wvo4W12y7JpoyuOY7xo8+B4bdT1I8+B4bfzrF+9Dkw/HaK+dHnwPDbKe5HnwPDb6eEH30ODL+dkn70OTD8dkr50efA8Ns5zo8+B4bfTqoffQ4Mv53SfvQ5MPx2yvjR58Dw2ynrR58Dw2+nnB99Dgy/nfJ+9Dkw/HZ8P/ocGH47Ffzoc2D47VT0o8+B4bdzvB99Dgy/nUp+9Dkw/HZO8KPPgeG3U9mPPgeG386JfvQ5MPx2qvjR58Dw26nqR58Dw2+nmh99Dgy/nZP86HNg+O1U96PPgeG3c7IffQ4Mv50afvQ5MPx2TvGjz4Hht1PTjz4Hht9OLT/6HBh+O7X96HNg+O3U8aPPgeG3c6offQ4Mv53T/OhzYPjt1PWjz4Hht3O6H30ODL+den70OTD8ds7wo8+B4bdT348+B4bfzpl+9Dkw/HYa+NHnwPDbOcuPPgeG305DP/ocGH47Z/vR58Dw22nkR58Dw2/nHD/6HBh+O4396HNg+O008aPPgeG309SPPgeG304zP/ocGH47zf3oc2D47bTwo8+B4bfT0o8+B4bfzrl+9Dkw/HZa+dHnwPDbae1HnwPDb6eNH30ODL+dtn70OTD8dtr50efA8Ntp70efA8Nvp4MffQ4Mv53z/MRzwFNkoHfUbweeCfALwFh5jBPHGGmMD8bYWIwLxZhIjAfEWDiMA8MYqCPjf0xUMIExD+jvj77u6OeNPs7o34u+rejXiT6N6M+Hvmzox4U+TOi/g74r6LeBPgtor0dbNdpp0UaJ9jm0TaFdBm0SeB6PZ9F4DotnkHj+1sjEOSbwzAH327jXxH0W7jFwfY1rS1xX4ZoCv6f4LcF5FOcQHD+oO+AWe9n64MCzZL2l3w58OmzzBL09MsvR0bc7HgbG+dz3EitX+I2f0GYcPxQbDsGXrd9Op8TzZJffTi78Y8sHdRFlD2+Xmd7OPq1+HS2s3XZJNmV0zdHFt8the8xvSPW8z1ITX3+jWffzVPvvs6sf/e+T4RvUzY8+B4ZvUHc/+hwYvkE9/OhzYPgG9fSjz4HhG9TLjz4Hhm9Qbz/6HBi+QX386HNg+Ab19aPPgeEb1M+PPgeGb1B/P/ocGL5BA/zoc2D4Bg30o8+B4Rs0yI8+B4Zv0GA/+hwYvkFD/OhzYPgGDfWjz4HhGzTMjz4Hhm/QcD/6HBi+QSP86HNg+AaN9KPPgeEbdL4ffQ4M36BRfvQ5MHyDRvvR58DwDRrjR58DwzdorB99DgzfoHF+9DkwfIPG+9HnwPANmuBHnwPDN2iiH30ODN+gSX70OTB8gyb70efA8A26wI8+B4Zv0BQ/+hwYvkEX+tHnwPANmupHnwPDN2iaH30ODN+gi/zoc2D4Bk33o8+B4Rt0sR99DgzfoBl+9DkwfIMu8aPPgeEbNNOPPgeGb9AsP/ocGL5Bs/3oc2D4Bl3qR58Dwzdojh99DgzfoMv86HNg+AbN9aPPgeEbdLkffQ4M36B5fvQ5MHyDrvCjz4HhGzTfjz4Hhm/QlX70OTB8g67yo8+B4Ru0wI8+B4Zv0NV+9DkwfIMW+tHnwPANusaPPgeGb9AiP/ocGL5B1/rR58DwDVrsR58DwzfoOj/6HBi+QUv86HNg+AZd7yeeA94og7yjvkHwTIBfAMbKY5w4xkhjfDDGxmJcKMZE9jcxwATGgWEMFMb/YOwLxn1gzAP6+6OvO/p5o48z+veibyv6daJPI/rzoS8b+nGhDxP676DvCvptoM8C2uvRVo12WrRRon0ObVNol0GbxEwTs0zgOSyeQeL5G5494bkLnjngfhv3mrjPwj0Grq9xbYnrKlxT4PcUvyU4j+IcguMHdQfcYq8caX9jHyXiA2ThH3LEqwU+HeE8mW0XzJFZmZb6dsfDoDif+15i5Qq/8RPajOPrYsMh+LL1Dboh8TzZ5RuUG//Y8kFdRNnD22Wmd5lPq19HC2u3XZJNGV1z3OhHnwPDb+cmP/ocGH47y/3oc2D47dzsR58Dw29nhR99Dgy/nVv86HNg+O2s9KPPgeG3c6sffQ4Mv51VfvQ5MPx2bvOjz4Hht7Pajz4Hht/O7X70OTD8dtb40efA8Nu5w48+B4bfzp1+9Dkw/Hbu8qPPgeG3s9aPPgeG387dfvQ5MPx27vGjz4Hht3OvH30ODL+d+/zoc2D47dzvR58Dw2/nAT/6HBh+Ow/60efA8Nt5yI8+B4bfzsN+9Dkw/HYe8aPPgeG386gffQ4Mv511fvQ5MPx2HvOjz4Hht7Pejz4Hht/O4370OTD8dp7wo8+B4bfzpB99Dgy/naf86HNg+O087UefA8Nv5xk/+hwYfjvP+tHnwPDbec6PPgeG387zfvQ5MPx2XvCjz4Hht/OiH30ODL+dl/zoc2D47bzsR58Dw2/nFT/6HBh+O6/60efA8Nt5zY8+B4bfzut+9Dkw/Hbe8KPPgeG386YffQ4Mv523/OhzYPjtvO1HnwPDb+cdP/ocGH477/rR58Dw23nPjz4Hht/O+370OTD8dj7wo8+B4bfzoR99Dgy/nY/86HNg+O187EefA8Nv5xM/+hwYfjuf+tHnwPDb2eBHnwPDb+czP/ocGH47G/3Ec5jHhN5g76jfDjwT4BeAsfIYJ44x0itN3GoC40IxJhLjATEWDuPAMAYK438w9gXjPjDmAf390dcd/bzRxxn9e9G3Ff060acR/fnQlw39uNCHCf130HcF/TbQZwHt9WirRjst2iifM/G8CbTLoE0Cz+PxLBrPYfEMEs/f8OwJz13wzAH327jXxH0W7jFwfY1rS1xX4ZoCv6f4LcF5FOcQHD+oO+AWe9n64MCz5LFyR9dPxJ8HPh22eYLeHpnl+Ny3Ox4Gx/nc9xIrV/iNn9BmHD8UGw7BV3IoT2a8v0g8T5KF306Shd9O0t//eHZ1F2UPb5eZ3i/9xLli38lpf+Nt5+Jvlei6m3z7eux59t//Zv8///7/2sD7Z7kzWz127nI558XWzYzNFt+trgS3sy3fhlRTr1MtfjfT1rc9Drb6dt+Pi44vLXV86aDjK5/2e3G0sHbbUXyjvvajz4HhG7XNjz4Hhm/UN370OTB8o7b70efA8I361o8+B4Zv1A4/+hwYvlHf+dHnwPCN2ulHnwPDN+p7P/ocGL5Ru/zoc2D4Rv3gR58Dwzdqtx99DgzfqB/96HNg+Ebt8aPPgeEb9ZMffQ4M36i9fvQ5MHyjfvajz4HhG7XPjz4Hhm/Ufj/6HBi+Ub/40efA8I361Y8+B4Zv1AE/+hwYvlG/+dHnwPCNOuhHnwPDN+p3P/ocGL5Rf/jR58DwjfrTjz4Hhm/UIT/6HBi+UYf96HNg+EZ5FaLPgeEblSTAgeEblUOAA8M3KlmAA8M3KkWAA8M3KqcAB4ZvVC4BDgzfqNwCHBi+UXkEODB8o/IKcGD4RuUT4MDwjcovwIHhG1VAgAPDN6qgAAeGb1QhAQ4M36jCAhwYvlFFBDgwfKOOEeDA8I0qKsCB4Rt1rAAHhm9UMQEODN+o4gIcGL5RJQQ4MHyjSgpwYPhGlRLgwPCNOk6AA8M3KlWAA8M3qrQAB4ZvVBkBDgzfqLICHBi+UeUEODB8o8oLcGD4RvkCHBi+URUEODB8oypWsMthu3/4hcD7JbxdZr4UO7LZ/wT+MPBusfWgOT5xXkm2GsJlyWz/8AgpVi7x9eER8mg5+++iUgX7engkoWWeEzLPkyO47wImUgL/Rz8Z/G2S9n/4hiSl7Te2XmXz/kQTVUxUTfs8v3e0rBmVP5NXUuUK7serdbJmXvYeIDhwt/j2X+KubD5wu/p/mTvZluuHE+y/HLxsDaGqWZwgLFgl/ZDNhmCoTyi7LdeTLCo99h0zeYq3ne3JuJnFutUr2PGLvWy//5P/++//yMvF2Gurb/cDivVt60uNCtmvw8LU6ogOrG+r45RsvnBCuXCxYXtM1IzQBQq+C4uLhyOaKzmcg2pZfhexly3b4LqZaWnuccqU5CVephYep0w5vMTL1NLjlCnZS7xM53r/Tpkyy9PKS7z8x6W4lcn2vNPay9o5IZHf7OBvQCK/2zUq2Oto42W/jlMsdZzioKOtx6mL7bzEtZQl1cX2HidPB4+T5zyPk6ejx8nTyePk6exx8nTxOHm6epw83TxOnu4eJ08Pj5Onp8fJ08vj5OntcfL08Th5+nqcPP08Tp7+HifPAI+TZ6DHyTPI4+QZ7HHyDPE4eYZ6nDzDPE6e4R4nzwiPk2ekx8lzvsfJM8rj5BntcfKM8Th5xnqcPOM8Tp7xHifPBI+TZ6LHyTPJ4+SZ7HHyXOBx8kzxOHku9Dh5pnqcPNM8Tp6LPE6e6R4nz8UeJ88Mj5PnEo+TZ6bHyTPL4+SZ7XHyXOpx8szxOHku8zh55nqcPJd7nDzzPE6eKzxOnvkeJ8+VHifPVR4nzwKPk+dqj5NnocfJc43HybPI4+S51uPkWexx8lzncfIs8Th5rvc4eZZ6nDw3eJw8yzxOnhs9Tp6bPE6e5R4nz80eJ88Kj5PnFo+TZ6XHyXOrx8mzyuPkuc3j5FntcfLc7nHyrPE4ee7wOHnu9Dh57vI4edZ6nDx3e5w893icPPd6nDz3eZw893ucPA94nDwPepw8D3mcPA97nDyPeJw8j3qcPOs8Tp7HPE6e9R4nz+MeJ88THifPkx4nz1MeJ8/THifPMx4nz7MeJ89zHifP8x4nzwseJ8+LHifPSx4nz8seJ88rHifPqx4nz2seJ8/rHifPGx4nz5seJ89bHifP2x4nzzseJ8+7HifPex4nz/seJ88HHifPhx4nz0ceJ8/HHifPJx4nz6ceJ88Gj5PnM4+TZ6PHyfO5x8nzhcfJ86XHybPJ4+TZ7HHybPE4ebZ6nDxfeZw8X3ucPNs8Tp5vPE6e7R4nz7ceJ88Oj5PnO4+TZ6fHyfO9x8mzy+Pk+cHj5NntcfL86HHy7PE4eX7yOHn2epw8P3ucPPs8Tp79HifPLx4nz68eJ88Bj5PnN4+T56DHyfO7x8nzh8fJ86fHyXPI4+Q57HHyYIME1w1taJcniZQnBylPMilPCilPTlKeXKQ8uUl58pDy5CXlyUfKk5+UpwApT0FSnkKkPIVJeYqQ8hxDylOUlOdYUp5ipDzFSXlKkPKUJOUpRcpzHClPKilPaVKeMqQ8ZUl5ypHylCfl8Ul5KpDyVLTME95/It67mGzDtlzHk/RXIug/2UH/CST9lUl5TiTlqULKU5WUpxopz0mkPNVJeU4m5alBynMKKU9NUp5apDy1SXnqkPKcSspzGilPXVKe00l56pHynEHKU5+U50xSngakPGeR8jQk5TmblKcRKc85pDyNSXmakPI0JeVpRsrTnJSnBSlPS1Kec0l5WpHytCblaUPK05aUpx0pT3tSng6kPOeR8nR0zJOV+T0zK1MnyzLZlgVzGX7tJ77+k+Xiz1ObmY7OBB3bLHQ85aijC0HHNxY6nnbU0ZWgY7uFjmccdXQj6PjWQsezjjq6E3TssNDxnKOOHgQd31noeN5RR0+Cjp0WOl5w1NGLoON7Cx0vOuroTdCxy0LHS446+hB0/GCh42VHHX0JOnZb6HjFUUc/go4fLXS86qijP0HHHgsdrznqGEDQ8ZOFjtcddQwk6NhroeMNRx2DCDp+ttDxpqOOwQQd+yx0vOWoYwhBx34LHW876hhK0PGLhY53HHUMI+j41ULHu446hhN0HLDQ8Z6jjhEEHb9Z6HjfUcdIgo6DFjo+cNRxPkHH7xY6PnTUMYqg4w8LHR856hhN0PGnhY6PHXWMIeg4ZKHjE0cdYwk6Dlvo+NRRxziCDq9C4utvcNQxnqAjyULHZ446JhB05LDQsdFRx0SCjmQLHZ876phE0JFioeMLRx2TCTpyWuj40lHHBQQduSx0bHLUMYWgI7eFjs2OOi4k6MhjoWOLo46pBB15LXRsddQxjaAjn4WOrxx1XETQkd9Cx9eOOqYTdBSw0LHNUcfFBB0FLXR846hjBkFHIQsd2x11XELQUdhCx7eOOmYSdBSx0LHDUccsgo5jLHR856hjNkFHUQsdOx11XErQcayFju8ddcwh6ChmoWOXo47LCDqKW+j4wVHHXIKOEhY6djvquJygo6SFjh8ddcwj6ChloWOPo44rCDqOs9Dxk6OO+QQdqRY69jrquJKgo7SFjp8ddVxF0FHGQsc+Rx0LCDrKWujY76jjaoKOchY6fnHUsZCgo7yFjl8ddVxD0OFb6DjgqGMRQUcFCx2/Oeq4lqCjooWOg446FmezDoxFqWmho3qFv9a31XFdNuvYkGqu28slvv5Gs/7XqfY6lhB0lLDUsc1Bx/UEHSUtdXzjoGMpQUcpSx3bHXTcQNBxnKWObx10LCPoSLXUscNBx40EHaUtdXznoOMmgo4yljp2OuhYTtBR1lLH9w46biboKGepY5eDjhUEHeUtdfzgoOMWgg7fUsduBx0rCToqWOr40UHHrQQdFS117HHQsYqg43hLHT856LiNoKOSpY69DjpWE3ScYKnjZwcdtxN0VLbUsc9BxxqCjhMtdex30HEHQUcVSx2/OOi4k6CjqqWOXx103EXQUc1SxwEHHWsJOk6y1PGbg467CTqqW+o46KDjHoKOky11/O6g416CjhqWOv5w0HEfQccpljr+dNBxP0FHTUsdhxx0PEDQUctSx2EHHQ8SdNS21OGVttfxEEFHHUsdSQ46HiboONVSRw4HHY8QdJxmqSPZQcejBB11LXWkOOhYR9BxuqWOnA46HiPoqGepI5eDjvUEHWdY6sjtoONxgo76ljryOOh4gqDjTEsdeR10PEnQ0cBSRz4HHU8RdJxlqSO/g46nCToaWuoo4KDjGYKOsy11FHTQ8SxBRyNLHYUcdDxH0HGOpY7CDjqeJ+hobKmjiIOOFwg6mljqOMZBx4sEHU0tdRR10PESQUczSx3HOuh4maCjuaWOYg46XiHoaGGpo7iDjlcJOlpa6ijhoOM1go5zLXWUdNDxOkFHK0sdpRx0vEHQ0dpSx3EOOt4k6GhjqSPVQcdbBB1tLXWUdtDxNkFHO0sdZRx0vEPQ0d5SR1kHHe8SdHSw1FHOQcd7BB3nWeoo76DjfYKOjpY6fAcdHxB0dLLUUcFBx4cEHZ0tdVR00PERQUcXSx3HO+j4mKCjq6WOSg46PiHo6Gap4wQHHZ8SdHS31FHZQccGgo4eljpOdNDxGUFHT0sdVRx0bCTo6GWpo6qDjs8JOnpb6qjmoOMLgo4+ljpOctDxJUFHX0sd1R10bCLo6Gep42QHHZsJOvpb6qjhoGMLQccASx2nOOjYStAx0FJHTQcdXxF0DLLUUctBx9cEHYMtddR20LGNoGOIpY46Djq+IegYaqnjVAcd2wk6hlnqOM1Bx7cEHcMtddR10LGDoGOEpY7THXR8R9Ax0lJHPQcdOwk6zrfUcYaDju8JOkZZ6qjvoGMXQcdoSx1nOuj4gaBjjKWOBg46dhN0jLXUcZaDjh8JOsZZ6mjooGMPQcd4Sx1nO+j4iaBjgqWORg469hJ0TLTUcY6Djp8JOiZZ6mjsoGMfQcdkSx1NHHTsJ+i4wFJHUwcdvxB0TLHU0cxBx68EHRda6mjuoOMAQcdUSx0tHHT8RtAxzVJHSwcdBwk6LrLUca6Djt8JOqZb6mjloOMPgo6LLXW0dtDxJ0HHDEsdbRx0HCLouMRSR1sHHYcJOmZa6mjnoAMFS3BdZx2zLHW0d9CRRNAx21JHBwcdOQg6LrXUcZ6DjmSCjjmWOjo66Egh6LjMUkcnBx05CTrmWuro7KAjF0HH5ZY6ujjoyE3QMc9SR1cHHXkIOq6w1NHNQUdego75ljq6O+jIR9BxpaWOHg468hN0XGWpo6eDjgIEHQssdfRy0FGQoONqSx29HXQUIuhYaKmjj4OOwgQd11jq6OugowhBxyJLHf0cdBxD0HGtpY7+DjqKEnQsttQxwEHHsQQd11nqGOigoxhBxxJLHYMcdBQn6LjeUsdgBx0lCDqWWuoY4qCjJEHHDZY6hjroKEXQscxSxzAHHccRdNxoqWO4g45Ugo6bLHWMcNBRmqBjuaWOkQ46yhB03Gyp43wHHWUJOlZY6hjloKMcQcctljpGO+goT9Cx0lLHGAcdPkHHrZY6xjroqEDQscpSxzgHHRUJOm6z1DHeQcfxBB2rLXVMcNBRiaDjdksdEx10nEDQscZSxyQHHZUJOu6w1DHZQceJBB13Wuq4wEFHFYKOuyx1THHQUZWgY62ljgsddFQj6LjbUsdUBx0nEXTcY6ljmoOO6gQd91rquMhBx8kEHfdZ6pjuoKMGQcf9ljoudtBxCkHHA5Y6ZjjoqEnQ8aCljkscdNQi6HjIUsdMBx21CToettQxy0FHHYKORyx1zHbQcWo268A87rUqJL4+5nHH+rY6TrPU8feGlnnqkvKcTspTj5TnDFKe+qQ8Z5LyNCDlOYuUpyEpz9mkPI1Iec4h5WlMytOElKcpKU8zUp7mpDwtSHlakvKcS8rTipSnNSlPG1KetqQ87Uh52pPydCDlOY+UpyMpTydSns6kPF1IebqS8nQj5elOytODlKcnKU8vUp7epDx9SHn6kvL0I+XpT8ozgJRnICnPIFKewaQ8Q0h5hpLyDCPlGU7KM4KUZyQpz/mkPKNIeUaT8owh5RlLyjOOlGc8Kc8EUp6JpDyTSHkmk/JcQMozhZTnQlKeqaQ800h5LiLlmU7KczEpzwxSnktIeWaS8swi5ZlNynMpKc8cUp7LSHnmkvJcTsozj5TnClKe+aQ8V5LyXEXKs4CU52pSnoWkPNeQ8iwi5bmWlGcxKc91pDxLSHmuJ+VZSspzAynPMlKeG0l5biLlWU7KczMpzwpSnltIeVaS8txKyrOKlOc2Up7VpDy3k/KsIeW5g5TnTlKeu0h51pLy3E3Kcw8pz72kPPeR8txPyvMAKc+DpDwPkfI8TMrzCCnPo6Q860h5HiPlWU/K8zgpzxOkPE+S8jxFyvM0Kc8zpDzPkvI8R8rzPCnPC6Q8L5LyvETK8zIpzyukPK+S8rxGyvM6Kc8bpDxvkvK8RcrzNinPO6Q875LyvEfK8z4pzwekPB+S8nxEyvMxKc8npDyfkvJsIOX5jJRnIynP56Q8X5DyfEnKs4mUZzMpzxZSnq2kPF+R8nxNyrONlOcbUp7tpDzfkvLsIOX5jpRnJynP96Q8u0h5fiDl2U3K8yMpzx5Snp9IefaS8vxMyrOPlGc/Kc8vpDy/kvIcIOX5jZTnICnP76Q8f5Dy/EnKc4iU5zApj5fMyZNEypODlCeZlCeFlCcnKU8uUp7cpDx5SHnykvLkI+XJT8pTgJSnIClPIVKewqQ8RUh5jiHlKUrKcywpTzFSnuKkPCVIeUqS8pQi5TmOlCeVlKc0KU8ZUp6ypDzlSHnKk/L4pDwVSHkqkvIcT8pTiZTnBFKeyqQ8J5LyVCHlqUrKU42U5yRSnuqkPCeT8tQg5TmFlKcmKU8tUp7apDx1SHlOJeU5jZSnLinP6aQ89Uh5ziDlqU/KcyYpTwNSnrNIeRqS8pxNytOIlOccUp7GpDxNSHmakvI0I+VpTsrTgpSnJSnPuaQ8rUh5WpPytCHlaUvK046Upz0pTwdSnvNIeTqS8nQi5elMytOFlKcrKU83Up7upDw9SHl6kvL0IuXpTcrTh5SnLylPP1Ke/qQ8A0h5BpLyDCLlGUzKM4SUZygpzzBSnuGkPCNIeUaS8pxPyjOKlGc0Kc8YUp6xpDzjSHnGk/JMIOWZSMoziZRnMinPBaQ8U0h5LiTlmUrKM42U5yJSnumkPBeT8swg5bmElGcmKc8sUp7ZpDyXkvLMIeW5jJRnLinP5aQ880h5riDlmU/KcyUpz1WkPAtIea4m5VlIynMNKc8iUp5rSXkWk/JcR8qzhJTnelKepaQ8N5DyLCPluZGU5yZSnuWkPDeT8qwg5bmFlGclKc+tpDyrSHluI+VZTcpzOynPGlKeOxzz5AjlqTm43YSttVZWXd+h2bpZs7r3qVJnR8upj49b1GTr/sV7zPJKXuJlutOyTLZlaWbipAqJr1/drHtyBXu2d5G+w7WkPHeT6kqKl3iZ7iGVKaeXeJnuJZUpl5d4me4jlSm3l3iZ7ieVKY+XeJkeIJUpr5d4mR4klSmfl3iZHiKVKb+XeJkeJpWpgJd4mR4hlamgl3iZHiWVqZCXeJnWkcpU2Eu8TI+RylTES7xM60llOsZLvEyPk8pU1Eu8TE+QynSsl3iZniSVqZiXeJmeIpWpuJd4mZ4mlamEl3iZniGVqaSXeJmeJZWplJd4mZ4jlek4L/EyPU8qU6qXeJleIJWptJd4mV4klamMl3iZXiKVqayXeJleJpWpnJd4mV4hlam8l3iZXiWVyfcSL9NrpDJV8BIv0+ukMlX0Ei/TG6QyHe8lXqY3LcqUnFYW9CPBq7mJFiZamjjXRCsTrU20MdHWRDsT7U10MHGeiY4mOpnobKKLia4mupnobqKHiZ4mepnobaKPib4m+pnob2KAiYEmBpkYbGKIiaEmhpkYbmKEiZEmzjcxysRoE2NMjDUxzsR4ExNMTDQxycRkExeYmGLiQhNTTUwzcZGJ6SYuNjHDxCUmZpqYZWK2iUtNzDFxGTiYuNzEPBNXmJhv4koTV5lYYOJqEwtNXGNikYlrTSw2cZ2JJSauN7HUxA0mlpm40cRNJpabuNnEChO3mFhp4lYTq0zcZmK1idtNrDFxh4k7TdxlYq2Ju03cY+JeE/eZuN/EAyYeNPGQiYdNPGLiURPrTDxmYr2Jx008YeJJE0+ZeNrEMyaeNfGciedNvGDiRRMvmXjZxCsmXjXxmonXTbxh4k0Tb5l428Q7Jt418Z6J9018YOJDEx+Z+NjEJyY+NbHBxGcmNpr43MQXJr40scnEZhNbTGw18ZWJr01sM/GNie0mvjWxw8R3Jnaa+N7ELhM/mNht4kcTOCZ+MrHXxM8m9pnYb+IXE7+aOGDiNxMHTfxu4g8Tf5o4ZOKwCTzUTTKRw0SyiRQTOU3kMpHbRB4TeU3kM5HfRAETBU0UMlHYRBETx5goauJYE8VMFDdRwkRJE6VMHGci1URpE2VMlDVRzkR5E76JCiYqmjjeRCUTJ5iobOJEE1VMVDVRzcRJJqqbONlEDROnmKhpopaJ2ibqmDjVxGkm6po43UQ9E2eYqG/iTBMNTJxloqGJs000MnGOicYmmphoaqKZieYmWphoaeJcE61MtDbRxkRbE+1MtDfRwcR5Jjqa6GSis4kuJrqa6Gaiu4keJnqa6GWit4k+Jvqa6Geiv4kBJgaaGGRisIkhJoaaGGZiuIkRJkaaON/EKBOjTYwxMdbEOBPjTUwwMdHEJBOTTVxgYoqJC01MNTHNxEUmppu42MQME5eYmGlilonZJi41McfEZSbmmrjcxDwTV5iYb+JKE1eZWGDiahMLTVxjYpGJa00sNnGdiSUmrjex1MQNJpaZuNHETSaWm7jZxAoTt5hYaeJWE6tM3GZitYnbTawxcYeJO03cZWKtibtN3GPiXhP3mbjfxAMmHjTxkImHTTxi4lET60w8ZmK9icdNPGHiSRNPmXjaxDMmnjXxnInnTbxg4kUTL5l42cQrJl418ZqJ1028YeJNE2+ZeNvEOybeNfGeifdNfGDiQxMfmfjYxCcmPjWxwcRnJjaa+NzEFya+NLHJxGYTW0xsNfGVia9NbDPxjYntJr41scPEdyZ2mvjexC4TP5jYbeJHE3tM/GRir4mfTewzsd/ELyZ+NXHAxG8mDpr43cQfJv40ccjEYRP40UsykcNEsokUEzlN5DKR20QeE3lN5DOR30QBEwVNFDJR2EQRE8eYKGriWBPFTBQ3UcJESROlTBxnItVEaRNlTJQ1Uc5EecxFYKKCiYomjjdRycQJJiqbONFEFRNVTVQzcZKJ6iZONlHDxCkmapqoZaK2iTomTjVxmom6Jk43Uc/EGSbqmzjTRAMTZ5loaOJsE41MnGOisYkmJpqaaGaiuYkWJlqaONdEKxOtTbQx0dZEOxPtTXQwcZ6JjiY6mehsoouJria6mehuooeJniZ6mehtoo+Jvib6mehvYoCJgSYGmRhsYoiJoSaGmRhuYoSJkSbONzHKxGgTY0yMNTHOxHgTE0xMNDHJxGQTF5iYYuJCE1NNTDNxkYnpJi42McPEJSZmmphlYraJS03MMXGZibkmLjcxz8QVJuabuNLEVSYWmLjaxEIT15hYZOJaE4tNXGdiiYnrTSw1cYOJZSZuNHGTieUmbjaxwsQtJlaauNXEKhO3mVht4nYTa0zcYeJOE3eZWGvibhP3mLjXxH0m7jfxgIkHTTxk4mETj5h41MQ6E4+ZWG/icRNPmMDc9Jg3HnO6Y751zIWOecoxhzjm98bc25gXG3NWYz5pzPWMeZgxRzLmL8bcwpj3F3PyYr5czGWLeWYxByzmZ8XcqZjXFHOOYj5QzNWJeTQxxyXmn8TckJi3EXMqYr5DzEWIeQIxhx/m18Pcd5iXDnPGYT43zLWGedAwRxnmD8PcXph3C3NiYb4qzCWFeZ4wBxPmR8LcRZhXCHP+YD4ezJWDeWwwxwzmf8HcLJg3BXOaYL4RzAWCC1/MoYH5LTD3BOaFwJwNmE8Bcx1gHgLMEQD/fnjrw/cenvTwi4eXO3zW4YEOf3J4h8PXG57b8MOGVzV8pOHxDP9leCPDtxiewvD7PeLFawIetvCXhfcrfFnhmQo/U3iNwgcUHp3wz4S3JXwn4QkJv0Z4KcLnEB6E8AeEdx989eB5Bz86eMXBxw0ea/A/gzcZfMPg6QW/LXhhwacKHlLwd4L3EnyR4FkEPyF4/cCHBx458K+Btwx8X+DJAr8UeJnAZwQeIPDngHcGfC3gOQE/CHg1wEcBHgfwH4A3AMbtY0w9xrtjLDrGiWMMN8ZXY+wzxiVjzDDG82KsLcbBYowqxo9ibCfGXWJMJMYrYiwhxvlhDB7Gx2HsGsaVYcwXxmNhrBTGMWGMEcb/YGwOxs1gTAvGm2AsCMZpYAwFxjdg7AHGBaDPPu6D0Ncd/dDRRxz9t9G3Gv2e0ScZ/YXRlxf9bNEHFv1T0XcU/TrR5xL9IdFXEf0I0ccP/e/QNw791tCnDP290BcL/aTQhwn9i9D3B/1y0GcG/VnQ1wR9O9AvAn0W0J8A7fdoL0f7NNqD0f6K9k60L6I9D+1naK9C+xDaY9D+gfYGPN/H83Q8v8bzYjyfxfNQPH/E8z48X8PzLDw/wvMaPB/B8wjc/+N+G/e3uJ/EIYN7w9gr7Sf0yP0j+iGg3R/t7GjXRjsy2m3RTop2SbQDot0N7VxoV0I7DtpN0E6BdgE8h8dzbzxnxnNdPEfFc0s8J8RzOTwHw3MnPOeJPVep4P11n36891efmRNMVDZxookqJqqaqGbiJBPVTZxsooaJU0zUNFHLRG0TdUycauI0E3VNnG6inokzTNQ3caaJBibOMtHQxNkmGpk4x0RjE01MNPX+6isTfrUOvO+c9veaYa+8ue/73O8F1+uawbIdaX/L52r2SceTXvw8uAzn9CPLrno0R7MOebYFl72QtqxvnluebvxB/nuDy17KYNlrGSx7I4NlH2Ww7OMMlm3MYNkXGSzblMGyzRks25bBsu0ZLNuZwbJdGSz7OYNl+zJY9lsGy37PYNmfGSw7lMEy/AamtyxnBsvyZrAsfwbLimaw7NgMlpXKYFlqBsvKZLCsbAbLKmawrFIGy6pksKxaBsvapi2Ld7wfnzODsmSwrGoGy07KYFnTtGXxzkvdM1jWL23Z7qvzzdn0/caFwWWDMthuYgbLZqYtm1m5e8H61U97OLisf970843Im/52Q/Onn29kBsvWZ7Ds5fzp50sunP52awqnr+H+wunvc9sx6e9zRwbL6hZNf1mTounnm1U8/e0qlUhfw8kl0t/nwFLp73NoBsseyWDZ86XSz3e4dPrbrSqTvoa7y6S/zy3l0t/ntgyW1Soff1naV37kWgavARMnDpkwqd+gsaPHDZg0YuCoIf3GThgwyPy5YMiEiSPGjuk3ZcKAceOGTEjDfOQaDK+0U/6R6zWcWnwvoVdSnsB29tvPbJonvEOr7b0j2yd5rvn/0h+7RnXZPlesIIHtg2WJ7RfXu/kD7wuG8juWv2lWy180gzLHvpsmgfV9L6FXCq7pobNI2gfQXint/eRJI0aNmDT1nCNVtcnfNbX9kYra9a96Gt5hUuj/TdL5PF+g3CmBdRJncmHT2D7TfmKP3LMkx1kzJfQ3tk7aqc/LG8gf+5tIX+yNL+//5JFWtUcfE9oer9h3A53Hpr2fOGRSv4lDxgweMqHf0LET+k0aMGxiRA7vZlk8vJtlsXon5Qls47B93MM7XBa8Cnj/PIyC2+ROWx57/y8d+s2y89CPd/iWTHs/bsKICwZMGtJpyKRORypd87ETOpsqF959Uuh9UpzPY6myeMQ2UzliYziHmSN2wORJw/tNGTFpzJCJEw+nbfAfH67XZfFwvS4qh2vzwPaJHq6xbYIjLvC+UmAbvFoE9pcUWtYyTt7YsnPTKQderQLLUkLLWgeW5QwtaxNYliu0rG1gWe7QsnaBZXlCy9oHluUNLesQWJYvtOy8wLL8oWUdA8sKBN4jYleweCWnfVYw8FnwagTLigS2t6gbnWLbH+O2faMCgTJ6obLHlgXPX0VCy3IGlsXKgO/lo6R/rrc4sF6htPd5Qvksy94ii+zaxn4qgvlj+wpfJca+V99L7BXbvmngM99L7BXbtlkgt4Wu5NjP3ObAdxA8PmP7jOUKHp+WudrF+/1LDn0W3H9eL0vnwqSk0P5i+cL6YscXjtnY72DaFXqLIZPOMb9S3f76kQoWMrjj4IkmuDz4Cq8TXi+8frwTdFI6f2PCwp+FTxyOX9yRSh8ua0qonDm9/y1nLG8ut7wFE60wsf3nDZXFtcLkCuUL6wtzze2Wr0BSaPtgvuA+gz9swR+sMNvgD1audPYVvNAMrt8g7W/h0Hp4hW/t88Qpb/CzGB8wOz1U9iBb1/pc2Ptf7bHvJ4+XpTpQIIvfadvY9uELUT+hzY9eAOZ1y58U4xy86Isdq2AS/KEIXsTEbhjC28Y4poTWfzrp6Haxi75CoXXi1d3s+v7D56P8cfLE2AYvwCzYpiR6PortP2+oLK7nowKhfGF9wQttLCsYpyyFQ8vwCh/XBePkiXchytpXAe9/9We1zgS/+/yhPOkdM70Dnwe3i3fM4BU7xlJC668JHDP90j4r5P1vHQnfIMRjGVw/b2hfwe3Dz1qCdcOiLuaIlaVwJmUpGCpLocCy4MUzokgG+8KrWWhf8S6+Pe9/v5NwOWP1KUec/QTzxfsucjmWObZ+7EYnlxefV2x/KaH1Y89/8Tv0TVq9iXfeC95kZXbec7z5Sfi8F9v/v3Xey4x1+Lx3TJyyFA4twyt8rjomTp5j4uRh7auAF7+Ox/sbyxP+LJwn+N0net67JPB5Vs57CwPnvdlpn8U71oqE8sVjmdF5L7j9MaF9Fc1kX+HzVnD7oqF9HZvBvvAKn7eC2we3jXfeCpYzfN4qGme7YJ6MzluJljm2frG0/6d33ortLyW0/jVpfzM7b8W2T+S8dWzg8+w4b8X2/2+dtzJjHT5vFYtTlsKhZXiFzzXF4uQpFicPa18FvPh1PN7fWJ7wZ+E8we8+0fPWrYHPs3LeujBw3lqd9lm8Y+3YUL54LDM6bwW3LxbaV/FM9hU+bwW3Lx7aV4kM9oVX+LwV3D64bbzzVrCc4fNW8TjbBfNkdN5KtMyx9WNtdOmdt2L7Swmt/1Da38zOW7HtEzlvlQh8nh3nrdj+/63zVmasw+etknHKUji0DK/wuaZknDwl4+Rh7auAF7+Ox/sbyxP+LJwn+N0net56MfB5Vs5bAwLnrVfSPov3bKZEKF+87z+4fvi8lT+DfZXMZF/h81Zw+5IW+8IrfN4qGGdfXmi7nKF18QqftwrG2S6YJ95zLtsyx9ZP64X3j/NWvjg6UkLrf5T2N7PzVslQ2cPlDb7PF6fs8Z61ZnTODa6fL1T22PobMyh7Upzts7Gt4ZxEz7n/dVtDPrd8jTL6bjN6XlsyzrKs1tkdaX//zfM7mH0dKnvE2xoaZfZ7sDvwefjcZfOsvlXg9+CntM/+y2f14eM537+YJ6gn3CZQMk6e2HdYKvB5dpw3YvvP6/3vceVy3igVypfecRHTd5xbvkZJoe2D+YL7jJUnxjo1zrLYvtJ6lf/jvBHcV2zblND6OUO/EamBMjUJ5UiNU97gZ8HzRuyLKuD9L9us1seg9tj3k9lxny/pn1qCyxI57mPrnxw47mON6YXibB8rY6HQ9rH8wffxfq9S4pQlfM7Klc76uUJlj61/bFri4LVBRjyC55fc6fAoEdjnjtA+c8bRlRz4LEdIV7w2+5xxdMVjmju0r+Q4+wrqyevFL2t611vJIf2x9cvGYRrveiu9ToJJ3tG2pXDbHN4XDC0LXj+H7x2DPAuFlgXbjMLn8PQ6mAXLneT9s2Na+Ls5JrQsyK5oaFnwuwo/swy28RcLLQt+Z8VDy4K/UeF7w3j3VPm8+PUoXMeCvynBHMHza/CYCa4fPofE1q+dwTET7xwb7GwVPmZKx1k/+DsRvkcJ/iaU9jLPHdSTN53cudJZP73fnDMyOGbi9T+Idx2SmkE5jwuVM945smQmWsPn63h1Jfj7HNtPePusdUL3zgGj75OO5gnqwyv82xDvOwyub1t/wr+9wTpTMrQs+Lsc/g7idRgMliXYKTi8LN7veLxr7aTQ+5KZ5AxvG+/eK0ccveF7r/Zx6nNSKEd654jw72ps/Y4ZnCPiXadm9Lsa7zoz3jVUPKbHhZbFu3eNV/9j62VH/Q/qD9f/jLTiFWaT0fESr/4Hj418oWXBc1f4+jzeM4JE63+wDsXuXxN5zp9Z/c8fWt+1/g/NoP7He96a0W9kbP0RlvU/yDer9T/IJaP6H2y3iO07vM8s1v+UKNf//KFlwefN4fqfP06eROt/sA69mPY+kfpfLJOc4fofu6ZMr/7H9pcSWv9iy/ofbE9Mr/7PzKD+x2u/zKj+x2uDKB5HV0ZtEPHaQoPX7rF9h/eZHfU/qD9c/zPSileYTbxzZLAep9fWFa/+B9ucw+3E/1b9vzXtfSL1/5hMcobrf+w+Lb36H9tfSmj96yzrf7AfUHr1f2kG9T9ev6OM6n+8viNF4+jKqB9CvD5M4cFYyXH2mR31P6g/XP8z0opXmE28c2SwHqfXRyVe/Q/2FQv37/q36n+s/1wi9b9gJjnD9T/2jCS9+h/bX0po/bst63/wGU569f++DOp/LG9QV0b1P17/4kJxdMVjWji0LF4/+Hj1P9hHOqYvtiyr9T+oP1z/M9KKV5hNvP6wwb7MifT5jNcPvlAoz79V/2P95hO5/80sZ3jbWPnTq/+x/aWE1n8hg/of7/43WL/Su/99OYP6H2/sRkb3v/HOA/HGLMRjmtGxkdH9b2y9LNb/gvHqf1B/uP5npBWvMJt455J4z5gLe/9brzO6/w2Pt/i37n+bBT7HK9xmEPwb2ya2X7zyxFk/OLYo9gp+X573z/4WyXH2lTu0XWz9TWk7CP62eKHtC8fJH2TppVPueOMDk+LsKznOZ8G2uk+TjpY5i6YZsUvBv3Pm9P75fXih/YdNM7Yl/bOswXPav2ma4br/93J/v+/NV4Zdk13735anQ7Mcj15VPrP9x6tPyaFtgnUyOc76OQLLg+v/mLaDI30bAuee2GfhfPjsUAbrJaXzN16Zg+XJqC4nx1k/ljtfnPVjy4K/icFzZ3CdIK/gvvIGlgfX/zN0jAePy+A5Mpw/PJ41XrnTu64L7ys5zmfBY/yX0HHl2scqWPf69YPlzPjJYyeNGDJmUqe0T/9ju5lzs2g3c24W7WJyZNUZIJ7dTLyWpXhuBs1Dy4I9W1uk/cVRXijwPtg6i1fQbib46xP+VbbQ1DKLTJOKppM/Vja8mgQ28NPZ0dJZIxcNH//Gggb+VSU2TP+zhY1NSHiSpLBNSAbbJoU/iFmEtEr7f7glPrhRomfNcO8kxyP876u5eD1QMuotalvOwnHKmRTKk/Qv5gluF2aVlXNV+MrXYvtcYWcEzyJ3vB4awTN+xcDniDyBZclxtg33Goqtf0Jgu3Cv8DyhHF7g/0HXjOC6eDUJ5YqtWzWQ65R09ufF2V+sXPG+67wZlDlnOjmS4qybO5QjZ5ztguW2yRePUeycFGbUIpCrjpdY+YP7y6j8iXyv+TLI0SSUIynOdl5ou1i9a5bBuvkyWDesOfb/PHFyBfcV5hrjAy5npb2PxyMlnXx4JcdZP3zHHa/3Xp44esJPRBqn/UU9jFmmxTtXB+tisK6Ej92kOJryefG/13jni3Dvs+Cy4Lkmdh7K4p3luUmBssT2bXNn2T7tr/qdZUyXufqeFGup/Y+vuVtk8Zq7RVSuuZuGtvdC+83IkTXeNXfsmAtfcwd7UuIVvNaP7TuL1ybNs/OaO3b9Gh6VHHzKEO/ch1e8HrDB/WbxPNEiq+eJ4KiCWP7Y33/zPBGrD4OHwFd97MQh/YaPGDMpza39/zdHdFavrB1r77/msZzRURu8CkkKLYtnFptFTc2yeJbLUdRL/8wWO6JjtT/eL36wLqU3biJ8pMXbR3A/YTbB78FP+3tsLe/T8ptPm3pSibpj218wZ3Pne2cUu63qt4VL7Z7c4ILfvhgb1pIjg7IXyKAMGfU9jcKZqWza3+w+M8V0jpr01zmpQtr//+8qI0vH3/9dZfzvK6GrjGAf9SCn2HjzeMfy/4xTCmxzbDr7y+Vlfm5ITqccwSvx8D7w8r2EXnGf6iTFyRP1qyg/7W92n6ti10uDhwycPKzfqLHD+g2YMGHA1NgENWkT03RJW+s/PoP1zeIZrG8Wz0CpWX02HO8MFu85cXJovfA2wdoafH7eLJ11gpM/Nk9nnRaBdVqks07LwDot01nn3MA656azTqvAOq3SWad1YJ3W6azTJrBOm3TWaRtYp20667QLrNMunXXaB9Zpn846HQLrdEhnnfMC65yXzjodA+t0TGedToF1OqWzTufAOp3TWadLYJ0u6azTNbBO13TW6RZYp1s663QPrNM9nXV6BNbpkc46PQPr9ExnnV6BdXqls07vwDphR9WMriKy+KvfLIvnkVIZtXdlsU3luPAvr+f989fUC+0/r5elc2qGriPxRm7G6y0WXhZvRGq4Z0WQP66SzgqsF/5ug6MRw1cXFlr7ZPF7T8rG7z2H4veeHFr2b3zv8a5QsV7LwPvY71q8q1WX6xHH80iGs0UlBcobeyWH/uL1X/fwi11rRLmHXyPvaJljd1XtAzn+jeMgnttDjnTKn95xkxxnffRoivFLm0KkKS7224wd5oVe4dNKUuh9rIhhM5KUdIqWlMF+g/sPfh7ed3KcdYP7/hdu1vrG9uV6sxa7tMrum7XYhBhjxk4aMXRqP0wxOHrEmH4ThlwwZMJf84pOHDF4SL8hQ4cOGYTpRiePmTRkQuhWLjyw8j+6lft/ZhLCzG7lsDyzh+gFA+/Ds0+58edMVBirzzgF1Uh7nzZRYbsjVbjTkEltR4zp+Hf97WSqb7MjtbfJX5U3nDXeGSPe58leNOYwDNqhxvLH/v6bZ4bqae/TzgxDxoyfPGTykMH9xk0eOGrEoH5DJ48ZNAkTDQ8aMGpU7EwQeyz4H58JWmbxTNAyixfVKVm8cI57Johnu5TZw5hkL/OHMXi5Pt4OX+AG88e7sQh2eA3OjRfr8JrFM1BLxhkoNowYZ6AT097/4wzULO1I6XDkQGmedpw0MYdJOF16F0fh1EEpwf+nxNlP+BX+QYpJyeJprGVWT2Mx1wLW0+gjp6m07+noyWsEfhHGDBgV6yH4H5+4WmfxxNU6iyeenOHer//GiSueZ11mT5oTOXEF10nvKTJe7JNbvB7ZwTv94oH3Yb+S8NPt4LLgU+1/qf/CuYz+C1UDOoL1Iba+52V5jsHk4PH294ehz4L7z+tl6Tj5+w47/CQkrC94xxw746WdhPCD0OGvt7HfiGBJg3vPEUdJ0j9L9I9nC14669n8psT+nzPOftPbPvxZ+Nt1OysepR3MFaYd3H8898/k0HbxnvUGzyrxyhvOHa8vXWzdLGr+eyaylDh5M9Ic70i07WET28e/cJ3QOqvXCbGbvOy+TohdyqXd7gyaMMQcmIP7jZk8atSIoSP+55lH7MT9f888svQD9K91CiwQeB+eDNDxEKQ8z4iZV+AHItaZ7B93E03+qojtYvUwnCR8fk+K83ks4X/96CJ25ZPdx3LsdnLwiAnmuc+IC4b0mzS234QBg0dcGPYAcu11ER4p43rYu17v5IrzYfBaJNzrI1xLgjljZXGcizdm/xm3VSg8QsyLs068u9ccof+nhD5PTmDdcL7gsnitP+HtMmvNCbcGenHWD14B4ZUznX2FW7LC9SOr31HRODljZYudgo4eLSPG4OlpeNRWcbfcf9f1Ym7be/HqetA/LuxrF6wPvmf3Cp7Zwq+wN0O4RTD8U26RPym9csSrw7HvMugTFuMRu8cIfpeThgwzly8xT4BwaR1nWskR295xNq6432pwjGH+cMK0v/HOFknp/D9H6G9G6yZlsN94R3hsn7FvI1jemI7/D0s8f8nKgx4A",
1909
- "debug_symbols": "tb3RjitZbmb9LnVdF9qb5EfSrzIwjLanZ9BAo2207QF+GP3uvyKk4MquQqpUmadvSjynTu5PsSUuSSHGyv/56X//8V//+//+y5/+8n/+/T9/+qf/9T8//etf//TnP//p//7Ln//93/7wX3/697/c//Z/frod/1n+0z/1+tvPP63rT8cf9vEHy/sf/OefrJ63/bj12/N2PW/389but7rf+vM2nrd63h7r5f22nrf9uI3b83Y9b/fz1p63/ryN562et8/14rlePNfTcz0919NzPR3/v37+KY8/9/32vv5e91t/3sbz9r7+3vfbfN7W87Yft3V73q7n7X7e2vPWn7fxvH2uV8/16rlePdfr4+ftfnv8+/s+9vHv7/e383l7/Pv7/e5+3K7b7SqOe9BHsa/ifh/sdhR+FceqcRT3ZW0dRV5FXUU/i3W7iuexrbWvwq7CryKuQleRV1FX8TzGtW9Xca28r5X3tfK+Vt752JFlt8eWLFuPvVi2r8Kem2B+FfHcBNNV5HMTjqfwo+jnbvh1pMez+FHsq7Cr8Ku4jtSvI/XrSP06Ur+ONK4jjetI4zrSuI40riONa+W4Vo5r5bhWPp7H527In7uheG6CdBX53ATVVfRzE/J2Feu5CUcDPAp77kZeR3r0wKO4ni15PVvyerZcfbCuRlhXJ6yrFdbVC+tqhnV1w7raYV39sK6GWFdHrL5W7mvlvlY+u+TYjbMtjt04++K+Cfvsi7NYj03YZ1+chT02YR998SjisQn77IuzyMdu7Ksv9tUX++qLvdZV7Ks4Vj5+/OgL20cRV6GryKuoq3iyau/bVayr2FdhV+FXEVehq8irqKu4VrZrZbtWtmtlu1a2a+WT8cdGnVA/9udsBzsKuwq/irgKXUVexXGAfhT9LI52eBTrKvZV2FX4VcRV6CryKq6V41pZ18pHg5iOYl+FXcWxznGARzvYcYBnOxyP19kOx2NxtsNZ2FVcD+XZDsdunO1wFnkV9/vj5zr9LI52eBTXynWtXNfKda1czyeJHc9Vt6PYV3H/x3683h7P1UcRV3G/Gx5HkVdRV3Hcjfsh2/FcfRTrKvZV2FX4VRwr11HoKvIqjpXXUTy3zo7n6qNYV7Gvwq7CryKuQleRz+J8Zp7FemymHc/MR2FX4VcRV6GryKt4PgRmz4fA/HYV6yqeL/Z2vjs5C7+KuApdRV5FXUU/i/NNylnYgz92PGn9/Ju4Cl1FXkVdRT+L40n7KO73MI57eDxpH4VdhV/F8x2BnZw/i7yKuop+Fnm7inUV+yrsKvS883ndw7zuYV73sK57eDyNH8W+CruK6x4eT+NHoavIq7juYV33sK972Nc97Ose9nUP26/iOva+jv3kvB3vP5/30G/rKvZV2FX4VcRV6Cqe99CP3nkU/SyO3nkUz3voa1+FXYVfRVyFriKvoq7ieey+n2/yfF/3cF/3cF/3cF/3cOdV1FU8Hx236x7auop9FXYV1z206x7adQ/tuod23UO77qHfruI6dr+O/eyUOopnD7rnVdRV9LM4gX8W6yr2VdijK/3snbOIq9BVPHvQo67i2YOu21Wsq9hXYVfhV3F29/2zjJ0fbI5H+Hxtf96u5+1+3trz1p+38bzV8zaft/W4PbY4DoDm8/b+91qPz0Taj89E5609b+//Xvb4THTe5vP2+Ll6fPZRPz77nLf2vL3/XN4en33O2/v9yXh89qnb47NPrcdnnfP2/vN1zzv247z15208b/W87cftwYra913yc5eO/5v3P8X1pzjecuXz9jj2853X/dafe+n3f6352Xr8377d/zaPvz1eSdd+fLY6b/W8PR7lI7fOnz3+7/G5s6/Hah0rrPMT6vnS8nhk7PHA2ONxscfDYo9H5bi5/+DxWNweN+txc9+RPF4jHjf+uLmvckL4cXNf5XimrPkMvP92/+P1Yflf/uuvf/zj8X8+fHq+f6b+jz/89Y9/+a+f/ukv//3nP//80//7w5//+/xH//kff/jLeftff/jr/f/eH6M//uV/32/vC/6fP/35j0f1t5/56dvnP9p9i+dPd3vNAvf31O8ucX+3s59L3N/U+FeW0PE+4VyhzgfsuYD63QWq13UUN326gH++wP1l8LmAJYdwf1n5uwXixS74tcBWfrrAe/eg7NMFXj2Ux5vjxx58fBR+sQf13UN4cQ88+7mAbHEPcr39VFLwVFr2lSXub3Wu59L9jcyHjdz29mGsayPvLxSzQPz9XTj+zacL1LVA7NuHRyLfvgeae9D69B68eDZ29bUL9/LDg+l6f41b9TRV3762xtIFp75/Ov/aGnvNsdw/Xn5tDVtzLJaf3499+/6evlzjzT19ucabe/pyjTf39OUa7+7pi8flfpqxL+jczzS6Pl9Fr1bZaxaxD/i+v6C9v4b1rBH7i2soZ426/YA14vM1Xj4ynfNSYPXFjnlvjVf3I/bgPHZ/fFG7vb+GHefWHmvYx+fH71ojNGt8fFx+sYa9eqbePytcj4unfW2NNV13Lz9/iX29hu1Zw9ena7wmqtP9oS9S2YI1Pqfh62M5Tjg9j0W3z981rVfv/AaGt/h8hf3izWdcL7YK/9oK8+4zb/raCsUK+aUVcl/tmm5f28ms2cn6fIX8fo+8fmV677n5eo33npuvPlDs65lZHz8V/f07uHixm9J1GPrw2vg7Fsjb9bTMdfvaAhcocn96D169k3Zdj+a9bHax3/5AcOfudRD30r+0hCzn/bx/vkS8eF5m5LRX9MdPqH+/RL3ajLVmM1Z/+nj0iyVu84jez8P7Z0vo9gqYN4f+N8Vnh/JyQ+eF/X4WN770mOS8i72f0s0vLVF5m4+7+fkS8m8/rIpvP6zS9x/W/Ac/rD3vC+zjiZzf85i05mHt+tIz437a/LoX9xPn+nSJXN9+WHN/+2FN+/bDmv6PfVjv3zrEbKh9DuHU9zc0v7+h9f0N7X/0hn54hvoXn+RD0PuXOfalVrt/g3ptxv2L0k+XKPv2w1r+7Ye14tsPa+kf+7D24h3f+sKbnZ53rp2f78M/+Ll5PwPCeQx9OI/9/inYipw3rvd3Tixxf6X/uETvVx+p9pzX8a/cib3nDOreH0+n+9/vZ/sPWCNenYf16wXNKz4/d/D2GnqxRv6AY3mBz/t5/GuNlfFijVfPUZ7lq3N9fiwv7of2bc7xf/4J79Uju3bNGa47Pb60xnv34tVT1Ne1FfcPnPZpn9y7+tUiNxb58CnvF3dj3V48v+pm16HU7ePXLma/WOTVK3zOR7Wsj+/pf7XIq9f4OVnnH965bfdfLPHqG6Q9Hwz2/dXgxSIvSSpA+uFt6O9bxG5zOvd+BvHzRdaLd6I9X4jdG+drS9xPTW+Q/uJgXn+fNK9ud459+IK0v3QsGV98dFW3+YLww+ncXx+LfsQDk99/YPL7+/GqYbqmYb66pTlnhHfa7fNF9qvnWCYvDf2i6/b+9pa+XOI23xhsfW2Jt9tlx/fb5eWeNk/T3p/v6cuXmPlq634iU5+/xOxXL/u3KL6X0oevDH/xlfhvrJJzuuX4ZkqfrfJyUmS+u7ht3iLHfvvd7ZqH5U47+2yF8/uNT1tuzfPD1odvpeIXTw+zl985ftiLD/ejfrGG/4BX7Vdff7z9qm369qu25Q941bb6Aa/aLxd598XBb98mmd9+AIZefSPzLobePJZXr1Ivl3iPyi+fY++90L18jr37Qvfy+6V3X+i8vv/0qO8/KvUDnmGvvuF5+xmW33+he43lW8+Z449fSv8Sy/HqY2HOF3/3x9k/fXl4vUbNGvXhYH61hl69y503ufXhXvwCya++boo975Njtz47EbRefd+knOeH8u/mMn/H/dB8J3z/Hi6+v8aHL5Z/3xrzzXJ8/Nzwu9bgvNa9/OKx1G3W+Pge6Fdr6NVjO8MCH05d/PLZ8eorp/vZm3kbdH+6fnrqd7360in4ejlU9QMWefE13utFcnbk/hDFD1gk/MuHE7PIh7cxv3eR2/cXoXnvh9NfXWTle4u8erLxlF9lL55sGT/gyfb2Iq+ebC8XeffJ9vYir55sv3E47z3ZfmOR2/cXeffJ9nqRH/Jk4xR1fxh8/n2L9Eze3E9Xrx+wiPQDFsn1A/bkq4tsZkL3382V/r5Fak5H3Lq+fE/EIl98nuy1ro3da+dXF5l5h71evu68vifGIvrqIjWHs19MXqxXXzPtnDHX/RJK/eIlwy3ni2l79ei8XMTnae9u9tVFZmrL/dXGvlwknAsx9NU9kc89kb56OLx4uWr9gEU6fsDhfHmRnO+ZPW39gEX8q/eE9ydeL1CwX52HjzkroI+TkvV77sZ8d3//kjde3I3+R96NuPFh6+b5tS0NEB23rz5X7z85H5VuXyXJx0XWsu8fztcXWXO6NtZXn6t/t8hXSRJ7XvvuHyU/f7HYq/6hz7QdXKL2Yvxyv7ys4r278fJVb86A79p6cTdenWeNHobIP179+dU1+rM1Xh9Mc4qzX7xc7VffXd3Pxc+O2IcdWb9c49UZLIbXd314C/2rNV4w1feMdd3fD+hraxizi/ZxxuJ3rTEXmX1njfXtNXzO2rjXF/cj5rOA68NXaL9c49WXV/dzksZj++mVCfvVl1dbrKGIz9d4+eEoPnyuuX1pjc058P1xFPNXa3z3tf837gUMuvX6/F70P/ReLL6D2x/PTebvWsN+wBq3b69Bv93/3efPDX91Jt+4LtT/7krw37GG23yAd/8Ra+QX14gZ63Tpq2vMl9Ze6/vH8tU14jbHEuv2/TXsq2s4a+jTsePzbc73uvb1vZiOW3rRLRHfZsdLno93YesFwSK/z/NXa7zL8/g2SV/fi/d4rvUPvRdv8vw31rAfsMbt22u8yXPp+zx/ucabPH9/jfziGu/x/DfWeIvnbx/LV9d4k+dvr2FfXeM9nue3Sfr6XrzH88x/KM8z5nR/9uf7+fJSqTf77eUab/bb+2vkF9d4r99+Y423+u3tY/nqGm/229tr2FfXeK/f6runoX7jXrzXb/3ds1Cvz5cwAnU/h9NfOudia4ZK7eNpyt+3xjwm97Me+e019ocJlfV7vovqcWrY7cUV4vv1Gca3hqD2q+um3hyCen0/3huCen+Nz4egfmONt4agXq/x3hDU6zXeHIJ69QS5P8nGVff6TPirRfZciGt7f/Wb8T1Tx/dTb1/9AtdmjPJ+ztV/wCKvvmJ4NV2mmdXVh6HyX0yX2asvoe696/Tuh1GB29+PQJ7XH39+LHx48Y8XOMcv3D6vLjh696JHW6+uB3nzqkd7efnUTE94fy72+o0dmeHU7blf7MgPuNTP1g+41M/Wty/1s/UDLvU7z99/+vC+edHA60XevGjA9rcv9Xu5xLsj3ba/f6nfu8eS8cVH981L/WzrRzww+f0HJr+/H9++1O/1lr55BYTZD7jUz+zbl/q9XuKti0peLvF2u9j3L/V7vadvXgHx8nXXbh/fd+/PX3dfXf709gvEq++i3n6B8Nu3XyB8/YAXiFfXUL39AvHynrzbeS9P9b/beR7f7jyPH9A2ry76ebdtXm7ID2mbHbTNx3G2X7ZN3F5+9h6j2cfpnvVLE+X69vcfL9d48/sP+/Z3Ur9xL976/sO+/Z3U63vx3vcfv7WG/YA1bt9e473vP+ylue+987Gv13jvfOzvWCO/uMZb52N/a413zse+fyxfXeO987Hvr2FfXeOt87Gm7353+hv34q3zsZbf/e70N14U5jcZ2MdTh796UXjl74vbDDnFLf3TF4XXa8wAW9xKn6/x6h3qe9OJv2ONT6cT397Uv7Mu/WpTX1217PNKuz5KwX91MP3ypG5yUje/tkbhbK4PouHftUbPpGV+FFr8njWy5qx/1ofrnn+5xiuN31qMFq47SupHrLLW146nbfbk43VTv2+N+QUc9zW+9vhWz5R0dXz+2FT9kH2tH7Cvv6EtGQH9vQ8/XDf8e66x59ez2Mfzqb9Yw16Z/d79/SovF7l/1N2cY/YPHx9+3yo2v7Thvor0+SovrfxzBeX9wfkwTr/t9+xsf5Bx7s939tUJIrsNTu6LfJD7/+pwXq5yvg48V3Gtz1d59R2Az9dEO/zzR/n1phjebV9ffMr6vH7eP9N++pT12494nvjNvv88eXlX3u2e39iTHBTc3zd+vievTqzu/GBQ/LCv9Ys1Xo2pcGYl1scrQH7xfuA37gi/NGV/OKPxqzvy8iyxPnwy2p+u8errmby/ZcaFqw/35JdPklffWNX9e96rh+915JdW2SvmFeNefzjj/KtVXh/R+Lbyvsj+4io5Av6MXp83z8tf9fHhHNzHb9B/1YCvHmUV1osPnyx+1zOlcu7Ix2P51TPlpVfFbswUfETBr3bk5SoxT/x7nZ9a2fzV9VPq+fUn6g/PNv2OO1Iameq9+mCS/l2HIwYLJNnta0828Y3+vbbPn7LbX7619w8H9NmmvFyC32mo3vm1Jd56aF4+um8eyO27B/L65YZH1vLDL8j55cuN3b7/tYS/+pbl3a8l/PXRvPO1hL+8gOrNLwPcfsCXAW7f/jLg5RLvfhng9v0vA15vyA+xiOXi14p8OFXyy+fqqy+u9nEWj1df//zV119+zTrnKO4P9YfPsPW77gpjY/faP2ez2494U/JqlbfflLz8lUhzOXfZ7RfK7H++//EP//anv/7Lh99f+z+PX3prj99cfEo/jl8EfRbHL4J+FOsq9lXYVfhVxFXoKvIqrpX9WjmuleNaOa6V41o5rpXjWjmuleNaOa6V41pZ18q6Vta1sq6Vda2sa2VdK+taWdfKulbOa+W8Vs5r5bxWzmvlvFbOa+W8Vs5r5bxWrmvl4xetr+PMzPGL1h/FsfK+d9zxi9YfRZwfKO6FruJY+cD68YvW1/EMO37R+lkcv2j9Uayr2FdhV+FXEVehq8iruFbua+V1u021ptpT2VQ+VUylqXKqmmoy1mSsyViTsSZjTcaajDUZazLWZKzJ2JOxJ2NPxp6MPRl7MvZkHL9/ep2/G/v4FdTPqq/q+EXU6+jtdfwu6me1p7KpfKqYSlPlVDVVX5VPhk+GT4ZPhk+GT4ZPhk+GT4ZPRkxGTEZMRkxGTEZMRkxGTEZMRkyGJkOTocnQZGgyNBmaDE2GJkOTkZORk5GTkZORk5GTkZORk5GTkZNRk1GTUZNRk1GTUZNRk1GTUZNRk9GT0ZPRk9GT0ZPRk9GT0ZPRk3H2+XEN4D77/FGtqfZUNpVPFVNpqpyqppqMNRlrMtZkrMlYk7EmY03Gmow1GWsy9mTsydiTsSdjT8aejD0ZezL2ZOzJsMmwybDJOPv8uKJxn33+qGKqI+P4EL/PPn9UNVVf1dnnj2pdP3v2+aOajLPPH/8uppoMnwyfDJ+MmIyYjJiMmIyY44g5jpiMmIyYjJgMTcbZ549qT2VTzXFoMs4+f1Q5VU3VV5WTkZORk5GTkZORs1c5x5FzHDnHkZNx9vmjmr2q2auavarJqMmoyajJqMmo2aue4+g5jp7j6MnoeTx69qpnr3r2qiejrwy73aZaU+2pbCqfKqbSVFeG3Wqqa69s3aZaU03Gmow1GWsy1mSsnKqmmuPYcxx7MvaeyqbyqWKqydiTsSdjT4ZNhs1e2RyHzXHYHMf0uZmmmr2y2SubvZo+N58MnwyfjOlzmz636XObPrfpc/PJiHk8ps9t+tymzy0mIyZj+tymz2363KbPbfrcps9t+tw0GZrHY/rcps9t+tw0GZqM6XObPrfpc5s+t+lzmz636XPLych5PKbPbfrcps+tJqMmY/rcps9t+tymz2363KbPbfrcejJ6Ho/pc5s+t+lz68noyZg+t+lznz736XOfPvfpc58+99uV4TdNlVPVVNde+ZqMNRnT5z597tPnPn3u0+c+fe7T574mY9+mWlPtqWyqydiTMX3u0+c+fe7T5z597tPnPn3u83ru83ru0+c+fe7T5z6v5z6v5z597tPnPn3u0+c+fe7T5z597j4ZPo/H9LlPn/v0ucdkxGRMn/v0uU+f+/S5T5/79LlPn7smQ/N4TJ/79LlPn7smQ5Mxfe7T5z597tPnPn3u0+c+fe45GTmPx/S5T5/79LnXZNRkTJ/79LlPn/v0uU+f+/S5T597TUbP4zF97tPnPn3uPRk9GdPnPn3u0+c+fR7T5zF9HtPncbsy4uZTxVSaKqeq+dnJmD6P6fOYPo/p85g+j+nzmD6PNRmrprr2KqbPY/o89mTsyZg+j+nzmD6P6fOYPo/p85g+D5sM21PNXk2fx/R5zPv2mPftMX0e0+cxfR7T5zF9HtPnMX0ePhk+j8f0eUyfx/R5zPv2iMmYPo/p85g+j+nzmD6P6fOYPo+YDM3jMX0e0+cxfR7zvj00GdPnMX0e0+cxfR7T5zF9HtPnkZOR83hMn8f0eUyfx7xvj5yM6fOYPo/p85g+j+nzmD6P6fOoyah5PKbPY/o8ps9j3rdHT8b0eUyfx/R5TJ/H9HlMn2v6XLcrQ7c9lU3lU8VUmp/NqWqqyZg+1/S5ps81fa7pc63JWJoqp6qprr3SvG/Xnozpc02fa/pc0+eaPtf0uabPtSfDblPNXk2fa/pc875d0+ea13PN67mmzzXv2+WTMZ/PNX2u6XNNn2tez/Xo8/MM9ZFx/J4UnX1+jC3p7PNjYl9nnz+qNdWeyqbyqY6MY4JKZ58/qpyqpuqrOvv8UR0ZfRzH2efHwJjOPn9UPlVMpalyqpqqr+rs80d1ZthR7alsKp8qptJUOVVN1Vd19nmfZ/TPjDyqPdWZcezu2eePKqbSVDlVTdVXdfb5o1pT7akmoyejJ6MnoyejJ6OvjLzdpjoz+qj2VHZcSXI7Kp8qjur8CU2Vx3dL5/+tqfqo1vHFxm2qdVTHykefPys7Lxg/Kp/qyDiulc2jz59VTlXnJWZH1eclGsd3JrfzCv6jWlPtqY6M49dc5dHn+5h0zaPP9/ElXh59vo/z7Xn0+TlrmUefP6s+Z+mOr2NuUx0Zx1xnHn3+rI6M4/f65NHn568SyqPPT01BHn2+j2mnPPp8H5el59Hnz+rIOIbD8ujzZ3VkHBPZefT5szoyjqta8ujzZ3VkHN2YR58/qyPj6K08+vxZ9bVrcbt2LWavYvYqbCq/du3o88euha5di7x2LWavjj5/VJq90ppq9ko2lV+7prh2Tbp2TXntmmavjj5/VDl7lWuq2aujz5/V7FXGVLNXR58/q9mro88f1dHnj12rde1azV7V7FX5VHHt2tHnj12rvHat6tq1mr06+vxZzV71nmr2qn2quHatde1a57VrXdeu9bVXdfT5s7r2qm57qmuv6uzzR3XtVZ19/qiuvaqzzx/VtVd19vmjOjL6/OrxyDj4UmefPyqfKqbSVDlVTdVXdfb5o1pTTcaejD0ZezL2ZOzJ2JOxJ8MmwybDJsMmwybDJsMmwybDJsMmwyfDJ8MnwyfDJ8Mn4+hzO1hcR58/q5qqj+p4FI4+f1Zrqj2VTeXXzx59/qwmI3L+XU01GZoMTYYmQ5OhydBkaDI0x6E5Dk1GTkZORk5GTkb6VDGVpprjyMnIvqq6TbWm2lNNRk1GTUZNRk1GzV7VHEfPcfQcR09G21SzVz171bNXPRk9GX1l9O021ZpqT2VT+VQx1ZXRt5yqprr2qtdtqslYk7EmY03GmoylqXKqmmqOY0/GXlPtqWwqn2oy9mTsydiTsSfDZq9sjsPmOGyOwybDYqrZK5u9stkrmwyfDJ8MnwyfDJ+98jkOn+PwOY7p8/Z5PGL2KmavYvZq+rxjMmIyYjKmz3v6vKfPe/q8p89bk6F5PKbPe/q8p89bk6HJmD7v6fOePu/p854+7+nznj7vnIycx2P6vKfPe/q8azJqMqbPe/q8p897+rynz3v6vKfPuyej5/GYPu/p854+756Mnozp854+7+nz4xcZUy7KTWmUV9C9DEpRJmVRkrZIW6Qt0hZp0/b3MihFmZSkrZ5ymv9eLspNSdombZO2SdukDQSOX2M9pXFsxrEZaWaU7KSxk8ZOGmlGmpHmpDlpzk46x+Ycm3NsTprzuDk76exksJNBWpAWpAVpQVqwk8GxBccWHJtIE4+b2Emxk2InRZpIE2kiTaQlO5kcW3JsybElacnjluxkspPJTiZpRVqRVqQVacVOFsdWHFtxbEVa8bg1O9nsZLOTTVqT1qQ1aU1as5OwZMGSBUvWbdLWzSidMihFmaxQlKTBkgVLFixZsGTBkgVL1iJtJWVRzk4uWLI2aZs0WLJgyYIlC5YsWLJgyYIly0izRclOwpIFS5aRZqTBkgVLFixZsGTBkgVLFixZTprzuMGSBUsWLFlOWpAGSxYsWbBkwZIFSxYsWbBkBWnB4wZLFixZsGSJNJEGSxYsWbBkwZIFSxYsWbBkJWnJ4wZLFixZsGQlaUkaLFmwZMGSBUsWLFmwZMGSVaQVjxssWbBkwZLVpDVpsGTBkgVLFixZsGTBkgVL9m3S9m1RbkqjdMpgBVEmZVGSBks2LNmwZMOSvUhbQSnKpCxK0jZpsGTDkg1LNizZsGTDkg1L9iZtz+O2YcmGJRuWbCPNSIMlG5ZsWLJhyYYlG5ZsWLKdNOdxgyUblmxYsp00WLJ5X7J5X7JhyQ7SgrQgDZZsWLJhyeZ9yX6w5DFPfabFWZ5pOsszrc7SKJ0yKEWZlEXZUz5Y8igXJWlJWpKWpCVpSVqSlqQVaUVakVakFWlFWpFWpBVpRVqT1qQ1aU3ayZLjSrt1zg1epSiTsij7Ku1kybNclJvSKJ0yKEWZlEV5pB1na9c5RniVR5rXWW5KozzSHkP4J0viXOxkSTxWONKO+dx1jhPa8YXdOucJn+XJkryd5aI80vJc92TJszzS8lz3ZEk9/q0ok7Ioj7Q6006WPMtFuSmPtDqP4mTJszzTzqM4WfIsk5JLBrhm4BwyPH8f7TqnDK/yHFk+1z1Z0mfwyZJnGZRHWp9HfLKkz10/WfIse8qTJc9yUW5KO64uPrfkYImffDhnDq9SlHmU5508WOK3x2UTPeXBktM3sM7Jw6vcR3mmySid8khb56N5sOQqk7Ioj7R1rnuwxNe5Dwc1fJ337KCGr3NTMyjPdc+HJZPyWHef6x7UeJYHNa5yUZ53/fyx8kmr4G81+1A5x1ZF2VP2bQ7oQMVVbkqjdEo2qtmoZqO6Znd6NuqcP7zKRbmv7TsHD08nxTonD69SlElZlOeenSusG+Wi3JRG6ZRBKcqkLErSNmmbtE3aJm2TtknbpG3SNmmbNCPNSDPSjDQjzUgz0ow0I81Ic9KcNCfNSXPSnDQnzUlz0py0IC1IC9KCtCAtSAvSgrQgLUgTaSJNpIk0kSbSRJpIE2kiLUlL0pK0JC1JS9KStCQtSUvSirQirUgr0oq0Iq1IK9KKtCKtSWvSmrQmrUlr0pq0Jq1J60k7BxuvclFuSqN0yqAUZVIWJWmwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWBJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUt6WLJvw5J9G5bs27Bk34Yl+zYs2bdhyb4NS/ZtWLJvw5J9u5G2SFukLdIWaYu0RdoibZG2SFukbdI2aZu0TdombZO2SdukbdI2aUaakWakGWlGmpFmpBlpRpqR5qQ5aU6ak+akOWlOmpPmpDlpQVqQFqQFaUFakBakBWlBWpAm0kSaSBNpIk2kiTSRJtJEWpKWpCVpSVqSlqQlaUlakpakFWlFWpFWpBVpRVqRVqQVaUVak9akNWlNWpPWpDVpTVqTBksWLFmwZMGSBUsWLFmwZMGSBUsWLFmwZMGSBUsWLFmwZMGSBUsWLFmwZMGSBUsWLFmwZMGSBUsWLFmwZMGSBUsWLFmwZMGSBUsWLFmwZMGSBUsWLFmwZMGSBUsWLFmwZMGSBUsWLFmwZMGSBUsWLFmwZMGSBUsWLFmwZMGSBUsWLFmwZMGSBUsWLFmwZMGSBUsWLFmwZMGSBUsWLFmwZMGSBUsWLFmwZMGSBUsWLFmwZMGSBUsWLFmwZMGSBUsWLFmwZMGSBUsWLFmwZMGSBUsWLFmwZMGSBUsWLFmwZMGSBUs2LNmwZMOSDUs2LNmwZMOSDUs2LNmwZMOSDUs2LNmwZMOSDUs2LNmwZMOSDUs2LNmwZMOSDUs2LNmwZMOSDUs2LNmwZMOSDUs2LNmwZMOSDUs2LNkPluRZFmVP+WDJo1yUm9IonTIoRUmak+akBWlBWpAWpAVpQVqQFqQFaUGaSBNpIk2kiTSRJtJEmkgTaUlakpakJWlJWpKWpCVpSVqSVqQVaUVakVakFWlFWpFWpBVpTVqT1qQ1aU1ak9akNWlNWk+a3W6Ui3JTGqVTBqUok7IoSVukLdIWaYu0RdoibZG2SFukLdI2aZu0TdombZO2SdukbdI2aZs0I81IM9KMNCPNSDPSYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCx5Drse5XPY9VGew659lpvyTKuzdMqgFGVSFmVP+WDJue6DJY9yUxqlUwalKJOyKHvKTdombZO2SdukbdI2aZu0TdomzUgz0ow0I81IM9KMNCPNSDPSnDQnzUlz0pw0J81Jc9KcNCctSAvSgrQgLUgL0oK0IC1IC9JEmkgTaSJNpIk0kSbSRJpIS9KStCQtSUvSkrQkLUlL0pK0Iq1IK9KKtCKtSCvSirQirUhr0pq0Jq1Ja9KatCatSWvSetKec6+PclFuSqN0yqAUZVIWJWmwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWBJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGHJc+51nWVSFmVP+WDJozzT9lluSqM80+wsg78VZVIWZU/5YMmjJM1IM9IeLHmUpBlpRpqRZqQ5aU6ak+akOWlOmpPmpDlpTlqQFqQFaUFakBakBWlBWpAWpIk0kSbSRJpIE2kiTaSJNJGWpCVpSVqSlqQlaUlakpakJWljKtldpBVpRVqRVqQVaUVakVZ0wIMlj5K0kyWH1WQ/5l6fpVMeaevxb0WZlEXZz9Iec6/PclFuyiPtUJnYY+71WQalKM80neV5QHH+0sUb5aLclEZ5DV4Yw67GsKsx7GoMuxrDrsawqzHsagy7GsOuxrCrMexqDLsaw67GsKsx7GoMuxrDrsawqzHsagy7GsOuxrCrMexqDLsaw67GsKsx7GoMuxrDrsawqzHsagy7GsOuxrCrMexqDLsaw67GsKsx7GoMuxrDrsawqzHsagy7GsOuxrCrMexqDLsaw67GsKsx7GoMuxrDrsawqzHsagy7GsOuxrCrMexqDLsaw67GsKsx7GoMuxrDrsawqzHsagy7GsOuxrCrMexqDLsaw67GsKsx7GoMuxrDrsawqzHsagy7GsOuxrCrMexqDLsaw67GsKsx7GoMuxrDrsawqzHsagy7GsOuxrCrMexqDLsaw67GsKsx7GoMuxrDrsawqzHsagy7GsOuxrCrMexqDLsaw67GsKsx7GoMuxrDrsawqzHsagy7GsOuxrCrMexqDLsaw67GsKsx7GoMuxrDrsawqzHsagy7GsOuxrCrMexqDLsaw67GsKsx7GoMuxrDrsawqzHsagy7GsOuxrCrMexqDLsaw67GsKsx7GoMuxrDrsawqzHsagy7GsOuxrCrMexqDLsaw67GsKsx7GoMuxrDrsawqzHsagy7GsOuxrCrMexqDLsaw67GsKsx7GoMuxrDrsawqzHsagy7GsOuxrCrMexqDLsaw67GsKsx7GoMuxrDrsawqzHsagy7GsOuxrCrMexqDLsaw67GsKsx7GoMuxrDrsawqzHsagy7GsOuxrCrMexqDLsaw67GsKsx7GoMuxrDrsawqzHsagy7GsOuxrCrMexqDLsaw67GsKsx7GoMuxrDrsawq21YsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWOKwxGGJwxKHJQ5LHJY4LHFY4rAEyasheTUkr4bk1ZC8GpJXQ/JqSF4NyasheTUkr4bk1ZC8GpJXQ/JqSF4Nyeu9JA2WIHm9l6TBEiSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLxajWjAakQDViMasBrRgNWIBqxGNGA1ogGrEQ1YjWjAakQDVkFakBakBWlBWpAWpAVpIk2kiTSRJtJEmkgTaSJNpCVpSVqSlqQlaUlakpakJWlJWpFWpBVpRVqRVqQVaUVakVakNWlNWpPWpDVpTVqT1qQ1aSMtsR5pifVIS6xHWmI90hLrkZZYj7TEeqQl1iMtsR5pifWNtEXaIm2RtkhbpC3SFmmLtEXaIm2TtknbpG3SNmmbtE3aJm2Ttkkz0ow0I81IM9KMNCPNSDPSjDQnzUmDJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlPSzx27DEb8MSvw1L/DYs8duwxJ/Dro9SlOewa59lUZ5pdZQPljzKRbkpjdIpg/Ia0/fbXITjt7kIx29zEY7f5iIcv81FOH6bi3D8Nhfh+G0uwvHbXITjt03aJm2Ttkkz0ow0I81IM9KMNCPNSDPSjDQnzUlz0pw0J81Jc9KcNCfNSQvSgrQgLUgL0oK0IC1IC9KCNJEm0kSaSBNpIk2kiTSRJtKStCQtSUvSkrQkLUlL0pK0JK1IK9KKtCKtSCvSirQirUgr0pq0Jq1Ja9KatCatSWvSmrS5CMfXXITjay7C8TUX4fiai3B8zUU4vuYiHF9zEY6vuQjH11yE4+tG2iJtkbZIW6Qt0hZpsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNiwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKHJQ5LHJY4LHFY4rDEYYnDEoclDkuQvDqSV0fy6kheHcmrI3l1JK+O5NWRvDqSV0fy6kheHcmrI3l1JK+O5PVekgZLkLzeS9JgCZJXR/LqSF4dyasjeXUkr47k1ZG8OpJXR/LqSF4dyasjeXUkr47k1ZG8OpJXR/LqSF4dyasjeXUkr47k1ZG8OpJXR/LqSF4dyasjeXUkr47k1ZG8OpJXR/LqSF4dyasjeXUkr47k1ZG8OpJXR/LqSF4dyasjeXUkr47k1ZG8OpJXR/LqSF4dyasjeXUkr47k1ZG8OpJXR/LqSF4dyasjeXUkr47k1ZG8OpJXR/LqSF4dyasjeXUkr47k1ZG8OpJXR/LqSF4dyasjeXUkr47k1ZG8OpJXR/LqSF4dyasjeXUkr47k1ZG8OpJXR/LqSF4dyasjeXUkr47k1ZG8OpJXR/LqSF4dyasjeXUkr47k1ZG8OpJXR/LqSF4dyasjeXUkr47k1ZG8OpJXR/LqSF4dyasjeXUkr47k1ZG8OpJXR/LqSF4dyasjeXUkr47k1ZG8OpJXR/LqSF4dyasjeXUkr47k1ZG8OpJXR/LqSF4dyasjeXUkr47k1ZG8OpJXR/LqSF79Ofe6zrKnfLDkUS7KTXmm7bN0yqA80+wsk78typ7ywZJHuSg3JWlNWpP2YMmjJK1J60l7zr0+ykW5KY3SKYNSlElZlKQt0hZpi7RF2iJtkbZIW6Qt0hZpm7RN2iZtk7ZJ26Rt0jZpm7RNmpFmpBlpRpqRZqQZaUaakWakOWlOmpPmpDlpTpqT5qQ5aU5akBbTAc+510dJ2smSQ6Tjj7nXZynK89u+x78typ7yZMmzXJSb0iid8vxu0c5SlElZlGeajvIBkDjLTWmUThmU1zCQM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gy7OsOuzrCrM+zqDLs6w67OsKsz7OoMuzrDrs6wqzPs6gVLCpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnBkoIlBUsKljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKSHJXEblsRtWBK3YUnchiVxG5bEbVgSt2FJ3IYlcRuWxO1G2iJtkbZIW6Qt0hZpi7RF2iJtkbZJ26Rt0jZpm7RN2iZtk7ZJ26QZaUaakWakGWlGmpFmpBlpRpqT5qQ5aU6ak+akOWlOmpPmpAVpQVqQFqQFaUFakBakBWlBmkgTaSJNpIk0kSbSRJpIE2lJWpKWpCVpSVqSlqQlaUlaklakFWlFWpFWpBVpRVqRVqQVaU1ak9akNWlNWpPWpDVpTRosQfIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4Hk9V6SBkuQvN5L0mAJktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGkteIEQ1EjLQkYqQlESMtiRhpScRISyJGWhIx0pKIkZZEjLQkYpG2SFukLdIWaYu0TdombZO2SdukbdI2aZu0TdomzUgz0ow0I81IM9KMNCPNSDPSnDQnzUlz0pw0J81Jc9KcNCctSAvSgrQgLUgL0oK0IC1IC9JEmkgTaSJNpIk0kSbSRJpIS9KStCQtSUvSkrQkLUlL0pK0Iq1IK9KKtCKtSCvSirQirUhr0pq0Jq1Ja9KatCatSWvSRloSGmlJaKQloZGWhEZaEoIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJc9h10dZlOewax/lyZJneabVWW5Ko3TKoBRlUl5j+qG5CCc0F+GE5iKc0FyEE5qLcEJzEU5oLsIJzUU4obkIJ1SkFWlNWpPWpDVpTVqT1qQ1aU3aXIQTORfhRM5FOJFzEU7kXIQTORfhRM5FOJFzEU7kXIQTORfhRN5IW6Qt0hZpi7RF2iJtkbZIW6Qt0jZpm7RN2iZtk7ZJ26Rt0jZpmzQjzUgz0ow0I81IM9KMNCPNSHPSnDQnzUlz0pw0J81Jc9KctCAtSAvSgrQgLUgL0oK0IC1IE2kiTaSJNJEm0kSaSBNpIi1JS9KStCQtSUvSkrQkDZYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKCJQVLCpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUkPS3Qblug2LNFtWKLbsES3YYluwxLdhiW6DUt0G5bodiNtkbZIW6Qt0hZpi7RF2iJtkbZI26Rt0jZpm7RN2iZtk7ZJ26Rt0ow0I81IM9KMNCPNSDPSjDQjzUlz0pw0J81Jc9KcNCfNSXPSgrQgLUgL0oK0IC1IC9KCtCBNpIk0kSbSRJpIE2kiTaSJtCQtSUvSkrQkLUlL0pK0JC1JK9KKtCKtSCvSirQirUgr0oq0Jq1Ja9KatCatSWvSmrQmDZYgeRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVz3nXtdZLspNaZROeabtsxRlUp5pdpY9fzvSEj3nXh/lpjRKpyQtSAvSHix5lKSJNJEm0kSaSBNpIk2kiTSRlqQlaUlakpakJWlJWpKWpCVpRVqRVqQVaUVakVakFWlFWpHWpDVpTVqT1qQ1aU1ak9akjQBJNgIk2QiQZCNAko0ASTYCJNkIkGQjQJKNAEk2AiTZjbRF2iJtkbamA55zr4+StJMlh0hHj7nXZ1mU57d95789WfIsF+WmNEqnDEpRnt8t2lkWZU95suRZnmk6y/OA4iydMihFmZTXMJAYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3vJWmbtE3aJs1IM9KMNCPNSDPSjDQjDZYw7CqGXcWwqxh2FcOuYthVDLuKYVcx7CqGXcWwqxh2FcOuYthVDLuKYVcx7CqGXcWwqxh2FcOuYthVDLuKYVcx7CqGXcWwqxh2FcOuYthVDLuKYVcx7CqGXcWwqxh2FcOuYthVDLuKYVcx7CqGXcWwqxh2FcOuYthVDLuKYVcx7CqGXcWwqxh2FcOuYthVDLuKYVcx7CqGXcWwqxh2FcOuYthVDLuKYVcx7KqAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwBLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LyKiSvQvIqJK9C8iokr0LymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvOYa0UCukZbkGmlJrpGW5BppSa6RluQaaUmukZbkGmlJrpGW5ErSkrQkLUkr0oq0Iq1IK9KKtCKtSCvSirQmrUlr0pq0Jq1Ja9KatCZtpCW5R1qSe6QluUdaknukJblHWpJ7pCW5R1qSe6QluUdakvtG2iJtkbZIW6Qt0hZpi7RF2iJtkbZJ26Rt0jZpm7RN2iZtk7ZJ26QZaUaakWakGWlGmpFmpBlpRpqT5qQ5aU6ak+akOWlOmpPmpAVpQVqQFqQFaUFakBakBWlBmkgTaSJNpIk0kQZLNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNiwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJc9h17N8DLs+ynPYtc9yU55pdZZOGZSiTMqi7CnnIpy0uQgnbS7CSZuLcNLmIpy0uQgnbS7CSZuLcNLmIpy0uQgnLUgL0oK0IC1IC9KCtCAtSAvSRJpIE2kiTaSJNJEm0kSaSEvSkrQkLUlL0pK0JC1JS9KStCKtSCvSirQirUgr0oq0Iq1Ia9KatCatSWvSmrQmrUlr0uYinPS5CCd9LsJJn4tw0ucinPS5CCd9LsJJn4tw0ucinPS5CCf9RtoibZG2SFukLdIWaYu0RdoibZG2SdukbdI2aZu0TdombZO2SdukGWlGmpFmpBlpRpqRZqQZaUYaLHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisMRhScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWIHlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrPude11kapVMGpSjPtH2WRdlTPlhiZ7n4201plE4ZlKIkbZG2SHuw5FGStknbpG3SNmmbtE3aJm2TZqQZaUaakWakGWlGmpFmpBlpTpqT5qQ5aU6ak+akOWlOmpMWpAVpQVqQFqQFaUFakBakBWkiTaSJNJEm0kSaSBNpIk2kJWlJWpKWpCVpSQckHZCknSyxOsue8mSJn//gZIn7WW5Ko3TKoBRlUh5pHmfZU54seZZnWvzt55/+3x/++qc//Ouf//ifP/3T/9z/+H/++y//9l9/+ve/PP/4X//ff1z/51//+qc///lP//df/uOv//5vf/zf//3XP/7Ln//9347/99Pt+M/RzP9r6ee9/vn+j9ev/2o//+n/up/4/fl+rvSff/7Jjj+pfr6fmb7/6fzn9zPTP99PMx9/XMcfK+5/zOPnbZZM/zn7+hd1+7n28f+dyP55+/FXMX+1/efdx1+Jv8qf7fzBPP7quCtaP+e67sj9ftS5SLFu/rzPn2gWWT9vnQfMJvj62R9/96td+Nvf/vlv/z8=",
1909
+ "debug_symbols": "tb3RjitZbmb9LnVdF9qb5EfSrzIwjLanZ9BAo2207QF+GP3uvyKk4MquQqpUmadvSjynTu5PsSUuSSHGyv/56X//8V//+//+y5/+8n/+/T9/+qf/9T8//etf//TnP//p//7Ln//93/7wX3/697/c//Z/frod/1n+0z/1+tvPP63rT8cf9vEHy/sf/OefrJ63/bj12/N2PW/389but7rf+vM2nrd63h7r5f22nrf9uI3b83Y9b/fz1p63/ryN562et8/14rlePNfTcz0919NzPR3/v37+KY8/9/32vv5e91t/3sbz9r7+3vfbfN7W87Yft3V73q7n7X7e2vPWn7fxvH2uV8/16rlePdfr4+ftfnv8+/s+9vHv7/e383l7/Pv7/e5+3K7b7SqOe9BHsa/ifh/sdhR+FceqcRT3ZW0dRV5FXUU/i3W7iuexrbWvwq7CryKuQleRV1FX8TzGtW9Xca28r5X3tfK+Vt752JFlt8eWLFuPvVi2r8Kem2B+FfHcBNNV5HMTjqfwo+jnbvh1pMez+FHsq7Cr8Ku4jtSvI/XrSP06Ur+ONK4jjetI4zrSuI40riONa+W4Vo5r5bhWPp7H527In7uheG6CdBX53ATVVfRzE/J2Feu5CUcDPAp77kZeR3r0wKO4ni15PVvyerZcfbCuRlhXJ6yrFdbVC+tqhnV1w7raYV39sK6GWFdHrL5W7mvlvlY+u+TYjbMtjt04++K+Cfvsi7NYj03YZ1+chT02YR998SjisQn77IuzyMdu7Ksv9tUX++qLvdZV7Ks4Vj5+/OgL20cRV6GryKuoq3iyau/bVayr2FdhV+FXEVehq8irqKu4VrZrZbtWtmtlu1a2a+WT8cdGnVA/9udsBzsKuwq/irgKXUVexXGAfhT9LI52eBTrKvZV2FX4VcRV6CryKq6V41pZ18pHg5iOYl+FXcWxznGARzvYcYBnOxyP19kOx2NxtsNZ2FVcD+XZDsdunO1wFnkV9/vj5zr9LI52eBTXynWtXNfKda1czyeJHc9Vt6PYV3H/x3683h7P1UcRV3G/Gx5HkVdRV3Hcjfsh2/FcfRTrKvZV2FX4VRwr11HoKvIqjpXXUTy3zo7n6qNYV7Gvwq7CryKuQleRz+J8Zp7FemymHc/MR2FX4VcRV6GryKt4PgRmz4fA/HYV6yqeL/Z2vjs5C7+KuApdRV5FXUU/i/NNylnYgz92PGn9/Ju4Cl1FXkVdRT+L40n7KO73MI57eDxpH4VdhV/F8x2BnZw/i7yKuop+Fnm7inUV+yrsKvS883ndw7zuYV73sK57eDyNH8W+CruK6x4eT+NHoavIq7juYV33sK972Nc97Ose9nUP26/iOva+jv3kvB3vP5/30G/rKvZV2FX4VcRV6Cqe99CP3nkU/SyO3nkUz3voa1+FXYVfRVyFriKvoq7ieey+n2/yfF/3cF/3cF/3cF/3cOdV1FU8Hx236x7auop9FXYV1z206x7adQ/tuod23UO77qHfruI6dr+O/eyUOopnD7rnVdRV9LM4gX8W6yr2VdijK/3snbOIq9BVPHvQo67i2YOu21Wsq9hXYVfhV3F29/2zjJ0fbI5H+Hxtf96u5+1+3trz1p+38bzV8zaft/W4PbY4DoDm8/b+91qPz0Taj89E5609b+//Xvb4THTe5vP2+Ll6fPZRPz77nLf2vL3/XN4en33O2/v9yXh89qnb47NPrcdnnfP2/vN1zzv247z15208b/W87cftwYra913yc5eO/5v3P8X1pzjecuXz9jj2853X/dafe+n3f6352Xr8377d/zaPvz1eSdd+fLY6b/W8PR7lI7fOnz3+7/G5s6/Hah0rrPMT6vnS8nhk7PHA2ONxscfDYo9H5bi5/+DxWNweN+txc9+RPF4jHjf+uLmvckL4cXNf5XimrPkMvP92/+P1Yflf/uuvf/zj8X8+fHq+f6b+jz/89Y9/+a+f/ukv//3nP//80//7w5//+/xH//kff/jLeftff/jr/f/eH6M//uV/32/vC/6fP/35j0f1t5/56dvnP3r/nCc9f/z+Ue/Ws8T9XfW7i+w6nmbnGrtv8ZUl5Ne9qPMhey6gfneB6vVcoG/6dAH/fIH7C+FzAUufBe4vLH+3QLzYBb8W2MpPF3jvHpR9usCLPWi7HoZ2/3QP6ruH8OIeePZzAdniHuR6+6mkgwKPu5DLvrLE/c3O9Vy6v5X5sJHb3j6MdW3k/aViFoi/vwvHv/l0gboWiH378Ejk2/dgOspbn96DeNnYdpvGvn14NO5vRd9epfeep9T9I+IX12i/1rDVX1vD4jZrSF9bw2OOJW6f3499+xG7+mqVd3f19Rrv7erLNd7c1ZdrvLurL5+rO9jV+6fVz1fRy1UWi3zc1foda1jPGrG/uIZy1qjbD1gjPl/j1SMTNi+JkftrPfPmGq/uR+xBeuz++MJ2e38NO86wPdY4sr+2RmjW+Pi4/GINe/VMvX9iuB4XT/vaGmvNO6772exPX2Zfr2F71vD16RqvmVp0f9++yGU1a3zet6+PxX2ORbfP3zmtV+/+5lA+vP/81Qr7xRvQwZjCv7bCvAPNm762QrFCfmmF3Bc20u1rO5k1O1mfr5Df75HXr0zvPTdfr/Hec/PVh4p9PTPL68N70b//SPBiNzUfrpTxlQXydj0tc92+tsAFityf3oNX76Zd16N5Lz+8vvfbHwru3L0O4l76l5aQ5byn98+XiBfPy4yc9or+8Pno719So15txlqzGR/edP3y8egXS9zmEb2fjffPltCrN6H3L16h/03x2aG83NCeDc0VX3pMsnqW6PzSEpW3+cibny8h//bDqvj2wyp9/2HNf/DD2vO+4H6Wu770mPRg07q+9My4nzy/7sX99Lk+XSLXtx/W3N9+WNO+/bCm/2Mf1vt3DzEbap9DOPX9Dc3vb2h9f0P7H72hH56h/sUn+RD0/pWOfanV7t+jXptx/7r00yXKvv2wln/7Ya349sNa+sc+rL1izqusL7zZ6Xnn2vn5PvyDn5v30/Ccx/hwVma9fxq2IueN6/2dE0vcX+k/LtH71UeqPe+e/St3Yu85i7r3x1Pq/vf72f4D1ohX52L9ekHzis/PHby9hl6skT/gWF7g834u/1pjZbxY49VzlGf56lyfH8uL+6F9m/P8n3/Ce/XIrl1zhutOjy+t8d69ePUU9XVtxb6fcf+0T+5d/WqRG4t8+JT3i7txP5/4otk4rVy3j1+9mP1ikVev8Dkf1bI+vqf/1SKvXuPnZJ1/eOe23X+xxKtvkfZ8MNj3V4MXi7wkqQDph7ehv28Ru83p3PsZxM8XWevlGe45BfrFJe6npjdIf3Ewr79Tmle3O8c+fEnaXzqWjC8+uppTM1sfTuf++lj0Ix6Y/P4Dk9/fj1cN0zUN89UtzTkjvNNuny+yXz3HMnlp6Bddt/e3t/TlErec92D62hJvt8uO77fLyz1tnqb3b+o+vSMvX2J6vlOPj+/mfvkSs1+97N+i+F5KH06I/uJr8d9YJfP24ZspfbbKq3fIzbTI5i1y7Lff3a55WO60s89WOL/f+LTl1jw/bBnP0/jF08Ps5Te5H/biw/2oX6zhP+BV+9XXH2+/apu+/apt+QNeta1+wKv2y0XefXHw27dJ5rcfgKFX38i8i6E3j+XVq9TLJd6j8svn2HsvdC+fY+++0L38fundFzqv7z896vuPSv2AZ9irb3jefobl91/oXmP51nPm+OOX0r/Ecrz6WJgzCHh/nP3Tl4fXa9SsUR8O5ldr6NW73HmTWx/uxS+Q/OrrptjzPjl267MTQevV903KeX4oP34DWb/jfmi+E75/DxffX+PDF8u/b435Zjk+fm74XWtwXutefvFY6jZrfHwP9Ks19OqxnWGBD6cufvnsePWV0/3szbwNuj9dPz31u1596RR8vRyq+gGLvPga7/UiOTtyf4jiBywS/uXDiVnkw9uY37vI7fuL0Lz3w+mvLrLyvUVePdl4yq+yF0+2jB/wZHt7kVdPtpeLvPtke3uRV0+23zic955sv7HI7fuLvPtke73ID3mycYq6Pww//75FeiZv7qer1w9YRPoBi+T6AXvy1UU2M6H77+ZKf98iNacjbl1fvidikS8+T/Za18butfOri8y8w14vX3de3xNjEX11kZrD2S8mL9arr5l2zpjrfgmlfvGS4ZbzxbS9enReLuLztHc3++oiM7Xl/mpjXy4SzsUY+uqeyOeeSF89HF68XLV+wCIdP+BwvrxIzvfMnrZ+wCL+1XvC+xOvFyjYr87Dx5wV0MdJyfo9d2O+u79/yRsv7kb/I+9G3PiwdfP82pYGiI7bV5+r95+cj0q3r5Lk4yJr2fcP5+uLrDldG+urz9W/W+SrJIk9r333j5Kfv1jsVf/QZ9oOLlN7MX65X15W8d7dePmqN2fAd229uBuvzrPGXA91p+PHK0C/ukZ/tsbrg2lOcfaLl6v96rur+7n42RH7sCPrl2u8OoPF8PquD2+hf7XGC6b6nrGu+/sBfW0NY3bRPs5Y/K41Vv+ANda31/A5a+NeX9yPmM8Crg9fof1yjVdfXt3PSRqP7adXJuxXX15tsYYiPl/j5Yej+PC55valNTbnwPfHUcxfrfHd1/7fuBcw6Nbr83vR/9B7sfgObn88N5m/aw37AWvcvr0G/Xb/d58/N/zVmXybL8/vXyjY19Zwmw/w7j9ijfziGjFjnS59dY350tprff9YvrpG3OZYYt2+v4Z9dQ1nDX06dny+zfle176+F9NxSy+6JeLb7HjJ83EvbL0gWOT3ef5qjXd5Ht8m6et78R7Ptf6h9+JNnv/GGvYD1rh9e403eS59n+cv13iT5++vkV9c4z2e/8Yab/H87WP56hpv8vztNeyra7zH8/w2SV/fi/d4nvkP5XnGnO7P/nw/X14q9Wa/vVzjzX57f4384hrv9dtvrPFWv719LF9d481+e3sN++oa7/Vbffc01G/ci/f6rb97Fur1+RJGoO7ncPpL51xszVCpfTxN+fvWmMfkftYjv73G/jChsn7Pd1E9Tg27vbhCfL8+w/jWENR+dd3Um0NQr+/He0NQ76/x+RDUb6zx1hDU6zXeG4J6vcabQ1CvniD3J9n46l6fCX+1yJ4LcW3vr34zvmfq+H7q7atf4NqMUd7PufoPWOTVVwyvpss0s7r6MFT+i+kye/Ul1L13nd79MCpw+/sRyPP648+PhQ8v/vEC5/iF2+fVBUfvXvRo69X1IG9e9WgvL5+a6Qnvz8Vev7EjM5y6/aMN61c78gMu9bP1Ay71s/XtS/1s/YBL/c7z958+vG9eNPB6kTcvGrD97Uv9Xi7x7ki37e9f6vfusWR88dF981I/2/oRD0x+/4HJ7+/Hty/1e72lb14BYfYDLvUz+/alfq+XeOuikpdLvN0u9v1L/V7v6ZtXQLx83bXbx/fd+/PX3VeXP739AvHqu6i3XyD89u0XCF8/4AXi1TVUb79AvLwn73bey1P973aex7c7z+MHtM2ri37ebZuXG/JD2mYHbfNxnO2XbRO3l5+9x2j2cbpn/dJEub79/cfLNd78/sO+/Z3Ub9yLt77/sG9/J/X6Xrz3/cdvrWE/YI3bt9d47/sPe2nue+987Os13jsf+zvWyC+u8db52N9a453zse8fy1fXeO987Ptr2FfXeOt87Ck2/V7Xvr4Xb52Ptfzud6e/8aIwv83APp46/NWLwit/X9xmyClu6Z++KLxeYwbY4lb6fI1X71Dfm078HWt8Op349qb+nXXpV5v66qpln1fae/PV5wfTL0/qJid182trFM7m+iAa/l1r9Exa5kehxe9ZI2vO+md9uO75l2u80vitxWjhuqOkfsQqa33teNpmTz5eN/X71phfwnFf42uPb/VMSVfH549N1Q/Z1/oB+/ob2pIR0N/78MN1w7/nGnt+RYt9PJ/6izXsldnv3d+x8nKR+0fdzTlm//Dx4fetYvNLG+6rSJ+v8tLKP1dQ3h+cD+P0237PzvYHGef+fGdfnSCy2+DkvsgHuf+vDuflKufrwHMV1/p8lVffAfh8TbTDP3+UX2+K4d329cWnrM/r5/0z7adPWb/9iOeJ3+z7z5OXd+Xd7vmNPclBQdzW53vy6sTqzg8GxQ/7Wr9Y49WYCmdWYn28AuQX7wd+447wS1P2hzMav7ojL88S68Mno/3pGq++nsn7W2ZcuPpwT375JHn1jVXdv+e9evheR35plb1iXjHu9Yczzr9a5fURjW8r74vsL66SI+DP6PV587z8VR8fzsF9/Ab9Vw346lFWYb348Mnidz1TKueOfDyWXz1TXnpV7MZMwUcU/GpHXq4S88S/1/mplc1fXT+lnl9/ov7wbNPvuCOlkaneqw8m6d91OGKwQJLdvvZkE9/o32v7/Cm7/eVbe/9wQJ9tyssl+hazrzu/tsRbD83LR/fNA7l990Bev9zwyFp++AU5v3y5sdv3v5bwV9+yvPu1hL8+mne+lvCXF1C9+WWA2w/4MsDt218GvFzi3S8D3L7/ZcDrDfkhFrFc/FqRD6dKfvlcffXF1T7O4vHq65+/+vrrr1nR5nyU2tfvuiuMjd1r/5zNbj/iTcmrVd5+U/LyVyLN5dxlt18os//5/sc//Nuf/vovH36L7f88fvWtPX5/8Sn9OH4d9Fkcvw76Uayr2FdhV+FXEVehq8iruFb2a+W4Vo5r5bhWjmvluFaOa+W4Vo5r5bhWjmtlXSvrWlnXyrpW1rWyrpV1raxrZV0r61o5r5XzWjmvlfNaOa+V81o5r5XzWjmvlfNaua6Vj1+3vo4zM8evW38Ux8r73nHHr1t/FHF+oLgXuopj5QPrx69bX8cz7Ph162dx/Lr1R7GuYl+FXYVfRVyFriKv4lq5r5XX7TbVmmpPZVP5VDGVpsqpaqrJWJOxJmNNxpqMNRlrMtZkrMlYk7EmY0/Gnow9GXsy9mTsydiTcfwW6nX+huzjF1E/q76q49dRr6O31/EbqZ/Vnsqm8qliKk2VU9VUfVU+GT4ZPhk+GT4ZPhk+GT4ZPhk+GTEZMRkxGTEZMRkxGTEZMRkxGTEZmgxNhiZDk6HJ0GRoMjQZmgxNRk5GTkZORk5GTkZORk5GTkZORk5GTUZNRk1GTUZNRk1GTUZNRk1GTUZPRk9GT0ZPRk9GT0ZPRk9GT8bZ58c1gPvs80e1ptpT2VQ+VUylqXKqmmoy1mSsyViTsSZjTcaajDUZazLWZKzJ2JOxJ2NPxp6MPRl7MvZk7MnYk7EnwybDJsMm4+zz44rGffb5o4qpjozjQ/w++/xR1VR9VWefP6p1/ezZ549qMs4+f/y7mGoyfDJ8MnwyYjJiMmIyYjJijiPmOGIyYjJiMmIyNBlnnz+qPZVNNcehyTj7/FHlVDVVX1VORk5GTkZORk5Gzl7lHEfOceQcR07G2eePavaqZq9q9qomoyajJqMmoyajZq96jqPnOHqOoyej5/Ho2aueverZq56MvjLsdptqTbWnsql8qphKU10Zdquprr2ydZtqTTUZazLWZKzJWJOxcqqaao5jz3Hsydh7KpvKp4qpJmNPxp6MPRk2GTZ7ZXMcNsdhcxzT52aaavbKZq9s9mr63HwyfDJ8MqbPbfrcps9t+tymz80nI+bxmD636XObPreYjJiM6XObPrfpc5s+t+lzmz636XPTZGgej+lzmz636XPTZGgyps9t+tymz2363KbPbfrcps8tJyPn8Zg+t+lzmz63moyajOlzmz636XObPrfpc5s+t+lz68noeTymz2363KbPrSejJ2P63KbPffrcp899+tynz3363G9Xht80VU5VU1175Wsy1mRMn/v0uU+f+/S5T5/79LlPn/uajH2bak21p7KpJmNPxvS5T5/79LlPn/v0uU+f+/S5z+u5z+u5T5/79LlPn/u8nvu8nvv0uU+f+/S5T5/79LlPn/v0uftk+Dwe0+c+fe7T5x6TEZMxfe7T5z597tPnPn3u0+c+fe6aDM3jMX3u0+c+fe6aDE3G9LlPn/v0uU+f+/S5T5/79LnnZOQ8HtPnPn3u0+dek1GTMX3u0+c+fe7T5z597tPnPn3uNRk9j8f0uU+f+/S592T0ZEyf+/S5T5/79HlMn8f0eUyfx+3KiJtPFVNpqpyq5mcnY/o8ps9j+jymz2P6PKbPY/o81mSsmuraq5g+j+nz2JOxJ2P6PKbPY/o8ps9j+jymz2P6PGwybE81ezV9HtPnMe/bY963x/R5TJ/H9HlMn8f0eUyfx/R5+GT4PB7T5zF9HtPnMe/bIyZj+jymz2P6PKbPY/o8ps9j+jxiMjSPx/R5TJ/H9HnM+/bQZEyfx/R5TJ/H9HlMn8f0eUyfR05GzuMxfR7T5zF9HvO+PXIyps9j+jymz2P6PKbPY/o8ps+jJqPm8Zg+j+nzmD6Ped8ePRnT5zF9HtPnMX0e0+cxfa7pc92uDN32VDaVTxVTaX42p6qpJmP6XNPnmj7X9Lmmz7UmY2mqnKqmuvZK875dezKmzzV9rulzTZ9r+lzT55o+154Mu001ezV9rulzzft2TZ9rXs81r+eaPte8b5dPxnw+1/S5ps81fa55Pdejz88z1EfG8XtSdPb5Mbaks8+PiX2dff6o1lR7KpvKpzoyjgkqnX3+qHKqmqqv6uzzR3Vk9HEcZ58fA2M6+/xR+VQxlabKqWqqvqqzzx/VmWFHtaeyqXyqmEpT5VQ1VV/V2ed9ntE/M/Ko9lRnxrG7Z58/qphKU+VUNVVf1dnnj2pNtaeajJ6MnoyejJ6Mnoy+MvJ2m+rM6KPaU9lxJcntqHyqOKrzJzRVHt8tnf+3puqjWscXG7ep1lEdKx99/qzsvGD8qHyqI+O4VjaPPn9WOVWdl5gdVZ+XaBzfmdzOK/iPak21pzoyjl9zlUef72PSNY8+38eXeHn0+T7Ot+fR5+esZR59/qz6nKU7vo65TXVkHHOdefT5szoyjt/rk0efn79KKI8+PzUFefT5Pqad8ujzfVyWnkefP6sj4xgOy6PPn9WRcUxk59Hnz+rIOK5qyaPPn9WRcXRjHn3+rI6Mo7fy6PNn1deuxe3atZi9itmrsKn82rWjzx+7Frp2LfLatZi9Ovr8UWn2Smuq2SvZVH7tmuLaNenaNeW1a5q9Ovr8UeXsVa6pZq+OPn9Ws1cZU81eHX3+rGavjj5/VEefP3at1rVrNXtVs1flU8W1a0efP3at8tq1qmvXavbq6PNnNXvVe6rZq/ap4tq11rVrndeudV271tde1dHnz+raq7rtqa69qrPPH9W1V3X2+aO69qrOPn9U117V2eeP6sjo86vHI+PgS519/qh8qphKU+VUNVVf1dnnj2pNNRl7MvZk7MnYk7EnY0/GngybDJsMmwybDJsMmwybDJsMmwybDJ8MnwyfDJ8MnwyfjKPP7WBxHX3+rGqqPqrjUTj6/FmtqfZUNpVfP3v0+bOajMj5dzXVZGgyNBmaDE2GJkOTocnQHIfmODQZORk5GTkZORnpU8VUmmqOIycj+6rqNtWaak81GTUZNRk1GTUZNXtVcxw9x9FzHD0ZbVPNXvXsVc9e9WT0ZPSV0bfbVGuqPZVN5VPFVFdG33Kqmuraq163qSZjTcaajDUZazKWpsqpaqo5jj0Ze021p7KpfKrJ2JOxJ2NPxp4Mm72yOQ6b47A5DpsMi6lmr2z2ymavbDJ8MnwyfDJ8Mnz2yuc4fI7D5zimz9vn8YjZq5i9itmr6fOOyYjJiMmYPu/p854+7+nznj5vTYbm8Zg+7+nznj5vTYYmY/q8p897+rynz3v6vKfPe/q8czJyHo/p854+7+nzrsmoyZg+7+nznj7v6fOePu/p854+756Mnsdj+rynz3v6vHsyejKmz3v6vKfPj19kTLkoN6VRXkH3MihFmZRFSdoibZG2SFukTdvfy6AUZVKStnrKaf57uSg3JWmbtE3aJm2TNhA4fo31lMaxGcdmpJlRspPGTho7aaQZaUaak+akOTvpHJtzbM6xOWnO4+bspLOTwU4GaUFakBakBWnBTgbHFhxbcGwiTTxuYifFToqdFGkiTaSJNJGW7GRybMmxJceWpCWPW7KTyU4mO5mkFWlFWpFWpBU7WRxbcWzFsRVpxePW7GSzk81ONmlNWpPWpDVpzU7CkgVLFixZt0lbN6N0yqAUZbJCUZIGSxYsWbBkwZIFSxYsWYu0lZRFOTu5YMnapG3SYMmCJQuWLFiyYMmCJQuWLCPNFiU7CUsWLFlGmpEGSxYsWbBkwZIFSxYsWbBkOWnO4wZLFixZsGQ5aUEaLFmwZMGSBUsWLFmwZMGSFaQFjxssWbBkwZIl0kQaLFmwZMGSBUsWLFmwZMGSlaQljxssWbBkwZKVpCVpsGTBkgVLFixZsGTBkgVLVpFWPG6wZMGSBUtWk9akwZIFSxYsWbBkwZIFSxYs2bdJ27dFuSmN0imDFUSZlEVJGizZsGTDkg1L9iJtBaUok7IoSdukwZINSzYs2bBkw5INSzYs2Zu0PY/bhiUblmxYso00Iw2WbFiyYcmGJRuWbFiyYcl20pzHDZZsWLJhyXbSYMnmfcnmfcmGJTtIC9KCNFiyYcmGJZv3JfvBksc89ZkWZ3mm6SzPtDpLo3TKoBRlUhZlT/lgyaNclKQlaUlakpakJWlJWpJWpBVpRVqRVqQVaUVakVakFWlNWpPWpDVpJ0uOK+3WOTd4laJMyqLsq7STJc9yUW5Ko3TKoBRlUhblkXacrV3nGOFVHmleZ7kpjfJIewzhnyyJc7GTJfFY4Ug75nPXOU5oxxd265wnfJYnS/J2lovySMtz3ZMlz/JIy3PdkyX1+LeiTMqiPNLqTDtZ8iwX5aY80uo8ipMlz/JMO4/iZMmzTEouGeCagXPI8Px9tOucMrzKc2T5XPdkSZ/BJ0ueZVAeaX0e8cmSPnf9ZMmz7ClPljzLRbkp7bi6+NySgyV+8uGcObxKUeZRnnfyYInfHpdN9JQHS07fwDonD69yH+WZJqN0yiNtnY/mwZKrTMqiPNLWue7BEl/nPhzU8HXes4Mavs5NzaA81z0flkzKY919rntQ41ke1LjKRXne9fPHyietgr/V7EPlHFsVZU/ZtzmgAxVXuSmN0inZqGajmo3qmt3p2ahz/vAqF+W+tu8cPDydFOucPLxKUSZlUZ57dq6wbpSLclMapVMGpSiTsihJ26Rt0jZpm7RN2iZtk7ZJ26Rt0ow0I81IM9KMNCPNSDPSjDQjzUlz0pw0J81Jc9KcNCfNSXPSgrQgLUgL0oK0IC1IC9KCtCBNpIk0kSbSRJpIE2kiTaSJtCQtSUvSkrQkLUlL0pK0JC1JK9KKtCKtSCvSirQirUgr0oq0Jq1Ja9KatCatSWvSmrQmrSftHGy8ykW5KY3SKYNSlElZlKTBkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCzpYcm+DUv2bViyb8OSfRuW7NuwZN+GJfs2LNm3Ycm+DUv27UbaIm2RtkhbpC3SFmmLtEXaIm2RtknbpG3SNmmbtE3aJm2TtknbpBlpRpqRZqQZaUaakWakGWlGmpPmpDlpTpqT5qQ5aU6ak+akBWlBWpAWpAVpQVqQFqQFaUGaSBNpIk2kiTSRJtJEmkgTaUlakpakJWlJWpKWpCVpSVqSVqQVaUVakVakFWlFWpFWpBVpTVqT1qQ1aU1ak9akNWlNGixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFixZsGTBkgVLFizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGQ/WJJnWZQ95YMlj3JRbkqjdMqgFCVpTpqTFqQFaUFakBakBWlBWpAWpAVpIk2kiTSRJtJEmkgTaSJNpCVpSVqSlqQlaUlakpakJWlJWpFWpBVpRVqRVqQVaUVakVakNWlNWpPWpDVpTVqT1qQ1aT1pdrtRLspNaZROGZSiTMqiJG2RtkhbpC3SFmmLtEXaIm2RtkjbpG3SNmmbtE3aJm2TtknbpG3SjDQjzUgz0ow0I81IgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDkOex6lM9h10d5Drv2WW7KM63O0imDUpRJWZQ95YMl57oPljzKTWmUThmUokzKouwpN2mbtE3aJm2TtknbpG3SNmmbNCPNSDPSjDQjzUgz0ow0I81Ic9KcNCfNSXPSnDQnzUlz0py0IC1IC9KCtCAtSAvSgrQgLUgTaSJNpIk0kSbSRJpIE2kiLUlL0pK0JC1JS9KStCQtSUvSirQirUgr0oq0Iq1IK9KKtCKtSWvSmrQmrUlr0pq0Jq1J60l7zr0+ykW5KY3SKYNSlElZlKTBkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYkLElYkrAkYUnCkoQlCUsSliQsSVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlz7nXdZZJWZQ95YMlj/JM22e5KY3yTLOzDP5WlElZlD3lgyWPkjQjzUh7sORRkmakGWlGmpHmpDlpTpqT5qQ5aU6ak+akOWlBWpAWpAVpQVqQFqQFaUFakCbSRJpIE2kiTaSJNJEm0kRakpakJWlJWpKWpCVpSVqSlqQVaUVakVakFWlFWpFWpBVpRQc0HdCknSw5rCb7Mff6LJ3ySFuPfyvKpCzKfpb2mHt9lotyUx5ph8rEHnOvzzIoRXmm6SzPA4rzly7eKBflpjTKa/DCGHY1hl2NYVdj2NUYdjWGXY1hV2PY1Rh2NYZdjWFXY9jVGHY1hl2NYVdj2NUYdjWGXY1hV2PY1Rh2NYZdjWFXY9jVGHY1hl2NYVdj2NUYdjWGXY1hV2PY1Rh2NYZdjWFXY9jVGHY1hl2NYVdj2NUYdjWGXY1hV2PY1Rh2NYZdjWFXY9jVGHY1hl2NYVdj2NUYdjWGXY1hV2PY1Rh2NYZdjWFXY9jVGHY1hl2NYVdj2NUYdjWGXY1hV2PY1Rh2NYZdjWFXY9jVGHY1hl2NYVdj2NUYdjWGXY1hV2PY1Rh2NYZdjWFXY9jVGHY1hl2NYVdj2NUYdjWGXY1hV2PY1Rh2NYZdjWFXY9jVGHY1hl2NYVdj2NUYdjWGXY1hV2PY1Rh2NYZdjWFXY9jVGHY1hl2NYVdj2NUYdjWGXY1hV2PY1Rh2NYZdjWFXY9jVGHY1hl2NYVdj2NUYdjWGXY1hV2PY1Rh2NYZdjWFXY9jVGHY1hl2NYVdj2NUYdjWGXY1hV2PY1Rh2NYZdjWFXY9jVGHY1hl2NYVdj2NUYdjWGXY1hV2PY1Rh2NYZdjWFXY9jVGHY1hl2NYVdj2NUYdjWGXY1hV2PY1Rh2NYZdjWFXY9jVGHY1hl2NYVdj2NUYdjWGXY1hV2PY1Rh2NYZdjWFXY9jVGHY1hl2NYVdj2NUYdjWGXY1hV2PY1Rh2NYZdjWFXY9jVGHY1hl2NYVdj2NUYdjWGXY1hV2PY1Rh2NYZdjWFXY9jVGHY1hl2NYVdj2NUYdjWGXY1hV2PY1Rh2NYZdjWFXY9jVGHY1hl2NYVdj2NUYdjWGXW3Dkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNizZsGTDkg1LNiwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKHJQ5LHJY4LHFY4rDEYYnDEoclSF4NyasheTUkr4bk1ZC8GpJXQ/JqSF4NyasheTUkr4bk1ZC8GpJXQ/JqSF7vJWmwBMnrvSQNliB5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVkLwakldD8mpIXg3JqyF5NSSvhuTVakQDViMasBrRgNWIBqxGNGA1ogGrEQ1YjWjAakQDViMasArSgrQgLUgL0oK0IC1IE2kiTaSJNJEm0kSaSBNpIi1JS9KStCQtSUvSkrQkLUlL0oq0Iq1IK9KKtCKtSCvSirQirUlr0pq0Jq1Ja9KatCatSRtpifVIS6xHWmI90hLrkZZYj7TEeqQl1iMtsR5pifVIS6xvpC3SFmmLtEXaIm2RtkhbpC3SFmmbtE3aJm2TtknbpG3SNmmbtE2akWakGWlGmpFmpBlpRpqRZqQ5aU4aLGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQs6WGJ34YlfhuW+G1Y4rdhid+GJf4cdn2UojyHXfssi/JMq6N8sORRLspNaZROGZTXmL7f5iIcv81FOH6bi3D8Nhfh+G0uwvHbXITjt7kIx29zEY7f5iIcv23SNmmbtE2akWakGWlGmpFmpBlpRpqRZqQ5aU6ak+akOWlOmpPmpDlpTlqQFqQFaUFakBakBWlBWpAWpIk0kSbSRJpIE2kiTaSJNJGWpCVpSVqSlqQlaUlakpakJWlFWpFWpBVpRVqRVqQVaUVakdakNWlNWpPWpDVpTVqT1qTNRTi+5iIcX3MRjq+5CMfXXITjay7C8TUX4fiai3B8zUU4vuYiHF830hZpi7RF2iJtkbZIgyULlixYsmDJgiULlixYsmDJgiULlixYsmDJgiULlixYsmDJgiULlixYsmDJgiULlixYsmDJgiULlixYsmDJgiULlixYsmDJgiULlixYsmDJgiULlixYsmDJgiULlixYsmDJgiULlixYsmDJgiULlixYsmDJgiULlixYsmDJgiULlixYsmDJgiULlixYsmDJgiULlixYsmDJgiULlixYsmDJgiULlixYsmDJgiULlixYsmDJgiULlixYsmDJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmGJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJY4LHFY4rDEYYnDEoclDkscljgscViC5NWRvDqSV0fy6kheHcmrI3l1JK+O5NWRvDqSV0fy6kheHcmrI3l1JK/3kjRYguT1XpIGS5C8OpJXR/LqSF4dyasjeXUkr47k1ZG8OpJXR/LqSF4dyasjeXUkr47k1ZG8OpJXR/LqSF4dyasjeXUkr47k1ZG8OpJXR/LqSF4dyasjeXUkr47k1ZG8OpJXR/LqSF4dyasjeXUkr47k1ZG8OpJXR/LqSF4dyasjeXUkr47k1ZG8OpJXR/LqSF4dyasjeXUkr47k1ZG8OpJXR/LqSF4dyasjeXUkr47k1ZG8OpJXR/LqSF4dyasjeXUkr47k1ZG8OpJXR/LqSF4dyasjeXUkr47k1ZG8OpJXR/LqSF4dyasjeXUkr47k1ZG8OpJXR/LqSF4dyasjeXUkr47k1ZG8OpJXR/LqSF4dyasjeXUkr47k1ZG8OpJXR/LqSF4dyasjeXUkr47k1ZG8OpJXR/LqSF4dyasjeXUkr47k1ZG8OpJXR/LqSF4dyasjeXUkr47k1ZG8OpJXR/LqSF4dyasjeXUkr47k1ZG8OpJXR/LqSF4dyasjeXUkr47k1ZG8OpJXR/Lqz7nXdZY95YMlj3JRbsozbZ+lUwblmWZnmfxtUfaUD5Y8ykW5KUlr0pq0B0seJWlNWk/ac+71US7KTWmUThmUokzKoiRtkbZIW6Qt0hZpi7RF2iJtkbZI26Rt0jZpm7RN2iZtk7ZJ26Rt0ow0I81IM9KMNCPNSDPSjDQjzUlz0pw0J81Jc9KcNCfNSXPSgrSYDnjOvT5K0k6WHCIdf8y9PktRnt/2Pf5tUfaUJ0ue5aLclEbplOd3i3aWokzKojzTdJQPgMRZbkqjdMqgvIaBnGFXZ9jVGXZ1hl2dYVdn2NUZdnWGXZ1hV2fY1Rl2dYZdnWFXZ9jVGXZ1hl2dYVdn2NUZdnWGXZ1hV2fY1Rl2dYZdnWFXZ9jVGXZ1hl2dYVdn2NUZdnWGXZ1hV2fY1Rl2dYZdnWFXZ9jVGXZ1hl2dYVdn2NUZdnWGXZ1hV2fY1Rl2dYZdnWFXZ9jVGXZ1hl2dYVdn2NUZdnWGXZ1hV2fY1Rl2dYZdnWFXZ9jVGXZ1hl2dYVdn2NUZdnWGXZ1hV2fY1Rl2dYZdnWFXZ9jVGXZ1hl2dYVdn2NUZdnWGXZ1hV2fY1Rl2dYZdnWFXZ9jVGXZ1hl2dYVdn2NUZdnWGXZ1hV2fY1Rl2dYZdnWFXZ9jVGXZ1hl2dYVdn2NUZdnWGXZ1hV2fY1Rl2dYZdnWFXZ9jVGXZ1hl2dYVdn2NUZdnWGXZ1hV2fY1Rl2dYZdnWFXZ9jVGXZ1hl2dYVdn2NUZdnWGXZ1hV2fY1Rl2dYZdnWFXZ9jVGXZ1hl2dYVdn2NUZdnWGXZ1hV2fY1Rl2dYZdnWFXZ9jVGXZ1hl2dYVdn2NUZdnWGXZ1hV2fY1Rl2dYZdnWFXZ9jVGXZ1hl2dYVdn2NUZdnWGXZ1hVy9YUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiU9LInbsCRuw5K4DUviNiyJ27AkbsOSuA1L4jYsiduwJG430hZpi7RF2iJtkbZIW6Qt0hZpi7RN2iZtk7ZJ26Rt0jZpm7RN2ibNSDPSjDQjzUgz0ow0I81IM9KcNCfNSXPSnDQnzUlz0pw0Jy1IC9KCtCAtSAvSgrQgLUgL0kSaSBNpIk2kiTSRJtJEmkhL0pK0JC1JS9KStCQtSUvSkrQirUgr0oq0Iq1IK9KKtCKtSGvSmrQmrUlr0pq0Jq1Ja9JgCZLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr4HkNZC8BpLXQPIaSF4DyWsgeQ0kr/eSNFiC5PVekgZLkLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLwGktdA8hpIXgPJayB5DSSvgeQ1kLxGjGggYqQlESMtiRhpScRISyJGWhIx0pKIkZZEjLQkYqQlEYu0RdoibZG2SFukbdI2aZu0TdombZO2SdukbdI2aUaakWakGWlGmpFmpBlpRpqR5qQ5aU6ak+akOWlOmpPmpDlpQVqQFqQFaUFakBakBWlBWpAm0kSaSBNpIk2kiTSRJtJEWpKWpCVpSVqSlqQlaUlakpakFWlFWpFWpBVpRVqRVqQVaUVak9akNWlNWpPWpDVpTVqTNtKS0EhLQiMtCY20JDTSkhAsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLHkOuz7KojyHXfsoT5Y8yzOtznJTGqVTBqUok/Ia0w/NRTihuQgnNBfhhOYinNBchBOai3BCcxFOaC7CCc1FOKEirUhr0pq0Jq1Ja9KatCatSWvS5iKcyLkIJ3Iuwomci3Ai5yKcyLkIJ3Iuwomci3Ai5yKcyLkIJ/JG2iJtkbZIW6Qt0hZpi7RF2iJtkbZJ26Rt0jZpm7RN2iZtk7ZJ26QZaUaakWakGWlGmpFmpBlpRpqT5qQ5aU6ak+akOWlOmpPmpAVpQVqQFqQFaUFakBakBWlBmkgTaSJNpIk0kSbSRJpIE2lJWpKWpCVpSVqSlqQlabAkYUnCkoQlCUsSliQsSViSsCRhScKShCUJSxKWJCxJWJKwJGFJwpKEJQlLEpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnBkoIlBUsKlhQsKVhSsKRgScGSgiUFSwqWFCwpWFKwpGBJwZKCJQVLCpYULClYUrCkYEnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUsaljQsaVjSsKRhScOShiUNSxqWNCxpWNKwpGFJw5KGJQ1LGpY0LGlY0rCkYUnDkoYlDUt6WKLbsES3YYluwxLdhiW6DUt0G5boNizRbVii27BEtxtpi7RF2iJtkbZIW6Qt0hZpi7RF2iZtk7ZJ26Rt0jZpm7RN2iZtk2akGWlGmpFmpBlpRpqRZqQZaU6ak+akOWlOmpPmpDlpTpqTFqQFaUFakBakBWlBWpAWpAVpIk2kiTSRJtJEmkgTaSJNpCVpSVqSlqQlaUlakpakJWlJWpFWpBVpRVqRVqQVaUVakVakNWlNWpPWpDVpTVqT1qQ1abAEyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvArJq5C8CsmrkLwKyauQvOo597rOclFuSqN0yjNtn6Uok/JMs7Ps+duRlug59/ooN6VROiVpQVqQ9mDJoyRNpIk0kSbSRJpIE2kiTaSJtCQtSUvSkrQkLUlL0pK0JC1JK9KKtCKtSCvSirQirUgr0oq0Jq1Ja9KatCatSWvSmrQmbQRIshEgyUaAJBsBkmwESLIRIMlGgCQbAZJsBEiyESDJbqQt0hZpi7Q1HfCce32UpJ0sOUQ6esy9PsuiPL/tO//tyZJnuSg3pVE6ZVCK8vxu0c6yKHvKkyXP8kzTWZ4HFGfplEEpyqS8hoHEsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMewqhl3FsKsYdhXDrmLYVQy7imFXMex6L0nbpG3SNmlGmpFmpBlpRpqRZqQZabCEYVcx7CqGXcWwqxh2FcOuYthVDLuKYVcx7CqGXcWwqxh2FcOuYthVDLuKYVcx7CqGXcWwqxh2FcOuYthVDLuKYVcx7CqGXcWwqxh2FcOuYthVDLuKYVcx7CqGXcWwqxh2FcOuYthVDLuKYVcx7CqGXcWwqxh2FcOuYthVDLuKYVcx7CqGXcWwqxh2FcOuYthVDLuKYVcx7CqGXcWwqxh2FcOuYthVDLuKYVcFLAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIlgiWCJYIliB5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWSVyF5FZJXIXkVklcheRWS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DXXiAZyjbQk10hLco20JNdIS3KNtCTXSEtyjbQk10hLco20JFeSlqQlaUlakVakFWlFWpFWpBVpRVqRVqQ1aU1ak9akNWlNWpPWpDVpIy3JPdKS3CMtyT3SktwjLck90pLcIy3JPdKS3CMtyT3Sktw30hZpi7RF2iJtkbZIW6Qt0hZpi7RN2iZtk7ZJ26Rt0jZpm7RN2ibNSDPSjDQjzUgz0ow0I81IM9KcNCfNSXPSnDQnzUlz0pw0Jy1IC9KCtCAtSAvSgrQgLUgL0kSaSBNpIk2kiTRYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmHJhiUblmxYsmGJwRKDJQZLDJYYLDFYYrDEYInBEoMlBksMlhgsMVhisMRgicESgyUGSwyWGCwxWGKwxGCJwRKDJQZLDJYYLHkOu57lY9j1UZ7Drn2Wm/JMq7N0yqAUZVIWZU85F+GkzUU4aXMRTtpchJM2F+GkzUU4aXMRTtpchJM2F+GkzUU4aUFakBakBWlBWpAWpAVpQVqQJtJEmkgTaSJNpIk0kSbSRFqSlqQlaUlakpakJWlJWpKWpBVpRVqRVqQVaUVakVakFWlFWpPWpDVpTVqT1qQ1aU1akzYX4aTPRTjpcxFO+lyEkz4X4aTPRTjpcxFO+lyEkz4X4aTPRTjpN9IWaYu0RdoibZG2SFukLdIWaYu0TdombZO2SdukbdI2aZu0TdomzUgz0ow0I81IM9KMNCPNSDPSYInDEoclDkscljgscVjisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOSxyWOCxxWOKwxGGJwxKHJQ5LHJY4LHFY4rDEYYnDEoclDkscljgscVjisMRhicMShyUOSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwJGBJwJKAJQFLApYELAlYErAkYEnAkoAlAUsClgQsCVgSsCRgScCSgCUBSwKWBCwJWBKwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwRLBEsESwBMlrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10TymkheE8lrInlNJK+J5DWRvCaS10Tymkhe8zn3us7SKJ0yKEV5pu2zLMqe8sESO8vF325Ko3TKoBQlaYu0RdqDJY+StE3aJm2TtknbpG3SNmmbNCPNSDPSjDQjzUgz0ow0I81Ic9KcNCfNSXPSnDQnzUlz0py0IC1IC9KCtCAtSAvSgrQgLUgTaSJNpIk0kSbSRJpIE2kiLUlL0pK0JC1JSzog6YAk7WSJ1Vn2lCdL/PwHJ0vcz3JTGqVTBqUok/JI8zjLnvJkybM80+JvP//0//7w1z/94V///Mf//Omf/uf+x//z33/5t//607//5fnH//r//uP6P//61z/9+c9/+r//8h9//fd/++P//u+//vFf/vzv/3b8v59ux3+OZv5fSz/v9c/3f7x+/Vf7+U//1/3E78/3c6X//PNPdvxJ9fP9zPT9T+c/v5+Z/vl+mvn44zr+WHH/Yx4/b7Nk+s/Z17+o28+1j//vRPbP24+/ivmr7T/vPv5K/FX+bOcP5vFXx13R+jnXdUfu96PORYp18+d9/kSzyPp56zxgNsHXz/74u1/twt/+9s9/+/8B",
1910
1910
  "verification_key": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuqAAAAAAAAAAAAAAAAAAAAToNEba/A61UY6KJl5+BpWzgAAAAAAAAAAAAAAAAAAAAAACibIeGKwbs8IllnmHAbVAAAAAAAAAAAAAAAAAAAAKrOdtfdYcaeeg8mqeTSqB1HAAAAAAAAAAAAAAAAAAAAAAAgS2phBfv3PzAdaUaT6HkAAAAAAAAAAAAAAAAAAAB30XYFacGRyCqoM2vaT/oxCAAAAAAAAAAAAAAAAAAAAAAACS2mV4NlZIHUdOPd6YyDAAAAAAAAAAAAAAAAAAAAnVrR5HymZjTQf3zJv25jED4AAAAAAAAAAAAAAAAAAAAAABhKvHQW70CsqBc+OoeP6AAAAAAAAAAAAAAAAAAAAJvkzDxzWcQuV3d1CvIBUbK+AAAAAAAAAAAAAAAAAAAAAAAfeObzCreqHMjQxDZSZfoAAAAAAAAAAAAAAAAAAAARNBh8TsD9V32obbExQWzL4AAAAAAAAAAAAAAAAAAAAAAAGP/tS9I9Yv0wzXo7XNMgAAAAAAAAAAAAAAAAAAAA8rETvSNCI4Qd4M+Iu8IgiaAAAAAAAAAAAAAAAAAAAAAAAC84TlGN1lnxCBEGZB7F/wAAAAAAAAAAAAAAAAAAAHoCazW29w8PHv2gMsXXqCR8AAAAAAAAAAAAAAAAAAAAAAAS1PaGdGF2UAAdWxZJMnUAAAAAAAAAAAAAAAAAAACQ/5Uw+doig1r7FAexu7jlRAAAAAAAAAAAAAAAAAAAAAAAGr01btfn91GHAjPrpzHBAAAAAAAAAAAAAAAAAAAAP7yfv+u2kA4uKcfvMA62YF8AAAAAAAAAAAAAAAAAAAAAAAETBGPMt9yIte1I6IZatAAAAAAAAAAAAAAAAAAAAMjIPayykbmhUNxkXDHvXwvWAAAAAAAAAAAAAAAAAAAAAAAYnwVACkPeLUd3VtcvkdcAAAAAAAAAAAAAAAAAAABhxkiH08lwaeWjHkudmuP0DwAAAAAAAAAAAAAAAAAAAAAAAexRmHemEYMvGfQelUGWAAAAAAAAAAAAAAAAAAAAJzF9LwqADNbKcfUoT8KtTa8AAAAAAAAAAAAAAAAAAAAAAA518y3hD5iLVkztpJIXywAAAAAAAAAAAAAAAAAAAB5J8PjTkTM7ZuCKjl4o1N0dAAAAAAAAAAAAAAAAAAAAAAAGAYYZQRXqMgE23QeNvXEAAAAAAAAAAAAAAAAAAAAzpcVM8SnGYpeM2ojUpKIsMgAAAAAAAAAAAAAAAAAAAAAAJZIxBoI9tXMYA4VtZhUfAAAAAAAAAAAAAAAAAAAAbjlCWKFs7BJFf3D9DZXyj+MAAAAAAAAAAAAAAAAAAAAAAALih/kciGzAHY5nYkJ5sQAAAAAAAAAAAAAAAAAAAGHsGQpNPrquaDIHs0vjbm2pAAAAAAAAAAAAAAAAAAAAAAAbPNwDZr9GMCXTOMzYlU4AAAAAAAAAAAAAAAAAAAAxTYAcT8SXuJLpw1FMhxDvdwAAAAAAAAAAAAAAAAAAAAAAHyj6CO63UWe8ttP5UGgqAAAAAAAAAAAAAAAAAAAAX8csbFMI23+9sQUr0eXi1xkAAAAAAAAAAAAAAAAAAAAAACarWRrcB2NQONIlWttXDgAAAAAAAAAAAAAAAAAAAKufhL2NPDhEoHctSuD5uJP/AAAAAAAAAAAAAAAAAAAAAAAuGkW9nnbcWqzYt33uILgAAAAAAAAAAAAAAAAAAACFynxPfc5KvGaPZLz9HbAGpQAAAAAAAAAAAAAAAAAAAAAAA6MSYFJ8L1ymvxUwKt4pAAAAAAAAAAAAAAAAAAAAN2PhzsltX+rR0NeCUOhpQFYAAAAAAAAAAAAAAAAAAAAAAALSitKRujr7Jw1gaRHyoAAAAAAAAAAAAAAAAAAAANtxfbVEfdua1tZkyEfcncncAAAAAAAAAAAAAAAAAAAAAAACSPJkJK2xBna5Y4KKWH8AAAAAAAAAAAAAAAAAAABLEsNoak1rT6XofQI8rdjn7gAAAAAAAAAAAAAAAAAAAAAAKD56DekXtfzkiBPi3VIvAAAAAAAAAAAAAAAAAAAAov0hSv9wSZyQQ3g488ENrFkAAAAAAAAAAAAAAAAAAAAAAA6BBL+bBMdVdR3c9562qwAAAAAAAAAAAAAAAAAAAB9piZE7WL2+TxggWPWCVgUiAAAAAAAAAAAAAAAAAAAAAAAokeCJMfPbFwTtts3qQcUAAAAAAAAAAAAAAAAAAABG4l13mB2plxoP1EjvX+fNgAAAAAAAAAAAAAAAAAAAAAAACT0W1KzxGRRUnyclAy2SAAAAAAAAAAAAAAAAAAAAWGetAxS0MzOcPYsBR4xWjFsAAAAAAAAAAAAAAAAAAAAAABPoHEuIwRg+LibjPy+nkQAAAAAAAAAAAAAAAAAAALvITqIUVj0qdwoqkvtf0zhAAAAAAAAAAAAAAAAAAAAAAAAGYeA1AgW5ggYhtytb7rQAAAAAAAAAAAAAAAAAAABmr8lM6G9HJvH8DYzclbvdiAAAAAAAAAAAAAAAAAAAAAAAELYuxbUCEE3GO3Ys7kaOAAAAAAAAAAAAAAAAAAAAi1CQ3cKRSbS1PJwdgyN+yDAAAAAAAAAAAAAAAAAAAAAAAAbBu0kx9xgEaOHRwGYQcwAAAAAAAAAAAAAAAAAAAFWQaYdqM+N66EzCbrJ9YZ5kAAAAAAAAAAAAAAAAAAAAAAAYPpXh0Rx3hbF7A7e+yGIAAAAAAAAAAAAAAAAAAAARpQPzy4p2H5dsoOFIqQaB2wAAAAAAAAAAAAAAAAAAAAAAEcwvFUOxygh9S3cIxPNvAAAAAAAAAAAAAAAAAAAAi1DBj2E3I0dFoQJm7zjGPcAAAAAAAAAAAAAAAAAAAAAAAAU2vmCH3GEyvFeB4/u9pwAAAAAAAAAAAAAAAAAAAFXaXVlusb2PIi9V2xoy56DNAAAAAAAAAAAAAAAAAAAAAAAdt1d8b6QgChMxKWaYFSMAAAAAAAAAAAAAAAAAAACS6DmcSsQR/UuQvkNWGMBjxwAAAAAAAAAAAAAAAAAAAAAAE+V0lOyrVeWT5YUt2lcPAAAAAAAAAAAAAAAAAAAAURJufOPnd5WrZkL+vRu6mPoAAAAAAAAAAAAAAAAAAAAAACFQmBpn/1+lN+Cm8qtL6QAAAAAAAAAAAAAAAAAAAPMVjqcxIJ9Ljz7OZGxgBbahAAAAAAAAAAAAAAAAAAAAAAAOlEGx559iohpX9ExIGP0AAAAAAAAAAAAAAAAAAAC9FJqGXCkLC/TS5M5/10quIwAAAAAAAAAAAAAAAAAAAAAAD6vDx5+IUJNGMRsHtOGqAAAAAAAAAAAAAAAAAAAA1HIDnaVZjEs3ZvLY8BQO5hgAAAAAAAAAAAAAAAAAAAAAAAHlJIyAAkeBsSEKShHX+AAAAAAAAAAAAAAAAAAAAGE4xUofPfITms9rAb7YYFSAAAAAAAAAAAAAAAAAAAAAAAATXuMryNM/OSRMQltDlx4AAAAAAAAAAAAAAAAAAAChl/7UgD/VHXHP1YjneLKifwAAAAAAAAAAAAAAAAAAAAAAAnJfN+tiuxZz20P57fUfAAAAAAAAAAAAAAAAAAAAx/7ew1jJTJ/WV7OOQVwYnD0AAAAAAAAAAAAAAAAAAAAAAA6AvTsb4jGkHmpB3KLyDAAAAAAAAAAAAAAAAAAAACcJDWxVp4g4oJCXrobX5BA1AAAAAAAAAAAAAAAAAAAAAAAFGKWoMGh76717drio34YAAAAAAAAAAAAAAAAAAABh2bu4yRJC6tH3wta5xpdUagAAAAAAAAAAAAAAAAAAAAAABAFaU7Za5JV5LoA1bT2aAAAAAAAAAAAAAAAAAAAAx0inpZaLzIGZA9u1c9MqObEAAAAAAAAAAAAAAAAAAAAAACtA3/FeDpOF0+TMRlCDIAAAAAAAAAAAAAAAAAAAAOwOwVZK5Ys5wO3Shn8hX+XaAAAAAAAAAAAAAAAAAAAAAAAUd8mKwF7lV45Sl/SZiYkAAAAAAAAAAAAAAAAAAADRm7356gtlZbPuda3U/vDBgAAAAAAAAAAAAAAAAAAAAAAAIna5XPqaJCJZ9WNKv6HJAAAAAAAAAAAAAAAAAAAAD2c7beACg9vkK95AWHKnSnQAAAAAAAAAAAAAAAAAAAAAAA/FsR+JqaUgJy/b1ewsRQAAAAAAAAAAAAAAAAAAAEKF/X3nDkSYscibqResWKzyAAAAAAAAAAAAAAAAAAAAAAAia16VsAtzFWE9b9eCVR4AAAAAAAAAAAAAAAAAAACfr8PQSX4ivwm3fN2kY2Z/CgAAAAAAAAAAAAAAAAAAAAAAEWpT7nl6PedV2vtrbYaOAAAAAAAAAAAAAAAAAAAAhUuF9c3cB2w9T+DJgfmIrLsAAAAAAAAAAAAAAAAAAAAAAClbjLiEl3aDmC2mrjZl8wAAAAAAAAAAAAAAAAAAACqsbCcAtn2MArxTHstyVRmlAAAAAAAAAAAAAAAAAAAAAAASOZAncT+gKXzeXOzkWpUAAAAAAAAAAAAAAAAAAAAaUVWcnuDlzcZyaP8QdxLcwQAAAAAAAAAAAAAAAAAAAAAAHkHX3dqx8KmIe+9yRs7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADFgkebpiG3ubVm4y5+5rHfZQAAAAAAAAAAAAAAAAAAAAAAAeQVq/LxxIm0iPUkdWyJAAAAAAAAAAAAAAAAAAAAHLRv21e4pBDDarmWnk4FCRgAAAAAAAAAAAAAAAAAAAAAAB0kwExLlsIHnkCgcGrLkAAAAAAAAAAAAAAAAAAAAGvMegX/lalrKJQkxfczZw2WAAAAAAAAAAAAAAAAAAAAAAAAxDcm91tv2g3iLODg36sAAAAAAAAAAAAAAAAAAAAdCgnXF47JO614WPluZPC0jQAAAAAAAAAAAAAAAAAAAAAAL5tuC04sAZaN5cMkgqp9AAAAAAAAAAAAAAAAAAAAFLmaKhz1vbFNGPy31tW7G0MAAAAAAAAAAAAAAAAAAAAAABibwBFKqYLGRXSxHbsAPgAAAAAAAAAAAAAAAAAAAIFYESpGMQpiuEn23VYsLIaUAAAAAAAAAAAAAAAAAAAAAAASkF6WwsjbCGXWk491oyQ="
1911
1911
  },
1912
1912
  {
@@ -3724,7 +3724,7 @@
3724
3724
  }
3725
3725
  },
3726
3726
