@aztec/accounts 3.0.0-nightly.20251022 → 3.0.0-nightly.20251024

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -7,8 +7,9 @@
7
7
  "name": "constructor",
8
8
  "is_unconstrained": false,
9
9
  "custom_attributes": [
10
- "private",
11
- "initializer"
10
+ "external",
11
+ "initializer",
12
+ "private"
12
13
  ],
13
14
  "abi": {
14
15
  "parameters": [
@@ -1926,16 +1927,17 @@
1926
1927
  }
1927
1928
  }
1928
1929
  },
1929
- "bytecode": "H4sIAAAAAAAA/+ydB5QVRfP2Z0i7yy7sAopgYoxgJiioIDlnEMUACmJWghkTrBFQiWYFUUEFI0EEJCjmRDQARoyYRUEl83VpX5wZenb66TvV8//Oefuccnjr7aGq++mq/t0Lrq7z78iXz34DB1x2+aVX9Lt84KUnV3GcKlX/dbvCSstnKWFeyJd5+n9dSTFP/JZO05CPQhSHfHsofHsrfr99FL59Fb4aCp+niLGfwre/wneAwnegIsZBwnJDvoMVvpoKXy2F7xCF71CF7zCF73CF7wiF70iF7yiFr7bCV0fhq6vw1VP4jlb4jlH46it8DRS+YxW+4xS+4xW+hgpfI4XvBIWvscLXROFrqvA1U/iaK3wtFL6WCl8rha+1wtdG4Wur8LVT+NorfB0Uvo4KXyeFr7PC10Xh66rwdVP4uit8Jyp8PRS+kxS+kxW+ngrfKQrfqQrfaQrf6QpfL4Wvt8J3hsJ3psLXR+Hrq/CdpfD1U/jOlr4yjsZw5dOTz9pnd770yzoPHzKna6sXbrjhlN616n3f9uq5g8a2+PLPO9eJ///t0v/NjRmHZxPnnfg4zfy/d4Hz34JdmSc9D5L/+2D5pN83M+9d8ev3hC0WtqR08DcvHco3Zrg1gbnvltbfh6X6+x0YaP61gLnvAfkvs5T/IcDcxUD+y4H8VedwqTyHy+RzuXwu8Z3DFeLX7wv7QNiHWZ7DQ4G5K4B9+MiSjocBc98H8l9pKf/DgbkfAPmvyvIcfiTP3Ur5XCWfH/rO4Wrx64+FfSLs0yzP4RHA3NXAPnxmSccjgbkfA/l/bin/o4C5nwD5f5HlOfxMnrvP5fML+fzUdw7XiF9/KewrYV9neQ5rA3PXAPvwjSUd6wBzvwTy/9ZS/nWBuV8B+X+X5Tn8Rp67b+XzO/n82ncO14pffy/sB2E/ZnkO6wFz1wL78JMlHY8G5n4P5P+zpfyPAeb+AOT/S5bn8Cd57n6Wz1/k80ffOfxV/Po3YeuE/Z7lOawPzP0V2Ic/LOnYAJj7G5D/ekv5HwvMXQfkvyHLc/iHPHfr5XODfP7uO4d/il//JexvYRuzPIfHAXP/BPZhkyUdjwfm/gXkv9lS/g2BuX8D+W/J8hxukudus3xukc+NvnO4Vfx6m7DtwnZkeQ4bAXO3AvtAyWr+voGB5n8CMHcbkL9rKf/GwNztQP6lymR3Dul/0NOVz1LyucN3DkuLX5QRVlZYudC3reg+NAHmli6jvw85lnRsCswtA+Sfayn/ZsDcskD+eVmewxx57nLlM08+6bxl5pUXv8gXViCsQpbnsDkwtzywDxUt6dgCmJsP5F9oKf+WwNwCIP+iLM9hRXnuCuWzSD4r+M5hJfGLysKqCNsty3PYCphbCdiH3S3p2BqYWxnIv6ql/NsAc6sA+e+R5TncXZ67qvK5h3zu5juH1cQvqgvbU9heWZ7DtsDcasA+7G1Jx3bA3OpA/vtYyr89MHdPIP99szyHe8tzt4987iufe/nOYQ2KIWw/YftneQ47AHNrAPtwgCUdOwJzPSD/Ay3l3wmYux+Q/0FZnsMD5Lk7UD4Pks/9fefwYPGLmsJqCTsky3PYGZh7MLAPh1rSsQswtyaQ/2GW8u8KzK0F5H94lufwUHnuDpPPw+XzEN85PEL84khhRwmrneU57AbMPQLYhzqWdOwOzD0SyL+upfxPBOYeBeRfL8tzWEeeu7ryWU8+a/vO4dHiF8cIqy+sQZbnsAcw92hgH461pONJwNxjgPyPs5T/ycDc+kD+x2d5Do+V5+44+TxePhv4zmFD8YtGwk4Q1jjLc9gTmNsQ2IcmlnQ8BZjbCMi/qaX8TwXmngDk3yzLc9hEnrum8tlMPhv7zmFz8YsWwloKa5XlOTwNmNsc2IfWlnQ8HZjbAsi/jaX8ewFzWwL5t83yHLaW566NfLaVz1a+c9hO/KK9sA7COmZ5DnsDc9sB+9DJko5nAHPbA/l3tpT/mcDcDkD+XbI8h53kuessn13ks6PvHHYVv+gmrLuwE7M8h32AuV2BfehhSce+wNxuQP4nWcr/LGBudyD/k7M8hz3kuTtJPk+WzxN957Cn+MUpwk4VdlqW57AfMLcnsA+nW9LxbGDuKUD+vbLU8XSpWy/5PFU+T/Pp2Fv84gxhZwrrE9KxlHx6jl4KVRz9tfXVXZvbrZhyLi3XRO81dbLL80Agz7P0NXD9eWbeKyP/t6t6Aczb1Z/rFPl+3U/qerZ8niOf58rnefJ5vnxeIJ8XyudF8nmxfPaXzwHyOVA+B8nnJfJ5aWbxmU25oMx/m5HxXazwDVT4Li2z6yaGNzBOzMv0xdwrmziXx8cp4/+9w4V7mVxrP/k8Vz4v9xXuFeIXVwq7StjgLBvw2cAhvwJoYFfr/77KfbharvtK+bxKPgf79uEa8YtrhV0n7Poyu/6eNDzNfIfE51u6pHwzup0jn9fI5xBfvkPFL4qF3SDsxizzvUl/f4/OJs7N8XEq+H/v8L7cJPfhPPk8Xz5v9u3LLeIXtwobJmx4luf5AuA83wKc5xHAefYPNP8LgfxvBfK/zVL+FwH5DwPyvz3LfjJCnrvb5PN2+RzuO4d3iF+MFDZK2Ogsz+HFwD7cAezDGEs69gfyHwnkP9ZS/gOA/EcB+Y/L8hyOkedurHyOk8/RvnN4p/jFXcLuFnZPludwILAPdwL7cK8lHQcB+d8F5H+fpfwvAfK/G8j//izP4b3y3N0nn/fL5z2+c/iA+MWDwsYLm5DlObwU2IcHgH14KMt9eEiu+0H5HC+fE3z7MFH84mFhjwh7NEtum6Sfb6Eq30kyv4nyOVTBmZPFLx4T9riwJ6S/lLPrZyjHwT+ITgb2u5Tv11NkclPLOMEPd/R/FId8U6XPP9ADNxk4RFOi5/YKzXWnAhtQRuZdqoQ5XoQ/HNf//6GiTQGLJDOeDIv1ZJldT1FYGGSzS4i9MwHd3/epMtqbGVjTUxqHLS72VCBPZE1Pl7Cm8Lv+NT3tK6pc33r8a4oZrmJuqaVVzrii3OTe/Y6oWaHV79Uq33VTk9dG3tik5uHA77uzGDLFnyl4JLdnxPxnhT0XcyvF7S/yaesZQLdpYJModJLpztMMC316mSwCTi+DvzcD2EzTvGb4Dofn4AM9TMhH32eB9c9M6TDNNDxMz5seJgr4vMFhmsV8mCivWYaHyaQwZpXBufKFMrx5UfejGKWyyCtu7myggHb+w8GKroQ1HPxDo7XNrvl086YtBZ+UGv5I760vP1qnXP+XV32IrGFOGezWRNfwnFwDej7mgsWcJ5+zZaw58vlcGbV/LniDvyjmzxM2X76HnqvMedSdP0POLxOKE5fnM2Ww2tWdi+S+IMvajvv9M3WBfsR6FjjryHoXMq/3QsP1+mmx3JK9cms+ufmWz35qt/jJ+rX7V3+i45N19q3yQf/b3xi++KUd25H1vsS83osM1+sHmr0rH3XDpEfanT3moc/zH338ljPfbvLcwEeeGP5S62vXrp3cpPhpZL0vg+s1Xfciw563QPa0hfK5SD5fks+XfX5/PnEhXhHzXxX2Wpng/4H2vueAvX4dvFPRv1BBur8I5EPzXymDx3kFiPGG4flCdbgYyOlNZh0uLBM8F3Hz6Vy8YcARb4F7i66D9hS5c2lf3zJYh+vY6UFv66+lAv3eu/zAaLm2zPe3vcvs+n3vO+IX7wp7T9jimN4St7xzgTP9TkofTIG/sxKIt6RMFgGXlMHfWwpspmleSw0+mCYpBjLXH2+ZqRiZl9GTvQzoKsuZhaN/LDc4UMtTqjhkrj/eimxEXmGwQSssCYd+N+ifGxfjbGAN76d0IN43bMEfmB4ICviBwYH4kPlAUF4fGrRgVazY/+iCjIV2vqVleParjPPfX3KOW1tcXCMeo+Blff/b/+esH0lRVmYyzPzZ2EfyFJG/nJNy9jmOOgEnlEDV6TmT1m45bcVDd6789Zwnn5r69Clnzl3w8WMX7d53w6AO3W7uqHwZPSdnAdqvKoPtTmb3Ve+hdbAa/CzlhH5/T/n/7joO8s+NmXxwYG7Jk8P/UZaSJu/yH0ApYfKu/7GR6MmK/yBH5GTVf/wiarLyPzQRMVn9H2NQT474Dx8oJ0f9RwZUk2tHzFVNjv6h97tOLuEHzO8yuaQfwh6eXOIPPA9NLvmHiwcnx/wA7sDkuB927Z8c+4OlfZPjf/jyf5M1ftDxzsk6P1Q4M1nrB+/KyXo/5PbfyZo/UPafybo/dJUmN9WcS5Ob6c4Vk5EfuNnC0e/dHwPgGMzo3+FpxvkkPk6O//cOf++yWlLCx/LZUvo/8X3v8qn4xWfCPhf2Reh7l13+nEnZqf4bwR8sWfLk0A9xLHGy/wcmxvJlZTNtdllrTFK7/PDCEibv+oMCoyf7fyhf3FqXJbjWkpJS/YC8qMnKH0YXMdn/g9/i1ro82bVGJhXxQ9iUk6N+4JlqcldHf60rEl+rOqnoH/S16+QSfqjWLpP9P8Aq9sM/x1oVSZX4w6RCk0v+wU3Byf4fkhS31g+Y1hpOKu4HFvknx/5wIN9k/w/iiVvrh3xrDSSl8UNxdk7W+QE0mcn+H/YSt9aPWNf6X1J6P3jl38maP+Tkn8n+HygSt9aV3GuVSfXRnEuT++rOFZP9P7Qi9vsBw7Vm/mVST2869AMkPgW+31gDfMcAcJMLcIcL3NsucO+5wL3hAn3XBfqWC9S9C9SNa3ruOH/wx2fAufuyjJ38XWDu50D+X4F/MBD+3LVGft76Uj6/ks8vfJ+7vha/+EbYt8K+y/LPu78G1rYW/M4zvLa1ci3fyOe38vmdb23fi1/8IOxHYT9JP/0bHGVLCOY5ejll8e4/L5dV+JD4Jp/90RgtHTxGjXAMt+T5Nj6rx0228Rk6brKNz7Zxk2185oybbOOzYNxkG5/R4ibb+OwUN9nGZ5q4yTY+a8RN7qM5N5vPAHGTATb3Rfh3eJrTAQ4zjgGwUlZxvi9jJ84qwzg7BwpZqwDI+tnwD5Yz7xEwFTnBf+V15wtg3h9nuVFeFtM8R2e4O9fkP6S/iLx/FfabsHXCfhf2h7D1wjYI+1PYX8L+FrZR2CZhm4VtEbZV2DZh24XtkH/BwhVWSlhpYWWElRVWTliOsFxhecLKC8sXVlBWJpMRhpLJDfl+Vfh+U/jWKXy/K3x/KHzrFb4NCt+fCt9fCt/fCt9GhW+TwrdZ4dui8G1V+LYpfNsVvh0KH4kX9rkKXymFr7TCV0bhK6vwlVP4chS+XIUvT+Err/DlK3wF0ucf+8mn52iNQNHHNatfNOf+tmOH+6v2XMf9TXeuyHed3txx9EMkfteau+GfHzjxh87cNf/+cIr1GnObyx9ksSF+7pjMD734M3buwJ0/IOOvuLlz/vthGn/HzB3s+8EbG0ue28b/Qzo2lTh3beAHemwuaW7d4A//2FLC3JqhHxSyNXruLj/MZFvk3J7hs+5uj5pbvEtduDsi5hbvWkMu9SjF3FmKenNd5dyWqtp0S6nmdlHWsVtaMXe2uubdMrvOrRXRH9yyu8ydGNVL3HLhubUj+46bE5q7JrpHubnBuZeU0M/cvMDcTiX1Pre8f26/Evukm++be1TJPdUtKKsPXcQnSf2V5oKy2r18uT9ehbJZBKSXkX/tjIJX0N8gt6Lmokz/+jOtgWK44BoqgiJXctQ/RSkbkWPGMpXTc7TCBHItlAekKEzGhXLj/L4iBcGg3+0DJ9ktBA5IEbh5qDh0KArBw0R5FabUMfL193mCP14l045BASvhHWNCJaBjVGbuGLSGynjHmFA5pY6Rrx93vMrpOVphArlWkQdkt3DHqKLoGLsl0DGAk+xWAQ7Iboabh/6b2EhOuwPFsPMfQC4V5QFHvyRDruqqQDGo1hA3nfaoqkEnrppSJy6vf35n+uPtYdqJKeAeeCeeuQdw+Koxd2JaQzW8E8+sluXh0ymgqswFVB1cQ2agjQnRcE/gbCR5w5XXjztD5fQcrTCBXPeShbd3+IbbS3HD7Z3ADQd0CHcvQLS9DTcPPUhITvtkecPFvUPFs6fB7bAv861F697XQl6ZgWq4L6BhDWYNo5qsTnPWneuBDS0pGsjTr/XR/nj7mdIABdwPp4HR+wEbtD8zDdAa9sdpYPT+zDTwTyGU5S22A8Biyww0J0TDA1OigTz9uKNUTs/RChPI9SBZeAeHaeAgBQ0cnAANAB3CPQgQ7WDDzUMPEpJTTeabhIrnQINbtxYzDdC6a1nIKzNQDWsBGh7CrGFUk417D2myh6b03UCufq17/niHmdIABTwMpwHvMEDkw5lpgNZwOE4D3uHMNECFcGhZ3mI7whINIBoemRIN5OrHraFyeo5WmECuR8nCqx2mgaMUNFA7ARoAOoR7FCBabcPNQw8SklMd5puEiudIg1u3LjMN0LrrWsgrM1AN6wIa1mPWMKrJxr2HNNmjU6KBHP1aX+aPd4wpDVDAY3AaWHYMIHJ9ZhqgNdTHaWBZfWYaoEI4uixvsTWwRAOIhsemRAM5+nGXqpyeoxUmkOtxsvCOD9PAcQoaOD4BGgA6hHscINrxhpuHHiQkp4bMNwkVz7EGt24jZhqgdTeykFdmoBo2AjQ8gVnDqCYb9x7SZBunRAPl9Gu9rz9eE1MaoIBNcBro2wQQuSkzDdAamuI00LcpMw1QITQuy1tszSzRAKJh85RooJx+3D4qp+dohQnk2kIWXsswDbRQ0EDLBGgA6BBuC0C0loabhx4kJKdWzDcJFU9zg1u3NTMN0LpbW8grM1ANWwMatmHWMKrJxr2HNNm2KdFAWf1aX+WP186UBihgO5wGVrUDRG7PTAO0hvY4Daxqz0wDVAhty/IWWwdLNIBo2DElGiirH3elyuk5WmECuXaShdc5TAOdFDTQOQEaADqE2wkQrbPh5qEHCcmpC/NNQsXT0eDW7cpMA7TurhbyygxUw66Aht2YNYxqsnHvIU22e0o0UEa/1tv5451oSgMU8EScBtqdCIjcg5kGaA09cBpo14OZBqgQupflLbaTLNEAouHJKdFAGf24bVVOz9EKE8i1pyy8U8I00FNBA6ckQANAh3B7AqKdYrh56EFCcjqV+Sah4jnZ4NY9jZkGaN2nWcgrM1ANTwM0PJ1Zw6gmG/ce0mR7pUQDpfVrfbo/Xm9TGqCAvXEamN4bEPkMZhqgNZyB08D0M5hpgAqhV1neYjvTEg0gGvZJiQZK68edpnJ6jlaYQK59ZeGdFaaBvgoaOCsBGgA6hNsXEO0sw81DDxKSUz/mm4SKp4/BrXs2Mw3Qus+2kFdmoBqeDWh4DrOGUU027j2kyZ6bEg2U0q/1+f5455nSAAU8D6eB+ecBIp/PTAO0hvNxGph/PjMNUCGcW5a32C6wRAOIhhemRAOl9OPOUzk9RytMINeLZOFdHKaBixQ0cHECNAB0CPciQLSLDTcPPUhITv2ZbxIqngsNbt0BzDRA6x5gIa/MQDUcAGg4kFnDqCYb9x7SZAelRAOufq138Me7xJQGKOAlOA10uAQQ+VJmGqA1XIrTQIdLmWmACmFQWd5iu8wSDSAaXp4SDbj6cdurnJ6jFSaQ6xWy8K4M08AVChq4MgEaADqEewUg2pWGm4ceJCSnq5hvEiqeyw1u3cHMNEDrHmwhr8xANRwMaHg1s4ZRTTbuPaTJXpMSDTj6tV7sj3etKQ1QwGtxGii+FhD5OmYaoDVch9NA8XXMNECFcE1Z3mK73hINIBoOSYkGHP24Q1VOz9EL4891qCy84jANDFXQQHECNAB0CHcoIFqx4eahBwnJ6Qbmm4SKZ4jBrXsjMw3Qum+0kFdmoBreCGh4E7OGUU027j2kyd6cEg3s0P8vBAVo4BZTGqCAtxjQwC2AyLcy0wCt4VYDGriVmQaoEG4uy1tswyzRAKLh8JRowF88MSMxGhghC++2MA2MUNDAbQnQANAh3BGAaLdZogEkp9uZbxIqnuEGt+4dzDRA677DQl6ZgWp4B6DhSGYNo5ps3HtIkx2VEg1s16/1qf54o01pgAKOxmlg6mhA5DHMNEBrGIPTwNQxzDRAhTCqLG+xjbVEA4iG41Kige36NDBF5fQcrTCBXO+UhXdXmAbuVNDAXQnQANAh3DsB0e4qa7Z56EFCcrqb+Sah4hlncOvew0wDtO57LOSVGaiG9wAa3susYVSTjXsPabL3pUQD2/RrfbI/3v2mNEAB78dpYPL9gMgPMNMAreEBnAYmP8BMA1QI95XlLbYHLdEAouH4lGhgmz4NTFI5PUcrTCDXCbLwHgrTwAQFDTyUAA0AHcKdAIj2UFmzzUMPEpLTROabhIpnvMGt+zAzDdC6H7aQV2agGj4MaPgIs4ZRTTbuPaTJPpoSDWzVr/XV/niTTGmAAk7CaWD1JEDkycw0QGuYjNPA6snMNECF8GhZ3mJ7zBINIBo+nhINbNWngVUqp+dohQnk+oQsvClhGnhCQQNTEqABoEO4TwCiTSlrtnnoQUJymsp8k1DxPG5w6z7JTAO07ict5JUZqIZPAho+xaxhVJONew9psk+nRANb9Gt9iT/eM6Y0QAGfwWlgyTOAyM8y0wCt4VmcBpY8y0wDVAhPl+Uttucs0QCi4bSUaGCLPg0sVjk9RytMINfpsvBmhGlguoIGZiRAA0CHcKcDos0oa7Z56EFCcprJfJNQ8UwzuHWfZ6YBWvfzFvLKDFTD5wENZzFrGNVk495DmuwLKdHAZv1ar+6PN9uUBijgbJwGqs8GRJ7DTAO0hjk4DVSfw0wDVAgvlOUttrmWaADR8MWUaGCzPg1UUzk9RytMINd5svDmh2lgnoIG5idAA0CHcOcBos0va7Z56EFCclrAfJNQ8bxocOsuZKYBWvdCC3llBqrhQkDDl5g1jGqyce8hTfbllGhgk36tz/XHW2RKAxRwEU4DcxcBIr/CTAO0hldwGpj7CjMNUCG8XJa32F61RAOIhq+lRAOb9GlgjsrpOVphArm+LgvvjTANvK6ggTcSoAGgQ7ivA6K9UdZs89CDhOT0JvNNQsXzmsGt+xYzDdC637KQV2agGr4FaPg2s4ZRTTbuPaTJvpMSDWzUr/Xh/njvmtIABXwXp4Hh7wIiv8dMA7SG93AaGP4eMw1QIbxTlrfYFluiAUTDJSnRwEZ9GhimcnqOVphArktl4S0L08BSBQ0sS4AGgA7hLgVEW1bWbPPQg4TktJz5JqHiWWJw665gpgFa9woLeWUGquEKQMP3mTWMarJx7yFN9oOUaOBv/Vpv64/3oSkNUMAPcRpo+yEg8kfMNEBr+AingbYfMdMAFcIHZXmLbaUlGkA0XJUSDfytTwNtVE7P0QoTyHW1LLyPwzSwWkEDHydAA0CHcFcDon1c1mzz0IOE5PQJ801CxbPK4Nb9lJkGaN2fWsgrM1ANPwU0/IxZw6gmG/ce0mQ/T4kG/tKv9bH+eF+Y0gAF/AKngbFfACKvYaYBWsManAbGrmGmASqEz8vyFtuXlmgA0fCrlGjgL30aGKNyeo5WmECuX8vC+yZMA18raOCbBGgA6BDu14Bo35Q12zz0ICE5fct8k1DxfGVw637HTAO07u8s5JUZqIbfARquZdYwqsnGvYc02e9TooE/9Wt9kD/eD6Y0QAF/wGlg0A+AyD8y0wCt4UecBgb9yEwDVAjfl+Uttp8s0QCi4c8p0cCf+jQwUOX0HK0wgVx/kYX3a5gGflHQwK8J0ADQIdxfANF+LWu2eehBQnL6jfkmoeL52eDWXcdMA7TudRbyygxUw3WAhr8zaxjVZOPeQ5rsHynRwAb9Wl/oj7felAYo4HqcBhauB0TewEwDtIYNOA0s3MBMA1QIf5TlLbY/LdEAouFfKdHABn0aWKByeo5WmECuf8vC2ximgb8VNLAxARoAOoT7NyDaxrJmm4ceJCSnTcw3CRXPXwa37mZmGqB1b7aQV2agGm4GNNzCrGFUk417D2myW1OigfX6te75420zpQEKuA2nAW8bIPJ2ZhqgNWzHacDbzkwDVAhby/IW2w5LNABpWC4dGlivTwM1VE7P0QoTyNUt9++zVDknePPT/xGmAZqULQ0AHcJ1y+mLVqqc2eahBwnJqTRwkHb+w9F/h4rHKYcXdhn9vP5LztHPi9ZdxkJemYFqWAbQsCyzhlFNNu49pMmWA/Y1SRr4Q7/WC/zxcsplEZBeBmmgIAcQORc4PKZryAWLh9aQm2VR6xRCuXK8xZYHFltmoDkhGpZPiQb+0KeBfJXTc7TCBHLNl4VXEKaBfAUNFCRAA0CHcPMB0QrKmW0eepCQnCow3yRUPOUNbt2KzDRA665oIa/MQDWsCGhYyKxhVJONew9pskUp0cDv+rU+wB+vkikNUMBKOA0MqASIXJmZBmgNlXEaGFCZmQaoEIrK8RZbFUs0gGi4W0o08Ls+DfRXOT1HK0wg191l4VUN08DuChqomgANAB3C3R0QrWo5s81DDxKS0x7MNwkVz24Gt241ZhqgdVezkFdmoBpWAzSszqxhVJONew9psnumRAPr9Gu9kj/eXqY0QAH3wmmg0l6AyHsz0wCtYW+cBirtzUwDVAh7luMttn0s0QCi4b4p0cA6fRooUjk9RytMINcasvC8MA3UUNCAlwANAB3CrQGI5pUz2zz0ICE57cd8k1Dx7Gtw6+7PTAO07v0t5JUZqIb7AxoewKxhVJONew9psgemRAO/6Te0QLyDTGmAAh5UDn/vYOYbnvI6uNx/Ds/RH2gR0YE9sBxvUdS0dGsjutTKslB11lzLQMMkC+pXw4I6xLSgKOAhBgV1KHNBUV6HJlRQcdNJ+EPLmR0YTy9GoofklzL6OfrjHWZ6SCjgYQYd5zCgYg9nPlC0hsMNRD6c+TMYHaLDDfCgJrBfRzDjIO3tEYbFmhno2ToCWP+RzIgXdSPHvYfcyEcxa0h7dJTBRYDoQE2QPpuVVv1GYNyWjtk5c7A4nrZzl+HuXJPre6e22K86wuoKqyfsaGHHCKsvrIGwY4UdJ+x4YQ2FNRJ2grDGwpoIayqsmbDmwloIaymslbDWwtoIayusnbD2wjoI6yisk7DOwrqEvwOoLT/v+311FL66Cl89he9ohe8Yha++wtdA4TtW4TtO4Tte4Wuo8DVS+E5Q+BorfE0UvqYKXzOFr7nC10Lha6nwtVL4Wit8bRS+tgpfO4WvvcLXQeHrqPB1Uvg6K3xdyu363dJ+8uk5WiNQ9HHNprZmY6Lvoepoz3XcurpzRb719OaOE/m6R2vN3UBrc4/Rmbvmn31w62vMbf7vnrkN4ueOkfvrHhs7d2BGC/e4uLlzdurmHh8zd/B/GrsNS57bxnce3EYlzl3rPzvuCSXNrRs4Z27jEubWDJ5Jt0n03F6h8+s2jZzbM3zW3WZRc4t3qQu3ecTc4l1ryG2hnjtLUW9uS+XclqradFup5nZR1rHbWjF3trrm3Ta7zq0V0R/ctrvMnRjVS9x24bm1I/uO2z40d010j3I7BOdeUkI/czsG5nYqqfe5nfxz+5XYJ93OvrlHldxT3S4pfeLtot/Ll/vjdTX9xEsBu5aD/9RxeVf9DXK7aS7K9BMvraEb+ImX1tANFDmpPx0DDtcyldNztMIEcu0uD8iJYTLuLjfO7zuxXPZ/OgacZLc7cEBOBDcPFYcORXfwMFFe3VPqGJ3193mCP14P045BAXvgHWNCD6BjnMTcMWgNJ+EdY8JJKXWMzvpxx6ucnqMVJpDryfKA9Ax3jJMVHaNnAh0DOMnuycAB6Wm4eegXdUhOpwDFsPMfQC7d5AFHv6hDrupTgWJQrSFuOu3RqQad+NSUOnEn/fM70x/vNNNOTAFPwzvxzNOAw3c6cyemNZyOd+KZp2d5+HQK6FTmAuoFriEz0MaEaNgbOBtJ3nCd9OPOUDk9RytMINczZOGdGb7hzlDccGcmcMMBHcI9AxDtTMPNQw8SklOfLG+4uHeoeHob3A59mW8tWndfC3llBqphX0DDs5g1jGqyOs1Zd24/sKElRQMd9Wt9tD/e2aY0QAHPxmlg9NnABp3DTAO0hnNwGhh9DjMNUCH0K8dbbOeCxZYZaE6IhuelRAMd9eOOUjk9RytMINfzZeFdEKaB8xU0cEECNAB0CPd8QLQLDDcPPUhIThcy3yRUPOcZ3LoXMdMArfsiC3llBqrhRYCGFzNrGNVk495Dmmz/lL4b6KBf654/3gBTGqCAA3Aa8AYAIg9kpgFaw0CcBryBzDRAhdC/HG+xDbJEA4iGl6REAx304yb2c+culYV3WZgGLlXQwGUJ0ADQIdxLAdEuM9w89CAhOV3OfJNQ8VxicOtewUwDtO4rLOSVGaiGVwAaXsmsYVSTjXsPabJXpUQD7fVrfZk/3mBTGqCAg3EaWDYYEPlqZhqgNVyN08Cyq5lpgArhqnK8xXaNJRpANLw2JRporx93qcrpOVphArleJwvv+jANXKeggesToAGgQ7jXAaJdb7h56EFCchrCfJNQ8VxrcOsOZaYBWvdQC3llBqrhUEDDYmYNo5ps3HtIk70hJRpop1/rff3xbjSlAQp4I04DfW8ERL6JmQZoDTfhNND3JmYaoEK4oRxvsd1siQYQDW9JiQba6cfto3J6jlaYQK63ysIbFqaBWxU0MCwBGgA6hHsrINoww81DDxKS03Dmm4SK5xaDW3cEMw3QukdYyCszUA1HABrexqxhVJONew9psrenRANt9Wt9lT/eHaY0QAHvwGlg1R2AyCOZaYDWMBKngVUjmWmACuH2crzFNsoSDSAajk6JBtrqx12pcnqOVphArmNk4Y0N08AYBQ2MTYAGgA7hjgFEG2u4eehBQnIax3yTUPGMNrh172SmAVr3nRbyygxUwzsBDe9i1jCqyca9hzTZu1OigTb6td7OH+8eUxqggPfgNNDuHkDke5lpgNZwL04D7e5lpgEqhLvL8RbbfZZoANHw/pRooI1+3LYqp+dohQnk+oAsvAfDNPCAggYeTIAGgA7hPgCI9qDh5qEHCclpPPNNQsVzv8GtO4GZBmjdEyzklRmohhMADR9i1jCqyca9hzTZiSnRQGv9Wp/uj/ewKQ1QwIdxGpj+MCDyI8w0QGt4BKeB6Y8w0wAVwsRyvMX2qCUaQDSclBINtNaPO03l9BytMIFcJ8vCeyxMA5MVNPBYAjQAdAh3MiDaY4abhx4kJKfHmW8SKp5JBrfuE8w0QOt+wkJemYFq+ASg4RRmDaOabNx7SJOdmhINtNKv9fn+eE+a0gAFfBKngflPAiI/xUwDtIancBqY/xQzDVAhTC3HW2xPW6IBRMNnUqKBVvpx56mcnqMVJpDrs7LwngvTwLMKGnguARoAOoT7LCDac4abhx4kJKdpzDcJFc8zBrfudGYaoHVPt5BXZqAaTgc0nMGsYVSTjXsPabIzU6KBlvq13sEf73lTGqCAz+M00OF5QORZzDRAa5iF00CHWcw0QIUwsxxvsb1giQYQDWenRAMt9eO2Vzk9RytMINc5svDmhmlgjoIG5iZAA0CHcOcAos013Dz0ICE5vch8k1DxzDa4decx0wCte56FvDID1XAeoOF8Zg2jmmzce0iTXZASDbTQr/Vif7yFpjRAARfiNFC8EBD5JWYaoDW8hNNA8UvMNECFsKAcb7G9bIkGEA0XpUQDLfTjDlU5PUcrTCDXV2ThvRqmgVcUNPBqAjQAdAj3FUC0Vw03Dz1ISE6vMd8kVDyLDG7d15lpgNb9uoW8MgPV8HVAwzeYNYxqsnHvIU32zZRooLkhDbxlSgMU8C0DGngLEPltZhqgNbxtQANvM9MAFcKb5XiL7R1LNIBo+G5KNNA8BRp4Txbe4jANvKeggcUJ0ADQIdz3ANEWW6IBJKclzDcJFc+7BrfuUmYaoHUvtZBXZqAaLgU0XMasYVSTjXsPabLLU6KBZvq1PtUfb4UpDVDAFTgNTF0BiPw+Mw3QGt7HaWDq+8w0QIWwvBxvsX1giQYQDT9MiQaa6cedonJ6jlaYQK4fycJbGaaBjxQ0sDIBGgA6hPsRINpKw81DDxKS0yrmm4SK50ODW3c1Mw3QuldbyCszUA1XAxp+zKxhVJONew9psp+kRANN9Wt9sj/ep6Y0QAE/xWlg8qeAyJ8x0wCt4TOcBiZ/xkwDVAiflOMtts8t0QCi4Rcp0UBT/biTVE7P0QoTyHWNLLwvwzSwRkEDXyZAA0CHcNcAon1puHnoQUJy+or5JqHi+cLg1v2amQZo3V9byCszUA2/BjT8hlnDqCYb9x7SZL9NiQaa6Nf6an+870xpgAJ+h9PA6u8Akdcy0wCtYS1OA6vXMtMAFcK35XiL7XtLNIBo+ENKNNBEP+4qldNztMIEcv1RFt5PYRr4UUEDPyVAA0CHcH8ERPvJcPPQg4Tk9DPzTULF84PBrfsLMw3Qun+xkFdmoBr+Amj4K7OGUU027j2kyf6WEg001q/1Jf5460xpgAKuw2lgyTpA5N+ZaYDW8DtOA0t+Z6YBKoTfyvEW2x+WaADRcH1KNNBYP+5ildNztMIEct0gC+/PMA1sUNDAnwnQANAh3A2AaH8abh56kJCc/mK+Sah41hvcun8z0wCt+28LeWUGquHfgIYbmTWMarJx7yFNdlNKNHCCfq1X98fbbEoDFHAzTgPVNwMib2GmAVrDFpwGqm9hpgEqhE3leIttqyUaQDTclhINnKAft5rK6TlaYQK5bpeFtyNMA9sVNLAjARoAOoS7HRBth+HmoQcJycnJ4b1JqHi2Gdy6rn5e/yXnAGvJ+TcGd16ZgWrojxM3txSzhlFNNu49pMmWBvY1SRpopF/rc/3xyuRkEZBeBmlgbhlA5LLA4TFdQ1mweGgNZbMsap1CKJ3DW2zlwGLLDDQnRMMcIKckaaCR/oU2R+X0HK0wgVxzZeHl5TjBmz83Z1caoEnZ0gDQIdxcQLS8HLPNQw8SklN55puEiifH4NbNZ6YBWne+hbwyA9UwH9CwgFnDqCYb9x7SZCukRAMN9Wt9uD9eRVMaoIAVcRoYXhEQuZCZBmgNhTgNDC9kpgEqhAo5vMVWZIkGEA0rpUQDDfVpYJjK6TlaYQK5VpaFVyVMA5UVNFAlARoAOoRbGRCtSo7Z5qEHCclpN+abhIqnksGtuzszDdC6d7eQV2agGu4OaFiVWcOoJhv3HtJk90iJBo7Xr/W2/njVTGmAAlbDaaBtNUDk6sw0QGuojtNA2+rMNECFsEcOb7HtaYkGEA33SokGjtengTYqp+dohQnkurcsvH3CNLC3ggb2SYAGgA7h7g2Itk+O2eahBwnJaV/mm4SKZy+DW7cGMw3QumtYyCszUA1rABp6zBpGNdm495Amu19KNHCcfq2P9cfb35QGKOD+OA2M3R8Q+QBmGqA1HIDTwNgDmGmACmG/HN5iO9ASDSAaHpQSDRynTwNjVE7P0QoTyPVgWXg1wzRwsIIGaiZAA0CHcA8GRKuZY7Z56EFCcqrFfJNQ8RxkcOsewkwDtO5DLOSVGaiGhwAaHsqsYVSTjXsPabKHpUQDx+rX+iB/vMNNaYACHo7TwKDDAZGPYKYBWsMROA0MOoKZBqgQDsvhLbYjLdEAouFRKdHAsfo0MFDl9BytMIFca8vCqxOmgdoKGqiTAA0AHcKtDYhWJ8ds89CDhORUl/kmoeI5yuDWrcdMA7TuehbyygxUw3qAhkczaxjVZOPeQ5rsMSnRQAP9Wl/oj1fflAYoYH2cBhbWB0RuwEwDtIYGOA0sbMBMA1QIx+TwFtuxlmgA0fC4lGiggT4NLFA5PUcrTCDX42XhNQzTwPEKGmiYAA0AHcI9HhCtYY7Z5qEHCcmpEfNNQsVznMGtewIzDdC6T7CQV2agGp4AaNiYWcOoJhv3HtJkm6REA/X1a93zx2tqSgMUsClOA15TQORmzDRAa2iG04DXjJkGqBCa5PAWW3NLNIBo2CIlGqivTwM1VE7P0QoTyLWlLLxWYRpoqaCBVgnQANAh3JaAaK1yzDYPPUhITq2ZbxIqnhYGt24bZhqgdbexkFdmoBq2ATRsy6xhVJONew9psu1SooFj9Gu9wB+vvSkNUMD2OA0UtAdE7sBMA7SGDjgNFHRgpgEqhHY5vMXW0RINIBp2SokGjtGngXyV03O0wgRy7SwLr0uYBjoraKBLAjQAdAi3MyBalxyzzUMPEpJTV+abhIqnk8Gt242ZBmjd3SzklRmoht0ADbszaxjVZOPeQ5rsiSnRwNH6tT7AH6+HKQ1QwB44DQzoAYh8EjMN0BpOwmlgwEnMNECFcGIOb7GdbIkGEA17pkQDR+vTQH+V03O0wgRyPUUW3qlhGjhFQQOnJkADQIdwTwFEOzXHbPPQg4TkdBrzTULF09Pg1j2dmQZo3adbyCszUA1PBzTsxaxhVJONew9psr1TooF6+rVeyR/vDFMaoIBn4DRQ6QxA5DOZaYDWcCZOA5XOZKYBKoTeObzF1scSDSAa9k2JBurp00CRyuk5WmECuZ4lC69fmAbOUtBAvwRoAOgQ7lmAaP1yzDYPPUhITmcz3yRUPH0Nbt1zmGmA1n2OhbwyA9XwHEDDc5k1jGqyce8hTfa8lGigLvDDcv3xzjelAQp4fg7+3gXMNzzldUHOfw7P0R9oEdGBPS+HtygutHRrI7pclGWh6qz5IgMNkyyoOoYFdbFpQVHAiw0Kqj9zQVFe/RMqqLjpJHz/HLMD4+nFSPSQ1AZ+Sq0/3gDTQ0IBBxh0nAFAxQ5kPlC0hoEGIg9k/gxGh2igAR5cCOzXIGYcpL0dZFismYGerUHA+i9hRryoGznuPeRGvpRZQ9qjSw0uAkQHaoL02ay04jeqEY7rOiWOVv65MZNbB+aWPLlNcG6Jk9uG5pY0uV14bgmT2+8yN3pyh13nRk7uqJgbNbmTam7E5M7KuerJXdRzlZO7RsxVTe4WNVcxuXvk3F0nnxg9d5fJPUqYG558UklzQ5NPLnFucHLPkucGJp8SM9c/+dS4ub7Jp8XO/W/y6fFzd07upTE3M7m3zlw5+Qytuf9OPlNv7j+T+2jOpcl9deeKyWdpz3XcfvpzlcPLYprn6Ax3p76u753LxL1yubArhF0p7Cphg4VdLewaYdcKu07Y9cKGCBsqrFjYDcJuFHaTsJuF3SLsVmHDhA0XNkLYbcJuF3aHsJHCRgkbLWyMsLHCxoW/K71Mfi/q912u8F2h8F2p8F2l8A1W+K5W+K5R+K5V+K5T+K5X+IYofEMVvmKF7waF70aF7yaF72aF7xaF71aFb5jCN1zhG6Hw3abw3a7w3aHwjVT4Ril8oxW+MQrfWIVvXM6u38EfJp+eozUCRR8HZZdpAhx9X3+59lzHvUJ3rsj3Sr2540S+7lVaczfQ2tzBOnPX/LMP7tUac5v/u2fuNfFzx8j9da+NnTswo4V7XdzcOTt1c6+PmTv4P43dISXPbeM7D+7QEueu9Z8dt7ikuXUD58y9oYS5NYNn0r0xem6v0Pl1b4qc2zN81t2bo+YW71IX7i0Rc4t3rSH3VvXcWYp6c4cp57ZU1aY7XDW3i7KO3RGKubPVNe/etuvcWhH9wb19l7kTo3qJe0d4bu3IvuOODM1dE92j3FHBuZeU0M/c0YG5nUrqfe4Y/9x+JfZJd6xv7lEl91R3HPCFw9LK+nOXAXOXA3NXAHPfB+Z+AMz9EJj7ETB3JTB3lf7cRL/RHad/By/3x7vT9BtdCnhnDvy3apbfCRzsuzQXZfqNLq3hLvAbXVrDXTmYyEn97Q+gKSxTOT1HK0wg17vlAbkn/Inmbrlxft89Odn/7Q/gJLt3AwfkHnDzUHHoUNwNHibK6+6cdDrGWP19nuCPd69px6CA9+IdY8K9QMe4j7lj0BruwzvGhPtS6hhj9eOOVzk9RytMINf75QF5INwx7ld0jAcS6BjASXbvBw7IA4abh/5BFJLTg0Ax7PwHkMtd8oCjfxCFXNXjgWJQrSFuOu3ReINOPD6lTjxG//zO9MebYNqJKeAEvBPPnAAcvoeYOzGt4SG8E898KMvDp1NA45kLaCK4hsxAGxOi4cPA2UjyhhujH3eGyuk5WmECuT4iC+/R8A33iOKGezSBGw7oEO4jgGiPGm4eepCQnCZlecPFvUPF87DB7TCZ+daidU+2kFdmoBpOBjR8jFnDqCar05x15z4ONrSkaGC0fq2P9sd7wpQGKOATOA2MfgLYoCnMNEBrmILTwOgpzDRAhfB4Dm+xTQWLLTPQnBANn0yJBkbrxx2lcnqOVphArk/Jwns6TANPKWjg6QRoAOgQ7lOAaE8bbh56kJCcnmG+Sah4njS4dZ9lpgFa97MW8soMVMNnAQ2fY9YwqsnGvYc02WkpfTcwSr/WPX+86aY0QAGn4zTgTQdEnsFMA7SGGTgNeDOYaYAKYVoOb7HNtEQDiIbPp0QDo/TjJvZzVWfJwnshTAOzFDTwQgI0AHQIdxYg2guGm4ceJCSn2cw3CRXP8wa37hxmGqB1z7GQV2agGs4BNJzLrGFUk417D2myL6ZEAyP1a32ZP948UxqggPNwGlg2DxB5PjMN0Brm4zSwbD4zDVAhvJjDW2wLLNEAouHClGhgpH7cpSqn52iFCeT6kiy8l8M08JKCBl5OgAaADuG+BIj2suHmoQcJyWkR801CxbPQ4NZ9hZkGaN2vWMgrM1ANXwE0fJVZw6gmG/ce0mRfS4kG7tCv9b7+eK+b0gAFfB2ngb6vAyK/wUwDtIY3cBro+wYzDVAhvJbDW2xvWqIBRMO3UqKBO/Tj9lE5PUcrTCDXt2XhvROmgbcVNPBOAjQAdAj3bUC0dww3Dz1ISE7vMt8kVDxvGdy67zHTAK37PQt5ZQaq4XuAhouZNYxqsnHvIU12SUo0cLt+ra/yx1tqSgMUcClOA6uWAiIvY6YBWsMynAZWLWOmASqEJTm8xbbcEg0gGq5IiQZu14+7UuX0HK0wgVzfl4X3QZgG3lfQwAcJ0ADQIdz3AdE+MNw89CAhOX3IfJNQ8awwuHU/YqYBWvdHFvLKDFTDjwANVzJrGNVk495DmuyqlGjgNv1ab+ePt9qUBijgapwG2q0GRP6YmQZoDR/jNNDuY2YaoEJYlcNbbJ9YogFEw09TooHb9OO2VTk9RytMINfPZOF9HqaBzxQ08HkCNAB0CPczQLTPDTcPPUhITl8w3yRUPJ8a3LprmGmA1r3GQl6ZgWq4BtDwS2YNo5ps3HtIk/0qJRoYoV/r0/3xvjalAQr4NU4D078GRP6GmQZoDd/gNDD9G2YaoEL4Koe32L61RAOIht+lRAMj9ONOUzk9RytMINe1svC+D9PAWgUNfJ8ADQAdwl0LiPa94eahBwnJ6Qfmm4SK5zuDW/dHZhqgdf9oIa/MQDX8EdDwJ2YNo5ps3HtIk/05JRoYrl/r8/3xfjGlAQr4C04D838BRP6VmQZoDb/iNDD/V2YaoEL4OYe32H6zRAOIhutSooHh+nHnqZyeoxUmkOvvsvD+CNPA7woa+CMBGgA6hPs7INofhpuHHiQkp/XMNwkVzzqDW3cDMw3QujdYyCszUA03ABr+yaxhVJONew9psn+lRAPD9Gu9gz/e36Y0QAH/xmmgw9+AyBuZaYDWsBGngQ4bmWmACuGvHN5i22SJBhANN6dEA8P047ZXOT1HK0wg1y2y8LaGaWCLgga2JkADQIdwtwCibTXcPPQgITltY75JqHg2G9y625lpgNa93UJemYFquB3QcAezhlFNNu49pMlS0Wr+vonSwK36tV7sj+fmZhGQXgZpoNjV3yC3VC4vDdAaKAZIA8WlAJFVeekUgpPLW2ylAR38/wPNCdGwDJBTkjRwq37jGapyeo5WmECuZWXhlQv/V2DK5u5KAzQpWxoAOoRbFhCtXK7Z5qEHCckpBzzc6IGh4imTixd2bpaNI246rTvXQl6ZgWqYC2iYx6xhVJONew9psuVTooFbDGkg35QGKGC+AQ3kAyIXMNMAraHAgAYKmGmACqF8Lm+xVbBEA4iGFVOigVtSoIFCWXhFYRooVNBAUQI0AHQItxAQrcgSDSA5VWK+Sah4KhrcupWZaYDWXdlCXpmBalgZ0LAKs4ZRTTbuPaTJ7pYSDdysX+tT/fF2N6UBCrg7TgNTdwdErspMA7SGqjgNTK3KTANUCLvl8hbbHpZoANGwWko0cLM+DUxROT1HK0wg1+qy8PYM00B1BQ3smQANAB3CrQ6Itmeu2eahBwnJaS/mm4SKp5rBrbs3Mw3Quve2kFdmoBruDWi4D7OGUU027j2kye6bEg3cpF/rk/3xapjSAAWsgdPA5BqAyB4zDfyzaTgNTPaYaYAKYd9c3mLbzxINIBrunxIN3KRPA5NUTs/RChPI9QBZeAeGaeAABQ0cmAANAB3CPQAQ7cBcs81DDxKS00HMNwkVz/4Gt+7BzDRA6z7YQl6ZgWp4MKBhTWYNo5ps3HtIk62VEg3cqF/rq/3xDjGlAQp4CE4Dqw8BRD6UmQZoDYfiNLD6UGYaoEKolctbbIdZogFEw8NTooEb9WlglcrpOVphArkeIQvvyDANHKGggSMToAGgQ7hHAKIdmWu2eehBQnI6ivkmoeI53ODWrc1MA7Tu2hbyygxUw9qAhnWYNYxqsnHvIU22bko0cIN+rS/xx6tnSgMUsB5OA0vqASIfzUwDtIajcRpYcjQzDVAh1M3lLbZjLNEAomH9lGjgBn0aWKxyeo5WmECuDWThHRumgQYKGjg2ARoAOoTbABDt2FyzzUMPEpLTccw3CRVPfYNb93hmGqB1H28hr8xANTwe0LAhs4ZRTTbuPaTJNkqJBor1a726P94JpjRAAU/AaaD6CYDIjZlpgNbQGKeB6o2ZaYAKoVEub7E1sUQDiIZNU6KBYn0aqKZyeo5WmECuzWThNQ/TQDMFDTRPgAaADuE2A0Rrnmu2eehBQnJqwXyTUPE0Nbh1WzLTAK27pYW8MgPVsCWgYStmDaOabNx7SJNtnRINDNWv9bn+eG1MaYACtsFpYG4bQOS2zDRAa2iL08Dctsw0QIXQOpe32NpZogFEw/Yp0cBQfRqYo3J6jlaYQK4dZOF1DNNABwUNdEyABoAO4XYAROuYa7Z56EFCcurEfJNQ8bQ3uHU7M9MArbuzhbwyA9WwM6BhF2YNo5ps3HtIk+2aEg0M0a/14f543UxpgAJ2w2lgeDdA5O7MNEBr6I7TwPDuzDRAhdA1l7fYTrREA4iGPVKigSH6NDBM5fQcrTCBXE+ShXdymAZOUtDAyQnQANAh3JMA0U7ONds89CAhOfVkvkmoeHoY3LqnMNMArfsUC3llBqrhKYCGpzJrGNVk495DmuxpKdHA9fq13tYf73RTGqCAp+M00PZ0QORezDRAa+iF00DbXsw0QIVwWi5vsfW2RAOIhmekRAPX69NAG5XTc7TCBHI9UxZenzANnKmggT4J0ADQIdwzAdH65JptHnqQkJz6Mt8kVDxnGNy6ZzHTAK37LAt5ZQaq4VmAhv2YNYxqsnHvIU327JRo4Dr9Wh/rj3eOKQ1QwHNwGhh7DiDyucw0QGs4F6eBsecy0wAVwtm5vMV2niUaQDQ8PyUauE6fBsaonJ6jFSaQ6wWy8C4M08AFChq4MAEaADqEewEg2oW5ZpuHHiQkp4uYbxIqnvMNbt2LmWmA1n2xhbwyA9XwYkDD/swaRjXZuPeQJjsgJRq4Vr/WB/njDTSlAQo4EKeBQQMBkQcx0wCtYRBOA4MGMdMAFcKAXN5iu8QSDSAaXpoSDVyrTwMDVU7P0QoTyPUyWXiXh2ngMgUNXJ4ADQAdwr0MEO3yXLPNQw8SktMVzDcJFc+lBrfulcw0QOu+0kJemYFqeCWg4VXMGkY12bj3kCY7OCUauEa/1hf6411tSgMU8GqcBhZeDYh8DTMN0BquwWlg4TXMNECFMDiXt9iutUQDiIbXpUQD1+jTwAKV03O0wgRyvV4W3pAwDVyvoIEhCdAA0CHc6wHRhuSabR56kJCchjLfJFQ81xncusXMNEDrLraQV2agGhYDGt7ArGFUk417D2myN6ZEA1fr17rnj3eTKQ1QwJtwGvBuAkS+mZkGaA034zTg3cxMA1QIN+byFtstlmgA0fDWlGjgan0aqKFyeo5WmECuw2ThDQ/TwDAFDQxPgAaADuEOA0Qbnmu2eehBQnIawXyTUPHcanDr3sZMA7Tu2yzklRmohrcBGt7OrGFUk417D2myd6REA4P1a73AH2+kKQ1QwJE4DRSMBEQexUwDtIZROA0UjGKmASqEO3J5i220JRpANByTEg0M1qeBfJXTc7TCBHIdKwtvXJgGxipoYFwCNAB0CHcsINq4XLPNQw8SktOdzDcJFc8Yg1v3LmYaoHXfZSGvzEA1vAvQ8G5mDaOabNx7SJO9JyUauEq/1gf4491rSgMU8F6cBgbcC4h8HzMN0Bruw2lgwH3MNECFcE8ub7Hdb4kGEA0fSIkGrtKngf4qp+dohQnk+qAsvPFhGnhQQQPjE6ABoEO4DwKijc812zz0ICE5TWC+Sah4HjC4dR9ipgFa90MW8soMVMOHAA0nMmsY1WTj3kOa7MMp0cCV+rVeyR/vEVMaoICP4DRQ6RFA5EeZaYDW8ChOA5UeZaYBKoSHc3mLbZIlGkA0nJwSDVypTwNFKqfnaIUJ5PqYLLzHwzTwmIIGHk+ABoAO4T4GiPZ4rtnmoQcJyekJ5puEimeywa07hZkGaN1TLOSVGaiGUwANpzJrGNVk495DmuyTKdHAFfoNLRDvKVMaoIBP5eLvPc18w1NeT/s6p+foD7SI6MA+mctbFM9YurURXZ7NslB11vysgYZJFtTlhgX1nGlBUcDnDApqGnNBUV7TEiqouOkk/LRcswPj6cVI9JBclqOfoz/edNNDQgGnG3Sc6UDFzmA+ULSGGQYiz2D+DEaHaIYBHjwD7NdMZhykvZ1pWKyZgZ6tmcD6n2dGvKgbOe495Eaexawh7dEsg4sA0YGaIH02K636jcC4Zztm58zB4njazl2Gu3NNru+dF8R+zRY2R9hcYS8KmydsvrAFwhYKe0nYy8IWCXtF2KvCXhP2urA3hL0p7C1hbwt7R9i7wt4TtljYEmFLhS0TtlzYCmHvC/tA2Ifh7wBekJ/3/b7ZCt8chW+uwveiwjdP4Zuv8C1Q+BYqfC8pfC8rfIsUvlcUvlcVvtcUvtcVvjcUvjcVvrcUvrcVvncUvncVvvcUvsUK3xKFb6nCt0zhW67wrVD43lf4PlD4Pszd9bul/eTTc7RGoOjjms0Lmo2JvoearT3XcefozhX5ztWbO07k676oNXcDrc2dpzN3zT/74M7XmNv83z1zF8TPHSP3110YO3dgRgv3pbi5c3bq5r4cM3fwfxq7i0qe28Z3HtxXSpy71n923FdLmls3cM7c10qYWzN4Jt3Xo+f2Cp1f943IuT3DZ919M2pu8S514b4VMbd41xpy31bPnaWoN/cd5dyWqtp031XN7aKsY/c9xdzZ6pp3F+86t1ZEf3CX7DJ3YlQvcZeG59aO7DvustDcNdE9yl0enHtJCf3MXRGY26mk3ue+75/br8Q+6X7gm3tUyT3V/TBXH7qS/MT7oX4vX+6P91FuFgHpZfBPHZd/pL9B7krNRZl+4qU1UAwXXMNKUOSk/nQMOFzLVE7P0QoTyHWVPCCrw7SySm6c37c6N/s/HQNOsrsKOCCrwc1DxaFDsQo8TJTXqpQ6xgf6+zzBH+9j045BAT/GO8aEj4GO8Qlzx6A1fIJ3jAmfpNQxPtCPO17l9BytMIFcP5UH5LNwx/hU0TE+S6BjACfZ/RQ4IJ8Zbh76RR2S0+dAMez8B5DLSnnA0S/qkKv6C6AYVGuIm0579IVBJ/4ipU78vv75nemPt8a0E1PANXgnnrkGOHxfMndiWsOXeCee+WWWh0+ngL5gLqCvwDVkBtqYEA2/Bs5Gkjfc+/pxZ6icnqMVJpDrN7Lwvg3fcN8obrhvE7jhgA7hfgOI9q3h5qEHCcnpuyxvuLh3qHi+Nrgd1jLfWrTutRbyygxUw7WAht8zaxjVZHWas+7cH8CGlhQNrNCv9dH+eD+a0gAF/BGngdE/Ahv0EzMN0Bp+wmlg9E/MNECF8EMub7H9DBZbZqA5IRr+khINrNCPO0rl9BytMIFcf5WF91uYBn5V0MBvCdAA0CHcXwHRfjPcPPQgITmtY75JqHh+Mbh1f2emAVr37xbyygxUw98BDf9g1jCqyca9hzTZ9Sl9N7Bcv9Y9f7wNpjRAATfgNOBtAET+k5kGaA1/4jTg/clMA1QI63N5i+0vSzSAaPh3SjSwXD9uYj93bqMsvE1hGtiooIFNCdAA0CHcjYBomww3Dz1ISE6bmW8SKp6/DW7dLcw0QOveYiGvzEA13AJouJVZw6gmG/ce0mS3pUQDy/RrfZk/3nZTGqCA23EaWLYdEHkHMw3QGnbgNLBsBzMNUCFsy+UtNifPDg0gGrpATknSwDJ9PZeqnJ6jFSaQa6m8f5+l85zgzU//R5gGaFK2NAB0CLdUnr5opfPMNg89SEhOZcDDjR4YKh43Dy/ssvp5yUDB3z9uOq27rIW8MgPVsCygYTlmDaOabNx7SJPNAfY1SRpYql/rff3xcvOyCEgvgzTQNxcQOQ84PKZryAOLh9aQl2VR6xRCTh5vsZW3RAOIhvkp0cBSfRroo3J6jlaYQK4FsvAqhGmgQEEDFRKgAaBDuAWAaBXyzDYPPUhIThWZbxIqnnyDW7eQmQZo3YUW8soMVMNCQMMiZg2jmmzce0iTrZQSDSzRr/VV/niVTWmAAlbGaWBVZUDkKsw0QGuogtPAqirMNECFUCmPt9h2s0QDiIa7p0QDS/RpYKXK6TlaYQK5VpWFt0eYBqoqaGCPBGgA6BBuVUC0PfLMNg89SEhO1ZhvEiqe3Q1u3erMNEDrrm4hr8xANawOaLgns4ZRTTbuPaTJ7pUSDSzWr/V2/nh7m9IABdwbp4F2ewMi78NMA7SGfXAaaLcPMw1QIeyVx1ts+1qiAUTDGinRwGJ9GmircnqOVphArp4svP3CNOApaGC/BGgA6BCuB4i2X57Z5qEHCclpf+abhIqnhsGtewAzDdC6D7CQV2agGh4AaHggs4ZRTTbuPaTJHpQSDbynX+vT/fEONqUBCngwTgPTDwZErslMA7SGmjgNTK/JTANUCAfl8RZbLUs0gGh4SEo08J4+DUxTOT1HK0wg10Nl4R0WpoFDFTRwWAI0AHQI91BAtMPyzDYPPUhITocz3yRUPIcY3LpHMNMArfsIC3llBqrhEYCGRzJrGNVk495DmuxRKdHAu/q1Pt8fr7YpDVDA2jgNzK8NiFyHmQZoDXVwGphfh5kGqBCOyuMttrqWaADRsF5KNPCuPg3MUzk9RytMINejZeEdE6aBoxU0cEwCNAB0CPdoQLRj8sw2Dz1ISE71mW8SKp56BrduA2YaoHU3sJBXZqAaNgA0PJZZw6gmG/ce0mSPS4kG3tGv9Q7+eMeb0gAFPB6ngQ7HAyI3ZKYBWkNDnAY6NGSmASqE4/J4i62RJRpANDwhJRp4R58G2qucnqMVJpBrY1l4TcI00FhBA00SoAGgQ7iNAdGa5JltHnqQkJyaMt8kVDwnGNy6zZhpgNbdzEJemYFq2AzQsDmzhlFNNu49pMm2SIkG3tav9WJ/vJamNEABW+I0UNwSELkVMw3QGlrhNFDcipkGqBBa5PEWW2tLNIBo2CYlGnhbnwaGqpyeoxUmkGtbWXjtwjTQVkED7RKgAaBDuG0B0drlmW0eepCQnNoz3yRUPG0Mbt0OzDRA6+5gIa/MQDXsAGjYkVnDqCYb9x7SZDulRANvGdJAZ1MaoICdDWigMyByF2YaoDV0MaCBLsw0QIXQKY+32LpaogFEw24p0cBbKdBAd1l4J4ZpoLuCBk5MgAaADuF2B0Q70RINIDn1YL5JqHi6Gdy6JzHTAK37JAt5ZQaq4UmAhiczaxjVZOPeQ5psz5Ro4E39Wp/qj3eKKQ1QwFNwGph6CiDyqcw0QGs4FaeBqacy0wAVQs883mI7zRINIBqenhINvKlPA1NUTs/RChPItZcsvN5hGuiloIHeCdAA0CHcXoBovfPMNg89SEhOZzDfJFQ8pxvcumcy0wCt+0wLeWUGquGZgIZ9mDWMarJx7yFNtm9KNPCGfq1P9sc7y5QGKOBZOA1MPgsQuR8zDdAa+uE0MLkfMw1QIfTN4y22sy3RAKLhOSnRwBv6NDBJ5fQcrTCBXM+VhXdemAbOVdDAeQnQANAh3HMB0c7LM9s89CAhOZ3PfJNQ8ZxjcOtewEwDtO4LLOSVGaiGFwAaXsisYVSTjXsPabIXpUQDr+vX+mp/vItNaYACXozTwOqLAZH7M9MAraE/TgOr+zPTABXCRXm8xTbAEg0gGg5MiQZe16eBVSqn52iFCeQ6SBbeJWEaGKSggUsSoAGgQ7iDANEuyTPbPPQgITldynyTUPEMNLh1L2OmAVr3ZRbyygxUw8sADS9n1jCqyca9hzTZK1Kigdf0a32JP96VpjRAAa/EaWDJlYDIVzHTAK3hKpwGllzFTANUCFfk8RbbYEs0gGh4dUo08Jo+DSxWOT1HK0wg12tk4V0bpoFrFDRwbQI0AHQI9xpAtGvzzDYPPUhITtcx3yRUPFcb3LrXM9MArft6C3llBqrh9YCGQ5g1jGqyce8hTXZoSjTwqn6tV/fHKzalAQpYjNNA9WJA5BuYaYDWcANOA9VvYKYBKoShebzFdqMlGkA0vCklGnhVnwaqqZyeoxUmkOvNsvBuCdPAzQoauCUBGgA6hHszINoteWabhx4kJKdbmW8SKp6bDG7dYcw0QOseZiGvzEA1HAZoOJxZw6gmG/ce0mRHpEQDr+jX+lx/vNtMaYAC3obTwNzbAJFvZ6YBWsPtOA3MvZ2ZBqgQRuTxFtsdlmgA0XBkSjTwij4NzFE5PUcrTCDXUbLwRodpYJSCBkYnQANAh3BHAaKNzjPbPPQgITmNYb5JqHhGGty6Y5lpgNY91kJemYFqOBbQcByzhlFNNu49pMnemRINLNKv9eH+eHeZ0gAFvAungeF3ASLfzUwDtIa7cRoYfjczDVAh3JnHW2z3WKIBRMN7U6KBRfo0MEzl9BytMIFc75OFd3+YBu5T0MD9CdAA0CHc+wDR7s8z2zz0ICE5PcB8k1Dx3Gtw6z7ITAO07gct5JUZqIYPAhqOZ9YwqsnGvYc02Qkp0cDL+rXe1h/vIVMaoIAP4TTQ9iFA5InMNEBrmIjTQNuJzDRAhTAhj7fYHrZEA4iGj6REAy/r00AbldNztMIEcn1UFt6kMA08qqCBSQnQANAh3EcB0SblmW0eepCQnCYz3yRUPI8Y3LqPMdMArfsxC3llBqrhY4CGjzNrGNVk495DmuwTKdHAS/q1PtYfb4opDVDAKTgNjJ0CiDyVmQZoDVNxGhg7lZkGqBCeyOMttict0QCi4VMp0cBL+jQwRuX0HK0wgVyfloX3TJgGnlbQwDMJ0ADQIdynAdGeyTPbPPQgITk9y3yTUPE8ZXDrPsdMA7Tu5yzklRmohs8BGk5j1jCqyca9hzTZ6SnRwEL9Wh/kjzfDlAYo4AycBgbNAESeyUwDtIaZOA0MmslMA1QI0/N4i+15SzSAaDgrJRpYqE8DA1VOz9EKE8j1BVl4s8M08IKCBmYnQANAh3BfAESbnWe2eehBQnKaw3yTUPHMMrh15zLTAK17roW8MgPVcC6g4YvMGkY12bj3kCY7LyUaWKBf6wv98eab0gAFnI/TwML5gMgLmGmA1rAAp4GFC5hpgAphXh5vsS20RAOIhi+lRAML9GlggcrpOVphArm+LAtvUZgGXlbQwKIEaADoEO7LgGiL8sw2Dz1ISE6vMN8kVDwvGdy6rzLTAK37VQt5ZQaq4auAhq8xaxjVZOPeQ5rs6ynRwHz9Wvf88d4wpQEK+AZOA94bgMhvMtMAreFNnAa8N5lpgArh9TzeYnvLEg0gGr6dEg3M16eBGiqn52iFCeT6jiy8d8M08I6CBt5NgAaADuG+A4j2bp7Z5qEHCcnpPeabhIrnbYNbdzEzDdC6F1vIKzNQDRcDGi5h1jCqyca9hzTZpSnRwDz9Wi/wx1tmSgMUcBlOAwXLAJGXM9MArWE5TgMFy5lpgAphaR5vsa2wRAOIhu+nRAPz9GkgX+X0HK0wgVw/kIX3YZgGPlDQwIcJ0ADQIdwPANE+zDPbPPQgITl9xHyTUPG8b3DrrmSmAVr3Sgt5ZQaq4UpAw1XMGkY12bj3kCa7OiUaeFG/1gf4431sSgMU8GOcBgZ8DIj8CTMN0Bo+wWlgwCfMNECFsDqPt9g+tUQDiIafpUQDL+rTQH+V03O0wgRy/VwW3hdhGvhcQQNfJEADQIdwPwdE+yLPbPPQg4TktIb5JqHi+czg1v2SmQZo3V9ayCszUA2/BDT8ilnDqCYb9x7SZL9OiQbm6td6JX+8b0xpgAJ+g9NApW8Akb9lpgFaw7c4DVT6lpkGqBC+zuMttu8s0QCi4dqUaGCuPg0UqZyeoxUmkOv3svB+CNPA9woa+CEBGgA6hPs9INoPeWabhx4kJKcfmW8SKp61BrfuT8w0QOv+yUJemYFq+BOg4c/MGkY12bj3kCb7S0o0MEe/oQXi/WpKAxTw1zz8vd+Yb3jK67e8/xyeoz/QIqID+0seb1Gss3RrI7r8nmWh6qz5dwMNkyyo2YYF9YdpQVHAPwwKaj1zQVFe6xMqqLjpJPz6PLMD4+nFSPSQvJCrn6M/3gbTQ0IBNxh0nA1Axf7JfKBoDX8aiPwn82cwOkR/GuDBOmC//mLGQdrbvwyLNTPQs/UXsP6/mREv6kaOew+5kTcya0h7tNHgIkB0oCZIn81Kq34jMK7rmJ0zB4vjaTt3Ge7ONflz3ST2a7OwLcK2CtsmbLuwHVQ/5cVcYaWElRZWRlhZYeWE5QjLFZYnrLywfGEFwioIqyisUFiRsErCKgurImw3YbsLqypsD2HVyjvBz/ub5Od9v2+zwrdF4duq8G1T+LYrfDsUPlp82OcqfKUUvtIKXxmFr6zCV07hy1H4chW+PIWvvMKXr/AVKHwVFL6KCl+hwlek8FVS+CorfFUUvt0Uvt0VvqoK3x4KX7Xyu363tJ98eo7WCBR9XLPZpNmY6HuozdpzHXeL7lyR71a9ueNEvu42rbkbaG3udp25a/7ZB3eHxtzm/+6ZSzUYM3eM3F/XjZ07MKOFWypu7pydurmlY+YO/k9jt0zJc9v4zoNbtsS5a/1nxy1X0ty6gXPm5pQwt2bwTLq50XN7hc6vmxc5t2f4rLvlo+YW71IXbn7E3OJda8gtUM+dpag3t4JybktVbboVVXO7KOvYLVTMna2uebdo17m1IvqDW2mXuROjeolbOTy3dmTfcauE5q6J7lHubsG5l5TQz9zdA3M7ldT73Kr+uf1K7JPuHr65R5XcU91q5fWhK8lPvNXi+1Kmly/3x6tePouA9DL4p47Lq+tvkLun5qJMP/HSGiiGC65hT1DkpP50DDhcy1ROz9EKE8h1L3lA9g6T8V5y4/y+vctn/6djwEl29wIOyN7g5qHi0KHYCzxMlNdeKXWMPfT3eYI/3j6mHYMC7oN3jAn7AB1jX+aOQWvYF+8YE/ZNqWPsoR93vMrpOVphArnWkAfEC3eMGoqO4SXQMYCT7NYADohnuHnoF3VITvsBxbDzH0Aue8oDjn5Rh1zV+wPFoFpD3HTao/0NOvH+KXXiqvrnd6Y/3gGmnZgCHoB34pkHAIfvQOZOTGs4EO/EMw/M8vDpFND+zAV0ELiGzEAbE6LhwcDZSPKGq6ofd4bK6TlaYQK51pSFVyt8w9VU3HC1ErjhgA7h1gREq2W4eehBQnI6JMsbLu4dKp6DDW6HQ5lvLVr3oRbyygxUw0MBDQ9j1jCqyeo0Z925h4MNLSka2F2/1kf74x1hSgMU8AicBkYfAWzQkcw0QGs4EqeB0Ucy0wAVwuHleYvtKLDYMgPNCdGwdko0sLt+3FEqp+dohQnkWkcWXt0wDdRR0EDdBGgA6BBuHUC0uoabhx4kJKd6zDcJFU9tg1v3aGYaoHUfbSGvzEA1PBrQ8BhmDaOabNx7SJOtn9J3A7vp17rnj9fAlAYoYAOcBrwGgMjHMtMAreFYnAa8Y5lpgAqhfnneYjvOEg0gGh6fEg3sph83sZ8711AWXqMwDTRU0ECjBGgA6BBuQ0C0Roabhx4kJKcTmG8SKp7jDW7dxsw0QOtubCGvzEA1bAxo2IRZw6gmG/ce0mSbpkQDVfRrfZk/XjNTGqCAzXAaWNYMELk5Mw3QGprjNLCsOTMNUCE0Lc9bbC0s0QCiYcuUaKCKftylKqfnaIUJ5NpKFl7rMA20UtBA6wRoAOgQbitAtNaGm4ceJCSnNsw3CRVPS4Nbty0zDdC621rIKzNQDdsCGrZj1jCqyca9hzTZ9inRQGX9Wu/rj9fBlAYoYAecBvp2AETuyEwDtIaOOA307chMA1QI7cvzFlsnSzSAaNg5JRqorB+3j8rpOVphArl2kYXXNUwDXRQ00DUBGgA6hNsFEK2r4eahBwnJqRvzTULF09ng1u3OTAO07u4W8soMVMPugIYnMmsY1WTj3kOabI+UaKCSfq2v8sc7yZQGKOBJOA2sOgkQ+WRmGqA1nIzTwKqTmWmACqFHed5i62mJBhANT0mJBirpx12pcnqOVphArqfKwjstTAOnKmjgtARoAOgQ7qmAaKcZbh56kJCcTme+Sah4TjG4dXsx0wCtu5eFvDID1bAXoGFvZg2jmmzce0iTPSMlGijSr/V2/nhnmtIABTwTp4F2ZwIi92GmAVpDH5wG2vVhpgEqhDPK8xZbX0s0gGh4Vko0UKQft63K6TlaYQK59pOFd3aYBvopaODsBGgA6BBuP0C0sw03Dz1ISE7nMN8kVDxnGdy65zLTAK37XAt5ZQaq4bmAhucxaxjVZOPeQ5rs+SnRQKF+rU/3x7vAlAYo4AU4DUy/ABD5QmYaoDVciNPA9AuZaYAK4fzyvMV2kSUaQDS8OCUaKNSPO03l9BytMIFc+8vCGxCmgf4KGhiQAA0AHcLtD4g2wHDz0IOE5DSQ+Sah4rnY4NYdxEwDtO5BFvLKDFTDQYCGlzBrGNVk495DmuylKdFARf1an++Pd5kpDVDAy3AamH8ZIPLlzDRAa7gcp4H5lzPTABXCpeV5i+0KSzSAaHhlSjRQUT/uPJXTc7TCBHK9Shbe4DANXKWggcEJ0ADQIdyrANEGG24eepCQnK5mvkmoeK40uHWvYaYBWvc1FvLKDFTDawANr2XWMKrJxr2HNNnrUqKBCvq13sEf73pTGqCA1+M00OF6QOQhzDRAaxiC00CHIcw0QIVwXXneYhtqiQYQDYtTooEK+nHbq5yeoxUmkOsNsvBuDNPADQoauDEBGgA6hHsDINqNhpuHHiQkp5uYbxIqnmKDW/dmZhqgdd9sIa/MQDW8GdDwFmYNo5ps3HtIk701JRoo0K/1Yn+8YaY0QAGH4TRQPAwQeTgzDdAahuM0UDycmQaoEG4tz1tsIyzRAKLhbSnRQIF+3KEqp+dohQnkerssvDvCNHC7ggbuSIAGgA7h3g6Idofh5qEHCclpJPNNQsVzm8GtO4qZBmjdoyzklRmohqMADUczaxjVZOPeQ5rsmJRoIN+QBsaa0gAFHGtAA2MBkccx0wCtYZwBDYxjpgEqhDHleYvtTks0gGh4V0o0kJ8CDdwtC++eMA3craCBexKgAaBDuHcDot1jiQaQnO5lvkmoeO4yuHXvY6YBWvd9FvLKDFTD+wAN72fWMKrJxr2HNNkHUqKB8vq1PtUf70FTGqCAD+I0MPVBQOTxzDRAaxiP08DU8cw0QIXwQHneYptgiQYQDR9KiQbK68edonJ6jlaYQK4TZeE9HKaBiQoaeDgBGgA6hDsREO1hw81DDxKS0yPMNwkVz0MGt+6jzDRA637UQl6ZgWr4KKDhJGYNo5ps3HtIk52cEg3k6df6ZH+8x0xpgAI+htPA5McAkR9npgFaw+M4DUx+nJkGqBAml+cttics0QCi4ZSUaCBPP+4kldNztMIEcp0qC+/JMA1MVdDAkwnQANAh3KmAaE8abh56kJCcnmK+Sah4phjcuk8z0wCt+2kLeWUGquHTgIbPMGsY1WTj3kOa7LMp0UCufq2v9sd7zpQGKOBzOA2sfg4QeRozDdAapuE0sHoaMw1QITxbnrfYpluiAUTDGSnRQK5+3FUqp+dohQnkOlMW3vNhGpipoIHnE6ABoEO4MwHRnjfcPPQgITnNYr5JqHhmGNy6LzDTAK37BQt5ZQaq4QuAhrOZNYxqsnHvIU12Tko0kKNf60v88eaa0gAFnIvTwJK5gMgvMtMAreFFnAaWvMhMA1QIc8rzFts8SzSAaDg/JRrI0Y+7WOX0HJ0RpIEFsvAWhmlggYIGFiZAA0CHcBcAoi003Dz0ICE5vcR8k1DxzDe4dV9mpgFa98sW8soMVMOXAQ0XMWsY1WTj3kOa7Csp0UA5/Vqv7o/3qikNUMBXcRqo/iog8mvMNEBreA2ngeqvMdMAFcIr5XmL7XVLNIBo+EZKNFBOP241ldNztMIEcn1TFt5bYRp4U0EDbyVAA0CHcN8ERHvLcPPQg4Tk9DbzTULF84bBrfsOMw3Qut+xkFdmoBq+A2j4LrOGUU027j2kyb6XEg2U1a/1uf54i01pgAIuxmlg7mJA5CXMNEBrWILTwNwlzDRAhfBeed5iW2qJBhANl6VEA2X1485ROT1HK0wg1+Wy8FaEaWC5ggZWJEADQIdwlwOirTDcPPQgITm9z3yTUPEsM7h1P2CmAVr3BxbyygxUww8ADT9k1jCqyca9hzTZj1KigTL6tT7cH2+lKQ1QwJU4DQxfCYi8ipkGaA2rcBoYvoqZBqgQPirPW2yrLdEAouHHKdFAGf24w1ROz9EKE8j1E1l4n4Zp4BMFDXyaAA0AHcL9BBDtU8PNQw8SktNnzDcJFc/HBrfu58w0QOv+3EJemYFq+Dmg4RfMGkY12bj3kCa7JiUaKK1f62398b40pQEK+CVOA22/BET+ipkGaA1f4TTQ9itmGqBCWFOet9i+tkQDiIbfpEQDpfXjtlE5PUcrTCDXb2XhfRemgW8VNPBdAjQAdAj3W0C07ww3Dz1ISE5rmW8SKp5vDG7d75lpgNb9vYW8MgPV8HtAwx+YNYxqsnHvIU32x5RooJR+rY/1x/vJlAYo4E84DYz9CRD5Z2YaoDX8jNPA2J+ZaYAK4cfyvMX2iyUaQDT8NSUaKKUfd4zK6TlaYQK5/iYLb12YBn5T0MC6BGgA6BDub4Bo6ww3Dz1ISE6/M98kVDy/Gty6fzDTAK37Dwt5ZQaq4R+AhuuZNYxqsnHvIU12Q0o04OrX+iB/vD9NaYAC/onTwKA/AZH/YqYBWsNfOA0M+ouZBqgQNpTnLba/LdEAouHGlGjA1Y87UOX0HK0wgVw3ycLbHKaBTQoa2JwADQAdwt0EiLbZcPPQg4TktIX5JqHi2Whw625lpgFa91YLeWUGquFWQMNtzBpGNdm495Amuz0lGnD0a32hP94OUxqggDtwGli4AxE5n5cGaA0UA6SBhf689ALp//6ZQthenrfY3Hxgn3wDzQnRsBSQU5I04OifyQUqp+fohfHnWjr/32eZfCd485fO35UGaFK2NAB0CLc0IFqZfLPNQw8SklNZ8HDD+Jj/72FFC7tclo0jbjqtu5yFvDID1bAcoGEOs4ZRTTbuPaTJ5gL7miQN7MjTrnXPHy8vP4uA9DJIA14eIHJ5ZhqgNZTHacArz0wDVAi5+bzFlm+JBhANC1KiAX/xxIwaKqfnaIUJ5FpBFl7FMA1UUNBAxQRoAOgQbgVAtIr5ZpuHHiQkp0Lmm4SKp8Dg1i1ipgFad5GFvDID1bAI0LASs4ZRTTbuPaTJVk6JBrbr13qBP14VUxqggFVwGiioAoi8GzMN0Bp2w2mgYDdmGqBCqJzPW2y7W6IBRMOqKdHAdn0ayFc5PUcrTCDXPeTvVC1MA3soaKBaAjQAdAh3D0C0avlmm4ceJCSn6sw3CRVPVYNbd09mGqB172khr8xANdwT0HAvZg2jmmzce0iT3TslGtimX+sD/PH2MaUBCrgPTgMD9gFE3peZBmgN++I0MGBfZhqgQtg7n7fYaliiAURDLyUa2KZPA/1VTs/RChPIdT9ZePuHaWA/BQ3snwANAB3C3Q8Qbf98s81DDxKS0wHMN8k/xWNw6x7ITAO07gMt5JUZqIYHAhoexKxhVJONew9psgenRANb9Wu9kj9eTVMaoIA1cRqoVBMQuRYzDdAaauE0UKkWMw1QIRycz1tsh1iiAUTDQ1Oiga36NFCkcnqOVphArofJwjs8TAOHKWjg8ARoAOgQ7mGAaIfnm20eepCQnI5gvkmoeA41uHWPZKYBWveRFvLKDFTDIwENj2LWMKrJxr2HNNnaKdHAFv2GFohXx5QGKGCdfPy9usw3POVVN/8/h+foD7SI6MDWzuctinqWbm1El6OzLFSdNR9toGGSBbXZsKCOMS0oCniMQUHVZy4oyqt+QgUVN52Er59vdmA8vRiJHpJNefo5+uM1MD0kFLCBQcdpAFTsscwHitZwrIHIxzJ/BqNDdKwBHtQD9us4ZhykvT3OsFgzAz1bxwHrP54Z8aJu5Lj3kBu5IbOGtEcNDS4CRAdqgnmKHGk0ypcTSjnJdMlGwIb5PzCfIA9y4/AHZvo/ikO+xtLnH+gH5kbADp4QPbdXaK7bGLyeKO9SJczxIvzhuP7/DxXtBCBnf6AmYbGa5O96isLCIJtdQuydCej+vk3ztTczsKamGoctLnZjIE9kTc1KWFP4Xf+amvmKKte3Hv+aYoarmFtqaZUzrig3uXe/I2pWaPV7tcp33dTktZE3Nql5OPD77iyGTPFnCh7JrbmY30JYy/xkGbCFb7+r1a153KD7lu32aa39P2n68tNH3lV9w4GNPp3T9pF1m9/eKOb647UyZUAK2Epxx8UFbwXcva2ZGZDW0Fpxx8WtoTXYSelfE0zi++IWhl+XOaE4MesLHMg2/saJwiywUa6/C/iDxsTspRKnjQZ8hRfdBjhsbcFrKbOutr6OHbeXRe6iwjzv4evOm7tiznNNTnxfd11hcZF1tTNcV7sEsKctcLu2A9bUnvkDm64u4TCILh3ANaBNObMG3XxoTzvgjTMQI278X0FQtNYzo2NJjTPu9+lgWIgd9Runsql1MPhGpHaV7Aos4v/eOSinjgZ51QHzyowyoTjhUVJxxuXUCbgQgX11kbX6z0sn4EJSXRYm56Uuky7huIgunX1z96nX6cFF3S+cNvL4wjZ1y79//fu3Xljvo9Ejbjx0fXHPq8sdMA7Ya7euoS6dpS5JfgGC0KO/6XaRHxG62mpopr9/F4PD2M2w0XYroXB0cu1qkGt3w1y7Z1HklGs3g1yPzvJSiPsyi/LqbpDXMcleVrtMbyGbIkqDwH65yBr+r1AUWmeZcWIaFHViCRSleC0wKOaJBgez/v9BWumRz3OA6xveij0UHzM5qeAk39wqdZyVNb445urDqtYf2OXKm7/o8cyQ3SYdsraw2q9XNLpy06cD/UUZRxCm6z/JRwVRRY3WCPLxJps4pg3g5DQawMlZNoCTDRpAA8MGUBaMgxRAT2Au8nEFaRYNDIulp0aziFvTKcD6/aifZLMwXf8p/4c+QpwqP0Kclu/898cPnqM1Ir/QRb58jpsLfDHl7vyHg68B/eM50zXEzT2deb0k+OkGTbCXYcPulcXHsdMMc+1tmGvvLD6OUZ69DHI9nvnjGOXV2yCvhhY+jp1u8HEM2C+34f+HH8fQOsuMM7KhsdMNC+aMLGiMYp5hcDAbWfo4djrQtM/M5znAjQwJ48wEPo4h6+8DfBxrCBCW6fr7KNaP/qkzsv6+hvXT1yDP8J/kIXmeZZjnWVlejH0N6vwECxfjWQZ5NTbsP2HAjPsTWQQEgb1yG/9/eCn2NbwU+6VxKfbL8lLsZ3Aom/wfvBTPZjrATQwvhbMtX4rnAJdiY+BSNF3/OQzfUSK0mk0c0wZwbhoN4NwsG8C5Bg2gqaXvKJECOA+Yi1Ax0iyaGhbLeQl8R3k+8FcXGgLfUSLNwnT952fxtY0r30HP8AVAvZEW+U6wgNA8L8gPvu9p5Pnbjh3r/I3zQvn96UX5hknQixcZFPzFzH9tg+ZfYJBX/3z9jTTJizb8YoO8mif7cWKX35/y6m+QVwvDxo1+bwas320BfkRI6l+V6G94yw8wLT4KOCAff28gcLOZ5jUw/z+H5+gPk4M7MMs9QEYccofjXKzfULb2zzdrCHG/bwsLzcPkEhjkW2/c9wlJFuogw0K9xLRQKeAlBof0UuZCpbwuNSjUkv7do/DvFSesSd6ZA+dg7wXEvEz1R8Zxm0ybdWG+WcKacwMce1kJn8V0qvJSgz+iuhA4dJeDzBv++wK2hPcf1Cvk+1eqDkBcArTgyxK62uKmU5zLDdrqVcxsTRt4lUFegw2LYHAWH+auNMz1asNcr84iV9Nr9Jos9dY5T4MN8mrJ/EcglNfVBnm1Yv67AZTXNQaNF9gvt9X/h38MgtZ/ZlybzbegVxkW8rUl3LyK1wKDYl5rcDDbWPpjkKuAG/66fJ4D3Mbwm73rNL7ZDI/wGpH1Xw/8MUgr4JtN0/Vfn8DfDUDWP8SwfoYk8HcDkDyHGuY5NIu/G0D5DTGo87YWLsahBnm1s/R3A4Ce7AJ75bb7//BSHGJ4KRancSkWZ3kpFhscyvb/By/FG5gOcHvDS+EGy5fijcCl2A64FE3XfyPD3w1AaDWbOKYN4KY0GsBNWTaAmwwaQAdLfzcAKYCbgbkIFSPNooNhsdycwN8NuAX4uwGtgL8bgDQL0/Xfok98u/wMqMxXcihxXw6cl1sNa/NWgGTDPwNKd11hskPWNcxwXcPys/8ZUCXs6S59ahiwpuHMX73p6hIOg+gyAlwD+jOgMmvQzYf2dITinoj7VIH+WcT/BfpHaz0zbsvm8h9hWIi3ZfGHUbdGiBr3XhfmnwFFOd1mkFdXS59KRgCFczvwqQTYV7er4UV7exZfrQwzPC/dLP0MKESXOwBYAvba7Waoyx35yf8L3MifQfmb7kj5Z6mjbDU0099/pMFhHG3YaEfnm/8hIuU6yiDXMYa5jsmiyCnX0Qa5nsj8/SnlNcYgrx7Mf7B4jWyKKA0C++X2+P/wO1S0zjJjbBoUNTaLr1Ao5liDg3nS/0FaGZfPc4BPMrwVxyXwHSqy/juB71B7AF+LmK7/TobvUJGPN9nEMW0Ad6XRAO7KsgHcZdAATrb0HSpSAHcDc5GPK0izONmwWO5O4DvUe4D1dwO+Q0Wahen67/E1i6T+Vrb/IwTyX5q4Nz+LgPfm419o3QvcXPcBIpuu4T78y7JAXlqBQr9/3PQRMi/051IhDQTZ2/sBzXb+w9F/h/7u5v0GjfkBwxsS/Zll1wB79SDzl9qmezUe1BD9mER7hMQg7R40WMcE5tqj+Rca5PUQc16U0wSDvCZaqhHkX3x4OB/Tw/+fnKL//ZDch4ny+XB+9H8GKqPnI8IeFTYpPxQgtM64fJB1lhQn7t3J+ntUX/X766zjEYPz9JiFc/6oQV6Pgx8oCpz/oJP+92QZ8zH5fFw+h5T5b94TwjdF2FRhT8aco7h8n9LPt4Eq36c08n1a+J4R9qyw5/L/9Rc5wf98W1T+McN9wrCvOFgcT9u5y3B3rsn1vTNN5D1d2AxhM4U9L2yWsBeEzRY2R9hcYS8KmydsvrAFwhYKe0nYy8IWCXtF2KvCXhP2urA3hL0p7C1hbwt7R9i7wt4TtljYEmFL853gJwFKJjfkm67wzVD4Zip8zyt8sxS+FxS+2QrfHIVvrsL3osI3T+Gbr/AtUPgWKnwvKXwvK3yLFL5XFL5XFb7XFL7XFb43FL43Fb63FL63Fb53FL53Fb73FL7FCt8ShW+p9PnHfvLpOVojUPRxDW6a5tzfduxwp2vPddwZunNFvjP15o6j79Cf15q74Z/v22fpzF3z73fzL2jMbS6/x58dP3dM5jv/ObFzB+7884G5cXPn/PdnCS/GzB3s+3OHeSXPbeP/M4r5Jc5dG/jzjAUlza0b/LOPhSXMrRn6c5KXoufu8udYL0fO7Rk+6+6iqLnFu9SF+0rE3OJda8h9VT13lqLe3NeUc1uqatN9XTW3i7KO3TcUc2era959c9e5tSL6g/vWLnMnRvUS9+3w3NqRfcd9JzR3TXSPct8Nzr2khH7mvheY26mk3ucu9s/tV2KfdJf45h5Vck91lwLQleS3i0v1e/lyf7xl+VkEpJeRT6EUfJn+BrnLgcvMdA3LwU8ytIbloMiVnGT+vAk4XMtUTs/RChPIdYU8IO+HyXiF3Di/730FwaB/lxU4ye4K4IC8D24eKg4dihXgYaK8VqTUMZbo7/MEf7wPTDsGBfwA7xgTPgA6xofMHYPW8CHeMSZ8mFLHWKIfd7zK6TlaYQK5fiQPyMpwx/hI0TFWJtAxgJPsfgQckJWGm4d+MYvktAoohp3/AHJZLg84+ocLyFW9GigG1RriptMerTboxKtT6sSL9c/vTH+8j007MQX8GO/EMz8GDt8nzJ2Y1vAJ3olnfpLl4dMpoNXMBfQpuIbMQBsTouFnwNlI8oZbrB93hsrpOVphArl+Lgvvi/AN97nihvsigRsO6BDu54BoXxhuHnqQkJzWZHnDxb1DxfOZwe3wJfOtRev+0kJemYFq+CWg4VfMGkY1WZ3mrDv3a7ChJUUD7+nX+mh/vG9MaYACfoPTwOhvgA36lpkGaA3f4jQw+ltmGqBC+Dqft9i+A4stM9CcEA3XpkQD7+nHHaVyeo5WmECu38vC+yFMA98raOCHBGgA6BDu94BoPxhuHnqQkJx+ZL5JqHjWGty6PzHTAK37Jwt5ZQaq4U+Ahj8zaxjVZOPeQ5rsLyl9N/Cufq17/ni/mtIABfwVpwHvV0Dk35hpgNbwG04D3m/MNECF8Es+b7Gts0QDiIa/p0QD7+rHraFyeo5WmECuf8jCWx+mgT8UNLA+ARoAOoT7ByDaesPNQw8SktMG5puEiud3g1v3T2YaoHX/aSGvzEA1/BPQ8C9mDaOabNx7SJP9OyUaeEe/1pf54200pQEKuBGngWUbAZE3MdMArWETTgPLNjHTABXC3/m8xbbZEg0gGm5JiQbe0Y+7VOX0HK0wgVy3ysLbFqaBrQoa2JYADQAdwt0KiLbNcPPQg4TktJ35JqHi2WJw6+5gpgFa9w4LeWUGquEOpKEX8GoY1WTj3kOarKu/hkRp4G39Wu/rj1eqIIuA9DJIA31LASKXLuClAVoDxQBpoG9pQGRVXjqF4BbwFlsZsNgyA80J0bAskFOSNPC2fjPso3J6jlaYQK7lZOHlFDjBm79cwa40QJOypQGgQ7jlANFyCsw2Dz1ISE65zDcJFU/ZAryw87JsHHHTad15FvLKDFTDPEDD8swaRjXZuPeQJpufEg28pV/rq/zxCkxpgAIW4DSwqgAQuQIzDdAaKuA0sKoCMw1QIeQX8BZbRUs0gGhYmBINvKVPAytVTs/RChPItUgWXqUwDRQpaKBSAjQAdAi3CBCtUoHZ5qEHCcmpMvNNQsVTaHDrVmGmAVp3FQt5ZQaqYRVAw92YNYxqsnHvIU1295Ro4E39Wm/nj1fVlAYoYFWcBtpVBUTeg5kGaA174DTQbg9mGqBC2L2At9iqWaIBRMPqKdHAm/o00Fbl9BytMIFc95SFt1eYBvZU0MBeCdAA0CHcPQHR9iow2zz0ICE57c18k1DxVDe4dfdhpgFa9z4W8soMVMN9AA33ZdYwqsnGvYc02Rop0cAb+rU+3R/PM6WBfwLiNDDdA0Tej5kGaA374TQwfT9mGqBCqFHAW2z7W6IBRMMDUqKBN/RpYJrK6TlaYQK5HigL76AwDRyooIGDEqABoEO4BwKiHVRgtnnoQUJyOpj5JqHiOcDg1q3JTAO07poW8soMVMOagIa1mDWMarJx7yFN9pCUaOB1/Vqf7493qCkNUMBDcRqYfygg8mHMNEBrOAyngfmHMdMAFcIhBbzFdrglGkA0PCIlGnhdnwbmqZyeoxUmkOuRsvCOCtPAkQoaOCoBGgA6hHskINpRBWabhx4kJKfazDcJFc8RBrduHWYaoHXXsZBXZqAa1gE0rMusYVSTjXsPabL1UqKB1/RrvYM/3tGmNEABj8ZpoMPRgMjHMNMAreEYnAY6HMNMA1QI9Qp4i62+JRpANGyQEg28pk8D7VVOz9EKE8j1WFl4x4Vp4FgFDRyXAA0AHcI9FhDtuAKzzUMPEpLT8cw3CRVPA4NbtyEzDdC6G1rIKzNQDRsCGjZi1jCqyca9hzTZE1KigVf1a73YH6+xKQ1QwMY4DRQ3BkRuwkwDtIYmOA0UN2GmASqEEwp4i62pJRpANGyWEg28qk8DQ1VOz9EKE8i1uSy8FmEaaK6ggRYJ0ADQIdzmgGgtCsw2Dz1ISE4tmW8SKp5mBrduK2YaoHW3spBXZqAatgI0bM2sYVSTjXsPabJtUqKBVwxpoK0pDVDAtgY00BYQuR0zDdAa2hnQQDtmGqBCaFPAW2ztLdEAomGHlGjglRRooKMsvE5hGuiooIFOCdAA0CHcjoBonSzRAJJTZ+abhIqng8Gt24WZBmjdXSzklRmohl0ADbsyaxjVZOPeQ5pst5RoYJF+rU/1x+tuSgMUsDtOA1O7AyKfyEwDtIYTcRqYeiIzDVAhdCvgLbYelmgA0fCklGhgkT4NTFE5PUcrTCDXk2Xh9QzTwMkKGuiZAA0AHcI9GRCtZ4HZ5qEHCcnpFOabhIrnJINb91RmGqB1n2ohr8xANTwV0PA0Zg2jmmzce0iTPT0lGnhZv9Yn++P1MqUBCtgLp4HJvQCRezPTAK2hN04Dk3sz0wAVwukFvMV2hiUaQDQ8MyUaeFmfBiapnJ6jFSaQax9ZeH3DNNBHQQN9E6ABoEO4fQDR+haYbR56kJCczmK+Sah4zjS4dfsx0wCtu5+FvDID1bAfoOHZzBpGNdm495Ame05KNPCSfq2v9sc715QGKOC5OA2sPhcQ+TxmGqA1nIfTwOrzmGmACuGcAt5iO98SDSAaXpASDbykTwOrVE7P0QoTyPVCWXgXhWngQgUNXJQADQAdwr0QEO2iArPNQw8SktPFzDcJFc8FBrduf2YaoHX3t5BXZqAa9gc0HMCsYVSTjXsPabIDU6KBhfq1vsQfb5ApDVDAQTgNLBkEiHwJMw3QGi7BaWDJJcw0QIUwsIC32C61RAOIhpelRAML9WlgscrpOVphArleLgvvijANXK6ggSsSoAGgQ7iXA6JdUWC2eehBQnK6kvkmoeK5zODWvYqZBmjdV1nIKzNQDa8CNBzMrGFUk417D2myV6dEAwv0a726P941pjRAAa/BaaD6NYDI1zLTAK3hWpwGql/LTANUCFcX8BbbdZZoANHw+pRoYIE+DVRTOT1HK0wg1yGy8IaGaWCIggaGJkADQIdwhwCiDS0w2zz0ICE5FTPfJFQ81xvcujcw0wCt+wYLeWUGquENgIY3MmsY1WTj3kOa7E0p0cB8/Vqf6493sykNUMCbcRqYezMg8i3MNEBruAWngbm3MNMAFcJNBbzFdqslGkA0HJYSDczXp4E5KqfnaIUJ5DpcFt6IMA0MV9DAiARoAOgQ7nBAtBEFZpuHHiQkp9uYbxIqnmEGt+7tzDRA677dQl6ZgWp4O6DhHcwaRjXZuPeQJjsyJRqYp1/rw/3xRpnSAAUchdPA8FGAyKOZaYDWMBqngeGjmWmACmFkAW+xjbFEA4iGY1OigXn6NDBM5fQcrTCBXMfJwrszTAPjFDRwZwI0AHQIdxwg2p0FZpuHHiQkp7uYbxIqnrEGt+7dzDRA677bQl6ZgWp4N6DhPcwaRjXZuPeQJntvSjTwon6tt/XHu8+UBijgfTgNtL0PEPl+ZhqgNdyP00Db+5lpgArh3gLeYnvAEg0gGj6YEg28qE8DbVROz9EKE8h1vCy8CWEaGK+ggQkJ0ADQIdzxgGgTCsw2Dz1ISE4PMd8kVDwPGty6E5lpgNY90UJemYFqOBHQ8GFmDaOabNx7SJN9JCUamKtf62P98R41pQEK+ChOA2MfBUSexEwDtIZJOA2MncRMA1QIjxTwFttkSzSAaPhYSjQwV58GxqicnqMVJpDr47LwngjTwOMKGngiARoAOoT7OCDaEwVmm4ceJCSnKcw3CRXPYwa37lRmGqB1T7WQV2agGk4FNHySWcOoJhv3HtJkn0qJBubo1/ogf7ynTWmAAj6N08CgpwGRn2GmAVrDMzgNDHqGmQaoEJ4q4C22Zy3RAKLhcynRwBx9GhiocnqOVphArtNk4U0P08A0BQ1MT4AGgA7hTgNEm15gtnnoQUJymsF8k1DxPGdw685kpgFa90wLeWUGquFMQMPnmTWMarJx7yFNdlZKNDBbv9YX+uO9YEoDFPAFnAYWvgCIPJuZBmgNs3EaWDibmQaoEGYV8BbbHEs0gGg4NyUamK1PAwtUTs/RChPI9UVZePPCNPCiggbmJUADQIdwXwREm1dgtnnoQUJyms98k1DxzDW4dRcw0wCte4GFvDID1XABoOFCZg2jmmzce0iTfSklGnhBv9Y9f7yXTWmAAr6M04D3MiDyImYaoDUswmnAW8RMA1QILxXwFtsrlmgA0fDVlGjgBX0aqKFyeo5WmECur8nCez1MA68paOD1BGgA6BDua4BorxeYbR56kJCc3mC+Sah4XjW4dd9kpgFa95sW8soMVMM3AQ3fYtYwqsnGvYc02bdTooFZ+rVe4I/3jikNUMB3cBooeAcQ+V1mGqA1vIvTQMG7zDRAhfB2AW+xvWeJBhANF6dEA7P0aSBf5fQcrTCBXJfIwlsapoElChpYmgANAB3CXQKItrTAbPPQg4TktIz5JqHiWWxw6y5npgFa93ILeWUGquFyQMMVzBpGNdm495Am+35KNPC8fq0P8Mf7wJQGKOAHOA0M+AAQ+UNmGqA1fIjTwIAPmWmACuH9At5i+8gSDSAarkyJBp7Xp4H+KqfnaIUJ5LpKFt7qMA2sUtDA6gRoAOgQ7ipAtNUFZpuHHiQkp4+ZbxIqnpUGt+4nzDRA6/7EQl6ZgWr4CaDhp8waRjXZuPeQJvtZSjQwU7/WK/njfW5KAxTwc5wGKn0OiPwFMw3QGr7AaaDSF8w0QIXwWQFvsa2xRAOIhl+mRAMz9WmgSOX0HK0wgVy/koX3dZgGvlLQwNcJ0ADQIdyvANG+LjDbPPQgITl9w3yTUPF8aXDrfstMA7Tuby3klRmoht8CGn7HrGFUk417D2mya1OigRn6DS0Q73tTGqCA3xfg7/3AfMNTXj8U/OfwHP2BFhEd2LUFvEXxo6VbG9HlpywLVWfNPxlomGRBTTcsqJ9NC4oC/mxQUL8wFxTl9UtCBRU3nYT/pcDswHh6MRI9JNPy9XP0x/vV9JBQwF8NOs6vQMX+xnygaA2/GYj8G/NnMDpEvxngwY/Afq1jxkHa23WGxZoZ6NlaB6z/d2bEi7qR495DbuQ/mDWkPfrD4CJAdKAmSJ/NSqt+IzDu0/lm58zB4njazl2Gu3NNru+d9WK/Ngj7U9hfwv4WtlHYJmGbhW0RtlXYNmHbhe2guqogfg9hpYSVFlZGWFlh5YTlCMsVliesvLB8YQXCKgirKKxQWJGwSsIqV3CCn/fXy8/7ft8Ghe9Phe8vhe9vhW+jwrdJ4dus8G1R+LYqfNsUvu0K3w6FjzY37HMVvlIKX2mFr4zCV1bhK6fw5Sh8uQpfnsJXXuHLV/gKFL4KCl9Fha9Q4StS+CopfJUr7Prd0n7y6TlaI1D0cc1mvWZjou+hNmjPddw/deeKfP/SmztO5Ov+rTV3A63N3agzd80/++Bu0pjb/N89czfHzx0j99fdEjt3YEYLd2vc3Dk7dXO3xcwd/J/G7vaS57bxnQd3R4lz1/rPjks9IXJu3cA5c90S5tYMnkm3VPTcXqHz65aOnNszfNbdMlFzi3epC7dsxNziXWvILaeeO0tRb26Ocm5LVW26uaq5XZR17OYp5s5W17xbfte5tSL6g5u/y9yJUb3ELQjPrR3Zd9wKoblronuUWzE495IS+plbGJjbqaTe5xb55/YrsU+6lXxzjyq5p7qVK+hDV5KfeCtX0O7ly/3xqlTIIiC9DP6p4/Iq+hvk7qa5KNNPvLQGiuGCa9gNFDmpPx0DDtcyldNztMIEct1dHpCqYTLeXW6c31e1QvZ/OgacZHd34IBUBTcPFYcOxe7gYaK8dk+pY1TS3+cJ/nh7mHYMCrgH3jEm7AF0jGrMHYPWUA3vGBOqpdQxKunHHa9yeo5WmECu1eUB2TPcMaorOsaeCXQM4CS71YEDsqfh5qFf1CE57QUUw85/ALnsJg84+kUdclXvDRSDag1x02mP9jboxHun1ImL9M/vTH+8fUw7MQXcB+/EM/cBDt++zJ2Y1rAv3oln7pvl4dMpoL2ZC6gGuIbMQBsToqEHnI0kb7gi/bgzVE7P0QoTyHU/WXj7h2+4/RQ33P4J3HBAh3D3A0Tb33Dz0IOE5HRAljdc3Dv/FI/B7XAg861F6z7QQl6ZgWp4IKDhQcwaRjVZneasO/dgsKElRQOF+rU+2h+vpikNUMCaOA2MrglsUC1mGqA11MJpYHQtZhqgQji4Am+xHQIWW2agOSEaHpoSDRTqxx2lcnqOVphArofJwjs8TAOHKWjg8ARoAOgQ7mGAaIcbbh56kJCcjmC+Sah4DjW4dY9kpgFa95EW8soMVMMjAQ2PYtYwqsnGvYc02dopfTdQUb/WPX+8OqY0QAHr4DTg1QFErstMA7SGujgNeHWZaYAKoXYF3mKrZ4kGEA2PTokGKurHTeznzh0jC69+mAaOUdBA/QRoAOgQ7jGAaPUNNw89SEhODZhvEiqeow1u3WOZaYDWfayFvDID1fBYQMPjmDWMarJx7yFN9viUaKCCfq0v88draEoDFLAhTgPLGgIiN2KmAVpDI5wGljVipgEqhOMr8BbbCZZoANGwcUo0UEE/7lKV03O0wgRybSILr2mYBpooaKBpAjQAdAi3CSBaU8PNQw8SklMz5puEiqexwa3bnJkGaN3NLeSVGaiGzQENWzBrGNVk495DmmzLlGigQL/W+/rjtTKlAQrYCqeBvq0AkVsz0wCtoTVOA31bM9MAFULLCrzF1sYSDSAatk2JBgr04/ZROT1HK0wg13ay8NqHaaCdggbaJ0ADQIdw2wGitTfcPPQgITl1YL5JqHjaGty6HZlpgNbd0UJemYFq2BHQsBOzhlFNNu49pMl2TokG8vVrfZU/XhdTGqCAXXAaWNUFELkrMw3QGrriNLCqKzMNUCF0rsBbbN0s0QCiYfeUaCBfP+5KldNztMIEcj1RFl6PMA2cqKCBHgnQANAh3BMB0XoYbh56kJCcTmK+Sah4uhvcuicz0wCt+2QLeWUGquHJgIY9mTWMarJx7yFN9pSUaKC8fq2388c71ZQGKOCpOA20OxUQ+TRmGqA1nIbTQLvTmGmACuGUCrzFdrolGkA07JUSDZTXj9tW5fQcrTCBXHvLwjsjTAO9FTRwRgI0AHQItzcg2hmGm4ceJCSnM5lvEiqeXga3bh9mGqB197GQV2agGvYBNOzLrGFUk417D2myZ6VEA3n6tT7dH6+fKQ1QwH44DUzvB4h8NjMN0BrOxmlg+tnMNECFcFYF3mI7xxINIBqemxIN5OnHnaZyeo5WmECu58nCOz9MA+cpaOD8BGgA6BDueYBo5xtuHnqQkJwuYL5JqHjONbh1L2SmAVr3hRbyygxUwwsBDS9i1jCqyca9hzTZi1OigVz9Wp/vj9fflAYoYH+cBub3B0QewEwDtIYBOA3MH8BMA1QIF1fgLbaBlmgA0XBQSjSQqx93nsrpOVphArleIgvv0jANXKKggUsToAGgQ7iXAKJdarh56EFCcrqM+Sah4hlkcOtezkwDtO7LLeSVGaiGlwMaXsGsYVSTjXsPabJXpkQDOfq13sEf7ypTGqCAV+E00OEqQOTBzDRAaxiM00CHwcw0QIVwZQXeYrvaEg0gGl6TEg3k6Mdtr3J6jlaYQK7XysK7LkwD1ypo4LoEaADoEO61gGjXGW4eepCQnK5nvkmoeK4xuHWHMNMArXuIhbwyA9VwCKDhUGYNo5ps3HtIky1OiQbK6dd6sT/eDaY0QAFvwGmg+AZA5BuZaYDWcCNOA8U3MtMAFUJxBd5iu8kSDSAa3pwSDZTTjztU5fQcrTCBXG+RhXdrmAZuUdDArQnQANAh3FsA0W413Dz0ICE5DWO+Sah4bja4dYcz0wCte7iFvDID1XA4oOEIZg2jmmzce0iTvS0lGihrSAO3m9IABbzdgAZuB0S+g5kGaA13GNDAHcw0QIVwWwXeYhtpiQYQDUelRANlU6CB0bLwxoRpYLSCBsYkQANAh3BHA6KNsUQDSE5jmW8SKp5RBrfuOGYaoHWPs5BXZqAajgM0vJNZw6gmG/ce0mTvSokGyujX+lR/vLtNaYAC3o3TwNS7AZHvYaYBWsM9OA1MvYeZBqgQ7qrAW2z3WqIBRMP7UqKBMvpxp6icnqMVJpDr/bLwHgjTwP0KGnggARoAOoR7PyDaA4abhx4kJKcHmW8SKp77DG7d8cw0QOsebyGvzEA1HA9oOIFZw6gmG/ce0mQfSokGSuvX+mR/vImmNEABJ+I0MHkiIPLDzDRAa3gYp4HJDzPTABXCQxV4i+0RSzSAaPhoSjRQWj/uJJXTc7TCBHKdJAtvcpgGJiloYHICNAB0CHcSINpkw81DDxKS02PMNwkVz6MGt+7jzDRA637cQl6ZgWr4OKDhE8waRjXZuPeQJjslJRoopV/rq/3xpprSAAWcitPA6qmAyE8y0wCt4UmcBlY/yUwDVAhTKvAW21OWaADR8OmUaKCUftxVKqfnaIUJ5PqMLLxnwzTwjIIGnk2ABoAO4T4DiPas4eahBwnJ6Tnmm4SK52mDW3caMw3QuqdZyCszUA2nARpOZ9YwqsnGvYc02Rkp0YCrX+tL/PFmmtIABZyJ08CSmYDIzzPTAK3heZwGljzPTANUCDMq8BbbLEs0gGj4Qko04OrHXaxyeo5WmECus2XhzQnTwGwFDcxJgAaADuHOBkSbY7h56EFCcprLfJNQ8bxgcOu+yEwDtO4XLeSVGaiGLwIazmPWMKrJxr2HNNn5KdGAo1/r1f3xFpjSAAVcgNNA9QWAyAuZaYDWsBCngeoLmWmACmF+Bd5ie8kSDSAavpwSDTj6caupnJ6jF8af6yJZeK+EaWCRggZeSYAGgA7hLgJEe8Vw89CDhOT0KvNNQsXzssGt+xozDdC6X7OQV2agGr4GaPg6s4ZRTTbuPaTJvpESDewo0K71uf54b5rSAAV8E6eBuW8CIr/FTAO0hrdwGpj7FjMNUCG8UYG32N62RAOIhu+kRAP+4okZc1ROz9EKE8j1XVl474Vp4F0FDbyXAA0AHcJ9FxDtvQpmm4ceJCSnxcw3CRXPOwa37hJmGqB1L7GQV2agGi4BNFzKrGFUk417D2myy1Kige36tT7cH2+5KQ1QwOU4DQxfDoi8gpkGaA0rcBoYvoKZBqgQllXgLbb3LdEAouEHKdHAdn0aGKZyeo5WmECuH8rC+yhMAx8qaOCjBGgA6BDuh4BoH1Uw2zz0ICE5rWS+Sah4PjC4dVcx0wCte5WFvDID1XAVoOFqZg2jmmzce0iT/TglGtimX+tt/fE+MaUBCvgJTgNtPwFE/pSZBmgNn+I00PZTZhqgQvi4Am+xfWaJBhANP0+JBrbp00AbldNztMIEcv1CFt6aMA18oaCBNQnQANAh3C8A0dZUMNs89CAhOX3JfJNQ8XxucOt+xUwDtO6vLOSVGaiGXwEafs2sYVSTjXsPabLfpEQDW/Vrfaw/3remNEABv8VpYOy3gMjfMdMAreE7nAbGfsdMA1QI31TgLba1lmgA0fD7lGhgqz4NjFE5PUcrTCDXH2Th/RimgR8UNPBjAjQAdAj3B0C0HyuYbR56kJCcfmK+Sah4vje4dX9mpgFa988W8soMVMOfAQ1/YdYwqsnGvYc02V9TooEt+rU+yB/vN1MaoIC/4TQw6DdA5HXMNEBrWIfTwKB1zDRAhfBrBd5i+90SDSAa/pESDWzRp4GBKqfnaIUJ5LpeFt6GMA2sV9DAhgRoAOgQ7npAtA0VzDYPPUhITn8y3yRUPH8Y3Lp/MdMArfsvC3llBqrhX4CGfzNrGNVk495DmuzGlGhgs36tL/TH22RKAxRwE04DCzcBIm9mpgFaw2acBhZuZqYBKoSNFXiLbYslGkA03JoSDWzWp4EFKqfnaIUJ5LpNFt72MA1sU9DA9gRoAOgQ7jZAtO0VzDYPPUhITjuYbxIqnq0Gt65TkZcGaN0UgzuvzEA19MeJm+tW5NUwqsnGvYc02VLAviZJA5v0a93zxytdMYuA9DJIA15pQOQywOExXUOZijANeGWyLGqdQihVkbfYyoLFlhloToiG5ZCz4SRHA5v0aaCGyuk5WmECuebIwsut6ARv/pyKu9IATcqWBoAO4eYAouVWNNs89CAhOeUx3yRUPOUMbt3yzDRA6y5vIa/MQDUsD2iYz6xhVJONjQWsoSAlGtioX+sF/ngVTGmAAlbAaaCgAiByRWYaoDVUxGmgoCIzDVAhFFTkLbZCSzSAaFiUEg1s1KeBfJXTc7TCBHKtJAuvcpgGKilooHICNAB0CLcSIFrlimabhx4kJKcqzDcJFU+Rwa27GzMN0Lp3s5BXZqAa7gZouDuzhlFNNu49pMlWTYkG/tav9QH+eHuY0gAF3AOngQF7ACJXY6YBWkM1nAYGVGOmASqEqhV5i626JRpANNwzJRr4W58G+qucnqMVJpDrXrLw9g7TwF4KGtg7ARoAOoS7FyDa3hXNNg89SEhO+zDfJFQ8exrcuvsy0wCte18LeWUGquG+gIY1mDWMarJx7yFN1kuJBv7Sr/VK/nj7mdIABdwPp4FK+wEi789MA7SG/XEaqLQ/Mw38UwgVeYvtAEs0gGh4YEo08Jc+DRSpnJ6jFSaQ60Gy8A4O08BBCho4OAEaADqEexAg2sEVzTYPPUhITjWZbxIqngMNbt1azDRA665lIa/MQDWsBWh4CLOGUU027j2kyR6aEg38qd/QAvEOM6UBCnhYRfy9w5lveMrr8Ir/OTxHf6BFRAf20Iq8RXGEpVsb0eXILAtVZ81HGmiYZEFtMCyoo0wLigIeZVBQtZkLivKqnVBBxU0n4WtXNDswnl6MRA/J+gL9HP3x6pgeEgpYx6Dj1AEqti7zgaI11DUQuS7zZzA6RHUN8OAIYL/qMeMg7W09w2LNDPRs1QPWfzQz4kXdyHHvITfyMcwa0h4dY3ARIDqUlF/cu/W11+/Wp99bHMl/mm4mVn25tsfy/30+Lp9Dyvw3r4GYc6yw44QdXzG7fBvq59tAlW9DjXwbiTknCGssrEnFf/302be0Kkoo/9ikDD+qOVgcT9u5y3B3rsn1vdNU5N1MWHNhLYS1FNZKWGthbYS1FdZOWHthHYR1FNZJWGdhXYR1FdZNWHdhJwrrIewkYScL6ynsFGGnCjtN2OnCegnrLewMYWeGv2NpKr9P8fuaKXzNFb4WCl9Lha+Vwtda4Wuj8LVV+NopfO0Vvg4KX0eFr5PC11nh66LwdVX4uil83RW+ExW+HgrfSQrfyQpfT4XvFIXvVIXvNIXvdIWvl8LXW+E7Q+E7s+Ku393tJ5+eozUCRR/X4JpqzqXv+Zppz3Xc5rpzRb4t9OaOE/m6LbXmbqC1ua105q75Zx/c1hpzm/+7Z26b+Llj5P66bWPnDsxo4baLmztnp25u+5i5g//T2O1Q8tw2vvPgdixx7lr/2XE7lTS3buCcuZ1LmFszeCbdLtFze4XOr9s1cm7P8Fl3u0XNLd6lLtzuEXOLd60h90T13FmKenN7KOe2VNWme5JqbhdlHbsnK+bOVte823PXubUi+oN7yi5zJ0b1EvfU8NzakX3HPS00d010j3JPD869pIR+5vYKzO1UUu9ze/vn9iuxT7pn+OYeVXJPdc8EoCvJbxTO1O/ly/3x+lTMImCfivCf6i7vo79Bbl/gMjNdQ9+K2CcDWkNfUOSk/vQROFzLVE7P0QoTyPUseUD6hcn4LLlxfl+/itn/6SNwkt2zgAPSD9w8VBw6FGeBh4nyOiuljnGG/j5P8Mc727RjUMCz8Y4x4WygY5zD3DFoDefgHWPCOSl1jDP0445XOT1HK0wg13PlATkv3DHOVXSM8xLoGMBJds8FDsh5hpuHfhGK5HQ+UAw7/wHk0lcecPSLUOSqvgAoBtUa4qbTHl1g0IkvSKkT99Y/vzP98S407cQU8EK8E8+8EDh8FzF3YlrDRXgnnnlRlodPp4AuYC6gi8E1ZAbamBAN+wNnI8kbrrd+3Bkqp+dohQnkOkAW3sDwDTdAccMNTOCGAzqEOwAQbaDh5qEHCclpUJY3XNw7VDz9DW6HS5hvLVr3JRbyygxUw0sADS9l1jCqyeo0Z925l4ENLSka6KVf66P98S43pQEKeDlOA6MvBzboCmYaoDVcgdPA6CuYaYAK4bKKvMV2JVhsmYHmhGh4VUo00Es/7iiV03O0wgRyHSwL7+owDQxW0MDVCdAA0CHcwYBoVxtuHnqQkJyuYb5JqHiuMrh1r2WmAVr3tRbyygxUw2sBDa9j1jCqyca9hzTZ61P6buB0/Vr3/PGGmNIABRyC04A3BBB5KDMN0BqG4jTgDWWmASqE6yvyFluxJRpANLwhJRo4XT9uYj/X70ZZeDeFaeBGBQ3clAANAB3CvREQ7SbDzUMPEpLTzcw3CRXPDQa37i3MNEDrvsVCXpmBangLoOGtzBpGNdm495AmOywlGjhNv9aX+eMNN6UBCjgcp4FlwwGRRzDTAK1hBE4Dy0Yw0wAVwrCKvMV2myUaQDS8PSUaOE0/7lKV03O0wgRyvUMW3sgwDdyhoIGRCdAA0CHcOwDRRhpuHnqQkJxGMd8kVDy3G9y6o5lpgNY92kJemYFqOBrQcAyzhlFNNu49pMmOTYkGTtWv9b7+eONMaYACjsNpoO84QOQ7mWmA1nAnTgN972SmASqEsRV5i+0uSzSAaHh3SjRwqn7cPiqn52iFCeR6jyy8e8M0cI+CBu5NgAaADuHeA4h2r+HmoQcJyek+5puEiudug1v3fmYaoHXfbyGvzEA1vB/Q8AFmDaOabNx7SJN9MCUaOEW/1lf54403pQEKOB6ngVXjAZEnMNMArWECTgOrJjDTABXCgxV5i+0hSzSAaDgxJRo4RT/uSpXTc7TCBHJ9WBbeI2EaeFhBA48kQANAh3AfBkR7xHDz0IOE5PQo801CxTPR4NadxEwDtO5JFvLKDFTDSYCGk5k1jGqyce8hTfaxlGigp36tt/PHe9yUBijg4zgNtHscEPkJZhqgNTyB00C7J5hpgArhsYq8xTbFEg0gGk5NiQZ66sdtq3J6jlaYQK5PysJ7KkwDTypo4KkEaADoEO6TgGhPGW4eepCQnJ5mvkmoeKYa3LrPMNMArfsZC3llBqrhM4CGzzJrGNVk495DmuxzKdHAyfq1Pt0fb5opDVDAaTgNTJ8GiDydmQZoDdNxGpg+nZkGqBCeq8hbbDMs0QCi4cyUaOBk/bjTVE7P0QoTyPV5WXizwjTwvIIGZiVAA0CHcJ8HRJtluHnoQUJyeoH5JqHimWlw685mpgFa92wLeWUGquFsQMM5zBpGNdm495AmOzclGjhJv9bn++O9aEoDFPBFnAbmvwiIPI+ZBmgN83AamD+PmQaoEOZW5C22+ZZoANFwQUo0cJJ+3Hkqp+dohQnkulAW3kthGliooIGXEqABoEO4CwHRXjLcPPQgITm9zHyTUPEsMLh1FzHTAK17kYW8MgPVcBGg4SvMGkY12bj3kCb7ako00EO/1jv4471mSgMU8DWcBjq8Boj8OjMN0Bpex2mgw+vMNECF8GpF3mJ7wxINIBq+mRIN9NCP217l9BytMIFc35KF93aYBt5S0MDbCdAA0CHctwDR3jbcPPQgITm9w3yTUPG8aXDrvstMA7Tudy3klRmohu8CGr7HrGFUk417D2myi1OigRP1a73YH2+JKQ1QwCU4DRQvAUReykwDtIalOA0UL2WmASqExRV5i22ZJRpANFyeEg2cqB93qMrpOVphArmukIX3fpgGViho4P0EaADoEO4KQLT3DTcPPUhITh8w3yRUPMsNbt0PmWmA1v2hhbwyA9XwQ0DDj5g1jGqyce8hTXZlSjTQ3ZAGVpnSAAVcZUADqwCRVzPTAK1htQENrGamASqElRV5i+1jSzSAaPhJSjTQPQUa+FQW3mdhGvhUQQOfJUADQIdwPwVE+8wSDSA5fc58k1DxfGJw637BTAO07i8s5JUZqIZfABquYdYwqsnGvYc02S9TooFu+rU+1R/vK1MaoIBf4TQw9StA5K+ZaYDW8DVOA1O/ZqYBKoQvK/IW2zeWaADR8NuUaKCbftwpKqfnaIUJ5PqdLLy1YRr4TkEDaxOgAaBDuN8Boq013Dz0ICE5fc98k1DxfGtw6/7ATAO07h8s5JUZqIY/ABr+yKxhVJONew9psj+lRANd9Wt9sj/ez6Y0QAF/xmlg8s+AyL8w0wCt4RecBib/wkwDVAg/VeQttl8t0QCi4W8p0UBX/biTVE7P0QoTyHWdLLzfwzSwTkEDvydAA0CHcNcBov1uuHnoQUJy+oP5JqHi+c3g1l3PTAO07vUW8soMVMP1gIYbmDWMarJx7yFN9s+UaKCLfq2v9sf7y5QGKOBfOA2s/gsQ+W9mGqA1/I3TwOq/mWmACuHPirzFttESDSAabkqJBrrox12lcnqOVphArptl4W0J08BmBQ1sSYAGgA7hbgZE22K4eehBQnLaynyTUPFsMrh1tzHTAK17m4W8MgPVcBug4XZmDaOabNx7SJPdkRINdNav9SWBeIVZBKSXQRpYQu94mjHcQl4aoDVQDJAGlrj6a1DmpVMIOyryFlspQAf//0BzQjQsDeSUJA101i/axSqn52iFCeRaRhZe2UwHyNz8ZQp3pQGalC0NAB3CLQOIVrbQbPPQg4TkVA483OiBoeIpXYgXdk6WjSNuOq07x0JemYFqmANomMusYVSTjXsPabJ5wL4mSQOd9Gu9uj9eeVMaoIDlcRqoXh4QOZ+ZBmgN+TgNVM9npgEqhLxC3mIrsEQDiIYVUqKBTvo0UE3l9BytMIFcK8rCKwzTQEUFDRQmQANAh3ArAqIVFpptHnqQkJyKmG8SKp4KBrduJWYaoHVXspBXZqAaVgI0rMysYVSTjXsPabJVUqKBjvq1PtcfbzdTGqCAu+E0MHc3QOTdmWmA1rA7TgNzd2emASqEKoW8xVbVEg0gGu6REg101KeBOSqn52iFCeRaTRZe9TANVFPQQPUEaADoEG41QLTqhWabhx4kJKc9mW8SKp49DG7dvZhpgNa9l4W8MgPVcC9Aw72ZNYxqsnHvIU12n5RooIN+rQ/3x9vXlAYo4L44DQzfFxC5BjMN0Bpq4DQwvAYzDVAh7FPIW2yeJRpANNwvJRrooE8Dw1ROz9EKE8h1f1l4B4RpYH8FDRyQAA0AHcLdHxDtgEKzzUMPEpLTgcw3CRXPfga37kHMNEDrPshCXpmBangQoOHBzBpGNdm495AmWzMlGmivX+tt/fFqmdIABayF00DbWoDIhzDTAK3hEJwG2h7CTANUCDULeYvtUEs0gGh4WEo00F6fBtqonJ6jFSaQ6+Gy8I4I08DhCho4IgEaADqEezgg2hGFZpuHHiQkpyOZbxIqnsMMbt2jmGmA1n2UhbwyA9XwKEDD2swaRjXZuPeQJlsnJRpop1/rY/3x6prSAAWsi9PA2LqAyPWYaYDWUA+ngbH1mGmACqFOIW+xHW2JBuoBOR2TEg2006eBMSqn52iFCeRaXxZegzAN1FfQQIMEaADoEG59QLQGhWabhx4kJKdjmW8SKp5jDG7d45hpgNZ9nIW8MgPV8DhAw+OZNYxqsnHvIU22YUo00Fa/1gf54zUypQEK2AingUGNAJFPYKYBWsMJOA0MOoGZBqgQGhbyFltjSzSAaNgkJRpoq08DA1VOz9EKE8i1qSy8ZmEaaKqggWYJ0ADQIdymgGjNCs02Dz1ISE7NmW8SKp4mBrduC2YaoHW3sJBXZqAatgA0bMmsYVSTjXsPabKtUqKBNvq1vtAfr7UpDVDA1jgNLGwNiNyGmQZoDW1wGljYhpkGqBBaFfIWW1tLNIBo2C4lGmijTwMLVE7P0QoTyLW9LLwOYRpor6CBDgnQANAh3PaAaB0KzTYPPUhITh2ZbxIqnnYGt24nZhqgdXeykFdmoBp2AjTszKxhVJONew9psl1SooHW+rXu+eN1NaUBCtgVpwGvKyByN2YaoDV0w2nA68ZMA1QIXQp5i627JRpANDwxJRporU8DNVROz9EKE8i1hyy8k8I00ENBAyclQANAh3B7AKKdVGi2eehBQnI6mfkmoeI50eDW7clMA7TunhbyygxUw56AhqcwaxjVZOPeQ5rsqSnRQCv9Wi/wxzvNlAYo4Gk4DRScBoh8OjMN0BpOx2mg4HRmGqBCOLWQt9h6WaIBRMPeKdFAK30ayFc5PUcrTCDXM2ThnRmmgTMUNHBmAjQAdAj3DEC0MwvNNg89SEhOfZhvEiqe3ga3bl9mGqB197WQV2agGvYFNDyLWcOoJhv3HtJk+6VEAy31a32AP97ZpjRAAc/GaWDA2YDI5zDTAK3hHJwGBpzDTANUCP0KeYvtXEs0gGh4Xko00FKfBvqrnJ6jFSaQ6/my8C4I08D5Chq4IAEaADqEez4g2gWFZpuHHiQkpwuZbxIqnvMMbt2LmGmA1n2RhbwyA9XwIkDDi5k1jGqyce8hTbZ/SjTQQr/WK/njDTClAQo4AKeBSgMAkQcy0wCtYSBOA5UGMtMAFUL/Qt5iG2SJBhANL0mJBlro00CRyuk5WmECuV4qC++yMA1cqqCByxKgAaBDuJcCol1WaLZ56EFCcrqc+Sah4rnE4Na9gpkGaN1XWMgrM1ANrwA0vJJZw6gmG/ce0mSvSokGmgP/fQR/vMGmNEABBxfi713NfMNTXlcX/ufwHP2BFhEd2KsKeYviGku3NqLLtVkWqs6arzXQMMmCamZYUNeZFhQFvM6goK5nLijK6/qECipuOgl/faHZgfH0YiR6SJoCP7PeH2+I6SGhgEMMOs4QoGKHMh8oWsNQA5GHMn8Go0M01AAPrgH2q5gZB2lviw2LNTPQs1UMrP8GZsSLupHj3kNu5BuZNaQ9utHgIkB0oCZIn81Kq34jMG4jw//kmYPF8bSduwx355pc3zs3if26Wdgtwm4VNkzYcGEjhN0m7HZhdwgbKWyUsNHCxggbK2ycsDuF3SXsbmH3CLtX2H3C7hf2gLAHhY0XNkHYQ8ImCntY2CPCHg1/B3CT/Lzv992s8N2i8N2q8A1T+IYrfCMUvtsUvtsVvjsUvpEK3yiFb7TCN0bhG6vwjVP47lT47lL47lb47lH47lX47lP47lf4HlD4HlT4xit8ExS+hxS+iQrfwwrfIwrfo4W7fre0n3x6jtYIFH1cs7lJszHR91A3a8913Ft054p8b9WbO07k6w7TmruB1uYO15m75p99cEdozG3+7565t8XPHSP31709du7AjBbuHXFz5+zUzR0ZM3fwfxq7o0qe28Z3HtzRJc5d6z877piS5tYNnDN3bAlzawbPpDsuem6v0Pl174yc2zN81t27ouYW71IX7t0Rc4t3rSH3HvXcWYp6c+9Vzm2pqk33PtXcLso6du9XzJ2trnn3gV3n1oroD+6Du8ydGNVL3PHhubUj+447ITR3TXSPch8Kzr2khH7mTgzM7VRS73Mf9s/tV2KfdB/xzT2q5J7qPgpAaJKfeB/V7+XL/fEmmX7ipYCTCuE/dVw+SX+D3MmaizL9xEtrmAx+4qU1TAZFTupPx4DDtUzl9BytMIFcH5MH5PEwGT8mN87ve7ww+z8dA06y+xhwQB4HNw8Vhw7FY+BhorweS6ljPKK/zxP88Z4w7RgU8Am8Y0x4AugYU5g7Bq1hCt4xJkxJqWM8oh93vMrpOVphArlOlQfkyXDHmKroGE8m0DGAk+xOBQ7Ik4abh35Rh+T0FFAMO/8B5DJZHnD0izrkqn4aKAbVGuKm0x49bdCJn06pEz+sf35n+uM9Y9qJKeAzeCee+Qxw+J5l7sS0hmfxTjzz2SwPn04BPc1cQM+Ba8gMtDEhGk4DzkaSN9zD+nFnqJyeoxUmkOt0WXgzwjfcdMUNNyOBGw7oEO50QLQZhpuHHiQkp5lZ3nBx71DxTDO4HZ5nvrVo3c9byCszUA2fBzScxaxhVJPVac66c18AG1pSNDBRv9ZH++PNNqUBCjgbp4HRs4ENmsNMA7SGOTgNjJ7DTANUCC8U8hbbXLDYMgPNCdHwxZRoYKJ+3FEqp+dohQnkOk8W3vwwDcxT0MD8BGgA6BDuPEC0+Yabhx4kJKcFzDcJFc+LBrfuQmYaoHUvtJBXZqAaLgQ0fIlZw6gmG/ce0mRfTum7gYf0a93zx1tkSgMUcBFOA94iQORXmGmA1vAKTgPeK8w0QIXwciFvsb1qiQYQDV9LiQYe0o+b2M+de10W3hthGnhdQQNvJEADQIdwXwdEe8Nw89CDhOT0JvNNQsXzmsGt+xYzDdC637KQV2agGr4FaPg2s4ZRTTbuPaTJvpMSDUzQr/Vl/njvmtIABXwXp4Fl7wIiv8dMA7SG93AaWPYeMw1QIbxTyFtsiy3RAKLhkpRoYIJ+3KUqp+dohQnkulQW3rIwDSxV0MCyBGgA6BDuUkC0ZYabhx4kJKflzDcJFc8Sg1t3BTMN0LpXWMgrM1ANVwAavs+sYVSTjXsPabIfpEQD4/Vrva8/3oemNEABP8RpoO+HgMgfMdMAreEjnAb6fsRMA1QIHxTyFttKSzSAaLgqJRoYrx+3j8rpOVphArmuloX3cZgGVito4OMEaADoEO5qQLSPDTcPPUhITp8w3yRUPKsMbt1PmWmA1v2phbwyA9XwU0DDz5g1jGqyce8hTfbzlGjgQf1aX+WP94UpDVDAL3AaWPUFIPIaZhqgNazBaWDVGmYaoEL4vJC32L60RAOIhl+lRAMP6sddqXJ6jlaYQK5fy8L7JkwDXyto4JsEaADoEO7XgGjfGG4eepCQnL5lvkmoeL4yuHW/Y6YBWvd3FvLKDFTD7wAN1zJrGNVk495Dmuz3KdHAA/q13s4f7wdTGqCAP+A00O4HQOQfmWmA1vAjTgPtfmSmASqE7wt5i+0nSzSAaPhzSjTwgH7ctiqn52iFCeT6iyy8X8M08IuCBn5NgAaADuH+Aoj2q+HmoQcJyek35puEiudng1t3HTMN0LrXWcgrM1AN1wEa/s6sYVSTjXsPabJ/pEQD9+vX+nR/vPWmNEAB1+M0MH09IPIGZhqgNWzAaWD6BmYaoEL4o5C32P60RAOIhn+lRAP368edpnJ6jlaYQK5/y8LbGKaBvxU0sDEBGgA6hPs3INpGw81DDxKS0ybmm4SK5y+DW3czMw3QujdbyCszUA03AxpuYdYwqsnGvYc02a0p0cB9+rU+3x9vmykNUMBtOA3M3waIvJ2ZBmgN23EamL+dmQaoELYW8hbbDks0AGlYlA4N3Ke/F/NUTs/RChPI1S3691mqyAne/PR/hGmAJmVLA0CHcN0ifdFKFZltHnqQkJxKAwdp5z8c/XeoeJwivLDL6Of1X3KOfl607jIW8soMVMMygIZlmTWMarJx7yFNthywr0nSwL36td7BHy+nKIuA9DJIAx1yAJFzgcNjuoZcsHhoDblZFrVOIZQr4i22PLDYMgPNCdGwfEo0cK8+DbRXOT1HK0wg13xZeAVhGshX0EBBAjQAdAg3HxCtoMhs89CDhORUgfkmoeIpb3DrVmSmAVp3RQt5ZQaqYUVAw0JmDaOabNx7SJMtSokG7tGv9WJ/vEqmNEABK+E0UFwJELkyMw3QGirjNFBcmZkGqBCKiniLrYolGkA03C0lGrhHnwaGqpyeoxUmkOvusvCqhmlgdwUNVE2ABoAO4e4OiFa1yGzz0IOE5LQH801CxbObwa1bjZkGaN3VLOSVGaiG1QANqzNrGNVk495DmuyeKdHA3YY0sJcpDVDAvQxoYC9A5L2ZaYDWsLcBDezNTANUCHsW8RbbPpZoANFw35Ro4O4UaKCGLDwvTAM1FDTgJUADQIdwawCieZZoAMlpP+abhIpnX4Nbd39mGqB1728hr8xANdwf0PAAZg2jmmzce0iTPTAlGrhLv9an+uMdZEoDFPAgnAamHgSIfDAzDdAaDsZpYOrBzDRAhXBgEW+x1bREA4iGtVKigbv0aWCKyuk5WmECuR4iC+/QMA0coqCBQxOgAaBDuIcAoh1aZLZ56EFCcjqM+Sah4qllcOsezkwDtO7DLeSVGaiGhwMaHsGsYVSTjXsPabJHpkQDd+rX+mR/vKNMaYACHoXTwOSjAJFrM9MAraE2TgOTazPTABXCkUW8xVbHEg0gGtZNiQbu1KeBSSqn52iFCeRaTxbe0WEaqKeggaMToAGgQ7j1ANGOLjLbPPQgITkdw3yTUPHUNbh16zPTAK27voW8MgPVsD6gYQNmDaOabNx7SJM9NiUaGKdf66v98Y4zpQEKeBxOA6uPA0Q+npkGaA3H4zSw+nhmGqBCOLaIt9gaWqIBRMNGKdHAOH0aWKVyeo5WmECuJ8jCaxymgRMUNNA4ARoAOoR7AiBa4yKzzUMPEpJTE+abhIqnkcGt25SZBmjdTS3klRmohk0BDZsxaxjVZOPeQ5ps85RoYKx+rS/xx2thSgMUsAVOA0taACK3ZKYBWkNLnAaWtGSmASqE5kW8xdbKEg0gGrZOiQbG6tPAYpXTc7TCBHJtIwuvbZgG2ihooG0CNAB0CLcNIFrbIrPNQw8SklM75puEiqe1wa3bnpkGaN3tLeSVGaiG7QENOzBrGNVk495DmmzHlGhgjH6tV/fH62RKAxSwE04D1TsBIndmpgFaQ2ecBqp3ZqYBKoSORbzF1sUSDSAadk2JBsbo00A1ldNztMIEcu0mC697mAa6KWigewI0AHQItxsgWvcis81DDxKS04nMNwkVT1eDW7cHMw3QuntYyCszUA17ABqexKxhVJONew9psienRAOj9Wt9rj9eT1MaoIA9cRqY2xMQ+RRmGqA1nILTwNxTmGmACuHkIt5iO9USDSAanpYSDYzWp4E5KqfnaIUJ5Hq6LLxeYRo4XUEDvRKgAaBDuKcDovUqMts89CAhOfVmvkmoeE4zuHXPYKYBWvcZFvLKDFTDMwANz2TWMKrJxr2HNNk+KdHAKP1aH+6P19eUBihgX5wGhvcFRD6LmQZoDWfhNDD8LGYaoELoU8RbbP0s0QCi4dkp0cAofRoYpnJ6jlaYQK7nyMI7N0wD5yho4NwEaADoEO45gGjnFpltHnqQkJzOY75JqHjONrh1z2emAVr3+RbyygxUw/MBDS9g1jCqyca9hzTZC1OigZH6td7WH+8iUxqggBfhNND2IkDki5lpgNZwMU4DbS9mpgEqhAuLeIutvyUaQDQckBINjNSngTYqp+dohQnkOlAW3qAwDQxU0MCgBGgA6BDuQEC0QUVmm4ceJCSnS5hvEiqeAQa37qXMNEDrvtRCXpmBangpoOFlzBpGNdm495Ame3lKNHCHfq2P9ce7wpQGKOAVOA2MvQIQ+UpmGqA1XInTwNgrmWmACuHyIt5iu8oSDSAaDk6JBu7Qp4ExKqfnaIUJ5Hq1LLxrwjRwtYIGrkmABoAO4V4NiHZNkdnmoQcJyela5puEimewwa17HTMN0Lqvs5BXZqAaXgdoeD2zhlFNNu49pMkOSYkGbtev9UH+eENNaYACDsVpYNBQQORiZhqgNRTjNDComJkGqBCGFPEW2w2WaADR8MaUaOB2fRoYqHJ6jlaYQK43ycK7OUwDNylo4OYEaADoEO5NgGg3F5ltHnqQkJxuYb5JqHhuNLh1b2WmAVr3rRbyygxUw1sBDYcxaxjVZOPeQ5rs8JRo4Db9Wl/ojzfClAYo4AicBhaOAES+jZkGaA234TSw8DZmGqBCGF7EW2y3W6IBRMM7UqKB2/RpYIHK6TlaYQK5jpSFNypMAyMVNDAqARoAOoQ7EhBtVJHZ5qEHCclpNPNNQsVzh8GtO4aZBmjdYyzklRmohmMADccyaxjVZOPeQ5rsuJRoYIR+rXv+eHea0gAFvBOnAe9OQOS7mGmA1nAXTgPeXcw0QIUwroi32O62RAOIhvekRAMj9GmghsrpOVphArneKwvvvjAN3KuggfsSoAGgQ7j3AqLdV2S2eehBQnK6n/kmoeK5x+DWfYCZBmjdD1jIKzNQDR8ANHyQWcOoJhv3HtJkx6dEA8P1a73AH2+CKQ1QwAk4DRRMAER+iJkGaA0P4TRQ8BAzDVAhjC/iLbaJlmgA0fDhlGhguD4N5KucnqMVJpDrI7LwHg3TwCMKGng0ARoAOoT7CCDao0Vmm4ceJCSnScw3CRXPwwa37mRmGqB1T7aQV2agGk4GNHyMWcOoJhv3HtJkH0+JBobp1/oAf7wnTGmAAj6B08CAJwCRpzDTAK1hCk4DA6Yw0wAVwuNFvMU21RINIBo+mRINDNOngf4qp+dohQnk+pQsvKfDNPCUggaeToAGgA7hPgWI9nSR2eahBwnJ6Rnmm4SK50mDW/dZZhqgdT9rIa/MQDV8FtDwOWYNo5ps3HtIk52WEg3cql/rlfzxppvSAAWcjtNApemAyDOYaYDWMAOngUozmGmACmFaEW+xzbREA4iGz6dEA7fq00CRyuk5WmECuc6Sv9MLYRqYpaCBFxKgAaBDuLMA0V4oMts89CAhOc1mvkmoeJ43uHXnMNMArXuOhbwyA9VwDqDhXGYNo5ps3HtIk30xJRq4Rb+hBeLNM6UBCjivCH9vPvMNT3nN97Udz9EfaBHRgX2xiLcoFli6tRFdFmZZqDprXmigYZIFdbNhQb1kWlAU8CWDgnqZuaAor5cTKqi46ST8y0VmB8bTi5HoIbmpUD9Hf7xFpoeEAi4y6DiLgIp9hflA0RpeMRD5FebPYHSIXjHAgwXAfr2a5RriptPevmpYrJmBnq1XgfW/xox4UTdy3HvIjfw6s4a0R68bXASIDpnfe43vN/Ac/fG/uf+b+7+5/5v7v7n/m/u/uf+b+7+5/5v7//Fcl3i4oOy/XJwvn+XlM08+c+UzRz7LyWdZ+Swjn6Xls5R8uvLpyOeOMv8+t8vnNvncKp9b5HOzfG6Sz43y+bd8/iWff8rnBvlcL59/yOfv8rlOPn+Tz1/l8xf57FLu32dn+ewknx3ls4N8tpfPdvLZVj7byGdr+Wwlny3ls4V8NpfPZvLZVD6byGdj+TxBPhvJZ0P5PF4+j5PPY+WzgXzWl89j5PNo+awnn3Xls4581pbPcTn/PsfK5xj5HC2fo+RzpHzeIZ+3y+dt8jlCPofL5zD5vFU+b5HPm+XzJvm8UT5vkM9i+Rwqn0Pk83r5vE4+r5XPa+TzavkcLJ9XyeeV8nmFfF4un5fJ54e5/z4/kM/35XOFfC6Xz2XyuVQ+l8jnYvl8Tz7flc935PNt+XxLPt+Uzzfk83X5fE0+X5XPV+RzkXy+LJ8vyedC+Vwgn/Plc558viifc+VzjnzOls8X5LNa+X+fe8hnVfncXT53k88q8llZPivJZ5F8FspnRfmsIJ8F8pkvn+XlM08+c+UzRz7LyWdZ+Swjn6Xls5R8uvLpyOeOvH+f2+Vzm3xulc8t8rlZPjfJ5/qCf58b5PNP+fxLPv+Wz43yuUk+N8vnFvncKp/b5HO7fO6QT6eCzFs+S8nntPx/n9Plc4Z8zpTP5+Vzlny+IJ+z5XOOfM6Vzxflc558zpfPBfK5UD5fEs/Md5lviO9Q3hT2lrC3hb0j7F1h7wlbLGyJsKXClglbLmyFsPeFfSDsQ2EfCVspbJWw1cI+FvaJsE+FfSbsc2FfCFsj7EthXwn7Wtg3wr4V9p2wtcK+F/aDsB+F/STsZ2G/CPtV2G/C1gn7XdgfwtYL2yDsT2F/Cftb2EZhm4RtFrZF2FZh24RtF7aDvh+sJNYurJSw0sLKCCsrrJywHGG5wvKElReWL6xAWAVhFYUVCisSVklYZWFVhO0mbHdhVYXtIayasOrC9hS2l7C9he0jbF9hNYR5wvYTtr+wA4QdKOwgYQcLqymslrBDhB0q7DBhhws7QtiRwo4SVltYHWF1hdUTdrSwY4TVF9ZA2LHCjhN2vLCGwhoJO0FYY2FNhDUV1kxYc2EthLUU1kpYa2FthLUV1k5Ye2EdhHUU1klYZ2FdhHUV1k1Yd2EnCush7CRhJwvrKewUYacKO03Y6cJ6Cest7AxhZwrrI6yvsLOE9RN2trBzhJ0r7Dxh5wu7QNiFwi4SdrGw/sIGCBsobJCwS4RdKuwyYZcLu0LYlcKuEjZY2NXCrhF2rbDrhF0vbIiwocKKhd0g7EZhNwm7Wdgtwm4VNkzYcGEjhN0m7HZhdwgbKWyUsNHCxggbK2ycsDuF3SXsbmH3CLtX2H3C7hf2gLAHhY0XNkHYQ8ImCntY2CPCHhU2SdhkYY8Je1zYE8KmCJsq7ElhTwl7Wtgzwp4V9pywacKmC5shbKaw54XNqiT7ixP8O0Keoz805677594ulPe4fN4in7fK5zD5HC6fI+TzNvm8XT7vkM+R8jlKPkfL5xj5HCuf4+SzacV/n83ks7l8tpDPlvLZSj5by2cb+Wwrn+3ks718dpDPjvLZST47y2eXiv/9vZ4XxJ7PFjZH2FxhLwqbJ2y+sAXCFgp7SdjLwhYJe0XYq8JeE/Z6pX//MK7At7Gu71lV/voNMe9NYW8Je1vYO8LeFfaesMXClghbKmyZsOXCVgh7X9gHwj4U9pGwlcJWCVst7GNhn1SSQTJ/34qC5IZ8byp8byl8byt87yh87yp87yl8ixW+JQrfUoVvmcK3XOFbofC9r/B9oPB9qPB9pPCtVPhWKXyrFb6PFb5PpI8OTQVHfWgy/2r6p2LuZ8I+F/aFsDXCvhT2lbCvhX0j7Fth3wlbK+x7YT8I+1HYT8J+FvaLsF+F/SZsnbDfhf0hbL2wDcL+FPaXsL+FbRS2Sdjm8MH6VLGQzxS+zxW+LxS+NQrflwrfVwrf1wrfNwrftwrfdwrfWoXve4XvB4XvR4XvJ4XvZ4XvF4XvV4XvN4VvncL3u8L3h8K3XuHboPD9qfD9pfD9rfBtVPg2KXybgWLYIuZuFbZN2HZhO+iQVhZzhJUSVlpYGWFlhZUTliMsV1iesPLC8oUVCKsgrKKwQmFFwioJqyysirDdhO0urKqwPYRVE1a9cijpLYqFbFX4til82xW+HQofLSzscxW+UgpfaYWvjMJXVuErp/DlKHy5Cl+ewlde4ctX+AoUvgoKX0WFr1DhK1L4Kil8lRW+Kgrfbgrf7gpfVYVvD4WvmsJXvbJ+Mewp5u4lbG9h+wjbV1gNYZ6w/YTtL+wAYQcKO0jYwcJqCqsl7BBhhwo7TNjhwo4QdqSwo4TVFlZHWF1h9YQdLewYYfWFNRB2bLgY9lQsZC+Fb2+Fbx+Fb1+Fr4bC5yl8+yl8+yt8Byh8Byp8Byl8Byt8NRW+WgrfIQrfoQrfYQrf4QrfEQrfkQrfUQpfbYWvjsJXV+Grp/AdrfAdo/DVV/gaKHzHAsVwnJh7vLCGwhoJO0FYY2FNhDUV1kxYc2EthLUU1kpYa2FthLUV1k5Ye2EdhHUU1klYZ2FdhHUV1k1Yd2EnCush7CRhJwvrGS6G4xQLOV7ha6jwNVL4TlD4Git8TRS+pgpfM4WvucLXQuFrqfC1UvhaK3xtFL62Cl87ha+9wtdB4euo8HVS+DorfF0Uvq4KXzeFr7vCd6LC10PhO0nhO1nh6wkUwyli7qnCThN2urBewnoLO0PYmcL6COsr7Cxh/YSdLewcYecKO0/Y+cIuEHahsIuEXSysv7ABwgYKGyTsEmGXCrtM2OXCrhB2ZbgYTlEs5FSF7zSF73SFr5fC11vhO0PhO1Ph66Pw9VX4zlL4+il8Zyt85yh85yp85yl85yt8Fyh8Fyp8Fyl8Fyt8/RW+AQrfQIVvkMJ3icJ3qcJ3mcJ3ucJ3hcJ3JVAMV4m5g4VdLewaYdcKu07Y9cKGCBsqrFjYDcJuFHaTsJuF3SLsVmHDhA0XNkLYbcJuF3aHsJHCRgkbLWyMsLHCxgm7U9hdwu4OF8NVioUMVviuVviuUfiuVfiuU/iuV/iGKHxDFb5ihe8Ghe9Ghe8mhe9mhe8Whe9WhW+Ywjdc4Ruh8N2m8N2u8N2h8I1U+EYpfKMVvjEK31iFb5zCd6fCd5fCdzdQDPeIufcKu0/Y/cIeEPagsPHCJgh7SNhEYQ8Le0TYo8ImCZss7DFhjwt7QtgUYVOFPSnsKWFPC3tG2LPCnhM2Tdh0YTOEzRT2fLgY7lEs5F6F7z6F736F7wGF70GFb7zCN0Hhe0jhm6jwPazwPaLwParwTVL4Jit8jyl8jyt8Tyh8UxS+qQrfkwrfUwrf0wrfMwrfswrfcwrfNIVvusI3Q+GbqfA97yuGss5/I/DvL1f+9/lCZSc4MhXjOVrDpd8oMzfuL6pTQhWdZP6l7xcqa8/NKo6rP3fn701jdnhj0X+L4ecy+hs7pzK2oMxJybxHwpRzggtA/82Rj+TfPPIcvTxo/soyvILsHLTAHCe4wJ2/o40E/AP+91mAEptreBJU76EnwD83LvY5jtkmojkhJ/Jcx05OpRz9nM5z7ORU2tHP6XwnmZzi4lzg6Offu4yd6+BCx06cixw7cS527GjZ39HXsq8lLQc4duIMdOzEGeTYiXOJYyfOpY6dOJc5duJc7tiJc4VjJ86Vjp04Vzl24gx27MS52rET5xrHTpxrHTtxrnPsxLnesRNniGMnzlDHTpxix06cGxw7cW507MS5ybET52bHTpxbHDtxbnXsxBnm2Ikz3LETZ4RjJ85tjp04tzt24tzh2Ikz0rETZ5RjJ85ox06cMY6dOGMdO3HGOXbi3OnYiXOXYyfO3Y6dOPc4duLc69iJc59jJ879jp04Dzh24jzo2Ikz3rETZ4JjJ85Djp04Ex07cR527MR5xLET51HHTpxJjp04kx07cR5z7MR53LET5wnHTpwpjp04Ux07cZ507MR5yrET52nHTpxnHDtxnnXsxHnOsRNnmmMnznTHTpwZjp04Mx07cZ537MSZ5diJ84JjJ85sx06cOY6dOHMdO3FedOzEmefYiTPfsRNngWMnzkLHTpyXHDtxXnbsxFnk2InzimMnzquOnTivOXbivO7YifOGYyfOm46dOG85duK87diJ845jJ867jp047zl24ix27MRZ4tiJs9SxE2eZYyfOcsdOnBWOnTjvO3bifODYifOhYyfOR46dOCsdO3FWOXbirHbsxPnYsRPnE8dOnE8dO3E+c+zE+dyxE+cLx06cNY6dOF86duJ85diJ87VjJ843jp043zp24nzn2Imz1rET53vHTpwfHDtxfnTsxPnJsRPnZ8dOnF8cO3F+dezE+c2xE2edYyfO746dOH84duKsd+zE2eDYifOnYyfOX46dOH87duJsdOzE2eTYibPZsRNni2MnzlbHTpxtjp042x07cXY4duLQC5pzAwP9d4ldX5y4f5f4+zJ2cioF5LTK0r/fXNq1E6eMpThlLcUpZylOjqU4uZbi5FmKU95SnHxLcQosxalgKU5FS3EKLcUpshSnkqU4lS3FqWIpzm6W4uxuKU5VS3H2sBSnmqU41S3F2dNSnL0sxdnbUpx9LMXZ11KcGpbieJbi7Ad8hskmzv6+ONVntl6yqX6rntXn939rr4+ennntJ8NHzfv83YOPLHYPmPzstbOyiXOA4b6hn/0OBPbtrIQ+jyb5c+8OsnS+DrakR01AjzmWfoxoLUt7fIilOIdainOYpTiHW4pzhKU4R1qKc5SlOLUtxaljKU5dS3HqWYpztKU4x1iKU99SnAaW4hxrKc5xluIcbylOQ0txGlmKc4KlOI0txWliKU5TS3GaWYrT3FKcFpbitLQUp5WlOK0txWljKU5bS3HaWYrT3lKcDpbidLQUp5OlOJ0txeliKU5XS3G6WYrT3RenpO9oftuxY0c2cU60tJ4eluKcZCnOyZbi9LQU5xRLcU61FOc0S3FOtxSnl6U4vS3FOcNSnDMtxeljKU5fS3HOshSnn6U4Z1uKc46lOOdainOepTjnW4pzgaU4F1qKc5GlOBdbitPfUpwBluIMtBRnkKU4l1iKc6mlOJdZinO5pThXWIpzpaU4V1mKM9hSnKstxbnGUpxrLcW5zlKc6y3FGWIpzlBLcYotxbnBUpwbLcW5yVKcmy3FucVSnFstxRlmKc5wS3FGWIpzm6U4t1uKc4elOCMtxRllKc5oS3HGWIoz1lKccZbi3Gkpzl2W4txtKc49luLcaynOfZbi3G8pzgOW4jxoKc54S3EmWIrzkKU4Ey3FedhSnEcsxXnUUpxJluJMthTnMUtxHrcU5wlLcaZYijPVUpwnLcV5ylKcpy3FecZSnGctxXnOUpxpluJMtxRnhqU4My3Fed5SnFmW4rxgKc5sS3HmWIoz11KcFy3FmWcpznxLcRZYirPQUpyXLMV52VKcRZbivGIpzquW4rxmKc7rluK8YSnOm5bivGUpztuW4rxjKc67luK8ZynOYktxlliKs9RSnGWW4iy3FGeFpTjvW4rzgaU4H1qK85GlOCstxVllKc5qS3E+thTnE0txPrUU5zNLcT63FOcLS3HWWIrzpaU4X1mK87WlON9YivOtpTjfWYqz1lKc7y3F+cFSnB8txfnJUpyfLcX5xVKcXy3F+c1SnHWW4vxuKc4fluKstxRng6U4f1qK85elOH9birPRUpxNluJsthRni6U4Wy3F2WYpznZLcXZYikM/hFhzbuhFLI5rKU4pS3FKW4pTxlKcspbilLMUJ8dSnFxLcfIsxSlvKU6+pTgFluJUsBSnoqU4hZbiFFmKU8lSnMqW4lSxFGc3S3F2txSnqqU4e1iKU81SnOqW4uxpKc5eluLsbSnOPpbi7GspTg1LcTxLcfazFGd/S3EOsBTnQEtxDrIU52BLcWpailPLUpxDLMU51FKcwyzFOdxSnCMsxTnSUpyjLMWpbSlOHUtx6lqKU89SnKMtxTnGUpz6luI0sBTnWEtxjrMU53hLcRpaitPIUpwTLMVpbClOE0txmlqK08xSnOaW4rSwFKelpTitLMVpbSlOG0tx2lqK085SnPaW4nSwFKejpTidLMXpbClOF0txulqK080wDvrfaO7uixP332ieXdlOTicCOTXPN8vJCz3jcurh18MtefLp+SXlv9afv/tGUYlrbeOf+//a+w4wuWprf83ueL1jrz3rdcMFe1zAxoVeTPfiDrbpEFrMYi/G4Ia9BoONWVywTTME0gvppEDKC6kvyUtI8pI8kpeE5J9KHoEkLz0hL5Be/hK+Z/fsb87VSPdq7w549H3nmztXR79zJB0d6Uq6ul+08y7czHi/VIH3po918365Eu/H13Xx/ldF3vX3Eu/jlXnvOyPi/YoD75wf7ef9qgvv08+9wPvfTrzPv8Lwfs2N9/7fad6vu/L+S+W+4cz7r9wTjrzG9r/Zg3eJjTf3kSE9cK+38X60J++GH1l4Pwa8Tx8Zz/tx5D3qwVjeT5TxvnlqHO+/l/Me9tEY3k8KvB87W+b9lMR7zlyR99Mi77wPS7z/IfN+pFPg/UwM722d5byfjeO97eIy3sdieV92OfJ+Lp73iinA+3kL79Sje/J+gfMut9p6D49bgt8KIXdhnbucb3m0qf/X7N6mvt3s3qa+0+zepr7b7N6mvtfs3qa+3+zepn7Q7N6mnmx2b1M/bHZvU//T7N6mnmp2b1M/anZvU083u7epZ5rd29SPm93b1E+a3cceP/UYe/yvx9jjZx5jj597jD1+4TH2+KXH2ONXHmOPX3uMPX7jMfb4rcfY43ceY49nPcYev/cYe/xfczbj7os8fPcfPHz3cx6++3kP3/1HD9/9Jw/f/WcP3/0XD9/9Vw/f/TcP3/13D9/9Dw/f/U8P3/0vD9+tPMZDOY/xUJ3HeKh+iLvvzg9x9939hrj77oYh7r67fyVe5rsbK/J2++5CZd4u3z3AgZd890AX3sh3Nznx7vfdg4Y4+ljNO9iVV/vuojPvv3LNjrzGdw8Zko3vvtjDd7cMcffdQz2eZYd5PMsO93iWHeHxLDvS41n2II9n2VEez7KjPZ5lx3g8y471eJY92ONZdpzHs+x4D99d8vDdEzx890QP3z3Jw3dP9vDdh3j47kM9fPcUD9891cN3H+bhu6d5+O7pHr57hofvnunhuw/38N1HePjuIzPy3S/z8N1Hefjuoz189zEevvtYD999nIfvPt7Dd5/g4btnefjuEz1890kevvtkD999iofvPtXDd5/m4btP9/Ddsz18d6uH7z7Dw3fP8fDdcz189zwP3z3fw3cv8PDdCz189yIP332mh+8+y8N3L/bw3Us8fPdSD999dka++xIP332Oh+8+18N3n+fhu8/38N0XePjuCz1890UevvtiD9/9Mg/ffYmH777Uw3df5uG7L/fw3Vd4+O6Xe/juZR6++0oP393m4buv8vDdyz189woP393u4buv9vDdKz189zUevnuVh+++1sN3X+fhu1d7+O41Hr57bUa++1IP373Ow3ev9/Dd13v47g0evnujh+/u8PDdmzx89w0evvtGD9+92cN33+Thu2/28N1bPHz3Vg/ffYuH797m4btv9fDdnR6++zYP373dw3fv8PDdOz189y4P3327h+/e7eG793j47r0evvsOD999p4fvvsvDd9+dke++zMN33+Phu/d5+O57PXz3fR6++xUevvt+D9/9gIfvfqWH736Vh+9+tYfvfo2H736th+9+nYfvfr2H736Dh+9+o4fvfpOH737Qw3e/2cN3v8XDd7/Vw3e/zcN3v93Dd7/Dw3e/08N3P+Thu9/l4bvf7eG73+Phu9/r4bsfzsh3X+7hux/x8N3v8/Dd7/fw3R/w8N0f9PDd/+bhuz/k4bsf9fDdH/bw3f/p4bu/6OG7v+Thu7/s4bv/y8N3P+7hu7/i4bu/6uG7/9vDd3/Nw3d/3cN3f8PDdz/h4bu/6eG7v+Xhu/+fh+/+tofv/o6H7/6uh+/+nofv/r6H7/5BRr77Cg/f/aSH7/6hh+/+Hw/f/ZSH7/6Rh+9+2sN3P+Phu3/s4bt/4uG7f+rhu//Xw3f/zMN3/9zDd//Cw3f/0sN3/8rDd//aw3f/xsN3/9bDd//Ow3c/6+G7f+/hu//Pw3f/wcN3P+fhu5/38N1/9PDdf/Lw3X/28N1/8fDdf83Id7/cw3f/zcN3/93Dd//Dw3f/08N3/8vDd6sWd9+da3H33XUt7r67vsXdd+db3H13vxZ3393Q4u67+7e4++7GFnffXWhx990DWtx998AWd9/d1OLuuwe1uPvuwS3uvrtYiZf57uaKvN2+e0hl3i7f3eLAS757qAtv5LuHOfHu993DWxx9rOYd4cqrffdIZ95/5Q5y5DW+e1TC9/RL8Fsh5JZ5+O7RLe6+e0yLu+8e2+Luuw9ucffd41rcffd4D99d8vDdEzx890QP3z3Jw3dP9vDdh3j47kM9fPcUD9891cN3H+bhu6d5+O7pHr57hofvnunhuw/38N1HePjuIz1891EevvtoD999jIfvPtbDdx/n4buP9/DdJ3j47lkZ+e4rPXz3iR6++yQP332yh+8+xcN3n+rhu0/z8N2ne/ju2R6+u9XDd5/h4bvnePjuuR6+e56H757v4bsXePjuhR6+e5GH7z7Tw3ef5eG7F3v47iUevnuph+8+28N3n+Phu8/18N3nefju8z189wUevvtCD999kYfvvjgj393m4btf5uG7L/Hw3Zd6+O7LPHz35R6++woP3/1yD9+9zMN3X+nhu9s8fPdVHr57uYfvXuHhu9s9fPfVHr57pYfvvsbDd6/y8N3Xevju6zx892oP373Gw3ev9fDd6zx893oP3329h+/e4OG7N3r47g4P373Jw3ffkJHvvsrDd9/o4bs3e/jumzx8980evnuLh+/e6uG7b/Hw3ds8fPetHr6708N33+bhu7d7+O4dHr57p4fv3uXhu2/38N27PXz3Hg/fvdfDd9/h4bvv9PDdd3n47rs9fPc9Hr57n4fvvtfDd9/n4btf4eG77/fw3Q94+O5XZuS7l3v47ld5+O5Xe/ju13j47td6+O7Xefju13v47jd4+O43evjuN3n47gc9fPebPXz3Wzx891s9fPfbPHz32z189zs8fPc7PXz3Qx6++10evvvdHr77PR6++70evvthD9/9iIfvfp+H736/h+/+gIfv/qCH7/43D9/9IQ/f/WhC352LfkuO7CvqnPX/HU+IZ5dXyk9dzl2n9ozOeL/a4zz1X+ezqY+VGZ2jf01GclZlJOfajORcl5Gc1RnJWZORnLUZyVmXkZz1Gcm5PiM5GzKSszEjOR0ZydmUkZwbMpJzY0ZyNmck56aM5NyckZwtGcnZmpGcWzKSsy0jObdmJKczIzm3ZSRne0ZydmQkZ2dGcnZlJOf2jOTszkjOnozk7M1Izh0ZybkzIzl3ZSTn7ozk3JORnH0Zybk3Izn3ZSTnFRnJuT8jOQ9kJOeVGcl5VUZyXp2RnNdkJOe1Gcl5XUZyXp+RnDdkJOeNGcl5U0ZyHsxIzpszkvOWjOS8NSM5b8tIztszkvOOjOS8MyM5D2Uk510ZyXl3RnLek5Gc92Yk5+GM5DySkZz3ZSTn/RnJ+UBGcj6YkZx/y0jOhzKS82hGcj6ckZyPZCTnoxnJ+VhGcj6ekZxPZCTn3zOS88mM5HwqIzmfzkjOf2Qk5zMZyflsRnIey0jO5zKS8/mM5HwhIzn/mZGcL2Yk50sZyflyRnL+KyM5j2ck5ysZyflqRnL+OyM5X8tIztczkvONjOQ8kZGcb2Yk51sZyfl/Gcn5dkZyvpORnO9mJOd7Gcn5fkZyfpCRnCczkvPDjOT8T0ZynspIzo8ykvN0RnKeyUjOjzOS85OM5Pw0Izn/m5Gcn2Uk5+cZyflFRnJ+mZGcX2Uk59cZyflNRnJ+m5Gc32Uk59mM5Pw+Izn/l5GcP2Qk57mM5DyfkZw/ZiTnTxnJ+XNGcv6SkZy/ZiTnbxnJ+XtGcv6RkZx/ZiTnXxnJUfXZyMllJKcuIzn1GcnJZySnX0ZyGjKS0z8jOY0ZySlkJGdARnIGZiSnKSM5gzKSMzgjOcWM5DRnJGdIRnJaMpIzNCM5wzKSMzwjOSMykjMyIzkHZSRnVEZyRmckZ0xGcsZmJOfgjOSMy0jO+IzklDKSMyEjORMzkjMpIzmTM5JzSEZyDs1IzpSM5EzNSM5hGcmZlpGc6RnJmZGRnJkZyTk8IzlHZCTnyIzkHJWRnKMzknNMRnKOzUjOcRnJOT4jOSdkJGdWRnJOzEjOSRnJOTkjOadkJOfUjOSclpGc0zOSMzsjOa0ZyTkjIzlzMpIzNyM58zKSMz8jOQsykrMwIzmLMpJzZkZyzspIzuKM5CzJSM7SjOScnZGcczKSc25Gcs7LSM75Gcm5ICM5F2Yk56KM5FyckZyXZSTnkozkXJqRnMsyknN5RnKuyEjOyzOSsywjOVdmJKctIzlXZSRneUZyVmQkpz0jOVdnJGdlRnKuyUjOqozkXJuRnOsykrM6IzlrMpKzNiM56zKSsz4jOddnJGdDRnI2ZiSnIyM5mzKSc0NGcm7MSM7mjOTclJGcmzOSsyUjOVszknNLRnK2ZSTn1ozkdGYk57aM5GzPSM6OjOTszEjOrozk3J6RnN0ZydmTkZy9Gcm5IyM5d2Yk566M5NydkZx7MpKzLyM592Yk576M5LwiIzn3ZyTngYzkvDIjOa/KSM6rM5LzmozkvDYjOa/LSM7rM5LzhozkvDEjOW/KSM6DGcl5c0Zy3pKRnLcyOUeuWLrh6aPefNjHzpn3kdtue9kVU4/5+cKbPr7+vjlPP3//synlvC2j/Lw9IznvyEjOOxPKqQM5lep2snLX6aFAOlWS8y4P2/x4SzbllFfu+r87o7rrp9x1ek9GOjUod53em5FO/ZW7Tg9npFOjctfpkYx0Kih3nd6XkU4DlLtO789Ip4HKXacPZKRTk3LX6YMZ6TRIuev0bxnpNFi56/ShjHQqKnedHs1Ip2blrtOHM9JpiHLX6SMZ6dSi3HX6aEY6DVXuOn0sI52GKXedPp6RTsOVu06fyEinEcpdp3/PSKeRyl2nT2ak00HKXadPZaTTKOWu06cz0mm0ctfpPzLSaYxy1+kzGek0Vrnr9NmMdDpYuev0WEY6jVPuOn0uI53GK3edPp+RTiXlrtMXMtJpgnLX6T8z0mmictfpixnpNEm56/QlD53qIzJ71U1o13S1ppWartG0StO1mq7TtFrTGk1rNa3TtF7T9Zo2aNqoqUPTJk03aLpR02ZNN2m6WdMWTVs13aJpm6ZbNXVquk3Tdk07NO3UtEvT7Zp2a9qjaa+mOzTdqekuTXdrukfTPk33arpP0ys03a/pAU2v1PQqTa/W9BpNr9X0Ok2v1/QGTW/U9CZND2p6s6a3aHqrprdperumd2h6p6aHNL1L07s1vUfTezU9rOkRTe/T9H5NH9D0QU3/pulDmh7V9GFNH9H0UU0f0/RxTZ/Q9O+aPqnpU5o+rek/NH1G02c1Pabpc5o+r+kLmv5T0xc1fUnTlzX9l6bHNX1F01c1/bemr2n6uqZvaHpC0zc1fUvT/9P0bU3f0fRdTd/T9H1NP9D0pKYfavofTU9p+pGmpzU9o+nHmn6i6aea/lfTzzT9XNMvNP1S0680/VrTbzT9VtPvNBm7/L2m/9P0B03PaXpe0x81/UnTnzX9RdNfNf1N0981/UPTPzX9S5OZgM5pqtNUrymvqZ+mBk39NTVqKmgaoGmgpiZNgzQN1lTU1KxpiKYWTUM1DdM0XNMITSM1HaRplKbRmsZoGqvpYE3jNI3XVNI0QdNETZM0TdZ0iKZDNU3RNFXTYZqmaZquaYammZoO13SEpiM1HaXpaE3HaDpW03Gajtd0gqZZmk7UdJKmkzWdoulUTadpOl3TbE2tms7QNEfTXE3zNM3XtEDTQk2LNJ2p6SxNizUt0bRU09maztF0rqbzNJ2v6QJNF2q6SNPFml6m6RJNl2q6TNPlmq7Q9HJNyzRdqalN01Walmtaoald09WaVmq6RtMqTddquk7Tak1rNK3VtE7Tek3Xa9qgaaOmDk2bNN2g6UZNmzXdpOlmTVs0bdV0i6Ztmm7V1KnpNk3bNe3QtFPTLk23a9qtaY+mvZru0HSnprs03a3pHk37NN2r6T5Nr9B0v6YHNL1S06s0vVrTazS9VtPrNL1e0xs0vVHTmzQ9qOnNmt6i6a2a3qbp7Zreoemdmh7S9C5N79b0Hk3v1fSwpkc0vU/T+zV9QNMHNf2bpg9pelTThzV9RNNHNX1M08c1fULTv2v6pKZPafq0pv/Q9BlNn9X0mKbPafq8pi9o+k9NX9T0JU1f1vRfmh7X9BVNX9X035q+punrmr6h6QlN39T0LU3/T9O3NX1H03c1fU/T9zX9QNOTmn6o6X80PaXpR5qe1vSMph9r+ommn2r6X00/0/RzTb/Q9EtNv9L0a02/0fRbTb/T9Kym32v6P01/0PScpuc1/VHTnzT9WdNfNP1V0980/V3TPzT9U9O/NJlOMKepTlO9prymfpoaNPXX1KipoGmApoGamjQN0jRYU1FTs6Yhmlo0DdU0TNNwTSM0jdR0kKZRmkZrGqNprKaDNY3TNN6cUa9pgqaJmiZpmqzpEE2HapqiaaqmwzRN0zRd0wxNMzUdrukITUdqOkrT0ZqO0XSspuM0Ha/pBE2zNJ2o6SRNJ2s6RdOpmk7TdLqm2ZpaNZ2haY6muZrmaZqvaYGmhZoWaTpT01maFmtaommpprM1naPpXE3naTpf0wWaLtR0kaaLNb1M0yWaLtV0mabLNV2h6eWalmm6UlObpqs0Lde0QlO7pqs1rdR0jaZVmq7VdJ2m1ZrWaFqraZ2m9Zqu17RB00ZNHZo2abpB042aNmu6SdPNmrZo2qrpFk3bNN2qqVPTbZq2a9qhaaemXZpu17Rb0x5NezXdoelOTXdpulvTPZr2abpX032aXqHpfk0PaHqlpldperWm12h6rabXaXq9pjdoeqOmN2l6UNObNb1F01s1vU3T2zW9Q9M7NT2k6V2a3q3pPZreq+lhTY9oep+m92v6gKYPavo3TR/S9KimD2sy36k335A333c3314330U33yw33xM33/o23+E238g2368235Y2330232Q230s23zI23xk23wA23+c1384137U135w134M132o131E13zg13x813wY13+0039Q037s036I034k033A031c03z403yU03ww03/Mz39oz38Ez36gz348z33Yz310z30Qz3ysz3xIz3/ky3+Ay38cy364y35Uy33wy32My30oy3zEy3xgy3/8x3+Yx380x37Qx35sx34Ix32kx31Ax3zcx3x4x3wUx3+ww39Mw37ow36Ew34gwA0/zbQXz3QPzTQLzvQBzlr85Z9+cgW/Opzdnx5tz3c2Z6+Y8dHNWuTlH3Jzxbc7fNmdjm3OrzZnS5rxncxazOSfZnGFszhc2Z/+ac3nNmbnmPFtz1qw5B/aFM1o1mbNNzbmj5kxQc16nOUvTnHNpzqA050OasxvNuYrmzENzHqE5K9Cc42fO2DPn35mz6cy5ceZMN3PemjkLzZxTZs4QM+d7mbO3zLlY5swqc56UOevJnMNkzkgy5xeZs4XMuT/mTB5zXo45y8acM2POgDHns5izU8y5JubMEXMeiDmrw5yjYc64MOdPmLMhzLkN5kwFc96BOYvAnBNg3uE379ebd9/Ne+nmnXHzPrd519q8B23eUTbvD5t3e817t+adWPMMYN4lNe95mncwzfuR5t1F816heefPvI9n3pUz77GZd8zM+1/m3Szz3pR5p8m8b2TeBTLv6Zh3aMz7LebdE/NeiHlnw7xPYd51MO8hmHcEzP59s7fe7Hs3e9LNfnGzl9vsszZ7oM3+ZLN32OzrNXtuzX5Ys1fV7CM1ezzN/kuzN9LsWzR7Cs1+P7MXz+yTM3vYzP4ys/fL7Msye6bMfiaz18jsAzJ7dMz+GbO3xew7MXtCzH4Ns5fC7HMw+wrMmr9ZNzfr1GZd2KzDmnVPs85o1vXMOppZtzLrRGZdxqyDmHUHM89v5tXNPLaZNzbztGZe1MxDmnk/M89m5rXMPJKZtzHzJGZewswDmOdu85xrnivNc5xpJuaZjELUbb7wzGbW/816u1nfNuvJZv3WrJea9UmzHmjW38x6l1lfMus5Zv3ErFeY9QEzH2/mv818s5nfNfOpZv7SzBea+TkzH2bmn8x8j5lfofmMCWr/8/EktX+fxiGaDtU0RdNUTYdpmqZpuqYZmmZqOlzTEZqO1HSUpqM1HaPpWE3HaTpe0wmaZmk6UdNJmk7WdIqmUzWdpul0TbM1tWo6Q9McTXM1zdM0X9MCTQs1LdJ0pqazNC3WtETTUk1nazpH07maztN0vqYLNF2o6SJNF2t6maZLNF2q6TJNl2u6QtPLNS3TdKWmNk1XaVquaYUqDwvY9UPR770r//Px537V/+uc792WuP+Kfl/e+OCnznhi4CM87nFL3NctcU9Y4n4b/f7uSyunzzjpwjt43N+i36cf/erajRsHfYnHmee2uDyMssSdHMWNb5j37fOmf+4HPeTVxcf9ez4+bktDfNzJjfFxTxb2/0rl8kNL3DOWuJ9Y4n5tifutJe5Plri/WuL+YYn7lyWu/4D4uIIlbrAlrtkSN8wSN8ISN84SV7LETbTETbbEzbDEHW6JO8YSd5wl7qQo7uBvnvfY+ta/X3OMig8l5RQuSJH2mhRp21OkLTnfLA/LU6RdnSJtW4q0q1KkXZMibZo6WpEi7bIUaTemSHt9irQbUqTtSJG25HyzPGxJkTZN209jz2tTpE1TzrekSFtyvlke0pRVmrZQcr5ZHtLU0boUafuqHaWR+2LsQ2s+VmViz1enSFtyvlkeNqdIW3K+WR7S9EdpdE7j2+v4n5xf2tx1A5PtF/CVs8ZTzsm154xYtpJyCrXnDJVJHdWeM9zT1p4z3NPWnjNUJm2h5HyzPNSeM1Qm7aj2nKGq3jZqzxnuaWvPGY6ht58zTqk9Z8SylZRTqD1nqEzqqPac4Z629pzhnrb2nKEyaQsl55vlofacoTJpR7XnDFX1tlF7znBPW3vOcAy9/ZwxO3rO+O2oLXd991/P7OZxrVHcl29uaDum7U9rZ1twSsopHGjPIAfa2KnkfLM81MaoKhM/VnK+WR7SPOul6R/TtN/a2FhVvW2kqd808x5pyjlN/aaxyTT1m2ZcnWZeK43OfdV399WzXl+Vc8n5Znl4MY7nS843y0NtrkZVvU2maUcl55vloa/mTDalSJumrNL0KWl8+0vyeXyx5R2npZa4iy1xl1jiLrPEXWGJa7fErbTErbbErbXErbfEbbDEbbHEbbPE3WaJ22GJu9MSd7cl7hWWuAcscV+O4qR3Nvc2xcctGRwfN6g5Pu6dLft/n1YX5K78wcGXiROXUSgpp3B+irRp/Eea/rCvnnXS+NqS883ykGZ+Os3Yoa/ym2bMkqYvXZkibV+NK2tjYZWJXZWcb5aHNOWcxl/1VX5vTJG2r9YZ0thkyflmeeirubc0fiONXaVJ21drBWn6hZLzzfLQV8/Q61OkTTNmSFO/N0g3S8opHGhzq2n2V6bpf9O0o8NTpC053ywPffV81Fd9d1/1CyXnm+XhqhRpb0qRtuR8szyk2R+dxl+laftp0h5offeVKdK+GJ8X+moveW0OSmVSRy/GOag0+T3Q5qCmpkibZmzWV2kPS5H2yhRp0+j8Qnh3tAYgnVn5SExcdLurkts2bmzf0LFs+bo169s6Vl21un3Zug1ty/XPDe0bNq5at3bZjRva1q9v3zAi4o+Opuxa9DPrcPXueucaWTr/9J1zGxHQK716IX1OJZW/P/8mTcL8qwZShKXnuhCuOR93ILseBPIT6j83rf4tFp2pbuYw/pJyCvVm+czkM1ryeiHvk6PrTR2rVq/quKn1BVOd02WpZ79gqBftt1MEzMH/OTH3BzC984zHvUw2zyXM+ui3H7vmIQ+/xDM8+i0w+fTr8s3k73/h+W8/eubRa4ZAehOobkw+x0XXK9tNg1/bocuvY9mqtRs72tYub9cXHe0b1ratPj7i6uOWfmHKln5hSkvPNbI0CdKLLR11MaFJ9WxRPI1pEWPZ9cEsjQnzGF4O4uYLciluQYweJixkcXmIW8Ti+kHcmSyuAeLOYnH9IW4xi2uEuCUsrgBxS1ncAIg7m8UNhLhzWFwTxJ3L4gZB3HksbjDEnc/iihB3AYsj70a2xVush23No/QtydI3twjyCYs88ZHRf1N+o6PryBMvaNdueL//WBS5j2YGzy2Oa8f/5+F/P/jfAP/7w/9G+F+A/wPg/0D43wT/B8H/wfC/CP8xv1SS/L5vyPViXA7u5WLSNqn4/r1JVfZi3FvmIY73r/0grh+La4C4BhbXH+L6s7hGiOM9UAHieF87AOIGsLiBEDeQxTVBXBOLGwRxg1jcYIgbzOKKEFdkcc0Q18ziyP4CjGcuTDueOS767e3xDJXbinbz+LJuY/uya/QghkY5fTx+WZBy/LLgpTJ+GcyusW/0Hb+kzFNXv5msZai6FhXv5ajfPCj6Xy/wclvqx3ikclXCvZyK9874ZKhYvoYepb4z/qnjbpo+4vh1Z9+w86kLHtk27G2H/ax40G83nXLDX55ch3mps+ju20Pw8knpmRak9Uw0fu5tz0T5XN2x3yfNiP6/VHxSwvZXl7L9iT7JNuKQfBLaqAnkhyr5K+6TCDuln56fskxzLSreh5BPmsgTqO5y6qfi23IeeA9maYZG16R7v2S6N+AIjwdphIc+qFHQOydgST6VdDb4Uxku8qE+3HZxNCrZopFTiq6l2Tul3OtakpMT5Eg+mttEX/vhKdFvb/thyfZJhwZVuR+LKz+asVuxauPydXqmfNna9huXrWnfuLFtZfvGgdG8ZR87+/tTOvv7q2UA+gqW3nUASmn6q+5Gba4vj65TTqOnLRuvaXTiKymnUE/p5yZL32V385Klr6P089nNknIKXbrjBGXJLf0gSr9Qkv3cxu+88/G7P/T5d3U89I5XDfn+oNcOnDHg1l27fjfmt2Nf9+yut1FaPsnpke8GSn+mJPu0j9Zfes0H/7pu4IId77/x+99bumnQ2LbHxu95x6VfuG/8L5bdTmnPktL+/K7X31p8/yveXJr+1ecbFuz79bI/LOo36/tf3Trqc9v//otnu9r5YintE5f+/YePFu+/efPdH98ya+rQtofv/87vf/nFx99X/MPTj1z/neMoLZ9oTeKjliZL30zpz06Wfgil55O6Lh0IBUp/bjL5XXV+HrtZsqfJoWw+eeyhe1fZX5AsfVc7vZDdLNHFbW9/1w9b7/7qkT/++4A7lrTt3HzMnd+8+Dc3H/TQIT+99pGxD3eV+0VS2mc65tzXMXLN8b9p/NrdR71lzMFPPffQoz/7403ts379s59/ZMIfKO3FUtoKgdK+TEh70NFTTlz/mq8Pe3LqxB/M/szDhz8w6rnJpzz5sYVvefavX/4zS3tJ9OtZ112+6dJk6bvK+7Jk6fOU/vJk6cdQ+ivYzZJyCv0o7cvltLkdEze+unB3bslj22c+2jTgsV+0PnjGnK8+vvOO8cWHH6S0y4S0004pPPuOO7btUj966Ff3/HHaJ2fPHDKudcjh33r9t8es3XDZqGcp7ZUkSHnleSylb2PpQXdroPRXsfQefUJX+uUsve92AxNWsPRK+fsIvs+spJxCV9qr/dN22TrtYfLMd5e9XZMsfX9KvypZ+kZKf22y9AMp/XXJ0jd1TSAlSz+e0q9h6T3stkTp1yaT35V+XTL5Myn9+mTpj6T01ydLfxSl38DSe+R/NqXfmEx+K6XvSJZ+HqXflCz9fEp/Q7L0Syn9jcnSL6P0m5Olb6P0NyVLfxWlvzlZ+uWUfkuy9Cso/dZk6dsp/S3J0l9N6bclS7+S0t+aLP01lL4zWfpVlP62ZOmvo/Tbk6VfTel3JEu/htLvTJZ+LaXflSz9Okp/e7L06yn97mTpN1D6PcnSb6T0e5Ol76D0dyRLv4nS35ks/Q2U/q5k6TdT+ruTpb+J0t+TLP0WSr8vWfpbKP29LL17/5vrGjffx+6WlEvIdU0cfyXa8yzN9Xnk5RyctCcMjp1wQezgHOAp1XO+VQF+AXTxlJfLAR7Jw/zhRHo/QZeiEIdl3E+Q00+QUxTitgbE2h0Q65aAWLsCYoXM446AWJ0BsXYGxNoWEGtNQKyQZR+yDe2pUqzNAbFC2kTIsg9pX1sCYnUGxAppEzcHxNoVEOvOgFjV2j/SmBU3XBC+9Ety8B7JKQBW0nGPlK+8IM/GX2/hb3DEN9uQaXNStCl/bvtVm1YuXlf21mge/i+KUXEs8C23qIa4OSC8Pxbu1Qu8PJjs0RuHUfbmt3csv+aCtpUr21foTJa934pIC2Pu44CU89BgvAE0LSmnUOdilBy/ALokNUrJaKTGZkqV3vKISnXxurYVc9rWb9y0uj3ujQ2UkgNUfk+q0xzTTFn4FsL/JUI6JWCbeKq5RrhfUk6hgG8F8CC9FYBbT/hbAbw2MUj70Ehn88j5xIhuXORDfXh94BsMfM/cQCYb67VBkEP6S3uA+wNWg5CO0lSSVx+Tjl/bHp1dWhvlw4SiICPuLRSOkdIrDKt2r0D5659M3tAcpOfyOCa+1dMoxBEWtcOGGCy+f5HzfzH6LQKfCReDjEZBX36PyseU2WOgO76dplSYcuR4pBe/x/ELKpVd5mz1xvOHdpLQx7a4lDvXR3pTC/cCk99riMGitHng/1b0W1Tlfh/tpCDoy+9xO/ka6I5vLSqVuhxbXe2E8AsqlV3mbPXG84d2Ukgmb7ZLuXN9pP6Zly3vAxtisChtHvifjn6LwGcC2skAQV9+j9vJk9F1Y4y+JeUUbpTGLWhnOG4pKacw1tXOCL+gUtV7zlaOUnuTxl6UtijE4aPWQEHOQEFOUYjbHRBrV0CsmwNibQ2ItadKsToDYu0MiLUtINaagFjbA2KFtPtqLC9bP+SLZUJnQKy9AbFuDYgV0lZD5nFzQKxqbdv3BMRaHxBrX/SL4zzCN6FRlbc932cTjkd68nscvwC6JB3rSOUijRkpf03J5A3JQXouj2PiaReDhDjCovdkG2KwKG0e+KdFBVoEPhNwTD1I0Jff42PqQyLcwYK+OL/ga488fdyJIBRvQoj64nikJ7/H8Qsqlf3nbPYhlQvlb1Ayec0u9cv1kU5K4WVriJZDGmKwKG0e+E8Ce+Qn/6A9Dhb05fe4PR6X66k7njhkQspynOdqJ4RfUKnsMmerN54/tJPByeTNdSl3ro90ag4vW0N0ak5DDBalzQP/ArATfiIU2klR0Jff43ZyBtgJnkRlQrpyzP3e1U4Iv6BS2WXOVm+S/6b8FRPJyz3rUu5cH+kEJV62hujd8oYYLEqbB/4LwE74iWBXgYxmQV9+j9vJ2WAneEKZCenKscsUK9oJ4RdUqvads9Wb5Fcpf83J5LW6lDvXh8p6iBBHWLSi2hCDRWnzwN8GdjKE6YT+ZIigL7/H7eTyCHewoC/On7v6qaKQnvgkmzNUUk7hAqlOPdJfj3VEGFy3hOckHuXaHgi/oMrtJUl7aAF5cfVNeR8q6FIU4rCOhgpyhgpyikLcrQGxtgbEWhMQ6+aAWNsDYm0OiNUZEGtHQKyQNrElINaNAbH2BMKS/GcavXYHxNobECtk274nIFZIX9gZEGtnQKyQ9bgvIFZIm+gMiBWqbZsQMo8hbWJXQKxq9RMh9ToQxky1Pq3vyj5ke7wlIFbIPN5VpXqFHE+EzCP1tfSsyJ8tc9Fvoypvex7PraflAI/05Pc4fgF08ZSXs5ULzx8+Jw8TdCkKcficPEyQM0yQUxTibg2ItTUg1pqAWCHz2BkQa2dArL0BsUKW/T0BsWr16Ie1LyBWSJvYEhBrV0CskP5rT0CskGUf0lZDln21+q+QthrSvnYExApZjyHtK2QbCmlfuwNibQ6IFTKP1TqWC5nHkOOJaq3Hah3L3RUQq1rHOZ0BsWrjiZdGGwrpJ0LqFcq+zHVzICwT7giIFbLsQ44BqK/FfV+Eb0LKObAJOcAjPfk9jl9Q5XUZag5M2kNG+RuWTF7JpR64PlTWw4U4wqIzPhpisChtHvgvjjJVBD4TrgIZwwV9+T2+d+q86M9gQd+0axE8PZYRT4f2mLC+6l3tkfALKpX952z2IZWLZB+UtijEYfm71qsNa7AK71ubhfw0Cemwnrl+HuXu/K4A/8p4CrvK2cpfKhfK34hk8prRV3B5HJP0obIeKcQRFn2jsSEGi9LmgX8j+J2RTCf0OyMFffk97nfWgt+R2kRSu5f86UtNTpOQDttXQvvr59q+CL+gUrXnnM3epXKR7J3SFoU4LH9XO30xYpH9jbDIsfkVSQ5PP6ImJ5WcJiEdtlter+7tKPcj13ZL+AWVyk/kbHYrlQvl76BE8nJPYV/G5XFM0ofKepQQR1ijo/8NMViUNg/8b4V+cRTTCfvFUYK+/B7vF99Y11N3XrZoJ8nKURVd7YTwCyqNXXbbiVRvkn+j/I1KJm+wS7lzfaisRwtxhDUm+t8Qg0Vp88D/frCT0UwnfOdltKAvv8ft5D3Rn8YYfUvKKTwtlbVH+jc3qvKy80h/GKUfkyz9xyj92GTpP0LpD06W/jZKPy5Z+pdR+vHJ0l/RCPye6adS+gnJ0h9D6ScmS/9zSj8pWfqFlH5ysvQfp/SHJEt/H6U/NFn6OZR+SrL0z1P6qcnSd33W9bBk6Z+l9NNZep85Nko/M1n6etJ3Br8p6ET45OunMf5czC9hYRzJKgBW0n5R0p3rh+PKGUwez2Mc1gxPrEYhLkmdTFfx+eL4TRZdUE8T8KyVpHk2YUtArBsCYu0OhGWuDwqEZcL1AfUaFRBrdECsMQGx6gJhmdARUK+xAbEOrlKscQGxxgfEKgXEmhAQa2JArEmBsEy4O6BekwNhmXB7QL0OCYh1aECsUH2HuZ4SEGtqQKzDAmGZcFWVYs2NflPOFyxKOV9wUsr5giUp5wvOTzlfsCDlfMHclM/7i5sE/lz0Kz3Le4zbl+YATyn5+YfwC6CLp7yu558JIA/zh+s+EwVdikIc2vhEQc5EQU5RiNsZEOvOgFibA2JtD4jVGRBrS0CsNQGxdgTE2hoQa0+VYoW01W0BsUKVvdQvVoutdgbE2hsQq1rb4x0BsUK2oWot+1sDYoX0EyH72pA+OmTZhyyvarWv7QGxQtZjyLI/EPzEPYGwzPXoQFgmdATUa0wVYpmwMaBeYwNhmRCq7E24sQr1MtfjAmLVBcIyIZRNmHBDICxzfXAgLBNC1mNIvULZajX7wmIgLBNC+q+Q9RhSr2osLxNC2ur4QFgmhOw7QvkvE/YFxAo5/rolIFZnQKyQY/LtAbFCzj3S+J7mscexuFz0m3IOf3AO8EhPfo/jF0AXT3nWOXyePyoXab+gh7xBLvXA9aGyniTEERatCTfEYFHaPPB/JirYIvCZgHt7Jwn68ntUPmZv77/X99Sdly3aScJydP7WJeEXVCq7zNnqjeePykGqN0pbFOLq2LVPeUt1tzsg1q6AWDcHxNoaEGtPlWJ1BsTaGRBrW0CsNQGxbg+IFbINdQbEujMg1uaAWHsDYoVs2yHtK2QbCulXD4Sy3xEQK6SPJl9I71/y8Uwe5PiOvXl64kv5vsp5Kd9XuSjl+ypn07joEHYzF/1K75J4jNFuywGeUvKYkPALoIunvK4x4RSQh/nDMeFUQZeiEIf7f6YKcqYKcopC3M6AWHcGxNocEGt7QKzOgFhbAmKtCYh1e0Cs3QGxOgNiVaut7g2ItTUgVkj7CulzdgXEOhDKfkdArJB53FOlWCHb9raAWKHK3lyPCoRlQkhbrdYxQEisWr9d67dfLH1Hrd+u9du1fvulWfbVaqt3BMQKWV4hfU7Isr81IFbINhSy365WH12t44mQeQw59g1ZjyHL/kDwE/cEwsqp8j0KabAmBsQKNU9uricFwjJhY0C9ioGwTOgIiHVjQKwbAmGZ68kBsV7qZW+uRwfEGhMQa2wgLBNCltehAbFC2aoJIdtQtdp9tebxpe4LQ+plQq3vePH3HSZsCoRlrkPueQhVXuZ6fECsgwNiheprTQjZP4YqLxOqse8wYV9ArJDPfLcExOoMiBVyHmB7QKyQ+3P2RL+014vvDctFv42qvL0YOSXlFGbkAI/05Pc4fgF08ZSXs5ULzx+VC+X9MEGXohCH/vAwQc5hgpyiENcZEGtPQKybA2LtCoh1Z0CsrQGxdlepXlsCYq0JiHVPQKz1AbH2BcQKWV47A2KFbI97A2KFtPuQvjBkPd4SECukzwlpEzsCYoUs+81VqtftAbFC2kRnQKyQ/XbIetwbECuk/wppXyHbY7X66JBYIe1rW0As/MY0f77JRb+NkC6nvJ6dJucAj/Tk9zh+AXTxlJezlYv0DEt5ny7oUhTicA1Y+kbKdEFOUYjbHRBrV0CsmwNibQ2ItadKsToDYu0MiLUtINaagFi3B8TaHBArZHvcGxCrMyBWyPLaHhArpH2FbEMh/WpImwjpV6u1bYdsj50Bse4MiBWyPR4I9rUjIFbIMQCeg8DHy3gOgu+YnacnviYhXS76bQT9csprDH1fDvBIT36P4xdUeZ6TjNml8pfKxed7g+Y65PfzdgbEujMg1uaAWNsDYnUGxAr5rcc1AbFCfUfMhFDfjTShMyBWtdrq3oBYWwNihbSvkD5nV0CsA6HsdwTECpnHPVWKFbJtbwuIFarszXWo796aENJWq3UMEBKrWvvtkGUfcgwQ0kd3BsSqVlut9dt916fVxuR+WLUxed/ZV21c2Hf2VY3jQhNClle12uodAbFClldInxOy7G8NiBWyDYXsO6rVR1drnxYyjyHHviHrMWTZHwh+4p5AWDlVvkcpjV4bA+o1MSBWMSBWyPWhkOU1PhCWCTcGxLohEJa5nhwQK5RNmNARECtU2Yds26HbY6g2ZK4nBcIyIWR7PBDsa3RArDEBscYGwjIhZHkdGhArlC80IaSPrla7r9Y8vtT72pB6mVAbm7z4+w4TNgXCCjmeMCFUeZnrUGNyc31wQKxQfa0JIfvHkM8w1dh3mLAvIFbIOYVbAmJ1BsQKOc+0PSBWyP2FeA4K39uai34bVXl7MXJKyik05QCP9OT3OH4BdPGUl7OVi7RPmvI3M5m8gTlIz+VxTNKHyvpwIY6wjoj+N8RgUdo88D/dsP+3CHwm4LeCDxf05feofMy3gp9s6Kk7L1u0k4TleLCrnRB+QaWyy5yt3qT2I9UbpS0KcTgH4lreUt3tDoi1KyDWzQGxtgbE2lOlWJ0BsXYGxNoWEGtNQKzbA2KFbEOdAbHuDIi1OSDW3oBYIdt2SPsKqVfIegypV0g/EdImQtbjjoBYIf09vm/Hx0b4vp1t/CjJ4emJr0lIl4t+G1X5GMVjvLQrB3ikJ7/H8QuqPM9JxmdS+UvlQnk/QtClKMTh3M0RgpwjBDlFIW5nQKw7A2JtDoi1PSBWZ0CsLQGx1gTEuj0g1u6AWJ0BsarVVvcGxNoaECukfYXUK2Q9htQrpF8NaRMh63FHQKyQZb+nSrFC+oltAbFClb25HhUIy4SQtlqt44mQWLUxQG0M0Jt+tTYGqI0BamOA2higElbI8qpWW70jIFbI8qpWP3FrQKyQbaha+45qHftWq32FHEeHrMeQZX8g+Il7AmHlVPk+hjRYEwNihZq/N9eTAmGZsDGgXsVAWCZ0BMS6sQr1Cl2PIcvrhkBYoW0iVD2a69EBscYExBobCMuEkOV1aECsyYGwTKhWW621x77LYzXalwm1fqhm9xi3KRCWuQ65RySkfY0PiHVwQKxQ/bYJIfvaUOVlQjW2RxP2BcQK+Sx6S0CszoBYIecntgfECrmfCd/vqWNxueiX9gUW2X0jp6ScQj4HeKQnv8fxC6CLp7yufYFFkIf5o2vK+0GCLkWIMwHfkzlIkHOQICcrLKm+DJWUU7gQy4MwODbff+BRNwe52gLhF1R53SSxhVEgL65cKe+jBV2KQhyW8WhBzmhBTlGI2xkQ67Yq1WtXICxz3RgIK3Qe1wTE2hEQa09ArG0BsUKW196AWHcHxLo9INbWgFghy74zINaWgFgh83hPQKz1AbH2Rb/Uf/GxT6C+e1DSvjvhuNHad/P8UblQ/kYnk9fkUg9cHyrrMUIcYdHcckMMFqXNA//NUedWBD4TcMw4RtCX36PyMe9pb4pwBwv6jgNcqdxHCbhFIT3xNQrpSnTx3MbvvPPxuz/0+Xd1PPSOVw35/qDXDpwx4NZdu3435rdjX/fsrrenrM+LKf2YZOmHUvqxydK3UPrxydLPpfQTk6VvpfST2M2SU1I1hNJOTiQ796z0Llmdc3rVSOmPSJb+eEp/ZLL0J1D6o1h6j/w/RemPZndL0e/kb3+i/5/esy//b999dt2Nz0+7/78W3P3p957yiq/OPK3z/B+/6rdLKO0xiWSrwZT+WEF2hXAypT1OSnvaR+svveaDf103cMGO99/4/e8t3TRobNtj4/e849Iv3Df+F8t2U9rjpbRPXPr3Hz5avP/mzXd/fMusqUPbHr7/O7//5Rcff1/xD08/cv13jje+aR/4phOipJR/ujY0K/rfj8UtZzyUNg/81w7uTnd/JM9l7qMedCkppzDKtc+ke6HmPupBHuYPn3fzgi5FiDMBxz95QU5ekCNh7QuItSYg1u0BsbYGxNoZEGtLQKzOgFgh87gtIFa12tfmgFi7A2LtDYjVGRArZHltD4gV0r5CtqFdAbFC2kRIv4prIDwOxwH92H2PfrnOdRxA+AUl98sl5RS6xgH9QF5cuQzU1BJdb+pYtXpVx02L17WtmNO2fuOm1e04MsLRGC8Vjsrv5VTP3PO4eriHfGfC/yVCOiVgm3iquYFwv6ScwhSyiilCJMVNBWweF/cFbQz1gv6kc39NT4zoxkU+1IfXx1SIK7C4w5hsrNd+ghzSv07gLwBWPyEdpakk70BuiVI9UdqiEIdt0XXkn8RD0Kxb5CHmtl+1aeXidSsVhDz8XxSj4kHAtyRGtZyAmwPC+7h4Wa/sLsj2EOhiMkqVdzIcaznIqXUyL6VOhvAKLE4qCcKkKQ6ep0JMOmzUeK9O4O8HWP2EdOiMpfQcg6dD3RpVeV5LdHHb29/1w9a7v3rkj/8+4I4lbTs3H3PnNy/+zc0HPXTIT699ZOzDLUbWnxrjywUdFpVTvwr5ywP/EWzq52+RPGORI6P4yCLP2LT6uvPaOzasar+hXfu2jQpCJTO6EP5fJKSTQpMqr2p0DAkbqrNjIPyCkk2lpJxCl2OQRuU8f8kcAxoEjqpCO4aL4H+S0Sf22CXlFLxHnziKOAzk0jUGycGQzr6jT14fOPrkDRVHn7xe84IcdHicHx2e5DzR4cXJq3XR+0PtOZCF2nOgoH9vPwdiun6qvOVid0+8h0aKpGyxaghLhzrW+uz9odZns1DrswX9e7vPljwJeonefMTnsnHN2IQSXTzTMee+jpFrjv9N49fuPuotYw5+6rmHHv3ZH29qn/Xrn/38IxOeS+k1Lkrp7S406VojI6KHMd4OsB1TzxS3Dk9p88C/oNCdbl50beIOieIjj3JR2+pVK9o62uetvX5T+6b2FUvXdbRvbF27Yt4N7Ws7vB/NzoL/i4V0UhjA8IYz/HrIpAk4hxW1wa4NYMiDBUT8Z0URpiF/L7opGR3p0wTpKd4EMoqRoHtJOQXnrojwC6BL0q5oJMjD/CXrirg5Y6lwVH6vr7uihFs2vbuiAsTxrojXJgapKyKdfbsiXh/YFfHXQLAr4vU6UpBD+tcJ/AcB1kghHXZFcfLqhXQ4lMjBfT6XNVyQjXNZy5l3eHJEfDkMV/HlwPVBPXvxFaCLXb1JX70C5OdNuKVwKRcBKvFwXh6kaULkk2ovL6TDQCWWB523sk54DXT6PF8DQB/J2vk9HCTx9MQnyemfUk5/QQ5Z8kCWrg3imixxgxjmAIhrZumWQ9wQFncxxLUwzP4QN9SCOUzANHU3ZkA3nqFJjE+ydFyFmMD04Wn5/37Aa0J79JsH3n3Mrm4Du+KtGO3K9+VHnv4gFS+nf0o5/QU52FuZgLYzSsgrvmBoAtaztNmf4sYJ+aK48RbMkoBp6qdlQE8+rH8T0m0GVxe5enzCL4AuST3+ZJCH+cMXRw5JJu/CHKTn8jgm6YOjMixbQzTyaYjBorR54H9D1N6KwGcCvjgyRdCX3+Mvjry60FN3Xra5mF/CxXvYvnjeqX5IzgSWbjnT5y2Fnnnhfqpelfs1eiBGXzWWrQq+HXwVT491J7WTpPmfJORxsCovmwZ2HWffky1yGiz56a36bAA53M/y+vwA1OchLA59tLmml3LyyM/q80NQn1JblMoZ+yXfch4gyOntcsb+ZUpAORyLT+4YOgywsJypnqic+dMmPsFNY3G4lFIPaTg/x5DwCaOSDX6+IOctzgZJVh74fzmoO90XE9rgFIjjfQXvF7kevBw4Px5wR3o2xPDH5eu/2VPnUyN6YlJ6Xla8LtD/Ev83GOYzI2Q9eb4msHs4GSnZw2FCvqQynaYqy+blvCRGdoOy22Ie+L8rlCn2Czy91I4Ggy5TK+iO7ZunxxkXni6tH5F0rtQmn/ZskxOja7Tdb7I2+RNokzYb4Trjc4RvOfcX5PR2OeMzwrSAcjgW9gszAAvLmeqJypl/zHsGpOMfCMSPftdDGs7PMSR8137h+YKctzgbJFl54P8Ys8E/W56LbTY4DeJ4mWK/UMkfTgR+0rtB2fvbPPD/y9IvSO2V+1rsF4i/bkA3JvYL04V8TWD3sF+wfei9Upnih9cnCFi8nLFfkMqU538C5J/4Cyz/tn6B0kvzESsgjs9HHAJx/CV7HLPyF+inQByfj8C5Ef7iO/q7EovjNoLzEQMt+WliGDjfx+ft8MCGZhY3GuL4do8xEMfn7cZB3FAWNx7ihrG4Essrzdvh4ui46H7KdTtx64ptXjQX86uUW3/At1blQM7IgHI41pkg56CAcvBwTy5ntCAn5YETzuushF9Q5W03yTyZdICIdPCM38oIHoXCS4Wj8nu8pDHOtjJiQpp1VsIbx+KkksCZc56ncTHpeFko4V6dwD8GsOKOmKmPkSfVKE+HFpOD+3HrkYSRB/4TWG/1U+itJVm8PLDHJN3jdkygDsR/MtPheyNkzHxMvkbHYC4d0F0epw2QMZWAKeVrHOQLdcCjgIj/DGEkUA88qI90j8pfCWnxv2Qzw4F/fIX8YD0R/0JLPY0SdOBtckkFHZBnXIwOiwUdBO82Z936myLvpiDg5vAc/MeSx3XbUQJOXKDSMFZIFlkPuOipUA7HQZ1MzmmM0vVq3+r2jvaYvKPnzsXIrFNywPGoUuV9aMI+zbkPJfyCki2vpJxCDr0cycP84SbPMYIuRSGO1y/akU2OqVMak0Z1en7Hug1xVeraueYEtTC9qoCFVV1i9z2K3ntzUw7i+BQfDiP5Ixp3ahgw3zw/xrn83GPjEy9TfFzi5nkYxPGmMg3iuClNhzju8GdAHH90o+mUwaq8vvhjFo8zoV64h0Nsnr5kkdOSUk6LIEdaGkfbnMDu94YbIvyCStUWutzQBJAXVy64jMnTStMMuBGN7Pk3bIB0Izy6822xWK4J38I53rVcCb8AuiQt14EgD/OH5dok6FKEOBPwWxRNgpwmQY6EtSsg1h0BsXYGxNoSEGtNQKyQeQxZjyHzeHNArJB53BEQ6/aAWNsDYm0NiLU3IFZnQKyQNhGyPYZsQyFtImR5bQuItScgVsiyvyUgVsiy3x0QK2R5hfSFmwNihSyvavWFIcsrpM85EMZMIW0iZL8dquzNdWMgLBM6A2KFLPtbA2KFtPuQeQzpJ0KOAUKW1z0BsfZFvzTHxOchSiBHeuYfaJHD0w90wJLmD2x5LAn8AU/lIxWPA74lMarlBNwcEN4/Du7VC7wcm7+O3hTdnyTwpXxD5egc4CklTyv11RsqlHdp93BRiMNPR9veTOFyikLcroBYOwJi3R4Qa3tArK0BsfYGxOoMiBXSJnYGxFoTECukTYQsr20BsUKW1y0BsUKW1x0BsULa6paAWAdCPe4OiBWyvEL2Q5sDYoUsr2rth0KWV0h/H9K+QvqckO0xpE2EHDOFKntz3RgIy4TOgFghy/7WgFgh7T5kHkP6iWodf90TEGtf9Cu9mVoCOb5vR/P0kx2wJglYtjyWBP6A0ySk4lHAtyRGtZyAmwPC+0fBvUrTJLgr54poLiflDjvxBZJSdD0YZJprvtuMxynlNlPH0zdZ5AxKKWeQo5xiSjlFQU6TkC4X80ty8J5tZr8IckoB5ZRY3PLol8qNT4WhHUwCOXHNWrKDSTFY/VS3ztcxHtzWTu01L2Ca0MbiOf/GqA2ZXZzvjd44ojKdwNIvZ/psGmjXlafluuKhJK9jL4pujjClcqZ6l+xgEsSVBLkSJrYt37obJOhgw+L11Qz8VBcNMfyEh3W3ndUdvpBK6ePsZ1KMDtx++CsJcfZzewL72TPQrivaTzPIJv6tzH7uBPvhZWyzn2aIK7E4KiPJZ+JOXV+f2SLoJ8mxHfiFduR74FezICfr3eotEMdfSh4KcXy3+jCI4y86Yx80g8XhS7L8pXt8SfZwFtcMcUewON6WMNTDf162ps28j7UZ5FMgU3p5nuK4v8BDNPhLu/iy51DQFe+hzfD0Q2Ow+Otn3IcsZ/Gc/01R5k07fs/AnvnihwFSmaR8eeaYHOApJS+D4cszw5LJs748w/OHy2AlQRfJTx3Mrnkcl1MS5Ejjnc6AWHsCYt0cEGtXQKw7A2JtDYi1u0r12hIQa01ArHsCYq0PiLUvIFbI8toZECtke9wbECuk3Yf0hSHr8ZaAWCHrMaT/ClletwfE2hwQK2R5hWxDnQGxQpbX9oBYNb/qhxXSr4Yqe3PdGAjLhM6AWCHL/taAWCHtPmQeQ/qJbQGxqnW8en1ALBqv0twDf0bHuQfpeXi0RQ5PPzomnbnmcw629YGUb7/X5wCP9OH3OH5fvf0+WdClKMTxMuRxXI5tyZNjuRzoIc192GyjJPAHXPIkFY8GvktjVKsTcHNAeP9ouBe35EnY1Iz41BMuO/FitBWttOw0zCKnOaWcZkc5g1LKGeQopyWlnBZHOQellHOQIIeasvTdFDNtemyTLJMvqfDpWlySI/51bCr2hKaeeeTLEgMh//xFEDx7kX8/Bl0vX3r3cIXOB48QfkGV22QS1zsE5GH+uFtyP0MQWwBuSEB+zquEuHq4h4vwAyFdkjMEW1icVBJ4hiDPU0tMOl4WSrhXJ/APAawhQjrSvd6SnmPwdGgxObjPW9hwQXYe+BdFlSGdISjJ4uWBm29I97hz4VAH4l/CdMCz6YawNFK+sDW3wH9uW+0x8q9iXubcJlm+EuRj/rhXizufbwjoQPwXsjLA8waHCulVzD3sGYZC3FALbwHyIn0/j9sink04rELesf6J/3JL/Q8SdLB9+RN1QJ5CjA5XCjqkO5sQvRzWEtbEIAEnLlBpGIsl68XSwdaBcui/ZAFpzyZsipFZp+TQpGTdTGhUqfpK576Z8AtKtryScgo59J4kD/OHj0VDBF2KQlxcK60kJ+XZhHGdtuQsML2CtDnhngnGnPE7yLVHjXg5B8KjBmJJjxAmbIh+0bHfxhw7ftJgGNNDwrwEdJBmAaQdTcRfEvhHC3mksuSzFCUH2bwssSOc4KmrNLsygfGMBl1LLG6yp66XZqzrMEHXlLt2vHeW4S4wvrMMd4HxnWUjII7vLMNdYHxn2SSI4zvLShDHd5bhI/4RLG4IxB3J4vjZpRiwL+Dlbtrlu8d34yIfv47zKbzNLgEdhwp541MUjQybyykpp9BlB9JDMWHz4YaHjS3nOlGQhi50rwC6eMrrGrrUgzzMHw5d8oIuRYgzYSPjw7h64V6dBWtNQKzbA2JtDoi1OyDW3oBYnQGxQpbX9oBYIe1rZ0CsXQGxQtrE1kBYlD6UXnsCYoW0iZsDYoW0iR0BsUL61ZBtO5StmlCtfjWkTewMiBWyDYW0iZDltS0gVsjy2hIQq7NK9ar1231XXiHHqyF9dMgxwB0BsUL6r2q1ic6AWCHbY8g8hnyGCZnHuwNi1fzqS8N/hazHmwJihSyvzoBYIW21WseFtwTECtkeQ/a1IeuxWser66pUr5B+9daAWJ0BsarVR4fUK2TZV6ufCDkmPxCea0P223dWqV4hn2tD1mPI9hjyGSbkvG9IrJA2gW0oF/3nPG3segWL5/x0alDKteIVuBZLGBy7X0LsHOAp1VNPBfhNgjzSqxATV1L2sPeDn3v94t98+Rc5SE+64D3cM9Ig8Etr2lRW/Vl6j7Ki3Zg9yodkU1yexfWDOF4upIP5faDUU7+GhPq5lB/HLwr8FzM+n7oYonraArd32qvDTw7Ck6gms7gS6HCIoAPnnwD8tG+nIYaf8PLAvz1qr3yj9mDgMdeDYuRx/fg9296+KTFY0gllJpwdo/sepjvuhZsq6CdtIyX+wwR+vt+J9JHK5jAly+b54fV5HeSH+O8R8iO1P7KpRoZDcR5tZ5CR82CpWw6WG28/lcrIBCzTaQI/LysqkyLw8/KlOP561FSIK7G4yaDDOEEHblu4v4q3K35y3h6HExSrqV2/2bFdj4mRx/WztWue3rddXxuj+zs92/UYQb9qatcPO7Zrsqlau67cricJOri2a0ornbY6g8URLt/HPTG6zgP/v1tsdqYq15WXOZbv4QI/3++Kp1byfbKHQxxPNxXi+D7ZaaDDEaq8HLheuD+d+D/HyuHR0v5rydZJr5S23irZ+hGMAW39SBZXL/BjXRwl8PN9wlQmReDHeuH/ORYvU9zzTmXUIPBzvDzw/7fg+0k/7vuOAN2neep+kKC7dJomb1PPw/sw3G9MApnTLDIl/0x7yRti+AkvD/zfFcoLfSNvB7yc+gEm8f/A4g9ILs/XBHYPbVAq++lCvqQynQFxXHd+yilhI2bK9nmG1D55/rF92vJqApaN5Fu57VL9F1W5PzwM4njbmA5ypD7S1f65DT1dkHHj+pux0TXa128s9iW1G+mjDTZ75HaC/Q23r+kQx9NNhjhepjhWlPpdrhc+AxL/8479TSB7bpHsmdss2rPNPk3w7fupTIqqvD9AfyjZLC9T7G+ojBqU7GcILw/8L1SwkvsbPm6bAbpP8dQ9SXv7PPQ3hzA+7G+mWGRiWu4v4vobwsPngQFCeeVABm8HvJywvyH+QQzT5ZlpArvn+8xE+khliqdjc93JFqT2SXwp2+fQvn72wf6G+0N8LuJtYyrIkeYJXO2f29AHoL/B5yaOxe3CZo+83VA9oT2WLPZoa2cmYJlL9svtivSR7BGfebjuNnsM9Cx+kWSPPP9oj7a8mpB0fqOoym3VZo/YP4d63n5LZI8078/fxfYoV+/3VXMQx8vtTIiTxvc5QU49/Of5MfX+c5jrUQIWySywOPz6AD+b4DCI4/Mn0yCOz7lPhzj+Tv8MiOPHM8yEODzmwwSqy4Qn+DsfaUH4BdDFU17Xe6GV3r2ltuZ33FTc6QQ5QOX3uIViXD3cQ74L4X+S46b4EUBSSeBxUzxPw2PS8bJQwr06gX8YYMWd+lAfI0+qUen4IMKQ0vFejadxaQHDAb+knILzWZeEH6oFVKp3slXK+whBl6IQh3YtnU85QpAjYbkcEBPXalMcEJOD/8Ni1KgT0isLFk9jyxJvOi6ncknnHuWB/1LhwcOW3oQm4R6afUIzdHb8hF9Q5SaRxOylz/Lw/KHZDxN0KSq7i8I6tMkJaKomXBijhtSjqApY2JIlU+V7I5bEyG4Q+CVTJf5rLHMKdUJ6g/mnxp6yZzM+kn2Cite1FXRFnhNAV+Jfy3T9HujKzXl2dN0E6SneBGpSZ4DuJeUUnJsU4RdAl6RN6gyQh/lLNpY6gV1jqXBUfs9mxZVazkL47zOWopqbC/dLyinMI6uYJ0RS3HyGfQLELWBxvDYxSE8tpLOx4Cc8nlp4fcyHuDksbgGTjfV6hiCH9K8T+OcA1hlCOir7SvLqhXQnAEYO7vOZkNmC7Dzw3868w5Mj4sthtlKx5UD/Rwl6YnlTvAkpbfJlrt6E8AuqvO6TeJO5IA/zl8ybcEvhUi4GVOLhvDxczDRTMXxS7Y0W0mGgEsuDzg9GVmSs797oerAqt94G0IfrYPPLRSE98Uly+qeU01+QQ5Y8i6Vrg7gTVXleKe4klm45xJ3M4i6GuFOEfFHcqRbM0yyYpwtxpu4mF3vycW+Ui/k1oV64h2V6hqAr1R33ADjnKLW2uRY5PD3xNQnp0uZH0lkaO1FeX/jC5eDuNLw35V6b2zHtHcsD/4dHdKd7BNrbPJaedJTKGduibzk3CHJ6u5yxTc0PKIdjLWf8hhYCFpYz1ROVMx/tLIR0i1gc5+MjgoXs/iJBtoRPGJVs8NOD5bzF2SDJygP/65gNfjahDc6HOD6CxP6Q9ODlwPlxryjp2RDDH5evL1me7c4Q0ku6N4Eu8y26m4C2yNPjyLU3bJ7LrGQ/3wD7WcDiJPuhsyrzwL+D2c+3wH74CK038m9r13wkhzPLUruT/Aem4210sIMOCwWdi0J64msS0qW1DUnnSrbxDNjGIhYn2cbE6DoP/KuZbfwUbIP7T9JRKmccA/qWc39BTm+XM47vzgwoh2Nh/7YYsLCcqZ6onM9icYshHZ+T4ny8f1vM7i8RZEv4rv3bHwfLeYuzQZKVB/5zmQ3+xfJMY7PBMyGOlyn3vVg/tjrIgd4NMfxnQr6IX0VjfGl/j9Rez2SY6MuJv55h4n6KLrnK/rRss8WzhHxJZbpYVZbNy3lJjOwGJec/zlYGWMqU0veLyQ+WKfEPspSpVEa2MpXa2GIhX4OFPGMZzRGweDm7lCnP/xzIP/EPE8pUGrfMAd352AHHkNI4jPOPB36pjUljE2xjoy2622Yl+dzCCojjcwvzIO4kFofPYiezuAUQx+cWWiHuVBaH/d9pLG4RxJ3O4rjt09xCHvI6Jbqfcm2h7MNZHEsq31zMr1Ju/eksxpMDOb0xbyLJmRNQDsfCPo0/s+GKt++8AU9vezY8MaWcEwU5iEU+2QQ+JqL2lAf+E1m7/mipJ+Y8Qb8T2b0llrxie+ZYVGfUPrjv6421N8IvgC6e8nI2n8vzh8vZCwRdikJcXJ1yOdJytq9eAb8ySiqOAb4lMarlBNwcEN4fA/fqBV6OnVXT60s5A1LKGSDI6e2pzgEgp5Wl44875xe703ATlh53TDg7+sUp5dPZ485FEab0uBPX7Lit8aUOtG2SF7eN4aQY/S5jrhe/W3cS5JnnU9J5HpOBck1oi9HhShiqJHTF4lAFp0L5kG4WxPGhB68bHqdUd33we2hzrYIcxIrrJqlccUi30rOb5Pa5xJLXeRDHuyYsB0mO5N6lcrDJGZhSzkBBjq3bT+pLJJ3xUcIE7ks6wJfMZ3HSkGZp9JsH/pnMl9xo8SVcR/wv+eW4fjLOl8yN0W+rxZdIQ8OlFp35IyDKNaEtRofbwJfgUlBJuQXJl+DSBPd/eFSOb1/I02fVFw4COb297CdN97eyax5HcvCezb/gY3hce9xXlGVK7RH7Nc7//PDudK+A9hhiqS6uTSjlttw1T5AT54NMsPVBxP86Sx9Uaehve1SL0y+v5DZ1lerOcxyWEu4RP+//cPpiAfDOt/Ci3ty2J0XX5Iv4c4uHLzpTWragQHFnxeiEoR7+c71MnX6i1I2LfCiT5/UsiOPT9Ytj5NUJvHSNbe1rkd0Ze3242BOPt1+sfzzmjU/fY3oT2kA+8X+A2f2PSrJ8tBcTroh+pSnglhjdTJCm1bF98/S4pMWnCNH2FsTk8SvQd+IyU0k5hVayAax3jr0kIbZLf8TxmwR5pFdBiMs76LL2T23HtDXc/OUcpCdd8B5OkSwV+FsEfior/szlUVanSq+4kmyK4+1gCcT1Y3Gkg3SM49KE+rmUH8cvCvxXMz6fuigKchYGxJqfEIuOl5SWkaRxTRvEtbI4vgXxNzA+4b57COjqOwbj6Tmf5JulpVr09b8EP8R9pod9HYt9I2Fw7MUJsV39EOE3qfh6LQhxLn7omr+3rn/svG8enFPl/rZeuOeyfDlE4E/Zzo+U/BD6Gu6HFkMc90Okg+SHEvYpR7qUH8cvCvzoh1zroijIWRgQa35CLPJD0hYByQ+tgLhWIT/cD+UB4zk2vvsdbJfm46k2kMP9DW7HXmiJWyRgGtkDonfkU46BFktjIAU68Pb3MojjbY2XJQZpPE86mzby41I3LvKhPtL2hDoVbwf0n9/LC3qYa3yeJP76qLxfaOPNPXH5M50JfCzfCrpLaxYGs19zPF+rhY/bHNo27ztnQRxvuydCXCWbw2ftQWCLXPe0c1mEZeYw6cXraBluQXvH+de0bWhfcX778g3tHdzCsNXzUqT/VPpomQr4TMAVuNPhP44mcIPgIgGnkkxppoUfjIG17zLTwtPPrwI5Q1PKGSrI6c1ZQi5T2lTCZ+/GNnenwdYurcxcGv3ipoMNbPZufIRJZclbGpZzK4vD8wF4W5BWYTD/PH1rTU5wOcNTyhkuyJGetNK2A0nnSu3g2EDt4BDWDk6wtAOuI0+vlNvGHJ4eV47nV8C6FLBcZ9BbHeTY/GCroxyX/Njk9GV+CEt66ud1cIlFrwWAtbAC1mWAJb0AYvPFOQFTkmPrb060yFmQUs4CRzlZ5WdeSjnzHOUMSylnmCBHetpM628lnSv52yvA30ov+PG0uIpP/EOZv70S/K309PBSLedFAeVwrOUgJ64+V0N9Si8U2OqT+P82rDvdOof6lMpmoSU/fCYgrq6lF65yApZtNhfLgfNLfUovzq4OcbEDjl8AXTzldW2qtb00ZQLfvEr2HD01t7ZvPOroWXP1I/NN6zviZlqbuVCmP/Ir+I/pjG554DlRkGEC2s8i4MN6p/uI76JTJd5K8ZKvOysmn0q5+Tqe/sQYrLhdEFQ/OFt5W6Sw6y4I6UUe23gA2x3y1Qt5GKDk9rpKyfrxPC+x5Jn491jyvKBCnnH8Lo0d0TchX72Qh0Yl79jBnVo8Do8s9LUnnj6rvnMEyInr0x6APk3a2cR3vtCHS3AF7uesT3s19GnSWLC38x+3o5Hni3+EJe7ZJi9gmtDG4jn/m2EGFg+FKCm3IM3A4stfswT9Tf7eCnUq5d1Wp8T/fVan73CoU1v7kHbi2nzBXAu/9KzYKvDbxo3pVopzP3KxUY5fAF087aFrvCG9SMvzl3S8QbhPsQxx/SuNNzCdbbyBvHFtD8cAC+F+pfGGpFMcb5rxxqKYfCrl1j/w9MRH9tkK+peUUyiRLnxtBXeIIT5vp3WqvC1K/NIYg+OjH6b0eSWXzXIWz/k/zsYSPyvtv5bqYmSMfkq51QVPn1VfNRLktAaUw7GobKU5UX6YPY8jOXE+WfqAhW338qKUchYJclxs3YS10W+lMdHjnv0nrlQT/x2s//xv6D+lt+9sc+guc+K8rl3WKmzt2rWdSuOBEmD5vpnD08eN4/KC7ia0sXjO/xsYlyV8Y+wcaRcJtb+UY75zXNo4x5d2EJBeBSHOZYfYLwqn/NevPvT6r+UgPemC91zmjkoCf8qdekukHWL8AAQTuI0shDi+Q4x0kHaIJRyvLXEpP45fFPjbGZ9PXUhYSxJi0a4u6Rm7r3xS3NwL+SccO/zBMg8h+SbpTTfbW3Po0zCP6HNMKCk5/AsC4VH59xdkxe2K/SvL9y9LPXWNWyPMx+TH9oZMTsWXDcqQ3pA5WvXUbYGDbtJ8EMdojdHTYEhriGi3vjua5wr6SHLGpZQzTpBj65Pwl+TgPdt65DiQEzduahrSnYb7k7j1kbiDHzezcVMxwpTeQsY1V+kNeGl/AZZ9g5LnNdGfEP+wSCfprVVpftjFzvKCXBPaYnQYFenQm/NMmKe8KvetJpyj5DzFzRdjGSwU+Jdb+KX1Jm5X6LNth7FR3t47tFuHEthxpfyfH4P5tpZuzEmemBfEYB47pBvzUEvb4B/6w/KRygzbP0+PO1alw5tS7jh1PhSH8AuqPM9J5tOk+QGpXKQDvnB9lse57NOwfczwJEe9Ah6KQyqOBL4lMarlBNwcEN4fCfekKTmObcx8dNQdkJnzs9JmAP4pDKNeuIdmztMTnyQnn1JOXpBjw5ohYBH/qQJ/XuAPaBqk4ljgW25RDXErmcZYuBdnGhTqQaa5xnMrsGpQx8ECxixLnuqFe7bj6E61yJmZUs5MQQ6OEi6FUQKX7+Etd+Nxg4TBsVsTYrt6fsKX3hcivaTPFLnMekz79C1vPXnSNWfnID3pgvewSUpPkTMF/pSzTzulWQ9+do0J0syYNOtBOkizHgmPmtvpUn4cX5qlxlkP17qQsJYkxKJZD368pq0tZ+UzekOODUuaCSF+KpsGJa8UoU8i/hXs6Qm/LiiVtxLu1alyf3Re9DtYwKqL0V2SrVR5ufH0xNeLPrGfr08sqPI8JxkNS+1DKhc8J4unxR3AJuCZGr4rAtWOxW0Tj+2leOmX5OA9lMPbKtZBa0A53F5d7DypHI61HOTgzKH06ypH2rGTsg9eIM22UZBWZNAu+Ni6FeL4agiWP9+VOA/i+K7ZY9k1hnr4z8vB+OPflLpxkY+CtCMP+yXft0yknUyVzuS6b4gsM+5Mrrjzqe5kszQPDInPI65ESjN30nvnOCZ/bQYzdy8lG09ix5MndOMiHwWpjnHsJa1ESDv1KR+Sv8ajk7mPXQBxvP/GHf7cl61gfOhPpVUEnBE9VdBdGjfNcpBjGzfNEuSkHBt5fwAVZy+lcnG1MdLZ2NhlDjaGfSfqhmXkMu4mHeJWLdDPEf8nLKsWxMNn4K9jmGgHXIYCDBPaQAfi/w/wfQmfM0Xfh30iL0PiSynXeZaa8Augi6e8rnF5pVVqPuXn/qFT3gIlj4v8nFcJcfVw7yTgw5NNknw2OeHprAux1+LBt9fitYlB8hp87d7ns8m8PvDjHtyLdJ2MosrrdZ4gh/SvE/jxfRLpVFIq+0rypFkB9PpSOvP/eCFNyCceLMcQWL2wJ2yoq8ch/IJK1U66PI60P0jalyC1nbh3E7lPyEEclyPtZ5ewTgmEZcLFNawaVg2rhtUHWC5PhryfwncjuR88DfTzXajm6W0L4uNSyhknyGkS0iXtk4sWnaWneyw33315PL3rqfJDWmSZ0gyWCfREhjNKW9kM1rCWnjpLT/MmSHuGeD0QBqZtZDpQnMf4YrAZAz9Y6paD5cpXKF3GIdhObLMy3BZc62g81BF+iQXT4p5G4m9ndTQxupbqwGXfkLSHEtthg8DP8fLAPyXSia/KuXzlhtLHzbqOjZE3ncl7Bp6JesHuhkp2x/0M2p000yX5M5u/4G0P94rxesOVWGmvnm0fK6VvUHIdEF4e+I8X6hztLu6dJ6xX4j/RsV6pLHujXnlZYb1Kq9zS+4A2O5BW5KV+4GTAOlnAkvaturZlwsO2NddSr5L/4npivRL/Asd65e+vEg7Fpa1XXlZYr9L4Q9ovabMD3j9QmUgz+qdDXCuLw5lSyX9zO3Cpc14/cf77fKHOceyIfsGlf+Ezi3TeZjSzeH7Hug3t0dSigmCbCjT/58Wo0SKkV5A2B/fwoxiS+7RNqJPsuI0s6D6J/1KhyG3u1wSXLdS8untjcprwC6rcZJNMFVVyazhVZGtmPK4KTNWExTFq5IT0CrBywj0TpG3NtlGg5N0kE8NeK25EQHi4N+taS89RaY3R5ZQOaUQk5R9PdOTpWmPk8B6NmxH2aMR/vWOPxtctCYfi0vZovIywR5NmFmxv3kpvxUizpUXg52Uv9Wj4NpDr6BRHYzj6wCcrm71I+bWVj2RffMS9COJ4OttTMN9fYULIp2CeH7QFW92aEHeaC+fn9Y1PI3zfBT5R87aE7wVUOgHWZgt8tmMIPBFL5+XbZNpmZqQ3BnEP0L3MF8Sdzub6xE/89wv+xZYH22jVNgsi2TrvP3BPUFYrqLgnSDp1Rtr3g3uCeP+La/xx30/CgH00LwfXfW9oD4TrY/Pclu6DvWZ82DcVZEpDLH4PbZ6nJz5JTj6lnLwgx4Y1VcAifmmM08uvNZGKk4BvuUU1xM0B4f1JcK9e4OVBqqZZMXor5VZN0qQBYvGtP5cyHjzMh3cHhwGW7yIAT49DUtLrS5EbbRTke7iv+23bsgk74fb5+3OAp5T85BW3pZrrJW3ld3mF6RPvOnfQNx+b1fUKjutWPeJvFfgPE/hTbi29VxpW8e7ABO5WToM411eYWhmfj34u5cfxpS3t+AqT77ZJHndpQix6hYlPXOGCXm/7GHzk+qowzMpaF+r2n7AM+SpNJuICLNfdtmiK+fL1l7Mc5UxPKWe6IKe3F2eng5y4Bbmn4LHxVBYnDceujX5x8eM17MCHZ+DxQ5oqySm5/+F9pAnYXnFxBnnmxuj3M2afuF0X88zzKel8GpOhAMOENtCB+H8NfW+r6pn3knIL0nZd7vPRh2G/nFCu84wo4Wf9Gp3fdl1cJuSlwlH5vZzqmXseV2niEz8enmS7bsJRgvcHzPFhkz808trEID0Y8lGFz3ZdXh/4AV6+nrCYycZ6bRXkkP51Av9cwGoV0lHZV5InjXLwwAApnfl/nJAm5IuQtk39SbGkrb8pJ0mcP0OBxzQmbCddHkeaULJ9gkM6MlLaQoNPi0mPIDTXiwJizQuEZcLFNawaVg2r6rBcXqbk/cEl0a/0VIZryb5PlDy9bUK1mFJOUZDTJKRL2vcVLTq7fNrB94AE6ZMclY6RPGmoLDPuGEl8wiP+vewJ79ShPXWWnvBMkJ6meT0QBqZtZDpQnEc/PkhaEOTliguC0iIE56etwrYtQJItuNbRQqgj23ZBrg/uodnA6uis6FraEIBHQFbaC3Id8FMeXbfFEv85kU6VtsWeGiMvblZiaYy8C5i8DLbFDpHsjvsZl212kj+z+Qtpj490oApus+NljONS3y2z0jY725ZZ4r9SsAfsi9A24vSTyi3wNrvWGDWahfQK0ubgXnMMFuGYe3ySw2WbnfR2ArqIlUKR26rMhNo2uxfdNrszY9TICekVYOWEeyZI2+ykI2FcilgqqqQbtG8UTNrmYaURlm0kIK05uHyoXjomE+VIG8dNwB6N+Lc59miBRlJij8bLCHs015kT4q+0FQebmrQlzfZk49oMcZuJZKfSSK3S9hWXF1uk41Wkpwc8CJ+ns42q+ccaTQg5qk7zspnvFkTcVslnwPAITN4d4Utd0ijK1Rb40xM+WVV6GSZu7Zn7AI6BW+GI/w2CDyDMVmXPm4u/a2U8eISTdPSOdAySbdsn8aW0xybJHnn+XZ7yOL9vW7W9hGZ7WbIV5FSyG9sWOL52+RSsu3I5E0CmZCdSWRSF9MQnycmnlCMdgWTDmiBg2eq7l7fAkYpjgG+5RTXEzQHh/TFwr17g5UGqplNi9FbKrZokc5bkzEopZ5ajnENSyjlEkFO2xSVyuymX0Xe4LJgl/I7XjhzgKSU/TRG+tJuY9CoIcS5b535bvPALq59753tykJ50wXsuu+0PEfiprPjitEdZdUpdE19oNoG7ozMhjncvpIO0de6shPq5lB/HLwr8uHXOtS4krCUJsWjrnPSNrKx8Bm6d+w4bQuHWud7WJevNHHhiIz83zvfERr6Zw+fERl6mXDcsI2kLGNod6eB6YiPx/y+rc9wCRmlcT2zk34hDuSa0xejwK+hDEm6MELeA4eNh3DlxqKtU5raTrIkvZR687Ri3TnK/j5tkuD3gNvGlLO4kiDubxeEZgfy7XLiwcy6La4W481gctyMMUnvjb9W8b2Q3LvIpkMnrHjdPcb9DZShNWU1h1zyOdMV7aDM8vW177dyUcuYKcqSpOz7e6sXXF5xntPErKwm/JtM1o207W+MFxaJfXBDlaaWFo7gtu1zOFEGOr1698IGl6cAX99GNnICbA8L70+Fe3GMY/ZdMvzVGb6XcTJ+nz7qJVdpZPmKYLDPuaCP87Crxn8c+XzmKXdte+D9D9YzjcuaA/tI+kJRvRzm7AMIvgC5JXYDrerLfTmk8ZJSXCkfl92wtAdeucFnxREjns1Oa5EpzatJBMba1GkzHy0IJ9+oEfluHdBLoXm9JzzF4OrSYHNznrW22IBt3TMyIWpUZcPwUBsmSLF4elXYFIA/qQPxHMh2+F7Oel4/JF7Zm7OC5bbXHyJ/HvMyxMV5MCfIxf7yHaYjRN+7okFmsDGyfdcJ3afEeLwOeNu4/5z0B8sL/S7Y4G/hPr5B3rH/iP91S/ycJOpBeJiypoAPynBCjwxxBB8Frzlm3/qaYFXocS6CXw1rCmjhJwIkLVBrGYsl6sXSwdaAc+i9ZgMl5BNs9NFvd3hG3OwF7hFkxMuuUHJqUrJsJfbXh5KRk8qwbTnj+km44iWulleSk3HAS12lLzgLTK0ibE+6ZYMx5X7RK+FIbPiNW3NbGDdEvdlKXMQf1TEwnWReDeQnoID2hSbNBxC8toNtOOo77pmycbF6WcV+Zd9W10gYT/F4P12+hp66XZqzrKYKuKWcvvGflcAaNz8rhDBqvS5yx47NyrRDHZ+VwNtt1Vg4fW/msHL4acD6LO51dY5Bm7KjcTbt89/huXOTj13E+xXUTAPch+Ngt2ZTtlNRFDEvahHNMdJ0H/q0WfyStFNnaQaXztvA8Oz79cxbE8XT8lGrCVsCXclOKeBYZzw9uSuGrMfUCP5bNEoGftzncJMXrdxHEcd+Cs8TS+YFG96YhPflCfPFFOpX/YtBnQUA5HKsN5PC+bXn0a/L9iph2xdsJT7s2+sWVx/exh8tXwhSWtNkPX8N5DWtn902IT4+bs6SNS7bv8tnyyfmPicnnm5iej5b2X/fi5sSi73mQko+xnQdpa6e8TIqqvE3imEcaP3GbrLTiiXVAeLja+G5hEkF6lQy/MNTqqXuSzZOPRy9ASGdGpn21Wfp6EmLVxei/Fvj58QKSbOQnm+ATVJJ/zgP/R1hdPTBBxlRK7pPnxejcEMN/FuhA/J8Q7MXmB7j9nwmYxP8phokHA1XCPCoG8zOWsYbUTm1ne1bqT3E8wcsRJ5G57tgvLmbysU7vA/kch9saylUWfaVXFW36Yn9Dcd9h/dXj0XUj4Hn66npbXU0T9HWtq3mW/CEWpcurcnu0tRFeHk8MkzH7eWL+P6FPl8YqKxj+dxzG+dxXo1+WnnP5OEcaG+BrnYTxQ6E9Sn09YaXr63M/8n29t1LZhHoRwYSrIE56ZTt0X/rW5p64lc7DPRv0qDTGmxxdox/+tcUPS2VoK/NK523j7iZeH2dCnGSzWdtjludPoz1K/Ydkjy7nT7vaIz9/+gEY20lnZUs+GvWpNObGXXmkX0MMP/r8rj5h+P5fadyzVNDB9pxwtsC/VNB5MOqgytslpePtkpcJviRI//uz/Nj8caA5D/ElQV5uaP+2MjIBy/QcgZ+XFZVJEfh5+Ur2vxTipHkkW5t1bRuU1pTDavDVoefn0FcT/0jBJmx5s/nq3pqfs/nq3rTVap2f47bqOj93hcNYwPaCaqU1CPRf0tn4Uj+ML+T6fneAp19gkTMspZxhgpzenIPkMqWxDebHdy6Ep18I+VkYMD+Szrgb2YTl0a+x1ROHd6eJ8208LfZ3xH/+8O50p0TX0i542wvUNtttVT31rDSHdCnLv1K9MeZU/fp6zInjSt5f4nq59LYBtz3edxKPAh17o7xCvrwulS9vE1QG+GYVt0Pbl4ttZek6DuFvuRzbXFl/28ENlewDP3RQRWt0fT4GQFvwXaNDf8nlSP4S65j7V46Ba1bEv9wydpTswGY3lZ7p8FtS3DbwbRVpnr8XfUhV282ZECfNO7raDfoQ7s95H039t22OLKd69pPcnjl/fQzOAsDJwf0B7D5PdzjkGcdIiH0E8FM+G2L4CQ/HIjdb5hIWVdDhSNDhzAo6LAIdiH+boIOt/E2wjQlTvpWezwEe6cPvcfyCku2jpJxCDsuP5El2YAK2Zak9SWslNh8otXMJ68SAWK3Rdcr6OkvybRSkfV74XMH92CUQx+d52hgGhnr4z/Nj7PrVE7pxkQ915fXF13PRxhYJaRcJ2H3VHhYlk2dtD9IzgG97wDX2A709xO17NKEa2gOvL9JbKiMTSsotuLSXhCdhTHBtL4Qfqr1Itie1l5QnkZTMo9gA1dNXmXAvw5PWMXh9hao/aY6rr+ov4ckC1vqTnuFD1h8fX/jUnzT3h2fE+s798fRZzf01g5y4ub/PwNyf9Gxqm/sj/q+zub/PWeb+XOame3G+rt53f2Lo71XjuoM0VyPNtWPfHmr+aWzM/BOVqwlrhbTYtnOqfP6J60H8uCcOeXD/WtfeHPYs9b2YdTNp/xrXH232u5b5lN7ev8bLGfeDxY3pCVup8jED5Y/ifPoFqU3w/GCbkNbiOb/vWjzaPV9TxgOUsX2pGCybrgtS6Ir1yOsK9w0QL7dLrj/aJfH/0nHfAJV5b9S/bT5NKlPbfFqlMsVnGtueAtt8WqX3W2zzadyHfAb6L+6/W0Gm1D9IfkJaU8B5I7LLv7L6x726fH+PtI68NAbzHxZfJ+WhVciDax9ne6/hTEs63i4bBVkluviXPRAe2Ud/QRb2M11tdUR3ml+WZF1yqE+F0IvPZKUc4Cn1knomGx/imUwa5/ExcBHag9TGeNrV0S+2seEjutO1xGAqJbdb23uFXJ99xZ64vbWeLLVd2xgG1xmlPfikA9+fLa09TY6ucQx4MGubtneZwqxP5n4v9Yt8XIj9om0MaALWhW0cxcukqMr7TJz7luyL13XcqaFxezTxPQTin8rqwPapGOy353vqHrcvgcdh28B2XOmjAHHvtHO75Bg0LsF2fxQrk2di3tfhOrSye7573vF9QmkdSprDoH2EUnvh76xT/igu7bpslnth8CB423uB/B0AnCeWjkMzuneA75XeG+B1G/f+oPSuqrkeG13j+4NzLPYVel8hvrvjujeL2n4vzt209PXcDdWty94hac6rCXB4eRvdzwf7kvpJnnZidI395AUWe1liyaMJvn0U6SM9Dy+FOJ4ObUl6HiQdzhbKgeuFZ7MQ/+WO44VAz9Gtkn3yZ1+0T9t+ehOwLs4V+Pkee9xHz8/dWAxY0vwWL9O4d/4alPwMH/dOx0rLeIH3T2eD7md66t4q6C61N96m/jh4/7X0nI9j1jMtMjEt73saYvjjnj+vF8oL/Zk0n2SuxwMm8XdY/IHUp85h93z3jeE6Ci8X3DcmPXf03nhendHX+8ao/l32G/ruG3O1f25Dz4D98/78DJBpG8diWi4nzv7j9m3tsdi/7bncXI8GTOK/02L/Ulna7L/SGME2RrKtMdrWvgKNz+f19fgc7d82Puf+1+X9SFf75zb0jcE9caX3b3la+uIPvn/7Rk/7SvP+Lenj8v4tT4fzM9LYFesxrp/B5xTif4fjeCvQPuChfe3Pcd1CGt/a/KdtnVTyn1J/if7zA47zM7bzKVx0bxV0l9obb1Ofhv6GP/tif1Ppg3j4Dj+167j+Bo81J/5PWPob/myG80FSf0P8n/J8Xrf1N5We13E+SDpPQnqWtz2vBzoLalhvv+tTaa6M6t/lQ5XS+2loB1yOq/1zG3pPZP/pynXz/TmmC2HXC5x5+CWeb0Q2WWDy6TfvoMf3v/D8tx898+g1+PUbE6iOzJqNqf+vgP3nGS+VJT9+GPdC1INuUroc6ID8dQI/4TYJcXmWh6RlNOaT7V8//clfPlmpjJLi7z06P+SeS5Ys7C38r/f/1XOP/+fKe3sL/yeN58yr+/Bd43sL/zXPLT1ux0GTfudjo2QLfO8upaN1zEHsvocvdD7umvALoIunvK512kEgD/OX7FMUA9k1lgpH5ffiWilppmL40EOY4PMpCqq5ItwvKafQTFbRLERSHLeygRDXwuJ4bWKoF/QnnY2VPgE7gZSARTJ5fQyBuMEsroXJxnodJMgh2XUC/2DAGiSko7KvJK9eSDcQMHJwn4/S6gXZeeBX0Xe8TNk+OUL1yOdA1fM/t7920FHqVVTMPcwHvumBck1oVKk8wRBXz0P4BSWXd0k5hS7P0wTyMH/JPA/2+SSlGVCJh/Py0Mw0UzF8Uo0uFdJhoHRNMZgmNKpyS/Uo5SbXWqV7BdAlaa3WgzzMH+77SWi1A21WhJhKyZ6Plwf3UA0xWJQ2D/wjIk9RVOWe6mKQIXkxfo/Kx3irISN7yqO4SSO7eQ6Krgcr2f75dZ0gu06QXRTSoyfi4/Q2iOvH4vB86AZLXH9LXCPkhccVWLrlEDdAwDT6rRvZkw/bufSrVHkbMgHLXKpj7tnwGUayMbTJOKxLAYunHwxYxQpYlwAWT09pyTbqhXRNghz0Z/xdF4/2PsjVnxF+AXRJ6s+aQR7mD/3ZkGTymnKQnsvjmPjeTosQR1j02ZiGGCxKmwf+E8GftTCd0J+1CPrye9yfHQttjpdt0jYnvUNF9YPP7iYsZ/qcNrJnXoosTvKP10W/eeB/gPnjVvDH3P5Ix8FKri9+LdldsyX/Uhvo7XJGP5wLKIfHLQeZks3xNkn1ROUs2TylG8risO2iPXN+jiHhE0YlGzxvpJw3yQa5rDzw38Rs8ELLmABtkNtnDuJykBfOJ9knr7PrgJ/0bhD4OV4e+C9nT2E4/07peVlxvfBdB+JfxjBx/l3yv9JTic0WJX8tlWkLYA0UsHh+cA1IKlPePgdC/on/aqFMsV/n6aUx3wqI43P1TRDXwOIGQVx/FjcY4viYD8effN4P/f0AFsdtZB2Mpyk/G6L7jUq2+5JyC9LX3tFH8jn9RojjttUAcbwMB0Acl9cP4ni9FCCO1zXVwwDl5otMwP6Q+Lda2pfkP6XxFPEPE/i5zyb+waq8TeF5jTwdtks8v5FfR69G9SgHrte10W8e+HeycrCtd5NeKdfTmqT1tOGMAdfT2KRWV744P9bFSIF/BOOhMikCv+TrJL/JyxR9nTSWHSbg41h2n8XXcV85HHTPeeourVFJ7Zq3qfMsY0Xsb4dYZGJaLqdB+Y0jXmvpb6XxMdcL+1vif4PFH0hlaetvJf/RIuRLKtOhEBf3XEXYiJmyfQ6S2ifPP7ZPW15NSOorpTNn8fmetw20f2kewdX+uQ3R81fSNbxXfn7mwt+d+5txSdbw+LwQpaP+P+HM9me5/hSkOQrCL4AunvK65iikcSPPX6A518/kID2XJ63EpFwTrcf5JKwbbqdxc7aUNg/8j8FchG2ui8/B4fyHND/H79X1EZbURnk5Up2YdvgxKAtplcnFtiUdeX3huHVAQDkca3n0K9m7oZJyCkfjmgFhcGxuNx62fbGrryD8gkrVlnI2G5PWH6S2R2mLqtzGNjK+SvbH5UhYe6sUa2tArB0BsW4PiBWyvDoDYu0MiLUtINaagFgh87irSvW6OSBWyPYYsh63BMTqDIi1JyBWyHoMaat3BsQKaV+7A2LdHRArpN1Xq88Jmcd7AmKtD4i1LyBWyPIKOTYJaV/VOi4MaffVOpbbHBBre0CsA2EsV612H3JsUuvT/LCqdSxXrb4w5FgupC8MWY8hy6tax1/XB8TaFxArZHndEhArZNsO2YZCllfIfihkG6rWsg/pv0LOy1Xr3FBI+wo59q3WMWY19h3muikQlgn7ot/BMdj82rb2KsnJCTpL66R8/R7XRBXDSfm2pPM3lQi/ALp4ysvZ6kdaW8U90zxtUYjDuvLdt82x8gGxcC+JZDfSup9veQ1kvNHbeXPbr9q0cvG6lQpCHv4vilHxIuC7JEa1egE3B4T3L4J79QIvx5aaZP8YvZVya5I8fZNFTm80ffzfL/pvey2rF5a/l7u6gRfL8ncH40vbHdwVECvk9GvIIVW1PqqGzGPIZcBqnZKv1umL2wJiHQg2UZuu7ruyD1leIad7QuYx5KNqtS63hZy+CGn3twbEqtap3JA2URt/vTR8dMi+9saAWAeCL9wXECukz7kpINYdAbGqdco0ZJ9Wm2L2wzoQloZDtqFq3VZU6zteGn1HbSm972yiNqfQd3kMud28Wp+HQpZ9Z0Csap0vDDnOqfmJvhtP1PxE35V9Z0CskH5iX/Tbi9tAGnKAR3ryexy/mreBmICv3yfdunGgYfXikaEnu9pYXx0ZKh0OT2mLEGfCJsaHcfXCvToL1uaAWJ0BsbYHxNoaEGtLQKw1AbH2BsTaFRArZB5vDogVMo87AmLdHhDrjoBYIe0rZHsMaV8hfWFIvXYGxApp9weCTdwaECukfe0JiBUyjyHL/paAWCHtfndArJqfeGn4iZB5vDsgVsjxRLWW/T0BsWptyA/rxoBYtTbUd2XfGRAr5DPyvujX9gmLlJ9cmZADPNKT3+P4BdDFU17OVi7SvBnlryWZvFIO0nN50pHJVNZxn8QwREcGN8RgUdo88P9+1P7fIvCZcBXIkI495veofMy7S7+OcG1HOie1R54ey4inQ3tMWF/OnwAl/IJKZf85m31I5SLZB6UtCnFxnyKgeBP6qsz6JZNnLTOevyRlZkJ79CuVS85dz5tRLmFwbH78t0cZLHYtc8IvqPIySFLmtuPNTcAyHy7oUoQ4E25gfBhXL9yrs2DtCoi1NyDW1oBYawJi3RoQa3NArD0BsUKWV8g8htJL8lPVYqu7A2KFbNshbWJnQKya/6r5r97MY8iyvzkgVki7vyMgVsi2Xa3tMaSPrta+NmQ9bgmIdSD0QwdCHkPqFdKvVmu/va5K9QpZXncFxOoMiBVybFKtfVqtPfZdHqu13z4QntNC2sRNAbGq1e5vD4hVrXMddwbE6g0fLX06GNe9bGtokhyevsUip19KOf0EOdKnRXPRb8q5/0E5wCM9+T2OX1DleQ419y+VC+VveDJ5TS52xfWhspY+g0xY9BnkhhgsSpsH/g+O3v9bBD4T8F0M6VPO/B5fM304wkVbMKGknMKx0uel0cZ4mXjUwWBXGyP8gkpV5zlbGUq+hPI+UtClKMTF2QOXM1KQUxTiLq5h1bBqWEGwHPxf3deGvnxTw9uvWD5zyqB5vz+o5YEdp3/+7u2nT5mBfp9047jcB3j4I+cjsgm/oFL525ytTKU+hPJ+kKBLEeJMaGd8GFcv3KuLwZJ8aVIsE9qi3xT9YB7r2iNtsVHQqeSUVB1HaaPtT751XqD0o5OlH0Dpx7CbJXuarmOWKe1YIe3Qo9R3xj913E3TRxy/7uwbdj51wSPbhr3tsJ8VD/rtplNu+MuT6yjtwULamEBNp8tuCyxyefRrxkU/iwqDbGsci6uHtOaabCsP/JeN6U73y9E9ZfM2jf6ijt33qIsZrv6C8AugS1J/UQfyMH/oL+oFXYoQZ8Imxodx9cI9G9augFh3BMTaGRBrS0CsNQGx7gyItTkg1vaAWJ0Bsaq1HkPaasj2GFKvmwNibQ2ItScgVkibuCUgVkib2B0QK2R5hfRfIfXaGxArZD2G1Kta+46Q9Riy7EO27ZB5vCcg1vqAWPsCYh0I/XbItt0bfS2t0/DnsYEQV8/iBkAc/4xXHeiXF/TLW/Tj6fMx6TAfLu/bNEDaknIKzu/bEH6o920aQB7mD581+wu6FIU4/OSaVD85QY6vXgE/k0bx04FvSYxqOQE3B4T3p8M9qSg49mCIl0wfTSauaIsx6U1osshpEtKRaQ5gOk5g8fgptwmCjhMsOvL0xCfJyaWUkxPkIJY0TWXChug3D/wromkqk4dnRvTEnCjoZ2sGkwT+iYyH9JHKhtI2CbJzMb8kRym7DXEdGkDOpIByJjGePMiZHFDOZMYzEOQcElDOIYxnAEtn/h/K4ridkR5TBD2o25nK7nt0A85LIoRfAF085XV1O1NBHuYPfc9hgi5FiDMBl7MOE+QcJsjJCqtJlecf65LntTfqkvALKpXt5GzlwvOHdTlN0KUIcSZczfgwrl64VxeDRfkKhUXtNGV9TcPy4IHipjPsqRA3g/FfAnEzWVwbw8BQD/95fkz/9eoJ3bjIh7py/0V6D1blNsZ9R5wvkOynKKQnPuqDSc83sKWi14zpqec4ht0GeRjP4rDNloQ4g79mXM+8cnvAcZCvD+HpiU+SMyilnEGCHMTKM6xGhrWSxXP+T0blTu0E22NJOYWV2BYIg2PPSIjt6jMJv0mQR3oVhLi8gy75L77ts5+49rlzcqq8XdcL93CMOFPglz69S2V1OEvvUVZX8a+cK5BNcfyxbwbE8UdV0sHY9wOlnvrNTKifS/lx/KLAP5/x+dSFhLUyEBZvbyGwGhJiDVHlfRK1acknDQY5vj6Jpye+JiFdLuaX5OC9uHEalymN05ZHv8aOPz+mOw0vB/6syNOijyT+143vTvfFCHOwKveXNt+Px/H4lnOzIKe3y7kZ8jPdkp/pQn6mO+ZnOuRnesD82HSWfDIf59GcEuVf8k+SvzahpNyCNBbEfvMIdt/D1zof8UX4BZXKt3c9axwB8jB/2NcdmUxeydTnAFXuC+9leLzsuByqr0o+5EfgQ2awOMmHrI5+88C/h/mQHwNmJTu8NPqt2aFTeFHaYQ7+x+m8NvqVbOFwiOPlx/sMwlaq3IZMwKWVknIKE8w48cFStxzMD77uI9UP56e8FlV5Gc6AON5vYZlWal/0XF5rX07hJenn68d2p0nj529gfr4hBlMp2Q4vi36l+RhKKz1/mVBSbkGal0I7TPjs6WyHhC89iyexQ8lnSs9GKdtZDzvktsDtkJcdl8PrK84ncZ3Rz08VsCR/xcfShK1UuQ2ZENLP8/ygn3ft04qqvAxxHYGP57EceBnh/Jj0fMLb3krA4ulxnnSaoF9OwHSZs+bpp1nkzEwpZ6Ygp1GVl6mHHRwu9fEUKI63AZwb5356JsQdxeJ4XWCQ5sYpP8ZOfzehGxf5UFde3qS39OyLr0f7PvsOEXRNOUfqXRfTII7XBdcPg1TepLMp72MnduMiH+rDyxTLm5cD+hPfebV+gq4p+7ojsEx5kMoUjwPm9s3LAYNU3nxedpVHefMyJd1S9olHYl6VIJfnFefoj2b810DcMSyujWFgkMqI8mPK6PUeZcTtgfSWbBL9vq9NSmM72/NHUjkzBTn4v1/0/1AWT2tnOL5dxsa3F0TjW2lMOUf1jOP2dSiTe/HYnnnntoJlfJQqz/tRlrzz9FiXXM7MlHJmOsrpzfxMteTHd+12pqCzJGdaSjnTHOUMSSlniKOc6SnlTHeU0y+lnH6CnJTrt0ehr+YBfbXUnx3D4nz7M9LZtz/jZUq6pRzTepcDjml5n4X92bEsro1hYKg0pvXpz7g9cL257nkl9y9zIJ74d0U+29jADugD+JiHr7d9HPx8b+81keZ7qHxS2ojzHi7cc5B2D5f0nGHbwzVT0EXy8XisgDQ3Ic3rSVj5gFiBnlODtmncwxWqTfvs4eqNNv3mqH2mLOuyZ0eOVWv71dX2TcC9NGna6xEBsWpt373tu/a9OYiL8xHzIJ74P836/U9Cv8/t+0gm+/+g3+f6Y9v3ndOcIuS3SUjX120/4Zjc2valcnmp9Ps4N5VwndJ7bgptiM9NYdtPMzdF+fFt+9xuud5p2vT3oN9PWNZiv4/rM9XQ9hPOrzu3fcIP1fYrrRnb2j7ukXgx9PuB1kO85+fRhvh4Ads+9wttDANDpbWSpG3/SIiT5rB434sYXEbKcnY+rhTbRcI+2NoupDW3gar7fb7o1eMF7R3nbLpq9arlZ7XftLF17Ypz2jZ0rGpb3bpixYb2jRu50lzQIHafx/OAPHQdt4BpazA8M0uiX5cFgiMqYOFmQltDPrICFm6ckjbh4P9+qlxPWmyoc8DBxinphRtpeEPHjvPoCli4MYCnx4fvYypgnQtYPD1Py//3U+V6YnnZcAwdV0Gva0CvY1n64wDr+ApYqwCLpz8esE6wYJnrUYDF0/O0/H8/Va4nlpcNx9CsCnqNBr1OYHGzAOtEC5YJ1wIWT38iYJ1UAes6wOLpeVr+v58q1xPLy4Zj6OQKei0AvU5i6U+GOF7O+F1F340WPH1WLxngOfQnB5TDsZazdCbuFJae+1ZpIEQyqPM/ld3vjUEx4RdAF095XZ3/qSAP84eD4tMEXYpCHO9XeRyXc5ogR8KaGRDrFMgPfwDgm1iPOrinzFNZnG3jcx74F7JF/mMjzMGq3FZOdsjjqYI84j89+t8g8HO8PPCfGOlkBtFPRYd3FAWdTovRBftTtBPiMaERZPdWGyH8giqv/yRt5HSQF2dvlPfZgi5FIY6PpXgclzNbkCNhHRUQ61TIT1wbWRiojRzF2shZVdhGzgnQRvgYqkm4h20koc06txHCL4AuSduIVBc8f9hGThd0KQpxfPwc1xZPF+RIWMcFxHJtI8ugjRzL4lzaCPGPZm3kKmgjvIywjUjPK8cK8oif6qxB4Od4eeBf6dhGjovRxVzzcXOTKtcf20hCm3VuI4RfUOX2k6SNSM97PH/YRk4UdCkKcfyZCcuxXrhXZ8FyeeZyxToW8hPXRm4I1EbqWRu5qQrbyDbPNiLp3hvPXtL8Av8GUlwZSbZbFNIfB3HTBTmVbGTPwbI+cTZCz+954P/9uO50d1psBDdacJ1xwcX3WXqKIMdlYjmh/+nn6u8IP9TEcqW5MvR3xwu6FFW578SDyiS/Ko09XixY5pq+h2LrB33beVGV29EUkHN8QDk8P1nMGZmwHOTgnKT06yqHY7WBnDi/9R7wW7NYnOS3aH4vD/xPM7/1SITZCDye7fRU0v1UIVKa7zkO4vh4+HiIm83isO5bWRwfu2CQFv0or6YP/cPEblzkw3xw334axPWCz3UeY9Z8bhis2vNCz7aEzws8jn9PDv1avXCvzoJ1bEAsWstIWV/B/JoJuGFhNotrYxgYJN9F+fHdsCD5LmwnyMf7F2ndUNIrJ+Bge6I4af2PvsMmrTGOABm+bX6EoK/LPBq3Lw8bqndt84Qfah5Naj+2ebRZgi5FIQ7nvqR12VmCHAkLn+v5s3Jf95/HJpNn7T+lb1eGsK+4ejjeIu/EZPLqSJ607n2sIM8c0NGgyuswbn1eWtfm9RXX5rls3Jvju9+BY+HenONj8hBXB9L8j22PQh7iGtl4/c8H9+ShfSV/P7ib56/RteTz+VxHw7iefLhH5QXZqrx+eqPtEX4BdEna9qR64Pnjttlf2W2E11HcnqWjhbygzR5VQSe0WUmWVKd8DxfWKd/oyudCB1j4jhT4pDjzn++hw83OxDsowjDl3DSpZx55etzn5nsYJ09vO/Rzeko50wU5TUI6bEMJNx07z7kRfkGV5zlJG5I2f0vlgntZeFqsGxPwmU3aGyntG3mxYJlr+hawbfO7S71KcrgdZbV/KovDbU1YDnKOCCiHY7VFvykPwfN+PsQN7XzeC+tyNovD8m9lcUdA3Bksbga7xiA9V1I5GF9dnNSNi3wUUm5Ur/rywwP9eJDKj79IUCu/nvsfMYQsv75+GU0qPz6GxfLj4zfeb2CQyoi/qOYzb81tjPI0UHV/1KP7RYyz2m+6qG31qhVtHavWrT2v/fpN7Rs78FNt2ANgDzc9Rmv8lFyc1ibUQdwMiL9Y4OOhSUhHMlIeseX8ZIPHuyZs6dbjXXn+cFR2pKBLUYg7iF1ji6gX7tVZsKYGxMKjfhO2dO9Xz2ZAXG+9epb0tVPp1W6K45/pWQFx41m6wyGuxOIIX/pMD5ddZNc8zoR64R7WdVGQKcmJHF3X0yXl8fboohH4kvakvfAEd6qrr4h7ZZbrJb3C6vKpnD8NnT3z/978+9fnVLm/llaP6xg++nPiLwr8KUc0JzUxGUqV96wm8Nfap0GcdKyk9KmchKujJ7mUH8cvCvztjM+nLqQnwKRH3dInafgsAbUdan/jWNwkiOPtDHcxTRR0mGjJzxRBhyYhHbbHSex+b/TdhF9QqXxLV989CeTFlYvk4ymtdOwgHhnh64M51riAWNTXpKyvqVgePKDflmxI2vEpzZi0MQwMUt9N+fHtu3kZ40xlrV31fruaIuiCZWYCHscwRZAjfXpVKv9DA2KR/aSsrylYHjxIPghtiI+VsF3xNtfGMDD0VrvCY8ZI934CbySia2xJvB9jK2//A2Ngnp4+gSx9SvoQiOO2Pg7iJgk65UAG343B7R4/qU38/8FWXx4tyZh1MZi8TpXq2ZYpH41MLsV52OBnpc8W8M9G47GsUrvh/Dhulfov3paoDKT+C9us5H/5p7RpBU8qL9KxN8qL64DldWgFnbG8pPLl5UBlIPml8YA1XsDiZWgrL9KxN8qL64DldUgFnbG8pPLlnyqnMiiq8rIsAZZUXrw9LgF+St8g8HO8PPD/gPkEfHuE+zWs6wkCNveNOcDg+SgI+WiCOJ7W4P5sdE9c6Q0iaccJ8UsnIPDdJfhpD77LgdKm3C1TVTujpRl6nmcMUt9M5eA6Q58DOYTLy98EtIlpgo7SLvjjHHGJv9JunzoHvfmOELSh4wW9pd0+02PkSLstTYjbzf8X1pafidqy5E+7dhMxHIrzsOfBkj/lZYT+VGqz0u5A1zaLO8v52264U5mXMcmU7Ivvitrj8baftAtN2nGDttcQw094ZTvAImfL/bXNnqWd3UntmechrT3z8sK36oi/yPKagT0P6m17lk5Fsb2Ny9/0PxbiJHvOqXIf5utf+c6wG1K+7Wqzf8pbnP3j267EP95i/1L5Srteid920kMl+z8N4ni66TFy4vw52j/xH+po/yS7N+yflxHav+sJJsQ/W+CXTlKQTg+x2f9pICeU/S/zODXkdItMTMvzFmf/hJcH/uMt9j9b0MFWH60C/2zGg/bP89AKcTzd9Bg53P55eaH9E/+pjvY/O7ruDfvnZYT2fwaLqxf4sbznCPx8/I2n+sxhcXgqFi/jVpAj+UFX++en7SxMeWqOzf6lU3M4f9ypOUss9i+1QWmXpqs/stn/bIiTdk+hHG7/vLzQ/on/Akf7J9m9Yf+zGQPafyuLqxf4sbxt7YWXSVGVtw2b/c8GOaHs/yiw/xzjGwoyc4JMfg/n8DG9hMX3R7Wx6xUsnvPTp41pnoKXv4cdLGliaRTD4NgJbWwJzyuFerjH8Zti5JlQEOJc9j98btZnznrr344ZlIP0pAveQzvuJ/APFfiprBpA95JyCmdJbZ1/1kup8rzzON5eSQdp/0O/hPq5lB/HLwr8uNPetS6GqJ62gPZuaIaAxdcAcD6I9kBxP80x1ka/eeC/WfDThCnt0ZOOWid+aX8c35dI+gwGHXha6bRn22eniS9l/yF+dprnB/sP6S0oaS8g8UsnQUufbywCPy8nqf+wHdc+g+le7/C5+N6wr7teBPbFdzUTtlIHrn3xPSiu9vWjMT31kfbZ9bfoL9mj7ZOX0wQ9pJOpbHXLPwdhQsK6bZDqlucH61Y6kV/a+4xtj/NLn1EtqnK7xzfYeN3OADnSnjvJJ0i2wD8J9fnIFky5fGVEzzR8jSUX/VJfzr9w4FH+dTnAI/35PY5fAF085XXt1xkE8jB/VI/m7QQ6uTt6O2HxurYVc9rWb9y0ur2OQ0fcdI2lwlH5vZzqmXsehyNh5DsL/i8R0ikB28RTzRXhfkk5hWayimYhkuL4x38GQhw/g53XJoZ6QX/S2VjpE/CEqgQsksnrYwjEDWZxLUw21usgQQ7JrhP4BwPWICEdlX0lefVCuoGA0SikK9HFz+96/a3F97/izaXpX32+YcG+Xy/7w6J+s77/1a2jPrf977949gHUWQk6Yz0OBF7pl3THe7grblBArKKARWXTzO572PxwV29F+AWVqo11eatmkIf5w7wPEXQpCnHog4YIcoYIciSsuoBY9YGwTLi4hlXDqmHVsF7kWBTH+/sixPH+E8/54f4ZP8pZJ+hXZ9GPp8e+RxrjUr/L/brPjh/XfhdnaBPORHf1u/UgL65cUo6lu2aEi4I8xDQBx962PrMhBovS5oG/vrT/twh8JqBdS+MSfo/KxzxZ/nN8T93x2Ub6Vco+1iuq8rxTXNZ2P4ClWx79mnwPLMky+WwcT4urcsS/q9SdbnCpp87SrLcJg+Ee2pBS8ix/b+zQ43nEWRXJ7jk/7TyU3tjNQxzPzwCWnxT+Z5jk23gdjy6pHvnJszjJrnAnJfGvLXWnOzi6luyYP4/x9KqCPOKn8m8Q+DleHvgnlvb/8lVwSb+BMfJ4eUgrayjv0FK3PNtKNPfDSiW22+GS3fL2hHbLbbRe4MdnIpudS7bM7bwBsCTfxe0AVwEofYOS64Dw8sB/VGn/r7TzwWbnUr0S/7EM01avgfyRWK+8rLBeG1icVLZYr5Id8PrCfoTXeX/AklZ5eV271CvXj/CwXk8v7f+V6lXqo6Q+BPuoMximrV6pLHujXnlZudSr1N8Tf3+Bn9crrjDzumwELMlH87p2qVeeH/TRxL+ktP9XqtekfvgchtlXfpiPF7FepTbD+bFeJTuQyraoyuu8AHE4/8rl+PpoqV+2+Wjiv7y0/1d6m2qQkN6mn1RuJo+00yRaBTm/Y92G9mgZREGwLVuY68ExagwT0isLFk9jyxJfGsAiJ1kNSp5exyIn/uWl/b+8yLEIUR+XR+SETcZ5IY3wQz0iVxp64mOSrZlJXQzWUyU5AU3VhLNi1MgJ6VUFLPpven8aNfPqxlG9bSSAaQ3RaNF1JED8G0v7f6Ueo9KTGXoU20oF10fKfzPE8XQDY+S4jlCI/+ZSd15tPRnJ7o2ejJcR9mTSTKE0o0L8LQI/X0nBEQpfdcXmx8u4GeRUaua4v0CyU+lJWbIv20i7kn2RbUpPpTb7ss2KBLKFwX1tC1Q2ki3YZtTQFqQulvsEtIUBghycGTMBR9v8l9IQrglUHyZg/fF3vXl9mTCA3a8XsPpDOuJ/U2n/Lw1f+CiS0hcF+Xz0qGL05vfqgL8g8BcEflM+ry516yzpif0Xz2u9wM+HP5z/baVume+IrnH/L5dn7n3IwpeL+ZV05vrYyqhe4CfZAwR+iuM7Gnib5Dy8vDhWgcVz/g+W9v9SnfD65u0S5fOnSBWjd1x/jFj1wj1uO+8p7b8usHuE5Ts0NAH3n/N7XPYA1fP8Bfp12VP/oeNmnDToZYd2DoH0ofAHfeFjZz/95/WHVsLn++VS7m9vIL/ZIERSHM4a8ThuWy9jfBhw7Mp1NvjzJ3XjIh/qw9tj/xhMaSzRDryU5zoBF/0FH1dgedFKFc48frPUneZLJRmvTvUsVxOuiH6zrlv0czxUqr9NHvXH20V/iOP9fRvE4WOainT4YWn/dV+1hd4uL8nepfJaAXHSLCgvL6k+4lbYOV4aH7f7mX99964to37r4+NQfoOD3rnAep/64I17m457/wd7y/c/MvCJMz71YOPLfcqFni0aQBZdc3vh97l9t7F4zv+H0v5falN8bODRphTmh2NJ+tdb9MdZcRMuidG/acL+X2Pvfyr1lCe14cGqPJ/4zMPHKi66EP/fS/t/K80DkF4pn/3y0rMfH7O6rCxKY37iHyjw8+cuKhPpWd9lNp2XKU6hUhk1KPsqCdpD/8gepFlrbps4487z3ghx0uoh7t4woS36NTyTIj1SvjfZH/sjHnBsxvOI9iD5zgGgE4/jdek7XuDvZ06e0I2LfBQk/4Dttb+QD6kt4zNSvaBXtbU7sn1pJRftzdWG+0NcvUUeL4dGlgeyYeyPpF0My1m6KRO68Xi5S/OqJqA/Jf7TmG+fFl1Lu4/QHiQ/gbooJfshnLOS3juWxo9UL9Teub162JbzV9EIv6BS+Zcc+luSh3WEuxITjhPy2MdyeVI9NCu5TLl8nB+RbMTmT+ohTvInUvvDtsnbH/aNUv9va398Pcdl3BS3ZkFpsZ88Y0J3updB25J8ra3ebO9x2nwf11Uqe5x3LwA2vx5okSPp1STwD7ToxX0yvrOIbyvZ8uDaVwUaI/bz3TUplYttba7Sm2TYRqS3vnz7NlxzkPr4Sn3by2L6KJ4PaSeNtOTM+zfq+3h/mQNduAz+XH+d6smfdEfllUyHSrt1TFggYOYEGUqVl0sb6EB8K5gO/zFp/7W0S47qPOWcziBuOxSkfpPwpfNWkvSb0nONtNaY8jmgyWan0nhHmsfCtk7tIe4Ziz+Tc/7ro7rFHWom4G5+aVwh9RdGt9UTeuqeZi3HNo7jfpf7DxP4OPYG8BHSzlSeFnfZE/+WCd3pboK+VrLNAcruM6StQGgfDTH8cTv8brX4DGn8zvVaEIO5nWHiWR+SXUj1h7bK+aU5bWnMhPNQki/rxR2l4llkPP9x7ZL0iWszxC+NyXB8bkIR+KX+kuuC82c2WzQB+8i4eWlqV0nnUE8+5J6Dxnz5+qbemqPtlx/z2tL7r1zsM0crjb3rAJeXd50q93HnRb82/5fy+dL5Wzb4fJlm3TauvUvPl9KcFj4v8faB/Y3UdqR9EFlhSe0d6zLhs7TzXAHhF1Qq28n5+idpDhLnVrnvwvKX/Jr0TPdiweLt3zaH5FKvkhzbOLC3xlK4Ttk/oByOtRzkNAaUw7HaQE5e0MHk/zMTunF5HceNkeLWjH4woTvd5yb05CHdv8B4vh5dNzLZSnm35YI0b01BWh9Au5XmSvBMJ8k++PN/I8TxE2LaGR+GevjPy8H1+x1SWSbctl5VZelaXpRXg+nztW1ub5Qn/rxiawdcLraD/2E2/mtoW9IcotSe6X6ldUt8VuD+mdI2Cuk8bGIg1i0PUt2iTfC6RZvgr7qgTfD9x9i++J5bHBvzINkLlYNP+/p1jI8kGegj8fkhL+jLfW+lNam0/QLHwvFcb/Tbkpze6k/bQY5UDyb/f4M65HOoUh2ujX5xzmjkxO50/wTMSnMBhCk9v/ePSYd62WTVJZRVFyPLNs8grU1lsK7Y4GIzHL831xWldT6f5z4sWx7H5bg8q6HNpMVymctxxXKZA3PFwv0dPM9UHwMEWTztanYPy5/8s/SWKU+L/f6YyC+Yuv7eCBmzX0x+18ZgjmOYOO8YeiyBc4vSWEJKx/tCKS36Cz5GxD6hiemOcnBtcgD8Lwg40nMex4wrR9tb77Z1xUrl2ATppLX/uLToSwcw/RArbh1XCbi4BtlgSdcIMrmc+wDH9ra/1P5dx0+836Y+XRo/9cLaXH/ua7j+/B7Hz3ptDvtdntY2RssJcbY+roYVDqta1gjPmtidhqeLWyNcGf3iGuGlbHy8FDDrIR/oa6ndS2uKuLdJeneb+1cFfCnXvvr7nrpRaY3p3OhX2t+Rgzj0V1wHqYz4+EeyUcl26L5tnCvVg/RcYdu/2Iv7WftX8/ok7r/LYn3yLDZ+dOkfff2Nq41hu7Y9M+YEvVLuOWl0yRfHLyi5bZWUU8j5tj1pjwuuZ9v2v7juTQm5z6WGFQ7L1gdU6rd3Qh+bY3G2ficP/HtZv707upb6Yf7eP8pUyu6vbO3C9szl2ydJvtXn3TNedjxv10S/uAf5PuE5vRf7uca+7ueoTKR+Lu69Ii5T6re43e4U+i3ca4E2Q/dq+1LKy8qE2r4U77Kt7Ut5kWHx9l/bl1JZTjXvS/k8jGsq7UvBvpn4n2Ljmi9O7MlDun+Z8Xwruq7tS+kOvBx81s2xLGv7Usr5MB/c3kLuS3mG2fiz0LZq+1J6xr1Y9qU8G+MjSQb6SNd9KZ8Xxt/SsxU+P/F3NBXwm9DG4jn/X8BPJBw/iWd38PcPUX+ffQfSeIKCNH+TgzhpPVwav+H8rtSuXG2K8mr0eszBplzeN24Q8mF7FzmL941NWAE682dDnDMwwbbWEOLdi61f2fDQP4e893+r5Xyc4VH9p3wm6rPzcQ6P9De2M2pST3lSu+vN83HGRfIrzfdw30M4FOczpyDN9xzo5+McxuqgL8/HmQft6kA9H8enf2kQ8lE7H6dnnKsNY59Yb5EXt4+GbDjufJwQa4VSO6Jn0JRtp04aNyr39DmX+eCE/eW/XMqJ44eaD5bmEKX5YMpfIZm8f5pnHno+lcZxWHZcDo7NEz4L/lPyAfzZzARu+/xZ6y/gvxPOUfwzpQ3/o9I632WTunF52UnrfDwf2G9eycZRL4dxFLdHvs4n+Wb0Cbg3kPPi+AyfE6Ry4/zSnlzJ3+M47Wo2RnDZkyv1PYi5Shj72fy/1OaIv9K4C9cubXtyue44T8bvSfWTA16ugwntgk5x/6W9pXE62Nag8jGYKBPtwQTb/hjebi5jdYnnUyc9p0jqSxToI41/pPHfyxkfBmk8RjobDJ/zqaW2FLLvp/v92H2UWw+8ceu4Upn11toLrh31t+ifAxzbuje2N+nXVd+coK/Ul6SVw7GWgRxez7zP2gd9lnT+Ck97efSL84MPsD7rFY59FvoKnocr2b24d1Nyqty3moDPr9g3IU9/yBPxv1bom6Q5Rv4O2+sdxgDSuAvHAB9n5fkmy1wKzuNLz59KlfennNeE9pgyeCfT422T4mXhM6uUR4PxrkkyH9eB8yGG1De6nMNmm/dSSvYdDRYZUn9l21Mr9afSWsCACvHSPgIl3KsT+CuNCwbEYEu40tldkn/G+ZucEIe+h+dX2nuOPg391j6HuUf6bxtz9bfo7jLeabDoLpUf9x9J57T3rBr7fx+afdzdPnPaUh/N+4gvOPQRPG3cGbtPMl/yJagjac9Y7Yxdb3m1M3ZV+V5TaU7ypXbG7o9Y2/qjxf+57CO17TutnbEbnz/bfHegdabaGbssjo8r/xjTR/F8cP/nesbuF9jco1LJ579zDJN0onzy53feJ3G5nI/PQyfQpateBjCZ9aAfx88D/4DJPXGk5wBpjzDxS990qxfkSt//G+iJ1QhY/VNgcRtG/v4J9ZKwGgCrIGBJvtDU3T8iezV1RZ8RXtnesWxj+9oV7RuWXb1uw7KOtpUbR4IaCafUc7jlzi9953zpEcZD/vyUW0DTLil0VdVclp7rwrcYDmLXZI5NlvQUN0/Aa1TlrtJD77kpp1DrWlS5fO4mTB7pEcSYNtnb+g2rbmjraF/Q3nH+CwY5f92GC7Q54ixkDv5TPPLZglEjXW+7eT7J4N6xXuDMwy/x0MfGkj7Nff8Lz3/70TOPXlPpaY5a+sbylk4q9HFLn5eypc9L2VJzKVuM2NJRFxOkCWRK0191t2ruEVJ6sbRlo1pUvOei1kwbZ4XWfD60ZoTH1pwT7pOolC12XtoWOzz67e0WOyW6XruuY9XVNy1bvqFdF+SKZWs3rV696upVuv2u29C2fHX7shs3tK1f376h1or3s9dacXzwbcUHR9dRK176giXO2W+IS8kOUUitLe8PvGAnRtfYltd1tEMzPjri7ONmvCRlM16ScidNIeWsqtiMpRl1soTFLO1ikGlr6tLqKQ3HU7qi+Wlnll1mrRPO6jqf4Ig74tLOWks74uJOcCQeLo/HSTNFFCe9vWl+xzI+rFvbrouzII7Poixm+FPY9dToOmW3saQ3u40c05eCNJuBJwc1CvwUx2cucDfzAHZfmknCNyuI/9DoV5oxwpkWLh9nWiS9bTNZPjMz45nO1B3PYHho62T/9QKe6b4Piq7F7lt3PQoC7sDBnrwuRhdMh7uN+gl8yiIrjpfyGmDksCTtyOGo6Le3Rw5Uxhva1q5Yt+alNshP6NEynZSTBvK2SbmUus1NOWrItcTIN0Ea5NMYeFPHqtWrOm7SE2/nvWBr81e1r16BLoAXki0cSIN76jauNgW2bHX7xo3LOq5pWzsqut3HbXVByra6IKU91qWcSBbbqjSpnHSUzifbX3hvm6UxYT6TFaiNz8+ijQ/lCVh8g4r3d01K9suEm7JJL0jbpGlEk1Wvu2zZxus3dHw3+tfHLfnclC353GqZWlvK0rtOrVEabK2jWRoTzmZ4OYg7R5CbMk9n9+YyGdX3nGTYXfY2l90sKbdAaecJaQ86esqJ61/z9WFPTp34g9mfefjwB0Y9N/mUJz+28C3P/vXLf2Zp5yfTewylXyDIrhD6UdqFctrcjokbX124O7fkse0zH20a8NgvWh88Y85XH995x/jiww9S2kVC2mmnFJ59xx3bdqkfPfSre/447ZOzZw4Z1zrk8G+9/ttj1m64bNSzlPZMEqS88jyW0p+VLH1XmfO5K65/hdBlK0vYzZJyCjnqcVqZLkZ+X5/SYQJfGseAPQ/X2eAvYLjIh/pIb4ogZg54TVgCvPjGTNwpLDyunyovL2rzeeA9lqWZGoNXp8r9L5VF1nWL8z88VKq/Gxgu8qFM3ifjG62oQ0m5BWkXOo5Wud8nfJOH00CHrNtSb5e37c0qPkpfDHFSP8nLS6rPuhj8wKPbc9OObqm/7O3RLffVvX06APm3lOtBtdMBukPtdACQWel0gM+ADtV0OgCN90y9Xc5wedn5ng7QxtLRW54v1dMBVka/Rt4TMZi+pwNcyzD/H2C+VE8HkN52jftfDacD0DNxpdMBqE1JzydJ37AIeTrAQsaHQRpv8dMBfJ5PXNepczG/Stn7frpfOx1Abm/Sr6u+OUHf3j4dYBHI4fXM+6x7GS7XL+50ABrj4pufr2Tp7o+u05wOwOdhfE8HmAP80ukAnCfudIDXRb+8b5Kex+awvL8BZCc9HeATLN2D0XVvng6wBPQg3odYmrdbZOHcb9zpAO+O4eM6cD7EqJ0OUJ43Jdx7KZ4OgGOGuNMByKdV0+kAqHvc6QDkP6hsam8jKvUNwJH8jm0PV+1tRNVrbyN+PrpOc0rzmE+2f/30J3/5ZKV5r6T4P2k8Z17dh+8aXwmfdtWYtyn379dadtVNHe0b3xrd7+P140tTrh9f+mLatdXCrocBP+8T6lW5X6+SVyhHSHNeuL8ZsXkc70f5cyO9ftXHO9VG2HaxpF37pnnubQwPZeXc8azPWynreSS3YQr4vMbxCypVuXfNH+dBHuYP20HC+eoROUjP5Uk2Ko1xeNnyMU9DDFbcKSiTol/pa1Bx+5u5vtK7BkbuONC9N9ZTsI3H2aOvnJT1W7KdvN6LJydNcG03WZycJNlFynWlUg7Sc3nSvCqebo5lawjH0IjFx9Cc/4ToV/pam8uJQXHjv6NBd+n9/aTtRnq+S7mGk9ZmR6SziZy4lqec03evg/Iy5c++s9l9jKsX0uLcF/HPY+moD3ddg7KtE+H7P8jfD/Qh/kVMn0uj65RrktavV+WEe/UCD1+n3Bldu8zn8zzzZ2+uj6dtiKdFoa/mJz31hq/m74ClqJsuX+16uhXlb1AyeSW+Rh63Ls7LznYqlsvJVybweWOyaVsbkk42i1uvjJtvxvZF/LTObOx4N2CGPmGsAfLD7X2QJa98fEnYCvjS7QFSI03+72ByMP+4xmXLqwlYNoMF/kHAY0IR+CU743lsAgxpnVuaj0S7aVCy3XC/zfnXRb8vnFoH+kn1kxN0kZ7hcb7Upb8jPTgu/6U0hGtCo8DPfRiFUO+x3hL9VvN7rDcwnVPuqbs0BzJ999TtAF1x7FFS9uCzp47mGnr1rbrensSUDAs7am6c9QI/31jD+e+JfvkiC05WcXkvHG1u4cvF/Eo6c31sRl0v8JPsAQI/xfFBIHfynIeXF8cqxMijxRyqE95A+cAA5eNEsaR3XAeMWPXCPd7YaeGeLw4Tlu+AzQRp4CLZVpq28PX+v3ru8f9cee+LfEJ/ecoJ/eW1Cf1MJ/THv8Qn9MfXJvRfCCWX/ojjv8gm9MfnID2XV5vQL79Xm9B3CrUJfdCnNqHfU8cqnNAfX5vQl/u02oR+bUKf49cm9HvqWpvQ7+ap4gn9Um1CvzahX5vQ79Y55YT+8hzIrE3oq2QZqU3o1yb0lapN6JvgOqFPp4WZCf217Zs7lrWtX2++gbKsbWP0VZTaqY0vhNqpjeUh01MbTeuks8a7P4m0VNts6/r1F7StbN24/4Mq2PNIXlKp8mkYTFcn8PEgDbu47imHBS+akyFpSXDFqg3tyztW3dC+bNXaG9o3dJBcKofhDCeJ3xiWLL14ztNwdk246N+UhwwKvK4w4IgBh6ToHz3k5+L0yAnMtGw4jN0bDnHdddmxTq/zrli1eQhombAPTPsWZpc1JJycrJesgT8Q8bc7CV/BNclM+RbnANsDWUGQizx5VR7QW+Xhfr0Dr2Q1FCc9eLmMOaUHNZwE5Py8hzKhXwwWPkSifaStoxZBJulGYyfu+TraV7ZvWHb9pnUdq9rXdmDbTjjVV0fpByZLL/pAPjrG6V30VTzkYv5L/WUcb86CK1kFYVJtcH0pH/8fGQ7hSybmEQA=",
1930
- "debug_symbols": "7P3Bsiy7bmWJ/sttq+EAQYDQr5Q9S1NlqcpkJpPKlMrXkeW/v3C4ExNr7RtcXBFxXqeqc/c4556N6U46ZtBJOPlff/s//vl//5//13/7l3/7P//9f/ztH/+3//rb//4f//Kv//ov/9d/+9d//+//9J//8u//9vi3//W34/wfkr/9I9Gw//UPf6Pzn9sR/6yPf+b4//Vv/ziYH/+vTRgntAf4CfL4D4+Ax19p+VfI539wzP/gBJrAE9oEmdAn6A1y/i06HvHljO+Pv0L/8DeX649+/aHXH3b9Ma4/PP6g47j/pPtPvv9s959y/9nvP/X+0+4/x/3nHY/ueHTHozse3fHojkd3PLrj0R2P7nh0x+M7Ht/x+I7Hdzy+4/Edj+94fMfjOx7f8dodr93x2h2v3fHaHa/d8dodr93x2h2v3fHkjid3PLnjyR1P7nhyx5M7ntzx5I4nd7x+x+t3vH7H63e8fsfrj3jng9b1/tPuP8f95yOePv7U4/6T7j8f8c7nT89453+oMqFP0Ak2YUw4r1LOJ/6YQBN4QpsgE/oEnWATxoQZeZyR+wk0gSeckc+bHzKhT3hE5gCbMCb4DX5MoAk8oU2QCX3CjOwzss/IZw6d2c5nEl1AE3hCmyAT+gSdYBPGhBmZZmSakWlGphmZZmSakWlGphmZZmSakXlG5hmZZ2SekXlGPrOL+wk6wSaMCX7DmWIX0ASe0CbIhBm5zchtRm4zcpuRZUaWGVlmZJmRZUaWGVlmZJmRZUaWGbnPyH1G7jNyn5H7jNxn5D4j9xm5z8h9RtYZWWdknZF1RtYZWWdknZF1RtYZWWdkm5FtRrYZ2WZkm5FtRrYZ2WZkm5FtRh4z8piRx4w8ZuQxI585yOMEnWATxgS/IXIwgCbwhDZBJszIPiP7jHzmYKMT/IJ25uAFj8hNT+AJbYJM6BN0gk0YE/yGMwcvmJFpRqYZmW7faNQn6ASbMCbcjtT4mEATeEKbMCPzjMwz8pmDzU8YE/yGMwcvoAk8oU2QCX2CTpiR24zcZuQzB+U4gSbwhDZBJvQJOsEmjAl+Q5+R+4zcZ+QzB6WdIBP6hDOynWATxgS/4czBC2gCT2gTZEKfMCPrjKwzss7INiPbjGwzss3INiPbjGwzss3INiPbjDxm5DEjjxl5zMhjRh4z8piRx4w8ZuQxI/uM7DOyz8g+I/uM7DOyz8g+I/uM7HdkOY4JNIEntAkyoU/QCTZhTJiRaUamGZlmZJqRaUamGZlmZJqRaUamGZlnZJ6ReUbmGZlnZJ6ReUbmGZlnZJ6R24zcZuQ2I7cZuc3IbUZuM3KbkduM3GZkmZFlRpYZWWZkmZFlRpYZWWZkmZFlRu4zcp+R+4zcZ+Q+I/cZeeagzByUmYMSOfjwDYkcDKAJPKFNkAl9gk6wCWPCjGwzss3INiPbjGwzss3INiPbjGwzss3IY0YeM/KYkceMPGbkMSOPGXnMyGNGHjOyz8g+I/uM7DOyz8g+I/uM7DOyz8h+R+7HMYEm8IQ2QSb0CTrBJowJMzLNyDQj04xMMzLNyDQj04xMMzLNyDQj84zMMzLPyDwj84zMMzLPyDwj84zMM3KbkduM3GbkNiO3GbnNyG1GbjNym5HbjCwzsszIMiPLjCwzsszIMiPLjCwzsszIfUbuM3KfkfuM3GfkPiP3GbnPyH1GnjnYZw72mYN95mCfOdhnDvaZg33mYJ852GcO9pmDfeZgnznYZw72mYN95mCfOdhnDvaZg33mYJ852GcO9pmDfeZgnznYZw72mYP9zMHOJ9iEMcFvOHPwAprAE9oEmdAnzMg+I/uM7HdkPY4JNIEntAkyoU/QCTZhTJiRaUY+c7C3E3hCm3BG7if0CTrBJowJfsOZgxfQBJ7QJszIPCPzjMwzMs/IPCO3GbnNyG1GbjNym5HbjNxm5DYjtxm5zcgyI8uMLDOyzMgyI8uMLDOyzMgyI5852B/jeT1z8AKacEa2E9oEmXBG9hN0gk14RNazv2I+5oSYkAk4Z2TkBJ7QJsiEPkEn2IQxwW84c/CCGdlmZJuRzxzU85rPHLxAJ9iEMcFvOHPwAprAE9qEGXnMyGNGPnNQxwljgt9w5uAFNIEntAkyoU/QCTOyz8h+R7bjmEATeEKbIBP6BJ1gE8aEGZlmZJqRaUamGZlmZJqRaUamGZlmZJqReUbmGZlnZJ6ReUbmGZlnZJ6ReUbmGbnNyG1GbjNym5HbjNxm5DYjtxm5zchtRpYZWWZkmZFlRpYZWWZkmZFlRpYZWWbkPiP3GbnPyH1G7jNyn5H7jNxn5D4j9xlZZ2SdkXVG1hlZZ2SdkXVG1hlZZ2SdkW1GthnZZmSbkW1GthnZZmSbkW1Gthl5zMhnDhqdwBPaBJnQJ+gEmzAm+A1nDl4wI/uM7DOyz8g+I/uM7DOyz8h+Rx7HMYEm8IQ2QSb0CTrBJowJMzLNyDQj04xMMzLNyDQj04xMMzLNyDQj84zMMzLPyDwj84zMMzLPyDwj84zMM3KbkduM3GbkNiO3GbnNyG1GbjNym5HbjCwzsszIMiPLjCwzsszIMiPLjCwzsszIfUbuM3KfkfuM3GfkPiP3GbnPyH1G7jOyzsg6I+uMrDOyzsg6I+uMrDOyzsg6I9uMbDOyzcg2I9uMbDOyzcg2I9uMbDPymJFnDo6Zg2Pm4Jg5OGYOjpmDY+bgmDk4Zg6OmYNj5uCYOThmDo6Zg2Pm4Jg5OGYOjpmDY+agzxz0mYM+c9BnDvrMQZ856DMHfeagzxz0mYM+c9BnDvrMQZ856DMHfeagzxz0mYM+c9BnDvrMQZ856DMHfeagzxz0mYM+c9BnDvrMQZ856DMHfeagzxz0mYM+c9BnDvrMQZ856DMHfeagzxz0mYM+c9BnDvrMQZ856DMHPXJQThgT/IbIwQCawBPaBJnQJ+iEGbnPyH1GjhzsJ9AEntAmyIQ+QSfYhDHBb7AZ2WZkm5FtRrYZ2WZkm5FtRrYZ2WbkMSOPGXnMyGNGHjPymJHHjDxm5DEjjxnZZ2SfkX1G9hnZZ2SfkX1G9hnZZ2S/Iz8W2Y8kSuKkliRJPUmTLGkkpQalBqUGpQalBqUGpQalBqUGpUbkpUVxwJFESWe9whHUkiSpJ2mSJY0kn3Sm6E2UlBotNVpqtNRoqdFSo6VGSw1JDUkNSQ1JDUkNSQ1JDUkNSQ1JjZ4aPTV6avTU6KnRU6OnRk+Nnho9NTQ1NDU0NTQ1NDU0NTQ1NDU0NTQ1LDUsNSw1LDUsNSw1LDUsNSw1LDVGaozUGKkxUmOkxkiNkRojNUZqjNTw1PDU8NTw1PDU8NTw1PDU8NTwqRHVNDdREie1JEnqSZpkSSMpNSg1KDUoNSg1KDUoNSg1KDUoNSg1ODU4NTLPKfOcMs8p85wyzynznDLPKfOcMs8p85wyzynznDLPKfOcMs8p85wyzynznDLPKfOcMs8p85wyzynznDLPKfOcMs8p85wyzynznDLPKfOcMs8p85wyzynznDLPKfOcMs8p85wyzynznDLPKfOcMs8p85wyzynznDLPKfOcMs8p85wyzynznDLPKfOcMs8p85wyzynznDLPKfOcMs8p85wyzynznDLPKfOcMs8p85wyzynznDLPKfOcMs8p85wyzynznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfM8yogGB1nSSPJJkecXURIntSRJ6kmp4anhqeFTI4qKbqIkTmpJktSTNMmSRlJqUGpQalBqUGpQalBqUGpQalBqUGpwanBqcGpwanBqcGpwanBqcGpwarTUaKnRUqOlRkuNlhotNVpqtNRoqSGpIakhqSGpIakhqSGpIakhqSGp0VOjp0ZPjZ4aPTV6avTU6KnRU6OnhqaGpoamhqaGpoamhqaGpoamhqaGpYalhqWGpYalhqWGpUbkeQsaST4p8vwiSuKkliRJPUmTUmOkxkgNTw1PDU8NTw1PDU8NTw1PDU8NnxpRuHQTJXFSS5KknqRJljSSUoNSg1KDUoNSg1KDUoNSg1KDUoNSg1ODU4NTg1ODU4NTg1ODU4NTg1OjpUZLjZYaLTVaarTUaKnRUqOlRksNSQ1JDUkNSQ1JDUkNSQ1JDUkNSY2eGj01Is97UEuSpFNjBGmSJY0knxR5fhElcVJLkqTU0NTQ1NDU0NSw1LDUsNSw1LDUsNSw1LDUsNSw1BipMVJjpMZIjZEaIzVGaozUGKkxUsNTw1PDU8NTw1PDU8NTw1PDU8OnRhRH3URJnNSSJKknaZIljaTUoNSg1KDUoNSg1KDUoNSg1KDUoNTg1ODU4NTg1ODU4NTg1ODU4NTg1Gip0VKjpUZLjZYaLTVaarTUaKnRUkNSQ1JDUkNSQ1JDUkNSQ1JDUkNSo6dGT42eGj01empknvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5rllnlvmeRSFOQX5pDPPb6IkTmpJktSTNMmSUqOnhqbGmece33jHl7MXtSRJ6kmaZEkjySedeX5TalhqWGpYalhqWGpYalhqWGqM1BipMVJjpMZIjZEaIzVGaozUGKnhqeGp4anhqeGp4anhqeGp4anhUyMKyW6iJE5qSZLUkzTJkkZSalBqUGpQalBqUGpQalBqUGpQalBqcGpwapx57vHl85nnN0nSqaFBmmRJI8knnXl+EyVxUkuSpNRoqdFSo6VGSw1JDUkNSQ1JDUkNSQ1JDUkNSQ1JjZ4aPTV6avTU6KnRU6OnRk+Nnho9NTQ1NDU0NTQ1NDU0NTQ1NDU0NTQ1LDUsNSw1LDUsNSw1LDUsNSw1LDVGaozUGKkxUmOkxkiNkRojNUZqjNTw1PDU8NTw1PDU8NTw1PDU8NTwqRHFajdREie1JEnqSZpkSSMpNSg1KDUoNSg1KDUoNSg1KDUoNSg1ODU4NTg1ODU4NTLPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcZ57zMfOcj5nnfMw852PmOR8zz/mYec7HzHM+Zp7zMfOcjyM1KDUoNSg1KDUoNSg1KDUoNSg1KDU4NTg1ODU4NTg1ODU4NTg1ODU4NVpqtNRoqdFSo6VGS42WGi01Wmq01JDUkNSQ1JDUkNSQ1JDUkNSQ1JDU6KnRU6OnRk+Nnho9NXpq9NToqdFTQ1NDU0NTQ1NDU0NTQ1NDU0NTQ1PDUsNSw1LDUsNSw1LDUsNSw1LDUmOkxkiNkRojNUZqjNQYqTFSY6TGSA1PDU8NTw1PjchzD+pJmmRJI8lvinq4myiJk1qSJJ0aPUiTLGkk+aTI84soiZNakiSlBqUGpQalBqUGpwanBqcGpwanBqcGpwanBqcGp0ZLjZYaLTVaarTUaKnRUqOlRkuNlhqSGpIakhqSGpIakhqSGpIakhqSGj01emr01Oip0VOjp0ZPjTPPH49F4AB64pnqEwnIwAYUYAcqEGoKNYVa7HdFRyABOdHp2omKo9aMbjzF6Np2SYEGHECfGNVlEwnIwAYUYAcq0IADCDWCGkGNoEZQI6gR1AhqBDWCGkGNocZQY6gx1BhqDDWGGkONocZQa1BrUGtQa1BrUGtQa1BrUGtQa1ATqAnUBGoCNYGaQE2gJlCLPeJIAz0xdoq7kYAMbMBQs8AOVKABB9ATI91uJCADGxBqkW40AhUYah44gJ54pduFBGRgA55q5+6LHIVqExV4qsVmjFGrNtETY8s5juuNTeduZGADCrADT7XYjyqK1iYOoCeev7sPYw8kIAMjbg+MuPEQhD+0899GVdrD3gMJyMAGFGAHRlwPNOAAemL4w40EZGADCrADoRb+cG7pxFGnNvFUO3dz4qhUm0hABjagAE81kUAFGnAAPTH84UYCMrABBQi18AeJbgl/uDHUNNATwx9uJOCp1qMdwh9uFGAHKtCAp1qnQE8Mf7iRgAxsQAF2oAINCLXwh3M7Co6KtokEjJaMRy784UYBemLkfI/ejOzu0TqR0ucuCxxFaRMNOICeGCmtcZGR0jcysAEF2IGnmsZdRErfOICeGCl9IwEZ2IAC7ECoxfBAox1ieHCjT4xiNTp3c+CoVpvIwFDTwFCzwFDzQAUacAA9MdL/xjOucaAAO1CBBhyJkYXnR2UcBWU3RhZaXG/km41AAXagAg04EiMvLK438uJGT4y8uJGADGxAAXagAqHWodahplBTqCnU4hfyrHzmqO56rBYEnhFGdHfkxY0EPCOM6O7IlhsF2IEKtMRIkREdEMkwogMiGUZcWSTDjQqMCNHUkQw3emIkw40EZOCp5nHHkQw3nmoeNx/JcKNNjNotOpdMOAq1HtOUgQKM67XAiCCBBhxAT4wHPF46omBrIgNDTQMF2IFQI6gR1Ahq8ft2I82+iNqtiQ0owA5UoM8ujMqsqwujNOvqrKjNmtiBOvsiyrMmDmD2ZlRoTSQgz36LIq2Jkp0lHahAzy6MfLv6raM3I9+uLox8uxqqo3072rejfSPfrs5S9KaiNyPfrs5S9KaiNxVqCjWFmkJN0ZuRDB5NEslwoyfGfqdHtE7seHojAxtQgB2oQAMOoJ94Xk6UPU0kIAMbUIChNgIVaMABDLXzMYoCqIkEPNXinThqoCYK8FSL92O99ki90IADeKrR+cDotTNqC2xAAXZgxO2BEVcDI64FemLsVnwjAUMt7jj2LL5RgB14ql27sseWxfHWEcVPHJsnR/UT3xv9nhKxg23UP01sQAF2oAINGGrR6rGR8YWxlXGLy4nNjG9kYAMKsAMVaMAB9ESFmkJNoaZQU6gp1BRqCjWFmkIttjyO16gojprIwAYUYAcqMOJGZ8WGxzcSkIENKMAOVKABBxBqDjWHmkPNoeZQc6g51BxqDjVPNTsOIAEZ2IAC7EAFGnAAoUZQI6gR1AhqBDWCGkGNoEZQI6gx1BhqDDWGGkONocZQY6gx1BhqDWoNag1qDWoNag1qDWoNag1qDWoCNYGaQE2gJlATqAnUBGoCNYFah1qHWodah1qHWodah1qHWodah5pCTaGmUFOoKdQUago1hZpCTaFmUDOoGdQMagY1g5pBzaBmUIOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBS+zyEgkUYAfadES7DORCnziOA0hABjagADtQgQYcQKgR1AhqBDWCGkGNoEZQI6gR1AhqDDWGGkONocZQY6gx1BhqDDWGWoNag1qDWoNag1qDWoNag1qDWoOaQE2gJlATqAnUBGoCNYGaQE2g1qHWodah1qHWodah1qHWodah1qGmUFOoKdQUago1hZpCTaGmUFOoYdgxMOwYGHYMDDsGhh0Dw46BYccwqBnUDGoDagNqA2oDagNqA2oDagNqA2oDag41h5pDzaHmUHOoOdTgJQNeMuAlDi9xeInDS/zyEgsUYAeGmgcacABD7Rwg++UlFxKQgQ0owFNNOFCBBjzVJK43vOTC8JIbCcjABjzVYgY5Kr8mKjDUeuAAemJ4yY0RVwMjQjRU+MONAxgRoqHCH24k4Hm9Ma/s15kqFwqwA0+1mAr262yVCwfQE6/zVKL5rvNTWqACDRjXGxKR8xdGzt9IQAY2oABDLRr1OlXlQgMOoCdep6tcSEAGNqAAoWZQM6gZ1AxqA2oDagNq17kr0d2R3TE7HpVcEwfQEyO7byQgAxtQgB0INYeaQ82nWouyrokEZGADCrADFWjAAYQaQY2gRlAjqBHUCGoENYIaQY2gxlBjqDHUGGoMNYYaQ42hxlBjqDWoNag1qDWoNag1qDWoNag1qDWoCdQEagI1gZpATaAmUBOoCdQEah1qHWodah1qHWodah1qHWodah1qCjWFmkJNoaZQU6gp1BRqCjWFmkHNoGZQM6gZ1AxqBjWDmkHNoDagNqA2oDagNqA2oDagNqA2oDag5lBzqDnUHGqXl1hgByrQgAPoE+nykgsJyMAGPNX0COxABYbaCBxAT7y85EICMrABBdiBCoQaQS285Fzia1FONpGAAjwjnOuQLUrFJkaEs32jWGwiARnYgAI8r9eiScIfbjTgAJ5qFsLhDzcS8FSzuN7whxsFGGotUIEGHMBQkxPDHyyuN5zAoo/DCW7sQAVGXA884464i3CCEZcTTjBCLZzgRgY24Kk24nLCCW5UoAFDLa430n/E5UT6j+j5SH+Py4n095CI9L+xAxVowAH0xEh/j2uI9L+x5WM08ERFzt+oQAMOIJ5Ux5PqeFIj52+EmkPNoeZQc6hFznu0WeR84HWO4o1xQxbIwAYUYAcq0IAD6ImR8zdCjaAWOX+WpbbrjMUbO1CBBhxAT4ycv5GADIQaQ42hxlALfzhXmNp92mIPJCADG1CAHahAAw6gJwrUBGoCNYGaQE2gJlATqAnUBGodah1qHWodah1qHWodah1qHWodago1hZpCTaGmUFOoKdQUago1hZpBzaBmUDOoGdQMagY1g5pBzaA2oDagNqA2oDagNqA2oDagNqA2oOZQc6g51BxqDjWHmkPNoeZQ81RrxwEkIAMbUIAdqEADDiDUCGoENYIaQY2gRlAjqBHUCGoENYYaQ42hxlBjqDHUGGoMNYYaQw1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlsVFcO+tWWpT6TRRgByrQgAPoiaeXTCQg1ARqAjWBmkBNoCZQE6h1qHWo5Qxnk8tLLgw1CuxABRpwAD1RD2CotUAGNmCoSWAHKjDU4sp0AD3x8pIIdnnJhQxsQAF2oAINOICeGK5xTl23KEKcGHcRD8zoQAUacAA90Q9gtJkFMrABQ20EdqACQy2uLM6dvtEnRmkiX0cOh2vcyMAGFGAHKtCAA+iJcfr0WWzVojRxogDPuziLrVqUJk404HkXZ4VVi9LEG09/aGexVYvSxIkMPNXOCqsWpYkTO1CBBhxAT4wTqkkCCcjABhRgB+pdN9jugsWzu6+CRb+QgAxsQAF2oALtrhBssbXcRE+MYuIb6a7AbFdx440NKMAOVKABB9ATFT2v6HlFzyt6XtHzip5X9Lyi5w09b+h5Q88bet7Q84aeN/S8oecNPW/o+YGeH+j5gZ4f6PmBnh/o+YGeH+h5R887et7R846ed/S8o+cdPe/oeUfPe/a8Hgcwez5qLSc2oAA7UIEGHMDs+aiqbGdFY4uqyokC7MDoi+uvGXAAPTHKkc+S86ZXOfKFDGxAAXagAg04Eq/stkAGNqAAO1CBBhxAT4xf/xuhJlATqAnU4tef4yLj1/9GAw6gJ8av/42nGkernzk/sQEFGGrR6vHrf6MBQ20EnmotJOLX/0YCMrABBdiBCjTgqXaWCLUosLwxnOD84KxFgeVEBjZgqMWlhxPcqEADDqAnhhPcSMBQix4KJ7gx1KJ1wgluVKABR2IMBM7CgBa1lhMZ2IACPCUkmiQGAjcacAB9YtRaTjzVzo/TWtRaTmxAAXagAg04gJ5IBxBqYRVnEUGLWsuJAgy1HqhAA4aaBYba2ZJRa9nOGoEWtZYTGdiAAuzAKNII8klXSVQQJXFSmxQZfFYdtCh2nNiBUfMdZEkjySfFPMBFlBQRLzybIUbuUbrYrn/pkyIbL4phZRAntSRJ6kmaFCJxX5GGN54qPboo0vBGAsZlRhdFasVSW1QhTozp5pMis2JxLIoQJzKwAQXYZ5OMbM6RzTmyOUc2p2dzRiJdjRgpczVipEwsgEV14cS41fNKo7pw4nmlsWAX1YVyUUuSpJ6kSTYp0iJWzKJWsMWKQ9QKRoJEqeBNmnT+7eu/G0k+Kc6nv4iSOClEIkw89zee/X5+j9eiRHCiJcYAWHtgRNBAAZ7XGbcRv4VXw8Rv4Y0D6InxW3h+8dei6m8iA1s2+JVJF3Yg1ARqAjWBWodah1qHWodah1qHWodah1qHWodaZN+NdD/qUfR3Pb5R9DdRgB2oifE7pREhkunGAYy31JOuCa8gSuKkliRJPUmTLGkkpYanhqeGp4anRvxGxfprlOBNVOB5M7GmGiV4E89GjHXdKMGbSEAGNqAAOzDUNNCAAxhq51MeJXgTCRhqFtiAAoxF1yBNsqSR5JNiduuiiHhhXKkHnlcaa8JRUDfREyMfbzyvNBaNY0e1iQ0owA6Mpc6gEGuBA+iJkaXx2hK1dxMZGGLRFpGlN4ZY3Fpk6Y0GjOc3yCddORpESZzUkiJiNFbkXKxYR9VdOz/fa1F1N5GBDXheabyXRdXdRAUacABD7aT43buIkqJRglqSJPUkTbKkEIlHLoadF8aP440NGJcZjR9DyRvjqQ7ySTGmvCiu8kIGNmC0SNxHpOuN8asVzesGPH95Yp4vaurknI+TqKmTc3JPoqZOzmk8Oa7fxwsbUIAdqEADDmCo9RMp4mpgAwqwAyOuBZ5xPWgk+aT4+byIkjipJUlST9Kk1ODU4NRoqdFSo6VGS42WGi01Wmq01Gip0VJDUkNSQ1JDUuPMR4l2OdPxJp90puNNlMRJLUmSepImpUZPjZ4amhqaGpoamhqaGpoamhqaGpoamhqWGpYalhqWGuevolA8wKMDFWjAAfTEM98mEvDUOme1JArPhOJZjtQ650Ek6r/kfNOXqP+aOIAhcXZZ1H+dA1aJ8q+bOKklSVJP0iRLGkk+iVODUyMe+fPbUYmaLzmH0hI1Xz3u4XzALzof8JsoiZNakiT1JE2ypNRoqSGpIakhqSGpIakhqRGPOsdNxXN9vrZJbPwl5y47ErVcEwXYgQo04AB6YjzgNxIQago1hVo85RzXG4/5jQYcQE+MR/1GAjKwAQUINYOaQc2gZlAbUDvHmz0e0HO8eVNLkqSepEkR8XTqqNcSjmf+TBWNXjp/mm7qSY+/rfEInr9LN40kvykKtW6ipLhxDzxv8XzVlSi9muiJZ7pJi7925ttEBjagADtQgQYcQE9kqDHU4hfonMmSKL2aKMBQ64EKDDUNDDULDLW4+fglupGAp5qEcPwY3XiqnW+REgVZIiF8puv5jihRj3XTSPJJZ7reREkR8cLzSiUuOpIz7DjKq26MX6Ibzys953kkyqsmNqAAOzDixg1GGvbo3UjDHjcYaXijADtQgQYcQE+MNLwx1KLhIg1vbMBQi+aMNLxRgQYMtWizSMMLIw1vPJs32ulMw5ta0plI8UCcaXiTJlnSSPJJ50+bRlOev2w3cVLcT/SgC7ADFegTo/RJzhkhidKniRHBAjtQgY8rPd8hJSqfbvJJcbz8RZTESS1JknqSJqUGpQalBqcGpwanBqcGpwanBqcGpwanBqdGS42WGi01IjfPOSqJAqeJHXi21zkFIVHgNHEAz34IN40Cp4nn86rROzFivLEBBdiBoRbdF9l8Y6hFn0U2x8MSBU5yTl1IFDhNZGAMyeIir7HlhR14NqEEWdJI8knnj+9NlBQRow2vYWPc9jVubIGeeI0cLyRgjB3jtq/B44UC7EAFnpd60UNsxI1EFls0UGSxxf0PAj6ijlCdZ1tIFBp5BIr9cC/ipPOSruiRijd2oAINOIA+MaqMJPSjymgiA+W+KpnnWIjMcywk6orOd1aJsqKbfFL8tp6rhhJFRRMZGLcyAgUYt2KBCjTguHYEFpn7X4vM/a9F5v7XInP/a5G5/7XI3P9aZO5/LTL3vxaZ+1+LcGpwarTUaKnRUqOlRkuNlhotNVpqtNRoqSGpIakReXpOh0gUD00UYLxARodGnt5owHiHpEBPjDy9kYDxHhndG3nq8RzEHrkhFnvkXqRJIRWdHj/EN3pijJJvJCADG1CAHahAqCnUFGqxMXY8S7Ex9kWc1JIkqSdpkiWNJJ80UmOkxoj76YENKMAOVKABB9AT47XzRgKGWjwh4Qk3CtAmRl2QxEVGXZBEt0Vd0MQGFOA5mj/nhCTqgiYacAA9Md5hbyQgAxtQgFAjqBHUCGoENYZavM6eE1cS1UITQ60FCrADQ00CDTiAnhhvvzcSkIENGGo9sAMVaMBQs0BPjPfgGwnIwFMt5h6ihmhiByrQgAN4qlE01GkIEwnIwAYUYAcq0IADCDUNNQ4kIANDLVpSQy0aSjsw1OIBVwOGWrSOeqIdQAIysAEF2IEKNCDUDGoDagNqA2oDagNqA2oDagNqA2oDag41h5pDzaHmUHOoOdQcag41T7WoN5pIQAY2oAA7UIEGHECohZec25tJ7O02kYENeNYFxVOt16bgFyrQgAPoidem4BcSkIFxFx4YM2vXv/XE8IeYPIt6o4kMbEABdqACI+6ZDFFDdDeJ4I6vnL+wAxUYE4EtcAA9MXL+RvRmh1pHb3b0ZkdvdvRmR29eOR/XcOV8oKI3Fb0ZOX9dQ+T8jQKEmkJNoYacV+S8IucVOa+GZ8fQkoaWNLRk5Px1DYaWNLQkcl6R84qcV+S8IucVOa/IeUXO65XzcQ0DLTnQko6WdLRk5HzMMEY50cRoyR7YgQo0YNzbFcwnRjnRRAIysAEF2IGh5oEGzAc8aoh6TMpFDdFEBjZgPhp2zX5fqEADDmA+9sYHMDsraogmNqAAO1CBBhzAfDSijqjHZF8UEk0U4Bm3RTtE+se8X+zMNnEAPTGGBzcSkIENKMAcGNr1ZnChJ4YpxCxj1CZNjLhxQ2EKNwow7iK6O0zhRgPGXUTPhylcGKZwIwEZ2IAC7EAFGhBqcYBt3HscYHtRSzpfwuMW4wDbizTpjBhTo1HhNNETI/FjwjRKnCYysF3HiIrNY2zF5jG2YvMYW7F5jK3YPMZWbB5jKzaPsRWbx9iKzWNsxTw1PDU8NTw1PDU8NeYxtjLmMbYy5jG2MuYxtjLmMbYy5jG2MuYxtjLmMbYy5jG2Ejur9ZgEjp3VboxUvzEaTAMZeHZ4TBhHtdTEDjw7PGZ+o2BqYqwkHYGeGKkek7VRNDWRgecL4UWS1JM0yZLGpGsJjANjLaoFxmJU3OC14nWhAQcwrjRu+1r1upCADGzAUPPADlSgAQfQEyPJY6owKqYmMrABBdiBCjTgAHqiQi2SPJZqomRqYgOGWrRkJHksKETJ1MRQiychkvzGUIvWiV/+GwnIwAYUYAcq0IADCLUBtQG1AbUBtQG1AbUBtQG1AbUBNYeaQ82h5lBzqDnUHGoONYeap1oUaU0kIAMbUIAdqMBQs8AB9MRwhhvP8Xe8R0eR1sQGFGAHKtCAA+iJ4QExZx17n/WYnY5SrYnn9caUdJRqTfTEGO3fSEAGNuAZNyamo/7qbhLBHUfO38jABjzbN+azo/5qogINOCABtY7e7OjNjt7s6M2O3uzozSvn43I6erOjNzt6U3FvkfMxvR4VWxOjdaIvIudv7EAFxr1dwQbQEyPnbyQgAxtQgKEWD0Hk/I0jOysSPWbro15rIgEZ2LIDBjproLMGOmugsyLRb/REJLoj0R2J7kh0R6I7Et2R6I5E90z0HoVc/VwK6FHINbEBz7jn5zM9Crn6WV/Yo5BrogEH0BMjpW8kIAMbMOK2QAMOoCfGz/q5702PYq6JDGzA+dPco6BrogINOICeeBW9XEhABvZr9adHEddNlnQuXlmQTzoz/6a4/gsZ2IDnMmN02Jn3N2lSNNUIHEBPPLP+6s4z6W/ipJYkST1JkyxpJPkkTQ1NDU0NTQ1NDU0NTQ1NDU0NTQ1LDUsNSw1Ljcjuc2mkx35mExVo97Jcj/3MJp4t5vGsR6LfSMAofYkn9ap9uVCAHahAAw6gJ0aiezxGkeg3MrABQy0eqkj0GxVowAEMtfNxif3MJhLwbEcOakmS1JM0yZJGkk860/4mSkoNSg1KDUoNSg1KDUoNSg1ODU4NTo3I/7P4tUdx28QOVKABB9ATI/9vPOsjzvWGHmVvExsw1EZgByrwrMQ44iKjmuZGTxQGnsXAF1lS/KXoNvHEM8snEpCBDXhWilBc7ZnqExVowCi7okBP1AMYlVdxZWfGT2zAUGuBHahAA4aaBIZaXK9F3Gh+a0ABdmDE9cAzLsddnHmuHJdz5rlyqJ15PpGADIwqtbicqK65sQMVGGpxvVFXw3E5UVjD0e9RWdPicqK0poVEFMLdKMAOVKABB/BUO/dQ71c93I35EMVuZRMF2IEKNGBIaKAn0gGMG7JABjagADtQgQYcQE/kAwg1hhqHmgcKsAMVaMAB9MR2AAnIQKg1qDWoNahFmp8TX/0ukDsCCcjABjzjnlV5PXYrm6hAA467wqVf5XQXXoXdFxKQgQ0owA6MIr8LPTFy/kYCMrAB43pbYESIZ9IiQg8kIAMjQjxckd03RjtEd0d232jAuN5o6sjuCyO7byQgAxtQgKEWXRjZfaMBB9ATI9FvjKLAuPRI6asdIqVvROtESvfo+UjpG31i7Co2kYDnXZzzVz1K6yYKsANPtRimRmndxAEMtbMDorpuIgFDTQMbUIChxoGhZoGhNgJDzQM9MbL7xjOuxr1FHt/YgQqMUsa4t8jYeLiijG4iAxuwA2e9aL/q5C6MOrkbZxVpv+rkbmxAAXagAg04gJ4YP80abRY/zTcKsAPj5qOz4qf5xgH0xCi2iXSKsriJDGxAAXagAg04Eq/i82ioq/j8wriLaN9I3hs7UIFxF1ewAfTESN4bCcjAqJWOlowSmxs7UIEGHEBPjBKbGwnIwLiLeNYjeW804ADGXZwZEAV2EwnIwCjYv1CAHahAAw6gJ0bF3Y3RFyNQgB2oQAMOYEzknBSv2hdREie1JEmKGY8gTbKkkeSTrpm0oLhyDzyv8Zw961E2N3EA497Ppz4q5yYSkIENKMAOVKABBxBqHWodah1qHWodah1qHWqRu+dkU49CuYkEZGBUe3OgADtQgQYcQE+Mn+MbQy0uJ36Ob2xAAYaaBCrQgAPo2VmR0TcSkIENKMAOxPMw8DzED2/Ms0R53EQGRtx4MOPnOF73Y4utiQo0YNxF5EJkdGCU0k0kYJTKU+CpFnNUUUo3sQMVaMAB9MT4Ob6RgAyEWuT5WVnbo5RuogINOICeGD/HNxKQgaHmgadazItEKd1EBRpwAD0xfrpvJCADGxBq8St+Fnr2KKWbaMAB9MQYgt9IQAY2YKhZYAcq0IAD6InxMn4jAc/y/pgkiFK6iQLsQAUacAA98VpBD6IkTmpJktSTImK07OkBFq9+URg3MZzs+g8E2IEKNOAAeuL1SdmFBIwWiMsZ0QLRC0OBBhxATzw9YCIB4y56YAMKsANDLZ5yN+AA+sQogZtIQAaGmgWG2gjsQAUacAA9MT54ib6IEriJDGxAAXagAg04EmMfnXj2o9htYgPGhy5HYAfGpy5XBAMOYHztcnasXp+7XEjA+OClBzagADtQgaEWrRNT6zd6Ykyu30hABjagACPu6W/X5loxeRolcBbTSFECN7EDzyuLRzlK4CaeVxZTTlECd2N8s3LjeWUxBIgSuIkNKMAOVKABQy06Sz3RDiABGdiAkncc37LwhQPoieMARtx47AcDG1CA/d7OoV8bZt1owAH0xNjn4EYCMjBaJ/It8vhGAw5g3MXZ3VHWNpGADGz3th392iXrxg5UoAEH0BOvHUgujNa5UIAdeN5FvHlELdvEATzv4iwe61HLNvG8i5gkjlq2iQ14qsWsYdSyTVSgAQfQEyOPbww1CWRgAwqwAxV4tlm8NNm1XVDcRW4X1C23C+rXxls3CrADFWjAce/w06PC7cbI7hsJGGrRUNduJBcKsAMVaMAB9MRru6ALz7gxLRO1bHaW1vWoZZuoQAMOoCdGdt8YfREtGdl9YwMK8LyLmKyJMreJBhxAT7y28rqQgAxswLiL6ID47b5xAOMuIsnit/tGAsZdRLfEb/eN513EPGlUt01U4KkWk6NR4DbRJ0aJ20QCMrABQ40DO1CBBhxAT4ycj3fiawuw6Pkoarv6LYraJirQgAOYPT/4AGbPD2ZgAwowe/7aC+xGAw5g9vy1Q9iNBGRg9nzUqD1W8FqwFO6FFRzLwNedxDrwjQYcQE+MteAbo7gz7u+q7rywAQXYgQo04AB64jiAUBuhZoENKMBQG4EKNOCpFg9uVHiN67GLSs/r+YlSz5iyjAqviQ0owA5U4KkWE45R4TXRJ0aF10QCMrABBdiBCjTgAEIt1oDjSYlaromSyPFvW6AAQ00CFWjAAfTEdgDj3npgXIMGNqAAO1CBBhxAT5QDSECoCdQEagI1gZpALeo3YnIs6rNGzKhHfdbdqB190dEXUbARs9lRnzXRE6Nm40YCMjDULhTgqRYT8VGfNdESIzfjpzxqrkb88kXN1cR4UuMurjrr6JbIwhsH0BMjC8M1ovxqIgNbdndk4Y14dgbUBtQG1AbUIgtvPP/tOeussQvWRALGf6AnRuHDjQSMi7TABhRgNOoIVGA0qgcOoCdGCcQ5DaZRBTWRgQ0owA5U4Kl2TjNqVEFN9MRIpxsJyMDZ3XpciRP3Folz9pBGIdRET5QDSEAGNuDsWD2kAxVowHFni0Y51I1XOl1IQAY2oAA7UBMjRSyuLFLkxg5UoAEH0BMjcW4kIAOhZlAzqBnUDGoGNYPagNqAWqSTRRdGOt0owA5UoAEH0BMjnW4kINQcag41h5pDzaHmUPNUiyKniQRkYAMKsAMVaMABhBpBjaBGUCOoEdQIagQ1ghpBjaDGUGOoMdQYagw1hhpDjaHGUGOoNag1qDWoNag1qDWoNag1qDWoNagJ1ARqAjWBmkBNoCZQE6gJ1ARqHWodah1qHWodah1qHWodah1qHWoKNYWaQk2hplBTqCnUFGoKNYWaQc2gZlAzqBnUDGoGNYOaQc2gNqA2oAYvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hC8vOcdRfHlJDyQgAxtQgB2oQAMOoCcOqF1eMgIZ2IChpoEdqMBT7SwLV74+qrzQE6/PKlvgqTbijq8PKy9sQAF2oAINOIA+sV0fWF5IQAY2oAA7UIEGHECoEdQIagQ1ghpBjaBGUCOoEdQIagw1hhpDjaHGUGOoMdQYagw1hlqDWoNag1qDWoNag1qDWoNag1qDmkBNoCZQE6gJ1ARqAjWBmkBNoNah1qHWodah1qHWodah1qHWodahplBTqCnUFGoKNYWaQk2hplBTqBnUDGoGNYOaQc2gZlAzqBnUDGoDagNqA2oDagNqA2oDagNqA2oDag41eEmDlzR4SYOXNHhJg5c0eEmDlzR4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXyOUlGtiAAuxABRpwAH1iv7zkQgIysAEF2IEKDDUOHEBPvLzkQgIysAEF2IEKhBpBjaDGUGOoMdQYagw1hhpDjaHGUGOoNag1qDWoNag1qDWoNag1qDWoNagJ1ARqAjWBmkBNoCZQE6gJ1ARqHWodah1qHWodah1qHWodah1qHWoKNYWaQk2hplBTqCnUFGoKNYWaQc2gZlAzqBnUDGoGNYOaQc2gNqA2oDagNqA2oDagNqA2oDagNqDmUHOoOdQcag41h5pDzaHmUPNU0+MAEpCBDSjADlSgAQcQavAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFl+jlJSPQEy8vuZCADGxAAXagAg0ItQY1gdrlJR7IwAY81c56XI2N5yYq0IAD6InhJTeeaufnzRobz01sQAF2oAINGGoW6InhJTcSkIENKMAOVKABoaZQM6gZ1AxqBjWDmkHNoGZQM6gZ1AbUBtQG1AbUBtQG1AbUBtQG1AbUHGoONYeaQ82h5lBzqDnUHGqealGhN5GADGxAAXagAg04gFAjqBHUCGoENYIaQY2gRlAjqBHUGGoMNYYaQ42hxlBjqDHUGGoMtQa1BrUGtQa1BrUGtQa1BrUGtQY1gZpATaAmUBOoCdQEagI1gZpArUOtQ61DrUOtQ61DrUOtQw1eYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8JIBLxnwkgEvGfCSAS8Z8JIBLxnwkgEvGfCSAS8Z8JIBLxnwkqgH9PMbDI16wIkKtBNb4AB6Yux/fx69rlEPOJGBDSjADlSgAQfQExvUGtQa1GIz/PMTAI1t8SZ2oAINOICeGHvi30hABkJNoCZQE6gJ1ARqArUOtQ61DrUOtQ61DrUOtQ61DrUONYWaQk2hplBTqGmoSaACDTiAnhgb499IQAY2oAChZlDDyspVsGjR89d67IUMbEABdqACDTiAPvEqWLyRgAxsQAF2oAINOIBQI6gR1AhqBDWCGkGNoEZQI6gR1BhqDDWGGkONocZQY6gx1BhqDLUGtQa1BrUGtQa1BrUGtQa1BrUGNYGaQE2gJlATqAnUBGoCNYGaQK1DrUOtQ61DrUOtQ61DrUOtQ61DTaGmUFOoKdQUago1hZpCTaGmUDOoGdQMagY1g5pBzaBmUDOoGdQG1AbUBtQG1AbUBtRGuEYPNOAAemKcfnMjARnYgOFRI7ADFRhqGjiAfqMd11TEESjADlSgAQfwDMaBp1VMJOB56ecXYRalnxMFeF76+UWYRennRAMOoCfGT/6NBGRgAwoQagy1+Mk/PwOzKP3081Mpi9LPG+Mn/0YCMrABBdiBCjQg1OIn//zuyqIgdCIBGdiAAuxABRpwAKEWP/kt+iJ+8m9kYAMKsAMVaMABPNXOzxUsdsqbSMD4b+OZjB/sC+MH+8a5CGBHLnDYkQscduQChx25wGFHLnDYkQscduQChx25wGFHLnDYMaA2oDagNqA2oDagNqA2oDag5lBzqDnUHGoONYeaQ82h5lDLxVKjXOAwygUOo1zgMMoFDqNc4DDKBQ6L0k8/v+uwKPL08wsOu4o8x4UNKMAOVKAB43o90BOvicYLCcjABoxn8sIOPJ/J8ysSiyLPiQPoiZHdNxKQgQ0YcVtgRIj2jYy9MSJEQ0XG3tiAAuxABRpwAEMt2iwy9kYChlrcfGTsjQLsQAUacABPtfNDCovCzYmnWo+bj0H6jQ0owA5UoAFHYgzHezRfDLzP7w4sijEnRoS4zTiY6sYB9MQ4m+pGAjKwAUMt7nh0oAJPNY2bjx/sGz0xfrBvJCADG1CAp9r5kYhFMebEyIvo7iuPL/SJVzHmjQRkYLxWU6AAO1CBBhxAT6QDSEAGQo2gFr/o52cQFsWYEw04gJ54HWJ3IQEZOKfE7SrGvLEDQ+1CAw6gJ17H2V1IQAY2YPSbBnagAg04gJ54HWx3IQEZGPd2BAqwAxVowAGcky8WVZWuFyrQgAPoiZHoN8ZFjkAGNqAAO1CBMYsSz0Mk+o2eGD/uNxKQgaHmgQLswJiziR4yAw7gqWbROmEKNxKQgQ0owA5U4KlmIRGmcKMnhincSEAGNqAAOzDUTu+LSkk/3yQsKiUnNuAZIYbjUSk5UYEGHEBPjKH7jQRkYANCLRL9LB61qJScaMAB9MRI9BsJyMAGDLVoh/hxv1GBBgy1aJJI9Asj0W881SJbolJyYgMKsAMVaMAB9MRI9BuhFokeHhWVkhMF2IEKNOAAemIMBG6MuBo4zj3+j1A+03vymd/JFEzBXLgVlsK9sBa2wqOwg+0oXHTt0pXgVlgK98Ja2AqPwg4eR+FLN9pncOFWWAqHLkVbDS1shUOX4l6Gg/0oTIW5cCsshXthLWyFi65fuuc9RkVkMhXmwq2wFO6FtbCB6YqvwVSYC7fCUrgXvuJbsBW+7msEO5gvXQ+mwqEb0wxREJkcujG7ECWRyaEbb/xRFJkcuuc+MhZlkZNb6Ma0QBRGJl+6PbgVvnTjHlsvfOnGPTYrfOnGPTYHy6Ub9yhUOHRb3GPsMzA5dONNO8okk0O3xT2KFQ7dFvcoDu5zXcOiVnIiAxtQgB14KUYrdSs8Cl+K0QKXI91MhblwKyyFe2EtbIVH4aJrRfdynnidlcth4gVSLoeRaOHLYW528OUwN1Phcv2jXP8o1z/K9Y9y/aNc/yjXP8r1e7l+L+3mRdeL7uUk1z1ejhH32A9cfz+oMBduhaUwrr8fWtgKj8K4/k5HYSrMhVthKVx0qehejhH32C9nuO6Ry/Vzuf7LGW7Wwla4XD+X62/l+lu5/lauv5Xrb+X6W7n+Vq6/lXZrRbcV3dsB4h7vTI97lHL9Uq5fRmE8t1HJmFz6vV/9TsGt8Fx7s54rfdZzpc96rvRZv3JaLr5itOCr7ePar9y9WQtf1x73dOXuzQ6+cvdmKsyFW2Ep3Atr4aJrRdeK7p3r0Q93rl/MhVthKdwLa2ErPAo72IuuF91r1BDzMv0aHfToq2t0cLMn65XrN1NhLtwKS+FeWAtfuhI8Cjv4yvWbqTAXboWlcC+shYvuNWqIaaLrLNubr1HDzVSYC7fCUrgX1sJWuOhe3hBTSnp5w81UmAu3wlK4F9bCVjh0Y0ZEL2+4+Bo1xISFXqMGjfaRub5tKg0owA5UoAEH0BP7ASQg1DrUetxjzHRECWOyFrbCo7CDL2+5mQpz4Vb40rXgXlgLW+FR2MGXV1g885dX3DwKO/jyipupcFynRX9dXnHxlePx5q9Xjt/Mha//Pq7nyv2be+G4znHFtMKjcFxnvF3b5Qk3U2Eu3ApL4V5YC1vhUbjoUtGlont5wrmRsNnlCTdL4V5YC1vhUdjBlyfcTIWLLhfdyxNiCcUuT7hZC1vhUdjBlyfcTIW5cCtcdFvRbUW3Fd1WdFvRlaIrRVeKrhRdKbpSdKXoStGVoitFtxfdXnR70e1F9/KHmMWxyx9u1sJWeBR28OUPN1NhLtwKX7ojOHRjBtsuf7jZCo/CDr7GJDdTYS7cCkvhonv5jEebXD5z8yjs4MtnbqbCXLgVlsKzrN8sP5Awyw8kzPIDCbPLe2J2yS7vubkX1sJWeBT25HF5z81UmAu3wlK4F9bCVngULrpUdKnoUtGlont5z7kxrF3lie1CBRrwErVgB1/GczMV5sKtsBTuhbWwFS66YTwU03xRqphMhblwKyyFe2EtbIVHsAQ7WI7Cl260j3DhVlgK98Ja2AqPwg7uR+Gi2y/dEdwKS+FeWAtb4VHYwXoUvnQ9WAr3whE/pvCibjE54seLVFQuTg6DmRzxzw2kLYoXk1thKdwLa2ErPAo7eByFi+4ouqPojqI7iu4ouqPojqI7iq4XXS+6XnS96HrR9Us3nj3XwlZ4FPbkKK5MDv+jwCtkD9bCVvgKqcEOpqMwFebCrbAU7oW1sBUuunzFt+Ar/ghuhaVwL6yFrfAofL2Xns3s15jmZirMhVthKdwLa2HM4fhlITHT65eF3MyFW+G4r5gB9stCbtbCVngUdvBlITdfczsRv3PhVlgK98Ja2AqPwpiLc8XcTpRLzvu6LOTmXlgLl/vScl9a7svKfV0WcjMXboXLfVm5rzJH6lbuy8p9Wbmva4xyc2nPUdrznguNex/lvm6ruHgUdrCX+/JyX17uy8t9eXlOvDwnXp4TL/fl5b4wdzqO4yhMhblwKyyFe+Ex730cR97XOOgoTIW5cN7XOEgK98Ja2AqPwg7mcl9c7ovLfXG5Ly73xeW+WAtb4QHOT7HGkZ9ijSM/xRrHNR45l2nGcY1HbtbCVngUdvBlJjdTYS7cChddKbpSdKXoStGVotuLbi+6vej2onuNR87lp3Fc45GbtbAVvnQl2MHXeORmKnzp9uBWWAr3wlrYCo/CDr7NRINbYSncC1/xo6+v8cjNo7CDr/EIR7Jc45GbuXArLIV7YS1s4NtM4uG8zeRiLtwKR+3h9Vc7UIEGHECfGJWZEwnIwLjUc4Vu0DXeuHkUdvDlGzdT4biFcw1u0OUbN0vhXlgLW+FR2MF8FKbCRfcah5yvSoOuccjNvfCla8FWOHTPdYpB1yvOxdcrzrlOMeh6xbk5dM91iEHXK87NUrgX1sJWeBR28GUpN1PhoitFV4quFF0pulJ0pehK0e1FtxfdXnR70e1FtxfdXnR70e1FtxddLbpadLXoatHVoqtFV4uuFl0tulp0reha0bWia0XXiq4VXSu6VnQvq5HIkctqLr6s5mYqfOnGs3pZzc1SuBfWwlZ4FHbwZUE3U+Gi60XXi64XXS+6XnS96Dp0+TgKX/E1+IpjwVb4ijOCHXz5z81UmAu3wlL4inlaKzP6mi8Pifbny0NulsK9cFzzuTY2+PKQm0dhBzc8Y9yKbvEQLh7CxUO4eAgXD+HbQ+J62iiMZ4zlKEy4nstDbm6Fi27xEC4ewsVDuHgIFw/h4iHc8WxzL+3cSzv30s6Xh1zX00s799LOxUO4eAgXD+HiIVw8hIuHcPEQ1tK/t4dcXNpZSztr6d/LQ24u7Vw8hIuHcPEQLh7CxUO4eAhbuV8r91s8hIuH8CjtPEo7j9LOl4ec66yDLw+5+WrnK/4o7ODLQ26+7jfy+vKQm1thKdwLa2ErPApfuqdXtMtDbubM5Xb5ybkd/ohq1eReWAvjWWrHKIw+bXQUpsJcuBVGnzbqhbWwFR6F0aeNj8JUmAtf9zWCtbAVvu4r2ufyIo3rvLzoZirMhVthKdwLa2EDxxdPFJcZXzzdSEAGNqAAO1CBZ1X6OQM3ru0hz0m0cW0PeU6QjWsjSIpnI75toujq+Lbpxg5UoAEH0Cde+zye81Pj2ufxxg5UoAEH0BPjw6OzvHNc5X90LtyOq/yPzsXacZX/TW6FpXAvHB1xLuKOq8yPzm2Fx1XmN5kKc+FW+Irfg3thLWyFR2EHX+Z/86WrwVy4FZbCvbAWtsIDfBm+RT9dhn8zF26FpXAvrIWt8CjsYCu6VnQvw7fo6svwb5bCvbAWtsID/WKlT0fp01H69DLts1x/XMV7NOIZu8z5Zi7cCse1jXiWLnO+WQtb4VHYk69iv8lU+NKl4FZYCvfCWtgKD/BlznG/V4EfnQv84yrkm9zzHq9CvslWeBS+7uVsz36Z8M1U+LqXHtwKC+Jw0eWiy0WXi+5lzhe3ozAV5sKtcNFtRevKfY1rvnL/Zi7cCl8mH/dyHyV2sRa2wnH9ZxHMuAr/br5y/2YqzIVbYSncC2thK1x0e9HVoqtFV4uuFt0r38/im3EV/9H5VdG4Cv5I47m6cvnmVlgK98Ja2ApfuRz9cudy8J3LF1NhxvVcg7ebpXAvrIWt8Chc7vHyh+DrqN1Iqeuo3cjY66jdeOCvo3ZvFGAHKtCAA+iJcdTujQSEWhzcGRl1HbV7Ywcq0IAD6IlxiN+NBGQg1BhqDLU4uDPM5DqA98YB9MQ4uPNGAjKwAQXYgVBrUIujds9PpEcU0tn5GeaIQrqJBhxAT+wHkIAMbEABhkQ8JXHq7o0D6Ilx6u6NBGRgAwqwA0PizJfrUN3zu6ZxHap7IwPPYB4PbRy7eWMHKtCAA+iJcdTujQRkICTigM2YSYgt+26MAzZvPCPEK0mU1k1swDNYvC9ch+reqMAzbryIXQflxjtW1MhNjAgtMCJIoALPO45XpyiPm+iJkYXxDhW1cRMZ2IAC7EAFGnAAPZGhxlBjqDHUGGqRb/Gydh2Ue6MnRr7dSEAGNmDEHYEdqMBQ88AB9MTIwni/iTo30+ihOPD6xlNNo4fiwOsbO/BU0+i3yNgbT7X4CY76Notf1yhvmxhq0SSRsTc24PnGwdd/O4CeGHvn3EhABjagADtQgVBTqCnUDGoGNYOaQc2gZlAzqMWrZCzkXHvkxRrNtUfejQKMCNGb8dJ4owEH0BOjNO1GAkbc6Pl4abxRgQY847Z4NOKlMfDaDe9GAjKwAQXYgZpI2ajXZnc38ryGa7O7GxGMEIxKMAMOIC6dcemMS2dcOuPSGWoMNYYaQ42hxlBrUGtQa1BrUIvtsM5vz0YUg12dFfVf4/zybET51/U8RPXXRAF2oAINOICQ6AeQgAxsQAF2YD6TQ3PMNTTHXENzFDS0AQXYgQo04ADmmCsquyYSEGqWo6Co6prYgQo04ADmmCvquSYSkIFQG1AbUBs5CopCrokDmGOuqOKaSEAGNqAAOxBqnmp+5JjLjxxz+aFAAw5gjrmcDiABGdiAAswxl5MBBzDHXM4HkIAMbEABdmCOuaLY6hpdRa3VRAbmmCsKrSZ2oAINOIA55orSq4kEZCAkBDcfCXnE5URC3khABp4JeUSESMgbO1CBBhxAT4yf0BsJyECoKdQUago1hZpCLX5Cj9MJru3nboxGvTAaNR7PayB7oSdeA9kLCRiNKoHRWT1QgQYcQE+MJPNIhkiyGxnYgALsQAWGWjzrcX78jX6jR9XTRAIysAEFGBIj0IAD6ImRmzcSkIENKMAOhBpBLdLUPdATI01vJCADG1DuVveodJqoQEuM2SE+Hx6P2qbkVliCW3AvrIWt8Cjs4JhNmkyFuXArXHSl6ErR7VccCb7++7ivruXfX9emwde1RW93B+tRmApz4VZYCl/XFr2nWtgKX7rRPzFTxOfsvcfecQ+Odo5ZIz6XKfyqULrvxVrhco/XjNCI+NeM0MXXjNDNVJgLt8JSuBfWwlb40o17uWaEPO7lmhG6mQpz4dD1uN9rxvjmXlgLW+FR2JPpmjG++YrPwVecFnz9XQm+/u7ZhncZ0s1UmAv3wlccDXbwNdMbLnKXD0U23+VAkZd3OdDF1wztzdfzdgRz4VZYEP/Owevfa2ErPAo72uGa0b2ZCnPhcr/XzO11j9fM7c2lHa4fvvir109ctPL1E3chAxswfuIiwvUTd6ECDTiAnnj9xF1IwFCLq4+3xBsF2IEKNOBIjLXH695i7TEy/joc98aeNxQvjDcacADj0uO5iBfGGwkYlx4PRaw93igZwaHmUHOoOdTiNTLw2o/tRgIysAEFeEn8r3/420P2v/4WP13SHv+o8Y/nz4yc/6/hH/vjH8f5jzEiO0tzYjwm+vj3nv/ZOB7/eKbe459j1TP+mc5/jje90wPjPS9grgS3uQ7c5ipwm2vAba4At7n+G9sfn+u88bZ3rvLG1sfnGm9scXyu8MYr37k6Gy98AXPFV+Z6r8zVXplrvTJXemOceK7H9rm02+fCbp/Lun0u6va5pNvngq7lz63lj+1t7/FV/PyRs/y5s/yRtfyJtfyBHfnzOvLHdeRP68gf1pE/qyM1RmoM/JBz/oT2/NGx/Hcjf1TzZ/Ry4hsJyMAGFGAH5u/nVUV64wD6/CG9vDt+Ry/rjp/Ry7njV/SqH43rJhJgB+av5m3gFxKQgQ0owA5UoAEH0Ofv5rT/89IbARnYgPkzeReCXqhAAw5g/kJO0w8koMyfyuns7USfP5R3Cef5O3BXcF7IwAZUYP4s3sWYF9L8AbtLLs/fx7uC8vwZvAsoLyRg/h6SNaAAe8Y1xb814AB64sjfwbtq8kIGNiDubeRP4F0YeeF9x6eJcZhYTLc+rikG6AFtgkzoE3SCTRgT/IZ4sQ6YkduM3GbkNiO3GbnNyG1Gjhfpc80uXqNPuKakx2WGF0Rkv8zwApnQJ+gEmzAm+A3X9PMJNGFG7jNyn5H7jNxn5D4jx+TVuaYZk1RnoUvMS8Ueh6dE7E1wBowNCGRCn6ATbMKYEHH0ss4LaAJPaBNkQp+gEyJyTIOdEC8FE2gCT2gTZEIEPAcAOsEmjAlxqX577E2UxEktSZJ6kibNtgxvvcknxbvtRZTEk64lyPjJbv/v0/7/Pu3/j3naZQ5YH2tv/+vxL/713//7P/3nv/z7v/23//yPf/7n8/+b/+J//O0f/7f/+tv//U//8c//9p9/+8d/+5//+q//8Lf/7z/96/+M/+h//N//9G/x53/+0388/t9Hx/7zv/0fjz8fAf/Pf/nXfz7pf/0D/vbx/K/2do5i42/31iQD0NiN0PT8CiUitMdqNSLQ14vgRYjze5grgncEUN0NoDSbQBsCtONrAHke4PGSOiM8BirjaYi+agfWbAdrT0OsmnL0bIjHMsDTprTnIZjPxfkIwa3hKh5DwC8hxru9sbwNR4RjPL0NWj2X2maHPBAxun8NQas+PYd/d592fhpi8VyFWUWEUXOjy3aEIfM2HktszyPs3oY9v41VY9oxU/SB/jSELp4rORekrueqCz0NYW83xeLJfLyz5cP9sOaMIfw1hC8u4vzBvi7C7elF8KIxzx235uN9Mi6jse/fSnzrd99Kp2e3wotHi0f67vE0wDrHPL3fqD3rU5b3TW8VQ5jnjQjr4gdEl/7NmSSlNR7v819jLJ7PPmaP6NFLhOMXjwac79xIh54+Grx4RB8LjfMZfawulp+zb/3SFlfCdmSmGKNNf9MrNhNepNvTXmmLJ/QxsymzOR6zriVG/xqjLWJ0HvA/6fXnxL5Gkfefj9bffT7W96KH5mVo9+f3svqJj68tbusoo4SHpXyNMd5+PvwTNriOspsxQu9njPC7LbLuXRcMIr2Onb71rqwcNWqvL0d9zDaV3v0Wo69+GWQ+ZjyqK9u39lg4ao+N464fByoZ80eM1XXEqSL3T9SxuI7Fk3qeXz3Tzsiexlj2zONXKp8ybfWH/1ur9oWnKucToo31eYzFkyqxU9jlqsT8UoweO2LcPcPy2r20NmM8Xt8W7SGr4YN4DtH1xRjxgnwPQYxfizEwuh3H8xjrJ8SOkU/IY9j//ErGX/oLYZSvgHSewfP0OnQ1Dnn88M7ufbAdT9xM6S/1Q4uTE+978f68Z7T9pW16fmw3r+P8aOz5day8rNnIF2uvV/L11UH13TZdXoXkTAeLHE+vYjkqs5wieCzSjKejMl38bnNvnq+DX/L2awxbPKUy8t1BxpcYuh2jS15HF2/PY/D7Y0N7+yldt+jIZ0OZXusVbYix6pXFMyrHyF6hLyNU+cV1DPzuc39+HQsvfSw+piHLl6f063WYr2ay8peytWHPY6yuQ4oh0/MYY+WljQSTJ/pSm7YD06zHeC1r25FTSY8rsqcxxupNyjkfkAe7P3Ox1XXExgB3vyye9bHy0tgI/H4L+vI7+XUCZCzepB6rN/NWzp2WX4pxftKX01qdnsfw9x3Ij7/SgR5DQsteMXvtCWv5JtaE/WkMb+/OPy+vQvJFrGmdBP9+FYtfWiqvDK3Vfm37MeJA0+sZPcbxPMbi+fKR4w73Mrpt337hfOFhcbzeFaKMbM+72s62nmPsx4/M86c8NkteNEf+PB3FSv+YyV5YacsZYDmez9/SsVos6tkrqsfxfPr2WA0qjzhQe05ccHs66eDr4VwOKrs/f0Bib+fnYyCe99N7md3/vuRDh36gb+z9vhmf6Bv/RN+sZ8e74vX26YrHaoCLNSwx7c/XwVYLSO3I35f2WDN4nnnLIFEZdwXhxosg8v56GvW3F9RWIXZX1HbvZLGktt2k0l7sFxLJIIvBAy1XHTbXronp/YWc9e10zfGlLm+nrR6RfHk4j3F4bmfLIINnw57b5i+C9A8sIOv7K8j69gPPH1g45bdXTmm1KtUo56UfrwBlnl75xV5ZJO/68ciJ6XNH/deesUGOvq1v29+DLBemuuRrrpUp8u/D3XXeec7oPCa3F78RTd9/2ldLU5tPe3u/SmD7Tl61d8/VdTkOfd6k8oEKFHm/BEXer0ER+qubtGN8eIzXfjHlyHo1OWTVL6uV/s3iIhkf6Ft/v2/9/b4d7/ftukXfHSz3I5fGH0u4i6Kx1VKQctNc1moLS+6LHxinsiJ9PHfkdXsY2mO82KabVVurFSmWbNXHu6Y8j+HvP+mrFanNJ30VYvNJ376TxZO+bFHMSz9aVF+L0fOd7rGQ0p636Oqt33Neurv6izGa7MRYP2F7hYE63n86xttPx2otabMkL/ZJfV55sVOTt7yKzaH6ajVqc6huKyelXEpSKt36x1B9P4i+GERyZV6lLJr+GcTe7pflvaAOhcar98L5iOkj818Nkumi7K92TcviDa2T/X8EGauV08fvV060Pbg9n69bhvlFRe0yjOWv/4OVXg7jmD0cZaD6yzC7lW20Wl7aLW2Lz0PfqztYX4exYw2BF9exHcRfDZLd88D+WpDHOkV55I6xCrPsZDcU2hxlgPXbZ6VMWI8ycP1tGKISZpGO+7/oz9+OfLmyijm8579h6xH0VnF6fOL79sviMkg7cha/8fPXVj6W1VS5qMkmz0vtD357HM5He3ektQyxN9Li1YrV5hiHVwtWux9y2PvTkfu9YoteWT4dCn8e8lKMFnuQ3zfj9mqM4+0YDUOtVl6ffxdDUR8ynsdYrfFsvh/9EGPr/Wh9L4KHTHS8H+PFZ+zxE5DrVTKe9+3q4ykq4zTjVdatLiQ2Fb4u5PEz8fRCVqtVu527jvGBzjXCvSwSd/WhzWO8mSsAZ4HKi43quZA4Fk/Zap1pb/meV59QkWdh18M/nr+aLK9Dcv5NyuPxx9vr+jc7FyKl1fWdX/3wi+BCqL0aJJ8QkdXoodH7K7y8KoPeXuFd3k4c1XglDR28uJ3+idvRv/h2OmWQ/lhCWdzOeHesu7wMyce1d38+TmVZVZtQpm8pvHsMgL6FeLvmf30V+Qpek/fPq2irG8kZVuFSiqT7IeLtB29C/XgtiHe8TnkZ7P4uCD6CoLqS+JtGzVkW8VXXjr80xDkxgnfmQc9vZXyiZ8Ynema83zPrzNUyiPiyY8Mv0l8p70bJxqtBcnz3uKYXf/JUciyiX0oJfxWk5ZyIdnteBcR9fOA3YrXe85HfCO1ZJP5Y2Vzczuprqsey1JG5070M835xJdYof2marK6kvT8Toe9XArK+XQm4DLE5E6H2/kzEculpbyZi/UHE5kyEvl/V+MPTsTcTsYqxOxPxQ4zj7RibL5q2u0LaX2vT3RmRdYy9GZHVl0y7L83rGHsvzct7kSOfD+GnK8Y86K++jr2Zme0YL+bc7szM6B+YmbH+gQek/8UdszmrsvykandWZX0he7Mq/vYHK+z8gVkVp3dnVX4axGCB9fGwyLNh9/KbqPKEnEHGK0E2XxF/upm961huTpHVu3boYv6gr0rEOacPMP5ov3qR8bIIefSX3oYef9ERhJ+9DbWD33+lWgb5yOv/bou0T7SIfqJF9N0WWS+ao/bWfdCLK++eE6KPIIsaAG8fWXlfhVFsLaXD6Onr1CoEXsnU2V4Lkd/vqPenIdaFOFnlqe14ua4of6geQRbVPMuPIjyrtazezO8+vPEcuJv78yBttTne415zesfk6SCi0ftVq43frlpdhth7R23Lff723lEbv10R2JZb/W2+o+73yvPx8vrpwKcZj+mS9rxn7e1h6g/XsfXJbFt9VLU3Omyrj6rUFBtkjec1P8vr2Bsdth825zzwmI6XmpQJ30PT85F/W31Rtduk/f0B9/I6Npcx11+Y5R4Xg8bzzXzXnzHvfYmw3Pt16yOCJsf7drxantq041WITTvevhN7rUE3vyFYbsiw9QlBW27xt/e+/0OMvU8I3v5ocPkF9HYd8nr31t364R+ibJYPL/eA3Sy33Y/hL8bYK7Zd7/G5O+Jft+tuqe3yWvaflPWupZuFtusoH7mj/afWP/HULvdh3Xxq92P4izH2ntrlF6/7T+36Sdmt7N7efP350ErfrVJZbgh95MLhYzxQVx+/bcW4+rqpsWMdg55NIK5DoLbry6Zu30N8YIppNchUfB7+ZbfQ743xgUMnmn3g2Al+e4Jp9T6ludGe1uKj73unryLkyExLpT7/Zg/4fqSd9lK99Mce8MutAxiDu7Jx0B/7hK8Wp3a3yFtvnrq3SecPW6fzUe7m+VbBbbXj32bOLkPs5ex4+xldvZCxYcdAs2fz/av3wr2nfBlh6ylfbxiy95Svd8PffMrXq1KbT/nytJr8tpMfXC6k7cfo2abc+yLGMlPiNKq7RcbxfNvl5vp2pixD7GXKalFqM1P2m+NL7fNvdrIX1IGUxUJ+OcZ4P0YtSv3NjvqG3Z9tPN+FfndH/aNU+f5mN/zePPeEqPvY/2pH/SOn6PXwxc7+u6cUjEWbHu/vSiXHcsPRA8U1rM8vZDVHZj13obfuTw9BE1p/94TErXPs369jNdPv5TP1Wl1vv2mQ3Inlyy6u/LsgXkqWnnfvekt9wiul8sJTZfXus/Xe8sN1ZIjzOsbiOpZ7qOZP5kGlMta+/mQuD38QmgOQBz6/juXhDy3fSvvXTXp/c3ADjEiHvhYDix/nNOLz38tlz0huh/BgeTkKDghSWR3uMd4d2i0jbA3tfji2oRQL+PFsVVtWW/2dB9LPuQ96OoBYh8BBJ848Xnp7abk75oPNX+tZK1Pt1ul5FGn87qhsHWJrVCbr5aC3R2Vfm4Nfb1TsONjbi0lnGHU/WI9F14z3u2a83TXrL6fe75ovzWHHy11jJQo9jbIqWtxzsmWEvZfU5ZEr1HKCfNDCk0X03Tf2ZYiHG+I35rFSfrwWxMohEPb0e6OfgpTjcGy85KuDMQx5rDssjgdaLW9/5kAczjEi15qjPw7E2Y1B/FqMnlVp3JVeivG4/txA9fjyOvPtoJDj/YnY5XE21HNjSh41/38Ro57oXEvBv8WQ5ZdTe8a8DLFnzErvGvO6MfI9tUstA//eGEs/PHKNW48vR+J8D7I86SxtmY6nb5jry0CRH33ZkvY390K59enjvYheDZLzh+e2aC8HyW8N6cWjm7aPf3r799Le/r1cHkG1Oam7PsZqb1JX7AOn+9hy16UsipVjcYKU2NtTqesQewZkb0+lLr/swyaujyXJ1471athc9xHj+XE2Mj6wh4Ssdhjb/Y1b1kznCXZaxi9/XoZ84l4+sHC6/JiF0pKJv+wf0b5dyGobKkz6FQuzXxwzpPguf+hrxwztJv7yqCLLM6h81ONe6RcxcCigj7rv6O9i5HcKo1Yq/+LIJDoE2xTUoppvhyYtr8MPHN3EL96LKz7cMHkpBj3mklEidJRjI79Hkf8/hPlS49ueH0e1DsL5fslcXup+F6Rpvl7Wj2r/6OP1G0yuYQg9Pyasf2APuR9i7J0htw6yOQ754Ur2BiJ9fR7Vnh+tD7Xa+46kH+/v89+Pt/f5X4bYK1zev5NF4fK6W7a+vei0Oit1s2R4eU4YPqvTL9+z8S+CGLYHtfoBx6+C7H5+sQ4ycjVFx2ob5R+OPas7DtcV5v6bMOdxq7kKIeVg79+GyUNPz5CL7/zWzZt17mrCr/YRtnAZx2J76dVuoZvfcxzLM0u3PpFZx9j7RKa/v9Nf/8ROf/0DO/2tuzZn7h69zC9mDh2tVGJLe/WRx7m2D7aXE5BQtkdfPrX7frTkcuAItz+OspfT98Fab2/X/q1DbL2G96Z/aYi9N/l1gw58/VzmzL+355B33327fOC0vy4fOO1veXhyz1+bx4rI800Ll4cnUx73ORrLazF6vmWNzs+36eyr+q6953x9GTn+Hn1xBltfbXq+mW7LEHu5Iv5urozlWYF7h2KvDrTem5ddRtial13uIrP5PrQ+3Hvzdaj3T7wOHe+/DnV7/3Wov33czzLE5uvQ9p2sXoeO91+HlD/wOsSfeB3iT7wO8Sdeh/gTr0PtM69D7TOvQ+0zr0P8idch/sTr0Nv7SS2zZ/t16Hj/dWj5CdXe65DpB16HrL/fpPyJ16H2mdeh9pnXofaR16HVWKDnaOLLJwC/GU3kmrfK81VefXv0Pz6wdXofH9g63ZYFIrlZUKsnmX1f5F3GMJx+7l/qw/djyJFe9kif54vN3d/f0uGHGJvz78sgu/Pv6yvZHHD6BwoB1kvOpWqO7GnfrGKwYrviejLcr2L0TH5Wk8Uz8oENqbt/YEPqdYvkmJPteN4ienxgP+rlB+Gi+JzBnp/Yq8f721Hr8f521Hq8vR31MsTeO4ke729Hrcfb21Hr8YHtqPd7xRa98v521MsYm9tR/xTjeDvG3nbUSu9vR72+jr3tqH+IsbUdtdL721H/EGPr3Xl9L3vbUesHzpL64Tq2tqPej/Fizm1uR638ge2of3jYNx+Q/hd3zN521Mof2I76hwvZ2o5a29vbUWv7wHbUy+vYe9f9aQyztR21tg9sR70Mslkm+tPN7F3H2BpMtYP5+QtVe/dFeV0OvfOivP6kIw89fmCd/P/FZyGKT0vU22sxRn5ZyvUF9XeflrChT57fi6y2CN/9PmUZZG/L5HWIrS2Tfwixs2XyslcsM+XxynC81rNfYsiLMRgx2uoJe/vj1HWIrRU/7fKXhtj0wGV76t/92u93fVJejv1F56jX8WqMkWOXB74aA/sLL2O87eb6tpv/8D15/tg784ufpGe97wOfTUYtP8/faon1B/47LbHcNMEoP1eyL58L/GLjhZGze300ejEGdpEZ/uIGEKPjOl7diGLk68oj3KsbURDeEvjl9nDEWPTLakDb85VHurUPxHhtgxDR3HlBtMuLMUa+JdjqGVvFsPzgUUZffMq+mt03zR8Vs1Jj9L3mSsfq8/6eT/ujceTp8tFPV2J5Jby6ktVSv+JzRS3TN+0X12E5y2hW0u7P61g874ZjHq1zXwRZDWxzg8K6hfW5X8j2IzLwMuqLPRN0WYa2/YiMDzwiP1zJ3iPix9uPyPI6dh+R1e5+24/I6lO/9x+RjjN4ej2C549HZPWNTueBr+rrz934FkOXhRdYWK/7cf7mXjR/7epL3J/3Mj5wL/7X3guOrH3ga792vWVFzLeNCn4Rg3Ed3D8QQ+nFGAObLhzHizEsRzI8Xm3TrJXobZEv6xgNMWSxaezy+7z8fJJrecD3TTnteHsTinWIrRdbW2/s93aIzQ2Glp8qYpOTZs83OTV6dwuK5VUI3q7rtjF/XoW+7WC2OjJi08HW28Yy9lTn/vRe1jE6DuHQ5+3RfL1/zd7+tasge3N76xBbc3s/hNiZ21vuj7z1lr7eYXnnLX25E/nWNaz3Mt+aM1mdYLB5Xt86xt5xfU2XBxjuHoOwDLP5fOrbc88/hNh5PtenkOye5/BDlA+cH7L7jKxjbD4j/TPPyPvrE+399Yn2/vrEonOd8pXFqZUhqY7tELgN/7L5/34ItoP/3gLHL0I8Fnfz2K+jLtLuhxgtnXBIKYr8TVtgP5DSoedOKbsBcvOc2p2/CZCLkV7WIn8RgA6CZ9Rjfn4RgnO2lVj97RBlcvE3IbDZNrWy2cWrIcqO/78KkT7xyK/2Wo907GRSDyr6TQjB97Xa3g5hL14FvnGhw14MUU4ofu25IMGhWmUe/9UQ2l8LkYlKfBwvhmgI8doDjsUuYn7tRsoen/V9YN/8D4FxvxQAq+OtvxSgo4DDXwkguRGmfDn24Rc/gPl6N/iVAI3KCQdvBmjPu9FW2/HtviuvvirafFc+dqZx25epnP3OzP24RF56oPHtnPBLnSl5nkktaSQ7th8nQp061bd0Hr8IkVlF9b3wNyFQ1MRlT4fvIWys9t/BAnI7XgyRKx1aihl/cyN1/66yEv6bEJq58bXA6xchLL94fdjFa53K+VkIs70WouVHP1xHVb+6ChSqteOl5hTBiXZftoT2/R/PhoFEMZpfXMTjpx+jgPHSk0UNe6g3f+0qejk2Tey1EIqPH4a/diP5HvkYKb92I00wUu6v3Yjisye1164ClQCPkc1LDyc52qIWaPwihOX40kRfCVBmSvpr7XCUqSN9/nCP1UdG76epZ32I82sNgR0prb/Zkq8FOD9Khk/UtvzNmCRrjx7Dk/La8+0UrLFcG+I8Gb3V8+t+GSR/Cx+orwbBl4Xc7ANB6u4Ctv10iWeLyJcJm9+EQNmA+/FSCM4vJaSRvhJi+DSt4fW4p+2HvP29aaf9vz9y/m7Uddyvf3+sPkpSTGTWFfrfRMjlPi3HVfwuQpaiHO2FVug9H6fea03NfoCOAHX+bzuA4iukuprziwA7FT3LWxhZJ9HreX37AfLrgUesVwJgL6YHvtQGKPSs+0FtB2DJ54CFnn6DNZaHp+x9JjxWm9ntfSa8DLH3mfD+nTz/zG/5zpEVCVxrs34RoTPWvlt73pq+eo3c+pz1hxhbXwnuX8fzGMvns57Q/vQj0iHt7WdrFWLz2VqedLr3CfpYHXW09wn6kOVm46Pu3tSf72k1VmedPlbPcvGmH88XJsdqP7wva2nl7UN/0aqUp1A9po/oaauu6rK4HA76PMKyUUkM42ZZ7Kz1U99sLl//EMatbDNUF8Z+F6Z8bHzUPUJ+GcbwNelRz/j6bRgvBQJ1PeVXz63lJN1jFZYXz+12EH81iON1z/trQfYrBH568DarL7at+ulX1GN1mNPWobTrZt0s3vghyF71xljtP/iLvtHlnn071RvrEFvVGz+EeLN6gwwft5vVPam+7fi5Oopp7wdjPd+Vk5gu+vQqliGkfKXfXgph+RkQ+ZczHL+3xao4aHPfpGGrTW03901aLp1khTbXqZo/b2a1jYMaJiLV6OmuWD8EaQNB9NneS2O5C9SQ8qn/8+4dy++RhuK7t/LZi+t+DJXcflmlvRgDZ3SqlhniP2KsPvLIs4f0y5f6x68u48BltOeXsfqJ6jg3qMvzWp8fgiDx+miLIMutINGoZs87ZvU1Umu5ctta+aU7S032g0hu0dm6rIKsvkfa/Mxr2SQGL/pyfvIfTbL8VD4Xw+uB5d9++pefI1mevvqYjSnzavL9MtY7QiD/a2WA/KY98F3CY0RDz9tjNbRDecHj96JeyLfBw+qLJGx72EuBwPcQfnzgUV0H2XxU/fjLH1XMvT6S1551ja92YBPNB02M2uJuljuOYt9iKb9V/n0n99WZJY6Ni47y6Qn7t4O2lnvjNaxxSz1dro1vQT5wbtAPVyKYjKx1e9+vhI7lU7L1taivFmz2ZnaXffNYLWq55lOM5I++WR7phNPy+lF32NwenonlMOIxL+GvDFcFg0SpKfM9hNMHhqtOHxiu/jRMxFBCnx867vSBseYyyOZ5EOMTB46s93E9cNL3l60NvnUwr7aURDE2H+3519HLII+Xq/SiY6yC9A84wOoIpb0FsnWIrQWq9a1sfnLuq29Rdj8597ZVq7j65Hz9rFLeTOPj+ZuirzbJOzcazikAPxY30z7whKzWm/aekPWrRG50pYuK5uXr2d5pLusQe8e5LF+scC4NfdmD/VdvZzWIPK+599UxTpuVvb76wG+zsveHmzHcjLUXW6RMnVs/PhBk8U2GS/9As+pf3Kz1ZuzVaQBjzEW2V/tmYCpxMH0gyOJK/Ic9Erb6pvNf3Dej42a6v9gijtdeb/qBIDIWzaofaFb7i5u13oy+agKOt02nF/vmMa7LmuxjNQe3PfU12suzVls/4Osgu4Mr/cCWT65vb/m0nC5yrPiiTaXtTxURDoQgK5O0r08WjfbyPM/e6Oz4ROcafaBzV4tWu527msbDxGYtTf7eM6svngRzK9LqtoJ/TI6ujh/M98R6etif16EfGL/bB3YEcxtvv+EtQ+y94dkHNhXz8YnndPy1z6nnAN7L6RZ/PB+rLfQ6Yeatfin6u+cUX5seRIsLWT2o5UuqVqdF/2jTTzyo4/0Hdbz/oH5i9zv3Tzyozn/pr+X2j91qxYo9Z3i5Von8GWT13cnhOGerbl0run8lDQOz9uUUhD+uxD7gzKuG3X7glz93ew/8+hdz64Ff3srmA0/H8YH9Hh9R3t7wcf2MYCOARv7cFB8XsnpcsXO/eGsvPq5MuXU/2/JS7H2DPmuv3n9g6TjefmJ/iLH1yP5wN9vPLH3kmaX3n9nlGmnL1Q2qu/N9WyN9XMfyy778sK+UwJwfiu/H6FmXWD8L+GUMs6xO0BdjaG7y8mWnwZdj9FdjZHvoy+2h2R76cntY3ou93B41xqvtUetWX20Py/awl9tj5L2Ml9ujxni1PUZ+TDvs5evIQpwxXr2OmKy4Xkhebo8a4+XrGChKfv58LCssdk8RX5dpdEFBYN3K589jjFdPKmXXGPNYRdFVWYH9HV8+t3TZv53NU7t/CLJ3svo6yObJ6j9UnWyNe5chtr4o/CHE1tB5WYOzPQyRD0ytPqK8Pbf6iLGaC9jcHuYRxVYLCjv7w/wQY2uDmB/uZnOPmB+ibO7xsi6SOgSf6Nf9Vb4VSdHRPzBh/IjS3h/DL2NsjuE7fyJ5VqtX+8mzWr/aHcMv6+BwPCuX75z+ThcvT87NhdLHi2z9Gf4WRJffXeTTRrVk69tn848g7379/0OInc//fwqx8f3/D6WFuVTTjy8Dzu+XsXq36tgPohaPvBHEnwXZrras5wT8+ZTp8ixyLMdLG4vbWZ0CceT3xkr1dPbvQWy9bSPOeKd+jI+EqXPh+pvXcGz9tCxVXq0/eW482I/yScz3lcHHPy+/8c/NO+qeE+37D5ftvYfXTR++jTvpsLfHrj9cR27383j+VzHGJ1x+VRG7O0QaH9hB7/zG+f0h0jLG5hBpfGDftx+ibA+RVgtiR/v7Pv1H4qxWs1q+90m5nT/m0cay+Do3m6yf+Wn7xb3QgZNp2vJePnBk2LUB77tDtfGBQ8Po8I9Mt75/JtT+t4/y/NvHa3Pkp78WAwcuj1Lz9O0r7nVt7d476LLGd79vPmKw7n9p33z9nISf9w2tTsPeXjOhTxToPKK8/761jrGXxPSJSqFzQ7wPPCh02F/7oDRsnde+nA9J+0EE7+VS93H/82lbTQN9JsreBgg/xNjaAeGnGDtbIPwwabK5Je1PEzh7o5Mfpvl2tg77IcTOFm4/TL4aCmTHyzO4uQXB4714sU/N8sNfyv1YHin0/OthotW+fHk3xUjkVwXh2Gt/+Mul6TnB8AjyapH8MPyML461+KHS/sBHzItjFH74lAI7Vtnx6pUoGrZuhfC7j222zp9a7p+ZGzzJl1/x9m01idruPJY83VbtEYRWcx1bu/Y9gix/O3e2VlvH2Ntb7Rc3Y6ubWe7sgrRxb4sgq68G9ra8++lKcEJ9Xev7M8jCFRsOAT5s1a6ruazNz7rXUXaXLn+4ls11uh+ibC7U/RBldx2VVgtc52shtt3ysttM67+MU/f0K9+q/DLO4/9Nk3z87tnrcfC1yeO/7Is46x7fW979Kcre6GCdTZKnz0g9sqv/xrcZJwJxPRHoV97w+AXJHUYf79fPg6zWqXa9oa962XvZCKt4g/IvrmS7Xf39QeRPT+3RyraJ8nI2Pm4YWUT2ejYSjkt4xHyeRetHbmfXUaLVYtPetqPXGRPPh9f5utG+3Mu3p2W5f3m+sNRXp1+MvhCAXwqwtxfW6h1y62vtVYCtb7VXAbYOYT3+yjHw1q4XyzNAct9u0qMuv+zvwKc5InlMYPtLIUbHS1Z/7SocFfdHPRVtPwQfOG35i2X94ipQvEhf3PM3IRxvrfTSjdRD5shfu4qWS1CPhVx5KYSk1T1WS/vTEI+rXc2evX/kT8s0pWavtQb2DyRhertBXwuBXX/ky0/HLw53KVsiaz2wYXuP+6a5VU9TeX4iyTKElm126P0Q/bUQ2Klax0tngDTDz7D1l04iaSNHsY9h5GttYTlZ3qyMYV8O8VqnjlyNbLVc+lchcv2hDXmtU0e+cz3QX7yKfC6GvtipuWX4A1+6CibHRrDHS2fDfK1MbE9DPAbGq42XGadzcV12+M3hc/nDzGqv3YrjqE89XguRj/hjZv+lLDmXB7De0F4McSCEvB2C24vNiSUPHq9dRUNbdH/7Kl7r1McbwIFXgLpDQv/2iK+K9wb2jq/zrvu/iY+XNbzr1u0A/ryM1VI/Ydr1S8r/LoYhhj2PsaqKloHtGsspIY/JsO9RVtV/PHDCYZ3U239F5UfOZsrW+f0/mpWXTyrO2G2lZNb+CLI+c2xgPYsWQRZW6tgb1Gvh0B+r2rzc1W/zVemHKJvvKefp0O+/JPwQZfc9IZ6HN98TfnFDi0H6Dx0t+aWl17OE/+zotvv7Xfcr++Nalos52120HWXZLuuFpd2OXpUzbXf0snFbFp1yG8dLswWk6J/lj09bnhbCAye6tPIiovarMKiifVxAqUbS7WPsiB17jrXHhOnilmRZqdlRqfmlyJK/R1nNkzZsjyNPX3Z/iIFf9lqt/WeMVelb/gh5PZrpOL7HWK4pHXjvLm+8j2Ht9yjLb3yzRcq4j/27qayqXbbrs3j14dR2fRavDobZrJTm5alXu7XF3NcDuK0TnX+IsnkW8iPK8sdj5wTfdYzdQ3wfUT5htMsO2jwA/XEp+pGmtQ807V4MWzXs8sHHnD31Vx/8zXL4x0v76hd589Tr89X//XbVjzyy+olHdtkom+d4rz3fi+UPXli+2vInOS/lMXhaRfnERiasH9j5mtiO903f6BOmv9pKcN/0l9eynYerT7H283D1EdRuHq5i7OehfeJlbNko+3m4GL8pDoKvx5z8MX5bfnu0eTQI8fKLkM2zQR5RVpsL71ZL8ViNand3neCxPLtl68u9H1pl75wS4vGRce34yLh2fGBcOz4yrvWPjGv9I+Na/8AgwT8ySPBPDBI2b2c5DhwfGRuvthr8RfeMD3TP+ECbfGBsPD4xNm7Lla/d3+S2+qhqs12XMbYf+7bcbXDzsV83yvZv8ur3dHunkvaR/fna8YlhbaP3h7WNPjGsbfSJYe36WrZTiD4xrG30/rB2GWM/hegDw9p1o3wmhXZ3gmmrxbHdnWAaL9+XGz71kOd7sCyD8IFl7S9Hxf4RZPUFaz5uX3Z0HL+6DgxHj/LJyZ/X0f/a6yAsUNTK9N81almieCNIH+8Hqd7Gi2dk+SUPlnLPBakXg0gerfZlKeuNIP3VIIzJHZGXg6AysfsHbuf1IIbbGeP9IF826vlVkE4IUrcB/yOIv53D6+vI9DvLrJ9fx2oNa+86fvit2Ds983Eh7x+f+VOQvY2ymnxgo6xfBHm6UdZ+yy53ymrygZ2ymqy/78JJ2mIvBhn4ouHLqSS/CuJZfW4H+2tBbOR4wIbQ8yCr76H2N/76TRiiF2/Js3TaXPXVIFlb8gjyYjcPHGA1vC96qI/PNO74ROPuLvWXMfXfWepfTfMOnLo6ql9/L1xoy4+zem7O1r5scP5nlNWnfKj1LxXEZx3Qb66E8kq06epKPnBs6iPKJ7Z0afr2li6PGOMTr9mr1bD91+zltWy/ZtsnVnGbvT9Bu4yx/5ptH5igXTfK/urR0hKyoPYxp7xI5mWUx9AA60f1F/GPRFwekIVHrtcy4z9XodbXkkVe7SjTtH9ey1jWinW4NuvxvGytLfdXymfu8QaChO6v3s/StJfrYeXMgecf9v5wIXmaajtWZW9ttSvKR1ok90Vq9dzv7xey/t4t94k635KfVzcuX386XsNKjWXf/rqVj4H5i1IS/4sI9QP/8qX0H7+jy4O2NMfnpl9e1L8b0mrFqDP2iGq2jPKJnfiaf2I3+Obv7wbf/APbb13b5r7/a7zu5yxcNa0Hbv7ZQ6vVp8eTiqk7Kvf03RrlWH4GnO9zVDuadPzqYii/72aqZwD+eTGrbYVKHj1YFna/bGDLnePM6qGG3xtYVhufar4B1Q9QH8rfY6we3Xq2qi02T5XVPoXX3p33Y7fYkevHKNiaYrEl1w9RyjfffByvR2mIQqsoyx+xfFpal1XrEn3A6uQj52/J++dvXVv1vG11sv7Ea9Pq1lF2iwaE3i+oXcbYfmUQ8vdfGXZvx/qrnbxb0yGrL4j2u4ffrz3YjbFuk/Z2Tce6XXfflIXtA2/KsarydruOTzz2qxWG7cd+2Si7b8rrX+X83vPLIRp//Cqvtpl+zBTmW0eztvr1WQ1u83bGcnywOpULdzPqwST6mxYZHV8w2eo61huHpp882J8PvGS14dr2+G33Vaq8v3x/lZLlfApWGvnLlKTQ9yiruZ1DsUVfLYv/47kXXl1LdjJrXcT981racskEOyqXt1z6vsonyy/EWsOnd9VUSL5HWdUdcD4svS70fV8tlNUnYo+FJGwAVxNo/OZKNN9eurb+gSB1C/3fBcnxX68/yL8L0nNzqQe+ejvYIqXXvRP/DCLLmZn0Aykbfv2dB2VZ/p0bJxjVBaA/Htq+nkXIkXU5yIZ+EcLzsfeSO3+GWO41vVfDJH35G7hXw7QMslvDJP3tuoMfrmOvhkmU/trr2Kxh+ikIfSDIXg3TOshmDZPo8kvGvRqmdZDNGqZfBOmvBtmrYfopyFYN0/7tvB5kr4ZpO8iqhmkdZLOGSeztOsQfrmOvhklWn4PtesnqhwIfQh4l9/74pVgdzbVbwfRDkL0KJlluarhZwfSLIM+rOH4YCeD4Ga6VE3908FhvX5wvbl7rFf6Msqo06Janh9dj3P54UJaHc+Eru9bqNol/XMmqzuBgLCq29mIQ/Og0Mn81SE6etC/rcN+DrL7gerzeEN66VkE+UKEty0WwPSfwD1Roy2oB7BPXsTu68Q9UaP8QZHN04x+o0JbVctP26GYZZHd0sx+kvxpkc3TzQ5C90c327bweZHN0sxtkObpZBtkc3fTV91+7Oezvj2766tuv3etYGnTHVNTC0/ryy6/Nd9hlkF2X7/S2u/5wHXsu30n/2uvYdPmfgtAHguy5/DrIpsv35Qdfmy6/DrLp8r8I0l8NsufyPwXZcvn923k9yJ7LbwdZufw6yK7Lt7fd9Yfr2HT5xn+ty1vuacemi0Zt8oHkWwbZTb79IP3VIJvJ90OQveTbvp3Xg2wm326QZfItg+wmn7z9Qe0P17GZfPL+RNbyRZpzCefxw7fo3tXGh7sv0n35udfuOG0VZHuc1t/31vV1bI7TOv+117E7TvshCH0gyOY4TXY/UlmN05aLWrs/Fcsguz8V+0H6q0E2fyp+CLL3U7F9O68H2fyp2A2y/KlYBtn9qdD337XW17H5U6HjfS+xD7yN2/EBg7a3F2F/uI5Ng7b2117HrkHb8QGDXgfZNOhlkF2DXn3RtW3QyyC7Br0fpL8aZNOgfwiyZ9Dbt/N6kE2D3g2yNOhlkF2DHvZ+Do8PGPTwv9agd1+k/ROzWP6JWSz/xCyWf2IWyz8xi+WfmMXyT8xi+SdmsfwDs1h6vP+m5R+YxdLj/VmsZcVAx9ax9bhP+vNCllvD5VnFZKV4wY/vQVZfsXgWdJD3xT6Ceiw/Qdw7GuynKHtnlP3mjmx1R301wskuYvLFtjRKy+lKtIstTkj8IcrA+PPLGfF/Rlk9t8dA1Y3rB6LQQa/ekSu+rz6Wd7Sa0sKROr3Wqfwuih6WJ6AdTq9G0WwXNbIXn13W/O78y44Af+ep86W9bBUB6XJfw80iIF0e+rVZBLQOslkE9EOQvSIgZXl/7lKXB2Rtzl0ug+y+Giu/PZz94Tr2Xo2V/a+9js1X45+C0AeC7L0ar4NsvhrrJ5a59BPLXPqJZS79xDKXfmKZSz+xzKWfWObSTyxz6SeWufT9ZS79xDKXvr/M9YPL781dqnzgQxaVtydif7iOTYN+f5FrfR27Bi0f+JDlhyCbBi0f+JBFe/+AQS+D7Br0fpD+apBNg/4hyJ5Bb9/O60E2DXo3yNKgl0F2DVrfLij84To2Dfr9Ra61QW/OXap+YOFgHWQ3+fQDCwc/BNlMPv3AwsH+7bweZDP59AMLB+sgu8n3/tdbP1zHZvLZB960lud47xUB6fLEqt0X6fGBOmsd749bxwfqrHX0v/Y6dodY4wN11j8E2RxijQ/UWat/4LyDdZBdl98P0l8Nsuny/oHzDvZv5/Ugmy6/G2Tp8v6B8w7U33dX/8B5B3bQ+15C778D2/LQrc2ZzmWQXZe34213/eE69lzeDvtrr2PT5X8KQh8Isufy6yCbLm/Lz7Y2XX4dZNPlfxGkvxpkz+V/CrLl8vu383qQPZffDrJy+XWQTZc3fttdf7iOTZfn9te6/OaLtPEHZrHWQXaTjz8wi/VDkM3k4w/MYu3fzutBNpOPPzCLtQ6ym3zt7VmsH65jM/na+7NY67X+Vt6BF8cP2mpbQhs4ywaPSH+15qAvjrb6IQr2mbdjGWW3pKluiPatpMmWmxIeeZDNly3vvx9FYKv1LDI88kOOxZWstq+UPCOoPGh/hvjAQV32iYO69ovW6pX8kTirJa29UyKWFzLiY7mrWVVXF7Ja01I+co/Gxssoqw2EsBuujE6rKKsNtne36bbVGVvb23TbapeozW26re+WL6y26ba+3Eh9c5vu9bXs7npsyyO2dnc9ttXGhJu7Hi9jbO96bKutCXd3PV43yu6ux+sUwrlj4rbY/dVWy1v7KbQ8qGs7hVZLXLsppPaJFFovcm1ugm6rg7o8dwd1fvl+ttPwI8d02QeO6bKPHNNlnzimyz5yTNcyDfuRUfqx/D1cLnRtbp9sq29kdrdPXl/J5vbJ+0EW2yf/EGRv++R1kM3tk9dBNrdP/uFB0TyE6ahH/PzxoIwP7LNt4wP7bK+vZPdB2Q6yelDGB/bZXgfZfVBG/8SDop/48Vmd1rX747Mc67c8Y1jrjt9/PrK+bBScPja6vhwFHy0MX0RZvwPhbN8xurwYxT1/Tt2dX4zy+Cl0/Ba21VvQOg6x5Q7+xN5fjhPTA3ecL/Oav4zjmI14rGW92srE5XQqJn75vprmwOU843URZxzryUnMK0o9KKH9KsqBKU7yT0RZXcu6ZR4zm9ky8hgOvdrC4kKIszqKYqw+bxq94+wTe27k+0EGvxxEEcReDSJbQdbHlriXT4EWR4WM9cdas3+07rTM/cUYvoqxPFQm56CoHpHzfSJreSHx6nY1a/0i6fuFLJu1cf6ctEaL02DG6mOv3vDgP7i8FX0/I2eslsY+ckZOQ+VBK4Og/QNLH4ONnAs4D4V5fvLq426W+6XjV40Wp+KO9edAu0dZDl6NpXaPsvzhYnaPshz8Fx+F9Fg2wQpKHZKdXfT/efzjP/33f/mP//av//7f/+k//+Xf/+1/nH/TPH4/HzcwjpPOSxyUxEktSZJ6kiZZ0kjySZ4anhqeGp4anhqeGp4anhqeGp4adBxAAjKwAQXYgQo04ABCjaBGUCOoEdQIagQ1ghpBjaBGUGOoMdQYagw1hhpDjaHGUGOoMdQa1BrUGtQa1BrUGtQa1BrUGtQa1ARqAjWBmkBNoCZQE6gJ1ARqArUOtQ61DrUOtQ61DrUOtQ61DrUONYWaQk2hpqF2Vg6QCrADQ63Ff2vAUGt+oidaqJ3j9cfaH5CBDSjAUDvn/R8DfKABQ00DPfEyjvMtmy7nuDDUPP6DBhRgByrQgAPoiZeFXEhAqDnUHGoONYdaOEk7t0+gsJIbT7V2ujGHl9x4qrVzlM/hJe38mePwknb+ynB4STsLHTi8pJ1L0RxecmOonT+jHF5yY6idHcDhJTeG2jlE5PCSdr6Kc3jJjQLswFA7Z5o4vOTGAfTE8JI42ZDDS25kYAMK8FI7b5MVaMAB9MR2APOZ5MbAUDu/D+PwkhtD7ZzQ5fCSdq6XcnjJjaFm8d+G2rnEzOElNxIw7u2sj+bwkhsFGGrnzzmHl9wYauecGYeX3OiJ4SU3htq53xH3S+18dvqldl5DF2Cona+xHF4i5xiaw0vk/CHn8JIbTzU5h5scXnIjARnYgALsQAUacAChZlAzqBnUDGoGNYOaQS28RCIZwktuDLWzMoTDS+Q0MQ4vuTHU4nkIL7lRgB2oQAMOoCeGl9xIQKg51BxqDjWHmkPNoeap1o4DSEAGNqAAO1CBBhxAqBHUCGoENYIaQY2gRpean2jAAQy103daeMmNBGRgA0pG4A6EWnjJ/d8OINQa1BrUGtQa1BrUGtQa1BrureHeGtQEagI1gZpALbzkxg5UIO5NoCae2A8gARkItQ61DrUOtQ61jpbsuDfFvSnuTaF2ecmFaElFSypaUqGmUFOoGdQMaoaWNNyb4d4M92ZQM/SboSUNLTnQkgNqA2oDagNqA2oDLTlwbwP3NnBvDjVHvzla0tGSjpZ0qDnUHGoONU81OQ4gARnYgKkmRwcq0IADCDWCGkGNoEZQIwF2oAINCDXKfhM+gARkINQYagw1hhq8ROAlAi8ReInAS6RBrTUgWhJeIvASaVBrUIOXCLxE4CUCLxF4icBLBF4iAjVBv8FLBF4i8BLpUOtQg5cIvETgJQIvEXiJwEsEXiIKNUW/wUsEXiLwElGoKdTgJQIvEXiJwEsEXiLwEoGXiEHN0G/wEoGXCLxEDGoDavASgZcIvETgJQIvEXiJwEtkQG2g3+AlAi8ReIk41Bxq8BKBlwi8ROAlAi/p8JIOL+lHqvWjAQXYgQo0RBhAqMFLOrykw0s6vKTDSzq8pGNc0jEu6fCSDi/p8JKOcUnHuKTDSzq8pMNLOrykw0s6vKTDS3qDWiMgWhJe0uElvUGtQQ1e0uElHV7S4SUdXtLhJR1e0gVqgn6Dl3R4SYeXdIFahxq8pMNLOrykw0s6vKTDSzq8pHeodfQbvKTDSzq8pCvUFGrwkg4v6fCSDi/p8JIOL+nwkm5QM/QbvKTDSzq8pBvUDGrwkg4v6fCSDi/p8JIOL+nwkj6gNtBv8JIOL+nwku5Qc6jBSzq8pMNLOrykw0s6vKTDS/RINT0IyMAGFGBHBAUacAChBi9ReInCSxReogQ16kAFGnAAoYZ3HIWXKLxE4SUKL1F4icJLFF6iDDXOflN4icJLFF6ieMfRBjV4icJLFF6i8BKFlyi8ROElKlAT9Bu8ROElCi9RvOOoQA1eovAShZcovEThJQovUXiJdqh19Bu8ROElCi9RvOOoQg1eovAShZcovEThJQovUXiJGtQM/QYvUXiJwksU7zhqUIOXKLxE4SUKL1F4icJLFF6iA2oD/QYvUXiJwksU7zjqUIOXKLxE4SUKL1F4icJLFF6iDjXPfjN4icFLDF5ieMexQ4AdqEADDmDem8FLDF5iBDVqQAF2oAKhBi8xjEsM4xKDlxjecYyhhvkSg5cYvMTgJYZxid3jkse0prWcC7JGQAY2oAA7UIEGHMCceTKBmkBNoCZQE6gJ1ARqAjWBmkCtQ61DrUOtQ61DrUOtQ61DrUOtQ02hplBTqCnU8I5jmC8xzJcYvMTgJQYvMYxLDOMSg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzEBtQG1OAlBi8xeInhHccwX2LwEoOXGLzE4CUGLzF4icFLzKHmBkS+wUsGvGTgHWdgvmTASwa8ZMBLBrxkwEsGvGTASwZBjQjIwAYUINQwXzLgJYOghnHJwLhkwEsGxiUD45IBLxmYex2Yex1swAGEGuZLBuZLBuZeB8YlA+OSgXHJwLhkYFwyMPc6GvpN0JKClsS4ZOAdZ2C+ZGC+ZGDudWBcMjAuGRiXDIxLBsYlA3Ovo6PfOlqyoyUxLhl4xxmYLxmYLxmYex0YlwyMSwbGJQPjkoFxyYCXDEW/KVpS0ZIYlwx4ycB8ycB8ycDc64CXDHjJgJcMeMmAlwzMvY6BfoOXDHjJgJcMvOMMzJcMeMmAlwx4yYCXDHjJgJcMeMnA3Otw9Bu8ZMBLBrxk4B3HMV/i8BKHlzi8xOElDi9xeInDSxxzr35kvzm8xOElDi9xvOM45kscXuLwEoeXOLzE4SUOL3F4iWNc4hiXOLzE4SUOL3GMSxzjEoeXOLzE4SUOL3F4icNLHF7imHt1rOM4vMThJQ4vcbzjOOZLHF7i8BKHlzi8xOElDi9xeIlj7tWxjuPwEoeXOLzE8Y7jmC9xeInDSxxe4vASh5c4vMThJY5xiWNc4vASh5c4vMQxLnGMSxxe4vASh5c4vMThJQ4vcXiJY+7VsY7j8BKHlzi8xPGO45gvcXiJw0scXuLwEoeXOLzE4SWOuVfHOo7DSxxe4vASxzuOY77E4SV0wEweTIW5cCsshXvhFH2wFR6FHQxbeXDRpaJLRZeKLhVdmMuDrfAoXO6Xiy5Wd84P/wq3wlK46HLR5aLLRZeLbivt3Mr9tnK/rdxvK7pY63lwaedW2rmVdm5FV4quFF0pulJ0pbSzlPuVcr9S7leKrpT+7aWde2nnXtq5F91edHvR7UW3F91e2rmX+9Vyv1ruV4uulv7V0s5a2llLO2vR1aKrRdeKrhVdK+1s5X6t3K+V+7Wia6V/rbSzlXYepZ1H0R1FdxTdUXRH0R2lnUe531Hud5T79aLrpX+9tLOXdvbSzl50veh60fWiW/yKil9R8SsqfkXFrwiTvERYMSIqfkXFr6j4FR1Fl4pu8SsqfkXFr6j4FRW/ouJXVPyKqOhinoao+BUVv6LiV8RFl4tu8SsqfkXFr6j4FRW/ouJXVPyKWtHFahJR8SsqfkXFr6gV3VZ0i19R8SsqfkXFr6j4FRW/ouJXJEVXSv8Wv6LiV1T8inrR7UW3+BUVv6LiV1T8iopfUfErKn5FWnS19G/xKyp+RcWvSItu8SvScr9a7rf4FVnRtaJrRbf4FRW/ouJXZOV+75EUB+f0FZE5eByFqTAXboWlcC+sha1w0R1F14uuF10vul50veh60fWi60XXiy5q7ohRdEeMqjtilN0Ro+6OGIV3xKi8I0bpHTFq74hRfEd8FF0qulR08eJGjFkgYkwDERe/4uJXXPyKy/iKy/iKi19x8SsufsXFr7j4FRe/4uJXXPyKi19x8StuRbcV3eJXXPyKi19xK7qt6Ba/4uJXXPyKi19x8SsufsXFr1iKLlaviItfcfErLn7FUnR70S1+xcWvuPgVF7/i4ldc/IqLX3EvuljLIi5+xcWvuPgVa9HVolv8irXolvEVl/EVF7/iMr7iMr7i4ldspX+ttLOVdi7jK7aia0XXiu4oumV8xWV8xWV8xWV8xWV8xaPojtK/o7TzKO1cxlfsRdeLrhddL7plfMVlfMVlfMVlfMVlfNUwUU0Nq17UsOxFDWvo1Mr4qpX3wYYpJmqYY6KGCWtqZXzVyviqlfFVK+OrVsZXrfhVwxoYlaJhKlXDVMqGqdQNUykcplI5TKV0mErtMLXiV634VSt+VeqHqXHRxeo6teJXrfhVK35VqoiptaJb/KoVv2rFr1rxq1JLTKWYmEo1MTUpulL6t/hVK37Vil+VmmJqUnSLX7XiV634VSt+VSqLqZQWU6ktptaLbi/9W/yqFb9qxa9KhTE1LbrFr1rxq1b8qhW/KnXGVAqNqVQaUyvjq1bGV634VSt+1YpflXpjamV81YpfteJXrfhVK35Vqo6plB1TqTumNoruKP1b/KoVv2rFr0r1MTUvusWvWvGrVvyqFb8qNchUipCpVCFT86KLdTWS4ldS/EqKX5VaZJIyfyXFr6T4lRS/kuJXpSKZSkkylZpkkjK+kjK+kuJXUvxKil+VymSSMr6S4ldS/EqKX0nxq1KfTKVAmUqFMgkXXay5kRS/kuJXUvyq1CmTlPkrKX4lxa+k+JUUvyrVylTKlanUK5NI0ZXSv8WvpPiVFL8qVcskZf5Kil9J8SspfiXFr0rtMpXiZSrVyyS96PbSv8WvpPiVFL8qNcwkZf5Kil9J8SspfiXFr0olM5VSZiq1zCTlfVC09G/xKyl+JcWvSkUzSXkflOJXUvxKil9J8atS10ylsJlKZTPJKLqj9G/xKyl+JcWvSn0zSZm/kuJXUvxKil9J8atS5UylzJlKnTOJF10v/Vv8Sopf9eJXpdqZepm/6sWvevGrXvyqF78qNc9Uip6pVD1TL/PtHet41Itf9eJXvfhVqX2mXt4He/GrXvyqF7/qxa9KBTSVEmgqNdDUy3x7x6oe9eJXvfhVL35VKqGpl/mrXvyqF7/qxa968atSD02lIJpKRTT1Mt/eW+nf4le9+FUvflXqoqmX+ate/KoXv+rFr3rxq1IdTaU8mkp9NPUy39576d/iV734VS9+VaqkqZf5q178qhe/6sWvevGrUitNpViaSrU09TJ/1cv8VS9+1Ytf9eJXpWaaeplv78WvevGrXvyqF78qldNUSqep1E5TL/PtfZT+LX7Vi1/14lelgpp6mW/vxa968ate/KoXvyp11FQKqalUUlMv8+3dS/8Wv+rFr3rxq1JPTVrm27X4lRa/0uJXWvyqVFVTKaumUldNWubbtawPavErLX6lxa9KdTWV8moq9dVUCqxJi1+VEmvSMt+uZf6qVFlTKbOmUmdNpdCaZqU1B2O+7q61vnkUxnydokSSFDWSpCiSJEWVJCnKJElRJ0naim4ruq3otqIrRVeKrhRdKbpSdKXoStGVoitFV4puL7q96Pai24tuL7q96Pai24tuL7q96Jb3QS3zV1rmr0o9NpWCbCoV2VRKsqnUZJMWv9LiV6Usm7T4lRa/0uJXWvyq1GZTKc6mUp1NWtYHtawPavErLX6lxa9KjTZpmb/S4lda/EqLX2nxq1KpTaVUm0qtNmlZH9SyPqjFr7T4lRa/KhXbpGX+SotfWfErK35lxa9K3TaVwm0qldtkZX3QyvqgFb+y4ldW/KrUb5OV+SsrfmVlfdDK+MrK+KpUcZOV8ZWV8VUp5CYr8+2llJtKLTeVYm4q1dxUyrmp1HNTKegmK+MrK+MrK+MrK+MrK+MrK/PtVtYHrawPWqlnsDK+svI+aGX+ysr8lZX5divjKyvjKyvjKyvjKyvjKyvz7VbWB62sD1qpZ7AyvrLyPmhl/srK/JWV+XYr4ysr4ysr4ysr4ysr4ysrfmVlfbAUfVOp+qZS9k2l7ptK4TeVym8qpd9Uar/Jil9Z8SsrflXqv8nKfLuVegYrfmXFr6z4VakCJyvzV1b8yopfWfErK35VasGpFINTqQYnK/PtVuoZrPiVFb+y4lelJpyszF9Z8SsrfmXFr0bxq1IZTqU0nEptOI0y3z5KPcMofjWKX43iV6VCnEaZvxrFr0bxq1H8ahS/KnXiVArFqVSK0yjjq1HGV6P41Sh+NYpflXpxGmV8NYpfjeJXo/jVKH5VqsaplI1TqRunUebbR1kfHMWvRvGrUfyqVI/TKPNXo/jVKH41il+N4lelhpxKETmVKnIaZb59lPXBUfxqFL8axa9KLTmNMn81il+N4lej+NUoflUqyqmUlFOpKadRxlejjK9G8atR/GoUvyqV5TTK+GoUvxrFr0bxq1H8qtSXUykwp1JhTqPMt4+yPjiKX43iV6P4Vakzp1Hmr0bxq1H8ahS/GsWvSrU5lXJzKvXmNMp8+yjrg6P41Sh+NYpflapzGmX+ahS/GsWvRvGrUfyq1J5TKT6nUn1OXubbvawPevErL37lxa9KDTp5mb/y4lde/MqLX3nxq1KJTqUUnUotOnl5H/SyPujFr7z4lRe/KhXp5OV90ItfefErL37lxa9KXTqVwnQqlenkZb7dy/qgF7/y4lde/KrUp5OX+SsvfuXFr7z4lRe/KlXqVMrUqdSpk5f5di/rg178yotfefGrUq1OXuavvPiVF7/y4lde/KrUrFMpWqdStU5e5tu9rA968SsvfuXFr0rtOnl5H/TiV178yotfefGrUsFOpYSdSg07eZlv97I+6MWvvPiVF78qlezkZf7Ki1958SsvfuXFr0o9O5WCdioV7eRlvt3L+qAXv/LiV178qtS1k5f5Ky9+5cWvvPiVF78q1e1Uytup1Lfzgfl2PrA+yAf8ig/4FR/wKy717Xxg/ooP+BUf8Cs+jqILv+JS386lvp1LfTsfVHQxf8UH/IoP+BUf8Csu9e3/v9LuZkeS5Tiw8Ltw3Yt0M/O/eRWCECQOZ0CAEAWONMBgwHdXlUfF9Q+SdtoQxrrVeco9uk5nZhx4xifgBtyAG3Cvr4K+Pejbg749PgH33h+MT7LPyT4n+5xwE27CTbgJN9nnZL3Feov1Ftzi+hb7XOxzsc8Ft+AW3A63w+3sc2e9nfV21tvhdq5vZ587+zzY5wF3sN7BegfrHXAH3AF3wB2sd7LeCXey3p/nV+eE0vnb+3Xx07f/zIN5Mi/mfefbi8bn9qLx4UjGD2cyfjiU8cOpjB+OZfxwLuOHgxk/nMz44WjGD2czfjic8cPpjB+OZ/xwPuOHAxo/nND44YjGz+1Fo91eNNrtRaPdXjTa7UWj3V402u1Fo91eNNrtRYO+Pdp9/yraff8q6NuDvj3o24O+Pejbo+Grhq/o26Phq4avGr5q+Iq+Pejbg749WsANuPiq4auGr+jboyVcfNXwVcNXDV/Rtwd9e9C3Ryu49/5gNHzV8FXDV63gFlx81fBVw1cNX9G3B3170LdH63Dv/cFo+Krhq4av6NujDbj4qg24A+5gn/FVG6x3sF581QbXd7LPk32e7POEO+FOuBPuhDvZ58l6F+tdrHfBXVzfxT4v9nmxzwvugrvgbrgb7mafN+vdrHez3g13c303+3x7hgieX8V9PRhx37+KuO9fRdz32yN4fhU8vwqeXwXPr4LnV4Gv4t4fDPr2oG8P+vagbw/69qBvD/r2oG+PwFeBrwJf0bdHBNzbM0Tgq8BXga/o2yMSLr4KfBX4KvAVfXvQtwd9e0TCTa4vvgp8FfiKvj2i4OKrwFeBrwJf0bcHfXvQt0d0uJ3ri68CXwW+om+P6HDxVeCrwFeBr+jbg7496NsjeH4VPL8KfBX4KvAVfXsEz68CXwW+CnwV+Iq+Pejbg749YsFdXF98Ffgq8BV9e8SCi68CXwW+CnxF3x707UHfHrHhbq4vvgp8FfiKvj3yvn8Via8SXyW+SnxF3x707UHfHsnzq+T5VeKrxFeJr+jbI3l+lfgq8VXiq8RX9O1B3x707ZEB994fDA7HDk7HDo7HDvr24IDs4ITs4Ijs4Izs4JDsoG8P+vagbw8Oyg5Oyg6Oyo7EV4mv6NuD47KD87KDA7ODE7ODI7ODvj3o24O+PTg2Ozg3Ozg4OxJfJb6ibw8Ozw5Ozw6Ozw7Ozw4O0A769qBvD/r24BDt4BTt4BjtSHyV+Iq+PThKOzhLOzhMOzhNOzhOO+jbg7496NuDI7WDM7WDQ7Uj8VXiK/r24GDt4GTt4Gjt4Gzt4HDtoG8P+vagbw8O2A5O2A6O2I7EV4mv6NuDY7aDc7aDg7aDk7aDo7aDvj3o24O+PThuOzhvOzhwOwpfFb6ibw8O3Q5O3Q6O3Q7O3Q4O3g769qBvD/r24PDt4PTt4PjtKHxV+Iq+PTiCOziDOziEOziFOziGO+jbg7496NuDo7iDs7iDw7ij8FXhK/r24EDu4ETu4Eju4Ezu4FDuoG8P+vagbw8O5v6aub74qvBV4Sv69uB47uB87uCA7uCE7uCI7qBvD/r2oG8PjukOzukODuqOwleFr+jbg8O6g9O6g+O6g/O6gwO7g7496NuDvj04tDs4tTs4tjsKXxW+om8Pju4Ozu4ODu8OTu8Oju8O+vagbw/69uAI7+AM7+AQ7yh8VfiKvj04yDs4yTs4yjs4yzs4zDvo24O+PejbgwO9gxO9gyO9o+Orjq/o24O+Pejbg749ONk76Nuj8347h3sHfXvQtwd9e9C3x9u3x5mf9fYzP9zzQTyPr8bz/Yc7nu8/3PF8/+F+f8Jg/PTtP/PhzvMxP4+vfubDnc8H/QTz4Z4PFvrp238+DKgzD+bDfT4a6PHVz3y4+3wM0OOrn/lw9/mZH1/9zIe7z2M+vvqZO/M3t3/OPhxfvfM68+EeX/3Mx1fv3Ji/uV9X/MzJXMz9zOdnPr7q7fycx1fvfLjt7PPx1c98fNXPhwc9ffs7B/Phnk/mevr2dz7c8xFDT9/+zpP5cPP8bMdXP/PxVc/zsx1fvfPhVp05mYv5cM9ndz19+zsf7vN3+/iq9+cDn/adj6/e+XD780lQwXy4/Tzm8dU7d+bDff7OH1+98+E+f5+Pr37m46t3Ptxxfs7jq3c+3Hn29vjqnQ93nrUfX73z4c7nMRfz/m1++vZ+Pp3r6dvf+XDP78XTt79zMR/u+fysp29/58P9/qDRePr2d/7mng+qjadvf+fGHGfOMydznflwj69Ge75/nLnOPJkX877z8dU7H24bZw7mZC7mh3t+huOrcf6eP337Oy/mfefjq69HPnNjDubDPZ9l9/TtIw7r+OqdB/Ph5tnz46t3Ptzze/T07e/cmIP5cM/v19O3v/Phnt+pp29/58l8uOf36+nbf+bjq3F+156+/Z0P9/x+PX37Ox/u+YC7p29/58F8uP15/MV8uOffjqdvf+fGfLjn9+vp29/5cM/v19O3v/Phnn9Hnr79nRfz4a6z58dX73y456Prnr79nQ/3fEzd07e/8+Gef2uevv2dJ/Ph7rNXx1c/8/HVPP92PH37OwdzMteZz9/J46t3HszzzOdnPr6an/NzHl/9zPvhnn3Yjflwn9/N46t3LubDPf8ePX37Ox/u8/tyfPXO+7f56dvn+ejHp29/58M9vztP3/7Oh3v+Pj99+zsP5sPNeebFfLjnE/Cevv2dG/Phng+SfPr2Wecj9Y6v3rkzD+bDPb8vT9/+zvvOx1fvfLjn9+jp2+d57vT07e9czJ35cM8nNj59+zsf7nwec9/5+OqdG3MwJ3Mxd+bBPJnhJtyCW3ALbsEtuAW34BbcgltwO9wOt8PtcDvcDrfD7XA73A53wB1wj6/mOn9Pjq/euZgP9zy/ffr2d57Mi3nf+fjq53GOr94Z7ky+v5jhTrgT7oQ74S64C+6Cu1jvYr0L7oK74C64C+7jq5+5MQcz691wH1/9zIN5Mi/my3369nduzMGczMXcmQfzZL7cp2//mduHuTEHM9wGt8FtcBvctphZb7DeYL0BN5K5mDvzYIYbcANuwk24yT4n603Wm6w34eZkZp+TfS72ueAW3IJbcAtusc/Feov1FuvtcDvXt7PPnX3u7HOH2+F2uB1uhzvY58F6B+sdrBdfrcH1HezzYJ8H+4yv1oQ74U64+Grhq4WvFr5a+GpNuJPri68Wvlr4ai24Cy6+Wvhq4auFrxa+Wvhq4au14W6uL75a+Grhq7Xhbrj4auOrja82vtr4auOrja/253L3ZzIv5rvPG1/tBrfBxVcbX218tfHVxlcbX218tQNuNOZgTuZihhtw8dXGVxtfbXy18dXGVxtf7YSbnZl9xlcbX+2EW3Dx1cZXG19tfLXx1cZXG1/tgltcX3y18dXGV7vD7XDx1cZXG19tfLXx1cZXG19tnl9tnl9tfLXx1cZXm+dXm+dXG19tfLXx1cZXG19tfLXx1Z5wJ9cXX218tfHVXnAXXHy18dXGVxtfbXy18dXGV3vD3VxffLXx1cZXe8PdcPHVxlf7+io/11f5ub7Kz/VVfq6v8vP5jZufT2cezJN5McNtcBvcBrfBvb7Kz/VVfq6v8nN9lZ8Gt+07X1/l5/oqP9dX+Qm4ATfgBtyAe32Vn2C9yXqT9SbcTGb2OdnnZJ8TbsJNuAW34Bb7XKy3WG+x3oJbXN9in4t97uxzh9vhdrgdbofb2efOejvr7ax3wB1c38E+D/Z5sM8D7oA74A64A+5knyfrnax3st4Jd3J9J/s82efJPk+4C+6Cu+AuuIt9Xqx3sd7FehfcxfXd7PNmnzf7vOFuuBvuhrvhbvYZXzV81fBV+1xu+yRzMXfmwTx5nMUMF181fNXwVcNXDV81fNUa3DaZF/Pd54avWsANuPiq4auGrxq+aviq4auGr1rCzcbMPuOrhq9awk24+Krhq4avGr5q+Krhq4avWsEtri++aviq4atWcDtcfNXwVcNXDV81fNXwVcNXrcPtXF981fBVw1dtwMVXbbDewXrxVRtwB9wJF181fNXwVZus98dXdeaHO888mRfzvvOPr565MQdzMhdzZ4a74C64C+6Gu+FuuBvuhrvhbrgb7oa7Lzc+H+bGHMzJXMydeTBP5sUM98dX+8yNOZgP9/ueYz59+zt35sE8mRePs+8ccB9fPd//+OpnhhtwA27ADbgBN+Am3GS9yXoTbsJNuAk34T6++pn3nR9f/cyst+D++OqZi7kzD2a4BbfgdrgdbmefO+vtrLez3g73x1fPzD539nmwzwPugDvgDrgD7mCfB+sdrHew3gl3cn0n+zzZ58k+T7gT7oQ74U64i31erHex3sV6F9zF9V3s82KfF/u84G64G+6Gu+Fu9nmz3s16N+vdcPe9vvn5MDfmYL7cp29/5848mCfzYr7rffr2d27McFsyF3NnHsxwG9wGN+Diq8RXia8SXyW+yoAbk3kxs8/46unbfx4n4eKrxFeJrxJfJb5KfJX4KgtucX3xVeKrxFdP3/4+Dlx8lfgq8VXiq8RXia8SX2WH27m++CrxVeKrp2//eZwBF18lvkp8lfgq8VXiq8RXOeAOri++SnyV+Orp238eZ8LFV4mvEl8lvkp8lfgq8VUuuIvri68SXyW+evr293Hg4qvEV4mvEl8lvkp8lfgqN9zN9cVXia8KXz19+/M4T9/+zslczJ15ME/mxXzXWzy/Kp5fFb4qfFX4qnh+VTy/KnxV+KrwVeGrwleFrwpfVcCNzjyYJ/Nihptw8VXhq8JXha8KXxW+KnxVCTe5vviq8FXhq6dv/3mcgouvCl8Vvip8Vfiq8FXhq+pwO9cXXxW+Knz19O3v48DFV4WvCl8Vvip8Vfiq8FUNuIPri68KXxW+evr2n8eZcPFV4avCV4WvCl8Vvip8VQvu4vriq8JXha+evv19HLj4qvBV4avCV4WvCl8VvqoNd3N98VXhq8JXT9/+PM7Tt79zYw7mZC7mzjyYJ/Pl9s+9vh1fdXzV8VXn9WDn9WDHVx1fdXzV8VXHVx1fdXzVA24kczF35sEMN+Diq46vOr7q+Krjq46vOr7qCTcnM/uMrzq+6rwefPr2d4aLrzq+6viq46uOrzq+6h1u5/riq46vOr7qvB58+vZ3houvOr7q+Krjq46vOr7qA+7g+uKrjq86vuq8Hnz69neGi686vur4quOrjq86vuoT7uT64quOrzq+6rwefPr2d4aLrzq+6viq46uOrzq+6hvu5vriq46vOr7qvB58+vZ3vtyBrwa+Gvhq4KuBrwa+Gp/LHZ/JvJjvPg98NXg9OPDV4PnV4PnVwFeD14OjweX9q4GvBr4a+Grw/Gr8PL+KM//Wi+a4vWiO24vmuL1ojtuL5ri9aI7bi+a4vWiO24vmuL1ojtuL5ri9aI7bi+a4vWiOhJtwC27BLbgFt+AW3IJbcAtuwe1wO9wOt8PtcDvcDrfD7XA73AF3wOX99sH9wcH77YP7g4P7g4P32wf3Bwf3Bwfvt4/bi+aYcHm/ffB++5hwJ9wJd8Ll/uBYcBfcBXex3sV6uT84uD84uD84FtwF9/ZXOW5/leP2ojm4Pzg23Ntf5bj9VY7bi+a4vWgO7g9O7g9O7g9OeoZJzzBvf5Xz9lc5by+ak/uDk55h3v4q5+2vct5eNOftRXNyf3Byf3Byf3DSM0x6hnn7q5yN9Qbr5f7gpGeYt7/KefurnLcXzXl70ZzcH5zcH5zcH5z0DJOeYSb7nKw3WS/3Byc9w7z9Vc5kn5N9LvaZ+4OT+4OT+4OTnmHSM8xin4v1Fuvl/uCkZ5id69vZ584+d/aZ+4OT+4OT+4OTnmHSM8zBPg/WO1gv9wfp23Nyf3Byf3AO9pn7g/TtOekZJvcHJ/cH6duTvj3p25O+Penbc9IzzMn1xVcTX018NekZJj0DfXvStyd9e9K3f82sF1/Rt+ekZ5ib64uv6NuTvj0nPcOkZ6BvT/r2pG9P+vakb0/69qRvz0XPsOiv6NuTvj3p23PRMyx6Bvr2pG9P+vakb0/69qRvT/r2XPQMi/6Kvj3p25O+PRc9w6JnoG9P+vakb0/69qRvT/r2pG/PRc+w6K/o25O+Penbc9EzLHoG+vakb0/69qRvT/r2pG9P+vZc9AyL/oq+Penbk749Fz3Domegb0/69qRvT/r2pG9P+vakb8/F86vF8yv69qRvT/r2XDy/Wjy/om9P+vakb0/69qRvT/r2pG/PRX+16K/o25O+Penbc9FfLfor+vakb0/69qRvT/r2pG9P+vZc9FeL/oq+Penbk749F/3Vor+ib0/69qRvT/r2pG9P+vakb89Nf7Xpr+jbk7496dtz019t+iv69qRvT/r2pG9P+vakb0/69tz0V5v+ir496duTvj03/dWmv6JvT/r2pG9P+vakb0/69qRvz01/temv6NuTvj3p23PTX236K/r2pG9P+vakb0/69qRvT/r23PRXm/6Kvj3p25O+PTf91aa/om9P+vakb0/69qRvT/r2pG/PTX+16a/o25O+Penbc/N6cPN6kL496duTvj3p25O+Penbk749N73ophelb0/69qRvz83rwU0vSt+e9O1J35707UnfnvTtSd+em15004vStyd9e9K35+b14KYXpW9P+vakb0/69qRvL/r2om+vz+1F63N70aJvL/r2om+vz309WJ/bixZ9e9G3F3170bcXfXvRtxd9e30a3NuLFn170bcXfXt9Am7ADbgBN+BeXxV9e9G3F317fRLu7UWLvr3o24u+vT4JN+Em3ISbcIt9LtZbrLdYb8Etrm+xz8U+F/tccDvcDrfD7XA7+9xZb2e9nfV2uJ3rO9jnwT4P9nnAHax3sN7BegfcAXfAnXAn652sd8KdrPf2ovW5vWh9bi9an9uL1uf2ovW5vWh9bi9an9uL1uf2ovW5vWh9bi9anwV3wV1wF9wNd8PdcDfcDXfD3XA33A339qLVbi9a7fai1W4vWu32otVuL1rt9qLVbi9a7fai1W4vWu0D977fXu3eH6x232+vdu8PVrv3B6vd99ur3fuD1e79wWr3/fZqtxetFnDv++3V7vvt1QJuwA24ATfgBtyAm3CT9SbrTbgJN+Em3IR7+6tqt7+qdnvRasV6C+7tr6rd/qra7UWr3V60WsEtuAW3w+1wO/vcWW9nvZ31dri3v6rW2efOPg/2ecAdcAfcAXfAHezzYL2D9Q7WO+FOru9knyf7PNnnCXfCnXAn3Al3sc+L9S7Wu1jvgru4vot9XuzzYp8X3A13w91wN9zNPm/Wu1nvZr0b7u2vKm5/VXF70Yrbi1bc+4MV9/5gxb0/WHF7horbM1Tc/qri9lcVtxetuPcHi7694t4frLj3BytuL1px7w8WfXtFg9vgBlx8Rd9e9O1F31707RUB9/ZXRd9e9O1F316RcBMuvqJvL/r2om8v+vaiby/69oqCW1xffEXfXvTtFQW34OIr+vaiby/69qJvL/r2om+v6HA71xdf0bcXfXtFhzvg4iv69qJvL/r2om8v+vaib68YcAfXF1/Rtxd9e8WEO+HiK/r2om8v+vaiby/69qJvr1hwF9cXX9G3F317xYK74OIr+vaiby/69qJvL/r2om+v2HA31xdf0bcXfXvl7Rkqb89Q9O1F31707UXfXvTtRd9e9O2VPL9Knl/Rtxd9e9G3V/L8Knl+Rd9e9O1F31707UXfXvTtRd9eGXBvf1X07UXfXvTtlQE34eIr+vaiby/69qJvL/r2om+vTLjJ9cVX9O1F315ZcAsuvqJvL/r2om8v+vaiby/69soOt3N98RV9e9G3V3a4HS6+om8v+vaiby/69qJvL/r2ygF3cH3xFX170bdXTrgTLr6iby/69qJvL/r2om8v+vbKBXdxffEVffvXzD4vuAsuvqJvL/r2om8v+vaiby/69soNd3N98RV9e9G3V97+qur2V0XfXvTtRd9e9O1F31707UXfXnX7q6rbXxV9e9G3F317Fa8Hi9eD9O1F31707UXfXvTtRd9e9O1VAff2okXfXvTtRd9exevBCrj4ir696NuLvr3o24u+vejbqxLu7UWLvr3o24u+vYrXg1Vw8RV9e9G3F3170bcXfXvRt1d1uJ3ri6/o24u+vYrXg9Xh4iv69qJvL/r2om8v+vaib68acAfXF1/Rtxd9exWvB2vCxVf07UXfXvTtRd9e9O1F31414U6uL76iby/69ipeD9aCi6/o24u+vejbi7696NuLvr1qw91cX3xF31707VW8HqwNF1/Rtxd9e9G3F3170bcXfXv124tWv71o0bcXfXvRt1fn9SB9e3WeX3WeX9G3V+f1YG9wef+Kvr3o24u+vTrPr/rtReunb/8+w7yevn19nu8ZZ25nnsyLed/5+OqdG3MwJ3Mxd2a4CTfhJtyCW3ALbsEtuAW34BbcglsP9+x5/zA35mBO5mLuzIN5Mi9muAPugDvgDrgD7oA74A64A+6AO+FOuBPuhDvhTrgT7oQ74U64C+6Cu+AuuAvugrvgLrgL7oK74W64G+6Gu+FuuBvuhrvh7st9+vZ3bszBnMzF3JkH82RezHAb3Aa3wW1wG9wGt8FtcBvcBjfgBtyAG3ADbsANuAE34AbchJtwE27CTbgJN+Em3ISbcAtuwS24BbfgFtyCW3ALLr4a+Grgq4GvBr4a+Grgq4GvBr4a+Grgq4GvBr4a+Grgq4GvBr4a+Grgq4GvBr4a+Grgq4GvBr4a+Grgq4GvBr4a+Grgq4GvBr4a+Grgq4GvBr4a+Grgq4GvBr4a+Grgq4GvBr4a+Grgq4GvBr4a+Grgq4mvJr6a+Griq4mvJr6a+Griq4mvJr6a+Griq4mvJr6a+Griq4mvJr6a+Griq4mvJr6a+Griq4mvJr6a+Griq4mvJr6a+Griq4mvJr6a+Griq4mvJr6a+Griq4mvJr6a+Griq4mvJr6a+Griq4mvJr6a+Griq4mvJr6a+Griq4mvJr6a+Griq4mvJr6a+Griq4mvJr6a+Griq4mvJr6a+Griq4mvnr59fX92ST19+/r+7JJ6+vbVnu853O/PVqinb3/nw/3+XJJ6+vYV3/fZn759xfmzj69i//3X7/7vP/7tz//4T3/50//53f/4/1//93/92z//8V///Nd//vm///r//uX9L//0tz//5S9//t//8C9/++sf//Q//+1vf/qHv/z1j9//7Xef7//5/jX9/ddPHO0PX9/cfvtSrV89v78Uv30p6lfs7y/lb1/K+pXnS/XzgL9fX29m/lpf7/D94Tza7/fXTbhf++vu1R/On/v67/X5+u/98/3fv//A15PD8evrWeH5A+18x4zvR6jvx+33Z5y/Ir6/NP7zjz3/85fW95e+gbF+5XphVb/q/Lz7v1g7+7F/xcG3Z0POl+LX11LeBxr91/y8P/HXvcWvxzg/XIt3I75u6P/6usn9s+zW+q8W/f3jLcavlr8t+esG+K+vm93nAfK/+wD1H5fx97//4e//Dg==",
1930
+ "bytecode": "H4sIAAAAAAAA/+ydB5QVRfP2Z0i7yy7sAopgYoxgJiioIDlnEMUACmJWghkTrBFQiWYFUUEFI0EEJCjmRDQARoyYRUEl83VpX5wZenb66TvV8//Oefuccnjr7aGq++mq/t0Lrq7z78iXz34DB1x2+aVX9Lt84KUnV3GcKlX/dbvCSstnKWFeyJd5+n9dSTFP/JZO05CPQhSHfHsofHsrfr99FL59Fb4aCp+niLGfwre/wneAwnegIsZBwnJDvoMVvpoKXy2F7xCF71CF7zCF73CF7wiF70iF7yiFr7bCV0fhq6vw1VP4jlb4jlH46it8DRS+YxW+4xS+4xW+hgpfI4XvBIWvscLXROFrqvA1U/iaK3wtFL6WCl8rha+1wtdG4Wur8LVT+NorfB0Uvo4KXyeFr7PC10Xh66rwdVP4uit8Jyp8PRS+kxS+kxW+ngrfKQrfqQrfaQrf6QpfL4Wvt8J3hsJ3psLXR+Hrq/CdpfD1U/jOlr4yjsZw5dOTz9pnd770yzoPHzKna6sXbrjhlN616n3f9uq5g8a2+PLPO9eJ///t0v/NjRmHZxPnnfg4zfy/d4Hz34JdmSc9D5L/+2D5pN83M+9d8ev3hC0WtqR08DcvHco3Zrg1gbnvltbfh6X6+x0YaP61gLnvAfkvs5T/IcDcxUD+y4H8VedwqTyHy+RzuXwu8Z3DFeLX7wv7QNiHWZ7DQ4G5K4B9+MiSjocBc98H8l9pKf/DgbkfAPmvyvIcfiTP3Ur5XCWfH/rO4Wrx64+FfSLs0yzP4RHA3NXAPnxmSccjgbkfA/l/bin/o4C5nwD5f5HlOfxMnrvP5fML+fzUdw7XiF9/KewrYV9neQ5rA3PXAPvwjSUd6wBzvwTy/9ZS/nWBuV8B+X+X5Tn8Rp67b+XzO/n82ncO14pffy/sB2E/ZnkO6wFz1wL78JMlHY8G5n4P5P+zpfyPAeb+AOT/S5bn8Cd57n6Wz1/k80ffOfxV/Po3YeuE/Z7lOawPzP0V2Ic/LOnYAJj7G5D/ekv5HwvMXQfkvyHLc/iHPHfr5XODfP7uO4d/il//JexvYRuzPIfHAXP/BPZhkyUdjwfm/gXkv9lS/g2BuX8D+W/J8hxukudus3xukc+NvnO4Vfx6m7DtwnZkeQ4bAXO3AvtAyWr+voGB5n8CMHcbkL9rKf/GwNztQP6lymR3Dul/0NOVz1LyucN3DkuLX5QRVlZYudC3reg+NAHmli6jvw85lnRsCswtA+Sfayn/ZsDcskD+eVmewxx57nLlM08+6bxl5pUXv8gXViCsQpbnsDkwtzywDxUt6dgCmJsP5F9oKf+WwNwCIP+iLM9hRXnuCuWzSD4r+M5hJfGLysKqCNsty3PYCphbCdiH3S3p2BqYWxnIv6ql/NsAc6sA+e+R5TncXZ67qvK5h3zu5juH1cQvqgvbU9heWZ7DtsDcasA+7G1Jx3bA3OpA/vtYyr89MHdPIP99szyHe8tzt4987iufe/nOYQ2KIWw/YftneQ47AHNrAPtwgCUdOwJzPSD/Ay3l3wmYux+Q/0FZnsMD5Lk7UD4Pks/9fefwYPGLmsJqCTsky3PYGZh7MLAPh1rSsQswtyaQ/2GW8u8KzK0F5H94lufwUHnuDpPPw+XzEN85PEL84khhRwmrneU57AbMPQLYhzqWdOwOzD0SyL+upfxPBOYeBeRfL8tzWEeeu7ryWU8+a/vO4dHiF8cIqy+sQZbnsAcw92hgH461pONJwNxjgPyPs5T/ycDc+kD+x2d5Do+V5+44+TxePhv4zmFD8YtGwk4Q1jjLc9gTmNsQ2IcmlnQ8BZjbCMi/qaX8TwXmngDk3yzLc9hEnrum8tlMPhv7zmFz8YsWwloKa5XlOTwNmNsc2IfWlnQ8HZjbAsi/jaX8ewFzWwL5t83yHLaW566NfLaVz1a+c9hO/KK9sA7COmZ5DnsDc9sB+9DJko5nAHPbA/l3tpT/mcDcDkD+XbI8h53kuessn13ks6PvHHYVv+gmrLuwE7M8h32AuV2BfehhSce+wNxuQP4nWcr/LGBudyD/k7M8hz3kuTtJPk+WzxN957Cn+MUpwk4VdlqW57AfMLcnsA+nW9LxbGDuKUD+vbLU8XSpWy/5PFU+T/Pp2Fv84gxhZwrrE9KxlHx6jl4KVRz9tfXVXZvbrZhyLi3XRO81dbLL80Agz7P0NXD9eWbeKyP/t6t6Aczb1Z/rFPl+3U/qerZ8niOf58rnefJ5vnxeIJ8XyudF8nmxfPaXzwHyOVA+B8nnJfJ5aWbxmU25oMx/m5HxXazwDVT4Li2z6yaGNzBOzMv0xdwrmziXx8cp4/+9w4V7mVxrP/k8Vz4v9xXuFeIXVwq7StjgLBvw2cAhvwJoYFfr/77KfbharvtK+bxKPgf79uEa8YtrhV0n7Poyu/6eNDzNfIfE51u6pHwzup0jn9fI5xBfvkPFL4qF3SDsxizzvUl/f4/OJs7N8XEq+H/v8L7cJPfhPPk8Xz5v9u3LLeIXtwobJmx4luf5AuA83wKc5xHAefYPNP8LgfxvBfK/zVL+FwH5DwPyvz3LfjJCnrvb5PN2+RzuO4d3iF+MFDZK2Ogsz+HFwD7cAezDGEs69gfyHwnkP9ZS/gOA/EcB+Y/L8hyOkedurHyOk8/RvnN4p/jFXcLuFnZPludwILAPdwL7cK8lHQcB+d8F5H+fpfwvAfK/G8j//izP4b3y3N0nn/fL5z2+c/iA+MWDwsYLm5DlObwU2IcHgH14KMt9eEiu+0H5HC+fE3z7MFH84mFhjwh7NEtum6Sfb6Eq30kyv4nyOVTBmZPFLx4T9riwJ6S/lLPrZyjHwT+ITgb2u5Tv11NkclPLOMEPd/R/FId8U6XPP9ADNxk4RFOi5/YKzXWnAhtQRuZdqoQ5XoQ/HNf//6GiTQGLJDOeDIv1ZJldT1FYGGSzS4i9MwHd3/epMtqbGVjTUxqHLS72VCBPZE1Pl7Cm8Lv+NT3tK6pc33r8a4oZrmJuqaVVzrii3OTe/Y6oWaHV79Uq33VTk9dG3tik5uHA77uzGDLFnyl4JLdnxPxnhT0XcyvF7S/yaesZQLdpYJModJLpztMMC316mSwCTi+DvzcD2EzTvGb4Dofn4AM9TMhH32eB9c9M6TDNNDxMz5seJgr4vMFhmsV8mCivWYaHyaQwZpXBufKFMrx5UfejGKWyyCtu7myggHb+w8GKroQ1HPxDo7XNrvl086YtBZ+UGv5I760vP1qnXP+XV32IrGFOGezWRNfwnFwDej7mgsWcJ5+zZaw58vlcGbV/LniDvyjmzxM2X76HnqvMedSdP0POLxOKE5fnM2Ww2tWdi+S+IMvajvv9M3WBfsR6FjjryHoXMq/3QsP1+mmx3JK9cms+ufmWz35qt/jJ+rX7V3+i45N19q3yQf/b3xi++KUd25H1vsS83osM1+sHmr0rH3XDpEfanT3moc/zH338ljPfbvLcwEeeGP5S62vXrp3cpPhpZL0vg+s1Xfciw563QPa0hfK5SD5fks+XfX5/PnEhXhHzXxX2Wpng/4H2vueAvX4dvFPRv1BBur8I5EPzXymDx3kFiPGG4flCdbgYyOlNZh0uLBM8F3Hz6Vy8YcARb4F7i66D9hS5c2lf3zJYh+vY6UFv66+lAv3eu/zAaLm2zPe3vcvs+n3vO+IX7wp7T9jimN4St7xzgTP9TkofTIG/sxKIt6RMFgGXlMHfWwpspmleSw0+mCYpBjLXH2+ZqRiZl9GTvQzoKsuZhaN/LDc4UMtTqjhkrj/eimxEXmGwQSssCYd+N+ifGxfjbGAN76d0IN43bMEfmB4ICviBwYH4kPlAUF4fGrRgVazY/+iCjIV2vqVleParjPPfX3KOW1tcXCMeo+Blff/b/+esH0lRVmYyzPzZ2EfyFJG/nJNy9jmOOgEnlEDV6TmT1m45bcVDd6789Zwnn5r69Clnzl3w8WMX7d53w6AO3W7uqHwZPSdnAdqvKoPtTmb3Ve+hdbAa/CzlhH5/T/n/7joO8s+NmXxwYG7Jk8P/UZaSJu/yH0ApYfKu/7GR6MmK/yBH5GTVf/wiarLyPzQRMVn9H2NQT474Dx8oJ0f9RwZUk2tHzFVNjv6h97tOLuEHzO8yuaQfwh6eXOIPPA9NLvmHiwcnx/wA7sDkuB927Z8c+4OlfZPjf/jyf5M1ftDxzsk6P1Q4M1nrB+/KyXo/5PbfyZo/UPafybo/dJUmN9WcS5Ob6c4Vk5EfuNnC0e/dHwPgGMzo3+FpxvkkPk6O//cOf++yWlLCx/LZUvo/8X3v8qn4xWfCPhf2Reh7l13+nEnZqf4bwR8sWfLk0A9xLHGy/wcmxvJlZTNtdllrTFK7/PDCEibv+oMCoyf7fyhf3FqXJbjWkpJS/YC8qMnKH0YXMdn/g9/i1ro82bVGJhXxQ9iUk6N+4JlqcldHf60rEl+rOqnoH/S16+QSfqjWLpP9P8Aq9sM/x1oVSZX4w6RCk0v+wU3Byf4fkhS31g+Y1hpOKu4HFvknx/5wIN9k/w/iiVvrh3xrDSSl8UNxdk7W+QE0mcn+H/YSt9aPWNf6X1J6P3jl38maP+Tkn8n+HygSt9aV3GuVSfXRnEuT++rOFZP9P7Qi9vsBw7Vm/mVST2869AMkPgW+31gDfMcAcJMLcIcL3NsucO+5wL3hAn3XBfqWC9S9C9SNa3ruOH/wx2fAufuyjJ38XWDu50D+X4F/MBD+3LVGft76Uj6/ks8vfJ+7vha/+EbYt8K+y/LPu78G1rYW/M4zvLa1ci3fyOe38vmdb23fi1/8IOxHYT9JP/0bHGVLCOY5ejll8e4/L5dV+JD4Jp/90RgtHTxGjXAMt+T5Nj6rx0228Rk6brKNz7Zxk2185oybbOOzYNxkG5/R4ibb+OwUN9nGZ5q4yTY+a8RN7qM5N5vPAHGTATb3Rfh3eJrTAQ4zjgGwUlZxvi9jJ84qwzg7BwpZqwDI+tnwD5Yz7xEwFTnBf+V15wtg3h9nuVFeFtM8R2e4O9fkP6S/iLx/FfabsHXCfhf2h7D1wjYI+1PYX8L+FrZR2CZhm4VtEbZV2DZh24XtkH/BwhVWSlhpYWWElRVWTliOsFxhecLKC8sXVlBWJpMRhpLJDfl+Vfh+U/jWKXy/K3x/KHzrFb4NCt+fCt9fCt/fCt9GhW+TwrdZ4dui8G1V+LYpfNsVvh0KH4kX9rkKXymFr7TCV0bhK6vwlVP4chS+XIUvT+Err/DlK3wF0ucf+8mn52iNQNHHNatfNOf+tmOH+6v2XMf9TXeuyHed3txx9EMkfteau+GfHzjxh87cNf/+cIr1GnObyx9ksSF+7pjMD734M3buwJ0/IOOvuLlz/vthGn/HzB3s+8EbG0ue28b/Qzo2lTh3beAHemwuaW7d4A//2FLC3JqhHxSyNXruLj/MZFvk3J7hs+5uj5pbvEtduDsi5hbvWkMu9SjF3FmKenNd5dyWqtp0S6nmdlHWsVtaMXe2uubdMrvOrRXRH9yyu8ydGNVL3HLhubUj+46bE5q7JrpHubnBuZeU0M/cvMDcTiX1Pre8f26/Evukm++be1TJPdUtKKsPXcQnSf2V5oKy2r18uT9ehbJZBKSXkX/tjIJX0N8gt6Lmokz/+jOtgWK44BoqgiJXctQ/RSkbkWPGMpXTc7TCBHItlAekKEzGhXLj/L4iBcGg3+0DJ9ktBA5IEbh5qDh0KArBw0R5FabUMfL193mCP14l045BASvhHWNCJaBjVGbuGLSGynjHmFA5pY6Rrx93vMrpOVphArlWkQdkt3DHqKLoGLsl0DGAk+xWAQ7Iboabh/6b2EhOuwPFsPMfQC4V5QFHvyRDruqqQDGo1hA3nfaoqkEnrppSJy6vf35n+uPtYdqJKeAeeCeeuQdw+Koxd2JaQzW8E8+sluXh0ymgqswFVB1cQ2agjQnRcE/gbCR5w5XXjztD5fQcrTCBXPeShbd3+IbbS3HD7Z3ADQd0CHcvQLS9DTcPPUhITvtkecPFvUPFs6fB7bAv861F697XQl6ZgWq4L6BhDWYNo5qsTnPWneuBDS0pGsjTr/XR/nj7mdIABdwPp4HR+wEbtD8zDdAa9sdpYPT+zDTwTyGU5S22A8Biyww0J0TDA1OigTz9uKNUTs/RChPI9SBZeAeHaeAgBQ0cnAANAB3CPQgQ7WDDzUMPEpJTTeabhIrnQINbtxYzDdC6a1nIKzNQDWsBGh7CrGFUk417D2myh6b03UCufq17/niHmdIABTwMpwHvMEDkw5lpgNZwOE4D3uHMNECFcGhZ3mI7whINIBoemRIN5OrHraFyeo5WmECuR8nCqx2mgaMUNFA7ARoAOoR7FCBabcPNQw8SklMd5puEiudIg1u3LjMN0LrrWsgrM1AN6wIa1mPWMKrJxr2HNNmjU6KBHP1aX+aPd4wpDVDAY3AaWHYMIHJ9ZhqgNdTHaWBZfWYaoEI4uixvsTWwRAOIhsemRAM5+nGXqpyeoxUmkOtxsvCOD9PAcQoaOD4BGgA6hHscINrxhpuHHiQkp4bMNwkVz7EGt24jZhqgdTeykFdmoBo2AjQ8gVnDqCYb9x7SZBunRAPl9Gu9rz9eE1MaoIBNcBro2wQQuSkzDdAamuI00LcpMw1QITQuy1tszSzRAKJh85RooJx+3D4qp+dohQnk2kIWXsswDbRQ0EDLBGgA6BBuC0C0loabhx4kJKdWzDcJFU9zg1u3NTMN0LpbW8grM1ANWwMatmHWMKrJxr2HNNm2KdFAWf1aX+WP186UBihgO5wGVrUDRG7PTAO0hvY4Daxqz0wDVAhty/IWWwdLNIBo2DElGiirH3elyuk5WmECuXaShdc5TAOdFDTQOQEaADqE2wkQrbPh5qEHCcmpC/NNQsXT0eDW7cpMA7TurhbyygxUw66Aht2YNYxqsnHvIU22e0o0UEa/1tv5451oSgMU8EScBtqdCIjcg5kGaA09cBpo14OZBqgQupflLbaTLNEAouHJKdFAGf24bVVOz9EKE8i1pyy8U8I00FNBA6ckQANAh3B7AqKdYrh56EFCcjqV+Sah4jnZ4NY9jZkGaN2nWcgrM1ANTwM0PJ1Zw6gmG/ce0mR7pUQDpfVrfbo/Xm9TGqCAvXEamN4bEPkMZhqgNZyB08D0M5hpgAqhV1neYjvTEg0gGvZJiQZK68edpnJ6jlaYQK59ZeGdFaaBvgoaOCsBGgA6hNsXEO0sw81DDxKSUz/mm4SKp4/BrXs2Mw3Qus+2kFdmoBqeDWh4DrOGUU027j2kyZ6bEg2U0q/1+f5455nSAAU8D6eB+ecBIp/PTAO0hvNxGph/PjMNUCGcW5a32C6wRAOIhhemRAOl9OPOUzk9RytMINeLZOFdHKaBixQ0cHECNAB0CPciQLSLDTcPPUhITv2ZbxIqngsNbt0BzDRA6x5gIa/MQDUcAGg4kFnDqCYb9x7SZAelRAOufq138Me7xJQGKOAlOA10uAQQ+VJmGqA1XIrTQIdLmWmACmFQWd5iu8wSDSAaXp4SDbj6cdurnJ6jFSaQ6xWy8K4M08AVChq4MgEaADqEewUg2pWGm4ceJCSnq5hvEiqeyw1u3cHMNEDrHmwhr8xANRwMaHg1s4ZRTTbuPaTJXpMSDTj6tV7sj3etKQ1QwGtxGii+FhD5OmYaoDVch9NA8XXMNECFcE1Z3mK73hINIBoOSYkGHP24Q1VOz9EL4891qCy84jANDFXQQHECNAB0CHcoIFqx4eahBwnJ6Qbmm4SKZ4jBrXsjMw3Qum+0kFdmoBreCGh4E7OGUU027j2kyd6cEg3s0P8vBAVo4BZTGqCAtxjQwC2AyLcy0wCt4VYDGriVmQaoEG4uy1tswyzRAKLh8JRowF88MSMxGhghC++2MA2MUNDAbQnQANAh3BGAaLdZogEkp9uZbxIqnuEGt+4dzDRA677DQl6ZgWp4B6DhSGYNo5ps3HtIkx2VEg1s16/1qf54o01pgAKOxmlg6mhA5DHMNEBrGIPTwNQxzDRAhTCqLG+xjbVEA4iG41Kige36NDBF5fQcrTCBXO+UhXdXmAbuVNDAXQnQANAh3DsB0e4qa7Z56EFCcrqb+Sah4hlncOvew0wDtO57LOSVGaiG9wAa3susYVSTjXsPabL3pUQD2/RrfbI/3v2mNEAB78dpYPL9gMgPMNMAreEBnAYmP8BMA1QI95XlLbYHLdEAouH4lGhgmz4NTFI5PUcrTCDXCbLwHgrTwAQFDTyUAA0AHcKdAIj2UFmzzUMPEpLTROabhIpnvMGt+zAzDdC6H7aQV2agGj4MaPgIs4ZRTTbuPaTJPpoSDWzVr/XV/niTTGmAAk7CaWD1JEDkycw0QGuYjNPA6snMNECF8GhZ3mJ7zBINIBo+nhINbNWngVUqp+dohQnk+oQsvClhGnhCQQNTEqABoEO4TwCiTSlrtnnoQUJymsp8k1DxPG5w6z7JTAO07ict5JUZqIZPAho+xaxhVJONew9psk+nRANb9Gt9iT/eM6Y0QAGfwWlgyTOAyM8y0wCt4VmcBpY8y0wDVAhPl+Uttucs0QCi4bSUaGCLPg0sVjk9RytMINfpsvBmhGlguoIGZiRAA0CHcKcDos0oa7Z56EFCcprJfJNQ8UwzuHWfZ6YBWvfzFvLKDFTD5wENZzFrGNVk495DmuwLKdHAZv1ar+6PN9uUBijgbJwGqs8GRJ7DTAO0hjk4DVSfw0wDVAgvlOUttrmWaADR8MWUaGCzPg1UUzk9RytMINd5svDmh2lgnoIG5idAA0CHcOcBos0va7Z56EFCclrAfJNQ8bxocOsuZKYBWvdCC3llBqrhQkDDl5g1jGqyce8hTfbllGhgk36tz/XHW2RKAxRwEU4DcxcBIr/CTAO0hldwGpj7CjMNUCG8XJa32F61RAOIhq+lRAOb9GlgjsrpOVphArm+LgvvjTANvK6ggTcSoAGgQ7ivA6K9UdZs89CDhOT0JvNNQsXzmsGt+xYzDdC637KQV2agGr4FaPg2s4ZRTTbuPaTJvpMSDWzUr/Xh/njvmtIABXwXp4Hh7wIiv8dMA7SG93AaGP4eMw1QIbxTlrfYFluiAUTDJSnRwEZ9GhimcnqOVphArktl4S0L08BSBQ0sS4AGgA7hLgVEW1bWbPPQg4TktJz5JqHiWWJw665gpgFa9woLeWUGquEKQMP3mTWMarJx7yFN9oOUaOBv/Vpv64/3oSkNUMAPcRpo+yEg8kfMNEBr+AingbYfMdMAFcIHZXmLbaUlGkA0XJUSDfytTwNtVE7P0QoTyHW1LLyPwzSwWkEDHydAA0CHcFcDon1c1mzz0IOE5PQJ801CxbPK4Nb9lJkGaN2fWsgrM1ANPwU0/IxZw6gmG/ce0mQ/T4kG/tKv9bH+eF+Y0gAF/AKngbFfACKvYaYBWsManAbGrmGmASqEz8vyFtuXlmgA0fCrlGjgL30aGKNyeo5WmECuX8vC+yZMA18raOCbBGgA6BDu14Bo35Q12zz0ICE5fct8k1DxfGVw637HTAO07u8s5JUZqIbfARquZdYwqsnGvYc02e9TooE/9Wt9kD/eD6Y0QAF/wGlg0A+AyD8y0wCt4UecBgb9yEwDVAjfl+Uttp8s0QCi4c8p0cCf+jQwUOX0HK0wgVx/kYX3a5gGflHQwK8J0ADQIdxfANF+LWu2eehBQnL6jfkmoeL52eDWXcdMA7TudRbyygxUw3WAhr8zaxjVZOPeQ5rsHynRwAb9Wl/oj7felAYo4HqcBhauB0TewEwDtIYNOA0s3MBMA1QIf5TlLbY/LdEAouFfKdHABn0aWKByeo5WmECuf8vC2ximgb8VNLAxARoAOoT7NyDaxrJmm4ceJCSnTcw3CRXPXwa37mZmGqB1b7aQV2agGm4GNNzCrGFUk417D2myW1OigfX6te75420zpQEKuA2nAW8bIPJ2ZhqgNWzHacDbzkwDVAhby/IW2w5LNABpWC4dGlivTwM1VE7P0QoTyNUt9++zVDknePPT/xGmAZqULQ0AHcJ1y+mLVqqc2eahBwnJqTRwkHb+w9F/h4rHKYcXdhn9vP5LztHPi9ZdxkJemYFqWAbQsCyzhlFNNu49pMmWA/Y1SRr4Q7/WC/zxcsplEZBeBmmgIAcQORc4PKZryAWLh9aQm2VR6xRCuXK8xZYHFltmoDkhGpZPiQb+0KeBfJXTc7TCBHLNl4VXEKaBfAUNFCRAA0CHcPMB0QrKmW0eepCQnCow3yRUPOUNbt2KzDRA665oIa/MQDWsCGhYyKxhVJONew9pskUp0cDv+rU+wB+vkikNUMBKOA0MqASIXJmZBmgNlXEaGFCZmQaoEIrK8RZbFUs0gGi4W0o08Ls+DfRXOT1HK0wg191l4VUN08DuChqomgANAB3C3R0QrWo5s81DDxKS0x7MNwkVz24Gt241ZhqgdVezkFdmoBpWAzSszqxhVJONew9psnumRAPr9Gu9kj/eXqY0QAH3wmmg0l6AyHsz0wCtYW+cBirtzUwDVAh7luMttn0s0QCi4b4p0cA6fRooUjk9RytMINcasvC8MA3UUNCAlwANAB3CrQGI5pUz2zz0ICE57cd8k1Dx7Gtw6+7PTAO07v0t5JUZqIb7AxoewKxhVJONew9psgemRAO/6Te0QLyDTGmAAh5UDn/vYOYbnvI6uNx/Ds/RH2gR0YE9sBxvUdS0dGsjutTKslB11lzLQMMkC+pXw4I6xLSgKOAhBgV1KHNBUV6HJlRQcdNJ+EPLmR0YTy9GoofklzL6OfrjHWZ6SCjgYQYd5zCgYg9nPlC0hsMNRD6c+TMYHaLDDfCgJrBfRzDjIO3tEYbFmhno2ToCWP+RzIgXdSPHvYfcyEcxa0h7dJTBRYDoQE2QPpuVVv1GYNyWjtk5c7A4nrZzl+HuXJPre6e22K86wuoKqyfsaGHHCKsvrIGwY4UdJ+x4YQ2FNRJ2grDGwpoIayqsmbDmwloIaymslbDWwtoIayusnbD2wjoI6yisk7DOwrqEvwOoLT/v+311FL66Cl89he9ohe8Yha++wtdA4TtW4TtO4Tte4Wuo8DVS+E5Q+BorfE0UvqYKXzOFr7nC10Lha6nwtVL4Wit8bRS+tgpfO4WvvcLXQeHrqPB1Uvg6K3xdyu363dJ+8uk5WiNQ9HHNprZmY6Lvoepoz3XcurpzRb719OaOE/m6R2vN3UBrc4/Rmbvmn31w62vMbf7vnrkN4ueOkfvrHhs7d2BGC/e4uLlzdurmHh8zd/B/GrsNS57bxnce3EYlzl3rPzvuCSXNrRs4Z27jEubWDJ5Jt0n03F6h8+s2jZzbM3zW3WZRc4t3qQu3ecTc4l1ryG2hnjtLUW9uS+XclqradFup5nZR1rHbWjF3trrm3Ta7zq0V0R/ctrvMnRjVS9x24bm1I/uO2z40d010j3I7BOdeUkI/czsG5nYqqfe5nfxz+5XYJ93OvrlHldxT3S4pfeLtot/Ll/vjdTX9xEsBu5aD/9RxeVf9DXK7aS7K9BMvraEb+ImX1tANFDmpPx0DDtcyldNztMIEcu0uD8iJYTLuLjfO7zuxXPZ/OgacZLc7cEBOBDcPFYcORXfwMFFe3VPqGJ3193mCP14P045BAXvgHWNCD6BjnMTcMWgNJ+EdY8JJKXWMzvpxx6ucnqMVJpDryfKA9Ax3jJMVHaNnAh0DOMnuycAB6Wm4eegXdUhOpwDFsPMfQC7d5AFHv6hDrupTgWJQrSFuOu3RqQad+NSUOnEn/fM70x/vNNNOTAFPwzvxzNOAw3c6cyemNZyOd+KZp2d5+HQK6FTmAuoFriEz0MaEaNgbOBtJ3nCd9OPOUDk9RytMINczZOGdGb7hzlDccGcmcMMBHcI9AxDtTMPNQw8SklOfLG+4uHeoeHob3A59mW8tWndfC3llBqphX0DDs5g1jGqyOs1Zd24/sKElRQMd9Wt9tD/e2aY0QAHPxmlg9NnABp3DTAO0hnNwGhh9DjMNUCH0K8dbbOeCxZYZaE6IhuelRAMd9eOOUjk9RytMINfzZeFdEKaB8xU0cEECNAB0CPd8QLQLDDcPPUhIThcy3yRUPOcZ3LoXMdMArfsiC3llBqrhRYCGFzNrGNVk495Dmmz/lL4b6KBf654/3gBTGqCAA3Aa8AYAIg9kpgFaw0CcBryBzDRAhdC/HG+xDbJEA4iGl6REAx304yb2c+culYV3WZgGLlXQwGUJ0ADQIdxLAdEuM9w89CAhOV3OfJNQ8VxicOtewUwDtO4rLOSVGaiGVwAaXsmsYVSTjXsPabJXpUQD7fVrfZk/3mBTGqCAg3EaWDYYEPlqZhqgNVyN08Cyq5lpgArhqnK8xXaNJRpANLw2JRporx93qcrpOVphArleJwvv+jANXKeggesToAGgQ7jXAaJdb7h56EFCchrCfJNQ8VxrcOsOZaYBWvdQC3llBqrhUEDDYmYNo5ps3HtIk70hJRpop1/rff3xbjSlAQp4I04DfW8ERL6JmQZoDTfhNND3JmYaoEK4oRxvsd1siQYQDW9JiQba6cfto3J6jlaYQK63ysIbFqaBWxU0MCwBGgA6hHsrINoww81DDxKS03Dmm4SK5xaDW3cEMw3QukdYyCszUA1HABrexqxhVJONew9psrenRANt9Wt9lT/eHaY0QAHvwGlg1R2AyCOZaYDWMBKngVUjmWmACuH2crzFNsoSDSAajk6JBtrqx12pcnqOVphArmNk4Y0N08AYBQ2MTYAGgA7hjgFEG2u4eehBQnIax3yTUPGMNrh172SmAVr3nRbyygxUwzsBDe9i1jCqyca9hzTZu1OigTb6td7OH+8eUxqggPfgNNDuHkDke5lpgNZwL04D7e5lpgEqhLvL8RbbfZZoANHw/pRooI1+3LYqp+dohQnk+oAsvAfDNPCAggYeTIAGgA7hPgCI9qDh5qEHCclpPPNNQsVzv8GtO4GZBmjdEyzklRmohhMADR9i1jCqyca9hzTZiSnRQGv9Wp/uj/ewKQ1QwIdxGpj+MCDyI8w0QGt4BKeB6Y8w0wAVwsRyvMX2qCUaQDSclBINtNaPO03l9BytMIFcJ8vCeyxMA5MVNPBYAjQAdAh3MiDaY4abhx4kJKfHmW8SKp5JBrfuE8w0QOt+wkJemYFq+ASg4RRmDaOabNx7SJOdmhINtNKv9fn+eE+a0gAFfBKngflPAiI/xUwDtIancBqY/xQzDVAhTC3HW2xPW6IBRMNnUqKBVvpx56mcnqMVJpDrs7LwngvTwLMKGnguARoAOoT7LCDac4abhx4kJKdpzDcJFc8zBrfudGYaoHVPt5BXZqAaTgc0nMGsYVSTjXsPabIzU6KBlvq13sEf73lTGqCAz+M00OF5QORZzDRAa5iF00CHWcw0QIUwsxxvsb1giQYQDWenRAMt9eO2Vzk9RytMINc5svDmhmlgjoIG5iZAA0CHcOcAos013Dz0ICE5vch8k1DxzDa4decx0wCte56FvDID1XAeoOF8Zg2jmmzce0iTXZASDbTQr/Vif7yFpjRAARfiNFC8EBD5JWYaoDW8hNNA8UvMNECFsKAcb7G9bIkGEA0XpUQDLfTjDlU5PUcrTCDXV2ThvRqmgVcUNPBqAjQAdAj3FUC0Vw03Dz1ISE6vMd8kVDyLDG7d15lpgNb9uoW8MgPV8HVAwzeYNYxqsnHvIU32zZRooLkhDbxlSgMU8C0DGngLEPltZhqgNbxtQANvM9MAFcKb5XiL7R1LNIBo+G5KNNA8BRp4Txbe4jANvKeggcUJ0ADQIdz3ANEWW6IBJKclzDcJFc+7BrfuUmYaoHUvtZBXZqAaLgU0XMasYVSTjXsPabLLU6KBZvq1PtUfb4UpDVDAFTgNTF0BiPw+Mw3QGt7HaWDq+8w0QIWwvBxvsX1giQYQDT9MiQaa6cedonJ6jlaYQK4fycJbGaaBjxQ0sDIBGgA6hPsRINpKw81DDxKS0yrmm4SK50ODW3c1Mw3QuldbyCszUA1XAxp+zKxhVJONew9psp+kRANN9Wt9sj/ep6Y0QAE/xWlg8qeAyJ8x0wCt4TOcBiZ/xkwDVAiflOMtts8t0QCi4Rcp0UBT/biTVE7P0QoTyHWNLLwvwzSwRkEDXyZAA0CHcNcAon1puHnoQUJy+or5JqHi+cLg1v2amQZo3V9byCszUA2/BjT8hlnDqCYb9x7SZL9NiQaa6Nf6an+870xpgAJ+h9PA6u8Akdcy0wCtYS1OA6vXMtMAFcK35XiL7XtLNIBo+ENKNNBEP+4qldNztMIEcv1RFt5PYRr4UUEDPyVAA0CHcH8ERPvJcPPQg4Tk9DPzTULF84PBrfsLMw3Qun+xkFdmoBr+Amj4K7OGUU027j2kyf6WEg001q/1Jf5460xpgAKuw2lgyTpA5N+ZaYDW8DtOA0t+Z6YBKoTfyvEW2x+WaADRcH1KNNBYP+5ildNztMIEct0gC+/PMA1sUNDAnwnQANAh3A2AaH8abh56kJCc/mK+Sah41hvcun8z0wCt+28LeWUGquHfgIYbmTWMarJx7yFNdlNKNHCCfq1X98fbbEoDFHAzTgPVNwMib2GmAVrDFpwGqm9hpgEqhE3leIttqyUaQDTclhINnKAft5rK6TlaYQK5bpeFtyNMA9sVNLAjARoAOoS7HRBth+HmoQcJycnJ4b1JqHi2Gdy6rn5e/yXnAGvJ+TcGd16ZgWrojxM3txSzhlFNNu49pMmWBvY1SRpopF/rc/3xyuRkEZBeBmlgbhlA5LLA4TFdQ1mweGgNZbMsap1CKJ3DW2zlwGLLDDQnRMMcIKckaaCR/oU2R+X0HK0wgVxzZeHl5TjBmz83Z1caoEnZ0gDQIdxcQLS8HLPNQw8SklN55puEiifH4NbNZ6YBWne+hbwyA9UwH9CwgFnDqCYb9x7SZCukRAMN9Wt9uD9eRVMaoIAVcRoYXhEQuZCZBmgNhTgNDC9kpgEqhAo5vMVWZIkGEA0rpUQDDfVpYJjK6TlaYQK5VpaFVyVMA5UVNFAlARoAOoRbGRCtSo7Z5qEHCclpN+abhIqnksGtuzszDdC6d7eQV2agGu4OaFiVWcOoJhv3HtJk90iJBo7Xr/W2/njVTGmAAlbDaaBtNUDk6sw0QGuojtNA2+rMNECFsEcOb7HtaYkGEA33SokGjtengTYqp+dohQnkurcsvH3CNLC3ggb2SYAGgA7h7g2Itk+O2eahBwnJaV/mm4SKZy+DW7cGMw3QumtYyCszUA1rABp6zBpGNdm495Amu19KNHCcfq2P9cfb35QGKOD+OA2M3R8Q+QBmGqA1HIDTwNgDmGmACmG/HN5iO9ASDSAaHpQSDRynTwNjVE7P0QoTyPVgWXg1wzRwsIIGaiZAA0CHcA8GRKuZY7Z56EFCcqrFfJNQ8RxkcOsewkwDtO5DLOSVGaiGhwAaHsqsYVSTjXsPabKHpUQDx+rX+iB/vMNNaYACHo7TwKDDAZGPYKYBWsMROA0MOoKZBqgQDsvhLbYjLdEAouFRKdHAsfo0MFDl9BytMIFca8vCqxOmgdoKGqiTAA0AHcKtDYhWJ8ds89CDhORUl/kmoeI5yuDWrcdMA7TuehbyygxUw3qAhkczaxjVZOPeQ5rsMSnRQAP9Wl/oj1fflAYoYH2cBhbWB0RuwEwDtIYGOA0sbMBMA1QIx+TwFtuxlmgA0fC4lGiggT4NLFA5PUcrTCDX42XhNQzTwPEKGmiYAA0AHcI9HhCtYY7Z5qEHCcmpEfNNQsVznMGtewIzDdC6T7CQV2agGp4AaNiYWcOoJhv3HtJkm6REA/X1a93zx2tqSgMUsClOA15TQORmzDRAa2iG04DXjJkGqBCa5PAWW3NLNIBo2CIlGqivTwM1VE7P0QoTyLWlLLxWYRpoqaCBVgnQANAh3JaAaK1yzDYPPUhITq2ZbxIqnhYGt24bZhqgdbexkFdmoBq2ATRsy6xhVJONew9psu1SooFj9Gu9wB+vvSkNUMD2OA0UtAdE7sBMA7SGDjgNFHRgpgEqhHY5vMXW0RINIBp2SokGjtGngXyV03O0wgRy7SwLr0uYBjoraKBLAjQAdAi3MyBalxyzzUMPEpJTV+abhIqnk8Gt242ZBmjd3SzklRmoht0ADbszaxjVZOPeQ5rsiSnRwNH6tT7AH6+HKQ1QwB44DQzoAYh8EjMN0BpOwmlgwEnMNECFcGIOb7GdbIkGEA17pkQDR+vTQH+V03O0wgRyPUUW3qlhGjhFQQOnJkADQIdwTwFEOzXHbPPQg4TkdBrzTULF09Pg1j2dmQZo3adbyCszUA1PBzTsxaxhVJONew9psr1TooF6+rVeyR/vDFMaoIBn4DRQ6QxA5DOZaYDWcCZOA5XOZKYBKoTeObzF1scSDSAa9k2JBurp00CRyuk5WmECuZ4lC69fmAbOUtBAvwRoAOgQ7lmAaP1yzDYPPUhITmcz3yRUPH0Nbt1zmGmA1n2OhbwyA9XwHEDDc5k1jGqyce8hTfa8lGigLvDDcv3xzjelAQp4fg7+3gXMNzzldUHOfw7P0R9oEdGBPS+HtygutHRrI7pclGWh6qz5IgMNkyyoOoYFdbFpQVHAiw0Kqj9zQVFe/RMqqLjpJHz/HLMD4+nFSPSQ1AZ+Sq0/3gDTQ0IBBxh0nAFAxQ5kPlC0hoEGIg9k/gxGh2igAR5cCOzXIGYcpL0dZFismYGerUHA+i9hRryoGznuPeRGvpRZQ9qjSw0uAkQHaoL02ay04jeqEY7rOiWOVv65MZNbB+aWPLlNcG6Jk9uG5pY0uV14bgmT2+8yN3pyh13nRk7uqJgbNbmTam7E5M7KuerJXdRzlZO7RsxVTe4WNVcxuXvk3F0nnxg9d5fJPUqYG558UklzQ5NPLnFucHLPkucGJp8SM9c/+dS4ub7Jp8XO/W/y6fFzd07upTE3M7m3zlw5+Qytuf9OPlNv7j+T+2jOpcl9deeKyWdpz3XcfvpzlcPLYprn6Ax3p76u753LxL1yubArhF0p7Cphg4VdLewaYdcKu07Y9cKGCBsqrFjYDcJuFHaTsJuF3SLsVmHDhA0XNkLYbcJuF3aHsJHCRgkbLWyMsLHCxoW/K71Mfi/q912u8F2h8F2p8F2l8A1W+K5W+K5R+K5V+K5T+K5X+IYofEMVvmKF7waF70aF7yaF72aF7xaF71aFb5jCN1zhG6Hw3abw3a7w3aHwjVT4Ril8oxW+MQrfWIVvXM6u38EfJp+eozUCRR8HZZdpAhx9X3+59lzHvUJ3rsj3Sr2540S+7lVaczfQ2tzBOnPX/LMP7tUac5v/u2fuNfFzx8j9da+NnTswo4V7XdzcOTt1c6+PmTv4P43dISXPbeM7D+7QEueu9Z8dt7ikuXUD58y9oYS5NYNn0r0xem6v0Pl1b4qc2zN81t2bo+YW71IX7i0Rc4t3rSH3VvXcWYp6c4cp57ZU1aY7XDW3i7KO3RGKubPVNe/etuvcWhH9wb19l7kTo3qJe0d4bu3IvuOODM1dE92j3FHBuZeU0M/c0YG5nUrqfe4Y/9x+JfZJd6xv7lEl91R3HPCFw9LK+nOXAXOXA3NXAHPfB+Z+AMz9EJj7ETB3JTB3lf7cRL/RHad/By/3x7vT9BtdCnhnDvy3apbfCRzsuzQXZfqNLq3hLvAbXVrDXTmYyEn97Q+gKSxTOT1HK0wg17vlAbkn/Inmbrlxft89Odn/7Q/gJLt3AwfkHnDzUHHoUNwNHibK6+6cdDrGWP19nuCPd69px6CA9+IdY8K9QMe4j7lj0BruwzvGhPtS6hhj9eOOVzk9RytMINf75QF5INwx7ld0jAcS6BjASXbvBw7IA4abh/5BFJLTg0Ax7PwHkMtd8oCjfxCFXNXjgWJQrSFuOu3ReINOPD6lTjxG//zO9MebYNqJKeAEvBPPnAAcvoeYOzGt4SG8E898KMvDp1NA45kLaCK4hsxAGxOi4cPA2UjyhhujH3eGyuk5WmECuT4iC+/R8A33iOKGezSBGw7oEO4jgGiPGm4eepCQnCZlecPFvUPF87DB7TCZ+daidU+2kFdmoBpOBjR8jFnDqCar05x15z4ONrSkaGC0fq2P9sd7wpQGKOATOA2MfgLYoCnMNEBrmILTwOgpzDRAhfB4Dm+xTQWLLTPQnBANn0yJBkbrxx2lcnqOVphArk/Jwns6TANPKWjg6QRoAOgQ7lOAaE8bbh56kJCcnmG+Sah4njS4dZ9lpgFa97MW8soMVMNnAQ2fY9YwqsnGvYc02WkpfTcwSr/WPX+86aY0QAGn4zTgTQdEnsFMA7SGGTgNeDOYaYAKYVoOb7HNtEQDiIbPp0QDo/TjJvZzVWfJwnshTAOzFDTwQgI0AHQIdxYg2guGm4ceJCSn2cw3CRXP8wa37hxmGqB1z7GQV2agGs4BNJzLrGFUk417D2myL6ZEAyP1a32ZP948UxqggPNwGlg2DxB5PjMN0Brm4zSwbD4zDVAhvJjDW2wLLNEAouHClGhgpH7cpSqn52iFCeT6kiy8l8M08JKCBl5OgAaADuG+BIj2suHmoQcJyWkR801CxbPQ4NZ9hZkGaN2vWMgrM1ANXwE0fJVZw6gmG/ce0mRfS4kG7tCv9b7+eK+b0gAFfB2ngb6vAyK/wUwDtIY3cBro+wYzDVAhvJbDW2xvWqIBRMO3UqKBO/Tj9lE5PUcrTCDXt2XhvROmgbcVNPBOAjQAdAj3bUC0dww3Dz1ISE7vMt8kVDxvGdy67zHTAK37PQt5ZQaq4XuAhouZNYxqsnHvIU12SUo0cLt+ra/yx1tqSgMUcClOA6uWAiIvY6YBWsMynAZWLWOmASqEJTm8xbbcEg0gGq5IiQZu14+7UuX0HK0wgVzfl4X3QZgG3lfQwAcJ0ADQIdz3AdE+MNw89CAhOX3IfJNQ8awwuHU/YqYBWvdHFvLKDFTDjwANVzJrGNVk495DmuyqlGjgNv1ab+ePt9qUBijgapwG2q0GRP6YmQZoDR/jNNDuY2YaoEJYlcNbbJ9YogFEw09TooHb9OO2VTk9RytMINfPZOF9HqaBzxQ08HkCNAB0CPczQLTPDTcPPUhITl8w3yRUPJ8a3LprmGmA1r3GQl6ZgWq4BtDwS2YNo5ps3HtIk/0qJRoYoV/r0/3xvjalAQr4NU4D078GRP6GmQZoDd/gNDD9G2YaoEL4Koe32L61RAOIht+lRAMj9ONOUzk9RytMINe1svC+D9PAWgUNfJ8ADQAdwl0LiPa94eahBwnJ6Qfmm4SK5zuDW/dHZhqgdf9oIa/MQDX8EdDwJ2YNo5ps3HtIk/05JRoYrl/r8/3xfjGlAQr4C04D838BRP6VmQZoDb/iNDD/V2YaoEL4OYe32H6zRAOIhutSooHh+nHnqZyeoxUmkOvvsvD+CNPA7woa+CMBGgA6hPs7INofhpuHHiQkp/XMNwkVzzqDW3cDMw3QujdYyCszUA03ABr+yaxhVJONew9psn+lRAPD9Gu9gz/e36Y0QAH/xmmgw9+AyBuZaYDWsBGngQ4bmWmACuGvHN5i22SJBhANN6dEA8P047ZXOT1HK0wg1y2y8LaGaWCLgga2JkADQIdwtwCibTXcPPQgITltY75JqHg2G9y625lpgNa93UJemYFquB3QcAezhlFNNu49pMlS0Wr+vonSwK36tV7sj+fmZhGQXgZpoNjV3yC3VC4vDdAaKAZIA8WlAJFVeekUgpPLW2ylAR38/wPNCdGwDJBTkjRwq37jGapyeo5WmECuZWXhlQv/V2DK5u5KAzQpWxoAOoRbFhCtXK7Z5qEHCckpBzzc6IGh4imTixd2bpaNI246rTvXQl6ZgWqYC2iYx6xhVJONew9psuVTooFbDGkg35QGKGC+AQ3kAyIXMNMAraHAgAYKmGmACqF8Lm+xVbBEA4iGFVOigVtSoIFCWXhFYRooVNBAUQI0AHQItxAQrcgSDSA5VWK+Sah4KhrcupWZaYDWXdlCXpmBalgZ0LAKs4ZRTTbuPaTJ7pYSDdysX+tT/fF2N6UBCrg7TgNTdwdErspMA7SGqjgNTK3KTANUCLvl8hbbHpZoANGwWko0cLM+DUxROT1HK0wg1+qy8PYM00B1BQ3smQANAB3CrQ6Itmeu2eahBwnJaS/mm4SKp5rBrbs3Mw3Quve2kFdmoBruDWi4D7OGUU027j2kye6bEg3cpF/rk/3xapjSAAWsgdPA5BqAyB4zDfyzaTgNTPaYaYAKYd9c3mLbzxINIBrunxIN3KRPA5NUTs/RChPI9QBZeAeGaeAABQ0cmAANAB3CPQAQ7cBcs81DDxKS00HMNwkVz/4Gt+7BzDRA6z7YQl6ZgWp4MKBhTWYNo5ps3HtIk62VEg3cqF/rq/3xDjGlAQp4CE4Dqw8BRD6UmQZoDYfiNLD6UGYaoEKolctbbIdZogFEw8NTooEb9WlglcrpOVphArkeIQvvyDANHKGggSMToAGgQ7hHAKIdmWu2eehBQnI6ivkmoeI53ODWrc1MA7Tu2hbyygxUw9qAhnWYNYxqsnHvIU22bko0cIN+rS/xx6tnSgMUsB5OA0vqASIfzUwDtIajcRpYcjQzDVAh1M3lLbZjLNEAomH9lGjgBn0aWKxyeo5WmECuDWThHRumgQYKGjg2ARoAOoTbABDt2FyzzUMPEpLTccw3CRVPfYNb93hmGqB1H28hr8xANTwe0LAhs4ZRTTbuPaTJNkqJBor1a726P94JpjRAAU/AaaD6CYDIjZlpgNbQGKeB6o2ZaYAKoVEub7E1sUQDiIZNU6KBYn0aqKZyeo5WmECuzWThNQ/TQDMFDTRPgAaADuE2A0Rrnmu2eehBQnJqwXyTUPE0Nbh1WzLTAK27pYW8MgPVsCWgYStmDaOabNx7SJNtnRINDNWv9bn+eG1MaYACtsFpYG4bQOS2zDRAa2iL08Dctsw0QIXQOpe32NpZogFEw/Yp0cBQfRqYo3J6jlaYQK4dZOF1DNNABwUNdEyABoAO4XYAROuYa7Z56EFCcurEfJNQ8bQ3uHU7M9MArbuzhbwyA9WwM6BhF2YNo5ps3HtIk+2aEg0M0a/14f543UxpgAJ2w2lgeDdA5O7MNEBr6I7TwPDuzDRAhdA1l7fYTrREA4iGPVKigSH6NDBM5fQcrTCBXE+ShXdymAZOUtDAyQnQANAh3JMA0U7ONds89CAhOfVkvkmoeHoY3LqnMNMArfsUC3llBqrhKYCGpzJrGNVk495DmuxpKdHA9fq13tYf73RTGqCAp+M00PZ0QORezDRAa+iF00DbXsw0QIVwWi5vsfW2RAOIhmekRAPX69NAG5XTc7TCBHI9UxZenzANnKmggT4J0ADQIdwzAdH65JptHnqQkJz6Mt8kVDxnGNy6ZzHTAK37LAt5ZQaq4VmAhv2YNYxqsnHvIU327JRo4Dr9Wh/rj3eOKQ1QwHNwGhh7DiDyucw0QGs4F6eBsecy0wAVwtm5vMV2niUaQDQ8PyUauE6fBsaonJ6jFSaQ6wWy8C4M08AFChq4MAEaADqEewEg2oW5ZpuHHiQkp4uYbxIqnvMNbt2LmWmA1n2xhbwyA9XwYkDD/swaRjXZuPeQJjsgJRq4Vr/WB/njDTSlAQo4EKeBQQMBkQcx0wCtYRBOA4MGMdMAFcKAXN5iu8QSDSAaXpoSDVyrTwMDVU7P0QoTyPUyWXiXh2ngMgUNXJ4ADQAdwr0MEO3yXLPNQw8SktMVzDcJFc+lBrfulcw0QOu+0kJemYFqeCWg4VXMGkY12bj3kCY7OCUauEa/1hf6411tSgMU8GqcBhZeDYh8DTMN0BquwWlg4TXMNECFMDiXt9iutUQDiIbXpUQD1+jTwAKV03O0wgRyvV4W3pAwDVyvoIEhCdAA0CHc6wHRhuSabR56kJCchjLfJFQ81xncusXMNEDrLraQV2agGhYDGt7ArGFUk417D2myN6ZEA1fr17rnj3eTKQ1QwJtwGvBuAkS+mZkGaA034zTg3cxMA1QIN+byFtstlmgA0fDWlGjgan0aqKFyeo5WmECuw2ThDQ/TwDAFDQxPgAaADuEOA0Qbnmu2eehBQnIawXyTUPHcanDr3sZMA7Tu2yzklRmohrcBGt7OrGFUk417D2myd6REA4P1a73AH2+kKQ1QwJE4DRSMBEQexUwDtIZROA0UjGKmASqEO3J5i220JRpANByTEg0M1qeBfJXTc7TCBHIdKwtvXJgGxipoYFwCNAB0CHcsINq4XLPNQw8SktOdzDcJFc8Yg1v3LmYaoHXfZSGvzEA1vAvQ8G5mDaOabNx7SJO9JyUauEq/1gf4491rSgMU8F6cBgbcC4h8HzMN0Bruw2lgwH3MNECFcE8ub7Hdb4kGEA0fSIkGrtKngf4qp+dohQnk+qAsvPFhGnhQQQPjE6ABoEO4DwKijc812zz0ICE5TWC+Sah4HjC4dR9ipgFa90MW8soMVMOHAA0nMmsY1WTj3kOa7MMp0cCV+rVeyR/vEVMaoICP4DRQ6RFA5EeZaYDW8ChOA5UeZaYBKoSHc3mLbZIlGkA0nJwSDVypTwNFKqfnaIUJ5PqYLLzHwzTwmIIGHk+ABoAO4T4GiPZ4rtnmoQcJyekJ5puEimeywa07hZkGaN1TLOSVGaiGUwANpzJrGNVk495DmuyTKdHAFfoNLRDvKVMaoIBP5eLvPc18w1NeT/s6p+foD7SI6MA+mctbFM9YurURXZ7NslB11vysgYZJFtTlhgX1nGlBUcDnDApqGnNBUV7TEiqouOkk/LRcswPj6cVI9JBclqOfoz/edNNDQgGnG3Sc6UDFzmA+ULSGGQYiz2D+DEaHaIYBHjwD7NdMZhykvZ1pWKyZgZ6tmcD6n2dGvKgbOe495Eaexawh7dEsg4sA0YGaIH02K636jcC4Zztm58zB4njazl2Gu3NNru+dF8R+zRY2R9hcYS8KmydsvrAFwhYKe0nYy8IWCXtF2KvCXhP2urA3hL0p7C1hbwt7R9i7wt4TtljYEmFLhS0TtlzYCmHvC/tA2Ifh7wBekJ/3/b7ZCt8chW+uwveiwjdP4Zuv8C1Q+BYqfC8pfC8rfIsUvlcUvlcVvtcUvtcVvjcUvjcVvrcUvrcVvncUvncVvvcUvsUK3xKFb6nCt0zhW67wrVD43lf4PlD4Pszd9bul/eTTc7RGoOjjms0Lmo2JvoearT3XcefozhX5ztWbO07k676oNXcDrc2dpzN3zT/74M7XmNv83z1zF8TPHSP3110YO3dgRgv3pbi5c3bq5r4cM3fwfxq7i0qe28Z3HtxXSpy71n923FdLmls3cM7c10qYWzN4Jt3Xo+f2Cp1f943IuT3DZ919M2pu8S514b4VMbd41xpy31bPnaWoN/cd5dyWqtp031XN7aKsY/c9xdzZ6pp3F+86t1ZEf3CX7DJ3YlQvcZeG59aO7DvustDcNdE9yl0enHtJCf3MXRGY26mk3ue+75/br8Q+6X7gm3tUyT3V/TBXH7qS/MT7oX4vX+6P91FuFgHpZfBPHZd/pL9B7krNRZl+4qU1UAwXXMNKUOSk/nQMOFzLVE7P0QoTyHWVPCCrw7SySm6c37c6N/s/HQNOsrsKOCCrwc1DxaFDsQo8TJTXqpQ6xgf6+zzBH+9j045BAT/GO8aEj4GO8Qlzx6A1fIJ3jAmfpNQxPtCPO17l9BytMIFcP5UH5LNwx/hU0TE+S6BjACfZ/RQ4IJ8Zbh76RR2S0+dAMez8B5DLSnnA0S/qkKv6C6AYVGuIm0579IVBJ/4ipU78vv75nemPt8a0E1PANXgnnrkGOHxfMndiWsOXeCee+WWWh0+ngL5gLqCvwDVkBtqYEA2/Bs5Gkjfc+/pxZ6icnqMVJpDrN7Lwvg3fcN8obrhvE7jhgA7hfgOI9q3h5qEHCcnpuyxvuLh3qHi+Nrgd1jLfWrTutRbyygxUw7WAht8zaxjVZHWas+7cH8CGlhQNrNCv9dH+eD+a0gAF/BGngdE/Ahv0EzMN0Bp+wmlg9E/MNECF8EMub7H9DBZbZqA5IRr+khINrNCPO0rl9BytMIFcf5WF91uYBn5V0MBvCdAA0CHcXwHRfjPcPPQgITmtY75JqHh+Mbh1f2emAVr37xbyygxUw98BDf9g1jCqyca9hzTZ9Sl9N7Bcv9Y9f7wNpjRAATfgNOBtAET+k5kGaA1/4jTg/clMA1QI63N5i+0vSzSAaPh3SjSwXD9uYj93bqMsvE1hGtiooIFNCdAA0CHcjYBomww3Dz1ISE6bmW8SKp6/DW7dLcw0QOveYiGvzEA13AJouJVZw6gmG/ce0mS3pUQDy/RrfZk/3nZTGqCA23EaWLYdEHkHMw3QGnbgNLBsBzMNUCFsy+UtNifPDg0gGrpATknSwDJ9PZeqnJ6jFSaQa6m8f5+l85zgzU//R5gGaFK2NAB0CLdUnr5opfPMNg89SEhOZcDDjR4YKh43Dy/ssvp5yUDB3z9uOq27rIW8MgPVsCygYTlmDaOabNx7SJPNAfY1SRpYql/rff3xcvOyCEgvgzTQNxcQOQ84PKZryAOLh9aQl2VR6xRCTh5vsZW3RAOIhvkp0cBSfRroo3J6jlaYQK4FsvAqhGmgQEEDFRKgAaBDuAWAaBXyzDYPPUhIThWZbxIqnnyDW7eQmQZo3YUW8soMVMNCQMMiZg2jmmzce0iTrZQSDSzRr/VV/niVTWmAAlbGaWBVZUDkKsw0QGuogtPAqirMNECFUCmPt9h2s0QDiIa7p0QDS/RpYKXK6TlaYQK5VpWFt0eYBqoqaGCPBGgA6BBuVUC0PfLMNg89SEhO1ZhvEiqe3Q1u3erMNEDrrm4hr8xANawOaLgns4ZRTTbuPaTJ7pUSDSzWr/V2/nh7m9IABdwbp4F2ewMi78NMA7SGfXAaaLcPMw1QIeyVx1ts+1qiAUTDGinRwGJ9GmircnqOVphArp4svP3CNOApaGC/BGgA6BCuB4i2X57Z5qEHCclpf+abhIqnhsGtewAzDdC6D7CQV2agGh4AaHggs4ZRTTbuPaTJHpQSDbynX+vT/fEONqUBCngwTgPTDwZErslMA7SGmjgNTK/JTANUCAfl8RZbLUs0gGh4SEo08J4+DUxTOT1HK0wg10Nl4R0WpoFDFTRwWAI0AHQI91BAtMPyzDYPPUhITocz3yRUPIcY3LpHMNMArfsIC3llBqrhEYCGRzJrGNVk495DmuxRKdHAu/q1Pt8fr7YpDVDA2jgNzK8NiFyHmQZoDXVwGphfh5kGqBCOyuMttrqWaADRsF5KNPCuPg3MUzk9RytMINejZeEdE6aBoxU0cEwCNAB0CPdoQLRj8sw2Dz1ISE71mW8SKp56BrduA2YaoHU3sJBXZqAaNgA0PJZZw6gmG/ce0mSPS4kG3tGv9Q7+eMeb0gAFPB6ngQ7HAyI3ZKYBWkNDnAY6NGSmASqE4/J4i62RJRpANDwhJRp4R58G2qucnqMVJpBrY1l4TcI00FhBA00SoAGgQ7iNAdGa5JltHnqQkJyaMt8kVDwnGNy6zZhpgNbdzEJemYFq2AzQsDmzhlFNNu49pMm2SIkG3tav9WJ/vJamNEABW+I0UNwSELkVMw3QGlrhNFDcipkGqBBa5PEWW2tLNIBo2CYlGnhbnwaGqpyeoxUmkGtbWXjtwjTQVkED7RKgAaBDuG0B0drlmW0eepCQnNoz3yRUPG0Mbt0OzDRA6+5gIa/MQDXsAGjYkVnDqCYb9x7SZDulRANvGdJAZ1MaoICdDWigMyByF2YaoDV0MaCBLsw0QIXQKY+32LpaogFEw24p0cBbKdBAd1l4J4ZpoLuCBk5MgAaADuF2B0Q70RINIDn1YL5JqHi6Gdy6JzHTAK37JAt5ZQaq4UmAhiczaxjVZOPeQ5psz5Ro4E39Wp/qj3eKKQ1QwFNwGph6CiDyqcw0QGs4FaeBqacy0wAVQs883mI7zRINIBqenhINvKlPA1NUTs/RChPItZcsvN5hGuiloIHeCdAA0CHcXoBovfPMNg89SEhOZzDfJFQ8pxvcumcy0wCt+0wLeWUGquGZgIZ9mDWMarJx7yFNtm9KNPCGfq1P9sc7y5QGKOBZOA1MPgsQuR8zDdAa+uE0MLkfMw1QIfTN4y22sy3RAKLhOSnRwBv6NDBJ5fQcrTCBXM+VhXdemAbOVdDAeQnQANAh3HMB0c7LM9s89CAhOZ3PfJNQ8ZxjcOtewEwDtO4LLOSVGaiGFwAaXsisYVSTjXsPabIXpUQDr+vX+mp/vItNaYACXozTwOqLAZH7M9MAraE/TgOr+zPTABXCRXm8xTbAEg0gGg5MiQZe16eBVSqn52iFCeQ6SBbeJWEaGKSggUsSoAGgQ7iDANEuyTPbPPQgITldynyTUPEMNLh1L2OmAVr3ZRbyygxUw8sADS9n1jCqyca9hzTZK1Kigdf0a32JP96VpjRAAa/EaWDJlYDIVzHTAK3hKpwGllzFTANUCFfk8RbbYEs0gGh4dUo08Jo+DSxWOT1HK0wg12tk4V0bpoFrFDRwbQI0AHQI9xpAtGvzzDYPPUhITtcx3yRUPFcb3LrXM9MArft6C3llBqrh9YCGQ5g1jGqyce8hTXZoSjTwqn6tV/fHKzalAQpYjNNA9WJA5BuYaYDWcANOA9VvYKYBKoShebzFdqMlGkA0vCklGnhVnwaqqZyeoxUmkOvNsvBuCdPAzQoauCUBGgA6hHszINoteWabhx4kJKdbmW8SKp6bDG7dYcw0QOseZiGvzEA1HAZoOJxZw6gmG/ce0mRHpEQDr+jX+lx/vNtMaYAC3obTwNzbAJFvZ6YBWsPtOA3MvZ2ZBqgQRuTxFtsdlmgA0XBkSjTwij4NzFE5PUcrTCDXUbLwRodpYJSCBkYnQANAh3BHAaKNzjPbPPQgITmNYb5JqHhGGty6Y5lpgNY91kJemYFqOBbQcByzhlFNNu49pMnemRINLNKv9eH+eHeZ0gAFvAungeF3ASLfzUwDtIa7cRoYfjczDVAh3JnHW2z3WKIBRMN7U6KBRfo0MEzl9BytMIFc75OFd3+YBu5T0MD9CdAA0CHc+wDR7s8z2zz0ICE5PcB8k1Dx3Gtw6z7ITAO07gct5JUZqIYPAhqOZ9YwqsnGvYc02Qkp0cDL+rXe1h/vIVMaoIAP4TTQ9iFA5InMNEBrmIjTQNuJzDRAhTAhj7fYHrZEA4iGj6REAy/r00AbldNztMIEcn1UFt6kMA08qqCBSQnQANAh3EcB0SblmW0eepCQnCYz3yRUPI8Y3LqPMdMArfsxC3llBqrhY4CGjzNrGNVk495DmuwTKdHAS/q1PtYfb4opDVDAKTgNjJ0CiDyVmQZoDVNxGhg7lZkGqBCeyOMttict0QCi4VMp0cBL+jQwRuX0HK0wgVyfloX3TJgGnlbQwDMJ0ADQIdynAdGeyTPbPPQgITk9y3yTUPE8ZXDrPsdMA7Tu5yzklRmohs8BGk5j1jCqyca9hzTZ6SnRwEL9Wh/kjzfDlAYo4AycBgbNAESeyUwDtIaZOA0MmslMA1QI0/N4i+15SzSAaDgrJRpYqE8DA1VOz9EKE8j1BVl4s8M08IKCBmYnQANAh3BfAESbnWe2eehBQnKaw3yTUPHMMrh15zLTAK17roW8MgPVcC6g4YvMGkY12bj3kCY7LyUaWKBf6wv98eab0gAFnI/TwML5gMgLmGmA1rAAp4GFC5hpgAphXh5vsS20RAOIhi+lRAML9GlggcrpOVphArm+LAtvUZgGXlbQwKIEaADoEO7LgGiL8sw2Dz1ISE6vMN8kVDwvGdy6rzLTAK37VQt5ZQaq4auAhq8xaxjVZOPeQ5rs6ynRwHz9Wvf88d4wpQEK+AZOA94bgMhvMtMAreFNnAa8N5lpgArh9TzeYnvLEg0gGr6dEg3M16eBGiqn52iFCeT6jiy8d8M08I6CBt5NgAaADuG+A4j2bp7Z5qEHCcnpPeabhIrnbYNbdzEzDdC6F1vIKzNQDRcDGi5h1jCqyca9hzTZpSnRwDz9Wi/wx1tmSgMUcBlOAwXLAJGXM9MArWE5TgMFy5lpgAphaR5vsa2wRAOIhu+nRAPz9GkgX+X0HK0wgVw/kIX3YZgGPlDQwIcJ0ADQIdwPANE+zDPbPPQgITl9xHyTUPG8b3DrrmSmAVr3Sgt5ZQaq4UpAw1XMGkY12bj3kCa7OiUaeFG/1gf4431sSgMU8GOcBgZ8DIj8CTMN0Bo+wWlgwCfMNECFsDqPt9g+tUQDiIafpUQDL+rTQH+V03O0wgRy/VwW3hdhGvhcQQNfJEADQIdwPwdE+yLPbPPQg4TktIb5JqHi+czg1v2SmQZo3V9ayCszUA2/BDT8ilnDqCYb9x7SZL9OiQbm6td6JX+8b0xpgAJ+g9NApW8Akb9lpgFaw7c4DVT6lpkGqBC+zuMttu8s0QCi4dqUaGCuPg0UqZyeoxUmkOv3svB+CNPA9woa+CEBGgA6hPs9INoPeWabhx4kJKcfmW8SKp61BrfuT8w0QOv+yUJemYFq+BOg4c/MGkY12bj3kCb7S0o0MEe/oQXi/WpKAxTw1zz8vd+Yb3jK67e8/xyeoz/QIqID+0seb1Gss3RrI7r8nmWh6qz5dwMNkyyo2YYF9YdpQVHAPwwKaj1zQVFe6xMqqLjpJPz6PLMD4+nFSPSQvJCrn6M/3gbTQ0IBNxh0nA1Axf7JfKBoDX8aiPwn82cwOkR/GuDBOmC//mLGQdrbvwyLNTPQs/UXsP6/mREv6kaOew+5kTcya0h7tNHgIkB0oCZIn81Kq34jMK7rmJ0zB4vjaTt3Ge7ONflz3ST2a7OwLcK2CtsmbLuwHVQ/5cVcYaWElRZWRlhZYeWE5QjLFZYnrLywfGEFwioIqyisUFiRsErCKgurImw3YbsLqypsD2HVyjvBz/ub5Od9v2+zwrdF4duq8G1T+LYrfDsUPlp82OcqfKUUvtIKXxmFr6zCV07hy1H4chW+PIWvvMKXr/AVKHwVFL6KCl+hwlek8FVS+CorfFUUvt0Uvt0VvqoK3x4KX7Xyu363tJ98eo7WCBR9XLPZpNmY6HuozdpzHXeL7lyR71a9ueNEvu42rbkbaG3udp25a/7ZB3eHxtzm/+6ZSzUYM3eM3F/XjZ07MKOFWypu7pydurmlY+YO/k9jt0zJc9v4zoNbtsS5a/1nxy1X0ty6gXPm5pQwt2bwTLq50XN7hc6vmxc5t2f4rLvlo+YW71IXbn7E3OJda8gtUM+dpag3t4JybktVbboVVXO7KOvYLVTMna2uebdo17m1IvqDW2mXuROjeolbOTy3dmTfcauE5q6J7lHubsG5l5TQz9zdA3M7ldT73Kr+uf1K7JPuHr65R5XcU91q5fWhK8lPvNXi+1Kmly/3x6tePouA9DL4p47Lq+tvkLun5qJMP/HSGiiGC65hT1DkpP50DDhcy1ROz9EKE8h1L3lA9g6T8V5y4/y+vctn/6djwEl29wIOyN7g5qHi0KHYCzxMlNdeKXWMPfT3eYI/3j6mHYMC7oN3jAn7AB1jX+aOQWvYF+8YE/ZNqWPsoR93vMrpOVphArnWkAfEC3eMGoqO4SXQMYCT7NYADohnuHnoF3VITvsBxbDzH0Aue8oDjn5Rh1zV+wPFoFpD3HTao/0NOvH+KXXiqvrnd6Y/3gGmnZgCHoB34pkHAIfvQOZOTGs4EO/EMw/M8vDpFND+zAV0ELiGzEAbE6LhwcDZSPKGq6ofd4bK6TlaYQK51pSFVyt8w9VU3HC1ErjhgA7h1gREq2W4eehBQnI6JMsbLu4dKp6DDW6HQ5lvLVr3oRbyygxUw0MBDQ9j1jCqyeo0Z925h4MNLSka2F2/1kf74x1hSgMU8AicBkYfAWzQkcw0QGs4EqeB0Ucy0wAVwuHleYvtKLDYMgPNCdGwdko0sLt+3FEqp+dohQnkWkcWXt0wDdRR0EDdBGgA6BBuHUC0uoabhx4kJKd6zDcJFU9tg1v3aGYaoHUfbSGvzEA1PBrQ8BhmDaOabNx7SJOtn9J3A7vp17rnj9fAlAYoYAOcBrwGgMjHMtMAreFYnAa8Y5lpgAqhfnneYjvOEg0gGh6fEg3sph83sZ8711AWXqMwDTRU0ECjBGgA6BBuQ0C0Roabhx4kJKcTmG8SKp7jDW7dxsw0QOtubCGvzEA1bAxo2IRZw6gmG/ce0mSbpkQDVfRrfZk/XjNTGqCAzXAaWNYMELk5Mw3QGprjNLCsOTMNUCE0Lc9bbC0s0QCiYcuUaKCKftylKqfnaIUJ5NpKFl7rMA20UtBA6wRoAOgQbitAtNaGm4ceJCSnNsw3CRVPS4Nbty0zDdC621rIKzNQDdsCGrZj1jCqyca9hzTZ9inRQGX9Wu/rj9fBlAYoYAecBvp2AETuyEwDtIaOOA307chMA1QI7cvzFlsnSzSAaNg5JRqorB+3j8rpOVphArl2kYXXNUwDXRQ00DUBGgA6hNsFEK2r4eahBwnJqRvzTULF09ng1u3OTAO07u4W8soMVMPugIYnMmsY1WTj3kOabI+UaKCSfq2v8sc7yZQGKOBJOA2sOgkQ+WRmGqA1nIzTwKqTmWmACqFHed5i62mJBhANT0mJBirpx12pcnqOVphArqfKwjstTAOnKmjgtARoAOgQ7qmAaKcZbh56kJCcTme+Sah4TjG4dXsx0wCtu5eFvDID1bAXoGFvZg2jmmzce0iTPSMlGijSr/V2/nhnmtIABTwTp4F2ZwIi92GmAVpDH5wG2vVhpgEqhDPK8xZbX0s0gGh4Vko0UKQft63K6TlaYQK59pOFd3aYBvopaODsBGgA6BBuP0C0sw03Dz1ISE7nMN8kVDxnGdy65zLTAK37XAt5ZQaq4bmAhucxaxjVZOPeQ5rs+SnRQKF+rU/3x7vAlAYo4AU4DUy/ABD5QmYaoDVciNPA9AuZaYAK4fzyvMV2kSUaQDS8OCUaKNSPO03l9BytMIFc+8vCGxCmgf4KGhiQAA0AHcLtD4g2wHDz0IOE5DSQ+Sah4rnY4NYdxEwDtO5BFvLKDFTDQYCGlzBrGNVk495DmuylKdFARf1an++Pd5kpDVDAy3AamH8ZIPLlzDRAa7gcp4H5lzPTABXCpeV5i+0KSzSAaHhlSjRQUT/uPJXTc7TCBHK9Shbe4DANXKWggcEJ0ADQIdyrANEGG24eepCQnK5mvkmoeK40uHWvYaYBWvc1FvLKDFTDawANr2XWMKrJxr2HNNnrUqKBCvq13sEf73pTGqCA1+M00OF6QOQhzDRAaxiC00CHIcw0QIVwXXneYhtqiQYQDYtTooEK+nHbq5yeoxUmkOsNsvBuDNPADQoauDEBGgA6hHsDINqNhpuHHiQkp5uYbxIqnmKDW/dmZhqgdd9sIa/MQDW8GdDwFmYNo5ps3HtIk701JRoo0K/1Yn+8YaY0QAGH4TRQPAwQeTgzDdAahuM0UDycmQaoEG4tz1tsIyzRAKLhbSnRQIF+3KEqp+dohQnkerssvDvCNHC7ggbuSIAGgA7h3g6Idofh5qEHCclpJPNNQsVzm8GtO4qZBmjdoyzklRmohqMADUczaxjVZOPeQ5rsmJRoIN+QBsaa0gAFHGtAA2MBkccx0wCtYZwBDYxjpgEqhDHleYvtTks0gGh4V0o0kJ8CDdwtC++eMA3craCBexKgAaBDuHcDot1jiQaQnO5lvkmoeO4yuHXvY6YBWvd9FvLKDFTD+wAN72fWMKrJxr2HNNkHUqKB8vq1PtUf70FTGqCAD+I0MPVBQOTxzDRAaxiP08DU8cw0QIXwQHneYptgiQYQDR9KiQbK68edonJ6jlaYQK4TZeE9HKaBiQoaeDgBGgA6hDsREO1hw81DDxKS0yPMNwkVz0MGt+6jzDRA637UQl6ZgWr4KKDhJGYNo5ps3HtIk52cEg3k6df6ZH+8x0xpgAI+htPA5McAkR9npgFaw+M4DUx+nJkGqBAml+cttics0QCi4ZSUaCBPP+4kldNztMIEcp0qC+/JMA1MVdDAkwnQANAh3KmAaE8abh56kJCcnmK+Sah4phjcuk8z0wCt+2kLeWUGquHTgIbPMGsY1WTj3kOa7LMp0UCufq2v9sd7zpQGKOBzOA2sfg4QeRozDdAapuE0sHoaMw1QITxbnrfYpluiAUTDGSnRQK5+3FUqp+dohQnkOlMW3vNhGpipoIHnE6ABoEO4MwHRnjfcPPQgITnNYr5JqHhmGNy6LzDTAK37BQt5ZQaq4QuAhrOZNYxqsnHvIU12Tko0kKNf60v88eaa0gAFnIvTwJK5gMgvMtMAreFFnAaWvMhMA1QIc8rzFts8SzSAaDg/JRrI0Y+7WOX0HJ0RpIEFsvAWhmlggYIGFiZAA0CHcBcAoi003Dz0ICE5vcR8k1DxzDe4dV9mpgFa98sW8soMVMOXAQ0XMWsY1WTj3kOa7Csp0UA5/Vqv7o/3qikNUMBXcRqo/iog8mvMNEBreA2ngeqvMdMAFcIr5XmL7XVLNIBo+EZKNFBOP241ldNztMIEcn1TFt5bYRp4U0EDbyVAA0CHcN8ERHvLcPPQg4Tk9DbzTULF84bBrfsOMw3Qut+xkFdmoBq+A2j4LrOGUU027j2kyb6XEg2U1a/1uf54i01pgAIuxmlg7mJA5CXMNEBrWILTwNwlzDRAhfBeed5iW2qJBhANl6VEA2X1485ROT1HK0wg1+Wy8FaEaWC5ggZWJEADQIdwlwOirTDcPPQgITm9z3yTUPEsM7h1P2CmAVr3BxbyygxUww8ADT9k1jCqyca9hzTZj1KigTL6tT7cH2+lKQ1QwJU4DQxfCYi8ipkGaA2rcBoYvoqZBqgQPirPW2yrLdEAouHHKdFAGf24w1ROz9EKE8j1E1l4n4Zp4BMFDXyaAA0AHcL9BBDtU8PNQw8SktNnzDcJFc/HBrfu58w0QOv+3EJemYFq+Dmg4RfMGkY12bj3kCa7JiUaKK1f62398b40pQEK+CVOA22/BET+ipkGaA1f4TTQ9itmGqBCWFOet9i+tkQDiIbfpEQDpfXjtlE5PUcrTCDXb2XhfRemgW8VNPBdAjQAdAj3W0C07ww3Dz1ISE5rmW8SKp5vDG7d75lpgNb9vYW8MgPV8HtAwx+YNYxqsnHvIU32x5RooJR+rY/1x/vJlAYo4E84DYz9CRD5Z2YaoDX8jNPA2J+ZaYAK4cfyvMX2iyUaQDT8NSUaKKUfd4zK6TlaYQK5/iYLb12YBn5T0MC6BGgA6BDub4Bo6ww3Dz1ISE6/M98kVDy/Gty6fzDTAK37Dwt5ZQaq4R+AhuuZNYxqsnHvIU12Q0o04OrX+iB/vD9NaYAC/onTwKA/AZH/YqYBWsNfOA0M+ouZBqgQNpTnLba/LdEAouHGlGjA1Y87UOX0HK0wgVw3ycLbHKaBTQoa2JwADQAdwt0EiLbZcPPQg4TktIX5JqHi2Whw625lpgFa91YLeWUGquFWQMNtzBpGNdm495Amuz0lGnD0a32hP94OUxqggDtwGli4AxE5n5cGaA0UA6SBhf689ALp//6ZQthenrfY3Hxgn3wDzQnRsBSQU5I04OifyQUqp+fohfHnWjr/32eZfCd485fO35UGaFK2NAB0CLc0IFqZfLPNQw8SklNZ8HDD+Jj/72FFC7tclo0jbjqtu5yFvDID1bAcoGEOs4ZRTTbuPaTJ5gL7miQN7MjTrnXPHy8vP4uA9DJIA14eIHJ5ZhqgNZTHacArz0wDVAi5+bzFlm+JBhANC1KiAX/xxIwaKqfnaIUJ5FpBFl7FMA1UUNBAxQRoAOgQbgVAtIr5ZpuHHiQkp0Lmm4SKp8Dg1i1ipgFad5GFvDID1bAI0LASs4ZRTTbuPaTJVk6JBrbr13qBP14VUxqggFVwGiioAoi8GzMN0Bp2w2mgYDdmGqBCqJzPW2y7W6IBRMOqKdHAdn0ayFc5PUcrTCDXPeTvVC1MA3soaKBaAjQAdAh3D0C0avlmm4ceJCSn6sw3CRVPVYNbd09mGqB172khr8xANdwT0HAvZg2jmmzce0iT3TslGtimX+sD/PH2MaUBCrgPTgMD9gFE3peZBmgN++I0MGBfZhqgQtg7n7fYaliiAURDLyUa2KZPA/1VTs/RChPIdT9ZePuHaWA/BQ3snwANAB3C3Q8Qbf98s81DDxKS0wHMN8k/xWNw6x7ITAO07gMt5JUZqIYHAhoexKxhVJONew9psgenRANb9Wu9kj9eTVMaoIA1cRqoVBMQuRYzDdAaauE0UKkWMw1QIRycz1tsh1iiAUTDQ1Oiga36NFCkcnqOVphArofJwjs8TAOHKWjg8ARoAOgQ7mGAaIfnm20eepCQnI5gvkmoeA41uHWPZKYBWveRFvLKDFTDIwENj2LWMKrJxr2HNNnaKdHAFv2GFohXx5QGKGCdfPy9usw3POVVN/8/h+foD7SI6MDWzuctinqWbm1El6OzLFSdNR9toGGSBbXZsKCOMS0oCniMQUHVZy4oyqt+QgUVN52Er59vdmA8vRiJHpJNefo5+uM1MD0kFLCBQcdpAFTsscwHitZwrIHIxzJ/BqNDdKwBHtQD9us4ZhykvT3OsFgzAz1bxwHrP54Z8aJu5Lj3kBu5IbOGtEcNDS4CRAdqgnmKHGk0ypcTSjnJdMlGwIb5PzCfIA9y4/AHZvo/ikO+xtLnH+gH5kbADp4QPbdXaK7bGLyeKO9SJczxIvzhuP7/DxXtBCBnf6AmYbGa5O96isLCIJtdQuydCej+vk3ztTczsKamGoctLnZjIE9kTc1KWFP4Xf+amvmKKte3Hv+aYoarmFtqaZUzrig3uXe/I2pWaPV7tcp33dTktZE3Nql5OPD77iyGTPFnCh7JrbmY30JYy/xkGbCFb7+r1a153KD7lu32aa39P2n68tNH3lV9w4GNPp3T9pF1m9/eKOb647UyZUAK2Epxx8UFbwXcva2ZGZDW0Fpxx8WtoTXYSelfE0zi++IWhl+XOaE4MesLHMg2/saJwiywUa6/C/iDxsTspRKnjQZ8hRfdBjhsbcFrKbOutr6OHbeXRe6iwjzv4evOm7tiznNNTnxfd11hcZF1tTNcV7sEsKctcLu2A9bUnvkDm64u4TCILh3ANaBNObMG3XxoTzvgjTMQI278X0FQtNYzo2NJjTPu9+lgWIgd9Runsql1MPhGpHaV7Aos4v/eOSinjgZ51QHzyowyoTjhUVJxxuXUCbgQgX11kbX6z0sn4EJSXRYm56Uuky7huIgunX1z96nX6cFF3S+cNvL4wjZ1y79//fu3Xljvo9Ejbjx0fXHPq8sdMA7Ya7euoS6dpS5JfgGC0KO/6XaRHxG62mpopr9/F4PD2M2w0XYroXB0cu1qkGt3w1y7Z1HklGs3g1yPzvJSiPsyi/LqbpDXMcleVrtMbyGbIkqDwH65yBr+r1AUWmeZcWIaFHViCRSleC0wKOaJBgez/v9BWumRz3OA6xveij0UHzM5qeAk39wqdZyVNb445urDqtYf2OXKm7/o8cyQ3SYdsraw2q9XNLpy06cD/UUZRxCm6z/JRwVRRY3WCPLxJps4pg3g5DQawMlZNoCTDRpAA8MGUBaMgxRAT2Au8nEFaRYNDIulp0aziFvTKcD6/aifZLMwXf8p/4c+QpwqP0Kclu/898cPnqM1Ir/QRb58jpsLfDHl7vyHg68B/eM50zXEzT2deb0k+OkGTbCXYcPulcXHsdMMc+1tmGvvLD6OUZ69DHI9nvnjGOXV2yCvhhY+jp1u8HEM2C+34f+HH8fQOsuMM7KhsdMNC+aMLGiMYp5hcDAbWfo4djrQtM/M5znAjQwJ48wEPo4h6+8DfBxrCBCW6fr7KNaP/qkzsv6+hvXT1yDP8J/kIXmeZZjnWVlejH0N6vwECxfjWQZ5NTbsP2HAjPsTWQQEgb1yG/9/eCn2NbwU+6VxKfbL8lLsZ3Aom/wfvBTPZjrATQwvhbMtX4rnAJdiY+BSNF3/OQzfUSK0mk0c0wZwbhoN4NwsG8C5Bg2gqaXvKJECOA+Yi1Ax0iyaGhbLeQl8R3k+8FcXGgLfUSLNwnT952fxtY0r30HP8AVAvZEW+U6wgNA8L8gPvu9p5Pnbjh3r/I3zQvn96UX5hknQixcZFPzFzH9tg+ZfYJBX/3z9jTTJizb8YoO8mif7cWKX35/y6m+QVwvDxo1+bwas320BfkRI6l+V6G94yw8wLT4KOCAff28gcLOZ5jUw/z+H5+gPk4M7MMs9QEYccofjXKzfULb2zzdrCHG/bwsLzcPkEhjkW2/c9wlJFuogw0K9xLRQKeAlBof0UuZCpbwuNSjUkv7do/DvFSesSd6ZA+dg7wXEvEz1R8Zxm0ybdWG+WcKacwMce1kJn8V0qvJSgz+iuhA4dJeDzBv++wK2hPcf1Cvk+1eqDkBcArTgyxK62uKmU5zLDdrqVcxsTRt4lUFegw2LYHAWH+auNMz1asNcr84iV9Nr9Jos9dY5T4MN8mrJ/EcglNfVBnm1Yv67AZTXNQaNF9gvt9X/h38MgtZ/ZlybzbegVxkW8rUl3LyK1wKDYl5rcDDbWPpjkKuAG/66fJ4D3Mbwm73rNL7ZDI/wGpH1Xw/8MUgr4JtN0/Vfn8DfDUDWP8SwfoYk8HcDkDyHGuY5NIu/G0D5DTGo87YWLsahBnm1s/R3A4Ce7AJ75bb7//BSHGJ4KRancSkWZ3kpFhscyvb/By/FG5gOcHvDS+EGy5fijcCl2A64FE3XfyPD3w1AaDWbOKYN4KY0GsBNWTaAmwwaQAdLfzcAKYCbgbkIFSPNooNhsdycwN8NuAX4uwGtgL8bgDQL0/Xfok98u/wMqMxXcihxXw6cl1sNa/NWgGTDPwNKd11hskPWNcxwXcPys/8ZUCXs6S59ahiwpuHMX73p6hIOg+gyAlwD+jOgMmvQzYf2dITinoj7VIH+WcT/BfpHaz0zbsvm8h9hWIi3ZfGHUbdGiBr3XhfmnwFFOd1mkFdXS59KRgCFczvwqQTYV7er4UV7exZfrQwzPC/dLP0MKESXOwBYAvba7Waoyx35yf8L3MifQfmb7kj5Z6mjbDU0099/pMFhHG3YaEfnm/8hIuU6yiDXMYa5jsmiyCnX0Qa5nsj8/SnlNcYgrx7Mf7B4jWyKKA0C++X2+P/wO1S0zjJjbBoUNTaLr1Ao5liDg3nS/0FaGZfPc4BPMrwVxyXwHSqy/juB71B7AF+LmK7/TobvUJGPN9nEMW0Ad6XRAO7KsgHcZdAATrb0HSpSAHcDc5GPK0izONmwWO5O4DvUe4D1dwO+Q0Wahen67/E1i6T+Vrb/IwTyX5q4Nz+LgPfm419o3QvcXPcBIpuu4T78y7JAXlqBQr9/3PQRMi/051IhDQTZ2/sBzXb+w9F/h/7u5v0GjfkBwxsS/Zll1wB79SDzl9qmezUe1BD9mER7hMQg7R40WMcE5tqj+Rca5PUQc16U0wSDvCZaqhHkX3x4OB/Tw/+fnKL//ZDch4ny+XB+9H8GKqPnI8IeFTYpPxQgtM64fJB1lhQn7t3J+ntUX/X766zjEYPz9JiFc/6oQV6Pgx8oCpz/oJP+92QZ8zH5fFw+h5T5b94TwjdF2FRhT8aco7h8n9LPt4Eq36c08n1a+J4R9qyw5/L/9Rc5wf98W1T+McN9wrCvOFgcT9u5y3B3rsn1vTNN5D1d2AxhM4U9L2yWsBeEzRY2R9hcYS8KmydsvrAFwhYKe0nYy8IWCXtF2KvCXhP2urA3hL0p7C1hbwt7R9i7wt4TtljYEmFL853gJwFKJjfkm67wzVD4Zip8zyt8sxS+FxS+2QrfHIVvrsL3osI3T+Gbr/AtUPgWKnwvKXwvK3yLFL5XFL5XFb7XFL7XFb43FL43Fb63FL63Fb53FL53Fb73FL7FCt8ShW+p9PnHfvLpOVojUPRxDW6a5tzfduxwp2vPddwZunNFvjP15o6j79Cf15q74Z/v22fpzF3z73fzL2jMbS6/x58dP3dM5jv/ObFzB+7884G5cXPn/PdnCS/GzB3s+3OHeSXPbeP/M4r5Jc5dG/jzjAUlza0b/LOPhSXMrRn6c5KXoufu8udYL0fO7Rk+6+6iqLnFu9SF+0rE3OJda8h9VT13lqLe3NeUc1uqatN9XTW3i7KO3TcUc2era959c9e5tSL6g/vWLnMnRvUS9+3w3NqRfcd9JzR3TXSPct8Nzr2khH7mvheY26mk3ucu9s/tV2KfdJf45h5Vck91lwLQleS3i0v1e/lyf7xl+VkEpJeRT6EUfJn+BrnLgcvMdA3LwU8ytIbloMiVnGT+vAk4XMtUTs/RChPIdYU8IO+HyXiF3Di/730FwaB/lxU4ye4K4IC8D24eKg4dihXgYaK8VqTUMZbo7/MEf7wPTDsGBfwA7xgTPgA6xofMHYPW8CHeMSZ8mFLHWKIfd7zK6TlaYQK5fiQPyMpwx/hI0TFWJtAxgJPsfgQckJWGm4d+MYvktAoohp3/AHJZLg84+ocLyFW9GigG1RriptMerTboxKtT6sSL9c/vTH+8j007MQX8GO/EMz8GDt8nzJ2Y1vAJ3olnfpLl4dMpoNXMBfQpuIbMQBsTouFnwNlI8oZbrB93hsrpOVphArl+Lgvvi/AN97nihvsigRsO6BDu54BoXxhuHnqQkJzWZHnDxb1DxfOZwe3wJfOtRev+0kJemYFq+CWg4VfMGkY1WZ3mrDv3a7ChJUUD7+nX+mh/vG9MaYACfoPTwOhvgA36lpkGaA3f4jQw+ltmGqBC+Dqft9i+A4stM9CcEA3XpkQD7+nHHaVyeo5WmECu38vC+yFMA98raOCHBGgA6BDu94BoPxhuHnqQkJx+ZL5JqHjWGty6PzHTAK37Jwt5ZQaq4U+Ahj8zaxjVZOPeQ5rsLyl9N/Cufq17/ni/mtIABfwVpwHvV0Dk35hpgNbwG04D3m/MNECF8Es+b7Gts0QDiIa/p0QD7+rHraFyeo5WmECuf8jCWx+mgT8UNLA+ARoAOoT7ByDaesPNQw8SktMG5puEiud3g1v3T2YaoHX/aSGvzEA1/BPQ8C9mDaOabNx7SJP9OyUaeEe/1pf54200pQEKuBGngWUbAZE3MdMArWETTgPLNjHTABXC3/m8xbbZEg0gGm5JiQbe0Y+7VOX0HK0wgVy3ysLbFqaBrQoa2JYADQAdwt0KiLbNcPPQg4TktJ35JqHi2WJw6+5gpgFa9w4LeWUGquEOpKEX8GoY1WTj3kOarKu/hkRp4G39Wu/rj1eqIIuA9DJIA31LASKXLuClAVoDxQBpoG9pQGRVXjqF4BbwFlsZsNgyA80J0bAskFOSNPC2fjPso3J6jlaYQK7lZOHlFDjBm79cwa40QJOypQGgQ7jlANFyCsw2Dz1ISE65zDcJFU/ZAryw87JsHHHTad15FvLKDFTDPEDD8swaRjXZuPeQJpufEg28pV/rq/zxCkxpgAIW4DSwqgAQuQIzDdAaKuA0sKoCMw1QIeQX8BZbRUs0gGhYmBINvKVPAytVTs/RChPItUgWXqUwDRQpaKBSAjQAdAi3CBCtUoHZ5qEHCcmpMvNNQsVTaHDrVmGmAVp3FQt5ZQaqYRVAw92YNYxqsnHvIU1295Ro4E39Wm/nj1fVlAYoYFWcBtpVBUTeg5kGaA174DTQbg9mGqBC2L2At9iqWaIBRMPqKdHAm/o00Fbl9BytMIFc95SFt1eYBvZU0MBeCdAA0CHcPQHR9iow2zz0ICE57c18k1DxVDe4dfdhpgFa9z4W8soMVMN9AA33ZdYwqsnGvYc02Rop0cAb+rU+3R/PM6WBfwLiNDDdA0Tej5kGaA374TQwfT9mGqBCqFHAW2z7W6IBRMMDUqKBN/RpYJrK6TlaYQK5HigL76AwDRyooIGDEqABoEO4BwKiHVRgtnnoQUJyOpj5JqHiOcDg1q3JTAO07poW8soMVMOagIa1mDWMarJx7yFN9pCUaOB1/Vqf7493qCkNUMBDcRqYfygg8mHMNEBrOAyngfmHMdMAFcIhBbzFdrglGkA0PCIlGnhdnwbmqZyeoxUmkOuRsvCOCtPAkQoaOCoBGgA6hHskINpRBWabhx4kJKfazDcJFc8RBrduHWYaoHXXsZBXZqAa1gE0rMusYVSTjXsPabL1UqKB1/RrvYM/3tGmNEABj8ZpoMPRgMjHMNMAreEYnAY6HMNMA1QI9Qp4i62+JRpANGyQEg28pk8D7VVOz9EKE8j1WFl4x4Vp4FgFDRyXAA0AHcI9FhDtuAKzzUMPEpLT8cw3CRVPA4NbtyEzDdC6G1rIKzNQDRsCGjZi1jCqyca9hzTZE1KigVf1a73YH6+xKQ1QwMY4DRQ3BkRuwkwDtIYmOA0UN2GmASqEEwp4i62pJRpANGyWEg28qk8DQ1VOz9EKE8i1uSy8FmEaaK6ggRYJ0ADQIdzmgGgtCsw2Dz1ISE4tmW8SKp5mBrduK2YaoHW3spBXZqAatgI0bM2sYVSTjXsPabJtUqKBVwxpoK0pDVDAtgY00BYQuR0zDdAa2hnQQDtmGqBCaFPAW2ztLdEAomGHlGjglRRooKMsvE5hGuiooIFOCdAA0CHcjoBonSzRAJJTZ+abhIqng8Gt24WZBmjdXSzklRmohl0ADbsyaxjVZOPeQ5pst5RoYJF+rU/1x+tuSgMUsDtOA1O7AyKfyEwDtIYTcRqYeiIzDVAhdCvgLbYelmgA0fCklGhgkT4NTFE5PUcrTCDXk2Xh9QzTwMkKGuiZAA0AHcI9GRCtZ4HZ5qEHCcnpFOabhIrnJINb91RmGqB1n2ohr8xANTwV0PA0Zg2jmmzce0iTPT0lGnhZv9Yn++P1MqUBCtgLp4HJvQCRezPTAK2hN04Dk3sz0wAVwukFvMV2hiUaQDQ8MyUaeFmfBiapnJ6jFSaQax9ZeH3DNNBHQQN9E6ABoEO4fQDR+haYbR56kJCczmK+Sah4zjS4dfsx0wCtu5+FvDID1bAfoOHZzBpGNdm495Ame05KNPCSfq2v9sc715QGKOC5OA2sPhcQ+TxmGqA1nIfTwOrzmGmACuGcAt5iO98SDSAaXpASDbykTwOrVE7P0QoTyPVCWXgXhWngQgUNXJQADQAdwr0QEO2iArPNQw8SktPFzDcJFc8FBrduf2YaoHX3t5BXZqAa9gc0HMCsYVSTjXsPabIDU6KBhfq1vsQfb5ApDVDAQTgNLBkEiHwJMw3QGi7BaWDJJcw0QIUwsIC32C61RAOIhpelRAML9WlgscrpOVphArleLgvvijANXK6ggSsSoAGgQ7iXA6JdUWC2eehBQnK6kvkmoeK5zODWvYqZBmjdV1nIKzNQDa8CNBzMrGFUk417D2myV6dEAwv0a726P941pjRAAa/BaaD6NYDI1zLTAK3hWpwGql/LTANUCFcX8BbbdZZoANHw+pRoYIE+DVRTOT1HK0wg1yGy8IaGaWCIggaGJkADQIdwhwCiDS0w2zz0ICE5FTPfJFQ81xvcujcw0wCt+wYLeWUGquENgIY3MmsY1WTj3kOa7E0p0cB8/Vqf6493sykNUMCbcRqYezMg8i3MNEBruAWngbm3MNMAFcJNBbzFdqslGkA0HJYSDczXp4E5KqfnaIUJ5DpcFt6IMA0MV9DAiARoAOgQ7nBAtBEFZpuHHiQkp9uYbxIqnmEGt+7tzDRA677dQl6ZgWp4O6DhHcwaRjXZuPeQJjsyJRqYp1/rw/3xRpnSAAUchdPA8FGAyKOZaYDWMBqngeGjmWmACmFkAW+xjbFEA4iGY1OigXn6NDBM5fQcrTCBXMfJwrszTAPjFDRwZwI0AHQIdxwg2p0FZpuHHiQkp7uYbxIqnrEGt+7dzDRA677bQl6ZgWp4N6DhPcwaRjXZuPeQJntvSjTwon6tt/XHu8+UBijgfTgNtL0PEPl+ZhqgNdyP00Db+5lpgArh3gLeYnvAEg0gGj6YEg28qE8DbVROz9EKE8h1vCy8CWEaGK+ggQkJ0ADQIdzxgGgTCsw2Dz1ISE4PMd8kVDwPGty6E5lpgNY90UJemYFqOBHQ8GFmDaOabNx7SJN9JCUamKtf62P98R41pQEK+ChOA2MfBUSexEwDtIZJOA2MncRMA1QIjxTwFttkSzSAaPhYSjQwV58GxqicnqMVJpDr47LwngjTwOMKGngiARoAOoT7OCDaEwVmm4ceJCSnKcw3CRXPYwa37lRmGqB1T7WQV2agGk4FNHySWcOoJhv3HtJkn0qJBubo1/ogf7ynTWmAAj6N08CgpwGRn2GmAVrDMzgNDHqGmQaoEJ4q4C22Zy3RAKLhcynRwBx9GhiocnqOVphArtNk4U0P08A0BQ1MT4AGgA7hTgNEm15gtnnoQUJymsF8k1DxPGdw685kpgFa90wLeWUGquFMQMPnmTWMarJx7yFNdlZKNDBbv9YX+uO9YEoDFPAFnAYWvgCIPJuZBmgNs3EaWDibmQaoEGYV8BbbHEs0gGg4NyUamK1PAwtUTs/RChPI9UVZePPCNPCiggbmJUADQIdwXwREm1dgtnnoQUJyms98k1DxzDW4dRcw0wCte4GFvDID1XABoOFCZg2jmmzce0iTfSklGnhBv9Y9f7yXTWmAAr6M04D3MiDyImYaoDUswmnAW8RMA1QILxXwFtsrlmgA0fDVlGjgBX0aqKFyeo5WmECur8nCez1MA68paOD1BGgA6BDua4BorxeYbR56kJCc3mC+Sah4XjW4dd9kpgFa95sW8soMVMM3AQ3fYtYwqsnGvYc02bdTooFZ+rVe4I/3jikNUMB3cBooeAcQ+V1mGqA1vIvTQMG7zDRAhfB2AW+xvWeJBhANF6dEA7P0aSBf5fQcrTCBXJfIwlsapoElChpYmgANAB3CXQKItrTAbPPQg4TktIz5JqHiWWxw6y5npgFa93ILeWUGquFyQMMVzBpGNdm495Am+35KNPC8fq0P8Mf7wJQGKOAHOA0M+AAQ+UNmGqA1fIjTwIAPmWmACuH9At5i+8gSDSAarkyJBp7Xp4H+KqfnaIUJ5LpKFt7qMA2sUtDA6gRoAOgQ7ipAtNUFZpuHHiQkp4+ZbxIqnpUGt+4nzDRA6/7EQl6ZgWr4CaDhp8waRjXZuPeQJvtZSjQwU7/WK/njfW5KAxTwc5wGKn0OiPwFMw3QGr7AaaDSF8w0QIXwWQFvsa2xRAOIhl+mRAMz9WmgSOX0HK0wgVy/koX3dZgGvlLQwNcJ0ADQIdyvANG+LjDbPPQgITl9w3yTUPF8aXDrfstMA7Tuby3klRmoht8CGn7HrGFUk417D2mya1OigRn6DS0Q73tTGqCA3xfg7/3AfMNTXj8U/OfwHP2BFhEd2LUFvEXxo6VbG9HlpywLVWfNPxlomGRBTTcsqJ9NC4oC/mxQUL8wFxTl9UtCBRU3nYT/pcDswHh6MRI9JNPy9XP0x/vV9JBQwF8NOs6vQMX+xnygaA2/GYj8G/NnMDpEvxngwY/Afq1jxkHa23WGxZoZ6NlaB6z/d2bEi7qR495DbuQ/mDWkPfrD4CJAdKAmSJ/NSqt+IzDu0/lm58zB4njazl2Gu3NNru+d9WK/Ngj7U9hfwv4WtlHYJmGbhW0RtlXYNmHbhe2guqogfg9hpYSVFlZGWFlh5YTlCMsVliesvLB8YQXCKgirKKxQWJGwSsIqV3CCn/fXy8/7ft8Ghe9Phe8vhe9vhW+jwrdJ4dus8G1R+LYqfNsUvu0K3w6FjzY37HMVvlIKX2mFr4zCV1bhK6fw5Sh8uQpfnsJXXuHLV/gKFL4KCl9Fha9Q4StS+CopfJUr7Prd0n7y6TlaI1D0cc1mvWZjou+hNmjPddw/deeKfP/SmztO5Ov+rTV3A63N3agzd80/++Bu0pjb/N89czfHzx0j99fdEjt3YEYLd2vc3Dk7dXO3xcwd/J/G7vaS57bxnQd3R4lz1/rPjks9IXJu3cA5c90S5tYMnkm3VPTcXqHz65aOnNszfNbdMlFzi3epC7dsxNziXWvILaeeO0tRb26Ocm5LVW26uaq5XZR17OYp5s5W17xbfte5tSL6g5u/y9yJUb3ELQjPrR3Zd9wKoblronuUWzE495IS+plbGJjbqaTe5xb55/YrsU+6lXxzjyq5p7qVK+hDV5KfeCtX0O7ly/3xqlTIIiC9DP6p4/Iq+hvk7qa5KNNPvLQGiuGCa9gNFDmpPx0DDtcyldNztMIEct1dHpCqYTLeXW6c31e1QvZ/OgacZHd34IBUBTcPFYcOxe7gYaK8dk+pY1TS3+cJ/nh7mHYMCrgH3jEm7AF0jGrMHYPWUA3vGBOqpdQxKunHHa9yeo5WmECu1eUB2TPcMaorOsaeCXQM4CS71YEDsqfh5qFf1CE57QUUw85/ALnsJg84+kUdclXvDRSDag1x02mP9jboxHun1ImL9M/vTH+8fUw7MQXcB+/EM/cBDt++zJ2Y1rAv3oln7pvl4dMpoL2ZC6gGuIbMQBsToqEHnI0kb7gi/bgzVE7P0QoTyHU/WXj7h2+4/RQ33P4J3HBAh3D3A0Tb33Dz0IOE5HRAljdc3Dv/FI/B7XAg861F6z7QQl6ZgWp4IKDhQcwaRjVZneasO/dgsKElRQOF+rU+2h+vpikNUMCaOA2MrglsUC1mGqA11MJpYHQtZhqgQji4Am+xHQIWW2agOSEaHpoSDRTqxx2lcnqOVphArofJwjs8TAOHKWjg8ARoAOgQ7mGAaIcbbh56kJCcjmC+Sah4DjW4dY9kpgFa95EW8soMVMMjAQ2PYtYwqsnGvYc02dopfTdQUb/WPX+8OqY0QAHr4DTg1QFErstMA7SGujgNeHWZaYAKoXYF3mKrZ4kGEA2PTokGKurHTeznzh0jC69+mAaOUdBA/QRoAOgQ7jGAaPUNNw89SEhODZhvEiqeow1u3WOZaYDWfayFvDID1fBYQMPjmDWMarJx7yFN9viUaKCCfq0v88draEoDFLAhTgPLGgIiN2KmAVpDI5wGljVipgEqhOMr8BbbCZZoANGwcUo0UEE/7lKV03O0wgRybSILr2mYBpooaKBpAjQAdAi3CSBaU8PNQw8SklMz5puEiqexwa3bnJkGaN3NLeSVGaiGzQENWzBrGNVk495DmmzLlGigQL/W+/rjtTKlAQrYCqeBvq0AkVsz0wCtoTVOA31bM9MAFULLCrzF1sYSDSAatk2JBgr04/ZROT1HK0wg13ay8NqHaaCdggbaJ0ADQIdw2wGitTfcPPQgITl1YL5JqHjaGty6HZlpgNbd0UJemYFq2BHQsBOzhlFNNu49pMl2TokG8vVrfZU/XhdTGqCAXXAaWNUFELkrMw3QGrriNLCqKzMNUCF0rsBbbN0s0QCiYfeUaCBfP+5KldNztMIEcj1RFl6PMA2cqKCBHgnQANAh3BMB0XoYbh56kJCcTmK+Sah4uhvcuicz0wCt+2QLeWUGquHJgIY9mTWMarJx7yFN9pSUaKC8fq2388c71ZQGKOCpOA20OxUQ+TRmGqA1nIbTQLvTmGmACuGUCrzFdrolGkA07JUSDZTXj9tW5fQcrTCBXHvLwjsjTAO9FTRwRgI0AHQItzcg2hmGm4ceJCSnM5lvEiqeXga3bh9mGqB197GQV2agGvYBNOzLrGFUk417D2myZ6VEA3n6tT7dH6+fKQ1QwH44DUzvB4h8NjMN0BrOxmlg+tnMNECFcFYF3mI7xxINIBqemxIN5OnHnaZyeo5WmECu58nCOz9MA+cpaOD8BGgA6BDueYBo5xtuHnqQkJwuYL5JqHjONbh1L2SmAVr3hRbyygxUwwsBDS9i1jCqyca9hzTZi1OigVz9Wp/vj9fflAYoYH+cBub3B0QewEwDtIYBOA3MH8BMA1QIF1fgLbaBlmgA0XBQSjSQqx93nsrpOVphArleIgvv0jANXKKggUsToAGgQ7iXAKJdarh56EFCcrqM+Sah4hlkcOtezkwDtO7LLeSVGaiGlwMaXsGsYVSTjXsPabJXpkQDOfq13sEf7ypTGqCAV+E00OEqQOTBzDRAaxiM00CHwcw0QIVwZQXeYrvaEg0gGl6TEg3k6Mdtr3J6jlaYQK7XysK7LkwD1ypo4LoEaADoEO61gGjXGW4eepCQnK5nvkmoeK4xuHWHMNMArXuIhbwyA9VwCKDhUGYNo5ps3HtIky1OiQbK6dd6sT/eDaY0QAFvwGmg+AZA5BuZaYDWcCNOA8U3MtMAFUJxBd5iu8kSDSAa3pwSDZTTjztU5fQcrTCBXG+RhXdrmAZuUdDArQnQANAh3FsA0W413Dz0ICE5DWO+Sah4bja4dYcz0wCte7iFvDID1XA4oOEIZg2jmmzce0iTvS0lGihrSAO3m9IABbzdgAZuB0S+g5kGaA13GNDAHcw0QIVwWwXeYhtpiQYQDUelRANlU6CB0bLwxoRpYLSCBsYkQANAh3BHA6KNsUQDSE5jmW8SKp5RBrfuOGYaoHWPs5BXZqAajgM0vJNZw6gmG/ce0mTvSokGyujX+lR/vLtNaYAC3o3TwNS7AZHvYaYBWsM9OA1MvYeZBqgQ7qrAW2z3WqIBRMP7UqKBMvpxp6icnqMVJpDr/bLwHgjTwP0KGnggARoAOoR7PyDaA4abhx4kJKcHmW8SKp77DG7d8cw0QOsebyGvzEA1HA9oOIFZw6gmG/ce0mQfSokGSuvX+mR/vImmNEABJ+I0MHkiIPLDzDRAa3gYp4HJDzPTABXCQxV4i+0RSzSAaPhoSjRQWj/uJJXTc7TCBHKdJAtvcpgGJiloYHICNAB0CHcSINpkw81DDxKS02PMNwkVz6MGt+7jzDRA637cQl6ZgWr4OKDhE8waRjXZuPeQJjslJRoopV/rq/3xpprSAAWcitPA6qmAyE8y0wCt4UmcBlY/yUwDVAhTKvAW21OWaADR8OmUaKCUftxVKqfnaIUJ5PqMLLxnwzTwjIIGnk2ABoAO4T4DiPas4eahBwnJ6Tnmm4SK52mDW3caMw3QuqdZyCszUA2nARpOZ9YwqsnGvYc02Rkp0YCrX+tL/PFmmtIABZyJ08CSmYDIzzPTAK3heZwGljzPTANUCDMq8BbbLEs0gGj4Qko04OrHXaxyeo5WmECus2XhzQnTwGwFDcxJgAaADuHOBkSbY7h56EFCcprLfJNQ8bxgcOu+yEwDtO4XLeSVGaiGLwIazmPWMKrJxr2HNNn5KdGAo1/r1f3xFpjSAAVcgNNA9QWAyAuZaYDWsBCngeoLmWmACmF+Bd5ie8kSDSAavpwSDTj6caupnJ6jF8af6yJZeK+EaWCRggZeSYAGgA7hLgJEe8Vw89CDhOT0KvNNQsXzssGt+xozDdC6X7OQV2agGr4GaPg6s4ZRTTbuPaTJvpESDewo0K71uf54b5rSAAV8E6eBuW8CIr/FTAO0hrdwGpj7FjMNUCG8UYG32N62RAOIhu+kRAP+4okZc1ROz9EKE8j1XVl474Vp4F0FDbyXAA0AHcJ9FxDtvQpmm4ceJCSnxcw3CRXPOwa37hJmGqB1L7GQV2agGi4BNFzKrGFUk417D2myy1Kige36tT7cH2+5KQ1QwOU4DQxfDoi8gpkGaA0rcBoYvoKZBqgQllXgLbb3LdEAouEHKdHAdn0aGKZyeo5WmECuH8rC+yhMAx8qaOCjBGgA6BDuh4BoH1Uw2zz0ICE5rWS+Sah4PjC4dVcx0wCte5WFvDID1XAVoOFqZg2jmmzce0iT/TglGtimX+tt/fE+MaUBCvgJTgNtPwFE/pSZBmgNn+I00PZTZhqgQvi4Am+xfWaJBhANP0+JBrbp00AbldNztMIEcv1CFt6aMA18oaCBNQnQANAh3C8A0dZUMNs89CAhOX3JfJNQ8XxucOt+xUwDtO6vLOSVGaiGXwEafs2sYVSTjXsPabLfpEQDW/Vrfaw/3remNEABv8VpYOy3gMjfMdMAreE7nAbGfsdMA1QI31TgLba1lmgA0fD7lGhgqz4NjFE5PUcrTCDXH2Th/RimgR8UNPBjAjQAdAj3B0C0HyuYbR56kJCcfmK+Sah4vje4dX9mpgFa988W8soMVMOfAQ1/YdYwqsnGvYc02V9TooEt+rU+yB/vN1MaoIC/4TQw6DdA5HXMNEBrWIfTwKB1zDRAhfBrBd5i+90SDSAa/pESDWzRp4GBKqfnaIUJ5LpeFt6GMA2sV9DAhgRoAOgQ7npAtA0VzDYPPUhITn8y3yRUPH8Y3Lp/MdMArfsvC3llBqrhX4CGfzNrGNVk495DmuzGlGhgs36tL/TH22RKAxRwE04DCzcBIm9mpgFaw2acBhZuZqYBKoSNFXiLbYslGkA03JoSDWzWp4EFKqfnaIUJ5LpNFt72MA1sU9DA9gRoAOgQ7jZAtO0VzDYPPUhITjuYbxIqnq0Gt65TkZcGaN0UgzuvzEA19MeJm+tW5NUwqsnGvYc02VLAviZJA5v0a93zxytdMYuA9DJIA15pQOQywOExXUOZijANeGWyLGqdQihVkbfYyoLFlhloToiG5ZCz4SRHA5v0aaCGyuk5WmECuebIwsut6ARv/pyKu9IATcqWBoAO4eYAouVWNNs89CAhOeUx3yRUPOUMbt3yzDRA6y5vIa/MQDUsD2iYz6xhVJONjQWsoSAlGtioX+sF/ngVTGmAAlbAaaCgAiByRWYaoDVUxGmgoCIzDVAhFFTkLbZCSzSAaFiUEg1s1KeBfJXTc7TCBHKtJAuvcpgGKilooHICNAB0CLcSIFrlimabhx4kJKcqzDcJFU+Rwa27GzMN0Lp3s5BXZqAa7gZouDuzhlFNNu49pMlWTYkG/tav9QH+eHuY0gAF3AOngQF7ACJXY6YBWkM1nAYGVGOmASqEqhV5i626JRpANNwzJRr4W58G+qucnqMVJpDrXrLw9g7TwF4KGtg7ARoAOoS7FyDa3hXNNg89SEhO+zDfJFQ8exrcuvsy0wCte18LeWUGquG+gIY1mDWMarJx7yFN1kuJBv7Sr/VK/nj7mdIABdwPp4FK+wEi789MA7SG/XEaqLQ/Mw38UwgVeYvtAEs0gGh4YEo08Jc+DRSpnJ6jFSaQ60Gy8A4O08BBCho4OAEaADqEexAg2sEVzTYPPUhITjWZbxIqngMNbt1azDRA665lIa/MQDWsBWh4CLOGUU027j2kyR6aEg38qd/QAvEOM6UBCnhYRfy9w5lveMrr8Ir/OTxHf6BFRAf20Iq8RXGEpVsb0eXILAtVZ81HGmiYZEFtMCyoo0wLigIeZVBQtZkLivKqnVBBxU0n4WtXNDswnl6MRA/J+gL9HP3x6pgeEgpYx6Dj1AEqti7zgaI11DUQuS7zZzA6RHUN8OAIYL/qMeMg7W09w2LNDPRs1QPWfzQz4kXdyHHvITfyMcwa0h4dY3ARIDqUlF/cu/W11+/Wp99bHMl/mm4mVn25tsfy/30+Lp9Dyvw3r4GYc6yw44QdXzG7fBvq59tAlW9DjXwbiTknCGssrEnFf/302be0Kkoo/9ikDD+qOVgcT9u5y3B3rsn1vdNU5N1MWHNhLYS1FNZKWGthbYS1FdZOWHthHYR1FNZJWGdhXYR1FdZNWHdhJwrrIewkYScL6ynsFGGnCjtN2OnCegnrLewMYWeGv2NpKr9P8fuaKXzNFb4WCl9Lha+Vwtda4Wuj8LVV+NopfO0Vvg4KX0eFr5PC11nh66LwdVX4uil83RW+ExW+HgrfSQrfyQpfT4XvFIXvVIXvNIXvdIWvl8LXW+E7Q+E7s+Ku393tJ5+eozUCRR/X4JpqzqXv+Zppz3Xc5rpzRb4t9OaOE/m6LbXmbqC1ua105q75Zx/c1hpzm/+7Z26b+Llj5P66bWPnDsxo4baLmztnp25u+5i5g//T2O1Q8tw2vvPgdixx7lr/2XE7lTS3buCcuZ1LmFszeCbdLtFze4XOr9s1cm7P8Fl3u0XNLd6lLtzuEXOLd60h90T13FmKenN7KOe2VNWme5JqbhdlHbsnK+bOVte823PXubUi+oN7yi5zJ0b1EvfU8NzakX3HPS00d010j3JPD869pIR+5vYKzO1UUu9ze/vn9iuxT7pn+OYeVXJPdc8EoCvJbxTO1O/ly/3x+lTMImCfivCf6i7vo79Bbl/gMjNdQ9+K2CcDWkNfUOSk/vQROFzLVE7P0QoTyPUseUD6hcn4LLlxfl+/itn/6SNwkt2zgAPSD9w8VBw6FGeBh4nyOiuljnGG/j5P8Mc727RjUMCz8Y4x4WygY5zD3DFoDefgHWPCOSl1jDP0445XOT1HK0wg13PlATkv3DHOVXSM8xLoGMBJds8FDsh5hpuHfhGK5HQ+UAw7/wHk0lcecPSLUOSqvgAoBtUa4qbTHl1g0IkvSKkT99Y/vzP98S407cQU8EK8E8+8EDh8FzF3YlrDRXgnnnlRlodPp4AuYC6gi8E1ZAbamBAN+wNnI8kbrrd+3Bkqp+dohQnkOkAW3sDwDTdAccMNTOCGAzqEOwAQbaDh5qEHCclpUJY3XNw7VDz9DW6HS5hvLVr3JRbyygxUw0sADS9l1jCqyeo0Z925l4ENLSka6KVf66P98S43pQEKeDlOA6MvBzboCmYaoDVcgdPA6CuYaYAK4bKKvMV2JVhsmYHmhGh4VUo00Es/7iiV03O0wgRyHSwL7+owDQxW0MDVCdAA0CHcwYBoVxtuHnqQkJyuYb5JqHiuMrh1r2WmAVr3tRbyygxUw2sBDa9j1jCqyca9hzTZ61P6buB0/Vr3/PGGmNIABRyC04A3BBB5KDMN0BqG4jTgDWWmASqE6yvyFluxJRpANLwhJRo4XT9uYj/X70ZZeDeFaeBGBQ3clAANAB3CvREQ7SbDzUMPEpLTzcw3CRXPDQa37i3MNEDrvsVCXpmBangLoOGtzBpGNdm495AmOywlGjhNv9aX+eMNN6UBCjgcp4FlwwGRRzDTAK1hBE4Dy0Yw0wAVwrCKvMV2myUaQDS8PSUaOE0/7lKV03O0wgRyvUMW3sgwDdyhoIGRCdAA0CHcOwDRRhpuHnqQkJxGMd8kVDy3G9y6o5lpgNY92kJemYFqOBrQcAyzhlFNNu49pMmOTYkGTtWv9b7+eONMaYACjsNpoO84QOQ7mWmA1nAnTgN972SmASqEsRV5i+0uSzSAaHh3SjRwqn7cPiqn52iFCeR6jyy8e8M0cI+CBu5NgAaADuHeA4h2r+HmoQcJyek+5puEiudug1v3fmYaoHXfbyGvzEA1vB/Q8AFmDaOabNx7SJN9MCUaOEW/1lf54403pQEKOB6ngVXjAZEnMNMArWECTgOrJjDTABXCgxV5i+0hSzSAaDgxJRo4RT/uSpXTc7TCBHJ9WBbeI2EaeFhBA48kQANAh3AfBkR7xHDz0IOE5PQo801CxTPR4NadxEwDtO5JFvLKDFTDSYCGk5k1jGqyce8hTfaxlGigp36tt/PHe9yUBijg4zgNtHscEPkJZhqgNTyB00C7J5hpgArhsYq8xTbFEg0gGk5NiQZ66sdtq3J6jlaYQK5PysJ7KkwDTypo4KkEaADoEO6TgGhPGW4eepCQnJ5mvkmoeKYa3LrPMNMArfsZC3llBqrhM4CGzzJrGNVk495DmuxzKdHAyfq1Pt0fb5opDVDAaTgNTJ8GiDydmQZoDdNxGpg+nZkGqBCeq8hbbDMs0QCi4cyUaOBk/bjTVE7P0QoTyPV5WXizwjTwvIIGZiVAA0CHcJ8HRJtluHnoQUJyeoH5JqHimWlw685mpgFa92wLeWUGquFsQMM5zBpGNdm495AmOzclGjhJv9bn++O9aEoDFPBFnAbmvwiIPI+ZBmgN83AamD+PmQaoEOZW5C22+ZZoANFwQUo0cJJ+3Hkqp+dohQnkulAW3kthGliooIGXEqABoEO4CwHRXjLcPPQgITm9zHyTUPEsMLh1FzHTAK17kYW8MgPVcBGg4SvMGkY12bj3kCb7ako00EO/1jv4471mSgMU8DWcBjq8Boj8OjMN0Bpex2mgw+vMNECF8GpF3mJ7wxINIBq+mRIN9NCP217l9BytMIFc35KF93aYBt5S0MDbCdAA0CHctwDR3jbcPPQgITm9w3yTUPG8aXDrvstMA7Tudy3klRmohu8CGr7HrGFUk417D2myi1OigRP1a73YH2+JKQ1QwCU4DRQvAUReykwDtIalOA0UL2WmASqExRV5i22ZJRpANFyeEg2cqB93qMrpOVphArmukIX3fpgGViho4P0EaADoEO4KQLT3DTcPPUhITh8w3yRUPMsNbt0PmWmA1v2hhbwyA9XwQ0DDj5g1jGqyce8hTXZlSjTQ3ZAGVpnSAAVcZUADqwCRVzPTAK1htQENrGamASqElRV5i+1jSzSAaPhJSjTQPQUa+FQW3mdhGvhUQQOfJUADQIdwPwVE+8wSDSA5fc58k1DxfGJw637BTAO07i8s5JUZqIZfABquYdYwqsnGvYc02S9TooFu+rU+1R/vK1MaoIBf4TQw9StA5K+ZaYDW8DVOA1O/ZqYBKoQvK/IW2zeWaADR8NuUaKCbftwpKqfnaIUJ5PqdLLy1YRr4TkEDaxOgAaBDuN8Boq013Dz0ICE5fc98k1DxfGtw6/7ATAO07h8s5JUZqIY/ABr+yKxhVJONew9psj+lRANd9Wt9sj/ez6Y0QAF/xmlg8s+AyL8w0wCt4RecBib/wkwDVAg/VeQttl8t0QCi4W8p0UBX/biTVE7P0QoTyHWdLLzfwzSwTkEDvydAA0CHcNcBov1uuHnoQUJy+oP5JqHi+c3g1l3PTAO07vUW8soMVMP1gIYbmDWMarJx7yFN9s+UaKCLfq2v9sf7y5QGKOBfOA2s/gsQ+W9mGqA1/I3TwOq/mWmACuHPirzFttESDSAabkqJBrrox12lcnqOVphArptl4W0J08BmBQ1sSYAGgA7hbgZE22K4eehBQnLaynyTUPFsMrh1tzHTAK17m4W8MgPVcBug4XZmDaOabNx7SJPdkRINdNav9SWBeIVZBKSXQRpYQu94mjHcQl4aoDVQDJAGlrj6a1DmpVMIOyryFlspQAf//0BzQjQsDeSUJA101i/axSqn52iFCeRaRhZe2UwHyNz8ZQp3pQGalC0NAB3CLQOIVrbQbPPQg4TkVA483OiBoeIpXYgXdk6WjSNuOq07x0JemYFqmANomMusYVSTjXsPabJ5wL4mSQOd9Gu9uj9eeVMaoIDlcRqoXh4QOZ+ZBmgN+TgNVM9npgEqhLxC3mIrsEQDiIYVUqKBTvo0UE3l9BytMIFcK8rCKwzTQEUFDRQmQANAh3ArAqIVFpptHnqQkJyKmG8SKp4KBrduJWYaoHVXspBXZqAaVgI0rMysYVSTjXsPabJVUqKBjvq1PtcfbzdTGqCAu+E0MHc3QOTdmWmA1rA7TgNzd2emASqEKoW8xVbVEg0gGu6REg101KeBOSqn52iFCeRaTRZe9TANVFPQQPUEaADoEG41QLTqhWabhx4kJKc9mW8SKp49DG7dvZhpgNa9l4W8MgPVcC9Aw72ZNYxqsnHvIU12n5RooIN+rQ/3x9vXlAYo4L44DQzfFxC5BjMN0Bpq4DQwvAYzDVAh7FPIW2yeJRpANNwvJRrooE8Dw1ROz9EKE8h1f1l4B4RpYH8FDRyQAA0AHcLdHxDtgEKzzUMPEpLTgcw3CRXPfga37kHMNEDrPshCXpmBangQoOHBzBpGNdm495AmWzMlGmivX+tt/fFqmdIABayF00DbWoDIhzDTAK3hEJwG2h7CTANUCDULeYvtUEs0gGh4WEo00F6fBtqonJ6jFSaQ6+Gy8I4I08DhCho4IgEaADqEezgg2hGFZpuHHiQkpyOZbxIqnsMMbt2jmGmA1n2UhbwyA9XwKEDD2swaRjXZuPeQJlsnJRpop1/rY/3x6prSAAWsi9PA2LqAyPWYaYDWUA+ngbH1mGmACqFOIW+xHW2JBuoBOR2TEg2006eBMSqn52iFCeRaXxZegzAN1FfQQIMEaADoEG59QLQGhWabhx4kJKdjmW8SKp5jDG7d45hpgNZ9nIW8MgPV8DhAw+OZNYxqsnHvIU22YUo00Fa/1gf54zUypQEK2AingUGNAJFPYKYBWsMJOA0MOoGZBqgQGhbyFltjSzSAaNgkJRpoq08DA1VOz9EKE8i1qSy8ZmEaaKqggWYJ0ADQIdymgGjNCs02Dz1ISE7NmW8SKp4mBrduC2YaoHW3sJBXZqAatgA0bMmsYVSTjXsPabKtUqKBNvq1vtAfr7UpDVDA1jgNLGwNiNyGmQZoDW1wGljYhpkGqBBaFfIWW1tLNIBo2C4lGmijTwMLVE7P0QoTyLW9LLwOYRpor6CBDgnQANAh3PaAaB0KzTYPPUhITh2ZbxIqnnYGt24nZhqgdXeykFdmoBp2AjTszKxhVJONew9psl1SooHW+rXu+eN1NaUBCtgVpwGvKyByN2YaoDV0w2nA68ZMA1QIXQp5i627JRpANDwxJRporU8DNVROz9EKE8i1hyy8k8I00ENBAyclQANAh3B7AKKdVGi2eehBQnI6mfkmoeI50eDW7clMA7TunhbyygxUw56AhqcwaxjVZOPeQ5rsqSnRQCv9Wi/wxzvNlAYo4Gk4DRScBoh8OjMN0BpOx2mg4HRmGqBCOLWQt9h6WaIBRMPeKdFAK30ayFc5PUcrTCDXM2ThnRmmgTMUNHBmAjQAdAj3DEC0MwvNNg89SEhOfZhvEiqe3ga3bl9mGqB197WQV2agGvYFNDyLWcOoJhv3HtJk+6VEAy31a32AP97ZpjRAAc/GaWDA2YDI5zDTAK3hHJwGBpzDTANUCP0KeYvtXEs0gGh4Xko00FKfBvqrnJ6jFSaQ6/my8C4I08D5Chq4IAEaADqEez4g2gWFZpuHHiQkpwuZbxIqnvMMbt2LmGmA1n2RhbwyA9XwIkDDi5k1jGqyce8hTbZ/SjTQQr/WK/njDTClAQo4AKeBSgMAkQcy0wCtYSBOA5UGMtMAFUL/Qt5iG2SJBhANL0mJBlro00CRyuk5WmECuV4qC++yMA1cqqCByxKgAaBDuJcCol1WaLZ56EFCcrqc+Sah4rnE4Na9gpkGaN1XWMgrM1ANrwA0vJJZw6gmG/ce0mSvSokGmgP/fQR/vMGmNEABBxfi713NfMNTXlcX/ufwHP2BFhEd2KsKeYviGku3NqLLtVkWqs6arzXQMMmCamZYUNeZFhQFvM6goK5nLijK6/qECipuOgl/faHZgfH0YiR6SJoCP7PeH2+I6SGhgEMMOs4QoGKHMh8oWsNQA5GHMn8Go0M01AAPrgH2q5gZB2lviw2LNTPQs1UMrP8GZsSLupHj3kNu5BuZNaQ9utHgIkB0oCZIn81Kq34jMG4jw//kmYPF8bSduwx355pc3zs3if26Wdgtwm4VNkzYcGEjhN0m7HZhdwgbKWyUsNHCxggbK2ycsDuF3SXsbmH3CLtX2H3C7hf2gLAHhY0XNkHYQ8ImCntY2CPCHg1/B3CT/Lzv992s8N2i8N2q8A1T+IYrfCMUvtsUvtsVvjsUvpEK3yiFb7TCN0bhG6vwjVP47lT47lL47lb47lH47lX47lP47lf4HlD4HlT4xit8ExS+hxS+iQrfwwrfIwrfo4W7fre0n3x6jtYIFH1cs7lJszHR91A3a8913Ft054p8b9WbO07k6w7TmruB1uYO15m75p99cEdozG3+7565t8XPHSP31709du7AjBbuHXFz5+zUzR0ZM3fwfxq7o0qe28Z3HtzRJc5d6z877piS5tYNnDN3bAlzawbPpDsuem6v0Pl174yc2zN81t27ouYW71IX7t0Rc4t3rSH3HvXcWYp6c+9Vzm2pqk33PtXcLso6du9XzJ2trnn3gV3n1oroD+6Du8ydGNVL3PHhubUj+447ITR3TXSPch8Kzr2khH7mTgzM7VRS73Mf9s/tV2KfdB/xzT2q5J7qPgpAaJKfeB/V7+XL/fEmmX7ipYCTCuE/dVw+SX+D3MmaizL9xEtrmAx+4qU1TAZFTupPx4DDtUzl9BytMIFcH5MH5PEwGT8mN87ve7ww+z8dA06y+xhwQB4HNw8Vhw7FY+BhorweS6ljPKK/zxP88Z4w7RgU8Am8Y0x4AugYU5g7Bq1hCt4xJkxJqWM8oh93vMrpOVphArlOlQfkyXDHmKroGE8m0DGAk+xOBQ7Ik4abh35Rh+T0FFAMO/8B5DJZHnD0izrkqn4aKAbVGuKm0x49bdCJn06pEz+sf35n+uM9Y9qJKeAzeCee+Qxw+J5l7sS0hmfxTjzz2SwPn04BPc1cQM+Ba8gMtDEhGk4DzkaSN9zD+nFnqJyeoxUmkOt0WXgzwjfcdMUNNyOBGw7oEO50QLQZhpuHHiQkp5lZ3nBx71DxTDO4HZ5nvrVo3c9byCszUA2fBzScxaxhVJPVac66c18AG1pSNDBRv9ZH++PNNqUBCjgbp4HRs4ENmsNMA7SGOTgNjJ7DTANUCC8U8hbbXLDYMgPNCdHwxZRoYKJ+3FEqp+dohQnkOk8W3vwwDcxT0MD8BGgA6BDuPEC0+Yabhx4kJKcFzDcJFc+LBrfuQmYaoHUvtJBXZqAaLgQ0fIlZw6gmG/ce0mRfTum7gYf0a93zx1tkSgMUcBFOA94iQORXmGmA1vAKTgPeK8w0QIXwciFvsb1qiQYQDV9LiQYe0o+b2M+de10W3hthGnhdQQNvJEADQIdwXwdEe8Nw89CDhOT0JvNNQsXzmsGt+xYzDdC637KQV2agGr4FaPg2s4ZRTTbuPaTJvpMSDUzQr/Vl/njvmtIABXwXp4Fl7wIiv8dMA7SG93AaWPYeMw1QIbxTyFtsiy3RAKLhkpRoYIJ+3KUqp+dohQnkulQW3rIwDSxV0MCyBGgA6BDuUkC0ZYabhx4kJKflzDcJFc8Sg1t3BTMN0LpXWMgrM1ANVwAavs+sYVSTjXsPabIfpEQD4/Vrva8/3oemNEABP8RpoO+HgMgfMdMAreEjnAb6fsRMA1QIHxTyFttKSzSAaLgqJRoYrx+3j8rpOVphArmuloX3cZgGVito4OMEaADoEO5qQLSPDTcPPUhITp8w3yRUPKsMbt1PmWmA1v2phbwyA9XwU0DDz5g1jGqyce8hTfbzlGjgQf1aX+WP94UpDVDAL3AaWPUFIPIaZhqgNazBaWDVGmYaoEL4vJC32L60RAOIhl+lRAMP6sddqXJ6jlaYQK5fy8L7JkwDXyto4JsEaADoEO7XgGjfGG4eepCQnL5lvkmoeL4yuHW/Y6YBWvd3FvLKDFTD7wAN1zJrGNVk495Dmuz3KdHAA/q13s4f7wdTGqCAP+A00O4HQOQfmWmA1vAjTgPtfmSmASqE7wt5i+0nSzSAaPhzSjTwgH7ctiqn52iFCeT6iyy8X8M08IuCBn5NgAaADuH+Aoj2q+HmoQcJyek35puEiudng1t3HTMN0LrXWcgrM1AN1wEa/s6sYVSTjXsPabJ/pEQD9+vX+nR/vPWmNEAB1+M0MH09IPIGZhqgNWzAaWD6BmYaoEL4o5C32P60RAOIhn+lRAP368edpnJ6jlaYQK5/y8LbGKaBvxU0sDEBGgA6hPs3INpGw81DDxKS0ybmm4SK5y+DW3czMw3QujdbyCszUA03AxpuYdYwqsnGvYc02a0p0cB9+rU+3x9vmykNUMBtOA3M3waIvJ2ZBmgN23EamL+dmQaoELYW8hbbDks0AGlYlA4N3Ke/F/NUTs/RChPI1S3691mqyAne/PR/hGmAJmVLA0CHcN0ifdFKFZltHnqQkJxKAwdp5z8c/XeoeJwivLDL6Of1X3KOfl607jIW8soMVMMygIZlmTWMarJx7yFNthywr0nSwL36td7BHy+nKIuA9DJIAx1yAJFzgcNjuoZcsHhoDblZFrVOIZQr4i22PLDYMgPNCdGwfEo0cK8+DbRXOT1HK0wg13xZeAVhGshX0EBBAjQAdAg3HxCtoMhs89CDhORUgfkmoeIpb3DrVmSmAVp3RQt5ZQaqYUVAw0JmDaOabNx7SJMtSokG7tGv9WJ/vEqmNEABK+E0UFwJELkyMw3QGirjNFBcmZkGqBCKiniLrYolGkA03C0lGrhHnwaGqpyeoxUmkOvusvCqhmlgdwUNVE2ABoAO4e4OiFa1yGzz0IOE5LQH801CxbObwa1bjZkGaN3VLOSVGaiG1QANqzNrGNVk495DmuyeKdHA3YY0sJcpDVDAvQxoYC9A5L2ZaYDWsLcBDezNTANUCHsW8RbbPpZoANFw35Ro4O4UaKCGLDwvTAM1FDTgJUADQIdwawCieZZoAMlpP+abhIpnX4Nbd39mGqB1728hr8xANdwf0PAAZg2jmmzce0iTPTAlGrhLv9an+uMdZEoDFPAgnAamHgSIfDAzDdAaDsZpYOrBzDRAhXBgEW+x1bREA4iGtVKigbv0aWCKyuk5WmECuR4iC+/QMA0coqCBQxOgAaBDuIcAoh1aZLZ56EFCcjqM+Sah4qllcOsezkwDtO7DLeSVGaiGhwMaHsGsYVSTjXsPabJHpkQDd+rX+mR/vKNMaYACHoXTwOSjAJFrM9MAraE2TgOTazPTABXCkUW8xVbHEg0gGtZNiQbu1KeBSSqn52iFCeRaTxbe0WEaqKeggaMToAGgQ7j1ANGOLjLbPPQgITkdw3yTUPHUNbh16zPTAK27voW8MgPVsD6gYQNmDaOabNx7SJM9NiUaGKdf66v98Y4zpQEKeBxOA6uPA0Q+npkGaA3H4zSw+nhmGqBCOLaIt9gaWqIBRMNGKdHAOH0aWKVyeo5WmECuJ8jCaxymgRMUNNA4ARoAOoR7AiBa4yKzzUMPEpJTE+abhIqnkcGt25SZBmjdTS3klRmohk0BDZsxaxjVZOPeQ5ps85RoYKx+rS/xx2thSgMUsAVOA0taACK3ZKYBWkNLnAaWtGSmASqE5kW8xdbKEg0gGrZOiQbG6tPAYpXTc7TCBHJtIwuvbZgG2ihooG0CNAB0CLcNIFrbIrPNQw8SklM75puEiqe1wa3bnpkGaN3tLeSVGaiG7QENOzBrGNVk495DmmzHlGhgjH6tV/fH62RKAxSwE04D1TsBIndmpgFaQ2ecBqp3ZqYBKoSORbzF1sUSDSAadk2JBsbo00A1ldNztMIEcu0mC697mAa6KWigewI0AHQItxsgWvcis81DDxKS04nMNwkVT1eDW7cHMw3QuntYyCszUA17ABqexKxhVJONew9psienRAOj9Wt9rj9eT1MaoIA9cRqY2xMQ+RRmGqA1nILTwNxTmGmACuHkIt5iO9USDSAanpYSDYzWp4E5KqfnaIUJ5Hq6LLxeYRo4XUEDvRKgAaBDuKcDovUqMts89CAhOfVmvkmoeE4zuHXPYKYBWvcZFvLKDFTDMwANz2TWMKrJxr2HNNk+KdHAKP1aH+6P19eUBihgX5wGhvcFRD6LmQZoDWfhNDD8LGYaoELoU8RbbP0s0QCi4dkp0cAofRoYpnJ6jlaYQK7nyMI7N0wD5yho4NwEaADoEO45gGjnFpltHnqQkJzOY75JqHjONrh1z2emAVr3+RbyygxUw/MBDS9g1jCqyca9hzTZC1OigZH6td7WH+8iUxqggBfhNND2IkDki5lpgNZwMU4DbS9mpgEqhAuLeIutvyUaQDQckBINjNSngTYqp+dohQnkOlAW3qAwDQxU0MCgBGgA6BDuQEC0QUVmm4ceJCSnS5hvEiqeAQa37qXMNEDrvtRCXpmBangpoOFlzBpGNdm495Ame3lKNHCHfq2P9ce7wpQGKOAVOA2MvQIQ+UpmGqA1XInTwNgrmWmACuHyIt5iu8oSDSAaDk6JBu7Qp4ExKqfnaIUJ5Hq1LLxrwjRwtYIGrkmABoAO4V4NiHZNkdnmoQcJyela5puEimewwa17HTMN0Lqvs5BXZqAaXgdoeD2zhlFNNu49pMkOSYkGbtev9UH+eENNaYACDsVpYNBQQORiZhqgNRTjNDComJkGqBCGFPEW2w2WaADR8MaUaOB2fRoYqHJ6jlaYQK43ycK7OUwDNylo4OYEaADoEO5NgGg3F5ltHnqQkJxuYb5JqHhuNLh1b2WmAVr3rRbyygxUw1sBDYcxaxjVZOPeQ5rs8JRo4Db9Wl/ojzfClAYo4AicBhaOAES+jZkGaA234TSw8DZmGqBCGF7EW2y3W6IBRMM7UqKB2/RpYIHK6TlaYQK5jpSFNypMAyMVNDAqARoAOoQ7EhBtVJHZ5qEHCclpNPNNQsVzh8GtO4aZBmjdYyzklRmohmMADccyaxjVZOPeQ5rsuJRoYIR+rXv+eHea0gAFvBOnAe9OQOS7mGmA1nAXTgPeXcw0QIUwroi32O62RAOIhvekRAMj9GmghsrpOVphArneKwvvvjAN3KuggfsSoAGgQ7j3AqLdV2S2eehBQnK6n/kmoeK5x+DWfYCZBmjdD1jIKzNQDR8ANHyQWcOoJhv3HtJkx6dEA8P1a73AH2+CKQ1QwAk4DRRMAER+iJkGaA0P4TRQ8BAzDVAhjC/iLbaJlmgA0fDhlGhguD4N5KucnqMVJpDrI7LwHg3TwCMKGng0ARoAOoT7CCDao0Vmm4ceJCSnScw3CRXPwwa37mRmGqB1T7aQV2agGk4GNHyMWcOoJhv3HtJkH0+JBobp1/oAf7wnTGmAAj6B08CAJwCRpzDTAK1hCk4DA6Yw0wAVwuNFvMU21RINIBo+mRINDNOngf4qp+dohQnk+pQsvKfDNPCUggaeToAGgA7hPgWI9nSR2eahBwnJ6Rnmm4SK50mDW/dZZhqgdT9rIa/MQDV8FtDwOWYNo5ps3HtIk52WEg3cql/rlfzxppvSAAWcjtNApemAyDOYaYDWMAOngUozmGmACmFaEW+xzbREA4iGz6dEA7fq00CRyuk5WmECuc6Sv9MLYRqYpaCBFxKgAaBDuLMA0V4oMts89CAhOc1mvkmoeJ43uHXnMNMArXuOhbwyA9VwDqDhXGYNo5ps3HtIk30xJRq4Rb+hBeLNM6UBCjivCH9vPvMNT3nN97Udz9EfaBHRgX2xiLcoFli6tRFdFmZZqDprXmigYZIFdbNhQb1kWlAU8CWDgnqZuaAor5cTKqi46ST8y0VmB8bTi5HoIbmpUD9Hf7xFpoeEAi4y6DiLgIp9hflA0RpeMRD5FebPYHSIXjHAgwXAfr2a5RriptPevmpYrJmBnq1XgfW/xox4UTdy3HvIjfw6s4a0R68bXASIDpnfe43vN/Ac/fG/uf+b+7+5/5v7v7n/m/u/uf+b+7+5/5v7//Fcl3i4oOy/XJwvn+XlM08+c+UzRz7LyWdZ+Swjn6Xls5R8uvLpyOeOMv8+t8vnNvncKp9b5HOzfG6Sz43y+bd8/iWff8rnBvlcL59/yOfv8rlOPn+Tz1/l8xf57FLu32dn+ewknx3ls4N8tpfPdvLZVj7byGdr+Wwlny3ls4V8NpfPZvLZVD6byGdj+TxBPhvJZ0P5PF4+j5PPY+WzgXzWl89j5PNo+awnn3Xls4581pbPcTn/PsfK5xj5HC2fo+RzpHzeIZ+3y+dt8jlCPofL5zD5vFU+b5HPm+XzJvm8UT5vkM9i+Rwqn0Pk83r5vE4+r5XPa+TzavkcLJ9XyeeV8nmFfF4un5fJ54e5/z4/kM/35XOFfC6Xz2XyuVQ+l8jnYvl8Tz7flc935PNt+XxLPt+Uzzfk83X5fE0+X5XPV+RzkXy+LJ8vyedC+Vwgn/Plc558viifc+VzjnzOls8X5LNa+X+fe8hnVfncXT53k88q8llZPivJZ5F8FspnRfmsIJ8F8pkvn+XlM08+c+UzRz7LyWdZ+Swjn6Xls5R8uvLpyOeOvH+f2+Vzm3xulc8t8rlZPjfJ5/qCf58b5PNP+fxLPv+Wz43yuUk+N8vnFvncKp/b5HO7fO6QT6eCzFs+S8nntPx/n9Plc4Z8zpTP5+Vzlny+IJ+z5XOOfM6Vzxflc558zpfPBfK5UD5fEs/Md5lviO9Q3hT2lrC3hb0j7F1h7wlbLGyJsKXClglbLmyFsPeFfSDsQ2EfCVspbJWw1cI+FvaJsE+FfSbsc2FfCFsj7EthXwn7Wtg3wr4V9p2wtcK+F/aDsB+F/STsZ2G/CPtV2G/C1gn7XdgfwtYL2yDsT2F/Cftb2EZhm4RtFrZF2FZh24RtF7aDvh+sJNYurJSw0sLKCCsrrJywHGG5wvKElReWL6xAWAVhFYUVCisSVklYZWFVhO0mbHdhVYXtIayasOrC9hS2l7C9he0jbF9hNYR5wvYTtr+wA4QdKOwgYQcLqymslrBDhB0q7DBhhws7QtiRwo4SVltYHWF1hdUTdrSwY4TVF9ZA2LHCjhN2vLCGwhoJO0FYY2FNhDUV1kxYc2EthLUU1kpYa2FthLUV1k5Ye2EdhHUU1klYZ2FdhHUV1k1Yd2EnCush7CRhJwvrKewUYacKO03Y6cJ6Cest7AxhZwrrI6yvsLOE9RN2trBzhJ0r7Dxh5wu7QNiFwi4SdrGw/sIGCBsobJCwS4RdKuwyYZcLu0LYlcKuEjZY2NXCrhF2rbDrhF0vbIiwocKKhd0g7EZhNwm7Wdgtwm4VNkzYcGEjhN0m7HZhdwgbKWyUsNHCxggbK2ycsDuF3SXsbmH3CLtX2H3C7hf2gLAHhY0XNkHYQ8ImCntY2CPCHhU2SdhkYY8Je1zYE8KmCJsq7ElhTwl7Wtgzwp4V9pywacKmC5shbKaw54XNqiT7ixP8O0Keoz805677594ulPe4fN4in7fK5zD5HC6fI+TzNvm8XT7vkM+R8jlKPkfL5xj5HCuf4+SzacV/n83ks7l8tpDPlvLZSj5by2cb+Wwrn+3ks718dpDPjvLZST47y2eXiv/9vZ4XxJ7PFjZH2FxhLwqbJ2y+sAXCFgp7SdjLwhYJe0XYq8JeE/Z6pX//MK7At7Gu71lV/voNMe9NYW8Je1vYO8LeFfaesMXClghbKmyZsOXCVgh7X9gHwj4U9pGwlcJWCVst7GNhn1SSQTJ/34qC5IZ8byp8byl8byt87yh87yp87yl8ixW+JQrfUoVvmcK3XOFbofC9r/B9oPB9qPB9pPCtVPhWKXyrFb6PFb5PpI8OTQVHfWgy/2r6p2LuZ8I+F/aFsDXCvhT2lbCvhX0j7Fth3wlbK+x7YT8I+1HYT8J+FvaLsF+F/SZsnbDfhf0hbL2wDcL+FPaXsL+FbRS2Sdjm8MH6VLGQzxS+zxW+LxS+NQrflwrfVwrf1wrfNwrftwrfdwrfWoXve4XvB4XvR4XvJ4XvZ4XvF4XvV4XvN4VvncL3u8L3h8K3XuHboPD9qfD9pfD9rfBtVPg2KXybgWLYIuZuFbZN2HZhO+iQVhZzhJUSVlpYGWFlhZUTliMsV1iesPLC8oUVCKsgrKKwQmFFwioJqyysirDdhO0urKqwPYRVE1a9cijpLYqFbFX4til82xW+HQofLSzscxW+UgpfaYWvjMJXVuErp/DlKHy5Cl+ewlde4ctX+AoUvgoKX0WFr1DhK1L4Kil8lRW+Kgrfbgrf7gpfVYVvD4WvmsJXvbJ+Mewp5u4lbG9h+wjbV1gNYZ6w/YTtL+wAYQcKO0jYwcJqCqsl7BBhhwo7TNjhwo4QdqSwo4TVFlZHWF1h9YQdLewYYfWFNRB2bLgY9lQsZC+Fb2+Fbx+Fb1+Fr4bC5yl8+yl8+yt8Byh8Byp8Byl8Byt8NRW+WgrfIQrfoQrfYQrf4QrfEQrfkQrfUQpfbYWvjsJXV+Grp/AdrfAdo/DVV/gaKHzHAsVwnJh7vLCGwhoJO0FYY2FNhDUV1kxYc2EthLUU1kpYa2FthLUV1k5Ye2EdhHUU1klYZ2FdhHUV1k1Yd2EnCush7CRhJwvrGS6G4xQLOV7ha6jwNVL4TlD4Git8TRS+pgpfM4WvucLXQuFrqfC1UvhaK3xtFL62Cl87ha+9wtdB4euo8HVS+DorfF0Uvq4KXzeFr7vCd6LC10PhO0nhO1nh6wkUwyli7qnCThN2urBewnoLO0PYmcL6COsr7Cxh/YSdLewcYecKO0/Y+cIuEHahsIuEXSysv7ABwgYKGyTsEmGXCrtM2OXCrhB2ZbgYTlEs5FSF7zSF73SFr5fC11vhO0PhO1Ph66Pw9VX4zlL4+il8Zyt85yh85yp85yl85yt8Fyh8Fyp8Fyl8Fyt8/RW+AQrfQIVvkMJ3icJ3qcJ3mcJ3ucJ3hcJ3JVAMV4m5g4VdLewaYdcKu07Y9cKGCBsqrFjYDcJuFHaTsJuF3SLsVmHDhA0XNkLYbcJuF3aHsJHCRgkbLWyMsLHCxgm7U9hdwu4OF8NVioUMVviuVviuUfiuVfiuU/iuV/iGKHxDFb5ihe8Ghe9Ghe8mhe9mhe8Whe9WhW+Ywjdc4Ruh8N2m8N2u8N2h8I1U+EYpfKMVvjEK31iFb5zCd6fCd5fCdzdQDPeIufcKu0/Y/cIeEPagsPHCJgh7SNhEYQ8Le0TYo8ImCZss7DFhjwt7QtgUYVOFPSnsKWFPC3tG2LPCnhM2Tdh0YTOEzRT2fLgY7lEs5F6F7z6F736F7wGF70GFb7zCN0Hhe0jhm6jwPazwPaLwParwTVL4Jit8jyl8jyt8Tyh8UxS+qQrfkwrfUwrf0wrfMwrfswrfcwrfNIVvusI3Q+GbqfA97yuGss5/I/DvL1f+9/lCZSc4MhXjOVrDpd8oMzfuL6pTQhWdZP6l7xcqa8/NKo6rP3fn701jdnhj0X+L4ecy+hs7pzK2oMxJybxHwpRzggtA/82Rj+TfPPIcvTxo/soyvILsHLTAHCe4wJ2/o40E/AP+91mAEptreBJU76EnwD83LvY5jtkmojkhJ/Jcx05OpRz9nM5z7ORU2tHP6XwnmZzi4lzg6Offu4yd6+BCx06cixw7cS527GjZ39HXsq8lLQc4duIMdOzEGeTYiXOJYyfOpY6dOJc5duJc7tiJc4VjJ86Vjp04Vzl24gx27MS52rET5xrHTpxrHTtxrnPsxLnesRNniGMnzlDHTpxix06cGxw7cW507MS5ybET52bHTpxbHDtxbnXsxBnm2Ikz3LETZ4RjJ85tjp04tzt24tzh2Ikz0rETZ5RjJ85ox06cMY6dOGMdO3HGOXbi3OnYiXOXYyfO3Y6dOPc4duLc69iJc59jJ879jp04Dzh24jzo2Ikz3rETZ4JjJ85Djp04Ex07cR527MR5xLET51HHTpxJjp04kx07cR5z7MR53LET5wnHTpwpjp04Ux07cZ507MR5yrET52nHTpxnHDtxnnXsxHnOsRNnmmMnznTHTpwZjp04Mx07cZ537MSZ5diJ84JjJ85sx06cOY6dOHMdO3FedOzEmefYiTPfsRNngWMnzkLHTpyXHDtxXnbsxFnk2InzimMnzquOnTivOXbivO7YifOGYyfOm46dOG85duK87diJ845jJ867jp047zl24ix27MRZ4tiJs9SxE2eZYyfOcsdOnBWOnTjvO3bifODYifOhYyfOR46dOCsdO3FWOXbirHbsxPnYsRPnE8dOnE8dO3E+c+zE+dyxE+cLx06cNY6dOF86duJ85diJ87VjJ843jp043zp24nzn2Imz1rET53vHTpwfHDtxfnTsxPnJsRPnZ8dOnF8cO3F+dezE+c2xE2edYyfO746dOH84duKsd+zE2eDYifOnYyfOX46dOH87duJsdOzE2eTYibPZsRNni2MnzlbHTpxtjp042x07cXY4duLQC5pzAwP9d4ldX5y4f5f4+zJ2cioF5LTK0r/fXNq1E6eMpThlLcUpZylOjqU4uZbi5FmKU95SnHxLcQosxalgKU5FS3EKLcUpshSnkqU4lS3FqWIpzm6W4uxuKU5VS3H2sBSnmqU41S3F2dNSnL0sxdnbUpx9LMXZ11KcGpbieJbi7Ad8hskmzv6+ONVntl6yqX6rntXn939rr4+ennntJ8NHzfv83YOPLHYPmPzstbOyiXOA4b6hn/0OBPbtrIQ+jyb5c+8OsnS+DrakR01AjzmWfoxoLUt7fIilOIdainOYpTiHW4pzhKU4R1qKc5SlOLUtxaljKU5dS3HqWYpztKU4x1iKU99SnAaW4hxrKc5xluIcbylOQ0txGlmKc4KlOI0txWliKU5TS3GaWYrT3FKcFpbitLQUp5WlOK0txWljKU5bS3HaWYrT3lKcDpbidLQUp5OlOJ0txeliKU5XS3G6WYrT3RenpO9oftuxY0c2cU60tJ4eluKcZCnOyZbi9LQU5xRLcU61FOc0S3FOtxSnl6U4vS3FOcNSnDMtxeljKU5fS3HOshSnn6U4Z1uKc46lOOdainOepTjnW4pzgaU4F1qKc5GlOBdbitPfUpwBluIMtBRnkKU4l1iKc6mlOJdZinO5pThXWIpzpaU4V1mKM9hSnKstxbnGUpxrLcW5zlKc6y3FGWIpzlBLcYotxbnBUpwbLcW5yVKcmy3FucVSnFstxRlmKc5wS3FGWIpzm6U4t1uKc4elOCMtxRllKc5oS3HGWIoz1lKccZbi3Gkpzl2W4txtKc49luLcaynOfZbi3G8pzgOW4jxoKc54S3EmWIrzkKU4Ey3FedhSnEcsxXnUUpxJluJMthTnMUtxHrcU5wlLcaZYijPVUpwnLcV5ylKcpy3FecZSnGctxXnOUpxpluJMtxRnhqU4My3Fed5SnFmW4rxgKc5sS3HmWIoz11KcFy3FmWcpznxLcRZYirPQUpyXLMV52VKcRZbivGIpzquW4rxmKc7rluK8YSnOm5bivGUpztuW4rxjKc67luK8ZynOYktxlliKs9RSnGWW4iy3FGeFpTjvW4rzgaU4H1qK85GlOCstxVllKc5qS3E+thTnE0txPrUU5zNLcT63FOcLS3HWWIrzpaU4X1mK87WlON9YivOtpTjfWYqz1lKc7y3F+cFSnB8txfnJUpyfLcX5xVKcXy3F+c1SnHWW4vxuKc4fluKstxRng6U4f1qK85elOH9birPRUpxNluJsthRni6U4Wy3F2WYpznZLcXZYikM/hFhzbuhFLI5rKU4pS3FKW4pTxlKcspbilLMUJ8dSnFxLcfIsxSlvKU6+pTgFluJUsBSnoqU4hZbiFFmKU8lSnMqW4lSxFGc3S3F2txSnqqU4e1iKU81SnOqW4uxpKc5eluLsbSnOPpbi7GspTg1LcTxLcfazFGd/S3EOsBTnQEtxDrIU52BLcWpailPLUpxDLMU51FKcwyzFOdxSnCMsxTnSUpyjLMWpbSlOHUtx6lqKU89SnKMtxTnGUpz6luI0sBTnWEtxjrMU53hLcRpaitPIUpwTLMVpbClOE0txmlqK08xSnOaW4rSwFKelpTitLMVpbSlOG0tx2lqK085SnPaW4nSwFKejpTidLMXpbClOF0txulqK080wDvrfaO7uixP332ieXdlOTicCOTXPN8vJCz3jcurh18MtefLp+SXlv9afv/tGUYlrbeOf+//a+w4wuWprf83ueL1jrz3rdcMFe1zAxoVeTPfiDrbpJZSYxV6MwQ17DQYbs7hgm2YIpBfSSYGUF1JfkpeQ5CV5JC8JyT+VPAJJXnpCXiC9/CV8z+7Z35yrke7V3h3w6PvON3eujn7nSDo60pV0db9o5124mfF+qQLvTR/r5v1yJd6Pr+vi/a+KvOvvJd7HK/Ped0bE+xUH3jk/2s/7VRfep597gfe/nXiff4Xh/Zob7/2/07xfd+X9l8p9w5n3X7knHHmN7X+zB+8SG2/uI0N64F5v4/1oT94NP7Lwfgx4nz4ynvfjyHvUg7G8nyjjffPUON5/L+c97KMxvJ8UeD92tsz7KYn3nLki76dF3nkflnj/Q+b9SKfA+5kY3ts6y3k/G8d728VlvI/F8l5yOfJ+Lp73iinA+3kL79Sje/J+gfMut9p6D49bgt8KIXdhnbucb3m0qf/X7N6mvt3s3qa+0+zepr7b7N6mvtfs3qa+3+zepn7Q7N6mnmx2b1M/bHZvU//T7N6mnmp2b1M/anZvU083u7epZ5rd29SPm93b1E+a3cceP/UYe/yvx9jjZx5jj597jD1+4TH2+KXH2ONXHmOPX3uMPX7jMfb4rcfY43ceY49nPcYev/cYe/xfczbj7os8fPcfPHz3cx6++3kP3/1HD9/9Jw/f/WcP3/0XD9/9Vw/f/TcP3/13D9/9Dw/f/U8P3/0vD9+tPMZDOY/xUJ3HeKh+iLvvzg9x9939hrj77oYh7r67fyVe5rsbK/J2++5CZd4u3z3AgZd890AX3sh3Nznx7vfdg4Y4+ljNO9iVV/vuojPvv3LNjrzGdw8Zko3vvtjDd7cMcffdQz2eZYd5PMsO93iWHeHxLDvS41n2II9n2VEez7KjPZ5lx3g8y471eJY92ONZdpzHs+x4D99d8vDdEzx890QP3z3Jw3dP9vDdh3j47kM9fPcUD9891cN3H+bhu6d5+O7pHr57hofvnunhuw/38N1HePjuIzPy3Zd4+O6jPHz30R6++xgP332sh+8+zsN3H+/hu0/w8N2zPHz3iR6++yQP332yh+8+xcN3n+rhu0/z8N2ne/ju2R6+u9XDd5/h4bvnePjuuR6+e56H757v4bsXePjuhR6+e5GH7z7Tw3ef5eG7F3v47iUevnuph+8+OyPf/TIP332Oh+8+18N3n+fhu8/38N0XePjuCz1890UevvtiD999iYfvfpmH777Uw3df5uG7L/fw3Vd4+O6Xe/juZR6++0oP393m4buv8vDdyz189woP393u4buv9vDdKz189zUevnuVh+++1sN3X+fhu1d7+O41Hr57bUa++1IP373Ow3ev9/Dd13v47g0evnujh+/u8PDdmzx89w0evvtGD9+92cN33+Thu2/28N1bPHz3Vg/ffYuH797m4btv9fDdnR6++zYP373dw3fv8PDdOz189y4P3327h+/e7eG793j47r0evvsOD999p4fvvsvDd9+dke++zMN33+Phu/d5+O57PXz3fR6++xUevvt+D9/9gIfvfqWH736Vh+9+tYfvfo2H736th+9+nYfvfr2H736Dh+9+o4fvfpOH737Qw3e/2cN3v8XDd7/Vw3e/zcN3v93Dd7/Dw3e/08N3P+Thu9/l4bvf7eG73+Phu9/r4bsfzsh3X+7hux/x8N3v8/Dd7/fw3R/w8N0f9PDd/+bhuz/k4bsf9fDdH/bw3f/p4bu/6OG7v+Thu7/s4bv/y8N3P+7hu7/i4bu/6uG7/9vDd3/Nw3d/3cN3f8PDdz/h4bu/6eG7v+Xhu/+fh+/+tofv/o6H7/6uh+/+nofv/r6H7/5BRr77Cg/f/aSH7/6hh+/+Hw/f/ZSH7/6Rh+9+2sN3P+Phu3/s4bt/4uG7f+rhu//Xw3f/zMN3/9zDd//Cw3f/0sN3/8rDd//aw3f/xsN3/9bDd//Ow3c/6+G7f+/hu//Pw3f/wcN3P+fhu5/38N1/9PDdf/Lw3X/28N1/8fDdf83Id7/cw3f/zcN3/93Dd//Dw3f/08N3/8vDd6sWd9+da3H33XUt7r67vsXdd+db3H13vxZ3393Q4u67+7e4++7GFnffXWhx990DWtx998AWd9/d1OLuuwe1uPvuwS3uvrtYiZf57uaKvN2+e0hl3i7f3eLAS757qAtv5LuHOfHu993DWxx9rOYd4cqrffdIZ95/5Q5y5DW+e1TC9/RL8Fsh5JZ5+O7RLe6+e0yLu+8e2+Luuw9ucffd41rcffd4D99d8vDdEzx890QP3z3Jw3dP9vDdh3j47kM9fPcUD9891cN3H+bhu6d5+O7pHr57hofvnunhuw/38N1HePjuIz1891EevvtoD999jIfvPtbDdx/n4buP9/DdJ3j47lkZ+e4rPXz3iR6++yQP332yh+8+xcN3n+rhu0/z8N2ne/ju2R6+u9XDd5/h4bvnePjuuR6+e56H757v4bsXePjuhR6+e5GH7z7Tw3ef5eG7F3v47iUevnuph+8+28N3n+Phu8/18N3nefju8z189wUevvtCD999kYfvvjgj393m4bsv8fDdL/Pw3Zd6+O7LPHz35R6++woP3/1yD9+9zMN3X+nhu9s8fPdVHr57uYfvXuHhu9s9fPfVHr57pYfvvsbDd6/y8N3Xevju6zx892oP373Gw3ev9fDd6zx893oP3329h+/e4OG7N3r47g4P373Jw3ffkJHvvsrDd9/o4bs3e/jumzx8980evnuLh+/e6uG7b/Hw3ds8fPetHr6708N33+bhu7d7+O4dHr57p4fv3uXhu2/38N27PXz3Hg/fvdfDd9/h4bvv9PDdd3n47rs9fPc9Hr57n4fvvtfDd9/n4btf4eG77/fw3Q94+O5XZuS7l3v47ld5+O5Xe/ju13j47td6+O7Xefju13v47jd4+O43evjuN3n47gc9fPebPXz3Wzx891s9fPfbPHz32z189zs8fPc7PXz3Qx6++10evvvdHr77PR6++70evvthD9/9iIfvfp+H736/h+/+gIfv/qCH7/43D9/9IQ/f/WhC352LfkuO7CvqnPX/HU+IZ5dXyk9dzl2n9ozOeL/a4zz1X+ezqY+VGZ2jf01GclZlJOfajORcl5Gc1RnJWZORnLUZyVmXkZz1Gcm5PiM5GzKSszEjOR0ZydmUkZwbMpJzY0ZyNmck56aM5NyckZwtGcnZmpGcWzKSsy0jObdmJKczIzm3ZSRne0ZydmQkZ2dGcnZlJOf2jOTszkjOnozk7M1Izh0ZybkzIzl3ZSTn7ozk3JORnH0Zybk3Izn3ZSTnFRnJuT8jOQ9kJOeVGcl5VUZyXp2RnNdkJOe1Gcl5XUZyXp+RnDdkJOeNGcl5U0ZyHsxIzpszkvOWjOS8NSM5b8tIztszkvOOjOS8MyM5D2Uk510ZyXl3RnLek5Gc92Yk5+GM5DySkZz3ZSTn/RnJ+UBGcj6YkZx/y0jOhzKS82hGcj6ckZyPZCTnoxnJ+VhGcj6ekZxPZCTn3zOS88mM5HwqIzmfzkjOf2Qk5zMZyflsRnIey0jO5zKS8/mM5HwhIzn/mZGcL2Yk50sZyflyRnL+KyM5j2ck5ysZyflqRnL+OyM5X8tIztczkvONjOQ8kZGcb2Yk51sZyfl/Gcn5dkZyvpORnO9mJOd7Gcn5fkZyfpCRnCczkvPDjOT8T0ZynspIzo8ykvN0RnKeyUjOjzOS85OM5Pw0Izn/m5Gcn2Uk5+cZyflFRnJ+mZGcX2Uk59cZyflNRnJ+m5Gc32Uk59mM5Pw+Izn/l5GcP2Qk57mM5DyfkZw/ZiTnTxnJ+XNGcv6SkZy/ZiTnbxnJ+XtGcv6RkZx/ZiTnXxnJUfXZyMllJKcuIzn1GcnJZySnX0ZyGjKS0z8jOY0ZySlkJGdARnIGZiSnKSM5gzKSMzgjOcWM5DRnJGdIRnJaMpIzNCM5wzKSMzwjOSMykjMyIzkHZSRnVEZyRmckZ0xGcsZmJOfgjOSMy0jO+IzklDKSMyEjORMzkjMpIzmTM5JzSEZyDs1IzpSM5EzNSM5hGcmZlpGc6RnJmZGRnJkZyTk8IzlHZCTnyIzkHJWRnKMzknNMRnKOzUjOcRnJOT4jOSdkJGdWRnJOzEjOSRnJOTkjOadkJOfUjOSclpGc0zOSMzsjOa0ZyTkjIzlzMpIzNyM58zKSMz8jOQsykrMwIzmLMpJzZkZyzspIzuKM5CzJSM7SjOScnZGcczKSc25Gcs7LSM75Gcm5ICM5F2Yk56KM5FyckZxLMpLzsozkXJqRnMsyknN5RnKuyEjOyzOSsywjOVdmJKctIzlXZSRneUZyVmQkpz0jOVdnJGdlRnKuyUjOqozkXJuRnOsykrM6IzlrMpKzNiM56zKSsz4jOddnJGdDRnI2ZiSnIyM5mzKSc0NGcm7MSM7mjOTclJGcmzOSsyUjOVszknNLRnK2ZSTn1ozkdGYk57aM5GzPSM6OjOTszEjOrozk3J6RnN0ZydmTkZy9Gcm5IyM5d2Yk566M5NydkZx7MpKzLyM592Yk576M5LwiIzn3ZyTngYzkvDIjOa/KSM6rM5LzmozkvDYjOa/LSM7rM5LzhozkvDEjOW/KSM6DGcl5c0Zy3pKRnLcyOUeuWLrh6aPefNjHzpn3kdtuu+SKqcf8fOFNH19/35ynn7//2ZRy3pZRft6ekZx3ZCTnnQnl1IGcSnU7Wbnr9FAgnSrJeZeHbX68JZtyyit3/d+dUd31U+46vScjnRqUu07vzUin/spdp4cz0qlRuev0SEY6FZS7Tu/LSKcByl2n92ek00DlrtMHMtKpSbnr9MGMdBqk3HX6t4x0GqzcdfpQRjoVlbtOj2akU7Ny1+nDGek0RLnr9JGMdGpR7jp9NCOdhip3nT6WkU7DlLtOH89Ip+HKXadPZKTTCOWu079npNNI5a7TJzPS6SDlrtOnMtJplHLX6dMZ6TRauev0HxnpNEa56/SZjHQaq9x1+mxGOh2s3HV6LCOdxil3nT6XkU7jlbtOn89Ip5Jy1+kLGek0Qbnr9J8Z6TRRuev0xYx0mqTcdfqSh071EZm96ia0a7pa00pN12hapelaTddpWq1pjaa1mtZpWq/pek0bNG3U1KFpk6YbNN2oabOmmzTdrGmLpq2abtG0TdOtmjo13aZpu6YdmnZq2qXpdk27Ne3RtFfTHZru1HSXprs13aNpn6Z7Nd2n6RWa7tf0gKZXanqVpldreo2m12p6nabXa3qDpjdqepOmBzW9WdNbNL1V09s0vV3TOzS9U9NDmt6l6d2a3qPpvZoe1vSIpvdper+mD2j6oKZ/0/QhTY9q+rCmj2j6qKaPafq4pk9o+ndNn9T0KU2f1vQfmj6j6bOaHtP0OU2f1/QFTf+p6YuavqTpy5r+S9Pjmr6i6aua/lvT1zR9XdM3ND2h6ZuavqXp/2n6tqbvaPqupu9p+r6mH2h6UtMPNf2Ppqc0/UjT05qe0fRjTT/R9FNN/6vpZ5p+rukXmn6p6Veafq3pN5p+q+l3moxd/l7T/2n6g6bnND2v6Y+a/qTpz5r+oumvmv6m6e+a/qHpn5r+pclMQOc01Wmq15TX1E9Tg6b+mho1FTQN0DRQU5OmQZoGaypqatY0RFOLpqGahmkarmmEppGaDtI0StNoTWM0jdV0sKZxmsZrKmmaoGmipkmaJms6RNOhmqZomqrpME3TNE3XNEPTTE2HazpC05GajtJ0tKZjNB2r6ThNx2s6QdMsTSdqOknTyZpO0XSqptM0na5ptqZWTWdomqNprqZ5muZrWqBpoaZFms7UdJamxZqWaFqq6WxN52g6V9N5ms7XdIGmCzVdpOliTZdoepmmSzVdpulyTVdoermmZZqu1NSm6SpNyzWt0NSu6WpNKzVdo2mVpms1XadptaY1mtZqWqdpvabrNW3QtFFTh6ZNmm7QdKOmzZpu0nSzpi2atmq6RdM2Tbdq6tR0m6btmnZo2qlpl6bbNe3WtEfTXk13aLpT012a7tZ0j6Z9mu7VdJ+mV2i6X9MDml6p6VWaXq3pNZpeq+l1ml6v6Q2a3qjpTZoe1PRmTW/R9FZNb9P0dk3v0PROTQ9pepemd2t6j6b3anpY0yOa3qfp/Zo+oOmDmv5N04c0Parpw5o+oumjmj6m6eOaPqHp3zV9UtOnNH1a039o+oymz2p6TNPnNH1e0xc0/aemL2r6kqYva/ovTY9r+oqmr2r6b01f0/R1Td/Q9ISmb2r6lqb/p+nbmr6j6buavqfp+5p+oOlJTT/U9D+antL0I01Pa3pG0481/UTTTzX9r6afafq5pl9o+qWmX2n6tabfaPqtpt9pelbT7zX9n6Y/aHpO0/Oa/qjpT5r+rOkvmv6q6W+a/q7pH5r+qelfmkwnmNNUp6leU15TP00NmvpratRU0DRA00BNTZoGaRqsqaipWdMQTS2ahmoapmm4phGaRmo6SNMoTaM1jdE0VtPBmsZpGm/OqNc0QdNETZM0TdZ0iKZDNU3RNFXTYZqmaZquaYammZoO13SEpiM1HaXpaE3HaDpW03Gajtd0gqZZmk7UdJKmkzWdoulUTadpOl3TbE2tms7QNEfTXE3zNM3XtEDTQk2LNJ2p6SxNizUt0bRU09maztF0rqbzNJ2v6QJNF2q6SNPFmi7R9DJNl2q6TNPlmq7Q9HJNyzRdqalN01Walmtaoald09WaVmq6RtMqTddquk7Tak1rNK3VtE7Tek3Xa9qgaaOmDk2bNN2g6UZNmzXdpOlmTVs0bdV0i6Ztmm7V1KnpNk3bNe3QtFPTLk23a9qtaY+mvZru0HSnprs03a3pHk37NN2r6T5Nr9B0v6YHNL1S06s0vVrTazS9VtPrNL1e0xs0vVHTmzQ9qOnNmt6i6a2a3qbp7Zreoemdmh7S9C5N79b0Hk3v1fSwpkc0vU/T+zV9QNMHNf2bpg9pelTThzWZ79Sbb8ib77ubb6+b76Kbb5ab74mbb32b73Cbb2Sb71ebb0ub7z6bbzKb7yWbbxmb7wybbwCb7/Oab+ea79qab86a78Gab7Wa76iab5ya74+ab4Oa73aab2qa712ab1Ga70Sabzia7yuabx+a7xKabwaa7/mZb+2Z7+CZb9SZ78eZb7uZ766Zb6KZ75WZb4mZ73yZb3CZ72OZb1eZ70qZbz6Z7zGZbyWZ7xiZbwyZ7/+Yb/OY7+aYb9qY782Yb8GY77SYb6iY75uYb4+Y74KYb3aY72mYb12Y71CYb0SYgaf5toL57oH5JoH5XoA5y9+cs2/OwDfn05uz48257ubMdXMeujmr3Jwjbs74Nudvm7OxzbnV5kxpc96zOYvZnJNszjA25wubs3/NubzmzFxznq05a9acA/vCGa2azNmm5txRcyaoOa/TnKVpzrk0Z1Ca8yHN2Y3mXEVz5qE5j9CcFWjO8TNn7Jnz78zZdObcOHOmmzlvzZyFZs4pM2eImfO9zNlb5lwsc2aVOU/KnPVkzmEyZySZ84vM2ULm3B9zJo85L8ecZWPOmTFnwJjzWczZKeZcE3PmiDkPxJzVYc7RMGdcmPMnzNkQ5twGc6aCOe/AnEVgzgkw7/Cb9+vNu+/mvXTzzrh5n9u8a23egzbvKJv3h827vea9W/NOrHkGMO+Smvc8zTuY5v1I8+6iea/QvPNn3scz78qZ99jMO2bm/S/zbpZ5b8q802TeNzLvApn3dMw7NOb9FvPuiXkvxLyzYd6nMO86mPcQzDsCZv++2Vtv9r2bPelmv7jZy232WZs90GZ/stk7bPb1mj23Zj+s2atq9pGaPZ5m/6XZG2n2LZo9hWa/n9mLZ/bJmT1sZn+Z2ftl9mWZPVNmP5PZa2T2AZk9Omb/jNnbYvadmD0hZr+G2Uth9jmYfQVmzd+sm5t1arMubNZhzbqnWWc063pmHc2sW5l1IrMuY9ZBzLqDmec38+pmHtvMG5t5WjMvauYhzbyfmWcz81pmHsnM25h5EjMvYeYBzHO3ec41z5XmOc40E/NMRiHqNl94ZjPr/2a93axvm/Vks35r1kvN+qRZDzTrb2a9y6wvmfUcs35i1ivM+oCZjzfz32a+2czvmvlUM39p5gvN/JyZDzPzT2a+x8yv0HzGBLX/+XiS2r9P4xBNh2qaommqpsM0TdM0XdMMTTM1Ha7pCE1HajpK09GajtF0rKbjNB2v6QRNszSdqOkkTSdrOkXTqZpO03S6ptmaWjWdoWmOprma5mmar2mBpoWaFmk6U9NZmhZrWqJpqaazNZ2j6VxN52k6X9MFmi7UdJGmizVdoullmi7VdJmmyzVdoenlmpZpulJTm6arNC3XtEKVhwXs+qHo996V//n4c7/q/3XO925L3H9Fvy9vfPBTZzwx8BEe97gl7uuWuCcscb+Nfn/3pZXTZ5x04R087m/R79OPfnXtxo2DvsTjzHNbXB5GWeJOjuLGN8z79nnTP/eDHvLq4uP+PR8ft6UhPu7kxvi4Jwv7f6Vy+aEl7hlL3E8scb+2xP3WEvcnS9xfLXH/sMT9yxLXf0B8XMESN9gS12yJG2aJG2GJG2eJK1niJlriJlviZljiDrfEHWOJO84Sd1IUd/A3z3tsfevfrzlGxYeScgoXpEh7TYq07SnSlpxvloflKdKuTpG2LUXaVSnSrkmRNk0drUiRdlmKtBtTpL0+RdoNKdJ2pEhbcr5ZHrakSJum7aex57Up0qYp51tSpC053ywPacoqTVsoOd8sD2nqaF2KtH3VjtLIfTH2oTUfqzKx56tTpC053ywPm1OkLTnfLA9p+qM0Oqfx7XX8T84vbe66gcn2C/jKWeMp5+Tac0YsW0k5hdpzhsqkjmrPGe5pa88Z7mlrzxkqk7ZQcr5ZHmrPGSqTdlR7zlBVbxu15wz3tLXnDMfQ288Zp9SeM2LZSsop1J4zVCZ1VHvOcE9be85wT1t7zlCZtIWS883yUHvOUJm0o9pzhqp626g9Z7inrT1nOIbefs6YHT1n/HbUlru++69ndvO41ijuyzc3tB3T9qe1sy04JeUUDrRnkANt7FRyvlkeamNUlYkfKznfLA9pnvXS9I9p2m9tbKyq3jbS1G+aeY805ZymftPYZJr6TTOuTjOvlUbnvuq7++pZr6/KueR8szy8GMfzJeeb5aE2V6Oq3ibTtKOS883y0FdzJptSpE1TVmn6lDS+/SX5PL7Y8o7TUkvcxZa4l1niLrPEXWGJa7fErbTErbbErbXErbfEbbDEbbHEbbPE3WaJ22GJu9MSd7cl7hWWuAcscV+O4qR3Nvc2xcctGRwfN6g5Pu6dLft/n1YX5K78wcGXiROXUSgpp3B+irRp/Eea/rCvnnXS+NqS883ykGZ+Os3Yoa/ym2bMkqYvXZkibV+NK2tjYZWJXZWcb5aHNOWcxl/1VX5vTJG2r9YZ0thkyflmeeirubc0fiONXaVJ21drBWn6hZLzzfLQV8/Q61OkTTNmSFO/N0g3S8opHGhzq2n2V6bpf9O0o8NTpC053ywPffV81Fd9d1/1CyXnm+XhqhRpb0qRtuR8szyk2R+dxl+laftp0h5offeVKdK+GJ8X+moveW0OSmVSRy/GOag0+T3Q5qCmpkibZmzWV2kPS5H2yhRp0+j8Qnh3tAYgnVn5SExcdLurkts2bmzf0LFs+bo169s6Vl21un3Zug1ty/XPDe0bNq5at3bZjRva1q9v3zAi4o+Opuxa9DPrcPXueucaWTr/9J1zGxHQK716IX1OJZW/P/8mTcL8qwZShKXnuhCuOR93ILseBPIT6j83rf4tFp2pbuYw/pJyCvVm+czkM1ryeiHvk6PrTR2rVq/quKn1BVOd02WpZ79gqBftt1MEzMH/OTH3BzC984zHvUw2zyXM+ui3H7vmIQ+/xDM8+i0w+fTr8s3k73/h+W8/eubRa4ZAehOobkw+x0XXK9tNg1/bocuvY9mqtRs72tYub9cXHe0b1ratPj7i6uOWfmHKln5hSkvPNbI0CdKLLR11MaFJ9WxRPI1pEWPZ9cEsjQnzGF4O4uYLciluQYweJixkcXmIW8Ti+kHcmSyuAeLOYnH9IW4xi2uEuCUsrgBxS1ncAIg7m8UNhLhzWFwTxJ3L4gZB3HksbjDEnc/iihB3AYsj70a2xVush23No/QtydI3twjyCYs88ZHRf1N+o6PryBMvaNdueL//WBS5j2YGzy2Oa8f/5+F/P/jfAP/7w/9G+F+A/wPg/0D43wT/B8H/wfC/CP8xv1SS/L5vyPViXA7u5WLSNqn4/r1JVfZi3FvmIY73r/0grh+La4C4BhbXH+L6s7hGiOM9UAHieF87AOIGsLiBEDeQxTVBXBOLGwRxg1jcYIgbzOKKEFdkcc0Q18ziyP4CjGcuTDueOS767e3xDJXbinbz+LJuY/uya/QghkY5fTx+WZBy/LLgpTJ+GcyusW/0Hb+kzFNXv5msZai6FhXv5ajfPCj6Xy/wclvqx3ikclXCvZyK9874ZKhYvoYepb4z/qnjbpo+4vh1Z9+w86kLHtk27G2H/ax40G83nXLDX55ch3mps+ju20Pw8knpmRak9Uw0fu5tz0T5XN2x3yfNiP6/VHxSwvZXl7L9iT7JNuKQfBLaqAnkhyr5K+6TCDuln56fskxzLSreh5BPmsgTqO5y6qfi23IeeA9maYZG16R7v2S6N+AIjwdphIc+qFHQOydgST6VdDb4Uxku8qE+3HZxNCrZopFTiq6l2Tul3OtakpMT5Eg+mttEX/vhKdFvb/thyfZJhwZVuR+LKz+asVuxauPydXqmfNna9huXrWnfuLFtZfvGgdG8ZR87+/tTOvv7q2UA+gqW3nUASmn6q+5Gba4vj65TTqOnLRuvaXTiKymnUE/p5yZL32V385Klr6P089nNknIKXbrjBGXJLf0gSr9Qkv3cxu+88/G7P/T5d3U89I5XDfn+oNcOnDHg1l27fjfmt2Nf9+yut1FaPsnpke8GSn+mJPu0j9Zfes0H/7pu4IId77/x+99bumnQ2LbHxu95x6VfuG/8L5bdTmnPktL+/K7X31p8/yveXJr+1ecbFuz79bI/LOo36/tf3Trqc9v//otnu9r5YintE5f+/YePFu+/efPdH98ya+rQtofv/87vf/nFx99X/MPTj1z/neMoLZ9oTeKjliZL30zpz06Wfgil55O6Lh0IBUp/bjL5XXV+XjL5XeV3frL0XW2Nn+dToovb3v6uH7be/dUjf/z3AXcsadu5+Zg7v3nxb24+6KFDfnrtI2Mf7iq7C6W0z3TMua9j5Jrjf9P4tbuPesuYg5967qFHf/bHm9pn/fpnP//IhD9Q2ouktBUCpb1YSHvQ0VNOXP+arw97curEH8z+zMOHPzDqucmnPPmxhW959q9f/jNLe0n061lfXeX1smTp85T+0mTpu/zbZexmyZ6mq1ujtJcnkz2G0l/hLptCP0r7cjltbsfEja8u3J1b8tj2mY82DXjsF60PnjHnq4/vvGN88eEHKe0yIe20UwrPvuOObbvUjx761T1/nPbJ2TOHjGsdcvi3Xv/tMWs3XDbqWUp7JQlSXnkeS+nbWHrQ3Roo/VUsvUef0JV+OUvvu93AhBUsvVL+/oXvMyspp9CV9mr/tF3tjPYweea7y96uSZa+P6VflSx9I6W/Nln6gZT+umTpm7omkJKlH0/p17D0HnZbovRrk8nvSr8umfyZlH59svRHUvrrk6U/itJvYOk98j+b0m9MJr+V0nckSz+P0m9Kln4+pb8hWfqllP7GZOmXUfrNydK3UfqbkqW/itLfnCz9ckq/JVn6FZR+a7L07ZT+lmTpr6b025KlX0npb02W/hpK35ks/SpKf1uy9NdR+u3J0q+m9DuSpV9D6XcmS7+W0u9Kln4dpb89Wfr1lH53svQbKP2eZOk3Uvq9ydJ3UPo7kqXfROnvTJb+Bkp/V7L0myn93cnS30Tp70mWfgul35cs/S2U/l6W3r3/zXWNm+9jd0vKJeS6Jo6/Eu15lub6PPJyDk7aEwbHTrggdnAO8JTqOd+qAL8AunjKy+UAj+Rh/nAivZ+gS1GIwzLuJ8jpJ8gpCnFbA2LtDoh1S0CsXQGxQuZxR0CszoBYOwNibQuItSYgVsiyD9mG9lQp1uaAWCFtImTZh7SvLQGxOgNihbSJmwNi7QqIdWdArGrtH2nMihsuCF/6JTl4j+QUACvpuEfKV16QZ+Ovt/A3OOKbbci0OSnalD+3/apNKxevK3trNA//F8WoOBb4lltUQ9wcEN4fC/fqBV4eTPbojcMoe/PbO5Zfc0HbypXtK3Qmy95vRaSFMfdxQMp5aDDeAJqWlFOoczFKjl8AXZIapWQ0UmMzpUpveUSlunhd24o5bes3blrdHvfGBkrJASq/J9VpjmmmLHwL4f8SIZ0SsE081Vwj3C8pp1DAtwJ4kN4KwK0n/K0AXpsYpH1opLN55HxiRDcu8qE+vD7wDQa+Z24gk4312iDIIf2lPcD9AatBSEdpKsmrj0nHr22Pzi6tjfJhQlGQEfcWCsdI6RWGVbtXoPz1TyZvaA7Sc3kcE9/qaRTiCIvaYUMMFt+/yPm/GP0Wgc+Ei0BGo6Avv0flY8rsMdAd305TKkw5cjzSi9/j+AWVyi5ztnrj+UM7SehjW1zKnesjvamFe4HJ7zXEYFHaPPB/K/otqnK/j3ZSEPTl97idfA10x7cWlUpdjq2udkL4BZXKLnO2euP5QzspJJM326XcuT5S/8zLlveBDTFYlDYP/E9Hv0XgMwHtZICgL7/H7eTJ6LoxRt+Scgo3SuMWtDMct5SUUxjrameEX1Cp6j1nK0epvUljL0pbFOLwUWugIGegIKcoxO0OiLUrINbNAbG2BsTaU6VYnQGxdgbE2hYQa01ArO0BsULafTWWl60f8sUyoTMg1t6AWLcGxAppqyHzuDkgVrW27XsCYq0PiLUv+sVxHuGb0KjK257vswnHIz35PY5fAF2SjnWkcpHGjJS/pmTyhuQgPZfHMfG0i0FCHGHRe7INMViUNg/806ICLQKfCTimHiToy+/xMfUhEe5gQV+cX/C1R54+7kQQijchRH1xPNKT3+P4BZXK/nM2+5DKhfI3KJm8Zpf65fpIJ6XwsjVEyyENMViUNg/8J4E98pN/0B4HC/rye9wej8v11B1PHDIhZTnOc7UTwi+oVHaZs9Ubzx/ayeBk8ua6lDvXRzo1h5etITo1pyEGi9LmgX8B2Ak/EQrtpCjoy+9xOzkD7ARPojIhXTnmfu9qJ4RfUKnsMmerN8l/U/6KieTlnnUpd66PdIISL1tD9G55QwwWpc0D/wVgJ/xEsKtARrOgL7/H7eRssBM8ocyEdOXYZYoV7YTwCypV+87Z6k3yq5S/5mTyWl3KnetDZT1EiCMsWlFtiMGitHngbwM7GcJ0Qn8yRNCX3+N2cnmEO1jQF+fPXf1UUUhPfJLNGSopp3CBVKce6a/HOiIMrlvCcxKPcm0PhF9Q5faSpD20gLy4+qa8DxV0KQpxWEdDBTlDBTlFIe7WgFhbA2KtCYh1c0Cs7QGxNgfE6gyItSMgVkib2BIQ68aAWHsCYUn+M41euwNi7Q2IFbJt3xMQK6Qv7AyItTMgVsh63BcQK6RNdAbECtW2TQiZx5A2sSsgVrX6iZB6HQhjplqf1ndlH7I93hIQK2Qe76pSvUKOJ0Lmkfpaelbkz5a56LdRlbc9j+fW03KAR3ryexy/ALp4ysvZyoXnD5+Thwm6FIU4fE4eJsgZJsgpCnG3BsTaGhBrTUCskHnsDIi1MyDW3oBYIcv+noBYtXr0w9oXECukTWwJiLUrIFZI/7UnIFbIsg9pqyHLvlr9V0hbDWlfOwJihazHkPYVsg2FtK/dAbE2B8QKmcdqHcuFzGPI8US11mO1juXuCohVreOczoBYtfHES6MNhfQTIfUKZV/mujkQlgl3BMQKWfYhxwDU1+K+L8I3IeUc2IQc4JGe/B7HL6jyugw1BybtIaP8DUsmr+RSD1wfKuvhQhxh0RkfDTFYlDYP/BdHmSoCnwlXgYzhgr78Ht87dV70Z7Cgb9q1CJ4ey4inQ3tMWF/1rvZI+AWVyv5zNvuQykWyD0pbFOKw/F3r1YY1WIX3rc1CfpqEdFjPXD+Pcnd+V4B/ZTyFXeVs5S+VC+VvRDJ5zegruDyOSfpQWY8U4giLvtHYEINFafPAvxH8zkimE/qdkYK+/B73O2vB70htIqndS/70pSanSUiH7Suh/fVzbV+EX1Cp2nPOZu9SuUj2TmmLQhyWv6udvhixyP5GWOTY/Iokh6cfUZOTSk6TkA7bLa9X93aU+5FruyX8gkrlJ3I2u5XKhfJ3UCJ5uaewL+PyOCbpQ2U9SogjrNHR/4YYLEqbB/63Qr84iumE/eIoQV9+j/eLb6zrqTsvW7STZOWoiq52QvgFlcYuu+1EqjfJv1H+RiWTN9il3Lk+VNajhTjCGhP9b4jBorR54H8/2MlophO+8zJa0Jff43bynuhPY4y+JeUUnpbK2iP9mxtVedl5pD+M0o9Jlv5jlH5ssvQfofQHJ0t/G6Uflyz9JZR+fLL0VzQCv2f6qZR+QrL0x1D6icnS/5zST0qWfiGln5ws/ccp/SHJ0t9H6Q9Nln4OpZ+SLP3zlH5qsvRdn3U9LFn6Zyn9dJbeZ46N0s9Mlr6e9J3Bbwo6ET75+mmMPxfzS1gYR7IKgJW0X5R05/rhuHIGk8fzGIc1wxOrUYhLUifTVXy+OH6TRRfU0wQ8ayVpnk3YEhDrhoBYuwNhmeuDAmGZcH1AvUYFxBodEGtMQKy6QFgmdATUa2xArIOrFGtcQKzxAbFKAbEmBMSaGBBrUiAsE+4OqNfkQFgm3B5Qr0MCYh0aECtU32GupwTEmhoQ67BAWCZcVaVYc6PflPMFi1LOF5yUcr5gScr5gvNTzhcsSDlfMDfl8/7iJoE/F/1Kz/Ie4/alOcBTSn7+IfwC6OIpr+v5ZwLIw/zhus9EQZeiEIc2PlGQM1GQUxTidgbEujMg1uaAWNsDYnUGxNoSEGtNQKwdAbG2BsTaU6VYIW11W0CsUGUv9YvVYqudAbH2BsSq1vZ4R0CskG2oWsv+1oBYIf1EyL42pI8OWfYhy6ta7Wt7QKyQ9Riy7A8EP3FPICxzPToQlgkdAfUaU4VYJmwMqNfYQFgmhCp7E26sQr3M9biAWHWBsEwIZRMm3BAIy1wfHAjLhJD1GFKvULZazb6wGAjLhJD+K2Q9htSrGsvLhJC2Oj4Qlgkh+45Q/suEfQGxQo6/bgmI1RkQK+SYfHtArJBzjzS+p3nscSwuF/2mnMMfnAM80pPf4/gF0MVTnnUOn+ePykXaL+ghb5BLPXB9qKwnCXGERWvCDTFYlDYP/J+JCrYIfCbg3t5Jgr78HpWP2dv77/U9dedli3aSsBydv3VJ+AWVyi5ztnrj+aNykOqN0haFuDp27VPeUt3tDoi1KyDWzQGxtgbE2lOlWJ0BsXYGxNoWEGtNQKzbA2KFbEOdAbHuDIi1OSDW3oBYIdt2SPsK2YZC+tUDoex3BMQK6aPJF9L7l3w8kwc5vmNvnp74Ur6vcl7K91UuSvm+ytk0LjqE3cxFv9K7JB5jtNtygKeUPCYk/ALo4imva0w4BeRh/nBMOFXQpSjE4f6fqYKcqYKcohC3MyDWnQGxNgfE2h4QqzMg1paAWGsCYt0eEGt3QKzOgFjVaqt7A2JtDYgV0r5C+pxdAbEOhLLfERArZB73VClWyLa9LSBWqLI316MCYZkQ0lardQwQEqvWb9f67RdL31Hrt2v9dq3ffmmWfbXa6h0BsUKWV0ifE7Lsbw2IFbINhey3q9VHV+t4ImQeQ459Q9ZjyLI/EPzEPYGwcqp8j0IarIkBsULNk5vrSYGwTNgYUK9iICwTOgJi3RgQ64ZAWOZ6ckCsl3rZm+vRAbHGBMQaGwjLhJDldWhArFC2akLINlStdl+teXyp+8KQeplQ6zte/H2HCZsCYZnrkHseQpWXuR4fEOvggFih+loTQvaPocrLhGrsO0zYFxAr5DPfLQGxOgNihZwH2B4QK+T+nD3RL+314nvDctFvoypvL0ZOSTmFGTnAIz35PY5fAF085eVs5cLzR+VCeT9M0KUoxKE/PEyQc5ggpyjEdQbE2hMQ6+aAWLsCYt0ZEGtrQKzdVarXloBYawJi3RMQa31ArH0BsUKW186AWCHb496AWCHtPqQvDFmPtwTECulzQtrEjoBYIct+c5XqdXtArJA20RkQK2S/HbIe9wbECum/QtpXyPZYrT46JFZI+9oWEAu/Mc2fb3LRbyOkyymvZ6fJOcAjPfk9jl8AXTzl5WzlIj3DUt6nC7oUhThcA5a+kTJdkFMU4nYHxNoVEOvmgFhbA2LtqVKszoBYOwNibQuItSYg1u0BsTYHxArZHvcGxOoMiBWyvLYHxAppXyHbUEi/GtImQvrVam3bIdtjZ0CsOwNihWyPB4J97QiIFXIMgOcg8PEynoPgO2bn6YmvSUiXi34bQb+c8hpD35cDPNKT3+P4BVWe5yRjdqn8pXLx+d6guQ75/bydAbHuDIi1OSDW9oBYnQGxQn7rcU1ArFDfETMh1HcjTegMiFWttro3INbWgFgh7Sukz9kVEOtAKPsdAbFC5nFPlWKFbNvbAmKFKntzHeq7tyaEtNVqHQOExKrWfjtk2YccA4T00Z0BsarVVmv9dt/1abUxuR9WbUzed/ZVGxf2nX1V47jQhJDlVa22ekdArJDlFdLnhCz7WwNihWxDIfuOavXR1dqnhcxjyLFvyHoMWfYHgp+4JxBWTpXvUUqj18aAek0MiFUMiBVyfShkeY0PhGXCjQGxbgiEZa4nB8QKZRMmdATEClX2Idt26PYYqg2Z60mBsEwI2R4PBPsaHRBrTECssYGwTAhZXocGxArlC00I6aOr1e6rNY8v9b42pF4m1MYmL/6+w4RNgbBCjidMCFVe5jrUmNxcHxwQK1Rfa0LI/jHkM0w19h0m7AuIFXJO4ZaAWJ0BsULOM20PiBVyfyGeg8L3tuai30ZV3l6MnJJyCk05wCM9+T2OXwBdPOXlbOUi7ZOm/M1MJm9gDtJzeRyT9KGyPlyII6wjov8NMViUNg/8Tzfs/y0Cnwn4reDDBX35PSof863gJxt66s7LFu0kYTke7GonhF9QqewyZ6s3qf1I9UZpi0IczoG4lrdUd7sDYu0KiHVzQKytAbH2VClWZ0CsnQGxtgXEWhMQ6/aAWCHbUGdArDsDYm0OiLU3IFbIth3SvkLqFbIeQ+oV0k+EtImQ9bgjIFZIf4/v2/GxEb5vZxs/SnJ4euJrEtLlot9GVT5G8Rgv7coBHunJ73H8girPc5LxmVT+UrlQ3o8QdCkKcTh3c4Qg5whBTlGI2xkQ686AWJsDYm0PiNUZEGtLQKw1AbFuD4i1OyBWZ0CsarXVvQGxtgbECmlfIfUKWY8h9QrpV0PaRMh63BEQK2TZ76lSrJB+YltArFBlb65HBcIyIaStVut4IiRWbQxQGwP0pl+tjQFqY4DaGKA2BqiEFbK8qtVW7wiIFbK8qtVP3BoQK2Qbqta+o1rHvtVqXyHH0SHrMWTZHwh+4p5AWDlVvo8hDdbEgFih5u/N9aRAWCZsDKhXMRCWCR0BsW6sQr1C12PI8rohEFZomwhVj+Z6dECsMQGxxgbCMiFkeR0aEGtyICwTqtVWa+2x7/JYjfZlQq0fqtk9xm0KhGWuQ+4RCWlf4wNiHRwQK1S/bULIvjZUeZlQje3RhH0BsUI+i94SEKszIFbI+YntAbFC7mfC93vqWFwu+qV9gUV238gpKaeQzwEe6cnvcfwC6OIpr2tfYBHkYf7omvJ+kKBLEeJMwPdkDhLkHCTIyQpLqi9DJeUULsTyIAyOzfcfeNTNQa62QPgFVV43SWxhFMiLK1fK+2hBl6IQh2U8WpAzWpBTFOJ2BsS6rUr12hUIy1w3BsIKncc1AbF2BMTaExBrW0CskOW1NyDW3QGxbg+ItTUgVsiy7wyItSUgVsg83hMQa31ArH3RL/VffOwTqO8elLTvTjhutPbdPH9ULpS/0cnkNbnUA9eHynqMEEdYNLfcEINFafPAf3PUuRWBzwQcM44R9OX3qHzMe9qbItzBgr7jAFcq91ECblFIT3yNQroSXTy38TvvfPzuD33+XR0PveNVQ74/6LUDZwy4ddeu34357djXPbvr7Snr82JKPyZZ+qGUfmyy9C2Ufnyy9HMp/cRk6Vsp/SR2s+SUVA2htJMTyc49K71LVuecXjVS+iOSpT+e0h+ZLP0JlP4olt4j/09R+qPZ3VL0O/nbn+j/p/fsy//bd59dd+Pz0+7/rwV3f/q9p7ziqzNP6zz/x6/67RJKe0wi2WowpT9WkF0hnExpj5PSnvbR+kuv+eBf1w1csOP9N37/e0s3DRrb9tj4Pe+49Av3jf/Fst2U9ngp7ROX/v2Hjxbvv3nz3R/fMmvq0LaH7//O73/5xcffV/zD049c/53jjW/aB77phCgp5Z+uDc2K/vdjccsZD6XNA/+1g7vT3R/Jc5n7qAddSsopjHLtM+leqLmPepCH+cPn3bygSxHiTMDxT16QkxfkSFj7AmKtCYh1e0CsrQGxdgbE2hIQqzMgVsg8bguIVa32tTkg1u6AWHsDYnUGxApZXtsDYoW0r5BtaFdArJA2EdKv4hoIj8NxQD9236NfrnMdBxB+Qcn9ckk5ha5xQD+QF1cuAzW1RNebOlatXtVx0+J1bSvmtK3fuGl1O46McDTGS4Wj8ns51TP3PK4e7iHfmfB/iZBOCdgmnmpuINwvKacwhaxiihBJcVMBm8fFfUEbQ72gP+ncX9MTI7pxkQ/14fUxFeIKLO4wJhvrtZ8gh/SvE/gLgNVPSEdpKsk7kFuiVE+UtijEYVt0Hfkn8RA06xZ5iLntV21auXjdSgUhD/8Xxah4EPAtiVEtJ+DmgPA+Ll7WK7sLsj0EupiMUuWdDMdaDnJqncxLqZMhvAKLk0qCMGmKg+epEJMOGzXeqxP4+wFWPyEdOmMpPcfg6VC3RlWe1xJd3Pb2d/2w9e6vHvnjvw+4Y0nbzs3H3PnNi39z80EPHfLTax8Z+3CLkfWnxvhyQYdF5dSvQv7ywH8Em/r5WyTPWOTIKD6yyDM2rb7uvPaODavab2jXvm2jglDJjC6A/xcK6aTQpMqrGh1Dwobq7BgIv6BkUykpp9DlGKRROc9fMseABoGjqtCO4UL4n2T0iT12STkF79EnjiIOA7l0jUFyMKSz7+iT1weOPnlDxdEnr9e8IAcdHudHhyc5T3R4cfJqXfT+UHsOZKH2HCjo39vPgZiunypvudjdE++hkSIpW6wawtKhjrU+e3+o9dks1PpsQf/e7rMlT4Jeojcf8blsXDM2oUQXz3TMua9j5Jrjf9P4tbuPesuYg5967qFHf/bHm9pn/fpnP//IhOdSeo2LUnq7C0261siI6GGMtwNsx9Qzxa3DU9o88C8odKebF12buEOi+MijXNS2etWKto72eWuv39S+qX3F0nUd7Rtb166Yd0P72g7vR7Oz4P9iIZ0UBjC84Qy/HjJpAs5hRW2wawMY8mABEf9ZUYRpyN+LbkpGR/o0QXqKN4GMYiToXlJOwbkrIvwC6JK0KxoJ8jB/yboibs5YKhyV3+vrrijhlk3vrqgAcbwr4rWJQeqKSGffrojXB3ZF/DUQ7Ip4vY4U5JD+dQL/QYA1UkiHXVGcvHohHQ4lcnCfz2UNF2TjXNZy5h2eHBFfDsNVfDlwfVDPXnwF6GJXb9JXrwD5eRNuKVzKRYBKPJyXh4uYZiqGT6q9vJAOA5VYHnTeyjrhNdDp83wNAH0ka+f3cJDE0xOfJKd/Sjn9BTlkyQNZujaIa7LEDWKYAyCumaVbDnFDWNxFENfCMPtD3FAL5jAB09TdmAHdeIYmMT7J0nEVYgLTh6fl//sBrwnt0W8eePcxu7oN7Iq3YrQr35cfefqDVLyc/inl9BfkYG9lAtrOKCGv+IKhCVjP0mZ/ihsn5IvixlswSwKmqZ+WAT35sP5NSLcZXF3k6vEJvwC6JPX4k0Ee5g9fHDkkmbwLc5Cey+OYpA+OyrBsDdHIpyEGi9Lmgf8NUXsrAp8J+OLIFEFffo+/OPLqQk/dednmYn4JF+9h++J5p/ohORNYuuVMn7cUeuaF+6l6Ve7X6IEYfdVYtir4dvBVPD3WndROkuZ/kpDHwaq8bBrYdZx9T7bIabDkp7fqswHkcD/L6/MDUJ+HsDj00eaaXsrJIz+rzw9BfUptUSpn7Jd8y3mAIKe3yxn7lykB5XAsPrlj6DDAwnKmeqJy5k+b+AQ3jcXhUko9pOH8HEPCJ4xKNvj5gpy3OBskWXng/+Wg7nRfTGiDUyCO9xW8X+R68HLg/HjAHenZEMMfl6//Zk+dT43oiUnpeVnxukD/S/zfYJjPjJD15PmawO7hZKRkD4cJ+ZLKdJqqLJuX85IY2Q3Kbot54P+uUKbYL/D0UjsaDLpMraA7tm+eHmdceLq0fkTSuVKbfNqzTU6MrtF2v8na5E+gTdpshOuMzxG+5dxfkNPb5YzPCNMCyuFY2C/MACwsZ6onKmf+Me8ZkI5/IBA/+l0PaTg/x5DwXfuF5wty3uJskGTlgf9jzAb/bHkuttngNIjjZYr9QiV/OBH4Se8GZe9v88D/L0u/ILVX7muxXyD+ugHdmNgvTBfyNYHdw37B9qH3SmWKH16fIGDxcsZ+QSpTnv8JkH/iL7D82/oFSi/NR6yAOD4fcQjE8ZfscczKX6CfAnF8PgLnRviL7+jvSiyO2wjORwy05KeJYeB8H5+3wwMbmlncaIjj2z3GQByftxsHcUNZ3HiIG8biSiyvNG+Hi6Pjovsp1+3ErSu2edFczK9Sbv0B31qVAzkjA8rhWGeCnIMCysHDPbmc0YKclAdOOK+zEn5BlbfdJPNk0gEi0sEzfisjeBQKLxWOyu/xksY428qICWnWWQlvHIuTSgJnznmexsWk42WhhHt1Av8YwIo7YqY+Rp5UozwdWkwO7setRxJGHvhPYL3VT6G3lmTx8sAek3SP2zGBOhD/yUyH742QMfMx+Rodg7l0QHd5nDZAxlQCppSvcZAv1AGPAiL+M4SRQD3woD7SPSp/JaTF/5LNDAf+8RXyg/VE/Ast9TRK0IG3ySUVdECecTE6LBZ0ELzbnHXrb4q8m4KAm8Nz8B9LHtdtRwk4cYFKw1ghWWQ94KKnQjkcB3UyOacxSterfavbO9pj8o6eOxcjs07JAcejSpX3oQn7NOc+lPALSra8knIKOfRyJA/zh5s8xwi6FIU4Xr9oRzY5pk5pTBrV6fkd6zbEValr55oT1ML0qgIWVnWJ3fcoeu/NTTmI41N8OIzkj2jcqWHAfPP8GOfyc4+NT7xM8XGJm+dhEMebyjSI46Y0HeK4w58BcfzRjaZTBqvy+uKPWTzOhHrhHg6xefqSRU5LSjktghxpaRxtcwK73xtuiPALKlVb6HJDE0BeXLngMiZPK00z4EY0suffsAHSjfDozrfFYrkmfAvneNdyJfwC6JK0XAeCPMwflmuToEsR4kzAb1E0CXKaBDkS1q6AWHcExNoZEGtLQKw1AbFC5jFkPYbM480BsULmcUdArNsDYm0PiLU1INbegFidAbFC2kTI9hiyDYW0iZDltS0g1p6AWCHL/paAWCHLfndArJDlFdIXbg6IFbK8qtUXhiyvkD7nQBgzhbSJkP12qLI3142BsEzoDIgVsuxvDYgV0u5D5jGknwg5BghZXvcExNoX/dIcE5+HKIEc6Zl/oEUOTz/QAUuaP7DlsSTwBzyVj1Q8DviWxKiWE3BzQHj/OLhXL/BybP46elN0f5LAl/INlaNzgKeUPK3UV2+oUN6l3cNFIQ4/HW17M4XLKQpxuwJi7QiIdXtArO0BsbYGxNobEKszIFZIm9gZEGtNQKyQNhGyvLYFxApZXrcExApZXncExAppq1sCYh0I9bg7IFbI8grZD20OiBWyvKq1HwpZXiH9fUj7CulzQrbHkDYRcswUquzNdWMgLBM6A2KFLPtbA2KFtPuQeQzpJ6p1/HVPQKx90a/0ZmoJ5Pi+Hc3TT3bAmiRg2fJYEvgDTpOQikcB35IY1XICbg4I7x8F9ypNk+CunCuiuZyUO+zEF0hK0fVgkGmu+W4zHqeU20wdT99kkTMopZxBjnKKKeUUBTlNQrpczC/JwXu2mf0iyCkFlFNiccujXyo3PhWGdjAJ5MQ1a8kOJsVg9VPdOl/HeHBbO7XXvIBpQhuL5/wbozZkdnG+N3rjiMp0Aku/nOmzaaBdV56W64qHkryOvSi6OcKUypnqXbKDSRBXEuRKmNi2fOtukKCDDYvXVzPwU100xPATHtbddlZ3+EIqpY+zn0kxOnD74a8kxNnP7QnsZ89Au65oP80gm/i3Mvu5E+yHl7HNfpohrsTiqIwkn4k7dX19ZougnyTHduAX2pHvgV/Ngpysd6u3QBx/KXkoxPHd6sMgjr/ojH3QDBaHL8nyl+7xJdnDWVwzxB3B4nhbwlAP/3nZmjbzPtZmkE+BTOnleYrj/gIP0eAv7eLLnkNBV7yHNsPTD43B4q+fcR+ynMVz/jdFmTft+D0De+aLHwZIZZLy5ZljcoCnlLwMhi/PDEsmz/ryDM8fLoOVBF0kP3Uwu+ZxXE5JkCONdzoDYu0JiHVzQKxdAbHuDIi1NSDW7irVa0tArDUBse4JiLU+INa+gFghy2tnQKyQ7XFvQKyQdh/SF4asx1sCYoWsx5D+K2R53R4Qa3NArJDlFbINdQbEClle2wNi1fyqH1ZIvxqq7M11YyAsEzoDYoUs+1sDYoW0+5B5DOkntgXEqtbx6vUBsWi8SnMP/Bkd5x6k5+HRFjk8/eiYdOaazznY1gdSvv1enwM80off4/h99fb7ZEGXohDHy5DHcTm2JU+O5XKghzT3YbONksAfcMmTVDwa+C6JUa1OwM0B4f2j4V7ckidhUzPiU0+47MSL0Va00rLTMIuc5pRymh3lDEopZ5CjnJaUcloc5RyUUs5BghxqytJ3U8y06bFNsky+pMKna3FJjvjXsanYE5p65pEvSwyE/PMXQfDsRf79GHS9fOndwxU6HzxC+AVVbpNJXO8QkIf5427J/QxBbAG4IQH5Oa8S4urhHi7CD4R0Sc4QbGFxUkngGYI8Ty0x6XhZKOFencA/BLCGCOlI93pLeo7B06HF5OA+b2HDBdl54F8UVYZ0hqAki5cHbr4h3ePOhUMdiH8J0wHPphvC0kj5wtbcAv+5bbXHyL+KeZlzm2T5SpCP+eNeLe58viGgA/FfyMoAzxscKqRXMfewZxgKcUMtvAXIi/T9PG6LeDbhsAp5x/on/sst9T9I0MH25U/UAXkKMTpcKeiQ7mxC9HJYS1gTgwScuEClYSyWrBdLB1sHyqH/kgWkPZuwKUZmnZJDk5J1M6FRpeornftmwi8o2fJKyink0HuSPMwfPhYNEXQpCnFxrbSSnJRnE8Z12pKzwPQK0uaEeyYYc8bvINceNeLlHAiPGoglPUKYsCH6Rcd+G3Ps+EmDYUwPCfNS0EGaBZB2NBF/SeAfLeSRypLPUpQcZPOyxI5wgqeu0uzKBMYzGnQtsbjJnrpekrGuwwRdU+7a8d5ZhrvA+M4y3AXGd5aNgDi+swx3gfGdZZMgju8sK0Ec31mGj/hHsLghEHcki+Nnl2LAvoCXu2mX7x7fjYt8/DrOp/A2uwR0HCrkjU9RNDJsLqeknEKXHUgPxYTNhxseNrac60RBGrrQvQLo4imva+hSD/Iwfzh0yQu6FCHOhI2MD+PqhXt1Fqw1AbFuD4i1OSDW7oBYewNidQbEClle2wNihbSvnQGxdgXECmkTWwNhUfpQeu0JiBXSJm4OiBXSJnYExArpV0O27VC2akK1+tWQNrEzIFbINhTSJkKW17aAWCHLa0tArM4q1avWb/ddeYUcr4b00SHHAHcExArpv6rVJjoDYoVsjyHzGPIZJmQe7w6IVfOrLw3/FbIebwqIFbK8OgNihbTVah0X3hIQK2R7DNnXhqzHah2vrqtSvUL61VsDYnUGxKpWHx1Sr5BlX61+IuSY/EB4rg3Zb99ZpXqFfK4NWY8h22PIZ5iQ874hsULaBLahXPSf87Sx6xUsnvPTqUEp14pX4FosYXDsfgmxc4CnVE89FeA3CfJIr0JMXEnZw94Pfu71i3/z5V/kID3pgvdwz0iDwC+taVNZ9WfpPcqKdmP2KB+STXF5FtcP4ni5kA7m94FST/0aEurnUn4cvyjwX8T4fOpiiOppC9zeaa8OPzkIT6KazOJKoMMhgg6cfwLw076dhhh+wssD//aovfKN2oOBx1wPipHH9eP3bHv7psRgSSeUmXB2jO57mO64F26qoJ+0jZT4DxP4+X4n0kcqm8OULJvnh9fndZAf4r9HyI/U/simGhkOxXm0nUFGzoOlbjlYbrz9VCojE7BMpwn8vKyoTIrAz8uX4vjrUVMhrsTiJoMO4wQduG3h/irervjJeXscTlCspnb9Zsd2PSZGHtfP1q55et92fW2M7u/0bNdjBP2qqV0/7NiuyaZq7bpyu54k6ODarimtdNrqDBZHuHwf98ToOg/8/26x2ZmqXFde5li+hwv8fL8rnlrJ98keDnE83VSI4/tkp4EOR6jycuB64f504v8cK4dHS/uvJVsnvVLaeqtk60cwBrT1I1lcvcCPdXGUwM/3CVOZFIEf64X/51i8THHPO5VRg8DP8fLA/9+C7yf9uO87AnSf5qn7QYLu0mmavE09D+/DcL8xCWROs8iU/DPtJW+I4Se8PPB/Vygv9I28HfBy6geYxP8Diz8guTxfE9g9tEGp7KcL+ZLKdAbEcd35KaeEjZgp2+cZUvvk+cf2acurCVg2km/ltkv1X1Tl/vAwiONtYzrIkfpIV/vnNvR0QcaN62/GRtdoX7+x2JfUbqSPNtjskdsJ9jfcvqZDHE83GeJ4meJYUep3uV74DEj8zzv2N4HsuUWyZ26zaM82+zTBt++nMimq8v4A/aFks7xMsb+hMmpQsp8hvDzwv1DBSu5v+LhtBug+xVP3JO3t89DfHML4sL+ZYpGJabm/iOtvCA+fBwYI5ZUDGbwd8HLC/ob4BzFMl2emCeye7zMT6SOVKZ6OzXUnW5DaJ/GlbJ9D+/rZB/sb7g/xuYi3jakgR5oncLV/bkMfgP4Gn5s4FrcLmz3ydkP1hPZYstijrZ2ZgGUu2S+3K9JHskd85uG62+wx0LP4RZI98vyjPdryakLS+Y2iKrdVmz1i/xzqefstkT3SvD9/F9ujXL3fV81BHC+3MyFOGt/nBDn18J/nx9T7z2GuRwlYJLPA4vDrA/xsgsMgjs+fTIM4Puc+HeL4O/0zII4fzzAT4vCYDxOoLhOe4O98pAXhF0AXT3ld74VWeveW2prfcVNxpxPkAJXf4xaKcfVwD/kugP9JjpviRwBJJYHHTfE8DY9Jx8tCCffqBP5hgBV36kN9jDypRqXjgwhDSsd7NZ7GpQUMB/yScgrOZ10SfqgWUKneyVYp7yMEXYpCHNq1dD7lCEGOhOVyQExcq01xQEwO/g+LUaNOSK8sWDyNLUu86bicyiWde5QH/kuFBw9behOahHto9gnN0NnxE35BlZtEErOXPsvD84dmP0zQpajsLgrr0CYnoKmacEGMGlKPoipgYUuWTJXvjVgSI7tB4JdMlfivscwp1AnpDeafGnvKns34SPYJKl7XVtAVeU4AXYl/LdP1e6ArN+fZ0XUTpKd4E6hJnQG6l5RTcG5ShF8AXZI2qTNAHuYv2VjqBHaNpcJR+T2bFVdqOQvhv89YimpuLtwvKacwj6xinhBJcfMZ9gkQt4DF8drEID21kM7Ggp/weGrh9TEf4uawuAVMNtbrGYIc0r9O4J8DWGcI6ajsK8mrF9KdABg5uM9nQmYLsvPAfzvzDk+OiC+H2UrFlgP9HyXoieVN8SaktMlLXL0J4RdUed0n8SZzQR7mL5k34ZbCpVwMqMTDeXm4mGmmYvik2hstpMNAJZYHnR+MrMhY373R9WBVbr0NoA/XweaXi0J64pPk9E8pp78ghyx5FkvXBnEnqvK8UtxJLN1yiDuZxV0EcacI+aK4Uy2Yp1kwTxfiTN1NLvbk494oF/NrQr1wD8v0DEFXqjvuAXDOUWptcy1yeHriaxLSpc2PpLM0dqK8vvCFy8HdaXhvyr02t2PaO5YH/g+P6E73CLS3eSw96SiVM7ZF33JuEOT0djljm5ofUA7HWs74DS0ELCxnqicqZz7aWQjpFrE4zsdHBAvZ/UWCbAmfMCrZ4KcHy3mLs0GSlQf+1zEb/GxCG5wPcXwEif0h6cHLgfPjXlHSsyGGPy5fX7I8250hpJd0bwJd5lt0NwFtkafHkWtv2DyXWcl+vgH2s4DFSfZDZ1XmgX8Hs59vgf3wEVpv5N/WrvlIDmeWpXYn+Q9Mx9voYAcdFgo6F4X0xNckpEtrG5LOlWzjGbCNRSxOso2J0XUe+Fcz2/gp2Ab3n6SjVM44BvQt5/6CnN4uZxzfnRlQDsfC/m0xYGE5Uz1ROZ/F4hZDOj4nxfl4/7aY3V8iyJbwXfu3Pw6W8xZngyQrD/znMhv8i+WZxmaDZ0IcL1Pue7F+bHWQA70bYvjPhHwRv4rG+NL+Hqm9nskw0ZcTfz3DxP0UXXKV/WnZZotnCfmSynSxqiybl/OSGNkNSs5/nK0MsJQppe8Xkx8sU+IfZClTqYxsZSq1scVCvgYLecYymiNg8XJ2KVOe/zmQf+IfJpSpNG6ZA7rzsQOOIaVxGOcfD/xSG5PGJtjGRlt0t81K8rmFFRDH5xbmQdxJLA6fxU5mcQsgjs8ttELcqSwO+7/TWNwiiDudxXHbp7mFPOR1SnQ/5dpC2YezOJZUvrmYX6Xc+tNZjCcHcnpj3kSSMyegHI6FfRp/ZsMVb995A57e9mx4Yko5JwpyEIt8sgl8TETtKQ/8J7J2/dFST8x5gn4nsntLLHnF9syxqM6ofXDf1xtrb4RfAF085eVsPpfnD5ezFwi6FIW4uDrlcqTlbF+9An5llFQcA3xLYlTLCbg5ILw/Bu7VC7wcO6um15dyBqSUM0CQ09tTnQNATitLxx93zi92p+EmLD3umHB29ItTyqezx52LIkzpcSeu2XFb40sdaNskL24bw0kx+l3GXC9+t+4kyDPPp6TzPCYD5ZrQFqPDlTBUSeiKxaEKToXyId0siONDD143PE6p7vrg99DmWgU5iBXXTVK54pBupWc3ye1ziSWv8yCOd01YDpIcyb1L5WCTMzClnIGCHFu3n9SXSDrjo4QJ3Jd0gC+Zz+KkIc3S6DcP/DOZL7nR4ku4jvhf8stx/WScL5kbo99Wiy+RhoZLLTrzR0CUa0JbjA63gS/BpaCScguSL8GlCe7/8Kgc376Qp8+qLxwEcnp72U+a7m9l1zyO5OA9m3/Bx/C49rivKMuU2iP2a5z/+eHd6V4B7THEUl1cm1DKbblrniAnzgeZYOuDiP91lj6o0tDf9qgWp19eyW3qKtWd5zgsJdwjft7/4fTFAuCdb+FFvbltT4quyRfx5xYPX3SmtGxBgeLOitEJQz3853qZOv1EqRsX+VAmz+tZEMen6xfHyKsTeOka29rXIrsz9vpwsSceb79Y/3jMG5++x/QmtIF84v8As/sflWT5aC8mXBH9SlPALTG6mSBNq2P75ulxSYtPEaLtLYjJ41eg78RlppJyCq1kA1jvHHtJQmyX/ojjNwnySK+CEJd30GXtn9qOaWu4+cs5SE+64D2cIlkq8LcI/FRW/JnLo6xOlV5xJdkUx9vBEojrx+JIB+kYx6UJ9XMpP45fFPivZnw+dVEU5CwMiDU/IRYdLyktI0njmjaIa2VxfAvib2B8wn33ENDVdwzG03M+yTdLS7Xo638Jfoj7TA/7Ohb7RsLg2IsTYrv6IcJvUvH1WhDiXPzQNX9vXf/Yed88OKfK/W29cM9l+XKIwJ+ynR8p+SH0NdwPLYY47odIB8kPJexTjnQpP45fFPjRD7nWRVGQszAg1vyEWOSHpC0Ckh9aAXGtQn64H8oDxnNsfPc72C7Nx1NtIIf7G9yOvdASt0jANLIHRO/IpxwDLZbGQAp04O3vYojjbY2XJQZpPE86mzby41I3LvKhPtL2hDoVbwf0n9/LC3qYa3yeJP76qLxfaOPNPXH5M50JfCzfCrpLaxYGs19zPF+rhY/bHNo27ztnQRxvuydCXCWbw2ftQWCLXPe0c1mEZeYw6cXraBluQXvH+de0bWhfcX778g3tHdzCsNXzUqT/VPpomQr4TMAVuNPhP44mcIPgIgGnkkxppoUfjIG17zLTwtPPrwI5Q1PKGSrI6c1ZQi5T2lTCZ+/GNnenwdYurcxcEv3ipoMNbPZufIRJZclbGpZzK4vD8wF4W5BWYTD/PH1rTU5wOcNTyhkuyJGetNK2A0nnSu3g2EDt4BDWDk6wtAOuI0+vlNvGHJ4eV47nV8C6BLBcZ9BbHeTY/GCroxyX/Njk9GV+CEt66ud1cKlFrwWAtbAC1ssAS3oBxOaLcwKmJMfW35xokbMgpZwFjnKyys+8lHLmOcoZllLOMEGO9LSZ1t9KOlfyt1eAv5Ve8ONpcRWf+Icyf3sl+Fvp6eGlWs6LAsrhWMtBTlx9rob6lF4osNUn8f9tWHe6dQ71KZXNQkt++ExAXF1LL1zlBCzbbC6WA+eX+pRenF0d4mIHHL8AunjK69pUa3tpygS+eZXsOXpqbm3feNTRs+bqR+ab1nfEzbQ2c6FMf+RX8B/TGd3ywHOiIMMEtJ9FwIf1TvcR30WnSryV4iVfd1ZMPpVy83U8/YkxWHG7IKh+cLbytkhh110Q0os8tvEAtjvkqxfyMEDJ7XWVkvXjeV5iyTPx77HkeUGFPOP4XRo7om9CvnohD41K3rGDO7V4HB5Z6GtPPH1WfecIkBPXpz0AfZq0s4nvfKEPl+AK3M9Zn/Zq6NOksWBv5z9uRyPPF/8IS9yzTV7ANKGNxXP+N8MMLB4KUVJuQZqBxZe/Zgn6m/y9FepUyrutTon/+6xO3+FQp7b2Ie3EtfmCuRZ+6VmxVeC3jRvTrRTnfuRioxy/ALp42kPXeEN6kZbnL+l4g3CfYhni+lcab2A623gDeePaHo4BFsL9SuMNSac43jTjjUUx+VTKrX/g6YmP7LMV9C8pp1AiXfjaCu4QQ3zeTutUeVuU+KUxBsdHP0zp80oum+UsnvN/nI0lflbafy3VxcgY/ZRyqwuePqu+aiTIaQ0oh2NR2Upzovwwex5HcuJ8svQBC9vu5UUp5SwS5LjYuglro99KY6LHPftPXKkm/jtY//nf0H9Kb9/Z5tBd5sR5XbusVdjatWs7lcYDJcDyfTOHp48bx+UF3U1oY/Gc/zcwLkv4xtg50i4San8px3znuLRxji/tICC9CkKcyw6xXxRO+a9ffej1X8tBetIF77nMHZUE/pQ79ZZIO8T4AQgmcBtZCHF8hxjpIO0QSzheW+JSfhy/KPC3Mz6fupCwliTEol1d0jN2X/mkuLkX8k84dviDZR5C8k3Sm262t+bQp2Ee0eeYUFJy+BcEwqPy7y/IitsV+1eW71+Weuoat0aYj8mP7Q2ZnIovG5QhvSFztOqp2wIH3aT5II7RGqOnwZDWENFufXc0zxX0keSMSylnnCDH1ifhL8nBe7b1yHEgJ27c1DSkOw33J3HrI3EHP25m46ZihCm9hYxrrtIb8NL+Aiz7BiXPa6I/If5hkU7SW6vS/LCLneUFuSa0xegwKtKhN+eZME95Ve5bTThHyXmKmy/GMlgo8C+38EvrTdyu0GfbDmOjvL13aLcOJbDjSvk/LwbzbS3dmJM8Mc+PwTx2SDfmoZa2wT/0h+UjlRm2f54ed6xKhzel3HHqfCgO4RdUeZ6TzKdJ8wNSuUgHfOH6LI9z2adh+5jhSY56BTwUh1QcCXxLYlTLCbg5ILw/Eu5JU3Ic25j56Kg7IDPnZ6XNAPxTGEa9cA/NnKcnPklOPqWcvCDHhjVDwCL+UwX+vMAf0DRIxbHAt9yiGuJWMo2xcC/ONCjUg0xzjedWYNWgjoMFjFmWPNUL92zH0Z1qkTMzpZyZghwcJVwKowQu38Nb7sbjBgmDY7cmxHb1/IQvvS9EekmfKXKZ9Zj26VveevKka87OQXrSBe9hk5SeImcK/Clnn3ZKsx787BoTpJkxadaDdJBmPRIeNbfTpfw4vjRLjbMernUhYS1JiEWzHvx4TVtbzspn9IYcG5Y0E0L8VDYNSl4pQp9E/CvY0xN+XVAqbyXcq1Pl/uiy6HewgFUXo7skW6nycuPpia8XfWI/X59YUOV5TjIaltqHVC54ThZPizuATcAzNXxXBKodi9smHttL8dIvycF7KIe3VayD1oByuL262HlSORxrOcjBmUPp11WOtGMnZR+8QJptoyCtyKBd8LF1K8Tx1RAsf74rcR7E8V2zx7JrDPXwn5eD8ce/KXXjIh8FaUce9ku+b5lIO5kqncl13xBZZtyZXHHnU93JZmkeGBKfR1yJlGbupPfOcUz+2gxm7l5KNp7EjidP6MZFPgpSHePYS1qJkHbqUz4kf41HJ3MfuwDieP+NO/y5L1vB+NCfSqsIOCN6qqC7NG6a5SDHNm6aJchJOTby/gAqzl5K5eJqY6SzsbHLHGwM+07UDcvIZdxNOsStWqCfI/5PWFYtiIfPwF/HMNEOuAwFGCa0gQ7E/x/g+xI+Z4q+D/tEXobEl1Ku8yw14RdAF095XePySqvUfMrP/UOnvAVKHhf5Oa8S4urh3knAhyebJPlscsLTWRdir8WDb6/FaxOD5DX42r3PZ5N5feDHPbgX6ToZRZXX6zxBDulfJ/Dj+yTSqaRU9pXkSbMC6PWldOb/8UKakE88WI4hsHphT9hQV49D+AWVqp10eRxpf5C0L0FqO3HvJnKfkIM4Lkfazy5hnRIIy4SLalg1rBpWDasPsFyeDHk/he9Gcj94Gujnu1DN09sWxMellDNOkNMkpEvaJxctOktP91huvvvyeHrXU+WHtMgypRksE+iJDGeUtrIZrGEtPXWWnuZNkPYM8XogDEzbyHSgOI/xxWAzBn6w1C0Hy5WvULqMQ7Cd2GZluC241tF4qCP8EgumxT2NxN/O6mhidC3Vgcu+IWkPJbbDBoGf4+WBf0qkE1+Vc/nKDaWPm3UdGyNvOpP3DDwT9YLdDZXsjvsZtDtppkvyZzZ/wdse7hXj9YYrsdJePds+VkrfoOQ6ILw88B8v1DnaXdw7T1ivxH+iY71SWfZGvfKywnqVVrml9wFtdiCtyEv9wMmAdbKAJe1bdW3LhIdta66lXiX/xfXEeiX+BY71yt9fJRyKS1uvvKywXqXxh7Rf0mYHvH+gMpFm9E+HuFYWhzOlkv/mduBS57x+4vz3+UKd49gR/YJL/8JnFum8zWhm8fyOdRvao6lFBcE2FWj+z4tRo0VIryBtDu7hRzEk92mbUCfZcRtZ0H0S/6VCkdvcrwkuW6h5dffG5DThF1S5ySaZKqrk1nCqyNbMeFwVmKoJi2PUyAnpFWDlhHsmSNuabaNAybtJJoa9VtyIgPBwb9a1lp6j0hqjyykd0ohIyj+e6MjTtcbI4T0aNyPs0Yj/esceja9bEg7Fpe3ReBlhjybNLNjevJXeipFmS4vAz8te6tHwbSDX0SmOxnD0gU9WNnuR8msrH8m++Ih7EcTxdLanYL6/woSQT8E8P2gLtro1Ie40F87P6xufRvi+C3yi5m0J3wuodAKszRb4bMcQeCKWzsu3ybTNzEhvDOIeoHuZL4g7nc31iZ/47xf8iy0PttGqbRZEsnXef+CeoKxWUHFPkHTqjLTvB/cE8f4X1/jjvp+EAftoXg6u+97QHgjXx+a5Ld0He834sG8qyJSGWPwe2jxPT3ySnHxKOXlBjg1rqoBF/NIYp5dfayIVJwHfcotqiJsDwvuT4F69wMuDVE2zYvRWyq2apEkDxOJbfy5hPHiYD+8ODgMs30UAnh6HpKTXlyI32ijI93Bf99u2ZRN2wu3z9+cATyn5yStuSzXXS9rK7/IK0yfede6gbz42q+sVHNetesTfKvAfJvCn3Fp6rzSs4t2BCdytnAZxrq8wtTI+H/1cyo/jS1va8RUm322TPO6ShFj0ChOfuMIFvd72MfjI9VVhmJW1LtTtP2EZ8lWaTMQFWK67bdEU8+XrL2c5ypmeUs50QU5vL85OBzlxC3JPwWPjqSxOGo5dG/3i4sdr2IEPz8DjhzRVklNy/8P7SBOwveLiDPLMjdHvZ8w+cbsu5pnnU9L5NCZDAYYJbaAD8f8a+t5W1TPvJeUWpO263OejD8N+OaFc5xlRws/6NTq/7bq4TMhLhaPyeznVM/c8rtLEJ348PMl23YSjBO8PmOPDJn9o5LWJQXow5KMKn+26vD7wA7x8PWExk4312irIIf3rBP65gNUqpKOyryRPGuXggQFSOvP/OCFNyBchbZv6k2JJW39TTpI4f4YCj2lM2E66PI40oWT7BId0ZKS0hQafFpMeQWiuFwXEmhcIy4SLalg1rBpW1WG5vEzJ+wP83Jy0bSIHcVw/2xMlT2+bUC2mlFMU5DQJ6ZL2fUWLzi6fdvA9IEH6JEelYyRPGirLjDtGEp/wiH8ve8I7dWhPnaUnPBOkp2leD4SBaRuZDhTn0Y8PkhYEebnigqC0CMH5aauwbQuQZAuudbQQ6si2XZDrg3toNrA6Oiu6ljYE4BGQlfaCXAf8lEfXbbHEf06kU6VtsafGyIublVgaI+8CJi+DbbFDJLvjfsZlm53kz2z+QtrjIx2ogtvseBnjuNR3y6y0zc62ZZb4rxTsAfsitI04/aRyC7zNrjVGjWYhvYK0ObjXHINFOOYen+Rw2WYnvZ2ALmKlUOS2KjOhts3uRbfN7swYNXJCegVYOeGeCdI2O+lIGJcilooq6QbtGwWTtnlYaYRlGwlIaw4uH6qXjslEOdLGcROwRyP+bY49WqCRlNij8TLCHs115oT4K23FwaYmbUmzPdm4NkPcZiLZqTRSq7R9xeXFFul4FenpAQ/C5+lso2r+sUYTQo6q07xs5rsFEbdV8hkwPAKTd0f4Upc0inK1Bf70hE9WlV6GiVt75j6AY+BWOOJ/g+ADCLNV2fPm4u9aGQ8e4SQdvSMdg2Tb9kl8Ke2xSbJHnn+XpzzO79tWbS+h2V6WbAU5lezGtgWOr10+BeuuXM4EkCnZiVQWRSE98Uly8inlSEcg2bAmCFi2+u7lLXCk4hjgW25RDXFzQHh/DNyrF3h5kKrplBi9lXKrJsmcJTmzUsqZ5SjnkJRyDhHklG1xidxuymX0HS4LZgm/47UjB3hKyU9ThC/tJia9CkKcy9a53xYv/MLq5975nhykJ13wnstu+0MEfiorvjjtUVadUtfEF5pN4O7oTIjj3QvpIG2dOyuhfi7lx/GLAj9unXOtCwlrSUIs2jonfSMrK5+BW+e+w4ZQuHWut3XJejMHntjIz43zPbGRb+bwObGRlynXDctI2gKGdkc6uJ7YSPz/y+oct4BRGtcTG/k34lCuCW0xOvwK+pCEGyPELWD4eBh3ThzqKpW57SRr4kuZB287xq2T3O/jJhluD7hNfCmLOwnizmZxeEYg/y4XLuycy+JaIe48FsftCIPU3vhbNe8b2Y2LfApk8rrHzVPc71AZSlNWU9g1jyNd8R7aDE9v2147N6WcuYIcaeqOj7d68fUF5xlt/MpKwq/JdM1o287WeEGx6BcXRHlaaeEobssulzNFkOOrVy98YGk68MV9dCMn4OaA8P50uBf3GEb/JdNvjdFbKTfT5+mzbmKVdpaPGCbLjDvaCD+7Svznsc9XjmLXthf+z1A947icOaC/tA8k5dtRzi6A8AugS1IX4Lqe7LdTGg8Z5aXCUfk9W0vAtStcVjwR0vnslCa50pyadFCMba0G0/GyUMK9OoHf1iGdBLrXW9JzDJ4OLSYH93lrmy3Ixh0TM6JWZQYcP4VBsiSLl0elXQHIgzoQ/5FMh+/FrOflY/KFrRk7eG5b7THy5zEvc2yMF1OCfMwf72EaYvSNOzpkFisD22ed8F1avMfLgKeN+895T4C88P+SLc4G/tMr5B3rn/hPt9T/SYIOpJcJSyrogDwnxOgwR9BB8Jpz1q2/KWaFHscS6OWwlrAmThJw4gKVhrFYsl4sHWwdKIf+SxZgch7Bdg/NVrd3xO1OwB5hVozMOiWHJiXrZkJfbTg5KZk864YTnr+kG07iWmklOSk3nMR12pKzwPQK0uaEeyYYc94XrRK+1IbPiBW3tXFD9Iud1GXMQT0T00nWxWBeCjpIT2jSbBDxSwvotpOO474pGyebl2XcV+Zdda20wQS/18P1W+ip6yUZ63qKoGvK2QvvWTmcQeOzcjiDxusSZ+z4rFwrxPFZOZzNdp2Vw8dWPiuHrwacz+JOZ9cYpBk7KnfTLt89vhsX+fh1nE9x3QTAfQg+dks2ZTsldRHDkjbhHBNd54F/q8UfSStFtnZQ6bwtPM+OT/+cBXE8HT+lmrAV8KXclCKeRcbzg5tS+GpMvcCPZbNE4OdtDjdJ8fpdBHHct+AssXR+oNG9aUhPvhBffJFO5b8I9FkQUA7HagM5vG9bHv2afL8ipl3xdsLTro1+ceXxfezh8pUwhSVt9sPXcF7D2tl9E+LT4+YsaeOS7bt8tnxy/mNi8vkmpuejpf3Xvbg5seh7HqTkY2znQdraKS+ToipvkzjmkcZP3CYrrXhiHRAerja+W5hEkF4lwy8MtXrqnmTz5OPRCxDSmZFpX22Wvp6EWHUx+q8Ffn68gCQb+ckm+ASV5J/zwP8RVlcPTJAxlZL75HkxOjfE8J8FOhD/JwR7sfkBbv9nAibxf4ph4sFAlTCPisH8jGWsIbVT29melfpTHE/wcsRJZK479ouLmXys0/tAPsfhtoZylUVf6VVFm77Y31Dcd1h/9Xh03Qh4nr663lZX0wR9XetqniV/iEXp8qrcHm1thJfHE8NkzH6emP9P6NOlscoKhv8dh3E+99Xol6XnXD7OkcYG+FonYfxQaI9SX09Y6fr63I98X++tVDahXkQw4SqIk17ZDt2XvrW5J26l83DPBj0qjfEmR9foh39t8cNSGdrKvNJ527i7idfHmRAn2WzW9pjl+dNoj1L/Idmjy/nTrvbIz59+AMZ20lnZko9GfSqNuXFXHunXEMOPPr+rTxi+/1ca9ywVdLA9J5wt8C8VdB6MOqjydknpeLvkZYIvCdL//iw/Nn8caM5DfEmQlxvav62MTMAyPUfg52VFZVIEfl6+kv0vhThpHsnWZl3bBqU15bAafHXo+Tn01cQ/UrAJW95svrq35udsvro3bbVa5+e4rbrOz13hMBawvaBaaQ0C/Zd0Nr7UD+MLub7fHeDpF1jkDEspZ5ggpzfnILlMaWyD+fGdC+HpF0J+FgbMj6Qz7kY2YXn0a2z1xOHdaeJ8G0+L/R3xnz+8O90p0bW0C972ArXNdltVTz0rzSFdwvKvVG+MOVW/vh5z4riS95e4Xi69bcBtj/edxKNAx94or5Avr0vly9sElQG+WcXt0PblYltZuo5D+FsuxzZX1t92cEMl+8APHVTRGl2fjwHQFnzX6NBfcjmSv8Q65v6VY+CaFfEvt4wdJTuw2U2lZzr8lhS3DXxbRZrn70UfUtV2cybESfOOrnaDPoT7c95HU/9tmyPLqZ79JLdnzl8fg7MAcHJwfwC7z9MdDnnGMRJiHwH8lM+GGH7Cw7HIzZa5hEUVdDgSdDizgg6LQAfi3yboYCt/E2xjwpRvpedzgEf68Hscv6Bk+ygpp5DD8iN5kh2YgG1Zak/SWonNB0rtXMI6MSBWa3Sdsr7OknwbBWmfFz5XcD92KcTxeZ42hoGhHv7z/Bi7fvWEblzkQ115ffH1XLSxRULaRQJ2X7WHRcnkWduD9Azg2x5wjf1Abw9x+x5NqIb2wOuL9JbKyISScgsu7SXhSRgTXNsL4YdqL5LtSe0l5UkkJfMoNkD19FUm3MvwpHUMXl+h6k+a4+qr+kt4soC1/qRn+JD1x8cXPvUnzf3hGbG+c388fVZzf80gJ27u7zMw9yc9m9rm/oj/62zu73OWuT+XuelenK+r992fGPp71bjuIM3VSHPt2LeHmn8aGzP/ROVqwlohLbbtnCqff+J6ED/uiUMe3L/WtTeHPUt9L2bdTNq/xvVHm/2uZT6lt/ev8XLG/WBxY3rCVqp8zED5oziffkFqEzw/2CaktXjO77sWj3bP15TxAGVsXyoGy6brghS6Yj3yusJ9A8TL7ZLrj3ZJ/L903DdAZd4b9W+bT5PK1DafVqlM8ZnGtqfANp9W6f0W23wa9yGfgf6L++9WkCn1D5KfkNYUcN6I7PKvrP5xry7f3yOtIy+NwfyHxddJeWgV8uDax9neazjTko63y0ZBVoku/mUPhEf20V+Qhf1MV1sd0Z3mlyVZlxzqUyH04jNZKQd4Sr2knsnGh3gmk8Z5fAxchPYgtTGednX0i21s+IjudC0xmErJ7db2XiHXZ1+xJ25vrSdLbdc2hsF1RmkPPunA92dLa0+To2scAx7M2qbtXaYw65O530v9Ih8XYr9oGwOagHVhG0fxMimq8j4T574l++J1HXdqaNweTXwPgfinsjqwfSoG++35nrrH7Uvgcdg2sB1X+ihA3Dvt3C45Bo1LsN0fxcrkmZj3dbgOreye7553fJ9QWoeS5jBoH6HUXvg765Q/iku7LpvlXhg8CN72XiB/BwDniaXj0IzuHeB7pfcGeN3GvT8ovatqrsdG1/j+4ByLfYXeV4jv7rjuzaK234tzNy19PXdDdeuyd0ia82oCHF7eRvfzwb6kfpKnnRhdYz95gcVelljyaIJvH0X6SM/DSyGOp0Nbkp4HSYezhXLgeuHZLMR/ueN4IdBzdKtkn/zZF+3Ttp/eBKyLcwV+vsce99HzczcWA5Y0v8XLNO6dvwYlP8PHvdOx0jJe4P3T2aD7mZ66twq6S+2Nt6k/Dt5/LT3n45j1TItMTMv7noYY/rjnz+uF8kJ/Js0nmevxgEn8HRZ/IPWpc9g9331juI7CywX3jUnPHb03nldn9PW+Map/l/2GvvvGXO2f29AzYP+8Pz8DZNrGsZiWy4mz/7h9W3ss9m97LjfXowGT+O+02L9Uljb7rzRGsI2RbGuMtrWvQOPzeX09Pkf7t43Puf91eT/S1f65DX1jcE9c6f1bnpa++IPv377R077SvH9L+ri8f8vT4fyMNHbFeozrZ/A5hfjf4TjeCrQPeGhf+3Nct5DGtzb/aVsnlfyn1F+i//yA4/yM7XwKF91bBd2l9sbb1Kehv+HPvtjfVPogHr7DT+06rr/BY82J/xOW/oY/m+F8kNTfEP+nPJ/Xbf1Nped1nA+SzpOQnuVtz+uBzoIa1tvv+lSaK6P6d/lQpfR+GtoBl+Nq/9yG3hPZf7py3Xx/julC2PUCZx5+iecbkU0WmHz6zTvo8f0vPP/tR888eg1+/cYEqiOzZmPq/ytg/3nGS2XJjx/GvRD1oJuULgc6IH+dwE+4TUJcnuUhaRmN+WT7109/8pdPViqjpPh7j84PuedlSxb2Fv7X+//qucf/c+W9vYX/k8Zz5tV9+K7xvYX/mueWHrfjoEm/87FRsgW+d5fS0TrmIHbfwxc6H3dN+AXQxVNe1zrtIJCH+Uv2KYqB7BpLhaPye3GtlDRTMXzoIUzw+RQF1VwR7peUU2gmq2gWIimOW9lAiGthcbw2MdQL+pPOxkqfgJ1ASsAimbw+hkDcYBbXwmRjvQ4S5JDsOoF/MGANEtJR2VeSVy+kGwgYObjPR2n1guw88KvoO16mbJ8coXrkc6Dq+Z/bXzvoKPUqKuYe5gPf9EC5JjSqVJ5giKvnIfyCksu7pJxCl+dpAnmYv2SeB/t8ktIMqMTDeXloZpqpGD6pRpcK6TBQuqYYTBMaVbmlepRyk2ut0r0C6JK0VutBHuYP9/0ktNqBNitCTKVkz8fLg3uohhgsSpsH/hGRpyiqck91EciQvBi/R+VjvNWQkT3lUdykkd08B0XXg5Vs//y6TpBdJ8guCunRE/FxehvE9WNxeD50gyWuvyWuEfLC4wos3XKIGyBgGv3WjezJh+1c+lWqvA2ZgGUu1TH3bPgMI9kY2mQc1iWAxdMPBqxiBaxLAYunp7RkG/VCuiZBDvoz/q6LR3sf5OrPCL8AuiT1Z80gD/OH/mxIMnlNOUjP5XFMfG+nRYgjLPpsTEMMFqXNA/+J4M9amE7oz1oEffk97s+OhTbHyzZpm5PeoaL6wWd3E5YzfU4b2TMvRRYn+cfrot888D/A/HEr+GNuf6TjYCXXF7+W7K7Zkn+pDfR2OaMfzgWUw+OWg0zJ5nibpHqicpZsntINZXHYdtGeOT/HkPAJo5INnjdSzptkg1xWHvhvYjZ4oWVMgDbI7TMHcTnIC+eT7JPX2XXAT3o3CPwcLw/8l7OnMJx/p/S8rLhe+K4D8S9jmDj/Lvlf6anEZouSv5bKtAWwBgpYPD+4BiSVKW+fAyH/xH+1UKbYr/P00phvBcTxufomiGtgcYMgrj+LGwxxfMyH408+74f+fgCL4zayDsbTlJ8N0f1GJdt9SbkF6Wvv6CP5nH4jxHHbaoA4XoYDII7L6wdxvF4KEMfrmuphgHLzRSZgf0j8Wy3tS/Kf0niK+IcJ/NxnE/9gVd6m8LxGng7bJZ7fyK+jV6N6lAPX69roNw/8O1k52Na7Sa+U62lN0nracMaA62lsUqsrX5wf62KkwD+C8VCZFIFf8nWS3+Rlir5OGssOE/BxLLvP4uu4rxwOuuc8dZfWqKR2zdvUeZaxIva3QywyMS2X06D8xhGvtfS30viY64X9LfG/weIPpLK09beS/2gR8iWV6VCIi3uuImzETNk+B0ntk+cf26ctryYk9ZXSmbP4fM/bBtq/NI/gav/chuj5K+ka3is/P3Ph7879zbgka3h8XojSUf+fcGb7s1x/CtIcBeEXQBdPeV1zFNK4kecv0JzrZ3KQnsuTVmJSronW43wS1g2307g5W0qbB/7HYC7CNtfF5+Bw/kOan+P36voIS2qjvBypTkw7/BiUhbTK5GLbko68vnDcOiCgHI61PPqV7N1QSTmFo3HNgDA4NrcbD9u+2NVXEH5BpWpLOZuNSesPUtujtEVVbmMbGV8l++NyJKy9VYq1NSDWjoBYtwfECllenQGxdgbE2hYQa01ArJB53FWlet0cECtkewxZj1sCYnUGxNoTECtkPYa01TsDYoW0r90Bse4OiBXS7qvV54TM4z0BsdYHxNoXECtkeYUcm4S0r2odF4a0+2ody20OiLU9INaBMJarVrsPOTap9Wl+WNU6lqtWXxhyLBfSF4asx5DlVa3jr+sDYu0LiBWyvG4JiBWybYdsQyHLK2Q/FLINVWvZh/RfIeflqnVuKKR9hRz7VusYsxr7DnPdFAjLhH3R7+AYbH5tW3uV5OQEnaV1Ur5+j2uiiuGkfFvS+ZtKhF8AXTzl5Wz1I62t4p5pnrYoxGFd+e7b5lj5gFi4l0SyG2ndz7e8BjLe6O28ue1XbVq5eN1KBSEP/xfFqHgR8F0ao1q9gJsDwvsXwb16gZdjS02yf4zeSrk1SZ6+ySKnN5o+/u8X/be9ltULy9/LXd3Ai2X5u4Pxpe0O7gqIFXL6NeSQqlofVUPmMeQyYLVOyVfr9MVtAbEOBJuoTVf3XdmHLK+Q0z0h8xjyUbVal9tCTl+EtPtbA2JV61RuSJuojb9eGj46ZF97Y0CsA8EX7guIFdLn3BQQ646AWNU6ZRqyT6tNMfthHQhLwyHbULVuK6r1HS+NvqO2lN53NlGbU+i7PIbcbl6tz0Mhy74zIFa1zheGHOfU/ETfjSdqfqLvyr4zIFZIP7Ev+u3FbSANOcAjPfk9jl/N20BMwNfvk27dONCwevHI0JNdbayvjgyVDoentEWIM2ET48O4euFenQVrc0CszoBY2wNibQ2ItSUg1pqAWHsDYu0KiBUyjzcHxAqZxx0BsW4PiHVHQKyQ9hWyPYa0r5C+MKReOwNihbT7A8Embg2IFdK+9gTECpnHkGV/S0CskHa/OyBWzU+8NPxEyDzeHRAr5HiiWsv+noBYtTbkh3VjQKxaG+q7su8MiBXyGXlf9Gv7hEXKT65MyAEe6cnvcfwC6OIpL2crF2nejPLXkkxeKQfpuTzpyGQq67hPYhiiI4MbYrAobR74fz9q/28R+Ey4CmRIxx7ze1Q+5t2lX0e4tiOdk9ojT49lxNOhPSasL+dPgBJ+QaWy/5zNPqRykeyD0haFuLhPEVC8CX1VZv2SybOWGc9fkjIzoT36lcol567nzSiXMDg2P/7bowwWu5Y54RdUeRkkKXPb8eYmYJkPF3QpQpwJNzA+jKsX7tVZsHYFxNobEGtrQKw1AbFuDYi1OSDWnoBYIcsrZB5D6SX5qWqx1d0BsUK27ZA2sTMgVs1/1fxXb+YxZNnfHBArpN3fERArZNuu1vYY0kdXa18bsh63BMQ6EPqhAyGPIfUK6Vertd9eV6V6hSyvuwJidQbECjk2qdY+rdYe+y6P1dpvHwjPaSFt4qaAWNVq97cHxKrWuY47A2L1ho+WPh2M6162NTRJDk/fYpHTL6WcfoIc6dOiueg35dz/oBzgkZ78HscvqPI8h5r7l8qF8jc8mbwmF7vi+lBZS59BJiz6DHJDDBalzQP/B0fv/y0Cnwn4Lob0KWd+j6+ZPhzhoi2YUFJO4Vjp89JoY7xMPOpgsKuNEX5BparznK0MJV9CeR8p6FIU4uLsgcsZKcgpCnEX1bBqWDWsIFgO/q/ua0Nfvqnh7Vcsnzll0LzfH9TywI7TP3/39tOnzEC/T7pxXO4DPPyR8xHZhF9QqfxtzlamUh9CeT9I0KUIcSa0Mz6Mqxfu1cVgSb40KZYJbdFvin4wj3XtkbbYKOhUckqqjqO00fYn3zovUPrRydIPoPRj2M2SPU3XMcuUdqyQduhR6jvjnzrupukjjl939g07n7rgkW3D3nbYz4oH/XbTKTf85cl1lPZgIW1MoKbTZbcFFrk8+jXjop9FhUG2NY7F1UNac022lQf+y8Z0p/vl6J6yeZtGf1HH7nvUxQxXf0H4BdAlqb+oA3mYP/QX9YIuRYgzYRPjw7h64Z4Na1dArDsCYu0MiLUlINaagFh3BsTaHBBre0CszoBY1VqPIW01ZHsMqdfNAbG2BsTaExArpE3cEhArpE3sDogVsrxC+q+Qeu0NiBWyHkPqVa19R8h6DFn2Idt2yDzeExBrfUCsfQGxDoR+O2Tb7o2+ltZp+PPYQIirZ3EDII5/xqsO9MsL+uUt+vH0+Zh0mA+X920aIG1JOQXn920IP9T7Ng0gD/OHz5r9BV2KQhx+ck2qn5wgx1evgJ9Jo/jpwLckRrWcgJsDwvvT4Z5UFBx7MMRLpo8mE1e0xZj0JjRZ5DQJ6cg0BzAdJ7B4/JTbBEHHCRYdeXrik+TkUsrJCXIQS5qmMmFD9JsH/hXRNJXJwzMjemJOFPSzNYNJAv9ExkP6SGVDaZsE2bmYX5KjlN2GuA4NIGdSQDmTGE8e5EwOKGcy4xkIcg4JKOcQxjOApTP/D2Vx3M5IjymCHtTtTGX3PboB5yURwi+ALp7yurqdqSAP84e+5zBBlyLEmYDLWYcJcg4T5GSF1aTK8491yfPaG3VJ+AWVynZytnLh+cO6nCboUoQ4E65mfBhXL9yri8GifIXConaasr6mYXnwQHHTGfZUiJvB+C+FuJksro1hYKiH/zw/pv969YRuXORDXbn/Ir0Hq3Ib474jzhdI9lMU0hMf9cGk5xvYUtFrxvTUcxzDboM8jGdx2GZLQpzBXzOuZ165PeA4yNeH8PTEJ8kZlFLOIEEOYuUZViPDWsniOf8no3KndoLtsaScwkpsC4TBsWckxHb1mYTfJMgjvQpCXN5Bl/wX3/bZT1z73Dk5Vd6u64V7OEacKfBLn96lsjqcpfcoq6v4V84VyKY4/tg3A+L4oyrpYOz7gVJP/WYm1M+l/Dh+UeCfz/h86kLCWhkIi7e3EFgNCbGGqPI+idq05JMGgxxfn8TTE1+TkC4X80ty8F7cOI3LlMZpy6NfY8efH9OdhpcDf1bkadFHEv/rxnen+2KEOViV+0ub78fjeHzLuVmQ09vl3Az5mW7Jz3QhP9Md8zMd8jM9YH5sOks+mY/zaE6J8i/5J8lfm1BSbkEaC2K/eQS77+FrnY/4IvyCSuXbu541jgB5mD/s645MJq9k6nOAKveF9zI8XnZcDtVXJR/yI/AhM1ic5ENWR7954N/DfMiPAbOSHV4S/dbs0Cm8KO0wB//jdF4b/Uq2cDjE8fLjfQZhK1VuQybg0kpJOYUJZpz4YKlbDuYHX/eR6ofzU16LqrwMZ0Ac77ewTCu1L3our7Uvp/CS9PP1Y7vTpPHzNzA/3xCDqZRshy+LfqX5GEorPX+ZUFJuQZqXQjtM+OzpbIeELz2LJ7FDyWdKz0Yp21kPO+S2wO2Qlx2Xw+srzidxndHPTxWwJH/Fx9KErVS5DZkQ0s/z/KCfd+3Tiqq8DHEdgY/nsRx4GeH8mPR8wtveSsDi6XGedJqgX07AdJmz5umnWeTMTClnpiCnUZWXqYcdHC718RQojrcBnBvnfnomxB3F4nhdYJDmxik/xk5/N6EbF/lQV17epLf07IuvR/s++w4RdE05R+pdF9MgjtcF1w+DVN6ksynvYyd24yIf6sPLFMublwP6E995tX6Crin7uiOwTHmQyhSPA+b2zcsBg1TefF52lUd58zIl3VL2iUdiXpUgl+cV5+iPZvzXQNwxLK6NYWCQyojyY8ro9R5lxO2B9JZsEv2+r01KYzvb80dSOTMFOfi/X/T/UBZPa2c4vl3GxrcXRONbaUw5R/WM4/Z1KJN78dieeee2gmV8lCrP+1GWvPP0WJdczsyUcmY6yunN/Ey15Md37XamoLMkZ1pKOdMc5QxJKWeIo5zpKeVMd5TTL6WcfoKclOu3R6Gv5gF9tdSfHcPifPsz0tm3P+NlSrqlHNN6lwOOaXmfhf3ZsSyujWFgqDSm9enPuD1wvbnueSX3L3Mgnvh3RT7b2MAO6AP4mIevt30c/Hxv7zWR5nuofFLaiPMeLtxzkHYPl/ScYdvDNVPQRfLxeKyANDchzetJWPmAWIGeU4O2adzDFapN++zh6o02/eaofaYs67JnR45Va/vV1fZNwL00adrrEQGxam3fve279r05iIvzEfMgnvg/zfr9T0K/z+37SCb7/6Df5/pj2/ed05wi5LdJSNfXbT/hmNza9qVyean0+zg3lXCd0ntuCm2Iz01h208zN0X58W373G653mna9Peg309Y1mK/j+sz1dD2E86vO7d9wg/V9iutGdvaPu6ReDH0+4HWQ7zn59GG+HgB2z73C20MA0OltZKkbf9IiJPmsHjfixhcRspydj6uFNtFwj7Y2i6kNbeBqvt9vujV4wXtHedsumr1quVntd+0sXXtinPaNnSsalvdumLFhvaNG7nSXNAgdp/H84A8dB23gGlrMDwzS6JflwWCIypg4WZCW0M+sgIWbpySNuHg/36qXE9abKhzwMHGKemFG2l4Q8eO8+gKWLgxgKfHh+9jKmCdC1g8PU/L//dT5XpiedlwDB1XQa9rQK9jWfrjAOv4ClirAIunPx6wTrBgmetRgMXT87T8fz9VrieWlw3H0KwKeo0GvU5gcbMA60QLlgnXAhZPfyJgnVQB6zrA4ul5Wv6/nyrXE8vLhmPo5Ap6LQC9TmLpT4Y4Xs74XUXfjRY8fVYvGeA59CcHlMOxlrN0Ju4Ulp77VmkgRDKo8z+V3e+NQTHhF0AXT3ldnf+pIA/zh4Pi0wRdikIc71d5HJdzmiBHwpoZEOsUyA9/AOCbWI86uKfMU1mcbeNzHvgXskX+YyPMwarcVk52yOOpgjziPz363yDwc7w88J8Y6WQG0U9Fh3cUBZ1Oi9EF+1O0E+IxoRFk91YbIfyCKq//JG3kdJAXZ2+U99mCLkUhjo+leByXM1uQI2EdFRDrVMhPXBtZGKiNHMXayFlV2EbOCdBG+BiqSbiHbSShzTq3EcIvgC5J24hUFzx/2EZOF3QpCnF8/BzXFk8X5EhYxwXEcm0jy6CNHMviXNoI8Y9mbeQqaCO8jLCNSM8rxwryiJ/qrEHg53h54F/p2EaOi9HFXPNxc5Mq1x/bSEKbdW4jhF9Q5faTpI1Iz3s8f9hGThR0KQpx/JkJy7FeuFdnwXJ55nLFOhbyE9dGbgjURupZG7mpCtvINs82IuneG89e0vwC/wZSXBlJtlsU0h8HcdMFOZVsZM/Bsj5xNkLP73ng//247nR3WmwEN1pwnXHBxfdZeoogx2ViOaH/6efq7wg/1MRypbky9HfHC7oUVbnvxIPKJL8qjT1eLFjmmr6HYusHfdt5UZXb0RSQc3xAOTw/WcwZmbAc5OCcpPTrKodjtYGcOL/1HvBbs1ic5Ldofi8P/E8zv/VIhNkIPJ7t9FTS/VQhUprvOQ7i+Hj4eIibzeKw7ltZHB+7YJAW/Sivpg/9w8RuXOTDfHDffhrE9YLPdR5j1nxuGKza80LPtoTPCzyOf08O/Vq9cK/OgnVsQCxay0hZX8H8mgm4YWE2i2tjGBgk30X58d2wIPkubCfIx/sXad1Q0isn4GB7ojhp/Y++wyatMY4AGb5tfoSgr8s8GrcvDxuqd23zhB9qHk1qP7Z5tFmCLkUhDue+pHXZWYIcCQuf6/mzcl/3n8cmk2ftP6VvV4awr7h6ON4i78Rk8upInrTufawgzxzQ0aDK6zBufV5a1+b1FdfmuWzcm+O734Fj4d6c42PyEFcH0vyPbY9CHuIa2Xj9zwf35KF9JX8/uJvnr9G15PP5XEfDuJ58uEflBdmqvH56o+0RfgF0Sdr2pHrg+eO22V/ZbYTXUdyepaOFvKDNHlVBJ7RZSZZUp3wPF9Yp3+jK50IHWPiOFPikOPOf76HDzc7EOyjCMOXcNKlnHnl63OfmexgnT2879HN6SjnTBTlNQjpsQwk3HTvPuRF+QZXnOUkbkjZ/S+WCe1l4WqwbE/CZTdobKe0bebFgmWv6FrBt87tLvUpyuB1ltX8qi8NtTVgOco4IKIdjtUW/KQ/B834+xA3tfN4L63I2i8Pyb2VxR0DcGSxuBrvGID1XUjkYX12c1I2LfBRSblSv+vLDA/14kMqPv0hQK7+e+x8xhCy/vn4ZTSo/PobF8uPjN95vYJDKiL+o5jNvzW2M8jRQdX/Uo/tFjLPab7qobfWqFW0dq9atPa/9+k3tGzvwU23YA2APNz1Ga/yUXJzWJtRB3AyIv0jg46FJSEcyUh6x5fxkg8e7Jmzp1uNdef5wVHakoEtRiDuIXWOLqBfu1VmwpgbEwqN+E7Z071fPZkBcb716lvS1U+nVborjn+lZAXHjWbrDIa7E4ghf+kwPl11k1zzOhHrhHtZ1UZApyYkcXdfTJeXx9uiiEfiS9qS98AR3qquviHtlluslvcLq8qmcPw2dPfP/3vz71+dUub+WVo/rGD76c+IvCvwpRzQnNTEZSpX3rCbw19qnQZx0rKT0qZyEq6MnuZQfxy8K/O2Mz6cupCfApEfd0idp+CwBtR1qf+NY3CSI4+0MdzFNFHSYaMnPFEGHJiEdtsdJ7H5v9N2EX1CpfEtX3z0J5MWVi+TjKa107CAeGeHrgznWuIBY1NekrK+pWB48oN+WbEja8SnNmLQxDAxS30358e27eRnjTGWtXfV+u5oi6IJlZgIexzBFkCN9elUq/0MDYpH9pKyvKVgePEg+CG2Ij5WwXfE218YwMPRWu8Jjxkj3fgJvJKJrbEm8H2Mrb/8DY2Cenj6BLH1K+hCI47Y+DuImCTrlQAbfjcHtHj+pTfz/wVZfHi3JmHUxmLxOlerZlikfjUwuxXnY4Gelzxbwz0bjsaxSu+H8OG6V+i/elqgMpP4L26zkf/mntGkFTyov0rE3yovrgOV1aAWdsbyk8uXlQGUg+aXxgDVewOJlaCsv0rE3yovrgOV1SAWdsbyk8uWfKqcyKKrysiwBllRevD0uAX5K3yDwc7w88P+A+QR8e4T7NazrCQI29405wOD5KAj5aII4ntbg/mx0T1zpDSJpxwnxSycg8N0l+GkPvsuB0qbcLVNVO6OlGXqeZwxS30zl4DpDnwM5hMvL3wS0iWmCjtIu+OMccYm/0m6fOge9+Y4QtKHjBb2l3T7TY+RIuy1NiNvN/xfWlp+J2rLkT7t2EzEcivOw58GSP+VlhP5UarPS7kDXNos7y/nbbrhTmZcxyZTsi++K2uPxtp+0C03acYO21xDDT3hlO8AiZ8v9tc2epZ3dSe2Z5yGtPfPywrfqiL/I8pqBPQ/qbXuWTkWxvY3L3/Q/FuIke86pch/m61/5zrAbUr7tarN/yluc/ePbrsQ/3mL/UvlKu16J33bSQyX7Pw3ieLrpMXLi/DnaP/Ef6mj/JLs37J+XEdq/6wkmxD9b4JdOUpBOD7HZ/2kgJ5T9L/M4NeR0i0xMy/MWZ/+Elwf+4y32P1vQwVYfrQL/bMaD9s/z0ApxPN30GDnc/nl5of0T/6mO9j87uu4N++dlhPZ/BourF/ixvOcI/Hz8jaf6zGFxeCoWL+NWkCP5QVf756ftLEx5ao7N/qVTczh/3Kk5Syz2L7VBaZemqz+y2f9siJN2T6Ecbv+8vND+if8CR/sn2b1h/7MZA9p/K4urF/ixvG3thZdJUZW3DZv9zwY5oez/KLD/HOMbCjJzgkx+D+fwMb2ExfdHtbHrFSye89OnjWmegpe/hx0saWJpFMPg2AltbAnPK4V6uMfxm2LkmVAQ4lz2P3xu1mfOeuvfjhmUg/SkC95DO+4n8A8V+KmsGkD3knIKZ0ltnX/WS6nyvPM43l5JB2n/Q7+E+rmUH8cvCvy40961LoaonraA9m5ohoDF1wBwPoj2QHE/zTHWRr954L9Z8NOEKe3Rk45aJ35pfxzfl0j6DAYdeFrptGfbZ6eJL2X/IX52mucH+w/pLShpLyDxSydBS59vLAI/Lyep/7Ad1z6D6V7v8Ln43rCvu14E9sV3NRO2UgeuffE9KK729aMxPfWR9tn1t+gv2aPtk5fTBD2kk6lsdcs/B2FCwrptkOqW5wfrVjqRX9r7jG2P80ufUS2qcrvHN9h43c4AOdKeO8knSLbAPwn1+cgWTLl8ZUTPNHyNJRf9Ul/Ov3DgUf51OcAj/fk9jl8AXTzlde3XGQTyMH9Uj+btBDq5O3o7YfG6thVz2tZv3LS6vY5DR9x0jaXCUfm9nOqZex6HI2HkOwv+LxHSKQHbxFPNFeF+STmFZrKKZiGS4vjHfwZCHD+DndcmhnpBf9LZWOkT8ISqBCySyetjCMQNZnEtTDbW6yBBDsmuE/gHA9YgIR2VfSV59UK6gYDRKKQr0cXP73r9rcX3v+LNpelffb5hwb5fL/vDon6zvv/VraM+t/3vv3j2AdRZCTpjPQ4EXumXdMd7uCtuUECsooBFZdPM7nvY/HBXb0X4BZWqjXV5q2aQh/nDvA8RdCkKceiDhghyhghyJKy6gFj1gbBMuKiGVcOqYdWwXuRYFMf7+yLE8f4Tz/nh/hk/ylkn6Fdn0Y+nx75HGuNSv8v9us+OH9d+F2doE85Ed/W79SAvrlxSjqW7ZoSLgjzENAHH3rY+syEGi9Lmgb++tP+3CHwmoF1L4xJ+j8rHPFn+c3xP3fHZRvpVyj7WK6ryvFNc1nY/gKVbHv2afA8syTL5bBxPi6tyxL+r1J1ucKmnztKstwmD4R7akFLyLH9v7NDjecRZFcnuOT/tPJTe2M1DHM/PAJafFP5nmOTbeB2PLqke+cmzOMmucCcl8a8tdac7OLqW7Jg/j/H0qoI84qfybxD4OV4e+CeW9v/yVXBJv4Ex8nh5SCtrKO/QUrc820o098NKJbbb4ZLd8vaEdstttF7gx2cim51LtsztvAGwJN/F7QBXASh9g5LrgPDywH9Uaf+vtPPBZudSvRL/sQzTVq+B/JFYr7yssF4bWJxUtlivkh3w+sJ+hNd5f8CSVnl5XbvUK9eP8LBeTy/t/5XqVeqjpD4E+6gzGKatXqkse6NeeVm51KvU3xN/f4Gf1yuuMPO6bAQsyUfzunapV54f9NHEv6S0/1eq16R++ByG2Vd+mI8XsV6lNsP5sV4lO5DKtqjK67wAcTj/yuX4+mipX7b5aOK/vLT/V3qbapCQ3qafVG4mj7TTJFoFOb9j3Yb2aBlEQbAtW5jrwTFqDBPSKwsWT2PLEl8awCInWQ1Knl7HIif+5aX9v7zIsQhRH5dH5IRNxnkhjfBDPSJXGnriY5KtmUldDNZTJTkBTdWEs2LUyAnpVQUs+m96fxo18+rGUb1tJIBpDdFo0XUkQPwbS/t/pR6j0pMZehTbSgXXR8p/M8TxdANj5LiOUIj/5lJ3Xm09GcnujZ6MlxH2ZNJMoTSjQvwtAj9fScERCl91xebHy7gZ5FRq5ri/QLJT6UlZsi/bSLuSfZFtSk+lNvuyzYoEsoXBfW0LVDaSLdhm1NAWpC6W+wS0hQGCHJwZMwFH2/yX0hCuCVQfJmD98Xe9eX2ZMIDdrxew+kM64n9Taf8vDV/4KJLSFwX5fPSoYvTm9+qAvyDwFwR+Uz6vLnXrLOmJ/RfPa73Az4c/nP9tpW6Z74iucf8vl2fufcjCl4v5lXTm+tjKqF7gJ9kDBH6K4zsaeJvkPLy8OFaBxXP+D5b2/1Kd8Prm7RLl86dIFaN3XH+MWPXCPW477yntvy6we4TlOzQ0Afef83tc9gDV8/wF+nXZU/+h42acNOiSQzuHQPpQ+IO+8LGzn/7z+kMr4fP9cin3tzeQ32wQIikOZ414HLetixkfBhy7cp0N/vxJ3bjIh/rw9tg/BlMaS7QDL+W5TsBFf8HHFVhetFKFM4/fLHWn+VJJxqtTPcvVhCui36zrFv0cD5Xqb5NH/fF20R/ieH/fBnH4mKYiHX5Y2n/dV22ht8tLsnepvFZAnDQLystLqo+4FXaOl8bH7X7mX9+9a8uo3/r4OJTf4KB3LrDepz54496m497/wd7y/Y8MfOKMTz3Y+HKfcqFniwaQRdfcXvh9bt9tLJ7z/6G0/5faFB8beLQphfnhWJL+9Rb9cVbchEtj9G+asP/X2PufSj3lSW14sCrPJz7z8LGKiy7E//fS/t9K8wCkV8pnv7z07MfHrC4ri9KYn/gHCvz8uYvKRHrWd5lN52WKU6hURg3KvkqC9tA/sgdp1prbJs6487w3Qpy0eoi7N0xoi34Nz6RIj5TvTfbH/ogHHJvxPKI9SL5zAOjE43hd+o4X+PuZkyd04yIfBck/YHvtL+RDasv4jFQv6FVt7Y5sX1rJRXtzteH+EFdvkcfLoZHlgWwY+yNpF8Nylm7KhG48Xu7SvKoJ6E+J/zTm26dF19LuI7QHyU+gLkrJfgjnrKT3jqXxI9ULtXdurx625fxVNMIvqFT+JYf+luRhHeGuxITjhDz2sVyeVA/NSi5TLh/nRyQbsfmTeoiT/InU/rBt8vaHfaPU/9vaH1/PcRk3xa1ZUFrsJ8+Y0J3uEmhbkq+11ZvtPU6b7+O6SmWP8+4FwObXAy1yJL2aBP6BFr24T8Z3FvFtJVseXPuqQGPEfr67JqVysa3NVXqTDNuI9NaXb9+Gaw5SH1+pb7skpo/i+ZB20khLzrx/o76P95c50IXL4M/116me/El3VF7JdKi0W8eEBQJmTpChVHm5tIEOxLeC6fAfk/ZfS7vkqM5TzukM4rZDQeo3CV86byVJvyk910hrjSmfA5psdiqNd6R5LGzr1B7inrH4Mznnvz6qW9yhZgLu5pfGFVJ/YXRbPaGn7mnWcmzjOO53uf8wgY9jbwAfIe1M5Wlxlz3xb5nQne4m6Gsl2xyg7D5D2gqE9tEQwx+3w+9Wi8+Qxu9crwUxmNsZJp71IdmFVH9oq5xfmtOWxkw4DyX5sl7cUSqeRcbzH9cuSZ+4NkP80pgMx+cmFIFf6i+5Ljh/ZrNFE7CPjJuXpnaVdA715EPuOWjMl69v6q052n75Ma8tvf/KxT5ztNLYuw5weXnXqXIfd1n0a/N/KZ8vnb9lg8+XadZt49q79HwpzWnh8xJvH9jfSG1H2geRFZbU3rEuEz5LO88VEH5BpbKdnK9/kuYgcW6V+y4sf8mvSc90LxYs3v5tc0gu9SrJsY0De2ssheuU/QPK4VjLQU5jQDkcqw3k5AUdTP4/M6Ebl9dx3Bgpbs3oBxO6031uQk8e0v0LjOfr0XUjk62Ud1suSPPWFKT1AbRbaa4Ez3SS7IM//zdCHD8hpp3xYaiH/7wcXL/fIZVlwm3rVVWWruVFeTWYPl/b5vZGeeLPK7Z2wOViO/gfZuO/hrYlzSFK7ZnuV1q3xGcF7p8pbaOQzsMmBmLd8iDVLdoEr1u0Cf6qC9oE33+M7YvvucWxMQ+SvVA5+LSvX8f4SJKBPhKfH/KCvtz3VlqTStsvcCwcz/VGvy3J6a3+tB3kSPVg8v83qEM+hyrV4droF+eMRk7sTvdPwKw0F0CY0vN7/5h0qJdNVl1CWXUxsmzzDNLaVAbrig0uNsPxe3NdUVrn83nuw7LlcVyOy7Ma2kxaLJe5HFcslzkwVyzc38HzTPUxQJDF065m97D8yT9Lb5nytNjvj4n8gqnr742QMfvF5HdtDOY4honzjqHHEji3KI0lpHS8L5TSor/gY0TsE5qY7igH1yYHwP+CgCM953HMuHK0vfVuW1esVI5NkE5a+49Li750ANMPseLWcZWAi2uQDZZ0jSCTy7kPcGxv+0vt33X8xPtt6tOl8VMvrM31576G68/vcfys1+aw3+VpbWO0nBBn6+NqWOGwqmWN8KyJ3Wl4urg1wpXRL64RXsrGx0sBsx7ygb6W2r20poh7m6R3t7l/VcCXcu2rv++pG5XWmM6NfqX9HTmIQ3/FdZDKiI9/JBuVbIfu28a5Uj1IzxW2/Yu9uJ+1fzWvT+L+uyzWJ89i40eX/tHX37jaGLZr2zNjTtAr5Z6TRpd8cfyCkttWSTmFnG/bk/a44Hq2bf+L696UkPtcaljhsGx9QKV+eyf0sTkWZ+t38sC/l/Xbu6NrqR/m7/2jTKXs/srWLmzPXL59kuRbfd4942XH83ZN9It7kO8TntN7sZ9r7Ot+jspE6ufi3iviMqV+i9vtTqHfwr0WaDN0r7YvpbysTKjtS/Eu29q+lBcZFm//tX0pleVU876Uz8O4ptK+FOybif8pNq754sSePKT7lxnPt6Lr2r6U7sDLwWfdHMuyti+lnA/zwe0t5L6UZ5iNPwttq7YvpWfci2VfyrMxPpJkoI903ZfyeWH8LT1b4fMTf0dTAb8JbSye8/8F/ETC8ZN4dgd//xD199l3II0nKEjzNzmIk9bDpfEbzu9K7crVpiivRq/HHGzK5X3jBiEftneRs3jf2IQVoDN/NsQ5AxNsaw0h3r3Y+pUND/1zyHv/t1rOxxke1X/KZ6I+Ox/n8Eh/YzujJvWUJ7W73jwfZ1wkv9J8D/c9hENxPnMK0nzPgX4+zmGsDvryfJx50K4O1PNxfPqXBiEftfNxesa52jD2ifUWeXH7aMiG487HCbFWKLUjegZN2XbqpHGjck+fc5kPTthf/sulnDh+qPlgaQ5Rmg+m/BWSyfuneeah51NpHIdlx+Xg2Dzhs+A/JR/An81M4LbPn7X+Av474RzFP1Pa8D8qrfNdNqkbl5edtM7H84H95pVsHPVyGEdxe+TrfJJvRp+AewM5L47P8DlBKjfOL+3Jlfw9jtOuZmMElz25Ut+DmKuEsZ/N/0ttjvgrjbtw7dK2J5frjvNk/J5UPzng5TqY0C7oFPdf2lsap4NtDSofg4ky0R5MsO2P4e3mMlaXeD510nOKpL5EgT7S+Eca/72c8WGQxmOks8HwOZ9aaksh+36634/dR7n1wBu3jiuVWW+tveDaUX+L/jnAsa17Y3uTfl31zQn6Sn1JWjkcaxnI4fXM+6x90GdJ56/wtJdHvzg/+ADrs17h2Gehr+B5uJLdi3s3JafKfasJ+PyKfRPy9Ic8Ef9rhb5JmmPk77C93mEMII27cAzwcVaeb7LMpeA8vvT8qVR5f8p5TWiPKYN3Mj3eNileFj6zSnk0GO+aJPNxHTgfYkh9o8s5bLZ5L6Vk39FgkSH1V7Y9tVJ/Kq0FDKgQL+0jUMK9OoG/0rhgQAy2hCud3SX5Z5y/yQlx6Ht4fqW95+jT0G/tc5h7pP+2MVd/i+4u450Gi+5S+XH/kXROe8+qsf/3odnH3e0zpy310byP+IJDH8HTxp2x+yTzJV+COpL2jNXO2PWWVztjV5XvNZXmJF9qZ+z+iLWtP1r8n8s+Utu+09oZu/H5s813B1pnqp2xy+L4uPKPMX0Uzwf3f65n7H6BzT0qlXz+O8cwSSfKJ39+530Sl8v5+Dx0Al266mUAk1kP+nH8PPAPmNwTR3oOkPYIE7/0Tbd6Qa70/b+BnliNgNU/BRa3YeTvn1AvCasBsAoCluQLTd39I7JXU1f0GeGV7R3LNravXdG+YdnV6zYs62hbuXEkqJFwSj2HW+780nfOlx5hPOTPT7kFNO2SQldVzWXpuS58i+Egdk3m2GRJT3HzBLxGVe4qPfSem3IKta5FlcvnbsLkkR5BjGmTva3fsOqGto72Be0d579gkPPXbbhAmyPOQubgP8Ujny0YNdL1tpvnkwzuHesFzjz8Eg99bCzp09z3v/D8tx898+g1lZ7mqKVvLG/ppEIft/R5KVv6vJQtNZeyxYgtHXUxQZpApjT9VXer5h4hpRdLWzaqRcV7LmrNtHFWaM3nQ2tGeGzNOeE+iUrZYuelbbHDo9/ebrFTouu16zpWXX3TsuUb2nVBrli2dtPq1auuXqXb77oNbctXty+7cUPb+vXtG2qteD97rRXHB99WfHB0HbXipS9Y4pz9hriU7BCF1Nry/sALdmJ0jW15XUc7NOOjI84+bsZLUjbjJSl30hRSzqqKzViaUSdLWMzSLgaZtqYurZ7ScDylK5qfdmbZZdY64ayu8wmOuCMu7ay1tCMu7gRH4uHyeJw0U0Rx0tub5ncs48O6te26OAvi+CzKYoY/hV1Pja5TdhtLerPbyDF9KUizGXhyUKPAT3F85gJ3Mw9g96WZJHyzgvgPjX6lGSOcaeHycaZF0ts2k+UzMzOe6Uzd8QyGh7ZO9l8v4Jnu+6DoWuy+ddejIOAOHOzJ62J0wXS426ifwKcssuJ4Ka8BRg5L0o4cjop+e3vkQGW8oW3tinVrXmqD/IQeLdNJOWkgb5uUS6nb3JSjhlxLjHwTpEE+jYE3daxavarjJj3xdt4LtjZ/VfvqFegCeCHZwoE0uKdu42pTYMtWt2/cuKzjmra1o6LbfdxWF6RsqwtS2mNdyolksa1Kk8pJR+l8sv2F97ZZGhPmM1mB2vj8LNr4UJ6AxTeoeH/XpGS/TLgpm/SCtE2aRjRZ9brLlm28fkPHd6N/fdySz03Zks+tlqm1pSy969QapcHWOpqlMeFshpeDuHMEuSnzdHZvLpNRfc9Jht1lb3PZzZJyC5R2npD2oKOnnLj+NV8f9uTUiT+Y/ZmHD39g1HOTT3nyYwvf8uxfv/xnlnZ+Mr3HUPoFguwKoR+lXSinze2YuPHVhbtzSx7bPvPRpgGP/aL1wTPmfPXxnXeMLz78IKVdJKSddkrh2XfcsW2X+tFDv7rnj9M+OXvmkHGtQw7/1uu/PWbthstGPUtpzyRByivPYyn9WcnSd5U5n7vi+lcIXbayhN0sKaeQox6nleli5Pf1KR0m8KVxDNjzcJ0N/gKGi3yoj/SmCGLmgNeEJcCLb8zEncLC4/qp8vKiNp8H3mNZmqkxeHWq3P9SWWRdtzj/w0Ol+ruB4SIfyuR9Mr7RijqUlFuQdqHjaJX7fcI3eTgNdMi6LfV2edverOKj9MUQJ/WTvLyk+qyLwQ88uj037eiW+sveHt1yX93bpwOQf0u5HlQ7HaA71E4HAJmVTgf4DOhQTacD0HjP1NvlDJeXne/pAG0sHb3l+VI9HWBl9GvkPRGD6Xs6wLUM8/8B5kv1dADpbde4/9VwOgA9E1c6HYDalPR8kvQNi5CnAyxkfBik8RY/HcDn+cR1nToX86uUve+n+7XTAeT2Jv266psT9O3t0wEWgRxez7zPupfhcv3iTgegMS6++flKlu7+6DrN6QB8Hsb3dIA5wC+dDsB54k4HeF30y/sm6XlsDsv7G0B20tMBPsHSPRhd9+bpAEtAD+J9iKV5u0UWzv3GnQ7w7hg+rgPnQ4za6QDleVPCvZfi6QA4Zog7HYB8WjWdDoC6x50OQP6Dyqb2NqJS3wAcye/Y9nDV3kZUvfY24uej6zSnNI/5ZPvXT3/yl09WmvdKiv+TxnPm1X34rvGV8GlXjXmbcv9+rWVX3dTRvvGt0f0+Xj++NOX68aUvpl1bLex6GPDzPqFelfv1KnmFcoQ054X7mxGbx/F+lD830utXfbxTbYRtF0vatW+a597G8FBWzh3P+ryVsp5HchumgM9rHL+gUpV71/xxHuRh/rAdJJyvHpGD9FyeZKPSGIeXLR/zNMRgxZ2CMin6lb4GFbe/mesrvWtg5I4D3XtjPQXbeJw9+spJWb8l28nrvXhy0gTXdpPFyUmSXaRcVyrlID2XJ82r4unmWLaGcAyNWHwMzflPiH6lr7W5nBgUN/47GnSX3t9P2m6k57uUazhpbXZEOpvIiWt5yjl99zooL1P+7Dub3ce4eiEtzn0R/zyWjvpw1zUo2zoRvv+D/P1AH+JfxPSh0+dSrklav16VE+7VCzx8nXJndO0yn8/zzJ+9uT6etiGeFoW+mp/01Bu+mr8DlqJuuny16+lWlL9ByeSV+Bp53Lo4LzvbqVguJ1+ZwOeNyaZtbUg62SxuvTJuvhnbF/HTOrOx492AGfqEsQbID7f3QZa88vElYSvgS7cHSI00+b+DycH84xqXLa8mYNkMFvgHAY8JReCX7IznsQkwpHVuaT4S7aZByXbD/TbnXxf9vnBqHegn1U9O0EV6hsf5Upf+jvTguPyX0hCuCY0CP/dhFEK9x3pL9FvN77HewHROuafu0hzI9N1TtwN0xbFHSdmDz546mmvo1bfqensSUzIs7Ki5cdYL/HxjDee/J/rliyw4WcXlvXC0uYUvF/Mr6cz1sRl1vcBPsgcI/BTHB4HcyXMeXl4cqxAjjxZzqE54A+UDA5SPE8WS3nEdMGLVC/d4Y6eFe744TFi+AzYTpIGLZFtp2sLX+//qucf/c+W9L/IJ/eUpJ/SX1yb0M53QH/8Sn9AfX5vQfyGUXPojjv8im9Afn4P0XF5tQr/8Xm1C3ynUJvRBn9qEfk8dq3BCf3xtQl/u02oT+rUJfY5fm9DvqWttQr+bp4on9Eu1Cf3ahH5tQr9b55QT+stzILM2oa+SZaQ2oV+b0FeqNqFvguuEPp0WZib017Zv7ljWtn69+QbKsraN0VdRaqc2vhBqpzaWh0xPbTStk84a7/4k0lJts63r11/QtrJ14/4PqmDPI3lJpcqnYTBdncDHgzTs4rqnHBa8aE6GpCXBFas2tC/vWHVD+7JVa29o39BBcqkchjOcJH5jWLL04jlPw9k14aJ/Ux4yKPC6woAjBhySon/0kJ+L0yMnMNOy4TB2bzjEdddlxzq9zrti1eYhoGXCPjDtW5hd1pBwcrJesgb+QMTf7iR8BdckM+VbnANsD2QFQS7y5FV5QG+Vh/v1DryS1VCc9ODlMuaUHtRwEpDz8x7KhH4xWPgQifaRto5aBJmkG42duOfraF/ZvmHZ9ZvWdaxqX9uBbTvhVF8dpR+YLL3oA/noGKd30VfxkIv5L/WXcbw5C65kFYRJtcH1pXz8f9wED2Um5hEA",
1931
+ "debug_symbols": "7P3Bsiy7bmWJ/sttq+EAQYDQr5Q9S1NlqcpkJpPKlMrXkeW/v3C4ExNr7RtcXBFxXqeqc/c4556N6U46ZtBJOPlff/s//vl//5//13/7l3/7P//9f/ztH/+3//rb//4f//Kv//ov/9d/+9d//+//9J//8u//9vi3//W34/wfkr/9I9Gw//UPf6Pzn9sR/6yPf+b4//Vv/ziYH/+vTRgntAf4CfL4D4+Ax19p+VfI539wzP/gBJrAE9oEmdAn6A1y/i06HvHljO+Pv0L/8DeX649+/aHXH3b9Ma4/PP6g47j/pPtPvv9s959y/9nvP/X+0+4/x/3nHY/ueHTHozse3fHojkd3PLrj0R2P7nh0x+M7Ht/x+I7Hdzy+4/Edj+94fMfjOx7f8dodr93x2h2v3fHaHa/d8dodr93x2h2v3fHkjid3PLnjyR1P7nhyx5M7ntzx5I4nd7x+x+t3vH7H63e8fsfrj3jng9b1/tPuP8f95yOePv7U4/6T7j8f8c7nT89453+oMqFP0Ak2YUw4r1LOJ/6YQBN4QpsgE/oEnWATxoQZeZyR+wk0gSeckc+bHzKhT3hE5gCbMCb4DX5MoAk8oU2QCX3CjOwzss/IZw6d2c5nEl1AE3hCmyAT+gSdYBPGhBmZZmSakWlGphmZZmSakWlGphmZZmSakXlG5hmZZ2SekXlGPrOL+wk6wSaMCX7DmWIX0ASe0CbIhBm5zchtRm4zcpuRZUaWGVlmZJmRZUaWGVlmZJmRZUaWGbnPyH1G7jNyn5H7jNxn5D4j9xm5z8h9RtYZWWdknZF1RtYZWWdknZF1RtYZWWdkm5FtRrYZ2WZkm5FtRrYZ2WZkm5FtRh4z8piRx4w8ZuQxI585yOMEnWATxgS/IXIwgCbwhDZBJszIPiP7jHzmYKMT/IJ25uAFj8hNT+AJbYJM6BN0gk0YE/yGMwcvmJFpRqYZmW7faNQn6ASbMCbcjtT4mEATeEKbMCPzjMwz8pmDzU8YE/yGMwcvoAk8oU2QCX2CTpiR24zcZuQzB+U4gSbwhDZBJvQJOsEmjAl+Q5+R+4zcZ+QzB6WdIBP6hDOynWATxgS/4czBC2gCT2gTZEKfMCPrjKwzss7INiPbjGwzss3INiPbjGwzss3INiPbjDxm5DEjjxl5zMhjRh4z8piRx4w8ZuQxI/uM7DOyz8g+I/uM7DOyz8g+I/uM7HdkOY4JNIEntAkyoU/QCTZhTJiRaUamGZlmZJqRaUamGZlmZJqRaUamGZlnZJ6ReUbmGZlnZJ6ReUbmGZlnZJ6R24zcZuQ2I7cZuc3IbUZuM3KbkduM3GZkmZFlRpYZWWZkmZFlRpYZWWZkmZFlRu4zcp+R+4zcZ+Q+I/cZeeagzByUmYMSOfjwDYkcDKAJPKFNkAl9gk6wCWPCjGwzss3INiPbjGwzss3INiPbjGwzss3IY0YeM/KYkceMPGbkMSOPGXnMyGNGHjOyz8g+I/uM7DOyz8g+I/uM7DOyz8h+R+7HMYEm8IQ2QSb0CTrBJowJMzLNyDQj04xMMzLNyDQj04xMMzLNyDQj84zMMzLPyDwj84zMMzLPyDwj84zMM3KbkduM3GbkNiO3GbnNyG1GbjNym5HbjCwzsszIMiPLjCwzsszIMiPLjCwzsszIfUbuM3KfkfuM3GfkPiP3GbnPyH1GnjnYZw72mYN95mCfOdhnDvaZg33mYJ852GcO9pmDfeZgnznYZw72mYN95mCfOdhnDvaZg33mYJ852GcO9pmDfeZgnznYZw72mYP9zMHOJ9iEMcFvOHPwAprAE9oEmdAnzMg+I/uM7HdkPY4JNIEntAkyoU/QCTZhTJiRaUY+c7C3E3hCm3BG7if0CTrBJowJfsOZgxfQBJ7QJszIPCPzjMwzMs/IPCO3GbnNyG1GbjNym5HbjNxm5DYjtxm5zcgyI8uMLDOyzMgyI8uMLDOyzMgyI5852B/jeT1z8AKacEa2E9oEmXBG9hN0gk14RNazv2I+5oSYkAk4Z2TkBJ7QJsiEPkEn2IQxwW84c/CCGdlmZJuRzxzU85rPHLxAJ9iEMcFvOHPwAprAE9qEGXnMyGNGPnNQxwljgt9w5uAFNIEntAkyoU/QCTOyz8h+R7bjmEATeEKbIBP6BJ1gE8aEGZlmZJqRaUamGZlmZJqRaUamGZlmZJqReUbmGZlnZJ6ReUbmGZlnZJ6ReUbmGbnNyG1GbjNym5HbjNxm5DYjtxm5zchtRpYZWWZkmZFlRpYZWWZkmZFlRpYZWWbkPiP3GbnPyH1G7jNyn5H7jNxn5D4j9xlZZ2SdkXVG1hlZZ2SdkXVG1hlZZ2SdkW1GthnZZmSbkW1GthnZZmSbkW1Gthl5zMhnDhqdwBPaBJnQJ+gEmzAm+A1nDl4wI/uM7DOyz8g+I/uM7DOyz8h+Rx7HMYEm8IQ2QSb0CTrBJowJMzLNyDQj04xMMzLNyDQj04xMMzLNyDQj84zMMzLPyDwj84zMMzLPyDwj84zMM3KbkduM3GbkNiO3GbnNyG1GbjNym5HbjCwzsszIMiPLjCwzsszIMiPLjCwzsszIfUbuM3KfkfuM3GfkPiP3GbnPyH1G7jOyzsg6I+uMrDOyzsg6I+uMrDOyzsg6I9uMbDOyzcg2I9uMbDOyzcg2I9uMbDPymJFnDo6Zg2Pm4Jg5OGYOjpmDY+bgmDk4Zg6OmYNj5uCYOThmDo6Zg2Pm4Jg5OGYOjpmDY+agzxz0mYM+c9BnDvrMQZ856DMHfeagzxz0mYM+c9BnDvrMQZ856DMHfeagzxz0mYM+c9BnDvrMQZ856DMHfeagzxz0mYM+c9BnDvrMQZ856DMHfeagzxz0mYM+c9BnDvrMQZ856DMHfeagzxz0mYM+c9BnDvrMQZ856DMHPXJQThgT/IbIwQCawBPaBJnQJ+iEGbnPyH1GjhzsJ9AEntAmyIQ+QSfYhDHBb7AZ2WZkm5FtRrYZ2WZkm5FtRrYZ2WbkMSOPGXnMyGNGHjPymJHHjDxm5DEjjxnZZ2SfkX1G9hnZZ2SfkX1G9hnZZ2S/Iz8W2Y8kSuKkliRJPUmTLGkkpQalBqUGpQalBqUGpQalBqUGpUbkpUVxwJFESWe9whHUkiSpJ2mSJY0kn3Sm6E2UlBotNVpqtNRoqdFSo6VGSw1JDUkNSQ1JDUkNSQ1JDUkNSQ1JjZ4aPTV6avTU6KnRU6OnRk+Nnho9NTQ1NDU0NTQ1NDU0NTQ1NDU0NTQ1LDUsNSw1LDUsNSw1LDUsNSw1LDVGaozUGKkxUmOkxkiNkRojNUZqjNTw1PDU8NTw1PDU8NTw1PDU8NTwqRHVNDdREie1JEnqSZpkSSMpNSg1KDUoNSg1KDUoNSg1KDUoNSg1ODU4NTLPKfOcMs8p85wyzynznDLPKfOcMs8p85wyzynznDLPKfOcMs8p85wyzynznDLPKfOcMs8p85wyzynznDLPKfOcMs8p85wyzynznDLPKfOcMs8p85wyzynznDLPKfOcMs8p85wyzynznDLPKfOcMs8p85wyzynznDLPKfOcMs8p85wyzynznDLPKfOcMs8p85wyzynznDLPKfOcMs8p85wyzynznDLPKfOcMs8p85wyzynznDLPKfOcMs8p85wyzynznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfM8yogGB1nSSPJJkecXURIntSRJ6kmp4anhqeFTI4qKbqIkTmpJktSTNMmSRlJqUGpQalBqUGpQalBqUGpQalBqUGpwanBqcGpwanBqcGpwanBqcGpwarTUaKnRUqOlRkuNlhotNVpqtNRoqSGpIakhqSGpIakhqSGpIakhqSGp0VOjp0ZPjZ4aPTV6avTU6KnRU6OnhqaGpoamhqaGpoamhqaGpoamhqaGpYalhqWGpYalhqWGpUbkeQsaST4p8vwiSuKkliRJPUmTUmOkxkgNTw1PDU8NTw1PDU8NTw1PDU8NnxpRuHQTJXFSS5KknqRJljSSUoNSg1KDUoNSg1KDUoNSg1KDUoNSg1ODU4NTg1ODU4NTg1ODU4NTg1OjpUZLjZYaLTVaarTUaKnRUqOlRksNSQ1JDUkNSQ1JDUkNSQ1JDUkNSY2eGj01Is97UEuSpFNjBGmSJY0knxR5fhElcVJLkqTU0NTQ1NDU0NSw1LDUsNSw1LDUsNSw1LDUsNSw1BipMVJjpMZIjZEaIzVGaozUGKkxUsNTw1PDU8NTw1PDU8NTw1PDU8OnRhRH3URJnNSSJKknaZIljaTUoNSg1KDUoNSg1KDUoNSg1KDUoNTg1ODU4NTg1ODU4NTg1ODU4NTg1Gip0VKjpUZLjZYaLTVaarTUaKnRUkNSQ1JDUkNSQ1JDUkNSQ1JDUkNSo6dGT42eGj01empknvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5rllnlvmeRSFOQX5pDPPb6IkTmpJktSTNMmSUqOnhqbGmece33jHl7MXtSRJ6kmaZEkjySedeX5TalhqWGpYalhqWGpYalhqWGqM1BipMVJjpMZIjZEaIzVGaozUGKnhqeGp4anhqeGp4anhqeGp4anhUyMKyW6iJE5qSZLUkzTJkkZSalBqUGpQalBqUGpQalBqUGpQalBqcGpwapx57vHl85nnN0nSqaFBmmRJI8knnXl+EyVxUkuSpNRoqdFSo6VGSw1JDUkNSQ1JDUkNSQ1JDUkNSQ1JjZ4aPTV6avTU6KnRU6OnRk+Nnho9NTQ1NDU0NTQ1NDU0NTQ1NDU0NTQ1LDUsNSw1LDUsNSw1LDUsNSw1LDVGaozUGKkxUmOkxkiNkRojNUZqjNTw1PDU8NTw1PDU8NTw1PDU8NTwqRHFajdREie1JEnqSZpkSSMpNSg1KDUoNSg1KDUoNSg1KDUoNSg1ODU4NTg1ODU4NTLPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcZ57zMfOcj5nnfMw852PmOR8zz/mYec7HzHM+Zp7zMfOcjyM1KDUoNSg1KDUoNSg1KDUoNSg1KDU4NTg1ODU4NTg1ODU4NTg1ODU4NVpqtNRoqdFSo6VGS42WGi01Wmq01JDUkNSQ1JDUkNSQ1JDUkNSQ1JDU6KnRU6OnRk+Nnho9NXpq9NToqdFTQ1NDU0NTQ1NDU0NTQ1NDU0NTQ1PDUsNSw1LDUsNSw1LDUsNSw1LDUmOkxkiNkRojNUZqjNQYqTFSY6TGSA1PDU8NTw1PjchzD+pJmmRJI8lvinq4myiJk1qSJJ0aPUiTLGkk+aTI84soiZNakiSlBqUGpQalBqUGpwanBqcGpwanBqcGpwanBqcGp0ZLjZYaLTVaarTUaKnRUqOlRkuNlhqSGpIakhqSGpIakhqSGpIakhqSGj01emr01Oip0VOjp0ZPjTPPH49F4AB64pnqEwnIwAYUYAcqEGoKNYVa7HdFRyABOdHp2omKo9aMbjzF6Np2SYEGHECfGNVlEwnIwAYUYAcq0IADCDWCGkGNoEZQI6gR1AhqBDWCGkGNocZQY6gx1BhqDDWGGkONocZQa1BrUGtQa1BrUGtQa1BrUGtQa1ATqAnUBGoCNYGaQE2gJlCLPeJIAz0xdoq7kYAMbMBQs8AOVKABB9ATI91uJCADGxBqkW40AhUYah44gJ54pduFBGRgA55q5+6LHIVqExV4qsVmjFGrNtETY8s5juuNTeduZGADCrADT7XYjyqK1iYOoCeev7sPYw8kIAMjbg+MuPEQhD+0899GVdrD3gMJyMAGFGAHRlwPNOAAemL4w40EZGADCrADoRb+cG7pxFGnNvFUO3dz4qhUm0hABjagAE81kUAFGnAAPTH84UYCMrABBQi18AeJbgl/uDHUNNATwx9uJOCp1qMdwh9uFGAHKtCAp1qnQE8Mf7iRgAxsQAF2oAINCLXwh3M7Co6KtokEjJaMRy784UYBemLkfI/ejOzu0TqR0ucuCxxFaRMNOICeGCmtcZGR0jcysAEF2IGnmsZdRErfOICeGCl9IwEZ2IAC7ECoxfBAox1ieHCjT4xiNTp3c+CoVpvIwFDTwFCzwFDzQAUacAA9MdL/xjOucaAAO1CBBhyJkYXnR2UcBWU3RhZaXG/km41AAXagAg04EiMvLK438uJGT4y8uJGADGxAAXagAqHWodahplBTqCnU4hfyrHzmqO56rBYEnhFGdHfkxY0EPCOM6O7IlhsF2IEKtMRIkREdEMkwogMiGUZcWSTDjQqMCNHUkQw3emIkw40EZOCp5nHHkQw3nmoeNx/JcKNNjNotOpdMOAq1HtOUgQKM67XAiCCBBhxAT4wHPF46omBrIgNDTQMF2IFQI6gR1Ahq8ft2I82+iNqtiQ0owA5UoM8ujMqsqwujNOvqrKjNmtiBOvsiyrMmDmD2ZlRoTSQgz36LIq2Jkp0lHahAzy6MfLv6raM3I9+uLox8uxqqo3072rejfSPfrs5S9KaiNyPfrs5S9KaiNxVqCjWFmkJN0ZuRDB5NEslwoyfGfqdHtE7seHojAxtQgB2oQAMOoJ94Xk6UPU0kIAMbUIChNgIVaMABDLXzMYoCqIkEPNXinThqoCYK8FSL92O99ki90IADeKrR+cDotTNqC2xAAXZgxO2BEVcDI64FemLsVnwjAUMt7jj2LL5RgB14ql27sseWxfHWEcVPHJsnR/UT3xv9nhKxg23UP01sQAF2oAINGGrR6rGR8YWxlXGLy4nNjG9kYAMKsAMVaMAB9ESFmkJNoaZQU6gp1BRqCjWFmkIttjyO16gojprIwAYUYAcqMOJGZ8WGxzcSkIENKMAOVKABBxBqDjWHmkPNoeZQc6g51BxqDjVPNTsOIAEZ2IAC7EAFGnAAoUZQI6gR1AhqBDWCGkGNoEZQI6gx1BhqDDWGGkONocZQY6gx1BhqDWoNag1qDWoNag1qDWoNag1qDWoCNYGaQE2gJlATqAnUBGoCNYFah1qHWodah1qHWodah1qHWodah5pCTaGmUFOoKdQUago1hZpCTaFmUDOoGdQMagY1g5pBzaBmUIOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBS+zyEgkUYAfadES7DORCnziOA0hABjagADtQgQYcQKgR1AhqBDWCGkGNoEZQI6gR1AhqDDWGGkONocZQY6gx1BhqDDWGWoNag1qDWoNag1qDWoNag1qDWoOaQE2gJlATqAnUBGoCNYGaQE2g1qHWodah1qHWodah1qHWodah1qGmUFOoKdQUago1hZpCTaGmUFOoYdgxMOwYGHYMDDsGhh0Dw46BYccwqBnUDGoDagNqA2oDagNqA2oDagNqA2oDag41h5pDzaHmUHOoOdTgJQNeMuAlDi9xeInDS/zyEgsUYAeGmgcacABD7Rwg++UlFxKQgQ0owFNNOFCBBjzVJK43vOTC8JIbCcjABjzVYgY5Kr8mKjDUeuAAemJ4yY0RVwMjQjRU+MONAxgRoqHCH24k4Hm9Ma/s15kqFwqwA0+1mAr262yVCwfQE6/zVKL5rvNTWqACDRjXGxKR8xdGzt9IQAY2oABDLRr1OlXlQgMOoCdep6tcSEAGNqAAoWZQM6gZ1AxqA2oDagNq17kr0d2R3TE7HpVcEwfQEyO7byQgAxtQgB0INYeaQ82nWouyrokEZGADCrADFWjAAYQaQY2gRlAjqBHUCGoENYIaQY2gxlBjqDHUGGoMNYYaQ42hxlBjqDWoNag1qDWoNag1qDWoNag1qDWoCdQEagI1gZpATaAmUBOoCdQEah1qHWodah1qHWodah1qHWodah1qCjWFmkJNoaZQU6gp1BRqCjWFmkHNoGZQM6gZ1AxqBjWDmkHNoDagNqA2oDagNqA2oDagNqA2oDag5lBzqDnUHGqXl1hgByrQgAPoE+nykgsJyMAGPNX0COxABYbaCBxAT7y85EICMrABBdiBCoQaQS285Fzia1FONpGAAjwjnOuQLUrFJkaEs32jWGwiARnYgAI8r9eiScIfbjTgAJ5qFsLhDzcS8FSzuN7whxsFGGotUIEGHMBQkxPDHyyuN5zAoo/DCW7sQAVGXA884464i3CCEZcTTjBCLZzgRgY24Kk24nLCCW5UoAFDLa430n/E5UT6j+j5SH+Py4n095CI9L+xAxVowAH0xEh/j2uI9L+x5WM08ERFzt+oQAMOIJ5Ux5PqeFIj52+EmkPNoeZQc6hFznu0WeR84HWO4o1xQxbIwAYUYAcq0IAD6ImR8zdCjaAWOX+WpbbrjMUbO1CBBhxAT4ycv5GADIQaQ42hxlALfzhXmNp92mIPJCADG1CAHahAAw6gJwrUBGoCNYGaQE2gJlATqAnUBGodah1qHWodah1qHWodah1qHWodago1hZpCTaGmUFOoKdQUago1hZpBzaBmUDOoGdQMagY1g5pBzaA2oDagNqA2oDagNqA2oDagNqA2oOZQc6g51BxqDjWHmkPNoeZQ81RrxwEkIAMbUIAdqEADDiDUCGoENYIaQY2gRlAjqBHUCGoENYYaQ42hxlBjqDHUGGoMNYYaQw1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlsVFcO+tWWpT6TRRgByrQgAPoiaeXTCQg1ARqAjWBmkBNoCZQE6h1qHWo5Qxnk8tLLgw1CuxABRpwAD1RD2CotUAGNmCoSWAHKjDU4sp0AD3x8pIIdnnJhQxsQAF2oAINOICeGK5xTl23KEKcGHcRD8zoQAUacAA90Q9gtJkFMrABQ20EdqACQy2uLM6dvtEnRmkiX0cOh2vcyMAGFGAHKtCAA+iJcfr0WWzVojRxogDPuziLrVqUJk404HkXZ4VVi9LEG09/aGexVYvSxIkMPNXOCqsWpYkTO1CBBhxAT4wTqkkCCcjABhRgB+pdN9jugsWzu6+CRb+QgAxsQAF2oALtrhBssbXcRE+MYuIb6a7AbFdx440NKMAOVKABB9ATFT2v6HlFzyt6XtHzip5X9Lyi5w09b+h5Q88bet7Q84aeN/S8oecNPW/o+YGeH+j5gZ4f6PmBnh/o+YGeH+h5R887et7R846ed/S8o+cdPe/oeUfPe/a8Hgcwez5qLSc2oAA7UIEGHMDs+aiqbGdFY4uqyokC7MDoi+uvGXAAPTHKkc+S86ZXOfKFDGxAAXagAg04Eq/stkAGNqAAO1CBBhxAT4xf/xuhJlATqAnU4tef4yLj1/9GAw6gJ8av/42nGkernzk/sQEFGGrR6vHrf6MBQ20EnmotJOLX/0YCMrABBdiBCjTgqXaWCLUosLwxnOD84KxFgeVEBjZgqMWlhxPcqEADDqAnhhPcSMBQix4KJ7gx1KJ1wgluVKABR2IMBM7CgBa1lhMZ2IACPCUkmiQGAjcacAB9YtRaTjzVzo/TWtRaTmxAAXagAg04gJ5IBxBqYRVnEUGLWsuJAgy1HqhAA4aaBYba2ZJRa9nOGoEWtZYTGdiAAuzAKNII8klXSVQQJXFSmxQZfFYdtCh2nNiBUfMdZEkjySfFPMBFlBQRLzybIUbuUbrYrn/pkyIbL4phZRAntSRJ6kmaFCJxX5GGN54qPboo0vBGAsZlRhdFasVSW1QhTozp5pMis2JxLIoQJzKwAQXYZ5OMbM6RzTmyOUc2p2dzRiJdjRgpczVipEwsgEV14cS41fNKo7pw4nmlsWAX1YVyUUuSpJ6kSTYp0iJWzKJWsMWKQ9QKRoJEqeBNmnT+7eu/G0k+Kc6nv4iSOClEIkw89zee/X5+j9eiRHCiJcYAWHtgRNBAAZ7XGbcRv4VXw8Rv4Y0D6InxW3h+8dei6m8iA1s2+JVJF3Yg1ARqAjWBWodah1qHWodah1qHWodah1qHWodaZN+NdD/qUfR3Pb5R9DdRgB2oifE7pREhkunGAYy31JOuCa8gSuKkliRJPUmTLGkkpYanhqeGp4anRvxGxfprlOBNVOB5M7GmGiV4E89GjHXdKMGbSEAGNqAAOzDUNNCAAxhq51MeJXgTCRhqFtiAAoxF1yBNsqSR5JNiduuiiHhhXKkHnlcaa8JRUDfREyMfbzyvNBaNY0e1iQ0owA6Mpc6gEGuBA+iJkaXx2hK1dxMZGGLRFpGlN4ZY3Fpk6Y0GjOc3yCddORpESZzUkiJiNFbkXKxYR9VdOz/fa1F1N5GBDXheabyXRdXdRAUacABD7aT43buIkqJRglqSJPUkTbKkEIlHLoadF8aP440NGJcZjR9DyRvjqQ7ySTGmvCiu8kIGNmC0SNxHpOuN8asVzesGPH95Yp4vaurknI+TqKmTc3JPoqZOzmk8Oa7fxwsbUIAdqEADDmCo9RMp4mpgAwqwAyOuBZ5xPWgk+aT4+byIkjipJUlST9Kk1ODU4NRoqdFSo6VGS42WGi01Wmq01Gip0VJDUkNSQ1JDUuPMR4l2OdPxJp90puNNlMRJLUmSepImpUZPjZ4amhqaGpoamhqaGpoamhqaGpoamhqWGpYalhqWGuevolA8wKMDFWjAAfTEM98mEvDUOme1JArPhOJZjtQ650Ek6r/kfNOXqP+aOIAhcXZZ1H+dA1aJ8q+bOKklSVJP0iRLGkk+iVODUyMe+fPbUYmaLzmH0hI1Xz3u4XzALzof8JsoiZNakiT1JE2ypNRoqSGpIakhqSGpIakhqRGPOsdNxXN9vrZJbPwl5y47ErVcEwXYgQo04AB6YjzgNxIQago1hVo85RzXG4/5jQYcQE+MR/1GAjKwAQUINYOaQc2gZlAbUDvHmz0e0HO8eVNLkqSepEkR8XTqqNcSjmf+TBWNXjp/mm7qSY+/rfEInr9LN40kvykKtW6ipLhxDzxv8XzVlSi9muiJZ7pJi7925ttEBjagADtQgQYcQE9kqDHU4hfonMmSKL2aKMBQ64EKDDUNDDULDLW4+fglupGAp5qEcPwY3XiqnW+REgVZIiF8puv5jihRj3XTSPJJZ7reREkR8cLzSiUuOpIz7DjKq26MX6Ibzys953kkyqsmNqAAOzDixg1GGvbo3UjDHjcYaXijADtQgQYcQE+MNLwx1KLhIg1vbMBQi+aMNLxRgQYMtWizSMMLIw1vPJs32ulMw5ta0plI8UCcaXiTJlnSSPJJ50+bRlOev2w3cVLcT/SgC7ADFegTo/RJzhkhidKniRHBAjtQgY8rPd8hJSqfbvJJcbz8RZTESS1JknqSJqUGpQalBqcGpwanBqcGpwanBqcGpwanBqdGS42WGi01IjfPOSqJAqeJHXi21zkFIVHgNHEAz34IN40Cp4nn86rROzFivLEBBdiBoRbdF9l8Y6hFn0U2x8MSBU5yTl1IFDhNZGAMyeIir7HlhR14NqEEWdJI8knnj+9NlBQRow2vYWPc9jVubIGeeI0cLyRgjB3jtq/B44UC7EAFnpd60UNsxI1EFls0UGSxxf0PAj6ijlCdZ1tIFBp5BIr9cC/ipPOSruiRijd2oAINOIA+MaqMJPSjymgiA+W+KpnnWIjMcywk6orOd1aJsqKbfFL8tp6rhhJFRRMZGLcyAgUYt2KBCjTguHYEFpn7X4vM/a9F5v7XInP/a5G5/7XI3P9aZO5/LTL3vxaZ+1+LcGpwarTUaKnRUqOlRkuNlhotNVpqtNRoqSGpIakReXpOh0gUD00UYLxARodGnt5owHiHpEBPjDy9kYDxHhndG3nq8RzEHrkhFnvkXqRJIRWdHj/EN3pijJJvJCADG1CAHahAqCnUFGqxMXY8S7Ex9kWc1JIkqSdpkiWNJJ80UmOkxoj76YENKMAOVKABB9AT47XzRgKGWjwh4Qk3CtAmRl2QxEVGXZBEt0Vd0MQGFOA5mj/nhCTqgiYacAA9Md5hbyQgAxtQgFAjqBHUCGoENYZavM6eE1cS1UITQ60FCrADQ00CDTiAnhhvvzcSkIENGGo9sAMVaMBQs0BPjPfgGwnIwFMt5h6ihmhiByrQgAN4qlE01GkIEwnIwAYUYAcq0IADCDUNNQ4kIANDLVpSQy0aSjsw1OIBVwOGWrSOeqIdQAIysAEF2IEKNCDUDGoDagNqA2oDagNqA2oDagNqA2oDag41h5pDzaHmUHOoOdQcag41T7WoN5pIQAY2oAA7UIEGHECohZec25tJ7O02kYENeNYFxVOt16bgFyrQgAPoidem4BcSkIFxFx4YM2vXv/XE8IeYPIt6o4kMbEABdqACI+6ZDFFDdDeJ4I6vnL+wAxUYE4EtcAA9MXL+RvRmh1pHb3b0ZkdvdvRmR29eOR/XcOV8oKI3Fb0ZOX9dQ+T8jQKEmkJNoYacV+S8IucVOa+GZ8fQkoaWNLRk5Px1DYaWNLQkcl6R84qcV+S8IucVOa/IeUXO65XzcQ0DLTnQko6WdLRk5HzMMEY50cRoyR7YgQo0YNzbFcwnRjnRRAIysAEF2IGh5oEGzAc8aoh6TMpFDdFEBjZgPhp2zX5fqEADDmA+9sYHMDsraogmNqAAO1CBBhzAfDSijqjHZF8UEk0U4Bm3RTtE+se8X+zMNnEAPTGGBzcSkIENKMAcGNr1ZnChJ4YpxCxj1CZNjLhxQ2EKNwow7iK6O0zhRgPGXUTPhylcGKZwIwEZ2IAC7EAFGhBqcYBt3HscYHtRSzpfwuMW4wDbizTpjBhTo1HhNNETI/FjwjRKnCYysF3HiIrNY2zF5jG2YvMYW7F5jK3YPMZWbB5jKzaPsRWbx9iKzWNsxTw1PDU8NTw1PDU8NeYxtjLmMbYy5jG2MuYxtjLmMbYy5jG2MuYxtjLmMbYy5jG2Ejur9ZgEjp3VboxUvzEaTAMZeHZ4TBhHtdTEDjw7PGZ+o2BqYqwkHYGeGKkek7VRNDWRgecL4UWS1JM0yZLGpGsJjANjLaoFxmJU3OC14nWhAQcwrjRu+1r1upCADGzAUPPADlSgAQfQEyPJY6owKqYmMrABBdiBCjTgAHqiQi2SPJZqomRqYgOGWrRkJHksKETJ1MRQiychkvzGUIvWiV/+GwnIwAYUYAcq0IADCLUBtQG1AbUBtQG1AbUBtQG1AbUBNYeaQ82h5lBzqDnUHGoONYeap1oUaU0kIAMbUIAdqMBQs8AB9MRwhhvP8Xe8R0eR1sQGFGAHKtCAA+iJ4QExZx17n/WYnY5SrYnn9caUdJRqTfTEGO3fSEAGNuAZNyamo/7qbhLBHUfO38jABjzbN+azo/5qogINOCABtY7e7OjNjt7s6M2O3uzozSvn43I6erOjNzt6U3FvkfMxvR4VWxOjdaIvIudv7EAFxr1dwQbQEyPnbyQgAxtQgKEWD0Hk/I0jOysSPWbro15rIgEZ2LIDBjproLMGOmugsyLRb/REJLoj0R2J7kh0R6I7Et2R6I5E90z0HoVc/VwK6FHINbEBz7jn5zM9Crn6WV/Yo5BrogEH0BMjpW8kIAMbMOK2QAMOoCfGz/q5702PYq6JDGzA+dPco6BrogINOICeeBW9XEhABvZr9adHEddNlnQuXlmQTzoz/6a4/gsZ2IDnMmN02Jn3N2lSNNUIHEBPPLP+6s4z6W/ipJYkST1JkyxpJPkkTQ1NDU0NTQ1NDU0NTQ1NDU0NTQ1LDUsNSw1Ljcjuc2mkx35mExVo97Jcj/3MJp4t5vGsR6LfSMAofYkn9ap9uVCAHahAAw6gJ0aiezxGkeg3MrABQy0eqkj0GxVowAEMtfNxif3MJhLwbEcOakmS1JM0yZJGkk860/4mSkoNSg1KDUoNSg1KDUoNSg1ODU4NTo3I/7P4tUdx28QOVKABB9ATI/9vPOsjzvWGHmVvExsw1EZgByrwrMQ44iKjmuZGTxQGnsXAF1lS/KXoNvHEM8snEpCBDXhWilBc7ZnqExVowCi7okBP1AMYlVdxZWfGT2zAUGuBHahAA4aaBIZaXK9F3Gh+a0ABdmDE9cAzLsddnHmuHJdz5rlyqJ15PpGADIwqtbicqK65sQMVGGpxvVFXw3E5UVjD0e9RWdPicqK0poVEFMLdKMAOVKABB/BUO/dQ71c93I35EMVuZRMF2IEKNGBIaKAn0gGMG7JABjagADtQgQYcQE/kAwg1hhqHmgcKsAMVaMAB9MR2AAnIQKg1qDWoNahFmp8TX/0ukDsCCcjABjzjnlV5PXYrm6hAA467wqVf5XQXXoXdFxKQgQ0owA6MIr8LPTFy/kYCMrAB43pbYESIZ9IiQg8kIAMjQjxckd03RjtEd0d232jAuN5o6sjuCyO7byQgAxtQgKEWXRjZfaMBB9ATI9FvjKLAuPRI6asdIqVvROtESvfo+UjpG31i7Co2kYDnXZzzVz1K6yYKsANPtRimRmndxAEMtbMDorpuIgFDTQMbUIChxoGhZoGhNgJDzQM9MbL7xjOuxr1FHt/YgQqMUsa4t8jYeLiijG4iAxuwA2e9aL/q5C6MOrkbZxVpv+rkbmxAAXagAg04gJ4YP80abRY/zTcKsAPj5qOz4qf5xgH0xCi2iXSKsriJDGxAAXagAg04Eq/i82ioq/j8wriLaN9I3hs7UIFxF1ewAfTESN4bCcjAqJWOlowSmxs7UIEGHEBPjBKbGwnIwLiLeNYjeW804ADGXZwZEAV2EwnIwCjYv1CAHahAAw6gJ0bF3Y3RFyNQgB2oQAMOYEzknBSv2hdREie1JEmKGY8gTbKkkeSTrpm0oLhyDzyv8Zw961E2N3EA497Ppz4q5yYSkIENKMAOVKABBxBqHWodah1qHWodah1qHWqRu+dkU49CuYkEZGBUe3OgADtQgQYcQE+Mn+MbQy0uJ36Ob2xAAYaaBCrQgAPo2VmR0TcSkIENKMAOxPMw8DzED2/Ms0R53EQGRtx4MOPnOF73Y4utiQo0YNxF5EJkdGCU0k0kYJTKU+CpFnNUUUo3sQMVaMAB9MT4Ob6RgAyEWuT5WVnbo5RuogINOICeGD/HNxKQgaHmgadazItEKd1EBRpwAD0xfrpvJCADGxBq8St+Fnr2KKWbaMAB9MQYgt9IQAY2YKhZYAcq0IAD6InxMn4jAc/y/pgkiFK6iQLsQAUacAA98VpBD6IkTmpJktSTImK07OkBFq9+URg3MZzs+g8E2IEKNOAAeuL1SdmFBIwWiMsZ0QLRC0OBBhxATzw9YCIB4y56YAMKsANDLZ5yN+AA+sQogZtIQAaGmgWG2gjsQAUacAA9MT54ib6IEriJDGxAAXagAg04EmMfnXj2o9htYgPGhy5HYAfGpy5XBAMOYHztcnasXp+7XEjA+OClBzagADtQgaEWrRNT6zd6Ykyu30hABjagACPu6W/X5loxeRolcBbTSFECN7EDzyuLRzlK4CaeVxZTTlECd2N8s3LjeWUxBIgSuIkNKMAOVKABQy06Sz3RDiABGdiAkncc37LwhQPoieMARtx47AcDG1CA/d7OoV8bZt1owAH0xNjn4EYCMjBaJ/It8vhGAw5g3MXZ3VHWNpGADGz3th392iXrxg5UoAEH0BOvHUgujNa5UIAdeN5FvHlELdvEATzv4iwe61HLNvG8i5gkjlq2iQ14qsWsYdSyTVSgAQfQEyOPbww1CWRgAwqwAxV4tlm8NNm1XVDcRW4X1C23C+rXxls3CrADFWjAce/w06PC7cbI7hsJGGrRUNduJBcKsAMVaMAB9MRru6ALz7gxLRO1bHaW1vWoZZuoQAMOoCdGdt8YfREtGdl9YwMK8LyLmKyJMreJBhxAT7y28rqQgAxswLiL6ID47b5xAOMuIsnit/tGAsZdRLfEb/eN513EPGlUt01U4KkWk6NR4DbRJ0aJ20QCMrABQ40DO1CBBhxAT4ycj3fiawuw6Pkoarv6LYraJirQgAOYPT/4AGbPD2ZgAwowe/7aC+xGAw5g9vy1Q9iNBGRg9nzUqD1W8FqwFO6FFRzLwNedxDrwjQYcQE+MteAbo7gz7u+q7rywAQXYgQo04AB64jiAUBuhZoENKMBQG4EKNOCpFg9uVHiN67GLSs/r+YlSz5iyjAqviQ0owA5U4KkWE45R4TXRJ0aF10QCMrABBdiBCjTgAEIt1oDjSYlaromSyPFvW6AAQ00CFWjAAfTEdgDj3npgXIMGNqAAO1CBBhxAT5QDSECoCdQEagI1gZpALeo3YnIs6rNGzKhHfdbdqB190dEXUbARs9lRnzXRE6Nm40YCMjDULhTgqRYT8VGfNdESIzfjpzxqrkb88kXN1cR4UuMurjrr6JbIwhsH0BMjC8M1ovxqIgNbdndk4Y14dgbUBtQG1AbUIgtvPP/tOeussQvWRALGf6AnRuHDjQSMi7TABhRgNOoIVGA0qgcOoCdGCcQ5DaZRBTWRgQ0owA5U4Kl2TjNqVEFN9MRIpxsJyMDZ3XpciRP3Folz9pBGIdRET5QDSEAGNuDsWD2kAxVowHFni0Y51I1XOl1IQAY2oAA7UBMjRSyuLFLkxg5UoAEH0BMjcW4kIAOhZlAzqBnUDGoGNYPagNqAWqSTRRdGOt0owA5UoAEH0BMjnW4kINQcag41h5pDzaHmUPNUiyKniQRkYAMKsAMVaMABhBpBjaBGUCOoEdQIagQ1ghpBjaDGUGOoMdQYagw1hhpDjaHGUGOoNag1qDWoNag1qDWoNag1qDWoNagJ1ARqAjWBmkBNoCZQE6gJ1ARqHWodah1qHWodah1qHWodah1qHWoKNYWaQk2hplBTqCnUFGoKNYWaQc2gZlAzqBnUDGoGNYOaQc2gNqA2oAYvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hC8vOcdRfHlJDyQgAxtQgB2oQAMOoCcOqF1eMgIZ2IChpoEdqMBT7SwLV74+qrzQE6/PKlvgqTbijq8PKy9sQAF2oAINOIA+sV0fWF5IQAY2oAA7UIEGHECoEdQIagQ1ghpBjaBGUCOoEdQIagw1hhpDjaHGUGOoMdQYagw1hlqDWoNag1qDWoNag1qDWoNag1qDmkBNoCZQE6gJ1ARqAjWBmkBNoNah1qHWodah1qHWodah1qHWodahplBTqCnUFGoKNYWaQk2hplBTqBnUDGoGNYOaQc2gZlAzqBnUDGoDagNqA2oDagNqA2oDagNqA2oDag41eEmDlzR4SYOXNHhJg5c0eEmDlzR4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXyOUlGtiAAuxABRpwAH1iv7zkQgIysAEF2IEKDDUOHEBPvLzkQgIysAEF2IEKhBpBjaDGUGOoMdQYagw1hhpDjaHGUGOoNag1qDWoNag1qDWoNag1qDWoNagJ1ARqAjWBmkBNoCZQE6gJ1ARqHWodah1qHWodah1qHWodah1qHWoKNYWaQk2hplBTqCnUFGoKNYWaQc2gZlAzqBnUDGoGNYOaQc2gNqA2oDagNqA2oDagNqA2oDagNqDmUHOoOdQcag41h5pDzaHmUPNU0+MAEpCBDSjADlSgAQcQavAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFl+jlJSPQEy8vuZCADGxAAXagAg0ItQY1gdrlJR7IwAY81c56XI2N5yYq0IAD6InhJTeeaufnzRobz01sQAF2oAINGGoW6InhJTcSkIENKMAOVKABoaZQM6gZ1AxqBjWDmkHNoGZQM6gZ1AbUBtQG1AbUBtQG1AbUBtQG1AbUHGoONYeaQ82h5lBzqDnUHGqealGhN5GADGxAAXagAg04gFAjqBHUCGoENYIaQY2gRlAjqBHUGGoMNYYaQ42hxlBjqDHUGGoMtQa1BrUGtQa1BrUGtQa1BrUGtQY1gZpATaAmUBOoCdQEagI1gZpArUOtQ61DrUOtQ61DrUOtQw1eYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8JIBLxnwkgEvGfCSAS8Z8JIBLxnwkgEvGfCSAS8Z8JIBLxnwkqgH9PMbDI16wIkKtBNb4AB6Yux/fx69rlEPOJGBDSjADlSgAQfQExvUGtQa1GIz/PMTAI1t8SZ2oAINOICeGHvi30hABkJNoCZQE6gJ1ARqArUOtQ61DrUOtQ61DrUOtQ61DrUONYWaQk2hplBTqGmoSaACDTiAnhgb499IQAY2oAChZlDDyspVsGjR89d67IUMbEABdqACDTiAPvEqWLyRgAxsQAF2oAINOIBQI6gR1AhqBDWCGkGNoEZQI6gR1BhqDDWGGkONocZQY6gx1BhqDLUGtQa1BrUGtQa1BrUGtQa1BrUGNYGaQE2gJlATqAnUBGoCNYGaQK1DrUOtQ61DrUOtQ61DrUOtQ61DTaGmUFOoKdQUago1hZpCTaGmUDOoGdQMagY1g5pBzaBmUDOoGdQG1AbUBtQG1AbUBtRGuEYPNOAAemKcfnMjARnYgOFRI7ADFRhqGjiAfqMd11TEESjADlSgAQfwDMaBp1VMJOB56ecXYRalnxMFeF76+UWYRennRAMOoCfGT/6NBGRgAwoQagy1+Mk/PwOzKP3081Mpi9LPG+Mn/0YCMrABBdiBCjQg1OIn//zuyqIgdCIBGdiAAuxABRpwAKEWP/kt+iJ+8m9kYAMKsAMVaMABPNXOzxUsdsqbSMD4b+OZjB/sC+MH+8a5CGBHLnDYkQscduQChx25wGFHLnDYkQscduQChx25wGFHLnDYMaA2oDagNqA2oDagNqA2oDag5lBzqDnUHGoONYeaQ82h5lDLxVKjXOAwygUOo1zgMMoFDqNc4DDKBQ6L0k8/v+uwKPL08wsOu4o8x4UNKMAOVKAB43o90BOvicYLCcjABoxn8sIOPJ/J8ysSiyLPiQPoiZHdNxKQgQ0YcVtgRIj2jYy9MSJEQ0XG3tiAAuxABRpwAEMt2iwy9kYChlrcfGTsjQLsQAUacABPtfNDCovCzYmnWo+bj0H6jQ0owA5UoAFHYgzHezRfDLzP7w4sijEnRoS4zTiY6sYB9MQ4m+pGAjKwAUMt7nh0oAJPNY2bjx/sGz0xfrBvJCADG1CAp9r5kYhFMebEyIvo7iuPL/SJVzHmjQRkYLxWU6AAO1CBBhxAT6QDSEAGQo2gFr/o52cQFsWYEw04gJ54HWJ3IQEZOKfE7SrGvLEDQ+1CAw6gJ17H2V1IQAY2YPSbBnagAg04gJ54HWx3IQEZGPd2BAqwAxVowAGcky8WVZWuFyrQgAPoiZHoN8ZFjkAGNqAAO1CBMYsSz0Mk+o2eGD/uNxKQgaHmgQLswJiziR4yAw7gqWbROmEKNxKQgQ0owA5U4KlmIRGmcKMnhincSEAGNqAAOzDUTu+LSkk/3yQsKiUnNuAZIYbjUSk5UYEGHEBPjKH7jQRkYANCLRL9LB61qJScaMAB9MRI9BsJyMAGDLVoh/hxv1GBBgy1aJJI9Asj0W881SJbolJyYgMKsAMVaMAB9MRI9BuhFokeHhWVkhMF2IEKNOAAemIMBG6MuBo4zj3+j1A+03vymd/JFEzBXLgVlsK9sBa2wqOwg+0oXHTt0pXgVlgK98Ja2AqPwg4eR+FLN9pncOFWWAqHLkVbDS1shUOX4l6Gg/0oTIW5cCsshXthLWyFi65fuuc9RkVkMhXmwq2wFO6FtbCB6YqvwVSYC7fCUrgXvuJbsBW+7msEO5gvXQ+mwqEb0wxREJkcujG7ECWRyaEbb/xRFJkcuuc+MhZlkZNb6Ma0QBRGJl+6PbgVvnTjHlsvfOnGPTYrfOnGPTYHy6Ub9yhUOHRb3GPsMzA5dONNO8okk0O3xT2KFQ7dFvcoDu5zXcOiVnIiAxtQgB14KUYrdSs8Cl+K0QKXI91MhblwKyyFe2EtbIVH4aJrRfdynnidlcth4gVSLoeRaOHLYW528OUwN1Phcv2jXP8o1z/K9Y9y/aNc/yjXP8r1e7l+L+3mRdeL7uUk1z1ejhH32A9cfz+oMBduhaUwrr8fWtgKj8K4/k5HYSrMhVthKVx0qehejhH32C9nuO6Ry/Vzuf7LGW7Wwla4XD+X62/l+lu5/lauv5Xrb+X6W7n+Vq6/lXZrRbcV3dsB4h7vTI97lHL9Uq5fRmE8t1HJmFz6vV/9TsGt8Fx7s54rfdZzpc96rvRZv3JaLr5itOCr7ePar9y9WQtf1x73dOXuzQ6+cvdmKsyFW2Ep3Atr4aJrRdeK7p3r0Q93rl/MhVthKdwLa2ErPAo72IuuF91r1BDzMv0aHfToq2t0cLMn65XrN1NhLtwKS+FeWAtfuhI8Cjv4yvWbqTAXboWlcC+shYvuNWqIaaLrLNubr1HDzVSYC7fCUrgX1sJWuOhe3hBTSnp5w81UmAu3wlK4F9bCVjh0Y0ZEL2+4+Bo1xISFXqMGjfaRub5tKg0owA5UoAEH0BP7ASQg1DrUetxjzHRECWOyFrbCo7CDL2+5mQpz4Vb40rXgXlgLW+FR2MGXV1g885dX3DwKO/jyipupcFynRX9dXnHxlePx5q9Xjt/Mha//Pq7nyv2be+G4znHFtMKjcFxnvF3b5Qk3U2Eu3ApL4V5YC1vhUbjoUtGlont5wrmRsNnlCTdL4V5YC1vhUdjBlyfcTIWLLhfdyxNiCcUuT7hZC1vhUdjBlyfcTIW5cCtcdFvRbUW3Fd1WdFvRlaIrRVeKrhRdKbpSdKXoStGVoitFtxfdXnR70e1F9/KHmMWxyx9u1sJWeBR28OUPN1NhLtwKX7ojOHRjBtsuf7jZCo/CDr7GJDdTYS7cCkvhonv5jEebXD5z8yjs4MtnbqbCXLgVlsKzrN8sP5Awyw8kzPIDCbPLe2J2yS7vubkX1sJWeBT25HF5z81UmAu3wlK4F9bCVngULrpUdKnoUtGlont5z7kxrF3lie1CBRrwErVgB1/GczMV5sKtsBTuhbWwFS66YTwU03xRqphMhblwKyyFe2EtbIVHsAQ7WI7Cl260j3DhVlgK98Ja2AqPwg7uR+Gi2y/dEdwKS+FeWAtb4VHYwXoUvnQ9WAr3whE/pvCibjE54seLVFQuTg6DmRzxzw2kLYoXk1thKdwLa2ErPAo7eByFi+4ouqPojqI7iu4ouqPojqI7iq4XXS+6XnS96HrR9Us3nj3XwlZ4FPbkKK5MDv+jwCtkD9bCVvgKqcEOpqMwFebCrbAU7oW1sBUuunzFt+Ar/ghuhaVwL6yFrfAofL2Xns3s15jmZirMhVthKdwLa2HM4fhlITHT65eF3MyFW+G4r5gB9stCbtbCVngUdvBlITdfczsRv3PhVlgK98Ja2AqPwpiLc8XcTpRLzvu6LOTmXlgLl/vScl9a7svKfV0WcjMXboXLfVm5rzJH6lbuy8p9Wbmva4xyc2nPUdrznguNex/lvm6ruHgUdrCX+/JyX17uy8t9eXlOvDwnXp4TL/fl5b4wdzqO4yhMhblwKyyFe+Ex730cR97XOOgoTIW5cN7XOEgK98Ja2AqPwg7mcl9c7ovLfXG5Ly73xeW+WAtb4QHOT7HGkZ9ijSM/xRrHNR45l2nGcY1HbtbCVngUdvBlJjdTYS7cChddKbpSdKXoStGVotuLbi+6vej2onuNR87lp3Fc45GbtbAVvnQl2MHXeORmKnzp9uBWWAr3wlrYCo/CDr7NRINbYSncC1/xo6+v8cjNo7CDr/EIR7Jc45GbuXArLIV7YS1s4NtM4uG8zeRiLtwKR+3h9Vc7UIEGHECfGJWZEwnIwLjUc4Vu0DXeuHkUdvDlGzdT4biFcw1u0OUbN0vhXlgLW+FR2MF8FKbCRfcah5yvSoOuccjNvfCla8FWOHTPdYpB1yvOxdcrzrlOMeh6xbk5dM91iEHXK87NUrgX1sJWeBR28GUpN1PhoitFV4quFF0pulJ0pehK0e1FtxfdXnR70e1FtxfdXnR70e1FtxddLbpadLXoatHVoqtFV4uuFl0tulp0reha0bWia0XXiq4VXSu6VnQvq5HIkctqLr6s5mYqfOnGs3pZzc1SuBfWwlZ4FHbwZUE3U+Gi60XXi64XXS+6XnS96Dp0+TgKX/E1+IpjwVb4ijOCHXz5z81UmAu3wlL4inlaKzP6mi8Pifbny0NulsK9cFzzuTY2+PKQm0dhBzc8Y9yKbvEQLh7CxUO4eAgXD+HbQ+J62iiMZ4zlKEy4nstDbm6Fi27xEC4ewsVDuHgIFw/h4iHc8WxzL+3cSzv30s6Xh1zX00s799LOxUO4eAgXD+HiIVw8hIuHcPEQ1tK/t4dcXNpZSztr6d/LQ24u7Vw8hIuHcPEQLh7CxUO4eAhbuV8r91s8hIuH8CjtPEo7j9LOl4ec66yDLw+5+WrnK/4o7ODLQ26+7jfy+vKQm1thKdwLa2ErPApfuqdXtMtDbubM5Xb5ybkd/ohq1eReWAvjWWrHKIw+bXQUpsJcuBVGnzbqhbWwFR6F0aeNj8JUmAtf9zWCtbAVvu4r2ufyIo3rvLzoZirMhVthKdwLa2EDxxdPFJcZXzzdSEAGNqAAO1CBZ1X6OQM3ru0hz0m0cW0PeU6QjWsjSIpnI75toujq+Lbpxg5UoAEH0Cde+zye81Pj2ufxxg5UoAEH0BPjw6OzvHNc5X90LtyOq/yPzsXacZX/TW6FpXAvHB1xLuKOq8yPzm2Fx1XmN5kKc+FW+Irfg3thLWyFR2EHX+Z/86WrwVy4FZbCvbAWtsIDfBm+RT9dhn8zF26FpXAvrIWt8CjsYCu6VnQvw7fo6svwb5bCvbAWtsID/WKlT0fp01H69DLts1x/XMV7NOIZu8z5Zi7cCse1jXiWLnO+WQtb4VHYk69iv8lU+NKl4FZYCvfCWtgKD/BlznG/V4EfnQv84yrkm9zzHq9CvslWeBS+7uVsz36Z8M1U+LqXHtwKC+Jw0eWiy0WXi+5lzhe3ozAV5sKtcNFtRevKfY1rvnL/Zi7cCl8mH/dyHyV2sRa2wnH9ZxHMuAr/br5y/2YqzIVbYSncC2thK1x0e9HVoqtFV4uuFt0r38/im3EV/9H5VdG4Cv5I47m6cvnmVlgK98Ja2ApfuRz9cudy8J3LF1NhxvVcg7ebpXAvrIWt8Chc7vHyh+DrqN1Iqeuo3cjY66jdeOCvo3ZvFGAHKtCAA+iJcdTujQSEWhzcGRl1HbV7Ywcq0IAD6IlxiN+NBGQg1BhqDLU4uDPM5DqA98YB9MQ4uPNGAjKwAQXYgVBrUIujds9PpEcU0tn5GeaIQrqJBhxAT+wHkIAMbEABhkQ8JXHq7o0D6Ilx6u6NBGRgAwqwA0PizJfrUN3zu6ZxHap7IwPPYB4PbRy7eWMHKtCAA+iJcdTujQRkICTigM2YSYgt+26MAzZvPCPEK0mU1k1swDNYvC9ch+reqMAzbryIXQflxjtW1MhNjAgtMCJIoALPO45XpyiPm+iJkYXxDhW1cRMZ2IAC7EAFGnAAPZGhxlBjqDHUGGqRb/Gydh2Ue6MnRr7dSEAGNmDEHYEdqMBQ88AB9MTIwni/iTo30+ihOPD6xlNNo4fiwOsbO/BU0+i3yNgbT7X4CY76Notf1yhvmxhq0SSRsTc24PnGwdd/O4CeGHvn3EhABjagADtQgVBTqCnUDGoGNYOaQc2gZlAzqMWrZCzkXHvkxRrNtUfejQKMCNGb8dJ4owEH0BOjNO1GAkbc6Pl4abxRgQY847Z4NOKlMfDaDe9GAjKwAQXYgZpI2ajXZnc38ryGa7O7GxGMEIxKMAMOIC6dcemMS2dcOuPSGWoMNYYaQ42hxlBrUGtQa1BrUIvtsM5vz0YUg12dFfVf4/zybET51/U8RPXXRAF2oAINOICQ6AeQgAxsQAF2YD6TQ3PMNTTHXENzFDS0AQXYgQo04ADmmCsquyYSEGqWo6Co6prYgQo04ADmmCvquSYSkIFQG1AbUBs5CopCrokDmGOuqOKaSEAGNqAAOxBqnmp+5JjLjxxz+aFAAw5gjrmcDiABGdiAAswxl5MBBzDHXM4HkIAMbEABdmCOuaLY6hpdRa3VRAbmmCsKrSZ2oAINOIA55orSq4kEZCAkBDcfCXnE5URC3khABp4JeUSESMgbO1CBBhxAT4yf0BsJyECoKdQUago1hZpCLX5Cj9MJru3nboxGvTAaNR7PayB7oSdeA9kLCRiNKoHRWT1QgQYcQE+MJPNIhkiyGxnYgALsQAWGWjzrcX78jX6jR9XTRAIysAEFGBIj0IAD6ImRmzcSkIENKMAOhBpBLdLUPdATI01vJCADG1DuVveodJqoQEuM2SE+Hx6P2qbkVliCW3AvrIWt8Cjs4JhNmkyFuXArXHSl6ErR7VccCb7++7ivruXfX9emwde1RW93B+tRmApz4VZYCl/XFr2nWtgKX7rRPzFTxOfsvcfecQ+Odo5ZIz6XKfyqULrvxVrhco/XjNCI+NeM0MXXjNDNVJgLt8JSuBfWwlb40o17uWaEPO7lmhG6mQpz4dD1uN9rxvjmXlgLW+FR2JPpmjG++YrPwVecFnz9XQm+/u7ZhncZ0s1UmAv3wlccDXbwNdMbLnKXD0U23+VAkZd3OdDF1wztzdfzdgRz4VZYEP/Owevfa2ErPAo72uGa0b2ZCnPhcr/XzO11j9fM7c2lHa4fvvir109ctPL1E3chAxswfuIiwvUTd6ECDTiAnnj9xF1IwFCLq4+3xBsF2IEKNOBIjLXH695i7TEy/joc98aeNxQvjDcacADj0uO5iBfGGwkYlx4PRaw93igZwaHmUHOoOdTiNTLw2o/tRgIysAEFeEn8r3/420P2v/4WP13SHv+o8Y/nz4yc/6/hH/vjH8f5jzEiO0tzYjwm+vj3nv/ZOB7/eKbe459j1TP+mc5/jje90wPjPS9grgS3uQ7c5ipwm2vAba4At7n+G9sfn+u88bZ3rvLG1sfnGm9scXyu8MYr37k6Gy98AXPFV+Z6r8zVXplrvTJXemOceK7H9rm02+fCbp/Lun0u6va5pNvngq7lz63lj+1t7/FV/PyRs/y5s/yRtfyJtfyBHfnzOvLHdeRP68gf1pE/qyM1RmoM/JBz/oT2/NGx/Hcjf1TzZ/Ry4hsJyMAGFGAH5u/nVUV64wD6/CG9vDt+Ry/rjp/Ry7njV/SqH43rJhJgB+av5m3gFxKQgQ0owA5UoAEH0Ofv5rT/89IbARnYgPkzeReCXqhAAw5g/kJO0w8koMyfyuns7USfP5R3Cef5O3BXcF7IwAZUYP4s3sWYF9L8AbtLLs/fx7uC8vwZvAsoLyRg/h6SNaAAe8Y1xb814AB64sjfwbtq8kIGNiDubeRP4F0YeeF9x6eJcZhYTLc+rikG6AFtgkzoE3SCTRgT/IZ4sQ6YkduM3GbkNiO3GbnNyG1Gjhfpc80uXqNPuKakx2WGF0Rkv8zwApnQJ+gEmzAm+A3X9PMJNGFG7jNyn5H7jNxn5D4jx+TVuaYZk1RnoUvMS8Ueh6dE7E1wBowNCGRCn6ATbMKYEHH0ss4LaAJPaBNkQp+gEyJyTIOdEC8FE2gCT2gTZEIEPAcAOsEmjAlxqX577E2UxEktSZJ6kibNtgxvvcknxbvtRZTEk64lyPjJbv/v0/7/Pu3/j3naZQ5YH2tv/+vxL/713//7P/3nv/z7v/23//yPf/7n8/+b/+J//O0f/7f/+tv//U//8c//9p9/+8d/+5//+q//8Lf/7z/96/+M/+h//N//9G/x53/+0388/t9Hx/7zv/0fjz8fAf/Pf/nXfz7pf/0D/vbx/K/2do5i42/31iQD0NiN0PT8CiUitMdqNSLQ14vgRYjze5grgncEUN0NoDSbQBsCtONrAHke4PGSOiM8BirjaYi+agfWbAdrT0OsmnL0bIjHMsDTprTnIZjPxfkIwa3hKh5DwC8hxru9sbwNR4RjPL0NWj2X2maHPBAxun8NQas+PYd/d592fhpi8VyFWUWEUXOjy3aEIfM2HktszyPs3oY9v41VY9oxU/SB/jSELp4rORekrueqCz0NYW83xeLJfLyz5cP9sOaMIfw1hC8u4vzBvi7C7elF8KIxzwnLO8Q5X4k8Z9+/kfjS776RTs9uhBcPFo903eNpgHWGeTq/UXvWoyzvW94qhjDPGxHWxc+HLt2bM0VKazze5r/GWDydfcwe0aOXCMf+g9EoH4xm/emDwYvH87HIOJ/Px8piiaFfr6MtroPtyCwxRov+pk9sJrtIt6d90hbP52NWU2afPGZcS4z+NUZbxOg84H3S60+JfY0i7z8drb/7dKzvRQ/Ny9Duz+9l9fMeX1rcxlFGCA9D+RpjvP18+PsWuIyxmS1C72eL8Lutse5ZFwwevY6ZvvWsrLw0aq4vL33MMpWe/Rajr34TZD5iPKofj2/tsfDSHhvGXT8LVLLljxir64jTRO4fp2NxHYun9Dy3eqackT2NseyZx+/TDPJYNqo/+N9atS/8VDmfEG2sz2MsnlSJHcIuRyXml2L02Anj7hmW1+6ltRnj8dq2aA9ZDRzEc2iuL8aIF+N78GH8WoyBUe04nsdYPyF2jHxCHsP951cy/tJfB6N89aPz7J2n16GL3j2/AZrd+2A7nriZ0l/qhxYnJt734v15z2j7S9v0/MhuXsf5sdjz61h5WbORL9Rer+TrK4Pqu226vArJGQ4WOZ5exXJEZjk18FicGU9HZLr41ebePF8Dv+Tt1xi2eEpl5FuDjC8xdDtGl7yOLt6ex+D3x4X29lO6btGRz4YyvdYr2hBj1SuLZ1SOkb1CX0an8ovrGPjd5/78OhZe+lh0TEOWL0/p1+swX81g5S9la8Oex1hdhxRDpucxxspLGwkmTfSlNm0HpleP8VrWtiOnkB5XZE9jjNVblHM+IA92f+Ziq+uIDQHuflk862PlpbEB+P0G9OV38uvUx1i8RT1WbeatnDssvxTj/JQvp7M6PY/h7zuQH3+lAz2GhJa9YvbaE9byTawJ+9MY3t6dd15eheSLWNM6+f39Kha/tFReGVqr/dr2Y8RBptczeozjeYzF8+Ujxx3uZXTbvv3C+cLD4li9K0QZ2T5Sbz/beo6xHz8yz5/y2CR50Rz583QUK/1jBnthpS1nfuV4Pm9Lx+pNnymnsNmktMf3ZYnVoPKIg7Sv5+PB7emkg6+Hczmo7P78AYk9nZ+PgXg+Zb2XWf3vSz106Af6xt7vm/GJvvFP9M16XrwrXm+frnSsBrhYuxLT/nz9a7Vw1I78fWmP1YLnmbcMEhVxVxBuvAgi76+jUX97IW0VYnclbfdOFktp200q7cV+IZEMshg80Gq9YXfNmpjeX8JZ307XHF/q8nba6hHJl4fz+IbndrYMMng27Lld/iJI/8DCsb6/cqxvP/D8gQVTfnvFlFYrUo1yXvrxClDn6duLvbJI3vXjkRPT5076rz1jgxx9W9+2vwdZLkp1yddcK1Pk34e767zznNF5TG4vfiOavv+0r5alNp/29n51wPadvGrvnuvqchz6vEnlA5Un8n7pibxfeyL0Vzdpx/jwGK/9YsqRdWpyyKpfVmv8m0VFMj7Qt/5+3/r7fTve79t1i747WO5HLos/lnAXxWKrpSDlprms1RaW3Bc/ME4dLw/Hc0det4ehPcaLbbpZrbVakWLJVn28a8rzGP7+k75akdp80lchNp/07TtZPOnLFsW89KNF9bUYPd/pHgsp7XmLrt76Peelu6u/GKPJToz1E7ZXEKjj/adjvP10rNaSNovxYn/U55UXO9V4y6vYHKqvVqM2h+q2clLKpSSl0q1/DNX3g+iLQSRX5lXKoumfQeztflneC+pQaLx6L5yPmD4y/9UgmS7K/mrXtCze0DrZ/0eQwau56XwD8vqk/VkCuwqyXUe7CkI5B3J+R/1iEM6xpddZst8F2axno9Wi0m5BW3wM+l61wfo6jB0rB7y4ju0g/mqQtMUH9teCPFYnsKjzeAVZhVl2sc8sdimvD7982AQPW9dXg+Ra2SPIIgH3f8Gfvw35ciUVc3bPf7PWI+atMvT4lPftl8NlkHbkrH3j56+pfCyrp7Jj2OR5Uf3Bb4+7+WjvjqyWIfZGVrxaodoc0/BqgWr3gw17f/pxv1ds0SvLp0PhzENeitFir/H7ZtxejXG8HaNhaNXKz/fvYijqQcbzGKs1nc33oR9ibL0Pre9F8JCJjvdjvPiMPX4Ccn1KxvO+XX0k9ZjyKMWoq6xbXUhsHnxdyONn4umFrFandjt3HeMDnWuEe1kk7uqjmscSes74nwUpLzaq58LhWDxlq3WlveV6Xn0sRZ6FXA//eP4qsrwOyfk2KY/HH2+r69/sXHiUVtdzfvXDL4ILofZqkHxCRFajh0bvr+jyqux5e0V3eTtxJOOVNHTw4nb6J25H/+Lb6ZRB+mPJZHE7492x7vIyJB/X3v35OJVlVV1Cmb6l0O4xAPoW4u0a//VV5IR7Td4/r6KtbiRnVIVL6ZHuh6Bj5PcsD+7Ha0E8f6keXAa7vwuCjx6orhz+plHz4z7xVdeOvzTE44fK8bY86PmtjE/0zPhEz4z3e2aduVoGEV92ZvhF+ivl3SjZeDVIju8e1/TiT55KjkX0S+ngr4K0/EpYuz2v+uE+PvAbsVrf+chvhPYsCn+sZC5uZ/X11GMZ6sjc6V6Geb+4EmtZDGlNVlfS3p+J0Pcr/1jfrvxbhticiVB7fyZiudS0NxOx/gBicyZC369i/OHp2JuJWMXYnYn4IcbxdozNF03bXRHtr7Xp7ozIOsbejMjqy6Xdl+Z1jL2X5uW9yJHPh/DTFWIe9Fdfx97MzHaMF3Nud2Zm9A/MzFj/wAPS/+KO2ZxVWX5CtTursr6QvVkVf/sDFXb+wKyK07uzKj8NYhq2KvEuz4bdy2+gyhNyBhmvBNl8RfzpZvauY7kZRVbr2qGL+YO+KgnnnD7A+KP96kXGW3mR6S+9DT3+oiMIP3sbasu1kM1XqmWQj7z+77ZI+0SL6CdaRN9tkfVyOWpt3Qe9uObuOSH6CLJY/ff2kTX3VRjFNlI6jJ6+Tq1C4JVMne21EPm9jnp/GmJdeJNVndqOl+uI8ofqEWRRvbP8CMKzOsvqzfzuQxvPgbu5Pw/SVtvgPe41p3dMng4iGr1fpdr47SrVZYi9d9S23NFv7x218dsVgG25qd/mO+p+rzwfL6+fDnyK8Zguac971t4epv5wHVufyLbVR1R7o8O2+ojq/H2blyGLT2SX17E3Omw/bMJ54DEdLzUpE75/pucj/7b6gmq3Sfv7A+7ldWwuY66/KMs9LQaN55v2rj9b3vvyYLnH69ZHA02O9+14tTy1acerEJt2vH0n9lqDbn4zsNyAYeuTgbbc0m/vff+HGHufDLz9keByh9XNuuNljM2K4WWMzYLh5f6XmyW2+zH8xRh7Bbbsnxjrr/fP3SuvXd7N7hOyirFZXLve3fQD97L7pPr7T+pyl9XNJ3U/hr8YY+9JXX7Puv+kLlt1s4Z7e0P158MofbciZbnR85GP+uO3v640fhtTrr5cauxYs6Bnk4XrEKjj+rJh2/cQH5hOWg0oFZ9+f9kJ9HtjfOAgiWYfOEqC355MWr07aW6ip7XQ6PuO6KsIOQrTUpXPv9nZvR85wddLpdIfO7svtwVgDOTKpkB/7P+9Woja3f5uvTHq3gacP2yJzke5m+fbALfVbn6bObsMsZez4+1ndPXyxYbdAM2eze2v3gH3nvJlhK2nfL0ZyN5Tvt7lfvMpX69AbT7lyxNo8rtNfnC5kLYfo2ebcu+LGMtMiROm7hYZx/MtlZvr25myDLGXKasFqM1M2W+OL3XOv9mlXlDzURYG+eUY4/0YtQD1N7vlG3Z2tvF8h/nd3fKPUtH7m53ue/Pc76HuUf+r3fKPnI7Xwxe79u+eQDAWbXq8v+OUHMvNRA8U0rA+v5DVfJj13GHeuj892Exo/Y0TErfOp3+/jtWsvpdP0Gslvf2mQXKXlS87tPLvgngpT3revevt8im7l5QXniqrd5+t95YfriNDnNcxFtex3B81fzIPKlWw9vUnc3mwg9AcgDzw+XUsD3Zo+U7av27A+5tDGWBEOvS1GFjoOKcMn/9eLntGcquDB8vLUXDwj8rq4I7x7tBuGWFraPfDkQylMMCPZyvYstrG7zxkHjNB9lIIHGLizOOlt5eWO18+2Py1nrUyrW6dnkeRxu+OytYhtkZlsl76eXtU9rU5+PVGxW6Cvb2YdIZR94P1WHTNeL9rxttds/5K6v2u+dIcdrzcNVai0NMoqwLFPSdbRth7SV0ep0It1+MHLTxZRN99Y1+GeLghfmNMn35b9EMQKwc82NNvi34KUo66sfGSrw7GMGS01dE/q6Xszxx2wzlG5Fpf9MdhN7sxiF+L0bMC7TG/Ti/FeFx/bo56fHmd+XYIyPH+ROzyqBrquekkj5r/v4hRT2muZd/fYsjyK6k9Y16G2DNmpXeNed0Y+Z7apZZ8f2+MpR8euZ6tx5fjbr4HWZ5ilrZMx9M3zPVloKCPvmw3+5t7odzW9PFeRK8GyflDrauNvw2S3xXSi8cybR/t9Pbvpb39e7k8XmpzUnd9RNXepK7YB07useUOS1kAK8fidCixt6dS1yH2DMjenkpdfsWHDVofS5KvHdnVsHHuI8bzo2pkfGC/CFntJbb7G7esj87T6bSMX/68DPnEvXxg4XT54QqlJRN/2SuifbuQ1ZZTmPQrFma/OEJI8Q3+0NeOENpN/OUxRJbnS/moR7nSL2LgwD8fdU/R38XIopxRq5J/cRwSHYItCcrv5PcDkZbX4QeOZeIX78UVH2nUSt5fxKDHXHL27XGUIyG/R5H/P4T5Us/bnh81tQ7C+X7JXF7qfhekab5e1g9o/+jj9RtMrmEIPT8CrH9gv7gfYuydD7cOsjkO+eFK9gYifX3W1J4frQ+s2vtmpB/v7+Hfj7f38F+G2CtS3r+TRZHyulu2vrPotDoHdbM8eLl0qLn57QNLjeAfZ4AtN79F5YDV35rfBNn91GJ9Jb2hwE9fP9Ks7MXjdYVZfxPmPEo1VyFE7eUweaDpGXLxTd+x3kofzUv6YvMK5hHrAtGfQWz1LrD17caxPI9063OYdYy9z2H6+7v69U/s6tc/sKvfumtzcffRy+3FzKGjlW+Dpb36yOPM2gfbywlIKNujr5/VHb8YOMLtj6Ps2/R9sNbb27V/6xBbr+G96V8aYu9Nft2gA186lznz7+055N133y4fOMmvywdO8lsejNzTmR8rIs83KFwejEx5+O1oLK/F6PmWNTo/35Kzr+q79p7z9WXk+Hv0xflqfbXB+Wa6LUPs5Yr4u7kylucA7h14vTqsem9edhlha152uWPM5vvQ+uDuzdeh3j/xOnS8/zrU7f3Xof72UT7LEJuvQ9t3snodOt5/HVL+wOsQf+J1iD/xOsSfeB3iT7wOtc+8DrXPvA61z7wO8Sdeh/gTr0Nv7x21zJ7t16Hj/deh5SdUe69Dph94HbL+fpPyJ16H2mdeh9pnXofaR16HVmOBnqOJL58A/GY0kWveKs9XefXt0f/4wDbpfXxgm3RbFojkxkCtnlL2fZF3GcNwsrl/qQ/fjyFHjose6fN8sbn7+9s3/BBjc/59GWR3/n19JZsDTv9AIcB6yblUzZE97ZtVDFZsTayqr8XomfysJotn5AObT3f/wObT6xbJMSfb8bxF9PjA3tPLD8JF8TmDPT+NV4/3t57W4/2tp/V4e+vpZYi9dxI93t96Wo+3t57W4wNbT+/3ii165f2tp5cxNree/inG8XaMva2nld7fenp9HXtbT/8QY2vraaX3t57+IcbWu/P6Xva2ntYPnBv1w3VsbT29H+PFnNvcelr5A1tP//Cwbz4g/S/umL2tp5U/sPX0DxeytfW0tre3ntb2ga2nl9ex96770xhma+tpbR/YenoZZLNM9Keb2buOsTWYagfz8xeq9u6L8roceudFef1JB6Yz+6iT/7/4LETxaYl6ey3GyC9Lub6g/u7TEjb0yfN7kdV24LvfpyyD7G2PvA6xtT3yDyF2tkde9oplppxT1q/17JcY8mIMRoy2esLe/jh1HWJrxU+7/KUhNj1w2Z76d7/2+12flJdjf9E56nW8GmPk2OWBr8bAXsLLGG+7ub7t5j98T07YJJFf/CQ9630f+Gwyavl5/lZLrD/w32mJ5aYJRvm5kn35XOAXGy+MnN3ro9GLMbCLzPAXN4AYHdfx6kYUI19XHuFe3YiC8JbAL7eHI8aiX1YD2p6vPNKtfSDGaxuEiObOC6JdXowx8i3BVs/YKoblB48y+uJT9tXsvmn+qJjV5c5vNVc6Vp/393zaH40jT5ePfroSyyvh1ZWslvoVnytqmb5pv7gOLNKblbT78zoWz7vhSEfr3BdBVgPb3KCwLkSf+4VsPyIDL6O+2DNBl2Vo24/I+MAj8sOV7D0ifrz9iCyvY/cRWe3ut/2IrD71e/8R6Thvp9fjdv54RFbf6HQe+Kq+/tyNbzFWry3G814eS0jjWYz1vWj+2tWXuD/vZXzgXvyvvRccT/vA137tesuKmG8bFfwiBuM66v7bL8dQejHGwKYLx/FiDMuRDI9X2zRrJXpb5Ms6RkMMWWwau/w+Lz+f5Foe8H1TTjve3oRiHWLrxdbWG/u9HWJzg6Hlp4rY5KTZ801Ojd7dgmJ5FYK367ptzJ9XoW87mK2Oh9h0sPW2sYwaQ+5P72Udo+PADX3eHs3X+9fs7V+7CrI3t7cOsTW390OInbm95f7IW2/p6x2Wd97SlzuRb13Dei/zrTmT1fkFm2fzrWPsHc3XdHlY4e4hCMswm8+nvj33/EOInedzfZrL3mkO6xgfODNk8/lYx9h8Pvpnno/31yba+2sT7f21ieWBQfm64tTKcFTHdgjchn/Z+H8/BNvBf29x4xchHgu7ebzXURdo90OMli44pBRE/qYtsBdI6dDmsh0gN86p3fmbALkQ6fWziv0AdFCWhR5lDPubEJwzrcTqb4coE4u/CYGNtqmVjS5eDVF2+/9ViPSJR36113qkYxeTekTRb0IIvq3V9nYIe/Eq8H0LHfZiiHIS8WvPBeUqFVH9RXwxhPbXQmSiEh/HiyEaQrz2gGOhi5hfu5Gyv2d9F9g3/0Ng3C8FwMp46y8F6Cje8FcCSG6CKV+OfPjFD2C+2g1+JUCjcrrBmwHa82601VZ8u+/Jqy+KNt+Tj50p3PZlGme/M3MvLpGXHmh8Nyf8UmdKnmVSyxnJju3HiVCjTvUNnccvQmRWUX0n/E0IFDRx2c/hewgbq713sHjcjhdD5CqHlkLG39xI3burrIL/JoRmbnwt7vpFCMttch928Vqncn4SwmyvhWj5wQ/XUdWvrgJFau14qTlFcJrdl+2gff/Hs2EgUYzmFxfx+OnHKGC89GQRTtJ84GtX0cuRaWKvhVB8+DD8tRvJ98jHSPm1G2mCkXJ/7UYUnzypvXYVqAJ4jGxeejjJ0Ra1OOMXISzHlyb6SoAyU9Jfa4eD8Rqozx/usfrA6P009awNcX6tIbAbpfU3W/K1AOcHyfCJ2pa/GZPkLN5jeFJee76dgDWW60KcJ6C3enbdL4Pkb+ED9dUg+KqQm30gSPlV/h5k1ayeLSJfJmx+EwIlA+7HSyE4v5KQRvpKiOHTtIbXo562H/L296ad9v/+yPm7Uddwv/79sfogSTGRWVfnfxMhl/q0HFXxuwhZhnK0F1qh93yceq/1NPsBOgLU+b/tAIovkOpKzi8C7FTzLG9hZI1Er2f17QfILwcesV4JgH2YHvhSG6DIs+4FtR2AJZ8DFnr6/dVYHpyy94nwWG1kt/eJ8DLE3ifC+3fy/BO/5TtHViN82UPmFxE6Y927teet6avXyK1PWX+IsfWF4P51PI+xfD7r6exPPyAd0t5+tlYhNp+t5Smne5+fj9UxR3ufn4/VFnbeskzeWxklfl8gHatTTh9rZ7l004/ny5JjtRPel5W08u6hv2hTyvOnHpNH9LRNVxVZXI4FfR5h2aTDsa2+26JJ7f2F6x86N9/RXdp4MciRcx6Pt8PjxSCUr7deJxx+2SaENcrGLz6rltNyj3VXXjyr20H81SCOFzzvrwXZrwn4oWn3ai22rfnpF9NjdXDT1gG060bdLNb4IchetcZQ/kjPrMLsVWusQ2xVa/wQ4s1qDTJ8yG5W95/6trun8bs/Eev5rZy0dNGnV7EMIeWL/PZSCMtPfsi/nNf4vS1WxUCbeyQNW21gu7lH0nKpJKuxuU7N/Hkzqy0b1DDxqEZPd8D6IUgbCKLP9lkayx2fhpTP+p9371h+e4QgfZSlZdf9GNrybVSFXoyhhPLKUjP7R4zVBx15zpB++Sr/+M1l5Evl4zL8+WWsdpDtOCOoy/Panh+CIPH6aIsgq7sxNKr15x2z+vKotVypba380p2lJftBJLfjbF1WQVbfHm1+0rVsEpOchLM6/v+jSZafxefidz2c/NtP//LTI8uTVh+zL2UeTb5fxnr3B+R/rQSQ37QH5TK4aakW+qM9VgM7lBM8fi/qhXwbT62+PsIWh70UBHwP4ccHHtV1kM1H1Y+//FHVXj4cbM+6xle7rYnmgyYPM1jczXJ3UexRLOW3yr/v2r46n8SxSdFRfiPY6VuQ5ecuWNOWepJc+/6UfOCMoB+uRDD5WOv0vl8JHcunZOvLUF8t0OzN5C775rE61HKNpxjJH32zPL4JJ+P1o+6muT08E8sTG8SavzJcFQwSxeT5cNXpA8NVpw8MV38aJmIooc8PGHf6wFhzGWTz7IfxicNF1nu2Yh/5/mUbg28dzKvtI1F8zUd7/iX0Msjj5Sq96BirIP0DDrA6LmlvQWwdYmtBan0rm5+X++rbk93Py71t1SauPi9fP6uUN9P4eP6m6G15+oJhIyg/FjfTPvCErNaX9p6Q9atEbmqliwrm5evZ3skt6xB7R7csX6xwBg192W/9V29nNYg8r7H31ZFNm5W8vvqYb7OS94ebMdyMtRdbxLDpYn3VfD3I4hsMl/6BZtW/uFnrzdir0wDGmItsr/bNwFTiYPpAkMWV+A/7IWz1Tee/uG9Gx810f7FFHK+93vQDQWQsmlU/0Kz2FzdrvRl91QQcb5tOL/bNY1yXNdjHag5ue+prtJdnrbZ+wNdBdgdX+oHtnVzf3t5pOV3kOEQGbSptf6qIcPgDWSnzf32yaLSX53n2RmfHJzrX6AOdu1q02u3c1TQeJjZrKfL3nll94SSYW5FWtxD8Y3J0ddRgvicOWzwhq2Wr7fG7fWD3L7fx9hveMsTeG559YAMxH594Tsdf+5x6DuC9nGTxx/Ox2i6vE2be6pehv3tO8XXpQbS4kNWDWr6canVa9I82/cSDOt5/UMf7D+ondrpz/8SD6vyX/lpu/9itVqzYcXJirRL5M8jqO5PDcaZW3aZWdP9KGgZm7cuJB39ciX3AmVcNu/3AL3/u9h749S/m1gO/vJXNB56O4wN7Oz6ivL254/oZwYf/jfy5KV6Hij59XLFLv3hrLz6uTLlNP9vyUux9gz5rr95/YOk43n5if4ix9cj+cDfbzyx95Jml95/Z5Rppy9UNqjvxfVsjfVzH8ku+/JCvfBR5fhi+H6NnXWL9DOCXMfIg2F6X838VQ3NTly+7Cr4co78aQ1EC82p7aLaHvtwelvdiL7dHjfFqe9S61Vfbw7I97OX2GHkv4+X2qDFebY+RH88Oe/k6shBnjFevIyYrrheSl9ujxnj5OgaKkp8/H+sKi80Tw9dBmLBV7PLE8OU5TorZJuvLKLoqK7C/48ut0S9uZ/OE7mWQ3VPU11eyeYr6D1UnW+PeZYitLwh/CLE1dF7W4GwPQ+QDU6uPKG/PrT5irOYCNreDeUSx1YLCzn4wP8TY2hDmh7vZ3BPmhyibe7qsi6QOwSf5dT+Vb0VSdPQPTBg/orT3x/DLGJtj+M6fSJ7V6tV+8qzWr3bH8Ms6OBzFyuUrp7/TxctTcnOh9PEiW3+GvwXR5XcX+bRRLdn69pn8I8i7X/v/EGLnc/+fQmx87/9DaWEu1fTjy4Dz+2Ws3q069n+oxSNvBPFnQbarLeuZAH8+Zbo8dxzL8fV7yT9vZ3Xiw5HfFyvVk9i/B7H1No04z536MT4Sps6F629ew7HV07JUebX+5LnRYD/KqS/fVwYf/7z8pj8366jfxLbv80a29x5eN3lo3x8Ue3vs+sN15PY+j+d/FWN8wuVXFbG7Q6TxgR3zHlHo/SHSMsbmEGl8YJ+3H6JsD5FWC2JH+/s+/UfirFazmuQDW27nj3m0sSy+zs0l62d+2n5xL3TgFJq2vJcPHA92bbj77lBtfOCAMDr8I9Ot75//tP/tozz/9vHaDPnpr8XA4cqj1Dx9+4p7XVu79w66rPHd75uPGKz7X9o3Xz8n4ed9Q6uTr7fXTOgTBTqPKO+/b61j7CUxfaJS6NwA7wMPCh321z4oDVvltS9nQdJ+EMF7udR92/982lbTQJ+JsrcBwg8xtnZA+CnGzhYIP0yabG5B+9MEzt7o5Idpvp2twn4IsbNl23reVHLl5DH52l6cfJUc0rPUDXe+BVl/+Eu5G8vj7z3/ephotQ9fFi8VI/lehbmuocbe+sNfLk3PCYZHkFeL5IfhZ3xxjMUPlfYHPmJeHJvww6cUOHvBjlevBB+oPuLxIsjb510t98ukdMQvv+Lt22oStd15LHm6jdojCK3mOrZ26XsEWf527mylto6xt5faL27GVjez3NkFaePeFkFWXw3sbXH305XgNPqjTCH9GWThig0H/h62atfVnmybn3X/EGVz6XIdZXed7odr2Vyo+yHK7joqrRa4ztdC7FTtZTeC7ztE/RgHDvlgfTXO4/9Nk3z87tnrcfC1yeO/7Is4y1beXN79Icrm6GCdTZKnzUg9oqv/xrcZJwBxPQHoV97w+AXJlHy8Xz8Pslqn2vWGvupl72UjrLrTWvvFlWy3q78/iPzpqT0aPqKp8x+/ffoJDfNYAHg9GwnHIzxiPs+i9SO3s8so0WqxaW+b0etMiefD63zdaF/vZXtvYslK6bqQ8ZvRFwLwSwH29sJavUNufa29CrD1rfYqwNaBq8dfOQbe2vVieeZH7oxGetTlF94OoTkz/5jA9pdCjI6XrP7aVTgq7o96Ctp+CD5wsvIXy/rFVaB48dyY8LUQjrdWeulG6qFy5K9dRcslqMdCrrwUQtLqHqul/WmIx9WuZs/eP+KnZZpSs9daQ3LjHxKmtxv0tRDY9Ue+/HT84jCXfGN+/H7VAxq2fzcePzG5+ZjK8xNIliG0bLND74for4XA3tQ6Xjrzoxl+hq2/dPJIGzmKfQwjX2sLy8nyZmUM+3KI1zp15Gpkq+XSvwqR6w9tyGudOvKd64H+4lXkczH0xU7Ns6Me+NJVMDk2gj1eOgvma2ViexriMTBebbzMOI2L67LDbw6byx9mVnvtVhxHe+rxWoh8xB8z+y9lybk8gPWG9mKIAyHk7RDcXmxOLHnweO0qGtqi+9tX8VqnKt5Vta560uOF4usjvireG9g5vs677v8mbk9g8fLTqoHTY78UZH2fAtiPossoqwl+HjiPsJ5KvP+CSQNDpqGy6pv1fFNmfj2ixL4H4U9U0DN/4HPrR5S3v7d+xGjvL1k+oiynRPaOrfwhyuaBj8Sr3f32jilcx9g9qfARZbz9urF9O9Zf7eTNejfi5VrO5jGWjyj8fvdsxli2SeNPdHHrH+jiZcO+f7gn4YfnMdobC4dsyy+uGrZfeMxawFTUfhWmYxbnqGuYun3uHZvl0GSUjX7/vKHVhoFsHQ/+lxpN/h5ltRDasLuOPH1X/iEGBga12PvPGKvvrjgPDapnOR3fRwarr64ei3V4bS8vzPxtuZ14vWNgtkgZNrJ///WSD+xb8ojyiTpAlvcLrbl/ojSZV3sG7v+SLqNs/5KuloB2rXoVY99m+ydsdtlBm+elP6LYR5p2fKBpx/u/gssHH1P+1F998LdHF8tTmbZHF/qBR1Y/8sjqJx7ZZaNsjgzWnu/F8gcvLH/5CRZesc/J+FWUTxTm8+rrqX3TX20iuGv6y4Ovtk3f2idMf30I124err5+2s9D+8BLmH3kJcw+8RK2bJT9PFyM3xTnxteimT/Gb8tPQTZPFnlEWT0qm0eLPKK0T8xVrTYW3N60glcVoJsf/v3QKnvHnFwzWu9b3PjIuHZ8YFzrHxnX+kfGtf6Rca1/YJDgHxkk+CcGCZu3sxwH+kfGxsvdG/e7xz/QPf5+m4wPjI39E2Pjtvqaavs3ua0+8txs12WM7ce+rb7J2n3s142y/Zu8/Cprd6OTdnxiWNvoE8PaRu8Paxt9Yljb6BPD2vW1bKcQfWJY2+j9Ye0yxn4K0QeGtetG+UwK7W4k03h5CNHeRjKNl+/LDV+KyPMtXJZB+MCq+JeTZv8IsvpQOh+3LxtCjl9dB4ajR/li5c/r0L/2OijH1l8K23/XqJTP6ztB+ng/SPU2XjwjyyWbBjtpddPeXwWRPJntSxnfG0H6q0EYkzsiLwdBYWP3D9zO60EMtzPG+0G+7PPzqyCdEKTuIv49yPLorL0cXl9Hpt9Zpb24Dn73Onh/twRd/FbIcuuVrdM3fwqyt89WWy2E7e6z9YsgT/fZ2m/Z5UZbbbUesLvRVlstCCgWKvXLuaS/CjLwQcSXQ01+FcSzeN0O9teC2MjxgA2hRZD1p3eb+4b9JgzRi7fkWXltrvpqkNwE/BHkxW4eOP9qeF/1kH+mcf0Tjbu71F/G1H9nqX+54w8ObR3Vr78XLjRdbj2UBXzty/7of0ZZnqqdVYClAPmxJPirK6G8Em26uhL9xGu22ides1frYbuv2eqfeM1e7yW4+5q9vJbt12z7xCpus/cnaJcx9l+z7QMTtOtG2V89WlpCbu70WHNdJPMyymNogPWj+ov4RyKuNibseOQ6lUT8cxVqfS15LmU7yjTtn9eyGvg8FpyP8llBf1601panbOUz93gDQYz+6v0sTXu1HlaPLHj+XfAPF5KHsbZjVfbW1lsTfqBFclulVo8N/34hy2/dGNvWPVbi6tmFfTtIz/1/qNcdRH7zvXYWj1M5p/MXEQjf0FApoPjjd3R9vmaOz02/vKh/N6TVilFnbDHVbBlFPvFrvFoC2/81Xm4StflrvDxna/vXeLkGtv1rvO7nLFw1red1fu8hOdZbUmCDF6Jisd+tUY5l4Xe+z1Ht6PMp/s3FcMc8Yq0X+PNiVl/YcEu7f3A56uoPu1+fMZub1pjVMxH/bODlIe+5o3SdbW5/xFg9uvVoVlvsvSqrDQqvrT/vx26xodePUbCzxWJHrx+ilE/G+Thej9IQhVZRlj9iuSvL48V61br0ia0oZbUetm11sUvPm1Ynq4WfbauT5UrWrtWto+wWDQi9X1C7jLH9yiCrL8R2Xxl2b8f6q528W9Mhq2+H9ruH36892I2xbhN5u6Zj3a67b8qy+jhs+005lmbeblf/xGPf6AOP/bJRdt+U17/K+cHplzM4/vhVbstvETveOqytfn2WR9jN2xnL8cFq40LczajnmuhvWmR0fMFkq+tY9c3AjPyDy/Fxf4zfVnuCbY/fdl+lymvl91cpWc6nYKWRv0xJCn2PsvyMUPHFXC2L/+O5l1UlrWQns9ZF3D+vRZZLJtiQeZQVuu+rfLL8QuwxCs0nv5oKfX/yV2tanfPHp9eFvu+rhbL6ROyxkMRYSBqLIKsr0Xx76dr6B4LUHfh/FyTHf73+IP8uSM+v2B/46u1gh5UHrnqnL9cK82VByn5hf+dBWc0iUB6RbVQXgP54aPt6FiFH1uUcHPpFCM/H3kvu/BlitUv8Zg2T9OVv4F4N0zLIbg2T6Nt1Bz9cx14Nkyj/tdexWcP0UxD6QJC9GqZ1kM0aJtHll4x7NUzrIJs1TL8I0l8NslfD9FOQrRqm/dt5PcheDdN2kFUN0zrIZg2T2Nt1iD9cx14Nk6w+B9v1ktUPBT6EPEru/fFLsTqBareC6YcgexVMslr32q1g+kWQ51UcP4wEcHoN18qJPzp4LGua8eLmtV7hzyirSoNuefh4PQXujwdleTAXvrJ7LFzZ8wd29SHYY3oOi4qtvRgEPzqNzF8NkpMnjWlxJasvuB6vN4S3rlWQD1Roy3IRbM8J/AMV2uL9r72O3dGNf6BC+4cgm6Mb/0CFdj+O90c36yCbo5tfBOmvBtkb3fwUZGt0s387rwfZG91sB1mNbtZBNkc3ffX9114O/3Ade6Obvjz4adNLlgaNVVpdeFpffvm1+Q67DLLr8p3edtcfrmPP5ftqF8RPXMemy/8UhD4QZM/l10F2XX75wdeuyy+D7Lr8fpD+apBNl/8hyJ7Lb9/O60E2XX43yNLll0F2Xb697a4/XMemy7f217q85Z52bLpo1NY/kHzLILvJtx+kvxpkM/l+CLKXfNu383qQzeTbDbJMvmWQ3eSTtz+o/eE6NpNP3p/IWr5Icy7hPH74Ft272vhw90W6Lz/32h2nrYJsj9P6+966vo7NcVpvf+117I7TfghCHwiyOU6T3Y9UVuO05aLW7k/FMsjuT8V+kP5qkM2fih+C7P1UbN/O60E2fyp2gyx/KpZBdn8q9P13rfV1bP5U6PuzAmuX33wbX210uG3Q9vYi7A/XsWnQJn/tdewa9A9B6ANBNg16GWTXoFdfdG0b9DLIrkHvB+mvBtk06B+C7Bn09u28HmTToHeDLA16GWTXoMd4P4f9Awbtx19r0Lsv0v6JWSz/xCyWf2IWyz8xi+WfmMXyT8xi+SdmsfwTs1j+gVksPd5/0/IPzGLp8f4s1rJioOc5BFZPC6U/L2S5NVwedUxWihf8+B5k9RWLZ0EHeV/sI6jH8hPEvZPFfoqyd8TZb+7IVnekqxFOdhGTL7alUVpOV6JdbHHA4g9RBsafdUuZvxNl9dweA1U3rh+IQge9ekeu+L76WN7RakoLx4n2WqfyuyiPRzKPQD6cXo2i2S5qZC8+u6z53fkDV8/u8qyvzSIgXe5ruFkEpMuTvjaLgNZBNouAfgiyVwSk3N+fu9TlGV2bc5fLILuvxspvD2d/uI69V2Ntx197HZuvxj8FoQ8E2Xs1XgfZfDXWTyxz6SeWufQTy1z6iWUu/cQyl35imUs/scyln1jm0k8sc+n7y1z6iWUufX+Z6weX35u7VPnAhywqb0/E/nAdmwb9/iLX+jp2DVo+8CHLD0E2DVo+8CFLbIfytkEvg+wa9H6Q/mqQTYP+IcieQW/fzutBNg16N8jSoJdBdg1a3y4o/OE6Ng36/UWutUFvzl2qfmDhYB1kN/n0AwsHPwTZTD79wMLB/u28HmQz+fQDCwfrILvJ9/7XWz9cx2byjQ+8aa1epDeLgHR5YtXui/T4QJ21jvfHreMDddY69K+9jt0h1vhAnfUPQTaHWOMDddbqHzjvYB1k1+X3g/RXg2y6vH/gvIP923k9yKbL7wZZurx/4LwDO953V//AeQd28Ptewu+/A9vy0K3Nmc5lkF2Xt+Ntd/3hOvZc3o7x117Hpsv/FIQ+EGTP5ddBNl3elp9tbbr8Osimy/8iSH81yJ7L/xRky+X3b+f1IHsuvx1k5fLrILsuz2+76w/XsenyLH+ty2++SBt/YBZrHWQ3+fgDs1g/BNlMPv7ALNb+7bweZDP5+AOzWOsgu8nX3p7F+uE6NpOvvT+LtV7rb+UdeHH8oK22JbSBs2zK7u6v1hz0xdFWP0QZeTd2LKPsljTVDdG+FVHYclPCIw+yYTqeH0Vgq/UsMjzyQ47Flay2r5TcMbI8aH+G+MBBXfaJg7r2i9bqlfyROKslrb1TIpYXMnoerDBUVxeyWtNSPnKPxsbLKKsNhLAbroxOqyirDbZ3t+m21Rlb29t022qXqM1tuq3vli+stum2vtxIfXOb7vW17O56bMsjtnZ3PbbVxoSbux4vY2zvemyrrQl3dz1eN8rursfrFMK5Y+K22P3VVstb+ym0PKhrO4VWS1y7KaTjEym0XuTa3ATdVgd1ee4O6vzy/Wyn4UeO6bIPHNNlHzmmyz5xTJd95JiuZRr2I6P0Y/l7uFzo2tw+2VbfyOxun7y+ks3tk/eDLLZP/iHI3vbJ6yCb2yevg2xun/zDg6J5CNNRj/j540EZH9hn28YH9tleX8nug7IdZPWgjA/ss70OsvugDP3Eg2Kf+PFZnda1++OzHOu3PGNY647ffz6yvmwUnD42ur4cBR8tDF9EWb8D4WzfMbq8GMU9f07dnV+M8vgpdPwWttVb0DoOseUO/sTeX45jgheHL/Oav4zjmI14rGW92srE5XSq8zSxV+M0zYHLeVLsIs441pOTmFeUelBC+1WUA1Oc5J+IsrqWdcs8ZjazZeQxHHq1hcWFEGd1FMVYfd40esfZJ/bcyPeDDH45iCKIvRpEtoKsjy1xL58CLY4KGeuPtWb/aN1pmfuLMXwVY3moDA73rEfkfJ/IWl5IvDBdzVq/SPp+IctmbZw/J63R4jSYsfrYqz+WGnL8IiTPzzgcq6Wxj5yR0/JzPJYy9PjFgaV+5Kum11+R43sP83K3dPym0eJM3LH+GGj3IMvBq5HU7kGWP1zM7kGWg//ig5AeA7I8gLL142sX/X8e//hP//1f/uO//eu///d/+s9/+fd/+x/n3zSPX8+H8jhOOi9xUBIntSRJ6kmaZEkjySd5anhqeGp4anhqeGp4anhqeGp4atBxAAnIwAYUYAcq0IADCDWCGkGNoEZQI6gR1AhqBDWCGkGNocZQY6gx1BhqDDWGGkONocZQa1BrUGtQa1BrUGtQa1BrUGtQa1ATqAnUBGoCNYGaQE2gJlATqAnUOtQ61DrUOtQ61DrUOtQ61DrUOtQUago1hZqG2pm+pALswFBr8d8aMNROMyT1RAu1czHvsfIHZGADCjDUzpHNY3gPNGCoaaAnXsZxzjzR5RwXhprHf9CAAuxABRpwAD3xspALCQg1h5pDzaHmUAsnaeerMIWV3HiqtXNZncNLbjzV2nk2JoeXxDm9HF7Szt8RDi9p5xe5HF7SGp+owFA7hx0cXnJjqJ0dwOElN4baeYwVh5e080Wcw0tuFGAHhto5z8ThJTcOoCeGl7Rz0YrDS25kYAMKMNTOtRQOL7nRgAPoieElN+YzyY2BoXZ+HcbhJTdeauf1hpe081QZDi+5MdQs/ttQOyfAOLzkRgLGvZ3V0RxecqMAQ+186eHwkhtD7Zwx4/CSGz2xH8BL7bycfqmdz054STtfVzm85MZQOweaHF4i59Iph5fIORbg8JIbTzU5B5scXnIjARnYgALsQAUacAChZlAzqBnUDGoGNYOaQS28RCIZwktuDLWzLoTDS+Q0MQ4vuTHU4nkIL7lRgB2oQAMOoCf6ASQg1BxqDjWHmkPNoeZQ81RrxwEkIAMbUIAdqEADDiDUCGoENYIaQY2gRlALL5F+nGjAAQy103daeMmNBGRgA0pGCC+5EWps+G8HEGoNag1qDWoNag1qDWoNag331nBvDWoCNYGaQE2gJgLsQAXi3gRq4on9ABKQgVDrUOtQ61DrUOtoyY57U9yb4t4UapeXXIiWVLSkoiUVago1hZpBzaBmaEnDvRnuzXBvBjVDvxla0tCSAy05oDagNqA2oDagNtCSA/c2cG8D9+ZQc/SboyUdLeloSYeaQ82h5lDzVJPjABKQgQ2YanJ0oAINOIBQI6gR1AhqBDUSYAcq0IBQo+w34QNIQAZCjaHGUGOowUsEXiLwEoGXCLxEGtRaA6Il4SUCL5EGtQY1eInASwReIvASgZcIvETgJSJQE/QbvETgJQIvkQ61DjV4icBLBF4i8BKBlwi8ROAlolBT9Bu8ROAlAi8RhZpCDV4i8BKBlwi8ROAlAi8ReIkY1Az9Bi8ReInAS8SgNqAGLxF4icBLBF4i8BKBlwi8RAbUBvoNXiLwEoGXiEPNoQYvEXiJwEsEXiLwkg4v6fCSfqRaPxpQgB2oQEOEAYQavKTDSzq8pMNLOrykw0s6xiUd45IOL+nwkg4v6RiXdIxLOrykw0s6vKTDSzq8pMNLOrykN6g1AqIl4SUdXtIb1BrU4CUdXtLhJR1e0uElHV7S4SVdoCboN3hJh5d0eEkXqHWowUs6vKTDSzq8pMNLOrykw0t6h1pHv8FLOrykw0u6Qk2hBi/p8JIOL+nwkg4v6fCSDi/pBjVDv8FLOrykw0u6Qc2gBi/p8JIOL+nwkg4v6fCSDi/pA2oD/QYv6fCSDi/pDjWHGrykw0s6vKTDSzq8pMNLOrxEj1TTg4AMbEABdkRQoAEHEGrwEoWXKLxE4SVKUKMOVKABBxBqeMdReInCSxReovAShZcovEThJcpQ4+w3hZcovEThJYp3HG1Qg5covEThJQovUXiJwksUXqICNUG/wUsUXqLwEsU7jgrU4CUKL1F4icJLFF6i8BKFl2iHWke/wUsUXqLwEsU7jirU4CUKL1F4icJLFF6i8BKFl6hBzdBv8BKFlyi8RPGOowY1eInCSxReovAShZcovEThJTqgNtBv8BKFlyi8RPGOow41eInCSxReovAShZcovEThJepQ8+w3g5cYvMTgJYZ3HDsE2IEKNOAA5r0ZvMTgJUZQowYUYAcqEGrwEsO4xDAuMXiJ4R3HGGqYLzF4icFLDF5iGJfY7SWPaU1rORdkjYAMbEABdqACDTiAOfNkAjWBmkBNoCZQE6gJ1ARqAjWBWodah1qHWodah1qHWodah1qHWoeaQk2hplBTqOEdxzBfYpgvMXiJwUsMXmIYlxjGJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4iQ2oDajBSwxeYvASwzuOYb7E4CUGLzF4icFLDF5i8BKDl5hDzQ2IfIOXDHjJwDvOwHzJgJcMeMmAlwx4yYCXDHjJgJcMghoRkIENKECoYb5kwEsGQQ3jkoFxyYCXDIxLBsYlA14yMPc6MPc62IADCDXMlwzMlwzMvQ6MSwbGJQPjkoFxycC4ZGDudTT0m6AlBS2JccnAO87AfMnAfMnA3OvAuGRgXDIwLhkYlwyMSwbmXkdHv3W0ZEdLYlwy8I4zMF8yMF8yMPc6MC4ZGJcMjEsGxiUD45IBLxmKflO0pKIlMS4Z8JKB+ZKB+ZKBudcBLxnwkgEvGfCSAS8ZmHsdA/0GLxnwkgEvGXjHGZgvGfCSAS8Z8JIBLxnwkgEvGfCSgbnX4eg3eMmAlwx4ycA7jmO+xOElDi9xeInDSxxe4vASh5c45l79yH5zeInDSxxe4njHccyXOLzE4SUOL3F4icNLHF7i8BLHuMQxLnF4icNLHF7iGJc4xiUOL3F4icNLHF7i8BKHlzi8xDH36ljHcXiJw0scXuJ4x3HMlzi8xOElDi9xeInDSxxe4vASx9yrYx3H4SUOL3F4ieMdxzFf4vASh5c4vMThJQ4vcXiJw0sc4xLHuMThJQ4vcXiJY1ziGJc4vMThJQ4vcXiJw0scXuLwEsfcq2Mdx+ElDi9xeInjHccxX+LwEoeXOLzE4SUOL3F4icNLHHOvjnUch5c4vMThJY53HMd8icNL6ICZPJgKc+FWWAr3win6YCs8CjsYtvLgoktFl4ouFV0qujCXB1vhUbjcLxddrO6cn/0VboWlcNHlostFl4suF91W2rmV+23lflu531Z0sdbz4NLOrbRzK+3ciq4UXSm6UnSl6EppZyn3K+V+pdyvFF0p/dtLO/fSzr20cy+6vej2otuLbi+6vbRzL/er5X613K8WXS39q6WdtbSzlnbWoqtFV4uuFV0rulba2cr9WrlfK/drRddK/1ppZyvtPEo7j6I7iu4ouqPojqI7SjuPcr+j3O8o9+tF10v/emlnL+3spZ296HrR9aLrRbf4FRW/ouJXVPyKil8RJnmJsGJEVPyKil9R8Ss6ii4V3eJXVPyKil9R8SsqfkXFr6j4FVHRxTwNUfErKn5Fxa+Iiy4X3eJXVPyKil9R8SsqfkXFr6j4FbWii9UkouJXVPyKil9RK7qt6Ba/ouJXVPyKil9R8SsqfkXFr0iKrpT+LX5Fxa+o+BX1otuLbvErKn5Fxa+o+BUVv6LiV1T8irToaunf4ldU/IqKX5EW3eJXpOV+tdxv8SuyomtF14pu8SsqfkXFr8jK/d5+1YJz+oquWt2bx1GYCnPhVlgK98Ja2AoX3VF0veh60fWi60XXi64XXS+6XnS96KLmjhhFd8SouiNG2R0x6u6IUXhHjMo7YpTeEaP2jhjFd8RH0aWiS0UXL27EmAUixjQQcfErLn7Fxa+4jK+4jK+4+BUXv+LiV1z8iotfcfErLn7Fxa+4+BUXv+JWdFvRLX7Fxa+4+BW3otuKbvErLn7Fxa+4+BUXv+LiV1z8iqXoYvWKuPgVF7/i4lcsRbcX3eJXXPyKi19x8SsufsXFr7j4Ffeii7Us4uJXXPyKi1+xFl0tusWvWItuGV9xGV9x8Ssu4ysu4ysufsVW+tdKO1tp5zK+Yiu6VnSt6I6iW8ZXXMZXXMZXXMZXXMZXPIruKP07SjuP0s5lfMVedL3oetH1olvGV1zGV1zGV1zGV1zGVw0T1dSw6kUNy17UsIZOrYyvWnkfbJhiooY5JmqYsKZWxletjK9aGV+1Mr5qZXzVil81rIFRKRqmUjVMpWyYSt0wlcJhKpXDVEqHqdQOUyt+1YpfteJXpX6YGhddrK5TK37Vil+14leliphaK7rFr1rxq1b8qhW/KrXEVIqJqVQTU5OiK6V/i1+14let+FWpKaYmRbf4VSt+1YpfteJXpbKYSmkxldpiar3o9tK/xa9a8atW/KpUGFPTolv8qhW/asWvWvGrUmdMpdCYSqUxtTK+amV81YpfteJXrfhVqTemVsZXrfhVK37Vil+14lel6phK2TGVumNqo+iO0r/Fr1rxq1b8qlQfU/OiW/yqFb9qxa9a8atSg0ylCJlKFTI1L7pYVyMpfiXFr6T4ValFJinzV1L8SopfSfErKX5VKpKplCRTqUkmKeMrKeMrKX4lxa+k+FWpTCYp4yspfiXFr6T4lRS/KvXJVAqUqVQok3DRxZobSfErKX4lxa9KnTJJmb+S4ldS/EqKX0nxq1KtTKVcmUq9MokUXSn9W/xKil9J8atStUxS5q+k+JUUv5LiV1L8SopfleJlKtXLJL3o9tK/xa+k+JUUvyo1zCRl/kqKX0nxKyl+JcWvSiUzlVJmKrXMJOV9ULT0b/ErKX4lxa9KRTNJeR+U4ldS/EqKX0nxq1LXTKWwmUplM8kouqP0b/ErKX4lxa9KfTNJmb+S4ldS/EqKX0nxq1LlTKXMmUqdM4kXXS/9W/xKil/14lel2pl6mb/qxa968ate/KoXvyo1z1SKnqlUPVMv8+0d63jUi1/14le9+FWpfaZe3gd78ate/KoXv+rFr0oFNJUSaCo10NTLfHvHqh714le9+FUvflUqoamX+ate/KoXv+rFr3rxq1IPTaUgmkpFNPUy395b6d/iV734VS9+VeqiqZf5q178qhe/6sWvevGrUh1NpTyaSn009TLf3nvp3+JXvfhVL35VqqSpl/mrXvyqF7/qxa968atSK02lWJpKtTT1Mn/Vy/xVL37Vi1/14lelZpp6mW/vxa968ate/KoXvyqV01RKp6nUTlMv8+19lP4tftWLX/XiV6WCmnqZb+/Fr3rxq178qhe/KnXUVAqpqVRSUy/z7d1L/xa/6sWvevGrUk9NWubbtfiVFr/S4lda/KpUVVMpq6ZSV01a5tu1rA9q8SstfqXFr0p1NZXyair11VQKrEmLX5USa9Iy365l/qpUWVMps6ZSZ02l0JpmpXULxnzdXWt98yiM+TpFiSQpaiRJUSRJiipJUpRJkqJOkrQV3VZ0W9FtRVeKrhRdKbpSdKXoStGVoitFV4quFN1edHvR7UW3F91edHvR7UW3F91edHvRLe+DWuavtMxflXpsKgXZVCqyqZRkU6nJJi1+pcWvSlk2afErLX6lxa+0+FWpzaZSnE2lOpu0rA9qWR/U4lda/EqLX5UabdIyf6XFr7T4lRa/0uJXpVKbSqk2lVpt0rI+qGV9UItfafErLX5VKrZJy/yVFr+y4ldW/MqKX5W6bSqF21Qqt8nK+qCV9UErfmXFr6z4VanfJivzV1b8ysr6oJXxlZXxVaniJivjKyvjq1LITVbm20spN5VabirF3FSquamUc1Op56ZS0E1WxldWxldWxldWxldWxldW5tutrA9aWR+0Us9gZXxl5X3QyvyVlfkrK/PtVsZXVsZXVsZXVsZXVsZXVubbrawPWlkftFLPYGV8ZeV90Mr8lZX5Kyvz7VbGV1bGV1bGV1bGV1bGV1b8ysr6YCn6plL1TaXsm0rdN5XCbyqV31RKv6nUfpMVv7LiV1b8qtR/k5X5div1DFb8yopfWfGrUgVOVuavrPiVFb+y4ldW/KrUglMpBqdSDU5W5tut1DNY8SsrfmXFr0pNOFmZv7LiV1b8yopfjeJXpTKcSmk4ldpwGmW+fZR6hlH8ahS/GsWvSoU4jTJ/NYpfjeJXo/jVKH5V6sSpFIpTqRSnUcZXo4yvRvGrUfxqFL8q9eI0yvhqFL8axa9G8atR/KpUjVMpG6dSN06jzLePsj44il+N4lej+FWpHqdR5q9G8atR/GoUvxrFr0oNOZUicipV5DTKfPso64Oj+NUofjWKX5Vachpl/moUvxrFr0bxq1H8qlSUUykpp1JTTqOMr0YZX43iV6P41Sh+VSrLaZTx1Sh+NYpfjeJXo/hVqS+nUmBOpcKcRplvH2V9cBS/GsWvRvGrUmdOo8xfjeJXo/jVKH41il+VanMq5eZU6s1plPn2UdYHR/GrUfxqFL8qVec0yvzVKH41il+N4lej+FWpPadSfE6l+py8zLd7WR/04lde/MqLX5UadPIyf+XFr7z4lRe/8uJXpRKdSik6lVp08vI+6GV90ItfefErL35VKtLJy/ugF7/y4lde/MqLX5W6dCqF6VQq08nLfLuX9UEvfuXFr7z4ValPJy/zV178yotfefErL35VqtSplKlTqVMnL/PtXtYHvfiVF7/y4lelWp28zF958SsvfuXFr7z4ValZp1K0TqVqnbzMt3tZH/TiV178yotfldp18vI+6MWvvPiVF7/y4lelgp1KCTuVGnbyMt/uZX3Qi1958SsvflUq2cnL/JUXv/LiV178yotflXp2KgXtVCrayct8u5f1QS9+5cWvvPhVqWsnL/NXXvzKi1958SsvflWq26mUt1Opb+cD8+18YH2QD/gVH/ArPuBXXOrb+cD8FR/wKz7gV3wcRRd+xaW+nUt9O5f6dj6o6GL+ig/4FR/wKz7gV1zq2/ngostFl4suF134FZf6di717f+/0u5mR5LlOLDwu3Ddi3Az8795FYIQJA5nQIAQBY40wGDAd1eVR+X1D5J22hDGutV5yj26TmdmHHgGfXs8AffeH4wn2edkn5N9TrgJN+Em3ISb7HOy3mK9xXoLbnF9i30u9rnY54JbcAtuh9vhdva5s97Oejvr7XA717ezz519HuzzgDtY72C9g/UOuAPugDvgDtY7We+EO1nvj6/OCaXzt/fr4qdv/5kH82RezPvOtxeN5/ai8XAk48OZjA+HMj6cyvhwLOPDuYwPBzM+nMz4cDTjw9mMD4czPpzO+HA848P5jA8HND6c0PhwRONze9FotxeNdnvRaLcXjXZ70Wi3F412e9FotxeNdnvRoG+Pdt+/inbfvwr69qBvD/r2oG8P+vZo+KrhK/r2aPiq4auGrxq+om8P+vagb48WcAMuvmr4quEr+vZoCRdfNXzV8FXDV/TtQd8e9O3RCu69PxgNXzV81fBVK7gFF181fNXwVcNX9O1B3x707dE63Ht/MBq+aviq4Sv69mgDLr5qA+6AO9hnfNUG6x2sF1+1wfWd7PNknyf7POFOuBPuhDvhTvZ5st7FehfrXXAX13exz4t9XuzzgrvgLrgb7oa72efNejfr3ax3w91c380+354hgudXcV8PRtz3ryLu+1cR9/32CJ5fBc+vgudXwfOr4PlV4Ku49weDvj3o24O+Pejbg7496NuDvj3o2yPwVeCrwFf07REB9/YMEfgq8FXgK/r2iISLrwJfBb4KfEXfHvTtQd8ekXCT64uvAl8FvqJvjyi4+CrwVeCrwFf07UHfHvTtER1u5/riq8BXga/o2yM6XHwV+CrwVeAr+vagbw/69gieXwXPrwJfBb4KfEXfHsHzq8BXga8CXwW+om8P+vagb49YcBfXF18Fvgp8Rd8eseDiq8BXga8CX9G3B3170LdHbLib64uvAl8FvqJvj7zvX0Xiq8RXia8SX9G3B3170LdH8vwqeX6V+CrxVeIr+vZInl8lvkp8lfgq8RV9e9C3B317ZMC99weDw7GD07GD47GDvj04IDs4ITs4Ijs4Izs4JDvo24O+Pejbg4Oyg5Oyg6OyI/FV4iv69uC47OC87ODA7ODE7ODI7KBvD/r2oG8Pjs0Ozs0ODs6OxFeJr+jbg8Ozg9Ozg+Ozg/OzgwO0g7496NuDvj04RDs4RTs4RjsSXyW+om8PjtIOztIODtMOTtMOjtMO+vagbw/69uBI7eBM7eBQ7Uh8lfiKvj04WDs4WTs4Wjs4Wzs4XDvo24O+PejbgwO2gxO2gyO2I/FV4iv69uCY7eCc7eCg7eCk7eCo7aBvD/r2oG8PjtsOztsODtyOwleFr+jbg0O3g1O3g2O3g3O3g4O3g7496NuDvj04fDs4fTs4fjsKXxW+om8PjuAOzuAODuEOTuEOjuEO+vagbw/69uAo7uAs7uAw7ih8VfiKvj04kDs4kTs4kjs4kzs4lDvo24O+PejbowpucX3xVeGrwlf07cHx3MH53MEB3cEJ3cER3UHfHvTtQd8eHNMdnNMdHNQdha8KX9G3B4d1B6d1B8d1B+d1Bwd2B3170LcHfXtwaHdwandwbHcUvip8Rd8eHN0dnN0dHN4dnN4dHN8d9O1B3x707cER3sEZ3sEh3lH4qvAVfXtwkHdwkndwlHdwlndwmHfQtwd9e9C3Bwd6Byd6B0d6R8dXHV/Rtwd9e9C3B317cLJ30LdH5/12DvcO+vagbw/69qBvj0/fnmd+uePML/d8EM/rq/F+/+GO9/sPd7zff7jfnyIZP337z3y483zMz+urn/lw5/tBP8F8uOeDhX769p8PA+rMg/lw348Gen31Mx/uPh8D9PrqZz7cfX7m11c/8+Hu85ivr37mzvzN7c/Zh+Orz/zN/bqaZ953Pr76zI05znw+uOj46jMXcz/z+ZmPr3o7P+fx1Wd+uWef+77z8VU/Hx709u2fOZgP93wy19u3f+bDPR8x9Pbtn3kyH26en+346mc+vup5frbjq898uN8fGBxv3/6Zi/lwz2d3vX37Zz7c9+/28VXv7wc+7TsfX33mw+3vJ0EF8+H285jHV5+5Mx/u+3d+TebDff8+H1/9zMdXn/lw5/k5j68+8+HOs7fHV5/5cOdZ+/HVZz7c+T7mYt6/zW/f3s+nc719+2c+3PN78fbtn7mYD/d8ftbbt3/mw9155sX8zR3nQ7bevv0zN+Y4c505mevMh3t8Ndr7/ePM/cyTeTHvOx9ffebDbfPMwZzMxfxyz89wfDXO3/O3b//Mi3nf+fjq69HO3JiD+XDPZ9m9ffuIwzq++syD+XDz7Pnx1Wc+3PN79Pbtn7kxB/Phnt+vt2//zId7fqfevv0zT+bDPb9fb9/+Mx9fjfO79vbtn/lwz+/X27d/5sM9H3D39u2feTAfbn8ffzEf7vm34+3bP3NjPtzz+/X27Z/5cM/v19u3f+bDPf+OvH37Z17Mh7vOnh9ffebDPR9d9/btn/lwz8fUvX37Zz7c82/N27d/5sl8uPvs1fHVz3x8Nc+/HW/f/pmDOZnrzOfv5PHVZx7M88znZz6+ms/5OY+vfub9cs8+7MZ8uO/v5vHVZy7mwz3/Hr19+2c+3Pf35fjqM+/f5rdvn+ejH9++/TMf7vndefv2z3y45+/z27d/5sF8uLnOvJgP93wC3tu3f+bGfLjngyTfvn3W+Ui946vP3JkH8+Ge35e3b//M+87xMB/u+T16+/Z5nju9fftnLubOfLjnExvfvv0zH+56H3Pf+fjqMzfmYE7mYu7Mg3kyw024BbfgFtyCW3ALbsEtuAW34Ha4HW6H2+F2uB1uh9vhdrgd7oA74I6Xe/6ejGQu5pd7ru8YzJN5Me87z+c+zmzMcGfy/cUMd8KdcCfcCXfBXXAX3MV6F+tdcBfcBXfBXXBfX/3MjTmYWe+G+/rqZx7Mk3kxX+7bt3/mxhzMyVzMnXkwT+bLffv2n7k9zI05mOE2uA1ug9vgtsXMeoP1BusNuJHMxdyZBzPcgBtwE27CTfY5WW+y3mS9CTcnM/uc7HOxzwW34Bbcgltwi30u1lust1hvh9u5vp197uxzZ5873A63w+1wO9zBPg/WO1jvYL34ag2u72CfB/s82Gd8tSbcCXfCxVcLXy18tfDVwldrwp1cX3y18NXCV2vBXXDx1cJXC18tfLXw1cJXC1+tDXdzffHVwlcLX60Nd8PFVxtfbXy18dXGVxtfbXy1n8vdz2RezHefN77aDW6Di682vtr4auOrja82vtr4agfcaMzBnMzFDDfg4quNrza+2vhq46uNrza+2gk3OzP7jK82vtoJt+Diq42vNr7a+Grjq42vNr7aBbe4vvhq46uNr3aH2+Hiq42vNr7a+Grjq42vNr7aPL/aPL/a+Grjq42vNs+vNs+vNr7a+Grjq42vNr7a+Grjqz3hTq4vvtr4auOrveAuuPhq46uNrza+2vhq46uNr/aGu7m++Grjq42v9oa74eKrja/29VU+11f5XF/lc32Vz/VVPs9v3HyezjyYJ/NihtvgNrgNboN7fZXP9VU+11f5XF/l0+C2fefrq3yur/K5vson4AbcgBtwA+71VT7BepP1JutNuJnM7HOyz8k+J9yEm3ALbsEt9rlYb7HeYr0Ft7i+xT4X+9zZ5w63w+1wO9wOt7PPnfV21ttZ74A7uL6DfR7s82CfB9wBd8AdcAfcyT5P1jtZ72S9E+7k+k72ebLPk32ecBfcBXfBXXAX+7xY72K9i/UuuIvru9nnzT5v9nnD3XA33A13w93sM75q+Krhq/ZcbnuSuZg782CePM5ihouvGr5q+Krhq4avGr5qDW6bzIv57nPDVy3gBlx81fBVw1cNXzV81fBVw1ct4WZjZp/xVcNXLeEmXHzV8FXDVw1fNXzV8FXDV63gFtcXXzV81fBVK7gdLr5q+Krhq4avGr5q+Krhq9bhdq4vvmr4quGrNuDiqzZY72C9+KoNuAPuhIuvGr5q+KpN1vvjq37ml7vOPJkX877zj6/euTEHczIXc2eGu+AuuAvuhrvhbrgb7oa74W64G+6Guy83noe5MQdzMhdzZx7Mk3kxw3199X3vI9++/TMH8+F+33PMt2//zJ15ME/mxePsOwfc11fv97+++pnhBtyAG3ADbsANuAk3WW+y3oSbcBNuwk24r69+5n3n11c/M+stuK+vfuZi7syDGW7BLbgdbofb2efOejvr7ay3w3199TOzz519HuzzgDvgDrgD7oA72OfBegfrHax3wp1c38k+T/Z5ss8T7oQ74U64E+5inxfrXax3sd4Fd3F9F/u82OfFPi+4G+6Gu+FuuJt93qx3s97Nejfcfa/v27d/5sYczJf79u2fuTMP5sm8mO96sz3MjRluS+Zi7syDGW6D2+AGXHyV+CrxVeKrxFcZcGMyL2b2GV9lwk24+CrxVeKrxFeJrxJfJb7KgltcX3yV+CrxVRbcgouvEl8lvkp8lfgq8VXiq+xwO9cXXyW+SnyVHe6Ai68SXyW+SnyV+CrxVeKrHHAH1xdfJb5KfJUT7oSLrxJfJb5KfJX4KvFV4qtccBfXF18lvkp8lQvugouvEl8lvkp8lfgq8VXiq9xwN9cXXyW+KnxVz+XWE8zJXMydeTBP5sV811s8vyqeXxW+KnxV+Kp4flU8vyp8Vfiq8FXhq8JXha8KX1XAjc48mCfzYoabcPFV4avCV4WvCl8Vvip8VQk3ub74qvBV4asquAUXXxW+KnxV+KrwVeGrwlfV4XauL74qfFX4qjrcDhdfFb4qfFX4qvBV4avCVzXgDq4vvip8VfiqJtwJF18Vvip8Vfiq8FXhq8JXteAuri++KnxV+KoW3AUXXxW+KnxV+KrwVeGrwle14W6uL74qfFX4qvbl9udhbszBnMzF3JkH82S+3P7c69vxVcdXHV91Xg92Xg92fNXxVcdXHV91fNXxVcdXPeBGMhdzZx7McAMuvur4quOrjq86vur4quOrnnBzMrPP+Krjq87rwV5w8VXHVx1fdXzV8VXHVx1f9Q63c33xVcdXHV91Xg/2DhdfdXzV8VXHVx1fdXzV8VUfcAfXF191fNXxVef1YJ9w8VXHVx1fdXzV8VXHVx1f9Ql3cn3xVcdXHV91Xg/2BRdfdXzV8VXHVx1fdXzV8VXfcDfXF191fNXxVef1YN9w8dXAVwNfDXw18NXAVwNfjedyxzOZF/Pd54GvBq8HB74aPL8aPL8a+GrwenA0uLx/NfDVwFcDXw2eX40fX+WZf+tFc9xeNMftRXPcXjTH7UVz3F40x+1Fc9xeNMftRXPcXjTH7UVz3F40x+1Fc9xeNEfCTbgFt+AW3IJbcAtuwS24Bbfgdrgdbofb4Xa4HW6H2+F2uB3ugDvg8n774P7g4P32wf3Bwf3Bwfvtg/uDg/uDg/fbx+1Fc0y4vN8+eL99TLgT7oQ74XJ/cCy4C+6Cu1jvYr3cHxzcHxzcHxwL7oJ7+6sct7/KcXvRHNwfHBvu7a9y3P4qx+1Fc9xeNAf3Byf3Byf3Byc9w6RnmLe/ynn7q5y3F83J/cFJzzBvf5Xz9lc5by+a8/aiObk/OLk/OLk/OOkZJj3DvP1VzsZ6g/Vyf3DSM8zbX+W8/VXO24vmvL1oTu4PTu4PTu4PTnqGSc8wk31O1pusl/uDk55h3v4qZ7LPyT4X+8z9wcn9wcn9wUnPMOkZZrHPxXqL9XJ/cNIzzM717exzZ587+8z9wcn9wcn9wUnPMOkZ5mCfB+sdrJf7g/TtObk/OLk/OAf7zP1B+vac9AyT+4OT+4P07UnfnvTtSd+e9O056Rnm5PriK/r2r5l9pmeY9Az07UnfnvTtSd+e9O1fb6GxXnw16Rnm5vriK/r2pG/PSc8w6Rno25O+Penbk7496duTvj3p23PRMyz6K/r2pG9P+vZc9AyLnoG+Penbk7496duTvj3p25O+PRc9w6K/om9P+vakb89Fz7DoGejbk7496duTvj3p25O+Penbc9EzLPor+vakb0/69lz0DIuegb496duTvj3p25O+Penbk749Fz3Dor+ib0/69qRvz0XPsOgZ6NuTvj3p25O+Penbk7496dtz8fxq8fyKvj3p25O+PRfPrxbPr+jbk7496duTvj3p25O+Penbc9FfLfor+vakb0/69lz0V4v+ir496duTvj3p25O+Penbk749F/3Vor+ib0/69qRvz0V/teiv6NuTvj3p25O+Penbk7496dtz019t+iv69qRvT/r23PRXm/6Kvj3p25O+Penbk7496duTvj03/dWmv6JvT/r2pG/PTX+16a/o25O+Penbk7496duTvj3p23PTX236K/r2pG9P+vbc9Feb/oq+Penbk7496duTvj3p25O+PTf91aa/om9P+vakb89Nf7Xpr+jbk7496duTvj3p25O+Penbc9Nfbfor+vakb0/69ty8Hty8HqRvT/r2pG9P+vakb0/69qRvz00vuulF6duTvj3p23PzenDTi9K3J3170rcnfXvStyd9e9K356YX3fSi9O1J35707bl5PbjpRenbk7496duTvj3p24u+vejb67m9aD23Fy369qJvL/r2eu7rwXpuL1r07UXfXvTtRd9e9O1F31707fU0uLcXLfr2om8v+vZ6Am7ADbgBN+BeXxV9e9G3F317PQn39qJF31707UXfXk/CTbgJN+Em3GKfi/UW6y3WW3CL61vsc7HPxT4X3A63w+1wO9zOPnfW21lvZ70dbuf6DvZ5sM+DfR5wB+sdrHew3gF3wB1wJ9zJeifrnXAn6729aD23F63n9qL13F60ntuL1nN70XpuL1rP7UXrub1oPbcXref2ovUsuAvugrvgbrgb7oa74W64G+6Gu+FuuLcXrXZ70Wq3F612e9FqtxetdnvRarcXrXZ70Wq3F612e9FqD9z7fnu1e3+w2n2/vdq9P1jt3h+sdt9vr3bvD1a79wer3ffbq91etFrAve+3V7vvt1cLuAE34AbcgBtwA27CTdabrDfhJtyEm3AT7u2vqt3+qtrtRasV6y24t7+qdvurarcXrXZ70WoFt+AW3A63w+3sc2e9nfV21tvh3v6qWmefO/s82OcBd8AdcAfcAXewz4P1DtY7WO+EO7m+k32e7PNknyfcCXfCnXAn3MU+L9a7WO9ivQvu4vou9nmxz4t9XnA33A13w91wN/u8We9mvZv1bri3v6q4/VXF7UUrbi9ace8PVtz7gxX3/mDF7Rkqbs9QcfurittfVdxetOLeHyz69op7f7Di3h+suL1oxb0/WPTtFQ1ugxtw8RV9e9G3F3170bdXBNzbXxV9e9G3F317RcJNuPiKvr3o24u+vejbi7696NsrCm5xffEVfXvRt1cU3IKLr+jbi7696NuLvr3o24u+vaLD7VxffEXfXvTtFR3ugIuv6NuLvr3o24u+vejbi769YsAdXF98Rd9e9O0VE+6Ei6/o24u+vejbi7696NuLvr1iwV1cX3xF31707RUL7oKLr+jbi7696NuLvr3o24u+vWLD3VxffEXfXvTtlbdnqLw9Q9G3F3170bcXfXvRtxd9e9G3V/L8Knl+Rd9e9O1F317J86vk+RV9e9G3F3170bcXfXvRtxd9e2XAvf1V0bcXfXvRt1cG3ISLr+jbi7696NuLvr3o24u+vTLhJtcXX9G3F317ZcEtuPiKvr3o24u+vejbi7696NsrO9zO9cVX9O1F317Z4Xa4+Iq+vejbi7696NuLvr3o2ysH3MH1xVf07UXfXjnhTrj4ir696NuLvr3o24u+vejbKxfcxfXFV/TtRd9eueAuuPiKvr3o24u+vejbi7696NsrN9zN9cVX9O1F3155+6uq218VfXvRtxd9e9G3F3170bcXfXvV7a+qbn9V9O1F31707VW8HixeD9K3F3170bcXfXvRtxd9e9G3VwXc24sWfXvRtxd9exWvByvg4iv69qJvL/r2om8v+vaib69KuLcXLfr2om8v+vYqXg9WwcVX9O1F31707UXfXvTtRd9e1eF2ri++om8v+vYqXg9Wh4uv6NuLvr3o24u+vejbi769asAdXF98Rd9e9O1VvB6sCRdf0bcXfXvRtxd9e9G3F3171YQ7ub74ir696NureD1YCy6+om8v+vaiby/69qJvL/r2qg13c33xFX170bdX8XqwNlx8Rd9e9O1F31707UXfXvTt1W8vWv32okXfXvTtRd9endeD9O3VeX7VeX5F316d14O9weX9K/r2om8v+vbqPL/qtxetT9++z/zNXc/7PePMcebJvJj3nY+vPnNjDuZkLubODDfhJtyEW3ALbsEtuAW34Bbcgltwj69WO3t+fPWZG3MwJ3Mxd+bBPJkXM9wBd8AdcAfcAXfAHXAH3AF3wJ1wJ9wJd8KdcCfcCXfCnXAn3AV3wV1wF9wFd8FdcBfcBXfB3XA33A13w91wN9wNd8PdcPflvn37Z27MwZzMxdyZB/NkXsxwG9wGt8FtcBvcBrfBbXAb3AY34AbcgBtwA27ADbgBN+AG3ISbcBNuwk24CTfhJtyEm3ALbsEtuAW34BbcgltwCy6+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KuJrya+mvhq4quJrya+mvhq4quJrya+mvhq4quJrya+mvhq4quJrya+mvhq4quJrya+mvhq4quJrya+mvhq4quJrya+mvhq4quJrya+mvhq4quJrya+mvhq4quJrya+mvhq4quJrya+mvhq4quJrya+mvhq4quJrya+mvhq4quJrya+mvhq4quJrya+mvhq4quJrya+mvhq4quJrya+mvhq4quJr+aPr+aZX+4+8+HG+z2H+/3ZCvX27Z/5cL8/l6Tevn3F9332t29fef7s66t8/v7rd//3H//253/8p7/86f/87n/8/6//+7/+7Z//+K9//us///zff/1///L5L//0tz//5S9//t//8C9/++sf//Q//+1vf/qHv/z1j9//7XfP9/98/5r+vo1f0f7w9c3tty/V+tXz+0vx25e+frbY31/K376U9SvPl+rnAX+/vt7M/LW+3uH7w3m03++vm3C/9tfdqz+cP/f13+v5+u/9+f7v33/g68nh+PX1rPD8gXa+Y8b3I9T34/b7M85fEd9fGv/5x57/+Uvr+0vfwK9dzPWBVf2q8/Pu/2Lt7Mf+FQff3g05X4pfX0v5PNDov+bz+Ym/7i1+Pcb54Vp8NuLrhv6vr5vcP8turf9q0T9/vMX41fK3JX/dAP/1dbP7PED+dx+g/uMy/v73P/z93wE=",
1931
1932
  "verification_key": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEZRAAAAAAAAAAAAAAAAAAAAsIjHuQMmwvZguxj2Hkmi0KsAAAAAAAAAAAAAAAAAAAAAACfPfAvcG9qI8awme2fKsQAAAAAAAAAAAAAAAAAAAKaLXObBLtotOKmckvJsdaZ/AAAAAAAAAAAAAAAAAAAAAAAASkG34Bp4szyzQkounEAAAAAAAAAAAAAAAAAAAAB0rG2uV1KbNST8Xp0Izr412wAAAAAAAAAAAAAAAAAAAAAAJZfijAYrkts4A1BeQUIaAAAAAAAAAAAAAAAAAAAApB7efflIUZ28CRBXtEGAHGAAAAAAAAAAAAAAAAAAAAAAAAWbgNfigj1A5s/A7UYJdgAAAAAAAAAAAAAAAAAAANHu/hpk4Yn10c/2Xyl0QpqTAAAAAAAAAAAAAAAAAAAAAAAnfYMzrqtQ6+9Qh1T8lxAAAAAAAAAAAAAAAAAAAAC6S3uPHzIwkwlBGEFjkhBldAAAAAAAAAAAAAAAAAAAAAAAJxTDFJNSoXzr5DNtGP/0AAAAAAAAAAAAAAAAAAAAJ1cS0X8CiNQ9j/IVqL9uq6oAAAAAAAAAAAAAAAAAAAAAAAGCsIQvInJC7kIcZ/FjoAAAAAAAAAAAAAAAAAAAAF5ysS/iKLsh+lRuJMOjQdmsAAAAAAAAAAAAAAAAAAAAAAAuSIb+l1cJzP4cgAKzP0kAAAAAAAAAAAAAAAAAAAB82rZLJUMZSTMHjUeBF7dJQAAAAAAAAAAAAAAAAAAAAAAAFmioqGhNXEVAtq/p3eu9AAAAAAAAAAAAAAAAAAAAfGhq5C0TydsiDYAAPr+IR9gAAAAAAAAAAAAAAAAAAAAAAB4Qzfmv9IUrkJG4fp7dvwAAAAAAAAAAAAAAAAAAABRdmJRpO5QTO45EtJ6DcGBOAAAAAAAAAAAAAAAAAAAAAAAoINOBZi/2Co5OJd/gVicAAAAAAAAAAAAAAAAAAADwGbxNFURFnOkzme+cujM0wgAAAAAAAAAAAAAAAAAAAAAADpGyrp7H6m4X83d3lwYzAAAAAAAAAAAAAAAAAAAAIjx7zf4ErK3TUbUjPHWvo0EAAAAAAAAAAAAAAAAAAAAAABJB8o1i6Ip9b013Xwim2AAAAAAAAAAAAAAAAAAAANbtA9MMEnI01SmAvBq147tMAAAAAAAAAAAAAAAAAAAAAAAB4gue2VkVG3TYKDAdd9gAAAAAAAAAAAAAAAAAAAA+OFP4UjjMKDwDu6YE0HGOigAAAAAAAAAAAAAAAAAAAAAABBPbUj7dLDbvLV74scQOAAAAAAAAAAAAAAAAAAAAOmlDz2zIoDefnMlhCXEVjeoAAAAAAAAAAAAAAAAAAAAAABsR566rBr32xLPcvwDYoQAAAAAAAAAAAAAAAAAAAOtBjR1Wu1QQGd/eTyw5/38CAAAAAAAAAAAAAAAAAAAAAAAa9SRhqGcu9ZY7tMExNo4AAAAAAAAAAAAAAAAAAABH8+4oyA1gUv5hOmhNxnK0pAAAAAAAAAAAAAAAAAAAAAAAGpWX17Q0uCXDObICqBJGAAAAAAAAAAAAAAAAAAAAvD7MJYgunxrecuenVc93NO0AAAAAAAAAAAAAAAAAAAAAAAI18sykljPMCfUjC7q42wAAAAAAAAAAAAAAAAAAAH1gUTcmUsHGYqtF1o8rHp4vAAAAAAAAAAAAAAAAAAAAAAAuqOIyaGKnXUh4nFpRaIEAAAAAAAAAAAAAAAAAAAAtuDmbjyYzWldu0ZdvgQkaQAAAAAAAAAAAAAAAAAAAAAAAEDHP9f0BsU9poTGY9CDHAAAAAAAAAAAAAAAAAAAAVKU9ypuj/dTgUeKA11omDtEAAAAAAAAAAAAAAAAAAAAAAAlM33/TLjGQsLYQ5KvhfQAAAAAAAAAAAAAAAAAAAEE3LcYjpUDpves0+WumRBQFAAAAAAAAAAAAAAAAAAAAAAAdpgUV8Os4p0Bp+H5hVCEAAAAAAAAAAAAAAAAAAACG9YTcaCpEetHoKCP5CNKWagAAAAAAAAAAAAAAAAAAAAAABK7syUJ+VKyCphHc3Z+YAAAAAAAAAAAAAAAAAAAAu40KrxWtUHMUKc6dUA+L7eAAAAAAAAAAAAAAAAAAAAAAAAPZA6T2tVbVMvVGftb3XQAAAAAAAAAAAAAAAAAAAPxWP3hhvjWZAnc1CUBivFIAAAAAAAAAAAAAAAAAAAAAAAAfgzJHCuZ1H66fvaGxUxUAAAAAAAAAAAAAAAAAAAC/SzzASAeJ3AfEU7fLP+pmUQAAAAAAAAAAAAAAAAAAAAAAF4jP3rE5rkXopseV0GYrAAAAAAAAAAAAAAAAAAAAVIyo34H6YJ+JkniKSj1SSRoAAAAAAAAAAAAAAAAAAAAAAB7ebMoe9EBspTlHgkjm/QAAAAAAAAAAAAAAAAAAAOtreL7Ah0GYpSBI9BvEa142AAAAAAAAAAAAAAAAAAAAAAAOcUEhWWRdz2V0ZGuQHkQAAAAAAAAAAAAAAAAAAAC1VnjjU0/6y6F0zgFsw6W9ywAAAAAAAAAAAAAAAAAAAAAAKFTK1/BlrtvEivds4xWAAAAAAAAAAAAAAAAAAAAAZOED1ObtFJYIMJrZPWq+nQAAAAAAAAAAAAAAAAAAAAAAAC5G2rMMuoG3Yt6DgLQumgAAAAAAAAAAAAAAAAAAAF5q5tjZyDYpzACP2fhHVCSZAAAAAAAAAAAAAAAAAAAAAAAQzltPsLO2qQiVjyBDMSgAAAAAAAAAAAAAAAAAAAA9WFuBjfuecVQlaqVKrJdPdAAAAAAAAAAAAAAAAAAAAAAALpIcKf/YkfvDS9yOrXcvAAAAAAAAAAAAAAAAAAAAhVIaU2zUuo5mLzsEggUrVOsAAAAAAAAAAAAAAAAAAAAAACbG+SoYuzTxs99U9k9OtAAAAAAAAAAAAAAAAAAAANgYmnHf6QwXHw4+hxQK+LKrAAAAAAAAAAAAAAAAAAAAAAAlTiGWANbVweyBviZO8UkAAAAAAAAAAAAAAAAAAACHtCFC/u+HBQa3AWpu4TrpHQAAAAAAAAAAAAAAAAAAAAAAKI1D+hQb7jsl/hUO/dUjAAAAAAAAAAAAAAAAAAAAWJki1c7x6ck8W0AHyU7T+3cAAAAAAAAAAAAAAAAAAAAAAA1RFw+rwXMRVDRdiwmXQgAAAAAAAAAAAAAAAAAAAHRrToPVee3y+/8+soyU3RTBAAAAAAAAAAAAAAAAAAAAAAAWv48lmKVY9GXgmZOmI6IAAAAAAAAAAAAAAAAAAAAAEyBoQaqdbNCuqMJKulqjDAAAAAAAAAAAAAAAAAAAAAAAFJJrf7cZIt3MPAuoG/gmAAAAAAAAAAAAAAAAAAAAovWc3yUBh6I8GM1MOPpbnzoAAAAAAAAAAAAAAAAAAAAAAAJVFmqjgalkQra3/aSSXAAAAAAAAAAAAAAAAAAAAOTZdYM1I47ZfHe2VKZ0QxQjAAAAAAAAAAAAAAAAAAAAAAAagpiNDkfq+hYCGx7DhNAAAAAAAAAAAAAAAAAAAAAaLMeHO577YzhqPFNNBSiE4QAAAAAAAAAAAAAAAAAAAAAAHcL7P8xQfjUGjBnreWp4AAAAAAAAAAAAAAAAAAAAACdh+xadDA9STEOHdvEFo48AAAAAAAAAAAAAAAAAAAAAAB9MobWQ0HpLW79U2xT92QAAAAAAAAAAAAAAAAAAAMIHFdZ9FD9eplafxB33EOiHAAAAAAAAAAAAAAAAAAAAAAAMcEmE96gtMYvHfbSJV/4AAAAAAAAAAAAAAAAAAABVXhtfMrMNSAm3gZB7gkkVOQAAAAAAAAAAAAAAAAAAAAAALGfoT7N6hVYjcypGSM69AAAAAAAAAAAAAAAAAAAAHVz+0Gc/vhtvTv9F6oulbTcAAAAAAAAAAAAAAAAAAAAAAAnY2Lo6P2k+I3wr68yzRgAAAAAAAAAAAAAAAAAAAIf3ohQ3QNQA9+ndPnamffpeAAAAAAAAAAAAAAAAAAAAAAACbKwip2KxlNxEHO7ryckAAAAAAAAAAAAAAAAAAAB2EJrfgWxHTDpuyGstHcoJoAAAAAAAAAAAAAAAAAAAAAAAJ3lWlcMMVwaOGHWDHwqZAAAAAAAAAAAAAAAAAAAALWwRYu5gExkNwK0WCeylR7oAAAAAAAAAAAAAAAAAAAAAAABfqnBgwKTe7rYwqIXW9gAAAAAAAAAAAAAAAAAAAG7U3g0vBmH7IjS484yFSYIcAAAAAAAAAAAAAAAAAAAAAAAs4Zzo7vvSmCvv0rNkj9YAAAAAAAAAAAAAAAAAAACqbzAPKi26CDc4Bi4cfTvx3AAAAAAAAAAAAAAAAAAAAAAAIp3wIGXd3t4wQUS3czLMAAAAAAAAAAAAAAAAAAAA33D+ij5BgJ+VlDobI4klZS8AAAAAAAAAAAAAAAAAAAAAACQBbOelk+6o0/jyukSZuAAAAAAAAAAAAAAAAAAAAFa388MLR7ZX8kfiR10SlW3DAAAAAAAAAAAAAAAAAAAAAAAoh7EjYkBLNfVOVygCdFQAAAAAAAAAAAAAAAAAAAAQbO/DPpbsTsJvn64WEMwY+gAAAAAAAAAAAAAAAAAAAAAACq49EjgMQVBDNiW2MNjKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEn2TBU0muk6l8Yo1t5ribzwAAAAAAAAAAAAAAAAAAAAAAF8UXpJHFeDrOumvKt7H7AAAAAAAAAAAAAAAAAAAAisqf8q7i0wBPUZb/7my0w/8AAAAAAAAAAAAAAAAAAAAAABhBdBoytLzqjqjUSsUlPQAAAAAAAAAAAAAAAAAAAGvMegX/lalrKJQkxfczZw2WAAAAAAAAAAAAAAAAAAAAAAAAxDcm91tv2g3iLODg36sAAAAAAAAAAAAAAAAAAAAdCgnXF47JO614WPluZPC0jQAAAAAAAAAAAAAAAAAAAAAAL5tuC04sAZaN5cMkgqp9AAAAAAAAAAAAAAAAAAAAhGizfhDghN678/BvPdVyeZAAAAAAAAAAAAAAAAAAAAAAABP8MEXsXcism66kuZ6hugAAAAAAAAAAAAAAAAAAALSFZmQJ4zJievrMBCtdWDUYAAAAAAAAAAAAAAAAAAAAAAATHr6UQ9MIxtY9B5E67mY="
1932
1933
  },
1933
1934
  {
1934
1935
  "name": "entrypoint",
1935
1936
  "is_unconstrained": false,
1936
1937
  "custom_attributes": [
1937
- "private",
1938
- "noinitcheck"
1938
+ "external",
1939
+ "noinitcheck",
1940
+ "private"
1939
1941
  ],
1940
1942
  "abi": {
1941
1943
  "parameters": [
@@ -3932,14 +3934,15 @@
3932
3934
  }
3933
3935
  }
3934
3936
  },
3935