  "bytecode": "H4sIAAAAAAAA/+19B5gUxfN2z4U9cs5BliQ5B8UESAYRFBUDwROOoJIPBAOCooBKNqFiQkVUVERUJChIUJAkImACc8CsKKDoVyUz0tv07nb1btf6+/7O87zM0dM9b3VXV/U7u7Mznji61fX3fftmX52b06/v0JF9Bw/NzRk5NPvKUX37jskZOXjAuL7DRw4ek52b0zd7dO6gqwbnzs0SYmqeo+08QLq/TwOElbJgL/9dVFOvOKCVUlYKMEEpK60pq6A5X0VN2QmaskqasrCGo7KmrIqmrKqmrJp/zgxhsHn+PuzvG/Y/e+RHjR6s9VL3di9MnHhh75pNvuw4btnwWW0+OjDnBzj+VPqxunG2uonwLDLnSag/T8fnSZPPXUAcG1j8P44H7qv7/1/k/x/PG9R7Bv5+FrAY8Fy6/uRhYda94oS+LTEdQ++cCfIEwnatRGJ2VhPmdj5v7mtPtjNolyGOBf1xDYh2E2yJ4FuqZqCl/kRA4/KI1Br3QnoChC+k09u9mG7ufVu7XpQiKSzMNyrXUp8rXWkXr19LCWNAGa+XCNHyzz9Eu3X9NRkn07qU/i5Ld+tfnEtL0+nj9HKSVqh41dMJNiUz2VDqynzLbZNN0Ji61CwnTLwVjhMT/rPCImGuIEymf4OTVybi5JUWA7SS6LgIQmHedpW5I+rbnB+3FRaTnMLxCpN2fjU+T6Z8blU7r/LnwSv+vpxf/qqknVfD32sArwHWKtqZukKVJ9RdTZhv6yzHm2p/dULdNQT71xNlperHdb7/1vv71/z9WsmPG+Dv1wFvADb65WkiOUlsA8H+QtLfm3wHvOnvN/v7Lf5+q7/f5u+3+/u3/P0Of/+2v9/p79/x+9/K59kF/98N2AN4F/Ae4H3AB4APAXsB+wAfAT4GfAL4FPAZ4HPAF4AvAV8BvgbsB3wD+BbwHeB7wA+AHwE/AX4G/AI4APgV8BvgIOAQ4DDgd8AfgCOAPwF/od3gEA+QBkgHZAAyASFAFiAPIC8gHyA/oACgIKAQoDCgCKAooBigOKAEoCSglD8BSgcXacH10eb04z+p2aYp26Epe0dThoOcRynbrSnboyl7V1P2nqbsfU3ZB5qyDzVlezVl+zRlH2nKPtaUfaIp+1RT9pmm7HNN2Reasi81ZV9pyr7WlO3XlH2jKftWU/adpux7TdkPmrIfNWU/acp+1pT9oik7oCn7VVP2m6bsoKbskKbssKbsd03ZH5qyI5qyPzVlf2nKMOjVMk9TlqYpS9eUZWjKMjVlIU1ZlqYsj6Ysr6Ysn6Ysv6asgKasoKaskKassKasiKasqKasmKasuKashKaspKaslF+GOTWvOCYk5M3z92FhtJEWUd0WTqBaWJhs3j998qQ2ZWAQygLKAcoDKgAqAk4AVAKEAZUBVQBVAdUA1QEnAmoAagJqAWoD6gDqAuoB6gMaABoCGgEaA5oAmgKaAZoDTlIXtTIaZ5XVlJXTlJXXlFXQlFXUlJ2gKaukKQtryipryqpoyqpqyqppyqpryk7UlNXQlNXUlNXSlNXWlNXRlNXVlNXTlNXXlDXQlDXUlDXSlDXWlDXRlDXVlDXTlDXXlJ3kl8lbZX8fFkZbRNDHu0rAuW1S9/u//vLKGtcVXjnTumBvebO6s8Fer4JR3V+wb15Fk7r7/h4H7wSDumceHTOvUvy6M/3x9cJx6w4LfOFVjlf3pX/85lWJU3fsMR97VWPX7SDNB69azLpfyHPHqx6rbuOIeeadGKNujcg56dWIXreXMn+9mlHr9lTnulcrWt0Jx8WFVztK3QnHx5BXR193qSbevLraum11senV09Xtpo1jr76m7ov6mPcaHF+3ZpT84DU8ru4D0XKJ10it2zBq3vEaK3X3Rc9RXpPIuiNi5DOvaUTdrrFyn9dMrtsvZp70mkt1G8TOqd5JGeaiC7VGsj72Pck8l2+X+U7OSIAQG6sfe8YjP9l8gLwWhp2y/Wwf+4AcHrEPLYhOziekew5kAxReE3sN627TFYaFEU2Eraf4E+RUVRmf4g+cXHaqRsGkk8hJM9k7hTBBTiUOHtU5OClOIU4mtOuUFGWM5ubjPE/mO802YyDhafSMMe80QsY43XHGwD6cTs8Y805PUcZobs57n64wLIxoImw9w58gLdWMcYYmY7RMQsYgzGTvDMIEaWk5eJQJjjwUm1oRguGffwi2tPAnOPXbTMpS3ZoQDLo+xKuOY9TaIhO3TlEmbmY+f5fIfGfaZmIkPJOeiZecSZh8bRxnYuxDG3omXtImwclnEkCtHQdQW2Ifgo2amCg+bEeYG8lc4ZqZ8z6nKwwLI5oIW9v7gddBXeHaa1a4DklY4QgZwmtPcFoHy8GjTiSKTR0TXOHitcHgaWexOnRyvGphvzsx2BVsVB92Iviws2MfRkuyJsnZtG4XYkJLlhpoah7rM2S+s2zVABKeRVcDM84iDFBXx2oA+9CVrgZmdHWsBjAQumS4DbazicEWbFSbKD7sliI10NScd7quMCyMaCJs7e4H3jmqGuiuUQPnJEENEDKE153gtHMsB486kSg2net4JcHg6Wax6vZwrAaw3z0Y7Ao2qg97EHx4nmMfRkuy8dpRkuz5KfpsoIl5rIdlvgts1QASXkBXA+ELCE7u6VgNYB960tVAuKdjNYCBcH6G22C7kEkNUHx4UYrUQBNz3kq6wrAwoomw9WI/8C5R1cDFGjVwSRLUACFDeBcTnHaJ5eBRJxLFpl6OVxIMnossVt3ejtUA9rs3g13BRvVhb4IP+zj2YbQkG68dJcn2TZEaaGwe69tkvktt1QASXkpXA9suJTg527EawD5k09XAtmzHagADoW+G22C7jEkNUHzYL0VqoLE571ZdYVgY0UTY2t8PvBxVDfTXqIGcJKgBQobw+hOclmM5eNSJRLFpgOOVBIOnn8WqO9CxGsB+D2SwK9ioPhxI8OEgxz6MlmTjtaMk2cEpUgONzGM9W+a73FYNIOHldDWQfTnByVc4VgPYhyvoaiD7CsdqAANhcIbbYLuSSQ1QfDgkRWqgkTnvpbrCsDCiibB1qB94w1Q1MFSjBoYlQQ0QMoQ3lOC0YZaDR51IFJuGO15JMHiGWKy6IxyrAez3CAa7go3qwxEEH4507MNoSTZeO0qSHZUiNdDQPNZ3y3y5tmoACXPpamB3LsHJox2rAezDaLoa2D3asRrAQBiV4TbYxjCpAYoPr0qRGmhozrtLVxgWRjQRto71A2+cqgbGatTAuCSoAUKG8MYSnDbOcvCoE4li09WOVxIMnqssVt1rHKsB7Pc1DHYFG9WH1xB8eK1jH0ZLsvHaUZLsdSlSAw3MY72TzDfeVg0g4Xi6Gug0nuDk6x2rAezD9XQ10Ol6x2oAA+G6DLfBNoFJDVB8ODFFaqCBOW9HXWFYGNFE2HqDH3g3qmrgBo0auDEJaoCQIbwbCE670XLwqBOJYtMkxysJBs9Ei1X3JsdqAPt9E4NdwUb14U0EH97s2IfRkmy8dpQkOzlFaqC+eawvlvmm2KoBJJxCVwOLpxCcPNWxGsA+TKWrgcVTHasBDITJGW6D7RYmNUDx4a0pUgP1zXmf1RWGhRFNhK23+YE3TVUDt2nUwLQkqAFChvBuIzhtmuXgUScSxabpjlcSDJ5bLVbdGY7VAPZ7BoNdwUb14QyCD2c69mG0JBuvHSXJzkqRGqhnHusrZL7ZtmoACWfT1cCK2QQnz3GsBrAPc+hqYMUcx2oAA2FWhttgu51JDVB8eEeK1EA9c97lusKwMKKJsPVOP/DuUtXAnRo1cFcS1AAhQ3h3Epx2l+XgUScSxaa7Ha8kGDx3WKy6cx2rAez3XAa7go3qw7kEH97j2IfRkmy8dpQke2+K1EBd81jvIvPdZ6sGkPA+uhroch/ByfMcqwHswzy6Gugyz7EawEC4N8NtsN3PpAYoPnwgRWqgrjlvZ11hWBjRRNj6oB94D6lq4EGNGngoCWqAkCG8BwlOe8hy8KgTiWLTw45XEgyeByxW3fmO1QD2ez6DXcFG9eF8gg8fcezDaEk2XjtKkn00RWqgjnmsT5D5HrNVA0j4GF0NTHiM4OQFjtUA9mEBXQ1MWOBYDWAgPJrhNtgeZ1IDFB8uTJEaqGPOe72uMCyMaCJsfcIPvCdVNfCERg08mQQ1QMgQ3hMEpz1pOXjUiUSx6SnHKwkGz0KLVXeRYzWA/V7EYFewUX24iODDpx37MFqSjdeOkmSfSZEaqG2pBp61VQNI+KyFGniW4OTFjtUA9mGxhRpY7FgNYCA8k+E22J5jUgMUHy5JkRqonQI18LwfeEtVNfC8Rg0sTYIaIGQI73mC05YyqQGKTS84XkkweJZYrLovOlYD2O8XGewKNqoPXyT48CXHPoyWZOO1oyTZZSlSA7XMY32hzPeyrRpAwpfpamDhywQnL3esBrAPy+lqYOFyx2oAA2FZhttgW8GkBig+XJkiNVDLnPdxXWFYGNFE2LrKD7xXVDWwSqMGXkmCGiBkCG8VwWmvWA4edSJRbHrV8UqCwbPSYtVd7VgNYL9XM9gVbFQfrib4cI1jH0ZLsvHaUZLsaylSAzXNY/0RmW+trRpAwrV0NfDIWoKT1zlWA9iHdXQ18Mg6x2oAA+G1DLfBtp5JDVB8uCFFaqCmOe98XWFYGNFE2Pq6H3hvqGrgdY0aeCMJaoCQIbzXCU57w3LwqBOJYtNGxysJBs8Gi1V3k2M1gP3exGBXsFF9uIngwzcd+zBako3XjpJkN6dIDdQwj/U9Mt8WWzWAhFvoamDPFoKTtzpWA9iHrXQ1sGerYzWAgbA5w22wbWNSAxQfbk+RGqhhzrtbVxgWRjQRtr7lB94OVQ28pVEDO5KgBggZwnuL4LQdloNHnUgUm952vJJg8Gy3WHV3OlYD2O+dDHYFG9WHOwk+fMexD6Ml2XjtKEl2V4rUwInmsb5F5tttqwaQcDddDWzZTXDyHsdqAPuwh64GtuxxrAYwEHZluA22d5nUAMWH76VIDZxozrtZVxgWRjQRtr7vB94Hqhp4X6MGPkiCGiBkCO99gtM+sBw86kSi2PSh45UEg+c9i1V3r2M1gP3ey2BXsFF9uJfgw32OfRgtycZrR0myH6VIDVQ3j/WyMt/HtmoACT+mq4GyHxOc/IljNYB9+ISuBsp+4lgNYCB8lOE22D5lUgMUH36WIjVQ3Zy3jK4wLIxoImz93A+8L1Q18LlGDXyRBDVAyBDe5wSnfWE5eNSJRLHpS8crCQbPZxar7leO1QD2+ysGu4KN6sOvCD782rEPoyXZeO0oSXZ/itRANfNYXybzfWOrBpDwG7oaWPYNwcnfOlYD2Idv6Wpg2beO1QAGwv4Mt8H2HZMaoPjw+xSpgWrmvC/pCsPCiCbC1h/8wPtRVQM/aNTAj0lQA4QM4f1AcNqPloNHnUgUm35yvJJg8Hxvser+7FgNYL9/ZrAr2Kg+/Jngw18c+zBako3XjpJkD6RIDVQ1j/UpMt+vtmoACX+lq4EpvxKc/JtjNYB9+I2uBqb85lgNYCAcyHAbbAeZ1ADFh4dSpAaqmvNO1hWGhRFNhK2H/cD7XVUDhzVq4PckqAFChvAOE5z2u+XgUScSxaY/HK8kGDyHLFbdI47VAPb7CINdwUb14RGCD/907MNoSTZeO0qS/StFaqCKeax3jODLTIAQGxPVQEdsEzbk8DLdqgHsA3IQ1UBHz7wPWrtMAuGvDLfBlkbwg/wfqk0UH6YTbEqmGqhiHrQddIVhYUQTYWuGH3iZmSJy5c/IPF4NYKVE1QAhQ3gZBKdlZtoNHnUiUWwKESc3dcJg8KRn0gM7K8HEEa869juLwa5go/owi+DDPI59GC3JxmtHSbJ5CeOaTDVQ2TzWZ8l8+WzVABLmo6uBWfkITs7vWA1gH/LT1cCs/I7VAAZC3ky3wVaASQ1QfFgwRWqgsrkamKkrDAsjmghbC/mBV1hVA4U0aqBwEtQAIUN4hQhOK5xpN3jUiUSxqYjjlQSDp6DFqlvUsRrAfhdlsCvYqD4sSvBhMcc+jJZk47WjJNniKVIDYfNYHy7zlbBVA0hYgq4GhpcgOLmkYzWAfShJVwPDSzpWAxgIxTPdBlspJjVA8WHpFKmBsLkaGKYrDAsjmghby/iBV1ZVA2U0aqBsEtQAIUN4ZQhOK5tpN3jUiUSxqZzjlQSDp7TFqlvesRrAfpdnsCvYqD4sT/BhBcc+jJZk47WjJNmKKVIDlcxjfZXMd4KtGkDCE+hqYNUJBCdXcqwGsA+V6GpgVSXHagADoWKm22ALM6kBig8rp0gNVDJXAyt1hWFhRBNhaxU/8KqqaqCKRg1UTYIaIGQIrwrBaVUz7QaPOpEoNlVzvJJg8FS2WHWrO1YD2O/qDHYFG9WH1Qk+PNGxD6Ml2XjtKEm2RorUwAnmsR6W+WraqgEkrElXA+GaBCfXcqwGsA+16GogXMuxGsBAqJHpNthqM6kBig/rpEgNnGCuBirpCsPCiCbC1rp+4NVT1UBdjRqolwQ1QMgQXl2C0+pl2g0edSJRbKrveCXB4Kljseo2cKwGsN8NGOwKNqoPGxB82NCxD6Ml2XjtKEm2UYrUQEXzWC8g8zW2VQNI2JiuBgo0Jji5iWM1gH1oQlcDBZo4VgMYCI0y3QZbUyY1QPFhsxSpgYrmaiC/rjAsjGgibG3uB95JqhporlEDJyVBDRAyhNec4LSTMu0GjzqRKDad7HglweBpZrHqtnCsBrDfLRjsCjaqD1sQfHiKYx9GS7Lx2lGS7KkpUgMVzGN9qMx3mq0aQMLT6Gpg6GkEJ5/uWA1gH06nq4GhpztWAxgIp2a6DbYzmNQAxYctU6QGKpirgSG6wrAwoomwtZUfeK1VNdBKowZaJ0ENEDKE14rgtNaZdoNHnUgUm850vJJg8LS0WHXbOFYD2O82DHYFG9WHbQg+bOvYh9GSbLx2lCTbLkVqoLx5rBeV+drbqgEkbE9XA0XbE5zcwbEawD50oKuBoh0cqwEMhHaZboOtI5MaoPiwU4rUQHlzNVBEVxgWJlukGujsB14XVQ101qiBLklQA4QM4XUmOK1Lpt3gUScSxaazHK8kGDydLFbdro7VAPa7K4NdwUb1YVeCD8927MNoSTZeO0qS7ZYiNVCO8JwDma+7rRpAwu6Z9HbnOF7h0a5zMo8VhIX5Rg0inLDdMt0GxblMqzbFLz0SDFSTPvew8GEyA6qsZUCdZxtQSHieRUCd7zig0K7zkxRQ8aqj48/PtJswYTOOpE6SMoTfnst8F9hOEiS8wCLjXECI2J6OJxT2oaeFk3s6vgbDSdTTQh6cSxivCx3LQRzbCy2DNdioc+tCQv8vcizxoq3I8dpRVuSLHfsQx+hii4WA4gcbu7bA9SeCGleXEMeLOv/QJgKHtxXqb00/VhA2a1dU/k+eOG3VxeWL9Bg8SuUvY9VVKn8Vs25k5a9j142ovD9OXbnyN/HqSq1+TTf3601Zdvkrn78Px6x1rAPfxrf/n8rfGfQ1qPy9ybj4lX8wGsOjlX80G++/K/9k6Bus/LOpH6HyL8Y+98QBgs9vtvS5+tFYPJ5ehHxBmIcexf5kClFCfyL4etsKUSTsbbFI9XG8SKFdfRIUQNTkvouQ3HcTkvseQnJ/l5Dc3yMk9/cJyf1zQqDfxpTcPyAk9w8JyX0vIbnvIyT3jwjJ/WNCcv+EkNw/JST3zwg+n8aU3PsSkjthHnrTUpTc+1om90ttkzsSXmqR3LMdJ3e0K5vps90+CXAFW0acturkyMowX0jyZJgvJHkJH1NNz3LTV9WofBnmC1b+eJ/FSpULEPo6w11fI4wqGP+z5H8qFzL43DmoXJjQ15lO+3rMqCJGn5sfrVzU7DP2vysXI/R1luu++kYVN/2OACqXMP4+wRMlCX2dbdnXLH8fNqvulSLYdBlhASbkG48Qrx5hvnuE+eLNTpEIuMxSBPSzFQFI2M9CBPR3LALQrv7MC/NvhCu8g4QrvEME9XwH08J8mHAl+TvhSvIPQl/vZFqYjxCuDv8kXB3+RejrXUwLsyAszB5hYU4jLAx3My3M6YSFOYOwMGcS+jqXaWEOEWzKISzMhHzjEeLVI8x3jzBfvLkpWphzLBfmAbYLMxIOsFiYBzpemNGugUxX5/0tudDx+HGS7h7iInHOlQpREK8yx2IdrzLHIhq3MsPiFq8yx6ITr3LIvG7ERp37HJ9UxavM8QlSvMocn+zEq8zxiUu8yhyfhMSrXMryjs1B6u8xBmlWdOoCNTiGKrhr4uWzBo3YOO208G2ldl97pEMiPJfH4FHbJsJzRQyeBmk7q2z75I5yY1uXqffsocPTE+G5MgbPpa/f99mafq16DH/w1iHpac8uT4RnSAye9ZNaPt/i/L4Lns9+pO3UMb/tTIRnaAyeWXX3Xzj/9n3X1fxhe9VJk/KWSYRnWAyePplPtHtoQ+2mP9zQ8JLsnw9USIRneAye1bNabJq0fsJjH7Uu9W4oM3tMIjwjYvAcmFxiV76Tf1lT9+EVI08Z/lO/RHhGxuD58cCUM3IOhrfNndVr5uSbl+3A/BACFPCPL0o/Cox1jEOMEZy/OLfQ7+gTHC/sy8jM489PvEkxbRBBwI8iXJWk+f1St7CgberYx6tOsdGWI5d4Z3iyfmBo0re/jm4HdMfCsZv+s37Jto7259gYdUHDglbKGag/JhwVf/LN9CefN5owUcdYDhQ10EdbTDbcqHcSjyL0/SrCxzGpCtKrGIJ0LDFIEckI0lzLOfHf1dKxP/+7Wvq/dbU0Tl1cxmUeP+Hz+vuwoBsTL2nGCFrVjL9tMz3v1f99aX20sjjmWxyTCcpxqm8p30+MJfiL4ttr/vve42hlccy31/i+TeaCerXlgiri8KifmMiBfq2akK7VJCTqLaRXE5LMtYSJeF0mrZNBn67TBCK1T9cQ7KT0aTzhIyi5T+OT0Kfr/wW/45A3qv0T/gW3KqMv8MtQ+eoibN5UrZu2tXif0aFHeverV6Ngux/LFLv9xpZrp93QskZdwnn/PnHwW8Pgt3phw7YZ0jmu93PBhMxjC1qQ/Ajn9CZC/RsAN2YePX+Qc3R2U89rWDciQU/y7b8pU6lEvayfSAj0SdHr9lLqejcRL+mS9W38TTFs/G3r3J13T9428NZZz3wwdPyCR2S+m22/jUfCmzPj/mr1OPKbCZE/meAk2z5Mzoz7mcpxfZhMdLJp1Kh9DKffcEKx1q0Obh316Ig+4xc8Opmw4shRM8V38lRVMkzxlyK5bKrF8hTL0HiOm0KIrqmEAcCBx9SeJqJv4SjlKq98jDrJpljeJ3OL6qxbkqDvphD03S0EJ96aaTyYEX26NQlaaCrBTkqfbrPUd7dJFxhq5FM/VcVAmkSwGevflJnY8hFvkwNqmp9ZpquTdZoms0yXnE0diEl+qg7qx/0RvV+fqgtuInBMI2Su6cQl49+QuaZZZq4Z6mSYkYTMNY2QuWYQnDjTMnPNTELmmk6wk9KnWZaZa5aUuaJNQJfLXyI8tpN1tjpZZ2smK+U+bKF0OpkTezbhvHMIdeX+z9FMbGr/KUsyJQgo/b+dOCGC/t8eY/mW61PGY4v50wQigu4Of3m9M1OpRF3WtlB+cENY1u5M0eXunZaXu3fZXu4i4V0Wl7t3ES5373Z8uYt9uNvicvfuFF3u3m15uTvXd/I9amqfqxGl9yThcpfiuLmE6Lrnf/Byd67lOnyv6qx7kyAa5xLW1nsJTrzPUjTelwTReA/BTkqf5lmKxnlJvNzFQLqDYDPWvzMzseUj3iYH1P1+ZnlAnaz3azLLAwlc7t7hp+qgftwfjvr1qbrgTgLH/YTM9cD/4OXu/ZaZ60F1MjyYhMx1PyFzPUhw4kOWmeuhJGSuBwh2Uvr0sGXmetjB5S5l+UuEx3ayzlcn6/wkXO7OtcwiMez8x1jT8z5iebn7SBIudylLMiUIKP1/1PJy91EHl7tbLS93H/OX1wWZSiXqsraVcLn7GGFZW5Ciy90Flpe7j9te7iLh4xaXu48TLncXOr7cxT4stLjcXZiiy92Flpe7T/hOflJN7U9oROmTSbjcpTjuCUJ0Pfk/eLn7hOU6/JTqrKeSIBqfIKytTxGcuMhSNC5Kgmh8kmAnpU9PW4rGp5N4uYuB9BjBZqy/IDOx5SPeJgfUM35meVadrM9oMsuzCVzuPuan6qB+vIEIUjtVFywgcDxDyFzP/g9e7j5jmbkWq5NhcRIy1zOEzLWY4MTnLDPXc0nIXM8S7KT0aYll5lri4HKXsvwlwmM7WZ9XJ+vzSbjcfcIyi8Sw8x9jTc+71PJyd2kSLncpSzIlCCj9f8HycvcFaeXCq7MCUr2wv89zxriiu5vlHVPrh9DoRn+U3Hhk3OP3frepxcyWg3vW7Tes88Vy3XLX9zm86PpGvaovLPNzgdd3NWn55pNX73qjcIkPJ65YV/PQnN5yXZMtqJvZ+fHLR226pem5fS5Z9c6npz5UdvrNhfu26H7ijBF7281a+WmaXDc8b+srdX/veejXjGFtd5Vbf/jgyPOe2dDq2oz9l5W7bPLG1SfKdSk2VGj706PhayeuueXGyo9O7PXl4kZFqi3/tniZssvfPfDwosc7dJTrpj/xXfPPz6xd0ZvVr/b6i+75av+jT9Ut/fgb4SdOe+bWqesOPi7XpdhQ7+CyVp9NLXR28av29Rh1+PN7Ko7uNrjZ5wsmvDDg9txGP23eLNetv3nK9osGrujx0k2z6hcsdXP2eU+98MSaHQf71Ng4/vvnVs+8Ua4bbwvehYDzZJKfM4Ib6+7w98E3D4/5++Bji7Aw2tIJdSnn9V4EO14CLMs8Gtt5xbHFK6KixXkN62q3cALVwsJk8/7pkye1eRnsXg5YAVgJWAV4BfAqYDVgDeA1wFrAOsB6wAbA64A3ABsBmwBvAjYDtgC2ArYBtgPeAuwAvA3YCXgHsAuwG7BHXYDQmDxK2XJN2QpN2UpN2SpN2Suaslc1Zas1ZWs0Za9pytZqytZpytZryjZoyl7XlL2hKduoKdukKXtTU7ZZU7ZFU7ZVU7ZNU7ZdU/aWpmyHpuxtTdlOTdk7mrJdmrLdmrI9mce/TLuyvw8Loy0i6OMtyi8b1sUXby83riu8FaZ1wd6VZnVn4+XTKqO6v/x9qfWKSd19Ry/LXjWoe6Z/Cbc6ft1/ni+yJm7dYf9cGr4Wr+5Lxy4j18apO1a65FwXu24H+fJ0fcy6X0Rcym6IVbdx5GXv6zHq1lAukd8gXMZvjFq3pzrXvU3R6k44Li68N6PUnXB8DHmb9XWXauLN26Kt21YXm95WXd1u2jj2tmnqvqiPeW/78XVrRskP3lvH1X0gWi7xdqh1G0bNO97bSt190XOUtzOy7ogY+cx7J6Ju11i5z9sl1+0XM096u6W6DWLnVG8PQXQl8yunPea5fLvM925mAoTYmPIaTCR/13yAvPcIi5ltH97LPL5dvD68R3Rysp7WRZhc23SFYWFEE2Hr+/4E+UBVxu/7AyeXfaBRMNQPfQkz2XufMEE+IA4e1Tk4Kd4nTia06/0UZYzd5uM8T+b70DZjIOGH9Iwx70NCxtjrOGNgH/bSM8a8vSnKGLvNee/TFYaFEU2Erfv8CfKRmjH2aTLGR0nIGISZ7O0jTJCPLAeP+mZoik0fE4Lhn38ItrznT3DqV4KUpfoTQjDo+hCvOo7RJxaZ+JMUZeJd5vN3icz3qW0mRsJP6Zl4yaeEyfeZ40yMffiMnomXfJbg5DMJoE8cB9DnxD4EGzUxUXz4BWFuJHOF22XO+5yuMCyMaCJs/dIPvK/UFe5LzQr3VRJWOEKG8L4kOO0ry8GjTiSKTV8nuMLFa4PB84XF6rDf8aqF/d7PYFewUX24n+DDbxz7MFqSNUnOpnW/JSa0ZKmBd8xjfYbM952tGkDC7+hqYMZ3hAH63rEawD58T1cDM753rAYwEL7NdBtsPxCDLdioNlF8+GOK1MA75rzTdYVhYUQTYetPfuD9rKqBnzRq4OckqAFChvB+IjjtZ8vBo04kik2/OF5JMHh+tFh1DzhWA9jvAwx2BRvVhwcIPvzVsQ+jJdl47ShJ9rcUfTaw0zzWwzLfQVs1gIQH6WogfJDg5EOO1QD24RBdDYQPOVYDGAi/ZboNtsNMaoDiw99TpAZ2mvNW0hWGhRFNhK1/+IF3RFUDf2jUwJEkqAFChvD+IDjtiOXgUScSxaY/Ha8kGDy/W6y6fzlWA9jvvxjsCjaqD/+iJPSQWx9GS7Lx2lGSrGfeh6SqgbfNY32bzJcWSoAQGxPVwLY0gpPTQ27VAPYBOYhqYFs6wck6u0wCwQu5DbYMYrAFG9Umig8zCTYlUw28bZ4Mt+oKw8KIJsLWkB94WSERufKHQserAayUqBogZAgvRHBaVshu8KgTiWJTHscrCQZPZoge2HkTTBzxqmO/8zLYFWxUH+Yl+DCfYx9GS7Lx2lGSbP4UqYEd5rGeLfMVsFUDSFiArgayCxCcXNCxGsA+FKSrgeyCjtUABkL+kNtgK8SkBig+LJwiNbDDXA1cqisMCyOaCFuL+IFXVFUDRTRqoGgS1AAhQ3hFCE4rGrIbPOpEothUzPFKgsFT2GLVLe5YDWC/izPYFWxUHxYn+LCEYx9GS7Lx2lGSbMkUqYG3zGN9t8xXylYNIGEpuhrYXYrg5NKO1QD2oTRdDewu7VgNYCCUDLkNtjJMaoDiw7IpUgNvmauBXbrCsDCiibC1nB945VU1UE6jBsonQQ0QMoRXjuC08iG7waNOJIpNFRyvJBg8ZS1W3YqO1QD2uyKDXcFG9WFFgg9PcOzDaEk2XjtKkq2UIjWw3TzWO8l8YVs18DchXQ10ChOcXNmxGsA+VKargU6VHasBDIRKIbfBVoVJDVB8WDVFamC7uRroqCsMCyOaCFur+YFXXVUD1TRqoHoS1AAhQ3jVCE6rHrIbPOpEoth0ouOVBIOnqsWqW8OxGsB+12CwK9ioPqxB8GFNxz6MlmTjtaMk2VopUgPbzGN9scxX21YNIGFtuhpYXJvg5DqO1QD2oQ5dDSyu41gNYCDUCrkNtrpMaoDiw3opUgPbzNXAs7rCsDCiibC1vh94DVQ1UF+jBhokQQ0QMoRXn+C0BiG7waNOJIpNDR2vJBg89SxW3UaO1QD2uxGDXcFG9WEjgg8bO/ZhtCQbrx0lyTZJkRrYah7rK2S+prZqAAmb0tXAiqYEJzdzrAawD83oamBFM8dqAAOhSchtsDVnUgMUH56UIjWw1VwNLNcVhoURTYStJ/uB10JVAydr1ECLJKgBQobwTiY4rUXIbvCoE4li0ymOVxIMnpMsVt1THasB7PepDHYFG9WHpxJ8eJpjH0ZLsvHaUZLs6SlSA1vMY72LzHeGrRpAwjPoaqDLGQQnt3SsBrAPLelqoEtLx2oAA+H0kNtga8WkBig+bJ0iNbDFXA101hWGhRFNhK1n+oHXRlUDZ2rUQJskqAFChvDOJDitTchu8KgTiWJTW8crCQZPa4tVt51jNYD9bsdgV7BRfdiO4MP2jn0YLcnGa0dJsh1SpAY2m8f6BJmvo60aQMKOdDUwoSPByZ0cqwHsQye6GpjQybEawEDoEHIbbJ2Z1ADFh11SpAY2m6uB63WFYWFEE2HrWX7gdVXVwFkaNdA1CWqAkCG8swhO6xqyGzzqRKLYdLbjlQSDp4vFqtvNsRrAfndjsCvYqD7sRvBhd8c+jJZk47WjJNlzUqQG3rRUA+faqgEkPNdCDZxLcHIPx2oA+9DDQg30cKwGMBDOCbkNtvOY1ADFh+enSA28mQI1cIEfeD1VNXCBRg30TIIaIGQI7wKC03oyqQGKTRc6XkkweM63WHUvcqwGsN8XMdgVbFQfXkTw4cWOfRgtycZrR0myl6RIDWwyj/WFMl8vWzWAhL3oamBhL4KTeztWA9iH3nQ1sLC3YzWAgXBJyG2w9WFSAxQf9k2RGthkrgYe1xWGhRFNhK2X+oGXraqBSzVqIDsJaoCQIbxLCU7LDtkNHnUiUWy6zPFKgsHT12LV7edYDWC/+zHYFWxUH/Yj+LC/Yx9GS7Lx2lGSbE6K1MBG81h/ROYbYKsGkHAAXQ08MoDg5IGO1QD2YSBdDTwy0LEawEDICbkNtkFMaoDiw8EpUgMbzdXAfF1hWBjRRNh6uR94V6hq4HKNGrgiCWqAkCG8ywlOuyJkN3jUiUSx6UrHKwkGz2CLVXeIYzWA/R7CYFewUX04hODDoY59GC3JxmtHSbLDUqQG3jCP9T0y33BbNYCEw+lqYM9wgpNHOFYD2IcRdDWwZ4RjNYCBMCzkNthGMqkBig9HpUgNvGGuBnYLzRYWJlukGsj1A2+0qgZyNWpgdBLUACFDeLkEp40O2Q0edSJRbBrjeCXB4Bllsepe5VgNYL+vYrAr2Kg+vIrgw7GOfRgtycZrR0my41KkBl43j/UtMt/VtmoACa+mq4EtVxOcfI1jNYB9uIauBrZc41gNYCCMC7kNtmuZ1ADFh9elSA28bq4GNusKw8KIJsLW8X7gXa+qgfEaNXB9EtQAIUN44wlOuz5kN3jUiUSxaYLjlQSD5zqLVXeiYzWA/Z7IYFewUX04keDDGxz7MFqSjdeOkmRvTJEa2GAe62Vlvkm2agAJJ9HVQNlJBCff5FgNYB9uoquBsjc5VgMYCDeG3AbbzUxqgOLDySlSAxvM1UAZXWFYGNFE2DrFD7ypqhqYolEDU5OgBggZwptCcNrUkN3gUScSxaZbHK8kGDyTLVbdWx2rAez3rQx2BRvVh7cSfHibYx9GS7Lx2lGS7LQUqYH15rG+TOabbqsGkHA6XQ0sm05w8gzHagD7MIOuBpbNcKwGMBCmhdwG20wmNUDx4awUqYH15mrgJV1hWBjRRNg62w+8OaoamK1RA3OSoAYIGcKbTXDanJDd4FEnEsWm2x2vJBg8syxW3TscqwHs9x0MdgUb1Yd3EHx4p2MfRkuy8dpRkuxdKVID68xjfYrMd7etGkDCu+lqYMrdBCfPdawGsA9z6WpgylzHagAD4a6Q22C7h0kNUHx4b4rUwDpzNTBZVxgWRjQRtt7nB948VQ3cp1ED85KgBggZwruP4LR5IbvBo04kik33O15JMHjutVh1H3CsBrDfDzDYFWxUHz5A8OGDjn0YLcnGa0dJsg+lSA2sNY/1jjLfw7ZqAAkfpquBjg8TnDzfsRrAPsynq4GO8x2rAQyEh0Jug+0RJjVA8eGjKVIDa83VQAddYVgY0UTY+pgfeAtUNfCYRg0sSIIaIGQI7zGC0xaE7AaPOpEoNj3ueCXB4HnUYtVd6FgNYL8XMtgVbFQfLiT48AnHPoyWZOO1oyTZJ1OkBl4zj/VZMt9TtmoACZ+iq4FZTxGcvMixGsA+LKKrgVmLHKsBDIQnQ26D7WkmNUDx4TMpUgOvmauBmbrCsDCiibD1WT/wFqtq4FmNGlicBDVAyBDeswSnLQ7ZDR51IlFses7xSoLB84zFqrvEsRrAfi9hsCvYqD5cQvDh8459GC3JxmtHSbJLU6QG1pjH+nCZ7wVbNYCEL9DVwPAXCE5+0bEawD68SFcDw190rAYwEJaG3AbbS0xqgOLDZSlSA2vM1cAwXWFYGNFE2PqyH3jLVTXwskYNLE+CGiBkCO9lgtOWh+wGjzqRKDatcLySYPAss1h1VzpWA9jvlQx2BRvVhysJPlzl2IfRkmy8dpQk+0qK1MBq81hfJfO9aqsGkPBVuhpY9SrByasdqwHsw2q6Gli12rEawEB4JeQ22NYwqQGKD19LkRpYba4GVuoKw8KIJsLWtX7grVPVwFqNGliXBDVAyBDeWoLT1oXsBo86kSg2rXe8kmDwvGax6m5wrAaw3xsY7Ao2qg83EHz4umMfRkuy8dpRkuwbKVIDr5rHeljm22irBpBwI10NhDcSnLzJsRrAPmyiq4HwJsdqAAPhjZDbYHuTSQ1QfLg5RWrgVXM1UElXGBZGNBG2bvEDb6uqBrZo1MDWJKgBQobwthCctjVkN3jUiUSxaZvjlQSDZ7PFqrvdsRrAfm9nsCvYqD7cTvDhW459GC3JxmtHSbI7UqQGXjGP9QIy39u2agAJ36argQJvE5y807EawD7spKuBAjsdqwEMhB0ht8H2DpMaoPhwV4rUwCvmaiC/rjAsjGgibN3tB94eVQ3s1qiBPUlQA4QM4e0mOG1PyG7wqBOJYtO7jlcSDJ5dFqvue47VAPb7PQa7go3qw/cIPnzfsQ+jJdl47ShJ9oMUqYFV5rE+VOb70FYNIOGHdDUw9EOCk/c6VgPYh710NTB0r2M1gIHwQchtsO1jUgMUH36UIjWwylwNDNEVhoURTYStH/uB94mqBj7WqIFPkqAGCBnC+5jgtE9CdoNHnUgUmz51vJJg8Hxksep+5lgNYL8/Y7Ar2Kg+/Izgw88d+zBako3XjpJkv0iRGlhpHutFZb4vbdUAEn5JVwNFvyQ4+SvHagD78BVdDRT9yrEawED4IuQ22L5mUgMUH+5PkRpYaa4GiugKw8KIJsLWb/zA+1ZVA99o1MC3SVADhAzhfUNw2rchu8GjTiSKTd85XkkwePZbrLrfO1YD2O/vGewKNqoPvyf48AfHPoyWZOO1oyTZH1OkBlaYJ7QIvp9s1QAS/hSit/vZ8QqPdv0cOlYQFuYbNYhwwv4YchsUvzCt2hS/HEgwUE36fMDCh8kMqOWWAfWrbUAh4a8WAfWb44BCu35LUkDFq46O/y1kN2HCZhxJnSQvZ5rbKPMdtJ0kSHjQIuMcJETsIccTCvtwyMLJhxxfg+EkOmQhD34hjNdhx3IQx/awZbAGG3VuHSb0/3fHEi/aihyvHWVF/sOxD3GM/rBYCCh+wHNjImwl2bgn8+h+t7/f5e/f8fc7/f3b/n6Hv3/L32/399v8/VZ/v8Xfb/b3b/r7Tf5+o79/w9+/7u83+Pv1/n6dv1/r71/z92v8/Wp//6q/f8Xfr/L3K/39Cn+/3N+/7O9Pyji6b+7vm/n7pv6+ib9v7O8b+fuG/r6Bv6/v7+v5+7r+vo6/r+3va/n7mv6+hr8/0d9X9/fV/H1Vf1/F31f292F/X8nfn+DvK/r7Cv6+vL8v5+/L+vsysD8Cc+dPwF+YO7KgHJAGSAdkADIBIUAWIA8gLyAfID+gAKAgoBCgMKAIoCigGKA4oASgJKAUoDSgDKAsoBygPKBCljKR/X1YGG3ejQSlJm/UPPdburlNR5gurw8SbPqTyaZDBJv+YrLpMMEmnP+GdROy6XeCTR6TTX8QbEpjsukIwaZ0Jpv+JNiUwWTTXwSbMplsQpERNju1F2KyySPYlMVkUxrBpjxMNqUTbMrLZFMGwaZ8TDZlEmzKz2RTiGBTASabsgg2FWSyKQ/BpkJMNuUl2FSYyaZ8BJuKMNmUn2BTUSabChBsKsZkU0GCTcWZbCpEsKkEk02FCTaVZLKpCMGmUkw2FSXYVJrJpmIEm8ow2VScYFNZJptKEGwqx2RTSYJN5ZlsKkWwqYKlTR7RpormPE0T4TkhPk9B+dwFxNHPkoP/o52435Tuf97r7/G8Qb1KyAGoDKiifP5Hvc1pM+G6t1KW+ThUtfQr1f4tBPvDBPurMdm/lWB/ZYL91Qn26+ZhVX8eVvP31f19FWkengh/1wDUBNRKcB5uI4zDiYRxqM3kx+0E+2sQ7K/DZP9bBPtrEuyvm+A8rO3Puzr+vq6/ryXNw3rwd31AA0DDBOfhDsI41COMQyMmP75NsL8+wf7GTPbvJNjfgGB/kwTnYSN/3jX29038fUNpHjaFv5sBmgNOSnAevkMYh6aEcTg5wXE42e93M3/f3N+fJI1DC/j7FMCpgNPifD8Zz97Tze0tnAjPGfF50uVzq+Nyuj8OLfx9af/74TOkcWkJf7cCtAac6ZdnimO2xrI/zua1JPhVvq++je+ftlk+aXAPPR6YoJS19cvkjTqxWxIma5vodXspdb22hAHAgcfv6tNi1AlHKVd55WNUp7UhBmOwtVOd1S7r+FmkOoYy2DG4/zHA9Lzts4wHM6JP7Q0mWzzutgQ7KX3qEKNPalu5Tx2koMoj9UfuU5zN09RN21q8z+jQI7371atRsN2PZYrdfmPLtdNuaFmjLuG8/wRDEPxBwFNs6wj1OwE6x1n94o0v5aquI8FvXYhJIlm3unaxDPSzshIgPCuL3q4rYTBt7eoqTY6woG/UyUS5xO5E6P/ZKZpMZ1tOpm62kwkJu1lMpu6OJxPa1d1yMtkERvcsuq48h+isvP6+o8/Vyd93zopdjjznAnoAzouTfeOZ0TGLNi5B3XhjcX4WzUfBRv38+RyCTRcQ+ir753zJD7JtcU8ijq5uuN+aTm+L9vYEXAi4SPEzdZw6E8bpYsI46WyJ1yaYv6b1g3GgxuMlTHNQ/jwzXt1ejscW51tnAgf6+hKLse1NHFtqP3BMKbkJx7W3RT88QVvYMQxl9exFqRsW8bcO724eFattvlUTypc9uLN9vTLDrjh8Z/le5+bmKThn/hk9Q2d/c3bmrF93RRgWzRjq4ve8uYKK4OujXqf2kbxBNWIZnOTldLo3+6ZIplF4Zb5LbWUaEl5qIdOyHcs0tCvbQqbpHllBdX60SRPPZsMZHy3SjdvKfbvMH6N+atRclnUslIOyfpLTbAeFqgufN1vTZuPHYpcRJlW/LNpg20xwtIe6hlP60J+4hlP7gJmzv8ValkNck20C5SWLrDwgQbvind92vAY69qPtKjaIuIpFe9YPNQYIS783gBjH6hYWZm3lfg32k+blatIcrEmal2sMzFDIXQ1IvIQ5mJBsLnecMDF40B7qJ219CH2g9PeKBIPSxG5df03GybQupb9XOr6QwkWBkID/nscDLZLpEMf9wFgkLHAe9mGQRT+GJulDg3j2LU23i7VEbDJR/GFhtHknCh6bPGFuUw3BY1OaMLepprCziZrHawman4ONOm9rE3ieSefpex2pbvVHt/TccPLGT2496Z3ON+8/Xex8Zd8pn5dqfMrpc/K2+3po3tqJ8NQVPP2pJ5Izj+Px1BfmvlzC5MsGgoenoeDhaSR4eBoLHp4mgoenqeDhaSZ4eJoLHp6TBA/PyYKHp4Xg4TlF8PCcKnh4ThM8PKcLHp4zBA9PS8HD00rw8LQWPDxnCh6eNoKHp63g4WkneHjaCx6eDoKHp6Pg4ekkeHg6Cx6eLoKH5yzBw9NV8PCcLXh4ugkenu6Ch+ccwcNzruDh6SF4eM4TPDznCx6eCwQPT0/Bw3Oh4OG5SPDwXCx4eC4RPDy9BA9Pb8HD00fw8PQVPDyXCh6ebMHDc5ng4ekneHj6Cx6eHMHDM0Dw8AwUPDyDBA/PYMHDc7ng4blC8PBcKXh4hggenqGCh2eY4OEZLnh4RggenpGCh2eU4OHJFTw8owUPzxjBw3OV4OEZK3h4xgkenqsFD881gofnWsHDc53g4RkveHiuFzw8EwQPz0TBw3OD4OG5UfDwTBI8PDcJHp6bBQ/PZMHDM0Xw8EwVPDy3CB6eWwUPz22Ch2ea4OGZLnh4ZggenpmCh2eW4OGZLXh45ggentsFD88dgofnTsHDc5fg4blb8PDMFTw89wgennsFD899godnnuDhuV/w8DwgeHgeFDw8DwkenocFD898wcPziODheVTw8DwmeHgWCB6exwUPz0LBw/OE4OF5UvDwPCV4eBYJHp6nBQ/PM4KH51nBw7NY8PA8J3h4lggenucFD89SwcPzguDheVHw8LwkeHiWCR6elwUPz3LBw7NC8PCsFDw8qwQPzyuCh+dVwcOzWvDwrBE8PK8JHp61godnneDhWS94eDYIHp7XBQ/PG4KHZ6Pg4dkkeHjeFDw8mwUPzxbBw7NV8PBsEzw82wUPz1uCh2eH4OF5W/Dw7BQ8PO8IHp5dgodnt+Dh2SN4eN4VPDzvCR6e9wUPzweCh+dDwcOzV/Dw7BM8PB8JHp6PBQ/PJ4KH51PBw/OZ4OH5XPDwfCF4eL4UPDxfCR6erwUPz37Bw/ON4OH5VvDwfCd4eL4XPDw/CB6eHwUPz0+Ch+dnwcPzi+DhOSB4eH4VPDy/CR6eg4KH55Dg4TkseHh+Fzw8fwgeniOCh+dPwcPzl+DhwQaGdZWGNB6PiSeNiSediSeDiSeTiSfExJPFxJOHiScvE08+Jp78TDwFmHgKMvEUYuIpzMRThImnKBNPMSae4kw8JZh4SjLxlGLiKc3EU4aJpywTTzkmnvJMPBWYeCoy8ZzAxFOJiSfMxFOZiacKE09VJp5qTDzVmXhOZOKpwcRTk4mnFhNPbSaeOkw8dZl46jHx1GfiacDE05CJpxETT2MmniZMPE2ZeJox8TRn4jmJiedkJp4WTDynMPGcysRzGhPP6Uw8ZzDxtGTiacXE05qJ50wmnjZMPG2ZeNox8bRn4unAxNORiacTE09nJp4uTDxnMfF0ZeI5m4mnGxNPdyaec5h4zmXi6cHEcx4Tz/lMPBcw8fRk4rmQieciJp6LmXguYeLpxcTTm4mnDxNPXyaeS5l4spl4LmPi6cfE05+JJ4eJZwATz0AmnkFMPIOZeC5n4rmCiedKJp4hTDxDmXiGMfEMZ+IZwcQzkolnFBNPLhPPaCaeMUw8VzHxjGXiGcfEczUTzzVMPNcy8VzHxDOeied6Jp4JTDwTmXhuYOK5kYlnEhPPTUw8NzPxTGbimcLEM5WJ5xYmnluZeG5j4pnGxDOdiWcGE89MJp5ZTDyzmXjmMPHczsRzBxPPnUw8dzHx3M3EM5eJ5x4mnnuZeO5j4pnHxHM/E88DTDwPMvE8xMTzMBPPfCaeR5h4HmXieYyJZwETz+NMPAuZeJ5g4nmSiecpJp5FTDxPM/E8w8TzLBPPYiae55h4ljDxPM/Es5SJ5wUmnheZeF5i4lnGxPMyE89yJp4VTDwrmXhWMfG8wsTzKhPPaiaeNUw8rzHxrGXiWcfEs56JZwMTz+tMPG8w8Wxk4tnExPMmE89mJp4tTDxbmXi2MfFsZ+J5i4lnBxPP20w8O5l43mHi2cXEs5uJZw8Tz7tMPO8x8bzPxPMBE8+HTDx7mXj2MfF8xMTzMRPPJ0w8nzLxfMbE8zkTzxdMPF8y8XzFxPM1E89+Jp5vmHi+ZeL5jonneyaeH5h4fmTi+YmJ52cmnl+YeA4w8fzKxPMbE89BJp5DTDyHmXh+Z+L5g4nnCBPPn0w8fzHxiDQeHo+JJ42JJ52JJ4OJJ5OJJ8TEk8XEk4eJJy8TTz4mnvxMPAWYeAoy8RRi4inMxFOEiacoE08xJp7iTDwlmHhKMvGUYuIpzcRThomnLBNPOSae8kw8FZh4KjLxnMDEU4mJJ8zEU5mJpwoTT1UmnmpMPNWZeE5k4qnBxFOTiacWE09tJp46TDx1mXjqMfHUZ+JpwMTTkImnERNPYyaeJkw8TZl4mjHxNGfiOYmJ52QmnhZMPKcw8ZzKxHMaE8/pTDxnMPG0ZOJpxcTTmonnTCaeNkw8bZl42jHxtGfi6cDE05GJpxMTT2cmni5MPGcx8XRl4jmbiacbE093Jp5zmHjOZeLpwcRzHhPP+Uw8FzDx9GTiuZCJ5yImnouZeC5h4unFxNObiacPE09fJp5LmXiymXguY+Lpx8TTn4knh4lnABPPQCaeQUw8g5l4LmfiuYKJ50omniFMPEOZeIYx8Qxn4hnBxDOSiWcUE08uE89oJp4xTDxXMfGMZeIZx8RzNRPPNUw81zLxXMfEM56J53omnglMPBOZeG5g4rmRiWcSE89NTDw3M/FMZuKZwsQzlYnnFiaeW5l4bmPimcbEM52JZwYTz0wmnllMPLOZeOYw8dzOxHMHE8+dTDx3MfHczcQzl4nnHiaee5l47mPimcfEcz8TzwNMPA8y8TzExPMwE898Jp5HmHgeZeJ5jIlnARPP40w8C5l4nmDieZKJ5ykmnkVMPE8z8TzDxPMsE89iJp7nmHiWMPE8z8SzlInnBSaeF5l4XmLiWcbE8zITz3ImnhVMPCuZeFYx8bzCxPMqE89qJp41TDyvMfGsZeJZx8SznolnAxPP60w8bzDxbGTi2cTE8yYTz2Ymni1MPFuZeLYx8Wxn4nmLiWcHE8/bTDw7mXjeYeLZxcSzm4lnDxPPu0w87zHxvM/E8wETz4dMPHuZePYx8XzExPMxE88nTDyfMvF8xsTzORPPF0w8XzLxfMXE8zUTz34mnm+YeL5l4vmOied7Jp4fmHh+ZOL5iYnnZyaeX5h4DjDx/MrE8xsTz0EmnkNMPIeZeH5n4vmDiecIE8+fTDx/MfGIdB4ej4knjYknnYkng4knk4knxMSTxcSTh4knLxNPPiae/Ew8BZh4CjLxFGLiKczEU4SJpygTTzEmnuJMPCWYeEoy8ZRi4inNxFOGiacsE085Jp7yTDwVmHgqMvGcwMRTiYknzMRTmYmnChNPVSaeakw81Zl4TmTiqcHEU5OJpxYTT20mnjpMPHWZeOox8dRn4mnAxNOQiacRE09jJp4mTDxNmXiaMfE0Z+I5iYnnZCaeFkw8pzDxnMrEcxoTz+lMPGcw8bRk4mnFxNOaiedMJp42TDxtmXjaMfG0Z+LpwMTTkYmnExNPZyaeLkw8ZzHxdGXiOZuJpxsTT3cmnnOYeM5l4unBxHMeE8/5TDwXMPH0ZOK5kInnIiaei5l4LmHi6cXE05uJpw8TT18mnkuZeLKZeC5j4unHxNOfiSeHiWcAE89AJp5BTDyDmXguZ+K5gonnSiaeIUw8Q5l4hjHxDGfiGcHEM5KJZxQTTy4Tz2gmnjFMPFcx8Yxl4hnHxHM1E881TDzXMvFcx8QznonneiaeCUw8E5l4bmDiuZGJZxITz01MPDcz8Uy25ElTeBr2P3vkR40erPVS93YvTJx4Ye+aTb7sOG7Z8FltPjow5wc4Xk2Y2zQlSTbF45mabm7/80SbqOOD578iy7z+lVB3SBbd37c47segLHo/hlr041ameZshzG26jcmmTGFu0zQmm0LC3KbpTDZlCXObZjDZlEeY2zSTyaa8wtymWUw25RPmNs1msim/MLdpDpNNBYS5Tbcz2VRQmNt0B5NNhYS5TXcy2VRYmNt0F5NNRYS5TXcz2VRUmNs0l8mmYsLcpnuYbCouzG26l8mmEsLcpvuYbCopzG2ax2RTKWFu0/1MNpUW5jY9wGRTGWFu04NMNpUV5jY9xGRTOWFu08NMNpUX5jbNZ7KpgjC36REmmyoKc5seZbLpBGFu02NMNlUS5jYtYLIpLMxtepzJpsrC3KaFTDZVEeY2PcFkU1VhbtOTBJvSxdHPt/AzXdxOBNQA1ATUAtQG1AHUBdQD1Ac0QHsBjQCNAU0ATQHNAM0BJwFOBrQAnAI4FXAa4HTAGYCWgFaA1oAzAW0AbQHtAO0BHQAdAZ0AnQFdAGcBugLOBnQDdAecAzgX0ANwHuB8wAWAnoALARcBLgZcAugF6A3oA+gLuBSQDbgM0A/QH5ADGAAYCBgEGAy4HHAF4ErAEMBQwDDAcMAIwEjAKEAuYDRgDOAqwFjAOMDVgGsA1wKuA4wHXA+YAJgIuAFwI2AS4Cb0A2AyYApgKuAWwK2A2wDTANMBMwAzAbMAswFzALcD7gDcCbgLcDdgLuAewL2A+wDzAPcDHgA8CHgI8DBgPuARwKOAxwALAI8DFgKeADwJeAqwCPA04BnAs4DFgOcASwDPA5YCXgC8CHgJsAzwMmA5YAVgJWAV4BXAq4DVgDWA1wBrAesA6wEbAK8D3gBsBGwCvAnYDNgC2ArYBtgOeAuwA/A2YCfgHcAuwG7AHsC7gPcA7wM+AHwI2AvYB/gI8DHgE8CngM8AnwO+AHwJ+ArwNWA/4BvAt4DvAN8DMCZ/BPwE+BnwC+AA4FfAb4CDgEOAw4DfAX8AjgD+BPwFwKDzAGmAdEAGIBMQAmQB8gDyAvIB8gMKAAoCCgEKA4oAigKKAYoDSgBKAkoBSgPKAMoCygHKAyoAKgJOAFQChAGVAVUAVQHVANUBJwJqAGoCagFqA+oA6gLqAeoDGgAaAhoBGgOaAJoCmgGaA04CnAxoATgFcCrgNMDpgDMALQGtAK0BZwLaANoC2gHaAzoAOgI6AToDugDOAnQFnA3oBugOOAdwLqAH4DzA+YALAD0BFwIuAlwMuATQC9Ab0AfQF3ApIBtwGaAfoD8gBzAAMBAwCDAYcDngCsCVgCGAoYBhgOGAEYCRgFGAXMBowBjAVYCxgHGAqwHXAK4FXAcYD7geMAEwEXAD4EbAJMBNgJsBkwFTAFMBtwBuBdwGmAaYDpgBmAmYBZgNmAO4HXAH4E7AXYC7AXMB9wDuBdwHmAe4H/AA4EHAQ4CHAfMBjwAeBTwGWAB4HLAQ8ATgScBTgEWApwHPAJ4FLAY8B1gCeB6wFPAC4EXAS4BlgJcBywErACsBqwCvAF4FrAasAbwGWAtYB1gP2AB4HfAGYCNgE+BNwGbAFsBWwDbAdsBbgB2AtwE7Ae8AdgF2A/YA3gW8B3gf8AHgQ8BewD7AR4CPAZ8APgV8Bvgc8AXgS8BXgK8B+wHfAL4FfAf4HvAD4EfAT4CfAb8ADgB+BfwGOAg4BDgM+B3wB+AI4E/AXwAUAB4gDZAOyABkAkKALEAeQF5APkB+QAFAQUAhQGFAEUBRQDFAcUAJQElAKUBpQBlAWUA5QHlABUBFwAmASvhcUkBlQBVAVUA1QHXAiYAagJqAWoDagDqAuoB6gPqABoCGgEaAxoAmgKaAZoDmgJMAJwNaAE4BnAo4DXA64AxAS0ArQGvAmYA2gLaAdoD2gA6AjoBOgM6ALoCzAF0BZwO6AboDzgGcC+gBOA9wPuACQE/AhYCLABcDLgH0AvQG9AH0BVwKyAZcBugH6A/IAQwADAQMAgwGXA64AnAlYAhgKGAYYDhgBGAkYBQgFzAaMAZwFWAsYBzgasA1gGsB1wHGA64HTABMBNwAuBEwCXAT4GbAZMAUwFTALYBbAbcBpgGmA2YAZgJmAWYD5gBuB9wBuBNwF+BuwFzAPYB7AfgOe3y/PL77Hd/L/iAA32eO7xrH94DjO7rx/dn4bmt87zS+Exrf14zvUsb3HOM7iPH9wPjuXnyvLr7zFt9Hi++Kxfe44jtW8f2n+G5SfG8ovtMT37eJ78LE91TiOyTx/Y747kV8L+KrAHyfIL7rD9/Dh+/Iw/fX4bvl8L1v+E42fF8avssM3zOG7wDD93Phu7PwvVb4zil8HxS+qwnfo4TvOML3D+G7gfC9PfhOHXzfDb6LBt8Tg+9wwfer4LtP8L0k+wD4Pg981wa+BwPfUYHvj8B3O+B7F/CdCPi+AnyXAD7nH5/Bj8/Hx2fX43Pl8Znv+Dx2fFY6PsccnzGOz//GZ3Pjc7Pxmdb4vGl8FjQ+pxmfoYzPN8ZnD+NzgVF44/N08Vm3+BxafEYsPr8Vn62Kzz3FZ5Li80LxWZ74nE18BiY+nxKfHYnPdcRnLuLzEPFZhfgcQXzGHz5/D5+Nh8+tw2fK4fPe8Fls+Jw0fIYZPl8Mn/3193O5APg8K3zWFD4HCp/RhM9Pwmcb4XOH8JlA+LwefJYOPucGn0GDz4fBZ7fgc1XwmSf4PBJ8Vgg+xwOfsYHPv8BnU+BzI/CZDvi8BXwWAj6nAJ8hgL/vx9/e4+/i8Tfr+Hty/K03/g4bfyONv1/G3xbj737xN7n4e1n8LSv+zhR/A4q/z8TfTuLvGvE3h/h7QPytHv6ODn/jhr8/w9+G4e+28DdV+Hsn/C0S/k4If8ODv6/B377g71LwNyP4ew78rQX+DgJ/o4C/H8B7+/G+e7wnHu9Xx3vJ8T5vvAcb74/Ge5fxvmK85xfvx8V7ZfE+VrzHFO//xHsz8b5JvKcR7zfEewHxPj28hw7vb8N7z/C+MLxnC++nwnud8D4kvEcI79/B6zC87wXvM8F7QPCeCLyfAL+/x+/L8ftp/D4Yv3/F7zvx+0X8Pg+/P8Pvq/D7Ifw+Br//wO8b8PN9/DwdP7/Gz4vx81n8PBQ/f8TP+/DzNfw8Cz8/ws9r8PMR/DwCr//xehuvb/F6EqcsXhsGm7+E/X39iPch4Pf++D07fq+N3yPj97b4PSl+L4nfA+L3bvg9F36vhN/j4Pcm+D0Ffi+An8Pj5974OTN+roufo+Lnlvg5IX4uh5+D4edO+DlP8LlKZXH0Or2qOHr/TnVx/FZf+rukv585cP2mX/ZnbZPrlY5xLOzv1+/uVaFqybK75WNz/H2lULt3zq3z2nvyMVxH/j5229K0dt3zfCofu9I/1ifPAyvPfCv/IvnY0BjHRsY4lhvj2PgYx66PcWxSjGM3xzg2JcaxqTGOTY9xbGaMY7fHOHZnjGPzYhy7P8ax+TGOPRrj2IIYxx6PcWxRjGPPxDi2JMaxpTGOrYhxbGWMY2tiHFsb49j6GMc2xDj2ZoxjW2IceyvGsbdjHPstiGlNvG/OiGFLjGM7YhzbGePYl/6xjPen1mt7drep8jEv8+h+yV3dc3IuGTiit4i+hYXR1j2BtoMSaJudQNtRCbTNSaBt2Ljw+K1fAm1TNc5DE2g7MIG2qfJR/wTaJmJzbgJtE+FNZE6myuZEfBQ2Ljx+G5ZA20TiKGxcePw2IIG2oxNom0h/UzUnByfQ9n9xblyVQNtExioRHyWyDoaNC4/fhifQ9j+NJFhiP5FxTtUaekUCbesn0DZsXHj81imBtomsR2HjwuO3VOWcRPJkIvEbNi48fvtftDmR+B2bQNtE1oX/dLt527oJtA0bFx6/JaKB/xfX36oJtL0kgbaJaOBEtPd/uk6w5Jz/a9qsdwJt//5eDbea/j571Kickbl9+w0bMjw7d/BlV+b0HTYyux/sxuSMHDV42NC+V43MHj48Z2Qpv34ef+9/pP3393np5vxeHqkdvf2EtnnUE5Lai7/be8KW/2j/g+8wbdqHAkOk9rItwXnx+9D80t8FFX5L+9sman+xGDYHvmkj1Q8Loy0Dv/PFfhbxC7Dv1fy/R+cOvnJw7rjWf0/VNv/M1G5/T9QLjs5T9YSe8v82UcrzSXZnSHXMx2Rs2+Cc6f4+U/pb3jKUfVAn+I45r8Qf7E1+q//uugPvPN+58ZCiSnvcAt9gPxv6fw8e1XfU4P45fXMGDMjph7E/emhuzsi+I3Mg5iNygB/7Zf12KY799gnGfvsE576XR2pj0V4b+6otQtq3ldq2VeoVEJFxKNfBOCok/V3Y/7uAv28nnSton+DYtEtwbLxiIvp4BLmhuP9/OTcMHzl4THZuTqdRPWBGt/t7Qrc5Op/P/Wc6y2Okcgjlb7UsWrnOB/K5k5BX2ieaV8r4e9d5JcjZA3Ny+2aPzh3U96rBuUNzRo36y2+Q4rwxJ8G8MeffkjfkuNXFiS4nBG3k54bg31WlNri1l87nKcc6aHiDYx2j2IFbJ+lYhnKss3QsUznWRToWUo6dJR3LUo51lY7lUY6dLR3LqxzrJh3LpxzrLh3Lrxw7RzpWQPobEeRc3NL9soJSmayZ8FgRqT1hbpwbtC9q175VAclGodgeHJPzVxHlWKZ0LLAB/fK2F1lvtlQvWJvyKHy267nl2HUtpuEvItmGm4WW/adtWzu70oP1bq80hnJ8BecMuOT4InKdrVvf0pUy+fx5RWLrvKecL+BT+xfEB8ZcoI/964AOObmtYZXpeXSRkY2UTywnA/m4vKl11HpqfV2C9aLsg46pZWrgWzru70mr2pqh2Jkpjrcz4A3Z8RY0nTDB+fMqtthOmJDCp/ZPHdcsO74CntJe5pPPKS9M8oKjjq284ISinEsWinL9U/19YaUebm0Ujjwae+WyYHxwzJortstjazufC4vj+x74J49IaA4USNCnXYP2qpAMGzU/JuDy2vF7wTjLoi2IVRwT9cOgfNKxdE3bYBwzlPorvWPtAtFWSKmjm7uu/K/mo/wanmBsZQFFGNsM03wUnD+vYottPiqg8Kn9k4UyHiuosaWwcgw3Na4Lanh0QpLrXAXE8f1PdM7Ivs+v8ESLmUukcrmdLmZwC2IsQ6n/mBQzffyyQuL4OaIKfN1YyvXzKueS26sf5spzgzAX0wJbCsexpaBiSyHpmCx+EUVinAu3tsq5dOJZiON9otoZzKc0zXlkPp0vQpY2B/WDC5WQ0I9XcL4Mpf4Qf4/r0Gf+vNHlPfkiKV7es7x4Mc57wfmTlffijbWa94pqbCmsHMNNzVVFNTxFNTxc5yog9HNctw941DKVR/a9ad4bL5UnkvdmSHlvol+mi7UiCp9uLGPlPbl9UeVcxeKcS81bcvtiyrmKxzgXbmrektvLbXV5S7ZTzVvFNO1knlh5y9TmoH4J///R8lZwvgyl/gx/Hy9vBe1N8lZxqdxF3grOn6y8FW+s1bxVQmNLYeUYbmquKaHhKaHh4TpXAaGf47p9wKOWqTyy703z1oNSeSJ5a6yUt+b7ZbpYK67w6cYyVt6S25dQzlUyzrnUvCW3L6mcq1SMc+Gm5i25vdxWl7dkO9W8VVLTTuaJlbdMbQ7qBz+Ujpa3gvNlKPUX+/t4eStob5K3SknlLvJWcP5k5a14Y63mrdIaWworx3BTc01pDU9pDQ/XuQoI/RzX7QMetUzlkX1vmrfWSOWJ5K1sKW+t88t0n82UUvh0/pfrq3krf4xzlY5zLjVvye1LE86Fm5q3CmrOJZR2mUpd3NS8VVDTTubRfc5FtTmoH3yBHhL68QrOl6HU3+Hv4+Wt0ortqr3y3/k0tus+a42Vc+X6+RTbg/p7Ytjuado7/K6htWnOTfV3Dfns+FrF8m2sz2tLa44lOme/8PfJzO84Zh8rtv/Lv2toFW89+FYqV3MX5bP6ztJ68INflsrP6tV4zpdEHrk/wVgGflLXlbAw2wI7y2jsDM5dVip3kXeC8+dVbLHNO2UVPrV/at4pZ8fXylPay3zyOQN7grEurzkWnKuC//9QlHMFbTOU+pnKGiNzqHMjOCbbK5fJeSdwlJozpUPW81m2K/BPvLyRz4vsi3zMJG8E9etJeSP4Mr6Qpr2qLeT7DDzlb916l6GxRc15oSj1Q4rtQf3iPrGsLWKNh5yfsqKMRynpnF8q58zU9CtdKktT+qX7zj9T0y/dmGYp50rXnEvuT16htzWaXktX+h/Ur6gZU51eC9rrblotoBzTfVel+x5TvfaUx7OQckz+zkn9XjjaDWay3Z6IvDFN9U1R5Zg8dsWUY7Kv1M885XsESijHZJ+VVI7Ja5x6bam7Jssn9PNInWPymiJzyDlYjhm5vppDgvqNY8SMbk2Qb9ZSY0aXk+W8X0bpj7xulBfxueX+5I3CHYpSv5zS/6B+ixgxo7t/QadjysWwU10bdTmyTJy+qvlaN1eCHK+7iVPWWUJY32fWGsdov3eMR+4fburaoPOhXJ86f9S1V54zZZRj8rqs+kB3w6Fsi3xTsHpMt47rtLqn/F06DqfaVnftplvT1Wu3bpr57Ckcco6Qx0ldV4P658bIEbq5G2tdjaVrZXt0Y1pWOaa79tXN/6Cei/kv91+d/6Ya3iRedPNfjo18yjE5d5VReHSfMZjOf3kOBde/Jt8TxJv/+ZX6tvN/QIz5r/u8Vp5D6hoZ1B9MnP/y+CY6/+VxiTX/5e89gnOr50xw/mf8m+d/fuWY/Hm1Ov/za3hM5788h4LvA0zmf4k4nOr8DzRltPkfnC9DqX8dcf7L30dGm/8TYsx/3fefsea/7juMkpp+xfoOQ/ddqqzdg3Or53Qx/+X+q/M/Vl9xU8dGlyPleRzrswd1/svfWavfMydr/j/o/20y/4vG4VTnf3CdFm3+B+fLUOrfTpz/8n1E0eb/XTHmv+6+pVjzX3fvSTFNv2Ldx6C7B0r9MVa65pwu5r/cf3X+x+orburY6HKkPI+j3eOim//yvWbq/WHJmv/B/Xcm879gHE51/gefkUSb/8H5MpT6TxLnv/wZTrT5/3SM+R/wyv2KNf919ycX0vRLN6aFlWO6++h181++xzroX3As0fkv91+d/7H6ips6Nrr7aeV7oU3uGdXdR19I4UnW/A/uuze5/o3HqbYN7I82/4PzZSj118SY/7rrX3l+Rbv+XRdj/ut++xHr+leXB3S/edCNaazYiHX9G9RLcP4X1M1/uf/q/I/VV9zUsdHlEt1nzIXF8fM61vWv+nuNZF3/tpXKcVO/M5D3QZvgvLjl0dSXf5sUbLK/hIi8XyNdc64spV1Q/0P/BPLaIpT2hTX88liKKHbrfl/oac6VrimTv6vb5R2zOcGHZszxFE7qQzM+9SJtlXNaMh+aYXv+bVn7f9m0fuBMV+f/NE/3dmlLb6sU7/y6+ZSutJHnZLqmfpp0XK7/vX8C9N2PUu4JylQ+LPszRj0vyl5ns2xPrLmcrqkfcOfT1A+OyWuinDvlOvJ4yefKKx2X6x9RYlyOSzlHqvzq72F1dkfTdeq50jVlcoz/qsSV7T1a8tzr2xcfOTNi9LDcwTlDc3v4pSl+3EynBB830ynBx8WkJfpkgSBC2yvthXJe3dMQ2ivH5Dtjg18kq4+nkr+dxa2jxCWvPuqqTOhTR5ePp6I8KuSuiZfPGjRi47TTwreV2n3tkQ7qo0JitVVf9R20bRe/racWBI8Y6ez/X/0mXm5kmjXVu5MsI/wfNae7AyXW3aZUOwtr7PQUHi+JPHI7dawSyVWq8iW0D6lPVhAEbt0dGnLGryKVI/JIx9I1bdW7hoL61aV2wVwvpNTR+Up+6oZcF7c2CldQt5bE1SDK+YTmfIFdOl/njWFzZhQOT1M3S+HI1LST7abw6cZI/SVDULeDxNVEmNkvny+W/SZ+zReDo43C4WnaCaWd7vFq+aJw6uqqfQ7+n0fDJZ9LHddgfHBcTvf/1o1HRhQ+3NI19dUrbt3de3k0/VE/ETnT3+M8DB6LpsvV8lyU54oau56mT/mE3q+6fKHefSYfk3NNkIcSvLLs5Em2BOemXFl28/f/61eWQb9Afef+Sx4N2yFBzd3h36K52yrthXLeWI991Wlu+fGPsR4Jq3v8Y4LapD3nI2HV4yGhz3246e6Alc+bYJ7okGie4HpsazAf+ufg09+HjcrpO2jw0NwT/NL/XyI6UWVtOXuNH/YcK6JtHuSsi2j1asOyT+0SzHJpxUT0zBZEdDD7dSu+PJei/W5CjTTdOeTzqGMj+yHs74s3Ersq7W02rk6p5sO6jZm097xF40vMr/VF4TLfjT5tzKH3h6l9SYthe4EYNsS69/TfkJkq+nvXmSno55W5R3NSZf///6mMhOLvP5Vx/GakMuR71OVxCn6vrovl436nJLUpHuV8IRE/N6RHsUNW4uo5cAsLo037qY6n4fm3q6iwv3edq2r4f4/KHTYyp+/goX1zxub0G52Lr87pl91vkPoujfp+9f9f3qXxb09lunAg8LRN0M7jwik4h2yb5QflaWqICxE5BkI5f7Ke3W36s0rdbSmecizah/xCRI6L/BWx+pNbXQqKt0xVlf6u5v+d4FxJ9P0yMd+t5En2Bpvuq+hU324SfNj2b77dpLxkc7DE15TOp87ndHG8HArOh193Bz9l999F0wNXgk5D2wXrQBtcBoSypUXhkzlk/+s+yBCaNkG/Elx+E373TD1/z/Xumf6DR+b0yx08BpdgfO+P+iG8fDu8zTpbwq59xPwXii3yeVU9IAgcwSb7St3UW23UmFL1BIHfi2aHp6kcfNkv3/ZdUjl2zJe5w/qOzO4/eKx6M7vtV8vqVz62s8HyQfTputkgZ/SgX9GygcwZ2GL5UPp8sVYU9atOoamTIY7f0pT/Zyjl6QZ1dbNG/iG2ap/JzVq6lUa+KVWtr65CmVHOpa6C6vxI1EfFNJyBbcEP4eTMl5szMGfkPzdEqbFt+ZiqtKC95aMMtTlQ/oI1v0ro73UzLNrap66Tsep6Mc6rmxXBOQNvyPYG/fh/WUC4tSjDBAA=",
3727
- "debug_symbols": "tV3djh03znwXX/uiKZKSmFdZLIIk610YMJLAmyzwIci7f/pj8XiMlnv6jG+smvGcKolSUd2S+vRf7/714ec///Pjx1///dt/3/3wj7/e/fz546dPH//z46fffvnpj4+//dp++9e7o/9D8u6HSn+/f0fjp9x+OtpPqf/E7Sd+/47LLOosbBRyzIJm0f5eW8GzkFnoLBpLbkWZRZ2FjUKPWdAs0ix4FjILncVk0cmik0UnS54sebLk9n/l/bvSfqqtaJx0tJJXKatstEStzKssq6yrtFnWY5W0yrRKXqWscvHVxVcXX1181j+fWtn/vkXM+t+32lpeZf/7Vm2rq7RZ0tErUDsgB70K1gE76KTSQWNNRwfZQXFQHdgCtJpGRA6SA3YgDtRBdlAcVAcrZpScOTlzcubkzCnPgFCyGRHiY4aCmBykFQRmB7KCwOogryD0YTpBXdFgb2kfrBOQg+SAHXhLxVsq3lLxloq3VLyl6i1Vb6l6S9Vbqs6szqzOrM7ch/CIRuYVjSwrCFkd5BWEXBzUFYRsC5RjBaEP/wnSikbxlnYLTOCjpfhoKT5a3AbkPiA3ArkTyK1A7gVyM5C7gdwO5H4gNwRVZzZnNmceJunRGK7o0Ri26EEYvmggDV+UDshBmkFIwxcDyAxC6r6YIM9oJPdFcl8k90WiwwE5aMz9090WiToQB+ogOygOZo5KNJNUSscqaZVplbxKWaWuMq+yrHLxpcXHi48XHy8+XnzdDz0sffD3YIyxnzpIDtiBOFAH2UFvDndQHdgCfexPQA6SA3YgDtRBduDM6szqzNmZe0pP2kFywA46T29nH/upN7SP/d5LfeiPHuhDfwLvt+L9NoZ+j8oY+gMUB706g8cW6EN/AmeuzlyduTpzXSOC+7jk1EFy0P6Y+xTax+UE6qBPtdJBcVAd9Am3tZj7uJyAHCQH7EAcdObSQXZQHHTmo4MVOe5DcwJykBywA3GgDrKDskAfkqOkGUvuY3ICdiAO1EF2UBysHmBePcByOCAHaYxq7mN4lLJKXWVeZVllXaXNUo9V8kw13Ecqj9+og+ygOKgObIE+UifofdIr1kfqBOxAHOjMZjwy+QDFQXWwZkMemXwAcpAcsIM1h3LxGhavYfEaVq9hH7wTJAfswGvYB+8E2UFx4DWsXkPzGprX0LyG5jX0yx02b7t520cmT/1KctVQDnKQHLADcaAOsoNVQxmOGcAWGI4ZYNVQKDlgB+JAHWQHxUF1sNou43qmVz55DZPXMHkNk9cwFQfVweodYa8hk4PkgB14DdlryF5D9hqy15C9hnI48LaLt717pPRyOU+kOKgObIGR5AcgB8kBTy/KSPIDqIPsYNpPtK5y2k/ysUpaZVolr1JW2e3c7kd43J20D8uYvFdJq0yr5FXKKnWVeZVllXWWPbCi8wZnlO33esybGqV1V0PrtobWfU1aNzZp3tKMsn+uzNsYrfM+ZpS8yv45m7cyo+wzu6ybGZt3M+WYNzCjbJ8vTa8HY5SySl1lXqXNsmeI0u/hxO/hSm4/qf8k40Julb3t49Kqlbxiye2vMz5b5v8Wa78t4z6wj7IZHvq7/dLvIn/84/OHD/0PHm4r283m7z99/vDrH+9++PXPT5/ev/vfT5/+HH/0399/+nWUf/z0uf1va+eHX//Vykb474+fPnT09/v49HH+US1pfThTwcfbBe5VAuk2GARtgIJA6YvPp83nq39eU9S/XZdfrkBGBSyfVUDOP2/V8iJoMJrQpr3LFEc1pzjsuEXRblucol3y36JIhIa0K9hbFExoCJfzWtjz4bTnw2nPh9OeD6c9H07adElbtDBdJG3dQvI5i+5Y+nX0ImF54Kiv4GADh6abHLmAox5vwKGnHNuOMaewNt/fs8o1ik0tNGlC7jMOinpcpuB++TAp+HFsvIZCMygeu+QFRdoNUlGvRlvh4XscBL81+JA4qr2CgxM4hE45tllUwvaa7yVi1qA4T4H7lvSrqtWSfJy2hDczYzXkwEPPGeicIavPrVnlHoN53ilHvsdQg6HcYijJnVqE70WyVESynjPk5x1iz49Me35k7kKRfFxWqQ8XjF+aY0OQs7ciP0yJryAohw/KQsc9Ak8SJZ3WYPP5Fi3vywYtomh2mUJx1dqg3KLI7MO6LYucU8hmVBYtMJdacNCXM6mUXTCIEAyy0/6oG4oDPdoW+OSUwnbp8pDI/EfWs6ZsA4oZvS0U6a0+KbhybatG5RZFLZ61Gzyn6Jn5yW5VebpbVZ/uVs3fuVsN1wRtCa3e6hPL6Fart0ZGW5nzWrS1uXxKkY+nuzXT092a09Pdmvn7dmtb2FQElM+TcNbnA5qfD2h5PqD1ewf0YYTKzUGODNrWi/mW1ZiQ/toOzClFSU93a+Gnu7XI091a9Pt2q1Fc8dGNix3DdauV8zh857GZLC6XDkoP1aCrFG3tJFZAcn6oxOWxWbXg2rddfAVFu1h4pKhpd0+WsCIkdyrR9p69Q9r9AJ9XQnYcR3A8XIS/uBepm6FZD3af1rYeEz7lL1eO6+7qs+A6utTHC66XHLvkiSUUeZhV2y78lwyb8ZkSrtlSM+o5x/byM8cQf7hAeFU9CtY/2ib7ccphm+mdSnGfULHztthmhJogYWi9xdAWG1NY7TwaJrttAeQtqQ+LjWTXg9EWj70als6DsTUb1l7bHXc+NZuVXTS0xrppfljPfpG89iQFtwV94TSfkRzbtULBQp+eN6atOO9mtagIH5X1rCLfYKkVF+X0eD38Kpa23IdZmujhfut6UNoWszen7SSf5/TdzMJIY9RuD2ILKr1oyiadts1c5LH8kApVXnDsbpZa/bFm2DLZJqjb+3n4jh4o9GZbHi58vmrLJqEWzPelRCXkVRGNji18XgvaZJDUrkBjbkj1YX/zRTwoPT9VEvHzcyXt9pKuTZa023y5OluOxfxnp8s9CUd6b32zIanPTnZbiquzHaXj6enualuK3uzdi9cglPj5ixDa7X9c7JiLFLt4bHdhLvdteb5vtzG9eC2zT4nFBBV56N2XKXG3E0IFmxCtn+V0sttzVHDUh8Z8xbFJqgn7+6k+1OJFMmTe7b7WI3Zf89ldKfFmfOSC8ZHL43ZIfUU9Mran2qaAPs/xsMf1Og5scmm2mxxxh9zgzbbUAxyPF7pfcaRd32Lf8jhOR4ds76QUpy7acD1dhyLZVSP2ujTX+gYkmz2FPUlBRFoX6RuQqNxujoLk4QLitSTH8yRh3tYcu0tC5RrJbrDFkKfKm8Gm9AaD7TLJbrBtSa4Otssku8H2jeZcG2zfIDmeJ7k62PYkbzLYjONS4rhJYlhLIFN6A5Kc34Ck0BvE5C5JinNp6Yuzba8jqVhxOqzerkkOkpvjJI1byUnSrm/vkmDzNdF23tnXhIMk3yWpaE7abANT2ZEUHLdL26S0254SLtgl413vbEkEw16E+S4JjpCI7AK7JVGJE+D5bkyyoCY5321OTF6SK70BiekbNOc2ScGOVVvBojcgkbs1iesTqbtUUHfX9VgVyI/HtuprqoGNRKl505bdxtXz1dAjbrYOKfdCqpGi9bg7Vtsncat03M0kjyQt0T7fnPskhIVSpbtj9QuSu5lEE+a+diu5mSx2W1hvMNKSxsMxm7NgZPnpamxnPaw9p5o204TV7a4Ackh+mGso3+WwU45tYyyWOG0zXaWDtqvgNfYF8tmSXjp2K1hxkjbVh0vorzh4t3uFMybteiDf4+A4SMWPBwpexYEHXZ7hoKc5BKs2IvVmPBT3Am37ys45bNe3uCZqfXt6TDrRbu85B0dWPefY3hzpw33NcYsjxRp4ejwX9hXHs3P/N2oROegwOq+FftdaUOx+pce1yfIqDn4DjuNpjvBbYj0fG2m79R3PpsnDtP8qDmHcwIu8BUe5yaE4ICY53+XAKQ2p9Hxb7nLogbYoHc9z8F0OCY4s5xz2rGv3tYDjKG/cwvR07tjm84LckTcZjPn5fL7juJrP+elMuq/FtXzO5bvW4mI+/wYHvwHH8TTHxXy+2824ms+3HBfz+XWOcpPjWj7/BselfH65LXc5Lubzyxx8l+NaPtenM+m+FtfyufJ3zedFsdxf7Dyeu0ekrvpty3HRb9c5yk2Oa377Bsclv11uy12Oi367zMF3Oa75LT+7DPWNWlzzW352FWq/XhJHoNoajt1ac+Fxnnhw8OMy5es4JA4dP54YvsmRHk6o0Gv2osziIPbmcdW0X2G8dAgq7Z6VungIal+Pa4egrnOcH4L6BselQ1B7jmuHoPYcFw9B7QZIG2SKgbpdCd+RJDwVyCnd3RlPOO+bUrm7gcs4RtnWXOUNSHZbDLvTZfnwcZYfjnO/OF2WdptQzbsS3n04KnCkFyR515a4eZHHpy31xdeM7J6fSin21lN5/GKgF8l99+gS5Tg+8cW2+FckttszxZapnX+50DcigsOpSUo6j8jusaGrx/XT7hGoq8f1k+0eQr10XD/t9qCuHtdPtn0M9dpx/T3JxeP6afcY1LVT4Wn/JNW1I93Norud6EtHuq+2pejN3s2xbPA4W70k4SM93zG82zS51jFXKbbx2BnGKgxzN6QXn4Dg3TNUV5+A4KM+H9IdBSYqS/kexVW78G6r4aJd9jG9+ATEdt7l4/G6O53Ou7x7iurqBMG7vairEwTvHoG6NkEwlecnCN4+AnVxgtjX5Krztkv9V52X6Gnn7Sgu22b30M9V22wD8ia2SRq2eTzO9tI2KW/vvfH1So+ne14c3uBUnt7/2HJc3P/gp/ekvlGLS/sf/PSe1L4W1/Y/vsXBb8BxPM1xbf+Dt9/Sd209ds9xbT32FRzlJsel9dhvcVxZj73elrsc19Zjr3PwXY5L67HjGfrnXLuvxaX1WJan9073kwJzTAr5fFLYfW+fHjjkpMfD8sPLSWHPgQNsetTTk4W825S6eDrxFRynpxMvB5WP84Uh1u238WKmpcevJv6qMbpd1C2xqFvucdT4+tj68J2nr+IwnLQsR7JbHKVi1b/Uh28F/opj+w0/cbSQWiqpb8FCdK89xojJ43NTr+NIOTju9W81nJKupud9k+Ut4voKlvO4Hs8vYvLuu/za5oVh/+DxO9Kv1qIoTtK2Spx/Hw3n3fHTchQscxei068c4rL98qNL3xLG5Q0WU7m8wWIql6cXU7m8wWIqlzdYTP1GB8f7Ddo+0sO+zFcdvPuqnzjo/DjlXX/3h6pitOvjTczLwVpstyZz8RulvsFSa3xFoD28r+F1LHGD2b+X6n5dLn271Z7lDb7dShVfFtg66PzLArff943HgyofLyj+2X786ZePn798GWp/+1PvjP4GnH4/1d+XM8q6Sptlf19OX7Ht7x4aZX81oM13D41S+uoJzZcPTdBf1tQXkfvrhyaoDmx+aLz5sv9ivPlygPHa0v6OovHe0jpfVjSBOhjvVjzm+4sm6MTj5XO2wHgL1ADkYLy5qs63Gk0gDsb7pWi+snWC4qA6sAXGmy8HIAfJATsQB86szqzOrM6szpydOTtzdubszNmZszNnZ87OnJ05O3Nx5uLMxZmLMxdnLs5cnLk4c3Hm4szVmaszV2euzlyduTpzdebqzNWZqzObM5szmzObM5szmzObM5szmzObM89Xy05EQAmIgQRIgTJQAapA0CBoEDQIGgSN+Ro29TfNTpSBClAFMkfjdbMTEVACYiBoJGgkaCRoJGgkaDA0GBoMDYYGQ4OhwdBgaDA0GBoCDYGGQEOgIdAQaAg0BBrTtMXfVzvQtG3xN9b2i/L5ytqJGEiAFCjjswUIGtO/1V9mOxE0MjQyNDI0MjQyNDI0MjQy2lHQjgKNAo0CjQKNAo1p6Lred7tQBUI7KjSmq4u/9HYiBhIgaFRoVGhUaFRoGGJlaIehHYZ2GDSmxwdCrAyxMsTKXGO+KnciAkpADCRACpSBCpBrpMP7I9EBREAJCBoEDYIGQYOgQRUI7UhoR0I7EjQSAwmQAmUgaCRoJGgwNBgajFgx2sFoB6MdDA0uQIgVI1aCWAk0BBoCDYGGQEMQK0E7BO0QtAM+T4r+UMRKEStFrODzpNBQaCg04PMEnyf4PMHnCT5PGRoZ/QGfJ/g8wecpQ6NAAz5P8HmCzxN8nuDzBJ8n+DwVaBT0B3ye4PMEn6cKjQoN+DzB5wk+T/B5gs8TfJ7g82TQMPQHfJ7g8wSfJ4OGQQM+Z/ic4XOGzxk+Z/ic4XM+XIOPAlSBPFYMnzNBg6ABnzN8zvA5w+cMnzN8zvA5J2gkAkpADCRA0EjQgM8ZPmf4nOFzhs8ZPmf4nBkarECIFXzO8DkzNAQa8DnD5wyfM3zO8DnD5wyfM+ZzxnzO8DnD5wyfM+ZzxnzO8DnD5wyfM3zO8DnD5wyfc4ZGRn/A5wyfM3y+3nVc8bLjircdV7zuuOJ9xxUvPK544/FAaAd8Pl+DPDQK+gM+Z/ic4XOu0KjQgM8ZPmf4nOFzhs8ZPmf4fL0UueCtyAMhVvA5w+frzcjjs9CAzxk+Z/hc4HOBzwU+F/hcDteQQ4EyUAGqQNAgaMDnAp8LfC7wucDnAp8LfL5eoVzwDuWO4HOBzwU+lwSNBA34XOBzgc8FPhf4XOBzgc+FocEMhFjB5wKfr/csV7xoueJNyxWvWq5413LFy5YHQjvgc4HPRaAh6A/4XOBzgc8F1+2C63aBzwU+F/hc4HOBzwU+F/hcMjQy+gM+F/hc4HPBdbtkaMDnAp8LfC7wucDnAp8LfC4FGgX9AZ8LfC7wueC6XSo04HOBzwU+F/hc4HOBzwU+lwqNiv6AzwU+F/hccN0uBg34XOBzgc8FPhf4XOFzhc/1cA09GEiAFCgDFXy2AkEDPlf4XOFzhc8VPlf4XAkaVIAqkMdK4XPFdbsmaMDnCp8rfK7wucLnCp8rfK4MDSYgxAo+V/hccd2uDA34XOFzhc8VPlf4XOFzhc9VoCHoD/hc4XOFzxXX7QqfK+ZzxXyu8Lniul0VGrg/V/hc4XOFzxXzuQ6f99cO6vB5X+XX4fPxevLh8/5llDp8PlEGKkAVyBwNn/eHq3T4fKIExEACpEBDo7dj+LxvpOjw+UTmaPh8IgJKQAwkQAo0NMbL1wtQBTJHw+cTEVACYiAB6hp9d0CHz/v+jg6fT9Q1+oaNDp93lIfPJyKgBMRAAqRAGagAVSBoEDQIGgQNggZBY/i87wrl4fOJhkbuqAJ1jb7enofPJ+oa/amHPHw+Udfoj3Xk4fOJukZfVs/D5xN1DRv/W4G6Rl8pz8PnExFQGsfiOuKO+ie6z1NfJc/d5wtloNLPb6WOakfjs9ZRr2n3eepbmrn7PKWx3pyAeGyldSRAOh7w6SgDlfFwR0ddgwezjUdg+rJ115CxgN01+omS3H2+UNfom3+5+3yhrtGPUOTu84W6Rn8ZYe4+X6hrdA/m7vOFukZ3VO4+X4g9alk8ahmxyohV9/lC1aOWzaNWDo9a9/mMWkGsus8XQqyKAiFWpQBVj1oxj1r3+YxaJY9aRay6zxdCrKoCIVa1ACFW3ecTGWJlBIRYdZ8vJB41U4+aIVaGWHWfL2QrauU4VtTKQStqpft8RK0cHqvSfb6Qx6ocGchjVY4KZCtqhY4VtdJ9PqJWKK2oFfJYle7zhTxWhTKQx6pQBfJYle7zhTxWJSUgj1XpPl9IxwZ/R12j55fSfb5QBTJH3ecLEVACYiABUiBoMDQYGgwNgYZAQ6Ah0BBoCDQEGgINgYZAQ6Gh0FBoKDQUGgoNhYZCQ6Gh0Bg+77m4DJ9PlICGRu+F4fOJFCgDFaCKz5qjAo3h8/F3w+cTQaNAo0CjQKNAo0CjQKNCo6IdFe2o0KjQqNCo0KjQGD6fyBwNn0+Edhg0hs8nEiAFykDQMGiYa9TjACKgBMRAAqRArlGHzyeqQB6rSgcQNAgaBA2CBkGDMlABqkBoR4JGIqAExEACBI0EjQSNBI0EDUasGO1gtIPRDoYGKxBixYgVI1YMDYGGQEOgIdAQxErQDkE7BO0QaAj6QxErRawUsVJoKDQUGgoNhYYiVop2ZLQjox3wec3oj4xYZcQqI1bwec3QyNAo0IDPK3xe4fMKn1f4vBZoFPQHfF7h8wqf1wqNCg34vMLnFT6v8HmFzyt8XuHzatAw9Ad8XuHzCp9Xg4ZBAz6v8HmFzw0+N/jc4HODz+1wDTsUKAMVoAoEDYIGfG7wucHnBp8bfG7wucHnRtAg7w+Dzw0+N/jcEjQSNOBzg88NPjf43OBzg88NPjeGBjMQYgWfG3xuDA2GBnxu8LnB5wafG3xu8LnB5ybQEPQHfG7wucHnptBQaMDnBp8bfG7wucHnBp8bfG6Yzw3zucHnBp8bfG6Yzw3zucHnBp8bfG7wucHnBp8bfG4FGgX9AZ8bfG7wuRVoVGjA5wafG3xu8LnB5wafG3xuFRoV/QGfG3xu8LkZNAwa8LnB5wafG3xu8DkdMHqDFNBlGuSAElAD5oAlGGrAUKNQo1CD6RvkgBJQA4YalYA1oAHC/A2GWgq1FGop1FKoIQU0GG1L0bYUbeNQYwoYkeSIJEckOdQ41DjUONQ41CQiKdE2ibZJtE1CTaLfJCIpEUmJSEqoaahpqGmoaahpRFKjbRpt02ibhppGv+WIZI5I5ohkDrUcajnUcqjlUMsRyRxtK9G2Em0roVai30pEskQkS0SyhFoJtRJqNdRqqNWIZI221WhbjbbVUKvRbzUiWSOSFpG0ULNQs1CzULNQs4ikRdss2ha5hA6o0UEBU0AOKAE1GHLAErAGDLXIJRS5hCKXUOQSolAjDZgDloA1YKilUItcQpFLKHIJRS6hyCUUuYQil1AKtYR+o8glFLmEIpcQhxqHWuQSilxCkUsocglFLqHIJRS5hCTUJPotcglFLqHIJSShJqEWuYQil1DkEopcQpFLKHIJRS4hDTWNfotcQpFLKHIJ5VCLXEI52pajbZFLKIdaDrUcapFLKHIJRS6hEm2bucQG7Gp1HBAduaSfUadxgG8c8aZxgs9hDWiAI5csSAFTQA4oATVgqNVQq6FWQ81CzULNQs1CzULNQs1CzULNQs2gNg72OaSAKSAHlIAaMAcsAWt/IOAY0AB7LnFIAVNADigBNWAOWAKGGoVaCrUUainUei7hvq5K48Cfw66WRit6LnFYAna1ftqdxqk/5kHWcwnzYOi5hNfJ4a7WN9RonPxz2NX6lzbROPvnsKvJ4O25xGFdT/HQOP/HOv625xKHFDAF7Go61HoucagBc8Culkcrei5x2NXyPOt8BKSAOISdcF6fxnFA7o+T0DgP6HBsLA7enku4jLb1XMJ1/tYAey7h4dhxKtBhCsgBu9qw9DgZ6DAHLAGH2qhOzyXjKTAaxwMdUsD1UAaNA4I8B3WRgBowByz4VAUyRzWU6mhXf87mfz99/vjTz58+/PfdD3/1p0z+/PUXf6Kk/fjH//3u//Pz54+fPn38z4+/f/7tlw//+vPzh/70Sf+/d8d4+qT9+4+2H5CoP51C8St7n6T/Kq0//YcYvW+b9v98/477T20vU0ptP40/l5Y0pUr/kfqPVduPpX+eQdlWjIv5X7Quq6n/v3wtqfhVM06y/qscvyrveXyw9F/x/CMWVOR4L/rPv/vDNv8P",
3727
+ "debug_symbols": "tV3djh03znwXX/uiKZKSmFdZLIIk610YMJLAmyzwIci7f/pjsT3GkXv6jG+smvGcKolSUd2S+vRf7/714ec///Pjx1///dt/3/3wj7/e/fz546dPH//z46fffvnpj4+//dp++9e7o/9D8u6HSn+/f0fjp9x+OtpPqf/E7Sd+/47LLOosbBRyzIJm0f5eW8GzkFnoLBpLbkWZRZ2FjUKPWdAs0ix4FjILncVk0cmik0UnS54sebLk9n/l/bvSfqqtaJx0tJJXKatstEStzKssq6yrtFnWY5W0yrRKXqWscvHVxVcXX1181j+fWtn/vkXM+t+32lpeZf/7Vm2rq7RZ0tErUDsgB70K1gE76KTSQWNNRwfZQXFQHdgCtJpGRA6SA3YgDtRBdlAcVAcrZpScOTlzcubkzCnPgFCyGRHiY4aCmBykFQRmB7KCwOogryD0YTpBXdFgb2kfrBOQg+SAHXhLxVsq3lLxloq3VLyl6i1Vb6l6S9Vbqs6szqzOrM7ch/CIRuYVjSwrCFkd5BWEXBzUFYRsC5RjBaEP/wnSikbxlnYLTOCjpfhoKT5a3AbkPiA3ArkTyK1A7gVyM5C7gdwO5H4gNwRVZzZnNmceJunRGK7o0Ri26EEYvmggDV+UDshBmkFIwxcDyAxC6r6YIM9oJPdFcl8k90WiwwE5aMz9090WiToQB+ogOygOZo5KNJNUSscqaZVplbxKWaWuMq+yrHLxpcXHi48XHy8+XnzdDz0sffD3YIyxnzpIDtiBOFAH2UFvDndQHdgCfexPQA6SA3YgDtRBduDM6szqzNmZe0pP2kFywA46T29nH/upN7SP/d5LfeiPHuhDfwLvt+L9NoZ+j8oY+gMUB706g8cW6EN/AmeuzlyduTpzXSOC+7jk1EFy0P6Y+xTax+UE6qBPtdJBcVAd9Am3tZj7uJyAHCQH7EAcdObSQXZQHHTmo4MVOe5DcwJykBywA3GgDrKDskAfkqOkGUvuY3ICdiAO1EF2UBysHmBePcByOCAHaYxq7mN4lLJKXWVeZVllXaXNUo9V8kw13Ecqj9+og+ygOKgObIE+UifofdIr1kfqBOxAHOjMZjwy+QDFQXWwZkMemXwAcpAcsIM1h3LxGhavYfEaVq9hH7wTJAfswGvYB+8E2UFx4DWsXkPzGprX0LyG5jX0yx02b7t520cmT/1KctVQDnKQHLADcaAOsoNVQxmOGcAWGI4ZYNVQKDlgB+JAHWQHxUF1sNou43qmVz55DZPXMHkNk9cwFQfVweodYa8hk4PkgB14DdlryF5D9hqy15C9hnI48LaLt717pPRyOU+kOKgObIGR5AcgB8kBTy/KSPIDqIPsYNpPtK5y2k/ysUpaZVolr1JW2e3c7kd43J20D8uYvFdJq0yr5FXKKnWVeZVllXWWPbCi8wZnlO33esybGqV1V0PrtobWfU1aNzZp3tKMsn+uzNsYrfM+ZpS8yv45m7cyo+wzu6ybGZt3M+WYNzCjbJ8vTa8HY5SySl1lXqXNsmeI0u/hxO/hSm4/qf8k40Julb3t49Kqlbxiye2vMz5b5v8Wa78t4z6wj7IZHvq7/dLvIn/84/OHD/0PTreV7Wbz958+f/j1j3c//Prnp0/v3/3vp09/jj/67+8//TrKP3763P63tfPDr/9qZSP898dPHzr6+318+nj8US1pfThTwcfbBe5VAuk2GARtgIJA6YvPp83nq39eU9S/XZdfrkBGBSw/qoA8/ny7K2QPYMcEjjbxXSWxlLwWDco9ChOnaJcTtyhYD1DkfIuipSKn0ONxLewtAmrPB9SeD6g9H1B7PqC0HaJJI6Ltavgxi25ZKEjOIa2v4OjT6OLQdJMjF3DU4w049CHHrmOUCR1T0i2zXKTY1EKTJuQ/46Cox2UK7pcQk6Ir36LQDIpzl7ygSLtBKurVaKs8fI+DyOvRYDlx2Cs4OIFD6CHHNo/WsL0d91JxtqB4bNh9S0TQknw8bAlvZsdqaMmhjxnoMUNG/soq9xjMXVKOfI+hBkO5xVCS54sifC+SpSKS9TFDft4h9vzItOdH5i4UycdllXq6aPzSHBuCnN3muegdgnL4oCx03CPwJFHSwxpsPt+i5X3Z4GlaN7tMobhybVBuUWT2Yd2WRh5TyGZUFi0wl1pw0JczqZRdMIgQjNOV1sv+qBuKAz3aFvnkIcXuurPt3UTmP7I+aso2oIaAFtJbfVKqgcLKLYpa3OUNPqbomfnJblV5ultVn+5Wzd+5Ww3XBG0Zrd7qE0PaZKu3RkZbnfNatPW5/JAiH093a6anuzWnp7s18/ft1ra4qQgoP07CWZ8PaH4+oOX5gNbvHdDTCJWbgxwZtK0Z8y2rMSH9tV2YhxQlPd2thZ/u1iJPd2vR79utRoq1FLpxsWO4brXyOA7feWwmi8ulg9KpGnSVgg6KFZDTcg7Vy2OzasG1b7v4Cop2sXCmqGl3T5ZwAS53KtH2n71D2u4yP66E7DiO4DhdhL+4F6mboVljna+29ZjwKX+5elx3V58F19Glni+4XnLskieWUOQ0q7ad+C8ZNuMzJVyzpWbUxxzby88cQ/x0gfCqehSsf7SN9uMhh22mdyrFfULFHrfF0nbREuta9RZDW2xMYbXH0TDZbQ0gb0k9LTaSXQ+GHVivbOvID6uxNZt5LZKek8YLs1nZRUNrrJvm0437i+S1JynlOC2c5kckx3atULDQp48b09btd7NaVISPyvqoIt9gqRUX5XS+Hn4VS1vuwyxNdLrfuh4UidX1tpv8OKfvZhZGGqN2exDbUOlFUzbptG3oIo/lUypUecGxu1lq9ceaYctkm6Bu7+fhOzpR6M22nC58vmrLJqEWzPelRCXkVRGNji38uBa0ySCpXYHG3JDqaY/zRTwoPT9VEvHzcyXt9pKuTZa023y5OluOxfxnp8s9CUd6b32zIanPTnZbiquzHaXj6enualuK3uzdi9cglPj5ixBK8nTHXKTYxSPJW/Rteb5vtzG9eC2zT4kFm+JST737MiXudkKoCHbpSpGHk92eo4KjnhrzFccmqabsOTXVUy1eJEPm3e4rtlPa7mt+dFdKvBkfuWB85HLeDqmvqEfG9lTbFNDnOU57XK/jwCaXZrvJEXfIDd5sSz3Acb7Q/Yoj7foW+5bH8XB0yPZOShXjvD5eryXZVSP2ujTX+gYkmz2FPUlBRFoX6RuQqNxujoLkdAHxWpLjeZIwb2uO3SWhco1kN9hiyFPlzWBTeoPBdplkN9i2JFcH22WS3WD7RnOuDbZvkBzPk1wdbHuSNxlsxnEpcdwkMawlkCm9AUnOb0BS6A1icpckxbm09MXZtteRVKw4HVZv1yQHyc1xksat5CRp17d3SbD5mmg77+xrwkGS75JUNCdttoGp7EgKjtulbVLabU8JF+yS8a53tiSCYS/CfJcER0hEdoHdkqjEKfB8NyZZUJOc7zYnJi/Jld6AxPQNmnObpGDHqq1g0RuQyN2axPWJ1F0qqLvreqwK5POxrfqaamAjUWretGW3cfV8NfSIm61Dyr2QaqRoPe6O1fZJ3CoddzPJmaQl2uebc5+EsFCqdHesfkFyN5NowtzXbiU3k8VuC+sNRlrSeEBmcxasXT09XY3trIe151TTZpqwut0VQA7Jp7mG8l0Oe8ixbYzFEqdtpqt00HYVvMa+QH60pJeO3QpWnKRN9XQJ/RUH73avcMakXQ/kexwcB6n4fKDgVRxkb8BBT3MIVm1E6s14KO4F2vaVPeawXd/imqj17cNj0ol2e885OLLqY47tzZGe7muOWxwp1sDT+VzYVxzPzv3fqEXkoMPocS30u9aCYvcrndcmy6s4+A04jqc5wm+J9fHYSNutb5yPaDdffI9DGDfwIm/BUW5yKA6ISc53OXBKQyo935a7HHqgLUrH8xx8l0OCI8tjDnvWtftawHGUN25hejp3bPN5Qe7ImwzG/Hw+33Fczef8dCbd1+JaPufyXWtxMZ9/g4PfgON4muNiPt/tZlzN51uOi/n8Oke5yXEtn3+D41I+v9yWuxwX8/llDr7LcS2f69OZdF+La/lc+bvm86JY7i/2OJ67R6Su+m3LcdFv1znKTY5rfvsGxyW/XW7LXY6LfrvMwXc5rvktP7sM9Y1aXPNbfnYVar9eEkeg2hqO3Vpz4XGeeHDweZnydRwSh47PJ4ZvcqTTCRV6zV6UWRzE3jyumvYrjJcOQaXds1IXD0Ht63HtENR1jseHoL7BcekQ1J7j2iGoPcfFQ1C7AdIGmWKgblfCdyQJTwVySnd3xhPO+6ZU7m7gMo5RtjVXeQOS3RbD7nRZPnyc5dNx7heny9JuE6p5V8K7p6MCR3pBkndtiZsXOT9tqS++ZmT3/FRKsbeeyvmLgV4k992jS5Tj+MQX2+JfkdhuzxRbpvb4y4W+EREcTk1y/k6elxHZPTZ09bh+2j0CdfW4frLdQ6iXjuun3R7U1eP6ybaPoV47rr8nuXhcP+0eg7p2Kjztn6S6dqS7WXS3E33pSPfVthS92bs5lg3Os9VLEj7S8x3Du02Tax1zlWIbj51hrMIwd0N68QkI3j1DdfUJCD7q8yHdUWCispTvUVy1C++2Gi7aZR/Ti09AbOddPs7X3enhvMu7p6iuThC824u6OkHw7hGoaxMEU3l+guDtI1AXJ4h9Ta46b7vUf9V5iZ523o7ism12D/1ctc02IG9im6Rhm/Nxtpe2SXl7742vVzqf7nlxeINTeXr/Y8txcf+Dn96T+kYtLu1/8NN7UvtaXNv/+BYHvwHH8TTHtf0P3n5L37X12D3HtfXYV3CUmxyX1mO/xXFlPfZ6W+5yXFuPvc7BdzkurceOZ+ifc+2+FpfWY1me3jvdTwrMMSnkx5PC7nv79MAhJz1Oyw8vJ4U9Bw6w6VEfnizk3abUxdOJr+B4eDrxclD5eLwwxLr9Nl7MtM189XFjdLuoW2JRt9zjqPH1sfX0naev4jCctCxHslscpWLVv9TTtwJ/xbH9hp84WkgtldS3YCG61x5jxOT83NTrOFIOjnv9Ww2npKvp477J8hZxfQXL47gezy9i8u67/NrmhWH/4Pwd6VdrURQnaVslHn8fzfgi38e3UkfBMncheviVQ1y2X3506VvCuLzBYiqXN1hM5fL0YiqXN1hM5fIGi6nf6GCK7z8o532Zrzp491U/cdD5POVdf/+HqmK06/km5uVgLbZbk7n4jVLfYKk1viLQON1kiRvM/r1U9+ty6dut9ixv8O1WqviywNZBj78scPt933g8qPLxguKf7ceffvn4+csXovY3QPXO6G/B6fdT/Z05o6yrtFn2d+b0Fdv+/qFR9tcD2nz/0Cilr57QfAHRBP2FTX0Rub+CaILqwOaHxtsv+y/G2y8HGK8u7e8pGu8urfOFRROog/F+xWO+w2iCTjxeQGcLjDdBDUAOxtur6nyz0QTiYLxjiuZrWycoDqoDW2C8/XIAcpAcsANx4MzqzOrM6szqzNmZszNnZ87OnJ05O3N25uzM2ZmzMxdnLs5cnLk4c3Hm4szFmYszF2cuzlyduTpzdebqzNWZqzNXZ67OXJ25OrM5szmzObM5szmzObM5szmzObM583y97EQElIAYSIAUKAMVoAoEDYIGQYOgQdCYr2JTf9vsRBmoAFUgczReOTsRASUgBoJGgkaCRoJGgkaCBkODocHQYGgwNBgaDA2GBkODoSHQEGgINAQaAg2BhkBDoDFNW/ydtQNN2xZ/a22/KJ+vrZ2IgQRIgTI+W4CgMf1b/YW2E0EjQyNDI0MjQyNDI0MjQyOjHQXtKNAo0CjQKNAo0JiGruudtwtVILSjQmO6uviLbydiIAGCRoVGhUaFRoWGIVaGdhjaYWiHQWN6fCDEyhArQ6zMNebrcicioATEQAKkQBmoALlGOrw/Eh1ABJSAoEHQIGgQNAgaVIHQjoR2JLQjQSMxkAApUAaCRoJGggZDg6HBiBWjHYx2MNrB0OAChFgxYiWIlUBDoCHQEGgINASxErRD0A5BO+DzpOgPRawUsVLECj5PCg2FhkIDPk/weYLPE3ye4POUoZHRH/B5gs8TfJ4yNAo04PMEnyf4PMHnCT5P8HmCz1OBRkF/wOcJPk/wearQqNCAzxN8nuDzBJ8n+DzB5wk+TwYNQ3/A5wk+T/B5MmgYNOBzhs8ZPmf4nOFzhs8ZPufDNfgoQBXIY8XwORM0CBrwOcPnDJ8zfM7wOcPnDJ9zgkYioATEQAIEjQQN+Jzhc4bPGT5n+Jzhc4bPmaHBCoRYwecMnzNDQ6ABnzN8zvA5w+cMnzN8zvA5Yz5nzOcMnzN8zvA5Yz5nzOcMnzN8zvA5w+cMnzN8zvA5Z2hk9Ad8zvA5w+frfccVLzyueONxxSuPK955XPHS44q3Hg+EdsDn81XIQ6OgP+Bzhs8ZPucKjQoN+Jzhc4bPGT5n+Jzhc4bP14uRC96MPBBiBZ8zfL7ejjw+Cw34nOFzhs8FPhf4XOBzgc/lcA05FCgDFaAKBA2CBnwu8LnA5wKfC3wu8LnA5+s1ygXvUe4IPhf4XOBzSdBI0IDPBT4X+Fzgc4HPBT4X+FwYGsxAiBV8LvD5etdyxcuWK962XPG65Yr3LVe8cHkgtAM+F/hcBBqC/oDPBT4X+Fxw3S64bhf4XOBzgc8FPhf4XOBzgc8lQyOjP+Bzgc8FPhdct0uGBnwu8LnA5wKfC3wu8LnA51KgUdAf8LnA5wKfC67bpUIDPhf4XOBzgc8FPhf4XOBzqdCo6A/4XOBzgc8F1+1i0IDPBT4X+Fzgc4HPFT5X+FwP19CDgQRIgTJQwWcrEDTgc4XPFT5X+Fzhc4XPlaBBBagCeawUPldct2uCBnyu8LnC5wqfK3yu8LnC58rQYAJCrOBzhc8V1+3K0IDPFT5X+Fzhc4XPFT5X+FwFGoL+gM8VPlf4XHHdrvC5Yj5XzOcKnyuu21Whgftzhc8VPlf4XDGf6/B5f+2gDp/3VX4dPh+vKB8+719GqcPnE2WgAlSBzNHweX+4SofPJ0pADCRACjQ0ejuGz/tGig6fT2SOhs8nIqAExEACpEBDY7yAvQBVIHM0fD4RASUgBhKgrtF3B3T4vO/v6PD5RF2jb9jo8HlHefh8IgJKQAwkQAqUgQpQBYIGQYOgQdAgaBA0hs/7rlAePp9oaOSOKlDX6Ovtefh8oq7Rn3rIw+cTdY3+WEcePp+oa/Rl9Tx8PlHXsPG/Fahr9JXyPHw+EQGlcSyuI+6of6L7PPVV8tx9vlAGKv38VuqodjQ+ax31mnafp76lmbvPUxrrzQmIx1ZaRwKk4wGfjjJQGQ93dNQ1eDDbeASmL1t3DRkL2F2jnyjJ3ecLdY2++Ze7zxfqGv0IRe4+X6hr9JcR5u7zhbpG92DuPl+oa3RH5e7zhdijlsWjlhGrjFh1ny9UPWrZPGrl8Kh1n8+oFcSq+3whxKooEGJVClD1qBXzqHWfz6hV8qhVxKr7fCHEqioQYlULEGLVfT6RIVZGQIhV9/lC4lEz9agZYmWIVff5QraiVo5jRa0ctKJWus9H1MrhsSrd5wt5rMqRgTxW5ahAtqJW6FhRK93nI2qF0opaIY9V6T5fyGNVKAN5rApVII9V6T5fyGNVUgLyWJXu84V0bPB31DV6find5wtVIHPUfb4QASUgBhIgBYIGQ4OhwdAQaAg0BBoCDYGGQEOgIdAQaAg0FBoKDYWGQkOhodBQaCg0FBoKjeHznovL8PlECWho9F4YPp9IgTJQAar4rDkq0Bg+H383fD4RNAo0CjQKNAo0CjQKNCo0KtpR0Y4KjQqNCo0KjQqN4fOJzNHw+URoh0Fj+HwiAVKgDAQNg4a5Rj0OIAJKQAwkQArkGnX4fKIK5LGqdABBg6BB0CBoEDQoAxWgCoR2JGgkAkpADCRA0EjQSNBI0EjQYMSK0Q5GOxjtYGiwAiFWjFgxYsXQEGgINAQaAg1BrATtELRD0A6BhqA/FLFSxEoRK4WGQkOhodBQaChipWhHRjsy2gGf14z+yIhVRqwyYgWf1wyNDI0CDfi8wucVPq/weYXPa4FGQX/A5xU+r/B5rdCo0IDPK3xe4fMKn1f4vMLnFT6vBg1Df8DnFT6v8Hk1aBg04PMKn1f43OBzg88NPjf43A7XsEOBMlABqkDQIGjA5wafG3xu8LnB5wafG3xuBA3y/jD43OBzg88tQSNBAz43+Nzgc4PPDT43+Nzgc2NoMAMhVvC5wefG0GBowOcGnxt8bvC5wecGnxt8bgINQX/A5wafG3xuCg2FBnxu8LnB5wafG3xu8LnB54b53DCfG3xu8LnB54b53DCfG3xu8LnB5wafG3xu8LnB51agUdAf8LnB5wafW4FGhQZ8bvC5wecGnxt8bvC5wedWoVHRH/C5wecGn5tBw6ABnxt8bvC5wecGn9MBozdIAV2mQQ4oATVgDliCoQYMNQo1CjWYvkEOKAE1YKhRCVgDGiDM32CopVBLoZZCLYUaUkCD0bYUbUvRNg41poARSY5IckSSQ41DjUONQ41DTSKSEm2TaJtE2yTUJPpNIpISkZSIpISahpqGmoaahppGJDXaptE2jbZpqGn0W45I5ohkjkjmUMuhlkMth1oOtRyRzNG2Em0r0bYSaiX6rUQkS0SyRCRLqJVQK6FWQ62GWo1I1mhbjbbVaFsNtRr9ViOSNSJpEUkLNQs1CzULNQs1i0hatM2ibZFL6IAaHRQwBeSAElCDIQcsAWvAUItcQpFLKHIJRS4hCjXSgDlgCVgDhloKtcglFLmEIpdQ5BKKXEKRSyhyCaVQS+g3ilxCkUsocglxqHGoRS6hyCUUuYQil1DkEopcQpFLSEJNot8il1DkEopcQhJqEmqRSyhyCUUuocglFLmEIpdQ5BLSUNPot8glFLmEIpdQDrXIJZSjbTnaFrmEcqjlUMuhFrmEIpdQ5BIq0baZS2zArlbHAdGRS/oZdRoH+MYRbxon+BzWgAY4csmCFDAF5IASUAOGWg21Gmo11CzULNQs1CzULNQs1CzULNQs1Axq42CfQwqYAnJACagBc8ASsPYHAo4BDbDnEocUMAXkgBJQA+aAJWCoUailUEuhlkKt5xLu66o0Dvw57GpptKLnEoclYFfrp91pnPpjHmQ9lzAPhp5LeJ0c7mp9Q43GyT+HXa1/aRONs38Ou5oM3p5LHNb1FA+N83+s4297LnFIAVPArqZDrecShxowB+xqebSi5xKHXS3Ps85HQAqIQ9gJ5/VpHAfk/jgJjfOADsfG4uDtuYTLaFvPJVznbw2w5xIejh2nAh2mgBywqw1Lj5OBDnPAEnCojer0XDKeAqNxPNAhBVwPZdA4IMhzUBcJqAFzwIJPVSBzVEOpjnb152z+99Pnjz/9/OnDf9/98Fd/yuTPX3/xJ0raj3/83+/+Pz9//vjp08f//Pj7599++fCvPz9/6E+f9P97d4ynT9q//2j7AYn60ykUv7L3Sfqv0vrTf4jR+7Zp/8/377j/1PYypdT20/hzaUlTqvQfqf9Ytf1Y+ucZlG3FuJj/Reuymvr/y9eSil814yTrv8rxq/KexwdL/xXPP2JBRY73ov/8uz9s8/8=",
3728
3728
  "verification_key": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuqAAAAAAAAAAAAAAAAAAAACU7IDCuwOkaghWHouiXg8+8AAAAAAAAAAAAAAAAAAAAAAA7+Td+GTHYz00iql9M9TQAAAAAAAAAAAAAAAAAAANTHWk4vKt3agbA5gYadG11FAAAAAAAAAAAAAAAAAAAAAAAPiJtoFFBTAWVENufSFo8AAAAAAAAAAAAAAAAAAAAS0Fioxzf0LqjNiYHWn5pwoQAAAAAAAAAAAAAAAAAAAAAAJhTV8Awwvp65L+42AytfAAAAAAAAAAAAAAAAAAAAdZnVU8lA4iJUAoUe5TTh+hIAAAAAAAAAAAAAAAAAAAAAAAskB+5yrx/FioXu/VFUqQAAAAAAAAAAAAAAAAAAAOOIardkvjMhXPAzPAzm3d/wAAAAAAAAAAAAAAAAAAAAAAAJw15KAKPKm7fKg4eAfZgAAAAAAAAAAAAAAAAAAADKoVf8CbM6RX6wrwIsf462UwAAAAAAAAAAAAAAAAAAAAAABaWhwNYbEkANxpTiYY52AAAAAAAAAAAAAAAAAAAA0wRwqH2m6ZV7/6k0/1AbmwoAAAAAAAAAAAAAAAAAAAAAACDIhxg3cBO8vm8eFuhmYgAAAAAAAAAAAAAAAAAAABadhRl/v8Xn0vXllANjQQqPAAAAAAAAAAAAAAAAAAAAAAAeKPDcINaPk/0iX+OehIQAAAAAAAAAAAAAAAAAAAAXo2sD6O/Ovkmmjvu0ooYxgQAAAAAAAAAAAAAAAAAAAAAAF0r8wzlGzU2Wje/D8VjOAAAAAAAAAAAAAAAAAAAAQGBJZKd784j639T9ONM0BSUAAAAAAAAAAAAAAAAAAAAAAC3ggTRcSanCULkZip8YUQAAAAAAAAAAAAAAAAAAAF8Ub3fjSFi9H7A2dzC5xqGuAAAAAAAAAAAAAAAAAAAAAAARcW7nR6jTmk9ynrsgV74AAAAAAAAAAAAAAAAAAABkS9o07Yi5AWJKOYp1RrefHQAAAAAAAAAAAAAAAAAAAAAACslOQAb+ZSc/bthwDTMlAAAAAAAAAAAAAAAAAAAAJzF9LwqADNbKcfUoT8KtTa8AAAAAAAAAAAAAAAAAAAAAAA518y3hD5iLVkztpJIXywAAAAAAAAAAAAAAAAAAAB5J8PjTkTM7ZuCKjl4o1N0dAAAAAAAAAAAAAAAAAAAAAAAGAYYZQRXqMgE23QeNvXEAAAAAAAAAAAAAAAAAAAAzpcVM8SnGYpeM2ojUpKIsMgAAAAAAAAAAAAAAAAAAAAAAJZIxBoI9tXMYA4VtZhUfAAAAAAAAAAAAAAAAAAAAbjlCWKFs7BJFf3D9DZXyj+MAAAAAAAAAAAAAAAAAAAAAAALih/kciGzAHY5nYkJ5sQAAAAAAAAAAAAAAAAAAAI84U4o3AltDke2DkowubJJBAAAAAAAAAAAAAAAAAAAAAAAWfZFEDWmoRLxI7XZtIssAAAAAAAAAAAAAAAAAAABy89pE1/H5aod+SiunGr9qbgAAAAAAAAAAAAAAAAAAAAAAAY0JOLB/IOANjAc15MxbAAAAAAAAAAAAAAAAAAAAAC8nE2RLNg8fs8KcPqDcAgkAAAAAAAAAAAAAAAAAAAAAACqmFYWGS8Q8LOdFAU/rrgAAAAAAAAAAAAAAAAAAAHg9a09E3iyB+tA1APAMdkcvAAAAAAAAAAAAAAAAAAAAAAABMn08Qay+55D1M713uOgAAAAAAAAAAAAAAAAAAADLEwKKeEjqoO9uywCEKDQknQAAAAAAAAAAAAAAAAAAAAAAIgztwgVivINPV85OEfqGAAAAAAAAAAAAAAAAAAAA56Ik4Aj8JozxJo3DKNUbQbcAAAAAAAAAAAAAAAAAAAAAAClTwz5X6WnUWSHfCGclOAAAAAAAAAAAAAAAAAAAANzKIA3Csjol7X//SZ6/AmbKAAAAAAAAAAAAAAAAAAAAAAAL90BtoovP4ZbE+E1erBEAAAAAAAAAAAAAAAAAAAC8QGRGidYw0uTY+9Wf9QITGwAAAAAAAAAAAAAAAAAAAAAALOr+GguEV6UK9FwyIzLZAAAAAAAAAAAAAAAAAAAAFRMAtEMiGwg4B2SMI3KRrxkAAAAAAAAAAAAAAAAAAAAAABg378W7lA+DyvCT89+5/QAAAAAAAAAAAAAAAAAAADaHP1lZ76yrME6y/TbyQwGDAAAAAAAAAAAAAAAAAAAAAAATf817OQ3hBAk4SrZoloIAAAAAAAAAAAAAAAAAAABLJdae8iV6mAZOIwsljHBMtQAAAAAAAAAAAAAAAAAAAAAAA2Osqwhhbq08y22k59P5AAAAAAAAAAAAAAAAAAAA4yNwT84whpGHysbrWh1kirgAAAAAAAAAAAAAAAAAAAAAABul5CrCoIGxcKfUOAXS5QAAAAAAAAAAAAAAAAAAAMCvW65G1/xo1X/mwqgu9uk5AAAAAAAAAAAAAAAAAAAAAAAD+Z0y8XihZKvungnfxIEAAAAAAAAAAAAAAAAAAABYGg2Cf5KlOf1gEVBSz0ZYOQAAAAAAAAAAAAAAAAAAAAAADejczmMOx66uaooVJ0AFAAAAAAAAAAAAAAAAAAAAgDyKme2b9BDQ4SImH0sQdgUAAAAAAAAAAAAAAAAAAAAAACcRxyxzemgd7NwwNq0X5wAAAAAAAAAAAAAAAAAAAFLVLs6PpPf56lxdjM4741bUAAAAAAAAAAAAAAAAAAAAAAAkcOl68kaQ2UoLoXuwn2wAAAAAAAAAAAAAAAAAAABkfo2ZAZRO5ait0gWmZYGmYgAAAAAAAAAAAAAAAAAAAAAAJO4MqY4HN+WNNo+mGNLWAAAAAAAAAAAAAAAAAAAAVnxkBF/zujZRzs7AmVJMW9kAAAAAAAAAAAAAAAAAAAAAAAfcjFR8K8LZZK2xhONCQgAAAAAAAAAAAAAAAAAAAKjDMc4pT2Gx+ioMFd3UAn9mAAAAAAAAAAAAAAAAAAAAAAAlj3CPME3vTfDYZ6wnGhIAAAAAAAAAAAAAAAAAAAC2DNMf6tSsE0XddNm/9oF0kQAAAAAAAAAAAAAAAAAAAAAAFCRV6BJWFRqeOGc+T5hUAAAAAAAAAAAAAAAAAAAAXViOe2DFUrXp6Pn35uxjcAgAAAAAAAAAAAAAAAAAAAAAAC5ed2GUZ+ySUXOUNkn/UQAAAAAAAAAAAAAAAAAAABdECNgXsJOG8o+37l7pGgeaAAAAAAAAAAAAAAAAAAAAAAAVwe/6wPer418eM+74BgEAAAAAAAAAAAAAAAAAAAAi+/8JEt/XBdda5lwhmpHOHQAAAAAAAAAAAAAAAAAAAAAAD6/1Pd/a+yQqmx6VEpyFAAAAAAAAAAAAAAAAAAAAaq9QLgDa/Gn0w3XhzSefV+MAAAAAAAAAAAAAAAAAAAAAACTA0IX4BL9DHIkNSkMyhgAAAAAAAAAAAAAAAAAAANnObNhKk6auJPEpDOipVLWRAAAAAAAAAAAAAAAAAAAAAAAN4fhrflSPMlc7MrwzIC8AAAAAAAAAAAAAAAAAAAByQJZmV0+H63ueJ181L2N6zAAAAAAAAAAAAAAAAAAAAAAAI23g7JD3o8rOhfA/zLOSAAAAAAAAAAAAAAAAAAAA8hrIZpITdoBONWZL47iE6QsAAAAAAAAAAAAAAAAAAAAAAAAmYgMrIqWkhVRcDxE7uwAAAAAAAAAAAAAAAAAAADflVK3q54tuCplSo2GMfbkiAAAAAAAAAAAAAAAAAAAAAAAtsG44oVahzUuFU3WrLYEAAAAAAAAAAAAAAAAAAABfuFEVKe3eaW1d9s2FusnZuAAAAAAAAAAAAAAAAAAAAAAABdw+ziAiEMpJ4Wpl9OlpAAAAAAAAAAAAAAAAAAAAd+m1Sf5KP336B0KKRidymY4AAAAAAAAAAAAAAAAAAAAAAAgsbtVZrCdt9dF94QFEZQAAAAAAAAAAAAAAAAAAAOwOwVZK5Ys5wO3Shn8hX+XaAAAAAAAAAAAAAAAAAAAAAAAUd8mKwF7lV45Sl/SZiYkAAAAAAAAAAAAAAAAAAADRm7356gtlZbPuda3U/vDBgAAAAAAAAAAAAAAAAAAAAAAAIna5XPqaJCJZ9WNKv6HJAAAAAAAAAAAAAAAAAAAAD2c7beACg9vkK95AWHKnSnQAAAAAAAAAAAAAAAAAAAAAAA/FsR+JqaUgJy/b1ewsRQAAAAAAAAAAAAAAAAAAAEKF/X3nDkSYscibqResWKzyAAAAAAAAAAAAAAAAAAAAAAAia16VsAtzFWE9b9eCVR4AAAAAAAAAAAAAAAAAAACfr8PQSX4ivwm3fN2kY2Z/CgAAAAAAAAAAAAAAAAAAAAAAEWpT7nl6PedV2vtrbYaOAAAAAAAAAAAAAAAAAAAAhUuF9c3cB2w9T+DJgfmIrLsAAAAAAAAAAAAAAAAAAAAAAClbjLiEl3aDmC2mrjZl8wAAAAAAAAAAAAAAAAAAACqsbCcAtn2MArxTHstyVRmlAAAAAAAAAAAAAAAAAAAAAAASOZAncT+gKXzeXOzkWpUAAAAAAAAAAAAAAAAAAAAaUVWcnuDlzcZyaP8QdxLcwQAAAAAAAAAAAAAAAAAAAAAAHkHX3dqx8KmIe+9yRs7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAC+zRCnjRIAAynP6lf9N01wAAAAAAAAAAAAAAAAAAAAAAE3FSKzmi6+hfInb6rW5qAAAAAAAAAAAAAAAAAAAAWVfZnlQuVBfk7s3DM015P/cAAAAAAAAAAAAAAAAAAAAAABSbzDwnwDX+7NDXM2EI8wAAAAAAAAAAAAAAAAAAAGvMegX/lalrKJQkxfczZw2WAAAAAAAAAAAAAAAAAAAAAAAAxDcm91tv2g3iLODg36sAAAAAAAAAAAAAAAAAAAAdCgnXF47JO614WPluZPC0jQAAAAAAAAAAAAAAAAAAAAAAL5tuC04sAZaN5cMkgqp9AAAAAAAAAAAAAAAAAAAAFLmaKhz1vbFNGPy31tW7G0MAAAAAAAAAAAAAAAAAAAAAABibwBFKqYLGRXSxHbsAPgAAAAAAAAAAAAAAAAAAAIFYESpGMQpiuEn23VYsLIaUAAAAAAAAAAAAAAAAAAAAAAASkF6WwsjbCGXWk491oyQ="
3729
3729
  },
3730
3730
  {
@@ -3894,10 +3894,6 @@
3894
3894
  "error_kind": "string",
3895
3895
  "string": "0 has a square root; you cannot claim it is not square"
3896
3896
  },
3897
- "9829419490427811213": {
3898
- "error_kind": "string",
3899
- "string": "DstLen too large for offset"
3900
- },
3901
3897
  "9885968605480832328": {
3902
3898
  "error_kind": "string",
3903
3899
  "string": "Attempted to read past the length of a CapsuleArray"
@@ -3979,8 +3975,8 @@
3979
3975
  }
3980
3976
  }
3981
3977
  },
3982
- "bytecode": "H4sIAAAAAAAA/+29CZxdR3UmXre71eqnXl5rly3Jbsm7bIMXbIzN4hVjS7JkybJk2cZuY2HJki1Zi+WNQMKWMEAAJ0yAmckOTAIhCWSGkAyTkIH8gPALE09CwpABkvAHwhIymMDwJ8NQ9jvqr7/+br26950nPeyu3096t2+d+s6pU6dO7XWL8GRotn737d/7kh0HDtx2z4/+m7xrx5YfvSpaUQOt37mt3/h+fpgejHYiZIWiAu30RBV4FKH7PPpC93n0h+7zGAjd5zEndJ/HYOg+j7mh+zyGQvd5NEL3ecwL3ecxHLrPYyR0n8do6D6PsdB9Hs3QfR7joTqPOnzmh6PDZ0E+7RPYl4p3VfgtDN0vo0Wh+zwWh+7zWBK6z2Np6D6PZaH7PI4L3edxfOg+j+Wh+zxWhO7zWBm6z+OE0H0eJ4bu85gI3eexKnSfx+rQfR4nhe7zODl0n8cpofs8Tg3d53Fa6D6P00P3eZwRus9jTeg+jzND93mcFbrP4+zQfR7PCN3n8czQfR7nhO7zODd0n8d5ofs8zg/d5/Gs0H0eF4Tu87gwdJ/Hs0P3eVwUus/jOaH7PC4O3edxSeg+j+eG7vN4Xug+j+eH7vN4Qeg+j0tD93lcFrrP4/LQfR5XhO7zuDJ0n8dVofs8Xhi6z+Pq0H0eLwrd53FN6D6Pa0P3eawN3eexLnSfx/rQfR7Xhe7z2BC6z2Nj6D6P60P3eWwK1XnU4bM5HB0+N4Sjw2dLqMHnRmIYNzTEDQdxQ0BcsI8L6nHBOy5IxwXjuKAbF1zjgmhcsIwLinHBLy7IxcWyuJAVF5fi4k9cnImLJ3FxIy4+xMWBOHkfJ9fj5HecnI6Txza5u+pH/+LkZZxcjJN/cXIuTp7Fya04+RQnh+LkTZxciZMfcXIiTh7EwX0cfMfBcRy8xsFlHPzFwVkcPMXBTRx8xMFB7LzHznXs/MbOaew8xs7dpT/6FztHsfMSOxex8Y+Nc2w8Y+MWG5/YOETnHZ1rdH7ROUXnESt3rHyxckTjjYYVC31LKA9WuCX7bz5x0pOvh1rRfZCswn6QYojYVUv/iseGGLBS+vBE+phmqF76Gy19o176J8w3hpdBepTFcPtbv2+EtG8knkbzaaD5NNGYvPX0HV7WYX7nj4TpeTSMALLNq4e9APNkoZ/eIX4jdFT2RUF4xo/zZ3VjBGiMX0FxA0JOi5sDcab/6PrWAB2X7RDFmSwxvJHi+iHuZ1u/ViYoVwUdvalDe7m0i/Zy2Y+jvQxQnIe9IAbbi2HE8GmKG4S4/05xcyHuL4D3BfC8r/XcoU864sNrtkFPdAmYP2KZvBb66TcG05PpfkjQW1wD4lD3McyD9/0Cay6lM/pntX7HWr9YNpa+KfgPEn8lt7LNQmD1i3dGH/VzNshsmFcA7YQ9PH7gM+/85Bve/9/effBdv/7W+Z8dfdvwWfNe/upX/9Pyb654+7de/auW9kqQpQjZ5T1o6a9SvJ//n/u37/yd7+8dvvqV7zv82b+57tDoismPnPjTv779o28+8au3vcbSvlCl/crr3/Hy5vve8ksTZ37qO4NX/+zXb/v2NXMu+uynHjnuT37qB1/91qOW9mqV9i+2/+BvP9B89KEH3vD7D190+sLJ9zz6mX/+xz/95G81v/3F9973mQss7Ysgz1X2xFr6a+qlP9JPu7Ze+j5LvxbS1+knrquXftzSr4eXE/bwk7/27r+97A2fOufvfzDvdesnX/XA+f/msa3feGjZu0750t3vXfGe+Zb2OpX27w5e8eaDS++58BtDf/6Gc395+crPP/6uD3z5Xx7ccdHXv/yV/7Tq25Z2g0i77LzTnrPvFz696HOnr/6fl/7Re57xc8c9fvJzP/fBF/3yt77/8e+FqTLbWC/PR3R+fb30A5Z+U730/ZZ+M7ycSKc50hRb2hvy01qYY2m36LTFK1cf+LeNNxTrP/JTZ39gZN5HvnrZL15+xac++arXndh8zy9a2htF2jXPbXzr11/3E68OX3jX1974L2v+8NKz559w2fxn/I93/NXye/fffNy3LO1WyEwFfa2w9NsgPcmeDJb+pnr8j6TfDu8mQl6wtDcD7wrpj9TvW6rzPpL21uppj9SRFxtYqKSzYUt/W730I5b+9nrpRy39JKSv0BZOWPo76qU/x9K/pF76cy39nZC+yvjA0u+ox/8yS//SeulfaOnvqpf+Bku/s176SUu/q176l1j6u+ulv9PS766Xfoel31Mv/Ust/T310t9l6e+tl36npd9bL/0uS7+vXvo9lv6+eunvsfT766W/19IfqJd+r6U/WC/9Pkt/qF76/Zb+/nrpD1j6w/XSH7T0D9RLf8jSP1gv/f2W/qF66R+09A/XS/+wpX+kXvqXxbFkHBM/vvLJF3Hqf1kr8tDBXXt2HXzw6h0Htzz5dMXeew/ueOAgzmlEXjy31KC/59Hfw/Q3z7fYezVvkxNsPmMU0lfQyUabgxkjeRC7SXJOhKywsiC8EPScGc41oCwV+R2ZM2sSP84fzpnFuHEhS1PEsY7HBZ9xwacp4nY7Yh1yxNrjiHXAEcszj/c5Yu11xNrviHWPI9akI5an7j3r0P09irXTEcvTJjx172lfdztiedZtT5vY5Yjl6aMfdMTq1fbR+r7Wd8C+RlHya3z4nfFpEFbdfo/KV1PwS9GPJejnZ+IPw/tWv/rKHXccumvd3rsCBe7qXlki4gqiuykhGuMW9I/fr6B3/YIWQ8zektZzK3sv3HHwJTtvmLzrrh13/iiTBzgFI11R8p47pEhjnfH5JOlEyAp9OUaJ+A2Spa5RKqNRlS1qdUHruaXVdXsn77xict+BQ3t24FYENFPmUhAqvlNlWoBk+G4e0V1Bf68V6YLAxm00C+n9RMgKi8wqFolIi1sM2GMUtwTisDQ59Av5TeY4bP7+yilcpmN5sDwWU9wCiFsCvLlc1bVMJn+foF9AWPNFOtN9O379Ih0PS1ND55zaZvmIoSl4GO8ueoVFve4VLH8L6vFbWFB65IeYJo/peqGIMyyrh4MlWJZ2gOg/1/ptEl0M24nHQiEvvsOtEp8h2VG3bCed6BHxTC58h/iN0JFdFqlyw/yxndT0sQty9I7ysE9m3aLfGyzBsrQDRP/V1m8zzPT7bCeLhLz4Du3kH0h21C3bSU09Zm+TM/xG6Mgui1S5Yf7YThbV43dpjt5RHtU+o26xDRwswbK0A0T/L63fJtHFwHayWMiL79BO/rn1PFQi70TICodVv4XtDPVSZftDrp0ZfiN0VO5FSo+qvqm+l6VtijieWl4i+CwRfJoi7pAj1gFHrF2OWLsdse7vUay9jlj7HbHuccSadMTa54jlafe9qK9UO1QVKwZPWz3siHWvI5anrXrmcacjVq/W7Ycdse5wxLKtCNzPM/wYhsLMuld1bIJ4Jie+Q/wGyVKRX5HSi+ozWv6W1uM3v6D0yA8xTR7T9TIRZ1jHtf4eLMGytANE/4KWQptEFwP3qZcJefEd9qkvbuGOCXl5fqGqPWJ61hGmY3vspLwQz+TEd4jfCB3Zf5GyD6UXy9+yevzGc8oX5TFdHyfiDOv41t+DJViWdoDoN5A9HgcysT0eJ+TFd2iP1xbTZUfdsp3U1ONVuXZi+I3QkV0WqXLD/LGdHFeP35U5ekd5TNfHizjDWt76e7AEy9IOEP0tZCfHg0xsJ8cLefEd2snWFu5QibwTIS9wHTEMxEa95JdD8c+5dmb4jdBRuRcpPar6ZvlbXotf8S22DeSHmCaP6XqFiDOs1lLONDtDLEs7QPR3k50hD7aNFUJefId2toP8EeqW7aSeHsPluXZi+I3QiV1O2YkqN1XfLH8r6vG7LEfvKI/peqWIM6wTWn8PlmBZ2gGiP0x2shJkYn+0UsiL79BO9rdwx4S8PP+eqi+I2xTpjU7ZXAW/d5sq0wrp77P0K+ulf8DK+AR4yfXpRHhfwd7Oza1Pht8gWerWpxOJH+eP52AnhCzNMFOPqWM5/eJdXwLrXkes3Y5Yk45Yuxyx9jli7XTE2uuIdZ8jlqdN3O2E1c5PVpXrfke5VjhhxXDIEeuwI9akI9bDjlievtCzPu53xPIsx0ccsTxtwlP3XnU7Bs88etrEAUesXvUTnnI9HfpMs23asdO9Z33c44jllcf4vNIJy1OuGLz6E9555PU7HFsWrd8hIUOFcevzC8IzOfEd4jdIlor8ipReMH88Tl4lZGlSXAw8Tl4l+KwSfBTWvY5Yux2xJh2xPPO41xFrvyPWYUcsT90/7Ig1W47VsB5xxJp0xLrbEeuAI5an/7rfEctT95626qn7XvVfnrbqaV/3OWJ5lqOnfXnWIU/7OuSItdMRyzOPvdqX88yjZ3+iV8vRU/defbn4vNIJK4Ze7ed49jFn+xNPjTrk6Sc85fKyr/i8wgkrhgccsTx179kHsLaW940ZfgxqH0qFOalVBeGZnPgO8RthZlnWmQNTe4vUHrQO5/gmCkqP/BDT5FFzbtwmrW79PViCZWkHiP7eVqZU3eA9erl2E/de7Wr9MSbk5TqXu6dL7SNkHWE6tscJeF+hvPpz7XGi9dwIHdl/kbIPpZcqc7KePg+xxsJMHXe65rRC5GdEpONyRvkq6D37rILhN0JHdlWk9D8B79jvrK7Hb5x9BfJDTJPHdH2SiDOsk1t/D5ZgWdoBon8d+R3kwX7H4lBefId+59Xkd1SdqGv3mN7onmp8RkQ6rl817W9Obv0y/EboqD4XKXtXelH2bmmVnU7AcxU7/XHEMvtbneCT8iuKD6ZfPcunIz4jIh3XWyzX/HpUfCG33hp+I3TkJ4qU3Sq9WP5OrsWv+HxB6ZEfYpo8putTRJxhndr6e7AEy9IOEP3vU7uIPLhdtDiUF99hu/iBvumyo27ZTurpMTRz7cTwG6ETu5yyE1Vuyr9Z/k6px28sR+8oj+n6VBFnWKe1/h4swbK0A0T/MbKTU0EmPjNzqpAX36Gd/HHrj6ESeSdCVrhO6bpC+i8OhZm6q5D+lyz9afXSn2HpT6+X/oOW/ox66a+y9Gvqpf9Plv7Meul/0tKfVS/9Nkt/dr30t1r6Z9RLf7qlf2a99Odb+nPqpf+KpT+3XvoXWfrz6qX/fUt/fr30b7b0z6qX/gpLf0G99N+x9BfWS/+opX92vfTfsvQX1UtfWPqLIX2VOUJL/9x66ftN3kvwpZDJ8K2teg7QFyW/hsVxxqtBWHXbdSU7ysf94kuAH+axDOuSilhDIq5OmVwcyvOF+CMJWVjOGO4Auk7yHMPdTljx+WQnrBgOOcp1ihNWDC9xlOtUR6zTHLFOd8QadcQ6wxFrjSPWmT2KdZYj1tmOWM9wxHqmI9Y5jljnOmHF8JCjXOc5YcVw0FGu8x2xnuWI5dV2xOcLHLEudMR6tiPWsh7Fsv59h/MV13Q4X3Fxh/MV6zucr9jc4XzD1R3ON1zZ4XzBOusrPwNeFq1fNRdQod9+XUF4Iejxj+E3SJaK/I6Mf55J/Dh/vG51jpClKeLYxs8RfM4RfJoibr8j1oOOWDsdsfY5Yu11xLrbEWvSEes+R6zdjlj39yiWp63e44jlpXvVLvaKrXrWx8OOWL1aHx9wxPKsQ72q+3sdsTz9hGdb6+mjPXXvqa9eta99jlie5eip+6eDn3jYCSs+n+aIdYYj1uk9iBXDDke51jhieep+eY/KdZYj1qgTVgyeNnGyI9aZjlie5egpl6et9qIvjOEuRyxPW/UqR0+5YuhVfXna6tmOWJ5128t/xfCII9akI9YeR6y9jlieffJ9jliec4/Wv7d57LMgrmj9djiHP1YQnsmJ7xC/QbJU5Jecw8f88d7kc+rxG80pB5THdH2uiDMsWxMeLMGytANE/9mWYptEFwPvTT5XyIvvcG/yX/ZPlx11y3ZSU4/Z3wo1/EboyC6LVLlh/nit51whS1PEcZ84V9+q7A45Yh1wxNrliLXbEev+HsXa64i13xHrHkesSUesg45YnnXIsxwfdMTa6Yh12BHLs2572pdnHfL0q08H3d/niOXpo80X2vlR7M80iU/VvjemN7oOz7ts6vC8y40dnnfZYP2i8+Fl0fpVZ1Eq9NF+siC8EHSf0PAbJEtFfkf6hBcQP84f9wkvFLI0RRzv/7lQ8LlQ8GmKuP2OWA86Yu10xNrniLXXEetuR6xJR6yDjliHHLE8dd+rtnrYEWu3I5anfXn6nAOOWE8H3d/niOWZx/t7FMuzbt/jiOWl+/h8qhNWDJ622qt9AE8sT33Nttuz7fZsuz3bbrfDmm23f/zb7Rg89dWrtvqAI5anvjx9jqfu73XE8qxDnu12r/roXu1PeObRs+/rWY6eun86+ImHnbDi86gj1jmOWF7z5PH5XCesGHY4Yt3lhBWfz3DEWu6IdbIj1nlOWDE8HXR/miPW6Y5YaxyxPPX1LEcsL1v1rEMx9Krd92oen+q+0Fuu2bbjx7/tiOGljnJ59uU89XW2I9aZjlieba1nffTUV6+2HY84Yk06Yu1xxNrriOU5D+A5P+G5P+f+1q/t9cK9YUXrV92ZHPlMhKxwVkF4Jie+Q/wGyVKRX5HSC+bP9GJ5f7aQpSni2B8+W/B5tuDTFHF7HbHud8Ta5Yh1wBHrQUes3Y5Yh3pUrrsdsSYdsR52xLrDEesRRyxPfe13xPKsj4cdsTzt3tMXepbjHkcsT5/jaRP3OWJ56n5nj8rF+6N6xSY8+yae7bZnOR52xPL0X5725Vkfe9VHe2J52tc9jlj8jWwc3xStX/V9mgpjp5MLwjM58R3iN0iWivyKlF7UGNbyfpGQpSnieA34IsHnIsGnKeIOOWIdcMTa5Yi12xHr/h7F2uuItd8R6x5HrElHrIOOWDsdsTzr42FHLE/78tTXPkcsT/vyrEOeftXTJjz9aq/Wbc/66FmHHnTE8qyPTwf7us8Ry7MPwPcgYH+5SXyq9tkxvdGNiHRF61d9E7JCH/rNBeGZnPgO8RthZp7r9NmV/pVeLO8XC1maIo7X1NV3DS8WfJoibr8j1oOOWDsdsfY5Yu11xLrbEWvSEeugI9YhRyxP3feqrR52xNrtiOVpX54+54Aj1tNB9/c5Ynnm8f4exfKs2/c4YnnpPj6f6oQVg6et9mofwBPLU1+e7ban7j37AJ4+2rM/0au26mlfs+32U6Nuz/bJZ+2L42b7hcfOvnqxXxiDp7561VYfcMTy1Jenz/HU/b2OWJ51yLPt6FUf3attmmcePfu+nuXoqfung5942AkrPo86YcWww1Guc5ywYrjLUS7P9SFPfZ3tiLXcEetkR6zznLBi8LSJMxyxPHXvVbc966NnHYrP5zphxeBVH2N4OtjXaY5YpztirXHE8tTXsxyxvHyhp4+OoVftvlfz+FRva73lmu2b/Pi3HTG81FEuz/6Ep748++RnOmJ5trWe9dFTX73adjziiDXpiLXHEWuvI5bnPJPn/Jfn/kK+BwX3that36Ew0y4jn4mQFUYKwjM58R3iN0iWivyKlF7UPmnL3yX1+A0XlB75IabJY7p+rogzrOe1/h4swbK0A0T//w8++dskuhi2E4/nCnnxneknfiv4Xwany466ZTupqceVuXZi+I3QkV0WqXJT9UeVm6VtijieA8nVtyq7Q45YBxyxdjli7XbEur9HsfY6Yu13xLrHEWvSEeugI5ZnHfIsxwcdsXY6Yh12xPKs25725SmXZzl6yuXpJzxtwrMc73PE8vT3fN4O+0ZN4pPqPyo+mN7oRkS6ovU7FGb2USr0l15dEJ7Jie8QvxFm5rlO/0zpX+nF8v48IUtTxPHczfMEn+cJPk0Rt98R60FHrJ2OWPscsfY6Yt3tiDXpiHXQEeuQI5an7nvVVg87Yu12xPK0L0+5PMvRUy5Pv+ppE57leJ8jlqfu7+9RLE8/cY8jlpfu4/OpTlgxeNpqr/YnPLE89TXbB5jtA8z2AWb7AO2wZvsAs32AbuqrV231AUcsT331qp+41xHLsw71atvhqfte7Zt45tGzH+1Zjp66fzr4iYedsOLzqCPWOY5YXvP38flcJ6wYdjhi3eWEFZ/PcMRa3qNyeZWjt1wnO2HF4GkTnuV4miPW6Y5YaxyxPPX1LEes8xyxetVWZ+vjscljr9rXbDs0a/dKrpc6yuXZx/Qsx7Mdsc50xPJstz3rtqe+erU+PuKINemItccRa68jluf8hOe8ied+Jj7fMwpxRevX9gVifYt8JkJWGCgIz+TEd4jfIFkq8juyL3A58eP8mV4s7ycLWZoUFwOfkzlZ8DlZ8DlaWKq84r+JkBW2DAXteyby0u82fZ4CL9mWcP9ChbJdlmtLht8gWera0qnEj/PHtnSakKUp4riMThN8ThN8miJuvxOWKvtekCuGA05Y8XmhE5Z3Hicdse5zxLrfEeseRyxPfR12xHrIEeugI9ZuRyxP3e91xLrbEcszjw87Yt3hiGVjA2u/sO/EbTe2DRXa0tHcttvwG2FmG1mn7VZ9Ksyf6aXDvslIqq+AmCaP6itwu2vj5cESLEs7QPQ/P/Tkrypr7nPm2k085/2mFu6YkPcswq3al8X0Rjck0k3Yw+MHPvPOT77h/f/t3Qff9etvnf/Z0bcNnzXv5a9+9T8t/+aKt3/r1b/WYXlutfSn1Uu/0NKfXi/9Akt/Rr308y39mnrpr7T0Z9dLf5mlP6dW+uJI2Z8Lbyey0k7l/bxavMOJnZ2FK75l6XEupy87fRiy9M+vl/5CS/+CeumfbekvhfQV9Ddh6S+rl/5I/i+vlb74vKW/AoVq/Z78Vx+a+93f+NmB3/3rb+09/J01j37i6jd8+Def+5ZPnf38V2z++7d+c72lvVKkbcP3iM1edeRNpXyPWfoXVuYdLrG0V6u0z//P/dt3/s739w5f/cr3Hf7s31x3aHTF5EdO/Olf3/7RN5/41dtea2lfpNL+xfYf/O0Hmo8+9MAbfv/hi05fOPmeRz/zz//4p5/8rea3v/je+z5zYWwXfpvahdafTzyPwXP812j9HdNZ+38T0FjaAaJ/ZPFUug+0iEYojWGEMNV2NOB9hbI4Lre/YviNMDPvdforDeLH+eO5hmEhS5PiYuC+57DgMyz4KKxHHLEmHbEOOmLtdsTa74h1tyPWXkcszzze44jVq/a10xHrkCPWYUcsT/vy1Nc+RyxP+/KsQwccsTxtYrcjFq9fYRz3A0bgfYV2uS+3H2D4jTCzXa7TDxghfmV6ie8WtJ4PHdy1Z9fBB9ftnbzzisl9Bw7t2dGH0GF6b4i1gqj4rgjTc49x/fRuHtFdRX+vFemCwI7xVnLj9H4iZIVrzCquEZEWdy1gNyhuLcRhaXLoF/KbzHN/9O/7K6dwmY7lwfK4luKwJ4165HJVfEz+PkE/RlgjIp3pvh2/p3NNVOVkaZsijutibs+/jodotp5bHuLKHXccumvd3rsChQH6+8oSEZcR3doS0QqBW9A/fr+M3vWHtAtKDQJzTCYGbmQQ6ybiM9vIPJUaGeM7BnFKE4ZpUxyYp7GSdFyp+V2foB8hrBGRjp2xSo8YmI4tZijMzOuEPfzkr737by97w6fO+fsfzHvd+slXPXD+v3ls6zceWvauU75093tXvGdBnIpZ1ijXC06FoJ7mtMnfANFfBlM/K1pEUd6lrfiWRV5+aM/uTTsO7t+14/4dP/JtBwKFdma0nv6+TqRTYSTMLGp2DDUrarZjMPxG0KYyEbLCEcegeuWYv3qOgQ2Ce1XejuE6+rtO73OM3k+ErFC59zlEcdikYmlyUL1Pk7lq7xPLg3ufWFG594nlOiz4sMNDenZ4ynmywyvjN9tEPxlmx4EQZseBQv5ujwM53Zwws+Zyc2+0V7ciOqyxYT6kYxln2+wnw2ybDWG2zRbyd7vNVp6E11C7OcRH3rxmHMOEPfzdwSvefHDpPRd+Y+jP33DuLy9f+fnH3/WBL//Lgzsu+vqXv/KfVj3eode4sUNvtyV62DtoMIb1gOuxtUxl6/CWdoDoN4xPpXspDMZsP3zLo9w4uWfXnZMHd1x1732Hdhzaced1ew/uOHDZvXdedf+Oew9WHpq9kP6+WqRTwRTB3R18VtNuym02RfqyKbwypRoWb264p/UQK39xwnRMVVnQsNcm8jpMccMkbzs+qYWYIpPPkg75LBF8Uh39ug5Byawcj5VnLOOHGlNpsPLiDAemXdf6HSD650GlehlVYuU4i6CdDdpYDGXzsrahlGn6SuT7KbDPAbLPPsoz5lPJPAI8mG8M20pkeC11C2s28rJbaFhjJE98Pi5Mlx9lVTpnu8L0vFRQ1nnCX+PD75iPkpk7Ah58EMvqQk6Do2ZYxxJ81CayEcBjGaL9/XxD88T6qPwWzzjOgfr4C1Qf0Z5NZmU3IxRXNpxinfaLdylfNVKCldsGGf0vJdqgdpMQ3Ab1Zcg3EGbWqfi8DPJchhXEOzWk5eHdGNGOJGhZbrRt25R8tKcmePi6Fug3AB2HdlMTc0+YwmU6lgf1cG0JpqrztxCt+eE+gTtOtFiPMW0M20tk4DKO4YbWL9f3/9qYwv89amewvehm2aLuOKjyM7li+V3QYfkpv7qN4pQ/jvr6+DHSF09ZYjgW+rqZ4trpy+JsKkYNtHkztPH7JtjrnxFeAbzY/vnwz0LA5/QxcF/M6D8NbcUrWroco/Tx90TCRWw1luF2jtOHRD4XQNw4yW20XyNbxUPAFWz1MivjRSQTYi+uiY36s6CmDw1/RPAzuRoibiBDlnu/O3n+5OBDHy8ovcnC73hryhJBf6KgN10thfQVdPU8nIgKxFuNMxZT3ByIMxmiTa8h+ZbUlC9Hf4jfFPS3Al2VsmgKPkOOWCM1seaH6TaK9ZB9bgzcDqm2P5bjSGvSSPmhE0jWQsia8kOcPoi/lR9Sfd0YGi1ZO+w/Pst0spBkQuxFNbFz/ZDhj4Tycm2IuBw/tPMHl+37yKbHVhZhpr/tF+/YDymbPEHQd1jPz1F+iH0N+qFFFId+yGRQfqhmm3JOjv4Qvyno2Q/llkVT8BlyxBqpiWV+CPsAVg+VH+L+3XyRH/RDPMZYOG+KZmzedCysY2X97hi2U9xIIm5cYEbeq2FyHf1V6xve08aRPEZbKNIFyIO9Q1vHNDz3YPTLQTfLSD6s05hPlE/11XFecuW8crr5CTosl1T/nrcMqN2BueXCbcUp1FbUXCaW856GFedyzO+0FnCu3nFw887J/Tvu3LzjJft3HOQVmoL+Lptp4ZFYILoYeHfwXPqbl/14NnNc4LTjqWbXV8Az81Wz+eyVVgiZjyWflR3yWSn4dHspdiXxUTPXHfaaVuXIifiNMLNW19mgMU78OH/cG6k5kzJRUHrkh5jc2qkRtGGZFx8swULPj/QvaHmvpuCxjHgsEPLiO/ToF5OnxpUUXBG4bN50HmpFANNupHwY/U81p9JdSSMNbKFS9XEiTJelan2cmOXTVT6rOuSzSvDptr9cRXxSG9pq+q/5uf6St752uqFNrTqpnRkdrgiPs29AfuowF/fkWLfoGwdLsHiG0ujvJH+JPNhfqvYE36G/vI18llr5Suk9tRqpNoG2W6ndNU/zVCu1MbBfNvoLwC/vyfDLqTyqnRPKT5StDJZhbSQsNTo4Wivoik9OflJ8jmV+UnUBy2BTQi7u68xvg3U9YWH6+RTXl5C56k4SNbpVfMY75DOeyedo5We4Qz65OzYaHfJpCD7d3unDMw9l/vYt5G95pyKnXdf65Z2KJ4G//Xnyt1Xz3+E4J7tfYviNMFN/dfol7fwD90sW1ON3pF+SGhehPLwawLqN/2wmdLAEC1eEkf5XqV+CPLhfslDIi++wX/IfaByHuu20nmDej0Z9jIFPi5fVx9+k+rgA4nLqo9EPQ338rUR9nE8yo24aifysC9PlVD5R9clTdWU8Qa9sXfUJurjyle1XeJW95m6CI35FrVapejMMvFuztZftOHDueRdd+aOp2gf3HSxbBeNdVYsIl23O/uZ0UTbeMdIneMTA9jOf6LjceS63ikztaNvFqz7BwpJ8hpDXJ1CrH4xVtlPTymeA6P+oVc/VTk11mgFtKLVTs0HpGiWy94s8zCtJd1nQ8mGe1ybybPR/msjzWJs88/grdeix7IKWfpGHoTDTBhBD6Xh1mC57VXvC9Eerj7ma+JS1aY9lzLWiPJe3nnmu9XtjU+n+ito01Zfvdv7LTl1gvi4HGh5H4FEqxoyBd9kZ/ed9donIlT+e+y+E/DF/X6QyVXlPlanR/yOU6T9klGmqfqjTQilfMJKgV/MGao431T/trJ9ffCHHRhG/QbJUtIcj/Q3VT8f81e1vGO7nIUMof7v+BqdL9TeYtqzucR9gnN63628omcpoO+lvzC/JZwh57YMa85h98rHaiZAVJrjd6w967Fh2VLwv6L4B06s+BuKzH8bd0Uo3N0E80n8P+hKvpN3LKMNJJfKFkFcWmP5otVUnEZ9urDvFwCe/sFyfA88YZ3z4HfPB9I0En/kd8lFj4Fxbv7T13K5PNG94Om679rPsUoy3Q/s52nqZmnerujbN+a+69pmq17n1VPUHnkFYVU8PY/qyftyAkD0G7pcZ/Vmthw7XVTeqXYZmCx32+Tbm1HHEV2uaJldDxOXs3v1q47mf+Nr73/Hn3O6ZLPwuZ+7oGYK+w3nW9Wr3Ls6pxoA2Mk5xuHvXZFC7d2v219bn6A/xm4L+FqCrUhYKa21NLNtxq9Yej5VPyj0la/Tntep+7k0N2P6k1pSHKd2wkD2EmT4nhomgww8pGJ7pf67gxScWjPY5kO/XnDBd1hEhq/mI/gSPIN4VoVw3zKNPpL0iTJdtLEM2tX6NGGVr/wNBryeXjUGUXJaPGJTdptbTz+qQz1mCT6pN4l/jw+9S67xnER9Mh/2mtdRv4utqOO3trV++ruanod90HfWbMD+8lq3m/rDPwj7Q0uferGH0m6Fe5dyscTtg5swzocxl80zbqD/TjXkmztNAmOlbY3hR0Hkqmy9mHbS71ojp1XoT2hX77NSeV8vb46NTMtxGdtwu/9eUYH59ZArzjoqY15ZgHhiewtyRqBunhOn8uP7zO67/nD4GVf/teYjkrGiH2RfwGX4jzMxznfk0NT+g9DICPFiWpojjtlHxOUXwKQirnVzDwe2ieINcSnRrS0QrBG4RtMnZ30vpncoaYkczn2z5EzNzdJUXEz7K0i/ecZFheqNTfJod8mkKPimsiwWW0c8R9E1B72gaFr+C6G5KiMa47UxjBb0rMw0L/cQzPpddeYoqRxnHBEaRyFO/eMdFXQheis8lHfK5RPDhXsLbqJeA/Ct4y9ea9xuEl+z5a85Uvxb1ZUF5/rLd+ShXQ8TlzHqs+fDLfuWSk3ZuKCi9ycLvuEqqUeQlgr7D2adXqVkPvF8vBjUzpmY97J2a9ah5IearcvSH+GqWmmc9qs4gYNzamlg26zEI6VN1+Wj5jG7wSWGpmRCjN90MBr1SxD7J6H8VRk8/Q7MSSt9BvOsLM/3R5tbvmMAaLZFd8Tb8GJoivdF10SfOwXJCOfEd4jfCzDzX6Q2r+qH0YnlXM17qo298h1HVFYFex0LbHAkz7bco+TU+/I75YF0dJT7dOqWWY+d1+SBWzrea6vJRO3Y6bIMr33nGdoF+lPs06yCO9b8e4vhO3esg7oXwzKGf/kY9RH/8+ow71tSJKG6Xqp5GK4Q87U4Jf3pY81SnhLFt4tNo/wNmaR4bLs8jr0SOAh7LHgPP3Bn9X1OfHGcxK9hh8k7cp5KN17HjP6lpx9z3GhX5ULP6lg/lr0coDn3sKMVh+z1GcejLbgY69qf9hB0Dz4jOEbKrfhPX66r9JkxvdB32jSrbZkFxeP8q2ikHZWMm8xMffKhwHyXqlGVDHeX0u02GslUL9nNG/38SqxZqZfU24ovPyCMQRgzs+4z+/5LvqznOlL6P28TUqfqafGc/EzPNGjiun97xFyGupr/XinRBYPeHqZIbpfcTISsc08/EmMyzn4mZ6fVVuvj3i0QazxEP69EDa1RgddjLW5jrcXjfV816csTjqH0JmD/Oe1PIohY/5sEzxiEftZiRs5BSFyuG7bNYs1izWLNYxwArZ2SI7RSfjUQ/yKO3qgvVmN7oRkQ6bt9qtjdjue2b4TfCzDzXad9GiV+ZXjpsv0dT7Sli8qxuU8QZlu2XKrunytLyvrpNLSPytOs4YrTN2Kl+UE45I65aeUlt0Oim3ZfNQG4f0TzL7im0EfUA0X8UZiBvHdEyGw8Las8X2pBhcFo812FxVeprHMOcc+IUH9Sd5QF5KrtH+ttbv2rf6QDFpVbhyspoJ5VRAXGqjG5v/fKNvr8FZbS79azKIGffVyH4sQ0NCnrEYxva12KMq6pKvqESfmWz5qeX8DsI/K4Ee7B8huBqdwuV3WF9ZrtTM5Wq/qfaA/QJKb/EvAuBldqHbOkHgy4Dwxsg+peLMme7KzuzxuVq9D+VWa6my26UK+oqZ5eCOs+ZsgO1o0K1A2zH/QILy5rLtV1dNjyuW29IlKvyXygnl6vRvymzXLHfYzgo70TICrJcUVdcBqq9RvqcTZAsawxqRWYuxbFPxGflv9EOcspc6ZfL/N+JMue+v/ILufuX4/yanfFvzQxvPrh3/47W1HCgkJrKLUL59X4LRPpAaQt6t4DilPtMLYgY77KNSOw+jf5XhcpT7jeGnC3wWNzdWFywd15b4Nu5NZ7qS1UzdYzlGJpqDFeXiFGI9IGwCvEuBrUtHYuBe4HKuykTs2frXZT1CAyP9xa8P9FypHo4QciTmgFGeVIns1Lr6MwHWzQ0I27RjP5DmS2a8e5Gi4Y64hZNjaDVyT6jVydy1Wx3k+hR96pF41NyheCjeqfcG8O0amTVbqTHOCn9KPtSxzHUXozUKBj3x4TgOwrG/LAtpMo2BtZN6gZG1E2T6JWdYN1rEp+UX4ohZQs4ctxOI2KescJn5YfUypLaQ4J7rtDP/g34grLvIOeO+I3+c8K/pPJQiDzU9aXqdPPRXgE/2vsWMc8cuI1GPeTuW2R7MNwqNo+29GnaK4h+5kLiqbpY+I5tHtMbneLT7JBPU/BJYV0osFK+RPk4x2NpJuJJRHdTQjTGLegfvz+J3qnqjkEVU1Eidwh5xVQQf4WFW7c2Ag1fxoRN3rMJq+qkOabnLqnJMr9VT4cE/wru69HUtnrDrnn84VHUrwU18irbEo9yqaMYOUfQPvTu60cf+8hFR45Q5W61NHp1dOPZgr7DrcFvUt0qPmamFmbQdQaSQR1Bq7k99E05+kP8pqDnI2hVt71i3MaaWHYEDfXFC2Dd9jG8gLikVZexm3W0ZbHu0HIhS8qPYd3mBXQ1sa38Jeerqr8sMvlc1CGfiwSf1CJ+jv9TfJTM7RbkTh+dSoP2XdY9f3Hrlxc/vggXdpzZelYX6JWdti+Cnl3k+sqLM0zTKJHvHLBP3m7NecZ8KpkHgUcgjBh4u7XRX0Btb02fKrdb8xCgC8cgs2dEj9UxyGrbrXlSALWCqPiuCNNzj3HtJj6vor/rbLeu2Ut4kVnFi0QkD0RRN2ogiqXJQQ0MsVdRZbs1lsc1FIfrCdcCby7XIcHH5O8T9Hx9vzqAabpvx0/1cvjCB5Uu/n21SJPqcefUzBh47aDhiKW2bnc4SZL9GRHejlazniS3o6kDkzzxjGnVFhrulVW9bg6x5jtiDTthxbB9FmsWaxar57DU1gs+DIvtAX/uEX0Xz3ZUHVFi+tSE6vIO+SwXfEZEurptXzMhs+Un9WmOqhdcYHqevEf5cIT3ylHNU21Fi4FHeEb/FzDCe83odJnVCC8GNZrGcghBj/Y7XBAcVQuCqFfu+6tFCKS3rcKpLUDKFnLL6M1URqntgigP76H5Ayijn6NRONp2zmc6FT+uh7nbYo3+bTAKT22LnVPCr2xWYl0Jv38P/I7Cttj5yu7Qz+Rss1P+LOUv1B6fZpjpe3ibXdlYhMte6Ttnm11qy6zR/0dhD9wWsW2Uyaf05rzNbqhEjHGRPlDagt6Nl2AZTvwbJzlyttmpuyLYRfy2UHmqyGKY3Wb3Y7fN7qoSMQqRPhBWId7FoLbZIS7X2JSKlarqbtD+I2HSKQ+relhGr3oCas1B5X+E4tT8MPNRG8dj4BbN6P80s0Vz6knJFg11xPnKnTkx+nZbcbiqqS1pqZFNbjXkbSbKTlVPrd32lZyDLSxrCHr0MEpxPMsVgrYFe9eNXjXmJ+ewmdpaZvTttiCabtR2Gb7CFPPP299ULyrXFnD09MqStTPERVsoW3tGH4AYt7d+eR3pS8IHGOZQm7zl+Dvs5vAVXNjFYH+n1saVPRpdh/Y4ouwR858zyktdI9yurqYOofEVZJhH7ka2s5vUFjhcuzydRnzI55nEs+o1vs8U8is+zQ75NAWfFNYzBVaqnnd5C5yJuJzobkqIxrgF/eP3y+mdquYYVDENlMgdQl4xKXNWfIoO+RSZfM7vkM/5gs+MLS6thw6X0V+pJqQsnx0u9L4S9WVBjaYMf0Tw49vSMC5n69w3m1s+uufxd/5Gyu2muoTK7Z4v6E1XvGt2ImSFV6ROp6itcyMUh82LyaC2ztVc/HxFjv4QvynoeetcblkorLU1sWzrnLqd+mj5DN46N9Gqy2rrXLdl6fDWwwutzl4oIi2OtxJj3EVAX/XGTZO56o2bqFOWDXVkOk0dMDUZcm/cNPpnQpnzFjD8Xrthpm7cHAYezDeGsu+ePovakJp+Xm4B4+546tuNVb/zi+mNrsM8VLZj3jqJ2yp5kwx+/5i3ieNHhuZRHH7FZT7FPRfieLMYBlVvcBPU1TRtEwSW2uj0bIpD/2G6UFNPF8Azxpms/I7LHtOntsk2OuTTEHzUFBz2m7p4DCF7Zpq/dlPzqz5HZqZTd2Q8IVjrV/XdeNjJfTd7LiufCwSfqnJ14UNXZxJd2cdPCoFb0D9+fya9KxtO2d/K9Muu8Qkhz/TV0OxoVTGeVYgB16ZvHdM8y64owqYR6e8Ym0p3OzzbisK88NTTbY7OYriz9cs62w1dFp7pGwA5FOYmkkFVX9XkG73q3qtr2dTs30gGb9Ql1+fRirK2W0XgS/XVgd5cWTceZVkHhKwdNm0LrM4vEJEWtxCwuZu0COK4m7QY4rhbtgTi+MTCUogrKG4ZxPHUxXEQxz7teIjrpzjcGzYXnjmo7pzpPaZbvWoKl+kC5Un5lNyZXvQh7JPVhQaFwLX38wGrnzDis60eDxD96xP+SH0GOFUPFgp6vHvI5BkjGTDtmEhndURN7xhdNy6cwPzwysMiiOsX9KybxYJ+EdHE0Awz69x8ikP/ZjzVyhZ+9tk+Ha5WfIuSX5OV36WmlLaTPGOOfBBrG/HBIQT2dX6lpF5hPcFh16WtZ55e+jD0b36ddkxg+jFKb3Hvhno2uro8PQ/51erUWJhpB9ynUvlE+qtK8vlbIOd4S84urkA3Vb1D38f1TvkYpOd6l6qnqJNmmFkn+QyFWn1CmyybTi27Rpj71Ub/+1AGvIcO8zdOsg9VlF21J+1WyOfRpRzYxvD5FdWGqbJSl+yMl2D1Bb2T6FKiXwR8VXvI9GYTAyHtnweI/mNQVgtXa8xQIsNwicyDJfQLSQaj/4Swl5QfQPtfQJhG/ykxnZ6LeXkJ5qcTfQ1VT/GSpqrtKfcnUI+LKQ5l53ZxEfBn2iuJP8ahnTPfkJBXTfOk5OX2xuK+DO3V/6QpauxbVPDV/amyeo6QN7eshhP5YyxLNxBm2mOqjqA+/m5MY86piPkl0aarvsrNgP/ljH4++mr2y+gzsB7+CvVJ1K467pN8Q9RH1dbjGNVwLC7ffoovVD3D0U437BPaXepmPly1N8soTs1/ebelX5w3HXcsgRt/zyA52vXxbHmD/fAPEn5Y6TClczVGRL2aPMoPL6A4ZbNH2x4x/2yPqbyGUH08zPao2g9ljznnhHPtcQzy+ljLHtUY3HgqH121z13Qs/n4wRJ69vlGP7+1JqH6PUuEDKm5i6WCfgnRYP6xXeJ5LkuH9RJ1so7yY/RLIT8pf+w05yF3gqPe2P5TOoqBdXqcoEddmU6aRI/6Vb56CcUhX7YzVWdz64aljXr4TfLVjUxc9qtoE7i+wL7a6E8TNpHKW8pXt/NHfJNd7vxcyld301Z7dX5O2aOyL9yi8hayL9X3SZ1CyO37qLaWfTum47WUqmN6TD+e4NPokE9D8FHzSUXJr/Hhd8xHyazqC+dHlc/8zPzwesx8x/womdUcMc6pXtOcSsN+Um0b5PbO6F/SnEq3rvWs5j3ZbnJtl+dE54MOlM/eGKbyH8J0/Rluh35sjvJj6Mdz5juRvmrfi30V+jhe41XrxWh72HYaTQiufn9O1fnhlB+MIadNxDpheVN9dJ47Rntj36t0ibaX6ofg9uRd89rLr+4RybUPXn/Adn4RxanxirIFo+tGHwDzw7aQatNjYN2oMQO282wLOD5YQHFY/tyPUP025S+5jNG/Yrlc2nrmOcADib6jsoOU3bTrH/FYXs3hpcaVR7vv2Ct2w/O+6Huq2g37EPTn2EZb+638XR89q74k0veX4PDHFAp6Pw/eY7rnUZ65j8TYzyd6y+dgCb3hcV/kdYm5hAVtZHgBybCwjQy85mL0bxQypPQfQ6pPOBRm1sUK9WYA2yAL3KdE/EbQ9jERskLB+jN+yg5iUHuXuD5hHLfJygeqeq6wCkcs3n5fs7wqf4CCxxVrgX4Txa2DuG2AwaGf/sb8RLtesnoKl+lYViwvvhMUbWyBSLtAYB+r+rCgHr9kfVBjgKr1geeRn+71YQHF9Vp9wPIyuZWOYpgIeSGnvmDZVND/qtz6Yvhe9UXZnqovHa6HT0T/NC/M9FXnwDPqDvksJBk6LT81x3Wsym+8Hr9k+akxvGf5Yd2qUn5q7o/nUarO/WH6ozX3x3uwcSyIc3+fprk/NTbFtDz3Z/RfgLm/x2jur+r8Xhfn6/qP9Roxl1nu/FPOGnHuPnVcI76sZP6pANxLRVqu20i/UMhh9Lw2zDS8N8fovwRjKT4arGwW5bqUMI3+K4n5FDVnkJqnbTdnkJprW0Jxai1K1Qmj67BOrDrW68Zs97huzOu/XL9iWCewUrKOdyArlyOW1XGEhfvQ1Nzspa1n3of2/cx9A6bzbpR/aj5N6TQ1n9ZOpzymyd03wOOVdnPn7BPVuQtsE1VfoGwNCnmm+gLKp/M1NvNaBqr26qLvVusO60owRwEzZ49Y6tatdnvETB7V/i9IpMOyGhK8Juzhh+lgeDguY15lc3aLQU+vOUHLUrA8bUIX5/QmCsILobfm9Docs5yIfXq0I+zTq71lWF5qTIV94BPHp9KU1THsp57XeuY6dsr4VLrVJZghVF8vRHl+vjEd17t/mlqbz9kzlNqDn9su8t4poz8b6mbqLJPPOlPxz8d6nYnbRVxn4n6Osq9UPxzXVVQZ8DkEo78IyiB1lon3Ao5UlH1cyK7mkbFucD1Wa/RDAjdV71Fu26/N9f6yRNva7txv1X1fvJ6fO7bG7xwYdiC6bqzLHs2xNX+hNDW2xjMAPCeDfTTcq/EQ+V6ca071N43e/i4b+3Kds7jNYF8DVOdQ1mspHzjfbTZn7fE6kn0iZIXsK3cMv0GyVOR3pL+xjvhx/vBqm/wvDLInQq0gKr7jGoxx/fSO73y/jv6u84XB6+j9RMgKG8wqNohIi9sI2GMUdz3EVb2UzmSu+oVBLI+NFLce4q4H3lyu6wQfk79P0K8nrHUinem+Hb9+kW6MMFKtz7WCN7c+u8E7PLy6XA/XhnI92N8NISfr2+Jj6NAmt+Z6E8NvhJllX8ebXEf8OH/1vAnv8zIuNxKq0SAthhtBMqTnj51w6Q2LdBxMYwMk86tg7HKo9TwWZuaLz28qa8d3PP+B6Y1O8VnQIZ8Fgo8aB/K9E4sScThntZjiToZ0N1HcqRDH92mcBpg8Xl2TwLxGYMayO2n+FF78twXolKWbDVkZ3ADyYFr8ew7RxmDX2A4Q7b8Fu/oZsiusxWxX69vInbKr9aGcz4IO+SwQfFJ7CCzuOpFX1SJzOW+EOLad60W+LG5TAnOzwIzlc/z86XRc/jGYx78R3lfwwDfmenzDb5AsdT3+jcSP88fzVVvr8dtSUHrkh5gmj+l6m4gzLCu/wRIsvsrW6H+tVd+aRBcDf79ym5AX35l+op384vh02VG3Rcmv4fI7rl+Ydysf44P+Bufv/iON+9FP9YeZfs16nuyrnrF4Kt17yFdhei47VU/q5n+LyONYmKkbnm9X9n1jgs/8RH66VZ48zkY/i+X5QSrPrRDHPjo+n956HiD6pVCef0Dlqeqi0jO3S1X1vFjw6baeuX3Z5sgHsfiTGdsJi/Vs5WR6xvTbKd3NEId0OOpCH3az4K3wDaOdDf7ZuM5bmQ1a2gGi/8GiqXR/XtMGt1EcthXYLqIcqAekPz3ofA2W0Jfl66/EPDC3JagrLAv2v0b/N4l5VGVb2B7wXKGyh+0iX0qnN4f2vFHPa0t4D4a0LQ4Q/RcSc+tbRHpVj44nWW5qIzvXb0zP/UZM16kfUTK3q5NfrVgnz249s+1+Cerk16lOpmwEZeZxRFU9LxB8uq1nHiPc7MgHsbhduJWwWM9WTqZn/CTKrZTuxRCHdNgu3ArvXyx4K/zcduFfx3XeymyQx8VG/wmwQesYqfFqygZvpjjUKbcL7fzh2URvcg+GdHs7QPRzW3lR7YKqr+hruV0w+nmAye2C8cV8pdoFZYu3iHwpnd5KWDcILNQztwtKp5j/Gyj/Rj9f6FS1C5ZezUfcTHE4H7GV4jZAHPdZcYWA5zhwPoLnRvCu87L5CLYRno8YT+QH933wfB/O211HcSdD3AaKOxXiePUB5+2up7g1EMfnTK6BuM2QV5u347u9Tm2973DdTn6OJjUvWpT8hpDXHuDaM99Nvs6RD2JdRXzWO/JZn8jPBsHHygvrSzfWWQ2/EWbW3TrzZBuJH+ev3soIehvWCqLiuyJMzz3GdXOd1fheD3FKEzxzjnm6viQd6iKId32CfiNhbRTpTPb+RHrEwHRsMQW9L1uPNIwBon8BtFY/sXqKvowX6oNbTJO9bMcEy2D0V4AMfFpgI6RR+dpQgnnj/Cl9vHC+xgwCU+XresoXy7CRZDD6a0VPoJ9oWB71Lv6Na73Xl8inyollxVauLD9cTka/MVFO1wkZsE6ubSMD01xfIsMNQgbh3a7Yu+/BlncLFPhbRrxOy5rnddvrBE5ZMG1EKzSLVLsMNoh019HfDSFTzLn1pY58GmrPjoM7SvLOnnteCc++oAP3Ry1dDEOhozYtuw01/EbQljcRskLBXs74cf74fPdGIUtTxJXtJ2vHJ5ap7YVrlenmg3v3lxVpbuNaCLE4fSCsQryLwYoahwIVVH+DWiKywMs0mCc1Fc/dSJymRafGgfON+YnO5ScrHA1HnfIyGOqfh2dYVXhYlzt04+EZDt146hHLi69NxWXmfvGOu9iYfnOCz2kd8jlN8FFL42ybuATYDTdk+I3QUV044obU9ITSi6ofllZNM/BGNGsuvgMdpJfT0B23xbJeax4vvzBXr4bfIFnq6lVt6VZXbampCb4GGrcbvRToOK5fvOtLYB1wxHrAEWu/I9bdjliTjlieefQsR8887nLE8szjfY5YBx2x9jli7XbEOuyItdcRy9MmPOvjpCOWp0146useR6z7HbE8db/HEctT94ccsTz1ddARa6cjlqe+etUXeurL0+d42lev9pk8bcKz3fbSfXxe6IQVg6fde+r+XkcsT7v3zKOnn/DsA3jq62FHrEdav+q49GbiU/XzFZh+PANLzR+k8qjmcYZb/GM4MnV/x6G71u29K1DglYYrS0S8gOjWlohWCNyC/vH7C+hdv6BF7DitdEdryUJN9xqdTSvVPDFyXkF4IehpJcNvkCwV+R2ZVlIntTB/PK2kTkqo3eDPgmeMQz6pHewYd8AR6z5HrIOOWPscsXY7Yh12xNrriOVpE/sdsSYdsTxtwlNf9zhieeprjyOWp74ecMTytNW7HbGeDuV4yBHLU1+e7dBORyxPffVqO+SpL09/72lfnj7Hsz562oRnn8lL9/F5oRNWDJ5276n7ex2xPO3eM4+efqJX+18PO2LxNAmOq3maRI1htyT4YPotGVhqPJzKY5enSUzEc4lubYlohcAt6B+/P5fetZsm4V05O1r7WDvcYScPkPAuLZwOwt1mGBdC3kwdpl+U4LO0Qz7qcu8Rkc7y3aEeR1F/KCe+Q/xGmJnnOtNLapec0kuHu91GijCzqvYLTN55l3IrVn8GS7As7QDRP9Cyfd7FFgNfgJLruuI05IEF02VXuwZzyhlxlUvMsce6fBCLD5mibrkep8pV8cH0N5Rg2RGTGG4DGj6WgOUcBG++CMfoX90qrycOkJ705HPq8qUoz2sXpGXFtCjrANG/Z9FUute1MJWerdyVHdxAcYsEX4XJvrFq2S0VMqSwsLxOJnori8ESesPjsvs5KDs+UGzpy+znhhIZ0H7wSEmZ/fxCDft5+4K0rGw/JxNvo38j2M+/J/tBHafs52SKQ/sxHam2lXdaV21bMX2qDU9d2MZ2VPXCtpMFH2vj+JjTRMgKW9TFTxbU8sxpFIcnCtZQHF5Ecg3F4eF/bhuwPeNDznjIHPXBoZ/+Rh1F27+aPkYSBBYfvkVdpE4pWNnj4WnEwDiTld9x2WP6NSVYeAxQ1eUBov+t1jxArI8fon4AXspoOunQ1s7Pad8Rv0GyVORXsL8yfpw/Xo7cLGRRvuhMeMY45JM6vYFxex2x7nfE2uWIdcAR60FHrN2OWId6VK67HbEmHbEedsS6wxHrEUcsT33td8TyrI88rdkrdu/pCz3LcY8jlmc5evovT30ddMTa6YjlqS/POuTZn/DU1z5HLE/7mvWrx0b38XmhE1YMnnbvqft7HbE87d4zj55+4h5HLE99efZXX+KIxUub6gK7guKQz/UJPqnP0yCfDYCRcwtBzW3N/QXhmTz4DvG9biFQ6yqqfKpua+a1gU62duRcrKLmPlK2ofLouPRsIp5HdBtLROsTuAX94/fn0buypWfDtmqEU08sD6oxpVq1fHRNgs/JHfI5OZPP0g75LM3kc1qHfE7L5LO+Qz7rBR++BzMGXBq5cqHmiUsjOF1rLnKA6F++cCrd1Qun5xGXF/ibpnggZx3JjN/xYdeL94FWcIXZF8AYfiPMtMk6rvdU4sf5Q7eUf5cj1wDUCqLiuyLM9BoFSIbveJF7nNLVucvxNIhTmuC7HDFPp5WkQ10E8a5P0J9KWKeKdCZ7fyI9YmA6tpiC3pfd5WgYA0R/U6tWqbscFS/UBzeqJnvZ/Xwsg9HfCjLwHYGnQhqVL67Np9HfaFu3lPDfD15mcqHmHwR/zh96tbJ7Ek8lGYx+B+iA731cI9KHknfcMqyhuDUJ2rKv9qry53yh1y7LO5e/0e9JlP9SIUPqC6wsA9OMlciwT8jQ2R2R7OW4lLgklgqcsmDaiBZr1sva4drBfOxvZQGd3hG5qIRnX9CB7/G2dDEMhY7ayuy22fAbQVveRMgKBXtP48f542HRqUKWpogrq6Xt+HR4R2RZo62cBacPlLYQ72LAA8CzQ432fJ4OQw3GUkOIGO5s/bJjfzM4dv60xDUgh8LcRDKoWQC1M8no1czV9SKPpktsqDZn8EZdckPY7rOgOZvrcSaKdyGifDdWlHXjUZb1GiHr0d4hxru5cIcY7+bCHWJrKQ53iJ1McbhD7AaKwx1imykOP4/CQ3z8JMqpFIef6sG6woHbAtR7rJerV03hMh0+l/kUrLOsrzUibzhFMQTYyGciZIXTLH1fvfR3WPr+eunPtnxy9zMGw54D7yvY+EtQJxZU18nwGyRLRX5Huk5ziB/nj7tOg0KWJsXFsAPoOK5fvOtLYE06Yh10xNrpiHXIEeuwI9ZeRyxPfe1zxPK0r/2OWAccsTxtYrcTlqX3kut+RyxPm9jliOVpE/c5Ynn6Vc+67WWrMfSqX/W0CU//NemI5WkTnvq6xxHLU193O2J52qqnXJ76ejq025768uyvevpozz7AA45Ynv6rV23C00/0ajvkOYbxzONDjlizfvWp4b+8yrEIM+fcekVfvepzerVfuMcRy7M+era1nuXYi/3VIsycw+4V+/L0q/c6Ynn6iV6dZ/KUy1P3veonPPvkT4dxrWe7/WCPyuU5rvUsR8/66DmG8Zz39cTytAmuQ0Xrb1wn3QbPN0M80tvtQ2odu8La7Z0jkCYABmLXXIe+syC8EKb3NQLhj5Twi6Eh4gYyZPm9S2/d/b8mvnNCQelNFn6XMzZRa9qmq7kk+0TICneMAI9AvC0O1+fnUBzqxWSIv2tIvsGa8uXoD/Gbgp5v9ssti/lhui2gvasTgpspDvcYLSIZ2u1J2kD0tv9nsITe8AaI/udajHGj+BjRxOelJfxQPnyX2lu4tQSr7KazM0pkfzvIznvxtgn51DZWo79J0OO+KZNH6eamoHljfrA8b6P8GP0vifyo+mc2NQQ4Fleh7oxGPucAH9Yb1p92OoqBdbpd0KOuTCdNokf9WhzuD9xGcVh3+FJgtXdwA7zj/V1od3gD39szbmLspXr9u5n1emMJP5QvVa8xfZV6HcOLS2T/YMV6vVHI10v1+sOZ9dpsarZet6/X6jbR3HqNN7Pyra23Qpzh4j7ys1vPA0T/qYTNvjjMlBV1yPq9TdDj3li+/RL31N5GcZiOb+3Fm09vJhluDzP1gHLx/nij/0vQw/jqJ5+VrZtcHdr6ZcrWbwcCtvVJiOsX9FwWdwj6SaAxnTSJnssF/0Ys1CnvuTcdDQp6xBsg+i8I32/yYT29nWS/uaLs64Xs6jZPrFP/2jroYzaIvoHr+M0Jnpw2/rN954Ml9DxmNfp/FPpiX4f1APU0QphG/42EPzC+mK/UhwqU7m8R+VI6vZXiUHazBVU/ja7D+nm5qp+Yf66fqbzGwLpRvhVt18q/GWb6w+0Uh3XjFuKj2rxc+0cb+uq4xi1rb05vPbN9/TBhX6reqD5cyh7RTri9Qfu6heIw3Y0UhzrdRjKodhfpeQxo9HMXt35Dur1xsucFyp7RZtmeU/YZQ9W233TSDDPbA/aHymaxrLm9MR0NBl0GhjdA9AugDLi9wTNLt5Ls2yrKXqe+/Rm1N9i/5/ZmW4Inp0V/Udbe8O3wRr9C6KsgHlgPUE/c3hj9iYDJ/kD171PtTbv+vcmjdLqd4lB2vNXbsBmzw/q5UNVPzD/Xz1ReY2DdKN+KtsvtDfpDHvtg3eCxphqH59o/2tAHqb3hs5GIhXaRskesN8OtZ7bH8xL2mKpnMVQdw5s8qTG8mptJ2aPRdWiPNx7rsTh/CSQ1Fkd75Pa53ce12B7V13ZiXv9jyx5t3h/PglfQ6zXqBv1AMuBlIfMoDm9su4ri1kG6EXjm0E9/Y35iuf8k9UeCwDKeeN/BtRSHdyOwnnGOhK+mwjn39RSHdwrweeFTIW4DxfE1IzFYWdb8gkD2lRqG3yBZKvI7ci603dlfq2vVrrsqux2hIFR8V4SZFlaAZPhuHtGtp7/rXHeFVxApTfB1V5ina0vSoS6CeNcn6K8hrLJbJ/pL+KkSVdcXGYZKh60apsmpAdcS/kTICtl3bRq+Vw1oV+5mq+w1MW1TxM2DZ4xDPmsFH4WVc0FNWa3t4IKaefT3NSVi9In0gdJy1e4rwTIcrjo5t4Kpe5f4VrA9YuCRSh/DiHjHZl/TDLMdv+E3wkyTqGP26rNAmD82+2uELM2QdlFchik+jqYaw/oSMVSLEgirEO8wTpkq9m/WlvAeFPTKVI3+ocScwpBIH/uWyxrTeV8HdP2UVsm6gWRlmiGS1ehfAbIOkKxoqtzPwvUqrlIbSfaJkBWyq5ThN0iWulVqI/Hj/NXrS2FJs1YQFd+lrLhdzbmC/q7Sl7KS20TvJ0JW2Kzu8ragRlVDFFe2i4CDGrWYzNGCv79yCpfpWB71rU6Lw51PW4A3l+tGwcfk7xP0fDf6RpHOdN+OX79IN0QYBb3HmZDrBO8Bov8F8A4Pry7Xw3WhXA/298lCTta3xYfQsU1uy/Umht8IM8u+jjfZRPw4f/W8Ce91MS5bCdVokBbDVpAM6bnLyKV3qkjHwTQ2QDL/TsuKovX9Sut5LMy03vkkN8qQ8stNkZ73xiCfBR3yWSD4mCU3IN02ihsWebU49Fg3URyO8LZT3LUiX2qeiDHXJTDXi7hYdhcumU6H3qgo+Y2hX7wr24uFslrZoQfguzZVbduU4IPpjW5EpOs0P0rmdl/R/cPFU2mwNS3bW2r9zQGi/9uVU+n+K9U33LNkMio9c12squf5gk+39cx16gZHPojF6x1qXyTq2copNY/Pa91Mhz0CnOtWay0K3zDa2eCnF+u8ldlg2dfoPwI2+FhNG+SvNae+1J6a48cy4HwNltCX5euzibHdRpH+aH2pvJs2jzzb2c/fk/3g+omyH/wyMdL/JtjP/0f2o76k7pn/VL3GnhzPLKt6p/wHp8M6enyGDKkv/RwvZBgR6Tq1DSVzO9t4nGyj3dkJ3q965NwH2MZ3yTbQf/IeHpSZ+4BV9bxA8Om2nrl/t82RD2Jx+6bWaVHPVk6mZ0y/ndKpPXzcvuE6r9qzoPBz27ehJTpvZTbIX0Y3+gfBBoeXTM8/pk/ZYGovCu9lUPsOVBkUJPdgCX3Z/p4FrbzU2d/DvtzoFwNmzv4eNVpO2WLV/T0p3qjntSW8B4POf5mtrEjoVJ3LwPywTo3+xIROlY5SOm23L4jHY5hn3nuvziyhnnN0ivm/nvJv9KcKnap+C99/jn0H7kOqfhjSryF6VcdU34Tr2FkJ2VOzkji3cDPF4dwC32mOaxY8FsMloC0Uh3MLPM+B5cjtH+5B2Upxao8hzi0MUF6f03rf4drCtPFoICyl36LkN4S89rQBNLx/pxvzJorP9Y58EOuK1q8as/GZwarzBpg+NTYc7pDPsODDWOaTY0CfxPtYjX4t1OuC/Lz6/sUwvFubyCvX59QXU9H3dWPtzfC9vpiqfG7qi6lbhCxNEVdWpshnkeBTVS7Hr5yaiMuJbm2JaIXALegfv19O7/oFLWIfrap3LPks7pDPYsGn21Odi4lP2XBnBw132k0p81EVo78Lhjs7E8OdsmqHtpbacmH8yrYxjJTIdw+4Xv5u3ojI8xkJmTcDD+Ybw7YSGfZTV6WmK5ZdFZ4KxS5dg+Kw68FH8rGL0y/esc1tEHwYq6yZNL1yl+7Bis2kOhqt8spXGWDTxHqo+iH1DZl8lnTIZ4ngk2r26/oSJTMPJWJAX/Ia8iV4FF11aWwYMED0W8CX/EzCl/Bnv7irwf61rJ0s8yWbSuR7Y8KXqK7huoTMOARkvjFsK5HhUfIlvBQ0EfKC8iW8NIH+77gwXf6qbSGmP1pt4XHEp9vLfmq6n/2LWo7akuCjltTa1cdfXqJ5qvrI7RrSr4T6+GtUHz2W6srqRAh5y12bBZ8yHxRDqg0y+vck2qB2Xf/UUK1MPrxqDumXQZ7LsIJ4Z/TY/vH0xRaivSFBy3KjbZ/bejZfxEvKEyErbOXP/WHgJQ2USR2FxPrCgbcoocyxvOeeMIXLdCwP6mFbCaaq87cQLW7TYlxeLsJ6zPraXiIDl3EIM23PcD+5ZAr/j6mdwenyKpvt1JKUBS4/1h0HVX4mVyy/C2qWH2+BQr/KW7WUP476+stjpC8e82M4Fvri6ed2+rI4y2+fSMebUI3f98Fe/5rwhoEX23/Zcs+ASB9C+ZLY56CteAVdR4bt64nED7FV/5jbuRNL5FL5VEfTWW/fJVvl5daJkBUuszJm34PYN9fELggvBD3tyPaG/EyuhojLuc703u9Onj85+NDHC0pvsvC7nCtIThT0piu84qWCrp6njnobb5wXCWGmzmLA49pHriAJM68zvaWmfDn6Q/ymoOerm3LLoin4bHDEuqEmll2zqpZT2efGwO2QavufOC7U2o+l/NAJJGtVP4Tpq/gh7m8Y7eKWrB32H5+l+oHsh7bXxM71Q7xVWpVrQ8Tl+KGdP7hs30c2PbayCDP9bb94l7OMf4Kg77Cen5O6okj5oe0Uh37IZFB+qGabck6O/hC/KejZD+WWRVPw2eCIdUNNLPNDqg+u/BC3t1tFftAP8RjjxKVTNMcvnY6V0+8OYWZduyERd6PAjLyfAfcmo7+yK7WxbHiMprYV2d/4Dm09Nfdg9KeBbk4m+fjT8erKE9VXx3nJM5aW021N0OX27xsUp7ZN55YLtxXnUltR8/CXnPc0rMjLhhGtJdurdxzcvHNy/447N+94yf4dB3FEpVpBnsnEI4JlwSTh1dr19DcfvOLZzBsFTjueanZ9BTwzX7Xywl5phZD5WPJZ2SGflYKP8kpFya/x4Xepmd6VxAdn5XCm99KlU2nQJnCmF9PapiCe9Xz7iql0VyR6kCk9T4TpslTV88Qsn67yWdUhn1WCT7frwSrKD3r9iTA9P1VXpDD9pqPMp129fvFSzTO3Xhv9eqjXkxn1OpXH1Ka01E6PG9pgbSSs3NWjDRl8UqtHGzL55OQnxedY5sew1KojlsGmhFx8oeiNbbB4Y7Va0VA2yDJXnZ3A9MMJPls65LMlk8/Rys/mDvlszuQz0SGfCcFHjTA6bT+UzO387WvJ36rDrZh2XeuXD4FeAv72deRvcXbrqa7nrY58EItnSMvK861UnuowTao8jf4kKM+3ZZSn0s2NifzgDqGyslaHDQuBldpNwnpAetWmdHFGdX6OHSB+g2SpyO/IhvLUgcEYcOP2otZzaxbgsh0Hzj3voit/NAXw4L6DZbOr48gU5Gf6QH9zuijbANEMCx4xsP1sJToud3vP+DkytaNtF6983U0l+Qwhz9dh+uESrLIdQHzxu9H/Zque5+4AUofYUv0BrndM1y/yMK8k3WVBy4d5XpvIs9H/biLPW9rkmfvvqu/Ivonp+kUehoLerca7FDFudZgue1V7wvRHq+1cTXzK2rQPU5umdvXhrq/LW888Az8ObdofU5um+oLdzn/Zbl7M1+VAUza2GRCYMfDuDaP/hM/qo5xR5hWUhpD/iQ85UJmqvKfK1Oj7oEz/PKNMU/VD7UJP+YJNCXo1VlRzTKl+o5UPrijnl0/xhRwbRfwGyVLRHo70N9QhcvXBmqr9DcP9PGQI5W/X3+B0qf4G05bVPe4D3Ejv2/U3lExltJ30N7aW5DOEvPYB0xud2ecGkn8iZIUJk2UTyGGyqI86sq/oCzProqJXfQzEZz+Mu+6UbvhSA6P/e+hLvDKxK+6kEvlCyCsLTH+02qqTiE835r1jSF109xx4xjjjU+aTmyJ9at57a4d8tgo+ubZ+aeu5XZ/oOxXbT155N/rfXT6V7nvUfqqTp1XXxjj/VddeUvU6t56q/sAzCKvqqTRMX9aPGxCyx1B2WnJp6+hDh6clN6rdK1b/Ouzzbcyp44g/IviZXA0Rl7Mr7KuN537ia+9/x58XlN5k4Xc5c0fPEPSd9b/CerUrDHesxIA2wh8wwl1hJoPaFVazv7Y+R3+I3xT0/GHFqpeGYdzamli2k0uNsY+VTyqbezH/xH2Hla26n3sCWJ3yTJ0YZZ/GeWSfE8NE0OGHFAzP9D9X8Co7eXMy5Ps19A2LsjXCgZL8pE6HFaFcN8xDnQ67IkyXbUuGbGo+CDHK1i0jhlpDZLuteqJyk5BH8TmrQz5nCT6pNol/jQ+/S61HnkV8yvpNFy6bSoP+pGx95PbWL693/RL0m57TwlQn8HnNVd3+oPYXsO7LTmyzPzH650O94hPban74dsAss7PcU0JGfwX1Z7oxz8R5GggzfWsMLwo6T2XzxayDGwX9TQl6td6EdsU+O3URoeXtL4+fkuFasuN2+b+mBPNTx01hrq+IeW0J5ouXTWFuTNSNU8J0flVv4sD0vANXXVw2RHJWtMPsC6EMvxFm5rnOfJqaH1B6UZfb8fosxuXs0zhF8CkIq51cw8HtQigTcSnRrS0RrRC4Bf3j90vpnZqSQ+xo5pe3mgMzc7wn8GLCV19pw3ds5pje6BSfZod8moJPCutigWX0awV9U9A7moaJuILobkqIxrjtTGMFvSszDQv9xDM+850tXDQs45jAaCTy1C/epa5iXJvgc0mHfC4RfLiX8CrqJSD/Ct7ytXzVpmEgds2Z6tfmev6y3cEol/pEV86sx5oPv+xXLjlp54aC0pss/I6rpBpFXiLoO5x9epWa9cB7m2JQM2Nq1sNkULMeNa9ZfFWO/hBfzVLzrEfVGQSMW1sTy2Y9cCdMqi4fLZ/RDT4prNR9V6abwaBXitgnGf0bYfTEX9ZU+g7iXV+Y6Y/4njTEGi2RXfE2/BiaIr3RddEnzqnqExthZp7r9IZV/VB64TviMC3vAI6B78aouiLQ61hom3xltcWrX+PD75gP1r1R4tON1cJcO6/LB7F492037h2MwUb+HbbBW9RsmwW1IsN2oc42q/uoWP/Y1+a7GtGOXwjPHPrpb+4HvD7j7h61I4/bpaqnTNROpnb30f3BMs2z7D66srvZfg9maT68rDyPvBKpZu4wj2Uzd39yFGbunko2XseO/6SmHXPfS61EqJ36lg/lr/nacPSxWygO22/e4Y++jD+DofozWHapPuU6ikMZGhl8Uv2mhuDTYd+o8sd/efZS6SXXxkzmJz7+W+GeM9QpzwzyDCb6KpYRZci9Z9bo/yGxaqFWVm8DTLYD5BEIIwb2fUb/VfJ9NceZ0vdxm6juf+2Qb/YsteE3SJaK/I70y9utUuOU34LWc/uP/Jbt/SsIFd8VYWZtKUAyfMc142r6e61IFwR2jO/wZuIbudXCULXV4ltTMCivgWv3VT4ZjuXBt7GgF9kGvLlcNws+Jr+6FZHPk6gbeU337fipWQH2+ipd/PtFIo3niIf16IHVhT1hC3M9juE3Qkf15IjHUfuD1L4EVXfKziaiTygoDvmo/ewK61onrBi2z2LNYs1izWIdA6yckSG2U3w2Ev3gOpKv6kI1pk8tiJ/VIZ+zBJ8Rka5um9xMyKxG96y3qvvyMH3uFxUuOU7zLPvCiY3IeEbpnTCD9fzjpsusRvMxqD1DWA6GwWmHQAaLq9C/GIt94HNOnOLDesUVypx+yO2tX97zjHlXtpBbRtdQGfFXiDjt7a1f/grRz0IZrWs9qzLI2Tek9lByPRwU9Ig3QPTXt2TCVbmcLzxZ+rJZ19NL+G0BfleCPVg+Q3C1u4XK7tDPsN2pmS7lz1L+Ause7xVD38MzPGqvXmofq/09GHQZGN4A0d8uypztruzME5er0b8ks1xNl90oV9QVl6ta5VbnAVN2oFbkVTtwDWFdI7DUvtXcusz7To3+3kS5Kv+FcnK5Gv19meWK51cNx+I6LVfUFZer6n+o/ZIpO8D2wXSiZvTXUxz6RJ4pVf4b7SCnzLF8yvz3y0SZc9+R/UJO+4Iziwtbz62Zxc0H9+7f0ZpaDBRSU4Hx77LrxRaI9IHSFvRuAcUp95maUDfeZRtZ2H0a/auEylPuN4acLdRY3N2YnDZ8ry3U7dwaTxWlqhnG9YCpxnB1iRiFSB8IqxDvYlDbmlO9QOXdlIlxq1XWI+DTBUb/c4mWo90aY84tHapHpPLPNzpiug0lfLBFQzPiFs3o35HZouG6peFYXKctGuqIWzQ1s5A6eatOxajZ0ibRo+5Vi8angXJ7p9wb494Hj6xS9qLym9KPsi91L71ay0+NgnF/RQyeo2DMD9tCqmxjKLvNBemxvHk0gvsueOYJ6xLf3tDuBtiULeBsxyU0IsayamTwTM3MqBODvAfoQ+ALym5nyx3xG/1/Ef4llYdUbzU1C6JsHdsP3hN0tFZQuezVrTNq3w/vCcIZV17jL/tmEgduo1EPufve2B4Mt4rNoy39Ae01w27fhcRTdbHwHds8pjc6xafZIZ+m4JPCulBgGb3q43T5WJOJeBLR3ZQQjXEL+sfvT6J3/YIWgyqmRoncIeQVk5o0YCzc+rMRaPgyH2wOnk1YVRcBMD13SU2u/91yo0OCfwX39WhqW7Zh19w+/2hBeCHokVfZlmqUS23lzznC9KF3Xz/62EcuOnIEJ3erntGrrf/PFvQdbi19k+pWYXMQA3ar1lFc7hGmmtsL35SjP8RvCno+wlR12yTGbayJZUeYcLaDF/S67WN4yPVd0c062rJYs/+DRJev3WQiL8Ci7KlFU85XVX/ZyORzUYd8LhJ8ur04exHxKVuQaxw/lQbtu6x7/uLWLy9+fAQufBhpPasL2MpOa2NbjrOLXF95cYZpNpXIN78lk9quy3nGfCqZ1wGPQBgx8HZdo1/SkqFDnyq36/IQAH0Yt8s1+WbPiB6rY3TVtuuWbQQvCBXfFWF67jGu3cTnVfR3ne26NXsJlT9YzoMuHDRiaXJQA0PsVVTZrovlwYfacD1hO/Dmct0g+Jj8fYJ+E2GpA3ym+3b8VC9nLWGodPHvq0WaVI87p2bGwGsHmxyx1NbfDidJsj9Dwdc01qwnRzyOmlBKfYJDXRmpttDwaLHuFYTxeasj1mYnrBi2z2LNYs1i9RxWzmFKbA94pkptmygoDuVLjSgxfWpCdXmHfJYLPiMiXd22r5mQOefTDlUvSMD0PHmPI2oc4d15vOZZdo0kj/CM/v0wwrvr+OkyqxFeDGo0jeVgGJy2wwXBUbUgiHrlBUG1CIH0tlU4tQVI2UJuGe2nMkptF0R5eA/Nv4MyOkSjcJzt4Csg2+0FuY3oLY+522KN/iEYhae2xa4t4Vc2K7GuhN9PAL+jsC12vrI79DM52+yUP0v5C7XHhw+5x2feZoc65n5p7qYEzkfullmjf52wB26L2DbK5FN6c95mt6FEjHGRPlDagt6Nl2AZTnyHkxw52+zU6QR2EW8WKk8VWQyz2+x+7LbZXVUiRiHSB8IqxLsY1DY7dSVMjoqVqupu0P5lYdIpD5v6eJbqCag1h9THA1WvZ20JH7VxPAZu0Yz+3ZktmlNPSrZoqCNu0XJnToy+3VYcrmqpD7qqkU1uNeRZNmWnqqfWbvtKzsEWdb2KGj3wRfiYLtWrxo81xuDZq+7ksFnVLYi8rRJnwPgKTGyO+GJ71YvKtQUcPd1ZsnaGuGgLZWvP6AMQ4/bWL68jfUz4AMPc0CZvOf4Ouzkmj9o6zP5OrY0rezS6Du1xRNkj5j9nlIf0Vetq6hBa6rAkdyPb2U1qCxyuXTZoxId8nkk8lZ0oXTRFeqNTfJod8mkKPimsZwqsVD3v8hY4E3E50d2UEI1xC/rH75fTu35Bi0EV07UlcoeQV0zKnBWfRod8Gpl8zu+Qz/mCz4wtLj7L969UE1JWdh0u9L6yILwQ9GiKb4VUNzOqxbScrXPfbG756J7H3/kbKbeb6hKq3fnnC3rTVc1vzr9CNU3GW22du4HisHkxGdTWuZrfZHtFjv4Qvynoeetc1ZtEMW5tTSzbOqduNz5aPoO3zhUtJ6q2znVblg5vzau8maNBcduBHsuUA08RoMxVb2xUmzmKMFNHagsY253JkHtjo9GPQ5nzFjBLk3tjo/puJspc9t3MxS0ZOvTzcgsYd8dT3/6r+p1YTG90R3tTEm+dxEVS7iLjSRbeJo4+cYTiboU4viMQtwSiPji02wR1NU3bBIGlNjqV3eyNulBTTxfAM8aZrPyOyx7Tp7bJbuqQzybBR03BYb+pi8cQsmemDb9BslTkd2RmWm1Jx/yVbbzCtGqhsmzrLfK5QPCpKpfjcMpEPJPo1paIVgjcgv7x+zPpXdlwyv5Wpr+hRO4Q8kxfDc2OVhVrt0P8+cs1z7IrirBpRPqH4DOUl8Fz6uA+nwxAPteT/Go/R4ennLJdgOE3SJa6LiB3XbjajucReGatICq+S9UEXoPi5cFhSldlx7PxVXNj1wjM1JoLp0NdBPGuT9CnGqQRkr0/kR4xMB1bTEHvsbZdJ3jzzocboLP7E6un6Mt4oT7are4zDctg9NsSHW48n6jyxbWZG3i0rVtK+N8DXuaWEi8WBH/OH7YwgyXyll0BcjvoIPV5Jj4Ty++KoD8zUPY30g5RXvBvZYvXEf36Nnnn8jf6uxLlPyJkMLlCmKl/liGU5JFl2C1kEF7zir37HixZaee+BHs5LiUuiRGBUxZMG9FizXpZO1w7mI/9rbQTc76o9Xyka7Znx8GyXQbcIjRKePYFHUaCli2EY7dxZKQev+TGEcxf3Y0jZbW0HZ8ON46UNdrKWXD6QGkL8S6GaM6/3QJ6qnWfGatsi+KdrV9upF4JDooXc68FORQm50eN0NSsjtGrGVzVKKkF3hsyeKMu2aFvqShru40i60hWdWdLrqwbj7Ks1wpZO5y9qDy7xjNhOLvGM2E4u8Yzbzi7xodScXaNZ6Vxdo1Xp3Amloett0Mcb/GfhLj18MxBzdiZ3mO9XL1qCpfp8LnMp+Qu5qMP4WG3sim1acXotwKW2kxjGwQHiP7XEv5Ircyl6kG7e7P4Xjrc0HMTxWE6vG3asAPRdeNOMcwPby7BVZV+Qc+6uVnQY53jzU5Y57ZSHPoWniXG6RS82+/CZdPpPL7colYNt5M8Wxz5INY24oOzxDid9aGSeoX1BGfWL2098wriX8Hg8r/QFJbatMcrQX8E9Wx0dXl6XtVRG5BS39dL5RPpryrJ58dAzvGWnF3cZNiseq+j8jGpex1T9RR10gwz6yQfk1UbjMq+h4c6Ggy6DHjq1Oj/u5hEUEfC+EtBGyrKXmcT5HeWPvms7n7s9Iiy+goSY/UJ+bHecrn3B90eMr3ZBE5QKf88QPT/C8pq4WqNGUpk2Fwi82AJ/U0kg9H/nbCXlB9A++eVa6P/ktgxkYt5eQnmVxJ9DVVPU3d0tmtPuT+BeryZ4lB2bhe3A3+mvZL4Yxzf88gyl8mrVvJS8nJ7Y3E/hPbq27QLAfsWFXx1f6qsniPkzS2rzYn8MZalGwgz7TFVR1Af31+uMedUxPxX0aarvsrNgP/DjH4++mr2y+gzsB5+iPok6n5T7pPMWTElf+pwiWF11tYXX6h6TLedbjwPFCyjOLXE6d2W/tnS6bipe23j8xkkR7s+3nNbz+yHF4lyT+kwpfN292bzIRYsj20Up2z2aNvj0bxHmu1RtR/KHnPukc61R7xH+sPUt1N3XisfzfK063Pz7jrzj4Ml9Ozzjf4MsGPu99wiZEiNE24V9LcImcdIBkzLvLFeok7WUX6M/pmZ/thpzkMe9kO9sf2ndBQD6/TFgh51xVeV4JzgzRSH9n8Lxal5pFSdza0bljbq4a3kq73n59hXG/0LEr5a5S3lq7s1P5fy1d201V6dn0NbzZ2fe21GXyB10LTdGgT7L7VeotphXvep+v0ATL8lwWeiQz4Tgk835yCRp+rbTFB+qs6FYPobKT83OuZHycy7kWPAOdXJFVNpynwbpuX2zugfXjGV7s7Ws9rNnjoInbLdsjlRNYcUw0bIfwjd6HOGOce6z8n9SmwveX1ZnRpA28O202gCydgNfXkeQlf6xTphOmiGmbrk69TQ3vgQutJlbj8ET6u8eGl7+VOn7drZB18D10NrdMe8D8C2UHWNjv0l8lH+kssY/SuWy6Wt5wGi/zeJvqOyg5TdtBvT8Teh0Db4tIqa5++iD+lpu+HTnGreMddu2IegP8c22trv1BxZEaa3k2jPSF+2vrKFcAp6Pw/eY7rnUZ65j8TYzyd6y+dgCb3hcV/kVxJzCVvbyPACkmFbGxm2kgxG/04hQ0r/MaT6hB2eSB4oCM/kwXeI3wjaPiZCVihYf8ZP2UEMal8T1ye1VpLygaqeK6xhRyw+YVmzvG5Svs2C2ufF4wr0Y5soDud5UD4O/fQ35ifa9RLaUxAEFvfzUG7la7aKtFsF9rGqD1vr8UvWBzUGqFofeI396V4fyvY9htAb9QHLy+RWOophIuSFnPpS88aNVbn1xfC96ouyPVVfLH/b6/GbiHd6zgszfdU58KzWMbC8vMpPzXEdq/Kr+fmHZPmpMbxn+WHdqlJ+au5vBTxjHOYnNfeH6Y/W3N8K4oNjQZz7+wrN/amxKabluT+j/x7M/X2N5v6qzu91cb6u/1h/d5rXHXLnn7htV2c/cuef8PLSS0vmnwrAvVSk5bqN9NuEHEbPe+KYhvevHdmbA2MpPoyobBblupQwj8i3cgrzaO9fQz3zfrCyPr1hhzCzz2D5s7gq7YKqE5gfrhNqLR7pq67Fs93jmvI2wuL6FcM6gZWSdUsHsnI5YlnxvgH0s2pu9tLWM+/1WyDsUpW/6bwb5Z+aT1M6Tc2ntdMpj2lSewpS82nt5s7ZJ6pb2LBNVPObvAal2gflJ5RP53kjs8vVUP68Vxf396h15HUlmKckfJ3Kg7oVLbeNS51r2JZIh/VySPCasIcfpoPh4a1+zIvbGaM9G/T0mhO0LAXL0yZ0cUw2URBeCE+pMdmJHmMy1c9D3/zslVNpyuoY+p3zWs9cx563cirdxSWYIeh6mzpXiPL88pLpuN1aT1Z1N9WH4XVGtQffZMD92aq/xnunjP4qqJups0w+65PFP6t2EfuF3C6m+oAxcFmk+lGokybRc7mU2ReWNffDcU1DlQGfQzD6jVAGqU++cLt9Q0XZy/YlcF3EusH1uN3l/mVn2tXYNz7bfm2u9zcl2lY1V5BqW9vteefzhGodSs1h4KesDDsQXTfWZY/mXhi+0D11LhDPAPA8sfooSJT9NeR71bkBLNucj4agHKe3nvn84O6EfXnvK+SzO7lzNzifbtiB6Dq0rwXHeu7GyjZn7gZ9Ic/5qXOdUfYdZF+qncS0Z7eeuZ18JGEvNyfyGEPVNopvgsb+1y0Uh+nYltR40GS4VegB5bqz9TtA9K/K7C84jaMvU/aJY1+2z9R++hi4LG4T9LjHnvfR470b/ElSNb+FOmXfpc503CLw+UzHzyb6C9g+3Uqyb6sou/K7qr5hnRpq1Tc1zuc+67YET06Lbc9gCX3Z+PNtQl/sz8rmk9YQptH/u4Q/UG3q9fCu6r4xXkdBvfC+MTXu6F5/Plx+rPeNcfuR2m9Ydd9Yrv2jDT2++Mln1Z7zHUqpfiynRT5l9l+2b+u3E/bfblx+KmEa/fsrzn2l7L9dHyHVR0qtMfLXKbrQP7/qWPfP2f5T/XP0vznnI3PtH23o7xdPx1XnbzHtaa1nPn/70Yr21cn5W+5vpc7fYjqen1F9Vy7HsnaGxylG/6nM/pbTPuCFx9qf87qF6t+m/GdqnVT5T9Vesv/868z5mdT9FDmy59Y3rFOfpvYGx77c3rT7sB2f4bd6XdbeGB63DX+XaG/Up9ZRT9zeGP2XKo7XU+1Nu/E6zwep+yTUWD41Xne6C2rRsf7gJLc3qQ9OqvNpbAfIJ9f+0Yb+sGX/nen1gccKkMWw+wXlAP0azf9p2SfuCbHfnC+Effaj3/mrD1x73j38FZsYrIzimk0s/8dpThavUTZd4vXDfCF8P8mm0hUkA9P3CXrDHRFxA5CHujoa/egHN3zxe/tObaejuvjL/3DHp1/wuX/8XJUyGAkzy6Ao+Y2hP4HdFFg2H2BrfoOQvoLf6LP0c4n/RFbyUFg+5+BLkm2onmw/zNET4jdIlor8jqy3quukMX+83lrz++r/F9dbsU5gWaLukI+Vl2pThihuQGA88XWlk6bno69mPjq0wX8dCdP9RAzYL15OfYW5ENcfZvouy8cA0U+cMJXuBPqSHfuEGOZB/FwRb3+bvvsELT7z3yY76w3prbwGS/I6SHk1+lNb+VN7+IwG9Ydy9ZVgngGY3NeaF6ZCqs4Y/bCgnwc0Jo/61M0wpUPZcV8mv1PlUxAtyhDDLUKmsr8bAqdMhiGBw36eMZkn20MM3D/qF3ywTmGbNST4V6jHc1RbEEieQcoPxmHesF/IgftfKHPEmFvha4uqLnm23fZ+Drxnvv1EO0i03HdHGec4yNgUfAYJd25C/oJwBkS6kaDrm/rNlbcQ8qq2pFM+iIXzg8p3T4SssJz7wjFgm7cxo81TfQZu87ZAm7c5s82zOO63xYDjOvbp6uukqQ/VmI/M/VCN0W8XbZvyIfjB91tIn0MQl2pHBoj+IdDnbaRP1JfpU7VfZW3OHKKN4ZYSHdwFctx5QjkvHnupPEaMXQk93iLoGKNuu6b6V1x3c/pXXFcxneLB/ris7eZ9HmXx80TegnjXJ+iHSvIbBO9GG9y5Akf5dz4bU4g49j2YXzWPoMb36Lc2JupLEabnax7layiRr0Kk43qOss9NyK70h/6j7hzCa//uh3/9+oeP+2a35iie94uHf2bkgvf9Trfw3zv8F5f/l18cenG38D8992uPf/Jjd72pyhyL2dEg8bJnLE98j30b3htg9G+h/eg15zDk16fZL6XGfyg/jxdj2FQi/29C+/BWqndq/KPqZFn7PidTFqN/hxg3qnkLk6vDufABNReOfpP708qfI33VsavpRN1pyLznCCzUKfeZTEeDQc8fGB7bwzuhDHitSvl+i8O8s9/tF3zVXCWe9/kI1aua/ee5qp9iYSSUty/qjCbfATGPZMI4LEu0Tw5qjGp5jTL/ScYYVfkHrq9q3ibVH1X1zvB7rd6Z7TfDzHJhe8u14bL+ouKHesC+gNlw2Zw/1mkc032MxiCDEKfmzNifGv3fgm//OPl21DHbg/ITLEsI2g/lzBWMiHRWLmqdocrcEpYvyonvEL8ROvIvBftb48dlxGsBNfsJA9zGIj9VDuNB61StF/BYVM0npcZhKX+i6h/XTTVPodqQ1HjReOOcfE6/SdUtTMvt5Behbn030W8q6xuFoMcZTJ/yfSir0v08ilNzC/Y8nOCj5BoR9MMJudAnY1rm3S4PuW2VUx9R3o2KZcJ1ROkF6VmPo4J+BGi4joxCHJ+tyW3b5lGcauPbtW3fLWmjMB/o/3j8rOoYtn119ing3nrkMRj0XCjuxUD6H4o+MGPi/o7bBWYheIQwUy88rjyyn+LEKRluOunJ59R6w1CYqdcKdj6KtmNBtZuG3wgz81un3VTjGswft5s12+mRlJ2q/o6a5+G6bvWhbIyFY3KkH2+VbZPoYuBzFapfodqLKNsw+alurfmg30X/EQP2YxfT2u8AxKk1Sau/XBeOP3Eq3bLWs1qbMBnnhbTPUHsA2D7K1tHZZxj9CVBffyaj/45y3V6CuQoweR1d2YUqP7ZVpFd7FVSfieehlC9TbbDRddgGj6o2GPNfVi9NnrI6Y/SqT6bWtJpEr9pLlIXnz1K2GENqTR7rzmKoAyHM9GmWJoSZ84JMj3s4kP5ZUOcupLk49tn27ooEXVX/w3MmDUHfL+iN9zxBb3HY38TyQhrUF2I1SvhdTmWCNoj9LeaPdhZK5C7rPzJWv3iH7cMlJ07PQ939b53M3//D0Mar+n7v9SfW2SPJ610hdLy37o9z7BHxG0H7h4mQFYocnxMD93vm1eP3RwWlR35qLdL4Ddfj129lNSqwTRb0W0oWSztA9DdTGzAi0jQpLgbuU6kxGr7rO0ZYaiyoxnux3l7f0oWy//hvImSF89SYlutWTVvYmlu3DL8ROrL1I3Urte4SA8/jjwhZVHntALpOy/5wj2LtdsS6zxHroCOWp772OmLtd8S6xxFr0hHLM48HelSuXY5YnvXRsxzvdsTyrEP3O2J5lqOnrT7oiOVpX4ccsR5yxPK0+171OZ55fNgR6w5HrEccsTz15dk38bSvXu0Xetp9r/bldjpi7XPE8rT7Xu3L9arde/ZNPMvx6dCm9Wpfrld9oWdfztMXepajp748bdWz//USR6xe7X/tccTyrNuedchTX57tkGcd6lXde/ovz3m5Xp0b8rQvz75vr/YxPXXv1XbE54YTVgzWduTsRVVro40En0LI3C/44F7BkdY73nsaw1CYqYsK61DZ3zA1/AbJUpFfkSoftRfA8j4qZFH7TLmsUuuUyEdhDThi8b4ftb8mtfdW7T1U+hoOU3s3Dh3ctWfXwQev3HHHobvW7b0rUBigv68sEfFGottUIlq/wC3oH7/nzxf2C1rEVtu6BkvkDoCntmk2RfqBBJ+iQz6F4DMi0nHVrrn15Yzcqn2stsla3tURAd6+FsNdQFfH9WLcvY5Yex2x7nfEmnTE2uWIdcARa78j1mFHrEOOWDsdsTzL0VNfnrZ6tyOWp63udsTqVT/hWR89dd+rtvqAI5anTXjaqqe+Djpiefpozz7Ag45Ynm2HZx3qVft6OvivbrRD1pfHoyt4vOqRiek8+Wgipi2AJx93/MbEVLqXT0znXQBve+7wGtizCsILQY+hDL9BslTkd2QM1Uf8OH88huoXsjQpLoaXAh3H9Yt3KawDjlgPOGLtd8S62xFr0hHrQUesnY5Y+xyx9jpi9Wo5etqqZ330lGuXI9ZuR6z7HbE8bWKPI5anTRxyxPLUl6f/8pTrsCOWZzl6ytWrbYdnOXrq3rNue+bxYUesOxyxHnHE8tRXr7bbnnW7G22travheIyvNFRjn74EH3W954hIV7R+h0g+e54IWaGvIDyTE98hfiPMzHMFfkVK/0ovvKaIaZsUFwMf7VV8CsGnEFgpuRyXpk3EM4lubYlohcAt6B+/P5PeKVUgtrrlZUjwspBSbbMkfQwjCT7K7G0aBm+ZwyLk5fOq1Q/TW5ziU3TIpxB8WK9qOimGO1u/A0T/LxNP/uKtNf2CH2LluJaaS/bZu3F4yb5T16KW7FOuRd1CxfYQw61Ax3H94l3KtvodsZyagspfh2E9ol1toji8YQO/3Mmhn/7G/ET8JauncJmOZUUbM7lVXeZtMVXrMqbvK8FSty3HcDPEI/3qVU/+dlima1SZsr3UvNltTW79Lrt9VtV93r40EdJh+1WPPPYf3v2/1lStR0avbvNK3YJX8/aZ00eARyDeFqe2gVkc+mCTIaZfQ/LVvL339Bz9Ib7yj9z1yi2L+UG3MyHo24iw7rMtjxLGRMgK2d1gw2+QLHXbqtQtpE8I1vqN3c0FredWd3Pd3sk7r5jcd+DQnh3ceuN+VtYKouK7Isz0yAVIFhJ0L6S/14p0QWDHeCu5Jr2fCFlh3KxiXERaHN55NUxxCyAOS5ODaplM5mil3wcrZTqWB8tjPsWNQdwC4M3lOir4GO8+QT9GWGoPsum+Hb9+kY73UA+JdBP28JXXv+Plzfe95ZcmzvzUdwav/tmv3/bta+Zc9NlPPXLcn/zUD776rZ9jmYOQmctR7SfPqdUxcE9m1BGrKbBMN+PwvoLNL871VobfCB3VsSPeapz4cf447/OFLE0Rxz5ovuAzX/BRWH2OWP1OWDFsn8WaxZrFmsX6MceyOGzvmxSH7afNBBytkXcXJ8vHctvdYzVZ3mFferSg9MiPMWPgvneqzRwswbK0A0T/yKonf5tEFwPbteqX4DvTTxxhHl41XXYe26jfENJ9PV4kwvI52naP5+5w0+KrVmmeOMuMaflOeKP/v6um0r121XSZy761oL5rgzYUwnTdGV2H95ePVf2GiLJ7pL+99dsMM+2Yv7eD+ZkH+enA/yxKrYjEvDxKZazu/e8T+eF7/78MZfzW1rOyYxyPYfrQhp/R1/1OyDtaMuGd/0q+4RJ+6nsAWC7M7xeBX+r7iOiHQ6htt4uV3WJ9yvlOm/oGVo6dK1tGO89ZYUM74FVM9Z0H5c/4mwy/Ico8x85VuRr9ezPL1ckfyXJFXeV8803NTqfsQK3YNMPMMudvJrRbRcspV5SPv3tp9B9MlKtqo1Qbwm3UH2SWq9N3MmS5oq5yylW190avVilSq5Zl35sr89Hqe1GpclXfpOFy/ViiXOv64Y/3gB/G/mLOt2KRnss19e0u5YexzBsUx/OvyKeqj1btcspHG/1fijLnMSH7hTL5lN5iHhe2nlurIJsP7t2/o7UMEiikli3i81iJGItE+pDAwjSpLOHSAKvceA0GPb3OKjf6zwmVswpZnpwhcs0qk72QZvheQ+TcfVvcnVLVTDUxXE7t+DiaagwvLBGjEOlDGyz7G/dQYXFzrz7VE+C08Z/1FnN7Akb/dWHKjIkypG6YSa1UoDwq/+MUh+mGS/jk9lCM/tuQ11RLZry70ZKhjrglUzOFakbF6BcIelxJ4R4Krrpy9UMdjxOfdtWcv+Sl7FSNlJV9pXra7eyLv57aJ/Kk7Cs1K+JkC2PH2hb4K6hoC6kZNbYF1cSiT2BbmCf44MxYA+LtN2cP0iWnvHHZ8o/fN9Luy1p18d9/wVkXj2479RXdwp8zsPxtE++7fV2VL4MpX9dHuPHdIOAgfQybW785e9Rq7mvK3oPKXyWv+4W2gvCMH+ePuyNDQhbeNx0Dz3yrLy6qr5kdLSy1F5TLsuYeuuwvzBt+I3RkO0VKL+qrluoKMEurrhtg/XdydUEvYmH9572fFq9+jQ+/S+2B5q8Hd+sLvHOJz1xHPuq6CbV/ulM+ai+2mo3ElYUXrJ7CxTJWMzgx2KrvANHftXoq3eWrp9OY7FcCzYbW8xDwDqFyXW5w3cSg+gdst9gnZVvDYTrbB46l+FwL7m67Beg48NgO9RD53XLSFC7TWUBd5pztwekG5hkDfz3d6G+g8qq50hW4L4JYTyVbqFPej2aUtyrj1BmIORTXL/KROnuifGWZf0N85ZNuJvx2Uy5rE3m2tPhl8pTvYttH+rvBLz1A/lCtvCgfbO9TX8pEedStzZa2wy/UDqudsxaUPXM9UDcCq13MXA9wvMs+Ecd4PJ7BoOqI6aGKT3ygpF0zHlgWMfCYckDIi+1l3THZz5w3MP+NN61/UbfGfL/w+HUXvHLZSf9U52vQs+cveun8BXvDGGbPX0ynY3meDucvuKXB1q5f8B4g+re1PFjU7cOrw7R88lkLtL9bSEa1DyOUvON88Mi6C98MmJ/reY7VNwOqeR7uZxiXcUI1GqTFMA6ShRI6VaLrRDoOlo7P6YYws1Rrjh9GckvV3nlddaj6qqpt7dBqh1NWxJghaM/HS5vmocqWoC3tANG/r+Ud1O5vnkvK/epE9Fa/QfMDFveH0A//HRrTsv3jc9VdtpiePZE6z63mnnhedDARNzcRl7o7A/usPG80T2BG+YZOmk7H9Vz9hpCeX0qVMXo2Hq8pG2ObLMPaSFiYnrd3NNtg8UkFTM8nHPpFuhHBh/1ZzRN/o7n+7Fid+LP8za/Hb6Sg9MhPnSJUvUdeH7TtF4MlWJZ2gOj/gvwZrmeyP1NrnfgO/dmnVk+XHXVbt87x6Qgsn3a7xT9DY98mxCn/yCcCjP7sk6bSfZb8sTrpMRZ0eeFz7okO5avZRrqlZ/bDhSMfjLuJeCqbwzpp5WR6VjZv6RZCHNddtmekRwyFbxjtbPBrq3XeynZyG68Bol8ANvjNRJ8gtfeioLiC8oJ0yj6xzG4jenUKStksn4L6DozCeE+UpUddoVzrCNPovweYtveI5cR8qVFJyhaVv1Y6XUBYak4U88NbJpVOsX4OU/6N/odCp2q/Cc9UYJ/vZorDee8RisP58lGKwznxMYpLXQWI837s73E+GG3E+nx8CmK49b7DdRW5ZlPmI1FnSocNikO7S90nNI/i1DqGmrs1XeM6QcoXxcDtodEvbulT1S/lP1V/yugXCXr02byPEevUIorDdFwvefsyPi9u/Y16QLle3PodIPqVoIdx6PtYXgLJ1eG+thG1r20xEPC+tiUQ1y/ouSyWCvolQGM6aRK98nXKb6JO2depvuwigc992dOhDNjXoa9cTLIXFWXP3YOJdeprib4it7fzEzw5LfIp24Nc1o84T+irIB5YD1Aubm+N/oKEP1C6TLW3yn8sEPlSOl1IcWXjKsNmzA7r56iqn5h/rp+pvMZQ11c2w8z6w+N7rBts/2oeIdf+0YY+0+Ea4c//t7Nf9E/Xf+OEdmt4Vm417/nrwz5ECFNjgxCm94n4zjpc0+eTdo16shzJ4zzg2U/yIf4A0W87aToO70XEdzFg2cXAfVT8Rb44lxoobS7WEGHN7QALT4sx/dyKWEMJrEHCaggstXcwlt3aVtl0sq7907tW/O/3X3rBG6qsa5s/VJ/OtTpvOlJ3NMbA+6GM/g7qW9fc+yr71mgfLH9/Qv7+MFP+TSXyPwzj6peeNJ0fnxjGODV2MTq1/yYli9HvFu2oaq9Mrg7bqwHVXqHt5pzCV7Zu9O32AJlO1LmYnJOnqFPuT5qOBgU94rE93J/oT6Jt8ulUzDvvie4XfPmmkxisjkWat1C9qtm2zVVrLxaqrL1gHtU4nNfhsCzRPjn009+Y16p7AdW+PVWXeUw5JGRV9c7we63eme2rWw/Y3nJtmPdE9if4qXkGtOGyfVZYp3HO9K3Qh0G9qzOIMbA/Nfr3gm9/G/l2tY9T2VHOzQape8wxfc5ZgQ7PA2WfIeHzQDX9S+XzQB32Ewa4jUV+qhzGg9Yp8ue+tLKRlD/ppzjlT1T947qp5gBVG8J1s2yer0q/qex8r6XldvJ3oG79aaLfVNY3CsBPnTXK8X0oq9I9n1FtEDY+Dyf4KLlSu5uUXOiTeX8p7/pK5SG3rXLqI86pesOY0kvqHHu7XX9cR9QNyVXbNj6fq9r4dm3bn5a0UZgPdeuMWgvA9s3avv8Heh3MKvxpBQA=",
3983
- "debug_symbols": "tf3RjiU9bqUN30sf+yBEiaTkWxkMjLanZ9BAo9to2z/ww/C9f1uUyMXM6q2M3DvrxPX47aq1FJLIHVIwFP/9h//zp3/9r//3L3/+6//923/84Z//13//4V///ue//OXP/+9f/vK3f/vjf/75b399/Nf//sM1/08p9Q//XP/p8Wf7wz/z/JP3n7L/1P1n33+O9Sdd+8+y/6T9Z91/bj3aerT1aOvR1qOtV7de3Xp169WtV7de3Xp169WtV7de3Xpt67Wt17Ze23pt67Wt17Ze23pt67Wtx1uPtx5vPd56vPV46/HW463HW4+3nmw92Xqy9WTrydaTrSdbT7aebD3Zerr1dOvp1tOtp1tPt54+9HT+qfvPvv8c68/+0CvXhOJADg/JMudMf2gW+8vsIA7q0B3GhjGV+4TiQA7VoTmwgzioQ3cYC+i6HKbymEAO1WEq8wR2EIeHMhl0h7GhXA7FgRyqQ3NgB3Fw5eLKxZVnHJFOKA7kUB2aAzuIgzp0h7GhunJ15erK1ZWrK1dXrq5cXbm6cnXl5srNlZsrN1durtxceUYYzSGYIbagO4wNM8oWFAdyqA7NgR1cmV2ZXZldWVxZXFlcWVxZXFlcWVxZXFlcWVxZXVldWV1ZXVldWV1ZXVldWV1ZXbm7cnfl7srdlbsrd1furtxdubtyd+XhysOVhysPVx6uPFx5uPJw5eHKYyvX63IoDuRQHZoDOzyUK01Qh+4wNswYXFAcyKE6NAd2cOXiysWVZwzWRwzWGYMLisNDuV0TqkNzYAdxUIfuMDbMGFxQHFy5unJ15brzRq3ioA7dYeeN2i6H4kAO1aE5uHJz5ebKMwZbnTA2zBhcUBzIoTo0B3YQB3VwZXZlcWVx5RmDrU2oDs2BHcRBHbrD2DBjcEFxcGV1ZXXlGYNNJ4iDOsxf1TJhbJgxuKA4kEN1aA7sIA7q4MrdlYcrD1cerjxcebjycOXhysOVhyuPrdyuy6E4kEN1aA7sIA7q0B1cubhyceXiysWViysXVy6uXFy5uHJxZXJlcmVyZXJlcmVyZXJlcmVyZXLl6srVlasrV1eurlxdubpydeXqytWVmys3V26u3Fy5uXJz5ebKzZWbKzdXZldmV2ZXZldmV2ZXZldmV2ZXZlcWVxZXFlcWVxZXFlcWVxZXFlcWV1ZXVldWV1ZXVldWV1ZXVlf2GGweg81jsHkMNovBOqE6NAd2EAd16A5jg8WgQXFw5eHKw5WHKw9XHq48XHlsZb4uh+JADtWhObCDOKhDd3Dl4srFlYsrF1curlxcubhyceXiysWVyZXJlcmVyZXJlcmVyZXJlcmVyZWrK1dXrq5cXbm6cnXl6srVlasrV1durtxcublyc+Xmys2Vmys3V26u3FyZXZldmV2ZXZldmV2ZXZldmV2ZXVlcWVxZXFlcWVxZXFlcWVxZXFlcWV1ZXVldWV1ZXVldWV1ZXVldWV25u3J3ZY9B9hhkj0H2GGSPQfYYZI9B9hhkj0H2GGSPQfYYZI9B9hhkj0H2GGSPQfYYFI9B8RgUj0HxGBSPQfEYFI9B8RgUj0GxGJQHWAwaFAdyqA7NgR3EQR26gyuTK5MrkyuTK5MrkyuTK5MrkyuTK1dXrq5cXbm6ssWgTmAHcZjKY0J3GBssBg2KAzlUh+bADuLgys2VmyuzK7MrsyuzK7MrsyuzK7MrsyuzK4sriyuLK4sriyuLK4sriyuLK4srqyurK88YlGtCdWgOD2UpE8RBHR7KMmfdjEGDGYMLHsoyx2vG4ILqMJX7BHYQB3XoDmPDjMEFxYEcqoMrD1cerjxjUGebZwwuGAt0xuCC4kAO1aE5sIM4qEN3cOUZg0oTigM5VIfmwA7ioA7dYWwgVyZXJlcmVyZXJlcmVyZXJlcmV66uXF25unJ15erK1ZWrK1dXrq5cXbm5cnPl5srNlZsrN1durtxcublyc2V2ZXZldmV2ZXZldmV2ZXZldmV2ZXFlcWVxZXFlcWVxZXFlcWVxZXFldWV1ZXVldWV1ZXVldWV1ZXVldeXuyt2Vuyt3V+6u3F25u3J35e7K3ZWHKw9XHq48XHm48nDl4crDlYcrj63cr8uhOJBDdWgO7CAOU5kndIexwWLQoDiQQ3VoDuwgDq5cXLm4MrkyuTK5MrkyuTK5MrkyuTK5MrlydeXqytWVqytXV66uXF25unJ15erKzZWbKzdXbq7cXLm5cnPl5srNlZsrsyuzK7MrsyuzK7MrsyuzK7MrsyuLK4sriyuLK4sriyuLK4sriyuLK6srqyurK6srqyurK6srqyurK6srd1furtxdubtyd+Xuyt2Vuyt3V+6uPFx5uPJw5eHKw5WHKw9XHq48XHls5XFdDsWBHKpDc2AHcVCH7uDKHoPDY3B4DA6PweExODwGh8fg8BgcHoPDY3B4DA6PweExODwGh8fg8BgcHoPDY3B4DA6PweExODwGh8fg8BgcHoPDY3B4DA6PweExODwGh8fg8BgcHoPDY3B4DA6PweExODwGh8fg8BgcHoPDY3B4DA6PweExODwGh8fg8BgcHoPDY3B4DA6PweExODwGh8fg8BgcHoPDY3B4DA6PweExODwGh8fgsBjsE5oDO4iDOnSHscFi0KA4kIMrd1furmwxOCaoQ3cYGywGDYoDOVSH5sAOrjxcebjy2Mrluq6gEkRBNagFcZAEaVAPCo8SHiU8SniU8CjhUcKjhEcJjxIeJTwoPCg8KDwoPCg8KDwoPCg8KDwoPGp41PCo4VHDo4ZHDY8aHjU8anjU8Gjh0cKjhUcLjxYeM2J7MZIgDXp49GY0nGbYbipBFFSDWhAHSZAGhQeHh4SHhIeEh4SHhIeEh4SHhIeEh4SHhoeGh4aHhoeGh4aHhoeGh4aHhkcPjx4ePTx6ePTw6OHRw6OHRw+PHh4jPEZ4jPAY4THCY4THCI8RHiM8hnuU6woqQRRUg1oQB0mQBvWg8CjhUcKjhEcJjxIeJTxKeJTwKOFRwoPCg8KDwoPCg8KDwoPCg8KDwoPCo4ZHDY8aHjU8anjU8KjhUcOjhkcNjxYeLTxaeLTwaOHRwqOFRwuPiPMScV4izkvEeYk4LxHnJeK8RJyXiPMScV4izkvEeYk4LxHnJeK8RJyXiPMScV4izkvEeYk4LxHnJeK8RJyXiPMScV4izkvEeYk4LxHnJeK8RJyXiPMScV4izkvEeYk4LxHnJeK8RJyXiPMScV4izkvEeYk4LxHnJeK8RJyXiPMScV4izkvEOUWcU8Q5RZxTxDlFnFPEOUWcU8Q5RZxTxDlFnFPEOUWcU8Q5RZxTxDlFnFPEOUWcU8Q5RZxTxDlFnFPEOUWcU8Q5RZxTxDlFnFPEOUWcU8Q5RZxTxDlFnFPEOUWcU8Q5RZxTxDlFnFPEOUWcU8Q5RZxTxDlFnFPEOUWcU8Q5RZxTxDlFnFPEOUWcU8Q5RZxTxDlFnFPEOUWcU8Q5RZxTxDlFnFPEOUWcU8Q5RZxTxDlFnFPEOUWcU8Q5RZxTxDlFnFPEOUWcU8Q5RZxTxDlFnFPEOUWcU8Q5RZxTxDlFnFPEOUWcU8Q5RZxTxDlFnFPEOUWcU8Q5RZxTxHmNOK8R5zXivEac14jzGnFeI85rxHmNOK8R5zXivEacW4FRF6Ma1II4SII0qAcNJ4vzRSUoPCg8KDwoPCg8KDwoPCg8anjU8KjhUcOjhkcNjxoeNTxqeNTwaOHRwqOFRwuPFh4tPFp4tPBo4dHCg8ODw4PDg8ODw4PDg8ODw4PDg8NDwkPCQ8JDwkPCQ8JDwkPCQ8JDwkPDQ8NDw0PDQ8NDw0PDQ8NDw0PDo4dHD48eHj08enj08Ojh0cOjh0cPjxEeIzxGeIzwGOExwmOExwiPER7DPaxwaVMJoqDpoUYtiIMkSIN60HCyOF9UgigoPEp4lPAo4VHCo4RHCQ8KDwoPCg8KDwoPCg8KDwoPCg8KjxoeNTxqeNTwqOFRw6OGRw2PGh41PFp4tPBo4dHCo4VHC48WHi08Wni08ODw4PDg8ODw4PDg8ODw4PDg8ODwkPCQ8JDwkPCQ8JDwkPCQ8JDwkPDQ8NDw0PDQ8NDw0PDQ8NDwsDgfRsPJ4nzRw2OQEQXVoBbEQRKkQT1oOM043xQeIzxGeIzwGOExwmOExwiP4R5WHLWpBFFQDWpBHCRBGtSDwqOERwmPEh4lPEp4lPAo4VHCo4RHCQ8KDwoPCg8KDwoPCg8KDwoPCg8KjxoeNTxqeNTwqOFRw6OGRw2PGh41PFp4tPBo4dHCo4VHC48WHi08Wni08ODw4PDg8ODw4PDg8ODw4PDg8ODwkPCQ8JDwkPCQ8JDwkPCQ8JDwkPDQ8NDw0PDQ8NDw0PDQ8NDw0PDQ8OjhEXHOEecccc4R5xxxzhHnHHHOEecccc4R5xxxzhHnHHHOEecccc4R5xxxzhHnHHEuEecScS4R5xJxLhHnEnEuEecScS4R5xJxLhHnEnEuEecScS4R5xJxLhHnEnEuEecScS4R5xJxLhHnEnEuEecScS4R5xJxLhHnEnEuEecScS4R5xJxLhHnEnEuEecScS4R5xJxLhHnEnEuEecScS4R5xJxLhHnEnEuEecScS4R5xJxLhHnEnEuEecScS4R5xJxLhHnEnEuEecScS4R5xJxLhHnEnEuEecScS4R5xJxLhHnEnEuEecScS4R5xJxLhHnEnEuEecScS4R5xJxLhHnEnEuEecScS4R5xJxLhHnEnEuEecScS4R5xJxLhHnEnEuEecScS4R5xJxrhHnGnGuEecaca4R5xpxrhHnGnGuEecaca4R5xpxrhHnGnGuEecaca4R5xpxrhHnGnGuEecaca4R5xpxrhHnGnGuEecaca4R5xpxrhHnGnGuEecaca4R5xpxrhHnGnGuEecaca4R5xpxrhHnGnGuEecaca4R5xpxrhHnGnGuEecaca4R5xpxrhHnGnGuEecaca4R5xpxrhHnGnGuEecaca4R5xpxrhHnGnGuEecaca4R5xpxrhHnGnFu5WKDjThIgjSoBw0ni/NFJYiCalB49PDo4WFxLkY9aDhZnC8qQRRUg1oQB0lQeIzwGO5hhWSbShAF1aAWxEESpEE9KDxKeJTwKOFRwqOERwmPEh4lPEp4lPCg8KDwoPCg8KDwoPCg8KDwoPCg8KjhUcOjhkcNjxoeNTxqeNTwqOFRw6OFRwuPFh4tPFp4tPBo4dHCw+K8Gw0ni/NFZb4Abm+Az0B3rMAGZKAAFdiBI3AGvCPcBG4CN4GbwE3gJnATuAncFG4KN4Wbwk3hpnBTuCncFG4Ktw63DrcOtw63DrcOtw63DrcOtw63AbcBtwG3AbcBtwG3AbcBtwG3EW5W3eZYgASswAZkoAAV2IFwK3ArcCtwK3ArcCtwK3ArcCtwK3AjuBHcCG4EN4IbwY3gRnAjuBHcKtwq3CrcKtwq3CrcKtwq3CrcKtwa3BrcGtwa3BrcGtwa3BrcGtwa3BhuyCUDuWQglwzkkoFcMpBLBnLJQC4ZyCUDuWQglwzkkoFcMpBLBnLJQC4ZyCUDuWQglwzkkoFcMpBLBnLJQC4ZyCUDuWQglwzkkoFcMpBLBnLJQC4ZyCUDuWQglwzkkoFcMpBLBnLJQC4ZyCUDuWQglwzkkoFcMpBLBnLJQC4ZkUvoilxCV+QSuiKX0BW5hK7IJXRFLqErcgldkUvoilxC1wW3ArcCtwK3ArcCtwK3ArcCtwK3AjeCG8GN4EZwI7gR3AhuBDeCG8Gtwq3CrcKtwq3CrcKtwq3CrcKtwq3BrcGtwa3BrcGtwa3BrcGtwa3BjeHGcGO4MdwYbgw3hhvDjeHGcBO4CdwEbgI3gZvATeAmcBO4CdwUbgo3hZvCTeGmcFO4KdwUbgq3DrcOtw63DrcOtw63DrcOtw63DrcBtwG3AbcBtwG3AbcBtwG3ATfkkoJcUpBLCnJJQS4pyCUFuaQglxTkkoJcUpBLCnJJQS4pyCUFuaQglxTkkoJcUpBLCnJJQS4pK5dUwwIkYAU2IAMFqMAOHIEVbraeGUYUVINaEAdJkAb1oOFk65lF4dHCo4VHC48WHi08Wni08GjhweHB4cHhweHB4cHhweHB4cHhweEh4SHhIeEh4SHhIeEh4SHhIeEh4aHhoeGh4aHhoeGh4aHhoeGh4aHh0cOjh0cPjx4eKy10QwYKUIEdOAJXWlhYgASsQLgNuA24WVoozbADh6PV0dmRX1ZHVzbaX10ncI1Am/cbC5CAFdiADBSgAuFW4dbg1uDW4Nbg1uDW4Nbg1uDW4NbgxnBjuDHcGG4MN4Ybw43hxnBjuAncBG4CN4GbwE3gJnATuAncBG4KN4Wbwk3hpnBTuCncFG4KN4Vbh5v9htJlSMAKbEAGCnC6UTHswBFowbKxAAlYgQ3IQAHCzYKFyHA4WvHd47fEsAAJWIENyEABmpsYduAItN9Q6oYFSMDpVothAzJQgArswOk2j/kiK8hzLEACmpu1zJLGRgbaVQxD052TwAruHr9rhlOhWU9aftjIQAEqsAOnbrPus/ywsQAJWIENyEABKrAD4Wb5YR6ZRVaD52hudpmWHzY2IAMFqEBzs9G0/LDQ8sPGAiRgBTYgAwWoQLhZfmg2LJYfNk43vgwJWIENON3Y+sHyw0YFduAItPyw0dxscll+2FiBDchAASqwA0eg5YeNcLP8wDZpLT9sbEBzsyln+WGjOlopnqMpqOH8u/MwC7LKuzJPqCArvXMcgRbdwoYFSMCpK6Zr0b1xtkyGoQAVON3mqRBkVXgbLbo3FiABK3Dqql2bxbFae+3XX5thARKwAmd7VQwZKEAFdqC52VVYdG8sQHPrhhXYgAwUoAKnW7cRsuheaNG9sQKnQrcusYjdaO21sbCIXWgRu3G2t1ufWcRurMDZ3m5jbBG70dysHyxiN1p7rekWsd36wSJ2WCMtYof1ukXsxgpsQAYKUIEdON2GtcwidlhzLGKHXaZFrN3zWmUd2UrMSuscFdiBI9BO3txYgCZmXW2HbG5UYAcOR6ujcyxAE6uG9s+a4Qi002w3FiBNZMMKbEAGClCBHTgC7YTbjQUIN4IbwY3gRnAjuBHcCG4VbhVuFW4VbhVuFW4VbhVuFW520OYlhhXYgAwUoAI7cATa4bcbCxBuDDeGG8ON4cZwY7gx3ARuAjeBm8BN4CZwE7gJ3ARudpBtsYloR9lew3C62TrM6tfIVl9WZkZ2B211Zo4CnBZ2hLOVmpHdnFqt2UIrNnMsQAJWYAMyUIAK7EC4WQzZPa3VnTkSsAIbkIECVGAHjkCCG8GN4GbRQs3QFNjQFGb3WXmZYwESsAIbkIECVGAHwq3BrcGtwa3BrcGtwa3BzQLHbv6t4MxxBFrgbCxAAlZgAzJQgHBjuDHcLHD26dAFSMCpWy/DqWCrDqsso2pzx06M3liABKzABmSgABXYgXDrcOtws5Okq80dO0t6YwMyUIAK7MARaL9vGwsQbgNuA24DbgNuA24W87Yms7qzhVZ45liABKxA0xVDU5iTy8rKaB6/TFZX5kjACmxABgpQgR04AgluBDeCm/0W2sLRiswcGShABfZAi25bOFoJGdlSzmrIHAVo7W2GHTgCLY43FiABK7ABGShAuDW4WRw3GxaL440FaG7dsALNza7Y4tiWZ1ZYRrZCscoyxw6cbrYQs+Iyx+lmqyQrLyNbD1l92eM3yrABGShABfZAi262Rloc2yrJ6sceudlQgAqcCrZgshqyjRbHGwuQgKZrF2SxaSsqqxAjsQuy2NxYgASswAZkoAAVaG52xRabhlYs5mhuw5CAFdiA000vQwEqcLrZSs2qxjZaHG+cbraqs8IxxwpsQAYK0NyqYQeOwPXVhmZYgASsQAGawhyWvr7OsNAUrKPWFxoWVqC113pnfadhoQAV2IEjcH2xYWEBErAC4dbg1uDW4Nbg1uDGcGO4MdwYbgw3hhvDjeHGcGO4WRzb4tVqxhwJON26TQ2L440MnG7dRsjieON0m+9ikdWMbbTf7o0FSEBzs3GzmN9obtbe9eUHa9n69oNNufX1h4UjcH0Bwqbc+gbEQgJON1ux9vUliIUMFKACe+D6AoQYmoJdxfrmgzV9ffVhoQI78NHeautYqwNzLEACVmCbWAx5YjOUiWKoE7thD7SvP9hKwmq7ajEx+7pDMTH7vsPGEWjfeChkWIAErMAGZKAAzY0NO3AE1hItqwSsQLNQQwYKcFrQ+rsdOAJnSFdbi1jpluN0s918K91ybMDpZmsGK91yVGAHjkC+gAVIwApsQLgx3BhuDDeGm8BN4CZwE7gJ3ARuAjeBm8BNzM2mnF7AAjQ3m4hagQ1objZYKkAFdqC52fzt5mbzd4Z0tdWBlW45VuB0s/t1K91yFKACO3AEzp98xwIkYAXCbcBtwG2Ym82+0YFjY7XSLccCJGAFNiADBajADjS3ah+YuYAFSMAKbEAGClCBHWhuzb5icwELsAFNQQxNQQ1HYL2ABWjt7YYV2IAMFKACO3AEWn7YWIBwa3BrcGtwa3BrcLP8MJca1cqxNlp+aMWwAAk43eaypFo5liMDBajADhyBlh82mpsNluWHjRXYgObGhgJUYAeOQMsPbLPP8sNGAlZgAzJwutk3Wqwcy7EDR6Dlh40FSMAKbEAGws3yA1tHWX7YOAItP7DNX8sPbHPS8sNGc7ORt/yw0dxs5C0/bFRgBw5HK8dyLEACVmADMlCACuxAuBW4FbgVuBW4FbgVuBW4FbgVuBW4EdwIbgQ3ghvBjeBGcCO4EdwIbhVuFW4VbhVuFW4VbhVulkvm2rRaVZbjCLRcsnG6zWVqtcosxwpsQAYKUIEdOAItl2yEG8ON4cZwY7gx3BhuDDeGm2WNuYCuVoRV5wK6WhWWoymwYQeOQMsPGwuQgBVoumKI0ezoX4v5jQSsQLtiNWSgABWIudPhNjB3BubOwNwZmDsDc8difrXBYn4j5s7A3LGYtzbYGW2OBRhuhJgnxDwh5gkxT4h5QszbYW3L2E5rcyxAAtZoQ2lABsINMU+IeULME2KeEPOEmCfEvNWc7TYQAwWowA60a5tJ10rRHO3aTNdifmMFNuB0mzsj1UrRHBXYgSPQYn5jARJwus3tkGqlaI4xwa3+rM6Nj2r1Z44j0AJ9I6bGCvSFGCzGYDEGiwWoQAwWY7AEgyUYLMFgCQZLMBEFE1EwNSz85/ZNtUozxwK0jrJ+sPBXa5ndHmxkoAAV2IEj0FLFxgKM21BaC4WFAjRda7olhY1Tdz7hr1ZT5liA8yq6DbclhY0NON26jbwlhY0K7MDhaDVljgVIwApsQAbajsAwHIEW/htNlw0JWIGm2w0ZKMB5FXMfpq5vRm4cgRb+8+3gur4cuZGAFdiADBSgAjtwBFa4VbhVuFW4VbhVuFW4VbhVuFW4Nbg1uDW4Nbg1uNlP/rARskywUYHmZgNgmWChZYJZg1Gt0syRgOamhg1objbclgk26vygpo2QfYNy4wi071Be1hz7EuVGAlZgAzLQdK1l9sXJy67Cvjk5967q+urkxgZkoEy0eWZfn9zYgSOwX8DpVqyr5+2BYwU2IAMFON2KXcXMBI4jcGYCxwIkYAU2IAMFCLdhbtZnYzjakW+O5iaG5jYMK3C6zd2vaue+OU63ublVrf7MsQNH4MwPjgVIwApsQAbCrcCtwK3AjeBGcCO4EdwIbgQ3ghvBjeBGcKtwq3CrcKtwq3CrcKtwq3CrcKtwa3BrcGtwa3Br5kaGDBSgAs3N5oN9kXahfZN2YwESsAIbkIECNN0ZsVar1simnMX8RlNQQwYKUIEdOALte7QbTbcbon8VV2wxv3EEWsxvtCu2CLCY31iBDYjR7HDrGM2O0ewYzYHRHBjNgdG0mF/NGRjNgdEcGM2Ba7OYt407K1tbaGVrbe5wVitbcyRgBU43u4exujZHASqwA0egxfzGAjQ3NqxA9sGyErdm23lW4ubYgSNwBfowLEACVmADMlCAMViMQGcEOiPQGYHOCHRGoDMCnRHoVszWbPvRDoHbaCG90TrK+sFC2jb5rNrNsQEZKEAFduAIXJ+ZXjh17RPYVtfmyEABTl3bUrS6NscRaD/uG+OnmdeP+8IKbEAGClCBHTgC7Tbf7irs6DfHBrSrqIYCVKBdhU0jC/+FFv4b51XYZqedAedYgdZnNm4W/hsFaA/SbNrbzf/GEWg3/xsLkIAV2IAMFCDcBtxGuMl1AQuQgBXYgAwUoAI7EG4Fbhb+s3ykWqGeYwWamxgycPakbeRaoZ5jB85xsw1XK9RzLEACVmADMlCA5kaGHTgCLRNsNDe7TMsEGyuwARlobnaZ9pO/sQPNbU4jK+pzLEACVmADMlCACuxAuDHcGG4MN4Ybw43hxnBjuFnWsF1sK+rbaFljYwESsAIbkIHTTWzcLGts7EBzmwnPCgAdC3C62U6kFQA6NqAGdvzdjr/b8XctE2wUYFKwlrHhCLQbgY2zZbaTY+V7jhXYgAwUoAI7cDha+Z5jARLQ3LphAzJQgArswBFoNwIbC5CAcCtwK3ArcLNMYNtNVtTXbK/NivocCViBU3fWMVUr6nMUoAL7LseodnzcRisc2liABKzABmTg7J1Z6FSt1G+jRffGAiRgBVp7ydAU5oyy8r1m23lWvudIQFNgwwa0frDhtojdqEBrrzXdInahRezGAiRgBTagudkQWsRuVGAHjkCL2I1lV25VK+rb/WC/8xvROxaxttdmRX2OI9B+5zcW4LyKbpPAontjAzJwutlmnB0Q59iB063bAFh0byxAc7MLsuje2IDmZiNv0d1tWCy6u3WqRbdtmlkB4EIrAHQ03WHYgAwU4NSd9VHVivrW5LKiPkcCViAD+y6ErKtmb6HV7G20ekQ2JGAFNiADBajADhyB9iNs24RWyefYgAycF2/7Z1bJ59iBI9Aq+ezRwKrk20jACmxABgpQgT2QvYK4rpq9jXYV1r8WvBsZKEC7CutqC96NI9CCd2MBEtAqfU1MGpCBAlRgB45Aq9nbWIAEtKuwcbPg3ajADrSrmBFg1XmOBUhAq+ZWwwZkoAAV2IEjcFXWL7SxWNiADBSgAjvQ32eo47qABUjACmxAe3tiGApQgR04Atd7MwvtKkzMfljH+q8K7EDrhxktVsnnWIAErMAGZKAAFdiBcKtwq3CrcKtwq3CrcKtwm3HMs/qxWvmeYwESsE60fzbj2JGBAlRgB45AvoDmRoYErMAGNLdqKEAFduCIwVrRvbAACViBDchAzAfBfFC7imZYgAS0q2BDuwoxZKAAFWhXoYYjsF/AApxuxUZoRjfbproV6jkyUIAK7MAROKPbsQAJCLdhbnaZg4ECVGAHjo3NCvUcC5CA5tYNp9vcam9WqOcoQAV24AicMe9YgASsQLgVc6uGAlRgB45AuoAFSMAKNDcxZKAAFdiBI7BewAI0t2FYgQ3IQAEqsANH4Hqvzpq+3qtbSMAKbEAGTt1q/WuZYCamZoV6jqZgk2C9K7eQgQJUYAeOwPWu3MICnP0wS0qbleRxtZbNmHdUYAeOQMsEGwvQrqIZVmADMtDcrDmWCTZ24Ai0TLCxAAlobjbylgnmr3SzkjxHASqwA0egZYI1FgMjNDBClgk2NiADBajA7rjOQpvLh7bOQttYgaY7DBk4ddtSUGAHzquYt4vNiu8cC3BexXzvq1nxnWMDMlCA5qaGHTgCLeY3FiABK7ABTXdmuXW+WbersIhtdsUWsRsZOFvG1lEWsRtny3gpjED7nd84W8bWD/Y7v7ECG5CBAlSguVXDEWi/8xsLkIAV2OKK7RedravtF33jCJQLaLpsSMAKbEDeJ2k0K6hzVGAHjkA76WFjARLQekcMBajADhyBFsdig2VxvJGAFdiADJxuYn1mcbyxA0egxfHGAiRgBTYgA+FmcSw28hbHG4ejldnx3NlrVmbnSEBzY0NzE0Nz64YCVGAHjkCL7o1Td24LNSuoc2SgABXYA+2Hde4QNat222g/rGrttYCc2zfN6tocGShABfZACxy19lrgbByBFjgbC5CAFdiADBQg3BhuDDeBm8BN4GY/i3MvqNnxZmxZ2YrOuNtw2w/gxgKcCt2G234ANzYgAwWogRYi3QbAgqHbAFgwdGuZBcNGAZqCdbUFw8YRaMGwsQAJaG52xRYMG6fbsIu3YNiojlZIxnMXpVnJGM9NkmYlY47WXjE0hWqowA4cgTbB51ZEs0IyRwKaGxs2IAPhVuBW4FbgZj9fG4uPhRWSOVZgAzJQgMOH0IrD1hBacdgaLCsOc2Sg+FhYcZhjB8ZoWnGYYwGSj5sVhzm2GKzGQAGOGEKLtzVujNG0eFtDaPG2OorRv4z+ZfSvxdsaLMFoCkbT4m0NlmA0BaMpcBO4CdwEboLRtGAY1iUWDBtHoAXDsN6xYNhIwApsQAYKUIEd+HCTuTBvVmHlWIAErMAG5IlqKEAFdqC5zWlkFVaOBWhuw7ACG3C6zWV1sworRwV24HSbb3U2q6WSuShuVkvl2IAMNN1maLpsaLpiOALnj49jAZqbXXGtwAZkoLnZtc0YErL2zhgSsubMGBKy5swYErJ/NmPIsQIbkIECVKC5Wa+3EcjmZs3hAiRgBTYgAwWowA4cgQI3gZvATeAmcBO4CdwEbgI3gdv8LRRb0trBYI4ErMAGZKAAp66tkqwEy7EACViBDchAASqwA+E24DbgNuA24DbgNuA24DbgNuA2ws1KsBwLkIAV2IAMFKACOxBuBW4FbgVuBW4FbgVuBW4FbgVuBW4EN4IbwY3gRnAjuBHcCG4EN4JbhVuFW4VbhVuFW4VbhVuFW4VbhVuDW4Nbg1uDW4Nbg1uDW4Nbg1uDG8ON4cZwY7gx3BhuDDeGG8ON4SZwE7gJ3ARuAjeBm8BN4CZwE7gp3BRuCjeFm8JN4aZwU7gp3JBLGLmEkUsYuYSRSxi5hJFLGLmEkUsYuYSRSxi5hJFLGLmEVy6phg3IQPWMyCuBLByOcl3AAiRgBTYgAwWowA6EW4FbgVuBW4FbgVuBW4FbgVuBW4EbwY3gRnAjuBHcCG4EN4IbwY3gVuFW4VbhVuFW4VbhVuFW4VbhVuHW4Nbg1uDW4Nbg1uDW4Nbg1uDW4MZwY7gx3BhuDDeGG8ON4cZwY7gJ3ARuAjeBm8BN4CZwE7gJ3ARuuO0Q3HYIbjsEtx2C2w7BbYfgtkMUbgo3hVuHW4dbh1uHW4dbh1uHW4dbh1uH24DbgNuA24DbgNuA24AbcokglwhyiSKXKHKJIpfoyiVi2IAMNLduqMAONLd5g6wrlywsQAJWYANON9vmtjIwRwV24Ai0XLKxAAlYgQ0IN4Ibwc1ySbPesVyy0HLJxgIkYAWaWzVkoADNrRl24Ai0XLLRdNkQCpYfNnagKVinWn7YWIDWXhs3yw8bG5CB5jYMFdiBI9AygW3WWxmY2La8lYE5KtDmzvpnI3DF/MICJGAFNqC5kaEAFdiBI9BifmMBErACGxBuHW4dbh1uHW4Dbhbz9pTAysDEdv6tDMxRgArswOFoZWCOBUjACmxABgpQgR0ItwK3ArcCtwK3ArcCtwK3ArcCtwI3ghvBjeBGcCO4EdwIbgQ3ghvBrcKtwq3CrcKtwq3CrcKtwq3CrcKtwa3BrcGtwa3BrcGtwa3BrcGtwY3hxnBjuDHcGG4MN4Ybw43hxnATuAncBG4CN4GbwE3gJnATuAncFG4KN4Wbwk3hpnBTuCncFG4Ktw63DrcOtw63DrcOtw63DrcOtw63AbcBtwG3ATfkko5c0pFLOnJJRy7pyCUDuWQgl4yVS9iwAhuQgQJUYAeOwJVLFhaguXXDCmxAcxNDASqwA0fgyiULC5CAFdiAcCO4WS6xZ5ZW1+Y4Ai1rbDSFYShAU7D+tfywcQRafthYgASc7bWHhFbB5shAAZqbGVt+2DgCLT+otdfyw0YCTjd7oGgVbI4MFOB0mxXazSrYxJ44Wq2a2BNHq1VzrMAGNF01NF27CssE9qzOjpoTe7puR81ttEywsQCnmz3Bswo2xwZk4HSzpztWtib2dMfK1sQekVjZmtgjHStbE3uyYmVrjhXYgAwUoAKnmz2QsbK1jRbzaxoNzCiL+Y0NyEABYqYOzNThM5WtVs2xAAlYgQ3IQLugZqjADrQL4okW8xsLkIAV2IAMFKACOxBuBDeL+fl8iK1WzbECG5CBAlRgB45Au3/YCLcKtwq3CjfLD7Ogma91p1ANR+C6U1hYgASswAZkoAAVCLcGN4Ybw43hxnBjuDHcGG4MN4Ybw03gJnATuAncBG4CN4GbwE3gJnBTuCncFG4KN4Wbwk3hpnBTuCncOtw63DrcOtw63DrcOtw63DrcOtwG3AbcBtwG3AbcBtwG3AbcBtxGuJXrAhYgASuwARkoQAV2INwK3ArcCtwK3ArcCtwK3ArcCtwK3AhuBDeCG8GN4EZwI7gR3AhuBLcKtwq3CrcKtwq3CrcKtwo35JKCXFKQSwpySUEuKcglBbmkIJcU5JKCXFKQSwpySUEuKcglBbmkIJcU5JKCXFKQSwpySUEuKcglBbmkIJcU5JKCXFKQSwpySUEuKcglBbmkIJcU5JKCXFKQSwpySUEuKcglBbmkIJcU5JKCXFKQSwpySUEuKcglBbmkIJcU5JKCXFKQSwpySUEuKcglBbmkIJcU5JKCXFKQSwpySUEuKcglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsgldoSdzNeO2I6wc2xABgpQgR04Ai2XbCxAuDHcGG4MN4Ybw43hxnATuAncYoeTaeWSheY2DBkoQAV24Ai0XLLx4abzVSK2ckPHCmwTyZCBAtSJ1rKZSxxH4MolJrZyyUICVmADMlCACuzAEWhZY25dsxUhOtpV2IQZDBSgAjtwOFppoqP1GRsSsALNTQwZKEBza4YdOAItazRzs6yxkYAV2IAMFKACO3AEkl2FGlZgA9pVdEMBKtCuYhiOwJkfdFZ5sZ1x50jA6TZrv9jKGB0ZKEAFduAIbOZGhgVIwApsQAbKrlLkVcbYbSzYyw3ZTrNzJGAFNiADBai7HpF3cePCEbiKGxeWXe/Jq7hxYwU2IAMFqMAOHIGKkVeMvGLkFSOvGHnFyCtGXjHyHSPfMfIdI98x8h0j3zHyHSPfMfIdI98x8gMjPzDyAyM/MPIDIz8w8gMjP2Lk2xUjb7WWjgSswAZkoABj5NvVgTHyrVzAGHmrtXSswAZkoAAV2IEx8lZrqfMoP7ZaS8cGZKCNhV2FxfzGDhyBVug/N83Yai0dCViBDchAASqwB67otqtY0b2wAhuQgQJUYAeOQL6AcGO4MdwYbmxuw1CACuzAESgXcLqR9fqMeccKbMDpRtbrM+YdFTjd5iuMbAWWSmYxf/0dC5CAFdiADBSgAqdbtRGyTLDQMsEsU2Iru3QkYAVOt2pNt0ywUYAK7MARaJlgYwGam42QZYKN5ma9Y5lgowAV2B2t1lJnEQFbraUjASuwAafFfFTPVmvpqMAOHIEzKThOt1kuwFZr6ViBDchAASqwA0cgXUC4WaqYb/yx1Vo6NqC5VUMBKtDc2NDcrCft9qBZ79jtwUYCVmADMrDPw1uMhtP6OJZRCaKg6mQRPKsO2IodHRn4uBSyNq+Pzxn1oOG0vjxnVIJMcRjObrA7dytdrOt/H07rcxRGj39t83UdQ7eoBrUgDpIgM7HRsjDcOPuabYgsDDcW4GymraOsClHZxCy0Ns522v9ukcXWUIusjQSswAZk75IR3TmiO0d05/DuXB9+XVS9E626cHWiVRfqfCzGVl3oaJc6B9aqCx2tpd3w0dJZ3ML7hDijFsRBEqROFhZsDbEAsOcQ68A3s1lnPxlJ0PzX1jQ77G3RcLKj3haVIAoyk2LYgHNqztcD2UoEHTXQboDn64FsZX8q1nj7Mdw422lda7+Fq2Pst3BjB45A+y0U+2f2W7iRgDU63CJpIwPhxnBjuDHcBG4CN4GbwE3gJnATuAncBG4CN/st3Fj2VLeivzV9rejPsQEZKIH2OyXWBAumjR0457jNIjv8ZVEJoqAa1II4SII0qAe5x/qY6qISREE1yObHQgYKcF7MfNLKVoLnODtxPu1lK8FzLEACVmADMnC6zce2bCV4jh043eYjXrYSPMcCnG7zYS5bCZ5jA86suf6qBGlQDxpOdkL7IlMUQ2upGlpLrf22IN04Ai0eN86W2t2rncHmWIENyMDZ1EXTrFvPW5RuHIEWpfOVQbbaO0cCmpn1hUXpRjOzS7Mo3ajAmb2sCevI9UnrxHWjEkRBNcgUrbMs5rr1hcVct6ll958bCViBs6XDLtCCbqMAFdiBs6l21Xao06ISNJtqA7tOXTZqQRwkQRpkJgtHoP04bqxAa6ZZ2q3kxtmh1sp1bvqD1tlqi2aP2CLQauocK9B6RA0ZaFbdUIHW2GH48Oq2H2c1dd0296ymrtuOk9XUOVZgAzJQgArsQHOz9pK5iaG5WXvJ3KyRZLrWSBKgAjtwBNYLWIBTzHYYrDjOUYEdOAJnpDoWoIlZRzX7Z2Q4AvkCFuBc61ajGtSCOEiCNKgHDSfbEVpUgsJDwkPCQ8JDwkPCQ8JDwkPDQ8NDw0PDQ8NDw0PDQ8NDw2OdsGRUg1oQB0mQBvWg4bROVjIqQeExwmOExwiPER4jPEZ4DPcY1xVUgiioBrUgDpIgDXIPKxDrttK3ArFu2wZWINbnKUlspWCd7O9Ww2rIQAHOaW23ylbTZTfC61AyI3ute1EJoqAa1II4SII0KDxaeMy53mmhtVENbdfLSIN60HBae51GJYiCalAL4qDwkPCQ8JDw0PDQ8NDw0PCwZ6Y2BPbIdJEEzS10GxV7XrpoOHXrhW5ovWCKc0Z3+/W2wivHDhyBc1Y7FiABK7ABGQi3AbcBt2Fuj/aK1WA5FiABK7ABGShABXYg3ArcCtwK3ArcCtzW215GEqRBPWg4rRe9jEyRDK2l679abZpRDxpO62GmUQmioBrUgjjILtzQfj+qKTYCVqBdohoyUIAK7MARaD87GwuQgBUIN4Ybm9swVGAHTrdm4zCD1HG6NevWGaa9WbfOOO3NLn4GqiMDp1sz4xmrjtNt7rSIlUz1ZsarpNKoBFFQDWpBHDQV5yaBWAFUZ2u0BSdbS+cvkGMDzpbO7Q6xAihHBXbgCLTgZLtAC0O20bUwZLtAC8ONHTgcrajJsQAJWIENaG7dUIAKNLdhOAItDDcW4HSbOU6sqMmxAW1L20iCNMie/hgNJ1ugLSpBFFSDbG/ZiIMkaF6PmIndAG4cgXYDuLECZ4+IKdjP40ZTqIYj0O76NtpGkREF1aAWxEESpEE9aDjZumxReHB4cHhweHB4cHhweHB4cHhIeEh4SHhIeEh4SHhIeFhszo0isRIkxxGo1l9iWIAEtHGwOagNOOfrmi7zB9VRgR04AufKra+5YNG8cbqpjZlFs1rLLJrXVVg0bxSguVkjLZo3jkBbwVlzbXdzEQXVoBbEQaY4Y9MKirr9Vyso6vPQJ7GCIscGZOBs6VzHixUUOXbgCLQ43miLRSNLx0bTa674xcqJ+lzmi5UTOVprJ83wnIXAYqVAw4RmKG6SIGvS+osdOAItFDcWIAEr0BplunZXu1GA3Vs1Q3XRjNRNs83WvzNQN9WgKT4X32JlP44CnJcyrKPst3XjvJRhfWa/rRsL8OFV5upZrOzHsQEZKEAFduAInIHrWIBwE7gJ3ARuAjeBm8BN4KZwU7gp3BRuCjeFm8XvsGlk8buxA60nbaQsfjcW4JwUw6afxe/GBmSgudnAWvyu2djt2mxY+ggcF3BOkdXeGcGOFdiADBSgAjtwOFoxkGMBErACrSfJkIECVGAHjsByAQuQgBUItwK3YtdWDBXYgSOQLmABErACG5CB5mbGpMAeWAvQFJqhKbChABXYgdbeOaOs7MexAAlYgQ3IQAEqsAPhxnBjuDHcGG4MNzY3NRSguQ3DDhyBMz+MYtNo5gdHAlZgAzJQgAqcbsUGa+aHjXoBC9DcqmEFNiADBWhudvHagSOwX8ACJKC5WUf1BmSgABXYgSNwXMACJCDcLD/M07LFSoQcBTjdyHrS8gNZR1l+MLTCoTEPBhMrHHKcbnPrRqxwyLEBGShABXbgCCwXsADhVuBW4FbgVuBW4FbgVuBGcCO4EdwIbgQ3ghvBjeBGcCO4VbhVuFW4VbhVuFW4VbhVuFW4Vbg1uDW4Nbg1uFkumXU2YkVGjgJU4MzrZeEInLnEsQAJWIENyEAB2lXM5GiFQ2NuyokVDjlae9WQgQJUYAeOQMsPG023G6J/FVdsMb9xBFrMb7T+HYYErMAGxGh2uHWMZsdodozmwGgOjKbF/GqDxfxGjObAaFrMrzasmF/YgeHG1wUsQAJWYAMyMOYOXwrswOhJXjE/DAuQgHBDzDNinhHzjJhnxDwj5hkxzyvmrQ1EwApsQAZOt7kRKVYX5DjdbLvP6oI2WsxvLMDpVk3MYn5jAzJQgArswBFoMW97d1Yw5BgT3A5eG7Z3ZwevOQpQgTE17OC1jYzBYgwWY7C4AhsQg8UYLMZgMQaLMViCwRJMRMFEFEwNC3/bE7Q6JccOtI6yfrDwt+1BK1VyJGAFNiADBajAHtjjxtAOU3OswKlrm5F2mJrj1LXNSCtjcuzAeRXNhtuSwsYCnG62W2l1TI4NyEABKrADh6MVMzkWIAF5r8atxGmTBtnKymg42fp/kSl2QwJWoLV//V0GCtDmklEPGk4r6o1KEAXVoBbEQRIUHhQeFB41PGp41PCo4VHDo4ZHDY8aHjU8ani08GjhYb/ptldstVKODThteP1dAU4j21e2YinHEWihbhvEVizlaG5iWIHmZgNtob5RgOZm1IOGk8X5ohJEQaZo08DC2bZ7rfRp2MaulT45FiABZ0tt/9RqnxwZKEAF2v6NtcF++RfaL//GAiRgBZqbdZEF+UYBKrADR6AF+cYCJGAFws2CXKzrLcg3KtDcrCctyG0j2yqtHKeb7V9arZXjdLP9S6u2cmSgABXYgSPQfvk3FiAB4VbgVuBW4FbgVuBW4EZwI7gR3AhuBDeCG8GN4EZwI7hVuFW4VbhVuFW4VbhVuFW4VbhVuDW4WWKwbWWrz3KswAa0fZVuKEAFduAItLv9jQVIwAq0q2iG1t4ZF1Z25WjtFUMCVmADMlCAGmiZwPavrfRqd4niii3mNwpQgda/1nSL+YUW8xsLEKPZ4dYxmh2j2TGaHaPZMZodo2kxv5ozMJoDozkwmgPXZjFvm+hWr+U43bqFtMX8xuFoFVuOtiVdDQlYgQ3IQAEqsAPNbU4CK9lyJB8sq9MatqlvdVqODBSg+gD00oExWJ0uYAESsAJjsDoCvSPQOwK9I9A7Ar0j0DsCvSPQrZBr2BMDK+RyVKB1lPWDhXS3lllIbyxAAlZgAzJQgBpoP+t212WVXo4ErEB7mGJTw37WNwpQgfHT3NcPu+H6ZV9YgASswAZkoADHfkhkRV6bStDcjy9GNagFWfttNlrgb1Sg1eYZDSfb+F80G2+PWKwMzLEC235sZYVgmyRIg3rQcLKSmUUliIJqUHiM8BjhMcJjhMdwDysE21SCKKgGtSAOkiANmsNt92d2MNlGi+6NxZ/e2cFkjtZjatiADLTB6YYK7MARaIG+sQAJWIHmNgwZKEAFrmdOxXiA65W4JKbE68ETGbfEnNie7BtpUA8aTuupvlEJoqAa1II4KDxaeLTwaOHB4cHhweHB4cHhsR8Q2nDuJ4SLNXFPPMD7KeHikpgSrx40r/2kcDEnXr42E/fDwsU98fK10d/PCxeXxC3xLJw39ZkAFnX7d8VGrZfElLgmbok5sbW3LE1N3BMP8HoGaHv4VkUXTImXr7V9tMScePnarB6auCcezmrldI8HbZfxekBHxutZXDXmxJJYE6+nf2y8Hv/J5P38rxsvffPdTwAX18QtsflWa1uRxJq4J16PVK39ZF7V2kbmNXfM1KrrHmxtI/Oq5kWcWBJr4p54gFeW2Gy+zdqzssTmmHd67cywWBJr4p54gJt5NbvGVhJTYrvGZtfeWmJOLIk1cU88wGsFsLkkpsTJl5Pvyh/N5sbKH5s1cU88wCt/bC6JKXFN3BInX0m+knwl+a780WyerMqCZvNklRZsbok58dJXY03cEw/wqhCyIe0FSMAKbEAGClADVx5pi0tiSlwTt8SceLV7zun1jc5rbi3p+kjnNfeLdH2l07klNp256aRl5YvN1i+zcFHLyhebB3jli7nzpGXli82UuCZuiTmxJF6+bNwTDzBdiUtiSmy/jXYpK0Ws7lkpYnPqtpUi5naZrm96OpfElLgmXpelxpxYEmvidVnmu9LF4pUuNpuv2BCtdLG5JjbfdY0rXWyWxMu3G5uv2NCtdCHW5StdiHXbShebKfHSt+tdaWGzJu6Jl75d7wr/NSVX+G9uiTmxgq0UcI2olQJuJKCVrpqnLSc2MlCACuzAEWiBvrEAVz9bH67bhs2SWBOvfrBxXLcNi1e4by6J7WpsSG01sbEBGShABXbgcKRV9rvQCrXZsAHtYuaGotKK/c2auCe2i1FTXLG/uSSmxDVxS2wF4mIoQAV24Ai0F1k2FiABK7AB19WQcU88wCvkN6+rqcaUuCZuie1qFgpQgR04Am35sLEACbhGpxlLYk3cEw/wCunNZb1coutQsUU1qAVxkATt11F0HSe2aDjZYWKLShAFrfbbTFu/3GrjsX65F687/832ctIwJGAFNiADBajADhyBFt8b4dbh1uHW4dbh1uHW4dbhtgJ77psprd/xzTVxS7x6qRtLYk3cE4/gutYDm0tiSrx8h3FLzIkl8dpevox74gFesb+5xAjuSsHNNXFLzIklsSbuiTFb6vp9nztGWtfaYHNLvDbNyXjtmldjTdwTD/DKAnMHRevKApspcU28fNV4+Vofrh/+zZq4Jx7g9cO/uSSmxDVxS5x8V5YYdu0rS2zuiQd4ZYnNJTElrolbYvOdm0la1w3BsH5YNwSbe+IBXuuEzSUxJa6JW2JOnHztpsGqh9WqDoMH2LKNc0lMiWvilpgTWzXUZXNGNXFPPMD9SlwSU+KaePnanO+cWBJr4p54gMeVuCR++Nqt6Ppi7KIWxEESpJus4vChs3i1uRu3xJYv118RoAI7cARawcHGAiRgBa6uGMbWFbPgVK2UMHiAbcngXBJT4prYLmcWpqpVFAZLYk28fMl4gOuVuCSmxDVxS7x8q/HybcaauCce4HYlLokJw9TS8LU0fI0TS2JN3BMP8Co13Fz3CQW6ji7byMB1UWKsiddFLZEBlivxuiibAEKJa2K7KLIBsrzhLIk1cU9svmSdtvLG5pKYEtfELTEnlsRLf+bPdUjZsHFe4W7bcW2F+2ZNvJppcbDCffEKd9u+ayvcN1Pi1UzrntESc2JJrIl74hHMKyXYtp5VJAZT4pq4JebE4t1gBYiP/zxHwioQg0tiSrzkybgl5sSSWPcpIboOKNs4Au3dwo0FSMAKbEDrLrt/55USNg/wSgmb1/U0Y0pcE7fEvE+FUY4DYpTXATELO3AErgNiFhYgAVc/sbEk1sTresR4gFfIb17XY5qrvnjzuh7ro1VhvJkTL1+bUisbbO6JB3hlg80lMSVehc02vVY22MyJJbEm7olnX9puCa9Dm0zdzo+x/RGrQ3RkoAAV2IEjcB2cZr21Dk5bSMAKNDdrmZ1fuFGACuzAEWivIW4sQAJOXdsb45UPmgXaygebe+IRLCsfbC6JKfEaGDJuiTmxJJ4XZFtC+zC2hSNwHca2sAAJWIENyMB1OdV4gNetw+Z1Oc2YEtfE63LYmBOvyxFjTdwTL985yLLyxOaSmBLXxC0xJ16+3VgT98QDvG4dNpfE1pd2iS0mhzRMDmmauCdOk4PT5OA0OThNDk6Tg9Pk4DQ5OE0OxuRgTA7G5BBMDsHkEEwOweQQTA7B5LCfcbLbZytHDNbEHbx+o+02R9Zv9OL1G73ZLn9Yj67f6M01cUvMiSWxJu6JR7CumNxcElPipTMnq64f3fkqper6od3/fbVNjVfbujEnlsSauCce4BVgm1fbhjElromb9fNlvMalGK9xIeM1LtW441pWgC2u6RpX8NgWiK7g2SyJNXFPPMAreDaXxJS4JjZf20pZ9X7FtjFWwZ+zJu6Jzde2OlbRn3NJTIlr4paYEwt4/cDa1oiuH1Lb9tD149ltPqwfz259uH48N/fEA7xumTcvHZtL69Z489Kx+bCWzra9oeveeFhfrXvjzZp4jbX1z4474x13iwv0d9yt/14Tt8ScWNAPK+4298QjuF+43r5+8+wa+/rN24x+sJK4xwrE/q3Nf5onN6kVxQW3xJxYEtv8t+WU1cA92PRrSUyJa+KWeOl3Y0msiXviAW5X4pJ4+Q7jmrgl5sSSWBP3xANs85+sTMIq54Jr4paYE0tiTdwTD7DFiHPyleQry7cYt8ScWBJr4p54YFw0jammMdU0puv3yEpErELuwdWYEtfELfFqm82lLok1cU88wONKXBJT4uVr83y0xJxYEmvinngEW+ncvl4rnnuwGHNiiWu0crngnniAy7oWNS6JKfG6lm7cEnPSSb4l+ZbkW5IvXYlLYkpcE7fEyZeS14p927pbRXHONXFLvH5b7VpW7G/WxD2xtd/25MaK/c0lMSWuiVtiTiyJNXFPnHw5+XLy5eTLyZeT74p32/9bpXBke3ur/I1sT26Vvzm3xJxYEmvinnjFso3LjuXFJTElrmiPtsScWBJr4p54gHu6xpUfJvdVHkZzT6av8rDNKxY2l8SUuCZuiTmxJNbEybckX0q+lHwp+VLypeRLyZeS746LYdwTD/D63dxcElPimrgl5sSSOPnW5FuTb0u+Lfm25NuSb0u+Lfm25NuSb0u+Lfly8uXky8mXky8nX06+nHw5+XLy5eQryVeSryRfSb6SfCX5SvKV5CvJV5KvJl9Nvpp8Nflq8tXkq8lXk68mX02+Pfn25NuTb0++Pfn25NuTb0++Pfn25DuS70i+I/mO5DuS70i+I/mO5DuS74CvHT8XXBJT4pq4JebEklgT98TJtyTfknxL8i3JtyTfknxL8i3JtyTfknwp+VLypeRLyZeSLyVfSr4pX5WUr0rKVyXlq5LyVUn5qqR8VVK+KilflZSvSspXJeWrkvJVSfmqpHxVUr4qKV+VlK9Kylcl5auS8lVJ+aqkfFVSviopX5WUr0rKVyXlq5LyVUn5qqR8VVK+KilflZSvSspXJeWrkvJVSfmqpHxVUr4qKV+VlK9Kylcl5auS8lVJ+aqkfFVSviopX5WUr0rKVyXlq5LyVUn5qqR8VVK+KilflZSvSspXJeWrkvJVSfmqpHxVUr4qKV+VlK9Kylcl5auS8lVJ+aqkfFVSviopX1HKV5TyFaV8RSlfUcpXlPIVpXxFKV/Rvr8qxus+hybv+6vFJTElrolbYk4siTVxT5x89/0VG5fElHj5VuOWmBMvXzXWxD2x+c6HKn0V3TmXxJS4Jm6JObEk1sQ9cfJtybcl35Z8W/Jtybcl35Z8W/JtybclX06+nHw5+XLy5eTLyZeTLydfTr6cfCX5SvKV5CvJV5KvJF9JvpJ8JflK8tXkq8lXk68mX02+mnw1+Wry1eSrybcn3558e/Ltybcn3558e/Ltybcn3558R/IdyXck35F8R/IdyXck35F8R/Id8F1lgM4lMSWuiVtiTiyJNXFPnHxL8i3JtyTfknwL8kPd+Ucm7/yzuCSmxDVxS8yJJbEm7omTb02+NfnW5FuTb02+NfnW5FuTb02+Nfm25NuSb0u+Lfm25NuSb0u+Lfm25NuSLydfTr6cfDn5cvLl5MvJl5MvJ19OvpJ8JflK8pXkK8lXkq8kX0m+knwl+Wry1eSryVeTryZfTb6afDX5avLV5NuTb0++Pfn25NuTb0++Pfn25NuTb0++I/mO5DuS70i+I/mO5DuS70i+I/kO+K6SQOeSmBLXxC0xJ5bEmrgnTr4l+ZbkW5Lvzj/FuCXmxJJYE/fEA7zy1XzY31ctoTMlXr5k3BJz4hH5sO1ctLgkpsQ1cUu8NO16973QYk28rqUbmy/btaxctLkkpsQ1cUvMiSWxJu6Jk+/KRWx9tXLRZkpcE7fEnFgSa+KeGL9ZLd0LtXQvtEoIia2vVi7a3BJzYkmsiXviAV65aHNJnHw1+Wry1eSryVeTryZfTb49+fbku/KP2LWv/LOZE0tiTdwTm5fYmK78s7kkpsQ1cUvMiSWxJu6J4bvqD2m+79ZX/aEzJV6+zbglXr5qLImXbzfuiZfvXMetwkTnkpgS18QtMSeWxJq4J06+lHwp+VLypeRLyZeSLyVfSr6UfCn51uRbk29NvjX51uRbk29NvjX51uRbk29Lvi35tuTbkm9Lvi35tuTbkm9Lvi35cvLl5MvJl5MvJ9+Vo+Zrc30VNjpr4p7YfNXm6spRm0tiSlwTt8ScWBJr4p44+Wry1eSryVeTryZfTb6afDX5rlw0X5rrvPKPWgyu/LN56bCxJNbEPfEAr/yzuSRemmKcxnrlEOv/VbPoXBJT4tVmNW6JObEkxhyTqyfGHJOUQyTlEEk5RFIOkZVDVnsKJ5bEmrijPSuHLF45ZHPyTTlEUg6RlEMk5RBJOURSDllFjbsNlPq5pn6uqZ9XDlntqamfa+rnlEMk5RBJOURSDpGUQyTlEEk5RFoa35VDNqd+bqmfWxrflUM2p35OOURSDpGUQyTlEEk5RFIOWeWOzul6Uw6RlEOEUz9L6mdJ/bxzSDeuidf1mv7OIYslsSY231kn1mXlkMUrh2wuiSlxTdwSc2LznbVnfddYbh4Ry7Lyyayz6rLubTZT4po4zaWeYranMe1pTHsa055iZ6TYGWlMRxrTkcZ0pDEdaUxHGtOR5nDKUTIwl1atJs26u64rF21uiVcfivHqQzXWxD3xAK9ctLkkpsQ1cQPvgmZr56q3nHWzfddbziMl+q633FwSU+KauCXmxJJYE/fEyXfVZM4jK/quydxMiWvilpgTS2JN3BMPMCdfTr6cfFdNpq2Jdk3mZk4siTVxTzzAq25zc0lMiZOvJN9Vw2nrpl2ryTav1utNm1tiTiyJNXFPPMCrtnNzSby8bF6tVyHn+RV9139ulsSaeHnZPFz1n4tX/efmkpgS18QtMSeWxJo4+Q749utKXBJT4prYfG1ttetCN5uXrXf6qs22dU1fL0RtpsSmOc/66H3VaW/mxJJYE/fEA7zqtDeXxJQ4ea3f7mHtX7/dmyWxJu6JB3j9dg+79vXbvZkS18QtMSeWxJq4Jx5gTr7rt3tY367f7s018fK1a1+/3Zsl8fJl4+Urxst3zvldUzpsPqzf7s2UuCZuiTnx9K2XeVlcO/fEA2y/3c4lMSWuiVtiTpx8Nflq8u1L3663U+IKHuu/d+OaePnaNQ5OLIk1cU88gu3QxVJnvV9ftaPV6t9W7ahzTdwSc2JJrIl74gEuV+LkW5JvSb4l+ZbkW5JvWfpzHq4a0TrrBvuqEV19vmpEnTnx6rdmrIl74gGuV+KSePkurolX+82rcmJJvNo/Y2HViNZZw9xXjajzar9dV2OMXZPEmrgnXvpz/qwaUeeSmDA3uCZuiZMvJ19Ovpx8eYBX3NHiAV5xt3n9HRtTHeB+JbY2k431ip3NNbG1mayv7HfT2dpMNi72u+ncEy9fG5dxJS6JKXFN3BJz4uVr47tic3NPPJzHOurQuSSOuTGuHYNkLD6O49oxuLgnHuByJS6JKXHMgbFqWZ05sSRWj7uxalmdB5iuxCUxJa6JW2IGr/vGuYc5Vh1mmW+RjlWH6SyJNXFPvH7frW/X/aFY3677w80tMSeWxEvf+m29+7N5gNdr9JtLYkpcEy9f69t1n7lZEmvinniA133m5pJ4vYd1GbfEnFgSa+KeeIDXfebmkpgSJ9+RfNd95jwia6waS2dN3BOP4FVj6VxiXFaNpXNNjDFddZJl7tGNVQ9Z5h7dWPWQzpxYEq+2sXFPPMDrvnFzSUyJa+KWePk2Y0msiXviAV7rzc0lccX17vf+xFgTd1zjfr/PeL/ft7gkXtdi/bnf71vcEq9r6caSWJNO8m3Jl5MvJ9+1ltycxo7T2HEaO05jx8mXt9f//M8//eEvf/u3P/7nn//213/5z7//6U9/+Of/jv/wH3/45//133/49z/+/U9//c8//PNf/+svf/mnP/z//viX/7K/9B///se/2p//+ce/P/7Xx4z+01//z+PPh+D//fNf/jTpf/4J//p6/k/nvbLufz7vZUtIPKb2B5HyXKTNl65N4vGsLgS0ffj39Pzf15lb7d8/np+jAUq3r6Je8+d6XcXjLq0+vYr2XGQuGpZC+vet3v3nj4vwJtTHthhaQPJBQg4SPRQGmqD97r+X4jPhsX8b//5xN/JBoB/6sYkrPGZ+fyoxTt0wbx52N2h9KnHqSTtuckk8VhFPe7IcpiTR3I8yDao1zQf+GBrlNC1rNGOgO0un+xcyoHD15xdy0Hg8ffIheSA05GMr5p3981Gda9Q9qkxPJQ4zS9UH9bHTkCL0uq3Qm1/GY539XOHuZejzyzh1pl4eYQ8czyTokGqodc8T9HhC+lSivNsVdJiZZAfDrUaUCym3fWpEPTRi3vetRgx93ohTvrST8Exi3osh0pvcv5ASvz70yDhPL+QwsQhJ83oqcI6wITEpUur/PKL9/aR30mgUP2GN5PnvR72O+ZsiRFJvEOlHjcPs5O4j8njYmhTk/sSoJSZGVX46Mephej4W+aHBAzO86qcrObTj8RguokQpJYxvjIl6sD/ucfT5mBzmZ+nsdzflsY0EjfrxzmQGwlMNpo7c1zj9lNSPM6z2H5gd493Zcb4WuSSa8XiQ+vRa2un33dYUO3GkewSi8VGD3p0fx1l6MwUeNW5GS+P3o6XJ271xHNnRcPs48j3T55E95VJboa9cWjSN7GeNcfqRrh5z1NJv7OPO8oMGH3JpE8S+pBn2WePYDuYSNwvj0I7DLBXkoMetID/VOI7M4/fJ70TL/NT505HhdmpJzBB5bBE+1zjM1FYuH5lW0iz7jgYX8h55YHvtWmqNXm3l0B/9dOPQRtyay4saqrgjVXpNo+Ou9vGw8/lvw3GG6NVjhjxu95+qCP3WXwctsfgr87z35+04jO48MQmr+cfDtifZTPi35sPHE/LIh/NYjOfXor+1T2dptbdjlvY+b8cpl1XtsaJOuZ3qxyWDXu/26bEVLfY4qLXraSuOd2QaewPl8eDq6R2Z1lNmryMy+4e4/aRxmKWtx6qh9Q8adFuDW7SDW9o0+kVD3r8v1Ldn6blHe8wNofLaqEiFxmFU+ul3/+oxKuXD3en1jXbEJsFjZ5Kft4NOe5ojEnL7MEs/tqPX0w5W/FLW2vW5xqkdLSXkctA45VJ7Ou2bJvJSnz4efGOh31+L2sfDwxH3lk2fj8tpFTUoJsiDx3iSxY7tsAqqPS6HuT5OudQ+arFXQPl3kj7uF4/DKkolLkU1ryq/oTFrmmM7K23h/KJR389Ao/3ODPS4JdQYFdXXZljtMbKNxvOR1TcfAxwb0WIdViVvfn9uxDg9GMKKodY8rOO+xmgxRR9Php9qlOswv4bE/skQTc8kPt27lOuQxOwL20sj3drWNu6HG8dN9uNX5vk0t/XNoUPi9+lKufTzFvZ1yKU1tn7b9Xzj1r4+8fzhSIk9bNKW+kM/iZzuKh+jhnvsq7Snuw7jfD/XsUI+TZHTplQjn2fMaVv/l4c95Xp/bE5PnW6Ozemh0+2xKfUnxua8Mc6C9e3TRx2nO1w8vGoqfHiSd3oqime79fG44HnkHUXsnMUlQpUOIv39B2llvP0k7SRx81Ha7Ss5PEu73aWtvjgudpD7FjncPZTTA4e7j63tEyDvPsM5Xw5L3GDK8XL0NEVi9fDAdnh2fRLp5B07T+w9iIz3J/zpmdTNCX+SuDnh6/tPTEt9+5FpOT2SqvbtgZ3LOG/mvjoqh+A9Tw+JOdbHi3Osl4GxzcvtzyLHp1LcYp2rV31aZ3GOuxFbOo/d7cNvRLven+2n51I3Z3t7uzzg/pW8mt5HLEPalSLm1y79gdKT9n7tSXu/+KTx7+5Sxv3h1V/7xWxXif2pqx3GhU8P+e9WFdH7Y8v17bE9SdwtLKL3x/bco+/eLPMVz8X54kO12OlZkNhZPPu5Vj2kZD78wIwSS//8VPtzRj4WZJbYiX38puZyls9lpVLer50op4dSd7f7zyJsHxjYc4Tq86eO5fRgqtLAxl9alsk3JCpuMfOe7meJUwop0YpG5bnEuT9uVqTYCwbPHwhhE1PT5o7cl7i7d1hOD6bubR4eJSS22oXGixKRyiQl9l8kjr3BV8U0pee9ce5SGmmuH7qU398n/2Ka3S0WKqenU3erhewlgfceXp7bQfGQnR58aMdJhGOa0GO767nIuWNVI7Vyv54/Zy+nh0M389lR4l4+6+0357MP/ZHfIPglnx1l7pZA2TeIDstEPKfilp5yvyzSf0BE6qsi90q6yuk50+PGRqL+QJ/XQdkH354/WonCsNpTjv1V5PR0V0c8zezpNv57Ij3K/qinIqbviqAlxD8gUq+DyGl0bla6WaQe7qF73EPreG2IG9JjY+2vzpOO/YSrvdgnN6sQ6fTk6mMZYnutY9uI+tA2Or8mcrcQ8RuXcxji2/mkP09KdHp+dfcdiutUq1rjoWDNFZG/NuT0RICjBFA5b8V9XM/T6eFVbSUa8vg1TMvgTxqnh1fXlYpW2nMNOj54iqdoD86PfPp3ujXW0h8exP/arUeRgbEZh1+u4++5lJglj794uE2i4+tT2GzV53vPXzQkNGZD+qEh/fQcPG7srzxNun6nKXeLiYmO66V71cR0epXqbjnxUeRuPfG5Ja34EvKB/cWW1OhZ/liB8p2OvVnaTKe3qu7WNp9FbhY3n0VuVjd/cTk9Ola6vCiCCgEezC+uEB7bcvHCtbT2ugz2Xx5jpa/K3C37pvp27dVR4t72yVni5vbJca/wbvk5HZ9p3aw/p9OrVjdfX/uiHahALyPtjn1+m+9UgFVik36Upwv0swRy/SDqLy3QtUa5wYN1vDjhNe31K5fnMnR6GnRv3+MscWvfg5r+3n2Pj/1Bb3QrnuJyfTWrKRZvD5br+eicnsXcHJ2jxL3ROT2Y+pHR+dAfer0+Oppkyqsyd99nIX77VYGjxM0fi6PED/xYzE//eX/Mz50974/TQ657z0COEo8MjZsKFb5eE9H026dSXhRJc0T7a7m+E9Yp8/s/L87X2+89kehvlyGK9SjVKy9qrxdFCr0ocvNNLtLy9t3JsR033+U6i3AcPkSc5uy3RB7jEdt914cNpc8HnJT3nzPT6V2su++V0ekJ0e3jKE4id99OO4qwHU29lkyPfeYXRWpUvHAlfS7S378n6O/fE/S37wm+6I3Y/ORW+NAbh5tPuWJr+vEjPA4ix+V9/AqX6+lG37kZ8SRF8h7s966lRC3TY5OsvCoSj7yldH5ZpIfI4WXM8/jefKOTTs8vfkTkbmUFvf9a1lHi5t3eeHtr4NwbNysrvujSe5UVdH6t6l5lxRc/NPdetz2L3HzPtV4/8KKrnUb8PDffe9P1KNKueBmhXYdXf+v19tbAWeLWD0299P0fmuN7N/deuD2L3Hyn8ixy833GswjOfqv66oSvqPJ8iDxvSS3nt11vva5SS/uJe7zj6Nx7W7WWd0+tPCrcO7eylv4TffoDZ1fW02PUxz5rrBap5TfNPpZn1dODoJt9emrGzfd3zyISB1iWLteLIjffAq70A9WER5HB8Qx1npiF8f18UM5RRLCXLSmzflekhEganW+K3Hszup7erbr3ZvRR4vEMNu6Mrlzn0sZ3LqbjYsar3aq1x9WkXbDviXQMcE9F57926+8WoYKXo0s9jc5JhGKTkij3ybdEqkQM134QOZ/Ji4qbVg4p6fRq080TQ2v7iWMyjyI31wNftOTeeqC29gO58Tg4N1/Er6f3rO6+iF/b8disuO+cDy5wMZ9H+P03tWt7+03to8S9d5PuX4keruTUo3iVr4zx9ITbenqaxSN2jPiRoF9sx60jFiq/ffyFFZAdVq0x1T/UIH46YuEsoqjC11ZeEynXFZvX7XDYw7klXHEitbwqcvPYiXrcAb997MRXMshnD9ZXZbCXPj9311+WiUGakoeziI8dXAeGOt8QfGuUGh4V5pqfX0WOR3Diaw31kJTOtbMx+cvVX0oGH25uUmHzZ43TC1M3k4EeVydRc/54gpuLtK/77bjZpeehjbXJY5TrqwFY4tSHB9eXA5AaIofk5QCkqEqekofIOd/UpyVKLl7/5XjT/vau3FHi3q7c6WzBH5C4t7H3RYdKLD415/r6na2jm0fp1f4Td64nkZu7R11+YPeo/8hT1+N5OPdOBqz9VDl482jAejrwTDl+sB7zRV4UuXnA4FGkl9hA6jXXZ39LhKPQteeV1q8ib7++/UU7Yu3Z+XBSSR3yfjvk7VR0fKvoXio69sbNwyPb9btF7u4JtOvt86+PEvcedp4lbj3sPPfGzc2NL7r03uZGOx4zePsn4ngO/73DG9vpPa2b+xKtvH/EUCtvHzF0lLi3L3H/Sp7vS5x79N6+RDt9FermvsQX7bi1L2Fv+Ly3FGmnZ1h39yXOIjf3JY4id/clzi25uS9xFrm5L9HoR47D/Erm5r7EFzJ39yW+krm5L3Hu4Jv7EmeRm/sSxwi6t4g+BvLNfYmzxr19iXY6bfBmMjgdNnh3X+LYjptdeh7ae/sSX8zVu/sSX8jc3Zf4SubmvsT5Nite8ZJ8MMb37tSi6DAlyF/K0s4lWPc+edBOX8K6+82Do8i9dXhrP3CQa2s/cJDruZ6Molsfeyn1aY+cRRSH244P745/qyjt7tiMt5+aHjVur5COIncXFueW3FxYcP2BhcX1Ax/HaMy/WeTuJzbOIhKfvCWRV0U4EuMjI7WDyPiBTCDX+5ngiz6JRQrpdeiTL86Fws0aj1S2L98SqTgMbXB7KtLOIi2J9FdE7u38fHkx99pxeoak+ETz9eH4h08v/xxrw2/9jn9RXn7rd/z8HhMWf5yPqPvWy1CC18Nk1BdFepwsQPlX65tvVEUlyAMPl3M6QvDua1lHEcEZotL16UuNRwkErwzS1yTiVkAGP5X4YrI3rOxffV3ug0h7VYQgUp+PS3v/haz2/gtZ7fyFrLclbpbanztU/uErwN8clfRDNV7NILklL4v0uKF54Msi2JQ7ihzf8r6X288vit/K7efjL2IdPohePEEjqjgf+PSNn/r+71x9/3fufCZQnHvI2l4+EygWANxreVVk4GCh8eqZQJ3REn31nKQeX4V46L18OlFMMh70ep8MiLx4nlbjePWgsdafEHnxPK3H6iAO5RJ+9WQviTflHhtg5UURxbmHnZ+L8OlIOx1xj9jzJxnqLyLj3uVIevv/897XVy2JR/LXobydy/kjBDhjLD0M+0aP9Cve/e2X6KEd548QeLc+fkL5IHIqDcCnHVJ/0OMW6/4c6dg2HoezXvh41ODdOXLcir87R75oyc05Mt6eI6d23J4jVH5gjhD91jnC1xX9cZ2+wX76XhZTx6kM+Zevf9I4LWiU4vhGzW/t9u9cjOCLF70eLkZ/4GL6b76YEicgP/DFXz3GLt6noy6+I0JoCfFPiEh5VaTj5I7relUk6j8fei93bHy+g18+bZQrvppT2+ETIOdvADQ80eZ8I/7xRRuub5ezniVurXy5Xb9V4uYhaccOrTgBqOrz7yFwO73ecucsk3MzGpbf+ZCoX5vB7yez00tYN5PZF9+YINRuED+9mC9E0pnw8rxHSj8eLH/zaxcnkXt7gGeJW3uAX0jc2QM8fyHm1hr+i4/M3FnDf/GtK8W3rvqL38vCcQwPfFq3xXwMufg4zGPzpD3XeP9NQea33xQ8StyryLt/JUqv9SjOYvlQDfQtDSaEfX1a1cenB0zzfOXYh3he1feFxq3KwC9mWEcebOV5O/Tt2XGSuDk75P0KAD6lDsKpFNdzBTkXaN356ALrYRV17zOs9oP+NAfi4E4pLX/y5GURflGkxQ6VNCoHEXl3XM7X0nEQW3/1WtK3Bymv1b8nEnf7QuPVoanxTVmp+ViLzyKnn+vR4+u2o38oapRviFzxMHXkbyl+T6REMcT4MDrfEqE4RXHkL6B/T6TG7v348BGmX0QO03WeveIiPJ5X33E/Pqi6c/7ouR091oSjp5XYr+24K5KOyPmmSPzMPFBeEylXicOpHqwnmeMQx1nRo6VPw35zsjVMNpZXRSoem/EhAO//gj8tCebx9udbznfMkUseD8Ce3xMdX7e6+eHfs0i94utYlZ6/kCenF3tS2Q1pe3o1dsbRm/fdcqq+u3dndZS4d2clV3v7nkZOJ/7du6exb2E+3Yy5+Wn5+6Oih1E5zg5BZn5eQH/UmJ8JjIsZ+qrG9bZGOoitpp/v72kI9ur6c41S314PfaFxaz10vpaGSdakv6/x4hx77H9GeVnrz8f2+JKTSPrUyynqTg1RxqmS8jwVnj7YdHdwzxo/MLiKj8idAvf4bsUVZ8uXkk+n/l6nDnyl8zDL6O1zguRUDHH3FZxjO+69gvPFb3Zss7c62os//K2hIaW+KhIzpLXT3UM9v2l9q7Rbjm9Y3SztPl/OiOMCueRPi/1yOe0nLod/8+VwCREu7XQ5+ua97rkZLaYr5+Xdr804VamUCN8Pr8F/6tPjSYG3VojnVsSGRvuw3f65Fac692ukT3Dligz5jkivOGKzP/2+y1ctid+qBz/9vsu5RxQlKqdxkd8q8fiVwcG0Vz5fU74jcrdT5Qc69QuRW3PkHHaS7gDSCwTfSvCCIgYp2l8ViZsz+fCY/FsiLW4k5MNRkt8SqXis++GzV59TEf/A4UDC+psTvHCUU4iU0+Uc38C79yrSsSVa44V6re3QkvOHr+5tIxxfI7q5jSD17W2Ek8TNbQTh97cRRN7eRji+uHN3G+H2qByWeOfZcW8b4aRxdxvhC43rbY2bq0S9u3zn1/r07nbGWePedobK+yves8a9Fe/xWlpUU9b89O2Xdozf3Y572yq3NV6MubvbKqfXoW5vq+gP7Hdp/c0Dc3NL5PSk6vaWyLkh97ZETqdg3dwSOZ3XdntLpI93t0S+uom59Sq0jHoWufMK8lHkXgHjlxdzrx2nqj+JR956yWHxz4e9jFiZpTeZ2rfWZWOkg5Yufmk1VFDj/mB6thrS6+3S1KPEzZH9Ysl9sz/oJ/qjvb/EPIrc65EvHlLnj4Vc6Xfqm8+6L8T/Q+bw8P74Obb7j8xPMvfKS88St8pLv5C4U176Rd3MhTN8rpfLgGLOP0SeF9+U01sdOuL8Hc0X8/lLEl+IxK27jvFcRE+vD9089lFP71PdXKXq6XHVvVXqUeLeKlVPz5lurlL19BrFvVWqHt+kurlKvT8qehiV4zOiW0dYKr1/hOUX7bh1hKXS20dYKv3AwZHHdty7Pzx2x82DAM8a9w4C1PcPAtSfOAhQ3z8I8JhMe4kzHnvJr2F9zsinkux7Lw4cE9C9mn+t79f8a3275v8ocTMd374Sfa1D75X8HyXuVfxre7/i/wuNW4mU3j5c+fRy7d2y4aPGzYLfo8bNet9T7rlbIXtb41Age9a4Vx97zKO37/WPvXqzOvZ8NfdmyFHjZm3sUeMnruXmTD1fy72Z2vj9mXpb4zBTzxr3ZupJ4/5MPffqvRLs84/treJplXeLp+lY9xxTveXPi5ZPryzaCQ2Hne0bL0yfJe5tKenbW0qnzqgjvt3zuKOU552h9P4TbT0t8+8fs/v27Us9vVR763sZR4Vbn8uoP/Ep0B/4WIbq8UMGN8+0PX5+M04peSwqn3/2/ajx6IUrXc3zoxK009tBe5S4F7T97V3Pevwmg/7D4/0+fyjn7Vk+3p7l/Qdmef+BWX5+CHVvlrfjt4jjc1D04NSQcV/j5tEE50hRxbOf/uGQ8E+R8v6Hqc4S9yLl9AzqZqTc747y/LSX0zdzHz2Asg/Oh5y+qtHf18gFpJ81Tm9M1zgjiT68cfm42c4a/fSWU+0VT4/z9w5+EamnLBaPoKmnPbXvifR4gZR6+pbbd0XQEuIfEKnXUxE+fe9LYm/usbU1XhuchjTy4aTDb45wnNhWx/W8X/l0dyo4o1B6e6lH2oiKqzb686E5h02quOrPw6af3na6+aCiH8/0qxfKpdJz118bcljNKauLKOe3N/onjdO7fXjv4oGpGFY/aRxP5I6f73rlryh+1ujHR9HxmOHBws+v5titsbytNVUa/NqtR5GRStmeT5Ljr42UmCRF6PDj208Po26tcL9oR0jMdvRDO057UxF6j12DNEn6p0fZp7eV7AtNK3xbed6OkwbXKADjejgSl4/F7J3xoEBe08Ajsbm5/FTjPDItjk15cHtZJU6BePB43ify9pch5e0PQx6/HlF6KiMZ17Nah16Pu9uxyT7K0zvNswTFuz2DqL+0zK1x8sqDdbw2spp2MJTLc5X+/nF+/f3j/Pr7Z/F9ozvo9U7tUKkvBp3ivurB8vz0yd7eXlmdJW4Oze9dWX3sjsPxwl8NjSaV5+eCnt4xuJnJ9O3djNOVdBzf9OBDTu6n+917WztHiUc2xG+MytP30L4Q0fQRKX36HtpXIsjuD34pr3bCbUivh+A9nRNWun1/aKvk4zS/o/LYiInn0vXKN5rXaxqFXtNgnFDKaWi+o3H3Wzja3t+yP2lwYZxQ2nP8032NWnAs8IdTjj8tzk7vS91MzEeJe4lZ9N3EfO6MWO1yy68H/NIZp93dKzZ45PrwkcBPIqenU7fOwP2iGQPHyH34Vtp3rqXEKcuPdVF5VSQ2mj8caPddkXgHtYz6fK6fXlNqOMC+nTTe/r3Ut38vT9dxd/f/qHFz99/WGO/u/h8/2XRFqXS7Dt/U7O8/nervP53q7z+dOj7IxUm8VT98OKbc1xBs6SjVpxr9+KLUzcfSvff3f+PGKVpufcm2jx845MS+QfT2tZzupEqk5EIfDgUZnxpyGl68NppSmPb7rRCc15BLaz63ohwPJ7sZ+UeRwbHVNs+hRJ9+PsP/KCLYfpCiL4vEJ70kfVfoV5HjGyzpdZr0Y1nb+E5L4vTXIePVy9E4TGdoWsR8T6SjY/vhmzHjqr9Z5EP1d5WnHXsWwVfbiHKffEuk4pN8+YXrX0TOq5h4GtI+nBzxuSGnMoZ7R0gfNe5+RPoscvNe5IuW3LsZGYV+ICWV67ipcucNo1GOp1DdKmkfxydVt2qfjxL3StrvX8nzmrBzj957K2eU99/rL6fpQYKP+ko6k+fz6zBnEUWZibbymsjdF3POLeGKclA5idTjM0SEzIPTz41+S4Yr3orlVKHxXRmchvOQlIPMqWfqQPfmn5xvdW/DXmL7UBf+WeT0Ebl7b/qU8zt+d16eOmvce3lqvP/y1PiJl6fGD7w8dR7auOt8jHJ9NXJKfHf5wSlHf3PKU0PkkLwcgBRFCVPyEDnn28Y4739of/5hvdGud5fi4/1vWY1Gv1Xi5uewzh0aFeKPvm1PO7T3dxfAo/3AqWmj/cCpaadFtHKk5kfPPD+O8qTRS4t3Hyu11zQ4Kk57vt/8RYPf/mj6uRlxA945V2f80oz6djP47Q+vj2Oxyq1gOe1rdIkXFx8PCp4fY3eqm723OXtUuLU5ez7J5uaCqP7Aekh+ZIumvb8ekvr+euhU7HJzPXSSuLkeun0lh/XQsUdvroekv78eOn2j4PZ66Chydz10yQ+sh44tubseuvRH1kNnmdvroS9k7q6Hjj1zdz10FLm7HrrePn+9fPGBj1vroaPGzfXQ6Xs4N9dDnX5gPdTfX2Keh/bmeug8V2+vh84yt9dDX8jcXA8d7wVufeDzfDdx5/uepyesN+/+R/mBu//xA2f89+OdapwjVenDV7mv+xoaT4vr+FAkfl+jIck/wuf5E+cx5P0N+CE/sAE/fqAY4IuW3LvhfPxU/0Q5wOmF+5Zq54o+H+DT8c2Cw6xF5DUNjuh/pKH2VGMeovd+7K1boLeD79gn+CS2XnK6nuM7gfcOLD+eIdAE7zV8ONf+87rkOj1Fu3dg+WN75u4773y4ny9vH1Nz1ri3NnlovP+W1UPktEi6dR7cPBXjMF1vHgj3jbE5rbXOs+TWweVnkZsnl38pcr0vcu/s8nKdjlW6eXj5Fy25d3r5VyK3ji9/XM77h1V9JXJzQX28nHsnmD9aor+9JbfOMP+GyKsBePMU83KdTgW5e4z5V/P+7kQpv3t47p1kXq56PJno3lHmXzXl1lnmj6a8fVjlQ6O/vxo+t+TucviLe5xb55k/9hjKWeXOQeJnlbvPoL66npstabfut+qVlhmf7x+Plc+3FtTn2uk7C+rz+x/Y9uS07fmtd0gE76HIqK9p9HgNlfJC9nvvoZBiTJ5fSz+9iHr3ZZajyL1Tt88St07d/kLizqnbcl5VNKwqrtdG9oNGe1GDoFGfD8pju/XtV1m/0Lj1bPCx3rh+r8bNLwCc1wL/8PXA741LWkWPF7NHbserGj3uZR74qgaOqT5qvJ3R5e2M/sUL6AXnb9KL77BHcfADn+1bHXPPvZ6gd3vieMqCxoE+rPn9gu+c1NBjJ5B7LS9qxO/jA188MaIz2vHqyRU9VjAPuVdPrihYNdDL/TGgcRiX07MzjjVQY60/oPHaiSKPDc3YvRNuL2rEAUmPB07lNQ3FAUmdn2vMr4ke9u5G3A32/CGWX1+UOH0BJV/P48bj8Mzqi7ZEYdNVjm05f3o05pqk3Z3v9Eq/4q3PfsnpHZTTa1eqsbvz+NXkk8rpQWucgJmfXdPjvur2TOlYno7DWQuPdtSfmCmnB4L3Z8oXbbk5U07PfO7OlGPR1v2Z0n9kpozfOVMYH3fi/G2nX2bKseiTqeOt/Pzr1z+LnG4G7JMr625A88mv/RtXE6cVcl7Y/YOraT9xNfx7rwZfQ37ga79/XOOYwU9nHXxDg9COfNj7yxpSXtToOLfhul7UiHrvh9yrfRqnC3M9xMxZo0KjPb+nOB8iGy9fUi4u+HwA7NwrfXvFfNa4t9otxwMCf0Dj3or52KcVZ6VUvQ59Su8eZXFsRsOiOx8/8w+aQT+QyKi+ncjOJxUTChXTganfO+2Y8ZEXed4jevrtvntk8lHk3sbfWeLWxt8XEnc2/o5Hct9avp8P9b6zfD8efn+vDeXdNpy/d3H3m5BfqNz8JKQeTzi8/fGNo8zNOXqUuDdHzxJ35uj5K0I3vyJy3uh6+1s19+fIFyp35wj/zBzh9+cIvz9H+O05cnzVE1VRJef0T6ugs0Q8eig5i3xHAs/H6BpPJUrh4zpq4Ab3VY2oPpC0rvzOpeRTI9KW6nckJG48Pj4t/IaExiFtj8dBx86Q361SBCWNkh+jfE8F23dFB72qMvA15ryx+q0Bjst5PDt4LWJqVOA+Zkt5rRV4Gvx4lPuKROuofehpO6eMuwoFh72V0vorjSgFFc35qLfvSOBLaA98rRWcvnjT9DUJQfVhH69dCCZnpdcupMbvwSOxv3QhGg/5tMkrAiPWgLl05DsXccWa6cMx9b+G+uloxven94gHF4Ne64mY20P5za58TaASCsGpPv92yFEibnQeON6WSCuVb0lgf4MOX1I5FhXgOyq1XS9JtCihq3y91hf4JEyt+U74VYnXBhUVeDXnzG/1BWqJWn1tUFtFwWjV1yQKSmj5xUEVfJ9DXmpF0TiD7XFz0l6SwLd1Sn6M/lmilON74IT8T0LPtpuO7cAX5Drza5fS/+FH6L4lEVO89NeipPR48fPDtw6+dyEoMb3obYnyaisUEi+F++NeF33R9O1WvDaod983oev9903o+oH3TU43z/EVYM438CQvCNBLAhzjIbka9L7AvbMvTgK3jr643t2/vN7dvjyNgsYyqvXr+b7U8cYfuV+yRLu/jpJYZxep4yWJzvggAr/WihFf76PrKq9I0IVHFVerL7UCH2R6/Kq+diGKL5D08tKFzE/lxLJ0vNYKfOOqtPxRt29ItEh2j00rfirxeIz1WxdCj6VkjMmHe9bvXEocoFTyq06vduiLEop3RjStIsrnt5aJjvW4F94RTJtIcj/SrvRbKk+bcZRo6e2X+pKEptu0/Fv6S2ccd+XvvrBM9Qc+bnHcQ476hg8fhf0Hl3PcrFRswoiWp2cgfaUS5yk/WPi5yunI3t7SGzT1dEXj3af6x9/ICN2m6dfpG1OtYXibttNUa/QTU639wKfPvxxhPNKS55/sebSFf/s8wak/j+fy7dS7erw7x0E5p5q6L1QIp1zIUeUwZ2/XK9Lpk6g36xWPLbldr0inbzPdrlek46l7t+oVz9ngsU8fH4l8cLqix7PQz2051R7HJjEU2u1c3XDaTqN0ezWfQH5qw/l7ZneOmnuIHE8Sv3eiA/E4jq9PktOJDkeNmyc63L8YPV3MqVvvnTf32F+qp+eo9157/qIleOHoKnpoyWmxf+9dY5KfOPrurHL37Lujyu3D785tuXv63VmFCmooj23R05vP65iSnZOucjgK7Cudu4fxfaFz+zS+r3TuHsd37uW75/GdVe4eyHeMppvvyx/D+u6RfGeRe2fyFTodlnY3N/Tjqak3zyE4tuRuv8pPnMv3xay9fTDfFzq3T+b7Sufm0XynxWG7BCF0mi0/cavQf+BWof/ArUJ//1bhWMUSC8sPaekbCkyoSq6HO41x9ySe06iMHzgT6H5Lnoscp2nHr3Irh2b092fYSePmDKvXDzzuqad3o24+7qmnV6NGjUero+bagU8lrKUeP0zFcajX4HH4La/Ho2Rv7R1+0bH3TpJ8iJx+LHAc13WSOPVrj2dYow899etJ5WaB8VdjHEVgo9X+qsoVj4PGNa5XVUrsU41c0/bdfiko3q706qzt8eR3dK6nWXtXJX0B8Lsqkd0eKC+q3K/f/qp/7xXH307Xz29k6+lTVXjepXpKkj9SX/+lzs0K+8cl6c8M0UnnXo39Fxq3iuy/0nhaZf+/H//PH//tz3//l7/87d/++J9//ttf/+Px7/5nSv39z3/817/8af+///e//vpv6X/9z///v/v/8q9///Nf/vLn//cv//73v/3bn/7Pf/39T1Np/m9/uPb/+V+P3dD2T/0xNv/7n/5QHv//mGffjav1x/9fH///Y5OEaf5v9pfl8Yupj33l+R/m3+76iN3H/6H//T+zuf8f"
3978
+ "bytecode": "H4sIAAAAAAAA/+29C5hdR3UmWrtPq91H3eqjly0byVZLFn7INviNwQYsbGOMJEuWZNmSn21bWLZsS9bDsrHzBBLCKySem0zInWTIDY9kINyER0KGSTIkJDdhGEjIDQmBQMjkCwwBzPCaMEwYyt5L/fff/65Te591pAPu+j7p7N616l+rVq1a9a5dhKdCp/zdt3/vnbsOHLjt/u/9N3X3ruu/96ooo4bL3+PK3/h+UZgZjHYyZIWiBu3MRDV4FKH/PIZC/3m0Qv95DIf+85gX+s9jJPSfx3Gh/zxGQ/95tEP/ecwP/ecxFvrPYzz0n8eC0H8eE6H/PDqh/zwWhvo8mvBZFI4On8X5tE9iXy7e1eG3JPS/jJaG/vM4PvSfxwmh/zyWhf7zODH0n8dJof88nhH6z2N56D+PFaH/PE4O/edxSug/j5Wh/zwmQ/95rAr957E69J/HqaH/PNaE/vN4Zug/j9NC/3mcHvrP44zQfx5nhv7zWBv6z+Os0H8eZ4f+8zgn9J/Hs0L/eTw79J/HuaH/PM4L/edxfug/jwtC/3lcGPrP46LQfx4Xh/7zeE7oP49LQv95PDf0n8fzQv95XBr6z+Oy0H8ezw/95/GC0H8eLwz953F56D+PdaH/PF4U+s/jitB/HleG/vO4KvSfx4tD/3lcHfrP4yWh/zyuCf3n8dLQfx7rQ/95bAj957Ex9J/HtaH/PDaF/vPYHPrP47rQfx5bQn0eTfhsDUeHz7ZwdPhcHxrw2U4M44aGuOEgbgiIC/ZxQT0ueMcF6bhgHBd044JrXBCNC5ZxQTEu+MUFubhYFhey4uJSXPyJizNx8SQubsTFh7g4ECfv4+R6nPyOk9Nx8tgmd1d971+cvIyTi3HyL07OxcmzOLkVJ5/i5FCcvImTK3HyI05OxMmDOLiPg+84OI6D1zi4jIO/ODiLg6c4uImDjzg4iJ332LmOnd/YOY2dx9i5u/x7/2LnKHZeYuciNv6xcY6NZ2zcYuMTG4fovKNzjc4vOqfoPGLljpUvVo5ovNGwYqFfH6qDFW7F/pvNa556PVpGD0GyGvtBilFiVy/9j358lAFrpQ9Ppo9pRpul327p283SP2m+MfwQpEdZDLdV/r4B0r6BeBrNx4DmY0Rj8jbTd/ihHvO7aDzMzKNhBJBtfjPsxZgnCy16h/jt0FPZFwXhGT/On9WNcaAxfgXFDQs5LW4exJn+o+tbC3RctqMUZ7LE8AaKa0HcT5e/ViYoVw0dvbFHe7m8j/ay7vvRXoYpzsNeEIPtxTBi+BjFjUDcn1PccRD3F8D7InjeVz736JOO+PCGbdCTXQLmj1gmr4UW/cZgejLdjwp6i2tDHOo+hvnwviWwjqN0Rn9h+TtR/mLZWPqO4D9C/JXcyjYLgdUS74w+6ucckNkwrwDaSXv4+oFPvPXDr3/3H7394Nve8nOLPrngF8bOnv8jr3rVV5Z/ecWbnnjV/2NprwRZipBd3iOW/irF+wW/3dq5+ze/vXfs6le86/An/+baQwtWTH1w5avfsvNDP7PyC7f9hKV9sUr7+df94o903vWz/37yrI98Y+Tqn/7n2752zbxLPvmRx076wx//zheeeNzSXq3S/sXO73z6PZ3HX/7w69//6CVnLJl6x+Of+Op//5MP/0bna3//zgc/cZGlfQnkuc6eWEt/TbP0R/ppL22WfsjSr4f0TfqJG5qlX2jpN8LLSXv4sV99+6fXvf4j5/7Dd+a/ZuPUKx++4LUfv+FLLz/xbc/8x3vfueIdiyzttSrt5w5e8TMHl91/8ZdGP/r68968/OTPfP1t7/mnbz6y65J//qfPv2/V1yztJpH2xPNPf+6+f/uxpZ86Y/XfXv4H73jWvznp62su+9TvvOTNT3z7T/9nmC6zzc3yfETn1zVLP2zptzRL37L0W+HlZDrNkabY0m5rxvtI+uvzeVuYZ2m367TFK1Yf+Pn264uNH/zxc94zPv+DX1j3yy+64iMffuVrVnbe8cuW9gaRdu1l7Sfe8pofflX47Nu++IZvrv3A5ecsOmXdomf95S/+1fIH9t900hOW9kZjFGrleYWl3wHpSfZksPQ7w2zZc9Pe1Iz3kfp9c33eR9LeUj/tkTpyq4GFWjqfb+lva5Z+zNLf3iz9uKWfgvQ12sJJS39Hs/TnWvo7m6U/z9LfBenrjA8s/a5m/NdZ+pc1S/9iS393s/TbLP3uZumnLP09zdLfaenvbZb+Lku/p1n6XZb+vmbpX2bp72+W/m5L/0Cz9Lst/d5m6e+x9Puapb/P0j/YLP39ln5/s/QPWPoDzdLvtfQHm6XfZ+kPNUu/39I/1Cz9AUt/uFn6g5b+4WbpD1n6R5qlf8jSv7xZ+kcs/aPN0j9q6R9rlv6H4lgyjol/5ZSnXsSp/xPLyEMH77nvnoOPXL3r4PVPPV2x94GDux4+iHMakRfPLbXp7/n09xj9zfMt9l7N2+QEm89YAOlr6GSzzcFMkDyI3SE5J0NWOLkgvBD0nBnONaAsNfkdmTPrED/OH86ZxbiFQpaOiGMdLxR8Fgo+HRG3xxHrkCPWfY5YBxyxPPP4oCPWXkes/Y5Y9ztiTTlieeresw49NKBYux2xPG3CU/ee9nWvI5Zn3fa0iXscsTx99COOWIPaPlrf1/oO2NcoKn6ND78zPm3CatrvUfnqCH4p+okE/aJM/DF4X/arr9x1x6G7N+y9O1Dgru6VFSKuILptCdEYt6B//H4FvWsJWgwxeyeUz2X2Xrzr4J27t03dffeuu76XyQOcgpGuqHjPHVKksc74IpJ0MmSFoRyjRPw2ydLUKJXRqMoWtbq4fC61umHv1F1XTO07cOi+XbgVAc2UuRSEiu9UmRYgGb6bT3RX0N/rRbogsHEbzRJ6PxmywlKziqUi0uKOB+wJijsB4rA0ObSE/CZzHDa//ZRpXKZjebA8jqe4xRB3AvDmclXXMpn8Q4J+MWEtEulM9934tUQ6Hpamhs45tc3yEUNH8DDeffQKSwfdK1j+Fjfjt6Sg9MgPMU0e0/USEWdYVg9HKrAs7TDRf6r87RBdDDuJxxIhL77DrRKfINlRt2wnvegR8UwufIf47dCTXRapcsP8sZ009LGLc/SO8rBPZt2i3xupwLK0w0T/hfK3E2b7fbaTpUJefId28t9IdtQt20lDPWZvkzP8dujJLotUuWH+2E6WNuN3eY7eUR7VPqNusQ0cqcCytMNE/83yt0N0MbCdHC/kxXdoJ18tn0cr5J0MWeGw6rewnaFe6mxfyLUzw2+Hnsq9SOlR1TfV97K0HRHHU8snCD4nCD4dEXfIEeuAI9Y9jlh7HLEeGlCsvY5Y+x2x7nfEmnLE2ueI5Wn3g6ivVDtUFysGT1s97Ij1gCOWp6165nG3I9ag1u1HHbHucMSyrQjczzP8GEbD7LpXd2yCeCYnvkP8NslSk1+R0ovqM1r+ljXjt6ig9MgPMU0e0/WJIs6wTir/HqnAsrTDRP/CUqEdoouB+9QnCnnxHfapn1fiTgh5eX6hrj1ietYRpmN77KW8EM/kxHeI3w492X+Rsg+lF8vfic34LcwpX5THdH2SiDOsZ5R/j1RgWdphot9E9ngSyMT2eJKQF9+hPb60mCk76pbtpKEer8q1E8Nvh57sskiVG+aP7eSkZvyuzNE7ymO6foaIM6zl5d8jFViWdpjobyY7eQbIxHbyDCEvvkM7uaHEHa2QdzLkBa4jhoHYqJf8cii+mmtnht8OPZV7kdKjqm+Wv+WN+BVPsG0gP8Q0eUzXK0ScYZ1c/j1SgWVph4n+XrIz5MG2sULIi+/QznaRP0Ldsp0002N4Ua6dGH479GKX03aiyk3VN8vfimb81uXoHeUxXZ8s4gyrXPKbYSeIZWmHif4w2cnJIBP7o5OFvPgO7WR/iTsh5OX591R9QdyOSG90yuZq+L3bVJnWSP+gpT+5WfqHrYxPgZdcn1bC+xr2dl5ufTL8NsnStD6tJH6cP56DnRSydMJsPaaO5bTEu6EE1gOOWHscsaYcse5xxNrniLXbEWuvI9aDjlieNnGvE1Y3P1lXrocc5VrhhBXDIUesw45YU45YjzpiefpCz/q43xHLsxwfc8TytAlP3XvV7Rg88+hpEwccsQbVT3jK9XToM821acdO95718T5HLK88xueTnbA85YrBqz/hnUdev8OxZVH+jgoZaoxbX1AQnsmJ7xC/TbLU5Fek9IL543HyKiFLh+Ji4HHyKsFnleCjsB5wxNrjiDXliOWZx72OWPsdsQ47Ynnq/lFHrLlyrIf1mCPWlCPWvY5YBxyxPP3XQ45Ynrr3tFVP3Q+q//K0VU/7etARy7McPe3Lsw552tchR6zdjlieeRzUvpxnHj37E4Najp669+rLxeeTnbBiGNR+jmcfc64/8YNRhzz9hKdcXvYVn1c4YcXwsCOWp+49+wDW1vK+McOPQe1DqTEntaogPJMT3yF+O8wuyyZzYGpvkdqD1uMc32RB6ZEfYpo8as6N26TV5d8jFViWdpjoHygzpeoG79HLtZu49+qe8o8JIS/Xudw9XWofIesI07E9TsL7GuXVyrXHyfK5HXqy/yJlH0ovdeZkPX0eYk2E2Trudc1phcjPuEjH5Yzy1dB79lkFw2+HnuyqSOl/Et6x31ndjN9C9hXIDzFNHtP1qSLOsMqvdc3wO4hlaYeJ/jXkd5AH+x2LQ3nxHfqdV5HfUXWiqd1jeqP7QeMzLtJx/Wpof/Ny65fht0NP9blI2bvSi7J3S6vsdBKe69jp9yOW2d/qBJ+UX1F8MP3qOT498RkX6bjeYrnm16Pis7n11vDboSc/UaTsVunF8remEb/iMwWlR36IafKYrp8p4gzrtPLvkQosSztM9O+ndhF5cLtocSgvvsN28T1DM2VH3bKdNNNj6OTaieG3Qy92OW0nqtyUf7P8PbMZv4kcvaM8puvTRJxhnV7+PVKBZWmHif6PyU5OA5n4zMxpQl58h3byn8s/RivknQxZ4Vql6xrp/340zNZdjfT/3tKf3iz9mZb+jGbpf8fSn9ks/VWWfm2z9O+z9Gc1S/9jlv7sZulvtPTnNEt/i6V/VrP0Z1j6ZzdLf4GlP7dZ+s9b+vOapX+JpT+/Wfr3W/oLmqX/GUt/YbP0V1j6i5ql/4alv7hZ+sct/XOapX/C0l/SLH1h6Z8H6evMEVr6y5qlb5m8l+JLIZPhW1v1XKAvKn4Ni+OMV5uwmrbrSnaUj/vFlwI/zGMV1qU1sUZFXJMyeV6ozhfijydkYTljuAPoeslzDPc6YcXnNU5YMRxylOuZTlgx3Oko12mOWKc7Yp3hiLXAEetMR6y1jlhnDSjW2Y5Y5zhiPcsR69mOWOc6Yp3nhBXDyx3lOt8JK4aDjnJd4Ih1oSOWV9sRny9yxLrYEes5jlgnDiiW9e97nK+4psf5iuf1OF+xscf5iq09zjdc3eN8w5U9zhdssL7ys+BlUf6quYAa/fZrC8ILQY9/DL9NstTkd2T882zix/njdatzhSwdEcc2fq7gc67g0xFx+x2xHnHE2u2Itc8Ra68j1r2OWFOOWA86Yu1xxHpoQLE8bfV+Rywv3at2cVBs1bM+HnbEGtT6+LAjlmcdGlTdP+CI5eknPNtaTx/tqXtPfQ2qfe1zxPIsR0/dPx38xKNOWPH5dEesMx2xzhhArBh2Ocq11hHLU/fLB1Susx2xFjhhxeBpE2scsc5yxPIsR0+5PG11EH1hDHc7Ynnaqlc5esoVw6Dqy9NWz3HE8qzbXv4rhsccsaYcse5zxNrriOXZJ9/niOU592j9e5vHPhviivK3xzn8iYLwTE58h/htkqUmv+QcPuaP9yaf24zfgpxyQHlM1+eJOMOyNeGRCixLO0z0nywV2yG6GHhv8nlCXnyHe5P//9ZM2VG3bCcN9Zj9rVDDb4ee7LJIlRvmj9d6zhOydEQc94lz9a3K7pAj1gFHrHscsfY4Yj00oFh7HbH2O2Ld74g15Yh10BHLsw55luMjjli7HbEOO2J51m1P+/KsQ55+9emg+wcdsTx9tPlCOz+K/ZkO8anb98b0RtfjeZctPZ532d7jeZdN1i+6AF4W5a86i1Kjj/ZjBeGFoPuEht8mWWryO9InvIj4cf64T3ixkKUj4nj/z8WCz8WCT0fE7XfEesQRa7cj1j5HrL2OWPc6Yk05Yh10xDrkiOWp+0G11cOOWHscsTzty9PnHHDEejro/kFHLM88PjSgWJ51+35HLC/dx+fTnLBi8LTVQe0DeGJ56muu3Z5rt+fa7bl2uxvWXLv9/d9ux+Cpr0G11YcdsTz15elzPHX/gCOWZx3ybLcH1UcPan/CM4+efV/PcvTU/dPBTzzqhBWfFzhineuI5TVPHp/Pc8KKYZcj1t1OWPH5TEes5Y5YaxyxznfCiuHpoPvTHbHOcMRa64jlqa8LHbG8bNWzDsUwqHY/qHn8QfeF3nLNtR3f/21HDC9zlMuzL+epr3Mcsc5yxPJsaz3ro6e+BrXteMwRa8oR6z5HrL2OWJ7zAJ7zE577cx4qf22vF+4NK8pfdWdy5DMZssJ4QXgmJ75D/DbJUpNfkdIL5s/0ou50rsFvrKD0yA8xTR7T9SUizrDsPt6RCixLO0z058x76rdDdDHwGZlLhLz4zvQTIc+YN1N21C3bSUM9rsm1E8Nvh57sskiVm6o/qtwsbUfE8fxTrr5V2R1yxDrgiHWPI9YeR6yHBhRrryPWfkes+x2xphyxDjpi7XbE8qyPhx2xPO3LU1/7HLE87cuzDnn6VU+b8PSrg1q3PeujZx16xBHLsz4+HezrQUcszz4An8HC/nKH+KTGFIoPpje6cZGuKH/V92hq9KF/piA8kxPfIX47zM5zkz670r/Si+X9eUKWjojj+Tz1TZXnCT4dEbffEesRR6zdjlj7HLH2OmLd64g15Yh10BHrkCOWp+4H1VYPO2LtccTytC9Pn3PAEevpoPsHHbE88/jQgGJ51u37HbG8dB+fT3PCisHTVge1D+CJ5akvz3bbU/eefQBPH+3ZnxhUW/W0r7l2+wejbs/1yefsi+Pm+oXHzr4GsV8Yg6e+BtVWH3bE8tSXp8/x1P0Djliedciz7RhUHz2obZpnHj37vp7l6Kn7p4OfeNQJKz4vcMKKYZejXOc6YcVwt6NcnutDnvo6xxFruSPWGkes852wYvC0iTMdsTx171W3PeujZx2Kz+c5YcXgVR9jeDrY1+mOWGc4Yq11xPLU14WOWF6+0NNHxzCodj+oefxBb2u95Zrrm3z/tx0xvMxRLs/+hKe+PPvkZzlieba1nvXRU1+D2nY85og15Yh1nyPWXkcsz3kmz/kvz/2FfAYT97YW5e9omG2Xkc9kyApjBeGZnPgO8dskS01+RUovap+05f1SIUuH4mLYCXQc1xLvhuaw5rCOMRbvRTf8GEbDbPuvUd/Ozq3fht8OPfmTIqUX5fcs75cJWToijvs7lwk+lwk+HRG31xHrIUesexyxDjhiPeKItccR69CAynWvI9aUI9ajjlh3OGI95ojlqa/9jlie9fGwI5an3Xv6Qs9yvM8Ry9PneNrEg45YnrrfPaByHXTE8rQJz76JZ7vtWY6D6r887cuzPg6qj/bE8rSv+x2xTPc8H2H4MYxSuiLUGjudXBCeyYnvEL9NstTkV6T0osawlvfnC1k6Io73GTxf8Hm+4NMRcYccsQ44Yt3jiLXHEeuhAcXa64i13xHrfkesKUesg45YnnXIsxwfccTa7Yh12BHLs2572penXJ7l6CmXp5/wtAnPcnzQEcvT3/OdNtg36hCfuv0zTG904yJdUf6Ohtl9lBr9pVcVhGdy4jvEb4fZeW7SP1P6V3qxvL9AyNIRcbw/4gWCzwsEn46I2++I9Ygj1m5HrH2OWHsdse51xJpyxDroiHXIEctT94Nqq4cdsfY4Ynnal6dcnuXoKZenX/W0Cc9yfNARy1P3Dw0olqefuN8Ry0v38fk0J6wYPG11UPsTnlie+prrA8z1Aeb6AHN9gG5Yc32AuT5AP/U1qLb6sCOWp74G1U884IjlWYcGte3w1P2g9k088+jZj/YsR0/dPx38xKNOWPF5gSPWuY5YXvP38fk8J6wYdjli3e2EFZ/PdMRaPqByeZWjt1xrnLBi8LQJz3I83RHrDEestY5Ynvq60BHrfEesQbXVufp4bPI4qPY11w7N2b2S62WOcnn2MT3L8RxHrLMcsTzbbc+67amvQa2PjzliTTli3eeItdcRy3N+wnPexHM/E9+hsQDiivLX9gVifYt8JkNWGC4Iz+TEd4jfJllq8juyL3A58eP8mV4s72uELB2Ki4HvOFgj+KwRfI4Wliqv+G8yZIXrR4P2PZN56feYPp8JL9mWcP9CjbI9MdeWDL9NsjS1pdOIH+ePbel0IUtHxHEZnS74nC74dETcficsVfaDIFcMB5yw4vMSJyzvPE45Yj3oiPWQI9b9jlie+jrsiPVyR6yDjlh7HLE8db/XEeteRyzPPD7qiHWHI5aNDaz9wr4Tt93YNtRoSxfktt2G3w6z28gmbbfqU2H+TC899k3GU30FxDR5VF+B210bL49UYFnaYaL/jdGnflVZc58z127mfe/fr5W4E0Leiwi3bl8W0xud4nN2j3zOFnxGRbpJe/j6gU+89cOvf/cfvf3g297yc4s+ueAXxs6e/yOvetVXln95xZueeNWv9mg3N1j605ulX2Lpz2iWfrGlP7NZ+kWWfm2z9Fda+nOapV9n6c9tlL44UvbnwdvJrLTTeT+/Ee+wsrczd8UTlh7njIay04dRS//CZukvtvSXN0v/HEu/DtLX0N+kpX9Rs/RH8n9Fo/TFZyz9lShU+bvmr373uG/9+k8P/9ZfP7H38DfWPv5nV7/+9/7DZT/7kXNe8KNb/+HnvrzR0l7ViHdYYOlfLHh3kfuIzV995E0t3hOW/iW1eYdLLe01Ku0Lfru1c/dvfnvv2NWveNfhT/7NtYcWrJj64MpXv2Xnh35m5Rdu+0lL+1KV9i92fufT7+k8/vKHX//+Ry85Y8nUOx7/xFf/+598+Dc6X/v7dz74iYtj+/URar/KP598noDn+K9d/h3TWT9lG9BY2mGi/8rx0+n+vCQapzSGEcJ029OG9zXK4qTcfpXht8PsvDfpV7WJH+eP50TGhCwdiouB+8hjgs+Y4KOwHnPEmnLEOuiItccRa78j1r2OWHsdsTzzeL8j1qDa125HrEOOWIcdsTzty1Nf+xyxPO3Lsw4dcMTytIk9jli8zoZx3A8Yh/c12uWh3H6A4bfD7Ha5ST9gnPhV6SW+W1w+Hzp4z333HHxkw96pu66Y2nfg0H27hhA6zOwNsVYQFd8VYWbuMa5F7+YT3VX093qRLgjsGG8lt5DeT4assN6sYr2ItLgNgN2muI0Qh6XJoSXkN5mP+96/t58yjct0LA+WxwaKw570RuDN5ar4mPxDgn6CsMZFOtN9N35P55qoysnSdkQc18Xcnn8TD9Epn0sPceWuOw7dvWHv3YHCMP19ZYWIJxLd+grRCoFb0D9+fyK9a4W0C0oNAnNMJgZuZBBrG/GZa2TmGplpVnONzGz5+93ItEQ6nubh6Z8YJu3hx3717Z9e9/qPnPsP35n/mo1Tr3z4gtd+/IYvvfzEtz3zH+9954p3LI5TTJeVCSeEvDjFg3mb1yV/w0T/DpjSurzkF2mXlfFlTXvRofv2bNl1cP89ux7a9T2ffSBQ6FY9NtLf14p0KphJtAk/htHQkwPKdniG3w66mCdDVjji8NRoA/PXzOGxQXBF9nZ419LfTRzeBL2fDFmhtsMbpTh0eFiaHJTDM5nrOjwsD3Z4WFHZ4WG5jgk+Jv+QoB8nrJSz6sZvruvxVJjreiCrua7HbPn73fXgdPPC7JpraYeJdk8Z0WONDYsgHcs412Y/FebabGQ112bPlr/fbbbyJLw23M+pC+SdHAx97uAVP3Nw2f0Xf2n0o68/783LT/7M19/2nn/65iO7Lvnnf/r8+1Z9vUevsb1Hb3d99LA/QYMxrAdcj61lqtpfYGmHif53Fk6new0Mxuw8QulRtk/dd89dUwd3XfXAg4d2Hdp117V7D+46sO6Bu656aNcDB2sPzV5Mf18t0qlgiuDuDj6r6UTlNjsifdXUZJVSDYs3bfxM+RAr/7tOmYmpKgsa9vpEXscobozk7cYntcBUZPI5oUc+Jwg+qY5+U4egZFaOx8ozlvEvtafTYOXFGQ5Maw56mOjfCpXqzVSJleMsgnY2aGMxVM0324Zephmqkg/s87fIPocoz5hPJfM48GC+MeyokOE/ULewYSMvu4WGNUHyxOeTwkz5UValc7YrTM9LIFWdJ/w1PvyO+SiZuSPgwQexrC7kNDgTxIffpRroCcpPIWSI9vf+tuaJ9VH5LZ5xfADq4weoPqI9m8zKbsYprmo4xTptiXcpXzVegZXbBhn9HyXaoG6TENwGDWXINxxm16n4fCLkuQoriHdqSMvDuwmiHU/Qstxo27ZZ+2hPTfDwFaesNwEdh25TE++tMeBAPWyowFR1/maiNT88JHAXEi3WY0wbw84KGbiMY7i+/OX6/g/tafy/oXYG24t+li3qjoMqP5Mrlt8/9Fh+yq/uoDjlj6O+vnSM9MVTlhiOhb5uorhu+rI4m4pRA23e5G38Fs+fxnuC8ArgxfbPh6+WAD6nj4H7Ykb/dWgrnrXyqecJSh9/VxIuYquxDLdznD4k8rkY4haS3EbbKfU2SvmpaavrrIyXkkyIfXxDbNSfBTV9aPjjgp/J1RZxwxmyPPCtqQumRl7+pwWlN1n4HW+5OUHQrxT0pqtlkL6Grp6PE1GBeKtxxvEUNw/iTIZo02tJvhMaypejP8TvCPpbgK5OWXQEn1FHrPGGWIvCTBvFesg+NwZuh1TbH8vx3LJuKz90CslaCFlTfojTB/G38kOqrxvDOeSHGvYfLzSdLCGZEHtpQ+xcP2T446G6XNsiLscP7f7Oun0f3PLxk4sw29+2xDv2Q8omTxH0Pdbzc5UfYl+DfmgpxaEfMhmUH2rYppyboz/E7wh69kO5ZdERfEYdscYbYpkfwj6A1UPlh7h/t0jkB/0QjzGeA3228+fPxMI6VtXvjmEnxY0n4hYKzMj7xTC5jv5qpPzFcSSP0ZaIdAHyYO/Q1jENzz0Y/QtBN5eRfFinMZ8on+qr47zkuvnVdIsSdFguqf49bxlAm+S5q27lwm3FNdRWNFwmlvOehhXncszvlAs4V+86uHX31P5dd23ddef+XQd5haagv6tmWngkFoguBt71fBz9zct+PJu5UOB046lm11fAM/NVs/nslVYImY8ln5N75HOy4NPvpdiTiY+aue6x17QqR07Eb4fZtbrJBo2FxI/zx72RhjMpkwWlR36Iya2dGkEblnnxkQos9PxIf2fpvTqCx4nEY7GQF9+hR7+VPDWupOCKwK75M3moFQFMu5nyYfRf7Eyn200jDWyhUvVxMsyUpW59nJzj01c+q3rks0rw6be/XEV8UhvaGvqvRbn+0vC9NrSpVSe1M6PHFeGF7BuQnzqkxj051i36xpEKLJ6hNPpXk79EHuwvVXuC79BfvoJ8llr5Suk9tRqpNoF2W6l9/XzNU63UxsB+2eh/CfzyGzP8ciqPaueE8hNVK4NVWJsJS40OjtYKuuKTk58Un2OZn1RdwDLYkpCL+zqLumBdR1iYfhHFDSVkrruTRI1uFZ+FPfJZmMnnaOVnrEc+uTs22j3yaQs+/d7pwzMPVf72feRveacip91Q/vJOxdeBv30/+du6+e9xnJPdLzH8dpitvyb9km7+gfsli5vxO9IvSY2LUB5eDWDdxn82EzpSgYUrwkj/J9QvQR7cL1ki5MV32C/5II3jULe91hPM+9GojzHwKfiq+vhRqo+LIS6nPhr9QaiPf5Goj4tIZtRNO5Ef3HFR5RNVnzxVVxYm6JWtqz5BH1e+sv0Kr7I33E1wxK+o1SpVb8aAdzlbu27XgfPOv+TK703VPrLvYNUqGO+qWkq4bHP2N6eLsvGOkSHBIwa2n0VEx+XOc7l1ZOpG2y1e9QmWVOQzhLw+gVr9YKyqnZpWPsNE/9/Keq52aqrTDGhDqZ2abUrXrpC9JfIwvyLdi4KWD/O8PpFno/9iIs8TXfLM46/Uoceqi2daIg+jYbYNIIbS8eowU/a69oTpj1YfczXxqWrTvpUx14ryXFE+81zrFLRp36Y2TfXl+53/qlMXmK8rgIbHEXiUijFj4F12R2yyJOpxvUOu/PHcfyHkj/mbNzYzLyrvqTI1+q1QpqPly1SZpuqHOi2U8gXjCXo1b6DmeFP90976+cVnc2wU8dskS017ONLfUP10zF/T/obhfgYyhPJ3629wulR/g2mr6h73ARbS+279DSVTFW0v/Y1FFfkMIa99UGMes08+VjsZssIkt3utoMeOVUfFh4LuGzC96mMgPvth3B2tdLMN4pF+RQkU+xLn0e5llOHUCvlCyCsLTH+02qpTiU8/1p1i4JNfWK7PhWeMMz78jvlg+naCz6Ie+agxcK6tryufu/WJnlWz/ay6FKMF7ed51H6qfnrdtWnOf921z1S9zq2nqj/wLMKqe3oY01f144aF7DFwv8zoN1O/rOG66ma1y9Bsocc+3+acOo74ak3T5GqLuJzdu19oX/ZnX3z3L36U2z2Thd/lzB09S9D3OM+6Ue3exTnVGNBGFlIc7t41GdTu3Yb9tY05+kP8jqC/GejqlIXCWt8Qy3bcqrXHY+WTck/JGv126Dvk3NSA7U9qTXmM0o0J2UOY7XNimAw6fJeC4eFVM8yLTywY7S2Q7wtXzpR1XMhqPqKV4BHEuyJU64Z5DIm0V4aZsk1kyKbWrxGjau1/OOj15KoxiJLL8hGDstvUevrZPfI5W/BJtUn8a3z4XWqd92zig+mw37SX+k18XU1B8lxVPvN1NV+dmE63n/pNmJ7XstXcn9ofwrrPvVnD6A9Dvep2swbmM2VnuTdrGP1jR2GeifM0HGb71hheEnSe0E9vBhrWQbdrjZherTehTbLPVnteGatqbpt5L+3Cm+etcS2ham3gYrD3n6A61E3311RgnrlgGvOnamK+tALzTWPTmK9L1Mtnhpn82PfwO/Y9nD4G5XvseZTkrFkHsi//M/x2mJ3nJnN5am5C6WUceLAsHRHH7bLi80zBpyCsbnKNBbfL9w1yGdGtrxCtELhF0CZnfy+jdypriP3kFpyyapqZo5u+lPBRlpZ4x0WG6Y1O8en0yKcj+KSwLhVYRj9P0HcEvaNpWPwKotuWEI1xu5nGCnpXZRoWWsQzPlddt4oqRxknBEaRyFNLvOOiLgQvxeeyHvlcJvjwLpc/oB4K8q/hLX/SvN8IvGTP33CW/CdRXxaU5686GYBytUVczozL2t/7oV+59NTdmwpKb7LwO66SagR7maDvcebrlWrGBe/2i0HNyqkZF3unZlwaXsb5yhz9Ib6aIecZl7qzFxi3viGWzbiMQPpUXT5aPqMffFJYahbG6E03I0GvUrFPMvo/g5Hbc2hGROk7iHdDYbY/2lr+TgisBRWyK96GH0NHpDe6PvrEeVhOKCe+Q/x2mJ3nJr1hVT+UXizvarZNfUiP70+quxox6Fhom+Nhtv0WFb/Gh98xH6yrC4hPv07I5dh5Uz6IlfP9q6Z81G6hHtvg2vetsV3gZefcp7kW4lj/myCO7/PFmR2cCeLQor9RD9EfP2/lNC7TWVCnsbhdqnsSrhDydDuh/K0xzVOdUMa2iU/CLYJZmm+PVeeRV0EXAB7LHgPPGhr9d6lPjjOoNewweR/vD5KNN7HjBxvaMfe9Foh8qBUFy4fy1+MUhz52AcVh+z1BcejLbgI69qctwo6BZ2PnCdlVv6nI4JPqNxWZfJb3yGe54NPPdgt5dvNTK8an02D5V92kcHv5y7PC3x2fTreyfFa7Vbj8uE+IvjCGqjFS1YpMu0K+NaVMakVGrRrfnpAZeQTCiIF9q9GfWcrQ4zhW+lZuc1M3BjTkO/cJnIBeg+Na9I6/dnE1/b1epAsCuxWmS24BvZ8MWeGYfgLHZJ77BM7sEbdKF/9+qUjjOaJiPXpgLRBYPfYil+R6HN7T1rCeHPE4as8F5o/z3hGyqMWV+fCMcchHLZbkLNQ0xYph5xzWHNYc1hzWMcDKGXliO8X7Z9S+qILiUL7UQjimN7pxkY7bt4btzURu+2b47TA7z03atwXEr0ovPbbfC1LtKWLyrHFHxBmW7QWruoPL0vKewR8qjcjTruOI8eHxmbKrflBOOSOuWtlJbQDpp92jfDhz8KpxzbPqrovby99hon8CZg5ePT5TZjVzEIPSAdqQYXCe8MyKxdWpr0+OYWD2juXiVUtl9zibcFX5rPbU1lnlqyqjx6mM1N7TQsjD+/r+Bsro52h2B9Pn7CtT/NiGRiroeb+t0f8izO48J/HlktEKflWz8mdU8Ptl4PcBms1tEY8Qera7JcrusD6z3akZSlX/U+0B2mnKFpl3IbBSe6wt/UjQZWB4w0T/66LMc+2cy9Xo35lZrk7+RJYr6ipnF4Q6q5qyA7VjQ80gsx23BBaWNZdrt7pseFy3fidRrpYeyxXl5HI1+v+YWa7Y7zEclHcyZAVZrqgrLgPVXiN9ziZLljUGteJzHMWxT8Rn5b/RDnLKXOmXy/xPRJlz31/5hdz90XF+zfbZlzPDWw/u3b+rnBoOFFJTuUWovrpwsUgfKG1B7/i4gXKfqQUR41210Yndp9H/V6HylPuNIWeLPRZ3PxYX7J3XFvtubo2n+lLVLNUlPwamGsPVFWIUIn0grEK8i0Fte0dc7gWmvJtSlfUuqloOw+O9C3+XaDlSPZwgZEjNAKM8qRtUU+v0zAdbNDQjbtGM/h8zWzTj3Y8WDXXELZoaQatTi0avThur2e4O0aPuVYuWc5st2rm5V3Z1mFaNrJS9pHpmKf0o+1LHPdRej9QoGPffhOA7Csb8sC2kyjYG1k3qdknUTYfolZ1g3esQRrdeV8oWcOT4qoo9FIibGgGp20PQhnlUfuRUeZk59AGGOd4lbzkjQPTjvL8Iu0ALKA7T4UyFYQei69EeFyh7xPzkzMqo1b3cuppapeOzBGrfN4/8UN+4R0e1JwU9L8jMm9oDhXsGsXxOADur+oZ41QzKVRWYJyVsV+UhZbvd2mqjV/bJexKP1g6Lo73vFvPMgfuAqIfcfbcpv6N8n7J5tKVv0V5X9BsXE0/Vhcd3bPOY3ugUn06PfDqCTwrrYoGVaqtUG+p4rNJEPJXotiVEY9yC/vH7U+mdqu4YVDEVFXKHkFdMBfFXWLg1cAvQ8EVm2IQ9h7DqLspgeh7ymCzXlvV0VPCv4b4et+qojoUYdsPjO4+jfi206J1ybeq4lTpKlHOE8nffft2Cj3/wkiNHAHO38Bq96tI9R9D3uLX9jaqbxMcksYy5e5V7hLLh0a835ugP8TuCno9Q1t1OjXFbGmLZEUrUFy+w9tvH8AL1VtHNOtqy2GzkjQMgy5FLqhLdz25DOP5AkFrEUb6b81XXdxeZfC7pkc8lgk9qwwr/Gh9+x3yUzN2OFty7YDoN1rWqowW3lr+80HcqXH5zf4mppt2qbq4ogp5JZ9/BC5FM066Qbz/YJx8t4DxjPpXMI8AjEEYMfLTA6A9TP6Chf5dHC3g40ocjxdmz/8fqSHG9owU84YBaQVR8V4SZuce4bpP8V9HfTY4WNOyxvNSs4qUikgfFqBs1KMbS5KAGqdjDqXO0AMuDB6S4drYBeHO5jgo+Jv+QoOfPcKjDzKb7bvxUj4svT1Hp4t/XiDSp3n9OzYyB18najljqmEKPEzbZnwPirZcN60ly6yXmj/OuJvfVdjHuldW9NhKxFjliLXHEGnPCimHnHNYc1hyWC5baZsQHy7E94E+tou/imZe6I0pM30rwuahHPhcJPuMiXdO2r5OQWS3Csd7qXhaD6XkhAeXDEd6HFmieVVvAeYRn9EthhPf/LZgpsxrhxaBG01gOIejRfo+LjeNqsRH1yn1/tSCC9LeVv6ntbsoWcsvo41RGqa2xKA/vF/vfcBHJX9EoHG0753O7ih/Xw9wt4Eb/tzAKT20Bn1fBr2pWYkMFv8+IBcw+bgFfpOwO/UzOllLlz1L+Qu1n64TZvoe3lFaNRbjslb5ztpSq/Ym8pfSLwh64LWLbqJJP6c15S+lohRgLRfpAaQt6t7ACy3Di3zjJkbOlVN27wi7ifwiVp4oshrktpd93W0qvqhCjEOkDYRXiXQzdtpRyjU2pWKmq6WGEoVImtaVUeVjVwzJ61RNQaw6pLbWq11PV41CHJGLgFs3o25DXo3D4RbZoqCPOV+7MidF32xbEVS21pUuNbHKrYe6WUu6pddtKU3cLH9tX7ha+VK/aaQvf+LHewme6ydnCh/nnrXiqF5VrCzh6+lDF2hnioi1UrYOjD0Ad8rY8oz9d+ADDHO2Stxx/h90cvs4Ouxjs79Q6vbJHo+vRHseUPWL+c0Z5qSu5u9VV9j/q8K/qInA3spvdpLbj4drlvTTiQz7PJp51r8R+tpBf8en0yKcj+KSwni2wUvW8z9vxTMTlRLctIRrjFvSP3y+nd6qaY1DFNFwhdwh5xaTMWfEpeuRTZPK5oEc+Fwg+s7a4lA89LqO/Qk1IWT57XOh9BerLghpNGf644Mc3A2Jczja+L3eu/9B9X3/rr6fcbqpLqNzuBYLedMU7eCdDVvjR1EkstY1vnOKweTEZ1Da+houfP5qjP8TvCHrexpdbFqk7fepi2TY+ddP70fIZvI3vDuhC8da5oyWLbVW5+xjKorpN7Isa3kQ6nuuL2N809KvJm0iVXnr0tWO59ZMXARaIOMOytmYkpOs6t02HywfuisbAi4m5p4+if9s/MVP2ftysr+yxarviYxMz88K3AnNaXigx+r+DxawfSUxpcfmwbcZfXDRlH2npcbui+oYiL7a9EnwCb1dsU54xn8pnjAEP5htD1be2f4r6Ow3ridyuyENH9R11zm8IWuepRVKj6zEPl5pdXioiLQ6/psXbfJ8Pcbyh6wUQx8crXghx8ynucohbRHHrII6nfjHwNDDqKNre72ecKlOb8i6jOKxHpgs1Tfo8eMY4k5Xfcdlj+tSW7naPfNqCj5ouRn/Zx+M72aso/JWzec34HWlrU3cXPSlY+avGGTxFwuMMe64qn+cJPnXl6sMHDs8iuvUVohUCt6B//P4selc19Le/lelXrbqEkGf6aq/H0api3fZR/NaE5ll1xRg2jUj/29A9eC882+rX/PCDp9scncVwV/nLOvuDxKz0kZW6CsycE2KqyTd61QXn04cxqJnq8QzeqEuuzwtqytptxYs/cqIOwufKuvkoyzosZO2xaVtqdX6piLS44wGbu0knQBx3k5ZB3BKKOxHiuMt2EsRxE/cMiONhDX5khqfgVkAc+7uTIa5FcadA3HHwzEF19axMYro3rZrGZTp8rvI3SJd7KctvVQznEBeHc1VTULmXshj95xK+yvtiC57qUvVZTffgtIFhM+b3+4puavWH9yarlfBcu0mtoOEUAk8vqEuRlJ3b+0WA1SKM+GwXvQ0T/TcS9rhYyJDy2UsEPd5faPJMkAyYdkKks3JT9mh0/bi0CvPD9ohtQkvQs26OF/RLiSaGDtGjnlLnZ5S/Wwiy7x2bSYe+tqj4NVn5XWqqfifJM+HIB7F2EB8c7mK/fKwzjcs64V1Z8Xld+czT9qd3ptNNlM9qp8wEpbe4RWWaaGevWl2dnqen1Kr/RJhtBzz1pvKJ9FdX5HMZyPnqUs4+7uzpqHqHvo/rnfIxSM/1LlVPUSedMLtO8hSsmt5Hm2SfbDqq+hQBjwGNfjWUAe9NxvwtJNlHa8qu2pNuO4+eRRcvYRvD5wJVG6bKSl3Ut7ACS43jsN5yubeCbg+Z3mxiOKT98zDRPxvK6rWrNWaokGGsQuaRCvolJIPRXyDsJeUH0P4XE6bRXwyYfKtGN8wrKjCfC5jc11D1FC96rNuecn8C9Xg8xaHs3C4uBf5M+2Lij3Fo58w3JORVU5Ipebm9sbjN0F5dWT6PEl5NX91KldVzhby5ZTWWyB9jWbrhMNseU3UE9bG+ozHn1cS8VrTpqq9yE+BvruiPxMD9kRjYL6PPwHo4Rn0SNdbhPsl2UR9VW4/zKYZjcfn2U3y27tm4brphn9DLxbAnUlxqKdarLZ03NhN3IoEbf88kObr18Wy5i/3wroQfVjpM6VyNEVGvPM+A5bGY4pTNHm17xPyzPabyGkL98TDbo2o/lD3m3L+Qa48TkNdvlROYagxuPJWPrtvnLujZfPxIBT37fKN/eaLfc4KQITV3sUzQn0A0mH9sl5YFzRvrJepkA+XH6H800x87zXnIEzaoN7b/lI5iYJ2eJOhRV6aTDtGjfpWvPoHikC/bmaqzuXXD0kY9fHT+TNx2Ji77VbQJXAtjX230b0z4apW3lK/u5o/4ttLc+bmUr+6nrQ7q/JyyR2VfuJ3qfWRfqu+TOt2V2/dRbS37dkzH6351x/SYfmGCT7tHPm3BR80nFRW/xoffMR8ls6ovnB9VPosy88Nrh4sc86NkVnPEM/Y60BgG/WRLpOX2zuj/C4zJ3kvjFxz/st3k2i7PiS4CHSifvTlM5z+Emfoz3B792Dzlx9CP58x3In3dvhf7KvRxvB9B7W1A28O202hCcPX78+rOD6f8YAw5bSLWCV4LTM0do72x71W6RNtL9UNwrfn187vLP5HIbzf74PUHbOeXUpwaryhbMLp+9AEwP2wLqTY9BtaNGjNgO8+2gOODxRSH5c/9CNVvU/6Syxj9K5bLuvKZ5wA/VXO+NWU33fpHPJZXc3ipceXR7jsOit3wvC/6nrp2wz4E/Tm20dZ+K383RM+qL4n0rQoc/gBXQe/nw3tM9wLKM/eRGPuFRG/5HKmgNzzui3wtMZewuIsMl5MMS7rIwGsuRv8tIUNK/zGk+oSjYXZdrFFvhrENssB9SsRvB20fkyErFKw/46fsIAauy6o+YRy3ycoHqnqusApHLD4q0rC8an9kiMcVG4F+C8VdC3E7AINDi/7G/ES7fsPqaVymY1mxvDYAPtvYYpF2scA+VvVhcTN+yfqgxgB16wPPIz/d68Niihu0+oDlZXIrHcUwGfJCTn3Bsqmh/1W59cXwveqLsj1VX3pcD5+M/ml+mO2rzoVn1B3yWUIy9Fp+ao7rWJXfwmb8kuWnxvCe5Yd1q075qbk/nkepO/eH6Y/W3B+fCcCxIM79PXfhdBrUg1qDjoHn/oz+moXT6S4rn5vO7/Vxvq51rNeIucxy559y1ohz96njGvGuivmnAnDXibRct5F+iZDD6HltmGl4b47RX1sagDrGrmwW5VpHmEZ/HWDyfIqaM0jN03abM0jNtZ1AcWotStUJo+uxTqw61uvGbPe4bszrv1y/YtggsFKyLuxBVi5HLKuTCAv3oam5WbZLo79T2KUqf9N5P8o/NZ+mdJqaT+umUx7T5O4b4PFKt7lz9onq3AW2iaovULUGhTxTfQHl0/kKlgNQ/rxXF323WnfYUIH5UMLXqTykbjPstkfM5FHt/+JEOiyrUcFr0h6+mw6Gh+My5lU1Z/fDoKcLV2pZCpanS+jjnN5kQXghDNacXo9jlpXYp0c7wj692luG5aXGVNgHfjX1gVUdw37q+eUz17E3QB/4tRWYIdRfL0R53t+eievdP02tzefsGUrtwc9tF3nvlNH/HNTN1Fkmn3Wm4qvHep2J20VcZ+J+jrKvVD8c11VUGfA5BKN/M5RB6iwT7wUcryn7QiG7mkfGusH1WK3RjwrcVL1HuW2/Ntf7X0+0rd3O/dbd98Xr+blj69QZcKex9aJjPbY2+XPG1ngGgOdksI+GezV+iXwvjjtS/U2jt/nnqrEv1zmj/4AY+6r+5AbKB853m81Ze3wtyT4ZskL29VCG3yZZavI70t+4lvhx/vAapvwvt7InQq0gKr7jGoxxLXrH39K4lv5u8uXWzfR+MmSF68wqrhORFoe350xQ3FaIw9LkoFZITOa6X27F8uAVm00QtxV4c7leK/iY/EOCfhNhXSvSme678WuJdBOEkWp9Ngje3Pr8JXiHr62u1sOGUK0H+7st5GR9W3wMPdrkDbnexPDbYXbZN/Emm4kf56+ZN0FLQS7bCdVokBbDdpAM6fkjUlx6YyIdB9PYMMn8JRi7/B3Nf2C++PymsnZ8x/MfmN7oFJ/FPfJZLPiocSDfO7E0EYdzVsdT3BpIt43iToM4vk/jdMDk8eraBOZ6gRnL7nWLpvHivxuATlm64VgZbAd5MC3+PY9oY7DrwYc57aLpNP+D7AprMdvVpi5yp+xqU6jms7hHPosFn9QeAovbLPKqWmQu5y0Qx7azVeTL4rYlMK8XmLF8XrFoJh2Xfwzm8W+E9zU88PZcj2/4bZKlqce/kfhx/ni+akczftcXlB75IabJY7reKeIMy86bj1RgWdphol9QlmeH6EKYfZX3TiEvvjP9RDsZJTtB3RYVv4bL77h+Yd6tfIwP+hucv1tc4fOwJ4V+zXqe7Kt+4fjpdMeXmMovctmpetI0/zeIPE6E2brh+XZl3zcm+CxK5Kdf5cnjbPSzWJ6rqDx3QBz76Ph8Rvk8TPQ/DuW5hspT1UWlZ26X6ur5eMGn33rm9mWnIx/E4k8R3UxYrGcrJ9PzTRB3M6W7BeKQDkdd+EmSWwRvhW8Y3WzwokU6b1U2aLyGif5usMFLGtrgTopD343tIsqBekD6M4LO10gFfVW+XljmRe2vxz6FKgv2v0b/IsDkeVRlW9ge8FyhsoebRb6UTm8J3XmjntdX8B4JaVscJvprhE65XcD0qh49g2S5qYvsXL8xvdGNi3S9+hElc7c6uaVmnTynfGbb3Qx18nqqkykbQZl5HFFXz4sFn37rmccItzjyQSxuF24jLNazlZPp+VaIu43S3Q5xSIftAn7C5HbBW+HntgsvW6TzVmWDxmuY6C8CG7yHbFC1K8oGb6E41Cm3C9384TlEb3KPhHR7O0z0+xLtgqqv6Gu5XTD6A4l2wfhivlLtgrLFW0W+lE5vI6ztAgv1zO2C0inmfzvl3+hfntkuWHo1H8E+BucjeK7iOojjPiuuEKTmI3huBH0Cy3I9xKGN8HzEwkR+cN8Hz/fhvN1milsDcddR3GkQx6sPOG+3leLWQlzVvB3mG+ft+G6vny7f97huJz+dlJoXLSp+Q8hrD3Dtme/Rv9aRD2JdRXw2OfLZlMjPdYKPlRfWl36ssxp+O8yuu03mybYQP85fs5UR9DasFUTFd0WYmXuM6+c6q/HdCnFKEzxzjnnaWpEOdRHEuyFBv4Wwtoh0JnsrkR4xMB1bTEHvq9YjDWOY6N8OrdU3V0/TV/FCfXCLabJX7ZhgGYz+HSADnxbYAmlUvq6rwPx9WMl41yKNGQSmytdWyhfLsIVkMPp3i55Ai2hYHvUu/o1rvVsr5FPlxLJiK1eVHy4no39/opw2CxmwTq7vIgPTbK2Q4T8JGYR3u2LvvkdK7xYo4DdM2BspzfO67WaBUxVMG9EKzSLVLoPrRLrN9HdbyBRzbn2pI58xu2/XwV0VeWfPPb+C51DQgfujli6G0dBTm5bdhhp+O2jLmwxZoWAvZ/w4f3y+e4uQpSPisHzZjlJ8YpnaXriyTLce3Lu/qkhzG9dCiMXpA2EV4l0MVtS4zFJnI4lairHA0+2YJ4vD5TruRuLUIDo1DpxvzE90Lv9S42g46pSHYLlDNx6eoSnx8Akd/s0Uh0O3WygOh242XFVLZnylqho6q2F7R6TfnuBzeo98Thd81PIj223D5elsF2X47dBTPTniotS2EKUXVXcsrVp64k1q1pTcVramsdn6Ag3rccss67Xh0fOLc/Vq+G2Spale1XZvdQ2XmrbgK6JxK9LLgI7jWuLdUALrgCPWw45Y+x2x7nXEmnLE8syjZzl65vEeRyzPPD7oiHXQEWufI9YeR6zDjlh7HbE8bcKzPk45YnnahKe+7nfEesgRy1P39zlieer+kCOWp74OOmLtdsTy1Neg+kJPfXn6HE/7GtQ+k6dNeLbbXrqPz0ucsGLwtHtP3T/giOVp95559PQTnn0AT3096oj1WPmrjlJvJz51P22B6RdmYKn5g1Qe1TzOWMk/hiPT+nccunvD3rsDBV6FuLJCxIuIbn2FaIXALegfv7+I3rUELWLHaaWfKJcz+nh65fyC8ELQ00rH6vQKT2dj2o6IuxCeMQ757BB8OiLugCPWg45YBx2x9jli7XHEOuyItdcRy9Mm9jtiTTliedqEp77ud8Ty1Nd9jlie+nrYEcvTVu91xHo6lOMhRyxPfXm2Q7sdsTz1NajtkKe+PP29p315+hzP+uhpE559Ji/dx+clTlgxeNq9p+4fcMTytHvPPHr6iUHtfz3qiMXTJDiu5mmSuien1Yn7FJYaD6fy2OdpEhPxPKJbXyFaIXAL+sfvz6N33aZJeFfOR8tdOT3uvpOHS3iXFk4H8XbjujN1mH5pgs+yHvmoi7/HRTrLd496HEf9oZz4DvHbYXaem0wvqV1ySi897nYbK8LsqtoSmLzzLuVWrP7g1nPEsrR8OcTnStvnXWwx8OUoua4rTkN+usRN7RrMKWfEVS4xxx6b8kGsbeWv1S/ULdfjVLkqPpj+hgosO34SAx7A3Eb0WM5B8N4B8Uj/lbK84g7dj5z61DPvmA1h5iHgry5Oy4ppUVa+cGYZHAL+eomp9GzlruyAd2MuFXwVJvvGumW3TMiQwsLyWkP0VhYjFfSGx2X3r1B2fNgYy0vZzw0VMqD9GEYMVfYztGRahlz7GV6SlpXtZw3xNvp/WTqd7rgScyLM1nHKftZQHNqP6Ui1rbzTum7biulTbfgmitskZC8oDmXYlJBhjeBjbRzaX4027kZ1uY8FtTxzOsVh27OW4vDwP1+KjQfVuW3AQ+Z8ABoPv6M+OLTob9RRtP3fpw+VBIHFB3NRF6kD5lb2eLAaMTDOZOV3XPaYfm0FFh4RVHV5mOhPgvq4ZsnMfOGFjaaTHm3tgpz2HfHbJEtNfgX7K+PH+ePlyO1CFuWLzoJnjEM+qdMbGLfXEeshR6x7HLEOOGI94oi1xxHr0IDKda8j1pQj1qOOWHc4Yj3miOWpr/2OWJ718bAjlqfdP+SI5VmO9zlieZajp//y1NdBR6zdjlie+vKsQ579CU997XPE8rSvOb96bHQfn5c4YcXgafeeun/AEcvT7j3z6Okn7nfE8tSXZ3/1TkcsXtrEMfom4qPGw9sSfDD9top08RnnHHJuIWi4rblVEJ7Jg+8Q3+sWArWuosqn7rZmXhvoZWtHzqUrau4jZRsqj45Lzybi+US3uUK0IYFb0D9+fz69q1p6NmyrRupGpiLMVmNKtWr5aH2Cz5oe+azJ5LOsRz7LMvmc3iOf0zP5bOqRzybBh+/IjAGXP35jieaJSyM4Xcs3pRn9F5ZMp/tNWhrB5QX+3ikeyOH7MfEbP+x68a7QGq4w+wIYw2+H2TbZxPWeRvw4f+iW8u955BqAWkFUfFeE2V6jAMnwHS9yL6R0Te55PB3ilCa4hmCeTq9Ih7oI4t2QoD+NsE4T6Uz2ViI9YmA6tpiC3lfd82gYw0T/h7Dwyfc8Kl6oD94EZbJX3d3HMhj9n4AMfH/gaZBG5Ytr8+n0N9rWzRX8PwVe5sNLNP8g+HP+0KtV3aF4Gslg9B8FHfCdkGtF+lDxjluGtRS3NkFb9UVfVf6cL/TaVXnn8jf6v0qU/zIhQ+rrrCwD00xUyPBJIUNv90eyl+NS4pJYJnCqgmkjWqxZL2uHawfzsb+VBfR6f+TSCp5DQQe+49vSxTAaemors9tmw28HbXmTISsU7D2NH+ePh0WnCVk6Iq6qlnbj0+P9kVWNtnIWnD5Q2kK8iwEPAM8NNbrzeToMNRhLDSFiuKv8Zcf+v8Cx82cn1oMcCnMLyaBmAdTOJKNXM1fbRB5NlzhLsT2DN+qS9XVjTVnV7ArORPEuRJRvR01ZNx9lWdcLWY/2DjHezYU7xHg3F+4Q489Z4A6xjRSHO8TWUBzuELuB4nBH5XaKux3iePg/BXGnUdwdEIf3y3LgdgLLJNbZN62axmU6fK7yN1ifq6Yv2L/Y9MUoYCOfyZAVTrf0Q83S32HpW83Sn2P55K5pDIY9D97XsP87UScWVLfK8NskS01+R7pV84gf54+7VSNClg7FxbAL6DiuJd4NJbCmHLEOOmLtdsQ65Ih12BFrryOWp772OWJ52td+R6wDjlieNrHHCcvSe8n1kCOWp03c44jlaRMPOmJ5+lXPuu1lqzEMql/1tAlP/zXliOVpE576ut8Ry1Nf9zpiedqqp1ye+no6tNue+vLsr3r6aM8+wMOOWJ7+a1BtwtNPDGo75DmG8czjyx2x5vzqD4b/8irHIsyecxsUfQ2qzxnUfuF9jlie9dGzrfUsx0HsrxZh9hz2oNiXp199wBHL008M6jyTp1yeuh9UP+HZJ386jGs92+1HBlQuz3GtZzl61kfPMYznvK8nlqdNcB0qyr9xnRT3UNwE8UhvNxOpdewaa7d3jUOaABiI3XAd+q6C8EKY2dcIhD9ewS+GtogbzpDlvZffsufvJr9xSkHpTRZ+lzM2UWvapqvjSPbJkBXuGAcegXhbHK7Pz6M41IvJEH/XknwjDeXL0R/idwQ93/qXWxaLwkxbQHtXpwe3UxzuP1pKMnTbr8T7zCwPIxX0fIuZ0X+3ZIybyCeIJj4vq+CH8uG71L7DnRVYVbegnVkh+7zjp2XnfXo3CfnUFlejv1nQ454qk0fp5uageWN+sDxvo/wY/ZjIj6p/ZlOjgGNxNerOeOTzduDDesP6001HMbBObxH0qCvTSYfoUb8Wh3sHb6I4rDt8YbDaV4ina3l/l7q9EW/uS93SOEj1+mSwpVS93lrBD+VL1WtMX6dex3Brheyn1qzXW4V8g1Svz8ys12ZTc/W6e71WN43m1mu8tZVvdL0N4gx3E6Q9p3weJvpLEjZ7e5gtK+qc9Tsl6G8HGpNngmTAtBMi3U0UNwVxt5AMd5R/ox5QLt47b/SXgx5evfqpZ2Xrt5fPPdr6OmXrdwAB2/qdENcS9FwWdwn6O4HGdNIhei4X/BuxUKe8H//28u8RQY94w0S/Xvh+kw993x0k+y01Zd8kZFc3fWKdell5ZbzZIPoNvpn3lgRP5Z+tPRmpoDe8YaK/XuiLfSPWA9TTOGEa/Y0Jf2B8MV/qZoiU7m8V+VI6vY3iUHazBVU/ja7H+vkiVT8x/1w/U3mNgXVzu6BH27Xy74TZ/vBmisO6cSvxUW1krv2jDW1ZpHGr2pszyme2r3sT9qXqjbr1JGWPaCfc3qB93UpxmO5GikOdcl9RtbtIz2NAo9+f2d442fNiZc9os2zPt0NcS9DXbftNJ50wuz1gf6hsFsua2xvT0UjQZcCH4Y3+hxLtDfbbbiPZd9aUvUl9u4jaGzxfxe3NzgRPTov+oqq9MTweD/xkor3ZAbLz+Eu1N0b/mppjplR7023MxLdzo15upjiU3WxB1U+j67F+LjnWYx9ub9Af8rgI68ZNxEfNE+TaP9rQKmpveNyEWGgXKXvEejNWPrM9/ruEPabqWQysc2W/aFf8tQK0Rx7zqC/E9HEsvl3ZI+af7TGV1xjq1lUrz06Ybaspe+T2WY230YewPaId4Xh7cWmPNu+P5ylr6HW9ul0/kAwbAHs+xeFtbldR3LWQbhyeObTob8xPLPd/of5IEFjGE+9C2EBxeG8Cn9/FORK+tgrn3DdRHN43wGeJT4M4PkuM5/q3UNx6kcfRMLssapRz9lUchu/1pYMNxI/zZ/Ww3jVZ/L0J1Aqi4rsizLa+AiTDd/OJbiP9XeeaLCu5a+n9ZMgKm7hlwmBxeKqfv3lyHcRhaXJQtdBkftL7njKNy3QsD5YH1wq8aeE64M3lukHwwVsjmH4jYW0Q6Uz33fi1RDr2sCpd/Lst0qhL+7hmbyT8yZAVsu8eNfx26KnFOFKz1T2e6nsxqjWwtB0RNx+eMQ75XCv4KKycC3uUzD1e2DOf/t5QIcaQSB8oLVfVoQosw2EHm3NLWuqWLqP/jBhsqWqE8oyLd2z2DRuY7AbN8Nthtkk0MXt10QXmj81euaGOiKv6hFI3Po6mGsPGCjFUSxkIqxDvME6ZKrYmOaaK/cgqU/1SYh5lVKSP/enL2jN5Y4vaorRK1utIVqYZJVmN/msgq11+1wmzTZVb0etAFq5SW0j2yZAVsquU4bdJlqZVagvx4/w16yNiSbNWEBXfpay4W825gv5u0kdseCPS9WYV14tINZIcpTgczWNpclB9RLwxqE4fEcuDbz5S3zXlWsiWw/IPCfqthLVFpDPdd+PXEulGCaOg9zj7s1nwHib6sROe+o26/drqaj1sDtV6sL/XCDlZ3xYfQu+3dOV6E/623tZm/JLf1lM7W+p5k6r76G4gVKNBWgxozUjPXUYuvdNEOg6msWGSeU1pRdH6ji+fJ8Js611EcqMMKb/cEemNTvFZ3COfxYKPWXIb0vGXMcdEXi0OPdY2isMu306K2yDypebGGPPaBOYmERfL7tdOmEmH3qio+I2hJd6xTtXXOdXeW757tO6XOzA96wTT9ZofJbPqO+HexGefMJ0GW1P02mjHNoc3TPSvPWU63flU3/A+vpSeuS7W1fMiwaffeuY6td2RD2JVfbncsFjPVk6ptQte32c67BGofaOIofANo5sNXnGCzluVDVZ92Xsf2OCLG9og78fFHiS3h6l1DSwDztdIBX1VvjZCj4jHdmpvopKd9+DX/coRpueeaz9sHnl2s5/tZD+4ZqTsB7/UjPQ7wH52kP1gD60f+U/Va+zJ8R2+qt4p/8HpsI4+I0OGG4XMHZEe10U5Xa+2oWTuZht3k22oNWm0Dd6ja/QvAtu4l2xDfWFK6Zn7gHX1vFjw6beeuX+305EPYnH7ptamUc9WTqZnXLe+mdKpfYvcvuHattqnofBz27dHT9B5q7JBPh9p9KeDDf5wYkyTssHU/hvev6H2WqgyKEjukQr6qj1NrxLtW6q+4v4C9uVG/2rA7Pc5kJw9TSneqOf1FbxHgs5/la38dEKn6mwN5od1avQ/m9Cp0lFKp932QvHeG8wznzfYKrBQzzk6xfxvpfwb/S8k+mHbRXrVd+A+pOqHIT0vkag6pvomXMd+ObMPyX0bnFu4ieJwbuF6isM1i6q5hfjMd8Pj3ALPc+A6Dbd/uALKcyBqXyXOLQxTXt9Rvu9xbWHGeDQQltJvUfEbQl57iqvwvGepH/Mmis9WRz6IdUX5q8ZsfE6y7rwBpk+NDcd65DMm+DCW+eRANLx31+J+D+r1u+hjVtcL+cbgHY8JkB/XZ8SyMrP60fCLrtlrb4bfJllq8itSPhfzx8vZ6rxuR8RVlSnyWSr41JVrrOQfQ49ffTURlxPd+grRCoFb0D9+v5zetQQtYh+tqncs+RzfI5/jBZ9+T3UeT3yqhjt/XXNKmY/nGP3xMNz528Rwp6raoa2ltlwYv6ptDOMV8n0WXC9/R3Bc5PnMhMzXAw/mG8OOChn+kboqDV2x7KrwVCh26doUh10PLBuMC2FaF/iObe46wYexqppJe+Yu3T/XbCbRttcn8no9xWHTxHpQfJR7V3pI8TmhRz4nCD6pZr+pL1Ey81AiBvQl/0K+ZDvEqS6NDR+Gib4FvuQ7CV+CMvLfyi9XtZNVvmRbhXxFOdetfInqGm5IyIxDQOYbw44KGUZKGcyX8FLQZMgLypfw0gTW2ZPCTPnrtoWY/mi1hScRn34v+6npfvYvajnqhgQftaTWrT4uXaZ5qvrI7RrSf/jk6XTLls3Mo8dSXVWdCCFvuet6wafKB4WQboOMfiXUcW6DunX9U0O1Kvnwej2kPxHyXIUVxDujx/aPpy9uINrtCVqWG237vPLZfBEvKU+GrLDD7HmHiOQlDZRJHf/EaSQOvEUJZY7l/d4amwRRDzsrMFWdv5loLc9DApeXi7Aes76qZOAyjqGqvr9g2TT+hdTO4HR5jbLdqZakLHD5se44qPIzuWL5/UPD8quaMg1h9jSl8sdRXy85RvriMT+GY6EvjuumL4uz/A6JdLwJ1fjdD/a6nvDGgBfbPx99xeUZTh8D98WMfhO0Fc+iK9iwfV1J/BBb9Y+5nVtZIZfKpzqOz3q7l2yVl1snQ1ZYZ2XMPg2xb2mIXRBeCHra0fDHBT+Tqy3icq5wfeBbUxdMjbz8TwtKb7Lwu5xrV1YKetMVXmtTQ1fPV8fbjTfOi4QwW2cx4BF1k0Fd4XprQ/ly9If4HUHPy4m5ZdERfK5zxNreEMuullXLqexzY+B2SLX9sRxfS/109EOnkKx1/RCmr+OHuK9rtK8mP9Sw/3ih6geyH7q5IXauHzL88VBdrm0Rl+OHdn9n3b4Pbvn4yUWY7W9b4l3OMv4pgr7Hen6u8kPsa9AP3Uxx6IdMBuWHGrYp5+boD/E7gp79UG5ZdASf6xyxtjfEMj+k+uDKD7GP2iHyg36Ixxg/C3221y+biZXT746BjyVsT8TdKDAj7zdX9D/tGnF13Y71TdW2Ivsb36GtYxqeezD6N4Fufp7kw/E/5hPlU311nBf6v5dV0+1I0OX279sUp7ZN55YLtxW/Sm1Fw8Nfct7TsCIvm/Mul2yv3nVw6+6p/bvu2rrrzv27DuKISrWCPJOpDlVxMEl4tXYT/c0Hr3g280aB042nml1fAc/MV628sFdaIWQ+lnxO7pHPyYKP8kpFxa/x4Xepmd6TiQ/OymGNfjfN9KqVF0xrxzF51vMlMNP7vkQPMqXnyTBTlrp6npzj01c+q3rks0rw6Xc9WEX5Qa8/GWbmp+6KFKbfdpT5dKvXf75M88yt10b/v1ZMp/vLjHqdymNqU1pqp8f2LlibCSt39ei6DD6p1aPrMvnk5CfF51jmx7DUqiOWwZaEXHyJ6o1dsNgHqRUNZYMsc93ZCUw/luBzQ498bsjkc7Tyc32PfK7P5DPZI59JwUeNMHptP5TM3fztt8nfqsOtmHZD+cuHQL8A/vZ/k7/F2a0fdD3vcOSDWLntZ/vEadz4Tx2mSZWn0f85lOd4iZkqT6WbGxP54fvXVFmrw4aFwErtJmE9IL1qU/o4o7ooxw4Qv02y1OR3ZEN56sBgDLhxe2n5XM4CrNt14LzzL7nye1MAj+w7WDW7uhCZgvxMH+hvThdlGyaaMcEjBrafHUTH5W7vGT9Hpm603eKVr7upIp8h5Pk6TD9WgVW1A4gvuzf6U8p6nrsDSB1iS/UHuN4xXUvkYX5FuhcFLR/meX0iz0b/zESeb+iSZ+6/q74j+yama4k8jAa9W413KWLc6jBT9rr2hOmPVtu5mvhUtWnnUZumdvXhrq8rymeegf89aNMupDZN9QX7nf+q3byYryuApmpsMywwY+DdG0b//DLvPa4+yhllXkFpC/lj/l5IZarynipTo/9/oUxflFGmqfqhdqGnfMG2BL0aK6o5plS/0coHVzzyy6f4bI6NIn6bZKlpD0f6G+oQufpIT93+huF+BjKE8nfrb3C6VH+DaavqHvcBbqT33fobSqYq2l76Gzsq8hlCXvuA6Y3O7JOvaZwMWWHSZNkGcpgsaPNVJ1WGwuy6qOhVHwPx2Q/jrjulG17FNPrt0Jc4L7Er7tQK+ULIKwtMf7TaqlOJTz/mvWNIzUc/F54xzvhU+eSOSJ/is6NHPjsEn1xbX1c+d+sT7a7ZfrLNGv3t0H7uofZTnTytuzbG+a+79pKq17n1VPUHnkVYdU+lYfqqftywkD2GqtOSr6F+WcPTkpvV7hWrfz32+Tbn1HHEHxf8TK62iMvZFfaF9mV/9sV3/+JHC0pvsvC7nLmjZwn63vpfYaPaFYY7VmJAG+GPNuGuMJNB7Qpr2F/bmKM/xO8Ier5AqO6lYRi3viGW7eRKfbj8aPukqrkX80/cd3hjYh5C+SZ1yjN1YpR9GueRfU4Mk0GH71IwPNP/cYIX74Q12p+HfF9I37CoWiMcrshP6nRYEap1wzzU6bArw0zZbsiQTc0HIUbVumXEUGuIbLd1T1RuE/IoPmf3yOdswSfVJvGv8eF3qfXIs4lPVb/p16jflFrvis9Xlc+83nUt9JveQf0mTM9rrur2B7W/gHVfdWKb/YnR/ybUKz6xzfPDmM+UneWeEjL69x2FeSbO03CY7VtjeEnQeUI/jdf/V11o3O1UrdGr9Sa0SfbZ6iJCxqqa2865nFLtmUldTslrAy9bPi3DH1Ad6qb7ayowdzxjGvMPa2K+tALzL0+cxvzjRL18ZpjJr+4tIJied/+qS9NGSc6adSD7MirDb4fZeW4yl6fmJpRe1MV6vDaMcTl7RJ4p+BSE1U2useB2GZWJuIzo1leIVgjcgv7x+2X0Tk0HInY080+VVdPMHJdGLyX8DYDREu/YzDG90Sk+nR75dASfFNalAsvo1VfwOoLe0TRMxBVEty0hGuN2M40V9K7KNCy0iGd85vtiuGhYxgmB0U7kqSXepa6B3Jjgc1mPfC4TfHiXy7eph9Lwg48/ad7vWnjJnr/hLPlP5nr+qp3JKJf6PFjOjMva3/uhX7n01N2bCkpvsvA7rpJqBHuZoO9x5uuVasYF74yKQc3KqRkXk0HNuDS84vGVOfpDfDVDzjMudWcv1N1hdbFsxkV9QPRY+ox+8Elhpe7aMt2MBL1KxT7J6IfLy5vUVz2VvoN4NxRm+yO+9hmxFlTIrngbfgwdkd7o+ugT59X1ie0wO89NesOqfii98P10mJZ3H8fAI766qxGDjoW2yddlW7z6NT78jvlgXV1AfPp1QifHzpvyQSze+duPOw9jsBmIHtvgG9RMnwW1GsR2oc5Vq7uwWP84i8H3RGKbiTNBHFr0N/cDnrdyGpfpLKjdgNwu1T3honZRdbsL77yTNM+qu/Cq7oVbB7M0F55UnUdeBVWzhpjHqlnD55Y8+jlr+INk403s+MGGdsx9L7UKok4JWD6Uv+Yry9W9WewXEV/5Mt5drfozWHY8G7tRyK76Te0MPql+UzuTz/Ie+SwXfPrZbiHPbn5qO/kpXkHltLeXvzwr/GzwUzvIT6GfQxn575x+vfHLvUPX6G+Ffj2vyKhV49sTMiOPQBgxsG81+jvJtzYcx0rfym2uutu2R77Zs+CG3yZZavI70u/vtgKPU4r5HzCu2tdYECq+K8Jsj1+AZPiOvfvV9Pd6kS4I7Bjf463LN3KriKFuq8g3wmBQLR/uS6jzOXQsD75pBlvFncCby/V6wcfkVzc+8lkZdduw6b4bPzXrwCNulS7+/VKRxnNExXr0wOrDfrcluR7H8Nuhp3pyxOOovU9qz4WqO1XnLtEnFBSHfNRefYW1wQkrhp1zWHNYc1hzWMcAK2fkie0U759BP8jnzOouhGP61IL72T3yOVvwGRfpmrbJnYTMavaA9VZ3z6E6J9ttL+B7T9I8q+5KuL385RmrSRh5/s5JM2VWI88Y1Cgfy8EwOO0oyGBxNfoXE0/2gWH2h/WKK6Dd+iHx2fYN8n5uzLuyhdwy+kMqI7V3MbVf88h+KCijP6bZATW7yvxCF35cD0cq6Hm/ptF/WKz6Kfl4zGjpq2Z1zyifmd9Hgd8HaDYQ7c5492h3S5TdoZ9hu1MzXMqfpfwF1i22RbRhXulVewFTe3Qt/UjQZWB4w0T/SVHmuXbO5Wr0n84sV9NlP8oVdcXlqlbR1VnHlB2oFX81A8nltF5gqT25uXXZ6LlufT5RrvyFOJaTy9Xov5hZrng213AsrtdyRV1xuar+h9qPmbIDbB9MJ2rFYBPFqZt4U/4b7SCnzFP77Y3+W6LMue/IfqFb+xIDziwuKZ/LmcWtB/fu31VOLQYKqanA+HfV1WmLRfpAaQt6t5jilPtMTagb76qNMuw+jf5fExtllPuNIWeLNsrXj8lpw/faot3NrfFUUaqapYYyx8BUY7i6QoxCpA+EVYh3Maht0+rGohzvplSl9n4hPd+6dmTtr+ylqpaj2xpmzg0kau1S5Z9vq8R011XwwRYNzYhbNKM/HvKaatGcRj6yRUMdcYumZhZSp4rViR81W9ohetS9atGqTjohH9WLYVeHadXIqtvtpjmnqFFWti91577aK5AaBeP+jRg8R8GYH7aFVNnGUHVTDdJjeXOvFfcr8MwT1iW+mUKNenJtAWc73luxBo+4qRFQt29o86jc6C8QPsAwt3fJW84IUJ0gVrdB8GlYTIf7JQw7EF2P9rjAc1Ymhrp1lf0P2hnvRce2oOq7rKhv3OOhfAH32OvO/Cmb5j1sLwY7q7rZsGoG5aoKzGsSttutXua01anbltE+eU/b0Vqh5z1t6sYmtW+N9x/h3kzeQ1L1vTEO3AdEPeTu20z5HeX7lM2jLZ1HNo8+82Liqbrw+I5tHtPz3jXk0+mRT0fwSWFdLLCMXvWh+3wsz0Q8lei2JURj3IL+8ftT6V1L0GJQxdSukDuEvGJSk1KMhVvLtgANX5KE3Y3nEFbdRSZMz0Mek+uHSzc6KvjXcF+Pp44VGHbD4x+PF4QXgh7ZV22tRLnUUZScI3i/+/brFnz8g5ccOUKWuwXU6FWX7jmCvset0W9U3SQ+ZofdJO5e5R7Ba3h06I05+kN8dSSDj+DV3Y6LcVsaYtkRPJwY5QXjfvsYHtK/QnSzjrYs1g159QDIYl2Q1ye6n90mzvkDJSh7aoMA56uu725n8rmkRz6XCD793ohwCfHB7h0uPr/pGdNpsK5VbU23T3fyQt9WuDzl35WYatqNN9RxW4jtdQzsO3ghkmm2Vcj3K2CfvDWd84z5VDJfCzwCYcTAW9ON/m3UD2jo3+XWdB6O9OFIavbs/7E6klpvazoviaNWEBXfFWFm7jGu2yT/VfR3k63pDXssN/NAFIMaiPLAF2sDliYHNUjFHk6drelYHvwheBzd3Aq8uVyvE3xM/iFBv42w1GFY0303fqrHxZdvqHTx72tEmlTvP6dmxsDrZNscsdQ29x4nbLI/J8PXrTasJ0c8TmqiNQbOu7r6VW0X45Fr06tE4/MOR6ybHLGud8KKYecc1hzWHJYLVs7BZGwPeDFJbREqKA7lS40oMX1qcveiHvlcJPiMi3RN275OQma1CMd6q3vZCKbnhYSq7cXfeIbmWbUFnEd4Rn8ljPD+5zNmyqxGeDGo0TSWg2Fw2h4XG8fVYiPqlRcb1YII0t9W/qa2uylbyC2j1vKZ8qS2xqI8vF/sHCijEdr8oz6VwPxCF35cD3O3gBv9WClTty3gGyv4Vc1KVM28d4DfUdgCvkjZHfqZnC2lyp+l/IXaz6YuJ9pEcahj7pfW3R6utpSq/Ym8pXS5sAdui9g2quRTenPeUnpdhRgLRfpAaQt6t7ACy3DiO5zkyNlSqva+sYtYLVSeKrIY5raUft9tKb2qQoxCpA+EVYh3MXTbUsqtSkrFSlVNDyOcL0w65WFTH8FTPQG15pDaUqt6PRsr+KhDEiHMbtGM/rmZLZpTT0q2aKgjbtFyZ06Mvtu2IK5qqS1damSTWw1zt5RyT63bVpq6W/jYvnK38KV61U5b+MaP9RY+3lKa2sKHzRF/oEL1onJtAUdP36hYO0NctIWqdXD0AWjDvC3P6G8QPsAwr+uStxx/h90cvg4Nuxjs79Q6vbJHo+vRHseUPWL+c0Z5qSudu9VV9j9oZ3wdHLYF3I3sZjep7Xi4dvkmWndFPs8mnnWvVH62kF/x6fTIpyP4pLCeLbBS9bzP2/FMxOVEty0hGuMW9I/fL6d3LUGLQRXThgq5Q8grJmXOik+7Rz7tTD4X9MjnAsFn1haXUvE9LqO/Qk1IWdn1uND7ioLwQtCjKb5hVd1yqhbTcrbxfblz/Yfu+/pbfz3ldlNdQvVtnwsEvekKF65r6OpHVdNkvNU2vu0Uh82LyaC28d3cUL4c/SG+useFt/HVvZVX3QlTF8u28ambwo+Wz+BtfD8LXSjeOne0ZLGFmZ8/hrIoPhf1yOciwUd1z4qKX+PD71I3lV9EfKq2u/0KDd/UYgim5Yl2o78Uvo33lsSUSFUXBtttXHTjOmb8cLub+oYby/frYFO83W3GwgPlU8msvvWLMld96/dd1F42bNPkdjceeqjvj3J+Q9A6Ty2yGd3R3oDF20RxAxZvCMKy4+35t0PcOMVNQRzf/XkHxPHUIQaeRkQdRdv7/YxTSWpTF2/4wrbDdKGm2Z4HzxhnsvI7LntMn9oSvK1HPtsEHzXdiH3EPh7/yJ6FN/w2yVKT35FZ+NTdN08KVv6qfioPsTGuapsx8nme4FNXLseho4l4FtGtrxCtELgF/eP3Z9G7qqGj/X0sr//rRxXrtg7/18s1z6orqrBpRPql0D34W1iT/1RiTZ5PQaCetpL8au9Kj6fLsl2A4bdJlqYuIHcNvN7u7nF4Zq0gKr5L1QReb+Ol0DFKV2d3t/FV84DrBWZqfYnToS6CeDck6FMN0jjJ3kqkRwxMxxZT0HusbZsFb97l8WXo7H5z9TR9FS/UR7edDEzDMhj9/0h0uHEtT+WLazM38GhbN1fwPw48zjcrvFgQ/Dl/2MKMVMjLa5NG/+3E1gJ1CWioeIc6wLRVfyPtKOUF/1a2yAOuTV3yzuVv9MWK6bxz+Y8LGUyuGNZ3kYFpRitkmCdkEF7zir37HqnYVcB9CfZyXEpcEuMCpyqYNqLFmvWydrh2MB/7W1lAzPnS8vlI1+y+XQerdlRwi9Cu4DkUdBgPWrYQjt0mmfFm/JKbZDB/TTfJVNXSbnx63CRT1WgrZ8HpA6UtxLsYojl/pAT6Qes+M1bV9tS7yl9upE4GB/WBio06QxWYOYfI1ayO0avZatUoqcXs7Rm8UZfs0G+oKWu3TTFH7tIT8t1YU9bNR1nWDULWHmcvas+u8UwYzq7xTBjOrt1EcbdDHM/KTUHcGMXh7BrPkN8JcbxKdxfE8ZB2F8TxhoGXQdwmeOagZvOsTGKdfdOqaVymw+cqf5O7yQb9y19XzNgjLnaQq1ap0FfhbGLV3VcvTPgq77uvTJ5UfVYbwvjSkZbAHPRNX+rewdQmPzwalfNdxVy7SW2ywVUiXkFS+U3duL0DsFR+ry6fh4l+S8IelQ5TPrvb3Y1sc7jR7iaKw3R4V55hB6Lrx72WmB+2R7WbAOlZN7cIelxF502I2K7soDi0QW470N/h/bK/duJMOo+vh6nV/J0kzw2OfBCL21Oshzj1unvFNC7rRPntdeUzr+y/EiZC9pTPqc20vGr5ANSzV62uTs8rkGpjoLoLMuduYaS/uiKfB0HOV5dyqnrntPm3U/duYeVjUncLp+op6qQTZtdJPnKufL36Fi73EUZCun3mPsKPQBnw8SVsP/hrddfVlL3J5uTdpR9R9w/3enWA+hIfY6lxHNZbLvdW0O0h05tN4GSq8s/DRP86KKvXrtaYoUKG6ytkHqmgv4lkMPo3CntJ+QG0/52EafSPAyZfvNUN84oKzJ9L9DVUPU3dE92tPeX+BOrxFopD2bldvBn4M+2LiT/G8V2wLHOVvGrVOSUvtzcW905or95cPve4s7GVKqvnCnlzy+r6RP4YixcqcusI6uPtKzTmvJqY/0G06aqvchPgv7OiPxID90diYL+MPgPr4W7qk6g7kLlP8m5RH1Vbb1i9tfXFZ+sen++mG8+DPidSnBqnebelLzxxJm5q/B+fzyQ5uvXxnl8+sx/+YMIPKx2mdN7t2w18uAzLYyfFKZs92vY4KN8y4L4d2mO/vmVwHvXt1Hc2lI9mebr1uXnHsfn4kQp69vlG/4lEv+dWIUNqnHCboL9VyDxBMmBa5o31EnXCC91G/+lMf+w05yEP4aLe2P5TOoqBdXq7oEdd8QmD2yHuFopD+7+V4tQ8UqrO5tYNSxv10CZf7T0/x77a6L9Uc34u5av7NT+X8tX9tNVBnZ9DW82dn/v2spnyKJ+eOgDebS2A/VdqLQDT8Rpl3W+MYPobEnwme+QzKfj0cw4Seaq+zSTlp+5cCKa/kfJzo2N+lMy8cz6EmXOqnZOn01T5NkzL7Z3Rn3nydLrF5bM6eZG6oCBlu1VzolV7ATZD/kPoR58zzDvWfU7uV2J7yXs71AkXtL3U5RAmYz/0dTTXCU0Hva4TKl3m9kOw7v35su7yp07BdrMP/qjJAK3RHfM+ANtC3TU69pfIR/lLLmP0r1gu68pnPgH63NKnqr6jsoO6p6fVGFDZxs0Up+b5++hDBtpu+BrV1PXJ3eyGfQj6c2yjrf1OzZEVYWY7ifaM9FXrKzcQTkHv58N7TPcCyjP3kRj7hURv+RypoDc87otshrrynMScmMK8nGTY2UUGPtlq9NuEDCn9x5DqE46G2XWxRr0ZLgjP5MF3iN8O2j4mQ1YoWH/GT9lBDFyXVX1SayUpH6jqucIac8Ti08ANy+sm5dss8F5G9r3sx7ZQHM7zoP/m0KK/MT/Rrt9AewqCwOJ+HsqtfM0OkXaHwD5W9WFHM37J+qDGAHXrA6+xP93rA+8pGrT6gOVlcisdxTAZ8kJOfcGyqaH/Vbn1xfC96ouyPVVferxJZzLetTs/zPZV58KzWsfA8vIqPzXHdazKr+FnWZLlp8bwnuWHdatO+am5vxXwjHGYn9TcH6Y/WnN/K4gPjgVx/uHnaO5PjU0xLc/9Gf1bYe7vF2jur+78Xh/n61p19yem9iDEUHf9nNcdcuefuG3v9k341PwTnnV4d8X8UwG460RarttIv1PIYfS8J45peP/akb05MJbig7PKZlGudYRp9L+RmE/p9/411DPvB6vq0xt2CLP7DJY/i6vTLqg6gfnhOqHW4pG+7lo82z2uKfMnbrh+xbBBYKVkvaEHWbkcsax43wDuE1Nzs2yXRv8Hwi5V+ZvO+1H+qfk0pdPUfFo3nfKYJrWnIDWf1m3unH3idiEDtolqfpPXoFT7oPyE8uk8b2R2+TEof96ri/t71DryhgrMjyd8ncpD6sLjbm1c6lzDzkQ6rJejgtekPXw3HQzP7OM4wYvbGaP9W9DThSu1LAXL0yX0cUw2WRBeCD9QY7KVHmMy1c/DPvA/Uh9Y1TH0O+eXz1zHvgh94M9XYIag623qXCHKszRjvdBjPVnV3VQfhtcZ1R58kwH3Z6v+Gu+dMvqvQd1MnWXyWZ8svqraRewXcruY6gPGwGWR6kehTjpEz+VSZV9Y1twPxzUNVQZ8DsHo/1Wsaai7IKpuG86VvWpfAtdFrBtcj7t9dKPq/gU19o3Ptl+b6/1xZRut2lY1V5BqW7vteefzhGodSs1h4CfmDDsQXT/WZY/mXhg+A546F4hnAHieWH2sJ8r+LyfMlEedG8CyrTo/WHVW9Yzymc8PnpSwL+99hXXuGMB0Vvf7OHez+FjP3VjZ5szdoC/kOT91rvPJOyzIvlQ7iWnPKZ+5nVybsJdbEnmMoW4bxTeEY/+Lb+DFdGxLajxoMtwm9IBy3VX+DhP9+aCHVH/BaRy9Ttknjn3ZPm+HuJag57KYEvS3Aw3vo5+COL7hX81voU7Zd6kzHbcKfD7T8XwoA+4vYPvEn07dWVN25XdVfcM69WhZ39Q4n/usOxM8OS22PSMV9FXjz6uFvtifVc0nrSVMo39pwh+oNnUrvKu7b4zXUVAvvG9MjTv6158PLzrW+8a4/UjtN6y7byzX/tGG7ib7x/ac71FL9WM5LfKpsv+qfVu3Juy/27j8NMI0+qmE/Stdpuy/Wx8h1UdKrTHyV2P60D+/6lj3z9n+U/1z9L855yNz7R9taDv1t9T5W0x7evnM528P1LSvXs7fcn8rdf4W0/H8jOq7cjlWtTM8TjH6RzP7W077gJcca3/O6xaqf5vyn6l1UuU/VXvJ/vMnEv0tHJOk7qfIkT23vmGduoLaGxz7cnvT7YOTfIbf6nVVe2N43Da8MdHeqK/+oJ64vTH6x2uO11PtTbfxOs8Hqfsk1Fg+NV53ugtq6bH+ECy3N6kPwarzaWwHyCfX/tGGnl3af296ffjjBchi2C1BOUy/RvO20j5xT4j95ny575Mf+sZfveel59/PX1yKwcoortnE8v8VWr/EK79Nl3hVNn+8oEWyqXQFycD0Q4LecMdF3DDkoamOFnzodzb9/f/cd1o3HTXFX/6BXR974af++6fqlMF4mF0GRcVvDK0Edkdg8R7WEUhfw28MWfrjiP9kVvJQWD7n4UuSbbSZbN/N0RPit0mWmvyOrLeqq88xf7ze2m7G719xvRXrBJYl6g75WHmpNmWU4oYFRkz/sVNn5mOoYT56tMH/PR5m+okYcM34T8mvHQdxrTDbd1k+hon+v54yne6/0Fcd2SfEMB/ijxPx9rfpe0jQ4jP/bbKz3pDeymukIq8jlFej/0voF/EePqNB/aFcQxWYn0j0teaH6ZCqM0Y/JujnA43Joz7LNEbpUHbcl8nvVPkURIsyxHCzkKnq77bAqZJhVOCwn2dM5sn2EAP3j1qCD9YpbLNGBf8a9XieagsCyTNC+cE4zBv2nzlw/wtljhjvhTaY6VgeVZc82257Pw/eM98W0Y4QLffdUcZ5DjJ2BJ8Rwj0uIX9BOMMi3XjQ9U395spbCHlVW9IrH8TC9VXluydDVljOfeEYsM3714w2T/UZuM1rrZxOV5TP3do8i+N+Www45mOfzv0gxIiB513MR+Z+VMnoR8t8YNumfAh+vGw+tVejEJdqR4aJ/gzQ5wLSJ+rL9Knar6o2Zx7RxnBzhQ6OBzkWr6zmxWMvlceIsWylpkMZkI4xmrZrqn/FdTenf8V1FdMpHuyPq9pu3udRFT9f5C2Id0OCfrQiv0HwbnfBPU7gKP/OZ2MKEce+B/Or5hHU+B791r9Sn5s/OYX5mk/5Gk3kqxDpuJ6j7MclZFf6Q//RdA7hJz/33b9+3aMnfblfcxTP/+XDPzV+0bt+s1/47xz7ixf9p18evbVf+B877otf//Af3/3GOnMsZkcjxMuesTzxPfZt+FyA0V9O+9EbzmHIL6WzX0qN/1B+Hi/GsKVC/h3QPlxJ7YMa/6g6WdW+z8uUxeivgfY6dcbG5OpxLnxYzYWj3+T+tPLnqW8HdRu7mk7UnYbMe57AQp1yn8l0NBL0/IHhsT1sgzLgtSrl+y0O885+tyX4qrlK3Aexj+pVw/7zcaqfYmE8VLcv6owm3wExn2TCOCxLtE8OaoxqeY0yP0j1IAgs5R+4vqp5m1R/VNU7wx+0esefq8RyYXvLteGq/qLih3rAvoDZcNWcP9ZpHNMdpDHICMSpOTP2p0b/WvDth8m3o47ZHpSfYFlC0H4oZ65gXKSzclHrDHXmlrB8UU58h/jt0JN/KdjfGj8uI14LaNhPGOY2FvmpclgYtE7VegGPRdV8UmoclvInqv5x3VTzFKoNSY0XjTfOyef0m1TdwrTcTv401K23JPpNVX2jEPQ4g+lTvg9lVbqfT3FqbsGexxJ8lFzjgn4sIRf6ZEzLvLvlIbetcuojyrtRsUy4jii9ID3rcYGgHwcariMLII7P1uS2bfMpTrXx3dq2t1S0UZgP9H88flZ1DNu+ifId41qaGHjMw/S4PoX074C6+xvUv+J+tr37jwm6ouJXyYzy2Lu2oG8JeuM9X9BbHNYl1DHSoL4Qq13B73epTHCuBG2J+WNdDRVyV9UNxmqJd0b/5J0pNO/SdG2/l7mJ/za6+aqh975uZZP9HzyXF0LP+wb+c449In479NQ3KVJtHOaP+0Lzm/H7g1QbqeZZjd9YM34tK6sFAttkQb+lZLG0w0T/cWpjxkWaTpjdxvC5LNX+4LuhY4Sl2jnVlj255kxjf9bxZMgK56v2mutWQ1u4IbduGX479GTrRaqfpnyosiPuL2B57QK6Xsv+8IBi7XHEetAR66Ajlqe+9jpi7XfEut8Ra8oRyzOPBwZUrnscsTzro2c53uuI5VmHHnLE8ixHT1t9xBHL074OOWK93BHL0+4H1ed45vFRR6w7HLEec8Ty1Jdn38TTvga1X+hp94Pal9vtiLXPEcvT7ge1Lzeodu/ZN/Esx6dDmzaofblB9YWefTlPX+hZjp768rRVz/7XnY5Yg9r/us8Ry7Nue9YhT315tkOedWhQde/pvzzn5QZ1bsjTvjz7voPax/TUvVfbEZ/bTlgxWNuRs89GrY22E3wKIXNL8MFzFuPlO95XE8NomK2LGutQ2d9nM/w2yVKTX5EqH7UXwPK+QMii9tBwWaXWKZGPwhp2xOJ9ReqOjtS+IrVfXOlrLEzv3Th08J777jn4yJW77jh094a9dwcKw/T3lRUibie6LRWitQRuQf/4/XZ61xK0iD0RZhfNSIXcAfDwHReTOkai+BQ98ikEn3GRjqt2w60vZ+ZWbcNvh9l5blK1lakqvVje1fbHDsXFcDfQNXG9GPeAI9ZeR6yHHLGmHLHuccQ64Ii13xHrsCPWIUes3Y5YnuXoqS9PW73XEcvTVvc4Yg2qn/Csj566H1RbfdgRy9MmPG3VU18HHbE8fbRnH+ARRyzPtsOzDg2qfT0d/Fc/2iHry+PRJzwC+fXJmTznQVyL0hbAc5jod62aTvetyZm8C+Btzz1ecXd2QXgh6DGU4bdJlpr8joyhhogf54/HUC0hS4fiYngZ0HFcS7xLYR1wxHrYEWu/I9a9jlhTjliPOGLtdsTa54i11xFrUMvR01Y966OnXPc4Yu1xxHrIEcvTJu5zxPK0iUOOWJ768vRfnnIddsTyLEdPuQa17fAsR0/de9Ztzzw+6oh1hyPWY45Ynvoa1Hbbs273o621dTUcj/F1TWrsM5Tgo64uGxfpivJ3lOSz58mQFYYKwjM58R3it8PsPNfgV6T0r/TCa4qYtkNxMfDRXsWnEHwKgZWSy3Fp2kQ8i+jWV4hWCNyC/vH7s+idUgViq9t1RwUvCynVdirSxzCe4KPM3qZh8AYdLEJePq9b/TC9xSk+RY98CsGH9aqmk2K4q/wdJvoHVj31izcUtgQ/xMpxLQ2X7LN34/CSfa+uRS3Zp1yLulGM7SEG/FoXx7XEu5RttRyxnJqC2jffsx7RrrZQHN6wgV9V4tCivzE/Ef8Nq6dxmY5lRRszuVVd5m0xdesyph+qwFI3ScZwE8Qj/ZtWPfXbY5muVWXK9tLwdrm1ufW76mY9Vfd5+9JkSIedVz328V96+9+trVuPjF7djKe29/R4M94Z48AjEG+LU9vALA59sMkQ068l+RreTHhGjv4QX/lH7nrllsWioNuZEPRtRLhLkW15gjAmQ1bI7gYbfptkadpWTRA/zh92NxeXz2V3c8PeqbuumNp34NB9u7j1xv2zrBVExXdFmO2RC5AsJOheTH+vF+mCwI7xVnIL6f1kyAqLzCoWiUiLWwzY4xS3BOKwNDmolslkfvIevhrfa8HyWExxHYhbAry5XCcEH5N/SNB3CGtCpDPdd+PXEul4z/aoSDdpD59/3S/+SOddP/vvJ8/6yDdGrv7pf77ta9fMu+STH3nspD/88e984Yl/wzIHITOX4zjRql+Tnd9xT2bCEWuhwDLd4F1sNWz++FxvZfjt0FMdO+KtFhE/zh/nfbGQpSPi2ActFnwWCz4Ka8gRq+WINeyEFcPOOaw5rDmsOaxjgGVx2N4vpDhsP/n78+if+RxR3ZG3uie+j5PlC3Lb3WM1Wd7jtw/HC0qP/NQEPPdxVJtp7f5IBZalHSb6r6966rdDdDGwXS8U8qp+SbSXr6yaKTuPbdRvCOm+Hi8SYfkcbbvHc3S4afE7qzRPnGXGtLeVvzwz9dDq6XTfXTVTZjWDEYO6sx9tKISZujO6Hu9HX6DuR0e5uBzU/aVIf3v52yF6zLuyBfw2SQ/+Z2lqRSTmZWz1zPwMQ5yyq9vL32Givw3KeKJ8VnaM47Eqv6H4Gb3pf0TQIx5vnF1SyoTfAVLyjVfwQ30ov8b8lgG/1Lef0A+H0Nhuj1d2izO4Od89qfvdYnVwVNk5f3dL+S60g/UVsla1BzhjjvSrRZnn2LkqV6N/Zma5OvkjWa6oq5xyVbPTRq9ms9WKTSfMLktene22ipZTrqrN43I9N1Guqo1SbQi3URdklqvpsh/lirrKKVfV3ueWK69aqu+jpny0+hZGqlwxP+yjjf4FiXJt6ofXDYAfxv5iznfwkJ7LNeW3lR/GMufvpPD8K/Kp66NVu5zy0Ua/UZQ5jwnZL1TJp/QW2yGbEy9XQbYe3Lt/V7kMEiikli2KMHOqHcVYKtKHBBamSWUJF3ZY5cZrJOjpdVa50W8TKmcVsjw5Q+SGVSZ7Ic3wvYbIufu2uDulqplqYricuvFxNNUYXlwhRiHShy5Y9jfuocLi5l59qifAaeM/6y3m9gSM/q5Ei9FtZMYeRc0IYC+WR+dqRmJCpBuv4JPbQzH6PZktmfHuR0uGOuKWLHelx+jVzCKubnEPRa2MpGYWc6t56iveOEqoGikjbmoEpewLy8bKTY1K2b6qZtZC6EtvdcGxtgX+0otavVOzKGwLqolFP8G2oOo/zoxhT9l+c/YgXfrMN5y4/E8fHO/XV8XffdHZz1tw42k/2i/8ecPLf2HyXbdvqPNlMOXrhggXffRQmF2ntpa/OXvUGu5ryt6Dyl9cbfqFtoLwjF+VP+H9kZiW903HwDPfo4KP+prZ0cJSe0G5LBvuocv+eq7ht0NPtlOk9KK+iqquAOOvjeN1A6z/Xq4uGEQsrP9q9r2o+DU+/I75qBmQlC9pygd9wXHE5zhHPuq6CbV/ulc+ai+2mo3ElYXfpv5SG+LUjMKW8neY6D8DKwu/u3omjcn+AaD5k/J5FHiHULsut7luYrA4/Pod2636ejDvPFP2gUN4PteCq+Q3Ax0HHtuhHiK/z506jct0FlCXOWd7cLqBecawA+KR/r9QeTVc6QrcF0GsHyRbaFLeJ62ZxmU6C6qMU2cg+IvYLZGP1NmT1Mq0mpVuURz6pJsIv9uUy/pEni3t/JDnu9j2kf5z4JeeIH+ovvKqfLC9T30pE+VRtzbjnACnq1EPxtSOAQvKnrkeqBuB1Q5nrgc47co+Ecd4PJ7BoOqI6aGOT3yiol0zHlgWMfCYcljIi+1l0zHZT50/vOgNOza+pF9jvn/79WsvesWJp36lydeg585fDNL5C/aGMcydv5hJx/I8Hc5fFPQeW7uW4D1M9ItKDxp1+7XVYUY++awF2t/NJKPahxEq3nE+eGTNfGMYDT15gkW5nsfw20HrezJkhSOeR92/j/lr5nm4n2FcFhKq0SAthoUgWaigUyW6QaTjYOnGKzBj6HH8MJZbqvbO66pD1VdVbavqQ3GfGC2kzhfrkc8c1hzWscLiuYF1ZYsSW6KLyuejdbeGmt/iua95Ig9q3jI1181xqTly3pmFcTie5LnAMYEZZX/jqTPp2Her3xDSc4Ymm+p9YGvFY3D0a7yfoNMFazNhYXresrOwC9YWwsL0vJ64qAsWn2TB9Hy6sSXSqZ4yt3d8+nAyZIXx3PbO8NskS9P2LrXWGwPuxItxS5rxGysoPfJDTO7NLxVxhnV8+fdIBZalHSb6HWU96xBdDOxHlwp58R2uQ2+j+ou6bVp/1Rq7lU+30wS3njozL4sgTvlhPjFi9O8Dvz9Ffh/tz2ScCLq88LnuSTZVB/qtZ/bphSMfjNtGPJXNYZ20cjI9K5u3dMdDHNddtmekRwyFbxjdbHD/qTpvVTv9jdcw0f8i2OChRN+DbRDts6C4gvKCdMo+scxuI3qTe0TQI94w0T8Go3TeM2fpUVco1wbCNPofAcwPrNRyYr7UqDVli8pfK53yltpxgYX54S21SqdqJop1+hNCp2o/Es9kYd/yJorDdZEFFIfrKRMUh2smHYrDNaSFFId9S+4D43oBtwW4toX2Y31LPkHzePm+xzU5ud5X5T9Rn0q/bYpDm0zdRTWf4tQamCqXMYrDNQErI1x/SvmwGLgdNfpfStRL5XdVP8zoTxD06Ot5fyzWxRMoDtNxfT6B+OLzsvJv1APKdWv5O0z0bwU9vLqcmVT7JU2uHvdLjqn9ksuAgPdLnghxLUHPZXGSoD8RaEwnHaJXPlL5W9Qp+0jVBz5B4HMf+DcTPhJ97DKSvagpe+7eXqxT+xN9TG6nlyR4clrkU7W3var/8R8T7bTqV6Nc3E4b/e8l/IHSZaqdVv5jqciX0unxFFc1HjNsxuyxfo6r+on55/qZymsMTX1lJ8yuP6lbj9j+1fxDrv2jDdm4rena8P/1R+e85CvXfemUbmvDVm4N748cwv5FCNNjihBm9qX4LkScU+M98e1mshzJ43zg2SL5EH+Y6P/+1Jk4vMcV38WAZRcD7wfBX+Q7AfIFSpuLNUpYx/WAZXJ1BP1xNbFGE1gjhNUWWGpPaiy7vyzLhvczmL9SJ9+tTloeqm624H1wRv956hc33PMs+8VYfix/KyF/K8yWf0uF/EW5xyzq75+pPeUbADBOXV9vdGrfVUoWo/+qaOdUe2Jy9dieDKv2BG2L2xO190vZotF32/tlOlG3L+ScOEadcn/PdDQi6BGP7eE7if4e2mabZMe88174luCrrvS3OhZpTiztsse7i49TazcW1Pi6oLjc8XWL4tSNMYWQoUV/Y17r7gFV+zVVXeYx36iQVdU7vN0mhMGpd2b7nTC7XNjecm2Y98K2EvzUPADacNX+OqzTOBe6Ys00HupdnT2Ngf2p0V8Avn1l+axuaGJ7UH6CZQlB+6HUmYqcMyI9ngPLPjvE58Aa+pfa58B67CcMcxuL/FQ5LAxap8if+7rKRlL+pEVxyp+o+sd1U83fqTaE62bVPFydflPVuW5Ly+3kc6BubaS6pXxtqtzUGbMc34eyKt3Ppzi1D8GexxJ8lFxqjn4sIRf6ZN7dN0Z/p/KQ21Y59RHnqbYKy4TriNIL0lft20N63HHIdQT3W/D56ty2jW+UUW18t7ZtY0UbhflQtw2peXxs36zt+z8ZTY2O3HsFAA==",
3979
+ "debug_symbols": "tb3RriS7bf39Luc6FyVKJCW/ShAEjuMEBgw7cJwP+BDk3f8tSuTi7HFr1+7ec+P5+Zwza6kkka1SsVT/+9u///Hf/uc///VPf/mPv/73b7/75//97d/+9qc///lP//mvf/7rH37/9z/99S+Pf/q/v13zf0qpv/2u/tPjz/bb73j+yftP2X/q/rPvP8f6k679Z9l/0v6z7j+3Hm092nq09Wjr0darW69uvbr16tarW69uvbr16tarW69uvbb12tZrW69tvbb12tZrW69tvbb12tbjrcdbj7cebz3eerz1eOvx1uOtx1tPtp5sPdl6svVk68nWk60nW0+2nmw93Xq69XTr6dbTradbTx96Ov/U/Wfff471Z3/olWtCcSCHh2SZc6Y/NIv9x+wgDurQHcaGMZX7hOJADtWhObCDOKhDdxgL6LocpvKYQA7VYSrzBHYQh4cyGXSHsaFcDsWBHKpDc2AHcXDl4srFlWcckU4oDuRQHZoDO4iDOnSHsaG6cnXl6srVlasrV1eurlxdubpydeXmys2Vmys3V26u3Fx5RhjNIZghtqA7jA0zyhYUB3KoDs2BHVyZXZldmV1ZXFlcWVxZXFlcWVxZXFlcWVxZXFldWV1ZXVldWV1ZXVldWV1ZXVldubtyd+Xuyt2Vuyt3V+6u3F25u3J35eHKw5WHKw9XHq48XHm48nDl4cpjK9frcigO5FAdmgM7PJQrTVCH7jA2zBhcUBzIoTo0B3Zw5eLKxZVnDNZHDNYZgwuKw0O5XROqQ3NgB3FQh+4wNswYXFAcXLm6cnXluvNGreKgDt1h543aLofiQA7VoTm4cnPl5sozBludMDbMGFxQHMihOjQHdhAHdXBldmVxZXHlGYOtTagOzYEdxEEdusPYMGNwQXFwZXVldeUZg00niIM6zF/VMmFsmDG4oDiQQ3VoDuwgDurgyt2VhysPVx6uPFx5uPJw5eHKw5WHK4+t3K7LoTiQQ3VoDuwgDurQHVy5uHJx5eLKxZWLKxdXLq5cXLm4cnFlcmVyZXJlcmVyZXJlcmVyZXJlcuXqytWVqytXV66uXF25unJ15erK1ZWbKzdXbq7cXLm5cnPl5srNlZsrN1dmV2ZXZldmV2ZXZldmV2ZXZldmVxZXFlcWVxZXFlcWVxZXFlcWVxZXVldWV1ZXVldWV1ZXVldWV/YYbB6DzWOweQw2i8E6oTo0B3YQB3XoDmODxaBBcXDl4crDlYcrD1cerjxceWxlvi6H4kAO1aE5sIM4qEN3cOXiysWViysXVy6uXFy5uHJx5eLKxZXJlcmVyZXJlcmVyZXJlcmVyZXJlasrV1eurlxdubpydeXqytWVqytXV26u3Fy5uXJz5ebKzZWbKzdXbq7cXJldmV2ZXZldmV2ZXZldmV2ZXZldWVxZXFlcWVxZXFlcWVxZXFlcWVxZXVldWV1ZXVldWV1ZXVldWV1ZXbm7cndlj0H2GGSPQfYYZI9B9hhkj0H2GGSPQfYYZI9B9hhkj0H2GGSPQfYYZI9B9hgUj0HxGBSPQfEYFI9B8RgUj0HxGBSPQbEYlAdYDBoUB3KoDs2BHcRBHbqDK5MrkyuTK5MrkyuTK5MrkyuTK5MrV1eurlxdubqyxaBOYAdxmMpjQncYGywGDYoDOVSH5sAO4uDKzZWbK7MrsyuzK7MrsyuzK7MrsyuzK7MriyuLK4sriyuLK4sriyuLK4sriyurK6srzxiUa0J1aA4PZSkTxEEdHsoyZ92MQYMZgwseyjLHa8bgguowlfsEdhAHdegOY8OMwQXFgRyqgysPVx6uPGNQZ5tnDC4YC3TG4ILiQA7VoTmwgzioQ3dw5RmDShOKAzlUh+bADuKgDt1hbCBXJlcmVyZXJlcmVyZXJlcmVyZXrq5cXbm6cnXl6srVlasrV1eurlxdublyc+Xmys2Vmys3V26u3Fy5uXJzZXZldmV2ZXZldmV2ZXZldmV2ZXZlcWVxZXFlcWVxZXFlcWVxZXFlcWV1ZXVldWV1ZXVldWV1ZXVldWV15e7K3ZW7K3dX7q7cXbm7cnfl7srdlYcrD1cerjxcebjycOXhysOVhyuPrdyvy6E4kEN1aA7sIA5TmSd0h7HBYtCgOJBDdWgO7CAOrlxcubgyuTK5MrkyuTK5MrkyuTK5MrkyuXJ15erK1ZWrK1dXrq5cXbm6cnXl6srNlZsrN1durtxcublyc+Xmys2VmyuzK7MrsyuzK7MrsyuzK7MrsyuzK4sriyuLK4sriyuLK4sriyuLK4srqyurK6srqyurK6srqyurK6srqyt3V+6u3F25u3J35e7K3ZW7K3dX7q48XHm48nDl4crDlYcrD1cerjxceWzlcV0OxYEcqkNzYAdxUIfu4Moeg8NjcHgMDo/B4TE4PAaHx+DwGBweg8NjcHgMDo/B4TE4PAaHx+DwGBweg8NjcHgMDo/B4TE4PAaHx+DwGBweg8NjcHgMDo/B4TE4PAaHx+DwGBweg8NjcHgMDo/B4TE4PAaHx+DwGBweg8NjcHgMDo/B4TE4PAaHx+DwGBweg8NjcHgMDo/B4TE4PAaHx+DwGBweg8NjcHgMDo/B4TE4PAaHx+CwGOwTmgM7iIM6dIexwWLQoDiQgyt3V+6ubDE4JqhDdxgbLAYNigM5VIfmwA6uPFx5uPLYyuW6rqASREE1qAVxkARpUA8KjxIeJTxKeJTwKOFRwqOERwmPEh4lPCg8KDwoPCg8KDwoPCg8KDwoPCg8anjU8KjhUcOjhkcNjxoeNTxqeNTwaOHRwqOFRwuPFh4zYnsxkiANenj0ZjScZthuKkEUVINaEAdJkAaFB4eHhIeEh4SHhIeEh4SHhIeEh4SHhIeGh4aHhoeGh4aHhoeGh4aHhoeGRw+PHh49PHp49PDo4dHDo4dHD48eHiM8RniM8BjhMcJjhMcIjxEeIzyGe5TrCipBFFSDWhAHSZAG9aDwKOFRwqOERwmPEh4lPEp4lPAo4VHCg8KDwoPCg8KDwoPCg8KDwoPCg8KjhkcNjxoeNTxqeNTwqOFRw6OGRw2PFh4tPFp4tPBo4dHCo4VHC4+I8xJxXiLOS8R5iTgvEecl4rxEnJeI8xJxXiLOS8R5iTgvEecl4rxEnJeI8xJxXiLOS8R5iTgvEecl4rxEnJeI8xJxXiLOS8R5iTgvEecl4rxEnJeI8xJxXiLOS8R5iTgvEecl4rxEnJeI8xJxXiLOS8R5iTgvEecl4rxEnJeI8xJxXiLOS8Q5RZxTxDlFnFPEOUWcU8Q5RZxTxDlFnFPEOUWcU8Q5RZxTxDlFnFPEOUWcU8Q5RZxTxDlFnFPEOUWcU8Q5RZxTxDlFnFPEOUWcU8Q5RZxTxDlFnFPEOUWcU8Q5RZxTxDlFnFPEOUWcU8Q5RZxTxDlFnFPEOUWcU8Q5RZxTxDlFnFPEOUWcU8Q5RZxTxDlFnFPEOUWcU8Q5RZxTxDlFnFPEOUWcU8Q5RZxTxDlFnFPEOUWcU8Q5RZxTxDlFnFPEOUWcU8Q5RZxTxDlFnFPEOUWcU8Q5RZxTxDlFnFPEOUWcU8Q5RZxTxDlFnFPEOUWcU8Q5RZxTxDlFnFPEeY04rxHnNeK8RpzXiPMacV4jzmvEeY04rxHnNeK8RpxbgVFXoxrUgjhIgjSoBw0ni/NFJSg8KDwoPCzOu5EEaVAPGk4W54tKEAXVoBYUHjU8anjU8Kjh0cKjhUcLjxYeLTxaeLTwaOHRwqOFB4cHhweHB4cHhweHB4cHhweHB4eHhIeEh4SHhIeEh4SHhIeEh4SHhIeGh4aHhoeGh4aHhoeGh4aHhoeGRw+PHh49PHp49PDo4dHDo4dHD48eHiM8RniM8BjhMcJjhMcIjxEeIzyGe1jh0riMShAFPTxGNWpBHCRBGtSDhtOM800liILCo4RHCY8SHiU8SniU8KDwoPCg8KDwoPCg8KDwoPCg8KDwqOFRw6OGRw2PGh41PGp41PCo4VHDo4VHC48WHi08Wni08Gjh0cKjhUcLDw4PDg8ODw4PDg8ODw4PDg8ODw4PCQ8JDwkPCQ8JDwkPCQ8JDwkPCQ8NDw0PDQ8NDw0PDQ8NDw0PDQ8Njx4ePTx6ePTw6OHRw6OHRw+PHh49PEZ4jPAY4THCY4THCI8RHiM8RngM97DiqE0liIJqUAviIAnSoB4UHhHnHHHOEecccc4R5xxxzhHnHHHOEecccc4R5xxxzhHnHHHOEecccc4R5xxxzhHnHHHOEecccc4R5xxxzhHnHHHOEecccc4R5xxxzhHnHHHOEecccc4R5xxxzhHnHHHOEecccc4R5xxxzhHnHHHOEecccc4R5xxxzhHnHHHOEecccc4R5xxxzhHnHHHOEecccc4R5xxxzhHnHHHOEecccc4R5xxxzhHnHHHOEecccc4R5xxxzhHnHHHOEecccc4R5xxxzhHnHHHOEecccc4R5xxxzhHnHHHOEecccc4R5xxxLhHnEnEuEecScS4R5xJxLhHnEnEuEecScS4R5xJxLhHnEnEuEecScS4R5xJxLhHnEnEuEecScS4R5xJxLhHnEnEuEecScS4R5xJxLhHnEnEuEecScS4R5xJxLhHnEnEuEecScS4R5xJxLhHnEnEuEecScS4R5xJxLhHnEnEuEecScS4R5xJxLhHnEnEuEecScS4R5xJxLhHnEnEuEecScS4R5xJxLhHnEnEuEecScS4R5xJxLhHnEnEuEecScS4R5xJxLhHnEnEuEecScS4R5xJxLhHnEnEuEecScS4R5xJxLhHnEnEuEecScS4R5xJxbgVeQ4w0qAeNTVbktakEUVANakEcJEEa1IPCo4RHCY8SHiU8SniU8CjhUcKjhEcJDwoPi/NuREE1qAVxkARpUA8aThbni8KjhkcNjxoeNTxqeNTwqOFRw6OFRwuPFh4tPFp4tPBo4dHCo4VHCw8ODw4PDg8ODw4PDg8ODw4PDg8ODwkPCQ8JDwkPCQ8JDwkPCQ8JDwkPDQ8NDw0PDQ8NDw0PDQ8NDw0PDY8eHj08enj08Ojh0cOjh0cPjx4ePTxGeIzwGOExwmOExwiPER4jPEZ4DPewQrJNJYiCalAL4iAJ0qAeFB4lPEp4WJwPoxrUgjhIgjSoBw0ni/NFJSg8KDwoPCg8KDwoPCg8KDxqeNTwqOFRw6OGRw2PGh41PGp41PBo4dHCo4VHC48WHi08Wni08Gjh0cKDw4PDg8ODw4PDg8ODw4PDg8ODw0PCQ8JDwkPCQ8JDwkPCQ8JDwkPCQ8NDw0PDY8b542GxYQMyUCZWQwV24Ahc784vLEACVmADMhBuHW4dbh1uA24DbgNuA24DbgNuA24DbgNuI9ysjs2xAAlYgQ3IQAEqsAPhVuBW4FbgVuBW4FbgVuBW4FbgVuBGcCO4EdwIbgQ3ghvBjeBGcCO4VbhVuFW4VbhVuFW4VbhVuFW4Vbg1uDW4Nbg1uDW4Nbg1uDW4Nbg1uDHcGG4MN4Ybw43hxnBjuDHcGG4CN4GbwE3gJnATuAncBG4CN4Gbwk3hpnBTuCncFG7IJQO5ZCCXDOSSgVwykEsGcslALhnIJQO5ZCCXDOSSgVwykEsGcslALhnIJQO5ZCCXDOSSgVwykEsGcsmIXEJX5BK6IpfQFbmErsgldEUuoStyCV2RS+iKXEJX5BK6LrgVuBW4FbgVuBW4FbgVuBW4FbgVuBHcCG4EN4IbwY3gRnAjuBHcCG4VbhVuFW4VbhVuFW4VbhVuFW4Vbg1uDW4Nbg1uDW4Nbg1uDW4Nbg1uDDeGG8ON4cZwY7gx3BhuDDeGm8BN4CZwE7gJ3ARuAjeBm8BN4KZwU7gp3BRuCjeFm8JN4aZwU7h1uHW4dbh1uHW4dbh1uHW4dbh1uA24DbgNuA24DbgNuA24DbgNuCGXFOSSglxSkEsKcklBLinIJQW5pCCXFOSSglxSkEsKcklBLinIJQW5pCCXFOSSglxSkEsKcklBLinIJQW5pCCXFOSSglxSkEsKcklBLinIJQW5pCCXFOSSglxSkEsKcklBLinIJQW5pCCXFOSSglxSkEsKcklBLikrl4ihABXYgSNw5ZKFBUjACmxAuK1cQoYK7MARuHLJwgIkYAU2IAPhJnATuAncFG4KN4Wbwk3hpnBTuCncFG4Ktw63DrcOtw63DrcOtw63DrcOtw63AbcBtwG3AbcBtwG3AbcBtwG3EW7rHLGNBUjACmxABgpQgR1obmPiyiULC5CAFdiADBSgAjsQbgQ3gpvlktIMK7ABpxtdhgLUQAscNpp/i4qh/ftq2IEj0CJkYwESsAIbkIEChJvATeCmcFO4KdwUbgo3hZvCTeGmcFO4dbh1uHW4dbh1uHW4dbh1uHW4dbgNuA24DbgNuA24DbgNuA24DbiNcLOCPMcCJGAFNiADBajADoSbRQiJYQESsAIbkIHmtg7DU2AHjkCLkI0FSMAKbEAGwm1FSDfsQHObkWfleo4FSMAKbEAGTrd5oBlZ1Z5jB063OsPYCvccC3C61XUeYAU2IAMFqEBzs2uzX9uF9mu7sQAJWIENyEABKhBulkuq9YPlko0FaLpsOHXnSWtkhXqPRYbhVGj2H1h+2FiABKzABjRdm2eWHzYqsANHoOWHjQVIwApsQLhZfmjrjEYFTje2y7T8sNDyw8YCJGAFTrd5zhJZDZ+jABXYgcPRCvkcC5CAFdiA5kaGAjS3atiBI9Dyw0ZzW2dTErACG5CBAjS3btiBI9Dyw8YCJGAFNiADBQg3yw/zvBCyKr+Nlh82mhsbErACO3AqzBNGyAr2iljvWHTPY0LISvYcGThbJtYci+6NHTh11XQtujfOlqkNlkX3xgqcbtoMGShABXbgCLQ1gdq1WRyrtdd+/XWdLqrADhyBFt1qPWnRvZGAFdiA063bVVh0b1TgdOs2fy26F1p0byxAAlbgdOs2QhbdGwU4AtdZudYl67TchaZgY7FOzF0oQGuv9dk6N3fhcOR1dm43LEBzG4YVON1GMZxugwyn26wbIKvMeyyzDTtwBFrEbixAAlZgA5qbtcwidlhz7HTd6zLsE605dp6u3SxaSZ5jBTYgAwWogXaE7tUMCViBDchAAWqgndhpd5NWUPe4QzBkoAAVaNdmF2/n5S60E3M3FiABK7ABGShABcKN4SZwE7gJ3ARuAjeBm8BN4CZwE7gp3BRuCjeFm8LNDtK1+xorqdtoh+luLEACVmADMlCACoRbh9uA24DbgNuA24DbgNuA24DbgNsIN6uzcyxAAlZguFkh3OPm0XC6FTKcbvOkbrK6N7ITta08jexWz+rTHAk4LcgULBjsdGurUXMUoAI7cATa6bYbC5CAFQi3BjeLIVv8W72aYweOQIuhjQVIwApsQAbCjeHGcLNosVsCK0ojuw+wqrTHnY6hABXYgSPQ4mJjARKwAhsQbgo3hZvCTeHW4dbh1uFmgVOLYQMyUIAK7MARaIGzsQAJCLcBtwE3Cxy787GqNcfuaDVqj7siQ1NohqbAhgJUYAeOQDsZfmMBErACGxBuBW4FbvZLVsVwBFpAbixAAlZgAzJQgAqEG8Gtwq3CrcKtws1i3u7JrF7NUYAK7MARaNFtN21WjUZ2p2blaNRssCyON3bgCLQ43liABKzABmQg3BhuDDf7LbQbRytOcyxAAlZgA5qujbHFsd3KWe2ZIwFNQQ0bkIECVGAHjkCL440FSEC4dbhZHDcbFovjjQqcbnb/ZtVoGy2O7f7N6tHIbs+sII3sDsUq0hwbcLrZjZgVpTlON7tLsrI0svshq0ujeVQiWWGaYwESsAIbcOrKbKSVnZHdJVnd2SN5GxKwAk1BDBkoQAX2QItYUUNT6IamMAwFqMAOHIEWmxsLkIAVON3Urnh952GhAKeb3an19bWHhSNwffFh4XRT66j11YeFFWhu1lHr2w8LBWhuzbADR6DF8cYCJKC5WadaHG9koLlZV1scb+zAEWgRu9EUbFjs93jjVLA7NSsscxyBFsd2M2i1ZY4ErMAGZKAAFdiBI7DDrcOtw63DrcOtw63DrcOtw63DbcBtwG3AbcBtwG3AzeLYbl6tusyxA81tTg2rLnMsQHNTwwqcbvPNUBrrOxILBajADpxudvNq1WWO083uY626jOw+1qrLHrvlhg3IQHMTQwV2oLnNaWTVZY4FSMAKbEDTnXFsFWPVbnStYqxe1vQZ844V2IA80S5oxryjAjtwBDZzs8ts5ma93szNmjNj/rEhb9iA060shelmD4WsYmzjjO5qdx1WBVbtVsPqvardali9l2MHzpbZJ3ys3suxAAlYgQ3IwOlmNytW7+XYA/WKlmkBEnBakPXODGlHBprF+m8V2IHzgvZXVC7gdLO7AyvycqzA6WYLbyvychSgAjtwBM6QdixAAlYg3AbcBtwG3AbchrtVK/JyLEACVmADMlCACjS3YjgC7SMxG82tGhKwAs2tGTJQgAo0NzY0N7Ev25hbNyxAAprbMGxABgpQgR04Ai38NxYgAeFW4VbhZuE/n9hUK/Jy7MARaOG/sQAJWIENyEC4NbjNn/xq37uxIq+NlhQ2FiABK7ABGShABZqbzQdLIAstgWysQFOwqWFJwT4WY4VbjiPQ8sNGa69NDcsPGyuwARkoQAV24Ai0/LARbh1uHW4dbh1uHW6WH5rNX8sPG83NJq3lh40FON3YOtXyw8YGZKAA1dFKtKp9qcaKseq8O6hWjFXn3UG1YixHASpwtnfeKFQrxtpoMb+xAAk43cTaYDG/kYECVGAHTjexplvMbyxAAlZgAzJQgArsQLhZzIt1lMX8RgKaWzM0NzVkoLl1QwWa2zAcgRbzGwuQgBXYgAwUoALh1uDGcGO4MdwYbgw3hhvDjeHGcGO4CdwEbgI3gZvATeAmcBO4CdwEbgo3hZvCTeGmcFO4KdwUbgo3hZvlB7WZavlhIwErcLqpzR3LDxsFqMAOHIGWHzYWIAErEG4DbgNuA24DbiPcrBjLsQAJaLrV0BSa4Qi0/DBvPasVWDkSsAIbkIECNN2ZMoliNK1oavWvFU05MlCAdsVq2IEj0GJ+Y8wdqnCrFdiADBSgAnu0wWJ+YbuABUjRBov5jQ0IN8Q8IeYJMU+IeULME2Lezm/bxoyeZPQkoyct5lcbGD3J6EnEPCHmCTFPiHlCzBNinhDzhJi38rLdBkFPCnpS0ZOKnrSYnxsJ1crLHO3aTNdifqMAFTjdus11i/mFFvMbC5CAFdiADJxu3QLHYn4jJrgFercYskDfSMAKxNRYgb4QgzUwWAODNWLa1+sCxmBZTZljBTYgAwWowA6MqbG+HTm3F+r6euTGBrSOEkPrKGuZLQ82duAItOXBxgIkYAU2oOl2ww4cgZYUNpquXYUlhY0V2IC2pCJDASqwA0egJYWNBUhAW1oWQwEqcOqOhSPQwn/urVSrCHMk4LyKubdSrSLMkYHTbdgIWfhv7MARaOG/sQAJWIENyEC4WaAXmw96AQvQdG00LdA3NiDPD33alz7ty5MbFdgnWj/MQN84A92xTLR+mIHuWIENyEABKrADR+C4gHAbcBtwG3AbcBtwG3AbcBvhZnVijgVIwApsQAaaGxsqsAPNbQ6A1Yk5mpsYErACzW0YMtDcuqECO3C6zY2wanVijtNt7olVqxNznG7FGmlfl93IwOlWrL32jdmNHTgC7UuzGwvQdK1l1RTsKmbMt/nUvlqd2MYZ844FONs798SqVY85NiADBTjdyHrSvjC7cQTaV2Y3FiABzc2uwr42u5GBAlRgB45A+/LsxgIkINzsC7RkfWbfoN0owOlmm1BWadZsN8kqzTba12ht38gqzRynm20hWaWZYwMyUIAK7MARaPlhYwHCrcOtw63DrcOtw63DrcNtwG3AbcBtwG3AbcBtwG3AbcBthJtVpTkWIAErsAEZKEAFdiDcLD/Yzp5VpTkSsALNrRsyUIAK7MARaPlhYwES0HSH4VSwHS07GW6jxbz93FqBmiMBK7ABGShA053Ba0e/7S5puGKL+Y0MFOC84v156A4cgRbzGzGaDDfGaDJGkzGajNFkjCZjNNe3pq05gtEUjKZgNAXXtr463QwZaL1juuvb0ws7cASuL1DbuK1vUC8kYAU2IAMFqEBzs0lgMb/QAn0NlgW6bbBZBZtjAzJQYgA6BqtjsDoGa2CwLNA3EhCDhUBnBDoj0BmBzgh0RqALAl0Q6Far1mzH0A6GcxTg1LUVqZ0N12yb0A6H22ghvbEACViBDchAAZrunBpWGedYgAQ0XbsK+3HfyEABxk+zrB/3hSNw/bgvLEACVmADMtAe8VnL1iM+w3jEV63Mrs1qi2pldo4VOHVtN9TK7BwFaGMhhh04Ai38bVvTyuwcCWiPL83NFv8bGShABXbgCLTF/8YCJCDcBG4CN4GbwE3gJnBTuCncFG4KN4Wbwk3hZuFv27tWkuc4Au3e31akVpLnaG7dsAIb0B/NVivJczQ3mwSWCTaOQMsEYkNomWAjASuwARkoQAV24HC0s+QcC5CAFdiADDTd2ZNWktdsx9tK8prd+1tJnmMDMnC2d5bGVCvJc+zAEWiZYON0s51IK8lzrMDpZpuSVpLnKEAFduAItEywsQAJWIFwq3CrcKtwq3CrcGtwa3BrcLP8YBujdpacIwMFqMAOHIGWHzaam42b5YeNFWhuNty2PNgowOk2332oVr7nOAJtIbAR/63gvxX8t/bjvrEAoWA/7rarZoV6jgycLbMNNivUc+zAEWgL+o0FSMAKbEAGwq3DzaLbNresUG+jRffGAiRgBTYgAwWoQLiNcLNCPccCJKC5NUPTFUMFduAItN9520qz8j1HAlZg86TQV8wvFKACO3AEWsxvLEACWu8sFKACO9CuYuYdK+pzLEACWl6/DBuQgQJUYAeOwHYBZ++MhQ3IQAEqsAdaxNomn5XktVlLVa0kr9nOnpXkOSrQFGy4LTYX2tLdtt3sQDhHAlp7beRt6b6RgQJUYAeOQItu26Kz8j1HAlZgAzLQiwWrFertfrA43ojesTge9t9aHG9sQAYK0K7CJoHF8cYRaHG88eHGl7nNOHaswDbRBmDGsaMAdaKNxYxjx+FohXpsc8cK9dj22qxQj23/zAr12JYzVqjnyEDT7YYjsFzAAjTdYcg+uaz4zlGBPdDCdGPdtbd11dZtZKDsity6Ku42duAIXLW3CwuQgBXYgLNTi/XZDEjHETgD0nFevG0eWsWdYwU2oF1FNRSgAjtwBPIFLEACVqBVftsYswLtKqx/eQTKBSxAuwoTkwpsQAYKUIFW1W6Ty2pvF0YNfR1RQ19H1NDXsWroFzYgAwWogd2uwuZ6L0ACVqBdhXVJZ6AAFWhXYWNsVbYLrcp2YwESsAIbkIE2FtZ0C9OJzYrvHAuQgBXob9O062KgABXYgSNwvQtDhgVIwApsQAbaVehEsvZ2QwJWoL+70671fstCASqwA0fger9lYQESsALhVuFW4VbhVuFW4dbg1uC24ngYMlCACpy9M7flm5XObZxx7FiABKzABmTgdCMbwhndjh04Ai26yQbLonsjASuwxWCt6F4oQAV24AjUC4j5oJgPaldRDQWoQLsK62q1q+CJFt0bC5CAdhUWFxbdGxkoQHOzEZrRzSsYZnRvnNHtWIAErMAGZKAAFQg3i3mbUVZm51iABKzABmSgABVobmpobvOKrfjOsQAJWIENyEABKrAD4TZ/0XnuezYrvnMkYAU2IAMFqMAOnG7z961Z8Z1jARKwAhuQgQI0t27YgSPQfv03FiABK7ABZzayiVjinddW4p3XVuKd11binddW4p3XZmV23Kx/LRPMveJmBXWOpmBu9t7MQnv/bWMBErACG5CBApz9MPd0m5XOMdtYWMxvJGAFNiADBWhXUQ07cARaJthobjbXLRNsrMAGZKAAFWhuNvKWCdi62jLBxgIkYAU2IMdYDIzQwAhZJtg4HK10zrEACViBso+YaOvEso0daLpzsKygznHqiilYzG+swHkVc3u3WUGdowDnVYhZWMxvHIEW8xsL0NzEsAIbkIECVGAHjkCL7nlL0Kygzs7XaFY6x2JXbBG70CJ2o7VsGBJwtkytHyxiNzJwtkytH+x3fmMHjkD7nd9YgAQ0NzJsQAYKUIEdOOKK7RddravtF31jAzLQdNdfU2AHjsB1Cot19TqFZSEBK7ABGShADbQ4npuHzcrhHAlYgQ1oV2GDZXG8UYEdOAItjjdOt26jaXG8sQIbkIECVGAHDkerjHMsQHMrhhXYgOZGhgJUoLk1Q3ObXWKnrfHcKWt22pojASuwARk4dYc10uJ4ocXxxgIkYA20H9a5Q9SsmM1xWgxrrwXk3L5pVra20QJyYwESsAZa4AxrrwXOxgZkoAAV2IEj0BbIGwsQbgI3gZvATeAmcLOfxbkX1Ky8jOdWT7PyMrlsuGeIOApQJ9pwzx9AxxE4A8exAAloujYA3RRsALopWMvGBSxAU7CunsHg2IAMFKACzc2ueAxHKxmTuRfUrGTMkYBTd+6iNCsDk7lJ0qwMbGMxBTacCnODolkZmGMFNqDpVkMBKtDcmuEInNPeEW4EN4IbwY0YKD4WVgbm2IExmlYG5liAzYfQysDWEFoZ2BosKwPb2C5g8bGwMjDHCmxABgpQY9xaB44YLMZoMkaTWwwha4wbYzR5xBDKFR0l6F9B/wr6V1oMlmA0BaMpGoMlGE3BaCrcFG4KN4WbYjQtGGybxeqjHBvQmmO9Y8GwUYEdOBytPsqxAAlYgdPNbsytPspRgArswBFogWP3DFYf5UjACjQ3NWSgAM3NWmaBs3EEWuDYbbXVRzkSsAKn2yzJa3Zql9hNsVVNOY5AC5GNU3fW7DWrmhK70bWqKZkFKM2qphwZKEBzsyu2cNo4Ai2cNpqbXZvFULP2Wgw1a47FULPmWAy19dcU2IEj0GJoYwES0Nys1y2yNpqbNYcFqMAOHIEWbxsLkIAV2IBwE7gJ3ARuAjeFm8JN4aZwU7gp3Oy30O5urazKsQNHoP0WbixAAk5du2GyWipHBXbgCLRfyI0FSMAKbEC4DbgNuA24jXCzWirHAiRgBTYgAwWowA6EW4FbgVuBW4FbgVuBW4FbgVuBW4EbwY3gRnAjuBHcCG4EN4IbwY3gVuFW4VbhVuFW4VbhVuFW4VbhVuHW4Nbg1uDW4Nbg1uDW4Nbg1uDW4MZwY7gx3BhuDDeGG8ON4cZwY7gJ3ARuAjeBm8BN4CZwE7gJ3ARuCjeFm8JN4aZwU7gp3BRuCjeFW4dbh1uHW4dbhxtyiSCXCHKJIJcIcokglwhyiSCXCHKJIJcIcokglwhyiSCXyMol8ydfVy5ZWIDVM6KVYDkyUIAK7MBIunaCmmMBEhBuBW4FbgVuBW4FbgVuBDeCG8GN4EZwI7gR3AhuBDeCW4VbhVuFW4VbhVuFW4VbhVuFW4Vbg1uDW4Nbg1uDW4Nbg1uDW4NbgxvDjeHGcGO4MdwYbgw3hhvDjeEmcBO4CdwEbgI3gZvATeAmcBO4KdwUbgo3hZvCTeGGZYdi2aFYdiiWHYplh2LZoVh2WMGXI9w63DrcOtw63DrcBtwG3AbcBtwG3AbcBtwG3AbcRrhZwZdjARKwAhuQgQJUYAdauprL8b4WIwsL0JKjGlZgA1pyFEMBKrADR+BajCycbrbjbWVgjhXYgAwUoAI7cARaLtkItwq3Cre1GLHeWYuRhQJUYAeOQMsls9q42YlvjgQ0t2rYgAwUoF3FvLmyU9y2guWHjQ1oCtaplh82KtB6x8bN8sNCyw8bC9DcumEFNiADTdcu3mLeduitDMyxAq1/7a+tRcNCASqwA0fgWjQsNLdiSMAKbEAGClCBHTgCLeY3wm3AbcBtwG3AbcDNYt4eGFgZmNhDACsDcyRgBTYgAwWowA4cgQVuBW4FbgVuBW4FbgVuBW4FbgVuBDeCG8GN4EZwI7gR3AhuBDeCW4VbhVuFW4VbhVuFW4VbhVuFW4Vbg1uDW4Nbg1uDW4Nbg1uDW4NbgxvDjeHGcGO4MdwYbgw3hhvDjeEmcBO4CdwEbgI3gZvATeAmcBO4KdwUbgo3hZvCTeGmcFO4KdwUbh1uHW4dbh1uHW4dbh1uHW4dbh1uA24DbgNuA24DbgNuA24DbgNuw934ilzCV+QSviKX8BW5hK/IJXxFLuErcglfkUv4WrmkGY7AlUsWFiABK7ABGShABZqbGo7AlUsWmhsbErACG5CBAlRgB47AlUsWwq3CbeWSYdiADOyBKz90QwJOhW79a/lhIwMFqMAOnO3t1iWWHzYWIAHNzYwtP2xkoLlZey0/bOzA6TafLbJVsDkWIAGn2yzWZqtgk2HttUwwbIwtE2wcgZYJNpquGJquXYVlgmHNmZlAL3ObmcBRgArsE605MxNsnJnAsQBporW3m4U1p5uFjXw3C2vODH8tZjHD33EEzvB3LEACVuB0K9aGGf6OGtNoYEatmJ9YVswvLEACVmADMlCACuxAuBW4FbgVu6BqWIENaBfUDAWowA4cgXQBC5CAFdiAcCO4kbmJYQeOwHoBC5CAFdiADBQg3CrcKtwa3BrcmrmxoY0QGQpQgR04AtdKYWEBErACGxBuDDeGG8ON4SZwE7gJ3ARuAjeBm8BN4CZwE7gp3BRuCjeFm8JN4aZwU7gp3BRuHW4dbh1uHW4dbh1uHW4dbh1uHW4DbgNuA24DbgNuA24DbgNuA24j3Oi6gAVIwApsQAYKUIEdCLcCtwK3ArcCtwK3ArcCtwK3ArcCN4IbwY3gRnAjuBHcCG4EN4Ibwa3CrcKtwq3CrcKtwq3CrcKtwq3CrcGtwa3BrcGtwQ25hJBLCLmEkEsIuYSQSwi5hJBLCLmEkEsIuYSQSwi5hJBLCLmEkEsIuYSQSwi5hJBLCLmEkEsIuYSQSwi5hJBLCLmEkEsIuYSQSwi5hJBLCLmEkEsIuYSQSwi5hJBLCLmEkEsIuYSQSwi5hJBLCLmEkEsIuYSQSwi5hJBLCLmEkEsIuYSQSwi5pCKXVOSSilxSkUsqcklFLqnIJRW5pCKXVOSSilxSkUsqcklFLqnIJRW5pCKXVOSSilxSkUsqcklFLqnIJRW5pCKXVOSSilxSkUsqcklFLqnIJRW5pCKXVOSSilxSkUsqcklFLqnIJRW5pCKXVOSSilxSkUsqcklFLqnIJRW5pCKX2Ll1Ol9GYju3zrEACViBDchAASqwA+EmcBO4CdwEbgI3gZvATeAmcLNcMjc72QoLHc2tGxKwAhuQgQJU4HSbLxixlRtutPuWjdNtvlXEVm7oWIHmZi2zW5iNArRxW2IdOAJXLllYgASswAZkoAB9F5tXEeJGuwoyJGAFNiADBahA67OlOwLLBTQ3NiRgBZpbNWSgAG0n3dwsa2wcgXQBC5CAFdiADBSgXcW8O7DSRMcCtKtQwwpsQLuKbihA67Nh2IEj0O5QZkUYWxmjIwErsAEZKMDpNkvG2MoYHUeg5YeNBUhAq8NbaOWRNhbsxaO8ixsXjsBV3LiwAAlYgVZNaLNkFTcuFKACvZCXV3HjQssEGwuQgBXYgAwUIEa+Y+Q7Rr5j5DtGvmPkO0a+Y+Q7Rr5j5DtGfmDkB0Z+YOQHRn5g5AdGfmDkB0Z+YORHjLxVYDoWIAFj5FetpY38qrUsCzswRn7VWm4sQAJWYIz8qrXcKEAFxsivWsuFdAELkIAV2IAMFKD1zgx/q7V0LEAC2ljYVVjMb2SgAHWXvTOv8v+FI3CV/y8sQAJWYAMy0MbYrmJFt+GK7oUFSMAKbEAGClCBcGO4CdwEbgI3+/WfdaRsBZaODBSgAjvQ3OyK9QIWIAErsAEZKEAFdiDcLBPMule2AktHAk63ZlPDMsF8d5Kt7NJRgArswBFomWBjARLQ3MSwAc1NDQWowA6cbrNqiq3s0rEACViBDchAAU63+T4kW9mlo7nN3rGyS8cCJGAFmkU1FKACO3AE2gbmLG9gq7V0JGAFNiADzU0NFdiBI9BSxcYCJGAFNiAD4WbLg/l0na3W0nEE2vJgVjqw1Vo6EnC6ifW6LQ9sOWO1lirWO7Y82KjADhyBlkA21nlUjFEL4iAJ0qDuZBFsq04rdtxoEbzxcSm2DBQ7AGNRDWpBHCRBpmho8Sg2gnaQ3PqHLYiDZJ73baRBPWg4rS/KGJUgM7HrsjDcaH1tQ2RhuFGA1sw5RHYmnNrS3AoSHWc7q9EUmCULbPWIjgrswBFop1iwUQmioBrUgjioeydadeHqRKsuVLuntOpCx3mp9ojSqgsdraXN8NHStqgHDad1+KtRCaIgU7SGWACoNWQd7TZpnexmVILm37b/zo6DWtSCOEiCNMhMlswItHlvDwytRNCRgNZMG037Mew2hPZjuNBOgrLLsN/C1TH2W7ixAhtwynYbTfst3KjAHh1ukbTQImkj3BRuCjeFm8JN4aZwU7gp3DrcOtw63DrcOtzst3Cj+FTvmNQdk7pjUttP4cbiaBV5ao9jrSLPsQLnHB9GHCRBGtSDhtP6uqJRCaKgGhQeJTxKeJTwKOFhv1HzZVW2EjzHArSLUcMKnJ04X3dlK8FzFKACO3AE2m/Uxulmz4utBM+xAs2tGzJQgNPNHjNbCZ7jCLTz2cioBFFQDWpBHGSKhhZ59gzbiu/UHlFb8Z1jAzJwttSeYVvxnWMHjkBbsm6cTbUOsCi1J99We+fYgGZmI2pRulGBD7NuD7btuLaNM0r7ZZc2o9SRgDN7WRPstLZFHCRBGtSduilaZ82Y63ZHY1V33R6gW9WdowI70FpqFzguYAESsAJnU813naBsJEGzqXZxdqziorHJqvA2lSAKMpNu2IAM7IHFmjkMCTg7tBi1IA6aPVIWKrADZ4/YnarV1DlOK7sntZo6x9lYe4RsNXXdHixbTV23jUurqeu2f2g1dY4dOAJnuDoWIAErcLrZtqPV1HXbj7Oaum77ZlZT120Tzqrnuv3gW/WcIwErsAEZKIFsYnaZXIAErMAGZKAEiolZR4n9NRtVaUAGCnDeWdtV2qENi4aTvXm+qARRUA1qQRwkQeGh4aHh0cOjh0cPjx4ePTx6ePTw6OHRw6OHxwiPER4jPEZ42HkMNhPWoWpGY5HsI9WMShAF1aAWxEESpEE9KDxKeJTwKOFRwqOERwmPEh4lPEp4lPCg8KDwoPCg8LDAmMt9sQKxXtc/nZNnvtYqdsRZn+dCidV09XmnL1bT5ViAc1o3U7BDF0zAzlxYxEESpEE9aDjZaQuLShAFhYeEx5zrfWZGsYqtPhOsrNPFrIk2sxfVoBbEQRKkQT1oONnMXhQePTx6ePTw6OHRw6OHRw+PdQTDpHUCg1EJsq1CoxrUgqwXHtlMrAarzzW2WA1Wnwt6sRosxwpsQAYKUIEdOALLBYRbgVuBWzE3NWSgABXYgSPQfm82FiABKxBuBDeCG8GN4EZwW2+WG5UgCqpBLYiDTLFPtN+U+WqLlPW+hVENakH26oGRBGlQDxpO66VPo3nhFuFWMtXnTpFYyZRjB85LZGum/cBsLEACVmADMlCACuxAuCncbKnH1nRb6m2sQHOzcVAGmpt1q5qbdeuM026BYCVTG2ekOk63NTAzVh2nm1jQ2OJw9aSVOZiDVTks0qAeNJwsXBeZog3mXOx1sUZbcIq1dHTgcLQCqD63O8QKoBwJWIENOHXnnZ9YUVOf+xBiRU193oeKFTU5VmADMlCACuzAEWhhOO9ZxYqaHAlobmzYgAwUoLmJYQeOwFUKaVSCKGjei1h32B3aIg6SIA3qQfaUaZLtHy4qQXY9aliBDcjAHmg/j3M7RKw4ydEUbLRt1beRgbbbaaRBPWg42b3ZohJEQTWoBXFQeEh4SHhIeGh4aHhoeGh4aHhoeGh4aHhoeGh49PDo4WGx2W1oLDY3NuDsr26jYzduGxU4x6HbHLQbt4V249ZtdOzGbSMBK7ABzc2Gz6J5o7nZmFk0D2uZRfO8zxcrQXIswOk27+DFSpAcG9B2FYwkSIN60HCyZwaLTLEazpbOW36xgqI+D1gXKyhyHIEWxxutpWpIwApsQAbajb6R/Zoamdf6hw+vcdn1zyh2LBOttTOOx2UtmIHsaL1tNAVMakZjuaynZjQ6NiDPvy+GAlRgB45AvoAFaO0yY67ABhRv2AzXTT1ozGbZxc54dSzAqV+s3TNkHRtwXk2x/pxR6zi9ivXcjFvHEWjH8a2uteP4NhKwAhuQgQJUYAeOwA63DrcOtw63DrcOtw63DrcOtw63AbcBtwG3AbdhPWmTaTBQgNaTNtajA4ejlQSNuUchVhLkSMAKNLduaG7D0K5tiSmwA6fb3K4QKwlyLEACVmADMlCACuxAuBHcCG5kPcmGFdiADBSgAjtwBNYLWIBwq3Crdm3FkIECVGAHjsB2AQuQgBVobmTIQAGOQMsIc79IrPhnkLXXMsJGBgrQ2mvDbelh4wiUC1iABKzABmSgAOEmcBO4KdwUbgo3NTeb1dqA5mYTXAWoQBt5m/YrPxiu/LCwAAlYgaa7cLa32pycMT9si8KKfxwJWIGzvfP5iVjxj6MAFdiB5jYv3op/HAuQgBXYgOamhgJUYAeOQIv5jQVIwApsQLhZzM8SELGSIMcOnG5zJ1ysJGjYVo2VBDlON9s9sZIgx+lmGylWEuQoQAV24Ai0X/uNBUjACoRbhVuFW4VbhVuFW4Nbg1uDW4Nbg1uDW4Nbg1uDW4Mbw43hxnBjuDHcGG4MN4Ybw43hJnATuAncBG4CN4Gb5QfbG7LyIccOHIG2frCfAysfciRgBTYgAwWowB7Y7SrY0NprMdQZaO21Cd4V2IEj0PLDxgIkoOlaMAz074grtjIfxwIkoPXvMGxABgowRtPKfBxjNK3Mx7EACViBLdpgMb9RgArs0YYV84Yr5hfCjeBGcEPMC2JeEPOCmBeKuSOEnqzoyYqeXDFvbajoyYqeRMwLYl4Q84KYF8S8IOYFMS+IeVkxb21o6MmGnmzoyYaetJifRVtiFT8bLeZte81OV3MkYAVONzYxi/mNAlRgB45Ai/mNBWhubFiBMcHtSLVhu+J2pJpjB45AxdSwhcBGDJZisBSDpZj2immvGCzFYCkGq2OwOgarY7A6JmLHROyYGhb+tgdodUgbLfw3WkdZP1j4286glSI5NiADBajADhyOdnia49S1jXkrUHJkoACnru1DWoWS4wi0pLDRFgL219ZCYGEFNiADBajAHriW+WRIwAq0q6iGDLSrYEMFdqBdxZxRVsDkWIDTzbZB7Ww0xwZkoAAV2IEj0MJ/YwHCzTbnupEEaZDtBRgNp7UTYDQVdSEBK3C23/YfreTJUYA2CkY9aDhZfC8qQRRUg1oQB0lQeEh4SHhoeGh4aHhoeGh4aHhoeGh4aHhoePTw6OFhQW0bqFbw5NiA1mHNUIDTSJdCB45AC3XbELaKJ0dzs6loob6xAc3NxtxCfeN0sy1FO+bMcbrNEi+xY84cC9Cml1ENakEcJEHqZEFum5RWKzVmQZZYsdSwbTOrlnIUoAKtpUtsBNpv/MYCJKC5DcMGZKAAFdiBtgk3u8gqphwLkIAV2IAMFKACOxBuFuS2fWolU44ENDfrSfuNt31PK5tyNDc2VKC5We9Y+C+0+N9YgASswAZkoAAVCDeGm8BN4CZwE7gJ3ARuAjeBm8BN4KZwU7gp3BRuCjeFm8JN4aZwU7h1uHW4dbh1uHW4dbhZZrAtZivLcuzAEWj7grY/amVZjgSswAZkoAAV2B2tDmvMjzWI1VwN2+W1mitH2w+bB7zIWJt9m3viAS5X4pKYEtt2m+0XW/nV6horv1pXbuVXjgVIQNtfsf3xsTbyNnNiSRwjayVYjjGyo17AAiRgBTYgR5OqABXYgbi+tnqpGpfEq5dsaNbDgM0tMSdel7g0NXFPPMB8JS6JKXFNvHxtfjAnVowgLy+bLevxwOL1fGBzSUwYFknDKGkYJQ2jpGEUTdwTYyCREAYSwkBCGEgIAwlhICEMJISBhDDWll+xCbz2/DZTYrucYt2yHgvYM4+xngtslsSauCce4PVwYHNJTImXvk2hIYk1cU+89B9TSK1MLLgkpsT+u65WLebIQAEqsANH4FovLCzAtp63qVWIbZIgq9c06kHDidYlqHFJTImtuNSoBXHQ6rRurIl74rGeA6odW7apBFFQDWpBHCRBGtSDwqOFRwuPFh4tPFp4tPBo4dHCo4VHCw8ODw4PDo+VB4r1/8oDmzmx7CeiauVvjvac1DrNKnIWWkXORn9OqlYD57ieftqArGSwmRNbeYWRBvWg4WQFOYtK0NK0KbOeAM47RL3WFj9ZG9Ye/+IV8ZtL4vXAlo1r4paYE0vi5SvGPfEA2w2B9ZPdDyyioBrUgjhIgjSoB41N5bqCShAF1aAWxEESpEE9aF3J7PGyFgObS2JKXBO3xJxYEq+nqZdxTzzAKyGQtWclhM2UeD1TJeOWmBN38Azw+VRErT5u0/p7izmxJNbEPfEAr+VAs7av5cBmSlwTm+980KFlLQc2S2Lzbdb2tRzYPMBrOTD3obSs5cBmSlwTL99mvHyt/WsJ0Gx81hJg8VoCbC6Jl/4wXs9I7bpW1LO1bUU9m+9aAmzWxD3xei5rbVvFAptLYkq8fK39q0qArW2rTIBtjqwsIda2lSXEvFaWWLyyxOaSmBLXxC2x+Yq1Z2WJzWne7ToB410osLgkpsRpXo/lZde41gibJfG6Rrv2tUbYPIJprRE2l8SUuCZuiTmxJNbEPfHynXODVv7YXBJT4pq4JebEklgT98TJl5IvJV9KvpR8V/6YlZJKa/kwd9OUVv7YPMCrcGCz6c/NNaVVOrC5Jm6JV14kY0msiXviAV55ZnNJTIlrYtPXxZq4Jx7glU/mtpbSyiebKXFN3HZJl66CwY0CVGAHjsC1qFhYgKu/FnNiSayJe+IBXvli7rfp+rDnNTfndH3Z81KbrytHbO6Jl47NiZUjNq9+sXmzcsTmmtjab0tTWjlisyTWxD3xAK98sdl8bcFMK19srolbYk4siXWXfmpdacG6p660sJkSL3kybok5sSTWxOuyqvEAr7SwuSRel2W+Ky1sbomXrxpLYk28fO0aV1pYvNLC5uXbjJfvMF6FH5ex+c4NPa1rWbFZEq+iErvelRY2l8SUeOnb9a7wtylZV/hv7okHeIX85rZLrLWuat+FArRxNs9VA7xwBPIFLEACVmADMnDV1lgfrmXD4rVs2FwSr36wcVzLhs0tMSf2SnW1+kLHDhyBdsOwsQAJWIENaLX61mFWq79xXYx19C4VWlwSU+J1Maa4Yn8zJ5bEmrgntjcSrG+tMnhjARKwAhuQgQJUoL9toW2FvK362wr5zTVxS7yuZhhLYk3cE9uNquF6GWdhARKwAhuQgQKco1PmVqRawWBwSUyJa+KWmNcrTLo/fGqkQT1oOK2PnhqV9YKTWrngphrUgjhIglb7jdtqp41Hq4lbYusFNhSgAjtwBPIFLEACVmADwo3hxnBjuDHcBG4CN4GbBbYVwaoVBgZr4p549dJMHFYcGFwSU+KauCXmxJJ4+VrbtCce4H4lXr5iTIlr4paYMYJdEmvinniA14ODzSVxmi0jzZb1mGBu+Wpbzwk298RLf0aylRMWK29UqycMpsQ1sV3X3CNVqykMlsSa2HznXqVaXeGDZx9aYWFwSUyJa+KWmBNLYk3cEyfflSVsG5BXlthMiWvilpgTS2JN3BObr+1SWbHhg60fbEHgTIlr4paYE0tiTdwTD3BLvm35ijElrolbYk4siTVxTzzAvHxtznBJTIlr4paYE0tiTWy+dm9slYjOtuBwLokpcU3cEnPih6/tIlg94qYeNJzsRfVFJWhpWp+v3DKPH9JVYOhs+dL+E3sHcGMBErACG5CBAtTAlTqqTfuVOmyLilfq2FwTt8ScWBJr4nU5dskrpRjLSimbS+Ll241r4paYE0tiTdwTL985JWSlFNtWk5VSNlPimrgl5sQSwyRFE/fEA7xSyuaSmBLXxC3xHC7LxFaw6DgCV96wPT5ZeWPzuigTWXljc0u8LoqNJbEmXg+QbYBW3li88sbmkpgSm6/t98nKG5s5sSTWxD3xAK+8sXnpF+M5xe0nSFa428JVVrhvLomtmbadKCvcN69mWvescN8siVczrXvWMmTzAK9lyOaSmBLXxMtXjDmxJNbEPfEAW65Y3bBWG5ZxZK02NnNiSbzkbVat1cbmAV4pY/PMRbZAknV8zMIKbEAGClCB3VFXSpgliqorJWyuiVtiux5ba+tKCZs1cU889tlDakWLjgVIwApsQAYK0PrJ1u26Qn5zSWzXM8/tU10hv7klXtdjmmsVsXldj/XRWkVsHuCVDWZZo+rKBpspcU3cEnNiSbx8xbgnHuCVDTaXxJS47hPU1KoZ7SQ4tXJGO5JM13ltG0egnde2sQAJWIFtH1+m+xS3hQJU4HSzDZJ1tttCezN5YwESsAIbkIECnLqrE1c+sI0EXflgMyWuiVtiTiyJ18B04554gNdtyeZ5QWss4jRFXSe6bWxABgpQgR04AtfSwXbKdS0dNrfEdjm2I65r6bBZE9vl2O6UrqWDcV9LB9tS6itPbKbE5muD3Fee2MyJJbEm7okHeC0dbKe4r6XDZkpcE7fEnNgmx2UYk6MTJkenkpgS18QtMSeWxJgcnXpiTI5er8QxOdbZcRsrsAEZKEAFdmBMDitTfNxp2CDZz7hzSUxg+40mu1WyQsLglthe2rGCAaslDNbEPfEAr/eENpfElLgmbomTrybfvnRssvb139u1dEn/fLXNJlZfbbPJ0Qd4XIlLYkpcE7fEq202tYYk1sTL18ZlLN85bezYtgd34+U7jCmuxQ5vC26J1/tRbDzA5UpcElPimrgl5sSSWBMvXzFevnYtdCUuiSnx8rXrpZaYE0tiTdwTD3C9Ei9N60P7ISXb9rACwQfP+bAqBKlYH9qPpzMlrokl8dKZc2lV/DkvnWa84sX6itd/b30lV+KSePla/+y4W9wSM/RX3O1/rol74gFecbf6YcXdZkpcE6frXa/jrWtc7+NtTv2w5n9dbH/X7qVWiZxzTzyc+yqRc155iY3t2ud9bbdiuGBJrIl74qWvk1csbC6JKXFN3BJz4uXbjTVxTzzAKxY2l8SUuCZeXsNYEmvinniA1/zfXBJT4pq4JU6+Nfmu2Jn3391q6IIHeMXR5pKYEleMS0tj2tKYtjSm6/doltn0VQ1H8/a6WzVcsCbuiVfbbC6tWNtcElPimrgl5sSSePlW4554gFesbS6JKXFNzLjeFXfN5v+Kr8X9wjWu37vNlLgmXtdi/dk5sSRe12Jze/0mbh7QGcl3JN+RfEfyXb+Jm9PYjTR2I43dSGM34FsueK0yMZoPl3pZc37xmvObS2JKXBO3xJxYEmvi5FuTb0u+Lfm25NuSb0u+Lfm25NuWbzfuiQd4/dZsLokpcU3cEnNiSZx8Ofly8pXkK8lXkq8kX0m+knwl+UryleQryVeTryZfTb6afDX5avLV5KvJV5OvJt+efHvy7cm3J9+efHvy7cm3J9+efHvyHcl3JN+RfEfyHcl3JN+RfEfyHcl3wHeVnzmXxJS4Jm6JObEk1sQ9cfItybck35J8S/Itybck35J8S/ItybckX0q+lHwp+VLypeRLyZeSLyVfSr6UfGvyrcm3Jt+afGvyrcm3Jt+afGvyrcm3Jd+WfFvybcm3Jd+WfFvyTfmKUr6ilK8o5StK+YpSvqKUryjlK0r5ilK+opSvKOUrSvmKUr6ilK8o5StK+YpSvqKUryjlK0r5ilK+opSvKOUrSvmKUr6ilK8o5StK+YpSvqKUryjlK0r5ilK+opSvKOUrSvmKUr6ilK8o5StK+YpSvqKUryjlK0r5ilK+opSvKOUrSvmKUr6ilK8o5StK+aqmfFVTvqopX9WUr2rKVzXlq5ryVU35qqZ8VVO+qilf1ZSvaspXNeWrmvJVTfmqpnxVU76qKV/VlK9qylc15aua8lVN+aqmfFVTvqopX9WUr+rKV/PxTl/1cjQf7/RVL+dcElPimrgl5sSSWBP3xMl35av53KevmjpnSrx8ybgl5sTLV4w1cU+8fOcarK58tbkkpsQ1cUvMiSWxJu6Jk68kX0m+knwl+UryleQryVeSryRfSb6afDX5avLV5KvJV5OvJl9Nvpp8Nfn25NuTb0++Pfn25NuTb0++Pfn25NuT70i+I/mO5DuS70i+I/mO5DuS70i+A77tuhKXxJS4Jm6JObEk1sQ9cfItybck35J8S/Itybck35J8S/ItybckX0q+lHwp+VLypeRLyZeSLyVfSr6UfGvyrcm3Jt+afCvyQ9v5Z95rt51/FpfElLgmbok5sSTWxD1x8uXky8mXky8nX06+nHw5+XLy5eTLyVeSryRfSb6SfCX5SvKV5CvJV5KvJF9Nvpp8Nflq8tXkq8lXk68mX02+mnx78u3Jtyffnnx78u3Jtyffnnx78u3JdyTfkXxH8h3JdyTfkXxH8h3JdyTfAV++rsQlMSWuiVtiTiyJNXFPnHxL8i3JtyTfknxL8i3JtyTfknxL8i3Jl5IvJV9KvpR8KflS8qXkS8mXki8l35p8a/KtyXfln1kU0Vc5oTMnlsSauCce4JWvZsFCX+WEzpR4+RbjlpgTj8iHvHPR4pKYEtfELfHStOtduWizJl7Xosbmq3YtKxdtLokpcU3cEnNiSayJe+Lku3KRWl+tXLSZEtfELTEnlsSauCfGbxantRCntRCvXKTWVysXbW6JObEk1sQ98QCvXLS5JE6+I/mO5DuS70i+I/mO5Dvgu+oQnUvi5TWMW2JOLIk1cU9sXrPipa/aQ+eSmBLXxC0xJ5bEmrgnTr4r/8zqmL5qD50p8fKtxi3x8hVjSbx81bgnXr7zPm6VJTqXxJS4Jm6JObEk1sQ9cfJtybcl35Z8W/Jtybcl35Z8W/JtybclX06+nHw5+XLy5eTLyZeTLydfTr6cfCX5SvKV5CvJV5KvJF9JvpJ8JflK8tXkq8lXk68mX02+K0d1i5GVozZr4p7YfIfN1ZWjNpfElLgmbok5sSTWxD1x8h3JdyTfkXxH8h3JdyTfkXwHfHXlovneX1+FjjSLCvsqdHReOs1YEmvinniAV/7ZXBIvTTbGWOvOIbP/deeQxSUxJV5tFuOWmBNLYswxpeSbcoimHKIph2jKIZpyiO4cYu2pnFgSa+KO9qwcsnjlkM3JN+UQTTlEUw7RlEM05RBNOUQb5ra21M+c+plTP68cstrDqZ859XPKIZpyiKYcoimHaMohmnKIphyiksZ355DFqZ8l9bOk8V05ZHPq55RDNOUQTTlEUw7RlEM05RDVdL2arjflEE05ZNVEbu6pn3vq551D1LgmXv1s+juHLJbEmnj61svi2nLIZsshziUxJa6JW2JOLMaWKyyHOI+I5VUoWefrcX0VSjpT4poYc6lfnFgSa+KeGLHTy5UYY9oLJa6JW2JOLIk1cU+MubRKJessIO+rVNK5JV59aP1Dqw+tnaSJe+IBrlfikpgS18QNvF5rsLVlX6816Prnq8DU2r9ea9hcElPimrgl5sSSWBP3xMl3vR9h69W+3o/YTIlr4paYE0tiTdwTD7AmX02+mnxXPfQ8YqGv2ktnTiyJNXFPPMCrHnpzSUyJk29PvusFCVtX75MZbf28j2bc3BJzYkmsiXviEbzqMJ1L4uVVjZdXM+bEklgTLy82HuBV3Ly5JKbENXFLzIklsSZOviX5UvKl5EvJl5LvKnu2e5BVn+m8vOYYrdrLYjlhrBcgNlPipTmMW2JOLIk1cU88wOsFiM0lMSVOXrzyw2JOLIk1cU88wBa/ddZJ9lXD6UyJa+KWmBNLYk3cEw+wJl9dvjY/lRLXxMuXjDmxJF6+Nld1+dq46/K1se7L18axl8SUuCZuiTmx+ZJ5WVw798QDvH67N5fElLgmbok5cfIdyXck3xG+Y9WjOpfElLgmbok5sSTWxD1x8i3Jtyx9MW6JGbx+W2cN+Vj1os7Lqxv3xAO8fls3l8SUuCZuiZfvMDbfeSzcWPWizj3xAFvMOpfElLgmbok5cfJtybcl35Z8Ofly8l05YX4HaKya0jrfgxirpnSPBacxkjRGK/bnOwVj1ZQ618QtMSeWxMt3cU+82m9eK/Y3l8Sr/Wy8dGxurFjevNpv17VieY3diuXNlLgmXvo2r1Ysb5bEab71NN96mm8j+Y7kO5LvSL47lieXFV91MScW8IqLWW881nGGzprY2jbrbMc6znCz/SY6W9tm3elYxxk6W9tmve6DW2JOvHybsSbuiQd4xeDmkpgSL182bok5sSTWxD3xiPlQdqzZ9e5YU+OWmBNLYk3cEw8wI7esOlVnSlwTt4i7VafqLIk1cU88wCs2N5fEBF7ryWHzYb1wO6wf1gu3i9cLt5tLYkps65lhmmudOWwOrHXm5p54BK96S+el34wpcU3cEnNiSayJly8bD/Bac24uiSlxTdwSc+LlJcY98QCvdebmkpgS18QtMSeWxMmXku96vW7uG4xVY+lcElPimrglZoxLlcSaGGO66iTL3H8Yqx6yzIOVxqqHdB7gdb+5eb0bVYwpcU3cEnNiSayJe+L1btSc57secnNJTIlr4paYEyuud+0vzT2QsWsdNxOucd1Lbm6JOfG6FuvP/dmvxT3xuhab22sfaXOBTk++Pfn25NuT73oJf3Mau57GrqexG2nsRvLdeWD83//9029//usffv/3P/31L//697/98Y+//e5/4x/892+/++f//e2/fv+3P/7l77/97i//8+c//9Nv/9/v//w/9h/993/9/i/2599//7fHv3309B//8u+PPx+C//GnP/9x0v/9E/729fyvzr0P2n993gNISJSr/CBSnou0+XthEk0goO2Hv0/P/36dL8Xb36+D0ACl+1dR5usp+yoeAff0KtpzkRmgS6HU+Put3v3rVcR7oT62/dECkh8k5CAx9w52P6AJ2u/+fSk+Ex7P5uLvP/rjB4F+6McmrvD4Fe5PJcapG8hHoj6eLD2VOPWkfaV890Mai489WQ5Tkqye0zQeuTtp8I+hUU7TssaADnRn6XT7QuzjvD6g9PxCDhos1YfkgRgS+bEV8w78+aiOEaPK9FTiMLPsoARTeOyYpgi9biv05pfx2L98rnD3MvT5ZZw6Uy+PsAeOZxJ0SDWPX2rPE48f2/JUorzbFXSYmWQnj65GlJRr2odG1EMj5nECqxFDnzfilC/t1XiTmGsxRHqT+xdiR0rtC+Hy9EIOE4uQNK+nAucIGxKTIqWbjyPa3096J41G+BV9LDWeJot6HfN3/Jhz6o3HMvhHjcPs5O4jIhcnBbk/MRrHxOAUZR8nRj1Mz8em6giNgd6o+uFKDu0gvSJKHg/BMbBfGJPhndFaL8/H5DA/H5vivrp53Aemca0/rkxmIDzVYHv0uQe2cVrf1B9nWO3fMDvGu7PjfC1yxVqNhcfTa2mn33c7RGYnjj5SS8aPGvTu/DjO0psp8KhxM1oavx8tTd7ujePIjobl48hrpo8je8qldrTQyqWPB4wY2Y8a4/QjXT3mqKXf2Nr5Bw0+5NImWuOuJs2wjxrHdjCXWCyMQzsOs1Qo2vFYCvJTjePICMXNSZGaf/A/9Cq3U0tihsjjccJzjcNMbXZU7+rVkmbZVzS4RNQ9sL12LbZfvq6llUN/9NPCoY1YmsuLGqpYkSq9ptGxqu3Xc43zDNGrxwx5LPefqgj90l8HtYMWVzvmlzWet+MwuvNJNO7mu15PspnwL82H2nvkQx38fGREf2mfztdvvB3zlY/n7Tjlsqo97qhTbn9sn/6gode7fXpsRYs9jsde6vW0FccVmcbewGP3uz9dkWk9ZfY6IrP/ELcfNE43Hvb+7IpbGjni6L5Gl8iF44c89kFD3l8X6tuz9NyjPeaGUHltVKRC4zAq/XQPNax8fk8PGuPJLD23IzYJ6uOR+/N20Gk11TAqeVv0w0zvh3ZUlrg5lh/acV+jtRb3QEzXcw1+f4Z1+ZUzrNpn2Pao9Nfivl6xCfXYc9bnIzt+7Qyrdrjvakc9RMs43UO12AN6pLN0LfTjjvM4zNJ55ObWePza0Usawz7/t+5eSj1otPdn2OB3Z9g5ZrFF2fN+wYdYGXrKg7Gaezz1qk81jrOjxrZanfeAL8302mOGPfZBnmrYl1feeqJxbEWLW8oqeR//p1achiXd/dSat3HGF0RG5MHH0/LrIHLaGpPYDBqi6QHLh4WYfaDkqYj61Yy0Tq/tCxdDhA3kVk49ou/HnH2h5L2gO6Yxbg0/+u1p+rAPmRxGNzrkSuuojw8XTs+cavRpu55vqZdyHJcSTxdI84bShy4t9XT3cxXc/VylPd0POs+RVvDzMA4T/vTQhpv64DCzPH8Od3p2dHtw9P3B6d8xOONbBuf4zIIFWw9Pn0K10/ZWZKKmaXvrp2eTp8c39cKT+/JDTuxfEMFtUH384h1E2vvPOInffsh5krj5lPP2lRwec97u0h+eJX1lXEqk5krjkFc/eSJ1q6KgnB5J3X28dr4cKRQix8upp+VuxXI3ryQ+prOzSOz5zYO/DyLf8FC/vv9Uv77/WL9+w3P9Y5cO3IaM9uK4dDtbd11MK+O5yOnB1OO2PfZR9apPy0bOc3WMeBZ80SGvtvr+DGnt7Rlykrg5Q25fyYsp8dGP8Xt3tXHo0v4NXTre79Lxfpf2X/wrk2cpl9d+ZR5/c4RIP4wLf0eR1DckVH4/ofI31El9Q0LlX7rA5AtjcvVD8ZuU0yPHjsd0ekjJp6dSo8Td/5XvY/oX6kuJNXYQWk83EB+rZI+PpW6WgpTTc6m7Ty/OImzfQdlzhOrzh6jl9Gyq2pv0e58p3crIFySqxIZqTR37UWKcnilHKxqV5xLn/rhZYGMfOHr+fEtjj0jT9o7cl7i9qXLaNbu3qXKUkHjGLjRelIhUJk0OEsfV1FUxTenQG8cupZHm+kGkv79p/8k0u1v7VE6PqO4WP9m76O89iz23g6JmgCgtU39ux3XcvosnuswHkXPHauwzPZ6MXHzoWH47nx0l7uWzrr84n/3QH7mI/qf8fpS5W9Flr8c930loeGjGLT20f1mkf4OI1FdF7lWoldMDK6oiUU6hz8u6yumJVe1R51Z7yrE/ixwL/0bsn/ervyjS41UH6rkS8osiaAnxN4jU6yByGp2bhXv25txhDd1jDa3jtSFuSI+Ntb86T6K2oo6rvdgnN4sq6fTs6seqyvZax7YR5a5tdH5N5G5d5Rcu5zTEd/NJf56U6PQA6+4rIccHWDUePddc4PlzQ04VAYzdTc77rP2DxvGpb4mG/LATpx80Ti9fXVeqwWnPNfj4sAZFOI9e5edXc+zWuJf+4Wn8z916FBkYm3H45Tr+nkuJWfK4ZT4sk+j0DEuj5iwXin585eaThoTGbMjz+y06vUmFPPC4D0/TpOtXmnK3NproeL90rziaTs9+7lZHH0XulkefW9IK3nwp/cWW1OhZ/rEM5Ssde7NS2z6A+vyn+F6p9lnkZq32WeRmsfYnl9OjY6XLiyJ4qs6D+cU7BGlRavTg9roM9l8eY6WvytytYqf6djHrUeLe9slZ4t72yXmv8G41PR2fad0sp6f337b6rB0oqH8sqcpTkVMJVolN+nm0y0sSyPXzVJGXbtC1XhE3WnW8OOE17fUrl3EY4P7uvsdZ4ta+Bx3fuPqGfY8f+4Pe6FY8xeX6alZT3Lw9WK7no3N6FnNzdI4SN0dHfvHo/NAfer0+Oppkyqsyd1/PsW9mvPljcZK4+WNxlPiGH4tuRTirP+ZXQA/90d59BnKUeGRoLCpU+HpNRNNvn0p5USTNEe2v5fpOuE+Zn7l7cb7efo2LTu9gfZMMUdyPUr3yTe31okihF0VuvphG+v5ZAcd23Hw17SzCcQrEIxuX10Qe4xHbfdcPG0ofn5q3958z29x+fjn3XpOj0xOi+6drnNL0zZftziKMamb9YffkKyIauZo1l838JPL+mqC/vybob68JPumNePrAvY5Db/TTr1/stD9uJOtB5Hh7H7/C5Xq60XdsBkfFvHC9XrwWjiKRx/MDflkkLkau8bJIbGnJ4d3S8/jefEGVzm9mfYPI3coKGu9vDYz3twbG21sD5964WVnxSZfeq6yo5xer7lVWfPJDc+/t4bPIzdd263Xs2Hvv7dpHJ57m5psv7h5FGkWfzIOMDiJvbw2cJW790NTy9tbAuTewGd1qf/4ecz0eCXivN86nCt7rjfb2z+5pqt99F/oscvM107PIzTc8zyI42K/qq+FfUfP6EHnekkrf8MJLpW944eWT0bn3Am89PX259QLvUeHeoaSV+Dv6VN7v03p6BXAdl71a8tjtRp9+KFarx9MCb/XpsRk3X2g+i0iU75cu14siN9+KtqPU310BHEUGC85Ry9U2H09BOooIdvbzkverIiVE0uh8UeTem+L19Ajp3pviR4nHE+lYJ1656qeNr1xMx8WMV7tVaxwToWlP8GsiHQPcUwn+TyLtV4tQwevVpR5G5yhCsWVLlPvkSyJVIobzyugnkfPL0fdOFKjtdPbFveNgjxq3T7ls7x9zeZK4d5t3lrh1m3fujZu3eZ906c3bvNMjqNtJ/jjLbp5JUE9Psu6eSVD5eLhbLKDn8yhczIepyu+/Tlj57dcJjxL3Xjm7fyV6uJJTj45YF5Uxnp7DXOX04suIGlV+/NK82I5bp03U07Oae6dNWAn4YTMipvoPpaUfTps4i2Cv+YHlNZFyXfFMoh3OvTi3hCvOTZdXRW6ewFGPrwPdPoHjMxnkswfrqzJ4RPLg9GLDV2VikKbk4cTsYwfXgaHOK5svjVLDE+BcyvWzyPGgWHxTpB6S0mk1cY2Y/OXqLyWDH1ZpqV79o8bx+dW9ZHB6WauMeMDxeDCfa++v++242aXnoY2brMco11cDsMS7+A+uLwcgNUQOycsBSFFsPiVPZ82f1mrpgUt9dbk3QqI9lzjfI6U7vvxmxMc7k+P7CPc2OY8S9zY5B/1SiZu7xucOjY34R9+2px36yWbrvUMj65BvWD+Pt78QVMc3fCOojm/4StC5W2+egdmubzgEs50eYanG22+PSXK9KHLzKM2jSKeoUe8tV218SUTi7bcuIgcReTeLnNuhsRLvyqex6b+2HT0ehM+vpj9vR3k7q54lbqXEVt5OicfeuHtcazs9wvoWkbtbPa28fa7wUeLeVs9Z4tZWz7k3bm71fNKl97Z6GpX3f6rOifnmsZ7t9PDp5i5N+4ajBdv7Rwu2948WbN9wtOC5R+/t0rTzm0e3dmk+acetXZpW3z6wtZ3Wh3d3ac4iN3dpjiJ3d2nOLbm5S3MWublL047PnW7v0nwmc3OX5hOZu7s0n8nc3KU5d/DNXZqzyM1dmmME3dtSOAbyzV2as8a9XZp2+v7VzWRwfE5yc5fm2I6bXXoe2nu7NJ/M1bu7NJ/I3N2l+Uzm5i7NeZl1a5fmk5XanV2aT+oM732mpPE37AccRe7tBzT+hv2Axt+wH3Aummw4R6ON519fOIsMFE2WVl8TufvNlCb1F4vcvkWStz+McZS4eYt0lLh3i3Tsjbu3SOcuvXmLpN/wlaFPSo3vfW6kKf1ikbsfLTmLdCzpu74qopGO6Hw58g057fRJrNtfQj/3Ce4vfvgW+k+XM45DjGUnj8LPfio+Eak4u3Dw0x2s43OsdOs3RforIjf3sD67mHvtOL0ziFvQSqdJf8xq91Yk58R4a0VyfKHkVis+eSfl3rro+PIjJjvncy2/9Aal4J1SGfVFkR7HkdC4+DWRelGUx190upzT9vXNdzmPIoKDh6Xr0zehjxJIITJIX5OIHT0Z/Fzi+AFJnEGnL79j+4NIe1WEIFKfjwtfbz8TOEvceibAF/1SibtvpBw7VP7huQFfHJWOdch4NYPklrws0uP0gQe+LJJWRCeR49EQ93L7+XSJW7n9fGZO7GsMoheP3Yli5wc+fU2wvv87V9//nTsfJBaPi1nbyweJxW0I//Apmq+JDJxGNl49SKwzWqKvHq7WW3xwoPPLR5rFJONBr/fJgMiLh/A9dl1iG4+1fofIi4fwPW5lYhtB+NXjAAW7InqcbCcRxWGpnZ+LMB3CT0esEft1PX/3gk9vYOXLkXRkyMe9xM9aotGSw1sgfPo+FkvFwYTp4eIXeqTjQxv9Ej2041jBEmUwj59QPogcPzeMrbO0Q/NYYt2fIx3b8ONwQBSfvih1e46cvmx1e4580pKbc6S/PUdO7bg9R9r1DXPkdIbfN8yRx3o4+uM6HLXKp29KMfV/fB5M/6BxaMhj7z4OyNBcbNW/cjFxDjxfvR4uRr7hYvQXX0yJwrEHvvirxzUOcH+kLH1RhNAS4u8QkfKqSGz0Pn4JrldFoq73ofdyx8Y3f/jlI4ofPwAQaYfvBp0/HNJQIcB5If7ja1zMb3986Cxx7873+OTqfYmbJyseO7Ti2LCqzz+iwqfvZN06AOncjIbb73yy3M/NaO8ns+OW6L1k9smHaQi1MMRPL+YTkfQhCekHkePXKG5+Iuckcm8P8Cxxaw/wE4k7e4Dnz0rduof/5MtUd+7hP/lAnuIDef3Fj+zh1JIHPq2DYz2+kRNflKJW2nON4/u9tyoc+bS5e6/C8Shxr8Lx/pUovdajNdLxD9VVX9JgQtjXp1WS3I/vsjI2M55XSX6icavS8pMZ1pEHW3nejrc/jHmUuDk7Tgfa3TxegE+nBBIOb7kOCqdW3PtSC4/DXVSPO7E+nher8enlKMFpv1Ja/k7SyyL8okiLHSppVA4i/O64nK8lDil54KvXQvGQXCjfq39NJFb7QuPVoanxIWqp+fSXDyJyerpULmwcTM61yXJfZlAspR7YXhWJs5dGLeNFkRrHwI4q8qJIYxw1dJ1acpiw85CiEBnP6xnlOr7ff+fY4nM7etwVjp7uxX5ux12RdJbUF0Xih+aB8ppIuUqc4vZgPcmchpjxrCkvJL442TomW47jr4nEDeZD5HkAfuE3/GmRtZw+hnXvq0/nNfOINbOW+rwVp49j3vxe+Fmkxv5Dq1oOIuNYRsAoI3h+NefTAm+tvOX0ttW9tdVR4t7aSj4p47+zqpHT3tK9VY2c3pJ6bARF0V3h5z/i90fl+V3EJ7NDkJmfv5Jw1JhfF42LGfqqxvW2RjqxMOexr2kIduv6c43TQ6qbd0SfaNy6IzpfS8Mka9Lf13hxjlWK76D88FH6n/rjdMcskr4QdYi6Y0OUcfyqPE+FdXzD4I5fPLiKb0+eArcd38WLT1KUkp6UfbFTBz7ue5hlpydU915qknZaUN18qenYjnsvNZ1/s+299qXRDgc1fCIST4absLwqEjuprZ1WD6fDXu6WmNtRDE+H92aJ+fly8EYv53v4ny6H63dcTvvFl8Ml1sucb+N/vhx5c617bgbHdJ3P7w/NONWplHSAe9qn/tin4+07xGMrYkuj/bDh/qEVcqr7v0b6cl+uyZCviPSKs2j7089CfdaS+K168NPPQp17RFGkchiX4/lm70s8fmVwgvOVD6KVr4jc7VT+hk79ROTeHDmGnSjeVevltQQveDz92Iq7XhWJVwik1Rd/aoRj9S5yvXo5LZZ4kh+Z/SSi33AGu6j84gQvEosr0et0Oae3Vm++EnVsieKzQ4+HzIch7tf72wjH16pubiN0ensb4SRxcxvh+Kj75jZC57e3EU4Pm25vI9welcMt3nl23NtGOJ4/eXMb4RON622Nm3eJ4+7tO7/Wp3e3M84a97Yzjl+1unnHe9a4d8d7vJYW9ZQ1P3/7qR39V7fj3rbKbY0XY+7mtooeP2p1d1tlfMN+16BfPDD3tkT0km/YEjk35NaWiB7PA7y1JaLXeH9L5NiOm1sinyxibr2SreX8/v+tV6H1/WMFP72Ye+041v3FEkTpOmwSnarD4s4svcvUvnRfNkY6uuril+6GCqrcH0zytDveLk49Stwc2U9uuW/2R/mG/jgeGnfzFvMocrNHzg+p81d1rvx8+WvPui/E/0Pm8PC+lG95ZH6SuVdgepa4VWD6icSdAtNPKmcunIp0vVwIFHP+IfK8/KacXqjSESv3/pgySGf8BZF+FbyD1J6L6OkFopsHaWqVt+9S9fS46t5d6lHi3l3q/SvRw5Ucn6vcOkhTTy9T3VzcfdKOWwdp6ullqptrqtMTorvHVx7bcW9NdeyOm8cRnjXuHUeo7f1lavuOZWp7e5l6TkAUR2V0yp/F/pjF3i+3p+PLKbcq5ZXfPwtY+e2zgI8SN1PY7SvR1zr0XqE8nd+xuVMnr6fDKW7eJX+icSuRvl+GRecUeLPYlo6nZNwrkz1q3KySPUX93brS2xqHstKzxr2q0lq/Y4V87NWbNaXnltydI8c+uVlTetT4hqu5O1fP13JvrrZvqIG+rXGYq+0bKqDbtxRAn3v1Xuny+Qf3VtGxHp9K3SnEOB718UO9cC4H+XDLf3oqde9V47PEva2YLu9uPBy/PD16rOZKfhf9p874hgN/tX/Lgb9vL2FO55ff/EjrSeHeN1pPl3H3E63Hrrh3Jq2O453gzTNpj59FjfM9HjeW+ciicl/j0QtXuprnhwzoePvDP2eJW0Hbr+vdoD0d/0Kq//BgvI+f/Xp7lr//JeL+DbO8vz/L+/Ud56afvk1DV9z5ED1/Ib+dv29z66X+c6So4plJT3uVHyOlv/9pqv7+p6n6+8+QvtAd5fk5Kcedl9JQLsH5eNBXNfr7Grnw8qPGqfqzxulCVDVvZfOHgTk1pFc8dc1fXvhJ5FiHGkt96mlf7WsiPQ5OpJ7fI/2iCFpC/A0i9XoqwqdH8xL7c4/trfHa4DSkkR/OCPziCMdZZ4/F/vN+5dMPneB0P+ntpR5peN7RRn8+NOewSZVK/XnY9NMZkDfL0Ho9psQLZUbpeeVPDTktL5Xje47KI62E+geN0/m+DeUbLd1llw+/msej/a74+a4Xteca7fgINx41PFj4+dUcuzVub2tNT+h/7tajyEglYM8nyfnNqRKTpAidfnxPi5pbd7iftCMkZjuenxPaT6f7IfQeuwZpkvQPxx2eatpbPGl84PN2nDS4RuEU18Nhsnw8MDFucx8or2ngsdjcYH6qcR6ZFgeOPLi9rBKV5A8ez/tE6N17AKF37wHkmAB6Kr8Y17MagX76nRklNtpHeb7SPEpQvBMziPpLt7k1zix5cPrx/tLIatrBUC7PVTq/vTt1lri3fOe3d6e+0B30eqd2qNQXg06xrnqwPD+3scv7d1by/p2V/No7qx+743Aw72dDo0nl+Ymaom9nMn17N+N0JR0HHz34kJPtZYT3tnaOEo9siN8Ylafvb30iooxyZX36/tZnIsjuD34pr3bCMuSxIH0evHIqfHjcpcY+QM8HUX5F5bERE8+m65UXmtdrGoVe02Cc7clpaL6icfcrMvoNb+eeNJhjg+aRRPLo0n0N1Piy/nCM/Iebs9O7OTcT81HiXmLub5eSnjsjtlW459eMf+qM4wekYiPisdasB5HTGdR3To89N4OjbEo41wl96VoYVajc+WURnDF6jZdF4gxaKfp8rh8/Th+3djxOGm//Xurbv5fHD+rd3P0/f5Tv5u7/+Ibd/2PUUk+v5edBuT405O2nU/39p1Pj/adTx87A/XrLL8J97Ixx/ALVrc4Y73/E6rG5+XY2Pu2S4UDfqj98f6bc1xDsbynVpxrj0vef0Y/jm1I3f/DLaYbd+8LwKNc3XEwp33Exp3elSvzaFsofbvrwzG6U0wDj7dO086j9C80QnPuQS40+NqOcZvvdTHgUGSw4CTM/wvj4NYCjiGA7Jv9QflUkytEkl8X9JHKsnUqv5UiuixtfaUmcIztkvHo5Wj0XDU03dV8T6ejYfvj6zKD6i0V+qIiv8rRjzyL4/htR7pMviVR83C//Xv08xHq6nFsHSZdTdr23LDtL3FqXHa/k7sLsLHJzZTZOT6lu56Mixx2mO68pjfp+jf+ob9f4HyXu1fjfv5LnBXLnHr33mtL4hmP5yukRNQm+DSw9lwrrF0SwdfDA8prI3TeVzi3hitpYOYmM4wNVhMyD02+NfkmGK16t5VSu8lUZHKnzkJSDzKln6kD35t+bL3Vvw8ZqfmL2s8jpYLx7rz6doufm22RnjXtvk41TYcW9t8nG8YS/m2+THdtxt0uPQxtLzsco11cjp8Q7aQ9OOfqLU54aIofk5QCkqNCYkofIOS4H7n0Y57yiuPVhnPPKNT5eMLQ//0rgkPc3BOT9DQFpv1Ti5re9zh0qcWej+ffm45Om8fZduHxD2f+Qbyj7H8eDyqIIUPM34D+e8XHSeDxm8j7tLZepf0VD4jirLvL89Ldx3O25N9FPzdAoVOnKemgG/9Jm9NjtfjwmODXj7U/6nSXuxay+feTJOIXsRXH3Prfqn3YGv3t/eFS4dXt4uo67d4dHjbs3h/0bXk0px33EmzeH/f1PpY3+9qfSjhI3bw5vX8np5vB6/+bwGw4oK6dXB+7fHNJ33BzSd9wc0nfcHNbvuTms33NzWL/n5pC+4+aQvuPmsLx/J3N9w83h9fbN4ZqW790dzvOy3r89PLfkbq/Sd9wf1u+5P6zfc39Yv+P+8LgcuHV7eF5Q3Lk77G8/DZyvsL9/I/JQ+YajqE/Pvh9TKl41aSM/7r3uawwUE5RWn2sc6+5b1N0zPX8GfyrfubfcPCrcWm4eV3k3l5tHjZvLzccD1m94ODqOj1awwOr9+ew4aVDH4Vxd62saGvFCp3aUi/p3RB19x/3/sU+w2BulHq7n9GLV3QPgj2dLtKjubHzl27yP2zunV6tuHgD/EHn/odVD5O2nVmeNe3cmDw09LozuvH33EDndIt06Bf6hcfx42r1j4L8wNnoam+MsuXUQ/Fnk5knwn4pc74vcOwv+sTF69/BzfrFjb54G/5nIrePgH5dzfOXs1kFmn4ncu50+X869E+HLxeWXt+TWmfBfEHk1AG+eCv/ok9Pq5Oax8J/N+7sThX/18Nw7Gb5cp09U3T0a/rOm3DobftZ1vX8nLPQdd8Ly/v7CZ2ucW+fDz3exzyp3DmY/q9x9EPbZ9dxsyekBMt7srcT1tbulW/fS57ulO/fSx6r8W2041/XfacP53SSsxTltvH7p/SbBO1Iy6msaPV6RppHeK/raO1IUCf6i59fST18xuPui1VHk3knqZ4lbJ6l/InHnJHU5fyG74c7mem1kf9BoL2oQNOrzQXlswr79mvUnGreeTq6d+1+pcfMbBufvW//DV1e/Ni6x9CYdL2aP3I5XNXqspx74qkbaqTlpvJ3R5e2M/snhCLHyGEQvnq+Ao2GpPts7O541ca8n6N2eOJ4AgjoT1vyyx1dOEemxG8m9lhc14vfxgS+eZtIZ7Xj1VJUed1EPuVdPVSm4c6GX+2NA4zAup9Uo46011voNGq+ddvPYVI2de+H2ogaeIOhpjh2/RovDuzo/1yjHZ6I6YjXY88d16s8qdO96HguPwyOzT9qCr56UY1uOnx2Ih9+P0U6HXH+hJR0ndvdL9NQSOe7NxrdGe+GTyqk6ivGwKT2jeayrbs+UjlvkcTgHpBwrXu/PFLq+ZaaM75gpRN8wU8Z3zJTTs6v7M4X4V84Uxge7OH+v6+eZQqcPOlMcKsKUf/36R5HTrYxSvIqvudyzf+Fq4iRNvno9XM3p3LnbV3M8cvobrqbE9vsDX/v94xpHYHIlfU2D0A7ib9CQ8qJGPO7lel0vakTh+0Pu1T6Nk6+5HmLmrFGh0Z6vKc4HHMeLsJT3yD4eTvz48Xz7kJVPNO7d7ZZWf63GvTvmY59WnONT9Tr16bvHrByb0XDTnY9G+gfN6N+QyE6nE99MZOdTtAmlkukw36+dxM34CJE875F+nU9punWc91Hk5sbfUeLext9Z4s7G3/G4+Fu37+cD5+/cvh9/Je+1obzbhvYt3/ls3/KZTz3V3t3/MMxR5t4cPUvcmqOfSNyZo+dvXN38ws1R4/3vKN2fI599F+rmHNHvmSP6/hzR9+eIvj1HjsXVqMwqOad/uAs6S8Sjh5KzyFck8HyM0mFkHyUeN/7H+6iBBe6rGlEBIem+8iuXkk/wSFuqX5GQCNsfnxZ+QUKL4HHQqTM6/WqVIiirlPwY5Wsq2L4rOuhVlYEvbOeN1S8NMGpNSV+LmBpFwI/ZUl5rBZ4G1+ulC3kskhkbommTedxVWBsBqzdL66804rEhiPPy+0sRVypO3K3jtVZw+hpT09ckBBWQfbx2IZiclV67kBq/B4/E/tKF4F1bbfKKwIh7wFy+8pWLuOKe6YdPKPwU6nT90uk94sHFoNd6Iub2UH6zK18TqIRidKrPv2tzlIiFzgPH2xLpTuVLEtjfoMNXfo6njOMbP7VdL0m0KOOrfL3WF/hcUa15JfyqxGuDiirAmnPml/oCtUStvjaoraJoteprEgVlvPzioAq+HSMvtaJonIf3WJy0lyTw3aeSH6N/lCh0PGaFkP9J6Nl207Ed+LphZ37tUvo//EDilyRiipf+WpSUHq+e/vAdjq9dCMpcL3pborzaCoXES+H+WOuiL5q+3YrXBvXuOy90erx0850XOu163X3n5bS60Fh/t34939A4rhiRNCRLtPsLcIkbtCJ1vCTRGV954NdaMeLE+8eKrLwiQRf2uK9WX2oFvjL1SMevXYjisyq9vHQh8/s/cT8zXmsFPtxVWv5S3RckWkTJ4ykoP5UodHwe9P4NYo0d6vLDYucrlxLfIS35PZ1XO/RFCZRxzkmCrvj4yi2149mMF15wS7sPcj/ScMOdX2j52IxzsKbzTOQliY4DQK78LvZPnXE6J+/227bEx6PE771te9xKidvu+Uz4dDnH154Ud++i5enxPZ+pxKHIDxZ+rnJ8fRiv6l16HKD+7uPg429k1Bw/fi5fmmr5i5t5Yf3zlZxeNLo/1Y6n7d09Xv2zEcazEHn+HaJHW9ovnydMeLUll8z+3Lt3DwA9FWN9okI4b1qOKqdzp+4WutGp0P1moduxJbcL3eyYvqfXc7fQjfQ0c28Vup2zwWNk05dNOS1tHg/RPrblVLoXu4vok3Y7VzeKPZxW83uU/HH9r+8fof0Qef+YtIfI2+eknTVuHkdw/2L0dDHvn6NdqH/DWWmftARvqlxFDy05vch070VZOh3VcvvUtrPK3WPbjiq3z207t+XuwW1nFSoovju2ZRxvtq6QmXw4wuoznbvnyH2ic/sguc907p4kd+7lu0fJnVXuniV3jKabL3sfw/ruaXJnkZvHydEYb+eGeh3vxG6+RH9syd1+PY/wzfPkPpm1tw+U+0Tn9olyn+ncPFLudHPYLkEIPZ8t9fqGpUK93l8qHDVuLhXuX8zzpcKx/CFuLH9IS19QYEI5a32+0qinIwfvHq3zici9c0rut+S5yHGadvwqt3Johr4/w04ad2fY6SHW3ecEld5/TlCpHB+/49Nf+XHvh9rHh8phRTu/GhYq4/BbXo8fdbq1d/hJx978plM9vTVFOEvqOkmU40oU+5gPLqeePY3PzdrUT1QYr3LzD5vUX1KheILxwPaySpzwM2oZL/cLo+5X5NV52+Oh4ehcT/P2rkr6kN9XVSK/PVBeVLlf+vtZ/96rq76dsJ8vZevp/D888VI9pcnzYd43S7M/1blZnP24JPmeITrp3CvP/kTjVn32ZxpPC7T/5fF/fv+HP/3tX//81z/8/u9/+utf/vvx9/5vSv3tT7//tz//cf/f//ifv/wh/du/////5f/m3/72pz//+U//+a//9be//uGP//4/f/vjVJr/7rdr/88/9/nZlf54Gv4v//Rbefz/UR4/i+PxoPfx/+vj/z+2SZjmv5v/sc7zPR7/o/MfzP+6z1/zx//Qv/zfbO7/Aw=="
3984
3980
  },
3985
3981
  {
3986
3982
  "name": "sync_private_state",
@@ -4056,10 +4052,6 @@
4056
4052
  "error_kind": "string",
4057
4053
  "string": "0 has a square root; you cannot claim it is not square"
4058
4054
  },
4059
- "9829419490427811213": {
4060
- "error_kind": "string",
4061
- "string": "DstLen too large for offset"
4062
- },
4063
4055
  "9885968605480832328": {
4064
4056
  "error_kind": "string",
4065
4057
  "string": "Attempted to read past the length of a CapsuleArray"
@@ -4141,8 +4133,8 @@
4141
4133
  }
4142
4134
  }
4143
4135
  },
4144