- "bytecode": "H4sIAAAAAAAA/+xdB5zVxNfNYzttadLL0ntHRECkKl1sqFiQJqD03ll674qIqIAoWBCRJlZExYaIWEBUBHsXC1aUby4mGGJ2N/e+yXnM9ze/3yVLXmbOPWdmTublpUSsv5fs9rrXgGFDRg8a2HfAsDcKWNbRvH9vjaiIs9fZVKR5tjlr9995ffbLr6KpZ1tBFemebYV8thX3qa+Ez7aSPttK+WxL88Eo7bOtjM+2sj7byvlgVPDZVslHq8o+26r4bKvmU18Nn/1q+myr5bOtjk999Xz2O9tnW32fbQ186mvos18jn22NfbY18amvqc9+zXy2NffZ1lJFsmdbK3sdbwVYIvY6zV7X6tlxyJHaKys/2qnV1kmTrry2Ut3PW4/ePmhRiyPHlhxVn98f98++WSzVosF5IGucMu66c1r/EI7YedK6vPVPx43Y9Tr7Paj+Xq/iIRUb4k6vPM6TbxZLpCJj3wfjguvwcHC9T1u4+Vdi7Luekf9GUP6VGfs+xMj/EUb+fv3wYbsfbrTXj9jrDa5+uEn9vVnFFhVbo+yHVRj7bmLosA3UjlUZ+25m5P8oKP9qjH23MPLfHmU/3Gb3u0ft9XZ7vdXVDx9Tfz+u4gkVT0bZD6sz9n2MocNToHaswdj3cUb+T4Pyr8nY9wlG/jui7IdP2f3uaXu9w14/6eqHz6i/d6p4VsVzUfbDWox9n2Ho8DyoHWsz9t3JyH8XKP86jH2fZeT/QpT98Hm73+2y1y/Y6+dc/fBF9fdLKl5W8UqU/bAuY98XGTrsBrVjPca+LzHyfxWU/9mMfV9m5L8nyn642+53r9rrPfb6FVc/fE39vVfF6yr2RdkP6zP2fY2hwxugdjyHse9eRv5vgvJvwNj3dUb+b0XZD9+w+92b9vote73P1Q/fVn/vV3FAxTtR9sNzGfu+zdDhIKgdGzL23c/I/11Q/o0Y+x5g5P9elP3woN3v3rXX79nrd1z98H319yEVH6g4HGU/bMzY932GDkdA7XgeY99DjPw/BOXfhLHvB4z8P4qyHx6x+92H9voje33Y1Q8/Vn9/ouJTFZ9F2Q/PZ+z7MUOHz0Ht2JSx7yeM/L8A5d+Mse+njPy/jLIffm73uy/s9Zf2+jNXP/xK/f21im9UfBtlP2zO2Pcrhg7fgdqxBWPfrxn5HwXl35Kx7zeM/L+Psh9+Z/e7o/b6e3v9rasf/qD+/lHFTyqORdkPWzH2/YGhw89R6vCzzftHe/2TvT7m0uEX9fevKn5T8btHh2z2Os0KlkJ+Kzi3P4Jyi1ycTjnH2ZyoXFMrujzLWcHzPB68DSLuPJ1y8fb/I34FmHlHgu/7z0IJZLNimEBmgFmp/2dw9ctEg/NX1jhp7rq9I+1Pe2R5f8H9yzXSTsT9XSiiIpvn926u43B+wT3BcJy4eMyRg/MLrhUfPP94UP6cX3AjjPwTGPn79UNqP1rH2+sEe039zdkvUf2RpCJZRUqU/ZDzC24iQ4fsoHbk/IKbxMg/Byh/zi+4yYz8c0bZD7Pb/S6Hvc5pr1Nc/TCX+iO3ilQVeaLsh5xfcHMxdMgLakfOL7i5GfnnA+XP+QU3lZF//ij7YV673+Wz1/ntdR5XPyyg/jhLRUEVhaLsh5xfcAswdCgMakfOL7hnMfIvAsqf8wtuQUb+RaPsh4XtflfEXhe114Vc/bCY+qO4ihIqSkbZDzm/4BZj6FAK1I6cX3CLM/JPA+XP+QW3BCP/0lH2w1J2v0uz16XtdUlXPyyj/iiropyK8lH2Q84vuGUYOlQAtSPnF9yyjPwrgvLn/IJbjpF/pSj7YQW731W015XsdXlXP6ys/qiioqqKalH2Q84vuJUZOlQHtSPnF9wqjPxrgPLn/IJblZF/zSj7YXW739Ww1zXtdTVXP6yl/qitoo6KulH2Q84vuLUYOtQDtSPnF9zajPzPBuXP+QW3DiP/+lH2w3p2vzvbXte313Vd/fAc9UcDFeeqaBhlP+T8gnsOQ4dGoHZsyti3ASP/xqD8mzH2PZeR/3lR9sNGdr9rbK/Ps9cNXf2wifrjfBVNVTSLsh9yfsFtwtChOagdWzD2PZ+Rf4so27G53W4t7HVTe93M1Y4t1R+tVFyg4kJ7u/PrVUZLmhUspURXLk6Z1gqgjYq2KtqpaK+ig4qOKi5S0UnFxSouUXGpistUXK6is4orVFyp4ioVXVRcreIaFdequE5FVxXXq+imoruKHip6quil4gYVveNPz6WP+n9fFTequElFPxX9VQxQMVDFIBWDVQxRMVTFMBXDVYxQMVLFKBWjVYxRMVbFOBXjVUxQMVFFuopJKiarmKJiqoppKqarmGE3wEx7Pctez7bXc+Jt4ZzGIOG890228dnW1mdbO59t7X22dfDZ1tFn20U+2zr5bLvYZ9slPtsu9dl2mc+2y322dfbZdoXPtit9tl3ls62Lz7arfbZd47PtWp9t1/ls6+qz7Xqfbd18tnX32dbDZ1tPn229fLbd4LOtt8+2Pj7b+vpsu9Fn200+2/r5bOvvs22Az7aBPtsG+Wwb7LNtiM+2oT7bhvlsG+6zbYTPtpE+20b5bBvts22Mz7axPtvG+Wwb77Ntgs+2iT7b0n22TfLZNtln2xSfbVN9tk3z2TbdZ9sMn22z7W3uxXvJR1YH1Ihr3yyWCBlywH1PL8jMaW5wnIj7P2me9emf/ntpfRpO5ju3OT2nTHdu68k/s53beblmsnP7f+mS8c4d/q1hhjt39NE7o50v8mubDHbu5NuO/jtf7N/mvjtfkkH/8Nv50oz6ks/Ol2XY7/698+UZ99F/7dw5k/7s3fmKzPq+Z+crMx0np+98VeZj6rSdu2Qx/tw7X53VWHXtfE2W4/qfna/N2gNO7XxdAL9wdu4axFvsna8P5EN/79wtmGed3Ll7QH+jnXsE9cLI3/ObQPuqnXsxPPaG+ODePQ90jJifNU6Su27vF0E6xkTsfGntfBGiep39Fqg/FqpYpGJx/OmVl/bkm4GtnVr6MI41fRnHmhsZx5qbGMeafoxjTX/GsWYA41gzkHGsGcQ41gxmHGuGMI41QxnHmmGMY81wxrFmBONYM5JxrBnFONaMZhxrxjCONWMZx5pxjGPNeMaxZgLjWDORcaxJZxxrJjGONZMZx5opjGPNVMaxZhrjWDOdse8CxnFpifC4xD3xOYOR/0JG/jeD8p/JyH8RI/9bGPn7Ha+X2Mfnm+31LfZ6set4vVT9cauKZSpuiz+9Tu6tEEsZ3JYzNPPjttzmcqu9Xmavb3Nxu139sULFHSrutLfntPyPQ965VFY5zQ7I9bsTJ/5y493lJsEFpMKckxUEfhdD6JWMBpRyWBnPm7gSh5WgCfKq4Djx0eCszhonzl23t/OvsjV04nb7/6tdnf9u9ccaFfeouDf+n7LuPLNYzvj2WhscJ85Px7U2tzn2+m4fHdepP+5Tcb+KB6I0yOOMu2ceZBqkc4LTKRdv/XO/2L8KMPNuyTwQOeum9t/rVfmHVGxQ8bCKjSoeUbFJxWYVW1RsVbFNxaMqtqt4TMXjKp5Q8aSKp1Q8rWKHimdU7FTxrIrnVDyvYpeKF1S8qOIlFS+reEXFbhWvqtij4jUVe1W8rmKfijdUvKniLRVvq9iv4oCKd1QcVPGuivdUvK/ikIoPVBxWcUTFhyo+UvGxik9UfKriMxWfq/hCxZcqvlLxtdMQuax/Okw0jbFeOLgsFk7ktFy/sTv+t06PcnobffCzZxvt5D3Fzp1SrQ9+eI18wzhqfSsUj/sTASen79w5ZbGzW+fvbO050xpO3kFycZaj8VEAHvWZ1mRV8CjDHr9nNIaUw/c+h8msCn7P7Ixcp/jWzsvildPqVg/FwK1+tDn/5HWrH33c6icNbvUQw61+ZHTGn0BuxcnpmNCtjoXgVj8K3ern+CgAfxa41c8Mt/olZLciDr8I3OqXkN3qJzsvi1dOq1ttiIFb/WZz/t3rVr/5uNXvGtxqA8OtfmN0xt9BbsXJ6Q+hW/0Rglv9JnSr4/FRAB4XuNVxhlv9GbJbEYc/BW71Z8hu9budl8Urp9WtHo6BW51wOCdYp4+YEz5uRTtF61YPM9zqBKczJmDcipNTJEHmVlROt1udELpVtoQoAKkw162yBW/ISFxCuG5FHAiD61ZxzM7IdQrq7HEJ/2xIC1ZOq1ttjIFbJdicE71ulZDwb7dK1OBWGxlulcDojIkgt+LklCR0q6QQ3CqBmYuzJCdEAZgscKtkhlulhOxWxCFF4FYpIbtVop2XxSun1a0eiYFb5bA55/S6VQ4ft8qpwa0eYbhVDkZnzAlyK05OuYRulSsEt8ohdKvcCVEA5ha4VW6GW6WG7FbEIVXgVqkhu1VOOy+LV06rW22KgVvltTnn87pVXh+3yqfBrTYx3CovozPmA7kVJ6f8QrfKH4Jb5RW6VYGEKAALCNyqAMOtzgrZrYjDWQK3Oitkt8pn52Xxyml1q80xcKtCNufCXrcq5ONWhTW41WaGWxVidMbCILfi5FRE6FZFQnCrQkK3KpoQBWBRgVsVZbhVsZDdijgUE7hVsZDdqrCdl8Urp9WttsTArUrYnEt63aqEj1uV1OBWWxhuVYLRGUuC3IqTUymhW5UKwa1KCN0qLSEaQIFbpTHcqnTIbkUcSgvcqnTIblXSzsvildPqVltj4FZlbc7lvG5V1setymlwq60MtyrL6IzlQG7Fyam80K3Kh+BWZYVuVSEhCsAKAreqwHCriiG7FXGoKHCriiG7VTk7L4tXTqtbbYuBW1W2OVfxulVlH7eqosGttjHcqjKjM1YBuRUnp6pCt6oagltVFrpVtYQoAKsJ3Koaw62qh+xWxKG6wK2qh+xWVey8LF45rW71aAzcqqbNuZbXrWr6uFUtDW71KMOtajI6Yy2QW3Fyqi10q9ohuFVNoVvVSYgCsI7Areow3KpuyG5FHOoK3KpuyG5Vy87L4pXT6lbbY+BWZ9uc63vd6mwft6qvwa22M9zqbEZnrA9yK05O5wjd6pwQ3OpsoVs1SIgCsIHArRow3OrckN2KOJwrcKtzQ3ar+nZeFq+cVrd6LAZu1cjm3NjrVo183KqxBrd6jOFWjRidsTHIrTg5nSd0q/NCcKtGQrdqkhAFYBOBWzVhuNX5IbsVcThf4Fbnh+xWje28LF45rW71eAzcqpnNubnXrZr5uFVzDW71OMOtmjE6Y3OQW3FyaiF0qxYhuFUzoVu1TIgCsKXArVoy3KpVyG5FHFoJ3KpVyG7V3M7L4pXT6lZPxMCtLrQ5t/a61YU+btVag1s9wXCrCxmdsTXIrTg5tRG6VZsQ3OpCoVu1TYgCsK3Ardoy3KpdyG5FHNoJ3KpdyG7V2s7L4pXT6lZPxsCtOticO3rdqoOPW3XU4FZPMtyqA6MzdgS5FSeni4RudVEIbtVB6FadEqIA7CRwq04Mt7o4ZLciDhcL3OrikN2qo52XxSun1a2eioFbXWpzvszrVpf6uNVlGtzqKYZbXcrojJeB3IqT0+VCt7o8BLe6VOhWnROiAOwscKvODLe6ImS3Ig5XCNzqipDd6jI7L4tXTqtbPR0Dt7rK5tzF61ZX+bhVFw1u9TTDra5idMYuILfi5HS10K2uDsGtrhK61TUJUQBeI3CraxhudW3IbkUcrhW41bUhu1UXOy+LV06rW+2IgVt1tTlf73Wrrj5udb0Gt9rBcKuujM54PcitODl1E7pVtxDcqqvQrbonRAHYXeBW3Rlu1SNktyIOPQRu1SNkt7rezsvildPqVs/EwK162Zxv8LpVLx+3ukGDWz3DcKtejM54A8itODn1FrpV7xDcqpfQrfokRAHYR+BWfRhu1TdktyIOfQVu1Tdkt7rBzsvildPqVjtj4FY32Zz7ed3qJh+36qfBrXYy3OomRmfsB3IrTk79hW7VPwS3uknoVgMSogAcIHCrAQy3GhiyWxGHgQK3GhiyW/Wz87J45bS61bMxcKvBNuchXrca7ONWQzS41bMMtxrM6IxDQG7FyWmo0K2GhuBWg4VuNSwhCsBhArcaxnCr4SG7FXEYLnCr4SG71RA7L4tXTqtbPRcDtxppcx7ldauRPm41SoNbPcdwq5GMzjgK5FacnEYL3Wp0CG41UuhWYxKiABwjcKsxDLcaG7JbEYexArcaG7JbjbLzsnjltLrV8zFwq/E25wletxrv41YTNLjV8wy3Gs/ojBNAbsXJaaLQrSaG4FbjhW6VnhAFYLrArdIZbjUpZLciDpMEbjUpZLeaYOdl8cppdatdMXCrKTbnqV63muLjVlM1uNUuhltNYXTGqSC34uQ0TehW00JwqylCt5qeEAXgdIFbTWe41YyQ3Yo4zBC41YyQ3WqqnZfFK6fVrV6IgVvNsjnP9rrVLB+3mq3BrV5guNUsRmecDXIrTk5zhG41JwS3miV0q7kJUQDOFbjVXIZbzQvZrYjDPIFbzQvZrWbbeVm8clrd6sUYuNUCm/NCr1st8HGrhRrc6kWGWy1gdMaFILfi5LRI6FaLQnCrBUK3WpwQBeBigVstZrjVkpDdijgsEbjVkpDdaqGdl8Urp9WtXoqBW91ic17qdatbfNxqqQa3eonhVrcwOuNSkFtxcrpV6Fa3huBWtwjdallCFIDLBG61jOFWt4XsVsThNoFb3RayWy2187J45bS61csxcKvbbc4rvG51u49brdDgVi8z3Op2RmdcAXIrTk53CN3qjhDc6nahW92ZEAXgnQK3upPhVneF7FbE4S6BW90VslutsPOyeOW0utUrMXCrVTbn1V63WuXjVqs1uNUrDLdaxeiMq0FuxcnpbqFb3R2CW60SutWahCgA1wjcag3Dre4J2a2Iwz0Ct7onZLdabedl8cppdavdMXCrtTbndV63WuvjVus0uNVuhlutZXTGdSC34uR0n9Ct7gvBrdYK3er+hCgA7xe41f0Mt3ogZLciDg8I3OqBkN1qnZ2XxSun1a1ejYFbrbc5P+R1q/U+bvWQBrd6leFW6xmd8SGQW3Fy2iB0qw0huNV6oVs9nBAF4MMCt3qY4VYbQ3Yr4rBR4FYbQ3arh+y8LF45rW61JwZutcnmvNnrVpt83GqzBrfaw3CrTYzOuBnkVpyctgjdaksIbrVJ6FZbE6IA3Cpwq60Mt9oWslsRh20Ct9oWsltttvOyeOW0utVrMXCr7Tbnx7xutd3HrR7T4FavMdxqO6MzPgZyK05Ojwvd6vEQ3Gq70K2eSIgC8AmBWz3BcKsnQ3Yr4vCkwK2eDNmtHrPzsnjltLrV3hi41dM25x1et3rax612aHCrvQy3eprRGXeA3IqT0zNCt3omBLd6WuhWOxOiANwpcKudDLd6NmS3Ig7PCtzq2ZDdaoedl8Urp9WtXo+BWz1vc97ldavnfdxqlwa3ep3hVs8zOuMukFtxcnpB6FYvhOBWzwvd6sWEKABfFLjViwy3eilktyIOLwnc6qWQ3WqXnZfFK6fVrfbFwK1esTnv9rrVKz5utVuDW+1juNUrjM64G+RWnJxeFbrVqyG41StCt9qTEAXgHoFb7WG41WshuxVxeE3gVq+F7Fa77bwsXjmtbvVGDNzqdZvzPq9bve7jVvs0uNUbDLd6ndEZ94HcipPTG0K3eiMEt3pd6FZvJkQB+KbArd5kuNVbIbsVcXhL4FZvhexW++y8LF45rW71Zgzcar/N+YDXrfb7uNUBDW71JsOt9jM64wGQW3FyekfoVu+E4Fb7hW51MCEKwIMCtzrIcKt3Q3Yr4vCuwK3eDdmtDth5WbxyWt3qrRi41fs250Net3rfx60OaXCrtxhu9T6jMx4CuRUnpw+EbvVBCG71vtCtDidEAXhY4FaHGW51JGS3Ig5HBG51JGS3OmTnZfHKaXWrt2PgVh/ZnD/2utVHPm71sQa3epvhVh8xOuPHILfi5PSJ0K0+CcGtPhK61acJUQB+KnCrTxlu9VnIbkUcPhO41Wchu9XHdl4Wr5xWt9ofA7f6wub8pdetvvBxqy81uNV+hlt9weiMX4LcipPTV0K3+ioEt/pC6FZfJ0QB+LXArb5muNU3IbsVcfhG4FbfhOxWX9p5WbxyWt3qQAzc6jub81GvW33n41ZHNbjVAYZbfcfojEdBbsXJ6XuhW30fglt9J3SrHxKiAPxB4FY/MNzqx5Ddijj8KHCrH0N2q6N2XhavnFa3eicGbnXM5vyz162O+bjVzxrc6h2GWx1jdMafQW7FyekXoVv9EoJbHRO61a8JUQD+KnCrXxlu9VvIbkUcfhO41W8hu9XPdl4Wr5xWtzoYA7f6w+Z83OtWf/i41XENbnWQ4VZ/MDrjcZBbcXL6U+hWf4bgVn8I3eqvhCgA/xK41V8MtzoRslsRhxMCtzoRslsdt/OyeOW0utW7MXCrSOLf62yJ1ukjhj7wuhXtFK1bvctwK8ohyL5H7dwC5nDawnUrTk5xiTK3ikvU71YRZi7OEp8YBSAV5rpVfPCGjCQwGkPKgTC4bpXA7Ixcp8hm52Xxyml1q/di4FZJNudkr1sl+bhVsga3eo/hVkmMzpgMcitOTilCt0oJwa2ShG6VPTEKwOwCt8rOcKscIbsVccghcKscIbtVsp2XxSun1a3ej4Fb5bI55/a6VS4ft8qtwa3eZ7hVLkZnzA1yK05OqUK3Sg3BrXIJ3SpPYhSAeQRulYfhVnlDdivikFfgVnlDdqvcdl4Wr5xWtzoUA7fKb3Mu4HWr/D5uVUCDWx1iuFV+RmcsAHIrTk5nCd3qrBDcKr/QrQomRgFYUOBWBRluVShktyIOhQRuVShktypg52Xxyml1qw9i4FZFbM5FvW5VxMetimpwqw8YblWE0RmLgtyKk1MxoVsVC8GtigjdqnhiFIDFBW5VnOFWJUJ2K+JQQuBWJUJ2q6J2XhavnFa3OhwDtyplc07zulUpH7dK0+BWhxluVYrRGdNAbsXJqbTQrUqH4FalhG5VJjEKwDICtyrDcKuyIbsVcSgrcKuyIbtVmp2XxSun1a2OxMCtytucK3jdqryPW1XQ4FZHGG5VntEZK4DcipNTRaFbVQzBrcoL3apSYhSAlQRuVYnhVpVDdiviUFngVpVDdqsKdl4Wr5xWt/owBm5V1eZczetWVX3cqpoGt/qQ4VZVGZ2xGsitODlVF7pV9RDcqqrQrWokRgFYQ+BWNRhuVTNktyIONQVuVTNkt6pm52Xxyml1q49i4Fa1bc51vG5V28et6mhwq48YblWb0RnrgNyKk1NdoVvVDcGtagvdql5iFID1BG5Vj+FWZ4fsVsThbIFbnR2yW9Wx87J45bS61ccxcKtzbM4NvG51jo9bNdDgVh8z3OocRmdsAHIrTk7nCt3q3BDc6hyhWzVMjAKwocCtGjLcqlHIbkUcGgncqlHIbtXAzsvildPqVp/EwK3Oszk38brVeT5u1USDW33CcKvzGJ2xCcitODmdL3Sr80Nwq/OEbtU0MQrApgK3aspwq2YhuxVxaCZwq2Yhu1UTOy+LV06rW30aA7dqYXNu6XWrFj5u1VKDW33KcKsWjM7YEuRWnJxaCd2qVQhu1ULoVhckRgF4gcCtLmC41YUhuxVxuFDgVheG7FYt7bwsXjmtbvVZDNyqjc25rdet2vi4VVsNbvUZw63aMDpjW5BbcXJqJ3SrdiG4VRuhW7VPjAKwvcCt2jPcqkPIbkUcOgjcqkPIbtXWzsvildPqVp/HwK0usjl38rrVRT5u1UmDW33OcKuLGJ2xE8itODldLHSri0Nwq4uEbnVJYhSAlwjc6hKGW10aslsRh0sFbnVpyG7Vyc7L4pXT6lZfxMCtLrc5d/a61eU+btVZg1t9wXCryxmdsTPIrTg5XSF0qytCcKvLhW51ZWIUgFcK3OpKhltdFbJbEYerBG51Vchu1dnOy+KV0+pWX8bAra62OV/jdaurfdzqGg1u9SXDra5mdMZrQG7FyelaoVtdG4JbXS10q+sSowC8TuBW1zHcqmvIbkUcugrcqmvIbnWNnZfFK6fVrb6KgVt1szl397pVNx+36q7Brb5iuFU3RmfsDnIrTk49hG7VIwS36iZ0q56JUQD2FLhVT4Zb9QrZrYhDL4Fb9QrZrbrbeVm8clrd6usYuFVvm3Mfr1v19nGrPhrc6muGW/VmdMY+ILfi5NRX6FZ9Q3Cr3kK3ujExCsAbBW51I8OtbgrZrYjDTQK3uilkt+pj52Xxyp3sULmtfwZtNDm0hLiV/25pVpAlcopTxFWmv9JtgIqBKgapGKxiiIqhKoapGK5ihIqRKkapGK1ijIqxKsapGK9igoqJKtJVTFIxWcUUFVNVTFMxXcUMFTNVzFIxW8UcFXO9LtvfdlT3tgE+2wb6bBvks22wz7YhPtuG+mwb5rNtuM+2ET7bRvpsG+WzbbTPtjE+28b6bBvns228z7YJPtsm+mxL99k2yWfbZJ9tU3y2TfXZNs1n23SfbTN8ts302TbLZ9tsn21zfLbN9Tl6l7bXaVag5bRBn5V59g9oznSkHxB4XysyMOi+Kt9BwfZdTAe9wYH2/enkAXJIkH0P/30wHRpg3+b2gXdY1vsudA7Sw7Pcd+CpA/qIrPZ99J+D/8gs9h3lmiiMynzfC92TitGZ7vvZaROQMZntW+f0ycrYTPat6JnYjMt432u8k6DxGe57xb8mTBMy2jf935OriRnsm+4zEUv333eL36Rtku++LX0neJP99r3IfzI4xWffbRlMHKf+e99KGU0yp/1r37synJBO9+5bK+PJ6wzPvoczmejOPH3fwZlNimedtm+HTCfQs9379sh8sj3HtW/NLCbmcxkTS863hyyW03Cz8PLX3XjzMvr2EARwXiLv6xmBzwsuUGR+QFIZfXsIwmF+Iu9bB3GYz2xkXecfGJ1rr9/GNCsQzGm5LrA7yELvzHiBLZx720IN5x8YPTmygNFBFjLF4zYOdYoFzM5EeS2IkWPMCa7zHW68RVLHIMBFfMe4YxHDMRaH7BjEYTHfMe5YHCPHmBMcd4XfxjQrEMxpuS6xO8jNXsdY4uMYN2twDEZPjixhdJCbheJxz1hycrqFMRhO/cPIZb7dwf91UjALLM6heiljMPhxyGp30mipwImXxsiJZwfvv5vceLdKnZgAb+U78aZbGZ1vWchOTByW8Z1407IoO1+QAbQ05AF0G5ODs3CNidOGyxl9Q+cRbnZw3Ef8NqZZgWBOy/V2e+Ct8B7hbvc5wq3QcIRjOETkdkajrRCKx+1InJzuiPIIl1UZGjzLBUeHO0M+ahHvOwF5OQu3De9ktOFdIbdhRiYbxJyD7ruSaWi6ZgOzgo/1BW68VdLZAAGu4s8GFqxiCLQ65NkAcVjNnw0sWB3ybIAGwsrEcAfb3czB5izcnDhtuCZGs4FZwXHn+21MswLBnJbrPfbAu9c7G7jHZzZwr4bZAMMhIvcwGu1eoXjcjsTJaW3IRxIaPGsER911Ic8GiPc6QF7Owm3DdYw2vC/kNszIZLMqxzHZ+2N0bmBm8LGe5sZ7QDobIMAH+LOBtAcYjfxgyLMB4vAgfzaQ9mDIswEaCPcnhjvY1oNmA5w2fChGs4GZwXFL+W1MswLBnJbrBnvgPeydDWzwmQ08rGE2wHCIyAZGoz0sFI/bkTg5bQz5SEKD5yHBUfeRkGcDxPsRQF7Owm3DRxhtuCnkNszIZLMqxzHZzTGaDcwIPtb3uvG2SGcDBLiFPxvYu4XRyFtDng0Qh6382cDerSHPBmggbE4Md7BtA80GOG34aIxmAzOC477mtzHNCgRzWq7b7YH3mHc2sN1nNvCYhtkAwyEi2xmN9phQPG5H4uT0eMhHEho8jwqOuk+EPBsg3k8A8nIWbhs+wWjDJ0Nuw4xMNqtyHJN9KkazgenBx3o3N97T0tkAAT7Nnw10e5rRyDtCng0Qhx382UC3HSHPBmggPJUY7mB7BjQb4LThzhjNBqYHx73eb2OaFQjmtFyftQfec97ZwLM+s4HnNMwGGA4ReZbRaM8JxeN2JE5Oz4d8JKHBs1Nw1N0V8myAeO8C5OUs3DbcxWjDF0Juw4xMNqtyHJN9MUazgWnBx/oBN95L0tkAAb7Enw0ceInRyC+HPBsgDi/zZwMHXg55NkAD4cXEcAfbK6DZAKcNd8doNjAtOO5+v41pViCY03J91R54e7yzgVd9ZgN7NMwGGA4ReZXRaHuE4nE7Eien10I+ktDg2S046u4NeTZAvPcC8nIWbhvuZbTh6yG3YUYmm1U5jsnui9FsYGrwsd7GjfeGdDZAgG/wZwNt3mA08pshzwaIw5v82UCbN0OeDdBA2JcY7mB7CzQb4LTh2zGaDUwNjtvab2OaFQjmtFz32wPvgHc2sN9nNnBAw2yA4RCR/YxGOyAUj9uRODm9E/KRhAbP24Kj7sGQZwPE+yAgL2fhtuFBRhu+G3IbZmSyWZXjmOx7MZoNTAk+1je68d6XzgYI8H3+bGDj+4xGPhTybIA4HOLPBjYeCnk2QAPhvcRwB9sHoNkApw0Px2g2MCU47sN+G9OsQDCn5XrEHngfemcDR3xmAx9qmA0wHCJyhNFoHwrF43YkTk4fhXwkocFzWHDU/Tjk2QDx/hiQl7Nw2/BjRht+EnIbZmSyWZXjmOynMZoNTA4+1p9w430mnQ0Q4Gf82cATnzEa+fOQZwPE4XP+bOCJz0OeDdBA+DQx3MH2BWg2wGnDL2M0G5gcHPdxv41pViCY03L9yh54X3tnA1/5zAa+1jAbYDhE5CtGo30tFI/bkTg5fRPykYQGz5eCo+63Ic8GiPe3gLychduG3zLa8LuQ2zAjk82qHMdkj8ZoNjAp+Fhv58b7XjobIMDv+bOBdt8zGvmHkGcDxOEH/myg3Q8hzwZoIBxNDHew/QiaDXDa8KcYzQYmBcdt67cxzQoEc1qux+yB97N3NnDMZzbws4bZAMMhIscYjfazUDxuR+Lk9EvIRxIaPD8Jjrq/hjwbIN6/AvJyFm4b/spow99CbsOMTDarchyT/T1Gs4H04GM93Y33h3Q2QIB/8GcD6X8wGvl4yLMB4nCcPxtIPx7ybIAGwu+J4Q62P0GzAU4b/hWj2UB6cNyJfhvTrEAwp+V6whl4SdbpR/4TPrMB2ina2QDDISInOAMvSSYetyNxcook8To3t8PQ4PlLcNTNFjyvf5KzgudFvAkj7LychduGbpys9o0LuQ0zMtmsynFMNp6hq87ZwEThbCAhKQpAKsydDSQwGjmR0XmkHBKT+LOBxCgHdZCBEJ8U7mBLYg42Z+HmxGnDZEZOOmcDE2MwG0ixB15272wgJenfs4HsGmYDDIeIpDAaLTtoNsDJKUfIRxIaPMmCo27OkGcDxDsnIC9n4bZhTkYb5gq5DTMy2azKcUw2d4xmAxOCj/X73Hip0tkAAabyZwP3pTIaOU/IswHikIc/G7gvT8izARoIuZPCHWx5QbMBThvmi9FsYELw2cA6v41pViCY03LNbw+8At7ZQH6f2UABDbMBhkNE8jMarUCSTDxuR+LkdFbIRxIaPPkER92CIc8GiHdBQF7Owm3Dgow2LBRyG2ZkslmV45hs4RjNBsYHH+tr3HhFpLMBAqTCzNnAGioTFKNoUrizAeJAGMzZwJqiwTn45hVkIBROCnewFWO0g/s/3Jw4bVickZPO2cD44LOBu/02plmBYE7LtUTS3+uSSdbpR/4SSf+eDdBO0c4GGA4RKcFotJJJMvG4HYmTUylm5+Z2GBo8xZP4AzstSuPIaveTvAF5OQu3DdMYbVg65DbMyGSzKscx2TIMXXXOBsYFH+vvuPHKJkUBWJY/G3inLKORy4U8GyAO5fizgXfKhTwboIFQJincwVYeNBvgtGGFGM0GxgWfDRzw25hmBYI5LdeK9sCr5J0NVPSZDVTSMBtgOESkIqPRKiXJxON2JE5OlUM+ktDgqSA46lYJeTZAvKsA8nIWbhtWYbRh1ZDbMCOTzaocx2SrxWg2MDb4WN/jxqsunQ0QYHX+bGBPdUYj1wh5NkAcavBnA3tqhDwboIFQLSncwVYTNBvgtGGtGM0GxgafDbzqtzHNCgRzWq617YFXxzsbqO0zG6ijYTbAcIhIbUaj1UmSicftSJyc6oZ8JKHBU0tw1K0X8myAeNcD5OUs3Dasx2jDs0Nuw4xMNqtyHJOtH6PZwJjgY72IG+8c6WyAAM/hzwaKnMNo5AYhzwaIQwP+bKBIg5BnAzQQ6ieFO9jOBc0GOG3YMEazgTHBZwOF/TamWYFgTsu1kT3wGntnA418ZgONNcwGGA4RacRotMZJMvG4HYmT03khH0lo8DQUHHWbhDwbIN5NAHk5C7cNmzDa8PyQ2zAjk82qHMdkm8ZoNjA6+Fjf7sZrJp0NEGAz/mxgezNGIzcPeTZAHJrzZwPbm4c8G6CB0DQp3MHWAjQb4LRhyxjNBkYHnw086rcxzQoEc1qureyBd4F3NtDKZzZwgYbZAMMhIq0YjXZBkkw8bkfi5HRhyEcSGjwtBUfd1iHPBoh3a0BezsJtw9aMNmwTchtmZLJZleOYbNsYzQZGBR/rM9147aSzAQJsx58NzGzHaOT2Ic8GiEN7/mxgZvuQZwM0ENomhTvYOoBmA5w27Bij2cCo4LOBGX4b06xAMKflepE98Dp5ZwMX+cwGOmmYDTAcInIRo9E6JcnE43YkTk4Xh3wkocHTUXDUvSTk2QDxvgSQl7Nw2/ASRhteGnIbZmSyWZXjmOxlMZoNjAw+1lu78S6XzgYI8HL+bKD15YxG7hzybIA4dObPBlp3Dnk2QAPhsqRwB9sVoNkApw2vjNFsYGTw2cCFfhvTrEAwp+V6lT3wunhnA1f5zAa6aJgNMBwichWj0bokycTjdiROTleHfCShwXOl4Kh7TcizAeJ9DSAvZ+G24TWMNrw25DbMyGSzKscx2etiNBsYEXysL3LjdZXOBgiwK382sKgro5GvD3k2QByu588GFl0f8myABsJ1SeEOtm6g2QCnDbvHaDYwIvhsYKHfxjQrEMxpufawB15P72ygh89soKeG2QDDISI9GI3WM0kmHrcjcXLqFfKRhAZPd8FR94aQZwPE+wZAXs7CbcMbGG3YO+Q2zMhksyrHMdk+MZoNDA8+1ge58fpKZwME2Jc/GxjUl9HIN4Y8GyAON/JnA4NuDHk2QAOhT1K4g+0m0GyA04b9YjQbGB58NjDQb2OaFQjmtFz72wNvgHc20N9nNjBAw2yA4RCR/oxGG5AkE4/bkTg5DQz5SEKDp5/gqDso5NkA8R4EyMtZuG04iNGGg0Nuw4xMNqtyHJMdEqPZwLDgY/0pN95Q6WyAAIfyZwNPDWU08rCQZwPEYRh/NvDUsJBnAzQQhiSFO9iGg2YDnDYcEaPZwLDgs4En/TamWYFgTst1pD3wRnlnAyN9ZgOjNMwGGA4RGclotFFJMvG4HYmT0+iQjyQ0eEYIjrpjQp4NEO8xgLychduGYxhtODbkNszIZLMqxzHZcTGaDQwNPtbT3HjjpbMBAhzPnw2kjWc08oSQZwPEYQJ/NpA2IeTZAA2EcUnhDraJoNkApw3TYzQbGBp8NlDKb2OaFQjmtFwn2QNvsnc2MMlnNjBZw2yA4RCRSYxGm5wkE4/bkTg5TQn5SEKDJ11w1J0a8myAeE8F5OUs3DacymjDaSG3YUYmm1U5jslOj9FsYEjwsZ7TjTdDOhsgwBn82UDOGYxGnhnybIA4zOTPBnLODHk2QANhelK4g20WaDbAacPZMZoNDAk+G8jhtzHNCgRzWq5z7IE31zsbmOMzG5irYTbAcIjIHEajzU2SicftSJyc5oV8JKHBM1tw1J0f8myAeM8H5OUs3Dacz2jDBSG3YUYmm1U5jskujNFsYHDwsT7AjbdIOhsgwEX82cCARYxGXhzybIA4LObPBgYsDnk2QANhYVK4g20JaDbAacObYzQbGBx8NtDfb2OaFQjmtFxvsQfeUu9s4Baf2cBSDbMBhkNEbmE02tIkmXjcjsTJ6daQjyQ0eG4WHHWXhTwbIN7LAHk5C7cNlzHa8LaQ2zAjk82qHMdkl8doNjAo+FjP68a7XTobIMDb+bOBvLczGnlFyLMB4rCCPxvIuyLk2QANhOVJ4Q62O0CzAU4b3hmj2cCg4LOBPH4b06xAMKflepc98FZ6ZwN3+cwGVmqYDTAcInIXo9FWJsnE43YkTk6rQj6S0OC5U3DUXR3ybIB4rwbk5SzcNlzNaMO7Q27DjEw2q3Ick10To9nAwOCGdhrePdLZAAHek8Qvd2/IR3jK696kfzakWcEX7iCiDrsmKdxBsRZ01Oa0y7ooB2oQzusEbahzQA0QDqj7pAOKAO8TDKj7Qx5QlNf9mgZUVrtTw9+fJOswacEwtHaS/onBc3TjPSDtJAT4gMBxHmCM2AdD7lDE4UFBIz8Y8ncw6kQPCqYHaxl6rQ95OkjarhcOVmfh9q31DP4PhTzFy+iInFU5zhF5Q8htSBptEBwIOO1AJphg/fOVMuKDw8Wfm8jvb1yMOQCM2QCMWQCMmQCMGQCM6QCMaQCMqQCMKQCMyQCMSQCMdADGRADGBADGeADGOADGWADGGADGaADGKADGSADGCADGcADGMADGUADGEADGYADGIADGQADGAABGfwGGe0mLYrc0K9jifGckbs7vVg+r71QbVTyiYpOKzSq2qNiqYpuKR1VsV/GYisdVPKHiSRVPqXja/h6+w/t738P2FzX3to0+2x7x2bbJZ9tmn21bfLZt9dm2zWfbDp8vuNzfHoN/UYtYcxln0Z5hfPl2c/IrxztJEDmtjqzy3CnMc6cG7RlfYCM7GZyeFXJ6VoP2zzLyfE6Y53MatGd8sY88x+D0vJDT81Frb0UeDilP98LVeQbDX2Yy/GWXUOddGvr4LobOLwjzfEFDH2eckIm8wOD0opDTixq0f5GR50vCPF/SoD3jRFXkJQanl4WcXtbgLxtDytO9cHWewvCXqQx/eUWo8ysa+vgrDJ13C/PcraGPM04wRnYzOL0q5PSqBu1fZeS5R5jnHg3aM068RvYwOL0m5PSaBn95JKQ83QtX54kMf0ln+Mteoc57NfTxvQydXxfm+bqGPs44YR55ncFpn5DTPg3a72Pk+YYwzzc0aM/4ISHyBoPTm0JOb2rwl00h5eleuDqPZfjLOIa/vCXU+S0Nffwths5vC/N8W0MfZ/wAFHmbwWm/kNN+DdrvZ+R5QJjnAQ3aM34YixxgcHpHyOkdDf6yOaQ83Us0b6/KYldrFMNfDgp1Pqihjx9k6PyuMM93NfRxxg+akXcZnN4TcnpPg/bvMfJ8X5jn+xq0Z/zQG3mfwemQkNMhDf6yJaQ83Us0T7nLYldrGMNfPhDq/IGGPv4BQ+fDwjwPa+jjjB/oI4cZnI4IOR3RoP0RRp4fCvP8UIP2jAsXIh8yOH0k5PSRBn/ZGlKe7oWr80CGvwxi+MvHQp0/1tDHP2bo/Ikwz0809HHGBSeRTxicPhVy+lSD9p8y8vxMmOdnGrRnXIgT+YzB6XMhp881+Mu2kPL05szJ6VEQznYQzmMgnMdBOE+AcJ4E4TwFwnmagUM3GSm7Oe0mozxR4j8s4MnF2AjAeASAsQmAsRmAsQWAsRWAsU04RoNipAvLSfH+KxdK2dJRlE1z+qTba79Q/e5LFV+p+FrFNyq+VfGdiqMqvlfxg4ofVfyk4piKn1X8ouLXJOv0CdsXdid2b/vSZ9tXPtu+9tn2jc+2b322feez7ajPtl98tv1qb9P5BKnvoxjMQXEoJ3euvyX9vf7d2yj0QbRPi/o+4Cz6O7Xvb4wZ9++gmQkK5wcQzo8gnJ9AOMdAOD+DcIKOl0H/VH1y4T5egTHjjXwh5M7NiTFDjnwJyokxo458BcqJMQOPfA3KiTFjj3wDyokxw498C8qJ8Y0g8h0oJ8Y3iMhRTTllhkH//MLI6degc4wTJyL/ArKC6/RHwJzSvQkycY5rOtZkhfNnQJwbUz7tHQ3OXwFxHu/90LRocE4ExGk84Mch0eDQpDjNynq556JjDaPBiQTEuTj3JROjwckWEOf2hD5zo8GJC4hTaso7D0SDEx8Q5+rDrxahunPZGDQnovVGe/2Ivd5krzfb6y32equ93mav/7DXxwOuf0n654skrf+013/Z6xP2mvobrSP2Opu9jrPXxDdBRaKKJBXJKlJUZFeRQ0XO5L+/pOa2/vn+lpm+WSyRhOTA+/ouacF2i5eXjZzidFIf++9cKu/cKlJV5Em2Tv+ySx96t+X22Zbqsy1P8r+/KCewEj5d1Kw6eK6A+9IBL3fgfa1IatB9Vb55GJ1AZ+dLNLTz5VV551ORX0UBbwfK69Op8vlsy++zrYCGzpfI6Hx5GZ0vH6Pz5Wd0vgIx6nxJhna+s1TeBVUUUlHY24HO8ulUBX22FfLZVlhD50tidL6zGJ2vIKPzFWJ0vsIx6nzJhna+IirvoiqKqSju7UBFfDpVUZ9txXy2FdfQ+ZIZna8Io/MVZXS+YozOVzxGnS/F0M5XQuVdUkUpyt/bgUr4dKqSPttK+WxL09D5UhidrwSj85VkdL5SjM6XFqPOl93Qzlda5V1GRVkV5bwdqLRPpyrjs62sz7ZyGjpfdkbnK83ofGUYna8so/OVi1Hny2Fo5yuv8q6goqKKSt4OVN6nU1Xw2VbRZ1slDZ0vB6PzlWd0vgqMzleR0fkqxajz5TS081VWeVdRUVVFNW8HquzTqar4bKvqs62ahs6Xk9H5KjM6XxVG56vK6HzVGJ2ANHKu42gd//e6jb1ua6/b2ev29rqDve5ory+y153s9cX2+hJ7fam9vsxeX26vO9vrK+z1lfb6KnvdxV5fba+vsdfX2uvr7HVXe329ve5mr7vb6x72uqe97mWvb7DXve11H3vd117faK9vstf97HV/ez3AXg+014Ps9WB7PcReD7XXw+z1cHs9wl6PtNej7PVoez3GXo+11+Ps9Xh7PcFeT7TX6fZ6kr2ebK+n2Oup9nqavZ5ur2fY62/t9U/2+nd7TQOG1on2Oqe9zmevC9vrkva6nL2uYq9r2ev69rqxvW5ur1vb6472+jJ73cVeX2+vb7DX/ez1EHs9yl5PsNdT7fVse73QXi+11yvs9Wp7vc5eP2SvN9vrx+z1Dnu9y17vttf77PUBe33IXn9sr7+010ft9c/2+ri9zpb49zrZXue21wXsdVF7nWavK9jrava6jr1uYK+b2OuW9rqtve5krzvb62vsdXd73cde0ylaWqfa69z2Ope9LmCv89vrfPY6r70ubK8L2euC9vose13cXhez10XtdRF7nWavS9nrkva6hL0uZ6/L2usy9rq0va5kryva6wr2ury9rmavq9rrKva6sr2eq/p7dc/BImKv06xAS6Q641ih8x1ALa3guG68GslRAFJh7sUDNYIfnCI1GWJKOdRM/ne5rLBqMmd3dICNy2SfNCvQknhykEVXx6XCcr2E5YaBy/UVlhsgLNdbWC5NWG6ssFwtYbnxwnJpwnLdhOWGCsulCcvdICwnHUfScmnCcoOE5aTtN1pYTqrLEPLSiGcj9/gRCb7vvzDYYNyDjvNNOKME0qxguA/Gn8Ek0dMn9bX9tGsCa0UzfarFnD4ReC3G9Kk2YPpUmzl9Ig61/5s+/Td9+nv5b/rkv6QJy/03fdJbLk1Y7r/pU9YLdvrEOehI6qdpkuRcQp0YzXgqBt/3NLy60hlPRbswt1y9kGcxlFc911m/NIu/cJ8V455TZ8XpbMaM79Q/VvD6K1l/8+dyqMTAqB/y4CON6gsG3znMX8qcXxXd5biYZBJkRtw7o2uGNPNvwDSgFMv/998wDSganPIWBof7PZnbb6pYf/cZ7jiNY+xbxeJrJT4iR2sKWf4Ub/1tClzB6jMGz7lMDtxcIh6MoJy5WjUMuS2oEzod2F0uKxhp580qn0YhH5Ccg6qXb5CDcdB9OROjxlFOIrIqU9nGsHjlTh5Islv/XJLzr0QYOaAOKBUsDM6ZeuCS4nDGnPt5M+fZ/apJchQHm8bCmd55mcz0gmCeJzgANWYM7POFvPzKcX/K5+TZlGlA3FyoEzMmFCcP8uckh/vNrVnIBxni0FBwsG8ecl5kxJJJSAuAXo0EebUMOS8yeolerQCntCR5XRCjU1rVg+97Gt6F0lNa1e3C3HKtQz6lRXm1Fp7Skhzkzhd0kml5ws2LDjjNBHlNZ+blLNyZfhvGwYqhVYSRv+9MP8vr96y/+xb3wFmDgdE2ZGMj7dsK+kY74WSrnYbJVluGZ7RnTrachduHO8S+D59cuH2RfnPhfCOm/ZsK+kvHkM8ONWDyaCDkcRFgYibJq1OMTl1zJhrR4FS1MDgdomzfrNqplhX+qetaFl+riPePtEDFrEjbkAWraf1t+FzBOAeJi5mDR9cji4MO2hMnThz2255mZY1B/7hzvcSeDF/qXBTpHJkvsV3Hve1SnwS55607BWuIxaohIpcwGu1Spnjcjkcd6BLQNwdy/OYC178sOfy8WgjyuhyQV0tBXp0BebUS5HUFIK8LBHldyciLfIFmAyvt/1PfpH5AmhM/qose3/df/BeIEI6VBPL9ToKxchXzN53qPtvTLN7C9YGrksPH6AK4DuBixjzBmUBy2/PqKHkEmV8wtDo5ob1aMBHuwtDqGlwfjnj/SAtUDNOHrwn3eHzKY8L8UnOtAX50LaAtrwvZj0g3TrvQvtcJ2v46BkZXA8Yxou27npnjOBunv1xvwDi+HtCW3UI+0UTfX5yzc+5yWcFIz8xllU93wPyjG3P+0V3gW90Yfb2HAb6F6Os9zkzfiuP4Vk8DfKsnoC17hTz/oF9GuPOPXoJx3IuBcYMB4xjR9jecmeM4ntNfehswjnsD2rJPyOOY2qQDcxz3EYzjPgyMvgaMY0Tb9zVgDNA5z4D7ijFuNECHufHhY9wk6HN+OFmNv37BcbLFSu9+gPHX34B+txbQ7wYYoMMqgA4DQeNvUHCchFjpPQgw/gaD9B4SHCcxVnoPAeg9FKT3sOA4SbHSexhA7+EgvUcEx0mOld4jAHqPBOk9KjhOSqz0HgXQezRI7zHBcbLHSu8xAL3HgvQeFxwnR6z0HgfQezxI7wnBcXLGSu8JAL0ngvROD46TK1Z6pwP0ngTSe3JwnNyx0nsyQO8pIL2nBsdJjZXeUwF6TwPpPT04Tp5Y6T0doPcMkN4zg+PkjZXeMwF6zwLpPTs4Tr5Y6T0boPcckN5zg+Pkj9nvIQC954H0nh8cp0Cs9J4P0HsBSO+FwXHOipXeCwF6LwLpvTg4TsFY6b0YoPcSkN43B8cpFCu9bwbofQtI76XBcQrHSu+lAL1vBem9LDhOkVjpvQyg920gvZcHxykaK72XA/S+HaT3iuA4xWKl9wqA3neA9L4zOE7xWOl9J0Dvu0B6rwyOUyJWeq8E6L0KpPfq4DglY6X3aoDed4P0XhMcp1Ss9F4D0PsekN73BsdJi5Xe9wL0XgvSe11wnNKx0nsdQO/7DLhu9c+48DHuB/W7B4LjlI2V3g8A+t2DIL3XB8cpFyu91wP0fgik94bgOOVjpfcGgN4Pg/TeGBynQqz03gjQ+xGQ3puC41SMld6bAHpvBum9JThOpVjpvQWg91aQ3tuC41SOld7bAHo/CtJ7e3CcKrHSeztA78dAej8eHKdqrPR+HKD3EwZ877sf8L3vSVC/eyo4TvVY6f0UoN89DdJ7R3CcGrHSewdA72dAeu8MjlMzVnrvBOj9LEjv54Lj1IqV3s8B9H4epPeu4Di1Y6X3LoDeL4D0fjE4Tp1Y6f0iQO+XQHq/HBynbqz0fhmg9ysgvXcHx6kXK713A/R+FaT3nuA4Z8dK7z0AvV8D6b03OE79WOm9F6D36yC99wXHOSdWeu8D6P0GSO83g+M0iJXebwL0fguk99vBcc6Nld5vA/TeD9L7QHCchrHS+wBA73dAeh8MjtMoVnofBOj9Lkjv94LjNI6V3u8B9H4fpPeh4DjnxUrvQwC9PwDpfTg4TpNY6X0YoPcRkN4fBsc5P1Z6fwjQ+yOQ3h8Hx2kaK70/Buj9CUjvT4PjNIuV3p8C9P4MpPfnwXGax0rvzwF6fwHS+8vgOC1ipfeXAL2/Aun9dXCclrHS+2uA3t+A9P42OE6rWOn9LUDv70B6Hw2Oc0Gs9D4K0Pt7kN4/BMe5MFZ6/wDQ+0eQ3j8Fx2kdK71/Auh9DKT3z8Fx2sRK758Bev8C0vvX4DhtY6X3rwC9fwPp/XtwnHax0vt3gN5/gPQ+HhynfczemwXQ+0+Q3n8Fx+kQK73/Auh9AqS3lRIYp2Os9Gbk6CrEw4ikYPTOFhznoljpnQ2gdxxI7/jgOJ1ipXc8QO8EkN6JwXEujpXeiQC9k0B6JwfHuSRWeicD9E4B6Z09OM6lsdI7O0DvHCC9cwbHuSxWeucE6J0LpHfu4DiXx0rv3AC9U0F65wmO0zlWeucB6J0XpHe+4DhXxErvfAC984P0LhAc58pY6V0AoPdZIL0LBse5KlZ6FwToXQikd+HgOF1ipXdhgN5FQHoXDY5zdaz0LgrQuxhI7+LBca6Jld7FAXqXAOldMjjOtbHSuyRA71IgvdOC41wXK73TAHqXBuldJjhO11jpXQagd1mQ3uWC41wfK73LAfQuD9K7QnCcbrHSuwJA74ogvSsFx+keK70rAfSuDNK7SnCcHrHSuwpA76ogvasFx+kZK72rAfSuDtK7RnCcXrHSuwZA75ogvWsFx7khVnrXAuhdG6R3neA4vWOldx2A3nVBetcLjtMnVnrXA+h9Nkjv+sFx+sZK7/oAvc8B6d0gOM6NsdK7AUDvc0F6NwyOc1Os9G4I0LsRSO/GwXH6xUrvxgC9zwPp3SQ4Tv9Y6d0EoPf5IL2bBscZECu9mwL0bgbSu3lwnIGx0rs5QO8WIL1bBscZFCu9WwL0bgXS+4LgOINjpfcFAL0vBOndOjjOkFjp3RqgdxuQ3m2D4wyNld5tAXq3A+ndPjjOsFjp3R6gdweQ3h2D4wyPld4dAXpfBNK7U3CcEbHSuxNA74tBel8SHGdkrPS+BKD3pSC9LwuOMypWel8G0PtykN6dg+OMjpXenQF6XwHS+8rgOGNipfeVAL2vAundJTjO2Fjp3QWg99Ugva8JjjMuVnpfA9D7WpDe1wXHGR8rva8D6N0VpPf1wXEmxErv6wF6dwPp3T04zsRY6d0doHcPkN49g+Okx0rvngC9e4H0viE4zqRY6X0DQO/eIL37BMeZHCu9+wD07gvS+8bgOFNipfeNAL1vAundLzjO1Fjp3Q+gd3+Q3gOC40yLld4DAHoPBOk9KDjO9FjpPQig92CQ3kOC48yIld5DAHoPBek9LDjOzFjpPQyg93CQ3iOC48yKld4jAHqPBOk9KjjO7FjpPQqg92iQ3mOC48yJld5jAHqPBek9LjjO3FjpPQ6g93iQ3hOC48yLld4TAHpPBOmdHhxnfqz0TgfoPQmk9+TgOAtipfdkgN5TQHpPDY6zMFZ6TwXoPQ2k9/TgOItipfd0gN4zQHrPDI6zOFZ6zwToPQuk9+zgOEtipfdsgN5zQHrPDY5zc6z0ngvQex5I7/nBcW6Jld7zAXovAOm9MDjO0ljpvRCg9yKQ3ouD49waK70XA/ReAtL75uA4y2Kl980AvW8B6b00OM5tsdJ7KUDvW0F6LwuOszxWei8D6H0bSO/lwXFuj5XeywF63w7Se0VwnBWx0nsFQO87QHrfGRznjljpfSdA77tAeq8MjnNnrPReCdB7FUjv1cFx7oqV3qsBet/NxODW3zbZsjol89vn1jzh5tXezisbM681wfWKhM2hhvqnteIQ5ymX5bNlGfu2Tg6+7z0MbU79YwUvU9PGsHjlrHgV2VUk+FXKzKG6ZbHHpASnmoXBqWrxcLzjJav6afy3S+aNyw7J/2xIs/gLV4PujHdcZ3P9fa/dF9em/IPJBmcMmpN1x9nre+1y1LlzeRKTNFJjZiM1ZjbSiRMnfvXbnmZljUf/uPmts4W/L8U6XZR1dku4t93nEpjbOESyreDodVvIzk95tRfktZyZl7PEB8dZrHAi61KC53Qf46jB0DUSlKvTMbla0sBdJzga+WFltTvt31jQ3veHPLurKMzrgZDzqiDM68GQ82qULMtrfch5lbdkeT0Ucl6UUxNBXhtCzuvBeJleDwP0Ok+Q10ZGXnRcpW8QTe3/k8fQeKaxQ/2U+gTpT1yp3uNJ/7/DTx+O9o8E1z6ZcfxLXh7yHISOf4+k8PvaJkZfo0lfDZ/taRZv4XLblBI+xmYmBndST/ncw5iH0b6UExdnMwNjC67tI94/0gIVw7T9FgEGLVxv2Rp7b4mc+sfiectWgbdsM8BbtgH616MhewudBeN6y6MCb3mUgbHdAG9BtP12kLc8FntvOdmdJN7ymMBbHjfAWx4H9K8nQvYWOvPN9ZYnBN7yBAPjSQO8BdH2T4K85anYe8vJlCXe8pTAW542wFueBvSvHSF7C/3Sw/WWHQJv2cHAeMYAb0G0/TMgb9kZe285+XOKxFt2CrzlWQO85VlA/3ouZG+hX9K53vKcwFueY2A8b4C3INr+eZC37Iq9t5y8yEXiLbsE3vKCAd7yAqB/vRiyt1D7rGV6y4sCb3mRgfGSAd6CaPuXQN7ycuy9JZH+kXjLywJvecUAb3kF0L92h+wt0iv0uO35asi/fVM/e1XQz+6P8nfSIF5Mbegd71nB7GZ48R7GNVQcvrHybcS42gPy7ddi79snr1KQjKfXBONprwG+vRfQv14HzAnvZc4JXxfMCV9nYOwzYE6IaPt9IG95g+H7YVw7a0Xx+/4bAm95k6Er1e1cA+4uJ8n13hTZ+HT2zYrXW0Je7nKSeV9H5ryvo2De9zZg/noRk8dFAh77DTiu0fWIAfcVYxwwQIe58eFjvGOADv2Sw8c4aIAOawH94V0DdFgF0OE9A3QYBBgX7xugwxCADocM0GEYQIcPDNBhBECHwwboMAqgwxEDdBgD0OFDA3QYB9DhIwN0mADQ4WMDdEgH6PCJATpMBujwqQE6TAXo8JkBOkwH6PC5ATrMBOjwhQE6zAbo8KUJ56MAOnxlgA7zATp8bYAOCwE6fGOADosBOnxrgA43A3T4zgAdlgJ0OGqADssAOnxvgA7LATr8YIAOKwA6/GiADncCdPjJAB1WAnQ4ZoAOqwE6/GyADmsAOvxigA73AnT41QAd1gF0+M0AHf6MCx/jdwN0eADQH/4wQIf1AB2OG6DDBoAOfxqgw0aADn8ZoMMmgA4nDNBhC0AHehR9wH1j94wygA4RA3TYDtAhmwE6PA7QIc4AHe4HzCfjDdDhKUB/SDBAhx0AHRIN0GEnQIckA3R4DqBDsgE67ALokGKADi8CdMhugA4vA3TIYYAOuwE65DRAhz0AHXIZoMNegA65DdBhH0CHVAN0eBOgQx4DdHgboENeA3Q4ANAhnwE6HATokN8AHd4D6FDAAB0OAXQ4ywAdDgN0KGiADh8CdCiUnY9BC/cNw5znhhQOnlPE/R/uc2aKMHBCes7M3wWs0/POand61scawbPX2jLeelyUoQ3njdD0kOiclqfhnIrsdZoVDLdu8H1PwyuWPQpAKswtVzx7cOGleRXP/s+GNCv4wsWigfyW4CFHjzAHhbN4X9KaVX6vMoymBKNdGA8YjDwS5YOmssqlnvV3e3tNOCusegyMktnD7UekfcnsfO6lsvMGvfNQKb9y3INYSUZ/SRMexMLs76Vj399PLpKHjjEekhahCUQRQd8qkz18HpwDK/EoKuBRlsGD+luK9U+/Oy0BD25W+XIOyNHg1LYwOKWj9MCs2qm+9bc/cftRHGPf+hZfq4j3j7RAxaxIyZAFO9v624S5gnGMuxxz8OSy/sknM25Z5Rh00J44ceKw3/Y0K2sM+seda3l70lghu3X60bK87TrubRV8EuR+BSkbrCEWq4aIlGc0WgWmeNyORx2ovHCGLXn0443MRz9eJnj0Y8Xs4fO4icnjcgGPSgAe/Zk8Ogt4VAbwGMDkcYWARxUAj4FMHlcKeFQN+RsQ8RgsyKsaIK+hgryqA/IaLsirBiCvkYK8agLyGi3IqxYgr7GCvGoD8hovyKsOIK+JgrzqAvKaJMirHiCvKYK8zgbkNU2QV31AXjMEeZ0DyGuWIK8GgLzmCPI6F5DXPEFeDQF5LRDk1QiQ1yJBXo0BeS0R5HUeIK9bBHk1AeR1qyCv8wF53SbIqykgr9sFeTUD5HWHIK/mgLzuEuTVApDXKkFeLQF53S3IqxUgr3sEeV0AyGutIK8LAXndJ8irNSCv+wV5tQHk9aAgr7aAvB4S5NUOkNfDgrzaA/J6RJBXB0BemwV5dQTktVWQ10WAvB4V5NUJkNdjgrwuBuT1hCCvSwB5PSnI61JAXk8L8roMkNczgrwuB+T1rCCvzoC8nhfkdQUgrxcEeV0JyOslQV5XAfJ6RZBXF0BerwryuhqQ12uCvK4B5PW6IK9rAXm9IcjrOkBebwny6grIa78gr+sBeb0jyKsbIK93BXl1B+T1viCvHoC8PhDk1ROQ1xFBXr0AeX0kyOsGQF6fCPLqDcjrM0FefQB5fSHIqy8gr68Eed0IyOsbQV43AfL6TpBXP0Be3wvy6g/I60dBXgMAeR0T5DUQkNcvgrwGAfL6TZDXYEBefwjyGgLI609BXkMBeZ0Q5DUMkFdEcIfqcEBecYK8RgDyShDkNRKQV5Igr1GAvFIEeY0G5JVDkNcYQF65BHmNBeSVKshrHCCvvIK8xgPyyi/IawIgr7MEeU0E5FVIkFc6IK8igrwmAfIqJshrMiCvEoK8pgDyKiXIayogr9KCvKYB8ioryGs6IK/ygrxmAPKqKMhrJiCvyoK8ZgHyqirIazYgr+qCvOYA8qopyGsuIK/agrzmAfKqK8hrPiCvswV5LQDkdY4gr4WAvM4V5LUIkFcjQV6LAXmdJ8hrCSCv8wV53QzIq5kgr1sAebUQ5LUUkFcrQV63AvK6UJDXMkBebQR53QbIq50gr+WAvDoI8rodkNdFgrxWAPK6WJDXHYC8LhXkdScgr8sFed0FyOsKQV4rAXldJchrFSCvqwV5rQbkda0gr7sBeXUV5LUGkFc3QV73APLqIcjrXkBevQR5rQXk1VuQ1zpAXn0Fed0HyOsmQV73A/LqL8jrAUBeAwV5PQjIa7Agr/WAvIYK8noIkNdwQV4bAHmNFOT1MCCv0YK8NgLyGit5sj0gr/GCvDYB8pooyGszIK9Jgry2APKaIshrKyCvaYK8tgHymiHI61FAXrMEeW0H5DVHkNdjgLzmCfJ6HJDXAkFeTwDyWiTI60lAXksEeT0FyOsWQV5PA/K6VZDXDkBetwnyegaQ1+2CvHYC8rpDkNezgLzuEuT1HCCvVYK8ngfkdbcgr12MvOh9CDVVrLT/T8/Yp+fT07Pd6bno9Exxen43PSubnktNz4Cm5y3Ts43pOcL0zF56Pi49i5ae+0rPWKXnmdKzQ+k5nfRMTHr+JD3rkZ6rSM8wpOcF0rP56Dl49Mw5er4bPUuNnltGzwij53HRs6/oOVP0TCd6fhI9q4ieC0TP4KHn3dCzZeg5LvTMFHo+CT0LhJ67Qc+4oOdJ0LMb6DkJ9EwCuv+f7rWn+9rpHnK6X5vujab7kOmeX7q/lu5lpftG6R5Nuh+S7j2k+/zonjq6f43uFaP7sugeKLrfiO7tofto6J4Vuj+E7sWg+x7oHgO6np+unafr1OmacLr+mq51puuK6Rpeul6Wrk2l60Dpmku6vpGuJaTr9ugaOboeja79ouus6Jomun6IrtWh62LoGhS63oOuraDrGOiaAfp9nn4Lp9+d6Tde+j2Vfruk3wnpNzn6/Yt+a6Lfdeg3FPq9gn4boPPwdM6bzi/TuVw6b0rnKOl8IJ17o/NcdE6Jzt/QuRI6L0HnAOj7Nn23pe+R9J2Nvh/RdxGa99Mcm+azNHekeRrNiWj+Qcd6Oq7SMYyOF+TN5IPkOTS+aSxRvxWOlQR63wW9q4M7Vl7IHnysZLPHindJs3gL1wc4OUoxXmRicN+BQPm4X1STVbs4L87htudLUfLIqn7KiaHVyRf5UE5cvV5kaPUyrg9HvH+kBSqG6cMvMzGkHhPmy5xeMcCPXgG05e6Q/Yje/MZpF9p3t6DtdzMwXjVgHCPa/tUzcxxn4/SXPQaM4z2AtnwtyrbMSmf6/uK8ldBdLisY6RsJs8pnL2D+8Rpz/rFX4FuvMfr66wb4FqKvv35m+lYcx7f2GeBb+wBt+UbI8w96Iyx3/vGGYBy/wcB404BxjGj7N8/McRzP6S9vGTCO3wK05dshj2Nqk9LMcfy2YBy/zcDYb8A4RrT9/nDHcQRxPuAAgwPl77z72CkXq7F9PCl8jHcM8Li58eFjHDRAh37J4WO8a4AOawH94T0DdFgF0OF9A3QYBBgXhwzQYQhAhw8M0GEYQIfDBugwAqDDEQN0GAXQ4UMDdBgD0OEjA3QYB9DhYwN0mADQ4RMDdEgH6PCpATpMBujwmQE6TAXo8LkBOkwH6PCFATrMBOjwpQE6zAbo8JUJ56MAOnxtgA7zATp8Y4AOCwE6fGuADosBOnxngA43A3Q4aoAOSwE6fG+ADssAOvxggA7LATr8aIAOKwA6/GSADncCdDhmgA4rATr8bIAOqwE6/GKADmsAOvxqgA73AnT4zQAd1gF0+N0AHf6MCx/jDwN0eADQH44boMN6gA5/GqDDBoAOfxmgw0aADicM0GETQAcrx5mvwxaADhEDdNgG0CGbATpsB+gQZ4AOjwN0iDdAh/sB88kEA3R4CtAfEg3QYQdAhyQDdNgJ0CHZAB2eA+iQYoAOuwA6ZDdAhxcBOuQwQIeXATrkNECH3QAdchmgwx6ADrkN0GEvQIdUA3TYB9AhjwE6vAnQIa8BOrwN0CGfATocAOiQ3wAdDgJ0KGCADu8BdDjLAB0OAXQoaIAOhwE6FDJAhw8BOhQ2QIePAToUMUCHTwE6FDVAh88BOhQzQIcvAToUN0CHrwE6lDBAh28BOpQ0QIejAB1KGaDDDwAd0gzQ4SeADqUN0OFngA5lDNDhV4AOZQ3Q4XeADuUM0OE4QIfyBujwF0CHCgboYKWEj1HRAB2yAXSoZIAO8QAdKhugQyJAhyoG6JAM0KGqATpkB+hQzQAdcgJ0qG6ADrkBOtQwQIc8AB1qGqBDPoAOtQzQoQBAh9oG6FAQoEMdA3QoDNChrgE6FAXoUM8AHYoDdDjbAB1KAnSob4AOaQAdzjFAhzIAHRoYoEM5gA7nGqBDBYAODQ3QoRJAh0YG6FAFoENjA3SoBtDhPAN0qAHQoYkBOtQC6HC+ATrUAejQ1AAd6gF0aGaADvUBOjQ3QIcGAB1aGKBDQ4AOLQ3QoTFAh1YG6NAEoMMFBujQFKDDhQbo0BygQ2sDdGgJ0KGNATpcANChrQE6tAbo0M4AHdoCdGhvgA7tATp0MECHjgAdOhqgQyeADhcZoMMlAB06GaDDZQAdLjZAh84AHS4xQIcrATpcaoAOXQA6XGaADtcAdLjcAB2uA+jQ2QAdrgfocIUBOnQH6HClATr0BOhwlQE63ADQoYsBOvQB6HC1ATrcCNDhGgN06AfQ4VoDdBgA0OE6A3QYBNChqwE6DAHocL0BOgwD6NDNAB1GAHToboAOowA69DBAhzEAHXoaoMM4gA69DNBhAkCHGwzQIR2gQ28DdJgM0KGPATpMBejQ1wAdpgN0uNEAHWYCdLjJAB1mA3ToZ4AOcwE69DdAh/kAHQYYoMNCgA4DDdBhMUCHQQbocDNAh8EG6LAUoMMQA3RYBtBhqAE6LAfoMMwAHVYAdBhugA53AnQYYYAOKwE6jDRAh9UAHUbl4GFkY9ZfMrtllQ3+rvRImr2/l0etnh2HHKm9svKjnVptnTTpymsr1f289ejtgxa1OHJsyVH1+WgmD65O9dQ/xVVeccy86jH2LZ49+L5jgvONnPrHCl7mbBvD4pWz4lUoGlaCX6XMHOpa/P4vwaljYXBqW+GPtVLMsVY6+z8b0iz+wtVgb/D8TvGnZazdF8fl+AeTDc4YNCfrjrPXY+1y1LlzeRKTNFIZZiOVYTbSiRMnfvXbnmZljUf/uPmNt4WfkMM6XZTxdku4t01wCcxtHEcYrvO/lidc508T5rWXmZezxAfHWaxwIuNzBM9pAuOowdA1EpSr0zG5WtLAHS84GtGSjYl1j5p13R985hWh/Q+k8I3AjZFVThNzhM/5ASbndwScH2BwTgdwfpDJ+aCA84MMzpMAnNczOb8r4LyewXkygPNDTM7vCTg/xOA8BcB5A5Pz+wLOGxicpwI4P8zkfEjA+WEG52kAzhuZnD8QcN7I4Dw95G/ixOFwCn8OMQOQ1xFBXjMBeX0oyGsWIK+PBHnNBuT1sSCvOYC8PhHkNReQ16eCvOYB8vpMkNd8QF6fC/JaAMjrC0FeCwF5fSnIaxEgr68EeS0G5PW1IK8lgLy+EeR1MyCvbwV53QLI6ztBXksBeR0V5HUrIK/vBXktA+T1gyCv2wB5/SjIazkgr58Eed0OyOuYIK8VgLx+FuR1ByCvXwR53QnI61dBXncB8vpNkNdKQF6/C/JaBcjrD0FeqwF5HRfkdTcgrz8Fea0B5PWXIK97AHmdEOR1LyAvS/B75FpAXhFBXusAeWUT5HUfIK84QV73A/KKF+T1ACCvBEFeDwLyShTktR6QV5Igr4cAeSUL8toAyCtFkNfDgLyyC/LaCMgrhyCvRwB55RTktQmQVy5BXpsBeeUW5LUFkFeqIK+tgLzyCPLaBsgrryCvRwF55RPktR2QV35BXo8B8iogyOtxQF5nCfJ6ApBXQUFeTwLyKiTI6ylGXnTdbS0VTe3/03WCdN0cXUdG11XRdUZ03Q1dh0LXZdA1EHS9Af22T7+j02/W9Psw/RZLv3vSb4z0ex79dka/U9FvQvT7C/3WQb8r0Dl8Ol9O56bpPDCdc6Xzm3Qukc7b0TkyOh9F537oPAud06DzB/Rdnb4X03dQ+r5H363oewx9Z6D5Oc2Fad5JczyaT9HcheYJdEym4x8da8jXyUPJr8gbaBxSn6f+RW35VA5/fTjaPx1c+2TG9bHJ3GuBuX2Nro+l3Ll9bUdwvievGarlsz3N4i1cbpwcpRjPRHmdVlb1Uz7umw+CXO9MOXFxnmFg7MS1fcT7R1qgYpi23ynAoIXrLc/G3lsip/6xeN7yrMBbnjPAW54D9K/nQ/YWukuO6y3PC7zleQbGLgO8BdH2u0De8kLsveVkd5J4ywsCb3nRAG95EdC/XgrZW+jOWK63vCTwlpcYGC8b4C2Itn8Z5C2vxN5bTqYs8ZZXBN6y2wBv2Q3oX6+G7C10JzjXW14VeMurDIw9BngLou33gLzltdh7y8nbrSXe8prAW/Ya4C17Af3r9ZC9hZ60wfWW1wXe8joDY58B3oJo+30gb3kj9t5y8iE4Em95Q+AtbxrgLW8C+tdbIXsLtc84pre8JfCWtxgYbxvgLYi2fxvkLftj7y2J9I/EW/YLvOWAAd5yANC/3gnZW6RP8OK250EmD0k/OyjoZ0ej/J00iBdTG3rHe1Yw7zC8+N3g2kY4fGPl24hx9S7It9+LvW8n0T+S8fSeYDy9b4Bvvw/oX4cAc8KxzDnhIcGc8BAD4wMD5oSItv8A5C2HGb4fxrP1rCh+3z8s8JYjDF2pbucZke5yklzH5pCNT2ffrHh9KOTlLsfN7+0UyyqZnbd/mmDe91HIPrifyWO/kMfHBhzXjieFj/GJATrMjQ8f41MDdOiXHD7GZwbosBbQHz43QIdVAB2+MECHQYBx8aUBOgwB6PCVAToMA+jwtQE6jADo8I0BOowC6PCtATqMAejwnQE6jAPocNQAHSYAdPjeAB3SATr8YIAOkwE6/GiADlMBOvxkgA7TATocM0CHmQAdfjZAh9kAHX4x4XwUQIdfDdBhPkCH3wzQYSFAh98N0GExQIc/DNDhZoAOxw3QYSlAhz8N0GEZQIe/DNBhOUCHEwbosAKgg5XzzNfhToAOEQN0WAnQIZsBOqwG6BBngA5rADrEG6DDvQAdEgzQYR1Ah0QDdPgzLnyMJAN0eADQH5IN0GE9QIcUA3TYANAhuwE6bATokMMAHTYBdMhpgA5bADrkMkCHbQAdchugw3aADqkG6PA4QIc8BuhwP2A+mdcAHZ4C9Id8BuiwA6BDfgN02AnQoYABOjwH0OEsA3TYBdChoAE6vAjQoZABOrwM0KGwATrsBuhQxAAd9gB0KGqADnsBOhQzQId9AB2KG6DDmwAdShigw9sAHUoaoMMBgA6lDNDhIECHNAN0eA+gQ2kDdDgE0KGMATocBuhQ1gAdPgToUC4nH4MW7/MsgjynJ+i+5YPnFHH/h/ucmQoMnJCeM3Ny8WqZVf30XJADzGfbjRY8l6Yio2/Qw59zWp4GcRLw4GaV77nB9z0Nr1LOKACpMLdc5ZzBxZTmVTnnPxvSrOALF4sG6IeCTvIbs7M7S7wHJ6v8DjIMpAqjXRgPDowwuEZO/WMFz6Wh9Xd7cw2hIQOjas5w+xFpXzUnn3u1nLxB7zwsyq8c9+BUldFfqgsPTmH29xqx7+8nF8nDxBgPP4vQxKCCoG/VzBk+D8bB8iSPigIetZgH5BTrn353WgIe3Kzy5RyQo8E5x8Lg1IjSA7Nqp8bW3/7E7UdxjH0bW3ytIt4/0gIVsyJVQxaskfW3CXMF4xh3bebgyWX9k09m3LLKMeigPXHixGG/7WlW1hj0jzvXOvaksa4zJXeOlnVs13Fvq+uTIPexzrWCNcRi1RCROoxGq8sUj9vxqAPVEc6wJV/b3mF+basoeKRjvZzh8zjI5FFJwONsAI93mTwqC3jUB/B4j8mjioDHOQAe7zN5VBXwaADgcYjJo5qAx7kAHh8weVQX8GgI4HGYyaOGgEcjAI8jTB41BTwaA3h8yORRS8DjPACPj5g8agt4NAHw+JjJo46Ax/kAHp8wedQV8GgK4PEpk0c9AY9mAB6fMXmcLeDRHMDjcyaP+gIeLQA8vmDyOEfAoyWAx5dMHg0EPFoBeHzF5HGugMcFAB5fM3k0FPC4EMDjGyaPRgIerQE8vmXyaCzg0QbA4zsmj/MEPNoCeBxl8mgi4NEOwON7Jo/zBTzaA3j8wOTRVMCjA4DHj0wezQQ8OgJ4/MTk0VzA4yIAj2NMHi0EPDoBePzM5NFSwONiAI9fmDxaCXhcAuDxK5PHBQIelwJ4/MbkcaGAx2UAHr8zebQW8LgcwOMPJo82Ah6dATyOM3m0FfC4AsDjTyaPdgIeVwJ4/MXk0V7A4yoAjxNMHh0EPLoAeFg5eDw6CnhcDeARYfK4SMDjGgCPbEwenQQ8rgXwiGPyuFjA4zoAj3gmj0sEPLoCeCQweVwq4HE9gEcik8dlAh7dADySmDwuF/DoDuCRzOTRWcCjB4BHCpPHFQIePQE8sjN5XCng0QvAIweTx1UCHjcAeORk8ugi4NEbwCMXk8fVAh59ADxyM3lcI+DRF8AjlcnjWgGPGwE88jB5XCfgcROAR14mj64CHv0APPIxeVwv4NEfwCM/k0c3AY8BAB4FmDy6C3gMBPA4i8mjh4DHIACPgkwePQU8BgN4FGLy6CXgMQTAozCTxw0CHkMBPIowefQW8BgG4FGUyaOPgMdwAI9iTB59BTxGAHgUZ/K4UcBjJIBHCSaPmwQ8RgF4lGTy6CfgMRrAoxSTR38BjzEAHmlMHgMEPMYCeJRm8hgo4DEOwKMMk8cgAY/xAB5lmTwGC3hMAPAox+QxRMBjIoBHeSaPoQIe6QAeFZg8hgl4TALwqMjkMVzAYzKARyUmjxECHlMAPCozeYwU8JgK4FGFyWOUgMc0AI+qTB6jBTymA3hUY/IYI+AxA8CjOpPHWAGPmQAeNZg8xgl4zALwqMnkMV7AYzaARy0mjwkCHnMAPGozeUwU8JgL4FGHySNdwGMegEddJo9JAh7zATzqMXlMFvBYAOBxNpPHFAGPhQAe9Zk8pgp4LALwOIfJY5qAx2IAjwZMHtMFPJYAeJzL5DFDwONmAI+GTB4zBTxuAfBoxOQxS8BjKYBHYyaP2QIetwJ4nMfkMUfAYxmARxMmj7kCHrcBeJzP5DFPwGM5gEdTJo/5Ah63A3g0Y/JYIOCxAsCjOZPHQgGPOwA8WjB5LBLwuBPAoyWTx2IBj7sAPFoxeSwR8FgJ4HEBk8fNAh6rADwuZPK4RcBjNYBHayaPpQIedwN4tGHyuFXAYw2AR1smj2UCHvcAeLRj8rhNwONeAI/2TB7LBTzWAnh0YPK4XcBjHYBHRyaPFQIe9wF4XMTkcYeAx/0AHp2YPO4U8HgAwONiJo+7BDweBPC4hMljpYDHegCPS5k8Vgl4PATgcRmTx2oBjw0AHpczedwt4PEwgEdnJo81Ah4bATyuYPK4R8DjEQCPK5k87hXw2ATgcRWTx1oBj80AHl2YPNYJeGwB8LiayeM+AY+tAB7XMHncL+CxDcDjWiaPBwQ8HgXwuI7J40EBj+0AHl2ZPNYLeDwG4HE9k8dDAh6PA3h0Y/LYIODxBIBHdyaPhwU8ngTw6MHksVHA4ykAj55MHo8IeDwN4NGLyWOTgMcOAI8bmDw2C3g8A+DRm8lji4DHTgCPPkweWwU8ngXw6MvksU3A4zkAjxuZPB4V8HgewOMmJo/tAh67ADz6MXk8JuDxAoBHfyaPxwU8XgTwGMDk8YSAx0sAHgOZPJ4U8HgZwGMQk8dTAh6vAHgMZvJ4WsBjN4DHECaPHQIerwJ4DGXyeEbAYw+AxzAmj50CHq8BeAxn8nhWwGMvgMcIJo/nBDxeB/AYyeTxvIDHPgCPUUweuwQ83mDwoPfD11ax0v4/vXOc3tdN77qm90TTO5bp/cT0bl96Ly69U5bex0rvMqX3gNI7NOn9k/TuRnrvIb0zkN63R++qo/e80TvS6P1i9G4ueq8VvROK3qdE7yKi9/jQO3Do/TH07hV6bwm984Pel0HvmqD3NNA7Duj9APRsfXouPT3TnZ6HTs8Sp+dw0zOs6fnP9Oxkeu4wPbOXnndLz4ql56zSM0rp+Z70bEx6riQ9k5GeZ0jPAqTn6NEz6Oj5bfTsM3puGD1zi55XRc96ouck0TOG6Pk89Gwbei4MPVOFnkdCz/Kg52DQMyTo+Qv07AK675/umaf7zelebbrPme4Rpvtr6d5Uuq+T7omk+wnpXjy6j43uAaP7p+jeI7pvh+55oftF6F4Luk+BrvGn6+Pp2nK6LpuuaabrgelaWroOla7hpOsf6dpBuu6Orlmj673oWim6zoiu0aHrW+jaELqugq5JoN/z6bdw+h2ZfoOl3y/ptz/63Yx+c6Lfa+i3DvqdgM6x0/lpOrdL50XpnCKdj6NzWXQeiM6h0PkH+u5O33vpOyN936LvKjTPpzkyzS9pbkbzGpoT0PGUjkXk4+SB5B809qjfnur8nj6fxZJQVZWtlZM/Vt7MGXysZLPHindJs3gLk1uEk6MU462c4Xof5VM7Z/B2aaSiqqA9346SR1b1U04MrSK0P+XE1esthlb7cX044v0jLVAxTB/ez8SQegy3Lasy2vKAAX50ANCW74TsR+daf49lZ/8g4/4dQdu/w8A4aMA4RrT9wTNzHGfj9Jd3DRjH7wLa8r0o2zIrnen7S2N77S6XFUwcY9/GjHzeB8w/3mPOP94X+NZ7jL5+yADfQvT1Q2emb8VxfOsDA3zrA0BbHg55/nGOxZ9/HBaM48MMjCMGjGNE2x85M8dxPKe/fGjAOP4Q0JYfhTyOqU1qMMfxR4Jx/BED42MDxjGi7T8OdxxHEOcDPmFwoPzj7LVTLlZj+3hS+BifGuBxc+PDx/jMAB36JYeP8bkBOqwF9IcvDNBhFUCHLw3QYRBgXHxlgA5DADp8bYAOwwA6fGOADiMAOnxrgA6jADp8Z4AOYwA6HDVAh3EAHb43QIcJAB1+MECHdIAOPxqgw2SADj8ZoMNUgA7HDNBhOkCHnw3QYSZAh18M0GE2QIdfTTgfBdDhNwN0mA/Q4XcDdFgI0OEPA3RYDNDhuAE63AzQ4U8DdFgK0OEvA3RYBtDhhAE6LAfoYOU683VYAdAhYoAOdwJ0yGaADisBOsQZoMNqgA7xBuiwBqBDggE63AvQIdEAHdYBdEgyQIc/48LHSDZAhwcA/SHFAB3WA3TIboAOGwA65DBAh40AHXIaoMMmgA65DNBhC0CH3AbosA2gQ6oBOmwH6JDHAB0eB+iQ1wAd7gfMJ/MZoMNTgP6Q3wAddgB0KGCADjsBOpxlgA7PAXQoaIAOuwA6FDJAhxcBOhQ2QIeXAToUMUCH3QAdihqgwx6ADsUM0GEvQIfiBuiwD6BDCQN0eBOgQ0kDdHgboEMpA3Q4ANAhzQAdDgJ0KG2ADu8BdChjgA6HADqUNUCHwwAdyhmgw4cAHcoboMPHAB0qGKDDpwAdKhqgw+cAHSoZoMOXAB0qG6DD1wAdqhigw7cAHaoaoMNRgA7VDNDhB4AO1Q3Q4SeADjUM0OFngA41DdDhV4AOtQzQ4XeADrUN0OE4QIc6BujwF0CHugboYKWEj1HPAB2yAXQ42wAd4gE61DdAh0SADucYoEMyQIcGBuiQHaDDuQbokBOgQ0MDdMgN0KGRATrkAejQ2AAd8gF0OM8AHQoAdGhigA4FATqcb4AOhQE6NDVAh6IAHZoZoENxgA7NDdChJECHFgbokAbQoaUBOpQB6NDKAB3KAXS4wAAdKgB0uNAAHSoBdGhtgA5VADq0MUCHagAd2hqgQw2ADu0M0KEWQIf2BuhQB6BDBwN0qAfQoaMBOtQH6HCRATo0AOjQyQAdGgJ0uNgAHRoDdLjEAB2aAHS41AAdmgJ0uMwAHZoDdLjcAB1aAnTobIAOFwB0uMIAHVoDdLjSAB3aAnS4ygAd2gN06GKADh0BOlxtgA6dADpcY4AOlwB0uNYAHS4D6HCdATp0BujQ1QAdrgTocL0BOnQB6NDNAB2uAejQ3QAdrgPo0MMAHa4H6NDTAB26A3ToZYAOPQE63GCADjcAdOhtgA59ADr0MUCHGwE69DVAh34AHW40QIcBAB1uMkCHQQAd+hmgwxCADv0N0GEYQIcBBugwAqDDQAN0GAXQYZABOowB6DDYAB3GAXQYYoAOEwA6DDVAh3SADsMM0GEyQIfhBugwFaDDCAN0mA7QYaQBOswE6DDKAB1mA3QYbYAOcwE6jDFAh/kAHcYaoMNCgA7jDNBhMUCH8QbocDNAhwkG6LAUoMNEA3RYBtAh3QAdlgN0mGSADisAOkw2QIc7ATpMMUCHlQAdphqgw2qADtNy8TCyMeuvmtOyauUMvn91e38vj1o9Ow45Untl5Uc7tdo6adKV11aq+3nr0dsHLWpx5NiSo+rz6UweXJ0aqn8qq7zimHk1ZOxbOWfwfWcE5xs59Y8VvEwjG8PilbPiVWRXkeBXKTOHcy1+/5fgNLAwOOdY4Y+1asyxViPnPxvSLP7C1eD94Pmd4k/LTLsvzsr1DyYbnDFoTtYdZ69n2uWoc+fyJCZppJrMRqrJbKQTJ0786rc9zcoaj/5x85ttCz8nl3W6KLPtlnBvm+MSmNs4jjBc52+fL1znry7MqwMzL2eJD46z+CidhcwVPKc5jKMGQ9dIUK5Ox+RqSQN3tuBoREs2JtaYHJY1MUdw7rT/Jzn4RuDGyCqnubnC55zO5PypgHM6g/M8AOdJTM6fCThPYnCeD+A8mcn5cwHnyQzOCwCcpzA5fyHgPIXBeSGA81Qm5y8FnKcyOC8CcJ7G5PyVgPM0BufFAM7TmZy/FnCezuC8BMB5BpPzNwLOMxicbwZwnsnk/K2A80wG51sAnGcxOX8n4DyLwXkpgPNsJuejAs6zGZxvBXCew+T8vYDzHAbnZQDOc5mcfxBwnsvgfBuA8zwm5x8FnOcxOC8HcJ7P5PyTgPN8BufbAZwXMDkfE3BewOC8AsB5IZPzzwLOCxmc7wBwXsTk/IuA8yIG5zsBnBczOf8q4LyYwfkuAOclTM6/CTgvYXBeCeB8M5Pz7wLONzM4rwJwvoXJ+Q8B51sYnFcDOC9lcj4u4LyUwfluAOdbmZz/FHC+lcF5DYDzMibnvwSclzE43wPgfBuT8wkB59sYnO8FcF7O5Gzl5HNezuC8FsD5dibniIDz7QzO6wCcVzA5ZxNwXsHgfB+A8x1MznECzncwON8P4Hwnk3O8gPOdDM4PADjfxeScIOB8F4PzgwDOK5mcEwWcVzI4rwdwXsXknCTgvIrB+SEA59VMzskCzqsZnDcAON/N5Jwi4Hw3g/PDAM5rmJyzCzivYXDeCOB8D5NzDgHnexicHwFwvpfJOaeA870MzpsAnNcyOecScF7L4LwZwHkdk3NuAed1DM5bAJzvY3JOFXC+j8F5K4Dz/UzOeQSc72dw3gbg/ACTc14B5wcYnB8FcH6QyTmfgPODDM7bAZzXMznnF3Bez+D8GIDzQ0zOBQScH2JwfhzAeQOT81kCzhsYnJ8AcH6YybmggPPDDM5PAjhvZHIuJOC8kcH5KQDnR5icCws4P8Lg/DSA8yYm5yICzpsYnHcAOG9mci4q4LyZwfkZAOctTM7FBJy3MDjvBHDeyuRcXMB5K4PzswDO25icSwg4b2Nwfg7A+VEm55ICzo8yOD8P4LydybmUgPN2BuddAM6PMTmnCTg/xuD8AoDz40zOpQWcH2dwfhHA+Qkm5zICzk8wOL8E4Pwkk3NZAecnGZxfBnB+ism5nIDzUwzOrzA40335dVQ0tf9P9xHTfbV0nyndd0n3IdJ9eXSfGt23Rfcx0X09dJ8L3fdB90HQfQF0nTxdN07XUdN1xXSdLV13Stdh0nWJdJ0eXbdG13HRdU10nQ9d90LXgdB1EXSdAP1uTr8j0++q9Dsj/e5Gv0PR7zL0OwWdt6fz2HRel85z0nk/Og9G54XoPAmdN6Dv0fS9kr5n0fcOmofTvJTmaTRvoeM4HdfI58n3yAdoXFA/eSWXvz7udspK+93BtU9m3D+f3CHkZxjQ/fOUu7dcVnxfDc73ZJ+v47M9zeItXG6cHKUYe6L0mazqp3zcDyfJql1oX8qJi7OHgfEaru0j3j/SAhXDtP1rAgxauN6yN/beEjn1j8Xzlr0Cb3ndAG95HdC/9oXsLfQULa637BN4yz4GxhsGeAui7d8AecubsfeWk91J4i1vCrzlLQO85S1A/3o7ZG+hJ+dxveVtgbe8zcDYb4C3INp+P8hbDsTeW06mLPGWAwJveccAb3kH0L8Ohuwt9KRIrrccFHjLQQbGuwZ4C6Lt3wV5y3ux95aTj2OUeMt7Am953wBveR/Qvw6F7C30JF6utxwSeMshBsYHBngLou0/AHnL4dh7y8mHZEu85bDAW44Y4C1HAP3rw5C9hdpnFtNbPhR4y4cMjI8M8BZE238E8paPY+8tifSPxFs+FnjLJwZ4yyeA/vVpyN4ifcI/tz0/Y/KQ9LPPJPPjKH8nDeLF1Ibe8Z4VzKcML/48uLYRDt9Y+TZiXH0O8u0vYu/bSfSPZDx9IRhPXxrg218C+tdXgDnhTOac8CvBnPArBsbXBswJEW3/NchbvmH4fhjv3rCi+H3/G4G3fMvQlep23iHjLifJdWYu2fh09s2K13dCXu5y3Pw+ymFZVXPy9q8umPcdDdkHP2by+FjI43sDjmvHk8LH+MEAHebGh4/xowE69EsOH+MnA3RYC+gPxwzQYRVAh58N0GEQYFz8YoAOQwA6/GqADsMAOvxmgA4jADr8boAOowA6/GGADmMAOhw3QIdxAB3+NECHCQAd/jJAh3SADicM0GEyQAcr95mvw1SADhEDdJgO0CGbATrMBOgQZ4AOswE6xBugw1yADgkG6DAfoEOiATosBOiQZIAOiwE6JBugw80AHVIM0GEpQIfsBuiwDKBDDgN0WA7QIacBOqwA6JDLAB3uBOiQ2wAdVgJ0SDVAh9UAHfIYoMMagA55DdDhXoAO+QzQYR1Ah/wG6PBnXPgYBQzQ4QFAfzjLAB3WA3QoaIAOGwA6FDJAh40AHQoboMMmgA5FDNBhC0CHogbosA2gQzEDdNgO0KG4ATo8DtChhAE63A+YT5Y0QIenAP2hlAE67ADokGaADjsBOpQ2QIfnADqUMUCHXQAdyhqgw4sAHcoZoMPLAB3KG6DDboAOFQzQYQ9Ah4oG6LAXoEMlA3TYB9ChsgE6vAnQoYoBOrwN0KGqATocAOhQzQAdDgJ0qG6ADu8BdKhhgA6HADrUNECHwwAdahmgw4cAHWrn5mPQwn0/GOe5IXWC5xRx/4f7nJm6DJyQnjNzcvFqmVX99FyQT5jPtpsueC5NPUbfoIc/57Q8DeIk4MHNKt/zg+97Gt7ZuaMApMLccvVzBxdTmlf93P9sSLOCL1wsGqDfCTrJp8zO7izxHpys8vuMYSDnMNqF8eDACINr5NQ/VvBcmlp/tzfXEJoyMBrkDrcfkfYNcvO5n5ubN+idh0X5leMenBow+ktD4cEpzP7eKPb9/eQieZgY4+FnEZoY1BX0rca5w+fBOFie5FFPwOM85gE5xfqn352WgAc3q3w5B+RocM6zMDiNovTArNqpufW3P3H7URxj3+YWX6uI94+0QMWsSIOQBWtm/W3C7LdqMYyvCXPwqDF9Kp/MuGWVY9BBe+LEicN+29OsrDHoH3eu59uTxqa5rdOPlufbruPe1tQnQe5jnc8L1hCLj5KbMBqtKVM8bsejDnS+cIYt+dr2KfNrWz3BIx2b5Q6fx2dMHmcLeDQH8PicyaO+gEcLAI8vmDzOEfBoCeDxJZNHAwGPVgAeXzF5nCvgcQGAx9dMHg0FPC4E8PiGyaORgEdrAI9vmTwaC3i0AfD4jsnjPAGPtgAeR5k8mgh4tAPw+J7J43wBj/YAHj8weTQV8OgA4PEjk0czAY+OAB4/MXk0F/C4CMDjGJNHCwGPTgAePzN5tBTwuBjA4xcmj1YCHpcAePzK5HGBgMelAB6/MXlcKOBxGYDH70werQU8Lgfw+IPJo42AR2cAj+NMHm0FPK4A8PiTyaOdgMeVAB5/MXm0F/C4CsDjBJNHBwGPLgAeVi4ej44CHlcDeESYPC4S8LgGwCMbk0cnAY9rATzimDwuFvC4DsAjnsnjEgGPrgAeCUwelwp4XA/gkcjkcZmARzcAjyQmj8sFPLoDeCQzeXQW8OgB4JHC5HGFgEdPAI/sTB5XCnj0AvDIweRxlYDHDQAeOZk8ugh49AbwyMXkcbWARx8Aj9xMHtcIePQF8Ehl8rhWwONGAI88TB7XCXjcBOCRl8mjq4BHPwCPfEwe1wt49AfwyM/k0U3AYwCARwEmj+4CHgMBPM5i8ugh4DEIwKMgk0dPAY/BAB6FmDx6CXgMAfAozORxg4DHUACPIkwevQU8hgF4FGXy6CPgMRzAoxiTR18BjxEAHsWZPG4U8BgJ4FGCyeMmAY9RAB4lmTz6CXiMBvAoxeTRX8BjDIBHGpPHAAGPsQAepZk8Bgp4jAPwKMPkMUjAYzyAR1kmj8ECHhMAPMoxeQwR8JgI4FGeyWOogEc6gEcFJo9hAh6TADwqMnkMF/CYDOBRicljhIDHFACPykweIwU8pgJ4VGHyGCXgMQ3AoyqTx2gBj+kAHtWYPMYIeMwA8KjO5DFWwGMmgEcNJo9xAh6zADxqMnmMF/CYDeBRi8ljgoDHHACP2kweEwU85gJ41GHySBfwmAfgUZfJY5KAx3wAj3pMHpMFPBYAeJzN5DFFwGMhgEd9Jo+pAh6LADzOYfKYJuCxGMCjAZPHdAGPJQAe5zJ5zBDwuBnAoyGTx0wBj1sAPBoxecwS8FgK4NGYyWO2gMetAB7nMXnMEfBYBuDRhMljroDHbQAe5zN5zBPwWA7g0ZTJY76Ax+0AHs2YPBYIeKwA8GjO5LFQwOMOAI8WTB6LBDzuBPBoyeSxWMDjLgCPVkweSwQ8VgJ4XMDkcbOAxyoAjwuZPG4R8FgN4NGayWOpgMfdAB5tmDxuFfBYA+DRlsljmYDHPQAe7Zg8bhPwuBfAoz2Tx3IBj7UAHh2YPG4X8FgH4NGRyWOFgMd9AB4XMXncIeBxP4BHJyaPOwU8HgDwuJjJ4y4BjwcBPC5h8lgp4LEewONSJo9VAh4PAXhcxuSxWsBjA4DH5Uwedwt4PAzg0ZnJY42Ax0YAjyuYPO4R8HgEwONKJo97BTw2AXhcxeSxVsBjM4BHFyaPdQIeWwA8rmbyuE/AYyuAxzVMHvcLeGwD8LiWyeMBAY9HATyuY/J4UMBjO4BHVyaP9QIejwF4XM/k8ZCAx+MAHt2YPDYIeDwB4NGdyeNhAY8nATx6MHlsFPB4CsCjJ5PHIwIeTwN49GLy2CTgsQPA4wYmj80CHs8AePRm8tgi4LETwKMPk8dWAY9nATz6MnlsE/B4DsDjRiaPRwU8ngfwuInJY7uAxy4Aj35MHo8JeLwA4NGfyeNxAY8XATwGMHk8IeDxEoDHQCaPJwU8XgbwGMTk8ZSAxysAHoOZPJ4W8NgN4DGEyWOHgMerAB5DmTyeEfDYA+AxjMljp4DHawAew5k8nhXw2AvgMYLJ4zkBj9cBPEYyeTwv4LEPwGMUk8cuAY83ADxGM3m8IODxJoDHGCaPFwU83gLwGMvk8ZKAx9sAHuOYPF4W8NgP4DGeyeMVAY8DAB4TmDx2C3i8A+AxkcnjVQGPgwAe6UweewQ83gXwmMTk8ZqAx3sAHpOZPPYKeLwP4DGFyeN1AY9DAB5TmTz2CXh8AOAxjcnjDQGPwwwe9H74uipW2v+nd47T+7rpXdf0nmh6xzK9n5je7UvvxaV3ytL7WOldpvQeUHqHJr1/kt7dSO89pHcG0vv26F119J43ekcavV+M3s1F77Wid0LR+5ToXUT0Hh96Bw69P4bevULvLaF3ftD7MuhdE/SeBnrHAb0fgJ6tT8+lp2e60/PQ6Vni9BxueoY1Pf+Znp1Mzx2mZ/bS827pWbH0nFV6Rik935OejUnPlaRnMtLzDOlZgPQcPXoGHT2/jZ59Rs8No2du0fOq6FlP9JwkesYQPZ+Hnm1Dz4WhZ6rQ80joWR70HAx6hgQ9f4GeXUD3/dM983S/Od2rTfc50z3CdH8t3ZtK93XSPZF0PyHdi0f3sdE9YHT/FN17RPft0D0vdL8I3WtB9ynQNf50fTxdW07XZdM1zXQ9MF1LS9eh0jWcdP0jXTtI193RNWt0vRddK0XXGdE1OnR9C10bQtdV0DUJ9Hs+/RZOvyPTb7D0+yX99ke/m9FvTvR7Df3WQb8T0Dl2Oj9N53bpvCidU6TzcXQui84D0TkUOv9A393pey99Z6TvW/Rdheb5NEem+SXNzWheQ3MCOp7SsYh8nDyQ/IPGHvXbU53f0+ezWBIaqLLn5eaPlSO5g4+VbPZY8S5pFm9hcotwcpRifJg7XO+jfJrkDt4uzVQ0ELTnR1HyyKp+yomhVYT2p5y4en3I0OpjXB+OeP9IC1QM04c/ZmJIPYbblg0YbfmJAX70CaAtPw3Zj863/h7Lzv5Bxv2ngrb/lIHxmQHjGNH2n52Z4zgbp798bsA4/hzQll9E2ZZZ6UzfX5rba3e5rGDiGPs2Z+TzJWD+8QVz/vGlwLe+YPT1rwzwLURf/+rM9K04jm99bYBvfQ1oy29Cnn+cZ/HnH98IxvE3DIxvDRjHiLb/9swcx/Gc/vKdAeP4O0BbHg15HFObNGKO46OCcXyUgfG9AeMY0fbfhzuOI4jzAT8wOFD+cfbaKRersX08KXyMHw3wuLnx4WP8ZIAO/ZLDxzhmgA5rAf3hZwN0WAXQ4RcDdBgEGBe/GqDDEIAOvxmgwzCADr8boMMIgA5/GKDDKIAOxw3QYQxAhz8N0GEcQIe/DNBhAkCHEwbokA7QwUo983WYDNAhYoAOUwE6ZDNAh+kAHeIM0GEmQId4A3SYDdAhwQAd5gJ0SDRAh/kAHZIM0GEhQIdkA3RYDNAhxQAdbgbokN0AHZYCdMhhgA7LADrkNECH5QAdchmgwwqADrkN0OFOgA6pBuiwEqBDHgN0WA3QIa8BOqwB6JDPAB3uBeiQ3wAd1gF0KGCADn/GhY9xlgE6PADoDwUN0GE9QIdCBuiwAaBDYQN02AjQoYgBOmwC6FDUAB22AHQoZoAO2wA6FDdAh+0AHUoYoMPjAB1KGqDD/YD5ZCkDdHgK0B/SDNBhB0CH0gbosBOgQxkDdHgOoENZA3TYBdChnAE6vAjQobwBOrwM0KGCATrsBuhQ0QAd9gB0qGSADnsBOlQ2QId9AB2qGKDDmwAdqhqgw9sAHaoZoMMBgA7VDdDhIECHGgbo8B5Ah5oG6HAIoEMtA3Q4DNChtgE6fAjQoY4BOnwM0KGuATp8CtChngE6fA7Q4WwDdPgSoEN9A3T4GqDDOQbo8C1AhwYG6HAUoMO5BujwA0CHhgbo8BNAh0YG6PAzQIfGBujwK0CH8wzQ4XeADk0M0OE4QIfzDdDhL4AOTQ3QwUoJH6OZATpkA+jQ3AAd4gE6tDBAh0SADi0N0CEZoEMrA3TIDtDhAgN0yAnQ4UIDdMgN0KG1ATrkAejQxgAd8gF0aGuADgUAOrQzQIeCAB3aG6BDYYAOHQzQoShAh44G6FAcoMNFBuhQEqBDJwN0SAPocLEBOpQB6HCJATqUA+hwqQE6VADocJkBOlQC6HC5ATpUAejQ2QAdqgF0uMIAHWoAdLjSAB1qAXS4ygAd6gB06GKADvUAOlxtgA71ATpcY4AODQA6XGuADg0BOlxngA6NATp0NUCHJgAdrjdAh6YAHboZoENzgA7dDdChJUCHHgbocAFAh54G6NAaoEMvA3RoC9DhBgN0aA/QobcBOnQE6NDHAB06AXToa4AOlwB0uNEAHS4D6HCTATp0BujQzwAdrgTo0N8AHboAdBhggA7XAHQYaIAO1wF0GGSADtcDdBhsgA7dAToMMUCHngAdhhqgww0AHYYZoEMfgA7DDdDhRoAOIwzQoR9Ah5EG6DAAoMMoA3QYBNBhtAE6DAHoMMYAHYYBdBhrgA4jADqMM0CHUQAdxhugwxiADhMM0GEcQIeJBugwAaBDugE6pAN0mGSADpMBOkw2QIepAB2mGKDDdIAOUw3QYSZAh2kG6DAboMN0A3SYC9BhhgE6zAfoMNMAHRYCdJhlgA6LATrMNkCHmwE6zDFAh6UAHeYaoMMygA7zDNBhOUCH+QbosAKgwwIDdLgToMNCA3RYCdBhkQE6rAbosDiVh5GNWX+D3JZ1Xu7g+ze09/fyqNWz45AjtVdWfrRTq62TJl15baW6n7cevX3QohZHji05qj5fwuTB1amp+qe+yiuOmVdTxr71cwff9+bgfCOn/rGCl2lmY1i8cla8iuwqEvwqZeZwvsXv/xKcJhYG5zwr/LF2LnOsNcr9z4Y0i79wNfgyeH6n+NNyi90Xl6b+g8n/IsIwCao7zl7fYpejzp3Lk5ikkRozG6kxs5FOnDjxq9/2NCtrPPrHze9WW/hlqdbpotxqt4R72zKXwNzGcYThOv+5BcJ1/obCvBoy83KW+OA4ixVO5NbU4DktYxw1GLpGgnJ1OiZXSxq4twqORrRkY2LNUCN8bq7g3Gn/H3LxjcCNkVVOt6WGz3kek/OPAs7zGJyXAzjPZ3L+ScB5PoPz7QDOC5icjwk4L2BwXgHgvJDJ+WcB54UMzncAOC9icv5FwHkRg/OdAM6LmZx/FXBezOB8F4DzEibn3wSclzA4rwRwvpnJ+XcB55sZnFcBON/C5PyHgPMtDM6rAZyXMjkfF3BeyuB8N4DzrUzOfwo438rgvAbAeRmT818CzssYnO8BcL6NyfmEgPNtDM73AjgvZ3K2cvM5L2dwXgvgfDuTc0TA+XYG53UAziuYnLMJOK9gcL4PwPkOJuc4Aec7GJzvB3C+k8k5XsD5TgbnBwCc72JyThBwvovB+UEA55VMzokCzisZnNcDOK9ick4ScF7F4PwQgPNqJudkAefVDM4bAJzvZnJOEXC+m8H5YQDnNUzO2QWc1zA4bwRwvofJOYeA8z0Mzo8AON/L5JxTwPleBudNAM5rmZxzCTivZXDeDOC8jsk5t4DzOgbnLQDO9zE5pwo438fgvBXA+X4m5zwCzvczOG8DcH6AyTmvgPMDDM6PAjg/yOScT8D5QQbn7QDO65mc8ws4r2dwfgzA+SEm5wICzg8xOD8O4LyByfksAecNDM5PADg/zORcUMD5YQbnJwGcNzI5FxJw3sjg/BSA8yNMzoUFnB9hcH4awHkTk3MRAedNDM47AJw3MzkXFXDezOD8DIDzFibnYgLOWxicdwI4b2VyLi7gvJXB+VkA521MziUEnLcxOD8H4Pwok3NJAedHGZyfB3DezuRcSsB5O4PzLgDnx5ic0wScH2NwfgHA+XEm59ICzo8zOL8I4PwEk3MZAecnGJxfAnB+ksm5rIDzkwzOLwM4P8XkXE7A+SkG51cAnJ9mci4v4Pw0g/NuAOcdTM4VBJx3MDi/CuD8DJNzRQHnZxic9wA472RyriTgvJPB+TUA52eZnCsLOD/L4LwXwPk5JucqAs7PMTi/DuD8PJNzVQHn5xmc9wE472JyribgvIvB+Q0A5xeYnKsLOL/A4PwmgPOLTM41BJxfZHB+C8D5JSbnmgLOLzE4vw3g/DKTcy0B55cZnPcDOL/C5FxbwPkVBucDDM50X349FU3t/9N9xHRfLd1nSvdd0n2IdF8e3adG923RfUx0Xw/d50L3fdB9EHRfAF0nT9eN03XUdF0xXWdL153SdZh0XSJdp0fXrdF1XHRdE13nQ9e90HUgdF0EXSdAv5vT78j0uyr9zki/u9HvUPS7DP1OQeft6Tw2ndel85x03o/Og9F5ITpPQucN6Hs0fa+k71n0vYPm4TQvpXkazVvoOE7HNfJ58j3yARoX1E8OpPrr426nrLR/J7j2yYz755MbhvwMA7p/nnL3lsuK78HgfE/2+Xo+29Ms3sLlxslRivFulD6TVf2Uj/vhJFm1C+1LOXFx3mVgvIdr+4j3j7RAxTBt/54Agxaut7wfe2+JnPrH4nnL+wJvOWSAtxwC9K8PQvYWeooW11s+EHjLBwyMwwZ4C6LtD4O85UjsveVkd5J4yxGBt3xogLd8COhfH4XsLfTkPK63fCTwlo8YGB8b4C2Itv8Y5C2fxN5bTqYs8ZZPBN7yqQHe8imgf30WsrfQkyK53vKZwFs+Y2B8boC3INr+c5C3fBF7bzn5OEaJt3wh8JYvDfCWLwH966uQvYWexMv1lq8E3vIVA+NrA7wF0fZfg7zlm9h7y8mHZEu85RuBt3xrgLd8C+hf34XsLdQ+S5ne8p3AW75jYBw1wFsQbX8U5C3fx95bEukfibd8L/CWHwzwlh8A/evHkL1F+oR/bnv+xOQh6Wc/CfrZy1H+ThrEi6kNveM9K5gfGV58LLi2EQ7fWPk2YlwdA/n2z7H37ST6RzKefhaMp18M8O1fAP3rV8Cc8BbmnPBXwZzwVwbGbwbMCRFt/xvIW35n+H4Y796wovh9/3eBt/zB0JXqdt4h4y4nyfWWVNn4dPbNitdxIS93OW5+R3NZVoPcvP0bCuZ9f4bsg98zeXwv5PGXAce140nhY5wwQIe58eFjWHnOfB36JYePETFAh7WA/pDNAB1WAXSIM0CHQYBxEW+ADkMAOiQYoMMwgA6JBugwAqBDkgE6jALokGyADmMAOqQYoMM4gA7ZDdBhAkCHHAbokA7QIacBOkwG6JDLAB2mAnTIbYAO0wE6pBqgw0yADnkM0GE2QIe8BugwF6BDPgN0mA/QIb8BOiwE6FDAAB0WA3Q4ywAdbgboUNAAHZYCdChkgA7LADoUNkCH5QAdihigwwqADkUN0OFOgA7FDNBhJUCH4gbosBqgQwkDdFgD0KGkATrcC9ChlAE6rAPokGaADn/GhY9R2gAdHgD0hzIG6LAeoENZA3TYANChnAE6bAToUN4AHTYBdKhggA5bADpUNECHbQAdKhmgw3aADpUN0OFxgA5VDNDhfsB8sqoBOjwF6A/VDNBhB0CH6gbosBOgQw0DdHgOoENNA3TYBdChlgE6vAjQobYBOrwM0KGOATrsBuhQ1wAd9gB0qGeADnsBOpxtgA77ADrUN0CHNwE6nGOADm8DdGhggA4HADqca4AOBwE6NDRAh/cAOjQyQIdDAB0aG6DDYYAO5xmgw4cAHZrk4WPQwn0/GOe5IecHzyni/g/3OTNNGTghPWfm5OLVMqv66bkgPzCfbbdE8FyaZsK+wcVpnjVONnfdOS37YdP2/+n6GFq3sP9PzwuJ2PU6+7VQf7dU0UrFBfb2HJanA7nqdOefxRJpkUc+TtlgrSweGLd+GqjHBZ3ljQKyzhLvwckqv58YRnJhnuD7Mh4gGGFwjZz6x+K1MeXObYPWjI5IdTsPXPIrxzX4Vox92wgNPsy+0jb2feXkInkgF+MBYhE6uDYV9K12ecLnwTjgnOTRTMCjPWjC4943Ky4XWJicIlbwnC60MDlls4Ln1NrC5BRnBc+pjaUnp6xw2lrB8/8lTpYT9zjVzorOE4IcU/5keDjt2yYPn0d7K3wefzF4/CXk0cHC9MWOVnAuf8RFp21WudyuJgUr44PnQ/uui+fjXGQFx7g9HtMOnRg5HQd5wsUWBucSC4NzqYXBuczC4FxuYXA6WxicKywMzpUWBucqC4PTxcLgXG1hcK6xMDjXWhic6ywMTlcLg3O9hcHpZmFwulsYnB4WBqenhcHpZWFwbrAwOL0tDE4fC4PT18Lg3GhhcG6yMDj9LAxOfwuDM8DC4Ay0gn+HiQZnkIXhM9jC4AyxMDhDLQzOMAuDM9zC4IywMDgjLQzOKAuDM9rC4IyxMDhjLQzOOAuDM97C4EywMDgTLQxOuoXBmWRhcCZbGJwpFgZnqoXBmWZhcKZbGJwZFgZnpoXBmWVhcGZbGJw5FgZnroXBmWdhcOZbGJwFFgZnoYXBWWRhcBZbGJwlFgbnZguDc4uFwVlqYXButTA4yywMzm0WBme5hcG53cLgrLAwOHdYGJw7LQzOXRYGZ6WFwVllYXBWWxicuy0MzhoLg3OPhcG518LgrLUwOOssDM59FgbnfguD84CFwXnQwuCstzA4D1kYnA0WBudhC4Oz0cLgPGJhcDZZGJzNFgZni4XB2WphcLZZGJxHLQzOdguD85iFwXncwuA8YWFwnrQwOE9ZGJynLQzODguD84yFwdlpYXCetTA4z1kYnOctDM4uC4PzgoXBedHC4LxkYXBetjA4r1gYnN0WBudVC4Ozx8LgvGZhcPZaGJzXLQzOPguD84aFwXnTwuC8ZWFw3rYwOPstDM4BC4PzjoXBOWhhcN61MDjvWRic9y0MziELg/OBhcE5bGFwjlgYnA8tDM5HFgbnYwuD84mFwfnUwuB8ZmFwPrcwOF9YGJwvLQzOVxYG52sLg/ONhcH51sLgfGdhcI5aGJzvLQzODxYG50cLg/OThcE5ZmFwfrYwOL9YGJxfLQzObxYG53cLg/OHhcE5bmFw/rQwOH9ZGJwTFgaHCgTc11OQhxMB4WRj4njrD/LMrBaCZ2DFgfjHA/i3FfBPAPFPBOEkgXCSQTgpIJzsIJwcIJycIJxcIJzcIJxUEE4eEE5eEE4+EE5+EE4BEM5ZIJyCIJxCIJzCIJwiIJyiIJxiIJziIJwSIJySIJxSIJw0EE5pEE4ZEE5ZEE45EE55EE4FEE5FEE4lEE5lEE4VEE5VEE41EE51EE4NEE5NEE4tEE5tEE4dIU40743JKqe6zJwk7yC5jfGcftr/RCofp14kOMZtqeFzXs7kbOXh45zN4LwcwPl2JueIgHN9BufbAZxXMDlnE3A+h8F5BYDzHUzOcQLODRic7wBwvpPJOV7A+VwG5zsBnO9ick4QcG7I4HwXgPNKJudEAedGDM4rAZxXMTknCTg3ZnBeBeC8msk5WcD5PAbn1QDOdzM5pwg4N2FwvhvAeQ2Tc3YB5/MZnNcAON/D5JxDwLkpg/M9AM73MjnnFHBuxuB8L4DzWibnXALOzRmc1wI4r2Nyzi3g3ILBeR2A831MzqkCzi0ZnO8DcL6fyTmPgHMrBuf7AZwfYHLOK+B8AYPzAwDODzI55xNwvpDB+UEA5/VMzvkFnFszOK8HcH6IybmAgHMbBueHAJw3MDmfJeDclsF5A4Dzw0zOBQWc2zE4PwzgvJHJuZCAc3sG540Azo8wORcWcO7A4PwIgPMmJuciAs4dGZw3AThvZnIuKuB8EYPzZgDnLUzOxQScOzE4bwFw3srkXFzA+WIG560AztuYnEsIOF/C4LwNwPlRJueSAs6XMjg/CuC8ncm5lIDzZQzO2wGcH2NyThNwvpzB+TEA58eZnEsLOHdmcH4cwPkJJucyAs5XMDg/AeD8JJNzWQHnKxmcnwRwforJuZyA81UMzk8BOD/N5FxewLkLg/PTAM47mJwrCDhfzeC8A8D5GSbnigLO1zA4PwPgvJPJuZKA87UMzjsBnJ9lcq4s4Hwdg/OzAM7PMTlXEXDuyuD8HIDz80zOVQWcr2dwfh7AeReTczUB524MzrsAnF9gcq4u4NydwfkFAOcXmZxrCDj3YHB+EcD5JSbnmgLOPRmcXwJwfpnJuZaAcy8G55cBnF9hcq4t4HwDg/MrAM67mZzrCDj3ZnDeDeD8KpNzXQHnPgzOrwI472Fyrifg3JfBeQ+A82tMzmcLON/I4PwagPNeJuf6As43MTjvBXB+ncn5HAHnfgzOrwM472NybiDg3J/BeR+A8xtMzucKOA9gcH4DwPlNJueGAs4DGZzfBHB+i8m5kYDzIAbntwCc32ZybizgPJjB+W0A5/1MzucJOA9hcN4P4HyAybmJgPNQBucDUXLOqn66F7tdnuD7t8nz9/4RD05WnIdFwuXRILdl/Zg7+P4N1b7NcvN5DAfw+InJo7mAxwgAj2NMHi0EPEYCePzM5NFSwGMUgMcvTB6tBDxGA3j8yuRxgYDHGACP35g8LhTwGAvg8TuTR2sBj3EAHn8webQR8BgP4HGcyaOtgMcEAI8/mTzaCXhMBPD4i8mjvYBHOoDHCSaPDgIekwA8rFQej44CHpMBPCJMHhcJeEwB8MjG5NFJwGMqgEcck8fFAh7TADzimTwuEfCYDuCRwORxqYDHDACPRCaPywQ8ZgJ4JDF5XC7gMQvAI5nJo7OAx2wAjxQmjysEPOYAeGRn8rhSwGMugEcOJo+rBDzmAXjkZPLoIuAxH8AjF5PH1QIeCwA8cjN5XCPgsRDAI5XJ41oBj0UAHnmYPK4T8FgM4JGXyaOrgMcSAI98TB7XC3jcDOCRn8mjm4DHLQAeBZg8ugt4LAXwOIvJo4eAx60AHgWZPHoKeCwD8CjE5NFLwOM2AI/CTB43CHgsB/AowuTRW8DjdgCPokwefQQ8VgB4FGPy6CvgcQeAR3EmjxsFPO4E8CjB5HGTgMddAB4lmTz6CXisBPAoxeTRX8BjFYBHGpPHAAGP1QAepZk8Bgp43A3gUYbJY5CAxxoAj7JMHoMFPO4B8CjH5DFEwONeAI/yTB5DBTzWAnhUYPIYJuCxDsCjIpPHcAGP+wA8KjF5jBDwuB/AozKTx0gBjwcAPKoweYwS8HgQwKMqk8doAY/1AB7VmDzGCHg8BOBRncljrIDHBgCPGkwe4wQ8HgbwqMnkMV7AYyOARy0mjwkCHo8AeNRm8pgo4LEJwKMOk0e6gMdmAI+6TB6TBDy2AHjUY/KYLOCxFcDjbCaPKQIe2wA86jN5TBXweBTA4xwmj2kCHtsBPBoweUwX8HgMwONcJo8ZAh6PA3g0ZPKYKeDxBIBHIyaPWQIeTwJ4NGbymC3g8RSAx3lMHnMEPJ4G8GjC5DFXwGMHgMf5TB7zBDyeAfBoyuQxX8BjJ4BHMyaPBQIezwJ4NGfyWCjg8RyARwsmj0UCHs8DeLRk8lgs4LELwKMVk8cSAY8XADwuYPK4WcDjRQCPC5k8bhHweAnAozWTx1IBj5cBPNowedwq4PEKgEdbJo9lAh67ATzaMXncJuDxKoBHeyaP5QIeewA8OjB53C7g8RqAR0cmjxUCHnsBPC5i8rhDwON1AI9OTB53CnjsA/C4mMnjLgGPNwA8LmHyWCng8SaAx6VMHqsEPN4C8LiMyWO1gMfbAB6XM3ncLeCxH8CjM5PHGgGPAwAeVzB53CPg8Q6Ax5VMHvcKeBwE8LiKyWOtgMe7AB5dmDzWCXi8B+BxNZPHfQIe7wN4XMPkcb+AxyEAj2uZPB4Q8PgAwOM6Jo8HBTwOA3h0ZfJYL+BxBMDjeiaPhwQ8PgTw6MbksUHA4yMAj+5MHg8LeHwM4NGDyWOjgMcnAB49mTweEfD4FMCjF5PHJgGPzwA8bmDy2Czg8TmAR28mjy0CHl8AePRh8tgq4PElgEdfJo9tAh5fAXjcyOTxqIDH1wAeNzF5bBfw+AbAox+Tx2MCHt8CePRn8nhcwOM7AI8BTB5PCHgcBfAYyOTxpIDH9wAeg5g8nhLw+AHAYzCTx9MCHj8CeAxh8tgh4PETgMdQJo9nBDyOAXgMY/LYKeDxM4DHcCaPZwU8fgHwGMHk8ZyAx68AHiOZPJ4X8PgNwGMUk8cuAY/fATxGM3m8IODxB4DHGCaPFwU8jgN4jGXyeEnA408Aj3FMHi8LePwF4DGeyeMVAY8TAB4TmDx2C3hQYgH3FfOYyOTxqoBHBMAjncljj4BHNgCPSUwerwl4xAF4TGby2CvgEQ/gMYXJ43UBjwQAj6lMHvsEPBIBPKYxebwh4JEE4DGdyeNNAY9kAI8ZTB5vCXikAHjMZPJ4W8AjO4DHLCaP/QIeOQA8ZjN5HBDwyAngMYfJ4x0Bj1wAHnOZPA4KeOQG8JjH5PGugEcqgMd8Jo/3BDzyAHgsYPJ4X8AjL4DHQiaPQwIe+QA8FjF5fCDgkR/AYzGTx2EBjwIh86D3uLfPE3x/eo877c/lcRaTx6mCTJyCIJxCIJzCIJwiIJyiIJxiIJziIJwSIJySIJxSIJw0EE5pEE4ZEE5ZEE45EE55EE4FEE5FEE4lEE5lEE4VEE5VEE41EE51EE4NEE5NEE4tEE5tEE4dEE5dEE49EM7ZIJz6IJxzQDgNQDjngnAagnAagXAag3DOA+E0AeGcD8JpCsJpBsJpDsJpAcJpCcJpBcK5AIRzIQinNQinDQinLQinHQinPQinAwinIwjnIhBOJxDOxSCcS0A4l4JwLgPhXA7C6QzCuQKEcyUI5yoQThcQztUgnGtAONeCcK4D4XQF4VwPwukGwukOwukBwukJwukFwrkBhNMbhNMHhNMXhHMjCOcmEE4/EE5/EM4AEM5AEM4gEM5gEM4QEM5QEM4wEM5wEM4IEM5IEM4oEM5oEM4YEM5YEM44EM54EM4EEM5EEE46CGcSCGcyCGcKCGcqCGcaCGc6CGcGCGcmCGcWCGc2CGcOCGcuCGceCGc+CGcBCGchCGcRCGcxCGcJCOdmEM4tIJylIJxbQTjLQDi3gXCWg3BuB+GsAOHcAcK5E4RzFwhnJQhnFQhnNQjnbhDOGhDOPSCce0E4a0E460A494Fw7gfhPADCeRCEsx6E8xAIZwMI52EQzkYQziMgnE0gnM0gnC0gnK0gnG0gnEdBONtBOI+BcB4H4TwBwnkShPMUCOdpEM4OEM4zIJydIJxnQTjPgXCeB+HsAuG8AMJ5EYTzEgjnZRDOKyCc3SCcV0E4e0A4r4Fw9oJwXgfh7APhvAHCeROE8xYI520Qzn4QzgEQzjsgnIMgnHdBOO+BcN4H4RwC4XwAwjkMwjkCwvkQhPMRCOdjEM4nIJxPQTifgXA+B+F8AcL5EoTzFQjnaxDONyCcb0E434FwjoJwvgfh/ADC+RGE8xMI5xgI52cQzi8gnF9BOL+BcH4H4fwBwjkOwvkThPMXCOcECMeKw+BEQDjZQDhxIJx4EE4CCCcRhJMEwkkG4aSAcLKDcHKAcHKCcHKBcHKDcFJBOHlAOHlBOPlAOPlBOAVAOGeBcAqCcAqBcAqDcIqAcIqCcIqBcIqDcEqAcEqCcEqBcNJAOKVBOGVAOGVBOOVAOOVBOBVAOBVBOJVAOJVBOFVAOFVBONVAONVBODVAODVBOLVAOLVBOHVAOHVBOPVAOGeDcOqDcM4B4TQA4ZwLwmkIwmkEwmkMwjkPhNMEhHM+CKcpCKcZCKc5CKcFCKclCKcVCOcCEM6FIJzWIJw2IJy2IJx2IJz2IJwOIJyOIJyLQDidQDgXg3AuAeFcCsK5DIRzOQinMwjnChDOlSCcq0A4XUA4V4NwrgHhXAvCuQ6E0xWEcz0IpxsIpzsIpwcIpycIpxcI5wYQTm8QTh8QTl8Qzo0gnJtAOP1AOP1BOANAOANBOINAOINBOENAOENBOMNAOMNBOCNAOCNBOKNAOKNBOGNAOGNBOONAOONBOBNAOBNBOOkgnEkgnMkgnCkgnKkgnGkgnOkgnBlCnGwenFo9Ow45Untl5Uc7tdo6adKV11aq+3nr0dsHLWpx5NiSo+rzclbwnGYyc+Lm0kpF6zzB92+j9m2bh6/tLJC28VbwnGaDckqwguc0B5RTohU8p7mgnJKs4DnNA+WUbAXPaT4opxQreE4LQDllt4LntBCUUw4reE6LQDnltILntBiUUy4reE5LQDnltoLndDMop1QreE63gHLKYwXPaSkop7xW8JxuBeWUzwqe0zJQTvmt4DndBsqpgBU8p+WgnM6ygud0OyinglbwnFaAcipkBc/pDlBOha3gOd0JyqmIFTynu0A5FbWC57QSlFMxK3hOq0A5FbeC57QalFMJK3hOd4NyKmkFz2kNKKdSVvCc7gHllGYFz+leUE6lreA5rQXlVMYKntM6UE5lreA53cfIKc7Oha4joeUCFReqaK2ijYq2KtqpaK+ig4qOKi5S0UnFxSouUXGpistUXK6is4orVFyp4ioVXVRcreIaFdequE5FVxXXq+imoruKHoSvopeKG1T0VtFHRV8VN6q4SUU/Ff1VDFAxUMUgFYNVDFExVMUwFcNVjFAxUsUoFaNVjFExVsU4FeNVTFAxUUW6ikkqJquYomKqimkqpquYoWKmilkqZquYo2Kuinkq5qtYoGKhikUqFqtYouJmFbeoWKriVhXLVNymYrmK21WsUHGHijtV3KVipYpVKlaruFvFGhX3qLhXxVoV61Tcp+J+FQ+oeFDFehUPqdig4mEVG1U8omKTis0qtqjYqmKbikdVbFfxmIrHVTyh4kkVT6l4WsUOFc+o2KniWRXPqXhexS4VL6h4UcVLKl5W8YqK3SpeVbFHxWsq9qp4XcU+FW+oeFPFWyreVrFfxQEV76g4qOJdFe+peF/FIRUfqDis4oiKD1V8pOJjFZ+o+FTFZyo+V/GFii9VfKXiaxXfqPhWxXcqaEx8r+IHFT+q+EnFMRU/q/hFxa8qflPxu4o/VBxX8aeKv1ScUEEndSMqsqmIUxGvIkFFoookFckqUlRkV5FDRU4VuVTkVpGqIo+KvCryqcivooCKs1QUVFFIRWEVRVQUVVFMRXEVJVSUVFFKRZqK0irKqCiropyK8ioqqKioopKKyiqqqKiqopqK6ipqqKipopaK2irqqKirop6Ks1XUV3GOigYqzlXRUEUjFY1VnKeiiYrzVTRV0UxFcxUtVLRU0UrFBSouVNFaRRsVbVW0U9FeRQcVHVVcpKKTiotVXKLiUhWXqbhcRWcVV6i4UsVVKrqouFrFNSquVXGdiq4qrlfRTUV3FT1U9FTRS8UNKnqr6KOir4obVdykop+K/ioGqBioYpCKwSqGqBiqYpiK4SpGqBipYpSK0SrGqBirYpyK8SomqJioIl3FJBWTVUxRMVXFNBXTVcxQMVPFLBWzVcxRMVfFPBXzVSxQsVDFIhWLVSxRcbOKW1QsVXGrimUqblOxXMXtKlaouEPFnSruUrFSxSoVq1XcrWKNintU3KtirYp1Ku5Tcb+KB1Q8qGK9iodUbFDxsIqNKh5RsUnFZhVbVGxVsU3Foyq2q3hMxeMqnlDxpIqnVDytYoeKZ1TsVPGsiudUPK9il4oXVLyo4iUVL6t4RcVuFa+q2KPiNRV7VbyuYp+KN1S8qeItFW+r2K/igIp3VBxU8a6K91S8r+KQig9UHFZxRMWHKj5S8bGKT1R8quIzFZ+r+ELFlyq+UvG1im9UfKviOxVHVXyv4gcVP6r4ScUxFT+r+EXFryp+U/G7ij9UHFfxp4q/VJxQQQe9iIpsKuJUxKtIUJGoIklFsooUFdlV5FCRU0UuFblVpKrIoyKvinwq8qsooOIsFQVVFFJRWEURFUVVFFNRXEUJFSVVlKJnV6ooraKMirIqyqkor6KCiooqKqmorKKKiqoqqqmorqKGipoqaqmoraKOiroq6qk4W0V9FeeoaKDiXBUNVTRS0VjFeSqaqDhfRVMVzVQ0V9FCRUsVrVRcoOJCFa1VtFHRVkU7Fe1VdFDRUcVFKjqpuFjFJSouVXGZistVdFZxhYorVVyloouKq1Vco+JaFdep6KriehXdVHRX0UNFTxW9VNygoreKPir6qrhRxU0q+qnor2KAioEqBqkYrGKIiqEqhqkYrmKEipEqRqkYrWKMirEqxqkYr2KCiokq0lVMUjFZxRQVU1VMUzFdxQwVM1XMUjFbxRwVc1XMUzFfxQIVC1UsUrFYxRIVN6u4RcVSFfRue3rvPL0Tnt7XTu9Sp/ec0zvI6f3g9O5ueq82vfOa3kdN74qm9zjTO5bp/cf0bmJ6bzC905fet0vvwqX31NI7ZOn9rvTuVXovKr2zlN4nSu/6pPdw0jsy6f2V9G5Jeu8jvZOR3pdI7zKk9wzSOwDp/Xz07jx6rx29c47eB0fvaqP3qNE7zuj9Y/RuMHpvF71Ti953Re+iovdE0Tuc6P1K9O4jei8RvTOI3udD79qh9+DQO2ro/TH0bhd67wq9E4XeV0LvEqH3fNA7OOj9GPTuCnqvBL3zgd7HQO9KoPcY0DsG6Pn/9Gx+em4+PdOenjdPz4Kn57TTM9Tp+eb07HF6Ljg9s5uep03PuqbnUNMzoun5zfRsZXruMT2TmJ4XTM/ypefs0jNw6fm09OxYmvjSM1fpeaj0rFJ6jig945Oev0nPxqTnVtIzJel5j/QsRnpOIj3DkJ4vSM/+o+fy0TPz6Hl29Kw5eg4cPaONnp9Gzzaj547RM8HoeV30LC16zhU9g4qeD3Xy2U0q6JlH9DwielYQPceHnrFDz7+hZ9PQc2PomS70vBV6Fgo9p4SeIULP96Bnb9BzMeiZFfQ8CXrWAz2HgZ6RQM8voGcL0H3/dE8+3S9P97LTfeZ0Dzjdn033TtN9zXTPMd0PTPfq0n20dI8r3X9K94bSfZt0TyXd70j3ItJ9gnQPH91fR/e+0X1pdM8Y3c9F91rRfVB0jxLdP0T39tB9N3RPDN2vQveS0H0edA8G3R9B9y7QfQV0zT9dj0/XytP3D7rGnK7/pmuz6bppuqaZrjema4HpOl26hpaub6VrT+m6ULpmk66npGsd6TpEukaQrt+ja+vouje6Jo2uF6Nrueg6K7oGiq5PomuH6LoeuuaGroeha1XoOhK6xoOuv6BrI+haBPodn343p9+p6Xdh+h2Wfvek3xnpdz36HY1+t6Lfieh3GfodhH53oPP8dF6dzmPTeWM6T0vnRek8JJ33o/NsdF6LziPReRs6T0LnJeg8AH3vpu+59L2SvsdRV6XvZM5iH7pOfm+j3//p93b6fZt+T6bfb+n3Uvp9kn4PpN/f6Pcu+n2Jfs+h30/o9wr6fYDOx9P5bzrfTOd36Xwqnb+k84V0fo7Oh9H5JzrfQ+dXnPMZpa2/vx+Xtf6+tqO8igoqKqqopKKyiioqqqqopqK6ihoqaqqopaK2ijoq6qqop+JsFfVVnKOigYpzVTRU0UhFYxXnqWii4nwVTVU0U9FcRQsVLa2/r+nwLpf5/L2w965Xfvoqaa97v86ZfPa8vb75og7liv3Wbor7s4OZlKM+RkupxFZvX1L12Xfdn1VMyLhcZfuz9tdvSLutWHyC+7OqmZSrnkm5mpmUq5PJZ/UyqbN+JuUaZFKuYSblzsvks/MzqbNZJuVaZFKuVSblWmfyWdtM6myfSbmOmZTrlEm5SzP57PJM6rwik3JXZVLu6kzKXZfJZ9dnUmf3TMr1zKTcDZmU65vJZzdlUmf/TMoNzKTc4EzKDcvksxGZ1Dkqk3JjMik3LpNym+3PuuS6Pec9Bb5e5v7ssUw+25HJZ7sy+Wx3Jp/ty+SzA5l8diiTz77PhPuv9mffzs8+9dBXBxe4PzueSbmciRl/Vtj+LL3ClbkaVjt7k/uzIUkZ441NyrjcxqSM8TZl8tnJg3sGn+VIzhjvuUzK9U7JmMOglIzrPJSScZ2HM/msevaMP2uQPWO87zMpd3OOjDnckSPjOnPkzLjOXJl81iWTz3rlzBivZK6Myz2TK2MOL+fKuM4GuTOus2Emn03P4LNUe13JXncbOrTXkGFdewzsP6jbsL7d+/XqOnBItx5qNaLXkKF9Bw7oOnJIt0GDeg0paO9vd7VTv23QXJWmQ2lWoCWS7CrHL5/eMtlbIau8dbJ8xJLi/83fmZ9Lyic6ibjKu3Nx6iWbyOH6O5cHX5h/y2jzz5dJzk7btHDtn2YFWuJo+BPPPPYG4l7O/nv4sL79+g4b3exkV21xqqdedLKjdv67n3orjHj+3yKD7dldece79gmuyaiWTp3214KT39fifPaM96ydfc6y1ykufGcd5Prvg88fe3tz2zr983rK0+K0TXYXTs++Q3sMVOO764BeI7v27zV0aLfevYYWsNWO8QBfHOUAXxxlB48ku8oIyp8a4Itc5b250JLTOn0gucsk2Z87f19t/x3l4F+MHPzOfmlWoOVUv2kpK5/NKd9KVv5U/he4yjO0SXPKX+jeaAVa4pyyrf3K/jR0/72vzNv03Lpha+9ZmvdgrttyVMs+cdq074p9W3z50Wl3O2XbuPJm8E50yrf1w26yLa5Ln42/D8xx4ZQNIw++03F4ruLddpaaeU+X5xeV+qLrdKdsO7+yn8+9fWLqhsUr06q+eizxwgVfd/2xTUKDg6+OK/Ls5ONfHF3ilG3vV3Zfl+Pvb05dMmbUvO1jG1TK3+3BJfu///KFVx5K/fHI+sH7z3bKdnBxlnhURz/sDMo4fzhlL3J9wLhJ51T5TrLyp3K/WFb+1Di5xFWeoV0ep/ylro1pzh+T1qx7v9m8V2t9dDz77A7dpo6qO+eNK74ZU3ht+U9uXF/8wbxO2cv8yn44rMWiYYX61/8m+bV5tVcVK/HBT2s3f/bz6F4Nvv7s862lf3TKXu5XNovFKeucDGRyPjU+r/DBLlyn4rmDlu0t8F6lMu823fFgjZuL/FSu8XuPtl519PeXfnVhXynDPtVeV8nKxzvlu7jKM/zhFPerZfhNnfLXyMrndspf69qYZgVaEpyy14mwI6farqs/dmRKmaG3psyLdNg5ufrmnNl3ftHsruYtXn1l6uxSqQ/e5ZS93qdslcYpR++ZPWGadXjtV/N/rvJE0+p5SzbLW+PN298uNmDI1UWOOmW7ncqEpVlxp3x3V3lP7pkuTvkeMvxT5Xu6yjPwT3lcL9fGNCvQcqrsDfyyp8Zab6cyi8X7VH/rIyt/6ljcV1Y+ySl/o6x8slP+Jll55xzVyQv5BOVzOuX7y8rncsoPkJUv5ZQf6CrP8MpTc8BBsvLVnfKDZeVrOeWHyMrXdsoPlZVv5pQfJivfyik/XFb+Aqf8CFn5jk75kbLyXZ3yo2TluznlR8vKd3fKj5GV7+GUHysr39MpP05WvpdTfrys/A1O+Qmy8r2d8hNl5fs45dNl5fs65SfJyt/klJ8sK9/PKT9FVr6/U36qrPwAp/w0WfmBTvnpsvKDnPIzZOWHOOVnysoPdcrPkpUf5pSfLSs/3Ck/R1Z+hFN+rqz8KKf8PFn50U75+bLyY53yC2TlxzvlF7o2pllBlojlnAD/3P6lxe9cHSOXTs75xbjTUE6vW3bC++Q17qfVZ1mnny+1PPWneHJh4kUinvocPC8/RyuHe4JPLqk+n3k1TvDBSfDBSfX5bJzGumZorGu8xrqmaaxLJ8cpGutK11jXVI11TdBY10CNdenUXucYmnmG1jVKY106+4RO7XX2r7Ea60rXWJfOPjFGY13TNNY1R2NdZ+rx0ZlzOnMH91wjksHawfFuc3BSPHVJ5z1+vOJ98DLbPy6T/RMD1k8XZTgXENkXZbTs1X147/YDe1ueJd7z/zYZpFjcs1+PTFLz1hvxhHd7cc+2OJ993QvRc65zsuld0GtYjz6Xdevdu1dPRXKot4S3ptYZbPdOSN37OJPxRE+maVagJVuQTumuP8WTi7RT+nUav8FGquaz/7ZVbT+wW88W3QYNHd6vVzZ31dbpmXtVcdfq3ubXphFXZlYm+7X2/L+DTznLp2763Gm5ZM/2NCvQkuL0ihSfD53Psnvqdn+Ww/WZuzW9S5xP/k7O9JXz24L/1Ovdz5uPuz2yez5Lcn2Ww4XtbddEHxwn/2w++yd56kr0KeeUyQovLoNy7r8z++ocZLQ5PGhJ9cFwsEN0hQJnuis4/JJkePkjnvJuPHedTj6O1sk+nzl1OeMwMYO63NcJuvffZa9TPfvRcrkHI9knX/c2Rx/S7BlP7m5tvf0kGh3d9Tl5ube560+xouqXkczazc3P20+EHpsviO7ufLye7NXW7XuJGdTllI337P+GvU61/u373n6S4pOve5u7n+zx5O7W1ttPhDo2C9pPnPpTrKj6ZSSzdnPz8/aTFBle0yC6u/PxOz67tXUfAxMzqMspG+/Z/7C9TvXsR4u3n2T3yde9zd1PnBsVkzPIN80KtIz0m7d4+5l33pJmBVqKB+1nTv0pVlTtHslMR7/x5jf3csqm+nzm/aqVwwcnhw9Oqs9nMzTWNU1jXWM01jVOY10zz9C60jXWNVVjXRM01jVQY12TNdals9+fiXpldhzi1kVLusa6Zmmsa6LGunT2VZ0cR2ms60wd2/M11jVYY10L7LV3nufUT0uy9e+xx/1u4q7PydO9zV1/iicX6VzHTxe/OaPDL6cML2/EU96N567TycfROpfPZ05d9m2tp82p3XU5ZeM9+1e2BU317EeLd06dyydf9zb3nLqcXW9un3y95xe4/dFd3quRu5y3P0bTXu76nDzd29z1p1hR9f9IZv3DTxeHXy4ZXp4g7evOx9E6t89nTl3OzyGJGdTllI337H+upz/mduXk7Y+5ffJ1b3P3x3qR03N3a+vtJ0IdWwXtJ079KVZU/TKSWbu5+Xn7SW4ZXssgurvzcbRO9fnMqcu5rzkxg7qcsvGe/S/w9JNUV07efpLqk697m7ufNPP0E7e23n4i0zHyfdB+4tSfYkXVLyOZtZuffzv8UkV4kaNBdHfn42idx+czpy7nHu7EDOpyysZ79r/U00/yuHJq5cHI45Ove5u7n3T09BO3tt5+ItPx5ONpT6vPycu9zV1/ihXV+I5k1m5+vurwyyPDaxZEd3c+jtZ5fT5z6nJ+UU3MoC6nbLxn/+s9/SSvKyevn+T1yde9zd1Prrbrze2Tr/f8eVCfSvUp7+zn1+co0qxAy2V+bcooP9jbRk4d7tzyubYz+kvtoOPBqT/F+nd/kYyHfB68jNrb4Z7fJ5dUn8+8bZTfBye/D06qz2cTNdY1TmNdAzXWNUZjXZM11jVKY13pGuuaorEunX1irMa6Rmqsa6amuvz8M5q8Zmisa5bGunSO7fka69Lpheka65qqsS6d7bhAY106+0S6xrp0jW1adHLU2SemaazrTPUJnXn9L8yZ/jumxU57neNxvMa6dHKce4bmpXM+oZOjc6x1viu6v1tG7HWy9e+xx/je2iTiqc/J073NXX+KJxcmXiQzXdz8vN+TC/jkkurzmfd7cgEfnAI+OKk+n03UWNc4jXUN1FiXTo7pGuuaqrGuWRrr0qn9fI11/deOvLoWaKxLZ58Yq7GuaRrr0ulfMzXWpVN7nX1Vp/Znqn/p7Ks6+9cUjXXpbEed/UvnGNLZv2ZorGuUxrp0cjxT53I6OeqcT5yp7XimzuXmaqzrTJ3npGus67/5xP+PMaTTJ3Tmpat/0d95NNVFy2yNdenUXuccwDnWeq/7cuqnJcpzYKUjnvqcPN3b3PWnWP9uS13nwPyuIXP4FZDhpQVpB3c+jtZn+Xzm1OU84yMxg7qcsvGe/TvbpFI9+9HivcbuLJ983dvc105dbP8nt0++0f4W4S7v1chdztsfhe0VF7Q/OvWnWFH1/0hm/cNPF7/+4ZRN9fnMq3/Qds2srtyWfm/N48Mnp085bzu782PoHvheAfe7jaLoV5HM9PfTxeFXUIaXx+sVbjx3nU4+jtaFfD5z6ips/z8xg7qcsvGe/Yd4fKeQKyev7xTyyde9ze07/T2+4zcmpP3ez0//v+Hk9CnnHV/C/pcQdHw59adYUY3nSGb93U8Xv/7ulE31+cyrf9B+amJdTv8rmAlOZr7ih+MuX/A/nKhwcvqU845bd7sGH0eRw0HHrVN/ihWVT0Qy67d+ujj8CovwIh94j2VuPHedTj6O1kV8PnPqKmr/PzGDupyy8Z79V3mOi0VcOXmPi0V88nVvcx8XV2Q7PXe3tt5+ItPRSg3aT5z6U6xo+uU//cSv3fz8zeFXRIaXO4ju7nwcrYv6fObUVcz+f2IGdTll4z37P+TpJ0VdOXnveSnqk697m7uf3Gf/JzmDfNOsQMsRP60Z5VcmW//WjlG+slO+mKz8o0754rLyW53yJWTlJznlS8rKX+mULyUrf22yZ39m+UpO+dKy8nWd8mVk5T93ypeVlW/tlC8nK7/dKV9eVn6RU76CrHwLp3xFWfljTvlKsvJLnPKVZeWPOuWruspzzrE55avLysc5+VZzb/TJyanf8foqrv0jGayduryfOVgpnrqkx0W/3N35eeeV1Vx4bo4Z1VWNWVeyz2eSNqlqZczLXX/OTHLx5kmL91krUs60jNVY1wiNdc3QVBf9XVhTXbQM0ZhXEY11FdVYVzGNdWXTVBctwzTmVVxjXSXO0LpKaqyrlMa60jTWVVpjXWU01lVWU120zNOYVzlNddEyXWNe5TXWVUFjXbqOHfR3RY11VdJYV2VNddHS6gytq4W9jvJ8QZsozxc0jPJ8QYcozxdcGuX5ggujPF/QMsrv++1z+uwfsdd+3+UZ83bncTun6rMs/+8/Tv0pnlyYeKe+/5T24Hn5eX/3KeOTS6rPZ94+XsYHp4wPTqrPZ1M11jVHY12jNNY1WWNd6RrrGquxroEa65qisa5xGuuaeYbWpbOvTtBYly7t/Y6LZ0pfTddY1yyNdZ2p43G2xrp0jqEzVfuJGuvS6RM6j7U6PVqn9jr1OlP712SNdelsR53a/y/4xHxNddHfRTXVRcswjXkVOwPromWoxryKa6qLFl3a0zLyDMyL/i6psa5smuqiRVefoGWEprro7xKa6qJFZzvqzEtXXz2TvTBVU1206PQvne2oM68zUS9adPbVUprqokXnsUOXf9GyQGNdOudf4zXWla6xLp1z8ska69J57tGZ3zvnsUu6PovY6yjP4eeOeOpz8nRvc9ef4smFiZfpOXw3P0cXv+sFGXi5grSDOx9H67I+nzl1Ob8JJ2ZQl1M23rP/07awqZ79aPFe21vWJ1/3Nkcfurb3sbjTc3dr6+0nQh0Dv+vSqT/FiqpfRjJrNzc/Rwe/dnPKpvp8ls31N0dvv7abobGuaRrrGqOxrnEa65p5htaVrrGuqRrrmqCxroEa65qusS6dYyhdY11zNNY1SmNdszTWpXNs6+xfOseQTl/9X9B+isa6dHq044XO/Zfu+Uy8B4c793aXd/aL8n6VS6K8X6VzlPerXOTMi8q7Nkbstd+9JIw52qSIpz7L8p8TOvWneHJh4p2aE1b04Hn5eeeElXxySfX5zHv9TyUfnEo+OKk+n03VWNccjXWN0ljXZI11pWusa6zGugZqrGu6xrpmaKwrXWNdZ2pfnaWxrnEa69LZv3R6zjSNdf0vaD9FY106Oc48Q+vSObYnaKxLl/b0dxFNddGis6+eqXMAnXX9d9z+77htyrHjv+P2f8ft/47b/z+1P1P76myNdenUS6fn6NR+osa6dI4hncftM9Wjz9T5hE6OOue+OttRp/b/Cz4xX1NdEevf1yhEU1cZjXXpOk9Of5fVVBctQzXmlaqpLlqGaaxrpMa6Rmiqi/4up7Gu/+/a099FNdZVTGNdxTXVRYtOvSporEtXX6VF5xg6U/v9mcrx/7sX6syLlv+OHeYfO2gZrqku+lvnNQ+69KK/S2msq4TGunQda2nReXzUpRctZ+Kxg5YFGusaaK911DVeY13pGuvSeR5gssa6dF6fM9NeO9d6ua8Ni9jrZOvf44Vw0qxAS7WIpz4nT/c2d/0pnlyYeJHMdHHzc3RxuFf2ySXV5zOvH1b2wansg5Pq81m6xrpmaqxrjMa6pmmsa47GusZprGvGGZrXWI11DdRY13yNdQ3WWNcCjXXp1Guqxrp0jsdZGuvS2e91eqHOdhyvsS6dnqOzT0zRWJdO7UedoXlN11iXzj6RrrEuncdtne04S2NdOv1LZ//SOR7PVI/WWZfO/jVBY13ed0y7v99E7HWyp1zEYn13Khfx1Ofk6d7mrj/FkwsTL5KZLn7fYR3uVX1ySfX5zPsbsN87Uqr64KT6fDZDY13TNNY1RmNd4zTWNfMMrStdY11TNdY1QWNdAzXWNV1jXaM01qVzPM7SWFe6xrp06jVZY106+5fOMaTTV3X2CZ2+eqaObZ3jMV1jXXM01qVzPP4v9K8pGuvSOQfwPgfBPV/2PgeBO2d3l3f2y+lTLmKvkz35RSzWHHpRxFOfk6d7m7v+FOvfnCVzdj/9/XThvG+Q/tb5/rypGuuao7GuURrrmqyxrnSNdel81+NAjXXpeo8YLbreG0lLusa6ztS+OktjXeM01qWzf+n0nGka6/pf0H6Kxrp0cpx5htalc2xP0FiXLu3pb13vvaVFZ189U+cAOus6U4/bOrXXOQfQ6dHpGus6U/vqf8ft2B3T/puT8+r6b04eu/7137wwdv3rTJwX0qJTrzO1r87WWJdOvXR6jk7tJ2qsS+cY0nnsOFM9+kw9punkqHPuq7MddWr/v+AT8zXVFbH+fY1SNHkN1ZhXGY11pWqsS+fvQzr1KqWpLlpGaqxrhKa66O9yGuvS1SdoGaaxLl3a6xzbusejrjFEf5fVVBctOsfj/0L/KqqxrmIa6yquqS5adOpVQWNduryQFp0efab2+zOV4//3Y63OvGj5b25i/rGDluGa6tI5n6BFl170t645Of1dQmNduo61tOg8Pur8DnMmHjtoWaCxroEa6xqvsa50jXXpPM80WWNdOq8v9D4HxX1ta8ReJ1v/Hi+Ek2YFWnJGPPU5ebq3uetP8eTCxItkpovfddIOv+oyvBwRT3k3nrtOJx9H6xo+nzl11bT/n5hBXU7ZeM/+hxP/Xqd69qPF+67gGj75urc5+tC7gt9NPD13t7befiLUsUTQfuLUn2JF1S8jmbWb3/jxazenbKrPZ95zIEH19mu7GRrrmqaxrjEa6xqnsa6ZZ2hd6Rrrmqqxrgka6xqosa7pGuvSOYbSNdY1R2NdozTWNUtjXTrHts7+pTMvne2oMy+dPqGzT+hsxyka69Lp99777dxzI+/9dpnNH/1w3OWd/XL6lIvY62Tr33MUxnxpWsRTn5One5u7/hTr35wl8zM//f10cbjX9Mkl1ecz77mbmj44NX1wUn0+m6qxrjka6xqlsa7JGutK11jXWI11DdRY13SNdc3QWFe6xrrO1L46S2Nd4zTWpbN/6cxLZzvqzEunr+rsEzrbcYrGunRqP/MMrUunT0zQWJcu7envIprqokVnXz1T5xM669Kp139zgP/mAP/NAf6bA2RV139zgP/mAGHqdab21dka69Kp15nqExM11qVzDJ2pxw6d2p+pcxOdHHXOo3W2o07t/xd8Yr6muiLWv69jiKauMhrr0nX+nv4uq6kuWoZqzCtVU120DNNY18gzMC/d7ahTrxGa6tLdJ3S1I/1dVGNdxTTWVVxTXbTo1KuCxrrKaaqLljO1r/43HmPH8UzsX7T8dxz6r997PxuuqS76W+c1Ijr7VymNdZXQWJeu4zYtOo+1uvSi5Uwcj7Qs0FjXQI11jddYV7rGunSen5issS6d1zN57+/J5vosYq+d6wJTXdsJJ80KtMRHPPU5ebq3uetP8eTCxDt1XWCqB8/Lz/nb4V7YJ5dUz2e0eO+TKeyDU9gHB1WXX3tRpFmBlsu9ejh1uOt2X3/AaJvCQfuCU3+K9e+2kfSFIh68jHR1uBf1ySXV5zOvxkV9cIr64KT6fDZVY12TztC8pmmqi/5O1lSXbo4DNdY1RWNdMzXWNUFjXTr1mqWxrnka65qusa5xGuvSqX26xrrGaqxLJ8f5GusarLGuBfbaOX655z6ajt25pMdu4bwx02O3m5+ji8OvqAwvZ5B2cOfjaF3M5zOnLufccmIGdTll4z37j7YPbqme/WjxzhmL+eTr3uboQ/dpD7Prze2Tb0lPvX66F/GpN9WnvLNfsk+5NOePn4buv/eVeZueWzds7T1L8x7MdVuOatknTpv2XbFviy8/Om1NlO15hVO+mKx8fqd8cVn5fE75UrLyeZ3yZWTlWzrly8rKN3PKl3NtTAtU9J/cZfeSRY465Wu6ymcLXN5KdsrXkpWv75SvLSt/jlO+jqs8g/8HTvm6rq1p9rrc248l/XL/gvhHDhwdOPJYlSUvXzjvqQcaL361epP0Sz9a+m0Hp2w9n7JZLI2csmf7lW2yLa5Ln42/D8xx4ZQNIw++03F4ruLddpaaeU+X5xeV+qLrDKdsfb+y+7ocf39z6pIxo+ZtH9ugUv5uDy7Z//2XL7zyUOqPR9YP3l+fvGm+x5vOcdSwTj/OUDSw/5/g+qyHax+nbLxn/wG5/ym32MYLcu4jzpNLmhVoKRL0mOls03XuI86D5+Xn/b4b75NLquczWrzzn3gfnHgfHL+6Fmisa6DGuqZrrGucxrqmaqxrrMa60jXWpZPjBI11nan9a5TGumZorGuWxrrSNdalU6/JGuvS2b90jqFpGuvS2Sd0+qr3NxD3Z955QIJrO+O4nC3oPMCpP8XyPy6nWYGWU/OABA9eRrrkUJHP/nv4sL79+g4b3X5gt54tug0aOrxfL+/MyDsbc6virtW9LWKdzt79WZxnm3e/tp7/d/ApZ/nUTZ87LZfDsz3NCrRUdHpFRZ8Pnc8qeep2f5bRG7S9S5xP/k7OSSq+LfhPvd79vPm426OS57MU12eVXdjedk3wwXHyz+azf4qnrgSfck6ZrPD+l0eiXzs5ZVN9PnNyj/KbCquf09LG85m7n3u5VHF9xh0DzjYaA8cYYyAjD/LuH+ezzXu0cNfVw4Pz39Hi/9PRwqkvxfWZnxJOnc65CjenlAzKubWwfLZl89k/wVNXgk85r6v6lXfX4S7nzS3Z+jfXNOePSWvWvd9s3qu1PjqefXaHblNH1Z3zxhXfjCm8tvwnN64v/mA+wvojOWNd3Oc03DolZMEv3rN/Xdc5nBM2HvXIQvbndo9sPrzfTZf0Gjakb68RvdoP7D3U8ixZdaNLPf+/zKec35LT+ndTe41BOFADG4NTf4oV1UHhlDH4Ta/d/GTG4O0Q3kODbmO4zPN/yTTSe+hNswIt7Gmk9xBa2YPr/O1d/AzGyZk7jXS3h3ca6R6o3mmku13jfXC8hufe32t4fubpNbyM8P47RP+9/PeFzrX894XOJ/+wv9B5yyVY/x653sO9s28VO5EoR6yV11XOm+N/x+y/l/+O2a7lv2O2T/5hH7P9nMTrEmF+xXdje0+p0JLm/PHhsBaLhhXqX/+b5Nfm1V5VrMQHP63d/NnPo3s1+Pqzz7eW/ilK1+gcpdtdTuVa2Z3I+TLmHgfecewcmTL6Qd0pG+/Zv13KP+Xa2H/TZ+Xtz21H6dytX9+e3Yb1ajVg8PBew3v17DhwWK+hzQb0bDWi14Bh7K9m7Tz/b+9Tzm/J7qrvLFf9cR6StHTw4Ntj8NSVXN59vAI5+19kf0AD+Xd7o1+nc/LJ6SnvfE6L0ykKeXJPswItgQ9FTv0pnlykh6JCHjwvP9mhyN2dvaq4a3Vvi/WhSHjtJftQlOL5zH0ocremd/E7FDk5cw9F7vbwHorc93N4D0Xudi3kg+Pkn81n/8Keugr5lPMeijLCi/Mp551KRDzb3eeyzvLB9p7L6u1yhz8LZqzDWVbGOrjz8eYZ4r08VwR1k1jdy8NzE3dPcaN09tTq7OPe1710dmVmZbCfX+vF+5TzLo5i8Z6c010H4cGeg76bV3ZPPn693b3NO0lyl3f288NJihInyQfH6ck5XOW6ez7Lmcln/9feu4DZdVRnorX7HLX6tLr7tF5+Yvu05bfkBzbC8ltt623JNnZkzMtCj8YWyJKRZLCxDQq2wbxsJjBzk/Al4eadTAjwQTKZDEkGMgx5wMAlFyYkziUzIQ9CwgwT8iAEcr2tvbr//vuvOrX3rtPdtru+r7+ze9eqtVatWrWqatWq2sOAc5DyRqHcXspbCnk7KW8Z4FxMecsDOFcInHnbnTE4hS//OwvglKbzLsSZwA+Wxf8XEWyeJorfJsG+D/TqMdIr7MWsV2VPMWL5k5yfzuKadBYLOjxa5Yl152RRVz4pmCduZxW1b3mni3pZXieAc0zgzNvnhMHpcNz+eTKLfza8L7MoibX4hr9FvFS1+GcTPa4fnwA5txq9nRmVR3qI0/hRMy+Ubf5ns5t+Dy4r2yT4Dxb9rU1wzzBKNM4T/OI7PAHygdZ03lG2mefX8PI77l9Yd2sfo4P2Zi/w8zOt6XVBO9VwM+2aLYjZVnVgV/DnyVZheW471U+q1v8sUccRN1M2/fDs0++zA3T6A/XpVXv2Ex20s9ieH6f2PBfy2Ebnz3a6pknwLWjP/0DtqfqikjOPS2XlPCjo9FrOPL6cl5AO4kLnTv53AeFiOVs7mZxxRXkBlcMvs7ITtEFlEB5xKPyGo5sO/k5L182ng0arSfDfHJ4q9/sVdfA8ysOxAsdF5APlgPB8U53x2e+B99Xri7DqtIkPjyUoK2wLtr8G/yXA2ThR84n1wvGAnZFKHy4Q9VIyXe2600Y57/DQ7ndhXWwS/FNCpjwuYHnVj0aIl/O78M79G8sb3JAoV9eOKJ679ck/L9knVxXPrLv/HfrkX1GfDOkI8szriLJyXizo9FrOvEZYnZAO4uJxQX11EOVs7WRyXgN5F1I5PA3KX2VuUBmERxwKf+y48J2WrptPB41Wk+A/ATr4L4F1cUgHV1MeypTHhW72cBXBG9/9LjzeNgm+UUw+1Lig+ivaWh4XJscmwMnjgvoCe2hcCH2Ju5tMLyRcZwpcKGceF5RMsf5nUv0NfljIVI0LVl75I/ZRHvojzqU8PC3Pc1Y8Cc8eefRHsG+kA3ls78YgD3WE/RFLAvUZAhzs70O/Hd+8MAp5p1AehnucSnnotzud8pZDXofyVkDeGNTV/Ha8OXpm8b7mvp0MXQn5RTPPr3Nx4wGGVmVE58SEdBDXNqJzUkI6fEsn0jlF0Kl5c0T0Pqvhb7mZfbeKn0zdBKJukCm3M8J3mqBUECu+Q0lzXi/3WQ3f6ZCnJMGec6zT6Z5yKAsn3vUJ+FMJl++umIaHnmpRLMcak9F7336k4WgS/FUwWvXTaK1ooTx4xDTefRETzIPBXwc8WMQE42x66nWKB+etg1PyuH5Q43QCp6rX6VQv5oHv9DH4TWIm0CAY5ke9M/k7UZb/VzqzkuA7XerD7WTw2wPtdLLgAfvkji48MMzpHh5uETwI63bDoXsfKKybo8TB4Rn9z5LnfduTBR5fMmnkWmgaqaIMThHlThZ4mKe85jZHKWq+YeLAxNEJT93Zcmcemn1OJ56POjdzDK04pkWPoYa/5bTmdVxUytjKGT2uHwd5nip4aYs8bF/WoxCdvE1tTlq06W1HDx32NWns4JoJtri864KLm3oM3pcQfengpozy0OXC00hcAqJR48T1xvrkxqV14hRehmNeUaa8zEL15KUUdpULKA9VaTXlocFfQ3kdyLMl8Iib2V64zMK8PDXEO55iY/mxAJ1lNeksE3TU1jjrJm4B9sIMGf6Wq9UXJs2Qck8oufA2JpZVbgYORDN9/hZMkB6kpXsL6LJcK57CeXGsXA1/i3ipKtclRI/rx3IdEry0KS9P/FGJIUFnSNBRuB5LiOudCXE9mhDXgwlxHUqIK2UdU7Zjyjq+KSGulHV8JCGutyXE9daEuB5KiOsdCXEdS4grpU6k7I8p+1BKnUgprzcnxPV4QlwpZf9wQlwpZf/2hLhSyiulLbw/Ia6U8pqvtjClvFLanOfDnCmlTqQct1PJPn8eSIQrT8cS4kop+7ckxJVS71PWMaWdSDkHSCmvJxLierL4NR8T+iHGiI5a8y8J0MHySyJwKf9BqI5jAn6Jm/qoxaTrfs99d20/dJejxDsNWz0sriW4HR7WMoE3oz9+v5beNQQs4sbj6EPF+x6cULk0I3zOabfSXJ1Qsbqr6OG2yONvQIdOpiCdtsh7LCGuRxLieltCXG9NiOuhhLjekRDXsYS4UurEowlxHUqIK6VOpJTXmxPiSimvhxPiSimvdybElVJXH0yI6/nQjm9PiCulvFKOQ/cnxJVSXvN1HEopr5T2PqV+pbQ5KftjSp1IOWdKJfv8eSARrjwdS4grpezfkhBXSr1PWceUdmK+zr+eSIjryeJXnUwdIzplT0dj+bMjcKn1cKiOYwI+oZvEWHwhwe3wsJYJvBn98fsX0rtubhKOytld+HJqRtjJAySGa4Ro5s8YbYZ5zsV56rD8UIDOcE06w5F02jXptAWdIVEu8/waHX4X8uy3ic5YQjqIa2/xa3JDVxjrgbqQ6KwAHSx/lgeXHVHI0wGA4bB2669NgTNPeyAf4d9Y9KHFT/99FqI4c5gzofxe4OeBJWFesSzyypeS/DgcFH2owKnkbO2u9OAsyhsTdBVO7ltl225Y8BDChe01SvDWFv0eeMPHbfc2aDs+kGrlffpzlocH1B88kuDTn3dW0J93k/4wr6w/o0Tb4I+B/jxJ+oMyDunPKOWh/piMlM3kSN2yNnOZ4E/RCV34xXpU9sKvUUFntqPVl1EeHgJfTnkYrb6C8vCwMY9BayCPD8niwWc+JIsH8kcp72LIw77EqUH/o2zzPvP5EpHz2PahA8p8sB4P7fJhz+XEK79jncHyyz248PgZ2pC9kI/wP1lUPu/Hv7xker3wMkCTSc3DM5dlhM85vQ3Gh2dWVKMXPDyD9eNtsDHBi7JTp8Ez5iGdMUFHzXeOJcT1eEJcb0qI67GEuN6VENdDCXG9fZ7y9WBCXIcS4noiIa7XJ8T1ZEJcKeX1aEJcKfvjOxLiSqn3KW1hynZ8OCGulO2Y0n6llNfbEuK6PyGulPJK2YeOJcSVUl5vTYhrwa7OnV1NJfv8eSARrjwdS4grpezfkhBXSr1PWceUduLNCXHN1/nq4YS4nix+zfeAa3T2Paj18CkBOlj+FE+5/Bl9DqH9gZqn3xsZ4TN+8B3in6vT72cLXtoiD2WIeUgntOWJuGIu9FC+j5BuqDom3PI0Fi8luDs8rPUJvBn98ftL6Z1vy9NwWzdC1xNvO6EYQ6JV204rAnRGa9IZjaQzXJPOcCSdZTXpLIukc1JNOicJOtaV1XdTcrfpuiFNE7dU0F3LW3IGfwRcsVcNTa8jbkssofrjQRC+exG/H8OmF7feS5jC6ItHDH/LzdTJKqZ3KdHj+qFZir9DkHsAByQwPMI6kdegd7wJv4TKVblDcBnkKUnwHYJYp2WecigLJ971CfilhGupKGe8NwLlEQeWY43J6L3vDkHD0ST4HUVj5Js/fIegooXy4OAb4913LxzzYPAvAR74brqlUEbVi3vzMvofdWvCQ/81YGV2Dmn6TtDn+qFV893Pt5R4MPiXgQz4vsHlorzzvOORYTnlLQ/Atqgu6vt5qIt8N+GKLnXn9jf4Vwfaf1jwEPryJ/PAMC0PD/sED/XuJmQrx63ELTEs8PiSSSPXWNNelg73DqZj/ysNqHs34ZCHZp/Tachp3vI04GqNldFjs+FvOa15HReVMraeRo/rx8uipYKXtsjz9dJudGreTegbtJWx4PKOymbiXZ7w4OnCUqM7nefDUoNxqSVEnl5R/LJhfwwMO3/SYAXwoXDeTjwoL4CKaDL4MQF/iqijyRK9FGMRtFGWPBCeWZJX5V1BT9QpxCvyd3ZJXu+YZV5XCF5rRu2UjizjKDCMLOMoMIwsO4HyMLKMo8AwsuwsysPIsjHKw8gyXuJfDHlLKe8SyOvAMyceC1Dueb/cdsYUXobDZ59NwT67g3jEyTPaEHNRDABupNNxUWlSD9Si2HDjdKOEju1FniypqYu9axEvJelNTl0aRI/rx1OXpuClTXl5OgJwnNcQ7/oCuA4lxPW2hLjuT4jr7QlxvSMhrmMJcaWU11sT4kqpX48mxPVYQlwpdeKhRLisfCq+Hk+IK6VOvCkhrpQ68UhCXCntasq+nUpX8zRf7WpKnXg0Ia6UfSilTqSU15sT4koprwcT4jo2T/laGLfnTl4p56spbXTKOcA7E+JKab/mq04cS4grZX9MWceUa5iUdXxPQlwLdvW5Yb9StuMDCXGllNexhLhS6up8nRc+nBBXyv6YcqxN2Y7zdb567zzlK6VdfUtCXMcS4pqvNjolXyllP1/tRMo5+fNhXZty3H7XPOUr5bo2ZTum7I8p1zAp/b4pcaXUCe5DWfE/wuyB532Qj/B2a1DNveJ9vBdrOBD3ooq4M8Ln3HQ+HeEfEvSMr5Ynr+PC6R0f/e0PbP/b3/16RuWNF37HMSP9Al7taZusFkP5ErLaMwQ0HNG2vCbkLaI8lIvxkP+u7Uznr78ifzHyQ/xtAb8T4Mq0xVI3XRdQ3y1WB28O4puoQhdiqksp1Ukzg7fYnH4PvOFrEvzbiv6KgdojBJM/D3voIX/4LhTbd54Hl++GsjM8vL8beOdYuPMFfyqM1OAvEPAY02T8KNlc4DRtrA+25wGqj8H/kKiP6n+mUwOAx/JK9J3hnM76zhQdlhv2n24yyhPLdLWAR1mZTNoEj/K1PDwedT7ljUEex+6dLnjA+DyOr0K9w5vz3h1xg+J86tc/HdmvT/XQQ/5C/RrLl+nXeXqdh/dfLNmvTxX8zad+/ZHIfm06tdCvu/frswQPsf3ayqrbVi+EPMOLcdyriucmwf9WQGcvcjN5RZmzfC8W8BjTyrdWYizsxZSH5fjmwoshbzXxcImQA/LF8ekG/xmQw87O8Wel68ZXTV0fV7p+CQCwruOt2A0Bz21xqYB/IcCYTNoEz+2C/yMulCnHvJuM+gU84msS/BeF7Tf+0PZdQryvLsn7SYJ3dZsm9qnv0HkYtBtnEc3VAZrKPlu8eL8H3vA1Cf4pIS+2jdgPUE6LCKfBfzVgD4wu1gttF+ugkv0aUS8l0wspD3k3XVD90+Bq9s/rVf/E+nP/DNU1TywbZVtRd639226mPbyA8rBvrCE6aoyM1X/UoT9vaby+8eYFxTPr17cC+qX6jfpoQ0gfUU94vEH9WkN5WO5sykOZ8lxRjbsIz2tAg/9O5HiTSJ+XKX1GnWV9DulnnsqO/SaTtps5HrA9VDqLbc3jjcmo3+k2MHxNgm+OHP9V4w3O2y4k3s8ryXuV/vY7NN7gFzV4vDkvQJPLor3wjTeGj9cDI0JeGdHAfoBy4vHG4JcCzpg1U2i86bZmMn6UTC+gPOTddEH1T4Or2T+Xz/Xah8cbtIe8LsK+cT7RUX6CWP1HHfo4jTe8bkJcqBchfcR+Y+3E+nhWQB9D/SxPLHOlv6hXxo/SR17zIO8hfUy0Fr9d6SPWn/UxVNc8VfVvtN1MXQ3pI4/PqdbbP1Poo/n98Sx2CbmWPq+aUR7KeRvloYywfTg16H+sT97urRJfH8D7BvjrA3g3wfmUh/6TCygPfe6rKQ/P9K+hPLye4ULK42s+8mRtWfEG/+grLQx/i3gpSW/yXGi3s7fW18pdN+W7nSAjrPgONZTzGvSO4W6j/6tcN4VXAClJ8HVTWKeVnnIoCyfe9Qn4FYTLd+tDw0NPtai6PshwqHI4qmGZmB6wkvB3XFSKvuvS8KfqAd3a3XTV6n6C4KUt8liv1f2UJwg6ClfMBTG+XlvjgpiM/l/hYaNPlHcBXFgmVCXsOjG3cql7j5oEf6dYeITK52lIvGO1r6iG0Ybf8LfcTJWoovbqszxYP1b7FYKXtgubKG7DEJ2Eqpqn2zxsqBHFdcHFPVmpKsZG7PDQ7hfwSlUN/kDAp9Anyuc4vzswnfZ6gDPalzs/r+PEK8NcTrwa/GHg1S5bawNdR/wMUXnLz5N1qeuJ946LStFdyvC3iJeqXep6osf1qzaXuhyeWSqIFd+FtLhbz9lC/5eZS1nLbaD3HReVNppWbBSZlrcJcF9OeZshD1uTk1q1GM+5Bn/zhCm8DMf8YHtsorwbIG8z0OZ2vV7QMf77BPwNhOt6Uc5k341eQ5S7nHBk9B49IesF7SbBvxOsw/dO8MthvXNeOdj/Jws+Wd6Wn6eaOnlHrDUx/C03s+2rWJMNRI/rV82aoKYglZcSVoNBWEwvBc6cB0613imiHCeTWJN4/qlCi3Lte3/xPOJmam8/8YM8hOxyW5Q3OEVncU06iwUd0+R1UG4P5V3hZtbV8q6Ecnsp7yrI20l5V4t6Wd41AZzXBnBeJ/LytjuvPR0OrVHm+c1TQ7xjmV4veLW2QwvAPkfV2zYE6GB5gxsS5erWR/Gs5k5W12e+cDkyVQZHU7TaqMcWO9Yk+P/nhKlyH6X+thHKG49KztwXy8q5X9DptZy5T21KSAdx7QX4/G8L4WI5WzuZnHG2s4XKbYU8hMMZwRZ4v1XQVvgNRzcd/NSIrptPB41Wk+B/FXTw0xV1cBPl4QySx0PjA+WA8Bwranz2e+B99fpsYG13vSiveB8iXjYFeM8T6yKW55lrL3QeaXbTny+R/myGPKU/ZxbPTYL/CdCfPyT9wRlaL+of6tc4k2PPsup3yn5wOeyjIxE8bBE8t0V5gxsS5erqhuK5m278BenGVshTurGqeG4S/OOgG18n3UD7aTwqOfMcsKycFws6vZYzz++2JaSDuHh82064WM7WTibnGyFvO5VDnxTC4fi2Hd7vELQV/tjx7Z9HdN18Omi0mgR/D+jg9wJrmpAObqM8lCnaXm6fUBtkxHe/B34b1WuynsUcX8X3qP66DXCyLTf4xYCT4ymMLtZLrZZDunijqJeS6XbXnTbKeYeHdr/T9ffpykhAplZ+kac+LFODXxqQqZJRSKaqj20X9RoRdWYZ3SBwoZxjZIr1v4Hqb/AnCZmqecsNxDvOHXgOqeZhCM/xRaqPqbkJ97HTA7yHvJLoW9hHeehb2Eh5V0Ier8WugrzNlIe+hXHKuwbyePy7FvK2Ut51kIe6b76FJtV1dfG+5t7CjA9nIS4l38zz61zceLoOYDKi0wu/iaJzQ0I6iIvHNFyz8Y53Wb8Blg+tDa+oSecKQYdxmU3OE86JrD81Cf4a6Nd3dKbj3Cj4uwLe7QjUlfsz4rI2s/6Btq8Xe2+Gv0W8lKSXhWwu1o+3szcLXtoiz9emSEdtZ5flK+FXRo3FUwluh4e1TODN6I/fn0rvGgIWcc9W15tLOoM16QwKOr12dQ4SnXEoh8udl7anyqAK+5Y7fFTF4F8By52XFzjVcsfX7VDXcKuDddvo+cIYrvTwtwtML3+37kpR5zMCPG8EGkw3T3s8POyjqUpFUyynKuwKxSndOsrDqQe2DeY5NyULfMc6Ny7oMC7fMGly5Snd60oOk6jbOwJ13Uh5ODSxHBQdZd6VHEJ0ltSks0TQCQ37VW2J4pmXEnlCW3I/2ZJNkKemNLcWv02C3wq25MGALUEe+X9ll33jpM+WbPDwdyxgS9TU8NYAz7gEZLp52uPh4TGyJbwV1HFxSdkS3ppA+zdM/JcdC7H8bI2Fw0Sn19t+yt2Peot5RoffhewLL8N9/fF9bU1T9Uce1xB+KfTHf0f9McVWna9POBe33bVR0PHZoDyFxiCD//HAGNRt6h9aqvn4azrdpzZCnX24nHhn8Dj+sftiM8FuCsAy36jbZxXPZot4S7njotJW0+etIpO3NJAny0M34ksBjlOD/kee8/Z+RWcKL8MxPyiHbR6cqs9PEKzVuU/g5e0i7Mcsr50eHriN8/Sq4pf7+2+0p/B/jMYZXJOWaNttakvKErcfy46Tar/JrYSn/97ZmcLLcEwT5Xwj5aFd5VCtcSiH7fGZOZIXr/kxzYW89lFeN3lZntW3T5Sz5ybR+xvQ198jfFcALdZ/vhoRt2e4fJ54Lmbw/w3Gii91jj+PuJnjK5+gQNxqfszj3DIPX6qeaCe3EN8G+3XSVd5u7bioNG5tvJ14Qtw7KuLOCJ9z2u3IR3SRnvHVEnnNCF4O/uPuy3b3v+l3MypvvPA7dhXeJOCXCXiT1c1QvoSsrlFHvY225aFu76C8RZBnPKjrTG+qyF+M/BB/W8C/BuDKtEVb0BlPiGtTRVx2zaraTmWbmyceh9TYn7fjYHEGWtmhpcRrWTuE5cvYIZ7rGuzigtea88cXqXkg26HtFXHH2iHDP+T87doSeTF26O5/Gb/3U7f+wWmZm2lvG+JdzDb+UgFfs59fouwQ2xq0Q9spD+2Q8aDsUMUx5ZIY+SH+toBnOxTbFm1BZzwhrk0VcZkdUnNwZYd4frdV1Aft0AyfwugUzNDodFwx8+488bGETYG8LQJnTrszOvUe7VV/8YvrSF6jqbAi+x/foa5jGfY9GPzJIJsTiD9c/2M9kT81V0e/5KmjfritAbjY+f06ylNh07HtwmPFKhoreP+o4+KS8nsartzfbYf0iy3bzRNHb7t79+GJfbdN7D08cRRXVGoUZE8mHhH0JeOEd2uvo//H6X/2Zm4ReLrRVN51vESF6aqdF7ZKo4LnuaSzvCad5YKOskqZ59fo8LuQp5ev50CvHHp6Lx2dKoM6gZ5eLHtH8ctezydWTpVbG5hBhuTMd0mUlfOKBTo9pbOyJp2Vgk6v+8FKqg9afZZb2R0pLL9hlul069e3jGqasf3a4MehX98W0a9DdQwFpY2LOrJN8uG6g3DF7h6NR9AJ7R6NR9KJqU+IzlzWx3CpXUdsg9sDfG0mXFu64HoZ4VI7GkoHmeey3gksf0WAzuaadDZH0pmt+mysSWdjJJ0VNemsEHTUCqPu+KF47mZvHyB7qw63YlmOYDH4i8HePkT2Fr1bz3U5b01IB3HtJTq+9nyc2lMdpgm1p8GfCO35roj2VLLZEqgPRgj52lodNswErlA0CcsB4dWY0kOP6tIYPUD8LeKlJL3JgPLQgcE8YeC26XPhBRifOPLCS9dteNoF8MC9R33e1VEkCvwzvKP/uVzOW5NgrhA08sT6s5XguN3tPeOP4akbbLd8Zetu9NTTuThbh+Wv8ODyRQBZ+7Cn6ccKhmMjgNQhttB8gPsdwzVEHQad7q+vdZo/rPOOQJ0N/qcDdd7cpc48f1dzR7ZNDNcQdRhwOlqNoxQxj6/rLKtPWH62xs4TiI5vTPsIjWkqqg+jvuyjPeyBb8KY9jEa09RcsNf190XzYr3wA0S+tU1T4MwTR28Y/CfS7D5KjzLvoKwT/Of1+01qU1X3UJsa/D+smCr3yYg2DfUPFYUesgUbAvBqrTgu4EPzRmsf3FGOb5/sT2N0FPG3iJeS+jA531CHyLF+VecbhverUCHkv9t8g8uF5hsM6+t7PAfYQu+7zTcUTz7YOvONrZ56Ohc3PmB5gzP9HCf+Oy4qdYyXDcCH8YI6P068Y4Qw90UFr+YYiJ/tsJVvOi2bvZCP8F+CucQfdo4/q7Y40cOfc3FtgeVna6w6keiMJ6SDuEy2yieKH3LAPKPjs8nqYxkhv/fWmnS2Cjoxup6n0AUHOCf6y5LjJ++8G/zPwvj51zR+qpOnZffGuP7Y1jF7L6F+HdtP1XygQ7jKnkrD8r55XFPwniffaclWMaGqeVryFhW9Yv2v5pzvlpg+jviHBD3jqyXyYqLCvt66+ve+8bEPfD6j8sYLv4vxHXUEfL35l9uhosIwYiVPqCNbKA+jwowHFRVWcb62I0Z+iL8t4CcArkxbKFw7KuKySC61xp4rm+TzvZh94rlDu+j7sSeA1SnP0IlRtmlcR7Y5eeo4nf6VkuEz+S8WtDgS1mBPgHr/cWc6r749wqanPqHTYZnzy4ZpqNNhl7npvG2O4E35gxDHuIfPHIfaQ2S9LXuicoPgR9E5vSad0wWd0JjEv0aH34X2I08nOr5503lLp8qgPfHtj9xT/PJ+1/th3rS6wKlO4POeK0fvoU3IE9tAK9/vtF+T7YnBXwL9ik9sK//wPYDTp2exp4QMfi3NZ3rhZ+I6Nd1M25qnm52uk89fzDLYIuD3BuDVfhPqFdvs0EWEVrfPLJ/i4WrS4271v8WD87eWTeG8riTOl3hw3rJ0Cuf1gb6BH7lk+SiZcf/H8hyBqy4uGyA+S+ph9IVQhr/lZta5ij9N+QeUXNTldrw/i3kxcRqhD3leGclXwguhjMUTCW6Hh7VM4M3oj9+fSO+USw5x52r+4mI4MDXHewLXEP6rAUdDvGM1x/IGp+g0a9JpCjohXGsELoO/RsA3BXxC1TAWX0BwewOsMd5uqvECeudTDUsNopk/850t3DTM44jAsS5Qp4Z4F7qK8ZoAnQtr0rlQ0OFZwhtoloD0S1jLt/NVm4YDcY9XxB1r+Q2/OiNifKlPdMV4PS74zYd/8qpVd9+cUXnjhd9xl1SrSPXp+prep0eV1wPvbcqT8owpr4fxoLweGyvyFyM/xK+81Oz1iG0LhWtHRVzm9cCrZUN9ebZsRi/ohHApT4jBm2z6nd4pYptk8Mdg9cRf1lTyduJdn5tpj24qfkcErj4P74q2czPlhuUNroc2cVFZm9hyM+tcZTas+oeSC98Rh2U5AjhPfDdG2R2B+Y4LdZOvrLZ89Wt0+B3Twb7KbTCekA7qa4yeV6WDuPYSHfYcqt9YOipip+YYvFl52yypHRnWC3W2Wd1HxfLHqMSNlIdRsy+CZ04N+h/lkNvj/68zhZfhLKmIPB6Xyp4yUZFM3e6j+9BSTdN3Hx3v0hr8z4GX5iNL/XXknUjlucM6+jx3vzILnrvnko5X0eOVY1N4Gc6SamOee6mdCBWpb/VQ9pqvDUcbu5nycPzmCH+0ZfsAju2p2kVgj+g1gnc1b1oXQSc0b1on6NScG5X++C97L5VcYnXMeM51bHuEjvHYybyxjGLm3caDb9eC7ZzBfzmwa2Ew6IE/ADhZD5CGIxx5Yttn8H9Mtq/iOlPaPh4TUYYGV5NutJd6MuqEeClJb3Je3m2XGl1+8R/5xR6oLC7DI6wTeQ16dyXBbaf/q3wyvOLNxFt41MJUdtTC1uSkrAbu3Zf5ZDi2B9/GglZkG9Dmdt0o6Bj/6lZEPk+ibuQ12Xejp7wCbPVVufz/F4syKVc8LMcUuHoQE7Y81uIY/par1U8mLY6KD1JxCarv+M4mok3IKA/pqHh2hevqRLjytHMB1wKuBVwLuOYAV8zKEMcpPhuJdvBa4q/sRjWWD22In16TzumCzpAoV3VMbgd4Vqt7llvZuDwsH/tFhQuXaZrKg5UnW5GxR+mHwYN1ybLpPKvVfJ5UzBC2g+HgsgPAg+WVmF+M5HPg9Z0pOixX3KGMmYdYbB3HPGPdlS7EttFV1Eb8FSIuyzGNBv+D0EbXFs+qDWLihlQMJffDfgGP+JoEf0PBE+7KxXzhycr7vK4v8NDbDPTsg7I91LvlSu/QzrDeKU+Xsmche4F9j2PF0PbwTqyK1QvFsVr5fqfbwPA1Cf5W0easd74zT9yuBr8zsl1Nlr1oV5QVt6va5VbnAUN6oHbk1ThwFeG6SuBScauxfdnwcd96daBdlf1CPrldDX5vZLvi+VXDY3l12xVlxe2q5h8qXjKkBzg+mEyUR/86yhuHPPaUKvuNehDT5tg+Pvt9SLQ5zx3ZLsSML+hZtPtDC8/ibUcPHZ4oXIuOUsgVmP+/0cPGMlHeUdn8DxN/CEOZz5BD3Wj7AlnYfBr8G4TIQ+Y3TzEh1NjcvXBOG/6Wm6myVVxF3cwau4pC3Qzz5oGq5mm7h41MlHeEKxPv8qTCmkOzQGXdlIrxqOWbERg+js16W2Dk6LbHGHNLh5oRqfrzjY5YbtxDB0c0VCMe0Qz+PZEjGu5bGh7LqzuioYx4RFOehdDJW3UqRnlL2wSPslcjGp8Gip2d8mwMy6qVVUhfVH1D8lH6pe6lV3v5oVUwxlfkKeUqGOvDuhBq2zz5bnNBeGxvXo1g3AV7nrAv8bmAbjfAhnQBvR0X0ooY22pdBM2QZ0adGOQYoF8CW+C7nS12xW/wHxb2JVSH0Gw15AVRuo7jB8cEzdYOKscEqVtnVNwPxwTh+Mt7/L5vJnHiMRrlEBv3xvpgeMvoPOrShyjWDKd95xFNNcXCd6zzWN7gFJ1mTTpNQSeE6zyBy+DVHKfHx5qMxVUEtzfAGuPN6I/fr6J3DQGLSTXTOg/fzsU1k3IaMC4M/bkDYPgyHxwOzidcZTcBsDxPSY2vrxVmdEDQL2G+3hcKyzbcFcPn35cRPuf0yssXUo18qVD+mCNMv/7zLxn+g0+tmzyCExuqZ/DjAv58AV8ztPS9alqFw0Ge0KxcS3mxR5jGK/IXIz/Er0La+QhT2bBJzLujIi47woSOK97Q67WN4SXX18U0a7Z5sWH/m4EpXzdnIm/AIu+hTVOuV1l7uS6SzuqadFYLOr3enF1NdHwbct+lZeM1kKemY68rfnnz4+Nw4cP3afmhXCWZ0+MPjpF54v7KmzMMs8HDX6PgT4Xrcp2xnorna4GGIxx52kM8TLo8Ch5q2lQZros2n20Yj8sV6UZ7RA3/bB+jKxeuy9uEKBXEiu8yN732mNfN8ckfC68SrltxllD6g+W82MRFI7YmJ7UwxFlFmXBdbA/+6C7uJ2wH2tyu44KO8d8n4DcQrnFRzmTfjZ6a5fCFAapc/v9aUSblQchQUH9VXCr0t6aTJPozFHxNY8V+MmlxlEMp9AkOdWWkCqHh1WLVKwjz560JcW1MhCtPOxdwLeBawDXvcMUcpsTxgD83p8ImMspD/kIrSiwfcqi2a9JpCzpDolzVsa8d4Dnm0w5lL0hQn+Todo3k7cs1Td81krzCM/ifgRXey5ZP51mt8PKkVtPYDoaDyw4AD5ZXYhwfVhuCKFfeEFSbEAh/oPgNhQApXYhto33URqFwQeSHY2iegDa6q3hWAQF8BWS3WJADBG91jA2LNfgDsAoPhcVe46Hn80rc6qF3L9CbhbDYpUrv0M7EhNkpexayFyrGR12owmF2KGOel5YNmVVhdqGQWYN/SOgDj0WsGz7+lNwSh9mNe9gYFeUdlc3o3agHl+HJ36GTIybMTp1OYBPxiBB5qMnytBBm96wLs9vmYSMT5R3hysS7PKkwO3UlTIyIlaiqBmi/T6h0yMKqGVZoJqD2HEIfD1Sznms8dFTgeJ54RDP4H40c0RLNpOSIhjLiES3Wc2Lw3UJxuKupkLTQyia2G3KYidJTNVPrFr4Sc7BFXa+iVg98ET6WC82q8WONeUo5q65z2KxsCCKHVaIHjK/AxOGIL7ZXs6hYXcDVE6+suh2G8e09ow1AHBwKZ/C/JmyA4Rx34brF2LtxgOErnNTVO+oapFDYp8HV1MchpY9Y/5hVHsKX7auhQ2ihw5LjRKeb3oRC4HDv8ru074p0xoim0hMli7Yob3CKTrMmHXUFUgjXmMAVau8eh8AZi6cS3N4Aa4w3oz9+fyq9awhYTKqZrvbw7VxcMyl1VnTW1aSzLpLO2TXpnC3ozAhxSbN9/0jMhlnF73g9khE+5/RqyvCraGLjqyXyYkLnvtne+ekD3/7ZX8yovPHC72Ki7c8W8CYr3JwuIatjamjCjeY8oTnaRnk4vBgPKnTuxor8xcgP8bcFPIfOxbaFwrWjIi4LnVPfyJotm8Ghc38HUygOnes1L7MdzME3NuK9cWVvbMRgjjI3NqJMkTeWkQoBY70zHmJvbDT4vhVTvHMImJWJvbERvxHHdPO0x8PD4oKHmoERMgSMl4e+e+KYVyXz0E3WBlezDqX1mEMn0e5zkAzqA4eJ3wR5V1LezZDHdwTeAnm8sfMSyBunvFshD/WIk+pveKrm8+TucQKXCpDi4Cm0OyZD5bI6F54xz3jld6wzWD4UXruhJp0Ngo5y3eF8q4fHF6I92vyVlYpfk5n0aIfu1niGseKXN0SxrNo48oXsIp1zBZ2yfPXgA0urCc730Y1M4M3oj9+vpne+ZZj9r1R/3MO3c3Gqj+Vnu4t1iyy/dIWm6bvaiD+7avAH4fOVa+E5dOD/ejc9D+ncQPyrOJCap6OiTYDhbxEvVU1A7H5yuUhpvmQUpYJY8V2oJ/DeFW8rXkHlykRKG13lU1MXxYT2argcysKJd30CPjQgXUm8NwLlEQeWY43J6D32tvWCNkdMbIFJcj/5lhUtlEe3qACGYR4Mfntgoo7nGlW9uDfzAI+6NeGhvxuszC0eK+YEfa4fjjD9Hn59V4f8AMgg9FknPkvL71AGWNb3P8JeTnXB/5Uurid4izjx1Z3b3+BfEWj/KwUPxleednThgWEu9/CwS/AgrOYNh+59wLNDz3MJtnLcStwSVwo8vmTSyDXWtJelw72D6dj/SgPymhdop6ZmByaO+qITeERY56HZ53Qacpq3PM1VwMmV1egFA06wflUDTny9tBudmgEnvkFbGQsu76hsJt7lKVfnJ4pdwufa9Jlx+UIbX1H88iD1RjBQDU/QS58H5+3Eg1qhKW+QwasN9NBNx75vyvpooyx9X5mP5bVbgAl/rwf521KS1ztmmderBa81vRelvXLsQUOvHHvQsC3ZY4deuXHKQ68ce7NjvXK8bEWvHB8NuA3yroNnTspjZ3LP++W2M6bwMhw++2xKbBAA2hBediudCt2SuhVwNQSOVxa/TYL/4YA9UjtFoX7Q7b4tvs8O3T83Uh6Ww1uqDbcjuJpBKfIuMqwPB6XgbkxDwLNsdgh47HMcJIXtu5Xy0Lawl1jdH5jzft7S6XApvviibuXfSfxsTkgHce0hOji27S1+83r/sqdfYT/BsuzOMvjfg8XlR8mFpYL9+BjOx6GfvXXMX56Ds1TgUui7fKF6ovxe6annrwOfOzvHn3sYnNguex+ksjGh+yBD/RRl0nYz+yTPedT8CWXabceT28zw8W7jp4UTQR0l4y8MjZfkvUrw5F8WByDUnZF1jzarrycxrj4P/xw4jNcLKNoMbzqBDipln5sE/0Voq8fGNE4neFBtZPT6PfA3Eg8G/2WhLyE7gPq/jXAa/FcAJ18M1A3npR6cTwXmGqqfhu727Dae8nwC5chOZOSdx8XtQJ/b9L1EH/GgrjFdF+BXHVUM8cvjjeX9HYxXf0nRC2inStjqRqitLhD8xrbVxkD9GJeVa7qZ+hjqIyiPb67QOBeVxPktMaaruco+wP93EfN8tNVsl9U6F+c5am7AxzoNx3dEf1RjveGqN9Znf1r2eG832aQ6iODczIMI6sh26rH0N0en4w3dh5s/n0F8hOZ4+fNFxTPb4YGVx3+VHVYyDMm8233bHN2E7bGN8pTOzrY+zub906yPavxQ+hhz/3SsPuL90x+huZ26K1vZaOan25ybo/KMv34PPNt8gz8N9JjnPTcJHkLrhJsF/E2C5xHiAcsybeyXKBM+JGjwq0S/7KHPQx4SRLmx/odklCeW6S0CHmVlMmkTPMpX6f9NlKf8SKE+G9s3rGwuh8fJVqf0zylbbfCXBWy1qlvIVvfKPxey1b3U1fnqn0NdjfXPPRAxFwgdUO22B8H2S92Nr8ZhXieX/e4Alt8coLOiJp0Vgk4vfZBIU81tuD5lfSFYfgvVZ0vC+iieORo5T3uL31xXd66cKuOzbViWxzuDP7RyqtwdxbOKgg8doA7p7ribzmc3H9IdUH/nejHndIvmes7J80ocL3m/XJ02QN3DsdNgHPHYC3mlPLyu5It9wmTAJ6tQD0NfLg7JMnYegqdcbhntzn/o4oZu+sEfOphHe3RzPgdgXSi7R8f2Eukoe8ltjPYVcfCelcG/JTB3VHoQ0ptuazr+lhTqBp9WUX7+HtqQea032yhP+R1j9YZtCNpzHKNt/A75yDI3fZxEfUb4hgfPZsKT0ftBeI/lLqY68xyJcV9C8FbPfg+84eO5yL8L+BK2duHhhcTDti48bCUeDP5HBQ8h+ecpNCeseSq9mRE+4wffIf6W0/rRcVEpY/kZPaUHeeK+rPqT2isJ2UDVzxWuKxLi4pOZFdvrRmXbLKk4L15XoB27nfLQz7MHcHBq0P9Yn1yvHx+bwstwzCu2F+7nso5tFWW3Ctxz1R+2VqMX7A9qDVC2P/Ae+/O9P/jiHvM0H/oDtpfxrWSUp46LSzH9peJNGGOx/cXwp+ovSvdUf6l5E0knX4oNuum2Kk93Aj61j4Htlar9lI9rrtqv4s0CwfZTa/iU7YfzizLtp3x/fEdsWd8flp8t398o0cG14N7iN187PEW+P7U2xbLs+zP4vwHf31fJ91fWv9dDf12jbHxi6u9V875DrP+Jx3Z1qVqs/wkvPb3U438yuTo3vf18cXaZm+l/Qj4MnmPiGIbj1yZjc2AtxYcRlc6izfH5U74d8Kf0On4N5czxYL45veF2buacwepneWXGBdUnsD7cJ9RePMKX3Ytnvcc9Zb5AmftXnm4VuEK8bq7BK7cjthXHDRgs6iXyz3pp8P2FfneLGzCZ96L9Q/40JdOQP62bTHlNE4opCPnTuvnO2SZuEjzgmKj8m+NEU40Pyk4om85+I9PLE6D9OVYX43vUPvKtHpwnC50K1WFc1CF2jAuda9gWKIf9ckDQ6tjDv4aT4TP9WCxo8ThjsGMgpz/uaF4y5qdL6uGarJMRPueeU2uyM1KsydQ8D+fAq2k+ofoYlj1Y/HIfe+EJU+Uu8uB0Tvfb0LlC5Od97el4e7WfrPpuaA7D+4wqBt94wPhstffEsVMGfwX0zdBZpjT7k9m31LiI80IeF0NzwDxxW4TmUSiTtps5ZrLvW+kXtrXv1lBfjCafQzD4DdAGoU/F8Li9qSTvvrgEzOO+wf2420cBfGfa1do3f7Z4be73OwJjq/IVjMO7sjHvfJ5Q7UMpH4bFEar+gmfWrX6WV3dfdjZjYfgi+NC5QDwDwH5idR1azvv9ZHvVuQFsW9/5QXVWNX9+QfHM5wd3BfQrdVwhn92J9d1Y3++h72bZXPturG1jfDdoC9nnNw55eH7kpaRfapzEsquKZx4n7w3oy45AHfNUdowyftR6+CbKw3KsS2o9aDzcLOSAfPHdLAZ/f+R8IdE6elzpJ659WT9D8fR54rZ4iYDHGHuOo8d7N7YTLuXfQpn6zvz1O72G953peCQwX8Dx6WbifVtJ3scF76q/YZ/655Hjz2qdz3PWbQGaXBbHnn4PvG/9+R4hL7Znyp+UP59JOA3+vQF7oMbUG+Bd2bgx3kdBuXDcmFp39G4+766f67gxa/+YeMOycWOx+o869Bek/zieX080Q/NYLot0fPrvi9v66YD+h9bl+fMphNPgf66k7yuk/93mCKE5UmiP0exND+fnG+d6fs76H5qfo/2NOR8Zq/+oQ18amY5Xnb/FsvbFHz5/+x9L6led87fGT8z5WyzH/hk1d+V29I0zvE4x+E9GzrcSxQEvn2t7zvsWan4bsp+hfVJlP9V4yfbzs5H+mdD9FDG8jwveVX/DPvUpGm9w7cvjTbcP4vEZfuvXvvGG99oM/suB8QbXZsofxOONwX+l5Ho9NN50W6+zP0jdJ6HW8qH1eqK7oFb0+qxPN1+ZtX/MhyrV+TTWA6QTq/+oQ79c6H89ud7/QxnwYrgbArJJvwbzt4V+toC+/TYj+PijT//9lz++7dJ7+Os3ebI2yvds8vb/K/LJ4jXKJku8fphjIRrEmyqXEQ8M3yfgDe+QyGvWrAPztUjANwT8ElfpyxtYfWbxJCq3w8NaFsDL4rX/T6J3Dedvijzl4qyqcqd+YuIL1z311091U7mq+N9xaXPpEy/bsaVX+L+w+Bvf/v3/etd7e4X/awO3bOz7lXef0Sv8P/ztm9Y+ctKq/1Wmy1vXwlBoK2fbwsPwvsTQEn17uOFvES8l6U1uew8TPa5ftS97LIFnlgpixXehntagd9x7+b73Ml/2sJZr0/uOi0qjphWjItPyUMuWUN4yyMPW5NQQ/BvPuZZ+E7SU4ZgfbI+llDcCecuANrfrsKBjtPsE/AjhGhblTPbd6DVEuSWEI6P3OOltCNpNgh8rJrq5bL93gptWzyVu+v+ofxPEoxqknecd14MPzjDdPA24WpZgaazlMfwtp+XdcVFp0vIMET2uXzXLw1MVozJKWA0GYTGNAmfOA6da9FZRjpOVG/LgzNOAm6mpJaQ8FNuq9q5FvFRt1QbR4/pxGFVFrV0S0iLG6Zy2fCgPtFD9HlxWtknwl5NbAi3VTqKhrBi+M/k8E8p+4nR6lrfhxCmYK4rnEaf1H5/7BG01zW+L8myJcF69h/JwecDXbfcH8hYH8gaoLpjXgnJ7KW9Q4Mz5e++J0+G4n6tf52b2oTyxzFUbo2XjJaHSMdZJH647CBeWHyFc7S64bidcWN7Kmm40RLkhQYftGR4dKtHfh2PtmeFvES9V7dko0eP6sT1bWo3eUEblkR7i5GNQy0Se4bKv8PR7cFnZJsG/nOzZMuCJ7dkywS++Q3u2k/ocyrZqn1NH0qx92BWSp73Azy5yZbYhT9nHA8Vvk+B/BezxHrLHqH/G44jT7YXPSu9GA/VXfaDXcmY7nCWkg3l7iabSOeyT1k4mZ6XzVm455HHfZX1GeMSh8BuObjp45ERdN6WDSKtJ8D8KOviGwJyAdRD1M6O8jOqCcEo/sc0OELzx3S/gEV+T4B+GVRhvZ1h5lBXyxUdHDP4Y4OTtDGV/1aokpIvKXiuZLiNcSwQurA/7OpVMsX8uofob/NuFTHlcx/JqzreP8tDvOkR5/ZA3THmLIW+E8nDOx/NP9PuxvR+EPNSR99J82urzvuL9gNN633FxiX2JykbiFskA5aFu9VMeynCQ8pDeIsrDdmlRHra1tcOgi7NFeeLx0OB/LNC/lP1U8ymDXyHg0WYb/Iib2af4+kssx/2Sr8PE5+L03DQ5IF+vK36bBP8zIIdQ+IDxVXN7ckhtT64EAN6eBKfWZL0QntviRAF/AsCYTNoEr2ydspsoU7Z1ai67QuDnuexHArYObeVK4j0rybva8lP9GvvUkcBckcfbpQGaXBbp9Lty84hfD4y3an6MfPF4a/C/EbAHSpah8VbZj2WiXkqmyynPt64y3IyzZv8cVv0T68/9M1TXPFW1leoKX17fY99g/Vd+hFj9Rx2y9VfVPbx/+18u3PK/XvK3p1fZw0O/kJWz8b+iZ/uTyL8l5aMw/C3ipSS9SR+Fmjdi/RL5XP9zRuWRntqJqbkn2mB/ErcN6qnPZ2tlmwT/Z+SLCPm60AfH/g/ln8N3fXOES/VRlKO1Sd4Pv0KyULtMMbqteMT24nnrYEI6iGtv8av0Pf/ruKh0Ke8ZGA7EjXpTQrdfGmsrDH/L1epLWUjH1P6D6ntWtu1m6tgRgOumf0hH4XrHPMX1UEJcjyTE9baEuFLK61hCXI8mxPXmhLgOJcSVso6PzVO+3pQQV8r+mLIdH0yI61hCXI8nxJWyHVPq6rsS4kqpX29PiOs9CXGl1Pv5anNS1vGJhLhenxDXkwlxpZRXyrlJSv2ar/PClHo/X+dy9yfE9daEuFLq/Xydy81XvU85N0nZjs+HMW2+zuXmqy1MOZdLaQtTtmNKeaXU1ZTzr8MJcT2ZEFdKeT2cEFfKvp2yD6WUV8pxKGUfmq+yT2m/Uvrl5qtvKKV+pZz7ztc5ZkrZpxo78uehRLjy9GTxO+LBjc+hvVdFJxM8q31S3L/nPVEHeGqeloz+RJXhbxEvJellofZRe6scM41l2yKP26ps3DbiaibExbEkSm/Uvl9ZeVU84p+nrR4Wbye42z2sNQTejP74/e30riFgEbfqkos9fDsX1yWx/FCATi+6Pv+/qPg/dCyrB9vfe2PNwLNl+/sowNUdDt6dEFdK92vKKdV8XaqmrGPKbcBDCXGl1In56r74wYS4ng86seCunjvZp5RXSndPyjqmXKrO1+22lO6LlHr/loS4UupESlduSp1YmH89N2x0yrH2jQlxPR9s4ZMJcR1KiOuBhLjemRDXfHWZphzTFlzM5XA9H7aGU/ah+RpWtDB2PDfGjoWt9LnTiQWfwtzVMWW4+XxdD6WU/bGEuOarvzDlPGfBTszdfGLBTsyd7I8lxJXSTjxZ/PYwDKQ/I3zGJ75D/PM5DCRPfPy+aujG8w1XD68MvSpWx+bqylB1ObyVbVNenu4DOM5riHd9AVz3J8R1LCGutybE9VBCXA8mxHUoIa53JMT1WEJcKev4poS4UtbxkYS43pYQ1zsT4kqpXyn7Y0r9SmkLU/L1aEJcKfX++aATb0mIK6V+PZ4QV8o6ppT9wwlxpdT7tyfEtWAnnht2ImUd35MQV8r5xHyV/RMJcS30oXK43pgQ10IfmjvZH0uIK+Ua+cniN/QJi5qfXIn+5KLhbxEvJellIbkov5n6xIuVbYs839Xvlp+nuZLZomr0gjLD+lWRWZ4mil8llyyezzep65xZ5ngVcwkZbI+VueFvuZkyqCLz2Ounre4rBC9tysvTGwCO8xriXV8A12MJcb0jIa6HEuI6lBDXWxLiuj8hrscT4kopr5R1TMWXslPzRVffnhBXyr6dUiceTYhrwX4t2K9e1jGl7N+UEFdKvX9nQlwp+/Z87Y8pbfR8HWtTtuODCXE9H8ah50MdU/KV0q7O13H73nnKV0p5vTshrmMJcaWcm8zXMW2hP85dHefruP18WKel1IkHEuKar3r/toS45quv410JcfXCRoc+v5hRHtIJ7R1h+aUBOotq0lkk6AyJclnxW9P3P5wRPuMT3yH+lptZ51S+fyUXq9+KavSGYvQK+eHP2rJs8z/7JK3vU7FWtknwnzrl+G+b4PLEse8rBb/q07m5vvxGgZd1IU8dF5VexHssxgviRZmUaIORWB0z/C1Xq82zkAyVLbG6nyB4aYs8nz4gnRMEnbbI27mAawHXAq4kuCLsX9/nl995X/9Pv2rvhecOb/zWScve/8h1/+U9b73u3DXqc+Zs/9AGlLBH0VcSG/6Wq2Vvs5BM1RhidT9R8NKmvDxNABznNcS7Pg8uZUur4srTnuK3xjjY5LYuUbY9IHjqRBV1a63sScWLkm3esvInVys/aOVPgZedcJnJa22t7Kmi7PIXuv9+xlfXPrD6hBcfuvkNj371Bz705hU/df5ftk/65n1Xv+E7Tx2ysi8QZT3Jus6k3rYgc2/xm8+L/qmojOnWaZDXoLL5s+lWk+APnDpV7runTKeNfZrtRR+8L9EWa2LtheFvES9V7UUf0eP6sb1oCF7alJcnPlfYEHQago7C9VhCXO9MiOvRhLgeTIjrUEJc70qI6/6EuN6aENexhLjmazum1NWU/TElX29KiOuhhLgeT4grpU48nBBXSp14e0JcKeWV0n6l5OsdCXGlbMeUfM3XsSNlO6aUfcq+nbKOTyTE9fqEuJ5MiOv5MG6n7Nu9GGttnwbXY0sorwF5g5SHn03qI/6agr9mgD8s3/SU43rEnLfpp7IdF5Wiz9sY/lTnbfqJHteP15qLBS9tkcefuFLtkwk6ZflK+Fkqy19NcDs8rGUCb0Z//H41vVOiQNwjlK9Un1XGJ9q2p3yehgJ0hkQ5U81B4LED+fzprI6byWMnwCOWNzhFJ6tJJxN0GJdyU+XpFcVvk+DvK9xUeR0aJ07HOSb4U21l788U8GMAY/wo2VjZIUE78/waHefCOoQ89BOdMxPSORNgmkRnVUI6qwBmCdE5KyGdswBmEMrl/58Neahnxsc5gg8bds6F9yWGgegtEcPfIl5K0pscds4lelw/tj3nCV7alJcn3s46T9A5T9CZLVxDbmb9uS2xrr1oS8PfcrV0JwvJBevHbXm+4KVNeXl6DcBxXkO86/PgsnqlwmX9tGZ7nc/ywGR5FwDucykP5xK3U94ayNsDODg16H+sTz5+PT42hZfhmFe0X8b3iJupY2g7fLZA6U9blDc4G4ONzw/BVtEvnDqdz9MA9x6qw+mQx332DJGX47/09Ol1RX3geVBZG4LlDU7RGa5JZ1jQYVxNwDUAuO6CfIT/XCF36yfcHzsuKt3FfcFwIO7VFXHH2kzDPyToGV8tkdeM4KX5mZ/65K+/9tu3ZG5mv26IdzxHXCPg1adOTVYXQvkSstqDX5V2RNvycNm3mvJwqWo85Pq9tjOdvzUV+YuRH+JvC/jNAFemLRSuuxLhwv6WAld/RVxL3cwxyfq0skkjRKesTcLyBjckymWeX6PD73zzNKSp5ml7i99cj7906lQZlAOuFbEs20iDv+qMqXJ/WOBUY6bxWNPerVHzA0uWh/YBeeCk5g7GV96v/3RsCi/DMU1sgwspD8eNiygPdfHi4jkkv6pzDrX+UHTOr0nnfEFnttuc+9pFkHc+5V0MedgWnLrpyuvPnMLLcMwrytv4HnEzZcRHDcrazFHBa80x6kKWNyYlb57zo7yRP05K3sZzLu9fLSFvlKnxNuJmyoGPXKh5Cb4LHbkwuJpzlotYppiUTPlqrUsgD+XASckb5zjfKCFvlKnxNuBm6kYJOVzMdXWCLtZ1DeW9EOD3U96lkFd2rWn1yWV02qopvAzHvKI+GN9KJ9nul9VJLL8mQOf8mnTOF3T4/0XF/2dDvq1DmwR7FswrTi5iOtU48HI3PQ/162yg+4IXTK876grL+BI3s+6XBOqO5bktkc75NemcH0mnl/U5L1CfsvNj5UdTdM6tSefcAB3M4/G27NxnVPCs6KyuSWd1JJ1FNeksEnRq+gwvYVuNiW21Gs8uhbyy4xn6Bb9Rcb5mvNX0CZWWA8+jcMzi8ewyyCs7nll9yo5nqA/IN/LedHp8eTnlG/y2wmbnOrCFxgCc8xjtHO7NZOd77beN2Q+pqCPR+yGGP9V+iNpbCO2HrBa8KFvFR3Tq+ICaCXGxb2I+9GneD0nVp8vsh/SiT08U/bOmrKcdG3eEa6Hvz6++n6fNAFe3v16UENdC34/v+7Fjb0Z5PhuxgfIN/hEY93+Qxn3U74uB9n+gcR/5575fdv1wjqhvyI8/V32/4pw82PeVXJ4r4z77pir6p0v7pliH0DfFfb+Obwr902X6vvIz1O3TP07jfkVZy3HfcM2nvl+xftF93/Cn6vuqH4X6/hrBS9vN1Ace98v6FZHORQlxmY7XbK/S/nnWIZwvcN9HuzAXff9iylP7hDj2Mg6kUVPO0Vf/cL+oOAYH+4WKs1vipvzNRRj/5omjt9y358D+vTdOPHBk/OC+W3YfPrp/94HxffsOTxw5gkwjIQxkwnxMDGPPvg3MUIfBythBAbUZuYZwXdQF1x2EK9SRL+6C63bCheWxLP6/yM3k0zYb+iLwcOdUfL2M+MKOzgPnC7vguotwYXlefF/aBdfdhAvLY1n8f5GbySfLK4Qn/3tRF772E1+XQfkXEa61XXC9lnBh+bWE68UBXPnzSYQLy2NZ/H+Rm8knyyuEJ/+7vAtfJxNfL4a8ywnXugCuPL2OcGH5dYTrii64DhAuLI9l8f9FbiafLK8Qnvzvyi583UN8XQHlr6Q8lDN/o6RscDWW5wATNRjyr9Hhd6ENM77T8cqEdBDXXiiX510F5dG2qomQ0bDB/2p434tJseFvES8l6U0O/lcTPa4fT4qvEby0RR5vAF4j6Fwj6ChcaxLiuorqgwsADB78B3L0XA15avFg43eT4Idhk/875MBBXbkyoo5XC3oGf23xf7+AR3xNgv9+wVM+ibbLuNqCp2s8vPB4ynpiMHkaINq96iOGv+Vmtn+VPnIt0fPpm9X9OsFLW+ThXArzkM51go7CdUlCXFdTfXx9ZPi06TSr9pF/OH2q3GiBcz71kZUFT3X6CM6hhsQ77iMVdTa6jxj+FvFStY+otsD6cR+5VvDSFnk4f/b1xWsFHYXrRQlxxfaRs6iPXAZ5MX3E4L8KfeRc6iMoI+4jar1ymaBn8NZm/QIe8TUJfk1kH3mRh5f8GefNQ24m/9xHKupsdB8x/C03U3+q9BG13sP6cR9ZJ3hpizxcM7EcG+JdXwBXzJorFtdlVB9fH7kqUR/5Hegj187DPnJDyT6ieO/F2kv5F/A+cZ+MlO62RfkXUd75gk43HdlxmubHpyO2fm8S/K+CjtwS0BEOtECeecOl7Fr6HEEnxrFc0f4sirV3hj+VY7mbr4zt3VrBS9vNtJ186F/ZVTX3eLbgyp/tbuHQOFi2n7fdTD06h+isTUgH6zMbPqM87SU67JNUv7F0ENceouOzW4fIbl0OecpumX+vSfA/C3brcIFzgGBK9tOrjferRaby97yI8nA+vJbycD3Jbb8e8nDuwklt+lld8zH0vlVTeBmO64G2/RrK64HNjZ5jLtjcNLgW1gvT+xKvFzAPv83Adq0h3vUFcF2WEJftZdRsr2R2LU8csIA+tLIBC1afsgELynZxP2E4HF/UvqHiKxN4uD9Zntr/s28aqD3GlUSjbJ9fKfiN8aOhfpXQoUZsnzf8qfxoqv+E/GiXC17aIo99X2pf9nJBR+HidT2uled6/LysGr3g+Km+A5NCv3ztsDZAb101en1GT+17Xybo5Qf9+t3MNvTtz6t9bWwvX59H2hybUzbeAXFxbM5aTx18baD8P6EYhSblfa6Yoz/zzbnTpsNYXMknAea3imdl89HX8fsExzEqeaq5Lojue4a/RbxU7XuqHbB+qJuLXVhHsI18MUsvFHVhnb2kC0+ss4qWalOM4eI2xUBX9IV+PgB3sYBTefn/GEPHwc4G+0XwVT6xanodkS7HuZUNPr5I8DJbB7FjgpxRVr3wufHFZHWDnC8gej65cCwLluW2yROv2VRspIobebbgyp/tu1omG3WZXUy7KjrqQq5ex0/F6HlVOsrfFYqPqkoHcdl6y/om2tperg8voDz0e3Fbot+L5b8e8viSrHHIK3vo3+SQ2+p/E+ETqxmoPu/ltwaeOSn54UGCBflNj3/klFJ+2E4l5Ff6MBrLD+d9LD+cw7L8cP6G4wYnJSOra1m/NeqY1Sk/iGGX4E4dxLhx4oHbdx/Yv2/30f2HDt468fr7Jo4c5c8e8AjAI88FHq75sww+rvPUR3n8qYadAg7TkChnNGpesRW9sjH86rrYKrMyNStRRzhZs7FsW+Th12G5RzTEu74ArnMT4jK9qdnTSx894yuAe3X0DHtzGU+uOtpteXjl9T7KOx3K8dWbZ0Ce4VdXXiPtNjxjXp4a4h23dVvQVHQK0cz4SuyNBW8DBFdSP66JWcFV3FG7JtZW+GbzyJfa3Yu5dvofl6+/8P988FsfyNxMex3a3TN4tRpsC/iaM5orh4CGczNH3TzhsfbzKQ+v4cLZBF87XXE1fmWM/BC/iiyYALgybaFWZudWxGXXO6OXwPqO9b/TIO9MysN+xlFMY4KHsUB9zhE8DIly3B/PhPe9GLsNf8vVsi2TY/eZRM8nF2Xjray6po+vjChrgxHXaQlx2VhTs73OZXlgUh5M1iF1OlZ5ZsqO3VafsmM3ypg9lQv9qvf96hzBC8ssT3wdwzmCjvqMkZL/2Qlxmf7UbK9zWB6YlA1iHVKR1KrPzUW/4mvGjPdFArZTPDcJ9mGIlPspmgNj+WIRLj/Ldhbloa6fRnlnCp4yooHRGKj3/Hk6g3+04DuX5c6OxtnnwYlt6tz0vmz1GAC6lldCBz+Z87W+M0UHZZYnvpZV9RuE53mrGr+wL5kM1PjFfXZM4FoF72wHT8nLeOyFvJAHltfZXXhmeSn5ohxMBsounU64The4UIYheRmPvZAX8sDyOqsLzywvJV/87J/JoO1myvIMwqXkhf2RP01q5fsFPOJrEvwHwSbw6RG0a9zWHYEbbWNGOLAeLVGPIcrDsjnefzplOl51gkhFnBi8ugEBo0t47oVRDla2ZrTMvIqMVh56rDMnNTabHGI99BnRMbwo/zyxTpwneFRR8C+KxGvw3aJ9+iL4xogQ1qG1gm8V7XO+h46KtsyTL5r/N6Ev2+dnlT012jXt6Yiypygjtqeqz6rowNg+y5HleNqNI5VRxkZT6RdGRe0ocdpPRaGpiBvWvX4PvOGbEQEm7HVIn1Vkd1V9xjrU1WeU1wGqq8H/v7Orz8O91md1K0roNC6e9L+M8pQ+Z26mDStrXzEy7Kqap11D+m918+k/n3Y1+K8F9F/JV0W9Gnzopodu+n8N5WG58z10fPac9d/gvxGp/0a7F/qPMmL9j73BxODV7SHqJgV1e0hI/68hOqn0/6wSt4ZcG6DJZbFuPv03fE2C/25A/5V8Q+2xXsCrSA9V//WUp+afTAf1H+XF+m/wfWdM1TWk/0a7F/q/HgBY/8chryHgWd7XC/hxgOFbfa6HPL4VC2W8nugoOxir/3jbznDNW3NC+q9uzUF43605y0AnWP9VH1RRmrH2KKT/11Geip5iOqj/KC/Wf4M/OVL/jXYv9B9lxPq/HvIaAp7lPS7g1wMM39iDfSOk/9cRnVT6/w90s1oGcMuIZiZo4jv24XN5hQvjo/bA8z7IR3j7pKz5KVD+JfRgxxCUcYADcVfUsR1YV0sNeof4hzz08tQSeTHxD7+97j/f+JPfvWw4o/LGC79jPV4k4JcJeJNVP/HecVHpRtXX8bNezs2sO+ZhfzUeVPzDoor8xcgP8bcFPEfax7bFUjddF1jf8z8Vp7JY4DJ4dWU1xoZwTBLaIL5KX52GCcWz1LTd/cp2Y31iPtEa+tT8hQIe4+9MNm2CRzlxlD/SzAgW6eC+Ddtu39Xq9pnuXC5/dcL0MuijZLuGN4SXkH9frF0z/C3ipSS9yf3uYaLH9bN2zKN7zUYV0b3bD+3ed8Pue4/cd2CCo2uXwDNLBbHiu8xNrz3m8UjCcDfS/ztEOSdw5/nWcm1633FRadS0YlRkWh7eU7yE8nAkx9bkpDzoxnOupd8ELWU45gfbg+8zHoG8ZUCb23VY0DHafQJ+hHANi3Im+270GqLcEsIxIMp17OGv3v2Bt7Q//EMf7Kz+3N/3b37yb3b93dZF6/7ocw+d/Ntv/Zev/+/3M89O8MztuIRg1a/xzu84qmQ4Ia62wGWywQ+nltD5lbHWyvC3XK0+NmmtRoke14/rvlTwou4OZxu0VNBZKugoXH0JcTUS4crTzgVcC7gWcC3gepbjsjwc79uUh+Mn35OB9pk/atcn+OsL8IfleexRc1wbd9Gul9kxjx132cNR0ZMzOe42iJ5PLjXn0pMelbagxzjzxHPv0JjZ78FlZZsE/9OFN6xNcHlivVbzEnxn8slXlj9xxnTelZcspp0Rb9vNrLvlzbbeD0K5vcVvXu9fOkPTRK82lmWvtsGf05kq9+EzpvOsvEZ5GqF3rEPOaS9ZLyJcsI7sVVF6j/AWuaNOvDUpD+szCPWpYX9WKNuGbfyfqI2bkKf0iiORJuvQmSr3mwVOpce4HsPyrgs9gzf59wt4xNck+N8Wu0iKvyUeeigP5Zlmep+J3MlBO+xcZb1dqfQW+xPrLepoQ8Dzmiik50qXUc/7CZeyXagHHLVn5fudbgPD1yT4LwZ2DkN6rtrV4L8U2a6J7JFsV5QVt2s/5CnZcrsqPcD24nEE23wx4VK7JNjWMe2K/Bk+btc/DbSrGqPUGMJj1J9FtqvJshftirKKaVc13hv8YgGP7co7NNiWA4RL2Whs65h2xfqwjTb4bwbataod/tY8sMM4X+R2VX0G4bldlR4o2bbdzDZvUR77X5FOWRutxuWQjTb474k25zUh2wUff0pueR3thGyxC3Lb0UOHJ4ptEEcptG2RP4942FghyrsALiwTqhJuDbDIjVa/0+51FvlkF+kc/0WRswiZn5glcsUuE72RZvhTLZG7TT15mRTqZmqI4XbqRiehqubpRg8bmSjvuuCy//PR32bN2Nw8qw/NBLhs/mezxdiZgMGv6Bz/VSNGt5UZW5TQTgXyo+o/SnlYbomHTuwMxeBP7UzVNTSSGe1ejGQoIx7JlKdQeVQMfpmAx50UnqHgrit3P5TxKNHp1s05vkDpqVopK/0KzbS76ZfpplqVhvQr5BVJpAsjc60LJhulCyGPGuuCGmLRJrAuDAo67BnLE8+28dfKGN48DQh4y8OzktheDvhpQjnEtZjKGfx1neO/Nn3BWaSVbwv6OHt0Hr7xXR/BtwR8S8Dn8lnXmeJZ8cnjF9a1IeBx+oPwGzpTNDcVzxw/h/Tydz8QgMs8v4pn5Ccko4aAN9qDAt7yMKIB+yTCoLwQVwvyEf7WzvFfaxNsb+yXTB9Xkc7Dt288ZlwN8Q5158bO8ecWvDNcZaeGeeL4TXyHtAfd9PPL9hsTk/qxtWuuHL7jnGNLqXwq/MOf/rWb/8c/3XtON/wqXg7HsbL67dt5yJNNYmvGyfZZefRauPjymfKQZsTbQDXe/jVGToi/5fQcsOOi0uRyhm0z1493/FrV6H0/H1MH3cw5CrYlyg7pLCYeBivyoOY6RhPtnCM6Of3fWTWdh4rLyO/X1OHvKe/Q3uI3b7d7O1N4UXa4blDL9SbB39eZKnekeFbnG3DOMOJm9i+2CSbvPgHLnmH8X3kjeclsOtPvqWs/1dXgH+wc/83p/fMJGifKD/nq8+B8M+Bs0Bqz7C7KEgGvPOojbmbfWULlkHecQ/A71T4ZwSIPeZoQPPn+bwk8Ph4GBB61Q90iXpU3G/sNz9sbgg72KRzzarqvFqmxxBE/vAOGeVi3XQDHqUH/I885jld0pvAyHPOj+lLKsd/eL4L3TJf9V/0Ey2tK5LHO/JvnJ+rMjP2/OMB/RniaotyQ0/1N/cbymwl+exmZkqdXF781x7xTu0Uj/ExnCq9vzFNzDh7zfrEzVe7ni+duY57l8bwvT7vhHdt0nkchjjyx295sZD/gR5gBqpPBf7hz/BfHNmVDDFde9492ptMegLzQONIk+M93psp9vHgecTPlZfJU4xf3gUHgBWHzNEF8GOwnOlNl/mPHTwvXxb46PhOp0tFwyAPCMY6q45qaX3HfjZlfKZ/XQIAG22Pf2G26saRL/qComxPv+gT8gKe+TtBudcGrdq+Vfecd0Ezkse3B+sb6jdFumU1T/SVz0+s1SPUaCNQrE+W4nyPviwO8K/mh/ajqg3j7//zXP3z3gyd/s1c+jmt+4o3vGFr74Y/2Cv+Hlnzx+t/4iYE7y/hQrJ37iZY9o7zxPc499kA+wn+tc/y3po/CcX2U3Qitz9j3yvzf7uH/e53jv7lu/VVnOj21PlF9xjf+LorkxeD/tnP8t9t+GvosDI/llZB5U+2hoF2LidBTvnOD77a2NJmoPbOYqBSUKc9pTEb9Tq/vef/W4P+pc/xXRX8o22x5WHe2iw1BV/kirY/lMCvGjj/XnN8uVvMIS0POb/9ZH7COai+K5zfYlry/gEmtIfGegJVjU3gZzpKyD9xflV8lNF9U/c7wz7d+Z7qvIiJZ32J12DefU/RQDjhWmw77fPrYp3HNddLYFD6Uu4pPyBPbU4O/eGyq3KnFs4riZ31QdoJ5cU7boZi1/JAoZ+2i9hHK+H6wfZFPfIf4W66WfcnY3ho9biP29VecJzR5jEV6qh1GnZap2g/gtaLy94TWSSF7ovof903lR1BjSGg9Z7TRZx4zb/LF/vj8GZeNTZXbSn1L2dpQu4XuQwnZPuRVyZ7jV9Ta356XBOgovoYE/JIAX2iT+e4PPvUfqkPsWJVojrio7OkjJZdQjFu3Gxm4j6jbE8qObRy7o8b4bmPbVs8YhfVQEekqdBPHNxv7cLzMiBekgev/A246fNWTSS8BHrpFvefpHoEzEzScmykXXlca3E7g4Y9WHX8O7QfUvEdqGHXHkho3Db+696vKuKnWNSpmr+Y6YCikp2q+o/ww3NetP/jWWLgmR/g9RdvySY888alYNa9Q40XO26vGpvPeqz0ZtLtoP/KE89i7yEaoE15Ylk+rGvyBsalyr6WxVunmoAvbDLVHz/rh2+f2nZS5N2Az1Pwd+brHg/MI4OR9bqUXqv1YVxFexRKoORP7oZQt6+HJLHknJtbf1y+NH1+fMXg1J1N7Tm2CV+Ml8sL+s5Au5im0Z459x/pVVR/qVWc/cdKpv/v6oV75aBc1T/2Rzodfvb2Mj1bNvfsIL8qb96TzdFPxGxNLVnF9Gf1NNV5f1o0li11fKp8Wr5ewf/B4o/qOiieeLVyqv3NbVlxLR/sKOC6wou5kZe2T8kGybxVtF8tf2TW1pnu24ML+H/IhxbSrohOaB/ZqLsVxKYsT0kFce4kO7+2q31g6iGsP0WkKHp7Zxxybwott7Jsj+faMPjs2Ve7jY9NhjPdfBZhPFs8DQNu50n25pfzWltT+AOut8pXw3ahKP3D9P0B5eNPiBMBxatD/KIecXsx3pJQsK8btzitZxsrL6prjvC9CXhx3hnXC9UqoHyBd7gefBx3/E+pbyoeo+rO977ZvGYopsrI148mXcNtiUm3LOoFtyzqBR8ZZJ/AcH/cvPLvGc2NMSl8w3j22f/2Jx0YaDbaRvH5QcU5oe9WeFMc85almPO5YzLiC+FvES0l6wePkWD/2LVWco3cyKo/0Qn6TmHgU340dvn2JbxZty3OaPG0kGrF7eTndr49N570X55GwfWL0sWJ7Resj+zrr6qPSj5A+VvR1dmLaV9nFXvg6v0/6iHNS1scyvs7vkD72an7O+4VKpojLbPCIKI/xEyzvPHVcXIrZP6+4Jo7uG7wmrrt/rtbEyhbVPCvXwbNy2PfuBHzdzsp1i5kfPnOqDNJRMfN5Olj88rpl15lT5UYJZzc9vKP4XdDDqPSs1MOQ3USeNxW/Shf4fJuak/QwFmwstW/f6sq+Cax36HxQbP/iG5EX+lcwPSft/CWJ7PwOsPOXeXA6p/XwZcWvuqPGyqr5ZJ46Li7FzMUr+sSj9ZD3U+rOxbudX00Ur9dRZ/PzhHroi8vjeN7+LjyznVfxdMpehfZwUYfylNLOY33YzseOabyuwHqHYlBjbvRW/gPU07sIl9qvVX4/3t9R7YQ+QWUD1Lknlp0vzsJkx76DlxS2R8UbxNptg4/dU1cxk3wmD8uFdNXgeqGrs3kuhPUX/du8l6vO0im9wrHpkogxphf6tfdZoF+hOe/zUb+UD7mbfg1DO4fOPGSeX+dmzgGc89v1PHG8QC/2hRWdXu3XThAd5efP6/8w9WV1nhzLct80+B+BOegxwtkt1oznHWpdxeWYrxCtvoq0+jy0QnFs6uzDLJxb6Y/RGcTfy3Mryu6WiSti2WIe0omJBWKdqYsrxp8QiysmxjIWF+97YJ3VnFCVPQjvWP7q/ibsE7w2NfgfA1sec38T1neTB+cHA/OA1HvVHLsaur/Jd3eCKsv2Qo2h9v8Q8M50+OyL774mxKPmfnzfgJIj2tGY8zyxchyicsqv4ivLtjR034LvnJATePmMS3+g3ADRRDrvJTy+tbqv/8fuz+O4/XBg/tSDsx+L0dYg//gO8c/22Q+1X87notQcLRN5oTFuAVc6XPPlDMrnaC7b7QyK+XT4DMpTMD/+QsX1szqzwutUtMshXwf6J41fxNlxUWmxWotifXi+1C2m5u7iV60fM8pT++xq/mN5OP/ptj/D41tonqvaQa0rQufje7hHtng+n3/h892zcf7lcyXHx7L2JlbHuF+H1oyZ4KtmnM9ATL0Qf8vpvtVxUSkr2/dUXBGflwrFHMXGA6U8R7mAKx2u0BjQbdzuXzW9TAZ5oXGnSfBLVk2VaxXPsfdOcr/y2atQvwitucqOScq2lrnbDGWHddtf/LK/fnkhL1yn93CcG5jrcc5kosY5Xm+o+YEat1Bv+0GeC+ceg2nh3KObWX9uy4Vzj8fTwrlH/Wt0+J1v/Y59a+HcY3c6Vc49bqJ5Tbdzjzw2G/xumNdsXTUdxni/EWBuL54HgLZzpfvywrlHN1OWC+ceZ8JxPVDfUp573Ac6fpj61sK5x+l5z5Zzj4c9NtJosI2MPfe4Scy/1dqK10941s4RfJ72QD7CP0h2ouL8Sd4Nbbhq7v30q/mEJeW/yShP7Yer+Rv7d1W/itUpq2vO159E6FTMfZb9oh6huy5n4z7LPO0jnnFtyD6DPIX2Gqxsnbt9Hvrs4Z/7/tJ//xfz5f71/4v6WMU10Zzdv/4RGL8+QP4p1e96ef/6ByP9PWh7DI/llfEpzHUcJPfJ+XD/+r+HNpjL+9c/Q/2q4h7Fs/7+9TLjC5/XwDx1PmHh/vXpeajDPCY2AvR8cTSmw4Nu+vl150rLrC8DvK4oazxhH8L5uHPTfQR8H2LFs22TMlTfrUI7xfd6G/xXVk3Ho/Z6lb/S4NV3gBuCrvpm9JKSuAYI1+IauFDfGH5xRb4ULj5n1xK41LiVt91nQWerztEe3/+C//Ox9WvfU+U7w6g/e4GvP6U1WT/kKb+875sE/wjznT+j+Y7aA1n4JkFpegvfJHAz907VGPtc+ybBd6FvLT1rev3V/CPUbqF91IVvEvjrF5q/JVo3LXyTAPJwvmc6HxoX0P7FfpPAxr7lxbsjE0d3HZk4uG/i8K7XHDq86+juu44Uo+i0UHLnyptudseXK39s4wAjLFXebay5pZENuJnNV2Zqa2LfAOXVMUMVVmdlFrspdc2fTT1rbn3VlY1bJujzdMxc7Xk3Klb/7t7D+9+w++jEbRNHb3tG6TYdOvwDT6sco8/oORPvjVQ9C3T/RsOJq46GgGzSr8GsLH6rznD/6NN//+WPb7v0ntgbzN+wf+KNuw4eOjrxP4vcOe6n76/ZT98/X/rpzVA+tp9amVzfT4fn1VCepyCh7bua09dbrHzVq2ZCQ73lqSHL8tQR/mdk0zf13icPFV5YUx73znd5GNx7iT/M+zeQx1OyH4I8Dt9/H+Shuw3rUFW/KrbHhmWC/gDwlqcbIC+Lxz1pxzZUKz9JfyOUL6MrVn5TtfKT/G9GpC4uWdkt1Wg3rPzWauX7rPy2auWbVv7GSuWzyfpvr1R+Sn649eFc+ba7qRr9RTZnOh/sAtoCw6l+nZvpgsmT2dDZvoJYHTtit4DCpY5LqiVUc5bppDyOM9vHTZWriWWkcCnXWmgLboHO/KZTM7RmwHjpdm1bzLGQEPxASfhu4VQx7r4Q/iUl4YdKwg+XhB+JhOdQOMORJ9MFDIUrM9bH2DzE3yJeyto8Dt1DOlaXpdVwt2LrYvhbrpbsspr8Ttr/ZW46vyxfw98meOYdYRWuPJlOLYH39x3df2D/0Qc2Txy96WlPxJE+D0oUK5JmeH62NODB03Az1YHL8jKAowKVicL3A573Lc/7Qc/7JZ73Q573w573I06nTfT/dvr/hgA8DgmjbmbK6I/f9+p/N4u0UvBqOqmeswBMzInqitP26Nto7V2qE9UNosf1Y9dOxalwJ6PySE8tCXhXXLWTinRTUZy8W2lfPVW3iITsUEO8wwiKu4vnERfWK5/c1dRA7WaxjNSys2Z7Rd/MY/hne9mq9IN311VUXNl27SWuPG2ep7iq9oMQXyH7GaNvik7ZflGVDuKyMVu5NHBa59PnkEsDy/tOgyAunPptCvC1cJNk+ZPa3J/qnK5+PuGqq0d8y2+erM/l4+yPe3jGqCVcs9hcmW+efW82Ve7/Lt718La7yl//mi33Y82I+07MWIH8qP7IEUTq9lB1oyKfKPnl4lfpKY9tsTqf8/YLxXPM6b2yrkB1yk/pXJ46Li7F2PuK24PRt0Bh1HkKe6/aK2TvY25zCOke0om9NaE5D3HlafM8xbWhB3yl3ApSfdR0ruwpzwblhexf2fEYy+NWPeeVWQt2G4+/4OHZNx7zutzg18N4/AfFu9CNWZmbLk/ntA+D58UqXChzM3VF4dpKuBoBvrrdVreFcCndCukB4tpGuNQYGepbiOsmwqWi461M6KaD/JdvC1M3Jcfi4m24xQJX6KbTzM2sa8jn1faU99Fp1qTTFHRU6Gj+13FRaZPq+yXK77byg9XK77fyS6qVP2Dlh6qVn7Dyw9XK77PyI9XKd6x8u1r5o2r7r0T5Q2oLq0T5u6z8smrlD9rYsRxesm6vgPclxqWV2Ccsqfmn4W8RLyXpTc4/VxA9rh/PP1cKXtoij/v4SkFnpaCjcC1KiGswIa4lCXENJcQ1nBDXSEJc7YS4RudpHZcmxJVSJ1LKPqW8UvbtlHwtS4grpa6mbEfTr+faPNPWYgZ7RZEx4Klnx0WlE2Juhq14Y9kJyJMlNf4bfnV7B/ta+Xaojgune1a98OpfeuXfj2VU3njhdzEha2ouoebBJWS1Qh2NMNrqaMQg5aHNwSNup/dN529JRf5i5If42wKe/VGxbbHUabuaJ/Z9YP9h/1L+PEB56kgJ74Ni3+e9y/zZt3eXP9saGE9483rfOb3+Zj+U+upSWVm2RXnfOt/nH8IT+Ai/JZsq957MX68Yf0crkveWB1dT8J6n7cS7wd9U8Ju318V0vErJFv097L8K+VCWdMHF/ivVtwzXUBdc7L/C8jwPG+6Ci/1XWJ7n5iNdcLH/CsvzfKcdwIX9a0SUb1NeSG/K+nGVPoduNahKZzCSTuh2AfQzO1fvFv5L6UgNtg/bZ4yBDMVDtAU8nsC38o5w9KI+AyXro/ou14fHFivvXO/bJ3R7l+pbCL+F6oPzdJ5/YH1aPaxPqH262eltVB9lW+dT+3S7Xe2mQH2GAvWZj+2DtlzVZzhQn/nYPpmbeRsK1meE8nw3E9s8KjR+4PzGbKqaF+O+n+0JqnlGO6KeobmlshO8l/hvi3rlMt/cp+sYO4cz+B8GnDaHC42VVcfk0HoCy2WeX6PD70KxWxzTqG4rrdpeWN63Frd89Wt0utUndGM99jPcu/5Z0v8lkBeyiU2CX9w3Ve4XCpyh+bralyphS5ZavZaKTMtDfxzfd4KpQf8jX7mubwObxXBME9tgGeXh+mA55eF83/ZIYtZ2al2h2svg8WZIZVMNX5Pgfw36/lNkT9Stx+o2fF4T/idhT5hPrFfoqKQ6FjYi6qVkyv53RRvlvMlDu9/p+o9Q/Q3+UwGZWvlFnvqwTA3+0wGZKhmFZKqO7S0V9VLrTPaFM+08bRK4mHa/B97wNQn+swGZGswiT30WeXB+PiDT5VSvbjIN7Z0iPyNuphxXBMqxj0DVT/E6LGhn9BfqW3naSuWMTr/TusttZ/BfEW2nfFIso5C/D+ny/gLyoerF8yCD/yrw+VUaG3owb16s5s3I5yJPvYwfhme/ALZ7aN050sP61Fl3sl9gltedsj6hWyFDt+Pnif0Cyq+o6oNzq9T1GShZn5BfAOszC36bxbPpFwitoxP5BRbPpl9gGeVlkMex5DiP9q2TMQ/PsigfOtt15Y9XX4IyeGsL31wX9/2mtV3BrJpDqPWRuqGV10dtwHmxZ66H9QrNIULzU+RHyZTnbMh7yPbbu5q62690F+vPutttLl52HcA34eLY59tbZfn6bB7aCNZ/pae8/s4Tn+XDXytjePM0IOAtD/nB9soT+o0aAhd/FcjgzwO/T54wxhvtAdPnm/kV38onlAlcDfEOzyiN9U3xXE9f739/RjTL3rd6Ud90XtF+9uK+1bL4vzZwy8a+X3n3Gd3wq/ZuUBn+EhPD90E+wr8YfEfraD7NZ8js3aYAXOb5VTwjPyFdawh4oz0o4C0P7QSfYcPxpyFw4V47wm+gPoj9Bm/zZvo4njoP375YHcbVEO+wD15Del/x7E1mtNX5IaVbdfrC8Kd/7eb/8U/3nhPz9Y6Yqw8H3PSxvGTdo8/LztUdFDXPVXUyKo/01LnS0J0XhkvdiRLzBYc7yN+Q6k6U20hPenUWD+1ON32c7fPbdfVR6UdIH2f7/PZikWe4zOb6zm/jmInwd5M+4ryQ9VHd/6C+IpLztpf0sc64GTp7yb62bmcBOcYLy4eug85Tx8Ulth+Iw3APUB06LipF9425Ogtu9at6tXgeazPoZvY9vALZF/+1mHioaA/O6HYO935aV6uv+aizrzwW/B7MRx/04HRO6zHHF6q+rnQtTx0Xl9juII6a7Rytx4a/5Wb2ySp6HPslpJox89P0GPsJ6rEvvpT9UQNdeN5Y/IbOJKuzvKFYw0RfMhor60NU7YPwVlcVvxnzFaHY/rWl+F3oX1HpWdm/utn5D5BNVl9EDNl5g/81sPM/TjhxjFN6yPHaip6aj+ap4+JSzFy+ol5E6yHfVVZ3Lh97xXbN+dg0PUQ9Qj30fQGR4726XSPOdr5P4FLzWvblsmyd642dx/qwne92lxzbefV1Q7UeYDmo80QZ/Y88oJ7y+YaGwKXOGPVRnmqnQRdud7WPxfMBtENKdrzW+0RgbyjWbht8t5hZbgd1lkLFSIV0NdG+5ljqfXSWjdo/xL0x1l/cG+O9TuSFYzqVXqlxq9tnpWL0S803Wb/+W0n9UuvHWP3i80Kx+hWa8z4f9ct3FpX1C9e499fca/rC4m98+/f/613v7dVe08fWrrly+I5zjnXDb+d67po4umv3fUfv3vXG/UcPThw5clHxfoDKlJ2LDAj+48sfe2yAEZYq7x6zuU0d/q1MhfLJPvW5HJ7xDhu2Y2oM53lexbpsrLnHsl7ZG5wnOOf3s+dJ7VPk8jiteK7Z1htrymf9MudvX9vLOq/4X627MqpHRT7Gsa9ZUusNe9dy9fpIRviMHtfPnnM7bfdcTH0uZPxp6/PS48YHmUTE6+E95mNiGIZj+NDkdRDez/dgkXOL3/kcLNJxUzzXDBZ5LCOaZYNFLiReyw6wscEiJvM99+0/sG/XPUfu2rXnwKG9r/t28XqOx9eHao6vD9UcE86suU86qb4YF6/uNm4QHJdBM7MNYLZ5YG4EmBs9MNsBZrsHZgfA7PDA3AQwN3lgbgaYmz0wtwDMLR6YlwDMSzwwtwLMrR6Y2wDmNg/MDwDMD3hgdgLMTg/M7QBzuwfmpQDzUg/MHQBzhwfmZQDzMg/MywHm5R6YVwDMKzwwrwSYV3pgXgUwr/LA3Akwd3pgdgHMLg/MqwHm1R6Y3QCz2wOzB2D2eGD2AsxeD8w+gNnngZkAmAkPzGsA5jUemLsA5i4PzN0Ac7cHZj/A7AeYBsC8FmBeSzADbuZ0pYS93Fo3jigUW1MzJiTaT274W67W2DM5b1W+RxUTrtYvGeWpe5XV+sWe8+ncDQDHbcs+VpxP76c8nP68FvDfBM8+G2r1QvrOzVw7VpT162rq3WjIb69kzz6uGNnn6UGAS7Rufl1N2S1d5mbS52XDfF+e2NxmPi9PNgHPhvMGwJf/dVxcsvLo9yljZ638xmrlJ9cFm6qVH7Xym6uVn/xs+5Zq5debv+RzxYu664SYeLSK+7tLY8etufoWVc393dGMyiM9dbZNncNB2eZ/Zhf6Pbh89/LZPC/lN1XycruIdxWPEtPOiFft2/r2u8vGUzwI5V5LOFU74ViwheBNJv0CHvHxnRIHi9+8fn/gwemrlw/nESj3+uJZ9d0tAPeA0/XPXFimsfXv8/D6RjdV/y97eEV+kFeeR7MuPByAWyTgWJ+c03PZzQSvYqYVT7zP+YNuqu5/4MGJ8ld78z75MwzzYPCPAQ9fJpz9IAO2L87N/H5cxfi1rGaM2oDaZ8T2fSe8RzsY+70bg38vlHtP8azue2YbrmJHBt3Me3acq28ncf+WbfkQlOF654n1egToNgiHgse7eBqEQ9kAg//h4jeX21eKZ3U/Ebbpj3poY5uqu4aZ9oeg3I8Vz6G7VtUZZR6XhwQvKk6iSfA/6abk8JSbkoNz09veaNdz/7ulz9wHAnS4fVl/1LlvhOf4gm7nvll3UVcGKQ9lPER0VIwHynsj1bFP0FF2YiRQX9aPzE2tvfo98HyvksF/tPhV40Ab+FN9qunB+atQ7uNuev2xHW8AuE95aGP9G6I+Bj8q6o/wbeLV4H/d+es/IuqPfG0gnAb/G4DzKQ+fWC9lU+29OqM/Kuql7vCxsix7rtunAjj4ngijN+i0TrSIV3WvWOam11317bbgNdTWbUGH2/p3i19sazV28f0Fij/s99zH1V0IOG7U3Dp9KANeDHdDQPq2Tr9Y/M7Xc/a9jq069RMTX7juqb9+qlf4FzVP/ZHOh1+9/bl8D8GfFb+57v158cy+WqSXv/u7AFzm+VU8Iz/2br7fQ/Ct4nc+30Pw18XzXNxDcGLxvPvo0d177951YOLgrqOHpsIt7PvBcxxucbBmuMXBmlsJy1KFW2yH8qFwC18IRANgfCEQCOMLgUAYXwgEwvhCIBDGFwKBML4QCITxhUAgjC8EAmF2AsxOD4wvBAJhfCEQCOMLgUAYXwgEwvhCIBDGFwKBML4QCITxhUDk+TW3y7en2LbEPmI4nKu9XR697fBc2y6/FOC4bUPb5a+kPBzeXwX4r4FndhPNUqj1nTXt/GivQq1N9jVDre+sKZ/RUKg1T02d01O6ud4Sv7r4nc9b4muBZ7UlXqLNOjW3xLOaW+KjNbfEGzW3xPtqbolPbqlvrVa+beW3VSs/YuVvrFQ+mzwC8bXiTa+vacqITq+u32GbXzGMoGk8DwAf7BJm/PlfC3hsEA4Fz/MNxt9KUx/H9cGtldBVEuzW6Lg4cjWvUxjgLc63Fb95W3M4sC2BVRvlibfYh4gnhokJC8BlNx8/NXicx/w14VRuSKXj9r7bFghvK2EdRjy0UUfVJ56sDdEdW0XncLtCuXj5OmKDv5vwmIsM21ld/2vwo4KuuvKdXctGN2+3v/XUZZHgIU83eOpyD5R7XfHM189g/8vh7vXQXuJ03x0O4B2JwIt1wu24LZ463QfljhDtfk+d7vfQxi2IgUCd+j11uh/gnNPrnBTbnP+b+MG5Xcw2p28uWKaPq23OMlcNZYIO8sL9yHD3e+ANH9u/R4vfXG6Lsun8LRLl83dm59V1GVwG/Vshu6/WpqGwDpxzK9u8jepr8F+Ccu8hnFbeZ3NxrcB1rWJz0dXf8OBUdfi3hMf6Lso4E3hYV5AuzlnY5vYTXbS5IV3Lk1q35qnj4hLrBeKo2Q4tlJEl5Q/iK0OzavSCV4YiDzw/rujvGoi5Zkhdg6N0ptGFZ1ujhq6cagjcDFfTT3ISy3gwgi7W3Ve/zVQ/xNVP5XxyRLwNwV8o5A+vGQ3Zilgd2xSozyIqt6hifdQ1NMzfgOsut5j22RKoT5328cmbrypS/j81z8F6O5d2nlPn6iz+TBGvYY1nJbOOi0qLQrywTc2Tku1iKqdky20Zawtq2p7+2Pr1Uf0agfr5/LXd+p4KicvczPqG+njN9l48X9ubbZHq6zFzWl99+CophSukF1wf1V5sH/Ok7A2OG3lKaW8yAGAZdZsvmE7y55mwviEfpYXbsNwYFtcQIT6aBG+hyegXCu0R9UK+qGcsXzUeIjzPb9QRF/ah5Ul90nAx5an4BdZVpIPy3kB1VPqP672aoXsHM+DFcDcEpC907+vF77P9Ezm9Dq3rZeibXf2St90/FM/dQt+amR8u8/wqnpEfezffQ9/6CgTzOfTtu256HWYz9K3XYbKnF8/7Jvbcd9euA4fu2rX78OHdD+w6dHj33gMTu954ePe9904ctsikOY6wu3OAEZYqXzvy4pRUEXa4Sx6KsNsAZbEMas5GgNnogdkEMJs8MJsBZrMHZgvAbPHALFzCNP2ZYRYuYZr+zDDz5RKm0KWdNVffG2vakZN6GHl4csxMA/HPh8jDUPRbbOThNQDHbWv4anoZXlWz3bMetnvfs7HdeYaaot0RP87ut8CzjVk1I5DvrGlH3DJBn2e68z1SEncr8jQfIyXXuymea0ZKZhYpx3OIJvGDbcn8ow4jfEPA56sak19xIe+GfLK//dBdjhKblczD4klU7gYPa1kAL+LH9yfRO+WYQdwJrpu903BVdbzY1KrXjhcLKj546Oj+1zyw68jE0V337D+46/DEGyYOH92/5+n12pH9+yZ2TbzmNRN7j+7ae+i+g0cnDtNSzs5SzfFSbmPNpdzGmqZz1u5+77aUy/O73Q8/DM/oKKkx9Gzs5dBjJs70OTdBFxXP9x7e/4bdRyduekaFb5s4umP/wVsn9fe2p9V34zPae8Nx5WWqymKo9w2XxDJsrGsZTih+e20Z1hTPhWWYOPj6+ybum9i369779hzYv3fXa+47uPfo/kMHd+3dfeCAWYJTizJzbAm21LQEW2pOqps1J87SEqjt927OmIbr7ozJU8haqKNRGymvIeirhYXRxZ6cPy8rnmtaoC2zYYFWFv/nFujc4nmaBdpY9JRbnukom4p+csPT3YTJ+SZHTBqrgv83BR5OPCBZVWqasS11zdgpxW+vzZh5o58xU0U7TRmv/fmIcHD3Abvdf44N1/aahmt7TcOzqO4ZDqOLXmMVZ13GcPk8xAjj8xDnSRk33zVJyIcybpspryl4U/vXxhMakPz5JCiTJ/ZcYx56rBOdG91Wc/eiL3TVcN1Vbc3zf31msM1I9/BK1wb298mX9A7xz/aVrvlgZRa3MIL5gHTL8Ucbo5BTxN4napJN52iab8N54MqMafb/IoHXV57fMb8qOgOlZZqqLjrso3INwo202dfCfDYC+DPKb3ThOSbyOMF4v73ueG/LiV6P99bbi2XL3sMTTyv4vl0H7ztwYP9r9s/wXdhqasF3UWsgSfbduiF4Nh/Fs8EvYQfzckNr35ebtiq44bgi3mR6yETYTmbivRGcaxeEzWB63ZdNqPv2H37af7P/DRNPz9dzvw5/dHQl4KnSaVdUKz/NDjviBfGycXElaFjCtuLEkWO8V8HGqQT9zMdHJoBtGb8C3pk8bPaBbXl04q6nDfLr73u6g0wcPMrcVjyXPXlvwpJq5WWrYtzXEiZY/KpVeOb5v49+Q7BZAO+QyDOc1hrI7yDlTbXG0UO7Du/et/9+65MmxapxSVa+6gzXyledkatWxNkyx0Wx/UWaxkvFS7sHM0Ff7Q9ySxuM0qw++r9J7xsRsEqzLE/tj8ZEgqr9VKWlLHfUN4WL93pZP+q20TJB03j7/wGcHMpzVW4SAA==",
3936
- "debug_symbols": "tL3briy9cp35LvtaF8lgHEi/SqNhqN2yIWBDMmS5bwS/exeDZIyYc6k4c1bVf6P17V9rxUgeYlQmGcn8j7/9v//0//zv//Ff//lf/vu//q+//Zf/6z/+9v/82z///e///D/+69//9b/947//87/+y+O//sffrvF/Cv/tvxRq9f/8w9/K+N+dHv/7H/7W6/yD5x8y/9D5h80/2vyj+x/lutafZf1J68+6/uT1p6w/df1p68+2/lzxyopXVryy4pUVr6x4ZcUrK15Z8cqKV1Y8WvFoxaMVj1Y8WvFoxaMVj1Y8WvFoxasrXl3x6opXV7y64tUVr654dcWrK15d8XjF4xWPVzxe8XjF4xWPVzxe8XjF4xVPVjxZ8WTFkxVPHvHq+FPWn7r+tPXnI56OP/v8U6/15yNeH3+OeOMvat3AG2SDbrAN4yp5QF9g14aygTbUDbxBNugG27Aj24gsD2jXhrJhRB6Nb3UDb3hEJgfdYBvahr6gXxvKBtpQN/CGHbnvyH1HHilEo1tGEg2gkUUTygbaUDfwBtmgG2xD27Ajlx257MhlRy47ctmRy45cduSyI5cduezItCPTjkw7Mu3II7tIBsgG3WAb2oa+YOTYhLKBNtQNO3LdkeuOXHfkuiPXHZl3ZN6ReUfmHZl3ZN6ReUfmHZl3ZN6RZUeWHVl2ZNmRZUeWHVl2ZNmRZUeWHVl3ZN2RdUfWHVl3ZN2RdUfWHVl3ZN2RbUe2Hdl2ZNuRbUe2Hdl2ZNuRbUe2HbntyG1Hbjty25FHDlIbIBt0g21oG/oCz0GHsoE21A07ct+R+448crCWAW1Dn1BHDlYdUDbQhrqBN8gG3WAb2oa+oOzIZUcuO3JZvlELb5ANusE2tA3LkSpdG8oG2rAj045MO/LIwdoH2Ia2oS8YOTihbKANdQNvkA07ct2R6448cpCvB4wcnFA20Ia6gTfIBt1gG9qGHVl2ZNmRRw5yHVA38IYR2QboBtvQNvQFIwcnlA20oW7gDTuy7si6I+uOrDuy7ci2I9uObDuy7ci2I9uObDuy7ci2I7cdue3IbUduO3LbkduO3HbktiO3HbntyH1H7jty35H7jtx35L4j9x2578h9R+4rMl/XhrKBNtQNvEE26Abb0DbsyGVHLjty2ZHLjlx25LIjlx257MhlRy47Mu3ItCPTjkw7Mu3ItCPTjkw7Mu3ItCPXHbnuyHVHrjty3ZHrjlx35Loj1x257si8I/OOzDsy78i8I/OOzDsy78i8I/OOLDuy7MiyI8uOLDvyzkHeOcg7B9lzsA/oCzwHHcoG2lA38AbZoBtsw46sO7LtyLYj245sO7LtyLYj245sO7LtyLYjtx257chtR247ctuR247cduS2I7cdue3IfUfuO3LfkfuO3HfkviP3HbnvyH1H7iuyXNeGsoE21A28QTboBtvQNuzIZUcuO3LZkcuOXHbksiOXHbnsyGVHLjsy7ci0I9OOTDsy7ci0I9OOTDsy7ci0I9cdue7IdUeuO3LdkeuOXHfkuiPXHbnuyLwj847MOzLvyLwj847MOzLvyLwj844sO7LsyLIjy44sO7LsyLIjy468c1B2DsrOQdk5KDsHZeeg7ByUnYOyc1B2DsrOQdk5KDsHZeeg7ByUnYOyc1B2DsrOQdk5KDsHZeeg7ByUnYOyc1B2DsrOQRk5KDRAN9iGtqEvGDk4oWygDXUDb9iR+47cd+S+I/cVWa9rQ9lAG+oG3iAbdINtaBt25JGDUgeUDbRhRJYBvEE26Abb0Db0BSMHJ5QNtGFHph2ZdmTakWlHph2ZduS6I9cdue7IdUeuO3LdkeuOXHfkuiPXHZl3ZN6ReUfmHZl3ZN6ReUfmHXnkoOiAvmDk4IQR2QbQhrphRO4DZINueETWMV6+HuPQF/iKDA8oG2hD3cAbZINusA1tQ19gO7LtyLYjjxzUcc0jByfIBt1gG9qGvmDk4ISygTbsyG1HbjvyyEFtA2xD29AXjBycUDbQhrqBN8iGHbnvyH1H7iuyXdeGsoE21A28QTboBtvQNuzIZUcuO3LZkcuOXHbksiOXHbnsyGVHLjsy7ci0I9OOTDsy7ci0I9OOTDsy7ci0I9cdue7IdUeuO3LdkeuOXHfkuiPXHbnuyLwj847MOzLvyLwj847MOzLvyLwj844sO7LsyLIjy44sO7LsyLIjy44sO7LsyLoj646sO7LuyLoj646sO7LuyLoj645sO7LtyLYj245sO7LtyLYj245sO7LtyCMHrQwoG2hD3cAbZINusA1tQ1/Qd+S+I/cdue/IfUfuO3LfkfuO3HfkviK369pQNtCGuoE3yAbdYBvahh257MhlRy47ctmRy45cduSyI5cduezIZUemHZl2ZNqRaUemHZl2ZNqRaUemHZl25Loj1x257sh1R647ct2R645cd+S6I9cdmXdk3pF5R+YdmXdk3pF5R+YdmXdk3pFlR5YdWXZk2ZFlR5YdWXZk2ZFlR5YdWXdk3ZF1R9YdWXdk3ZF1R9YdWXdk3ZFtR7Yd2XZk25FtR7Yd2XZk25FtR7Ydeedg2znYdg62nYNt52DbOdh2Dradg23nYNs52HYOtp2Dbedg2znYdg62nYNt52DbOdh2Dradg33nYN852HcO9p2Dfedg3znYdw72nYN952DfOdh3Dvadg33nYN852HcO9p2Dfedg3znYdw72nYN952DfOdh3Dvadg33nYN852HcO9p2Dfedg3znYdw72nYN952DfOdh3Dvadg33nYN852HcO9p2Dfedg3znYdw72nYN952DfOdg9B3mAbWgb+gLPQYeygTbUDbxBNuzIsiPLjuw5KGNn+NpQNtCGuoE3yAbdYBvahh3ZdmTbkW1Hth3ZdmTbkW1Hth3ZdmTbkduO3HbktiO3HbntyG1Hbjty25Hbjtx25L4j9x2578h9R+47ct+R+47cd+S+I/cV+bHLfgWVIAqqQRwkQRpkQS0oNEpolNAooVFCo4RGCY0SGiU0PC3NqW/yxJz00GiXEwXVIA6SIA2yoBbUN40UXRQaNTRqaNTQqKFRQ6OGRg2NGhocGhwaHBocGhwaHBocGhwaHBocGhIaEhoSGhIaEhoSGhIaEhoSGhIaGhoaGhoaGhoaGhoaGhoaGhoaGhoWGhYaFhoWGhYaFhoWGhYaFhoWGi00Wmi00Gih0UKjhUYLjRYaLTRaaPTQ6KHRQ6OHRg+NHho9NHpo9NDoW8PLaRaVIAqqQRwkQRpkQS0oNEpolNAooVFCo4RGCY0SGiU0SmiU0KDQiDwvkecl8rxEnpfI8xJ5XiLPS+R5iTwvkecl8rxEnpfI8xJ5XiLPS+R5iTwvkecl8rxEnpfI8xJ5XiLPS+R5iTwvkecl8rxEnpfI8xJ5XiLPS+R5iTwvkecl8rxEnpfI8xJ5XiLPS+R5iTwvkecl8rxEnpfI8xJ5XiLPS+R5iTwvkecl8rxEnpfI8xJ5XiLPS+R5iTwvkecl8rxEnpfI8xJ5XiLPS+R5iTwvkecl8rxEnpfI8xJ5XiLPS+R5iTwvkecl8rxEnpfI8xJ5XiLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfLcq4gaOWmQBbWgvsnzfFIJoqAaxEGh0UOjh0YPjb41vKhoUQmioBrEQRKkQRbUgkKjhEYJjRIaJTRKaJTQKKFRQqOERgkNCg0KDQoNCg0KDQoNCg0KDQoNCo0aGjU0amjU0KihUUOjhkYNjRoaNTQ4NDg0ODQ4NDg0ODQ4NDg0ODQ4NCQ0JDQkNCQ0JDQkNCQ0JDQkNCQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQsNCw0LDQsNCw0LDQ8z6uTBbWgvsnzfFIJoqAaxEESFBotNFpotNDoodFDo4dGD40eGj00emj00Oih0beGFy4tKkEUVIM4SII0yIJaUGiU0CihUUKjhEYJjRIaJTRKaJTQKKFBoUGhQaFBoUGhQaFBoUGhQaFBoVFDo4ZGDY0aGjU0amjU0KihUUOjhgaHBocGhwaHBocGhwaHBocGhwaHhoSG57k4UVANGhrNSYI0yIJaUN/keT6pBFFQDQoNDQ0NDQ0NDQ0NDQsNCw0LDQsNCw0LDQsNCw0LDQuNFhotNFpotNBoodFCo4VGC40WGi00emj00Oih0UOjh0YPjR4aPTR6aPSt4cVRi0oQBdUgDpIgDbKgFhQaJTRKaJTQKKFRQqOERgmNEholNEpoUGhQaFBoUGhQaFBoUGhQaFBoUGjU0KihUUOjhkYNjRoaNTRqaNTQqKHBocGhwaHBocGhwaHBocGhwaHBoSGhIaEhoSGhEXkukecSeS6R5xJ5LpHnEnkukecSeS6R5xJ5LpHnEnkukecSeS6R5xJ5LpHnEnkukecSeS6R5xJ5LpHnEnkukecSeS6R5xJ5LpHnEnkukecSeS6R5xJ5LpHnEnkukecSeS6R5xJ5LpHnEnkukecSeS6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecWeW6R5xZ5bpHnFnlukecWeW6R5xZ5bpHnFnlukecWeW6R5xZ5bpHnFnlukecWeW6R5xZ5bpHnFnlukecWeW6R5xZ5bpHnFnlukecWeW6R5xZ5bpHnFnlukecWeW6R5xZ5bpHnFnlukecWeW6R5xZ5bpHnFnnuNWG9OLWgvmnk+aISREE1iIMkSINCQ0JDQmPkeSenEkRBNYiDJEiDLKgF9U0WGhYaFhoWGhYaFhoWGhYaFhoWGi00Wmi00Gih0UKjhUYLjRYaLTRaaPTQ6KHRQ6OHRg+NHho9NHpo9NDoW8MLyRaVIAqqQRwkQRpkQS0oNEpolNAooVFCo4RGCY0SGiU0SmiU0KDQGHne2YmCatDQUCcJ0iALakF908jzRSWIgmpQaNTQqKFRQ6OGRg0NDg0ODQ4NDg0ODQ4NDg0ODQ4NDg0JDQkNCQ0JDQkNCQ0JDQkNCQ0JDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NCw0LDQsNCw0LDQsNCw0LDQsNC40WGi00Wmi00Gih0UKjhUYLjRYaLTR6aPTQ6KHRQ6OHRg+NHho9NHpo9K3hxWqLShAF1SAOkiANsqAWFBolNEpolNAooVFCo4RGCY0SGiU0SmhQaFBoUGhQaESe98jzHnneI8975HmPPO+R5z3yvEee98jzHnneI8975HmPPO+R5z3yvEee98jzHnneI8975HmPPO+R5z3yvEee98jzHnneI8975HmPPO+R5z3yvEee98jzHnneI8975HmPPO+R5z3yvEee98jzHnneI8975HmPPO+R5z3yvEee98jzHnneI8975HmPPO+R5z3yvEee98jzHnneI8975HmPPO+R5z3yvEee98jzHnneI8975HmPPO+R5z3yvEee98jzHnned57TtfOcrp3ndO08p2vnOV07z+naeU7XznO6dp7TtfOcris0SmiU0CihUUKjhEYJjRIaJTRKaJTQoNCg0KDQoNCg0KDQoNCg0KDQoNCooVFDo4ZGDY0aGjU0amjU0KihUUODQ4NDg0ODQ4NDg0ODQ4NDg0ODQ0NCQ0JDQkNCQ0JDQkNCQ0JDQkNCQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0PDQsNCw0LDQsNCw0LDQsNCw0LDQqOFRguNFhotNFpotNBoodFCo4VGC40eGj00emh4nncnDpIgDbKgFtQXeT3cohJEQTVoaIiTBGmQBbWgvsnzfFIJoqAaFBolNEpolNAooVFCg0KDQoNCg0KDQoNCg0KDQoNCg0KjhkYNjRoaNTRqaNTQqKFRQ6OGRg0NDg0ODQ4NDg0ODQ4NDg0ODQ4NDg0JDQkNCQ0JDQkNCY2R54/J4GjABuyBI9c3FiABK5CBAoSaQk2h5sddlWugH3i1sAT2ax5ERV5rVhYOsTIPWxKgAg3YgH2jl5dtLEACViADBahAAzYg1ArUCtQK1ArUCtQK1ArUCtQK1ArUCGoENYIaQY2gRlAjqBHUCGoEtQq1CrUKtQq1CrUKtQq1CrUKtQo1hhpDjaHGUGOoMdQYan5EXFHHBuyBflbcwgIkoKuZIwMFqEADNmAP9HRbWIAEhJqnW2mOAnS17mjABuyBM90mFiABh9o4Dom8UG2jABVowAbsgX7m3MKhNg8/83PnFlagq3n/NgEq0IAN2APdNOrlWIAErMCh5gddefXaRgV63OFWXqz2+MVw9Ajzv3oEcxSgAg3YgD3Q/aE2xwIkYAUyUIAKNGAD9kCCmvvDOH2KvFht41Bjb6b7w0IBKtCADTjUxilS5EVrGwuQgBXIQAEq0IANCDX3B/ZhcX9Y6GriWIEMFKCreT+4PyxswB7o/rCwAIeaXI4VyEABKtCADdgD3R8WFiDU3B+kODJQgN42n3LuDwtb4DxZcqJH8NH07BbvnXmI5EiyOo+RnFiABKzAEUz9Ij2lFyrQgA3YAz2l1VvhKb2QgBXIQAEq0IAN2Dd6tdpGVyNHAlagq1VHASrQ1cTR1dTR1UYWet3axgIkYAUycMQ1v0hP9IU90BN9YQFSoGfheGGRvKps45Awv17Pt/E6GnkR2cYe6Pm2sAAp0PPC/Ho9LxZWIAMFqEADNmAP9LxYCDWFmkJNoaZQU6j5L6SNPPYSrzJqp8lrvErz4fa8WCjAEaH5cHu2LGzAHuiJs7AAPa4PgCdD8wHwZGh+ZZ4MEz0ZFnoE72pPhoUVyEABKtDVvMWeDAuHWh+N95KujQU44o69PPJqrTI2XcjLtTb69Y657gVbj0VPxwIkYAV6XHYUoAJdTRwbsAcS1AhqBDWCmv++LZQ9Fl7AtdGADRij6UVcG+seQi/PmkPo9VlzsLxAa2OMppdozbHwGq2NBKxABgpQ97h5pdbGFoPFGE3BaHoWziH0fJvjJhhNz7c5hJ5vs6MU/avoX0X/er7NwVKMpmI0Pd/mYClGUzGaCjWDmkHNoGYYTU+G7l3iybCwAv1yvHc8GRYq0IAN2DfqTIaJBUjAh9rj6dGRgQJUoAEbsA8c1+sVUBsLkICu1hwZKEBX8yvzY1IXNuBQ82dtnYelTixAAg41fwT32qfHE6yjARuwB/pxxeMMavICKBpnTpNXQJE/RnkJ1EYGCtDVvMV+ePHCBuyBfoSxP8J4ART5U4dXQD2eWx2HhN/Qew3U4znFUYEGbMAe6GcZLyxAV/Ne9xONF7qaX46farxQgQZswB7o5xsvLEACViDUFGoKNYWaQk2hZlAzqBnUDGp+9rE/RnmF1EYFGrABe6Cfg7xwxPVHLi+K2ihABRqwAXugn4K8sAAJCLUOtQ61DrUOtQ61Hmp2XcACJGAFMlCACjRgA0KtQK1ArUCtQK1ArUCtQK1ArUCtQI2gRlAjqBHUCGoENYIaQY2gRlCrUKtQq1CrUKtQq1CrUKtQq1CrUGOoMdQYagw1hhpDjaHGUGOoMdQEagI1gZpATaAmUBOoCdQEagI1hZpCTaGmUFOoKdQUago1hZpCzaBmUDOoGdQMagY1g5pBzaBmUGtQa1BrUIOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBS2x6SXVswL6xTQO5HAlYgQwUoAIN2IBhuq1cQKgVqBWoFagVqBWoFagVqBWoEdQIagQ1ghpBjaBGUCOoEdQIahVqFWoVahVqFWoVahVqFWoVahVqDDWGGkONocZQY6gx1BhqDDWGmkBNoCZQE6gJ1ARqAjWBmkBNoKZQU6gp1BRqCjWFmkJNoaZQU6gZ1AxqBjWDGm47Gm47Gm47Gm47Gm47Gm47Gm47WoNag1qDWoNag1qDWoNag1qDWodah1qHWodah1qHWodah1qHWg+1fl3AAiRgBTJQgAp0NXVswB44vaQ5FiABXc0cGShABRqwAYcaD/f0qq+NBTjU2K/XvWQhAwWoQAMONV9B9vKvhe4lC12NHQlYgQz0uOMZx6u7HmtKjgVIQI/gHeX+sFCAfr3d0YAN2APnJ1a8QfMjKxMJWIEjrq8K9/khlfFo1OenVCYWoI+mS8ycn8hAASrQgA3oat6p8/MqEwuQgBXIQAEq0IANCLUGtQa1BrUGtQa1BrUGNc958eH27PbVcS/n2kjACmSgABVowAbsC6vXdW0sQAJWIAMFqEADNiDUCtQK1ArUCtQK1ArUCtQK1ArUCtQIagQ1ghpBjaBGUCOoEdQIagS1CrUKtQq1CrUKtQq1CrUKtQq1CjWGGkONocZQY6gx1BhqDDWGGkNNoCZQE6gJ1ARqAjWBmkBNoCZQU6gp1BRqCjWFmkJNoaZQU6gp1AxqBjWDmkHNoGZQM6gZ1AxqBrUGtQa1BrUGtQa1BrUGtQa1BrUGtQ61DrUOtQ61DrUOtQ61DrXpJerYN5bpJRMLkIAVyEABKtCArtYde+D0komuZo4ErEAGClCBBmzAHji9ZCLUCGruJWOLr3pN2UYBtkD3h7EPWb1ebKNHEEcGClCBBmzAcb3qXeL+sLAACTjUzIXdHxYKcKiZX6/7w8IGHGpGA90fFhYgAV2tOrqaX687gfkYuxMs7IHuBAs9bnP0uN4Kd4Lml+NO0FzNnWChAg041JpfjjvBRHeChQU41Jpfr6d/88vx9G8+8p7+zS/H07+7hKf/wh7o6b+wAAlYgUOt+zV4+i+0mEYNM8pzfqLn/MICJCBmasdM7ZipnvMLodah1kNtfkhxYQF6g8SxAhnoDVJHBRqwAXug5/zCAiRgBTIQagVqnvO9OTZgD/ScX1iABKxABgpQgVAjqBHUKtTcH8YOU12fXWRHASrQgA3YA+edwsQCJGAFQo2hxlBjqDHUGGoCNYGaQE2gJlATqAnUBGoCNYGaQk2hplBTqCnUFGoKNYWaQk2hZlAzqBnUDGoGNYOaQc2gZlAzqDWoNag1qDWoNag1qDWoNag1qDWodah1qHWodah1qHWodah1qHWo9VCr1wUsQAJWIAMFqEADNiDUCtQK1ArUCtQK1ArUCtQK1ArUCtQIagQ1ghpBjaBGUCOoEdQIagS1CrUKtQq1CjV4SYWXVHhJhZdUeEmFl1R4SYWXVHhJhZdUeEmFl1R4SYWXVHhJhZdUeEmFl1R4SYWXVHhJhZdUeEmFl1R4SYWXVHhJhZdUeEmFl1R4SYWXVHhJhZdUeEmFl1R4SYWXVHhJhZdUeEmFl1R4SYWXVHhJhZdUeEmFl1R4SYWXVHhJhZdUeEmFl1R4SYWXVHhJhZdUeEmFl1R4SYWXVHhJhZdUeEmFlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXiJnxZHo26leqnfxgbsge4lCwuQgBXIQAFCjaHGUGOoCdQEagI1gZpATaAWK5yVp5dMfKg9fs7+YWAPHF6ysQAJWIEMlIHkqEADulp17IF2AV3Nr8wIWIE+bh5seslEBRqwAXtgu4AFSMAK9NVmcTSgt8InTOuB/QIWIAErkIHeZ+qoQAO6mjn2jV6EuNHVxJGAFegr6eooQAUasAF7YLmABUjACvRWNEcDNqC3YsxJL03cWICjFaPCqnpp4sbRZ6PYqnpp4kYFDrVRYVW9NHFjD/RPVC8sQAJWoKtVRwEq0IAN2AO9jNGfhFfBIjvuAsA6CxYXKtCADdgDZ8HixLIqBKufL7exAhkoqwKzzuLGhQZswB7oxY0LC5CAFYiRV4y8YuQVI28YecPIG0beMPKGkTeMvGHkDSNvGHnDyDeMfMPIN4x8w8g3jHzDyDeMfMPIN4x8w8h3jHzHyHeMfMfId4x8x8h3jHyPkV+1lhNj5Fet5cQKZGCMvNdabjRgA8bIe63lxgIkYAV67/iVec4vbMAe6Dlf/J95zi8kYAV6ee/lKEAFGrABe+AsR55YgAT0MVZHBRqwAXsgX8ACJGAFMhBqDDWGGkNt5PzjaWzgyPmNBUjACmTgUCPv9ZHzGw3YgK7mve6//gsL0NXMcahVl/Bf/4UCVKABG7AHuhMsLMChNkqEqhdYbnQ1chSgAg3oan7p7gQT3QkWFiABK5CBAnQ1HyF3goWu5r3jTjDR7wkWFiABXaI5ClCBBmzAITE2+6vXWm4sQAJWIAOH2ng5rXqt5UYDNmAPLBewAAlYgQyEmlvFKCKoXmu5sQFdbcxJr7XcWICupo6uZo6u1hwFqEADNmAPnEVRTjWIgyRIg2yTZ/CoOqhe7LixB/r9u/e8375PoqAaxEESNCKOMoXqpYvV79y9dLFOqkEc5LeVThpkQS2ob5q/yE4u4qPlabhwqIi31tNwoQD9Mn2IPLV8q82rEDf6I4qTB/Ah9MxaqEADNmDfXdKjO3t0Z4/u7NGdPbrTE8k70c92m53o1YXVN8C8unCjN7U5MtCvtDs+rpRnLAtqQX2Tf8B+UgkaEXXiuCbfcfBaQZ//Xio4yT9SP2n8a3KioBrEQRKkQS4ysQHHuKsH99vihQXol8mOHkEcG3Bcp1+7/xbOjvHfwoUErEAPq44CVKBFh3smLeyBAjWBmkBNoCZQE6gJ1ARqAjWBmkJNoaZQU6h59i2UNdW96G9OXy/629iAPdBTcKL/TqlfgifTQgL6U6oTB0mQBllQC+qb5lKXUwmioNDoodFDo4dGDw3/jfL9Vy/Bm+gleBtHY3xP1UvwNo5O9H1dL8HbKEAFGrABe6D/RvkGrZfgbSTgUPPNXC/B2yjAoebbtl6Ct7EBfdN1kK9wTSpBFFSDOMgjDp/xgrrqe8JeUFd9T9gL6jZWIAPHlfqmsR+rttGADdgD55a60xDznWSvvdtYgUPMH1u89m6jAl1sBmtAF/OmeZYuLECfv041iIMkSINsk2di887ynPMda6+6q92nlv/kLVSgAceV+nOZV90t9KRbWIAEHGou5r97kyTIO8XJglpQ3+QJPakEuYhPOb/tXMhAC/RbSX/487K6jT5XnGoQB/lVeu/5LeVCA3qP+LV4ug5kr6mrY9GQvaZu4/jlGet87DV1PNbj2GvqeCzusdfU8Vhx4mv+Pk40YAP2wPkbObEACehq6uhq5uhqfr3F1fwi/cez+EX6r+fCAiRgBTJQgB7Mm1kvYAESsAIZKEAP5h3F/s+qYwUyUICjbd60kXKLWlDfNPJtUQmioBrEQRIUGhIaEhoSGhoaGhoaGhoaGhoaGhoaGhoaGhoaFhoWGhYaI9nYh38k26IW1DeNZFtUgiioBnGQBIVGC40WGi00emj00Oih0UOjh0YPjR4aPTR6aPSt4RVpi0rQ1vACMR5P+uwFYjyWDdgLxHjc87KXgvF4yZO9eovHkz77AWALfVov9FtMjzCmtfi/GrN6EQdJkAZZUAvqm8YPz6ISFBocGj7XyZvmE3v8XrLXZo3nB/bSrEUUVIM4SII0yIJaUN+koaGhoaGhoaGhoaGhoaGhMWa2eF+OmT1pzOxFQ8ObOWb2ohrkvdAd/VHAB9hndPVR9Sm9kIAVyEABKtCADdgDO9Q61DrUfHpXHzWf3wsFqEADNmDf6DVYGwuQgBXIQAEq0IANOIZh9KmXYC0qQRRUgzjIIw43pvlExo6Pf60ee/ykLKpBj389HuzYq6kWaZAFtaC+yX9Vxj0Pe8kUj99y9pKpjQb0JjbHHsgXsAAJWIEMFKACDQg1hpr/9IxnW/aSqY0EHGrs/eI/PwuHGnu3+g8Qe7f6LxB74/0naGEP9B8hdmH/FVroaj5c/jskLjzSVT3sSNdFGmRBLahv8h8d8QEZN3vsFuUFUCzzLxiwAceVugl4AdTGAiRgBXpcb6CnoVuBFzWxeAM9DRcSsAIZKEAFGrABXW10nBc1bSzAoTaWK9iLmjYyUIBDzSexFzVtbMDRvaNpXtO0qASNRFKnGsRBEqRBFjSGsDn1TSNbF432eGZ6IdPGCmSgBfrP41gOYS9O2ugR2LECGfi4UvP2jqRdZEEtqG8aCbuoBFFQDeKg0ODQ4NDg0ODQkNCQ0JDQkNCQ0JDQkNCQ0JDQkNDQ0PDcHAtF7CVIGyvQ+8vH3e8SFyrQx8HnoN8oLvR7Ix8dv1VcWIAErEC/CfPh82xe6LdhPmbzftKvbN5Q+qyad5SO85Zyoqv5Rc6byokVOLrQw47f30UaZEEtqG+at5A+a+f9ojfb87h5knkeL2zAvtELing8x7MXFG0kYAUycFyqOD3EVijXYkfXUsceuD8nybw/TcG8j7Nl3sfZMu/jbNnrgHisBrDXAW2sQAYKUIEG9CcIv1S/q53oabuQ9lX5cbaTOGhcs7fOj7OdZEEe3Bvnv60T/bd1oT+heKv8t3WhPwd5BP9tXShAnUceM+/jq5n38dXM+/hq5n18NfM+vpp5H1/NvI+vZt7HVzPv46uZJTQkNCQ0JDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NOYj3cQCJKD3mA+o5+lCAfrDY3M0YAP2QM9TX7Hw8h7xFQsv71n/sQZx0LiZ9/UMr/jZaMAG7IHj53ljARKwAhkItQ61DjU/19ob4+daD/J6n0UliIJqEAdJkAZZUAsKDb819rUcr/LZSMAKZKAAFWjABuyB5GrVsQAJKECPII4eYcwbr+fZWIAE9Os1RwYKUIEGbMAe6E+xCwuQgFBjqDHUGGoMNYYau5qPhT/1LhxqviLlVT4bK3Co+SqTV/lsVKABG7AH+vPvwgJ0NR8sfwReyEABuho7GrABe6A/CS90NW+8PwsvrEAGClCBruYdZQ3YA9sFLEACViADBahAqLknjHO12Gt/FronLPTFDu9J9wRfiPGKoI2+puIT3D1hoa+qeO+4JyxswL7RK4I2FiABK5CBAlSgARsQagVqBWoFagVqBWoFagVqBWoFagVqBDWCGkGNoEZQI6gR1AhqBDWCWoVahVqFWoVahVqFWoVahdpcDxPHHjhXxCYW4KhK8pTWeWz3RAYKUIEGbMAeOI/tnuitUEe/XnM0oF9vc+yB7g8LC5CAFchAjzuSwat8VpcYWuw5v7ACGTj611fAvMpnowEbEKPZoNYwmg2j2TCaDaPZMJqe8/MaPOcXYjQbRtNzfl6D5/xCAkKtQ61DDTmvyHlFzity3q6YO3YVIAErkPc1eMHPRgUa4jYg1JDzhpw35Lwh5w05bzPn/RqKAg3YgNGTXvAjvsLoBT8bvSfJsQIZKEBv2wxmwAbsgZ7zCwuQgBXoauoowJjgfqKa+KKcn6i20BN9YQHG1PAT1TZisBiDxRgsNmADYrAEgyUYLMFgCQZLMFgiQAVianj6+2KfFyBtJKC3wvvB09/X/bwGaaMCDdiAPdCtYmEBEjBuDP2UtI0G9Lg+H9wUJrop+Cqj1ydtJOBoBftwuyksFKC3wkfeTWFhA/ZAN4WFBUjACmSgAKHm358dTfPapUUlaDyEi1MN4iCP2B0VaEDfELkce6An/sIyv5PKbX+Fltv+Ci23/RVabvsrtNz2V2i57a/QcttfoeW2v0LLbX+FlhuFBoUGhQaFBoUGhQaFBoUGhUYNjRoaNTRqaNTQqKHhv+m+COxFUBsb0DvMR8FTfaFvIpEjASvQ95F8eDzVF7qaORrQ1fxyPNUnzl2xieOB0K9mf5SW2/4oLbf9UVpu+6O03PZHabnNLTCfBp7Ovo7rNU3iK7Ze07RRgAocV+oLo23uek3sgXPfa2IBupo6ViADBahAA7qad5En+URP8oUFSMAKZKAAFWhAqHmS+7qyl09tLEDf1fOe9CT3FVEvodo41Hxh0ouoNg41X5j0MqqNfaOXUW0sQAJWIAMFqEADNiDUCtQK1ArUCtQK1ArUCtQK1ArUCtQIagQ1ghpBjaBGUCOoEdQIagS1CrUKtQq1CrUKNf/l92VaL7zaaMAGHPffl6O/CbSwAAlYgQwUoAIt0D3Al2y9nEp8ddrrqTb69ZqjAg3YgD3Qf+4XFqDHbY7oX0WLPecnes4vLEDv3+5YgQwUIEbToGYYTcNoNoxmw2g2jGbDaHrOz8tpGM2G0WwYzYa2ec77mrgXYm0caqO4jr0Qa2MFMnCo+VK612JtNGAD9oXitVgbC5CAriaODNQ1WOIFWDJW68ULsDb2QE/0hWUNgFyFgBXIQAEq0IB7sOSKRJcrEl2uSHS5ItHlikSXKxJdrkh0uSLRxSu0ZGwFiFdobSxA7yjvB0/p5lfmKb1QgAo0YAP2QP+xX1iAXjNwOQpQgQYcccePsHgV10JP6YUFuH+axSu5NjJQgAo0YAP2QE/0hXXu/ohXby2SoLF55R06Un9RC/Lr99noib+wAMc2o0+wkfeLOMi7ynU86xcasM39KPEKr0kj5xeVIAqqQRwkQRpkQaHRQqOHRg+NHho9NHpo9NDoodFDo4dG3xpe4bWoBHk5ijpWIANlbcuJnzi20XusOTZgD5ylL92xAAlYgQwUoAINOPbeL79033yf6LvvCwtw7PGPDQDxE8c2MlCAChwb/ePhTrySbWMP9Lt8/6t+lz+JgmoQB0mQBllQC+qbODQ4NDg0ODQ4NDg0ODQ4NDg0ODQkNMQ7zUdWCFiBDBSgAg3YgN5pI3G97G1jAbqaOFYgA13Nh96raRZaoF3AUYzs7fGS6UleCOXDZgZswB448nxjAY5LLH61I9U3MlCAruYJ0AzYgK7mV9svYAF6gZdP316BDBTgUBuL/uJ1bzrW9MUr3HSspYhXuG0kYAV6XHX0uObocbvjiDvWfsQr3Db2QK+tWTjUxiqaeJHbxgpk4FCrfr1eV1P9cjy5xxqY+NFiWv1yPLnZJTy5FxKwAhkoQAV6IZZfgyf3xBqTyM8T20jACmSgAF3CG1QN2IBe7eXN5AtYgASsQAYKUIEGbECoCdQ8zdmH29N8YQUyUIAKNGAD9kBP84VQU6gp1BRqs2bOR34WyPnIzwo5R0/zhQXocZtjBTJQgLoqXGSW0y1swB44C3AmFiABK9B7Z6IBG7AHes4vLMBxveLT0/NYfE6OX3AdSzjihXMTvXBu44gwFoHEC+c2jn4Y9YHihXMbBTiudywCiRfObWzAHujZvbAACehq6shAASrQgA3YV7GbeLnc7Acvl9vIQI9rjgo0YAP2QM/usX4lXlq3kYAV6DWArubZvVCBXgboA+DZvbAHenbPBnl2LySgq3VHV/Nh8exW71TPbvXe8exe2AI9j9Xb5nm8sAIZ6HG9bZ6xPrm8jG6hZ+zCAqzAXS8qs05uYQPuKlKZdXILC5CAFchAASrQAv2nWb3P/Kd5IQErcDTefLD8p3mhAg3orfBxm7WwjrMWdmIBErACGShABXr18uioWS230CtRiyMBK5CB3gpyVKABG7AHzrLXiV6ZbY4ErEAGClCBBmzAHjjL1Sd6K6ojAwWoQG8FOzZgD/TkXeitmEjACmSgABVowBboaeoPn15bt7ECGShABfrTr1ML6pvkCipBFLTexhCeq2lOEqRBFtQ2ecL6k61XzanN/ypABXrbL8cG7IGeuwsLkIAVyEABKhBqBjWDWoNag1qDWoNag9rM3ebYgD3Qf2IXeu90RwJWIAMFqEADNqBXfY/L8VK5jQVIwKE2VuXEy+U2ClCBtgdLZkZP7IEzoycWIAErkIEC9NJ1cuyBs3h9oreiOnor2LECGShAb4U4GrABe6BntK+TeSmd+hqVl9JtrEAGClCBBmzAHug/xwuh5nnevZme5wsZKEAFGrABe6DfbC90NXV0NW+x/0gvZKAAFWjABuyB/tO9sACh5ittl08uX2pbKEAFGrABe+Dwh40FONbb/GnfS+k2MlCACjRgA/bA5mo+aVsBErACGShABRrQqxmc+qZZVONUgiioBnlE79nuVzrswAvjNg4nG/VI4oVxGyuQgQJUoAEbsAcWf43icvT3KIojAwWoQAM2YA8kf52CHAuQgBXoatVRgAo0YAP2wHoBXY0dXU0cK5CBAlSgAVuMRcUIMUbI33lZSMAKZKAAFdjXe/Iyj8paWIDeCnOsQG+FR5jvukxU4GiFL+x4YdzGHugvvJAPwMj2jQSsQAYONfLe8WxfaMAG7IGe7QsLkIAeVx3bOiRAvATOfBnJS+A2VqBfmU9lz9WFfmXeD56rCxtwXJnfAngJ3MYCJGAFMlCAQ80XorwEbmMD9o1eArexAGm32IvdzBcbvdhtowEb0OOOWeLFbhsLkIB1HTwh83SrhQJUoAEbsAf66VYLvXf80j2PFwpQgd4KcWzAHuh5vLCsA0bE5qkiEyuQgQJUoAFboGesPzR5LdvGCvRWmKMAFeitmMEa0FvhXeKvqy0swKHmq4Zey7aRgQJUoAEb0F+68rnjebywAAlYgQwcfeYLBPNILV+OmGdq+arAPFRrYQESsAIZKMAxFr4O4hVuGxuwB85Dg/zK5qFBEwlYgQwUoAIN2AL97BFf+fFaNmPPIc/uhQwUoAIN2IA+FiPJvMRtYwEScLTC10HW8VwTBahAAzZgD/TTghYWoLeCHQWoQG+FODZgD/Tfbl9I9dq2jd4Kc6xABrpac1SgARuwB3rOLyxAV+uOFchAASrQgN5n3iCOkfeitjluXtS2kYECVKABGxAjLxh5wcgLRl4w8oKRF4y8YOQFIy8YecHIK0ZeMfIjTR9bk97kkafBNTEnHi3R+U97oN8pT/S3udzevJZrotdybSxAAlbgKOFz//Naro0KNGAD9sByAQuQgBUINX+n073Sa7k2GnCouRV6LddCf9lz4VDzsfNaru7J47Vc3dPEa7m6T32v5dqoQAM2YA8cU7/7s4DXcm0kYAUyUIAKNGAD9kCGGkONocYe19vmL3outEAvvvRlJq/E2uhq3iB/O3Oiv565sAAJWIHeNp8w/o6mr2b7SVgbDdiAPdAuYAESsAIZCDWDmkHNoGZQa1DzdzL9t9MrsbonjldirU5tGIuGsegegRwLkIAVyEAButpEAw41nRJ9oXol1ka/Xnb0COJoQL/e4tjXsKgXWm0sQAJ6XHVkoAB1Dbd6odXGBoQaQY2gRlDzLJzo2aITK5ADfYKPpXz1I6s2MnBc5Fi/V6932mjAcZHmXeKvOE/0d5zHerh6vdNGAg418173SuaFAlSgARuwB3o6mY+bp9NCAlYgAwWI4Z4vOHvbPHHmCHniLCQgBtYwsIaB9cRZiIE1DKz1wHYBy8oW9eKnjRXIQAEq0IAN2AM9RcyvzFNkYQP2jV7MtLEACViBDBSgAg3YgFArUCtQK1ArUCtQ83QaWwTq5UwbDdiAPdDTaWEBErACGQg1ghpBjaBGUKtQq1CrUKtQq1CrUKtQq1CrUKtQY6gx1BhqDDWGGkONocZQY6gx1ARqAjWBmkBNoCZQE6gJ1ARqAjWFmkJNoaZQU6gp1BRqCjWFmkLNoGZQM6gZ1AxqBjWDmkHNoGZQa1BrUGtQa1BrUGtQa1BrUGtQa1DrUOtQ61DrUOtQ61DrUOtQ61DroUbXBSxAAlYgAwWoQAM2INQK1ArUCtQK1ArU4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheUuElFV5Sp5eYo6s1RwYKUIEGbMAeOL1kYgESEGruJWOnWb1Aa6MCXa07NmAPdC8Zm8Pqp5xtJOBQG693qJdt9eYtdi9ZqEADNmAPdC9ZWIAErECoVahVqFWoVahVqDHUGGoMNYYaQ42hxlBjqDHUGGoCNYGaQE2gJlATqAnUBGoCNYGaQk2hplBTqCnUFGoKNYWaQk2hZlAzqBnUDGoGNYOaQc2gZlAzqDWoNag1qDWoNag1qDWoNag1qDWodah1qHWodah1qHWodah1qHWo9VDj6wIWIAErkIECVKABGxBqBWoFagVqBWoFagVqBWoFagVqBWoENYIaQY2gBi9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxheIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASmV7SHRVowAbsgdNLJhYgASuQgVCrUKtQq1CrUJteIo4FSMAKZKAAFWjABuyBAjWBmkBNoCZQE6gJ1ARqAjWBmkJNoaZQU6gp1BRqCjWFmkJNoWZQM6gZ1AxqBjWDmkHNoGZQM6g1qDWoNag1qDWoNag1qDWoNag1qHWodah1qHWodah1qHWodah1qPVQ0+sCFiABK5CBAlSgARsQagVqBWoFagVqBWoFagVqBWoFagVqBDWCGkGNoEZQI6gR1AhqBDWCWoVahVqFWoVahVqFWoVahVqFWoUavEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCS7w6ro+32dWr4zZWIAMFqEADDrVR2KdeHbfQvWRhARKwAhnoauaoQAM2YA90L1lYgASsQAZCrUGtQa1BrUGtQ61DrUOtQ61DrUOtQ61DrUOth5rX120sQAJWIAMFqEADNiDUCtQK1ArUCtQK1ArUCtQK1ArUCtQIagQ1ghpBjaBGUCOoEdQIagS1CrUKtQq1CrUKtQq1CrUKtQq1CjWGGkONocZQY6gx1BhqDDWGGkNNoCZQE6gJ1ARqAjWBmkBNoCZQU6gp1BRqCjWFmkJNoaZQU6gp1AxqBjWDmkHNoAYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvafCSBi9p8JIGL2nwkgYvafCSBi9p8JIGL2nwkgYvafCSBi9p8JIGL2nwkgYvafCSBi9p8JIGL2nwkgYvafCSBi9p8JIGL2nwkgYvafASr/F77LYXZ0pcE7NzdZbEmticu3NL3MHz9KrFJTElrok5sSTWxEmXky4nXT+19hovN6hXAwZT4pqYE0tiTWyJW+IO1qSrSVeTriZdTbqadDXpatLVpKtJ15KuJV1LupZ0Lela0rWka0nXkq4l3ZZ0W9JtU5eda2JOLIk1sSVuiTu4X4lL4qTboTurIH1LY9Y7jnfjdNY7LuyB8/FkYgESsAIZKEAFQq1ArUCNoEZQI6gR1AhqBDWCGkGNoEZQq1CrUKtQq1CrUKtQq1CrUKtQq1BjqDHUGGoMNYYaQ42hxlBjqDHUBGoCNYGaQE2gJlATqAnUBGoCNYWaQk2hplBTqCnUFGoKNYWaQs2gZlAzqBnUDGoGNYOaQc2gZlBrUGtQa1BrUGtQa1BrUGtQa1BrUOtQ61DrUOtQ61DrUOtQ61DrUOtbzWYl5sICJOC0DXHmxJJYE1vilriDy5V42lVzpsQ18dRVZ0ms4Ni7tSv2bu2KvVubJZoLGShAjzbeRXuwJW6JvRXjTCLzU/KCS2JvBXnvzZuIxZxYEmtiS9wSd/C8iVhcEiddTrrzJmIciGTXvIkYb6rZNW8iFlvilriD503E4pKYEtfEnDjpzpsI8pGdNxGLW+IOnjcRi0tiSlwTc2JJnHTnTUT18Zo3EYs7eN5ELC6JKXFNzIklsetWn+3zJmJxA88f/+ozef74L7bEe2/ArthlsSt2WeyKXRa7YpfFrthlsSt2WeyKXRa7YpfFrthlsatDLXZZrMQui5XYZbESuyxWYpfFSuyyWIldFiuxy2IldlmsxC6LlQtqBWoFagVqBWoFagVqBWpl70TYrEpd2APpAhYgAecgebRpCuOdEivTFKr/nWkKi0tiSlwTc2JJrIktcUucdDnpctLlpMtJl/cSoc3S04UKNGAD9sC5ZDGxAAlYgVATqE0jGG+/WJlGsLgl7uBpBItLYkpcE++FSZslqAsVOEX9YqYLLO7g6QKLS2JKXBNzYh/Q8Z6OlekCiy1xS9zB81FicUlMiWtib6y3e65lTFSgARuwB8Zahnlx6SOwOFvilrgHe4FpcEk8L1ada2JOLIk1sSWez7XFuYPnjcTikpgS18RT15wlsSaez9PVuSXuYJrtbc4lMSWuiTmxJNbElth1xa95usvk6S6LS2JKXBNzYkmsiV1XvF3TLcT7YbrFYk484/h1zluIxZa4Je7geQuxuCSmxDUxJ0660znUr386x+KWuIOncywuiSlxTcyJXVe9f+YtxGJL3BJPXe+raR6LS+Kp622Z5rGYE0tiTWyJW+IOnuaxuCROutM8zNs41yEWS2JNbIlb4g6e6xCLS+IZn53n3x/XUKdvLC6J/TpHUabV6RuLObEk1sSWuCXu4Okbi0vipDt9wx+C6vSNxZJYE1vilriDp28sLolddxw1ZHX6xmJOLImnrvfV9I3FLfHU9bZM31hcElPimpgTS2JNbIlb4qQ770q6t3HelSymxDUxJ5bEmtgSN/D0k+79M/1kcU3MiSWxJp7xxbkl9naNA4+sTj9ZPHXNmRJPXR+L6SeLp673z/STxUO3jJOdzQtPg7vzyCMvPQ0uzt5295PN1bk6c2Jx9ja6n2yeut5Ga4mnrrexXYmnrrexUeKp621snHjqehubJnbd4m10P9nsusXb6H6yOdbLrXZKXBNzYkmsiaeu91VviXuwF6Y+WJxLYkpcE3NiSayJLXFL3MEl6ZakW2Z8dZ5xzHnGac4dTFfikpgSp+undP2Urp/S9VO6fkrXT+n6a7r+mq6/pn6rSbcm3WpoI19oI6fr53T987N+izmxJE7Xz+n6OV0/p+uXdP2Srl/S9Uu6fknXL6nfJOlK0tULbdSKNmq6fk3Xr5rYEqdx13T9lq7f0vVbun5L12/p+i1dv6Xrt3T9lvrNkm5LutMHZhtnvs82tnT9LV1/S/O2p3nb07j3NO59xu/OnDj2bYy7JrbEsW9jMvPal/Vk5q8v38nM33Hwk8nM38WW2K/fl7Nk5u/kmb+LS2JKXBNzYkmsiS1x0i1Jl5LuzPdxhpXJzPfFNTEnlsSa2BK3xB08831x0q1Jt874zXnG6c4dPPN9cUlMiWtiTiyJNbEldt3q4z7zffLM98UlMSWuiTmxJNbEljjpytQdv8UyfWBxSUyJa2JOLIk1sSVuiZPu9AdfTpTpD4spcU3MiSWxJrbELbHr+kqMTH9Y7Lq+QCLz/oG9f7AvaoJ9URPsi5pgX9QE+6Im2Bc1wb6oCfZFTbAvaoJ9UZOedHvSdT8pPFkTW+KWuAfrvH9YXBJT4pqYE09dcdbElrgl7uDpP4vn3+/OLXEHT99YXBJTYr/OcViR6fSNyTPffQ1BZ74vronn3/frmT6wWBP7deqM2RJ38PQHfx7X6Q+LKXFNzIklsSa2xC1xB0vSlaQrSXf6g3hfTX9YLIk1sSVuiTt4+sPikpgSJ11NutMfxukrptMfFlvilriDpz8sLokpcU3MiZOuJV1LupZ0Lem2pNuSbku6Lem2pNuSbku6Lem2pNuSbk+6Pen2pNuTbk+60x98zUenPyy2xC1xD7bpD4tLYkpcE3PiqavOU7c7W+KWuIOnPywuiSlxTcyJJXHSnT4zTpgxmz6zuIOnzywuiSlxTcyJBRzl5GZRTm4W5eRmUU5uNr3H15xses9iTWyJW+IOnt6zuCSmxDVx0uWky0mXky4nXU66knQl6UrSlaQrSXd6j/l8EWw/mljilnjqOk/vWVwSU+KamBNLYk1siVvipDu9x9f/bHrPYkpcE3NiSayJLXFL7Lq+9mbTexaXxK7rpQE2vWcxJ5bEmtgSt8QdPL1ncUmcdKf3NM/16T2LJbEmtsQtcQ9u03sWl8RT15wlsSae8btzS+zxfRupTY9ZXBJ7fN/5a9NjFnNiSayJLXFL3MHTYxaXxEmXki4lXUq6lHQp6VLSpaRbk25NujXp1qRbk25NutOXfC1z1pJubok7ePrS4pLYLZAdZ8jqbIlb4hnS//60nMUlMSWuiTmxJNbElrglTrrTWnyZdZaDFl9aneWgmyWxJrbELXEHT2vxx/tZDrqZEtfEnFgSa2IDNyzrzLLP4kvAs+xzc03MiWe7mrMmtsQtcQdPC1lcEs/lEo/fa2JOLIk1sSVuiXtwv67EWO7pF9rVp4Us1sSWGO3qF9rVy5W4JKbENTEnRrt60cSWuCVO7aLUrrVsOpkS18SKtlNq17KKyR28rGJyaldN7aqpXTW1q0piTWyJU7tqaldaTu2c2sWpXZzaxZw49Sen/lzLpt52Se2SkpgS18SpXZLaJaldktolaZ5Imiea5ommdmlqV1pm7ZrapaldmtqlaZ5o6k9N/RnvrliPd1esx7sr5oWmj6XFy1kTW+KWuIPdTDaXxJS4JubESbcl3ZZ0W9JtSbcn3Z50e9LtSbcn3T51i7MmtsQt8axcegxcu+Ye8OKSmBLXxJxYEmtiA5fZFnGmxDUxJ5bEmni2RZ1b4g6mK3FJTIlrYk4siTVx0qWpa84dXK/EU7c7U2LXHWvfbZaibnbd8a2KNktRN7vuWAtrsxR1cwe7sWwuiSlxTcyJJbEmTrqcdDnpStKVpCtJV5KuJF1JupJ0JelK0pWkq0lXk64mXU26mnQ16WrS1aSrSVeTriVdS7qWdC3pWtK1pGtJ15KuJV1Lui3ptqTbku70ouI5Mr1osSTWxFPX5+r0osUdPL1ocUlMiWtiTiyJNXHS7Um3Q9fLW4NLYkpcE3NiSTzjD/8p03/GHlUr038We5yx/9TK9J/FklgTW+KWuIOnt4yb0lYIY12mh3j/z8rVzR08PWSxX/MoH2+zcnVzTcyJMcdKTbrJQ0rykJI8pCQPKclDyvIQvx6uiTmxJFZcz/SQxS1x0k0eUpKHlOQhJXlISR5SkocUwdwukvpZUj9L6ufpIfN6NPWzpn5OHlKSh5TkISV5SEkeUpKHlOQhxdL4Lg+ZnPrZUj9bGt/pIYtTPycPKclDSvKQkjykJA8pyUNKS+1tqb3JQ0rykNJSP7fUzy318/SQ8c3oVqaHLJ797PGnhyzmxJJ4ttfzenrI4pa4B89a2M0lMSWuiaduc5bEFrk8619p7GW2Wf+6uFyJS2LMJSo1MSeWxJrYErfEGNNZ/7q5JKbENTEnlsSaGHNp1rnS+JhRm3Wumymxx6/eP9OLql/n9KLFmtgSt8QdPL1ocUlM4Dk/2ft5zs/Fmti1xK9tzs/FHTzn5+KSmBLXxJxYEmvipNuTbofurKGkcWZ/m7WSNGp/26yPXP99zqvxPeU26yNp7NW1WR+5uSbmxJJYE1vieW3q3MFzXi2euuY8dZvz1O3Orjv2CNusj1xtmfNqcWrjmksef82lyTUxJ5bEmtgSt8QdvObS5KnrbVlzydsyf9cWc2JJPHW9vfN3bXFL3MHzd21xSUyJa2KPyd6H87eJfZ7M3yP2+TB/j9j7cP4eLZbEmriD5+8L+1yavy+LZxyfD/N3hL2v5u8Ce1/N34XFnHjqev+svJtsiRviz7yb/33m3eKSmBJX9MPMu8WSWBOjvbN2cLZx1g5uRj/wzJFRh9145sjYS2uztm9zS9zBM0cWe/zxUYg2a/ho1Fu3WcO3WRNb4pbY4489tjZr+DaXxJS4JubEknjqep/MfFncEnfwzJfFJTElromnlvfnzJHFlrgl7uCZI4tLYkpcE3PipCtJd+bR2MtqPO/9FnfwzK/FJTElrhgXTWOqaUw1jenMr/E9hjZr+Gicw9xmDd9mS9wSz2vzuTTv0xaXxJS4JubEklgTT12f5zMfF3fwzMfFJTElrokF7Z052Hz+zxx0lpmD3sZZ57eZEtfE3pZxSnSb9X+bNbG3ZewNtln/t7kjTkm6JemWpFuS7vzdXCyJNbElbomTLiWtmfvq1zxzf7Elbomnt3hbZu4vLokpsV//qEVoMnN/sSTWxJa4Je7gmfuLS2JKnHQ56XLS5aTLSZeT7sz38cWhNuv5aHyDps0aPhp1FW3W8G1uiTt45vLikpgSz2v2cZm5vFgSa2LD9cznuMUdPJ/jFpfElLgmTm2c/jB55Gyb6TJSts1ZPjK2Ne+okbAbe+BI140FSMAKZKAAFQi17mo+Kr1v9EK6jQVIwApkoAAVaMAGhFqBWnE1ciRgBTJQgAo0YAP2QLqAUCOokccdg+XnKLaxT9+87m4jASuQgQJUoAEbsAeyS5gjASuQgQJUoAEbsAfKBXSJ5ujBuqMCDTiCjXqC5vVyC0cqbixAAlYgAwWoQANCYmbUnBszoxZLYk1siVviDp6/uItLYkqcdFvSbUm3Jd2WdFvSnb+4czLNX9zFJTElrok5sSTWxJa4JYburHrbXBJT4pqYE09dddbEU7c7t8QdPH+VF5fElLgm5sQe3+fArGKjUa3RZhXbZo8zShnarGLbzIklsSa2xC1xB89f5e79MH+VF1Piqet9Mn+VF0tiTWyJW+IOnr/KY0ezzcq3zUO3Xt4n/qu8mRNLYk1siVviDpYZ3/tWZhxy1sQzjrddWuIO9l/ozSUxJa6JOfHU9X5QTWyJp673iXawXYlLYkpcE3NiSTx1m7OB24zp87NR4pqYE3vM4n3rXrHZErfE3pbi/e9esbkkpsQ1MSeWxJp4xh/jOKvRNpfElHjGr86cWBJr4tkudm6JO7hciUtiSlwTc+JHzO6LzPMAw4l+fMjCUZs6SiPaPMBwYQWOUgHfKpoHGC5UoMcdo+11ZN23jLyMbOOI4Js+XkTWfZ3Ya8g22kDvPz+NbGEP9NPIfEncy8c2ErACGShABRqwAXugQE2gJlATqAnU/NwxX4f34rGNPdDPHVtYgASsQI/rI+TngSxUoKv5CPm5Ywt7oJ875sv2XkfWfaXey8g2upqPkJeDLBTgUPMFbK8g2zjUfCnbjxPsvtLsZWUbh1r1LvFzxxZW4Ajm6e7VYht7oJ/usbAACViBDBSgAqHWodZDbX6SeWEBErACGShABXoyjI6axw66i8xjBxcy0NOJHBVowAbsgTN5Jxagx62OAlSgAT0uO/ZAL1hfWIAErEAGClADGZ3K6FTP2HkNnrELEYwRjFMwA+LSGZcuuHTBpQsuXXDpAjWBmkBNoCZQE6gp1BRqCjWFmmdsnYgh9IQc5ext1mfN+WCYJYZZ4gm5UIEGbEBINMyShlniCbmwAhmIOdkwJ+eDtM/q+SDtaniQ7niQ7niQ7niQ7niQ7niQ7r0B92N7v64LWIAE3A/S/YoH6X7Fg3S/4kG6X/Eg3a94kO5XPEj3Kx6k+1UKkIBQK1ArUIsH6X7Fg3S/4kG6X/Eg3a94kO5XPEj3Kx6ku5dcbWSgAKFGUJsP3eK4H6T7FQ/S/YoH6X7Fg3S/4kG6e33UxgIkYAUycD9I9ysepPsVD9L9igfpfsWDdPdKqI0ErEAGCtDW83f3+iZ/0u5e3rSRgPtBul/xIN2veJDuVzxI9ysepLvXNW3sgXYBC5CAkDA03jyCX067gAVIQP+Z8QiekAsFqEADNmAPnD+hEwuQgFDrUOtQ61DrUOtQmz+hDyfo86i9hd6pE71TybEBe6Cn3sIC9C6pjj5Y7KhAAzZgD/QkG8+aDyxAAlYgAwWoQFdTxwbsgZ56CwuQgBXIQJcwRwM2YA/03FxYgASsQAYKEGoMNU/TUZPcvdxooafpwgIkYAVy9LpgsASDJRisOat9jOf89TGe83diD5zzd6LPXx+LOX8nViADBahAAzagq40rmx8dXliABKxABgrQdtvml4bHU3ef3xReSLtB85vCCxkoQL90czRgA/qljwGY3xReWCICQY2gRlAjqPk94kIDNmAMy/ym8EKo1Snxf/7hbw/Z//jbaJTJ9fifdfxPn5Bjz96no4NusA1tQ1/gk9ChbKANdcOOLDuy7MiyI8uOLDuy7si6I+uOrDuy7si6I+uOrDuy7si6I9uObDuy7cjmkcdLT7xBNugG29A29AX+4+FQNtCGHbntyG1Hbjty25Hbjtx25L4j9x2578h9R+47ct+R/XZu1Af4zZxD29AX+K/CohJEQTWIgyRIgyyoBYVGCY0SGiU0SmiU0CihUUKjhEYJjRIaFBoUGhQaFBoUGhQaFBoUGhQa/isySjHmj8ikEkRBNYiDXEMGaZAFuUYb1Df5r8g4EGH+iEyioBrEQRKkQRbUgvomCQ0JDQkNCQ0JjZmg45o9H0dRl9eXLqpBHCRBGmRBLahv8sScFBoWGhYaFhoWGhYanp+jMM3rRxf1TZ6ik0oQBdUgDpIgDQqNFhotNHpo9NDoodFDo4dGD40eGj00emj0reG/hW2UoPlP4SIKqkEc1DZ5Do5SPP+5a6OAzn/tFnGQBGmQBbWgvslzcFIJCg0KDQoNCg0KDQoNCg0KjRoaNTRqaNTQqKFRQ6OGRg2NGho1NDg0ODQ4NDg0ODQ4NDg0ODQ4NDg0JDQkNCQ0JDQkNCQ0JDQkNCQ0JDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NCw0LDQsNCw0LDQsNCw0LDQsNCw0Wmi00Gih0UKjhUYLjRYaLTRm1tqgvmlmrVMJoqAa5BptkARpkAW1oL6ozqx1KkEUVIM4SII0yIJaUGiU0CihUUKDtm9UKkEUVIM4yK+gD2pBfdPMRqcRbxQAeR3soho04o1yH6+AXaRBFtSC+ibPxkkliIJqUGhwaHBocGhwaHBoSGhIaHg2jhKfOrORB3GQBGmQBbWgvmlmo1MJoqDQ0NDQ0NDQ0NDQ0NDQsNCw0LDQsNCw0LDQsNCw0LDQsNBoodFCo4VGC40WGi00Wmi00Gih0UKjh0YPjR4aPTR6aPTQ6Dsyz3tbGVSCKMhnjv89DvKZ4/9fDbKgfb/G175f43lv6+QzRwdRUA3a91JcJEiDLKgF7fs1P2WzjYIur8Nto8zXq3DbKNr1GtxFLahv8gydVIIoqAZxkAQNjVEM7PW2i1pQ3+QZOopHvc52EQUNjVHC66dqLpKg0ODQ4NDg0JDQkNCQ0JDQkNCQ0PAMnX/PglpQ36ShoaGhoaGhoaGhoeEZOgp3/VzNRS0o2uEZOqkEUVANco0xczxDJ7nGmAeeoZNakGuMueEZOqkEUVAN4iAJ0iALakGh0UOjh0YPjR4aPTR6aPTQ6KHRQ6NvDa+6XVSCKKgGcZAEaZAFtaDQKKFRQqOERgmNEhqev6Mc2atqF/WVoX5yps8Xr6FdREE1iIMkSINszSuvrF3UN3lOT/KcHlc1c9qpBnGQBGmQBbWgvgl1X4KyL2lRbSb9AhYgASuQgQJUINQ61Hqo6XUBC5CAUeelKPPSS4AKNGADRmWZlgtYgASEWoFagVqBWoFagdqsth7bM/PQxIVRTTaPTFxYgQwUoAINGOVruiq7fPVsFnCVgQqMsjGtDRhFY7pqtxwLkIAVyMCpNlo8a6knGjBqxeZBiRPn+xQTC5CAFcjAqWYDFRglYioNGAViuuq6HAuQgBXIwBl3dN+q0KKBBRh1YWoVyEABKtCADRiFaLPO02vGdJVuORIwisG0MVCACjRgA0b52azuXFh20dis7Vw4g3X/yh2wAftGW+VZvg5bgASswCj9skuACjRgA0a1mZULWIC8S8HmGYQLFWjAtsvA5vmDE+kCFmCUes2qzYUMFKACDdiAq7bssUDPY4F+6Nh4LhkqE+oG3iAb1OHxb2X82+b/s84l5gltQ18wRnlC2UAb6gbeIBt25L4j9x2578i+xLyoBFGQR9/LyTZutH05eVEL6puKx9O1TGzjZ9eXiRdZUNs0O6atpd5FFtSCXKOvpd5FJYiCxjWP2zRfwrXxk+3LtTZ+lH1p1sY7Zb40u0iDhu64KfSl2UV90zC+RSXI442Wi/9bXQuyi/omvYJKEO2r0hrEQRKkQRbUgvomu4I8nq0F2UUSpEEer62FVhu3S77QuoiDJEiDLKgFjWsZZS6+0LqoBI14bS+q2ihF8UVVGzcJvqg6+6VH//Xdf76ouqgE+TXrI5N0ZNJwdPPjQOsG3iAbdINtGGJ+KGJf0K4NZYNHtrlVNMH/VVs5OsslNpQNtGH8K69s4A2yYVxP3znad472naM9crRHjvbI0R45OsnD7+0d656P/vci97pnkscb4+XGNYmCahAHSZAGWdC4RR2/unM7xslvgyeVIAoaN7/jx3luwkzyKLSytV2ejxRUgzhIgjTIglqQX9XO4DZ+LefmyiQKqkEcJEEaZEGu0VamT/IH1fF7Ordjxq/l3I6ZNDTGL93cjpk0NMrO9DZ+r+Z2zPixmdsxRVamT/IH1VFdPLdjiueya7SV/W1UDs/tmElDY5QQz+0YKiv7Fw0Ncufom/xBdVIJoqAaNDRGAe/cjpmkQa7ByyXaKL2d2zGkyyUWlSDXGC3yB9VRaju3Y0ZN7dyOqddyjkUWNDRqbMeMctq5HVNjO2aUEs7tmElDYxQSzu2Y6r7iGmNB2R9UJ1lQC+qb/EF1UgnyyG1v20ySIA3yyH1v20zqm/yRdVIJoqAaxEGu0R+uaO6K/vNalvU5+I9refyF5sUG/hdGsUH3/zmsQ8Y/H436j3nfIvu+xcE2tA19gf8yOwxjGev5/rvsMGxlHPZQeYNs8MhjCdwjt6FdUAdR/s/jP/z9X//bP/77P//rv/zXf/+3f/qn8f/b/+F//e2//F//8bf/+Y//9k//8u9/+y//8r///vd/+Nv/949//9/+l/7X//zHf/E///0f/+3x/31MkX/6l//38ecj4H//57//06D/8w/419fzf/rYHZL1rx/bQxYBHrdDd0M8Fo/LCvFYHyaEKF+vgg4h6r6Ix5oqAqjeDaBl98HjWTMCPB5MvgTg5wEeVrsjPDy0PQ0hp34Yeb76werTEKeu9L2iGaK1/rQr7TCgfvrJHNDHZghCVP4Sor07GsdmdES42tNmlEMM0boH5IGI8UjhLyHKaUzHz/gaU6GnIQ7zym/IPMLDVtEO4dsRvMhnRnBvehLhbjPseTNOnWnXTtEH9qch9GQU4752GQWXpyHs7a44zEzyz+TNi3g8ukUMpq8h+uEixkPXvIhuTy+CDp35ENY9vQfjMh6blPebUsav6WqKlGdNocPU8jMdZpZdTwOcc6xrTItSn40pfcA3TzHYDwjzGI8tpsMPiB6vg+I6Um88bly+xjjMT2l7RB5ruCnC9YupAecbn1wsT6cGHaZo57bnaJd0JfXbuNTT77pdkSmPRaKI8ZtRsZ3wj60zezoq9TBDi++Jzu7oRVMM+RqjHmKILyevoWXJPydf71Eqvz8/qrw7P85t0UvjMlT687acfuL9QyLLOtJdwsNSvsZob8+P/gkbPEe5mzFc3s8Ypnd75Dy6nWGGPd87fRtdPszUWmwHeWAe3W8x5PTLwHuaUcu3ovatPw6O+ti53APz2LAsz2OcrqNrjZ+o63Adh5mqGtfx2OewpzGOI6OEufrYYbKnIyMHT31smlE8ZZA+j3GYqewfrJ2uWoheivHYK64xMsSvtaXWHePx+HboDz7dPnCPW3R9MYYvZK9bEKPXYjTc3T5W2p576nGG2NVihszV1ydX0v7SXwgr8QhYxvfun16Hnu5DihfSzSiPtarriZtp+Uv90PzV0NWWLs9HRutf2qfjDLp9HY378zsIPXlZtRYP1j1fyddHB9V3+/R4FRwrHcR8Pb2K412ZxRLBYwWyPb0r08PvNknt8Tj4JW+/xrDDLOUWCybcvsTQ2zGE4zqEe30eg96/N7S3Z+m5R1vMDaXy2qhoRYzTqBzmKF8tRqV8uUPlX1xHw+8+yfPrOHhpqT0Mmb/M0q/XYf20khW/lLU2ex7jdB2cDLk8j9FOXur763vxRF/q03phmfVqr2VtvWIp6XFF9jRGOz1JdYoJ8uDen7nY6TqKtBiXw1xvJy+9DAsoX34nvy6AtMOT1PjY5oph9uXJ8n6McfBdLGtJeR6jv+9A/forHehxS2gxKmavzbAaT2KVqT+N0eu768/Hq+B4EKuaF8G/X8Xhl7akR4Za87jW+zE6xxy92vU8xmF+9Rb3Hb2nu9v67ReuHzys225KT3e2o1W3s03iHvvxI/N8lpfrOnZH/DxdyUr/WMk+WGmNFWC+nq/fluu0WSQxKqrX9Xz59jrdVF5+BNVeuKD6dNGhn2/n4qZS+vMJUq7TuhTTbo9IWt3/vuVTLv3A2Nj7Y9M+MTb9E2NzXh0XxePt0x2P0w0u9rDYVJ7vg502kB43UPG7/9gzeJ55xyD+Xa0ZhCodgvD7+2lF3t5QO4W4u6N2tyWHLbXbXcr1xXEpzBHkcPNQjrsON/dgzlciGreGeryS43Zp3PePbww/d6JjEK+rmUEeT+uHIB+Yq/T+XKX35+ppV+runie1dzc9Cx1v2WNJ+XH3npbYlV4clUPenadHrCmPj8G+Nsda6Rjb/KD8Pch5vZ/jCdXS6vb3O9Vz3vVYjHmsSx/s/bQzdXe2V317tp9C3Jztt1vyqjP32Bjn69LnXcrX+1162pa62aWnEDe79HZLXu5Swa3d1V77seOrxMrSxadxOW1L3awLYvvA2Lb3x7a9P7b2/tiee/Td+1y5Ylf7sft6qPeSetpdqxo7UvVgyaetID+7eN/3X88d+dwfhv5oL/bpzYIrOf3wc/Tq4zGRn8do78906W/P9FOImzP9dksOM/3Yo1hSfvSovhZD4nHssQfytGaq6GnDsseSsnTtL8aofCfGeYbdq+lTe3t26Pt1gccNh3vVdOW0lXSvnO54FTdv1U+bUTdv1U97UVpiF0hLGtY/btXvB9EXg3Bsqiun/c4/g+i743JuC0pISnu1LRRTTB+Z/2qQSBel/urQ1Ki70LxO/0eQ05bUY30kqsgG1+dLbccwvyiGPYax+PV/sJaXw3Qs/LV0o/rLMHeL0sppzfxuVVo5bS/dKxk4X4dRx/I/Ha7jdpD+apAYngfKa0EeWwxpyl3tFOY4yN1QI3OlG6zfzpW01tzSjetvw5SSwhzS8f4v+vOno35aCMD6ij3/DTvfQd+qKy+nLavbD4vHIH5owgxS6fljK13HUurYjyTj51Xy1/uvotD19rsoxxD37rTo4rfvcei0YXX3HQx9fzny/qjYYVSOs0Phz41fijHqfKMx3V6Ncb0do+JWq6bH59/FUJR2tOcxSn37+eiHGLeej85tYUwy1vZ+jBfnWPUzZVaM9nxsT+8blXSfZnTKutOFmMQEefxMPL2Q027V3cE9x/jA4FpBWw6JS8cigKjNKKO25MVO7bEH2A6z7LTPdG/nnY5vUPWoyXr4x/NHk+N1cKy/cZoefzy9nn+zYyOSa97f+dUPPzMupNRXg8QMYT7dPdQPbM7SqWL37qvF5+b0ugdYykWH5nzifb8qf3FzpEQQKXxqjr17r3u8DI7pKg8vOlxGP6VNpG+qmaNv7+ATv//C3/Eq4hE8J++fV3Ha4imxwsqUqoj0fgh/+sGTkFyvBemCx6mebnZ/FwTvL5S8k/ibTo1VFu6nobW/NMRYGMEzcytPm3IOcndk7BMjY++PzDlzNd1EfDls4RfpryVao8Xaq0Hi/u5xTS/+5CnHvYh+qQL8VZAaayIq9rwKiMQ+8Btx2u/5yG+EStR3P3Y2D805vkwl/l2g1Z6ebvN+cSXmx/XNX5rKpyuh91ciTq9T3V2JOO093VyJOIW4uRJxfJnq5krEcevp3kqEtg+sRNwelcNT4nl23FuJUHp/JeKHGNfbMW4+aNrdHVJ5rU/vroicY9xbETF7/6H5HOPeQ/OxLXzF/GB6umNM7fqrr+PeysztGC/m3N2VmeMLVXdXZow/MEH4Lx6Ym6sqrX1gVeV8IfdWVU6vVN1cVenlA6sqp+u4t6ry000MNlgfk4Wf3XZ3PgfhFKS9EuTmI+JPjbl3HQc7VI3qXbv0sH4gpxJxiuUD3H/UXz3I9LQJeclLT0OPf9gRhJ49DdWrvP9IdQzykcf/uz1Cn+gR+USPyLs9ct40R+1t7628uPPeY0H0EeRQA9DpIzvvpzCKU6G0WXn6OHUKgUcy7WSvhYhXb7TL0xDnQpyo8tR6vVxXFD9UjyCHap7jSxE9qrUsN+Z3L970uHG33p8HqadD/orFa+oPfHoTUcv7Vau1vF21egxx7xm1Unn7GbXS2xWB9bRPdfcZ9f6o2GFUTrMDr2aU3p8+19XTRtXN29QfruPW26719FLVvbvDenqpSk1xtlV7XvNzvI57d4fH7nhM0wvTtL3UpVTwKnN5fudfT29U3ezS4wbVzRvu43Xc3MY8v2EWx1O00p6fw3t+A/nemwjHY1tvvURQa3/fjk/bUzft+BTiph3fbom91qE33yE4nqVw6xWCejpZ7+bz/g8x7r1C8Hb1//Hl5dt1yOeDV+/WD/8Q5Wb58PH41pvltvdj9Bdj3Cu2PR/PefeO/9yvd0ttj9dyf6acDxy9WWh7jvKRFt2ftf0Ts/Z4hOrNWXs/Rn8xxr1Zy+Ujs/Y8U+5Wdt8+N/35rZW+W6VyPMv5io3Dx/1A3n38dori8VAl6tjHKM8WEM8hUNv15Ty2byHsA0tMp5tMxevhXw76/NYZVt/f466nBfe7e9ynp6Gb/XFaCI0z8jQXH30/9vwUIe7MNFXq02+Ob5cr7FRS9dIfx7cfj4An3NylM3/+OOK7HY+oune63fnc03vna/5w6jldqTXPT/mtrb6ds8cQ93K2vb0IenqqI8Nhf2bP1vtPNYf3Zvkxwq1Zfnw2vTnLzwWYN2f5eVfq5iw/fmgm3u2kB6cLqfdjSPTpY5vlEOOYKf7FwtUj7Xp+YnI9ncR2M1OOIe5lymlT6mam3O+OL7XPvzmEnlEHkjYL6eUY7f0YuSj1N4fhGw5utvb8AHk+HffHFCuoTKkxfwY5tYZiMabmlPllkBo77FT11SC486BqHwiSKrB/dbr/FXsOevXy4uCk02l6v14d4diH4VoO/XrzmwlX15d6RNy5Z4z8pYI/Ytz9hkQ7pE15/00/LkdLvFA/RXq4kNMLqRLfCDDJb4S0bzFOR1PWBm/O2yjfr+P0zZSeTiLIL1B8j3FcxLgYixhXPhSy/aZb48ieLyf1/tmtxyA91bY9nyTnzyYUrD0oHX58+bQ/desB94friBDjOtrhOuS4+BAP/CWVUNvXe6vjBz58Gk4b4fL8Oo4f+KixfCFfD2L+zcc5YEXa9LUY2CUb683Pb6yOI8NxbsaD+eUo+AiU8ukDLu3dZ4BjhFvPAD98miNVlfTrWfkDnx5Feol1916e3mmeQ+BjNp2ovfSYW+ME1Adbf21kLe3JmJTnUbi+vTh1DnHr9p357cWpX3QHvd6pOJpS6otJZ3g8e7Beh0eJt5+sziFuDs1f+2T1tTvsenloLEUpT6NofdfJtL69mnH8rE6JJ5EHHzyZT+f+3VvaOYZ4uCF+Y0yfvpj2QxBLH/qwpy+m/RQkffLI2ku+2gi3IY8NqsMnoE7Vi5/56BHFPSLl4rQ/Pnp0N0ah12II4zPVWl6K8bj+OGn3+vJQ9O1jMNf7K/bHTxYViRNMqeX8/0WMGqfjSM3vDHyLwacXqG4a8zHEPWPW9q4xnzsjnnaF8/sC3zvjFESvKIbQ68tnj74HOd244+3Jcj19sjtfBqpBy5ezi3/TlhJn5D6ei8qrQWKheZyf93KQeCm1vPh5rtuf+Hr799Le/r08fmbs5ur/+VNl91b/uX1g9f/0Za3HwmCsll2Hr4Tx+7tT/P7uFL+/O3Xc1sZpv9Ve/HRbxSnMjxjPP1nExzenbu5Kc+vv/8b144mbkS3p/uWPyzjuUd1tS//AwSnHjziVsORCXw4aqd8u5LQii6XDZGH2i09JKQ5waPrap6TuJv7xc1QW3xnrLX/St/wiBj782Fs+oPZ3MeKFlpZL2n/xWazHWizOs8jVV98+jHW8jn7h81z0Ylu64g0f45dilMeKNGrJrvRp0O9R5LSn86EwX4rB6/NPjp2DYKeLKD3U/S6IV1atp4/2PEg/P8HETgiX55+Ck+v92uMfYtz7TuA5yM37kB+u5N6NiJzO6LvrR+cPl9174UjK+99PkfL291OOIe5VuN9vyaHC/fwpuFsv6cgHTug7fwsO71/qlxcf6RdBDOfIWn7T51dB7r6ncw7SYjdF2+m87R8+bZePps57zPKbMOOTurELwenj7b8NEx+2HSEPL4SeuzdeiFBjenWMcNZPuw7nkF/HVeJbL/5c52Np7rxLdY5x710qef9dKvnEu1TygXepzkMbK3ePUaYXM6dcNZXsc311yuPbxQ+2lxOwoL6zfHkn8/vnQ483jnD760qHfv1xs3batbr3GH4OcesxXLj+pSHuPcmfO7ThNfm0Zv69P0/nudx79hX+wAlqwh84Qe34gWyJX5vHjsjz0y2PH8gu8UnXVolfiyHxlNWEnp/nKkLvzvPzZcT9d5PDx/pE+O10O4a4lyvy9nsDp3Wiux8+P51sc29d9hjh1rps+8DzUPvE49DpyKL7j0PX+49D+v7HU0Xf/njqMcTNx6HbLTk9Dl3vPw6dVndvPw7RJx6H6BOPQ/SJxyH6xONQ/czjUP3M41D9zOMQfeJxiD7xOFTev3e/PvA4dL3/ONTo7cehVj/wONTo/S6lTzwO1c88DtXPPA7VjzwOne4FJO4mvrwr8pu7idjzVn6+y6tv3/0fj9m6e/d/2oG7XalyLKqMU6Vq/uTd903eYwzDF+77l/rw+zH4Ci97pM/zzWbp738q94cYN9ffj0Hurr+fr+TeDadeHygEOBYTcKqaK/Z0bE4xSHGudf6E4K9iSCQ/qfHTGHo88u9m5unx01R3n7uPPRL3nGSXHlpz2t68eXD58eQAVrzOYM8/7azl/S+oaXn/C2pa3v6C2jHEvWcS/cB7VVre/oKalg98Qe3+qNhhVN7/gtoxxs1zy3+Kcb0d49655Xo6OezmueXn67h3bvkPMW6dW670/jFVP8S49ex8bsu9c8v1dM7eZ67j1rnl92O8mHM3zy3X00ep7p5b/sNkvzlB6C8emHvnlms9fpj23rnlP1zIrXPLtb59MqUeT8q7+ax7vI57z7o/3cPcOrdcj8dB3zwvXN//tNWPjbl3HXLrZqpeRM8fqOq7D8rncug7D8rnVzri69gPzIv/v3gtRPFqifb6WowWb5ZSfkD93aslZBiT523h0xtZd99POQa5d7b2OcSts7V/CHHnbG09z3LGI8P12sh+icEvxiDEqKcZ9vbLqecQt3b8VMtfGuKmBx77U//Tt/1+Nybp4bi/6Bz5Ol6N0eLe5YGvxsBB1McYb7u5vu3mP7xPHj/2nejFV9Kj3veBzxajjq/n3+qJ8wv+d3rieGiClXhdyb68LvCLgxdarO49diTKizFwjkzrLx4A0QTX8epBFC0eVx7hXj2IouApgV7uj44Yh3E5+Z/EIw+L1Q/EeO2AkMcyZazKqfCLMVo8Jdhpjp1iWLzwyE0Or7KfPk1iGj8qZvngpW81V3qqzGGJ2f7oHH66ffTTlVhcCZ2u5LTVr3hdUdPyTf3FdVisMpqltPvjOk7vTxm+B2pCcghy2jXFwVppZMZ5IbenSMPDaD+cmaCnt6duT5HTWxy3p8gPV3Jvipw2b25OkeN13J4i/f0pYsfP1789RQQfa5L8rabvU8ROm+JCDW/V55+79i1GPRZeYGM9H9z6m7Zo/Nrlh7g/2yIfaIv+tW3Bt40f+NqvndSoiPl2UMEvYhCug+QDMbS8GKPh0IXrejGGxZ0MtVf7NGolpB7y5RyjIgYfThc+ngAbr09SLg/4fnqrlbcPoTiHuPVga6ej/T4Q4uYBQ6f+rDjkpNrz03CN3j2C4ngVjKfrfGzMn1dR33ew09bzTQc7ny9MOHyf5GlbzjEEX2vR5/1RTz/Xtw86PgW5t7Z3DnFrbe+HEHfW9o4Had96Sj8fxX3nKf14ZP2tazgfen9rzeT0qYubH3Y8x7j3Xcd6PCvq9vcyjmFuzs9jiHvz8xzizvw8f67m7oc/fojygQ/N3J0j5xg354h8Zo7I+3NE3p8j8vYcuU5deqFL82+TtrshyC76z3YnfhFCY2WtpXPVxq36zQBYIuy5yOxbAJNjnWnsRuaTK9r3EKcfR9z25Mr79tpV5PcR2u2e6FEM3fNY/NET9m4zTp/5jhomzetxIrenlAqmVD75/36Iu8WLp2bEB48knXH/eJa8G0AodoYfmF5q7XQ7hB9cP0NwOt32NyE0tmNF06njvwoh9m4IC6MRo9f6omMR/8tPyKsh5MUQMaj548K/CKF4d0kveukqlOORVVleC3EpvligL3WnUizfK5WXBlVxArTmV2J+E6LGu87KqYT81Ya8GiI2UZXSQ++vQsQX479+hvs3IRq893ptduLp/YH69ohcz2ennV4wKpVRZPS4ptfmBsf71i/PjXuP76c7aMEnhsZLDi/l2uMfcvqQlrwYpAre2aimLwbBodxfDir9VZD0voV8eVPxV0FSn7AdZtrxhL5SMdNKPcw0O7/uhE8lP7jZR8L0+moYis2ZB0t/uW9wjlqp+YOaf4Q5lZSOz3tEMtfWXg3zAU94zBRKU6++OPXkwtTLN4i/CqIX6iiVXrwSrbgSZXotiDUYQy4k+lWQhoPUpXF9NQiakwstvgdpH9h6ah/Yejo3pqNH+vVqj+Qg5Xo1yJWCvDjVenpbr3P5RJD2ahD8BnWRD/TJq0F6VOA92PoHgjR9NUgqMe/0gT55MYhe8LXxtPOBIFTfbs4jyIs/GE3TpwibvdgcvHOrl/EHgrz2EDyClBTktQTUgt8/LYU+EaS/2By8u6eF9P0+eTlIqQ1B5PpEEHs1CD5WlT84+XqfvBqkRKHAg1/NnS9BOn+gOV1eDFJT7siLP16q+PFSffEnQ9OjnOpLzWkt1psfmO6S+P7Se4uip36lc5q+h2jH700JpcoperqHcAwiF+OjlbnI948g9eZuRroS/c11xFE+UvIZb79qDB4CHw8XpyBvF5S09z839UNT8GokXadxOb3HZ5LOZxB5fhDQ8VrU4swK/XLKw/drOdUcUfp8Jn6Bv732/sNlxI6XmthrU0RbfK1BW35N8/7G22P3T7Fx1l7J/y8h0grMH/l/OsTvI0FKq+lDUe3FgTEcWZW/Nvm7gakYmHQX8EeQ0/cV747uMcgHsvch3tAYftGI7p1Yyfa+l/XjBME5Iq1eJw85WhHKnh9s9moYw6qwWX40+V2Ylr5emUsRfhsmNh+KdX69UUhCy+UAvw1DlsLI8zD6mb45vSPc4uaz5Y9ya/nFbyAV/JzTwfBN3v3dsberVs4hblWt/BDizaoVKjiHJz9mfS/WP4eI92FLrnv7TQi8tE3pzOrvIVo7lvvHjW+9XgwRb3Jo+p34TUPy90nS+vFvQmgst359gf0XISx2xcnqa4NKsaVNeQ/2NyFq3CA+eqW8dhV4Eb9eL3Unczyq8pdPXvbbj4f4dF4p6WboFxdRCtaa8ofzfhOi4huxtb92FUJ5i++1EIoF59Zfa0g85T42xF5rSGVsXclrDVEc66b22lXgTcfHz/xLk7N09EV+AfUXISxeFjfWVwKkSlB5rR+uVBqrzyd3v/ivTNMe9yedXusIfHHL5M2efC3AYyM03iaSvHB6P4AgQF7vvB1AscCQa9h/EeDOe4zHJrQo03tsrr0SAEV60l4I0PElui/byPcD4AlcXgsQxY79S61jvZ+SBSlZ+KUQFPV9jzX8/nYIay+FqPHoXvI9xKshvhQX/CKE4PcmV8D+ZkQE39D7UvrxixCML7tofTuEvXgVOF29XPZiCNxQXa/Ni8K4ofpS2PBaiC9r/r8IEYla6LpeDFER4rUJjmNWCtFLDRF8dOOBL9k+TvTIH/64HYA4fvqIy9PD9vrxsL1758H206t9986DPYa4dx7s/ZY8P8/x+PAVy4SUX8L/RQQhvORYn55b2vn9c0t/iHHrOMj71/E8xnF+Nrw2yuX5Vbz9OchjiJtz6/QNqJtnDXc+fufnzlnDXY4/Ai1/pkOeLyj20wZSZ9wryXX4RsDpK1D3dirPvYoqASrydEmxH196urMoee7UwoYfNT58QuWnsbn5nuIPYbql70kUfjVMOlX2yofB/zKM4djQy7S8HKanN0Hz7cuv5q3FamU3pcO8vR2kvxqk47m3y2tB7r8K+tPEu/ma7W2rfnpcrpcJPrVq3SHMnlukfOBN7h+C3HtNt3/mVe7+/qvc/f1Xubv+lRsexSRtFeaPj3z/wLu8+4NxXviL1dzO+vQqjiE4HcdcXwphcd5byS/g/dkX5w+QY1X58IEM/1TZ0y3p998xpRJH8RDlt0y/N+b4ppQaVmTVyrMTJ38KkuoOTeVpkOPNAKczneuhOafS/aZ4STOdb9b1fowv733VF2No3B2ppqXyP2KcztpvEeLLkczXLy7DcBlmz5ty+hxUrfHGS81vfY21kPtBOCpBHktLpyCnT5fcPAHv2CWG7DVJLxP/0SXHT4/GIdWpvOD7Jz9P5/CJRVX4Y8k2F099v4xTZcxlyJj8ngr/pj9Q5mP5lfs/+uN0pjtedilfKp/428/t6SA+fBFK0lnX30OMTzy/P1d/iHJzsj6i/OWzFd9AeuSvPRudch23mjQmG385EuHP9hy/C4XvOnKy+G8Vw+Pm62DyHV92uNLbSNTL9yjHQ8KwS875xajavkc5HXN8+1ui52thrOPlFeY/ruX0xYu7R2o+opR3d4LOI1QpTgGp+eW3P0eonM4+u+KMAcnvq5T7J2igwu3xWN9fudtj3GNxTp7vIcpV9P3bvUcUe/9+76f7rOjWcZ/17JnkcSn9/bu1c5Sb35k/3fHd75PjqXLxiEXy5Rjo74N8OquPsH9IV7VD/tHx46ix20RXO0aRT3gB6btb6z/EuLW3/UNrbh7S+4jygVN6y1VPP+y3juk9z9kSzal0XYfpdvps1Pg6YzxO57rQP5tTPzFRKr87Uc6PGfF9ED1sxx0fdrAfp1++HXP9IkSMjObCoF89L+F1eM2liC8/L7X68qPOraE9B7mdeqetpPupd3o36mbqnZ4yUGOe7mG/veRxfMJo6RvaD053BPqrx4ObA/zj48HN5L0+M8QfcVd5312Pz4B4Ks4lcX88A572thg35Fzzq3x/PFqfpkrcVLS80vjnhfAnTF4+cjcgH7gbkA/cDchH7gbkI/NV/9r52qNiIJ8A8ec00dNWfcFDWy6I+d18RVHNVcrpSk4TNtXy1/xY/We3fmTC6gcmrH5gwupHJqx+ZMLa9Zf+hhZ8ZbxYPzmbnW5fcVIo5V26/yTK4ZaAr44v2uePRLH+4lrqFbds9csHR/+8FvmEV5t+YuqbvT/1zd6f+qafmPrt+sTUP30L/t7U/2GmoP6xln4yyXaatfhUJvdaX521eKevkh2vRT5h2O0js7Z9YNa2D8za9pFZ2z8ya/sHZu1x2T2doZc/iPHHsns/TVqOd016PiGDfxFDokIkF2j+MgYOpvjygvxvYijebc8f93g5hrwaQ3EaxKv9odEf+nJ/WLTFXu6PHOPV/sgVRK/2h0V/2Mv9gbMP2sv9kWO82h8t3u9q9vJ14O3x9up19Dgmq7/cHznGy9fRUB52mh+nLTvD6dcPfH7OwA8bf8IozshvMXyPUk5bXIZzpYyonaIc92btP3HmWq/ftMcIB48wvdorFkVzaq2+GgXf8tVmpyjnjcx7NxPHGLde8fgpxr0bkuPW7t0bkkKfWIUt9PYq7CPGaZXg5tEFjyjHM1bvnF3wQ4xbhxf80Jqb5xf8EOXm+QM/bL1fcZv22Fui51vvpX6ilKDU9zPwHONe9pxbczt7Tntc97Pn9MWt27fzx/IKwRin4vP/ZIxP1QQlqmkfT7XyrLyi+HGQT58sLKZbyVUA375++AjST5tusfWXv475qxANh1W1V0PEJLmeX8UPFSuEEwC/3Hx+u47TLhdLlDdx3oR8I0h/GuR2GU/+Tuef84yPtS+o2ubaDu05fSTuSp/p+HJu3vcgp8la0pn/Ra72kTB5qVx/9VCOs0nOtXCnWz9/M2TNuFSr/Mc+Yjltd+F+q+V3779XnxW591ieDyD4fhNa5P0b2fN1xIEUks9p/TOGfsLqT9+xunujJO0TN0qnva67N0rHGDdvlI6tuXky0Q9R7t8onUpWrvqfe/UfmXPa7qrxFMipPd9TuJx2h/DJNc4vYGj9TWMKPtNV67Ex9om7Pm3v37Edr+T2HZt9YgG22NsLsPdfS+Hnr6U8LuRUGXjvfNEfKrVuPo0ea8buj85HTNbsLx2dr9XKdBqd/oF9lNI+8uDVPvDg1T7w4NU+8uDVPvLg1eSvnSg1urVWKU8nyjEI4wGd85k2f862U53iZ6Lcezv1hxi3Xk/9Kcad91N/WD65eXDiT0s5N+9Qfljyu3Owy08x7hwq9tNyrOEDQu31Rd14R/TxjHw4SOD4nlmJF+YfafT8ZbVSTiVK0ZxkJvybCuFb3xo/vQ5CccYDf/mtqN+2IOhUcfll1YSfnqzyCHK6Hbh3cM8jyMlbb52uco5x73iVXzTGTo05dWuPVaDHLKqHIKfb13un3vx0JYxXQdJyxR9BTov+NTKGLzv068lFbr+fdoxye8vsfC13N4fOUe5uDp2j3N2+o+NrXVdPJ2/0/Iko+WWcfKxPemPul3EK43iD8uWjlr+Ng/c0HzHlFKd8YFPxhyj3fn/O2cRx3htrPbnUqWYRZ/BRPoPvV96QXiCg/MXhP4Kctq3uesPpzayCL0mXns+mV/rFldzt1/MI37xP+WHWXjWdnMQvZ+Ncflpxir2ejQVHR5ciz7PoOk65OwePFarHMpI7J489YpxfWouHny9t0dtfe6oa74xWzd9dtH4/hKbXPcv7IeS1EDh0TPM7mr8IgS/wVMuP178IgU8LPuzgtb6weLSulr9+/mqI1wa1xeplzfVWvwoRqxW18WuD2uK384H9xauIedH0xUGN098e+NJVPPYMcKZP/r38RYgvFQ31aYhCx4PJCCfOU16k+M0HFaKkntRea0rshFLV67UQMcUf6wAvZclYTMDqRH0xxIUQ/HYIqi92JxZIqL12FRV9If3tq3htUDmSJO/g/mYpAAHopQD3zmY6BLj3vvMpwK23nU8B4hOQmm7+fnUF7y7I3DpC4mRSODp/fKA37RjfPxFO4/H4sW3XXwrRoqTnga9dRcfrR1c+FPt+CLpiRtGX++dfXAVKuMuXW/nfhIghfexQvNSQfMZ46a9dRcVHz/nil0Jw+sxq2jT/HqL478vTGf7+t3gqvtRa7bXewHl2ham83aEvhrjSCbv5c7F2/9x3wek3wq995EFwAKS01z4poISv+FZ5OwQ//6RAoePbUhTrg5JPavp2i/YIcq4dx+N7eq67f583To2Mxrz4rYh0ULHJ9XaIw+cmCnX6QJeeX+p5u0tzY+y1iW6EU1/ra6OSPoDYqLwd4nAVhU4vLd8flf6XjkoTNEZe+0BMWnPuVd8Owc+/JVLqac/mbpfW0+bRB7o0N0ZfS/yO5e5eXhoVwivkj1un19Kt4aal9RfTDTtgrb94FYYqoxe/P4SDnh/42tduFBsi9uLXbhTdmY/P/UWIxwPWhSesfEqPfJvi5bBC3nBUfN5jvX/PIkXxqJme9B5bRd8vwz6w5VXL6W60RcExfykW/r5pcD+KnqLQ9YkW0Wlz8+47eJXoA5spx2vR2DDQ/Et3f4m9FDx+lXxw0bcZe1xbiU8f05cShz8m/WlziaqhHCe9o2J/BDkV9xHhs93pkfbPIMcjv6Kkp+ci3T/Kxyr19x/Qf4hy8+m41NM7UXcfTX+IcvfptNb69tPpLxp0eDT8YaAZ3yBkPpy/Uk9fkfqy9J2fI/7sFvvIENkn+uUY5fZA8/WJgT66QrzhQY9dn5fWqIpifI6/yaf3o8pFDd+1qe35MX4/hMErK+Ngu/oszHlpBR9KfIxyfcW064UdyZJeVJbbC6nVqydmhPwz+C3Coz9Or2ZIfLySJO2tyh8z7WSSV+xSjGN0EOT7AMsnSo/r6VMyt0uP6+n1qpsvAtXTa023C1Pr6QWru5/U/iHKzY9RP6Loya7vfEL5HOPuV5QfUdoHrO1mc0xe7ZJbX2P+YbJhP6TIq5Pt7htWVU/mePNT348o/P40uRnjODanGPen2unFpttT7dixNz+A/pNXxwLhw6vbc6+2cxlLlHVnm/3jV+P0hlVrcTp+a3kh6Xu1QT0fKGj4LMSVD/Grv4jy+GWKKLmq+pdRNJ5vHy3nU5TT2RT3vmZST29Z3f6aST29ZXX3K8q/iHL4kPIPUW5+xfgXUQ4fMv6pRfe+6/xjFNQJXu3lFt37rvKPUW59WvmHKDe/g/6LKPZyv9z8GvovotCxd0/ZePerQLV/5N62f+Tetn/g3rZ/5N62f+Tetn/k3rZ/4N62f+Tetn/i3rZ/4N72OMg4X4XyZxH+iMJX+cDw8KkE/+bw3I1x7pMP3Kv3T9yr8+mol9v36nz6jtXtfrUPTHu++vvT/twpt++zj3dx975HwOUD3yM4X8nNDxJw+cQHCbh84kR0Lp84QYDL+8e0cPnEkSR8/KjW7SQ87YrdTUK6PpGEpz2x20l47JSPJOHNjyzw8ajAmx9Z+CEJb35lgU8bY7cPm+DThsn9LPzIZ7X4/c9qPWKUT2RhpU9k4Wlf7G4W1vqJLDydOHg7C4+dcj8LT/c7RlgWkcMSDZ/OHKzasVXx9cwJ+x7mI19yOq+AddzEXWnV9s8VsGMVe5zQxSVVkL8eJL0D9csgUQr1iPdqc2qUc3LNL+J/C8J8PN31XnkZnw4fvFle9sOVaFRESK7WfT1IPgPqd0HCayU/RP0uiMQtnORNut8FwTt7kl/K/qP47zhPOJagH6P4fM+RT5sV6R2UL2tE9D3Gce2gxToe5aqmP6PIsUYEH0VtX0vDfxfHUsmr5cNf/oxzuEto2CpvxV6NYj3eU2rXdeyb021c+lDr2Gihl9sUK+vvtKmFLVg++OSNKPmYn1+ONk75Ly2fr/9nnNMGVZOoEmz5fbD/JMrpRhmvNne7+NUoOIficSP08rWkyskf+uVulNdbhIrF/qVi8XdjnTrmwefMPsYxnAXYTfXlOB3VNNdFrzrW49/inc7r6qf+sZMPKz4D++AmpzjHx73Y9epU7dUot3PhdpRSPhLl5RbdzgX7SC7YR7L7PGMML7c9+uh0B3D6JFeZ347em3BKL8cpijilvREnHTL9Vpx0lE+pL/ezXXHAc7FyfSpOfzlO2sB9PPd/KM7xDvIch+BcRkdH/kWc9nq7KqeXt+x62dlxtPCDj/dK/fRLY4r8evxgyctxDJvCZkf3+UUc0zfioJ/tOF7HrxbffNqV01elbz/tnlvU0sxp0l7umZZG/MuhLN/j/PCQGM+8rMm/vj8kyuk1M4rXl/MBHuWPkuFjvVR8PPyR3qnUqfwmiMa7w5RvBr4HkdMWGamkIPnQLflNlK7xSsOD01kz39e/fggjMV0eYXp9Hqac35WPGhjJv+KX/qZ7De+ufDlY83v3luPHlPEJgfwOzR+fvThGeSx/lzjJ5/H7dOje434bY79N+DDWP/QLojR+de626JfH79Jh7pYPTZf2gelyvpi7iXTul17wJeP6vJBSTm9+FcJtUU135n+kNH1k5p4vpaLsKtn/n5dyLNSIwz7H1vYhyGmbmErscz04/aL9MVlO76LdX+k/hqFxoN8e6MetNB3CnBsVr57Yl++F/TIMxYOPEacl2D/CnPbdeiqaykvbvxtsbeltXX1xxjTDe9zlEOS0ZabV4qlS+boOM+YYRgq+qvrY7OUXwzzsKA42ryWVDf5yqDUa9fiBo8OMOb0HdvO093OMe6e9/xDj1mnv555lPK4/WA89y+X9LjnGuNkl5xi3uuT4M1RxOM74SvnznyH+RGGO8CcKc4TfL8wR/kRhjvAnCnNE3i/MOca4XRIg8oHCnHOnfOQtlOof4lqzNr/s933WHhcpHn1h+GW+DgZ5fJsMTw8lT/7Hz9uvLqbEiXL0pYb+z4tpH7lpOX9A7OZNy2lZocSLKF8/vjfeT/2/H//zH//bP//bf/37v/63f/z3f/7Xf/lf419WGwM/cq+2QWO3ovZNfAWVIAqqQRwkQRpkQaHBoSGhIaEhoSGhIaEhoSGhIaEhoSGhoaGhoaGhoaGhoaGhoaGhoaGhoaFhoWGhYaFhoWGhYaFhoWGhYaFhodFCo7nG+KlqFOQa4weqcZBrDENrGuQa43ehucbw9uYaY6WtX0EliIJqEAdJkAZZUAsKjceyNLAACViBDBSgAg3YgFArUCtQK1ArUCtQK1ArUCtQK1ArUCOoEdQIagQ1ghpBjaBGUCNXG0cEFOqB9QK62vgFfNgHsAIZKEAFGrABe+A0hIlQY6gx1BhqDDWGGkONocZQE6gJ1ARqAjWBmkBNoCZQE6gJ1BRqCjWFmkJNoaZQU6gp1BRqCjWDmkHNoGZQM6gZ1AxqBjWDmkGtQa1BrUGtQa1BrUGtQa1BrUGtQa1DrUOtQ61DrUOtQ61DbTrJWBYr00rG6nyZXjKQppdMLEACViADBTjUeKx6knvJwuZYB/ZA95KFQ43JkYAVyI46cKh5FRW5lyx0tXEnT+4lC11tODq5l/A42YLcSxYSsAIZKEAFGrABe2CFWoVahVqFWoVahVqFWoVahVqFGkONocZQY6gx1BhqDDWGGkONoSZQE6gJ1ARqAjWBmkBNoCZQE6gp1BRqCjWFmkJNoaZQU6gp1BRqBjWDmkHNoGZQM6gZ1AxqBjWDWoNag1qDWoNag1qDWoNag1qDWoNah1qHWodah1qHWodah1qHWodaD7V6XcACJGAFMlCACjRgA0KtQK1ArUCtQK1ArUCtQK1ArUCtQA1eUuElFV5S4SUVXlLhJRVeUuElFV5S4SUVXlLhJRVeUuElFV5S4SUVXlLhJRVeUuElFV5S4SUVXlLhJRVeUuElFV5S4SUVXlLhJRVeUuElFV5S4SUVXlLhJRVeUuElFV5S4SUVXlLhJRVeUuElFV5S4SUVXlLhJRVeUuElFV5S4SUVXlLhJRVeUuElFV5S4SUVXlLhJRVeUuElFV5S4SUVXlLhJRVeUuElFV5S4SUVXlLhJRVeUuElFV5S4SUVXlLhJRVeUuElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxheIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CVteckokFhe4kjACmSgABVowAbsgQY1g5pBzaBmUDOoGdQMagY1g1qDWoNag1qDWoNag1qDWoNag1qDWodah1qHWofa8pI+UIAKdLVRf9eml0zsG/v0kokFSDtCX17iyEDB31WgARsQagVqBWoFagVqBWpFgAqEWoFagRpBjaA2vWRiBTIQbSOoLS9xbMAeuLzEEWoVahVqFWoVahU9WdG2irZVtI2htrzEET3J6ElGTzLUGGoMNYYaQ03Qk4K2CdomaJtATTBugp4U9KSgJwVqCjWFmkJNoaboSUXbFG1TtE2hphg3Q08aetLQkwY1g5pBzaBmUDP0pKFtDW1raFuDWsO4NfRkQ0829GSDWoNag1qHWodaR092tK2jbR1tg5f0jnHr6MkePTm+cpE49B5MiWtiTiyJNbElbok7uCTdUhJT4pqYEyfdknRL0i1JtyRdGMyDU3sptZdSeynpkiTWxJa4JU66NenWpFuTbk26NfVzTe2tqb01tbcm3ZrGl1M/c+pnTv3MSZeTLiddTrqcdDn1M6f2SmqvpPZK0pU0vpL6WVI/S+pnSbqSdCXpatLVpKupnzW1V1N7NbVXk66m8dXUz5r62VI/W9K1pGtJ15KuJV1L/WypvZbaa6m9Lem2NL4t9XNL/dxSP7ek25JuS7ot6bak21M/99TentrbU3t70u1pfHvq5576uad+xr1PKbj5KSX5VUl+VZJfleRXJflVSX5Vkl+VC7rlwviW5Fcl+VVJfjUrbVecknSTX5XkVyX5VUl+VZJfleRXJflVoaRLNTEnlsSaOOlS0k1+VZJfleRXJflVSX5Vkl+V5FelJt1qiVM/J78qya9mFe6Kw0k3+VVJflWSX5XkVyX5VUl+VZJfFUm6ksY3+VVJflWSX82a3B0n6Sa/KsmvSvKrkvyqJL8qya9K8quiSVfT+Ca/KsmvSvKrWaG74ljSTX5Vkl+V5Fcl+VVJflWSX5XkV8WSrqXxTX5Vkl+V5FezXnfFaUk3+VVJflWSX5XkVyX5VUl+VZJflZ50exrf5Fcl+VVJflV60u1JN/kVJb+i5FeU/IqSX1HyK0p+tcp4edbgW+KWGP1Mya+oJN2SdJNfUfIrSn5Fya8o+RUlv6LkV7uo13WpJKbENTEnTrqUdJNfUfIrSn5Fya8o+RUlv6LkV7vE13WrJE79nPyKkl9RTbqcdJNfUfIrSn5Fya8o+RUlv6LkV7vg13U5jW/yK0p+RcmvSJKuJN3kV5T8ipJfUfIrSn5Fya8o+dUu/3VdTeOb/IqSX1HyK9Kkq0k3+RUlv6LkV5T8ipJfUfIrSn61i4Fd19L4Jr+i5FeU/Ipa0m1JN/kVJb+i5FeU/IqSX1HyK0p+tUuDXben8U1+RcmvKPkV9aSb/IrS/RWl+ytKflXT8+CuEp5MiWv6+5xYEmvi2V5ynu1V5w5ey0yTS2JKXBNzYkmsiS2x6443TsuqG548/Ur9OqdfLab0d2piTn9HEmv6O5Z46lbnpDv9anHSnX61OOlOv1qcdKdfLU66NbV3+tW8Bk66068WJ93pV4uT7vSrxUl3+tXipMupvdOv5jVI0pXUz5J0JfWzJF1J/SxJd/rV4qSrqb3Tr+Y1aNLV1M+adDX1syZdTf2sSXf61WRLupbaO/1qXoMlXUv9bEnXUj9b0rXUz5Z0W5rPLem21N7pV/MaWtJtqZ9b0m2pn1vSbamfe9LtaT73pNtTe6dfzWvoSbenfu5Jt6d+7tBdhciLobtKkRfX9Hc4scQ1rHJkf9Vw1SMvbok7ePrV4pKYEtfErrteLpTEmtgSt8QdPP1qcUlMiWvipDv9yvx6pl8ttsRTtzu77jgrrKwy5cUlMSWuiV13vINeVq3yOG+mrGLlxZa4Je7g6VeLS2JK7LrdtaZf9fnfJbEmtsQtcQdPv1pcElPimjjpul/J5XPM/WqzJW6JO9j9anNJTIlrYk6cdDXpatLVpKtJ15KuJV1LupZ0Lela0rWka0nXkq4l3ZZ0W9JtSbcl3ZZ0W9JtSbcl3ZZ0W9LtSbcn3Z50e9LtSbcn3Z50e9LtSbdDdxY7by6JKfHUFeeh60cTllnxLONjUWWWPG+2xK5bZhzXLR7H/UqK/x33q82U2HXHd3DKLH0Wcl33KxlvfZZZ/LzZErvuOLqizPrnxe5Xm0ti1x0fhimzBlqqXzPN+H4N7ksyznQus+B5s8cfJwWUWfK82eNXb6/70uaamBNPrflvDbq1pf8+nwW8H/hCe7kkpsQVbWROLIk1sSVOfcipDyX1oRT0m6Q+lJqY0Z/Tf+r875a4Je7g6T+LZ396n0z/WVwTc2JJrIktcUvcwdN/FiddS7qWdC3pWtK1pGtJ15KuJd2WdFvSbUm3Jd2WdFvSbUm3Jd2WdKf/zLn0/5d1R7uNIMcVht/F13PBruqu6s6rGEZgO05gwLCNjR0gCPbdQ5HU9IfkZnGGEvWPZq1/5FOH2rd/PnmQg5zkSV7kIjd5ky/3PZD+zoMc5CRP8iIXucmbDHfAHXAH3AF3wB1wB9wBd8AdcANuwA24ATfgBtyAG3ADbsBNuAk34SbchJtwE27CTbgJd8KdcCfcCXfCnXAn3Al3wp1wF9wFd8FdcBfcBXfBXXAX3AW34BbcgltwC27BLbgFt+AW3IbbcBtuw224DbfhNtyG23A33A13w91wN9wNd8PdcDdcfFX4qvBV4avCV4WvCl8Vvip8Vfiq8FXjq8ZXja8aXzW+anzV+KrxVeOrxleNrxpfNb5qfNX4qvFV46vGV42vGl81vmp81fiq8VXjq8ZXja8aXzW+anzV+KrxVeOrxleNrxpfNb5qfNX4qvFV46vGV42vGl81vmp81fiq8VXjq8ZXja8aXzW+anzV+KrxVeOrxleNrxpfNb5qfNX4qvFV46vGV42vGl81vmp81fiq8VXjq8ZXja8aXzW+anzV+KrxVeOrxleNrxpfNb5qfNX4qvFV46vGV42vGl81vmp81fiq8VXjq8ZXja8aX218tfHVxlcbX218tfHVxlcbX218tfHVxlcbX218tfHVxlcbX218tfHVxlcbX218tfHVxlcbX218tfHVxlcbX218tfHVxlcbX218tfHVxlcbX218tfHVxlcbX218tfHVxlcbX218tfHVxlcbX218tfHVxlcbX218tfHVxlcbX218tfHVxlcbX218tfHVxlcbX218tfHVxlcbX218tfHVxlcbX218tfHVxlcbX218tfHVxlcbX218tfHVxlcbX218tfHVxlcbX218tfHVxlcbX218tfHVxlcbX218tfHVxlcbXx18dfDVwVcHXx189V6UvzuZ96T8O7///+/rp5q9ffXJb+7rfT6+eudBDnKSJ3mR359vvnKTN/nc/PHVOw9ykJM8yYsMN+AG3ICbcBNuwk24CTfhJtyEm3AT7oQ74U64E+6EO+FOuBPuhDvhLrgL7oK74C64C+6Cu+AuuAtuwS24BbfgFtyCW3A/vnr9b/jjq3c+N3/6q/XKgxzkd49Urzx5fJGL3ORNPjdvuBvuhruTDHfD3XA33A13wz1wD9wD98A9cA/cA/fAPXDPT2689+rfeZCDnORJXuQiN3mT4Q64A+6AO+AOuAPugDvgDrgDbsANuAE34AbcgBtwA27ADbgJN+Em3ISbcBNuwk24+fPrKB55bp5wb8cej9uxx+PTsb/zz449Hrdjj8ft2ONxO/Z43I49Hrdjj8ft2ONxO/Z43I493nv1V68e7436qyePx+3Y43E79njcjj0et2OPR/3snONxO/Z43I49Hrdjj8ft2ONxO/Z43I49Hrdjj8ft2ONxO/Z4NNyG23AbbsNtuA234Tbchrvhbrgb7oa74W64G+6Gu+FuuAfugXvgHrgH7oF74B64B+653PF4kAc5yEme5EUucpM3Ge6AO+AOuAPugDvgDrgD7oA74AbcgBtwA27ADbgBN+AG3ICbcBNuwk24CTfhJtyEm3AT7oQ74U64E+6EO+FOuBPuhDvhLrgL7oK74C64C+6Cu+AuuAsuvhr4auCrga8Gvhr4auCrga8Gvhr4auCrga8Gvhr4auCrga8Gvhr4auCrga8Gvhr4auCrga8Gvhr4auCrga8Gvhr4auCrga8Gvhr4auCrga8Gvhr4auCrga8CXwW+CnwV+CrwVeCrwFeBrwJfBb4KfBX4KvBV4KvAV4GvAl8Fvgp8Ffgq8FXgq8BXga8CXwW+CnwV+CrwVeCrwFeBrwJfBb4KfBX4KvBV4KvAV4GvAl8Fvgp8FbeziridVcTtrCJuZxVxO6uI21lF3M4q4nZWEbeziridVcSCu+AuuAvugrvgLrgFt+AW3IJbcAtuwS24BbfgNtyG23AbbsNtuA234Tbchrvhbrgb7oa74W64G+6Gu+FuuAfugXvgHrgH7oF74B64B+7trCJvZxV5O6vI21lF3s4q8nZWkbdjj7wde+Tt2CNvxx75gDvgDrgD7oA74A64A+6AO+AOuAE34AbcgBtwA27ADbgBN+Am3ISbcBNuwk24CTfhJtyEO+FOuBMuvkp8lfgq8VXiq8RXia8SXyW+SnyV+CrxVeKrxFeJrxJfJb5KfJX4KvFV4qvEV4mvEl8lvkp8lfgq8VXiq8RXia8SXyW+SnyV+CrxVeKrxFeJrxJfJb5KfJX4KvFV4qvEV4mvEl8lvkp8lfgq8VXiq8RXia8SXyW+mvhq4quJrya+mvhq4qt5O/aYjyb/7NhjPs7Nt2OPeTv2mLdjj3k79pi3Y495O/aYH1+9888ONubt2GPejj3m7dhj3o495u3YY96OPebt2GPejj3m7dhjBtyAG3ATbsJNuAk34SbchJtwE27CnXAn3Al3wp1wJ9wJd8KdcCfcBXfBXXAX3AV3wV1wF9wFd8EtuAW34BbcgltwC27BLbgFt+E23IbbcBtuw224DbfhNtwNd8PdcDfcDXfD3XA33A13wz1wD9wD98A9cA/cA/fAPXDP5X426p88yEFO8iQvcpGbvMlwB9wBd8AdcAfcAXfAxVcLXy18tfDVwlcLXy18tT6+mq+8yEW+XfeiY1907N/b9XrlweNBTvIkL3KR4SbchEvH/tmxfzLcCXfCnXAn3Al3wp1wF9wFd8FdcBfcBXfBXXAX3AW34BbcgltwC27BLbgFt+AW3IbbcBtuw224DbfhNtyG23A33A13w91wN9wNd8PdcDfcDffAPXAP3AP3wD18HR2+jg7ct69ed5/Ppv2VP5v2T/75GpP4bNo/OcmTvMhFbvKbu1/53Pzpr8Yrvz/H9+NJnuRFLvLtcIrOquisis6q6KyKzqrorIrOquisis6q6KyKzqrorIrOquisis6q6KyKzqrorIrOquisis6q6KyKzqrorIrOqujYi4696NiLjr3o2IuOvejYi4696NiLjr3o2IuOvejYi4696NiLjr3o2IuOvejYi4696NiLjr3o2IuOvejYi4696NiLjr3o2IuOvejYi4696NiLjr3o2IuOvejYi4696NiLjr3o2IuOvejYi4696NiLjr3o2IuOvejYi4696NiLjr3o2IuOvejYi4696Nibjr3p2JuOvenYm4696dibjr3p2JuOvenYm4696dibjr3p2JuOvenYm4698VXjq8ZXja8aXzW+anzV+KrxVeOrxleNrxpfNb5qfNX4qvFV46vGV42vGl81vmp81fiq8VXjq8ZXja8aXzW+anzV+KrxVeOrxleNrxpfNb5qfNX4qvFV46vGV42vGl81vmp81fiq8VXjq8ZXja8aXzW+anzV+KrxVeOrxleNrxpfNb5qfNX4qvFV46vGV42vGl81vmp81fiq8VXjq8ZXja8aXzW+anzV+KrxVeOrxlfs2IMde7BjD3bswY492LEHO/Zgxx7s2IMde7BjD3bswY492LEHO/Zgxx7s2IMde7BjD3bswY492LEHO/Zgxx7s2IMde7BjD3bswY492LEHO/Zgxx7s2IMde7BjD3bswY492LEHO/Zgxx7s2IMde7BjD3bswY492LEHO/Zgxx7s2IMde7BjD3bswY492LEHO/Zgxx7s2IMde7BjD3bswY492LEHO/Zgxx7s2IMde7BjD3bswY492LEHO/Zgxx7s2IMde7BjD3bswY492LEHO/Zgxx7s2IMde7BjD3bswY492LEHO/Zgxx7s2IMde7BjD3bswY492LEHO/Zgxx7s2IMde7BjD3bswY492LEHO/Zgxx7s2OPgq4OvDr46+Orgq4OvDr46+Orgq4OvDr46+Orgq4OvDr46+Orgq4OvDr46+Orgq4OvDr46+Orgq4OvDr46+Orgq4OvDr46+Orgq4OvDr46+Orgq4OvDr46+Orgq4OvDr46+Orgq4OvDr46+Orgq4OvDr46+Orgq4OvDr46+Orgq4OvPjv21w3os2P/5Pff+/OVi/zmvt9nk8/N/SAPcpCTfDvYQ8d+6NgPHfuhYz907IeO/dCxHzr2Q8d+6NgPHfuhYz907IeO/dCxHzr2Q8d+6NgPHfuhYz907IeO/dCxHzr2czv2fNyOPR+3Y8/H7djzcTv2fNyOPR+3Y8/H7djzcTv2fNyOPR8PuAPugDvgDrgD7oA74A64A+6AG3ADbsANuAE34AbcgBtwA27CTbgJN+Em3ISbcBNuwk24E+6EO+FOuBPuhDvhTrgT7oS74C64C+6Cu+AuuAvugrvgLrgFt+AW3IJbcAtuwS24BbfgNtyG23AbbsNtuA234Tbchrvhfnw1XznISf7Zdefjduz5uB17fm/a65U3j5+bb8eej9ux5+N27Pm4HXs+DtwD98C9HXs+Dtz7upsc93U3Oe7rbnLc193kuK+7yXFfd5Pjvu4mx33dTY77upsc93U3OR5wB9wBd8AdcAfcAXfAHXAH3AE34AbcgBtwA27ADbgBN+AG3ISbcBNuwk24CTfhJtyEm3An3Al3wp1wJ9wJd8KdcCfcCXfBXXDX/ToaK8lw3776uvvkZ9P+yU3++Xqf/Gza37ke5EEOcpIn+c3dr1zk9+c7Xvnn633ye8f+zoMc5CT/7HCSHXuyY0927MmOPdmxJzv2ZMee7NiTHXuyY0927MmOPdmxJzv2ZMee7NiTHXuyY0927MmOPdmxJzv2ZMee7NiTHXuyY0927MmOPdmxJzv2ZMee7NiTHXuyY0927MmOPdmxJzv2ZMee7NiTHXuyY0927MmOPdmxJzv2ZMee7NiTHXuyY0927MmOPdmxJzv2ZMee7NiTHXuyY0927MmOPdmxJzv2ZMee7NiTHXuyY0927MmOPWPCnXAn3Al3wp1wJ9wFd8FdcBfcBXfBXXAX3AV3wS24BbfgFtyCW3ALbsEtuAW34Tbchttw8VXgq8BXga8CXwW+CnwV+CrwVeCrwFeBrwJfBb4KfBX4KvBV4KvAV4GvAl8Fvgp8Ffgq8FXgq8RXia8SXyW+SnyV+CrxVeKrxFeJrxJfJb5KfJX4KvFV4qvEV4mvEl8lvkp8lfgq8VXiq8RXia8SXyW+SnyV+CrxVeKrxFeJrxJfJb5KfJX4KvFV4qvEV4mvEl8lvkp8lfgq8VXiq8RXia8SXyW+SnyV+CrxVeKrxFfs2JMde7JjT3bsyY492bEnO/Zkx57s2JMde7JjT3bsyY492bEnO/Zkx57s2JMde7JjT3bsyY492bEnO/Zkx57s2JMde7JjT3bsyY492bEnO/Zkx57s2JMde7JjT3bsyY492bEnO/Zkx57s2JMde7JjT3bsyY492bEnO/Zkx57s2HPejj3n7dhz3o495wPugDvgDrgD7oA74A64A+6AO+AG3IAbcANuwA24ATfgBtyAm3ATbsJNuAk34SbchJtwE+6EO+FOuBPuhDvhTrgT7oQ74S64C+6Cu+AuuAvugouvJr6a+Griq4mvJr6a+Griq4mvJr6a+Griq4mvJr6a+Griq4mvJr6a+Griq4mvJr6a+Griq4mvJr6a+Griq4mvJr6a+Griq4mvJr6a+Griq4mvJr6a+Griq4mvJr6a+Grhq4WvFr5a+Grhq4WvFr5a+Grhq4WvFr5a+Grhq4WvFr5a+Grhq4WvFr5a+OqzY/+6AeVnx/7J77/35ysn+efrffJ7x/7ORW7yJp+b80G+HeyiY1907IuOfdGxLzr2Rce+6NgXHfuiY1907IuOfdGxLzr2Rce+6NgXHfuiY1907IuOfdGxLzr2Rce+6NgXHfuiY1907IuOfdGxLzr2Rce+6NgXHfuiY1907IuOfdGxLzr2Rce+6NgXHfuiY1907IuOfdGxLzr2Rce+6NgXHfuiY18b7oa74W64G+6Gu+FuuBvugXvgHrgH7oF74B64B+6By02wuAkWN8HiJljcBIubYHETLG6CxU2wuAkWN8HiJljcBIubYHETLG6CxU2wuAkWN8HiJljcBIubYHETLG6CxU2wuAkWN8HiJljcBIubYHETLG6Cha8KXxW+KnxV+KrwVeGruj/bKuv+bKv8/tns73y77qJjLzr27017vfLi8SI3eZNvx1507EXHXgvugkvHXgvugrvgLrgLbsEtuAW34BbcgltwC27BLbgNt+E23IbbcBtuw224Dbfhbrgb7oa74XITLG6CxU2wNlxugsVNsLgJFjfB4iZY3ASLm2BxEyxugsVNsLgJFjfB5ibY3ASbm2BzE2xugs1NsLkJNjfB5ib4/bPZv752vn82+zvDfftq5Ssn+cVd/cov7jqvXOQmb/K5+e2rT35xv/77YvnZtNfj1x+/+a/f//Ln3//hL3/6z9/8y/88f/nv//zrH//x57/99fPLf/z337/f8odf/vyXv/z5P/7177/87Y9/+rd//vKnf/3L3/749bbfPL7+8fUp/nbUjxi/e77z+Dz+2/3skH/sZ7H6u9eDvz3PO9aP8zwGPX+dr7fP9Xz7Wl9v/3rC8++++eP5j/P1wHi9R/fXRzhfHzf+Pyq/Uc/vKp5PjM8H/vru7vn9zc8P+/yDfX6b8v1B+/nn39lfz59fz/96Rpwfeb7f//n96Vxfb17fH/55mPjxLOs/H776x+tzeL3z8xbz/M08vj/481zy/GV9Pbt+Pvv5AZ/1+Pdv7vHjld/Pft7inteHn8/Ofv7y9dn292+txo8e3+/f58eeX2/e9w/j+ZT4euj8fCjGk/f6V3H/9TyLsfl65hj/98/x119/9+v/Ag==",
3937
+ "bytecode": "H4sIAAAAAAAA/+xdB5zVxNfNYzttadLL0ntHRECkKl1sqFiQJqD03ll674qIqIAoWBCRJlZExYaIWEBUBHsXC1aUby4mGGJ2N/e+yXnM9ze/3yVLXmbOPWdmTublpUSsv5fs9rrXgGFDRg8a2HfAsDcKWNbRvH9vjaiIs9fZVKR5tjlr9995ffbLr6KpZ1tBFemebYV8thX3qa+Ez7aSPttK+WxL88Eo7bOtjM+2sj7byvlgVPDZVslHq8o+26r4bKvmU18Nn/1q+myr5bOtjk999Xz2O9tnW32fbQ186mvos18jn22NfbY18amvqc9+zXy2NffZ1lJFsmdbK3sdbwVYIvY6zV7X6tlxyJHaKys/2qnV1kmTrry2Ut3PW4/ePmhRiyPHlhxVn98f98++WSzVosF5IGucMu66c1r/EI7YedK6vPVPx43Y9Tr7Paj+Xq/iIRUb4k6vPM6TbxZLpCJj3wfjguvwcHC9T1u4+Vdi7Luekf9GUP6VGfs+xMj/EUb+fv3wYbsfbrTXj9jrDa5+uEn9vVnFFhVbo+yHVRj7bmLosA3UjlUZ+25m5P8oKP9qjH23MPLfHmU/3Gb3u0ft9XZ7vdXVDx9Tfz+u4gkVT0bZD6sz9n2MocNToHaswdj3cUb+T4Pyr8nY9wlG/jui7IdP2f3uaXu9w14/6eqHz6i/d6p4VsVzUfbDWox9n2Ho8DyoHWsz9t3JyH8XKP86jH2fZeT/QpT98Hm73+2y1y/Y6+dc/fBF9fdLKl5W8UqU/bAuY98XGTrsBrVjPca+LzHyfxWU/9mMfV9m5L8nyn642+53r9rrPfb6FVc/fE39vVfF6yr2RdkP6zP2fY2hwxugdjyHse9eRv5vgvJvwNj3dUb+b0XZD9+w+92b9vote73P1Q/fVn/vV3FAxTtR9sNzGfu+zdDhIKgdGzL23c/I/11Q/o0Y+x5g5P9elP3woN3v3rXX79nrd1z98H319yEVH6g4HGU/bMzY932GDkdA7XgeY99DjPw/BOXfhLHvB4z8P4qyHx6x+92H9voje33Y1Q8/Vn9/ouJTFZ9F2Q/PZ+z7MUOHz0Ht2JSx7yeM/L8A5d+Mse+njPy/jLIffm73uy/s9Zf2+jNXP/xK/f21im9UfBtlP2zO2Pcrhg7fgdqxBWPfrxn5HwXl35Kx7zeM/L+Psh9+Z/e7o/b6e3v9rasf/qD+/lHFTyqORdkPWzH2/YGhw89R6vCzzftHe/2TvT7m0uEX9fevKn5T8btHh2z2Os0KlkJ+Kzi3P4Jyi1ycTjnH2ZyoXFMrujzLWcHzPB68DSLuPJ1y8fb/I34FmHlHgu/7z0IJZLNimEBmgFmp/2dw9ctEg/NX1jhp7rq9I+1Pe2R5f8H9yzXSTsT9XSiiIpvn926u43B+wT3BcJy4eMyRg/MLrhUfPP94UP6cX3AjjPwTGPn79UNqP1rH2+sEe039zdkvUf2RpCJZRUqU/ZDzC24iQ4fsoHbk/IKbxMg/Byh/zi+4yYz8c0bZD7Pb/S6Hvc5pr1Nc/TCX+iO3ilQVeaLsh5xfcHMxdMgLakfOL7i5GfnnA+XP+QU3lZF//ij7YV673+Wz1/ntdR5XPyyg/jhLRUEVhaLsh5xfcAswdCgMakfOL7hnMfIvAsqf8wtuQUb+RaPsh4XtflfEXhe114Vc/bCY+qO4ihIqSkbZDzm/4BZj6FAK1I6cX3CLM/JPA+XP+QW3BCP/0lH2w1J2v0uz16XtdUlXPyyj/iiropyK8lH2Q84vuGUYOlQAtSPnF9yyjPwrgvLn/IJbjpF/pSj7YQW731W015XsdXlXP6ys/qiioqqKalH2Q84vuJUZOlQHtSPnF9wqjPxrgPLn/IJblZF/zSj7YXW739Ww1zXtdTVXP6yl/qitoo6KulH2Q84vuLUYOtQDtSPnF9zajPzPBuXP+QW3DiP/+lH2w3p2vzvbXte313Vd/fAc9UcDFeeqaBhlP+T8gnsOQ4dGoHZsyti3ASP/xqD8mzH2PZeR/3lR9sNGdr9rbK/Ps9cNXf2wifrjfBVNVTSLsh9yfsFtwtChOagdWzD2PZ+Rf4so27G53W4t7HVTe93M1Y4t1R+tVFyg4kJ7u/PrVUZLmhUspURXLk6Z1gqgjYq2KtqpaK+ig4qOKi5S0UnFxSouUXGpistUXK6is4orVFyp4ioVXVRcreIaFdequE5FVxXXq+imoruKHip6quil4gYVveNPz6WP+n9fFTequElFPxX9VQxQMVDFIBWDVQxRMVTFMBXDVYxQMVLFKBWjVYxRMVbFOBXjVUxQMVFFuopJKiarmKJiqoppKqarmGE3wEx7Pctez7bXc+Jt4ZzGIOG890228dnW1mdbO59t7X22dfDZ1tFn20U+2zr5bLvYZ9slPtsu9dl2mc+2y322dfbZdoXPtit9tl3ls62Lz7arfbZd47PtWp9t1/ls6+qz7Xqfbd18tnX32dbDZ1tPn229fLbd4LOtt8+2Pj7b+vpsu9Fn200+2/r5bOvvs22Az7aBPtsG+Wwb7LNtiM+2oT7bhvlsG+6zbYTPtpE+20b5bBvts22Mz7axPtvG+Wwb77Ntgs+2iT7b0n22TfLZNtln2xSfbVN9tk3z2TbdZ9sMn22z7W3uxXvJR1YH1Ihr3yyWCBlywH1PL8jMaW5wnIj7P2me9emf/ntpfRpO5ju3OT2nTHdu68k/s53beblmsnP7f+mS8c4d/q1hhjt39NE7o50v8mubDHbu5NuO/jtf7N/mvjtfkkH/8Nv50oz6ks/Ol2XY7/698+UZ99F/7dw5k/7s3fmKzPq+Z+crMx0np+98VeZj6rSdu2Qx/tw7X53VWHXtfE2W4/qfna/N2gNO7XxdAL9wdu4axFvsna8P5EN/79wtmGed3Ll7QH+jnXsE9cLI3/ObQPuqnXsxPPaG+ODePQ90jJifNU6Su27vF0E6xkTsfGntfBGiep39Fqg/FqpYpGJx/OmVl/bkm4GtnVr6MI41fRnHmhsZx5qbGMeafoxjTX/GsWYA41gzkHGsGcQ41gxmHGuGMI41QxnHmmGMY81wxrFmBONYM5JxrBnFONaMZhxrxjCONWMZx5pxjGPNeMaxZgLjWDORcaxJZxxrJjGONZMZx5opjGPNVMaxZhrjWDOdse8CxnFpifC4xD3xOYOR/0JG/jeD8p/JyH8RI/9bGPn7Ha+X2Mfnm+31LfZ6set4vVT9cauKZSpuiz+9Tu6tEEsZ3JYzNPPjttzmcqu9Xmavb3Nxu139sULFHSrutLfntPyPQ965VFY5zQ7I9bsTJ/5y493lJsEFpMKckxUEfhdD6JWMBpRyWBnPm7gSh5WgCfKq4Djx0eCszhonzl23t/OvsjV04nb7/6tdnf9u9ccaFfeouDf+n7LuPLNYzvj2WhscJ85Px7U2tzn2+m4fHdepP+5Tcb+KB6I0yOOMu2ceZBqkc4LTKRdv/XO/2L8KMPNuyTwQOeum9t/rVfmHVGxQ8bCKjSoeUbFJxWYVW1RsVbFNxaMqtqt4TMXjKp5Q8aSKp1Q8rWKHimdU7FTxrIrnVDyvYpeKF1S8qOIlFS+reEXFbhWvqtij4jUVe1W8rmKfijdUvKniLRVvq9iv4oCKd1QcVPGuivdUvK/ikIoPVBxWcUTFhyo+UvGxik9UfKriMxWfq/hCxZcqvlLxtdMQuax/Okw0jbFeOLgsFk7ktFy/sTv+t06PcnobffCzZxvt5D3Fzp1SrQ9+eI18wzhqfSsUj/sTASen79w5ZbGzW+fvbO050xpO3kFycZaj8VEAHvWZ1mRV8CjDHr9nNIaUw/c+h8msCn7P7Ixcp/jWzsvildPqVg/FwK1+tDn/5HWrH33c6icNbvUQw61+ZHTGn0BuxcnpmNCtjoXgVj8K3ern+CgAfxa41c8Mt/olZLciDr8I3OqXkN3qJzsvi1dOq1ttiIFb/WZz/t3rVr/5uNXvGtxqA8OtfmN0xt9BbsXJ6Q+hW/0Rglv9JnSr4/FRAB4XuNVxhlv9GbJbEYc/BW71Z8hu9budl8Urp9WtHo6BW51wOCdYp4+YEz5uRTtF61YPM9zqBKczJmDcipNTJEHmVlROt1udELpVtoQoAKkw162yBW/ISFxCuG5FHAiD61ZxzM7IdQrq7HEJ/2xIC1ZOq1ttjIFbJdicE71ulZDwb7dK1OBWGxlulcDojIkgt+LklCR0q6QQ3CqBmYuzJCdEAZgscKtkhlulhOxWxCFF4FYpIbtVop2XxSun1a0eiYFb5bA55/S6VQ4ft8qpwa0eYbhVDkZnzAlyK05OuYRulSsEt8ohdKvcCVEA5ha4VW6GW6WG7FbEIVXgVqkhu1VOOy+LV06rW22KgVvltTnn87pVXh+3yqfBrTYx3CovozPmA7kVJ6f8QrfKH4Jb5RW6VYGEKAALCNyqAMOtzgrZrYjDWQK3Oitkt8pn52Xxyml1q80xcKtCNufCXrcq5ONWhTW41WaGWxVidMbCILfi5FRE6FZFQnCrQkK3KpoQBWBRgVsVZbhVsZDdijgUE7hVsZDdqrCdl8Urp9WttsTArUrYnEt63aqEj1uV1OBWWxhuVYLRGUuC3IqTUymhW5UKwa1KCN0qLSEaQIFbpTHcqnTIbkUcSgvcqnTIblXSzsvildPqVltj4FZlbc7lvG5V1setymlwq60MtyrL6IzlQG7Fyam80K3Kh+BWZYVuVSEhCsAKAreqwHCriiG7FXGoKHCriiG7VTk7L4tXTqtbbYuBW1W2OVfxulVlH7eqosGttjHcqjKjM1YBuRUnp6pCt6oagltVFrpVtYQoAKsJ3Koaw62qh+xWxKG6wK2qh+xWVey8LF45rW71aAzcqqbNuZbXrWr6uFUtDW71KMOtajI6Yy2QW3Fyqi10q9ohuFVNoVvVSYgCsI7Areow3KpuyG5FHOoK3KpuyG5Vy87L4pXT6lbbY+BWZ9uc63vd6mwft6qvwa22M9zqbEZnrA9yK05O5wjd6pwQ3OpsoVs1SIgCsIHArRow3OrckN2KOJwrcKtzQ3ar+nZeFq+cVrd6LAZu1cjm3NjrVo183KqxBrd6jOFWjRidsTHIrTg5nSd0q/NCcKtGQrdqkhAFYBOBWzVhuNX5IbsVcThf4Fbnh+xWje28LF45rW71eAzcqpnNubnXrZr5uFVzDW71OMOtmjE6Y3OQW3FyaiF0qxYhuFUzoVu1TIgCsKXArVoy3KpVyG5FHFoJ3KpVyG7V3M7L4pXT6lZPxMCtLrQ5t/a61YU+btVag1s9wXCrCxmdsTXIrTg5tRG6VZsQ3OpCoVu1TYgCsK3Ardoy3KpdyG5FHNoJ3KpdyG7V2s7L4pXT6lZPxsCtOticO3rdqoOPW3XU4FZPMtyqA6MzdgS5FSeni4RudVEIbtVB6FadEqIA7CRwq04Mt7o4ZLciDhcL3OrikN2qo52XxSun1a2eioFbXWpzvszrVpf6uNVlGtzqKYZbXcrojJeB3IqT0+VCt7o8BLe6VOhWnROiAOwscKvODLe6ImS3Ig5XCNzqipDd6jI7L4tXTqtbPR0Dt7rK5tzF61ZX+bhVFw1u9TTDra5idMYuILfi5HS10K2uDsGtrhK61TUJUQBeI3CraxhudW3IbkUcrhW41bUhu1UXOy+LV06rW+2IgVt1tTlf73Wrrj5udb0Gt9rBcKuujM54PcitODl1E7pVtxDcqqvQrbonRAHYXeBW3Rlu1SNktyIOPQRu1SNkt7rezsvildPqVs/EwK162Zxv8LpVLx+3ukGDWz3DcKtejM54A8itODn1FrpV7xDcqpfQrfokRAHYR+BWfRhu1TdktyIOfQVu1Tdkt7rBzsvildPqVjtj4FY32Zz7ed3qJh+36qfBrXYy3OomRmfsB3IrTk79hW7VPwS3uknoVgMSogAcIHCrAQy3GhiyWxGHgQK3GhiyW/Wz87J45bS61bMxcKvBNuchXrca7ONWQzS41bMMtxrM6IxDQG7FyWmo0K2GhuBWg4VuNSwhCsBhArcaxnCr4SG7FXEYLnCr4SG71RA7L4tXTqtbPRcDtxppcx7ldauRPm41SoNbPcdwq5GMzjgK5FacnEYL3Wp0CG41UuhWYxKiABwjcKsxDLcaG7JbEYexArcaG7JbjbLzsnjltLrV8zFwq/E25wletxrv41YTNLjV8wy3Gs/ojBNAbsXJaaLQrSaG4FbjhW6VnhAFYLrArdIZbjUpZLciDpMEbjUpZLeaYOdl8cppdatdMXCrKTbnqV63muLjVlM1uNUuhltNYXTGqSC34uQ0TehW00JwqylCt5qeEAXgdIFbTWe41YyQ3Yo4zBC41YyQ3WqqnZfFK6fVrV6IgVvNsjnP9rrVLB+3mq3BrV5guNUsRmecDXIrTk5zhG41JwS3miV0q7kJUQDOFbjVXIZbzQvZrYjDPIFbzQvZrWbbeVm8clrd6sUYuNUCm/NCr1st8HGrhRrc6kWGWy1gdMaFILfi5LRI6FaLQnCrBUK3WpwQBeBigVstZrjVkpDdijgsEbjVkpDdaqGdl8Urp9WtXoqBW91ic17qdatbfNxqqQa3eonhVrcwOuNSkFtxcrpV6Fa3huBWtwjdallCFIDLBG61jOFWt4XsVsThNoFb3RayWy2187J45bS61csxcKvbbc4rvG51u49brdDgVi8z3Op2RmdcAXIrTk53CN3qjhDc6nahW92ZEAXgnQK3upPhVneF7FbE4S6BW90VslutsPOyeOW0utUrMXCrVTbn1V63WuXjVqs1uNUrDLdaxeiMq0FuxcnpbqFb3R2CW60SutWahCgA1wjcag3Dre4J2a2Iwz0Ct7onZLdabedl8cppdavdMXCrtTbndV63WuvjVus0uNVuhlutZXTGdSC34uR0n9Ct7gvBrdYK3er+hCgA7xe41f0Mt3ogZLciDg8I3OqBkN1qnZ2XxSun1a1ejYFbrbc5P+R1q/U+bvWQBrd6leFW6xmd8SGQW3Fy2iB0qw0huNV6oVs9nBAF4MMCt3qY4VYbQ3Yr4rBR4FYbQ3arh+y8LF45rW61JwZutcnmvNnrVpt83GqzBrfaw3CrTYzOuBnkVpyctgjdaksIbrVJ6FZbE6IA3Cpwq60Mt9oWslsRh20Ct9oWsltttvOyeOW0utVrMXCr7Tbnx7xutd3HrR7T4FavMdxqO6MzPgZyK05Ojwvd6vEQ3Gq70K2eSIgC8AmBWz3BcKsnQ3Yr4vCkwK2eDNmtHrPzsnjltLrV3hi41dM25x1et3rax612aHCrvQy3eprRGXeA3IqT0zNCt3omBLd6WuhWOxOiANwpcKudDLd6NmS3Ig7PCtzq2ZDdaoedl8Urp9WtXo+BWz1vc97ldavnfdxqlwa3ep3hVs8zOuMukFtxcnpB6FYvhOBWzwvd6sWEKABfFLjViwy3eilktyIOLwnc6qWQ3WqXnZfFK6fVrfbFwK1esTnv9rrVKz5utVuDW+1juNUrjM64G+RWnJxeFbrVqyG41StCt9qTEAXgHoFb7WG41WshuxVxeE3gVq+F7Fa77bwsXjmtbvVGDNzqdZvzPq9bve7jVvs0uNUbDLd6ndEZ94HcipPTG0K3eiMEt3pd6FZvJkQB+KbArd5kuNVbIbsVcXhL4FZvhexW++y8LF45rW71Zgzcar/N+YDXrfb7uNUBDW71JsOt9jM64wGQW3FyekfoVu+E4Fb7hW51MCEKwIMCtzrIcKt3Q3Yr4vCuwK3eDdmtDth5WbxyWt3qrRi41fs250Net3rfx60OaXCrtxhu9T6jMx4CuRUnpw+EbvVBCG71vtCtDidEAXhY4FaHGW51JGS3Ig5HBG51JGS3OmTnZfHKaXWrt2PgVh/ZnD/2utVHPm71sQa3epvhVh8xOuPHILfi5PSJ0K0+CcGtPhK61acJUQB+KnCrTxlu9VnIbkUcPhO41Wchu9XHdl4Wr5xWt9ofA7f6wub8pdetvvBxqy81uNV+hlt9weiMX4LcipPTV0K3+ioEt/pC6FZfJ0QB+LXArb5muNU3IbsVcfhG4FbfhOxWX9p5WbxyWt3qQAzc6jub81GvW33n41ZHNbjVAYZbfcfojEdBbsXJ6XuhW30fglt9J3SrHxKiAPxB4FY/MNzqx5Ddijj8KHCrH0N2q6N2XhavnFa3eicGbnXM5vyz162O+bjVzxrc6h2GWx1jdMafQW7FyekXoVv9EoJbHRO61a8JUQD+KnCrXxlu9VvIbkUcfhO41W8hu9XPdl4Wr5xWtzoYA7f6w+Z83OtWf/i41XENbnWQ4VZ/MDrjcZBbcXL6U+hWf4bgVn8I3eqvhCgA/xK41V8MtzoRslsRhxMCtzoRslsdt/OyeOW0utW7MXCrSOLf62yJ1ukjhj7wuhXtFK1bvctwK8ohyL5H7dwC5nDawnUrTk5xiTK3ikvU71YRZi7OEp8YBSAV5rpVfPCGjCQwGkPKgTC4bpXA7Ixcp8hm52Xxyml1q/di4FZJNudkr1sl+bhVsga3eo/hVkmMzpgMcitOTilCt0oJwa2ShG6VPTEKwOwCt8rOcKscIbsVccghcKscIbtVsp2XxSun1a3ej4Fb5bI55/a6VS4ft8qtwa3eZ7hVLkZnzA1yK05OqUK3Sg3BrXIJ3SpPYhSAeQRulYfhVnlDdivikFfgVnlDdqvcdl4Wr5xWtzoUA7fKb3Mu4HWr/D5uVUCDWx1iuFV+RmcsAHIrTk5nCd3qrBDcKr/QrQomRgFYUOBWBRluVShktyIOhQRuVShktypg52Xxyml1qw9i4FZFbM5FvW5VxMetimpwqw8YblWE0RmLgtyKk1MxoVsVC8GtigjdqnhiFIDFBW5VnOFWJUJ2K+JQQuBWJUJ2q6J2XhavnFa3OhwDtyplc07zulUpH7dK0+BWhxluVYrRGdNAbsXJqbTQrUqH4FalhG5VJjEKwDICtyrDcKuyIbsVcSgrcKuyIbtVmp2XxSun1a2OxMCtytucK3jdqryPW1XQ4FZHGG5VntEZK4DcipNTRaFbVQzBrcoL3apSYhSAlQRuVYnhVpVDdiviUFngVpVDdqsKdl4Wr5xWt/owBm5V1eZczetWVX3cqpoGt/qQ4VZVGZ2xGsitODlVF7pV9RDcqqrQrWokRgFYQ+BWNRhuVTNktyIONQVuVTNkt6pm52Xxyml1q49i4Fa1bc51vG5V28et6mhwq48YblWb0RnrgNyKk1NdoVvVDcGtagvdql5iFID1BG5Vj+FWZ4fsVsThbIFbnR2yW9Wx87J45bS61ccxcKtzbM4NvG51jo9bNdDgVh8z3OocRmdsAHIrTk7nCt3q3BDc6hyhWzVMjAKwocCtGjLcqlHIbkUcGgncqlHIbtXAzsvildPqVp/EwK3Oszk38brVeT5u1USDW33CcKvzGJ2xCcitODmdL3Sr80Nwq/OEbtU0MQrApgK3aspwq2YhuxVxaCZwq2Yhu1UTOy+LV06rW30aA7dqYXNu6XWrFj5u1VKDW33KcKsWjM7YEuRWnJxaCd2qVQhu1ULoVhckRgF4gcCtLmC41YUhuxVxuFDgVheG7FYt7bwsXjmtbvVZDNyqjc25rdet2vi4VVsNbvUZw63aMDpjW5BbcXJqJ3SrdiG4VRuhW7VPjAKwvcCt2jPcqkPIbkUcOgjcqkPIbtXWzsvildPqVp/HwK0usjl38rrVRT5u1UmDW33OcKuLGJ2xE8itODldLHSri0Nwq4uEbnVJYhSAlwjc6hKGW10aslsRh0sFbnVpyG7Vyc7L4pXT6lZfxMCtLrc5d/a61eU+btVZg1t9wXCryxmdsTPIrTg5XSF0qytCcKvLhW51ZWIUgFcK3OpKhltdFbJbEYerBG51Vchu1dnOy+KV0+pWX8bAra62OV/jdaurfdzqGg1u9SXDra5mdMZrQG7FyelaoVtdG4JbXS10q+sSowC8TuBW1zHcqmvIbkUcugrcqmvIbnWNnZfFK6fVrb6KgVt1szl397pVNx+36q7Brb5iuFU3RmfsDnIrTk49hG7VIwS36iZ0q56JUQD2FLhVT4Zb9QrZrYhDL4Fb9QrZrbrbeVm8clrd6usYuFVvm3Mfr1v19nGrPhrc6muGW/VmdMY+ILfi5NRX6FZ9Q3Cr3kK3ujExCsAbBW51I8OtbgrZrYjDTQK3uilkt+pj52Xxyp3sULmtfwZtNDm0hLiV/25pVpAlcopTxFWmv9JtgIqBKgapGKxiiIqhKoapGK5ihIqRKkapGK1ijIqxKsapGK9igoqJKtJVTFIxWcUUFVNVTFMxXcUMFTNVzFIxW8UcFXO9LtvfdlT3tgE+2wb6bBvks22wz7YhPtuG+mwb5rNtuM+2ET7bRvpsG+WzbbTPtjE+28b6bBvns228z7YJPtsm+mxL99k2yWfbZJ9tU3y2TfXZNs1n23SfbTN8ts302TbLZ9tsn21zfLbN9Tl6l7bXaVag5bRBn5V59g9oznSkHxB4XysyMOi+Kt9BwfZdTAe9wYH2/enkAXJIkH0P/30wHRpg3+b2gXdY1vsudA7Sw7Pcd+CpA/qIrPZ99J+D/8gs9h3lmiiMynzfC92TitGZ7vvZaROQMZntW+f0ycrYTPat6JnYjMt432u8k6DxGe57xb8mTBMy2jf935OriRnsm+4zEUv333eL36Rtku++LX0neJP99r3IfzI4xWffbRlMHKf+e99KGU0yp/1r37synJBO9+5bK+PJ6wzPvoczmejOPH3fwZlNimedtm+HTCfQs9379sh8sj3HtW/NLCbmcxkTS863hyyW03Cz8PLX3XjzMvr2EARwXiLv6xmBzwsuUGR+QFIZfXsIwmF+Iu9bB3GYz2xkXecfGJ1rr9/GNCsQzGm5LrA7yELvzHiBLZx720IN5x8YPTmygNFBFjLF4zYOdYoFzM5EeS2IkWPMCa7zHW68RVLHIMBFfMe4YxHDMRaH7BjEYTHfMe5YHCPHmBMcd4XfxjQrEMxpuS6xO8jNXsdY4uMYN2twDEZPjixhdJCbheJxz1hycrqFMRhO/cPIZb7dwf91UjALLM6heiljMPhxyGp30mipwImXxsiJZwfvv5vceLdKnZgAb+U78aZbGZ1vWchOTByW8Z1407IoO1+QAbQ05AF0G5ODs3CNidOGyxl9Q+cRbnZw3Ef8NqZZgWBOy/V2e+Ct8B7hbvc5wq3QcIRjOETkdkajrRCKx+1InJzuiPIIl1UZGjzLBUeHO0M+ahHvOwF5OQu3De9ktOFdIbdhRiYbxJyD7ruSaWi6ZgOzgo/1BW68VdLZAAGu4s8GFqxiCLQ65NkAcVjNnw0sWB3ybIAGwsrEcAfb3czB5izcnDhtuCZGs4FZwXHn+21MswLBnJbrPfbAu9c7G7jHZzZwr4bZAMMhIvcwGu1eoXjcjsTJaW3IRxIaPGsER911Ic8GiPc6QF7Owm3DdYw2vC/kNszIZLMqxzHZ+2N0bmBm8LGe5sZ7QDobIMAH+LOBtAcYjfxgyLMB4vAgfzaQ9mDIswEaCPcnhjvY1oNmA5w2fChGs4GZwXFL+W1MswLBnJbrBnvgPeydDWzwmQ08rGE2wHCIyAZGoz0sFI/bkTg5bQz5SEKD5yHBUfeRkGcDxPsRQF7Owm3DRxhtuCnkNszIZLMqxzHZzTGaDcwIPtb3uvG2SGcDBLiFPxvYu4XRyFtDng0Qh6382cDerSHPBmggbE4Md7BtA80GOG34aIxmAzOC477mtzHNCgRzWq7b7YH3mHc2sN1nNvCYhtkAwyEi2xmN9phQPG5H4uT0eMhHEho8jwqOuk+EPBsg3k8A8nIWbhs+wWjDJ0Nuw4xMNqtyHJN9KkazgenBx3o3N97T0tkAAT7Nnw10e5rRyDtCng0Qhx382UC3HSHPBmggPJUY7mB7BjQb4LThzhjNBqYHx73eb2OaFQjmtFyftQfec97ZwLM+s4HnNMwGGA4ReZbRaM8JxeN2JE5Oz4d8JKHBs1Nw1N0V8myAeO8C5OUs3DbcxWjDF0Juw4xMNqtyHJN9MUazgWnBx/oBN95L0tkAAb7Enw0ceInRyC+HPBsgDi/zZwMHXg55NkAD4cXEcAfbK6DZAKcNd8doNjAtOO5+v41pViCY03J91R54e7yzgVd9ZgN7NMwGGA4ReZXRaHuE4nE7Eien10I+ktDg2S046u4NeTZAvPcC8nIWbhvuZbTh6yG3YUYmm1U5jsnui9FsYGrwsd7GjfeGdDZAgG/wZwNt3mA08pshzwaIw5v82UCbN0OeDdBA2JcY7mB7CzQb4LTh2zGaDUwNjtvab2OaFQjmtFz32wPvgHc2sN9nNnBAw2yA4RCR/YxGOyAUj9uRODm9E/KRhAbP24Kj7sGQZwPE+yAgL2fhtuFBRhu+G3IbZmSyWZXjmOx7MZoNTAk+1je68d6XzgYI8H3+bGDj+4xGPhTybIA4HOLPBjYeCnk2QAPhvcRwB9sHoNkApw0Px2g2MCU47sN+G9OsQDCn5XrEHngfemcDR3xmAx9qmA0wHCJyhNFoHwrF43YkTk4fhXwkocFzWHDU/Tjk2QDx/hiQl7Nw2/BjRht+EnIbZmSyWZXjmOynMZoNTA4+1p9w430mnQ0Q4Gf82cATnzEa+fOQZwPE4XP+bOCJz0OeDdBA+DQx3MH2BWg2wGnDL2M0G5gcHPdxv41pViCY03L9yh54X3tnA1/5zAa+1jAbYDhE5CtGo30tFI/bkTg5fRPykYQGz5eCo+63Ic8GiPe3gLychduG3zLa8LuQ2zAjk82qHMdkj8ZoNjAp+Fhv58b7XjobIMDv+bOBdt8zGvmHkGcDxOEH/myg3Q8hzwZoIBxNDHew/QiaDXDa8KcYzQYmBcdt67cxzQoEc1qux+yB97N3NnDMZzbws4bZAMMhIscYjfazUDxuR+Lk9EvIRxIaPD8Jjrq/hjwbIN6/AvJyFm4b/spow99CbsOMTDarchyT/T1Gs4H04GM93Y33h3Q2QIB/8GcD6X8wGvl4yLMB4nCcPxtIPx7ybIAGwu+J4Q62P0GzAU4b/hWj2UB6cNyJfhvTrEAwp+V6whl4SdbpR/4TPrMB2ina2QDDISInOAMvSSYetyNxcook8To3t8PQ4PlLcNTNFjyvf5KzgudFvAkj7LychduGbpys9o0LuQ0zMtmsynFMNp6hq87ZwEThbCAhKQpAKsydDSQwGjmR0XmkHBKT+LOBxCgHdZCBEJ8U7mBLYg42Z+HmxGnDZEZOOmcDE2MwG0ixB15272wgJenfs4HsGmYDDIeIpDAaLTtoNsDJKUfIRxIaPMmCo27OkGcDxDsnIC9n4bZhTkYb5gq5DTMy2azKcUw2d4xmAxOCj/X73Hip0tkAAabyZwP3pTIaOU/IswHikIc/G7gvT8izARoIuZPCHWx5QbMBThvmi9FsYELw2cA6v41pViCY03LNbw+8At7ZQH6f2UABDbMBhkNE8jMarUCSTDxuR+LkdFbIRxIaPPkER92CIc8GiHdBQF7Owm3Dgow2LBRyG2ZkslmV45hs4RjNBsYHH+tr3HhFpLMBAqTCzNnAGioTFKNoUrizAeJAGMzZwJqiwTn45hVkIBROCnewFWO0g/s/3Jw4bVickZPO2cD44LOBu/02plmBYE7LtUTS3+uSSdbpR/4SSf+eDdBO0c4GGA4RKcFotJJJMvG4HYmTUylm5+Z2GBo8xZP4AzstSuPIaveTvAF5OQu3DdMYbVg65DbMyGSzKscx2TIMXXXOBsYFH+vvuPHKJkUBWJY/G3inLKORy4U8GyAO5fizgXfKhTwboIFQJincwVYeNBvgtGGFGM0GxgWfDRzw25hmBYI5LdeK9sCr5J0NVPSZDVTSMBtgOESkIqPRKiXJxON2JE5OlUM+ktDgqSA46lYJeTZAvKsA8nIWbhtWYbRh1ZDbMCOTzaocx2SrxWg2MDb4WN/jxqsunQ0QYHX+bGBPdUYj1wh5NkAcavBnA3tqhDwboIFQLSncwVYTNBvgtGGtGM0GxgafDbzqtzHNCgRzWq617YFXxzsbqO0zG6ijYTbAcIhIbUaj1UmSicftSJyc6oZ8JKHBU0tw1K0X8myAeNcD5OUs3Dasx2jDs0Nuw4xMNqtyHJOtH6PZwJjgY72IG+8c6WyAAM/hzwaKnMNo5AYhzwaIQwP+bKBIg5BnAzQQ6ieFO9jOBc0GOG3YMEazgTHBZwOF/TamWYFgTsu1kT3wGntnA418ZgONNcwGGA4RacRotMZJMvG4HYmT03khH0lo8DQUHHWbhDwbIN5NAHk5C7cNmzDa8PyQ2zAjk82qHMdkm8ZoNjA6+Fjf7sZrJp0NEGAz/mxgezNGIzcPeTZAHJrzZwPbm4c8G6CB0DQp3MHWAjQb4LRhyxjNBkYHnw086rcxzQoEc1qureyBd4F3NtDKZzZwgYbZAMMhIq0YjXZBkkw8bkfi5HRhyEcSGjwtBUfd1iHPBoh3a0BezsJtw9aMNmwTchtmZLJZleOYbNsYzQZGBR/rM9147aSzAQJsx58NzGzHaOT2Ic8GiEN7/mxgZvuQZwM0ENomhTvYOoBmA5w27Bij2cCo4LOBGX4b06xAMKflepE98Dp5ZwMX+cwGOmmYDTAcInIRo9E6JcnE43YkTk4Xh3wkocHTUXDUvSTk2QDxvgSQl7Nw2/ASRhteGnIbZmSyWZXjmOxlMZoNjAw+1lu78S6XzgYI8HL+bKD15YxG7hzybIA4dObPBlp3Dnk2QAPhsqRwB9sVoNkApw2vjNFsYGTw2cCFfhvTrEAwp+V6lT3wunhnA1f5zAa6aJgNMBwichWj0bokycTjdiROTleHfCShwXOl4Kh7TcizAeJ9DSAvZ+G24TWMNrw25DbMyGSzKscx2etiNBsYEXysL3LjdZXOBgiwK382sKgro5GvD3k2QByu588GFl0f8myABsJ1SeEOtm6g2QCnDbvHaDYwIvhsYKHfxjQrEMxpufawB15P72ygh89soKeG2QDDISI9GI3WM0kmHrcjcXLqFfKRhAZPd8FR94aQZwPE+wZAXs7CbcMbGG3YO+Q2zMhksyrHMdk+MZoNDA8+1ge58fpKZwME2Jc/GxjUl9HIN4Y8GyAON/JnA4NuDHk2QAOhT1K4g+0m0GyA04b9YjQbGB58NjDQb2OaFQjmtFz72wNvgHc20N9nNjBAw2yA4RCR/oxGG5AkE4/bkTg5DQz5SEKDp5/gqDso5NkA8R4EyMtZuG04iNGGg0Nuw4xMNqtyHJMdEqPZwLDgY/0pN95Q6WyAAIfyZwNPDWU08rCQZwPEYRh/NvDUsJBnAzQQhiSFO9iGg2YDnDYcEaPZwLDgs4En/TamWYFgTst1pD3wRnlnAyN9ZgOjNMwGGA4RGclotFFJMvG4HYmT0+iQjyQ0eEYIjrpjQp4NEO8xgLychduGYxhtODbkNszIZLMqxzHZcTGaDQwNPtbT3HjjpbMBAhzPnw2kjWc08oSQZwPEYQJ/NpA2IeTZAA2EcUnhDraJoNkApw3TYzQbGBp8NlDKb2OaFQjmtFwn2QNvsnc2MMlnNjBZw2yA4RCRSYxGm5wkE4/bkTg5TQn5SEKDJ11w1J0a8myAeE8F5OUs3DacymjDaSG3YUYmm1U5jslOj9FsYEjwsZ7TjTdDOhsgwBn82UDOGYxGnhnybIA4zOTPBnLODHk2QANhelK4g20WaDbAacPZMZoNDAk+G8jhtzHNCgRzWq5z7IE31zsbmOMzG5irYTbAcIjIHEajzU2SicftSJyc5oV8JKHBM1tw1J0f8myAeM8H5OUs3Dacz2jDBSG3YUYmm1U5jskujNFsYHDwsT7AjbdIOhsgwEX82cCARYxGXhzybIA4LObPBgYsDnk2QANhYVK4g20JaDbAacObYzQbGBx8NtDfb2OaFQjmtFxvsQfeUu9s4Baf2cBSDbMBhkNEbmE02tIkmXjcjsTJ6daQjyQ0eG4WHHWXhTwbIN7LAHk5C7cNlzHa8LaQ2zAjk82qHMdkl8doNjAo+FjP68a7XTobIMDb+bOBvLczGnlFyLMB4rCCPxvIuyLk2QANhOVJ4Q62O0CzAU4b3hmj2cCg4LOBPH4b06xAMKflepc98FZ6ZwN3+cwGVmqYDTAcInIXo9FWJsnE43YkTk6rQj6S0OC5U3DUXR3ybIB4rwbk5SzcNlzNaMO7Q27DjEw2q3Ick10To9nAwOCGdhrePdLZAAHek8Qvd2/IR3jK696kfzakWcEX7iCiDrsmKdxBsRZ01Oa0y7ooB2oQzusEbahzQA0QDqj7pAOKAO8TDKj7Qx5QlNf9mgZUVrtTw9+fJOswacEwtHaS/onBc3TjPSDtJAT4gMBxHmCM2AdD7lDE4UFBIz8Y8ncw6kQPCqYHaxl6rQ95OkjarhcOVmfh9q31DP4PhTzFy+iInFU5zhF5Q8htSBptEBwIOO1AJphg/fOVMuKDw8Wfm8jvb1yMOQCM2QCMWQCMmQCMGQCM6QCMaQCMqQCMKQCMyQCMSQCMdADGRADGBADGeADGOADGWADGGADGaADGKADGSADGCADGcADGMADGUADGEADGYADGIADGQADGAABGfwGGe0mLYrc0K9jifGckbs7vVg+r71QbVTyiYpOKzSq2qNiqYpuKR1VsV/GYisdVPKHiSRVPqXja/h6+w/t738P2FzX3to0+2x7x2bbJZ9tmn21bfLZt9dm2zWfbDp8vuNzfHoN/UYtYcxln0Z5hfPl2c/IrxztJEDmtjqzy3CnMc6cG7RlfYCM7GZyeFXJ6VoP2zzLyfE6Y53MatGd8sY88x+D0vJDT81Frb0UeDilP98LVeQbDX2Yy/GWXUOddGvr4LobOLwjzfEFDH2eckIm8wOD0opDTixq0f5GR50vCPF/SoD3jRFXkJQanl4WcXtbgLxtDytO9cHWewvCXqQx/eUWo8ysa+vgrDJ13C/PcraGPM04wRnYzOL0q5PSqBu1fZeS5R5jnHg3aM068RvYwOL0m5PSaBn95JKQ83QtX54kMf0ln+Mteoc57NfTxvQydXxfm+bqGPs44YR55ncFpn5DTPg3a72Pk+YYwzzc0aM/4ISHyBoPTm0JOb2rwl00h5eleuDqPZfjLOIa/vCXU+S0Nffwths5vC/N8W0MfZ/wAFHmbwWm/kNN+DdrvZ+R5QJjnAQ3aM34YixxgcHpHyOkdDf6yOaQ83Us0b6/KYldrFMNfDgp1Pqihjx9k6PyuMM93NfRxxg+akXcZnN4TcnpPg/bvMfJ8X5jn+xq0Z/zQG3mfwemQkNMhDf6yJaQ83Us0T7nLYldrGMNfPhDq/IGGPv4BQ+fDwjwPa+jjjB/oI4cZnI4IOR3RoP0RRp4fCvP8UIP2jAsXIh8yOH0k5PSRBn/ZGlKe7oWr80CGvwxi+MvHQp0/1tDHP2bo/Ikwz0809HHGBSeRTxicPhVy+lSD9p8y8vxMmOdnGrRnXIgT+YzB6XMhp881+Mu2kPL05szJ6VEQznYQzmMgnMdBOE+AcJ4E4TwFwnmagUM3GSm7Oe0mozxR4j8s4MnF2AjAeASAsQmAsRmAsQWAsRWAsU04RoNipAvLSfH+KxdK2dJRlE1z+qTba79Q/e5LFV+p+FrFNyq+VfGdiqMqvlfxg4ofVfyk4piKn1X8ouLXJOv0CdsXdid2b/vSZ9tXPtu+9tn2jc+2b322feez7ajPtl98tv1qb9P5BKnvoxjMQXEoJ3euvyX9vf7d2yj0QbRPi/o+4Cz6O7Xvb4wZ9++gmQkK5wcQzo8gnJ9AOMdAOD+DcIKOl0H/VH1y4T5egTHjjXwh5M7NiTFDjnwJyokxo458BcqJMQOPfA3KiTFjj3wDyokxw498C8qJ8Y0g8h0oJ8Y3iMhRTTllhkH//MLI6degc4wTJyL/ArKC6/RHwJzSvQkycY5rOtZkhfNnQJwbUz7tHQ3OXwFxHu/90LRocE4ExGk84Mch0eDQpDjNynq556JjDaPBiQTEuTj3JROjwckWEOf2hD5zo8GJC4hTaso7D0SDEx8Q5+rDrxahunPZGDQnovVGe/2Ivd5krzfb6y32equ93mav/7DXxwOuf0n654skrf+013/Z6xP2mvobrSP2Opu9jrPXxDdBRaKKJBXJKlJUZFeRQ0XO5L+/pOa2/vn+lpm+WSyRhOTA+/ouacF2i5eXjZzidFIf++9cKu/cKlJV5Em2Tv+ySx96t+X22Zbqsy1P8r+/KCewEj5d1Kw6eK6A+9IBL3fgfa1IatB9Vb55GJ1AZ+dLNLTz5VV551ORX0UBbwfK69Op8vlsy++zrYCGzpfI6Hx5GZ0vH6Pz5Wd0vgIx6nxJhna+s1TeBVUUUlHY24HO8ulUBX22FfLZVlhD50tidL6zGJ2vIKPzFWJ0vsIx6nzJhna+IirvoiqKqSju7UBFfDpVUZ9txXy2FdfQ+ZIZna8Io/MVZXS+YozOVzxGnS/F0M5XQuVdUkUpyt/bgUr4dKqSPttK+WxL09D5UhidrwSj85VkdL5SjM6XFqPOl93Qzlda5V1GRVkV5bwdqLRPpyrjs62sz7ZyGjpfdkbnK83ofGUYna8so/OVi1Hny2Fo5yuv8q6goqKKSt4OVN6nU1Xw2VbRZ1slDZ0vB6PzlWd0vgqMzleR0fkqxajz5TS081VWeVdRUVVFNW8HquzTqar4bKvqs62ahs6Xk9H5KjM6XxVG56vK6HzVGJ2ANHKu42gd//e6jb1ua6/b2ev29rqDve5ory+y153s9cX2+hJ7fam9vsxeX26vO9vrK+z1lfb6KnvdxV5fba+vsdfX2uvr7HVXe329ve5mr7vb6x72uqe97mWvb7DXve11H3vd117faK9vstf97HV/ez3AXg+014Ps9WB7PcReD7XXw+z1cHs9wl6PtNej7PVoez3GXo+11+Ps9Xh7PcFeT7TX6fZ6kr2ebK+n2Oup9nqavZ5ur2fY62/t9U/2+nd7TQOG1on2Oqe9zmevC9vrkva6nL2uYq9r2ev69rqxvW5ur1vb6472+jJ73cVeX2+vb7DX/ez1EHs9yl5PsNdT7fVse73QXi+11yvs9Wp7vc5eP2SvN9vrx+z1Dnu9y17vttf77PUBe33IXn9sr7+010ft9c/2+ri9zpb49zrZXue21wXsdVF7nWavK9jrava6jr1uYK+b2OuW9rqtve5krzvb62vsdXd73cde0ylaWqfa69z2Ope9LmCv89vrfPY6r70ubK8L2euC9vose13cXhez10XtdRF7nWavS9nrkva6hL0uZ6/L2usy9rq0va5kryva6wr2ury9rmavq9rrKva6sr2eq/p7dc/BImKv06xAS6Q641ih8x1ALa3guG68GslRAFJh7sUDNYIfnCI1GWJKOdRM/ne5rLBqMmd3dICNy2SfNCvQknhykEVXx6XCcr2E5YaBy/UVlhsgLNdbWC5NWG6ssFwtYbnxwnJpwnLdhOWGCsulCcvdICwnHUfScmnCcoOE5aTtN1pYTqrLEPLSiGcj9/gRCb7vvzDYYNyDjvNNOKME0qxguA/Gn8Ek0dMn9bX9tGsCa0UzfarFnD4ReC3G9Kk2YPpUmzl9Ig61/5s+/Td9+nv5b/rkv6QJy/03fdJbLk1Y7r/pU9YLdvrEOehI6qdpkuRcQp0YzXgqBt/3NLy60hlPRbswt1y9kGcxlFc911m/NIu/cJ8V455TZ8XpbMaM79Q/VvD6K1l/8+dyqMTAqB/y4CON6gsG3znMX8qcXxXd5biYZBJkRtw7o2uGNPNvwDSgFMv/998wDSganPIWBof7PZnbb6pYf/cZ7jiNY+xbxeJrJT4iR2sKWf4Ub/1tClzB6jMGz7lMDtxcIh6MoJy5WjUMuS2oEzod2F0uKxhp580qn0YhH5Ccg6qXb5CDcdB9OROjxlFOIrIqU9nGsHjlTh5Islv/XJLzr0QYOaAOKBUsDM6ZeuCS4nDGnPt5M+fZ/apJchQHm8bCmd55mcz0gmCeJzgANWYM7POFvPzKcX/K5+TZlGlA3FyoEzMmFCcP8uckh/vNrVnIBxni0FBwsG8ecl5kxJJJSAuAXo0EebUMOS8yeolerQCntCR5XRCjU1rVg+97Gt6F0lNa1e3C3HKtQz6lRXm1Fp7Skhzkzhd0kml5ws2LDjjNBHlNZ+blLNyZfhvGwYqhVYSRv+9MP8vr96y/+xb3wFmDgdE2ZGMj7dsK+kY74WSrnYbJVluGZ7RnTrachduHO8S+D59cuH2RfnPhfCOm/ZsK+kvHkM8ONWDyaCDkcRFgYibJq1OMTl1zJhrR4FS1MDgdomzfrNqplhX+qetaFl+riPePtEDFrEjbkAWraf1t+FzBOAeJi5mDR9cji4MO2hMnThz2255mZY1B/7hzvcSeDF/qXBTpHJkvsV3Hve1SnwS55607BWuIxaohIpcwGu1Spnjcjkcd6BLQNwdy/OYC178sOfy8WgjyuhyQV0tBXp0BebUS5HUFIK8LBHldyciLfIFmAyvt/1PfpH5AmhM/qose3/df/BeIEI6VBPL9ToKxchXzN53qPtvTLN7C9YGrksPH6AK4DuBixjzBmUBy2/PqKHkEmV8wtDo5ob1aMBHuwtDqGlwfjnj/SAtUDNOHrwn3eHzKY8L8UnOtAX50LaAtrwvZj0g3TrvQvtcJ2v46BkZXA8Yxou27npnjOBunv1xvwDi+HtCW3UI+0UTfX5yzc+5yWcFIz8xllU93wPyjG3P+0V3gW90Yfb2HAb6F6Os9zkzfiuP4Vk8DfKsnoC17hTz/oF9GuPOPXoJx3IuBcYMB4xjR9jecmeM4ntNfehswjnsD2rJPyOOY2qQDcxz3EYzjPgyMvgaMY0Tb9zVgDNA5z4D7ijFuNECHufHhY9wk6HN+OFmNv37BcbLFSu9+gPHX34B+txbQ7wYYoMMqgA4DQeNvUHCchFjpPQgw/gaD9B4SHCcxVnoPAeg9FKT3sOA4SbHSexhA7+EgvUcEx0mOld4jAHqPBOk9KjhOSqz0HgXQezRI7zHBcbLHSu8xAL3HgvQeFxwnR6z0HgfQezxI7wnBcXLGSu8JAL0ngvROD46TK1Z6pwP0ngTSe3JwnNyx0nsyQO8pIL2nBsdJjZXeUwF6TwPpPT04Tp5Y6T0doPcMkN4zg+PkjZXeMwF6zwLpPTs4Tr5Y6T0boPcckN5zg+Pkj9nvIQC954H0nh8cp0Cs9J4P0HsBSO+FwXHOipXeCwF6LwLpvTg4TsFY6b0YoPcSkN43B8cpFCu9bwbofQtI76XBcQrHSu+lAL1vBem9LDhOkVjpvQyg920gvZcHxykaK72XA/S+HaT3iuA4xWKl9wqA3neA9L4zOE7xWOl9J0Dvu0B6rwyOUyJWeq8E6L0KpPfq4DglY6X3aoDed4P0XhMcp1Ss9F4D0PsekN73BsdJi5Xe9wL0XgvSe11wnNKx0nsdQO/7DLhu9c+48DHuB/W7B4LjlI2V3g8A+t2DIL3XB8cpFyu91wP0fgik94bgOOVjpfcGgN4Pg/TeGBynQqz03gjQ+xGQ3puC41SMld6bAHpvBum9JThOpVjpvQWg91aQ3tuC41SOld7bAHo/CtJ7e3CcKrHSeztA78dAej8eHKdqrPR+HKD3EwZ877sf8L3vSVC/eyo4TvVY6f0UoN89DdJ7R3CcGrHSewdA72dAeu8MjlMzVnrvBOj9LEjv54Lj1IqV3s8B9H4epPeu4Di1Y6X3LoDeL4D0fjE4Tp1Y6f0iQO+XQHq/HBynbqz0fhmg9ysgvXcHx6kXK713A/R+FaT3nuA4Z8dK7z0AvV8D6b03OE79WOm9F6D36yC99wXHOSdWeu8D6P0GSO83g+M0iJXebwL0fguk99vBcc6Nld5vA/TeD9L7QHCchrHS+wBA73dAeh8MjtMoVnofBOj9Lkjv94LjNI6V3u8B9H4fpPeh4DjnxUrvQwC9PwDpfTg4TpNY6X0YoPcRkN4fBsc5P1Z6fwjQ+yOQ3h8Hx2kaK70/Buj9CUjvT4PjNIuV3p8C9P4MpPfnwXGax0rvzwF6fwHS+8vgOC1ipfeXAL2/Aun9dXCclrHS+2uA3t+A9P42OE6rWOn9LUDv70B6Hw2Oc0Gs9D4K0Pt7kN4/BMe5MFZ6/wDQ+0eQ3j8Fx2kdK71/Auh9DKT3z8Fx2sRK758Bev8C0vvX4DhtY6X3rwC9fwPp/XtwnHax0vt3gN5/gPQ+HhynfczemwXQ+0+Q3n8Fx+kQK73/Auh9AqS3lRIYp2Os9Gbk6CrEw4ikYPTOFhznoljpnQ2gdxxI7/jgOJ1ipXc8QO8EkN6JwXEujpXeiQC9k0B6JwfHuSRWeicD9E4B6Z09OM6lsdI7O0DvHCC9cwbHuSxWeucE6J0LpHfu4DiXx0rv3AC9U0F65wmO0zlWeucB6J0XpHe+4DhXxErvfAC984P0LhAc58pY6V0AoPdZIL0LBse5KlZ6FwToXQikd+HgOF1ipXdhgN5FQHoXDY5zdaz0LgrQuxhI7+LBca6Jld7FAXqXAOldMjjOtbHSuyRA71IgvdOC41wXK73TAHqXBuldJjhO11jpXQagd1mQ3uWC41wfK73LAfQuD9K7QnCcbrHSuwJA74ogvSsFx+keK70rAfSuDNK7SnCcHrHSuwpA76ogvasFx+kZK72rAfSuDtK7RnCcXrHSuwZA75ogvWsFx7khVnrXAuhdG6R3neA4vWOldx2A3nVBetcLjtMnVnrXA+h9Nkjv+sFx+sZK7/oAvc8B6d0gOM6NsdK7AUDvc0F6NwyOc1Os9G4I0LsRSO/GwXH6xUrvxgC9zwPp3SQ4Tv9Y6d0EoPf5IL2bBscZECu9mwL0bgbSu3lwnIGx0rs5QO8WIL1bBscZFCu9WwL0bgXS+4LgOINjpfcFAL0vBOndOjjOkFjp3RqgdxuQ3m2D4wyNld5tAXq3A+ndPjjOsFjp3R6gdweQ3h2D4wyPld4dAXpfBNK7U3CcEbHSuxNA74tBel8SHGdkrPS+BKD3pSC9LwuOMypWel8G0PtykN6dg+OMjpXenQF6XwHS+8rgOGNipfeVAL2vAundJTjO2Fjp3QWg99Ugva8JjjMuVnpfA9D7WpDe1wXHGR8rva8D6N0VpPf1wXEmxErv6wF6dwPp3T04zsRY6d0doHcPkN49g+Okx0rvngC9e4H0viE4zqRY6X0DQO/eIL37BMeZHCu9+wD07gvS+8bgOFNipfeNAL1vAundLzjO1Fjp3Q+gd3+Q3gOC40yLld4DAHoPBOk9KDjO9FjpPQig92CQ3kOC48yIld5DAHoPBek9LDjOzFjpPQyg93CQ3iOC48yKld4jAHqPBOk9KjjO7FjpPQqg92iQ3mOC48yJld5jAHqPBek9LjjO3FjpPQ6g93iQ3hOC48yLld4TAHpPBOmdHhxnfqz0TgfoPQmk9+TgOAtipfdkgN5TQHpPDY6zMFZ6TwXoPQ2k9/TgOItipfd0gN4zQHrPDI6zOFZ6zwToPQuk9+zgOEtipfdsgN5zQHrPDY5zc6z0ngvQex5I7/nBcW6Jld7zAXovAOm9MDjO0ljpvRCg9yKQ3ouD49waK70XA/ReAtL75uA4y2Kl980AvW8B6b00OM5tsdJ7KUDvW0F6LwuOszxWei8D6H0bSO/lwXFuj5XeywF63w7Se0VwnBWx0nsFQO87QHrfGRznjljpfSdA77tAeq8MjnNnrPReCdB7FUjv1cFx7oqV3qsBet/NxODW3zbZsjol89vn1jzh5tXezisbM681wfWKhM2hhvqnteIQ5ymX5bNlGfu2Tg6+7z0MbU79YwUvU9PGsHjlrHgV2VUk+FXKzKG6ZbHHpASnmoXBqWrxcLzjJav6afy3S+aNyw7J/2xIs/gLV4PujHdcZ3P9fa/dF9em/IPJBmcMmpN1x9nre+1y1LlzeRKTNFJjZiM1ZjbSiRMnfvXbnmZljUf/uPmts4W/L8U6XZR1dku4t93nEpjbOESyreDodVvIzk95tRfktZyZl7PEB8dZrHAi61KC53Qf46jB0DUSlKvTMbla0sBdJzga+WFltTvt31jQ3veHPLurKMzrgZDzqiDM68GQ82qULMtrfch5lbdkeT0Ucl6UUxNBXhtCzuvBeJleDwP0Ok+Q10ZGXnRcpW8QTe3/k8fQeKaxQ/2U+gTpT1yp3uNJ/7/DTx+O9o8E1z6ZcfxLXh7yHISOf4+k8PvaJkZfo0lfDZ/taRZv4XLblBI+xmYmBndST/ncw5iH0b6UExdnMwNjC67tI94/0gIVw7T9FgEGLVxv2Rp7b4mc+sfiectWgbdsM8BbtgH616MhewudBeN6y6MCb3mUgbHdAG9BtP12kLc8FntvOdmdJN7ymMBbHjfAWx4H9K8nQvYWOvPN9ZYnBN7yBAPjSQO8BdH2T4K85anYe8vJlCXe8pTAW542wFueBvSvHSF7C/3Sw/WWHQJv2cHAeMYAb0G0/TMgb9kZe285+XOKxFt2CrzlWQO85VlA/3ouZG+hX9K53vKcwFueY2A8b4C3INr+eZC37Iq9t5y8yEXiLbsE3vKCAd7yAqB/vRiyt1D7rGV6y4sCb3mRgfGSAd6CaPuXQN7ycuy9JZH+kXjLywJvecUAb3kF0L92h+wt0iv0uO35asi/fVM/e1XQz+6P8nfSIF5Mbegd71nB7GZ48R7GNVQcvrHybcS42gPy7ddi79snr1KQjKfXBONprwG+vRfQv14HzAnvZc4JXxfMCV9nYOwzYE6IaPt9IG95g+H7YVw7a0Xx+/4bAm95k6Er1e1cA+4uJ8n13hTZ+HT2zYrXW0Je7nKSeV9H5ryvo2De9zZg/noRk8dFAh77DTiu0fWIAfcVYxwwQIe58eFjvGOADv2Sw8c4aIAOawH94V0DdFgF0OE9A3QYBBgX7xugwxCADocM0GEYQIcPDNBhBECHwwboMAqgwxEDdBgD0OFDA3QYB9DhIwN0mADQ4WMDdEgH6PCJATpMBujwqQE6TAXo8JkBOkwH6PC5ATrMBOjwhQE6zAbo8KUJ56MAOnxlgA7zATp8bYAOCwE6fGOADosBOnxrgA43A3T4zgAdlgJ0OGqADssAOnxvgA7LATr8YIAOKwA6/GiADncCdPjJAB1WAnQ4ZoAOqwE6/GyADmsAOvxigA73AnT41QAd1gF0+M0AHf6MCx/jdwN0eADQH/4wQIf1AB2OG6DDBoAOfxqgw0aADn8ZoMMmgA4nDNBhC0AHehR9wH1j94wygA4RA3TYDtAhmwE6PA7QIc4AHe4HzCfjDdDhKUB/SDBAhx0AHRIN0GEnQIckA3R4DqBDsgE67ALokGKADi8CdMhugA4vA3TIYYAOuwE65DRAhz0AHXIZoMNegA65DdBhH0CHVAN0eBOgQx4DdHgboENeA3Q4ANAhnwE6HATokN8AHd4D6FDAAB0OAXQ4ywAdDgN0KGiADh8CdCiUnY9BC/cNw5znhhQOnlPE/R/uc2aKMHBCes7M3wWs0/POand61scawbPX2jLeelyUoQ3njdD0kOiclqfhnIrsdZoVDLdu8H1PwyuWPQpAKswtVzx7cOGleRXP/s+GNCv4wsWigfyW4CFHjzAHhbN4X9KaVX6vMoymBKNdGA8YjDwS5YOmssqlnvV3e3tNOCusegyMktnD7UekfcnsfO6lsvMGvfNQKb9y3INYSUZ/SRMexMLs76Vj399PLpKHjjEekhahCUQRQd8qkz18HpwDK/EoKuBRlsGD+luK9U+/Oy0BD25W+XIOyNHg1LYwOKWj9MCs2qm+9bc/cftRHGPf+hZfq4j3j7RAxaxIyZAFO9v624S5gnGMuxxz8OSy/sknM25Z5Rh00J44ceKw3/Y0K2sM+seda3l70lghu3X60bK87TrubRV8EuR+BSkbrCEWq4aIlGc0WgWmeNyORx2ovHCGLXn0443MRz9eJnj0Y8Xs4fO4icnjcgGPSgAe/Zk8Ogt4VAbwGMDkcYWARxUAj4FMHlcKeFQN+RsQ8RgsyKsaIK+hgryqA/IaLsirBiCvkYK8agLyGi3IqxYgr7GCvGoD8hovyKsOIK+JgrzqAvKaJMirHiCvKYK8zgbkNU2QV31AXjMEeZ0DyGuWIK8GgLzmCPI6F5DXPEFeDQF5LRDk1QiQ1yJBXo0BeS0R5HUeIK9bBHk1AeR1qyCv8wF53SbIqykgr9sFeTUD5HWHIK/mgLzuEuTVApDXKkFeLQF53S3IqxUgr3sEeV0AyGutIK8LAXndJ8irNSCv+wV5tQHk9aAgr7aAvB4S5NUOkNfDgrzaA/J6RJBXB0BemwV5dQTktVWQ10WAvB4V5NUJkNdjgrwuBuT1hCCvSwB5PSnI61JAXk8L8roMkNczgrwuB+T1rCCvzoC8nhfkdQUgrxcEeV0JyOslQV5XAfJ6RZBXF0BerwryuhqQ12uCvK4B5PW6IK9rAXm9IcjrOkBebwny6grIa78gr+sBeb0jyKsbIK93BXl1B+T1viCvHoC8PhDk1ROQ1xFBXr0AeX0kyOsGQF6fCPLqDcjrM0FefQB5fSHIqy8gr68Eed0IyOsbQV43AfL6TpBXP0Be3wvy6g/I60dBXgMAeR0T5DUQkNcvgrwGAfL6TZDXYEBefwjyGgLI609BXkMBeZ0Q5DUMkFdEcIfqcEBecYK8RgDyShDkNRKQV5Igr1GAvFIEeY0G5JVDkNcYQF65BHmNBeSVKshrHCCvvIK8xgPyyi/IawIgr7MEeU0E5FVIkFc6IK8igrwmAfIqJshrMiCvEoK8pgDyKiXIayogr9KCvKYB8ioryGs6IK/ygrxmAPKqKMhrJiCvyoK8ZgHyqirIazYgr+qCvOYA8qopyGsuIK/agrzmAfKqK8hrPiCvswV5LQDkdY4gr4WAvM4V5LUIkFcjQV6LAXmdJ8hrCSCv8wV53QzIq5kgr1sAebUQ5LUUkFcrQV63AvK6UJDXMkBebQR53QbIq50gr+WAvDoI8rodkNdFgrxWAPK6WJDXHYC8LhXkdScgr8sFed0FyOsKQV4rAXldJchrFSCvqwV5rQbkda0gr7sBeXUV5LUGkFc3QV73APLqIcjrXkBevQR5rQXk1VuQ1zpAXn0Fed0HyOsmQV73A/LqL8jrAUBeAwV5PQjIa7Agr/WAvIYK8noIkNdwQV4bAHmNFOT1MCCv0YK8NgLyGit5sj0gr/GCvDYB8pooyGszIK9Jgry2APKaIshrKyCvaYK8tgHymiHI61FAXrMEeW0H5DVHkNdjgLzmCfJ6HJDXAkFeTwDyWiTI60lAXksEeT0FyOsWQV5PA/K6VZDXDkBetwnyegaQ1+2CvHYC8rpDkNezgLzuEuT1HCCvVYK8ngfkdbcgr12MvOh9CDVVrLT/T8/Yp+fT07Pd6bno9Exxen43PSubnktNz4Cm5y3Ts43pOcL0zF56Pi49i5ae+0rPWKXnmdKzQ+k5nfRMTHr+JD3rkZ6rSM8wpOcF0rP56Dl49Mw5er4bPUuNnltGzwij53HRs6/oOVP0TCd6fhI9q4ieC0TP4KHn3dCzZeg5LvTMFHo+CT0LhJ67Qc+4oOdJ0LMb6DkJ9EwCuv+f7rWn+9rpHnK6X5vujab7kOmeX7q/lu5lpftG6R5Nuh+S7j2k+/zonjq6f43uFaP7sugeKLrfiO7tofto6J4Vuj+E7sWg+x7oHgO6np+unafr1OmacLr+mq51puuK6Rpeul6Wrk2l60Dpmku6vpGuJaTr9ugaOboeja79ouus6Jomun6IrtWh62LoGhS63oOuraDrGOiaAfp9nn4Lp9+d6Tde+j2Vfruk3wnpNzn6/Yt+a6Lfdeg3FPq9gn4boPPwdM6bzi/TuVw6b0rnKOl8IJ17o/NcdE6Jzt/QuRI6L0HnAOj7Nn23pe+R9J2Nvh/RdxGa99Mcm+azNHekeRrNiWj+Qcd6Oq7SMYyOF+TN5IPkOTS+aSxRvxWOlQR63wW9q4M7Vl7IHnysZLPHindJs3gL1wc4OUoxXmRicN+BQPm4X1STVbs4L87htudLUfLIqn7KiaHVyRf5UE5cvV5kaPUyrg9HvH+kBSqG6cMvMzGkHhPmy5xeMcCPXgG05e6Q/Yje/MZpF9p3t6DtdzMwXjVgHCPa/tUzcxxn4/SXPQaM4z2AtnwtyrbMSmf6/uK8ldBdLisY6RsJs8pnL2D+8Rpz/rFX4FuvMfr66wb4FqKvv35m+lYcx7f2GeBb+wBt+UbI8w96Iyx3/vGGYBy/wcB404BxjGj7N8/McRzP6S9vGTCO3wK05dshj2Nqk9LMcfy2YBy/zcDYb8A4RrT9/nDHcQRxPuAAgwPl77z72CkXq7F9PCl8jHcM8Li58eFjHDRAh37J4WO8a4AOawH94T0DdFgF0OF9A3QYBBgXhwzQYQhAhw8M0GEYQIfDBugwAqDDEQN0GAXQ4UMDdBgD0OEjA3QYB9DhYwN0mADQ4RMDdEgH6PCpATpMBujwmQE6TAXo8LkBOkwH6PCFATrMBOjwpQE6zAbo8JUJ56MAOnxtgA7zATp8Y4AOCwE6fGuADosBOnxngA43A3Q4aoAOSwE6fG+ADssAOvxggA7LATr8aIAOKwA6/GSADncCdDhmgA4rATr8bIAOqwE6/GKADmsAOvxqgA73AnT4zQAd1gF0+N0AHf6MCx/jDwN0eADQH44boMN6gA5/GqDDBoAOfxmgw0aADicM0GETQAcrx5mvwxaADhEDdNgG0CGbATpsB+gQZ4AOjwN0iDdAh/sB88kEA3R4CtAfEg3QYQdAhyQDdNgJ0CHZAB2eA+iQYoAOuwA6ZDdAhxcBOuQwQIeXATrkNECH3QAdchmgwx6ADrkN0GEvQIdUA3TYB9AhjwE6vAnQIa8BOrwN0CGfATocAOiQ3wAdDgJ0KGCADu8BdDjLAB0OAXQoaIAOhwE6FDJAhw8BOhQ2QIePAToUMUCHTwE6FDVAh88BOhQzQIcvAToUN0CHrwE6lDBAh28BOpQ0QIejAB1KGaDDDwAd0gzQ4SeADqUN0OFngA5lDNDhV4AOZQ3Q4XeADuUM0OE4QIfyBujwF0CHCgboYKWEj1HRAB2yAXSoZIAO8QAdKhugQyJAhyoG6JAM0KGqATpkB+hQzQAdcgJ0qG6ADrkBOtQwQIc8AB1qGqBDPoAOtQzQoQBAh9oG6FAQoEMdA3QoDNChrgE6FAXoUM8AHYoDdDjbAB1KAnSob4AOaQAdzjFAhzIAHRoYoEM5gA7nGqBDBYAODQ3QoRJAh0YG6FAFoENjA3SoBtDhPAN0qAHQoYkBOtQC6HC+ATrUAejQ1AAd6gF0aGaADvUBOjQ3QIcGAB1aGKBDQ4AOLQ3QoTFAh1YG6NAEoMMFBujQFKDDhQbo0BygQ2sDdGgJ0KGNATpcANChrQE6tAbo0M4AHdoCdGhvgA7tATp0MECHjgAdOhqgQyeADhcZoMMlAB06GaDDZQAdLjZAh84AHS4xQIcrATpcaoAOXQA6XGaADtcAdLjcAB2uA+jQ2QAdrgfocIUBOnQH6HClATr0BOhwlQE63ADQoYsBOvQB6HC1ATrcCNDhGgN06AfQ4VoDdBgA0OE6A3QYBNChqwE6DAHocL0BOgwD6NDNAB1GAHToboAOowA69DBAhzEAHXoaoMM4gA69DNBhAkCHGwzQIR2gQ28DdJgM0KGPATpMBejQ1wAdpgN0uNEAHWYCdLjJAB1mA3ToZ4AOcwE69DdAh/kAHQYYoMNCgA4DDdBhMUCHQQbocDNAh8EG6LAUoMMQA3RYBtBhqAE6LAfoMMwAHVYAdBhugA53AnQYYYAOKwE6jDRAh9UAHUbl4GFkY9ZfMrtllQ3+rvRImr2/l0etnh2HHKm9svKjnVptnTTpymsr1f289ejtgxa1OHJsyVH1+WgmD65O9dQ/xVVeccy86jH2LZ49+L5jgvONnPrHCl7mbBvD4pWz4lUoGlaCX6XMHOpa/P4vwaljYXBqW+GPtVLMsVY6+z8b0iz+wtVgb/D8TvGnZazdF8fl+AeTDc4YNCfrjrPXY+1y1LlzeRKTNFIZZiOVYTbSiRMnfvXbnmZljUf/uPmNt4WfkMM6XZTxdku4t01wCcxtHEcYrvO/lidc508T5rWXmZezxAfHWaxwIuNzBM9pAuOowdA1EpSr0zG5WtLAHS84GtGSjYl1j5p13R985hWh/Q+k8I3AjZFVThNzhM/5ASbndwScH2BwTgdwfpDJ+aCA84MMzpMAnNczOb8r4LyewXkygPNDTM7vCTg/xOA8BcB5A5Pz+wLOGxicpwI4P8zkfEjA+WEG52kAzhuZnD8QcN7I4Dw95G/ixOFwCn8OMQOQ1xFBXjMBeX0oyGsWIK+PBHnNBuT1sSCvOYC8PhHkNReQ16eCvOYB8vpMkNd8QF6fC/JaAMjrC0FeCwF5fSnIaxEgr68EeS0G5PW1IK8lgLy+EeR1MyCvbwV53QLI6ztBXksBeR0V5HUrIK/vBXktA+T1gyCv2wB5/SjIazkgr58Eed0OyOuYIK8VgLx+FuR1ByCvXwR53QnI61dBXncB8vpNkNdKQF6/C/JaBcjrD0FeqwF5HRfkdTcgrz8Fea0B5PWXIK97AHmdEOR1LyAvS/B75FpAXhFBXusAeWUT5HUfIK84QV73A/KKF+T1ACCvBEFeDwLyShTktR6QV5Igr4cAeSUL8toAyCtFkNfDgLyyC/LaCMgrhyCvRwB55RTktQmQVy5BXpsBeeUW5LUFkFeqIK+tgLzyCPLaBsgrryCvRwF55RPktR2QV35BXo8B8iogyOtxQF5nCfJ6ApBXQUFeTwLyKiTI6ylGXnTdbS0VTe3/03WCdN0cXUdG11XRdUZ03Q1dh0LXZdA1EHS9Af22T7+j02/W9Psw/RZLv3vSb4z0ex79dka/U9FvQvT7C/3WQb8r0Dl8Ol9O56bpPDCdc6Xzm3Qukc7b0TkyOh9F537oPAud06DzB/Rdnb4X03dQ+r5H363oewx9Z6D5Oc2Fad5JczyaT9HcheYJdEym4x8da8jXyUPJr8gbaBxSn6f+RW35VA5/fTjaPx1c+2TG9bHJ3GuBuX2Nro+l3Ll9bUdwvievGarlsz3N4i1cbpwcpRjPRHmdVlb1Uz7umw+CXO9MOXFxnmFg7MS1fcT7R1qgYpi23ynAoIXrLc/G3lsip/6xeN7yrMBbnjPAW54D9K/nQ/YWukuO6y3PC7zleQbGLgO8BdH2u0De8kLsveVkd5J4ywsCb3nRAG95EdC/XgrZW+jOWK63vCTwlpcYGC8b4C2Itn8Z5C2vxN5bTqYs8ZZXBN6y2wBv2Q3oX6+G7C10JzjXW14VeMurDIw9BngLou33gLzltdh7y8nbrSXe8prAW/Ya4C17Af3r9ZC9hZ60wfWW1wXe8joDY58B3oJo+30gb3kj9t5y8iE4Em95Q+AtbxrgLW8C+tdbIXsLtc84pre8JfCWtxgYbxvgLYi2fxvkLftj7y2J9I/EW/YLvOWAAd5yANC/3gnZW6RP8OK250EmD0k/OyjoZ0ej/J00iBdTG3rHe1Yw7zC8+N3g2kY4fGPl24hx9S7It9+LvW8n0T+S8fSeYDy9b4Bvvw/oX4cAc8KxzDnhIcGc8BAD4wMD5oSItv8A5C2HGb4fxrP1rCh+3z8s8JYjDF2pbucZke5yklzH5pCNT2ffrHh9KOTlLsfN7+0UyyqZnbd/mmDe91HIPrifyWO/kMfHBhzXjieFj/GJATrMjQ8f41MDdOiXHD7GZwbosBbQHz43QIdVAB2+MECHQYBx8aUBOgwB6PCVAToMA+jwtQE6jADo8I0BOowC6PCtATqMAejwnQE6jAPocNQAHSYAdPjeAB3SATr8YIAOkwE6/GiADlMBOvxkgA7TATocM0CHmQAdfjZAh9kAHX4x4XwUQIdfDdBhPkCH3wzQYSFAh98N0GExQIc/DNDhZoAOxw3QYSlAhz8N0GEZQIe/DNBhOUCHEwbosAKgg5XzzNfhToAOEQN0WAnQIZsBOqwG6BBngA5rADrEG6DDvQAdEgzQYR1Ah0QDdPgzLnyMJAN0eADQH5IN0GE9QIcUA3TYANAhuwE6bATokMMAHTYBdMhpgA5bADrkMkCHbQAdchugw3aADqkG6PA4QIc8BuhwP2A+mdcAHZ4C9Id8BuiwA6BDfgN02AnQoYABOjwH0OEsA3TYBdChoAE6vAjQoZABOrwM0KGwATrsBuhQxAAd9gB0KGqADnsBOhQzQId9AB2KG6DDmwAdShigw9sAHUoaoMMBgA6lDNDhIECHNAN0eA+gQ2kDdDgE0KGMATocBuhQ1gAdPgToUC4nH4MW7/MsgjynJ+i+5YPnFHH/h/ucmQoMnJCeM3Ny8WqZVf30XJADzGfbjRY8l6Yio2/Qw59zWp4GcRLw4GaV77nB9z0Nr1LOKACpMLdc5ZzBxZTmVTnnPxvSrOALF4sG6IeCTvIbs7M7S7wHJ6v8DjIMpAqjXRgPDowwuEZO/WMFz6Wh9Xd7cw2hIQOjas5w+xFpXzUnn3u1nLxB7zwsyq8c9+BUldFfqgsPTmH29xqx7+8nF8nDxBgPP4vQxKCCoG/VzBk+D8bB8iSPigIetZgH5BTrn353WgIe3Kzy5RyQo8E5x8Lg1IjSA7Nqp8bW3/7E7UdxjH0bW3ytIt4/0gIVsyJVQxaskfW3CXMF4xh3bebgyWX9k09m3LLKMeigPXHixGG/7WlW1hj0jzvXOvaksa4zJXeOlnVs13Fvq+uTIPexzrWCNcRi1RCROoxGq8sUj9vxqAPVEc6wJV/b3mF+basoeKRjvZzh8zjI5FFJwONsAI93mTwqC3jUB/B4j8mjioDHOQAe7zN5VBXwaADgcYjJo5qAx7kAHh8weVQX8GgI4HGYyaOGgEcjAI8jTB41BTwaA3h8yORRS8DjPACPj5g8agt4NAHw+JjJo46Ax/kAHp8wedQV8GgK4PEpk0c9AY9mAB6fMXmcLeDRHMDjcyaP+gIeLQA8vmDyOEfAoyWAx5dMHg0EPFoBeHzF5HGugMcFAB5fM3k0FPC4EMDjGyaPRgIerQE8vmXyaCzg0QbA4zsmj/MEPNoCeBxl8mgi4NEOwON7Jo/zBTzaA3j8wOTRVMCjA4DHj0wezQQ8OgJ4/MTk0VzA4yIAj2NMHi0EPDoBePzM5NFSwONiAI9fmDxaCXhcAuDxK5PHBQIelwJ4/MbkcaGAx2UAHr8zebQW8LgcwOMPJo82Ah6dATyOM3m0FfC4AsDjTyaPdgIeVwJ4/MXk0V7A4yoAjxNMHh0EPLoAeFg5eDw6CnhcDeARYfK4SMDjGgCPbEwenQQ8rgXwiGPyuFjA4zoAj3gmj0sEPLoCeCQweVwq4HE9gEcik8dlAh7dADySmDwuF/DoDuCRzOTRWcCjB4BHCpPHFQIePQE8sjN5XCng0QvAIweTx1UCHjcAeORk8ugi4NEbwCMXk8fVAh59ADxyM3lcI+DRF8AjlcnjWgGPGwE88jB5XCfgcROAR14mj64CHv0APPIxeVwv4NEfwCM/k0c3AY8BAB4FmDy6C3gMBPA4i8mjh4DHIACPgkwePQU8BgN4FGLy6CXgMQTAozCTxw0CHkMBPIowefQW8BgG4FGUyaOPgMdwAI9iTB59BTxGAHgUZ/K4UcBjJIBHCSaPmwQ8RgF4lGTy6CfgMRrAoxSTR38BjzEAHmlMHgMEPMYCeJRm8hgo4DEOwKMMk8cgAY/xAB5lmTwGC3hMAPAox+QxRMBjIoBHeSaPoQIe6QAeFZg8hgl4TALwqMjkMVzAYzKARyUmjxECHlMAPCozeYwU8JgK4FGFyWOUgMc0AI+qTB6jBTymA3hUY/IYI+AxA8CjOpPHWAGPmQAeNZg8xgl4zALwqMnkMV7AYzaARy0mjwkCHnMAPGozeUwU8JgL4FGHySNdwGMegEddJo9JAh7zATzqMXlMFvBYAOBxNpPHFAGPhQAe9Zk8pgp4LALwOIfJY5qAx2IAjwZMHtMFPJYAeJzL5DFDwONmAI+GTB4zBTxuAfBoxOQxS8BjKYBHYyaP2QIetwJ4nMfkMUfAYxmARxMmj7kCHrcBeJzP5DFPwGM5gEdTJo/5Ah63A3g0Y/JYIOCxAsCjOZPHQgGPOwA8WjB5LBLwuBPAoyWTx2IBj7sAPFoxeSwR8FgJ4HEBk8fNAh6rADwuZPK4RcBjNYBHayaPpQIedwN4tGHyuFXAYw2AR1smj2UCHvcAeLRj8rhNwONeAI/2TB7LBTzWAnh0YPK4XcBjHYBHRyaPFQIe9wF4XMTkcYeAx/0AHp2YPO4U8HgAwONiJo+7BDweBPC4hMljpYDHegCPS5k8Vgl4PATgcRmTx2oBjw0AHpczedwt4PEwgEdnJo81Ah4bATyuYPK4R8DjEQCPK5k87hXw2ATgcRWTx1oBj80AHl2YPNYJeGwB8LiayeM+AY+tAB7XMHncL+CxDcDjWiaPBwQ8HgXwuI7J40EBj+0AHl2ZPNYLeDwG4HE9k8dDAh6PA3h0Y/LYIODxBIBHdyaPhwU8ngTw6MHksVHA4ykAj55MHo8IeDwN4NGLyWOTgMcOAI8bmDw2C3g8A+DRm8lji4DHTgCPPkweWwU8ngXw6MvksU3A4zkAjxuZPB4V8HgewOMmJo/tAh67ADz6MXk8JuDxAoBHfyaPxwU8XgTwGMDk8YSAx0sAHgOZPJ4U8HgZwGMQk8dTAh6vAHgMZvJ4WsBjN4DHECaPHQIerwJ4DGXyeEbAYw+AxzAmj50CHq8BeAxn8nhWwGMvgMcIJo/nBDxeB/AYyeTxvIDHPgCPUUweuwQ83mDwoPfD11ax0v4/vXOc3tdN77qm90TTO5bp/cT0bl96Ly69U5bex0rvMqX3gNI7NOn9k/TuRnrvIb0zkN63R++qo/e80TvS6P1i9G4ueq8VvROK3qdE7yKi9/jQO3Do/TH07hV6bwm984Pel0HvmqD3NNA7Duj9APRsfXouPT3TnZ6HTs8Sp+dw0zOs6fnP9Oxkeu4wPbOXnndLz4ql56zSM0rp+Z70bEx6riQ9k5GeZ0jPAqTn6NEz6Oj5bfTsM3puGD1zi55XRc96ouck0TOG6Pk89Gwbei4MPVOFnkdCz/Kg52DQMyTo+Qv07AK675/umaf7zelebbrPme4Rpvtr6d5Uuq+T7omk+wnpXjy6j43uAaP7p+jeI7pvh+55oftF6F4Luk+BrvGn6+Pp2nK6LpuuaabrgelaWroOla7hpOsf6dpBuu6Orlmj673oWim6zoiu0aHrW+jaELqugq5JoN/z6bdw+h2ZfoOl3y/ptz/63Yx+c6Lfa+i3DvqdgM6x0/lpOrdL50XpnCKdj6NzWXQeiM6h0PkH+u5O33vpOyN936LvKjTPpzkyzS9pbkbzGpoT0PGUjkXk4+SB5B809qjfnur8nj6fxZJQVZWtlZM/Vt7MGXysZLPHindJs3gLk1uEk6MU462c4Xof5VM7Z/B2aaSiqqA9346SR1b1U04MrSK0P+XE1esthlb7cX044v0jLVAxTB/ez8SQegy3Lasy2vKAAX50ANCW74TsR+daf49lZ/8g4/4dQdu/w8A4aMA4RrT9wTNzHGfj9Jd3DRjH7wLa8r0o2zIrnen7S2N77S6XFUwcY9/GjHzeB8w/3mPOP94X+NZ7jL5+yADfQvT1Q2emb8VxfOsDA3zrA0BbHg55/nGOxZ9/HBaM48MMjCMGjGNE2x85M8dxPKe/fGjAOP4Q0JYfhTyOqU1qMMfxR4Jx/BED42MDxjGi7T8OdxxHEOcDPmFwoPzj7LVTLlZj+3hS+BifGuBxc+PDx/jMAB36JYeP8bkBOqwF9IcvDNBhFUCHLw3QYRBgXHxlgA5DADp8bYAOwwA6fGOADiMAOnxrgA6jADp8Z4AOYwA6HDVAh3EAHb43QIcJAB1+MECHdIAOPxqgw2SADj8ZoMNUgA7HDNBhOkCHnw3QYSZAh18M0GE2QIdfTTgfBdDhNwN0mA/Q4XcDdFgI0OEPA3RYDNDhuAE63AzQ4U8DdFgK0OEvA3RYBtDhhAE6LAfoYOU683VYAdAhYoAOdwJ0yGaADisBOsQZoMNqgA7xBuiwBqBDggE63AvQIdEAHdYBdEgyQIc/48LHSDZAhwcA/SHFAB3WA3TIboAOGwA65DBAh40AHXIaoMMmgA65DNBhC0CH3AbosA2gQ6oBOmwH6JDHAB0eB+iQ1wAd7gfMJ/MZoMNTgP6Q3wAddgB0KGCADjsBOpxlgA7PAXQoaIAOuwA6FDJAhxcBOhQ2QIeXAToUMUCH3QAdihqgwx6ADsUM0GEvQIfiBuiwD6BDCQN0eBOgQ0kDdHgboEMpA3Q4ANAhzQAdDgJ0KG2ADu8BdChjgA6HADqUNUCHwwAdyhmgw4cAHcoboMPHAB0qGKDDpwAdKhqgw+cAHSoZoMOXAB0qG6DD1wAdqhigw7cAHaoaoMNRgA7VDNDhB4AO1Q3Q4SeADjUM0OFngA41DdDhV4AOtQzQ4XeADrUN0OE4QIc6BujwF0CHugboYKWEj1HPAB2yAXQ42wAd4gE61DdAh0SADucYoEMyQIcGBuiQHaDDuQbokBOgQ0MDdMgN0KGRATrkAejQ2AAd8gF0OM8AHQoAdGhigA4FATqcb4AOhQE6NDVAh6IAHZoZoENxgA7NDdChJECHFgbokAbQoaUBOpQB6NDKAB3KAXS4wAAdKgB0uNAAHSoBdGhtgA5VADq0MUCHagAd2hqgQw2ADu0M0KEWQIf2BuhQB6BDBwN0qAfQoaMBOtQH6HCRATo0AOjQyQAdGgJ0uNgAHRoDdLjEAB2aAHS41AAdmgJ0uMwAHZoDdLjcAB1aAnTobIAOFwB0uMIAHVoDdLjSAB3aAnS4ygAd2gN06GKADh0BOlxtgA6dADpcY4AOlwB0uNYAHS4D6HCdATp0BujQ1QAdrgTocL0BOnQB6NDNAB2uAejQ3QAdrgPo0MMAHa4H6NDTAB26A3ToZYAOPQE63GCADjcAdOhtgA59ADr0MUCHGwE69DVAh34AHW40QIcBAB1uMkCHQQAd+hmgwxCADv0N0GEYQIcBBugwAqDDQAN0GAXQYZABOowB6DDYAB3GAXQYYoAOEwA6DDVAh3SADsMM0GEyQIfhBugwFaDDCAN0mA7QYaQBOswE6DDKAB1mA3QYbYAOcwE6jDFAh/kAHcYaoMNCgA7jDNBhMUCH8QbocDNAhwkG6LAUoMNEA3RYBtAh3QAdlgN0mGSADisAOkw2QIc7ATpMMUCHlQAdphqgw2qADtNy8TCyMeuvmtOyauUMvn91e38vj1o9Ow45Untl5Uc7tdo6adKV11aq+3nr0dsHLWpx5NiSo+rz6UweXJ0aqn8qq7zimHk1ZOxbOWfwfWcE5xs59Y8VvEwjG8PilbPiVWRXkeBXKTOHcy1+/5fgNLAwOOdY4Y+1asyxViPnPxvSLP7C1eD94Pmd4k/LTLsvzsr1DyYbnDFoTtYdZ69n2uWoc+fyJCZppJrMRqrJbKQTJ0786rc9zcoaj/5x85ttCz8nl3W6KLPtlnBvm+MSmNs4jjBc52+fL1znry7MqwMzL2eJD46z+CidhcwVPKc5jKMGQ9dIUK5Ox+RqSQN3tuBoREs2JtaYHJY1MUdw7rT/Jzn4RuDGyCqnubnC55zO5PypgHM6g/M8AOdJTM6fCThPYnCeD+A8mcn5cwHnyQzOCwCcpzA5fyHgPIXBeSGA81Qm5y8FnKcyOC8CcJ7G5PyVgPM0BufFAM7TmZy/FnCezuC8BMB5BpPzNwLOMxicbwZwnsnk/K2A80wG51sAnGcxOX8n4DyLwXkpgPNsJuejAs6zGZxvBXCew+T8vYDzHAbnZQDOc5mcfxBwnsvgfBuA8zwm5x8FnOcxOC8HcJ7P5PyTgPN8BufbAZwXMDkfE3BewOC8AsB5IZPzzwLOCxmc7wBwXsTk/IuA8yIG5zsBnBczOf8q4LyYwfkuAOclTM6/CTgvYXBeCeB8M5Pz7wLONzM4rwJwvoXJ+Q8B51sYnFcDOC9lcj4u4LyUwfluAOdbmZz/FHC+lcF5DYDzMibnvwSclzE43wPgfBuT8wkB59sYnO8FcF7O5Gzl5HNezuC8FsD5dibniIDz7QzO6wCcVzA5ZxNwXsHgfB+A8x1MznECzncwON8P4Hwnk3O8gPOdDM4PADjfxeScIOB8F4PzgwDOK5mcEwWcVzI4rwdwXsXknCTgvIrB+SEA59VMzskCzqsZnDcAON/N5Jwi4Hw3g/PDAM5rmJyzCzivYXDeCOB8D5NzDgHnexicHwFwvpfJOaeA870MzpsAnNcyOecScF7L4LwZwHkdk3NuAed1DM5bAJzvY3JOFXC+j8F5K4Dz/UzOeQSc72dw3gbg/ACTc14B5wcYnB8FcH6QyTmfgPODDM7bAZzXMznnF3Bez+D8GIDzQ0zOBQScH2JwfhzAeQOT81kCzhsYnJ8AcH6YybmggPPDDM5PAjhvZHIuJOC8kcH5KQDnR5icCws4P8Lg/DSA8yYm5yICzpsYnHcAOG9mci4q4LyZwfkZAOctTM7FBJy3MDjvBHDeyuRcXMB5K4PzswDO25icSwg4b2Nwfg7A+VEm55ICzo8yOD8P4LydybmUgPN2BuddAM6PMTmnCTg/xuD8AoDz40zOpQWcH2dwfhHA+Qkm5zICzk8wOL8E4Pwkk3NZAecnGZxfBnB+ism5nIDzUwzOrzA40335dVQ0tf9P9xHTfbV0nyndd0n3IdJ9eXSfGt23Rfcx0X09dJ8L3fdB90HQfQF0nTxdN07XUdN1xXSdLV13Stdh0nWJdJ0eXbdG13HRdU10nQ9d90LXgdB1EXSdAP1uTr8j0++q9Dsj/e5Gv0PR7zL0OwWdt6fz2HRel85z0nk/Og9G54XoPAmdN6Dv0fS9kr5n0fcOmofTvJTmaTRvoeM4HdfI58n3yAdoXFA/eSWXvz7udspK+93BtU9m3D+f3CHkZxjQ/fOUu7dcVnxfDc73ZJ+v47M9zeItXG6cHKUYe6L0mazqp3zcDyfJql1oX8qJi7OHgfEaru0j3j/SAhXDtP1rAgxauN6yN/beEjn1j8Xzlr0Cb3ndAG95HdC/9oXsLfQULa637BN4yz4GxhsGeAui7d8AecubsfeWk91J4i1vCrzlLQO85S1A/3o7ZG+hJ+dxveVtgbe8zcDYb4C3INp+P8hbDsTeW06mLPGWAwJveccAb3kH0L8Ohuwt9KRIrrccFHjLQQbGuwZ4C6Lt3wV5y3ux95aTj2OUeMt7Am953wBveR/Qvw6F7C30JF6utxwSeMshBsYHBngLou0/AHnL4dh7y8mHZEu85bDAW44Y4C1HAP3rw5C9hdpnFtNbPhR4y4cMjI8M8BZE238E8paPY+8tifSPxFs+FnjLJwZ4yyeA/vVpyN4ifcI/tz0/Y/KQ9LPPJPPjKH8nDeLF1Ibe8Z4VzKcML/48uLYRDt9Y+TZiXH0O8u0vYu/bSfSPZDx9IRhPXxrg218C+tdXgDnhTOac8CvBnPArBsbXBswJEW3/NchbvmH4fhjv3rCi+H3/G4G3fMvQlep23iHjLifJdWYu2fh09s2K13dCXu5y3Pw+ymFZVXPy9q8umPcdDdkHP2by+FjI43sDjmvHk8LH+MEAHebGh4/xowE69EsOH+MnA3RYC+gPxwzQYRVAh58N0GEQYFz8YoAOQwA6/GqADsMAOvxmgA4jADr8boAOowA6/GGADmMAOhw3QIdxAB3+NECHCQAd/jJAh3SADicM0GEyQAcr95mvw1SADhEDdJgO0CGbATrMBOgQZ4AOswE6xBugw1yADgkG6DAfoEOiATosBOiQZIAOiwE6JBugw80AHVIM0GEpQIfsBuiwDKBDDgN0WA7QIacBOqwA6JDLAB3uBOiQ2wAdVgJ0SDVAh9UAHfIYoMMagA55DdDhXoAO+QzQYR1Ah/wG6PBnXPgYBQzQ4QFAfzjLAB3WA3QoaIAOGwA6FDJAh40AHQoboMMmgA5FDNBhC0CHogbosA2gQzEDdNgO0KG4ATo8DtChhAE63A+YT5Y0QIenAP2hlAE67ADokGaADjsBOpQ2QIfnADqUMUCHXQAdyhqgw4sAHcoZoMPLAB3KG6DDboAOFQzQYQ9Ah4oG6LAXoEMlA3TYB9ChsgE6vAnQoYoBOrwN0KGqATocAOhQzQAdDgJ0qG6ADu8BdKhhgA6HADrUNECHwwAdahmgw4cAHWrn5mPQwn0/GOe5IXWC5xRx/4f7nJm6DJyQnjNzcvFqmVX99FyQT5jPtpsueC5NPUbfoIc/57Q8DeIk4MHNKt/zg+97Gt7ZuaMApMLccvVzBxdTmlf93P9sSLOCL1wsGqDfCTrJp8zO7izxHpys8vuMYSDnMNqF8eDACINr5NQ/VvBcmlp/tzfXEJoyMBrkDrcfkfYNcvO5n5ubN+idh0X5leMenBow+ktD4cEpzP7eKPb9/eQieZgY4+FnEZoY1BX0rca5w+fBOFie5FFPwOM85gE5xfqn352WgAc3q3w5B+RocM6zMDiNovTArNqpufW3P3H7URxj3+YWX6uI94+0QMWsSIOQBWtm/W3C7LdqMYyvCXPwqDF9Kp/MuGWVY9BBe+LEicN+29OsrDHoH3eu59uTxqa5rdOPlufbruPe1tQnQe5jnc8L1hCLj5KbMBqtKVM8bsejDnS+cIYt+dr2KfNrWz3BIx2b5Q6fx2dMHmcLeDQH8PicyaO+gEcLAI8vmDzOEfBoCeDxJZNHAwGPVgAeXzF5nCvgcQGAx9dMHg0FPC4E8PiGyaORgEdrAI9vmTwaC3i0AfD4jsnjPAGPtgAeR5k8mgh4tAPw+J7J43wBj/YAHj8weTQV8OgA4PEjk0czAY+OAB4/MXk0F/C4CMDjGJNHCwGPTgAePzN5tBTwuBjA4xcmj1YCHpcAePzK5HGBgMelAB6/MXlcKOBxGYDH70werQU8Lgfw+IPJo42AR2cAj+NMHm0FPK4A8PiTyaOdgMeVAB5/MXm0F/C4CsDjBJNHBwGPLgAeVi4ej44CHlcDeESYPC4S8LgGwCMbk0cnAY9rATzimDwuFvC4DsAjnsnjEgGPrgAeCUwelwp4XA/gkcjkcZmARzcAjyQmj8sFPLoDeCQzeXQW8OgB4JHC5HGFgEdPAI/sTB5XCnj0AvDIweRxlYDHDQAeOZk8ugh49AbwyMXkcbWARx8Aj9xMHtcIePQF8Ehl8rhWwONGAI88TB7XCXjcBOCRl8mjq4BHPwCPfEwe1wt49AfwyM/k0U3AYwCARwEmj+4CHgMBPM5i8ugh4DEIwKMgk0dPAY/BAB6FmDx6CXgMAfAozORxg4DHUACPIkwevQU8hgF4FGXy6CPgMRzAoxiTR18BjxEAHsWZPG4U8BgJ4FGCyeMmAY9RAB4lmTz6CXiMBvAoxeTRX8BjDIBHGpPHAAGPsQAepZk8Bgp4jAPwKMPkMUjAYzyAR1kmj8ECHhMAPMoxeQwR8JgI4FGeyWOogEc6gEcFJo9hAh6TADwqMnkMF/CYDOBRicljhIDHFACPykweIwU8pgJ4VGHyGCXgMQ3AoyqTx2gBj+kAHtWYPMYIeMwA8KjO5DFWwGMmgEcNJo9xAh6zADxqMnmMF/CYDeBRi8ljgoDHHACP2kweEwU85gJ41GHySBfwmAfgUZfJY5KAx3wAj3pMHpMFPBYAeJzN5DFFwGMhgEd9Jo+pAh6LADzOYfKYJuCxGMCjAZPHdAGPJQAe5zJ5zBDwuBnAoyGTx0wBj1sAPBoxecwS8FgK4NGYyWO2gMetAB7nMXnMEfBYBuDRhMljroDHbQAe5zN5zBPwWA7g0ZTJY76Ax+0AHs2YPBYIeKwA8GjO5LFQwOMOAI8WTB6LBDzuBPBoyeSxWMDjLgCPVkweSwQ8VgJ4XMDkcbOAxyoAjwuZPG4R8FgN4NGayWOpgMfdAB5tmDxuFfBYA+DRlsljmYDHPQAe7Zg8bhPwuBfAoz2Tx3IBj7UAHh2YPG4X8FgH4NGRyWOFgMd9AB4XMXncIeBxP4BHJyaPOwU8HgDwuJjJ4y4BjwcBPC5h8lgp4LEewONSJo9VAh4PAXhcxuSxWsBjA4DH5Uwedwt4PAzg0ZnJY42Ax0YAjyuYPO4R8HgEwONKJo97BTw2AXhcxeSxVsBjM4BHFyaPdQIeWwA8rmbyuE/AYyuAxzVMHvcLeGwD8LiWyeMBAY9HATyuY/J4UMBjO4BHVyaP9QIejwF4XM/k8ZCAx+MAHt2YPDYIeDwB4NGdyeNhAY8nATx6MHlsFPB4CsCjJ5PHIwIeTwN49GLy2CTgsQPA4wYmj80CHs8AePRm8tgi4LETwKMPk8dWAY9nATz6MnlsE/B4DsDjRiaPRwU8ngfwuInJY7uAxy4Aj35MHo8JeLwA4NGfyeNxAY8XATwGMHk8IeDxEoDHQCaPJwU8XgbwGMTk8ZSAxysAHoOZPJ4W8NgN4DGEyWOHgMerAB5DmTyeEfDYA+AxjMljp4DHawAew5k8nhXw2AvgMYLJ4zkBj9cBPEYyeTwv4LEPwGMUk8cuAY83ADxGM3m8IODxJoDHGCaPFwU83gLwGMvk8ZKAx9sAHuOYPF4W8NgP4DGeyeMVAY8DAB4TmDx2C3i8A+AxkcnjVQGPgwAe6UweewQ83gXwmMTk8ZqAx3sAHpOZPPYKeLwP4DGFyeN1AY9DAB5TmTz2CXh8AOAxjcnjDQGPwwwe9H74uipW2v+nd47T+7rpXdf0nmh6xzK9n5je7UvvxaV3ytL7WOldpvQeUHqHJr1/kt7dSO89pHcG0vv26F119J43ekcavV+M3s1F77Wid0LR+5ToXUT0Hh96Bw69P4bevULvLaF3ftD7MuhdE/SeBnrHAb0fgJ6tT8+lp2e60/PQ6Vni9BxueoY1Pf+Znp1Mzx2mZ/bS827pWbH0nFV6Rik935OejUnPlaRnMtLzDOlZgPQcPXoGHT2/jZ59Rs8No2du0fOq6FlP9JwkesYQPZ+Hnm1Dz4WhZ6rQ80joWR70HAx6hgQ9f4GeXUD3/dM983S/Od2rTfc50z3CdH8t3ZtK93XSPZF0PyHdi0f3sdE9YHT/FN17RPft0D0vdL8I3WtB9ynQNf50fTxdW07XZdM1zXQ9MF1LS9eh0jWcdP0jXTtI193RNWt0vRddK0XXGdE1OnR9C10bQtdV0DUJ9Hs+/RZOvyPTb7D0+yX99ke/m9FvTvR7Df3WQb8T0Dl2Oj9N53bpvCidU6TzcXQui84D0TkUOv9A393pey99Z6TvW/Rdheb5NEem+SXNzWheQ3MCOp7SsYh8nDyQ/IPGHvXbU53f0+ezWBIaqLLn5eaPlSO5g4+VbPZY8S5pFm9hcotwcpRifJg7XO+jfJrkDt4uzVQ0ELTnR1HyyKp+yomhVYT2p5y4en3I0OpjXB+OeP9IC1QM04c/ZmJIPYbblg0YbfmJAX70CaAtPw3Zj863/h7Lzv5Bxv2ngrb/lIHxmQHjGNH2n52Z4zgbp798bsA4/hzQll9E2ZZZ6UzfX5rba3e5rGDiGPs2Z+TzJWD+8QVz/vGlwLe+YPT1rwzwLURf/+rM9K04jm99bYBvfQ1oy29Cnn+cZ/HnH98IxvE3DIxvDRjHiLb/9swcx/Gc/vKdAeP4O0BbHg15HFObNGKO46OCcXyUgfG9AeMY0fbfhzuOI4jzAT8wOFD+cfbaKRersX08KXyMHw3wuLnx4WP8ZIAO/ZLDxzhmgA5rAf3hZwN0WAXQ4RcDdBgEGBe/GqDDEIAOvxmgwzCADr8boMMIgA5/GKDDKIAOxw3QYQxAhz8N0GEcQIe/DNBhAkCHEwbokA7QwUo983WYDNAhYoAOUwE6ZDNAh+kAHeIM0GEmQId4A3SYDdAhwQAd5gJ0SDRAh/kAHZIM0GEhQIdkA3RYDNAhxQAdbgbokN0AHZYCdMhhgA7LADrkNECH5QAdchmgwwqADrkN0OFOgA6pBuiwEqBDHgN0WA3QIa8BOqwB6JDPAB3uBeiQ3wAd1gF0KGCADn/GhY9xlgE6PADoDwUN0GE9QIdCBuiwAaBDYQN02AjQoYgBOmwC6FDUAB22AHQoZoAO2wA6FDdAh+0AHUoYoMPjAB1KGqDD/YD5ZCkDdHgK0B/SDNBhB0CH0gbosBOgQxkDdHgOoENZA3TYBdChnAE6vAjQobwBOrwM0KGCATrsBuhQ0QAd9gB0qGSADnsBOlQ2QId9AB2qGKDDmwAdqhqgw9sAHaoZoMMBgA7VDdDhIECHGgbo8B5Ah5oG6HAIoEMtA3Q4DNChtgE6fAjQoY4BOnwM0KGuATp8CtChngE6fA7Q4WwDdPgSoEN9A3T4GqDDOQbo8C1AhwYG6HAUoMO5BujwA0CHhgbo8BNAh0YG6PAzQIfGBujwK0CH8wzQ4XeADk0M0OE4QIfzDdDhL4AOTQ3QwUoJH6OZATpkA+jQ3AAd4gE6tDBAh0SADi0N0CEZoEMrA3TIDtDhAgN0yAnQ4UIDdMgN0KG1ATrkAejQxgAd8gF0aGuADgUAOrQzQIeCAB3aG6BDYYAOHQzQoShAh44G6FAcoMNFBuhQEqBDJwN0SAPocLEBOpQB6HCJATqUA+hwqQE6VADocJkBOlQC6HC5ATpUAejQ2QAdqgF0uMIAHWoAdLjSAB1qAXS4ygAd6gB06GKADvUAOlxtgA71ATpcY4AODQA6XGuADg0BOlxngA6NATp0NUCHJgAdrjdAh6YAHboZoENzgA7dDdChJUCHHgbocAFAh54G6NAaoEMvA3RoC9DhBgN0aA/QobcBOnQE6NDHAB06AXToa4AOlwB0uNEAHS4D6HCTATp0BujQzwAdrgTo0N8AHboAdBhggA7XAHQYaIAO1wF0GGSADtcDdBhsgA7dAToMMUCHngAdhhqgww0AHYYZoEMfgA7DDdDhRoAOIwzQoR9Ah5EG6DAAoMMoA3QYBNBhtAE6DAHoMMYAHYYBdBhrgA4jADqMM0CHUQAdxhugwxiADhMM0GEcQIeJBugwAaBDugE6pAN0mGSADpMBOkw2QIepAB2mGKDDdIAOUw3QYSZAh2kG6DAboMN0A3SYC9BhhgE6zAfoMNMAHRYCdJhlgA6LATrMNkCHmwE6zDFAh6UAHeYaoMMygA7zDNBhOUCH+QbosAKgwwIDdLgToMNCA3RYCdBhkQE6rAbosDiVh5GNWX+D3JZ1Xu7g+ze09/fyqNWz45AjtVdWfrRTq62TJl15baW6n7cevX3QohZHji05qj5fwuTB1amp+qe+yiuOmVdTxr71cwff9+bgfCOn/rGCl2lmY1i8cla8iuwqEvwqZeZwvsXv/xKcJhYG5zwr/LF2LnOsNcr9z4Y0i79wNfgyeH6n+NNyi90Xl6b+g8n/IsIwCao7zl7fYpejzp3Lk5ikkRozG6kxs5FOnDjxq9/2NCtrPPrHze9WW/hlqdbpotxqt4R72zKXwNzGcYThOv+5BcJ1/obCvBoy83KW+OA4ixVO5NbU4DktYxw1GLpGgnJ1OiZXSxq4twqORrRkY2LNUCN8bq7g3Gn/H3LxjcCNkVVOt6WGz3kek/OPAs7zGJyXAzjPZ3L+ScB5PoPz7QDOC5icjwk4L2BwXgHgvJDJ+WcB54UMzncAOC9icv5FwHkRg/OdAM6LmZx/FXBezOB8F4DzEibn3wSclzA4rwRwvpnJ+XcB55sZnFcBON/C5PyHgPMtDM6rAZyXMjkfF3BeyuB8N4DzrUzOfwo438rgvAbAeRmT818CzssYnO8BcL6NyfmEgPNtDM73AjgvZ3K2cvM5L2dwXgvgfDuTc0TA+XYG53UAziuYnLMJOK9gcL4PwPkOJuc4Aec7GJzvB3C+k8k5XsD5TgbnBwCc72JyThBwvovB+UEA55VMzokCzisZnNcDOK9ick4ScF7F4PwQgPNqJudkAefVDM4bAJzvZnJOEXC+m8H5YQDnNUzO2QWc1zA4bwRwvofJOYeA8z0Mzo8AON/L5JxTwPleBudNAM5rmZxzCTivZXDeDOC8jsk5t4DzOgbnLQDO9zE5pwo438fgvBXA+X4m5zwCzvczOG8DcH6AyTmvgPMDDM6PAjg/yOScT8D5QQbn7QDO65mc8ws4r2dwfgzA+SEm5wICzg8xOD8O4LyByfksAecNDM5PADg/zORcUMD5YQbnJwGcNzI5FxJw3sjg/BSA8yNMzoUFnB9hcH4awHkTk3MRAedNDM47AJw3MzkXFXDezOD8DIDzFibnYgLOWxicdwI4b2VyLi7gvJXB+VkA521MziUEnLcxOD8H4Pwok3NJAedHGZyfB3DezuRcSsB5O4PzLgDnx5ic0wScH2NwfgHA+XEm59ICzo8zOL8I4PwEk3MZAecnGJxfAnB+ksm5rIDzkwzOLwM4P8XkXE7A+SkG51cAnJ9mci4v4Pw0g/NuAOcdTM4VBJx3MDi/CuD8DJNzRQHnZxic9wA472RyriTgvJPB+TUA52eZnCsLOD/L4LwXwPk5JucqAs7PMTi/DuD8PJNzVQHn5xmc9wE472JyribgvIvB+Q0A5xeYnKsLOL/A4PwmgPOLTM41BJxfZHB+C8D5JSbnmgLOLzE4vw3g/DKTcy0B55cZnPcDOL/C5FxbwPkVBucDDM50X349FU3t/9N9xHRfLd1nSvdd0n2IdF8e3adG923RfUx0Xw/d50L3fdB9EHRfAF0nT9eN03XUdF0xXWdL153SdZh0XSJdp0fXrdF1XHRdE13nQ9e90HUgdF0EXSdAv5vT78j0uyr9zki/u9HvUPS7DP1OQeft6Tw2ndel85x03o/Og9F5ITpPQucN6Hs0fa+k71n0vYPm4TQvpXkazVvoOE7HNfJ58j3yARoX1E8OpPrr426nrLR/J7j2yYz755MbhvwMA7p/nnL3lsuK78HgfE/2+Xo+29Ms3sLlxslRivFulD6TVf2Uj/vhJFm1C+1LOXFx3mVgvIdr+4j3j7RAxTBt/54Agxaut7wfe2+JnPrH4nnL+wJvOWSAtxwC9K8PQvYWeooW11s+EHjLBwyMwwZ4C6LtD4O85UjsveVkd5J4yxGBt3xogLd8COhfH4XsLfTkPK63fCTwlo8YGB8b4C2Itv8Y5C2fxN5bTqYs8ZZPBN7yqQHe8imgf30WsrfQkyK53vKZwFs+Y2B8boC3INr+c5C3fBF7bzn5OEaJt3wh8JYvDfCWLwH966uQvYWexMv1lq8E3vIVA+NrA7wF0fZfg7zlm9h7y8mHZEu85RuBt3xrgLd8C+hf34XsLdQ+S5ne8p3AW75jYBw1wFsQbX8U5C3fx95bEukfibd8L/CWHwzwlh8A/evHkL1F+oR/bnv+xOQh6Wc/CfrZy1H+ThrEi6kNveM9K5gfGV58LLi2EQ7fWPk2YlwdA/n2z7H37ST6RzKefhaMp18M8O1fAP3rV8Cc8BbmnPBXwZzwVwbGbwbMCRFt/xvIW35n+H4Y796wovh9/3eBt/zB0JXqdt4h4y4nyfWWVNn4dPbNitdxIS93OW5+R3NZVoPcvP0bCuZ9f4bsg98zeXwv5PGXAce140nhY5wwQIe58eFjWHnOfB36JYePETFAh7WA/pDNAB1WAXSIM0CHQYBxEW+ADkMAOiQYoMMwgA6JBugwAqBDkgE6jALokGyADmMAOqQYoMM4gA7ZDdBhAkCHHAbokA7QIacBOkwG6JDLAB2mAnTIbYAO0wE6pBqgw0yADnkM0GE2QIe8BugwF6BDPgN0mA/QIb8BOiwE6FDAAB0WA3Q4ywAdbgboUNAAHZYCdChkgA7LADoUNkCH5QAdihigwwqADkUN0OFOgA7FDNBhJUCH4gbosBqgQwkDdFgD0KGkATrcC9ChlAE6rAPokGaADn/GhY9R2gAdHgD0hzIG6LAeoENZA3TYANChnAE6bAToUN4AHTYBdKhggA5bADpUNECHbQAdKhmgw3aADpUN0OFxgA5VDNDhfsB8sqoBOjwF6A/VDNBhB0CH6gbosBOgQw0DdHgOoENNA3TYBdChlgE6vAjQobYBOrwM0KGOATrsBuhQ1wAd9gB0qGeADnsBOpxtgA77ADrUN0CHNwE6nGOADm8DdGhggA4HADqca4AOBwE6NDRAh/cAOjQyQIdDAB0aG6DDYYAO5xmgw4cAHZrk4WPQwn0/GOe5IecHzyni/g/3OTNNGTghPWfm5OLVMqv66bkgPzCfbbdE8FyaZsK+wcVpnjVONnfdOS37YdP2/+n6GFq3sP9PzwuJ2PU6+7VQf7dU0UrFBfb2HJanA7nqdOefxRJpkUc+TtlgrSweGLd+GqjHBZ3ljQKyzhLvwckqv58YRnJhnuD7Mh4gGGFwjZz6x+K1MeXObYPWjI5IdTsPXPIrxzX4Vox92wgNPsy+0jb2feXkInkgF+MBYhE6uDYV9K12ecLnwTjgnOTRTMCjPWjC4943Ky4XWJicIlbwnC60MDlls4Ln1NrC5BRnBc+pjaUnp6xw2lrB8/8lTpYT9zjVzorOE4IcU/5keDjt2yYPn0d7K3wefzF4/CXk0cHC9MWOVnAuf8RFp21WudyuJgUr44PnQ/uui+fjXGQFx7g9HtMOnRg5HQd5wsUWBucSC4NzqYXBuczC4FxuYXA6WxicKywMzpUWBucqC4PTxcLgXG1hcK6xMDjXWhic6ywMTlcLg3O9hcHpZmFwulsYnB4WBqenhcHpZWFwbrAwOL0tDE4fC4PT18Lg3GhhcG6yMDj9LAxOfwuDM8DC4Ay0gn+HiQZnkIXhM9jC4AyxMDhDLQzOMAuDM9zC4IywMDgjLQzOKAuDM9rC4IyxMDhjLQzOOAuDM97C4EywMDgTLQxOuoXBmWRhcCZbGJwpFgZnqoXBmWZhcKZbGJwZFgZnpoXBmWVhcGZbGJw5FgZnroXBmWdhcOZbGJwFFgZnoYXBWWRhcBZbGJwlFgbnZguDc4uFwVlqYXButTA4yywMzm0WBme5hcG53cLgrLAwOHdYGJw7LQzOXRYGZ6WFwVllYXBWWxicuy0MzhoLg3OPhcG518LgrLUwOOssDM59FgbnfguD84CFwXnQwuCstzA4D1kYnA0WBudhC4Oz0cLgPGJhcDZZGJzNFgZni4XB2WphcLZZGJxHLQzOdguD85iFwXncwuA8YWFwnrQwOE9ZGJynLQzODguD84yFwdlpYXCetTA4z1kYnOctDM4uC4PzgoXBedHC4LxkYXBetjA4r1gYnN0WBudVC4Ozx8LgvGZhcPZaGJzXLQzOPguD84aFwXnTwuC8ZWFw3rYwOPstDM4BC4PzjoXBOWhhcN61MDjvWRic9y0MziELg/OBhcE5bGFwjlgYnA8tDM5HFgbnYwuD84mFwfnUwuB8ZmFwPrcwOF9YGJwvLQzOVxYG52sLg/ONhcH51sLgfGdhcI5aGJzvLQzODxYG50cLg/OThcE5ZmFwfrYwOL9YGJxfLQzObxYG53cLg/OHhcE5bmFw/rQwOH9ZGJwTFgaHCgTc11OQhxMB4WRj4njrD/LMrBaCZ2DFgfjHA/i3FfBPAPFPBOEkgXCSQTgpIJzsIJwcIJycIJxcIJzcIJxUEE4eEE5eEE4+EE5+EE4BEM5ZIJyCIJxCIJzCIJwiIJyiIJxiIJziIJwSIJySIJxSIJw0EE5pEE4ZEE5ZEE45EE55EE4FEE5FEE4lEE5lEE4VEE5VEE41EE51EE4NEE5NEE4tEE5tEE4dIU40743JKqe6zJwk7yC5jfGcftr/RCofp14kOMZtqeFzXs7kbOXh45zN4LwcwPl2JueIgHN9BufbAZxXMDlnE3A+h8F5BYDzHUzOcQLODRic7wBwvpPJOV7A+VwG5zsBnO9ick4QcG7I4HwXgPNKJudEAedGDM4rAZxXMTknCTg3ZnBeBeC8msk5WcD5PAbn1QDOdzM5pwg4N2FwvhvAeQ2Tc3YB5/MZnNcAON/D5JxDwLkpg/M9AM73MjnnFHBuxuB8L4DzWibnXALOzRmc1wI4r2Nyzi3g3ILBeR2A831MzqkCzi0ZnO8DcL6fyTmPgHMrBuf7AZwfYHLOK+B8AYPzAwDODzI55xNwvpDB+UEA5/VMzvkFnFszOK8HcH6IybmAgHMbBueHAJw3MDmfJeDclsF5A4Dzw0zOBQWc2zE4PwzgvJHJuZCAc3sG540Azo8wORcWcO7A4PwIgPMmJuciAs4dGZw3AThvZnIuKuB8EYPzZgDnLUzOxQScOzE4bwFw3srkXFzA+WIG560AztuYnEsIOF/C4LwNwPlRJueSAs6XMjg/CuC8ncm5lIDzZQzO2wGcH2NyThNwvpzB+TEA58eZnEsLOHdmcH4cwPkJJucyAs5XMDg/AeD8JJNzWQHnKxmcnwRwforJuZyA81UMzk8BOD/N5FxewLkLg/PTAM47mJwrCDhfzeC8A8D5GSbnigLO1zA4PwPgvJPJuZKA87UMzjsBnJ9lcq4s4Hwdg/OzAM7PMTlXEXDuyuD8HIDz80zOVQWcr2dwfh7AeReTczUB524MzrsAnF9gcq4u4NydwfkFAOcXmZxrCDj3YHB+EcD5JSbnmgLOPRmcXwJwfpnJuZaAcy8G55cBnF9hcq4t4HwDg/MrAM67mZzrCDj3ZnDeDeD8KpNzXQHnPgzOrwI472Fyrifg3JfBeQ+A82tMzmcLON/I4PwagPNeJuf6As43MTjvBXB+ncn5HAHnfgzOrwM472NybiDg3J/BeR+A8xtMzucKOA9gcH4DwPlNJueGAs4DGZzfBHB+i8m5kYDzIAbntwCc32ZybizgPJjB+W0A5/1MzucJOA9hcN4P4HyAybmJgPNQBucDUXLOqn66F7tdnuD7t8nz9/4RD05WnIdFwuXRILdl/Zg7+P4N1b7NcvN5DAfw+InJo7mAxwgAj2NMHi0EPEYCePzM5NFSwGMUgMcvTB6tBDxGA3j8yuRxgYDHGACP35g8LhTwGAvg8TuTR2sBj3EAHn8webQR8BgP4HGcyaOtgMcEAI8/mTzaCXhMBPD4i8mjvYBHOoDHCSaPDgIekwA8rFQej44CHpMBPCJMHhcJeEwB8MjG5NFJwGMqgEcck8fFAh7TADzimTwuEfCYDuCRwORxqYDHDACPRCaPywQ8ZgJ4JDF5XC7gMQvAI5nJo7OAx2wAjxQmjysEPOYAeGRn8rhSwGMugEcOJo+rBDzmAXjkZPLoIuAxH8AjF5PH1QIeCwA8cjN5XCPgsRDAI5XJ41oBj0UAHnmYPK4T8FgM4JGXyaOrgMcSAI98TB7XC3jcDOCRn8mjm4DHLQAeBZg8ugt4LAXwOIvJo4eAx60AHgWZPHoKeCwD8CjE5NFLwOM2AI/CTB43CHgsB/AowuTRW8DjdgCPokwefQQ8VgB4FGPy6CvgcQeAR3EmjxsFPO4E8CjB5HGTgMddAB4lmTz6CXisBPAoxeTRX8BjFYBHGpPHAAGP1QAepZk8Bgp43A3gUYbJY5CAxxoAj7JMHoMFPO4B8CjH5DFEwONeAI/yTB5DBTzWAnhUYPIYJuCxDsCjIpPHcAGP+wA8KjF5jBDwuB/AozKTx0gBjwcAPKoweYwS8HgQwKMqk8doAY/1AB7VmDzGCHg8BOBRncljrIDHBgCPGkwe4wQ8HgbwqMnkMV7AYyOARy0mjwkCHo8AeNRm8pgo4LEJwKMOk0e6gMdmAI+6TB6TBDy2AHjUY/KYLOCxFcDjbCaPKQIe2wA86jN5TBXweBTA4xwmj2kCHtsBPBoweUwX8HgMwONcJo8ZAh6PA3g0ZPKYKeDxBIBHIyaPWQIeTwJ4NGbymC3g8RSAx3lMHnMEPJ4G8GjC5DFXwGMHgMf5TB7zBDyeAfBoyuQxX8BjJ4BHMyaPBQIezwJ4NGfyWCjg8RyARwsmj0UCHs8DeLRk8lgs4LELwKMVk8cSAY8XADwuYPK4WcDjRQCPC5k8bhHweAnAozWTx1IBj5cBPNowedwq4PEKgEdbJo9lAh67ATzaMXncJuDxKoBHeyaP5QIeewA8OjB53C7g8RqAR0cmjxUCHnsBPC5i8rhDwON1AI9OTB53CnjsA/C4mMnjLgGPNwA8LmHyWCng8SaAx6VMHqsEPN4C8LiMyWO1gMfbAB6XM3ncLeCxH8CjM5PHGgGPAwAeVzB53CPg8Q6Ax5VMHvcKeBwE8LiKyWOtgMe7AB5dmDzWCXi8B+BxNZPHfQIe7wN4XMPkcb+AxyEAj2uZPB4Q8PgAwOM6Jo8HBTwOA3h0ZfJYL+BxBMDjeiaPhwQ8PgTw6MbksUHA4yMAj+5MHg8LeHwM4NGDyWOjgMcnAB49mTweEfD4FMCjF5PHJgGPzwA8bmDy2Czg8TmAR28mjy0CHl8AePRh8tgq4PElgEdfJo9tAh5fAXjcyOTxqIDH1wAeNzF5bBfw+AbAox+Tx2MCHt8CePRn8nhcwOM7AI8BTB5PCHgcBfAYyOTxpIDH9wAeg5g8nhLw+AHAYzCTx9MCHj8CeAxh8tgh4PETgMdQJo9nBDyOAXgMY/LYKeDxM4DHcCaPZwU8fgHwGMHk8ZyAx68AHiOZPJ4X8PgNwGMUk8cuAY/fATxGM3m8IODxB4DHGCaPFwU8jgN4jGXyeEnA408Aj3FMHi8LePwF4DGeyeMVAY8TAB4TmDx2C3hQYgH3FfOYyOTxqoBHBMAjncljj4BHNgCPSUwerwl4xAF4TGby2CvgEQ/gMYXJ43UBjwQAj6lMHvsEPBIBPKYxebwh4JEE4DGdyeNNAY9kAI8ZTB5vCXikAHjMZPJ4W8AjO4DHLCaP/QIeOQA8ZjN5HBDwyAngMYfJ4x0Bj1wAHnOZPA4KeOQG8JjH5PGugEcqgMd8Jo/3BDzyAHgsYPJ4X8AjL4DHQiaPQwIe+QA8FjF5fCDgkR/AYzGTx2EBjwIh86D3uLfPE3x/eo877c/lcRaTx6mCTJyCIJxCIJzCIJwiIJyiIJxiIJziIJwSIJySIJxSIJw0EE5pEE4ZEE5ZEE45EE55EE4FEE5FEE4lEE5lEE4VEE5VEE41EE51EE4NEE5NEE4tEE5tEE4dEE5dEE49EM7ZIJz6IJxzQDgNQDjngnAagnAagXAag3DOA+E0AeGcD8JpCsJpBsJpDsJpAcJpCcJpBcK5AIRzIQinNQinDQinLQinHQinPQinAwinIwjnIhBOJxDOxSCcS0A4l4JwLgPhXA7C6QzCuQKEcyUI5yoQThcQztUgnGtAONeCcK4D4XQF4VwPwukGwukOwukBwukJwukFwrkBhNMbhNMHhNMXhHMjCOcmEE4/EE5/EM4AEM5AEM4gEM5gEM4QEM5QEM4wEM5wEM4IEM5IEM4oEM5oEM4YEM5YEM44EM54EM4EEM5EEE46CGcSCGcyCGcKCGcqCGcaCGc6CGcGCGcmCGcWCGc2CGcOCGcuCGceCGc+CGcBCGchCGcRCGcxCGcJCOdmEM4tIJylIJxbQTjLQDi3gXCWg3BuB+GsAOHcAcK5E4RzFwhnJQhnFQhnNQjnbhDOGhDOPSCce0E4a0E460A494Fw7gfhPADCeRCEsx6E8xAIZwMI52EQzkYQziMgnE0gnM0gnC0gnK0gnG0gnEdBONtBOI+BcB4H4TwBwnkShPMUCOdpEM4OEM4zIJydIJxnQTjPgXCeB+HsAuG8AMJ5EYTzEgjnZRDOKyCc3SCcV0E4e0A4r4Fw9oJwXgfh7APhvAHCeROE8xYI520Qzn4QzgEQzjsgnIMgnHdBOO+BcN4H4RwC4XwAwjkMwjkCwvkQhPMRCOdjEM4nIJxPQTifgXA+B+F8AcL5EoTzFQjnaxDONyCcb0E434FwjoJwvgfh/ADC+RGE8xMI5xgI52cQzi8gnF9BOL+BcH4H4fwBwjkOwvkThPMXCOcECMeKw+BEQDjZQDhxIJx4EE4CCCcRhJMEwkkG4aSAcLKDcHKAcHKCcHKBcHKDcFJBOHlAOHlBOPlAOPlBOAVAOGeBcAqCcAqBcAqDcIqAcIqCcIqBcIqDcEqAcEqCcEqBcNJAOKVBOGVAOGVBOOVAOOVBOBVAOBVBOJVAOJVBOFVAOFVBONVAONVBODVAODVBOLVAOLVBOHVAOHVBOPVAOGeDcOqDcM4B4TQA4ZwLwmkIwmkEwmkMwjkPhNMEhHM+CKcpCKcZCKc5CKcFCKclCKcVCOcCEM6FIJzWIJw2IJy2IJx2IJz2IJwOIJyOIJyLQDidQDgXg3AuAeFcCsK5DIRzOQinMwjnChDOlSCcq0A4XUA4V4NwrgHhXAvCuQ6E0xWEcz0IpxsIpzsIpwcIpycIpxcI5wYQTm8QTh8QTl8Qzo0gnJtAOP1AOP1BOANAOANBOINAOINBOENAOENBOMNAOMNBOCNAOCNBOKNAOKNBOGNAOGNBOONAOONBOBNAOBNBOOkgnEkgnMkgnCkgnKkgnGkgnOkgnBlCnGwenFo9Ow45Untl5Uc7tdo6adKV11aq+3nr0dsHLWpx5NiSo+rzclbwnGYyc+Lm0kpF6zzB92+j9m2bh6/tLJC28VbwnGaDckqwguc0B5RTohU8p7mgnJKs4DnNA+WUbAXPaT4opxQreE4LQDllt4LntBCUUw4reE6LQDnltILntBiUUy4reE5LQDnltoLndDMop1QreE63gHLKYwXPaSkop7xW8JxuBeWUzwqe0zJQTvmt4DndBsqpgBU8p+WgnM6ygud0OyinglbwnFaAcipkBc/pDlBOha3gOd0JyqmIFTynu0A5FbWC57QSlFMxK3hOq0A5FbeC57QalFMJK3hOd4NyKmkFz2kNKKdSVvCc7gHllGYFz+leUE6lreA5rQXlVMYKntM6UE5lreA53cfIKc7Oha4joeUCFReqaK2ijYq2KtqpaK+ig4qOKi5S0UnFxSouUXGpistUXK6is4orVFyp4ioVXVRcreIaFdequE5FVxXXq+imoruKHoSvopeKG1T0VtFHRV8VN6q4SUU/Ff1VDFAxUMUgFYNVDFExVMUwFcNVjFAxUsUoFaNVjFExVsU4FeNVTFAxUUW6ikkqJquYomKqimkqpquYoWKmilkqZquYo2Kuinkq5qtYoGKhikUqFqtYouJmFbeoWKriVhXLVNymYrmK21WsUHGHijtV3KVipYpVKlaruFvFGhX3qLhXxVoV61Tcp+J+FQ+oeFDFehUPqdig4mEVG1U8omKTis0qtqjYqmKbikdVbFfxmIrHVTyh4kkVT6l4WsUOFc+o2KniWRXPqXhexS4VL6h4UcVLKl5W8YqK3SpeVbFHxWsq9qp4XcU+FW+oeFPFWyreVrFfxQEV76g4qOJdFe+peF/FIRUfqDis4oiKD1V8pOJjFZ+o+FTFZyo+V/GFii9VfKXiaxXfqPhWxXcqaEx8r+IHFT+q+EnFMRU/q/hFxa8qflPxu4o/VBxX8aeKv1ScUEEndSMqsqmIUxGvIkFFoookFckqUlRkV5FDRU4VuVTkVpGqIo+KvCryqcivooCKs1QUVFFIRWEVRVQUVVFMRXEVJVSUVFFKRZqK0irKqCiropyK8ioqqKioopKKyiqqqKiqopqK6ipqqKipopaK2irqqKirop6Ks1XUV3GOigYqzlXRUEUjFY1VnKeiiYrzVTRV0UxFcxUtVLRU0UrFBSouVNFaRRsVbVW0U9FeRQcVHVVcpKKTiotVXKLiUhWXqbhcRWcVV6i4UsVVKrqouFrFNSquVXGdiq4qrlfRTUV3FT1U9FTRS8UNKnqr6KOir4obVdykop+K/ioGqBioYpCKwSqGqBiqYpiK4SpGqBipYpSK0SrGqBirYpyK8SomqJioIl3FJBWTVUxRMVXFNBXTVcxQMVPFLBWzVcxRMVfFPBXzVSxQsVDFIhWLVSxRcbOKW1QsVXGrimUqblOxXMXtKlaouEPFnSruUrFSxSoVq1XcrWKNintU3KtirYp1Ku5Tcb+KB1Q8qGK9iodUbFDxsIqNKh5RsUnFZhVbVGxVsU3Foyq2q3hMxeMqnlDxpIqnVDytYoeKZ1TsVPGsiudUPK9il4oXVLyo4iUVL6t4RcVuFa+q2KPiNRV7VbyuYp+KN1S8qeItFW+r2K/igIp3VBxU8a6K91S8r+KQig9UHFZxRMWHKj5S8bGKT1R8quIzFZ+r+ELFlyq+UvG1im9UfKviOxVHVXyv4gcVP6r4ScUxFT+r+EXFryp+U/G7ij9UHFfxp4q/VJxQQQe9iIpsKuJUxKtIUJGoIklFsooUFdlV5FCRU0UuFblVpKrIoyKvinwq8qsooOIsFQVVFFJRWEURFUVVFFNRXEUJFSVVlKJnV6ooraKMirIqyqkor6KCiooqKqmorKKKiqoqqqmorqKGipoqaqmoraKOiroq6qk4W0V9FeeoaKDiXBUNVTRS0VjFeSqaqDhfRVMVzVQ0V9FCRUsVrVRcoOJCFa1VtFHRVkU7Fe1VdFDRUcVFKjqpuFjFJSouVXGZistVdFZxhYorVVyloouKq1Vco+JaFdep6KriehXdVHRX0UNFTxW9VNygoreKPir6qrhRxU0q+qnor2KAioEqBqkYrGKIiqEqhqkYrmKEipEqRqkYrWKMirEqxqkYr2KCiokq0lVMUjFZxRQVU1VMUzFdxQwVM1XMUjFbxRwVc1XMUzFfxQIVC1UsUrFYxRIVN6u4RcVSFfRue3rvPL0Tnt7XTu9Sp/ec0zvI6f3g9O5ueq82vfOa3kdN74qm9zjTO5bp/cf0bmJ6bzC905fet0vvwqX31NI7ZOn9rvTuVXovKr2zlN4nSu/6pPdw0jsy6f2V9G5Jeu8jvZOR3pdI7zKk9wzSOwDp/Xz07jx6rx29c47eB0fvaqP3qNE7zuj9Y/RuMHpvF71Ti953Re+iovdE0Tuc6P1K9O4jei8RvTOI3udD79qh9+DQO2ro/TH0bhd67wq9E4XeV0LvEqH3fNA7OOj9GPTuCnqvBL3zgd7HQO9KoPcY0DsG6Pn/9Gx+em4+PdOenjdPz4Kn57TTM9Tp+eb07HF6Ljg9s5uep03PuqbnUNMzoun5zfRsZXruMT2TmJ4XTM/ypefs0jNw6fm09OxYmvjSM1fpeaj0rFJ6jig945Oev0nPxqTnVtIzJel5j/QsRnpOIj3DkJ4vSM/+o+fy0TPz6Hl29Kw5eg4cPaONnp9Gzzaj547RM8HoeV30LC16zhU9g4qeD3Xy2U0q6JlH9DwielYQPceHnrFDz7+hZ9PQc2PomS70vBV6Fgo9p4SeIULP96Bnb9BzMeiZFfQ8CXrWAz2HgZ6RQM8voGcL0H3/dE8+3S9P97LTfeZ0Dzjdn033TtN9zXTPMd0PTPfq0n20dI8r3X9K94bSfZt0TyXd70j3ItJ9gnQPH91fR/e+0X1pdM8Y3c9F91rRfVB0jxLdP0T39tB9N3RPDN2vQveS0H0edA8G3R9B9y7QfQV0zT9dj0/XytP3D7rGnK7/pmuz6bppuqaZrjema4HpOl26hpaub6VrT+m6ULpmk66npGsd6TpEukaQrt+ja+vouje6Jo2uF6Nrueg6K7oGiq5PomuH6LoeuuaGroeha1XoOhK6xoOuv6BrI+haBPodn343p9+p6Xdh+h2Wfvek3xnpdz36HY1+t6Lfieh3GfodhH53oPP8dF6dzmPTeWM6T0vnRek8JJ33o/NsdF6LziPReRs6T0LnJeg8AH3vpu+59L2SvsdRV6XvZM5iH7pOfm+j3//p93b6fZt+T6bfb+n3Uvp9kn4PpN/f6Pcu+n2Jfs+h30/o9wr6fYDOx9P5bzrfTOd36Xwqnb+k84V0fo7Oh9H5JzrfQ+dXnPMZpa2/vx+Xtf6+tqO8igoqKqqopKKyiioqqqqopqK6ihoqaqqopaK2ijoq6qqop+JsFfVVnKOigYpzVTRU0UhFYxXnqWii4nwVTVU0U9FcRQsVLa2/r+nwLpf5/L2w965Xfvoqaa97v86ZfPa8vb75og7liv3Wbor7s4OZlKM+RkupxFZvX1L12Xfdn1VMyLhcZfuz9tdvSLutWHyC+7OqmZSrnkm5mpmUq5PJZ/UyqbN+JuUaZFKuYSblzsvks/MzqbNZJuVaZFKuVSblWmfyWdtM6myfSbmOmZTrlEm5SzP57PJM6rwik3JXZVLu6kzKXZfJZ9dnUmf3TMr1zKTcDZmU65vJZzdlUmf/TMoNzKTc4EzKDcvksxGZ1Dkqk3JjMik3LpNym+3PuuS6Pec9Bb5e5v7ssUw+25HJZ7sy+Wx3Jp/ty+SzA5l8diiTz77PhPuv9mffzs8+9dBXBxe4PzueSbmciRl/Vtj+LL3ClbkaVjt7k/uzIUkZ441NyrjcxqSM8TZl8tnJg3sGn+VIzhjvuUzK9U7JmMOglIzrPJSScZ2HM/msevaMP2uQPWO87zMpd3OOjDnckSPjOnPkzLjOXJl81iWTz3rlzBivZK6Myz2TK2MOL+fKuM4GuTOus2Emn03P4LNUe13JXncbOrTXkGFdewzsP6jbsL7d+/XqOnBItx5qNaLXkKF9Bw7oOnJIt0GDeg0paO9vd7VTv23QXJWmQ2lWoCWS7CrHL5/eMtlbIau8dbJ8xJLi/83fmZ9Lyic6ibjKu3Nx6iWbyOH6O5cHX5h/y2jzz5dJzk7btHDtn2YFWuJo+BPPPPYG4l7O/nv4sL79+g4b3exkV21xqqdedLKjdv67n3orjHj+3yKD7dldece79gmuyaiWTp3214KT39fifPaM96ydfc6y1ykufGcd5Prvg88fe3tz2zr983rK0+K0TXYXTs++Q3sMVOO764BeI7v27zV0aLfevYYWsNWO8QBfHOUAXxxlB48ku8oIyp8a4Itc5b250JLTOn0gucsk2Z87f19t/x3l4F+MHPzOfmlWoOVUv2kpK5/NKd9KVv5U/he4yjO0SXPKX+jeaAVa4pyyrf3K/jR0/72vzNv03Lpha+9ZmvdgrttyVMs+cdq074p9W3z50Wl3O2XbuPJm8E50yrf1w26yLa5Ln42/D8xx4ZQNIw++03F4ruLddpaaeU+X5xeV+qLrdKdsO7+yn8+9fWLqhsUr06q+eizxwgVfd/2xTUKDg6+OK/Ls5ONfHF3ilG3vV3Zfl+Pvb05dMmbUvO1jG1TK3+3BJfu///KFVx5K/fHI+sH7z3bKdnBxlnhUR1d5xo02p/rKRbLyp/A7ycqf6usXu8oz+Odxyl/i2pjm/DFpzbr3m817tdZHx7PP7tBt6qi6c9644psxhdeW/+TG9cUfzOuUvdSv7IfDWiwaVqh//W+SX5tXe1WxEh/8tHbzZz+P7tXg688+31r6R6fsZX5ls1icspf7lC1cp+K5g5btLfBepTLvNt3xYI2bi/xUrvF7j7ZedfT3l351lXVOBjL1OqX3FbLy8U75K2XlT/nDVa7yjDF+qnwXGX5Tp/zVro1pmZc5dVhzyl4jw87tlL82OLazJDhlrxNhR07l3tUfOzKlzNBbU+ZFOuycXH1zzuw7v2h2V/MWr74ydXap1Afvcspe71O2SuOUo/fMnjDNOrz2q/k/V3miafW8JZvlrfHm7W8XGzDk6iJHnbLdTmXC0qy4U767q7wn90wXp3wPGf6p8j1d5Rn4p/yxl2tjmhVoOVX2Bn7ZU+O8t1OZxeJ9qr/1kZU/dSzuKyuf5JS/UVY+2Sl/k6y8c47q5IV8gvI5nfL9ZeVzOeUHyMqXcsoPdJVn+OypOeAgWfnqTvnBsvK1nPJDZOVrO+WHyso3c8oPk5Vv5ZQfLit/gVN+hKx8R6f8SFn5rk75UbLy3Zzyo2Xluzvlx8jK93DKj5WV7+mUHycr38spP15W/gan/ARZ+d5O+Ymy8n2c8umy8n2d8pNk5W9yyk+Wle/nlJ8iK9/fKT9VVn6AU36arPxAp/x0WflBTvkZsvJDnPIzZeWHOuVnycoPc8rPlpUf7pSfIys/wik/V1Z+lFN+nqz8aKf8fFn5sU75BbLy453yC10b06wgS8RyToB/bv/S4neujpFLJ+f8YtxpKKfXLTvhffIa99Pqs6zTz5danvpTPLkw8SIRT30Onpefo5XDPcEnl1Sfz7waJ/jgJPjgpPp8Nk5jXTM01jVeY13TNNalk+MUjXWla6xrqsa6Jmisa6DGunRqr3MMzTxD6xqlsS6dfUKn9jr711iNdaVrrEtnnxijsa5pGuuao7GuM/X46Mw5nbmDe64RyWDt4Hi3OTgpnrqk8x4/XvE+eJntH5fJ/okB66eLMpwLiOyLMlr26j68d/uBvS3PEu/5f5sMUizu2a9HJql56414wru9uGdbnM++7oXoOdc52fQu6DWsR5/LuvXu3aunIjnUW8JbU+sMtnsnpO59nMl4oifTNCvQki1Ip3TXn+LJRdop/TqN32AjVfPZf9uqth/YrWeLboOGDu/XK5u7auv0zL2quGt1b/Nr04grMyuT/Vp7/t/Bp5zlUzd97rRcsmd7mhVoSXF6RYrPh85n2T11uz/L4frM3ZreJc4nfydn+sr5bcF/6vXu583H3R7ZPZ8luT7L4cL2tmuiD46Tfzaf/ZM8dSX6lHPKZIUXl0E599+ZfXUOMtocHrSk+mA42CG6QoEz3RUcfkkyvPwRT3k3nrtOJx9H62Sfz5y6nHGYmEFd7usE3fvvstepnv1oucyDkeyTr3ubow9p9ownd7e23n4SjY7u+py83Nvc9adYUfXLSGbt5ubn7SdCj80XRHd3Pl5P9mrr9r3EDOpyysZ79n/DXqda//Z9bz9J8cnXvc3dT/Z4cndr6+0nQh2bBe0nTv0pVlT9MpJZu7n5eftJigyvaRDd3fn4HZ/d2rqPgYkZ1OWUjffsf9hep3r2o8XbT7L75Ove5u4nzo2KyRnkm2YFWkb6zVu8/cw7b0mzAi3Fg/Yzp/4UK6p2j2Smo99485t7OWVTfT7zftXK4YOTwwcn1eezGRrrmqaxrjEa6xqnsa6ZZ2hd6Rrrmqqxrgka6xqosa7JGuvS2e/PRL0yOw5x66IlXWNdszTWNVFjXTr7qk6OozTWdaaO7fka6xqssa4F9to7z3PqpyXZ+vfY4343cdfn5One5q4/xZOLdK7jp4vfnNHhl1OGlzfiKe/Gc9fp5ONoncvnM6cu+7bW0+bU7rqcsvGe/SvbgqZ69qPFO6fO5ZOve5t7Tl3Orje3T77e8wvc/ugu79XIXc7bH6NpL3d9Tp7ube76U6yo+n8ks/7hp4vDL5cML0+Q9nXn42id2+czpy7n55DEDOpyysZ79j/X0x9zu3Ly9sfcPvm6t7n7Y73I6bm7tfX2E6GOrYL2E6f+FCuqfhnJrN3c/Lz9JLcMr2UQ3d35OFqn+nzm1OXc15yYQV1O2XjP/hd4+kmqKydvP0n1yde9zd1Pmnn6iVtbbz+R6Rj5Pmg/cepPsaLql5HM2s3Pvx1+qSK8yNEgurvzcbTO4/OZU5dzD3diBnU5ZeM9+1/q6Sd5XDm18mDk8cnXvc3dTzp6+olbW28/kel48vG0p9Xn5OXe5q4/xYpqfEcyazc/X3X45ZHhNQuiuzsfR+u8Pp85dTm/qCZmUJdTNt6z//WefpLXlZPXT/L65Ove5u4nV9v15vbJ13v+PKhPpfqUd/bz63MUaVag5TK/NmWUH+xtI6cOd275XNsZ/aV20PHg1J9i/bu/SMZDPg9eRu3tcM/vk0uqz2feNsrvg5PfByfV57OJGusap7GugRrrGqOxrska6xqlsa50jXVN0ViXzj4xVmNdIzXWNVNTXX7+GU1eMzTWNUtjXTrH9nyNden0wnSNdU3VWJfOdlygsS6dfSJdY126xjYtOjnq7BPTNNZ1pvqEzrz+F+ZM/x3TYqe9zvE4XmNdOjnOPUPz0jmf0MnROdY63xXd3y0j9jrZ+vfYY3xvbRLx1Ofk6d7mrj/FkwsTL5KZLm5+3u/JBXxySfX5zPs9uYAPTgEfnFSfzyZqrGucxroGaqxLJ8d0jXVN1VjXLI116dR+vsa6/mtHXl0LNNals0+M1VjXNI116fSvmRrr0qm9zr6qU/sz1b909lWd/WuKxrp0tqPO/qVzDOnsXzM01jVKY106OZ6pczmdHHXOJ87UdjxT53JzNdZ1ps5z0jXW9d984v/HGNLpEzrz0tW/6O88muqiZbbGunRqr3MO4Bxrvdd9OfXTEuU5sNIRT31Onu5t7vpTrH+3pa5zYH7XkDn8Csjw0oK0gzsfR+uzfD5z6nKe8ZGYQV1O2XjP/p1tUqme/WjxXmN3lk++7m3ua6cutv+T2yffaH+LcJf3auQu5+2PwvaKC9ofnfpTrKj6fySz/uGni1//cMqm+nzm1T9ou2ZWV25Lv7fm8eGT06ect53d+TF0D3yvgPvdRlH0q0hm+vvp4vArKMPL4/UKN567TicfR+tCPp85dRW2/5+YQV1O2XjP/kM8vlPIlZPXdwr55Ove5vad/h7f8RsT0n7v56f/33By+pTzji9h/0sIOr6c+lOsqMZzJLP+7qeLX393yqb6fObVP2g/NbEup/8VzAQnM1/xw3GXL/gfTlQ4OX3Kecetu12Dj6PI4aDj1qk/xYrKJyKZ9Vs/XRx+hUV4kQ+8xzI3nrtOJx9H6yI+nzl1FbX/n5hBXU7ZeM/+qzzHxSKunLzHxSI++bq3uY+LK7KdnrtbW28/kelopQbtJ079KVY0/fKffuLXbn7+5vArIsPLHUR3dz6O1kV9PnPqKmb/PzGDupyy8Z79H/L0k6KunC7zYBT1yde9zd1P7rP/k5xBvmlWoOWIn9aM8iuTrX9rxyhf2SlfTFb+Uad8cVn5rU75ErLyk5zyJWXlr3TKl5KVvzbZsz+zfCWnfGlZ+bpO+TKy8p875cvKyrd2ypeTld/ulC8vK7/IKV9BVr6FU76irPwxp3wlWfklTvnKsvJHnfJVXeU559ic8tVl5eOcfKu5N/rk5NTveH0V1/6RDNZOXd7PHKwUT13S46Jf7u78vPPKai48N8eM6qrGrCvZ5zNJm1S1Mublrj9nJrl486TF+6wVKWdaxmqsa4TGumZoqov+LqypLlqGaMyriMa6imqsq5jGurJpqouWYRrzKq6xrhJnaF0lNdZVSmNdaRrrKq2xrjIa6yqrqS5a5mnMq5ymumiZrjGv8hrrqqCxLl3HDvq7osa6Kmmsq7KmumhpdYbW1cJeR3m+oE2U5wsaRnm+oEOU5wsujfJ8wYVRni9oGeX3/fY5ffaP2Gu/7/KMebvzuJ1T9VmW//cfp/4UTy5MvFPff0p78Lz8vL/7lPHJJdXnM28fL+ODU8YHJ9Xns6ka65qjsa5RGuuarLGudI11jdVY10CNdU3RWNc4jXXNPEPr0tlXJ2isS5f2fsfFM6Wvpmusa5bGus7U8ThbY106x9CZqv1EjXXp9Amdx1qdHq1Te516nan9a7LGunS2o07t/xd8Yr6muujvoprqomWYxryKnYF10TJUY17FNdVFiy7taRl5BuZFf5fUWFc2TXXRoqtP0DJCU130dwlNddGisx115qWrr57JXpiqqS5adPqXznbUmdeZqBctOvtqKU110aLz2KHLv2hZoLEunfOv8RrrStdYl845+WSNdek89+jM753z2CVdn0XsdZTn8HNHPPU5ebq3uetP8eTCxMv0HL6bn6OL3/WCDLxcQdrBnY+jdVmfz5y6nN+EEzOoyykb79n/aVvYVM9+tHiv7S3rk697m6MPXdv7WNzpubu19fYToY6B33Xp1J9iRdUvI5m1m5ufo4NfuzllU30+y+b6m6O3X9vN0FjXNI11jdFY1ziNdc08Q+tK11jXVI11TdBY10CNdU3XWJfOMZSusa45GusapbGuWRrr0jm2dfYvnWNIp6/+L2g/RWNdOj3a8ULn/kv3fCbeg8Ode7vLO/tFeb/KJVHer9I5yvtVLnLmReVdGyP22u9eEsYcbVLEU59l+c8JnfpTPLkw8U7NCSt68Lz8vHPCSj65pPp85r3+p5IPTiUfnFSfz6ZqrGuOxrpGaaxrssa60jXWNVZjXQM11jVdY10zNNaVrrGuM7WvztJY1ziNdensXzo9Z5rGuv4XtJ+isS6dHGeeoXXpHNsTNNalS3v6u4imumjR2VfP1DmAzrr+O27/d9w25djx33H7v+P2f8ft/5/an6l9dbbGunTqpdNzdGo/UWNdOseQzuP2merRZ+p8QidHnXNfne2oU/v/BZ+Yr6muiPXvaxSiqauMxrp0nSenv8tqqouWoRrzStVUFy3DNNY1UmNdIzTVRX+X01jX/3ft6e+iGusqprGu4prqokWnXhU01qWrr9Kicwydqf3+TOX4/90LdeZFy3/HDvOPHbQM11QX/a3zmgddetHfpTTWVUJjXbqOtbToPD7q0ouWM/HYQcsCjXUNtNc66hqvsa50jXXpPA8wWWNdOq/PmWmvnWu93NeGRex1svXv8UI4aVagpVrEU5+Tp3ubu/4UTy5MvEhmurj5Obo43Cv75JLq85nXDyv74FT2wUn1+SxdY10zNdY1RmNd0zTWNUdjXeM01jXjDM1rrMa6Bmqsa77GugZrrGuBxrp06jVVY106x+MsjXXp7Pc6vVBnO47XWJdOz9HZJ6ZorEun9qPO0Lyma6xLZ59I11iXzuO2znacpbEunf6ls3/pHI9nqkfrrEtn/5qgsS7vO6bd328i9jrZUy5isb47lYt46nPydG9z15/iyYWJF8lMF7/vsA73qj65pPp85v0N2O8dKVV9cFJ9Ppuhsa5pGusao7GucRrrmnmG1pWusa6pGuuaoLGugRrrmq6xrlEa69I5HmdprCtdY1069ZqssS6d/UvnGNLpqzr7hE5fPVPHts7xmK6xrjka69I5Hv8X+tcUjXXpnAN4n4Pgni97n4PAnbO7yzv75fQpF7HXyZ78IhZrDr0o4qnPydO9zV1/ivVvzpI5u5/+frpw3jdIf+t8f95UjXXN0VjXKI11TdZYV7rGunS+63Ggxrp0vUeMFl3vjaQlXWNdZ2pfnaWxrnEa69LZv3R6zjSNdf0vaD9FY106Oc48Q+vSObYnaKxLl/b0t6733tKis6+eqXMAnXWdqcdtndrrnAPo9Oh0jXWdqX31v+N27I5p/83JeXX9NyePXf/6b14Yu/51Js4LadGp15naV2drrEunXjo9R6f2EzXWpXMM6Tx2nKkefaYe03Ry1Dn31dmOOrX/X/CJ+Zrqilj/vkYpmryGasyrjMa6UjXWpfP3IZ16ldJUFy0jNdY1QlNd9Hc5jXXp6hO0DNNYly7tdY5t3eNR1xiiv8tqqosWnePxf6F/FdVYVzGNdRXXVBctOvWqoLEuXV5Ii06PPlP7/ZnK8f/7sVZnXrT8Nzcx/9hBy3BNdemcT9CiSy/6W9ecnP4uobEuXcdaWnQeH3V+hzkTjx20LNBY10CNdY3XWFe6xrp0nmearLEundcXep+D4r62NWKvk61/jxfCSbMCLTkjnvqcPN3b3PWneHJh4kUy08XvOmmHX3UZXo6Ip7wbz12nk4+jdQ2fz5y6atr/T8ygLqdsvGf/w4l/r1M9+9HifVdwDZ983dscfehdwe8mnp67W1tvPxHqWCJoP3HqT7Gi6peRzNrNb/z4tZtTNtXnM+85kKB6+7XdDI11TdNY1xiNdY3TWNfMM7SudI11TdVY1wSNdQ3UWNd0jXXpHEPpGuuao7GuURrrmqWxLp1jW2f/0pmXznbUmZdOn9DZJ3S24xSNden0e+/9du65kfd+u8zmj3447vLOfjl9ykXsdbL17zkKY740LeKpz8nTvc1df4r1b86S+Zmf/n66ONxr+uSS6vOZ99xNTR+cmj44qT6fTdVY1xyNdY3SWNdkjXWla6xrrMa6Bmqsa7rGumZorCtdY11nal+dpbGucRrr0tm/dOalsx115qXTV3X2CZ3tOEVjXTq1n3mG1qXTJyZorEuX9vR3EU110aKzr56p8wmddenU6785wH9zgP/mAP/NAbKq6785wH9zgDD1OlP76myNdenU60z1iYka69I5hs7UY4dO7c/UuYlOjjrn0TrbUaf2/ws+MV9TXRHr39cxRFNXGY116Tp/T3+X1VQXLUM15pWqqS5ahmmsa+QZmJfudtSp1whNdenuE7rakf4uqrGuYhrrKq6pLlp06lVBY13lNNVFy5naV/8bj7HjeCb2L1r+Ow791++9nw3XVBf9rfMaEZ39q5TGukporEvXcZsWncdaXXrRciaOR1oWaKxroMa6xmusK11jXTrPT0zWWJfO65m89/dkc30WsdfOdYGpru2Ek2YFWuIjnvqcPN3b3PWneHJh4p26LjDVg+fl5/ztcC/sk0uq5zNavPfJFPbBKeyDg6rLr70o0qxAy+VePZw63HW7rz9gtE3hoH3BqT/F+nfbSPpCEQ9eRro63Iv65JLq85lX46I+OEV9cFJ9Ppuqsa5JZ2he0zTVRX8na6pLN8eBGuuaorGumRrrmqCxLp16zdJY1zyNdU3XWNc4jXXp1D5dY11jNdalk+N8jXUN1ljXAnvtHL/ccx9Nx+5c0mO3cN6Y6bHbzc/RxeFXVIaXM0g7uPNxtC7m85lTl3NuOTGDupyy8Z79R9sHt1TPfrR454zFfPJ1b3P0ofu0h9n15vbJt6SnXj/di/jUm+pT3tkv2adcmvPHT0P33/vKvE3PrRu29p6leQ/mui1HtewTp037rti3xZcfnbYmyva8wilfTFY+v1O+uKx8Pqd8KVn5vE75MrLyLZ3yZWXlmznly7k2pgUq+k/usnvJIked8jVd5bMFLm8lO+VrycrXd8rXlpU/xylfx1Wewf8Dp3xd19Y0e13u7ceSfrl/QfwjB44OHHmsypKXL5z31AONF79avUn6pR8t/baDU7aeT9kslkZO2bP9yjbZFtelz8bfB+a4cMqGkQff6Tg8V/FuO0vNvKfL84tKfdF1hlO2vl/ZfV2Ov785dcmYUfO2j21QKX+3B5fs//7LF155KPXHI+sH769P3jTf403nOGpYpx9nKBrY/09wfdbDtY9TNt6z/4Dc/5RbbOMFOfcR58klzQq0FAl6zHS26Tr3EefB8/Lzft+N98kl1fMZLd75T7wPTrwPjl9dCzTWNVBjXdM11jVOY11TNdY1VmNd6Rrr0slxgsa6ztT+NUpjXTM01jVLY13pGuvSqddkjXXp7F86x9A0jXXp7BM6fdX7G4j7M+88IMG1nXFczhZ0HuDUn2L5H5fTrEDLqXlAggcvI11yqMhn/z18WN9+fYeNbj+wW88W3QYNHd6vl3dm5J2NuVVx1+reFrFOZ+/+LM6zzbtfW8//O/iUs3zqps+dlsvh2Z5mBVoqOr2ios+HzmeVPHW7P8voDdreJc4nfyfnJBXfFvynXu9+3nzc7VHJ81mK67PKLmxvuyb44Dj5Z/PZP8VTV4JPOadMVnj/yyPRr52csqk+nzm5R/lNhdXPaWnj+czdz71cqrg+444BZxuNgWOMMZCRB3n3j/PZ5j1auOvq4cH572jx/+lo4dSX4vrMTwmnTudchZtTSgbl3FpYPtuy+eyf4Kkrwaec11X9yrvrcJfz5pZs/ZtrmvPHpDXr3m8279VaHx3PPrtDt6mj6s5544pvxhReW/6TG9cXfzAfYf2RnLEu7nMabp0SsuAX79m/rusczgkbj3pkIftzu0c2H97vpkt6DRvSt9eIXu0H9h5qeZasutElnv9f6lPOb8lp/bupvcYgHKiBjcGpP8WK6qBwyhj8ptdufjJj8HYI76FBtzFc6vm/ZBrpPfSmWYEW9jTSewit7MF1/vYufgbj5MydRrrbwzuNdA9U7zTS3a7xPjhew3Pv7zU8P/P0Gl5GeP8dov9e/vtC51r++0Lnk3/YX+i85RKsf49c7+He2beKnUiUI9bK6yrnzfG/Y/bfy3/HbNfy3zHbJ/+wj9l+TuJ1iTC/4ruxvadUaElz/vhwWItFwwr1r/9N8mvzaq8qVuKDn9Zu/uzn0b0afP3Z51tL/xSla3SO0u0up3Kt7E7kfBlzjwPvOHaOTBn9oO6Ujffs3y7ln3Jt7L/ps/L257ajdO7Wr2/PbsN6tRoweHiv4b16dhw4rNfQZgN6thrRa8Aw9lezdp7/t/cp57dkd9V3lqv+OA9JWjp48O0xeOpKLu8+XoGc/S+yP6CB/Lu90a/TOfnk9JR3PqfF6RSFPLmnWYGWwIcip/4UTy7SQ1EhD56Xn+xQ5O7OXlXctbq3xfpQJLz2kn0oSvF85j4UuVvTu/gdipycuYcid3t4D0Xu+zm8hyJ3uxbywXHyz+azf2FPXYV8ynkPRRnhxfmU804lIp7t7nNZZ/lge89l9Xa5w58FM9bhLCtjHdz5ePMM8V6eK4K6Sazu5eG5ibunuFE6e2p19nHv6146uzKzMtjPr/Xifcp5F0exeE/O6a6D8GDPQd/NK7snH7/e7t7mnSS5yzv7+eEkRYmT5IPj9OQcrnLdPZ/lzOSz/2vvXcDsOqoz0dp9jlp9Wt19Wi8/sX3ab1vyAxth+YXVtt6W/MAPDAQLqdXYAlkykgw2tkHBNpiXzQRmbhK+JNy8kwkBPkgmkyHJQIYhDxi45MKExLlkJuRBSJhhQh6EQK63tVf333//Vaf23nW623bX9/V3du9atdaqVatWVa1aVXsYcA5S3iiUm6C85ZB3K+WtAJxLKW9lAOcqgTNvu9MGp/Hlf2cCnNJ03oU4HfjBsvj/EoLN02Tx2yTY94FePUZ6hb2Y9arsKUYsf4Lz01lak85SQYdHqzyx7pwo6sonBfPE7ayi9i3vVFEvy+sEcI4JnHn7HDc4E47bP09m8c+C92UWJbEW3/C3iJeqFv8sosf14xMg51Sjd1tG5ZEe4jR+1MwLZZv/2eym34PLyjYJ/oNFf2sTXJ74BMi5gl98hydAPtCayTvKNvP8Gl5+x/0L627tY3TQ3kwAPz/TmlkXtFMNN9uu2YKYbVUHdgV/nmwVlue2U/2kav3PFHUccbNl0w/PPv0+K0CnP1CfXrVnP9FBO4vt+XFqz3Mgj210/myna5oE34L2/A/UnqovKjnzuFRWzoOCTq/lzOPLuQnpIC507uR/5xMulrO1k8kZV5TnUzn8Mis7QRtUBuERh8JvOLrp4O+0dN18Omi0mgT/zeHpcr9fUQfPpTwcK3BcRD5QDgjPN9UZn/0eeF+9vgirTpv48FiCssK2YPtr8F8CnI3jNZ9YLxwP2Bmp9OF8US8l0zWuO22U804P7X4X1sUmwT8lZMrjApZX/WiEeDmvC+/cv7G8wQ2JcnXtiOK5W5/885J98ozimXX3v0Of/CvqkyEdQZ55HVFWzksFnV7LmdcIaxLSQVw8LqivDqKcrZ1Mzmsh7wIqh6dB+avMDSqD8IhD4Y8dF77T0nXz6aDRahL8J0AH/yWwLg7p4BrKQ5nyuNDNHp5B8MZ3vwuPt02CbxSTDzUuqP6KtpbHhamxCXDyuKC+wB4aF0Jf4u4m0wsI1+kCF8qZxwUlU6z/6VR/gx8WMlXjgpVX/oi9lIf+iHMoD0/L85wVT8KzRx79Eewb6UAe27sxyEMdYX/EskB9hgAH+/vQb8c3L4xC3kmUh+EeJ1Me+u1OpbyVkNehvFWQNwZ1Nb8db46eXryvuW8nQ1dCftHM8+tc3HiAoVUZ0Tk+IR3EtZ3onJCQDt/SiXROEnRq3hwRvc9q+Ftudt+t4idTN4GoG2TK7YzwnSYoFcSK71DSnNfLfVbDdyrkKUmw5xzrdKqnHMrCiXd9Av5kwuW7K6bhoadaFMuxxmT03rcfaTiaBH8ljFb9NForWigPHjGNd1/EBPNg8NcADxYxwTibnnqd5MH50sFpeVw7qHE6gVPV61SqF/PAd/oY/GYxE2gQDPOj3pn8nSjL/yudWU3wnS714XYy+B2BdjpR8IB9cmcXHhjmVA8PNwkehHW77uC9DxTWzVHi4PCM/mfJ877tiQKPL5k0ci00jVRRBieJcicKPMxTXnOboxQ13zi5f/LIpKfubLkzD80+pxPPR52bPYZWHNOix1DD33Ja8zouKmVs5Ywe14+DPE8WvLRFHrYv61GITt6mNict2vSWIwcP+Zo0dnDNBFtc3nXBxU09Bu9LiL50cFNGeehy4WkkLgHRqHHiemN9cuPSOn4aL8MxryhTXmahevJSCrvK+ZSHqrSG8tDgr6W8DuTZEnjEzW4vXGZhXp4a4h1PsbH8WIDOipp0Vgg6amucdRO3AHthhgx/y9XqC1NmSLknlFx4GxPLKjcDB6KZPn8LJkgP0tK9BXRZrhVP4bw4Vq6Gv0W8VJXrMqLH9WO5Dgle2pSXJ/6oxJCgMyToKFyPJcT1zoS4Hk2I68GEuA4mxJWyjinbMWUd35QQV8o6PpIQ19sS4nprQlwPJcT1joS4jibElVInUvbHlH0opU6klNebE+J6PCGulLJ/OCGulLJ/e0JcKeWV0hbenxBXSnktVFuYUl4pbc7zYc6UUidSjtupZJ8/DyTClaejCXGllP1bEuJKqfcp65jSTqScA6SU1xMJcT1Z/JqPCf0QY0RHrfmXBehg+WURuJT/IFTHMQG/zE1/1GLKdb/nvrt2HLzLUeKdhm0eFtcR3E4Pa5nAm9Efv19H7xoCFnHjcfSh4n0PTqhckhE+57Rbab5OqFjdVfRwW+TxN6BDJ1OQTlvkPZYQ1yMJcb0tIa63JsT1UEJc70iI62hCXCl14tGEuA4mxJVSJ1LK680JcaWU18MJcaWU1zsT4kqpqw8mxPV8aMe3J8SVUl4px6H7E+JKKa+FOg6llFdKe59Sv1LanJT9MaVOpJwzpZJ9/jyQCFeejibElVL2b0mIK6Xep6xjSjuxUOdfTyTE9WTxq06mjhGdsqejsfxZEbjUejhUxzEBn9BNYiy+kOB2eljLBN6M/vj9C+ldNzcJR+XsLnw5NSPs5AESwzVCNPNnjDbDPOfiPHVYfihAZ7gmneFIOu2adNqCzpAol3l+jQ6/C3n220RnLCEdxDVR/Jrc0BXGeqAuJDozQAfLn+nBZUcU8rQfYDis3fprU+DM0x7IR/g3Fn1o6dN/n4UozhzmdCg/Afw8sCzMK5ZFXvlSkh+Hg6IPFTiVnK3dlR6cSXljgq7CyX2rbNsNCx5CuLC9Rgne2qLfA2/4uO3eBm3HB1KtvE9/zvTwgPqDRxJ8+vPOCvrzbtIf5pX1Z5RoG/xR0J8nSX9QxiH9GaU81B+TkbKZHKlb1mauEPwpOqELv1iPyl74NSrozHW0+grKw0PgKykPo9VXUR4eNuYxaC3k8SFZPPjMh2TxQP4o5V0EediXODXof5Rt3mc+XyJyHts+dECZD9bjoV0+7LmSeOV3rDNYfqUHFx4/QxsyAfkI/5NF5fN+/MvLZtYLLwM0mdQ8PHNpRvic09tgfHhmVTV6wcMzWD/eBhsTvCg7dQo8Yx7SGRN01HznaEJcjyfE9aaEuB5LiOtdCXE9lBDX2xcoXw8mxHUwIa4nEuJ6fUJcTybElVJejybElbI/viMhrpR6n9IWpmzHhxPiStmOKe1XSnm9LSGu+xPiSimvlH3oaEJcKeX11oS4Fu3q/NnVVLLPnwcS4crT0YS4Usr+LQlxpdT7lHVMaSfenBDXQp2vHkqI68ni13wPuEZn34NaD58UoIPlT/KUy5/R5xDaH6h5+r2RET7jB98h/vk6/X6W4KUt8lCGmId0QlueiCvmQg/l+wjphqpjwi1PY/ESgrvdw1qfwJvRH7+/hN75tjwNt3UjdD3xthOKMSRate20KkBntCad0Ug6wzXpDEfSWVGTzopIOifUpHOCoGNdWX03JXebrh/SNHFLBd21vCVn8IfBFXvl0Mw64rbEMqo/HgThuxfx+zFsenHrvYQpjL54xPC33GydrGJ6lxM9rh+apfg7BLkHcEACwyOsE3kNeseb8MuoXJU7BFdAnpIE3yGIdVrhKYeycOJdn4BfTriWi3LGeyNQHnFgOdaYjN777hA0HE2C31k0Rr75w3cIKlooDw6+Md5998IxDwZ/M/DAd9MthzKqXtybV9D/qFuTHvqvAStz25Cm7wR9rh9aNd/9fMuJB4N/OciA7xtcKco7zzseGVZS3soAbIvqor6fh7rIdxOu6lJ3bn+Df3Wg/YcFD6EvfzIPDNPy8LBX8FDvbkK2ctxK3BLDAo8vmTRyjTXtZelw72A69r/SgLp3Ew55aPY5nYac5i1PA67WWBk9Nhv+ltOa13FRKWPrafS4frwsWi54aYs8Xy/tRqfm3YS+QVsZCy7vqGwm3uUJD54uLjW603k+LDUYl1pC5OkVxS8b9sfAsPMnDVYBHwrnHcSD8gKoiCaDHxPwJ4k6mizRSzEWQRtlyQPh6SV5Vd4V9ESdRLwif2eV5PX2OeZ1leC1ZtRO6cgyjgLDyDKOAsPIsuMoDyPLOAoMI8vOpDyMLBujPIws4yX+RZC3nPIuhrwOPHPisQDlnvfL7adN42U4fPbZFOyzO4lHnDyjDTEXxQDgRjodF5Wm9EAtig03TjdK6NgE8mRJTV3sXYt4KUlvaurSIHpcP566NAUvbcrL02GA47yGeNcXwHUwIa63JcR1f0Jcb0+I6x0JcR1NiCulvN6aEFdK/Xo0Ia7HEuJKqRMPJcJl5VPx9XhCXCl14k0JcaXUiUcS4kppV1P27VS6mqeFaldT6sSjCXGl7EMpdSKlvN6cEFdKeT2YENfRBcrX4rg9f/JKOV9NaaNTzgHemRBXSvu1UHXiaEJcKftjyjqmXMOkrON7EuJatKvPDfuVsh0fSIgrpbyOJsSVUlcX6rzw4YS4UvbHlGNtynZcqPPVexcoXynt6lsS4jqaENdCtdEp+Uop+4VqJ1LOyZ8P69qU4/a7FihfKde1KdsxZX9MuYZJ6fdNiSulTnAfyor/EWYPPO+FfIS3W4Nq7hXv5b1Yw4G4l1TEnRE+52by6Qj/kKBnfLU8eR0XTu/46G9/YMff/u7XMypvvPA7jhnpF/BqT9tktRTKl5DVniGg4Yi25TUhbwnloVyMh/x3XWcmf/0V+YuRH+JvC/hbAa5MWyx3M3UB9d1idfDmIL6JKnQhprqUUp00M3iLzen3wBu+JsG/reivGKg9QjD587CHHvKH70Kxfed6cPluKDvNw/u7gXeOhTtP8KfCSA3+fAGPMU3Gj5LN+U7Txvpge+6n+hj8D4n6qP5nOjUAeCyvRN8Zzuls6EzTYblh/+kmozyxTNcIeJSVyaRN8Chfy8PjUedR3hjkcezeqYIHjM/j+CrUO7w5790RNygupH7905H9+mQPPeQv1K+xfJl+nafXeXj/xZL9+mTB30Lq1x+J7NemU4v9unu/PlPwENuvray6bfUCyDO8GMd9RvHcJPjfCujshW42ryhzlu9FAh5jWvnWSoyFvYjysBzfXHgR5K0hHi4WckC+OD7d4D8Dcritc+xZ6brxVVPXx5WuXwwArOt4K3ZDwHNbXCLgXwgwJpM2wXO74P+IC2XKMe8mo34Bj/iaBP9FYfuNP7R9FxPva0ryfoLgXd2miX3qO3QeBu3GmURzTYCmss8WL97vgTd8TYJ/SsiLbSP2A5TTEsJp8F8N2AOji/VC28U6qGS/VtRLyfQCykPeTRdU/zS4mv3zWtU/sf7cP0N1zRPLRtlW1F1r/7abbQ/PpzzsG2uJjhojY/UfdejPWxqvb7x5QfHM+vWtgH6pfqM+2hDSR9QTHm9Qv9ZSHpY7i/JQpjxXVOMuwvMa0OC/EzneJNLnFUqfUWdZn0P6maeyY7/JpO1mjwdsD5XOYlvzeGMy6ne6DQxfk+CbI8d+1XiD87YLiPdzS/Jepb/9Do03+EUNHm/ODdDksmgvfOON4eP1wIiQV0Y0sB+gnHi8MfjlgDNmzRQab7qtmYwfJdPzKQ95N11Q/dPgavbPlfO99uHxBu0hr4uwb5xHdJSfIFb/UYc+TuMNr5sQF+pFSB+x31g7sT6eGdDHUD/LE8tc6S/qlfGj9JHXPMh7SB8TrcVvV/qI9Wd9DNU1T1X9G203W1dD+sjjc6r19s8U+mh+fzyLXUKupc+rZpSHct5OeSgjbB9ODfof65O3e6vE1wfwvgH++gDeTXAe5aH/5HzKQ5/7GsrDM/1rKQ+vZ7iA8viajzxZW1a8wT/6SgvD3yJeStKbOhfa7eyt9bVy1035bifICCu+Qw3lvAa9Y7iX0v9VrpvCK4CUJPi6KazTak85lIUT7/oE/CrC5bv1oeGhp1pUXR9kOFQ5HNWwTEwPWE34Oy4qRd91afhT9YBu7W66anU/TvDSFnms1+p+yuMEHYUr5oIYX6+tcUFMRv+v8rDRJ8q7AC4sE6oSdp2YW7nUvUdNgr9TLDxC5fM0JN6x2ldUw2jDb/hbbrZKVFF79VkerB+r/SrBS9uFTRS3YYhOQlXN00s9bKgRxXXBxT1ZqSrGRuz00O4X8EpVDX5/wKfQJ8rnOL87MJP2BoAz2pc5P6/jxCvDXEa8Gvwh4NUuW2sDXUf8DFF5y8+TdalrifeOi0rRXcrwt4iXql3qWqLH9as2l7oMnlkqiBXfhbS4W8/ZSv+XmUtZy22k9x0XlTaZVmwSmZa3GXBfRnlbIA9bk5NatRjPuQZ/87hpvAzH/GB7bKa86yBvC9Dmdr1W0DH++wT8dYTrWlHOZN+NXkOUu4xwZPQePSEbBO0mwb8TrMP3jvPLYYNzXjnY/ycKPlnelp+nmjp5R6w1MfwtN7vtq1iTjUSP61fNmqCmIJWXEVaDQVhMLwPOnAdOtd5Johwnk1iTeP6pQoty7Xt/8TziZmtvP/GDPITscluUNzhFZ2lNOksFHdPk9VBuD+Vd7mbX1fKugHITlHcl5N1KeVeJelne1QGcLwngvEbk5W13bnsmHFqjzPObp4Z4xzK9VvBqbYcWgH2OqrdtDNDB8gY3JMrVrY/iWc2drK7PfOFyZLoMjqZotVGPLXasSfD/z3HT5T5K/W0TlDcelZy5L5aVc7+g02s5c5/anJAO4poA+PxvK+FiOVs7mZxxtrOVym2DPITDGcFWeL9N0Fb4DUc3HfzUiK6bTweNVpPgfxV08NMVdXAz5eEMksdD4wPlgPAcK2p89nvgffX6bGBtd60or3gfIl42B3jPE+silueZay90Hml2058vkf5sgTylP6cXz02C/wnQnz8k/cEZWi/qH+rXOJNjz7Lqd8p+cDnsoyMRPGwVPLdFeYMbEuXq6obiuZtu/AXpxjbIU7pxRvHcJPjHQTe+TrqB9tN4VHLmOWBZOS8VdHotZ57fbU9IB3Hx+LaDcLGcrZ1MztdD3g4qhz4phMPxbQe83yloK/yx49s/j+i6+XTQaDUJ/h7Qwe8F1jQhHdxOeShTtL3cPqE2yIjvfg/8dqrXVD2LOb6K71H9dTvgZFtu8EsBJ8dTGF2sl1oth3TxelEvJdMdrjttlPNOD+1+p+vv05WRgEyt/BJPfVimBr88IFMlo5BMVR/bIeo1IurMMrpO4EI5x8gU638d1d/gTxAyVfOW64h3nDvwHFLNwxCe44tUH1NzE+5jpwZ4D3kl0bewl/LQt7CJ8q6APF6LXQl5WygPfQvjlHc15PH49xLI20Z510Ae6r75FppU1zXF+5p7C7M+nIW4lHwzz69zcePpeoDJiE4v/CaKznUJ6SAuHtNwzcY73mX9Blg+tDa8vCadywUdxmU2OU84J7L+1CT4q6Ff39GZiXOT4O9yeLczUFfuz4jL2sz6B9q+Xuy9Gf4W8VKSXhayuVg/3s7eInhpizxfmyIdtZ1dlq+EXxk1Fk8muJ0e1jKBN6M/fn8yvWsIWMQ9V11vPukM1qQzKOj02tU5SHTGoRwud17Wni6DKuxb7vBRFYN/JSx3XlHgVMsdX7dDXcOtDtZto+cLY7jCw98uML383borRJ1PC/C8CWgw3Tzt8fCwl6YqFU2xnKqwKxSndOspD6ce2DaY59y0LPAd69y4oMO4fMOkyZWndK8rOUyibu8M1HUT5eHQxHJQdJR5V3II0VlWk84yQSc07Fe1JYpnXkrkCW3J/WRLNkOemtLcXPw2CX4b2JIHA7YEeeT/lV32jZM+W7LRw9/RgC1RU8ObAzzjEpDp5mmPh4fHyJbwVlDHxSVlS3hrAu3fMPFfdizE8nM1Fg4TnV5v+yl3P+ot5hkdfheyL7wM9/XH97U1TdUfeVxD+OXQH/8d9ccUW3W+PuFc3HbXJkHHZ4PyFBqDDP7HA2NQt6l/aKnm46/pdJ/aBHX24XLincHj+Mfuiy0EuzkAy3yjbp9ZPJst4i3ljotK20yft4lM3tJAniwP3Yi3ARynBv2PPOft/crONF6GY35QDts9OFWfnyRYq3OfwMvbRdiPWV63enjgNs7Tq4pf7u+/0Z7G/zEaZ3BNWqJtt6stKUvcfiw7Tqr9prYSnv57Z2caL8MxTZTz9ZSHdpVDtcahHLbHZ+ZJXrzmxzQf8tpLed3kZXlW3z5Rzp6bRO9vQF9/j/BdDrRY//lqRNye4fJ54rmYwf83GCu+1Dn2POJmj698ggJxq/kxj3MrPHypeqKd3Ep8G+zXSVd5u7XjotK4tfEO4glx76yIOyN8zmm3Ix/RRXrGV0vkNSN4OfCPuy/d3f+m382ovPHC79hVeIOAXyHgTVY3QvkSsrpaHfU22paHur2T8pZAnvGgrjO9oSJ/MfJD/G0B/xqAK9MWbUFnPCGuzRVx2TWrajuVbW6eeBxSY3/ejoPFGWhlh5YTr2XtEJYvY4d4rmuwSwtea84fX6TmgWyHdlTEHWuHDP+Q87drS+TF2KG7/2X83k+99A9Oydxse9sQ72K28ZcL+Jr9/GJlh9jWoB3aQXloh4wHZYcqjikXx8gP8bcFPNuh2LZoCzrjCXFtrojL7JCagys7xPO7baI+aIdm+RRGp2GGRmfiipl354mPJWwO5G0VOHPandHp92iv+otfXEfyGk2FFdn/+A51Hcuw78HgTwTZHEf84fof64n8qbk6+iVPHvXDbQvAxc7v11OeCpuObRceK86gsYL3jzouLim/p+HK/d12SL/Yst0yeeSWu3cfmtx7y+TEockjuKJSoyB7MvGIoC8ZJ7xbew39P07/szdzq8DTjabyruMlKkxX7bywVRoVPM8nnZU16awUdJRVyjy/RoffhTy9fD0HeuXQ03vJ6HQZ1An09GLZ24tf9no+sXq63LrADDIkZ75LoqycVy3S6Smd1TXprBZ0et0PVlN90Oqz3MruSGH5jXNMp1u/vmlU04zt1wY/Dv36loh+HapjKChtXNSRbZIP1+2EK3b3aDyCTmj3aDySTkx9QnTmsz6GS+06YhvcEeBrC+Ha2gXXywiX2tFQOsg8l/VOYPnLA3S21KSzJZLOXNVnU006myLprKpJZ5Wgo1YYdccPxXM3e/sA2Vt1uBXLcgSLwV8E9vYhsrfo3Xquy3lbQjqIa4Lo+NrzcWpPdZgm1J4Gfzy057si2lPJZmugPhgh5GtrddgwE7hC0SQsB4RXY0oPParLY/QA8beIl5L0pgLKQwcG84SB26bPhRdgfPLwCy9Zv/FpF8AD9x7xeVdHkSjwz/CO/udyOW9Ngrlc0MgT6882guN2t/eMP4anbrDd8pWtu95TT+fibB2Wv9yDyxcBZO3DnqYfKxiOjQBSh9hC8wHudwzXEHUYdLq/vtZp/rDOOwN1NvifDtR5S5c68/xdzR3ZNjFcQ9RhwOloNY5SxDy+rrOsPmH5uRo7jyM6vjHtIzSmqag+jPqyj/awB74JY9rHaExTc8Fe198XzYv1wg8Q+dY2TYEzTxy9YfCfSLP7KD3KvIOyXvCf1+83qU1V3UNtavD/sGq63Ccj2jTUP1QUesgWbAzAq7XiuIAPzRutfXBHOb59sj+N0VHE3yJeSurD1HxDHSLH+lWdbxjer0KFkP9u8w0uF5pvMKyv7/EcYCu97zbfUDz5YOvMN7Z56ulc3PiA5Q3O9HOc+O+4qNQxXjYCH8YL6vw48Y4RwtwXFbyaYyB+tsNWvum0bCYgH+G/BHOJP+wce1ZtcbyHP+fi2gLLz9VYdTzRGU9IB3GZbJVPFD/kgHlGx2eT1ccyQn7vbTXpbBN0YnQ9T6ELDnBO9Jclx0/eeTf4n4Xx869p/FQnT8vujXH9sa1j9l5C/Tq2n6r5QIdwlT2VhuV987im4D1PvtOSrWJCVfO05E0qesX6X805300xfRzxDwl6xldL5MVEhX29ddXvfeNjH/h8RuWNF34X4zvqCPh68y+3U0WFYcRKnlBHtlIeRoUZDyoqrOJ8bWeM/BB/W8BPAlyZtlC4dlbEZZFcao09XzbJ53sx+8Rzh3bR92NPAKtTnqETo2zTuI5sc/LUcTr9KyXDZ/JfKmhxJKzBHgf1/uPOTF59e4RNT31Cp8My55cN01Cnwy51M3nbEsGb8gchjnEPnzkOtYfIelv2ROVGwY+ic2pNOqcKOqExiX+NDr8L7UeeSnR886Zzl0+XQXvi2x+5p/jl/a73w7xpTYFTncDnPVeO3kObkCe2gVa+32m/JtsTg78Y+hWf2Fb+4XsAp0/PYk8JGfw6ms/0ws/EdWq62bY1Tzc4XSefv5hlsFXATwTg1X4T6hXb7NBFhFa3z6yc5uEq0uNu9b/Rg/O3VkzjvKYkzps8OG9aPo3z2kDfwI9csnyUzLj/Y3mOwFUXlw0QnyX1MPpCKMPfcrPrXMWfpvwDSi7qcjven8W8mDiN0Ic8r4jkK+GFUMbi8QS308NaJvBm9Mfvj6d3yiWHuHM1f3ExHJia4z2Bawn/VYCjId6xmmN5g1N0mjXpNAWdEK61ApfBXy3gmwI+oWoYiy8guIkAa4y3m2q8gN75VMNSg2jmz3xnCzcN8zgicKwP1Kkh3oWuYrw6QOeCmnQuEHR4lvAGmiUg/RLW8u181abhQNzjFXHHWn7Dr86IGF/qE10xXo/zf/Phn7zyjLtvzKi88cLvuEuqVaT6dH1N79OjyuuB9zblSXnGlNfDeFBej00V+YuRH+JXXmr2esS2hcK1syIu83rg1bKhvjxXNqMXdEK4lCfE4E02/U7vFLFNMvijsHriL2sqeTvxrs/NtkevLH5HBK4+D++KtnOz5YblDa6HNnFJWZvYcrPrXGU2rPqHkgvfEYdlOQI4T3w3RtkdgYWOC3WTr6y2fPVrdPgd08G+ym0wnpAO6muMnlelg7gmiA57DtVvLB0VsVNzDN6ivG2W1I4M64U626zuo2L5Y1TiJsrDqNkXwTOnBv2Pcsjt8f/XmcbLcJZURB6PS2VPmahIpm730X1ouabpu4+Od2kN/ufAS/OR5f468k6k8txhHX2eu1+ZA8/dc0nHq+jx6rFpvAxnSbUxz73UToSK1Ld6KHvN14ajjd1CeTh+c4Q/2rK9AMf2VO0isEf0asG7mjetj6ATmjetF3Rqzo1Kf/yXvZdKLrE6ZjznOrYjQsd47GTeWEYx827jwbdrwXbO4L8c2LUwGPTA7wecrAdIwxGOPLHtM/g/JttXcZ0pbR+PiShDg6tJN9pLPRV1QryUpDc1L++2S40uv/iP/GIPVBaX4RHWibwGvbuC4HbQ/1U+GV7xZuKtPGphKjtqYWtyUlYD9+7LfDIc24NvY0Ersh1oc7tuEnSMf3UrIp8nUTfymuy70VNeAbb6qlz+/4tFmZQrHpZjClw9iAlbGWtxDH/L1eonUxZHxQepuATVd3xnE9EmZJSHdFQ8u8J1VSJcebp1EdcirkVci7jmAVfMyhDHKT4biXbwJcRf2Y1qLB/aED+1Jp1TBZ0hUa7qmNwO8KxW9yy3snF5WD72iwoXrNA0lQcrT7YiY4/SD4MH6+IVM3lWq/k8qZghbAfDwWUHgAfLKzG/GMnnwBs603RYrrhDGTMPsdg6jnnGuitdiG2jK6mN+CtEXJZjGg3+B6GNXlI8qzaIiRtSMZTcD/sFPOJrEvx1BU+4KxfzhScr7/O6vsBDbwvQsw/K9lDvViq9QzvDeqc8XcqehewF9j2OFUPbwzuxKlYvFMdq5fudbgPD1yT4l4o2Z73znXnidjX42yLb1WTZi3ZFWXG7ql1udR4wpAdqR16NA1cSrisFLhW3GtuXDR/3rVcH2lXZL+ST29XgJyLbFc+vGh7Lq9uuKCtuVzX/UPGSIT3A8cFkojz611DeOOSxp1TZb9SDmDbH9vHZ74OizXnuyHYhZnxBz6LdH1p4Fm85cvDQZOFadJRCrsD8/00eNlaI8o7K5n+Y+EMYynyGHOpG2xfIwubT4N8gRB4yv3mKCaHG5u6Fc9rwt9xsla3iKupm1thVFOpmmLcAVDVPOzxsZKK8I1yZeJcnFdYcmgUq66ZUjEct34zA8HFs1tsCI0e3PcaYWzrUjEjVn290xHLjHjo4oqEa8Yhm8O+JHNFw39LwWF7dEQ1lxCOa8iyETt6qUzHKW9omeJS9GtH4NFDs7JRnY1hWraxC+qLqG5KP0i91L73ayw+tgjG+Ik8pV8FYH9aFUNvmyXebC8Jje/NqBOMu2POEfYnPBXS7ATakC+jtuIBWxNhW6yNohjwz6sQgxwD9EtgC3+1ssSt+g/+wsC+hOoRmqyEviNJ1HD84JmiudlA5JkjdOqPifjgmCMdf3uP3fTOJE4/RKIfYuDfWB8NbRudRlz5EsWY47TuXaKopFr5jncfyBqfoNGvSaQo6IVznClwGr+Y4PT7WZCyeQXATAdYYb0Z//P4MetcQsJhUM6338O1cXDMppwHjwtCf2wGGL/PB4eA8wlV2EwDL85TU+PpaYUYHBP0S5ut9obBsw10xfP59GeFzTq+8fCHVyJcK5Y85wvTrP3/z8B98av3UEZzYUD2DHxfw5wn4mqGl71XTKhwO8oRm5SWUF3uEabwifzHyQ/wqpJ2PMJUNm8S82yvisiNM6LjiDb1e2xhecn1dTLPmmhcb9r8ZmPJ1cybyBizyHto05XqVtZfrI+msqUlnjaDT683ZNUTHtyH3XVo2Xg15ajr2uuKXNz8+Dhc+fJ+WH8pVkjk9/uAYmSfur7w5wzAbPfw1Cv5UuC7XGeupeH4J0HCEI097iIcpl0fBQ02bKsN10eazDeNxuSLdaI+o4Z/rY3TlwnV5mxClgljxXeZm1h7zujk++WPhVcJ1K84SSn+wnBebuGjE1uSkFoY4qygTrovtwR/dxf2EHUCb23Vc0DH++wT8RsI1LsqZ7LvRU7McvjBAlcv/XyfKpDwIGQrqr4pLhf7WdJJEf4aCr2ms2E+mLI5yKIU+waGujFQhNLxarHoFYf68LSGuTYlw5enWRVyLuBZxLThcMYcpcTy4o/hVqzLeSy67osTyIYdquyadtqAzJMpVHfvaAZ5jPu1Q9oIE9UmObtdI3r5S0/RdI8krPIP/GVjhvXzlTJ7VCi9PajWN7WA4uOwA8GB5JcbxYbUhiHLlDUG1CYHw+4vfUAiQ0oXYNtpLbRQKF0R+OIbmCWiju4pnFRDAV0B2iwXZT/BWx9iwWIPfD6vwUFjs1R56Pq/EzR569wK9OQiLXa70Du1MTJidsmche6FifNSFKhxmhzLmeWnZkFkVZhcKmTX4h4Q+8FjEuuHjT8ktcZjduIeNUVHeUdmM3o16cBme/B06OWLC7NTpBDYRjwiRh5osT4thds+6MLvtHjYyUd4Rrky8y5MKs1NXwsSIWImqaoD2+4RKhyysmmGFZgJqzyH08UA167naQ0cFjueJRzSD/9HIES3RTEqOaCgjHtFiPScG3y0Uh7uaCkkLrWxiuyGHmSg9VTO1buErMQdb1PUqavXAF+FjudCsGj/WmKeUs+o6h83KhiByWCV6wPgKTByO+GJ7NYuK1QVcPfHKqtthGN/eM9oAxMGhcAb/a8IGGM5xF65bjL0bBxi+wkldvaOuQQqFfRpcTX0cUvqI9Y9Z5SF82b4aOoQWOiw5TnS66U0oBA73Lr9L+65IZ4xoKj1RsmiL8gan6DRr0lFXIIVwjQlcofbucQicsXgywU0EWGO8Gf3x+5PpXUPAYlLNdJWHb+fimkmps6Kzviad9ZF0zqpJ5yxBZ1aIS5rt+0diNswqfsfrkYzwOadXU4ZfRRMbXy2RFxM69832bZ/e/+2f/cWMyhsv/C4m2v4sAW+yws3pErI6qoYm3GjOE5qj7ZSHw4vxoELnrq/IX4z8EH9bwHPoXGxbKFw7K+Ky0Dn1jay5shkcOvd3MIXi0Lle8zLXwRx8YyPeG1f2xkYM5ihzYyPKFHljGakQMNY74yH2xkaD71s1zTuHgFmZ2Bsb8RtxTDdPezw8LC14qBkYIUPAeHnouyeOeVUyD91kbXA161Bajzl0Eu0+B8mgPnCY+A2QdwXl3Qh5fEfgTZDHGzs3Q9445b0U8lCPOKn+hqdqPk/uHidwqQApDp5Cu2MyVC6rc+AZ84xXfsc6g+VD4bUba9LZKOgo1x3Ot3p4fCHao81fWan4NZkpj3bobo1nGCt+eUMUy6qNI1/ILtI5R9Apy1cPPrC0huB8H93IBN6M/vj9GnrnW4bZ/0r1xz18Oxen+lh+rrtYt8jyS1Zpmr6rjfizqwZ/AD5fuQ6eQwf+r3Uz85DOdcS/igOpeToq2gQY/hbxUtUExO4nl4uU5ktGUSqIFd+FegLvXfG24uVUrkyktNFVPjV1UUxor4bLoSyceNcn4EMD0hXEeyNQHnFgOdaYjN5jb9sgaHPExFaYJPeTb1nRQnl0iwpgGObB4HcEJup4rlHVi3szD/CoW5Me+rvBytzksWJO0Of64QjT7+HXd3XIrSCD0Ged+Cwtv0MZYFnf/wh7GdUF/1e6uIHgLeLEV3duf4N/ZaD9rxA8GF952tmFB4a5zMPDLsGDsJrXHbz3Ac8OPc8l2MpxK3FLXCHw+JJJI9dY016WDvcOpmP/Kw3Ia16gnZ6a7Z884otO4BFhvYdmn9NpyGne8jRfASdXVKMXDDjB+lUNOPH10m50agac+AZtZSy4vKOymXiXp1ydnyh2CZ9r02fG5QttfEXxy4PUG8FANTxBL30enHcQD2qFprxBBq820EM3Hfu+KeujjbL0fWU+ltduASb8vR7kb2tJXm+fY16vErzW9F6U9sqxBw29cuxBw7Zkjx165cYpD71y7M2O9crxshW9cnw04BbIuwaeOSmPnck975fbT5vGy3D47LMpsUEAaEN42a10KnRL6jbA1RA4fqD4bRL8DwfskdopCvWDbvdt8X126P65nvKwHN5SbbgdwdUMSpF3kWF9OCgFd2MaAp5ls1PAY5/jICls322Uh7aFvcTq/sCc93OXz4RL8cUXdSv/rcTPloR0ENceooNj20Txm9f7lz39CvsJlmV3lsH/HiwuP0ouLBXsx8dwPg797K1j/vIcnKUCl0Lf5QvVE+X3A556/jrweVvn2HMPgxPbZe+DVDYmdB9kqJ+iTNpudp/kOY+aP6FMu+14cpsZPt5t/LRwIqijZPyFofGSvFcJnvzL4gCEujOy7tFm9fUkxtXn4Z8Dh/F6AUWb4U0n0EGl7HOT4L8IbfXYmMbpBA+qjYxevwf+euLB4L8s9CVkB1D/txNOg/8K4OSLgbrhvMSD86nAXEP109Ddnt3GU55PoBzZiYy887i4A+hzm76X6CMe1DWm6wL8qqOKIX55vLG8v4Px6i8pegHtVAlb3Qi11fmC39i22hSoH+Oyck03Wx9DfQTl8c1VGueSkji/JcZ0NVfZC/j/LmKej7aa7bJa5+I8R80N+Fin4fiO6I9qrDdc9cb67E/LHu/tJptUBxGcm30QQR3ZTj2W/uboTLyh+3Dz59OIj9AcL3++sHhmOzyw+tivssNKhiGZd7tvm6ObsD22U57S2bnWx7m8f5r1UY0fSh9j7p+O1Ue8f/ojNLdTd2UrG838dJtzc1Se8dfvgWebb/CngB7zvOcGwUNonXCjgL9B8DxCPGBZpo39EmXChwQN/gzRL3vo85CHBFFurP8hGeWJZXqTgEdZmUzaBI/yVfp/A+UpP1Koz8b2DSuby+FxstUp/XPKVhv8pQFbreoWstW98s+FbHUvdXWh+udQV2P9cw9EzAVCB1S77UGw/VJ346txmNfJZb87gOW3BOisqklnlaDTSx8k0lRzG65PWV8Ilt9K9dmasD6KZ45GztNE8Zvr6m2rp8v4bBuW5fHO4A+uni53R/GsouBDB6hDujvuZvLZzYd0O9TfuV7MOd2S+Z5z8rwSx0veL1enDVD3cOw0GEc89kJeKQ+vK/linzAZ8Mkq1MPQl4tDsoydh+Apl5tGu/Mfurihm37whw4W0B7dvM8BWBfK7tGxvUQ6yl5yG6N9RRy8Z2XwbwnMHZUehPSm25qOvyWFusGnVZSfv4c2ZEHrzXbKU37HWL1hG4L2HMdoG79DPrLMzRwnUZ8RvuHBs4XwZPR+EN5juYuozjxHYtwXE7zVs98Db/h4LvLvAr6EbV14eCHxsL0LD9uIB4P/UcFDSP55Cs0Ja55Kb2aEz/jBd4i/5bR+dFxUylh+Rk/pQZ64L6v+pPZKQjZQ9XOF6/KEuPhkZsX2ul7ZNksqzovXFWjH7qA89PPsARycGvQ/1ifX68fHpvEyHPOK7YX7uaxj20TZbQL3fPWHbdXoBfuDWgOU7Q+8x/587w++uMc8LYT+gO1lfCsZ5anj4lJMf6l4E8ZYbH8x/Kn6i9I91V9q3kTSyZdig26mrcrTnYBP7WNge6VqP+Xjmq/2q3izQLD91Bo+Zfvh/KJM+ynfH98RW9b3h+Xnyvc3SnRwLThR/OZrh6fI96fWpliWfX8G/zfg+/sq+f7K+vd66K9rlI1PTP29at53iPU/8diuLlWL9T/hpaeXePxPJlfnZrafL84uc7P9T8iHwXNMHMNw/NpUbA6spfgwotJZtDk+f8q3A/6UXsevoZw5Hsw3pzfczs2eM1j9LK/MuKD6BNaH+4Tai0f4snvxrPe4p8wXKHP/ytPNAleI1y01eOV2xLbiuAGDRb1E/lkvDb6/0O9ucQMm8160f8ifpmQa8qd1kymvaUIxBSF/WjffOdvEzYIHHBOVf3OcaKrxQdkJZdPZb2R6eRy0P8fqYnyP2ke+2YPzRKFToTqMizrEjnGhcw3bA+WwXw4IWh17+NdwMnymH0sFLR5nDHYM5PTHHc1Lxvx0ST1ck3Uywufcc2pNdlqKNZma5+EceA3NJ1Qfw7IHil/uYy88brrchR6czul+GzpXiPy8rz0Tb6/2k1XfDc1heJ9RxeAbDxifrfaeOHbK4C+Hvhk6y5RmfzL7lhoXcV7I42JoDpgnbovQPApl0nazx0z2fSv9wrb23Rrqi9HkcwgGvxHaIPSpGB63N5fk3ReXgHncN7gfd/sogO9Mu1r75s8Wr839fmdgbFW+gnF4Vzbmnc8Tqn0o5cOwOELVX/DMutXP8uruy85lLAxfBB86F4hnANhPrK5Dy3m/n2yvOjeAbes7P6jOqubPLyie+fzgroB+pY4r5LM7sb4b6/s99N2smG/fjbVtjO8GbSH7/MYhD8+PvIz0S42TWPaM4pnHyXsD+rIzUMc8lR2jjB+1Hr6B8rAc65JaDxoPNwo5IF98N4vB3x85X0i0jh5X+olrX9bPUDx9nrgtbhbwGGPPcfToF9lBuJR/C2XqO/PX7/Qa3nem45HAfAHHpxuJ9+0leR8XvKv+hn3qn0eOPat1Ps9Ztwdoclkce/o98L7153uEvNieKX9S/nw64TT49wbsgRpTr4N3ZePGeB8F5cJxY2rd0bv5vLt2vuPGrP1j4g3Lxo3F6j/q0F+Q/uN4fi3RDM1juSzS8em/L27rpwP6H1qX588nEU6D/7mSvq+Q/nebI4TmSKE9RrM3PZyfb5rv+Tnrf2h+jvY35nxkrP6jDn1pZCZedf4Wy9oXf/j87X8sqV91zt8aPzHnb7Ec+2fU3JXb0TfO8DrF4D8ZOd9KFAe8cr7tOe9bqPltyH6G9kmV/VTjJdvPz0b6Z0L3U8TwPi54V/0N+9SnaLzBtS+PN90+iMdn+K1f+8Yb3msz+C8Hxhtcmyl/EI83Bv+Vkuv10HjTbb3O/iB1n4Ray4fW64nuglrV67M+3Xxl1v4xH6pU59NYD5BOrP6jDv1yof/15Hr/D2XAi+FuCMgm/RrM3xb62QL69tuM4OOPPv33X/749kvu4a/f5MnaKN+zydv/r8gni9comyzx+mGOhWgQb6pcRjwwfJ+AN7xDIq9Zsw7M1xIB3xDwy1ylL29g9ZnFE6jcTg9rWQAvi9f+P4HeNZy/KfKUi7Oqyp38ickvXPPUXz/VTeWq4n/HJc3lT7x859Ze4f/C0m98+/f/613v7RX+rw3ctKnvV959Wq/w//C3b1j3yAln/K8yXd66FoZCWznbFh6G9yWGlujbww1/i3gpSW9q23uY6HH9qn3ZYxk8s1QQK74L9bQGvePey/e9l/myh7Vcm953XFQaNa0YFZmWh1q2jPJWQB62JqeG4N94zrX0m6ClDMf8YHssp7wRyFsBtLldhwUdo90n4EcI17AoZ7LvRq8hyi0jHBm9x0lvQ9BuEvxYMdHNZfu949yMei5zM/9H/ZskHtUg7TzvuB58cIbp5mnA1bIEy2Mtj+FvOS3vjotKU5ZniOhx/apZHp6qGJVRwmowCItpFDhzHjjVojeLcpys3JAHZ54G3GxNLSHlodhWtXct4qVqqzaIHtePw6gqau2ykBYxTue05UN5oIXq9+Cysk2Cv4zcEmipbiUayorhO5PPM6Hsx8+kZ3kbj5+Gubx4HnFa//G5T9BW0/y2KM+WCOfVeygPlwd83XZ/IG9pIG+A6oJ5LSg3QXmDAmfO33uPnwnH/Vz9Oje7D+WJZa7aGC0bLwmVjrFO+nDdTriw/AjhanfBdQfhwvJW1nSjIcoNCTpsz/DoUIn+Phxrzwx/i3ipas9GiR7Xj+3Z8mr0hjIqj/QQJx+DWiHyDJd9haffg8vKNgn+FWTPVgBPbM9WCH7xHdqz26jPoWyr9jl1JM3ah10heZoAfnaRK7MNeco+7i9+mwT/K2CP95A9Rv0zHkecbi98Vno3Gqi/6gO9ljPb4SwhHcybIJpK57BPWjuZnJXOW7mVkMd9l/UZ4RGHwm84uung4eN13ZQOIq0mwf8o6OAbAnMC1kHUz4zyMqoLwin9xDbbT/DGd7+AR3xNgn8YVmG8nWHlUVbIFx8dMfijgJO3M5T9VauSkC4qe61kuoJwLRO4sD7s61Qyxf65jOpv8G8XMuVxHcurOd9eykO/6xDl9UPeMOUthbwRysM5H88/0e/H9n4Q8lBH3kvzaavP+4r3A07rfcfFJfYlKhuJWyQDlIe61U95KMNBykN6SygP26VFedjW1g6DLs4W5YnHQ4P/sUD/UvZTzacMfpWAR5tt8CNudp/i6y+xHPdLvg4Tn4vTczPkgHy9rvhtEvzPgBxC4QPGV83tySG1PbkaAHh7EpxaU/VCeG6L4wX8cQBjMmkTvLJ1ym6iTNnWqbnsKoGf57IfCdg6tJWrifesJO9qy0/1a+xThwNzRR5vlwdoclmk0+/KzSN+PTDeqvkx8sXjrcH/RsAeKFmGxltlP1aIeimZrqQ837rKcDPOmv1zWPVPrD/3z1Bd81TVVqorfHl9j32D9V/5EWL1H3XI1l9V9/D+7X+5YOv/uvlvT62yh4d+IStn439Fz/YnkX9Lykdh+FvES0l6Uz4KNW/E+iXyuf7njMojPbUTU3NPtMH+JG4b1FOfz9bKNgn+z8gXEfJ1oQ+O/R/KP4fv+uYJl+qjKEdrk7wffoVkoXaZYnRb8YjtxfPWwYR0ENdE8av0Pf/ruKh0Ce8ZGA7EjXpTQrdfFmsrDH/L1epLWUjH1P6D6ntWtu1m69hhgOumf0hH4XrHAsX1UEJcjyTE9baEuFLK62hCXI8mxPXmhLgOJsSVso6PLVC+3pQQV8r+mLIdH0yI62hCXI8nxJWyHVPq6rsS4kqpX29PiOs9CXGl1PuFanNS1vGJhLhenxDXkwlxpZRXyrlJSv1aqPPClHq/UOdy9yfE9daEuFLq/UKdyy1UvU85N0nZjs+HMW2hzuUWqi1MOZdLaQtTtmNKeaXU1ZTzr0MJcT2ZEFdKeT2cEFfKvp2yD6WUV8pxKGUfWqiyT2m/UvrlFqpvKKV+pZz7LtQ5ZkrZpxo78uehRLjy9GTxO+LBjc+hvVdFJxM8q31S3L/nPVEHeGqeloz+RJXhbxEvJellofZRe6scM41l2yKP26ps3DbiaibExbEkSm/Uvl9ZeVU84p+nbR4Wbye4OzysNQTejP74/e30riFgEbfqkks9fDsX1yWx/FCATi+6Pv+/pPg/dCyrB9vfE7Fm4Nmy/X0E4OoOB+9OiCul+zXllGqhLlVT1jHlNuDBhLhS6sRCdV/8YEJczwedWHRXz5/sU8orpbsnZR1TLlUX6nZbSvdFSr1/S0JcKXUipSs3pU4szr+eGzY65Vj7xoS4ng+28MmEuA4mxPVAQlzvTIhrobpMU45piy7mcrieD1vDKfvQQg0rWhw7nhtjx+JW+vzpxKJPYf7qmDLcfKGuh1LK/mhCXAvVX5hynrNoJ+ZvPrFoJ+ZP9kcT4kppJ54sfnsYBtKfET7jE98h/oUcBpInPn5fNXTj+Yarh1eGXhmrY/N1Zai6HN7KtikvT/cBHOc1xLu+AK77E+I6mhDXWxPieighrgcT4jqYENc7EuJ6LCGulHV8U0JcKev4SEJcb0uI650JcaXUr5T9MaV+pbSFKfl6NCGulHr/fNCJtyTElVK/Hk+IK2UdU8r+4YS4Uur92xPiWrQTzw07kbKO70mIK+V8YqHK/omEuBb7UDlcb0yIa7EPzZ/sjybElXKN/GTxG/qERc1PrkR/ctHwt4iXkvSykFyU30x94sXKtkWe7+p3y8/TfMlsSTV6QZlh/arILE+Txa+SSxbP55vUdc4sc7yKuYQMdsTK3PC33GwZVJF57PXTVvdVgpc25eXpDQDHeQ3xri+A67GEuN6RENdDCXEdTIjrLQlx3Z8Q1+MJcaWUV8o6puJL2amFoqtvT4grZd9OqROPJsS1aL8W7Vcv65hS9m9KiCul3r8zIa6UfXuh9seUNnqhjrUp2/HBhLieD+PQ86GOKflKaVcX6rh97wLlK6W83p0Q19GEuFLOTRbqmLbYH+evjgt13H4+rNNS6sQDCXEtVL1/W0JcC9XX8a6EuHpho0OfX8woD+mE9o6w/PIAnSU16SwRdIZEuaz4ren7H84In/GJ7xB/y82ucyrfv5KL1W9VNXpDMXqF/PBnbVm2+Z99ktb3qVgr2yT4T5107LdNcHm6lWisFvyqT+fm+vIbBV7WhTx1XFR6Ee+xGC+IF2VSog1GYnXM8LdcrTbPQjJUtsTqfpzgpS3yfPqAdI4TdNoi79ZFXIu4FnElwRVh//o+v/LO+/p/+lUTF5wzvOlbJ6x4/yPX/Jf3vPWac9aqz5mz/UMbUMIeRV9JbPhbrpa9zUIyVWOI1f14wUub8vI0CXCc1xDv+jy4lC2tiitPe4rfGuNgk9u6RNn2gOCpE1XUrbOyJxQvSrZ5y8qfWK38oJU/CV52wmWmrrW1sieLsitf6P77aV9d98Ca41588MY3PPrVWz/05lU/dd5ftk/45n1XveE7Tx20si8QZT3Jus6U3rYgc6L4zedF/1RUxnTrFMhrUNn82XSrSfD7T54u992TZtLGPs32og/el2iLtbH2wvC3iJeq9qKP6HH92F40BC9tyssTnytsCDoNQUfheiwhrncmxPVoQlwPJsR1MCGudyXEdX9CXG9NiOtoQlwLtR1T6mrK/piSrzclxPVQQlyPJ8SVUiceTogrpU68PSGulPJKab9S8vWOhLhStmNKvhbq2JGyHVPKPmXfTlnHJxLien1CXE8mxPV8GLdT9u1ejLW2T4PrsWWU14C8QcrDzyb1EX9NwV8zwB+Wb3rKcT1iztv0U9mOi0rR520Mf6rzNv1Ej+vHa82lgpe2yONPXKn2yQSdsnwl/CyV5a8huJ0e1jKBN6M/fr+G3ilRIO4RyleqzyrjE23bUz5PQwE6Q6KcqeYg8NiBfP50VsfN5rET4BHLG5yik9Wkkwk6jEu5qfL0iuK3SfD3FW6qvA6N42fiHBP8qbay96cL+DGAMX6UbKzskKCdeX6NjnNhHUIe+onO6QnpnA4wTaJzRkI6ZwDMMqJzZkI6ZwLMIJTL/z8L8lDPjI+zBR827JwD70sMA9FbIoa/RbyUpDc17JxD9Lh+bHvOFby0KS9PvJ11rqBzrqAzV7iG3Oz6c1tiXXvRloa/5WrpThaSC9aP2/I8wUub8vL0GoDjvIZ41+fBZfVKhcv6ac32Oo/lgcnyzgfc51AeziXuoLy1kLcHcHBq0P9Yn3z8enxsGi/DMa9ov4zvETdbx9B2+GyB0p+2KG9wNgYbnx+CraJfOHkmn6cA7j1Uh1Mhj/vsaSIvx3/JqTPrivrA86CyNgTLG5yiM1yTzrCgw7iagGsAcN0F+Qj/uULu1k+4P3ZcVLqL+4LhQNxrKuKOtZmGf0jQM75aIq8ZwUvzMz/1yV9/7bdvytzsft0Q73iOuFbAq0+dmqwugPIlZLUHvyrtiLbl4bJvDeXhUtV4yPV7XWcmf2sr8hcjP8TfFvBbAK5MWyhcdyXChf0tBa7+iriWu9ljkvVpZZNGiE5Zm4TlDW5IlMs8v0aH3/nmaUhTzdMmit9cj7908nQZlAOuFbEs20iDv/K06XJ/WOBUY6bxWNPerVXzA0uWh/YBeeCk5g7GV96v/3RsGi/DMU1sgwsoD8eNCykPdfGi4jkkv6pzDrX+UHTOq0nnPEFnrtuc+9qFkHce5V0EedgWnLrpyutPn8bLcMwrytv4HnGzZcRHDcrazFHBa80x6gKWNyYlb57zo7yRP05K3sZzLu9fLSFvlKnxNuJmy4GPXKh5Cb4LHbkwuJpzlgtZppiUTPlqrYshD+XASckb5zjfKCFvlKnxNuBm60YJOVzEdXWCLtZ1LeW9EOD3Ud4lkFd2rWn1yWV0yhnTeBmOeUV9ML6VTrLdL6uTWH5tgM55NemcJ+jw/0uK/8+CfFuHNgn2TJhXnFjEdKpx4OVuZh7q11lA9wUvmFl31BWW8cVudt0vDtQdy3NbIp3zatI5L5JOL+tzbqA+ZefHyo+m6JxTk845ATqYx+Nt2bnPqOBZ0VlTk86aSDpLatJZIujU9BlezLYaE9tqNZ5dAnllxzP0C36j4nzNeKvpEyotB55H4ZjF49mlkFd2PLP6lB3PUB+Qb+S96fT48nLKN/jthc3OdWArjQE45zHaOdybyc732m8bsx9SUUei90MMf6r9ELW3ENoPWSN4UbaKj+jU8QE1E+Ji38RC6NO8H5KqT5fZD+lFn54s+mdNWc84Nu4I12LfX1h9P09bAK5uf70wIa7Fvh/f92PH3ozyfDZiI+Ub/CMw7v8gjfuo3xcB7f9A4z7yz32/7PrhbFHfkB9/vvp+xTl5sO8ruTxXxn32TVX0T5f2TbEOoW+K+34d3xT6p8v0feVnqNunf5zG/YqyluO+4VpIfb9i/aL7vuFP1fdVPwr1/bWCl7abrQ887pf1KyKdCxPiMh2v2V6l/fOsQzhf4L6PdmE++v5FlKf2CXHsZRxIo6aco6/+4X5RcQwO9gsVZ7fMTfubizD+LZNHbrpvz/59E9dPPnB4/MDem3YfOrJv9/7xvXsPTR4+jEwjIQxkwnxMDGPPvg3MUIfBythBAbUZuZZwXdgF1+2EK9SRL+qC6w7CheWxLP6/xM3m0zYb+iLwcOdUfL2M+MKOzgPnC7vguotwYXlefF/SBdfdhAvLY1n8f4mbzSfLK4Qn/3tRF772EV+XQvkXEa51XXC9lnBh+XWE68UBXPnzCYQLy2NZ/H+Jm80nyyuEJ/+7rAtfJxJfL4a8ywjX+gCuPL2OcGH59YTr8i649hMuLI9l8f8lbjafLK8Qnvzvii583UN8XQ7lr6A8lDN/o6RscDWW5wATNRjyr9Hhd6ENM77T8YqEdBDXBJTL866E8mhb1UTIaNjgfxW878Wk2PC3iJeS9KYG/6uIHtePJ8VXC17aIo83AK8WdK4WdBSutQlxXUn1wQUABg/+Azl6roI8tXiw8btJ8MOwyf8dcuCgrlwRUcerBD2Df0nxf7+AR3xNgv9+wVM+ibbLuNqCp6s9vPB4ynpiMHkaINq96iOGv+Vmt3+VPvISoufTN6v7NYKXtsjDuRTmIZ1rBB2F6+KEuK6i+vj6yPApM2lW7SP/cOp0udEC50LqI6sLnur0EZxDDYl33Ecq6mx0HzH8LeKlah9RbYH14z7yEsFLW+Th/NnXF18i6ChcL0qIK7aPnEl95FLIi+kjBv9V6CPnUB9BGXEfUeuVSwU9g7c26xfwiK9J8Gsj+8iLPLzkzzhvHnKz+ec+UlFno/uI4W+52fpTpY+o9R7Wj/vIesFLW+Thmonl2BDv+gK4YtZcsbgupfr4+siVifrI70AfeckC7CPXlewjivderL2UfwHvE/fJSOluW5R/EeWdJ+h005Gdp2h+fDpi6/cmwf8q6MhNAR3hQAvkmTdcyq6lzxZ0YhzLFe3Pklh7Z/hTOZa7+crY3q0TvLTdbNvJh/6VXVVzj2cLrvzZ7hYOjYNl+3nbzdajs4nOuoR0sD5z4TPK0wTRYZ+k+o2lg7j2EB2f3TpIdusyyFN2y/x7TYL/WbBbhwqcAwRTsp9eZbxfJTKVv+dFlIfz4XWUh+tJbvsNkIdzF05q08/qmo+h950xjZfhuB5o26+mvB7Y3Og55qLNTYNrcb0wsy/xegHz8NsMbNca4l1fANelCXHZXkbN9kpm1/LEAQvoQysbsGD1KRuwoGwX9xOGw/FF7RsqvjKBh/uT5an9P/umgdpjXE00yvb51YLfGD8a6lcJHWrE9nnDn8qPpvpPyI92meClLfLY96X2ZS8TdBQuXtfjWnm+x89Lq9ELjp/qOzAp9MvXDusC9NZXo9dn9NS+96WCXn7Qr9/NbkPf/rza18b28vV5pM2xOWXjHRAXx+as89TB1wbK/xOKUWhS3ueKOfoz35w7ZSaMxZV8EmB+q3hWNh99Hb9PcByjkqea64Lovmf4W8RL1b6n2gHrh7q51IV1BNvIF7P0QlEX1tmLu/DEOqtoqTbFGC5uUwx0RV/o5wNwFwk4lZf/jzF0HOxssF8EX+UTZ8ysI9LlOLeywccXCl7m6iB2TJAzyqoXPje+mKxukPP5RM8nF45lwbLcNnniNZuKjVRxI88WXPmzfVfLZKMus4tpV0VHXcjV6/ipGD2vSkf5u0LxUVXpIC5bb1nfRFvby/Xh+ZSHfi9uS/R7sfw3QB5fkjUOeWUP/Zscclv9byJ8YjUD1Re8/NbCMyclPzxIsCi/mfGPnFLKD9uphPxKH0Zj+eG8j+WHc1iWH87fcNzgpGRkdS3rt0YdszrlBzHsEtzpgxjXTz5w++79+/buPrLv4IGXTr7+vsnDR/izBzwC8Mhzvodr/iyDj+s89VEef6rhVgGHaUiUMxo1r9iKXtkYfnVdbJVZmZqVqCOcrNlYti3y8Ouw3CMa4l1fANc5CXGZ3tTs6aWPnvEVwL06eoa9uYwnVx3ttjy88nov5Z0K5fjqzdMgz/CrK6+RdhueMS9PDfGO27otaCo6hWhmfSX2+oK3AYIrqR9Xx6zgKu6oXR1rK3yzeeRL7e7FXDv9jys3XPB/PvitD2Rutr0O7e4ZvFoNtgV8zRnNFUNAw7nZo26e8Fj7eZSH13DhbIKvna64Gr8iRn6IX0UWTAJcmbZQK7NzKuKy653RS2B9x/rfKZB3OuVhP+MopjHBw1igPmcLHoZEOe6Pp8P7Xozdhr/latmWqbH7dKLnk4uy8VZWXdPHV0aUtcGI65SEuGysqdle57A8MCkPJuuQOh2rPDNlx26rT9mxG2XMnsrFftX7fnW24IVllie+juFsQUd9xkjJ/6yEuEx/arbX2SwPTMoGsQ6pSGrV5+ajX/E1Y8b7EgHbKZ6bBPswRMr9FM2BsXyxCJefZTuT8lDXT6G80wVPGdHAaAzUe/48ncE/WvCdy/K2jsbZ58GJberczL5s9RgAupZXQgc/mfO1oTNNB2WWJ76WVfUbhOd5qxq/sC+ZDNT4xX12TOA6A97ZDp6Sl/HYC3khDyyvs7rwzPJS8kU5mAyUXTqVcJ0qcKEMQ/IyHnshL+SB5XVmF55ZXkq++Nk/k0HbzZblaYRLyQv7I3+a1Mr3C3jE1yT4D4JN4NMjaNe4rTsCN9rGjHBgPVqiHkOUh2VzvP900ky86gSRijgxeHUDAkaX8NwLoxysbM1omQUVGa089FhnTmpsNjnEeugzomN4Uf55Yp04V/CoouBfFInX4LtF+/RF8I0RIaxD6wTfKtrnPA8dFW2ZJ180/29CX7bPzyp7arRr2tMRZU9RRmxPVZ9V0YGxfZYjy/G0G0cqo4yNptIvjIraWeK0n4pCUxE3rHv9HnjDNysCTNjrkD6ryO6q+ox1qKvPKK/9VFeD/3/nVp+He63P6laU0GlcPOl/KeUpfc7cbBtW1r5iZNiVNU+7hvTf6ubTfz7tavBfC+i/kq+KejX40E0P3fT/asrDcud56PjsOeu/wX8jUv+Ndi/0H2XE+h97g4nBq9tD1E0K6vaQkP5fTXRS6f+ZJW4NeUmAJpfFuvn03/A1Cf67Af1X8g21xwYBryI9VP03UJ6afzId1H+UF+u/wfedNl3XkP4b7V7o/wYAYP0fh7yGgGd5XyvgxwGGb/W5FvL4ViyU8Qaio+xgrP7jbTvDNW/NCem/ujUH4X235qwAnWD9V31QRWnG2qOQ/l9DeSp6iumg/qO8WP8N/sRI/TfavdB/lBHr/wbIawh4lve4gN8AMHxjD/aNkP5fQ3RS6f8/0M1qGcCtIJqZoInv2IfP5RUujI/aA897IR/h7ZOy5qdA+ZfQg51DUMYBDsRdUcd2Yl0tNegd4h/y0MtTS+TFxD/89vr/fP1PfvfS4YzKGy/8jvV4iYBfIeBNVv3Ee8dFpetVX8fPejk3u+6Yh/3VeFDxD0sq8hcjP8TfFvAcaR/bFsvdTF1gfc//VJzKUoHL4NWV1RgbwjFJaIP4Kn11GiYUz1LTdvcr2431iflEa+hT8xcIeIy/M9m0CR7lxFH+SDMjWKSD+zZsu31Xq9tnunO5/NVxM8ugj5LtGt4QXkL+fbF2zfC3iJeS9Kb2u4eJHtfP2jGP7jUbVUT37ji4e+91u+89fN/+SY6uXQbPLBXEiu8yN7P2mMcjCcNdT//vFOWcwJ3nW8u16X3HRaVR04pRkWl5eE/xMsrDkRxbk5PyoBvPuZZ+E7SU4ZgfbA++z3gE8lYAbW7XYUHHaPcJ+BHCNSzKmey70WuIcssIx4Ao17GHv3r3B97S/vAPfbCz5nN/37/lyb/Z9Xfblqz/o889dOJvv/Vfvv6/3888O8Ezt+MyglW/xju/46iS4YS42gKXyQY/nFpC51fHWivD33K1+tiUtRolelw/rvtywYu6O5xt0HJBZ7mgo3D1JcTVSIQrT7cu4lrEtYhrEdezHJfl4XjfpjwcP/meDLTP/FG7PsFfX4A/LM9jj5rj2riLdr3MjnnsuMsejoqenKlxt0H0fHKpOZee8qi0BT3GmSeee4fGzH4PLivbJPifLrxhbYLLE+u1mpfgO5NPvrL8idNm8q68ZDHtjHjbbnbdLW+u9X4Qyk0Uv3m9f+k0TRO92liWvdoGf3ZnutyHT5vJs/Ia5WmE3rEOOae9ZL2IcME6sldF6T3CW+SOOvHWpDyszyDUp4b9WaVsG7bxf6I2bkKe0iuORJqqQ2e63G8WOJUe43oMy7su9Aze5N8v4BFfk+B/W+wiKf6WeeihPJRnmul9JnInB+2wc5X1drXSW+xPrLeoow0Bz2uikJ4rXUY97ydcynahHnDUnpXvd7oNDF+T4L8Y2DkM6blqV4P/UmS7JrJHsl1RVtyu/ZCnZMvtqvQA24vHEWzzpYRL7ZJgW8e0K/Jn+Lhd/zTQrmqMUmMIj1F/FtmuJstetCvKKqZd1Xhv8EsFPLYr79BgWw4QLmWjsa1j2hXrwzba4L8ZaNeqdvhbC8AO43yR21X1GYTndlV6oGTbdrPbvEV57H9FOmVttBqXQzba4L8n2pzXhGwXfPwpueV1tBOyxS7ILUcOHpostkEcpdC2Rf484mFjlSjvAriwTKhKuDXAIjda/U6711nkU12kc+wXRc4iZH5ilsgVu0z0RprhT7VE7jb15GVSqJupIYbbqRudhKqap+s9bGSivOuCy/7PR3+bNWNz86w+NBPgsvmfzRZjZwIGv6pz7FeNGN1WZmxRQjsVyI+q/yjlYbllHjqxMxSDP7kzXdfQSGa0ezGSoYx4JFOeQuVRMfgVAh53UniGgruu3P1QxqNEp1s35/gCpadqpaz0KzTT7qZfpptqVRrSr5BXJJEujMy3LphslC6EPGqsC2qIRZvAujAo6LBnLE8828ZfK2N48zQg4C0Pz0piezngpwnlENdSKmfw13SO/dr0BWeRVr4t6OPs0Xn4xnd9BN8S8C0Bn8tnfWeaZ8Unj19Y14aAx+kPwm/sTNPcXDxz/BzSy9/dGoDLPL+KZ+QnJKOGgDfagwLe8jCiAfskwqC8EFcL8hH+pZ1jv9Ym2N7YL5k+riKdh2/feMy4GuId6s71nWPPLXhnuMpODfPE8Zv4DmkPupnnl+03Jib1Y+vWXjF8x9lHl1P5VPiHP/1rN/6Pf7r37G74VbwcjmNl9du385Anm8TWjJPts/LotXDx5TPlIc2It4FqvP1rjJwQf8vpOWDHRaWp5QzbZq4f7/i1qtH7fj6mDrrZcxRsS5Qd0llKPAxW5EHNdYwm2jlHdHL6v3PGTB4qLiO/X1OHv6e8QxPFb95u93am8aLscN2glutNgr+vM13ucPGszjfgnGHEze5fbBNM3n0Clj3D+L/yRvKS2XSm31PXfqqrwT/YOfab0/vn4zROlB/y1efB+WbA2aA1ZtldlGUCXnnUR9zsvrOMyiHvOIfgd6p9MoJFHvI0KXjy/d8SeHw8DAg8aoe6Rbwqbzb2G563NwQd7FM45tV0Xy1RY4kjfngHDPOwbrsAjlOD/keecxyv7EzjZTjmR/WllGO/vV8C75ku+6/6CZbXlMhjnfk3z0/UmRn7f2mA/4zwNEW5Iaf7m/qN5TcT/PYyMiVPry5+a455J3eLRviZzjRe35in5hw85v1iZ7rczxfP3cY8y+N5X552wzu26TyPQhx5Yre92ch+wI8wA1Qng/9w59gvjm3KhhiuvO4f7cykPQB5oXGkSfCf70yX+3jxPOJmy8vkqcYv7gODwAvC5mmS+DDYT3Smy/zHjp8Wrot9dXwmUqWj4ZAHhGMcVcc1Nb/ivhszv1I+r4EADbbHvrHbdGNZl/xBUTcn3vUJ+AFPfZ2g3eqCV+1eK/vOO6CZyGPbg/WN9Ruj3TKbpvpL5mbWa5DqNRCoVybKcT9H3pcGeFfyQ/tR1Qfx9v/5r3/47gdP/GavfBxX/8Qb3zG07sMf7RX+Dy374rW/8RMDd5bxoVg79xMte0Z543uce+yBfIT/WufYb00fheP6KLsRWp+x75X5v8PD//c6x35z3fqrzkx6an2i+oxv/F0SyYvB/23n2G+3/TT0WRgeyysh86baQ0G7FhOhp3znBt9tbWkyUXtmMVEpKFOe05iM+p1e3/P+rcH/U+fYr4r+ULbZ8rDubBcbgq7yRVofy2FWjR17rjm/XarmEZaGnN/+sz5gHdVeFM9vsC15fwGTWkPiPQGrx6bxMpwlZR+4vyq/Smi+qPqd4V9o/c50X0VEsr7F6rBvPqfooRxwrDYd9vn0sU/jmuuEsWl8KHcVn5AntqcGf9HYdLmTi2cVxc/6oOwE8+KctkMxa/khUc7aRe0jlPH9YPsin/gO8bdcLfuSsb01etxG7OuvOE9o8hiL9FQ7jDotU7UfwGtF5e8JrZNC9kT1P+6byo+gxpDQes5oo888Zt7ki/3x+TMuHZsut436lrK1oXYL3YcSsn3Iq5I9x6+otb89LwvQUXwNCfhlAb7QJvPdH3zqP1SH2LEq0RxxSdnTR0ouoRi3bjcycB9RtyeUHds4dkeN8d3Gtm2eMQrroSLSVegmjm829uF4mREvSAPX//vdTPiqJ5NuBh66Rb3n6R6BMxM0nJstF15XGtxtwMMfnXHsObQfUPMeqWHUHUtq3DT86t6vKuOmWteomL2a64ChkJ6q+Y7yw3Bft/7gW2Phmhzh9xRtyyc98sSnYtW8Qo0XOW+vGpvJe6/2ZNDuov3IE85j7yIboU54YVk+rWrw+8emy72Wxlqlm4MubDPUHj3rh2+f23dS5t6AzVDzd+TrHg/Ow4CT97mVXqj2Y11FeBVLoOZM7IdStqyHJ7PknZhYf1+/NH58fcbg1ZxM7Tm1CV6Nl8gL+89Cupin0J459h3rV1V9qFee9cQJJ//u64d65aNd0jz5RzoffvWOMj5aNffuI7wob96TztMri9+YWLKK68vob6rx+rJuLFns+lL5tHi9hP2DxxvVd1Q88VzhUv2d27LiWjraV8BxgRV1Jytrn5QPkn2raLtY/squqTXdswUX9v+QDymmXRWd0DywV3MpjktZmpAO4pogOry3q35j6SCuPUSnKXh4Zh9zbBovtrFvjuTbM/rs2HS5j4/NhDHefxVgPlk8DwBt50r35ZbyW1tS+wOst8pXwnejKv3A9f8A5eFNi5MAx6lB/6Mccnox35FSsqwYt7ugZBkrL6trjvO+CHlx3BnWCdcroX6AdLkffB50/E+obykfourP9r7bvmUopsjK1ownX8Zti0m1LesEti3rBB4ZZ53Ac3zcv/DsGs+NMSl9wXj32P71Jx4baTTYRvL6QcU5oe1Ve1Ic85SnmvG4YzHjCuJvES8l6QWPk2P92LdUcY7eyag80gv5TWLiUXw3dvj2Jb5ZtC3PafK0iWjE7uXldL8+NpP3XpxHwvaJ0ceK7RWtj+zrrKuPSj9C+ljR19mJaV9lF3vh6/w+6SPOSVkfy/g6v0P62Kv5Oe8XKpkiLrPBI6I8xk+wvPPUcXEpZv+84po4um/wmrju/rlaEytbVPOsXAfPymHfuxPwdTsr1y1mfvj06TJIR8XM5+lA8cvrll2nT5cbJZzd9PD24ndRD6PSs1IPQ3YTed5c/Cpd4PNtak7Sw1iwsdS+fasr+yaw3qHzQbH9i29EXuxfwfSctPMXJ7LzO8HOX+rB6ZzWw5cVv+qOGiur5pN56ri4FDMXr+gTj9ZD3k+pOxfvdn41UbxeR53NzxPqoS8uj+N5+7vwzHZexdMpexXaw0UdylNKO4/1YTsfO6bxugLrHYpBjbnRW/kPUE/vIlxqv1b5/Xh/R7UT+gSVDVDnnlh2vjgLkx37Dm4ubI+KN4i12wYfu6euYib5TB6WC+mqwfVCV+fyXAjrL/q3eS9XnaVTeoVj08URY0wv9GviWaBfoTnv81G/lA+5m34NQzuHzjxknl/nZs8BnPPb9TxxvEAv9oUVnV7t104SHeXnz+v/MPVldZ4cy3LfNPgfgTnoUcLZLdaM5x1qXcXlmK8Qrb6KtPo8tEJxbOrswxycW+mP0RnE38tzK8rulokrYtliHtKJiQVinamLK8afEIsrJsYyFhfve2Cd1ZxQlT0A71j+6v4m7BO8NjX4HwNbHnN/E9Z3swfnBwPzgNR71Ry7Grq/yXd3girL9kKNofb/EPDOdPjsi+++JsSj5n5834CSI9rRmPM8sXIconLKr+Iry7Y0dN+C75yQE3j5jEt/oNwA0UQ67yU8vrW6r//H7s/juP1wYP7Ug7MfS9HWIP/4DvHP9dkPtV/O56LUHC0TeaExbhFXOlwL5QzK52gu2+0Mivl0+AzKUzA//kLF9bM6s8LrVLTLIV8H+ieNX8TZcVFpqVqLYn14vtQtpubu4letHzPKU/vsav5jeTj/6bY/w+NbaJ6r2kGtK0Ln43u4R7Z0IZ9/4fPdc3H+5XMlx8ey9iZWx7hfh9aMmeCrZpzPQEy9EH/L6b7VcVEpK9v3VFwRn5cKxRzFxgOlPEe5iCsdrtAY0G3c7j9jZpkM8kLjTpPgl50xXa5VPMfeO8n9ymevQv0itOYqOyYp21rmbjOUHdZtX/HL/vqVhbxwnd7DcW5gvsc5k4ka53i9oeYHatxCve0HeS6eewymxXOPbnb9uS0Xzz0eS4vnHvWv0eF3vvU79q3Fc4/d6VQ597iZ5jXdzj3y2Gzwu2Fes+2MmTDG+/UAc3vxPAC0nSvdlxfPPbrZslw89zgbjuuB+pby3ONe0PFD1LcWzz3OzHu2nHs85LGRRoNtZOy5x81i/q3WVrx+wrN2juDztAfyEf5BshMV50/ybmjDVXPvp1/NJywp/01GeWo/XM3f2L+r+lWsTlldc77+JEKnYu6z7Bf1CN11ORf3WeZpL/GMa0P2GeQptNdgZevc7fPQZw/93PeX//u/WCj3r/9f1Mcqronm7f71j8D49QHyT6l+18v71z8Y6e9B22N4LK+MT2G+4yC5Ty6E+9f/PbTBfN6//hnqVxX3KJ7196+XGV/4vAbmqfMJi/evz8xDHeYxsRGg54ujMR0edDPPrztXWmZ9GeB1RVnjCfsQzsedm+kj4PsQK55tm5Kh+m4V2im+19vgv3LGTDxqr1f5Kw1efQe4Ieiqb0YvK4lrgHAtrYEL9Y3hl1bkS+Hic3YtgUuNW3nbfRZ0tuoc7fF9L/g/H9uw7j1VvjOM+jMBfP0prcn6IU/55X3fJPhHmO/8Gc131B7I4jcJStNb/CaBm713qsbY59o3Cb4LfWv5mTPrr+YfoXYL7aMufpPAX7/Q/C3RumnxmwSQh/M90/nQuID2L/abBDb2rSzeHZ48suvw5IG9k4d2vebgoV1Hdt91uBhFZ4SSO1fedLM7vlz5o5sGGGGp8m5TzS2NbMDNbr4yU1sT+0Yor44ZqrA6K7PUTatr/mzqWXPrq65s3ApBn6dj5mrPu1Gx+nf3Htr3ht1HJm+ZPHLLM0q3+eChW59WOUaf0XMm3hupehbo/k2GE1cdDQHZpF+DWV38Vp3h/tGn//7LH99+yT2xN5i/Yd/kG3cdOHhk8n8WufPcT99fs5++f6H00xuhfGw/tTK5vp8Kz2ugPE9BQtt3NaevN1n5qlfNhIZ6y1NDluWpI/zPyKZv+r1PHiq8sKY87l3o8jC49xJ/mPdvII+nZD8EeRy+/z7IQ3cb1qGqflVsj40rBP0B4C1P10FeFo97yo5trFZ+iv4mKF9GV6z85mrlp/jfgkhdXLKyW6vR7rPy26qVb1r57dXKN6z89ZXKZ1P131Gp/LT8cOvDufJtd0M1+ktsznQe2AW0BYZT/To32wWTJ7Ohc30FsTp2xG4BhUsdl1RLqOYc00l5HGeuj5sqVxPLSOFSrrXQFtwinYVNp2ZozYDx0u3atphjISH4gZLw3cKpYtx9IfzLSsIPlYQfLgk/EgnPoXCGI0+mCxgKV2auEGPzEH+LeClr8zh0D+lYXZZXw92KrYvhb7lasstq8jtl/1e4mfyyfA1/m+CZd4RVuPJkOrUM3t93ZN/+fUce2DJ55IanPRGH+zwoUaxImuH52dKAB0/DzVYHLsvLAI4KVCYK3w943rc87wc975d53g953g973o84nTbT/zvo/+sC8DgkjLrZKaM/ft+r/90c0krBq+mkes4CMDEnqitO26Nvo7V3qU5UN4ge149dOxWnwp2MyiM9tSTgXXHVTirSTUVx8m6lffVU3SISskMN8Q4jKO4unkdcWK98cldTA7WbxTJSy86a7RV9M4/hn+tlq9IP3l1XUXFl27WXuPK0ZYHiqtoPQnyF7GeMvik6ZftFVTqIy8Zs5dLAaZ1Pn0MuDSzvOw2CuHDqtznA1+JNkuVPanN/qnO6+vmEq64e8S2/ebI+l4+zP+7hGaOWcM1ic2W+efa92XS5/7t418Pb7ip//Wuu3I81I+47MWMF8qP6I0cQqdtD1Y2KfKLkl4tfpac8tsXqfM7bLxTPMaf3yroC1Sk/pXN56ri4FGPvK24PRt8ChVHnKey9aq+QvY+5zSGke0gn9taE5gLElactCxTXxh7wlXIrSPVR07mypzwblBeyf2XHYyyPW/WcV2Yt2G08/oKHZ994zOtyg98A4/EfFO9CN2ZlbqY8ndM+DJ4Xq3ChzM3WFYVrK+FqBPjqdlvddsKldCukB4hrG+FSY2SobyGuGwiXio63MqGbDvJfvi1M3ZQci4u34ZYKXKGbTjM3u64hn1fbU95Hp1mTTlPQUaGj+V/HRaXNqu+XKL/byg9WK7/Pyi+rVn6/lR+qVn7Syg9XK7/Xyo9UK9+x8u1q5Y+o7b8S5Q+qLawS5e+y8iuqlT9gY8dKeMm6vQrelxiXVmOfsKTmn4a/RbyUpDc1/1xF9Lh+PP9cLXhpizzu46sFndWCjsK1JCGuwYS4liXENZQQ13BCXCMJcbUT4hpdoHVcnhBXSp1IKfuU8krZt1PytSIhrpS6mrIdTb+ea/NMW4sZ7OVFxoCnnh0XlY6LuRm24o1lxyFPltT4b/jV7R3sa+XboTounO4544VX/dIP/P1YRuWNF34XE7Km5hJqHlxCVqvU0QijrY5GDFIe2hw84nZq30z+llXkL0Z+iL8t4NkfFdsWy522q3li3wf2H/Yv5c8DlKeOlPA+KPZ93rvMn317d/mzrYHxhDev953T62/2Q6mvLpWVZVuU963zff4hPIGP8Fuz6XLvyfz1ivF3tCJ5b3lwNQXvedpBvBv8DQW/eXtdRMerlGzR38P+q5APZVkXXOy/Un3LcA11wcX+KyzP87DhLrjYf4XleW4+0gUX+6+wPM932gFc2L9GRPk25YX0pqwfV+lz6FaDqnQGI+mEbhdAP7Nz9W7hv4SO1GD7sH3GGMhQPERbwOMJfCvvCEcv6jNQsj6q73J9eGyx8s71vn1Ct3epvoXw26k+OE/n+QfWp9XD+oTap5ud3kb1UbZ1IbVPt9vVbgjUZyhQn4XYPmjLVX2GA/VZiO2Tudm3oWB9RijPdzOxzaNC4wfOb8ymqnkx7vvZnqCaZ7Qj6hmaWyo7wXuJ/7aoVy7zLX26jrFzOIP/YcBpc7jQWFl1TA6tJ7Bc5vk1OvwuFLvFMY3qttKq7YXlfWtxy1e/RqdbfUI31mM/w73rnyX9XwZ5IZvYJPilfdPlfqHAGZqvq32pErZkudVruci0PPTH8X0nmBr0P/KV6/p2sFkMxzSxDVZQHq4PVlIezvdtjyRmbafWFaq9DB5vhlQ21fA1Cf7XoO8/RfZE3XqsbsPnNeF/EvaE+cR6hY5KqmNhI6JeSqbsf1e0Uc6bPbT7na7/CNXf4D8VkKmVX+KpD8vU4D8dkKmSUUim6tjeclEvtc5kXzjTztNmgYtp93vgDV+T4D8bkKnBLPHUZ4kH5+cDMl1J9eom09DeKfIz4mbLcVWgHPsIVP0Ur8OCdkZ/ob6Vp61Uzuj0O6273HYG/xXRdsonxTIK+fuQLu8vIB+qXjwPMvivAp9fpbGhB/PmpWrejHwu8dTL+GF49gtgu4fWnSM9rE+ddSf7BeZ43SnrE7oVMnQ7fp7YL6D8iqo+OLdKXZ+BkvUJ+QWwPnPgt1k6l36B0Do6kV9g6Vz6BVZQXgZ5HEuO82jfOhnz8CyL8qGzXVf+ePUlKIO3tvDNdXHfb0bbFcyqOYRaH6kbWnl91AacF3nmeliv0BwiND9FfpRMec6GvIdsv72rqbv9Snex/qy73ebiZdcBfBMujn2+vVWWr8/moY1g/Vd6yuvvPPFZPvy1MoY3TwMC3vKQH2yvPKHfqCFw8VeBDP5c8PvkCWO80R4wfb6ZX/GtfEKZwNUQ7/CM0ljfNM/19PX+92dEs+x9qxf2zeQV7Wcv7lsti/9rAzdt6vuVd5/WDb9q7waV4S8xMXwf5CP8i8F3tJ7m03yGzN5tDsBlnl/FM/IT0rWGgDfagwLe8tBO8Bk2HH8aAhfutSP8RuqD2G/wNm+mj+Op8/Dti9VhXA3xDvvg1aT3Fc/eZEZbnR9SulWnLwx/+tdu/B//dO/ZMV/viLn6cMDNHMtL1j36vOx83UFR81xVJ6PySE+dKw3deWG41J0oMV9wuIP8DanuRLmF9KRXZ/HQ7nTTx7k+v11XH5V+hPRxrs9vLxV5hstsru/8No6ZCH836SPOC1kf1f0P6isiOW8TpI91xs3Q2Uv2tXU7C8gxXlg+dB10njouLrH9QByGe4Dq0HFRKbpvzNdZcKtf1avF81ibQTe77+EVyL74r6XEQ0V7cFq3c7j307pafc1HnX3lseD3YD76oAenc1qPzRepzqGyHHg+1nFxie0O4qjZztF6bPhbbnafrKLHsV9CqhkzP0OPsZ+gHvviS9kfNdCF503Fb+hMsjrLG4o1TPQlo7GyPkTVPghvdVXxmzFfEYrtXxxzu9i/gulZ2b+62fkPkE1WX0QM2XmD/zWw8z9OOHGMU3poexqhOxXUfDRPHReXYubyFfUiWg/5rrK6c/nYK7Zrzsdm6CHqEeqh7wuIHO/V7RpxtvN9Apea17Ivl2XrXG/sPNaH7Xy3u+TYzquvG6r1AMtBnSfK6H/kAfWUzzc0BC51xqiP8lQ7Dbpwu6t9LJ4PoB1SsuO13icCe0Oxdtvgu8XMcjuosxQqRiqkq4n2NcdS76OzbNT+Ie6Nsf7i3hjvdSIvHNOp9EqNW90+KxWjX2q+yfr130rql1o/xuoXnxeK1a/QnPf5qF++s6isX7jGvb/mXtMXln7j27//X+96b6/2mj62bu0Vw3ecfbQbfjvXc9fkkV277zty96437jtyYPLw4QuL9wNUpuxcZEDwH1/+6GMDjLBUefeYzW3q8G9lKpRP9qnPlfCMd9iwHVNjOM/zKtZlU809lg3K3uA8wTm/nz1Pap8il8cpxXPNtt5UUz4bVjh/+9pe1rnF/2rdlVE9KvIxjn3Nklpv2LuWq9dHMsJn9Lh+9pzbabvnYvpzIeNPW5+XHTM+yCQi3gDvMR8TwzAcw4cmr4PwfqEHi5xT/C7kYJGOm+a5ZrDIYxnRLBsscgHxWnaAjQ0WMZnvuW/f/r277jl81649+w9OvO7bxet5Hl8fqjm+PlRzTDi95j7plPpug/LqbuMGwXEZNDPbAWa7B+Z6gLneA7MDYHZ4YHYCzE4PzA0Ac4MH5kaAudEDcxPA3OSBuRlgbvbAvBRgXuqBuQVgbvHA3Aowt3pgbgOY2zwwtwPM7R6YlwHMyzwwdwDMHR6YlwPMyz0wrwCYV3hgXgkwr/TA/ADA/IAH5lUA8yoPzJ0Ac6cHZhfA7PLAvBpgXu2B2Q0wuz0wewBmjwdmAmAmPDB7AWavB2YSYCY9MK8BmNd4YO4CmLs8MHcDzN0emH0Asw9gGgDzWoB5LcEMuNnTlRL2clvdOKJQbE3NmJBoP7nhb7laY8/UvFX5HlVMuFq/ZJSn7lVW6xd7zqdz1wEcty37WHE+vY/ycPrzWsB/Azz7bKjVC+k7N3vtWFHWr6upd6Mhv72SPfu4YmSfpwcBLtG6+XU1Zbd8hZtNn5cNC315YnObhbw82Qw8G87rAF/+13Fxycqj36eMnbXym6qVn1oXbK5WftTKb6lWfuqz71urld9g/pLPFS/qrhNi4tEq7u8ujx235utbVDX3d0czKo/01Nk2dQ4HZZv/mV3o9+Dy3ctn87yU31TJy+0i3lU8Skw7I161b+vb7y4bT/EglHst4VTthGPBVoI3mfQLeMTHd0ocKH7z+v2BB6evXj6ch6Hc64tn1Xe3AtwDTtc/c2GZxta/z8PrG910/b/s4RX5QV55Hs268HAAbomAY31yTs9ltxC8iplWPPE+5w+66br/gQcnyl/tzfvkzzDMg8E/Bjx8mXD2gwzYvjg3+/txFePXspoxagNqnxHb953wHu1g7PduDP69UO49xbO675ltuIodGXSz79lxrr6dxP1btuVDUIbrnSfW6xGg2yAcCh7v4mkQDmUDDP6Hi99cbl8pntX9RNimP+qhjW2q7hpm2h+Ccj9WPIfuWlVnlHlcHhK8qDiJJsH/pJuWw1NuWg7OzWx7o13P/e+WP3MfCNDh9mX9Uee+EZ7jC7qd+2bdRV0ZpDyU8RDRUTEeKO9NVMc+QUfZiZFAfVk/Mje99ur3wPO9Sgb/0eJXjQNt4E/1qaYH569CuY+7mfXHdrwO4D7loY31b4j6GPyoqD/Ct4lXg/9156//iKg/8rWRcBr8bwDOpzx8Yr2UTbX36oz+qKiXusPHyrLsuW6fCuDgeyKM3qDTOtEiXtW9YpmbWXfVt9uC11BbtwUdbuvfLX6xrdXYxfcXKP6w33MfV3ch4LhRc+v0oQx4MdwNAenbOv1i8btQz9n3Orbq5E9MfuGap/76qV7hX9I8+Uc6H371jufyPQR/VvzmuvfnxTP7apFe/u7vAnCZ51fxjPzYu4V+D8G3it+FfA/BXxfP83EPwfHF8+4jR3ZP3L1r/+SBXUcOTodb2PeD5znc4kDNcIsDNbcSVqQKt9gB5UPhFr4QiAbA+EIgEMYXAoEwvhAIhPGFQCCMLwQCYXwhEAjjC4FAGF8IBMLcBjC3eWB8IRAI4wuBQBhfCATC+EIgEMYXAoEwvhAIhPGFQCCMLwQiz6+5Xb4jxbYl9hHD4Vzt7fLobYfn2nb5JQDHbRvaLv8BysPh/VWA/2p4ZjfRHIVa31nTzo/2KtTaZF8z1PrOmvIZDYVa89TUOT2lm+8t8auK34W8Jb4OeFZb4iXarFNzSzyruSU+WnNLvG+et8QbVn5btfJtK7+9WvkRK399pfLZ1BGIrxVven1NU0Z0enX9Dtv8imEETeN5APhglzDjz/9awGODcCh4nm8w/laa+jiuD26thK6SYLdGx8WRq3mdwgBvcb6t+M3bmsOBbQms2ihPPG8YIp4YJiYsAJfdfPzU4HEe89eEU7khlY7b+25bILythHUY8dBGHVWfeLI2RHdsFZ3D7Qrl4uXriA3+bsJjLjJsZ3X9r8GPCrrqynd2LRvdvN3+1lOXJYKHPF3nqcs9UO51xTNfP4P9L4e710N7mdN9dziAdyQCL9ZJbc9yne6DcoeJdr+nTvd7aOMWxECgTv2eOt0PcM7pdU6Kbc7/Tfzg3C5mm9M3FyzTx9U2Z5mrhjJBB3nhfmS4+z3who/t36PFby63JdlM/paI8vk7s/Pqugwug/6tkN1Xa9NQWAfOuZVt3k71NfgvQbn3EE4r77O5uFbgulaxuejqb3hwqjr8W8JjfRdlnAk8rCtIF+csbHP7iS7a3JCu5UmtW/PUcXGJ9QJx1GyHFsrIkvIH8ZWhWTV6wStDkQeeH1f0dw3EXDOkrsFROtPowrOtUUNXTjUEboar6Sc5gWU8GEEX6+6r32aqH+Lqp3I+OSLehuAvFPKH14yGbEWsjm0N1GcJlVtSsT7qGhrmb8B1l1tM+2wJ1KdO+/jkzVcVKf+fmudgvZ1LO8+pc3UWfwaH17DGs5JZx0WlJSFe2KbmScl2KZVTsuW2jLUFNW1Pf2z9+qh+jUD9fP7abn1PhcRlbnZ9Q328ZnsvXajtzbZI9fWYOa2vPnyVlMIV0guuj2ovto95UvYGx408pbQ3GQCwjLrNF0wn+fNMWN+Qj9LCbVhuDItriBAfTYK30GT0C4X2iHohX9Qzlq8aDxGe5zfqiAv70PKkPmm4lPJU/ALrKtJBeW+kOir9x/VezdC9AxnwYrgbAtIXuvf14vfZ/omcXofW9TL0za5+ydvuH4rnbqFvzcwPl3l+Fc/Ij71b6KFvfQWChRz69l03sw5zGfrW6zDZU4vnvZN77rtr1/6Dd+3afejQ7gd2HTy0e2L/5K43Htp9772ThywyaZ4j7O4cYISlyteOvDgpVYQd7pKHIuw2Qlksg5qzCWA2eWA2A8xmD8wWgNnigdkKMFs9MIuXMM18ZpjFS5hmPjPMQrmEKXRpZ83V96aaduSEHkYenhgz00D8CyHyMBT9Fht5eDXAcdsavppehlfVbPesh+3e92xsd56hpmh3xI+z+63wbGNWzQjkO2vaEbdC0OeZ7kKPlERveJ4WYqTkBjfNc81Iycwi5XgO0SR+sC2Zf9RhhG8I+HxVY/IrLuTdmE/2dxy8y1Fis5J5WDyByl3nYS0L4EX8+P4EeqccM4g7wXWzdxquqo4Xm1r12vFiQcUHDh7Z95oHdh2ePLLrnn0Hdh2afMPkoSP79jy9Xju8b+/krsnXvGZy4siuiYP3HTgyeYiWcnaWap6XcptqLuU21TSdc3b3e7elXJ7f7X74YXhGR0mNoWdTL4ceM3Gmz7kJurB4vvfQvjfsPjJ5wzMqfMvkkZ37Drx0Sn9veVp9Nz2jvdcdU16mqiyGet9wSSzDprqW4bjit9eWYW3xXFiGyQOvv2/yvsm9u+69b8/+fRO7XnPfgYkj+w4e2DWxe/9+swQnF2Xm2RJsrWkJttacVDdrTpylJVDb792cMQ3X3RmTp5C1UEejNlFeQ9BXCwujiz05f15RPNe0QFvnwgKtLv7PLdA5xfMMC7Sp6Ck3PdNRNhf95LqnuwmT802OmDRWBf9vCjyceECyqtQ0Y1vrmrGTit9emzHzRj9jpop2mjZe+/IR4cDu/Xa7/zwbrh01DdeOmoZnSd0zHEYXvcYqzrqM4fJ5iBHG5yHOkzJuvmuSkA9l3Dhetyl4U/vXxhMakPz5BCiTJ/ZcYx56rBOdG91ec/eiL3TVcN1Vbc3zf31msM1I9/BK1wb296mX9A7xz/WVrvlgZRa3MIL5gHTTsUcbo5BTxN4napLN5GiGb8N54MqMafb/EoHXV57fMb8qOgOlZZqqLjrso3INwo202dfCfDYC+DPKb3ThOSbyOMF4v6PueG/LiV6P99bbi2XLxKHJpxV8764D9+3fv+81+2b5Lmw1tei7qDWQJPtu3RA8m4/i2eCXsIN5uaG178vNWBVcd0wRbzA9ZCJsJzPx3gjOtwvCZjC97ssm1L37Dj3tv9n3hsmn5+u5X4c/Oroa8FTptKuqlZ9hhx3xgnjZuLgSNCxhW3HiyDHeq2DjVIJ+5uMjE8C2jF8F70weNvvAtjwyedfTBvn19z3dQSYPHGFuK57Lnrp3YVm18rJVMe5rGRMsftUqPPP830e/IdgsgHdI5BlOaw3kd5DyplvjyMFdh3bv3Xe/9UmTYtW4JCtfdYZr5avOyFUr4myZ46LY/iJN46Xipd2DmaCv9ge5pQ1GaVYf/d+k940IWKVZlqf2R2MiQdV+qtJSljvqm8LFe72sH3XbaIWgabz9/1k+H5RVbhIA",
3938
+ "debug_symbols": "tP3driU9c52J3ouOfZAMxh99KxsbhtrtbggQpIbt3ieG733PDJIxoqq0WLnmXN+J6vleVcXIJBljZpKR5P/6p//zv/0f/+///V/+5d/+r3//H//0n/8//+uf/o///i//+q//8n//l3/99//6z//zX/79317/9X/903X/n8b/9J8bef/f/+mf2v2/B73+93/6p9HnHzz/kPmHzj9s/uHzjxF/tOtaf7b1J60/+/qT15+y/tT1p60/ff254rUVr614bcVrK15b8dqK11a8tuK1Fa+teLTi0YpHKx6teLTi0YpHKx6teLTi0YrXV7y+4vUVr694fcXrK15f8fqK11e8vuLxiscrHq94vOLxiscrHq94vOLxiscrnqx4suLJiicrnrzi9ftPWX/q+tPWn694ev855p96rT9f8cb95x3v/ovaN/AG2aAbbMN9lXzDWGDXhraBNvQNvEE26AbbsCPbHVle4NeGtuGOfN+89w284RWZAnSDbfANY8G4NrQNtKFv4A078tiRx458pxDdzXIn0Q10Z9GEtoE29A28QTboBtvgG3bktiO3HbntyG1Hbjty25Hbjtx25LYjtx2ZdmTakWlHph35zi6SG2SDbrANvmEsuHNsQttAG/qGHbnvyH1H7jty35H7jsw7Mu/IvCPzjsw7Mu/IvCPzjsw7Mu/IsiPLjiw7suzIsiPLjiw7suzIsiPLjqw7su7IuiPrjqw7su7IuiPrjqw7su7ItiPbjmw7su3ItiPbjmw7su3ItiPbjuw7su/IviP7jnznIPkNskE32AbfMBZEDga0DbShb9iRx448duQ7B3u7wTeMCf3Owa43tA20oW/gDbJBN9gG3zAWtB257chtR27LN3rjDbJBN9gG37AcqdO1oW2gDTsy7ci0I9852McNtsE3jAV3Dk5oG2hD38AbZMOO3HfkviPfOcjXC+4cnNA20Ia+gTfIBt1gG3zDjiw7suzIdw5yv6Fv4A13ZLtBN9gG3zAW3Dk4oW2gDX0Db9iRdUfWHVl3ZN2RbUe2Hdl2ZNuRbUe2Hdl2ZNuRbUe2Hdl3ZN+RfUf2Hdl3ZN+RfUf2Hdl3ZN+Rx448duSxI48deezIY0ceO/LYkceOPFZkvq4NbQNt6Bt4g2zQDbbBN+zIbUduO3LbkduO3HbktiO3HbntyG1Hbjsy7ci0I9OOTDsy7ci0I9OOTDsy7ci0I/cdue/IfUfuO3LfkfuO3HfkviP3HbnvyLwj847MOzLvyLwj847MOzLvyLwj844sO7LsyLIjy44sO/LOQd45yDsHOXJw3DAWRA4GtA20oW/gDbJBN9iGHVl3ZNuRbUe2Hdl2ZNuRbUe2Hdl2ZNuRbUf2Hdl3ZN+RfUf2Hdl3ZN+RfUf2Hdl35LEjjx157MhjRx478tiRx448duSxI48VWa5rQ9tAG/oG3iAbdINt8A07ctuR247cduS2I7cdue3IbUduO3LbkduOTDsy7ci0I9OOTDsy7ci0I9OOTDsy7ch9R+47ct+R+47cd+S+I/cdue/IfUfuOzLvyLwj847MOzLvyLwj847MOzLvyLwjy44sO7LsyLIjy44sO7LsyLIj7xyUnYOyc1B2DsrOQdk5KDsHZeeg7ByUnYOyc1B2DsrOQdk5KDsHZeeg7ByUnYOyc1B2DsrOQdk5KDsHZeeg7ByUnYOyc1DuHBS6QTfYBt8wFtw5OKFtoA19A2/YkceOPHbksSOPFVmva0PbQBv6Bt4gG3SDbfANO/Kdg9JvaBtowx1ZbuANskE32AbfMBbcOTihbaANOzLtyLQj045MOzLtyLQj9x2578h9R+47ct+R+47cd+S+I/cdue/IvCPzjsw7Mu/IvCPzjsw7Mu/Idw6K3jAW3Dk44Y5sN9CGvuGOPG6QDbrhFVnv/or5mICxIGZk+Ia2gTb0DbxBNugG2+AbxgLbkW1Hth35zkG9r/nOwQmyQTfYBt8wFtw5OKFtoA07su/IviPfOah+g23wDWPBnYMT2gba0DfwBtmwI48deezIY0W269rQNtCGvoE3yAbdYBt8w47cduS2I7cdue3IbUduO3LbkduO3HbktiPTjkw7Mu3ItCPTjkw7Mu3ItCPTjkw7ct+R+47cd+S+I/cdue/IfUfuO3LfkfuOzDsy78i8I/OOzDsy78i8I/OOzDsy78iyI8uOLDuy7MiyI8uOLDuy7MiyI8uOrDuy7si6I+uOrDuy7si6I+uOrDuy7si2I9uObDuy7ci2I9uObDuy7ci2I9uOfOegtRvaBtrQN/AG2aAbbINvGAvGjjx25LEjjx157MhjRx478tiRx448VmS/rg1tA23oG3iDbNANtsE37MhtR247ctuR247cduS2I7cdue3IbUduOzLtyLQj045MOzLtyLQj045MOzLtyLQj9x2578h9R+47ct+R+47cd+S+I/cdue/IvCPzjsw7Mu/IvCPzjsw7Mu/IvCPzjiw7suzIsiPLjiw7suzIsiPLjiw7suzIuiPrjqw7su7IuiPrjqw7su7IuiPrjmw7su3ItiPbjmw7su3ItiPbjmw7su3IOwd956DvHPSdg75z0HcO+s5B3znoOwd956DvHPSdg75z0HcO+s5B3znoOwd956DvHPSdg2Pn4Ng5OHYOjp2DY+fg2Dk4dg6OnYNj5+DYOTh2Do6dg2Pn4Ng5OHYOjp2DY+fg2Dk4dg6OnYNj5+DYOTh2Do6dg2Pn4Ng5OHYOjp2DY+fg2Dk4dg6OnYNj5+DYOTh2Do6dg2Pn4Ng5OHYOjp2DY+fg2Dk4dg6OnYNj5+DYOTgiB/kG2+AbxoLIwYC2gTb0DbxBNuzIsiPLjhw5KPfK8LWhbaANfQNvkA26wTb4hh3ZdmTbkW1Hth3ZdmTbkW1Hth3ZdmTbkX1H9h3Zd2TfkX1H9h3Zd2TfkX1H9h157MhjRx478tiRx448duSxI48deezIY0V+rbJfSS2JknoSJ0mSJlmSJ6VGS42WGi01Wmq01Gip0VKjpUakpQWNTZGYk14afgVRUk/iJEnSJEvypLHpTtFFqdFTo6dGT42eGj01emr01OipwanBqcGpwanBqcGpwanBqcGpwakhqSGpIakhqSGpIakhqSGpIakhqaGpoamhqaGpoamhqaGpoamhqaGpYalhqWGpYalhqWGpYalhqWGpYanhqeGp4anhqeGp4anhqeGp4anhqTFSY6TGSI2RGiM1RmqM1BipMVJjbI0op1nUkiipJ3GSJGmSJXlSarTUaKnRUqOlRkuNlhotNVpqtNRoqUGpkXneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWeU+Y5ZZ5T5jllnlPmOWWeU+Y5ZZ5T5jllnlPmOWWeU+Y5ZZ5T5jllnlPmOWWeU+Y5ZZ5T5jllnlPmOWWeU+Y5ZZ5T5jllnlPmOWWeU+Y5ZZ5T5jllnlPmOWWeU+Y5ZZ5T5jllnlPmOWWeU+Y5ZZ5T5jllnlPmOWWeU+Y5ZZ5T5jllnlPmOWWeU+Y5ZZ5T5jllnlPmOWWeU+Y5ZZ5T5jllnlPmOWWeU+Y5ZZ5T5jllnlPmOWWeU+Y5ZZ5T5jllnlPmOWWeU+Y5ZZ5T5jllnlPmOWWeU+Z5VBE5BWmSJXnS2BR5PqklUVJP4qTUGKkxUmOkxtgaUVS0qCVRUk/iJEnSJEvypNRoqdFSo6VGS42WGi01Wmq01Gip0VKDUoNSg1KDUoNSg1KDUoNSg1KDUqOnRk+Nnho9NXpq9NToqdFTo6dGTw1ODU4NTg1ODU4NTg1ODU4NTg1ODUkNSQ1JDUkNSQ1JDUkNSQ1JDUkNTQ1NDU0NTQ1NDU0NTQ1NDU0NTQ1LDUsNSw1LDUsNS43I8x5kSZ40NkWeT2pJlNSTOEmSUsNTw1PDU2OkxkiNkRojNUZqjNQYqTFSY6TG2BpRuLSoJVFST+IkSdIkS/Kk1Gip0VKjpUZLjZYaLTVaarTUaKnRUoNSg1KDUoNSg1KDUoNSg1KDUoNSo6dGT42eGj01emr01Oip0VOjp0ZPDU4NTg1ODU4NTg1ODU4NTg1ODU4NSY3IcwmipJ50a3iQJGmSJXnS2BR5PqklUVJPSg1NDU0NTQ1NDU0NSw1LDUsNSw1LDUsNSw1LDUsNSw1PDU8NTw1PDU8NTw1PDU8NTw1PjZEaIzVGaozUGKkxUmOkxkiNkRpja0Rx1KKWREk9iZMkSZMsyZNSo6VGS42WGi01Wmq01Gip0VKjpUZLDUoNSg1KDUoNSg1KDUoNSg1KDUqNnho9NXpq9NToqdFTo6dGT42eGj01ODU4NTg1ODU4NTg1ODU4NTg1ODUkNSQ1JDUkNTLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfPcMs8t89wyzy3z3DLPLfPcMs8t89wyzy3z3DLPLfPcMs8t89wyzy3z3DLPLfPcMs8t89wyzy3z3DLPLfPcMs8t89wyzy3z3DLPLfPcMs8t89wyzy3z3DLPLfPcMs8t89wyzy3z3DLPLfPcMs8t89wyzy3z3DLPoyZstCBPGpvuPF/UkiipJ3GSJGlSakhqSGrceT4oqCVRUk/iJEnSJEvypLHJUsNSw1LDUsNSw1LDUsNSw1LDUsNTw1PDU8NTw1PDU8NTw1PDU8NTY6TGSI2RGiM1RmqM1BipMVJjpMbYGlFItqglUVJP4iRJ0iRL8qTUaKnRUqOlRkuNlhotNVpqtNRoqdFSg1LjzvPBQZTUk24NDZIkTbIkTxqb7jxf1JIoqSelRk+Nnho9NXpq9NTg1ODU4NTg1ODU4NTg1ODU4NTg1JDUkNSQ1JDUkNSQ1JDUkNSQ1JDU0NTQ1NDU0NTQ1NDU0NTQ1NDU0NSw1LDUsNSw1LDUsNSw1LDUsNSw1PDU8NTw1PDU8NTw1PDU8NTw1PDUGKkxUmOkxkiNkRojNUZqjNQYqTG2RhSrLWpJlNSTOEmSNMmSPCk1Wmq01Gip0VKjpUZLjZYaLTVaarTUoNSg1KDUoNTIPB+Z5yPzfGSej8zzkXk+Ms9H5vnIPB+Z5yPzfGSej8zzkXk+Ms9H5vnIPB+Z5yPzfGSej8zzkXk+Ms9H5vnIPB+Z5yPzfGSej8zzkXk+Ms9H5vnIPB+Z5yPzfGSej8zzkXk+Ms9H5vnIPB+Z5yPzfGSej8zzkXk+Ms9H5vnIPB+Z5yPzfGSej8zzkXk+Ms9H5vnIPB+Z5yPzfGSej8zzkXk+Ms9H5vnIPB+Z5yPzfGSej8zzkXk+Ms9H5vnIPB+Z5yPzfOw8p2vnOV07z+naeU7XznO6dp7TtfOcrp3ndO08p2vnOV1XarTUaKnRUqOlRkuNlhotNVpqtNRoqUGpQalBqUGpQalBqUGpQalBqUGp0VOjp0ZPjZ4aPTV6avTU6KnRU6OnBqcGpwanBqcGpwanBqcGpwanBqeGpIakhqSGpIakhqSGpIakhqSGpIamhqaGpoamhqaGpoamhqaGpoamhqWGpYalhqWGpYalhqWGpYalhqWGp4anhqeGp4anhqeGp4anhqeGp8ZIjZEaIzUiz0cQJ0mSJlmSJ41FUQ+3qCVRUk+6NSRIkjTJkjxpbIo8n9SSKKknpUZLjZYaLTVaarTUoNSg1KDUoNSg1KDUoNSg1KDUoNToqdFTo6dGT42eGj01emr01Oip0VODU4NTg1ODU4NTg1ODU4NTg1ODU0NSQ1JDUkNSQ1JDUuPO89dgCDSgA0finesbG5CAHchAAUJNoaZQi+2u2nVjbHi1sCWOa25ERVFr1hbeYm1utiRABRrQgWNjlJdtbEACdiADBahAAzoQag1qDWoNag1qDWoNag1qDWoNag1qBDWCGkGNoEZQI6gR1AhqBDWCWodah1qHWodah1qHWodah1qHWocaQ42hxlBjqDHUGGoMtdgirmmgA0di7BW3sAEJGGoWyEABKtCADhyJkW4LG5CAUIt0ax4owFAbgQZ04Eic6TaxAQl4q93bIVEUqm0UoAIN6MCRGHvOLbzV5uZnse/cwg4MtWhfF6ACDejAkRim0a/ABiRgB95qsdFVVK9tVGDEvd0qitVevxiBEWH+14hggQJUoAEdOBLDH7oHNiABO5CBAlSgAR04Eglq4Q/37lMUxWobbzWO2wx/WChABRrQgbfavYsURdHaxgYkYAcyUIAKNKADoRb+wNEt4Q8LQ00CO5CBAgy1aIfwh4UOHInhDwsb8FaTK7ADGShABRrQgSMx/GFhA0It/EFaIAMFGPcWQy78YaEnzp0lJ0aE6M3IbonWmZtI3knW5zaSExuQgB14B9O4yEjphQo0oANHYqS0xl1ESi8kYAcyUIAKNKADx8aoVtsYahRIwA4MtR4oQAWGmgSGmgaG2p2FUbe2sQEJ2IEMvONaXGQk+sKRGIm+sAEpMbLw/mCRoqps4y1hcb2Rb/fnaBRFZBtHYuTbwgakxMgLi+uNvFjYgQwUoAIN6MCRGHmxEGoKNYWaQk2hplCLX0i78zhKvNpdO01R49U8ujvyYqEA7wge3R3ZstCBIzESZ2EDRtzogEgGjw6IZPC4skiGiZEMCyNCNHUkw8IOZKAAFRhqcceRDAtvtXHffJR0bWzAO+69lkdRrdXuRReKcq2Ncb33WI+CrdekZ2ADErADIy4HClCBoSaBDhyJBDWCGkGNoBa/bwtl90UUcG00oAOzN6OIa2PfXRjlWbMLoz5rdlYUaG3M3owSrdkXUaO1kYAdyEAB6u63qNTa6NlZjN4U9GZk4ezCyLfZb4LejHybXRj5NhtK0b6K9lW0b+Tb7CxFbyp6M/JtdpaiNxW9qVAzqBnUDGqG3oxkGNEkkQwLOzAuJ1onkmGhAg3owLFRZzJMbEACvtReb4+BDBSgAg3owHHjfb1RAbWxAQkYah7IQAGGWlxZbJO60IG3Wrxr69wsdWIDEvBWi1fwqH16vcEGGtCBIzG2K773oKYogKJ7z2mKCiiK16gogdrIQAGGWtxxbF680IEjMbYwjleYKICieOuICqjXe2vgLREP9FED9XpPCVSgAR04EmMv44UNGGrR6rGj8cJQi8uJXY0XKtCADhyJsb/xwgYkYAdCTaGmUFOoKdQUagY1g5pBzaAWex/Ha1RUSG1UoAEdOBJjH+SFd9x45YqiqI0CVKABHTgSYxfkhQ1IQKgNqA2oDagNqA2ojVSz6wI2IAE7kIECVKABHQi1BrUGtQa1BrUGtQa1BrUGtQa1BjWCGkGNoEZQI6gR1AhqBDWCGkGtQ61DrUOtQ61DrUOtQ61DrUOtQ42hxlBjqDHUGGoMNYYaQ42hxlATqAnUBGoCNYGaQE2gJlATqAnUFGoKNYWaQk2hplBTqCnUFGoKNYOaQc2gZlAzqBnUDGoGNYOaQc2h5lBzqMFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJTa9pAc6cGz0aSBXIAE7kIECVKABHZim6+0CQq1BrUGtQa1BrUGtQa1BrUGNoEZQI6gR1AhqBDWCGkGNoEZQ61DrUOtQ61DrUOtQ61DrUOtQ61BjqDHUGGoMNYYaQ42hxlBjqDHUBGoCNYGaQE2gJlATqAnUBGoCNYWaQk2hplBTqCnUFGoKNYWaQs2gZlAzqBnU8NjheOxwPHY4Hjscjx2Oxw7HY4c71BxqDjWHmkPNoeZQc6g51AbUBtQG1AbUBtQG1AbUBtQG1EaqjesCNiABO5CBAlRgqGmgA0fi9BIPbEAChpoFMlCACjSgA281vt0zqr42NuCtxnG94SULGShABRrwVosZ5Cj/WhhesjDUOJCAHcjAiHu/40R112tOKbABCRgRoqHCHxYKMK53BBrQgSNxHrESNzQPWZlIwA6848as8JgHqdyvRmMepTKxAaM3Q2Lm/EQGClCBBnRgqEWjzuNVJjYgATuQgQJUoAEdCDWHmkPNoeZQc6g51BxqkfMS3R3ZHbPjUc61kYAdyEABKtCADhwLe9R1bWxAAnYgAwWoQAM6EGoNag1qDWoNag1qDWoNag1qDWoNagQ1ghpBjaBGUCOoEdQIagQ1glqHWodah1qHWodah1qHWodah1qHGkONocZQY6gx1BhqDDWGGkONoSZQE6gJ1ARqAjWBmkBNoCZQE6gp1BRqCjWFmkJNoaZQU6gp1BRqBjWDmkHNoGZQM6gZ1AxqBjWDmkPNoeZQc6g51BxqDjWHmkPNoTagNqA2oDagNqA2oDagNqA2vUQDx8Y2vWRiAxKwAxkoQAUaMNRG4EicXjIx1CyQgB3IQAEq0IAOHInTSyZCjaAWXnIv8fWoKdsoQE8Mf7jXIXvUi22MCBLIQAEq0IAOvK9Xo0nCHxY2IAFvNQvh8IeFArzVLK43/GGhA281oxvDHxY2IAFDrQeGWlxvOIFFH4cTLByJ4QQLI64HRty4i3ACj8sJJ/BQCydYqEAD3moelxNOMDGcYGED3moe1xvp73E5kf4ePR/p73E5kf4jJCL9F47ESP+FDUjADrzVRlxDpP9Cy2HkGFGR8xMj5xc2IAExUgdG6sBIjZxfCLUBtZFq8yDFhQ0YNySBHcjAuCENVKABHTgSI+cXNiABO5CBUGtQi5wfHujAkRg5v7ABCdiBDBSgAqFGUCOodaiFP9wrTH0du8iBAlSgAR04EueTwsQGJGAHQo2hxlBjqDHUGGoCNYGaQE2gJlATqAnUBGoCNYGaQk2hplBTqCnUFGoKNYWaQk2hZlAzqBnUDGoGNYOaQc2gZlAzqDnUHGoONYeaQ82h5lBzqDnUHGoDagNqA2oDagNqA2oDagNqA2oj1fp1ARuQgB3IQAEq0IAOhFqDWoNag1qDWoNag1qDWoNag1qDGkGNoEZQI6gR1AhqBDWCGkGNoNah1qHWodahBi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML4nd4uiuW+lR6rfRgSMxvGRhAxKwAxkoQKgx1BhqDDWBmkBNoCZQE6gJ1HKGs/P0kokvtdfP2X+6cSTeXrKxAQnYgQyUGylQgQYMtR44Eu0ChlpcmRGwA6PfItj0kokKNKADR6JfwAYkYAfGbLMEGjDuIgaMj8RxARuQgB3IwGgzDVSgAUPNAsfGKELcGGoSSMAOjJl0DRSgAg3owJHYLmADErAD4y480IAOjLu4x2SUJm5swPsu7gqrHqWJG+82u4utepQmblTgrXZXWPUoTdw4EuOI6oUNSMAODLUeKEAFGtCBIzHKGONNeBUscuAuAOyzYHGhAg3owJE4CxYntlUh2GN/uY0dyEBZFZh9FjcuNKADR2IUNy5sQAJ2IHpe0fOKnlf0vKHnDT1v6HlDzxt63tDzhp439Lyh5w097+h5R887et7R846ed/S8o+cdPe/oeUfPD/T8QM8P9PxAzw/0/EDPD/T8yJ5ftZYTs+dXreXEDmRg9nzUWm40oAOz56PWcmMDErADo3XiyiLnFzpwJEbOt/hnkfMLCdiBUd57BQpQgQZ04Eic5cgTG5CA0ccaqEADOnAk8gVsQAJ2IAOhxlBjqDHU7px/vY3deOf8xgYkYAcy8FajaPU75zca0IGhFq0ev/4LGzDULPBW6yERv/4LBahAAzpwJIYTLGzAW+0uEepRYLkx1ChQgAo0YKjFpYcTTAwnWNiABOxABgow1KKHwgkWhlq0TjjBxHgmWNiABAwJDxSgAg3owFviXuzvUWu5sQEJ2IEMvNXuj9N61FpuNKADR2K7gA1IwA5kINTCKu4igh61lhsdGGr3mIxay40NGGoaGGoWGGoeKEAFGtCBI3EWRQX1JE6SJE2yTZHBd9VBj2LHjSMxnt+j5ePxfRIl9SROkqQ74l2m0KN0sceTe5Qu9kk9iZPisTJIkyzJk8am+YscFCLRW5GGC28VibuNNFwowLjM6KJIrVhqiyrEjfGKEhQBogsjsxYq0IAOHLtJRjbnyOYc2Zwjm3Nkc0YiRSPG3m6zEaO6sMcCWFQXboxb9UAGxpWOwNeV8oxlSZ40NsUB9pNa0h1RJ97XFCsOUSsY4z9KBSfFIfWT7n9NQZTUkzhJkjQpRCY68O53jeDxWLywAeMyOTAiSKAD7+uMa4/fwtkw8Vu4kIAdGGE1UIAKtGzwyKSFI1GgJlATqAnUBGoCNYGaQE2gJlBTqCnUFGoKtci+hbKGehT9zeEbRX8bHTgSIwUnxu+UxiVEMi0kYLylBnGSJGmSJXnS2DSnuoJaEiWlxkiNkRojNUZqxG9UrL9GCd7EKMHbeN9MrKlGCd7GuxFjXTdK8DYKUIEGdOBIjN+oWKCNEryNBLzVYjE3SvA2CvBWi2XbKMHb6MBYdL0pZrgmtSRK6kmcFBFvn4mCuh5rwlFQ12NNOArqNnYgA+8rjUXj2FZtowEdOBLnknrQLRYryVF7t7EDb7F4bYnau40KDLEZzIEhFrcWWbqwAWP8BvUkTpIkTbJNkYkejRU5FyvWUXXXRwyt+MlbqEAD3lca72VRdbcwkm5hAxLwVgux+N2bJEnRKEGW5EljUyT0pJYUIjHk4rFzIQMtMR4l4+Uvyuo2xlgJ6kmcFFcZrRePlAsNGC0S1xLpeiNHTV2/Jw05auo23r889zwfR00d3/NxHDV1fE/ucdTU8T3jxNf8fZxoQAeOxPkbObEBCRhqGhhqFhhqcb0t1OIi48ezxUXGr+fCBiRgBzJQgBEsbrNfwAYkYAcyUIARLBqK45/1wA5koADve4tbu1NukSeNTXe+LWpJlNSTOEmSUkNSQ1JDUkNTQ1NDU0NTQ1NDU0NTQ1NDU0NTw1LDUsNS4042ju6/k22RJ41Nd7ItakmU1JM4SZJSw1PDU8NTY6TGSI2RGiM1RmqM1BipMVJjpMbYGlGRtqglbY0oEOP7TZ+jQIzvaQOOAjG+n3k5SsH4/siTo3qL7zd9jg3AFsawXhiPmBHhHtYS/+oe1Ys4SZI0yZI8aWy6f3gWtaTU4NSIsU5xazGw799Ljtqs+/2BozRrESX1JE6SJE2yJE8amzQ1NDU0NTQ1NDU0NTQ1NDXukS3RlvfInnSP7EW3RtzmPbIX9aRohREYrwLRwTGie/RqDOmFBOxABgpQgQZ04EgcUBtQG1CL4d2j12J8LxSgAg3owLExarA2NiABO5CBAlSgAR14d8PdplGCtaglUVJP4qSIeLsxzTcyDnz9a43Y90/Kop70+tf3ix1HNdUiTbIkTxqb4lflfubhKJni+7eco2RqowHjFj1wJPIFbEACdiADBahAA0KNoRY/Pfe7LUfJ1EYC3moc7RI/PwtvNY5mjR8gjmaNXyCOm4+foIUjMX6EOITjV2hhqEV3xe+QhPCdrhph73RdpEmW5EljU/zoSHTI/bDHYVFRAMUy/4IBHXhfaZhAFEBtbEACdmDEjRuMNAwriKImlrjBSMOFBOxABgpQgQZ0YKjdDRdFTRsb8Fa7pys4ipo2MlCAt1oM4ihq2ujAu3nvW4uapkUt6U4kDepJnCRJmmRJdxd60Nh0Z+ui+34iM6OQaWMHMtAS4+fxng7hKE7aGBE4sAMZ+LpSi/u9k3aRJXnS2HQn7KKWREk9iZNSg1ODU4NTg1NDUkNSQ1JDUkNSQ1JDUkNSQ1JDUkNTI3LznijiKEHa2IHRXtHv8ZS4UIHRDzEG40FxYTwbRe/Eo+LCBiRgB8ZDWHRfZPPCeAyLPpvPk3Fl84EyRtV8ogycj5QTQy0ucj5UTuzAuwkj7P37u0iTLMmTxqb5CBmjdj4vxm1HHnskWeTxQgeOjVFQxPd7PEdB0UYCdiAD70uVoJfYChVaHBhaGjgS93GSzPtoCua9nS3z3s6WeW9ny1EHxPdsAEcd0MYOZKAAFWjAeIOIS42n2omRtgtpX1VsZzuJk+5rjruL7WwnWVIEj5uL39aJ8du6MN5Q4q7it3VhvAdFhPhtXShAnVseM+/tq5n39tXMe/tq5r19NfPevpp5b1/NvLevZt7bVzPv7auZJTUkNSQ1JDU0NTQ1NDU0NTQ1NDU0NTQ1NDU0NeYr3cQGJGC0WHRo5OlCAcbLowca0IEjMfI0ZiyivEdixiLKe9Z/7EmcdD/Mx3xGVPxsNKADR+L987yxAQnYgQyE2oDagFrsax03E/ta3xT1PotaEiX1JE6SJE2yJE9KjXg0jrmcqPLZSMAOZKAAFWhAB45ECrUe2IAEFGBEkMCIcI+bqOfZ2IAEjOu1QAYKUIEGdOBIjLfYhQ1IQKgx1BhqDDWGGkONQy36It56F95qMSMVVT4bO/BWi1mmqPLZqEADOnAkxvvvwgYMteiseAVeyEABhhoHGtCBIzHehBeGWtx8vAsv7EAGClCBoRYNZQ4ciX4BG5CAHchAASoQauEJ975aHLU/C8MTFsZkR7RkeEJMxERF0MaYU4kBHp6wMGZVonXCExY6cGyMiqCNDUjADmSgABVoQAdCrUGtQa1BrUGtQa1BrUGtQa1BrUGNoEZQI6gR1AhqBDWCGkGNoEZQ61DrUOtQ61DrUOtQ61DrUJvzYRI4EueM2MQGvKuSIqV1bts9kYECVKABHTgS57bdE+MuNDCu1wINGNfrgSMx/GFhAxKwAxkYce9kiCqf1SSGO46cX9iBDLzbN2bAospnowEdiN50qDl609Gbjt509KajNyPn5zVEzi9Ebzp6M3J+XkPk/EICQm1AbUANOa/IeUXOK3Lerhw7djUgATuQ9zVEwc9GBRriOhBqyHlDzhty3pDzhpy3mfNxDU2BBnRgtmQU/EjMMEbBz8ZoSQrsQAYKMO5tBjOgA0di5PzCBiRgB4aaBgowB3jsqCYxKRc7qi2MRF/YgDk0Yke1jegsRmcxOosN6EB0lqCzBJ0l6CxBZwk6SwSoQAyNSP+Y7IsCpI0EjLuIdoj0j3m/qEHaqEADOnAkhlUsbEAC5oNh7JK20YARN8ZDmMLEMIWYZYz6pI0EvO+Co7vDFBYKMO4iej5MYaEDR2KYwsIGJGAHMlCAUIvzZ+9bi9qlRS3pfgmXoJ7ESRFxBCrQgLEgcgWOxEj8hW2ek8q+T6Fl36fQsu9TaNn3KbTs+xRa9n0KLfs+hZZ9n0LLvk+hZafUoNSg1KDUoNSg1KDUoNSg1Oip0VOjp0ZPjZ4aPTXiNz0mgaMIaqMDo8GiFyLVF8YiEgUSsANjHSm6J1J9YahZoAFDLS4nUn3iXBWbeL8QxtXsQ2nZ96G07PtQWvZ9KC37PpSWfS6BxTCIdI553KhpkpixjZqmjQJU4H2lMTHqc9Vr4kic614TGzDUNLADGShABRow1KKJIsknRpIvbEACdiADBahAA0ItkjzmlaN8amMDxqpetGQkecyIRgnVxlstJiajiGrjrRYTk1FGtXFsjDKqjQ1IwA5koAAVaEAHQq1BrUGtQa1BrUGtQa1BrUGtQa1BjaBGUCOoEdQIagQ1ghpBjaBGUOtQ61DrUOtQ61CLX/6Ypo3Cq40GdOD9/H0FxpdACxuQgB3IQAEq0BLDA2LKNsqpJGano55qY1yvBSrQgA4cifFzv7ABI64Hon0Vdxw5PzFyfmEDRvuOwA5koADRmwY1Q28aetPRm47edPSmozcj5+flOHrT0ZuO3nTcW+R8zIlHIdbGW+0uruMoxNrYgQy81WIqPWqxNhrQgWOhRC3WxgYkYKhJIAN1dZZEAZbcs/USBVgbR2Ik+sK2OkCuRsAOZKAAFWjA3VlyZaLLlYkuVya6XJnocmWiy5WJLlcmulyZ6BIVWnIvBUhUaG1swGioaIdIaY8ri5ReKEAFGtCBIzF+7Bc2YNQMXIECVKAB77j3j7BEFdfCSOmFDbh/miUquTYyUIAKNKADR2Ik+sI+V38kqrcWSdK9eBUNeqf+Ik+K64/RGIm/sAHvZcYYYHfeL+KkaKrQiaxfaECf61ESFV6T7pxf1JIoqSdxkiRpkiWlhqfGSI2RGiM1RmqM1BipMVJjpMZIjbE1osJrUUuKchQN7EAGylqWk9hxbGO0mAc6cCTO0pcR2IAE7EAGClCBBrzX3q+49Fh8nxir7wsb8F7jvxcAJHYc28hAASrwXui/X+4kKtk2jsR4yo+/Gk/5kyipJ3GSJGmSJXnS2MSpwanBqcGpwanBqcGpwanBqcGpIakh0WjRs0LADmSgABVoQAdGo92JG2VvGxsw1CSwAxkYatH1UU2z0BLtAt7FyHE/UTI9KQqhotvMgA4ciXeeb2zA+xJbXO2d6hsZKMBQiwRwAzow1OJqxwVswCjwiuE7OpCBArzV7kl/ibo3vef0JSrc9J5Lkahw20jADoy4GhhxLTDijsA77j33I1HhtnEkRm3NwlvtnkWTKHLb2IEMvNV6XG/U1fS4nEjuew5MYmsx7XE5kdwcEpHcCwnYgQwUoAKjECuuIZJ7Ys9BFPuJbSRgBzJQgCERN9QN6MCo9orb5AvYgATsQAYKUIEGdCDUBGqR5hzdHWm+sAMZKEAFGtCBIzHSfCHUFGoKNYXarJmLnp8FctHzs0IuMNJ8YQNGXA/sQAYKUFeFi8xyuoUOHImzAGdiAxKwA6N1JhrQgSMxcn5hA97XKzE8I48lxuT9C673FI5E4dzEKJzbeEe4J4EkCuc23u1w1wdKFM5tFOB9vfckkETh3EYHjsTI7oUNSMBQ00AGClCBBnTgWMVuEuVysx2iXG4jAyOuBSrQgA4ciZHd9/yVRGndRgJ2YNQAhlpk90IFRhlgdEBk98KRGNk9byiyeyEBQ20Ehlp0S2S3RqNGdmu0TmT3Qk+MPNa4t8jjhR3IwIgb9xYZG4MryugWRsYubMAO3PWiMuvkFjpwV5HKrJNb2IAE7EAGClCBlhg/zRptFj/NCwnYgffNW3RW/DQvVKAB4y6i32YtbOCshZ3YgATsQAYKUIFRvXw31KyWWxiVqC2QgB3IwLgLClSgAR04EmfZ68SozLZAAnYgAwWoQAM6cCTOcvWJcRc9kIECVGDcBQc6cCRG8i6Mu5hIwA5koAAVaEBPjDSNl8+ordvYgQwUoALj7TfIk8YmuZJaEiWtrzGE52xakCRpkiX5pkjYeLONqjm1+V8FqMC49yvQgSMxcndhAxKwAxkoQAVCzaBmUHOoOdQcag41h9rMXQ904EiMn9iF0TojkIAdyEABKtCADoyq7/tyolRuYwMS8Fa7Z+UkyuU2ClCBtjtLZkZPHIkzoyc2IAE7kIECjNJ1ChyJs3h9YtxFD4y74MAOZKAA4y4k0IAOHImR0TFPFqV0GnNUUUq3sQMZKEAFGtCBIzF+jhdCLfJ8xG1Gni9koAAVaEAHjsR42F4YahoYanHH8SO9kIECVKABHTgS46d7YQNCLWbarhhcMdW2UIAKNKADR+LtDxsb8J5vi7f9KKXbyEABKtCADhyJHmoxaL0BCdiBDBSgAg0Y1QxBY9MsqglqSZTUkyJitOyIK73tIArjNt5OdtcjSRTGbexABgpQgQZ04Ehs8RnFFRjfUbRABgpQgQZ04Eik+JyCAhuQgB0Yaj1QgAo0oANHYr+AocaBoSaBHchAASrQgJ590dFDjB6Kb14WErADGShABY71nbzMrbIWNmDchQV2YNxFRJjfukxU4H0XMbEThXEbR2J88ELRAXe2byRgBzLwVqNoncj2hQZ04EiMbF/YgASMuBroa5MAiRI4i2mkKIHb2IFxZTGUI1cXxpVFO0SuLnTgfWXxCBAlcBsbkIAdyEAB3moxERUlcBsdODZGCdzGBqR9x1HsZjHZGMVuGw3owIh7j5IodtvYgATsa+MJmbtbLRSgAg3owJEYu1stjNaJS488XihABcZdSKADR2Lk8cK2NhgRm7uKTOxABgpQgQb0xMjYeGmKWraNHRh3YYECVGDcxQzmwLiLaJL4XG1hA95qMWsYtWwbGShABRrQgfHRVYydyOOFDUjADmTg3WYxQTC31IrpiLmnVswKzE21FjYgATuQgQK8+yLmQaLCbaMDR+LcNCiubG4aNJGAHchAASrQgJ4Ye4/EzE/UshlHDkV2L2SgABVoQAdGX9xJFiVuGxuQgPddxDzI2p5rogAVaEAHjsTYLWhhA8ZdcKAAFRh3IYEOHInx2x0TqVHbtjHuwgI7kIGh5oEKNKADR2Lk/MIGDLUR2IEMFKACDRhtFjfE2fNR1Db7LYraNjJQgAo0oAPR84KeF/S8oOcFPS/oeUHPC3pe0POCnhf0vKLnFT1/p+lraTJu+c7T5F6YC993ovOfjsR4Up4YX3OFvUUt18So5drYgATswLuEL/wvark2KtCADhyJ7QI2IAE7EGrxTWd4ZdRybTTgrRZWGLVcC+Njz4W3WvRd1HKNSJ6o5RqRJlHLNWLoRy3XRgUa0IEj8R76I94FopZrIwE7kIECVKABHTgSGWoMNYYaR9y4t/jQc6ElRvFlTDNFJdbGUIsbiq8zJ8bnmQsbkIAdGPcWAya+0YzZ7NgJa6MBHTgS7QI2IAE7kIFQM6gZ1AxqBjWHWnyTGb+dUYk1InGiEms1qqMvHH0xIgIFNiABO5CBAgy1iQa81XRKjIUalVgb43o5MCJIoAHjelvgWN2iUWi1sQEJGHE1kIEC1NXdGoVWGx0INYIaQY2gFlk4MbJFJ3YgJ8YAv6fyNbas2sjA+yLv+XuNeqeNBrwv0qJJ4hPnifGN8z0frlHvtJGAt5pFq0cl80IBKtCADhyJkU4W/RbptJCAHchAAaK75wfOcW+ROLOHInEWEhAda+hYQ8dG4ixExxo61kaiX8C2skWj+GljBzJQgAo0oANHYqSIxZVFiix04NgYxUwbG5CAHchAASrQgA6EWoNag1qDWoNag1qk071EoFHOtNGADhyJkU4LG5CAHchAqBHUCGoENYJah1qHWodah1qHWodah1qHWodahxpDjaHGUGOoMdQYagw1hhpDjaEmUBOoCdQEagI1gZpATaAmUBOoKdQUago1hZpCTaGmUFOoKdQUagY1g5pBzaBmUDOoGdQMagY1g5pDzaHmUHOoOdQcag41h5pDzaE2oDagNqA2oDagNqA2oDagNqA2Uo2uC9iABOxABgpQgQZ0INQa1BrUGtQa1BrU4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwhe0uElHV7Sp5dYYKh5IAMFqEADOnAkTi+Z2IAEhFp4yb3SrFGgtVGBoTYCHTgSw0vuxWGNXc42EvBWuz/v0CjbGh53HF6yUIEGdOBIDC9Z2IAE7ECodah1qHWodah1qDHUGGoMNYYaQ42hxlBjqDHUGGoCNYGaQE2gJlATqAnUBGoCNYGaQk2hplBTqCnUFGoKNYWaQk2hZlAzqBnUDGoGNYOaQc2gZlAzqDnUHGoONYeaQ82h5lBzqDnUHGoDagNqA2oDagNqA2oDagNqA2oj1fi6gA1IwA5koAAVaEAHQq1BrUGtQa1BrUGtQa1BrUGtQa1BjaBGUCOoEdTgJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLTS0agAg3owJE4vWRiAxKwAxkItQ61DrUOtQ616SUS2IAE7EAGClCBBnTgSBSoCdQEagI1gZpATaAmUBOoCdQUago1hZpCTaGmUFOoKdQUago1g5pBzaBmUDOoGdQMagY1g5pBzaHmUHOoOdQcag41h5pDzaHmUBtQG1AbUBtQG1AbUBtQG1AbUBupptcFbEACdiADBahAAzoQag1qDWoNag1qDWoNag1qDWoNag1qBDWCGkGNoEZQI6gR1AhqBDWCWodah1qHWodah1qHWodah1qHWocavEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCS6I6btxfs2tUx23sQAYKUIEGvNXuwj6N6riF4SULG5CAHcjAULNABRrQgSMxvGRhAxKwAxkINYeaQ82h5lAbUBtQG1AbUBtQG1AbUBtQG1AbqRb1dRsbkIAdyEABKtCADoRag1qDWoNag1qDWoNag1qDWoNagxpBjaBGUCOoEdQIagQ1ghpBjaDWodah1qHWodah1qHWodah1qHWocZQY6gx1BhqDDWGGkONocZQY6gJ1ARqAjWBmkBNoCZQE6gJ1ARqCjWFmkJNoaZQU6gp1BRqCjWFmkHNoGZQM6gZ1OAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlDi9xeInDSxxe4vASh5c4vMThJQ4vcXiJw0scXuLwEoeXOLzE4SUOL3F4icNLHF7i8BKHlzi8xOElDi9xeInDSxxe4vASh5c4vCRq/F6r7S2YCvfCHNyDpbAWtuAR7IUHeO5etbgVpsK9MBeWwlq46HLR5aIbu9Ze98cNGtWAyVS4F+bCUlgLW2EvPMBadLXoatHVoqtFV4uuFl0tulp0teha0bWia0XXiq4VXSu6VnSt6FrRtaLrRdeLrk9dDu6FubAU1sJW2AsP8LgKt8JFd0B3VkHGksasd7y/jdNZ77hwJM7Xk4kNSMAOZKAAFQi1BrUGNYIaQY2gRlAjqBHUCGoENYIaQa1DrUOtQ61DrUOtQ61DrUOtQ61DjaHGUGOoMdQYagw1hhpDjaHGUBOoCdQEagI1gZpATaAmUBOoCdQUago1hZpCTaGmUFOoKdQUago1g5pBzaBmUDOoGdQMagY1g5pBzaHmUHOoOdQcag41h5pDzaHmUBtQG1AbUBtQG1AbUBtQG1AbUBtbzWYl5sIGJOC0DQnmwlJYC1thLzzA7So87cqDqXAvPHU1WAorONdu7cq1W7ty7dZmieZCBgowot3for3YCnvhuIt7TyKLXfKSW+G4C4rWmw8Ri7mwFNbCVtgLD/B8iFjcChddLrrzIeLeEMmu+RBxf6lm13yIWGyFvfAAz4eIxa0wFe6FuXDRnQ8RFD07HyIWe+EBng8Ri1thKtwLc2EpXHTnQ0SP/poPEYsHeD5ELG6FqXAvzIWlcOj2GO3zIWKxg+ePf4+RPH/8F1vhvTZgV66y2JWrLHblKotducpiV66y2JWrLHblKotducpiV66y2DWglqss1nKVxVqusljLVRZrucpiLVdZrOUqi7VcZbGWqyzWcpXF2gW1BrUGtQa1BrUGtQa1BrW2VyJsVqUuHIl0ARuQgLOTIto0hfubEmvTFHr8nWkKi1thKtwLc2EprIWtsBcuulx0uehy0eWiy3uK0Gbp6UIFGtCBI3FOWUxsQAJ2INQEatMI7q9frE0jWOyFB3gaweJWmAr3wnti0mYJ6kIFTtG4mOkCiwd4usDiVpgK98JcODr0/k7H2nSBxVbYCw/wfJVY3ApT4V44bjbue85lTFSgAR04EnMuw6K49BVYgq2wFx7JUWCa3ArPi9XgXpgLS2EtbIXne20LHuD5ILG4FabCvfDUtWAprIXn+3QP9sIDTPN+PbgVpsK9MBeWwlrYCoeuxDVPd5k83WVxK0yFe2EuLIW1cOhK3Nd0C4l2mG6xmAvPOHGd8xFisRX2wgM8HyEWt8JUuBfmwkV3OofG9U/nWOyFB3g6x+JWmAr3wlw4dDXaZz5CLLbCXnjqRltN81jcCk/duJdpHou5sBTWwlbYCw/wNI/FrXDRneZhcY9zHmKxFNbCVtgLD/Cch1jcCs/4HDz//n0NffrG4lY4rvMuyrQ+fWMxF5bCWtgKe+EBnr6xuBUuutM34iWoT99YLIW1sBX2wgM8fWNxKxy691ZD1qdvLObCUnjqRltN31jshadu3Mv0jcWtMBXuhbmwFNbCVtgLF935VDLiHudTyWIq3AtzYSmsha2wg6efjGif6SeLe2EuLIW18IwvwV447uve8Mj69JPFU9eCqfDUjb6YfrJ46kb7TD9ZfOu2e2dni8LT5BF851GUnia34Lj38JPNPbgHc2EJjnsMP9k8deMezQtP3bhHvwpP3bhHp8JTN+7RufDUjXt0LRy6Le4x/GRz6La4x/CTzTlfbn1Q4V6YC0thLTx1o62GFx7JUZj6YgluhalwL8yFpbAWtsJeeIBb0W1Ft834GjzjWPCM48EDTFfhVpgKl+uncv1Urp/K9VO5firXT+X6e7n+Xq6/l3brRbcX3W64R75wj1yun8v1z2P9FnNhKVyun8v1c7l+Ltcv5fqlXL+U65dy/VKuX0q7SdGVoqsX7lE77lHL9Wu5ftXCVrj0u5brt3L9Vq7fyvVbuX4r12/l+q1cv5Xrt9JuVnS96E4fmPc4833eo5fr93L9XsbtKON2lH4fpd/HjD+CuXCu2xgPLWyFc93GZOZ1TOvJzN+YvpOZv/fGTyYzfxdb4bj+mM6Smb+TZ/4uboWpcC/MhaWwFrbCRbcVXSq6M9/vPaxMZr4v7oW5sBTWwlbYCw/wzPfFRbcX3T7je/CMM4IHeOb74laYCvfCXFgKa2ErHLo9+n3m++SZ74tbYSrcC3NhKayFrXDRlal7/xbL9IHFrTAV7oW5sBTWwlbYCxfd6Q8xnSjTHxZT4V6YC0thLWyFvXDoxkyMTH9YHLoxQSLz+YGjfbAuaoJ1UROsi5pgXdQE66ImWBc1wbqoCdZFTbAuaoJ1UZNRdEfRDT9pPFkLW2EvPJJ1Pj8sboWpcC/MhaeuBGthK+yFB3j6z+L590ewFx7g6RuLW2EqHNd5b1ZkOn1j8sz3mEPQme+Le+H59+N6pg8s1sJxnTpjeuEBnv4Q7+M6/WExFe6FubAU1sJW2AsPsBRdKbpSdKc/SLTV9IfFUlgLW2EvPMDTHxa3wlS46GrRnf5w775iOv1hsRX2wgM8/WFxK0yFe2EuXHSt6FrRtaJrRdeLrhddL7pedL3oetH1outF14uuF91RdEfRHUV3FN1RdKc/xJyPTn9YbIW98Ei26Q+LW2Eq3Atz4amrwVN3BFthLzzA0x8Wt8JUuBfmwlK46E6fuXeYMZs+s3iAp88sboWpcC/MhQWc5eRmWU5uluXkZllObja9J+acbHrPYi1shb3wAE/vWdwKU+FeuOhy0eWiy0WXiy4XXSm6UnSl6ErRlaI7vcdivAiWH02ssBeeusHTexa3wlS4F+bCUlgLW2EvXHSn98T8n03vWUyFe2EuLIW1sBX2wqEbc282vWdxKxy6URpg03sWc2EprIWtsBce4Ok9i1vhoju9xyPXp/cslsJa2Ap74ZHs03sWt8JT14KlsBae8UewF474sYzk02MWt8IRP1b+fHrMYi4shbWwFfbCAzw9ZnErXHSp6FLRpaJLRZeKLhVdKrq96Pai24tuL7q96PaiO30p5jJnLelmLzzA05cWt8JhgRw4Q/ZgK+yFZ8j4+9NyFrfCVLgX5sJSWAtbYS9cdKe1xDTrLAdtMbU6y0E3S2EtbIW98ABPa4nX+1kOupkK98JcWAprYQM7pnVm2WeLKeBZ9rm5F+bC8748WAtbYS88wNNCFrfCc7ok4o9emAtLYS1shb3wSB7XVRjTPePCfY1pIYu1sBXGfY0L9zXaVbgVpsK9MBfGfY2mha2wFy73ReW+1rTpZCrcCyvuncp9LauYPMDLKiaX++rlvnq5r17uq0thLWyFy331cl9lOnVwuS8u98XlvpgLl/bk0p5r2jTuXcp9SStMhXvhcl9S7kvKfUm5LynjRMo40TJOtNyXlvsq06xDy31puS8t96VlnGhpTy3tmd+u2MhvV2zktysWhaavqcUrWAtbYS88wGEmm1thKtwLc+Gi60XXi64XXS+6o+iOojuK7ii6o+iOqduCtbAV9sKzcunVcX7NNeDFrTAV7oW5sBTWwgZu814kmAr3wlxYCmvheS8a7IUHmK7CrTAV7oW5sBTWwkWXpq4FD3C/Ck/dEUyFQ/ee+/ZZiro5dO+zKnyWom4O3XsuzGcp6uYBDmPZ3ApT4V6YC0thLVx0uehy0ZWiK0VXiq4UXSm6UnSl6ErRlaIrRVeLrhZdLbpadLXoatHVoqtFV4uuFl0rulZ0reha0bWia0XXiq4VXSu6VnS96HrR9aI7vahFjkwvWiyFtfDUjbE6vWjxAE8vWtwKU+FemAtLYS1cdEfRHdCN8tbkVpgK98JcWArP+Lf/tOk/9xqVt+k/iyPOvf7kbfrPYimsha2wFx7g6S33Q6k3Ql+36SHR/rNydfMATw9ZHNd8l4/7rFzd3AtzYYyx1otu8ZBWPKQVD2nFQ1rxkLY8JK6He2EuLIUV1zM9ZLEXLrrFQ1rxkFY8pBUPacVDWvGQJhjbTUo7S2lnKe08PWRej5Z21tLOxUNa8ZBWPKQVD2nFQ1rxkFY8pFnp3+Uhk0s7W2lnK/07PWRxaefiIa14SCse0oqHtOIhrXhI83K/Xu63eEgrHtK8tLOXdvbSztND7jOjvU0PWTzbOeJPD1nMhaXwvN/I6+khi73wSJ61sJtbYSrcC09dD5bClrk861/pXsv0Wf+6uF2FW2GMJWq9MBeWwlrYCnth9Omsf93cClPhXpgLS2EtjLE061zpPszIZ53rZioc8Xu0z/SiHtc5vWixFrbCXniApxctboUJPMcnRzvP8blYC4eWxLXN8bl4gOf4XNwKU+FemAtLYS1cdEfRHdCdNZR079nvs1aS7tpfn/WR67/PcXWfp+yzPpLutTqf9ZGbe2EuLIW1sBWe16bBAzzH1eKpa8FT14On7ggO3XuN0Gd95LqXOa4Wl3tcYynir7E0uRfmwlJYC1thLzzAayxNnrpxL2ssxb3M37XFXFgKT9243/m7ttgLD/D8XVvcClPhXjhicrTh/G3iGCfz94hjPMzfI442nL9Hi6WwFh7g+fvCMZbm78viGSfGw/wd4Wir+bvA0Vbzd2ExF5660T4r7yZbYUf8mXfzv8+8W9wKU+GOdph5t1gKa2Hc76wdnPc4awc3ox145shdh+08c+ReS/NZ27fZCw/wzJHFEf8+FMJnDR/d9dY+a/g2a2Er7IUj/r3G5rOGb3MrTIV7YS4shadutMnMl8VeeIBnvixuhalwLzy1oj1njiy2wl54gGeOLG6FqXAvzIWLrhTdmUf3WpbzfPZbPMAzvxa3wlS4o1+09KmWPtXSpzO/7vMYfNbw0b0Ps88avs1W2AvPa4uxNJ/TFrfCVLgX5sJSWAtP3RjnMx8XD/DMx8WtMBXuhQX3O3PQY/zPHAyWmYNxj7PObzMV7oXjXu5don3W/23WwnEv99qgz/q/zQNxWtFtRbcV3VZ05+/mYimsha2wFy66VLRm7mtc88z9xVbYC09viXuZub+4FabCcf13LYLLzP3FUlgLW2EvPMAz9xe3wlS46HLR5aLLRZeLLhfdme/3iUM+6/noPoPGZw0f3XUVPmv4NnvhAZ65vLgVpsLzmqNfZi4vlsJa2HA98z1u8QDP97jFrTAV7oXLPU5/mHznrM90uVPW5yi/M9Y9GupO2I0j8U7XjQ1IwA5koAAVCLURatErY2yMQrqNDUjADmSgABVoQAdCrUGthRoFErADGShABRrQgSORLiDUCGoUce/Oin0U/V6n96i720jADmSgABVoQAeORA4JCyRgBzJQgAo0oANHolzAkPDACDYCFWjAO9hdT+BRL7fwTsWNDUjADmSgABVoQEjMjJpjY2bUYimsha2wFx7g+Yu7uBWmwkXXi64XXS+6XnS96M5f3DmY5i/u4laYCvfCXFgKa2Er7IWhO6veNrfCVLgX5sJTV4O18NQdwV54gOev8uJWmAr3wlw44scYmFVsdFdr+Kxi2xxx7lIGn1Vsm7mwFNbCVtgLD/D8VR7RDvNXeTEVnrrRJvNXebEU1sJW2AsP8PxVvlc0fVa+bb51+xVtEr/Km7mwFNbCVtgLD7DM+NG2MuNQsBaeceLexQsPcPxCb26FqXAvzIWnbrSDamErPHWjTXSA7SrcClPhXpgLS+Gp68EG9hkzxqdT4V6YC0fMFm0bXrHZCnvhuJcW7R9esbkVpsK9MBeWwlp4xr/7cVajbW6FqfCM34O5sBTWwvO+ONgLD3C7CrfCVLgX5sKvmCMmmecGhhNj+5CFd23qXRrhcwPDhR14lwrEUtHcwHChAiPu3dtRRzZiySjKyDbeEWLRJ4rIRswTRw3ZRrsx2i92I1s4EmM3spgSj/KxjQTsQAYKUIEGdOBIFKgJ1ARqAjWBWuw7FvPwUTy2cSTGvmMLG5CAHRhxo4diP5CFCgy16KHYd2zhSIx9x2LaPurIRszURxnZxlCLHopykIUCvNViAjsqyDbeajGVHdsJjphpjrKyjbdajyaJfccWduAdLNI9qsU2jsTY3WNhAxKwAxkoQAVCbUBtpNo8knlhAxKwAxkoQAVGMtwNNbcdDBeZ2w4uZGCkEwUq0IAOHIkzeSc2YMTtgQJUoAEjLgeOxChYX9iABOxABgpQExmNymjUyNh5DZGxCxGMEYxLMAPi0hmXLrh0waULLl1w6QI1gZpATaAmUBOoKdQUago1hVpkbJ+ILoyEvMvZfdZnzfFgGCWGURIJuVCBBnQgJByjxDFKIiEXdiADMSYdY3K+SMeoni/SoYYX6YEX6YEX6YEX6YEX6YEX6TEcuF/bx3VdwAYk4H6RHle+SI8rX6THlS/S48oX6XHli/S48kV6XPkiPa7WgASEWoNag1q+SI8rX6THlS/S48oX6XHli/S48kV6XPkiPaLkaiMDBQg1gtp86ZbA/SI9rnyRHle+SI8rX6THlS/SI+qjNjYgATuQgftFelz5Ij2ufJEeV75IjytfpEdUQm0kYAcyUIC23r9H1DfFm/aI8qaNBNwv0uPKF+lx5Yv0uPJFelz5Ij2irmnjSLQL2IAEhITh5i0ixOX4BWxAAsbPTESIhFwoQAUa0IEjcf6ETmxAAkJtQG1AbUBtQG1Abf6EvpxgzK32FkajToxGpUAHjsRIvYUNGE3SA6OzOFCBBnTgSIwku981X9iABOxABgpQgaGmgQ4ciZF6CxuQgB3IwJCwQAM6cCRGbi5sQAJ2IAMFCDWGWqTpXZM8otxoYaTpwgYkYAdytrqgswSdJeisOaqjj+f4jT6e43fiSJzjd2KM3+iLOX4ndiADBahAAzow1O4rm4cOL2xAAnYgAwVo+97mScP3W/eYZwovpH1D80zhhQwUYFy6BRrQgXHpdwfMM4UXtoxAUCOoEdQIavGMuNCADsxumWcKL4RanxL/+z/900v2f/3TfVMm1+t/9vt/xoC81+xjOAboBtvgG8aCGIQBbQNt6Bt2ZNmRZUeWHVl2ZNmRdUfWHVl3ZN2RdUfWHVl3ZN2RdUfWHdl2ZNuRbUe2iHx/9MQbZINusA2+YSyIH4+AtoE27Mi+I/uO7Duy78i+I/uOPHbksSOPHXnsyGNHHjtyPM7d9QHxMBfgG8aC+FVY1JIoqSdxkiRpkiV5Umq01Gip0VKjpUZLjZYaLTVaarTUaKlBqUGpQalBqUGpQalBqUGpQakRvyJ3Kcb8EZnUkiipJ3FSaMhNmmRJoeE3jU3xK3JviDB/RCZRUk/iJEnSJEvypLFJUkNSQ1JDUkNSYybofc2Rj3dRV9SXLupJnCRJmmRJnjQ2RWJOSg1LDUsNSw1LDUuNyM+7MC3qRxeNTZGik1oSJfUkTpIkTUoNTw1PjZEaIzVGaozUGKkxUmOkxkiNkRpja8Rvod8laPFTuIiSehIn+abIwbsUL37u/C6gi1+7RZwkSZpkSZ40NkUOTmpJqUGpQalBqUGpQalBqUGp0VOjp0ZPjZ4aPTV6avTU6KnRU6OnBqcGpwanBqcGpwanBqcGpwanBqeGpIakhqSGpIakhqSGpIakhqSGpIamhqaGpoamhqaGpoamhqaGpoamhqWGpYalhqWGpYalhqWGpYalhqWGp4anhqeGp4anhqeGp4anxsxau2lsmlkb1JIoqSeFht8kSZpkSZ40FvWZtUEtiZJ6EidJkiZZkielRkuNlhotNWj7RqeWREk9iZPiCsZNnjQ2zWwMuuPdBUBRB7uoJ93x7nKfqIBdpEmW5EljU2TjpJZEST0pNTg1ODU4NTg1ODUkNSQ1IhvvEp8+s5Fv4iRJ0iRL8qSxaWZjUEuipNTQ1NDU0NTQ1NDU0NSw1LDUsNSw1LDUsNSw1LDUsNSw1PDU8NTw1PDU8NTw1PDU8NTw1PDUGKkxUmOkxkiNkRojNcaOzPPZVm5qSZQUIyf+HifFyIn/ryZZ0n5e42s/r/F8tg2KkaM3UVJP2s9S3CRJkyzJk/bzWuyy6XdBV9Th+l3mG1W4fhftRg3uIk8amyJDJ7UkSupJnCRJt8ZdDBz1tos8aWyKDL2LR6POdhEl3Rp3CW/sqrlIklKDU4NTg1NDUkNSQ1JDUkNSQ1IjMnT+PUvypLFJU0NTQ1NDU0NTQ1MjMvQu3I19NRd5Ut5HZOiklkRJPSk07pETGTopNO5xEBk6yZNC4x4bkaGTWhIl9SROkiRNsiRPSo2RGiM1RmqM1BipMVJjpMZIjZEaY2tE1e2ilkRJPYmTJEmTLMmTUqOlRkuNlhotNVpqRP7e5chRVbtorAyNnTNjvEQN7SJK6kmcJEmaZGtcRWXtorEpcnpS5PR9VTOng3oSJ0mSJlmSJ41NqPsSlH2JZ7WZjAvYgATsQAYKUIFQG1AbqabXBWxAAmadl6LMSy8BKtCADszKMm0XsAEJCLUGtQa1BrUGtQa1WW19L8/MTRMXZjXZ3DJxYQcyUIAKNGCWr+mq7IrZs1nA1W5UYJaNaXdgFo3pqt0KbEACdiADp9p9x7OWeqIBs1ZsbpQ4cX5PMbEBCdiBDJxqdqMCs0RMxYFZIKarriuwAQnYgQycce/mWxVadGMDZl2YWgcyUIAKNKADsxBt1nlGzZiu0q1AAmYxmDoDBahAAzowy89mdefCtovGZm3nwhlsxCl3QAeOjbbKs2IetgEJ2IFZ+mWXABVoQAdmtZm1C9iAvEvB5h6ECxVoQN9lYHP/wYl0ARswS71m1eZCBgpQgQZ04Kote03Q8z1Bf+vY/V5yq0zoG3iDbNCA17+V+996/M8+p5gn+Iax4O7lCW0DbegbeINs2JHHjjx25LEjxxTzopZESRF9Tyfb/aAd08mLPGlsahFP1zSx3T+7MU28yJJ802wYX1O9iyzJk0JjrKneRS2Jku5rvh/TYgrX7p/smK61+0c5pmbt/qYspmYXadKtez8UxtTsorHpNr5FLSni3Xcu8W91TcguGpv0SmpJtK9KexInSZImWZInjU12JUU8WxOyiyRJkyKer4lWux+XYqJ1ESdJkiZZkifd13KXucRE66KWdMfzPalqdylKTKra/ZAQk6qzXUa239jtF5Oqi1pSXLO+MknvTLod3WI70L6BN8gG3WAbbrHYFHEs8GtD2xCRbS4VTYh/5StHZ7nEhraBNtz/KiobeINsuK9n7BwdO0fHztGROToyR0fm6MgcnRTh9/KOjcjH+HuZeyMyKeLd/RXGNYmSehInSZImWdL9iHr/6s7lmKB4DJ7Ukijpfvi9f5znIsykiEIrW/2KfKSknsRJkqRJluRJcVU7g/3+tZyLK5MoqSdxkiRpkiWFhq9MnxQvqvfv6VyOuX8t53LMpFvj/qWbyzGTbo22M93v36u5HHP/2MzlmCYr0yfFi+pdXTyXY1rkcmj4yn6/K4fncsykW+MuIZ7LMdRW9i+6NSicY2yKF9VJLYmSetKtcRfwzuWYSZoUGrxcwu/S27kcQ7pcYlFLCo37juJF9S61ncsxd03tXI7p13KORZZ0a/RcjrnLaedyTM/lmLuUcC7HTLo17kLCuRzTw1dC455QjhfVSZbkSWNTvKhOakkR2feyzSRJ0qSIPPayzaSxKV5ZJ7UkSupJnBQa4+WKFq4YP69tWV9A/Li211/wKDaIv3AXG4z4n7d1yP3P75v6X/O5RfZzS4Bt8A1jQfwyB9zGcs/nx+9ywG0r92YPnTfIhoh8T4FHZL+1G+og2v9+/Yd//ff/+s//81/+/d/+y//87//tv93/v/0f/sc//ef/z//6p//nn//7f/u3//lP//nf/t9//df/9E//v3/+1/83/tL/+H/++d/iz//5z//99f99DZH/9m//5+vPV8D/61/+9b/d9L//E/719fU/fa0OyfrXr+UhywCvx6GnIV6Tx22FeM0PE0K0X6+CDiH6vojXnCoCqD4NoG23wetdMwO8Xkx+CcBfB3hZ7Y7w8lD/MoSc2uHO89UO1r8McWrKWCuaIdzHl01phw6N3U9mh74WQxCi8y8h/NPeON7GQITLv7yNdogh2neHvBAxXin8S4h26tP7Z3z1qdCXIQ7jKh7IIsLLVnEfwo8jRJHPjBDe9EWEp7dhX9/GqTHt2in6wvFlCD0Zxf1cu4yC25ch7OOmOIxMimPy5kW8Xt0yBtOvIcbhIu6XrnkRw768CDo05ohzASPEXU6LPKfx/Eba/Vu6bkTaVzdCh4EVOzrMHLu+DHDOsKE5KFr/qkfpB1zzFINje7CI8VpgOvx86PE6KK+jtMbrseXXGIfRKb575DWDWyJczwdGbzkwXmucXw4MOgzPwb7H55ByHa+V3F9i9NNvul2ZJa8JoozxnT6xneyvZTP7sk/6YXy2WA+dfTKalhjya4x+iCHk8D6W+lPy6/NJ589HR5dPR8f5XvTSvAyV8fW9nH7e4xCRZRzlCeFlKL/G8I/Hx/jcAo8xHmYLt8+zhenT1jj37GDY4KjPTL/1LB9GaW+2g7yw9uxvMeT0m8B7iJHXR1D/rT0OXvpasdwPb6+FyvZ1jNN1DO3543QdruMwSlXzOl7rG/ZljGPPaOwTM3vmtbJkX/aMHPz0tVhG+XZB+nWMw0jlOKh2OmojeivGa424Z88Qv3cvve8Yr9e2Q3vw6cGBRz6a65sxYgJ7PXwYvRfD8VT7mmH72k+PI8QuzxEyZ12/uBL/h/46WMtXv3afc//ldeihd1/LD7K79z7u5vrCzbT9Q/3Q4pPQdS9Dvu4Z7f/QNr33ntvX4Ty+fnrQk5d183yhHvVKfn1lUP20TY9XwTnDQczXl1dxfCKznBp4zTz6l09kevjVJukjXwN/ydtfY9hhlLLnRAn7LzH0cQzhvA7h0b+OQZ8/F9rHo/Tcop5jQ6m91yvaEePUK4cxypdnr7Rfnk75G9fh+N0n+fo6Dl7a+khD5l9G6a/XYeM0g5W/lL27fR3jdB1cDLl9HcNPXhrr6nvSRN9q035hevXy97K2XzmF9Loi+zKGn96iBuUAefEYX7nY6TqaePbLYaz7yUsvw9TJL7+Tv059+OEt6j5kc8Uw++Wt8nmMe8O7nM6S9nWM8bkDjesf6UCvR0LLXjF7b4T1fBPrTOPLGKN/Ou98vArOF7GudfL796s4/NK28srQe+3X/jzG4Byjl19fxziMr+H53DFGebrtv/3CjYOHDdu3MsqT7Sv1nmeb5DP260fm61HeruvYHPnzdBUr/WMG+2ClPWd++fp63rZdpzf9OBRoXgYZl/b4fVni9FB5xdZTc3y8uH856TDOj3P5UCnj6wHSrtOcFNMeZSJlVv/3pZ526Q/0jX3eN/4TfTN+om/O8+KieL39cqXj9ICLtSs2la/Xv04LR68HqPzdf60WfJ15xyBxntYMQp0OQfjzdbQmHy+knUI8XUl7eieHpbTHTcr9zX5pzBnk8PDQTusNT1dfzlcimo+GeryS4zJpPvffZwt/7UTHIFFPM4O83tYPQX5grNLnY5U+H6un9aina53kny52Njo+sueU8uvpvU6x9zd75ZB35+GRc8r3IbDvjTFvA31bX5R/D3Ke7+d8Q7Uyu/37k+o570ZOxrzmpQ/2flqVejrau3482k8hHo72x3fyrjOPXBLn69Kvm5Svz5v0tCz1sElPIR426eM7ebtJBY92l7/3Y8dXy5mli0/9clqWelgPxPYDfeuf961/3rf2ed+eW/TT51y5ckX7tfp6qPOSflpd65orUv1gyaeloNizeD/3X1878rk9DO3hb7bpw0IrOf3wc7bq6zWRv47hn490GR+P9FOIhyP98Z0cRvqxRTGl/GpRfS+G5OvYaw3ky2qppqcFy5FTyjJ0vBmj85MY5xH2rJZP7ePRoZ/XAx4XHJ7V0bXTUtKzQrrjVTx8VD8tRj18VD+tRWnLVSBtpVv/eFR/HkTfDMK5qK5c1jv/DKKf9sv5XlBC0vzde6EcYvrK/HeDZLoojXe7pmfdhdZ5+j+CnJakhucb0Kgj7c/q1VOQxyWwpyAtpy/Gq6PeDEL5bDnqBNf3gjwsRWunmfKntWjttKj0rFDgfB1GA5P+dLiOx0HGu0HSFl8o7wV5LSxgPeb1CnIKc+zisbN4cHl9+OZgYww20XeD5DLXK8ghAZ//gn/9NjROL/6YT7Gvf7POT8yPKsjbaYnq8cvhMUhsjjCDdPr6NZWuY9l0dsxrBeLrevjr809O6Pr4m5NjiGdPVnTxx880dFqgevqthX4+/fi8V+zQK8fRoXBm57di3HW9eTPD3o1xfRyj49Gql5/v78VQlHL41zFa//h96C8xHr0Pne+FMchY/fMYb46xTvkj1dm/7tvTl0WvKY9SR3rKutOFmOQAef1MfHkhp9Wpp517jvEDnWsN93JIXDou+mctRrtrSd5s1JFrfn4YZad1pWcr7XT8VmpkDdbLP75+FTleB+d8G5fh8cfb6vk3Oxceudf1nG/98DPjQlp/N0iOEObT00P/gcVYOlXoPv2E+Hw7o+8OlnbR4XZ+4su+Lv/g25GWQaTx6Xbs02fd42VwDld5edHhMsYpbTJ9S40c/fatPfHnH/cdryIn3Gvy/nkVpyWdljOqTKVqSJ+HaJfnpygvluu9ICN/qV5cHna/FwTfK7S6cvidRs3v8nicutb+oSFeP1QDb8vevryVc5CnPWM/0TP2ec+cM1fLQ8Qvmyp8I/215d1oM383SD7fva7pzZ885XwW0V+q/r4VpOcHvir2ddUPif3Ab8RpfedHfiNUsp77tZJ5uJ3jx1MS5/+s+xnlMe8bV2I96xit8+lK6POZiNPnU09nIk5rTQ9nIk4hHs5EHD+eejgTcVxqejYTof4DMxGPe+XwlngeHc9mIpQ+n4n4S4zr4xgPXzTt6YqovNemT2dEzjGezYiYff7SfI7x7KX5eC985fhg+nKFmPz6R1/Hs5mZxzHezLmnMzPHD6iezswY/8AA4X9wxzycVXH/gVmV84U8m1U5fUL1cFZltB+YVTldx7NZlb89xHTsMjKEv3rsHnwOwiWIvxPk4Svi327m2XUc7FA1q3Xt0sP8gZxKwimnD/D80b/1IjN6eZGRt96GXv9wIAh99TbUj2shD1+pjkF+5PX/aYvQT7SI/ESLyKctcl4uR63tGN7eXHMfOSH6CnJY/R/0I2vupzCKHaDUrX35OnUKgVcyHWTvhchPbXTIlyHOhTdZ1an9eruOKH+oXkEO1TvHjyBGVmdZvZnvfWgz8sHdxvg6SD9t5tcsP0t/4ZcPEb19XqXa28dVqscQz95RO7WP31E7fVwB2E/rVE/fUZ/3ih165TQ68ClGG+PL97p+Wqh6+Jj6l+t49HVrP31E9ezpsNPxw9S0sdcv/Ndftx6v49nT4bE5XsP0wjD1t5qUGj5dbl8/+ffTF1QPm/S4QPXwgft4HQ+XMc9flOV2FN786/12z18cP/vy4Lg966OPBnofn9vxaXnqoR2fQjy048d3Yu816MNvBo57Jzz6ZKCfdtJ7+L7/lxjPPhn4uNr/uDnqw7rjY4yHFcPHGA8Lho9bVz4ssX0eY7wZ41mB7V9+mh4+65+3vn1WXnu8m6cj5BTjYXHteWPSH7iXpyN1fD5SjxukPhypz2OMN2M8G6ncfmSkHlv1YQ33473Qv36M0k8rUo57NF851F+//XWl8bdnyuOGSTSwZtG+miw8h0Ad1y97rf0Wwn5gOun0QKn49PuXTTx/awzrn69n99Pk+tP17NObz8P2OE165v53WguNft/M/BQhn8K0VOXTdzZllysn+KRUKv2xKftxY3fCg1zZz+ePrbv9uP3Us53rznuaPts78y+7mdNV7ubrHXy7949z9hjiWc76xxOepzc4MmzkZ/bV3P6pvvDZKD9GeDTKj++hD0f5udjy4Sg/r0A9HOXHw2Pyu016cbmQ/jyGZJu+llQOMY6ZEqcQrhbx6+vdkPtpl7WHmXIM8SxTTgtQDzPleXP8Uuf8nQ3mGTUfZWGQ3o7hn8eoBajf2ejesCmz+debw/NpKz/GoyBTuZk/g5zuhnLipdeU+WaQnqvp1PXdIHjyoG4/EKRUW39r5/4r1xf0Gu3Nzik7z4xxvdvDuebCvR3a9eF5CNfQt1pEwrlnjHoKwR8xnp4P4Ye0aZ9/1cftaIkXaqVIDxdy+vhUcv9/k/r1h/8W47TtZHd4c10y+f06TvtOjrLLQP1Y4vcY47gKnasML64bPvp3mjW34/llF94/m/UYZJQ6tq8HyflIhJaDpCkdfnz5tBb16AX3L9eRIe7r8MN1yHHqIScNWimXtl+frY6Hd8QwnDbC7evrOB7e0XPyQn7dZPk7B2/AitT1vRhYEbvnlr9+sDr2DOeeGC/mt6PgcCfl0+Es/uk7wDHCo3eAvxy7USpIxvVVqQOfXkVGyzn215ShvRUCB9UMIn/rNbfn7qYvtvFez1pZfzFpX0fh/vHk1DnEo8d35o8np77RHPR+o2LbSelvJp3h9ezFeh1eJT5+szqHeNg1/9g3q1+bw663u8ZKlPZlFO2fOpn2j2czjkfmtHwTefHBk/m0p9+zqZ1jiJcb4jfG9MuP0P4SxMohHvblR2h/C1KOMzJ/y1ed8Bji/XS806lS8WcONKJ8RqRaiPbHgUZPYzR6L4Ywjp7W9laM1/XnLrrXLy9Fvx30cn0+Y388jqhJ7k5KXvP/GzF6rvdJr98H/BaDTx9LPTTmY4hnxqz+qTGfGyPfdoXrtwG/N8YpiF5Z+KDXL0ca/R7k9OCOLyXb9eWb3fkyUPnZftmX+Dv30nL/29d7UXs3SE40a12W/m6Q/AC1vXn01uPjuz7+vbSPfy+PR4g9nP0/H0P2bPaf/Qdm/0+nZr0mBnO27DqcAMafr07x56tT/Pnq1HFZGzv5dnvzWLaOHZZfMb4+joiPX0k9XJVmH5//xo3jbpqZLeX55Y/LOK5RPb2X8QObpBwPaGppyY1+2VSk/3YhpxlZTB0WC7NvHBOl2KzB9b1jop4m/vGoKcszxIbX43rbN2LgUMfhdfPZ78XI6i2v5evfOPLqNReLvSvK7+Tvh14dr2NcOHqL3ryXofiap5Z8fyNGe81IZ99eVzn28/coclrT+aEwvxR+96+PEzsHwUoXUXmp+16QqKxabx/+dZBxfoPJlRBuXx/zJtfndcZ/ifHsDMBzkIfPIX+5kmcPInLaj++pH50PJXv2cZG0z89Gkfbx2SjHEM+q2Z/fyaGa/XzM26MPcuQHduM7n/OmuUvyC0sx6R/nvJ2CGEpMrP7WfCfI029yzlciHZWg+v6xdWXTplHXmPU7Ye7jcnMVgtXeDpOH1t4hDx9/HlumDzRvXXr/VvMy5hHrAtGfQY6zxI8+8rnOW9A8+W7qHOPZd1Py+XdT8hPfTckPfDd17tpc3H31cn8zc9rVy0fk3N8d8jiX+MX2dgI21He2X7+/vL7x4Ai3v66ywdcfD2unVatnr+HnEI9ew4X7PzTEszf5c4M6Pokvc+a/t+dp75Zn777CP7BbmvAP7JZ2PPxa0plfKyJf72R5PPy65QHH3onfiyH5luVCX+/dKkKfjvPzZeTzt8vhID4R/jjdjiGe5Yp8/N3AaZ7o6aHmp11sns3LHiM8mpf1H3gf8p94HTptT/T8dej6/HVIPz8YVfTjg1GPIR6+Dj2+k9Pr0PX569Bpdvfx6xD9xOsQ/cTrEP3E6xD9xOtQ/5nXof4zr0P9Z16H6Cdeh+gnXofa58/u1w+8Dl2fvw45ffw65P0HXoecPm9S+onXof4zr0P9Z16H+o+8Dp2eBSSfJn75VuQ7TxO55q389Sqvfvz0f9xS6+nT/2kF7nGlyrGoMneQ6vU4u98XeY8xDKfXj1/qw5/H4Cufi17p8/Vis4zPj8H9S4yH8+/HIE/n389X8uyBU68fKAQ4FhNwqZpr9mXfnGKQYg9rVX0vhmTykxp/GUOP2/s9zDw9HkP19L372CL5zEl26eFuTrPWDzcpP+4cwIrPGezrY5u1fX5amrbPT0vT9vFpaccQz95J9Ae+q9L28Wlp2n7gtLTnvWKHXvn8tLRjjId7lP8txvVxjGd7lOtpl7CHe5Sfr+PZHuV/ifFoj3Klz7ek+kuMR+/O53t5tke5nvbU+5nreLRH+fMYb+bcwz3K9XQA1dM9yv8y2B8OEPoHd8yzPcq1H4+ffbZH+V8u5NEe5do/3oVSj7viPXzXPV7Hs3fdvz3DPNqjXI9bPz/cG1w/P8bqrzfz7Drk0cNUv4i+fqHqn74on8uhn7wonz/pwHSmeJ38/8ZnIYpPS3T092J4fllK9QX1e5+WkKFPvr4XPn2R9fT7lGOQZ/ton0M82kf7LyGe7KOt51HOeGW43uvZX2LwmzEIMfpphH38ceo5xKMVP9X2Dw3x0AOP7an/4dd+3+uT8nI83nSOeh3vxvB8dnnhuzGw6fQxxsdurh+7+V++J2/YTZPe/CQ9631f+NVk1PHz/Ectcf7A/0lLHDdNsJafK9kvnwt8Y+MFz9m914pEezMG9pHx8eYGEC64jnc3ovB8XXmFe3cjioa3BHq7PQZiHPrl5H+Srzws1n8gxnsbhLymKXNWToXfjOH5lmCnMXaKYfnBI7scPmU/HUNimj8qZnW587eaKz1V5rDkaH81Dn+5fPS3K7G8EjpdyWmpX/G5opbpm/6N68AivVlJuz+u4/T9lOHsTxOSQ5DTqik21io9c+8X8niIOF5Gx2HPBD19PfV4iJy+4ng8RP5yJc+GyGnx5uEQOV7H4yEyPh8idjyq/uMhIjiYSeq5TL8PETstigs5vqqvP3f+W4zTY5DRvpfXEpJ/FeN8L5q/dvUl7s97kR+4F/3H3gvOMX7he7920rMi5reNCr4Rg3AddaP2t2NoezOGY9OF63ozhuWTDPm7bZq1EtIP+XKO0RGDD7sLH3eAzc8nqZYH/L57q7WPN6E4h3j0Ymunrf1+IMTDDYZO7dmxyUm3r3fDNfp0C4rjVTDeruu2MX9eRf/cwU5Lzw8d7Ly/MKHGkOTLeznHEJzMol+3Rz/9XD/e6PgU5Nnc3jnEo7m9v4R4Mrd33Ej70Vv6eSvuJ2/pxy3rH13DedP7R3Mmp4MuHh7ieI7x7AzHftwr6vFpGccwD8fnMcSz8XkO8WR8no/9eXbsxznGDxwu83B8nGM8HB/yM+NDPh8f8vn4kI/Hx6lrcQ3jl+Md1J+GILvoP1qZ+EYIzTHqZU+1+zH9YQBMD45aYPZbAJNjjWmuRNavAPy3hcjTrBzhkadW3f8R4tlVlAfq30McD6TavwWj9sUfLWGf3sbpOO+sX9I6FyfyeEipYEjVXf+fh3hauHi6jTzsSMr+9q/3yKcBhHJV+IXlI5fxeGBLbFo/Q3DZ2fY7ITSXYkXLjuPfCiH2aQhLoxGj99piYAL/l5+Qd0PImyGyU+shwt8IoVdueKgXvXUVyvm6qizvhbgUpxXoW82plFP3Su2tTlXs/qz1c5jvhOj5nbNyKR9/90beDZELqErlhfdbIfJk+F+P2/5OCIf3Xu+NTry5v1A/7pHr69Fpp4+LWmcUGL2u6b2xwfmt9dtj49mr++mjS8HxQvcHDm/l2usfcjlES94M0gXfa3TTN4NgQ+5fNin9VpDyrYX88pXit4KUNmE7jLTj7nytY6S1fhhpdv7UCUciv9jtR8KM/m4YyoWZF8t4u22wh1rr9SjNP8Kcyknvoz0ymbv7u2F+wBNeI4XK0OtvDj25MPTqA+K3guiFGkqlN69EO65Emd4LYg5jqEVE3wri2ERdnPu7QXA7tcji9yD+A8tO/gPLTuebGWiRcb3bIjVIu94NcpUgbw61Ub7UG9x+Ioi/GwS/QUPkB9rk3SAjq+9ebOMHgri+G6SUlw/6gTZ5M4he8LX7becHglD/+HZeQd78wXAtxxC6vXk7+N5WL+MfCPLeS/AdpJUg7yWgNvz+aWv0E0HGm7eD7/a0kX7eJm8Had0RRK6fCGLvBsFBVfWwyffb5N0gLYsEXvxu7vwSZPAP3M6QN4P0kjvy5o+XKn68VN/8ydDyKqf61u2453zzC8tTEn8jRBY8javs0fR7CD+eNSVUqqboyzWEYxC5GAdW1gLfP4L0h6sZ5Ur0O9eRW95Iq/u7fetm8BL4erk4Bfm4mMQ/P2rqL7eCzyLpOvXLcWOzcp7h6wnp+nIV8ngtarlfhf6yw8Pv13KqN6JydCZ+gX/75P0vl5ErXmpi7w0R9TypQb1+ovl84e21+qdYOPN38v+XEGUG5o/8P23g9yNBmvdySJS/2TF5PKtaPWnyex3T0THlKeCPIKezFZ/27jHID2TvS9xxM/ymET3brZLtcy87ecjrhR5PitZPHjLODxI4n7UVC/hmmNbxLN/qe/D3wlB5IqH6WPO9ML3hibHb+zcl5elV/f0w9dFzfB1Gf6ZtTt8Hez58ej2QW7/hK0INP+d0MHyTT3937OOqlXOIR1UrfwnxYdUKNezBU1+zfi/UP4fIb2FbrXn7Tgh8sE1lv+rfQ7gfS/3zwbdfb4bIrzi0/E5850bq2SRl/vg7ITSnW3/9eP0bISxXxcn6e51KuaRNdQ32OyF6PiC+WqW9dxX4CL9fbzUnc76q8i/HXY7Hr4c4Nq/V35ZvXERrmGuqh+Z9J0TH+bB9vHcVQnWJ770QilcHH+/dSL7lvn6137uRzli6kvduRLGlm9p7V4GvHJuNtwZnG2iL+vHpN0JYfihurO8EKJWg8l47XLm20y79enCPi/+RaTqy7mTQew2B07ZMPmzJ9wK8FkLzSyKpE6fPAwgC1PnOxwEUEwy1fv0bAZ58w3i8Bc8yvdfi2jsBUKQn/kaAgVPofllGfl44ijdweS9AFjuOX2od+XlKNqRk47dCUNb3vebwx8chzN8K0fPVvdVniHdD/FJc8I0Qgt+bWgH7nR4RnJ/3S+nHN0IwTnXR/nEIe/MqsLN6u+zNEHigut4bF43xQPVLYcN7IX6Z8/9GiEzURtf1ZoiOEO8NcGyx0ojeuhHBgRsvfMv2sZtHPfTjcQDi/Okjbl9utDeOG+092wt2nD7re7YX7DHEs71gn9/J13s5Hl++cprwl8MCvhFBCB849i/3LB38+Z6lf4nxaCvI59fxdYzj+HR8Msrt66v4+CjIY4iHY+t0/tPDfYYHH8/4ebLP8JDTM07P/ZBe2fT1dOI4LR8NxpOSXIfTAYQ+Xac8tylqBKjJlxOK4/jJ05MpyXOT+sD5ycMOTXp8+n32heJfOjcnKwZ3fzPI5VgOH9ebQVq+54868/LNNml4Jej05ljFiskwpcNYfRxkvBtk4E13yHtBnn/8+ZemffZR7WNr/nJr3CgL/NKacxnK7GtLlB/4avsvQZ59ljt+5rPt8fln2+Pzz7aH/iMXOJphFc3qevhvJ2KM43LRo5+I80Rfzt4O1i+v4hiCy9bL/a0Qlnu7tfrB3Z9tcT5sHLPIh8Mwhh+u5Ae+KaWW2+4Q1a9Kf7+Z45dRaldZx25f7S75tyClztBUvgxy/Pnnsn9zP9zOqVQfQcRLYc/Q5zG05wSccnszhjbso1FWrv+IcdpX33Mt7pftl69vXIbhMky+vpXT0U+95xcuvX7ldc99PA/CWfnxmko6BTkdU/Jwt7tjkxjnvulWn5j/aJLjMaO5IXU5y+734z1Pe+6JZRX4a4q2Fkv9fhmnSpjLkDH1uxT+Tns021diWqaz/miP0/7t+Lil/VLpxL89gZw23cPpT1L2tf49xH2c8+dj9S9RHg7WV5R/+GjF1/JmxRTHHyefnpaWNAcb/7IFwp/3czwDCmc4crH4Qb8HOR3gPnCKw1W8lUb7PcpxQzCsinP9EKr/MVj8WGfw8NzQ87Uw5u3qjPIf13I63eLp9pmvKO3TlZ9zD3XKXT96/djtzx5qp33OrtxTQOr3Ke35jhmW3zmz9fHO0x7jGYuNv37aa1fTzx/3XlHs8+e9vz1ncS/PWV+9k7wuZXz+tHaO8vBM+dMT3/M2Oe4ghzN35Zctn3/v5NO+fIT1Qrq6HfKPjgeh5uoSXX6MIj/hBaSfLqX/Jcajtey/3M3DDXlfUX5gR9529dMP+6Mtec9jtuXtdLquw3DrxyOrDadn1Jm9P2+n/8RA6fzpQDm/ZuRZIHpYfju+7Dw88P4Y4tGJ9395bcu20Pot1dvvS97fftV51LXnII9T77R09Dz1Tt9CPUy901vGwLHMaNXfPuo4vmE49fwK+MVlSU+/9XrwsIP/+nrwMHmvn+niH3FX+dxdj++AeCuuJXB/vAOeVrMYD+Tc66d7f7xan4ZKPlR4nWn880L4J0xefuRpQH7gaUB+4GlAfuRpQH5kvOo/dryOrBCoOz78OUz0tDTf8NJWC2C+N15RRHO1drqS04Attfu9vlb/2aw/MmD1Bwas/sCA1R8ZsPojA9auf+hvaMOJ4s3Gydns9PiKnUGprtL9B1EOjwR8DZxeXw+EYv3GtfQrP07ovxwu+ue1yE94telPDH2zz4e+2edD3/Qnhr5fPzH0T+e+Pxv6fxkpqHfsbZxM0k+jFsdi8uj93VGLb/g62fFa5CcM239k1PoPjFr/gVHrPzJqx4+M2vEDo/Y47V72zKuHX/wx7T5Og5bz25JRd8Tgb8SQrBCpBZnfjIGNKH75IP47MRTfsteDPN6OIe/GUCytvtsemu2hb7eH5b3Y2+1RY7zbHrWC6N32sGwPe7s9sNeBv90eNca77eH5PZfb29eBr8X93esYF+r/rh+I8fZ1OMrDTuPjuGQHc39hOy3ZnaJQw/lMdfO036O00xJXU0xImRyjHNdm7T9w5t7bd+6n5xcpv5S6f69V5s/QXsjkd9tW8GogeopyXsh89jBxjPHok46/xXj2QHJc2n36QNLoJ2ZhG308C/uKcZoleLhVwSvKcU/VJ3sV/CXGo80K/nI3D/cr+EuUh/sN/GXp/crHtNfaEn299N76T5QStP55Bp5jPMue8908zp7TGtfz7DmdrvX4cf5YXiHo41J6/h/08amaoGU17eutVr4qr2ix/eOXhm853FqtAvjtpMNXkHFadMulv3oS5rdCODan8ndD5CC5vr6Kv1SsEHb8++Xh87frOK1ysWR5E9dFyA+CjC+DPC7jqWdy/jnO+Fj7gqrt+hnLn/dzOhDuKsdy/LJP3u9BToO1lT3+m1z+I2HqVLl+66Uce5Gca+FOj37xXcgaceXc5T/WEdtpuctzUsvrx0q/V581efZaXjcc+P0htMnnD7Ln68gNKKTuy/pnDP0Jqz+dW/X0QUn8Jx6UTmtdTx+UjjEePigd7+bhTkR/ifL8QelUsnL1/9ir/8ic03JX5xyx5X5+T+F2Wh3CEWtcP8DQ/p2baTiWq/fjzdhPPPWpf/7EdrySx09s9hMTsM0+noB9/lkKf/1ZyutCTpMFz/YT/Uul1sO30WPN2PPe+RGTNfuH9s6v1cp06p3xA+sozX/kxct/4MXLf+DFy3/kxct/5MXL5R87UHo2a+/SvhwoxyCMF3Sue9j8OdpOdYo/E+XZ16l/ifHo89S/xXjyfepfpk8ebpT4t6mch08of5nye7KRy99iPNlE7C8TqZzrKa/p2P7udCznoz1x3RHhtyjn78xafi7/+ndff6zW2qlEKaucipn8Xr15Lu99cq746XMQapl3v/xW9N+WIOhUcfnLrAl/uZPKK8jpceDZRj2vICdvfbSbyjnGs+1UvnEzdrqZU7OOnAV6jaJ+CHJ6fH22y83froTxKUiZrvgjyGnSv2fG8GWHdj25yOPv085Rni6ZHaM8Xhw6X8vTxaFzlKfLd3T8rOsaZdfOUY+E0m/GwX5wL9Z34zTG9gbtl0MsvxsH32m+YsopTvuBRcVzlIe/P+ds4tzfjbWfXOpUs4g996juufctb3jda6ZkPWH4jyCnZaun3nD6Mqvh5Og26gb7v089HK/kabuee/jhc8pfRu3V8XlHfc/+7ugvZwbc77Dvx8FW0a3J11l0HYfck43GGvVjGcmTncZeMc4freXLz6/38nh7wtdfzW/itZ4v4dfzEFo+92yfh5D3QmCbMa3faH4jBE7c6VZfr78RAkcJvuzgvbawfLXuVk87fzfEe53qOXvZa73Vt0LkbEV3fq9TPX87XzjevIocF65vdmruh/7Ct67itWaAPX3qse3fCPFLRUP/MkQjOe6pih3mqU5SfOcAhSypJ7X3biVXQun23bdC5BB/zQO8lSX3ZAJmJ/qbIS6E4I9DUH+zOTFBQv7eVXS0hYyPr+K9TuVMkrqC+52pAASgtwI825vpEODZ986nAI++dj4FEOxQ1d+7gk8nZB5tIXEyKWyVfx/IW5496XEIzQXJ17LdeCuE43wpl/euYuDzo6tugv08BF05ouiX5+dvXAVKuO+N8t4LkV36WqF460bqnuJtvHcVHYec88VvheByrGpZNP89RIvfly9H+Odn73SczNrtvdbg3EmnMbWPG/TNEFfOvt5fbaIp7BvH1GL3G+H3DnUQbAAp/t4RAko4B67LxyH46yMEGh2/lqKsepO6U9Nvj2ivIKdZdWzdplbe654/5927RubNvHk2hOWefM3k+jjE4XiJRoN+oEnPH/V83KT1Zuy9gW6EXV/7e73iKP5zah+HOFxFo9NHy897ZfxDe8UFNyPvHQhT5pxH149D8Ndnh7R+WrN52qT9tHj0A01ab0bfS/yB6e7R3uoVwifkr0en99LN8dDi4810wwqYjzevwlBl9OZ5Q9jo+YXvnW6jWBCxN0+3wdLXK9pbx/Qo5qW11tG01/var0O8HWbIHRvF1zXW588sjxer+mn3wG9EOT2NehYc8y/Fwr8vGjyPoqco9CPtQu041J59g9eJfmAx5XgtmgsGWn/p/mxbO826Oc64rOcpfSvKsys5/2zDzZQPuUN2XPvLl9p6Yoz9EcRPRQ4Py9D6j2wf2D/fPvAV47h4/bBIqZ/2D3x6nOpfojw8iPQV5fAU8Oz4zHOMpydovqLox2/bj2/H5N1OfniC8SvK+Inu4evz7nkY49wmx4qYnOtrb7fr068H4njcrx9xnh1b+4oiP9Cu8hPD/vR91eNhf2yUzw/ibXhYej3M++FX47jwdHVsUfWayITR/r5J41/CCCZ2r1pj91uY46wXoWr/lar9y1s6jfuGwuNW6wWfLyviQKpO5SNL+f0Z57TxHkkeRUpSklja70GOtU65BnVvkoQgf3TwT3wf0k8fEj3/RT99GPX0F12vn/hF1/YTv+jHKI9/MrR/bm2nGM+t7fR91WNre3g7x1+vY4xHZ2v/ZbA9/AU8DrbHv4B2/cQvoLXPh8nDGMe+sfYTQ834B4basWEf/or+zatz+vfl1f61Vx8/rjJDVU09T/b3X43T+pV7nn3gXqcJ7Y9WOX1ehdXN10tt3aKxfyNKZxwdUn/PvxlFc/biNaj4EOV0EMPDs2r6aSPBx2fVdD++OT07E/sbUQ7HYv8lysMzqb8R5XAs9d/u6Nkp3X+NgirQy9++o2enZP81yqODsv8S5eGp9t+IYm+3y8Oz7b8RhY6te8rGp2c+xc4Pnz/bjh95th2fP9vy9RPPtnz9xLPtOcrTZ1u+Pn+2PcZ4/MDB1w882z69HZN3O/npbBUft4973j3jB7pnfNwm5+R59qx+btenz+p83Gbw6bM6t88naY8xng/79gOTtOdGefycfXyKe3baBB+PwXp42sT5Sh4eN8F0nHR+uIU5008cKMKnfQYf/4Lx6YPup79gJD+RhMfPrR4n4WlB7GkSnmI8T8LTetjjJDx/g/YTSfjwCA3uP3CExl+S8OEZGtx/4gwN7j9x6gT3n9ilhfvnW2Fx/4ltn/i4IPY4C39gQewY43kWnk7WepyFx0Z5nIXHaREjTIvIYYqGT+tZr7mxgS/j6jFdv6/d8GnXwefndB1nwBi7hHGdGvlzBuwUpCkOKSmzNO8HKYX13wySnxlwe/t2UAvOXBLx9yAsP1Aly/J5lexfrkQpdy6stdjvB6k7fH0vSHqt1Jeo7wWRfISTukj3vSD4IvOFh9LO8zhJq+V6Svof40SffWH0yxzR75ZyXhfznMejWrP2Z5RTpYsLjrz1Xwv/vxfHSkGz1S0s/oxz2nal4XCAZu9GsZHVYn5dx7Y5PcaVY3hfzPT2PeXM+if35GkLVre1+SBK3cTpm72NMxya19MT/oxzWqBySfv3+rXffxDl9KCMD9eHXfxuFOwy8noQevtaSl3sX9rlaZT37wj1qOOXetTv9XVpmBefM/sYx1AzMkz17Tgjx95rzYDedazXv8UXu9c1Tu3jx0pbHPL7YpdTnOPrXq56Der2bpTHufA4Sms/EuXtO3qcC/4jueA/kt3nEWP4dPHVRqcngHH8HvTKLZBbu5TejtMUcepj+LfjlC3EP4pTNmpq/e12tiv3WGrWrp+KM96OUxZwX+/9PxTn+AR5jkNwLqOjI38jjr9/X53Lp3l2ve3s2Dj6xadnJTlvaKjIr9cPlrwdx7AobHZyn+/EMf0gDtrZTv0lp5MUnr7tymWfv+3+5Y68jBwXf7tlvPT4L1vujP6dl0Qp+4eV/v79JVGO+4flhETdnqX9UVF6rJfKr4Dol+to3wmi+WU41YeB34NIOx75LSVI3VJNvhNleM9d816/4/Ll/NdfwuBR9BWmbEj0Z5jTigNnDdjrL5Yxd+l3mtdykoV+2Tb1j+Y9nWOAQoLXJaOj/zjU5BilvyaPszSu1YP1/mgXOm9tWD5vOvT1X9oFUZzfHbue7fL6XTqMXfqZ4XJacHs8XM4X8zSRzu0y8JHh6H5ol1NhA1n5Jq8UUv6e0vQjI/d8KR1lV8X+/7yUY6FGHlrxWtqmr4OcVtyMeh5g/OLy8PHHYDlubvh4pv8YhsosITW6Dhn9l5vCJtXEpYjlm2E4u8lev010CHNaLS5FU3Vq+3udrV6+xdY3R4wbPuxphyCnJTPtI2fIlds4jBg+zymX77p7qXP4XphOUj6SvfTdrnYssdK4DiPm9PHVw738zzGe7eX/lxiP9vI/tyxTPhW+mA8ty/4DTeI/0CSfH29w/Bnq2ProPoP+658h+YnCHJGfKMwR+bwwR+QnCnNEfqIwR+TzwpxjjMclASI/UJhzbpQf+QqlxzFr+ym5fz1q9bxhNrafb80Ov8zHr8nw9tDq4H/9vH3rYih38HmxHX6CTh+lfeOh5RTm8UPL8WcsvxR6LX+XL1Hu71P/v6//+c//9V/++3/513//r//8P//l3//tf9z/stvd8Xfudb/pfgTpYxNfSS2JknoSJ0mSJllSanBqSGpIakhqSGpIakhqSGpIakhqSGpoamhqaGpoamhqaGpoamhqaGpoalhqWGpYalhqWGpYalhqWGpYalhqeGp4aNw/VU5JoXGXhTgnhcZt0K5JoXH/Lnho3N7uoXEvTI4rqSVRUk/iJEnSJEvypNR4TUsDG5CAHchAASrQgA6EWoNag1qDWoNag1qDWoNag1qDWoMaQY2gRlAjqBHUCGoENYIahZrJjSOxX8BQu6cnWydgBzJQgAo0oANH4jSEiVBjqDHUGGoMNYYaQ42hxlATqAnUBGoCNYGaQE2gJlATqAnUFGoKNYWaQk2hplBTqCnUFGoKNYOaQc2gZlAzqBnUDGoGNYOaQc2h5lBzqDnUHGoONYeaQ82h5lAbUBtQG1AbUBtQG1AbUJtOci+htLASvmfnW3hJIIWXLGxAAnYgAwV4q/E9g0HhJQtD7S6EpPCSieElC0OtBxKwA0Ptnqqg8BLmQAWG2r2bB4WXLAy129EpvITvd1MKL1lIwA5koAAVaEAHjsQOtQ61DrUOtQ61DrUOtQ61DrUONYYaQ42hxlBjqDHUGGoMNYYaQ02gJlATqAnUBGoCNYGaQE2gJlBTqCnUFGoKNYWaQk2hplBTqCnUDGoGNYOaQc2gZlAzqBnUDGoGNYeaQ82h5lBzqDnUHGoONYeaQ21AbUBtQG1AbUBtQG1AbUBtQG2kWr8uYAMSsAMZKEAFGtCBUGtQa1BrUGtQa1BrUGtQa1BrUGtQg5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icNLHF7i8BKHlzi8xOElDi9xeInDSxxe4vASh5c4vMThJQ4vcXiJw0scXuLwEoeXOLzE4SUOL3F4icNLHF7i8BKHlzi8xOElDi9xeInDSxxe4vASh5c4vMThJQ4vcXiJw0scXuLwEoeXOLzE4SUOL3F4icNLHF7i8BKHlzi8xOElDi9xeInDSxxe4vASh5f48pK7QGJ5SSABO5CBAlSgAR04Eg1qBjWDmkHNoGZQM6gZ1AxqBjWHmkPNoeZQc6g51BxqDjWHmkNtQG1AbUBtQG15id4oQAVOtbsOZnlJ4Ng4lpcENiDtCGN5SSADBX9XgQZ0INQa1BrUGtQa1BrUmgAVCLUGtQY1ghpBbXlJYAcyEPdGUFteEujAkbi8JBBqHWodah1qHWodLdlxbx331nFvDLXlJYFoSUZLMlqSocZQY6gx1BhqgpYU3Jvg3gT3JlAT9JugJQUtKWhJgZpCTaGmUFOoKVpScW+Ke1Pcm0JN0W+GljS0pKElDWoGNYOaQc2gZmhJw7057s1xbw41R785WtLRko6WdKg51BxqA2oDagMtOXBvA/c2cG/wkjHQbwMtObIl71MuCqfei6lwL8yFpbAWtsJeeIBb0W2tMBXuhblw0W1FtxXdVnRb0YXBvLjcL5X7pXK/VHRJCmthK+yFi24vur3o9qLbi24v7dzL/fZyv73cby+6vfQvl3bm0s5c2pmLLhddLrpcdLnocmlnLvcr5X6l3K8UXSn9K6WdpbSzlHaWoitFV4quFl0tulraWcv9arlfLferRVdL/2ppZy3tbKWdreha0bWia0XXiq6VdrZyv1bu18r9etH10r9e2tlLO3tpZy+6XnS96HrR9aI7SjuPcr+j3O8o9zuK7ij9O0o7j9LOo7Qznn1aw8NPa8WvWvGrVvyqFb9qxa9a8atW/Kpd0G0X+rcVv2rFr1rxq9aKbiu6xa9a8atW/KoVv2rFr1rxq1b8qlHRpV6YC0thLVx0qegWv2rFr1rxq1b8qhW/asWvWvGr1otut8KlnYtfteJXjYsuF93iV634VSt+1YpfteJXrfhVK37VpOhK6d/iV634VSt+1aToStEtftWKX7XiV634VSt+1YpfteJXTYuulv4tftWKX7XiV02LrhXd4let+FUrftWKX7XiV634VSt+1azoWunf4let+FUrftW86HrRLX7Vil+14let+FUrftWKX7XiV20U3VH6t/hVK37Vil+1UXRH0S1+RcWvqPgVFb+i4ldU/IqKX60yXpk1+FbYC6OdqfgVtaLbim7xKyp+RcWvqPgVFb+i4ldU/GoX9YYutcJUuBfmwkWXim7xKyp+RcWvqPgVFb+i4ldU/GqX+IZul8KlnYtfUfEr6kWXi27xKyp+RcWvqPgVFb+i4ldU/GoX/IYul/4tfkXFr6j4FUnRlaJb/IqKX1HxKyp+RcWvqPgVFb/a5b+hq6V/i19R8SsqfkVadLXoFr+i4ldU/IqKX1HxKyp+RcWvdjFw6Frp3+JXVPyKil+RF10vusWvqPgVFb+i4ldU/IqKX1Hxq10aHLqj9G/xKyp+RcWvaBTd4ldUnq+oPF9R8ate3gd3lfBkKtzL3+fCUlgLT90RHLr3B5BtVQtPnn61uBWmwr0wF5bCWtgKT10PHuDpVxrXOf1qMZW/0wtz+TtSWMvfscKhex+k1lYF8fzv068WF93pV4uL7vSrxUV3+tXiotvL/U6/mtfARXf61eKiO/1qcdGdfrW46E6/Wlx0udzv9Kt5DVJ0pbSzFF0p7SxFV0o7S9GdfrW46Gq53+lX8xq06GppZy26WtpZi66WdtaiO/1qshVdK/c7/WpegxVdK+1sRddKO1vRtdLOVnS9jGcvul7ud/rVvAYvul7a2Yuul3b2ouulnUfRHWU8j6I7yv1Ov5rXMIruKO08iu4o7TyguwqRF0N3lSIv7uXvcGHJa1jlyPGp4apHXuyFB3j61eJWmAr3wqG7Pi6UwlrYCnvhAZ5+tbgVpsK9cNGdfuVxPdOvFlvhqavBU/f27VWmvLgVpsK9cOiOFhy698ZlbRUrL7bCXniAp18tboWp8K0rV2iFX8WZhW1WLW/WwlbYCw9w+NXmVpgK98JFV6ZujDHRwlbYCw+wXoVbYSrcC3PhoqtFV4uuFl0tulZ0reha0bWia0XXiq4VXSu6VnSt6HrR9aLrRdeLrhddL7pedL3oetH1ojuK7ii6o+iOojuK7ii6o+iOojuK7oDuLHbe3ApT4dBtFHzrxtaEbVY8y73PV5slz5utcOi2GSd0KeKEXwnF3wm/2kyFQ/feIb3N0meh0A2/kvurzzaLnzdb4dC9d1Vrs/55cfjV5lY4dO9TK9qsgY5d69ssd45DYdusd5Z7g6k2C543R3y+832WPG+O+Bz3G760uRfmwlNr/luDbvfy38OLONqBL9wvt8JUuOMepxctlsJa2AqXNuTShlLacHrRbDcpbTi9aDGjPaf/8PzvVtgLD/D0n8WzPaNNpv8s7oW5sBTWwlbYCw/w9J/FRdeKrhVdK7pWdK3oWtG1omtF14uuF10vul50veh60fWi60XXi+7/v6w72pHsOK4o+i967oebEZkRmf4VghAkmjYIEKJASwYMg//u6qrqvgvWC3G6uqv2zHB6c3Di1PDln9fvpZd/3nmQg5zkSV7kIjd5k2/uayD9lQc5yEme5EUucpM3Ge6AO+AOuAPugDvgDrgD7oA74AbcgBtwA27ADbgBN+AG3ICbcBNuwk24CTfhJtyEm3AT7oQ74U64E+6EO+FOuBPuhDvhLrgL7oK74C64C+6Cu+AuuAtuwS24BbfgFtyCW3ALbsEtuA234TbchttwG27DbbgNt+FuuBvuhrvhbrgb7oa74W64+KrwVeGrwleFrwpfFb4qfFX4qvBV4avGV42vGl81vmp81fiq8VXjq8ZXja8aXzW+anzV+KrxVeOrxleNrxpfNb5qfNX4qvFV46vGV42vGl81vmp81fiq8VXjq8ZXja8aXzW+anzV+KrxVeOrxleNrxpfNb5qfNX4qvFV46vGV42vGl81vmp81fiq8VXjq8ZXja8aXzW+anzV+KrxVeOrxleNrxpfNb5qfNX4qvFV46vGV42vGl81vmp81fiq8VXjq8ZXja8aXzW+anzV+KrxVeOrxleNrxpfNb5qfNX4qvFV46vGV42vGl81vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vjr46uCrg68Ovjr46rUof3Uyr0n5V35xn3+r2dtXr/ziPr/m7atXHuQgJ3mSF/nJ/Xw/w3ity7/yJp87v3z1zoMc5CRP8iLDDbgBN+Am3ISbcBNuwk24CTfhJtyEO+FOuBPuhDvhTrgT7oQ74U64C+6Cu+AuuAvugrvgLrgL7oJbcAtuwS24BbfgFtyXr9bz9/DLV+987vz2VTzzIAf59fs5n3ny+CIXucmbfO684W64G+5OMtwNd8PdcDfcDffAPXAP3AP3wD1wD9wD98A939y4ros8yEFO8iQvcpGbvMlwB9wBd8AdcAfcAXfAHXAH3AE34AbcgBtwA27ADbgBN+AG3ISbcBNuwk24CTfhJtz8/j6KK8+dJ9y7Y4/r7tjjenfsr/zdscd1d+xx3R17XHfHHtfdscd1d+xx3R17XHfHHtfdsce1vu8Ucb3/TPV6vMhN3uRz5/runOO6O/a47o49rrtjj+vu2OO6O/a47o49rrtjj+vu2OO6O/a4Gm7DbbgNt+E23IbbcBtuw91wN9wNd8PdcDfcDXfD3XA33AP3wD1wD9wD98A9cA/cA/fc3HFd5EEOcpIneZGL3ORNhjvgDrgD7oA74A64A+6AO+AOuAE34AbcgBtwA27ADbgBN+Am3ISbcBNuwk24CTfhJtyEO+FOuBPuhDvhTrgT7oQ74U64C+6Cu+AuuAvugrvgLrgL7oKLrwa+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KvAV4GvAl8Fvgp8Ffgq8FXgq8BXga8CXwW+CnwV+CrwVeCrwFeBrwJfBb4KfBX4KvBV4KvAV4GvAl8Fvgp8Ffgq8FXgq8BXga8CXwW+CnwV+CrwVeCrwFeBrwJfxd1ZRdydVcTdWUXcnVXE3VlF3J1VxN1ZRdydVcTdWUXcnVXEgrvgLrgL7oK74C64BbfgFtyCW3ALbsEtuAW34DbchttwG27DbbgNt+E23Ia74W64G+6Gu+FuuBvuhrvhbrgH7oF74B64B+6Be+AeuAfu3VlF3p1V5N1ZRd6dVeTdWUXenVXk3bFH3h175N2xR94de+QFd8AdcAfcAXfAHXAH3AF3wB1wA27ADbgBN+AG3IAbcANuwE24CTfhJtyEm3ATbsJNuAl3wp1wJ1x8lfgq8VXiq8RXia8SXyW+SnyV+CrxVeKrxFeJrxJfJb5KfJX4KvFV4qvEV4mvEl8lvkp8lfgq8VXiq8RXia8SXyW+SnyV+CrxVeKrxFeJrxJfJb5KfJX4KvFV4qvEV4mvEl8lvkp8lfgq8VXiq8RXia8SXyW+Snw18dXEVxNfTXw18dXEV/Pu2OO1Uf/K3x17zOvc+e7YY94de8y7Y495d+wx74495t2xx3z76pW/O9iYd8ce8+7YY94de8y7Y495d+wx74495t2xx7w79ph3xx4z4AbcgJtwE27CTbgJN+Em3ISbcBPuhDvhTrgT7oQ74U64E+6EO+EuuAvugrvgLrgL7oK74C64C27BLbgFt+AW3IJbcAtuwS24DbfhNtyG23AbbsNtuA234W64G+6Gu+FuuBvuhrvhbrgb7oF74B64B+6Be+AeuAfugXtu7nuj/s6DHOQkT/IiF7nJmwx3wB1wB9wBd8AdcAdcfLXw1cJXC18tfLXw1cJX6+2r8cyLXOS761507IuO/Wu7ns88eDzISZ7kRS4y3ISbcOnY3zv2d4Y74U64E+6EO+FOuBPugrvgLrgL7oK74C64C+6Cu+AW3IJbcAtuwS24BbfgFtyC23AbbsNtuA234TbchttwG+6Gu+FuuBvuhrvhbrgb7oa74R64B+6Be+AeuIfvo8P30YH78tXz7vPetD/ze9P+zt/vMYn3pv2dkzzJi1zkJr+465nPnV++et6Dvnbsr8eTPMmLXOS7wyk6q6KzKjqrorMqOquisyo6q6KzKjqrorMqOquisyo6q6KzKjqrorMqOquisyo6q6KzKjqrorMqOquisyo6q6JjLzr2omMvOvaiYy869qJjLzr2omMvOvaiYy869qJjLzr2omMvOvaiYy869qJjLzr2omMvOvaiYy869qJjLzr2omMvOvaiYy869qJjLzr2omMvOvaiYy869qJjLzr2omMvOvaiYy869qJjLzr2omMvOvaiYy869qJjLzr2omMvOvaiYy869qJjLzr2omNvOvamY2869qZjbzr2pmNvOvamY2869qZjbzr2pmNvOvamY2869qZjbzr2xleNrxpfNb5qfNX4qvFV46vGV42vGl81vmp81fiq8VXjq8ZXja8aXzW+anzV+KrxVeOrxleNrxpfNb5qfNX4qvFV46vGV42vGl81vmp81fiq8VXjq8ZXja8aXzW+anzV+KrxVeOrxleNrxpfNb5qfNX4qvFV46vGV42vGl81vmp81fiq8VXjq8ZXja8aXzW+anzV+KrxVeOrxleNrxpfNb5qfNX4qvFV46vGV42vGl+xYw927MGOPdixBzv2YMce7NiDHXuwYw927MGOPdixBzv2YMce7NiDHXuwYw927MGOPdixBzv2YMce7NiDHXuwYw927MGOPdixBzv2YMce7NiDHXuwYw927MGOPdixBzv2YMce7NiDHXuwYw927MGOPdixBzv2YMce7NiDHXuwYw927MGOPdixBzv2YMce7NiDHXuwYw927MGOPdixBzv2YMce7NiDHXuwYw927MGOPdixBzv2YMce7NiDHXuwYw927MGOPdixBzv2YMce7NiDHXuwYw927MGOPdixBzv2YMce7NiDHXuwYw927MGOPdixBzv2YMce7NiDHXuwYw927MGOPdixBzv2YMce7NiDHXuwY4+Drw6+Ovjq4KuDrw6+Ovjq4KuDrw6+Ovjq4KuDrw6+Ovjq4KuDrw6+Ovjq4KuDrw6+Ovjq4KuDrw6+Ovjq4KuDrw6+Ovjq4KuDrw6+Ovjq4KuDrw6+Ovjq4KuDrw6+Ovjq4KuDrw6+Ovjq4KuDrw6+Ovjq4KuDrw6+Ovjq4KuDrw6+eu/Ynzeg9479nV/c8cxFfnFfX7PJ5859kQc5yEm+O9hDx37o2A8d+6FjP3Tsh4790LEfOvZDx37o2A8d+6FjP3Tsh4790LEfOvZDx37o2A8d+6FjP3Tsh4790LEfOvZzd+x53R17XnfHntfdsed1d+x53R17XnfHntfdsed1d+x53R17XhfcAXfAHXAH3AF3wB1wB9wBd8ANuAE34AbcgBtwA27ADbgBN+Em3ISbcBNuwk24CTfhJtwJd8KdcCfcCXfCnXAn3Al3wl1wF9wFd8FdcBfcBXfBXXAX3IJbcAtuwS24BbfgFtyCW3AbbsNtuA234TbchttwG27D3XDfvhrPHOQkf3fded0de153x55fm/Z85s3j5853x57X3bHndXfsed0de14H7oF74N4de14H7v2+mxz3+25y3O+7yXG/7ybH/b6bHPf7bnLc77vJcb/vJsf9vpsc9/tuclxwB9wBd8AdcAfcAXfAHXAH3AE34AbcgBtwA27ADbgBN+AG3ISbcBNuwk24CTfhJtyEm3An3Al3wp1wJ9wJd8KdcCfcCXfBXXDX/X303rS/M9yXrz7vPvnetL9zk7/f75PvTfsr10Ue5CAneZJf3PXMRX5x9zN/v98nv3bsrzzIQU7yd4eT7NiTHXuyY0927MmOPdmxJzv2ZMee7NiTHXuyY0927MmOPdmxJzv2ZMee7NiTHXuyY0927MmOPdmxJzv2ZMee7NiTHXuyY0927MmOPdmxJzv2ZMee7NiTHXuyY0927MmOPdmxJzv2ZMee7NiTHXuyY0927MmOPdmxJzv2ZMee7NiTHXuyY0927MmOPdmxJzv2ZMee7NiTHXuyY0927MmOPdmxJzv2ZMee7NiTHXuyY0927BkT7oQ74U64E+6EO+EuuAvugrvgLrgL7oK74C64C27BLbgFt+AW3IJbcAtuwS24DbfhNtyGi68CXwW+CnwV+CrwVeCrwFeBrwJfBb4KfBX4KvBV4KvAV4GvAl8Fvgp8Ffgq8FXgq8BXga8CXyW+SnyV+CrxVeKrxFeJrxJfJb5KfJX4KvFV4qvEV4mvEl8lvkp8lfgq8VXiq8RXia8SXyW+SnyV+CrxVeKrxFeJrxJfJb5KfJX4KvFV4qvEV4mvEl8lvkp8lfgq8VXiq8RXia8SXyW+SnyV+CrxVeKrxFeJrxJfJb5ix57s2JMde7JjT3bsyY492bEnO/Zkx57s2JMde7JjT3bsyY492bEnO/Zkx57s2JMde7JjT3bsyY492bEnO/Zkx57s2JMde7JjT3bsyY492bEnO/Zkx57s2JMde7JjT3bsyY492bEnO/Zkx57s2JMde7JjT3bsyY492bEnO/Zkx57z7thz3h17zrtjz3nBHXAH3AF3wB1wB9wBd8AdcAfcgBtwA27ADbgBN+AG3IAbcBNuwk24CTfhJtyEm3ATbsKdcCfcCXfCnXAn3Al3wp1wJ9wFd8FdcBfcBXfBXXDx1cRXE19NfDXx1cRXE19NfDXx1cRXE19NfDXx1cRXE19NfDXx1cRXE19NfDXx1cRXE19NfDXx1cRXE19NfDXx1cRXE19NfDXx1cRXE19NfDXx1cRXE19NfDXx1cRXE18tfLXw1cJXC18tfLXw1cJXC18tfLXw1cJXC18tfLXw1cJXC18tfLXw1cJXC199/V3r55kH+cUdz5zk7/f75HvH/s5FbvImnzvnRb472EXHvujYFx37omNfdOyLjn3RsS869kXHvujYFx37omNfdOyLjn3RsS869kXHvujYFx37omNfdOyLjn3RsS869kXHvujYFx37omNfdOyLjn3RsS869kXHvujYFx37omNfdOyLjn3RsS869kXHvujYFx37omNfdOyLjn3RsS869kXHvjbcDXfD3XA33A13w91wN9wD98A9cA/cA/fAPXAP3AOXm2BxEyxugsVNsLgJFjfB4iZY3ASLm2BxEyxugsVNsLgJFjfB4iZY3ASLm2BxEyxugsVNsLgJFjfB4iZY3ASLm2BxEyxugsVNsLgJFjfB4iZY3AQLXxW+KnxV+KrwVeGrwld1/91WWfffbZXvTfs731130bEXHfvXpj2fefF4kZu8yXfHXnTsRcdeC+6CS8deC+6Cu+AuuAtuwS24BbfgFtyCW3ALbsEtuA234TbchttwG27DbbgNt+FuuBvuhrvhchMsboLFTbA2XG6CxU2wuAkWN8HiJljcBIubYHETLG6CxU2wuAkWN8HmJtjcBJubYHMTbG6CzU2wuQk2N8HmJvjetD+/d96b9neG+/JVXc+c5Ce35jM/uVXPXOQmb/K588tX7/zkfv7/xfK9aa/+4+NP//2X33/5y19//fm//vRv//v48D/++bef/vHLb397f/iP//n712f++vsvv/76y3/++e+///bTz//+z99//vOvv/30+bk/XZ//+Pwp/jDqI8aPjy8e78d/2I8O+WM/itUfnw/+cB53rI/zOAY9Ps7n5x8XpMcXrc/Pfz7h8d+++fH4x/l8YDy/ovvzFc7n68a/ovIL9fhTxeOJ8X7hz1/hx59vvl925ePD/fWi/bh/dfbn8+fn8z+fEecjz9fXz+tjrs9Pr6+XfxwmPh5l/fvlH7+Oz5/D84sft5jHD+b6evHHueTxYX0+u76f/XjBRz3+9YO7Pp759ezYH4/rw/ezsx8fPn+2/fVDq/HR4+vr+3zs+fnpff9iPJ4Snw+d74diPHjPfxX3v57HH67n85lj/P9fxz/++PGP/wM=",
3937
3939
  "verification_key": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEZRAAAAAAAAAAAAAAAAAAAA19Popmnizjr/u04ad/IWFngAAAAAAAAAAAAAAAAAAAAAAAByidESKAtXVgslBW3JuQAAAAAAAAAAAAAAAAAAAIsdFr51fQZWNU6hWcgcn3bXAAAAAAAAAAAAAAAAAAAAAAANyXudSTWuJXYnVU6Wb0oAAAAAAAAAAAAAAAAAAAAtdrHr6SRWjlvmQ+J8LFeOyQAAAAAAAAAAAAAAAAAAAAAALZev7RRt8v1cqoIm0YkpAAAAAAAAAAAAAAAAAAAA5Xvj57Iv5vsqtX4GPnJcbgQAAAAAAAAAAAAAAAAAAAAAAAHYakO3UGUbu0SCAaQ9YAAAAAAAAAAAAAAAAAAAABiD+zUsPj2nk3QZstjyiGotAAAAAAAAAAAAAAAAAAAAAAAmRO4iTYQIUvZjUEB6VU8AAAAAAAAAAAAAAAAAAACVGlBr01GjCuxF+dcfyE2KEAAAAAAAAAAAAAAAAAAAAAAAJgzBpsSrOne4lg824COhAAAAAAAAAAAAAAAAAAAALmK9qjrh9OQBqqJUl8gWOfUAAAAAAAAAAAAAAAAAAAAAADBWT0pEU8IF2figrc+TkwAAAAAAAAAAAAAAAAAAAEGiTobSJVs6j3cAeH28HKJZAAAAAAAAAAAAAAAAAAAAAAAYv1ub5MBneM9/qlmWMfsAAAAAAAAAAAAAAAAAAADm9ikzkNLK7tUZF3maLJh4ewAAAAAAAAAAAAAAAAAAAAAADjpBY1BILyk7zpma0WjqAAAAAAAAAAAAAAAAAAAACVN0nFQxBCe3eCgHth876fUAAAAAAAAAAAAAAAAAAAAAABAkYJBZ4+4OqRgm+D5WEAAAAAAAAAAAAAAAAAAAAPfOb66G5l1Ae8ZFBJ31EfYLAAAAAAAAAAAAAAAAAAAAAAASIiBh2Q3s3uA1N5dDn2EAAAAAAAAAAAAAAAAAAABa6NnPY4TtpkIgrhlndDegvQAAAAAAAAAAAAAAAAAAAAAABr0iiQ6swFLipI4Qq6uqAAAAAAAAAAAAAAAAAAAAIjx7zf4ErK3TUbUjPHWvo0EAAAAAAAAAAAAAAAAAAAAAABJB8o1i6Ip9b013Xwim2AAAAAAAAAAAAAAAAAAAANbtA9MMEnI01SmAvBq147tMAAAAAAAAAAAAAAAAAAAAAAAB4gue2VkVG3TYKDAdd9gAAAAAAAAAAAAAAAAAAABLc8fhcQaN5MCGNhxTZk2eugAAAAAAAAAAAAAAAAAAAAAAF8yGuxVrdoyUkNV/bKziAAAAAAAAAAAAAAAAAAAAZA8ggO/Oah+nQS6mCJ1VcvAAAAAAAAAAAAAAAAAAAAAAABtAsZxoUvwkRVL1cTBhDwAAAAAAAAAAAAAAAAAAABWFJwrB/tHY8wd2GdB54NkwAAAAAAAAAAAAAAAAAAAAAAAue9ZvdkAUjSllkOIqTpsAAAAAAAAAAAAAAAAAAAD03J2xP7FoB9WNvJXV5UXDtgAAAAAAAAAAAAAAAAAAAAAAEVy3rzOKJ+Y2Tj5+Lm9zAAAAAAAAAAAAAAAAAAAA/ffiIYfJbjpsSOZBbf9ISpcAAAAAAAAAAAAAAAAAAAAAACLgT1ry9VaY4VWCMKrmfwAAAAAAAAAAAAAAAAAAAJRm5kDKwa1pZn6EnStpRbBpAAAAAAAAAAAAAAAAAAAAAAAbkoUReCRDyiZAU6woPq4AAAAAAAAAAAAAAAAAAAD823syZBzNWnGGjnzT1yMg5AAAAAAAAAAAAAAAAAAAAAAAATDBDUq0HRHSx0+PInBuAAAAAAAAAAAAAAAAAAAAbGP6UV+RTMDMVJE9AtswcMAAAAAAAAAAAAAAAAAAAAAAAC8fAcvKUFeoLDHLV9S0EgAAAAAAAAAAAAAAAAAAANWDsGz7Q3qf7W5spt78ri5JAAAAAAAAAAAAAAAAAAAAAAAHfLtbZrvoBFryMeF21QoAAAAAAAAAAAAAAAAAAACnVImK8D0CbcRke8vPTjmEyAAAAAAAAAAAAAAAAAAAAAAAEf3JDFxHvLH6NWnmrYW2AAAAAAAAAAAAAAAAAAAA07i+aqRG1Igx9CdLw9iYoEoAAAAAAAAAAAAAAAAAAAAAABV8bQVEw00EgI7bO2YJiAAAAAAAAAAAAAAAAAAAAFLKdcra8iMQDvqccKIhZor2AAAAAAAAAAAAAAAAAAAAAAAVJePI3ZhGeRM+LVpwcagAAAAAAAAAAAAAAAAAAABfDGKLBbgZny+pRcL/1I/3xAAAAAAAAAAAAAAAAAAAAAAAG3tXfYtuBP9o+fA3m6xoAAAAAAAAAAAAAAAAAAAAj3U8ZjXd1p81IWtxTDLs2jcAAAAAAAAAAAAAAAAAAAAAAAI/A1YQ5izQuYtNzMOuKAAAAAAAAAAAAAAAAAAAAIKNMkDu/9tB77CEnx4L+dVPAAAAAAAAAAAAAAAAAAAAAAAFEZSgCdzwOtpxXnOa1D4AAAAAAAAAAAAAAAAAAADbg5YiuY8BR5loONe8e2si9QAAAAAAAAAAAAAAAAAAAAAAB2LZ7g+wlP86IquB/zFCAAAAAAAAAAAAAAAAAAAA04PTHdVFhVIYUtf6bXMFQ/MAAAAAAAAAAAAAAAAAAAAAAAeEirNbhfUIWtXmcCWyLgAAAAAAAAAAAAAAAAAAAH1blInkPZ62Ohqmg3QXHAeYAAAAAAAAAAAAAAAAAAAAAAAGxtSfm/xx0HwiExj6K6sAAAAAAAAAAAAAAAAAAAANi8AhBJNhg2NofurIFyhCFgAAAAAAAAAAAAAAAAAAAAAAKvxhgAAhkkh6ieD5e4FKAAAAAAAAAAAAAAAAAAAAuyHIU/mYIvVJP1qyM4jhlZEAAAAAAAAAAAAAAAAAAAAAAA121sJnXUba2Jm3m21B3AAAAAAAAAAAAAAAAAAAAD3/9ryBTEG088FcwiZOPua1AAAAAAAAAAAAAAAAAAAAAAAHHyG+SbcNYx26mkcTgTYAAAAAAAAAAAAAAAAAAACb4yJLQZjAE39WkcI4aqFiSwAAAAAAAAAAAAAAAAAAAAAACWivjvHPNc/7IWgm+6AfAAAAAAAAAAAAAAAAAAAABFCdffUNg0geF36+izQiNB8AAAAAAAAAAAAAAAAAAAAAABVCVf/pD/9EWV2WE4UoUAAAAAAAAAAAAAAAAAAAAE8lfYz8rIwlzdgyLW76Yk7VAAAAAAAAAAAAAAAAAAAAAAAvkH5QZsVnSTxELCWNeRAAAAAAAAAAAAAAAAAAAAAZcXgxRwVjxeRr2+BlrVQlugAAAAAAAAAAAAAAAAAAAAAAC1bhNRL7EYam7lccEAHSAAAAAAAAAAAAAAAAAAAA+UFAjyco9qFDwN+gnE8hzycAAAAAAAAAAAAAAAAAAAAAABDgu+jKvXoR116oNnBjRQAAAAAAAAAAAAAAAAAAAJ5fbb1bWybJsYKyo7pCaNNbAAAAAAAAAAAAAAAAAAAAAAAtOD6nW1LMTgWLXcRphHAAAAAAAAAAAAAAAAAAAADuXJ5lz5lXOFztPRx8UeLGzAAAAAAAAAAAAAAAAAAAAAAADre9FbkPirSMH/sUYivfAAAAAAAAAAAAAAAAAAAAuNSZMxotFjpTP8sIT7DJmP0AAAAAAAAAAAAAAAAAAAAAABA5xurABqFpnD4ys1b3jQAAAAAAAAAAAAAAAAAAAJ6TG2cynxlJ1K2mI50leW74AAAAAAAAAAAAAAAAAAAAAAAKFD6B96Bv1HD/+kGvrVYAAAAAAAAAAAAAAAAAAABf1bY7fMXnIgOKxwGBs3gjwAAAAAAAAAAAAAAAAAAAAAAAGCjC4gtHGPTr/zsCRktlAAAAAAAAAAAAAAAAAAAAlg8yrYRqWmEAvbOdbyO2jIsAAAAAAAAAAAAAAAAAAAAAAAtgz6wS0+90yBw+bmclaAAAAAAAAAAAAAAAAAAAACD42DFJABtmoKX9Ni2wygbsAAAAAAAAAAAAAAAAAAAAAAAbygfvY+K2o7e/uRXf/JUAAAAAAAAAAAAAAAAAAAAm3WidinRPwtGDw8Q0gPl6ugAAAAAAAAAAAAAAAAAAAAAAFYvdS+9JLB8rfLeVCcDdAAAAAAAAAAAAAAAAAAAAEQHGaJRYKW6rGbweOT5N/soAAAAAAAAAAAAAAAAAAAAAACpctoK9xBt0v3xf+LsrlgAAAAAAAAAAAAAAAAAAAHTNUWdH5LMaA+Op5JW0vblcAAAAAAAAAAAAAAAAAAAAAAAPbTLqPWqjRaE6g5DrLCQAAAAAAAAAAAAAAAAAAADG2YJt0q1baLp4btBBWDaQ0gAAAAAAAAAAAAAAAAAAAAAAJ6EmrTdSRt6D4TDSPEgdAAAAAAAAAAAAAAAAAAAA4/7GrA2liRROmKecutS0j1cAAAAAAAAAAAAAAAAAAAAAACGrMGkfv3528Wntq96mFgAAAAAAAAAAAAAAAAAAAMU8+26rvG/ZdzM7gMYBV676AAAAAAAAAAAAAAAAAAAAAAABg286dpI2UYFTywsmNnkAAAAAAAAAAAAAAAAAAACAGL8fszsvDbPctfsOyl4uRwAAAAAAAAAAAAAAAAAAAAAALGLZSjQK7FPnZCsl4aNKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC/hjKl3Ki7GAitPXIcZzl1YQAAAAAAAAAAAAAAAAAAAAAAIEBPNpWw4GHbXMnUNrNWAAAAAAAAAAAAAAAAAAAAZwaijMDHok0OjhlUbD/f3PwAAAAAAAAAAAAAAAAAAAAAABCdQAJ8G0Uh2wCB5i8npwAAAAAAAAAAAAAAAAAAAGvMegX/lalrKJQkxfczZw2WAAAAAAAAAAAAAAAAAAAAAAAAxDcm91tv2g3iLODg36sAAAAAAAAAAAAAAAAAAAAdCgnXF47JO614WPluZPC0jQAAAAAAAAAAAAAAAAAAAAAAL5tuC04sAZaN5cMkgqp9AAAAAAAAAAAAAAAAAAAAhGizfhDghN678/BvPdVyeZAAAAAAAAAAAAAAAAAAAAAAABP8MEXsXcism66kuZ6hugAAAAAAAAAAAAAAAAAAALSFZmQJ4zJievrMBCtdWDUYAAAAAAAAAAAAAAAAAAAAAAATHr6UQ9MIxtY9B5E67mY="
3938
3940
  },
3939
3941
  {
3940
3942
  "name": "process_message",
3941
3943
  "is_unconstrained": true,
3942
3944
  "custom_attributes": [
3945
+ "external",
3943
3946
  "utility"
3944
3947
  ],
3945
3948
  "abi": {
@@ -4212,12 +4215,13 @@
4212
4215
  }
4213
4216
  },
4214
4217
  "bytecode": "H4sIAAAAAAAA/+29CZxc11Umfl93qdXV3VKpJVmSLdtqL1os2fLuOHGceLdla7PkLQ6OrdjCdqx4lR3LG7LlNbGTgIEJkz9LAllYMiETBhhgZiDAMJDJwMBABkgmYRvIAFmI2WYyw58b1+n++qvv3brv1SmpYvf9/aSqfvec75x77rnnru9WEV5Orfbn3ffedfPu++678e3//N+uW3df/c+PinZWo/05v/0Zn0+G2clop0JWKirQzmaqIKMI/ZcxFPovYzj0X0Yj9F/GvNB/GSOh/zLmh/7LGA39l9EM/ZcxFvovYzz0X8ZE6L+MBaH/MhaG/stohf7LWBSqy6gjZzIcHDmL82m/iX2eeFZF3pLQ/zpaGvov47DQfxnLQv9lLA/9l7Ei9F/G4aH/Mo4I/ZexMvRfxpGh/zKOCv2XcXTov4xVof8ypkL/ZRwT+i/j2NB/GceF/ss4PvRfxurQfxlrQv9lrA39l7Eu9F/GCaH/MtaH/svYEPov48TQfxknhf7L2Bj6L+Pk0H8Zp4T+yzg19F/GaaH/Mk4P/ZdxRui/jDND/2WcFfov4zWh/zLODv2X8drQfxmvC/2XcU7ov4zXh/7LODf0X8YbQv9lvDH0X8Z5of8yzg/9l3FB6L+MC0P/ZVwU+i/j4tB/GZeE/su4NPRfxmWh/zI2hf7LuDz0X8YVof8yNof+y9gS+i9ja+i/jG2h/zK2h/7LuDL0X8aOUF1GHTk7w8GRc1U4OHKuDjXkXEMC44GGeOAgHgiIG/ZxQz1ueMcN6bhhHDd044Zr3BCNG5ZxQzFu+MUNubhZFjey4uZS3PyJmzNx8yRubsTNh7g5EBfv4+J6XPyOi9Nx8dgWd4/5539x8TIuLsbFv7g4FxfP4uJWXHyKi0Nx8SYursTFj7g4ERcP4uQ+Tr7j5DhOXuPkMk7+4uQsTp7i5CZOPuLkIA7e4+A6Dn7j4DQOHuPg7rx//hcHR3HwEgcXsfOPnXPsPGPnFjuf2DnE4B2Dawx+MTjF4BEbd2x8sXFE542OFSv96lCerHJLzt8s2vDy49F29hCwVTgPUoySuGr8+//nKANW4g/f5I88o/X4rzH+Zj3+b7pvTO8FftTFcIfbnx8A3g+QTKP5E6D5E6IxfevZO7y3x/JOToTZZTSMALqN1cNejGWyNEzPEL8Zeqr7oiA8k8fls7YxATQmr6C8htDT8uZBntk/hr71QMd1O0p5pktMH6C8Ycj7YPvT6gT1qmCjH+7RX87ro7+c/63oLw3K8/AXxGB/MYyY/oTyRiDvTylvPuT9Gcg+E74faH/vMSZNx/CafdA3hwQsH7FMX0vD9BmT2clsPyroLa8JeWj7mMbg+bDAmk98Rn9G+3Nh+xPrxvhbQv4IyVd6K98sBNaweGb00T4ngc6GeSHQToWsNGy8Fynel+777Ic//cInf+Wjez/yoe+d/IMF3zd+4th3PPXUV1Z++ch/+dWnfth4L4ZyFCFb9ojxX6Jkv+Fnhq+/7RP/+67xSw98/B1/8Ptb719w5K5PrXr2Q9f/6neu+tKNTxvvpYr3L55//3e0Pv5dPzS14TN/O3Lpe/7qxq9vmnf2H3zmkcN/+YlvfOmrLxrvZYr3t6//xud/qvXiQw++8G8fPnvdkl0/8eJnv/a/fu3T/6r19T/62D2fPdN4N0GZ64zRLgf+Kudxjf+KevzT8jfX4x8y/i3AX6H8i4x/Kzycsi+P/8hHP3/+C5855U++MfbOLbuefPD0d/3OtX/90IqPrP6zt33syJ+YNN5tiveP9174nXuXv/2svx79zRdO/cDKo77w0kd+6s//bt/us//qz//ip4/5uvFuV7xdkvFeKXhXnLb2tXe/77eWfm7dsX943i/+xMbvPvyl41//uZ+97ANf/d+//g/Au6P9WdFe0/beWY+/YfxX1eOfjg9XA3+FNj7tb9fU45+Wf209/mn7XQcPp9I800MY431TPq+lecZ7veYtDhx7379ovlBs+dQTJ/3UxNinvnT+D15w4Wc+/eQ7V7V+4geN982Cd/3rm1/90Dsfeyp88SN/+e6/W/8L5500efT5kxv/2/t/b+Wd97758K8a77dBYSrU95HGfwPwk+7JZPxvAf4K9TXNfyPwVxl/GP9NwB9CdX/dBQ+nQlaa5n1rdd5pP73ZwEKlck/72y31+Kf74t31+Ocb/7fX4x81/lvr8Y8b/231+CeM//Z6/AuM/231+FcZ/x3AX6HdTBn/nnryp/nfXk/+ScZ/Zz3+U4z/rnr8pxr/3cBfZW5s/PfUk3++8d9bj/9i47+vHv8lxr+3Hv9W47+/Hv+Nxv9APf5dxv+OevxvNf4H6/HfbPz76vHfYvwP1ePfbfwP1+P/duN/pB7/rcb/aD3+24z/sXr8txv/d9Tjv8P499fj32P8j9fjf7vxP1GP/07jP1CP/y7jf7Ie/93G/1Q9/nuN/+l6/PcZ/zP1+Pca/7P1+O83/ufq8T9g/O+sx/+g8b+rHv8+43++Hv/Dxv9CPf5Hjf/dwJ/f/xbT4/b3wNOpkJOKb66BxbW8eUe//CRuWR7fzr1/7+17bt+77/z77tt9794L73r73bv23v7WPbu33bvr5j27r9l9732333VnJ+LsdGHJ8yhnxWw5l+7ee/XL3y686869ux/cO49wee29SX+P0d/j9DevR9tzta6dk2yNeQHhqc8QOtf0Y7J1yRZhYXlsXXkh5FXwr+2mZ0voadiL4HmFsd9ROeVE/CbpUlHe9N7FIpLH5cO9i5g3KXRpiTy28aSQMynktETeQ45YTzliPeyIdcARy7OMjztiPeaI9YQj1iOOWHc4Ynna3rMNPT2gWA84Ynn6hKftPf1rnyOWZ9v29IkHHbE8Y/RzjliD2j/aPMLGDjjWKEo+TQ4/MzlNwqo77lHlWiTkpehbCfrFmfjjgNMev1+0+63337r5rlsDJR5SX1yi4pFEd2NCNcYt6B8/P5KeDQtaTLF4y9rf28W7ZPfem2+7atett+6+5Z8LeR9zMNJFJc95QIo0NhhfTJpOhaw0lOOUiN8kXeo6pXIa1djGgbZt1c137brlwl1333f/nt14JAzdlKUUhIrPVJ0WoBk+GyO6i+jvTYIvCGw8zriUnk+FrHSYecVhItPylgF2i/KWQx7WJqdhob/pHJcBxo+ewWU61gfrYxnlLYG85SCb63WxkGP6Dwn6JYS1WPCZ7bvJGxZ8PC1NTZ1zWpuVI4SZrqYldO5jVFg66FHByreknrwlBfGjPMQ0fczWS0WeYVk7HCnBMt4G0X+9/dkiupi2k4ylQl98hkfWvky6o23ZT3qxI+KZXvgM8ZuhJ78sUvWG5WM/qRljF+fYHfXhmMy2xbg3UoJlvA2iN4O2QmfcZz85TOiLz9BP/g/pjrZlP6lpx+zjyobfDD35ZZGqNywf+8lh9eSdl2N31Ef1z2hb7ANHSrCMt0H0C8hPpv0ndPrJMqEvPkM/GW3jjpboOxWy0jvUuIX9DO1S5ThVrp8ZfjP0VO9Fyo6qvamxl/G2RB4vLS8XcpYLOS2R95Qj1gFHrAcdsR5yxHp6QLEec8R6whHrEUesOxyx9jtiefr9INor1Q9VxYrJ01efccR61BHL01c9y/iAI9agtu3nHbHudMSyYx08zjP8mEZDZ9urOjdBPNMTnyF+k3SpO9ZRdlFjRivfinryJgviR3mIafqYrQ8XeYZ1RPvvkRIs420Q/TVtg7aILiYeUx8u9MVnOKa+so27UOjL6wtV/RH52UbIx/7YS30hnumJzxC/GXry/yLlH8ouVr7D68lblFO/qI/Z+giRZ1gr23+PlGAZb4Pov5388QjQif3xCKEvPkN/3FXM1h1ty35S044X5/qJ4TdDT35ZpOoNy8d+ckQ9eRfl2B31MVuvFHmGZXtRIyVYxtsg+vvIT1aCTuwnK4W++Az95E7yE7Qt+0k9OxZfy/UTw2+GnvyySNWbit9WvpW15BVfzbE76mO2PlLkGdZR7b9HSrCMt0H0+8lPcO+TXy07UuiLz9BPHiY/Qduyn9SzY7gg108Mvxl6at9Fqt5UXLXyHVlP3vk5dkd9zNZHiTzDam/ZzfITxDLeBtG/QH5yFOjE8eQooS8+Qz95to27UOjL6+e5caol+I1O+Vz8NxWy0lWqTivw38N1ZBio29HwvIK/nJrbHgy/GTr9pU57OJrkldW3lX2V0KUl8riOVgk5q4Sclsh71BHrIUesOxyxHnTE2u+I9YAj1mOOWI87Ynn6xD5HrPsdsZ52wlLxsxe9nnLEesYRy7NtP++I5RkLPdvjE45YnvX4giOWp0942t6rbQfnMnr6xAFHrEGNE556vRrGTHN92qGzvWd7fNgRy7OM7xxQvTzHE55l5P0znFsW7c/R0Nn2Ksxb31AQnumJzxC/SbpUlFek7ILl43nylNClJfJSaxnD4tlQCVZMjzpiPeSIdYcjlmcZH3PEesIR6xlHLE/bP++INVeP1bBecMTy9Il9jlgHHLE849fTjlietvf0VU/bD2r88vRVT/963BHLsx49/cuzDXn611OOWA84YnmWcVDHcp5l9BxPDGo9DupY7p2OWIM6zvEcY86NJ14ZbcgzTnjq5eVf8fuRTlgxPeuI5Wl7zzGA9bV87svwY+pxDeyYgvBMT3yG+M3QWZdea2DqDJmVb6qevKmcekB9zNbHiDzDOrb990gJlvE2iP5Au1AtoouJz9gdI/TFZ2afeHbqsfYfC4W+ve5FID/bCPnYH6fgeYX6Gs71x6n292boyf+LlH8ouyj/MN6WyGP759ZrCmth8I+tR4ryTAg+rmfUr4Lds98VMPxm6MmvipT9p+AZx51j68lbxLEC5SGm6WO2Pk7kGZZdsTpSgmW8DaL/QYo7x4FOHHeOE/riM4w7/5LijmoTdf0e+Y3ulSZnQvBx+6rpf/Ny25fhN0NP7blI+buyi/J3422JvCn4XsVPvxWxzP+OTchJxRUlB/mPnZPTk5wJwcftFus1vx0VX8xtt4bfDD3FiSLlt8ouVr7ja8krvlAQP8pDTNPHbL1a5BnWmvbfIyVYxtsg+v9C/eJq0In7xdVCX3yG/eKvD83WHW3LflLPjqGV6yeG3wy9+OWMn6h6U/HNyre6nryFOXZHfczWa0SeYa1t/z1SgmW8DaL/Q/KTNaATv/OyRuiLz9BPfq/9x2iJvlMhK/2RsnUF/h8aDZ22q8B/gvGvrcf/s8a/rh7/Txv/CfX4Hzf+9fX4rzP+DfX4bzD+E+vxrzP+k+rxn278G+vx/4Xxn1yP/zLjP6Ue/781/lPr8X+n8Z9Wj/9C4z+9Hv/fGv8Z9fhfNP4z6/F/1fhfA/xV1tiM/7X1+IdN37PxodDJ8C3WnwX0RcmnYXGeyWoSVt1+UemO+vG48myQh2Uswzq7ItaoyKtTJ68J5eVC/ImELqxnTHzXSt0yx7TPEWuvI9ZTTlhqbNCLXnc56rXaEWuNI9ZaR6yFTlgx3euo1zpHrBMGFGu9I9YGR6wTHbFOcsTa6Ih1shNWTO9y1OsUJ6yYnnTU61RHrNMcsbz6jvj9dEesMxyxznTCiuktA4plPwnf43rBph7XC17X43rBlh7XC3b2uF5waY/rBRf1ON/fbGPlE+Fh0f5Uc/kK4/atBeGFoOc/ht8kXSrKm57/nETyuHy877NR6NISeezjG4WcjUJOS+Q94Yj1nCPWA45Y+x2xHnPE2ueIdYcj1uOOWA85Yj09oFievvqII5aX7VW/OCi+6tken3HEGtT2+KwjlmcbGlTbP+qI5RknPPtazxjtaXtPew2qf+13xPKsR0/bvxrixPNOWPH7GiesmO511GvtAGLFdI+jXuucsGLysn1M9w+gXvH7ekeshU5YMXn5REx7nbDi9xOcsGLyrEdPvbx8dZBj4UonrJg845dnPXrqNYj2isnTVzc4YcXk2Xd4xa+YXnDE8hx/PeyI5bmm4Dkm3++I5bn2aON7W8deD3lF+7PHNfyFBeGZnvgM8ZukS0V5yTV8LB+f7d1YT96CnHpAfczWJ4s8w7I94ZESLONtEP1ftQ3bIrqY+GzvyUJffIZne/98eLbuaFv2k5p2zP6tS8Nvhp78skjVG5aP93pOFrq0RN5C+F7F3qrunnLEOuCI9aAj1kOOWE8PKNZjjlhPOGI94oh1hyPWk45Ynm3Isx6fc8R6wBHrGUcsz7bt6V+ebcgzrr4abP+4I5ZnjLZYuDB0jmcWkZyqY2/kN7oe31fZ0eP7Ktf0+L7KNhsXnQoPi/anepekwhjt8YLwQtBjQsNvki4V5U2PCU8neVw+HhOeIXRpiTw+/3OGkHOGkNMSeU84Yj3niPWAI9Z+R6zHHLH2OWLd4Yj1pCPWU45YnrYfVF99xhHrIUcsT//yjDkHHLFeDbZ/3BHLs4xPDyiWZ9t+xBHLy/bx+2onrJg8fXVQxwD7HbHm+u25frufcXWu357rt+f67Vdevx2Tp70G1VefdcTytJdnzPG0/aOOWJ5tyLPfHtQYPajjCc8y7nfE8qxHT9u/GuLE805Y8ftCR6yNjlhe6+Tx+8lOWDHd46jXSiesmO51xLrfEWuvE1b8fooj1ivd9vH7GkestY5Y65ywYvK012mOWF6+GpNnGxpUvx/UMr7SY6GnXjHN9R3f+n1HTPc5YcXvnmcevOwVv29wxDrBEcurr43Js3/0sldMg9h3xPSCI5bnnO9hRyzPPR3PdYD9jlie53P4HRk8G1a0P9Wdx1HOVMhKJxaEZ3riM8Rvki4V5RUpu2D5zC5W9jOFLi2Rx/HwTCHnTCGnJfIec8R62hHrQUesA45YzzliPeSI9dSA6rXPEesOR6znHbHudMR6wRHL015POGJ5tsdnHLE8/d4zFnrW48OOWJ4xx9MnHnfE8rT9AwOq15OOWJ4+4Tk28ey3PetxUOOXp3897og1qDHaE8vTvx5xxOLfmMb5TdH+VL8vU2HudHxBeKYnPkP8JulSUV6Rsouaw1rZXyN0aYk83gNWv5HyGiGnJfKecsQ64Ij1oCPWQ45YTw8o1mOOWE84Yj3iiHWHI9aTjlgPOGJ5tsdnHLE8/cvTXvsdsTz9y7MNecZVT5/wjKuD2rY926NnG3rOEcuzPb4a/OtxRyzPMQDfg4DjZb4HoeqYHfmNbkLwFe3PHn/T8TsLwjM98RniN0NnmeuM2ZX9lV2q/N5g/O75+3lPOGI954j1gCPWfkesxxyxPH/r8Q5HLK/fEYvJ63cjY/K0/aD66jOOWA85Ynn6l2fMOeCI9Wqw/eOOWJ5lfHpAsTzb9iOOWF62j9+9fvc2Jk9fHdQxwH5HrEHttz1t7zkG8IzRnuOJQfXVuX770PVpc2PyalhzY/JD51+PO2LNjQurYQ3iuDAmT3sNqq8+64jlaS/PmONp+0cdsTzbkGffMagxelD7NM8y7nfE8qxHT9u/GuLE805Y8ftCJ6yY7nHUa6Mj1kpHLM/9IU97bXDCiul+R6y9Tljx+ymOWF4+EdO9jlhetvds297t0asNxe8nO2HF5NkeXw3+tcYRa60j1jonrJg87XWaI5ZXLIzJM0YPqt8Pahlf6X2tp14xzY1NvvX7jpjuc8LyHE/E5GWv+N1rTB6/n+CI5dXXxuTZP3rOYQax74jpBUcszzWFhx2xPPetPNeZ9jtieZ4v5HtQ8Gxr0f4cDZ3tJcqZCllpoiA80xOfIX6TdKkor0jZRZ2TtvK9tp688YL4UR5imj5m69eJPMM6p/33SAmW8TaIfsH8lz9bRBcT/1bw64S++MzsE38reHT+bN3RtuwnNe14VK6fGH4z9OSXRareVPtR9Wa8LZHHayC59lZ195Qj1gFHrAcdsR5yxHp6QLEec8R6whHrEUesOxyxnnTE8mxDnvX4nCPWA45YzzhiebZtT//y1MuzHj318owTnj7hWY+PO2J5xnt+3w7HRvy+XWr8qOQgv9FNCL6i/TkaOscoFcZLTxWEZ3riM8Rvhs4y1xmfKfsru1jZzxG6tEQer92cI+ScI+S0RN4TjljPOWI94Ii13xHrMUesfY5YdzhiPemI9ZQjlqftB9VXn3HEesgRy9O/PPXyrEdPvTzjqqdPeNbj445YnrZ/ekCxPOPEI45YXraP31c7YcXk6auDOp7Y74g1NwaYGwP0M67OjQHmxgBzY4C5MUA3LE97DaqvPuuI5WmvQY0TjzpiebahQe07BnXsO6j+td8Ry7MePW3/aogTzzthxe8LHbE2OmJ5rd/H7yc7YcV0j6NeK52wYrrXEev+AdTLux497bXXCcvbJ7zqMX5f44i11hFrnRNWTJ72Os0R6xQnrJgG1Vfn2uOhK+Mg+ldMc/3QnN9z3n1OWPG75xkRT//a4Ih1giOWV78dk2df62WvmAaxPcb0giOW51z0YUcsz30rz/WJ/Y5YnueZ+P2ehZBXtD/tXOBKeB7lTIWs1CgIz/TEZ4jfJF0qyps+F7iS5HH5zC5W9uOFLi3Ki4nfkzleyDleyDlYWKq+4r+pkJWuZnsYBmLj+YMKdbMi1xcMvxk666aOL6wmeWV2tbKvEbq0RB7beI2Qs0bIaYm8JxyxvmNA9TrghBW/L3XC8i7jHY5YjztiPe2I9Ygjlqe9nnHEepcj1pOOWA85Ynna/jFHrH2OWJ5lfN4R605HLBvbW/+FYx+nvntB3b675rgx2Xdj+cwuVr419eRN5NQD6mO2XivyDMvWlkdKsIy3QfQfHn35s0V0MfGYca3QF5+ZfeJ72h9o4y4U+q4nXGX31QK3JfiNblTwTdmXl+777Ic//cInf+Wjez/yoe+d/IMF3zd+4th3PPXUV1Z++ch/+dWnfqTH+rzW+NfW419i/Ovq8S82/g31+CeNf2M9/ouM/+R6/Ocb/ynwcCqLdUb3eu+SFV81flyjGcrmD6PG//p6/GcZ/7n1+F9j/G8A/grl/4LxvxGeTrU/j/+9n5v/9z/2nsa//u9fvesdf7v+xd+49IV//+Ov/67PnPSG/Tv/5Hu/vMV4z6slOyw0/vOF7C7pHOO9QPG+4WeGr7/tE//7rvFLD3z8HX/w+1vvX3Dkrk+tevZD1//qd6760o3PGO+Five3r//G53+q9eJDD77wbx8+e92SXT/x4me/9r9+7dP/qvX1P/rYPZ89K8a2X6DY1v7zm99b8D3+a7b/jnzWh90INMbbIPp3HTbD94ttogniMYwQZuJfE55XqIvDc/tcw2+GzrLX6XObJI/Lx/PlcaFLi/Ji4vHTuJAzLuQorBccse5wxHrSEeshR6wnHLH2OWI95ojlWcZHHLEG1b8ecMR6yhHrGUcsT//ytNd+RyxP//JsQwccsTx9wjOuPt3+nBB5PA6YgOcV+uWh3HGA4TdDZ79cZxwwQfLK7BKfLW5/v3/v7Xtu37tv8127brlw19333b9n9xBCh9mjIbYKouKzIswuPeYN07MxoruE/t4k+ILAjvlWc5P0fCpkpYvMKy4SmZZ3MWA3Ke8SyMPa5DQs9Ded4+Vs40fP4DId64P1cTHl4Uj6EpDN9arkmP5Dgr5FWBOCz2zfTd6ruSWqejLelsjjtpg78q8TIUxuO0JctPut99+6+a5bA6UG/X1xiYoriG5TiWqFwC3oHz9fQc+GQzoEpSaBOS4TE3cyiHUjyZnrZF5JnYzJbUGesoRh2hIHlqlVwseNmp8NCfoJwpoQfByMFT9iIB97zGjoLOuUfXn8Rz76+fNf+Mwpf/KNsXdu2fXkg6e/63eu/euHVnxk9Z+97WNH/sTiuBRzfLPcLrgUgnaa16V8DaLfDks/69pEUd/l7fy2R15w/547duzee+/tux/Y/c+x7b5AqZsbbaW/twk+lSZCZ1VzYKjZULMDg+E3g3aVqZCVpgODGpVj+eoFBnYIHlV5B4Zt9Hed0WeLnk+FrFR59DlKeTj6xNrkpEafpnPV0SfWB48+saHy6BPrdVzI4YCH9BzwVPDkgFcmb66LfjnNzQMhzc0Dhf79ngcy37zQ2XK5uzfane2MHlvsLH9hHef67JfTXJ8Naa7PFvr3u89WkYT3UPs5xUfZvGcc05R9+eO9F37n3uVvP+uvR3/zhVM/sPKoL7z0kZ/687/bt/vsv/rzv/jpY17qMWpc02O0uzpG2DtpMobtgNuxRceyfXjjbRD9WxbN8N0LkzE7Z9SOKNfs2nP7Lbv27r74znvu333/7lu23rV3933n33nLxQ/svnNv5anZpfT3ZYJPJTMEOtcCyhuDPA5gY6QjP2OnKkQZGKvM4IbVIPqH2srHwLD46NmYqiGh029KlHWc8sZJ325yUps0Raac5T3KWS7kpCYBdYOF0lkFJavPWMfPNGd4sGHj6gfybml/Noh+MzS4d1IDV0G1CDoQoY/FVLZmawcmmWaoRL/3gH8eRv45RGXGciqdJ0AGy43phhIdvpuGjAvC7LJPhbykhowcL3AZ/vAwW3/UVdmc/Qr5eRuhbGCFnyaHn7EcpTMPEjzkIJa1BbMb1gl3RgtIDj9Ldd4LqDyF0CH63webWia2RxW3GkS/FNrjh6g9oj8PUfmxDiYor2yqxTYdFs9SsWqiBCu3DzL6jyX6oG4LFNwHDWXo1wi6Tb0lzJS5DCuIZ0aP/d8Y0S4g2okELeuNvm2Hdg/2ZISntrjkciXQceo2GVlRYTKCdri4BFO1+V1Ea3F4SOC2iBbbMfLGtL1EB67jmN7U/uT2/p+bM/ifon7mYC1Joe04dVt2urTH+lNx9QbKU/E42uv3DpG9eDkT06Gw102U181elmfLNGoSzgelTd7/AX/9fcIrQBb7P7/csgTwmT8mHosZ/eehr/iuti0XEn/8PJpwEVvNZbifY/6QKOdiyOOJrdH+A/nqEuCp4KvnWx0vJZ0Q+7Ca2Gg/S2pp0fAnhDzTqynyGhm63Pn3u07fNfLQrxfEb7rwMz62skzQHy3ozVY4x6tgq3NxkSqQbDXPOIzy5kGe6RB9ej3pt6ymfjn2Q/yWoH8r0FWpi5aQM+qINVETazLM9lFshxxzY+J+SPX9sR4Pbw/gVBw6inQthK6pOMT8Qfyt4pAa68a0rK1rj+PHM8wmS0gnxF5aEzs3Dhn+RCiv16bIy4lDt33j/Ls/teN3jipCZ7wdFs84DimfPErQ99jOT1FxiGMNxqGllIdxyHRQcahmn3JKjv0QvyXoOQ7l1kVLyBl1xJqoiWVxCMcA1g5VHLqJ8iZFeTAO8RxjamyGZuXYbCxsY2Xj7pi2U95EIq8lMKPsk2Gii/FqpP2J80ieoy0RfAHKYM/Q15GH1x6Mfh3YZjXph20ay4n6qbE6rkuuHyunm0zQYb3cRLLQh8coD32S16661Qv3FadRX4HrG72uexpWXMuxuNPe3Ll0996dt+26d/ctO3fffO/uvbx7U9DfZSstPBMLRBcTnxyeT3/zliCvZrYETjeZanX9SPjOctVqPkelI4XOh1LOqh7lrBJy+r1Nu4rkqJXrHkdNx+ToifjN0Nmq6xzeUOeP1SpvjyspUwXxozzE5N5OzaANy6L4SAkWRn6k39wODC2ii+ktJGOx0BefYUS/lCI1riDjjsDWsdky1I4A8u6gchj9d7Zm+K6kmQb2UKn2OBVm61K1PU7NyemrnGN6lHOMkNPveHkMyRkTcno8djKZGy/5WGzNkUryWKw6mdHjjvAijg0oDzF590W9BMaxd6QEq+zozT0UL7HP4Hip+hN8hvFyD8UstfOVsntqNxL52UboMxiXHxjTMtVObUwcl43+IojL+zLicqqM6uSEihNlO4NlWDsIS80ODtYOupKTU56UnENZnlRbwDq4KqEXj3Umu2DtJCzkn6S8oYTOVU+SqNmtktPqUU4rU87BKs94j3JyT2yM9ShnTMjp90kfXnkoi7c/SPGWTyoy75b2J59UPA3i7Qcp3lYtf4/znOxxieE3Q6f96oxLusUHHpcsridvelySmhehPrwbwLaN/2wldKQEC3eEkf4naVyCOw48Llki9MVnOC75cZrHoW17bSdY9oPRHmPiN8nL2uPPUntcDHk57dHoj4D2+POJ9jhJOqNtxhLlwZOcZTFRjclTbaWVoFe+rsYEfdz5yo4rvMte8zTBdFxRu1Wq3YyD7PZq7fm77zv1tLMv+uel2n137y3bBVuEQgGD6QP9zXxRNz4xMiRkxMT+M0l0XO/2vFFDp2603fLVmGBJSTlDyBsTqN0Pxio7qWn10yD6z7QbnDqpqd5mQB9KndQcI76xEt2HRRnGgo4H3x60fljmTYkyG/1/S5R5QZcy8/wLy7WA+HBMyusXXIbR0OkDiKFsfGyYrXtVf0L+gzXGPJbklPVpX8xYa0V97PpWXmudD33an1Cfpsby/S5/2VsXWC68ipbnEQugnIwZE5+yM/q/8jklInf+eO2/EPrH8n2Z6lSVPVWnRv+PC2f4vpZRp6n2od4WSsWCiQS9WjdIXcWqxqe9jfOLL+b4KOI3SZeK/jA93lDjdCxf3fGG4X4BCoT6dxtvMF9qvMG0ZW2PxwAtet5tvKF0KqPtZbwxWVLOEPL6BzXnMf/kV26nQlaa4n5vOOi5Y9lr5ENBjymYXo0xEJ/jMJ6OVra5EfKRfl4bKI4lvodOL6MOx5XoF0JeXSD/weqrjiM5/dh3ionf/MJ6PQu+Y57J4WcsB/nHEnIme5Sj5sA5vh7TnvZntzHR8vHZuN36T5PL/eePQv95RPthat2t6t40l7/q3meqXee2UzUeOJGwqr49jPxl47iG0D0mHpcZ/WvbX3rcV92uThmaL/Q45tue08YRX+1pml5NkZdzevdLzdf/xl9+8v2/WRC/6cLPctaOThT0Pa6zblGnd3FNNSb0kRbl4eld00Gd3q05XtuSYz/EV3vHu4CuSl0orE01sezErdp7PFQxKfctWaN/I4wdcm5qwP4ntac8TnzjQvcQOmNOTFNBp3+iZHjT82whi99YMNpLoNzvO3q2rhNCV4sRwwkZQTwrQrltWMaQ4LWfdFHrOWW6qf1rxCjb+48Yaj+5bA6i9LJyxKT8NrWfvr5HOeuFnFSfxJ8mh5+l9nnXkxzkw3HTdTRuakGemnvd3v7ke0X/BYyb3kzjJiwP72WrtT91PoRtn3uzhtHfBO0q52aN2wEzZ50JdS5bZ9pN45l+rDNxmRqhM7bGdHnQZSpbL2YbtAT9jQl6td+EfsUxO3XmdXr8Aj63h/y4W/mvKMH8x4kZzLsqYm4uwdw/PoN5b6JtHB9my+P2z8+4/TN/TKr92/dR0rOiH2Zfzmf4zdBZ5jrraWp9QNllAmSwLi2Rx32jkqN+brkgrG56OV4ib5DLiW5TiWqFwC2Cdjn7ezk9U0VD7Ojmd7ebprk5hsqzCR91GRbPuMqQ3+iUnEU9ylkk5KSwzhZYRj9P0C8S9I6uYflHEt2NCdUYt5trHEnPylzD0jDJjN/LrkNFk6OOCwVGkSjTsHjGVV0IWUrOa3uU81ohh0cJH6ZRAsqvEC2fseg3Ag858tdcqX4G7WVJRf6y0/mol/qxv5xVj/X//tEPnnPcbdsK4jdd+Bk3STWLfK2g73H16Um16oH368WkVsbUqoc9U6seNS/LfDLHfoivVql3AV2VulBYm2pi2arHCPCn2vLBihn9kJPCUishRm+2GQl6p4hjktH/JMye3k+rEsreQTwbCp3x6Lr250KBtbBEdyXb8GNqCX6j62NMnIf1hHriM8Rvhs4y1xkNq/ah7GJlVytefII7Jr7DqOqOwKBjoW9OhE7/LUo+TQ4/YznYVheSnH69pZbj53XlIFbO7zjVlaNO7PTYB1e+84z9Ai8j5zHNpZDH9r8M8vhOXYzN58N3TsP0N9ohxuMfyLhjTb0Rxf1S1bfRCqFPt7eEPz+uZaq3hLFv4rfR/ghWab44Xl5G3olUK3dYxrKVuz+jMTn2LRX8UK7cGdYrycfr+PHv1vRjHnupnQjLU2MCFa8nKE+9EcdxEfFVLLsJ6Dieql0EXhGdJ3RX46YiQ05q3FQIOT2OjSr7ZkF5eP8qxk1OysdM5+hjE6tmcJmO9UGbsm5oo5xxt+lQtmvBcW6afmJGd961UDurt5Fc/I4yAmHExLFv+s6atg49zjNl7OM+MfVW/cH+CZle36rvtkuNS36D8xMyTaK7jP6u8xMyNe8LcP0JGaxNTipq4N79IPyEjOk/JOgnCGtc8Jntu8lTqwIc9RVf/PtCweM542E7emClzoTVHOUtyY04ht8MPbWT6YizkORx+bjsLaGLejedf+Cu7pmm+L3hhBXT9jmsOaw5rDmsQ4CVMzPEforfjcQ4yLO3qhvVyG90E4KP+7ea/c3C3P6NzzU36smb7t/UuTtllx777wWp/hQxy24cZdvGf7bZP1KCZbwNor+x7USefh1njNdPzNa9X+cQUwc0+un3ZSuQt05omWX3FNqMukH0vw0rkG+b0DqbDEup85A4hmdefK/D8qq01ziHuQBWPtB2VgaUqfwe6e1spNppa1Ae+gKvHJbV0f1URwXkqTriM6lG//NQRw+2v6s6yDn3VQh57EMjgh7x2IcehdWd9yd+3WO0RF7Zqvm6EnmPg7xraSWsD363RPkdtmf2O7VSqdp/qj/AmJCKSyy7EFipc8jGPxJ0HRheg+ifF3XOflf2zhrXq9G/J7NezZb9qFe0Vc4pBfU+Z8oP1IkK1Q+wHw8LLKxrrtdubdnwuG39y0S9qviFenK9Gv33Z9YrjnsMB/WdCllJ1ivaiutA9ddIn3MIknWNSe3IzKc8jon4XcVv9IOcOlf25Tr/UVHnPPZXcSH3/HJcX7N3/Nsrwzv33nXv7vbScKCUWsotQvn1fosFfyDegp4tpjwVPlMbIia77CASh0+j/0lh8lT4jSnnCDxWdz82F+yZ1xH4bmGNl/pSzUy9xnIIXTWmy0rUKAR/IKxCPItJHUvHauBRoIpuysXsO7+ZxPSGx2cLfjHRc6RGOEHok1oBRn1U+RdSXupGWaPFHg3diHs0o/+1zB7NZPejR0MbcY+mZtBIz/ZeJOjVard6paCgPLQxn30shBw1OuXRGPKqmVW3mR7jpOyj/Eu9za3OYqRmwXg+JgTfWTCWh30hVbcxsW3UW/RY3zwbwf3w1Ky5RXJScSmmlC/gzPFWmhHzihV+r/rGK/LjmSuMs/8TYkHZ7yDnzviN/ksivqTKUIgy1I2l2H/wma6DtQN+sM8tYpk5cR+Ndsg9t8j+YLhVfB596fN0VhDjzBkkUw2x8Bn7PPIbnZKzqEc5i4ScFNYZAisVS/r8WpqpeBzR3ZhQjXEL+sfPj6NnqrljUtVUlOgdQl41FSRfYeHRrR1Aw5cxYZd3JmFVXTRHfh6Smi5Ht9vpqJBfIXy9mDpWb9g1X394Ee1rSc28yo7Eo17qVYycV9B+7qNXLvidT509/QpV7lFLo1evbpwp6Hs8GvxeNazi18zUxgyGzkA6qFfQah4PfW+O/RC/Jeh3AV2VulBYO2pi2StoaC/eAOt3jOGLOY5rt2UcZh1sXazbXyd0ScUxbNu8ga4WtlW85HJVjZdFppzX9CjnNUJOahM/J/4pOUrnbhtyZy6Y4UH/Lhue26CANz++vGCG7+z2d3WBXtnb9kXQq4vcXnlzhmnGSvQ7F/yTj1tzmbGcSucRkBEIIyY+bm30F1DfWzOmyuPWPAXow2uQ2Suih+o1yGrHrXlRAK2CqPisCLNLj3ndFj4vob/rHLeuOUq40LziQpHJE1G0jZqIYm1yUhNDHFVUOW6N9XER5eF+wsUgm+t1VMgx/YcEPV/fr17ANNt3k6dGOXzhg+KLf18geFIj7pyWGRPvHYw5Yqmj2z0ukmT/jAgfR6vZTpLH0dQLk7zwjLzqCA2PylLH0FCOwpp0xBp3wopp+xzWHNYc1sBhqaMX/DIs9gf8c48Yu3i1o+qMEvlTC6ore5SzUsiZEHx1+75WQmd1FTfbreoFF8jPi/eoH87w3rtAy1RH0WLiGZ7RfwFmeC8umK2zmuHFpGbTWA8h6Nl+jxuCC9SGINqVx/5qEwLpb2t/po4AKV/IraMfoDpKHRdEffgMzX+COvoAzcLRt3N+plPJ43aYeyzW6D8Ms/DUsdh5JfLKViW2lMj7MZB3EI7FTiq/wziTc8xOxbNUvFBnfFqhM/bwMbuyuQjXvbJ3zjG71JFZo/9p4Q/cF7FvlOmn7OZ8zG60RI1Fgj8Qb0HPFpVgGU78Gxc5co7ZqbsiOET8O2HyVJXFNHfM7lvumN0lJWoUgj8QViGexaSO2SEut9iUiZWp6h7Q/oxw6VSETf34mRoJqD0HVf4JylPrwyxHHRyPiXs0o/9vmT2a00hK9mhoIy5X1R+P63YUh5uaOpKWmtnkNkM+ZqL8VI3Uuh1fyXmxhXUNQc8e+IcMeJUrBO0L9qwfo2osT87LZupomdF3O4JotuEXJtFOahTOx9/UKCrXF3D29N6SvTPERV8o23vGGIAYfBTO6P9GxADDHO1Stpx4h8McvoILhxgc79TeuPJHo+vRHyeUP2L5c2Z5qWuEu7XV1EtofAUZlpGHkd38JnUEDvcuz6QZH8o5iWRWvcb3JKG/krOoRzmLhJwU1kkCK1XffT4CZyquJLobE6oxbkH/+PlKeqaaOSZVTY0SvUPIqyblzkpO0aOcIlPOqT3KOVXI6Tji0u6LetxGP5CzYbawJjbay5KaTRm+2sAyvZoiL+fo3JdbV//qnpc+/GMF8Zsu/CznzYtTBb3ZquZv1u1XXZPJVkfnFlIedi+p36xbVFO/HPshvlr83wV0VepCYW2qiWVH57DrPNgxg4/OndRWVB2d67cuPR7mOMPa7Bki0/L4KDHmnQX0VW/cxMMcVW7cRJuybmgjs2nqBVOTl3vjptG/Huqcj4Dh77Ub5m0kV+nQEHJjuqFEh/OpD6l5MEIeAePpYeq3G6v+zi/yG12PZajsx3x0En/jmA/J4JFLPiaOPzLUpDz8FZdJynsd5PHGzjmQx0fxXg95WF+cVHvDt2qur9DesO7PpDyMO2ZDtWR1Ould9dgr8qeO1471KGdMyFFLd2i3Pr6+kL2izb+SM6+evOkV7dTdGt9UrP3JG6LIqzaOyo7sopzThZyqevXhB7I2EF3Zj6YUAregf/x8Az0rm4bZ38r1y67/CSHP9dWU7mA1sW4ny/cs1DLLrjbCLhXp71k4w3cXfLediLHwyrNtjs1iurv9yTZ7CIY6vELYAD0U5lWkg2q+aqhg9Gp1VV3nplYNxzNkoy3LfkI2V9duuw98GT/qt7CirjsOsq5q6tpj17bY2vxikWl5SwCbh1dLIY+HV4dBHg/nlkEeD6+WQ15BeSsgj4dsh0Mex7QjIG+Y8vBM2Xz4zkkN58zuke/qtTO4TBeoTCqm5K4QYwzhmKx2XAqBa88nAWuYMOL389rfG0T//kQ8Uj8fnGoHSwQ9LgHxZRQ4VVpCeciXuqjC6PpxUQWWh3cslkLesKBn2xwm6JcSTUyt0NnmJikPY4vJVDtiLdDdfnI8tcTJn6YrP+N+ErG2kz79uOI0phtIDvZtONb5REm7wnaCvHvan7ws9RkY3/wUnbRQO8F8RvNnoJ2dt66cn3fu1K7WwtDpBzymUuVE+vNKyvnvQM8L23r2cee6VfWCGBVjUhfEpNop2qQVOtskj3nU+En9eJDR83IY14Hh8VLUf4I64LN3WL4W6T5aUXfVn3TbWV9Ol3lgH8PvveRejawu52mVYA2V6L+H6JeCXCWb6c0nGiEdnxtE/7tQV5es05gh6D55vETnkRL6JaSD0f++8JdUHED/X0yYRv85sQyfi/mGEswvJMYaqp3i5U5V+1MeT6AdD6M81J37xaUgn+v0PSQfcdDXWG5I6KvOsaf05f7G8v4O+qv/RUvbOLaoEKuHU3V1ltA3t67GE+VjLONrhE5/TLURtMfXFmrMeRUxXxJ9uhqr3AT4f5cxzsdYzXEZYwa2w0/QmERdmsVjkm+I9qj6ep+LAYsvVn33o5ttOCaoy+C4Hwmhs7+J6S2Up97n8e5Lvzw2Gzd1WVr83EB6dBvj2bYIx+Hx9hcVh5UNUzZXc0Tsx3nrC+tjMeUpnz3Y/ojlZ39MlTWE6vNh9kfVfyh/5HFWt0v2Uv64AMr6xbY/qjm4yVQxuuqYu6DvFuNHSug55hv9FPgxj3uWCR1SaxfLBf0yosHyY7/E61zGh+0SbbKFymP0a0S77OOahzxBjnZj/0/ZKCa26QpBj7Yym7SIHu2r5gbLKA/lsp+pNpvbNow32uFnKVaPZeJyXEWfwP0FjtVGf1YiVquypWJ1t3jEN+Dlrs+lYnU/fXVQ1+eUPyr/wqMtP0j+pcY+qbcXcsc+qq/l2I58fEK/6pxeXaqr5Iz1KGdMyFHrSUXJp8nhZyxH6azaC5dH1c9kZnl4P2bSsTxKZ7VGjGuq17VmeDhODgte7u+M/t7WDN+b29/Vuif7Ta7v8proJNhAxewdUP4QZtvPcHuMY/NUHMM4nrPeifRVx14cqzDG8dtO6pQ++h72nUYTgmvcn1d1fTgVB2PK6ROxTVjZ1Bid147R3zj2Klui76XGIXis+YGx7vqn3uTq5h+8/4D9/FLKU/MV5QtG148xAJaHfSHVp8fEtlFzBuzn2RdwfrCY8rD+eRyhxm0qXnIdY3xFDN6zMvonEmNH5Qcpv+k2PuK5vFrDS80rD/bYcVD8htd9MfZU9RuOIRjPsY+2/lvFuyH6rsaSSD9cgtMinIKej8Fz5DuHysxjJMbmI7xWzpESesPjscj3JdYSFnfR4VzSYUkXHXjPxei/X+iQsn9MqTHhaOhsixXaTQP7IEs8pkT8ZtD+MRWyUsH2M3nKD2JSZ5e4PWEe98kqBqp2rrAKRyw+tl+zvir/cAXPK/Ae1Kso71LIuwEwOA3T31ie6Neb6ExBEFg8zkO9VaxZLHgXC+xD1R5qvgaXbA9qDlC1PfA68qu9PSymvEFrD1hfpreyUUxTIS/ltBesmwr2Pya3vRi+V3tRvqfaS4/74VPx9c6xMDtWxfRuwEPboZwlpEOv9afWuA5V/bXqyUvWn5rDe9Yfji+q1J9a++N1lKprf8h/sNb+JkgOzgVx7e8LtPan5qbIy2t/Rv8VWPv7Y1r7q7q+18f1uuFDvUfMdZa7/pSzR5x7Th33iLeWrD+ZXWPaI3i5bRdB78vwvhnvDTMNn80x+pdgLsWvFCufxZhTtp7y94n1FLVmkFqn7bZmkFprW0Z5ai9KtQmj67FNHHOo943Z73HfmPd/uX3FtEVgpXRt9aAr1yPW1QrCwnNoqm2wX073u+17JrqdGzCb96P+U+tpyqap9bRuNuU5Te65AZ6vdFs755io3rvAPlGNBcr2oFBmaiygYjpff3M41P/ikh8zRp/CMcGWEswjhU+lypC6ravbGTHTR/X/ixN8WFejQtaUffmndDI8nJexrLI1u+PBTu87WutSsD5dUh/X9KYKwgthsNb0epyzrMIxPfoHjunV2TKsLzWnwjHwxkUzPGVtDHnf1v7kNnbGohm+U0swQ6i+X4j6fLA5G9d7fJram885M5Q6g5/TL8bvfHbK6F8PbTP1LpPPPlPxtUO9z8T9Iu4z8ThH+VdqHI77KqoO+D0Eo78U6iD1LhOfBZyoqHtL6K7WkbFtcDtWe/SjAjfV7lFvO6/N7X57om9V556w3Vc998X7+blza3wn27AD0fVjX/Zgzq1N/5y5Nb4DwGsyOEbDsxrPUOzFteaU3xq9rT+XzX2Nt0H0bwX/OozaHOp6MZUD17vN56w/vpR0nwpZKfvKHcNvki4V5U2PNy4leVw+vNom/5cJeQcRrYKo+IxbMOYN07MxottGf9f5ZcJN9HwqZKXLzSsuF5mWdwVg86nLzZCHtclJ7ZCYzlV/mRDr4wrKuwzyNoNsrtdLhRzTX+3mX0ZYlwo+s303ecOCj1fTuafA3udiIZvf/nkIosMH1pXb4eJQbgf7uyn0ZHtbfkw9+uS1udHE8Juhs+7rRJNNJI/LVy+aoKeglGsI1WiQFtM1oBnS829Icu2NCz5OZrEG6fwizF2ebH9fGDrLxe/QKG/HZ7z+gfxGp+Qs6VHOEiFHjUn43onDEnm4LrWM8lYD342Utwby+D6NtYDJ7xZsTGBeJDBj3Z02OYNXQF5MytPNR60OtoE+yFuQHKSNaVf7s0G0Hwa/eh/5FbZi9qvLuuid8qvLQrmcJT3KWSLkpM4QWN4mUVbVI3M9XwF57DubRbksb0sCc6vAjPVzwuRsOq7/mCziXwnPK0Tga3IjvuE3SZe6Ef9Kksfl4/WqHfXkXV0QP8pDTNPHbL1T5BmWnVUZKcEy3gbRf7Ld3lpEFxP/7uVOoS8+M/tEP/lXi2brjrYtSj4Nl59x+8Kys79jvMH1u5+leT/69HDojGs28uRYde5hM3w/T7EK+bnuVDupW/7toowLQ6dt+L1j5d9XJuQsTpSnX/XJ67EYZ7E+f43qcwfkcYyO39uD3un6NPo1UJ+/QfWp2qKyM/dLVe28TMjpt525f9npKAex+Kc2riYstrPVk9kZ77+8mviugTykw1nX1fD8GiFb4RtGNx/8w0W6bGU+aLIaRD8OPvg/avrgTsrDvoLjuOmBdkD6dUGXa6SEvqxcfybWgbkvQVthXXD8Nfq/SKyjKt/C/oDXCpU/XC3KpWx6TeguG+28qUT2SEj7YoPov5JYW98u+FU7OoJ0uaqL7ty+kZ/PyCJfr3FE6dytTf5DxTZ5cvs7++5LS2f4/g+1yZSPoM48j6hq5yVCTr/tzHOEaxzlIBb3C9cRFtvZ6snsfC3kXUd8b4I8pMN+4Tp4/iYhW+Hn9gsTk7psZT5oshpE//vgg63J2eVX/YrywWsoD23K/UK3eHgy0ZveIyHd3zaIflm7LKpfUO0VYy33C0Z/OGByv2BysVypfkH54rWiXMqm1xHWNoGFduZ+QdkUy7+Nym/0U8Kmql8wfrUecRPloW47KO9yyOMxK+4Q7KQ8XI/gtRE8o8fxbivkoY/wesRkojy4b87rfbhux3vJqyHvcspbA3m8+4DrdpspbyPkbaG8iyBvK5TV1u34vpgz21963LeTP2OTWhctSj5DyOsPUvdQXOooB7EuITmXOcq5LFGey4Ucqy9sL/3YZzX8Zuhsu3XWya4geVy+ejsjHAnRKoiKz4owu/SY1899VpO7GfKUJXjlHMu0uYQPbRHEsyFBfwVhXSH4TPfhBD9iIB97TEHPy/YjDaNB9Fuht/oRukFXyUJ7lPlJ2YkJ1sHod4AO/LbAFcCjynV5CebuyRl7XD2pMYPAVOXaTOViHa4gHYz+TWIkMEw0rI96Fv/Gvd7NJfqpemJdsZcrKw/Xk9HfmKinTUIHbJObuujANJtLdLhZ6CCi24V33b2vHd0CJfzNCI5GyvK8b7tJ4JQls0b0QvNIdcrgcsG3if5uCp1iye3s3vRPQ+3ZvXd3Sdk5co+VyBwKOvF41PhiGg099WnZfajhN4P2vKmQlQqOciaPy8fvd18hdGmJPKxf9qOUnFinNvdv1+nOvXfdW1aluZ1rIdRi/kBYhXgWk1U1TgUqmH6b2iKyxNs0WCa1FM/DSFymxaDGicuN5YnB5SMVXg1Hm/I2GLonT8+wqfC0LnfqxtMznLrx0iPWF7/+hNvMw+IZD7GRf2tCztoe5awVctTWOPsm+n0/wpDhN0NPbWE6DKnlCWUX1T6MVy0z8EE0m3o32j1m7JreTVN3PBbLdq35KspZuXY1fK/X2XOvpFNLE3xdHx43ug/oOG9YPBtKYB1wxHrWEesJR6x9jlh3OGJ5ltGzHj3L+KAjlmcZH3fEetIRa78j1kOOWM84Yj3miOXpE57t0bMN7XfE8rTXI45YTztiedr+YUcsT9s/5YjlaS/PWPiAI5anvQY1Fnraa78j1qthzOTpE579tpft4/elTlgxefq9p+0fdcTy9HvPMnrGCc8xgKe9nnfEeqH9qa552Upyql7zgvyTGVhq/SBVRrWOMw4400v3b73/1s133Roo8U7DxSUqnkl0Zbd5FQK3oH/8/Ex6NixoETsuK93Z3rLo4xsqpxWEF4JeVjpUb6ioZWnjbYm80+A75qGcHUJOS+QdcMR63BHrSUes/Y5YDzliPeOI9ZgjlqdPPOGIdYcj1n5HLE97PeKI5Wmvhx2xPO31rCOWp6/uc8R6NdTjU45Ynvby7IcecMTytNeg9kOe9trviOXpX54xx7M9evqE55jJy/bx+1InrJg8/d7T9o86Ynn6vWcZPePEoI6/nnfE4mUSnFfzMknVt6OR/8oMLDUfTpWxz8skpuKpRLepRLVC4Bb0j5+fSs+6LZPwqZy9i1/+7PGEnXyBhE9p4XIQnjbDvBDyVuqQ/7CEnBU9ylGXTU8IPit3j3ZcgPZDPfEZ4jdDZ5nrLC+pU3LKLla+mstZE0XobKrDApNP3qXCirWfkRIs4+ULIJ5p+34rdIYUfkEyN3TFZcgnFs/WXZ0azKlnxFUhMccf68pBLL5oBG3D7ThVr0oO8m8vwbJXTGK6DWj4tQSs5yBk3wD5SP/d7fqKp3DfdsLL37tdKvO9i9O6Ii/qypfK/Dy86Pt9bUxlZ6t35QfbKe8wIVdhcmysWncrhA4pLKyv1URvdTFSQm94XHc/DHXHLxQbf5n/lLVx9B98paTMfz5Sw39+dHFaV/af1STb6L8f/OcnyH/Qxin/WU156D9mI9W38knrqn0r8qf68NSFbexHVS9sWy3k9NiHX6neGrCktmfWUh5eNrKR8vAF/4so72rI474BXyTnl5zxBXd+yRlfal9NeXjZArYlTsP0N9o2tpnr6UdMgsDil3bRhuotBb4UB1+6RgzMM135GfsM8m8swcLXBzGG3Aj5SP8f2m/gxHb8aRo/4GWOZpMeX346PWdcgPhN0qWivOTLT1g+3sbcKnRRMewE+I55KCf11gfmPeaI9bQj1oOOWAccsZ5zxHrIEeupAdVrnyPWHY5Yzzti3emI9YIjlqe9nnDE8myPzzhiefq9Zyz0rMeHHbE869Ezfnna60lHrAccsTzt5dmGPMcTnvba74g1F1cPXVz1sn38vtQJKyZPv/e0/aOOWJ5+71lGzzjxiCPWoI5X73LE4i1RnKPz2oOaD1+ekIP8l5fwxe+45tDH2wuGC8IzffAZ4h+q2wuuFLq0RB7aEPNQTmrLGrFyLmRRax8p31BldNyyNhVPI7odJaoNCdyC/vHz0+hZ2Za1YVszwqUn3nZCM6ZMq7adLkrIWd2jnNWZclb0KGdFppy1PcpZmynnsh7lXCbk8P2ZMeGWytVLtEzcUtkIuLwlZ/TvhaXY65bMLiNuS0xS+fEIBN+dib//w6EX7xGtEAqzL44x/Gbo9Mk6oXcNyePyYVhqr2Rn3AHJLQCtgqj4rAidUaMAzfAZb45PEl+dOyDXQp6yBN8BiWVaW8KHtgji2ZCgX0NYawSf6T6c4EcM5GOPKeh52R2QhtEg+re1W5W6A1LJQnvw4SnTvexeP9bB6O8EHfhuwTXAo8rFrXkt/Y2+tatE/gGIMvcu0fKDkM/lw6hWdr/iGtLB6B8AG/B9kRsFfyh5xj3DRsrbmKBtUVnwb+WLPGK5qEvZuf6N/tFE/a8QOpheMW3qogPTtEp0eFzo0NvdkhzluJa4JlYInLJk1ogea97L1uHWwXLsb+UBvd4teViJzKGgE9//bXwxjYae+srsvtnwm0F73lTISgVHT5PH5eNp0RqhS0vklbXSbnJ6vFuyrNNWwYL5A/EW4llM+OLw3FSju5xXw1SDsdQUIqa7258c2D8IgZ1/kuIi0ENhXkU6qFUAdaLJ6NXK1eWijGZLXKXYmiEbbckd4baKuqrVFVyJupx0Rf2urKjrjoOs60VC1x5P7VQ+WcanwPBkGZ8CQ7/jO27xZBmfAsOTZXwXLZ4s20p5eLKMp/h4smwN5V0PeXj3LCfuC9DusV1evXYGl+nwe1lMwTbLttwoyoZLFKOAjXKmQlZaa3LUpNiwcbhRwcduRp0sqaGLPWuSLhXlTQ9dhkkel4+HLg2hS4vyYroH6DhvWDwbSmDd4Yj1pCPWA45YTzliPeOI9Zgjlqe99jtiefrXE45YBxyxPH3iIScs4/fS62lHLE+feNARy9MnHnfEetIRa78jlpevxjSocdXTJzzjl2cb2u+I5WmvRxyxPO21zxHL01c99Zrrtw+dvTzHq54x2nMM8Kwj1n5HrEH1Cc84Maj9kOccxrOM73LEmourr4z45VmP73DE8rTXoMacQR0XPuyI5dkePftaz3oc1PHq2wdUL8+4+qgjlmecGNQY7amXp+0HNU7sd8R6NcxrPfvt5wZUL895rWc9erZHzznMkwOK5ekT3IaK9t9IcwN8vwnykd5uDepxr/gW3os1DMSeVxO7ILwQZusZCH9CyDO9miV5UyGdnvvEL79/81//+pcK4jdd+Bnugcd/I4Je7WmbreYDfwVbvXUCZASSbXkNyJtHeWgX0yF+rif9Rmrql2M/xG8Jer6tK7cuJsNsX0B/t7M6eHPQVsrDc0aHkQ7qUlH1ppnR2/mbkRJ6w2sQ/Q+32yse1F5INPH7ihJ5qB8+S53t21mCVXZD2YYS3X8UdOezcFcJ/dQxUqO/WtDjuSXTR9nm6qBlY3mwPm+j8hj9x0V5VPsznxoFHMur0HYWRDkXgBy2G7afbjaKiW16jaBHW5lNWkSP9rU8PJ93FeVh2+Gze5uFDng+j89Xod/hzXk/mnGD4iC161/KbNdXlMhD/VLtWv22e067junWEt1/rWK7vkLoN0jt+jOZ7dp8aq5dd2/X6hbQ3HaNN6rybavXQZ7h4jnuk9vfG0T/uYTPvil06oo2Z/teL+jx3CrfWonnXa+nPOS7ivLwvOs1pMObQ6cdUC8+n270fwp2uLD9Ap7yddOrR18/X/n6m4GAff3bIG9Y0HNd3CDovw1ozCYtoud6wb8RC23KZ97NRiOCHvEaRP8VEftNP4x9bybdr6mo+2VCd3WbJrapifaLNuaDGDd4HH5NQqaKz3YmfKSE3vAaRP+Pwl4cG7EdoJ0mCNPov5GIByYXy4Wxi31Q2f5aUS5l0+soD3U3X1Dt0+h6bJ8XqPaJ5ef2mSprTGwbFVvRd63+W6EzHl5Nedg2riU5qo/M9X/0oX9YpHHL+pt2CO3wr4XtzlH5l2o36kc3Uv6IfsL9DfrXtZSHfFdSHtqUx4qq30V6ngMa/TKwQ6q/cfLnxcqf0WfZn1P+GVPVvt9s0gqd/QHHQ+WzWNfc35iNRoKuA8NrEP0xUAfc3+C47TrSfWdF3eu0tz9stzfzQXyHifubnQmZzIvxoqy/MTyeD2wQ9ipIBrYDtBP3N0a/MREP1Jwp1d90mzPxDdhol6spD3U3X1Dt0+h6bJ9LDvXch/sbjIc8L8K2we9mqnWCXP9HH/o16m943oRY6Bcpf8R2M97+zv54fsIfU+0sJra58l/0K/4lAfRHnvOoX2/p41z8GuWPWH72x1RZY6q7vtEKnb6a8kfun73m2z/b9kdb98d3sSvY9SJ1g30gHS4G7DHKwxvT+J3US4FvAr5zGqa/sTyx3j9C45EgsExmC/Iupjy8m4B1xTUSvhoK19wvo7zVkMd1h9cz8K828DUfMVldXgTPK9Rl9pUWht8kXSrKm34v9CKSx+Wztlbtuqmy2wkKQsVnRej0sAI0w2djRLeV/q5z3RReAaQswddNYZkuLuFDWwTxbEjQX0RYFwk+0304wY8Y6vogw1B82KshT04LuJjwp0JWyr7r0vC9WkC3ejdf5aiJvC2RNwbfMQ/lXCLkKKwWYbUyde7xgpgx+vuiEjWGBH8gXm7aQyVYhsNNJ+dWLnXvUYPoHxYTjxR/TBPiGbt9TTfMDvyG3wydLlHH7TeSPC4fu/1FQpdWSIcorsOUHEdXjWlriRqqRwmEVYhnmKdcFcc3m0pkjwh65apG/1xiTWFU8Mex5fHN2bJRl2HiVbpeTroyzSjpavTvAV0PI13RVXmchffKcJO6gnSfClkpu0kZfpN0qdukriB5XL56YymsabYKouKzlBd3azk8m6gylrKa20LPp0JW2qru0rakZlWjlIczW6xNTmrWYjpHDx4/egaX6VgfrI9tlLcZ8raDbK7XK4QcvASa6TcT1hWCz2zfTd6w4BsljIKe40rIJiG7QfQfgejwgXXldtgUyu1gf68WerK9LT+Enn3yutxoYvjN0Fn3daLJFpLH5asXTfisi0m5llCNBmkxXQuaIT0PGbn21gg+TmaxBun8i20vit73ifZ39SsAi0nvqr8CsFjor+Qs6VHOEiHHPLkJfDdQ3rgoq+VhxLqR8jCy811iF4tyqXUixrw0gXmZyIt1d/Gy2XQYjYqSz5iGxbOys1ioq9UdRgC+61K1ti0JOchvdBOCr9fyKJ3V2Amvav/0YTM82Jti1EY/tvFmg+i/fNQM33+h9obja9NR2ZnbYlU7LxZy+m1nblPbHOUg1o1AH/+pOxDRzlZPqXV83utmOhwRqDOUiKHwDaObD37hMF22Mh8s+wXq3wEf/OOaPsjnG3EEmfML60jP01v1y9rbMsr1pcTcTv1qu9Kdz6NvS+geU+o8Oo9c++HzKLOb//wN+Y/6BXj0H1uSaBD9L4D//C35D47Q+lH+VLvGkRyvLKt2p+IH82EbPSJDh9Qv7RwhdFD3o/bqG0rnbr4xvGyGB2NXmW+c3P7O+7MfAt8YaWOq/VM+w4M68xiwqp2XCDn9tjOP73Y6ykEs7t/UPi3a2erJ7Ix7uFcTnzrDx/0b7vOqMwsKP7d/W75Ml63MB00Wn2F7J/jgEeSDyJ/ywdRZlLJ3KdAOqg4K0nukhL7sfM8x7bLUOd/DsdzojwfMnPM9arac8sWq53tSstHOm0pkjwRd/jJf2ZCwqXrPBMvDNjX6jQmbKhulbNrtXBCfQ8Ey89l79c4S2jnHplh+/jkqoz9T2FSNWzaT7jh24DGkGoch/UaiV21MjU24jZ2T0D21KolrCzdRHq4t8J3iuGfBczHcAkqtLfA6B+5ycv+HZ1B2UJ46Y4hrCw0q62Xt5z3uLcya9wfCUvYtSj5DyOtPm0DD53f6sW6i5Gx2lINY5jNqzsbvDFZdN0D+1NxwvEc540IOY1lMjgnHRHyO1eivh3a9mOK8+v2JcXi2KVFWbs+IZXXW4y+WZu+9Gf6h+sXS7UKXlsgrq1OUc5iQU1Uvx18ZNRVXEl3Zz4kUAregf/x8JT0bFrSIfbCa3qGUs6xHOcuEnH4vdS4jOWXTnb003em2pMyvqhj9gzDdeUdiulPW7NDXUkcuTF7ZMYaJEv0egdDLv1s3Icq8IaHzVpDBcmO6oUSHx2moUjMUy6EKL4XikK5JeTj04B9uxiHOsHjGPne5kMNYZd2k2ZWHdM9W7CbRtzclyspXGWDXxHZQclR4V3ZIyVneo5zlQk6q268bS5TOPJWICWPJ91As2QZ5akjD9W/03w6x5H2JWMJHwXiowfG1rJ8siyVl+n1/IpaooeGWhM44BWS5Md1QosMHKZbwVtBUyEsqlvDWBOp/eJitf9W+EPkPVl94OMnp97afWu7n+KK2o7Yn5KgttW7t8SeXaZmqPXK/hvQboT1+ktqjx1ZdWZsIIW+7a6uQUxaDYkr1QUb/84k+qNvQPzVVK9MPr5rDdvCWMFPmMqwgnhk99n+8fLGdaLclaFlv9O1T2t8tFvGW8lTISjvMn3eITN7SQJ3Uq5CoAyc+ooQ6x/peUeGQINphZwmmavO7iNbKPCRwebsI2zHba3uJDlzHMdmr19ze/2DZDP5vUT+Dy+UV6nan2pKyxPXHtuOk6s/0ivV3ac36u4ryMK7yUS0Vj6O9/vQQ2Yvn/JgOhb1uorxu9rI8K++Q4ONDqCavuXwG788Jbxxksf/zK/K4PcP8MfFYzOj/EvqK76LryLB/PZrkIbYaH3M/d3SJXqqc6tV0tttI226jodOfKvjq+VbHV5NOiH1NTeyC8ELQy46GPyHkmV5NkZdznemdf7/r9F0jD/16QfymCz/LuYLkaEFvtsIrXirY6lz1qrfJxnWREDptFhO+rm06qOtMr62pX479EL8l6N8KdFXqoiXkXO6Ita0mll2zqrZTOebGxP2Q6vtjPa5tt20Vh44iXavGIeSvEod4rGu0x1Mcqjl+PEONAzkOXV0TOzcOGf5EKK/XpsjLiUO3feP8uz+143eOKkJnvB0Wz3K28Y8S9D2281NUHOJYg3HoasrDOGQ6qDhUs085Jcd+iN8S9ByHcuuiJeRc7oi1rSaWxSE1Bldx6CbK2yHKg3GoY00BxmwnLJ+NlTPuDqFzHWRbIu9KgRlln7t85jnGK7tSWx2ltrGpOlZkf+Mz9HXk4bUHoz8LbHM66cc/3b5d6KfG6rguefbycrodCbrc8X2T8tSx6dx64b7iPOorar78Jdc9DSvKsmlEe8v20t17d962697dt+zcffO9u/fijEr1grySia8IliXThHdrL6O/+cUrXs28UuB0k6lW14+E7yxX7bxwVDpS6Hwo5azqUc4qIUdFpaLk0+Tws9RK7yqSg6tyuNK7bfkMD/oErvQiL1+sbfQ/fuQM347ECDJl56kwW5eqdp6ak9NXOcf0KOcYIaff7eAYKg9G/akwuzxVd6SQf8tBltOtXb99uZaZ266N/i3Qru/OaNepMqYOpaVOemzrgrWDsHJ3jy7PkJPaPbo8U05OeVJyDmV5DEvtOmIdXJXQi1dLr+yCxQft1Y6G8kHWuerqBPKPJ+Rs71HO9kw5B6s8W3uUszVTzlSPcqaEHDXD6LX/UDp3i7ffS/FWvdyKvDyDM/rNEG+/j+Itzihf6Xbe4SgHsfiygrL6/BDVp3qZJlWfRn8G1OdHM+pT2ebKRHm4b1F1rV42LARW6jQJ2wHpVZ/SxxXVyRw/QPwm6VJR3vSB8tQLgzHhwe2l7e/tVYDzd9936mlnX/TPSwD77t5btrq6CIWC/kwf6G/mi7o1iGZcyIiJ/WcH0XG923PGz9GpG223fBXrriopZwh5sQ75x0uwyk4A8cXvRv9z7XaeewJIvcSWGg9wu2O6YVGGsaDb67cHrR+WeVOizEb/S4kyb+9SZh6/q7EjxyamGxZlGA36tBqfUsS8Y8Ns3av6E/IfrL7zWJJT1qd9hvo0daoPT329of2dV+CPgT7tt6hPU2PBfpe/7DQvlusNQFM2t2kIzJj49IbR/77P7qNcUeYdlKbQ/5s/5EB1qsqeqlOjXwJ1+j8y6jTVPtQp9FQs2JKgV3NFtcaUGjda/eCOcn79FF/M8VHEb5IuFf1heryhXiJXP1hTdbxhuF+AAqH+3cYbzJcabzBtWdvjMcCV9LzbeEPpVEbby3hjR0k5Q8jrH5Df6Mw/a142OmW6bAE9TBf0+bI3VYZCZ1tU9GqMgfgch/HUnbLNjZCP9H8DY4nvSZyKO65EvxDy6gL5D1ZfdRzJ6ce6d0ypi+7Ogu+YZ3LKYnJL8KfWvXf0KGeHkJPj6zHtaX92GxM1VszG7dZ/8jzf6H955Qzf/DZm6s3TqntjXP6qey+pdp3bTtV44ETCqvpWGvKXjeMaQveYyt6WXNO2f49vS25Xp1es/fU45tue08YRf0LIM72aIi/nVNiXmq//jb/85Pt/syB+04Wf5awdnSjoext/hS3qVBieWIkJfYR/wAhPhZkO6lRYzfHalhz7IX5L0O8Cuip1obA21cSyk1xqjn2oYlLZ2ovFJx47nNhu+7lvAKu3PFNvjHJM4zJyzIlpKuj0T5QMz+w/X8jik7BGezqU+330GxZle4SNkvJsIz0Zo8w2LEO9HfbGMFu37Rm6qfUgxCjbt4wYag+R/bbqG5VbhD5Kzvoe5awXclJ9En+aHH6W2o9cT3LKxk0X07ip237X7e1P3u/6BIybLqNxE467eM9V3f6gzhew7cve2OZ4YvRboF3xG9tqffh2wCzzs9y3hIx+B41n+rHOxGVqhM7YGkL528hl68VsgysF/Y0JerXfhH7FMTt1EaGV7U+PmNHhTeTH3cp/RQnm5w6fwfy2ipibSzDfvmIG88ZE2zg+zJZX9SYO5OcTuOrislHSs6IfZl8INf2WXugsc531NLU+oOyiLrfj/VnMyzmncbyQUxBWN73Gg9uFUKbicqLbVKJaIXAL+sfPl9MztSSH2NHNd7a7A3Nz1Ptswr8YMIbFM3Zz5Dc6JWdRj3IWCTkprLMFltGrX4hbJOgdXcP+PpLobkyoxrjdXONIelbmGpaGSWb8zne2cNWwjgsFRjNRpmHxLHUV4yUJOa/tUc5rhRweJbxIowSUXyFaPsNXbRoGYtdcqX4mN/KXnQ5GvdRPdOWseqz/949+8JzjbttWEL/pws+4SapZ5GsFfY+rT0+qVQ+8tykmtTKmVj1MB7XqsbWmfjn2Q3y1Sr0L6KrUhcLaVBPLVj3watlUWz5YMaMfclJYqfuuzDYjQe8UcUwy+u+H2RP/sqaydxDPhkJnPLJ3zBcKrIUluivZhh9TS/DzT0f3ISbOqxoTm6GzzHVGw6p9KLvwHXHIyyeAY+KZetUdgUHHQt/kK6stX32aHH7GcrCtLiQ5/XpLJsfP68pBLD59yyuH6jNXjjqx048dIEtqR4b9Qr3brO6jYvvjqcStlIenZs+H75yG6W8eB/xAxt096kQe90tV3zJRJ5m63Uf3Gyu0zLL76MruZvsVWKX5zIryMvJOpFq5wzKWrdz99kFYuXsl+XgdP/7dmn7MYy+1E6FO6ls5VLzeRnnq7iqOi4ivYtlNQMfxVO0i8IroJUJ3NW5qZshJjZuaQk6PY6PKP/7Lq5fKLrk+ZjpHH5tYNYPLdKwP2pRXBnkFE2MV64g65N4za/RfT+xaqJ3V2wCT/QBlBMKIiWOf0f8Dxb6a80wZ+7hPVPe/9ig3e5Xa8JukS0V50+PybrvUuOS3uP29+4/8lp39KwgVnxWhs7UUoBk+45ZxGf1d5yfDa95MfCX3Wpiq9lp8awomFTVw777KT4ZjffBtLBhFdoJsrtetQo7pr25F5PdJtgo+s303eWpVgKO+4ot/Xyh4PGc8bEcPrD6cCVuSG3EMvxl6aifTEUedD1LnElTbKXs3EWNCQXkoR51nV1gXO2GF0LkSMIc1hzWHNYd1MLByZobYT/G7kRgHLyX9qm5UI39qQ3x9j3LWCzkTgq9un9xK6Kxm92y3qufykD/3FxUuP1zLLPuFE5uR8YrSv4EVrC2Hz9ZZzeZjUmeGsB4Mg3lHQQfLqzC+WBjHwBfAzJntijuUOeMQO1vHZ56x7MoXcuvoOqoj/hUi5uUzjUb/A1BHb25/V3WQc25InaHkdjgi6BGvQfQ3tXXCXTml3+Ul8spWXdeVyLsF5F1LKyl98Lslyu8wzrDfqZUuFc9S8QLbHp8Vw9jDO7HqrF7qHKvxjwRdB4bXIPq7RJ2z35W988T1avT3Ztar2bIf9Yq24npVu9zqfcCUH6gdedUPXERYFwksdW41ty0bHretRxP1quIX6sn1avT7M+sV3181HMvrtV7RVlyvavyhzkum/AD7B7OJWtG/jPLUbbWp+I1+kFPnWD9l8ft5Uec8duS4kNO/4Mrikvb39srizr133bu7vbQYKKWWAuPfZdeLLRb8gXgLeraY8lT4TC2om+yygywcPo3+RWHyVPiNKecINVZ3PxanDd/rCHW3sMZLRalmhnkD4KoxXVaiRiH4A2EV4llM6lhzahSooptyMe61ykYEhsdns3440XN022PMuaVDjYhU+flGR+S7vEQO9mjoRtyjGf2PZfZouG9pOJbXa4+GNuIeTa0spN68VW/FqNXSFtGj7VWPxm8D5Y5OeTTGow+eWaX8RZU3ZR/lX+peerWXn5oF4/mKmDxnwVge9oVU3cZUdptLTEaP9c2zETx3wStP2Jb49oZuN8CmfAFXOy6nGTHWVTNDZmplRr0xyGeAfh1iQdntbLkzfqP/zyK+pMqQGq2mVkGUr2P/wWeCDtYOKp8JUrfOqHM/fCYIz7bxHn/ZbyZx4j4a7ZB77o39wXCr+Dz60m/QWTMc9p1BMtUQC5+xzyO/0Sk5i3qUs0jISWGdIbCMXo1x+vxak6l4HNHdmFCNcQv6x8+Po2fDghaTqqZmid4h5FWTWjRgLDz6oy7ZUZsAZxJW1U0A5Och6bSe7RdzR4X8CuHrxdSxbMOueXz+xYLwQtAzr7Ij1aiXOsqf8wrTz330ygW/86mzp1/ByT2qZ/Tq6P+Zgr7Ho6XvVcMqfk0Jh1WXUl7uK0w1jxe+N8d+iN8S9LuArkpdKKwdNbHsFSZcuOINvX7HGJ5yjbTbMg6zDrYu1u2PC11ScUz9MIbSPbVpyuWqGi+bmXJe06Oc1wg5/d6cfQ3JKduQW3HEDA/6d9nw3AYFvPnxX+HCh5Xt7+oCtrJXobEvx9VFbq+8OcM0W0r0mwL/5OO6XGYsp9L5UpARCCMmPq5r9Kup760ZU+VxXZ4C9OE1uuwV0UP1Gl2147q8TYhWQVR8VoTZpce8bguf/AJmneO6NUcJlX+wnCebOGnE2uSkJoY4qqhyXBfrg390F/cTrgbZXK+XCzmm/5Cg30JY6gU+s303eWqUwxcGKL749wWCx/NFyNSh/rpY6uhvj4sk2T9Dwdc01mwn0xFHLSipF+7Uy1u84Id5PFusewVh/L7DEWurE1ZM2+ew5rDmsAYOK+dlSuwP+Ofm1LGJgvJQv9SMEvlTC6ore5SzUsiZEHx1+75WQuecn3aoekGC+kmObtdI3neElqmOosXEMzyj/xTM8B44YrbOaoYXk5pNYz0YBvP2uCG4QG0Iol15Q1BtQiC9HRVOHQFSvpBbR49THaWOC6I+fIbmx6GOnqRZuLpineWFLvK4HeYeizX652AWnjoWe0mJvLJViS0l8l4AeQfhWOyk8juMMznH7FQ8S8ULdcaHX3KP3/mYHdqYx6VVj8yqY3apI7NG/33CH7gvYt8o00/ZzfmY3eUlaiwS/IF4C3q2qATLcOIzXOTIOWan3k7gEPFDwuSpKotp7pjdt9wxu0tK1CgEfyCsQjyLSR2zU1fC5JhYmaruAe2fFC6dirBqhJUaCag9B1X+bZSnrslkOergeExl1+v8TGaP5jSSkj0a2oh7tNyVE6PvdhSHm1rqB13VzCa3GfIxE+WnaqTW7fhKzost6noVNXvgi/CRLzWqNrp+jKp7edms6hFEPlaJK2B8BSZ2RznX0uX6As6e7ivZO0Nc9IWyvWeMAYhxe/uT95F+V8QAw7y8S9ly4h0Oc/gKJ3X1jroGKXXs0+h69McJ5Y9Y/pxZXuoa2m5tNfUSWuplSR5GdvOb1BE43LtcQTM+lHMSyax6DexJQn8lZ1GPchYJOSmskwRWqr77fATOVFxJdDcmVGPcgv7x85X0bFjQYlLVVKZ3CHnVpNxZyWn2KKeZKefUHuWcKuR0HHFpG77HbfQDORtmNX/H60BBeCHo2ZThq9PEpldT5OUcnfty6+pf3fPSh3+sIH7ThZ/lnLY/VdD3+Bv3+1XXhBvNMWHXtJPysHsxHdTRuatq6pdjP8RvCfpdQFelLhTWpppYk2G2Xx2KmMFH5xa127I6OtdvXQ72YQ6+sfFqoMc65cRLBKhz1Rsb1WGOInTaSB0BY78zHXJvbDT6VVDnfATMePAIWOrGxm0gg+XGdEOJDsdTH1LzYIQ8AsbTw9Rv/1X9nVj1m4Q9lqGyH/PRSYz7fEgG32ThY+LXQt4E5V0HeXxH4Jsgjzd2roc8Por3ZshDP+Kk2hu+VXN9hfaGdc+HpzDumA3VktXp8B3zTFd+xj6D/KnjtVt6lLNFyFFLdzje6uPrC9kr2obfJF0qypte0U7drfFNxdqfvCGKvGrjqOzILso5XcipqlcffmBpA9FtKlGtELgF/ePnG+hZ2TTM/lauX3b9Twh5rq+mdAeriXU7Wb5tpZap9nC5S0X6d8HPV+6A76kX/q8Is/NQzmbSX50D6fHtqOwQYPhN0qVuCMjdT652UpovGUWrICo+S7UE3rvibcVx4qtyUtrkqjU1dVFMaq+G+dAWQTwbEvSpDmmCdB9O8CMG8rHHFPQcW9smIZtPTOyGQfKPrJuhL5OF9uh2KiB00cHob08M1PG9RlUubs3cwaNv7SqR/xhEmbeXRLEg5HP5sIcZKdH3YtLB6O8BG6R+1onfpeVnaAPkLfsbaUepLPi38kUu+2Vdys71b/QPJup/QuhgeoUMHZhmtESHR4QOImpeeNfd+0p26HkswVGOa4lrYkLglCWzRvRY8162DrcOlmN/Kw+IJV/a/j49NNuze2/Z6QTuEZolMoeCThNB6xbCoTtwMlFPXvLACZav7oGTslbaTU6PB07KOm0VLJg/EG8hnsUU3fkX2kCvtOEzY6lhcUx3tz+5k/puCFC8CXwx6KEweQVOzdDUapDRqw301E3HZb8pWyYbbckBfXtFXbsdMOHf60H9rqyoa859Pp66Xix07XH1ovKqHK+g4aocr6Dhqhyv2OGqHK+g4aocr2bnrsrxtBVX5fjVgG+DPLyvjpNasTO7x3Z59doZXKbD72UxJfcQAMYQnnYrn1KHXYx+B2CpQzjntb83iP7fJOKR2ilKtYNu923xfXbY7vi1FeTDW6oNOxBdP+4iw/LMA1xsL6YP07NtrhH02Ob4kBS2uR2Uh7GFV4lxOQXvBLx4xWw6tYvNn6YrP+N+ErH4RvHtjnIQ6waSg30bLmd9uqRdYTtB3j3tT955/HOYXP4XWsJSh/34NZz/Cu3svHXl/Hw4Sx1cSv0uX6qcSH9eSTk/C3pe2Nazj4cTW1Xvg1QxJnUfZKqdok1aobNN8phHjZ/KfkcPbTQSdB0YHu82/rFYRFCvkvEvDF1eUfc6hycbdF+b56vN6teTGGuoRP89RI/XCyjZTG8+gQtUKj43iP4rUFeXrNOYIeg+eWuJziMl9FeRDkb/deEvqTiA/r+TMI3+78RJi1zMN5Rg/mNirKHaaepuz279KY8n0I7XUB7qzv3i1SCf6/Q9JB9x+H5I1rlMX+5Tu+nL/Y3lLTry5c9vttn291HCqxirh1N1dZbQN7eutibKx1jG1wid/phqI2iP8SM15ryKmAvbONinq7HKTYC/iGSrGImxmuOymufiOEeNDfi1TsNYBvqnXkoxrN76+uKLVV/v7WYbrxcRYnoL5alXtr370j9cPhs3dR9u/L6B9Og2xntd+zvH4dWi3lM2TNm8233bfLoJ62Mn5SmfPdj+eDDvn2Z/VP2H8sec9apcf8T7pz/T9kc1B+e5x1UJfbqNuflUnsX4kRJ6jvlG/zrwYx73XCt0SM0TrhP01wqdF5IOyMuysV2iTfiko9GflxmPndY85EuCaDf2/5SNYmKbvknQo63MJi2iR/sq/7+W8tQ6UqrN5rYN4412+BDFau/1OY7VRr89EatV2VKxul/rc6lY3U9fHdT1OfTV3PW5780YC6ReUO22B8Hxa5vQQ/XD/EJu1d8dQP7tCTlTPcqZEnL6uQaJMtXYZorKU3UtBPmvpPJc6VgepbO6ZhDXVO+lOYyKbcjL/Z3RPw9zsvvb39Up+NQL1CnfLVsTLVtDwn2vEPox5gzzDvWYk8eV2F/yfrl62wB9D/tOowmkYz/s5fnyurIvtgmzAb9ZhX6o1l/55XVly9xxCL7l8vbl3fVPXdzQzT/4hw4GaI/ukI8B2Beq7tFxvEQ5Kl5yHWN8RQzeszL6/y8xdlR+kPKbbnM6vgwefYPfVlHr/H2MIQPtNzspT6075voNxxD0I+yjrf9OrZEVYXY/if6M9MMlONsJp6DnY/Ac+c6hMvMYibFfT/RWzpESesPjscgnE2sJO7rocC7psLOLDjtIB6P/GaFDyv4xpcaEPb6V3igIz/TBZ4jfDNo/pkJWKth+Jk/5QUzqXBO3J7VXkoqBqp0rrHFHLH4zs2Z9XaVimyV1zovnFRjHeN6K6zw3AAanYfobyxP9ehOdKQgCi8d5qLeKNTsE7w6Bfajaw4568pLtQc0BqrYH3mN/tbeHsnOPIQxGe8D6Mr2VjWKaCnkpp73UvAnjmNz2Yvhe7UX5nmovPd5EMrUovDyOwVgV07sBT+1jYH151Z9a4zpU9VfzZoFk/ak5vGf94fiiSv2ptb8j4Ttj56z9If/BWvs7kuTgXBDX/v6R1v7U3BR5ee1vum88aobvG7T2V3V9r4/rdcNVzyd6/1417zvkrj9x364uVctdf8JLT7eVrD+ZXWPaI3i5bRehc/0J9TB6PhPHNHx+bXqtoe1f6mVE5bMYc8rWUyYB82CfX0M783mwsjG9YYfQOWaw8llelX5BtQksD7cJtReP9FX34tnvcU95J2Fx+4ppi8BK6bq9B125HrGu+NyA0aJfov7sl0Z/nPBLVf9m837Uf2o9Tdk0tZ7WzaY8p0mdKUitp3VbO+eYuE3ogH2iWt/kPSjVP6g4oWI6rxuZX54O9c9ndfF8j9pH3lKCeVYi1qkypC5k7dbHpd5r2Jngw3Y5KmRN2Zd/SifDM/+YL2RxP2O0bwA7ve9orUvB+nRJfZyTTRWEF8Irak62ymNOpsZ5OAa+7KgZnrI2hrxva39yG9sKY+ArSjBD0O029V4h6vOTy2bj9ms/WbXd1BiG9xnVGXzTAc9nq70nPjtl9NdA20y9y+SzP1l8TfWLOC7kfjE1BoyJ6yI1jkKbtEJnn8lr38q/sK7Lbg0tO6PJ7yEY/S6og9RPxXC/va2i7mXnEjCP2wa3YzVHSv18jmr3qLed1+Z2/7ZE36rWClJ9a7cz7/w+odqHUmsYdo5QtRd8Z93KZ3m97ssezLMwfBF86r1AfAeA14nVdWhR9++h2KveG8C6LXt/UL2rGr+3Q1rH+4OPJPzL+1whv7uTu3Zjbb+PazeLD/XajdVtztoNxkJe81PvdUbd95J/qX4SeU9uf+d+8oWEv1yTKGNMVfsovkEax1/XUh7ysS+p+aDpcJ2wA+p1d/uzQfTfkzlecJpHn6/8E+e+7J+p8/QxcV1cL+jxjD2fo8d7N64mLLW+hTbl2KXe6bhW4PM7HT+UGC9g/3Qd6b6zou4q7qr2hm1qebu9qXk+j1l3JmQyL/Y9IyX0ZfPPHxP24nim1pPi942EafQfS8QD1aduhmdVz43xPgrahc+NqXlH/8bz4YJDfW6M+4/UecOq58Zy/X+WD5H/Y39+BclMjWOZF+WU+X/Zua1fSvh/al4ev68hTKP/lYprXyn/7zZGSI2RUnuMFm/6OD6/+FCPz9n/U+NzjL8570fm+j/60N8cNhtXvX+LvGvb3/n929+r6F+9vH/L463U+7fIx+szauzK9VjWz/A8xej/R+Z4y+kc8JJDHc9530KNb1PxM7VPquKn6i85fn4pc30mdT9Fju657Q3b1Bfa7U3dk8T9zbaETObFdl3W3/C15kb/9UR/g3MztR7E/Y3R/13F+Xqqv+k2X+f1IHWfhJrLp+brTndBLT3UP1TJ/U3qhyrV+2nsBygn1//Rhz7d9v/e7Prg/yxAF8MeFpQN+jSasbaf45kQ+8z5ZbE/+NW//b2fuvy0t08Sf0xWR3HPJtb/PGpTeI2y2RKvH+YL4YdJN8VXkA5MPyToDXdC5DWgDHVttOBXf3bbH/3D3Wu62agu/spf2P1bb/zc//pclTqYCJ11UJR8xjScwG4JrF3tT9vzGwH+CnFjyPjnk/ypLPZQWDnn4UPSbbSebv+UYyfEb5IuFeVN77eq66SxfLzfWvN32f8f7rdim8C6RNuhnPmkw1hNHVSfZDItD2OnyYny337CbB2GaurQow//34kwO87EhHvOJ1FcnA95w6Ez9lk5GkR/2tEzfKfQL+hxTIlpDPLni3z72+w9JGjxO/9turPdkN58ZqSkrCNUVqM/u10+dQbQaNB+qNdQCeY5gMljNfOrENJtzujVj5tjGzB91E/ljBMf6o7nOvmZqp+CaFGHmHYJncr+bgqcMh1GBQ73E4zJMtkfYuLx1bCQg20K+7xRIb9CO56n+pJA+oxQeTAPy4br8Zx4/IY6R4wV0IczHeuj2pJn32/P58FzljtMtCNEy2N/1HGeg44tIWeEcOcn9C8IpyH4JoJub+ozV99C6Kv6kl7lIJbdwd5jn7eSx9IxYZ/31ow+T405uM+7Ffq83Zl9nuXxuC8mvGeeYzqPoxAjJl63sRiZ+0M3Rr9H9G0qhhhWLPudZM9RyEv1Iw2ifx7seQ/ZE+1l9lT9V1mfM49oY9oVtA32gR4PHF0ui+duqowR4+GEHXcJOsao26+p8RW33ZzxFbdV5FMyOB6X9d18TqQsf0yULYhnQ4J+tKS8QchudsGdL3BUfOd3awqRx7EHy6vWIdT6AMattybaSxFml2uMyjWaKFch+Lido+7zE7or+2H8qLsG8cwf/9N/f/7hw7/crzWOc3/wHc9NnPnxT/QL/2Pjv33Bv/vB0bf0C/+35v/lS5/+j7e+t8oajfnRCMmy71if+BzHNvyr10b/IzQmrrkGIn/1muNSav6H+vN8MaarSvT/d9A/fJTspeY/qk2W9e/zMnUx+o+JeaNat8A1EcOxvAo2b6i1dIybPJ5W8Rzpq85dzSbqTkSWPU9goU15zGQ2Ggl6/cDw2B9+FuqA97pU7Lc8LDvH3WEhV611WhuLNP+N2lXN8fN8NU6xNBHK+xf1jiffIcFrcZiHdYn+yUnNUa2sUeffzZijqvjA7VWt26TGo6rdGf6gtTvz/VborBf2t1wfLhsvKnloBxwLmA+X7Rlgm8Y53X+nOcgI5Kk1M46nRv8ViO1/SLEdbcz+oOIE6xKCjkM5awUTgs/qRe1TVFlbwvpFPfEZ4jdDT/Gl4Hhr8riOeC+h5jihwX0sylP1sChom6r9Bp6LqvWk1DwsFU9U++O2qdYpVB+Smi+abFyTzxk3qbaFvNxPfh3aVnPV7PKrWJuqN/Qdpk/FPtRV2X6M8tTagn0fT8hRek0I+vGEXhiTkZdldytDbl/lNEaUd6tinXAbUXZBerbjAkE/ATTcRhZAHr+bk9u3jVGe6uO79W1N2tdR/QLGP54/qzaGfV+dcw63hdn0JmMk6LVQPMuB9JOrZnTg80vzQFez2+0CsxAyQui0C88rje4w0OE7Tnj5e2q/YTR02rWCny9A37Gk+k3Db4bO8tbpN9W8BsvH/WbNfnoi5adqvKPWebitW3som2PhnBzpj23XbYvoYuJzUmpcofqLqNtRFKf6teeDcRfjR0w4jl1LMaIBeWpP0tovt4UTV83wrae+VvnmWEjHDHUGgP2jbB+dY4bRn5KIGWr8jnrdXoJ5OmDyPrryC1V/7KtIr84qqDETr0OpWKb6YKPrsQ9eoPpgLH9ZuzR9ytqM0asxmdrTahG96i9RF14/S/liTKk9eWw7a6ENhNAZ04wnhM51QabHMxxIfwm0uctoLY5jtj27JkFXNf7wmklT0A8LepM9JugtD8ebWF9Ig/ZCrGaJvKuoTtAHcbzF8tHPQoneZeNHxhoWz7B/2LJqdhl6OT8Xk5pXKd/qZb3/T0e3Xzz0b55fVedMJp+ticnGEeOk+1TISr+U47+I3yRd6tga8Uwel4/HSRP15P1iQfwoDzHHSd6CevKGra5aAtt0WdT+e6REF+NtEP2d1GcsFDwtyouJx2CYNyyeDR0irJbAQjtancR2fgvZgufc6tNw+RnrqPa8U22wrhzEsnGm8vf4bypkpdNMzwVCT8NGv6ng29fmxgrDb4ae2lKR8jEsH+9jtIQurdDpY/cAXTf/QzkK65kBxXrIEetxR6wnHbE87fWYI9YTjliPOGLd4YjlWcYDA6rXg45Ynu3Rsx73OWJ5tqGnHbE869HTV59zxPL0r6ccsd7liOXp94MaczzL+Lwj1p2OWC84Ynnay3Ns4ulfgzou9PT7QR3LPeCItd8R69UwlhtUv/ccm8z1adWwBnUsN6ix0HMs5xkLPevR016DOv66yxFrUMdfDztiebZtzzbkaS/PfsizDQ2q7T3jl+e63KCuDXn6135HrEEdYw5i3xG/TzhhxWR9x8ISbPye2ntVcgqhs9onxbOSvCcaAGc0dNqiwj5U9m/AGn6TdKkor0jVj9pbtbIvErq0RB7X1SIhZ5GQo7Aajlg5Z4/Vvl9Ve40D7f17b99z+959F+1+6/23br7r1kCpQX9fXKLiNUR3VYlqwwK3oH/8/Bp6NixoEVs1yfkleoeQ1ySRfyIhpx9Nn/+26wLwaI4dJejj9vfNuWHgW2X7+16g67U7eKcjlufyq+eQalCnqp5l9NwGHNQl+UFdvvgOR6xXg0884Yg1qFOJQZ0SetrLc7nHs4z7HbEGdbvNc/nC0+8fdcQa1KVcT5+YG3+9MmK0Z197vyPWfkesQY2Fg7od8g5HrGcdsQZ1ydSzTxvUceGg9mmvhq1hzzY0qMeK5vqOV0bfMbeVfuh8Ym5N4dCV0fO4+aDOhzxt73lUdlDXCz3HOXNx4tCNJ+bixKGz/aDGCRt/9fEYyEhBeKYnPkP8QT4GEhO/fl/36MarDYv32Q0/ptHQWQcV6vycXB8z/GboyaeLlF1U27OyTwpdWpQX031Ax3nD4tlQAusBR6zHHLH2O2I95Ii1zxHrDkesZxyxDjhieZbxQUcszzI+7oj1pCPWs45Ynv7l2R49/cszFnrq9YQjlqffvxp84lFHLE//etoRy7OMnrZ/2BHL0++fcsSaixOvjDjhWcZ3OWJ5jicG1fbPO2LNtaFqWPc7Ys21oUNne8+5u+ccmdcgcU2laH+OEl8RKq3XHFMQnumJzxC/SbpUlFek7KLWzax8i+vJmyqIH+Uhpuljtl4i8gxrafvvkRIs420Q/fcf8/Jni+hiegvJWCL0xWdmn/ju0vvauAuFvosIt6o/Ij/bCPnYH2vW11CuPxp+M/Tk/0XKP5RdlH8Yb0vk8c8lqCu/D5XNerneusxm6iedqtgspl3tT2WXIl/Ph1iuYSD2UnhewQabc21u+M3QaYM6Nl9K8srigpX9MKFLi/Ji2gt0nDcsng0lsA44Yj3jiPWQI9YdjliPOmI94Ij1tCOWp708y+ill4pTg+KrTzliebZtT594whFrLn7Nxa9+ltHT9g86Ynn6/bOOWJ5te1Dbo2eMHtS+1rMe9zlivRr6oVdDGT318oyrg9pvv31A9fK01zsdsR5zxPIcmwxqnzbXHg9dGQe13341zNM8feIdjliD6vdPOmIN6lrHc45Y/YjRtnek9sQKykM5ixNykH9xQs68HuXME3ImBF/R/uxx7T/7p8B57b/m/k5y7V/Zxcp3WD15Ezl+hfqYrZeJPMNa3v57pATLeBtEf8OxL3+2iC4mfhdjmdAXn+Ge6XVtXPaFmKZCVjqD91hMF8RFm1Sog4W5Pmb4zdBTnRcpG6pYYmVfLnRpibwyf0A5y4WclsjbPoc1hzWH5YKVEf+GfnPJW+4f+ZEbbj5p7YKLv7Zi8XcfeOOvvPDEG9eeyHHfdENcjAEV4lH2FdmG3ww9xdsiZVPVh1jZVwhdWpQX0y6g47xh8WyoBEvF0rpYMd3Q/uyhH2xwXVfgbY0KnaayWMOZxnt4+0HFOm8a/xH1+MeMfyU8nErzTF+zbLxHCt4lp4bPrvrCmfs2LDvrrm0PPPmFqz722NIfPuHPWyu+fP/rH/jHz91lvEcJ3pJkTWfab5uQaT8VHcdFL7bHReZbR0PeMPHG7+ZbDaKff9wM3/ceO1s2tmmOF0PwvEJdnJgbLwy/SbrUjRdDJI/Lx/FiWOjSoryY+D3XYSFnWMhRWAccsZ51xHrCEWufI9YdjljPOWI94Ii13xHrMUesQa1HT189MKB6PeiI9ZAj1tOOWJ4+8bAjlqdPPOWI5Wkvz/jlqdczjlie9eip16D2HZ716Gl7z7btWcbnHbHudMR6wRHr1dBve7btfvS1tk+D87FxyhuGvDHKw5/xGiL9GkK/RkI/5G+U8HE5ct63GSHeqZCVst+3MXyv921GSB6Xj+ea84UuLZHHP7mm6qcQcqrq5fgzaZa/geg2lahWCNyC/vHzDfRMmQKxF1K+cn12mTLTtkr4Y5pIyJkQfOaaY6DjMZDPP+V2jNDxmISOyG90Sk7Ro5xCyGEstUwV093tzwbRLzru5c9YhmtXzcY8VuiXagbHCfpjgcb0UbYx3gkhuyj5NDkhpH0IdRghOcc5yjkOaBok53hHOccDzTjJWe0oZzXQjAFf/HsN5KGfmR5rhR7W7ayD5xW6gewtEcNvki4V5U13O+tIHpePY88JQpcW5cXE21knCDknCDkHC2sidJaf6xLL2o+6NPxm6Ml3ipRdsHxcl+uFLi3Ki+mtQMd5w+LZUAmWlcsLy9ppj/W1nu2ByfI2APY6yjsR6K+ivJMg7wbA4DRMf2N5Yv+1ad0MLtOxrhi/TO+FodPHMHaUxQLlPy3Bb3TWB5uel7U7jth3X3TcbD2PBuwbqAyrII/b7JTIi/iHr5ldVvQHHgdVjSHIb3RKzoIe5SwQchirAVijgHUz5CP9bW27Wzvh9jgVstKt3BYMA7FPrImdGzMNf0LIM72aIq+RoUvj1374l37ubS9tL0Jnux4Wz3iMeJKgVz+9a7baCPwVbPVW/JXzQLItD6d9J1IeTlVNh+jf60m/k2rql2M/xG8J+guBrkpdKKybnbCwvXlgjdTEmgydfZLVnYpJC0lO1ZiE/EY3IfiKkk+Tw8/KxmkoU43T8EjD3cfN8KAdcK6IvBwjjf6StTN897UxF4bOeJmK/XwdT1U7LxJy+m3nRVSeDYnybBDl2ZBZng1Ung2O5UnprGIyjvM2tT+t/Co+qXgd01TIS2osyP3myfC8QqzNvuLL8Juhp9g+Pdc4meRx+bivO6WevKlYn2OhMxa+G/DQdijH6qtbDHmeYsiJkKdiyNvanw2iPwNiyHsIs5sf7mh/zvlhVvqW9MOC/i7TeU/7U/nCRspD+2GfYdghdPpQTLy1MhWy0jFxnHjBqhk5XB5+3UfVD9JbWVuh04YnUh72W2zTbu3L5uVz7SsrvSLj/Med4vyxEOf/dQlmCNoPd7Y/1XqM8ar5V0xTIS+pdSn2w5pzz2w/NHw1F6/jhypmqrlRj+1slh+iL6Afou1QDtZXWUxCnTnOrxNYKl7hWNqwQ+j0oZg84zyWh+N8bp/WCp025H0EHM+zHdBGvD6m5ifY9m4mLOTnddL1Qr9CYOasWSP/+oSck3qUc5KQMxo6bVrBDzaqPt6S5WEb4LVxjNMnUd6pkId1wUmtjVt5op8+ccIMLtOxrmhv01vNffn16Kpz30mha49rpJXrYj3lYV2gfpyUvU3naO9fq2BvtCnbG+3A8aTquto8oWuPfd3JbFNMyqZ8HTD6N9qBk7I3rst+o4K90aamW4994ilc1iDkYll5jf40oN9NeadDXtX9MStPtNHG9TO4TMe6oj+Y3sonOe5X9Uk1tkvNP+rKOUnI4b/ntf9eA/m2d8bj23EY39qBDDWmvCbMzkP/WgNyh9sYVnb0FbbxqYA/LJ6lbMx1iXJO6lHOSZly+lmedYnyVN27PUnorOSs71HO+kw5kz3KmcyUs6FHORsy5czrUc48IafH/dtTOVZj4lit+rPTIa9qf2Y6V+3P0KamW49j2sp24DEt9lncn50BeVX7MxzTVunP0B9Qb9S9EXT/cg3lG/2p7ZgdfeBk6gNwzIP7bbspzvf7rIla7zH79Ogj2We4+MxBr2e41DwjdYbrJKGLivF8rYBam1Dregqr4YjlNE91bdN8hsurTVc5w9WPNr253T57tHXH3BGx5tr+YLX9mC4Eul7b68mOWHNtP7/t5/a9BeWVxYhrKd/o3wb9/m3U76N/nwKyf4D6fdSf237VNc21orwTgu9Qt/2aY/Jk21d2eaX0+7w2VXOfsvLaFPsQrk1x2+9lbcrKU7Xto9+i3r206aeo369pa9nv8/7MILT9muvr2W3f8L3afrc941Tb5zMS3wr9vtN+SOX1efYhHC9w28e4ULXt415J3bZ/CuWpNSzsexkDZfRo5+zrSrld1OyDk+1C7bmNh5n3+dqvHl+6e+/2+9+65/abr9i9777z77xl+657996+a8/5t9xy7+777kOlUdACeI75mJjGvpdtYKYaDBYm5yCqYZ3cBYsPE6Ya8ildsPjglDqEw3/PC5162mbDUAYON06lFx+kwYbOHedpXbBuJizk58n36V2wbiEs5Ede/Hte6NST7ZXCif/O7KLXbtLrDOA/k7DO6oL17YSF/GcR1msSWPH74YSF/MiLf88LnXqyvVI48d/ZXfQ6gvR6DeSdTVivTWDFdCthIf9rCet1XbBuIyzkR178e17o1JPtlcKJ/87potftpNfrgP8cykM78+8qVj1ogfwH6yUDvof+HEc5iHUj8MW81wM/xlY1EDIZ1vmfC8/7MSg2/CbpUlHedOd/Lsnj8vGg+A1Cl5bIw34V81DOG4QchXWSI9brqTw4AcBDrJ+nhZ5zIS918LlB9C+tmeH7Ii3goK+ck1HGc4U8o39j++8RQY94DaL/s7ZOcRD9/vabwi2h0xtKdOH+lP3EaGIaJdn9aiOG3wyd9V+njbyR5JX5m5X9PKFLS+ThWArzUM55Qo7COtUR61wqT1kbecmpjXwe2sjfD2Ab+YZDG8Ex1IR4xm2kps9mtxHDb5IudduIqgssH7eRNwpdWiIPx89lbfGNQo7COtMRK7eNjK+eLfMMyMtpI0b/H6GNLGxjqjkGtxE1XzlDyDN6q7MRQY94DaJf0tapWxs5s0SX+B3HzROhU39uIzV9NruNGH4zdPpPnTai5ntYPm4jrxW6tEQezpnYjsPi2VACK2fOlYt1BpWnrI0c69RGPg5tZPUAtpH1FduI0r0fcy+1voC/gVRmI+W7LcF/JuVtEHK6+cgZq7U+ZT5i8/cG0X8/+MhrEj7CBy1QZ95wqTqXXivk5Cws14w/83LjneF7LSx3WyvjeHeW0KUVOmMnX1Sm4qoae3yrYMXv9nsoqX6wajtvhU4/WktyznKUg+U5GGtGMd1IcnhNUn3mykEsvkirLG5dQ3HrbMhTccvW9xpE/wLErTe1MUeJpmI7Pdd0P1dkqvWeMykPx8NnUd55kMd1fz7k4diFk9r0s7LGPvTpCod3Mba/gfL6EHOzx5hzMdcHa26+MLst8XwB8/D35DiuDYtnQwmsMxyxbC+jx/pyi2sx8YGF8yCv6oEFK0/VAwsqdnE7YTrsX9S+odKrEDjcnixP7f/Z77CpPcZlJKNqm18m9M1ZR0P/quBDw7lt3vC91tFU+0mto50tdGmJPF77UvuyZws5Covn9ThXPtT95xn15CX7T/XblR7+VVYPZyXkvbaevCGTp/a9zxDy4gUdI6GzDsv259W+NtZXWZtH2Xw2p+p5B8TiszlnlZShrA7U+k/qjEKD8n6qPUaPcfhHVs+msXMlHwWaD7e/q5iPax3/muj4jEpMPc4Lstue4TdJl7ptT9UDlg99c35I+wjWUdmZpdNEWdhnT+2iE/uskqXqFM9wcZ3iQVdcC/3pBN0pgk7lxb/xDB0fdjbafwtrlT+4fnYZkZ/PuVW9jBP5U5d+buhRzgYhZ0LwcRuqeeg4e83N8Juhs8x12pA6/K3swmdZkJfrJiaes6mzkercyLcKVvxuvwWcOvyeU69KDvrRwTo/dTAut42J19xOdpSDWPw72zUvwas8P+QD7bjuxXV5HuSx/c+HvJMp7wLIOxG+c1LzSrNDjNUfzFgT6/Gg+sDbjy/0w6Tshy8SzNlv9vlHTp72O9Qvoyn74RiW7YfjN+w3OCkb4YtqVdat0cesTONh5kc9Zl7EuGL3vmt27bn9ll17b7/rzh2777l/9317+afauAfgHm5Didb8U3JlWsc0RHknUv52QYdpQvCZjB6v2Mqe2fD1rjVbevJ6Vywfj8pOEbq0RN4K+M4tYlg8G0pgrXPE4qt+a7b0yq+enUh5/Xr1rO5rp+rVbsvDn+m5ifJWAd9GypuCPMNXP9ODslvwHfNiGhbPuK5bQqaSc2z7e4PKeFpbt1Giq9uT9mEGd25urCh7ZRb1Uq+w5vxUzt8vOe+kv/mhr72/CJ3xWu0eDwE+x3Ojbwn6Hkc0r5sAGSF09qwx4Wvt6ylPXSupfiqn5u7o63Lsh/gtQb8L6KrUhZoB1r3q1n6SBlcJrO1Y+zsa8o6jPGxnfIrpWKHDsYnyrBU6TAg+bo/HwfN+9N2G3ww9xZbpvvs4kldmFxXjjVddO7gUvmMeyknFYMQ62hHL+poe62sd2wMTx23lQ+rEp1oxqdp3W3mq9t1oY16pnGtX/W9Xa4UubLOYLgQ6zhsWz1L2X+OIZf7TY32tZXtgUjGIfQjHStyusM0dinbF14yZ7vME7THt7w2ivQVOyr2TxsDI336pR/6U9GrKQ18/mvKOEzoVJANPY6Df301lMPo72npHW164TmMOlWBinYYwuy1bOUZBruVV8MFfUj9bAJtOHdeyqnaD9DxuVf0XtiWzgeq/uM2q+Is/pW07eMpepmM/7IU6sL3WdNGZ7aXsi3YwG6i4tIqwVgkstGHKXqZjP+yFOrC9VnfRme2l7Is/VW42aIVOW04RlrIXtsdNRG/8I4Ie8RpE/wzEBH57BOMa1/UxAhtjY0EYWI6mKMcE5SFvxH3x2Nm46g0ideLE6NUNCHi6hH/aA085GG+Pp2UG6mS0WqHHMnNSfbPZIXeFviA5hov2j4l9Yr3QUZ2CPzMT1+i7nfYZytAbT4SwD50l9FanfTaUyFGnLWO6vf3Jp/k/BG35Wohzpm8g2T3G04UqnqKNOJ6qNqtOB+a2WT5Zjm+78UlltLHJVP6Fp6LOqPC2nzqFpk7csO+NlNAbXscJMBGvU/6sTnbX9WcsQ6/+jPa6jcpq9D9/cP15Qb/9Wd2KknobF9/0P4PylD8XoTOGVY2veDLs2B7fdk35v5WtzP/5bVej/3TC/5V91alXo0/d9NDN/99Aeci3oUROWTxn/zf63870f5PdD/9HG7H/595gYvTnCXp1k4K6PSTl/28gOV7+P07+n7o15I0JmcyLZSvzf8NrEP0fJ/z/PKFDqj7OF/TnAQ37P5bhfMpDvg0lctD/0V7s/0b/pUz/P6/9vR/+jzZi/78A8oYFPdv7QkGP42++1QfXHPlWLLTx+SRHxcFc/8fbdl7q8daclP+rW3OQvuzWnH9M+L9qg+qUZm48Svn/eZSnTk+xHPR/tBf7v9Hbgko3/zfZ/fD/84CA/f98yBsW9GzvVHtBm7RCZ9tI+f95JMfL/z9P/l8A3RKSWQiZ+IzX8JlfYeH5qBvg+02Qj/T208a2ToH2r+AHWyaAJwAGYtf0sS1YVkvD9AzxJ0rkxdQUeTnnH3757F+84oP/5/QFBfGbLvyM/XieoF8i6M1WI6T7VMhKV6i2jj/rFUJn2TEP26vpoM4/zKupX479EL8l6PmkfW5dTIbZvsD+Hv+dKLBwD4DXg+wMFMZpxNjT/mwQ/RoRpw1TndFTV60bvTofh+cSTZ+FpAPyqtueUz87bXQ99h/yZ6exPNx/qLeg1FlAo1c3Qaufb2wRPdpJ9R+p69pPBN3LfoIe9emHf539LeBfeKrZsEN49foXnkHJ9a/nyb/UObv5Cf2VP6Z+8nK90EPdTJWqW/w5iJhq1u2IqlssD9etupFfnX3mtof06mdUW6HT7/kNNqzbE0mOOnOnYoLyBfxJqLvbvhDtMu/o2Ty4x1K0P60vx184qGD/oYLwTH98hvhN0qWivOnzOgtIHpfP6jG+nWA3d7ffTth8165bLtx1933379k9hNBtavvOVkFUfFaE2aXHPB4JM92l9PcmwRcEdsy3mmvR86mQlRaZVywSmZaHP/4zTnl4BzvWJqdhob/pHL10HLyU6VgfrI9JylsIeYtBNtfrAiHHZA8J+oWEtUDwme27yRsWfOOEMSr4puzLXzz//u9offy7fmhqw2f+duTS9/zVjV/fNO/sP/jMI4f/8hPf+NJXv5t1DkJnrsdxolWfpjs/41NxCxyxWgLLbLMInlfw+cNyo5XhN0NPbWw6Wi0ieVw+Lvuk0KUl8jgGTQo5k0KOwhpyxBp2wopp+xzWHNYc1hzWtziW5WF/36I87D/5nh+Mz/yjnENCv6GEfsjPfY8a41q/i3G9Qj+Y/WNyvEJbcyV6ut8dJnlldulxLD29Iox9+nAJZkw89k71mSMlWMbbIPqPt1d9WkQXE/u1GpfgM7NPnFn+2NrZuvPcRn2GkB7rtUJn2S3vYPv9GPDZHSKx3D+zVsvE1Tjk5V05oz913Qzfz62drbNa9Y5pIT1jHwpBr/L344QelpFXVZTfI72dPFRv7DYoD8szBuXpIf4sVbEN6/g/Uh03IE/5FZ+kNPojoI5/vY2p/BjnY8gfusgzerP/iKBHvAbR/xdYEbZdcKXfeIk8tIfaWWN5v525E41xOITafnuY8ltsT+y36KPDgp7nRCk/V76Mfj5CWCp2oR/wLoDxjwRdB4bXIPrPizrP8XNVr0b/xcx6dYpHsl7RVlyvI5CnbMv1qvwA64v7Eazz+YSldnmxrnPqFfUzPK7Xv0zUq+qjVB/CfdSXM+vVbNmPekVb5dSr6u+Nfr6gx3rlHWasy1HCUjEa6zqnXrE8HKON/h8T9Vo3Dn9jAOIwjhe5XlWbQXquV+UHyrat0FnnTcrj9VeUUzVGq345FaOn42N73KDeplog+FP6KbvFMtpJk/YuyM69d927u70NEiilti3i94UlaiwV/CGBhTypIuHWAJvcZI0EvbzOJjf6ljA5m5D1yZki12wy2Rtphu81Re429ORpUqqZqS6G66mbHEdXjenSEjUKwR+6YNnfsfe3UTNWN4/qUyMB5o3/bLSYOxIw+lXClRkTdcDRDkeU1E4F6qPKv4jykG+8RE7uCMXo10BZUz2Zye5HT4Y24p5MrRSqFRWjXyzocSeFRyi468rND228iOR0a+Z8vkD5qZopK/9KjbS7+Zf5ppqVpvwrtSri5AsLD7UvmG2UL6RW1NgXVBeLMYF9YUzIwZUxfPfaPnPO056z+t0rVv76PROTxB9AzlgP+J8888TXLbhuzf5+4c9rrPy+qY/ftLkbPp7FUbFuiHDjsxHAQfqYrmt/qhUOHo7gjKaCr2ffw2P4zaBj+FTIStPDETVjUysyVvZRoUuL8mLile9RIWdUyDlYWBOhs/xcl1jWCrbNvv3d8JuhJ98pUnZR5xDVHQ7G26K8mNj+TSGnKeR8q2Bh+5+gvy1ffZocfsZy1ApIKpbUlYOxYD7Jme8oB7H49vdRRzmIxb+42BA6xPLfS/clNSFPjZf414SN/gXYWbh/3Wwa0/0dQPNE+/soyA6hcltuctvEpMYH7Lc4JmVfw2k6+wfOpUYpD0+37QI6Tjy3Qzvk3j2ibFlzyj1Qtsy1l5W16k3h6G9WprGQ1w5QLreD94KP/wC1LbWKr9qzPR8X9Go3Z2HojM/GOyr4KvjEuDqFaUnVLfsE1i37BC7TsU/g3InbF84XeGyMSfmL2aFK+/qBkhhpMjhG8vykIfTF2Ft3fP/caY3Jd79py2X9mj+876WtZx5YcdxXqswf2CeQb+4s/zR0OLhn+YvQOYubO8s/m471eTWc5eeeBnu7YSG7QfT/AVY7P7AuzConn9tH/9tFOqo9/VDyjMvBszT1vsBo6CkSTOZGHsNvBm3vqZCVpiPPBMnj8tWLPDzOMCmLCNVokBbTItAslNCpGt0i+DgZH4/XQuis1WHimQpZaSK3Vu1Zk3SpW6tqq0n1rT167XjKixgzBB35eJvMIlTZdqbxNoj+d9vRQZ0k5nUJFcXwGa7x/hbNNS3vj2Ec/tn2d7Vmz/5d9cQm8nMkUvdcqHUMXmMbSeTNT+TxiRDMwzErr0GMCcyo38YTZtNxO1efIaTXKlJ1jJGNfylU+Rj7ZBkW/7ot8vNRgVYXLD71jvx8Wn5Y8E0IORzPar49tiA3nh2qt8esfJP15E0UxI/y1BtpavTIe022lT9SgmW8DaL/B4pnuDfG8Uztm+EzjGdfXzdbd7Rt3TbHJ+2xfrqdPP6/NPdtQZ6Kj7e1P/kMwM4TZvjsRXO1T8p7qFxf+D337QAVq9lH+mVnjsOFoxzMu5FkKp/DNmn1ZHZWPm98eKcTt132Z6RHDIVvGN18cPIEXbayU8Emq0H0Z4MPLiUfzN3HLyivoLIgnfJPrLPbiF69UaN8lt+oWdkuizpfY/xoK9RrC2Ea/dGAyXezqPirZiUpX1TxWtl0MWGpNVEsDx+/UzbF9jlO5Tf61cKm6uwCr1TgmO8mysP9pgnKwz2vBZSH+5wLKQ/HfKn9So73uB6MPmJjPj5Rf2r7eY/7NYHXElWMxPVSXvtF3yrbg8TyqfX+sj1FtBmPebEecJ8gFYti4v7Q6M9JtC8VP9V4yuiXCnqM2XwmDtvUUspDPm6XfBQWvx/W/hvtgHrd2v5sEP2FYIcLYexjZQmkV49npCbUGanDgIDPSC2DvGFBz3WxXNAvAxqzSYvoVaxTcRNtyrFOjWWXCnwey25NxDqMlYeR7kVF3XPP82GbmkyMFbm/nUzIZF6UU3aetWwccV2iv1XjY9SL+1ujf3MiHihbpvpbFT8Wi3Ipmy6hvLJ5lWEzZj/uasXyc/tMlTWmurGyFTrbD8/vsW2w/6t1hFz/Rx/6vz3uEX7Pr5x02Veu/Ouju+3hWb3VvNNzCMcQIczMDUKYPSbCPjuE2WdW+K2tZj1dpss4BjKHST/EbxD9YyfMxuFzbfgsJqy7mHiMip8oF9dSA/HmYo0S1vwesPDNI6afXxFrNIE1QlhNgaXOocW6u6ddN73saz97+5F/88nzznyhzr52P86fxZRaA+5VTu56cq9yEGsXyVHnI2L5301z+1HIU2cr9rQ/G0T/YzC3/07CVGd2C4Gp3hmZX8LHeqVkDdWUNVQiS/HOozx1R3LKt3o8jz2S4zOI3yRdKspLnsfG8tU5j822xTyUk3OGmn2mV6x5jlhDjli8h4hltvoYE7KQ923wjO1vsV69uYq8fB7vX8G4+rCjNea8kvLuKcH8RGKs7n3GD/t31AF5FR/2n4qX4wWOFbhP4BMrY0KHEDrLzzINR52/5vUoZUe1D1sQNtLn2nGC+EaF/mW8HEvHQD/GYlvx2e+mwFFn4kdLcIaEnPcQTuoGAdX+c881Yr/9bmgfPH7iPjOEnu/rn4+xBvXHZ4ivfl+hTt+j3p9V7xaq9Ul+b1KN0QqRl+rj5rD8sPo53kc/UWcrcO/rf9BYVt2Ig7w3tz95/f6vYXz8R4SpziOptYrUnpfaR8N19hBm2wjPBJi+iDkVstL8qjd5qPeMkf6W9qe6ka2gPPU+uBr/WB6Of5SPKt+x591uiuF6UPOKhaE8Dqk6Mrp+1BGWJ2dMm/p9AHUeX40v1XtsqSsi+Oakbr7D/eOwkINtOrd/rBpvcn2M23VqzlgIvUaD9sOpkJVGc8qF+F7nL3Pbntp/NV41nmI/Vm1W+bFaP9k+h3XIsVJ9QLd+e/n62TwF5KX6HT6HceT6Gb4j2t9VP4xr2CwzhHS8SrWL1Jyrap+kYqvqkxolctB2WLbd7c8G0R/ftle3u1ic+rnRQ93PmU1UP8fzDTU+UP0W+u1ysOfcfRHJNHdfROgsP9fl3H0RL6e5+yL0p8nhZ2Xzd2xb/Z6/v1rvi7iWxjXd7ovgvtno74VxzfXrZ9OY7t8GNLe2v8/dFzGT0A5V3mdnW87dF9FJx+VAf/O8L+J+8PED1Lbm7ouYnfetcl/EgZIYaTI4Rqb2VdCvrhXjbzW34vmT2VidF4jpBshH+ucpTtQcP8kz34bV497PiBpPWFLrNwXl5Z6f5/Vd1a5yfcrKGvX6/QyfUnVcUJ66Dd7yuN5iUmd4eY6oztqrdyB4nqLegSgIM4TONYOYUnsNHneaPPKf7/3I/5v88f9Z5exXlTUKfI7l4jZm9B+lNlZzTiTbGO95q7UZpb+ql6tK9P8l6L9+gtanVLtbGMrbXaovTekyfS4jc70HY4/hWF6VNQW13oOxntur6s/V/Cm3P+c2qcZTReiM96l2x/4wEvTaHt/1bPS/AHXA7xKgbzZJdyw7z5WHhVwVa6yNRZr/Tu2q5h7FfDW/s6T6EO5fME5x/8JjLMzDuqzav1hZq/YvI6Icqi1z/6LOzfVxndW93Znvq19PYX/L9WHuE4cT8srO0ZgP55xFxjn652j8OQJ5ag2S46nRfx1i+xcotqv13tT+MusSgo5DqTWXg3CONXtt8WCcY1XrxD2OExrcx6I8VQ+LgrapOiPH88vUeFWNSVPx5GCMV1E2/oZCzrhJtS3k5X7y76FtLdgwu/wq1qbqLbVnlIp9qKuyPd913yRs/D6ekKP0Uuc1xxN6YUxGXpbdrQy5fZXTGHGe6qtSv1SYOscaU849Ori+wm1E/dJ61b6Nz6aqPr5b32Y+n+oXMP7xGolqY9j3/f+1hYFvU3UGAA==",