- "bytecode": "H4sIAAAAAAAA/+29CZhdV3Umuk/dq1JdVamu5sElW1eW5UGe5QEzBluWLVuz5VEm2GUsrLk0lCQLmTAFCAQnEHcDCd0NhIB5CTRNQibSSbpJeBkIjzzSXwg0xCEDCQlgJ0wJoUNz4rOq/vrrP/uec+4q6WLV/j6p7j17rX+tvfbaa49n3yQ8neZlf4+cOPCS+w4e3n1seHTnfUdGv/9/+jTJcuuhYkraivnosqdz+jKKHuCsff9fKxQT1EcSy/G/8uV9DFiKP/w7fxKqyn+6/ClPxfKHXlME+FEXw535/X/98Pkmkl9R/5d3qv+8iM5WN2uBvmUfvnHkM+/7xKO/9LvvH338vW+d+7nZP91/yaxXvPa1Tw59bdnPPPXa9xjvjYCbhMJ69Rr/OiX7Bb9a27Hrw98Z6b/5NR86/rnPbj46e9nwx5b/2Ht3fPwty7983+uM9ybF+3dvescrmh/6qXe1Lv7kN3tv/smv3Pf1W2Zc97lPPrL0d1793S8/9Zjx3qx4P73ju1/4SPOxlz386K+fvO7C+cMfeOwz//j3v/eJ/9r8+hc/eOgz1xjveihzPZTzxTTdUo1/rC3eWo2/x/g3AH+VWLCxGv8c498ED1v24VU/9/4vXP/oJ6/4q+/OeuOm4R99+Kof/5O7vvqyJY+v+ps9H1z2gbnGu1nx/uXo2reMLt5/7Vf7PvXole8eOvuJbzz+kb/91omd133lb//uV1Z83Xi3CN4lay549sG3//GCz1947v9+4f/4wGX/Yek3znve539t/buf+s4f/HMYr7Ot1co8ZvNt1fjrxn9bNf6a8W+Hh604j4WKsbLfXpzX0gzjvUPzJq8598jbGo8mmz726ks/MjDrY1++/p03rP3kJ370jcubH3in8d4peFc/r/HUe9/4I68Nf/H4P/zEt1b/9xdeOvec6+de9r/e8adDBw7fu/Qp470LClPCXsuM/27gJ92jyfjvqSZ/jH8HPGuFYsl47wXZJfjH2veLysse4/3h8rxjbeTFBhZK2azf+O+rxj9g/PdX459t/MPAX6IvbBn/A9X4rzD+l1Tjv9L4HwT+EuV/ofHvrCb/euN/aTX+m4z/oWr8txv/rmr8w8a/uxr/S4x/TzX+B41/bzX+nca/rxr/S41/fzX+h4z/QDX+XcY/Uo1/t/EfrMa/z/gPVePfb/yHq/EfMP4j1fhHjH+0Gv9B4z9ajf+w8R+rxn/E+I9X4x81/oer8R81/hPV+I8Z/8uq8Z8w/pPV+E8a/yPV+F8+Kzw95/3soqcfpPPgJVnm0dHd+3aPnrh55+gdT39aO3JgdOfDozMAwOTh9x76XqPvdfpueDNy+JinXbJ5dy/p2CrGvnUgo59J+iB2H+nZCoXS2QnhhTCxnIHwG6RLSXlJQngmj8tndWZlbwhdmiKPbdwQchpCTlPk7XXEOuqItc8R64gjlmcZDzlijThiHXbE2u+INeyI5Wl7zzZ0rEuxdjliefqEp+09/WuPI5Zn2/b0id2OWJ4x+oQjVrf2jzb2tbEDjjWSnL8mh5+ZnAZhVR33qHL1CXkx+pkR+lkF8dNxdTP7nI2rb9z5wNGHNo48FCjxUPfGHBWXEd09EdUYN6F//HwZPasJWkxp8bIZhBXvpp2jL9l1+/BDD+188PuFPMIcjLQ25zkPSJHGBuOzSNNWKJR6ijgl4jdIl6pOqZxGNbbUqrZNnFl148jwg2uHDx45um8nT7NwisBWQVR8puo0Ac3wWY3o1tL3DYIvCOw032pugJ63QqE027xitsi0vEHAnkl5TcjD2uRUE/qbzinmE4vGcZmO9cH6GKS8fshrgmyu11lCjunfI+j7CWuW4DPbt5NXE3w8LY1NnYu0NitHmppChsmewqiwoNujgpWvv5q8+QnxozzENH3M1gMiz7CsHfbmYBlvneh/MfvbJLo07SAZA0JffGb2SZeRPki6o23ZTzqxI+KZXvgM8RuhI79MYvWG5WM/qRhj5xWxO+rDMZlti3GvNwfLeOtE/9vZ32aYHPfZT2YLffEZ+slHSXe0LftJRTteX9RPDL8ROvLLJFZvWD72k9nV5L2wiN1RH9U/o22xD+zNwTLeOtH/Ufa3SXRpYj8ZFPriM/ST38s+9+Xo2wqF0nE1bmE/Q7uUOf5Q1M8MvxE6qvckZkfV3tTYy3ibIo+XlptCTlPIaYq8o45YRxyxdjti7XXEOtalWCOOWIcdsfY7Yg07Yh10xPL0+260V6wfKouVJk9fPe6IdcARy9NXPcu4yxGrW9v2SUesBxyx7CgCj/MMP019YXLbKzs3QTzTE58hfoN0KSkvidlFjRmtfHOqyZubED/KQ0zTx2w9V+QZlq0k9uZgGW+d6BdmBm0SXZp4TD1X6IvPcEw9J8MdFPry+kJZf0R+thHysT92Ul+IZ3riM8RvhI78P4n5h7KLlW9uNXlzitQv6mO2nifyDGt+9r03B8t460S/ivxxHujE/jhP6IvP0B9byUTd0bbsJxXtuK6onxh+I3Tkl0ms3rB87Cfzqsm7sYjdUR+z9XyRZ1gLsu+9OVjGWyf6NeQn80En9pP5Ql98hn5yaYbbl6NvKxRL3EYMA7HRLsXrIfnHon5m+I3QUb0nMTuq9mblW1BJXvIU+wbKQ0zTx2y9UOQZlu1f9uZgGW+d6F9IfoYy2DcsD/XFZ+hnz6V4hLZlP6lmx3BDUT8x/EboxC/H/UTVm2pvVr6F1eRdX8TuqI/ZepHIM6zF2ffeHCzjrRP9JvKTRaATx6NFQl98hn6yPsMdFPry+nusvSBuU/AbnfK5EnHvPlWnJfgPGf+iavwPWx0vhofcnpbA8xL+dmXR9mT4DdKlantaQvK4fLwGu1To0qS8NPFrOUuFnKVCjsI64Ii11xFr2BFrtyPWQUesXY5YI45YhxyxPH1ijxOWipOd6HXMUa+FTlhpOuqIddwRa9gR66Qjlmcs9GyPhx2xPOvxEUcsT5/wtL1X2w7OZfT0iSOOWN0aJzz1OhPGTNN92umzvWd73OeI5VXG9PMiJyxPvdLkNZ7wLiPv3+HcMsn+9gkdSsxbX5AQnumJzxC/QbqUlJfE7ILl43nyWUKXJuWliefJZwk5Zwk5CuuAI9ZeR6xhRyzPMo44Yh12xDruiOVp+5OOWNP1WA7rEUcsT5/Y44h1xBHLM34dc8TytL2nr3ravlvjl6evevrXIUcsz3r09C/PNuTpX0cdsXY5YnmWsVvHcp5l9BxPdGs9etreayyXfl7khJWmbh3neI4xp8cTz4w25BknPPXy8q/080InrDQ97IjlaXvPMYD1tXxuzPDTpM6hlFiTWpEQnumJzxC/ESbXZZU1MHW2SJ1B63CNr5UQP8pTa5dqzY37pKHse28OlvHWif7GrFCqbfAZvaJ+k569+qHsy6DQl9tc0TNd6hwh2wj52B8r1letqD/ymmxF/4+uySq7lFmT9Yx5iDUYJtu40z2nhaI8A4KP6xn1K2H3wu8qGH4jdORXScz+yi5WvqFq8uZwrEB5iGn6mK2XiTzDOjv73puDZbx1or+f4g7K4LizTOiLzzDu3EtxR7WJqn6v4ukzTc6A4OP2VdH/ZhRtX4bfCB215yTm78ouyt+NV/kp27+on/4gYpn/DUXkxOKKkoP8Q9NyOpIzIPi43WK9Fm9HyV8UbbeG3wgdxYkk5rfKLla+syvJS57gvgzlIabpY7Y+R+QZ1vLse28OlvHWif4nqV9EGdwvWh7qi8+wX3xjz0Td+R7DNHVmx9As6ieG3wid+OW4n6h6U/HNyndONXmDReyO+pitl4s8w2pl33tzsIy3TvT/ifxkOei0g2QsF/riM/STt2Vf+tro2yZtVrYuwf/FvjDZdiX439VH9CX5LzL+FdX4f834z63Gv874V1bj/xXjP68a/6uMf1U1/ruN//xq/D9s/BdU47/Q+C+sxn+V8V9Ujf/vjH91Nf71xn9xNf5fN/5LqvG/xfgvrca/1vgvq8b/TeO/vBr/Y8Z/RTX+p4z/ymr8ifFfBfxl1giN/5pq/DXT92p8KHQyfOur1gB9kvPXsDjPZDUIq6TuSUx31I/HxVeDPCxjHtbVJbH6RF6VOrkq5JcL8QciurCeaXoA6Dopc5r2OGGln892wkrTUUe9znHCStNLHPVa7ojVcsRa4YjV64h1riPWSkes87oUa5Uj1vmOWBc4Yl3oiHWRI9ZqJ6w0vcxRr4udsNI06qjXJY5YlzpiefUd6efLHLEud8S6whFrbpdi2fi+w/WKWzpcr3hOh+sVmzpcr9je4XrDzR2uN9zY4XrBRhsrXwAPk+yvWgsoMW7fnBBeCHr+Y/gN0qWkvLH5z4Ukj8vH+1YXCV2aIo99/CIh5yIhpynyDjtinXDE2uWIddARa8QRa48j1rAj1iFHrL2OWMe6FMvTV/c7YnnZXvWL3eKrnu3xuCNWt7bHhx2xPNtQt9r+gCOWZ5zw7Gs9Y7Sn7T3t1a3+5Tk28axHT9ufCXHipBNW+rnliHWuI9aKLsRK005HvVY6YnnafkGX6rXKEavXCStNnj5xtiPWeY5YnvXoqZenr7YcsbzslaaHHLE8fdWrHj31SlO32svTV893xPJs217xK02POGINO2Ltc8QaccTyHJN7zhU81x5tfG/r2KsgL8n+driGP5gQnumJzxC/QbqUlBddw8fy8dnki6rJm12kHlAfs/VqkWdYtifcm4NlvHWi/2+ZYZtElyY+m7xa6IvP8GzyL9Qm6o62ZT+paMfCvxVq+I3QkV8msXrD8vFez2qhS1Pk8Zi4qL1V3R11xDriiLXbEWuvI9axLsUaccQ67Ii13xFr2BFr1BHLsw151uMJR6xdjljHHbE827anf3m2Ic+4eibY/pAjlmeMtlho74/ieKaP5JQdeyO/0XX4vsttHb7vcmeH77tssXHRJfAwyf6qd1FKjNFelRBeCHpMaPgN0qWkvLEx4WUkj8vHY8LLhS5Nkcfnfy4Xci4Xcpoi77Aj1glHrF2OWAcdsUYcsfY4Yg07Yo06Yh11xPK0fbf66nFHrL2OWJ7+5RlzjjhinQm2P+SI5VnGY12K5dm29ztiedk+/bzcCStNnr7arWMATyxPe03329P99nS/Pd1vt8Oa7rd/8PvtNHnaq1t99WFHLE97ecYcT9sfcMTybEOe/Xa3xuhuHU94ltFz7OtZj562PxPixEknrPRzryPWRY5YXuvk6efVTlhp2umI9ZATVvr5XEesBY5YZztiXeyElaYzwfYtR6wVjlgrHbE87XWpI5aXr3q2oTR1q993axmf6bHQW6/pvuMHv+9I00sd9fIcy3na63xHrPMcsVY4Ynm2R097dWvf8Ygj1rAj1j5HrBFHLM91AM/1Cc/zOfyODJ4NS7K/6s7kVE4rFEqXJIRneuIzxG+QLiXlJTG7YPnMLlb2K4QuTZHH8fAKIecKIacp8kYcsY45Yu12xDriiHXCEWuvI9bRLtVrjyPWsCPWSUesBxyxHnHE8rTXYUcsz/Z43BHL0+89Y6FnPe5zxPKMOZ4+ccgRy9P2u7pUr1FHLE+f8BybePbbnvXYrfHL078822O3xmhPLE//2u+Ixb+RfTnkJdlf9fs0JeZO5yWEZ3riM8RvkC4l5SUxu6g5rJX9SqFLU+TxHvCVQs6VQk5T5B11xDriiLXbEWuvI9axLsUaccQ67Ii13xFr2BFr1BFrlyOWZ3s87ojl6V+e9jroiOXpX55tyDOuevqEZ1zt1rbt2R4929AJRyzP9ngm+NchRyzPMQDfg4DjZb4HoeyYHfmNbkDwJdlf9ZuQJcbQb0kIz/TEZ4jfCJPLXGXMruyv7GJlv0ro0hR5vKeuftfwKiGnKfIOO2KdcMTa5Yh10BFrxBFrjyPWsCPWqCPWUUcsT9t3q68ed8Ta64jl6V+eMeeII9aZYPtDjlieZTzWpViebXu/I5aX7dPPy52w0uTpq906BvDE8rSXZ7/taXvPMYBnjPYcT3Srr3r613S//cxo29Nj8mn/4rzpceHp869uHBemydNe3eqrDztiedrLM+Z42v6AI5ZnG/LsO7o1Rndrn+ZZRs+xr2c9etr+TIgTJ52w0s+9Tlhp2umo10VOWGl6yFEvz/0hT3ud74i1wBHrbEesi52w0uTpE+c6Ynna3qtte7ZHzzaUfl7thJUmr/aYpjPBv1qOWCscsVY6Ynna61JHLK9Y6Bmj09Stft+tZXym97Xeek2PTX7w+440vdRRL8/xhKe9PMfk5zlirXDE8myPnvbq1r7jEUesYUesfY5YI45YnutMnutfnucL+R4UPNuaZH/7wmS/TOW0QqE0kBCe6YnPEL9BupSUl8Tsos5JW/muriavPyF+lIeYpo/Z+hqRZ1jXZt97c7CMt070/3828W4SXZr4t4KvEfriM7NP+lvBf9Q7UXe0LftJRTueXdRPDL8ROvLLJFZvqv2oejPepsjjNZCi9lZ1d9QR64gj1m5HrL2OWMe6FGvEEeuwI9Z+R6xhR6xRRyzPNuRZjyccsXY5Yh13xPJs257+5amXZz166uUZJzx9wrMeDzliecZ7ft8Ox0b8vl1s/KjkIL/RDQi+JPvbFyaPUUqMl16bEJ7pic8QvxEml7nK+EzZX9nFyn6t0KUp8njt5loh51ohpynyDjtinXDE2uWIddARa8QRa48j1rAj1qgj1lFHLE/bd6uvHnfE2uuI5elfnnp51qOnXp5x1dMnPOvxkCOWp+2PdSmWZ5zY74jlZfv083InrDR5+mq3jic8sTztNT0GmB4DTI8BpscA7bCmxwDTY4CptFe3+urDjlie9urWOHHAEcuzDXVr3+Fp+24dm3iW0XMc7VmPnrY/E+LESSes9HOvI9ZFjlhe6/fp59VOWGna6Yj1kBNW+vlcR6wFXaqXVz1663W2E1aaPH3Csx5bjlgrHLFWOmJ52utSR6yLHbG61Ven2+PpKWO3+td0PzTt90qvlzrq5TnG9KzH8x2xznPEWuGI5dm2Pe3Vre3xEUesYUesfY5YI45YnusTnusmnueZjmV/7WxcL+Ql2V87F4jtLZXTCoVSPSE80xOfIX6DdCkpb+xc4AKSx+Uzu1jZzxa6NCkvTfyezNlCztlCzqnCUvWV/muFQumOvqBjT6sY/16z5znwkH0Jzy+UqNslRX3J8BukS1VfWk7yuHzsSy2hS1PkxeqoJp715GCl6bATVru6P116pemIE1b6ecAJK02eZRx2xDrkiHXMEWu/I5anvY47Yr3MEWvUEWuvI5an7UccsfY4YnmW8aQj1gOOWDY3sP4Lx05J9leNC0r0pbMTwjM98RniN8LkPrJK363GVFg+s0uHY5OBhPhRHmKaPmqswP3uiux7bw6W8daJfm/28o+qax5ztoS++Mzsk77n/dIMd1Dou4pwy45lkd/o+gRfyz5848hn3veJR3/pd98/+vh73zr3c7N/uv+SWa947WufHPrasp956rU/12F93mX8rWr8841/RTX+ecZ/bjX+uca/shr/jcZ/fjX+643/okr8yVjdr4anrUK842W/uJLssLyzd+GSp4wf13J6CvOHPuN/VjX+a43/umr8zzL+ZwN/Cfu1jP851fjHyv/cSvzJE8b/PFQq+3ven3505rd//ifrv/hnT40c/+bqx/7w5kd/6xee91OfvPQFr9z+V2/92ibjfb7gbSN3zGdfMPakVLkHjf+HSssOzzXeFyreF/xqbceuD39npP/m13zo+Oc+u/no7GXDH1v+Y+/d8fG3LP/yfa833usV76d3fPcLH2k+9rKHH/31k9ddOH/4A4995h///vc+8V+bX//iBw995tq0X3gd9QvYn8+Ez+aHaUr5rP+/h2jSVCf64cFxvjdm8gaIJ4TJ45UeeF6iLpZiGSyp8YrhN8LkslcZr/SQPC4frzXUhS5NyksTjz3rQk5dyFFYjzhiDTtijTpi7XXEOuyItccRa8QRy7OM+x2xutW/djliHXXEOu6I5elfnvY66Ijl6V+ebeiII5anT3jGVd6/wjweB8yA5yX65Z6i4wDDb4TJ/XKVccAMkpdnl/7v/5uXfT46unvf7tETG0eGH1w7fPDI0X07cTSBIwSWkhAqPkvCxNJjXo2e1YhuHX3fIPiCwE7zreZm0vNWKJQuM6+4TGRa3uWAzSMr/CVwrE1ONaG/6Zz+fWLROC7TsT5YH5dTHu6IXgGyuV5nCDmmf4+g7yWsGYLPbN9O3pncElU9GW9T5HFbLDryrxIhmtnnLELcuPOBow9tHHkoUKrT9xtzVFxCdBtyVEsEbkL/+PkSeqZMgdixSWARl0kTdzKYdw/Jme5knkmdjMnFoyHKEoZpSxxYpt4cPm7U/KxH0M8grBmCj4Ox4kcM5GOP6QuTy9qyD6/6ufd/4fpHP3nFX3131hs3Df/ow1f9+J/c9dWXLXl81d/s+eCyD8xLZX2tL98uXLdmpxltylcn+vNh6eefMnmpRy7O8jOPvOHovr237Rw9vHvnsZ3fj21HAqV2brSJvm8WfCoNhMlVzYGhYkMtHBgMvxG0q7RCoTQWGNSoHMtXLTCwQ/CoyjswbKbvVUafFc+hlR59cneGo0+sTU5q9Gk6lx19Yn3w6BMbKo8+lScGoX+PoOeAp4InB7w8edNd9NNpeh4IaXoeKPSf6nkg880Ik1sud/dGe3bj6b8dttgwF/hYx+k+++k03WdDmu6zhf5T3WerSJIQxlRO8VE27xmnqWUf/nJ07VtGF++/9qt9n3r0yncPnf3ENx7/yN9+68TO677yt3/3Kyu+0WHUuLPDaHdHynddFjltMsZ3M+Bn65ny9uGNt070L2iM8z0v+5xGlFVZfhZR7hzet/vB4dGd6w4cOrrz6M4HN4+M7jxy/YEH1x3beWC09NTsJvp+s+BTaVYYL/BCwsdCponXsLI2OHb4jmnYQEZ/Q2aU1GBfyh4qpzN9Bog/hMld0WLSvRUKpcJdkeE3SJeqXdFiksflq9YVsTujVRAVn3HYwLxT0RUtpeetUCiV7op6KQ+7IqxNTqorMp3LdkVYH9wVLYE87oqwXhcLOaZ/j6BfQliLBR93RXnyaoKPhxIJPce1rIVCNq9l7YDo8OVF+XZYGPLtYN/V4J3tbflp6tAn7yoaTQy/ESbXfZVospTkcfmqRRP0FJRyJ6EaDdJiuhM0Q3r+zrVXF3ycDKdOOh+BTvhB6vSxXIOkt/J2fMaDJOQ3OiWnv0M5/UKOefJM4Lub8voieQ3AHKS82cDH+ztNyNtBeXMAs5/y5kYw5wnMtO7mzRrHS/+1gE55Ou9CqJcB+PsMok3Ti7K/daJ9HfjVw+RX2IrZr5a00TvmV0tCvpz+DuX0CzncW6WJfWepKKvlnQV8XM9DkMe+s0yUi18+VpjnCMy0fhqzJtK1gI4j/kp4XmZSUjTiG36DdKka8VeSPC4fT9hWVZN3R0L8KA8xTR+z9QUiz7AuzL735mAZb53oH8vaW5Po0sQv7Vwg9MVneMj6JxoTdUfbJjl/DZefcfvCsrfCRDkYb+4Bfd7emFiWFuTVwuS4ZhNijlXzYVfwHRSrkJ/rrjWuVsflb4XJZRwMk20zCz7n+ffKiJxZkfJMVX3OIjkYZ7E+H6f6XAV5HKPTzyuyz3Wi/+7scb6fp/pUbVHZmfulsnYeFHKm2s7cv1zgKAex+CWLiwiL7Wz1ZHa+EPIuIj680ArpcNaFL4KtFrIVvmG088HfaOiy5fmgyaoT/RfBB3+rog9eQHnYV7TCRD1ND7QD0q8Iuly9OfR55fo4zDq/smgipvGjrbAuOP4a/e8D5pOLtJ5YLuwPeLFX+cNFolzKpnyZmpKNdt6QI7s3xH2xTvSfEjZVF01cRLoj9nzS5cI2unP7Rn6jGxB8ncYRpXO7NvlnJdukvWjKvvuH0Cb/N7XJmI+gzjyPKGvnfiFnqu3Mc4TVjnIQi/uFSwiL7Wz1ZHbGl2wvIb7LII9fxq0RD9IjhsIv2i98paHLlueDJqtO9B8CH3wyMi+O+eBqykObtsJEPdvFQ76wzvTuDfH+tk7034r0C6q9YqzlfsHo/yXSL5hcLFesX1C+eLEol7LpJYSlLmZAO3O/oGyK5V9O5R8r26zx8sf6BeNX6xH3Uh6uR6yivLMgj8esQ5B3AeXhegSvjeDFDhzv8DIt9BFej5gZKU8fYPB6H67bLaW82ZB3FuU1IW+I8nDdbhnl4TERvpxjHuSdA2W1dTveHF2YPe9w304eXYmtiyY5f0Mo1h/w0SqUs9hRDmKtIzlLHOXwjgPKOUvIsfoaIr5WKJQK77MafiNMbrtV1smGSB6Xr9rOCEYbtgqi4rMkTCw95sV2RtLUyT6ryV0GecoSvHKOZVqWw4e2COJZj6AfIqwhwWe61yL8iIF87DEJPc/bjzSMOtFfBr3VP1FvrWShPbjHNN3zTkywDka/BnT40iKNWc8p11k5mOtmjdvjmlkaMwhMVa5lVC7WYYh0MPpni5FAjWhYH/Us/Y4jo2U5+ql6Yl2xl8srD9eT0f9QpJ6WCh2wTW5oowPTLMvRYa3QQUS3tSMHT2TRLVDiw+EcndjyvG+7VODkJcNPvdA8Up0yOEvwLaXvPUKntOR2mdnYq337do7uzCl7j9BNyeS3lizxeNT40tQXOurTCvehht8I2vNaoVBKOMqZPC4fHwcfEro0RR7WL/tRTE5ap7bGktXp9tGRw3lVWrRzTYRaIeR3skmYWBXIY1Vd8V7d0oebeAh3BdDzMPJK4MOgxonLjeVJg8s3Sxx8QpvywSd0zysoD5vKlZSHrrSG8jDgX0V5OHW7Ovs8GCbXF06zMC9NNfGMh9jIf05EzpwO5cwRctTWOPtmxXv/CoehH5Q7pvkgmk29/xoGSAdo6h67B77iWzjXFrWr4XvdAz+T5HH52K59Qpcm5aXppUDHeTXxrCeCdcQR62FHrMOOWHscsYYdsTzL6FmPnmXc7YjlWcZDjlijjlgHHbH2OmIdd8QaccTy9AnP9jjsiOXpE5722u+IdcwRy9P2+xyxPG1/1BHL016esXCXI5anvbo1FnrayzPmePpXt46ZPH3Cs9/2sn36ecAJK02efu9p+wOOWJ5+71lGzzjhOQbwtNdJRyy7c9rWmHAdgn+HU835Z0bkIP/MAlhq/SBWRrWO43grn6l4DdFtyFEtEbgJ/ePn19CzmqBFbHwdXb0RYHR92ecWYbdCobQmIbwQ9LJSK/vcIF1KyhtbVmqRPC4fLyutFLqo0+D8s98rhZyVQk5T5B1xxDrkiDXqiHXQEWuvI9ZxR6wRRyxPnzjsiDXsiOXpE5722u+I5WmvfY5YnvZ62BHL01f3OGKdCfV41BHL016e/dAuRyxPe3VrP+RpL8947+lfnjHHsz16+oTnmMnL9unnASesNHn6vaftDzhiefq9Zxk940S3jr9OOmLxMkkLsHmZpCXktCJykL9VACv2Zo8q4xQvk7Sy71cS3YYc1RKBm9A/fn4lPasJWsZOP9vSzO3ZW3+2LFLxVJF8gYRPaeFyEJ42w7wQiq3UIX9fRE6jQzmNgnIWdChngZAzIPiSnL8mh5/FVvYXkJxzHOUgFl9UgUth7AexXzNWcpB/eQ4W3jh5H9DwsfZW9r0uMNN0N+Qj/Z6sDaXLor+WvXEUu7wn1Wdff1xX5EVd60T/FnhRdCTDVHa2eld+wKf5zhFyFSa3rbJ11xA6xLCwvmYTfSv73ptDzy9PGv0JqDt+IdX48/xneY4O6D/4SkKe/7y8gv+8oj+uK/vPbJJt9EfAf15N/oM2jvnPbMpD/zEbqZjJJ3XLxsw5Qj8lJ3bhF/tR2Qu/Zgs51pfyazKtUCiVPq0+h/LwKs65lIen1edR3hrI4z7oKsjjl2Svhjy0B6cafUcbpb7/G+D7TBdIJtbh5ZSHfm+2sLrHcQpiYJ7pys+47pF/bg4Wvkam2nKd6B/LCp+2x3f2TywXXupnNunQ164q0r8jfoN0KSkv4Xhl8rh8vJ2l+iQVb86Dz5iHcmKn/zFvxBHrmCPWbkesI45YJxyx9jpiHe1SvfY4Yg07Yp10xHrAEesRRyxPex12xPJsj8cdsTz93jMWetbjPkcsz3r0jF+e9hp1xNrliOVpL8825Dme8LTXQUcsT/+ajqunx/bp5wEnrDR5+r2n7Q84Ynn6vWcZPePEfkcsT3t5jldf4ojFW2PqArSE8lDOsogc5F+Ww5d+xjWHIm+xt+B5iXl9LSE80wefIb7XW+wtkpdXP2WPxfLeQNUt0vRzkYs51NpHzDdUGR23Lk3FNUS3NUe1HoGb0D9+voae5W1dGrY1I1x64u0jNGPMtGr7aF5EzuwO5cwuKKfRoZxGQTlzOpQzp6CcJR3KWSLk8D2KacKtkYsGtEzcGsHlWr7Ry+gfhKXYSwYmlhG3F2ZS+fGFDr5DEX8HhkNvE56XCIWFLxAx/EaY7JNVQm+T5HH5MCwVvwuQWwBaBVHxWRImR40ENMNnvJk+k/iq3AU4B/KUJfguQCzTnBw+tEUQz3oEfZOwmoLPdK9F+BED+dhjEnqedxegYdSJ/gVZq1J3ASpZaA8+RGO6593vxjoY/Q2gA98x1wQeVS5uzXPoO/rWi3Lk3wVR5qYBLT8I+Vw+jGp59+w1SQejvxVswPcGzhX8IecZ9wxzKW9uhJZ/a1H9Dh76It8xaBEmr+xc/0a/LVL/DaFD7Bc8WQem6c3R4Q6hQ2d3DHKU41rimmgInLxk1kg91ryXrcOtg+XYd+UBnd4x2JcjsyfoxPdAG18I431zxb6ycN9s+I2gPa8VCqWEo6fJ4/LxtKgpdGmKvLxW2k5Oh3cM5nXaKlgwfyDeRDxLk/o94+mpRr6cM2GqwVhqCpGmB7O/HNiPQWDnnyaYB3oozNtIB7UKoE4mGb1auVomymi2xFWKcwrIRltyR9gqqetKQd8CGj6FiPqtLKnr1lOs6zyh66k+IcanufCEGJ/mwhNiiyhvDeTNpjw8IcY/NYEnxM6hvGsgj6f410Jek/KeBXl4Bykn7gvQ7mm7fOvScVymw895MQXb7AbSca4oGy5R9AE2ymmFQukC4++pxv+A8deq8V9q5eThZ5oMewY8L+HjL0GbWFJDJ8NvkC4l5Y0NnWaQPC4fD516hS5NykvTTqDjPDW56IlgDTtijTpi7XLEOuqIddwRa8QRy9NeBx2xPP3rsCPWEUcsT5/Y64Rl/F56HXPE8vSJ3Y5Ynj5xyBHLM656tm0vX01Tt8ZVT5/wjF/DjliePuFpr/2OWJ722uOI5emrnnp52utM6Lc97eU5XvWM0Z5jgIcdsTzjV7f6hGec6NZ+yHMO41nGlzliTcfVZ0b88qrHJExec+sWe3VrzOnWceE+RyzP9ujZ13rWYzeOV5MweQ27W/zLM64ecMTyjBPdus7kqZen7bs1TniOyc+Eea1nv32iS/XynNd61qNne/Scw3iu+3piefoEt6Ek+477pHfD53shH+nt9iG1j11i7/bBAeAJgIHYFfehH0wIL4SJY41A+AM58tLUEHn1Arr88gt/eO+ft755TkL8pgs/KzI3UXvaZquKv7n5wADICCTb8nB/fgbloV1Mh/Tvq86aqF9vRf2K2A/xm4J+B9CVqYu5YaIvoL+rNwT5RqsW5PH5rJVCB6Q/i+hXZd97c+gNr070J7L2igfFB4km/dzIkYf64bPY2cJVOVh5N52dm6P7K0B3Pot3gdBPHWM1+gsF/QVAY/oo21wYtGwsD9bnfVQeo3+tKI9qf+ZTfYBjeSXazuxUzpvOGpfDdsP2085GaWKbXiTo0VZmkybRo30tD1/PuoDysO20SAd1dhDfoOXzXeqGRrydL3YTYze167cVbNdDOfJQv1i7Rv4y7TpNL87R/T+XbNdDQr9uatfvKdiuzaem23X7dq1uEy3arvFmVr619RLIM1w8R35+9rlO9L8Y8dnLhK5oQ7bv5YL+MqDh2y8vgbzLKQ/5LqQ8PE+8mnS4QtgB9eLz8Ub/UbDDu8AHrSyB9OrQ169Xvn4FELCv4+3aNUHPdbFG0ON5arNJk+i5XvA7YqFN+cy92ahX0CNeneg/LmK/6Yft9ArSfXVJ3ZcI3dVtntimvkLv42BsaJHM1RGZzJv+uzj73ptDb3h1ov+UsBfHOmwHaKcZhGn0n47EA5OL5YpddK9sf7Eol7LpJZSHupsvqPZpdB22zxtU+8Tyc/uMlTVNbBsVW9F3rf6bYXI8vIjysG1cTHJUn1fU/9GH/qyhcfP6mxXZZ/avv474l2o3agwX80f0E+5v0L8upjzkW0l5aNMLSAfV7yI9zwGN/isF+xsnf56n/Bl9lv055p9pKtv3m02aYXJ/wPFQ+SzWNfc3ZqPeoOvA8OpE/+1If7MS+C8h3S8oqXuV9vYb1N/g+L5FMi+IyGRejBd5/Y3h1Yk+GXz6r+pv1JwJ7cT9jdHXAZPjgRrfx/qbduN700fZ9CLKQ93NF1T7NLoO2+d81T6x/Nw+Y2VNE9tGxVb0Xe5vMB7y3AfbBs811Ty8qP+jDz1O/U2LcBEL/SLmjy2gsXpif1wc8cdYO0tT2Tl8K/scm8OrtZmYPxpdh/545+mei/MvgcTm4uiP3D+3hByMIeyP6EctKOvbM3+0dX98F7yEXUu/L1ujPJzzraM8nN9h/XCq0XcsT1rv36S1niCw1DuHl1Me7t1cQXm4fnIl5eGa+xrKwzsFrqK8JuRdTXl8zUgI43WJ70WXqMvCV2oYfoN0KSlv7L3Qdu/+Wlsrd91V3u0ICaHisyRM9rAENMNn7HWb6HuV667wCiJlCb7uCsu0MIcPbRHEsx5BP4+w8m6dqOXIUzWqri9COzIf9mrIU6QFLCT8ViiUCt+1afheLaBdvZuvWtkXCV2aIg91xzyUs0jIUVi9hNVbUOcOL6jh7/Ny1OgR/IF4uWkX2czHplPkVjB17xLfCrZNTDxi/GkaEM/Y7Su6YeHAb/iNMNklqri9+lkgdVCGf6YHeZshHqK4DmNyHF01TZty1FA9SiCsRDzDPOWqeDZiQ47sXkGvXNXo7xOu2gwTdUT+FPNrfRNl3wx0tTC5fKzretJV0aCuRr8TdP0S6YpjN9NngPhDmNykbiHdW6FQKtykDL9BulRtUreQPC5ftbEUex9aBVGDoA0ir13LWUvfy4ylrOY20PNWKJQ2mldsFJmWxy0b8zZDHtYmJzVrMZ1Tb32ixKwF62MT5d0KeZtBNtfrLUKO6d8j6G8lrFsEn9m+nbya4EsII6HnuBJys5DNJyJfDtHhy9Tpoqybw8SkIsTZQk+2dwiTo0lFn7y7aDQx/EaYXPdVoskGksflqxZN0FNQyl2EajRIi+ku0Azp+TvX3nLBx8lw6qTzWzMvSr3v9dnnwTDZe2eR3qhDLC43Bb/RKTn9HcrpF3LMk7Ee7qa8uigrn89N0z2UdwPk7aC8taJclndjBHNdBPMmkZfqN9ScSIfRKMn5m6aaeMY2vUXoanWnLk6OtbYNETnIz+t+yNdpeZTOauyEV8W/e3CcB3tTjNrox63sc53oP7ZonO/nqL1tBH5eGUGduS2WtfMsIWeq7cxtapOjHMS6B+jTf1sIi+3cyj6bnXG0s4X48D5IpMMRwRZ4vlXIVviG0c4Hf3lQly3PB01WnegfBx/8tYo+uInycATJ/aHpgXZA+lbQ5erNoc8r129H5na3CH6lO0+1N0V0TxP7IvLzyHUqfB5ltvOf3yf/2Qx5yn9WZp/rRP9m8J9PkP/gCG0qyh9r1ziSY99V7U7FD+bDNjq/gA5bhM5NwW90A4KvU99QOrfzjc+Sb2yFPOUbfF7V6E+Ab3yefAPjp+mo7MxjwLJ27hdyptrOPL7b5igHsbh/205YbGerJ7Mz3hW9nfhuhzykw/5tOzy/XchW+EX7t68O6rLl+aDJqhP9i8EHn4rMaWI+uI3y0Ka8WrJN2EHVQUJ69+bQb6NyGf23I+d7VHvdBpgcy43+O5HzFCYXy6VmyzFfvE2US9l0e2gvG+28IUd2b9Dlz/OVpDlefrap8c/IKQ/bdKzeAJNtqmwUs6lqY9tFuQZFmW8nrFsFFtq5iE2x/LdS+Y2+X9hUjVtuJd1x7MBjSDUOQ/qVRK/amBqbcBubG9E9tiqJawv3Uh6uLWykPNyz4LnYDZC3mfLWQh6vc+BP9HH/tw7ytlLeTZCHvm9rC3Uq6znZ8w73FiZs8wXCUvZNcv6GUKw/5XfHUc5UrJsoObc6ykEs8ws1Z+PfCym7boD8sblhvUM5dSGHsSwmpwnHRHyO1eivgHb9nrMmYm4U+uE777GycntGLKszax8Y+6Zi783wG6RLSXlJLOZi+Xg7e7PQpSny8uoU5aifByyrV38YP3PW4a+cmopDRLchR7VE4Cb0j58P0bOaoEXsU9X0TqecwQ7lDAo5U73UOUhy8qY7tzbHedCF86Y752afeUl5I0x3NmWYarqT1+zQ12JHLkxe3jGGGTn63Qahl383b4Yo87kRnTeCDJabprtzdLiLhioVQ7EcqvBSKA7p+NoODGW8OYxDnJp4xj63XshhrLxu0uzKQ7oXl+wm0bc3RMq6kfKwa2I7KDkqvCs7xOQ0O5TTFHJi3X7VWKJ05qlEmjCW7KVYsgny1JAG2xHSPwdiyYFILEEd+buKy3n9ZF4s2ZCj35FILFFDw40RnXEKyHLTdHeODg9TLOGtoFYollQs4a0JtAmfFC3bFyL/qeoL+We6pnrbTy33c3xR21GbI3LUllq79vi6ppap2iP3a0jfA+3xDdQePbbq8tpECMW2uzYKOXkxKE2xPsjo3xLpg9oN/YvYQbX/RNDPhTLnYQXxzOix/+Pli81EuylCy3qjb+Prx+l3XMIuEYu2mj9vFZm8pYE6WR4uI6IOnPiIEuqc1vf76FXrILDUdHNbDqZq8y8iWitzj8Dl7SJsx2yvHTk6cB2nyZZmub3/t+Y4/vuon8Hl8hJ1u01tSVni+mPbcVL1Z3ql9fe/KtbfbZSnrofk+RTXx0dPk714zo/pdNiLl5/b2cvyrLw9go8PoZq8J8Bff5Pw6iCL/Z+vRsTtGeZPE4/FjP5/Ql+xPFtAGQyT+1f+yV/EVuNj7ueW5OilyolxcgvpbbSfJ1/l7dZWKJSutzreTjoh9u0VsRPCC0EvOxr+gJBnejVEXpHrTA98e/iq4d6X/UFC/KYLP+N58B2CXr0Sbra6E/hL2Or5AyAjkGzLQ3+8nfJwzcB0UNeZ3lFRvyL2Q/ymoP9hoCtTF00hZ70j1qaKWHbNqtpO5ZibJu6HVN+f1uP/oXE61vti0rVsHEL+MnGIx7pG+x2KQxXHj1ercSDHoe0VsYvGIcMfCPn12hB5ReLQru9ef/Bjt/3J2UmYHG9r4lmRbfzFgr7Ddn6FikMca9Aft1MexiHTQcWhin3KFUXsh/hNQc9xqGhdNIWc9Y5YmypiWRxSY3AVh3h8t1WUB+MQzzHqc8ZpvkevDRQZd6eJX0vYFMnbIjBT2fPhNVaMV/bqpTpKbWNTdazIvuMz9HXk4bUHox8A2zRIP5z/YzlRPzVWx3XJwTn5dFsjdEXH97wlq45NF60X7isWZc87fPlLrnsaVn8Yf0k/27K9eefo9l3Dh3c+uH3nSw7vHMUZleoFeSUTXxHMS6YJY91E3/nFK17N3CJw2slUq+t43QPLVTsvHJUWCp1Pp5xFHcpZJOSoqJTk/DU5/Cy20ruI5OCqHK70rpozzoM+gSu9yGutnFc9X7FwnO/CDFONIGN2Xhom6lLWzkun5UypnLM6lHOWkDPV7YAvMseoz3YruyOF/BtOsZx27XrtHC2zaLs2+jXQrm8q0K5jZYwdSoud9NjUBmsrYRXdPVpfQE5s92h9QTlFyhOTczrLY1hq1xHr4LaIXpsJa0sbLD5or3Y0lA+yzmVXJ5C/HpGzuUM5mwvKOVXl2dihnI0F5SztUM5SIUfNMDrtP5TO7eLtPoq3WyBPxVveMTf6FsTbEYq3OKN8ptt5q6McxOLLCvLq8yTVp3qZJlafRt8H9fkjBepT2WZLpDxF2q562TARWLHTJGwHpFd9yhSuqM4t4geI3yBdSsobO1Aee2EwTXhwe0H2OVsFuH7nkSvXXHfj95cAThwczVtdxXvRUH+mD/Sd+VLd+IRzXchIE/vPVqLjerfnjF9Ep3a07fJVrLstp5whFIt1yJ9ns7wTQFY/vNL05kzhoieA1EtssfEAtzumq4kyzMrhe07Q+mGZN0TKbPRvi5R5c5sy8/hdjR05NjFdTZShL+jTanxKEfP4h7/K+hPyn6q+c4jk5PVp76E+TZ3qw1jz3Owzr8B/c8E43/uoT1Njwakuf95pXizXc4Emb26jMNPEpzeM/kO0olxx91GuKPMOSo/QPy3fh6lOVdljdWr0fwt1+pECdRprH+oUeiwWbIjQq7miWmOKjRutfnBHuXj9JH9RxEcRv0G6lPSHsfGGeokcy1d1vGG4T0CBUP924w3mi403mDav7fEYYAs9bzfeUDrl0XYy3tiaU84QivUPyG905p/rSf9WKJRapgtey2m6oM/nvanSEya3RUWvxhiIz3EYT90p29wD+Uj/+zCWODdyKm5Zjn4hFKsL5D9VfdUykjMV695pil10twY+Y57JyYvJTcEfW/fe2qGcrUJOUV9/dva53ZjocyX7T955N/q3Qf/5Beo/1ZunZffGuPxl915i7bpoO1XjAf5BlLJvpSF/3jhO2ShNeW9LfpfGZRXfltyqTq9Y++v0jYUibRzxB4Q806sh8oqcCvty43l/+A+/9I5PJcRvuvCzImtH6kd5Oht/hU3qVBieWEmTWi9Tp8JMB3UqrOJ4bVMR+yF+U9C/COjK1IXC2lARy05yqTn26YpJeWsvVt88dujJJlNF3wBWb3nG3hjlmMZl5JiTplbQ6XuUDM/sP1PI4pOwYzEAyr1qaKKueXuE9ZzyxN4OS0K+bViGejvseWGibpsL6KbWgxAjb98yxVB7iOy3Zd+o3CD0UXJWdShnlZAT65P4r8nhZ7H9yFUkJ2/cNDR3nAfjSd7+yP3ZX97vei2Mm87JMAeJn3XkOoidL2Db572xzfHE6FdCu+I3ttX68P2AmadDXchNU94604WZDlO5zsRlqofJsTWE/LeR89aL8/qidm/VGr3ab0K/4pgdu4jQyvbR+eM6XE5+3K78t+Rg/uK8ccw1JTFvzcFcO3cc85pI2zgnTJRX9iYO5Of1NOQzv+kjPUv6YeELoQy/ESaXucp6mlofUHaxss8QujRFXpFzGucIOQlhtdOrP7hdCGX5i4luQ45qicBN6B8/X0zP1JIcYqeyLsi6A3PztUBzFeGvBYyaeMZujvxGp+T0dSinT8iJYV0lsIz+RkHfJ+gdXcNUXEZ090RUY9x2rrGMnuW5hqUayUw/850tXDWs46DAKGJufMZV3SNkKTlXdyjnaiGHRwm7aZSA8ktEy9db9FsHDznyV1ypfn3RyJ93Ohj1Uj/RVWTVY/Vvvfxnn7ty15aE+E0XfsY+omaRVwv6DlefflSteuC9TWlSK2Nq1cN0UKseGyvqV8R+iK9WqXnVo+wKAuZVXY2wVQ+8WjbWlk9VzJgKOTGs2H1XZpveoHeKOCYZ/RGYPfEvayp7B/GsJ0yOR3YKZVBg9ebormQbfpqagp9/AnsKYuKMsjGxESaXucpoWLUPZRe+Iw55+QRwmvhujLI7At2Ohb45ECb7b5Lz1+TwM5aDbbWX5EzVWzJF/LyqHMTi07e8cqj+FpWjTux02AdvVqttltSODPuFereZ7+dR9sdTiRspD0/N/hB85lSj7zwOuHBoHJfpLKkTedwvlX3LRJ1kUrvuuNr4rrlaZt59dHl3s/0MrNK8Z25+GXknUq3cYRnzVu7efwpW7p5JPl7Fj++r6Mc89lI7EeqkvpVDxWu+Nhxj7GbKw/6bT/hjLLsX6Dieql0EXhG9Ueiuxk09BeTExk09Qk6HY6PSP/7LYxZll6I+ZjqnPvbWAj7GfSfrxjYqMu42HYreM2v0fxDZtVA7q/cBJvsBygiEkSaOfUb//1HsqzjPlLGP+0R1/2uHcguvUht+g3QpKW9sXN5ulxqX/Ir/yG/e2b+EUPFZEia3lgQ0w2cziI5/tnmD4AsCO823mttMz1uhUNrCvRamsr1W2aiBe/dlfjIc64NvY8Eosg1kc71uFHJM/x5Bz++TbBR8Zvt28tSqAEd9xZd+v17weM542I4eWFNwJmx+0Yhj+I3QUTsZizjqfJA6l6DaTt67iRgTEspDOeo8u8Ja64SVph3TWNNY01jTWKcBq8jMEPspfjcS4+A60k9tLsc2qpE/tiG+qkM5q4ScAcFXtU9uRnRWs3u2W9lzecjP5/LyVrBa87RMtYKVJpuR8YrSj8MK1sp5E3VWs/k0qTNDWA+Gwbx9oIPllRhfDKZj4DfBDeFsVx4ftBuH3J/95TPPWHblC0Xr6DKqox7IU3V0f/a3TvSjUEdXZp9VHRQ5N6TOUHI77BX0iFcn+msznXBXTum3Pkde3qrrihx5zwF5T9KcaAr8br7yO4wz7HdqpUvFs1i8wLbHZ8Uw9vBOrDqrFzvHavy9QdeB4dWJfp2oc/a7vHeeuF6Nfn3BejVbTkW9oq24XtUuN9IXWfFUO/KqH7iBsG4QWOrcatG2bHjctrZH6lXFL9ST69Xo7yxYr2bLqahXtBXXqxp/qPOSMT/A/sFsolb0b6I8jIksR8Vv9IMidY71kxe/HxB1zmNHjgtF+hdcWcyOSNvK4vbRkcM7s6XFQCm2FJh+35ijxjzBH4g3oWf8I2IqfMYW1E123kEWDp9Gv1uYPBZ+01TkCDVW91QsThu+1xHqdmGNl4pizQzzusBV03RzjhqJ4A+ElYhnIehjzbFRoIpuysW418obERgen806Eek52u0xsg5q5K5GRKr8WygP+dbnyMEeDd1oBZXV6F9ZsEfDfUvDsbxOezS0UZGV0dibt+qtGLVa2iR6tL3q0fhtoKKjUx6N8eiDZ1Yxf1HljdlH+ReOuHkFBflis2A8XxGC7ywYy8O+EKvbNLFt1C0xWN88G8FzF7zyhG2Jb29Qs56ivoCrHS2aEWNdFZlpxVZmeoRMPgP0TogFebezFZ3xG/3PivgSK0NstBpbBVG+jv0Hnwk6VTuoN1KeunVGnfvhM0F4to33+PN+M4kT99Foh6Ln3tgfDLeMz6MvvYvOmuGw73KSqYZY+Ix9HvmNTsnp61BOn5ATw7pcYBm9GuNM8WtNpuJKorsnohrjJvSPn6+kZzVBi0lVU0+O3iEUqya1aMBYePRHXbKjNgGuIKyymwDIz0NS0+szWRjtE/JLhK/HYseyDbvi8fnHEsILQc+88o5Uo17qKH+RV5g++v5ts//kY9eNvYJT9Kie0auj/1cI+g6Plr5ZDav4NSUMmesor+grTBWPF765iP0QXx1p51eYyh6bxLytFbHsFSaMedZ2TlWM4SnX58Uw61TrYt3+FyNDvnaLiTx9QN3Zxmsj5SobL3sKyrmyQzlXCjlTvTl7JcnJ25D7Gk0bb4Q8NRx7cfaXNz8ehwsf/pGmH2qpJAm6/8E+Mk3cXnlzhmk25Oj3LfBPPq7LZcZyKp3XgYxAGGni47pG/6/U91aMqfK4Lk8BMIZxv1xRbuEV0dP1Gl2547o8ekWrICo+S8LE0mNeu4XPdfS9ynHdiqOE0j9YzpNNnDRibXJSE0McVZQ5rov1wT+6q65LV9uJ64Uc079H0G8gLPUCn9m+nTw1yrmRMBRf+v2FgsfzRcjYof6qWOrob4eLJIV/hoKvaazYTsYijlpQiv0ExxahizpCw7PFotcGKqytjlgbnbDStGMaaxprGqvrsNTRC36ZEvsD/rk5jF28l1x2Ron8sQXVBR3KWSDkDAi+qn1fM6JzkZ92KHtBAvLz4j2OV3GGd8t8LVMdRUsTz/CM/u0ww9s4f6LOaoaXJjWbxnowDObtcENwttoQRLvyhqDahEB6OyocOwKkfKFoHd1FdRQ7Loj68BmaV0Ed7cg+qwMBeWd2Qht53A6LHos1+vsyndodi83bWchbldiYI+8lIO8UHIudq/wO40yRY3YqnsXiBbYt9kWMPXzMDm3M49IeISd2ZNZ0KHpk1uhHhD9wX8S+kaefspvzMbv1OWrMEfyBeBN6NicHy3DSZ7hkUOSYnXo7gUPEMWHyWJWlafqY3Q/cMbt1OWokgj8QViKehaCP2SEuu2jMxMpUKorE9h6M/nXCpWMRVo2wYiMBteegys8X+SPfjTly1MHxECb3aEb/aMEezWkkJXs0tBH3aEVXToy+3VEcbmrqSFpsZlO0Geb96DvyqpFau+MrXN6YfZR/YQ/OF+EjX2xUjT/WGILvqLqTl83YNu2OIPJsCFfANlIedkd8sb0aRRX1BZw98czqRoGLvpC394wxADHuz/7yPtIviBhgmOvblK1IvMNhjumjjg5zvFN748ofja5DfxxQ/ojlLzLLi11D266tcvxRL8CqIQIPI9v5TewIHO5dfo32XVHOhSSz7DWwFwr9lZy+DuX0CTkxrAsFVqydT/EROFNxiOjuiajGuAn94+dD9KwmaDGpalqbo3cIxapJubOS09OhnJ6Cci7pUM4lQs6kIy5Z2O1wG/01akHK6q7Djd7XJIQXgp5N8a2Q6mZGtZlW5Ojc15p3fHzfN97387GwGxsSqtP5lwh6s1XF35x/peqaTLY6OreJ8rB7MR3U0bmKv8n2yiL2Q/ymoOejc2VvEsW8DRWx7OgcDmVPdczgo3NfgiEUH52bal06vDWv9GEOXsnYDvRl714zncve2KgOcyRhso3MprEXTE2Hojc2Gv03oc75CJjx4BGw2I2NOD1nuWnK+93M71AfUjHOyyNgPByP/fZf2d+JRX6jO9WHktZSHh5K4kMy+CYLHxO/A/JmUN6dkMd3BN4FeXxYDJNqN3gI6jcWj+MyXSCZWId8CArjB9/Wj+Ozy+Az5pmu/IzrHvnXRuRs6FDOBiFHLcHhuGkKX0MovDJt+A3SpaS8sZXp2B0Z/65Y9leN3XjaiXk85lf1c5mQU1avKfihpIuJLu/HMxKBm9A/fn4xPcubTtl35fp51/iEUMz11dTsVDWxdifEVy7QMvOuKOKVa6O/D36G8nz4HHtx/xayBcq5lfTH1XMOAWjDqQgBht8gXaqGAFWvefubxU885+0+J4SKz2ItoUbPmJ9bd5kTzyZXrY3dIDBjey7Mh7YI4lmPoI91SDNI91qEHzGQjz0moefY2m4Wsvnkw7OzVpUOOP6JBrtKFtqj3e4+07AORv980OFLOfty9ZxycWvmDh5960U58m+DKHN9ThQLQj6XD3uY3hx915IORr8ObBD7eSbURz1DGyBv3nfuSfEzfle+yFe03NSm7Fz/Rr8xUv8zhA6mV5o2tNFB0SgdtgodRNRcO3LwRM5OO48lOMpxLXFNzBA4ecmskfKY97J1uHWwHPuuPCAtuZ1PHBua7ds5mnfKgMua16P0BJ0GgtYtTafr4MiMavKiB0ewfFUPjuS10nZyOjw4ktdpq2DB/IF4E/EsZGq/Ltt5eaYNnxkr74jig9lf7qR2QYB6MqeT7MnB5JU0NUNTqzpGr1ZwVaekNng3FZCNtsz7pfaiurY7KLKOdFV3thTVtci9PJ66rhW6drh6UXp1jVfCcHWNV8JwdY1X3nB1jV9KxdU1DpO4usa7U3dDHk9bcWf1BsrD1yhugs+cOKah3f99pXvpOC7T4ee8mFJ0Mx9jCE+7lU+pQytGvxWwamFyO3hB9rlO9G+IxCO1MxdrB+3uzTJ9BkkH5B0UfHjbtGEHouuD8lleifYj7xTD8vBkGndVaoKebXO7oMc2x30PtrmtlIexhVeJUe4W0H1o7kQ6j19uUbuGO0ifzY5yEOtukoOrxLic9c6cdoXtBFfWn5195h3E34DJ5c/SEpY6tMc7Qe+FdvZHQ/n8vKujDiCpe96K3OuI9C/IKecvgJ7vgvYQwpQcMmyWvddRxRj1alyRdoo2aYbJbZJfk1UHjPJ+Dw9t1Bt0HeQd+v0VsYigXgnbQrqvL6l7lUOQn8teZFB3P3b6irL6FSTG6hH6Y7vleq8F3R8yvfkELlCp+Fwn+t+BuvrUkMYMOTpszNG5N4f+NtLB6H9P+EssDqD/byNMo/9DwOQLftphPjcH85ORsYZqp7E7Otv1pzyeQDveTnmoO/eL20E+0z6f5GMe+jnLDRF91U5eTF/ubyzvr6G/+rPscx/hlYzVtVhdrRH6Fq2rjZHyMZbx1cNkf4y1EbTHEws05oySmH8p+nQ1VrkX8P+6wDgfYzXHZYwZ2A7fSWMSdb8pj0n+XrRH1dcbVmd9ffIXZV/TbWcbzxcK5lKe2uL07ks/PGcibuxe2/TzuaRHuzHeNdlnjsP/EonDyoYxm7e7N5tfYsH62EZ5ymdPtT+eynuk2R9V/6H8sch6VVF/xHuk30NjO3XntYrRrE+7MXdeX96bQ88xf6w/XPj0XzXuuUPoEJsn3Cno7xA6D5IOyMuysV2iTXjcb/QLoDyxeOy05iFf9kO7sf/HbJQmtuldgh5tZTZpEj3aV/n/HZSn1pFibbZo2zDe1A4nKVZ7r89xrDb684RPxMoWi9VTtT4Xi9VT6avduj6HZSy6PrevwFgg9qJpuz0Ijl9qv0T1w7zvU/b3A5B/c0TO0g7lLBVypnINEmWqsQ2Xp+xaCPJvofJscSyP0plPI6cJ11RvWjjOkxfbkJf7O6O/f+E43y3ZZ3WaPfYidMx389ZE1RpSCBP3vUKYijFnmHG6x5w8rsT+kvss9dYA+h72nUYTSMepsJfnS+jKvtgmrIzNMNmWfJ2a+gXimC2LjkPwbZW1c9rrH3vbrp1/8AHLLtqjO+1jAPaFsnt0HC9RjoqXXMcYX7FeeM/K6A9Gxo7KD2J+025Ox5e6o2/w2ypqnX8KY0hX+w2/zanWHYv6DccQjOfYR1v/HVsjs89qLIn0efsrPPZM6PkseI5811KZeYzE2M8ieitnbw694fFY5PWRtYStbXS4jnTY1kaHraSD0f+40CFm/zTFxoQdvpFcTwjP9MFniN8I2j9aoVBK2H4mT/lBmtS5Jm5Paq8kFgNVO1dYdUcsfsOyYn3dpmKbJXXOi+cVGMd43orrPHg+i1ONvmN5Ur/+dIm3iLG++Np3te+MvFsF9ulqD1uryYu2BzUHKNseeI/9TG8PeeceQ+iO9oD1ZXorG6WpFYqlIu2l4o0bK4q2F8P3ai/K91R7sfJtryavlU7FZoXJseoi+Kz2MbC+vOpPrXGdrvrbXE1etP7UHN6z/rBtlak/tfa3ED5jHpYntvaH/Kdq7W8hycG5IK79fZLW/tTcFHl57c/ovwBrf39Ma39l1/emcL2udrp/d5rrrOj6E/ft6t2PoutPeHnpqpz1pwRwny14uW0j/Tahh9HzmTim4fNrY2dzYC71pZx9s7zza3nrKX8TWU+Z6vNraGc+D5Y3pjfsECaPGax8llemX1BtAsvDbULtxSN92b149nvcU95GWNy+0qTOW8d03dyBrlyPWFd8bsBo0S+xPOyXRv/tgucGzOZTUf+x9TRl09h6Wjub8pwmdqYgtp7Wbu2cY6K6hQ37RLW+yXtQqn9QcULFdF43Mr+cmdW5OquL53vUPvLGHMxZgFnkjFjsYtV2fVzsvYZtET5sl31CVss+fC+eDA9v9WNZ3M8Y7Tyw06ohrUvC+rRJUzgnayWEF8Izak623GNOpsZ5OAZeRu1BtTGMOxdnn7mNnbtonG95DmYIut3G3itEfV7XnIg7VfvJqu3GxjC8z6jO4JsOeD5bjdf47JTRr4a2GXuXyWd/MvlH1S/iuJD7xdgYME1cF7FxFNqkSfRcL3n+hXXN43Dc01B1wO8hGP01UAexn3zhfntTSd3zziVwW8S2we243eX+ee+0q7lv+vnc7DO3+xdE+la1VhDrW9udeef3CdU+lFrDsHGBai9GNxX7sqfyLAxf6B57LxDnDLxOrG4NTnXfS7FXvTeAdZv3/mDeu6orss/8/uDWiH95nyvkd3eKrt3Ezg45rd3MO91rN1a3RdZusO55zU+915nqfiv5l+onkff87DP3k8MRf7k9UsY0le2j+CZoHH/dQXnIx76k5oOmw53CDqjXg9nfOtHvLjhecJpHX6/8E+e+7J+x8/Rp4rq4W9DjGXs+R4/7WNsJS61voU05dql3Ou4Q+PxOx2hkvID9052k+7aSuqu4q9obtqmvDj79Wc3zecy6LSKTebHv6c2hz5t//oiwF8ezvPWklYRp9K+KxAPVp94Kz8qeG+N9FLQLnxtT846pG8+HG073uTHuP2LnDcueGyvq/+hDnyX/x/78FpIZG8cyL8rJ8/+8c1v/MeL/7eblywnT6N9ecu0r5v/txgixMVJsj5F/nWIKxufrTvf4nP0/Nj7H+Fvk/cii/o8+9PuDE3Hx/R3ls63sM79/+/Ml/auT9295vBV7/xb5eH1GjV25HvP6mRVhoh2M/hcLjreczgHPP93xnPct1Pg2Fj9j+6Qqfqr+kuPnbxZcn4ndT1FE96LtDdvUL1N/g3Nf7m/a/bAdn6m3dp3X3xge9w2/F+lvcG6m1oO4vzH6Pyw5X4/1N+3m67wepO6TUHP52Hzd6S6oBaf7Bye5v4n94KR6P439AOUU9X/0oXdn/t+ZXR9+eQK6GHZNUNbpr9H8eeaTDZBvf+sF9Pjcx7/5px+5dc3+ucSfJqujdM8mrf/Pkv/j2lTs3Ir5bI10U3wJ6cD0PYLecNX5mDqUoaqNhv77zj/+oc///efb2agq/hvW1Of+xD2b1k8V/h/P/IdvfOL/fejNU4X/131b1/X88puWTxX+27+x+ZrXLFn5ZBkfNV/As7vGZ/uYs+F5iVhY+Lprw2+QLiXlje3TziZ5XD68hnpe9rn9T1H0w2e2CqLis7xWapqFHDqOEGkq81MUVnNNet4KhdIc84o5ItPy0Mv6KW8e5GFtcqoJ/U3n1EufoJNAQWCZTKyPuZQ3CHnzQDbX62whx2T3CPpBwpot+Mz27eTVBF8/YST0HEdpNSG7TvSzs9/xSm375UVhQjn7w8Tv6H8vIh1VrxJynnE5+E0PlpumvtBRJJhbNPIYfiNoe7dCoTQWeQZIHpevWuThPt+kzCFUo0FaTHNAs5BDp2p0o+DjZHwDOZhp6guTPbWElQeK1qo9a5AuVWu1RvK4fHzup6LX9se8iDFD0JEP7YERqjcHy3jrRL8yixTNMDlS7SAZKorhM7NPGq3OWTxRnuVdsXicZlX2eTBo/8fPPUJ2j5DdFPwciXCcznczz4A8vh+6N5I3M5LXR2XBvAbw3UN5swRmqt8jiyfScTtXf0OY3IbSxDZXdYyRjecwysfYJ/Ow+EwH8g8SVrMNFp/fQn7jNd+oCb4BIYfj2Rx4XqK9zy4azwy/QbpUjWdzSB6Xj+PZ3GryBhLiR3mIafqo0SPaNv03P/vem4NlvHWiv4ni2TzQiePZPKEvPsN4dj21ObRt1TbXDJPLbvXDc/c04bnODYsnlqUJeSo+2i8G14n+3RCPN1M8Rv8zHQeDri/8rPxuTqT8qg1MtZ05DieOcjDvHpKpfA7bpNWT2Vn5vPHNhzxuu+zPSI8YCt8w2vngfYt12ZQPoqw60b8OfPCByJiAfRD9M6G8hMqCdMo/sc7uI3rTu1fQI16d6HfDLIzX340fbYV6bSRMo98HmLz+ruKvmpXEfFHFa2XTeYTVL7CwPLwHpGyK7bOfym/0R4RNuV9HfjXmu5fycK1+gPJ6IW825c2EvEHKwzEfjz9x3Y/j/SzIQx95hMbTVp5XZM/7gvb7ViiWeC0xFiPRZsqGDcpDv+ulPLTvLMrD+pxJebi/YLaeFYrFojRxf2j0b4i0LxU/1XjK6BcIeozZfM8ltqkFlId83C4XkFz8bO9Kox1Qrxdnf+tE/xawQ2y/2/TqcD9tQO2nLQQC3k+DRa2xciE918ViQb8IaMwmTaJXsU7FTbQpxzo1ll0g8Hks+58isQ5j5ULSPSmpe9F3q7FN3RcZK3J/Ozcik3lRTm8oN454X6S/VeNj1Iv7W6P/fyLxQNky1t+q+DFPlEvZdD7l5c2rDJsxO2yfs1X7xPJz+4yVNU1VY2UzTG4/PL/HtsH+r9YRivo/+pDNv6ru4f3H3710/ZPbvnpOlT28PqA1Puv/UZ8S9fs/UX9Lao3C8BukS0l5Y2sUDZLH5eM1ilnV5P2PhPhRHmI2SF7FnYKaWrPFukn/qTVb1CVvzfZTtBah1uCalJcmXv+IrT+nqec0YcXWmbFO0nb4cRr/so1boVBao9ZcuW1V9IW7irYtw2+Ejnx9rG2pORmWj+clakdS1ddOoOu07o93KdZeR6xDjlijjlie9hpxxDrsiLXfEWvYEcuzjEe6VK/djlie7dGzHvc4Ynm2oWOOWJ716OmrJxyxPP3rqCPWyxyxPP2+W2OOZxlPOmI94Ij1iCOWp708xyae/tWt40JPv+/WsdwuR6yDjlieft+tY7lu9XvPsYlnPZ4JfVq3juW6NRZ6juU8Y6FnPXray9NXPcdfL3HE6tbx1z5HLM+27dmGPO3l2Q95tqFutb1n/PJcl+vWtSFP//Ic+3brGNPT9l59R/q54YSVJus7BnOw8bPaG21E5CRC55qQg/vdA9mzKXg7q/BvEBn+qX47y8qu3uZrijyuq6LvwyisuiMWn71Q76Grfb+E+JE+7202OwORvc12484Hjj60ceShQKlO32/MUfFOorstR7WawE3oHz+/k57VBC1iD4bJVdObo3cAPHUlZVPw1yNykg7lJELOgODjpo2uU6KpXVS0aRt+I0wuc5WmrVxV2cXK3hC6NCkvTQ8BXZXQi3kHHLFGHLGOOWINO2LtdsQ64oh12BHruCPWUUesXY5YnvXoaS9PX93jiOXpq3sdsbo1Tni2R0/bd6uvPuyI5ekTnr7qaa9RRyzPGO05BjjhiOXZd3i2oW71rzMhfk1FP2RjebxiAV9DfWrJRJkzIK9GvAnIrBP98NJxvq8vmSg7Adn2uY/wklBqTnNJQngh6DmU4TdIl5LyxuZQPSSPy8dzqJrQpUl5aXop0HFeTTyLYR1xxHrYEeuwI9YeR6xhR6wTjli7HLEOOmKNOGJ1az16+qpne/TUa7cj1l5HrGOOWJ4+sc8Ry9MnjjpiedrLM3556nXcEcuzHj316ta+w7MePW3v2bY9y3jSEesBR6xHHLE87dWt/bZn256KvlZdGcRX76m5T09ETuwaF+RLsr8dXn1Z+Cple9YIk8tcQl706ktlF95TRN4m5aWJX+1VchIhJxFYMb0ct6ZNxYuJbkOOaonATegfP7+YnilTILa6galPyLIUM20zhz9NAxE5yu1tGWZW0M2Pt8/LNj/kt7xTdVso21UtJ6Xpwewv39S1J1tOwptDakIeYhUJLRW37AufxuEt+05Di9qyj4WWXqEL+0OafhjoOK8mnsV8q+aI5dQVzDB7zBCZylZsR/QrvuUUb9jAX1LkVKPvWJ4U/9ND47hMx7qij5neqi3zsZiybRn5e3Kw1A3AaboX8pH+rVlb7rBOV6s6ZX/prYhdtH3HbmDjts/Hl1ohnnase+RP/sv7/3x12XZk9DMFvTreY7aqePvMhQMgI5Bsy1PHwCwPY7DpkPK/6qyJ+s2sqF8R+yG+io889CpaF3OD7mdCmP5FERxuducviqTpJvo+/YsiE+lYnzPhF0X6BF/LPvzdm97xiuaHfupdrYs/+c3em3/yK/d9/ZYZ133uk48s/Z1Xf/fLT/0H1jkInbke1XnyIq06TTySme2I1RRYHd7vvrBotDpd97urdme8TZHHMSh2rzvKUVg9jlg1J6w07ZjGmsaaxprG+gHHsjzs75uUh/0n/07KVM+8p3CxfLBov3u6Fss7HEvPTogf5TFmmnjsHesze3Ow8n7L4KlsBaRJdGlivy76+x/pDPMflk7Unec26m8I8bEebxJh/Zxqv8f37vDQ4j8v1TJxlRl5+b56oz981jjfvy6dqDPqhStOg/SMfSiEibYzug7vkB5Ud0hjGfk9RuX3SH9/9rcZJvtxnfKwPLOgPB3EnwWxHZG0LDPPmlieOuQpv7o/+8u/8XAv1PGs7LPyY/79rXabZ/cTvdk/7971Ouk3tjqf6YT3riv9+nPkoT3UxiLLmw/ynqR5vmrzHfrtQuW32J7Yb9Ud00jPc6KYnytfRj8vssOGfsC7mMbfG3Qd4Io50p8j6ryIn6t6NfoVBevVKR7JekVbcb2qFVS1Oh3zA7Vj0wyT63wmYbXbRStSr6if4XG9XhKpV9VHqT6E+6jLC9ar2XIq6hVtVaReVX9v9GqXIrZriXXJu+4qRmNdF6lXLA/HaKN/TqReq8bh53dBHMbxIterajNIz/Wq/EDZVu36NiiP119RTtkYrfrlWIw2+ltEnfOckONCnn7KbmkZ7Tc6sl2Q7aMjh3dm2yCBUmzbIv08mKPGAsEfIljIEysSbg2wyU1W3s/pssmNfqswOZuQ9SkyRa7YZApvpBm+1xS56LktHk6pZqa6GK6ndnIcXTVNN+WokQj+0AbLvuMZKqxuHtXHRgLMm/6z0WLRkYDR3x/pMdrNzDiixHYqUB9V/tivPvbnyCk6QjH6hwr2ZCZ7KnoytBH3ZGqlUK2oGH27X3bkEQruunLzQxvzL6i2a+axX1PCWQLPlJV/xUba7fzLfLPsr4rGVkWcfGHwdPuC2Ub5QmxFjX1BdbEYE9gXZgk5vDKWJh5t41/jMdw09Ql6vGHMEp/fnQXPawJrJvEZ/Y/DikyacBRp/E0hH0ePIUdv9UtYicCqiWdo0x89a1xnpSf3X1jWmqDnc3RG/2ZYqfop+tVI7rfs2TsjdEnOX6Uz6hOzUU3Qm+xZgt7y8EQDtkmkQXshVgPykf6/kO9gfWO7ZPk4iww5euf1x4xVE8/Qd9521sQyVDx/nMwCDB56ttow/9I1lzxn9t3nv7Ldr+VVxZ/98V/b8sV/Pnh+lV/jU9erFfXXvJ2ENL0o+9vhudAedRYxFOdPipxZrXgO83tF7IT4jaDHdK1QKI1NTzjWcvl4Bw/9qoS8f0v7SPtVYmyDWJdoO5TD51FrggfjDmOk/M9aNrEcFad1/9ahD/4ftVqDOyUfpfHfTMiLTZ/rRP/b0P/8Ju2UcExIE865Zop8+2727hG0vFLLZ36V3ZDe6qs3p6y9VFaj/zjMWb60SGMWvQLF6H9fzIMMs+yuRuzXB1EfdRNuP/Gh7tin8zNVPwnRog5pepHQKe97Q+Dk6dAncNSOcYN0VavL2G54HF0TcrBNYZ/V4XJS6XdSEsrDst0BdJxq9B11TjHeR2PGILCUffjdB4++257PgOcsl9eTeomW53ioYyfjYR5fzBA62PeZEf0TwqkLvthVSVX1TYS+U3lSJE12bXCHfd5Qu9MBTxbo89SYgfu8b0Cf908F+zzL43Fbmu6CZxzTeRyEGGniZXSLkb2AjzR9VCaj/xfRt6kYYlj/fvqF7NkHebF+pE70S4fG+f6N7In24uucOY4H+D4LdEHaNL0oxwa9oEdtKF8WzlPzyphi9A1pOtQB6Rijar+mxlfcdouMr9QaVF9EBsfjvL7bfKO/Tb76lfAgnvUI+r6c8gYhu9EGV+0mq/jOO5KJyOPYg+Utuo6LcevJSHtJwsRyzaJy9UXKlQg+bueo+8yI7sp+GD+qriG8/i+/92dvOrn0a1O1RvH8dx5/w8A1H/rwVOF/sP/TN/zmO/teXGYNxOpZXXPPvqXep0zT3ZCP9JdlcajDNYbA5VFxIzY/47VQ1v+2HP1vhvi9huK3mp+oNpPX/84oqIvRPyuT325/y/TqcE+jrvY0MK4VOTGn1rKNvt3c0myi9rCKnBJBm/KYxmzUG/T8nvdTjf4GqAM+jaFis+Vh2Tku1oRctZZobSyleTG1q4rj25lqHGGJ7xnAMrI/YBnV3hCPb7Aueb0fk5pDWllTne8rcHeBig/cXtW6Smy8qNqd4XdbuzPfVycU2d+K+nDeeE7JQztgX20+nLcmj20a51wPDI3jod3VeYE0cTw1+hMQ23dSbEcbsz+oOMG6hKDjUJG5/IDgs3rp8E6CGVi/qCc+Q3x1h0SVtXo1No2t1VccJ9S5j0V5qh7mBG1TtZ7Pc0W13hObJ8XiiWp/3DbVOoLqQ2LzOZONa+ZFxk15Z3Hy1jNeDm3rsci4KW9sFIKeBxQ5nY19kumqbM/nSdTc3z73R+QovWK/Xqb0wpjMd3HwW/ixMhTtq5zGiDPKvg2k7BI7c9buhgRuI+o2g7J9G5+lUX18u77tsZw+CsuhToiro5TYvz0A48/P5ryxgTJw/n9fmEhf9U2hd4gxMGNavEjT/QIzETJCmGwXnlca3TtBh1uy/dHYfkCH967NRt+xpPpNw2+EyeWt0m+qeY06Q9fhPGAg5qdqvKPWYbitW3vIm2PhnBzpP5DVLb95kaYdJEONK1R/ker2OK2dTtWeDMZdjB9pwnHshylGqDeukJffHjX6X4G+9iPU1yrfnBXiMUPt0bN/5O1z57258tFIzFDjd9Tr/hzM3xTrITG/UPXHvor06iyBGjPxOpSKZVP4ptRs1Qdj+fPapemT12aMXo3J1J5Tk+hVf4m68PpZzBfTFNszx7Zj7arqGupzV/3EkqE/ODQwVWu0M+pDP9360P0by6zRqrF3D+GivXlPOk3bs79FzoJVnF8Wvp+U55edngUrOr9Ua1o8X8L2wf2NajvqfO+pwlLtneuy4ly68FoBn+ur6DtJ2fik1iB5bRVjF9u/k5+16kYsbP+xNaQi9arkxMaBUzWW4nMpMx3lINY9JIf3dtXfonLUPb1qroJjw3+lsaHaM0LevD2jlcvG+f5taCLNWN8KNP101hTLXKItN9S6tSW1P8B+q9ZK+K5S5R84/+c7z/HmQzwvyKlG39EOqbyNMN9kOktoyyL3vvO7GAnh8Tx4bP2S6ovPq7VCsaT2Vw3rmeQLVer7NQXqW9Vx7H5sXv+Lrd+qfSsVK/PiG+KrmHQv4aM9YudIVJmNF+eYsdjFvo/050NcunrZRB3Vuq+Kwfa83V5z7ByY8fYJvhLtoJ/9GZPyZ24H6M/cDvC1e24H+C4kx0R8/4/nM5hUGzE7lImJXI9qrKNuUeD+kv3qX2E/PE1V37NJANN0srKjXnyXOLYnntdXfO9kzHbq/CWOt3h/yujXL5uIo+bssXcT1ftlNSFXvYvYXxKrj7BmdoCFa/tMP7OiXgqL3/1sCKy8dzmfm9VNJ+sIP7Z72T/90guvebRbznrdRmORivPO03bWay/0N3fS2O1Un/W6N5M/fdbr9J31einUwek86/Vqaldn6lmvMuPw6bNek+vldJ71ejX0d2XOer2OxotVz3r9Z4jtb6DYPn3W6+k0fdZr+qxXCOXPer0b2tavRsZN02e9Jsfk6bNe4/Q/qGe9fjWnj8JyVDnrZX3f/wX7h2DB9UIEAA==",
4145
- "debug_symbols": "tb3druQ6cq37Luu6L8T4I+lX2dgw2t69jQYa3UbbPsCB4Xc/ySFFjKxaJzk1M6tv1vxWVc0xKJIRkqgQ9d+//Z8//ct//ds///mv//dv//HbP/2v//7tX/7+57/85c//9s9/+du//vE///y3vz7+9L9/O9Z/evvtn/QPv3X57Z/88UPPH3b+8PNHnD/6+WOcPyZ+jOP80c4fp8o4VcapMk6VcaqMU2WcKuNUmafKPFXmqTJPlXmqzFNlnirzVJmnyjxV2nFcP9v1U66fev2066dfP+P62a+f4/p56bVLr1167dJrl1679Nql1y69dum1S69denLpyaUnl55cenLpyaUnl55cenLpyaWnl55eenrp6aWnD72+fvr1M66f/fr50GvHgnmBHQkPyaYLHppt/WPTBEvwhEjoCUt5LJgX+JHQEiRBEyzBEyKhJ6SyL+X5gDgSWsJSXh0QmmAJD2UBREJPGAnzgn4ktARJ0ARLSOWeyj2VV8jI6pYVNIAVNie0BEnQBEvwhEjoCak8Unmm8kzlmcozlWcqz1SeqTxTeabyvJTlOBJagiRowlKeCzwhEnrCSJgXrDg7oSVIgiakckvllsotlVsqt1SWVJZUllSWVJZUllSWVJZUllSWVNZU1lTWVNZU1lTWVNZU1lTWVNZUtlS2VLZUtlS2VLZUtlS2VLZUtlT2VPZU9lT2VPZU9lT2VPZU9lT2VI5UjlSOVI5UXjGossATIqEnjIR5wYrBE1qCJGhCKvdU7qm8YlB9wUiYF6wYtGNBS5AETbAET4iEnjAS5gUzlWcqz1SeV96QaQmeEAk9YSRcGUmPI6ElSIImWIInrDbrgp4wEuYFKwZPaAmSoAmW4Amp3FK5pXJL5RWDZgtagiRogiV4QiT0hJEwL9BU1lTWVF4xaH2BJXjCOqu2BT1hJMwLVgye0BIkQRMswRNS2VLZUtlS2VPZU9lT2VPZU9lT2VPZU9lT2VM5UjlSOVI5UjlSOVI5UjlSOVI5Urmnck/lnso9lXsq91TuqdxTuadyT+WRyiOVRyqPVB6pPFJ5pPJI5ZHKI5VnKs9Unqk8U3mm8kzlmcozlWcqz0vZjiOhJUiCJliCJ0RCTxgJqdxSuaVyS+WWyi2VWyq3VG6p3FK5pbKksqSypLKksqSypLKksqSypLKksqayprKmsqayprKmcsagZQxaxqBlDBpiUBe0BEnQBEvwhEjoCSNhXuCp7Knsqeyp7Knsqeyp7KnsqeypHKkcqRypHKkcqRypHKkcqRypHKncU7mnck/lnso9lXsq91TuqdxTuafySOWRyiOVRyqPVB6pPFJ5pPJI5ZHKM5VnKs9Unqk8U3mm8kzlmcozleel7MeR0BIkQRMswRMioSeMhFRuqdxSuaVyS+WWyi2VWyq3VG6p3FJZUllSWVJZUllSWVJZUllSWVJZUllTWVNZU1lTWVNZU1lTWVNZU1lTOWPQMwY9Y9AzBj1j0DMGPWPQMwY9Y9AzBj1j0DMGPWPQMwY9Y9AzBj1j0DMGPWPQMwY9Y9AzBj1j0DMGPWPQMwY9Y9ARg7FgJMwLEIOAliAJmmAJnhAJqdxTuafySOWRyiOVRyqPVB6pPFJ5pPJI5ZHKM5VnKiMG+wJNsISlPBdEQk8YCfOEQAwCWoIkaIIleEIk9ISRkMotlVsqt1RuqdxSuaVyS+WWyi2VWypLKksqSypLKksqSypLKksqSypLKq8YjGNBS5CEh3K0BZbgCQ/l0AU9YSQ8lOMxXrFi8ISWsJTHAk2wBE+IhJ4wEuYFKwZPaAmp7KnsqbxisK82rxg8oSeMhHnBisETWoIkaIIlpHKkcqTyisEuC+YFKwZPaAmSoAmW4AmR0BNSuafySOWRyiOVRyqPVB6pPFJ5pPJI5ZHKM5VnKs9Unqk8U3mm8kzlmcozleel3I8joSVIgiZYgidEQk8YCancUrmlckvllsotlVsqt1RuqdxSuaWypLKksqSypLKksqSypLKksqSypLKmsqayprKmsqayprKmsqayprKmsqWypbKlsqWypbKlsqWypbKlsqWyp7Knsqeyp7Knsqeyp7Knsqeyp3KkcqRypHKkcqQyYhBr/ZHQE0bCvAAxCGgJkqAJlpDKPZV7KvdU7qk8Unmk8kjlkcojlUcqj1QeqTxSeaTyTOWZyjOVZyrPVJ6pPFN5pvJM5Xkpj+NIaAmSoAmW4AmR0BNGQiq3VG6p3FK5pXJL5ZbKLZVbKrdUbqksqSypLKksqSypLKksqSypLKksqayprKmsqayprKmsqayprKmsqaypbKlsqWypbKlsqWypbKlsqWypbKnsqeyp7Knsqeyp7Knsqeyp7KnsqRypHKkcqRypHKmcMTgyBkfG4MgYHBmDI2NwZAyOjMGRMTgyBkfG4MgYHBmDI2NwZAyOjMGRMTgyBkfG4MgYHBmDI2NwZAyOjMGRMTgyBkfG4MgYHBmDI2NwZAyOjMGRMTgyBkfG4MwYnBmDM2NwZgzOjMGZMTgzBmfG4MwYnBmDM2NwZgzOjMGZMTgzBmfG4MwYnBmDM2NwZgzOjMGZMTgzBmfG4MwYnBmDM2NwZgzOjMGZMTgzBidicCyQBE2wBE+IhJ4wEuYFiEFAKlsqWyojBucCT4iEnjAS5gWIQUBLkARNSGVPZU9lT2VPZU/lSOVI5UjlSOVI5UjlSOVI5UjlSOWeyj2Veyr3VO6p3FO5p3JP5Z7KPZVHKo9UHqk8Unmk8kjlkcojlUcqj1SeqTxTeabyTOWZyjOVZyrPVJ6pPC/lx9P3o6gVSdFDfTSQFXnRw2AYqBeNopm0wvGiViRFWmRFXlQerTxaebTykPKQ8pDykPKQ8pDykPKQ8pDykPLQ8tDy0PLQ8tDy0PLQ8tDy0PLQ8rDysPKw8rDysPKw8rDysPKw8rDy8PLw8vDy8PLw8vDy8PLw8vDy8PKI8ojyiPKI8ojyiPKI8ojyiPKI8ujl0cujl0cvj14evTx6efTy6OXRy2OUxyiPUR6jPEZ5jPIY5THKY5THKI9ZHrM8ZnnM8pjlMctjlscsj1keMz1QZnNRK5IiLbIiL4qiXjSKyqPivFWct4rzVnHeKs5bxXmrOG8V563ivFWct4rzVnHeKs5bxXmrOG8V563ivFWct4rzVnHeKs5bxXmrOG8V563ivFWct4rzVnHeKs5bxXmrOG8V563ivFWct4rzVnHeKs5bxXmrOG8V563ivFWct4rzVnHeKs5bxXmrOG8V563ivFWct4rzVnHeKs5bxXmrOG8V563ivFWct4rzVnHeKs5bxXmrOG8V563ivFWct4rzVnHeKs5bxXmrOG8V563ivFWct4rzVnHeKs5bxXmrOG8V563ivFWct4rzVnHeKs5bxXmrOG8V563ivFWcS8W5VJxLxblUnEvFuVScS8W5VJxLxblUnEvFuVScS8W5VJxLxblUnEvFuVScS8W5VJxLxblUnEvFuVScS8W5VJxLxblUnEvFuVScS8W5VJxLxblUnEvFuVScS8W5VJxLxblUnEvFuVScS8W5VJxLxblUnEvFuVScS8W5VJxLxblUnEvFuVScS8W5VJxLxblUnEvFuVScS8W5VJxLxblUnEvFuVScS8W5VJxLxblUnKNsaASoFUmRFlmRF0VRLxpFM2mUxyiPUR6jPEZ5jPIY5THKY5THKI9ZHrM8ZnnM8pjlMctjlscsj1keMz1QVHRRK5IiLbIiL4qiXjSKyqOVRyuPVh6tPFp5tPJo5dHKo5VHKw8pDykPKQ8pDykPKQ8pDykPKQ8pDy0PLQ8tDy0PLQ8tDy0PLQ8tDy0PKw8rDysPKw8rDysPKw8rDysPKw8vDy8PLw8vDy8PLw8vDy8PLw8vjygPxPlZgSxFWmRFXhRFvWgUzSTE+Unl0cujl0cvj14evTx6efTy6OUxymOUxyiPUR6jPEZ5jPIY5THKY5THLI9ZHrM8ZnnM8pjlMctjlscsj5keKFy6qBVJkRZZkRdFUS8aReXRyqOVRyuPVh6tPFp5tPJo5dHKo5WHlIeUh5SHlIeUh5SHlIeUh5SHlIeWh5aHloeWh5aHlgfifIJ60Sh6eExZtOL8olYkRVpkRV4URb1oFJWHl4eXh5eHl4eXh5eHl4eXh5eHl0eUR5RHlEeUR5RHlEeUR5RHlEeURy+PXh69PHp59PLo5dHLo5dHL49eHqM8RnmM8hjlMcpjlMcoj1EeozxGeczymOUxy2OWxyyPWR6zPGZ5zPKY6YHiqItakRRpkRV5URT1olFUHq08Wnm08mjl0cqjlUcrj1YerTxaeUh5SHlIeUh5SHlIeUh5SHlIeUh5aHloeWh5aHloeWh5aHloeWh5VJx7xblXnHvFuVece8W5V5x7xblXnHvFuVece8W5V5x7xblXnHvFuVece8W5V5x7xblXnHvFuVece8W5V5x7xblXnHvFuVece8W5V5x7xblXnHvFuVece8W5V5x7xblXnHvFuVece8W5V5x7xblXnHvFuVece8W5V5x7xblXnHvFuVece8W5V5x7xblXnHvFuVece8W5V5xHxXlUnEfFeVScR8V5VJxHxXlUnEfFeVScR8V5VJxHxXlUnEfFeVScR8V5VJxHxXlUnEfFeVScR8V5VJxHxXlUnEfFeVScR8V5VJxHxXlUnEfFeVScR8V5VJxHxXlUnEfFeVScR8V5VJxHxXlUnEfFeVScR8V5VJxHxXlUnEfFeVScR8V5VJxHxXlUnEfFeVScR8V5VJxHxXlUnEfFeVScR8V5VJxHxXlUnEfFeVScR8V5VJxHxXlUnEfFeVScR8V5VJxHxXlUnEfFeVScR8V5VJxHxXlUnEfFeVScR8V5VJxHxXlUnEfFeVScR8V5VJxHxXlUnEfFeVSc94rzXnHeK857xXmvOO8V573ivFec94rzXnHeK857xXmvOO8V573ivFec94rzXnHeK857xXmvOO8V573ivFec94rzXnHeK857xXmvOO8V573ivFecowhsOkiLrMiLoqgXjaKZhDg/qRWVh5WHlQfiPEBR1ItG0UxCnJ/UiqRIi6yoPLw8vDy8PLw8ojyiPKI8ojyiPKI8ojyiPKI8ojx6efTy6OXRy6OXRy+PXh69PHp59PIY5THKY5THKI9RHqM8RnmM8hjlMcpjlscsj1keszxmeczymOUxy2OWx0wPFJJd1IqkSIusyIuWxwD1olE012vd671u1JQlNqIQlWhEJwaxEweRbkI3oZvQTegmdBO6Cd2EbkI3oZvSTemmdFO6Kd2Ubko3pZvSTelmdDO6Gd2MbkY3o5vRzehmdDO6Od2cbk43p5vTzenmdHO6Od2cbkG3oFvQLegWdAu6Bd2CbkG3oFunW6dbp1unW6dbp1unW6dbp1un26DboNug26DboNug26DboNug26DbpNuk26TbpNuk26TbpNuk26TbLDfUwSU2ohCVaEQnBrETB5FuzCWTuWQyl0zmkslcMplLJnPJZC6ZzCWTuWQyl0zmkslcMplLJnPJZC6ZzCWTuWQyl0zmkslcMplLJnPJZC6ZzCWTuWQyl0zmkslcMplLJnPJZC6ZzCWTuWQyl0zmkslcMplLJnPJZC6ZzCWTuWQyl0zmkslcMplLJnPJZC6ZzCWTuWQyl0zmkslcMplLJnPJZC6ZzCWTuWQyl0zmkslcMplLJnPJZC6ZzCWTuWQyl0zmkslcMplLJnPJZC6ZzCWTuWQyl0zmkslcMplLJnPJZC6ZzCWTuWQyl0zmkslcMplLJnPJZC6ZzCWzcokclUvkqFwiR+USOSqXyFG5RI7KJXJULpGjcokclUvkOOjW6Nbo1ujW6Nbo1ujW6Nbo1ujW6CZ0E7oJ3YRuQjehm9BN6CZ0E7op3ZRuSjelm9JN6aZ0U7op3ZRuRjejm9HN6GZ0M7oZ3YxuRjejm9PN6eZ0c7o53ZxuTjenm9PN6RZ0C7oF3YJuQbegW9At6BZ0C7p1unW6dbp1unW6dbp1unW6nblEgbPwzCUnNqIQlWhEJwaxE+mG+5m1FwvqBC9qRVKkRVbkRVHUi0ZRerTjKGpFUqRFVuRFUdSLRlF5tPJo5dHKo5VHK49WHq08Wnm08mjlIeUh5SHlIeUh5SHlIeUh5SHlIeWh5aHloeWh5aHloeWh5aHloeWh5WHlYeVxpoUBVKIRnRjEThzEWXimhRMbkW5ON6cb0kIzYBB7IcLBQUvgQvzTDuzEQZyFOIde2IhCVKIRnUi3SbdJt1luKKFLbEQhKtGITgxiJw4i3RrdGt0a3RrdGt0a3RrdGt0a3RrdhG5CN6Gb0E3oJnQTugndhG5CN6Wb0k3ppnRTuindlG5KN6UbzqGyMjRK7RIbUYhKNOJykwYMYicO4ixEsFzYiEJUohHphmARAXYi3BQ4C3EOvbARhahEI8ItgEHsRLgN4CzEOfTC5aZoL86hFyrRiE4M4nLD5l0oyEuchTiHXgg3tAxJ40Il4igmELqYBMgPij9FfjD0JPLDhUo0ohODuHQN3Yf8cOFMROldYiMKUYlGdGIQOxFuBpyFyA9rDyxBFV6iEJVoRCfCbQA7cRBnIfLDhY0oRCUa0Yl0Q36wCRzE5eYr9FCYl9iIQlxujn5AfrjQiUHsxEGE25pcKNFLbEQhKtGITgxiJw4i3ZAf1t4dgmq9RCHCTYBG9ELE/IVQwGgiugO9g5BeW1IICu4SB3EWIqQvXGKBRiKkL1SiEZ0YRLjhKBDSF85ChPSFjShEJRrRiUGkGy4PAv2Ay4MTEf4Xwg2zD+F/oRKXW0f3Ifw7ugTh3xGFCP8LB3EmoiIvsRGhG0AnBrETB3EWIgrXa3eCYrnEZTEO4LIYAnRiEDtxEGch4mKgvYiLExEXFzaiEJVoRCcGsRPpZnRzujndnG5Ot3MnWQNCYc0+lK61VbUnqF1LFCIUBtCITgxiJ45ChMjAACAYJgYAwTDRMgTDhZ24FCa6GsFwIoLhwkYUohLhhiNGMFwINxw8guHCUYhpPzGNMMEn+gET/EIoNCAUcJiY4BfORJSiJUJ3AoWoxIeb4AYZ9WiJQewUG0S6Nbrh/Hah5FigLi3RiE4MYo0mCtHOIUTV2TmEKDs7Bwt1Z4lB7DkWKD1LrNFE8VliIwpRc9xQgJboOVgoQUus0UTB2TmEqC47xw3lZYmeQ4gCs6ujjP1r7F9j/yLezsFyjqZzNLGL7DlYztF0jqbTzenmdHO6BUcTGygf6BJsoXwiNlG+sC1E72Aj5QuVaEQnBrETB3EWYmNl3KWipCtRiEo0ohOXW0N7scXrhYM4E1HbJWsDbkFxV6IQlxvuiVHflehEuDmwEwdxFmID5hZA6HagEZ0YROhO4NLFTRAKuwS3JajsSmxEIS433KyguivRiUFcboJjwy7MuOtAYZdg72lUdsm15/CyODcSxm7MFxrRiUHsxEFcbopex97MFy43RXOwP/OFSjSiE4PYiYM4C7Ff84V0c7o53ZxuTjenm9PN6eZ0C7phF2fcRqHwK1GJRnRiEHshdlHHLRdqvRKFqEQjOjGInTiIs3DQbdBt0G3QbdBt0G3QbdBt0G3QbdJt0m3SbdJt0m3SbdJt0m3SbZYbCsESG1GISjSiE4PYiYNIt0a3RrdGt0a3RrdGt0a3RrdGt0Y3oZvQTegmdBO6Cd2EbkI3oZvQTemmdFO6Kd2Ubko3pZvSTemmdDO6Gd2MbkY3o5vRzehmdDO6Gd2cbk43p5vTzenmdHO6Od2cbk63oFvQLegWdAu6Bd2CbkG3oFvQjbmkM5d05pLOXNKZSzpzSWcu6cwlnbmkM5d05pLOXNKZSzpzST9zyQA6MYgjM2I/EwjwTCAnNqIQlWhEJwaxE+k2y20cB7ERhahEIzoxiJ04iHRrdGt0a3RrdGt0a3RrdGt0a3RrdBO6Cd2EbkI3oZvQTegmdBO6Cd2Ubko3pZvSTemmdFO6Kd2Ubko3o5vRzehmdDO6Gd2MbkY3o5vRzenmdHO6Od2cbk43p5vTzenmdAu68bJj8LJj8LJj8LJj8LJj8LJj8LJjBN2Cbp1unW6dbp1unW6dbp1unW6dbp1ug26DboNug26DboNug26Dbswlg7lkMJcM5pLBXDKYS1Bq9lgnAjoxiMsNi8koNUuciSg1Eyxzo9QsUYhKNKIT4RbAThxEuK32otQssRGFqEQjwm0Ag9iJcJvAWYhccmEjLl0sJqN8TNYu9YLyscRZiPzg6CjkhwuFuNqLdWWUjyU6MYhwwwEhP1w4C5EfLoQuug8xj5VelIQlDiKOGBaI+QsbUYhKNKIT4YZORcxfOIizEDF/YSMKUYlGdCLdgm5Bt6Bbp1un2/kpJwwsohvr4Cj+SuzEQZyFiO4LG1GISjQi3QbdBt0G3QbdJt0m3SbdJt0m3SbdJt0m3SbdZropir8SG1GISjSiE4PYiYNIt0a3RrdGt0a3RrdGt0a3RrdGt0Y3oZvQTegmdBO6Cd2EbkI3oZvQTemmdFO6Kd2Ubko3pZvSTemmdDO6Gd2MbkY3o5vRzehmdDO6Gd2cbk43p5vTzenmdHO6Od2cbk63oFvQLegWdAu6Bd2CbkG3oFvQrdOt063TrdOt063TrdOt063TrdNt0G3QbdDtzCUNaEQnBrETB3EWnrnkxEYUItwMaEQnwk2AnTiIM7GdueTERhSiEo3oxCB2ItwCOAvPXHKiEqHgwE5cCusJnqLc60LkhwsbUYhKXO3tBnRiEDsRbjBGfjgR+eFCuKG9yA8XKhFuHejEIHYi3AZwuQ20F5lgbbmpqPdKNKITl+56eqao95KBo0AmGGgOMsGAGzLBhY0oRLihOcgEFzoxiMttor3nF+bQnPMbcxj58ytzaM75nTlYnF+aO9GITgxiJw4i3NAGhP+FUtOoc0adMX+iE4PYiZypnTN1cKaeMX8i3QbdBt0G3QbdVszrgT5bMZ84C1fMP06DwEYUohKN6MQgduIgzkQUviU2ItwUqEQjOjGInTiIs7AdxEakW6Nbo1ujW4ObAHHlOBciE1zYiEJUohGdGMROHES6Kd2Ubko3pZvSTemmdFO6Kd2UbkY3o5vRzehmdDO6Gd2MbkY3o5vTzenmdHO6Od2cbk43p5vTzekWdAu6Bd2CbkG3oFvQLegWdAu6dbp1unW6dbp1unW6dbp1unW6dboNug26DboNug26DboNug26DboNuk26TbpNuk26TbpNuk26TbpNus1yuz5veWIjClGJRnRiEDtxEOnW6Nbo1ujW6Nbo1ujW6Nbo1ujGXKLMJcpcoswlylyizCXKXKLMJcpcoswlylyizCXKXKLMJcpcoswlylyizCXKXKLMJcpcoswlylyizCXKXKLMJcpcoswlylyizCXKXKLMJcpcoswlylyizCXKXKLMJcpcoswlylyizCXKXKLMJcpcoswlylyizCXKXKLMJcpcoswlylyizCXKXKLMJcpcoswlylyizCXKXKLMJcpcoswlylyizCXKXKLMJcpcoswlylyizCXKXKLMJcpcoswlylyizCXKXKLMJcpcYswlxlxizCXGXGLMJcZcYswlxlxizCXGXGLMJcZcYswlxlxizCXGXGLMJcZcYswlxlxizCXGXGLMJdgET1fdiqLUL9GJQezEQZyFehAbUYh0U7op3ZRuSjelm9LN6GZ0M7rVCqfamUtOhJsDg9iJgzgL/SA2Itw6UIlGhNsABrET4YaW+SyMg4hxg9iZS05UohGdGMROHMRZeOaSE6F7AI2Io8CEwQezL+zEQZyF4yA24uqz1oBKNOJyW9VNiiLExE5cbg0tw33LibhvuRB9BrEza5yoRCM6MYidOIi5bq9+Zo0TcRQKNKITcRQG7MRBxFGsGYXSxMTVZ6vYSlGamKhEuHWgE4PYiYM4C+Ugwm0AhahEIzoxiP2qG9SzYHEVQupVsHiiEJVoRCcGsRNRcXcAZyGuKi5sRLkqMPUqbjzRiE4MYicO4iw8ixtP5Mg7R9458s6Rd468c+SdIx8c+eDIB0c+OPLBkQ+OfHDkgyMfHPngyHeOfOfId45858h3jnznyHeOfOfID4784MgPjvzgyA+O/ODID4784MgPjvzgyE+O/OTIT4785MhPjvzkyE+O/OTIT478rJGP4yCidybQiE4M4hoLOX9tEGchYv7CdpWca5zlyCcq0YhODGInDuIsRHSvqkpFVWWiEZ0YxE4cxFmIs/+FjUg3pZvSTemGs7+gkTj7XziIsxBn/wsbEW7odVOiEZ243BS9jrP/hYO43FZlp6LAUhUWOPtfKEQlGtGJQezEQYTbim4UWCbCrQOFqEQjLjdD05EJLuzEQZyFyAQXNqIQl5thhJAJLoQbegeZ4MJOHMRZiAuBVRigqLVMVKIRnQgLdAkuBC4cxFmIC4ELGxFu6CgsYF5oRCcGsRMHcSai1jKxEYUItwE0ohPhNoGdOIjLDdcaqLXU9X6WotZSV42AotYyUYlGdGIQ8XBh0fkkA9SKpEiLLAkRvKoOFMWOiUHEFRRoFM2kcyEA1IqkCIonrm7AlTtKFxErqFy8qBWhx0FaZEVeFEW9CCY4LoThiQhDxxAhDC8UIpqJIUJo4QEcqhAvRGihqxFZeGSGIsREJRrRiZFd0qs7e3Vnr+4c1Z2juhOBdHYiQubsRIQMHouhuvBChEygpQiZC9FS9NAKGTvJirwoinrRuAgVhIrnaKgVVDyHQK0gAgSlghf1ovXb57+bSWvuX9SKpEiLYAIZzPsL17iv9/EUJYKJoxAXwDGBSwHP7VD2l7jaicPAuRAdg6q/xFmIc+GFS3a98aeo+ktUomWHo+ovMYh0U7op3YxuRjejm9HN6GZ0M7oZ3YxuRjenG6LvQrmmOor+zumLor9EJwaxF+I81aGAYLpwFp4P2kCtSIq0yIq8KIp60SiaSaM8RnmM8hjlMcoD5yg8lUUJXmIn4mAwBRFwJyLg8LQXJXiJQlSiEZ0YxOWGx7YowUuciSjBUzziRQleohCXGx7mogQv0Ym4NAP1olE0k85LWVArguKJaKkC0VIDzkLckF7YiKuleJSMvdsSjejEIGKBAgSzDpyFiNILYTaBQlTiMsPzZdTeJS4zPGpG7V3iIK7shSasIL2oFUmRFlkRFNFZiDk8x0bVna7X9xRVd4lKNCJaigNE0F3YiYM4C9eJD5ddKLq7SIpWU3Fw69rzIi+Kol40imCCKYdz44WNaEQ0E52PS8kLV4ei71esXtSK0KEnKtGIq6F4kouausTVVCwaoqYuEWOHjpwYPEyqidFDP61wNaw4oaYu0YhODGInDuK80FBTZ2stzFBTZ2vVy1BTZ2tZwVBTZ2sBwVA9Z2vVwFA9lziIsxAn0AsbUYgQC2AnDuIslIPYiEKEWAfi18ZCPYiNKMTHsTmOcoXcRV4URb1oFM2kFW0XtSIpKg8rDysPKw8rDysPKw8vDy8PLw8vDy8PLw8vDy8PLw8vjxVsjpmwgu0iL4qiXjSKZtKKtYtakRSVRy+PXh69PHp59PLo5THKY5THKI9RHqM8RnmM8hjlMcpjpAcKxGxd3RoKxEzOP12TZ73kaSgFs3WDYti+y9Y52lDTldiJa1orFNa0dgisWX1RK5IiLbIiL4qiXjSKykPLY811WydJQ22WrQsoQ22Wo4mY2SfNJMzsk1qRFGmRFXlRFJWHlYeVh5eHl4eXh5eHl8ea2euex1CedVEvengEenrN7JPWSeYi9IIB0QsYYJw+FN2E88eFs7AfxEYUohKN6MQg0q3TrdMNZxvFzMLp5kIhKtGITgxiJw7iLJx0m3SbdJt0m3SbdFvnm8B0Wqebi0bRvAj1Vxe1IigOIFo6geu3AzST1hnlovXbDpIiLbIiL4qideDrBG4ombJ1rWAomUo0Im460UycYC7sxEGchTjtXNiIQlSiEemmdFO4oek6iLMQ13rrRtZQMpUIN3QrLvcM3YrrPaQ3lEwlBnG54WyAkqnE5bZWWgwlU+YwXuEacFjhepEWWZEXRREUMZi42HM0GsGJGEcBVKITV0sR5iiAShzEWYiQvRC36zhAhGFgdBGG5yREGF44CxGGFzaiEJVoRCfCDR2HMLxwEOGG7kQYXtiIQoQb+gxheKETH24dR7nC8KJR9LBaawuGgqaLWpEUaZEVPUy6gKKoF+F4OnAWnisoJzaiEdEjAziIUFijjeKkxEZcLXWQFlmRF0VRLxpFM2lF60WtqDy0PLQ8tDy0PLQ8tDy0PKw8rDysPKw8rDysPKw8rDwQm+fQIDZPRGxeuPrrHJ0VnIlKXOOw7ugNJUiJWB3D6HgnDuIsxI3bhXDD8CGaL4QbxgzRPNAyRPO6zzeUICV24nIbaCSi+URE84WrC+Gwzr8XaZEVeVEUQXHFJgqKbOCwEccDPYs4vtCJQURLcdiI4wtnIeL4wkZcTUVf5GewDeVENs4/XF4Tx4+btwvn+fVGs/zihlnuRmuWu9Ga5W60hjogW6sBhjqgCxGKFzaiEJVoRDTKgUHsxJmtwm60J7UiOb/0YSj8uciKIH5iEDtxXSuuZ6yGsp8LcW49jxXn1guFuB5fXv/WiE4MYicO4iysXavNatdqs9q12szoZnQzuhndjG5GN6Ob083p5nRzujndnG5ON9zqrXUIQ9lP4ixc8esHBnrFb6IQ16X3WrMwlP0kOjGIcDMg3DA/zl2r8Q/OXatPbES4YbbgxvBCIzoxiJ04iLMQ94cXNiLdBt0G3c5dq3Hw567VJ3biIM7Ccwf8ExtRiEo0It0m3SaODUE/B3EmohgosRGFqEQjOjGIcBvAQZyFTYi4hT6AuIduwE4cxFmIu1ysKqHsJ1GISjSiE4PYiYM4C5VuSjelm9JN6aZ0w6oPlr5QDJQINwfOQtwfXwi3AApRiUZ0YhA7cRDhhsHCnfKFjShEuE2gEZ0YxE5cboKDR344EfnhwkYUohKXm6CjkB8uDGInDuIsxKrRhY0oRCXSDflhbb9lKBFK7ES4oSeRH7Beg8KhRLhhgiM/XAg39A7yw4VODGInDuIsnAexEYVIt0m3SbdJt0m3SbdZbigcSmxEISrRiE4MYicOIt0a3RrdGt0a3RrdGt0a3RrdGt0a3YRuQjehm9BN6IZcsh7OGIqMEjtxEFdex3J3nLt7n9iIQlSiEZ0YxF54rhc3IBZuBWhEtFeBQezEQZyF5xrxiY0IXRg7+9d5xOcCMBAxf2EjYp3ZgUo0ohM5mkG34GgGR7NzNDtHs3M0EfNnGxDzF3I0O0cTMX+2ATF/4SwcdBt0G3RjzAdjPhjzwZhHXdBlPNiTgz052ZOI+bMNkz052ZOM+WDMB2M+GPPBmA/GfGfMd8Y86oLONqAuKNGITgwiji2Ag4hjWykTdUGJjSjE5WYQQ8xf6MQgduIgzkLE/IXLDWt3KBhKrAmOjdcca3fYeC2xEwexpgY2XktsRCEq0YhOrMFCLVLiIHKwjINlHCwTohKNiKNQ4CDOQoS/oR8Q/lgeRKlSohKN6MQgduIgzsKoC8N+3iicaEToYj4gKVwIXRwQksKFsxBJwTHcSAoXCnG5YbUSdUyJTgxiJw7iLERSuLARhUi3Ff64G0eJ00WjaN2r4whW6F/UiqCIsUHgX2hEtB89i8C/sBMfTrgt7/kNXhv5DV4b+Q1eG/kNXhv5DV4b+Q1eG/kNXhv5DV4b+Q1eG/kNXhtHebTyaOXRyqOVRyuPVh6tPFp5tPJo5SHlIeUh5YFzOtaKUSuV6ER02AB2Iga8A2chQv1CPHQ7gELEYzcYI9QvxIM3BQaxE9dhOWgm5Sd5beQneW3kJ3lt5Cd5DQVRjvVglD45lntR+uRY2EXpU6IQlYiW4rARzhcGsRMHcblhdRgbniU2ohCVaMTlhhVFbHiW2ImDOAsR5Bc2ohCVaES6Icg7uh5BfuEgwg09iSDv6CgE+YVww0xAkF8IN/QOzvwXBrETB3EW4sx/YSMKUYl0m3SbdJt0m3Sb5YZqq8RGFKISjejEIHbiINKt0a3RrdGt0a3RrdGt0a3RrdGt0U3oJnTDmR9LqajPSjSiE7Gucv5aJw7iLDy/h3diIwpRiUZcR4GlbVRdORaxUXaVuNqLlWsUXiUa0YlB7MRRiEyA9WuUXl1d4jxixPyFnTiIq3+x/ozSq8RGFCJHM+gWHM3gaAZHMziawdHsHM0z5tGcztHsHM3O0ew8NsQ8VuFRr5WI3gngLETMX9iIODaIIeYvNKITg9iJgzgLEfMTkwAxf6HWYCHQsaiPOq3EIHbiqAGYOViOOq3ERhSiEo2Yg+VHBbofFeh+VKD7UYHuRwW6HxXoflSg+1GB7ijk8nWqdhRyJQ4iaj10IUJ6omUI6QuFqEQjOjGInTgKcVpfJ1ZHpVeiEo0I3QAGsRMHMU/NfhZ8XdiIQlSiEZ0YxF64TvlrqjuKvC6SovXgqIGsyIvQ/vMfduIgrgvUY9GK+4ta0XqEf5yoRCP6+djKUQh2US8aRTNpBfxFrUiKtMiKyqOXRy+PXh69PEZ5jPIY5THKY5THKI9RHqM8Rnms6I4DXbuiO7ER5Xp659iYLBE9hrk+nRhEFCrBAiUyF85E1J0lNqIQlWhEuDkwiJ04iHDrC1FUc2EjClGJcBtAJwZx9WOARtFMWrF/USuSIi2yIi+KovKQ8pDy0PLQ8tDy0PLQ8tDyUBzIBHbiIM5CO4iNKEQlrm5bzxYc1XGJQVxu68GKo0AucRY6ytcwzCi6uVCITsTLE4vwStFJ+CUMEeL8QiUa0YlBXE0UtHaFeuIsXMGeuNzW8ryjQC5RictN0NoV8YlBhBumah/EWTgOItxwmANuaO+ALrp/BLETBxH1aSumUQoXiqNApCuasyI9FG4r0hON6ESUwqE5Zy3ciYM4E69yuAGExQQui7Xe5aiNi7Va5diDLNbKi2MPssROHMRZiPC+sBGXm6ENCO8LaxKd5XIXduIgzkI5iLDAAYkQlYgDwmGKE4PYiYM4C/UgNqIQlUg3pRvCfK3oOGrrEgdxFiLML2xEISrRiE6km9HN6GZ0Q5g7Rh51dI6RRyHdhU4MInQVOIizENWvF7ar6MXPursLlWhEJwaxE0chYt5PFKISjejEIKK9mJ6IY8ecHFDoQCM6EQqYXIjuC9EPGG5E94mI7gtXewNdjei+UIlGdGIQOxHFqhhCRDcQVXaJjShEJdpV/+Yoqzv7AXV1idU7epbBCrARhahEI+IoFBjEThxEHAXcEN0XNiLcOlCJRoQbDgjRfWEnws2AcFvDglq8WBVsjmK86OgdRPeFSly6HceGOL5wEGch4rjj2M6IDaARnRjEUYiCunOwUFB3oRLtKiz1s6DuwiB24iDOQhTUXdiIQlyN7OgznJov7MRBxMFjsHBqvrARhYiyW4wbatcvdGIQO3EQZyGKZi9sRJQ5o6NQVnchjgL9i+C9cBBnIYK3QwzBe6EQlWhEJ6KoGj15vjl84iDOROzTldiIQlSiEZ2IoxjAWYjgvbARcRQTqEQjOhGV/Sd24iDOQhTQXtiIQlQiarMPYCcO4ixEmF7YiLj6BWmRFXlRFPWi66UNR/XdSXYUtSIp0iK0/ES0Ef2Pk+mFjYhjd6ASjejEIHbiIM7C8y3GExuRbkG3oFvQLegWdAu6Bd0Qu2thyVE2l2hEJ6J3DNiJgzgLcVl9YSMKUYlwQ3NwOr4wiJ0ItwDOQkT0hY0oNViI6AuN6MQgduIg1nxA2VwidDvQiE6E7gBCdwIHcRYioi9cR7GW/hxlc4lKNOJyw5oYiukC61EopkscxFmI0/GFjShEJRrRiXRDnE8cJuL8wlmIOL+wEYWoRCM6cVVeY70ExXQdayAopkuchSiSv7ARhahEIzoxiHQzuAVwFmKt7cJGFKISjejEIMINk8AHcRbGQWxEISrRiMsNiwQopkvsxEGcheuMn9iIQsTqLciKvCiKetFIGlBEz64c0HHrh9K4RGSy8x904iDOwvPdsxMbUYhKNCJ6AJP4fMEFo4A3XIAogktsRCEq0Yg4ig4MYicOItzWLEcRXGIjClGJRnQi3CYQ79UcwEGchSsHJDaiEDXHAkVwiU4MYicO4izE6zEXNqJdr877uafWhUHEUQhwEHEUUEC0X9iIOAoHKtGIeBMJA4Bov7ATB3EWItoVvYNov1CISjSiE4PYCxHXWDs698nCUjuK4DqWkVAElziIq2WYyiiCS0TL0A+I1QuViJahH/Byy4VB7MRBnIXjIMIN034IUYlGdGIQex3xhC66ejaiEJUIXcyS6cQgduK49qLwcxss4LkN1oWNKEQlGtGJ6J0JnIWI4wsbcR0FFuRQ2JZoRCfGteeI99p+xPu5/ciJs/DcfuTERhSiElfv4KYJ1WyJg7iOAnceqGZLbEQcBcTwTtuFOAp0Cd5quzCIcHPgIM5CxPGFjShEJcItgE4MYicO4izE3iRYIDh33sJyxLn1FlYFzr23LgxiJw7iLMRa+YXt2p7Iz+23LlSiEZdboGXYBe/CThzEWYjtSC5sRCEqceli5QfVbH2V0Tmq2RJnIaL7wkYUohIxFgPoxCB24joKrIOc+3idiG2FLmxEISrRiE4MIo5ixRuq2hIbcR0FFkdR2JZoxHUUWEhFbVviOgqsk6K6LXEWIuaxOIoCt0QhKtGITgwi3Aw4iLMQ5+4LG1GIGHkckNTID6mRHzKINfJDD2IjClGJNfJDnRjETqyRP/cAO9EOYiMKUYlGdGKNPKrUxnmYK0wTB3EWYtrjMhT1XRdi2l/YiEJUIoYQx4Zpf2EQO3EQZyFOdRc2ohCVSDec6rD4jPquxE5cbufIIxiAqO9KXG5YCUR9V0cKQn1Xx0Iq6rs6sgbquxKD2ImDOAsRDFgyRX1XohCVaEQnBrETB3EWCt2EbkI3XLJiPROVXIm9EJMWi5iow0qEGw4IJ6oTcaK6sBGFqEQcWweiDQMYxE4cxFmIC84LG1GISjQi3ZxuTjenm9Mt6IYbSSwVojqrY20O1VlXpwbHIjgWuAzFCRDVWYlCVKIRnQi3EztxuY3TYhYiYi9curjIQcVVx+oSKq4S0V4cBaLwHBZE4YWNKEToYj4gCi90YtRwIwov5NyZ6RYovkpsRCFqIaJlnKhEK8QEX6tLgWqnRCOikRMYxE5cjVzrSIHdri7EOWCVkAVqoBKFuNxWSVagBirRiUHsxEGchQintYAVqIFKFKISjejEHO44zsDBsSFw1gjFWQR1oRCVaEQnBjEHNg4fxFkYB7Fd0RIohkpUohGdGMROHMRZiBCZaBlC5MJBnIUIkQsbUYhKNKIT6TboNug26DbpNuk26TbpNumGcJoYQoTThZ04iDMRJU6JjShEJRrRiUHsxEGkW6Nbo1ujW6Nbo1ujW6Nbo1ujW6Ob0E3oJnQTugndhG5CN6Gb0E3opnRTuindlG5KN6Wb0k3ppnRTuhndjG5GN6Ob0c3oZnQzuhndjG5ON6eb083p5nRzujndnG5ON6db0C3oFnQLugXdgm5Bt6Bb0C3o1unW6dbp1unW6dbp1unW6dbp1uk26DboNug26DboNug26DboNug26DbpNuk26TbpNunGXNKYSxpzSWMuacwlwlwizCXCXCLMJcJcIswlwlwizCXCXCLMJcJcIswlwlwizCXCXCLMJcJcIswlwlwizCXCXCLMJcJcIswlwlwizCXCXCLMJcJcIswlwlwizCXCXCLMJcJcIswlwlwizCXCXCLMJcJcIswlwlwizCXCXCLMJcJcIswlwlwizCXCXCLMJcJcIswlwlwizCXCXCLMJcJcIswlwlwizCXCXCLMJcJcIswlwlwizCXCXCLMJcJcIswlwlwizCXCXCLMJXLmkgDCrQMHcRaeueTERhSiEo3oxCDSDZXXq9Q8ULJ1Id6lvBBuAyhEJa6a3rWJSqBkKzGIa3lhVUAHSrYSZyJKthIbUYhKNKITg9iJg0i3RrdGt0a3RrdGt0a3RrdGt0a3Rjehm9BN6CZ0E7oJ3YRuQjehm9BN6aZ0U7op3ZRuSjelm9JN6aZ0M7oZ3YxuRjejm9HN6GZ0M7oZ3ZxuTjenm9PN6eZ0c7o53ZxuTregW9At6BZ0C7oF3YJuQbegW9Ct063TrdOt063TrdOt063TrdOt023QbdBtVByjKmys8oHQMz+cOAvP/HBiIwpRiUZ0YhDpNuk2y82Og9iIQlSiEZ0YxE4cRLo1ujW6Nbo1ujW6Nbo1ujW6Nbo1ugndhG5CN6Gb0E3oJnQTugndhG5KN6Wb0k3ppnRTuindlG5KN6Wb0c3oZnQzuhndjG5GN6Ob0c3o5nRzujndnG5ON6eb083p5nRzugXdgm5Bt6Bb0C3oFnQLugXdgm6dbp1unW6dbp1unW6dbp1unW6dboNuZ34IoBCVaEQnBrET4TaBs/DMJSfCrQOFqMSeOcrOVHHiTPQzVZzYiEJcYmuHtEARWqITV9NXnU2gCG2sCpVAEVriLESquLARhahEIzoxiHRDqlhlKYEitAuRKi5sRCEq0YhODGKdJJyXEs5LCRShDUGXIFVcKEQlGtGJQezEQZyFRjejm9HN6GZ0M7oZ3YxuRjejG/KD4DCRHy5UohGdGERYYLCQHy6chcgPFzaiEJVoRCcGkW7ID6u4JlB5diHyw4VwwxgjP1y43BQRgPxw4XJTzHXkhwuX26p8CZSfJc5C5IcLG1GISjSiE4NIt0G3QbdJt0m3SbdJt0m3SbdJt0m3SbdZbqhgS2xEISrRiE4MYicOIt0a3RrdGt0a3RrdGt0a3RrdGt0a3YRuQjehGxLIKlMKVLAlOjGIcOvAQZyFSCAXNqIQlWhEJwaRbko3pZvRzehmdDO6Gd2MbkgVq/wpUKs2VhVSoFYtcSmseqNArVqiE4PYiYM4CxH+q4YoULZ2DQAC/exfBPqFsxCBfuFq5Coyijhf7z5RiUbkhOl0Y6AHAz0Y6MFADwZ6nIGONgxOmMEJMzhhzpe90Ybzbe8TB5FuDPRgoAcDPRjowUAPBnpMTs/JnpzsyVk9iWK2sw0oZksUYrl1BnpnoHcGemegdwZ6Z6D3VuPWz0A/UYhKrHFDiVtiEOnGQO8M9M5A7wz0zkDvwmMTHhsDvTPQu3TiILInEeirri1Q+JaInoQuAv1CIzoRx9aBnTiIsxCBfmEjClGJcBtAJ/YMPVS7jVXoFKh2uxB3Ehc2IqeGK5GD5Rws52B5Jw4iBys4WMHBCg5WcLCCgxWciEwgPTg1kCpWjVag2i1RiEvX0Q9IFY6WIVVcGMROHMRZiFRxYSNKIiqsxqpaDWwnlujEh9vEXQfqrhIHcRauKZfYiEJUohGdSDelG7YJw40CqqbmepMh8LnE/FM0x4BozooA7BmW2IhCVKIRnYjmBLATBxFua1Zjz7C5dn4I7Bk2ce+EPcPm2rcgsGfY1fQwIg8IJ5QBXcySCxtRiEo0ohOD2ImDCDc0HbME1RYoGUsUohLhhmPDCeXCIHbiIM5CnFAubERMOXQUzgwo0kDB10CJBQq+BmolUPCVqEQj9kKkeCzso4grEQoOhPHqEpRgDSzAowQrUYhwG0AjOjFKFwn6+tNBnIVI0Be2OmIk6AuVaEQeG1LxeUBIxScajxgTvMECExw3mSirSgxiJw7imuDrRYrAVlgTd2ooq0o0ohODuHQFQ7gunhJn4ZrriY0oRCXCDQffnRjEThzEWTgOYiPCAn02jOjEIHbiIM7CeRAbUYh0m3SbcMPcmUHsxEGcF/bj3PbyxHb1ej8OISrRCs+dLAOIf9CBRnRiENGcCRzEWXjuXnliIwpRiUaE2wAGsRMHcRbijHNhI2odG04z6+2UjiKuxFEHhA0qT8QOlRc24mq6os+wSeWFRlxNX3fuHUVciZ0KdDO6Od2cbjg7XchhcQ6Lc1icw+J0c1ogTBsaiTC90IlBRPij6QjTC2chwvTC1d61GNexhVWiEo3oxCB24iDOQoTphXQbdBt0G3QbdBt0Q2yuV7U6irhmQ7Qg9BpmCULvwiB24iDORFRuJaKRHShEJRrRsw2o3ErsxEGchYjYCxtRiFqIE5WjZThROYxxolr11f3cQurCThzEWYgT1YWNKEQlGpFuuJNYddsdZVWJgzgLcfq6sBGFqEQjOpFuRjejG24qViF6R1lVYiMKUYlGdGIQO3EQ6RZ0w+3DemW/oyhqrFL2jqKoC3EJeGEjClGJRnRiEDsRFisYUAk1AhMG130XClGJsMCMwnXfhUHsxEGchbjuu7ARhahEuk26TbpNuk26zXJDJdRY2690VEIlwmIAITaBnTiIS2yVWncUOiU2ohCVaEQnBrETR6HQAlN5lZF3VPWMVZPeUdWTOIizEFP5QjRSgWiOAZ0YxE4cROiukUf9TmIjClGJRnQi3DAsuBO+cBBnIab9hY0oRCXCAgOLuX5hJw7iLMS0v7ARhahEI9Jt0O3c/Rwz6tz+/MRZiGl/YSMKUavXJwdrcrBmDdZZfbNKw/tZZ7MqqftZZ3NhJw4i7r7W1DjrbC5sRCEq0YhODCLcGnAQZyFm9YWNKEQleh0bzk7rNYh+ltGciPPQeUA4D10oRCWi6egznIcuDCKa7sBBnKVgdDO6Gd2MbjgPXchhMQ6LcViMw2J089Pif/7nD7/95W//+sf//PPf/vrP//n3P/3pt3/67/qD//jtn/7Xf//273/8+5/++p+//dNf/+svf/nDb//PH//yX/hH//Hvf/wrfv7nH//++NuH6J/++n8ePx+C//fPf/nTov/5A3/7eP2rreGaBr/+4E6Jx1XODyLttQg+xwqJxxP1Euj2w+/L69/XdYbC7+sUNqDL7aN4pH3Jo3gkcHt5FPZaZN1mX/2g9fumd3/9cRAtj+KxUMYWSPwgERsJ9eoHp8CQuwLYNBMCj2c4JfCIux8ExqYj8dnYsxcej8BfSsxdP0hUP3R9KbHrSrzzeEo8VoxedmXbzEkRzxkhj1xBDf8xNpp8Oh7bA5lUOMbrA9lorH0oLo21oURpxI+tWLcCr0d1Le9eo+ryUmIzs/CmEBQei7lPIXrcVsBDt1Mh2muFu4fRXx/GrjOxI8/ZmY+7u1cSssk1go+onhPLrb2UaJ92hWxm5uN6tWb3476S6eqnRuimEevK+GzE7K8bsUuYx8jxeCyA88zxOBfeP5C2nvxeB+Lt5YFsJpaMyrvHS4F9hM2oSfGU+38e0fF50ttpmEgeyPo0+Mtkocc2f9d50J96Q6T/qLGZnT5yROLwJ4W4PzG01cTQ7i8nhm6m58SXD04Nn5zh2n86kk07HvcXFSWPmy4O7DfGpGewr+/Kvh6Tzfx83ELn5c262KKG/nhpsgLhpcbazbUG1vzpVKI/zjAdv2B2zE9nx/5Y4qhLTg+fL4/Fduf31pkBn64RROaPGvLp/NjO0pspcKtxM1rMP48Wi497Yzuy03j5OJ+vmX4e2V0ubT1FHvg0sj9rzN1JWjPmHssqnOmPK8sfNHyTSy0Y+/E0w37W2LYDH1C7Lhbmph2bWRrMQeuFm5ca25FZr1jlyKxy/5cj47ZrSc2Q9U7Ma43NTLV25MhYe5pl39FYn0zIE/Zjyfu9Y1GtXrW26Y+xu3CwWZfm8aYG9pC4Lj66vKcxeFU7jtca+xnSj1Ez5HG5/1Il5B96dljr7dmOLvo6h4TtljWG83Z+PC1r/HQz7v/QfNix4HMdy/TXIxP9H9qnw2qF5cHz9dVD7HKZ9lF31E+5XfTHW4Z+fNqn21ZYrXGI2fGyFdsrsl5rA4+HD+PlFVnXXWbXWZn9h7j9SWMzS23UXcP6BOCThtzWcKt2rG2DX2vE59eF/eNZuu/RUXMjpL03KviEyaWxGZWxO+8fo0al/XB1enyjHbVI8FjG99ft2OTShv1Ez1GxH2bpj+0YulvBqjPlY+W7v9bYtcOeEnLbaOxyqTbjokm81ad6cIH1GO9F7ePhyKxrS+uvx2V3FzWlJsiD53yRxbbtaD5qXDZzfe5y6dG5dPJ8npTxo8bmLqpHHUrvz3eV39B4PGputZz1tITzOw39PANN+0dmoMclYa9R6f29GaajRtZkvh7Z/um687YVVjdiGs+r3z+3Yu4eqvCW4fEM7mlc532NaTVHj3G81GjHZoLNqAWUGf3pocRPFy/t2GSx2fNg5tO17eOp3P1487rKfpxmXs9z3OBsOqROUMdTMv15DfvYJFOttV87Xq/ctmN3ry+tFrGl21N/9J9EdpeVj1HjRfbR7OWyw9xf0A3eIu+myG5VyiTn2fpEweunPe34fGx2j51ujs3uqdPtsWn6K8ZmvzLuwRvcl886dpe4fHplPXzzKG/3XPSoM4w+nhe8jrytiByV3EVlIzI+f5LW5seP0nYSN5+l3T6SzcO0211q+ua4NKun/7K5fGi7Jw53n1s38c8f4uwPx6OuMGN7OH03Rer24YG2eXi9ExmSHfvQ2OREmZ9P+N1DqZsTfidxc8Lr549Mm378zLTtnkk9pntNskePPq3mvjsqm+DdT4+oOTbmm3NstMmxfb7f/llk+1jKrW50+6EvL3j3cTdrTeexvL05R9jx+WzfPZi6Odvt4/qA+0fybnqf9WTdjqeI+X2X/oLaE/u8+MQ+rz4x/0d3qfP68BjvnTHtqJI9O2wzLr57yn+3rEg+H1vXj8d2J3G3skg+H9t9j356sexHPRhf369/fbG8exi09qKsB1u6Scm+OcHgzZKzO54fa/8uI+/7o7M/xpt9eq9eq+2eSYlVrz7uNe21hn4+03fPpO6W0NnHM/32kWxm+rZHuTL96NF4T8OFT8ZVX2vs7vpnrUyvHf3f1KhKgb3GdobdKglExcqHs2MncXN27J4m3SzHa3231n+rHm/bipuX6rvnUTcv1fsukzbNI1kbgL++VL8v4m+KWN1orz0KX4uM9vG4bI9lWB3LePdYns5P8pRKvylSy7lrp9w3RbTuO9bmnZte3VyMzVF3QPN5pv1cvbUXuVlGthdptQYyfxidb4lIXVvO51Wy74ncrGhru8dKd0va2vy4wm/fjiHVrcN10467InG8K1KnmQfGeyKPteC6TH1w38jsh3hmRpr2dPvwzclmnGwe74rU07KHyCYA75/BX94NybF9lso1u9fnrP0V871C9EM/vznci+hRq/YqYyOyrZ+qgXk8xtgcTXx83S1H//TKaitx84WN3ROqu29s7B5Q3XxlY/t86uby4/1R6ZtR2c6OYGYe9pbGKg+ug5n9XY3jYw3lpZU+nb6/pxGsCBmvNXbPdG7eD32hcet+aH8sxklmMT7XeHOOqdRJ6nGp93psd69JtYinctRN1G0b0qsM/HGh+ToV7p5O3R3cvcYvGNzeeCybwN29VtOOKiV9PE33dzt11oPDsZllu+dK9x7Xy+51qTarlOuRP17fm23bYY1vUOumO7bn7HrwaPr8POdbJ/7nV7mbvitSM8Rsd/Wg/vkTXdkVPt9+LW97OFNzgL0dsjmc+QsOZ/dQ55ccjrcS8Wabw9m9OXXrWnffDKvp6s+3d79vxq66pN76fy61k9/16cdV/vtW1ILGc/D+vhV9dyC1ovpY3+kvW7GrxjpGvdHyYD/eE5l1pnrw81OMb4nwtYf2/OTwO51ar/fZ3Azt7qHOL5B4nKgmn4SM9vJQ9iI3R2YvcnNkvhC5NzLbyI2ni4gfdmf4xjkimnNZtI93Rer6bn3d6E0Rq2uR+KF08Fsiynf0vL+u+pGQX3CO2D3f+SXniPV1gDycaLvD2Z3BHRvrXsczny7zvjHZ1hZFeaZR27Wkf74SEZ9X/kl8XPm3lbi5EtHb5ysR20dN91Yi9q9A3FyJiM+rGL+YHfdWInYad1civtA4Pta4eaPZ7z4R9ff69O6KyF7j3orI7t2luzfNe417N83bY7Gj5sfzA7zftcP/0e24tzJzW+PNmLu7MjPmL1iZ6Z+XENwPmHcH5uaqyvYlqrurKvuG3FtVmR+/oCIzfsGqyvSPV1W+uIhRblYy3V5dxGzfgnqaIUtkvCNy8xbxq4O50w7dvUi1vtKTV2RHbNYPYlcSLrV8wOuPb92Xzaft+o7D37obevzipIjEy+6Iz2+ptiK/5Pb/Zo9Y/wU9sn2N6m6PtOPTHvniSfdhvO0+ns5U33xgfjADPGR2FQD9lzx338kEN5NaXwt52S87Cd6WrQ9XvCdR7+ysb0m8ktgX3xzcq/J4u5ZoPm2Ns6ng2b4IMWvPgP58MN972WbWxXuf87WI7jbDa73ecH/gywsJlc8rVVU+rlTdSty7T9Xtvn737lNVPq4C1O3WfjfvU++PSt+Mym528HWMNufLezvd7u1371L1i3bcek1Wdy9S3btC1N2LVOscl82wzWuy23bcu0LUL7biPDhNx1tdKo3vQLfXV/+6e4vqbpfOzy+6t+2416VfvFVWO1uMNjZ7925fXb719sF+p9dbLw6o2efpePeI6mY63kncTMe3j6S/16H33hvYStx7bUB3G/vdvOf/QuPePf/HLwpu91m9WXu81bhZNbzVuFk0vN0F82aZ7W2NTZXtXuNeka3qr7jW3++ie6/Edn8092bIVuNmge1+j9NfcCw3Z+r+WO7N1O1eqzdn6m2NzUzda9ybqdt3Wm/P1H2v3qvjvr+t+uvLqP5xVcru2uWoqf449z8/bfx5s0Xbrm3zuUV7tWC4l2At1w/btv0s8fmS0vaCMvj69/N+oL/rjF/wQQntv+CTEvrxgtLu3ilqK734odjoGwp1FRZPlfnynf3d/aglLX+qVvrdDt7brQGEF3KirzV2D6PuboK33x713jacX2yMLsfT0bzeDFh3e/rdjNmtxL2YnZ/P0bF7ls09AXt/ub4/P57l8+NZPn7BLB+/YJbvn0Ldm+Xbjeql9lWWBz81ZN7X8OpTcX+tsY+U3vnwZxybzdmP49NI2UvcihTbPYS6GSn3u+O51vlbe9Ub6z6eHg7K2xrjc43nItTv7JmvUcsdP7y1+fN+98euIUP5+NhiI7JrCZ9By3haUvueyKiXUGU8bRL/XRG2RPwXiOjxUmT3rNKjluYeK1vzvcExphHzPt4d4cGNlo7X/Xr/0wr2Vo/YrJIrm2MzNHc/NTE2YdM+f7PPZJsSD9ZLPT12/V1DtgtKXp8S6P78Bsj4SWP3yTO+u/HAp2rYn+4pZbvJ8vG0+bW91thu4H/UU4YHP+8cOb7TrXV3+8OGvr/v1q3IfKplez1J9l9XaDVJWsju5Lu7Jbt1g/tFO0piteP1lwBsdwvB0HssGjxNkvHjCG+/A2Itr1Qf+Lod2++AaFWA+Y/7NX/nGx7D+Zwg3tPgE7G1tvz6FmQ7MlZbrzzY3lbhd6LCNt95Cfn0HmCrcOse4IsveDxVkczjVamD7V6Ymq3W2Gd7faW5leA3b6bIeOs2V2v3lgf3+d7I9qfnL93b5qtZ9vHi1F7i3uW7fbw49Y3ukPc7lVtPur4ZdJ3XVQ9+Ws793dD453dW/vmdlf9j76x+7I5+vD00/Umlvc5k/eNM1j9ezdh+fYdbQD14k5PNP17a2Uo8siHPMT1evoj2hUh/+h5If/ki2lciT19G6uOtvDqElyFDd1+K2tU8/JpvI0ldI4oezxeax3saTd7T8Hp/+/Egpr2l8Wh/3eAdP9wU/fStFvt8xX77ZaPmtUPp4xb6aVy+8XUkred9rs/vCPykYbsXpm4m5q3EvcTc9dPEvO+Mutt1e34/4HedsbnmjqMWeOL44etIP4tszv/OtyXb8fLObt+Mya3onvcm/taxtNoD93Ff1N4VqYXmHzbF+65IvYTa3vyK1+0vgX18vuwfny+3XyO7ufq//6LZvdV/G79g9X9st+OqSmk7Nh8Ts8+fTtnnT6fs86dT21c+uZvv4zn+e194U+6y/NB4/WUj++JzU7eeStv8Bee4bSF9YxG8b5oRv+JYfsFGKdu3nFql5CY/bCzy04OuncjTe6NPKayP+60IbtjwXFnzrS9O3Y38/WervJba1l6W7NPffbZq++0rLj/EU9B9V6SVyNOXq771Aa32/DbN8yeV7Vuf8hr8lNd893B6bcgz+9NNzPdEBjv2eV+Pn0V892Tnl4j8UPytr79NtheRuscUee6Tb4lo1C3m8xvXv/tK2v4upp6GWHv91Thvn9caf6Fx75OCe5Gb1yJftOTexYi3X/DVyf0Xzu69YOTy+TdS/PPS563EvYr2+0ey+6DH9ptxt17K8V+wK9/+o3FRn52UHz5W/7uPxm13S2aZSbf2nsjd93L2LXFlNWi8/w08hsyDn043/Vsy/NTzg58qNL4rw+1wHpKbF0Db/tsL7N7nU863ute4lmg/lIX/LNJ29wO3XvRp20/Y3np3aq9x790p//zdKf8V7075L3h3aj+0ddX5GGV9N3JafTvuwWrvTnkxRo7E2wEoVZSwJDeRs79sfPoE7HPByM8Xaxaf3orvJW7diruNf6jEzRfs9x1aBeKPvrWXHTrGpzfA7r9g2zT3X7Bt2vZj2l6p+dEzr7e03H5Mu9UHk4eKvafhVXE6nq83f9Zw759O9H0z6gJ8+OaLfL77ENXNeNtK3AuWaJ8Gy9x+OfLmR9Lt08XZrcKtxdntytnNG6L96tvN+6Hdc9n7SzT2+f1QfP6FVO8ffyF1K3Hzfuj2kWzuh/bfN793P7R9TnXzfmj7gfO790Nbkbv3Q/sNgm7eD21bcvd+6Ivvtd+9H9rL3L4f+kLm7v3Qtmfu3g9tRe7eDx0f7za2jZ6790NbjZv3Q6N/fD80xi+4Hxr98y6NX3A/tJ+rt++H9jK374e+kLl5P7S9FvC6mvhh1/LvXE3Ug++nlPSzwjg+vvrf7qt19+p/js+v/ndPeh//tspmxJ8fTB73NXo9Ldb5Q5H4fQ1jkn+Ez+snznF8/j3cLzTuLcDvRW5eb37RknsXnHH8imqA7UctnkrnWn89vrsPFgQ3s46I9zS8gv+Rhez1HNkufd+MvNh+j+pu5G17pK45pR+xOZrtjc3N3cp3ayoWfKehv/5+c7TPP5sW7fPPpkX7+LNpW4l79yTxC16uCvn4s2khv+CzafdHZZNU2+efTdtq3Nys/CuN42ONe5uVx26rsJuble/bcW+z8i80bm1WHvr5vlRfaNy6d94fy73NymO3Jcyvacetzcrva7wZczc3K4/9i1n3Niv/YrLfmyC3A+bdgbm3WXnYdlvde5uVf9GQW5uVh328FWVst8a7ea+7bce9e92vrmFubVYe2z2gb24SHp9/z+rLg7nVjt0LUU8XU3o83T78fGm4rWi+daO8r4m+c6O8f6+Dy5n+tJz5rXdDgu+XxNT3NEa9XirPN6jfe79EOsfk9bHY7sMvd19S2Yrc20x7L3FrM+0vJO5spr0dlV6Rspas3xvZHzTsTQ2hhm5mWHz8hupe4tYTv4j4h0rczIHb/oz/31f+vjcmTzfH883M8dyOdzVGXbs88F0N7jy91fg4m8fH2fyLl8obt9SUN99Lr4LfB75ajNq+o3+vJ+TTntjunNBrk57HI8Hn8/M3dl8YtbrnQ9ubGnVufOCbu0AMZzve3Y1i1O3KQ+7d3Sga7xLk7f6Y1NiMy+55mNctj3nXX6Dx3i4hj2XKWpULtzc1atOjx0Ok9p5G56ZHwzfvs29rjGZdCI7nT6vo70Tk3tE8LjlePj76qiVVqXS0XUu2u7TzncV4Wr75Ro+Mo17iHEf0TTtiu9hZHzUazTciu6emtZ3l84NoeVxM3Z4igzejc7NxQuzewLg7Rfpx/IopMj+fIv2Qz6fI/HyK9MM+nyJ9+836j6eI8wtN/vyBpva7ZuwWgWTw1frn0934SWN329Ilj+XxCGm80tgfS+046M83cb87lt1jqLvHsnsK9SuOhR80fuB7ZzvX2ijwp90KvqEhbMfzbu1va0R7U2Nw54XjeFOjKrYfcu/2ae0P7LqJl72GUsNeX0Hst4Gt1yfluTzg5y1cu3y8E8Ve4taNbd/u7/e5xL17421/Knc60X5s+vPjfSh2rTDeXT/vHfP7VozPM5jMjzPYfpNhYY3h016n39uo2Pl5lnjdHzr3m9jc2+14J3JvbW8vcWtt7wuJO2t72920b92l7/fjvnOXvt23/l4b2sdrJtsvVdz9muMXKjc/5qh9+4nL25/N2MncnKNbiXtzdC9xZ47uv/9z8/sfW43PvzJzf458oXJ3jsSvmSPx+RyJz+dIfDxHPv+WWvdt9dytqqbu+xv9vBPcVDVtJe5VNd0/ktdVCZ9/Su3zL6n1uPs5yc2I7DVuFTXcb8drjdufH2qvW/Hxd/q2Ejfn1u7xxM2Kub57JHmvYq7vntVMrZX9+cPXBOzn5+a7hxxelWrT5+sM2nd770k/WDL3tJYd3+jTVvtmPp7ctJd9utu4SlhkdrxW2HbpzY+57UVunme/GNx7n3PbixxVSzCPebwpcvOjcF/0yb2vwu3n6s3Pwt0X2XwX7guRex+G67/mEveLrr13afj5l+H6biu/Wxvnf9Efd68tv5K5eXHZh/2S0dnJ3Lu43Evcurj8QuLDi8vWWX/Xn8417ecdI3ePou6dJrZbAXGb92nxshVbCXsqJNS3JPrgR9WeT96/64tf8NW+Pn/BV/u2e7vUIvIP3876+WDGdjO/6Ae/idDbyxd3vhCpTeceHP5SZHsJYE/ViLo5nF3oy9FqhB9XeE9Xmke727HWa4uIx/Ps+c5EMw6vdeubg/kFb++N41e8vffFADO/x+ttzcf2lahfMkv4XvRj+dNed2y7+1X6zdPKL0SEl72xE7HPHwKPXaH3vYfA23bcfQg8vngp6tZD4LHbyu/eQ+B9Emj8fM6Dnw7n5yQwdm9GVQ3tU7mS3c7OxteQTeZTkZD/9Cbi7oNTN7fgGKIfLwwNsU9v3rcS927e7x9J3xzJrkfvbcExto+k7i2ofNEOVmse7eVrM2P3OtO9lzPG7tHD3Z1A9iI3dwLZitzdCWTfkps7gexFpPFh9LYlu9cZH6mmzpgPfr0pwlcyN3cl+ULm7q4kX8nc3JVk38E3dyXZi9zclWTsv3t957WibSDf3JVkr3FvV5Kxe3h3MxnY9iX+e29qbdtxs0v3Q3tvV5Iv5urdXUm+kLm7K8lXMjd3JTk+Xrwerp8uXmPl4+VMu/m69/bWla/xt+cihp8u8/YSxstve0+C73w9+vb1xea2GJz19Xq8KVHrxfF01fydA3ne3/zpRYHvSESV2fz4/ts3JHotFEvf9UXoP1ikBW+c4/nVoG+JsCK99Slvikyurjy/KvCtwa2DeVyOvBcrWvvEPGZKe68VfLfxsTzzjoQNnhrG041Im7eX7/hJosd93XinEa1x353nRyLfkeDznQe+1woXruw8LQ99SyJ4MzTmewfCyany3oForU4/UvpbB9LrRqhbvCMwa93w+T3o7xzEUeWBP3xM+XeRPto/cnZzhXzKex1RU3t2/7An3xNQ4WKj6OsP3G8l6qnLA+fHEk8Xod+SYBWvdH9LQusC5UHHWxJW20CoH+/1hcbTR77lc4n3BpV3J/qcMr/VF3wx3vS9QTXldifa35No3P3F3xzU4Efk461WtF4fCnpcmthbEqM9fR60vZSYu/egHjcy/KhVPOW8cb8Ztdz7QH/vSJ6e6dl4T6JmeBvvBUkbtQzww/e4v3cgvP0+5GOJ9m4r+KC2vRXtjytd9oX1j1vx3qBa1QP58yWvxBsC8paA1zHE824g9wXu7Wm+E7i1pflO4FZx+7YFd2rbt0t0d16G2V4oM1nGc1jZ/fuOqJvSFjrfkhjOz1z7e62YvVY8jqO9I/F4Zlk3gofpW61gtdCqpnhPgt+VH+2tA3ncu3GDrPleK7RWf5od9paE1Wra4wG9v5SY230xP78t1orS9sM13neOpEoe2vOudu/2588S//vxv3/81z///Z//8rd//eN//vlvf/2Px2/+zxL7+5//+C9/+dP1v//3v/76r09/+5//77/n3/zL3//8l7/8+d/++d///rd//dP/+a+//2kprb/77bj+87+iPxJ2PHrzf//ht/b4//5YFvtDFzse/6/4++F/ePwj/P36hUdimH/wx1rn+oP1G49fhsL43/+zmvz/AQ=="
4136
+ "bytecode": "H4sIAAAAAAAA/+29CZhcV3Uuuk93dauru9WlyZptlSzLluVZHjAzHuRJozV5BLttC2tuDa3JMhcS4GXCIcSZgLyQCUwSCC8JCSEv02W4+RIejwRyQyAQAsm9gTDEuQwhCZdcDj6r+++//7PrnFOrpcLq/X1SV5291r/WXnvttcezKwnPpDnZ3yMnDzz8wMHDu48Nj+584Mjod/5PnyZZbi1UTElLMf+x9JmcvoyiCzi7v/OvGYoJ6iOJ5fhf9Yo+BizFH77Ln4Sq8p8pf8pTsfyh1xQBftTFcGd8598AfL6F5FfU/xXt6j8norPVzU1A37QPXzvy8bd96Inf+sDbR59660/N/uTMNw5c2v/K1772n5d8Zembnn7tLxnvzYCbhMJ69Rr/WiX7Re/pvnfXb/z7yMCtr37X8U9+YuPRmUuH37fsB9967wffsOwLD/xfxnuL4v386978ysa7fvznm5d8+Ou9t77+Sw989fae6z/54ccXvf/7v/WFp5803lsV70fv/dan39148rETT7z31PWr5g6/48mP/8s//cmHfr3x1c++89DHrzXe26DMtVDOF9N0ezX+sbZ4RzX+LuNfB/xVYsH6avyzjH8DPGzah+/75bd/+oYnPnzl33+r/4c3DL/mxNU/8rG7vvzYwqdW/o8971z6jtnGu1Hxfm70pjeMLth/3Zf7PvLEVb+w5NzPfO2pd//jN07uvP5L//j531n+VePdJHgXrrnouQd/5s/nfWrV+X/zkj9+x+U/sehrF7zgU7972y88/e9/+s0wXmebq5V5zOZ3VuOvGf+Wavzdxr8VHjbjPBYqxsq+rZrsMf7txWVb6jHeHZo3efX5R366/kSy4X3ff9m7B/vf94Ub3nLjTR/+0Gt+eFnjHW8x3rsE7+oX1J9+6w//l9eGv3vqiz/6jdW//5LLZp93w+zL//LNf7XkwOH7Fj1tvHeboFCqzEuN/x7gJ92jyfjvDZN1L8p7XzXZY+37/vKyx3hfWp53rI28zMBCKZv3G/8D1fgHjP/BavyDxj8M/CX6wqbxP1SN/0rjf7ga/1XG/wjwlyj/S4x/ZzX5Nxj/y6vx32L8j1bj32b8u6rxDxv/7mr8Dxv/nmr8jxj/3mr8O41/XzX+lxv//mr8jxr/gWr8u4x/pBr/buM/WI1/n/Efqsa/3/gPV+M/YPxHqvGPGP9oNf6Dxn+0Gv9h4z9Wjf+I8R+vxj9q/Ceq8R81/pPV+I8Z/2PV+E8a/6lq/KeM//Fq/K/oD8/MeW9c8MyDdB68MMs8Orp73+7Rk7fuHN3+zKebRg6M7jwx2gMAJg+/d9H3bvpeo++G15PDxzytks27e0nHZjH2zYMZ/QzSB7H7SM9mKJTOTQgvhInlDIRfJ11KyksSwjN5XD6rMyt7XejSEHls47qQUxdyGiJvryPWUUesfY5YRxyxPMt4yBFrxBHrsCPWfkesYUcsT9t7tqFjHYq1yxHL0yc8be/pX3scsTzbtqdP7HbE8ozRJx2xOrV/tLGvjR1wrJHk/DU5/Mzk1Amr6rhHlatPyIvRz4jQ9xfET8fVjexzNq6+eedDRx9dP/JooMRD3ZtzVFxKdNsiqjFuQv/4+VJ61i1oMaXFm599zop3y87Rh3dtG3700Z2PfKeQR5iDkW7Kec4DUqSxwXg/adoMhVJXEadE/DrpUtUpldOoxpZa1baJM6uuHxl+5Kbhg0eO7tvJ0yycIrBVEBWfqTpNQDN81k10N9H3dYIvCOw032pukJ43Q6E007xipsi0vCHAnkF5DcjD2uTULfQ3nVPM2xaM4zId64P1MUR5A5DXANlcr/1CjunfJegHCKtf8JntW8nrFnw8LY1NnYu0NitHmhpChsmewqgwr9OjgpVvoJq8uQnxozzENH3M1oMiz7CsHfbmYBlvjeh/M/vbILo03UsyBoW++Mzsky4jvZN0R9uyn7RjR8QzvfAZ4tdDW36ZxOoNy8d+UjHGzilid9SHYzLbFuNebw6W8daI/o+yv40wOe6zn8wU+uIz9JPfI93RtuwnFe14Q1E/Mfx6aMsvk1i9YfnYT2ZWk/eSInZHfVT/jLbFPrA3B8t4a0T//2V/G0SXJvaTIaEvPkM/+ZPsc1+Ovs1QKB1X4xb2M7RLmeMLRf3M8OuhrXpPYnZU7U2NvYy3IfJ4abkh5DSEnIbIO+qIdcQRa7cj1l5HrGMdijXiiHXYEWu/I9awI9ZBRyxPv+9Ee8X6obJYafL01eOOWAccsTx91bOMuxyxOrVtn3LEesgRy44i8DjP8NPUFya3vbJzE8QzPfEZ4tdJl5Lykphd1JjRyjermrzZCfGjPMQ0fczWs0WeYdlKYm8OlvHWiP6czKANoksTj6lnC33xGY6pZ2W4Q0JfXl8o64/IzzZCPvbHduoL8UxPfIb49dCW/ycx/1B2sfLNriZvVpH6RX3M1nNEnmHNzb735mAZb43oV5I/zgGd2B/nCH3xGfpjM5moO9qW/aSiHdcW9RPDr4e2/DKJ1RuWj/1kTjV5NxexO+pjtp4r8gxrXva9NwfLeGtEv4b8ZC7oxH4yV+iLz9BPLstw+3L0bYZiiduIYSA22qV4PST/UtTPDL8e2qr3JGZH1d6sfPMqyUueZt9AeYhp+pitzxF5hmX7l705WMZbI/qXkJ+hDPYNy0N98Rn62fMpHqFt2U+q2THcWNRPDL8e2vHLcT9R9abam5XvnGrybihid9THbD1f5BlWtuU3wU8Qy3hrRL+B/GQ+6MTxaL7QF5+hn9yW4Q4JfXn9PdZeELch+I1O+VyJuPeAqtMS/IeMf341/hNWxwvgIbenhfC8hL9dVbQ9GX6ddKnanhaSPC4fr8EuEro0KC9N/FrOIiFnkZCjsA44Yu11xBp2xNrtiHXQEWuXI9aII9YhRyxPn9jjhKXiZDt6HXPU6xwnrDQddcQ67og17Ih1yhHLMxZ6tsfDjlie9fi4I5anT3ja3qttB+cyevrEEUesTo0TnnqdDWOm6T7tzNnesz3uc8TyKmP6eb4TlqdeafIaT3iXkffvcG6ZZH/7hA4l5q0vSgjP9MRniF8nXUrKS2J2wfLxPHmx0KVBeWniefJiIWexkKOwDjhi7XXEGnbE8izjiCPWYUes445YnrY/5Yg1XY/lsB53xPL0iT2OWEccsTzj1zFHLE/be/qqp+07NX55+qqnfx1yxPKsR0//8mxDnv511BFrlyOWZxk7dSznWUbP8USn1qOn7b3Gcunn+U5YaerUcY7nGHN6PPHsaEOeccJTLy//Sj+f44SVphOOWJ629xwDWF/L58YMP03qHEqJNanlCeGZnvgM8ethcl1WWQNTZ4vUGbQ21/iaCfGjPLV2qdbcuE9akn3vzcEy3hrR35wVSrUNPqNX1G/Ss1cvzr4MCX25zRU906XOEbKNkI/9sWJ9dRf1R16Trej/0TVZZZcya7KeMQ+xhsJkG7e753SOKM+g4ON6Rv1K2L3wuwqGXw9t+VUSs7+yi5VvSTV5szhWoDzENH3M1ktFnmGdm33vzcEy3hrRP0hxB2Vw3Fkq9MVnGHfuo7ij2kRVv1fx9NkmZ1Dwcfuq6H89RduX4ddDW+05ifm7sovyd+NVfsr2L+qn34tY5n9LInJicUXJQf4l03LakjMo+LjdYr0Wb0fJ3xVtt4ZfD23FiSTmt8ouVr5zK8lLPsN9GcpDTNPHbH2eyDOsZdn33hws460R/eupX0QZ3C9aHuqLz7Bf/OGuibrzPYZpas+OoVHUTwy/Htrxy3E/UfWm4puV77xq8oaK2B31MVsvE3mG1cy+9+ZgGW+N6H+W/GQZ6HQvyVgm9MVn6Cc/nX3pa6Fvi7RR2boE/2f7wmTbleD/+T6iL8l/sfEvr8b/u8Z/fjX+tca/ohr/7xj/BdX4v8/4V1bjv9v4L6zG/1Ljv6ga/yrjX1WN/2rjv7ga/+eNf3U1/tuM/5Jq/O81/kur8b/B+C+rxn+T8V9ejf/rxn9FNf4njf/KavxPG/9V1fgT478a+MusERr/tdX4u03fa/Ch0Mnwra9aA/RJzl/D4jyTVSeskronMd1RPx4XXwPysIx5WNeUxOoTeVXq5OqQXy7EH4zownqm6SGga6fMadrjhJV+PtcJK01HHfU6zwkrTQ876rXMEavpiLXcEavXEet8R6wVjlgXdCjWSkesCx2xLnLEWuWIdbEj1monrDQ95qjXJU5YaRp11OtSR6zLHLG8+o708+WOWFc4Yl3piDW7Q7FsfN/mesXtba5XPK/N9YoNba5XbG1zveHWNtcbbm5zvWC9jZUvgodJ9letBZQYt29MCC8EPf8x/DrpUlLe2PxnFcnj8vG+1cVCl4bIYx+/WMi5WMhpiLzDjlgnHbF2OWIddMQaccTa44g17Ih1yBFrryPWsQ7F8vTV/Y5YXrZX/WKn+KpnezzuiNWp7fGEI5ZnG+pU2x9wxPKME559rWeM9rS9p7061b88xyae9ehp+7MhTpxywko/Nx2xznfEWt6BWGna6ajXCkcsT9vP61C9Vjpi9TphpcnTJ851xLrAEcuzHj318vTVpiOWl73S9KgjlqevetWjp15p6lR7efrqhY5Ynm3bK36l6XFHrGFHrH2OWCOOWJ5jcs+5gufao43vbR17JeQl2d821/CHEsIzPfEZ4tdJl5Lyomv4WD4+m3xxNXkzi9QD6mO2Xi3yDMv2hHtzsIy3RvT/T2bYBtGlic8mrxb64jM8m/xr3RN1R9uyn1S0Y+HfCjX8emjLL5NYvWH5eK9ntdClIfJ4TFzU3qrujjpiHXHE2u2ItdcR61iHYo04Yh12xNrviDXsiDXqiOXZhjzr8aQj1i5HrOOOWJ5t29O/PNuQZ1w9G2x/yBHLM0ZbLLT3R3E800dyyo69kd/o2nzfZUub77vsaPN9l002LroUHibZX/UuSokx2vclhBeCHhMafp10KSlvbEx4Ocnj8vGY8AqhS0Pk8fmfK4ScK4Schsg77Ih10hFrlyPWQUesEUesPY5Yw45Yo45YRx2xPG3fqb563BFrryOWp395xpwjjlhng+0POWJ5lvFYh2J5tu39jlhetk8/L3PCSpOnr3bqGMATy9Ne0/32dL893W9P99utsKb77e/9fjtNnvbqVF894YjlaS/PmONp+wOOWJ5tyLPf7tQY3anjCc8yeo59PevR0/ZnQ5w45YSVfu51xLrYEctrnTz9vNoJK007HbEedcJKP5/viDXPEetcR6xLnLDSdDbYvumItdwRa4Ujlqe9LnPE8vJVzzaUpk71+04t47M9FnrrNd13fO/3HWl6uaNenmM5T3td6Ih1gSPWckcsz/boaa9O7Tsed8QadsTa54g14ojluQ7guT7heT6H35HBs2FJ9lfdmZzKaYZCaTAhPNMTnyF+nXQpKS+J2QXLZ3ZRdzqXkDeQED/KQ0zTx2x9lcgzLLuPtzcHy3hrRN/d88zfBtGlid+RuUroi8/MPinkt2sTdUfbsp9UtOMFRf3E8OuhLb9MYvWm2o+qN+NtiDxefypqb1V3Rx2xjjhi7XbE2uuIdaxDsUYcsQ47Yu13xBp2xBp1xNrliOXZHo87Ynn6l6e9DjpiefqXZxvyjKuePuEZVzu1bXu2R882dNIRy7M9ng3+dcgRy3MMwO9g4XiZ38GKzSmUHOQ3ukHBl2R/1e/RlBhDvyEhPNMTnyF+PUwuc5Uxu7K/souV/WqhS0Pk8Xqe+k2Vq4Wchsg77Ih10hFrlyPWQUesEUesPY5Yw45Yo45YRx2xPG3fqb563BFrryOWp395xpwjjlhng+0POWJ5lvFYh2J5tu39jlhetk8/L3PCSpOnr3bqGMATy9Nenv22p+09xwCeMdpzPNGpvurpX9P99rOjbU+Pyaf9i/Omx4Vnzr86cVyYJk97daqvnnDE8rSXZ8zxtP0BRyzPNuTZd3RqjO7UPs2zjJ5jX8969LT92RAnTjlhpZ97nbDStNNRr4udsNL0qKNenvtDnva60BFrniPWuY5YlzhhpcnTJ853xPK0vVfb9myPnm0o/bzaCStNXu0xTWeDfzUdsZY7Yq1wxPK012WOWF6x0DNGp6lT/b5Ty/hs72u99Zoem3zv9x1permjXp7jCU97eY7JL3DEWu6I5dkePe3VqX3H445Yw45Y+xyxRhyxPNeZPNe/PM8X8juYeLY1yf72hcl+mcpphkJpICE80xOfIX6ddCkpL4nZRZ2TtrJfI3RpUF6a+F3Ga4Sca4ScaaxprDOFxWfRDT9NfWGy/5dob5cWbd+GXw9txZMkZhcV96zs1wpdGiKPxzvXCjnXCjkNkTfiiHXMEWu3I9YRR6yTjlh7HbGOdqheexyxhh2xTjliPeSI9bgjlqe9DjtiebbH445Ynn7vGQs963GfI9ZRRyxPnzjkiOVp+10dqteoI5anT3iOTTz7bc967NT45elfnu2xU2O0J5anf+13xDLb83qE4aepj/iSUGrudG5CeKYnPkP8OulSUl4Ss4uaw1rZrxO6NEQenzO4Tsi5TshpiLyjjlhHHLF2O2LtdcQ61qFYI45Yhx2x9jtiDTtijTpiebYhz3o86Yi1yxHruCOWZ9v29C9PvTzr0VMvzzjh6ROe9XjIEeuYIxbfaYNjI77Tpuz4DPmNblDwJdnfvjB5jFJivPTahPBMT3yG+PUwucxVxmfK/souVvbnCF0aIo/PRzxHyHmOkNMQeYcdsU46Yu1yxDroiDXiiLXHEWvYEWvUEeuoI5an7TvVV487Yu11xPL0L0+9POvRUy/PuOrpE571eMgRy9P2xzoUyzNO7HfE8rJ9+nmZE1aaPH21U8cTnlie9poeA0yPAabHANNjgFZY02OA6THAVNqrU331hCOWp706NU4ccMTybEOd2nd42r5TxyaeZfQcR3vWo6ftz4Y4ccoJK/3c64h1sSOW1/p9+nm1E1aadjpiPeqElX4+3xFrXofq5VWP3nqd64SVJk+f8KzHpiPWckesFY5Ynva6zBHrEkesTvXV6fZ4ZsrYqf413Q9N+73S6+WOenmOMT3r8UJHrAscsZY7Ynm2bU97dWp7fNwRa9gRa58j1ogjluf6hOe6ied5Jr5DoxfykuyvnQvE9pbKaYZCqZYQnumJzxC/TrqUlDd2LnAeyePymV2s7OcKXRqUlya+4+BcIedcIed0Yan6Sv81Q6G0vS/o2NMsxr/X7HkePGRfwvMLJep2YVFfMvw66VLVl5aRPC4f+1JT6NIQebE66hbPunKw0nTYCatV3Z8pvdJ0xAkr/TzohJUmzzIOO2IdcsQ65oi13xHL017HHbEec8QadcTa64jlafsRR6w9jlieZTzliPWQI5bNDaz/wrFTkv1V44ISfenMhPBMT3yG+PUwuY+s0nerMRWWz+zS5thkMCF+lIeYpo8aK3C/uzz73puDZbw1on9N9vKPqmseczaFvvjM7NPznX+vzHCHhL6XE27ZsSzyG52Ss7JNOSuFnD7B17QPXzvy8bd96Inf+sDbR59660/N/uTMNw5c2v/K1772n5d8Zembnn7tL7fpN3cZf7Ma/1zjX16Nf47xn1+Nf7bxr6jGf7PxX1iN/wbjv7gSfzJW96vhabMQ73jZL6kkOyxr75275GnjxzWjrsL8oc/4r6/Gf53xP7ca/3OM/3nAX8J+TeN/fjX+sfK/oBJ/8hnjfyEqlf294K9+b8a//urra7/510+PHP/66if/7NYn/vDXXvDjH77sRa/a+vc/9ZUNxvuiSrLDTON/sZDdQu8xn3/J2JNSsoeM/4bSssPzjfdGxfui93Tfu+s3/n1k4NZXv+v4Jz+x8ejMpcPvW/aDb733g29Y9oUHfsB4b1K8H733W59+d+PJx0488d5T16+aO/yOJz/+L//0Jx/69cZXP/vOQx+/Lu2/fon6ryRjTf/OgM/mx2lK+Wycso1o0lQj+tcPjfM9lckbJJ4QJo+ruuB5ibpYhGWwpMZVhl8Pk8teZVzVRfK4fLwmUhO6NCgvTTxGrgk5NSFHYT3uiDXsiDXqiLXXEeuwI9YeR6wRRyzPMu53xOpU/9rliHXUEeu4I5anf3na66Ajlqd/ebahI45Ynj7hGVd5nw3zeBzQA89L9MtdRccBhl8Pk/vlKuOAHpKXZ5eB7/ybk30+Orp73+7Rk+tHhh+5afjgkaP7duJoAkcILCUhVHyWhImlx7xuetZNdGvp+zrBFwR2mm81N4OeN0OhdIV5xRUi0/KuBGweWeGvDWBtcuoW+pvO6d/bFozjMh3rg/VxJeXhzu1VIJvrtUfIMf27BH0vYfUIPrN9K3lnc0tU9WS8DZHHbbHoyL9KhGhkn7MIcfPOh44+un7k0UCpRt9vzlFxIdGty1EtEbgJ/ePnC+mZMgVixyaBRVwmTdzJYN42kjPdyUx3MmNpupMR+k91J9Mt+HiZh5d/0tS0D9/3y2//9A1PfPjKv/9W/w9vGH7Niat/5GN3ffmxhU+t/B973rn0HXNSWXPqz5AOCX3ZZ61sPS3KVyP69bCkNT+Tl7a0rCqtpd14dN/eLTtHD+/eeWznd2L2kUCpVfPYQN83Cj6VzCVUczXzVgxAhQOe4deDruZmKJTGAp6abWD5qgU8dghuyN4BbyN9rxLwKp4DLB3wuJvGgIe1yUkFPNO5bMDD+uCAhw2VA57yxCD07xL0PYQVC1at5E0PPZ5J00MPSNNDD6H/VA89mK8nTG65xlsj2huyLr7NFhtmAx/rON1nP5Om+2xI03220H+q+2wVSRLCmMqlC5QdnQx9bvSmN4wu2H/dl/s+8sRVv7Dk3M987al3/+M3Tu68/kv/+PnfWf61NqPGjjaj3faU736ajPHdGPjZeqa88wXGWyP6h+rjfA/CZGxllp9FlB3D+3Y/Mjy6c+2BQ0d3Ht35yMaR0Z1HbjjwyNpjOw+Mlp6a3ULfbxV8KvWH8QLzQU4sZJp4be6c7LsdfmQaNpDRvzwzSmqwTVlDVk5n+gwSfwiTu6L5pHszFEqFuyLDr5MuVbui+SSPy1etK2J3RqsgKj7jsIF5p6MrWkjPm6FQKt0V9VIedkVYm5xUV2Q6l+2KsD64K1oAedwVYb3OF3JM/y5Bv4Cw5gs+7ory5HULPh5KJPQc17LmCdm8lvVfIDpsWZBvBzwizpj2XQ3e2d6Wn6Y2ffKuotHE8Othct1XiSYLSR6Xr1o0QU9BKTsI1WiQFtMO0Azp+TvXXk3wcTKcGun809AJ/yB1+liuIdJbeTs+40ES8hudkjPQppwBIcc8eQbw3UN5fZG8OmAOUd5M4ON9qwbk8Y+AzwLMAcqbHcGcIzDTuruufxwv/ade3kBPtx7I6gBfLEVe/N5DtGm6P/tbI9pfBb/6WfIrbMXsVwta6B3zqwUhX85Am3IGhBzurdLEvrNQlNXyFgEf1/NiyGPfWSLKZXlLI5jqJeu0fi7rn0jH9Z+mNl/u2FE04jezz3XSpWrEb5I8Lh9P2FZUk7c9IX6Uh5jN7LPZeqXIM6yLsu+9OVjGWyP692TtjV8UShO/NLVS6IvP8PD4b9Yn6t4EuiTnr+Hys7yX+LB+1Av420Cf369PLAvGqe4wOa7ZhJhj1XNhV/CPKFYhf5P0Uu2kavmXiTIOhcm26YfPef7djMjpj5QH+Tzrs5/kYJzF+vwQ1ecKyOMYnX5enn2uEf35UJ//P9WnaovKztwvWV4Ixew8JORMtZ25f1npKAex+OWRVYTFdrZ6MjtfBHmriA9ffkM6nHWtgucXC9kK3zBa+eBn6rpseT5osmpEPwN88HMVfXAl5WFfwT+cYnqgHZB+edDl6s2hzyvXF2DWuX3BREzjR1thXXD8NfovAebdC7SeWC51YYnRK39YJcqlbMqX9irZaOd1ObJ7Q9wXa0T/VWFT7heQX7WjuaTLRS105/aN/EY3KPjajSNK51Zt8lsl26S9gMu++/TMcb7/pDYZ8xHUmecRZe08IORMtZ15jnCxoxzE4n7hEsJiO1s9mZ3xMslLiO9SyEM67Bfw5eVLhWyFX7RfmNWvy5bngyarRvT/HXxwbv/E8qt+RfngxZSHNuV+oVU85AsDTe/eEO9va0S/OCuL6hdUe8VYy/2C0Z8LmNwvrBblivULyhdXi3Ipm/KlsOcJLLQz9wvKplj+86j8Rn+BsKnqF4xfrUfcR3m4HrGC8hZBXpPyFkPeSsrD9QheG1kKeRzv8DIM9BFej5gRKU8fYPB6H67bLaS8mZC3iPIakLeY8nDdbgnl4TGRpZQ3B/LOhbLauh1vjj43e97mvp08uhJbF01y/oZQrD/go1UoZ76jHMRaS3IWOMrhHQeUs0jIsfpaTHzNUCgV3mc1/HqY3HarrJMtJnlcvmo7Ixht2CqIis+SMLH0mDeV+6wmdwnkKUvwyjmWaUkOH9oiiGddgn4xYS0WfKZ7d4QfMZCPPSah53n7kYZRI/ot0FvdR721koX24B7TdM87McE6GP0O0GHTAo1ZyynXohzM3f3j9rinX2MGganKtYTKxTosJh2M/qViJNBNNKyPepZ+x5HRkhz9VD2xrtjL5ZWH68noH47U00KhA7bJdS10YJolOTo8KnQQ0e2mkYMns+gWKPHhcI5ObHnet10ocPKS4adeaB6pThksEnz8fl+X0CktudXc2CuL+3aO7swpe5fQTcnsCjrxeNT40tQX2urTCvehhl8P2vOaoVBKOMqZPC4fHwdfLHRpiDysX/ajmJy0Tm2NJavTraMjh/OqtGjnmgi1QsjvZJMwsSqQx6q64r3GpQ838RDuKqDnYeQa4MOgxonLjeVJg8vLShx8QpvywSd0z6soD5vKGspDV7qa8jDgX0N5OHW7lvJw6mZ3vqktM5yCYV6aYtP2huA/LyJnVptyZgk5avuR/bbi9nThEPW9cv83H1KzaXk9W3tMu60naVofu6O/4hs61xW1q+F73dE/g+Rx+diufUKXBuWl6eVAx3nd4llXBOuII9YJR6zDjlh7HLGGHbE8y+hZj55l3O2I5VnGQ45Yo45YBx2x9jpiHXfEGnHE8vQJz/Y47Ijl6ROe9trviHXMEcvT9vscsTxtf9QRy9NenrFwlyOWp706NRZ62ssz5nj6V6eOmTx9wrPf9rJ9+nnQCStNnn7vafsDjliefu9ZRs844TkG8LTXKUcsu2fb1phwHYJ/I1XN+WdE5CD/jAJYav0gVka1juN4E6GpeC3RrctRLRG4Cf3j59fSs25Bi9j4qvoUvr2yJiG8EPSyUjP7fLrfXrGyrxC6NEQe/yT7CiFnhZDTEHlHHLEOOWKNOmIddMTa64h13BFrxBHL0ycOO2INO2J5+oSnvfY7Ynnaa58jlqe9TjhiefrqHkess6EejzpiedrLsx/a5Yjlaa9O7Yc87eUZ7z39yzPmeLZHT5/wHDN52T79POiElSZPv/e0/QFHLE+/9yyjZ5zo1PHXKUcsXiZpAjYvkzSFnGZEjnrjPoal5sOxMk7xMkkz+34V0a3LUS0RuAn94+dX0bNuQcvY6WdbmjmZncqxZZGKp4rkyyV8SguXg/i4cdmVOuTvi8iptymnXlDO5W3KuVzIGRR8Sc5fk8PPYiv7l5Oc8xzlqIs6zG64FMZ+EPulaSUH+ZflYOFtlA8AzVKib2bfawIzTfdAPtK/PmtD6bLomuxoprq8B18ifcNAXFfkRV35wpL3wEukP5FhKjtbvSs/4NN85wm5CpPbVtm6qwsdYlhYXzOJvpl9782hNzyuu5+DuuOXVY0/z3+W5eiA/oOXMOX5zy9W8J9fHojryv4zk2Qb/RvBf54i/0Ebx/xnJuWpC8RUzOSTumVj5iyhn5ITuwyM/ajsZWAzhRzrS9H/SvSlpU+yz6I8vKZzNuXhSfY5lHc15HEfdA3k8Qu010Ie2oNTN31HG6W+fy34PtMFkol1yKfj0e/NFlb3OE5BDMwzXfkZ1z3yz87BwlfMVFuuEf17s8Kn7fEDAxPLhRf+mU3a9LWri/TviF8nXUrKSzhemTwuH29nqT5JxZsL4DPmoZzY6X/MG3HEOuaItdsR64gj1klHrL2OWEc7VK89jljDjlinHLEecsR63BHL016HHbE82+NxRyxPv/eMhZ71uM8Ry7MePeOXp71GHbF2OWJ52suzDXmOJzztddARy9O/puPqmbF9+nnQCStNnn7vafsDjliefu9ZRs84sd8Ry9NenuPVhx2xeGsM5+i89qDmw0sjcpB/aQ5f+hnXHIq8xd6E5yXm9d0J4Zk++Azxvd5ib5K8vPopeyyW9waqbpGmn4tc2qHWPmK+ocrouHVpKq4hus05qnUJ3IT+8fM19Cxv69KwrRnh0hNvH6EZY6ZV20dzInJmtilnZkE59Tbl1AvKmdWmnFkF5SxoU84CIYfvWEwTbo1sHNQycWsEl2v5pi2j/yFYir1zcGIZcXthBpUfX+jg+xXxN2I49DbgeYlQWPgCEcOvh8k+WSX0Nkgelw/DUvF7ArkFoFUQFZ8lYXLUSEAzfMab6TOIr8o9gbMgT1mC7wnEMs3K4UNbBPGsS9A3CKsh+Ez37gg/YiAfe0xCz/PuCTSMGtE/nLUqdU+gkoX24EM0pnve3W+sg9E/Cjrw/XMN4FHl4tY8i76jb92fI/9xiDJ7B7X8IORz+TCq5d3B1yAdjH4EbMB3Cs4W/CHnGfcMsylvdoSWf4dR/UYe+iLfP2gRJq/sXP9GfyxS/3WhQ+zXPVkHpunN0eExoUN79w9ylONa4pqoC5y8ZNZIPda8l63DrYPl2HflAe3eP9iXI7Mr6MR3RBtfCON9c8W+snDfbPj1oD2vGQqlhKOnyePy8bSoIXRpiLy8VtpKTpv3D+Z12ipYMH8g3kQ8S5P6rePpqUa+nLNhqsFYagqRpkeyvxzY3wyBnX+2YA7ooTC3kA5qFUCdTDJ6tXK1VJTRbImrFOcVkI225I6wWVLXFYK+CTR8ChH1W1FS182nWdc5QtfTfUKMT3PhCTE+zbUG8vjnEPCE2DmUhyfEZlIenhDjn/S7DvLOo7znQB5P/6+HvAblPRfy8H5STtxPYJ2kbXbW4nFcpsPPefEG2/M60nG2KBsuX/QBNspphkLpIuPvqsb/kPF3V+O/zMrJQ9M0GXYPPC/h/w+jTSypYZXh10mXkvLGhlU9JI/Lx8OqXqFLg/LStBPoOE9NPLoiWMOOWKOOWLscsY46Yh13xBpxxPK010FHLE//OuyIdcQRy9Mn9jphGb+XXsccsTx9YrcjlqdPHHLE8oyrnm3by1fT1Klx1dMnPOPXsCOWp0942mu/I5anvfY4Ynn6qqdenvY6G/ptT3t5jlc9Y7TnGOCEI5Zn/OpUn/CME53aD3nOYTzL+Jgj1nRcfXbEL696TMLkNbdOsVenxpxOHRfuc8TybI+efa1nPXbieDUJk9ewO8W/POPqAUcszzjRqetMnnp52r5T44TnmPxsmNd69tsnO1Qvz3mtZz16tkfPOYznuq8nlqdPcBtKsu+4T3oPfL4P8pHebiZS+9ipTs1QKD0yCDwBMBC74j70IwnhhTBxrBEIfzBHXprqIq9WQJfffslL9/5t8+vnJcRvuvCzInMTtadttqr4e5wPDYKMQLItD/fneygP7WI6pH//Y/FE/Xor6lfEfojfEPT3Al2ZupgdJvoC+rt6e5Bvu2pCHp/dWiF0QPrFRL8y+96bQ294NaJ/S9Ze8RD5ENGkn+s58lA/fBY7d7gyByvvFrTzc3R/K+jO5/QuEvqpI65Gv0rQXwQ0po+yzaqgZWN5sD4foPIY/a+J8qj2Zz7VBziWV6LtDKZyepeMy2G7YftpZaM0sU0vFvRoK7NJg+jRvpaHr25dRHnYdpqkgzpXiG/X8vkudXsj3twXu6Wxk9r1HxRs10ty5KF+sXaN/GXadZpelqP7+0u26yVCv05q139asF2bT02369btWt00WrRd462tfKPrJZBnuHjG/MLsc43o/zris5cKXdHmbN8rBP2lQMM3Y14CeVdQHvJdRHlXQN7FpMOVwg6oF5+dN/q/AzssBh+0sgTSq01fv0H5+pVAwL6ON293C3quizWCHs9hm00aRM/1gt8RC23K5/HNRr2CHvFqRP9FEftNP4x9V5LuF5fUfYHQXd30iW1qVv8zn80HMW7wzbwXR2Sq+Lw6+96bQ294NaL/urAXx0ZsB2inHsI0+m9G4oHJxXKpmyFitl8tyqVsegnloe7mC6p9Gl2b7fNG1T6x/Nw+Y2VNE9tGxVb0Xav/RpgcD1dRHraN1SRH9ZFF/R996Ft1jZvX3yzPPrN/9Q8981f5l2o3OE5hGyp/RD/h/gb9azXlIV+T8tCmPFZU/S7S8xzQ6OeAHWL9jZM/z1H+jD7L/hzzzzSV7fvNJo0wuT/geKh8Fuua+xuzUW/QdWB4NaI/F+qA+5sm8F9Cuq8sqXuV9vYZejd0BdBxf7MyIpN5MV7k9TeGx/OBi4S9EpKB7QDtxP2N0a+OxAM1Z4r1N63mTKaPsukqykPdm9ln1T6Nrs32OfdMz324v8F4yPOiJuRdRHLUOkFR/0cf+hD1NzxvQiz0i5g/YruxemJ/fGHEH2PtLE1sc+W/6Ff8awXojzznQd2b2ecpnIvvUP6I5Wd/jJU1TWXbqtVnI0z21Zg/cv+s5tsYQ9gf0Y9wvv37mT/auj++T1nCrqXfpe2mPJwHrqU8nMNh/XDqpu9YnrTeX0ZrPUFgqXcO+ZcRcO/mKsrD9ZM1lIdr7ldTHt43cA3lNSDvWsrD9/qvo7w5ooxWz3ipS4l6LnwVh+F7/dLBPJLH5bN2WO6aLP69CbQKouKzJEz2vgQ0w2fskRvoe5lrsqzm5tPzZiiUSrdQ/s0TXGXB2uSkWqHpnLac20q0QqwPboV408JVIJvrdZ6Qg7dGMP05hDVP8JntW8nrFnwcYRVfEib2LFwXfPFQmvrCZLuU8I/Cd48afj201WOMtWx1j6f6vRgr+3yhSyPotmGfMQ/lzBdyFFYvYfUW1LnNC3v4+7wcNboEfyBebqpFDjDELidRt6Shmxse35L2SjHZUs0I9RkUz9jtK3YwhTs0w6+HyS5Rxe3VRRfqcJAKhcbbEHl5P6HUSo6jq6ZpQ44aqqcMhJWIZ5inXBXPgxRxVXUWhV31icg6SiL4U8w5NL+7Hei6w+Tysa53kK6KBnU1+idB102kK45XTZ9B4g9hcpNaR7o3Q6FUuEkZfp10qdqk1pE8Ll+1MSJ7H1oFUYOgDSKvVcu5ib5XGSNuoOfNUChtNK/YKDItbxNgJ5SHt0JhbXJSY0TTuewYEetjE+Wth7zNIJvrdZ2QY/p3Cfr1hLVO8JntW8nrFnwJYST0HFd/bhey+RTor0F02EKdLsq6PUxMKkKcK/Rke4cwOZpU9Mm7i0YTw6+HyXVfJZpsIHlcvmrRhGO5SbmLUI0GaTHdBZohPX/n2lsm+DgZTo10/kDmRan3/Xb2eShM9t5+0ht1iMXlhuA3OiVnoE05A0KOeTLWwz2UVxNl5TPJadpGeTdD3r2Ut1aUy/JuiWDeGsG8TeSl+t3emEiH0SjJ+ZumbvGMbbpO6Gp1hxGAz6+q1rYhIgf5jW5Q8LVbHqWzGjvh1fkfGRrnwd4Uozb6cTP7XCP6SxaM832U2ttG4DcdlZ25LZa1c7+QM9V25ja1yVEOYm0D+vTfnYTFdm5mn83OONq5k/jw3lGkwxHBnfB8i5Ct8A2jlQ/+/ZAuW54Pmqwa0c8CH/yfFX1wE+XhCJL7Q9MD7YD0zaDL1ZtDn1euL0fmdusEv9Kd7+TdFNE9TeyLyM8j16nweZTZyn++Qf6zGfKU/6zIPteI/t/mj/P9G/kPjtCmovyxdo0jOf5hCdXuVPxgPmyjcwvocKfQuSH4jW5Q8LXrG0rnVr4xozHOg7Erzzf4jK7Rfw58oz/DHAqT46fpqOzMY8Cydh4Qcqbazjy+2+ooB7G4f9tOWGxnqyezM/JvJ74dkId02L9th+c7hGyFX7R/W9LQZcvzQf6leKP/E/DB88gHkT/mg1spD23KqyVbhR1UHSSkd28O/VYql9GvzMqizjSp9roVMDmWG/0qwOQzJCYXy6VmyzFf3CbKpWy6PbSWjXZelyO7N+jy5/nKFRGbGn9PTnnYpka/JmJTZaOYTVUb2y7KNSTKvIOw1gsstHMRm2L511P5jf65wqZq3LKedMexA+uixmFIv4LoVRtTYxNuYy+O6B5blcS1hfsoD9cWNlIe7lnwXAx/enAz5eHaAq9z3AJ53P/dCnlbKO82yEPft7WFGpV1ffa8zb2FSftIiKXsm+T8DaFYf8rvy6OcqVg3UXLWO8pBrJuyv2rOxr+fUnbdAPljc8Nam3JqQg5jWUxOE8YkPrtr9C+Ddn3ukomYG4V++J7/ukhZuT0jltWZtQ+MfVOx92b4ddKlpLwkFnOxfLydvVno0hB5eXWKctTPJZbVy/FXX03FJUSX100lAjehf/x8CT1TW8uIfbqa3pmUM9SmnCEhZ6qXOodITt505wRNd1otKZ+ffeYl5d+G6c6pyHQnr9mhr8WOXJi8vGMMPTn6vQpCL/+OYI8o8/kRnTeCDJabpntydHgtDVUqhmI5VOGlUBzS8VUlGMp4cxiHON3iGfvcHUIOY+V1k2ZXHtK9rmQ3ib69LlLWjZSHXRPbQclR4V3ZISan0aachpAT6/arxhKlM08l0oSx5I0USzZBnhrS8NTN6H8JYsnPRmIJ6sjfVVzO6yfzYsmGHP1+IRJL1NBwfURnnAKy3DTdk6PD2yiW8FZQMxRLKpbw1gTGP/7pvbJ9IfKfrr6Qf5psqrf91HI/xxe1HbU5IkdtqbVqj+9uaJmqPXK/hvR7oT2+h9qjx1ZdXpsIodh210YhJy8GpSnWBxn9H0X6oFZD/9hULU8/PFiF9LOhzHlYQTwzeuz/ePliM9FuitCy3ujbq7PPFot4S7kZCqUt5s9bRCZvaaBOlofLiDwHwsRHlFDntL6b9Hp5EFhqurk1B1O1+fuJ1srcJXB5uwjbMdvr3hwduI7TZEul3N7/tjGO/5fUz+ByeYm63aq2pCxx/bHtOKn6M73S+ttYsf74CJS6EpPnU1wfnz9D9irr71NtL15+bmUvy7Pydgk+PoRq8mbOGsf7IuHVQBb7P18HidszzJ8mHosZ/T9DX/HGzJZDYXL/upDkIbYaH3M/tzBHL1VOjJN3kt5G25/ZrS9M9qcSvnqD1fF20gmxd1TETggvBL3saPiDQp7pVRd5Ra5wPfCvw1cP9z72pwnxmy78jOfBdwn6hYLebHU38Jew1QvV6+0m2/LQH3dQHq4ZmA7qCte7KupXxH6I3xD0LwW6MnXREHLucMTaVBHLrpZV26kcc9PE/ZDq+9N6vCRr2yoO8U+xl41DyF8mDvFY12hXURyqOH68Ro0DOQ5tr4hdNA4Z/mDIr9e6yCsSh3Z964aD79vysXOTMDnedotnRbbx1XUcbbbzK1Uc4liD/rid8jAOmQ4qDlXsU64sYj/Ebwh6jkNF66Ih5NzhiLWpIpbFITUGV3GIx3dbRHkwDvEcYw2M2S6bNRGryLg7TfxawqZI3p0CM5V9w6zx5xiv7NVLtCfP0dSxIvuOz9DXY2sPRv88sM1zSD+c/2M5UT81Vsd1yRfMyqfbEqErOr7nLVm0Ia9dtaoX7itupr6i4stfct3TsNItW3tJP9uyvXXn6NZdw4d3PrJ158OHd47ijEr1grySia8I5iXThLFuo+/84hWvZt4pcFrJVKvreN0Dy1U7LxyVzhE6n0k589uUM1/IUVEpyflrcvhZbKV3PsnBVTlc6d06a5wHfQJXepGXX14w+s+fM863IzKCjNl5UZioS1k7L5qWM6VyFrcpZ7GQM9XtgC9vx6jPdiu7I4X8G06znFbt+tAsLbNouzb6N0O7Hi3QrmNljB1Ki5302NQCK7brGNs9uqOAnNju0R0F5RQpT0zOmSyPYaldR6yDLRG9NhPWnS2w+MUGtaOhfJB1Lrs6gfy1iJzNbcrZXFDO6SrPxjblbCwoZ1GbchYJOWqG0W7/oXRuFW/fRPFWvdyKvOuzv/wS6A9BvP2/Kd7i6taz3c5bHOUgFq+Q5tXnr1B9qpdpYvVp9IegPt9RoD6Vbe6MlAdPCOXVtXrZMBFYsdMkbAekV33KFK6ozi7iB4hfJ11Kyhs7UB57YTBNeHB7XvY5WwW4YeeRq9Zcf/N3lgBOHhzNW12dhUJBf6YP9J35Ut34hHNNyEgT+88WouN6t+eMX0SnVrSt8lWs25ZTzhCKxTrkz7NZ3gkgPgVh9H+YKVz0BJB6iS02HuB2x3Tdogz9OXzPD1o/LPO6SJmN/oORMm9uUebYhQZ8RZZ6SYPLbM/7gj6txvIwj3/srKw/If/p6juXkJy8Pu0vqE9Tp/ow1rwg+8wr8C+DPu0vqU9TY8GpLn/eaV4s1wuAJm9uozDTxKc3jP7TPruPckWZd1C6hP7f/fEKqlNV9lidGv1mqNPPFajTWPtQp9BjsWBDhF7NFdUaU2zcaPWDO8rF6yf5uyI+ivh10qWkP4yNN9RL5Fi+quMNw/0MFAj1bzXeYL7YeINp89oejwHupOetxhtKpzzadsYbW3LKGUKx/gH5jc78s+Jlo03TZQPoYbqgz+e9qdIVJrdFRa/GGIjPcRhP3Snb8KUGRv8NGEv8bORU3NIc/UIoVhfIf7r6qqUkZyrWvdMUu+huDXzGPJOTF5Mbgj+27r2lTTlbhJyivv687HOrMVHf7Im4rfpP3nkf6+ug/xzIMGNvnpbdG+Pyl917ibXrou1UjQf4R4nKvpWG/HnjOGWjNOW9Lbk6s3+bb0tuVqdXrP21OebbXKSNI/6gkGd61UVekVNhX6i/4M+++Ftv/khC/KYLPyuydqR+GKu98VfYoE6F4YmVNKn1MnUqzHRQp8Iqjtc2FLEf4jcE/f1AV6YuFNa6ilh2kkvNsc9UTMpbe7H65rHDlVnbL/oGsHrLM/bGKMc0LiPHnDQ1g07/ScnwzP4zhCw+CWu0z4Fyv2XJRF3z9ghrOeXZRHoyRp5tWIZ6O+yFYaJumwvoptaDECNv3zLFUHuI7Ldl36jcIPRRcla2KWelkBPrk/ivyeFnsf3IlSQnb9x0O42bYvtd6ecXZZ95v+sr88b51tO4Cfl5z1Xd/qDOF7Dt897Y5nhi9HdCu+I3tnl9GMsZ87OakJumvHWmHTSemYp1Ji5TLUyOrWm6LadMGKdjbe1OQb8tQq/2m9AnOWariwgZK29tm2VvbyGb236RvYFe8PcHqQ21sv3tOZj/Nmcc8+GSmHlvxo3OHsd8eaRd8o+Blr0FBPl5LQ/5zGf7SM+SbaDwZVSGXw+Ty1xlLU+tTSi7qIv1eG8Y84qcEYn9kG9PQb0cL6Oy/AVEty5HtUTgJvSPny+gZ2o5ELFTWY9nTdPcfC3QXEP4awGjWzxjN0d+o1Ny+tqU0yfkxLCuEVhGf4ug7xP0jq5hKi4lum0R1Ri3lWsspWd5rmGpm2Smn/m+GK4a1nFIYBQxNz7jqu4SspSca9uUc62Qw6dc3kQjFJRfIlr+AF/zaRiIXXGV/AeKRv68k8mol/p5sCIrLqv/8BW/+PwVuzYlxG+68DP2ETWDvVbQt7ny9Rq14oJ3RqVJrcqpFRfTQa24bKyoXxH7Ib5aIecVl7KrF+rusLJYtuKC19rG2vLpihlTISeGFbtry2zTG/QuFccko/9lmLnxr3oqewfxrCtMjkd8DThi9ebormQbfpoagt/opjAm9pSNifUwucxVRsOqfSi78P10yMunj9PE93KU3Y3odCz0Tb4u2/LVX5PDz1gOttVekjNVb+gU8fOqchCLT/7yqqX6W1SOOi00FbtPltRuEPuFeq9a3YXF9sex9kbKwxO7N8BnTt30nccBv1jg3iB1GpD7pbJvuKhTVK3uwvuL2Vpm3l14effCfRZWaf5ydn4ZeRdUrRpiGfNWDT9xGlYNn00+XsWPP1HRj3nspXZB1FsCVg4VrzdRnro3i+Mi4qtYdh/QcTxVOxi8GnuL0F2Nm7oKyImNm7oKypnXppx5Qs5U9lsos1Wc+gbFKd5BZd4Hs7+8KvwRiFP/RnEKYxDqyN+LjOtNXtE7dI3+25EdGbVr/GBEZ5QRCCNNHFvHTh1lNmpzHitjK/e56m7bNuUWXgU3/DrpUlLe2Li/1Q48LikW/wHjvHONCaHisyRMjvgJaIbPeojuVvpe5efQN9PzZiiU7lS3n1gq2yvyjTCYVM+H5xLK/Bw61gffNIO94laQzfW6Ucgx/bsEPb8rs1Hwme1byVOrDjzjVnzp95sEj+eMiu3ogTUF593mFo04hl8PbbWTsYijzj6pMxeq7eS9d4kxIaE8lKPO6iustU5Yabp3GmsaaxprGusMYBWZeWI/xednMA7y+z5lN8KRP7bhvrJNOSuFnEHBV7VPbkR0VqsHbLeyZw7Ve7KtzgJun6Nl5t2V8GD2l1es/hhmnnfPmaizmnmmSc3ysR4Mg3n7QAfLKzG+GErHwL2w+sN25fFBbBySfrZzg3yeG8uufKFoHT1MdaTOLsbOaxr9r0AdvTz7rM6FFTmXpORxO+zNoefzmka/N9MJd/2UfnfkyMtb1V2eI28E5N1NcyL0O9yZD6Gy381Vfodxhv1OrXCpeBaLF9i22BfRh3mnV50FjJ3RNf7eoOvA8GpE/5io86J+zvVq9K8oWK9my6moV7QV16vaRVfvOsb8QO34qxXImwnrZoGlzuQWbcuGx23rByP1avxYr6gn16vR/0jBesV3c0PwrVe0FderGn+o85gxP8D+wWyidgxuozyMiSxHxW/0gyJ1jvWTF79/WtQ5jx05LrTqX0KYuLI4N/ucrSxuHR05vDNbWgyUYkuB6fe8q9PmCP5AvAk9m0N5KnzGFtTHjpgHvWTF4dPof06YPBZ+01TkiDZW91QsThu+1xHtVmGNl4pizSw2lTkDrpqmW3PUSAR/IKxEPAtBH5tW+9RFopsylTr7hfSGx2e/fj3Sc7Taw+TIp0buau9SlZ9vq0S+O3LkYI+GbrScymr0v12wR3Oa+cgeDW1UZGU09laxeuNHrZY2iB5tr3q0vDedUI4axagbeHBUyTOrVrebcnlj9lH+pe7cV2cFYrNgPL8Rgu8sGMvDvhCr2zSxbdQNOFjfPGrFcx288oRtiW+mULOeor6Aqx28EqLOOcZmQOr2CfRhnpUb/cdEDDDMTS3KVmQGqN4gVrdBxG5yw/MShh2Irk1/nOm5KpOmsm2V4w/6GZ9Fx76AV3HUeQQ846FiQZF6jK38KZ/mM2z/E/ws72bDvBWUF+VgfiHiu63aZZG+OnbbMvonn2k7XTv0fKZN3dikzq3x+SM8m8lnSPJ+b4wTjwHRDkXPbcbijop9yufRl/6CfB6nFVeQTDWEx2fs88hvdEpOX5ty+oScGNYVAsvo1Rh6il/Ls+8riG5bRDXGTegfP19Bz7oFLSZVTV05eodQrJrUohRj4dEydUGV2mS6krDKbjIhP095TK/zsqlin5BfInw9GXutwLArvv7xZEJ4IeiZfd7RStRLvYpS5BW833v7nTM/9r7rx14hK3oE1OjVkO5KQd/m0egfU8Mkfs1ObYqVfQWv4qtDP1bEfojfEPT8Cl7Z47iYt6Uilr2ChwujvGE81TGGp/QrsraMw6zTrYsNQ1Z1gC42BLlM6BKLqThU5Kky6h47IFCk+11bsFwxOVe1KecqIWeqDyJcRXKwv8fN5+fNHefBtpZ3NP1l2V/e6Pvq3HG+F2af1bIb6qj6Quyv08SxgzcimWZDjn43gn/y0XQuM5ZT6XwryAiEkSY+mm70t9I4oGJ8l0fTeToyBa+kFl79P1OvpJY7ms5b4mgVRMVnSZhYesxrtcjPI/AqR9Mrjli280QUk5qI8sQXfzQYa5OTmqTiCKfM0XSsD/4heNw7uwtkc73eIeSY/l2CfgNhqZdhzfat5KkRF1++ofjS7zcKHs+XimMvsFTFUsfc21ywKfxzMnzdasV2MhZxYgutaeKyq6tf1XExnrlWvUo0/bzFEWubI9ZGJ6w03TuNNY01jeWCVeTFZOwPeINcHRFKKA/1i80okT+2uHt5m3IuF3IGBV/Vvq8R0VltwrHdyl42gvy8kZB3vPgn52qZeUfAeYZn9P8AM7yfmTtRZzXDS5OaTWM9GAbztrnZOKg2G9GuvNmoNkSQ/oHsb+y4m/KFonX0S1RHeIhB1ZHpw+fFPgx19DaaheNqB1+n2urAxQNEb2UsegTc6H8NZuGxI+C35MjLW5VYnyPvXSDvNBwBn638DuNMkSOlKp7F4oU6z8YXRqSf+Ugp2pjHpWWPh6sjpWhDPt9o9P+v8Afui9g38vRTdnM+UnpHjhqzBH8g3oSezcrBMpz0GS5yFDlSqs6+cYh4nzB5rMrSNH2k9HvuSOnaHDUSwR8IKxHPQmh9pJR7lZiJlamqvozwUeHSsQirRlixkYDac4gdqVWjnlty5KiXJNLEPZrRf6Jgj+Y0kpI9GtqIe7SiKydG3+pYEDe12JEuNbMp2gyLHinlkVqrozRlj/CxfxU9whcbVTsd4Rs800f4eDYUO8KH3RH/QIUaRRX1BZw9/WTO3hnioi/k7YNjDEAf5mN5Rv+vIgYY5h0tylYk3uEwh69DwyEGxzu1T6/80eja9McB5Y9Y/iKzvNiVzq3aKscf9DO+Dg77Ah5GtvKb2HE83Lt8Hs34UM4qkln2SuVVQn8lp69NOX1CTgxrlcCKtfMpPo5nKi4hum0R1Rg3oX/8fAk96xa0mFQ1rc3RO4Ri1aTcWckpckQrJqeroJxL25RzqZAz6YhLNvRtcxv91bFbbtvc6H11Qngh6NmU4au7vvhmOQ55zRBPX2ls/+C+r73tV2NhNzYkVL/tc6mgN1vhxnUJW71KdU0mWx3j20R52L2YDuoY3/aK+hWxH+I3BD0f4ytaFwprc0Ws2WGiX52JmMHH+NZkbVkdnTtdutgxvuecQV2UnMvblHO5kON5r14jonOr4243zhvnQZ/MW1jmhXaj/xv4rbC1kSWRvCEM9tu46ZY3VcHjbuo33Fi/O8Cn+LjbBiozllPpvBFksNw05f3W7ybqLyv2afK4G0891O84c3lD0DaPbbIZ3ek+gMXHRPEAFh8Iuhvy+Hj+PZDXQ3m4ycx3f+Lt0rx0iImXEdFGqe9du3Acl+kCycQ65ANf2HeYLdQy29XwGfNMV37GdY/8sSPBG9qUs0HIUcuNOEacwtc/Cq/CG36ddCkpb2wVPnb3zXcVy/6qcSpPsTEv75gxyrlayCmr1xT8wNolRJf3ozuJwE3oHz+/hJ7lTR3t+5m8/m8qmlirffgT87RMtQ/PXSPSvxuGB6fgM++eIBZf0I92Wk/6404Bh4CKb5cVDgGGXyddqoaAonvg5U535+20J4SKz2ItgffbmJ9bd5nT3SZXrQPeLDBj+0vMh7YI4lmXoI91SD2ke3eEHzGQjz0moefY2m4XsvmUx4/CYPc+GuwqWWiPVicZmIZ1MPofjwy48b1QVS5uzdzBo2/dnyP/KYgyP5UTxYKQz+XDHqY3R9+1pIPRvwlsEPtZN34Tgp+hDZA37zvvreJn/K588Xaiv61F2bn+jf4XIvXfI3QwvdK0roUOikbp8Fahg4iaN40cPJlzqoDHEhzluJa4JnoETl4ya6Q85r1sHW4dLMe+Kw9IS24/0DI2NNu3czTvRAWXNa9H6Qo6DQatW5rO1CGZnmryoodksHxVD8nktdJWcto8JJPXaatgwfyBeBPxLGRq/1K2y/RsGz4zlhoWp+mR7C93Un8AAerunE6yKwezyEvkalXH6NVqteqU1Gb2pgKy0ZYcrDeX1LXVoZhbSVd1V05RXTefZl3XCl3bXL0ovbrGK2G4usYrYbi6xr9TiatrvCqHq2s1ysPVNV4hxx0b3qV7KeTxlBZfWL6Z8nB19zb4zEmt5lmdpG121uJxXKbDz3nxpughG4wvJ3JW7BEXhxt5u1QYq3A1Me/uq89EYpX33VemT6w9qwNhfOlIt8Ds9ENf6t7B2CE/vIOLX19Sv25R1G9ih2xwl4h3kFR5lZ8b/RbAUuV9Sfa5RvT/K+KPyoaxmN3q7kb2Oex7t1Ee8uFdeYYdiG4q7rXE8rA/qtMESM+22SHocQefx0nYr2yhPPRB7jtQLt4ve/vsiXTqtWr+a7rys9hu/r2kz2ZHOYh1D8nBdohLr33njOOyTVTcfl72mXf2LzhnnG8g+xw7TMu7lkMZz3f7u6X5/LwDqQ4Gqrsgi9wtjPQvySnnPNBzMd391y30bLPdNcreLaxiTOxu4Vg7RZs0wuQ2ya+cq1ivfguXxwi9Id4/8xhhGdQBv76EduZfq7ujpO5VDif30d2MnlcHqF/iYyw1j8N2y/XeHXR/yPTmE7iYquJzjegvhbqau1RjhhwdNubo3JtDv410MPorhb/E4gD6/1bCNPqrAZMv3mqF+YIczOsAk8caqp3G7olu1Z/yeALtuIPyUHfuF7eDfKZ9McnHPL4LlnXO01ftOsf05f7G8jZAf3VD9rnNk43dsbpaI/QtWlcbI+VjLOOrhcn+GGsjaI/bztGYPSUx14k+XY1V7gP8DTnjkTTxeOS7MrK/6sQKtsM+GpOoO5B5TLJVtEfV1xtWe3198ndlX59vZRvPF31mU56ap3n3pZ+ZNRE3Nv9PP59PerQa412XfeY4/FAkDisbxmze6rcb+OUyrI+tlKd89nT7Y6f8lgGP7bCMU/VbBn+R+aOag/PcY1tEn1Zj7ry+vDeHnmO+0R+PjHvuEjrE5gl3C/q7hM5DpAPysmxsl2iT9VQeo39FwXjstOYhX8JFu7H/x2yUJrbpPYIebcVvGOC69w7KwzLeRXlqHSnWZou2DeNN7fArFKu91+c4Vhv9E5FYrcoWi9VTtT4Xi9VT6auduj6HZSy6PvemAmOB2AvgrfYCOH7F9gKQj/coy/7GCPJvjshZ1KacRULOVK5Bokw1tuHylF0LQf47qTx3OpZH6ayu8cQ11XfRHEbFNuTl/s7o/xTmZL9J8xc8JxC7oCDmu3lronlnAWL7DD5jztBzpsecPK7E/pLPdqg3XND3sO80mkA6ToW9Tuc+odmg3X1CZcui4xB8s+rQrNb6x96CbeUf/KMmHbRHd8bHAOwLZffoOF6iHBUvuY4xvmK98J6V0X8iMnZUflD27Wk1B1S+sZ3y1Dr/FMaQjvabrZQXuz65ld9wDMF4jn209d+xNTL7rMaSSJ+3v8Jjz4Se98Nz5HsOlZnHSIx9PdFbOXtz6A2PxyJPR9YStrTQ4bmkw9YWOmwhHYz+a0KHmP3TFBsT9oXJbbFEu6klhGf64DPErwftH81QKCVsP5On/CBN3JZVe1J7JbEYqNq5wqo5YvHbwBXra5uKbZb4LCPHXo5jfF4R13lwnYZTN33H8qR+PX/pOC7Tsa5YX7ifyz62RfBuEdhnqj1sqSYv2h7UHKBse+A99rO9PbDPd1p7wPoyvZWN0tQMxVKR9oJ1U8L+y4u2F8P3ai/K91R7afMmnWY6FesPk2PVxfBZ7WNgfXnVn1rjOlP1V/FnWaL1p+bwnvWHbatM/am1v3PgM+ZheWJrf8h/utb+ziE5OBfEtb/r5o/zoB1wboq8vPZn9LfMH+d7bva56vreFK7XdZc9nxg7g5CmsvvnXGdF15+4b1fvKRVdf8J3HbbmrD8lgPs8wcttG+m3Cj2Mns/EMQ2fXxs7m5P5lHpxVvks6pW3nrIRME/3+TW0M58HyxvTG3YIk8cMVj7LK9MvqDaB5eE2ofbikb7sXjz7Pe4pbyUsbl9pWi+wYrpubkNXrkesKz43gHFWrc2yXxr9g8IvVf2bzaei/mPracqmsfW0VjblOU3sTEFsPa3V2jnHxE1CB+wT1fom70Gp/kHFCRXTed3I/PIg1D+f1cXzPWofeX0O5pFIrFNliF143KqPi73XsDXCh+2yT8hq2of/jCfDM/+YIWRxP2O0p8BOb1midUlYnxZpCudkzYTwQnhWzcmWeczJ1DgPY/NraQys2hjGHbsei9vYj8AY+AdzMEPQ7Tb2XiHq8+7GRNyp2k9WbTc2huF9RnUG33TA89lqvMZnp4z+SWibsXeZfPYnk39R/SKOC7lfjI0B08R1ERtHoU0aRM/1kudfWNc8Dsc9DVUH/B6C0f8c1EHsp5jybhsuqnveuQRui9g2uB2rOZJqc7F2j3qfn33mdv9UpG9VawWxvrXVmXd+n1DtQ6k1DDtHqNoL3q9g5bO8dvdlT+dZGH4HPPZeIL4DwGvBWH6cK7+RYq96bwDrNu/9wbx3VZdnn/n9wfdG/Mv7XGGZOwbUDcNTuHYz50yv3VjdFlm7wVjIa37qvc7v3mFB/qX6SeS9MPvM/eSfRfxlR6SMaSrbR/EN4Tj+4ht4kY99Sc0HTYe7hR1Qr0eyvzWi/2jB8YLTPPoG5Z8492X/jJ2nTxPXxb2CHveq+Bw93i2znbDU+hbalGOXeqfjLoHP73R8OjJewP7pbtJ9a0ndVdxV7Q3b1JKsval5Po9Zt0ZkMi/2Pb059Hnzz38U9uJ4lreetIIwjf6fIvFA9anr4VnZc2O8j4J24XNjat4xdeP5cOOZPjfG/UfsvGHZc2NF/R99aAb5P/bn3P5j41jmRTl5/p93buvbEf9vNS9fRphjOi0Yxyyy9hXz/1ZjhNgYKbbHiHd4GTZjtun/a8/0+Jz9PzY+x/hb5P3Iov6PPvSNoYm46v1b5G1mn/n927kl/aud9295vBV7/xb5eH1GjV25HvP6meVhoh2MfgnYITbecjoHPPdMx3Pet1Dj21j8jO2Tqvip+kuOnxdCHcTWZ2L3UxTRvWh7wzb191l7U/ck5c2VlUzmxXad198YHvcNVwp7JSQjbz2I+xujvzoSD1TsivU3rebrvB6k7pNQc/nYfN3pLqh5Z/qHYLm/if0QrHo/jf0A5RT1f/Shj2T+355dT7wiAV0Mu1tQ1uiv0dya+WQd5NvfWgE9PvnBr//Vu+9Ys3828afJ6ijds0nr/0byf1ybip1bMZ/tJt0UX0I6MH2XoDdcdT6mBmWoaqMlv7/zz1/8qX/6VCsbVcX/oTW12T96z4bbpgr/z2d88Wsf+m+P/thU4f9D3+a1Xb/9umVThf8zX9t47asXrvjnMj5qvjATaI3P9jGH4HmJWFj4anbDr5MuJeWN7dMOkTwun9mi3M+mDMJntgqi4rO8VmqahRw6jhBpKvOzKVZzs+h5MxRKs80rZotMy5sD2IOUNxfysDY5dQv9TefUS2+jk0BBYJlMrI85lNeAvLkgm+t1SMgx/bsEfYOwhgSf2b6VvG7BN0gYCT3HUVq3kF0j+mMwStuyIEwo5yCVG/3vftJR9Soh5xmXg9/0YLlp6gttRYLZRSOP4deDtnczFEpjkWcmyePyVYs83OeblFmEajRIi2kWaBZy6FSNrhd8nIxvMAczTX1hsqeWsPJA0Vq1Z3XSpWqtdpM8Lh97NHttmhphsofgXkWe96h+axprGutMYVmPYrRvy3qR797/k30eCjpu4ecuoUtXRBfk5/aG8yu+U7tHlMHyeiN5MyJ5fZE8HLsnlNcPfHyn0oDATHX/Oo3TOXarvyFMjotp4vpQow/srXheinFtiLAaLbD4/hvkbxDWrBZYfOYH+WcR1uwWWLxehPx8n2a34FMjZe7vcKRcov8ZLNrfGX6ddKna380heVw+Puc6t5q8gYT4UR5i8mh+nsgzLHsHrDcHy3hrRP+HtG48D3TiODpP6IvPzD5p+30vtV+0bdX22wiTy271w2s7acK9jffT2tRsyFNxmH/l3eiXLBzn+28U99H/TMehoOsLPyu/mxMpv2oDU21njumJoxzM4/1v5XPYJq2ezM7K540P383ktsv+jPSIofANo5UPfnyBLpvyQZRVI/oAPvjJyNiDfRD9M6G8hMqCdMo/sc4eIHrTu1fQI16N6D8b2Z8xfrQV6sXvwhj9P0T2Z1T8VbPWmC+qeK1sOo+wBgUWlof3yJRN1UoU2/SLkT3CbsGvxpb3UR7u5cykvF7IG6K8GZDXoLw+yJtFeTi25DFwP+RxXzAAeeg/NrasUVm/mT3vC7pNNEOxxOvQsfiJ9lT2rVMe+mQv5aHt+ykP63oG5WG9DFAe7ltZHfWHYjEsTdyPjsXkLIapdqnirhqHGf18QY+xnu9PxbY4n/KQj9vzfJKLn21REe2Aetlv8dWIfgDsEDtHYXq1uU87oPZpYUF00j7tQsjrFvRcF4sE/UKgMZuou1I5Rqp4izblGKnGwPMFPo+B50MdcIzEGLuAdE9K6l70nX1sUx+PjDG5n54bkcm8KKc3lBt/NIW9EpKB7QD14n7a6FdE4oGyZayfVvFjniiXsuk5lJc3HzNsxpyK31bE8nP7jJU1TVVjZSNMbj+8LoBtg/1frT8U9X/0ofe3eX7hJz9w2W3/fOeXz6uyN4zrXcZnYwPUp0T9/lfU35Ja2zD8OulSUt7Y2kad5HH5eG2jv5q8P06IH+UhZp3kDVST1632Hngt0sahvTm68K6h0d+exSTesUOeRpgcj3jdRI31Vfw63VixdXGsk7QdvjizhfL/9F8zFEpr1Jowt62KvnBX0bZl+PXQlq+Pta0Bksfly9v5RV5VXzuBrt26P96hWHsdsQ45Yo06Ynnaa8QR67Aj1n5HrGFHLM8yHulQvXY7Ynm2R8963OOI5dmGjjliedajp6+edMTy9K+jjliPOWJ5+n2nxhzPMp5yxHrIEetxRyxPe3mOTTz9q1PHhZ5+36ljuV2OWAcdsTz9vlPHcp3q955jE896PBv6tE4dy3VqLPQcy3nGQs969LSXp696jr8edsTq1PHXPkcsz7bt2YY87eXZD3m2oU61vWf88lyX69S1IU//8hz7duoY09P2Xn1H+rnuhJUm6zuGcrDxs9obrUfkJELnbiEH97sHs2e4V2Q4fWGyLUrsQxX+bSvDr5MuJeUlsfrB8vG+l3rDsyHyuK6qvr+Tfq45YvHZC3W/gdr3S4gf6ZW9BsL4+cjsLcmbdz509NH1I48GSjX6fnOOijuIbkuOat0CN6F//HwHPesWtIg9FCZXTW+O3gHw1FWnDcFfi8hJ2pSTCDmDgo+bNrpOiaZ2cdGmbfj1MLnMVZq2clVlFyt7XejSoLw0PQp0VUIv5h1wxBpxxDrmiDXsiLXbEeuII9ZhR6zjjlhHHbF2OWJ51qOnvTx9dY8jlqev7nXE6tQ44dkePW3fqb56whHL0yc8fdXTXqOOWJ4x2nMMcNIRy7Pv8GxDnepfZ0P8mop+yMbyeAUEvr66Z9FEmT2Q1028CcisEf3fLBrn279oouwEZNvnPsJLQqk5zaUJ4YWg51CGXyddSsobm0N1kTwuH8+huoUuDcpL08uBjvO6xbMY1hFHrBOOWIcdsfY4Yg07Yp10xNrliHXQEWvEEatT69HTVz3bo6deux2x9jpiHXPE8vSJfY5Ynj5x1BHL016e8ctTr+OOWJ716KlXp/YdnvXoaXvPtu1ZxlOOWA85Yj3uiOVpr07ttz3b9lT0teqqoT6So+Y+XRE5yM/zIuRLsr9tXqla+Ipue1YPk8tcQl70SlVlF95TRN4G5aWJX+1VchIhJxFYMb0ct6ZNxUuIbl2OaonATegfP7+EnilTILa6ualPyLIUM20jhz9NgxE5yu1tGaY/6ObH2+dlmx/yW97pus2U7aqWk9L0SPZ30g1f2RIS3hzSLeQhVpHQUnHLvvBpHN6ybze0qC37WGjpFbqwP6TppUDHed3iWcy3uh2xnLqCHrNHj8hUtmI7ol/xrwvjDRv4652cuuk7lifFn790HJfpWFf0MdNbtWU+FlO2LSN/Vw6WuqE4TfdBPtLPWvzM3zbrdLWqU/aX3orYRdt37HY2bvt8fKkZ4unetY9/7Ofe/rery7Yjo58h6NXxHrNVxdtnVg2CjECyLU8dA7M8jMGmQ8r/H+QnMyrqV8R+iK/iIw+9itbF7KD7mRCmf6kGh5ud+Us1abqFvk//Us1EOtbnbPilmj7B17QPn3/dm1/ZeNeP/3zzkg9/vffW13/pga/e3nP9Jz/8+KL3f/+3vvD0T7DOQejM9ThItOqv6c7PeCQz5Ig1S2CZbSre035O0Whl+PXQVhsbi1bqLjssH5dd3U/eEHkcg8reA45YXY5Y3Y5YNSesNN07jTWNNY01jXUGsCwP+/tZlIf9J/++CsZnfo+o7Mwb+U/DYvnMov3umVost/JVvXM3IX6UpxbgeYyj+kzr93tzsIyX70Hek81sG0SXJvZr9XtBalyS+svOxRN157mN+htCfKzHm0RYP6fb7/E9Ojy0eHixlomrzMjL99Ub/ZcWj/MdXTxRZ7WCkaYhoTf6UAgTbWd0bd4hPVPdIY16cT2o+0uR/sHsb4PosezKF3qhPG3En3mxHZG0LN9HdVyDPOVXD2Z/+fcf/jvU8Wuyz8qP+TfAWm2ePUj0Zv+8e9drpJ/R/1CmE967rvQbzJGH9lBxjeU9AfLupnm+avNt+u05ym9xBZf9Vq20IT3PiWJ+rnwZ/XwGYanYhX6wLkfXvP4AV8yR/mdEnRfxc1WvRv/mgvXqFI9kvaKtitSrWp02erWarXZsGmFyXfLubKtdtCL1qvo8rte3RepV9VGqD+E+6lcK1qvZcirqFW1VpF5Vf1+0XnnXEuu1TlgqRmNdF6lXLA/HaKN/d6Req8bh93RAHMbxIterajNIz/Uai9sqDqvfNVLzMR6Dl43Rql+OxWijf7+oc54TclzI00/ZLe2HbE082wXZOjpyeGe2DRIoxbYtkjBxqR3VmCf4QwQLeWJFwo0dNrnJ6g16eZ1NbvR/JkzOJmR9ikyRKzaZwhtphu81RS56bouHU6qZqS6G66mVHEdXTdMtOWokgj+0wLLveIYKq5tH9bGRAPOm/2y0WHQkYPSfjPQYrWZmHFHUigCOYnl2rlYkhgTfYI6coiMUo/9swZ7MZE9FT4Y24p6s6E6P0cd+MRhtEtsZia0sFm3msV9TwllC3kwZcWMzKOVfWDdWb2pWyv6Vt7IWwpSMVmeeaV/gX3pRu3dqFYV9QXWxGCfYF1T755WxNPFoG/8aj+GmqU/Q4w1jlvj8bj887xZYM4jP6HuyusNfcwrE3xDycfQYcvRWv4SVCKxu8Qxt+u3F4zorPbn/wrJ2C3o+R2f0/UvGZQ7Sr0Zyv2XPFkXokpy/SmfUJ2ajbkFvsvsFveWhL2ObRBq0F2LVIR/pF5LvYH3jjILl4+pAyNE778Y3xuoWz9B3Zi+ZWIaK54+T/jBx9mt/i5wr/K1rL33ezLsvfFWrX8urij/zg7+76bPfPHhhlV/jU9erFfXXvLOrabo/+9vmudAudRYxFOdPipxZrXgO8z+L2Anx60GP6ZqhUBqbnnCszRtftPmrit9O+0j7VWJsg1iXaDuUw+dRuwUPxh3GSPlPLZ1YjorTum+36YP/W63W4E7JNUvGcbHsOI5X0+ca0T8X+p/nQGw1XOPHPnwoTG4f3KbN3l2Cllfg+cyvshvSW3315pS1l8pq9C/OypfK27RAYxa9AsXobwRM/rVb9cuZZXc18BcNTR91E+4A8akV1CCeqfpJiBZ1SNP9Qqe873WBk6dDn8BR7yjwirBaXcZ2w+PobiEH2xT2WW0uJ5V+JyWhPCzbDqDj1E3fUecUo0ljxiCwlH343QePvtue98BzlsvrSb1Ey3M81LGd8XDspEIv4c6I6J8QTk3wxa5KqqpvIvSdypMiabor+9tmn7ek1emA3QX6PDVm4D7vAPR5+wr2eZbH47Y03Q3POKbzOAgx0sTL6BYjewEfafqoTEZ/RPRtKoYY1ndPv5A9+yAv1o/UiP5JsOcJsifai69z5jge4PvYWgHRpun+HBu8CvR4xZJ8WThPzStjivH9SzQd6oB0jFG1X1PjK267RcZXag2qLyKD43Fe363Wo4v+SngQz7oEfV9OeYOQXW+Bq04JqPhep7xE5HHswfIWXcfFuLU70l6SMLFc/VSuvki5EsHH7Rx1nxHRXdkP40fVNYQf+Nx//vXrTi36ylStUbzwLcd/aPDad/3GVOG/c+CjN/7BW/peVmYNxOpZnVZi38o7jXgP5CP927P6aHONIXB5VNyIzc94LZT135Kj/3+F+P0OahdqfqLaTF7/21NQF6P/DTGvi70D2+aeRk3taWBc4/GuirdqLdvoW80tzSbqxFyRUyJoUx7TmI16g57f836q0f8+1AGfxlCx2fKw7BwXu4VctZZobSyl+WtqVxXHtzPUOMIS3zOAZWR/wDJaXj/phHnqlG8idFBzSCtrqvMnCswhVXzg9qrWVWLjRdXu8ERyCJ3T7sz3G2FyvbC/FfXhvPGckod2wL7afDhvTR7bNM65PkVzhF7IU2taHE+N/qsQ2z9DsV29DaD8qMgpxNidI2our07VW720eSdBD9Yv6onPEF/dIVFlrV6NTWNr9RXHCTXuY1GeqodZQdtUrefzXFGt98TmSbF4otoft021jqD6kNh8zmTjmnmRcVPeWZy89Yx/hbY1c+nE8qtYG6s39B2mj8U+1FXZvp/y1NzfPg9E5Ci9Yr9epvTCmMxv3fOvusXKULSvchoj9qi+CuuE24iyS+xXzdQvquFZJm4jeLyTz8QU7dv4FLDq41v1bebzsX5BnRBXRymxf/tUm/Pb56/80YVL/vTQ4FTNP3tqS97YfNeD68vMP1Vc6SJctAOvt6dpa/a3yD53xb6z8N1r3He2u89dtO9U43XuC3Cdhd/4VGsw6uzS6cJScxOuy4rjhMLjID6zUNF3omcWVP+m5lc8b8T+h+3fzk92dCIWtv/Y+LhIvSo5akw/1Xt3vOc2w1GO+pkVjg8ectQdhGpfFudvL6a+Ua2HIW/eetijS8f5blw6kcZ0vxloNtE5GixzibZcV3NyS2rtg/1WjQP5xiXlHzi24ftc8XYIPAvBSa2nGF0q74kCd0GiLYvcacvnTBPC47Vjo99G9cV78c1QLKm1Y8N6NvlClfr+QIH6VnUcu/uT5zaxualak4vdyMDxDfFVTLqP8NEesT0yVWbjxb33WOxi30f6PRCXTlA8VHNaFYPteat19NgeN74Lw3wl2sEA+zMm5c/cDtQvYXNsU+0AXzfkmIjvNvB8BpNqI2aHMjHxRE6/ZjKwLtLEcz617479pZWv6hniBDBNJys76sX3pGJ74vdlKp6pHbOdOluC4y1eezP61y2diKPOwMTeu1Bn57uFXPWexUBJrD7CmtEGFq5bMP2MinopLH6vpcx7Kq/M6uZ07jM/SWOF77V95ndAf/DTkfXShHSZin3mn83kT+8zn7l95qegDs7kPvP7qV2drfvMZcbJ0/vMk+vlTO4zvz+nP2q1z/wnOWv4ZfeZ/xZi+59RbJ/eZ34mTe8zT+8zh1B+n/lz0La+Ob3PPAFD6TW9z/xMerbsM39zivaZre/7P1gLpSO1SwQA",
4137
+ "debug_symbols": "tb3driQ5cqX7LnWtCyfNjD96lcFA6NH0DBpodAst6QAHgt79BM3d7IvMOsH0HbHrpvPrqsq16CTNwkk3p//Xb//7z//rP//vv/zlb//n7//+2z//j//67X/94y9//etf/u+//PXv//qn//jL3//2+Kf/9dux/qeX3/5Z/um3Xn/7Z3v8Iecfev5h5x/t/KOff4zzj+l/jOP8o5x/nCrjVBmnyjhVxqkyTpVxqoxTZZ4q81SZp8o8VeapMk+VearMU2WeKvNUKcdx/VmuP+v1p1x/6vWnXX+2689+/TmuPy+9cumVS69ceuXSK5deufTKpVcuvXLplUuvXnr10quXXr306qVXL7166dVLr1569dKTS08uPbn05NKTh15ff9r1Z7v+7NefD71yLJgX6BHwkCyy4KFZ1n+sEqABFtACesBSHgvmBXYElIAaIAEaYAEtoAeEsi3l+YB2BJSApbw6oEmABjyUq0ML6AEjYF7Qj4ASUAMkQANCuYdyD+UVMnV1ywoahxU2J5SAGiABGmABLaAHhPII5RnKM5RnKM9QnqE8Q3mG8gzlGcrzUq7HEVACaoAELOW5wAJaQA8YAfOCFWcnlIAaIAGhXEK5hHIJ5RLKJZRrKNdQrqFcQ7mGcg3lGso1lGso11CWUJZQllCWUJZQllCWUJZQllCWUNZQ1lDWUNZQ1lDWUNZQ1lDWUNZQtlC2ULZQtlC2ULZQtlC2ULZQtlBuodxCuYVyC+UVg1IXWEAL6AEjYF6wYvCEElADJCCUeyj3UF4xKLZgBMwLVgzqsaAE1AAJ0AALaAE9YATMC2Yoz1CeoTyvvFGnBlhAC+gBI+DKSHIcASWgBkiABljAarMs6AEjYF6wYvCEElADJEADLCCUSyiXUC6hvGJQdUEJqAESoAEW0AJ6wAiYF0goSyhLKK8Y1L5AAyxg/aqWBT1gBMwLVgyeUAJqgARogAWEsoayhrKGsoWyhbKFsoWyhbKFsoWyhbKFsoVyC+UWyi2UWyi3UG6h3EK5hXIL5RbKPZR7KPdQ7qHcQ7mHcg/lHso9lHsoj1AeoTxCeYTyCOURyiOURyiPUB6hPEN5hvIM5RnKM5RnKM9QnqE8Q3leynocASWgBkiABlhAC+gBIyCUSyiXUC6hXEK5hHIJ5RLKJZRLKJdQrqFcQ7mGcg3lGso1lGso11CuoVxDWUJZQllCWUJZQllCOWJQIwY1YlAjBtVjUBaUgBogARpgAS2gB4yAeYGFsoWyhbKFsoWyhbKFsoWyhbKFcgvlFsotlFsot1BuodxCuYVyC+UWyj2Ueyj3UO6h3EO5h3IP5R7KPZR7KI9QHqE8QnmE8gjlEcojlEcoj1AeoTxDeYbyDOUZyjOUZyjPUJ6hPEN5Xsp2HAEloAZIgAZYQAvoASMglEsol1AuoVxCuYRyCeUSyiWUSyiXUK6hXEO5hnIN5RrKNZRrKNdQrqFcQ1lCWUJZQllCWUJZQllCWUJZQllCOWLQIgYtYtAiBi1i0CIGLWLQIgYtYtAiBi1i0CIGLWLQIgYtYtAiBi1i0CIGLWLQIgYtYtAiBi1i0CIGLWLQIgYtYtA8BtuCETAv8Bh0KAE1QAI0wAJaQCj3UO6hPEJ5hPII5RHKI5RHKI9QHqE8QnmE8gzlGcoeg32BBGjAUp4LWkAPGAHzhOYx6FACaoAEaIAFtIAeMAJCuYRyCeUSyiWUSyiXUC6hXEK5hHIJ5RrKNZRrKNdQrqFcQ7mGcg3lGso1lFcMtmNBCagBD+VWFmiABTyUmyzoASPgodwe49VWDJ5QApbyWCABGmABLaAHjIB5wYrBE0pAKFsoWyivGOyrzSsGT+gBI2BesGLwhBJQAyRAA0K5hXIL5RWDvS6YF6wYPKEE1AAJ0AALaAE9IJR7KI9QHqE8QnmE8gjlEcojlEcoj1AeoTxDeYbyDOUZyjOUZyjPUJ6hPEN5Xsr9OAJKQA2QAA2wgBbQA0ZAKJdQLqFcQrmEcgnlEsollEsol1AuoVxDuYZyDeUayjWUayjXUK6hXEO5hrKEsoSyhLKEsoSyhLKEsoSyhLKEsoayhrKGsoayhrKGsoayhrKGsoayhbKFsoWyhbKFsoWyhbKFsoWyhXIL5RbKLZRbKLdQ9hj0vf4W0ANGwLzAY9ChBNQACdCAUO6h3EO5h3IP5RHKI5RHKI9QHqE8QnmE8gjlEcojlGcoz1CeoTxDeYbyDOUZyjOUZyjPS3kcR0AJqAESoAEW0AJ6wAgI5RLKJZRLKJdQLqFcQrmEcgnlEsollGso11CuoVxDuYZyDeUayjWUayjXUJZQllCWUJZQllCWUJZQllCWUJZQ1lDWUNZQ1lDWUNZQ1lDWUNZQ1lC2ULZQtlC2ULZQtlC2ULZQtlC2UG6h3EK5hXIL5RbKEYMjYnBEDI6IwRExOCIGR8TgiBgcEYMjYnBEDI6IwRExOCIGR8TgiBgcEYMjYnBEDI6IwRExOCIGR8TgiBgcEYMjYnBEDI6IwRExOCIGR8TgiBgcEYMjYnBEDM6IwRkxOCMGZ8TgjBicEYMzYnBGDM6IwRkxOCMGZ8TgjBicEYMzYnBGDM6IwRkxOCMGZ8TgjBicEYMzYnBGDM6IwRkxOCMGZ8TgjBicEYMzYnB6DI4FNUACNMACWkAPGAHzAo9Bh1DWUNZQ9hicCyygBfSAETAv8Bh0KAE1QAJC2ULZQtlC2ULZQrmFcgvlFsotlFsot1BuodxCuYVyC+Ueyj2Ueyj3UO6h3EO5h3IP5R7KPZRHKI9QHqE8QnmE8gjlEcojlEcoj1CeoTxDeYbyDOUZyjOUZyjPUJ6hPC/lx9P3I6kk1aSH+ihOmmRJD4OhTj1pJM2gFY4XlaSaJEmaZEnpUdKjpEdJj5oeNT1qetT0qOlR06OmR02Pmh41PSQ9JD0kPSQ9JD0kPSQ9JD0kPSQ9ND00PTQ9ND00PTQ9ND00PTQ9ND0sPSw9LD0sPSw9LD0sPSw9LD0sPVp6tPRo6dHSo6VHS4+WHi09Wnq09Ojp0dOjp0dPj54ePT16evT06OnR02Okx0iPkR4jPUZ6jPQY6THSY6THSI+ZHjM9ZnrM9JjpMdNjpsdMj5keMzy8zOaiklSTJEmTLKkl9aSRlB4Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGScl4zzknFeMs5LxnnJOC8Z5yXjvGac14zzmnFeM85rxnnNOK8Z5zXjvGac14zzmnFeM85rxnnNOK8Z5zXjvGac14zzmnFeM85rxnnNOK8Z5zXjvGac14zzmnFeM85rxnnNOK8Z5zXjvGac14zzmnFeM85rxnnNOK8Z5zXjvGac14zzmnFeM85rxnnNOK8Z5zXjvGac14zzmnFeM85rxnnNOK8Z5zXjvGac14zzmnFeM85rxnnNOK8Z5zXjvGac14zzmnFeM85rxnnNOPeyodGdSlJNkiRNsqSW1JNG0gwa6THSY6SHx/lw0iRLakk9aSTNII/zk0pSTUqPmR4zPWZ6zPSY6THDw4uKLipJNUmSNMmSWlJPGknpUdKjpEdJj5IeJT1KepT0KOlR0qOkR02Pmh41PWp61PSo6VHTo6ZHTY+aHpIekh6SHpIekh6SHpIekh6SHpIemh6aHpoemh6aHpoemh6aHpoemh6WHpYelh6WHpYelh6WHpYeK86nlxKvOD9pxflFD48pTjVJkjTJklpSTxpJM2jF+UXp0dOjp0dPj54ePT16evT06Okx0mOkx0iPkR4jPUZ6jPQY6THSY6THTI+ZHjM9ZnrM9JjpMdNjpsdMjxkeXrh0UUmqSZKkSZbUknrSSEqPkh4lPUp6lPQo6VHSo6RHSY+SHiU9anrU9KjpUdOjpkdNj5oeNT1qetT0kPSQ9JD0kPSQ9JD0kPSQ9JD0kPTQ9ND00PTQ9ND00PTQ9ND00PTQ9LD0sPSw9LD0sPSw9LD0sPSw9LD0aOmRca4Z55pxrhnnmnGuGeeaca4Z55pxrhnnmnGuGeeaca4Z55pxrhnnmnGuGeeaca4Z55pxrhnnmnGuGeeaca4Z55pxrhnnmnGuGeeaca4Z55pxrhnnmnGuGeeaca4Z55pxbhnnlnFuGeeWcW4Z55ZxbhnnlnFuGeeWcW4Z55ZxbhnnlnFuGeeWcW4Z55ZxbhnnlnFuGeeWcW4Z55ZxbhnnlnFuGeeWcW4Z55ZxbhnnlnFuGeeWcW4Z55ZxbhnnlnFuGeeWcW4Z55ZxbhnnlnFuGeeWcW4Z55ZxbhnnlnFuGeeWcW4Z55ZxbhnnlnFuGeeWcW4Z55ZxbhnnlnFuGeeWcW4Z55ZxbhnnlnFuGeeWcW4Z55ZxbhnnlnFuGeeWcW4Z55ZxbhnnlnFuGeeWcW4Z55ZxbhnnlnFuGeeWcW4Z55ZxbhnnlnFuGeeWcW4Z55ZxbhnnlnFuGeeWcd4yzlvGecs4bxnnLeO8ZZy3jPOWcd4yzlvGecs4bxnnLeO8ZZy3jPOWcd4yzlvGecs4bxnnLeO8ZZy3jPOWcd4yzlvGecs4bxnnLeO8ZZy3jPOWcd4yzlvGecs4bxnnLeO8ZZy3jPOWcd4yzlvGecs4bxnnLeO8ZZy3jPOWcd4yzlvGecs4bxnnLeO8ZZx72dZsTpbUknrSSJpBHucnlaSaJEnp0dKjpUdLj5YeLT16evT06OnR06OnR0+Pnh49PXp6eJyvNYkXdF1UkmqSJGmSJbWknjSS0mOmx0yPmR4zPWZ6zPSY6THTY6bHDA8v8rqoJNUkSdIkS2pJPWkkpUdJj5IeJT1KepT0KOlR0qOkR0mPkh41PWp61PSo6VHTo6ZHTY+aHjU9anpIekh6SHpIekh6SHpIekh6SHpIemh6aHpoemh6aHpoemh6aHpoemh6WHpYelh6WHpYelh6WHpYelh6WHq09Gjp0dKjpUdLj5YeLT1aerT0aOnhcT6dSlJNkiRNsqSW1JNG0gwa6THSY6THSI+RHiM9RnqM9BjpMdJjpsdMj5keMz1mesz0mOkx02OmxwwPLyS7qCTVJEnSJEtqST1pJKVHSY+SHiU9SnqU9CjpUdKjpEdJj5IeNT1qetT0qOlR06OmR02Pmh41PWp6SHqsOH88iHSsoIC6UBwNbGAHBzgTz7fiTyxgBQXETXFT3BQ3xU1xM9wMN8PNcDPcDDfDzXAz3Ay3hlvDreHWcGu4Ndwabg23hlvDrePWceu4ddw6bh23jlvHrePWcRu4DdwGbgO3gdvAbeA2cBu4DdwmbhO3idvEbeI2cZu4TdwmbjPdvOItsIAVFFBBAxvYwQHiVnAruBXcCm4Ft4Jbwa3gVnAruFXcKm4Vt4pbxa3iVnGruFXcKm6Cm+AmuAlu5JJJLpnkkkkumeSSSS6Z5JJJLpnkkkkumeSSSS6Z5JJJLpnkkkkumeSSSS6Z5JJJLpnkkkkumeSSSS6Z5JJJLpnkkkkumeSSSS6Z5JJJLpnkkkkumeSSSS6Z5JJJLpnkkkkumeSSSS6Z5JJJLpnkkkkumeSSSS6Z5JJJLpnkkkkumeSSSS6Z5JJJLpnkkkkumeSSSS6Z5JJJLpnkkkkumeSSmbmkHplL6pG5pB6ZS+qRuaQemUvqkbmkHplL6pG5pB6ZS+px4FZwK7gV3ApuBbeCW8Gt4FZwK7hV3CpuFbeKW8Wt4lZxq7hV3CpugpvgJrgJboKb4Ca4CW6Cm+CmuCluipviprgpboqb4qa4KW6Gm+FmuBluhpvhZrgZboab4dZwa7g13BpuDbeGW8Ot4dZwa7h13DpuHbeOW8et49Zx67h13DpuA7eB28Bt4DZwG7gN3AZuA7eB28Rt4jZxm7hN3CZuE7eJ28SNXFLIJYVcUsgl5cwlzVFBAxvYwQHOxDOXnFjACuJ25pLqaGADOzjAmXjmkhMLWEEBcau4VdwqbhW3ipvgJrgJboKb4Ca4CW6Cm+AmuCluipviprgpboqb4qa4KW6Km+FmuBluhpvhZrgZboab4Wa4Ndwabg23hlvDreHWcDtzyXQc4Ew8c8mJBayggAoa2EDcOm4dN88lRR0LWMHlVg9HBS3QC+/W2WjVC+8eM9vR/704NrCDA5yJHiEXFrCCAiqIW8Wt4lZxq7gJboKb4Ca4CW6Cm+AmuAlugpviprgpboqb4qa4KW6Km+KmuBluhpvhZrgZboab4Wa4GW6GW8Ot4dZwa7g13BpuDbeGm0dIbY4z0SPkwgJWUEB3644GNrCDA5yJHiEXFrCCAuJ2RshwbKC7TccBzkT/tb2wgBUUcLn5MWVetRfYwOUm6jjAGeile4/c7ljACgqooIHuNhw7OMCZ6L+2FxawggIqaCBunktkOg5wJnrW8JPavHav+PlpXqj3+FlyXAp6/gcDnImeHy4sYAVdtzkqaGADOzjAmej54cICVhA3zw/qA+D54cLlZn6Znh8uHOBM9PxwYQGX2zo9qXoNX6CCBjawgwOciZ4fLiwgbudJmz4s51mbJ7qbODawgwN0N+8Hzw8XFrCCAirobj65PD9c2MEBzkTPDxcWsIICKoib5wfzSev54cIBuptPOc8PFxawgUthnRtSvWCvrMNAqtfpPe5NHAVU0MAGuthwHOBM9JC+sIAVdLfpqKCBDezgAGei3x5cWMAK4ua3B937wW8PLmzgclunhFSv4AuciR7+3bvPw797l3j49+YooIIGNrAneqB3b6QH+oUVFFBBSzzPt62ODVwWw9vr8TbMsYAVFFBBS/S4GN5ej4sLG9jBAc5Ej4sLC1hBAXEbuA3cBm4Dt4Gb/0KuyvnqFW9l+OzzuJg+3B4XFw5wKcw13F72FljACgqooOuuAfCitrLqJ6pXtZVVUFC9rC1QQFcwRwMb2MEBzkQPhtkdC+huw1FABV13TSMvXntsrTkW0BXUUdY/9cv0s2gvNLCBfaH3g59Je+FM9HNpfQ3vdWyBFcRNcVPcFDc/pfbCkWOhjKYxmsZoGqNpjKbH0DmE56nQ3pzzXGgfrMZoNkbTY+gci8ZoNkazMZqN0WyMpv9mnePWGU3/zToHqzOandH0KDyH0E+EPsdtMJoeb+cQ+rnQZ0cN+nfQv4P+9fOhz8EajOZgNP2U6HOwJqM5Gc2J28Rt4jZxmzmaXv312L1zNLCB3pzuOMCZ6Ac1X1jACgqooIHLrXhz/NjmCwc4Ez1wLizgcvOVsBeEBSpooLs1xw4O0N28ZR44FxbQ3YajgAoa6G7Tcen6wt1rwQILWMGlW6vj0vU1mReEPZaajg3s4ADdza/Yj3i+sIAVdDe/Nj9l/Tz02c9ZF2+On7R+Hfy8LOT8azPRz1u/sIAVFFDB5Sbe6372+oXu5s3x89cvnIkebxcWsIICKmhgA3EbuA3cJm4Tt4nbxG3iNnGbuE3c/IxoX1F5xdiJXjIWWMAKCqig607HAc5EP6n9wgJWUEAFDWwgbgW3glvFreJWcau4VdwqbhW3ilvFreImuAlugpvgJrgJboKb4Ca4CW6Km+KmuCluipviprgpboqb4ma4GW6Gm+FmuBluhpvhZrgZbg23hlvDreHWcGu4Ndwabg23hlvHrePWceu4ddw6bh23jlvHreM2cBu4DdwGbgO3gdvAbeA2cBu4TdwmbhO3idvEbeI2cZu4Tdxmuo3jAAtYQQEVNLCBHRwgbuSSQS4Z5JJBLhnkkkEuGeSSQS4Z5JJBLhnkEq9KeyxLHSsooEVGHGcCObGDA8ykO+QAC1hBARXETXAT3AQ3wU1xU9wUN8VNcVPcFDfFTXFT3Aw3w81wM9wMN8PNcDPcDDfDreHWcGu4Ndwabg23hlvDreHWcOu4ddw6bh23jlvHrePWceu4ddwGbgO3gdvAbeA2cBu4DdwGbgO3idvEbeI2cZu4TdwmbhM3bjsGtx2T247JbcfktmNy2zG57ZiHgQ3s4ABxK7gV3ApuBbeCW8Gt4FZwK7gV3CpuFbeKW8Wt4kYumeSSSS6Z5JJJLpnkEi9Kq+ujFtWL0gIFXG6+r+xFaYENXG6+4+1FaYEz0XPJhQWsoLtNRwUNdDdvr+eSCwc4Ez2XXFjA5eabyV6UFqjgcvN9ZS9KC+zgSPSs4fvKXmj22FlwNLCBruAddX4C6sSZeH4GqjsWsIICuptf0PlBqBMb2BM9E/gGsRePVd/09eKxQAO9f93CY/7CAc5Ej/kLC1hBd/NO9Zi/0MAGdnCA80Lx4rHAAlZQQAUNbGAHB+hu1T9747riKKCCBjawgwOciR7dFxYQt4pbxa3iVnGruFXcKm6Cm+AmuAlugpvgJrgJboKb4Ka4KW6Km+KmuCluipviprgpboab4Wa4GW6Gm+FmuBluhpvh1nBruDXcGm4Nt4Zbw63h1nBruHXcOm4dt45bx63j1nHruHXcOm4Dt4HbwG3gNnAbuA3cBm4Dt4HbxG3iNnGbuE3cJm4Tt4nbxG2mWzkOsIAVFFBBAxvYwQHiVnAruJFLCrmkkEsKuaSQSwq5pJBLCrmknLlEHQtYQQEVNLCBHRzgTDxzSXcsYAXdzRwVNLCBHRzgTDxzyYkFrCBuituZS6ZjA3vimTVOdIXhqOBS6N6/nh8u7OAAZ6LnhwtXe7t3ieeHCwVU0N3c2PPDhR10N2+v54cTPT9cuNzG4VhBARVcbuscVDk/Hjm8vZ4Jho+xZ4ILC1hB122OrutX4ZlgeHM8E0x380xw4QBnomeC6c3xTHBhBQVcbtPb6+E/vTke/tNH3sN/enNW+Mt6wCF+tFxgASsooIIGtoXFsYMzptH5UckLC1hBARU0sIEdHCBuFbeKW8Wt4lb9gsTRwAb6BanjAGeiHGABKyigggY2EDfBTdxtzSgvfAssYAUFVNDABnZwgLgZboab4Wa4mbuZo49QdRxg3jmen6i8sIAVFFBBAxuIW8Ot4dZx67h13DpuHbeOW8et49Zx67gN3AZuA7eB28Bt4DZwG7gN3AZuE7eJ28Rt4jZxm7hN3CZuE7eZbucnLy8sYAUFVNDABnZwgLgV3ApuBbeCW8Gt4FZwK7gV3ApuFbeKW8Wt4lZxq7hV3CpuFbeKm+AmuAlugpvgJrgJboKb4Ca4KW6Km+KmuCluipviprgpboqb4Wa4GW6Gm+FmuBlu5BIhlwi5RMglQi4RcomQS4RcIuQSIZcIuUTIJUIuEXKJkEuEXCLkEiGXCLlEyCVCLhFyiZBLhFwi5BIhlwi5RMglQi4RcomQS4RcIuQSIZcIuUTIJUIuEXKJkEuEXCLkEiGXCLlEySVKLlFyiZJLlFyi5BIllyi5RMklSi5RcomSS5RcouQSJZcouUTJJUouUXKJkkuUXKLkEiWXKLlEySVKLlFyiZJLlFyi5BIllyi5RMklSi5RcomSS5RcouQSJZcouUTJJUouUXKJkkuUXKLkEiWXKLlEySVKLlFyiZJLlFyi5BIllyi5RMklSi5RcomSS5Rc4qV+sqpZxEv9AgVU0MAGdnCAM9E/p30hbh23jlvHrePWceu4ddw6bgM3zyVrs1O8hDDQ3YajggY2sIMDnIkrlzx+wB0LWMHltmp9xM/XCzTQ3bxls4MD9HFbYnbmkhMLWEEBFTSwgR0ciSV2scWLEAP9KqqjggY2sIMDnInV+0wdC1hBdzNHBQ10N2+Zr1suHKDvpLuYZ40LC1hBARU0sIEdHIm+QlklWOKliYEC+lV0RwMb6FcxHAfofbYmgZcmBhZwuVUfN1+hXKiggQ3s4ACX23oTS7yMMbCAFRRQQa+Mc7GzYNGHu0U5p3jBYmABKyigggZ6fZ+Psd9VXDjAmTiitFau4sYTKyigggY2sIMjcTLyk5GfjPxk5CcjPxn5ychPRn7myPuJe4EFzJH3Q/cCFTSwgR0cYI68n70XWMAKCqhgjnwrOfJXraVjPcACVlBABQ3MkT9rLS8cYI6811qeI+S1loEVFFBBAxvYwRx5r6qU6i3zmL9QQAV9LM6/1sAODnBehejitZaBBayggAoa2MCeeEa3OhawggIqaGADOzjAmdhx67h13DpuHTf/9a/eXv/1v7CDA5yJ/ut/obt5tIwKCqiggQ3s4ABnov/6X4ibZwLxYPBMcKGCy018angmWCWl4gWWgQOcgV5gGVjACgqooLs1xwa6W3cc4Ez0THDhcluvwomXXQYKqKCBDezgAJfbKn8SL7sMdLfqWEEBFTTQLcRxgDPRNzAvLKBbeJf4BuaFChrYwA66m3eUb2Ce6BuYFxawggIqaGADO4ib3x6sQgbxWsvAArrbdBRQweVm3ut+e2Dek3574Pd9XmsZOBM9gVxYwAr6owynltSTRtIMOp9iLPII9vsqL3YMrKDfrzlpkiW1pJ40gjxK7cTVDeYj6PF4/sOW1JO8x53mRV61eFFJqkmS5Cbd0UB3GY4dHIkecL5a8SpE8Vtzr0IM9EB2WgJesuBFiIEz0SPrwgLWq0vOGsSTNMmSWlJ0p9ccnp3o1YVnJ3p1ofia0qsLA1dD/RGlVxcGeku9h1bIqNOKmItKUk2SJE1yRW+IB0DzhqwA8ADxUsGLJGn97fO/s6SW1JNG0gzyee8POL1EMHCNuz8w9BLBQAW9mT6a/mPYfQj9x/DC1U6/DP8tPDvGfwsvNLCBS7b7aPpv4YUz0SPp7HCPpAsriNvAbeA2cBu4DdwGbhO3idvEbeI2cZu4Tdw8+i4cMdVnTmov+gssYAUl0X+n/HGsV+QFGugPEZ160kiaQX4Pe1JJqkmSpEmWlB41PWp61PSQ9PDfqPVFVfESvEAB/WK6o4GrE9dbp+IleIEDnIn+G3VhASu43Px5sZfgBRrobsOxgwNcbv6Y2UvwAgvot2ZOkqRJltSSepDH4zjRW+rD6ZHnj6i9+C6wgR1cLfVn2F58d6FH6YUFrKBvITm5mfe8R+mFDXQzH1GP0gtnokepP9j2Q94Cl5mvorxOL1DBlb28CStIL+pJI2kGrQC9yBW9szzm/AG6V92JP0D3qrvAeaF61V2gt7Q7VlBABQ1cTRWnnjSSVlPronXveVFJqkmSpEluMhwb2BP9Z/BCb+Z0VHB1aHFqST3JO/TEmSgHuBp6+HWscA1cTV0Pt9Vr6gJ97LwjxQevOfroeT+tcNW1f6heU3eh/0BeWMAKCqiggX5l3l71S/O+U3fz9qq7eSP9x7N4I/3X80IFDWxgB0diczG/zCagggY2sIMj0X8ui3dU97/mo9ob2MEBPq7N/CpXyF1UkmqSJGmSJbWknjSS0mOmx0yPmR4zPWZ6zPSY6THTY6bHDA8vaLuoJNUkSdIkS1oqayZ4odpFJakmSZImWVJL6kkjKT1qetT0qOlR06OmR02Pmh41PWp61PSQ9JD0kPSQ9JD0kPTwwFh3t+oFYlrPf7omzzoSSP3EMF0LFPWaLl2/0eo1XYECrmktrrCmtbnAmtUX9aSRNIPWb89FJakmSZImpUdPjzXXdf1IqldsqfiY+8z2JvrMPsmSWlJPGkkzyGf2SSWpJqXHTI+ZHjM9ZnrM9Jjh4bVaFz081ppHvVLrIkl6eKy7PPUyrYtakvfCymZeg6VrPadeg6VrE0S9BivQwAZ2cIAzcU3swAJWELeKW8XNf23WPot6DVbgAGei/95cWMAKCqiggbgJboKb4Ka4KW7r92bd0KuXYF2kSZbUknqQueJw9Jb6EK/flOZ9sX5SLmpJ62/7wK3fk4tm0LoFvKgk1aR14f4D7iVT6vcKXjJ1YT9AX3R6M/0H5kIBFTSwgR0c4EwcB4jbwG24mzd9KGigu/k4+M3ehe7m3eq3e+rd6vd7nt68ZCqwgsvNfw28ZCpwuZkHzYpWNTde4drcYYXrRfMir5e6qCTVJFdsjqulaxNEvQBKPca9ACqwgKulHuZeABWooIEN9OX6ukAvatK1D6Fe1KQ+Cb2oKdDABnZwgDPRw/DCArqbOgqooLuZYwM7OEB38z7zMLywgA+37le5wvAiTXpYde+OFYYX9aSRNINWaF70MOneaesW8CJJ8uvxETw3UE5sYE9sB+g94tPBfx4vdAUfbb/ru7CDq6XeIStoT1oxe1FJqkmSpEmW1JJ6Unr09BjpMdJjpMdIj5EeIz1Geoz0GOkx0mOmx0yPmR4zPTw2z6Hx2Lywgau/ztFZwRk4A70ESdeKXr0EKdB3x7qjgAoa2EB3G44DdLc1Zl6CpGt7QL0ESdc6X70EKVDA5Ta8kR7NFzZwdaE7rN/fi2bQ+vW9qCTVJFcUx9XS4ZftcbzOq1IvKAosYAW9pX7ZHscXGtjADq6mel/Eh7TVy4l0+D/0KJ5+/b54u3B5TW+tL958oe3lRIHj/PCtnp/VdKk8p1Y1z6lVzXNq1UuBdB09pF4KFDgTPUYvLGAFBfR2ubFH7oUNHNEw/xqPU3yNR/U8mdYv9jyZ9kQB1x3j2W6/qb2wgeum0dfQXvwTuG4bfb3txT+BBXS3EwVU0MAGdnCAMzFPuVbNU65VJ24Tt4nbxG3iNnGbuOUp12p5yrVannKtlqdcq+WJ+Wp5Yr5anpivXvxjvu/gxT+BA/SeXGPt55IFFnDd5/sehZcEBSpooLsNR3ebjn5tp9hMPE+5PtEXb4djBQVU0MAGdnCAM/FcKZ6Im+AmuJ2nXHvvnKdcn9jADg5wJp6nXJ9YwAoKiJvipn5txbGDA5yJdoAFrKCAChrobtWxgyOxFdAV1NEVvL2+1r2wgwP09vpw+3r3wgJWUEAFDWxgBweI28Bt4DZwG7gN3HyR7DtOXhIU6G4+wX2dfOFMPPODT/szP5xYQQEVNNB1F3rxj616HfXiH/MtCi/+CVTQwNXeVVqiXvwTOMCZ6DF/obs1xwoKqKCBDXS37jjAmeh7QhcWsIICKmhgA3HzmF8lIOolQRd6zF/om2Xekx7zvlXjJUGBvl9WHQ30XTnvHengAGeiHmABKyigggbiprgpboqb4Wa4GW6Gm+FmuBluhpvhZrg13BpuDbeGW8Ot4dZwa7g13BpuHbeOW8et49Zx67h13Dpunh98b6idG8OO587wiQVcEXuGXp5sry1PtteWJ9trO8/tPrGDA5yJ57ndJ/pVmKO312Po3P490dvrE/zcAF7Yzx3gEwtYQQEVdN0VDF7mc3aJl/mcV+xlPoECKuj9Ox0b2MEB5mh6mU9gASsooIIGtmyDx/yFA8zR9Iqfqw1nzJ9YQdwEN8GNmO/EfCfmOzHfNedOV3pS6UmlJ8+Y9zYoPan0JDHfiflOzHdivhPznZjvxHwn5vsZ894GoyeNnjR60uhJj/n18FC94idwufn2mp+uFqiggctNT7EODnAmesxfWMAKCuhu5mggE9wDfdVvqB+pdqEH+oUFZGqcT4FOZLAGgzUYrMG0H0z7wWBNBmsyWJPBmgzWZLAmE3EyEWdODS9DMt8D9DqkwAp6Rw1H76jpaGADOzjAmeip4sICVnDprkPh1QuUAjs4wKXr+5BeoRRYwAr6jYD/tfNG4EQDG9jBAc7E80bgRL/Zq44KGuhX4V3t4X+hX4U5zkQP/wv9KppjBQVcbr4N6mejBTawgwOciR7+FxawggLitgLd9xC8vumiGeQf5/We8Y/znlST/NnTiQoa6I+ffMTOZ1wnDnBtCngX+qbASSWpJkmSJllSS+pJIyk9RnqM9BjpMdJjpMdIj5EeIz1Geoz0mOkx02Omx0wPD2rfifaCp8AGeoep4wD9seBS8IqnwAL6k8HmKKC7maOBDXS34TjA5eZbin7MWeBy811lP+YsUMDVf+7rn+09qSX1pJE0gzzIfZPSa6Ws+1V5OPsmpVdLBQ5wJno4dxfz3/gLKyiggu42HRvYwQHORA/yC5ebb3N6xVSggAoa2MAODnAmepBfiJsHuW+feslUoILu5j3pv/G+AellU4Hu5jPBf+NP9N/44b3jv/EXVlBABQ1sYAcHOBM7bh23jlvHrePWceu4ddw6bh23gdvAbeA2cBu4DdwGbgO3gdvAbeI2cZu4TdwmbhO3idvEzTODbzF7WZajeVlWYAHXmmXtzNj5Jc0LFTSwgR0c4Ez07xVc6FcxHL2907GD/mT/cJyJ/nN/YQErKKCCXjBQFkr0r3nZ1XXFHvMXCqiglyFUxwZ2cIAzLRQ3LWAFBVTQwAb2bI4OkNE0RtO4No/59VNiXowV6L3jY+Exf2EDO+jXdorNRI/5CwtYQQEVNNDdfBJ4zF84c7A80KfPBw/0CysooOYAdAarM1idweoMlgf6iR7oFzJYg8EaDNZgsAaDNRisDHQ7MtDtGEyN6SUpPj2ngAqugobD+2GFdDu8Zf4w/cIBzkAv7AosYAUFVNB1xXGAM7EcoOuqYwUFVDB+mu0s+LqwgwOciR7oFxawggK285GZeZHXRSNp3aKuXvQir4tKkre/Owqo4KP967fT/Nixi3qSd9VwnIl6gOV8iGd+5thFkqRJltSSetJImkEr2C9KD0sPSw9LD0sPSw9LD0sPS4+WHi09Wnq09Gjp0XzSese3BnZwXM8yzQvXLvRaGv858NK1wArGE07z6rVAL9zykegN7OC6KB/HFecnrTC/qCTVJElyRZ8lK2xb8ThZv8+tuPv6fQ6soIBeYWaOBjawgwN0t5UkvJYtsIBrlTCcJEmTLKkl9aSRNINWaF9UktKjpEdJj5IeJT1KepT0KOlR06P6hXTHCgqooIEN7OAAV7etxbl5rVtgAd3N2+CxfqGCy229dmte6xbYEz2wL/TXUJwsyf/SiR0c4Ey0AyygF8h5a01ABQ30Irni2MEBLjfx1nqp24UFdDdxFFBBA91NHd3N29td17u/F7CCArrudFy66lfhcaveHI9bdbcVt4EzcUVu4HJTb86K3UABFXQ3b+9wC2/OcAsfdw9v8+Z4eJtbeHhfWEEBFTSwgV5+6G3w8HY8C958Ep0VbxdWUEAFDXSL5tjBAfoFrcv0+rjAAlZQQAUNbGAHB4hbxc3DfFXjmdfSBQqooIEN7OAAZ6KH+YW4CW6Cm+AmuHmYr/cmzavm2tqMMq+aCyxgBZfu2pcyr5sLNLCBnqx83DwTXJi/KF49F1jACgqooIFLt504Ez3mLyygX4U4Cqigge2qfLKzru7CAc7E8xf8xAJWUEDvnRM7OMCZ6DF/YQG9veboCj7tPaSbzz4P6RM9pC90BR9uD+kLvR98PnhIX2jgam/3kfeQvnCAM9Dr5QILWMHltna/zOvlAg1sYAcHOK8iSPPKuLMfvDIuUEHXrY4N7OAAZ6LHsd9de3VcYAUF9KtwN4/jCxvobt1xgDPR47j7BXkcX1hBd1NHd5uOy83vw72WrvkdvdfSBY5Ej+Ph1+ZxfKGACrquX5tHrE8uP3DrQo/YCwsoYLvqiO0sortwgPOqLraziO7CAlZQQAUNbGBP9J9mjzcvngusoIB+8T5Y/tN8YQM7GGXY5sVzF3p5+oUFrKCAChrYQC9E947yQvQL/Sq8fz14LxRQQb8KF/PgvbCDA5yBdtain+hF9tWxggIqaGADOzjAmVgO0K9iOCpoYAP9KqbjAGeiB++F/u7FiRUUUEEDG9jBkehh6ntrXvoWKKCCBjbQl4ROI2kGnStop5JUk/wH0UmTLKkl9aQR5AE7T/Q2ev/7j+mFDfRrN8cBzkSP3QsLWEEBFTSwgbg13BpuHbeOW8et49Zx89j19bIXtgXORP+JvdB7Rx0rKKCCBjawgwN0N2+O/xxfWMAKultzVNDABvYcLI/oC2egn4AVWMAKCqigga7bHWei31Zf6LrD0XWno4AKGugvVxyOHRzgTPRadd9783K3vko7zcvdAgVU0MAGdnCAM1EOEDdxN79MEVBBAxvYwQHORD3A5eY7Lu18RcWv+HxH5UQFDWxgBwc4E/1VlQsLiJu/reLbLF7uFmhgAzs4wJnYDrCA7uaToAmooIEN7OAAZ6K/3OIrRC93C6yggAoa2MAO+g6t0wzyvfKTSlJNkiRX9J71t1fWAV3mxWuBnsn8P/DXyy4UUEEDG9jBAc5AL2nr6wVd85K27lstXtIWaGADOzjAmVj8KrpjASsooLsNRwMb2MEBzkTPARe623Rcbr4f5OVvgQoa2MAOjhgLL3+7UA6wgBUUUEEDGziv8xPsPNrqwgL6VVRHAf0qXMGj/cIG+lX4wHq0XzgTPdp998kL3QIrKKCCy823p7zQLbCDA5yJHu0XFrCCrlscx3V4hHmZWvfbQC9TCxRwtcy3vbxMLdBb5v3gsXrhAL1l3g/+StqFBayggAoa6G4+7f3NtAsHOBM9ui8sYM0rnq7rXT0b2MEBuu6aJV6xFljACsp1IImdh2ddaGADOzjAmehn2F3ovTMdFTSwgesqfC/RK9YCZ6LH8YXlOnjGvGItUEAFDWxgB0eiR+wqfzP/mmeggOsq1oFt5hVrgQ30qzjFBuhX4V3iv9oXFtDdzFFABQ1sYAcH6G5r7njFWmABKyiggnYdk2VesubHfZnXrPm5U3YeynVhASsooIIGtuuMKruO6jpxgDPRjwbyDYLzAK8LKyigggY2sIMj8Tz1zi/zfOW0OwqooIEN7OAAfSw8yM5XT08sYAXXVZwDkOfk2XlW14UN7OAAZ+B5WNeFBfSrmI4GNnBdhS8WvUgtcCb6b7evCL1ILXBdhW+feJFaoILLzUfTy9QCOzjAmegxf2EB3U0dBVTQwAZ20EfeL0hy5KfkyE8RUEEDG9jBAebITz3AAlYwR/488utCAxvYwQEy8sbIGyPvz6E9jr26LFBATfRp7xu/XpcVaGADOzhAH0K/Np/2FxawggIqaGADOzjAcGtel9XX5nPzuqzACi63ldqa12UFGrjc1mZu87qsvvZqm9dl9bWR2rwuq6+CxuZ1WYEFrKCACi634RYeDBd2cIAz8Xzx+sQCVlBABXGruFXcKm4VN8FNcBPcBDfBTXAT3AQ3wU1w82AY3r/+A3ihJvqv09pIbV52FegW3ql+l3nhAGei32VeWMAKCuhu3dHdfHL5mvLCDg5wJvqa8sICVlBABXHruHXcOm4dt4GbB+/wue5hOn1WDwZgMACDAfAwXVv+zc/OCqyggAoa6G4ndtDriU6LGei1VoFLd22iNf/SY193js2rqgK9vYfjjGHxqqrAAlbQdc1RQQNz7pTSwQHiVnGruFXcztBz9LiYJypoiT6r1/qtefVSYAP94qfjAGeilzAd3iVew3Thyuur7q2dVUwXKuglWd7rXsh0YQcHOBO9mOnCArqbj5v/ilyooIEN7ODIMT5DxK/NQ+Qcoc4QdoawM4QeIhd2cIAZ/mUcYAErKBEtflJXoIEN7OAAZ6KH04UF9P71ls0Z6LVKgQWsoIAKGtjADg4Qt4Jbwa3gVnAruBXcCm7F3dRxgDOxHmABKyigggY2ELeKW8VNcBPcBDfBTXAT3AQ3wU1wE9wUN8VNcVPcFDfFTXFT3BQ3xc1wM9wMN8PNcDPcDDfDzXAz3BpuDbeGW8Ot4dZwa7g13BpuDbeOW8et49Zx67h13DpuHbeOW8dt4DZwG7gN3AZuA7eB28Bt4DZwm7hN3CZuE7eJ28Rt4jZxm7jNdJPjAAtYQQEVNLCBHRwgbgW3glvBreBWcCu4FdzIJUIuEXKJkEuEXCLkEiGXCLlEyCVCLhFyiZBLhFwi5BIhlwi5RMglQi4RcomQS4RcIuQSIZcIuUTIJUIuEXKJkEuEXCLkEiGXCLlEyCVCLhFyiZBLhFwi5BIhlwi5RMglQi4RcomQS4RcIuQSIZcIuUTIJUIuEXKJkEuEXCLkEiGXCLlEyCVCLhFyiZBLhFwi5BIhlwi5RMglQi4RcomQS4RcIuQSIZcIuUTIJUIuEXKJkEuEXCLkEiGXCLlEyCVy5pLm6G7rPlXPXHJiASsooIIGNrCDA8TNc8kqPm9+gllgBd1tOCpo4HJbhX3N67QCB+hvNKwbF6/TCixgBQVU0MAGdnCAuAlugpvgJrgJboKb4Ca4CW6Cm+KmuCluipviprgpboqb4qa4GW6Gm+FmuBluhpvhZrgZboZbw63h1nBruDXcGm4Nt4Zbw63h1nHruHXcOm4dt45bx63j1nHruA3cBm4Dt4HbwG3gNnAbuA3cBm4Tt4nbxG3iNnGbuE3cJm4Tt5luXiAWWMAKCphx7EVfYxU2NDvzw4kFrKCAChrYwA4OELeKW8Wt4lZxq7hV3CpuFbeKW8VNcBPcBDfBTXAT3AQ3wU1wE9wUN8VNcVPcFDfFTXFT3BQ3xc1wM9wMN8PNcDPcDDfDzXAz3BpuDbeGW8Ot4dZwa7g13BpuDbeOW8et49Zx67h13DpuHbeOW8dt4DZwG7gN3AZuA7eB28Bt4DZwm7hN3CZuE7eJ28Rt4jZxm7jNdGvHARawgu7WHBU0sIEdHOBMPHPJdCxgBd2tOypo4Iwc1c5UcWIBKyiggkus+rV5qriwg6vpqwKoeY3ZqN50TxUXFrCCAipoYAM7OEDcPFVU7xJPFRdWUEAFDWxgBweYPxKNW4nGrYTXmA3xLvFUcaGCBjawgwOciZ4qLiwgbg23hlvDreHWcGu4Ndw6bh03zw/il+n54UIDG9jBAbqFD5bnhwsLWEEBFTSwgR0cIG6eH8SDwfPDhRV0Nx9jzw8XLjf1CPD8cOFyU5/rnh8uXG6rJqf5mWuBBayggAoa2MAODhC3glvBreBWcCu4FdwKbgW3glvBreJWcau4VdwqbhW3ilvFreJWcRPcBDfBTXAT3AQ3wU1wE9wEN8VNcVPcFDfF7Xyr2xwb2MEButuacv18tfvEAlZQQAUNbGAHB4hbw63h1nBruDXcGm4Nt4abp4pVmNW8mG2s+qjmxWyBS2FVQjUvZgvs4ABnoueHCwvoYsWRIfRAP/vXA/3CAlZwNXKVPzU/Ry3QwAYyYSZuBPog0AeBPgj0QaCPM9DN0cAGdnBEG7xW7UIP9AtxI9AHgT4I9EGgDwJ9EOij5PQcJXty1AMsYM02VAEVxI1AHwT6INAHgT4I9EGgD8lxG2egn0hPCj0pOW5e1xZITxLog0AfBPog0AeBPgj0oVybcm0E+iDQh9KTRk8aPemBvirumte1BXpPuq4H+oUN7KBfW3eciR7oFxawggIqaKC7DccOzgg9L3EbqwSreYlbYAUFZGp0AxmszmB1Bqsz7QfTfjBYg8EaDNZgsAaDNRiswUQkgYzB1PBUsYqtmpe4BSq4dJv3g6eK5i3zVHHhAGegl7gFFrCCAmrimnJznanRvKwqsIMPt+mrDi+runBNucACVlBABQ1sYAdxM9yaK3h7m/+34jjzn/phfutIqOZHeU2/V/ajvAIFVNDABnbQm9McZ6If63ehu3VHdxuO7ubd50f7rYMjmpeMXU33w/0u5IL8B2W6rs+SCwVU0MAGdnCA88LuFWGB7tYd3W04Cqigge42HTs4wJnoPygXFrCCAvqUOxb6IR+rSKN7PddcJRbd67nmqpXoXs8VaGADZ6K4gjoK6Arm6MbeJer/rXeJCqigu3k/nNFyYgdH6nq0nP/Uo+XCAlZQ8oo9Wi40sIFc23lapl/QeVzmiVyxT/Dqf80nePWe9Al+4QBnok/wC5dudbdzKruuT+ULG9jBAbqud4mfVXlhASsooIIGupsP1uzgAGegl1UFFrCCArpFd2xgBwc4E/3ImwsLWEEBFcSt4OYRsF7N6V53FTgTPS4uLGAFJXrdP2MYaGAOlh9ZNdemQ/dqrLle4+l+OlVgBwe4mrNerOl+PlVgASsooIIGNtDdiuMAZ6LH0IUFrKCAltfmgbNe4OpexHWhB855QR44F1ZQQG+691kzsIHedHMc4EyFjlvHrePWcTuPmz2RYekMS2dYOsPScRtY+A9K8wl+3nb4PDtvO7x3ztuOEw1sYAcHOAPPcq0LC1hBAZfbqivuZ7nWhQ3s4ABnov+gXFjACgqIW8Gt4OYrlFUo3c9yrQtnoq9QLixgBQVU0MAG4lZx87XIegekn8VWq9S6n8VWFw5wJvr64sICVlBABQ10C3V0C3Ocib6ouLCAbtEcBVTQwAZ2cIAz0RcVFxYQt4Zbw63h1nBruPn24zoepJ8VVif6oqL7APjyofv09OXDhQ1cYsMnjC8fLpyJvny4sIAVFFBBAxuYFmc50Som7mc50apM7mc50YUCKmig64qjt3cN91k4dGEBKyig65qjgQ3s4ABnoq+7L3S35lhBARU0sIEdHIkeDKvauJ/VQhdWUEAFDWxgBwc4Ew03w83jYpWc97Na6EIFDWxgB0f2ujFYjcFqDJZP8FUg3M8Cn+kTxmf1hRUU0G/ofWr4XL+wgR0c4Ez0uX5hAd3NZ6rP9QsVNLCBHRyJvsF2Xtu5HvL5e658TrS8oHPlc2IHB+hNX3121u9cWEBvujkKqKFw1u9c2MAODnAmlgMsYAUFxK2cFv/93//021///q9/+o+//P1v//If//jzn3/75//Kf/Dvv/3z//iv3/7tT//489/+47d//tt//vWv//Tb//Onv/6n/0f//m9/+pv/+R9/+sfj3z5E//y3//348yH4f/7y1z8v+u9/4m8fr//q425zvWPsf/3B01LicTf9g0h5LeLfjHUJbS0Fuv7w9+vrvy/rBTX/+zIrDej1/lWU9fzluopa58ur0Ncia96dCkXy76vc/evih2idV/FYndGC2n6QaBsJSYXngRj1roAfZOoCj4efKfBI9T8IjE1H+rdtz16wMl5KzF0/rLXWeRWPxyIvJXZd6T/KV0c8DcbPXVk2c/Jxf1Yvjfr49UHDfoyNUj8dj92F+PbQpSD19YVsNMxP8HSNdSpKarQfW7F2sl6P6pw5qlZfSmxmlr/F5wqPffOnED1uKwyNy3hse75WuHsZ/fVl7DqzH5Ht1ukcryTqJtdU/9LrObFMy0uJ8mlX1M3MfGTqnN3lKdnoT42QTSPW0uRsxOyvG7FLmLVGTzyQWfG40bp/ISTux/qtvLyQzcSqI4ZUjpcC+wibLSfFU7r5eUTH50lvp7G+aR8/o4/FwstkIcc2f9cMkafeeKxLf9TYzE7/EsD5I3LYk0K7PzH8C+/nxLCnKPt5Yshmek7L34DHMwJ643H3+qPGph21Hxklj/U4A/uFMZnRGetDv6/HZDM/iz9nO8fk8TwBDfnx1mQFwkuNde5wDqzaeFL5cYbJ+IbZMT+dHftraUfLZjSbL69Fd7/vpZMBx3xqyfxRo346P7az9GYK3GrcjBa1z6NF28e9sR3Zqdw+zud7pp9HdpdLSw+RBz6N7M8ac/cjLRFzVZ9+Yx9r1B80bJNL1Y+svZY1TzPsZ41tO/zDctfNwty0YzNL15uAeVf/FHM/a2xHZr2mGCOzXoN5OTKmu5bkDFnvlb3W2MzUx5o5RuaxUK5vaawPesQPdnmKui9di0j2qpZNf4zdjYPOvDVvb2r0zh1pr+9pDO5qx/FaYz9D/FzFa4Y8bvdfqrT6h/46rOc60Y7HbvjrHNI2o/t4tGYs5x9PAl5ks2Z/aD7svsl7Xcu01yPT+h/ap0Nzh+XB8/XdQ9vlMukjV9RPub3Kj0uGfnzap9tWaO5xPJ55HC9bsb0j67k38Hg2Nl7ekXXZZXaZmdl/iNufNHYLj2q5tK/zOeLqfY3RMhfOH/LYTxrt8/vC/vEs3ffoyLnRanlvVPxjJZfGZlTGbg31eMye96eP58vzxSzdtyM3CeSo9roddXc3pYzK877oTzN9bNoh/kHUa136Qzvua6hqroGsHq817PMZNtofOcOEvW45xntxL0duQj2ex/XXIzv/2Bn2eAIY2fjxnO11tMzdGkpzD+iRzp6upY4fNTaztI/Mx49fu/qWxjxqtGMW2Wjo5zNs2qczbB+zbFGO5/2Cn2Jl9l0ezLu5x8NqeamxnR2S22qy1oBvzXQZOcP0+ZHKTxrlOD7dQt82Q3NNKe15I/93zdiNy9Py5/GE+mmGzS+IzEyE9RjHRmS3N9ZyN2i2/vSE5ac7sXLslvs9rmY+3ag/nl/fv5jHPkn+Uj4eXm4upn8edOUYn0bdNo+ZKr/6+jJ/lLL92c+f23o83Uj9/HRh99BJsk8fz45fP+Mo23Ep+Xih9ucdpZ+6tMhu+XMUlj9H0ZcbQvs5ooXfh7mZ8LunNuuDMXGDatZeP4jbPTy6PTj988EZ3zE481sGZ/vQwhp7Dy8fQ+lufyszkfan/a3fPZzcPb+Rg2f35YecOL4gwjpIHj95GxH9/CFntY+fcu4kbj7mvH0lm+ect7v0h4dJXxmXkqlZ6tzk1V88krpVUlB2z6TuPl/bX45/Ae8S2V6O7O53hfvd5zuJn9PZXiQ3/R6Rt8mJ8g1P9eXzx/ry+XN9+YYH+9sunaxDpr45LqNqZOahZb4W2T2ZeqzbcyO1H/Lypnc/V+fMh8FH3eRVlc9niOrHM2QncXOG3L6SN1Piox/z9+7QuenS8Q1dOj/v0vl5l44/+FfmeZZaee9X5vE3Z4qMzbjYd1RJfUNCtc8Tqn1DodQ3JFT7Q28w7WBMjrGpfmtl98xx8Jyub1Ly7rGUv+d5dsfxvI4ZX+qPTn+MN/v0XvlZ2T6W0qyeeKzP9LVG+3ym7x5L3a0I7B/P9NtXspnp2x71D0tFj7b3NKzyoF9e1pB50crL2THzyafNNt/UyMKHrcZ+ht2qcCz985VU/3wltXsodbO6sPTdmv9WeeG2FfeKNcvuodS9as0ydpnUV1hnJi1PT05lvC1ib4rokVt+WstGRD8dl/21DM1rGe9eS5WY6etk8ndFckN3HZ79pojkumOd57sR2W1OHfxoL34anJ/K0bYyd+vifiEyc6tcynxTRHIjZEprb4rcLNEruydUd2v0yvy4KGXfjlGzR8bT86Xft+OuSDveFckfmge290QeO6h5o/rgvpHZDrFlYpvPNxJfnGyDyfYcx18TaRORTQDe/w1/uR6qu0dVPStLnsvB9Ev3zPcq64/2+fJwLyK5saPSy0ZkdyfQ82HmY/N/czXz4zvvuntSde/eaitx8w2U8g2voJTP30HZPQeRorkz/OjRl79690fl9SriF7OjkZmHvqWx6p3zYmZ/V+P4WEO4uXrOY1/TaBSojNcauxelbq6IfqFxa0W0vxZlkmkbn2u8OceE11EeN3uvx3b3ulThPdXHSnITdduG9Kxrf9xqvk6Fu3drbg/u+IMH178if13LJnB3z6fKkbWx5fE0/N1OzftdGZtZtnuCce8hd929NfW4/8xrmf316mzbDi28Ei6b7tj9Zms+rlPdVKf9QiSLmB7Pu9u7Ijwp193dg3zDq9VVj8+fg+4vZ2Z2t+c1/O8uZ/fu1P3LkT/4cqzk/bI9L+N/fzn24b3uvhmW0/XxBGJzn6p9FzY55evzO20/9+n4dIW4b0VuaTwH7+9asX15quSe6mOHp79qxU6iHCNf0XmwHe+JzPylevDzc4wvifAex2NXpL3Vqfm+os7N0G7fnfpc4vFDNXkWMsrLS9mL3B0Z+46RsW8YmW3ktk4F4ijv/UY0SgfWt/3eFcm3fNfnj94UsVwArA9LvCmieZe4PgrwWqTZN/xG7J7wfMtvxPp8QFzODzUZv7uc3S+4+Zmf1/XMp9u8L0y2rnl31XVTmFX3r1Hd24no5fOdiN3Tpps7ETuJmzsRu1eg7u5EbB823duJ2L1FdXsn4vaobFaJ+9lxbydip3F3J+IXGsfHGjcXmuPuM1F7r0/v7ojsNe7tiOxepLq7aN5r3Fs0b69Fj5wfz4/wfteO8Ue3497OzG2NN2Pu7s7M7jWo2zszo37DBKl/8MDc3FWZ7Rt2VfYNuberMsfHuypzfsOuyq4dN3dVfnETI5y+Mk1f3MTIsX/NLWfIEhnviNxcIv7qYu61Y5MO1wd74o6sHpt9prYrP665fcD9x5fWZfPp/MHjsLdWQ4+/OBGp7WV3zM+XVFuRb1n+3+2R4xt6ZPs21d0eKfJpj/ziSfehLLuP54fUX3tgfpABHjKvKwDqcXzHc/etTON0rPUZmJdLqp0Ey7I2a39PIt8gXB8qeTU6+/Kbg8M3j7eriebTWT+bGp79qxB57z4eU4aE9qVXIY7SU0Rfi8juZajSOVy268sbCamf16pK/bhWdStxb516/0r65kp2PcrefXnkx5ca8vkT0V+049YLmfL5syqRfS7LjRDdvJApnz+r2nbHYwviYAtivNWltfC2bXl9xywyPu/Sb7hR3bbjXpf+4l2sfF1nrMN9Xmaxz2v298e93iq3F/381VTRjwuqtxI3U9jtK+nvdei9avutxL1ie9ndGd5cJ/9C4946uXy8g/qL27l7Fbv7s3zv1dpuNW6W2m4Pw7xZnHpbY1Obute4V5oq8i13yNuy4XuFqfuW3J0j2z65WZi6P9b386u5O1f313Jvrm4PXb05V29rbObqXuPeXFX7jrm679V79c/3z1d/fSu1fS51q5pjd//yQ9Hxc03Jz6cu6nZPmP3+8nKjbStByD3ut/pLifbxVsz2pnLk3dwje2w64xvKn6R/w7cl5OPKFNm/8pNP+p/LML6gkHdij+fsrxV2uy925FaQPVX5/O4o7+3JHJWbuSqvNbYn+908y25/Tuq98zh/cUJ6PZ6u5vWpwDLGxzE7xscxOz+fo9sqsKxpeeDLffH58SyfH8/y8Q2zfHzDLN8+ibo5y7cn1tc8YLnWpyM9fndi/f6ks9xnMHutsY+U3nloMo7NKe3H8Wmk7CVuRYp+/hDpC93x/LmhLx1ar9RLPD1Uq29rjM81nos3v3J4vrTc8pD++sB53RazD+Gxq7aNyK4lPLut42lb7WsiIz/C9HjqrW+L0JJq3yAix0uR3dcArOX23GN3a743OEoaUevj3RHO85ofP2av+/X+Nxb0rR5RHnfoHJuhufvS1NiEze5gv5t1aFq3KfGgzujpceXvGrLdVDKOF7Png87GTxq7o32U+o0fjsL6aU1Zt2clH0+nYOtrje1J/gfHYD961V5fzf4Y2lw4PJ+H+/tu3YrMpxqw15Nk/5mFkpOktLr78d0tyW4tcH/RjpRY7Xj9SQDdLSEIvcemwdMkGT+O8LaoXQufWCqv27H9IIhk5ZT9eNzxVz7mkavcB7b3NHgqtvaXXy9BtiOjfMuyqb6twgejmm4++NLqp2uArcKtNcAvPuXxVH0xj1clArp7b2qW3Gef5fWd5laCj9/MWsdby1zJc0/K+uDueyPbn57BdCubz2fpx5tTe4l7t+/68ebUF7qjvt+pHNpo8mbQde6rHtyO10Njn6+s7POVlf2xK6sfu6Mfbw9Nf1IprzNZ/ziT9Y93M7af4eHwpAdvcrLax1s7W4lHNuQ3preXL3D9QqQ/fampv3yB61ciT59I6uOtvDoqtyFDdp+M2tU9fM9HkmreI1Y5nm80j/c0Sn1Pw/JjotWehuYrGo/25wLv+GFR9NOHKPTzHfvtJ46ME+T7D3fMX/hMEkW+1p9PKv1JQ3cv59xMzFuJe4m5f1xJuu+M3Fax8fyq8u86Y1c2zYtsj3tN2YjsXr3k04bleLmy2zbDsmqq2XOZ0JeuxShCtWFvi+TFtGO+LZKfWGxvfs7r9ifBPv697B//Xm4/S3Zz93//abN7u/86vmH3f/sVrTqeXu1/HpTjp4Z8/HRKP386pZ8/ndp2But1fX4T7nedMevHnbGVuNkZ+nE23u2ScSiw9De/eycc1vzQeP2RJJ3980f0Or/hS+jbr0a1Qim9vZSw4xs+O+Ef2/r8YnYvS5X8tS1Vn4/Bnj+1ZDfAvH76tPPYxxea0Tj44bnS6Etfr7qbCfefwLLGaZrPjzB+9wms7Xe02I55/qH8qkhWo7XnqrivfIyrPL+V8/ytaf3SZ8EGnwWb715Ol/yOXn9a1H1NZNCxz+eD/CxiRf5gkR8K4uX1d872IjXX3LU+98mXRKTlkvv59+r3Q7xNr/eOKt89c7t3W7aXuHVftr+Smzdmv+iOe3dmVus35KPtx8XuvaVk3/D1Kfv861P2+den7Du+PrX/XNutt5Sszt2zlHsn2W+/19by9LcHPlcK9y+IsHXwwPKeyN0XlfYtMaE0tr3/+TlC5sFPvzX9SzJ8APvBT+UqX5XhTJ2H5Ob05m3PyKR7n39vvtS9ysbq8xOz34tsT3C79ebTLnpuvky217j3Mpnp9us+d14ms+13m26+TLZtx90u3Q5t3nI+RlnejZySr6Q9WPTdKV+VyKnt7QCsWaGxJDeRs70deNq0knfvKPLQsqek9HuJ7Z3r0xdtn2t4flcE8PGGwF7i1oaAmf6hEjfPCth3aH74/dG3+rJDdwfR31yF2zdU/Zt9Q9X/9jPlPYsAH93x+ni+ncaoWVY19LlM/SsaLc+zGq29Pv7NdoeN3Jvo22b0LFQZ3fqmGfaHNmPkbvcYbdeM/nHYbyXuxWz7+MST7dcwjpqr97VV/3J62afrw63CreXh9nyRm6vDrcbdxWH/hldT9p8Fv7k47HdX/pvF4e79qZuLw53EzcVh/4Y9jP2H1u8tDr/hhLL9l9ZvLw7rdywO63csDut3LA7lexaH8j2LQ/mexWH9jsVh/Y7FYfl8JXN8w+Lw+HxxuPuduLk43L9UdXNxuGvH3S6t37E4lO9ZHMr3LA7lOxaH23uBW2vD/d3EnaXh+PhRYDu+4RjqdnzDMdS7x96PCZVvmeh8ftJ73NeY1BEUldca25J7zZJ7q68fv4/26Z3mVuHWneb23eObd5pbjZt3mq18w2PR7dN349ZqjNeTY6dRB6dyjS7vafSMlrprRyvfsO5v5TvW/dse4SZvltc90nbvU90++H33yp1mUafa8fpj2G33QtXNc9/bNzypap8/qWqfP6lq9fPv6rbdsNw7973tHlTdPfe9fcNTt1/Mjlvnvm81bp77/iuN42ONe+e+N7l7zrm916c3z33/hcatc9+bfP6xtF9o3Fo076/l3rnvTcsf3Y5b577f13gz5m6e+962Zy/dPPf9F5P95gSxP3hg7p373nR7BPW9c99/0ZBb5777fvxni9xm9fNF7rYd9xa5v7qHuXXue9seMH7zvPWtyL2d8l9ezL127J4J87KuVJP3VkG3Vsj7VdCdFfK20P5WG/al+nfasH/diNtse9pL/dIrS43XntqU9zRGvvVc59OrQl977almSj/q62vR3ZcJ7r47tRW5dzb6XuLW2ei/kLhzNvp2VHpGa31++Pqlkf1BQ9/UqGjIZoZ9fqpf+/xUv7b92NTnEjfz8LY/2//vm6hfG5O8wa59vpk5ntvxrsbI+6cHvqvxtP2y0/g4m7ePs/kvzjrIG45Z65vHJXDQa5X58lf+456on/bE9kAPykasP7+78ZVDQUbuMNqQ8qZG/jY+8M3DSYbRjncPSRm5ZHrIvXtISmGlUt/uj4nGZlx296HGS2jW5Rs03ju85rFVmrvxzfRNDZ4K9N0c235dlrO4hr3W6Ls3pvrMG8Hx/KUc+Z1IvXc1j1uOl8+uftUSPmBSdi3ZfkAgn2M/RvrpuOr77RgcvT2O1jftaNsN1/xq6Ci2EdlVORlPjp4euDxupm5PkcGCeG7O8+i7U/BuT5FyfMcUmd8wRUr9fIrMb5giu2dQt6dIsT9yihgf3LLn7239borsiuit5qEgVp9/7sZPGrtlS6/5Jn1/rtYcX7iWPAjTjvH6F6LvTo27ey27/Y7vuJaSG+oPfO/XziTPrzSp/T2NSjuqfYNGK29q5BNbk+N4UyOr1h9y7/ZpHlttsomXvYagoa/vIPanE+dbrPV5N+znk4W7fHxAyl7i1sK2i/yhEvfWxtv+FA7gkX5s+vPj41F2rVBW189HGv2+FePzDLY9C/xeBtuffV0pcHw6gvdr52cbXw5qr/tD5v5spXuHcO9E7u3t7SVu7e39QuLO3t52YG+t0vfHxN9ZpW8/p3CvDeXjPZPtKQB3P875C5Wb3+aU/i3f5tzK3Jyj/eNvc/5C4s4c3X+Y6uZnabYan3/86P4c+dXHnG7OkfY9c6R9Pkfa53OkfTxHPv/MX2/bUsJblVW97Rf6sRLcVFZtJe5VVt2/kteVEZ9/5e/zj/z1frfSZDMie41bhRX32/Fa4/ZXscrrVnxctbeVuDm3+udVe71/XLXXd5+SmmocQnS8/ohc3xWnr+OLUmS+zqB9983n2g/K9p72stsX+rTkca6PJzflZZ/uCssrhW7Ha4U+9z9M974yuB+Zm7+0e5Gb3xnci9RccTxQ3xW597XCX/TJvc8V7mfrze8V3hfZfLDwFyL3vli4Fbl/A/OLrr13c/j5Jwv77mWoW190+EV/3L27/JXMzdvLvn2D9/7o7GTu3V7uJW7dXv5C4sPby0KVQ+nPR0v//KbK7mHUvR+K7Zu35Ofn25CfW7GV6E8v77a3JAZvux7Pbx/9ri++4QWTcXzDCya70K/5uGPtoL6+mN1roaX1g4919PLyfNlfiOTpfw9u9lJkexNAqfrRN2OzfRvq6Xak1Pr8SYaj3O1Y5XB57eOtifb8can+/Bmk313MNxyKOso3HIr6qwEmv7fX5+2P3dOo75klVqn2fK4k+bljd0f3/fAi8+Z55S9EKje+bSeinz8GHrv3me49Bt624+5j4LF7KeruY+Cx/eLvrcfA+yRQ7Om7XTbryyQwdh+Yyirap2mmt7Oz1lx3qzy/SGA/v3C7q+C/dwLI2O7Z3dsa8m8mfrZ830rcW77fv5K+uZLtOxG3TgAZ3/Ay0y/aQb3mUV6+vDN2dY73XhEZ24dSNw8i2YvcPIhkK3L3IJJ9S24eRLIXqYXH0duW7A6YeKSa/MV88OszGX4lc/NQlF/I3D0U5VcyNw9F2XfwzUNR9iI3D0XZRtC9l5u2gXzzUJS9xr1DUYZ9fCjKsG84FGXYx4ei/GJo7x2K8ou5evdQlF/I3D0U5VcyNw9FOT7evh678/vubV+P3VcR7750vj0FiMMEynMZw0+3eXsJ5fZb35Pgra/6tA//u5vNtq1QyXtvOd6UyPd429ON4lcu5Pmg+adXBb4i0XIr8sc34L4g0Us+x+y7vujyB4uUxsK5Pb8c9CURatIf+2b1TZHJ7srzywJfGlwORan9vViRPKzmMVPKe63g7UY53roQHfw0jKeFSJm3t+8Km4hFxzuNKKWxNBxvRVsRPgop871WWGVnR/t7Eo3F0JjvXQiTU+p7FyK5O/1I6W9dCMfBdm3vCMysdnx+G/srF3FkgeAPX/n+XaTP8kfO7pnv4sz6Xkfk1J7dPuzJ9wSkstlYn5cHj0i7LZFPXR44P5Z4ugn9kgR1vLXbWxKSNygPOt6S0DyMQn4oFPhKK9rT1+fr5xLvDSqrE3lOmV/qC16NV3lvUFU4dEX6exKFM2jszUHN49Ef+FYrHo/0lFsTfUtilKfv1paXEnN7nG4l+9f2lPPG/Wbkdu8D7b0rydexHptq4z2JnOFlvBckZUyebx7lzQth+X3UjyXKu63oSLwV7Y87XfpC+8eteG9Q771Hsb3DIsra83jo/RvWlquZ0mS+JTGMD3fbe62Y+RHjehzlHYnHw65cQRwqb7WCMpNH/nrvQnoO6SN/vXUhj5t+znea77VCctug6KFvSWhuwzye7NpLiSl/6B3n45Y9h+SHm4OvXMmRV/J8KNu7/fmzxP98/N8//etf/vEvf/37v/7pP/7y97/9++Nv/vcS+8df/vS//vrn6//+n//8278+/dv/+H//Lf7N//rHX/7617/833/5t3/8/V///L//8x9/Xkrr3/12XP/zP9p8bL8+Nj36//yn38rj//f1EfTH5sN4/H/xf/+4M3/8R/7v119YZ1j90+N/5voHxf8LWQp6/M//Xk3+/wA="
4146
4138
  },
4147
4139
  {
4148
4140
  "name": "public_dispatch",
@@ -4441,7 +4433,7 @@
4441
4433
  "file_map": {
4442
4434
  "101": {
4443
4435
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/macros/aztec.nr",
4444
- "source": "use crate::macros::{\n calls_generation::{\n external_functions::{\n generate_external_function_calls, generate_external_function_self_calls_structs,\n },\n internal_functions::generate_call_internal_struct,\n },\n dispatch::generate_public_dispatch,\n internals_functions_generation::{create_fn_abi_exports, process_functions},\n notes::NOTES,\n storage::STORAGE_LAYOUT_NAME,\n utils::{\n get_trait_impl_method, is_fn_contract_library_method, is_fn_external, is_fn_internal,\n is_fn_test, module_has_storage,\n },\n};\n\n/// Marks a contract as an Aztec contract, generating the interfaces for its functions and notes, as well as injecting\n/// the `sync_private_state` utility function.\n/// Note: This is a module annotation, so the returned quote gets injected inside the module (contract) itself.\npub comptime fn aztec(m: Module) -> Quoted {\n // Functions that don't have #[external(...)], #[contract_library_method], or #[test] are not allowed in contracts.\n check_each_fn_macroified(m);\n\n // We generate new functions prefixed with `__aztec_nr_internals__` and we replace the original functions' bodies\n // with `static_assert(false, ...)` to prevent them from being called directly from within the contract.\n let functions = process_functions(m);\n\n // We generate structs and their implementations necessary for convenient functions calls.\n let interface = generate_contract_interface(m);\n let self_call_structs = generate_external_function_self_calls_structs(m);\n let call_internal_struct = generate_call_internal_struct(m);\n\n // We generate ABI exports for all the external functions in the contract.\n let fn_abi_exports = create_fn_abi_exports(m);\n\n // We generate `_compute_note_hash_and_nullifier`, `sync_private_state` and `process_message`\n // functions only if they are not already implemented. If they are implemented we just insert empty\n // quotes.\n let contract_library_method_compute_note_hash_and_nullifier = if !m.functions().any(|f| {\n f.name() == quote { _compute_note_hash_and_nullifier }\n }) {\n generate_contract_library_method_compute_note_hash_and_nullifier()\n } else {\n quote {}\n };\n let sync_private_state_fn_and_abi_export = if !m.functions().any(|f| {\n f.name() == quote { sync_private_state }\n }) {\n generate_sync_private_state()\n } else {\n quote {}\n };\n\n let process_message_fn_and_abi_export = if !m.functions().any(|f| {\n f.name() == quote { process_message }\n }) {\n generate_process_message()\n } else {\n quote {}\n };\n let public_dispatch = generate_public_dispatch(m);\n\n quote {\n $interface\n $self_call_structs\n $call_internal_struct\n $functions\n $fn_abi_exports\n $contract_library_method_compute_note_hash_and_nullifier\n $public_dispatch\n $sync_private_state_fn_and_abi_export\n $process_message_fn_and_abi_export\n }\n}\n\ncomptime fn generate_contract_interface(m: Module) -> Quoted {\n let calls = generate_external_function_calls(m);\n\n let module_name = m.name();\n\n let has_storage_layout = module_has_storage(m) & STORAGE_LAYOUT_NAME.get(m).is_some();\n let storage_layout_getter = if has_storage_layout {\n let storage_layout_name = STORAGE_LAYOUT_NAME.get(m).unwrap();\n quote {\n pub fn storage_layout() -> StorageLayoutFields {\n $storage_layout_name.fields\n }\n }\n } else {\n quote {}\n };\n\n let library_storage_layout_getter = if has_storage_layout {\n quote {\n #[contract_library_method]\n $storage_layout_getter\n }\n } else {\n quote {}\n };\n\n quote {\n pub struct $module_name {\n pub target_contract: dep::aztec::protocol_types::address::AztecAddress\n }\n\n impl $module_name {\n $calls\n\n pub fn at(\n addr: aztec::protocol_types::address::AztecAddress\n ) -> Self {\n Self { target_contract: addr }\n }\n\n pub fn interface() -> Self {\n Self { target_contract: aztec::protocol_types::address::AztecAddress::zero() }\n }\n\n $storage_layout_getter\n }\n\n #[contract_library_method]\n pub fn at(\n addr: aztec::protocol_types::address::AztecAddress\n ) -> $module_name {\n $module_name { target_contract: addr }\n }\n\n #[contract_library_method]\n pub fn interface() -> $module_name {\n $module_name { target_contract: aztec::protocol_types::address::AztecAddress::zero() }\n }\n\n $library_storage_layout_getter\n\n }\n}\n\n/// Generates a contract library method called `_compute_note_hash_and_nullifier` which is used for note\n/// discovery (to create the `aztec::messages::discovery::ComputeNoteHashAndNullifier` function) and to implement the\n/// `compute_note_hash_and_nullifier` unconstrained contract function.\ncomptime fn generate_contract_library_method_compute_note_hash_and_nullifier() -> Quoted {\n if NOTES.len() > 0 {\n // Contracts that do define notes produce an if-else chain where `note_type_id` is matched against the\n // `get_note_type_id()` function of each note type that we know of, in order to identify the note type. Once we\n // know it we call we correct `unpack` method from the `Packable` trait to obtain the underlying note type, and\n // compute the note hash (non-siloed) and inner nullifier (also non-siloed).\n\n let mut if_note_type_id_match_statements_list = &[];\n for i in 0..NOTES.len() {\n let typ = NOTES.get(i);\n\n let get_note_type_id = get_trait_impl_method(\n typ,\n quote { crate::note::note_interface::NoteType },\n quote { get_id },\n );\n let unpack = get_trait_impl_method(\n typ,\n quote { crate::protocol_types::traits::Packable },\n quote { unpack },\n );\n\n let compute_note_hash = get_trait_impl_method(\n typ,\n quote { crate::note::note_interface::NoteHash },\n quote { compute_note_hash },\n );\n\n let compute_nullifier_unconstrained = get_trait_impl_method(\n typ,\n quote { crate::note::note_interface::NoteHash },\n quote { compute_nullifier_unconstrained },\n );\n\n let if_or_else_if = if i == 0 {\n quote { if }\n } else {\n quote { else if }\n };\n\n if_note_type_id_match_statements_list = if_note_type_id_match_statements_list.push_back(\n quote {\n $if_or_else_if note_type_id == $get_note_type_id() {\n // As an extra safety check we make sure that the packed_note BoundedVec has the expected\n // length, since we're about to interpret its raw storage as a fixed-size array by calling the\n // unpack function on it.\n let expected_len = <$typ as $crate::protocol_types::traits::Packable>::N;\n let actual_len = packed_note.len();\n assert(\n actual_len == expected_len,\n f\"Expected packed note of length {expected_len} but got {actual_len} for note type id {note_type_id}\"\n );\n\n let note = $unpack(aztec::utils::array::subarray(packed_note.storage(), 0));\n\n let note_hash = $compute_note_hash(note, storage_slot);\n \n // The message discovery process finds settled notes, that is, notes that were created in prior\n // transactions and are therefore already part of the note hash tree. We therefore compute the\n // nullification note hash by treating the note as a settled note with the provided note nonce.\n let note_hash_for_nullification = aztec::note::utils::compute_note_hash_for_nullification(\n aztec::note::retrieved_note::RetrievedNote{ \n note, \n contract_address, \n metadata: aztec::note::note_metadata::SettledNoteMetadata::new(note_nonce).into()\n }, \n storage_slot,\n );\n\n let inner_nullifier = $compute_nullifier_unconstrained(note, note_hash_for_nullification);\n\n Option::some(\n aztec::messages::discovery::NoteHashAndNullifier {\n note_hash, inner_nullifier\n }\n )\n }\n },\n );\n }\n\n let if_note_type_id_match_statements = if_note_type_id_match_statements_list.join(quote {});\n\n quote {\n /// Unpacks an array into a note corresponding to `note_type_id` and then computes its note hash\n /// (non-siloed) and inner nullifier (non-siloed) assuming the note has been inserted into the note hash\n /// tree with `note_nonce`.\n ///\n /// The signature of this function notably matches the `aztec::messages::discovery::ComputeNoteHashAndNullifier` type,\n /// and so it can be used to call functions from that module such as `discover_new_messages`, \n /// `do_process_message` and `attempt_note_discovery`.\n ///\n /// This function is automatically injected by the `#[aztec]` macro.\n #[contract_library_method]\n unconstrained fn _compute_note_hash_and_nullifier(\n packed_note: BoundedVec<Field, aztec::messages::discovery::private_notes::MAX_NOTE_PACKED_LEN>,\n storage_slot: Field,\n note_type_id: Field,\n contract_address: aztec::protocol_types::address::AztecAddress,\n note_nonce: Field,\n ) -> Option<aztec::messages::discovery::NoteHashAndNullifier> {\n $if_note_type_id_match_statements\n else {\n Option::none()\n }\n }\n }\n } else {\n // Contracts with no notes still implement this function to avoid having special-casing, the implementation\n // simply throws immediately.\n quote {\n /// This contract does not use private notes, so this function should never be called as it will\n /// unconditionally fail.\n ///\n /// This function is automatically injected by the `#[aztec]` macro.\n #[contract_library_method]\n unconstrained fn _compute_note_hash_and_nullifier(\n _packed_note: BoundedVec<Field, aztec::messages::discovery::private_notes::MAX_NOTE_PACKED_LEN>,\n _storage_slot: Field,\n _note_type_id: Field,\n _contract_address: aztec::protocol_types::address::AztecAddress,\n _nonce: Field,\n ) -> Option<aztec::messages::discovery::NoteHashAndNullifier> {\n panic(f\"This contract does not use private notes\")\n }\n }\n }\n}\n\ncomptime fn generate_sync_private_state() -> Quoted {\n quote {\n pub struct sync_private_state_parameters {}\n\n #[abi(functions)]\n pub struct sync_private_state_abi {\n parameters: sync_private_state_parameters,\n }\n\n #[aztec::macros::internals_functions_generation::abi_attributes::abi_utility]\n unconstrained fn sync_private_state() {\n let address = aztec::context::utility_context::UtilityContext::new().this_address();\n \n aztec::messages::discovery::discover_new_messages(address, _compute_note_hash_and_nullifier);\n }\n }\n}\n\ncomptime fn generate_process_message() -> Quoted {\n quote {\n pub struct process_message_parameters {\n pub message_ciphertext: BoundedVec<Field, aztec::messages::encoding::MESSAGE_CIPHERTEXT_LEN>,\n pub message_context: aztec::messages::processing::message_context::MessageContext,\n }\n\n #[abi(functions)]\n pub struct process_message_abi {\n parameters: process_message_parameters,\n }\n\n #[aztec::macros::internals_functions_generation::abi_attributes::abi_utility]\n unconstrained fn process_message(\n message_ciphertext: BoundedVec<Field, aztec::messages::encoding::MESSAGE_CIPHERTEXT_LEN>,\n message_context: aztec::messages::processing::message_context::MessageContext,\n ) {\n let address = aztec::context::utility_context::UtilityContext::new().this_address();\n\n aztec::messages::discovery::discover_new_messages(address, _compute_note_hash_and_nullifier); \n aztec::messages::discovery::process_message::process_message_ciphertext(\n address,\n _compute_note_hash_and_nullifier,\n message_ciphertext,\n message_context,\n );\n }\n }\n}\n\n/// Checks if each function in the module is marked with either #[external(...)], #[contract_library_method], or #[test].\n/// Non-macroified functions are not allowed in contracts.\ncomptime fn check_each_fn_macroified(m: Module) {\n for f in m.functions() {\n let name = f.name();\n if !is_fn_external(f)\n & !is_fn_contract_library_method(f)\n & !is_fn_internal(f)\n & !is_fn_test(f) {\n // We don't suggest that #[contract_library_method] is allowed because we don't want to introduce another\n // concept\n panic(\n f\"Function {name} must be marked as either #[external(...)], #[internal(...)], or #[test]\",\n );\n }\n }\n}\n"
4436
+ "source": "use crate::macros::{\n calls_generation::{\n external_functions::{\n generate_external_function_calls, generate_external_function_self_calls_structs,\n },\n internal_functions::generate_call_internal_struct,\n },\n dispatch::generate_public_dispatch,\n internals_functions_generation::{create_fn_abi_exports, process_functions},\n notes::NOTES,\n storage::STORAGE_LAYOUT_NAME,\n utils::{\n get_trait_impl_method, is_fn_contract_library_method, is_fn_external, is_fn_internal,\n is_fn_test, module_has_storage,\n },\n};\n\n/// Marks a contract as an Aztec contract, generating the interfaces for its functions and notes, as well as injecting\n/// the `sync_private_state` utility function.\n/// Note: This is a module annotation, so the returned quote gets injected inside the module (contract) itself.\npub comptime fn aztec(m: Module) -> Quoted {\n // Functions that don't have #[external(...)], #[contract_library_method], or #[test] are not allowed in contracts.\n check_each_fn_macroified(m);\n\n // We generate new functions prefixed with `__aztec_nr_internals__` and we replace the original functions' bodies\n // with `static_assert(false, ...)` to prevent them from being called directly from within the contract.\n let functions = process_functions(m);\n\n // We generate structs and their implementations necessary for convenient functions calls.\n let interface = generate_contract_interface(m);\n let self_call_structs = generate_external_function_self_calls_structs(m);\n let call_internal_struct = generate_call_internal_struct(m);\n\n // We generate ABI exports for all the external functions in the contract.\n let fn_abi_exports = create_fn_abi_exports(m);\n\n // We generate `_compute_note_hash_and_nullifier`, `sync_private_state` and `process_message`\n // functions only if they are not already implemented. If they are implemented we just insert empty\n // quotes.\n let contract_library_method_compute_note_hash_and_nullifier = if !m.functions().any(|f| {\n f.name() == quote { _compute_note_hash_and_nullifier }\n }) {\n generate_contract_library_method_compute_note_hash_and_nullifier()\n } else {\n quote {}\n };\n let sync_private_state_fn_and_abi_export = if !m.functions().any(|f| {\n f.name() == quote { sync_private_state }\n }) {\n generate_sync_private_state()\n } else {\n quote {}\n };\n\n let process_message_fn_and_abi_export = if !m.functions().any(|f| {\n f.name() == quote { process_message }\n }) {\n generate_process_message()\n } else {\n quote {}\n };\n let public_dispatch = generate_public_dispatch(m);\n\n quote {\n $interface\n $self_call_structs\n $call_internal_struct\n $functions\n $fn_abi_exports\n $contract_library_method_compute_note_hash_and_nullifier\n $public_dispatch\n $sync_private_state_fn_and_abi_export\n $process_message_fn_and_abi_export\n }\n}\n\ncomptime fn generate_contract_interface(m: Module) -> Quoted {\n let calls = generate_external_function_calls(m);\n\n let module_name = m.name();\n\n let has_storage_layout = module_has_storage(m) & STORAGE_LAYOUT_NAME.get(m).is_some();\n let storage_layout_getter = if has_storage_layout {\n let storage_layout_name = STORAGE_LAYOUT_NAME.get(m).unwrap();\n quote {\n pub fn storage_layout() -> StorageLayoutFields {\n $storage_layout_name.fields\n }\n }\n } else {\n quote {}\n };\n\n let library_storage_layout_getter = if has_storage_layout {\n quote {\n #[contract_library_method]\n $storage_layout_getter\n }\n } else {\n quote {}\n };\n\n quote {\n pub struct $module_name {\n pub target_contract: dep::aztec::protocol_types::address::AztecAddress\n }\n\n impl $module_name {\n $calls\n\n pub fn at(\n addr: aztec::protocol_types::address::AztecAddress\n ) -> Self {\n Self { target_contract: addr }\n }\n\n pub fn interface() -> Self {\n Self { target_contract: aztec::protocol_types::address::AztecAddress::zero() }\n }\n\n $storage_layout_getter\n }\n\n #[contract_library_method]\n pub fn at(\n addr: aztec::protocol_types::address::AztecAddress\n ) -> $module_name {\n $module_name { target_contract: addr }\n }\n\n #[contract_library_method]\n pub fn interface() -> $module_name {\n $module_name { target_contract: aztec::protocol_types::address::AztecAddress::zero() }\n }\n\n $library_storage_layout_getter\n\n }\n}\n\n/// Generates a contract library method called `_compute_note_hash_and_nullifier` which is used for note\n/// discovery (to create the `aztec::messages::discovery::ComputeNoteHashAndNullifier` function) and to implement the\n/// `compute_note_hash_and_nullifier` unconstrained contract function.\ncomptime fn generate_contract_library_method_compute_note_hash_and_nullifier() -> Quoted {\n if NOTES.len() > 0 {\n // Contracts that do define notes produce an if-else chain where `note_type_id` is matched against the\n // `get_note_type_id()` function of each note type that we know of, in order to identify the note type. Once we\n // know it we call we correct `unpack` method from the `Packable` trait to obtain the underlying note type, and\n // compute the note hash (non-siloed) and inner nullifier (also non-siloed).\n\n let mut if_note_type_id_match_statements_list = &[];\n for i in 0..NOTES.len() {\n let typ = NOTES.get(i);\n\n let get_note_type_id = get_trait_impl_method(\n typ,\n quote { crate::note::note_interface::NoteType },\n quote { get_id },\n );\n let unpack = get_trait_impl_method(\n typ,\n quote { crate::protocol_types::traits::Packable },\n quote { unpack },\n );\n\n let compute_note_hash = get_trait_impl_method(\n typ,\n quote { crate::note::note_interface::NoteHash },\n quote { compute_note_hash },\n );\n\n let compute_nullifier_unconstrained = get_trait_impl_method(\n typ,\n quote { crate::note::note_interface::NoteHash },\n quote { compute_nullifier_unconstrained },\n );\n\n let if_or_else_if = if i == 0 {\n quote { if }\n } else {\n quote { else if }\n };\n\n if_note_type_id_match_statements_list = if_note_type_id_match_statements_list.push_back(\n quote {\n $if_or_else_if note_type_id == $get_note_type_id() {\n // As an extra safety check we make sure that the packed_note BoundedVec has the expected\n // length, since we're about to interpret its raw storage as a fixed-size array by calling the\n // unpack function on it.\n let expected_len = <$typ as $crate::protocol_types::traits::Packable>::N;\n let actual_len = packed_note.len();\n assert(\n actual_len == expected_len,\n f\"Expected packed note of length {expected_len} but got {actual_len} for note type id {note_type_id}\"\n );\n\n let note = $unpack(aztec::utils::array::subarray(packed_note.storage(), 0));\n\n let note_hash = $compute_note_hash(note, storage_slot, randomness);\n \n // The message discovery process finds settled notes, that is, notes that were created in prior\n // transactions and are therefore already part of the note hash tree. We therefore compute the\n // nullification note hash by treating the note as a settled note with the provided note nonce.\n let note_hash_for_nullification = aztec::note::utils::compute_note_hash_for_nullification(\n aztec::note::retrieved_note::RetrievedNote{ \n note,\n contract_address,\n randomness,\n metadata: aztec::note::note_metadata::SettledNoteMetadata::new(note_nonce).into()\n }, \n storage_slot,\n );\n\n let inner_nullifier = $compute_nullifier_unconstrained(note, note_hash_for_nullification);\n\n Option::some(\n aztec::messages::discovery::NoteHashAndNullifier {\n note_hash, inner_nullifier\n }\n )\n }\n },\n );\n }\n\n let if_note_type_id_match_statements = if_note_type_id_match_statements_list.join(quote {});\n\n quote {\n /// Unpacks an array into a note corresponding to `note_type_id` and then computes its note hash\n /// (non-siloed) and inner nullifier (non-siloed) assuming the note has been inserted into the note hash\n /// tree with `note_nonce`.\n ///\n /// The signature of this function notably matches the `aztec::messages::discovery::ComputeNoteHashAndNullifier` type,\n /// and so it can be used to call functions from that module such as `discover_new_messages`, \n /// `do_process_message` and `attempt_note_discovery`.\n ///\n /// This function is automatically injected by the `#[aztec]` macro.\n #[contract_library_method]\n unconstrained fn _compute_note_hash_and_nullifier(\n packed_note: BoundedVec<Field, aztec::messages::discovery::private_notes::MAX_NOTE_PACKED_LEN>,\n storage_slot: Field,\n note_type_id: Field,\n contract_address: aztec::protocol_types::address::AztecAddress,\n randomness: Field,\n note_nonce: Field,\n ) -> Option<aztec::messages::discovery::NoteHashAndNullifier> {\n $if_note_type_id_match_statements\n else {\n Option::none()\n }\n }\n }\n } else {\n // Contracts with no notes still implement this function to avoid having special-casing, the implementation\n // simply throws immediately.\n quote {\n /// This contract does not use private notes, so this function should never be called as it will\n /// unconditionally fail.\n ///\n /// This function is automatically injected by the `#[aztec]` macro.\n #[contract_library_method]\n unconstrained fn _compute_note_hash_and_nullifier(\n _packed_note: BoundedVec<Field, aztec::messages::discovery::private_notes::MAX_NOTE_PACKED_LEN>,\n _storage_slot: Field,\n _note_type_id: Field,\n _contract_address: aztec::protocol_types::address::AztecAddress,\n _randomness: Field,\n _nonce: Field,\n ) -> Option<aztec::messages::discovery::NoteHashAndNullifier> {\n panic(f\"This contract does not use private notes\")\n }\n }\n }\n}\n\ncomptime fn generate_sync_private_state() -> Quoted {\n quote {\n pub struct sync_private_state_parameters {}\n\n #[abi(functions)]\n pub struct sync_private_state_abi {\n parameters: sync_private_state_parameters,\n }\n\n #[aztec::macros::internals_functions_generation::abi_attributes::abi_utility]\n unconstrained fn sync_private_state() {\n let address = aztec::context::utility_context::UtilityContext::new().this_address();\n \n aztec::messages::discovery::discover_new_messages(address, _compute_note_hash_and_nullifier);\n }\n }\n}\n\ncomptime fn generate_process_message() -> Quoted {\n quote {\n pub struct process_message_parameters {\n pub message_ciphertext: BoundedVec<Field, aztec::messages::encoding::MESSAGE_CIPHERTEXT_LEN>,\n pub message_context: aztec::messages::processing::message_context::MessageContext,\n }\n\n #[abi(functions)]\n pub struct process_message_abi {\n parameters: process_message_parameters,\n }\n\n #[aztec::macros::internals_functions_generation::abi_attributes::abi_utility]\n unconstrained fn process_message(\n message_ciphertext: BoundedVec<Field, aztec::messages::encoding::MESSAGE_CIPHERTEXT_LEN>,\n message_context: aztec::messages::processing::message_context::MessageContext,\n ) {\n let address = aztec::context::utility_context::UtilityContext::new().this_address();\n\n aztec::messages::discovery::discover_new_messages(address, _compute_note_hash_and_nullifier); \n aztec::messages::discovery::process_message::process_message_ciphertext(\n address,\n _compute_note_hash_and_nullifier,\n message_ciphertext,\n message_context,\n );\n }\n }\n}\n\n/// Checks if each function in the module is marked with either #[external(...)], #[contract_library_method], or #[test].\n/// Non-macroified functions are not allowed in contracts.\ncomptime fn check_each_fn_macroified(m: Module) {\n for f in m.functions() {\n let name = f.name();\n if !is_fn_external(f)\n & !is_fn_contract_library_method(f)\n & !is_fn_internal(f)\n & !is_fn_test(f) {\n // We don't suggest that #[contract_library_method] is allowed because we don't want to introduce another\n // concept\n panic(\n f\"Function {name} must be marked as either #[external(...)], #[internal(...)], or #[test]\",\n );\n }\n }\n}\n"
4445
4437
  },
4446
4438
  "115": {
4447
4439
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/macros/internals_functions_generation/external/private.nr",
@@ -4449,15 +4441,15 @@
4449
4441
  },
4450
4442
  "126": {
4451
4443
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/messages/discovery/mod.nr",
4452