4215
- "debug_symbols": "tf3djmQ9buUP30sf+yBEUaTkWxkMDI/HM2ig0R607Rd4Yfje/7EpiWtlVadyZ0Q+J10/PV3FpS8ytiRu7f/60//+1//1n//3n/781//zb//+p3/8H//1p//1tz//5S9//r//9Jd/+5d//o8//9tfn//1v/70uP6nVPnTP9Z/eP5Z//SPdv2pf/pHvf5s609bf/qf/rFff/b155h/6mP9Wdafsv6s609df7b1p60/lz1d9nTZa8teW/basteWvbbstWWvLXtt2WvLXlv2bNmzZc+WPVv2bNmzZc+WPVv2bNmzZc+XPV/2fNnzZc+XPV/2fNnzZc+XPV/2+rLXl72+7PVlry97fdnry15f9vqy15e9seyNZW8se2PZG8veWPbGsjeWvbHsjae98viHP8njsaFskA1Pm6VeoBvahqfZYhc87Ur85b5hLCiPDWWDbHhalnKBbmgbbINv6BvGAnlsKBtkw7Ysl2W5oG2wDU/LpV/QN4wF9bIcUDbIhrpBN7QNtsE39A1jgW7Lui3rtnz5Ur265XKmCW2DbfANfcNYcLnUhLJBNmzLbVtu23Lbltu23Lblti3btmzbsm3Lti3btmzbsm3Lti3btnx5Wb2G4HKzCWWDbKgbdEPbYBt8Q9+wLfdtuW/LfVvu23Lflvu23Lflvi33bblvy2NbHtvy2JbHtjy25bEtj215bMtjWx7Lcn08NpQNsqFu0A1tg23wDX3Dtly25bItl225bMtlWy7bctmWy7ZctuWyLcu2LNuybMuyLcu2LNuybMuyLcu2fPlgbU+4fHBC2SAb6gbd0DbYBt/QN2zLui3rtnz5YO0X1A264fqFrBfYBt/QN4wFlw9OKBtkQ92gG7blti23bbmtuFHbihvVHhvKBtlQN+iGtsE2+IZt2bZl35YvH1S7QDbUDbqhbbANvqFvGAsuH5ywLfdtuW/Llw+qX9A22Abf0DeMBZcPTigbZEPdsC2PbXlsy5cPtscFfcOYoJcPNr2gbJANdYNuaBtsg2/oG8aCsi2Xbblsy2VbLtty2ZbLtly25bItl21ZtmXZlmVblm1ZtmXZlmVblm1ZtmXZluu2XLflui3Xbbluy3Vbrtty3Zbrtly3Zd2WdVvWbVm3Zd2WdVvWbVm3Zd2WdVtu23Lbltu23Lblti23bblty21bbtty25ZtW7Zt2bZl25ZtW7Zt2bZl25ZtW7Zt2bdl35Z9W/Zt2bdl35Z9W/Zt2bdl35b7tty35b4t9225b8t9W+7bct+W+7bct+WxLY9teWzLY1se2/LYlse2PLblsS2PZbltH2zbB9v2wRY+aBfohrbBNviGvmEsCB8MKBtkw7ZctuWyLZdtuWzLZVsu27Jsy7Ity7Ys27Jsy7Ity7Ys27Jsy7It1225bst1W67bct2W67Zct+W6LddtuW7Lui3rtqzbsm7Lui3rtqzbsm7Lui3rtty25bYtt225bcttW27bctuW27bctuW2Ldu2bNuybcu2Ldu2bNuybcu2Ldu2bNuyb8u+Lfu27Nuyb8u+Lfu27Nuyb8u+LfdtuW/LfVvu23Lflvu23Lflvi33bblvy2NbHtvy2JbHtjy25bEtj215bMtjWx7Lsj0eG8oG2VA36Ia2wTb4hr5hW94+aNsHbfugbR+07YO2fdC2D9r2Qds+aNsHbfugbR+07YO2fdC2D9r2Qds+aNsHbfugbR+08MFxQdkgG+oG3dA22Abf0DeMBbot67as27Juy7ot67as27Juy7ot67bctuW2LbdtuW3LbVu+fNAeF9gG3/C0bHLBWHD54ISyQTbUDbqhbbANvmFbtm3Zt2Xfln1b9m3Zt2Xfln1b9m3Zt2Xflvu23Lflvi33bblvy31b7tty35b7tty35bEtj215bMuXD1q9QDe0DZdlvcA39A2X5ees88sHJ5QNl+VxQd2gG56WvVxgG3xD3zAWXD44oWyQDXWDbtiWy7ZctuXLB10vGAsuH5xQNsiGukE3tA22wTdsy7It12358kFvF8iGukE3tA22wTf0DWPB5YMTtmXdlnVb1m1Zt2XdlnVb1m1Zt+W2LbdtuW3LbVtu23Lbltu23Lblti23bdm2ZduWbVu2bdm2ZduWbVu2bdm2ZduWfVv2bdm3Zd+WfVv2bdm3Zd+WfVv2bblvy31b7tty35b7tty35b4t9225b8t9Wx7b8tiWx7Y8tuWxLY9teWzLY1se2/JYlvvjsaFskA11g25oG2yDb+gbtuWyLZdtuWzLZVsu23LZlsu2XLblsi2XbVm2ZdmWZVuWbVm25fDBfoFt8A19w1gQPhhQNsiGukE3bMt1W67bct2W67as27Juy7ot67as27Juy7ot67as27Juy21bbtty25bbtty25bYtt225bcttW27bsm3Lti3btmzbsm3Lti3btmzbsm3Lti37tuzbsm/Lvi37tuzbsm/Lvi37tuzbct+W+7bct+W+LfdtuW/LfVvu23Lflvu2PLblsS2PbXlsy2NbHtvy2JbHtjy25bEsj8djQ9kgG+oG3dA22Abf0Ddsy2VbLtty2ZbLtly25bItl225bMtlWy7bsmzLsi3LtizbsmzL2wfH9sGxfXBsHxzbB8f2wbF9cGwfHNsHx/bBsX1wbB8c2wfH9sGxfXBsHxzbB8f2wbF9cGwfHNsHx/bBsX1wbB8c2wfH9sGxfXBsHxzbB8f2wbF9cGwfHNsHx/bBsX1wbB8c2wfH9sGxfXBsHxzbB8f2wbF9cGwfHNsHx/bBsX1wbB8c2wfH9sGxfXBsHxzbB8f2wbF9cGwfHNsHx/bBsX1wbB8c2wfH9sGxfXBsHxzbB8f2wRHnguUC2VA36Ia2wTb4hr5hTCiPywkXlSRJqkmXeQlqSZbkST1pbLrccVFJkqSalBolNUpqlNQoqVFSQ1JDUkNSQ1JDUkNSQ1JDUkNSQ1KjpkZNjZoaNTVqatTUqKlRU6OmRk0NTQ1NDU0NTQ1NDU0NTQ1NDU0NTY2WGi01Wmq01Gip0VKjpUZLjZYaLTUsNSw1LDXi/F6DNKklXRoe5Ek9aWyK0/xJJUmSapImtaTU8NTw1PDU6KnRU6OnRk+Nnho9NXpq9NToqdFTY6TGSI2RGiM1RmqM1BipMVJjpMbYGuXxSCpJklSTNKklWZIn9aTUKKlRUqOkRkmNkholNUpqlNQoqVFSQ1JDUkNSQ1JDUkNSQ1JDUkNSQ1KjpkZNjZoaNTVqatTUqKlRU6OmRk0NTQ1NDU0NTQ1NDU0NTQ1NDU0NTY2WGi01Wmq01Gip0VKjpUZLjZYaLTUsNSw1LDUsNSw1LDXSz0v6eUk/L+nnJf28pJ+X9POSfl7Sz0v6eUk/L+nnJf28pJ+X9POSfl7Sz0v6eUk/L+nnJf28pJ+X9POSfl7Sz0v6eUk/L+nnJf28pJ+X9POSfl7Sz0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+nlNP6/p5zX9vKaf1/Tzmn5e089r+nlNP6/p5zX9vKaf1/Tzmn5e089r+nlNP6/p5zX9vKaf1/Tzmn5e089r+nlNP6/p5zX9vKaf1/Tzmn4eKUd9BJUkSapJmtSSLMmTetLYpKmhqaGpoamhqaGpoamhqaGpoanRUqOlRkuNlhotNVpqtNRoqdFSo6WGpYalhqWGpYalhqWGpYalhqWGpYanhqeGp4anhqeGp4anhqeGp4anRk+Nnho9NXpq9NToqdFTo6dGT42eGiM1RmqM1BipMVJjpMZIjZEaIzXG1ojEpUUlSZJqkia1JEvypJ6UGiU1SmqU1CipUVKjpEZJjZIaJTVKakhqXH4+HkGSVJM0qSVZkif1pLHp8vNFqVFTo6ZGTY2aGjU1amrU1KipoamhqaGpoamhqaGpoamhqaGpoanRUqOlRkuNlhotNVpqtNRoqdFSo6WGpYalhqWGpYalhqWGpYalhqWGpYanhqeGp4anhqeGp4anhqeGp4anRk+Nnho9NXpq9NToqdFTo6dGT42eGiM1RmqM1BipMVJjpMbl50OCPKknXRrP45oSyVGLSpIk1SRNakmW5Ek9KTVKapTUKKlRUqOkRkmNkholNUpqlNSQ1JDUkNSQ1JDUkNSQ1JDUkNSQ1KipUVOjpkZNjZoaNTVqatTUqKlRU0NTQ1NDU0NTQ1NDU0NTQ1NDU0NTo6VGS42WGi01Wmq01Gip0VKjpUZLDUsNSw1LDUsNSw1LDUsNSw1LDUsNTw1PDU8NTw1PDU8NTw1PDU8NT42eGj01emr01Oip0VOjp0ZPjZ4aPTVGaozUGKkxUmOkxkiNkRojNUZqpJ9b+rmln1v6uaWfW/q5pZ9b+rmln1v6uaWfW/q5pZ9b+rmln1v6uaWfW/q5pZ9b+rmln1v6uaWfW/q5pZ9b+rmln1v6uaWfW/q5pZ9b+rmln1v6uaWfW/q5pZ9b+rmln1v6uaWfW/q5pZ9b+rmln1v6uaWfW/q5pZ9b+rmln1v6uaWfW/q5pZ9b+rmln1v6uaWfW/q5pZ9b+rmln1v6uaWfW/q5pZ9b+rmln1v6uaWfW/q5pZ9b+rmln1v6uaWfW/q5pZ9b+rmln1v6uaWfW/q5pZ9b+rmln1v6uaWfW/q5pZ9b+rmln1v6uaWfW/q5pZ9b+rmln1v6uaWfe/q5p597+rmnn3v6uaefe/q5p597+rmnn3v6uaefe/q5p597+rmnn3v6uaefe/q5p597+rmnn3v6uaefe/q5p597+rmnn3v6uaefe/q5p597+rmnn3v6uaefe/q5p597+rmnn3v6uaefe/q5p597+rmnn3v6uaefe/q5p597+rmnn3v6uaefe/q5p597+rmnn3v6uaefe/q5p597+rmnn3v6uaefe/q5p597+rmnn3v6uaefe/q5p597+rmnn3v6uaefe/q5p597+rmnn3v6uaefe/q5p597+rmnn3v6uaefe/q5p59HAtnoQTVJk1qSJXlSTxqLIpFsUUmSpJqkSZfGCLIkT+pJY1P4+aSSJEk1SZNSo6RGSY2SGiU1JDUkNSQ1JDUkNSQ1JDUkNSQ1JDVqatTUqKlRU6OmRk2Nmho1NWpq1NTQ1NDU0NTQ1NDU0NTQ1NDU0NTQ1Gip0VKjpUZLjZYaLTVaarTUaKnRUsNSw1LDUsNSw1LDUuPy8+cxb6ADO3BceF0cEClpGwtQgBWowAY0oAM7EGodah1qHWodah1qHWodah1qHWodagNqA2oDagNqA2oDagNqA2oDaiPVxuMBLEABVqACG9CADuxAqBWoFagVqBWoFagVqBWoFagVqBWoCdQEagI1gZpATaAmUBOoCdQEahVqFWoVahVqFWoVahVqFWoVahVqCjWFmkJNoaZQU6gp1BRqCjWFWoNag1qDWoNag1qDWoNag1qDWoOaQc2gZlAzqBnUDGoGNYOaQQ2xZCCWDMSSgVgyEEsGYslALBmIJQOxZCCWDMSSgVgyEEsGYslALBmIJQOxZCCWDMSSgVgyEEsGYslALBmIJQOxZCCWDMSSgVgyEEsGYsnIWCKPjCXyyFgij4wl8shYIo+MJfLIWCKPjCXyyFgij4wl8nhArUCtQK1ArUCtQK1ArUCtQK1ArUBNoCZQE6gJ1ARqAjWBmkBNoCZQq1CrUKtQq1CrUKtQq1CrUKtQq1BTqCnUFGoKNYWaQk2hplBTqCnUGtQa1BrUGtQa1BrUGtQa1BrUGtQMagY1g5pBzaBmUDOoGdQMagY1h5pDzaHmUHOoOdQcag41h5pDrUOtQ61DrUOtQ61DrUOtQ61DrUNtQG1AbUBtQG1AbUBtQG1AbUANsaQglhTEkoJYUhBLCmJJQSwpiCUFsaQglhTEkoJYUhBLCmJJQSwpiCUFsaQglhTEkoJYUhBLCmJJQSwpiCUFsaQglhTEkoJYUhBLCmJJQSwpiCUFsaQglhTEkoJYUhBLCmJJQSwpM5ZY4EicsWRiAQqwAhXYgAZ0INRmLJELZyyZWIACrEAFNqABHdiBUDOoGdQMagY1g5pBzaBmUDOoGdQcag41h5pDzaHmUHOoOdQcag61DrUOtQ61DrUOtQ61DrUOtQ61DrUBtQG1AbUBtQG1AbUBtQG1AbWRaus6sYmXWpn3dQmwAhXYgAZ0YAeOxIglC6FWoFagFrGkeGADWmK4Xg8K3cDwsbizLNLzNgqwAhXYgAZ0YAeOxAa1BrUGtQa1BrUGtQa1BrUGtQY1g5pBzaBmUDOoGdQMagY1g5pBzaHmUHOoOdQcag41h5pDzaHmUOtQ61DrUOtQ61DrUOtQ61DrUOtQG1AbUBtQCx+TGqjABjSgAzsw1PQfrjvqHsACFGAFKrABDejADoRa+Ji0wAIMNQusQAU2oAEd2IGhNi6M3+uFBXip1RJYgQq81GrUN36vFzqwA0di/F4vvNSui78kMv82VqACQy1qFkFjoSdG1Ig73iLZ7/lLHXhZ0PlfLwsaPRnxYaEDO3AkRnxYGHaj+yI+LKxABTagAR3YgSMx4sNCqEV8uG7Tkkj223iptWhmxIeFBnRgB47EiA8tRjPiw0IBVqACG9CADuzAkdihFvGhxbBEfFgYajVQgQ1owFCLfoj4sHAkRnxYWIACDLWYXBEfFjagAR3YgWNjZARuLEABVmCojcAGNGCotcAOHInh8wsvC9fdIRIZfuW68EIixe9qZGT4les6C4kUv40CvOplUa/w7YUNeNXLQyB8e+Gl5RI4EsO3F15q1xUSEtl+GytQgQ1owLAbjYzffo/6xm+/R9vCtxc2oAGjvtGl4dsLR2L49sICvNR6tCJ8e6ECL7XrDUyJzL6NDuzAkRi+vfBS6zFU4dsLK9CAYSG6JPx1YViIsQh/XViBUd/os/DXhQaM+sYYh78uDLXoh/DXhZfaiKqHv47oh/DXEZUMfx3R6+GvCw3owA4cieGvCwsw1KJm4a8jqnP56/OxN7BdGNW5PFNi8RYpfBMjh29jAQqwAhUYxjRwJM77dScWoAArUIFh7Or1SMB7PmQHCrACFRht64EGdGAHjsS4UHdhAQqwAhUItQq1CrUKtQo1hZpCTaGmUFOoKdQUago1hZpCrUGtQa2FsRFoQAd24EiMez4XFqAAK1CBUDOoGdQMagY1h5pDzaHmUHOoOdQcag41h5pDrUOtQ+1yJ4lLpCNz7rlsC7zUYkEWeXISy7BIZ5N4lI58to0jMZwhbneOlDaJp9TIadtYgQpsQAM6sANHYlxAvRBqArXwoXi4tXkR9cQGNKADO3Akhg8tLEABQq1CrUItvEWuTo0kNolrpyOLTdYlzhWowAY0oAM7cCSGXywsQKg1qDWoNag1qDWoNag1qIXjxCogEts2CrACFdiABnRgB45Eh5pDzaEWjhOP/pHltrEBw+4V1yOBTWL5ERlsUmPu9ApUYAMa0IEdOBLHA1iAUBtQG1CLX7Iac2cY0IEdODZGTtvGAhRgBSqwAQ3owA6EWoFa+HwsziK/bWMFKrABDRh2r8AU2WsSS7ZIX5PrZmaJ/LWNDWhAB3bgSAw/XliAAoRahVqFWvwWxgoyktk2duBIjN/ChQUYdltgWIjuCz9eOBLDj2N5F+lqGwVYgQpsQAM6sANHokHNoBZ+rDEs4ccLFXipxUIustc2XmqxkIv8NYl1WiSwSSxVIoNtYwFearEiiyS2jZdaLJcijU1iYRR5bM8fhUAHduBIjB/AhQV42bWoZPhxLJciT+0Z4AJHYvjxwrAQIxR+vLACFdiAYfdqUCSiSayoIhNNrnsEJVLRNiqwAQ3owA4cieGbCy+169ZAiZy0jRV4qcVKLdLSNhrQgZea18CRGL/HC0OtBQqwAkNNAxvQgA7swJEYfhwrwEhT2yjAUIuuDj9e2IAGHInxe+wxLPF7vPCyECu1SETbaMCrvrEYjFy0jSMx/HhhAQqwAhXYgAaEWoNag5pBzaBmUDOoGdQMagY1g5pBzaDmUHOoOdTCj2PxGtlpGxsw1GJqhB8v7MBQixEKP154qV1vcElkp22sQAU24KUWi9fITtt4qcU6NrLTJNaxkZ323C4OLEABhlpMufD5hQ0YajGN4rd7YQeOjZGdtrEAw+4I9OsrHo/AfmEJHInxsYmFBSgX1sAKVGADGjDUNDDUPDDUojrxAYo42omMs42X3VhJRBZZja/VRL7Yc3M6sAAFeNWstEAFNqABHdiBIzE+MxHrlsgX2yhAzZrFl14WGvCSiIVNJIltHInxzZc4GIgksY0CvBoUa5FIEtt4qcW2fiSJbXRgqFngSIzvwCwsQAFWoAIb0IAOhJpBzaHmUHOoOdQcag41h5pDzaHmUOtQ61Cb34yJKTe/GjNRgaEWE3F+O2aiAy+1WKFEktjC+IbMwgK81GL5EElidX0d5lKL1UEkiW004KUWz+uRJLZxLKyRJLaxAAVYgQpsQAM6sAOhFu5/LWxqJIltFGAFKrABDejADhyJAjWBWnyD5loS1EgS26jABjSgAztwJEYAWViAoeaBFahAT4ygcK0vaiR+1Wt9USPxa2MFKvCqr5ZAAzqwA0dixIeFBSjAClQg1BrUGtQa1BrUDGoRH66lRo3Er42hpoEKbMBQi2kU8WFhB47EiA8LC1CAFRhqMVgRHxYa0IGh1gNHYsSHhQUowEutxeyL+LCwAQ3owA681Fr0Q8SHhQUowApUYAMa0IEdmGqR+FWvlU+NxK+NAgw1D7zUrrOdGolfGy+1azVTI/Fr46V2LWxqJH4tjPiwsAAFWIEKbEADOhBqBWoCNYGaQE2gJlATqAnUBGoCNYFahVqFWoVahVqFWoVahVqFWoVahZpCTaGmUFOoKdQUago1hZpCTaEWseRam9ZI/NoowAoMtZg7EUsWGtCBHTgSI5YsLEABViDUDGoGNYOaQc2g5lBzqDnUImpcC+gayVzVwhkiPkyM+HCtpWskc20UYAUqsAENGHavH4lI0FoDMNC/4fMLG9CAV4s9fDN8fuHYGAlaG3PuRILWxgpUYAMa0IF910GmzweWB7AAJesQPr9QgVCDzwt8XuDzAp8X+LzA50VypopUoAIb0LIO4sAOhBp8XuDzAp8X+LzA5wU+L/B5mT4fdajoyYqeVPSkoifD569dlDq/IrkwejLshs8vNKADo20tcCSGzy8sQAFWoAIbMNQs0IE5wefHJa+Njzo/L7lQgBWIqRGOvhCDZRgsw2AZpr1j2jsGyzFYjsFyDJZjsByD5ZiIjonomBrh/tf2TZ0fnVyowGhF9EO4f4+axePBwg4cifF4sLAABViBCszH0PnxyYVj4/wA5bVfUucnKBeGXQ2sQAVerbg2Ser8GOVCB0YrLHAkRlBYWIACrEAFNqABHQi1uSMQrQj3X1iBYbcHNqABL7vX7kydn6hcOBLD/Uf0Q7j/QgFeaiP6Idx/YQMa0IEdOBLD/RcWoAChplBTqCnUFGoKNYVag1qDWoNag1qDWoNag1qDWvzkjxihiAQTIxIsDLUYgIgEC0MtZmpEgoUN+FTTa2uqRp7Zxn5hDPcVCRZekUAfMULx4cuFAqwXRnXi85cLG9CADuyJ8dnLR9QsPnP5iFbEhy6vvas6P3W50IEdeNW3xDyLT14uLEABVuClVqKr4+OXCw3owA4cGyN3TK9D+Rq5YxsFWIEKbEADOrADR2KBWgk1DxRgBYbaCLzUrsP+GrfLbbzUrt2vGtlnGy+1a3OrRv7ZxgIUYAUqsAEN6MAOhFqFWoVahVqFWoVahVqFWoVahVqFmkJNoaZQU6gp1BRqCjWFmkJNodag1qDWoNag1qDWoNagFh+/lZh9rQNHoj2AoRbzwQRYgQpsQAM6sANHYkSC+C5u5KqpxJQLn194Wbg27mrkqm0cifH524UFKMAKvOxeW3818s9Wlwy0OHx+oQAr8GpxfEE58s82GtCBGM2RapGVtrEABViBCmxA29WJC+Y2dmCOZqStbYzeqYECjN4Ju+HzCxvQgNE2D+zAkRg+v7AABViBCgy1HmjAvgcrUtw0tvMixW1jAQqw7gGIFLeNDWhAB3bgSISjNzh6g6M3OHqDozc4eoOjNzh6g6NHMpvG9mNcNrexAi+7sd8X2W4am3yR7bbRgR04EsOlFxagACsw7MbUCOdd2IEjMX7cY0sx8to2CrAC86e5zR/3iQZ0YAeOxHD0hQUowDjaCrV4zF/owGiFBY7EcP+F0YqYRuH+CyswxiLcKdx/oQGvVsS3ruO6uY1jY1w4F8drNW6c2yjAClRgAxrQgR04EgvUCtQK1ArUCtQK1ArUCtQK1ArUBGoCNYGaQC3c/0ofqZGot9GAoTYCOzB68pp9kai3sQCvcYsN10jU26jABjSgAztwJEYkiH3aSOrbKMAKDLVoZkSChQZ0YAeGWjQzfvIXFuClFlvBkdS3UYENaEAHduBIjPiwsAChZlAzqBnUDGoGNYOaQc2h5lBzqEXUiL3tSOrb2IAGdGAHjsSIGgtDLUYzosbCCgw1CWxAA4aaBXbgSIyosRB/d+Dvjvy7kb63sQAFGDXrgQpswKjZCHRgB47EeBBYWIACrEAFNiDUCtTiQSA2wiKpb2E8CCwsQAFWoAIb0IAOhJpArUKtQi0iQWxCRVKfxg5cJPVtdGAHht0rlkRS38YCFGDEs5CIbYCFDWhAB3bgSIxtgIXROxqowAY0oAN7Yvhx7A1G+p7GhmCk72ls8kX63kYHhoWYXOGxE8NjY/8s0vc2CvCqb+x+RfrexgY0oAM7cCSGx/YYwvDYhQKsQAU2oK18rhpJfasf4nd+IXonPDZ24CKpb6MCG9CA0YqYBOHdC8fGuIhuY7SiBQqwAkPNAxvQgKHWAztwJIZ3xzZhJADq9e5OjQRAvTKhaiQAamylRQLgxga87F5JUTVS/RaGHy8swLAbbZsea4EGdGBPnG46sa70yDpz9hY2oK2kyRoXzG3swJEYubcLC1CAFajAq5KxeRiZfBtHYvwIL4zGx2DFj/DCClRgtCJ6JzL5FjqwA0diZPItLEABVmBk+oZa5OwtjFZE/4bzTgznXViA0Yro6nDehQpsQAM6cGcx15mzNzFy9hYWoAArUIENaEBPDOeN/cnIztsowAqMVoQHhPMuNKADoxXhIpGdFziz8xYWoAArUIEN+LTbHhNH4uWmGwtQgBW4356oozSgAR3YgSMx8nRjHRs5exsFWIEKbMBoRRirUd/4r1WAFRgWNLABDejADhyJ4ccLC1CAFQg1hZpCTaGmUFOoNag1qF1+3K6cyBrpexsN6MDonfnPRqI9gAUowApUYAOGWgt0YAeORA81CyxAAVag5mB5AxrQgR04EvsDiPnQMR962PVAAzow7PbAsHt5YSTqbSxAAV6tKOEXl3dvbEADXmolRujy7hZb7ZGoF6iRqLexAAVYgQpsQAM6sANDrV8YPr+wAAVYgQpsQAM68FKTEnipXRvwGol6GwtQgBWowAY0oAM7EGo11CywAAVYgQpsQAM6sANDbVyoD2ABCrACFdiABrzUriinkdS3cSRe8WFjAQqwAhV4RaNZ9fj1X+jADhyJ8eu/MOxG/0YkuAKTRqLexrAQkyBy8ydGbv7CAhRgBSqwAQ0Y/RBTOXy+Rs3C5xcKsAIV2IAGjFZ4YAeOxIgEC0MtqhORYGEFKrABDejAUIuRj0hw/UprpORtLEABVqAC2x6LSMnb6MAOHIkRCRYWoAAr0NYtADpvXVvYgdGKa8pF8t3GaEVYCJ9fWIHRihbYgAa8WnG9DaaRfLdxJIbPLyzAS61F74TPL1RgAxrQgR04EsO7rw1BnTep9WhFeGyLFofHTgyPXXjVrEVHhccujJqFhfDYhQ0YNYt+iN/5hR04EuN3fmEBCjDULFCBDWhAB3bgyBbHL3qLro5f9IUKbMCw2wMd2IEjMW568FCLmx4WCrACFdiABvTE8ONr11LjHrSNAqxABV6tsBis8OOFDuzAsTHS7DZeatd2nkaa3cYKVGADGtCBHTgSw48XQi38+Epj1Eiz26jAULNAAzow1HpgqF1dEml27drR0kiz2yjAClRgA152PSoZfjwx/HhhAQqwJsYP67VDpJHttjEkor7hkNf2jUZe28JwyIUFKMCaGI7To77hOAsV2IAGdGAHjsR4QF5YgFBzqDnUHGoONYda/Cxee0EaSWctonIknbUewx0/gAsNGBZiuOMHcOFIDMdZWIACDLsxAOEMPQYgnOHaydFIL9tYgJeFay9II71sowIb0IAOvNSuDSCN9LKF4QzXXpBGetlGAYZdDQwLLXAkxgS/Nqw0EsnatUGhkUi2sQIVGHY90IAODLUeOBJj2i+EWoVahVqFWvx8LbQ9FpFItrEDczQjkWxjAeoewkgOm0MYyWFrsBSj2TCa4UNzLBpGs2E0G0azYTQbRjN+1Oa4NYxm/KjNwTKMpmE0wwvnEIa/zXEzjOb0txjC8LfZUY7+dfSvo3/D3+ZgOUbTMZrhb3OwHKPpGM0OtQ61DrUOtZ6jGRlWdm2zaGRYbVRgu1ACDejADhyJlzNsLEABVmCoRXVKAxrQgR04Ei/HsRL1vRxnowAr8FK70tY0Mqw2GvBSK1Gzy3E2jsQaajWwAAVYgaGmgWG3BXbgSNQHMOx6YNjtgWF3BCqwAQ14qUm0+HKnjSPxcqeNl5pE2y4fMon6Xj5kEtW5fMgkqnP5kNX5zxzYgSPx8qGNBSjAS61Gr1+etfFSizVkJFBtdGAHjkR/AAtQgBWoQKg51BxqDjWHWodah1qHWodah1oPtZga3YAO7MCROB7AAgy7MVijAQ3owA4cGyMFa2MBCrACFdiABnRgB0KtQK1ArUCtQK1ArUCtQK1ArUCtQE2gJlATqAnUBGoCNYGaQE2gJlCrUKtQq1CrUKtQq1CrUKtQq1CrUFOoKdQUago1hZpCTaGmUFOoKdQa1BrUGtQa1BrUGtQa1BrUGtQa1AxqBjWDmkHNoGZQM6gZ1AxqBjWHmkPNoeZQc6g51BxqDjWHmkOtQ61DrUOtQ61DrUOtQ61DrUOtQ21AbUBtQG1ADbGkIZY0xJKGWNIQSxpiiSGWGGKJIZYYYokhlhhiiSGWGGKJzVhigSNxxpKJsiOizQAyUYENaEAHdmAGXZMHsAChJlATqAnUBGoCNYGaQK1CrUKtQq1CrUKtQq1CrUKtQq1CTaGmUFOoKdQUago1hZpCTaGmUGtQa1BrUGtQa1BrUGtQa1BrUGtQM6gZ1AxqBjWDmkHNoGZQM6gZ1BxqDjWHmkPNoeZQc6g51BxqDrUOtQ61DrUOtQ41PHYYHjsMjx2Gxw7DY4fhscPw2GEDagNqA2oDagNqA2oDaiPV/PEAFqAAK1CBDWhAB3Yg1ArUCtQQSxyxxBFLHLHEEUscscRnLBmBI3HGkomX2pXFrJEGtrECL7XYX480sI0GdGAHjsSIJbHNHWlgGwVYgQpsQAM6sANHokJNoaZQi1ii0TsRSxY2oAEd2IGhdkX7SA7bWICh5oEVqMAGDLvXiiqSw5aFiA8LK/CyEBvwkTK20YBXfWNbPlLGNo7EiA8LL7XYlo+UsY0VqMCwG40Pn49t+UgD2yjAqG/8s/D5hQ1oQAd24EgMn499+0gO2yjAClRgAxrQgR04NkZy2MYCFGAFKrABDejAULuGMNLALM4DIg1sYwUqsAEN6MAOHInh3QuhJlATqAnUBGoCNYGaQE2gVqFWoVahVqFWoVahVqFWoVahVqGmUFOoKdQUago1hZpCTaGmUFOoNag1qDWoNag1qDWoNag1qDWoNagZ1AxqBjWDmkHNoGZQM6gZ1AxqDjWHmkPNoeZQc6g51BxqDjWHWodah1qHWodah1qHWodah1qHWofagNqA2oDagNqA2oDagNqA2oDaSLXxeAALUIAVqMAGNKADOxBqBWqIJQOxZCCWDMSSgVgyEEsGYslALBkzllw/SWPGkokFKMAKVGADGtCBHXipXW8CaNxQt7EAQ20EVqACG9CADuzAkThjycQChJpCLWJJnGRGXttGA47EiA/XiwkaF9BtDAvRvxEfFhrQgR04EiM+xNFhZLBtFGAFXmoewhEfFhrwUvOob8SHhSMx4kMcM0YG20YBVmCotcBQi/pGJIhzyMhVWxiRYGEBXnbjxDGumrM4zIur5ixO8CKDzeLMPTLYNjqwAy+1ONeLDLaNBSjAUIv6hvvHmU+krVkcnETamsVBT6StWZy3RNpaYIu0tY0FKMAKVOCldh3TtEhb29jXNGqRq7YwfH5hAQqwAhXYgAZ0INQK1ARqAjWBWvj8dRLUIldtYwNGg3qgAztwJIbPLyxAAVagAhsQahVql8/7dWrUIldt4eXzGwtQgBWowAY0oAOhplBrUGtQi/hwpTm3x3xSsEADOrADR+J8UphYgAKsQAVCzaBmUDOoGdQcag41h5pDzaHmUHOoOdQcag61DrUOtQ61DrUOtQ61DrUOtQ61DrUBtQG1AbUBtQG1AbUBtQG1AbWRauXxABagACtQgQ1oQAd2INQK1ArUCtQK1ArUCtQK1ArUCtQK1ARqAjWBmkBNoCZQE6gJ1ARqArUKtQq1CrUKtQq1CrUKtQq1CrUKNYWaQk2hplBTqCnUFGoKNYWaQq1BrUGtQa1BrUENsaQglhTEkoJYUhBLCmJJQSwpiCUFsaQglhTEkoJYUhBLCmJJQSwpiCUFsaQglhTEkoJYUhBLCmJJQSwpiCUFsaQglhTEkoJYUhBLCmJJQSwpiCUFsaQglhTEkoJYUhBLCmJJQSwpiCUFsaQglhTEkoJYUhBLBLFEEEsEsUQQSwSxRBBLBLFEEEsEsUQQSwSxRBBLBLFEEEsEsUQQSwSxRBBLBLFEEEsEsUQQSwSxRBBLBLFEEEsEsUQQSwSxRBBLBLFEEEsEsUQQSwSxRBBLBLFEEEsEsUQQSwSxRBBLBLFEEEsEsUQQSwSxRBBLBLFEEEsEsUQQSwSxRBBLBLFEEEsEsSSusPPrtaMW31LdOBLtASxAAVagAhvQgFAzqBnUHGoONYeaQ82h5lBzqOUOZ5MZSyaGmlzYH8ACFGAFKrABQ00DHdiBoXatAyLdcGMBhlrUbFSgAmPcwtiMJRMd2IFjY308gAUowApUYOze9sAOjFZcEyaSEDcWoAArUIENGH0WdosDOzDUrofpSFjcWICh5oEVqMDYmQ61eaox0YEdOBLrA1iAAqxABV6tuHK/WqQmbhyJsUK5cr9apCZuFODViiv3q0XC4sarz64srxZ33G10YKjFuMUKZWKsUBYWoAArUIGh1gIN6MAOHIkRHxaWlaXYZhpjj7GwnW7Y4ja7jQ7swJE4kxsnFqCsfMS2khsnKrABbeV7tpncuLADR+JMMZ5YgAKsQAVi5DtGvmPkB0Z+YOQHRn5g5AdGfmDkB0Z+YOQHRn7kyMcddxsLUIAVqMAc+cjA3OjADsyRjwzMjTnykWs5R15LjnzkWm50YAfmyEeu5cYCzJFXqUAFNmCOfORabuzAHPnItdxYgAKsQAVG71hgB47E6fMTYyyiFdPnJ1agAiPlvAYa0IEdOBJn+v/EAhRgBcYYRyumd0/swJE4vXtiAQqwAhXYgFAzqBnUDGrx63+libZIsNwowApUYANeahK9fvn8xg4cifHrL9Hr8eu/UIChNgIvtRoS8eu/0IAO7MCRGJFgYQEK8FKrMUIRCRaGWrhpRIKFDuzAULuqHmmXGwtQgBWowAY0YKj1wA4Mtat3Iu1yYwEKsAIviSuJoEWu5UYHduBIjAeB66i+Ra7lRgFWoAIbMNQ00IEdOBLrA1iAAqxABTYg1CJUXG/8tci13DgSI1TEo0TkWm4UYKhFr0eo0OjJeDxo0TvxeLDQgR04EuPxYGG9rsEJ0qSWZEme1DeFB19ZBy2SHReGBy8s1yelgiSpJmlSS7KksHi5RaQuejy5R+rinHtx4fSklnRVN+ZrXEM3qSeNTXHV9KSSFCIxWuGGC6++bjFE4YYLDRjVvIYoshD9OmprkYW48arn/P/DQA80oAM7cCTG1+YmlSRJqkma1JL67sTILpydGNmFfh2Atcgu3Hg19boSrEV24carpteBXbN5zUxQTxqb5nUzQSVJksJiVCQcIE4cIlcwpmGkCi4qSde/jqrFZW+TNKklWZInhYgGjsSY99frgS1SBDcKMKoZoxU/hhaVjx/DiXF3W3Rt/BbOjonfwoUVqMAwO/+ZAR3Ys8PDkyaGJy2EmkPNoeZQc6g51BxqDjWHWodah1qHWodah1r8Fi60PdU7JnXHpO6Y1PFTuLBsjIw8v+4Qa5GRt7ECL2eSoJZkSZ7Uk8amuJxxUkmSpJqUGiU1SmqU1CipEb9RHhi/UQsLMBqjgRV4deJ1rtsiBW+jAR3YgSMxfqMWhpoHCrACQ60FNqABQy3GIVx04UiMa9rjr8Yt7ZMkqSZpUksKi5drRkKd9xjO8Lwe9Y8F6UIFNuBV03h6jTvYNnbgSIxH1oVXVSeFWPR8eOlCBYaYBRrQgSEWfRFeOjG8tEfTwksXCvCKXlGFuPBpUkuyJE/qm8ITR3RW+NyIvgifGzG14vlzoQM78KppnE1H1t3GAhRgBV5VjVbHpU6TLOmqagzsvHY1aCyal7FNKkmSFCITFdiAPTEeJa+XCFuk1W28OlSDNKklRY/0QAd24LOiPc5sI6duY7mwBAqwXiiBemENbBeG2uWuPXacIqduYweOxPoAFqAAKzDUor411EbgpRbbCpFT12MDIbLneuwaRPbcRgFWoAIb0BJbGItmtgIUYAUqsAEt0cJYdJTFP4tRNQU2oAGvtW4MdWwMTRqbYltoUkmSpJqkSS3JklLDU8NTo6dGT42eGj01emr01Oip0VOjp0ZPjZEaIzVGaozUiPsYog/jDfRJY9GYl6oElSRJqkma1JIsyZN6UmqU1CipUVKjpEZJjZIaJTVKapTUKKkhqSGpIakhqRGOESv9SBDrsW0QCWL9uiWpRSpYl/i7Gnh1Ytw/trEAr2kdj8pjvtgdpEktyZI8qSeNTfON7qCSJEmpYalxzfUeOwyRm9VjaTVzs6KRcYg6qSZpUkuyJE/qSWNTHJ5OSo2eGj01emr01Oip0VOjp8Z8p+Oi+UpHUEmKLfSgmqRJVy9cb+ZaJF7168HKIvGqX7/eFolXGytQgQ1oQAd24EgsDyDUCtQK1EqoaWADGtCBHTgS4/dmYQEKsAKhJlATqAnUBGoCtZl3GVSSJKkmaVJLCovtwvhNqfFf4zxzBNUkTYpMuyBL8qSeNDbFOeakaPjEaGJYbA7swKuJ156QRcrUxgIUYAUqsAEN6MAOhJpDzUMtZqkLsAJDLcbBGzDUols91KJbPdSi8T4S+wN4qbUQvnx146XWwmkub+0thOPhcP5HS/KknjQ2zROKoLAYk/162OstKh3O2aKm1y/QxrExEqD6td1hkQC1UYAVqMCwezUwkpr6FRAtkpr6tQ61SGraWIEKbEADOrADR2K44bVmtUhq2ijAUJNABTagAUOtBnbgSJw7iUElSZJiXzRIk1qSJXlST4oF9UWxfzipJEV7QiQeABcqsAF7Yvw8WliIn8eFYSFGO576FjZgLJmCPKknjU1zbRZUkiSpJmlSS0oNSw1LDUsNTw1PDU8NTw1PDU8NTw1PDU8NT42eGj01wjct5nb45kIFRn/FNO8GdOA1DuGLkYK08HLQPqfL9YO6UYAVqMBLbc6F8OaFl5rHmIU3e9QsvDlaESlIGwsw1EZgBSownsaCLMmTetLYFE4/6bJ47QlYJBT19V+vf31d+mSRULRxJIYfL7xqeq3jLRKKNlagAhswnhuDoluCQssCQyvaH4u3hU+rIyp7ueeI1l+uWB5h6fLFjQUYtYq/G964UIENaEAHduBVrxF248F2YQHWXbHLWxe1JLuqFX18OevGDgz713SJ5J+NBXi1ZkR3xS/swqs1I3oufmEXGjDUamAHjkR/AAtQgBWowAY0INQcag61DrUOtQ61DrUOtQ61DrUOtQ61DrUBtfDiEZMpvHhhBUZPxmCFFy80oF9zMCbh5cUbx8ZI/tlYLiyBcqEERtssUIENeE3uqG+kBG3swJFYHsACFGAFKrABoVagVqBWoiev2RcpQRsLUIAVqMAGNKADOxBqFWo12qaBAqxABTagAR3YgSNRH8BQC2EVYAUaMCxcXhjJP+PaOrJI/tkowAqM+o7ABjSgAztwJNoDWIACrECoGdQMagY1g5pB7YoPo8SsvuLDxkutxKy+4sNGBV5qJabRFR82OrADR2J/AAtQgKEWg9UV2IAGDLXwrN6BI3E8gAUYatH4UYEKbEADOvBSk+ioiA+BkSi0sQAFWIEKbEADOrADQ+2KO5EotLEAQ60GhpoGKjDUWqABQ80CO3AkygNYgAKsQAU2oAGhJlATqFWoVahVqFWoVahVqFWoVahVqFWoKdQUago1hZpCTaGmUFOoKdQUag1qDWoNag1qDWoNag1qDWoNahFLrmwbi1SjjQUowCuul4kKbEADOrADR2I8aywswGhFD4z6jsAOvOpbY4JHfFhYgAKsQAU24GU39r0iJWh1yUCLw+cXKrABr/6N7bJICdrYgWNje+RotkcBCrACFdiABvRdhzZ9fmKOZisPYMk6hM8vrECoFagVqMHnG3y+wecbfL5Jzp0mAqxABbasgxjQgVCDzzf4fIPPN/h8g883+HyDz7fp81GHip6s6MmKnlT0ZPh8bEdGdtDG6EkNVGADGjDaNo114EgMn19YgAKsQAWGWg80YE7wuH5txA5eXL+2sQAFiKkRDw0LMViGwTIMlnUgpr1jsByD5Rgsx2A5BssxWI6J6JiIjqkR7h87g5GttLECL7sa/RDuH5uEkbC00YEdOBLj8WBhAQqwAvPBsM2FwsQODLvXfIgr1TaGXQsUYAVGKzywAQ0YreiBHTgSIygsLEABVqACG9CAUAv3fwSVJEmKAQ7SpJZ0WYx91Mhx2tiBV/1jdzXSnDYW4KXUgmqSJrUkS/KknjQ2hcNPKkmpoamhqaGpoamhqaGpoanRUqOlRkuNlhotNVpqtNSI3/TYMY6MqY0jMVy9xd8NV18YQjHpwtUXKjC0Yk6Fqy8MtRHYgZda7OxGytTGArzUYpqEp0/SpJZkSb4pfuNjVzgSoEZs+kYC1Ijt3UiA2mhAB141jV3UyIBaGO68sAAFGGpRh/jlX9iABnRgB4ba1UVx7dnGAhRgBSqwAQ3owA6EWjj5lbFlkWu1UYCX2pUbZZFuNWI7O/KtNl5qsYsZGVcbL7XYxYycq4Xh+gsLUIAVqMAGNKADoSZQq1CrUKtQq1CrUKtQq1CrUKtQq1BTqCnUFGoKNYWaQk2hplBTqCnUGtQa1BrUGtQa1BrUIjDE5nJkaW3swJFo8fxdAgtQgBWowAY0oAN7YsSA2OCO3KsRW9mRfLUx6huTNlx+YQeOxIgECwtQgBFIYoJ39G9Hi8PnFxagACM8RdXD5xc2oAExmgNqI0cz0rA2FqAAK1CBbVcnrj3b6MAOzLbFNzFHbKVH1tbGiLw1sAIV2IDRtmnMgR04EsPnFxagACsw1DywAX0PVmRrjdjaj2ytheHoCwtQ9gBEttZGBTagAR3YgRgsOHqHo3c4eoejdzh6h6N3OHqHo0c614hDg0jn2ijAOCmIfphHBVGzeVYw0YAO7MCRGD/2CwtQgGE3pkb8rC90YAeG3Zga8bO+sAAFmD/Nkfa1sQEN6MAOHInzJ39iAeo6KopUr0WWFKf5QT1pbArHjyOQyPXaKMBIfwjSpJYUXRXTNrx+YQeOdXg15uFdUEmSpJqkSS3JkjypJ6VGSY2SGiU1SmqU1CipUVKjpEZJjZIakhqSGpIa4d3xfBbXk21sQNtneHE92cbY349DkTE3+CfPHf7FcaAQpyVxRVlyJVbiRmzETtyJp+41acY8KVxciIV46mqwEjdiI3biqduCB7g9iOMoKkiSapImtSRL8qSeNDbNk8Og1LDUsNSw1LDUsNSw1LDUsNTw1PDUmKeFcYY15nHhYiVuxEbsxJ14gOepYZxHjHlsuFiIp25M1nlyuLgRz1PYmBXz8HBxB49CfGXTh/UrHiya/y5GcnTisdkjoS65EAtx1Pc6L/DHPA1c3IiNOHSvbX6PxLrkAS7zHLwEF2IhDt0rndMjvS65ERvx1K3BUzfqP48Br70Yf8xzwMWVWImn/R487Ue75mFgjbrNaFFDd0aLyTNaLC7E89w46jajxWIlbsTz7DjqPyNEjbrNCHFtqvljRogadZsRQkNrRojFlViJG7ERO3HoatRnRojJLeedx8VmyZVYiRuxEU+taOPML1g8wLEOeGi03QqxEFdiJW7ERuzEnXiAnXSddGf80JgbM34sVuJGbMRO3IkHeMaPxYWYdDvpdtLtpDvjh8Y8mWkGGvNk5hksLsRCPA/Iw0+HEjdiI/aVleMzBXDh2DhTABcWoAArUIHz8H1yJx7gGUcWF2IhnvWW4GmnBk87evHKGphciKedFlyJZ79YcCM24ll/D+7EA7zyByYXYiGuxFO3BzdiI3biTjzA8VqIRVNmiJjdM0PEYuq2GSKuHTUvM0Qs7sQDPB8iFkezrs02LzNcLK7ESjyzTEJ3hovFThy6FkM0w8XkGS4WT91o4wwXiyvx1I1pMsOFxdDNcGHR5TNcWHTbDBeLB3iGBYv2zrCwWIkbcdj3aO90/zklp/svLsRCrMQ7S9ZnduDCkTh27qzP7MCFAqxABTagAR3YN8p8bLiSEV3mY8PiSqzE0Q/XBp/LfGxY7MSdOFpzDelMClxYgAKsQAU2oAE9cabe98ACnI2pwZVYiRvxbMy06MSdeICn7y8uxJHyH30bL30tVGADGtCBHTgSw+cXFuBsTQtuxEbsxLM1FjzA0+UXF+JozcQKVGADGtCBHTgSp0tf+3cu06UXK3EjNmIn7vMtFJf5TZWL5idVgkqSJNWk9Y6KR5LhIkvypJ40Nk2X9php85fbYzzmL/diJ45eCI8I/544HsACFGAFKrABDehAqI1Uq/n6jddHAQqwAhXYgDF7rq01r/N3fPL8HV9ciKOX4nmgzvXAYiVuxEbsxJ14gOfvfo+6zd/9xUJciaduDW7ERuzEPUdwpQ1OXr4/uRALcSVW4kZsxLNd1+yqc22wuBDPdrXg2S4LVuJGbMSzXR7ciQd4RoHFoTtiHOcP/4g+nD/8i5W4ERuxE3fiAZ4//IsLMenOKDGi7TNKLG7ERuzEnXiA5zphcSGeuj04jioe0Q/xQLC5ERuxE3fiAY4Hhc2FWIhJt0/dmJO9ERuxE3fiAR4P4kIsxFM35sxQ4kZsxE7ciUdyZCQmT90RLMSVWIkbsRE7cSe+YvTVa+sjskElSZJqkibNo6ZgmWdYJbgQR7ycf6UCFdiABnRgB47EeAth4Twdk+B5PFaDG7ERO3EnHmB9EM/maLAQV2Ilnrot2IiduBMPcHsQF+KpG1OiTV0PVuJGbMRO3IkHhslo+IyGbx1CTq7EStyIjdjB8SJSRIt5m9lCAU7jMSdn3FgcxmUaMWInjkbFvpjOuDF5xo3F0SiJAZpxY3ElVuJGPHWj02bcWNyJB3jGjcWFWIgr8bTfg8e63cHbdPfYjmvT3RcrcVQz/KBNd18c1YztuzbdffEAx2NIiUeVyEtMFuJKrMSN2Iinbg3uxAM8Q8XiQizENbtBpnkNduJOPMB1mm/BhViIK7Gu60R83lm20IAO7MCRGO8cLizA2V3RhhkSFhuxE8/2ePAAz5CwuBDLuj7G27wzZqICG9CADuzAkThdPlaFbbr8YiWe7YkpOF1+sRNHe3TaHOCZbazRRzPdeLEQh27szLYZDRY3YiN24k48wDMaxK5um9FgsRBXYiVuxFdfxm5JJCXGZV4eSYlxq5RHUuJGAVagAhvQgNcYxW9spCpuHBsjVXFjqNVAAVagAhvQgA7swJEYN87E3pjNeHAlSbrNeLC4ERuxE3fiAZ7xILbAbcaDxUJcia8GxZbQvJ9toQEd2IEjMV5EXliAApzNsWAjduLZHA8e4PnosHg2pwcL8WzOCFbiRhy6setsM04s7sQDPOPE4kIsxKEbO8U2Hx0WN2IjduJOHH0ZTTRMDqPJYTQ5jCaH0eQwmhxGk8NocjhNDqfJ4TQ5nCaHY3I4Jodjcjgmh2NyOCZHx+TomBwdkyN+xuURAxk/45uVuCX7/I2+bpNyn7/Ri504mh8/eD5/oyfP3+jFhViIK7ESN2IjdmLSLaQrpCvTjgfPvx/tmj+087/PH9rrjUyPFMBn2x/BlViJG7ERO3EnHsHX5ItUwORCPHUleOrW4Kkb/axTtwUb2jIdbDG1cTpPbJ/4dJ7FStyIjdiJO/EAz+fuxYV46kZbplvFFstK/1vciI146kZ7p1stHuDpVosLsRBXYiWeNqMP5w9pbJn4/PGM7RCfP549+nD+eC42YgfPR+bF007MpbmkXjznYcyHuXSOB60+n41j26PPZ+PFjXiOdQ124k480n5ffhf/ffndZCGuxJr90KffLTZiBwva2+dvXrSxz9+8xeiHPud/rP/6nP+xhutz/i8W4kqsxDH/S+jGPJdYZsVHQTe3B3EhFuKwH+kNkS2X3IiN2Ik78QCHL0gs6SJpLlmIK7ESN2IjduKpFfPBH8SFWIgrsRI3YiN24k5Mup10+9SN+dOFuBIrcSM2Yse4dBrTTmM6aEzH/LcaPOt2+XJkzCUXYiGedfNgJW7ERuzEnXiAy4N46lqwEFdiJW7ERuzEI9sb2XRP7sGVWNFGacRG7MSzLSN4gOuDONoS6/GZQLe5wk4l3Uq6lXQr6c7fxMU0dkpjpzR2SmOnpKukNX0/tgNnQtzmQizEM7ZEW6bvL27ERjznZwnuxAM8fX9xIRbiSqzEjdiISddI10jXSddJ10l3+nvsL85UOIl9wZn+JrHnN9PfNgtxJVbiRmzEs84xLsuXJw/w8uXJBfWZz6WLK7ESN2IjdmJq44wPF/eZEibXPk+fKWGbB3jO/8WFWIgrsRI3YiMm3Uq6lXSVdJV0lXSVdJV0lXR16pZgJ+7EAzz9ZXEhFuJKrMSNmHQb6TbSbaRrpGuka6RrpGuka6RrpGuka6RrpOuk66TrpOuk66TrpOuk66TrpOuk20m3k24n3U66nXQ76XbS7aTbSbeT7iDdQbqDdAfpDtIdpDtId5DuIN0B3fJ4EBdiIa7EStyIjdiJOzHpFtItpFtIt5BuId1CuoV0C+kW0i2kK6QrpCukK6QrpCukK6QrpCukK6RbSbeSbiXdSrqVdCvpVtKtpFtJt5Kukq6SrpKukq6SrpIuxatC8apQvCoUrwrFq0LxqlC8KhSvCsWrQvGqULwqFK8KxatC8apQvCoUrwrFq0LxqlC8KhSvCsWrQvGqULwqFK8KxatC8apQvCoUrwrFq0LxqlC8KhSvCsWrQvGqULwqFK8KxatC8apQvCoUrwrFq0LxqlC8KhSvCsWrQvGqULwqFK8KxatC8apQvCoUrwrFq0LxSiheCcUroXglFK+E4pVQvBKKV0LxSiheCcUroXglFK+E4pVQvBKKV0LxSiheCcUroXglFK+E4pVQvBKKV0LxSiheCcUroXglFK+E4pVQvBKKV0LxSiheyYpXNXjqanAjNmIn7sQDvOLV5EIsxJWYdFe88mAjduKp24IHeMWryVN3BAtxJQ7d68Cny4xXGv0w49ViJ+7EAzzj1eJCLMSVWIlJ10jXSNdI10jXSddJ10nXSddJ10nXSddJ10nXSbeTbifdTrqddDvpdtLtpNtJt5NuJ91BuoN0B+kO0h2kO0h3kO4g3UG6A7r18SAuxEJciZW4ERuxE3di0i2kW0i3kG4h3UK6hXQL6RbSLaRbSFdIV0hXSFdIV0hXSFdIV0hXSFdIt5JuJd1KupV0K+lW0q2kW0m3km4lXSVdJV0lXSVdJV0lXSVdJV0lXSXdRrqNdBvpNtJtpEvxqlK8qhSvKsWrSvGqUryqFK8qxatK8apSvKoUryrFq0rxqlK8qhSvKsWrSvGqUryqFK8qxatK8apSvKoUryrFq0rxqlK8qhSvKsWrSvGqUryqFK8qxatK8apSvKoUryrFq0rxqlK8qhSvKsWrSvGqUryqFK8qxatK8UopXinFK6V4pRSvlOKVUrxSildK8UopXinFK6V4pRSvlOKVUrxSildK8UopXinFK6V4pRSvlOKVUrxSildK8UopXinFK6V4pRSvlOKVUrxSildK8UopXinFK6V4pRSvlOKVUrxSildK8UopXinFK6V4pRSvlOKVUrxSildK8UopXinFK6V4pRSvlOKVUrxSildK8UpXvGrBTtyJB3jFq8mFWIgrsRI3YtI10jXSNdJ10l3xqgQLcSVW4kZsxE7ciQd4xavJpNtJt5NuJ91Oup10O+l20u2kO0h3kO4g3UG6g3QH6Q7SHaQ7SHdAtz0exIVYiCuxEjdiI3biTky6hXQL6RbSLaRbSLeQbiHdQrqFdAvpCukK6QrpCukK6QrpCukK6QrpCulW0q2kW0m3km4l3Uq6lXQr6VbSraSrpKukq6SrpKukq6SrpKukq6SrpNtIt5FuI91Guo10G+k20m2k20i3ka6RrpGuka6RrpGuka6RrpGuka6RrpMuxatG8apRvGoUrxrFq0bxqlG8ahSvGsWrRvGqUbxqFK8axatG8apRvGoUrxrFq0bxqlG8ahSvGsWrtuKVB1diJW7ERuzEnXgk24pXkwuxEFdiJZ66PdiInTh0ryS8bjNeTZ7xanEhFuJKrMShe6Xe9ZlzudmJO/EAz3i1uBBPXQuuxErciI3YiTvxAM94tbgQk24l3Uq6lXQr6VbSraRbSVdJV0lXSVdJV0lXSVdJV0lXSVdJt5FuI91Guo10G+k20m2k20i3kW4jXSNdI10jXSNdI10jXSNdI10jXSNdJ10nXSddJ10nXSddJ10nXSddJ91Oup10O+l20u2k20m3k24n3U66nXQH6Q7SHaQ7SHeQ7iDdQbqDdAfpDuj640FciIW4EitxIzZiJ+7EpFtIt5BuId1CuoV0C+kW0i2kW0i3kK6QrpAuxSuneOUUr5zilVO8copXTvHKKV45xSuneOUUr5zilVO8copXTvHKKV45xSuneOUUr5zilVO8copXTvHKKV45xSuneOUUr5zilVO8copXTvHKKV45xSuneOUUr5zilVO8copXTvHKKV45xSuneOUUr5zilVO8copXTvHKKV45xSuneOUUr5zilVO8copXTvHKKV7NXFm53tToPuPV5BmvFofu9RpJ9xmvFlfi0L3eDukzn3azETtxJx7gGa8WF2IhrsSkO0h3kO6MV9d9F33m5W4eyX3Gq8WFWIgrsRI3YiN24k5MuoV0C+kW0i2kW0i3kG4h3UK6hXQL6QrpCukK6QrpCukK6QrpCukK6c54dV3L0fuMV4sLsRBXYiVuxEbsxJ2YdJV06Zxu5QZfL431lRu82IiduBMP8MofmFyIhbgSk66RrpGuka6RrpGuk66TrpOuk66TrpOuk66TrpOuk24n3U66nXQ76XbS7aTbSbeTbifdTrqDdAfpDtIdpDtId5DuIN1BuoN0B3RX7vHiQizElViJG7ERO3EnJt1CuoV0C+kW0i2kW0i3kG4h3UK6hXSFdIV0hXSFdIV0hXSFdIV0hXSFdCvpVtKtpFtJt5JuJd1KupV0K+lW0lXSVdJV0lXSVdJV0lXSVdJV0lXSnc8z11VDfeUzLxbiSqzEjdiInXjGQw8e4BmvFk/dFizEldgzZq5c5cUDvGLR5EIsxNPmZCVuxNGW62XfPq/53NyJQ/d6F6mvPOfFhViIK7ESN2IjduJOTLqDdGcsut5v6ivP+XqPpq8858VK3IiN2Ik78dg85jWhmwuxEE9dD1biRmzETtyJB3jGosWFWIhJd8ai632lMa8J3WzETtyJB3jGosWFWIhD93pXcczrQzc38Iwh13UOY+V4L1biPDMaD5yRjQfOyMYDZ2TjgTOy8cAZ2XjgjGw8cEY2HjgjGw+ckY2Hkq6SrpKukq6SbiPdRrqNdBvpNtJtpNtIt5FuI91Guka6RrpGuka6OCMbD5yRjQfOyMYDZ2TjgTOy8cAZ2Vi53CPm+YwbI+ab557qWDnbizvxAPcHcSGe9e/BlViJG7ERO/Gcz5MHOOJGvd4JHTNne7MQV2IlbsRG7MkzN7te75mOmYNdr/dMx8zB3jztWLARO3EnHuDyIC7EQjx1PViJG/HU7cFO3IkHWB7EhViIp+4IVuLQLdEn8Uyy2Yk78QDHM8nmQizE0370bZ12NHiAddqJtmshFuJKrMSN2IideOpGP+gAtwfx1I0+aUJciZW4ERuxE3fi0L3elxwzp3rz9K+YGys+TK7EStyIjXjuXUybnXiA/UFciIW4EitxIzZi0nXS9dne8Lv+IC7EQlyJlbgRG3GelYyVU714gGc8kcmFWIgrsRI3YiN24hjf6128MXOqJ8+c6s2FWIgrsRI3YiOe8XMEd+IBXmfokwuxEOee2Jh50VWCZwxZXIiFuBIr8ayzBxuxE3fiAZ4xZPHc13oEC3ElVuJGbMRTtwd34gGezyTXHt1YedGLhXi2N/ptxpzFjdiInbgTD/CMOYujn2tozZizuBIrcSM2YifuxAM8Y86V1z1mnnOt0Q9mxE487UQ9bYD9QVyIhbgSK3EjNmInJt0ZQzTqP2PI4kIsxJVYiRuxETtx6Gr0Tx/gGUMWF+KpG301Y8hiJZ660ZYZQxY7cSceyTPPeXMhFuJKrMSNOHQjHs48582deIDnM8ziQizElViJp/0rXs385NqiDjNuLFbiqGf47MxP3uzEnXiAZ9xYXIiFuBIrMenWqVuDnbgTD/B8VllciIW4Eivx1I3+mXFjsRN34qkbfTXjxuJCHLoebZlxY7ESN2IjduJOPMAzbiwuxKRrUzfaaErciI3YiTvxAM84s7gQT/vRPzOeLDZiJ+7EAzzjyXX585h5yJtnuzy4Ek/dHtyIp26MxYwni0O3R//MeDJ5xpNrb2TMPOTNodvDj2Y8WRy6Pdo+48ni0L3udRkzD3nz1I02zngSPPOQa+yBzDzkzVPXgyvx1O3BjXjqjmAnDt3Yc5h5yItnPLnuexkzD3lz6F53vIyZh7w5z63GykNebMRO3IkHeD7PXHe8jJmHvFmIp270w4xLixuxETtxJx7gGZcWF2IhJt1KujP+xJp95hXXWBfPvOI6op9nnFlciZW4EVP9leqvVH+l+jeqf6P6N6p/o/o3qn+jfmuk20h3xpPZxhk3ZhuN6m9U/xk3FjtxJ6b6O9Xfqf5O9Xeqv1P9nervVH+n+jv1m5NuJ90ZN2YbZ3yYbexU/071n/Fh8owPi2ncB9V/UP0H1X9Q/QfVf1D9B9V/oP4z73dzIRbiSmzZxrb8/WpjK6h/K4VYiCuxEjfiy75ed4iNmce7Oc9PR8O57Wg4tx0N57Zj5uvqY/K0I8E9OOof/rs4/HdzCY52hf9ursRK3IiN2Ik78QDrg5h0lXSVdHXqxlhoIzZiJ+7EA9wexIVYiCsx6TbSbdN+jF08J2iJ8YrnhM2VWIkbsRE7cSce4PD3zVO3BgtxJVbiRmzETtyJB7g/iEm3T10NrsRK3IiN2Ik78QCPB3EhJt0xdWMODyVuxEbsxJ14JM88282FOHRjT2bm2W4O3dgnmXm2et15NVaerU924k48wOVBXIiFuBIrcSMm3UK6EU809lhmnu3iiCebC7EQV2IlbsRG7MRT14IHeMafxYVYiCt4xo3rfqox82M3C3ElVuJGHPWsMXYzbkye/h57CDOvdbMRz78f9ZlxYPEAx+++atic8WGxEEc9Yz0+81o3N2IjduJOPMAzPiwuxEJMuk66TrozPmj01YwPizvxAM/4sLgQC3ElVuJGTLqddGd8iPOjmde6eMaHxYVYiCuxEjdiI3Zi0h3QnXmtmwuxEFdiJW7ERuzEnZh0C+kW0i2kW0i3kG4h3UK6hXRnfIg9n5nXunjGh8WFWIgrsRI3YiN24qnrwaEb++ozr3VzIRbiSqzEjdiInbgTk+6MMy36ZMaZxUJciZW4ERuxE3cw3gMajveAhuM9oOF4D2jMPFWNfaeZp7p5gGf8WVyIhbgSK3EjNmLSNdI10nXSddJ10nXSddJ10nXSddKd8afFnJlnuHGmv/JUFxfiqWvBlViJG7ERO3EnHuAZfxYXYtKd8Sf2AGee6uZGbMRO3IlH8sxT3VyIQzf232ae6mYlDt3rg1dj5qluduJOPMAz/iwuxEJciZWYdGf8uW6nHzNPdXMnHuAZfxYXYiGuxEo8dXtwJx7gGWdif2/mo24O+7G2mvmom5U47F/fxRszH3WzE3fiAZ5xZnEhFuJKrMSkq6SrpKukq6TbSLeRbiPdRrqNdBvpNtJtpNtId8aleP6c+bGbC7EQV2IlnjEwxmXGHI+5NGPO4kI8bbbgSqzEjdiInbgTD/B85llciEl3xpbYa505rhr7qzPHdXMnHuAZWxYXYiGea9Xo5xlbFjdiI3biTjySZ47rZuztzFxWjX3gmcu62YideLZrBA/wjCGLC7EQV2IlnnsmYb8YsRN3YuzVDHkQF2IhrsTY85k5q6tdM4YsHuAVQyZTuyq1q1K7KrVrxZDJRuzE1K5K7aK906HULqV2KbVr7Z1Opv5U6s+1Rxptb9SuFSsmC3ElpnY1alejdjVqV6N50mieGM0To3YZtYv2VIdRu4zaZdQuo3li1J9G/bn2TqPtTu1ymv9O899p/ju1y6ldTu3q1K5O86TTPOk0Tzq1q1O7aK91dGpXp3Z1ategeTKoPwf1J971GwPv+o2Bd/3GzEfVOMeZ+ajB5TETUrNQuCBcqFxQLjQuGBecC50LXIPCNShcg8I1KFyDwjUoXIPCNShcg/mYch1ZXYVBhfmgsguFC7MGdRYqF5QLjQuzBjoLzoXOhUGFGYZ2oXBBuFC5MHXaLDgXOhcGFeajy3WsdhUKF4QLlQuzpT4LjQvGBedC58KgwgxMu1C4MHX6LDQuGBecCzNNcxkYVJgJrrtQuCBcqFxQLjQuGBXms8uYM2Q+vOyCcKFyQbnQuBCNG3PuzFC0C50LgwozGu1C4YJwoXJBudC4wDWYDzljTrH5lLMLgwrzOWfMGTIfdHZh1mDMQuXCVYN2nZFchcYFi8L00whbWehcGCjMTNksFC4IFyoXlAuNC8YF50LnAtegcA0K16BwDQrXoHANCtegcA0K16BwDQrXQLgGwjUQroFwDYRrIFwD4RoI10C4BsI1qFyDyjWoXIPKNahcg8o1qFyDyjWoXIPKNVCugXINdNZAZqFyQbnQuDBroLPgXOhcGFRoDy4ULggXKheUC40LXIPGNWhcg8Y1MK6BcQ2Ma2BcA+Ma2NSJH4mZg9seNguFC9Oaz0LlgnKhccG44FzoVOjTdJ8FnhTdaHy6c6FzYVBhzCaMWShcEC5ULvC0HFwDDk+Fw1Ph8FQ4PAmHJ1nhSWZBuFC5oFxoqJus8LQKzoXOOlwDDk/C4Uk4PAmHJ+HwJIUcQ4pxwbnQuTCobvLgQuEC14DDk3B4Eg5PwuFJODwJhycRmgeywtMq8ChUHoVK80BWeFoFHgUOT8LhSTg8CYcn4fAkHJ5EuQ+U+4DDk3B4EuVRUB4F5VGY4anEj+tM581C1KBMnRmedqFyQbkQNSg6C8YF50LnwqDCDE+7ULggXJg1aLOgXDAEh5kC3IrNQufCoMKMYrvAk8+FCzz0zkPvPPTODujsgM5D7zz0nYe+89B3HvrOQ995+nMYlM6Tbwa7EqFz5v9moXBhdu/stxnsyqz1DHa70LhgXHAudC4MFGYmcBYKFea3y5rMQotCnQWLQpsF50LnwqDC/LLZLhQuCBcqF5QLjQtcg/n132az0LkwqDC/S7gLhQvChcoF5ULjgnGBa1C5BpVrMD8B2nQWCheEC5ULyoXGBeOCc6FzYVChcQ0a12B99tNnYf6bmHwzRzcLhQvChcoF5ULjgnHBudCpMD9E2OZMnF8i3AXhQuWCcqFxwbjgXOhcGFSYnzC0xyyEaSuz0LhgXAjTNl1mfgZ8FwYV5lcNd6FwQbhQuaBcaFwwLpDozJptOmZhUGE+YOxC4YJwoXIh4k57zELjgnHBudC5MKgwHzB2oXBBuFC5wDWYDxitzIJxwbkwazA7ZD5grMJ8wNiFWQOdhVmDNguzBjYLswZ9FhoXjAvOhc6FQYX5gGFTdD5g7IJwoXJBudC4YFxwLnQuDCo0rkHjGjSuwXyMsNkH8zFiF5wK87fefBacC7MGs9nzt34V5m/9LhQuCBcqF2YfzGk5f+t9Tor5W78LzoXOhUGF+Vu/C4ULwoXKBeUC16BzDTrXoHMNOtdgcA3mb73P2Tt/0X3O0cFjOnhMB43pzLVtVmehcEG4ULmgXGhcmDVYBefCbM8SHVSY0WUXZnvaLExrNgvOhdkemYWBAZ65t1koXBAuTB2fBeVC44JhIs2U3Sx0LnANKtegcg0q12BGilWYHuyrULmgVJhu1h+zULmgXIgmzN3weUltFpwL0YS5AT7vqd2F+Rw/t7lnBm0WhAuzBnPk5nP8LjQuGBecC50LgwrT0edm9sylzYJwoXJBudC4wBNpufPsg+XOc7SXO6+CcIGnS+fp0nm6LHdeBZ4unadLp5A2k2izUODBM402C5ULyoXGBeOCc6FzYaAwU0Gb2Cx0LgwqzHktPguFC8KFqKj0WVAuNC5MnZjXM1m01ccsCBfCWi2zENbqrPX8NduFaHats+Bc6FyI9tSYYvNW1SwULggXKheUC40LxgXnQucC18C4BsY1MK6BcQ2mM9U2C86FzoVBhelMu1C4IFyYOnO0pzPtQuPCrMEc7fmruQudC7MGc7Snm9U52tPNdmE+Qc7Rnm62C8qFqIHOeTDdbBeiBjrnwXQznaM93WwVppvp7MTpZrsgXAjTMkWn/+xC58JAYaabZqFwQbhQuaBcaFwwLjgXOhe4BoVrULgGhWtQuAaFa1C4BvPHVaJ7Zz5pE5kF4ULlwrRWZ6FxwbjgXOhcGFRYoWYVpo7OgnKhccG4MHXaLHQuDCrMR+pdKFwQLlQuKBcaF3hIGg/JjC6rbjO67AKbbmy6sekZXXaBG9e4cY0bZ9w448YZN864BsY1MK6BcQ2Ma2BcA+MaONfAuQbONZjRRVeBJ8UMG2qzwDOx80zsPBNn2NiFxgXjgnPhgyjPxMEzcYaNXRAuVC6wLwz2hTG3DEJ0ZomuTbKZJrq2qGaeaBYqF5QLjQvGBedC5wLtss180SxwDQrtcc2U0SwoFxoXjAvOhc4F2uPq8uBC4QLXQLgGwjUQ2uPqYlxwLnQu0B5Xrw8uFC4IFyoXlAtcg8o1WLt58XPYlfa4ujYuGBecC50LtMvW24MLhQvChcoF2uOaqaFZcC50LtAeV7cHFwoXhAuVC8qFuff0mIW5xxW/MjNLNAuFC7THNRNFs6BcaFwwLjgXOhdol23mi2ahcIFFO3fV3LObK4mZHLoLc89uFwoXoj3zyXsmiGZBudC4YFxwLnQuDBRmnmgWCheEC5ULyoXGBeOCc2HWoM7CoMIMDrYKc0h0FpwLnQuDCjM47MIckjYLc+htFhoXjAvOhc6FqROuOVNDs1C4IFyoXFAuNC7MGvRZcC50LgwqzK3+XShcEC5ULkzRMQvGBedC58Kgwowhu1C4IFyoXFAucA0a12AGlLlFNTNIszCoMAPKLhQuCBcqjZzx0BsPvfHQz7AxN5VmPmiZm0ozITQLzoXOhVnROaYzOOxC4YJwoXJBudC4YFyYNZi1XgFlFQYVVkBZhcIF4ULlQqM+WDFkzp0VKa5CeaxI0WahcEG4ULkwGzdmoXHBuBCNi12pMhNDszDIWuEaFK5B4RoUrsF8DtmFxgXjgnOhc4FrIEv0v//7H/70l3/7l3/+jz//21//6T/+9q//+qd//K/8D//+p3/8H//1p//3z3/717/+x5/+8a//+Ze//MOf/n///Jf/jL/07//vn/8af/7HP//t+f8+W/mvf/3fzz+fBv/Pn//yrxf99z/gXz8+/6fXT4Wvf34NEkw8N24+GCmfG+lX0mGYeIYqGPD6wYAcavG4kgJmJZ7bCZ+aODXkWuKljecT96cN0c+N6LUuCBNKtfCPvdk+//f1+v2If/88LkMFmt1uhT7aNnG9UF4/bYV/bkR07GbIc1+cTPhdE8+G7AF5Hn5SU8rHvhgHEz0tDDTjlwE9/Hsre1o/9/Ly39fHx74s5dSZtk1c6Qqf25BTR1wbkqsjvH5q49SXve3heB68jk/7shwmpsTFjnNIa6VZ8fS3DzZOk7NmNQY69Pkbdr8hAxYe/fOGHGw8t/H3mDwRNtr4aKKfhvXK/F3D2uRTE4e55b4HtXPAanrbQtfdjOfi5HMLd5vhnzfj1Jn+2D72xPGZiWs/4PNYcR2vrFih5VMT+m5XyGFmyiN/QOQZ/9OGykcTdqiE7eD/XLN8Xgk//YCYNfoRQjWqjPtNKdWzKa182pTD1BIEzsenBs4+NiynBf2E/DKmtbwf9k42VGQ3RMU+/w2p9RjCJZ2EekNK+WjjMD9b3yNij0YWHt+YGoh8sXz5dGrUwxQd8XrJfExqVJP667icftr9kZ7y3CBPG98ZFd8O/3za8c9H5TBDS8dDynOxTTZ+edI6Pek8z+YQ/7Txz8nHxxQt788PlXfnx7kt9rCsxvPY7fO2nH7jY5djhQ56TrieAj/YaG/PD/uJMHi2ctdjtL/vMTre7ZHz6A7Fc+TgZ6dfRredImpsMMyI+lyx0uj+YkNOvwy6p5l0jsr+sT/aIaK2R98D0wp5zG82TvUYVvMn6nGox2GmPk+Qdz2ep8T+qY3jyDx/pXKWWeUf/l979RBTTXKGWBX73MZhpmp57IioReQlG61IzZERfa0ttW4bzxXc5/1h5fT4oCMf0e1FG+54MnV5zUbH0+3zlOrzmHqcIf7IXQF7PvZ/XpP2h/5CeMlF4DPM189jiJ2eQ54/vDU3a57nGJ9EM+t/aDx8nmBmPHweOX4+Mv74Q/u0a263PHl8/gThp1gW1xmvlfXgmnxcOnh9t0+PtdDc7RDVx6e1OD6Vee4RlOcv56dPZX743ZbIlFnLwQ9++4uNwyzVnmsH7R9s2G0bTbMeTWn76Dcb4/1nw/72LD33aM+5YVJeGxWrsHEYlX6Yo/roOSrlwxOqfqMeHb/70j6vxyGWzusl1gbnh1n6sR7dTjtZ+UtZK+/0/mrjVA+lgFwONk6xND7jszdP7KU+rQ/stD7PdV+aH/WRW0nPGvmnNsZpJTUkJ0i5vsjwWRQ71SNO/9e4HOb6OMXSh2MD5cPv5McNkHFYSbllU9w/rCzv2+iWuxfdWvnchr0fgYb/kRHo+UjoOSrur82wmiuxqjI+tVEejzdPBI610FyIVeNd8N9qcTprojVDrTyw9RtGhuYsffCh2W9GDlPsuk9sL28HPeDWX37kyuMQx4bv1gx6ur0adtvjWj5nP39oPp/p5eHHDsmfqAeF0193sx+HcFpzF1gfn+/hlsfp0KjluJg9Hp/uOpRyPEocIti8kPrpxsNxjjyf6fLJso3DHDmdPzWV3aDWaIv/t4OfUt8fnNMJ1M3BOR1A3R8c+5HBOW6RN8Ma99Njj9NTLg6y1K19fhh2OkV6PkVlSHweHHzuekcj8sj4LlU+NyLl/UM1kbdP1U4mbh6r3W7J4VztdpdqfXFcimY2gByeIMrx6OH2GXZ//zTn3Jx4fWwZOTWnPk5TJFcQT9TPw9nRSJfdsU8bh5hY5f0JfzqdujnhTyZuTvj6/ulpqW8fn5bT0dRzuucke/YoJpnJi6NycN7z9Mjdae/jxTnWy8DY8pL7VyPH06mmudZ12if/Nefi7Hcjt3WeO9yH3wit78/20/nUzdmub6cK3G/Jq+F95EpEHw87dOkPpKHo+3ko+n4iivY/uksbng8f/bVfTH2U3KN66GFc2um4/2aGUWvvj22zt8f2ZOLm2N5uyWFszz367sNye+T5+PMc95A5djoPMqmWZ1v1EJLt8AMzCh1LPz6NyKfV4fO4MLtUxDG245eobvp+CkU5nUvd3fE/G2kieMSU+vnBYzmdTVUZ2Psr+snu4dlExRMmb+v+auIUQUrWQqV8buLcHzcTU+Itm8/PhLCP+XzU/awm/gPJLeV0NnVv//BownK33WS8aCIjmVFc/93E8WHqUTFN5dAbxy6F7zbaO/jdSH9/q/yLaXY3Z6icDqjuJg2VXt49vzzXQ/KcXZ58qMfJSMtpIs/drs+NnDvWPUNr64926Nj2djw7mrgXz7r/wfHsQ3/wKwW/xfejmbtZUGU8jqtEHFU1pSF+2Uj/ASNWXzVyL6urnI6art+HdL/+eSpUGYfxUcnltwr1ye9G7LjvlWt49uJvGqkF+5H2qhFsWUn1HzCicjByGp2byW7yOD27PnKe2GOUF4eY1lhjPF6dJyMz1WqxF/vkZiKinE6uOBPxMey1jm3xVe1phBMAvzc6N3MRbzfnlFh5P570z4OSnM6v7r5OcXp3qtY8FKycFPl7RU4HAi2zAL3xTlz/xUY9njzjR5T3Jn+tx9GF6ZUKziT81cbp9++6o3H//l13K33emmO35lL6w1n87916NDIwNuPwy3X8PbeSs+S5Yj48JsnxTSrstfrnW89fVCRtXBX5fL0lp2Of4flg/yj0MO3lO1W5m08sclwv3UsoltNbVXczio9G7qYUn2ui+YbwE/uLNanZs+1jEsp3OvZmdrOcXq+6m958NnIzv/ls5GaC8xfNwc+OdXvRCBIE2mjtxRXCc1cuXyU31dfNYP/lOVb+qpm7md9S306/Opq4t31yNnFv++S8V3g3A12OR1o3U9Dl9MbVvf2Gr+qBJPTnI1X51MgpAavkHv0ony7QzyYQ64dIf2mB7jWzDZ7s48UJ77TV762MwwD3d/c9ziZu7XtIe/yx+x4f+0Pe6FYc4rb6alRz7G092R6fj87pKObm6BxN3Bwd+4NH50N/+OP10XEyU141c/eVFrG33xY4mrj5Y3E08QM/Fs9twryQpZfTg7Dpu2cgRxPPCI2HCrf2eM2I02+fW3nRCM0R76/F+i5Yp/T6cjS5/eqT+OMPN/N8tMwE4vrgRa2+aKTIi0Zuvswlrm8/nRzrcfN1rrORprjGx8prRp7jkdlDjw8bSr8emuv758xyeh3r7qtlcjohupvJeDRy9wW1o5FWWqaZSC8vGqmZ8NKq+MHI+88E/f1ngv72M8EXvZGbn01LO/RGP+20V8WP8DgYOS7v81e4PD7d6DtXI7fZrXxIMftOW0qmMj03ycqrRvLI256Lt5eN9DRyeB/zPL43X+qU0/nFjxi5m1kh77+ZdTRx82lvvL01cO6Nm5kVX3TpvcyKen6t6l5mxRc/NPfeuD0bufmqa338wLuu9fEDL7sejegj30XQx+Ht3/p4e2vgbOLWD00tb28NHAf37ju3ZyM3X6s8G7n5RuPZCK6Bq/7qhK9I8nwa+bwmtZxfeL31tkot/gPPeOfRuffCai3vXmF5tHDvEssqP3CLZZUfuMayno5RS8lnmsLpFL++0FhPB0E3+/RUjZsv8J6NGO6n6vZ40cjNt4Cr/EA24dHI8HwYGZ2TVMp3jGBdNDrdBfldI/lCcufXgL5n5N6b0fX0atW9N6OPJq6vIuapMj2A/2bk2JjxQGPk1W4d+cQ6BuWcf8vIdcl2TrXHgzYmfu/YP97M88kwN2tKPY3QyQiSzURod/B7RqqlH9d+MHK+ohdZN1oOYen0dtPN60Or/sidmfX9NcEXNbm5JlD/gfh4HJyb7+LX06tWd9/Fr+14e1Y+e16HF2nk10tA2/sva9f29svaRxP3Xk+63xI/tOTUo8juKmN8ft3t6USrjdw1asPGi/W4dctCbW9fgVHb6ZFz5DHFEw9X1Z6MON7Ec27Lt4yYG9Iqae/5e0Z69qp9SDX9lpGbN0/U4y747ZsnvjLDV6Ny4uu3zFw7CpkAoZTI9F0zeYfVZfJwLfF5qPMiC3POtP7efMlAb/1xuHj2fBMnPuFQDx50zp/N05vy6C8Fgw8PN3TRwW93Pde3g4EfVyh5I9fzFJeCwS8v5R/rcbdLj0Obx1DPUZYXHbA8KnKPHvqqAxZcU1au79e8bAbvTZYPNx78aub8YI9fwMeDnip+e5Y+vcF1c2vuaOLe1lyvf6iJe7t7X/RoZkQ++7Z/2qFfbBHeu1Kv9p94dD0ZubmF1McPbCGNnzh6PXbrzRsCI/R9Hp/vXRFYT7eeectfYbdiLxq5edHg0Ugv+XDS64ck7e8YabnJ0JvUg5G33+H+oh65+OztcFtJHeP9eox3Q5Ge3gq6GYqOvXHzEkl9/NFGbn8o4fED92C3d088zyZunXiee+Pm7sYXXXpvd0OPdw3e/Yk4BsSbNzjq6WWtmxsTWt6/ZkjL29cMHU3c25i43xI/tETe3pjQ01eibm5MfFGPWxsTKo931yJ6Osi6uzFxNHJ3Y+Jck5sbE2cjNzcmzkZubkyo/MiVmF+ZubkxcTZze2PiKzM3Nya+GOp7GxNfGLm3MXH0oHur6KMj39yYONu4tzGhpxsHbwaD4weCbm5MHOtxs0vPQ3tvY+KLuXp3Y+ILM3c3Jr4yc3Nj4vyYle952YfbMb71pJaZh6afmvgiD+vepw/09FWsu98+OBq5tw5X/YHLXFV/4DLXc1KZZLdWafXTHjkbcVxwOz68QP6tzLSbY3P8INW9Y9OjjdsrpKORuwuLc01uLiya/cDC4vEDH8nQ1v9gI3c/tXE2YvkJXOEv233PSMvA+IxI+rkRkx+IBFbfjwRf9EkuUsQfhz754nKoR45xG5S7b98yUnEj2mj6qRE/G1Ey0l8xcm/n58vG3KrH8Q0gxyebHx/ugPjlDaBjgvit3/Evcszv/Y4fX2bqSMD4cE/dd96IMrwjZqO+aKTn9QIyHu01I8/hcIzMqTmnX/Kb72YdjRguEn0uQz99s/FoAs5rQ/w1E/koYKN9buI82TPC+8vvzH0woq8aERipn4+Lvv9Wlr7/Vpaev5T1tom7+fbHDrW/+x7wN0eFfqjGqxGEa/KykZ4PNE982Qg25Y5Gjq9634vt57fFb8X28x0YuQ5/bkS9eI1GpnE+8dPXfur7v3P1/d+588VAJV9Pc335YqBcALRey6tGcDNeH69eDNQbauKvXpaE2wKf9l6+oignWRvyep8MGHnxUq3nsiu3nZrXnzDy4qVaz0VE3sxl7dXrvSxfl1M/TraTEcdX5Xv73Eg73Wvnlr807nw15S+JG+20v6ktp/2ze/TTva+vauJZEznV5PwhAlw0Rodh9Rv18DzJcif3+70epw8RaL5M4U3awcgpNQBXj9LIXDce3Z8jHdvG43DhSzvfN3hzjhy34m/PkfEDc+T0XtbdOTJ+YI6cxub2HJH2h86R9nhkfzxO32I/fTOrScfVDPzL13+x0Y/nRjgX4Fd3v9UYw1cv+uc/FO30IaK7janlD25Mafk4UdqLv3oNu3i/3HfxHSOCmkj7CSNWXjXScX3H4/GqkXxP7Wnv5Y7NI5/28pWjreLLOVUP3wE5fwggX5kTPln49Q7/pm+ns55N3Fr5Nq1/qImbN6UdO7TiGqDqj0OHnt5vuXOhybkaiuU33xT1ezX6+8FMx9vB7IsPTWQamvDP3Te/VpEhRJr1g5HTi2l3P3lxMnJvD/Bs4tYe4Bcm7uwBnj8Tc2sN/8WXZu6s4b/43pXje1f9xW9m4U6GJ36at9Xs6HL5NQbRop/beP9VwWZvvyp4NHEvI+9+S1xe61FcyCL8jPotG03g9rV+buP0hDoaNjNsvGjjVmbgFzOsIw7qp192a/54e3acTNycHf5+BkA7hQ6hrwQcLJwTtO58eaH5YRV171OszQ+/9lYyu8OKfp5c9Q0j9qIRzdcSTGnD7Xcj4+1xObYFH/go/dW2SE4x4yfbbxpJdzEZrw5NxY8cXz30m5F+fvPT8UELPWSwns08F7nIGuWsim+acRz+P/iK1u+awVctHp1yJL9ppnMqbDvV5jBxh+ah92iPz/Pw2jgeWd25jvRcD8/zhOEmn9fjvpHxqpEcnie214yUx4Om3KOfzJxfxHbK2qQHrO/OFcq+7lVeNlMKmTm44/1f9E9ThNt4+5su5yfo/Hr280Ds02ckO75+dfNjwGcjz22ZbaRKPxipx6SChqSCQ2v07edwO2Xj3XvSOpq496QVx0pvPuPY6RrAe8849ji+SXrvc/P3R8UPo3KcHYb4/HlC/dHG9e3AbMzwV2083rZBt7NVuibnezYMe3f9cxvF3l4ffWHj1vro3BbFJFPr79t4cY5VybOmqv3zsT3eI0jPaS4nrztVxBuumrTPQ+HpK053B/ds4wcG1wvacnDc8ztTTm9stFc7Ne9VrP0wy+Tti4PslBxx95WcYz3uvZLzxW92brtrHfriD78qKlLqq0Zyhqienh7q+c3rW6nednzj6maq97k5o/Y8wvvwvbFfm+M/0Zz+BzenlTTSih6ao483n3XP1dCcrq2Nw3Pq6YtY8creOiaiXMCH/2KivrtOPNcil+DsvL/Xoh0XVfRdrgc9H9p3jHS8T/dc3z1eMzIaFlTj04++nHvE6Yu7hx4Zf6iJa1cDC95ePu/U8ROdOn6iU8cPzJGj2xk9AfTxWoA3JDVY8f6qkXw4s4/H5t8xggQc+3C35LeMVBzzfvwW1i9G2g9cFmT2+IMDvDW8dm3l0Jzjm1Y3X0061sRryZ+Jqqea6PvbCMfXim5uI5i9vY1wMnFzG8H6+9sINt7eRji+yHN3G+H2qByWeOfZcW8b4WTj7jbCFzYeb9u4uUr0u8v39lqf3t3OONu4t53h4/0V79nGvRXvsS2a2ZVV5dPj3kgI/2PrcW9b5baNF33u7rbK6fWo29sq/gP7XW5/8MDc3BI5nVfd3hI5V+TelsjpVqybWyKn+9tub4kMeXtL5IuHmFuvRsexy8nInVeSj0buJTR+2Zh79ThlAVpeMuQPOyz+22EvI1dmdIau9VsLmUEniI/20mqoIOf9yfLZasgfb6eqHk3cHNkvltw3+6P9RH/4+0vMo5F7PXI+7x4Nn+3gO8++dWg+FBfa9sPx/fH7bPcPzU9m7qWank3cSjX9wsSdVNMvcmgyQdPq4+WUIHzlkb98+6uRcnrDw0cmWjk35tfPSnxhJB/bfYzPjfjpVaKbV0D66d2qmytUP17yd2uFejRxb4XqpzOmmytUP71ScW+F6se3qm6uUO+PyudPy+fZce86S5f3r7P8oh63rrP0+vZ1ll5/4BLJYz3uPRseu+PmpYBnG/cuBfT3LwX0n7gU0N+/FPAYTHvJC8Z74Veyfo3Ip/Tsey8RHAPQvfx/1/fz/13fzv8/mrgZjm+3xF/r0Hvp/0cT97L/Xd/P/v/Cxq1AKm9ftHx60fZ+CvHRyu3U3y+s3Mz8PUWgu5my922MF23cy5M9RtPbT/znfr2bJVvtJ2bKuUV3c2TPVn6kRbdn7RdWbs5a7e/P2vs2xos27s1a7T8xa7+YKTeTss8/wLeSqd3eTaauxzzoPDbUx4c31T++0uj+9gvVZxP3tpj8/Y/7nCoxrOAp0w6d0d4/4fbT0v/2Nbzvf2Sgnl66vfU9jaOFW5/TqD/xrdAf+JiG9+OHDu7deavH73Pmjt1zofn5t+GPNp698KDWfH6Vgvf2ttMeTdxz2v7+ZajldLTtf/f6v18syLuz/Gjh3kdjyvuz/LyGuTnLz4dSN2f58WPF+V6mPJkqUu/buHl1wdlT3HEW1D9cIv6Lp7z/4aqziXuecjqTuukp97ujHO4MKscdQ6SBNL4E4VUb/X0bH+5z+PUyp2PsyInqNCzPA+IPNvrprSeV3EJVocb8buR4ZX7uxlR2mW8ayXsun2ivGsGjh1T/ASP8YZRfjLTTMcwjDx3swS8zf2twcET2fBx6vDrCeRCjtXzer+30TskjXxJvj2Ev9UiruHSzjs+H5uw2lIHVP3ebfnr76ebhRT/e+YcjssqXSv1ekcN6zptvI974bY7+i43jx/w6YjOfo/xSj9MJiAy6RYBffvjVRjkeTSt2MZ7r1M9bc+zWlp7Hb+//3q1HI4NS2z6fJMdfGyvYfDA5/Pj20wHVrRXuF/VIE1c9+qEeftx9yBV/oQxqL78ctR/CiJa8UFXL5/U42Wg19y9aPVyZa8fkdoQi6/aaDRyTXRvOn9o4j4zmnRdP1petpP8+eRz65O0vR9rbH448fl2idEorGY/P8h/66Q2qUXLjfZRPnzTPJiTf9Rki/aVlbs27g5/s47WRddrB8FY+t9Lfv+6vv3/dX3//rr5vdIe83qkdVuqLTudYnj3ZHoeh8feHxt8fmj92ZfWxOw7XD381NE5WPr839PTOwb1IdrRw8xO4h5Y8F5d5lNLLISb30/Puva2do4lnNMRvjNun76V9YcTpI1P+6XtpXxlBdH/yS3G1Cx5DnidUhw2N00ZmV8t9gM7XbX7Higg+l8PZab9+YuK2jSKv2Wi4wbRZecnG3W/luL+/ZX+y0Z7bgPupSjr7/zds1IJrgz/cgvzLZD29P3UzMB9N3AvM/ng3MJ87I1e7Tfl1gV874zQ77JHZEPb48BHBX42c1v937sj9ohpIBy0fvqX2nbaUvIX5uS4qrxrJjebr7ruXjeQ7qWXUz+f66bUlxQX3erDR3/697G//Xp7acXf3/2jj5u5/7z+w+3/8pNMj06f1cfjmZn//dKq/fzrV3z+dOh7k4qbe6h8+LNPu2zBs6bjUT23044tTN4+l47s+7/7GlcfJXW596raP+hON0Z9ozOlZqmRQLvLhmpD6S01OA4zNQwpiXr9RDcMVDv3DauxXI/q+8x+NjDjunZsH/UG9Wr5jpOfQjM5XzH7TSL7Y0ls7GDm+2KK41oLTsGr5Rk1GnocO/rrU95ozDC/70Jdhv2Xk6ZiCvLIHfQjxVzPjYX+4mQ+J4Xxe9Uvnno3g0EuE1nffM1Lx5T5+D/v3YT6vZvJURD/cKPHRCcfpo0w3r5o+2rj7semzkZvPJF/U5N5DSXx+7e24VOpxc+XO20ejHG+nupXuPo4nVrfyoo8m7qW732/J57lh5x6998bOkPff9y/l+Lpe7qvYh7cg5RtGHPfBOr/28y0jd1/aORvBpzut+8nIOQuZr5jm8+b2HTNFFa/bq/nLZvLLTJfJdjBz7N58O8L465ffHCNc+9MfdjBy+tjcvbeAyvn9vzsvVp1t3Huxarz/YtX4iRerxg+8WHUeWse3e7q86DnlUSl/n25S+uaUL40uqvCXHbAg17N8eEHzVzPnZ0eE+8eDLgD77XFN67tr8vH+R6+Gtj/UxM3vZp17tOOtedpB/61Dy7sL4aE/cJ3aaD9wndppMe0tf2+e5yOf31N5stGL5ouRVfQ1Gy2XWr3J5zezjqbvT/RTNfIJvLcPaRq/VsPerkZ7+wvt45i1cstZTtsb3fJ3u1v7/H67UwLtvV3ao4Vbu7TnK25urojsBxZE9iMbNf7+gsjs/QXRKevl5oLoZOLmguh2Sw4LomOP3lwQeXl/QXT6eMHtBdHJyO0F0bEmdxdERyO3F0SPn1kQPX5mQfT4kQXRuXtvLojORm4uiB5vX8xevvjyx60F0dHGzQXR6VM5NxdEvf3Agqi/v8Y8D+3dBdHjZxZEj59ZED1+YkF0fBa49SXQ89PEnQ+Bno5abz79D/2Bp//xA5f/9/OLJ5k/Ix8+3633bXgeG9fxIVv8vg19ZCx7us/nR89jjPd34Mf4gR348QNZAV/U5N4D53Nf4CfyAk7v3isl0RU/5AUcxsZwyzV/DfBbNlp6v5jrpzaePfIDX6q4bhn4Aec79gm+ne0PO7TnGFhv3mR+vExADS84fLjw/vFrTY4v5d26yfxp5O7L7+3wPF/evsPmbOPe2qQ8fuB1q6eR0yLp1mVxTxun6XrztrhvjM1prXWeJbduND8buXml+ZdGHu8buXep+fP8WW8uHtuLHXvzWvOvjNy61/zZnPdvsvrKyM0F9bE59642fz4pP/7wmty63PwbRl51wJvXm5fH6XqQu/ebfzXv704U/aOH594V589OOV5SdO+O86+qcuuS8+eK7u2bLJ82yvur4XNN7i6Hv3jGuXXReXmcbqa4e8P42crdM6iv2nOzJn7reas+RD5/pn68u6A+J1HfWVCfXwTJ72E/kQ8JvvEyieGFFBv1NRs930cVXsh+74UUcYzJ523ppzdS777VcjRy70rus4lbV3J/YeLOldx+XlUoVhWP10b2gw190YbARv18UK5s03ePBr+wcets8Gmj/rE2bibZn9cCf/c9we+NC62ix4vRg+vxqo2ezzJPfNUG7rA+2ng7ovvbEf2LN9HzV3+IvPgye6YHP/Gzfatj7LnVE+erAe70xPG6hbhgez6c+ofXDL5xZUPPncDWa3nRBm6g6ePFqyN6Qz1evcKi5wrmae7VKywKVg3ycn8M2Ph8XI4JFi3XQNq8/oCN164WeW5o5u6dNX3RRs8Fgx/m2NGG56uS2tvnNp6HhKc8a8tfFXe+s+m31yVOH0fRlvP92T16OKb9oi6edZFTXcb5m6Q514x2d+p3auK5HelOvvd3anL4xXZ8TtSbnN6sOb5/hZu5aHyuC0duz5SO5ek4XLpwfUv2J2bK6UDw/kz5oi53Z8p4f6Yca3J3ppTjp03vzpTjizXvz5SGrz41/ujTbzPlmPTZpOP1fP71678aOWex41Cer4D9Tmssf/14Yfd3WuM/0Zr+x7YGn0l+4mu/f61mPs0vlx58w4agHtJ+wIaVF210XODweLxow/PZRvqrfZqZFq0efOZso8KGfv5Mcb5NNl/BFE4u+PUm2FLK2zdafGHj3mq3nG4K/AkbNy8sOvVpxaUp1R+HPpV377Q4VkOx6OZ7aP5ONdoPBDKxtwPZ+cpiwYX+0j5tzdlGwxdg7PMe8dNv9927k49G7m38nU3c2vj7wsSdjb/j3dy3lu/n273vLN+Pt+DfqsP5Hv07dTh+PuPmxyLPNu59K9KP1xze/gbH0czN+Xk0cW9+nk3cmZ/nT+Dc/pjI2coPfLzm7hw527g5R9rPzJH2/hxp78+R9vYcOd0uXJARVTie/7ICOpvIY4fCEeQ7JnA2JvQO4a8mnkfWxzXUwMPtqzZykWx0PP6dpvCdEbSd+h0Tlg8dH08Kv2HC8xWL51HQa8MqmYX43B9/zUTNLNNnr5TXaoETz/p4qTtV8emdDzcSjrsWCm42e55c91cqUQqydvles++YqLjCs47XatHo8y7qr5kwZNj18VpD8J3sKq81pGbcewaw1xpiyLI1f60W2E4uPl6anGWgL3iX/xsmPE/kXO0VA/Sr2l7rhwc9Zlg7hN7TXWTv++nIU4Yhr/UE7kHy9mZXvmagWs29BNPPv/hxNGGU+F3eN9FeM4FcTzt8/+RkwpFL6E1eMtHzza/64Xqs79Qi95k/5N29bOK1Qe0PpNyVx2smcuu+dn1tUHu+ovjE8WItcl50e3FQM+w+8aVaPB84DQ+c9pKJDw969VMTpZxekSqCHzKh7ijfeU7Lx28xf60pmc8p1R6vmcDnjuQ1L7me7/C0WF808YAJfduE1Be7E8+s0l+rRUVftPF2LV4c1Jsvh8jjeEXDrZdD5HSedPflkNMqIB2+8Urkl12uewbkJQMtb6+0D6mbtw3cu6ji7duE387cejtx6zQKOFFXL59vIx1XMD1DrtGS8tcLGY9rh1xeF6PMr++Y6A2fMWiv1WLkN/fk8SivmJAHzhU+vH/9jVrgM0rlw5vg3zGB74b08lJDrg/c5Pp6vFYLfJmqKKdZfMOEZrB7njy3T00UkT90IfRcE+eYVH+tNzRvOyr8XtKrHfqiCccLHu785vavHVqP33HFk4XTItvuexq+OTTUPq3G0YTSqyr1JRPe8YXfDx8++a0zfuAj0k8rP/AV6eMzeMczuDxOzTm90WSOHZTncvfTC4u+spLr7nJdLfOpldOLRM8HX3rdpR5apMfET0PiJ8WhYd8wYnBf0/qqEXzgxoyC6u9G9N3Hni8r8kBF6qEixzu2cN92o4SR62L071iBEza+d+h3K6cGOXrW/TQ8x69L5i3ktfI35R/+HSuaF9vUpicrp29/3s50PHaLIzZ9+ArZb93Sji+O5KtJ/N2/X9csx1MgzzV16/w5Rf2tIueXpBAOOHlEv9UnyMh5PmmVQ58cb2TDDq3zdxl1/GrlmBy4HajRa05/x8aPTNr2I5PW/vhJi53Opyv75wN0fFPJcsY91zX11KDjrT24+0vpR2z8OvlPr5TIwNu9D9pqlPHrr5gdr73HwZ3yxxpq/9XK8Xz75n1zX9Qltw9EPzwO/1aXcZwt9xKo5fTqUmv55mRr3KJvjNBzXyo3QDkr7fcROr3K1fD9ifbgy2puP8GpP7AYr+OVZ1rFc6Sy8/z+yOQ/8kzrP/BM++WjJJ4z7PMv+pXYMX3/gdTfvmD1/FB7f4SOj8btgU/pfXgD6Fcr/fT2YVxLsLYr6uHNgaOVMnIXSh79aEV/Ihyc7vNr7ZHbio2tfMfGvXcyzq25+06GHN8BuvtOhpzejLr3TsZ5vj13jPPgTx6nxeXpvajrEq/cOBiPQ3uG/MRMOb0ZdXemHJcd+YK48ej8vnTRd3ehv7BxayP6i4UYrn4uH645/N5yjq1QdPvdyvGtqJtp4vX48bJ7aeJftcfRHq+v9orjMhPnDx+9boWPen+1Un/izaj6A29GfaM9/vIGggu2NOvLI9SxI9l5b/V1K6e61NNdMbdHqJQ/eoR6Q3v42PR7vTKwWB787bDXrXAmz+99236ib+2P7ltuj70cEwZWqKO8OkLyyP3A57HV0RPvbkX0+vrO181f96OVu89fVX7i7ekqb789fd5wGrjXGR2r9RubTQX3sT7PB+tPbDcdx9h+ZIztR8a4Pn5ijE9HYrfH+LQdiE1SPqX8dXxqPe17YWtGK9/Y8ftO6+mzdbm45Fv8/05N2g8869f6E2/Z19PNMjef9c827q0Kz625PWP1R2as/sEzduTD/qAsot/nyek7U61gA08o6+KbM7bj26/8Pc/fq3KaspSCWE8fxK36I1NWf2DK6g9MWf2RKdt+ZMq28sf+kN7+GaynM7HnzkLm+fCbc3/HyuliycfAHfh8VZTaN+pS8fBWP9xB+ntd7CfC9al378/94w/hzbl//jG9N/ePrbk99+0nLlap9vbFKl/MlJKvttTnauEwU06HYopLM3XU+uqslZLXZoof62I/EbHtR2at/cCstR+YtfYjs9Z/ZNb6+7P2fAhb8QFzvgDj10PY6qdJm19QU0q8uV6vvW+jZWImX4X/TRvumQhhL9qwR35Kiu/yeNlGe9VG9oe93B+W/WEv94dnW/zl/mAbr/YHEnf95f7w7A9/uT96tqW/3B9s49X+6Jl22/3lemTKT++v1mPkGyjj5f5gGy/Xo+PGhsP8OCZw3P7W3zkNpCkSEek07zcr9fgh2ZKD48Lv5fxu5fSFX3yI5kOe+eM77bn7db0vrNz8BOLZyt1vIH6R1nLvdPJoA0eLT9QXbdw7Cz8m+tx9INHHT+zF6uP9vVg9HX7dvl1DT+9x3bxd42zj1u0aX7Tm5gUbX1i5eUHGF4lYj3xMq8K3U/yaiKXlJ3aX9fRRjpseeLZxz3vOrbntPadzr/veczr4uv04f0y2w+eTZLTTGB8/b5Unrc9VLf8i/2rk9ME9/q4ypYT9ejenyvEVvMwB4Rsxv2UiE16N3mb/pomcJI/Pa/FF/mIe7bTHh4fPX+txWme1THZVzkV5w8j41MjtpE6+m/P3eXa8rEtxoq+1H9pzunn1kV+ns8KfU/zNyGmy8kcZS3v0HzHDe+X2rUU5Ls85Z0afDqtGy8P4B72Z89thop6OvPC81enmmt9ykbXeW5aP8vlDqNb3H2TP9cgLU54ucLLhPxHqT2m3dx+U6viJByV9vP+gdLRx80Hp2JqbV2d9YeX+g9Lp0OxR/36s/s1zTuddNVeBSu351YVVjzne+TEDfuXQ6ncaUx64EboeG/MTN/ervn8f+7kmt5/Y2k9swGr7gQ3Y269h6uE1TD0ddpWOD6B1Spr67fKLY9LuzeXoMX34/vD8SJRt/Y8dno9vr8hheOzm9TvHkxT9kcQetR9YetkPLL1+JMFI7UeWXmZ/8Eyp2a+1fvhcy3dePVEs0p+bE8f5Nv5oK/dujf3Cxq1rY7+ycefe2C+2UG7e7vnVds7Np5Qvtv3w0SZr5cWtQ3zqlW+nqd/aknVk2vbXN3bzZoTnOtkOVo6vH5e8venpSIeXmPX08cxsD8UT/V6OOW5m6eP1fPeO63LGy7n33fGb7v1VK7hO5In+qhUbSOx5vFwXQ+/yFQ3ffKfn7WuZJK8I1w+/6VV/nWt397f08+8k6zheXEOfgD98qVzH8Zd0O2CnyzN+u7TsaKPnj3Hnz7X8buNuYw6f0z5364DvjFEPPXJ6EeHmN6y/qAm+Hsmngb/X5HQZ3L0PR+s47XDdfa/8aOX24ea5LneP8c5W7h7jna3cPWhtp6Ov8qB3RZ5MtWnftIMY+WR71c5c/649ROVLMr9rB2+vXFsVn9v5YsRvHv9+YeXmU8LRm25+/Pzo1s+9snwdpzz6a7FBSl7pIeXwfft2/DL9vdjQymmU735U/liTu/16HuGbT5NfzNpHxds4H275++bsL+iY6yrv1+3gFvry4TrP+5c43ltyHw00GOB9+NsGbi0X3k5VODYhL7JsH44B7hu4cxfJ6brzzHTkheivz54nAzkIvAr9joF8/B19vGKg4EqJJ+pLJiS/Onwllrxt4rAwOd62mClwhZfjr5qQx2smGj7McHj//DgiOSnK4/Da+NFELmiuD8S/bcJfrAWeXsrDXzSBUPl4bV4gif4ZbO1tE9ZeM4F1Kt/H8T0TFSZem+D46HsReakh95LU3t6qOu186wO3WZXDg5L6+6vkdj44urVKPtq4uUq+35jPV8nH+9bzoiTh/epvWGiCryvWzxfZ7fSSyYdF9mlUzkbwYHJaqd+vyedGjtO045OVWg7V8Pdn2MnG3RnWziucWzfht9OR1c2b8NvpiOf6pjwtidth66KdjpuG4sGpPQ4L2XY6Cb93sfIXXVvyKtRndC6Hrj2dIuBjM4+TiXL8kXP8yulpC+WrEbr5ucSv7AynZRs/mn7TjtH3Ds3sZTt0/c2D77X7tp1BH6V89FdnsGeezfhwu1B73cp42crAh6NGe9HK/S9TfjkDb37283b4/nxPp/kxxwVvGJ2C5qlrb3439Csr974c+myO/cwA+dvfP/7Cxr1T4C9sfHoK/D+fhX/+lz//7Z/+8m//8s//8ed/++u/P//df1+m/vbnf/5ff/nXVfw///nXf6H/9z/+//9v/z//629//stf/vx//+n//e3f/uVf//d//u1fL0vX//enx/qf/9Efz1+P/hD5n//wp/IsP6PTs03Xmu/6L/X5X57Ljhb/7/XX/dlt//D00cf1H+bfrw//h+t/x//876vK/x8="
4218
+ "debug_symbols": "tf3djiW/ceUN34uOdZAMBiNI38pgYMgezUCAIBuy/QIvDN/7szOYjLWqWpuVtXf1ifrHv7pj8StiZ5JB5n//4f/8+V/+6//981/+9n//7T/+8E//67//8C9//8tf//qX//fPf/23f/3Tf/7l3/72+K///Yfj/J9S5Q//VP/4+LP+4Z/s/FP/8E96/tmuP+360//wT/38s19/jvmnHtef5fpTrj/r9adef7brT7v+vOzpZU8ve+2y1y577bLXLnvtstcue+2y1y577bLXLnt22bPLnl327LJnlz277Nllzy57dtmzy55f9vyy55c9v+z5Zc8ve37Z88ueX/b8stcve/2y1y97/bLXL3v9stcve/2y1y97/bI3Lnvjsjcue+OyNy5747I3Lnvjsjcue+Nhrxx//IMcx4KyQBY8bJZ6gi5oCx5mi53wsCvxl/uCcUE5FpQFsuBhWcoJuqAtsAW+oC8YF8ixoCyQBcuynJblhLbAFjwsl35CXzAuqKflgLJAFtQFuqAtsAW+oC8YF+iyrMuyLsunL9WzW05nmtAW2AJf0BeMC06XmlAWyIJluS3LbVluy3Jbltuy3JZlW5ZtWbZl2ZZlW5ZtWbZl2ZZlW5ZPL6vnEJxuNqEskAV1gS5oC2yBL+gLluW+LPdluS/LfVnuy3Jflvuy3Jflviz3ZXksy2NZHsvyWJbHsjyW5bEsj2V5LMvjslyPY0FZIAvqAl3QFtgCX9AXLMtlWS7LclmWy7JcluWyLJdluSzLZVkuy7Isy7Isy7Isy7Isy7Isy7Isy7Isy6cP1vaA0wcnlAWyoC7QBW2BLfAFfcGyrMuyLsunD9Z+Ql2gC85fyHqCLfAFfcG44PTBCWWBLKgLdMGy3Jbltiy3K27UdsWNaseCskAW1AW6oC2wBb5gWbZl2Zfl0wfVTpAFdYEuaAtsgS/oC8YFpw9OWJb7styX5dMH1U9oC2yBL+gLxgWnD04oC2RBXbAsj2V5LMunD7bjhL5gTNDTB5ueUBbIgrpAF7QFtsAX9AXjgrIsl2W5LMtlWS7LclmWy7JcluWyLJdlWZZlWZZlWZZlWZZlWZZlWZZlWZZlWZbrslyX5bos12W5Lst1Wa7Lcl2W67Jcl2VdlnVZ1mVZl2VdlnVZ1mVZl2VdlnVZbstyW5bbstyW5bYst2W5LcttWW7LcluWbVm2ZdmWZVuWbVm2ZdmWZVuWbVm2ZdmXZV+WfVn2ZdmXZV+WfVn2ZdmXZV+W+7Lcl+W+LPdluS/LfVnuy3Jflvuy3JflsSyPZXksy2NZHsvyWJbHsjyW5bEsj8tyWz7Ylg+25YMtfNBO0AVtgS3wBX3BuCB8MKAskAXLclmWy7JcluWyLJdluSzLsizLsizLsizLsizLsizLsizLsizLslyX5bos12W5Lst1Wa7Lcl2W67Jcl+W6LOuyrMuyLsu6LOuyrMuyLsu6LOuyrMtyW5bbstyW5bYst2W5LcttWW7LcluW27Jsy7Ity7Ys27Jsy7Ity7Ys27Jsy7Ity74s+7Lsy7Ivy74s+7Lsy7Ivy74s+7Lcl+W+LPdluS/LfVnuy3Jflvuy3JflviyPZXksy2NZHsvyWJbHsjyW5bEsj2V5XJbtOBaUBbKgLtAFbYEt8AV9wbK8fNCWD9ryQVs+aMsHbfmgLR+05YO2fNCWD9ryQVs+aMsHbfmgLR+05YO2fNCWD9ryQVs+aOGD44SyQBbUBbqgLbAFvqAvGBfosqzLsi7LuizrsqzLsi7LuizrsqzLcluW27LcluW2LLdl+fRBO06wBb7gYdnkhHHB6YMTygJZUBfogrbAFviCZdmWZV+WfVn2ZdmXZV+WfVn2ZdmXZV+WfVnuy3Jflvuy3Jflviz3Zbkvy31Z7styX5bHsjyW5bEsnz5o9QRd0BaclvUEX9AXnJYfs85PH5xQFpyWxwl1gS54WPZygi3wBX3BuOD0wQllgSyoC3TBslyW5bIsnz7oesK44PTBCWWBLKgLdEFbYAt8wbIsy3Jdlk8f9HaCLKgLdEFbYAt8QV8wLjh9cMKyrMuyLsu6LOuyrMuyLsu6LOuy3Jbltiy3Zbkty21ZbstyW5bbstyW5bYs27Jsy7Ity7Ys27Jsy7Ity7Ys27Jsy7Ivy74s+7Lsy7Ivy74s+7Lsy7Ivy74s92W5L8t9We7Lcl+W+7Lcl+W+LPdluS/LY1key/JYlseyPJblsSyPZXksy2NZHpflfhwLygJZUBfogrbAFviCvmBZLstyWZbLslyW5bIsl2W5LMtlWS7LclmWZVmWZVmWZVmWZVkOH+wn2AJf0BeMC8IHA8oCWVAX6IJluS7LdVmuy3JdlnVZ1mVZl2VdlnVZ1mVZl2VdlnVZ1mW5LcttWW7LcluW27LcluW2LLdluS3LbVm2ZdmWZVuWbVm2ZdmWZVuWbVm2ZdmWZV+WfVn2ZdmXZV+WfVn2ZdmXZV+WfVnuy3Jflvuy3Jflviz3Zbkvy31Z7styX5bHsjyW5bEsj2V5LMtjWR7L8liWx7I8LsvjOBaUBbKgLtAFbYEt8AV9wbJcluWyLJdluSzLZVkuy3JZlsuyXJblsizLsizLsizLsizLsrx8cCwfHMsHx/LBsXxwLB8cywfH8sGxfHAsHxzLB8fywbF8cCwfHMsHx/LBsXxwLB8cywfH8sGxfHAsHxzLB8fywbF8cCwfHMsHx/LBsXxwLB8cywfH8sGxfHAsHxzLB8fywbF8cCwfHMsHx/LBsXxwLB8cywfH8sGxfHAsHxzLB8fywbF8cCwfHMsHx/LBsXxwLB8cywfH8sGxfHAsHxzLB8fywbF8cCwfHMsHx/LBsXxwLB8csS9YTpAFdYEuaAtsgS/oC8aEcpxOeFFJkqSadJqXoJZkSZ7Uk8ai0x0vKkmSVJNSo6RGSY2SGiU1SmpIakhqSGpIakhqSGpIakhqSGpIatTUqKlRU6OmRk2Nmho1NWpq1NSoqaGpoamhqaGpoamhqaGpoamhqaGp0VKjpUZLjZYaLTVaarTUaKnRUqOlhqWGpYalRuzfa5AmtaRTw4M8qSeNRbGbP6kkSVJN0qSWlBqeGp4anho9NXpq9NToqdFTo6dGT42eGj01emqM1BipMVJjpMZIjZEaIzVGaozUGEujHEdSSZKkmqRJLcmSPKknpUZJjZIaJTVKapTUKKlRUqOkRkmNkhqSGpIakhqSGpIakhqSGpIakhqSGjU1amrU1KipUVOjpkZNjZoaNTVqamhqaGpoamhqaGpoamhqaGpoamhqtNRoqdFSo6VGS42WGi01Wmq01GipYalhqWGpYalhqWGpkX5e0s9L+nlJPy/p5yX9vKSfl/Tzkn5e0s9L+nlJPy/p5yX9vKSfl/Tzkn5e0s9L+nlJPy/p5yX9vKSfl/Tzkn5e0s9L+nlJPy/p5yX9vKSfl/Tzkn5e0s8l/VzSzyX9XNLPJf1c0s8l/VzSzyX9XNLPJf1c0s8l/VzSzyX9XNLPJf1c0s8l/VzSzyX9XNLPJf1c0s8l/VzSzyX9XNLPJf1c0s8l/VzSzyX9XNLPJf1c0s8l/VzSzyX9XNLPJf1c0s8l/VzSzyX9XNLPJf1c0s8l/VzSzyX9XNLPJf1c0s8l/VzSzyX9XNLPJf1c0s8l/VzSzyX9XNLPJf1c0s8l/VzSzyX9XNLPJf1c0s8l/VzSzyX9XNLPJf1c0s8l/VzSzyX9XNLPJf1c0s8l/VzSzyX9XNLPJf1c0s8l/VzSzyX9XNLPJf1c0s8l/VzSzyX9XNLPa/p5TT+v6ec1/bymn9f085p+XtPPa/p5TT+v6ec1/bymn9f085p+XtPPa/p5TT+v6ec1/bymn9f085p+XtPPa/p5TT+v6ec1/bymn9f080g56iOoJElSTdKklmRJntSTxiJNDU0NTQ1NDU0NTQ1NDU0NTQ1NjZYaLTVaarTUaKnRUqOlRkuNlhotNSw1LDUsNSw1LDUsNSw1LDUsNSw1PDU8NTw1PDU8NTw1PDU8NTw1PDV6avTU6KnRU6OnRk+Nnho9NXpq9NQYqTFSY6TGSI2RGiM1RmqM1BipMZZGJC5dVJIkqSZpUkuyJE/qSalRUqOkRkmNkholNUpqlNQoqVFSo6SGpMbp5+MIkqSapEktyZI8qSeNRaefX5QaNTVqatTUqKlRU6OmRk2NmhqaGpoamhqaGpoamhqaGpoamhqaGi01Wmq01Gip0VKjpUZLjZYaLTVaalhqWGpYalhqWGpYalhqWGpYalhqeGp4anhqeGp4anhqeGp4anhqeGr01Oip0VOjp0ZPjZ4aPTV6avTU6KkxUmOkxkiNkRojNUZqnH4+JMiTetKp8diuKZEcdVFJkqSapEktyZI8qSelRkmNkholNUpqlNQoqVFSo6RGSY2SGpIakhqSGpIakhqSGpIakhqSGpIaNTVqatTUqKlRU6OmRk2Nmho1NWpqaGpoamhqaGpoamhqaGpoamhqaGq01Gip0VKjpUZLjZYaLTVaarTUaKlhqWGpYalhqWGpYalhqWGpYalhqeGp4anhqeGp4anhqeGp4anhqeGp0VOjp0ZPjZ4aPTV6avTU6KnRU6OnxkiNkRojNUZqjNQYqTFSY6TGSI30c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f080ggGz2oJmlSS7IkT+pJ46JIJLuoJElSTdKkU2MEWZIn9aSxKPx8UkmSpJqkSalRUqOkRkmNkhqSGpIakhqSGpIakhqSGpIakhqSGjU1amrU1KipUVOjpkZNjZoaNTVqamhqaGpoamhqaGpoamhqaGpoamhqtNRoqdFSo6VGS42WGi01Wmq01GipYalhqWGpYalhqWGpcfr5Y5s30IEdOE48Lw6IlLSFBSjAClRgAxrQgR0ItQ61DrUOtQ61DrUOtQ61DrUOtQ61AbUBtQG1AbUBtQG1AbUBtQG1kWrjOIAFKMAKVGADGtCBHQi1ArUCtQK1ArUCtQK1ArUCtQK1AjWBmkBNoCZQE6gJ1ARqAjWBmkCtQq1CrUKtQq1CrUKtQq1CrUKtQk2hplBTqCnUFGoKNYWaQk2hplBrUGtQa1BrUGtQa1BrUGtQa1BrUDOoGdQMagY1g5pBzaBmUDOoIZYMxJKBWDIQSwZiyUAsGYglA7FkIJYMxJKBWDIQSwZiyUAsGYglA7FkIJYMxJKBWDIQSwZiyUAsGYglA7FkIJYMxJKBWDIQSwZiyUAsGRlL5MhYIkfGEjkylsiRsUSOjCVyZCyRI2OJHBlL5MhYIscBtQK1ArUCtQK1ArUCtQK1ArUCtQI1gZpATaAmUBOoCdQEagI1gZpArUKtQq1CrUKtQq1CrUKtQq1CrUJNoaZQU6gp1BRqCjWFmkJNoaZQa1BrUGtQa1BrUGtQa1BrUGtQa1AzqBnUDGoGNYOaQc2gZlAzqBnUHGoONYeaQ82h5lBzqDnUHGoOtQ61DrUOtQ61DrUOtQ61DrUOtQ61AbUBtQG1AbUBtQG1AbUBtQE1xJKCWFIQSwpiSUEsKYglBbGkIJYUxJKCWFIQSwpiSUEsKYglBbGkIJYUxJKCWFIQSwpiSUEsKYglBbGkIJYUxJKCWFIQSwpiSUEsKYglBbGkIJYUxJKCWFIQSwpiSUEsKYglBbGkzFhigSNxxpKJBSjAClRgAxrQgVCbsUROnLFkYgEKsAIV2IAGdGAHQs2gZlAzqBnUDGoGNYOaQc2gZlBzqDnUHGoONYeaQ82h5lBzqDnUOtQ61DrUOtQ61DrUOtQ61DrUOtQG1AbUBtQG1AbUBtQG1AbUBtRGql3XiU081cq8r0uAFajABjSgAztwJEYsuRBqBWoFahFLigc2oCWG6/Wg0A0MH4s7yyI9b6EAK1CBDWhAB3bgSGxQa1BrUGtQa1BrUGtQa1BrUGtQM6gZ1AxqBjWDmkHNoGZQM6gZ1BxqDjWHmkPNoeZQc6g51BxqDrUOtQ61DrUOtQ61DrUOtQ61DrUOtQG1AbUBtfAxqYEKbEADOrADQ03/eN5RdwALUIAVqMAGNKADOxBq4WPSAgsw1CywAhXYgAZ0YAeG2jgxfq8vLMBTrZbAClTgqVajvvF7faEDO3Akxu/1hafaefGXRObfwgpUYKhFzSJoXOiJETXijrdI9nv8UgeeFnT+19OCRk9GfLjQgR04EiM+XBh2o/siPlxYgQpsQAM6sANHYsSHC6EW8eG8TUsi2W/hqdaimREfLjSgAztwJEZ8aDGaER8uFGAFKrABDejADhyJHWoRH1oMS8SHC0OtBiqwAQ0YatEPER8uHIkRHy4sQAGGWkyuiA8XNqABHdiBY2FkBC4sQAFWYKiNwAY0YKi1wA4cieHzF54WzrtDJDL8ynnhhUSK39nIyPAr53UWEil+CwV41suiXuHbFzbgWS8PgfDtC08tl8CRGL594al2XiEhke23sAIV2IAGDLvRyPjt96hv/PZ7tC18+8IGNGDUN7o0fPvCkRi+fWEBnmo9WhG+faECT7XzBKZEZt9CB3bgSAzfvvBU6zFU4dsXVqABw0J0SfjrhWEhxiL89cIKjPpGn4W/XmjAqG+McfjrhaEW/RD+euGpNqLq4a8j+iH8dUQlw19H9Hr464UGdGAHjsTw1wsLMNSiZuGvI6pz+uvjsTewnRjVOT1T4uUtUvgmRg7fwgIUYAUqMIxp4Eic9+tOLEABVqACw9jZ65GA93jIDhRgBSow2tYDDejADhyJcaHuhQUowApUINQq1CrUKtQq1BRqCjWFmkJNoaZQU6gp1BRqCrUGtQa1FsZGoAEd2IEjMe75vLAABViBCoSaQc2gZlAzqDnUHGoONYeaQ82h5lBzqDnUHGodah1qpztJXCIdmXOP17bAUy1eyCJPTuI1LNLZJB6lI59t4UgMZ4jbnSOlTeIpNXLaFlagAhvQgA7swJEYF1BfCDWBWvhQPNzavIh6YgMa0IEdOBLDhy4sQAFCrUKtQi28Rc5OjSQ2iWunI4tNrkucK1CBDWhAB3bgSAy/uLAAodag1qDWoNag1qDWoNagFo4TbwGR2LZQgBWowAY0oAM7cCQ61BxqDrVwnHj0jyy3hQ0Yds+4HglsEq8fkcEmNeZOr0AFNqABHdiBI3EcwAKE2oDagFr8ktWYO8OADuzAsTBy2hYWoAArUIENaEAHdiDUCtTC5+PlLPLbFlagAhvQgGH3DEyRvSbxyhbpa3LezCyRv7awAQ3owA4cieHHFxagAKFWoVahFr+F8QYZyWwLO3Akxm/hhQUYdltgWIjuCz++cCSGH8frXaSrLRRgBSqwAQ3owA4ciQY1g1r4scawhB9fqMBTLV7kIntt4akWL3KRvybxnhYJbBKvKpHBtrAAT7V4I4sktoWnWrwuRRqbxItR5LE9fhQCHdiBIzF+AC8swNOuRSXDj+N1KfLUHgEucCSGH18YFmKEwo8vrEAFNmDYPRsUiWgSb1SRiSbnPYISqWgLFdiABnRgB47E8M0LT7Xz1kCJnLSFFXiqxZtapKUtNKADTzWvgSMxfo8vDLUWKMAKDDUNbEADOrADR2L4cbwBRpraQgGGWnR1+PGFDWjAkRi/xx7DEr/HF54W4k0tEtEWGvCsb7wMRi7awpEYfnxhAQqwAhXYgAaEWoNag5pBzaBmUDOoGdQMagY1g5pBzaDmUHOoOdTCj+PlNbLTFjZgqMXUCD++sANDLUYo/PjCU+08wSWRnbawAhXYgKdavLxGdtrCUy3eYyM7TeI9NrLTHsvFgQUowFCLKRc+f2EDhlpMo/jtvrADx8LITltYgGF3BPr5FY8jsJ9YAkdifGziwgKUE2tgBSqwAQ0YahoYah4YalGd+ABFbO1ExtnC0268SUQWWY2v1US+2GNxOrAABXjWrLRABTagAR3YgSMxPjMR7y2RL7ZQgJo1iy+9XGjAUyJebCJJbOFIjG++xMZAJIktFODZoHgXiSSxhadaLOtHkthCB4aaBY7E+A7MhQUowApUYAMa0IFQM6g51BxqDjWHmkPNoeZQc6g51BxqHWodavObMTHl5ldjJiow1GIizm/HTHTgqRZvKJEkdmF8Q+bCAjzV4vUhksTq9XWYUy3eDiJJbKEBT7V4Xo8ksYXjwhpJYgsLUIAVqMAGNKADOxBq4f7ni02NJLGFAqxABTagAR3YgSNRoCZQi2/QnK8ENZLEFiqwAQ3owA4ciRFALizAUPPAClSgJ0ZQON8vaiR+1fP9okbi18IKVOBZXy2BBnRgB47EiA8XFqAAK1CBUGtQa1BrUGtQM6hFfDhfNWokfi0MNQ1UYAOGWkyjiA8XduBIjPhwYQEKsAJDLQYr4sOFBnRgqPXAkRjx4cICFOCp1mL2RXy4sAEN6MAOPNVa9EPEhwsLUIAVqMAGNKADOzDVIvGrnm8+NRK/Fgow1DzwVDv3dmokfi081c63mRqJXwtPtfPFpkbi14URHy4sQAFWoAIb0IAOhFqBmkBNoCZQE6gJ1ARqAjWBmkBNoFahVqFWoVahVqFWoVahVqFWoVahplBTqCnUFGoKNYWaQk2hplBTqEUsOd9NayR+LRRgBYZazJ2IJRca0IEdOBIjllxYgAKsQKgZ1AxqBjWDmkHNoeZQc6hF1DhfoGskc1ULZ4j4MDHiw/kuXSOZa6EAK1CBDWjAsHv+SESC1jUAA/0bPn9hAxrwbLGHb4bPXzgWRoLWwpw7kaC1sAIV2IAGdGBfdZDp84HlABagZB3C5y9UINTg8wKfF/i8wOcFPi/weZGcqSIVqMAGtKyDOLADoQafF/i8wOcFPi/weYHPC3xeps9HHSp6sqInFT2p6Mnw+XMVpc6vSF4YPRl2w+cvNKADo20tcCSGz19YgAKsQAU2YKhZoANzgs+PS54LH3V+XvJCAVYgpkY4+oUYLMNgGQbLMO0d094xWI7BcgyWY7Acg+UYLMdEdExEx9QI9z+Xb+r86OSFCoxWRD+E+/eoWTweXNiBIzEeDy4sQAFWoALzMXR+fPLCsXB+gPJcL6nzE5QXhl0NrEAFnq04F0nq/BjlhQ6MVljgSIygcGEBCrACFdiABnQg1OaKQLQi3P/CCgy7PbABDXjaPVdn6vxE5YUjMdx/RD+E+18owFNtRD+E+1/YgAZ0YAeOxHD/CwtQgFBTqCnUFGoKNYWaQq1BrUGtQa1BrUGtQa1BrUEtfvJHjFBEgokRCS4MtRiAiAQXhlrM1IgEFzbgQ03PpakaeWYL+4kx3GckuPCMBHrECMWHLy8UYD0xqhOfv7ywAQ3owJ4Yn708ombxmcsjWhEfujzXrur81OWFDuzAs74l5ll88vLCAhRgBZ5qJbo6Pn55oQEd2IFjYeSO6bkpXyN3bKEAK1CBDWhAB3bgSCxQK6HmgQKswFAbgafaudlf43a5hafaufpVI/ts4al2Lm7VyD9bWIACrEAFNqABHdiBUKtQq1CrUKtQq1CrUKtQq1CrUKtQU6gp1BRqCjWFmkJNoaZQU6gp1BrUGtQa1BrUGtQa1BrU4uO3ErOvdeBItAMYajEfTIAVqMAGNKADO3AkRiSI7+JGrppKTLnw+QtPC+fCXY1ctYUjMT5/e2EBCrACT7vn0l+N/LOrSwZaHD5/oQAr8GxxfEE58s8WGtCBGM2RapGVtrAABViBCmxAW9WJC+YWdmCOZqStLYzeqYECjN4Ju+HzFzagAaNtHtiBIzF8/sICFGAFKjDUeqAB+xqsSHHTWM6LFLeFBSjAugYgUtwWNqABHdiBIxGO3uDoDY7e4OgNjt7g6A2O3uDoDY4eyWway49x2dzCCjztxnpfZLtpLPJFtttCB3bgSAyXvrAABViBYTemRjjvhR04EuPHPZYUI69toQArMH+a2/xxn2hAB3bgSAxHv7AABRhbW6EWj/kXOjBaYYEjMdz/wmhFTKNw/wsrMMYi3Cnc/0IDnq2Ib13HdXMLx8K4cC6212rcOLdQgBWowAY0oAM7cCQWqBWoFagVqBWoFagVqBWoFagVqAnUBGoCNYFauP+ZPlIjUW+hAUNtBHZg9OQ5+yJRb2EBnuMWC66RqLdQgQ1oQAd24EiMSBDrtJHUt1CAFRhq0cyIBBca0IEdGGrRzPjJv7AAT7VYCo6kvoUKbEADOrADR2LEhwsLEGoGNYOaQc2gZlAzqBnUHGoONYdaRI1Y246kvoUNaEAHduBIjKhxYajFaEbUuLACQ00CG9CAoWaBHTgSI2pciL878HdH/t1I31tYgAKMmvVABTZg1GwEOrADR2I8CFxYgAKsQAU2INQK1OJBIBbCIqnvwngQuLAABViBCmxAAzoQagK1CrUKtYgEsQgVSX0aK3CR1LfQgR0Yds9YEkl9CwtQgBHPQiKWAS5sQAM6sANHYiwDXBi9o4EKbEADOrAnhh/H2mCk72ksCEb6nsYiX6TvLXRgWIjJFR47MTw21s8ifW+hAM/6xupXpO8tbEADOrADR2J4bI8hDI+9UIAVqMAGtCufq0ZS39UP8Tt/IXonPDZW4CKpb6ECG9CA0YqYBOHdF46FcRHdwmhFCxRgBYaaBzagAUOtB3bgSAzvjmXCSADU8+xOjQRAPTOhaiQAaiylRQLgwgY87Z5JUTVS/S4MP76wAMNutG16rAUa0IE9cbrpxHqlR9aZs3dhA9qVNFnjgrmFHTgSI/f2wgIUYAUq8KxkLB5GJt/CkRg/whdG42Ow4kf4wgpUYLQieicy+S50YAeOxMjku7AABViBkekbapGzd2G0Ivo3nHdiOO+FBRitiK4O571QgQ1oQAeuLOY6c/YmRs7ehQUowApUYAMa0BPDeWN9MrLzFgqwAqMV4QHhvBca0IHRinCRyM4LnNl5FxagACtQgQ34sNuOiSPxdNOFBSjAClynJ+ooDWhAB3bgSIw83XiPjZy9hQKsQAU2YLQijNWob/zXKsAKDAsa2IAGdGAHjsTw4wsLUIAVCDWFmkJNoaZQU6g1qDWonX7czpzIGul7Cw3owOid+c9Goh3AAhRgBSqwAUOtBTqwA0eih5oFFqAAK1BzsLwBDejADhyJ/QBiPnTMhx52PdCADgy7PTDsnl4YiXoLC1CAZytK+MXp3Qsb0ICnWokROr27xVJ7JOoFaiTqLSxAAVagAhvQgA7swFDrJ4bPX1iAAqxABTagAR14qkkJPNXOBXiNRL2FBSjAClRgAxrQgR0ItRpqFliAAqxABTagAR3YgaE2TtQDWIACrEAFNqABT7Uzymkk9S0ciWd8WFiAAqxABZ7RaFY9fv0vdGAHjsT49b8w7Eb/RiQ4A5NGot7CsBCTIHLzJ0Zu/oUFKMAKVGADGjD6IaZy+HyNmoXPXyjAClRgAxowWuGBHTgSIxJcGGpRnYgEF1agAhvQgA4MtRj5iATnr7RGSt7CAhRgBSqwrbGIlLyFDuzAkRiR4MICFGAF2nULgM5b1y7swGjFOeUi+W5htCIshM9fWIHRihbYgAY8W3GeBtNIvls4EsPnLyzAU61F74TPX6jABjSgAztwJIZ3nwuCOm9S69GK8NgWLQ6PnRgee+FZsxYdFR57YdQsLITHXtiAUbPoh/idv7ADR2L8zl9YgAIMNQtUYAMa0IEdOLLF8YveoqvjF/1CBTZg2O2BDuzAkRg3PXioxU0PFwqwAhXYgAb0xPDjc9VS4x60hQKsQAWerbAYrPDjCx3YgWNhpNktPNXO5TyNNLuFFajABjSgAztwJIYfXwi18OMzjVEjzW6hAkPNAg3owFDrgaF2dkmk2bVzRUsjzW6hACtQgQ142vWoZPjxxPDjCwtQgDUxfljPFSKNbLeFIRH1DYc8l2808touDIe8sAAFWBPDcXrUNxznQgU2oAEd2IEjMR6QLyxAqDnUHGoONYeaQy1+Fs+1II2ksxZROZLOWo/hjh/ACw0YFmK44wfwwpEYjnNhAQow7MYAhDP0GIBwhnMlRyO9bGEBnhbOtSCN9LKFCmxAAzrwVDsXgDTSyy4MZzjXgjTSyxYKMOxqYFhogSMxJvi5YKWRSNbOBQqNRLKFFajAsOuBBnRgqPXAkRjT/kKoVahVqFWoxc/XhbbGIhLJFnZgjmYkki0sQF1DGMlhcwgjOewaLMVoNoxm+NAci4bRbBjNhtFsGM2G0YwftTluDaMZP2pzsAyjaRjN8MI5hOFvc9wMozn9LYYw/G12lKN/Hf3r6N/wtzlYjtF0jGb42xwsx2g6RrNDrUOtQ61DredoRoaVncssGhlWCxXYTpRAAzqwA0fi6QwLC1CAFRhqUZ3SgAZ0YAeOxNNxrER9T8dZKMAKPNXOtDWNDKuFBjzVStTsdJyFI7GGWg0sQAFWYKhpYNhtgR04EvUAhl0PDLs9MOyOQAU2oAFPNYkWn+60cCSe7rTwVJNo2+lDJlHf04dMojqnD5lEdU4fsjr/mQM7cCSePrSwAAV4qtXo9dOzFp5q8Q4ZCVQLHdiBI9EPYAEKsAIVCDWHmkPNoeZQ61DrUOtQ61DrUOuhFlOjG9CBHTgSxwEswLAbgzUa0IAO7MCxMFKwFhagACtQgQ1oQAd2INQK1ArUCtQK1ArUCtQK1ArUCtQK1ARqAjWBmkBNoCZQE6gJ1ARqArUKtQq1CrUKtQq1CrUKtQq1CrUKNYWaQk2hplBTqCnUFGoKNYWaQq1BrUGtQa1BrUGtQa1BrUGtQa1BzaBmUDOoGdQMagY1g5pBzaBmUHOoOdQcag41h5pDzaHmUHOoOdQ61DrUOtQ61DrUOtQ61DrUOtQ61AbUBtQG1AbUEEsaYklDLGmIJQ2xpCGWGGKJIZYYYokhlhhiiSGWGGKJIZbYjCUWOBJnLJkoKyLaDCATFdiABnRgB2bQNTmABQg1gZpATaAmUBOoCdQEahVqFWoVahVqFWoVahVqFWoVahVqCjWFmkJNoaZQU6gp1BRqCjWFWoNag1qDWoNag1qDWoNag1qDWoOaQc2gZlAzqBnUDGoGNYOaQc2g5lBzqDnUHGoONYeaQ82h5lBzqHWodah1qHWodajhscPw2GF47DA8dhgeOwyPHYbHDhtQG1AbUBtQG1AbUBtQG6nmxwEsQAFWoAIb0IAO7ECoFagVqCGWOGKJI5Y4Yokjljhiic9YMgJH4owlE0+1M4tZIw1sYQWearG+HmlgCw3owA4ciRFLYpk70sAWCrACFdiABnRgB45EhZpCTaEWsUSjdyKWXNiABnRgB4baGe0jOWxhAYaaB1agAhsw7J5vVJEcdlmI+HBhBZ4WYgE+UsYWGvCsbyzLR8rYwpEY8eHCUy2W5SNlbGEFKjDsRuPD52NZPtLAFgow6hv/LHz+wgY0oAM7cCSGz8e6fSSHLRRgBSqwAQ3owA4cCyM5bGEBCrACFdiABnRgqJ1DGGlgFvsBkQa2sAIV2IAGdGAHjsTw7guhJlATqAnUBGoCNYGaQE2gVqFWoVahVqFWoVahVqFWoVahVqGmUFOoKdQUago1hZpCTaGmUFOoNag1qDWoNag1qDWoNag1qDWoNagZ1AxqBjWDmkHNoGZQM6gZ1AxqDjWHmkPNoeZQc6g51BxqDjWHWodah1qHWodah1qHWodah1qHWofagNqA2oDagNqA2oDagNqA2oDaSLVxHMACFGAFKrABDejADoRagRpiyUAsGYglA7FkIJYMxJKBWDIQS8aMJedP0pixZGIBCrACFdiABnRgB55q50kAjRvqFhZgqI3AClRgAxrQgR04EmcsmViAUFOoRSyJnczIa1towJEY8eE8mKBxAd3CsBD9G/HhQgM6sANHYsSH2DqMDLaFAqzAU81DOOLDhQY81TzqG/HhwpEY8SG2GSODbaEAKzDUWmCoRX0jEsQ+ZOSqXRiR4MICPO3GjmNcNWexmRdXzVns4EUGm8Wee2SwLXRgB55qsa8XGWwLC1CAoRb1DfePPZ9IW7PYOIm0NYuNnkhbs9hvibS1wBZpawsLUIAVqMBT7dymaZG2trBf06hFrtqF4fMXFqAAK1CBDWhAB0KtQE2gJlATqIXPnztBLXLVFjZgNKgHOrADR2L4/IUFKMAKVGADQq1C7fR5P3eNWuSqXXj6/MICFGAFKrABDehAqCnUGtQa1CI+nGnO7ZhPChZoQAd24EicTwoTC1CAFahAqBnUDGoGNYOaQ82h5lBzqDnUHGoONYeaQ82h1qHWodah1qHWodah1qHWodah1qE2oDagNqA2oDagNqA2oDagNqA2Uq0cB7AABViBCmxAAzqwA6FWoFagVqBWoFagVqBWoFagVqBWoCZQE6gJ1ARqAjWBmkBNoCZQE6hVqFWoVahVqFWoVahVqFWoVahVqCnUFGoKNYWaQk2hplBTqCnUFGoNag1qDWoNag1qiCUFsaQglhTEkoJYUhBLCmJJQSwpiCUFsaQglhTEkoJYUhBLCmJJQSwpiCUFsaQglhTEkoJYUhBLCmJJQSwpiCUFsaQglhTEkoJYUhBLCmJJQSwpiCUFsaQglhTEkoJYUhBLCmJJQSwpiCUFsaQglhTEkoJYIoglglgiiCWCWCKIJYJYIoglglgiiCWCWCKIJYJYIoglglgiiCWCWCKIJYJYIoglglgiiCWCWCKIJYJYIoglglgiiCWCWCKIJYJYIoglglgiiCWCWCKIJYJYIoglglgiiCWCWCKIJYJYIoglglgiiCWCWCKIJYJYIoglglgiiCWCWCKIJYJYIoglglgiiCVxhZ2fx45afEt14Ui0A1iAAqxABTagAaFmUDOoOdQcag41h5pDzaHmUMsVziYzlkwMNTmxH8ACFGAFKrABQ00DHdiBoXa+B0S64cICDLWo2ahABca4hbEZSyY6sAPHwnocwAIUYAUqMFZve2AHRivOCRNJiAsLUIAVqMAGjD4Lu8WBHRhq58N0JCwuLMBQ88AKVGCsTIfa3NWY6MAOHIn1ABagACtQgWcrztyvFqmJC0divKGcuV8tUhMXCvBsxZn71SJhceHZZ2eWV4s77hY6MNRi3OINZWK8oVxYgAKsQAWGWgs0oAM7cCRGfLiwXFmKbaYx9hgLW+mGLW6zW+jADhyJM7lxYgHKlY/YruTGiQpsQLvyPdtMbrywA0fiTDGeWIACrEAFYuQ7Rr5j5AdGfmDkB0Z+YOQHRn5g5AdGfmDkB0Z+5MjHHXcLC1CAFajAHPnIwFzowA7MkY8MzIU58pFrOUdeS4585FoudGAH5shHruXCAsyRV6lABTZgjnzkWi7swBz5yLVcWIACrEAFRu9YYAeOxOnzE2MsohXT5ydWoAIj5bwGGtCBHTgSZ/r/xAIUYAXGGEcrpndP7MCROL17YgEKsAIV2IBQM6gZ1Axq8et/pom2SLBcKMAKVGADnmoSvX76/MIOHInx6y/R6/Hrf6EAQ20Enmo1JOLX/0IDOrADR2JEggsLUICnWo0RikhwYaiFm0YkuNCBHRhqZ9Uj7XJhAQqwAhXYgAYMtR7YgaF29k6kXS4sQAFW4ClxJhG0yLVc6MAOHInxIHBu1bfItVwowApUYAOGmgY6sANHYj2ABSjAClRgA0ItQsV54q9FruXCkRihIh4lItdyoQBDLXo9QoVGT8bjQYveiceDCx3YgSMxHg8urOc1OEGa1JIsyZP6ovDgM+ugRbLjheHBF5bzk1JBklSTNKklWVJYPN0iUhc9ntwjdXHOvbhwelJLOqsb8zWuoZvUk8aiuGp6UkkKkRitcMMLz75uMUThhhcaMKp5DlFkIfq51dYiC3HhWc/5/4eBHmhAB3bgSIyvzU0qSZJUkzSpJfXViZFdODsxsgv93ABrkV248GzqeSVYi+zChWdNzw27ZvOamaCeNBbN62aCSpIkhcWoSDhA7DhErmBMw0gVvKgknf86qhaXvU3SpJZkSZ4UIho4EmPen8cDW6QILhRgVDNGK34MLSofP4YT4+626Nr4LZwdE7+FF1agAsPs/GcGdGDPDg9PmhiedCHUHGoONYeaQ82h5lBzqDnUOtQ61DrUOtQ61OK38EJbU71jUndM6o5JHT+FF5aFkZHn5x1iLTLyFlbg6UwS1JIsyZN60lgUlzNOKkmSVJNSo6RGSY2SGiU14jfKA+M36sICjMZoYAWenXju67ZIwVtoQAd24EiM36gLQ80DBViBodYCG9CAoRbjEC564UiMa9rjr8Yt7ZMkqSZpUksKi6drRkKd9xjO8Lwe9Y8X0gsV2IBnTePpNe5gW9iBIzEeWS88qzopxKLnw0svVGCIWaABHRhi0RfhpRPDS3s0Lbz0QgGe0SuqEBc+TWpJluRJfVF44ojOCp8b0RfhcyOmVjx/XujADjxrGnvTkXW3sAAFWIFnVaPVcanTJEs6qxoDO69dDRoXzcvYJpUkSQqRiQpswJ4Yj5LnIcIWaXULzw7VIE1qSdEjPdCBHfioaI8928ipW1hOLIECrCdKoJ5YA9uJoXa6a48Vp8ipW9iBI7EewAIUYAWGWtS3htoIPNViWSFy6nosIET2XI9Vg8ieWyjAClRgA1piC2PRzFaAAqxABTagJVoYi46y+GcxqqbABjTg+a4bQx0LQ5PGolgWmlSSJKkmaVJLsqTU8NTw1Oip0VOjp0ZPjZ4aPTV6avTU6KnRU2OkxkiNkRojNeI+hujDOIE+aVw05qUqQSVJkmqSJrUkS/KknpQaJTVKapTUKKlRUqOkRkmNkholNUpqSGpIakhqSGqEY8SbfiSI9Vg2iASxft6S1CIVrEv8XQ08OzHuH1tYgOe0jkflMQ92B2lSS7IkT+pJY9E80R1UkiQpNSw1zrneY4UhcrN6vFrN3KxoZGyiTqpJmtSSLMmTetJYFJunk1Kjp0ZPjZ4aPTV6avTU6Kkxz3ScNI90BJWkWEIPqkmadPbCeTLXIvGqnw9WFolX/fz1tki8WliBCmxAAzqwA0diOYBQK1ArUCuhpoENaEAHduBIjN+bCwtQgBUINYGaQE2gJlATqM28y6CSJEk1SZNaUlhsJ8ZvSo3/GvuZI6gmaVJk2gVZkif1pLEo9jEnRcMnRhPDYnNgB55NPNeELFKmFhagACtQgQ1oQAd2INQcah5qMUtdgBUYajEO3oChFt3qoRbd6qEWjfeR2A/gqdZC+PTVhadaC6c5vbW3EI6Hw/kfLcmTetJYNHcogsJiTPbzYa+3qHQ4Z4uanr9AC8fCSIDq53KHRQLUQgFWoALD7tnASGrqZ0C0SGrq53uoRVLTwgpUYAMa0IEdOBLDDc93VoukpoUCDDUJVGADGjDUamAHjsS5khhUkiQp1kWDNKklWZIn9aR4oT4p1g8nlaRoT4jEA+CFCmzAnhg/jxYW4ufxwrAQox1PfRc2YLwyBXlSTxqL5rtZUEmSpJqkSS0pNSw1LDUsNTw1PDU8NTw1PDU8NTw1PDU8NTw1emr01AjftJjb4ZsXKjD6K6Z5N6ADz3EIX4wUpAtPB+1zupw/qAsFWIEKPNXmXAhvvvBU8xiz8GaPmoU3RysiBWlhAYbaCKxABcbTWJAleVJPGovC6SedFs81AYuEon791/Nfn5c+WSQULRyJ4ccXnjU93+MtEooWVqACGzCeG4OiW4JCywJDK9ofL28XPqyOqOzpniNaf7piOcLS6YsLCzBqFX83vPFCBTagAR3YgWe9RtiNB9sLC7Cuip3eelFLsrNa0censy7swLB/TpdI/llYgGdrRnRX/MJeeLZmRM/FL+yFBgy1GtiBI9EPYAEKsAIV2IAGhJpDzaHWodah1qHWodah1qHWodah1qHWoTagFl48YjKFF19YgdGTMVjhxRca0M85GJPw9OKFY2Ek/ywsJ5ZAOVECo20WqMAGPCd31DdSghZ24EgsB7AABViBCmxAqBWoFaiV6Mlz9kVK0MICFGAFKrABDejADoRahVqNtmmgACtQgQ1oQAd24EjUAxhqIawCrEADhoXTCyP5Z5xLRxbJPwsFWIFR3xHYgAZ0YAeORDuABSjACoSaQc2gZlAzqBnUzvgwSszqMz4sPNVKzOozPixU4KlWYhqd8WGhAztwJPYDWIACDLUYrK7ABjRgqIVn9Q4cieMAFmCoReNHBSqwAQ3owFNNoqMiPgRGotDCAhRgBSqwAQ3owA4MtTPuRKLQwgIMtRoYahqowFBrgQYMNQvswJEoB7AABViBCmxAA0JNoCZQq1CrUKtQq1CrUKtQq1CrUKtQq1BTqCnUFGoKNYWaQk2hplBTqCnUGtQa1BrUGtQa1BrUGtQa1BrUIpac2TYWqUYLC1CAZ1wvExXYgAZ0YAeOxHjWuLAAoxU9MOo7AjvwrG+NCR7x4cICFGAFKrABT7ux7hUpQVeXDLQ4fP5CBTbg2b+xXBYpQQs7cCxsR45mOwpQgBWowAY0oK86tOnzE3M0WzmAJesQPn9hBUKtQK1ADT7f4PMNPt/g801y7jQRYAUqsGUdxIAOhBp8vsHnG3y+wecbfL7B5xt8vk2fjzpU9GRFT1b0pKInw+djOTKygxZGT2qgAhvQgNG2aawDR2L4/IUFKMAKVGCo9UAD5gSP69dGrODF9WsLC1CAmBrx0HAhBsswWIbBsg7EtHcMlmOwHIPlGCzHYDkGyzERHRPRMTXC/WNlMLKVFlbgaVejH8L9Y5EwEpYWOrADR2I8HlxYgAKswHwwbPNFYWIHht1zPsSVagvDrgUKsAKjFR7YgAaMVvTADhyJERQuLEABVqACG9CAUAv3P4JKkiTFAAdpUks6LcY6auQ4LezAs/6xuhppTgsL8FRqQTVJk1qSJXlSTxqLwuEnlaTU0NTQ1NDU0NTQ1NDU0NRoqdFSo6VGS42WGi01WmrEb3qsGEfG1MKRGK7e4u+Gq18YQjHpwtUvVGBoxZwKV78w1EZgB55qsbIbKVMLC/BUi2kSnj5Jk1qSJfmi+I2PVeFIgBqx6BsJUCOWdyMBaqEBHXjWNFZRIwPqwnDnCwtQgKEWdYhf/gsb0IAO7MBQO7sorj1bWIACrEAFNqABHdiBUAsnPzO2LHKtFgrwVDtzoyzSrUYsZ0e+1cJTLVYxI+Nq4akWq5iRc3VhuP6FBSjAClRgAxrQgVATqFWoVahVqFWoVahVqFWoVahVqFWoKdQUago1hZpCTaGmUFOoKdQUag1qDWoNag1qDWoNahEYYnE5srQWduBItHj+LoEFKMAKVGADGtCBPTFiQCxwR+7ViKXsSL5aGPWNSRsuf2EHjsSIBBcWoAAjkMQE7+jfjhaHz19YgAKM8BRVD5+/sAENiNEcUBs5mpGGtbAABViBCmyrOnHt2UIHdmC2Lb6JOWIpPbK2FkbkrYEVqMAGjLZNYw7swJEYPn9hAQqwAkPNAxvQ12BFttaIpf3I1rowHP3CApQ1AJGttVCBDWhAB3YgBguO3uHoHY7e4egdjt7h6B2O3uHokc41YtMg0rkWCjB2CqIf5lZB1GzuFUw0oAM7cCTGj/2FBSjAsBtTI37WL3RgB4bdmBrxs35hAQowf5oj7WthAxrQgR04EudP/sQC1GurKFK9LrKk2M0P6kljUTh+bIFErtdCAUb6Q5AmtaToqpi24fUXduC4Nq/G3LwLKkmSVJM0qSVZkif1pNQoqVFSo6RGSY2SGiU1SmqU1CipUVJDUkNSQ1IjvDuez+J6soUNaGsPL64nWxjr+7EpMuYC/+S5wn9xbCjEbklcUZZciZW4ERuxE3fiqXtOmjF3Ci8uxEI8dTVYiRuxETvx1G3BA9wO4tiKCpKkmqRJLcmSPKknjUVz5zAoNSw1LDUsNSw1LDUsNSw1LDU8NTw15m5h7GGNuV14sRI3YiN24k48wHPXMPYjxtw2vFiIp25M1rlzeHEjnruwMSvm5uHFHTwK8ZlNH9bPeHDR/HcxkqMTj8UeCXXJhViIo77nfoEfczfw4kZsxKF7LvN7JNYlD3CZ++AluBALceie6Zwe6XXJjdiIp24NnrpR/7kNeK7F+DH3AS+uxEo87ffgaT/aNTcDa9RtRosaujNaTJ7R4uJCPPeNo24zWlysxI147h1H/WeEqFG3GSHORTU/ZoSoUbcZITS0ZoS4uBIrcSM2YicOXY36zAgxueW887jYLLkSK3EjNuKpFW2c+QUXD3C8BxwabbdCLMSVWIkbsRE7cSceYCddJ90ZPzTmxowfFytxIzZiJ+7EAzzjx8WFmHQ76XbS7aQ744fGPJlpBhrzZOYZXFyIhXhukIefDiVuxEbsV1aOzxTAC8fCmQJ4YQEKsAIVODffJ3fiAZ5x5OJCLMSz3hI87dTgaUdPvrIGJhfiaacFV+LZLxbciI141t+DO/EAX/kDkwuxEFfiqduDG7ERO3EnHuA4FmLRlBkiZvfMEHExddsMEeeKmpcZIi7uxAM8HyIujmadi21eZri4uBIr8cwyCd0ZLi524tC1GKIZLibPcHHx1I02znBxcSWeujFNZriwGLoZLiy6fIYLi26b4eLiAZ5hwaK9MyxcrMSNOOx7tHe6/5yS0/0vLsRCrMQrS9ZnduCFI3Gs3Fmf2YEXCrACFdiABnRgXyjzseFMRnSZjw0XV2Iljn44F/hc5mPDxU7ciaM155DOpMALC1CAFajABjSgJ87U+x5YgLMxNbgSK3Ejno2ZFp24Ew/w9P2LC3Gk/EffxqGvCxXYgAZ0YAeOxPD5CwtwtqYFN2IjduLZGgse4OnyFxfiaM3EClRgAxrQgR04EqdLn+t3LtOlL1biRmzETtznKRSX+U2Vk+YnVYJKkiTVpOuMikeS4UWW5Ek9aSyaLu0x0+Yvt8d4zF/ui504eiE8Ivx74jiABSjAClRgAxrQgVAbqVbz+I3XowAFWIEKbMCYPefSmtf5Oz55/o5fXIijl+J5oM73gYuVuBEbsRN34gGev/s96jZ/9y8W4ko8dWtwIzZiJ+45glfa4OTL9ycXYiGuxErciI14tuucXXW+G1xciGe7WvBslwUrcSM24tkuD+7EAzyjwMWhO2Ic5w//iD6cP/wXK3EjNmIn7sQDPH/4Ly7EpDujxIi2zyhxcSM2YifuxAM83xMuLsRTtwfHVsUR/RAPBIsbsRE7cSce4HhQWFyIhZh0+9SNOdkbsRE7cSce4HEQF2IhnroxZ4YSN2IjduJOPJIjIzF56o5gIa7EStyIjdiJO/EZo89euz4iG1SSJKkmadLcagqWuYdVggtxxMv5VypQgQ1oQAd24EiMUwgXzt0xCZ7bYzW4ERuxE3fiAdaDeDZHg4W4Eivx1G3BRuzEnXiA20FciKduTIk2dT1YiRuxETtxJx4YJqPhMxq+axNyciVW4kZsxA6Og0gRLeZtZhcKcBqPOTnjxsVhXKYRI3biaFSsi+mMG5Nn3Lg4GiUxQDNuXFyJlbgRT93otBk3Lu7EAzzjxsWFWIgr8bTfg8d1u4O36e6xHNemu1+sxFHN8IM23f3iqGYs37Xp7hcPcDyGlHhUibzEZCGuxErciI146tbgTjzAM1RcXIiFuGY3yDSvwU7ciQe4TvMtuBALcSXW6zoRn3eWXWhAB3bgSIwzhxcW4OyuaMMMCRcbsRPP9njwAM+QcHEhluv6GG/zzpiJCmxAAzqwA0fidPl4K2zT5S9W4tmemILT5S924miPTpsDPLONNfpophtfLMShGyuzbUaDixuxETtxJx7gGQ1iVbfNaHCxEFdiJW7EZ1/GakkkJcZlXh5JiXGrlEdS4kIBVqACG9CA5xjFb2ykKi4cCyNVcWGo1UABVqACG9CADuzAkRg3zsTamM14cCZJus14cHEjNmIn7sQDPONBLIHbjAcXC3ElPhsUS0LzfrYLDejADhyJcRD5wgIU4GyOBRuxE8/mePAAz0eHi2dzerAQz+aMYCVuxKEbq84248TFnXiAZ5y4uBALcejGSrHNR4eLG7ERO3Enjr6MJhomh9HkMJocRpPDaHIYTQ6jyWE0OZwmh9PkcJocTpPDMTkck8MxORyTwzE5HJOjY3J0TI6OyRE/43LEQMbP+GIlbsk+f6PP26Tc52/0xU4czY8fPJ+/0ZPnb/TFhViIK7ESN2IjdmLSLaQrpCvTjgfPvx/tmj+087/PH9rzRKZHCuCj7UdwJVbiRmzETtyJR/A5+SIVMLkQT10Jnro1eOpGP+vUbcGGtkwHu5jaOJ0nlk98Os/FStyIjdiJO/EAz+fuiwvx1I22TLeKJZYr/e/iRmzEUzfaO93q4gGebnVxIRbiSqzE02b04fwhjSUTnz+esRzi88ezRx/OH8+LjdjB85H54mkn5tJ8pb54zsOYD/PVOR60+nw2jmWPPp+NL27Ec6xrsBN34pH2++V38d8vv5ssxJVYsx/69LuLjdjBgvb2+ZsXbezzN+9i9EOf8z/e//qc//EO1+f8v1iIK7ESx/wvoRvzXOI1Kz4KurgdxIVYiMN+pDdEtlxyIzZiJ+7EAxy+IPFKF0lzyUJciZW4ERuxE0+tmA9+EBdiIa7EStyIjdiJOzHpdtLtUzfmTxfiSqzEjdiIHePSaUw7jemgMR3z32rwrNvpy5Exl1yIhXjWzYOVuBEbsRN34gEuB/HUtWAhrsRK3IiN2IlHtjey6R7cgyuxoo3SiI3YiWdbRvAA14M42hLv4zOBbnGFnUq6lXQr6VbSnb+JF9PYKY2d0tgpjZ2SrpLW9P1YDpwJcYsLsRDP2BJtmb5/cSM24jk/S3AnHuDp+xcXYiGuxErciI2YdI10jXSddJ10nXSnv8f64kyFk1gXnOlvEmt+M/1tsRBXYiVuxEY86xzjcvny5AG+fHlyQX3mc+nFlViJG7EROzG1ccaHk/tMCZNznafPlLDFAzzn/8WFWIgrsRI3YiMm3Uq6lXSVdJV0lXSVdJV0lXR16pZgJ+7EAzz95eJCLMSVWIkbMek20m2k20jXSNdI10jXSNdI10jXSNdI10jXSNdJ10nXSddJ10nXSddJ10nXSddJt5NuJ91Oup10O+l20u2k20m3k24n3UG6g3QH6Q7SHaQ7SHeQ7iDdQboDuuU4iAuxEFdiJW7ERuzEnZh0C+kW0i2kW0i3kG4h3UK6hXQL6RbSFdIV0hXSFdIV0hXSFdIV0hXSFdKtpFtJt5JuJd1KupV0K+lW0q2kW0lXSVdJV0lXSVdJV0mX4lWheFUoXhWKV4XiVaF4VSheFYpXheJVoXhVKF4VileF4lWheFUoXhWKV4XiVaF4VSheFYpXheJVoXhVKF4VileF4lWheFUoXhWKV4XiVaF4VSheFYpXheJVoXhVKF4VileF4lWheFUoXhWKV4XiVaF4VSheFYpXheJVoXhVKF4VileF4lWheFUoXhWKV4XiVaF4JRSvhOKVULwSildC8UooXgnFK6F4JRSvhOKVULwSildC8UooXgnFK6F4JRSvhOKVULwSildC8UooXgnFK6F4JRSvhOKVULwSildC8UooXgnFK6F4JRSv5IpXNXjqanAjNmIn7sQDfMWryYVYiCsx6V7xyoON2Imnbgse4CteTZ66I1iIK3Honhs+XWa80uiHGa8uduJOPMAzXl1ciIW4Eisx6RrpGuka6RrpOuk66TrpOuk66TrpOuk66TrpOul20u2k20m3k24n3U66nXQ76XbS7aQ7SHeQ7iDdQbqDdAfpDtIdpDtId0C3HgdxIRbiSqzEjdiInbgTk24h3UK6hXQL6RbSLaRbSLeQbiHdQrpCukK6QrpCukK6QrpCukK6QrpCupV0K+lW0q2kW0m3km4l3Uq6lXQr6SrpKukq6SrpKukq6SrpKukq6SrpNtJtpNtIt5FuI12KV5XiVaV4VSleVYpXleJVpXhVKV5VileV4lWleFUpXlWKV5XiVaV4VSleVYpXleJVpXhVKV5VileV4lWleFUpXlWKV5XiVaV4VSleVYpXleJVpXhVKV5VileV4lWleFUpXlWKV5XiVaV4VSleVYpXleJVpXhVKV5VildK8UopXinFK6V4pRSvlOKVUrxSildK8UopXinFK6V4pRSvlOKVUrxSildK8UopXinFK6V4pRSvlOKVUrxSildK8UopXinFK6V4pRSvlOKVUrxSildK8UopXinFK6V4pRSvlOKVUrxSildK8UopXinFK6V4pRSvlOKVUrxSildK8UopXinFK6V4pRSvlOKVUrxSild6xasW7MSdeICveDW5EAtxJVbiRky6RrpGuka6TrpXvCrBQlyJlbgRG7ETd+IBvuLVZNLtpNtJt5NuJ91Oup10O+l20h2kO0h3kO4g3UG6g3QH6Q7SHaQ7oNuOg7gQC3ElVuJGbMRO3IlJt5BuId1CuoV0C+kW0i2kW0i3kG4hXSFdIV0hXSFdIV0hXSFdIV0hXSHdSrqVdCvpVtKtpFtJt5JuJd1KupV0lXSVdJV0lXSVdJV0lXSVdJV0lXQb6TbSbaTbSLeRbiPdRrqNdBvpNtI10jXSNdI10jXSNdI10jXSNdI10nXSpXjVKF41ileN4lWjeNUoXjWKV43iVaN41SheNYpXjeJVo3jVKF41ileN4lWjeNUoXjWKV43iVaN41a545cGVWIkbsRE7cSceyXbFq8mFWIgrsRJP3R5sxE4cumcSXrcZrybPeHVxIRbiSqzEoXum3vWZc7nYiTvxAM94dXEhnroWXImVuBEbsRN34gGe8eriQky6lXQr6VbSraRbSbeSbiVdJV0lXSVdJV0lXSVdJV0lXSVdJd1Guo10G+k20m2k20i3kW4j3Ua6jXSNdI10jXSNdI10jXSNdI10jXSNdJ10nXSddJ10nXSddJ10nXSddJ10O+l20u2k20m3k24n3U66nXQ76XbSHaQ7SHeQ7iDdQbqDdAfpDtIdpDug68dBXIiFuBIrcSM2YifuxKRbSLeQbiHdQrqFdAvpFtItpFtIt5CukK6QLsUrp3jlFK+c4pVTvHKKV07xyileOcUrp3jlFK+c4pVTvHKKV07xyileOcUrp3jlFK+c4pVTvHKKV07xyileOcUrp3jlFK+c4pVTvHKKV07xyileOcUrp3jlFK+c4pVTvHKKV07xyileOcUrp3jlFK+c4pVTvHKKV07xyileOcUrp3jlFK+c4pVTvHKKV07xyilezVxZOU9qdJ/xavKMVxeH7nmMpPuMVxdX4tA9T4f0mU+72IiduBMP8IxXFxdiIa7EpDtId5DujFfnfRd95uUuHsl9xquLC7EQV2IlbsRG7MSdmHQL6RbSLaRbSLeQbiHdQrqFdAvpFtIV0hXSFdIV0hXSFdIV0hXSFdKd8eq8lqP3Ga8uLsRCXImVuBEbsRN3YtJV0qV9uis3+Dw01q/c4IuN2Ik78QBf+QOTC7EQV2LSNdI10jXSNdI10nXSddJ10nXSddJ10nXSddJ10nXS7aTbSbeTbifdTrqddDvpdtLtpNtJd5DuIN1BuoN0B+kO0h2kO0h3kO6A7pV7fHEhFuJKrMSN2IiduBOTbiHdQrqFdAvpFtItpFtIt5BuId1CukK6QrpCukK6QrpCukK6QrpCukK6lXQr6VbSraRbSbeSbiXdSrqVdCvpKukq6SrpKukq6SrpKukq6SrpKunO55nzqqF+5TNfLMSVWIkbsRE78YyHHjzAM15dPHVbsBBXYs+YeeUqXzzAVyyaXIiFeNqcrMSNONpyHvbt85rPxZ04dM+zSP3Kc764EAtxJVbiRmzETtyJSXeQ7oxF5/mmfuU5n+do+pXnfLESN2IjduJOPBaPeU3o4kIsxFPXg5W4ERuxE3fiAZ6x6OJCLMSkO2PReV5pzGtCFxuxE3fiAZ6x6OJCLMShe55VHPP60MUNPGPIeZ3DuHK8L1bi3DMaB/bIxoE9snFgj2wc2CMbB/bIxoE9snFgj2wc2CMbB/bIxqGkq6SrpKukq6TbSLeRbiPdRrqNdBvpNtJtpNtIt5Guka6RrpGukS72yMaBPbJxYI9sHNgjGwf2yMaBPbJx5XKPmOczboyYb55rquPK2b64Ew9wP4gL8ax/D67EStyIjdiJ53yePMARN+p5JnTMnO3FQlyJlbgRG7Enz9zsep4zHTMHu57nTMfMwV487ViwETtxJx7gchAXYiGeuh6sxI146vZgJ+7EAywHcSEW4qk7gpU4dEv0STyTLHbiTjzA8UyyuBAL8bQffVunHQ0eYJ12ou1aiIW4EitxIzZiJ5660Q86wO0gnrrRJ02IK7ESN2IjduJOHLrneckxc6oXT/+KuXHFh8mVWIkbsRHPtYtpsxMPsB/EhViIK7ESN2IjJl0nXZ/tDb/rB3EhFuJKrMSN2Ihzr2RcOdUXD/CMJzK5EAtxJVbiRmzEThzje57FGzOnevLMqV5ciIW4EitxIzbiGT9HcCce4GsPfXIhFuJcExszL7pK8IwhFxdiIa7ESjzr7MFG7MSdeIBnDLl4rmsdwUJciZW4ERvx1O3BnXiA5zPJuUY3rrzoi4V4tjf6bcacixuxETtxJx7gGXMujn6uoTVjzsWVWIkbsRE7cSce4BlzzrzuMfOca41+MCN24mkn6mkD7AdxIRbiSqzEjdiInZh0ZwzRqP+MIRcXYiGuxErciI3YiUNXo3/6AM8YcnEhnrrRVzOGXKzEUzfaMmPIxU7ciUfyzHNeXIiFuBIrcSMO3YiHM895cSce4PkMc3EhFuJKrMTT/hmvZn5ybVGHGTcuVuKoZ/jszE9e7MSdeIBn3Li4EAtxJVZi0q1TtwY7cSce4PmscnEhFuJKrMRTN/pnxo2LnbgTT93oqxk3Li7EoevRlhk3LlbiRmzETtyJB3jGjYsLMena1I02mhI3YiN24k48wDPOXFyIp/3onxlPLjZiJ+7EAzzjyXn585h5yItnuzy4Ek/dHtyIp26MxYwnF4duj/6Z8WTyjCfn2siYeciLQ7eHH814cnHo9mj7jCcXh+55r8uYeciLp260ccaT4JmHXGMNZOYhL566HlyJp24PbsRTdwQ7cejGmsPMQ754xpPzvpcx85AXh+55x8uYeciLc99qXHnIFxuxE3fiAZ7PM+cdL2PmIS8W4qkb/TDj0sWN2IiduBMP8IxLFxdiISbdSroz/sQ7+8wrrvFePPOK64h+nnHm4kqsxI2Y6q9Uf6X6K9W/Uf0b1b9R/RvVv1H9G/VbI91GujOezDbOuDHbaFR/o/rPuHGxE3diqr9T/Z3q71R/p/o71d+p/k71d6q/U7856XbSnXFjtnHGh9nGTvXvVP8ZHybP+HAxjfug+g+q/6D6D6r/oPoPqv+g+g/Uf+b9Li7EQlyJLdvYLn8/29gK6t9KIRbiSqzEjfi0r+cdYmPm8S7O/dPRsG87GvZtR8O+7Zj5unpMnnYkuAdH/cN/Lw7/XVyCo13hv4srsRI3YiN24k48wHoQk66SrpKuTt0YC23ERuzEnXiA20FciIW4EpNuI9027cfYxXOClhiveE5YXImVuBEbsRN34gEOf188dWuwEFdiJW7ERuzEnXiA+0FMun3qanAlVuJGbMRO3IkHeBzEhZh0x9SNOTyUuBEbsRN34pE882wXF+LQjTWZmWe7OHRjnWTm2ep559W48mx9shN34gEuB3EhFuJKrMSNmHQL6UY80VhjmXm2F0c8WVyIhbgSK3EjNmInnroWPMAz/lxciIW4gmfcOO+nGjM/drEQV2IlbsRRzxpjN+PG5OnvsYYw81oXG/H8+1GfGQcuHuD43VcNmzM+XCzEUc94H595rYsbsRE7cSce4BkfLi7EQky6TrpOujM+aPTVjA8Xd+IBnvHh4kIsxJVYiRsx6XbSnfEh9o9mXuvFMz5cXIiFuBIrcSM2Yicm3QHdmde6uBALcSVW4kZsxE7ciUm3kG4h3UK6hXQL6RbSLaRbSHfGh1jzmXmtF8/4cHEhFuJKrMSN2IideOp6cOjGuvrMa11ciIW4EitxIzZiJ+7EpDvjTIs+mXHmYiGuxErciI3YiTsY54CG4xzQcJwDGo5zQGPmqWqsO8081cUDPOPPxYVYiCuxEjdiIyZdI10jXSddJ10nXSddJ10nXSddJ90Zf1rMmbmHG3v6V57qxYV46lpwJVbiRmzETtyJB3jGn4sLMenO+BNrgDNPdXEjNmIn7sQjeeapLi7EoRvrbzNPdbESh+75wasx81QXO3EnHuAZfy4uxEJciZWYdGf8OW+nHzNPdXEnHuAZfy4uxEJciZV46vbgTjzAM87E+t7MR10c9uPdauajLlbisH9+F2/MfNTFTtyJB3jGmYsLsRBXYiUmXSVdJV0lXSXdRrqNdBvpNtJtpNtIt5FuI91GujMuxfPnzI9dXIiFuBIr8YyBMS4z5njMpRlzLi7E02YLrsRK3IiN2Ik78QDPZ56LCzHpztgSa60zx1VjfXXmuC7uxAM8Y8vFhViI57tq9POMLRc3YiN24k48kmeO62Ks7cxcVo114JnLutiInXi2awQP8IwhFxdiIa7ESjzXTMJ+MWIn7sRYqxlyEBdiIa7EWPOZOatXu2YMuXiArxgymdpVqV2V2lWpXVcMmWzETkztqtQuWjsdSu1SapdSu66108nUn0r9ea2RRtsbteuKFZOFuBJTuxq1q1G7GrWr0TxpNE+M5olRu4zaRWuqw6hdRu0yapfRPDHqT6P+vNZOo+1O7XKa/07z32n+O7XLqV1O7erUrk7zpNM86TRPOrWrU7torXV0alendnVq16B5Mqg/B/UnzvqNgbN+Y+Cs35j5qBr7ODMfNbgcMyE1C4ULwoXKBeVC44JxwbnQucA1KFyDwjUoXIPCNShcg8I1KFyDwjWYjynnltVZGFSYDyqrULgwa1BnoXJBudC4MGugs+Bc6FwYVJhhaBUKF4QLlQtTp82Cc6FzYVBhPrqc22pnoXBBuFC5MFvqs9C4YFxwLnQuDCrMwLQKhQtTp89C44Jxwbkw0zQvA4MKM8F1FQoXhAuVC8qFxgWjwnx2GXOGzIeXVRAuVC4oFxoXonFjzp0Zilahc2FQYUajVShcEC5ULigXGhe4BvMhZ8wpNp9yVmFQYT7njDlD5oPOKswajFmoXDhr0M49krPQuGBRmH4aYSsLnQsDhZkpm4XCBeFC5YJyoXHBuOBc6FzgGhSuQeEaFK5B4RoUrkHhGhSuQeEaFK5B4RoI10C4BsI1EK6BcA2EayBcA+EaCNdAuAaVa1C5BpVrULkGlWtQuQaVa1C5BpVrULkGyjVQroHOGsgsVC4oFxoXZg10FpwLnQuDCu3gQuGCcKFyQbnQuMA1aFyDxjVoXAPjGhjXwLgGxjUwroFNnfiRmDm47bBZKFyY1nwWKheUC40LxgXnQqdCn6b7LPCk6Ebj050LnQuDCmM2YcxC4YJwoXKBp+XgGnB4KhyeCoenwuFJODzJFZ5kFoQLlQvKhYa6yRWeroJzobMO14DDk3B4Eg5PwuFJODxJIceQYlxwLnQuDKqbHFwoXOAacHgSDk/C4Uk4PAmHJ+HwJELzQK7wdBV4FCqPQqV5IFd4ugo8ChyehMOTcHgSDk/C4Uk4PIlyHyj3AYcn4fAkyqOgPArKozDDU4kf15nOm4WoQZk6MzytQuWCciFqUHQWjAvOhc6FQYUZnlahcEG4MGvQZkG5YAgOMwW4FZuFzoVBhRnFVoEnnwsXeOidh9556J0d0NkBnYfeeeg7D33noe889J2HvvP05zAonSffDHYlQufM/81C4cLs3tlvM9iVWesZ7FahccG44FzoXBgozEzgLBQqzG+XNZmFFoU6CxaFNgvOhc6FQYX5ZbNVKFwQLlQuKBcaF7gG8+u/zWahc2FQYX6XcBUKF4QLlQvKhcYF4wLXoHINKtdgfgK06SwULggXKheUC40LxgXnQufCoELjGjSuwfXZT5+F+W9i8s0c3SwULggXKheUC40LxgXnQqfC/BBhmzNxfolwFYQLlQvKhcYF44JzoXNhUGF+wtCOWQjTVmahccG4EKZtusz8DPgqDCrMrxquQuGCcKFyQbnQuGBcINGZNdt0zMKgwnzAWIXCBeFC5ULEnXbMQuOCccG50LkwqDAfMFahcEG4ULnANZgPGK3MgnHBuTBrMDtkPmBchfmAsQqzBjoLswZtFmYNbBZmDfosNC4YF5wLnQuDCvMBw6bofMBYBeFC5YJyoXHBuOBc6FwYVGhcg8Y1aFyD+Rhhsw/mY8QqOBXmb735LDgXZg1ms+dv/VWYv/WrULggXKhcmH0wp+X8rfc5KeZv/So4FzoXBhXmb/0qFC4IFyoXlAtcg8416FyDzjXoXIPBNZi/9T5n7/xF9zlHB4/p4DEdNKYz17ZZnYXCBeFC5YJyoXFh1uAqOBdmey7RQYUZXVZhtqfNwrRms+BcmO2RWRgY4Jl7m4XCBeHC1PFZUC40Lhgm0kzZzULnAtegcg0q16ByDWakuArTg/0qVC4oFaab9WMWKheUC9GEuRo+L6nNgnMhmjAXwOc9taswn+PnMvfMoM2CcGHWYI7cfI5fhcYF44JzoXNhUGE6+lzMnrm0WRAuVC4oFxoXeCJd7jz74HLnOdqXO18F4QJPl87TpfN0udz5KvB06TxdOoW0mUSbhQIPnmm0WahcUC40LhgXnAudCwOFmQraxGahc2FQYc5r8VkoXBAuREWlz4JyoXFh6sS8nsmirR6zIFwIa7XMQlirs9bz12wVotm1zoJzoXMh2lNjis1bVbNQuCBcqFxQLjQuGBecC50LXAPjGhjXwLgGxjWYzlTbLDgXOhcGFaYzrULhgnBh6szRns60Co0LswZztOev5ip0LswazNGeblbnaE83W4X5BDlHe7rZKigXogY658F0s1WIGuicB9PNdI72dLOrMN1MZydON1sF4UKYlik6/WcVOhcGCjPdNAuFC8KFygXlQuOCccG50LnANShcg8I1KFyDwjUoXIPCNZg/rhLdO/NJm8gsCBcqF6a1OguNC8YF50LnwqDCFWquwtTRWVAuNC4YF6ZOm4XOhUGF+Ui9CoULwoXKBeVC4wIPSeMhmdHlqtuMLqvAphubbmx6RpdV4MY1blzjxhk3zrhxxo0zroFxDYxrYFwD4xoY18C4Bs41cK6Bcw1mdNGrwJNihg21WeCZ2Hkmdp6JM2ysQuOCccG58EGUZ+LgmTjDxioIFyoX2BcG+8KYSwYhOrNEr0WymSZ6LVHNPNEsVC4oFxoXjAvOhc4FWmWb+aJZ4BoUWuOaKaNZUC40LhgXnAudC7TG1eXgQuEC10C4BsI1EFrj6mJccC50LtAaV68HFwoXhAuVC8oFrkHlGlyrefFz2JXWuLo2LhgXnAudC7TK1tvBhcIF4ULlAq1xzdTQLDgXOhdojavbwYXCBeFC5YJyYa49HbMw17jiV2ZmiWahcIHWuGaiaBaUC40LxgXnQucCrbLNfNEsFC6waOeummt2801iJoeuwlyzW4XChWjPfPKeCaJZUC40LhgXnAudCwOFmSeahcIF4ULlgnKhccG44FyYNaizMKgwg4NdhTkkOgvOhc6FQYUZHFZhDkmbhTn0NguNC8YF50LnwtQJ15ypoVkoXBAuVC4oFxoXZg36LDgXOhcGFeZS/yoULggXKhem6JgF44JzoXNhUGHGkFUoXBAuVC4oF7gGjWswA8pcopoZpFkYVJgBZRUKF4QLlUbOeOiNh9546GfYmItKMx+0zEWlmRCaBedC58Ks6BzTGRxWoXBBuFC5oFxoXDAuzBrMWl8B5SoMKlwB5SoULggXKhca9cEVQ+bcuSLFWSjHFSnaLBQuCBcqF2bjxiw0LhgXonGxKlVmYmgWBlkrXIPCNShcg8I1mM8hq9C4YFxwLnQucA3kEv2f//njH/76b//6p//8y7/97Z//8+9//vMf/um/8z/8xx/+6X/99x/+/U9///Pf/vMP//S3//rrX//4h//fn/76X/GX/uPf//S3+PM///T3x//7aOWf//Z/Hn8+DP7fv/z1zyf9zx/xr4/n//S8mXL98/LYoK9p4rFw88FIeW6kn0mHYeIRqmDA6wcDsqnFcSYFzEo8lhOemtg1pOhIG+dOzNOG6HMjer4XhAmlWvjH3mzP/309fz/i3z+2y1CBZrdbUeML1LMVjx3a58Phz42IjtUMeayLkwm/a+LRkNWZj81Pakr52BdjY6KnBWrGpwHd/Hsra14+1vLy39fjY1+WzbQsajm1H4v4z23IriPOBcmrI7w+tbHry97WcDw2XsfTviybiSlxseMc0lppVjz87YON3eSsWY2BDn38ht1vyICFoz9vyMbGYxl/jckDYaONjyb6bljPzN9rWJs8NbGZW+5rUDsHrKa3LXRdzXi8nDy3cLcZ/rwZu870Y/nYA8czE+d6wPNYcW6vXLFCy1MT+m5XyGZmypE/IPKI/2lD5aMJ21TifFCdlRj+vBKbzjxvZF6/Yo+XC3i6jPsNKed69NWQVp42ZDOxBGHzeGpg72HDclKU+mxEa3k/6O1sqMhqiIo9/wWpdRvAJV2EekNK+WhjMztbXyNiRyMLx/2JERcZX4833p5OjLqZniOOlkwbjepR7VNv7H7W/UgveSyOp43vjIkvZ3886fjzMdnMz9JbPqA8XrTJxqenrN1TzmNfDrFPG/+UfHxE0fL+7FB5d3bs22KHZTUeW27P27L7fY8Vjitw0DPCI6B8tNHenh/2fgjc2rjpLdrf9xYd7/bGfmSH4vlx8DPTp5Ftu1gaCwszlj7eVGlkP9mQ3W+CrikmneNx//Rmsoml7ejr4a0V8pZfbOzqMazmj9Oxqcdmlj52jlc9HrvD/tTGdmQev0/LyGPNj3/wP/fqJp6a5AyxKvbcxmamajlWNNQi8pKNVqTmyIi+1pZal43Hm9vz/rCye3DQkY/m9qINdzyRurxmo+Op9rE79TyebmeIHz1nyONx/3lN2m/9dfCSL3+PEF+fxxDz3dpGbzXXNh77F0+imfXfGg8fO5cZDx9bjc9Hxo/f2qddc5nlweP504PvYllcY3y9UQ+uycdXBq/v9um2FpqrHKJ6PK3F9onMc22gPH45nz6R+eZXWyJD5noN/OC3n2xsZqn2fGvQ/sGG3bbxWIDMGKS8+vXZxnj/ubC/PUv3PdpzbpiU10bFKmxsRqVv5qgePUelfHg61W/Uo+N3X9rzerTdyubIgKwfZunHenTbrWDlL2Wt3Z/b2NVDKSCXjY1dLI3P96xFE3upT+uBFdbHfu5L86MeuYT0qJE/tTF2b1FDcoKU80sMz6LYrh6x63+Ny2auj10sPRxLJx9+Jz8ufYzNW5RbNsX9w1vlfRvdct2iWyvPbdj7EWj474xAj0dCz1Fxf22G1XwTqyrjqY1yHG/uBGxrofkiVo1Xv3+pxW6Pid4ZauWBrd8wMjRn6dGPjZHNFDvvEVuvt4MecOunH7lybOLY8NWaQU+3D/e773Etn7MfPzTPZ3o5fNsh+RN1UDj9vIp9bMJpzdVfPZ6v3ZZj97YvJZexxZX649PWRNk9WD6WodNvH1yfLjxs58jjmS6fLNvYzJHdvlNTWRPtsZc5nm/4lPr+4Ox2nm4Ozm7j6f7g2I8MznZxvBnecZ9ud+yecrGBpW7t+SbYbvfo8RSVIfGxZfDc9bZG5Mj4LlWeG5Hy/maayNu7aTsTN7fTbrdks592u0s5F+Jb41I0swBk8wRRdpsO9/eu+/v7OPvmxLGxy8iuOfXYTZF8g3igPg9nWyNdVsc+bGxiYpX3J/xuX+rmhN+ZuDnh6/u7pqW+vW1adttSj+mek+zRoxSW64ujsnHe/fTI1Wnv48U51svA2PIr92cj252ppvmu67RO/jnXYu93I5d1Hivcm98Ire/P9t3e1M3Zrm+nCNxvyavhfeSbiB6Hbbr0B9JP9P38E30/AUX77+7ShufDo7/2i6lHyTWqQzfj0nYb/Tczi1p7f2ybvT22OxM3x/Z2SzZju+/Rdx+W25F744993E3G2G4/yKRa7m3VTUi2zQ/MKA0vD8fTiLzNlI34NG1IpSW78Smqm76fPlF2+1J3V/z3RpoIHjGlPt94LLu9qSoDa39Fn6we7k1UPGHysu5nE7sIUrIWKuW5iX1/3ExKidM1z/eEsI75eNR9VhP/gcSWstuburd+uDVhudpuMl40kZHMKK7/amL7MHVUTFPZ9Ma2S2XQXN8Y6e8vlX8xze7mC5XdBtXdhKHSy7v7l/t6SO6zy4M39dgZaTlNhDP3fzGy71j3DK2tH23Tse3teLY1cS+edf/N8exDf5S6ie9bM3ezoMo4tm+J2KpqSkP8spH+A0asvmrkXlZX2W01nb8P6X79eSpUGZvxUcnXbxXqk1+N2HbdK9/h2Yu/aaQWrEfaq0awZCXVf8CIysbIbnRuJrvJsXt2PXKe2DHKi0NM71hjHK/Ok5GZarXYi31yMxFRdjtXnIl4DHutY1vN016NEwC/Nzo3cxFvN2eXWHk/nvTnQUl2+1d3j1Hszkw99mQKtvJtU5HdhkDLLEBvvBLXP9mo251n/Ijy2uTnemxdmA5TcCbhZxu737/zbsb1+3feqfS8NdtuzVfpD3vxv3br1sjA2IzNL9f299xKzpLHG/PmMUm2J6iw1urPl56/qEjaOCvy/H1Ldts+w/PB/ij0MO3lO1W5m08ssn1fupdQLLvTVHczirdG7qYU72sSHzqeNdHSX6xJzZ5tH5NQvtOxN7ObZXew6m56897IzfzmvZGbCc5fNAc/O9btRSNIEGijtRffEB6rcp7eo/q6Gay/PMbKXzVzN/Nb6tvpV1sT95ZP9ibuLZ/s1wrvZqDLdkvrZgq67E5b3Vtv+KoeSEJ/PFKVp0Z2CVgl1+hHefqCvjeBWD9E+ksv6F4z2+DBPl6c8E5L/d7K2Axwf3fdY2/i1rqHtOP3rnt87A95o1uxidvqq1HNsbb1YDuej85uK+bm6GxN3Bwd+82j86E//Hh9dJzMlFfN3D3SIvb2aYGtiZs/FlsTP/Bj8VgmzEtUetk9CJu+uweyNfGI0HiocGvHa0acfvvcyotGaI54fy3Wd8F7Sq8vR5PbR5/Ej99u5vFomQnE9eCXWn3RSJEXjdw8zCWubz+dbOtx8zjX3khTXN9j5TUjj/HI7KHjw4LS501zfX+fWXbHse4eLZPdDtHdTMatkbsH1LZGWmmZZiK9vGikZsJLq+IbI+8/E/T3nwn6288EX/RGLn42LW3TG3230p4XZz1+hMfGyPb1Pn+Fy/F0oW9fjVxmt/Ihxew7bSmZyvRYJCuvGsktb3u8vL1spKeRzXnM/fjePNQpu/2LHzFyN7NC3j+ZtTVx82lvvL00sO+Nm5kVX3TpvcyKuj9WdS+z4osfmnsnbvdGbh51rccPnHWtxw8cdt0a0SPPIuixOf1bj7eXBvYmbv3Q1PL20sB2cO+eud0buXmscm/k5onGvRFc/1b91QlfkeT5MPK8JrXsD7zeOq1Si//AM95+dO4dWK3l3asrtxbuXV5Z5Qdur6zyA9dX1t02ain5TFM4neLzgca62wi62ae7atw8wLs3YnmHZel2vGjk5ingKj+QTbg1MjwfRkbnJJXyHSN4Lxqd7oD8rpE8kNz5GND3jNw7GV13R6vunYzemji/hpi7yvQA/ouRbWPGgcbIq9068ol1DD47+x0j5+XaOdWOgxYmfu3Y32/m8WSYizWl7kZoZwTJZiK0Ovg9I9XSj2vfGNlfzYusGy2bsLQ73XTz4tCqP3JbZn3/neCLmtx8J1D/gfi4HZybZ/Hr7qjV3bP4tW1vz8pnz3PzIo18vpa1vX9Yu7a3D2tvTdw7nnS/Jb5pya5Hkd1Vxnh+0e1uR6uNXDVqw8aL9bh1y0Jtb1+BUdv+zTWnutGJgM+3LOyNODLxnR8FvmPk/EhDRsTNfQ/7mrSKi6ntVSM3b56o21Xw2zdPfGVm0Bk0Tnz9lplzRSETIJQSmb5rJu+wOk1uriTednDFpwaUs4q/NUqK7ULO+/nVyPYmTny6oW48aJ8/m5O/HP2lYPDh4YYuOvhsY3do6mYw8O0bSt7I9djFJT/+dCh/W4+7Xbod2szxfIxyfdEBy1GRe3Toqw5YcE1ZOb9b87IZnJssH288OL7zYI9fwOOgp4pfnqV3J7huLs1tTdxbmuv1t5q4t7r3RY9mRuSjb/vTDv1iifDelXq1/8Sj687IzSWkPn5gCWn8xNbrtltv3hAYoe95fL53RWDd3XrmLX+x3Iq9aOTmRYNbI73kKlKvH5K0v2Ok5SJDb1I3Rt4+w/1FPfLls7fNbSV1jPfrMd4NRbo7FXQzFG174+Ylknr8biO3P5Jw/MA92O3dHc+9iVs7nvveuLm68UWX3lvd0O1dg3d/IrYB8eYNjro7rHVzYULL+9cMaXn7mqGtiXsLE/db4puWyNsLE7r7OtTNhYkv6nFrYULlePddRHcbWXcXJvZGbi5MbI3cXZjY1+TmwsTeyM2FCZUfuRLzKzM3Fyb2Zm4vTHxl5ubCxL6Dby5M7I3cXJjYetC9t+itI99cmNjbuLcwobsbB28Gg92Fg3cXJrb1uNml+6G9tzDxxVy9uzDxhZm7CxNfmbm5MLF/zMpzXvbhdoxvPall5qHpUxNf5GHd+/SB7r6IdffbB1sj997DVX/gMlfVH7jMdZ9UJtmt9fFD9rRH9kYcF9yODwfIv5WZdnNsth+kurdturVx+w1pa+Tui8W+JjdfLJr9wIvF8QMfydDWf7ORu5/a2Bux/PStmL1qpGVgfEQkfW7E5AcigdX3I8EXfZIvKeLHpk++uBwqn6gfTLn79i0jFTeijaZPjfjeiJKR/oqReys/XzbmVj22J4Acn2o+PtwB8ekE0DZB/Nbv+Bc55vd+x7eHmfDy1z7cU/edE1GGM2I26otGel4vIONorxl5DIdjZHbN2f2S3zybtTViuEjUuj892bg1Aee1If6aiXwUsNGem9hPdsWb/atn5j4Y0VeNCIzU5+Oi75/K0vdPZen+S1lvm7ibb7/tUPuH54C/OSr0QzVejSBck5eN9HygeeDLRrAotzWyPep9L7bvT4vfiu37OzDyPfyxEPXiNRqZxvnAp8d+6vu/c/X937n9xUD52ePm+vLFQPkC0HotrxrBzXh9vHoxUG+oib96WRJuC3zYe/mKopxkbcjrfTJg5MVLtR6vXbns1Lz+hJEXL9V6vETkzVzWXr3ey/K43GMBrLxoxPFF+d6eG2m7e+3c8pfGnddqPyVutN36prac9o/u0adrX1/VxLMmsqvJ/kMEuGiMNsPqN+qB3Q53cr9f67H7EIHmYQpv0jZGdqkBuHqURua88ej+HOlYNh6bC1/a/r7Bm3NkuxR/e46MH5gju3NZd+fI+IE5shub23NE2m+dI+04sj+O3bfYd9/MatJxNQP/8vVPNnYvNJ5bao9Fnv7MxheNMXz1oj//oWi7DxHdbUwtv7kxpeXjRGkv/uo1rOJ9uu/iO0YENZH2E0asvGqk4/qO43jVSJ5Te9h7uWNzy6e9fOXoY0MbRnTzHZD9hwAUO9qNH8Q/xTR9O511b+LWm2/T+ltN3LwpbduhFdcAVT82Hbo733LnQpN9NRSv33xT1K/V6O8Hs90prJvB7IsPTQhyN6Q9bcwXRjKESLO+MbI7mHb3kxc7I/fWAPcmbq0BfmHizhrg/jMxt97hv/jSzJ13+C++d+X43lV/8ZtZuJPhgU/ztpptXS6/xiBa9LmN948KNnv7qODWxL2MvPstcXmtR3Ehy4dsoG/ZaAK3r/W5jd0T6mhYzLDxoo1bmYFfzLCOOKhPv+zW/Hh7duxM3Jwd/n4GQNuFDqGvBGws7BO07nx5ofnmLerep1ibb37trWR2hxV9nlz1DSP2ohHNYwmmtOD2q5Hx9rhs24IPfJT+alskp5jxk+03jaS7mIxXh6biR46vHvrFyO7nevSB2z44qVHGN4wcuZk6+HuK3zNSMhli8A113zMieZXi4K+gf89IzdX7UX1Xk810HZpb3aMdz7Pv2thuVN25hHRfD89dhOEmz+tx38h41UiGxQe214yU48C9P8fRd2a2Q5zLdkPp87DfnGyKyUY7Gt80UrFt1jYOeP8X/GlKcBtvf8Nl/8ScseSxAfb0mci2x61ufvx3b+SxDLOMVOkbI3WbRNCQRLBpjb793G277Lt7T1ZbE/eerGIb6c1nGttd+3fvmcaO7cnRe5+Xvz8qvhmV7ewwRObnCfRbG+e3ArMxw1+1cbxtg25jq/Tz/T0bhrW6/txGsbffh76wcet9aN8WxSRT6+/beHGOVckfqar9+dhuDzmZ0fdedl63q4g3XC1pz0Ph7qtNdwd3b+MHBtcL2rJx3P0ZKacTGu3VTs17FGvfzDJ5+6Ig2yVD3D2Cs63HvSM4X/xm5zK71qEv/vCroiKlvmokZ4jq7umh7k9a30rttu0Jq5up3fvmjNpzy+7D98U+N8d/ojn9NzenlTTSim6ao8ebz7r7amhO19bG5jl19wWsOKJ3bQtR7t/hn0zUd98Q97XIfHt23l9rsctzPwZ9h+ug50P7jpGO83OPN7vjNSMjf6se/PQjL/secfrC7qZHxm818fiVoZO4vTzv1PETnTp+olPHD8yRrdsZPQH08VqANyQxWPH+qpF8OLOP2+TfMYKEG/twl+S3jFRs63789tUnI+0HLgcyO35zgLeW6RRmZdOc7cmqm0eRtjXxmsfyvequJvr+MsL2GNHNZQSzt5cRdiZuLiNYf38Zwcbbywjbgzt3lxFuj8rmFW8/O+4tI+xs3F1G+MLG8baNm2+Jfvf1vb3Wp3eXM/Y27i1n+Hj/jXdv494b77YtmtmUVeXp9m4kgP/eetxbVrlt40Wfu7ussjsOdXtZxX9gvcvtNw/MzSWR3U7V7SWRfUXuLYnsbsG6uSSyu6/t9pLIkLeXRL54iLl1FDq2XXZG7hxB3hq5l8D4ZWPu1WOX9Wd5qZAftnn5b5u1jHwzoz1zrd96kRl0z8vRXnobKshxf7A8exvy4+3U1K2JmyP7xSv3zf5oP9Ef/v4r5tbIvR7Z73SPhs909PLidvlQXGDbNxv32++x3d8u35m5l1q6N3ErtfQLE3dSS7/ImcmETKvHyylA+Kojf+n2s5GyO9HhIxOrnBvz+TMSXxjJx3Yf47kR3x0dunnlo+/OUt18Q3Up776hbk3ce0P13R7TzTdU3x2huPeG6ttTVDffUO+PyvOn5f3suHd9pcv711d+UY9b11d6ffv6Sq8/cGnkth73ng233XHzEsC9jXuXAPr7lwD6T1wC6O9fArgNpr3k/Y698BGszxF5l45979DANgDdy/d3fT/f3/XtfP+tiZvh+HZL/LUOvZfuvzVxL9vf9f1s/y9s3Aqk8vbFyruDtXdThrc2bib7bm3czPXdxZ672bH3bYwXbdzLjd3G0dvP+ttevZkZu23NzRmytXEzL3Zr4yfacnOm7ttyb6Zqf3+m3rcxXrRxb6Zq/4mZuu/Ve+nX+x/bW4nTbu8mTtdtznNOdT0+nEL/9Ezpbx+W3pu4t5zk73+4Z1eJYQVPlLbpjPb+brbvXvNvX7H7/gcE6u5A7a1vZWwt3PpURv2J74D+wIcyvG8/YnDvPlvdfnszV+ceL5XPv/u+tfHohYNa8/yaBO/tbafdmrjntP39i06332Pwf3i13ycL8u4s31q490GY8v4s37+v3Jzl+w2om7N8+yHiPHMpD6aK1Ps2bl5LsPcUd+z79A8XhH/ylPc/SrU3cc9TdvtPNz3lfneUzX1AZbs6iJSPxhccvGqjv2/jw10Nny9q2saOnKhOw3KmXbCNvjvhpHgWVKHG/Gpkex1+rrxUdplvGsk7LB9orxrBo4dU/wEjlCn92UjbbbkcucFgBx9U/tbgYDvs8Th0vDrCuemitTzv17Y7P3LkAfB2DHupR1rFhZp1PB+avdtQtlV/7jZ9d9Lp5kZF397nh+2wyhdG/VqRzducN19GvPHJjf7JxvZDfR2xmfdMPtVjt9shg24I4IMOn22U7TZ0bjM82Nrz1my7taXn8cn8X7t1a2RQGtvzSbL9tbGSk6SYbH58+24z6tYb7hf1SBNnPfqmHr5de8hVg0LZ0l4+batvwoiWvCxVy/N67Gy0mqsXrW6uw7VtIjtCkXV7zQa2xM7F5ac29iOjeZ/Fg/VlK+m/Dx6bPnn7q5D29kcht1+OKJ1SSMbxLNeh1+3qdi6yP9YM/SUTkud6hkh/6TW35r3AD/bx2sg6rWB4K8+t9Pev8uvvX+XX37+H7xvdIa93aoeV+qLTOV7PHmzHZmj8/aHx94fm975ZfeyOzdXCXw2Nk5Xnd4Luzhfci2RbCzc/b7tpyePlMjM3etnE5L573r23tLM18YiG+I1xe3oG7QsjTh+Q8qdn0L4yguj+4Jfiahc8hvS6cd7dHWGlq+U6QOerNL9jRQSfwuFMtM+fj7hto8hrNhpuJ21WXrJx9zs47u8v2e9stMcy4Hqqks7+/w0bteBK4A83HH+arLuzUjcD89bEvcDsx7uBed8Z+bbblI8GfO6M3eywIzMf7PjwgcDPRnbv/3fuv/2iGkj9LB++k/adtpS8YfnxXlReNZILzcb70t81kudPy6jP5/ruiJLi8nrd2Ohv/172t38vd+24u/q/tXFz9b/3H1j9336u6chUaT0239Ps7+9O9fd3p/r7u1PbjVzcwlv9w0dj2n0bhiUdl/rURt8ekrq5LR3f7Hn3N64cO3e59RnbPupPNEZ/ojG7Z6mSQbnIhytB6qea7AYYi4cUxLx+oxqG6xr6h7exz0b0feffGhmx3TsXD/pBvVq+Y6QLkrj4+thvGsksrt7axsj2EIviCgv6vXwsWX+jJiP3Qwd/Oep7zRmGgz2c/f0dIw/HzJ59MH3k8LOZcdhvN/MhCZz3qz517t4INr1E6P3ue0YqvsrHZ65/Heb920zuiuiH2yM+OuHYfXDp5jXSWxt3PyS9N3LzmeSLmtx7KIlPq70dl0rdLq7cOWk0yvYmqlup7WO7Y3UrB3pr4l5q+/2WPM8N2/fovdM5Q94/219200MMH/Y1upfn87GYvRF8w+qB5TUjdw/o7GvSKtJCbWdkG6AH3d80eL/ZvmOmqOJovZq/bCa/unSabBszu56pA93L2/Df6l7FmiJvFv1qZPchuXsnfsr+rN+dQ1R7G/cOUY33D1GNnzhENX7gENV+aHOj9zHK9UXPKUelE+VaX53ypdGlFP6yAxbkepaPhzGP7zw7ItwfB1329cvjmtZ338nH+x+0Gtp+q4mb38Ta92jHCXlaQf+lQ8u7L8JDf+DqtNF+4Oq03cu0t4zNj/2R53dS7mz0onkIsoq+ZqPlq1Zv8vwW1tH0/Ym+q0Y+gff2IU3jczXs7Wq0t7++PrZZK7ecZbe80S1PMHZrz++y2yXQ3lul3Vq4tUq7v87m5huR/cALkf3IQo2//0Jk9v4L0S7r5eYL0c7EzRei2y3ZvBBte/TmC5GX91+Idh8quP1CtDVy94XoGD/wQrStye0XouNnXoiOn3khOn7khWjbM3dfiLZG7r4QHW9fwl6++MrHrReirY2bL0S7j+LcfCHq7QdeiPr775j7ob37QnT8zAvR8TMvRMdPvBBtnwVufeVz/zRx5yOfu63Wm0//Q3/g6X/8wEX/fX/wJPNn5MOnufW+Dc9t4zo+ZIvft6FHPhc93Of51vMY4/0V+DF+YAV+/EBWwBc1uffA+fip/om8gN3Je6UkuuKbvIDdow1utDaz12y09H4x16c2Hj3yA1+lOO8Y+AHn2/YJvovth23asw2sN28t314moIYDDh8ut//8KFG2h/Ju3Vr+MHL38HvbPM+Xt++r2du4925Sjh84bvUwsntJunUx3MPGbrrevBnuG2Oze9faz5Jbt5fvjdy8vvxLI8f7Ru5dYP7Yf9abL4/txY69eYX5V0Zu3WH+aM77t1Z9ZeTmC/W2OfeuMX88KR+/vSa3LjL/hpFXHfDmVebl2F0Pcvcu86/m/d2Jor97eO5dZ/7olO0VRffuM/+qKrcuNH+80b19a+XDRnn/bXhfk7uvw18849y61Lwcu5sp7t4mvrdydw/qq/bcrInfet6qh8jzZ+rj3RfqfRL1nRfq/UEQLHu2zpsE3zhMYjiQYqO+ZqPneVThF9nvHUgRx5g8b0vfnUi9e6pla+Te9dt7E7eu3/7CxJ3rt33/VqF4qzheG9kPNvRFGwIb9fmgnNmm724NfmHj1t7gw0b9vTZuJtnv3wX+4TnB740LvUWPF6MH1+NVGz2fZR74qg3cV7218XZE97cj+hcn0Qsu4pQXD7NnevADn61bbWPPrZ7YXw1wpye21y3EZdrz4dQ/HDP4xpUNPVcCW6/lRRu4gaaPF6+O6A31ePUKi55vMA9zr15hUfDWIC/3x4CN5+OyTbBo+Q6kzesP2HjtapHHgmau3lnTF230fGHwzRzb2vA8Kqm9Pbfx2CTc5Vlb/qq4897oL8cldh9C0Zbz/dE9utmm/aIunnWRXV3G/vujOdeMVnfqd2qCXX138r1/UJPNL7bj06HeZHeyZnv+Cjdz0ficF47cnikdr6djc+nC+d3Yn5gpuw3B+zPli7rcnSnj/ZmyrcndmVK2nzG9O1O2B2venykNX3hq/IGnX2bKNumzScfxfP7165+N7B4GXFZrHrtP/ZmRfWssf/34xe4ftMZ/ojX997YGn0R+4Gu/f61mPs2nSw++YUNQD771/WUbVl600XGBw3G8aMPz2Ub6q32amRatbnxmb6PChj5/ptjfJptHMIWTCz7fBFtKeftGiy9s3HvbLbubAn/Cxs0Li3Z9WnFpSvVj06fy7p0W22ooXrr5Hpp/UI32A4FM7O1Atr+yWJCoKO1pa/Y2Gr72Ys97xHe/3XfvTt4aubfwtzdxa+HvCxN3Fv62d3Pfen3f3+595/V9ewv+rTrs79G/U4ftxzNufhhyb+PedyF9e83h7S9wbM3cnJ9bE/fm597Enfm5/5TQzU+J7Be53v9gzc35sbdxc360n5kf7f350d6fH+3t+bG7WbggG6pwLP/09rM3kVsOhaPHd0xgX0zo/OBnE4/t6u3708CD7as28gXZaGv8O03h+yJoKfU7JiwfOD7uEn7DhOctbY9toNeGVTID8bE2/pqJmhmmj14pr9UCu531eKk7VfHZnQ+3EY67FgpuNXvsWvdXKlEKMnb5TrPvmMAnvx74Wi0afdpF/TUThuy6Pl5rCL6HXeW1htSMe48A9lpDDBm25q/VAkvJxcdLk7MM9AWv8H/DhOdunKu9YoB+Vdtr/XDky82Hi+V/Db27e8je99OROwxDXusJ3IHk7c2ufM1AtZrrCKbPv/axNWGU9F3eN9FeM4E8T9t8+2RnwpFH6E1eMtHz1Ff9cDXWd2qRa8wfcu5eNvHaoPYD6XbleM1ELtvXrq8Nas/jiQ8cL9Yi50W3Fwc1w+4DX6rF44HT8MBpL5n48KBXn5ooZXc8qgh+yIS6o3znOS0fv8X8taZkLqdUO14zgU8dyWtecj7f4WmxvmjigAl924TUF7sTz6zSX6tFRV+08XYtXhzUmwdD5Nhez3DrYIjs9pLuHgzZvQWkwzd+EynHCwbkJQMtb660D2mbtw3cu6Ti7ZuE387aejtpazcK2E1XL8+XkbZvMD1DrtEr5efLGLfvDvl6XayOl0z0hk8YtNdqMfJ7e3Ic5RUTcmBP4cPZ62/UAp9QKt5fa4jjmyG9vNSQ8+M2+X49XqsFvkpVlFMsvmFCM9g9dp3bUxNF5Le+CD3eiXNMqr/WG5o3HRU+k/Rqh75ownG4w51PbX86Xix1+w1XPFk4vWTbfU/D94aG2tNqbE0oHVOpL5nwjq/7fvjoyS+d8QMfkH5Y+YEvSG+fwTueweXYNWd3mskcKyiP192nlxV9ZSXfux9s7amV3SGix4MvHXWpmxbpPvk0kys6HW4c9g0jj2WE3BjQ8qoRK/i9p93iX43ou489X1UkP1/6qMjYVGR7vxbu2m6ULFKHfssKnLBR6ss/sLJrkKNnve2GZ/tlybyBvFb+nvzh37GiealNbbqzsvvu5+0sx223uOYBukevtOfd0raHRvJYEn/z7/Mv8HYXyPOdunX+lKL+UpH9ASmEA04c0W/1ScmnPDc6Jflrn2xvY8MKrfM3GXV8trJNDFyTttERp39g40cmbfuRSWu/f9Jao6Ta+nyAtqeULGfc472m7hq0vbEH934p/YiNz5N/d5xEBk72HvTTIePzr5htr7zHxp3yhxrq59myy3+4fdfcF3XJ5QPRD4/Dv9RlbGfLveRp2R1bai1PTbbGeRDfGKHHulQugHJG2q8jtDvG1fDtiXbwRTW3n+DUD7yM1/HKM63iOVJdd8+0/iPPtP4Dz7RfPkriOcOef82vxIrp+w+k/vblqvuH2vsjtH00briqsX04/fPZSt+dPIwrCa7liro5NbC1UkauQsnRt1b0J8LB7i6/1vLJtjW28h0b985j7Ftz9zyGbM//3D2PIbtTUffOY+zn22PFODf+5Ni9XO7ORJ0XeOXCwTg27RnyEzNldyrq7kzZvnbk4XDj0fn11UXfXYX+wsathegvXsRw7XP5cMXh917n2ApFt1+tbE9E3UwRr9sPl91LEf+qPY72eH21VxwXmfDr6RtWeKv3s5X6E6ei6g+civpGe/zlBQQXLGnWl0eoY0Wy89rq61Z2dam7e2Juj1Apv3uEekN7eNv0e70y8LI8+Lthr1vhTJ5f+7b9RN/a7+5bbo+9HBMG3lBHeXWE5MiEzMe21dYT7y5F9Pr6ytfNX/etlbvPX1V+4uR0lbdPTu8XnAbudEbHav3GYlPBXayP/cH6E8tN2zG2Hxlj+5ExrsdPjPFuS+z2GO+WA7FIyruUn8en1t26F5ZmtPJtHb+utO4+WZcvl93rribtB571a/2JE/Z1d6vMzWf9vY17b4X71tyesfojM1Z/84wd+bA/KIvo13my+8ZUK1jAE8q6+OaM7fjuK3/L89eq7KYspSDW3cdwq/7IlNUfmLL6A1NWf2TKth+Zsq383h/S2z+Ddbcn9lhZyDwfPjn3D6zsLpU8Bu6/52ui1L5Rl4qHt/rh/tFf62I/Ea53vXt/7m9/CG/O/f2P6b25v23N7blvP3GpSrW3L1X5YqaUPNpSH28Lm5my2xRTXJipo9ZXZ62UvDJTfFsX+4mIbT8ya+0HZq39wKy1H5m1/iOz1t+ftftN2IqPl/PlF583YavvJm1+PU0pm/E8XnvfRsvETL4G/5s28utNjdMGvmXDjtWWD/d4vGyjvWrDkHPzan9Y9oe93B+ebfGX+4NtvNofSNz1l/vDsz/85f7o2Zb+cn+wjVf7o2fabfeX65EpP72/Wo+RJ1DGy/3BNl6uR8eNDZv5sU/guPudv70VKbijafehv7r9npVhVcrb1sru6774CM2HPPPynfbc/bKefHHTyb3PH+7rcvf7h1+ktdzbndzawNbiA/VFG/f2wreJPncfSPT4ibVYPd5fi9Xd5tft2zV0d47r5u0aexu3btf4ojU3L9j4wsrNCzK+SMQ68jGtCt9O8TkRS8tPrC7r7oMcNz1wb+Oe9+xbc9t7dvte971nt/F1+3F+m2yHTyfJaLsx3n7aKndaH2+1/Iv82cjuY3v8TWVKCft8L6fK9ghe5oDwbZjfMpFH+41Os3/TRE6S43ktvshfzK2ddnx4+Pxcj917VstkV+VclDeMjKdGbid18r2cv84z2X43EDv6WvumPbtbV4/8Mp0V/pTiL0Z2k5U/yFja0X/EDK+V27deynF5zj4zerdZNVpuxh90QvCXzUTdbXnh6wmd71L7nIus9d5r+SjPH0K1vv8gu69HXpjycIGdDf+JUL9Lu737oFTHTzwo6fH+g9LWxs0HpW1rbl6d9YWV+w9Ku02zo/7jWP2L5+z2u2LzaI4xteezC6tuc7zzQwZ85NDqdxpTDtwGXbeN+Ylb+1Xfv4t9X5PbT2ztJxZgtf3AAuztY5i6OYapu82u0vHxs05JU79cfrFN2r35OrpNH74/PD8SZVv/vcPz8fSKbIbHbl6/s91J0R9J7FH7gVcv+4FXrx9JMFL7kVcvs988U2r2a60fPtXynaMnipf0x+LEdr6N323l3q2xX9i4dW3sVzbu3Bv7xRLKzds9v1rOufmU8sWyHz7YZK28uHSIz7zy7TT1O4upmnsqjyXZ+uqSrObjvejwjZXt8eOStzc9/uHmELPuPpyZyU4UT37J49znZONmlj5ez3fvuC5nvJx73x2/6d5ftYLrRB7or1qxgcSe4+W64IDsw6DsrLx9/fsuxkp+mFg//KZX/TzX7q5v6fNvJOvYXlxDn3/ffKVcx/aXdIWTx1MgWvP50rKtjZ4/xp0/1fKrjbuN2XxKe9+tA74zRt30yO4gws3vV39RE3w58ii+qcnuMrh7H43WsXmOvX2ufG/l7ubm1srtbbx9Xe5u4+2t3N1obbutr3LQWZEHU9C3b9pBjHywvWpnvv9ea4jKl2R+1w5Or5xLFc/t7Hv57vbv3srdp4StN9388PnWrR9rZekH5eivxQYpeaWHlM237dv2q/T3YkMru1G++0H5bU3u9ut+hG8+TX4xa4+K0zgfbvn75uwv6JjzKu/X7eAW+vLxOs/7l2neeuXeGmgwwOvwtw3cel14O1Vh24S846t92Aa4b+DOXSS7684F35Z5/hy8M5CDwG+h3zGQv+Ojj1cMFFwp8UB9yYTkF4fPxJK3TWxeTLa3LWYKXOHX8VdNyPGaiYYPM2zOn29HJCdFOTbHxrcm8oXm/Dj82yb8xVrg6aUc/qIJhMrjtXmBJPpHsLW3TVh7zQTeU/k+ju+ZqDDx2gTHB9+LyEsNuZek9vZS1W7lWw/cZlU2D0rq778lt/3G0a235K2Nm2/J9xvz/C15e996XpT04Yn8Gxaa4MuK9flLdtsdMvnwkr0blb0RPJjs3tTv1+S5ke007XghpZfjX6vh78+wnY27M6zt33Bu3YTfdltWN2/Cb7stnlHLmuqj8pdZ5HO37jabhuKxie/Z/PVBfrcPfu9a5S86ttR8iS0UDX/t2N0eAj41c+xM7Pq159HGwaPzD/p1Z+XmhxK/GuPclBycw/VNK0durIyDD0h+z0oxHCTo7eV+KXhRqPLqrPXMrBkf7hP6ddbetjJetjLwqajRXrRy/1uUX/XvvY983g7Xz9dwmm9zWnCiaBckdx178zuhX1m596XQR3PsZ4bH3/7W8Rc27u36fmHj6a7v/34U/vSvf/n7P//13/71T//5l3/72388/t3/nKb+/pc//ctf/3wV/+9//e1f6f/9z///v6//51/+/pe//vUv/++f//3v//avf/4///X3P5+Wzv/vD8f1P/+rH4/fi36I/O8//qE8yo8f0kebzne887/Ux395vGa0+H/Pv+6Pbvvjw0OP8z/Mv18P/+P5v+N//89Z5f8P"
4216
4219
  },
4217
4220
  {
4218
4221
  "name": "sync_private_state",
4219
4222
  "is_unconstrained": true,
4220
4223
  "custom_attributes": [
4224
+ "external",
4221
4225
  "utility"
4222
4226
  ],
4223
4227
  "abi": {
@@ -4397,15 +4401,16 @@
4397
4401
  }
4398
4402
  },
4399
4403
  "bytecode": "H4sIAAAAAAAA/+29C7xdZXkn/K5z9jk5Ozk5OzdIICHZSSABkgDhJopALoQkkAACgtViiJACJhLIjSSEmHtAQbz085vWzlSnFzsO1rY6vc20Uy+141h7sZ3asfZTazsqo1VarK3j1M9l9nPO//z3f717rbWfnWzIeX+/ZK+z3uf5P8/7vM/7vNe1VhJOpCmN3+17Hrp3w8PbHty1ccemDdt3/PD/9G7SyK2EkilpKeZ780/kDDQoeoCz94f/6iGfoAGSWIz/wNsHGLAQf/gRfxLKyj9R/pSnZPlDvykC/KiL4Y774b8JcP1jJL+k/m9vV/8pEZ2tblYCfT3kSr3Ge73ifWH7537x009/+BO/tOP9v/DuyZ+f+FMTFo9/89Gj35r597N++ttHf854V4FOScgtu9/4b1Cyr/2N3tc+8Kvf2zph9eEPPfr5/3nzzomzNn5szhO/8Nrff8ecr284ZryrFe/XnnrPm2sfeud764s+853+1c98Y8M/ru276vOf2XfWxw99/+vffpfxrlG8n33t9//6I7V37d399G89dtX5Uzc++67PPf/cH3z6l2v/+OUPPvK5K4x3LZS5TDu8EfgroVg7SNNN5fiH5a8rx99j/OuBv0D5Jxn/zXCzbhcHf/6X/nr505+55CvfH/+W9RuP7L7srX921zf3znj/eX/3xg/Oenay8d6ieP9mx8p37Jj+piu/OfDHTy9938xzvvjC+z/y1X/as+mqb3z1a78+9x+N91bF2yIZ76sE74xLF7784X/zJ9O+cP68v1r2e89e9JNnvXDuK7/wm2ve9+3vfeqfgfe2xm9Bew3b+/Zy/BXjv6Mc/3B8eDXwF2jjw/52Zzn+Yfl3leMftt9r4GY9zmMhdrjufiw/r6U+432t5k0Oz9v+/1afTtZ/7NCSjwyO/9jXl//sipWf+fSRt8ypPfuzxvs6wXvhK6vf/oW37D8avvT+//22f7rwvyxbMnn28skX/fl7/mLmQ9ted9a3jffHoTAF6nuW8d8N/KR7NBn/64G/QH0N828A/qLjhDTdA/whFPfXjXCzHnKlYd43FOcd9tN7DSwUKvewv91Xjn+4L95Ujn+c8f9EOf4B47+/HP8E43+gHP+g8T9Yjn+i8b+xHP8c498M/AXaTd34t5STP8z/pnLylxj/Q+X4LzH+reX4lxr/w8BfoPzLjP+RcvKXG/+2cvyrjH97Of4bjH9HOf6bjX9nOf4Nxr+rHP9G43+0HP8bjH93Of57jX9POf77jH9vOf5Nxv9YOf6fMP595fjvN/7Hy/E/YPz7y/E/aPxvLse/2fgPlOPfYvwHy/G/yfgPleN/yPgPl+PfavxHyvE/bPxHy/FvM/5j5fi3G//xcvw7jP+Jcvw7jf/Jcvy7jP8t5fh3G/9by/HvMf6nyvE/ZvxPl+N/3PjfBvz5+99keNz+DNythzwpCePDibW6vz3zxJ10/e7cRu7OHQ9ueXDHnuXbt2/atmPl1jc9vHHHg2/YsumWbRvv3bLpzk3btj+49aFmxNFpZcb9VM6M0XJWb9rx6hNXK7c+tGPT7h19hJvQ3z30dy/9XaG/Da8vg495WiVbl+wnHev52G8dbNCPI30Qe4D0rIdc6ZyE8EIYXc5A+FXSpaC8JCE8k8flszqzsleFLjWRxzauCjlVIacm8vY6Yh11xHrMEeuwI5ZnGQ86Yu13xDrkiLXPEWuzI5an7T3b0LEuxdrliOXpE5629/SvPY5Ynm3b0yd2O2J5xugnHbG6tX+08b2NHXCskWT8mhy+Z3KqhFV23KPKNSDkxejHRejH58RPx9W1xnVjXH39pjfsvH/d1vsDJR7qrspQcRbRbYioxrgJ/eP7s+her6DFlBavMVOx4t2wace9D9yx8f77N933w0JuZw5Guj7jPg9IkcYG4+NJ03rIlXryOCXiV0mXsk6pnEY1ttSqdoymYdV1Wzfet3Ljw9t3btnE0yycIrBVEBXvqTpNQDO810t019PfawVfENhpvtXcIN2vh1xponnFRJFpeUOAPY7yapCHtcmpV+hvOqeYz505gst0rA/WxxDlTYC8Gsjmeh0v5Jj+PYJ+AmGNF3xm+1byegUfT0tjU+c8rc3KkaaakGGyOxgVpnV7VLDyTSgnb2pC/CgPMU0fs/WgyDMsa4f9GVjGWyH6TzZ+a0SXpltJxqDQF++ZfdJlpI+S7mhb9pN27Ih4phfeQ/xqaMsvk1i9YfnYT0rG2Cl57I76cExm22Lc68/AMt4K0f9Z47cWmuM++8lEoS/eQz/5I9Idbct+UtKOy/P6ieFXQ1t+mcTqDcvHfjKxnLxleeyO+qj+GW2LfWB/BpbxVoj+S43fGtGlif1kSOiL99BP/qpxPZChbz3kSo+qcQv7GdqlyDGnvH5m+NXQVr0nMTuq9qbGXsZbE3m8tFwTcmpCTk3kHXXEOuyItdsRa68j1rEuxdrviHXIEWufI9ZmR6wDjlieft+N9or1Q0Wx0uTpq8cdsR53xPL0Vc8y7nLE6ta2/ZQj1kOOWHbcgsd5hp+mgdDc9orOTRDP9MR7iF8lXcqOdZRd1JjRyjepnLzJCfGjPMQ0fczWk0WeYdlKYn8GlvFWiP6ChkFrRJcmHlNPFvriPRxTn9vAHRL68vpCUX9EfrYR8rE/tlNfiGd64j3Er4a2/D+J+Yeyi5Vvcjl5k/LUL+pjtp4i8gxrauPv/gws460Q/cvJH6eATuyPU4S+eA/98fJktO5oW/aTknZclddPDL8a2vLLJFZvWD72kynl5F2fx+6oj9l6qsgzrGmNv/szsIy3QvQ3kJ9MBZ3YT6YKffEe+sly8hO0LftJOTsmz+f1E8Ovhrb8MonVm4rfVr6ppeQl385jd9THbD1N5BnWGY2/+zOwjLdC9LeTn0wDnfiRr2lCX7yHfnIz+Qnalv2knB3Dirx+YvjV0Fb7TmL1puKqlW9aOXnL89gd9TFbnyHyDMv2qfszsIy3QvT3kJ+cATpxPDlD6Iv30E9e18AdEvry+nneOFUT/EanfC79Vw+50h2qTgvwP8J1ZBio25lwv4C/LM3bHgy/Gpr9pUx7OJPkZdW3lX260KUm8riOpgs504Wcmsh73BFrryPWZkes3Y5YBxyxdjli7XfEOuiI5ekTexyxdjpiHXPCUvGzHb2OOmIdd8TybNtPOWJ5xkLP9njIEcuzHp92xPL0CU/be7Xt4FxGT5847IjVrXHCU6/TYcw01qedOtt7tsfHHLE8y/iWLtXLczzhWUbeP8O5ZdL4HQjNba/AvPXahPBMT7yH+FXSpaC8JGYXLB/Pk2cIXWoij+fJM4ScGUJOTeQ97oi11xFrsyOWZxn3O2IdcsQ67ojlafunHLHG6rEY1tOOWJ4+sccR67Ajlmf8OuaI5Wl7T1/1tH23xi9PX/X0r4OOWJ716Olfnm3I07+OOmLtcsTyLGO3juU8y+g5nujWeuzWsdxbHLG6dZzjOcYcG0+8NNqQZ5zw1MvLv9LraU5YaXrCEcvT9p5jAOtr+dyX4aepzTWwuQnhmZ54D/GrobkuvdbA1BkyK9+McvLqeeoB9TFbnyXyDOvsxt/9GVjGWyH6OxuFqhFdmviM3VlCX7yHZ6de1fhjSOjb7l4E8rONkI/9sWR99eb1R8Ovhrb8P4n5h7KL8g/jrYk8tn/eeo1hDQX/2DpNlGdQ8HE9o34F7J77WQHDr4a2/CqJ2V/Zxcp3djl5kzhWoDzENH3M1jNFnmHZ+4j6M7CMt0L02yjuzASdOO7MFPriPYw7b6K4o9pEWb9X8fSlJmdQ8HH7Kul/fXnbl+FXQ1vtOYn5u7KL8nfjrYk8tn9eP30xYpn/nR2RE4srSg7ynz0mpy05g4KP2y3Wa/52lHwpb7s1/GpoK04kMb9VdrHyzSolL/ki92UoDzFNH7P1OSLPsGY3/u7PwDLeCtG/j/rFc0An7hfPEfriPewXf6ZntO5oW/aTcnYMtbx+YvjV0I5fjviJqjcV36x855STN5TH7qiP2Xq2yDOsOY2/+zOwjLdC9L9MfjIbdOJnXmYLffEe+sl/aPwxkKFvPeRKX1a2LsD/3oHQbLsC/BcY/5xy/L85QPQF+X/d+OeW4z9o/PPK8b/G+OeX47/b+M8tx3++8Z9Xjv8y419Qjv9rxr+wHP8a4z+/HP9vGf8F5fjfYfwXluNfafyLyvF/x/gXl+N/l/EvKcf/beO/GPiLrLEZ/9Jy/L2m7yV4U+hk+BbrLwL6JOPXsDjPZFUJq2y/qHRH/XhceQnIwzJmYV1SEGtA5JWpk4tDdrkQfzCiC+uZJn7XStkyp2mPI9YOR6yjTljp9SwnrDRtddTrHEes2Y5Ycxyx+p2w0rTNUa+6I9bcLsWa54g13xHrXEes8xyxFjhiLXTCStNbHfU63wkrTUcc9brAEetCRyyvviO9XuSItdgRa4kTVppe36VY9qn2NtcL1ra5XvCKNtcL1re5XnB7m+sFq9tcL7i+zfn+Ohsrnws3k8avmssXGLfb63aG8ULQ8x/Dr5IuBeUNz3/OI3lcPt73WSB0qYk89vEFQs4CIacm8g45Yj3piLXLEeuAI9Z+R6w9jlibHbEOOmLtdcQ61qVYnr66zxHLy/aqX+wWX/Vsj8cdsbq1PT7hiOXZhrrV9o87YnnGCc++1jNGe9re017d6l8HHLE869HT9qdDnHjKCSu9nu2ElaZtjnrN6UKsND3iqFfdCStNXrZP084u1Cu9nueI1e+ElSYvn0jTDies9HquE1aaPOvRUy8vX+3mWDjVCStNnvHLsx499epGe6XJ01fnO2GlybPv8IpfaXraEctz/PWYI5bnmoLnmPyAI5bn2uOxxq+tY8+DvKTx2+Ya/lBCeKYn3kP8KulSUF50DR/Lx2d7F5STNzFPPaA+ZuuFIs+wbE+4PwPLeCtE/18bhq0RXZpuJRkLhb54D8/2/nbvaN3RtuwnJe2Y+1uXhl8NbfllEqs3LB/v9SwUutREXj9cF7G3qrujjliHHbF2O2LtdcQ61qVY+x2xDjli7XPE2uyIdcQRy7MNedbjk45YuxyxjjtiebZtT//ybEOecfV0sP1BRyzPGG2x0J6/xPHMAMkpOvZGfqNr83mV29p8XuXONp9XucXGRRfAzaTxq54lKTBGO5gQXgh6TGj4VdKloLzhMeEiksfl4zHhYqFLTeTx+Z/FQs5iIacm8g45Yj3piLXLEeuAI9Z+R6w9jlibHbGOOGIddcTytH23+upxR6y9jlie/uUZcw47Yp0Otj/oiOVZxmNdiuXZtvc5YnnZPr0+xwkrTZ6+2q1jgAOOWGP99li/3cm4OtZvj/XbY/32S6/fTpOnvbrVV59wxPK0l2fM8bT9445Ynm3Is9/u1hjdreMJzzIecMTyrEdP258OceIpJ6z0ut8Ra4Ejltc6eXq90AkrTY846jXVCStN2xyxdjpi7XDCSq/Pd8R6qds+vZ7tiDXHEavuhJUmT3td6Ijl5atp8mxD3er33VrGl3os9NQrTWN9x4u/70jTdies9NrzzIOXvdLr+Y5Ycx2xvPraNHn2j172SlM39h1petoRy3PO95gjlueejuc6wAFHLM/zOfyMDJ4NSxq/6p3HqZx6yJUWJ4RneuI9xK+SLgXlJTG7YPnMLlb2JUKXmsibC9eYh3KWCDk1kbffEeuYI9ZuR6zDjlhPOmLtdcQ62qV67XHE2uyI9ZQj1kOOWE87Ynna65Ajlmd7PO6I5en3nrHQsx4fc8TyjDmePnHQEcvT9ru6VK8jjliePuE5NvHstz3rsVvjl6d/HXTE6tYY7Ynl6V/7HLH4G9M4v0kav+r7MgXmTucmhGd64j3Er5IuBeUlMbuoOayV/WKhS03k8R7wxULOxUJOTeQddcQ67Ii12xFrryPWsS7F2u+IdcgRa58j1mZHrCOOWLscsTzb43FHLE//8rTXAUcsT//ybEOecdXTJzzjare2bc/26NmGnnTE8myPp4N/HXTE8hwD8HsQcLzM70EoOmZHfqMbFHxJ47fNbzq+IyE80xPvIX41NJe5zJhd2V/Zxcqe53uD6bXn9/MOOWI96Yi1yxHrgCPWfkcsz289bnbE8vqOWJq8vhuZJk/bd6uvHnfE2uuI5elfnjHnsCPW6WD7g45YnmU81qVYnm17nyOWl+3Ta6/v3qbJ01e7dQxwwBGrW/ttT9t7jgE8Y7TneKJbfXWs3z51fdrYmLwY1tiY/NT510FHrLFxYTGsbhwXpsnTXt3qq084YnnayzPmeNr+cUcszzbk2Xd0a4zu1j7Ns4wHHLE869HT9qdDnHjKCSu97nfCStMjjnotcMSa6ojluT/kaa/5Tlhp2umItcMJK70+3xHLyyfStM0Ry8v2nm3buz16taH0eqETVpo82+Pp4F+zHbHmOGLVnbDS5GmvCx2xvGJhmjxjdLf6fbeW8aXe13rqlaaxscmLv+9I03YnLM/xRJq87JVee43J0+u5jlhefW2aPPtHL3ulqRv7jjQ97YjluabwmCOW576V5zrTAUcsz/OF/B6UiyEvafwOhOb2ksqph1xpMCE80xPvIX6VdCkoL4nZBctndrHyLS0nb0JC/CgPMU0fs/WlIs+wLmv83Z+BZbwVov9SY+JdI7o03UoyLhX64j2zT/qt4L/qH6072pb9pKQdz8nrJ4ZfDW35ZRKrN9V+VL0Zb03k8RpIXnurujvqiHXYEWu3I9ZeR6xjXYq13xHrkCPWPkeszY5YRxyxPNuQZz0+6Yi1yxHruCOWZ9v29C9PvTzr0VMvzzjh6ROe9XjQEcsz3vPzdjg24uftYuNHJQf5jW5Q8CWN34HQPEYpMF46mhCe6Yn3EL8amstcZnym7K/sYmW/TOhSE3m8dnOZkHOZkFMTeYccsZ50xNrliHXAEWu/I9YeR6zNjlhHHLGOOmJ52r5bffW4I9ZeRyxP//LUy7MePfXyjKuePuFZjwcdsTxtf6xLsTzjxD5HLC/bp9fnOGGlydNXu3U8ccARa2wMMDYG6GRcHRsDjI0BxsYAY2OAVlie9upWX33CEcvTXt0aJx53xPJsQ93ad3Tr2Ldb/euAI5ZnPXra/nSIE085YaXX/Y5YCxyxvNbv0+uFTlhpesRRr6lOWGna5oi1swv18q5HT3vtcMLy9gmvekyvZztizXHEqjthpcnTXhc6Yp3vhJWmbvXVsfZ46srYjf6VprF+aMzvOW+7E1Z67XlGxNO/5jtizXXE8uq30+TZ13rZK03d2B7T9LQjludc9DFHLM99K8/1iQOOWJ7nmfj5nn7ISxq/di5wKtxP5dRDrlRJCM/0xHuIXyVdCsobPhc4leRx+cwuVvZZQpca5aWJn5OZJeTMEnJOFpaqr/RfPeRKr2Z7GAZi4/mDAnUzI68vGH41NNdNGV84h+Rl2dXKPlvoUhN5bOPZQs5sIacm8g45Yr25S/U67ISVXg86YXmXcbMj1kFHrGOOWPscsTztddwR662OWEccsfY6Ynnafr8j1h5HLM8yPuWI9ZAjlo3trf/CsY9T3z2xbN9dctwY7buxfGYXK9/scvIG89QD6mO2niPyDKve+Ls/A8t4K0S/p/HwTo3o0sRjxjlCX7xn9kmf097RwB0S+s4jXGX3cwRuTfAb3YDgq9vFC9s/94uffvrDn/ilHe//hXdP/vzEn5qwePybjx791sy/n/XT3z76823W513GP6cc/1Tjr5fjn2L888vxTzb+BeX4rzf+heX4lxv/+XCznot1RPdyz5Il3zZ+XKPpyc0fBoz/8nL8Vxr/FeX4X2b8VwJ/gfJ/0fhfBnfrjd9z/+K3x333A89Ufu0vv7310e9c+K7/vvrp3/2Pr3znZ5Zce+D2r7z779cb71WlZIch43+5kN0iXW28r1C81/5G72sf+NXvbZ2w+vCHHv38/7x558RZGz8254lfeO3vv2PO1zccN96rFe9nX/v9v/5I7V17dz/9W49ddf7Ujc++63PPP/cHn/7l2j9++YOPfO7KNLY9Q7EN+6RxcG11maaUz/qwDUSTpgrRv3FohO9dDXmDxBNCc5/bA/cL1MVZWAZLqs81/GpoLnuZPreH5HH5eL5cEbrUKC9NPH6qCDkVIUdhPe2ItdkR64gj1l5HrEOOWHscsfY7YnmWcZ8jVrf61y5HrKOOWMcdsTz9y9NeBxyxPP3Lsw0ddsTy9AnPuMp7KJjH44A+uF+gX+7JOw4w/Gpo7pfLjAP6SF6WXSb88N+UxvXOHQ9ueXDHnnVbN963cuPD23du2YSjCRwhsJSEUPFeEkaXHvN66V4v0d1Af68VfEFgp/lWc+Pofj3kSovMKxaJTMtbDNg8ssKvUWNtcuoV+pvO6e9zZ47gMh3rg/WxmPJwV24JyOZ67RNyTP8eQd9PWH2Cz2zfSt7p3BJVPRlvTeRxW8w78i8TIWqN60aEuH7TG3bev27r/YFShf5elaHiDKJbm6FaInAT+sf3Z9A9ZQrEjk0C87hMmriTwbwNJGesk3kpdTImF48nKEsYpi1xYJn6M/i4UfO9HkHfR1h9go+DseJHDORjjxkIzWWt28XBn/+lv17+9Gcu+cr3x79l/cYjuy9765/d9c29M95/3t+98YOznp2SyvruQLZduG7NTn0tylch+oth6ef/NOSlHjm9kd/wyBU7t2y+bdOObQ9u2rXph7Fte6DUyo1upr9vEXwqDYbmqubAULKh5g4Mhl8N2lXqIVcaDgxqVI7lKxcY2CF4VOUdGG6hv8uMPkuehSo8+uTuDEefWJuc1OjTdC46+sT64NEnNlQefSpPDEL/HkHPAU8FTw54WfLGuugTaWweCGlsHij07/Q8kPn6QnPL5e7eaBdUT/y22WLDZOBjHcf67BNprM+GNNZnC/073WerSJIQRien+Cib94zTVLeLv9mx8h07pr/pym8O/PHTS98385wvvvD+j3z1n/ZsuuobX/3ar899oc2ocWeb0e7VKd/yRuS0yRi/HwCvrWfK2oc33grRr66O8K1qXKcR5bxGfiOi3Llxy4P3bdyxadVDj+zctHPTfTdv3bFp+/KH7lu1a9NDOwpPzVbT32sEn0rjw0iBzyB8LGSaeA2r0QaHD5AxDRvI6G9qGCU12PONm8rpTJ9B4g+huSuaTrrXQ66Uuysy/CrpUrYrmk7yuHzluiJ2Z7QKouI9DhuYdzK6orPofj3kSoW7on7Kw64Ia5OT6opM56JdEdYHd0UzII+7IqzX6UKO6d8j6GcQ1nTBx11RlrxewcdDiYTu41rWGUI2r2XdC9HhhTOz7XBGyLaD/a0G72xvy09Tmz55V95oYvjV0Fz3ZaLJWSSPy1cumqCnoJQ7CdVokBbTnaAZ0vPfXHsVwcfJcCqk8z7ohN9EnT6Wa4j0Vt6O93iQhPxGp+RMaFPOBCHHPHkc8N1NeQORvCpgDlHeRODj/Z0a5N1KeZMAcwLlTY5gThOYad3NHD+Cl/6bB3TK03kXAg9YIy/+3Ue0adrY+K0Q7TPgVwfJr7AVs1/NaKF3zK9mhGw5E9qUM0HI4d4qTew7Z4myWt7ZwMf1PBPy2HdmiXJZ3jkRzNkCM62fKeNH03H9p8ki/rlwv8ikJG/EN/wq6VI24p9L8rh8PGE7r5y8VyfEj/IQ0/QxWy8QeYZlh/b7M7CMt0L0P9NobzWiSxM/eLJA6Iv38JD1/1sdrTvaNsn4NVy+x+0Ly271ww/npGkD6PO+6uiyYJzqDc1xzSbEHKtmwa7gz1OsQn6uO9VOypZ/nijjUGi2zXi4zvLvcyNyxkfK06n6HE9yMM5iff4K1ed5kMcxOr2uN64rTA/1+WGqT9UWlZ25Xypq5yEhp9N25v5lgaMcxOKHLC4gLLZzvXFtdsYXTV1AfIsgD+lw1nUB3F8kZCt8w2jlg5+o6rJl+aDJqhD9cxNH+P6gpA8uoDzsK7BfRD3QDkhfD7pc/Rn0WeX6I5h1fvfM0ZjGj7bCuuD4a/R/CpjfO1PrieVSD0YavfKHC0S5lE0Xhday0c5rM2T3h7gvVoj+L4VN1QOZF5DuiD2FdDm/he7cvpHf6AYFX7txROncqk1+uWCbtIcl2Xf/DNrk31KbjPkI6szziKJ2niDkdNrOPEdY5CgHsbhfWEJYbGerJ7MzrkLyyt5FkId02C/gSuVFQrbCz9svfKeqy5blgyarQvS/CT74z5F5ccwHF1Ee2pT7hVbxkF9iaHr3h3h/WyH6H0T6BdVeMdZyv2D0PeNHMLlfMLlYrli/oHxxsSiXsukSwlIP66OduV9QNsXy8wsEjL4K5Y/1C8av1iPuoTxcjziP8s6GPB6zzoS8BZSH6xG8NoIvJ+B4hy8FQB/h9YhxkfIMAAav9+G63VmUNxHyzqa8GuTNpDxct5tFeXhMhF8wMQ3yZkNZbd2ON0dnN+63uW8nj67E1kWTjN8Q8vUHfLQK5Ux3lINYN5CcGY5yeMcB5Zwt5Fh9zSS+esiVcu+zGn41NLfdMutkM0kel6/czghGG7YKouK9JIwuPeZ1cp/V5KrX950tMK2nwDLNyuBDWwRxr0fQzySsmYLPdO+N8CMG8rHHJHQ/az/SMCpE/zLorf4v9dZKFtqDe0zTPevEBOtg9FeDDs+fqTErGeU6OwPz5vEj9rh2vMYMAlOVaxaVi3WYSToY/QoxEuglGtZH3Uv/xpHRrAz9VD2xrtjLZZWH68no10Tq6SyhA7bJtS10YJpZGTqsEzqI6LZy68N7GtEtUOLD4Ryd2PK8b3uWwMlKhp96oXmkOmVwtuA7i/7uETqlJbcxyvCjfVs27diUUfYeoZuSyU8tWeLxqPGlaSC01afl7kMNvxq059VDrpRwlDN5XD4+Dj5T6FITeVi/7EcxOWmd2kvWGnV6+46t27KqNG/nmgi1QsjuZJMwuiqQp833gxU+3MRDOJwW8jASlxwwqHHicmN5fjQcnj6Cy3SsK9qUDz6hey6hPGwqF1EeutLFlIcB/xLKw6nb0sb1UGiuL5xmYV6aesU9HmIj/+yInEltypkk5KitcfbNku+eyx2GDL8a2moLw2FILU8ou/A2JvKqZQY+iGZT72/CAOlRmrrH3kVe8imcK/Pa1fC93kU+juRx+diuA0KXGuWlib9lMSDkDAg5CuuwI9YTjliHHLH2OGJtdsTyLKNnPXqWcbcjlmcZDzpiHXHEOuCItdcR67gj1n5HLE+f8GyPnm3ogCOWp732OWIdc8TytP1jjlietj/qiOVpL89YuMsRy9Ne3RoLPe11wBHrdBgzefqEZ7/tZfv0etAJK02efu9p+8cdsTz93rOMnnHCcwzgaa+nHLHsndO2xoTrEPx9YzXnHxeRg/zjcmCp9YNYGdU6juNb+UzFK4hubYZqicBN6B/fv4Lu9QpaxMbH0Tv4hMqlCeGFoJeVTtUTKlZ2dXq4JvL409OxJ1NQTk3kHXbEOuiIdcQR64Aj1l5HrOOOWPsdsTx94pAj1mZHrAOOWJ722ueI5WmvxxyxPO31hCOWp6/uccQ6HerxqCOWp708+6Fdjlie9urWfsjTXgccsTz9yzPmeLZHT5/wHDN52T69HnTCSpOn33va/nFHLE+/9yyjZ5zo1vHXU45YvEyC82peJin6dDTyn5sDa57AipWxw8skpuJSoluboVoicBP6x/eX0r1WyyR8KufuxlN/tixS8lSRfICET2nhchCeNsO8EPKt1CH/QEROtU051ZxyprYpZ6qQMyj4koxfk8P3Yiv7U0nObEc5iMUvqsClMPaDeSQnq1krP5iXgdUXRnR+AGj4WLu114rATNPdkI/02xttKF0W/Tic4kxpsl5KsnNCXFfkRV35pSQ/DQ+K7m5gKjtbvSs/mEd5s4Vchcltq2jdVYUOMSysr4lEb3XRn0FveFx3h6Du+IFU48/yn3kZOqD/4CMJWf5zrIT/PDEhriv7z0SSbfT7wH/eSv6DNo75z0TKQ/8xG6mYySd1i8bMSUI/JSf2wi/2o6Iv/Joo5LTZlxY+rT6J8vBB5MmUh6fVp1HexZDHfdAlkMcPyS6FPH5IFr8KPZHy8IvP2JY49dLfaNu0zXyywMl59fC9OuVuNjSfwfENYmCe6cr32GeQf3IGFj5+hjFkA+Qj/b9rFD5txx+YMLpc+DJAs4n5aMmHZy7LMy5A/CrpUlBe9OEZLB9vg80Wuqg4NReuMQ/lxJ4awLz9jljHHLF2O2IddsR60hFrryPW0S7Va48j1mZHrKccsR5yxHraEcvTXoccsTzb43FHLE+/94yFnvX4mCOWZz16xi9Pex1xxNrliOVpL882tN8Ry9NeBxyxxuLqqYurXrZPrwedsNLk6feetn/cEcvT7z3L6Bkn9jlidet4dasjFm+p4Ryd1x7UfPjsiBzkPzuDL73GNYcOPv3emxCe6YP3EP9UPf1+rtClJvLQhpiHcmJbnoiV54Ueau0j5huqjI5bnqbipUR3W4ZqPQI3oX98/1K6l7XladjWjHDpibed0Iwx06ptp2kRORPblDMxp5xqm3KqOeVMalPOpJxyZrQpZ4aQw+9fTBNuqVw+qGXilgou1/KWnNFvhaXYlw2OLiNuS4yj8uODIPzuRfx+DIfeGtwvEApzv3jE8Kuh2SfLhN4ayePyYVjK/w5BbgFoFUTFe0lojhoJaIb3eBN+HPGVeYfgJMhTluB3CGKZJmXwoS2CuNcj6GuEVRN8pntvhB8xkI89JqH72MLOELIrRL+20arUOwSVLLQHH74x3bPeC8c6GP160IHfTVcDHlUubs2T6G/0rY0Z8t8AUeZVg1p+EPK5fBjVst7PVyMdjP7VYAN+3+BkwR8y7nHPMJnyJkdo+RuN6vt56Iv8bkKL2lll5/o3+h+P1H9V6BD78ifrwDT9GTrcI3Ro792EHOW4lrgmqgInK5k1Uo8172XrcOtgOfa38oB23004kCGzJ+jE7482vhBG+uaSfWXuvtnwq0F7Xj3kSglHT5PH5eNpUU3oUhN5Wa20lZw2302Y1WmrYMH8gXgTcS9NqTvzd5DHphrZck6HqQZjqSlEmh5u/HJgPwiBnT9pMA30UJh3kA5qFUCdaDJ6tXJ1tiij2RJXKWbnkI225I5wTkFd1eoKrkSdTbqifucW1PW2k6zrNKFrm6d2Cp8s41NgeLKMT4HhybIzKe9iyONTYHiybB7l4cmy2ZSHJ8t4io8ny2qUdznk4btLOXFfgHZP2+VH54zgMh1eZ8UUbLNrScfJomy4RDEA2CinHnKlhSZHTYoNG4cbBXzsXtTJkhq62L0q6VJQ3vDQpZfkcfl46FIRutQoL02PAB3n9Yp7PRGszY5YRxyxdjliHXXEOu6Itd8Ry9NeBxyxPP3rkCPWYUcsT5/Y64Rl/F56HXPE8vSJ3Y5Ynj5x0BHriCPWAUcsL19NU7fGVU+f8Ixfnm3ogCOWp732OWJ52muPI5anr3rqNdZvnzp7eY5XPWO05xjgCUesA45Y3eoTnnGiW/shzzmMZxnf6og1FldfGvHLsx4fdcTytFe3xpxuHRc+5ojl2R49+1rPeuzW8eqbulQvz7j6uCOWZ5zo1hjtqZen7bs1ThxwxDod5rWe/faTXaqX57zWsx4926PnHOZIl2J5+gS3oaTxN9LcDdf3QD7S21uD2twrvo/3Yg0DsftKYieEF8JoPQPhDwp5plc1I68e4unJX/34e9Z981NfT4jfdOF7uAee/lPH5NSettmq5Lcy7TTmKPuYbMurQF4f5aFdTIf099n6aP1KflvzDXnsh/g1QX8r0BWpi8lhtC+gv9tZHXxzEL+J6lzI4/NR6qWUSD+H6Bc0/u7PoDe8CtEfarRXPKg9RDTpdTVDHuqH92Jn+xZkYGW9oWx+hu5PgO58Fu58oZ86Rmr0Fwj684HG9FG2uSBo2VgerM8HqDxG/zZRHtX+zKcGAMfyCrSdiamc36iPyGG7YftpZaM0sU0XCXq0ldmkRvRoX8vDx6POp7zY2b1ZQgc8n8fnq9SbFfGterE3KHZTu35vznY9M0Me6hdr18hfpF2n6f4M3X+xYLueKfTrpnb9bM52bT411q5bt+t5Qoe87dp41dtWl0Ce4eI57oWN6wrR/+eIz14UmnVFm7N9Lxb0eIaW31qJZ28vpjzkO5/y8OztItLhEmEH1IvPpxv9x8EOf1g/ca183fRq09eXK1+/BAjY1/Gt2L2CnuviUkGPZ4/NJjWi53rBvxELbcpn3s1G/YIe8SpE/0ci9pt+GPsuId0XFdR9htBdvU0T29R36HkYjBvzSOaiiEwVn+18en8GveFViP4vhb04NmI7QDv1EabR/1UkHphcLBfGLvZBZfvFolzKpvy2UtTdfEG1T6Nrs32uUO0Ty8/tM1bWNLFtVGxF37X6r4XmeHgB5WHbWExyVB+Z1//Rh75c1bhZ/U29cc3+9c2If6l2oz7aEPNH9BPub9C/FlMe8p1LeWhTHiuqfhfp54fRdjD67+Tsb5z8eYryZ/RZ9ueYf6apaN9vNqmF5v6A46HyWaxr7m/MRv1B14HhVYj+RxUcdH+D47YlpPuCgrqXaW+foP4Gv6jB/c2CiEzmxXiR1d8YHs8Hxgt7JSQD2wHaifsbo58ImHnmTLH+ptWcyfRRNr2A8lB38wXVPo2uzfY59VTPfbi/wXjI8yJsG+eTHLVOkNf/0Yd+hfobnjchFvpFzB+x3Vg9sT/WI/4Ya2dpYpsr/0W/Mn2UP/KcB3WP+aPTXPxO5Y9YfvbHWFnTVHZ9oxaafTXmj9w/e82339fwR1v3x2exC9i18POqvZSHffANlIf9LdYPp176G8vzo72OAl8fwP0P/voA7t0soTxcP7mI8qqQdzHl4TP9l1BeDfKWUh6/5iOEkbos+Qb/3K+0MPwq6VJQ3vBzoa2evbW2Vux1U1lvJ0gIFe8lodnDEtAM77HX3Ux/l3ndFL4CSFmCXzeFZTojgw9tEcS9HkE/jbCy3vrQmyFP1ah6fRDakfmwV0OePC3gDMKvh1wp97suDd+rBbSqd/NVK/uZQpeayEPdMQ/lnCnkKKw8L4jJarVtvCCG/56WoUaP4A/Ey007z2Y+Np08b+VS7z2qEP1rxcQjxp+mQXGP3b6kG+YO/IZfDc0uUcbt1Wd5sHzs9tOELrUQD1FchzE5jq6appsz1FA9SiCsRNzDPOWqeDZibYbsfkGvXNXoH4isKSSCP8X87sBo2cuBrjc0l491XUG6KhrU1egfAl2fJ11x7Gb6DBJ/CM1NaiXpXg+5Uu4mZfhV0qVsk1pJ8rh85cZS7H1oFUQNgjaIvFYt53r6u8hYympuFd2vh1zpBvOKG0Sm5a0G7ITy1kAe1iYnNWsxnVNvfY52qIPAMplYH6sp73rIWwOyuV5XCjmmf4+gv56wVgo+s30reb2CLyGMhO7jSshyIZtPRB6D6PACdbooa3kYnVSEOEfoyfYOoTmalPTJ1+SNJoZfDc11XyaarCJ5XL5y0QQ9BaXcRahGg7SY7gLNkJ7/5tqbLfg4GU6FdP7Zhhel3vf2xvVQaPbe8aQ36hCLyzXBb3RKzoQ25UwQctS7p+6mvIooK5/PTdMGynsl5N1KedeIclnetRHM6yKYy0Reqt+5tdF0GI2SjN809Yp7bNOVQlerO4wAfJZTtbZVETnIb3SDgq/d8iid1dgJX9X+gaERHuxNMWqjH9s6ZYXoP3PmCN8Hqb3dAPymo7Izt8Widh4v5HTaztymVjvKQawNQJ/+W0tYbGc+p4ejnbXEdyPkIR2OCHBcf6OQrfANo5UP/u6QLluWD5qsCtH/GvjgR0v64GrKwxEk94emB9oB6XlvyPTsz6DPKtd/i8ztVgp+pTtPtVdHdE8T+yLy88i1Ez6PMlv5z5+S/6yBPOU/vM9s9O8B//lz8h8coXWi/LF2jSM5XllW7U7FD+bDNjolhw5rhc41wc/7WsjXrm8onVv5xt+Qb9wIeco3+Lyq0R8B3/g78g2MnzE78xiwqJ0nCDmdtjOP725ylINY3L+tJyy2s9WT2Xkd5K0nPlzfQzrs39bD/ZuFbIWft3/7pyFdtiwfNFkVon8QfPBfInOamA/eRHloU14tuUnYQdVBQnr3Z9DfROUyettAVed7VHu9CTA5lht9L2DyeYphuSE+W4754jpRLmXT9aG1bLTz2gzZ/UGXP8tXxkdsavx9GeVhmxr9xIhNlY1iNlVtbL0o15AoM6/XXy+w0M55bIrlv57Kb/TThE3VuOV60h3HDjyGVOMwpOdzJaqNqbEJt7GzI7rHViVxbeEeysO1BT4TgnsWPBd7JeStoTxcW+B1jmshj/u/6yDvRspbBnno+7a2UKGyLmzcb3NvYdQ2XyAsZd8k4zeEfP1pD+mJcjqxbqLkXO8oB7G4TeGcjb/XUXTdAPljc8NKm3IqQg5jWUxOE46J+Byr0b8c2vUf10dj3iD0w/cDrI2UldszYlmdWfvA2NeJvTfDr5IuBeUlsZiL5ePt7DVCl5rIy6pTlKM+z1dUL8evjNrfM4lubYZqicBN6B/fn0n3egUtYp+spncq5Qy1KWdIyOn0UucQycma7txeG+FBF86a7sxvXPOS8l0w3bmzgammO1k+jb5m4TNN7NsmL+sYQ1+Gfq+D0MvfresTZZ4f0fkGkMFy03R3hg730FClZCiWQxVeCsUhXQ/lYSjDusG8EEZsgffY51YIOYyV1U2aXXlId3/BbhJ9e22krDdQHnZNbAclR4V3ZYeYnFqbcmpCTqzbLxtLlM48lUgTxpIdFEtWQ54a0thUrUL0qyCWPBqJJagj/63iclY/mRVLVmXoty8SS9TQcH1EZ5wCstw03Z2hw0GKJbwVVA/5koolvDWB8W8y6V+0L0T+k9UX8iHnTm/7qeV+ji9qO2pNRI7aUmvVHp+paZmqPXK/hvQToT2+k9qjx1ZdVpsIId921w1CTlYMSlOsDzL6n470Qa2G/rGpWpZ+eLAK28Hrw0iZs7CCuGf02P/x8sUaol0doWW90bftkSyLRbylXA+50o3mzzeKTN7SQJ0sD5cRXwV0nPiIEuqc1vdn6yO4TMf6oB1uysBUbX4j0VqZewQubxdhO2Z73ZqhA9dxmn6s8cvt/bdqI/gfon4Gl8sL1O1NakvKEtcf246Tqj/TK62/ZO4ILtOxTLTzOspTr4fk+RTXx8dPkb14zo/pVNjrHsprZS/Ls/L2CD4+hGryvgb++knCq4As9n9+NSJuzzB/mngsZvT/HfqKdQ1bDoXm/vVMkofYanzM/dyZGXqpcmKcXEt6G+3fka/ydms95ErLrY7Xk06IfXNJ7ITwQtDLjoY/KOSZXlWRl+d1pg99d+NlG/v3fiohftOF7/E8+BZBrx4QM1uhXxaw1TXqUW+TbXnojzdTHq4ZmA7qdaa3lNQvj/0Qvybo3wB0ReqiJuSscMRaXRLLXrOqtlM55qaJ+yHV96f12N84j6Xi0Bmka9E4hPxF4hCPdY22t6Frm+PHy9U4kOPQ+pLYeeOQ4Q+G7Hqtirw8ceiB7y9/+GO3/dk5SWiOt73iXp5t/DMEfZvt/BIVhzjWoD+upzyMQ6aDikMl+5RL8tgP8WuCnuNQ3rqoCTkrHLFWl8SyOKTG4CoO3UN5N4ryYBxqWlOYNEIzMGk0Vp5xd5r4sYTVkby1AjOVPQseY8V41d/4xXkkz9HUsSL7G++hryMPrz0Y/RlgmymkH87/sZyonxqr47rk9EnZdDdG6PKO73lLVh2bzlsv3FfMob6C94/qIV9S656GlW7Z2vissWW7etOO2x/YuG3Tfbdvunfbph04o1K9IK9k4iOCWck0Yaxl9PcK+ptXM9cKnFYy1eo6vxOg6ENQ04TOp1LO9DblTBdyVFRKMn5NDt+LrfROJzm4KocrvRdNGuFBn8CVXuS9rfHLq55vOWOEb2lkBBmzM76sq4ydZ4zJ6aics9qUc5aQ0+l2cBaVB6M+263ojhTyrzrJclq163WTtMy87dror4F2fUuOdh0rY+xQWuykx+oWWLcRVt7doxU55MR2j1bklJOnPDE5p7I8hqV2HbEO7ojotYaw1rbAup2w1I6G8kHWuejqBPJXInLWtClnTU45J6s8N7Qp54accma0KWeGkKNmGO32H0rnVvF2J8Vb9XAr8vIJFqNfBPF2N8VbXN16qdv5Rkc5iMUvK8iqzyNUn+phmlh9Gv1UqM/jOepT2WZtpDz84JGqa/WwYSKwYqdJ2A5Ir/qUDq6oTs7jB4hfJV0Kyhs+UK5WQbF8VvZ0FcDmlo1VgOWbti+99Krrf7gEsOfhHVmrq/heNNSf6QP9zXypbnzCuSJkhNDsPzcSHde73Wf8PDq1om2Vr2LduoxyhpAv1iF/ls2yTgBxmzf6n2oonPcEkHqILTYe4HbHdL2iDOODbq8/EbR+WOa1kTIb/XsjZV7Tosw8fldjR45NTNcryjAQ9Gk1PqWIeWeH0boX9SfkP1l959kkJ6tPe5b6NHWqD2PNlY1rXoEP0Kd9iPo0NRbsdPmzTvNiua4Emqy5jcJME5/eMPrf9Nl9lCvKvIPSI/RPy/fbVKeq7LE6Nfp/mDbC9zs56jTWPtQp9FgsWBWhV3NFtcYUGzda/eCOcv76Sb6Ux0cRv0q6FPSH4fGGeogcy1d2vGG4X4QCof6txhvMFxtvMG1W2+MxwFq632q8oXTKom1nvHFjRjlDyNc/IL/RmX+uIP3rIVeqmy6rQA/TBX2e14duAB25LSp6NcZAfI7DeOpO2WYD5CP9n8JY4pa5J65VXczM0C+EfHWB/Cerr5pJcjqx7p2m2IvuLoJrzDM5WTG5Jvhj6943tinnRiEnj6+naUvjt9WY6CsF+0/eeTf6fw/95/+i/hN1j63bxPZeuPxF915i7TpvO1XjgXMJq+hTacifNY5TNkpT1tOSfY0BVZtPS96qTq9Y+2tzzHdrnjaO+INCnulVFXl5ToV9vfrK//6/P/yeP06I33The3nWjs4V9O2Nv8J6dSoMT6ykSa2XqVNhpoM6FVZyvLY+j/0QvyboNwJdkbpQWGtLYtlJLjXHPlUxKWvtxeqbxw4TGm0/7xPA6inP2BOjHNO4jBxz0lQPOv2AkuGZ/ccJWXwS1minQLlvmzta16w9wkpGeWJPhyUh2zYso0fwviyM1m1NDt3UehBiZO1bphhqD5H9tugTlauEPkrOvDblzBNyYn0S/5ocvhfbj5xHcrLGTedOHuHBeJK1P/Jg45f3u94O46aFDUz1BD7vufLpPYwJIWQ/QZf1xDbHE6NfDO2Kn9hW68MPAmaWn1WE3DRlrTMtpfFMJ9aZuEyV0Bxb03RjRpmy1ovZBmsF/YYIvdpvQr/imB17EaGV7eNTR3S4ivy4VfmzMP/zlBHMqwtirsvAXDd5BPPaSNuYFUbLQ/som3H7R35eT0M+85sB0rOgH+Z+IZThV0Nzmcusp6n1AWUX9XI73p/FvDznNGYJOQlhtdLL8YVQlj+d6NZmqJYI3IT+8f3pdE8tySF2KuvSRndgbo7vCbyE8K8BjF5xj90c+Y1OyRloU86AkBPDukRgGf21gn5A0Du6hqk4i+g2RFRj3FauMYvuZbmGpV6SmV7zO1u4aljHIYGRx9x4j6u6R8hScpa2KWepkMOjhG00SkD5BaLlcX7VpmEg9oqS2Hkjv+GrZ0RML/WJrjyrHhf+7uP//ur5D9ySEL/pwvfYR9Qscqmgb3P16Yha9cD3NqVJrYypVQ/TQa16lHzN4pE89kN8tUq9EeiK1IXCWlsSy1Y98NWysbZ8smJGJ+TEsNRKiNGbbfqD3inimGT0+2D2xF/WVPYO4l5PaI5Hr2n8Dgms/gzdlWzDT1NN8BtdB2NiX9GYWA3NZS4zGlbtQ9mF3xGHvHwCOE34XGFWvIztCHQ7Fvomv7La8tWvyeF7LAfbaj/JWeEoR/WpMT8vKwex+PRtJ947mCZbSWmzD16jVtssqR0Z9gv1bLN6HxXbH08l8rsa8cTmy+GaUy/9zeOAV88dwWU6S+pEHvdLRZ8y6RH6tHof3X+YrGVmvY8u691sPwerNM9Ozi4j70SqlTssY9bK3a+ehJW7l5KPl/Hjp0r6MY+91E6EOqlv5VDxml8bjjF2DeVh/80n/DGW3QN0HE/VLgKviF4rdFfjpp4ccmLjph4hp82xUeGP//KYRdklr4+ZzqmPfTyHj3HfybqxjfKMu02HvO+ZNfrPRnYt1M7qA4DJfoAyAmGkiWOf0X+OYl/JeaaMfdwn8lsTHOTmXqU2/CrpUlDe8Li81S41Lvnl/8gvtkAVcdU6fxKaW0sCmuG9PqLj3qTMJ8NLvpl4LfdamIr2WvzWFEwqauDefZFPhmN98NtYMIrcBLK5Xm8Qckz/HkHPz5OoN/Ka7VvJU6sCHPUVX/r31YLHc8bDdvTA6sCZsKl5I47hV0Nb7WQ44qjzQepcgmo7Wc8mYkxIKA/lqPPsCusaJ6w03TqGNYY1hjWGdQqw8swMsZ/iZyMxDl5H+hXdqEb+2Ib4vDblzBNyBgVf2T65FtFZze7ZbkXP5SF/3i8qXDBFy1QrWGmyGRmvKP0krGAtnjJaZzWbT5M6M4T1YBjMOwA6WF6B8cVQOgb+jfqIHLYrjw9ajUPsbB2fecayK1/IW0cvozrqgTxVR3ym0egfhzp6ReNa1UGec0M9Qh63w35Bj3gVor+uoRPuyuX5wpPxZ6261jPkrQR536M5UQf8bqryO4wz7HdqpUvFs1i8wLbHZ8Uw9vBObI/Aip1jNf7+oOvA8CpEf7Ooc/a7rGee6oRp9K/KWa9my07UK9qK61XtcqvnAWN+oHbkVT/wSsJ6pcDCuuZ6bdWWDY/b1o9H6lXFL9SzTphGvyFnveLzqyH41ivaiutVjT+QPs/JCewfzCZqRX8Z5WFMZDkqfqMf5KlzrJ+s+L1Z1DmPHTku5OlfcGWxcUTaVhZv37F126bG0mKgFFsKTP/Oer3YFMEfiDehe1MoT4XP2IK6yc46yMLh0+i3CZPHwm+a8hyhxuruxOK04XsdoW4V1nipKNbMMK8LXDVNWW/2SwR/IKxE3AtBH2uOjQJVdFMuxr1W1ojA8Phs1qFIz9Fqj5F1UCN3NSJS5ef9SuRbkSEHezR0ozqV1eifzNmj4b6l4Vheuz0a2ijPymjsyVv1VIxaLa0RPdpe9WgcLvOOTnk0xqMPnlnF/EWVN2Yf5V/qvfRqLz82C8bzFSH4zoKxPOwLsbpNE9tmnaDH+ubZCJ674JUnbEtZT3qhnLy+gKsdF9CMGOsqz0wrtjLTI2TyGaBfgliQ9Xa2vDN+o/+PIr7EyhAbrcZWQZSvY//BZ4JO1g4qnwlSb51R5374TJD63q3l3Qx5WGZO3EejHfKee2N/MNwiPo++9B/orBkO+xaTTDXEwnvs88hvdErOQJtyBoScGNZigWX0aozT4ceaTMX5RLchohrjJvSP78+ne72CFpOqpp4MvUPIV01q0YCx8OjPbUDDL/PB7mAJYRXdBEB+HpKaXl9qhNEBIb9A+HpX7Fi2YZc8Pv+uhPBC0DOvrCPVqJc6yp/nEabf/qVXTfyzj101/AhO3qN6Rr9C0C8R9G0eLX27GlZhd5AmDJnXUV7eR5hWlNQvj/0QXx1p3wh0RepCYd1WEsseYcKFK97Q63SM4SnX34lh1snWxbr95yJDvlaLibwBi7rHNk3zdHnX5CxXTM7Fbcq5WMjp9ObsxSQna0PuuzRtvBby1HDMBgW8+fEr8MKH79H0Qy2VJEH3P9hHponbK2/OMM2qDP1+AP7Jx3W5zFhOpfN1ICMQRpruJh2G6Rs2ajOmyuO6PAXowGN0uVdEDf9kP0ZX7LgubxOiVRAV7yVhdOkxr9XCJx8dLXNct+QoofAHy3myiZNGrE1OamKIo4oix3WxPtZRHs481oNsrtcVQo7p3yPoVxHWCsFntm8lT41y+IUBii/9+xWCx/NByNih/rJY6uhvm4skuT9Dwa9pLNlOhiOOWlCKfYJDvTJSHaHh2WLZVxCm1zc6Yt3ghJWmW8ewxrDGsLoOK8/DlNgf8Ofm1LGJhPJQv9iMEvljC6pT25QzVcgZFHxl+75aROc8n3Yo+oIE5OfFexyv4gzvtqlaZtZrJHmGZ/Tvgxneq6eO1lnN8NKkZtNYD4bBvG1uCE5UG4JoV94QVJsQSP9A4zd2BEj5Qt46uofqKHZcEPXhMzRvgTq6t3GtDgRkvasutJDH7TDvsVijf6ChU6tjsddmyMtalVifIW8LyDsJx2InK7/DOJPnmJ2KZ7F4oc74qBeqLKM8tDGPS/MeSuBy5D0ya/S7hT9wX8S+kaWfspvzMbsVGWpMEvyBeBO6NykDy3DSe7jIkeeYnXo6gUPEm4XJY1WWprFjdi+6Y3ZZJ0ITwR8IKxH3QtDH7NQrYfKYWJmq7AHtZ4RLxyJs7ONZaiSg9hxiHw9Uo55rM+Sog+NpyvoI4Ltz9mhOIynZo6GNuEfLu3Ji9K2O4nBTU0fSYjObvM2Qj5koP1UjtVbHV/Ict1KvV1GzB34RPvLFRtX4scYQfEfV7TxsVvQIIs+GcAWMX4GJ3REfOVajqLy+gLMnnlm1ehgma+8ZYwBiPNj45X2kj4gYYJgrWpQtT7zDYQ6/wkm9eke9Bil27NPo2vTHQeWPWP48szykL9pWYw+hxR6W5GFkK7+JHYHDvcvv0r4ryjmPZCo/UbaoCX6jU3IG2pQzIOTEsM4TWLH67vAROFNxJtFtiKjGuAn94/sz6V6voMWkqumaDL1DyFdNyp2VnJ425fTklHNBm3IuEHKajrj4bN8fzrNhVvI7XocTwgtBz6YMX50mNr2qIi/P0bm/r73697e88IsfSIjfdOF77CPqtP0Fgt5sVfIb9wdU14QbzWnCUHsT5WH3Yjqoo3PrSuqXx36IXxP0G4GuSF0orLUlsezonPpG1smKGXx07lswhOKjc53W5WQf5uCVjPVAj3XKiZcIUOeib2xEm6JubCN1BIz9znTI+8ZGo/9XqHM+AmY8ed/YuBpksNw03Z2hQ29j+aTNgxHyCBhPD7PeE8e6KpuzHyO/0bVZhsJ+zEcnMe7zIRl8koWPid8CeX2Uhxuv/I7AV0Eeb+zg1G4F5d0OeehHnFR7w6dqPjl9BJfpAsnEuufDUxh3zIZqyWoRXGOe6cr32GeQP3a8dlWbclYJOWrpDsdbHXx8IfeKNn9lpeTXZIZXtGPv1viRYo1f3hBFXrVxlHVkF+UsEnKK6tWBDywtIrqsj24kAjehf3x/Ed3LmobZ38r1V2ToHUI+11dTupPVxFqdLL9ompaZ9Woj7FKR/o3w+cqlcB174H9lGJ2Hcq4n/dU5kDafjsodAgy/SrqUDQF595OLnZTO2rVOCBXvxVoC710xP7fuIielTa5aU1Mviont1TAf2iKIez2CPtYh9ZHuvRF+xEA+9piE7mNrWy5k84mJ6xutKh1w/F8aJCtZaI9WpwKYhnUw+jWgw/MZ+3mVjHJxa+YOHn1rY4b8uyHKrMuIYkHI5/JhD9OfoW/Wq0NuBRvEPuvEz9LyPbQB8mb9zfuUeI1/K19cTvTLQrzsXP9Gf1ek/vuEDqZXmta20EHRKB1eJ3QQUXPl1of3ZOzQ81iCoxzXEtdEn8DJSmaNlMe8l63DrYPl2N/KA9KSN2BHhmZbNu3IOp3AZc3qUXqCToNB65amU3XgpK+cvOiBEyxf2QMnWa20lZw2D5xkddoqWDB/IN5E3AsNtZ9p7Ni81IbPjJV1tPHhxi93UtshQH0vo5PsycC8g3RQMzS1GmT0agM99qbjrG/KZslGW3KwXlNQ11YHTPh7PahfVmeepettJ1nXa4Suba5eFF6V4xU0XJXjFTRcleMVO1yV4xU0XJXjMJl3VY6nrbgqx48GYPtYBtec1Iqd2T1tlx+dM4LLdHidFVPyHgLAGMLTbuVT6rCL0d8IWOoQzlWN6wrR/2QkHqmdolg7aPW+LZ684UGgdZSHfPiWasMORNeJd5FheXgyjbsxvYKebXOzoMc2x30PtrkbKQ9jC68So1x8J+C5k0fTqV1s/jVd+R7rili3kj5rHOUg1t0kB/s2XM76QEa7wnaCvFsav7zz+EmYXH6QlrDUYT9+DOdXoJ39y9xsfj6cpQ4uxb7LFysn0l+VUc5fBz3/sH7iuoOHE2tF3wepYkzsfZCxdoo2qYXmNsljHjV+yvqOHtqoP+g6MDzebfyoWERQj5KtJd1XFNS9zOHJrzQegFDvjGz30Wb19STG6snQfwvR4+sFlGymN5/ABSoVnytE/0dQV9+fqzFD0H3yDRk692fQryMdjP6zwl9icQD9/ybCNPr/AZj8YqBWmFdmYP5lZKyh2mns3Z6t+lMeT6Adb6Y81J37xfUgn+v0GZKPOOhrLDdE9FWPKsb05f7G8r4F/dVX6PQCji0KxOreWF1dJPTNW1c3RMrHWPyARd42gvZ4bprG7CuI+U3Rp6uxyj2A/60c43yM1RyX1TwXxzlqbMCPdRrGd0R7VH29YbXX1ydfKvp4byvbcEwo+yBCml5PeeqRbe++9LcnjcaNvQ83vZ5PerQa413auOY4XDnjxK+Kw8qGMZu3et82n27C+riJ8pTPnmx/PJnvn2Z/VP2H8sc875/O64/4/ulnaWyn3pWtYjTr02rMndWX92fQc8w3+rPAj3ncc4vQITZPuFXQ3yJ0HiIdkJdlY7tEm3B5jH6OaJcdXPOQDwmi3dj/YzZKE9v0VYIebWV2qBE92lf5/y2Up9aRYm02b9sw3tQORyhWe6/Pcaw2+osjsVqVLRarO7U+F4vVnfTVbl2fwzLmXZ/bmWMsEHtAtdUeBMev1UIP1Q/zA7lFvzuA/Gsicma0KWeGkNPJNUiUqcY2XJ6iayHIzzFqrWN5lM58GjlNuKb6qjNGeLJiG/Jyf2f0m88Y4bujca1OwcceoI75btaaaNYa0m1Q/hA6MeYMfad6zMnjSuwveb9cPW2Avod+aTSBdOyEvTwfXlf2VU+l8JNV6Idq/ZUfXle2zDsOwadc1k1qrX/sxQ2t/MNkdeEe3SkfA7AvFN2j43iJclS85DrG+IoYWxq/FaJ/LDJ2VH4Q85tWczr+lhT6Bj+totb5OxhDutpvbqI8te6Y1284hmA8xz7a+u/YGpldq7Ek0vdm4PDYM6H74+E+8l1GZeYxEmNfTvRWzv4M+uE1MKJ/Z2Qt4cYWOlxBOtzUQocbSQejf7fQIWb/NMXGhG0+lV5JCM/0wXuIXw3aP+ohV0rYfiZP+UGauC2r9qT2SmIxULVzhVVxxOInM0vW1zoV2yypc14cLzCO3UF5uM5zN2Bw6qW/sTypX/9g7ggu07GuWF/8uni174y8NwrsU9UebiwnL9oe1BygaHvgNarTvT1knXtMUze0B6wv01vZKE31kC/laS9YNwXsPzdvezF8r/aifE+1lzbfRFJPp2Ljw+hYlaa3AZ7ax8D68qo/tcZ1quqv5JsFovWn5vCe9YfjiyL1p9b+psE1Y+dZ+0P+k7X2N43k4FwQ1/7+ktb+1NwUeXntz+i/Bmt/f0Vrf0XX9zq4Xtdb9Hyi9/equc7yrj9lnUVEOXnXn/ClpxdlrD+ZXdO0RfBy205C8/pTEHrzmTim4fNrw2dzYC71fMa+mTq/hvqzz347sp7S6fNraGc+D5Y1pjfsEJrHDFY+yyvSL6g2geXhNqH24pG+6F48+z3uKd9EWNy+0rReYMV0XdOGrlyPKJvPDRgt+iXqz35p9D0NX2x1bsBs3on6j62nKZvG1tNa2ZTnNLEzBbH1tFZr5xwTVwsdsE9U65u8B6X6BxUnVEzndSPzyylQ/3xWF8/3qH3k9RmYZwifipVhhShD3j4u9lzDTRE+bJcDQlbdLn4QT4Zn/jFOyOJ+xmjPATvdNlfrkrA+LVIH52T1hPBCeEnNyeZ4zMnUOA/HwAupPag2hrxvbPxyG1ty5gjfhRmYIeh2G3uuEPV5pjYat1P7yartxsYwvM+IdcJ9Mp7PVntPfHbK6K+Athl7lslnfzJ5XvWLOC7kfjE2BkwT10VsHIU2qYXmPpPXvpV/YV3zOBz3NFQd8HMIRr8M6iD2qRjut1cX1D3rXEIS9L6UasetPgqQ9Uy7mvum1/Mb19zu10b6VrVWEOtbW5155+cJ1T6UWsPAZ7INOxBdJ/ZlT+ZZGH4RvPJn9WY9XidWr0NLdd9BsVc9N4B1mzVnV8+qptf1xjU/P/i6iH95nyvkZ3fyrt1Y2+/g2s2UU712Y3WbZ+0GYyHHL/VcZ6r77eRfqp9E3oWNa+4nt0T85eZIGdNUtI8yfdR8+BbKQz72JTUfNB1uFXZAvfjdLEa/I+d4wWkevVz5J8592T9j5+nTxHVxm6DHM/Z8jh7fu8FnkNT6FtqUY5d6puMWgc/PdLw5Ml5AGfx51JsK6q7irmpv2Kb+aejEtZrn85j1pohM5sW+pz+DPmv++aSwF8cztZ6UXi8gTKN/KhIPVJ96Pdwrem6M91HQLnxuTM07OjeeDytO9bkx7j9i5w2LnhvL6//oQ39D/o/9+UqSGRvHMi/KyfL/rHNb7434f2xenl7PJkyj/7mCa18x/281RoiNkWJ7jBZvOjg+X3Wqx+fs/7HxOcbfPM9H5vV/9KE/HRqNq56/Rd7Ga6Sanr/9TwX9q53nb3m8FXv+Fvl4fUaNXbkes/qZehhtB6P/nZzjLadzwFNPdTznfQs1vo3Fz9g+qYqfqr/k+Pnfcq7P8NrS6oK6521v2KZ+l/obnPtyf7M6IpN5sV1n9Tf8WnOj/2ykv1GfaEc7cX9j9P+j4Hw91t+0mq/zepB6n4Say8fm607vgprW6Wd9Wq2VcX8T+1Clej6N/QDl5PV/9KEPNPy/PbvufnsCuhh2r6Cs0K/RfL3hk1WQb795viz2+d//zl985MZL38Rfv0mT1VG6Z5PW/9+S/+PaVOzcivlsL+mm+BLSgel7BL3hqvMxFShDWRvN/C+b/uS6Lzz3hVY2Kov/5KWVyW/7sfVrOoX/J+P+9wuf/uT9b+8U/t8O3Lqq5z89NadT+P/mhZuvODxj/reK+Kj5Ap7dNT7bx5wI9wvEwtyvuzb8KulSUN7wPu1EksflM1tMCEU+RTEBrtkqiIr3slqpaRYy6DhCpGmt4AsCO823mqvR/XrIlSaZV0wSmZaHXjaB8qZAHtYmp16hv+mceulzdBIoCCyTifUxmfKGIG8KyOZ6nSjkmOweQT9EWBMFn9m+lbxewTeBMBK6j6O0XiG7QvQzGt/xSm37wplhVDknhNF/o/9tJB1VrxIy7nE5+EkPlpumgdBWJJicN/IYfjVoe9dDrjQceQZJHpevXOThPt+kTCJUo0FaTJNAs5BBp2p0veDjZHyDGZhpGgjNnlrAyoN5a9XuVUmXsrXaS/K4fHzup6TXToh5EWOGoCMf2gMjVH8GlvFWiP6iRqSoheZIxWc+VRTDe2afNFpdMH20PMu7evoIzSWNa/V5LfbvHiG7R8iuCX6ORDhO53cz90Eevx+6P5I3LpI3QGXBvCrwbaC88QIz1e/49NF03M7VbwjNbShNbHNVxxjZeA6jfIx9MgvrNsJC/iHCqrXAuoOwkN94zTd6Bd+gkMPxbBLcL9DeJ+aNZ4ZfJV3KxrNJJI/Lx/Fscjl5gwnxozzENH3U6BFtm/6zz8b0Z2AZb4XoX0XxbAroxPFsitAX72E8W0dtDm1bts3VQnPZrX547p4mPNd55/TRZalBnoqPDzR+K0T/LMTjH6N4jP5nOg4FXV94rfxuUqT8qg102s4chxNHOZi3gWQqn8M2afVkdlY+b3xTIY/bLvsz0iOGwjeMVj74xum6bMoHUVaF6N8BPvimyJiAfRD9M6G8hMqCdMo/sc4eIHrTu1/QI16F6HfALIzX340fbYV6qXdHp+lRwOT1dxV/1awk5osqXiubTiGsCQILy8P7Lsqm2D4nUPmNfr+wKffryK/GfPdQHq7VD1JeP+RNpLxxkDdEeTjm4/EnrvtxvB8Peegjx2k8beV5S+P+QNB+Xw/5kvraO8dIXNMfoDz0rX7KQxuOpzyUx995wnqpUh7WtdXD+JAvFqWJ+0Oj/8lI+1LxU42njH6aoMeYbfRDoblNTaM85ON2yc9w43Xjca9RdkC97m/8Voj+Z8AOsf1u06vN/bRBtZ92BhDwfhosag2XC+m5LqYL+jOBxmxSI3oV61TcRJtyrFNj2WkCn8ey74/EOoyVZ5DuSUHd8z5bjW3qjZGxIve3kyMymRfl9Idi44hfjfS3anyMenF/a/QficQDZctYf6vixxRRLmXTqZSXNa8ybMZss31OVO0Ty8/tM1bWNJWNleq9Ezy/x7bB/q/WEfL6P/qQzb/K7uH9P59YsuZbr/rm7DJ7eLguZHzW/5dc2f4o6m9JrVEYfpV0KShveI1CjRuxfE5rrr+XED/KUzsxbe6J9vJ6EtcN+mnWmq3xVoj+87QWEVvrwjU4Xv9Q63N4r+cUYak2ina0Oknb4Z+QLdQuUx7fVjpiffG4dbyjHMSy+bXy9/RfPeRKl/KegWEgNvpNAd++K2+sMPxqaKstJTEfU/sPqu0Zby00+9gjQNfK/1COwjrepVh7HbEOOmIdccTytNd+R6xDjlj7HLE2O2J5lvFwl+q12xHLsz161uMeRyzPNnTMEcuzHj199UlHLE//OuqI9VZHLE+/79aY41nGpxyxHnLEetoRy9NenmMTT//q1nGhp99361hulyPWAUes02Es161+7zk2GevTimF161iuW2Oh51jOMxZ61qOnvbp1/LXVEatbx1+POWJ5tm3PNuRpL89+yLMNdavtPeOX57pct64NefrXAUesbh1jdmPfkV4POmGlyfqOoQxsvI7tvSo5idBZ7ZPi/j3viQbAafNpydzfVDL8KulSUF4Sqx+1t8pnppG3JvK4roqe20asiiMWnyVRfqP2/YraawLQNp7Ou37TG3bev27r/YFShf5elaHinUR3R4ZqvQI3oX98/0661ytoEVs1yXEZeoeQr0ki/2BETieaPv/d1/g79lhWB7a/780bBl4s29/bgK7d7uAtjliey6+eQ6punap6ltFzG7Bbl+S7dfnizY5Yp4NPHHLE6tapRLdOCT3t5bnc41nGA45Y3brd5rl84en3jztidetSrqdPjI2/Xhox2rOv3emIdcARq1tjYbduhzzqiPWEI1a3Lpl69mndOi7s1j7tdNga9mxD3XqsaKzveGn0HWNb6afOJ8bWFE5dGT2Pm3frfMjT9p5HZbt1vdBznDMWJ07deGIsTpw623drnLDxVwePgfQnhGd64j3E7+ZjIGnix+/LHt043bA6+MrQq/P62Kl6Zah6Obzx1igvTduBjvN6xb2eCNYuR6z9jlgHHLH2OmLtccTa7Ih13BHrsCOWZxl3O2J5lvGgI9YRR6wnHLE8/cuzPXr6l2cs9NTrkCOWp9+fDj7xuCOWp38dc8TyLKOn7R9zxPL0+6OOWGNx4qURJzzL+FZHLM/xRLfa/ilHrLE2VAxrpyPWWBs6dbb3nLt7zpF5DVJ9wqLNT67MTQjP9MR7iF8lXQrKS2J2UetmVr4p5eTVE+JHeeqVyWbrrE9ipP/slcH9GVjGWyH66tknfmtEl6bXkwz12mO8Z/ZJn12qNHBjr3Qu64/IzzZCPvbHkvWV+xOghl8Nbfl/EvMPZRflH8ZbE3lZnyKw/DSdKpv1lZMXtRmWr4zN0rSx8avskuTXcy/LNQzExtd/F7DBurw2H277odkGZWwee715mtjmZwhdapSXph1Ax3m94l5PBOuwI9ZxR6y9jlibHbEed8Ta5Yh1zBHL016eZfTSS8WpbvHVo45Ynm3b0ycOOWKNxa+x+NXJMnrafrcjlqffP+GI5dm2u7U9esbobu1rPetxjyPW6dAPnQ5l9NTLM652a7/9pi7Vy9Neb3HE2u+I5Tk26dY+baw9nroydmu/fTrM0zx94lFHrG71+yOOWN261vGkI1YnYrT6dDDve8X20JQc5J8SkdPXppw+IUd9WjRp/La59j8xITzTE+8hfjU0l9lr7V/Zxcp3Rjl5g3n8CvUxW6vPIBuWfQa5PwPLeCtE/ynaM8XPNfOzGOpTzngP90w/0cBlX0hTPeRKl6vPS7OPoU0K1MFQXh8z/Gpoq86TmA1VLLGyTxe61ERelj+gnOlCTk3k3TqGNYY1huWClSP+9fzx1Nfv7P/5u+9dsnDiqudnTPnJw9d94ulD1y1czHHfdENcjAEF4lHuV2QbfjW0FW+TmE1VH2JlnyF0qVFemjYCHef1ins9GVgqlpbFStPdjd82+sEK13UB3tqA0KmeizVcYbxnNW4UrPOq8Z9djn+88c+Em/U4z/Brlo13luCdujR8bs4Xr9iz6Mwrt96y68gX7/jg/mk/d8FXazP+fucrd/3LF7Ya7zmCNyNZ0xn22ypk2qei03HRDxrGMN+aDXm9xJtem29ViH77zBG+npmjZWOb5njRA/cL1MXivPHC8KukS9l40UPyuHwcL3qFLjXKSxM/59or5PQKOQrrsCPWE45Yhxyx9jhibXbEetIRa5cj1gFHrP2OWN1aj56+erhL9drtiLXXEeuYI5anTzzmiOXpE0cdsTzt5Rm/PPU67ojlWY+eenVr3+FZj56292zbnmV8yhHrIUespx2xTod+27Ntd6KvtX0anI9NoLxeyBtPefgZrx7SryL0q0T0Q/5KBh+XI8/zNv3EWw+5Uu7nbQzf63mbfpLH5eO55jihS03k8SfXVP0kQk5RvRw/k2b5i4hubYZqicBN6B/fX0T3lCkQe4jyleuzy2SZtpbBn6bBiJxBwWeuOR50nAv5/Cm3uULHuREdkd/olJykTTmJkMNYapkqTQ83fitEv6+xNJWW4XtnjsacJ/SLNYP5gn4e0Jg+yjbGOyhkJxm/JieEuA+hDv0kZ76jnPlAUyE55zrKORdoJpCc8xzlnAc044Ev/XsB5KGfmR4LhR7W7ZwP9wt0A7m3RAy/SroUlDfc7ZxP8rh8HHsuELrUKC9NvJ11gZBzgZBzsrAGQ3P5uS6xrJ2oS8OvhrZ8J4nZBcvHdXmh0KVGeWl6A9BxXq+415OBZeXywrJ22mZ9Xcj2wGR5iwD7fMpbDPR3UN4SyLsbMDj10t9YnrT/+sHcEVymY10xfpneQ6HZxzB2ZMUC5T81wW901gebnh+BraJfoa2i2YB9N5VhDuRxm62LvBT/6OzRZUV/4HFQ0RiC/Ean5ExsU85EIYexKoA1AFj3Qj7S/3nD7tZOuD3WQ650P7cFw0DsxSWx88ZMwx8U8kyvqsir5NCl8gc/99HffuMLtyahuV33ins8Rlwi6NWnd81WFwF/AVu9Ab9yHki25eG0bzHl4VTVdEj9+9n6aP2WlNQvj/0QvyboVwJdkbpQWPc6YWF788DqL4k1OTT3SdamVUwaIjlFYxLyG92g4Esyfk0O38sap6FMNU7DIw1fmDnCg3bAuSLycow0+l+bM8L3xQbmUGiOl7HYz6/jKWrnSUJOp+08icqzKFKeRaI8i3KWZxGVZ5FjeWI6q5iM47y1jV8rv4pPKl6nqR7yJTUW5H7zYrhfINbmfsWX4VdDW7F9eK5xMcnj8nFfd0k5efW0PseH5lj4NsBD26Ecq69WMeSfKYYshjwVQ97Y+K0Q/Xshhvwfwmzlh7c1fsf8MFd6UfphQn9n6byl8at84SLKQ/thn2HYITT7UJp4a6UecqW56TjxN+ojcrg8/LiPqh+kt7LWQrMNF1Me9lts01bty+blY+0rV3pJxvmZs0Z42onzb4M4PzsDMwTth7c3ftV6jPGq+Vea6iFfUutS7Icl5565/dDw1Vy8jB+qmKnmRm22s1F+iL6Afoi2QzlYX1kxCXXmOH++wFLxCsfShh1Csw+lyTPOY3k4zuft02qh2Ya8j4DjebYD2ojXx9T8BNvevYSF/LxOeqHQLxGYedaskf/CiJwlbcpZIuQMhGabFvCDi1Qfb8nysA3w2jjG6SWUtxTysC44qbVxK0/qp3fNG8FlOtYV7W16q7kvPx5ddO47Weja5hpp4bq4kPKwLlA/TsrepnNq758pYG+0Kdsb7cDxpOi6Wp/Qtc2+7mK2KSZlU34dMPo32oGTsjeuy/5pAXujTU23NvvES7isQcjFsvIa/aVAv4nyLoO8ovtjVp7URr3zR3CZjnVFfzC9lU9y3C/qk2psF5t/lJWzRMjhv/safy+AfNs74/HtozC+3dIY36ox5Z1hdB761wKQu3XW6LKjr7CNl4bmsi+NlB35uS5RzpI25SzJKaeT5Tk/Up6ie7dLhM5KzoVtyrkwp5zJbcqZnFPOojblLMopp69NOX1CTpv7t0s5VmPiWK36s8sgr2h/ZjoX7c/QpqZbm2PawnbgMS32WdyfXQ55RfszHNMW6c/QH1Bv1L0SdP9yJ+Ub/b9txOzUB95DfQCOeXC/7U8pznf6rIla7zH7tOkjuc9w8ZmDds9wqXlG7AzXEqGLivH8WgG1NqHW9RRWxRHLaZ7q2qb5DJdXmy5yhqsTbfo3G+2zTVs3zR0Ra6ztd1fbT9NKoGu3vV7siDXW9vO3/bx9b0J5WTHiLso3+r+Afv/Pqd9H/74EZI9vvKtErWly2y+6prlQlHdQ8J3qtl9yTB5t+8ouL5V+n9emSu5TFl6bYh/CtSlu++2sTVl5irZ99FvUu502/Tz1+yVtLft93p/phrZfcn09d9s3fK+232rPONb2+YzEi6Hfd9oPKbw+zz6E4wVu+xgXirZ93Csp2/YvoTy1hoV9L2OgjDbtnPt1pdwuSvbB0Xah9twmhJHn+RqPHq/etOPWnW/Y8uC9N23as335Q/fdunHbjgc3bll+333bNm3fjkqjoIlwH/MxMY1dZ21gxhoMFibPQVTDurgFFh8mjDXkS1pg8cEpdQiH/+4LzXraZkNPDhxunEovPkiDDZ07zktbYN1LWMjPk+/LWmDdR1jIj7z4d19o1pPtFcNJ/13RQq9NpNflwH8FYV3ZAusnCAv5rySsl0Ww0uuzCAv5kRf/7gvNerK9Yjjpv6ta6HU26fUyyLuKsF4ewUrT/YSF/C8nrFe0wHqAsJAfefHvvtCsJ9srhpP+u7qFXg+SXq8A/qspD+3M31UsetAC+U/WQwb8HvqrHeUg1gbgS/NeCfwYW9VAyGRY538N3O/EoNjwq6RLQXnDnf81JI/Lx4Pia4UuNZGH/SrmoZxrhRyFtcQR65VUHpwA4CHWteeMlnkN5MUOPleI/h7Y5F9HCzjoK1fnKOM1Qp7RX9f4u1/QI16F6F/V0CkdRH+38fKOmtDp2gxduD9lPzGaNA2Q7E61EcOvhub6L9NGriN5Wf5mZV8mdKmJPBxLYR7KWSbkKKyljljXUHmy2sg9Tm1kLbSRe7uwjTzg0EZwDDUo7nEbKemzuduI4VdJl7JtRNUFlo/byHVCl5rIw/FzVlu8TshRWFc4YuVtI49SG7kc8vK0EaO/FNrIXmojaCNuI2q+crmQZ/RWZ/2CHvEqRP/mnG3kigxd0mscNw+GZv25jZT02dxtxPCrodl/yrQRNd/D8nEbebnQpSbycM7EduwV93oiWHnmXHmxLqfyZLWRtzm1kZnQRt7RhW3k3QXbiNK9E3Mvtb6A30DKspHy3Zrgv4LyFgk5rXzkvedofbJ8xObvFaKvgo/8XMRH+KAF6swbLkXn0guFnDwLyyXjT1/eeDdso9Bc5jLxrtVaGce7K4UutdAcO/lFZSquqrHHiwUrvbbvocT6waLtvBaa/WghybnSUQ6W52SsGaVpA8nhNUn1m1cOYvGLtLLi1scobl0FeSpu2fpehej/ZfYI3+83MAeIpmA7vcZ0v0ZkqvWeKygPx8NXUt4yyOO6Xw55OHbhpDb9rKxpH/q6+SO4TMflwNh+LeV1IObmHmOOxVwfrLH5wui2xPMFzMPvyXFc6xX3eiJYlzti2V5Gm/XlFtfSxAcWlkFe0QMLVp6iBxZU7OJ2wnTYv6h9Q6VXInC4PVme2v+z77CpPcYzSUbRNn+m0DfPOhr6VwEf6s3b5g3fax1NtZ/YOtpVQpeayOO1L7Uve5WQo7B4Xo9z5VPdf15eTl60/1TfrvTwr6x6uDIi7+Xl5PWYPLXvfbmQl76goz8012HW/rza18b6ymrzKJvP5hQ974BYfDbnyowyZNWBWv+JnVGoUF4dxuuTZo+msXMl04BmSuNaxXxc65hNdHxGJU1tzgtytz3Dr5IuZdueqgcsH/rmuBD3EayjrDNLl4qysM8ubaET+6ySpeoUz3BxneJBV1wLnRehu0TQqbz0bzxDx4edjfa8BkZq5x3zR5cR+fmcW9GXcSJ/7KWfi9qUs0jIGRR83IZKHjrOveZm+NXQXOYybUgd/lZ24bMsyMt1kyaes6mzkercyIsFK722bwHHDr/nqVclB/3oZJ2fOhkvt00Tr7ld7CgHsfg72yVfgld4fsgH2nHdi+tyGeSx/ZdD3sWUtwLyFsM1JzWvNDuksfrRHGtibR5U73r78Qv9MCn74YMEY/Ybff6Rk6f9TvXDaMp+OIZl++H4DfsNTspG+KBakXVr9DEr04Qw8lGPkQcxbtq0586NWx68b+OOB7c+dNumR3Zu2r6DP9XGPQD3cIsytOZPyWVpnaYeyltM+bcKOkyDgs9ktPmKrdwzG369a8mWHn29K5aPR2WXCF1qIm8GXHOL6BX3eiJY5zti8at+S7b0wo+eLaa8Tj16VvaxU/Vot+XhZ3ruobw5wHcR5dUhz/DVZ3pQdg2uMS9NveIe13VNyFRy5jWuK1TGf9e4GCC6sj1pB2Zw1+SNFVmPzKJe6hHWPJ/K+e7UZUv+4b3PvycJzfFa7R73AD7Hc6OvCfo2RzSvGAQZITT3rGnCx9ovpDz1Wkn1qZySu6OvyGM/xK8J+o1AV6Qu1Ayw7Ktu7ZM0uEpgbcfa32zIm0952M74FNM8ocO8SHkWCh0GBR+3x/lwvxN9t+FXQ1uxZbjvnk/ysuyiYrzxqtcOToNrzEM5sRiMWLMdsayvabO+zmd7YOK4rXxInfhUKyZF+24rT9G+G23MK5Vj7arz7Wqh0IVtlqaVQMd5veJezP4LHLHMf9qsr4VsD0wqBrEP4ViJ2xW2uVPRrvg1Y6Z7n6BtiBgeWxrtn8Cu2j/RGBj57RPI6lPS51Ee+vpsypsvdEpIBp7GQL9/mMpg9J+D3Zc/rGvMngxMrNMQRrdlK8cAyLW8Aj74UfXZgvOAgF/LqtoN0vO4VfVf2JbMBqr/4jar4i9+Stt28JS9TMdO2At1YHstaKEz20vZF+1gNlBxaQ5hzRFYaMOYvUzHTtgLdWB7nddCZ7aXsi9+qtxsUAvNtqwTlrIXtse1RG/8/YIe8SpE/48QE/jpEYxrXNdzBTbGxoQwsBxVUY5BykPeFPcHZ4/GVU8QqRMnRq/egICnS/jTHnjKwXjbPC3TVSej1Qo9lpmT6pvNDnlX6BOSY7ho/zSxT1wodFSn4K/IiWv0rU779OTQG0+EsA9dKfRWp30WZchRpy3T9GDjl0/zT240xLQ+vtdoyyqemuw24+mQiqdoI46nqs2q04F52yyfLMen3fikMtrYZCr/wlNR7y3wtJ86haZO3LDv9WfQG17TCTCoY4vXMX9WJ7vL+jOWoV1/Rns9QGU1+oUn158ndtqf1VtRYk/j4pP+l1Oe8uckNMewovEVT4a9rc2nXWP+b2XL8n9+2tXoXxbxf2VfderV6GNvemjl/9dSHvItypCTFc/Z/43+2pz+b7I74f9oI/b/vG8wMfplgl69SUG9PSTm/9eSHC//f7TAW0Oui8hkXixblv8bXoXob474/zKhQ6w+lgv6ZUDD/o9lWE55yLcoQw76P9qL/d/oX53T/5c1rjvh/2gj9v8VkNcr6NneKwU9jr/5rT645shvxUIbLyc5Kg7m9X982849bb41J+b/6q05SJ/11pxNEf9XbVCd0swbj2L+v4zy1OkploP+j/Zi/zf6LTn932R3wv+XAQH7/3LI6xX0bO9Ye0Gb1EJz24j5/zKS4+X/a8n/E6CbSjITIRPv8Ro+8yssPB91N1zfA/lIb582tnUKtH8BP1g/CDwBMBC7pI+tx7Ja6qV7iD+YIS9NVZGX5/zDx6/6vZv+/f+5bGJC/KYL32M/7hP0UwW92aqfdK+HXOkm1dbxs14hNJcd87C9mg7q/ENfSf3y2A/xa4KeT9rnrYvJYbQvsL+n/xYLLNwD4PUgOwOFcRoxtjR+K0T/ThGnDVOd0VOvWjd6dT4OzyWaPkOkA/Kqtz3HPjttdG32H/Kz01ge7j/UU1DqLKDRqzdBq8831oge7aT6j9jr2heD7jNzfC6+E/718y8C/8JTzYYdwunrX3gGJa9//fPM0fqoc3bjIvorf4x98vJCoYd6M1WsbvFzEGkqWbf9qm6xPFy36o386uwztz2kV59RrYVmv+cn2LBuF5McdeZOxQTlC/hJqC80fCG1y9+eOZoH91iSxq/15fiFgwL270kIz/THe4hfJV0Kyhs+rzOR5HH5rB7TpxPszd2NpxPWbd1438qND2/fuWVTD0I3qO2arYKoeC8Jo0uPeTwSZrrV9PdawRcEdppvNVej+/WQK00yr5gkMi0PP/4zgfLwHexYm5x6hf6mc+qlz9EMNQgsk4n1MZnyhiBvCsjmep0o5JjsHkE/RFgTBZ/ZvpW8XsE3gTAGBF/dLr721HveXPvQO99bX/SZ7/SvfuYbG/5xbd9Vn//MvrM+fuj7X//2T7LOQejM9TiBaNWv6c73+FTcREesmsAy20yC+wV8/oy80crwq6GtNjYcrSaRPC4fl32y0KUm8jgGTRZyJgs5CqvHEavXCStNt45hjWGNYY1hvcixLA/7+xrlYf/J7/nB+Mwf5ewR+vVE9EN+7nvUGNf6XYzrRU785O13eYW25Er0cL/bS/Ky7NLmWHp4Rbgm5DFmmnjsHesz+zOwjLdC9DPrJ35rRJcm9ms1LsF7Zp90ZnlmfbTuPLdRvyHEx3q10Fx2yzvZfj8e+PCdufPrWiauxiEv78oZ/b+tj/AtqI/WWa16p2mI7rEPhaBX+TtxQg/LyKsqyu+R3k4eqid2K5SH5RkP5Wkj/kxTsQ3r+NJ6GFWeCuQpv+KTlEZ/rD7Cd0XjWvkxzseQP7SQZ/Rm/35Bj3gVon9F/cQv7oIr/SZkyEN7qJ01lndtfURebCca43AIpf32DOW32J7Yb9FHewU9z4lifq58Gf28n7BU7EI/4F0A4+8Pug4Mr0L0a+snftXJh5ifq3o1+nWAGatXp3gk6xVtxfXaD3nKtlyvyg+wvrgfwTofR1hqlxfrOk+9on6Gx/V6V/3Er6pX1UepPoT7qNcCZqxezZadqFe0VZ56Vf290Y8T9FivvMOMdTlAWCpGY13nqVcsD8doo99UP/Gr6rVsHH4AME9VHMbxIterajNIz/Wq/EDZthaa67xKebz+inKKxmjVL8ditNHvqJ/4VU9TTRT8Mf2U3dIy2kmTxi7I7Tu2btvU2AYJlGLbFun1UIYa0wR/iGAhT6xIuDXAJjdZ/UEvr7PJjf6x+olfNDmbkPXJM0Uu2WRyb6QZvtcUudXQk6dJsWamuhiup1ZyHF01Tasz1EgEf2iBZX+nvb+NmrG6eVQfGwkwb/rPRot5RwJG/9b6iV/VY7SamXFEie1UoD6q/JMoD/kmZMjJO0Ix+nfWR8oa68lMdid6MrQR92RqpVCtqBj9FEGPOyk8QsFdV25+aONJJKdVM+fzBcpP1UxZ+VdspN3Kv8w31aw05l+xVREnXxg61b5gtlG+EFtRY19QXSzGBPaF8UIOr4yliUfb+Gs8hpumAUFvefisN9ZXAH0qwIdY44jP6H+9fuLXhi84ijT+mpCPo8eQoTfe6yH6qqCvCvrUPh+qj+is9OT+C8vaK+hx+IP0/7k+IvN3Gtd8/hflpfc+HaFLMn6VzqhPzEa9gt5kjxf0locnGrBNIg3aC7GqkI/0n6qf+LU6wfrGdsnycRYZMvTO6o8Zq1fcQ9/5WP3EdRXuGVbRoWGa+Pw53kPZ48Po9y/Yb54z9R++YvErJr5mwYHJxO+FP/H3f/OWL//zwwta4avzctiPFfXvrJ2HNG1s/LZ5zr/H+HHVIuTnT9QKaUK6DZTT7Qd57IT41aDHgPWQKw1PZzg2c/l4x69aTt6/pn3q+NA8RsG6RNuhnHGkw/iSOqixjsnEOBdITir/l+eP1qHkNPJf2/Th/6tWh3Bn5qv1EVy0Hc4b1HS9QvTfqI/wPde4Vs9n4ZhhKDS3L44JZu8eQcsrw/i3Wo3kKbP5TH9GWfuprEb/D/UTv6m858/UmGg/1KsnA/M7gMnPEhTdRZkg6NWK+lBobjsTiA91xzEE31P1kxAt6pCmjUKnrL+rAidLhwGBo3aoq6SrWs3GdsPj9l4hB9sU9nltLl/1qb4kkD68A4Z5WLbXAh2nXvobdU4xPlsfwWU61ke1Jc++3+73wX2Wy+tX/UTLc0rUsZ3xN49P1DN/9ve4iP4J4VQE32DQ7U395tU3Efp28mRKml7X+G2zz5vZ6jTCrLkjuFl9nhpzcJ83d+4I35zGdas+z/J43JemH4d7HNN5HIUYaeJle4uR/YCPNANUJqNf0CgH9m0qhhhWWvbzyZ4DkBfrRypEfwPYcxHZE+1l9lT9F7eB8aAL0qZpY9A2uAz0uGRutiycF2eV8UcnVeZqOtQB6RijbL+mxlfcdvOMr9Sa10BEBsfjrL7bfGNCi/zxomxB3OsR9AMZ5Q1CdrUFrtq9VvGdd0ATkcexB8ubd90Y49asSHtJwuhyjadyDUTKlQg+bueo+7iI7sp+GD/KrkEc/5sf/OVTj531951a47jmZx99cvCKD/1qp/A/OOGzK37nZwdeX2QNxeq5n2TZNdob7+PY427IR/rXNeqjzTWKwOVRcSM2P+O1V9b/jgz9d0D83kDtQs1PVJvJ6n/7cupi9Pc15LfaT8M1C8OxvAI2r6g9FIxreU7oqbVzo281tzSbqD2zPKdS0KY8pjEb9Qc9v+f9W6PfCnXApz9UbLY8LDvHxV4hV61FWhtLad5K7ark+HacGkdYGgzZ8Z/9Acuo9qJ4fIN1yfsLmNQcEt9z8tTcEVyms6TiA7dXta4SGy+qdmf43dbuzPfViUj2t7w+nDWeU/LQDthXmw9nreljm8Y51zNzR/DQ7up8Qpo4nhr9L0JsfyfFdrQx+4OKE6xLCDoO5ZnLDwo+qxe1j1Bk7QfrF/XEe4hfDW3Fl4TjrcnjOuK1/pLjhAr3sShP1cOkoG2q9gN4rqjWe2LzpFg8Ue2P26ZaR1B9SGw+Z7JxzTzPuCnr7E/WesYH5o7w/R61LRVrY/UWex9KLPahrsr2fH5Fzf3tekJEjtJrUNBPiOiFMZnf/cFP/cfKkLevchoj9hV9+kjZJXbGrdUbGbiNqLcnFO3b+OyO6uNb9W2/l9FHYTnUiXR1dBP7N+v7sL9MSBeUgfP/B8Jo+rJPJv030KHVqfc0PSgwEyEjhGa78LzS6P4QdPi9+SeuY/sBbb4HbyL6jiXVbxq+em9hmX5TzWvUmb025wGDMT9V4x21DsNt3dpD1hwL5+RI/z8bdctPeqSJn4pV4wrVX6S6/fnc0bp3ak8G4y7GjzThOPb/oxihnvBCXn5a1ei/MneE78vU1yrfHB/iMUPt0bN/ZO1zZz0p89VIzFDjd9TrwQzM5wCT97mVX6j6Y19FenWWQI2ZeB1KxbIOPpkl3+mL5c9ql6ZPVpsxejUmU3tONaJX/SXqwutnMV9MU2zPHNuOtauya6hXn/e2GTM/9chgp9Zo+yozf6r+oXvWFVmjVWPvHsJFe/OedJpe0/jNc5as5Pwy9zcheX7Z7lmyvPNLtabF8yVsH9zfqLajzhOfLCzV3rkuS86lc68V8LnAkr6TFI1Pag2S11YxdrH9VVxTc7oXCxa2/9gaUp56VXJi48BOjaX4XMo4RzmItYHk8N6u+s0rB7HuJjkVocOP9jHnjeBiHWeNkbL2jFbOG+FbNG80jem+BGiualwPgOwQCrflqlq3tqT2B9hv1VoJvxtV+QfO/wcoD9+0uBHoOPXS32iHVF6e7+ApW5Y8t9tVtsxrLytrivm6HPbic2dYJpyvxNoByuV2cAP4+B3UttQaomrPdr/VvmXsTJHxtnmefALXLSZVt+wTWLfsE/jIOPsEPsfH7QufXeOxMSblL3jePW/7uiMjRpoMjpE8f1DnnDD2ttqT8urn0sTjuU7020pOp/rTjSRH1UNa/nupDtV5P+Td0vjlNaM3Q/v+CcJstRZgmGr+Pi6Dj/WKyeopKasnQ1ZsnUHtTZ2EfcX+PD6D+J3cV1T7fEXmfWxbzEM5eeZq7DPtYuVZy8mLlWcNLC8Wn+/AMlt9tDqz/Ea4x/ZXz9dgmzBe7vcPQyzP83wNlndLBuYxwMzzfA22iaJjCV5bjD1fk3W2VfFyvMAxIvcJg6A7y+G9yaznaRBHzfP4PKiyI8bRPPutee04SHxq7z+Ll2Np7Dxs1j5uELi8B9kf4eNz1yjnGcLJOuOQ1f7zjp+w3743Mn7qwN7cOIw1qD/eQ/yTvTfH/S7yxsZoiciL9XFjWH5Y3bJH+GEay7baI7y38ct7hB+D8fGvE2YvlYNjrbV7tafIZ5swLsf2vnDf2vRFzHrIlcapvS8sD4+XWu0x3df4Vec7EsrjeIU6KBvh+Ef5qPIdux8b56p6UPOK2PnFDp5nHdfN+5N8/u5k7E9+uGD/WDTe5PUxbtexOWMi9GrzzMlAnnIhfjXotlUPuVJStO2pMy68nx07/5L3bIrnOZcxLD+sWB/Qqt/+BvWxCeTF+p0K0T8P/fa3Gtd5nwvmdpUVr2LtIjbnKtonqdha5NkztB2WbVPjl88g/4uYp3ewnxs41f2c2UT1c1nPFaFM1W+h335D9Ftj51JkGjuXEprLz3U5di7lRBo7l6J/TQ7fGzuX4iOnzLmUxfNHcLGOs/bruG82+tXzR/gunj+axnRfCjSvbFyPnUsZSWiHIvvmbMuxcynNdFwO9DfPcyk3go+/htrW2LmU0XkvlnMpr8mIkSaDY2TecykWe3H8reZWPH/CZzQD0aeJn7Ey+o0UJ0qOn+S7O/D5Q9a/yLkDNZ6wpNZvEspT++Fq/Mbru6pd5fUpK2uq18dz+FSe5437RTlizyKfjOeN03QP6YxzQ14zSFNsr8Hj2Yt9f7jt/f86+T/+r255P87j1MZKzolO2ftx3g3918H5o+WpdtfJ9+Mcg/g49n6c0Vhqr7oT78d5B9TBqXw/zgepXZ2u78cp0r/0i3KMvR9ndF5eH+Y+sTciL+scjfnw+DD6WeoQCtts+JNVVp7eMKITtiEcj4cweo2An1etltNl2IbqvaIYp/i9K0b/X+ePxlF7vWq90ujVdxp6hVz1TY8JBbEGCGtcG1job0w/riDWQASrn7CqAkv1W2nd/Rr4bNkx2hMPzvqHDy+74uky34FA/8F1q0/SnKzsO6P+GsY7n6LxjtoDGXtnVGF5Y++MCs17p6qPfam9M+rL0La+G5lL5NkXje2jjr0zKrt8Y++MGp2HdRob73m8M+q7GX0UlgPjH68bqjaGfd//D/F/N4aQTQUA",