- "source": "use protocol_types::{address::AztecAddress, debug_log::{debug_log, debug_log_format}};\n\npub mod nonce_discovery;\npub mod partial_notes;\npub mod private_events;\npub mod private_notes;\npub mod process_message;\n\nuse crate::{\n messages::{\n discovery::{\n private_notes::MAX_NOTE_PACKED_LEN, process_message::process_message_ciphertext,\n },\n processing::{\n get_private_logs, pending_tagged_log::PendingTaggedLog,\n validate_enqueued_notes_and_events,\n },\n },\n utils::array,\n};\n\npub struct NoteHashAndNullifier {\n /// The result of NoteHash::compute_note_hash\n pub note_hash: Field,\n /// The result of NoteHash::compute_nullifier_unconstrained (since all of message discovery is unconstrained)\n pub inner_nullifier: Field,\n}\n\n/// A function which takes a note's packed content, address of the emitting contract, note nonce, storage slot and note\n/// type ID and attempts to compute its note hash (not hashed by note nonce nor siloed by address) and inner nullifier\n/// (not siloed by address).\n///\n/// This function must be user-provided as its implementation requires knowledge of how note type IDs are allocated in a\n/// contract. The `#[aztec]` macro automatically creates such a contract library method called\n/// `_compute_note_hash_and_nullifier`, which looks something like this:\n///\n/// ```\n/// |packed_note, contract_address, note_nonce, storage_slot, note_type_id| {\n/// if note_type_id == MyNoteType::get_id() {\n/// assert(packed_note.len() == MY_NOTE_TYPE_SERIALIZATION_LENGTH);\n///\n/// let note = MyNoteType::unpack(aztec::utils::array::subarray(packed_note.storage(), 0));\n///\n/// let note_hash = note.compute_note_hash(storage_slot);\n/// let note_hash_for_nullification = aztec::note::utils::compute_note_hash_for_nullification(\n/// RetrievedNote{ note, contract_address, metadata: SettledNoteMetadata::new(note_nonce).into() },\n/// storage_slot\n/// );\n///\n/// let inner_nullifier = note.compute_nullifier_unconstrained(note_hash_for_nullification);\n///\n/// Option::some(\n/// aztec::messages::discovery::NoteHashAndNullifier {\n/// note_hash, inner_nullifier\n/// }\n/// )\n/// } else if note_type_id == MyOtherNoteType::get_id() {\n/// ... // Similar to above but calling MyOtherNoteType::unpack_content\n/// } else {\n/// Option::none() // Unknown note type ID\n/// };\n/// }\n/// ```\npub type ComputeNoteHashAndNullifier<Env> = unconstrained fn[Env](/* packed_note */BoundedVec<Field, MAX_NOTE_PACKED_LEN>, /* storage_slot */ Field, /* note_type_id */ Field, /* contract_address */ AztecAddress, /* note nonce */ Field) -> Option<NoteHashAndNullifier>;\n\n/// Performs the message discovery process, in which private logs are downloaded and inspected to find new private\n/// notes, partial notes and events, etc., and pending partial notes are processed to search for their completion logs.\n/// This is the mechanism via which a contract updates its knowledge of its private state.\n///\n/// Note that the state is synchronized up to the latest block synchronized by PXE. That should be close to the chain\n/// tip as block synchronization is performed before contract function simulation is done.\n///\n/// Receives the address of the contract on which discovery is performed along with its\n/// `compute_note_hash_and_nullifier` function.\npub unconstrained fn discover_new_messages<Env>(\n contract_address: AztecAddress,\n compute_note_hash_and_nullifier: ComputeNoteHashAndNullifier<Env>,\n) {\n debug_log(\"Performing message discovery\");\n\n // First we process all private logs, which can contain different kinds of messages e.g. private notes, partial\n // notes, private events, etc.\n let mut logs = get_private_logs(contract_address);\n logs.for_each(|i, pending_tagged_log: PendingTaggedLog| {\n debug_log_format(\n \"Processing log with tag {0}\",\n [pending_tagged_log.log.get(0)],\n );\n\n // We remove the tag from the pending tagged log and process the message ciphertext contained in it.\n let message_ciphertext = array::subbvec(pending_tagged_log.log, 1);\n\n process_message_ciphertext(\n contract_address,\n compute_note_hash_and_nullifier,\n message_ciphertext,\n pending_tagged_log.context,\n );\n logs.remove(i);\n });\n\n // Then we process all pending partial notes, regardless of whether they were found in the current or previous\n // executions.\n partial_notes::fetch_and_process_partial_note_completion_logs(\n contract_address,\n compute_note_hash_and_nullifier,\n );\n\n // Finally we validate all notes and events that were found as part of the previous processes, resulting in them\n // being added to PXE's database and retrievable via oracles (get_notes) and our TS API (PXE::getPrivateEvents).\n validate_enqueued_notes_and_events(contract_address);\n}\n"
4444
+ "source": "use protocol_types::{address::AztecAddress, debug_log::{debug_log, debug_log_format}};\n\npub mod nonce_discovery;\npub mod partial_notes;\npub mod private_events;\npub mod private_notes;\npub mod process_message;\n\nuse crate::{\n messages::{\n discovery::{\n private_notes::MAX_NOTE_PACKED_LEN, process_message::process_message_ciphertext,\n },\n processing::{\n get_private_logs, pending_tagged_log::PendingTaggedLog,\n validate_enqueued_notes_and_events,\n },\n },\n utils::array,\n};\n\npub struct NoteHashAndNullifier {\n /// The result of NoteHash::compute_note_hash\n pub note_hash: Field,\n /// The result of NoteHash::compute_nullifier_unconstrained (since all of message discovery is unconstrained)\n pub inner_nullifier: Field,\n}\n\n/// A function which takes a note's packed content, address of the emitting contract, note nonce, storage slot and note\n/// type ID and attempts to compute its note hash (not hashed by note nonce nor siloed by address) and inner nullifier\n/// (not siloed by address).\n///\n/// This function must be user-provided as its implementation requires knowledge of how note type IDs are allocated in a\n/// contract. The `#[aztec]` macro automatically creates such a contract library method called\n/// `_compute_note_hash_and_nullifier`, which looks something like this:\n///\n/// ```\n/// |packed_note, contract_address, note_nonce, storage_slot, note_type_id| {\n/// if note_type_id == MyNoteType::get_id() {\n/// assert(packed_note.len() == MY_NOTE_TYPE_SERIALIZATION_LENGTH);\n///\n/// let note = MyNoteType::unpack(aztec::utils::array::subarray(packed_note.storage(), 0));\n///\n/// let note_hash = note.compute_note_hash(storage_slot);\n/// let note_hash_for_nullification = aztec::note::utils::compute_note_hash_for_nullification(\n/// RetrievedNote{ note, contract_address, metadata: SettledNoteMetadata::new(note_nonce).into() },\n/// storage_slot\n/// );\n///\n/// let inner_nullifier = note.compute_nullifier_unconstrained(note_hash_for_nullification);\n///\n/// Option::some(\n/// aztec::messages::discovery::NoteHashAndNullifier {\n/// note_hash, inner_nullifier\n/// }\n/// )\n/// } else if note_type_id == MyOtherNoteType::get_id() {\n/// ... // Similar to above but calling MyOtherNoteType::unpack_content\n/// } else {\n/// Option::none() // Unknown note type ID\n/// };\n/// }\n/// ```\npub type ComputeNoteHashAndNullifier<Env> = unconstrained fn[Env](/* packed_note */BoundedVec<Field, MAX_NOTE_PACKED_LEN>, /* storage_slot */ Field, /* note_type_id */ Field, /* contract_address */ AztecAddress, /* randomness */ Field, /* note nonce */ Field) -> Option<NoteHashAndNullifier>;\n\n/// Performs the message discovery process, in which private logs are downloaded and inspected to find new private\n/// notes, partial notes and events, etc., and pending partial notes are processed to search for their completion logs.\n/// This is the mechanism via which a contract updates its knowledge of its private state.\n///\n/// Note that the state is synchronized up to the latest block synchronized by PXE. That should be close to the chain\n/// tip as block synchronization is performed before contract function simulation is done.\n///\n/// Receives the address of the contract on which discovery is performed along with its\n/// `compute_note_hash_and_nullifier` function.\npub unconstrained fn discover_new_messages<Env>(\n contract_address: AztecAddress,\n compute_note_hash_and_nullifier: ComputeNoteHashAndNullifier<Env>,\n) {\n debug_log(\"Performing message discovery\");\n\n // First we process all private logs, which can contain different kinds of messages e.g. private notes, partial\n // notes, private events, etc.\n let mut logs = get_private_logs(contract_address);\n logs.for_each(|i, pending_tagged_log: PendingTaggedLog| {\n debug_log_format(\n \"Processing log with tag {0}\",\n [pending_tagged_log.log.get(0)],\n );\n\n // We remove the tag from the pending tagged log and process the message ciphertext contained in it.\n let message_ciphertext = array::subbvec(pending_tagged_log.log, 1);\n\n process_message_ciphertext(\n contract_address,\n compute_note_hash_and_nullifier,\n message_ciphertext,\n pending_tagged_log.context,\n );\n logs.remove(i);\n });\n\n // Then we process all pending partial notes, regardless of whether they were found in the current or previous\n // executions.\n partial_notes::fetch_and_process_partial_note_completion_logs(\n contract_address,\n compute_note_hash_and_nullifier,\n );\n\n // Finally we validate all notes and events that were found as part of the previous processes, resulting in them\n // being added to PXE's database and retrievable via oracles (get_notes) and our TS API (PXE::getPrivateEvents).\n validate_enqueued_notes_and_events(contract_address);\n}\n"
4453
4445
  },
4454
4446
  "127": {
4455
4447
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/messages/discovery/nonce_discovery.nr",
4456
- "source": "use crate::messages::discovery::{ComputeNoteHashAndNullifier, private_notes::MAX_NOTE_PACKED_LEN};\n\nuse dep::protocol_types::{\n address::AztecAddress,\n constants::MAX_NOTE_HASHES_PER_TX,\n debug_log::debug_log_format,\n hash::{compute_note_hash_nonce, compute_siloed_note_hash, compute_unique_note_hash},\n traits::ToField,\n};\n\n/// A struct with the discovered information of a complete note, required for delivery to PXE. Note that this is *not*\n/// the complete note information, since it does not include content, storage slot, etc.\npub struct DiscoveredNoteInfo {\n pub note_nonce: Field,\n pub note_hash: Field,\n pub inner_nullifier: Field,\n}\n\n/// Searches for note nonces that will result in a note that was emitted in a transaction. While rare, it is possible\n/// for multiple notes to have the exact same packed content and storage slot but different nonces, resulting in\n/// different unique note hashes. Because of this this function returns a *vector* of discovered notes, though in most\n/// cases it will contain a single element.\n///\n/// Due to how nonces are computed, this function requires knowledge of the transaction in which the note was created,\n/// more specifically the list of all unique note hashes in it plus the value of its first nullifier.\npub unconstrained fn attempt_note_nonce_discovery<Env>(\n unique_note_hashes_in_tx: BoundedVec<Field, MAX_NOTE_HASHES_PER_TX>,\n first_nullifier_in_tx: Field,\n compute_note_hash_and_nullifier: ComputeNoteHashAndNullifier<Env>,\n contract_address: AztecAddress,\n storage_slot: Field,\n note_type_id: Field,\n packed_note: BoundedVec<Field, MAX_NOTE_PACKED_LEN>,\n) -> BoundedVec<DiscoveredNoteInfo, MAX_NOTE_HASHES_PER_TX> {\n let discovered_notes = &mut BoundedVec::new();\n\n debug_log_format(\n \"Attempting nonce discovery on {0} potential notes on contract {1} for storage slot {2}\",\n [unique_note_hashes_in_tx.len() as Field, contract_address.to_field(), storage_slot],\n );\n\n // We need to find nonces (typically just one) that result in a note hash that, once siloed into a unique note hash,\n // is one of the note hashes created by the transaction.\n unique_note_hashes_in_tx.for_eachi(|i, expected_unique_note_hash| {\n // Nonces are computed by hashing the first nullifier in the transaction with the index of the note in the\n // new note hashes array. We therefore know for each note in every transaction what its nonce is.\n let candidate_nonce = compute_note_hash_nonce(first_nullifier_in_tx, i);\n\n // Given note nonce, note content and metadata, we can compute the note hash and silo it to check if it matches\n // the note hash at the array index we're currently processing.\n // TODO(#11157): handle failed note_hash_and_nullifier computation\n let hashes = compute_note_hash_and_nullifier(\n packed_note,\n storage_slot,\n note_type_id,\n contract_address,\n candidate_nonce,\n )\n .expect(f\"Failed to compute a note hash for note type {note_type_id}\");\n\n let siloed_note_hash = compute_siloed_note_hash(contract_address, hashes.note_hash);\n let unique_note_hash = compute_unique_note_hash(candidate_nonce, siloed_note_hash);\n\n if unique_note_hash == expected_unique_note_hash {\n // Note that while we did check that the note hash is the preimage of the expected unique note hash, we\n // perform no validations on the nullifier - we fundamentally cannot, since only the application knows\n // how to compute nullifiers. We simply trust it to have provided the correct one: if it hasn't, then\n // PXE may fail to realize that a given note has been nullified already, and calls to the application\n // could result in invalid transactions (with duplicate nullifiers). This is not a concern because an\n // application already has more direct means of making a call to it fail the transaction.\n discovered_notes.push(\n DiscoveredNoteInfo {\n note_nonce: candidate_nonce,\n note_hash: hashes.note_hash,\n inner_nullifier: hashes.inner_nullifier,\n },\n );\n\n // We don't exit the loop - it is possible (though rare) for the exact same note content to be present\n // multiple times in the same transaction with different nonces. This typically doesn't happen due to\n // notes containing random values in order to hide their contents.\n }\n });\n\n debug_log_format(\n \"Found valid nonces for a total of {0} notes\",\n [discovered_notes.len() as Field],\n );\n\n *discovered_notes\n}\n\nmod test {\n use crate::{\n messages::discovery::{NoteHashAndNullifier, private_notes::MAX_NOTE_PACKED_LEN},\n note::{\n note_interface::{NoteHash, NoteType},\n note_metadata::SettledNoteMetadata,\n retrieved_note::RetrievedNote,\n utils::compute_note_hash_for_nullification,\n },\n oracle::random::random,\n test::mocks::mock_note::MockNote,\n utils::array,\n };\n\n use dep::protocol_types::{\n address::AztecAddress,\n hash::{compute_note_hash_nonce, compute_siloed_note_hash, compute_unique_note_hash},\n traits::{FromField, Packable},\n };\n\n use super::attempt_note_nonce_discovery;\n\n // This implementation could be simpler, but this serves as a nice example of the expected flow in a real\n // implementation, and as a sanity check that the interface is sufficient.\n unconstrained fn compute_note_hash_and_nullifier(\n packed_note: BoundedVec<Field, MAX_NOTE_PACKED_LEN>,\n storage_slot: Field,\n note_type_id: Field,\n contract_address: AztecAddress,\n note_nonce: Field,\n ) -> Option<NoteHashAndNullifier> {\n if note_type_id == MockNote::get_id() {\n let note = MockNote::unpack(array::subarray(packed_note.storage(), 0));\n let note_hash = note.compute_note_hash(storage_slot);\n\n let note_hash_for_nullification = compute_note_hash_for_nullification(\n RetrievedNote {\n note,\n contract_address,\n metadata: SettledNoteMetadata::new(note_nonce).into(),\n },\n storage_slot,\n );\n\n let inner_nullifier = note.compute_nullifier_unconstrained(note_hash_for_nullification);\n\n Option::some(NoteHashAndNullifier { note_hash, inner_nullifier })\n } else {\n Option::none()\n }\n }\n\n global VALUE: Field = 7;\n global FIRST_NULLIFIER_IN_TX: Field = 47;\n global CONTRACT_ADDRESS: AztecAddress = AztecAddress::from_field(13);\n global STORAGE_SLOT: Field = 99;\n\n #[test]\n unconstrained fn no_note_hashes() {\n let unique_note_hashes_in_tx = BoundedVec::new();\n let packed_note = BoundedVec::new();\n\n let discovered_notes = attempt_note_nonce_discovery(\n unique_note_hashes_in_tx,\n FIRST_NULLIFIER_IN_TX,\n compute_note_hash_and_nullifier,\n CONTRACT_ADDRESS,\n STORAGE_SLOT,\n MockNote::get_id(),\n packed_note,\n );\n\n assert_eq(discovered_notes.len(), 0);\n }\n\n #[test(should_fail_with = \"Failed to compute a note hash\")]\n unconstrained fn failed_hash_computation() {\n let unique_note_hashes_in_tx = BoundedVec::from_array([random()]);\n let packed_note = BoundedVec::new();\n let note_type_id = 0; // This note type id is unknown to compute_note_hash_and_nullifier\n\n let discovered_notes = attempt_note_nonce_discovery(\n unique_note_hashes_in_tx,\n FIRST_NULLIFIER_IN_TX,\n compute_note_hash_and_nullifier,\n CONTRACT_ADDRESS,\n STORAGE_SLOT,\n note_type_id,\n packed_note,\n );\n\n assert_eq(discovered_notes.len(), 0);\n }\n\n struct NoteAndData {\n note: MockNote,\n note_nonce: Field,\n note_hash: Field,\n unique_note_hash: Field,\n inner_nullifier: Field,\n }\n\n unconstrained fn construct_note(value: Field, note_index_in_tx: u32) -> NoteAndData {\n let note_nonce = compute_note_hash_nonce(FIRST_NULLIFIER_IN_TX, note_index_in_tx);\n\n let retrieved_note = MockNote::new(value)\n .contract_address(CONTRACT_ADDRESS)\n .note_metadata(SettledNoteMetadata::new(note_nonce).into())\n .build_retrieved_note();\n let note = retrieved_note.note;\n\n let note_hash = note.compute_note_hash(STORAGE_SLOT);\n let unique_note_hash = compute_unique_note_hash(\n note_nonce,\n compute_siloed_note_hash(CONTRACT_ADDRESS, note_hash),\n );\n let inner_nullifier = note.compute_nullifier_unconstrained(\n compute_note_hash_for_nullification(retrieved_note, STORAGE_SLOT),\n );\n\n NoteAndData { note, note_nonce, note_hash, unique_note_hash, inner_nullifier }\n }\n\n #[test]\n unconstrained fn single_note() {\n let note_index_in_tx = 2;\n let note_and_data = construct_note(VALUE, note_index_in_tx);\n\n let mut unique_note_hashes_in_tx = BoundedVec::from_array([\n random(), random(), random(), random(), random(), random(), random(),\n ]);\n unique_note_hashes_in_tx.set(note_index_in_tx, note_and_data.unique_note_hash);\n\n let discovered_notes = attempt_note_nonce_discovery(\n unique_note_hashes_in_tx,\n FIRST_NULLIFIER_IN_TX,\n compute_note_hash_and_nullifier,\n CONTRACT_ADDRESS,\n STORAGE_SLOT,\n MockNote::get_id(),\n BoundedVec::from_array(note_and_data.note.pack()),\n );\n\n assert_eq(discovered_notes.len(), 1);\n let discovered_note = discovered_notes.get(0);\n\n assert_eq(discovered_note.note_nonce, note_and_data.note_nonce);\n assert_eq(discovered_note.note_hash, note_and_data.note_hash);\n assert_eq(discovered_note.inner_nullifier, note_and_data.inner_nullifier);\n }\n\n #[test]\n unconstrained fn multiple_notes_same_preimage() {\n let first_note_index_in_tx = 3;\n let first_note_and_data = construct_note(VALUE, first_note_index_in_tx);\n\n let second_note_index_in_tx = 5;\n let second_note_and_data = construct_note(VALUE, second_note_index_in_tx);\n\n // Both notes have the same preimage (and therefore packed representation), so both should be found in the same\n // call.\n assert_eq(first_note_and_data.note, second_note_and_data.note);\n let packed_note = first_note_and_data.note.pack();\n\n let mut unique_note_hashes_in_tx = BoundedVec::from_array([\n random(), random(), random(), random(), random(), random(), random(),\n ]);\n unique_note_hashes_in_tx.set(first_note_index_in_tx, first_note_and_data.unique_note_hash);\n unique_note_hashes_in_tx.set(second_note_index_in_tx, second_note_and_data.unique_note_hash);\n\n let discovered_notes = attempt_note_nonce_discovery(\n unique_note_hashes_in_tx,\n FIRST_NULLIFIER_IN_TX,\n compute_note_hash_and_nullifier,\n CONTRACT_ADDRESS,\n STORAGE_SLOT,\n MockNote::get_id(),\n BoundedVec::from_array(packed_note),\n );\n\n assert_eq(discovered_notes.len(), 2);\n\n assert(discovered_notes.any(|discovered_note| {\n (discovered_note.note_nonce == first_note_and_data.note_nonce)\n & (discovered_note.note_hash == first_note_and_data.note_hash)\n & (discovered_note.inner_nullifier == first_note_and_data.inner_nullifier)\n }));\n\n assert(discovered_notes.any(|discovered_note| {\n (discovered_note.note_nonce == second_note_and_data.note_nonce)\n & (discovered_note.note_hash == second_note_and_data.note_hash)\n & (discovered_note.inner_nullifier == second_note_and_data.inner_nullifier)\n }));\n }\n}\n"
4448
+ "source": "use crate::messages::discovery::{ComputeNoteHashAndNullifier, private_notes::MAX_NOTE_PACKED_LEN};\n\nuse dep::protocol_types::{\n address::AztecAddress,\n constants::MAX_NOTE_HASHES_PER_TX,\n debug_log::debug_log_format,\n hash::{compute_note_hash_nonce, compute_siloed_note_hash, compute_unique_note_hash},\n traits::ToField,\n};\n\n/// A struct with the discovered information of a complete note, required for delivery to PXE. Note that this is *not*\n/// the complete note information, since it does not include content, storage slot, etc.\npub struct DiscoveredNoteInfo {\n pub note_nonce: Field,\n pub note_hash: Field,\n pub inner_nullifier: Field,\n}\n\n/// Searches for note nonces that will result in a note that was emitted in a transaction. While rare, it is possible\n/// for multiple notes to have the exact same packed content and storage slot but different nonces, resulting in\n/// different unique note hashes. Because of this this function returns a *vector* of discovered notes, though in most\n/// cases it will contain a single element.\n///\n/// Due to how nonces are computed, this function requires knowledge of the transaction in which the note was created,\n/// more specifically the list of all unique note hashes in it plus the value of its first nullifier.\npub unconstrained fn attempt_note_nonce_discovery<Env>(\n unique_note_hashes_in_tx: BoundedVec<Field, MAX_NOTE_HASHES_PER_TX>,\n first_nullifier_in_tx: Field,\n compute_note_hash_and_nullifier: ComputeNoteHashAndNullifier<Env>,\n contract_address: AztecAddress,\n storage_slot: Field,\n randomness: Field,\n note_type_id: Field,\n packed_note: BoundedVec<Field, MAX_NOTE_PACKED_LEN>,\n) -> BoundedVec<DiscoveredNoteInfo, MAX_NOTE_HASHES_PER_TX> {\n let discovered_notes = &mut BoundedVec::new();\n\n debug_log_format(\n \"Attempting nonce discovery on {0} potential notes on contract {1} for storage slot {2}\",\n [unique_note_hashes_in_tx.len() as Field, contract_address.to_field(), storage_slot],\n );\n\n // We need to find nonces (typically just one) that result in a note hash that, once siloed into a unique note hash,\n // is one of the note hashes created by the transaction.\n unique_note_hashes_in_tx.for_eachi(|i, expected_unique_note_hash| {\n // Nonces are computed by hashing the first nullifier in the transaction with the index of the note in the\n // new note hashes array. We therefore know for each note in every transaction what its nonce is.\n let candidate_nonce = compute_note_hash_nonce(first_nullifier_in_tx, i);\n\n // Given note nonce, note content and metadata, we can compute the note hash and silo it to check if it matches\n // the note hash at the array index we're currently processing.\n // TODO(#11157): handle failed note_hash_and_nullifier computation\n let hashes = compute_note_hash_and_nullifier(\n packed_note,\n storage_slot,\n note_type_id,\n contract_address,\n randomness,\n candidate_nonce,\n )\n .expect(f\"Failed to compute a note hash for note type {note_type_id}\");\n\n let siloed_note_hash = compute_siloed_note_hash(contract_address, hashes.note_hash);\n let unique_note_hash = compute_unique_note_hash(candidate_nonce, siloed_note_hash);\n\n if unique_note_hash == expected_unique_note_hash {\n // Note that while we did check that the note hash is the preimage of the expected unique note hash, we\n // perform no validations on the nullifier - we fundamentally cannot, since only the application knows\n // how to compute nullifiers. We simply trust it to have provided the correct one: if it hasn't, then\n // PXE may fail to realize that a given note has been nullified already, and calls to the application\n // could result in invalid transactions (with duplicate nullifiers). This is not a concern because an\n // application already has more direct means of making a call to it fail the transaction.\n discovered_notes.push(\n DiscoveredNoteInfo {\n note_nonce: candidate_nonce,\n note_hash: hashes.note_hash,\n inner_nullifier: hashes.inner_nullifier,\n },\n );\n\n // We don't exit the loop - it is possible (though rare) for the exact same note content to be present\n // multiple times in the same transaction with different nonces. This typically doesn't happen due to\n // notes containing random values in order to hide their contents.\n }\n });\n\n debug_log_format(\n \"Found valid nonces for a total of {0} notes\",\n [discovered_notes.len() as Field],\n );\n\n *discovered_notes\n}\n\nmod test {\n use crate::{\n messages::discovery::{NoteHashAndNullifier, private_notes::MAX_NOTE_PACKED_LEN},\n note::{\n note_interface::{NoteHash, NoteType},\n note_metadata::SettledNoteMetadata,\n retrieved_note::RetrievedNote,\n utils::compute_note_hash_for_nullification,\n },\n oracle::random::random,\n test::mocks::mock_note::MockNote,\n utils::array,\n };\n\n use dep::protocol_types::{\n address::AztecAddress,\n hash::{compute_note_hash_nonce, compute_siloed_note_hash, compute_unique_note_hash},\n traits::{FromField, Packable},\n };\n\n use super::attempt_note_nonce_discovery;\n\n // This implementation could be simpler, but this serves as a nice example of the expected flow in a real\n // implementation, and as a sanity check that the interface is sufficient.\n unconstrained fn compute_note_hash_and_nullifier(\n packed_note: BoundedVec<Field, MAX_NOTE_PACKED_LEN>,\n storage_slot: Field,\n note_type_id: Field,\n contract_address: AztecAddress,\n randomness: Field,\n note_nonce: Field,\n ) -> Option<NoteHashAndNullifier> {\n if note_type_id == MockNote::get_id() {\n let note = MockNote::unpack(array::subarray(packed_note.storage(), 0));\n let note_hash = note.compute_note_hash(storage_slot, randomness);\n\n let note_hash_for_nullification = compute_note_hash_for_nullification(\n RetrievedNote {\n note,\n contract_address,\n randomness,\n metadata: SettledNoteMetadata::new(note_nonce).into(),\n },\n storage_slot,\n );\n\n let inner_nullifier = note.compute_nullifier_unconstrained(note_hash_for_nullification);\n\n Option::some(NoteHashAndNullifier { note_hash, inner_nullifier })\n } else {\n Option::none()\n }\n }\n\n global VALUE: Field = 7;\n global FIRST_NULLIFIER_IN_TX: Field = 47;\n global CONTRACT_ADDRESS: AztecAddress = AztecAddress::from_field(13);\n global STORAGE_SLOT: Field = 99;\n global RANDOMNESS: Field = 99;\n\n #[test]\n unconstrained fn no_note_hashes() {\n let unique_note_hashes_in_tx = BoundedVec::new();\n let packed_note = BoundedVec::new();\n\n let discovered_notes = attempt_note_nonce_discovery(\n unique_note_hashes_in_tx,\n FIRST_NULLIFIER_IN_TX,\n compute_note_hash_and_nullifier,\n CONTRACT_ADDRESS,\n STORAGE_SLOT,\n RANDOMNESS,\n MockNote::get_id(),\n packed_note,\n );\n\n assert_eq(discovered_notes.len(), 0);\n }\n\n #[test(should_fail_with = \"Failed to compute a note hash\")]\n unconstrained fn failed_hash_computation() {\n let unique_note_hashes_in_tx = BoundedVec::from_array([random()]);\n let packed_note = BoundedVec::new();\n let note_type_id = 0; // This note type id is unknown to compute_note_hash_and_nullifier\n\n let discovered_notes = attempt_note_nonce_discovery(\n unique_note_hashes_in_tx,\n FIRST_NULLIFIER_IN_TX,\n compute_note_hash_and_nullifier,\n CONTRACT_ADDRESS,\n STORAGE_SLOT,\n RANDOMNESS,\n note_type_id,\n packed_note,\n );\n\n assert_eq(discovered_notes.len(), 0);\n }\n\n struct NoteAndData {\n note: MockNote,\n note_nonce: Field,\n note_hash: Field,\n unique_note_hash: Field,\n inner_nullifier: Field,\n }\n\n unconstrained fn construct_note(value: Field, note_index_in_tx: u32) -> NoteAndData {\n let note_nonce = compute_note_hash_nonce(FIRST_NULLIFIER_IN_TX, note_index_in_tx);\n\n let retrieved_note = MockNote::new(value)\n .contract_address(CONTRACT_ADDRESS)\n .randomness(RANDOMNESS)\n .note_metadata(SettledNoteMetadata::new(note_nonce).into())\n .build_retrieved_note();\n let note = retrieved_note.note;\n\n let note_hash = note.compute_note_hash(STORAGE_SLOT, RANDOMNESS);\n let unique_note_hash = compute_unique_note_hash(\n note_nonce,\n compute_siloed_note_hash(CONTRACT_ADDRESS, note_hash),\n );\n let inner_nullifier = note.compute_nullifier_unconstrained(\n compute_note_hash_for_nullification(retrieved_note, STORAGE_SLOT),\n );\n\n NoteAndData { note, note_nonce, note_hash, unique_note_hash, inner_nullifier }\n }\n\n #[test]\n unconstrained fn single_note() {\n let note_index_in_tx = 2;\n let note_and_data = construct_note(VALUE, note_index_in_tx);\n\n let mut unique_note_hashes_in_tx = BoundedVec::from_array([\n random(), random(), random(), random(), random(), random(), random(),\n ]);\n unique_note_hashes_in_tx.set(note_index_in_tx, note_and_data.unique_note_hash);\n\n let discovered_notes = attempt_note_nonce_discovery(\n unique_note_hashes_in_tx,\n FIRST_NULLIFIER_IN_TX,\n compute_note_hash_and_nullifier,\n CONTRACT_ADDRESS,\n STORAGE_SLOT,\n RANDOMNESS,\n MockNote::get_id(),\n BoundedVec::from_array(note_and_data.note.pack()),\n );\n\n assert_eq(discovered_notes.len(), 1);\n let discovered_note = discovered_notes.get(0);\n\n assert_eq(discovered_note.note_nonce, note_and_data.note_nonce);\n assert_eq(discovered_note.note_hash, note_and_data.note_hash);\n assert_eq(discovered_note.inner_nullifier, note_and_data.inner_nullifier);\n }\n\n #[test]\n unconstrained fn multiple_notes_same_preimage() {\n let first_note_index_in_tx = 3;\n let first_note_and_data = construct_note(VALUE, first_note_index_in_tx);\n\n let second_note_index_in_tx = 5;\n let second_note_and_data = construct_note(VALUE, second_note_index_in_tx);\n\n // Both notes have the same preimage (and therefore packed representation), so both should be found in the same\n // call.\n assert_eq(first_note_and_data.note, second_note_and_data.note);\n let packed_note = first_note_and_data.note.pack();\n\n let mut unique_note_hashes_in_tx = BoundedVec::from_array([\n random(), random(), random(), random(), random(), random(), random(),\n ]);\n unique_note_hashes_in_tx.set(first_note_index_in_tx, first_note_and_data.unique_note_hash);\n unique_note_hashes_in_tx.set(second_note_index_in_tx, second_note_and_data.unique_note_hash);\n\n let discovered_notes = attempt_note_nonce_discovery(\n unique_note_hashes_in_tx,\n FIRST_NULLIFIER_IN_TX,\n compute_note_hash_and_nullifier,\n CONTRACT_ADDRESS,\n STORAGE_SLOT,\n RANDOMNESS,\n MockNote::get_id(),\n BoundedVec::from_array(packed_note),\n );\n\n assert_eq(discovered_notes.len(), 2);\n\n assert(discovered_notes.any(|discovered_note| {\n (discovered_note.note_nonce == first_note_and_data.note_nonce)\n & (discovered_note.note_hash == first_note_and_data.note_hash)\n & (discovered_note.inner_nullifier == first_note_and_data.inner_nullifier)\n }));\n\n assert(discovered_notes.any(|discovered_note| {\n (discovered_note.note_nonce == second_note_and_data.note_nonce)\n & (discovered_note.note_hash == second_note_and_data.note_hash)\n & (discovered_note.inner_nullifier == second_note_and_data.inner_nullifier)\n }));\n }\n}\n"
4457
4449
  },
4458
4450
  "128": {
4459
4451
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/messages/discovery/partial_notes.nr",
4460
- "source": "use crate::{\n capsules::CapsuleArray,\n messages::{\n discovery::{ComputeNoteHashAndNullifier, nonce_discovery::attempt_note_nonce_discovery},\n encoding::MAX_MESSAGE_CONTENT_LEN,\n processing::{\n enqueue_note_for_validation, get_pending_partial_notes_completion_logs,\n log_retrieval_response::LogRetrievalResponse,\n },\n },\n utils::array,\n};\n\nuse protocol_types::{\n address::AztecAddress,\n debug_log::debug_log_format,\n hash::sha256_to_field,\n traits::{Deserialize, Serialize},\n};\n\nglobal PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NON_NOTE_FIELDS_LEN: u32 = 2;\n\n/// Partial notes have a maximum packed length of their private fields bound by extra content in their private message\n/// (e.g. the storage slot, note completion log tag, etc.).\npub global MAX_PARTIAL_NOTE_PRIVATE_PACKED_LEN: u32 =\n MAX_MESSAGE_CONTENT_LEN - PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NON_NOTE_FIELDS_LEN;\n\n/// The slot in the PXE capsules where we store a `CapsuleArray` of `DeliveredPendingPartialNote`.\npub global DELIVERED_PENDING_PARTIAL_NOTE_ARRAY_LENGTH_CAPSULES_SLOT: Field = sha256_to_field(\n \"AZTEC_NR::DELIVERED_PENDING_PARTIAL_NOTE_ARRAY_LENGTH_CAPSULES_SLOT\".as_bytes(),\n);\n\n/// A partial note that was delivered but is still pending completion. Contains the information necessary to find the\n/// log that will complete it and lead to a note being discovered and delivered.\n#[derive(Serialize, Deserialize)]\npub(crate) struct DeliveredPendingPartialNote {\n pub(crate) note_completion_log_tag: Field,\n pub(crate) storage_slot: Field,\n pub(crate) note_type_id: Field,\n pub(crate) packed_private_note_content: BoundedVec<Field, MAX_PARTIAL_NOTE_PRIVATE_PACKED_LEN>,\n pub(crate) recipient: AztecAddress,\n}\n\npub unconstrained fn process_partial_note_private_msg(\n contract_address: AztecAddress,\n recipient: AztecAddress,\n msg_metadata: u64,\n msg_content: BoundedVec<Field, MAX_MESSAGE_CONTENT_LEN>,\n) {\n let (note_type_id, storage_slot, note_completion_log_tag, packed_private_note_content) =\n decode_partial_note_private_msg(msg_metadata, msg_content);\n\n // We store the information of the partial note we found in a persistent capsule in PXE, so that we can later search\n // for the public log that will complete it.\n let pending = DeliveredPendingPartialNote {\n note_completion_log_tag,\n storage_slot,\n note_type_id,\n packed_private_note_content,\n recipient,\n };\n\n CapsuleArray::at(\n contract_address,\n DELIVERED_PENDING_PARTIAL_NOTE_ARRAY_LENGTH_CAPSULES_SLOT,\n )\n .push(pending);\n}\n\n/// Searches for logs that would result in the completion of pending partial notes, ultimately resulting in the notes\n/// being delivered to PXE if completed.\npub unconstrained fn fetch_and_process_partial_note_completion_logs<Env>(\n contract_address: AztecAddress,\n compute_note_hash_and_nullifier: ComputeNoteHashAndNullifier<Env>,\n) {\n let pending_partial_notes = CapsuleArray::at(\n contract_address,\n DELIVERED_PENDING_PARTIAL_NOTE_ARRAY_LENGTH_CAPSULES_SLOT,\n );\n\n debug_log_format(\n \"{} pending partial notes\",\n [pending_partial_notes.len() as Field],\n );\n\n // Each of the pending partial notes might get completed by a log containing its public values. For performance\n // reasons, we fetch all of these logs concurrently and then process them one by one, minimizing the amount of time\n // waiting for the node roundtrip.\n let maybe_completion_logs =\n get_pending_partial_notes_completion_logs(contract_address, pending_partial_notes);\n\n // Each entry in the maybe completion logs array corresponds to the entry in the pending partial notes array at the\n // same index. This means we can use the same index as we iterate through the responses to get both the partial note\n // and the log that might complete it.\n assert_eq(maybe_completion_logs.len(), pending_partial_notes.len());\n\n maybe_completion_logs.for_each(|i, maybe_log: Option<LogRetrievalResponse>| {\n // We clear the completion logs as we read them so that the array is empty by the time we next query it.\n // TODO(#14943): use volatile arrays to avoid having to manually clear this.\n maybe_completion_logs.remove(i);\n\n let pending_partial_note = pending_partial_notes.get(i);\n\n if maybe_log.is_none() {\n debug_log_format(\n \"Found no completion logs for partial note with tag {}\",\n [pending_partial_note.note_completion_log_tag],\n );\n\n // Note that we're not removing the pending partial note from the capsule array, so we will continue\n // searching for this tagged log when performing message discovery in the future until we either find it or\n // the entry is somehow removed from the array.\n } else {\n debug_log_format(\n \"Completion log found for partial note with tag {}\",\n [pending_partial_note.note_completion_log_tag],\n );\n let log = maybe_log.unwrap();\n\n // Public fields are assumed to all be placed at the end of the packed representation, so we combine the\n // private and public packed fields (i.e. the contents of the private message and public log plaintext to get\n // the complete packed content.\n let complete_packed_note = array::append(\n pending_partial_note.packed_private_note_content,\n log.log_payload,\n );\n\n let discovered_notes = attempt_note_nonce_discovery(\n log.unique_note_hashes_in_tx,\n log.first_nullifier_in_tx,\n compute_note_hash_and_nullifier,\n contract_address,\n pending_partial_note.storage_slot,\n pending_partial_note.note_type_id,\n complete_packed_note,\n );\n\n // TODO(#11627): is there anything reasonable we can do if we get a log but it doesn't result in a note\n // being found?\n if discovered_notes.len() == 0 {\n panic(\n f\"A partial note's completion log did not result in any notes being found - this should never happen\",\n );\n }\n\n debug_log_format(\n \"Discovered {0} notes for partial note with tag {1}\",\n [discovered_notes.len() as Field, pending_partial_note.note_completion_log_tag],\n );\n\n discovered_notes.for_each(|discovered_note| {\n enqueue_note_for_validation(\n contract_address,\n pending_partial_note.storage_slot,\n discovered_note.note_nonce,\n complete_packed_note,\n discovered_note.note_hash,\n discovered_note.inner_nullifier,\n log.tx_hash,\n pending_partial_note.recipient,\n );\n });\n\n // Because there is only a single log for a given tag, once we've processed the tagged log then we\n // simply delete the pending work entry, regardless of whether it was actually completed or not.\n pending_partial_notes.remove(i);\n }\n });\n}\n\nfn decode_partial_note_private_msg(\n msg_metadata: u64,\n msg_content: BoundedVec<Field, MAX_MESSAGE_CONTENT_LEN>,\n) -> (Field, Field, Field, BoundedVec<Field, MAX_PARTIAL_NOTE_PRIVATE_PACKED_LEN>) {\n let note_type_id = msg_metadata as Field; // TODO: make note type id not be a full field\n\n assert(\n msg_content.len() > PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NON_NOTE_FIELDS_LEN,\n f\"Invalid private note message: all partial note private messages must have at least {PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NON_NOTE_FIELDS_LEN} fields\",\n );\n\n // If PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NON_NOTE_FIELDS_LEN is changed, causing the assertion below to fail, then the\n // destructuring of the partial note private message encoding below must be updated as well.\n std::static_assert(\n PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NON_NOTE_FIELDS_LEN == 2,\n \"unexpected value for PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NON_NOTE_FIELDS_LEN\",\n );\n\n // We currently have two fields that are not the partial note's packed representation, which are the storage slot\n // and the note completion log tag.\n let storage_slot = msg_content.get(0);\n let note_completion_log_tag = msg_content.get(1);\n\n let packed_private_note_content = array::subbvec(msg_content, 2);\n\n (note_type_id, storage_slot, note_completion_log_tag, packed_private_note_content)\n}\n"
4452
+ "source": "use crate::{\n capsules::CapsuleArray,\n messages::{\n discovery::{ComputeNoteHashAndNullifier, nonce_discovery::attempt_note_nonce_discovery},\n encoding::MAX_MESSAGE_CONTENT_LEN,\n processing::{\n enqueue_note_for_validation, get_pending_partial_notes_completion_logs,\n log_retrieval_response::LogRetrievalResponse,\n },\n },\n utils::array,\n};\n\nuse protocol_types::{\n address::AztecAddress,\n debug_log::debug_log_format,\n hash::sha256_to_field,\n traits::{Deserialize, Serialize},\n};\n\n/// storage slot, randomness, note_completion_log_tag\nglobal PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NON_NOTE_FIELDS_LEN: u32 = 3;\nglobal PARTIAL_NOTE_PRIVATE_MSG_CONTENT_STORAGE_SLOT_INDEX: u32 = 0;\nglobal PARTIAL_NOTE_PRIVATE_MSG_CONTENT_RANDOMNESS_INDEX: u32 = 1;\nglobal PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NOTE_COMPLETION_LOG_TAG_INDEX: u32 = 2;\n\n/// Partial notes have a maximum packed length of their private fields bound by extra content in their private message\n/// (e.g. the storage slot, note completion log tag, etc.).\npub global MAX_PARTIAL_NOTE_PRIVATE_PACKED_LEN: u32 =\n MAX_MESSAGE_CONTENT_LEN - PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NON_NOTE_FIELDS_LEN;\n\n/// The slot in the PXE capsules where we store a `CapsuleArray` of `DeliveredPendingPartialNote`.\npub global DELIVERED_PENDING_PARTIAL_NOTE_ARRAY_LENGTH_CAPSULES_SLOT: Field = sha256_to_field(\n \"AZTEC_NR::DELIVERED_PENDING_PARTIAL_NOTE_ARRAY_LENGTH_CAPSULES_SLOT\".as_bytes(),\n);\n\n/// A partial note that was delivered but is still pending completion. Contains the information necessary to find the\n/// log that will complete it and lead to a note being discovered and delivered.\n#[derive(Serialize, Deserialize)]\npub(crate) struct DeliveredPendingPartialNote {\n pub(crate) note_completion_log_tag: Field,\n pub(crate) storage_slot: Field,\n pub(crate) randomness: Field,\n pub(crate) note_type_id: Field,\n pub(crate) packed_private_note_content: BoundedVec<Field, MAX_PARTIAL_NOTE_PRIVATE_PACKED_LEN>,\n pub(crate) recipient: AztecAddress,\n}\n\npub unconstrained fn process_partial_note_private_msg(\n contract_address: AztecAddress,\n recipient: AztecAddress,\n msg_metadata: u64,\n msg_content: BoundedVec<Field, MAX_MESSAGE_CONTENT_LEN>,\n) {\n // We store the information of the partial note we found in a persistent capsule in PXE, so that we can later search\n // for the public log that will complete it.\n let pending = decode_partial_note_private_msg(msg_metadata, msg_content, recipient);\n\n CapsuleArray::at(\n contract_address,\n DELIVERED_PENDING_PARTIAL_NOTE_ARRAY_LENGTH_CAPSULES_SLOT,\n )\n .push(pending);\n}\n\n/// Searches for logs that would result in the completion of pending partial notes, ultimately resulting in the notes\n/// being delivered to PXE if completed.\npub unconstrained fn fetch_and_process_partial_note_completion_logs<Env>(\n contract_address: AztecAddress,\n compute_note_hash_and_nullifier: ComputeNoteHashAndNullifier<Env>,\n) {\n let pending_partial_notes = CapsuleArray::at(\n contract_address,\n DELIVERED_PENDING_PARTIAL_NOTE_ARRAY_LENGTH_CAPSULES_SLOT,\n );\n\n debug_log_format(\n \"{} pending partial notes\",\n [pending_partial_notes.len() as Field],\n );\n\n // Each of the pending partial notes might get completed by a log containing its public values. For performance\n // reasons, we fetch all of these logs concurrently and then process them one by one, minimizing the amount of time\n // waiting for the node roundtrip.\n let maybe_completion_logs =\n get_pending_partial_notes_completion_logs(contract_address, pending_partial_notes);\n\n // Each entry in the maybe completion logs array corresponds to the entry in the pending partial notes array at the\n // same index. This means we can use the same index as we iterate through the responses to get both the partial note\n // and the log that might complete it.\n assert_eq(maybe_completion_logs.len(), pending_partial_notes.len());\n\n maybe_completion_logs.for_each(|i, maybe_log: Option<LogRetrievalResponse>| {\n // We clear the completion logs as we read them so that the array is empty by the time we next query it.\n // TODO(#14943): use volatile arrays to avoid having to manually clear this.\n maybe_completion_logs.remove(i);\n\n let pending_partial_note = pending_partial_notes.get(i);\n\n if maybe_log.is_none() {\n debug_log_format(\n \"Found no completion logs for partial note with tag {}\",\n [pending_partial_note.note_completion_log_tag],\n );\n\n // Note that we're not removing the pending partial note from the capsule array, so we will continue\n // searching for this tagged log when performing message discovery in the future until we either find it or\n // the entry is somehow removed from the array.\n } else {\n debug_log_format(\n \"Completion log found for partial note with tag {}\",\n [pending_partial_note.note_completion_log_tag],\n );\n let log = maybe_log.unwrap();\n\n // Public fields are assumed to all be placed at the end of the packed representation, so we combine the\n // private and public packed fields (i.e. the contents of the private message and public log plaintext to get\n // the complete packed content.\n let complete_packed_note = array::append(\n pending_partial_note.packed_private_note_content,\n log.log_payload,\n );\n\n let discovered_notes = attempt_note_nonce_discovery(\n log.unique_note_hashes_in_tx,\n log.first_nullifier_in_tx,\n compute_note_hash_and_nullifier,\n contract_address,\n pending_partial_note.storage_slot,\n pending_partial_note.randomness,\n pending_partial_note.note_type_id,\n complete_packed_note,\n );\n\n // TODO(#11627): is there anything reasonable we can do if we get a log but it doesn't result in a note\n // being found?\n if discovered_notes.len() == 0 {\n panic(\n f\"A partial note's completion log did not result in any notes being found - this should never happen\",\n );\n }\n\n debug_log_format(\n \"Discovered {0} notes for partial note with tag {1}\",\n [discovered_notes.len() as Field, pending_partial_note.note_completion_log_tag],\n );\n\n discovered_notes.for_each(|discovered_note| {\n enqueue_note_for_validation(\n contract_address,\n pending_partial_note.storage_slot,\n pending_partial_note.randomness,\n discovered_note.note_nonce,\n complete_packed_note,\n discovered_note.note_hash,\n discovered_note.inner_nullifier,\n log.tx_hash,\n pending_partial_note.recipient,\n );\n });\n\n // Because there is only a single log for a given tag, once we've processed the tagged log then we\n // simply delete the pending work entry, regardless of whether it was actually completed or not.\n pending_partial_notes.remove(i);\n }\n });\n}\n\nfn decode_partial_note_private_msg(\n msg_metadata: u64,\n msg_content: BoundedVec<Field, MAX_MESSAGE_CONTENT_LEN>,\n recipient: AztecAddress,\n) -> DeliveredPendingPartialNote {\n let note_type_id = msg_metadata as Field; // TODO: make note type id not be a full field\n\n assert(\n msg_content.len() > PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NON_NOTE_FIELDS_LEN,\n f\"Invalid private note message: all partial note private messages must have at least {PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NON_NOTE_FIELDS_LEN} fields\",\n );\n\n // If PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NON_NOTE_FIELDS_LEN is changed, causing the assertion below to fail, then the\n // destructuring of the partial note private message encoding below must be updated as well.\n std::static_assert(\n PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NON_NOTE_FIELDS_LEN == 3,\n \"unexpected value for PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NON_NOTE_FIELDS_LEN\",\n );\n\n // We currently have three fields that are not the partial note's packed representation,\n // which are the storage slot, the randomness, and the note completion log tag.\n let storage_slot = msg_content.get(PARTIAL_NOTE_PRIVATE_MSG_CONTENT_STORAGE_SLOT_INDEX);\n let randomness = msg_content.get(PARTIAL_NOTE_PRIVATE_MSG_CONTENT_RANDOMNESS_INDEX);\n let note_completion_log_tag =\n msg_content.get(PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NOTE_COMPLETION_LOG_TAG_INDEX);\n\n let packed_private_note_content: BoundedVec<Field, MAX_PARTIAL_NOTE_PRIVATE_PACKED_LEN> = array::subbvec(\n msg_content,\n PARTIAL_NOTE_PRIVATE_MSG_CONTENT_NON_NOTE_FIELDS_LEN,\n );\n\n DeliveredPendingPartialNote {\n note_completion_log_tag,\n storage_slot,\n randomness,\n note_type_id,\n packed_private_note_content,\n recipient,\n }\n}\n"
4461
4453
  },
4462
4454
  "129": {
4463
4455
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/messages/discovery/private_events.nr",
@@ -4465,7 +4457,7 @@
4465
4457
  },
4466
4458
  "130": {
4467
4459
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/messages/discovery/private_notes.nr",
4468
- "source": "use crate::{\n messages::{\n discovery::{ComputeNoteHashAndNullifier, nonce_discovery::attempt_note_nonce_discovery},\n encoding::MAX_MESSAGE_CONTENT_LEN,\n processing::enqueue_note_for_validation,\n },\n utils::array,\n};\nuse protocol_types::{\n address::AztecAddress, constants::MAX_NOTE_HASHES_PER_TX, debug_log::debug_log_format,\n};\n\n/// The number of fields in a private note message content that are not the note's packed representation.\n// See the call to `std::static_assert` below to see what's in these fields.\nglobal PRIVATE_NOTE_MSG_CONTENT_NON_NOTE_FIELDS_LEN: u32 = 1;\n\n/// The maximum length of the packed representation of a note's contents. This is limited by private log size,\n/// encryption overhead and extra fields in the message (e.g. message type id, storage slot, etc.).\npub global MAX_NOTE_PACKED_LEN: u32 =\n MAX_MESSAGE_CONTENT_LEN - PRIVATE_NOTE_MSG_CONTENT_NON_NOTE_FIELDS_LEN;\n\npub unconstrained fn process_private_note_msg<Env>(\n contract_address: AztecAddress,\n tx_hash: Field,\n unique_note_hashes_in_tx: BoundedVec<Field, MAX_NOTE_HASHES_PER_TX>,\n first_nullifier_in_tx: Field,\n recipient: AztecAddress,\n compute_note_hash_and_nullifier: ComputeNoteHashAndNullifier<Env>,\n msg_metadata: u64,\n msg_content: BoundedVec<Field, MAX_MESSAGE_CONTENT_LEN>,\n) {\n let (note_type_id, storage_slot, packed_note) =\n decode_private_note_msg(msg_metadata, msg_content);\n\n attempt_note_discovery(\n contract_address,\n tx_hash,\n unique_note_hashes_in_tx,\n first_nullifier_in_tx,\n recipient,\n compute_note_hash_and_nullifier,\n storage_slot,\n note_type_id,\n packed_note,\n );\n}\n\n/// Attempts discovery of a note given information about its contents and the transaction in which it is\n/// suspected the note was created.\npub unconstrained fn attempt_note_discovery<Env>(\n contract_address: AztecAddress,\n tx_hash: Field,\n unique_note_hashes_in_tx: BoundedVec<Field, MAX_NOTE_HASHES_PER_TX>,\n first_nullifier_in_tx: Field,\n recipient: AztecAddress,\n compute_note_hash_and_nullifier: ComputeNoteHashAndNullifier<Env>,\n storage_slot: Field,\n note_type_id: Field,\n packed_note: BoundedVec<Field, MAX_NOTE_PACKED_LEN>,\n) {\n let discovered_notes = attempt_note_nonce_discovery(\n unique_note_hashes_in_tx,\n first_nullifier_in_tx,\n compute_note_hash_and_nullifier,\n contract_address,\n storage_slot,\n note_type_id,\n packed_note,\n );\n\n debug_log_format(\n \"Discovered {0} notes from a private message\",\n [discovered_notes.len() as Field],\n );\n\n discovered_notes.for_each(|discovered_note| {\n enqueue_note_for_validation(\n contract_address,\n storage_slot,\n discovered_note.note_nonce,\n packed_note,\n discovered_note.note_hash,\n discovered_note.inner_nullifier,\n tx_hash,\n recipient,\n );\n });\n}\n\nfn decode_private_note_msg(\n msg_metadata: u64,\n msg_content: BoundedVec<Field, MAX_MESSAGE_CONTENT_LEN>,\n) -> (Field, Field, BoundedVec<Field, MAX_NOTE_PACKED_LEN>) {\n let note_type_id = msg_metadata as Field; // TODO: make note type id not be a full field\n\n assert(\n msg_content.len() > PRIVATE_NOTE_MSG_CONTENT_NON_NOTE_FIELDS_LEN,\n f\"Invalid private note message: all private note messages must have at least {PRIVATE_NOTE_MSG_CONTENT_NON_NOTE_FIELDS_LEN} fields\",\n );\n\n // If PRIVATE_NOTE_MSG_CONTENT_NON_NOTE_FIELDS_LEN is changed, causing the assertion below to fail, then the\n // destructuring of the private note message encoding below must be updated as well.\n std::static_assert(\n PRIVATE_NOTE_MSG_CONTENT_NON_NOTE_FIELDS_LEN == 1,\n \"unexpected value for PRIVATE_NOTE_MSG_CONTENT_NON_NOTE_FIELDS_LEN\",\n );\n\n // We currently have a single field that is not the note's packed representation, which is the storage slot.\n let storage_slot = msg_content.get(0);\n let packed_note = array::subbvec(msg_content, PRIVATE_NOTE_MSG_CONTENT_NON_NOTE_FIELDS_LEN);\n\n (note_type_id, storage_slot, packed_note)\n}\n"
4460
+ "source": "use crate::{\n messages::{\n discovery::{ComputeNoteHashAndNullifier, nonce_discovery::attempt_note_nonce_discovery},\n encoding::MAX_MESSAGE_CONTENT_LEN,\n processing::enqueue_note_for_validation,\n },\n utils::array,\n};\nuse protocol_types::{\n address::AztecAddress, constants::MAX_NOTE_HASHES_PER_TX, debug_log::debug_log_format,\n};\n\n/// The number of fields in a private note message content that are not the note's packed representation.\n// See the call to `std::static_assert` below to see what's in these fields.\nglobal PRIVATE_NOTE_MSG_CONTENT_NON_NOTE_FIELDS_LEN: u32 = 2;\nglobal PRIVATE_NOTE_MSG_CONTENT_STORAGE_SLOT_INDEX: u32 = 0;\nglobal PRIVATE_NOTE_MSG_CONTENT_RANDOMNESS_INDEX: u32 = 1;\n\n/// The maximum length of the packed representation of a note's contents. This is limited by private log size,\n/// encryption overhead and extra fields in the message (e.g. message type id, storage slot, randomness, etc.).\npub global MAX_NOTE_PACKED_LEN: u32 =\n MAX_MESSAGE_CONTENT_LEN - PRIVATE_NOTE_MSG_CONTENT_NON_NOTE_FIELDS_LEN;\n\npub unconstrained fn process_private_note_msg<Env>(\n contract_address: AztecAddress,\n tx_hash: Field,\n unique_note_hashes_in_tx: BoundedVec<Field, MAX_NOTE_HASHES_PER_TX>,\n first_nullifier_in_tx: Field,\n recipient: AztecAddress,\n compute_note_hash_and_nullifier: ComputeNoteHashAndNullifier<Env>,\n msg_metadata: u64,\n msg_content: BoundedVec<Field, MAX_MESSAGE_CONTENT_LEN>,\n) {\n let (note_type_id, storage_slot, randomness, packed_note) =\n decode_private_note_msg(msg_metadata, msg_content);\n\n attempt_note_discovery(\n contract_address,\n tx_hash,\n unique_note_hashes_in_tx,\n first_nullifier_in_tx,\n recipient,\n compute_note_hash_and_nullifier,\n storage_slot,\n randomness,\n note_type_id,\n packed_note,\n );\n}\n\n/// Attempts discovery of a note given information about its contents and the transaction in which it is\n/// suspected the note was created.\npub unconstrained fn attempt_note_discovery<Env>(\n contract_address: AztecAddress,\n tx_hash: Field,\n unique_note_hashes_in_tx: BoundedVec<Field, MAX_NOTE_HASHES_PER_TX>,\n first_nullifier_in_tx: Field,\n recipient: AztecAddress,\n compute_note_hash_and_nullifier: ComputeNoteHashAndNullifier<Env>,\n storage_slot: Field,\n randomness: Field,\n note_type_id: Field,\n packed_note: BoundedVec<Field, MAX_NOTE_PACKED_LEN>,\n) {\n let discovered_notes = attempt_note_nonce_discovery(\n unique_note_hashes_in_tx,\n first_nullifier_in_tx,\n compute_note_hash_and_nullifier,\n contract_address,\n storage_slot,\n randomness,\n note_type_id,\n packed_note,\n );\n\n debug_log_format(\n \"Discovered {0} notes from a private message\",\n [discovered_notes.len() as Field],\n );\n\n discovered_notes.for_each(|discovered_note| {\n enqueue_note_for_validation(\n contract_address,\n storage_slot,\n randomness,\n discovered_note.note_nonce,\n packed_note,\n discovered_note.note_hash,\n discovered_note.inner_nullifier,\n tx_hash,\n recipient,\n );\n });\n}\n\nfn decode_private_note_msg(\n msg_metadata: u64,\n msg_content: BoundedVec<Field, MAX_MESSAGE_CONTENT_LEN>,\n) -> (Field, Field, Field, BoundedVec<Field, MAX_NOTE_PACKED_LEN>) {\n let note_type_id = msg_metadata as Field; // TODO: make note type id not be a full field\n\n assert(\n msg_content.len() > PRIVATE_NOTE_MSG_CONTENT_NON_NOTE_FIELDS_LEN,\n f\"Invalid private note message: all private note messages must have at least {PRIVATE_NOTE_MSG_CONTENT_NON_NOTE_FIELDS_LEN} fields\",\n );\n\n // If PRIVATE_NOTE_MSG_CONTENT_NON_NOTE_FIELDS_LEN is changed, causing the assertion below to fail, then the\n // destructuring of the private note message encoding below must be updated as well.\n std::static_assert(\n PRIVATE_NOTE_MSG_CONTENT_NON_NOTE_FIELDS_LEN == 2,\n \"unexpected value for PRIVATE_NOTE_MSG_CONTENT_NON_NOTE_FIELDS_LEN\",\n );\n\n // We currently have a single field that is not the note's packed representation, which is the storage slot.\n let storage_slot = msg_content.get(PRIVATE_NOTE_MSG_CONTENT_STORAGE_SLOT_INDEX);\n let randomness = msg_content.get(PRIVATE_NOTE_MSG_CONTENT_RANDOMNESS_INDEX);\n let packed_note = array::subbvec(msg_content, PRIVATE_NOTE_MSG_CONTENT_NON_NOTE_FIELDS_LEN);\n\n (note_type_id, storage_slot, randomness, packed_note)\n}\n"
4469
4461
  },
4470
4462
  "131": {
4471
4463
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/messages/discovery/process_message.nr",
@@ -4473,7 +4465,7 @@
4473
4465
  },
4474
4466
  "132": {
4475
4467
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/messages/encoding.nr",
4476
- "source": "// TODO(#12750): don't make these values assume we're using AES.\nuse crate::utils::array;\nuse protocol_types::constants::PRIVATE_LOG_CIPHERTEXT_LEN;\n\n// We reassign to the constant here to communicate the distinction between a log and a message. In Aztec.nr, unlike in\n// protocol circuits, we have a concept of a message that can be emitted either as a private log or as an offchain\n// message. Message is a piece of data that is to be eventually delivered to a contract via the `process_message(...)`\n// utility function function that is injected by the #[aztec] macro.\npub global MESSAGE_CIPHERTEXT_LEN: u32 = PRIVATE_LOG_CIPHERTEXT_LEN;\n\n// TODO(#12750): The global variables below should not be here as they are AES128 specific.\n// ciphertext_length (2) + 14 bytes pkcs#7 AES padding.\npub(crate) global HEADER_CIPHERTEXT_SIZE_IN_BYTES: u32 = 16;\n\npub global EPH_PK_X_SIZE_IN_FIELDS: u32 = 1;\npub global EPH_PK_SIGN_BYTE_SIZE_IN_BYTES: u32 = 1;\n\n// (17 - 1) * 31 - 16 - 1 = 479\nglobal MESSAGE_PLAINTEXT_SIZE_IN_BYTES: u32 = (MESSAGE_CIPHERTEXT_LEN - EPH_PK_X_SIZE_IN_FIELDS)\n * 31\n - HEADER_CIPHERTEXT_SIZE_IN_BYTES\n - EPH_PK_SIGN_BYTE_SIZE_IN_BYTES;\n// Each field of the original note log was serialized to 32 bytes. Below we convert the bytes back to fields.\n// 479 / 32 = 15\npub global MESSAGE_PLAINTEXT_LEN: u32 = MESSAGE_PLAINTEXT_SIZE_IN_BYTES / 32;\n\nglobal MESSAGE_EXPANDED_METADATA_LEN: u32 = 1;\n\n// The standard message layout is composed of:\n// - an initial field called the 'expanded metadata'\n// - an arbitrary number of fields following that called the 'message content'\n//\n// ```\n// message: [ msg_expanded_metadata, ...msg_content ]\n// ```\n//\n// The expanded metadata itself is interpreted as a u128, of which:\n// - the upper 64 bits are the message type id\n// - the lower 64 bits are called the 'message metadata'\n//\n// ```\n// msg_expanded_metadata: [ msg_type_id | msg_metadata ]\n// <--- 64 bits --->|<--- 64 bits --->\n// ```\n//\n// The meaning of the message metadata and message content depend on the value of the message type id. Note that there\n// is nothing special about the message metadata, it _can_ be considered part of the content. It just has a different\n// name to make it distinct from the message content given that it is not a full field.\n\n/// The maximum length of a message's content, i.e. not including the expanded message metadata.\npub global MAX_MESSAGE_CONTENT_LEN: u32 = MESSAGE_PLAINTEXT_LEN - MESSAGE_EXPANDED_METADATA_LEN;\n\n/// Encodes a message following aztec-nr's standard message encoding. This message can later be decoded with\n/// `decode_message` to retrieve the original values.\n///\n/// - The `msg_type` is an identifier that groups types of messages that are all processed the same way, e.g. private\n/// notes or events. Possible values are defined in `aztec::messages::msg_type`.\n/// - The `msg_metadata` and `msg_content` are the values stored in the message, whose meaning depends on the\n/// `msg_type`. The only special thing about `msg_metadata` that separates it from `msg_content` is that it is a u64\n/// instead of a full Field (due to details of how messages are encoded), allowing applications that can fit values into\n/// this smaller variable to achieve higher data efficiency.\npub fn encode_message<let N: u32>(\n msg_type: u64,\n msg_metadata: u64,\n msg_content: [Field; N],\n) -> [Field; (N + MESSAGE_EXPANDED_METADATA_LEN)] {\n std::static_assert(\n msg_content.len() <= MAX_MESSAGE_CONTENT_LEN,\n \"Invalid message content: it must have a length of at most MAX_MESSAGE_CONTENT_LEN\",\n );\n\n // If MESSAGE_EXPANDED_METADATA_LEN is changed, causing the assertion below to fail, then the destructuring of\n // the message encoding below must be updated as well.\n std::static_assert(\n MESSAGE_EXPANDED_METADATA_LEN == 1,\n \"unexpected value for MESSAGE_EXPANDED_METADATA_LEN\",\n );\n let mut message: [Field; (N + MESSAGE_EXPANDED_METADATA_LEN)] = std::mem::zeroed();\n\n message[0] = to_expanded_metadata(msg_type, msg_metadata);\n for i in 0..msg_content.len() {\n message[MESSAGE_EXPANDED_METADATA_LEN + i] = msg_content[i];\n }\n\n message\n}\n\n/// Decodes a standard aztec-nr message, i.e. one created via `encode_message`, returning the original encoded values.\n///\n/// Note that `encode_message` returns a fixed size array while this function takes a `BoundedVec`: this is because\n/// prior to decoding the message type is unknown, and consequentially not known at compile time. If working with\n/// fixed-size messages, consider using `BoundedVec::from_array` to convert them.\npub unconstrained fn decode_message(\n message: BoundedVec<Field, MESSAGE_PLAINTEXT_LEN>,\n) -> (u64, u64, BoundedVec<Field, MAX_MESSAGE_CONTENT_LEN>) {\n assert(\n message.len() >= MESSAGE_EXPANDED_METADATA_LEN,\n f\"Invalid message: it must have at least {MESSAGE_EXPANDED_METADATA_LEN} fields\",\n );\n\n // If MESSAGE_EXPANDED_METADATA_LEN is changed, causing the assertion below to fail, then the destructuring of\n // the message encoding below must be updated as well.\n std::static_assert(\n MESSAGE_EXPANDED_METADATA_LEN == 1,\n \"unexpected value for MESSAGE_EXPANDED_METADATA_LEN\",\n );\n\n let msg_expanded_metadata = message.get(0);\n let (msg_type_id, msg_metadata) = from_expanded_metadata(msg_expanded_metadata);\n let msg_content = array::subbvec(message, MESSAGE_EXPANDED_METADATA_LEN);\n\n (msg_type_id, msg_metadata, msg_content)\n}\n\nglobal U64_SHIFT_MULTIPLIER: Field = 2.pow_32(64);\n\nfn to_expanded_metadata(msg_type: u64, msg_metadata: u64) -> Field {\n // We use multiplication instead of bit shifting operations to shift the type bits as bit shift operations are\n // expensive in circuits.\n let type_field: Field = (msg_type as Field) * U64_SHIFT_MULTIPLIER;\n let msg_metadata_field = msg_metadata as Field;\n\n type_field + msg_metadata_field\n}\n\nfn from_expanded_metadata(input: Field) -> (u64, u64) {\n input.assert_max_bit_size::<128>();\n let msg_metadata = (input as u64);\n let msg_type = ((input - (msg_metadata as Field)) / U64_SHIFT_MULTIPLIER) as u64;\n // Use division instead of bit shift since bit shifts are expensive in circuits\n (msg_type, msg_metadata)\n}\n\nmod tests {\n use crate::utils::array::subarray::subarray;\n use super::{\n decode_message, encode_message, from_expanded_metadata, MAX_MESSAGE_CONTENT_LEN,\n to_expanded_metadata,\n };\n\n global U64_MAX: u64 = (2.pow_32(64) - 1) as u64;\n global U128_MAX: Field = (2.pow_32(128) - 1);\n\n #[test]\n unconstrained fn encode_decode_empty_message(msg_type: u64, msg_metadata: u64) {\n let encoded = encode_message(msg_type, msg_metadata, []);\n let (decoded_msg_type, decoded_msg_metadata, decoded_msg_content) =\n decode_message(BoundedVec::from_array(encoded));\n\n assert_eq(decoded_msg_type, msg_type);\n assert_eq(decoded_msg_metadata, msg_metadata);\n assert_eq(decoded_msg_content.len(), 0);\n }\n\n #[test]\n unconstrained fn encode_decode_short_message(\n msg_type: u64,\n msg_metadata: u64,\n msg_content: [Field; MAX_MESSAGE_CONTENT_LEN / 2],\n ) {\n let encoded = encode_message(msg_type, msg_metadata, msg_content);\n let (decoded_msg_type, decoded_msg_metadata, decoded_msg_content) =\n decode_message(BoundedVec::from_array(encoded));\n\n assert_eq(decoded_msg_type, msg_type);\n assert_eq(decoded_msg_metadata, msg_metadata);\n assert_eq(decoded_msg_content.len(), msg_content.len());\n assert_eq(subarray(decoded_msg_content.storage(), 0), msg_content);\n }\n\n #[test]\n unconstrained fn encode_decode_full_message(\n msg_type: u64,\n msg_metadata: u64,\n msg_content: [Field; MAX_MESSAGE_CONTENT_LEN],\n ) {\n let encoded = encode_message(msg_type, msg_metadata, msg_content);\n let (decoded_msg_type, decoded_msg_metadata, decoded_msg_content) =\n decode_message(BoundedVec::from_array(encoded));\n\n assert_eq(decoded_msg_type, msg_type);\n assert_eq(decoded_msg_metadata, msg_metadata);\n assert_eq(decoded_msg_content.len(), msg_content.len());\n assert_eq(subarray(decoded_msg_content.storage(), 0), msg_content);\n }\n\n #[test]\n unconstrained fn to_expanded_metadata_packing() {\n // Test case 1: All bits set\n let packed = to_expanded_metadata(U64_MAX, U64_MAX);\n let (msg_type, msg_metadata) = from_expanded_metadata(packed);\n assert_eq(msg_type, U64_MAX);\n assert_eq(msg_metadata, U64_MAX);\n\n // Test case 2: Only log type bits set\n let packed = to_expanded_metadata(U64_MAX, 0);\n let (msg_type, msg_metadata) = from_expanded_metadata(packed);\n assert_eq(msg_type, U64_MAX);\n assert_eq(msg_metadata, 0);\n\n // Test case 3: Only msg_metadata bits set\n let packed = to_expanded_metadata(0, U64_MAX);\n let (msg_type, msg_metadata) = from_expanded_metadata(packed);\n assert_eq(msg_type, 0);\n assert_eq(msg_metadata, U64_MAX);\n\n // Test case 4: No bits set\n let packed = to_expanded_metadata(0, 0);\n let (msg_type, msg_metadata) = from_expanded_metadata(packed);\n assert_eq(msg_type, 0);\n assert_eq(msg_metadata, 0);\n }\n\n #[test]\n unconstrained fn from_expanded_metadata_packing() {\n // Test case 1: All bits set\n let input = U128_MAX as Field;\n let (msg_type, msg_metadata) = from_expanded_metadata(input);\n assert_eq(msg_type, U64_MAX);\n assert_eq(msg_metadata, U64_MAX);\n\n // Test case 2: Only log type bits set\n let input = (U128_MAX - U64_MAX as Field);\n let (msg_type, msg_metadata) = from_expanded_metadata(input);\n assert_eq(msg_type, U64_MAX);\n assert_eq(msg_metadata, 0);\n\n // Test case 3: Only msg_metadata bits set\n let input = U64_MAX as Field;\n let (msg_type, msg_metadata) = from_expanded_metadata(input);\n assert_eq(msg_type, 0);\n assert_eq(msg_metadata, U64_MAX);\n\n // Test case 4: No bits set\n let input = 0;\n let (msg_type, msg_metadata) = from_expanded_metadata(input);\n assert_eq(msg_type, 0);\n assert_eq(msg_metadata, 0);\n }\n\n #[test]\n unconstrained fn to_from_expanded_metadata(original_msg_type: u64, original_msg_metadata: u64) {\n let packed = to_expanded_metadata(original_msg_type, original_msg_metadata);\n let (unpacked_msg_type, unpacked_msg_metadata) = from_expanded_metadata(packed);\n\n assert_eq(original_msg_type, unpacked_msg_type);\n assert_eq(original_msg_metadata, unpacked_msg_metadata);\n }\n}\n"
4468
+ "source": "// TODO(#12750): don't make these values assume we're using AES.\nuse crate::utils::array;\nuse protocol_types::constants::PRIVATE_LOG_CIPHERTEXT_LEN;\n\n// We reassign to the constant here to communicate the distinction between a log and a message. In Aztec.nr, unlike in\n// protocol circuits, we have a concept of a message that can be emitted either as a private log or as an offchain\n// message. Message is a piece of data that is to be eventually delivered to a contract via the `process_message(...)`\n// utility function function that is injected by the #[aztec] macro.\n// Note: PRIVATE_LOG_CIPHERTEXT_LEN is an amount of fields,\n// so MESSAGE_CIPHERTEXT_LEN is the size of the message in fields.\npub global MESSAGE_CIPHERTEXT_LEN: u32 = PRIVATE_LOG_CIPHERTEXT_LEN;\n\n// TODO(#12750): The global variables below should not be here as they are AES128 specific.\n// ciphertext_length (2) + 14 bytes pkcs#7 AES padding.\npub(crate) global HEADER_CIPHERTEXT_SIZE_IN_BYTES: u32 = 16;\n\npub global EPH_PK_X_SIZE_IN_FIELDS: u32 = 1;\npub global EPH_PK_SIGN_BYTE_SIZE_IN_BYTES: u32 = 1;\n\n// (17 - 1) * 31 - 16 - 1 = 479\n// Note: We multiply by 31 because ciphertext bytes are stored in fields using bytes_to_fields, which packs 31 bytes per\n// field (since a Field is ~254 bits and can safely store 31 whole bytes).\nglobal MESSAGE_PLAINTEXT_SIZE_IN_BYTES: u32 = (MESSAGE_CIPHERTEXT_LEN - EPH_PK_X_SIZE_IN_FIELDS)\n * 31\n - HEADER_CIPHERTEXT_SIZE_IN_BYTES\n - EPH_PK_SIGN_BYTE_SIZE_IN_BYTES;\n// The plaintext bytes represent Field values that were originally serialized using fields_to_bytes, which converts each\n// Field to 32 bytes. To convert the plaintext bytes back to fields, we divide by 32.\n// 479 / 32 = 14\npub global MESSAGE_PLAINTEXT_LEN: u32 = MESSAGE_PLAINTEXT_SIZE_IN_BYTES / 32;\n\npub global MESSAGE_EXPANDED_METADATA_LEN: u32 = 1;\n\n// The standard message layout is composed of:\n// - an initial field called the 'expanded metadata'\n// - an arbitrary number of fields following that called the 'message content'\n//\n// ```\n// message: [ msg_expanded_metadata, ...msg_content ]\n// ```\n//\n// The expanded metadata itself is interpreted as a u128, of which:\n// - the upper 64 bits are the message type id\n// - the lower 64 bits are called the 'message metadata'\n//\n// ```\n// msg_expanded_metadata: [ msg_type_id | msg_metadata ]\n// <--- 64 bits --->|<--- 64 bits --->\n// ```\n//\n// The meaning of the message metadata and message content depend on the value of the message type id. Note that there\n// is nothing special about the message metadata, it _can_ be considered part of the content. It just has a different\n// name to make it distinct from the message content given that it is not a full field.\n\n/// The maximum length of a message's content, i.e. not including the expanded message metadata.\npub global MAX_MESSAGE_CONTENT_LEN: u32 = MESSAGE_PLAINTEXT_LEN - MESSAGE_EXPANDED_METADATA_LEN;\n\n/// Encodes a message following aztec-nr's standard message encoding. This message can later be decoded with\n/// `decode_message` to retrieve the original values.\n///\n/// - The `msg_type` is an identifier that groups types of messages that are all processed the same way, e.g. private\n/// notes or events. Possible values are defined in `aztec::messages::msg_type`.\n/// - The `msg_metadata` and `msg_content` are the values stored in the message, whose meaning depends on the\n/// `msg_type`. The only special thing about `msg_metadata` that separates it from `msg_content` is that it is a u64\n/// instead of a full Field (due to details of how messages are encoded), allowing applications that can fit values into\n/// this smaller variable to achieve higher data efficiency.\npub fn encode_message<let N: u32>(\n msg_type: u64,\n msg_metadata: u64,\n msg_content: [Field; N],\n) -> [Field; (N + MESSAGE_EXPANDED_METADATA_LEN)] {\n std::static_assert(\n msg_content.len() <= MAX_MESSAGE_CONTENT_LEN,\n \"Invalid message content: it must have a length of at most MAX_MESSAGE_CONTENT_LEN\",\n );\n\n // If MESSAGE_EXPANDED_METADATA_LEN is changed, causing the assertion below to fail, then the destructuring of\n // the message encoding below must be updated as well.\n std::static_assert(\n MESSAGE_EXPANDED_METADATA_LEN == 1,\n \"unexpected value for MESSAGE_EXPANDED_METADATA_LEN\",\n );\n let mut message: [Field; (N + MESSAGE_EXPANDED_METADATA_LEN)] = std::mem::zeroed();\n\n message[0] = to_expanded_metadata(msg_type, msg_metadata);\n for i in 0..msg_content.len() {\n message[MESSAGE_EXPANDED_METADATA_LEN + i] = msg_content[i];\n }\n\n message\n}\n\n/// Decodes a standard aztec-nr message, i.e. one created via `encode_message`, returning the original encoded values.\n///\n/// Note that `encode_message` returns a fixed size array while this function takes a `BoundedVec`: this is because\n/// prior to decoding the message type is unknown, and consequentially not known at compile time. If working with\n/// fixed-size messages, consider using `BoundedVec::from_array` to convert them.\npub unconstrained fn decode_message(\n message: BoundedVec<Field, MESSAGE_PLAINTEXT_LEN>,\n) -> (u64, u64, BoundedVec<Field, MAX_MESSAGE_CONTENT_LEN>) {\n assert(\n message.len() >= MESSAGE_EXPANDED_METADATA_LEN,\n f\"Invalid message: it must have at least {MESSAGE_EXPANDED_METADATA_LEN} fields\",\n );\n\n // If MESSAGE_EXPANDED_METADATA_LEN is changed, causing the assertion below to fail, then the destructuring of\n // the message encoding below must be updated as well.\n std::static_assert(\n MESSAGE_EXPANDED_METADATA_LEN == 1,\n \"unexpected value for MESSAGE_EXPANDED_METADATA_LEN\",\n );\n\n let msg_expanded_metadata = message.get(0);\n let (msg_type_id, msg_metadata) = from_expanded_metadata(msg_expanded_metadata);\n let msg_content = array::subbvec(message, MESSAGE_EXPANDED_METADATA_LEN);\n\n (msg_type_id, msg_metadata, msg_content)\n}\n\nglobal U64_SHIFT_MULTIPLIER: Field = 2.pow_32(64);\n\nfn to_expanded_metadata(msg_type: u64, msg_metadata: u64) -> Field {\n // We use multiplication instead of bit shifting operations to shift the type bits as bit shift operations are\n // expensive in circuits.\n let type_field: Field = (msg_type as Field) * U64_SHIFT_MULTIPLIER;\n let msg_metadata_field = msg_metadata as Field;\n\n type_field + msg_metadata_field\n}\n\nfn from_expanded_metadata(input: Field) -> (u64, u64) {\n input.assert_max_bit_size::<128>();\n let msg_metadata = (input as u64);\n let msg_type = ((input - (msg_metadata as Field)) / U64_SHIFT_MULTIPLIER) as u64;\n // Use division instead of bit shift since bit shifts are expensive in circuits\n (msg_type, msg_metadata)\n}\n\nmod tests {\n use crate::utils::array::subarray::subarray;\n use super::{\n decode_message, encode_message, from_expanded_metadata, MAX_MESSAGE_CONTENT_LEN,\n to_expanded_metadata,\n };\n\n global U64_MAX: u64 = (2.pow_32(64) - 1) as u64;\n global U128_MAX: Field = (2.pow_32(128) - 1);\n\n #[test]\n unconstrained fn encode_decode_empty_message(msg_type: u64, msg_metadata: u64) {\n let encoded = encode_message(msg_type, msg_metadata, []);\n let (decoded_msg_type, decoded_msg_metadata, decoded_msg_content) =\n decode_message(BoundedVec::from_array(encoded));\n\n assert_eq(decoded_msg_type, msg_type);\n assert_eq(decoded_msg_metadata, msg_metadata);\n assert_eq(decoded_msg_content.len(), 0);\n }\n\n #[test]\n unconstrained fn encode_decode_short_message(\n msg_type: u64,\n msg_metadata: u64,\n msg_content: [Field; MAX_MESSAGE_CONTENT_LEN / 2],\n ) {\n let encoded = encode_message(msg_type, msg_metadata, msg_content);\n let (decoded_msg_type, decoded_msg_metadata, decoded_msg_content) =\n decode_message(BoundedVec::from_array(encoded));\n\n assert_eq(decoded_msg_type, msg_type);\n assert_eq(decoded_msg_metadata, msg_metadata);\n assert_eq(decoded_msg_content.len(), msg_content.len());\n assert_eq(subarray(decoded_msg_content.storage(), 0), msg_content);\n }\n\n #[test]\n unconstrained fn encode_decode_full_message(\n msg_type: u64,\n msg_metadata: u64,\n msg_content: [Field; MAX_MESSAGE_CONTENT_LEN],\n ) {\n let encoded = encode_message(msg_type, msg_metadata, msg_content);\n let (decoded_msg_type, decoded_msg_metadata, decoded_msg_content) =\n decode_message(BoundedVec::from_array(encoded));\n\n assert_eq(decoded_msg_type, msg_type);\n assert_eq(decoded_msg_metadata, msg_metadata);\n assert_eq(decoded_msg_content.len(), msg_content.len());\n assert_eq(subarray(decoded_msg_content.storage(), 0), msg_content);\n }\n\n #[test]\n unconstrained fn to_expanded_metadata_packing() {\n // Test case 1: All bits set\n let packed = to_expanded_metadata(U64_MAX, U64_MAX);\n let (msg_type, msg_metadata) = from_expanded_metadata(packed);\n assert_eq(msg_type, U64_MAX);\n assert_eq(msg_metadata, U64_MAX);\n\n // Test case 2: Only log type bits set\n let packed = to_expanded_metadata(U64_MAX, 0);\n let (msg_type, msg_metadata) = from_expanded_metadata(packed);\n assert_eq(msg_type, U64_MAX);\n assert_eq(msg_metadata, 0);\n\n // Test case 3: Only msg_metadata bits set\n let packed = to_expanded_metadata(0, U64_MAX);\n let (msg_type, msg_metadata) = from_expanded_metadata(packed);\n assert_eq(msg_type, 0);\n assert_eq(msg_metadata, U64_MAX);\n\n // Test case 4: No bits set\n let packed = to_expanded_metadata(0, 0);\n let (msg_type, msg_metadata) = from_expanded_metadata(packed);\n assert_eq(msg_type, 0);\n assert_eq(msg_metadata, 0);\n }\n\n #[test]\n unconstrained fn from_expanded_metadata_packing() {\n // Test case 1: All bits set\n let input = U128_MAX as Field;\n let (msg_type, msg_metadata) = from_expanded_metadata(input);\n assert_eq(msg_type, U64_MAX);\n assert_eq(msg_metadata, U64_MAX);\n\n // Test case 2: Only log type bits set\n let input = (U128_MAX - U64_MAX as Field);\n let (msg_type, msg_metadata) = from_expanded_metadata(input);\n assert_eq(msg_type, U64_MAX);\n assert_eq(msg_metadata, 0);\n\n // Test case 3: Only msg_metadata bits set\n let input = U64_MAX as Field;\n let (msg_type, msg_metadata) = from_expanded_metadata(input);\n assert_eq(msg_type, 0);\n assert_eq(msg_metadata, U64_MAX);\n\n // Test case 4: No bits set\n let input = 0;\n let (msg_type, msg_metadata) = from_expanded_metadata(input);\n assert_eq(msg_type, 0);\n assert_eq(msg_metadata, 0);\n }\n\n #[test]\n unconstrained fn to_from_expanded_metadata(original_msg_type: u64, original_msg_metadata: u64) {\n let packed = to_expanded_metadata(original_msg_type, original_msg_metadata);\n let (unpacked_msg_type, unpacked_msg_metadata) = from_expanded_metadata(packed);\n\n assert_eq(original_msg_type, unpacked_msg_type);\n assert_eq(original_msg_metadata, unpacked_msg_metadata);\n }\n}\n"
4477
4469
  },
4478
4470
  "133": {
4479
4471
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/messages/encryption/aes128.nr",
@@ -4481,7 +4473,7 @@
4481
4473
  },
4482
4474
  "150": {
4483
4475
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/messages/processing/mod.nr",
4484
- "source": "pub(crate) mod event_validation_request;\npub mod message_context;\npub(crate) mod note_validation_request;\npub(crate) mod log_retrieval_request;\npub(crate) mod log_retrieval_response;\npub(crate) mod pending_tagged_log;\n\nuse crate::{\n capsules::CapsuleArray,\n event::event_selector::EventSelector,\n messages::{\n discovery::{\n partial_notes::DeliveredPendingPartialNote, private_events::MAX_EVENT_SERIALIZED_LEN,\n private_notes::MAX_NOTE_PACKED_LEN,\n },\n processing::{\n log_retrieval_request::LogRetrievalRequest,\n log_retrieval_response::LogRetrievalResponse,\n note_validation_request::NoteValidationRequest, pending_tagged_log::PendingTaggedLog,\n },\n },\n oracle,\n};\nuse event_validation_request::EventValidationRequest;\nuse protocol_types::{address::AztecAddress, hash::sha256_to_field};\n\n// Base slot for the pending tagged log array to which the fetch_tagged_logs oracle inserts found private logs.\nglobal PENDING_TAGGED_LOG_ARRAY_BASE_SLOT: Field =\n sha256_to_field(\"AZTEC_NR::PENDING_TAGGED_LOG_ARRAY_BASE_SLOT\".as_bytes());\n\nglobal NOTE_VALIDATION_REQUESTS_ARRAY_BASE_SLOT: Field = sha256_to_field(\n \"AZTEC_NR::NOTE_VALIDATION_REQUESTS_ARRAY_BASE_SLOT\".as_bytes(),\n);\n\nglobal EVENT_VALIDATION_REQUESTS_ARRAY_BASE_SLOT: Field = sha256_to_field(\n \"AZTEC_NR::EVENT_VALIDATION_REQUESTS_ARRAY_BASE_SLOT\".as_bytes(),\n);\n\nglobal LOG_RETRIEVAL_REQUESTS_ARRAY_BASE_SLOT: Field = sha256_to_field(\n \"AZTEC_NR::LOG_RETRIEVAL_REQUESTS_ARRAY_BASE_SLOT\".as_bytes(),\n);\n\nglobal LOG_RETRIEVAL_RESPONSES_ARRAY_BASE_SLOT: Field = sha256_to_field(\n \"AZTEC_NR::LOG_RETRIEVAL_RESPONSES_ARRAY_BASE_SLOT\".as_bytes(),\n);\n\n/// Searches for private logs emitted by `contract_address` that might contain messages for one of the local accounts,\n/// and stores them in a `CapsuleArray` which is then returned.\npub(crate) unconstrained fn get_private_logs(\n contract_address: AztecAddress,\n) -> CapsuleArray<PendingTaggedLog> {\n // We will eventually perform log discovery via tagging here, but for now we simply call the `fetchTaggedLogs`\n // oracle. This makes PXE synchronize tags, download logs and store the pending tagged logs in a capsule array.\n oracle::message_processing::fetch_tagged_logs(PENDING_TAGGED_LOG_ARRAY_BASE_SLOT);\n\n CapsuleArray::at(contract_address, PENDING_TAGGED_LOG_ARRAY_BASE_SLOT)\n}\n\n/// Enqueues a note for validation by PXE, so that it becomes aware of a note's existence allowing for later retrieval\n/// via `get_notes` oracle. The note will be scoped to `contract_address`, meaning other contracts will not be able to\n/// access it unless authorized.\n///\n/// In order for the note validation and insertion to occur, `validate_enqueued_notes_and_events` must be later called.\n/// For optimal performance, accumulate as many note validation requests as possible and then validate them all at the\n/// end (which results in PXE minimizing the number of network round-trips).\n///\n/// The `packed_note` is what `getNotes` will later return. PXE indexes notes by `storage_slot`, so this value\n/// is typically used to filter notes that correspond to different state variables. `note_hash` and `nullifier` are\n/// the inner hashes, i.e. the raw hashes returned by `NoteHash::compute_note_hash` and\n/// `NoteHash::compute_nullifier`. PXE will verify that the siloed unique note hash was inserted into the tree\n/// at `tx_hash`, and will store the nullifier to later check for nullification.\n///\n/// `recipient` is the account to which the note was sent to. Other accounts will not be able to access this note (e.g.\n/// other accounts will not be able to see one another's token balance notes, even in the same PXE) unless authorized.\npub(crate) unconstrained fn enqueue_note_for_validation(\n contract_address: AztecAddress,\n storage_slot: Field,\n note_nonce: Field,\n packed_note: BoundedVec<Field, MAX_NOTE_PACKED_LEN>,\n note_hash: Field,\n nullifier: Field,\n tx_hash: Field,\n recipient: AztecAddress,\n) {\n // We store requests in a `CapsuleArray`, which PXE will later read from and deserialize into its version of the\n // Noir `NoteValidationRequest`\n CapsuleArray::at(contract_address, NOTE_VALIDATION_REQUESTS_ARRAY_BASE_SLOT).push(\n NoteValidationRequest {\n contract_address,\n storage_slot,\n note_nonce,\n packed_note,\n note_hash,\n nullifier,\n tx_hash,\n recipient,\n },\n )\n}\n\n/// Enqueues an event for validation by PXE, so that it can be efficiently validated and then inserted into the event\n/// store.\n///\n/// In order for the event validation and insertion to occur, `validate_enqueued_notes_and_events` must be later\n/// called. For optimal performance, accumulate as many event validation requests as possible and then validate them\n/// all at the end (which results in PXE minimizing the number of network round-trips).\npub(crate) unconstrained fn enqueue_event_for_validation(\n contract_address: AztecAddress,\n event_type_id: EventSelector,\n serialized_event: BoundedVec<Field, MAX_EVENT_SERIALIZED_LEN>,\n event_commitment: Field,\n tx_hash: Field,\n recipient: AztecAddress,\n) {\n // We store requests in a `CapsuleArray`, which PXE will later read from and deserialize into its version of the\n // Noir `EventValidationRequest`\n CapsuleArray::at(contract_address, EVENT_VALIDATION_REQUESTS_ARRAY_BASE_SLOT).push(\n EventValidationRequest {\n contract_address,\n event_type_id,\n serialized_event,\n event_commitment,\n tx_hash,\n recipient,\n },\n )\n}\n\n/// Validates all note and event validation requests enqueued via `enqueue_note_for_validation` and\n/// `enqueue_event_for_validation`, inserting them into the note database and event store respectively, making them\n/// queryable via `get_notes` oracle and our TS API (PXE::getPrivateEvents).\n///\n/// This automatically clears both validation request queues, so no further work needs to be done by the caller.\npub(crate) unconstrained fn validate_enqueued_notes_and_events(contract_address: AztecAddress) {\n oracle::message_processing::validate_enqueued_notes_and_events(\n contract_address,\n NOTE_VALIDATION_REQUESTS_ARRAY_BASE_SLOT,\n EVENT_VALIDATION_REQUESTS_ARRAY_BASE_SLOT,\n );\n}\n\n/// Efficiently queries the node for logs that result in the completion of all `DeliveredPendingPartialNote`s stored in\n/// a `CapsuleArray` by performing all node communication concurrently. Returns a second `CapsuleArray` with Options for\n/// the responses that correspond to the pending partial notes at the same index.\n///\n/// For example, given an array with pending partial notes `[ p1, p2, p3 ]`, where `p1` and `p3` have corresponding\n/// completion logs but `p2` does not, the returned `CapsuleArray` will have contents\n/// `[some(p1_log), none(), some(p3_log)]`.\npub(crate) unconstrained fn get_pending_partial_notes_completion_logs(\n contract_address: AztecAddress,\n pending_partial_notes: CapsuleArray<DeliveredPendingPartialNote>,\n) -> CapsuleArray<Option<LogRetrievalResponse>> {\n let log_retrieval_requests =\n CapsuleArray::at(contract_address, LOG_RETRIEVAL_REQUESTS_ARRAY_BASE_SLOT);\n\n // We create a LogRetrievalRequest for each PendingPartialNote in the CapsuleArray. Because we need the indices in\n // the request array to match the indices in the partial note array, we can't use CapsuleArray::for_each, as that\n // function has arbitrary iteration order. Instead, we manually iterate the array from the beginning and push into\n // the requests array, which we expect to be empty.\n let mut i = 0;\n let pending_partial_notes_count = pending_partial_notes.len();\n while i < pending_partial_notes_count {\n let pending_partial_note = pending_partial_notes.get(i);\n log_retrieval_requests.push(\n LogRetrievalRequest {\n contract_address,\n unsiloed_tag: pending_partial_note.note_completion_log_tag,\n },\n );\n i += 1;\n }\n\n oracle::message_processing::bulk_retrieve_logs(\n contract_address,\n LOG_RETRIEVAL_REQUESTS_ARRAY_BASE_SLOT,\n LOG_RETRIEVAL_RESPONSES_ARRAY_BASE_SLOT,\n );\n\n CapsuleArray::at(contract_address, LOG_RETRIEVAL_RESPONSES_ARRAY_BASE_SLOT)\n}\n"
4476
+ "source": "pub(crate) mod event_validation_request;\npub mod message_context;\npub(crate) mod note_validation_request;\npub(crate) mod log_retrieval_request;\npub(crate) mod log_retrieval_response;\npub(crate) mod pending_tagged_log;\n\nuse crate::{\n capsules::CapsuleArray,\n event::event_selector::EventSelector,\n messages::{\n discovery::{\n partial_notes::DeliveredPendingPartialNote, private_events::MAX_EVENT_SERIALIZED_LEN,\n private_notes::MAX_NOTE_PACKED_LEN,\n },\n processing::{\n log_retrieval_request::LogRetrievalRequest,\n log_retrieval_response::LogRetrievalResponse,\n note_validation_request::NoteValidationRequest, pending_tagged_log::PendingTaggedLog,\n },\n },\n oracle,\n};\nuse event_validation_request::EventValidationRequest;\nuse protocol_types::{address::AztecAddress, hash::sha256_to_field};\n\n// Base slot for the pending tagged log array to which the fetch_tagged_logs oracle inserts found private logs.\nglobal PENDING_TAGGED_LOG_ARRAY_BASE_SLOT: Field =\n sha256_to_field(\"AZTEC_NR::PENDING_TAGGED_LOG_ARRAY_BASE_SLOT\".as_bytes());\n\nglobal NOTE_VALIDATION_REQUESTS_ARRAY_BASE_SLOT: Field = sha256_to_field(\n \"AZTEC_NR::NOTE_VALIDATION_REQUESTS_ARRAY_BASE_SLOT\".as_bytes(),\n);\n\nglobal EVENT_VALIDATION_REQUESTS_ARRAY_BASE_SLOT: Field = sha256_to_field(\n \"AZTEC_NR::EVENT_VALIDATION_REQUESTS_ARRAY_BASE_SLOT\".as_bytes(),\n);\n\nglobal LOG_RETRIEVAL_REQUESTS_ARRAY_BASE_SLOT: Field = sha256_to_field(\n \"AZTEC_NR::LOG_RETRIEVAL_REQUESTS_ARRAY_BASE_SLOT\".as_bytes(),\n);\n\nglobal LOG_RETRIEVAL_RESPONSES_ARRAY_BASE_SLOT: Field = sha256_to_field(\n \"AZTEC_NR::LOG_RETRIEVAL_RESPONSES_ARRAY_BASE_SLOT\".as_bytes(),\n);\n\n/// Searches for private logs emitted by `contract_address` that might contain messages for one of the local accounts,\n/// and stores them in a `CapsuleArray` which is then returned.\npub(crate) unconstrained fn get_private_logs(\n contract_address: AztecAddress,\n) -> CapsuleArray<PendingTaggedLog> {\n // We will eventually perform log discovery via tagging here, but for now we simply call the `fetchTaggedLogs`\n // oracle. This makes PXE synchronize tags, download logs and store the pending tagged logs in a capsule array.\n oracle::message_processing::fetch_tagged_logs(PENDING_TAGGED_LOG_ARRAY_BASE_SLOT);\n\n CapsuleArray::at(contract_address, PENDING_TAGGED_LOG_ARRAY_BASE_SLOT)\n}\n\n/// Enqueues a note for validation by PXE, so that it becomes aware of a note's existence allowing for later retrieval\n/// via `get_notes` oracle. The note will be scoped to `contract_address`, meaning other contracts will not be able to\n/// access it unless authorized.\n///\n/// In order for the note validation and insertion to occur, `validate_enqueued_notes_and_events` must be later called.\n/// For optimal performance, accumulate as many note validation requests as possible and then validate them all at the\n/// end (which results in PXE minimizing the number of network round-trips).\n///\n/// The `packed_note` is what `getNotes` will later return. PXE indexes notes by `storage_slot`, so this value\n/// is typically used to filter notes that correspond to different state variables. `note_hash` and `nullifier` are\n/// the inner hashes, i.e. the raw hashes returned by `NoteHash::compute_note_hash` and\n/// `NoteHash::compute_nullifier`. PXE will verify that the siloed unique note hash was inserted into the tree\n/// at `tx_hash`, and will store the nullifier to later check for nullification.\n///\n/// `recipient` is the account to which the note was sent to. Other accounts will not be able to access this note (e.g.\n/// other accounts will not be able to see one another's token balance notes, even in the same PXE) unless authorized.\npub(crate) unconstrained fn enqueue_note_for_validation(\n contract_address: AztecAddress,\n storage_slot: Field,\n randomness: Field,\n note_nonce: Field,\n packed_note: BoundedVec<Field, MAX_NOTE_PACKED_LEN>,\n note_hash: Field,\n nullifier: Field,\n tx_hash: Field,\n recipient: AztecAddress,\n) {\n // We store requests in a `CapsuleArray`, which PXE will later read from and deserialize into its version of the\n // Noir `NoteValidationRequest`\n CapsuleArray::at(contract_address, NOTE_VALIDATION_REQUESTS_ARRAY_BASE_SLOT).push(\n NoteValidationRequest {\n contract_address,\n storage_slot,\n randomness,\n note_nonce,\n packed_note,\n note_hash,\n nullifier,\n tx_hash,\n recipient,\n },\n )\n}\n\n/// Enqueues an event for validation by PXE, so that it can be efficiently validated and then inserted into the event\n/// store.\n///\n/// In order for the event validation and insertion to occur, `validate_enqueued_notes_and_events` must be later\n/// called. For optimal performance, accumulate as many event validation requests as possible and then validate them\n/// all at the end (which results in PXE minimizing the number of network round-trips).\npub(crate) unconstrained fn enqueue_event_for_validation(\n contract_address: AztecAddress,\n event_type_id: EventSelector,\n serialized_event: BoundedVec<Field, MAX_EVENT_SERIALIZED_LEN>,\n event_commitment: Field,\n tx_hash: Field,\n recipient: AztecAddress,\n) {\n // We store requests in a `CapsuleArray`, which PXE will later read from and deserialize into its version of the\n // Noir `EventValidationRequest`\n CapsuleArray::at(contract_address, EVENT_VALIDATION_REQUESTS_ARRAY_BASE_SLOT).push(\n EventValidationRequest {\n contract_address,\n event_type_id,\n serialized_event,\n event_commitment,\n tx_hash,\n recipient,\n },\n )\n}\n\n/// Validates all note and event validation requests enqueued via `enqueue_note_for_validation` and\n/// `enqueue_event_for_validation`, inserting them into the note database and event store respectively, making them\n/// queryable via `get_notes` oracle and our TS API (PXE::getPrivateEvents).\n///\n/// This automatically clears both validation request queues, so no further work needs to be done by the caller.\npub(crate) unconstrained fn validate_enqueued_notes_and_events(contract_address: AztecAddress) {\n oracle::message_processing::validate_enqueued_notes_and_events(\n contract_address,\n NOTE_VALIDATION_REQUESTS_ARRAY_BASE_SLOT,\n EVENT_VALIDATION_REQUESTS_ARRAY_BASE_SLOT,\n );\n}\n\n/// Efficiently queries the node for logs that result in the completion of all `DeliveredPendingPartialNote`s stored in\n/// a `CapsuleArray` by performing all node communication concurrently. Returns a second `CapsuleArray` with Options for\n/// the responses that correspond to the pending partial notes at the same index.\n///\n/// For example, given an array with pending partial notes `[ p1, p2, p3 ]`, where `p1` and `p3` have corresponding\n/// completion logs but `p2` does not, the returned `CapsuleArray` will have contents\n/// `[some(p1_log), none(), some(p3_log)]`.\npub(crate) unconstrained fn get_pending_partial_notes_completion_logs(\n contract_address: AztecAddress,\n pending_partial_notes: CapsuleArray<DeliveredPendingPartialNote>,\n) -> CapsuleArray<Option<LogRetrievalResponse>> {\n let log_retrieval_requests =\n CapsuleArray::at(contract_address, LOG_RETRIEVAL_REQUESTS_ARRAY_BASE_SLOT);\n\n // We create a LogRetrievalRequest for each PendingPartialNote in the CapsuleArray. Because we need the indices in\n // the request array to match the indices in the partial note array, we can't use CapsuleArray::for_each, as that\n // function has arbitrary iteration order. Instead, we manually iterate the array from the beginning and push into\n // the requests array, which we expect to be empty.\n let mut i = 0;\n let pending_partial_notes_count = pending_partial_notes.len();\n while i < pending_partial_notes_count {\n let pending_partial_note = pending_partial_notes.get(i);\n log_retrieval_requests.push(\n LogRetrievalRequest {\n contract_address,\n unsiloed_tag: pending_partial_note.note_completion_log_tag,\n },\n );\n i += 1;\n }\n\n oracle::message_processing::bulk_retrieve_logs(\n contract_address,\n LOG_RETRIEVAL_REQUESTS_ARRAY_BASE_SLOT,\n LOG_RETRIEVAL_RESPONSES_ARRAY_BASE_SLOT,\n );\n\n CapsuleArray::at(contract_address, LOG_RETRIEVAL_RESPONSES_ARRAY_BASE_SLOT)\n}\n"
4485
4477
  },
4486
4478
  "16": {
4487
4479
  "path": "std/embedded_curve_ops.nr",
@@ -4525,7 +4517,7 @@
4525
4517
  },
4526
4518
  "184": {
4527
4519
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/oracle/notes.nr",
4528
- "source": "use crate::note::{note_interface::NoteType, retrieved_note::RetrievedNote};\n\nuse dep::protocol_types::{address::AztecAddress, traits::Packable};\n\n/// Notifies the simulator that a note has been created, so that it can be returned in future read requests in the same\n/// transaction. This note should only be added to the non-volatile database if found in an actual block.\npub fn notify_created_note<let N: u32>(\n storage_slot: Field,\n note_type_id: Field,\n packed_note: [Field; N],\n note_hash: Field,\n counter: u32,\n) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe\n // to call.\n unsafe {\n notify_created_note_oracle_wrapper(\n storage_slot,\n note_type_id,\n packed_note,\n note_hash,\n counter,\n )\n };\n}\n\n/// Notifies the simulator that a note has been nullified, so that it is no longer returned in future read requests in\n/// the same transaction. This note should only be removed to the non-volatile database if its nullifier is found in an\n/// actual block.\npub fn notify_nullified_note(nullifier: Field, note_hash: Field, counter: u32) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe to\n // call.\n unsafe { notify_nullified_note_oracle_wrapper(nullifier, note_hash, counter) };\n}\n\n/// Notifies the simulator that a non-note nullifier has been created, so that it can be used for note nonces.\npub fn notify_created_nullifier(nullifier: Field) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe to\n // call.\n unsafe { notify_created_nullifier_oracle_wrapper(nullifier) };\n}\n\nunconstrained fn notify_created_note_oracle_wrapper<let N: u32>(\n storage_slot: Field,\n note_type_id: Field,\n packed_note: [Field; N],\n note_hash: Field,\n counter: u32,\n) {\n notify_created_note_oracle(storage_slot, note_type_id, packed_note, note_hash, counter);\n}\n\n#[oracle(privateNotifyCreatedNote)]\nunconstrained fn notify_created_note_oracle<let N: u32>(\n _storage_slot: Field,\n _note_type_id: Field,\n _packed_note: [Field; N],\n _note_hash: Field,\n _counter: u32,\n) {}\n\nunconstrained fn notify_nullified_note_oracle_wrapper(\n nullifier: Field,\n note_hash: Field,\n counter: u32,\n) {\n notify_nullified_note_oracle(nullifier, note_hash, counter);\n}\n\n#[oracle(privateNotifyNullifiedNote)]\nunconstrained fn notify_nullified_note_oracle(_nullifier: Field, _note_hash: Field, _counter: u32) {}\n\nunconstrained fn notify_created_nullifier_oracle_wrapper(nullifier: Field) {\n notify_created_nullifier_oracle(nullifier);\n}\n\n#[oracle(privateNotifyCreatedNullifier)]\nunconstrained fn notify_created_nullifier_oracle(_nullifier: Field) {}\n\n#[oracle(utilityGetNotes)]\nunconstrained fn get_notes_oracle<Note, let M: u32, let MaxNotes: u32>(\n _storage_slot: Field,\n _num_selects: u8,\n _select_by_indexes: [u8; M],\n _select_by_offsets: [u8; M],\n _select_by_lengths: [u8; M],\n _select_values: [Field; M],\n _select_comparators: [u8; M],\n _sort_by_indexes: [u8; M],\n _sort_by_offsets: [u8; M],\n _sort_by_lengths: [u8; M],\n _sort_order: [u8; M],\n _limit: u32,\n _offset: u32,\n _status: u8,\n // This is always set to MAX_NOTES. We need to pass it to TS in order to correctly construct the BoundedVec\n _max_notes: u32,\n // This is always set to <RetrievedNote<Note> as Packable>::N. We need to pass it to TS in order to be able to\n // correctly construct the BoundedVec there.\n _packed_retrieved_note_length: u32,\n) -> BoundedVec<[Field; <RetrievedNote<Note> as Packable>::N], MaxNotes>\nwhere\n // TODO(https://github.com/noir-lang/noir/issues/9399): `Note: Packable` should work here.\n RetrievedNote<Note>: Packable,\n{}\n\npub unconstrained fn get_notes<Note, let M: u32, let MaxNotes: u32>(\n storage_slot: Field,\n num_selects: u8,\n select_by_indexes: [u8; M],\n select_by_offsets: [u8; M],\n select_by_lengths: [u8; M],\n select_values: [Field; M],\n select_comparators: [u8; M],\n sort_by_indexes: [u8; M],\n sort_by_offsets: [u8; M],\n sort_by_lengths: [u8; M],\n sort_order: [u8; M],\n limit: u32,\n offset: u32,\n status: u8,\n) -> [Option<RetrievedNote<Note>>; MaxNotes]\nwhere\n Note: NoteType + Packable,\n{\n let packed_retrieved_notes: BoundedVec<[Field; <RetrievedNote<Note> as Packable>::N], MaxNotes>\n = get_notes_oracle::<Note, M, MaxNotes>(\n storage_slot,\n num_selects,\n select_by_indexes,\n select_by_offsets,\n select_by_lengths,\n select_values,\n select_comparators,\n sort_by_indexes,\n sort_by_offsets,\n sort_by_lengths,\n sort_order,\n limit,\n offset,\n status,\n MaxNotes,\n <RetrievedNote<Note> as Packable>::N,\n );\n\n let mut notes = BoundedVec::<_, MaxNotes>::new();\n for i in 0..packed_retrieved_notes.len() {\n let retrieved_note = RetrievedNote::unpack(packed_retrieved_notes.get(i));\n notes.push(retrieved_note);\n }\n\n // At last we convert the bounded vector to an array of options. We do this because that is what the filter\n // function needs to have on the output and we've decided to have the same type on the input and output of\n // the filter and preprocessor functions.\n //\n // We have decided to have the same type on the input and output of the filter and preprocessor functions because\n // it allows us to chain multiple filters and preprocessors together.\n //\n // So why do we want the array of options on the output of the filter function?\n //\n // Filter returns an array of options rather than a BoundedVec for performance reasons. Using an array of options\n // allows setting values at known indices in the output array which is much more efficient than pushing to a\n // BoundedVec where the write position depends on previous iterations. The array can then be efficiently converted\n // to a BoundedVec using utils/array/collapse.nr::collapse function from Aztec.nr. This avoids expensive dynamic\n // memory access patterns that would be required when building up a BoundedVec incrementally. For preprocessor\n // functions we could use BoundedVec return value as there the optimization does not matter since it is applied in\n // an unconstrained context. We, however, use the same return value type to be able to use the same function as\n // both a preprocessor and a filter.\n let mut notes_array = [Option::none(); MaxNotes];\n for i in 0..notes.len() {\n if i < notes.len() {\n notes_array[i] = Option::some(notes.get_unchecked(i));\n }\n }\n\n notes_array\n}\n\n/// Returns true if the nullifier exists. Note that a `true` value can be constrained by proving existence of the\n/// nullifier, but a `false` value should not be relied upon since other transactions may emit this nullifier before the\n/// current transaction is included in a block. While this might seem of little use at first, certain design patterns\n/// benefit from this abstraction (see e.g. `PrivateMutable`).\npub unconstrained fn check_nullifier_exists(inner_nullifier: Field) -> bool {\n check_nullifier_exists_oracle(inner_nullifier)\n}\n\n#[oracle(utilityCheckNullifierExists)]\nunconstrained fn check_nullifier_exists_oracle(_inner_nullifier: Field) -> bool {}\n\n// TODO: Oracles below are generic private log oracles and are not specific to notes. Move them somewhere else.\n\n/// Returns the next app tag for a given sender and recipient pair.\n///\n/// This also notifies the simulator that a tag has been used in a note, and to therefore increment the\n/// associated index so that future notes get a different tag and can be discovered by the recipient.\n/// This change should only be persisted in a non-volatile database if the tagged log is found in an actual block -\n/// otherwise e.g. a reverting transaction can cause the sender to accidentally skip indices and later produce notes\n/// that are not found by the recipient.\npub unconstrained fn get_next_app_tag_as_sender(\n sender: AztecAddress,\n recipient: AztecAddress,\n) -> Field {\n get_next_app_tag_as_sender_oracle(sender, recipient)\n}\n\n#[oracle(privateGetNextAppTagAsSender)]\nunconstrained fn get_next_app_tag_as_sender_oracle(\n _sender: AztecAddress,\n _recipient: AztecAddress,\n) -> Field {}\n\n/// Gets the sender for tags.\n///\n/// This unconstrained value is used as the sender when computing an unconstrained shared secret\n/// for a tag in order to emit a log. Constrained tagging should not use this as there is no\n/// guarantee that the recipient knows about the sender, and hence about the shared secret.\n///\n/// The value persists through nested calls, meaning all calls down the stack will use the same\n/// 'senderForTags' value (unless it is replaced).\npub unconstrained fn get_sender_for_tags() -> Option<AztecAddress> {\n get_sender_for_tags_oracle()\n}\n\n#[oracle(privateGetSenderForTags)]\nunconstrained fn get_sender_for_tags_oracle() -> Option<AztecAddress> {}\n\n/// Sets the sender for tags.\n///\n/// This unconstrained value is used as the sender when computing an unconstrained shared secret\n/// for a tag in order to emit a log. Constrained tagging should not use this as there is no\n/// guarantee that the recipient knows about the sender, and hence about the shared secret.\n///\n/// Account contracts typically set this value before calling other contracts. The value persists\n/// through nested calls, meaning all calls down the stack will use the same 'senderForTags'\n/// value (unless it is replaced by another call to this setter).\npub unconstrained fn set_sender_for_tags(sender_for_tags: AztecAddress) {\n set_sender_for_tags_oracle(sender_for_tags);\n}\n\n#[oracle(privateSetSenderForTags)]\nunconstrained fn set_sender_for_tags_oracle(_sender_for_tags: AztecAddress) {}\n"
4520
+ "source": "use crate::note::{note_interface::NoteType, retrieved_note::RetrievedNote};\n\nuse dep::protocol_types::{address::AztecAddress, traits::Packable};\n\n/// Notifies the simulator that a note has been created, so that it can be returned in future read requests in the same\n/// transaction. This note should only be added to the non-volatile database if found in an actual block.\npub fn notify_created_note<let N: u32>(\n storage_slot: Field,\n randomness: Field,\n note_type_id: Field,\n packed_note: [Field; N],\n note_hash: Field,\n counter: u32,\n) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe\n // to call.\n unsafe {\n notify_created_note_oracle_wrapper(\n storage_slot,\n randomness,\n note_type_id,\n packed_note,\n note_hash,\n counter,\n )\n };\n}\n\n/// Notifies the simulator that a note has been nullified, so that it is no longer returned in future read requests in\n/// the same transaction. This note should only be removed to the non-volatile database if its nullifier is found in an\n/// actual block.\npub fn notify_nullified_note(nullifier: Field, note_hash: Field, counter: u32) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe to\n // call.\n unsafe { notify_nullified_note_oracle_wrapper(nullifier, note_hash, counter) };\n}\n\n/// Notifies the simulator that a non-note nullifier has been created, so that it can be used for note nonces.\npub fn notify_created_nullifier(nullifier: Field) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe to\n // call.\n unsafe { notify_created_nullifier_oracle_wrapper(nullifier) };\n}\n\nunconstrained fn notify_created_note_oracle_wrapper<let N: u32>(\n storage_slot: Field,\n randomness: Field,\n note_type_id: Field,\n packed_note: [Field; N],\n note_hash: Field,\n counter: u32,\n) {\n notify_created_note_oracle(\n storage_slot,\n randomness,\n note_type_id,\n packed_note,\n note_hash,\n counter,\n );\n}\n\n#[oracle(privateNotifyCreatedNote)]\nunconstrained fn notify_created_note_oracle<let N: u32>(\n _storage_slot: Field,\n _randomness: Field,\n _note_type_id: Field,\n _packed_note: [Field; N],\n _note_hash: Field,\n _counter: u32,\n) {}\n\nunconstrained fn notify_nullified_note_oracle_wrapper(\n nullifier: Field,\n note_hash: Field,\n counter: u32,\n) {\n notify_nullified_note_oracle(nullifier, note_hash, counter);\n}\n\n#[oracle(privateNotifyNullifiedNote)]\nunconstrained fn notify_nullified_note_oracle(_nullifier: Field, _note_hash: Field, _counter: u32) {}\n\nunconstrained fn notify_created_nullifier_oracle_wrapper(nullifier: Field) {\n notify_created_nullifier_oracle(nullifier);\n}\n\n#[oracle(privateNotifyCreatedNullifier)]\nunconstrained fn notify_created_nullifier_oracle(_nullifier: Field) {}\n\n#[oracle(utilityGetNotes)]\nunconstrained fn get_notes_oracle<Note, let M: u32, let MaxNotes: u32>(\n _storage_slot: Field,\n _num_selects: u8,\n _select_by_indexes: [u8; M],\n _select_by_offsets: [u8; M],\n _select_by_lengths: [u8; M],\n _select_values: [Field; M],\n _select_comparators: [u8; M],\n _sort_by_indexes: [u8; M],\n _sort_by_offsets: [u8; M],\n _sort_by_lengths: [u8; M],\n _sort_order: [u8; M],\n _limit: u32,\n _offset: u32,\n _status: u8,\n // This is always set to MAX_NOTES. We need to pass it to TS in order to correctly construct the BoundedVec\n _max_notes: u32,\n // This is always set to <RetrievedNote<Note> as Packable>::N. We need to pass it to TS in order to be able to\n // correctly construct the BoundedVec there.\n _packed_retrieved_note_length: u32,\n) -> BoundedVec<[Field; <RetrievedNote<Note> as Packable>::N], MaxNotes>\nwhere\n // TODO(https://github.com/noir-lang/noir/issues/9399): `Note: Packable` should work here.\n RetrievedNote<Note>: Packable,\n{}\n\npub unconstrained fn get_notes<Note, let M: u32, let MaxNotes: u32>(\n storage_slot: Field,\n num_selects: u8,\n select_by_indexes: [u8; M],\n select_by_offsets: [u8; M],\n select_by_lengths: [u8; M],\n select_values: [Field; M],\n select_comparators: [u8; M],\n sort_by_indexes: [u8; M],\n sort_by_offsets: [u8; M],\n sort_by_lengths: [u8; M],\n sort_order: [u8; M],\n limit: u32,\n offset: u32,\n status: u8,\n) -> [Option<RetrievedNote<Note>>; MaxNotes]\nwhere\n Note: NoteType + Packable,\n{\n let packed_retrieved_notes: BoundedVec<[Field; <RetrievedNote<Note> as Packable>::N], MaxNotes>\n = get_notes_oracle::<Note, M, MaxNotes>(\n storage_slot,\n num_selects,\n select_by_indexes,\n select_by_offsets,\n select_by_lengths,\n select_values,\n select_comparators,\n sort_by_indexes,\n sort_by_offsets,\n sort_by_lengths,\n sort_order,\n limit,\n offset,\n status,\n MaxNotes,\n <RetrievedNote<Note> as Packable>::N,\n );\n\n let mut notes = BoundedVec::<_, MaxNotes>::new();\n for i in 0..packed_retrieved_notes.len() {\n let retrieved_note = RetrievedNote::unpack(packed_retrieved_notes.get(i));\n notes.push(retrieved_note);\n }\n\n // At last we convert the bounded vector to an array of options. We do this because that is what the filter\n // function needs to have on the output and we've decided to have the same type on the input and output of\n // the filter and preprocessor functions.\n //\n // We have decided to have the same type on the input and output of the filter and preprocessor functions because\n // it allows us to chain multiple filters and preprocessors together.\n //\n // So why do we want the array of options on the output of the filter function?\n //\n // Filter returns an array of options rather than a BoundedVec for performance reasons. Using an array of options\n // allows setting values at known indices in the output array which is much more efficient than pushing to a\n // BoundedVec where the write position depends on previous iterations. The array can then be efficiently converted\n // to a BoundedVec using utils/array/collapse.nr::collapse function from Aztec.nr. This avoids expensive dynamic\n // memory access patterns that would be required when building up a BoundedVec incrementally. For preprocessor\n // functions we could use BoundedVec return value as there the optimization does not matter since it is applied in\n // an unconstrained context. We, however, use the same return value type to be able to use the same function as\n // both a preprocessor and a filter.\n let mut notes_array = [Option::none(); MaxNotes];\n for i in 0..notes.len() {\n if i < notes.len() {\n notes_array[i] = Option::some(notes.get_unchecked(i));\n }\n }\n\n notes_array\n}\n\n/// Returns true if the nullifier exists. Note that a `true` value can be constrained by proving existence of the\n/// nullifier, but a `false` value should not be relied upon since other transactions may emit this nullifier before the\n/// current transaction is included in a block. While this might seem of little use at first, certain design patterns\n/// benefit from this abstraction (see e.g. `PrivateMutable`).\npub unconstrained fn check_nullifier_exists(inner_nullifier: Field) -> bool {\n check_nullifier_exists_oracle(inner_nullifier)\n}\n\n#[oracle(utilityCheckNullifierExists)]\nunconstrained fn check_nullifier_exists_oracle(_inner_nullifier: Field) -> bool {}\n\n// TODO: Oracles below are generic private log oracles and are not specific to notes. Move them somewhere else.\n\n/// Returns the next app tag for a given sender and recipient pair.\n///\n/// This also notifies the simulator that a tag has been used in a note, and to therefore increment the\n/// associated index so that future notes get a different tag and can be discovered by the recipient.\n/// This change should only be persisted in a non-volatile database if the tagged log is found in an actual block -\n/// otherwise e.g. a reverting transaction can cause the sender to accidentally skip indices and later produce notes\n/// that are not found by the recipient.\npub unconstrained fn get_next_app_tag_as_sender(\n sender: AztecAddress,\n recipient: AztecAddress,\n) -> Field {\n get_next_app_tag_as_sender_oracle(sender, recipient)\n}\n\n#[oracle(privateGetNextAppTagAsSender)]\nunconstrained fn get_next_app_tag_as_sender_oracle(\n _sender: AztecAddress,\n _recipient: AztecAddress,\n) -> Field {}\n\n/// Gets the sender for tags.\n///\n/// This unconstrained value is used as the sender when computing an unconstrained shared secret\n/// for a tag in order to emit a log. Constrained tagging should not use this as there is no\n/// guarantee that the recipient knows about the sender, and hence about the shared secret.\n///\n/// The value persists through nested calls, meaning all calls down the stack will use the same\n/// 'senderForTags' value (unless it is replaced).\npub unconstrained fn get_sender_for_tags() -> Option<AztecAddress> {\n get_sender_for_tags_oracle()\n}\n\n#[oracle(privateGetSenderForTags)]\nunconstrained fn get_sender_for_tags_oracle() -> Option<AztecAddress> {}\n\n/// Sets the sender for tags.\n///\n/// This unconstrained value is used as the sender when computing an unconstrained shared secret\n/// for a tag in order to emit a log. Constrained tagging should not use this as there is no\n/// guarantee that the recipient knows about the sender, and hence about the shared secret.\n///\n/// Account contracts typically set this value before calling other contracts. The value persists\n/// through nested calls, meaning all calls down the stack will use the same 'senderForTags'\n/// value (unless it is replaced by another call to this setter).\npub unconstrained fn set_sender_for_tags(sender_for_tags: AztecAddress) {\n set_sender_for_tags_oracle(sender_for_tags);\n}\n\n#[oracle(privateSetSenderForTags)]\nunconstrained fn set_sender_for_tags_oracle(_sender_for_tags: AztecAddress) {}\n"
4529
4521
  },
4530
4522
  "187": {
4531
4523
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/oracle/shared_secret.nr",
@@ -4585,7 +4577,7 @@
4585
4577
  },
4586
4578
  "346": {
4587
4579
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/meta/mod.nr",
4588
- "source": "use utils::derive_serialization_quotes;\n\npub mod utils;\n\n/// Generates the generic parameter declarations for a struct's trait implementation.\n///\n/// This function takes a struct type definition and generates the generic parameter declarations\n/// that go after the `impl` keyword. For example, given a struct with generics `N: u32` and `T`,\n/// it generates `<let N: u32, T>`.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate generic declarations for\n///\n/// # Returns\n/// A quoted code block containing the generic parameter declarations, or an empty quote if the struct\n/// has no generic parameters\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Container<T, let N: u32> {\n/// items: [T; N],\n/// count: u32\n/// }\n/// ```\n///\n/// This function generates:\n/// ```\n/// <let N: u32, T>\n/// ```\ncomptime fn get_generics_declarations(s: TypeDefinition) -> Quoted {\n let generics = s.generics();\n\n if generics.len() > 0 {\n let generics_declarations_items = generics\n .map(|(name, maybe_integer_typ)| {\n // The second item in the generics tuple is an Option of an integer type that is Some only if\n // the generic is numeric.\n if maybe_integer_typ.is_some() {\n // The generic is numeric, so we return a quote defined as e.g. \"let N: u32\"\n let integer_type = maybe_integer_typ.unwrap();\n quote {let $name: $integer_type}\n } else {\n // The generic is not numeric, so we return a quote containing the name of the generic (e.g. \"T\")\n quote {$name}\n }\n })\n .join(quote {,});\n quote {<$generics_declarations_items>}\n } else {\n // The struct doesn't have any generics defined, so we just return an empty quote.\n quote {}\n }\n}\n\n/// Generates the `where` clause for a trait implementation that constrains non-numeric generic type parameters.\n///\n/// This function takes a struct type definition and a trait name, and generates a `where` clause that\n/// requires all non-numeric generic type parameters to implement the specified trait.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate the where clause for\n/// - `trait_name`: The name of the trait that non-numeric generic parameters must implement\n///\n/// # Returns\n/// A quoted code block containing the where clause, or an empty quote if the struct has no non-numeric\n/// generic parameters\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Container<T, let N: u32> {\n/// items: [T; N],\n/// count: u32\n/// }\n/// ```\n///\n/// And trait name \"Serialize\", this function generates:\n/// ```\n/// where T: Serialize\n/// ```\ncomptime fn get_where_trait_clause(s: TypeDefinition, trait_name: Quoted) -> Quoted {\n let generics = s.generics();\n\n // The second item in the generics tuple is an Option of an integer type that is Some only if the generic is\n // numeric.\n let non_numeric_generics =\n generics.filter(|(_, maybe_integer_typ)| maybe_integer_typ.is_none());\n\n if non_numeric_generics.len() > 0 {\n let non_numeric_generics_declarations =\n non_numeric_generics.map(|(name, _)| quote {$name: $trait_name}).join(quote {,});\n quote {where $non_numeric_generics_declarations}\n } else {\n // There are no non-numeric generics, so we return an empty quote.\n quote {}\n }\n}\n\n/// Generates a `Serialize` trait implementation for a struct type.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A quoted code block containing the trait implementation\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Log<N> {\n/// fields: [Field; N],\n/// length: u32\n/// }\n/// ```\n///\n/// This function generates code equivalent to:\n/// ```\n/// impl<let N: u32> Serialize for Log<N> {\n/// let N: u32 = <[Field; N] as Serialize>::N + <u32 as Serialize>::N;\n///\n/// #[inline_always]\n/// fn serialize(self) -> [Field; Self::N] {\n/// let mut serialized_params = [0; _];\n/// let mut offset = 0;\n///\n/// let serialized_member = Serialize::serialize(self.fields);\n/// let serialized_member_len = <[Field; N] as Serialize>::N;\n/// for i in 0..serialized_member_len {\n/// serialized_params[i + offset] = serialized_member[i];\n/// }\n/// offset += serialized_member_len;\n///\n/// let serialized_member = Serialize::serialize(self.length);\n/// let serialized_member_len = <u32 as Serialize>::N;\n/// for i in 0..serialized_member_len {\n/// serialized_params[i + offset] = serialized_member[i];\n/// }\n/// offset += serialized_member_len;\n///\n/// serialized_params\n/// }\n/// }\n/// ```\npub comptime fn derive_serialize(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n\n // We care only about the name and type so we drop the last item of the tuple\n let params = nested_struct.0.fields(nested_struct.1).map(|(name, typ, _)| (name, typ));\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Serialize` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_serialize_clause = get_where_trait_clause(s, quote {Serialize});\n\n let (function_body, params_len_quote, serialized_params_name) =\n derive_serialization_quotes(params, true);\n\n quote {\n impl$generics_declarations $crate::traits::Serialize for $typ\n $where_serialize_clause\n {\n let N: u32 = $params_len_quote;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n $function_body\n\n $serialized_params_name\n }\n }\n }\n}\n\n/// Generates a `Deserialize` trait implementation for a given struct `s`.\n///\n/// # Arguments\n/// * `s` - The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A `Quoted` block containing the generated trait implementation\n///\n/// # Requirements\n/// Each struct member type must implement the `Deserialize` trait (it gets used in the generated code).\n///\n/// # Example\n/// For a struct like:\n/// ```\n/// struct MyStruct {\n/// x: AztecAddress,\n/// y: Field,\n/// }\n/// ```\n///\n/// This generates:\n/// ```\n/// impl Deserialize for MyStruct {\n/// let N: u32 = <AztecAddress as Deserialize>::N + <Field as Deserialize>::N;\n///\n/// fn deserialize(serialized: [Field; Self::N]) -> Self {\n/// let mut offset = 0;\n/// let mut member_fields = [0; <AztecAddress as Deserialize>::N];\n/// for i in 0..<AztecAddress as Deserialize>::N {\n/// member_fields[i] = serialized[i + offset];\n/// }\n/// let x = <AztecAddress as Deserialize>::deserialize(member_fields);\n/// offset += <AztecAddress as Deserialize>::N;\n///\n/// let mut member_fields = [0; <Field as Deserialize>::N];\n/// for i in 0..<Field as Deserialize>::N {\n/// member_fields[i] = serialized[i + offset];\n/// }\n/// let y = <Field as Deserialize>::deserialize(member_fields);\n/// offset += <Field as Deserialize>::N;\n///\n/// Self { x, y }\n/// }\n/// }\n/// ```\npub(crate) comptime fn derive_deserialize(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n let params = nested_struct.0.fields(nested_struct.1);\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Deserialize` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_deserialize_clause = get_where_trait_clause(s, quote {Deserialize});\n\n // The following will give us <type_of_struct_member_1 as Deserialize>::N + <type_of_struct_member_2 as Deserialize>::N + ...\n let right_hand_side_of_definition_of_n = params\n .map(|(_, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n <$param_type as $crate::traits::Deserialize>::N\n }\n })\n .join(quote {+});\n\n // For structs containing a single member, we can enhance performance by directly deserializing the input array,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let function_body = if params.len() > 1 {\n // This generates deserialization code for each struct member and concatenates them together.\n let deserialization_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let mut member_fields = [0; <$param_type as Deserialize>::N];\n for i in 0..<$param_type as Deserialize>::N {\n member_fields[i] = serialized[i + offset];\n }\n let $param_name = <$param_type as Deserialize>::deserialize(member_fields);\n offset += <$param_type as Deserialize>::N;\n }\n })\n .join(quote {});\n\n // We join the struct member names with a comma to be used in the `Self { ... }` syntax\n // This will give us e.g. `a, b, c` for a struct with three fields named `a`, `b`, and `c`.\n let struct_members = params\n .map(|(param_name, _, _): (Quoted, Type, Quoted)| quote { $param_name })\n .join(quote {,});\n\n quote {\n let mut offset = 0;\n\n $deserialization_of_struct_members\n\n Self { $struct_members }\n }\n } else {\n let param_name = params[0].0;\n quote {\n Self { $param_name: $crate::traits::Deserialize::deserialize(serialized) }\n }\n };\n\n quote {\n impl$generics_declarations $crate::traits::Deserialize for $typ\n $where_deserialize_clause\n {\n let N: u32 = $right_hand_side_of_definition_of_n;\n\n #[inline_always]\n fn deserialize(serialized: [Field; Self::N]) -> Self {\n $function_body\n }\n }\n }\n}\n\n/// Generates a `Packable` trait implementation for a given struct `s`.\n///\n/// # Arguments\n/// * `s` - The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A `Quoted` block containing the generated trait implementation\n///\n/// # Requirements\n/// Each struct member type must implement the `Packable` trait (it gets used in the generated code).\n///\n/// # Example\n/// For a struct like:\n/// ```\n/// struct MyStruct {\n/// x: AztecAddress,\n/// y: Field,\n/// }\n/// ```\n///\n/// This generates:\n/// ```\n/// impl Packable for MyStruct {\n/// let N: u32 = 2;\n///\n/// fn pack(self) -> [Field; 2] {\n/// let mut result: [Field; 2] = [0_Field; 2];\n/// let mut offset: u32 = 0_u32;\n/// let packed_member: [Field; 1] = self.x.pack();\n/// let packed_member_len: u32 = <Field as Packable>::N;\n/// for i in 0_u32..packed_member_len {\n/// {\n/// result[i + offset] = packed_member[i];\n/// }\n/// }\n/// offset = offset + packed_member_len;\n/// let packed_member: [Field; 1] = self.y.pack();\n/// let packed_member_len: u32 = <Field as Packable>::N;\n/// for i in 0_u32..packed_member_len {\n/// {\n/// result[i + offset] = packed_member[i];\n/// }\n/// }\n/// offset = offset + packed_member_len;\n/// result\n/// }\n///\n/// fn unpack(packed: [Field; 2]) -> Self {\n/// let mut offset: u32 = 0_u32;\n/// let mut member_fields: [Field; 1] = [0_Field; 1];\n/// for i in 0_u32..<AztecAddress as Packable>::N {\n/// member_fields[i] = packed[i + offset];\n/// }\n/// let x: AztecAddress = <AztecAddress as Packable>::unpack(member_fields);\n/// offset = offset + <AztecAddress as Packable>::N;\n/// let mut member_fields: [Field; 1] = [0_Field; 1];\n/// for i in 0_u32..<Field as Packable>::N {\n/// member_fields[i] = packed[i + offset];\n/// }\n/// let y: Field = <Field as Packable>::unpack(member_fields);\n/// offset = offset + <Field as Packable>::N;\n/// Self { x: x, y: y }\n/// }\n/// }\n/// ```\npub comptime fn derive_packable(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n let params = nested_struct.0.fields(nested_struct.1);\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Packable` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_packable_clause = get_where_trait_clause(s, quote {Packable});\n\n // The following will give us <type_of_struct_member_1 as Packable>::N + <type_of_struct_member_2 as Packable>::N + ...\n let right_hand_side_of_definition_of_n = params\n .map(|(_, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n <$param_type as $crate::traits::Packable>::N\n }\n })\n .join(quote {+});\n\n // For structs containing a single member, we can enhance performance by directly returning the packed member,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let pack_function_body = if params.len() > 1 {\n // For multiple struct members, generate packing code that:\n // 1. Packs each member\n // 2. Copies the packed fields into the result array at the correct offset\n // 3. Updates the offset for the next member\n let packing_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let packed_member = $crate::traits::Packable::pack(self.$param_name);\n let packed_member_len = <$param_type as $crate::traits::Packable>::N;\n for i in 0..packed_member_len {\n result[i + offset] = packed_member[i];\n }\n offset += packed_member_len;\n }\n })\n .join(quote {});\n\n quote {\n let mut result = [0; Self::N];\n let mut offset = 0;\n\n $packing_of_struct_members\n\n result\n }\n } else {\n let param_name = params[0].0;\n quote {\n $crate::traits::Packable::pack(self.$param_name)\n }\n };\n\n // For structs containing a single member, we can enhance performance by directly unpacking the input array,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let unpack_function_body = if params.len() > 1 {\n // For multiple struct members, generate unpacking code that:\n // 1. Unpacks each member\n // 2. Copies packed fields into member array at correct offset\n // 3. Updates offset for next member\n let unpacking_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let mut member_fields = [0; <$param_type as $crate::traits::Packable>::N];\n for i in 0..<$param_type as $crate::traits::Packable>::N {\n member_fields[i] = packed[i + offset];\n }\n let $param_name = <$param_type as $crate::traits::Packable>::unpack(member_fields);\n offset += <$param_type as $crate::traits::Packable>::N;\n }\n })\n .join(quote {});\n\n // We join the struct member names with a comma to be used in the `Self { ... }` syntax\n let struct_members = params\n .map(|(param_name, _, _): (Quoted, Type, Quoted)| quote { $param_name })\n .join(quote {,});\n\n quote {\n let mut offset = 0;\n $unpacking_of_struct_members\n Self { $struct_members }\n }\n } else {\n let param_name = params[0].0;\n quote {\n Self { $param_name: $crate::traits::Packable::unpack(packed) }\n }\n };\n\n quote {\n impl$generics_declarations $crate::traits::Packable for $typ\n $where_packable_clause\n {\n let N: u32 = $right_hand_side_of_definition_of_n;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n $pack_function_body\n }\n\n #[inline_always]\n fn unpack(packed: [Field; Self::N]) -> Self {\n $unpack_function_body\n }\n }\n }\n}\n\nmod test {\n use crate::traits::{Deserialize, Packable, Serialize};\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct Smol {\n a: Field,\n b: Field,\n }\n\n #[derive(Deserialize, Eq, Serialize)]\n pub struct HasArray {\n a: [Field; 2],\n b: bool,\n }\n\n #[derive(Deserialize, Eq, Serialize)]\n pub struct Fancier {\n a: Smol,\n b: [Field; 2],\n c: [u8; 3],\n d: str<16>,\n }\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct HasArrayWithGenerics<T, let N: u32> {\n pub fields: [T; N],\n pub length: u32,\n }\n\n #[test]\n fn serde_on_smol() {\n let smol = Smol { a: 1, b: 2 };\n let serialized = smol.serialize();\n assert(serialized == [1, 2], serialized);\n let deserialized = Smol::deserialize(serialized);\n assert(deserialized == smol);\n\n // None of the struct members implements the `Packable` trait so the packed and serialized data should be the same\n let packed = smol.pack();\n assert_eq(packed, serialized, \"Packed does not match serialized\");\n }\n\n #[test]\n fn serde_on_has_array() {\n let has_array = HasArray { a: [1, 2], b: true };\n let serialized = has_array.serialize();\n assert(serialized == [1, 2, 1], serialized);\n let deserialized = HasArray::deserialize(serialized);\n assert(deserialized == has_array);\n }\n\n #[test]\n fn serde_on_fancier() {\n let fancier =\n Fancier { a: Smol { a: 1, b: 2 }, b: [0, 1], c: [1, 2, 3], d: \"metaprogramming!\" };\n let serialized = fancier.serialize();\n assert(\n serialized\n == [\n 1, 2, 0, 1, 1, 2, 3, 0x6d, 0x65, 0x74, 0x61, 0x70, 0x72, 0x6f, 0x67, 0x72, 0x61,\n 0x6d, 0x6d, 0x69, 0x6e, 0x67, 0x21,\n ],\n serialized,\n );\n let deserialized = Fancier::deserialize(serialized);\n assert(deserialized == fancier);\n }\n\n #[test]\n fn serde_on_contains_array_with_generics() {\n let struct_with_array_of_generics = HasArrayWithGenerics { fields: [1, 2, 3], length: 3 };\n let serialized = struct_with_array_of_generics.serialize();\n assert(serialized == [1, 2, 3, 3], serialized);\n let deserialized = HasArrayWithGenerics::deserialize(serialized);\n assert(deserialized == struct_with_array_of_generics);\n }\n\n #[test]\n fn packable_on_contains_array_with_generics() {\n let struct_with_array_of_generics = HasArrayWithGenerics { fields: [1, 2, 3], length: 3 };\n let packed = struct_with_array_of_generics.pack();\n assert(packed == [1, 2, 3, 3], packed);\n\n let unpacked = HasArrayWithGenerics::unpack(packed);\n assert(unpacked == struct_with_array_of_generics);\n }\n\n}\n"
4580
+ "source": "use utils::derive_serialization_quotes;\n\npub mod utils;\n\n/// Generates the generic parameter declarations for a struct's trait implementation.\n///\n/// This function takes a struct type definition and generates the generic parameter declarations\n/// that go after the `impl` keyword. For example, given a struct with generics `N: u32` and `T`,\n/// it generates `<let N: u32, T>`.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate generic declarations for\n///\n/// # Returns\n/// A quoted code block containing the generic parameter declarations, or an empty quote if the struct\n/// has no generic parameters\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Container<T, let N: u32> {\n/// items: [T; N],\n/// count: u32\n/// }\n/// ```\n///\n/// This function generates:\n/// ```\n/// <let N: u32, T>\n/// ```\ncomptime fn get_generics_declarations(s: TypeDefinition) -> Quoted {\n let generics = s.generics();\n\n if generics.len() > 0 {\n let generics_declarations_items = generics\n .map(|(name, maybe_integer_typ)| {\n // The second item in the generics tuple is an Option of an integer type that is Some only if\n // the generic is numeric.\n if maybe_integer_typ.is_some() {\n // The generic is numeric, so we return a quote defined as e.g. \"let N: u32\"\n let integer_type = maybe_integer_typ.unwrap();\n quote {let $name: $integer_type}\n } else {\n // The generic is not numeric, so we return a quote containing the name of the generic (e.g. \"T\")\n quote {$name}\n }\n })\n .join(quote {,});\n quote {<$generics_declarations_items>}\n } else {\n // The struct doesn't have any generics defined, so we just return an empty quote.\n quote {}\n }\n}\n\n/// Generates the `where` clause for a trait implementation that constrains non-numeric generic type parameters.\n///\n/// This function takes a struct type definition and a trait name, and generates a `where` clause that\n/// requires all non-numeric generic type parameters to implement the specified trait.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate the where clause for\n/// - `trait_name`: The name of the trait that non-numeric generic parameters must implement\n///\n/// # Returns\n/// A quoted code block containing the where clause, or an empty quote if the struct has no non-numeric\n/// generic parameters\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Container<T, let N: u32> {\n/// items: [T; N],\n/// count: u32\n/// }\n/// ```\n///\n/// And trait name \"Serialize\", this function generates:\n/// ```\n/// where T: Serialize\n/// ```\ncomptime fn get_where_trait_clause(s: TypeDefinition, trait_name: Quoted) -> Quoted {\n let generics = s.generics();\n\n // The second item in the generics tuple is an Option of an integer type that is Some only if the generic is\n // numeric.\n let non_numeric_generics =\n generics.filter(|(_, maybe_integer_typ)| maybe_integer_typ.is_none());\n\n if non_numeric_generics.len() > 0 {\n let non_numeric_generics_declarations =\n non_numeric_generics.map(|(name, _)| quote {$name: $trait_name}).join(quote {,});\n quote {where $non_numeric_generics_declarations}\n } else {\n // There are no non-numeric generics, so we return an empty quote.\n quote {}\n }\n}\n\n/// Generates a `Serialize` trait implementation for a struct type.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A quoted code block containing the trait implementation\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Log<N> {\n/// fields: [Field; N],\n/// length: u32\n/// }\n/// ```\n///\n/// This function generates code equivalent to:\n/// ```\n/// impl<let N: u32> Serialize for Log<N> {\n/// let N: u32 = <[Field; N] as Serialize>::N + <u32 as Serialize>::N;\n///\n/// #[inline_always]\n/// fn serialize(self) -> [Field; Self::N] {\n/// let mut serialized_params = [0; _];\n/// let mut offset = 0;\n///\n/// let serialized_member = Serialize::serialize(self.fields);\n/// let serialized_member_len = <[Field; N] as Serialize>::N;\n/// for i in 0..serialized_member_len {\n/// serialized_params[i + offset] = serialized_member[i];\n/// }\n/// offset += serialized_member_len;\n///\n/// let serialized_member = Serialize::serialize(self.length);\n/// let serialized_member_len = <u32 as Serialize>::N;\n/// for i in 0..serialized_member_len {\n/// serialized_params[i + offset] = serialized_member[i];\n/// }\n/// offset += serialized_member_len;\n///\n/// serialized_params\n/// }\n/// }\n/// ```\npub comptime fn derive_serialize(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n\n // We care only about the name and type so we drop the last item of the tuple\n let params = nested_struct.0.fields(nested_struct.1).map(|(name, typ, _)| (name, typ));\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Serialize` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_serialize_clause = get_where_trait_clause(s, quote {Serialize});\n\n let (function_body, params_len_quote, serialized_params_name) =\n derive_serialization_quotes(params, true);\n\n quote {\n impl$generics_declarations $crate::traits::Serialize for $typ\n $where_serialize_clause\n {\n let N: u32 = $params_len_quote;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n $function_body\n\n $serialized_params_name\n }\n }\n }\n}\n\n/// Generates a `Deserialize` trait implementation for a given struct `s`.\n///\n/// # Arguments\n/// * `s` - The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A `Quoted` block containing the generated trait implementation\n///\n/// # Requirements\n/// Each struct member type must implement the `Deserialize` trait (it gets used in the generated code).\n///\n/// # Example\n/// For a struct like:\n/// ```\n/// struct MyStruct {\n/// x: AztecAddress,\n/// y: Field,\n/// }\n/// ```\n///\n/// This generates:\n/// ```\n/// impl Deserialize for MyStruct {\n/// let N: u32 = <AztecAddress as Deserialize>::N + <Field as Deserialize>::N;\n///\n/// fn deserialize(serialized: [Field; Self::N]) -> Self {\n/// let mut offset = 0;\n/// let mut member_fields = [0; <AztecAddress as Deserialize>::N];\n/// for i in 0..<AztecAddress as Deserialize>::N {\n/// member_fields[i] = serialized[i + offset];\n/// }\n/// let x = <AztecAddress as Deserialize>::deserialize(member_fields);\n/// offset += <AztecAddress as Deserialize>::N;\n///\n/// let mut member_fields = [0; <Field as Deserialize>::N];\n/// for i in 0..<Field as Deserialize>::N {\n/// member_fields[i] = serialized[i + offset];\n/// }\n/// let y = <Field as Deserialize>::deserialize(member_fields);\n/// offset += <Field as Deserialize>::N;\n///\n/// Self { x, y }\n/// }\n/// }\n/// ```\npub(crate) comptime fn derive_deserialize(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n let params = nested_struct.0.fields(nested_struct.1);\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Deserialize` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_deserialize_clause = get_where_trait_clause(s, quote {Deserialize});\n\n // The following will give us:\n // <type_of_struct_member_1 as Deserialize>::N + <type_of_struct_member_2 as Deserialize>::N + ...\n // (or 0 if the struct has no members)\n let right_hand_side_of_definition_of_n = if params.len() > 0 {\n params\n .map(|(_, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n <$param_type as $crate::traits::Deserialize>::N\n }\n })\n .join(quote {+})\n } else {\n quote {0}\n };\n\n // For structs containing a single member, we can enhance performance by directly deserializing the input array,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let function_body = if params.len() > 1 {\n // This generates deserialization code for each struct member and concatenates them together.\n let deserialization_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let mut member_fields = [0; <$param_type as Deserialize>::N];\n for i in 0..<$param_type as Deserialize>::N {\n member_fields[i] = serialized[i + offset];\n }\n let $param_name = <$param_type as Deserialize>::deserialize(member_fields);\n offset += <$param_type as Deserialize>::N;\n }\n })\n .join(quote {});\n\n // We join the struct member names with a comma to be used in the `Self { ... }` syntax\n // This will give us e.g. `a, b, c` for a struct with three fields named `a`, `b`, and `c`.\n let struct_members = params\n .map(|(param_name, _, _): (Quoted, Type, Quoted)| quote { $param_name })\n .join(quote {,});\n\n quote {\n let mut offset = 0;\n\n $deserialization_of_struct_members\n\n Self { $struct_members }\n }\n } else if params.len() == 1 {\n let param_name = params[0].0;\n quote {\n Self { $param_name: $crate::traits::Deserialize::deserialize(serialized) }\n }\n } else {\n quote {\n Self {}\n }\n };\n\n quote {\n impl$generics_declarations $crate::traits::Deserialize for $typ\n $where_deserialize_clause\n {\n let N: u32 = $right_hand_side_of_definition_of_n;\n\n #[inline_always]\n fn deserialize(serialized: [Field; Self::N]) -> Self {\n $function_body\n }\n }\n }\n}\n\n/// Generates a `Packable` trait implementation for a given struct `s`.\n///\n/// # Arguments\n/// * `s` - The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A `Quoted` block containing the generated trait implementation\n///\n/// # Requirements\n/// Each struct member type must implement the `Packable` trait (it gets used in the generated code).\n///\n/// # Example\n/// For a struct like:\n/// ```\n/// struct MyStruct {\n/// x: AztecAddress,\n/// y: Field,\n/// }\n/// ```\n///\n/// This generates:\n/// ```\n/// impl Packable for MyStruct {\n/// let N: u32 = 2;\n///\n/// fn pack(self) -> [Field; 2] {\n/// let mut result: [Field; 2] = [0_Field; 2];\n/// let mut offset: u32 = 0_u32;\n/// let packed_member: [Field; 1] = self.x.pack();\n/// let packed_member_len: u32 = <Field as Packable>::N;\n/// for i in 0_u32..packed_member_len {\n/// {\n/// result[i + offset] = packed_member[i];\n/// }\n/// }\n/// offset = offset + packed_member_len;\n/// let packed_member: [Field; 1] = self.y.pack();\n/// let packed_member_len: u32 = <Field as Packable>::N;\n/// for i in 0_u32..packed_member_len {\n/// {\n/// result[i + offset] = packed_member[i];\n/// }\n/// }\n/// offset = offset + packed_member_len;\n/// result\n/// }\n///\n/// fn unpack(packed: [Field; 2]) -> Self {\n/// let mut offset: u32 = 0_u32;\n/// let mut member_fields: [Field; 1] = [0_Field; 1];\n/// for i in 0_u32..<AztecAddress as Packable>::N {\n/// member_fields[i] = packed[i + offset];\n/// }\n/// let x: AztecAddress = <AztecAddress as Packable>::unpack(member_fields);\n/// offset = offset + <AztecAddress as Packable>::N;\n/// let mut member_fields: [Field; 1] = [0_Field; 1];\n/// for i in 0_u32..<Field as Packable>::N {\n/// member_fields[i] = packed[i + offset];\n/// }\n/// let y: Field = <Field as Packable>::unpack(member_fields);\n/// offset = offset + <Field as Packable>::N;\n/// Self { x: x, y: y }\n/// }\n/// }\n/// ```\npub comptime fn derive_packable(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n let params = nested_struct.0.fields(nested_struct.1);\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Packable` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_packable_clause = get_where_trait_clause(s, quote {Packable});\n\n // The following will give us:\n // <type_of_struct_member_1 as Packable>::N + <type_of_struct_member_2 as Packable>::N + ...\n // (or 0 if the struct has no members)\n let right_hand_side_of_definition_of_n = if params.len() > 0 {\n params\n .map(|(_, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n <$param_type as $crate::traits::Packable>::N\n }\n })\n .join(quote {+})\n } else {\n quote {0}\n };\n\n // For structs containing a single member, we can enhance performance by directly returning the packed member,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let pack_function_body = if params.len() > 1 {\n // For multiple struct members, generate packing code that:\n // 1. Packs each member\n // 2. Copies the packed fields into the result array at the correct offset\n // 3. Updates the offset for the next member\n let packing_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let packed_member = $crate::traits::Packable::pack(self.$param_name);\n let packed_member_len = <$param_type as $crate::traits::Packable>::N;\n for i in 0..packed_member_len {\n result[i + offset] = packed_member[i];\n }\n offset += packed_member_len;\n }\n })\n .join(quote {});\n\n quote {\n let mut result = [0; Self::N];\n let mut offset = 0;\n\n $packing_of_struct_members\n\n result\n }\n } else if params.len() == 1 {\n let param_name = params[0].0;\n quote {\n $crate::traits::Packable::pack(self.$param_name)\n }\n } else {\n quote {\n [0; Self::N]\n }\n };\n\n // For structs containing a single member, we can enhance performance by directly unpacking the input array,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let unpack_function_body = if params.len() > 1 {\n // For multiple struct members, generate unpacking code that:\n // 1. Unpacks each member\n // 2. Copies packed fields into member array at correct offset\n // 3. Updates offset for next member\n let unpacking_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let mut member_fields = [0; <$param_type as $crate::traits::Packable>::N];\n for i in 0..<$param_type as $crate::traits::Packable>::N {\n member_fields[i] = packed[i + offset];\n }\n let $param_name = <$param_type as $crate::traits::Packable>::unpack(member_fields);\n offset += <$param_type as $crate::traits::Packable>::N;\n }\n })\n .join(quote {});\n\n // We join the struct member names with a comma to be used in the `Self { ... }` syntax\n let struct_members = params\n .map(|(param_name, _, _): (Quoted, Type, Quoted)| quote { $param_name })\n .join(quote {,});\n\n quote {\n let mut offset = 0;\n $unpacking_of_struct_members\n Self { $struct_members }\n }\n } else if params.len() == 1 {\n let param_name = params[0].0;\n quote {\n Self { $param_name: $crate::traits::Packable::unpack(packed) }\n }\n } else {\n quote {\n Self {}\n }\n };\n\n quote {\n impl$generics_declarations $crate::traits::Packable for $typ\n $where_packable_clause\n {\n let N: u32 = $right_hand_side_of_definition_of_n;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n $pack_function_body\n }\n\n #[inline_always]\n fn unpack(packed: [Field; Self::N]) -> Self {\n $unpack_function_body\n }\n }\n }\n}\n\nmod test {\n use crate::traits::{Deserialize, Packable, Serialize};\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct Empty {}\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct Smol {\n a: Field,\n b: Field,\n }\n\n #[derive(Deserialize, Eq, Serialize)]\n pub struct HasArray {\n a: [Field; 2],\n b: bool,\n }\n\n #[derive(Deserialize, Eq, Serialize)]\n pub struct Fancier {\n a: Smol,\n b: [Field; 2],\n c: [u8; 3],\n d: str<16>,\n }\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct HasArrayWithGenerics<T, let N: u32> {\n pub fields: [T; N],\n pub length: u32,\n }\n\n #[test]\n fn serde_on_empty() {\n let original = Empty {};\n let serialized = original.serialize();\n assert_eq(serialized, [], \"Serialized does not match empty array\");\n let deserialized = Empty::deserialize(serialized);\n assert_eq(deserialized, original, \"Deserialized does not match original\");\n }\n\n #[test]\n fn packable_on_empty() {\n let original = Empty {};\n let packed = original.pack();\n assert_eq(packed, [], \"Packed does not match empty array\");\n let unpacked = Empty::unpack(packed);\n assert_eq(unpacked, original, \"Unpacked does not match original\");\n }\n\n #[test]\n fn serde_on_smol() {\n let smol = Smol { a: 1, b: 2 };\n let serialized = smol.serialize();\n assert(serialized == [1, 2], serialized);\n let deserialized = Smol::deserialize(serialized);\n assert(deserialized == smol);\n\n // None of the struct members implements the `Packable` trait so the packed and serialized data should be the same\n let packed = smol.pack();\n assert_eq(packed, serialized, \"Packed does not match serialized\");\n }\n\n #[test]\n fn serde_on_has_array() {\n let has_array = HasArray { a: [1, 2], b: true };\n let serialized = has_array.serialize();\n assert(serialized == [1, 2, 1], serialized);\n let deserialized = HasArray::deserialize(serialized);\n assert(deserialized == has_array);\n }\n\n #[test]\n fn serde_on_fancier() {\n let fancier =\n Fancier { a: Smol { a: 1, b: 2 }, b: [0, 1], c: [1, 2, 3], d: \"metaprogramming!\" };\n let serialized = fancier.serialize();\n assert(\n serialized\n == [\n 1, 2, 0, 1, 1, 2, 3, 0x6d, 0x65, 0x74, 0x61, 0x70, 0x72, 0x6f, 0x67, 0x72, 0x61,\n 0x6d, 0x6d, 0x69, 0x6e, 0x67, 0x21,\n ],\n serialized,\n );\n let deserialized = Fancier::deserialize(serialized);\n assert(deserialized == fancier);\n }\n\n #[test]\n fn serde_on_contains_array_with_generics() {\n let struct_with_array_of_generics = HasArrayWithGenerics { fields: [1, 2, 3], length: 3 };\n let serialized = struct_with_array_of_generics.serialize();\n assert(serialized == [1, 2, 3, 3], serialized);\n let deserialized = HasArrayWithGenerics::deserialize(serialized);\n assert(deserialized == struct_with_array_of_generics);\n }\n\n #[test]\n fn packable_on_contains_array_with_generics() {\n let struct_with_array_of_generics = HasArrayWithGenerics { fields: [1, 2, 3], length: 3 };\n let packed = struct_with_array_of_generics.pack();\n assert(packed == [1, 2, 3, 3], packed);\n\n let unpacked = HasArrayWithGenerics::unpack(packed);\n assert(unpacked == struct_with_array_of_generics);\n }\n\n}\n"
4589
4581
  },
4590
4582
  "347": {
4591
4583
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/meta/utils.nr",