4400
- "debug_symbols": "tb3Rjiw5bq39Ln3tixBJkZJf5eDAGNtjY4DBjDEe/8APw+9+UpTIpartVEVlVt/M/qa791oRksiMkBjSf//2r3/85//693/601/+7a//+ds//p///u2f//anP//5T//+T3/+67/84e9/+utfHv/0v3+7xv/0x//yP/zWy2//qI8/6Ld/bI8/eP4h8486/9D5h80/2vyj+x/lutafZf1J609ef8r6s64/df1p68+2/lx6ZemVpVeWXll6ZemVpVeWXll6ZemVpUdLj5YeLT1aerT0aOnR0qOlR0uPlh4vPV56vPR46fHS46XHS4+XHi89Xnqy9GTpydKTpSdLT5aeLD1ZerL0ZOnVpVeXXl16denVh165BtQADbCAh2bhAX2BXgEP2aIDHro0/mPlAAmoARpgAQ9lKgP6ArsCSgAFcIAE1AANsIBQtqFMD2hXQAl4KJfRCI0DJGAoO2iABbSAvmCEzoQSQAEcIAGh3EO5h/IIJR7NMoJpAI1omlACKIADJKAGaIAFtIBQLqFcQrmEcgnlEsollEsol1AuoVxCmUKZQplCmUJ5RBnTgBqgARbQAvqCEWsTSgAFcEAocyhzKHMocyhzKEsoSyhLKEsoSyhLKEsoSyhLKEso11CuoVxDuYZyDeUayjWUayjXUK6hrKGsoayhrKGsoayhrKGsoayhrKFsoWyhbKFsoWyhbKFsoWyhbKFsodxCuYVyC+UWyiMGuQ6oARpgAS2gL/CfL4cSQAEcEMo9lHsojxjkNqAF9Ak8YlB4QAmgAA6QgBqgARbQAvqCEsollEsol5U3uEhADdAAC2gBKyMxXQElgAJCmUKZQnnEoOgAC2gBfcGIwQklgAI4QAJqQChzKHMojxgUe8CIwQklgAI4QAJqgAZYQAsI5RrKNZRHDNZrAAdIwEO5ygANsIAW0BeMGJxQAiiAAyQglDWUNZQ1lDWULZQtlC2ULZQtlC2ULZQtlC2ULZRbKLdQbqHcQrmFcgvlFsotlFsot1DuodxDuYdyD+Ueyj2Ueyj3UO6h3JeyXFdACaAADpCAGqABFtACQrmEcgnlEsollEsol1AuoVxCuYRyCWUKZQplCmUKZQplCmUKZQplCmUKZQ5lDmUOZQ5lDmUOZQ5lDmUOZQ5lCWUJZQllCWUJZQllCWUJZQllCeUayjWUayjXUK6hHDEoEYMSMSgegzqgL/AYdCgBFMABElADNMACQllD2ULZQtlC2ULZQtlC2ULZQtlC2UK5hXIL5RbKLZRbKLdQbqHcQrmFcgvlHso9lHso91DuodxDuYdyD+Ueyn0p1+sKKAEUwAESUAM0wAJaQCiXUC6hXEK5hHIJ5RLKJZRLKJdQLqFMoUyhTKFMoUyhTKFMoUyhTKFMocyhzKHMocyhzKHMocyhzKHMocyhLKEsoSyhLKEsoSyhLKEsoSyhLKFcQ7mGcg3lGso1lGso11CuoRwxWCMGa8RgjRisEYM1YrBGDNaIwRoxWCMGa8RgjRisEYM1YrBGDNaIwRoxWCMGa8RgjRisEYM1YrBGDNaIwRoxWCMGa8Rg9RjsAzTAAlpAX+Ax6FACKIADJCCUeyj3UO6h3JeyXldACaAADpCAGqABFtACQnnEoF4DSgAFPJSVBkhADdAAC2gBfcGIwQklgAJCmUKZQplCmUKZQplCmUOZQ5lDmUOZQ5lDmUOZQ5lDmUNZQllCWUJZQllCWUJZQllCecSg8oC+YMTghKEsAyiAA4ayDqgBGjCUR3+NGJzQF4wYtDKgBFAAB0hADdAAC2gBfYGFsoWyhfKIQRvXPGJwQg3QAAtoAX3BiMEJJYACQrmFcgvlEYNWB1hAC+gLRgxOKAEUwAESUANCuYdyD+W+lO26AkoABXCABNQADbCAFhDKJZRLKJdQLqFcQrmEcgnlEsollEsoUyhTKFMoUyhTKFMoUyhTKFMoUyhzKHMocyhzKHMocyhzKHMocyhzKEsoSyhLKEsoSyhLKEsoSyhLKEso11CuoVxDuYZyDeUayjWUayjXUK6hrKGsoayhrKGsoayhrKGsoayhrKFsoWyhbKFsoWyhbKFsoWyhbKFsoewx2AaUAArgAAmoARpgAS2gL+ih3EO5h3IP5R7KPZR7KPdQ7qHcl3K7roASQAEcIAE1QAMsoAWEcgnlEsollEsol1AuoVxCuYRyCeUSyhTKFMoUyhTKFMoUyhTKFMoUyhTKHMocyhzKHMocyhzKHMocyhzKHMoSyhLKEsoSyhLKEsoSyhLKEsoSyjWUayjXUK6hXEO5hnIN5RrKNZRrKGsoayhrKGsoayhrKGsoayhrKGsoWyhbKFsoWyhbKFsoWyhbKFsoWyhHDLaIwRYx2CIGW8RgixhsEYMtYrBFDLaIwRYx2CIGW8RgixhsEYMtYrBFDLaIwRYx2CIGe8RgjxjsEYM9YrBHDPaIwR4x2CMGe8RgjxjsEYM9YrBHDPaIwR4x2CMGe8RgjxjsEYM9YrBHDPaIwR4x2CMGe8RgjxjsEYM9YrBHDPaIwR4x2CMGe8RgjxjsEYM9YrBHDPaIwR4x2CMGe8RgjxjsEYM9YrBHDPaIwe7rgmWABbSAvsDXBh1KAAVwgATUgFCuoVxDecRgo7FCfAWUAArgAAmoARpgAS0glC2ULZQtlC2ULZQtlC2ULZQtlC2UWyi3UG6h3EK5hXIL5RbKLZRbKLdQ7qHcQ7mHcg/lHso9lHso91DuodyX8mO1/UoqSZTESZJUkzTJklpSepT0KOlR0qOkR0mPkh4lPUp6+JK8OPUgX5afNDzMiZI4SZJqkiZZUkvqQb5UPyk9OD04PTg9OD04PTg9OD04PSQ9JD0kPSQ9JD0kPSQ9JD0kPSQ9anrU9KjpUdOjpkdNj5oeNT1qetT00PTQ9ND00PTQ9ND00PTQ9ND00PSw9LD0sPSw9LD0sPSw9LD0sPSw9Gjp0dKjpUdLj5YeLT1aerT0aOnR0qOnR0+Pnh49PXp69PTo6dHTo6dHD49ZVjOpJFESJ0lSTdIkS2pJ6VHSo6RHSY+SHiU9SnqU9CjpUdKjpAelR8Z5yTgvGecl47xknJeM85JxXjLOS8Z5yTgvGecl47xknJeM85JxXjLOS8Z5yTgvGecl47xknJeM85JxXjLOS8Z5yTgvGecl47xknJeM85JxXjLOS8Z5yTgvGecl47xknJeM85JxXjLOS8Z5yTgvGecl47xknJeM85JxXjLOS8Z5yTgvGecl47xknJeM85JxXjLOS8Z5yTgvGecl47xknJeM85JxXjLOS8Z5yTgvGecl47xknJeM85JxXjLOS8Z5yTgvGecl47xknJeM85JxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnXkXUupMmWVJL6kEe55NKEiVxkiSlR0+Pnh49PXp4eFHRopJESZwkSTVJkyypJaVHSY+SHiU9SnqU9CjpUdKjpEdJj5IelB6UHpQelB6UHpQelB6UHpQelB6cHpwenB6cHpwenB6cHpwenB6cHpIekh6SHpIekh6SHpIekh6SHpIeNT1qetT0qOlR06OmR02Pmh41PWp6aHpoemh6aHpoemh6aHpoemh6aHpYelh6WHpYelh6WHqMOO+XkyW1pB404nxRSaIkTpKkmpQeLT1aerT06OnR06OnR0+Pnh49PXp69PTo6dHDwwuXFpUkSuIkSapJmmRJLSk9SnqU9CjpUdKjpEdJj5IeJT1KepT0oPSg9KD0oPSg9KD0oPSg9KD0oPTg9OD04PTg9OD04PTg9OD04PTg9JD0kPSQ9JD0kPSQ9JD0kPSQ9JD0qOkx4ryTEyVx0vCoTjVJkyypJfWgEeeLShIlcVJ6aHpoemh6aHpoelh6WHpYelh6WHpYelh6WHpYelh6tPRo6dHSo6VHS4+WHi09Wnq09Gjp0dOjp0dPj54ePT16evT06OnR06OHhxdHLSpJlMRJklSTNMmSWlJ6lPQo6VHSo6RHSY+SHiU9SnqU9CjpQelB6UHpQelB6UHpQelB6UHpQenB6cHpwenB6cHpwenB6cHpwenB6SHpIekh6SHpIekh6SHpIekh6SHpUdOjpkdNj5oeGec147xmnNeM85pxXjPOa8Z5zTivGec147xmnNeM85pxXjPOa8Z5zTivGec147xmnNeM85pxXjPOa8Z5zTivGec147xmnNeM85pxXjPOa8Z5zTivGec147xmnNeM85pxXjPOa8Z5zTivGec147xmnNeM85pxXjPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzi3j3DLOLePcMs4t49wyzi3j3DLOLePcMs4t49wyzi3j3DLOLePcMs4t49wyzi3j3DLOLePcMs4t49wyzi3j3DLOLePcMs4t49wyzi3j3DLOLePcMs4t49wyzi3j3DLOLePcMs4t49wyzi3j3DLOLePcMs4t49xrwnpzakk9yON8UkmiJE6SpJqkSelR06Omh8d5dypJlMRJklSTNMmSWlIPsvSw9LD0sPSw9LD0sPSw9LD0sPRo6dHSo6VHS4+WHi09Wnq09Gjp0dKjp0dPj54ePT16evT06OnR06OnRw8PLyRbVJIoiZMkqSZpkiW1pPQo6VHSo6RHSY+SHiU9SnqU9CjpUdKD0mPE+WOR0JGADJSB7FiBCjRgA/bEEfCBBUhABsKN4cZwY7gx3BhuAjeBm8BN4CZwE7gJ3ARuAjeBW4VbhVuFW4VbhVuFW4VbhVuFW4Wbwk3hpnBTuCncFG4KN4Wbwk3hZnAzuBncDG4GN4Obwc3gZnAzuDW4Nbg1uDW4Nbg1uDW4Nbg1uDW4dbh1uHW4dbh1uHW4dbh1uHW49XTz2rfAAiQgAwVYgQo0YAPCrcCtwK3ArcCtwK3ArcCtwK3ArcCN4EZwI7gR3JBLOnJJRy7pyCUduaQjl3Tkko5c0pFLOnJJRy7pyCUduaQjl3Tkko5c0pFLOnJJRy7pyCUduaQjl3Tkko5c0pFLOnJJRy7pyCUduaQjl3Tkko5c0pFLOnJJRy7pyCUduaQjl3Tkko5c0pFLOnJJRy7pyCUduaQjl3Tkko5c0pFLOnJJRy7pyCUduaQjl3Tkko5c0pFLOnJJRy7pyCUduaQjl3Tkko5c0pFLOnJJRy7pyCUduaQjl3Tkko5c0pFLOnJJRy7pmUvoylxCV+YSujKX0JW5hK7MJXRlLqErcwldmUvoylxC1wW3ArcCtwK3ArcCtwK3ArcCtwK3AjeCG8GN4EZwI7gR3AhuBDeCG8GN4cZwY7gx3BhuDDeGG8ON4cZwE7gJ3ARuAjeBm8BN4CZwE7gJ3CrcKtwq3CrcKtwq3CrcKtwq3CrcFG4KN4Wbwk3hpnBTuCncFG4KN4Obwc3gZnAzuBncDG4GN4Obwa3BrcGtwa3BrcGtwa3BrcGtwa3BrcOtw63DbeYSdRRgBSrQgA3YA8vMJRMLkIAMdDdyrEAFGrABe+LMJRMLkIAMhFuBW4FbgVuBW4EbwY3gRnAjuBHcCG4EN4IbwY3gxnBjuDHcGG4MN4Ybw43hxnBjuAncBG4CN4GbwE3gJnATuAncBG4VbhVuFW4VbhVuFW6eS0pxNGAD9kTPJQsLkIAMFGAFwk3hpnDzXFJsoOeShSXRQ685ue/E4UBz7yoFGrABe6CX6AUWIAEZKMAKVKABGxBuBW4FbgVuBW4FbgVuBW4FbgVuBW4EN4IbwY3gRnAjuBHcCG4EN4Ibw43hxnBjuDHcGG4MN4Ybw43hJnATuAncBG4CN4GbwE3g5jFG7NgTPcYWFiABGehu4liBCjRgA/ZEj7GFBUhABsLNY4yqowLdTR0bsCd6jC0sQAIy0N26YwUqcLhxcWzAnui/1+zX67/XCwnIQAFW4HDzTb288i+wAXui/16zX5knjYUEdF1yHLrig8Dzg4x/6qV9j8zsWIAEZKAAK9B11dGADdgTPT8sLEACMlCAFQg3zw9jgyzyYr/A4Tb2xiIv9wssQAIyUIDDrRZHBRqwAXui54eFBUhABgoQbp4fqneL54eF7saOPdHzw8ICdDdvB88PCwVYgQo0oLs1x57o+WFhARKQgQKsQAUaEG6eH8bmHuRlgYEF6G4+5Dw/LBRgT/SYV+9Nj2711vGQHntWkFf2BRqwAXuih7T6RXpILyQgAwVYge7md+EhvbABe6KH9MICJCADBViBcPPHA/N28MeDhT3QK/7K2BuDvOQvkIDDzdhxuI0tLcjL/h6LOI4KNGAD9kQP/4Wu2x0FWIEKNGBL9Cgc3+iRV+Ut9Chsfr0eb606CrACFWjAluhx0fx6PS4W9kSPi4UFSEAGCrACFQi3CrcKN4Wbwk3h5r+Qo5CcvETuMeXsOBS6d7fHxcICHArdu9ujZaEAK1CBlugh0r0DPBi6d4AHQ/cr82BYqEBX8Kb2YFjYEz0YFhYgAd3N79iDYaG7+c17MCy0QC+AK2MFirza7fGU7ChAVxBHHf+0OBqwAXviGODkLx1e9RZIQHdjRwFWINwK3ArcCtx838yFJfrCC+ACGSjAClRgjy708rbZhV7fNjvLC9wCK1CjL7zGLbABsze9zC2wACn6zSvdAiU7SypQgT27sFL2W0VverzNLqw1G6qifSvat6J9a8/OUvSmojfn3tHeOoreVPSmwk3hpnBTuCl607dsvrxJfNPmhT3RN26+vHV86+aFBGSgACtQgQZswOHmb6leOxZYgARkoACHW6mOCjRgA7rbGEZeRRZYgO5mjgwUoLs1RwUasAHdbQwYrx0jfx/y4rFAAVbg0B0bcJMXkJG/BHkFGflriZeQLRw/PoEF6G5+x8xAAVagu/m9sVv49Y4YIt+K2kvIaO2WPCx8P2AvIgtkoAArUIEGHG7srS49sbqbX04tQAIyUIAVqEADNmBPVLgp3BRuCjeFm8JN4aZwU7gp3Hzvdn+N8gqzQAIyUIAVqEDX9c7yndsXFiABGSjAClSgARsQbh1uHW4dbh1uHW4dbh1uHW4dbj3dvNAssAAJyEABVqACDdiAcCtwK3ArcCtwK3ArcCtwK3ArcCtwI7gR3AhuBDeCG8GN4EZwI7gR3BhuDDeGG8ON4cZwY7gx3BhuDDeBm8BN4CZwE7gJ3ARuAjeBm8Ctwq3CrcKtwq3CrcKtwq3CrcKtwk3hpnBTuCncFG4KN4Wbwk3hpnAzuBncDG4GN4Obwc3gZnAzuCGXGHKJIZcYcokhlxhyiSGXGHKJIZcYcokhlxhyiSGXGHKJV7E93sEcBViBFhnRZgKZ2APbdQELkIAMFGAFKtCADQi3ArcCtwK3ArcCtwK3ArcCtwK3AjeCG8GN4EZwI7gR3AhuBDeCG8GN4cZwY7gx3BhuDDeGG8ON4cZwE7gJ3ARuAjeBm8BN4CZwE7gJ3CrcKtwq3CrcKtwq3CrcKtwq3CrcFG4KN4Wbwk3hpnBTuCncFG4KNzx2NDx2NDx2NDx2NDx2NDx2NDx2NIObwc3g1uDW4Nbg1uDW4Nbg1uDW4Nbg1uDW4dbh1uHW4dbh1uHW4YZc0pBLGnJJRy7pyCUducTL2h7TNY4CrMDh5pPJXtYW2IDDzae5vawtsAAJyEABult3VKAB3c2v13PJRM8lCwuQgAwcbj6D7GVtgQocbj6Z7GVtgT3Rc8nCoeuTyV6qRtUbyvPDwgZ0BW8ozw8LC3Bcr88re6laoAAr0N38hjw/LGzAnuiZwGeFvfyMfKbXy88CDejt6xYe8xM95hcWIAEZKEB380b1mF9owAbsiR7zCwuQgAwUINwMbgY3g5vBrcGtwa3BzWNevbs9un123AvNAhuwJ3p0LyxAAjJQgBUItw63DrcebuyFZoEFSEAGCrACFWjABoRbgVuBW4FbgVuBW4FbgVuBW4FbgRvBjeBGcCO4EdwIbgQ3ghvBjeDGcGO4MdwYbgw3hhvDjeHGcGO4CdwEbgI3gZvATeAmcBO4CdwEbhVuFW4VbhVuFW4VbhVuFW4VbhVuCjeFm8JN4aZwU7gp3BRuCjeFm8HN4GZwM7gZ3AxuBjeDm8HN4Nbg1uDW4Nbg1uDW4Nbg1uDW4Nbg1uHW4dbh1uE2c4k4VqACDdiAPbDMXDKxAAnIQHczxwpUoLtVxwbsiTOXTCxAAjJQgBWoQLgVuM1c0gfOXDKxAAXoCs2xAYfCWNdjLx4LLEACMlCA43rNm8Tzw0IDNqC7ubHnh4UF6G5+vZ4fFgpwuLXLUYEGbMDhNrZ4ZS8eo+bX65mgeR97JlhYgQp0XXV0Xb8LzwTNL8czQXc3zwQLCcjA4db9cjwTLFSgAYdb9+v18O9+OR7+3Xvew7/75fjpdpdb+Pl2CytQgQZswJ7oZ91dfg1+2t1CzmHUMKJmzE9UoAEbECO1Y6R2jNQZ8xPh1uHW4dbh1uE2D6L0NptHUQ5ch1FO9BsSRwIyUIAVqEADNmBPnAdUToRbgds8plIdBViBCjRgA/bEeWjlxAIkINwIbgQ3gpsfYTlWmJjmkwI5FiABGSjAClSgARuwJwrcBG4CN4GbwE3gJnATuAncBG4VbhVuFW4VbhVuFW4VbhVuFW4Vbgo3hZvCTeGmcFO4KdwUbgo3hZvBzeBmcDO4GdwMbgY3g5vBzeDW4Nbg1uDW4Nbg1uDW4Nbg1uDW4Nbh1uHW4dbh1uHW4dbh1uHW4dbTja8LWIAEZKAAK1CBBmxAuBW4FbgVuBW4FbgVuBW4FbgVuBW4EdwIbgQ3ghvBjeBGcCO4EdwIbsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXCLIJYJcIsglglwiyCWCXCLIJYJcIsglglwiyCWCXCLIJYJcIsglglwiyCWCXCLIJYJcIsglglwiyCWCXCLIJYJcIsglglwiyCWCXCLIJYJc4rvt8ahbYS/1CxRgBSrQgA3YE/147YUFCDeBm8BN4CZwE7gJ3ARuFW4VbjnDyV5CGOhuzbECFWjABuyJfgz3wuFWLkcCMnC4jaoe9sLCQAW6m1+ZH8u9sCfOXOJiM5dMJCADBViBCjRgA/ZEzxpj6pq9CDHQ78IHjB/RvVCBBmzAnuiHdS/0NhNHAjLQ3apjBSrQ3fzK/L1lYQ/00kSa5zZ71lhIQAYKsAIVaMAG7In+hjKKrdhLEwMF6Hdhjgo0oN9Fc+yJ/oYyiq3YSxMDCTjcRoUVe2liYAUq0IAN2BNHfng80zgWIAEZKMAK9Mq4KRaFkOwFi171x16wGEhABgqwAhXoFXfex/5UsbAn+lPFwrIqMNmLGwMZKMAKVKABG7AnKnpe0fOKnlf0vKLnFT2v6HlFzxt63tDzhp439Lyh5w09b+h5Q88bet7Q8w0939DzDT3f0PMNPd/Q8w0939DzHT3f0fMdPd/R8x0939HzHT3f0fMdPd+z52et5cLsea+1DGSgACtQgQZswOx5r6rkUdHIXlUZKMAK9L6Yf82ADdgT/XObUXLOvk1fIAEZKMAKVKABW+KMbnEkIAMFWIEKNGAD9kT/9V8IN4GbwE3g5r/+5Bfpv/4LDdiAPdF//RcON/ZWHzEfyEABDjf2Vvdf/4UGHG6jspO9wJLZLfzXf2EBEpCBAqxABRrQ3bpjT/RMMD44Yy+wDCQgA4eb+KV7JlioQAM2YE/0TLCwAN3Ne8gzwUJ389bxTLBQgQZsif4gMAoD2GstAwnIQAG6hTeJPwgsNGAD9kCvtQwcbuPjNPZay0AGCrACFWjABuyJPoG5EG6eKkYRAXutZaAA3Y0cFWhAdxNHdxst6bWWPGoE2GstAwnIQAFWoD9wOvUgfwyYVJIoiYM8gkfVAXuxY2AF+kqAkyW1pB40VxecSpIrTvRm8B70eJz/sAd5NE4al+vOHouTOEmSapImDRN/APaKxcDhot5FHoYLC3CI+nuUVyGyL7V5FWKgKwzyyPLFMS9CDCQgAwVYo0laNmfL5mzZnC2bs2dzeiDNRvSQmY3oIeMLYF5dGOgXOq7UqwsD/UrN8XGlMomTJKkmaZIFeVj4ipnXCrKvOHitoAeIlwou0qTxt+d/15J60Bj6i0oSJXmvu4yP+4Xe78VRgZboI9/I0RXYUYDjLv02/LdwNoz/Fi5swJ7ov4Xjiz/2qr9AAnI2uEfSwgqEm8BN4CZwq3CrcKtwq3CrcKtwq3CrcKtwq3Dz6FtY1lD3or85fL3oL1CAFaiJ/jtlruDBtLAB/Rd/0HxgdSpJlMRJklSTNMmSWlJ69PTo6dHTo6eH/0b5+quX4AUqcNj4mqqX4AUOI1/X9RK8wAIkIAMFWIHDzRdovQQvsAE9X45R7iV4gQU43HzZ1kvwAgXoid1JkyypJfWg+fPk5IoT/UrV0a/Ur99/hxb2RI/HhX6l3ZGADBRgBfqDltMw85Vkr70L7Ikepf7a4rV3gQQcZr6S7LV3gcPMF5W99i7QgCN7+SWMIJ00YnRRSaIkTnJFbyyPOV+x9qo7Hp/vsVfdBRKQgSND+3uZV90FKtCADTgu1X3H796ikjQu1W9uPHsukqSapEmW5CY+5EY4LxzxHMhAv0xv/GbAoeBtP2J10ojVReMqr4kEZKC3iN9Hr0C38ubtBvSL9YbsfrGPQSVeUydjck+8pk7GjJN4TV0gAwVYgQo0YAMOtzEXJl5TJ2PWS7ymTsa0gnhNnYwJBPHqORmzBuLVc4EGbMCe6L+gCwvQxfw2SYEGbMCeyBewAIcYeUONmJMxVSBe5bZwxFxgAT7urfpdjpBbJEk1SZMsqSX1oBFti0pSetT0qOlR06OmR02Pmh41PTQ9ND00PTQ9ND00PTQ9ND00PUawVR8JI9gWSVJN0iRLakk9aITaopKUHi09Wnq09Gjp0dKjpUdLj54ePT16evT06OnR06OnR0+PHh5eICbj6Va8QEzI/6kHxvjIU7wUTMYLinj1lozfaPENwQIVOIY1u8IY1tUFxqieNAb1opJESZwkSTVJkywpPTg9xLN+dfRrVMfH31a/xDGyF7WkHjRG9qKSREmcJEk1KT1qetT0qOmh6aHpoemh6TFG9njnES/PWqRJw8NbeozsRT3If1DGi5h44ZWwd7D/fLA3k/9+LGzAnug/IAsLkIAMFGAFwq3BrcFt/tr4yJo/NxMLkIAMFGAFKtCADZhuXoMVWIAEZKAARzeokyZZUkvqQSOiFrlicfQrJcfxt7tTS+pB4wdlvOOJV1MtoiROkqSa5Dc+xoKXTMl4VhAvmQpkoN+iX6b/wCxUoAEbsCf6z87CAiQgA+EmcBN380sXAzbgcKveD/6wt3C4VW9Wf9yr3qz+vOfpzUumAivQn6PcuBpwuI2ZFvGSKaluPMLV3GGE6yJK4iRJqkmu6J05H/b8oj04Pca9ACpQgONKPcy9ACrQgA3YEz04Pf69qEnUe9fDcA5CD8OFDdgTPQwXFiABGShAd/OG8zBcaEB38+b0MHT0oqbAAnS37shAAY7mFSdNsqSH1ZhbEC9omjTCcFFJoiROGl1YnWqSJvnsy+XYgD3RHwAXMtCnb4qjAV2BHHuiP/UtHFfqDTKCdhEnSVJN0iRLakk9aATrovSQ9JD0kPSQ9JD0kPSQ9JD0qOlR06OmR02Pmh41PWp6eGzOrvHYXNgT1dvLe2cEZyABvR/MUYA+6+S94y9uCw3YgD3R39yad59H88Lh1rzPPJqbX5lHc/MR6dG8UIHu5hfp0bywJ/ohve7gh/ROoiROkqSa5IojNr2gSJrftsdx85b1OF4owAocV9r9tj2OFzZgD/SCosBxqeRE8+xg8XIi6fMfDq/xmi9eThT4UJ1/PY72EMmdbkVyp1uR3OlWZM5mVscG7IlzQnNiARKQgX5dzbECFdjiwvzEHic/sWfSWFYcb9gic2/biQz0idmJFajA8Uw7VlrFi38Cx1PtvN0RtIEF6G7+3+Y+2SK5T7ZI7pMtkvtki+Q+2SK5T7ZI7pMtkvtki+Q+2SIVbhVuFW4VbhVuFW4VbhVuCjeFm8JN4aZwU7j5C9/lg8nf+BY2oLek97VdwAIcryFj5kK8+CdQgBXobj62/c3w8iEy98me/0FPnPtkT3Q3HzD+eriQgQKsQAUasAF7or8mLoRbh1uH29wn229+7pM9UYEGbMAeOHcrW1iABGSgACtw3JtP/HhJUGAD9sTxIx5YgARkoAAr0N2KowFbIhWgK7CjK4ijAg3YgH69fm/+sruwAAnIQAFWoAIN2IBwE7gJ3ARuAjeBm8/9+ASYlwQFultzbMCe6BNAPiXlJUGBBGSgACtQgQYcbj6/5SVBC30qaGEBDrdRDSJeKBQowApU4HAjv3nPDwt7oueHhQVIQHfzhvL8sLACFWjABuyJPnm0sAAJCDfPD2MTLvFCoUAFupu3pOcHn7Xx8qGFnh/YB7jnh4XDzSdwvHwoUIAVqEADNmAP9PKhwAIkIAMFWIEKNGADwq3ArcCtwK3ArcCtwK3ArcCtwK3AjeBGcCO4EdwIbgQ3ghvBjeBGcGO4MdwYbgw3zyVjiUa81ChQgQYced0nvb3UaKHvh7iwAAnIQAFWoAL9LkZy9PKh6lNzXj4U6NerjhWoQAM2YE/0/LDQdd1Y0b6KO/aYX9gTPeYXevs2RwIyUIDoTYOboTcNvWnozYbebOhNj/l5DR7zC9GbDb3pMT+vwWN+YQPCrcOtww0xr4h5RcwrYl47xk5HS3a0ZM+WtBnzzbEACZhuhpg3xLwh5g0xb4h5Q8wbYt5mzPs1FAIyUIAV6G7d0YA+PX459kSP+YUF6NPwLuYxv1CAFahAAzZgT/SY9xk8LxsKzAHu269Vn8Hz7dcCFWjAHBq+/dpCQWcJOkvQWcJAAaKzBJ0l6CxBZwk6q6KzagESEEPDw99nBr1aKbABvaG8HTz8fZLQC5YCCchAAVagAg3YEi0fDH1LtUAGDl2fkvQt1QKHrk9JejFTYAOOu6je3Z4UFhbgcPM5S69mChRgBSrQgA3YEz0pLCxAuPkhoH4TfgjoJEsar8N+B34I6KB5COgkVzRHAjLQr785VqACbR42Ky2O/JUWR/5KiyN/pcWRv9LiyF9pceSvtDjyV1oc+SstjvyVVtKjpEdJD0oPSg9KD0oPSg9KD0oPSg9KD0oPTg9OD/9N9xljr5gKFKCvchZHBfo65+XYgD3RQ92nib1kKtAXVN14rgxP9CVVdaxABdo8iVdanAAsLU4AlhYnAEuLE4ClxQnA0uZKsA+Duew7/6lfqd/gXPidWIAEHFfqs6heARVYgQo04HDzOWLf9myh//IvLEACMtDdvIk8yBcq0IAN2BM9yBcWIAEZCDcPcvOm9yBfaEB385b0IDdvKA/yhcPNZzG94ipwuPmModdcBVagAg3YgD3Qa64CC5CADBRgBSrQgA0ItwK3ArcCtwK3ArcCtwK3ArcCtwI3ghvBjeBGcCO4EdwIbgQ3ghvBjeHmv/w+oepVWoEMFKA/f8+/pkADNmBPnE/7EwuQgAz0u2BHv94RF158FejXWx0JyEABVqACLdEzgc9iewHWahLFHXvML1SgAb19zbEneswvLED0psHN0JuG3jT0pqE3Db1p6E2P+Xk5Db3Z0JsNvdlwbx7zPhfvVVuB7tYdG7Aneswv9BoLF/OYX8hAAVagAg3YgF5r8RgE1Qu3Aml1VvVqrTqm9qtXawVWoAJtdUC9rgbsieUCFiABGRidVa8M9HploNcrA71eGej1ykCvVwZ6vTLQ65WBXr2cq46f6urlXIEG9IbydpiFL35ls/JlYgESkIECrEAFWqL/rI8f1ur1XoEEZKDrdscKVKAB46e5rrIvx1n3NbEACchAAVagAvtcKqpe6rWoJI3lIx8hI/QXSdKoc7jmf6hAAz6uv/m4HHE/aYT9olFOcU0kIANlLl5VLwdbpEmW1JJ6kK/bTSpJlMRJ6dHSo6VHS4+WHi09enr09Ojp0dOjp0dPj54ePT1GdOvlTTuie6JvTxZY1hpe9e3JAr3F1FGAFeidY44GbMCe6LUyCwuQgAx0t+ZYgQo04HAbCwDVtydb6LU1CwuQgMNt/OpVL3sLrMDRjt3JklpSDxqhv6gkURInSVJNSg9OD04PTg9JD0kPSQ9JD0kPSQ9JDy+NK96zXhu3sCd6ddzCAiQgAwXojVYdFWhAd2PHnuh1cgvdzbveK+UWMlAT/bsivx//rGiSl9d5t3mULxRgBSrQgF7I51drPbFdwAJ0Nw+AxkABuptfbVOgAd3Nh2/rif0CFqC7+W2OwFf26+1eKOjNP8I8sAF7oJfD6ZiirV4Op2Netno5nI6ZpurlcDrmfqqXwwVWoALdrTs2YE/0OF843EZRXPX6OBW/HA/uMQdWfR8yFb8cD25xCw/uhQ3YEz24FxYgAd3Nr8GDe2EOIt98LLABeyJfwAIcFtVvaAR2oADHDVW/zRHbgQZswJ444juwAAnIQAHCTeDmYV69uz3MF/ZED/OFBUhABgqwAhUItwq3CjeFm4d59Z734tfqPe8/9gsVaEDXVceeaBewAGmVw9RZe7dQgBWoQAM2YE/0mK8TGSjAClSgJXp0Vx+eHsfVx+T4BdcxhVO9yi5QgV6A6oPLo3uhl6CO7vYqu8ACHNc7JoGqV9kFCrACFWjABnS30YU8K14nFiABGSjAuirjqtfWzXbw2rqFdAFdtzoSkIECrEC/C3U0YAP2RI9uf0z1OrxAAg63Ud9XvRQvsAKH27whj+6FDehuo+e9IE/Nu8Wj27xRPbrNW8eje6EAXdfvzeN4YU/0OF7oun5vM2K7YwUq0IA9UaO4tM6iuoUCjJLTOovqFhqwAXvi/BxqYgESkIHeqN5m/tO8sAF7ov80m3eW/zQvJCAD/S6832bh7EQFGrABe+IsnJ1YgAT0UmdvqFmpPtHvwtvXg3dhD/TSukCvAb8cCchAAVagAr2wujo2YE/0D0AWFiABGSjAClTguAt/aZZZyD6xAAnod0GOAqxABfpdTGzAnuhFtAsLkIAMFODoC38/9BK8wJ7oYbqwAAnoj0lOklSTNMmSWtL6dKN67d2ikkRJnCRJfuWO/mPavP39x3QhAf2rjeYowApUoAEbsCd67C4sQALCzeBmcDO4GdwMbga3BjePXZ9s8qK5wApUoLeOOTZgT/Qf3oUFSEAGCtDd/HL853ihARvQ3UYYe9FcYAESkKOz6ozoiRWoQAM2YE8sF7AAh+5YyateHheoQP8upTj6hynk2BM9ohcW4LgLnw70fbQCBViB7qaO7tYcG7An+s/xwgIkIAMFWIEKhJtXx19+m14eP9Hr4xcWIAEZKMAKVOAok/c5FC+lM58X8VK6hV4pv7AACchAAVagAg0It+puPrj8Y5aFBUhABgqwAhVowOHmb/teSrfQLmABEpCBAqzA4eaTBF5KF9iAPbFdwAIkIAN9AsmpJmmSJbWkHtRd0Vu2+5WaowI9k83/oAF7oBfGBRYgARkowAr0FmiO3gKjF7wELrAACchAAVbguItRX1m9BC6wAXviyAHmsyNeAhdIQAYKsAIV6G7k6G7s2BP5AhYgARko0RdeAheoQAM2YE/0HLCwAAk4+sJD3IvdAg3od1Ede6JHu8/x+L5agQT0u/CO9WhfWIHjLtg7wKN9YQP2RI/2hf7hk7eOR/tCBgqwAhVowJboce1zR14Y5zsKVC+BM59G8hK4wJ7osTqHssfqQr8ybweP1YUC9CvzdmgKNGAD9sR+AQvQ3XzYdwYKsAIVaMAWd+zFbjYKwqoXuwUyUIBD16e9bH7BNtGADdjXLhV1boW1sAAJyEABVqACR+v4g6+XtQUWIAH9LthRgBWoQFu7kdS5FdbCnji3IJlYgARkoAC9dcSxAXuiR6y/eXgtWyAB/S5czH+1F/pdeJP4r/ZCA7pbc+yJHscLC5CADBSgu3VHBRqwAXuix/HCsvZOqnP/LZ+OWBtweTvMHbgmGrABe6JPlS8sQFobF1WvcAsUYAUON/Urm9t1TWzAnjj365pYgARkoACHrs/8eC2bVY8hj+6JHt0LC5CADBTg6AuflfUSt0ADNuC4C58HmXt5LSxAAjJQgBWoQEv0326foPWqtkAC+l2wowAr0O9CHA3od1Ede6LH/EJ3U0cCMlCAFahAA7qbOfZE/+1eWIAEZKD3vN8QZ897UdvsNy9qWygXsAAJyEABZs97UVugARsQPV/R8xU9X9HzFT1f0fMVPV/R8xU9r16h41nMi9SSO9gusC8D+/OnV3gFFiABGSjAsfjnzzFe4RVowAbsgV7hFViABGSgACvQ3ZqjARvQ3UazeIVXYAEON39k9Aqv5o+MXuHV/NnPK7yaP2x5hVegARuwJ9IFHG6+iuYVXoEMFGAFKtCADdgTfU14IdwYbgw3XwP2hy2v5QpsieL/VBwb0N38huoFLEACMlCAfm/q6NfgXVgN2IA90as5FhYgARkowAqEm8JN4aZwM7gZ3Lx+w5/yvD6r+eOa12etRjX0RUNfeMGGPy97fVYgAwVYgQocbjKxAYebP895fVZgAXpliw9lj0J/lvKaq0AfqY+7UK+58m5R3ywrkIAMdF1xrEAF2upu9fKrwJ5Y4FbgVuBW4OZRONGjRSYKsCb6AB9PWOr1ToEV6BfZHA3YgN6o3iRe/rBwXORI8+pVUIEMHG4jt6tXQQUq0IAN2BM9nBa6GzkSkIECrEAFRnfrLINivzcPnNlDsxBqIgPRsYqOVXSsB85CdKyiY+0CFiCtaFEvhwoUYAUq0IAN2BNnkE309vUr8xBZ2BM9RBYWIAEZKMAKVCDcOtx6unmRU2ABEpCBAqxAd2NHAzZgT/RwWliABGSgACsQbgVuBW4FbgQ3ghvBjeBGcCO4EdwIbgQ3ghvDjeHGcGO4MdwYbgw3hhvDjeEmcBO4CdwEbgI3gZvATeAmcBO4VbhVuFW4VbhVuFW4VbhVuFW4Vbgp3BRuCjeFm8JN4aZwU7gp3BRuBjeDm8HN4GZwM7gZ3AxuBjeDW4Nbg1uDW4Nbg1uDW4Nbg1uDW4Nbh1uHW4dbh1uHW4dbh1uHW4dbTze6LmABEpCBAqxABRqwAeGGXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCM5dUR3dTxwpUoAEbsAfyzCUTC5CADBSgu3VHBRrQ3cyxJ85cMnG4jSoy9bKtQAYOt1F5oF621UZtjvo+aYEGbMCe6LlkYQESkIEChBvBjeBGcCO4MdwYbgw3hhvDjeHGcGO4MdwYbgI3gZvATeAmcBO4CdwEbgI3gVuFW4VbhVuFW4VbhVuFW4VbhVuFm8JN4aZwU7gp3BRuCjeFm8JN4WZwM7gZ3AxuBjeDm8HN4GZwM7g1uDW4Nbg1uDW4Nbg1uDW4Nbg1uHW4dbh1uHW4dbh1uHW4dbh1uPV08yqywAIkIAMFWIEKNGADwq3ArcCtwK3ArcANuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuaQil1TkkopcUpFLKnJJRS6pyCUVuaQil1TkkopcUpFLKnJJRS6pyCUVuaTOXGKOBmzAnjhzycQCJCADBViBcCO4EdwIbgy3mUvYkYAMFGAFKtCADdgTZy6ZCDeBm8BN4CZwE7gJ3ARuArcKtwq3CrcKtwq3CrcKtwq3CrcKN4Wbwk3hpnBTuCncFG4KN4Wbws3gZnAzuBncDG4GN4Obwc3gZnBrcGtwa3BrcGtwa3BrcGtwa3BrcOtw63DrcOtw63DrcOtw63DrcOvpptcFLEACMlCAFahAAzYg3ArcCtwK3ArcCtwK3ArcCtwK3ArcCG4EN4IbwY3gRnAjuBHcCG4EN4YbcokilyhyiSKXKHKJIpcocokilyhyiSKXKHKJIpcocokilyhyiSKXKHKJIpcocokilyhyic5c0h0ZKMAKVKABG7AnzlwysQDhpnBTuHkuGZ/+qNfMBRpwuI2PfNQ3nlvouWRhARKQgQJ0N3FUoAEbsCfOT9MnFqC7NUcGCrACFWjABuyJ8yP1iQUItw63DrcOtw63DrcOt55uvvFcYAESkIECrEAFGrAB4VbgVuBW4FbgVuBW4FbgVuBW4FbgRnAjuBHcCG4EN4IbwY3gRnAjuDHcGG4MN4Ybw43hxnBjuDHcGG4CN4GbwE3gJnATuAncBG4CN4FbhVuFW4VbhVuFW4VbhVuFW4VbhZvCTeGmcFO4KdwUbgo3hZvCTeFmcDO4GdwMbgY3g5vBzeBmcDO4Nbg1uCGXGHKJIZcYcokhlxhyiSGXGHKJIZcYcokhlxhyiSGXGHKJIZcYcokhlxhySUMuacglDbmkIZc05JKGXNKQSxpySUMuacglDbmkIZc05JKGXNKQSxpySUMuacglDbmkIZc05JKGXNKQSxpySUMuacglDbmkIZc05JKGXNKQSxpySUMuacglDbmkIZc05JKGXOL1gG18D6heD7jQc8nC4Ta+iVOvBwxk4HAbXztpm3thTFSgARuwJ3ouWViABGQg3CrcKtw8l4wvo9S3xQvsiZ5LFhYgARkowApUINwUbgo3g5vBzeBmcDO4GdwMbgY3g5vBrcGtwa3BrcGtwa3BrcGtwa3BzXPJ2KFJZ9HkwgIkIAMFWIEKNGADptssmpyIlZVZsDg+J9JZsLhQgQZswJ443y8mFiABGQg3ghvBjeBGcCO4MdwYbgw3hhvDjeHGcGO4MdwYbgI3gZvATeAmcBO4CdwEbgI3gVuFW4VbhVuFW4VbhVuFW4VbhVuFm8JN4aZwU7gp3BRuCjeFm8JN4WZwM7gZ3AxuBjeDm8HN4GZwM7g1uDW4Nbg1uDW4Nbg1uDW4Nbg1uHW4dbh1uHW4dbh1uHW4dbh1uPVws1l2ubAACchAAVagAg3YgHDzZ4LxdazNssuFBGSgACtQgQb0HNUde6LnkoXuZo4EZKCtJGbXTBUTe+JMFRMLkIA8thGeKMAK1IHkaMAG7AN54EgVgQVIQAYKsAIVaMAGhFuFm+9tO04xMS/97GOzMfPSz0ABVqACDdiAPVEvYAHCTd3N+00FWIEKNGAD9kS7gAVIQLiNVNGL98VIFYEKNGAD9sSRKgILkIDDrfigbQKsid3/Wx+TnYECjEUAu3KBw65c4LArFzjsygUOK7nAYSUXOKzkAoeVXOCwkgscVnKBw0oucFjJBQ4rucBh5YJbgVuBW4FbgVuBW4FbgVuBW4FbgRvBjeBGcCO45QKHlVzgsJILHFZygcNKLnBYyQUO89LPPr7rMC/y7OMLDptFnjrRgA3YE+UCFqC/PlyODBRgBSrQgGNM0sSe6NE9viIxL/IMJCADBViBCrREj+Nxrq554WYnb1+P2IWu4A3lEbvQgA3YEz1iFxYgAd3N28wjdmEFDjf2m/eIXdiAPdEjdmEBEnC4jQ8pzAs3A4cb+803BRqwAXtiv4AFSEDX9ebz3ejHdwfmxZgTvRizj5Jz82LMQAIyUIAVqEADDrfxXYd5MeZC35N+4XAb33WYF2MGMlCAFahAAzagu43k6MWYgR4XzZGADBRgBSrQ42KKNWBP5AtYgARkoAArUIFwY7j5L/r4DMK8GDOwAAnIQAFWoAJjStxmMebCnugxLxMLkIAMFGAFKtCA3m/m2BM9EywsQAIyUIAVqEC/Nx8ac0JwYk+cE4ITC5CAMfliXlXZxdEDfWEBEpCBAvSL9BDxQF9owAbsiR7oC33OxseDP8UvZKAAK1CBw616FHpSWNgDZ1XlmACyWVW5kIDj3sbHPeZVlYEVqEADNmBPnAdVTBwtWd1iHlUxkYECrEAFGrABe+I8skIdh4K/SXilZKABh4I/jnul5EI/kGJhARKQgQKsQAUaEG4e6OrX64G+sAAJyEABVqACDehu3g7+4z7RA31hAQ43fybwSslAAQ43jxavlAw0YAP2RA/0hQVIQAYKEG4e6J6jvFIysAF7oj8ILCxAAjJQgK47conXOfbmxh7dCwU4rsyDzOscAw3YgD3Ro3thARKQgQKEmx8/M7atMq9zDGzAHuh1joEFSEAGCtDdzFGBBmzA4TZ2xjKvcwwswOE2tsMyr3MMFGAFKtCADdgTPboXFiDc/Eya7jfkh9IsrEAFGrABe+I823ZiAbqut4PH/EIFGrABe6LH/Nh8y7yiMdDvojsyUMY5odflXDdWZ2/teZLt4ubsjTHPsp08D7P1t/Z1mu1ichZn3nj6+h3PE20XT191to2nr9/fPNV28jzW1t/U17m2i6ev3+M82Xax+xa/x3m27WL3LX6PvldAsPv627KXOgb7XgFX8Xu0srH7Fr9H441jbcJmveNCBRqwAXviPOS2eCu1sjFtPB29BZpsXDfWjW3jtnEH92vjsjFtvPn2zXeebuuvpOsgW38JXCfZjh0GbB1lu5g3lo3rxrh+L21Mbhvj+r26MblsTBvzxrJx3XjzLZsvXbhHYtwjbddP2/WTbmwbt4236+ft+nm7ft6un7fr5+36ebt+3q6ft+vnrd1485XNd557Pe9xZoZ5j7Jdv2zXPzPD5JkZFm/9Xrfrr9v11+3663b9dbv+ul1/3a6/btev2/Xr1m66+ermuzKA3+OM9HmPtl2/bddv27i1bdza1u+29bvNdiNn2zjWz6zmap3VXK2zmqt1VmdM0+SpIc6z7f3aZ+xOnrG72K/dZxHqjN3FvLFsXDfWjW3jtnFP1hnri8vGtDFvPO+rOdeNdWPbuG3cwTPWF5eNaWPeePMtm2+Z9zX6zQsLH0zOtDFvLBvXjXVj27ht3MEz1hdP3+pMG/PGsnHdWDe2jdvGHTxjffHmu46+V2feWDauG+vGtnHbuINnblhcNt58Z27waSGduWFx3Vg3to3bxh08c8PisrH7+qyGztyw2H190kHnU4N4+2isUdusQlzYgD3RLmABEpCBAqxAuBnczO/RZyu8DDF4Pi8sLhvTxryxbFw31o1t4+nr8TJzzuSZcxaXjWljTrZ1wD05l41pY95YNq4b+3WOj0TNZq6YPGPc395txvhi3Xj+9349M/YXd/D8nVfXnDlhMW3s1+lvyDZzwuK6sW5sG7eNO3jmhMVlY9p48+XNlzffmRPU22rmhMVt4w6eOWFx2Zg25o1l47rx5iub78wJvgxiMydMnjlhcdmYNuaNZeO6sW5sG2++dfPVzVc3X918dfPVzVc3X918dfPVzVc3X9t8bfO1zdc2X9t8bfO1zdc235kffCbGZn6YPPPD4rIxbcwby8Z1Y93YNp6+3dl9fRbaZn5YXDamjXlj2bhurBvbxm1j+LaZZ8ZJDdZmnllMG/PGsnHdWDe2jRs4P3Kwlh85WMuPHKzlRw7WZu7xGaI2c8/iDp65Z3HZmDbmjWXjurFuvPnS5kubL2++vPny5subL2++vPny5sub78w948gM8xLDuersJYaBBThNmzNvLBvXjXVj27ht3MEz8SwuG2++M/H4bF2biWdx3Vg3to3bxh08E8/isrH7+uxZm4lnsWw8fb19ZuJZbBu3jTt4Jp7FZWPamDeWjTffmXjGvvrWZuJZ3Dbu4Jl4FpeNaWPeWDZ2X58QaTPBLO7gmWB8vq7NBLPY9f1Fqs0Es1g2nvrirBvbxm3jntxngllcNqaNeWPZuG6sG9vGbePNt2y+ZfMtm2/ZfMvmWzbfsvmWzbdsvjMp+YNnn0lpcdmYNuaNZWPPf+Q4JcdQ6jPfLC4bT0lz5o1l47qxbmwbt407eD7rLC4bb74ztfhcap+pxWdQ+0wti9vGHTxTy+KyMW0830u9mWdqWVw31o1t47ZxB8/UshhzOF7zWIrP9HrRY7JubBs35+LcwXPH1MVlY9qYN5aN5325vunGtnHbGHMyvV0bl41pY94Yczte8hj31drGHdyvjbf76tt99e2++nZfvW6sG9vG2331vK92YY60XVfZmDbmjWXjurFu3OPem1c8zvtqXvKYTBvzxnlfzcsek3Vj27ht3MF0bbzdF233Rdt90XZftN0XbfdFtnHbeGvPNUfq987bfbFsXDfWjbf74u2+eLsv2e5Lysa0MW+83Zds9yXbfcl2X7Ldl2z3VbdxUrf2rFt75udU7crPqdqVn1M1r4d8XBg7d7BeG5eNaWPeWDauG+vGtvHmq5uvbb62+drma5uvbb62+drma5uvTV9x7uB2bVw2nr7VmTeWjevG01edbeO2cQevJDO5bEwb88ZT35xt47ZxT/Yaywc357Ixbcwbz/vqznVj3dg2bht38Eoyk8vGrj+W21qZyWSxbmwbe03r/Ks90ZdoFxYgARkowArURH/eKGOFrvl2msm0MW8sG9eN5y1UZ9u4bdzBM28sLhvTxryxbFw33nxl+qpz27iD6/T17q5lY/cd6xTN6y+T3XesUzSvwEx237EO0bwGM7lt3MEzpSwuG9PGvLFsXDfefHXz1c1XN1/bfG3ztc3XNl/bfG3ztc3XNl/bfG3zbZtv23zb5ts237b5ts23bb5t822bb9t8++bbN9+++fbNt2++ffPtm2/ffPvm2+FL17Vx2Xj6ijNvLBvXjaevOtvGbeMOnqlmcdmYNuaNZeO68eZbNt+y+ZbNlzZf2nxp86XNlzZfmvojRdPMP2PNqdHMP4unTnfmjWXjurFubBs38MwtY72tkaCvaeaQ2f4zhyxuG3fwzCFjbazRzCGLaWPeGGOM6ua75RDacghtOYS2HEJbDqGVQ/x6dBtjuo0x3cbYzCHzemYOWWwbb75bDqEth9CWQ2jLIbTlENpyCNk2tm1rZ9va2bZ2njlkXk/b2rlt7bzlENpyCG05hLYcQlsOoS2H0JZDqG39u3LI5K2d+9bOfevfmUMWb+285RDacghtOYS2HMJbDuEth/BFG/PG6F/ecghfurFt3Dae7Tx+y3jmkMWznV1/5pDFvLFsPO9XnXVj27ht3MEzhywuG9PG09ecZWPNWOaZT8aW9s0rTpM7eOaZxRhLzLQxbywb1411Y9sYfcq89alsfSpbn8rWp7L1qcjGdWPdeN7XyGm8ctHksrHri7fPzEXi1zlz0eK6sW5sG7eNO3jmosUlWeb4HOuFTeb4XFw3dq9RIdxkjs/FbeMOnuNzcdmYNuaNZeO68eZbNt+y+c7xpn4vc4yNObomc1ytfz6vbfSFzHE11hebzHG1mDbmjWXjurFuPK+tOreNO3iOq7HO1GSOq/ExVJM5rtTbeY6rsf7UZpXjupc5rhZv9zjHkrj+HEuLaWPeWDauG+vGtnHbuIPXWPJ7WWPJ72X+ri3mjWXj6ev3O3/XFtvGbeMOXqcdTS4b08ZT09tw/jZVHyfz96j6eJi/R9XbcP4eLZaN68YNPH9fqo+l+fuyeOr4eJi/I2PH5zbrBssov2+zbjCYN56+5lw31o0t9WfdYPzzDp5xt7hsTNkOs24wWDauG+N+68z/fo+zbjAY7TDr94q514wRn66Z9XvBtnHbuINnjIxjzdus3yvNr2fGwuK6sW5sG7v+WJJqs65v8YyXxWVj2pg3lo2nr7fJjJfFtnHbuINnvCwuG9PG08vbc8bIYt3YNm4bd/CMkcVlY9qYN958bfOdcdR8vM1nv8Vt4w6ez36Ly8aEfmlbn7atT9vWpzO+msfOfE5rHiPzOW2xbmwbz2vzsTSf05xnbV9w2Zg25o1l47rx9DVn27ht3MEzHheXjWljyfud9XxlLBu2Wc8X3PMedcbg4rIxbez3MpYW26zzC64b+72MbxParPMLbpvO5subL2++vPnO383FsnHdWDe2jTdf2bxm7Jtf84z9xbqxbTxzi9/LjP3JM/YXl439+ke9RZt1e8Gycd1YN7aN28YdPGN/cdl489XNVzdf3Xx189XNd8b7OPmz6Yzr8RFP0xnL5uNqxvJi27ht3MEzlheXjec1e7/MWF4sG9eNFdcz3+MWt407eL7HLS4b08bbPc784DzP0fXH1XmO7jjVoM1zdP0hcJ6ju7ABe6KftLmwAAnIQAFWINz8pE1/SvPqvMCe6CdtLixAAjJQgBWoQLgR3AhuftKmPzB7QV4gARkowApUoAEbsCcK3ARuftKmP4TPE3P92XmemLuwAAnIQAFWoAIN2BL9mFx/CvcquUACMlCAFahAAzZgT/STr/053+vezB/zvewtUIEu5oPWz8Ne2BP9POyFBUhABgqwAhUICz8Ft3tf+Cm4CwU4FLo3n5+Cu9CAQ6z7HY+f2olesRbouuroCuZoQFdojq4wInaed7tw1Bz7yubc9W4hA0ehmi9TzkK1hQo0YAP2RN/4YmEBEpCBcCO4EdwIbgQ3/zR+fHHW5v52CxkowApUoAFdlx17om+HsdDdxJGADHQ37yHfDsMX6ub+dgvdzXvIP41f2BN9Xyxff5v72y10N+833xfLF8Tm/nYLh1vxJvHF3YWW6LHpD0VeRxbIQAFWoAIN2IA9cfxYBsLN4GZwM7gZ3AxuBjeDm8Gtwc3D1B8ifUs68+c635IusAE9GLzN/AjrhQVIQAYKsAI9yLx9Z5gO7DNMJxag65IjAwVYgQo0YAP2xBnSE7NRvY4rUPMa/HdzIcQKxAhi/ru5EJdOuHTCpRMunXDphEsnuBHcGG4MN4Ybw43hxnBjuDHcPGLLxOzCuVHd+CizebnWHA9erRXYgD3Rf0IXFiABYVEFWIEKNGAD5pj0Aq3AfObykqz5zNU1n4K6GrAB85nLq7ECC5CADBRgBcLN8imoWwPmU1BvF7AACchAAVagAuHW4Nbg1vMpyAuyAgnIQAFWoAIN2IDxzNW9DiuwAOOZq19XPHP1q1zAAiQgAwVYgQo0YEukeObqFxUgARkowApUoAEbsCdyPHP1i+OZq19cgQqMZ65+cQP2RLmABUhABgqwAhUIi4qb94A0vxwPyIUVqMBxvTYVGrAnekAuLEACMlCAFahAuCncFG4GN4Obwc0jdszhdS93WjhDb6L/NR+eHnoLGSjACvSLLI5+OTTQg2xhARKQga7rweBBtlCBBmzAHuj1SYHuJo4EZKAAK1CBBmyJHpvjdbt7JVIgARkowApUoAEbsCcS3AhuHqbjFb57aVKgACtQgQZs0eq+8dtCvoDZWV6BY2Pyr5f5CFgcCchAAfrzg/fFfAScaMAG7InzEXBiARLQ3fzK5iPgxApUoAEbsCf6WJ/35mO9eR/7qF6oeUPzaXBiA/ZEH+vNe8jH+kIC+qV7B/hYX1ihALcOtw63nm5eIBNYgARkoAArcFr8z//8w29//uu//OHvf/rrX/7p73/74x9/+8f/zn/wn7/94//579/+4w9/++Nf/v7bP/7lv/7853/47f/7w5//y/+j//yPP/zF//z7H/72+LePZvzjX/718edD8N/+9Oc/Dvqff8Dfvp7/1THbZ+uvj9UGSDyC84NIeS7SxrObSzye9SBg/EGADlfhO3TMi3gk3acSpxt5pNqWGo/n56c3Is9FZCzjuYRsV2EfW7M+//s8fuP973MnXEDV23ch/hXrvAuhwk/vwp6LkPS4DXosj20SdlficSPRIfyY3YRE+dgW/SDBNduiQkD1roCWGNePefIU4OujQCmn1tSQeCxwtucadGqJUeq1WsL4qcapMf2M2ynxeNt82pjlMDKJasQYMW/D4hFwHzTquz1yvJEOhas9v5GDRlWOPnkgNGr/KNFO3TqmwVa3VnoqcRhb/mvsCm3PWFVuKzSJ23jMzzxXuHsb9vw2To1pV4TpA/sziVFs8zxZjF/3lSykPJWQd5uCDiOTrvwFoccPQGoIfZTQw0VoZP/Hm+3zi7DTL4hq3X6FcBlM/f6teFnXupVant7KYWhRy9x7PRU4x1jXHBbbb8inPuXyfto7aQhR3IiQPv8RYT6mcMog2VqDSvmocRiftUWPPBatN4XrG0MDmW989lieDg0+DNHHLFWM0cfU1PaT9rlfTr/tdmWkPBbFUuM7vWIR8I/HHXveK4cR+nhQz6eUx0vEpvHpUev0qFOpIf9J3X9OPj6nSHl/fAi9Oz7O96KX5mU8lrmf38vpN95Xrlfq2J4TxmPgB4369vjQn0iDZ5W7ESPt/YiR/m6LnHu3C54j+/7s9Kl36ymjeh3GzKiPN+Gtdz9p0OmXQWKYUduzsn1sj3rIqNW3G5g/DmWLmF80TtfRlfMn6jpcx2GkjmMSI+we76BPNY498/iVylE2znV/3jOHnKqUI0SZ9LnGYaSKf2g4s2ohekmjelX06hmS1+6FOTTGWfBPNbScHh+k5yO6vqjhM5LrEcToNY2Gp9vHMu/znHocIXbltMA4sO/5ldTf9RfCSr4ElrHV+/PrOD2HPH54OWdrHqu2T7KZtt81H459P/Jeen3eM3b9rm06CqjjOh4L8c+fIOyUy9havln3/Uo+vjoYv9umx6uQnO0gkevpVRyfyiznCB7TnO3pU5kdfrepcs/XwQ9x+0njMEql5buDtA8aelujSl5Hlc7PNfr7z4bt7VF6btGWY0OpvNYrytA49Eo7jFHxLX7WL9SHJ1T5xnU0/O5TfX4dh1xauGdClg+j9ON1ND3NZOUvJfM+1ftZ43QdsiXkctA45VIugskTfalN+cJU69Vei1q+cirpcUX2VKOf3qQ65QB5cO/PstjpOvy7qNUvh7HeT7nU9xNbb0Effic/ToD0w5vU2OlyaYxNAl/SGFXkOa1Vy3MNfT8Ddfs9M9DjkdCyV8xeG2Gcb2Is1J9q+IYrb05Any5D8k2MdZ8G/+UyTqtN20sD896z/A0RP1RmDtNrXzb7ReQwxnrLZ4/etydc/vQr57uSPBWxuJu+Pd6OG7sdcjUftB+/NM+Hum9GcmiQ/I26tnz6eTr7OuRTzmlguZ5P4voeJE9fgGr2i+p1PZ128I1Jns9edCLMXhA/nXk4jpHHQ10+WtZ+GCOnBagqFDdU6zbH/8vKT+H3O+e0BHWzc04rUPc7R3+kc45z5FXxkvt03eP0mIuVLDGtz1fDTstIfOWvDD9WDp6H3lGErkzwxPRchMr7q2pEby+rnSRurqvdvpPDwtrtJhV+sV+KZD0AHR4hynHt4fYidnt/Oed8O1XzKfP0ROSbGTwfIvkKMfYhfp7OjiKNomHHvq8HEXp/wJ+Wp24O+JPEzQHP7y+fFn57/bSc1qa45Oz040Vgm61XerFXDsF7Hh45PT22hH1tjI2dk7Jv93fuzyLH5akq+bJr20T552fec9z1nNd5THEffiOE3x/tpwWqm6Nd3q4VuH8nr6b3nmvscl16aNIfqEOR9wtR5P1KFGm/d5NWPB9e7bVfTLlKTlJdcuiXelrvv1liVOv7fVv17b49Sdzs29t3cujbc4u++7Bcr1wgfyzkHkrHTgtCSqy5uMWHlKyHH5hetnXp63lGPreHoT3ai216r3arnNalSLJVH++a8lxD3x/pp3WpmyP9JHFzpN++k8NIP7YoZqcfLaqvadR8p3sspzwtvyqn9aDac3a6du0varDc0TiPsFvlgb4Pwpuj4yRxc3ScVpRuFub5jjvP6y9uVebZ+4/qpzWpm4/q7ZRJSy4oadm69ZdH9fsi+qKI5Pq8yrZ0+quIvNsv53tBNUppr94L5RDTR+S/KpLhotRf7RrOEg7dp/x/FTmtnz6WknKi7cH8fL7uKHO7oOwLGctf/3HOTHlZpmP2sG0Pqt+UuVvfVk6LTHcL3Ep/u+bvfB1GHYsIdLiO2yL9VRF8TGS9viYyThpG71ztIHPu5G4ot7m2B6zvjpVtwrptD67fldm+kmp8CMf7v+hP347oOq6vYg7v+W/Y+Qn6Vok6Xfr+y+JZhK+cxWdqB5FjTVWubJLJ4W7628/hVK53n7SOEjc/5jitWN39muO0YHXzc47jetXN6cj7vfL8neKL0aHIz01e0mDf/XHdTLdXNa63NRiPWry9Pn9PQ1El0p5rnNZ4br4ffaFx6/3ofC+CQSba3td4cYw9fgJyvUra8749fUJVtuc0o0PUHS/Eag6Qx8/E8wtpP9C57XfuXCu4l0Pgnj63macNrkeIUl9t1J4Lie0wyk7rTPeW7+n0IdXjKTTvpdvzV5PjdUjBN9Z8aI7jb3YuRArv6zvf+uHfP/Yu/KpIjhCR09MDt/dXeOlUDH13hfd8O52jg2u5nhcSkNBP3A7/zrdTS4rUIqfbqW8+654vQ3K41kcuOlzGqdqkZPhu5Xf06ZN+krcr/89Xka/ge/D+chX1Ot1IzrAKbaVIel/C337wJlSv10R6xetU3x52vyeCTyHKvpL4nUbNWRbph649LfL8gMSYGME7cytPb+Uscrdn6k/0TP2BnjlGrm4PER92bvhG+GvJu9HH7PKrIvl897imF3/yVPJZRD+UEn5LhHNORKs9rwIirT/wG3Fa7/mR3witWSr+WNk83c7pF7z2K2On9u0x7xtXYlzyl4blcCWnr6ruzkTY+5WAZG9XAh4lbs5EmLw/E3Fcerq5sYT+wEyEvV/V+MXouDcTcdK4OxPxhcb1tsbNF812d4W0vtamd2dEzhr3ZkRO3zPdfWk+a9x7aT7ei1w5PoSebyjT2u99HfdmZm5rvBhzd2dmOv3AzEyjHxgg9Dt3zM1ZleOHVXdnVc4Xcm9Wpb/9xQr1/gOzKr29PavyxUMMFlgfg0WePMTw8bOobYQMkfaKyM1XxK9u5t51HLeoyOpdu/Qwf6CnEnHK6QM8f/C3XmT6tgh51Zfehh5/sUOE9Glz9PdfqY4iP/L6f7dFrh9okeNnVXdbpPC7LXJeNEftbe+tvLjy3nNC9CHyvAaArusnVt6PMooNprTZ0wmAowReybSTvSaR3+9or0975lyIk1WeytfLdUX5Q/UQOVTzHD+K6FmtZfvNfO/Dm54P7tb7cxE+bZFXLL94f+DThwim96tWmd6uWj1K3HtH5eNuf/feUZnfrgjk44Z/N99R7/eKHXrlNDrwaUbp/fnmhccd/+49pn5xHbc+meXTR1X3ng759FGVmmKbrPa85ud4HfeeDvmLLTovDNP2UpNSwffQ5fmTP5++qLrZpMcFqpsP3MfruNekX3xhljtdtNIOe/oeP2O+9SXCeQfYWx8RsNj76fi0PHUzHZ8kbqbj23dirzXovW8IjhL3PiHg40Z/9973v9C4977/9keDxy+gb9chn/dwvVs//IXKzfLh406wN8tt72v0FzXuFdued/q8/cR/bNe7pbbHa7k9Ur7Yu/Rmoe1Z5Ufu6Pao/ULl5qg97sZ6c9Te1+gvatwbtccvXm+P2i9Gys3K7vtbsD9/tLJ3q1SO20JfuXD4eB7YVx8/bQt9+rqJqWMdozydQDxKoLbrw9ZunyXenmI6vgx1xefhH/YM/dQY7QdOn+D2A8dP8NsTTKf3Kc3t9nQvPvrcGieFfDLTrVKfvrMTfL0yndateumXneCPWwcQHu62jYN+0TgtTt3dKO+8heq9rTq/2ECdru1unm8YzKd9/27G7FHiXsz2t8fo6YWMDPsGmj2b7z+9F94b5UeFW6P8vGHIvVF+3hP/5ig/r0rdHOXHQ2vy20568HYhfF+jZps+VjgOGsdI8TPkVou06/nmy3Lxu5FylrgVKXJalLoZKfeb40Pt83f2sxfUgWyLhfSyRntfYy9K/c6++oY9oPejw37Zi74cD9bIGVSh7WZ+FTn93lNOxvAeMt8U4VxhJ9ZXRfDkQWw/ILJVYH/roIAr1xz06uXFztl2p+n9erWHcx1GuDxv17vHL1xdX2qR6r/GU2M/9OAXjbvHUbTnYSP0/pd+QseUeKF+ivRwIadJpprHDVjdvwhpnzSOx6M15OZ9GeXzdZw2yO7bTgT7BxSfNY7TXZdgEuPad5Zs32nW3LLnw6a/vzbrUaRvtW2HQXI8gaFg7kHp9ON7eiW79YL7xXWkxLiOw3lDp1eIntWPjzmdrYTaPj5bHc8KkTxy84HPr+N4Vgjn9EX9uKfzd875QCrSpq9pYJVszDcfHqxOPSO5b8aD5WUVnCelcjgL5lSYfu8d4Khw6x3gi1M+tqqSfpWnj96ncVpy3n2coPuSBM7F6UTtpddczm1UH2z9tZ61bU3GajmdrvX25NRZ4t7ju7w9OfWN5qDXGxVbU1Z+MegMr2cP1uu5Sn3/zaq+/2ZVf983q4/NYdfLXWObSnmqcqpuvZfJjgr3ZjOOJ/SUfBN58CEni74/tXOSeGRD/MaYPv0w7QsR284Msacfpn0lsp2eZO2lvNoIjyGPBarnwXv6wOaHzk+ifEakvTjtl/OT7moUek2jCk691vKSxuP6c6fd68NL0ScNe3/G/nj6Uam5gym1Pf6/ocG5O07l/ZuBTxpy+oDqZmI+StxLzKbvJuZzY+TbbpX9e4FfGqOdJiKyGEKvDycofRY5/P5XfD1ZrqdvdufLQDVo+bB38XfupeQeuY/3ovKqSE40j/3zXhbJj1LLiyd93T0trL39e9ne/r08nlh2c/b/fOrZvdl/aT8w+9+O23Nl9bRchwPH5P3VKXl/dUreX506fgKK3X7ZXjwFjrEL80Pj+eFH8sWRVLdWpaX/wG/c8TQozRMPdXuA+fU6+vs3U6/rJ27m9CxVMikX+rDVCH+6ktPjByYPtyRm3zmVSrGHQ9MXT6W6G/zno60szy3rbT8iuHxHBCdJ9rZvU/tNkfyupe2V7d85ZOvhgH0t9iqsT8dsna+kXzjui169na741sfkNZFHYBLKyq7twNHPMvW0vPNDMh/qwvn5GWZnESx6EW3vd98TYc03zf1D7F+7+fw2k6siUp6fL1fL+3XIX2jcO37wLHLzmeSLK7n3UFLpB06oPJ+Edu/jo0rvn6VS3y+LPkrcq3a/fyengz+OZ8vd+mCn/sBufefD5fAtpn74CJK+IWLYU9b2r36+JXL3m52zSMuVFW2nvbe/OCtv36Z6X2+u35EZJ/XmioRsZ8J/VybPyx2Sh22Zz82bH0eoCb3aR9j3p12HPclPW8ze/AioHI+7vfVd1Vnj3ndV9f3vqupPfFdVf+C7qnPX5izeo5fpxcgpF2/l+8KvDnkcifxgezkAC2o9y4fvM385kPT47Ih0f13bDmC/PK5Jf/ed/Cxx65281vK7Stz88v7cog0fzW8z6J8btJd3X4Rr/YH91Gr9gf3Ujidv1/y9eayPPN/r8njydslTYhuTvKZR81WrVXq+u2vV692Bfr6MfAJv9XB0X1V6O96OEveCReXdYOnHIyZvnqhu787SHhVuzdIep9BuvhGdp+FuvhCdFmjvT9TY+y9E9v5Rqr728eYLkb19lOr9Ozm8EJ1PQr/3QnRcsLr5QnQ8Cv3uC9FJ5PYL0fFK7r4QHUVuvxBdP/NCdP3MC9H1Iy9E5+a9+UJ0Frn5QnS9vQ3ZMXruvhAdNW6+EPXr7ReiXn7ghahf7zdp/4kXoutnXoiun3khun7ihej4LFDzaeLDlyPfeZrIFXCV56vG/O7Tvx433br59K9Xef/p/7Tky5R7TPF+AN7nJd+jhuWyMfcP1eL3NeTKXPYIn+dLz3q9f3DuFxr3ZuDPIjefN7+4knsPnHr9RFnA8bSLrYau2PP+PZ1koNjlej9Q8FsaNYOf1OT5GDnOfd+NvONBVXcj79gi+cxJdunhbo4vNve2MT/uIyCKjxvs+UHPWt4/T03L++epKb19ntpR4t47if7AV1ZKb5+npvQD56nd75VDUi3vn6d21Li5i/lXGtfbGvd2MdfTPmI3dzE/X8e9Xcy/0Li1i7ny+5tWfaFx6935fC/3djHX0+4wP3Mdt3Yxv6/xYszd3MVcz19o3dvF/IvBfnOAXL9zx9zbxVzlWIVzbxfzLy7k1i7mKm/vU6nHffNuvuser+Peu+5XzzC3djHX4+bQN3cP1/cPuvryZu5dB996mOKL6PnD8vXui/K5OPrOi/L5A488K/uB++T/Nz4SUXxoop1f02j5nSntL6jf+9CEDH3y/F7kdCLM3a9VjiL3dto+S9zaafsLiTs7bR97xTJSHq8M12s9+0FDXtQgaPDzTlF9+1PVs8StFT/V/rtK3CycP7an/q/f/n2vT7aX4/5i5tiv41WNls8uD3xVA9tSHzXezub2djb/4uvy/LHvRC9+oJ4lvw/sT38c322J8+f+d1riuIWClfx4yT58OvCNbRhazu7VxuVFDewq0/qL20E8hmRqvLotRcvXlYfcq9tSFLwl0Mvt0aHxvF+OW33UfOWRavwDGq9tF/KYpsxZOa3yokbLtwQ7jLGjhuXnj9LqoV+ONUaaPypm+zZMn2qu/FuY562ao/3ROPJ0+eirK7G8EjpdyXELd3y8qNv0DX/jOixnGc22sPv1Ok4r/Tgd1Co9/07Gjh9TYZutrWfG7iG3h0jDy2g/7KBgp08w7g4RO23Wd3eIfHUlt4aInRZv7g2R83XcHCJ2Wle/P0Ta7zlEKo5uqvvJTb8MkdMKcqWGb+z3n7v2SaMcCy+wsL5v4/qde9H8tdtf4n69F/6Be5Hf915w0vEDX/u1q5wVMZ+2LfiGBuE6qP6AhpYXNRq2YLiuFzUsn2SovdqmWStR+RAvZw2Ghjx/gjjvB5sfUdJeHvB5L1ejt7ekOEvcerG100Z/PyBxc7uhU3sytjxhuw7t+faGFKerELxd75vI/HIVp2XjuxmM6e0Mdt5tmLAVP9Wn93LWqDi7RZ+3h1zn3WxubntMb8/tHSXuze2dJe7M7R231b71ln7emPvOW/pxA/tb13DeAv/WnMnp4IubxzyeNe6d8sh2PPfy9ukZJ5l74/MscWt8fiFxZ3yeD6+5fQzIWeUHjp25O0bOGjfHiP7MGNH3x4i+P0b07TFyeNt45O38qS57Pv/02nOWyJWFsmeQ70hg+Yu2z/8+S5geX5w6HmpflMh3Yt2Wvb9zI/tmD9uc6XckNJ84Pi4FfkPC8tuIx1rPa51KWUD4mAR/TYKzPPTRKuW1q8CSJl8vNacIjsz5sJVgv6tQsCXZY2m6vXIRpaDcdt+Q7DsSjL03ub92FXU7l0XsNQlFmVzrr90Izrdmeu1GOLPeI329diOKAlm1164Cc8bF+kuDs3S0xT6V/w0Jy2U3E31FYPtNra+1w7U9ZOjzwW2n86TeD9OeKwmdXmsI7F9k9c2WfE3g8UKV8zJ1n5O9L1AhsAXGfQFFFdv+NvANgTszwsdbaDnPVvdTNe4LZPXJQ+sFgY69vbaHsrHz2V2B7IT9kew7AllQ1Lcc+w2BchWE5H7C4zckKFdMC2l/W2LLsd+RwCEcZX+GeFViP7nmOxIVvzf7hxDf6ZGKDcn2Myq/IyHYJEP5bQl78SrwnWq57EUJPFBdr42Lsh1Fsq3Fvyqx/Wx9SyIDtdB1vSjBkHhtgKNgpRC9dCMV2xc88KW0j9qIfQuF2wI3D/tup5Wim1/WtOM+W7e+rDlK3Puy5v6dPK+MP7583Trr+zpOOd856rvR+1+AfKFxq7D+/nU81ziOz/0s3PL8Kt7eWq+9v7VeOx4Fde+rrXaaErz31Vaj40HHbd/woD7fBqKdVom64FmpXs/n8hof50sufLi1vYbpN1q15DEOj3RcnrYqH0socUbXc4Vjo94+Z/yrvrk54/uFzN2Txr+Q2b7PufbPar8pc/fE8q9kbh5Zfh63N88s/4ZIf1Xk3qnlR5H7k+pfDbybCxa3U/XTD4+avHts+blZb653fCFyb8GjyY8seBxl7i14nCVuLXh8IfHmgkcxfA9mtm/j8HG/gXb+dOnOD8Z54i9nc7vo06s4Ssj2YRu/JGENp31/OATpc1ucN3O+tdVAO1Xx3N1q4LiGlEVNHw51/uVm9DgtbJiRVSvPz5c4i3CDiNanIufvKbav4/hwO6f6u6YoFd8qRbve11DJHQtV+EUNHHKluk2V/6Jx+mo59+3XDx+3Xd+6jAuXwc8v4/QTVbHhfpXnU2tfiCDwauODyOluDI1q9rxjjp/qcZ5BwLz90o2ZnfsikrtaPSbKTiKnbfZuVkYfm8SQiz4cQPhLkxyP282PF/cTPz/99J/OQ6mWx5c9JqC3tQz5fBmn7+QuQ/zvhWfynfZAKd/jiaY8b4/Tox2q1x6/F/uFfHp4OH1li52C6vYN5K8SPzFU208M1fa7D1VsjPMIXnvaNe30rYjmQBMrfLib446f2OpPtt+q/mnEt9O+dh3f+l9btSb1Tz9Wx62CcM71YzZwS4rcPon8wN6SX1yJYDJynyb/fCX9eDD0vQ8s/LOS9xazjn3DlNvj8V7B+kvfnD7kqThmpl77plS3H8/E8jHiMS/RX3lcFTwkyh4yvzwS9Z94XO0/8Lj61WMiHiX0+amd/fqBZ82jyL2K7+Pj6v0WORYXXzgq88PXgJ82MD7tfE5Y+6SLn39Q1M9HTeVCGV3tJKLvZ4B++rTpXk3AWeLWmvz5Vm5+pdXLsVTl3lda/fRp072vtM5jteTNMF3P3xT78WwLNeyn0K/DzfzAd5r9tN50b4ScXyVybwg9LCAeX89uHlN5lLi1A/r5xQpbuZcP25Z+6+1sF5HnS9yd3v9wpNP7H458cTOGmzF+sUW2qXOr1w+IHEog+mmd5Xaz2u/crPvN2KvTAEaYi+RX+6ZhKrFR+QGRw5X00/rV3b5h/p37xucr183U/mKLdLz2dtYfEJF2aFb7gWZtv3Oz7jejryaBjrfNXl7sm8dzXRanX6c5uNtTX41fnrW695J3PmHi5sPVccXq7sPVcb+9ew9Xp+mijhVftKnw/amigj2Ui+1nZr88WXTq3PYTndt+onMr/UDnnhatbnZuO5d55XJCe9oz/XQilGBuRXjfiefzvObpOlq+J+4Hbvx6HfYDz++nZavbz++1v/2Gd5S494Z3vJW741R/Ypzq7ztOez7A921D6F/Gx2n/rFow87YXZn5vnKK489oP3P3lQk4DdfukjA8HVnf9iYGq7w9UfX+g6k8MVPuJgWr8u/5a3v2x66cVK+o5w0t7lcivIsejKTqOpth3exO9fyWMBzP+sHHwL1fSfiAznxr29oBvb3+Pc5a4N+CPt3J3wB8fQ+4O+CbvDvjzCEHVPZd+SInHY1Sw06105hfHKpXc6pbsdCXtB5Jz+4mx2t8fq/39sdp+Yqz2nxirXd5/ijitjHKuaZR9G5tPK6P9dJ6i5CGGstW9jM/kb0vUrEXcPwX4noRZFiToaxKaX1F92I7nVYn6okS2hb7aFpptoa+2heWN2KttsUu82BZ7jeqLbWHZFvZqW7S8kfZqW+wSL7ZFy6+Hm716FVlv09qLV+GLrPO149W22CVevYqGwuPn4+JYRXH3cM1zKUYVFP3tX8f9cnDj6agBK9kvRtROKnYqHbD/JQ0zX9+4nZuHWX4hcu/A0bPIzQNHv6gsubVqeJS49dXgFxJ3HjnOdTY3HznKRT8wffpQeXv+tFx0PCP03l44D5Xj9ox3NsP5QuPWbjhf3M3NDXG+ULm5oc25EOrKZ7HHsv92KZ8KoeZ5ou8+rD9U5N3o+0LjVux8cTe3g4ftJ4KH395/94taN5xaRtu3TL928ek8KC65GPp4Xd1/hT+LnM7Y3Y8v38qyPm1L+hA5bg+YdRn7trXfksgyU23tVYkcI9fTq/iifDCXY+r14Unz82WcXqVqFpnKXiDyhkh/JnK7onLfPvd/GWXHEwex5C7cnt/O6SwnvfKbYi37oaW/iJyG6n70aalX+xGZfb5bv/PSjX2ujuXIpzWmXnPF/No+e/m8+ve4n+N3/JGP2r6NC3/+4ar3Xrz3vWw+PXc+NN5+dv3iOnJvo8f4P2n0n8jyp6rXu49IpxMw7j8iKb3/iHTUuPmIdLybm5vcfaFy+xHptOh18f+ep38JnOMRT/neJ9vtfArgh8SxwDqPFtk/5VP+xr2UCxu28+leTgcK3X/cO9Wa3H1UO17J7Uc1458IYnt/cvX2943y/PvGcp1WrUrDOYRtq2v69KX2uX723rR3kR/pmx9JsO36Xfvm4ycjdOib05Z+d9dGxof+PxGA7Qfet9oPvG+1H3nfaj/yvtXa7ztQOJuV+cOxSeW+iOC9XPat0X4dbadpoJ9RubfJwRcat3Y5+ErjzjYHX0ya3Nx/96sJnHtPJ19M893ZHuwLiTs7U34x+Woogm0vz+DmNgOP9+LDXjTHj3tL7rnyCKHnXwiXcjw6KXd+xQCRbxV9Y/u61l8uP88JhofIq4XwzfAzftgp8otq+gsfKh92JvzicwnsSmXXq1eiaNh9u4PvfVBz61iG01d9lJs4yYdfcZZPg6zcnceSp1unPTToNNdxa2e+h8jxt/PO9mlnjXv7p33jZux0M6dm7Qib3vkgcvoy4N62dl9dCQ5u3df6fhU5Hcl766D2R7Oe5rJufrp9Vrm7dPnFtdxcp/tC5eZC3Rcqd9dRy2mB6/G8sW2t1bcdZbh+U2fft2/7HuWbOkWwf9Hjd89e18EXJQ/NetK53l/e/Url3tPBOZokN3SVbZ/f/yVLneaDsMku7Zvsfis3PH5BchfRx/v1c5HTOtXd3MCnXu512+xqyw1K37iSu+167uF7D5FfjdqLt60R5eVofEy0I4qKvR6NBWdDPDSfR9F1HHJ3dhadGy8//YW+tbXoQ+NUmF3ydYM/3Mun0XKaRdHcVoF1/3LP+n0J3bZEKO9L1NcksKuo7jsZfEPC0Jy2T3x8Q6JlNuL93OtvXUVOerBtuehlidc6teWsMu8Fb9+SyHkkbvJap7b87Xxgf/Eqclw0fbFTc3vXB750FY+VHGzat/9efkPiQ4UJP5V4ZLXTaizhSBnap4++c2JSfrZAaq/dSi5OE+v1mkQO8ccMzUtRMqZ5MG/EL0pckJC3JYhfbE5MXVF77SoYbVH721fxWqdKBsm+qv6dqQAI0EsC9zZfPD023doe5CRwa3OQ42vUnYMyr99zQubWNkunT6NxNk7Ra68FuL/lq+br8WM1tb8k0Spm/OprV9Hxide1n3pxX4IunIj74fn5G1eBCvry4VH+OxIdU6jlpRvZDxEp/bWr4KyHKHLJSxKSz92lbqUMnyUeV3sqVXn/sD3OMC1sr7UGNqx9vGmUtxv0s8T/ffzfP/zLn/72T3/+67/84e9/+utf/vPxN/9niP3tT3/45z//cf3ff/uvv/zL9m///v//R/ybf/7bn/785z/9+z/9x9/++i9//Nf/+tsfh9L4d79d63/+T3s8aP/D4zmx/t9/+K08/n8f77WPVezy+P/s//7xsPH4j2T8+/EX6thq7vE//heK/xePnP/4n/Z//2dc8v8D"
4404
+ "debug_symbols": "tb3Rjiw5bq39Ln3tixBJkZJf5eDAGNtjY4DBjDEe/8APw+9+UpTIpartVEVlVt/M/qa791oRksiMkBjSf//2r3/85//693/601/+7a//+ds//p///u2f//anP//5T//+T3/+67/84e9/+utfHv/0v3+7xv/0x//yP/zWy2//qI8/6Ld/bI8/eP4h8486/9D5h80/2vyj+x/lutafZf1J609ef8r6s64/df1p68+2/lx6ZemVpVeWXll6ZemVpVeWXll6ZemVpUdLj5YeLT1aerT0aOnR0qOlR0uPlh4vPV56vPR46fHS46XHS4+XHi89Xnqy9GTpydKTpSdLT5aeLD1ZerL0ZOnVpVeXXl16denVh165BtQADbCAh2bhAX2BXgEP2aIDHro0/mPlAAmoARpgAQ9lKgP6ArsCSgAFcIAE1AANsIBQtqFMD2hXQAl4KJfRCI0DJGAoO2iABbSAvmCEzoQSQAEcIAGh3EO5h/IIJR7NMoJpAI1omlACKIADJKAGaIAFtIBQLqFcQrmEcgnlEsollEsol1AuoVxCmUKZQplCmUJ5RBnTgBqgARbQAvqCEWsTSgAFcEAocyhzKHMocyhzKEsoSyhLKEsoSyhLKEsoSyhLKEso11CuoVxDuYZyDeUayjWUayjXUK6hrKGsoayhrKGsoayhrKGsoayhrKFsoWyhbKFsoWyhbKFsoWyhbKFsodxCuYVyC+UWyiMGuQ6oARpgAS2gL/CfL4cSQAEcEMo9lHsojxjkNqAF9Ak8YlB4QAmgAA6QgBqgARbQAvqCEsollEsol5U3uEhADdAAC2gBKyMxXQElgAJCmUKZQnnEoOgAC2gBfcGIwQklgAI4QAJqQChzKHMojxgUe8CIwQklgAI4QAJqgAZYQAsI5RrKNZRHDNZrAAdIwEO5ygANsIAW0BeMGJxQAiiAAyQglDWUNZQ1lDWULZQtlC2ULZQtlC2ULZQtlC2ULZRbKLdQbqHcQrmFcgvlFsotlFsot1DuodxDuYdyD+Ueyj2Ueyj3UO6h3JeyXFdACaAADpCAGqABFtACQrmEcgnlEsollEsol1AuoVxCuYRyCWUKZQplCmUKZQplCmUKZQplCmUKZQ5lDmUOZQ5lDmUOZQ5lDmUOZQ5lCWUJZQllCWUJZQllCWUJZQllCeUayjWUayjXUK6hHDEoEYMSMSgegzqgL/AYdCgBFMABElADNMACQllD2ULZQtlC2ULZQtlC2ULZQtlC2UK5hXIL5RbKLZRbKLdQbqHcQrmFcgvlHso9lHso91DuodxDuYdyD+Ueyn0p1+sKKAEUwAESUAM0wAJaQCiXUC6hXEK5hHIJ5RLKJZRLKJdQLqFMoUyhTKFMoUyhTKFMoUyhTKFMocyhzKHMocyhzKHMocyhzKHMocyhLKEsoSyhLKEsoSyhLKEsoSyhLKFcQ7mGcg3lGso1lGso11CuoRwxWCMGa8RgjRisEYM1YrBGDNaIwRoxWCMGa8RgjRisEYM1YrBGDNaIwRoxWCMGa8RgjRisEYM1YrBGDNaIwRoxWCMGa8Rg9RjsAzTAAlpAX+Ax6FACKIADJCCUeyj3UO6h3JeyXldACaAADpCAGqABFtACQnnEoF4DSgAFPJSVBkhADdAAC2gBfcGIwQklgAJCmUKZQplCmUKZQplCmUOZQ5lDmUOZQ5lDmUOZQ5lDmUNZQllCWUJZQllCWUJZQllCecSg8oC+YMTghKEsAyiAA4ayDqgBGjCUR3+NGJzQF4wYtDKgBFAAB0hADdAAC2gBfYGFsoWyhfKIQRvXPGJwQg3QAAtoAX3BiMEJJYACQrmFcgvlEYNWB1hAC+gLRgxOKAEUwAESUANCuYdyD+W+lO26AkoABXCABNQADbCAFhDKJZRLKJdQLqFcQrmEcgnlEsollEsoUyhTKFMoUyhTKFMoUyhTKFMoUyhzKHMocyhzKHMocyhzKHMocyhzKEsoSyhLKEsoSyhLKEsoSyhLKEso11CuoVxDuYZyDeUayjWUayjXUK6hrKGsoayhrKGsoayhrKGsoayhrKFsoWyhbKFsoWyhbKFsoWyhbKFsoewx2AaUAArgAAmoARpgAS2gL+ih3EO5h3IP5R7KPZR7KPdQ7qHcl3K7roASQAEcIAE1QAMsoAWEcgnlEsollEsol1AuoVxCuYRyCeUSyhTKFMoUyhTKFMoUyhTKFMoUyhTKHMocyhzKHMocyhzKHMocyhzKHMoSyhLKEsoSyhLKEsoSyhLKEsoSyjWUayjXUK6hXEO5hnIN5RrKNZRrKGsoayhrKGsoayhrKGsoayhrKGsoWyhbKFsoWyhbKFsoWyhbKFsoWyhHDLaIwRYx2CIGW8RgixhsEYMtYrBFDLaIwRYx2CIGW8RgixhsEYMtYrBFDLaIwRYx2CIGe8RgjxjsEYM9YrBHDPaIwR4x2CMGe8RgjxjsEYM9YrBHDPaIwR4x2CMGe8RgjxjsEYM9YrBHDPaIwR4x2CMGe8RgjxjsEYM9YrBHDPaIwR4x2CMGe8RgjxjsEYM9YrBHDPaIwR4x2CMGe8RgjxjsEYM9YrBHDPaIwe7rgmWABbSAvsDXBh1KAAVwgATUgFCuoVxDecRgo7FCfAWUAArgAAmoARpgAS0glC2ULZQtlC2ULZQtlC2ULZQtlC2UWyi3UG6h3EK5hXIL5RbKLZRbKLdQ7qHcQ7mHcg/lHso9lHso91DuodyX8mO1/UoqSZTESZJUkzTJklpSepT0KOlR0qOkR0mPkh4lPUp6+JK8OPUgX5afNDzMiZI4SZJqkiZZUkvqQb5UPyk9OD04PTg9OD04PTg9OD04PSQ9JD0kPSQ9JD0kPSQ9JD0kPSQ9anrU9KjpUdOjpkdNj5oeNT1qetT00PTQ9ND00PTQ9ND00PTQ9ND00PSw9LD0sPSw9LD0sPSw9LD0sPSw9Gjp0dKjpUdLj5YeLT1aerT0aOnR0qOnR0+Pnh49PXp69PTo6dHTo6dHD49ZVjOpJFESJ0lSTdIkS2pJ6VHSo6RHSY+SHiU9SnqU9CjpUdKjpAelR8Z5yTgvGecl47xknJeM85JxXjLOS8Z5yTgvGecl47xknJeM85JxXjLOS8Z5yTgvGecl47xknJeM85JxXjLOS8Z5yTgvGecl47xknJeM85JxXjLOS8Z5yTgvGecl47xknJeM85JxXjLOS8Z5yTgvGecl47xknJeM85JxXjLOS8Z5yTgvGecl47xknJeM85JxXjLOS8Z5yTgvGecl47xknJeM85JxXjLOS8Z5yTgvGecl47xknJeM85JxXjLOS8Z5yTgvGecl47xknJeM85JxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnXkXUupMmWVJL6kEe55NKEiVxkiSlR0+Pnh49PXp4eFHRopJESZwkSTVJkyypJaVHSY+SHiU9SnqU9CjpUdKjpEdJj5IelB6UHpQelB6UHpQelB6UHpQelB6cHpwenB6cHpwenB6cHpwenB6cHpIekh6SHpIekh6SHpIekh6SHpIeNT1qetT0qOlR06OmR02Pmh41PWp6aHpoemh6aHpoemh6aHpoemh6aHpYelh6WHpYelh6WHqMOO+XkyW1pB404nxRSaIkTpKkmpQeLT1aerT06OnR06OnR0+Pnh49PXp69PTo6dHDwwuXFpUkSuIkSapJmmRJLSk9SnqU9CjpUdKjpEdJj5IeJT1KepT0oPSg9KD0oPSg9KD0oPSg9KD0oPTg9OD04PTg9OD04PTg9OD04PTg9JD0kPSQ9JD0kPSQ9JD0kPSQ9JD0qOkx4ryTEyVx0vCoTjVJkyypJfWgEeeLShIlcVJ6aHpoemh6aHpoelh6WHpYelh6WHpYelh6WHpYelh6tPRo6dHSo6VHS4+WHi09Wnq09Gjp0dOjp0dPj54ePT16evT06OnR06OHhxdHLSpJlMRJklSTNMmSWlJ6lPQo6VHSo6RHSY+SHiU9SnqU9CjpQelB6UHpQelB6UHpQelB6UHpQenB6cHpwenB6cHpwenB6cHpwenB6SHpIekh6SHpIekh6SHpIekh6SHpUdOjpkdNj5oeGec147xmnNeM85pxXjPOa8Z5zTivGec147xmnNeM85pxXjPOa8Z5zTivGec147xmnNeM85pxXjPOa8Z5zTivGec147xmnNeM85pxXjPOa8Z5zTivGec147xmnNeM85pxXjPOa8Z5zTivGec147xmnNeM85pxXjPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzi3j3DLOLePcMs4t49wyzi3j3DLOLePcMs4t49wyzi3j3DLOLePcMs4t49wyzi3j3DLOLePcMs4t49wyzi3j3DLOLePcMs4t49wyzi3j3DLOLePcMs4t49wyzi3j3DLOLePcMs4t49wyzi3j3DLOLePcMs4t49xrwnpzakk9yON8UkmiJE6SpJqkSelR06Omh8d5dypJlMRJklSTNMmSWlIPsvSw9LD0sPSw9LD0sPSw9LD0sPRo6dHSo6VHS4+WHi09Wnq09Gjp0dKjp0dPj54ePT16evT06OnR06OnRw8PLyRbVJIoiZMkqSZpkiW1pPQo6VHSo6RHSY+SHiU9SnqU9CjpUdKD0mPE+WOR0JGADJSB7FiBCjRgA/bEEfCBBUhABsKN4cZwY7gx3BhuAjeBm8BN4CZwE7gJ3ARuAjeBW4VbhVuFW4VbhVuFW4VbhVuFW4Wbwk3hpnBTuCncFG4KN4Wbwk3hZnAzuBncDG4GN4Obwc3gZnAzuDW4Nbg1uDW4Nbg1uDW4Nbg1uDW4dbh1uHW4dbh1uHW4dbh1uHW49XTz2rfAAiQgAwVYgQo0YAPCrcCtwK3ArcCtwK3ArcCtwK3ArcCN4EZwI7gR3JBLOnJJRy7pyCUduaQjl3Tkko5c0pFLOnJJRy7pyCUduaQjl3Tkko5c0pFLOnJJRy7pyCUduaQjl3Tkko5c0pFLOnJJRy7pyCUduaQjl3Tkko5c0pFLOnJJRy7pyCUduaQjl3Tkko5c0pFLOnJJRy7pyCUduaQjl3Tkko5c0pFLOnJJRy7pyCUduaQjl3Tkko5c0pFLOnJJRy7pyCUduaQjl3Tkko5c0pFLOnJJRy7pyCUduaQjl3Tkko5c0pFLOnJJRy7pmUvoylxCV+YSujKX0JW5hK7MJXRlLqErcwldmUvoylxC1wW3ArcCtwK3ArcCtwK3ArcCtwK3AjeCG8GN4EZwI7gR3AhuBDeCG8GN4cZwY7gx3BhuDDeGG8ON4cZwE7gJ3ARuAjeBm8BN4CZwE7gJ3CrcKtwq3CrcKtwq3CrcKtwq3CrcFG4KN4Wbwk3hpnBTuCncFG4KN4Obwc3gZnAzuBncDG4GN4Obwa3BrcGtwa3BrcGtwa3BrcGtwa3BrcOtw63DbeYSdRRgBSrQgA3YA8vMJRMLkIAMdDdyrEAFGrABe+LMJRMLkIAMhFuBW4FbgVuBW4EbwY3gRnAjuBHcCG4EN4IbwY3gxnBjuDHcGG4MN4Ybw43hxnBjuAncBG4CN4GbwE3gJnATuAncBG4VbhVuFW4VbhVuFW6eS0pxNGAD9kTPJQsLkIAMFGAFwk3hpnDzXFJsoOeShSXRQ685ue/E4UBz7yoFGrABe6CX6AUWIAEZKMAKVKABGxBuBW4FbgVuBW4FbgVuBW4FbgVuBW4EN4IbwY3gRnAjuBHcCG4EN4Ibw43hxnBjuDHcGG4MN4Ybw43hJnATuAncBG4CN4GbwE3g5jFG7NgTPcYWFiABGehu4liBCjRgA/ZEj7GFBUhABsLNY4yqowLdTR0bsCd6jC0sQAIy0N26YwUqcLhxcWzAnui/1+zX67/XCwnIQAFW4HDzTb288i+wAXui/16zX5knjYUEdF1yHLrig8Dzg4x/6qV9j8zsWIAEZKAAK9B11dGADdgTPT8sLEACMlCAFQg3zw9jgyzyYr/A4Tb2xiIv9wssQAIyUIDDrRZHBRqwAXui54eFBUhABgoQbp4fqneL54eF7saOPdHzw8ICdDdvB88PCwVYgQo0oLs1x57o+WFhARKQgQKsQAUaEG6eH8bmHuRlgYEF6G4+5Dw/LBRgT/SYV+9Nj2711vGQHntWkFf2BRqwAXuih7T6RXpILyQgAwVYge7md+EhvbABe6KH9MICJCADBViBcPPHA/N28MeDhT3QK/7K2BuDvOQvkIDDzdhxuI0tLcjL/h6LOI4KNGAD9kQP/4Wu2x0FWIEKNGBL9Cgc3+iRV+Ut9Chsfr0eb606CrACFWjAluhx0fx6PS4W9kSPi4UFSEAGCrACFQi3CrcKN4Wbwk3h5r+Qo5CcvETuMeXsOBS6d7fHxcICHArdu9ujZaEAK1CBlugh0r0DPBi6d4AHQ/cr82BYqEBX8Kb2YFjYEz0YFhYgAd3N79iDYaG7+c17MCy0QC+AK2MFirza7fGU7ChAVxBHHf+0OBqwAXviGODkLx1e9RZIQHdjRwFWINwK3ArcCtx838yFJfrCC+ACGSjAClRgjy708rbZhV7fNjvLC9wCK1CjL7zGLbABsze9zC2wACn6zSvdAiU7SypQgT27sFL2W0VverzNLqw1G6qifSvat6J9a8/OUvSmojfn3tHeOoreVPSmwk3hpnBTuCl607dsvrxJfNPmhT3RN26+vHV86+aFBGSgACtQgQZswOHmb6leOxZYgARkoACHW6mOCjRgA7rbGEZeRRZYgO5mjgwUoLs1RwUasAHdbQwYrx0jfx/y4rFAAVbg0B0bcJMXkJG/BHkFGflriZeQLRw/PoEF6G5+x8xAAVagu/m9sVv49Y4YIt+K2kvIaO2WPCx8P2AvIgtkoAArUIEGHG7srS49sbqbX04tQAIyUIAVqEADNmBPVLgp3BRuCjeFm8JN4aZwU7gp3Hzvdn+N8gqzQAIyUIAVqEDX9c7yndsXFiABGSjAClSgARsQbh1uHW4dbh1uHW4dbh1uHW4dbj3dvNAssAAJyEABVqACDdiAcCtwK3ArcCtwK3ArcCtwK3ArcCtwI7gR3AhuBDeCG8GN4EZwI7gR3BhuDDeGG8ON4cZwY7gx3BhuDDeBm8BN4CZwE7gJ3ARuAjeBm8Ctwq3CrcKtwq3CrcKtwq3CrcKtwk3hpnBTuCncFG4KN4Wbwk3hpnAzuBncDG4GN4Obwc3gZnAzuCGXGHKJIZcYcokhlxhyiSGXGHKJIZcYcokhlxhyiSGXGHKJV7E93sEcBViBFhnRZgKZ2APbdQELkIAMFGAFKtCADQi3ArcCtwK3ArcCtwK3ArcCtwK3AjeCG8GN4EZwI7gR3AhuBDeCG8GN4cZwY7gx3BhuDDeGG8ON4cZwE7gJ3ARuAjeBm8BN4CZwE7gJ3CrcKtwq3CrcKtwq3CrcKtwq3CrcFG4KN4Wbwk3hpnBTuCncFG4KNzx2NDx2NDx2NDx2NDx2NDx2NDx2NIObwc3g1uDW4Nbg1uDW4Nbg1uDW4Nbg1uDW4dbh1uHW4dbh1uHW4YZc0pBLGnJJRy7pyCUducTL2h7TNY4CrMDh5pPJXtYW2IDDzae5vawtsAAJyEABult3VKAB3c2v13PJRM8lCwuQgAwcbj6D7GVtgQocbj6Z7GVtgT3Rc8nCoeuTyV6qRtUbyvPDwgZ0BW8ozw8LC3Bcr88re6laoAAr0N38hjw/LGzAnuiZwGeFvfyMfKbXy88CDejt6xYe8xM95hcWIAEZKEB380b1mF9owAbsiR7zCwuQgAwUINwMbgY3g5vBrcGtwa3BzWNevbs9un123AvNAhuwJ3p0LyxAAjJQgBUItw63DrcebuyFZoEFSEAGCrACFWjABoRbgVuBW4FbgVuBW4FbgVuBW4FbgRvBjeBGcCO4EdwIbgQ3ghvBjeDGcGO4MdwYbgw3hhvDjeHGcGO4CdwEbgI3gZvATeAmcBO4CdwEbhVuFW4VbhVuFW4VbhVuFW4VbhVuCjeFm8JN4aZwU7gp3BRuCjeFm8HN4GZwM7gZ3AxuBjeDm8HN4Nbg1uDW4Nbg1uDW4Nbg1uDW4Nbg1uHW4dbh1uE2c4k4VqACDdiAPbDMXDKxAAnIQHczxwpUoLtVxwbsiTOXTCxAAjJQgBWoQLgVuM1c0gfOXDKxAAXoCs2xAYfCWNdjLx4LLEACMlCA43rNm8Tzw0IDNqC7ubHnh4UF6G5+vZ4fFgpwuLXLUYEGbMDhNrZ4ZS8eo+bX65mgeR97JlhYgQp0XXV0Xb8LzwTNL8czQXc3zwQLCcjA4db9cjwTLFSgAYdb9+v18O9+OR7+3Xvew7/75fjpdpdb+Pl2CytQgQZswJ7oZ91dfg1+2t1CzmHUMKJmzE9UoAEbECO1Y6R2jNQZ8xPh1uHW4dbh1uE2D6L0NptHUQ5ch1FO9BsSRwIyUIAVqEADNmBPnAdUToRbgds8plIdBViBCjRgA/bEeWjlxAIkINwIbgQ3gpsfYTlWmJjmkwI5FiABGSjAClSgARuwJwrcBG4CN4GbwE3gJnATuAncBG4VbhVuFW4VbhVuFW4VbhVuFW4Vbgo3hZvCTeGmcFO4KdwUbgo3hZvBzeBmcDO4GdwMbgY3g5vBzeDW4Nbg1uDW4Nbg1uDW4Nbg1uDW4Nbh1uHW4dbh1uHW4dbh1uHW4dbTja8LWIAEZKAAK1CBBmxAuBW4FbgVuBW4FbgVuBW4FbgVuBW4EdwIbgQ3ghvBjeBGcCO4EdwIbsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXCLIJYJcIsglglwiyCWCXCLIJYJcIsglglwiyCWCXCLIJYJcIsglglwiyCWCXCLIJYJcIsglglwiyCWCXCLIJYJcIsglglwiyCWCXCLIJYJc4rvt8ahbYS/1CxRgBSrQgA3YE/147YUFCDeBm8BN4CZwE7gJ3ARuFW4VbjnDyV5CGOhuzbECFWjABuyJfgz3wuFWLkcCMnC4jaoe9sLCQAW6m1+ZH8u9sCfOXOJiM5dMJCADBViBCjRgA/ZEzxpj6pq9CDHQ78IHjB/RvVCBBmzAnuiHdS/0NhNHAjLQ3apjBSrQ3fzK/L1lYQ/00kSa5zZ71lhIQAYKsAIVaMAG7In+hjKKrdhLEwMF6Hdhjgo0oN9Fc+yJ/oYyiq3YSxMDCTjcRoUVe2liYAUq0IAN2BNHfng80zgWIAEZKMAK9Mq4KRaFkOwFi171x16wGEhABgqwAhXoFXfex/5UsbAn+lPFwrIqMNmLGwMZKMAKVKABG7AnKnpe0fOKnlf0vKLnFT2v6HlFzxt63tDzhp439Lyh5w09b+h5Q88bet7Q8w0939DzDT3f0PMNPd/Q8w0939DzHT3f0fMdPd/R8x0939HzHT3f0fMdPd+z52et5cLsea+1DGSgACtQgQZswOx5r6rkUdHIXlUZKMAK9L6Yf82ADdgT/XObUXLOvk1fIAEZKMAKVKABW+KMbnEkIAMFWIEKNGAD9kT/9V8IN4GbwE3g5r/+5Bfpv/4LDdiAPdF//RcON/ZWHzEfyEABDjf2Vvdf/4UGHG6jspO9wJLZLfzXf2EBEpCBAqxABRrQ3bpjT/RMMD44Yy+wDCQgA4eb+KV7JlioQAM2YE/0TLCwAN3Ne8gzwUJ389bxTLBQgQZsif4gMAoD2GstAwnIQAG6hTeJPwgsNGAD9kCvtQwcbuPjNPZay0AGCrACFWjABuyJPoG5EG6eKkYRAXutZaAA3Y0cFWhAdxNHdxst6bWWPGoE2GstAwnIQAFWoD9wOvUgfwyYVJIoiYM8gkfVAXuxY2AF+kqAkyW1pB40VxecSpIrTvRm8B70eJz/sAd5NE4al+vOHouTOEmSapImDRN/APaKxcDhot5FHoYLC3CI+nuUVyGyL7V5FWKgKwzyyPLFMS9CDCQgAwVYo0laNmfL5mzZnC2bs2dzeiDNRvSQmY3oIeMLYF5dGOgXOq7UqwsD/UrN8XGlMomTJKkmaZIFeVj4ipnXCrKvOHitoAeIlwou0qTxt+d/15J60Bj6i0oSJXmvu4yP+4Xe78VRgZboI9/I0RXYUYDjLv02/LdwNoz/Fi5swJ7ov4Xjiz/2qr9AAnI2uEfSwgqEm8BN4CZwq3CrcKtwq3CrcKtwq3CrcKtwq3Dz6FtY1lD3or85fL3oL1CAFaiJ/jtlruDBtLAB/Rd/0HxgdSpJlMRJklSTNMmSWlJ69PTo6dHTo6eH/0b5+quX4AUqcNj4mqqX4AUOI1/X9RK8wAIkIAMFWIHDzRdovQQvsAE9X45R7iV4gQU43HzZ1kvwAgXoid1JkyypJfWg+fPk5IoT/UrV0a/Ur99/hxb2RI/HhX6l3ZGADBRgBfqDltMw85Vkr70L7Ikepf7a4rV3gQQcZr6S7LV3gcPMF5W99i7QgCN7+SWMIJ00YnRRSaIkTnJFbyyPOV+x9qo7Hp/vsVfdBRKQgSND+3uZV90FKtCADTgu1X3H796ikjQu1W9uPHsukqSapEmW5CY+5EY4LxzxHMhAv0xv/GbAoeBtP2J10ojVReMqr4kEZKC3iN9Hr0C38ubtBvSL9YbsfrGPQSVeUydjck+8pk7GjJN4TV0gAwVYgQo0YAMOtzEXJl5TJ2PWS7ymTsa0gnhNnYwJBPHqORmzBuLVc4EGbMCe6L+gCwvQxfw2SYEGbMCeyBewAIcYeUONmJMxVSBe5bZwxFxgAT7urfpdjpBbJEk1SZMsqSX1oBFti0pSetT0qOlR06OmR02Pmh41PTQ9ND00PTQ9ND00PTQ9ND00PUawVR8JI9gWSVJN0iRLakk9aITaopKUHi09Wnq09Gjp0dKjpUdLj54ePT16evT06OnR06OnR0+PHh5eICbj6Va8QEzI/6kHxvjIU7wUTMYLinj1lozfaPENwQIVOIY1u8IY1tUFxqieNAb1opJESZwkSTVJkywpPTg9xLN+dfRrVMfH31a/xDGyF7WkHjRG9qKSREmcJEk1KT1qetT0qOmh6aHpoemh6TFG9njnES/PWqRJw8NbeozsRT3If1DGi5h44ZWwd7D/fLA3k/9+LGzAnug/IAsLkIAMFGAFwq3BrcFt/tr4yJo/NxMLkIAMFGAFKtCADZhuXoMVWIAEZKAARzeokyZZUkvqQSOiFrlicfQrJcfxt7tTS+pB4wdlvOOJV1MtoiROkqSa5Dc+xoKXTMl4VhAvmQpkoN+iX6b/wCxUoAEbsCf6z87CAiQgA+EmcBN380sXAzbgcKveD/6wt3C4VW9Wf9yr3qz+vOfpzUumAivQn6PcuBpwuI2ZFvGSKaluPMLV3GGE6yJK4iRJqkmu6J05H/b8oj04Pca9ACpQgONKPcy9ACrQgA3YEz04Pf69qEnUe9fDcA5CD8OFDdgTPQwXFiABGShAd/OG8zBcaEB38+b0MHT0oqbAAnS37shAAY7mFSdNsqSH1ZhbEC9omjTCcFFJoiROGl1YnWqSJvnsy+XYgD3RHwAXMtCnb4qjAV2BHHuiP/UtHFfqDTKCdhEnSVJN0iRLakk9aATrovSQ9JD0kPSQ9JD0kPSQ9JD0qOlR06OmR02Pmh41PWp6eGzOrvHYXNgT1dvLe2cEZyABvR/MUYA+6+S94y9uCw3YgD3R39yad59H88Lh1rzPPJqbX5lHc/MR6dG8UIHu5hfp0bywJ/ohve7gh/ROoiROkqSa5IojNr2gSJrftsdx85b1OF4owAocV9r9tj2OFzZgD/SCosBxqeRE8+xg8XIi6fMfDq/xmi9eThT4UJ1/PY72EMmdbkVyp1uR3OlWZM5mVscG7IlzQnNiARKQgX5dzbECFdjiwvzEHic/sWfSWFYcb9gic2/biQz0idmJFajA8Uw7VlrFi38Cx1PtvN0RtIEF6G7+3+Y+2SK5T7ZI7pMtkvtki+Q+2SK5T7ZI7pMtkvtki+Q+2SIVbhVuFW4VbhVuFW4VbhVuCjeFm8JN4aZwU7j5C9/lg8nf+BY2oLek97VdwAIcryFj5kK8+CdQgBXobj62/c3w8iEy98me/0FPnPtkT3Q3HzD+eriQgQKsQAUasAF7or8mLoRbh1uH29wn229+7pM9UYEGbMAeOHcrW1iABGSgACtw3JtP/HhJUGAD9sTxIx5YgARkoAAr0N2KowFbIhWgK7CjK4ijAg3YgH69fm/+sruwAAnIQAFWoAIN2IBwE7gJ3ARuAjeBm8/9+ASYlwQFultzbMCe6BNAPiXlJUGBBGSgACtQgQYcbj6/5SVBC30qaGEBDrdRDSJeKBQowApU4HAjv3nPDwt7oueHhQVIQHfzhvL8sLACFWjABuyJPnm0sAAJCDfPD2MTLvFCoUAFupu3pOcHn7Xx8qGFnh/YB7jnh4XDzSdwvHwoUIAVqEADNmAP9PKhwAIkIAMFWIEKNGADwq3ArcCtwK3ArcCtwK3ArcCtwK3AjeBGcCO4EdwIbgQ3ghvBjeBGcGO4MdwYbgw3zyVjiUa81ChQgQYced0nvb3UaKHvh7iwAAnIQAFWoAL9LkZy9PKh6lNzXj4U6NerjhWoQAM2YE/0/LDQdd1Y0b6KO/aYX9gTPeYXevs2RwIyUIDoTYOboTcNvWnozYbebOhNj/l5DR7zC9GbDb3pMT+vwWN+YQPCrcOtww0xr4h5RcwrYl47xk5HS3a0ZM+WtBnzzbEACZhuhpg3xLwh5g0xb4h5Q8wbYt5mzPs1FAIyUIAV6G7d0YA+PX459kSP+YUF6NPwLuYxv1CAFahAAzZgT/SY9xk8LxsKzAHu269Vn8Hz7dcCFWjAHBq+/dpCQWcJOkvQWcJAAaKzBJ0l6CxBZwk6q6KzagESEEPDw99nBr1aKbABvaG8HTz8fZLQC5YCCchAAVagAg3YEi0fDH1LtUAGDl2fkvQt1QKHrk9JejFTYAOOu6je3Z4UFhbgcPM5S69mChRgBSrQgA3YEz0pLCxAuPkhoH4TfgjoJEsar8N+B34I6KB5COgkVzRHAjLQr785VqACbR42Ky2O/JUWR/5KiyN/pcWRv9LiyF9pceSvtDjyV1oc+SstjvyVVtKjpEdJD0oPSg9KD0oPSg9KD0oPSg9KD0oPTg9OD/9N9xljr5gKFKCvchZHBfo65+XYgD3RQ92nib1kKtAXVN14rgxP9CVVdaxABdo8iVdanAAsLU4AlhYnAEuLE4ClxQnA0uZKsA+Duew7/6lfqd/gXPidWIAEHFfqs6heARVYgQo04HDzOWLf9myh//IvLEACMtDdvIk8yBcq0IAN2BM9yBcWIAEZCDcPcvOm9yBfaEB385b0IDdvKA/yhcPNZzG94ipwuPmModdcBVagAg3YgD3Qa64CC5CADBRgBSrQgA0ItwK3ArcCtwK3ArcCtwK3ArcCtwI3ghvBjeBGcCO4EdwIbgQ3ghvBjeHmv/w+oepVWoEMFKA/f8+/pkADNmBPnE/7EwuQgAz0u2BHv94RF158FejXWx0JyEABVqACLdEzgc9iewHWahLFHXvML1SgAb19zbEneswvLED0psHN0JuG3jT0pqE3Db1p6E2P+Xk5Db3Z0JsNvdlwbx7zPhfvVVuB7tYdG7Aneswv9BoLF/OYX8hAAVagAg3YgF5r8RgE1Qu3Aml1VvVqrTqm9qtXawVWoAJtdUC9rgbsieUCFiABGRidVa8M9HploNcrA71eGej1ykCvVwZ6vTLQ65WBXr2cq46f6urlXIEG9IbydpiFL35ls/JlYgESkIECrEAFWqL/rI8f1ur1XoEEZKDrdscKVKAB46e5rrIvx1n3NbEACchAAVagAvtcKqpe6rWoJI3lIx8hI/QXSdKoc7jmf6hAAz6uv/m4HHE/aYT9olFOcU0kIANlLl5VLwdbpEmW1JJ6kK/bTSpJlMRJ6dHSo6VHS4+WHi09enr09Ojp0dOjp0dPj54ePT1GdOvlTTuie6JvTxZY1hpe9e3JAr3F1FGAFeidY44GbMCe6LUyCwuQgAx0t+ZYgQo04HAbCwDVtydb6LU1CwuQgMNt/OpVL3sLrMDRjt3JklpSDxqhv6gkURInSVJNSg9OD04PTg9JD0kPSQ9JD0kPSQ9JDy+NK96zXhu3sCd6ddzCAiQgAwXojVYdFWhAd2PHnuh1cgvdzbveK+UWMlAT/bsivx//rGiSl9d5t3mULxRgBSrQgF7I51drPbFdwAJ0Nw+AxkABuptfbVOgAd3Nh2/rif0CFqC7+W2OwFf26+1eKOjNP8I8sAF7oJfD6ZiirV4Op2Netno5nI6ZpurlcDrmfqqXwwVWoALdrTs2YE/0OF843EZRXPX6OBW/HA/uMQdWfR8yFb8cD25xCw/uhQ3YEz24FxYgAd3Nr8GDe2EOIt98LLABeyJfwAIcFtVvaAR2oADHDVW/zRHbgQZswJ444juwAAnIQAHCTeDmYV69uz3MF/ZED/OFBUhABgqwAhUItwq3CjeFm4d59Z734tfqPe8/9gsVaEDXVceeaBewAGmVw9RZe7dQgBWoQAM2YE/0mK8TGSjAClSgJXp0Vx+eHsfVx+T4BdcxhVO9yi5QgV6A6oPLo3uhl6CO7vYqu8ACHNc7JoGqV9kFCrACFWjABnS30YU8K14nFiABGSjAuirjqtfWzXbw2rqFdAFdtzoSkIECrEC/C3U0YAP2RI9uf0z1OrxAAg63Ud9XvRQvsAKH27whj+6FDehuo+e9IE/Nu8Wj27xRPbrNW8eje6EAXdfvzeN4YU/0OF7oun5vM2K7YwUq0IA9UaO4tM6iuoUCjJLTOovqFhqwAXvi/BxqYgESkIHeqN5m/tO8sAF7ov80m3eW/zQvJCAD/S6832bh7EQFGrABe+IsnJ1YgAT0UmdvqFmpPtHvwtvXg3dhD/TSukCvAb8cCchAAVagAr2wujo2YE/0D0AWFiABGSjAClTguAt/aZZZyD6xAAnod0GOAqxABfpdTGzAnuhFtAsLkIAMFODoC38/9BK8wJ7oYbqwAAnoj0lOklSTNMmSWtL6dKN67d2ikkRJnCRJfuWO/mPavP39x3QhAf2rjeYowApUoAEbsCd67C4sQALCzeBmcDO4GdwMbga3BjePXZ9s8qK5wApUoLeOOTZgT/Qf3oUFSEAGCtDd/HL853ihARvQ3UYYe9FcYAESkKOz6ozoiRWoQAM2YE8sF7AAh+5YyateHheoQP8upTj6hynk2BM9ohcW4LgLnw70fbQCBViB7qaO7tYcG7An+s/xwgIkIAMFWIEKhJtXx19+m14eP9Hr4xcWIAEZKMAKVOAok/c5FC+lM58X8VK6hV4pv7AACchAAVagAg0It+puPrj8Y5aFBUhABgqwAhVowOHmb/teSrfQLmABEpCBAqzA4eaTBF5KF9iAPbFdwAIkIAN9AsmpJmmSJbWkHtRd0Vu2+5WaowI9k83/oAF7oBfGBRYgARkowAr0FmiO3gKjF7wELrAACchAAVbguItRX1m9BC6wAXviyAHmsyNeAhdIQAYKsAIV6G7k6G7s2BP5AhYgARko0RdeAheoQAM2YE/0HLCwAAk4+sJD3IvdAg3od1Ede6JHu8/x+L5agQT0u/CO9WhfWIHjLtg7wKN9YQP2RI/2hf7hk7eOR/tCBgqwAhVowJboce1zR14Y5zsKVC+BM59G8hK4wJ7osTqHssfqQr8ybweP1YUC9CvzdmgKNGAD9sR+AQvQ3XzYdwYKsAIVaMAWd+zFbjYKwqoXuwUyUIBD16e9bH7BNtGADdjXLhV1boW1sAAJyEABVqACR+v4g6+XtQUWIAH9LthRgBWoQFu7kdS5FdbCnji3IJlYgARkoAC9dcSxAXuiR6y/eXgtWyAB/S5czH+1F/pdeJP4r/ZCA7pbc+yJHscLC5CADBSgu3VHBRqwAXuix/HCsvZOqnP/LZ+OWBtweTvMHbgmGrABe6JPlS8sQFobF1WvcAsUYAUON/Urm9t1TWzAnjj365pYgARkoACHrs/8eC2bVY8hj+6JHt0LC5CADBTg6AuflfUSt0ADNuC4C58HmXt5LSxAAjJQgBWoQEv0326foPWqtkAC+l2wowAr0O9CHA3od1Ede6LH/EJ3U0cCMlCAFahAA7qbOfZE/+1eWIAEZKD3vN8QZ897UdvsNy9qWygXsAAJyEABZs97UVugARsQPV/R8xU9X9HzFT1f0fMVPV/R8xU9r16h41nMi9SSO9gusC8D+/OnV3gFFiABGSjAsfjnzzFe4RVowAbsgV7hFViABGSgACvQ3ZqjARvQ3UazeIVXYAEON39k9Aqv5o+MXuHV/NnPK7yaP2x5hVegARuwJ9IFHG6+iuYVXoEMFGAFKtCADdgTfU14IdwYbgw3XwP2hy2v5QpsieL/VBwb0N38huoFLEACMlCAfm/q6NfgXVgN2IA90as5FhYgARkowAqEm8JN4aZwM7gZ3Lx+w5/yvD6r+eOa12etRjX0RUNfeMGGPy97fVYgAwVYgQocbjKxAYebP895fVZgAXpliw9lj0J/lvKaq0AfqY+7UK+58m5R3ywrkIAMdF1xrEAF2upu9fKrwJ5Y4FbgVuBW4OZRONGjRSYKsCb6AB9PWOr1ToEV6BfZHA3YgN6o3iRe/rBwXORI8+pVUIEMHG4jt6tXQQUq0IAN2BM9nBa6GzkSkIECrEAFRnfrLINivzcPnNlDsxBqIgPRsYqOVXSsB85CdKyiY+0CFiCtaFEvhwoUYAUq0IAN2BNnkE309vUr8xBZ2BM9RBYWIAEZKMAKVCDcOtx6unmRU2ABEpCBAqxAd2NHAzZgT/RwWliABGSgACsQbgVuBW4FbgQ3ghvBjeBGcCO4EdwIbgQ3ghvDjeHGcGO4MdwYbgw3hhvDjeEmcBO4CdwEbgI3gZvATeAmcBO4VbhVuFW4VbhVuFW4VbhVuFW4Vbgp3BRuCjeFm8JN4aZwU7gp3BRuBjeDm8HN4GZwM7gZ3AxuBjeDW4Nbg1uDW4Nbg1uDW4Nbg1uDW4Nbh1uHW4dbh1uHW4dbh1uHW4dbTze6LmABEpCBAqxABRqwAeGGXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCM5dUR3dTxwpUoAEbsAfyzCUTC5CADBSgu3VHBRrQ3cyxJ85cMnG4jSoy9bKtQAYOt1F5oF621UZtjvo+aYEGbMCe6LlkYQESkIEChBvBjeBGcCO4MdwYbgw3hhvDjeHGcGO4MdwYbgI3gZvATeAmcBO4CdwEbgI3gVuFW4VbhVuFW4VbhVuFW4VbhVuFm8JN4aZwU7gp3BRuCjeFm8JN4WZwM7gZ3AxuBjeDm8HN4GZwM7g1uDW4Nbg1uDW4Nbg1uDW4Nbg1uHW4dbh1uHW4dbh1uHW4dbh1uPV08yqywAIkIAMFWIEKNGADwq3ArcCtwK3ArcANuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuaQil1TkkopcUpFLKnJJRS6pyCUVuaQil1TkkopcUpFLKnJJRS6pyCUVuaTOXGKOBmzAnjhzycQCJCADBViBcCO4EdwIbgy3mUvYkYAMFGAFKtCADdgTZy6ZCDeBm8BN4CZwE7gJ3ARuArcKtwq3CrcKtwq3CrcKtwq3CrcKN4Wbwk3hpnBTuCncFG4KN4Wbws3gZnAzuBncDG4GN4Obwc3gZnBrcGtwa3BrcGtwa3BrcGtwa3BrcOtw63DrcOtw63DrcOtw63DrcOvpptcFLEACMlCAFahAAzYg3ArcCtwK3ArcCtwK3ArcCtwK3ArcCG4EN4IbwY3gRnAjuBHcCG4EN4YbcokilyhyiSKXKHKJIpcocokilyhyiSKXKHKJIpcocokilyhyiSKXKHKJIpcocokilyhyic5c0h0ZKMAKVKABG7AnzlwysQDhpnBTuHkuGZ/+qNfMBRpwuI2PfNQ3nlvouWRhARKQgQJ0N3FUoAEbsCfOT9MnFqC7NUcGCrACFWjABuyJ8yP1iQUItw63DrcOtw63DrcOt55uvvFcYAESkIECrEAFGrAB4VbgVuBW4FbgVuBW4FbgVuBW4FbgRnAjuBHcCG4EN4IbwY3gRnAjuDHcGG4MN4Ybw43hxnBjuDHcGG4CN4GbwE3gJnATuAncBG4CN4FbhVuFW4VbhVuFW4VbhVuFW4VbhZvCTeGmcFO4KdwUbgo3hZvCTeFmcDO4GdwMbgY3g5vBzeBmcDO4Nbg1uCGXGHKJIZcYcokhlxhyiSGXGHKJIZcYcokhlxhyiSGXGHKJIZcYcokhlxhySUMuacglDbmkIZc05JKGXNKQSxpySUMuacglDbmkIZc05JKGXNKQSxpySUMuacglDbmkIZc05JKGXNKQSxpySUMuacglDbmkIZc05JKGXNKQSxpySUMuacglDbmkIZc05JKGXOL1gG18D6heD7jQc8nC4Ta+iVOvBwxk4HAbXztpm3thTFSgARuwJ3ouWViABGQg3CrcKtw8l4wvo9S3xQvsiZ5LFhYgARkowApUINwUbgo3g5vBzeBmcDO4GdwMbgY3g5vBrcGtwa3BrcGtwa3BrcGtwa3BzXPJ2KFJZ9HkwgIkIAMFWIEKNGADptssmpyIlZVZsDg+J9JZsLhQgQZswJ443y8mFiABGQg3ghvBjeBGcCO4MdwYbgw3hhvDjeHGcGO4MdwYbgI3gZvATeAmcBO4CdwEbgI3gVuFW4VbhVuFW4VbhVuFW4VbhVuFm8JN4aZwU7gp3BRuCjeFm8JN4WZwM7gZ3AxuBjeDm8HN4GZwM7g1uDW4Nbg1uDW4Nbg1uDW4Nbg1uHW4dbh1uHW4dbh1uHW4dbh1uPVws1l2ubAACchAAVagAg3YgHDzZ4LxdazNssuFBGSgACtQgQb0HNUde6LnkoXuZo4EZKCtJGbXTBUTe+JMFRMLkIA8thGeKMAK1IHkaMAG7AN54EgVgQVIQAYKsAIVaMAGhFuFm+9tO04xMS/97GOzMfPSz0ABVqACDdiAPVEvYAHCTd3N+00FWIEKNGAD9kS7gAVIQLiNVNGL98VIFYEKNGAD9sSRKgILkIDDrfigbQKsid3/Wx+TnYECjEUAu3KBw65c4LArFzjsygUOK7nAYSUXOKzkAoeVXOCwkgscVnKBw0oucFjJBQ4rucBh5YJbgVuBW4FbgVuBW4FbgVuBW4FbgRvBjeBGcCO45QKHlVzgsJILHFZygcNKLnBYyQUO89LPPr7rMC/y7OMLDptFnjrRgA3YE+UCFqC/PlyODBRgBSrQgGNM0sSe6NE9viIxL/IMJCADBViBCrREj+Nxrq554WYnb1+P2IWu4A3lEbvQgA3YEz1iFxYgAd3N28wjdmEFDjf2m/eIXdiAPdEjdmEBEnC4jQ8pzAs3A4cb+803BRqwAXtiv4AFSEDX9ebz3ejHdwfmxZgTvRizj5Jz82LMQAIyUIAVqEADDrfxXYd5MeZC35N+4XAb33WYF2MGMlCAFahAAzagu43k6MWYgR4XzZGADBRgBSrQ42KKNWBP5AtYgARkoAArUIFwY7j5L/r4DMK8GDOwAAnIQAFWoAJjStxmMebCnugxLxMLkIAMFGAFKtCA3m/m2BM9EywsQAIyUIAVqEC/Nx8ac0JwYk+cE4ITC5CAMfliXlXZxdEDfWEBEpCBAvSL9BDxQF9owAbsiR7oC33OxseDP8UvZKAAK1CBw616FHpSWNgDZ1XlmACyWVW5kIDj3sbHPeZVlYEVqEADNmBPnAdVTBwtWd1iHlUxkYECrEAFGrABe+I8skIdh4K/SXilZKABh4I/jnul5EI/kGJhARKQgQKsQAUaEG4e6OrX64G+sAAJyEABVqACDehu3g7+4z7RA31hAQ43fybwSslAAQ43jxavlAw0YAP2RA/0hQVIQAYKEG4e6J6jvFIysAF7oj8ILCxAAjJQgK47conXOfbmxh7dCwU4rsyDzOscAw3YgD3Ro3thARKQgQKEmx8/M7atMq9zDGzAHuh1joEFSEAGCtDdzFGBBmzA4TZ2xjKvcwwswOE2tsMyr3MMFGAFKtCADdgTPboXFiDc/Eya7jfkh9IsrEAFGrABe+I823ZiAbqut4PH/EIFGrABe6LH/Nh8y7yiMdDvojsyUMY5odflXDdWZ2/teZLt4ubsjTHPsp08D7P1t/Z1mu1ichZn3nj6+h3PE20XT191to2nr9/fPNV28jzW1t/U17m2i6ev3+M82Xax+xa/x3m27WL3LX6PvldAsPv627KXOgb7XgFX8Xu0srH7Fr9H441jbcJmveNCBRqwAXviPOS2eCu1sjFtPB29BZpsXDfWjW3jtnEH92vjsjFtvPn2zXeebuuvpOsgW38JXCfZjh0GbB1lu5g3lo3rxrh+L21Mbhvj+r26MblsTBvzxrJx3XjzLZsvXbhHYtwjbddP2/WTbmwbt4236+ft+nm7ft6un7fr5+36ebt+3q6ft+vnrd1485XNd557Pe9xZoZ5j7Jdv2zXPzPD5JkZFm/9Xrfrr9v11+3663b9dbv+ul1/3a6/btev2/Xr1m66+ermuzKA3+OM9HmPtl2/bddv27i1bdza1u+29bvNdiNn2zjWz6zmap3VXK2zmqt1VmdM0+SpIc6z7f3aZ+xOnrG72K/dZxHqjN3FvLFsXDfWjW3jtnFP1hnri8vGtDFvPO+rOdeNdWPbuG3cwTPWF5eNaWPeePMtm2+Z9zX6zQsLH0zOtDFvLBvXjXVj27ht3MEz1hdP3+pMG/PGsnHdWDe2jdvGHTxjffHmu46+V2feWDauG+vGtnHbuINnblhcNt58Z27waSGduWFx3Vg3to3bxh08c8PisrH7+qyGztyw2H190kHnU4N4+2isUdusQlzYgD3RLmABEpCBAqxAuBnczO/RZyu8DDF4Pi8sLhvTxryxbFw31o1t4+nr8TJzzuSZcxaXjWljTrZ1wD05l41pY95YNq4b+3WOj0TNZq6YPGPc395txvhi3Xj+9349M/YXd/D8nVfXnDlhMW3s1+lvyDZzwuK6sW5sG7eNO3jmhMVlY9p48+XNlzffmRPU22rmhMVt4w6eOWFx2Zg25o1l47rx5iub78wJvgxiMydMnjlhcdmYNuaNZeO6sW5sG2++dfPVzVc3X918dfPVzVc3X918dfPVzVc3X9t8bfO1zdc2X9t8bfO1zdc235kffCbGZn6YPPPD4rIxbcwby8Z1Y93YNp6+3dl9fRbaZn5YXDamjXlj2bhurBvbxm1j+LaZZ8ZJDdZmnllMG/PGsnHdWDe2jRs4P3Kwlh85WMuPHKzlRw7WZu7xGaI2c8/iDp65Z3HZmDbmjWXjurFuvPnS5kubL2++vPny5subL2++vPny5sub78w948gM8xLDuersJYaBBThNmzNvLBvXjXVj27ht3MEz8SwuG2++M/H4bF2biWdx3Vg3to3bxh08E8/isrH7+uxZm4lnsWw8fb19ZuJZbBu3jTt4Jp7FZWPamDeWjTffmXjGvvrWZuJZ3Dbu4Jl4FpeNaWPeWDZ2X58QaTPBLO7gmWB8vq7NBLPY9f1Fqs0Es1g2nvrirBvbxm3jntxngllcNqaNeWPZuG6sG9vGbePNt2y+ZfMtm2/ZfMvmWzbfsvmWzbdsvjMp+YNnn0lpcdmYNuaNZWPPf+Q4JcdQ6jPfLC4bT0lz5o1l47qxbmwbt407eD7rLC4bb74ztfhcap+pxWdQ+0wti9vGHTxTy+KyMW0830u9mWdqWVw31o1t47ZxB8/UshhzOF7zWIrP9HrRY7JubBs35+LcwXPH1MVlY9qYN5aN5325vunGtnHbGHMyvV0bl41pY94Yczte8hj31drGHdyvjbf76tt99e2++nZfvW6sG9vG2331vK92YY60XVfZmDbmjWXjurFu3OPem1c8zvtqXvKYTBvzxnlfzcsek3Vj27ht3MF0bbzdF233Rdt90XZftN0XbfdFtnHbeGvPNUfq987bfbFsXDfWjbf74u2+eLsv2e5Lysa0MW+83Zds9yXbfcl2X7Ldl2z3VbdxUrf2rFt75udU7crPqdqVn1M1r4d8XBg7d7BeG5eNaWPeWDauG+vGtvHmq5uvbb62+drma5uvbb62+drma5uvTV9x7uB2bVw2nr7VmTeWjevG01edbeO2cQevJDO5bEwb88ZT35xt47ZxT/Yaywc357Ixbcwbz/vqznVj3dg2bht38Eoyk8vGrj+W21qZyWSxbmwbe03r/Ks90ZdoFxYgARkowArURH/eKGOFrvl2msm0MW8sG9eN5y1UZ9u4bdzBM28sLhvTxryxbFw33nxl+qpz27iD6/T17q5lY/cd6xTN6y+T3XesUzSvwEx237EO0bwGM7lt3MEzpSwuG9PGvLFsXDfefHXz1c1XN1/bfG3ztc3XNl/bfG3ztc3XNl/bfG3zbZtv23zb5ts237b5ts23bb5t822bb9t8++bbN9+++fbNt2++ffPtm2/ffPvm2+FL17Vx2Xj6ijNvLBvXjaevOtvGbeMOnqlmcdmYNuaNZeO68eZbNt+y+ZbNlzZf2nxp86XNlzZfmvojRdPMP2PNqdHMP4unTnfmjWXjurFubBs38MwtY72tkaCvaeaQ2f4zhyxuG3fwzCFjbazRzCGLaWPeGGOM6ua75RDacghtOYS2HEJbDqGVQ/x6dBtjuo0x3cbYzCHzemYOWWwbb75bDqEth9CWQ2jLIbTlENpyCNk2tm1rZ9va2bZ2njlkXk/b2rlt7bzlENpyCG05hLYcQlsOoS2H0JZDqG39u3LI5K2d+9bOfevfmUMWb+285RDacghtOYS2HMJbDuEth/BFG/PG6F/ecghfurFt3Dae7Tx+y3jmkMWznV1/5pDFvLFsPO9XnXVj27ht3MEzhywuG9PG09ecZWPNWOaZT8aW9s0rTpM7eOaZxRhLzLQxbywb1411Y9sYfcq89alsfSpbn8rWp7L1qcjGdWPdeN7XyGm8ctHksrHri7fPzEXi1zlz0eK6sW5sG7eNO3jmosUlWeb4HOuFTeb4XFw3dq9RIdxkjs/FbeMOnuNzcdmYNuaNZeO68eZbNt+y+c7xpn4vc4yNObomc1ytfz6vbfSFzHE11hebzHG1mDbmjWXjurFuPK+tOreNO3iOq7HO1GSOq/ExVJM5rtTbeY6rsf7UZpXjupc5rhZv9zjHkrj+HEuLaWPeWDauG+vGtnHbuIPXWPJ7WWPJ72X+ri3mjWXj6ev3O3/XFtvGbeMOXqcdTS4b08ZT09tw/jZVHyfz96j6eJi/R9XbcP4eLZaN68YNPH9fqo+l+fuyeOr4eJi/I2PH5zbrBssov2+zbjCYN56+5lw31o0t9WfdYPzzDp5xt7hsTNkOs24wWDauG+N+68z/fo+zbjAY7TDr94q514wRn66Z9XvBtnHbuINnjIxjzdus3yvNr2fGwuK6sW5sG7v+WJJqs65v8YyXxWVj2pg3lo2nr7fJjJfFtnHbuINnvCwuG9PG08vbc8bIYt3YNm4bd/CMkcVlY9qYN958bfOdcdR8vM1nv8Vt4w6ez36Ly8aEfmlbn7atT9vWpzO+msfOfE5rHiPzOW2xbmwbz2vzsTSf05xnbV9w2Zg25o1l47rx9DVn27ht3MEzHheXjWljyfud9XxlLBu2Wc8X3PMedcbg4rIxbez3MpYW26zzC64b+72MbxParPMLbpvO5subL2++vPnO383FsnHdWDe2jTdf2bxm7Jtf84z9xbqxbTxzi9/LjP3JM/YXl439+ke9RZt1e8Gycd1YN7aN28YdPGN/cdl489XNVzdf3Xx189XNd8b7OPmz6Yzr8RFP0xnL5uNqxvJi27ht3MEzlheXjec1e7/MWF4sG9eNFdcz3+MWt407eL7HLS4b08bbPc784DzP0fXH1XmO7jjVoM1zdP0hcJ6ju7ABe6KftLmwAAnIQAFWINz8pE1/SvPqvMCe6CdtLixAAjJQgBWoQLgR3AhuftKmPzB7QV4gARkowApUoAEbsCcK3ARuftKmP4TPE3P92XmemLuwAAnIQAFWoAIN2BL9mFx/CvcquUACMlCAFahAAzZgT/STr/053+vezB/zvewtUIEu5oPWz8Ne2BP9POyFBUhABgqwAhUICz8Ft3tf+Cm4CwU4FLo3n5+Cu9CAQ6z7HY+f2olesRbouuroCuZoQFdojq4wInaed7tw1Bz7yubc9W4hA0ehmi9TzkK1hQo0YAP2RN/4YmEBEpCBcCO4EdwIbgQ3/zR+fHHW5v52CxkowApUoAFdlx17om+HsdDdxJGADHQ37yHfDsMX6ub+dgvdzXvIP41f2BN9Xyxff5v72y10N+833xfLF8Tm/nYLh1vxJvHF3YWW6LHpD0VeRxbIQAFWoAIN2IA9cfxYBsLN4GZwM7gZ3AxuBjeDm8Gtwc3D1B8ifUs68+c635IusAE9GLzN/AjrhQVIQAYKsAI9yLx9Z5gO7DNMJxag65IjAwVYgQo0YAP2xBnSE7NRvY4rUPMa/HdzIcQKxAhi/ru5EJdOuHTCpRMunXDphEsnuBHcGG4MN4Ybw43hxnBjuDHcPGLLxOzCuVHd+CizebnWHA9erRXYgD3Rf0IXFiABYVEFWIEKNGAD5pj0Aq3AfObykqz5zNU1n4K6GrAB85nLq7ECC5CADBRgBcLN8imoWwPmU1BvF7AACchAAVagAuHW4Nbg1vMpyAuyAgnIQAFWoAIN2IDxzNW9DiuwAOOZq19XPHP1q1zAAiQgAwVYgQo0YEukeObqFxUgARkowApUoAEbsCdyPHP1i+OZq19cgQqMZ65+cQP2RLmABUhABgqwAhUIi4qb94A0vxwPyIUVqMBxvTYVGrAnekAuLEACMlCAFahAuCncFG4GN4Obwc0jdszhdS93WjhDb6L/NR+eHnoLGSjACvSLLI5+OTTQg2xhARKQga7rweBBtlCBBmzAHuj1SYHuJo4EZKAAK1CBBmyJHpvjdbt7JVIgARkowApUoAEbsCcS3AhuHqbjFb57aVKgACtQgQZs0eq+8dtCvoDZWV6BY2Pyr5f5CFgcCchAAfrzg/fFfAScaMAG7InzEXBiARLQ3fzK5iPgxApUoAEbsCf6WJ/35mO9eR/7qF6oeUPzaXBiA/ZEH+vNe8jH+kIC+qV7B/hYX1ihALcOtw63nm5eIBNYgARkoAArcFr8z//8w29//uu//OHvf/rrX/7p73/74x9/+8f/zn/wn7/94//579/+4w9/++Nf/v7bP/7lv/7853/47f/7w5//y/+j//yPP/zF//z7H/72+LePZvzjX/718edD8N/+9Oc/Dvqff8Dfvp7/1cfgbfHXH6NXOCUewflBpDwXaePZzSUez3oQMP4gQIer8B065kU8ku5TidONPJa2UuOxxHQ9vRF5LiJjGc8lZLsK+9ia9fnf5/Eb73+fO+ECqt6+CyYOifJYfn/eHfZchKTHbdBjeWyTsLsSjxuJxuTH7CYkyse26AcJrtkWFQKqdwW0xMB8zJOnAF8fBcphXD5WYnNsP9bunmvQqSVGqddqCeOnGqfG9DNup8TjbfNpY5bDyCSqEWPEvA2LR8B90Kjv9sjxRjoUrvb8Rg4aVTn65IHQqP2jRDt165gGW91a6anEYWz5r7ErtD1jVbmt0CRu4zE/81zh7m3Y89s4NaZdEaYP7M8kRrHN82Qxft1XspDyVELebQo6jEy68heEHj8AqSH0UUIPFzHeJeZFdHt+EYfG7P5d4vwZezw+I9Kp378RL+paN1LL0xs5DCxqmXmvpwLnCOuag6Lwsx7l8n7SO2kIUdyIkD7/CWE+JnDKENlag0r5qHEYnbVFjzyWrDeF6/7A4JIDg60+HRh8GJ6PGaoYn49pqU1DP7XG6XfdroySx4JYanynTyyC/fGoY8/75DA+Hw/p+YTyeIHYND49Zp0ecyo15D6p+0/Jx2cUKe+PDqF3R8f5XvTSvIzHEvfzezn9vvuq9Uoc2zPCI6F81Khvjw99PwUeNW5Gi7T3o0X6u61x7tkueH7s+zPTp56tp1zq9Rczlz7egLee/aRBp98EiSFGbc/H7dOrySGXVt9mYP4slC1aftE4XUdXzh+n63Adh1E6jkeMkLNiTzWOPfP4fQqRMs5zf94zh3yqlCNEmfS5xmGkin9gODNqIXpJo3o19OoZktfuhTk0xhnwTzW0nB4cpOejub6o4TOR6+HD6DWNhqfax/Lu83x6HCF2tRwhj8f951dSf9dfByv58lfGFu/Pr8NOkxutck5uPFZrn2Qzbb9rPhz7feS99Pq8Z+z6Xdt0FE7HdTwW4J8/Pdgpl7G1fKPu+5V8fGUwfrdNj1chOctBItfTqzg+kVnODTymN9vTJzI7/GpT5Z6vgR/i9pPGYZRKy7cGaR809LbGYwYyc5Ds01+fNfr7z4Xt7VF6btGWY0OpvNYrytA49Eo7jFHxrX3WL9SHp1P5xnU0/O5TfX4d9TS12TMhy4dR+vE6mp5msPKXkrnZc43TdciWkMtB45RLuQgmTfSlNuULU6xXey1q+coppMcV2VONfnqL6pQD5MG9P8tip+vw76FWvxzGej/lUt9HbL0Bffid/Dj10Q9vUWOHy6UxNgd8SWNUj+d0Vi3PNfT9DNTt98xAj0dCy14xe22Ecb6JsVB/quEbrbw58Xy6DMk3MdZ9+vuXyzitMm0vDcx7z/I3RPwwmTlMH4v3B5HDGOstnz16355w+dOvnO9G8lTE4m769nj7iL/7IVfzQfvxS/N8qPsmJIcGyd+oa8unn6exr0M+5Zz+lev55K3vPfJ8gaTkPDaZbO3xaW2inJ4sH/PQGbgP5qczD8cx8nioy0fL2g9j5LTwVIVioD1WM/vzFZ/C73fOaenpZuecVp7ud47+SOccZ8er4iX36XrH6TEXK1hiWp+vgp2Wj/jKXxl+rBk8D72jCF2Z4InpuQiV91fTiN5eTjtJ3FxPu30nhwW12026V0N8q1+KZB0AHR4hymnV4f7idXt/Ied8O1XzKfP0ROSbGDwfIvkKMfYffp7OjiKNomHHfq8HEXp/wJ8Wpm4O+JPEzQHP7y+bFn573bSc1qW45Oz040Vgn63nF3vlELzn4ZHT02Mr2NfG2NgxKft2f+f+LHJcmqqSL7u2TZR/fuY9x13PeZ3HFPfhN0L4/dF+Wpy6Odrl7RqB+3fyanrvubou16WHJv2B+hN5vwBF3q9AkfZ7N2nF8+HVXvvFlKvkJNUlh36pp5X+m6VFtb7ft1Xf7tuTxM2+vX0nh749t+i7D8v1ysXxx0LuoWTstCCkxJqLW3xIyXr4geml4uXhep6Rz+1haI/2Ypveq9kqp3UpkmzVx7umPNfQ90f6aV3q5kg/Sdwc6bfv5DDSjy2K2elHi+prGjXf6R7LKU8Lr8ppPaj2nJ2uXfuLGllDfNQ4j7BbZYG+/8Gbo+MkcXN0nFaUbpbk+U47z+svbtXk2fuP6qc1qZuP6u2USUsuKGnZuvWXR/X7IvqiiOT6vMq2dPqriLzbL+d7QTVKaa/eC+UQ00fkvyqS4aLUX+0azhIO3af8fxXpp9npfAPq+0j7XMF1FrlZSnYWKTkHMj4OelGE8tmy77Nk3xO5WdVWTktLd8vaSn+7yu98HUYdSwd0uI7bIv1VEXw6ZL2+JjLOFcaz3dUOMucu7hHFXbbXh28ONsFgq/qqSC6YPUQOAXj/F/zp2xBdx/VUzNk9/806PzHfKkanS99/OTyL8JWz9kztIHKsocqOeSxjHO6mv/3cTeV698nqKHHzo43TCtXdrzZOC1Q3P9s4rk/dnH683yvP3yG+GB2KzNzkJQ32XR7XzXR7VeN6W4PxaMXbz/f3NBRVIe25xmlN5+b70Bcat96HzvciGGSi7X2NF8fY4ycg16ekPe/b06dSj5fprST1EHXHC7GaA+TxM/H8QtoPdG77nTvXCu7lELinT2vmqYKzUUdVyouN2nPhsB1G2Wld6d5yPZ0+mXo8f+a9dHv+KnK8Din4lpoPzXH8zc6FR+F9PedbP/z7R92FXxXJESJyenrg9v6KLp2Kn++u6J5vp3N0cC3X88IBEvqJ2+Hf+XZqSZFa5HQ79c1n3fNlSA7X+shFh8s4VZeUDN+t3I4+fbpP8nal//kqcsJ9D95frqJepxvJGVWhrfRI70uUq+VXLeOU1Os1kV6xuUTfHna/J4JPH8q+cvidRs1P/KQfuva0qPMDEo8fqo635Vae3spZ5G7P1J/omfoDPXOMXN0eIj7s0PCN8NeSd6OP2eRXRfL57nFNL/7kqeSziH4oHfyWCOe3wlrtedUPaf2B34jT+s6P/EZozdLwx0rm6XZOv+C1Xxk7tW+Ped+4EuMshjSWw5WcvqK6OxNh71f+kb1d+XeUuDkTYfL+TMRxqenmBhL6AzMR9n4V4xej495MxEnj7kzEFxrX2xo3XzTb3RXR+lqb3p0ROWvcmxE5fb9096X5rHHvpfl4L3Ll+BB6vnFMa7/3ddybmbmt8WLM3Z2Z6fQDMzONfmCA0O/cMTdnVY4fUt2dVTlfyL1Zlf72FyrU+w/MqvT29qzKFw8xjA1LepUnDzF8/AxqGyFDpL0icvMV8aubuXcdxy0pslrXLj3MH+ipJJxy+gDPH/ytF5nO24tMfelt6PEXO0RInzZHf/+V6ijyI6//d1vk+oEWOX5GdbdFCr/bIuflctTa9t7Ki2vuPSdEHyLPV//pun5izf0oo9hMSps9nQA4SuCVTDvZaxL5vY72+rRnzoU3WdWpfL1cR5Q/VA+RQ/XO8SOIntVZtt/M9z606fngbr0/F+HTZnjF8gv3Bz59iGB6v0qV6e0q1aPEvXdUPu7rd+8dlfntCkA+bu138x31fq/YoVdOowOfYpTen29TeNzb795j6hfXcesTWT59RHXv6ZBPH1GN37e4DDl8Inu8jntPh/zFVpwXhml7qUmp4Pvn8vzJn09fUN1s0uMC1c0H7uN13GvSL74oy50tWmmHvXuPny3f+vLgvNPrrY8GWOz9dHxanrqZjk8SN9Px7Tux1xr03jcDR4l7nwzwcWO/e+/7X2jce99/+yPB4z6rN+uOjxo3K4aPGjcLho+7YN4ssb2v0V/UuFdgy/ojz/rHXXTvldce7+bmCDlq3CyuPe9x+gP3cnOknu/l3kg97rV6c6Te1+gvatwbqcfvWW+P1HOr3qvhvr+t+vPHKHu3IuW43fOVQ/3x27+vNH7edNqO89pYsyhPJwuPEqjj+rBt22eJt6eTji8+XfHp94f9QD81RvuBEyW4/cCREvz2ZNLp3UlzKz3dC40+t8ZJIZ/CdKvKp+/s716vnOCrW6XSL/u7H7cFIDzIbZsC/aJxWoi6uwneeXvUe9twfrExOl3b3TzfDJhPe/rdjNmjxL2Y7W+P0dPLFxn2BDR7Nrd/ege8N8qPCrdG+XkzkHuj/LzX/c1Rfl6BujnKjwfR5Heb9ODtQvi+Rs02pf2kpl80jpHi58KtFmnX842V5eJ3I+UscStS5LQAdTNS7jfHhzrn7+xVL6j52BYG6WWN9r7GXoD6nT3zDfs7WzvsM1+OB2bko6DQdjO/ipx+7yknXngPmW+KcK6mE+urInjyILYfENmqrb91CMCV6wt69fJi52w7z/R+vdrDueYiXJ63692jFa6uL7VI5Ty+ru4HGvyicfeoifY8bITe/6pP6JgSL9RKkR4u5DShVPMoAav71x/tk8bxyLOG3LwvmXy+jtPm133bZWD/WOKzxnED/ytXGR687xrZvtOsuR3Phw19f23Wo0jf6tgOg+R4ukLJQVKUTj++p1eyWy+4X1xHSozrOJwjdHqF6FnpWK6ylUvbx2er4zkgUuJJ9YHPr+N4Dgjn5EX9uF/zd87wQCrSpq9pYEVszC0fHqxOPSO5J8aD5WUVnBOlcjjn5VSEfu8d4Khw6x3gixM8tgqSfpWnj96ncVpyjn2civuSBM686UTtpddczi1SH2z9tZ61bf3FajmdmvX25NRZ4t7ju7w9OfWN5qDXGxXbTlZ+MegMr2cP1uu5Sn3/zaq+/2ZVf983q4/NYdfLXWObSnmqcqpkvZfJjgr3ZjOOp++UfBN58CEni74/tXOSeGRD/MaYPv0I7QsR284DsacfoX0lsp2MZO2lvNoIjyGND8F7+pjmh85GonxGpL0Q7Zezke5qFHpNowpOstbyksbj+nMX3evDS9EnDXt/xv54slGpuTsptT3+v6HBud5Xef8+4JOGnD6WupmYjxL3ErPpu4n53Bj5tltl/zbgl8Zop4mILHzQ68PpSJ9FDr//FV9Kluvpm935MlD5WT7sS/ydeym5/+3jvai8KpITzbovS39XJD9ALS+e4nX3JLD29u9le/v38nga2c3Z//OJZvdm/6X9wOx/O27FlZXSch0OE5P3V6fk/dUpeX916vi5J3byZXvxhDfGDssPjecHG8kXx03dWpWW/gO/cceTnjRPM9TtAebX6+jv30y9rp+4mdOzVMmkXOjDtiL86UpOjx+YPNySmH3nxCnFfg1NXzxx6m7wn4+tsjyTrLf9+N/yHRGcEtnbvgXtN0WyiKvtVezfOUDr4YA9LLbfy89HaJ2vpF84yotevZ2u+K5nL/7+jsgjMLNlH7wdJvpZpp6Wd35I5kMNOD8/n+wsgkUvou397nsirPmmuX90/Ws3n99mclVEyvOz42p5v+b4C417RwueRW4+k3xxJfceSir9wOmT51PO7n1oVOn9c1Lq+yXQR4l7le337+R0qMfx3LhbH+fUH9iZ73xwnOaOyQ/cCkt/OTjuuGMyyk1s/8X5jsjd73POV1IZVaH6+jl42wZOfV9v1u/IjFN4c0VC1F6WybNwh+Rh8+VyPn8Bzbsvw3+reQVzivti0a8icnovuPXBTzkeZXvrG6qzxr1vqOr731DVn/iGqv7AN1Tnrs2F3kcv84uRUy7ePigXfnXI47jjB9vLAVhQ61k+fot5fefZEen+urbdvn55XJP+7jv5WeLWO3mt5XeVuPmV/blFGz6Q32bQPzdoL+++CNf6A3un1foDe6cdT9WumZsf6yPP97U8nqpd8tjkxiSvadR81WqVnu/kWvV6d6CfLyOfwFs9HMtXld6Ot6PEvWBReTdY+vH4yJunpdu7s7RHhVuztMcptJtvROdpuJsvRKcF2vsTNfb+C5G9f0yqr328+UJkbx+Tev9ODi9E51PO770QHResbr4QHY85v/tCdBS5+0J03iXo5gvR8UpuvxBdP/NCdP3MC9H1Iy9Ex5a5+0J0FLn7QnS9veXYMXruvhAdNW6+EPXr7ReiXn7ghahf7zdp/4kXoutnXoiun3khun7ihej4LFDzaeLDlyPfeZrIFXCV56vG/O7Tvx432Lr59K9Xef/p/7Tky5T7SfF+uN3nJd+jhuWyMfcP1eL3NeTK56JH+Dxfetbr/UNxv9C4NwN/Frn5vPnFldx74NTrJ8oCjidbbDV0xZ737+nUAsWO1qr6mkbN4Cc1eT5GjnPfdyPveCjV3cg7tkg+c5Jderib44vNvS3Lj/sIiOLjBnt+iLOW989O0/L+2WlKb5+ddpS4906iP/CVldLbZ6cp/cDZafd75ZBUy/tnpx01bu5Y/pXG9bbGvR3L9bRn2M0dy8/XcW/H8i80bu1Yrvz+BlVfaNx6dz7fy70dy/W0N8zPXMetHcvva7wYczd3LNfzF1r3diz/YrDfHCDX79wx93YsVzlW4dzbsfyLC7m1Y7nK23tS6nGPvJvvusfruPeu+9UzzK0dy/W4EfTNncL1/UOtvryZe9fBtx6m+CJ6/rB8vfuifC6OvvOifP7AA9OZte2T/9/4SETxoYl2fk2j5XemtL+gfu9DEzL0yfN7kdPpL3e/VjmK3NtV+yxxa1ftLyTu7Kp97BXLSBlT1q/17AcNeVGDoMHPO0X17U9VzxK3VvxU++8qcbNw/tie+r9++/e9PtlejvuLmWO/jlc1Wj67PPBVDWxBfdR4O5vb29n8i6/LC/bWpBc/UM+S3wf2pz+O77bE+XP/Oy1x3ELBSn68ZB8+HfjGNgwtZ/dq4/KiBnaVaf3F7SAeQzI1Xt2WouXrykPu1W0pCt4S6OX26NB43i/HrT5qvvJINf4Bjde2C3lMU+asnFZ5UaPlW4IdxthRw/LzR2n10C/HGiPNHxWzfbnzU82VfwvzvFVztD8aR54uH311JZZXQqcrOW7Xjo8XdZu+4W9cBxbpzbaw+/U6Dr/VhpNArdLz72Ts+DEVttnaembsHnJ7iDS8jPbDDgp2+gTj7hCx02Z9d4fIV1dya4jYafHm3hA5X8fNIWKndfX7Q6T9nkOk4pimup/S9MsQOa0gV2r4xn7/uWufNE6vLUZxL48lpPZM43wvmr92+0vcr/fCP3Av8vveC041fuBrv3aVsyLm07YF39AgXMe+bfvLGlpe1GjYguG6XtSwfJKh9mqbZq1E5UO8nDUYGvL8CeK8H2x+REl7ecDnvVyN3t6S4ixx68XWThv9/YDEze2GTu3J2PKE7Tq059sbUpyuQvB2vW8i88tVnJaN72Ywprcz2Hm3YUKNIdWn93LWqDinRZ+3h1zn3WxubntMb8/tHSXuze2dJe7M7R231b71ln7emPvOW/pxA/tb13DeAv/WnMnp2IubRzqeNe6d6Mh2POPy9tkZJ5l74/MscWt8fiFxZ3yeDwG6eQjIUeMHjpq5OT7OGjfHh/7M+ND3x4e+Pz707fFxeNN45Oz8mS57Lv/0ynOWyFWFsmeP70hg6Yu2T/8+S5geX5o6HmhflMj3Yd2WvL9zI/tGD9t86XckNJ82Pi4DfkPCcnu1xzrPa51KWTz4mAB/TYKzNPTRKuW1q8ByJl8vNacIjsv5sI1gv6tQsB3ZY1m6vXIRpaDUdt+M7DsSOKrrga9dRd3OZBF7TUJRItf6azeCc6yZXrsRzqz3SF+v3YiiOFbttavAfHGx/tLgLB1tsU/jf0PCcsnNRF8R2H5T62vtcOWrzYcd4X/JvKezpN4P056rCJ1eawjsXWT1zZZ8TeDxMpVzMnWfj70vUCGwP6jdFlBUsO1vAt8QuDMbfLyFlnNsdT9R475AVp48tF4Q6NjXa3so4y63BbIT9key7whkMVHfP428L1CugpDc5qG+I0G5WlpI+9sSW479jgQO4Cj7M8SrEvupNd+RqPi92T+C+E6PVGxGtp9O+R0JwQYZym9L2ItXgW9Uy2UvSuCB6nptXJTtGJL9rfZFie1n61sSGaiFrutFCYbEawMcxSqF6KUbqdi64IEvpX3URezbJ9wWuHmodzutEt38qqad9ue591XNUeLeVzX37+R5Vfzx5evWmd7Xcbr5zpHejd7/+uMLjVtF9fev47nGcXzu5+CW51fx9rZ67f1t9drxGKh7X2y104TgvS+22mlXvc5ZWdbZnh8b3U7rQ13wpFSv5zN5jY+zJRc+2dpewvQbbVryAIdHMi5P25SPxZM4neu5wrFJb54qfha5Odf7RefeO1f8LHLl5M/jNfl6UeTm6eRftMm948nPY/Xm+eTfEOmvitw7ofwocn8a/Yumvbc8cTs1P/3IqMm7R5SfG/Xm+sYXIvcWOJr8yALHUebeAsdZ4tYCxxcSby5wFMO3X2b7lg0f9xZo58+U7vxEnCf6cva2iz69iqOEbB+x8UsS1nCy94cDjz63xXnj5lvbCrRTxc7dbQWOa0ZZwPThAOdfbkaP08CGGVi18vwsibMIN4hofSpy/nZi+xKOD7dzqrWDSG3bV85d72so5wScSnlRwzemWPUEW5nJLxqnL5Rzj3798CHb9Z3LyJfKx2X055dx2hKkYnP9Ks+n0r4QQeDVxgeR090YGtXq8445fpbHed4A8/ZLN2Zy7otI7mD1mBg7iZy21LtZBX1sEpP8ntb25/9fmuR4tG5+qLif7vnpp/909km1PKrsMeG8rV3I58s4fRN3GeJ/LzKT77RHycPTH+vc9rw9Tg92qFR7/F7sF/Lpeer0RS12Barb946/SvzEUG0/MVTb7z5UtW619vy0a9rpuxDNgSaPZHC4m+PuntjWT7bfqv5pxLfTHnYd3/Vf228E9U8/VsdtgXCm9WP2b9/57fMo+YF9JL+4EsHk4z4t/vlK+vEQ6HsfU/gnJO8tXh37him3wuO9WvWXvjl9tFNxpEy99g2obj+eieUmx2LcX3lcFTwkisnhcbX/xONq/4HH1a8eE/Eooc9P6OzXDzxrHkXuVXcfH1fvt8ixkBhbr9YPX/592qz4tMs5Ya2TLn7+8VA/HyuVC2N0tZOIvp8B+ukzpns1AGeJW2vw51u5+UVWL8fSlHtfZPXTZ0z3vsg6j9WSN8N0PX9T7MdzLNSwd0K/DjfzA99k9tP60r0Rcn6VyH0g9LBgeHw9u3kk5VHi1m7n5xcrbNtePmxR+q23s11Eni9pd3r/I5FO738k8sXNGG7G+MUWMexTtL9qvi5yKHnop5WV281qv3Oz7jdjr04DGGEukl/tm4apxEblB0QOV9JPK1Z3+4b5d+6bVnEztb/YIh2vvZ31B0SkHZrVfqBZ2+/crPvN6KtJoONts5cX++bxXJfF6NdpDu721Ffjl2et7r3knU+TuPlwdVyxuvtwddxb797D1Wm6qGPfdbSp8P2pooL9kovt52O/PFl06tz2E53bfqJzK/1A554WrW52bjuXdUUm2muyP/VMP53+JJhbEd533fk8r3m6jpbvic34cB32A8/vp2Wr28/vtb/9hneUuPeGd7yVu+NUf2Kc6u87Tns+wPdt8+dfxsdpr6xaMPO2F2J+b5yimPPaD9f95UJOA3X7hIwPh1N3/YmBqu8PVH1/oOpPDFT7iYFq/Lv+Wt79seunFSvqOGxorxL5VeR4DEXHMRT7zm6i96+E8WDGHzYJ/uVK2g9k5lPD3h7w7e3vb84S9wb88VbuDvjjY8jdAd/k3QF/HiGosufSDynxeGQKdrWVzvziWKWS29qSna6k/UBybj8xVvv7Y7W/P1bbT4zV/hNjtcv7TxGnlVHONY2yb1nzaWW0n85OlDywULZPQsdn8bclatYi7qX/35PI49LqvoL/HQnNr6Y+bL3zqkR9UUJR8vJiW2i2hb7aFpY3Yq+2xS7xYlvsNaovtoVlW9irbdHyRtqrbbFLvNgWLb8WbvbqVWS9TWsvXoUvss7XjlfbYpd49SoaCo+fj4tzFcXNgzTPIlSwg9rxIM3jsQKKGSWrRxU7lQ7Y/5KGmcs3bufmwZVHkbuHi56v5Obhol9UltxaNTxK3PpK8AuJO48c5zqbm48c5aIfmD59qLw9f1ouOp4Hem/vm4fKcSvGO5vffKFxa/ebL+7m5gY4X6jc3MDmXAh15bPYY9l/u5RPhVDz7NB3H9YfKvJu9H2hcSt2vrib28HD9hPBw2/vtftFrRtOKKPtS6Zfu/h09hOXXAx9vK7uv8KfRU7n6e5HlW9lWZ+2IH2IHLcCzLqMfYvab0nkZ4Ta2qsSOUaup1fxRflgLsfU68OT5ufLOL1K1Swylb1A5A2R/kzkdkXlvlXu/zLKjqcLYsl9/ybyl9s5ndukV35DrGU/oPQXkdNQ3Y85LfVqPyKzz3frd166sa/VsRz5tMbUa66YX9tm6J9X/x73c/xuP/JR27975c9ne9d7L9773jX8eaDUt59dv7iO3MvoMf5PGv0nsvyp6vXuI9LptIv7j0hK7z8iHTVuPiId7+bmpnZfqNx+RDotel38v+fpXwLneJyT5IDdbudTAD8kjgXWeYzI/imf8jfupVzYnJ1P93I6POj+496p1uTuo9rxSm4/qhn/RBDb+5Ort79vlOffN5brtGpVGs4cbFtd06cvtc/1s/emvYv8SN/8SIJt1+/aNx8/GaFD35y28Lu7NvJQ+ZH3rfYD71vtB9632o+8b7Ufed9q7fcdKJzNyvzhiKRyX0TwXi77Vmi/jrbTNNDPqNzb5OALjVu7HHylcWebgy8mTW7ut/vVBM69p5MvpvnubAf2hcSdnSjP86aSKyaPyVd+cfJV8pGeZN9U57PI8ePekjuuPP7e8y+ESzkek5Q7veIyPldanuuksV1d6y+Xn+cEw0Pk1UL4ZvgZP+wM+UU1/YUPlQ87EX7xuQS2M7Tr1SvBR6gPPTqIHL+GuXMEw+mrPspTv+XDrzjLp0FW7s5jydOt0h4adJrruLUT30Pk+Nt5Z7u0s8a9/dK+cTN2uplTs3aETe98EDl9GXBvG7uvrgSHtF7bFNKvIqfjd28dyv5o1vNG97c+3f5C5ebS5Vnl7jrdF9dyc6HuC5W766jltMD1eN7YtuXu244Dn3eB+lIHGfLB+qpOEexf9Pjds9d18EXJQ7OedK73l3e/ULn5dHCOJskNXGXb1/d/yVKn+SBsqkv7prrfyg2PX5AMycf79XOR0zrV3dzAp17uddvsat9Njb9xJXfb9dzD9x4ivxq1F+NDmX3+47ujv6BhHr8Vr0djwVkQD83nUXQdh9ydnUTnRstPf6FvbSX60DgVZpd83eCP93J7/+HHf5obxej+5V677kvotiVCeV+iviaBfUR138ngGxKG5rR94uMbEi2zEe9nXH/rKnLSg23LRS9LvNapLWeVeS94+5ZEziNxk9c6teVv5wP7i1eR46Lpi52aB5488KWreKzkYNO+LWV8R+JDhQk/lXhktdNqLOEIGdqnj75zQlJ+tkBqr91KLk4T6/WaRA7xxwzNS1Eypnkwb8QvSlyQkLcliF9sTkxdUXvtKhhtUfvbV/Fap0oGyb6q/p2pAAjQSwL3Nl88FSrc2h7kJHBrc5CTwK1DMa/fc0Lm1jZLp7dSnIVT9NprAei2hOYy8WM1tb8k0Spm/OprV9Hxide1n3JxX4IunH774fn5G1eBCvqxE+5rEh1TqOWlG9kPDSn9tavgrIcocslLEpLP3aVupQyfJR5XeypVef9wPc4wLWyvtYbkTnOPN43ydoN+lvi/j//7h3/509/+6c9//Zc//P1Pf/3Lfz7+5v8Msb/96Q///Oc/rv/7b//1l3/Z/u3f////iH/zz3/705///Kd//6f/+Ntf/+WP//pff/vjUBr/7rdr/c//aY8H7X94PCfW//sPv5XH/+/jvfaxil0e/5/93z8eNh7/kYx/P/5CHVvNPf7H/0Lx/+KR8x//0/7v/4xL/n8="
4401
4405
  },
4402
4406
  {
4403
4407
  "name": "verify_private_authwit",
4404
4408
  "is_unconstrained": false,
4405
4409
  "custom_attributes": [
4406
- "private",
4410
+ "external",
4407
4411
  "noinitcheck",
4408
- "view"
4412
+ "view",
4413
+ "private"
4409
4414
  ],
4410
4415
  "abi": {
4411
4416
  "parameters": [
@@ -6312,8 +6317,8 @@
6312
6317
  }
6313
6318
  }
6314
6319
  },
6315
- "bytecode": "H4sIAAAAAAAA/+xdB5wURdav2Z0ddmDZIecwJAEBQRBFBGHJWcGciSKKgAQlCSsZA5jOO089PXPOOZ0555xzzn6m09Pzqzq62LdvX/d0Vb+u2Tu3fr+3PdtV9f6vql79q7q6ujshtoQm3vHoGfNnHbrkkHnzZx09ZeGMQ6YsWnjYMbMWrq8lxKfFW1IkpBR6xwIpWXROH+Hv+kS6hlIGo3PKinJ0rilxrhWhrzVxrg1xri1xLktgtCPOtSfOdSDOdfR0JkWIkPCOWe/Ya/qE+e9uf17XW3cffvNxx+17UJc+n4xactu8U4a++8Np38j44wsr0uYI3aPgnBAeJ1J5TsyNUwB1l4iKilX/q/pQx07e/yd4/yu9Ot1J8vcmKZulnFxIK8+KcMVraFC2U8LWYWJiOXQglW+wiGZnRxHezlPDt3UC2knlw+2fS1+hgZ1JUUEuVRQZ4ibCp60IyoBagscAk7QQ77RCqMEQUGU29aTTDLzj9MLwrbnVKGFWhtMLzfOdbsBm1aGR/xSlkf9kUUF/Mmy4SoAifN4zwjfEdjb6VTjdwslNMP7saGj8S26cIqgbD41neH7wZ+/Ywjv/FzA0nil//1XKWVLORkNjIbI3V/FaGqQ908DfzrGsb1P7Oxmk/auB/X8zsJ9qx3O89vubdzzLO54N2vFc+fs8KX+Xcr53vkDQJKZDVoQzKQVs0XkukBgXSrlIysVSLpFyqZTLpFwu5QopV0q5SsrVUq6Rcq2U66RcL+UGKTdKuUnKzVJukXKrlNuk3C7lDil3SrlLyt1S/iHlHin3SrmvsLIt98v/H5DyoJSHpDws5REpj0p5TMrjUp6Q8qSUp6Q8LeUZKc9KeU7K81JekPKilJekvCzlFSmvSnlNyutS3pDyppS3pLwt5R0p70p5z3Oy973jB97xQ+/4kZ4r6aOquGJ07kLi3EXEuYuJc5cQ5y4lzl1GnLucOHcFce5K4txVxLmriXPXEOeuJc5dR5y7njh3A3HuRuLcTcS5m4lztxDnbiXO3Uacu504dwdx7k7i3F3EubuJc/8gzt1DnLuXOHcfce5+4twDxLkHiXMPEeceJs49Qpx7lDj3GHHuceLcE8S5J4lzTxHnnibOPUOce5Y49xxx7nni3AvEuReJcy8R514mzr1CnHuVOPcace514twbxLk3iXNvEefeJs69Q5x7lzj3HnHuQ+8cDHiylmtATYC0OUJCEXLItJUzGtr0cXicBPwni46VY6uGCyrhBCe+sLJNgYkvQvYHJb4YlzUg8SVV6sU/8aVV69A38WVEffslvpxqG5/EV5DtSCe+km5zMvFVPv5BJb7az5eIxNf4+l3VxNf6+2iVxNcF+DNOfH2Q76PENwT2k8qJbwzuU5US35Sj/8HEN+fqqyDxLTn7dUXiW3NzwNbEt4XgC5349jDc4iW+IxQPbUl8ZzjO+k/iu0Lym0p8d1guTGyZ34RKKxPfY8Cx9xaG5+5PHI0Rn+bGqQV14wtBNcYkPHvVUV8IKb063Wfy9+dSvpDyZWFl5e2QvT60tjXcbzDWPGAw1jxoMNY8ZDDWPGww1jxiMNY8ajDWPGYw1jxuMNY8YTDWPGkw1jxlMNY8bTDWPGMw1jxrMNY8ZzDWPG8w1rxgMNa8aDDWvGQw1rxsMNa8YjDWvGow1rxmMNa8bjDWvGEw1rxpMNa8ZTDWvG0w1rxjMNa8a5D2M4Nx6SvLcUnTfjZc8sR7BvZ/bmD/147sf9/A/i8M7P/GwH5qvP7KG5+/9o7feMcvwXj9rfz9f1K+k/I9Gq9Nb2J8a1C2HwzqjCrbD15Z/s87fucdvwdl+1H+/knKP6X8XMh7Z+3DkGX9+vff/w3xfimMAKgymyxWKPBfDCr6XwYNaFuGfxWaTVxVGf7laIL8a3icZBSc33LjFELd2Pl/9epQy4/e/78B5/+3/P174ZaMiWRFXmhnjlDt26sgGRqnkKpHlV8dP/LK+G+iHgvlj6SUIikptKXKlCBPNehftcKXrdKmGJ0vCc5VyWBo97mGA5E+DvZ+F0tj0lJqS6kjpURKXSmlUjJS6kmpL6WBlIZSGklpLKWJlKZSmklpLqWFlJZSWklpLaWNlLaqvFLaSWkvpYOUjlI6SdlGSmcpXaR0lbKtlG5SukvpIWU7KT2l9JKyvZTeUvpI2UFKXyk7StlJSj8pO0vpL2UXKQOkDJSyq5RBUgZLKZMyRMpQKcOkDJcyQsrIpNcYatW5QERvjOKkXecSRjiJSraO8hx/tN4CpT1LRfyIzqlEeInddEoFC5mDbRKjkuF71WjLyjO9RWBi0xhoU47EsJ7HeHVvMq0xsTuMLTqMTUYAVJmrUGmOjGMN6HGcQWPYlmFckujJOTKOM3RGU6YY7dklzPKxslU6D2w1wSvzbpitJhBstRsDW6UN2GqCgTPu5oitTGza3ZKtdo+BrSZYstXEZATAiRZsNdGArSbFzFaqDJMs2GpSzGy1m2eXMMvHyla188BWe3pl3guz1Z4EW+3FwFa1DdhqTwNn3MsRW5nYtLclW+0dA1vtaclW+yQjAO5jwVb7GLDVvjGzlSrDvhZstW/MbLWXZ5cwy8fKVnXywFb7e2U+ALPV/gRbHcDAVnUM2Gp/A2c8wBFbmdh0oCVbHRgDW+1vyVYHJSMAHmTBVgcZsNXBMbOVKsPBFmx1cMxsdYBnlzDLx8pWJXlgq8lemadgtppMsNUUBrYqMWCryQbOOMURW5nYNNWSrabGwFaTLdlqWjIC4DQLtppmwFbTY2YrVYbpFmw1PWa2muLZJczysbJV3Tyw1aFemWditjqUYKuZDGxV14CtDjVwxpmO2MrEpsMs2eqwGNjqUEu2mpWMADjLgq1mGbDV4TGzlSrD4RZsdXjMbDXTs0uY5WNlq9I8sNVsr8xHYraaTbDVkQxsVWrAVrMNnPFIR2xlYtMcS7aaEwNbzbZkq7nJCIBzLdhqrgFbzYuZrVQZ5lmw1byY2epIzy5hlo+VrTJ5YKv5XpkXYLaaT7DVAga2yhiw1XwDZ1zgiK1MbFpoyVYLY2Cr+ZZstSgZAXCRBVstMmCro2NmK1WGoy3Y6uiY2WqBZ5cwy8fKVvXywFaLvTIvwWy1mGCrJQxsVc+ArRYbOOMSR2xlYtNSS7ZaGgNbLbZkq2XJCIDLLNhqmQFbLY+ZrVQZlluw1fKY2WqJZ5cwy8fKVvXzwFYrvDKvxGy1gmCrlQxsVd+ArVYYOONKR2xlYlO5JVuVx8BWKyzZ6rhkBMDjLNjqOAO2WhUzW6kyrLJgq1Uxs9VKzy5hlo+VrRrkga3WeGVei9lqDcFWaxnYqoEBW60xcMa1jtjKxKZ1lmy1Lga2WmPJVuuTEQDXW7DVegO22hAzW6kybLBgqw0xs9Vazy5hlo+VrRrmga2O98p8Amar4wm2OoGBrRoasNXxBs54giO2MrHpREu2OjEGtjrekq1OSkYAPMmCrU4yYKtNMbOVKsMmC7baFDNbneDZJczysbJVozyw1clemU/BbHUywVanMLBVIwO2OtnAGU9xxFYmNp1qyVanxsBWJ1uy1WnJCICnWbDVaQZsdXrMbKXKcLoFW50eM1ud4tklzPKxslXjPLDVGV6Z/4zZ6gyCrf7MwFaNDdjqDANn/LMjtjKx6S+WbPWXGNjqDEu2OjMZAfBMC7Y604Ct/hozW6ky/NWCrf4aM1v92bNLmOVjZasmeWCrs70yn4PZ6myCrc5hYKsmBmx1toEznuOIrUxs+pslW/0tBrY625Ktzk1GADzXgq3ONWCr82JmK1WG8yzY6ryY2eoczy5hlo+VrZrmga3O98p8AWar8wm2uoCBrZoasNX5Bs54gSO2MrHpQku2ujAGtjrfkq0uSkYAvMiCrS4yYKuLY2YrVYaLLdjq4pjZ6gLPLmGWj5WtmuWBrS71ynwZZqtLCba6jIGtmhmw1aUGzniZI7YyselyS7a6PAa2utSSra5IRgC8woKtrjBgqytjZitVhist2OrKmNnqMs8uYZaPla2a54GtrvbKfA1mq6sJtrqGga2aG7DV1QbOeI0jtjKx6VpLtro2Bra62pKtrktGALzOgq2uM2Cr62NmK1WG6y3Y6vqY2eoazy5hlo+VrVrkga1u9Mp8E2arGwm2uomBrVoYsNWNBs54kyO2MrHpZku2ujkGtrrRkq1uSUYAvMWCrW4xYKtbY2YrVYZbLdjq1pjZ6ibPLmGWj5WtWuaBrW73ynwHZqvbCba6g4GtWhqw1e0GzniHI7YyselOS7a6Mwa2ut2Sre5KRgC8y4Kt7jJgq7tjZitVhrst2OrumNnqDs8uYZaPla1a5YGt7vHKfC9mq3sItrqXga1aGbDVPQbOeK8jtjKx6T5LtrovBra6x5Kt7k9GALzfgq3uN2CrB2JmK1WGByzY6oGY2epezy5hlo+VrVrnga0e8sr8MGarhwi2epiBrVobsNVDBs74sCO2MrHpEUu2eiQGtnrIkq0eTUYAfNSCrR41YKvHYmYrVYbHLNjqsZjZ6mHPLmGWj5Wt2uSBrZ7wyvwkZqsnCLZ6koGt2hiw1RMGzvikI7YysekpS7Z6Kga2esKSrZ5ORgB82oKtnjZgq2diZitVhmcs2OqZmNnqSc8uYZaPla3a5oGtnvPK/Dxmq+cItnqega3aGrDVcwbO+LwjtjKx6QVLtnohBrZ6zpKtXkxGAHzRgq1eNGCrl2JmK1WGlyzY6qWY2ep5zy5hlo+VrbJ5YKtXvDK/itnqFYKtXmVgq6wBW71i4IyvOmIrE5tes2Sr12Jgq1cs2er1ZATA1y3Y6nUDtnojZrZSZXjDgq3eiJmtXvXsEmb5WNmqXR7Y6i2vzG9jtnqLYKu3GdiqnQFbvWXgjG87YisTm96xZKt3YmCrtyzZ6t1kBMB3LdjqXQO2ei9mtlJleM+Crd6Lma3e9uwSZvlY2ap9HtjqA6/MH2K2+oBgqw8Z2Kq9AVt9YOCMHzpiKxObPrJkq49iYKsPLNnq42QEwI8t2OpjA7b6JGa2UmX4xIKtPomZrT707BJm+VjZqkMe2Oozr8yfY7b6jGCrzxnYqoMBW31m4IyfO2IrE5u+sGSrL2Jgq88s2erLZATALy3Y6ksDtvoqZrZSZfjKgq2+ipmtPvfsEmb5WNmqYx7Y6huvzN9itvqGYKtvGdiqowFbfWPgjN86YisTm/7Pkq3+Lwa2+saSrb5LRgD8zoKtvjNgq+9jZitVhu8t2Or7mNnqW88uYZaPla065YGtfvTK/BNmqx8JtvqJga06GbDVjwbO+JMjtjKx6Z+WbPXPGNjqR0u2+jkZAfBnC7b62YCtfomZrVQZfrFgq19iZqufPLuEWT5WttomD2z1q1fm3zBb/Uqw1W8MbLWNAVv9auCMvzliKxOb/m3JVv+Oga1+tWSr35MRAH+3YKvfDdhKFMXLVv/pHUXmbAXtClcQpD9H8t88u4RZPla26pwHtirwylxYJCr3GBWB2UolispWnQ3YqsDAGQuL7CrPlK1MbEoW2bFVsoifrQoMbdGhqCgCoMpsylZF4RsykYqZrVQZUhZslYqZrQo9u4RZPla26pIHtir2ypzGbFVMsFWaga26GLBVsYEzph2xlYlNtS3ZqnYMbFVsyVZ1iiIA1rFgqzoGbFUSM1upMpRYsFVJzGyV9uwSZvlY2aprHtiq1CtzBrNVKcFWGQa26mrAVqUGzphxxFYmNtWzZKt6MbBVqSVb1S+KAFjfgq3qG7BVg5jZSpWhgQVbNYiZrTKeXcIsHytbbZsHtmrklbkxZqtGBFs1ZmCrbQ3YqpGBMzZ2xFYmNjWxZKsmMbBVI0u2aloUAbCpBVs1NWCrZjGzlSpDMwu2ahYzWzX27BJm+VjZqlse2KqFV+aWmK1aEGzVkoGtuhmwVQsDZ2zpiK1MbGplyVatYmCrFpZs1booAmBrC7ZqbcBWbWJmK1WGNhZs1SZmtmrp2SXM8rGyVfc8sFXWK3M7zFZZgq3aMbBVdwO2yho4YztHbGViU3tLtmofA1tlLdmqQ1EEwA4WbNXBgK06xsxWqgwdLdiqY8xs1c6zS5jlY2WrHnlgq228MnfGbLUNwVadGdiqhwFbbWPgjJ0dsZWJTV0s2apLDGy1jSVbdS2KANjVgq26GrDVtjGzlSrDthZstW3MbNXZs0uY5WNlq+3ywFbdvTL3wGzVnWCrHgxstZ0BW3U3cMYejtjKxKbtLNlquxjYqrslW/UsigDY04KtehqwVa+Y2UqVoZcFW/WKma16eHYJs3ysbNUzD2zV2ytzH8xWvQm26sPAVj0N2Kq3gTP2ccRWJjbtYMlWO8TAVr0t2apvUQTAvhZs1deArXaMma1UGXa0YKsdY2arPp5dwiwfK1v1ygNb9fPKvDNmq34EW+3MwFa9DNiqn4Ez7uyIrUxs6m/JVv1jYKt+lmy1S1EEwF0s2GoXA7YaEDNbqTIMsGCrATGz1c6eXcIsHytbbZ8HttrVK/MgzFa7Emw1iIGttjdgq10NnHGQI7YysWmwJVsNjoGtdrVkq7KiCIBlFmxVZsBWQ2JmK1WGIRZsNSRmthrk2SXM8rGyVe88sNUwr8zDMVsNI9hqOANb9TZgq2EGzjjcEVuZ2DTCkq1GxMBWwyzZamRRBMCRFmw10oCtRsXMVqoMoyzYalTMbDXcs0uY5WNlqz55YKsxXpnHYrYaQ7DVWAa26mPAVmMMnHGsI7YysWmcJVuNi4Gtxliy1fiiCIDjLdhqvAFbTYiZrVQZJliw1YSY2WqsZ5cwy8fKVjvkga1298o8EbPV7gRbTWRgqx0M2Gp3A2ec6IitTGyaZMlWk2Jgq90t2WqPogiAe1iw1R4GbLVnzGylyrCnBVvtGTNbTfTsEmb5WNmqbx7Yam+vzPtgttqbYKt9GNiqrwFb7W3gjPs4YisTm/a1ZKt9Y2CrvS3Zar+iCID7WbDVfgZstX/MbKXKsL8FW+0fM1vt49klzPKxstWOeWCrA70yH4TZ6kCCrQ5iYKsdDdjqQANnPMgRW5nYdLAlWx0cA1sdaMlWhxRFADzEgq0OMWCryTGzlSrDZAu2mhwzWx3k2SXM8rGy1U55YKupXpmnYbaaSrDVNAa22smAraYaOOM0R2xlYtN0S7aaHgNbTbVkqxlFEQBnWLDVDAO2OjRmtlJlONSCrQ6Nma2meXYJs3ysbNUvD2x1mFfmWZitDiPYahYDW/UzYKvDDJxxliO2MrHpcEu2OjwGtjrMkq2OKIoAeIQFWx1hwFazY2YrVYbZFmw1O2a2muXZJczysbLVznlgqzlemeditppDsNVcBrba2YCt5hg441xHbGVi0zxLtpoXA1vNsWSro4oiAB5lwVZHGbDV/JjZSpVhvgVbzY+ZreZ6dgmzfKxs1T8PbLXQK/MizFYLCbZaxMBW/Q3YaqGBMy5yxFYmNh1tyVZHx8BWCy3Z6piiCIDHWLDVMQZstThmtlJlWGzBVotjZqtFnl3CLB8rW+2SB7Za6pV5GWarpQRbLWNgq10M2GqpgTMuc8RWJjYtt2Sr5TGw1VJLtjq2KALgsRZsdawBW62Ima1UGVZYsNWKmNlqmWeXMMvHylYD8sBW5V6Zj8NsVU6w1XEMbDXAgK3KDZzxOEdsZWLTKku2WhUDW5VbstXqogiAqy3YarUBW62Jma1UGdZYsNWamNnqOM8uYZaPla0G5oGt1nllXo/Zah3BVusZ2GqgAVutM3DG9Y7YysSmDZZstSEGtlpnyVYbiyIAbrRgq40GbHV8zGylynC8BVsdHzNbrffsEmb5WNlq1zyw1YlemU/CbHUiwVYnMbDVrgZsdaKBM57kiK1MbNpkyVabYmCrEy3ZanNRBMDNFmy12YCtTo6ZrVQZTrZgq5NjZquTPLuEWT5WthqUB7Y61SvzaZitTiXY6jQGthpkwFanGjjjaY7YysSm0y3Z6vQY2OpUS7b6U1EEwD9ZsNWfDNjqjJjZSpXhDAu2OiNmtjrNs0uY5WNlq8F5YKu/eGU+E7PVXwi2OpOBrQYbsNVfDJzxTEdsZWLTXy3Z6q8xsNVfLNnqrKIIgGdZsNVZBmx1dsxspcpwtgVbnR0zW53p2SXM8rGyVVke2OpvXpnPxWz1N4KtzmVgqzIDtvqbgTOe64itTGw6z5KtzouBrf5myVZ/L4oA+HcLtvq7AVudHzNbqTKcb8FW58fMVud6dgmzfKxsNSQPbHWhV+aLMFtdSLDVRQxsNcSArS40cMaLHLGViU0XW7LVxTGw1YWWbHVJUQTASyzY6hIDtro0ZrZSZbjUgq0ujZmtLvLsEmb5WNlqaB7Y6nKvzFdgtrqcYKsrGNhqqAFbXW7gjFc4YisTm660ZKsrY2Cryy3Z6qqiCIBXWbDVVQZsdXXMbKXKcLUFW10dM1td4dklzPKxstWwPLDVtV6Zr8NsdS3BVtcxsNUwA7a61sAZr3PEViY2XW/JVtfHwFbXWrLVDUURAG+wYKsbDNjqxpjZSpXhRgu2ujFmtrrOs0uY5WNlq+F5YKubvTLfgtnqZoKtbmFgq+EGbHWzgTPe4oitTGy61ZKtbo2BrW62ZKvbiiIA3mbBVrcZsNXtMbOVKsPtFmx1e8xsdYtnlzDLx8pWI/LAVnd6Zb4Ls9WdBFvdxcBWIwzY6k4DZ7zLEVuZ2HS3JVvdHQNb3WnJVv8oigD4Dwu2+ocBW90TM1upMtxjwVb3xMxWd3l2CbN8rGw1Mg9sdZ9X5vsxW91HsNX9DGw10oCt7jNwxvsdsZWJTQ9YstUDMbDVfZZs9WBRBMAHLdjqQQO2eihmtlJleMiCrR6Kma3u9+wSZvn+41BpUdFpo9hwbqELtqKTZUWYkNhapgTI84ist0elPCblcSlPSHlSylNSnpbyjJRnpTwn5XkpL0h5UcpLUl6W8oqUV6W8JuV1KW9IeVPKW1LelvKOlHelvCflfSkfSPlQykdSPsYs+4jHqPDco8S5x4hzjxPnniDOPUmce4o49zRx7hni3LPEueeIc88T514gzr1InHuJOPcyce4V4tyrxLnXiHOvE+feIM69SZx7izj3NnHuHeLcu8S594hz7xPnPiDOfUic+4g49zExerfzjlkRKlTq9LnI85GQ5KxG+kdDpxWJx8KmlfY+Hi7tqWrQeyJU2u//M0A+GSbtO1sG06dCpB3iDbxP5057sh6kn8mZdu7WAf3ZXGlvrRj8n8uRdjGYKDwfnHYknFS8EJj240oTkBeD0vauPFl5KSBtZzSxedk/7YF4EvSKb9p9qkyYXvVLW151cvWaT9pyYiL2Op32JmrS9gaZdhg5wXuTSrsbPRl8i0h7i8/E8e2qabv4TTLfqZL2XN8J6bs4bS//yet7KO07ARPd9yunPSpoUvxBpbTjAyfQH8K004In2x+BtD1zTMw/NphYmlw95AiVcHNw+bMQ7xO/q4cwgJ8UmV2eKfBPwldQ4tOQhfK7eghThk+LzK46VBk+NWxkrvUHA+d6hjqZFaFgKtn6mecgn+OZ8WdexcFznzOsPxh4cuIzAwf53LDyTBtHOcVnhs6k7PosT4zxUfh6PgfifWHLGArwC3PGOOcLA8b4MmbGUGX40pwxzvkyT4zxUXjcs6mTWREKppKtX3kO8jVmjK8IxviagTEMPDnxlYGDfG1ZeaYrliY2fWPQGbb+MbDlU8/BqywK5sAyGaq/NegMVBlyJVd19K0FE3+bJyb+MLz/3gDx/s+WiRXg/5kz8Q3/Z+B838XMxKoM35kz8Q3fRXS+MB3o25g70PeGZdDBlJhM2vAHA9/gHOE+DI97PXUyK0LBVLL1R6/j/YRHuB+JEe4nhhHOgCESPxo02k+WlWfqSCY2/TPiCJcrj+o8P1iMDj/HPGqpcv/swC4dTNvwZ4M2/CXmNvQj2TDkHDbtvwwJjWs28EH4vr4Z4v1qOxtQgL+azwY2/2pQQb/FPBtQZfjNfDaw+beYZwOqI/yrKN7O9m/DzqaDqU0mbfh7nmYDH4TH3USdzIpQMJVtTXlnU6LyyK8i8GxAJYo6GzBgiISyIUzabzzbQtpQqfJMHcnEpoKUmXObOozqPL9bjLqF4e2qME6Et0uVuzAVv106mLZhoUEbJmNuQz+SzZXPhGSLDOqVczbwfvi+noV4qVQEQJXZcDaQTRk0ci0D57EtQy3DzqPKUCtipw7TEYpS8Xa2YsPOpoOpTSZtmDawiXM28H742UBb6mRWhIKpZGttr+PVwbOB2sRsoA7DbMCAIRK1DRqtTsqu8kwdycSmkphHEtV50hajbt2YZwOq3HUd2KWDaRvWNWjD0pjb0I9kc+UzIdlMnmYD74Xv689AvHq2swEFWM98NvBMPYNGrh/zbECVob75bOCZ+jHPBlRHyKTi7WwNHM0GTNqwYZ5mA++Fnw08TZ3MilAwlWxt5HW8xng20IiYDTRmmA0YMESikUGjNU7ZVZ6pI5nY1CTmkUR1noYWo27TmGcDqtxNHdilg2kbNjVow2Yxt6EfyebKZ0KyzfM0G3g3fF+fAvFa2M4GFGAL89nAlBYGjdwy5tmAKkNL89nAlJYxzwZUR2ieireztXI0GzBpw9Z5mg28G342MJk6mRWhYCrZ2sbreG3xbKANMRtoyzAbMGCIRBuDRmubsqs8U0cysSkb80iiOk9ri1G3XcyzAVXudg7s0sG0DdsZtGH7mNvQj2Rz5TMh2Q55mg28E76vvwLxOtrOBhRgR/PZwCsdDRq5U8yzAVWGTuazgVc6xTwbUB2hQyrezraNo9mASRt2ztNs4J3ws4GXqZNZEQqmkq1dvI7XFc8GuhCzga4MswEDhkh0MWi0rim7yjN1JBObto15JFGdp7PFqNst5tmAKnc3B3bpYNqG3QzasHvMbehHsrnymZBsjzzNBt4O39dHQ7ztbGcDCnA789nA6O0MGrlnzLMBVYae5rOB0T1jng2ojtAjFW9n6+VoNmDShtvnaTbwdvjZwCjqZFaEgqlka2+v4/XBs4HexGygD8NswIAhEr0NGq1Pyq7yTB3JxKYdYh5JVOfZ3mLU7RvzbECVu68Du3QwbcO+Bm24Y8xt6EeyufKZkOxOeZoNvBW+r18H8frZzgYUYD/z2cB1/QwaeeeYZwOqDDubzwau2znm2YDqCDul4u1s/R3NBkzacJc8zQbeCj8buJY6mRWhYCrZOsDreAPxbGAAMRsYyDAbMGCIxACDRhuYsqs8U0cysWnXmEcS1Xl2sRh1B8U8G1DlHuTALh1M23CQQRsOjrkN/Ug2Vz4Tki3L02zgzfB9/U6IN8R2NqAAh5jPBu4cYtDIQ2OeDagyDDWfDdw5NObZgOoIZal4O9swR7MBkzYcnqfZwJvhZwN3UCezIhRMJVtHeB1vJJ4NjCBmAyMZZgMGDJEYYdBoI1N2lWfqSCY2jYp5JFGdZ7jFqDs65tmAKvdoB3bpYNqGow3acEzMbehHsrnymZDs2DzNBt4I39fHQrxxtrMBBTjOfDYwdpxBI4+PeTagyjDefDYwdnzMswHVEcam4u1sExzNBkzacLc8zQbeCD8bGEOdzIpQMJVs3d3reBPxbGB3YjYwkWE2YMAQid0NGm1iyq7yTB3JxKZJMY8kqvPsZjHq7hHzbECVew8Hdulg2oZ7GLThnjG3oR/J5spnQrJ75Wk28Hr4vl4O8fa2nQ0owL3NZwPlexs08j4xzwZUGfYxnw2U7xPzbEB1hL1S8Xa2fR3NBkzacL88zQZeDz8bWEmdzIpQMJVs3d/reAfg2cD+xGzgAIbZgAFDJPY3aLQDUnaVZ+pIJjYdGPNIojrPfhaj7kExzwZUuQ9yYJcOpm14kEEbHhxzG/qRbK58JiR7SJ5mA69ZzgYm284GFOBki9nAZINGnhLzbECVYYrFbGBKzLMB1REOScXb2aY6mg2YtOG0PM0GXsvDbGC61/Fm4NnAdGI2MINhNmDAEInpBo02w9FswMSmQ2MeSVTnmWYx6s6MeTagyj3TgV06mLbhTIM2PCzmNvQj2Vz5TEh2Vp5mA6+G7+uXQbzDbWcDCvBw89nAZYcbNPIRMc8GVBmOMJ8NXHZEzLMB1RFmpeLtbLMdzQZM2vDIPM0GXg0/G7iUOpkVoWAq2TrH63hz8WxgDjEbmMswGzBgiMQcg0abm7KrPFNHMrFpXswjieo8R1qMukfFPBtQ5T7KgV06mLbhUQZtOD/mNvQj2Vz5TEh2QZ5mA6+E7+sXQryFtrMBBbjQfDZw4UKDRl4U82xAlWGR+WzgwkUxzwZUR1iQirezHe1oNmDShsfkaTbwSvjZwAXUyawIBVPJ1sVex1uCZwOLidnAEobZgAFDJBYbNNqSlF3lmTqSiU1LYx5JVOc5xmLUXRbzbECVe5kDu3QwbcNlBm24POY29CPZXPlMSPbYPM0GXg7f11+FeCtsZwMKcIX5bODVFQaNvDLm2YAqw0rz2cCrK2OeDaiOcGwq3s5W7mg2YNKGx+VpNvBy+NnAK9TJrAgFU8nWVV7HW41nA6uI2cBqhtmAAUMkVhk02uqUXeWZOpKJTWtiHklU5znOYtRdG/NsQJV7rQO7dDBtw7UGbbgu5jb0I9lc+UxIdn2eZgMvhe/rT0G8DbazAQW4wXw28NQGg0beGPNsQJVho/ls4KmNMc8GVEdYn4q3sx3vaDZg0oYn5Gk28FL42cCT1MmsCAVTydYTvY53Ep4NnEjMBk5imA0YMETiRINGOyllV3mmjmRi06aYRxLVeU6wGHU3xzwbUOXe7MAuHUzbcLNBG54ccxv6kWyufCYke0qeZgMvhu/rzSHeqbazAQV4qvlsoPmpBo18WsyzAVWG08xnA81Pi3k2oDrCKal4O9vpjmYDJm34pzzNBl4MPxtoRp3MilAwlWw9w+t4f8azgTOI2cCfGWYDBgyROMOg0f6csqs8U0cysekvMY8kqvP8yWLUPTPm2YAq95kO7NLBtA3PNGjDv8bchn4kmyufCcmelafZwAvh+/ptEO9s29mAAjzbfDZw29kGjXxOzLMBVYZzzGcDt50T82xAdYSzUvF2tr85mg2YtOG5eZoNvBB+NnArdTIrQsFUsvU8r+P9Hc8GziNmA39nmA0YMETiPING+3vKrvJMHcnEpvNjHklU5znXYtS9IObZgCr3BQ7s0sG0DS8waMMLY25DP5LNlc+EZC/K02zg+fB9fQPEu9h2NqAALzafDWy42KCRL4l5NqDKcIn5bGDDJTHPBlRHuCgVb2e71NFswKQNL8vTbOD58LOB9dTJrAgFU8nWy72OdwWeDVxOzAauYJgNGDBE4nKDRrsiZVd5po5kYtOVMY8kqvNcZjHqXhXzbECV+yoHdulg2oZXGbTh1TG3oR/J5spnQrLX5Gk28Fz4vj4K4l1rOxtQgNeazwZGXWvQyNfFPBtQZbjOfDYw6rqYZwOqI1yTirezXe9oNmDShjfkaTbwXPjZwEjqZFaEgqlk641ex7sJzwZuJGYDNzHMBgwYInGjQaPdlLKrPFNHMrHp5phHEtV5brAYdW+JeTagyn2LA7t0MG3DWwza8NaY29CPZHPlMyHZ2/I0G3g2fF8/BeLdbjsbUIC3m88GTrndoJHviHk2oMpwh/ls4JQ7Yp4NqI5wWyreznano9mASRvelafZwLPhZwMnUyezIhRMJVvv9jreP/Bs4G5iNvAPhtmAAUMk7jZotH+k7CrP1JFMbLon5pFEdZ67LEbde2OeDahy3+vALh1M2/Begza8L+Y29CPZXPlMSPb+PM0Gngnf1+dBvAdsZwMK8AHz2cC8Bwwa+cGYZwOqDA+azwbmPRjzbEB1hPtT8Xa2hxzNBkza8OE8zQaeCT8bmEudzIpQMJVsfcTreI/i2cAjxGzgUYbZgAFDJB4xaLRHU3aVZ+pIJjY9FvNIojrPwxaj7uMxzwZUuR93YJcOpm34uEEbPhFzG/qRbK58JiT7ZJ5mA0+H7+t3Q7ynbGcDCvAp89nA3U8ZNPLTMc8GVBmeNp8N3P10zLMB1RGeTMXb2Z5xNBswacNn8zQbeDr8bOAu6mRWhIKpZOtzXsd7Hs8GniNmA88zzAYMGCLxnEGjPZ+yqzxTRzKx6YWYRxLVeZ61GHVfjHk2oMr9ogO7dDBtwxcN2vClmNvQj2Rz5TMh2ZfzNBt4Knxfz0K8V2xnAwrwFfPZQPYVg0Z+NebZgCrDq+azgeyrMc8GVEd4ORVvZ3vN0WzApA1fz9Ns4Knws4G21MmsCAVTydY3vI73Jp4NvEHMBt5kmA0YMETiDYNGezNlV3mmjmRi01sxjySq87xuMeq+HfNsQJX7bQd26WDahm8btOE7MbehH8nmymdCsu/maTbwZPi+XgLx3rOdDSjA98xnAyXvGTTy+zHPBlQZ3jefDZS8H/NsQHWEd1PxdrYPHM0GTNrwwzzNBp4MPxuoQ53MilAwlWz9yOt4H+PZwEfEbOBjhtmAAUMkPjJotI9TdpVn6kgmNn0S80iiOs+HFqPupzHPBlS5P3Vglw6mbfipQRt+FnMb+pFsrnwmJPt5nmYDT4Tv63Mg3he2swEF+IX5bGDOFwaN/GXMswFVhi/NZwNzvox5NqA6wuepeDvbV45mAyZt+HWeZgNPhJ8NHEmdzIpQMJVs/cbreN/i2cA3xGzgW4bZgAFDJL4xaLRvU3aVZ+pIJjb9X8wjieo8X1uMut/FPBtQ5f7OgV06mLbhdwZt+H3MbehHsrnymZDsD3maDTwevq/Xh3g/2s4GFOCP5rOB+j8aNPJPMc8GVBl+Mp8N1P8p5tmA6gg/pOLtbP90NBswacOf8zQbeDz8bKAedTIrQsFUsvUXr+P9C88GfiFmA/9imA0YMETiF4NG+1fKrvJMHcnEpl9jHklU5/nZYtT9LebZgCr3bw7s0sG0DX8zaMN/x9yGfiSbK58Jyf6ep9nAY+EJrTJerQiAKrNpvkSteEd4ZVeiVsWJrAgfTDuRctjfU/F2ioJabkZtk3YprBWto4Ypc6FFG3J2qEctO1TStkMpwKRFhyqKuUMpu4qYOlSu5Krhi2rZOUw2HAarkzxSZNDBQMaUrZMoQJXZtHenDHpsrZgdSpWhlkUj16oVzfnCOFGtWubTgwKD+iqOWIZcyVXdFlt2Vh1MfavYoPzpiCNHrjx+I3KufCYjcu2Y21DVUW2LgcCkHZKeFAIbs1ihIf7HReb+ZorxkQOMDx1gfOAA430HGO85wHjXAcY7DjDedoDxlgOMNx1gvOEA43UHGK85wHjVAcYrDjBedoDxkgOMFx1gvOAA43kHGM85wHjWAcYzDjCedoDxlAOMJx1gPOEA43EHGI85wHjUAcYjFhgwZCMky4pwQV8zqrLp+1Z15DVViZS6UkqlZKTUk1JfSgMpDaU0ktJYShMpTaU0k9JcSgvvOrylXm3S9/bqeBdq8FwJca4uca6UOJchztUjztUnzjUgzrUkLnBN7z2Gv1BLiI8NVtFaGVx8wzJR+cwWCRKVdOSys7Wlna0Z6t7gAjbR2qBMbSzL1Iah7tsY2NnW0s62DHVvcGGfaGtQpqxlmbKR614k6sRkJwym9fyeAb+8b8Av7SzruR2Dj7czqOf2lna2Z/BxgwWZRHuDMnWwLFMHhrrvYGBnR0s7OzLUvcFCVaKjQZk6WZapEwO/lMRkJwym9fyWAb+8bcAv21jW8zYMPr6NQT13trSzM4OPGywwJjoblKmLZZm6MNR9FwM7u1ra2ZWh7g0WXhNdDcq0rWWZtmXgl7ox2QmDaT2/ZsAvrxvwSzfLeu7G4OPdDOq5u6Wd3Rl83GDBPNHdoEw9LMvUg6HuexjYuZ2lndsx1L3BjYTEdgZl6mlZpp4M/FIak50wmNbzSwb88rIBv/SyrOdeDD7ey6Cet7e0c3sGHze4AZTY3qBMvS3L1Juh7nsb2NnH0s4+DHVvcGMs0cegTDtYlmkHBn7JxGQnDFG+XpUjqXjegF/6WtZzXwYf72tQzzta2rkjg48b3NBM7GhQpp0sy7QTQ93vZGBnP0s7+zHUvcGN3kQ/gzLtbFmmnRn4pV5MdsIQ5S13OZKKpw34pb9lPfdn8PH+BvW8i6WduzD4uMEN+sQuBmUaYFmmAQx1P8DAzoGWdg5kqHuDjQuJgQZl2tWyTLsy8Ev9mOyEwbSeHzPgl8cN+GWQZT0PYvDxQQb1PNjSzsEMPm6w4SQx2KBMZZZlKmOo+zIDO4dY2jmEoe4NNuIkhhiUaahlmYYy8EuDmOzENpvY1NARTiNHOI0d4TRxhNPUEU4zRzjNHeG0MMBRDxipp8ThQ0b1IuLXsSinKUaJA4y6DjBKHWBkHGDUc4BR3wFGA8s+Ghaj3DKfLV5NvljytouQN6t9EnLtMOl3w6WMkDJSyigpo6WMkTJWyjgp46VMkLKblN2lTJQyScoetUTlCdswz4nhueHEuRHEuZHEuVHEudHEuTHEubHEuUnEuT28c5xvkBoXoTOHxVE2QVv3rLXluBduFBUR9W1R40LOor+Wafc0mHHv5Whm4gpnvCOcCY5wdnOEs7sjnImOcML2l3kVqv8TTF+vYDDjTQyzLLupTQYz5MRwRzYZzKgTIxzZZDADT4x0ZJPBjD0xypFNBjP8xGhHNhlcESTGOLLJ4AoiMZbJpiAM9WeSgU17hJ1j/P57ogqQCF9Pe4e0qRwbaIizT0icw9MfzYyCs29InDtmXr02Cs5+IXEGzPlufhSc/UPiXLTbD/2j4BwQEmdi6aSVUXAODIlzVtFhJ0bBOSgkTtvVr14RBefgkDgHvPNkc6W7roeh5irqWOId63rHUu+Y8Y71vGN979jAO+7tHU8oDHecVKviAk8d9/GO+3rH/bzj/t7xAO94oHc8yDuq8h4iZbKUKVKmSpkmZbqUGVIOrbXl4jEtKq6rguo3R0gc4uDiUWwx2TJvYmuZEkDRTGn3YVJmSTkcX4TO9C5C4bnDiHOziHOH16p6AVtkZHDlSs3l4DMNBqLDQqcViVkGF9GHGzgBp/NN/i91viOk3bOlHCllDna+Iwinmk2cO5I4N4fB+SYbON8RBs4328D5jjRwvjl5cr4p/6XON1faPU/KUVLmY+ebSzjVPOLcUcS5+QzON8XA+eYaON88A+c7ysD55ufJ+ab+lzrfAmn3QimLpByNnW8B4VQLiXOLiHNHMzjfVAPnW2DgfAsNnG+RgfMdnSfnm/Zf6nzHSLsXS1kiZSl2vmMIp1pMnFtCnFvK4HzTDJzvGAPnW2zgfEsMnG9pnpxv+n+p8y2Tdi+XcqyUFdj5lhFOtZw4dyxxbgWD8003cL5lBs633MD5jjVwvhV5cr4Z/6XOt1LaXS7lOCmrsPOtJJyqnDh3HHFuFYPzzTBwvpUGzldu4HzHGTjfqjw536H/pc63Wtq9RspaKeuw860mnGoNcW4tcW4dg/MdauB8qw2cb42B8601cL51Bk6g6kjX9wXeOuOF3vEi73ixd7zEO17qHS/zjpd7xyu845Xe8SrveLV3vMY7Xusdr/OO13vHG7zjjd7xJu94s3e8xTve6h1v8463e8c7vOOd3vEu73i3d/yHd7zHO97rHe/zjvd7xwe844Pe8SHv+LB3fMQ7PuodH/OOj3vHJ7zjk97xKe/4tHd8xjs+6x2f847Pe8cXvOOL3vEl7/iyd3zFO77qHV/zjq97xze845ve8S3v+LZ3fMc7vusd3/OOo5Nbjrt5x7284wHecYp3nOkdj/SOC7zjEu+40juu9Y4neMdTvOOfveM53vEC73iZd7zGO97kHe/wjvd6x4e945Pe8Xnv+Kp3fNs7fugdP/eO33rHn7zjb96xsGjLMe0dM96xsXds6R3becfO3rGHd+zjHXf2joO843DvONY7TvSO+3jHg7zjNO84yzvO9Y6LvOMy73icd1zvHU/yjqd5xzO947ne8SLveIV3vM473uId7/KO93vHw737A7O842HecaZ3nOMdj/SOs73jEd5xvnc8yjvO845zvePR3nGRd1zoHRd4x6XecYl3XOwdj/GOK7zjsd5xuXdc5h1XecfjvGO5d1zpHdd5x7XecY13XO0dP5b9YL0iQxAS3jErQoXEeoOxQg1+6uuIhQEKsyIcbgLYaqNj5GtPLgjKW/vu8pbN//niiB7N5h7xyxktD5y0sLjuaRfsuk9qwhcTik758WVSqekNf5g2R0hsEz5tJJsSIrxNnYUbmwpEeJu6CDubTB2/qzBrZx1MH3/a1gDnpEI3Ze8G0na66Kl9Hu732Psn7PTSmHWfDxQv/uOd/h816d1/4Gnp4Z/NSW8bBae7cFOeHoLHj3PhbCfCt+Uphm1pasuPUv+/CsPbo9IWJs1xeorwGD8WummHXgY2neqoT20v3OD0Fm5w+gg3ODsINzh9hRucHYUbnJ2EG5x+wg3OzsINTn/hBmcX4QZngHCDM1C4wdlVuMEZJNzgDBZucMqEG5whwg3OUOEGZ5hwgzNcuMEZIdzgjBRucEYJNzijhRucMcINzljhBmeccIMzXrjBmSDc4Owm7NYfTHF2F27KM1G4wZkk3ODsIdzg7Cnc4Owl3ODsLdzg7CPc4Owr3ODsJ9zg7C/c4Bwg3OAcKNzgHCTc4Bws3OAcItzgTBZucKYINzhThRucacINznThBmeGcINzqHCDM1O4wTlMuMGZJdzgHC7c4Bwh3ODMFm5wjhRucOYINzhzhRucecINzlHCDc584QZngXCDs1C4wVkk3OAcLdzgHCPc4CwWbnCWCDc4S4UbnGXCDc5y4QbnWOEGZ4Vwg7NSuMEpF25wjhNucFYJNzirhRucNcINzlrhBmedcIOzXrjB2SDc4GwUbnCOF25wThBucE4UbnBOEm5wNgk3OJuFG5yThRucU4QbnFOFG5zThBuc04UbnD8JNzhnCDc4fxZucP4i3OCcKdzg/FW4wTlLuME5W7jBOUe4wfmbcINzrnCDc55wg/N34QbnfOEG5wLhBudC4QbnIuEG52LhBucS4QbnUuEG5zLhBudy4QbnCuEG50rhBucq4QbnauEG5xrhBuda4QbnOuEG53rhBucG4QbnRuEG5ybhBudm4QbnFuEG51bhBuc24QbnduEG5w7hBudO4QbnLuEG527hBucfwg3OPcINzr3CDc59wg3O/cINzgPCDc6Dwg3OQ8INzsPCDc4jwg3Oo8INzmPCDc7jwg3OE8INzpPCDc5Twg3O08INzjPCDc6zwg3Oc8INzvPCDc4Lwg3Oi8INzkvCDc7Lwg3OK8INzqvCDc5rwg3O68INzhvCDc6bwg3OW8INztvCDc47wg3Ou8INznvCDc77wg3OB8INzofCDc5Hwg3Ox8INzifCDc6nwg3OZ8INzufCDc4Xwg3Ol8INzlfCDc7Xwg3ON8INzrfCDc7/CTc43wk3ON8LNzg/CDc4Pwo3OD8JNzj/FG5wfhZucH4RbnD+Jdzg/Crc4Pwm3OD8W7jB+V24wVEZQqZFGc1wEo5wChzhFDrCSTrCKXKEk3KEU8sRTrEjnLQjnNqOcOo4wilxhFPXEU6pI5yMI5x6jnDqO8Jp4AinoSOcRo5wGjvCaeIIp6kjnGaOcJo7wmnhCKelI5xWjnBaO8Jp4winrSOcrCOcdo5w2jvC6eAIp6MjnE6OcLZxhNPZEU4XRzhdHeFs6winmyOc7o5wejjC2c4RTk9HOL0c4WzvCKe3I5w+jnB2cITT1xHOjo5wdnKE088Rzs6OcPo7wtnFEc4ARzgDHeHs6ghnkCOcwY5wyhzhDHGEM9QRzjBHOMMd4YxwhDPSEc4oRzijHeGMcYQz1hHOOEc44x3hTHCEs5sjnN0d4Ux0hDPJEc4ejnD2dISzlyOcvR3h7OMIZ19HOPs5wtnfEc4BjnAOdIRzkCOcgx3hHOIIZ7IjnCmOcKY6wpnmCGe6I5wZjnAOdYQz0xHOYY5wZjnCOdwRzhGOcGY7wjnSEc4cRzhzHeHMc4RzlCOc+Y5wFjjCWegIZ5EjnKMd4RzjCGexI5wljnCWOsJZ5ghnuSOcYx3hrHCEs9IRTrkjnOMc4axyhLPaEc4aRzhrHeGsc4Sz3hHOBkc4Gx3hHO8I5wRHOCc6wjnJEc4mRzibHeGc7AjnFEc4pzrCOc0RzumOcP7kCOcMRzh/doTzF0c4ZzrC+asjnLMc4ZztCOccRzh/c4RzriOc8xzh/N0RzvmOcC5whHOhI5yLHOFc7AjnEkc4lzrCucwRzuWOcK5whHOlI5yrHOFc7QjnGkc41zrCuc4RzvWOcG5whHOjI5ybHOHc7AjnFkc4tzrCuc0Rzu2OcO5whHOnI5y7HOHc7QjnH45w7nGEc68jnPsc4dzvCOcBRzgPOsJ5yBHOw45wHnGE86gjnMcc4TzuCOcJRzhPOsJ5yhHO045wnnGE86wjnOcc4TzvCOcFRzgvOsJ5yRHOy45wXnGE86ojnNcc4bzuCOcNRzhvOsJ5yxHO245w3nGE864jnPcc4bzvCOcDRzgfOsL5yBHOx45wPnGE86kjnM8c4XzuCOcLRzhfOsL5yhHO145wvnGE860jnP9zhPOdI5zvHeH84AjnR0c4PznC+acjnJ8d4fziCOdfjnB+dYTzmyOcfzvC+d0Rjihwg5NwhFPgCKfQEU7SEU6RI5yUI5xajnCKHeGkHeHUdoRTxxFOiSOcuo5wSh3hZBzh1HOEU98RTgNHOA0d4TRyhNPYEU4TRzhNHeE0c4TT3BFOC0c4LR3htHKE09oRThtHOG0d4WQd4bRzhNPeEU4HRzgdHeF0coSzjSOczo5wujjC6eoIZ1tHON0c4XR3hNPDEc52jnB6OsLp5Qhne0c4vR3h9HGEs4MjnL6OcHZ0hLOTI5x+jnB2doTT3xHOLo5wBjjCGegIZ1dHOIMc4Qx2hFPmCGeII5yhjnCGOcIZ7ghnhCOckY5wRjnCGe0IZ4wjnLGOcMY5whnvCGeCI5zdHOHs7ghnoiOcSY5w9nCEs6cjnL0c4eztCGcfRzj7OsLZzxHO/o5wDnCEc6AjnIMc4RzsCOcQRziTHeFMcYQz1RHONEc40x3hzHCEc6gjnJmOcA5zhDPLEc7hjnCOcIQz2xHOkY5w5jjCmesIZ54jnKMc4cx3hLPAEc5CRziLHOEc7QjnGEc4ix3hLHGEs9QRzjJHOMsd4RzrCGeFI5yVjnDKHeEc5whnlSOc1Y5w1jjCWesIZ50jnPWOcDY4wtnoCOd4RzgnOMI50RHOSY5wNjnC2ewI52RHOKc4wjnVEc5pjnBOd4TzJ0c4ZzjC+bMjnL84wjnTEc5fHeGc5QjnbEc45zjC+ZsjnHMd4ZznCOfvjnDOd4RzgSOcCx3hXOQI52JHOJc4wrnUEc5ljnAud4RzhSOcKx3hXOUI52pHONc4wrnWEc51jnCud4RzgyOcGx3h3OQI52ZHOLc4wrnVEc5tjnBud4RzhyOcOx3h3OUI525HOP9whHOPI5x7HeHc5wjnfkc4DzjCedARzkOOcB52hPOII5xHHeE85gjncUc4TzjCedIRzlOOcJ52hPOMI5xnHeE85wjneUc4LzjCedERzkuOcF52hPOKI5xXHeG85gjndUc4bzjCedMRzluOcN52hPOOI5x3HeG85wjnfUc4HzjC+dARzkeOcD52hPOJI5xPHeF85gjnc0c4XzjC+dIRzleOcL52hPONI5xvHeH8nyOc7xzhfO8I5wdHOD86wvnJEc4/HeH87AjnF0c4/3KE86sjnN8c4fzbEc7vjnBEoRuchCOcAkc4hY5wko5wihzhpBzh1HKEU+wIJ+0Ip7YjnDqOcEoc4dR1hFPqCCfjCKeeI5z6jnAaOMJp6AinkSOcxo5wmjjCaeoIp5kjnOaOcFo4wmnpCKeVI5zWjnDaOMJp6wgn6winnSOc9o5wOjjC6egIp5MjnG0c4XR2hNPFEU5XRzjbOsLp5ginuyOcHo5wtnOE09MRTi9HONs7wuntCKePI5wdHOH0dYSzoyOcnRzh9HOEs7MjnP6OcHZxhDPAEc5ARzi7OsIZ5AhnsCOcMkc4QxzhDHWEM8wRznBHOCMc4Yx0hDPKEc5oRzhjHOGMdYQzzhHOeEc4Exzh7OYIZ3dHOBMd4UxyhLOHI5w9HeHs5Qhnb0c4+zjC2dcRzn6OcPZ3hHOAI5wDHeEc5AjnYEc4hzjCmewIZ4ojnKmOcKY5wpnuCGeGI5xDHeHMtMQpQDi9pk+Y/+7253W9dffhNx933L4Hdenzyaglt807Zei7P5z2jYzvKMLbdBiTTblwZhWGt79W0k09JUV4+w931HZFIrxNRziyKSXC2zTbkU21RHibjnRkU7EIb9McRzalRXib5jqyqbYIb9M8RzbVEeFtOsqRTSUivE3zHdlUV4S3aYEjm0pFeJsWOrIpI8LbtMiRTfVEeJuOdmRTfRHepmMc2dRAhLdpsSObGorwNi1xZFMjEd6mpY5saizC27TMkU1NRHibljuyqakIb9OxjmxqJsLbtMKRTc1FeJtWOrKphQhvU7kjm1qK8DYd58imViK8Tasc2dRahLdptSOb2ojwNq1xZFNbEd6mtY5syorwNq1zZFM7Ed6m9Y5sai/C27TBkU0dRHibNhrYVCi2rAOqNVEVtpHSWUoXKV2lbCulm5TuUnpI2U5KT2WvlO2l9JbSR8oOUvpK2VHKTlL6SdlZSn8pu0gZIGWglF2lDJIyWEqZlCFShkoZJmW4lBFSRkoZJWW0lDFSxkoZJ2W8lAlSdpOyu5SJUiZJ2UPKnlL2krK3lH2k7CtlPyn7SzlAyoFSDpJysJRDpEyWMkXKVCnTVPmlzJByqJSZUg6TMkvK4VKOkDJbypFS5kiZK2WelKOkzJeyQMpCKYukHC3lGCmLpSyRslTKMinLpRwrZYWUlVLKpRwnZZWU1VLWSFkrZZ2U9VI2SNko5XgpJ0g5UcpJUjZJ2SzlZCmnSDlVymlSTpfyJylnSPmzlL9IOVPKX6WcJeVsKedI+ZuUc6WcJ+XvUs6XcoGUC6VcJOViKZdIuVTKZVIul3KFlCulXCXlainXSLlWynVSrpdyg5Qbpdwk5WYpt0i5VcptUm6XcoeUO6XcJeVuKf+Qco+Ue6XcJ+V+KQ9IeVDKQ1IelvKIlEelPCblcSlPSHlSylNSnpbyjJRnpTwn5XkpL0h5UcpLUl6W8oqUV6W8JuV1KW9IeVPKW1LelvKOlHelvCflfSkfSPlQykdSPpbyiZRPpXwm5XMpX0j5UspXUr6Wovrkt1L+T8p3Ur6X8oOUH6X8JOWfUn6W8ouUf0n5VcpvUv4t5XcpqtMlpBRIKZSSlFIkJSWllpRiKWkptaXUkVIipa6UUikZKfWk1JfSQEpDKY2kNJbSREpTKc2kNJfSQkpLKa2ktJbSRkpbKVkp7aS0l9JBSkcpnaRsI6WzlC5SukrZVko3Kd2l9JCynZSeUnpJ2V5Kbyl9pOwgpa+UHaXsJKWflJ2l9Jeyi5QBUgZK2VXKICmDpZRJGSJlqJRhUoZLGSFlpJRRUkZLGSNlrJRxUsZLmSBlNym7S5koZZKUPaTsKWUvKXtL2UfKvlL2k7K/lAOkHCjlICkHSzlEymQpU6RMlTJNynQpM6QcKmWmlMOkzJJyuJQjpMyWcqSUOVLmSpkn5Sgp86UskLJQyiIpR0s5RspiKUukLJWyTMpyKcdKWSFlpZRyKcdJWSVltZQ1UtZKWSdlvZQNUjZKOV7KCVJOlHKSlE1SNks5WcopUk6VcpqU06X8ScoZUv4s5S9SzpTyVylnSTlbyjlS/iblXCnnSfm7lPOlXCDlQikXSblYyiVSLpVymZTLpVwh5UopV0m5Wso1Uq6Vcp2U66XcIOVGKTdJuVnKLVJulXKblNul3CHlTil3Sblbyj+k3CPlXin3SblfygNSHpTykJSHpTwi5VEpj0l5XMoTUp6U8pSUp6U8I+VZKc9JeV7KC1JelPKSlJelvCLlVSmvSXldyhtS3pTylpS3pbwj5V0p70l5X8oHUj6U8pGUj6V8IuVTKZ9J+VzKF1K+lPKVlK+lfCPlWyn/J+U7Kd9L+UHKj1J+kvJPKT9L+UXKv6T8KuU3Kf+W8rsUNQFISCmQUiglKaVISkpKLSnFUtJSakupI6VESl0ppVIyUupJqS+lgZSGUhpJaSyliZSmUppJaS6lhZSWUlpJaS2ljZS26j0wUtpJaS+lg5SOUjpJ2UZKZyldpHSVsq2UblK6S+khZTspPaX0krK9lN5S+kjZQUpfKTtK2UlKPyk7S+kvZRcpA6QMlLKrlEFSBkspkzJEylApw6QMlzJCykgpo6SMljJGylgp46SMlzJBym5SdpcyUcokKXtI2VPKXlL2lrKPlH2l7CdlfykHSDlQykFSDpZyiJTJUqZImSplmpTpUmZIOVTKTCmHSZkl5XApR0iZLeVIKXOkzJUyT8pRUuZLWSBloZRFUo6Wor5Tr74hr77vrr69rr6Lrr5Zrr4nrr71rb7Drb6Rrb5frb4trb77rL7JrL6XrL5lrL4zrL4BrL7Pq76dq75rq745q74Hq77Vqr6jqr5xqr4/qr4Nqr7bqb6pqb53qb5Fqb4Tqb7hqL6vqL59qL5LqL4ZqL7np761p76Dp75Rp74fp77tpr67pr6Jpr5Xpr4lpr7zpb7Bpb6Ppb5dpb4rpb75pL7HpL6VpL5jpL4xpL7/o77No76bo75po743o74Fo77Tor6hor5vor49or4Lor7Zob6nob51ob5Dob4Rob7foL6toL57oL5JoL4XoN7lr96zr96Br95Pr94dr97rrt65rt6Hrt5Vrt4jrt7xrd6/rd6Nrd5brd4prd73rN7FrN6TrN5hrN4vrN79q97Lq96Zq95nq941q94Dq97Rqt6fqt5tqt47qt4Jqt7Xqd6lqd5zqd5Bqd4Pqd7dqN6rqN55qN5HqN4VqN7jp96xp95/p95Np94bp97ppt63pt6Fpt5Tpt4hpt7vpd69pd6Lpd5Zpd4npd71pN7DpCbe6v1F6t1C6r0/6p086n056l026j0z6h0w6v0s6t0p6r0m6p0j6n0g6l0d6j0a6h0X6v0T6t0Q6r0N6p0K6n0H6l0E6j0B6hl+9Xy9evZdPZeunhlXz3OrZ63/8xy0FPX8sHq2Vz13q56JVc+rqmdJ1XOe6hlM9XykenZRPVeonvlTz+OpZ+XUc2zqGTP1/Jd6Nks9N6WeaVLPG6lngdRzOuoZGvV8i3r2RD0Xop7ZUM9TqGcd1HMI6hkBtX9f7a1X+97VnnS1X1zt5Vb7rNUeaLU/We0dVvt61Z5btR9W7VVV+0jVHk+1/1LtjVT7FtWeQrXfT+3FU/vk1B42tb9M7f1S+7LUnim1n0ntNVL7gNQeHbV/Ru1tUftO1PWP2q+h9lKofQ5qX4G656/um6v71Oq+sLoPq+57qvuM6r6euo+m7lup+0Tqvoy6D6LuO6h1frWurtax1bqxWqdV66JqHVKt+6l1NrWupdaR1LqNWidR6xJqHUBdd6vrXHVdqa7jlKuoazIdvKHjP9dt6v6/ut+u7m+r+8nq/q26X6ruT6r7ger+m7rfpe4vqfs56v6Jul+h7g+o9Xi1/q3Wm9X6rlpPVeuXar1Qrc+p9TC1/qTWe9T6il7PaCe2XB93EFv2aXQSVcNO4Hdj73jyzIce//7zWs/AdE0D4pp5x4deObBVh8bNX4Fxh3nH03cb37Hlz2NXw7hjA3Qqn1ehbWr4S5O63f86jHss6Z/vCS9u3ORrsme2TBbBuKcC8j0TkO+5gHwvBsS9HKDz1YB8rwfkezMg3zsBce8F6PwgIN9HAfk+Ccj3eUDclwE6vw7I921Avu8C8v0YEPfPAJ2/BOT7NSDfvwPyJYr84wqL/HUWBeSrFZAvHZCvJCCuNEBnvYB8DQLyNQrI1zQgrnmAzpYB+VoH5GsbkG9vL27/umeVXNToi7/AuAMD4qYGxB0WEDcnIG5hQNzSgLjygLhVXlzyjY09hk3YbaM+X9s7dvGOUxYsmDF/4SHT5h45b8rCWVNnzzhk7vwp0+Th6BnzF8yaO+eQY+ZPmTdvxvwmXvpi71jgHdX4p2g8K0KFRDHIZ56/fFgxVmiUX/wnf0LY4m8pvx7zbfKntCEgP7RF61Xzhzrgd12Eb2n/sKj2NwiwWbfNUJA+K0KFQuWXqpz1vBOq7B2934sWzpo9a+GSsv+46tCtnrrbfxx17y1+ihUm0P9Dfc7XBnYnQZrwdbJ4mNbpTWf+MwcsJFIm0VGn0XOyNMDXxzB7Sl978IeXbhzT+8j6KL8Kum1qA5zpsxZMmyv79yFzZhxzyJEzFiyYMnPGgtpebee5g58asYOfGtHBE8Ugj0X+rR38FJAf26JCiajckWCeWl68/n2A9zti5z+1unZ+nXcYlff7BS9f/PhJNzxw6cJLLjqj/mt1z6zTvfbKtWu/bvlVq79+s/YCnXc4sCkhQmOndP4RFPautxTuf9h1v8ytM3L1Nce89uqERXVbTbmv7YaL9n/wlLafHrJO5x1J5f3kxLNWZq459bxstyd/SI3c/MUh340u6vfak8ub37/q10+/OU3nHUXlfW7/X9+8MXPa0sUn3basX5eGU6487eVvP3v48asz37171VEv99V5R4My2/TRMRS2Tx79Q+cdCyIMNr5vzT/OLv9W28fb5S/Q+SeA/AZ1V0/n3w2czOofx1146ZtlJz3Z6/1fax8/fsqaxX1OeH6fL5c2u6TTh4df1erK+jrv7lTe9xYOPWVh0yN3/LL46ZO2/3vL1m9/f8mNH/+4ZEa/Lz7+5OZ23+m8E6m8OYLOO8k7GpZ5a//cg8Bu1rvzzvP+8kyjN7q0f33wPVdud3rz7zsOeOPWUX//5pdH/wmw97TD3tpee9nlT+r8e4P8Bvyw1d/2scu/te72tcu/tfz7gfwG5R+s8+9vl79U5z8AnMyKUKFI5z3QCjux1XcOorETq9sv+HP6pMT4+1b1uLGk9n2flp07ZOiTj685vm3mynN13oOJvNsOSH9z0fEr1op3Lvl804/b3jm4R/02ZfW3e+Gsl1rOmX9A82903kO2WmJUZ610/skgP7I9MOj8U0B+A5/Zmn8qyG96kaPCNJBfCPM+Mx2czIpQYWveGeZ5t/aVQ7UyYVTurf460y7/1rnEYXb5a+n8s+zyF+v8h9vlr6PzH2GXv0Tnn22Xv67Of6Rd/rY6/xyQ36DfZHX+uXb4W/PPs8PvofMfZZe/l84/3y7/9jr/Arv8ZTr/Qrv8w3X+RXb5R+j8R9vln6DzH2OX/xCdf7Fd/ik6/xK7/FN1/qV2+afp/Mvs8k/X+Zfb5Z+h8x9rl/9QnX+FXf6ZOv9Ku/yH6fzldvln6fzH2eU/QudfZZd/ts6/2i7/kTr/Grv8c3T+tXb55+r86+zyz9P519vln6/zb7DLv0Dn32iXf6HOf7xd/kU6/wl2+Y/W+U+0y79Y5z/JLv8SnX+TXf5lOv9mu/zH6vwng5NZESYkhF4Af9+700Kt1RnYsrteXyyshFJZt92C93/2rVbSJ0Tl9VKB9KeRLYZ4iQTSp/Fw+XRd6bIXEbZkiDhcx0UEThGBkyHiljPqWs+o61hGXWsZdXGWcTWjrnJGXWsYda1g1DWHURdn3XP2oQ3VVNdiRl2cPsFZ95z+tYxRVzmjLk6fWMqoay2jrhMYdVXX8VHPOfXcAc41Ej5HjYPPaZw00mU776HKlSTwgtIXBqRPhdSvNmVkvN/epoxhM6Yumjlu7kyBQhL9P9zHxFYo3dQA07DeBBJ8vhU6V0ikhUEVT+9z8oo3YsbCaYftOWXmzBnTZSEX4BxY0zCf83hCCtPoyXgKWZoVoUJBGKeE+tPIFlunpJyG6myqVht4v71aHTd3yvShU+YtWDR7RgFULSpbjmsFaoXnqDZNAMtEQLph6P/RRD5B6FbxuuWK0fmsCBXS2ivSRKSOq410w7g6IA62Jg6FhP3aZnXJ+WmTCr04HbYHtkdtFFcLxNUB2LhdUwSOtr+ASF8L6UoR+XSeXHiFPvng76BL5zC9TZdDhQyBobFjZIVG1Z0VdPlq2eE1TKD8EA/q1Pboui4m4rQu3Q9TPrrgPkGY/iHvmEHpVJiIMIoJe+E5XT+qzu5FtsO6xX4SpR6hPm0XPAf1p0Ukv0wEtRssH/YTS45tEKbeoT2Yk3HdQt5L+ejSeZMo/fPeMSOq8j72kzRhLzwH/eQpZDusW+wnlvVYFtZPtP60iOSXiaB2g+XDfpK2wxscpt6hPdT4DOsWjoEpH106bxKlf8c7ZlA6FbCf1Cbsheegn+gHrIp97M2KUOEYat6C/QzPW7IiVGgV1s+0/rSI1O6JoHqk+hs199J5M0QcvtSqQ+DUIXAyRNx6Rl1rGXUtZdS1nFHXhmqqq5xR1xpGXSsYdc1h1LWKURen31fH+goah0x1qVDOqGsjo66VjLo4fZWzjIsZdVXXvr2JUddRjLo2e0c8z9P6VSgWVfue6bUJ1KfthOeg/jSyxXauQ9ULNWfU5Suxw6ufQPkhHtSp7dF1XZeI07pKvf9TPrp03iRK39Wr0AxKpwKeU9cl7IXn4Jy6o6e3lLAXry+Y+iPMj+sI5sP+GKW9oD5tJzwH9adFJP9PBPkHVS+6fHXt8OqFaV9oj67rUiJO69K3Q1I+unTeJEq/M/LHUmAT9sdSwl54DvrjDonKtsO6xX5iWY/Dw/qJ1p8WkfwyEdRusHzYT0rt8IaFqXdoj67rDBGndennmlM+unTeJEo/AvlJBtiE/SRD2AvPQT8pQ34C6xb7iV09Jr4N6ydaf1pE8stEULtR/K3Ll7HCS3wTpt6hPbqu6xFxWpd+hjvlo0vnTaL0eyA/qQdsmoIw6hH2wnPQTyYgP4F1i/3Erh7/88rJSvq0XfAc1J8Wkfp3IqjdKF7V5atnh1cWpt6hPbqu6xNxWpe+o5ry0aXzJlH6ychP6gObMJ/UJ+yF56CfHODpLSXsxevnYXkqQ+TX6SifU5IVocKeVJsa5D8Kt5HWAW1rAM4b+Mv2YfuD1p8WVf3Fpj80QHh+7a3L3pCwJUPE4TZqSOA0JHAyRNxKRl3LGXXNYdS1lFHXKkZdixl1lTPqWs2oi9MnljHqOoZR1wYmXRR/RrFrPaOujYy6OPv2JkZdnFxYzqhrDaMuznbczKiL0yfKGXVx9W0VOMvI6RNrGXVVV57gtOuPMGeqGdPyV/ec/fFYRl2cZTyxmtrFOZ/gLKMea/W1Iry2THjHYlG17xlct+6aQPq0nfAc1J9GthjiJYLqBZYPXyc3ImzJEHH4OrkRgdOIwMkQcSsZdS1n1DWHURdnGcsZda1h1LWRURdn3W9i1FXTjma6NjPq4vSJZYy61jLq4uSvDYy6OOue01c567668henr3L612pGXZztyOlfnH2I07/WM+pazKiLs4zVdS7HWUbO+UR1bcfqOpc7kVFXdZ3nlDPqqplP/G/0IU6e4LSLy7/U73pMulQ4nlEXZ91zzgH0WIv3fWn9KkRcA2uXQPq0nfAc1J8WVduSaw2M2kOmy9fIDi8bph2gPbquGxNxWpd+x0fKR5fOm0Tp9/YKlUHpVJiCMBoT9sJzcO/URO+fUsLeqPciYH5cRzAf9kfL9ioM649af1pE8v9EkH9Q9UL5h86bIeJw/Ydt1yBdpYKfW+sR5Skh8uF2hvYZ1HvoZwXgt40i+FUiqP6petHla2KHVw9zBcSDOrU9uq6bEnFal/6GZspHl86bROnnI95pCmyagjCaEvbCc5B3jkS8Q/UJW7+n+PR/DaeEyIf7l6X/FYXtX1p/WkTqz4kgf6fqhfJ3nTdDxOH6D+un/426tP81CcAJ4hUKB+ZvUoMTCaeEyIf7LWzX8P0o8U7Yfqv1p0UknkgE+S1VL7p8zazwEm/jsQziQZ3aHl3XzYk4rauF93/KR5fOm0Tp/47GxebApikIozlhLzwHx8WzCyrbDusW+4ldPYpMWD/R+tMiil9W+AnVbhS/6fI1t8MrDVPv0B5d1y2IOK2rpfd/ykeXzptE6a9GftIC2ISfeWlB2AvPQT+5zPun2MferAgV3qXq2iD/ecWiat0Z5O+q87e0y3+rzt/KLv/NOn9ru/zH6fxt7PLvq/O3tct/UDFKb5i/i87fzi5/H52/vV3+T3T+Dnb5R+n8He3y36bzd7LLf4rOv41d/qE6f2e7/D/o/F3s8p+m83e1y/+Nzt8N5DdZY9P5e9jlL9T2docnCZu0fs3124L0CZ+j1oXjNFYa6bIdFynboX14Xtkd4MEy+unqbqirmIizaZNuwr9cUH9JgC3YThXwu1Zsy6zCMkZdRzPqWs+kS/1uxqRLhfmMdjVn1NWCUVdLRl0FTLpUWMhoVytGXa2rqa42jLraMurKMupqx6irPaOuDky6VDiJ0a6OTLpUWMdoVydGXdsw6uIaO9Tvzoy6ujDq6sqkS4Up1VSX/gR5xPWC0RHXC/pHXC8YH3G9YI+I6wUjI64XDIt4vT+uhEif8I7UtbzBvF2/bmerPiHo6x+tP41sMcTbev3TDuHh8uH7Pu0JWzJEHPbx9gROewInQ8StYdR1AqOuxYy6VjHqKmfUtYxR1xxGXasZdS1n1LWhmuri9NUVjLq46p4aF6uLr5Yz6trIqKu69sfjGXVx9qHqWvcrGXVx8gTnWMvJ0Zx1z1lf1dW/VjHq4mxHzrr/I/DEJiZd6ncLJl0qLGS0q2U11KXCAka7WjHpUoGr7lU4phrapX63YdRVwKRLBS6fUOFoJl3qd2smXSpwtiOnXVy+Wp25MMOkSwVO/uJsR067qmN9qcDpq22ZdKnAOXZw8ZcKmxl1cc6/jmXUVc6oi3NOvopRF+fao57f63XsNiAu4R0jruGXJpA+bSc8B/WnkS2GeIFr+LB8ul6o/YIGeHXDtAO0R9d1ByJO69L3hFM+unTeJEr/D69iMyidCnhvbwfCXnhO14/a23t7YWXbYd1iP7Gsx9DfutT60yKSXyaC2g2WT9cD1W46b4aIKwC/Teqbarv1jLrWMupayqhrOaOuDdVUVzmjrjWMulYw6prDqGsdoy7OPlTOqOsERl2LGXVtZNTF2bc5/YuzD3Hy6h+h7lcz6uLkaM2F+vlLOJ9JIhzTuTfMr9NFfF5lUsTnVfaO+LzKbnpe1AmcTHhH6lkSgznacQmkTwh6Tqj1p5Ethnhb54SdER4uH54TdiFsyRBxeP9PFwKnC4GTIeLWMOo6gVHXYkZdqxh1lTPqWsaoaw6jrnWMutYz6ipn1FVdfXUjo67ljLo4/YuTc9Yy6voj1P1qRl2cZdxQTXVx9u0VjLq46l79bs6kSwVOX62ucwBOXTXjds24/d8ydtSM2zXjds24/b9Z99XVV49n1MVZX5ycw1n3Kxl1cfYhznG7unJ0dZ1PcJaRc+7L2Y6cdf9H4IlNTLoSouoehSi62jPq4lonV787MOlSYQGjXRkmXSosZNR1DKOuo5l0qd8dGXX9r9e9+t2CUVdLRl2tmHSpwFlf2zDq4vJVFTj7UHX1++paxv91LuS0S4WaseO/f+xQYRGTLvWbc88DV32p320ZdbVm1MU11qrAOT5y1ZcK1XHsUGEzoy7Oa75jGXWVM+riXAdYxaiLc3/OBrEl6L1ecG9YwjsWi6r9ReFkRajQPYH0CS8/PAf1p5EthniJoHqB5dP1osvelbAlQ8RhPuxK4HQlcDJEXDmjrg2MupYy6lrLqOsERl3LGXWtr6Z2LWPUNYdR1yZGXUcx6trMqIuzvtYw6uLsjxsZdXH6PScXcrbjsYy6ODmH0ydWM+rirPvF1dSudYy6OH2inFEX57jN2Y4bGXVx8henf3H2x+rK0Zy6OP1rBaMu/I1peH2T8I7FKF9CGF07dUwgfdpOeA7qTyNbDPESQfVCXcPqsncjbMkQcfgeMPWNlG4EToaIW8+oay2jrqWMupYz6tpQTXWVM+paw6hrBaOuOYy61jHqWsyoi7M/bmTUVc6oi7O+VjHq4vQvzj7EyaucPsHJq9W1b3P2x3JGXScw6uLsj38E/1rNqItzDoDfgwDny/g9CKZzdphfpysh8iW8YzGyLyGM5tCnJJA+bSc8B/WnRdUy28zZqfqn6sXke4PqN+f389Yw6jqBUddiRl2rGHWVM+ri/NbjHEZdXN8RU4Hru5EqlDPqqq6+upFR13JGXZz+xck5axl1/RHqfjWjLs4ybqimujj79gpGXVx1r35zffdWBU5fra5zAE5d1XXc5qx7zjkAJ0eXM+qqrr5aM27nb0yrmZOb6aqZk+fPv2rmhfnzr+o4L1SBs76qq68ez6iLs744OYez7lcy6uLsQ5xjR3Xl6Oo6pnGWkXPuy9mOnHX/R+CJTUy6EqLqHqUodi1gtKs9o64Moy7O+0Oc9dWWSZcKxzDqOppJl/rdkVEXl0+osJBRF1fdc/Zt7v7I1YfU7w5MulTg7I9/BP9qwairJaOuVky6VOCsr20YdXFxoQqcHF1d/b66lvF/fazltEuFmrnJf//YocIiJl2c8wkVuOpL/eaak6vfrRl1cY21KnCOj5zXMNVx7FBhM6MuzjWFYxl1lTPq4lxnWsWoi3N/IX4PCtzbmvCOxaJqf1E4WREqlCSQPm0nPAf1p5EthniJoHqh9knr8vWww6uTQPkhHtSp7dF1vR0Rp3X19P5P+ejSeZMo/TupLccMSqcC/lbwdoS98JyuH/Wt4NdTlW2HdYv9xLIeW4f1E60/LSL5ZSKo3aj+Q7Wbzpsh4vAaSNj6ptpuPaOutYy6ljLqWs6oa0M11VXOqGsNo64VjLrmMOpax6iLsw+VM+o6gVHXYkZdGxl1cfZtTv/itIuzHTnt4uQJTp/gbMfVjLo4+R4/bwfnRvh5u6D5I4UD8+t0JUS+hHcsFlXnKAbzpbUJpE/bCc9B/WlRtcw28zOq/ql60WXvSdiSIeLw2k1PAqcngZMh4tYw6jqBUddiRl2rGHWVM+paxqhrDqOudYy61jPqKmfUVV19dSOjruWMujj9i9MuznbktIuTVzl9grMdVzPq4qz7DdVUFydPrGDUxVX36ndzJl0qcPpqdZ1PcOqqmQPUzAHi5NWaOUDNHKBmDlAzB8ili7O+qquvHs+oi7O+qitPrGTUxdmHquvYUV3nvtXVvzjn0ZztyFn3fwSe2MSkKyGq7mOIoqs9oy6u9Xv1uwOTLhUWMNqVYdKlwkJGXcdUQ7u425Gzvo5m0sXtE1ztqH63YNTVklFXKyZdKnDW1zaMujoy6VKhuvpqTX/MXxmro3+pUDMO1fg9jlvEpEv95twjwulfbRl1tWbUxTVuq8A51nLVlwrVsT+qsJlRF+e16LGMusoZdXGuT6xi1MW5nwk/31MA4hLeUe8LzIDzCicrQoVkAunTdsJzUH8a2WKIt3VfYAbh4fLp37rszQhbMihOBfycTDMCpxmB40oX1V5KsiJU2AvXh9YBdcP9BwZt0yysL2j9aVG1bWx8oTnC86tXXfYWhC0ZIg7XcQsCpwWBkyHi1jDqOq6a2rWWSZf6Xcyki7uMcxh1rWbUtYFR1wpGXZz1tZFR10mMutYx6lrOqIuz7ssZdS1j1MVZxk2Muo5i1LXZO+rxC859mMbuurZjt+W8MXDshuXT9aLL18IOryRMO0B7dF23JOK0Lr22nPLRpfMmUfol3uCWQelUwHPGloS98JyuH/Wc9kJPbylhbxukl6r35oTeDJFfpysm8mX1j+8XvHzx4yfd8MClCy+56Iz6r9U9s0732ivXrv265Vet/vrN2gsjtuc+On9Lu/wNdf5Wdvkb6Pxt7fLX1/nb2+UfpvN3sMtfpvN3BCezobJW2G73LFniG52/J8hfEDq/KNb5e9nl31Hn394u/046f2+Q36D8b+v8fcDZrHfs+NLttX66fHPy+le+mXvMD9ue9tjIk+6+YsCpT/bYtXyP98/4arzOuwORN0fYReftS+Xd9ZbC/Q+77pe5dUauvuaY116dsKhuqyn3td1w0f4PntL200PW67w7Unmf2//XN2/MnLZ08Um3LevXpeGUK097+dvPHn786sx371511Ms7Km7ahLhpJ10bovI4o6Sf938RiJsK0ui8SZR+VmlFvlM9vDBrH4XIlqwIFZqHHTP1Oa61j0KEh8uHr3eThC0ZFKcCnv8kCZwkgUPp2syoaw6jrnWMupYz6lrDqGsZo65yRl2cZVzBqKu6+tdiRl3rGXVtZNRVzqiLs75WMeri9C/OPrSWURenT3DyKr4HAuPwPKAInDcYlwvCzgO0/rSgx+WsCBW2zgOKEJ5fvdSR0sD7vWjhrNmzFi4ZN3fK9KFT5i1YNHsGnhnh2RisFagVnkuIyqWHcYXoHE43Av0/msgnCN0qXrdcHXQ+K0KFztorOhOROq4L0g3j/L6gjUMhYb+2uZaUT5tU6MXpsD2wPbqguDSI6wqwcbsWETja/gIifRrpKiLy6Ty58P7IPZFqJ503Q8Thvhh25m/DEHrVzWOIYTOmLpo5bu5MgUIS/T/cx8RmKN1oH9MShN4EEnwe37wsFMEUFHQRGMZlhKg6yEBdUxFOzSDzvzTIaH1pEEfVhNaplzhgmdI++XCnxucKiPRFSFcRkQ+TMZUf6oD5sG3FompZs/rHcRde+mbZSU/2ev/X2sePn7JmcZ8Tnt/ny6XNLun04eFXtbqygcL6sdi/XjBh6XoqylG+JEq/HVj6+cXDUx7Z1Iv3PHLIotlHTJqxcP6sGUfPkNy2QKCQy412Q//vTuSjQomo2tSYGCw7amhi0PrTgnaVrAgVthIDNSuH5bMjBuwQeFbFTQy7o/9tZp94xM6KUMF49olnEV0Rrv6NA0Uw2mbT2SdsDzz7hB0Vzz5huyYJHEx4MD0mPIo8MeH54dUM0VtCzXUgCDXXgYT9cV8H4nxFomrPxcO9TtvJMyRijxX1QT5sY82YvSXUjNkg1IzZhP1xj9kUk2CWiPMSH2Lje8YqZPWP9xYOPWVh0yN3/LL46ZO2/3vL1m9/f8mNH/+4ZEa/Lz7+5OZ230dkjb0jst1eKt9gz4n0xRjsB7gf65HJ7z68zptE6UekK/IN836ruE5evMcoe0+ZPWv6lIUzhs85atGMRTOmT5i7cMaCsjnThx89Y85C40uzkej/UUQ+KtQG+hoD/YWokCrgNSyvD27dAIbT4ArS6cd4Eaojf+OdpJxO21OC8ut4FbRTNEW2Z0WoEHoo0vrTyBbboagpwsPlsxuKoDvjWoFa4bl8D0WWWzaNh6I0ioNDEWxNHKihSNtsOhTB9sBDEXwMBA9FsF2bEjja/gIifTOkqymRDw9FfniFRD48lUig83AtqzGBjdeypgJ2+K6Jfz00Fv71AO3Bdsb4CNA+YdkkX48AmbEJ9BSIsjfSqtPAtDDsDSwTPumo1ksS+XDQNZZENi8Dg/BsNOjDctVG9lDeDs/hSRLMr9NROLUi4tQicLQn1wH5JqO4koC4ukBnbRRXD+TD93fqg7iJKK4B0FkLxTUM0NmI0KnarkXtCn1KOoJ0lKfjuxDtgT0wL/y/CKVVYbp3TKK0m4BflSO/gr0Y+5Xpw48wfzPhj1MrIk4tAgePVipMRnHNibLiBwxVwO1MbfbXcW2Icum4bIDOdoRO1T71a1dOh9tfBc34ncB5k4uSsIyv9aeRLbaM3wnh4fLhB0c62+HtlUD5IR7Uqe2hZl6wbpXo2U3KR5fOm0Tpz/L6WwalUwE/ONKFsBeegw+OnJGubDus24TPUevF53D/gmXX7aNxIN9MBfacl65cFshThaIqr+kLYsxVLcFdwQsQV8H8uO2ofmJb/o5EGUtF1bpJgd9+/t0pACcVUJ642jOFcCDPwva8BrVnZxCHOVr91g/lJFH6JGjP61F7Un2Rqmc8LpnWc20CJ+56xuNLF0YcqAsu7ijZFunC9azbSdczvKLcFuWDH3TFi6CFKA9MD3VQ+rWOXD54f5oum58PaqwkSv9p3Yp8D1n6YBcUB8cKOC5CO2A9wPT4BXfazpRPer9yPQmuOn9sUlmnzg/rCrYF5l+d/hmg8+cmtJ2wXHA8wIuRlD9sS5SLqtNuIjc2rOfRPtgpEeyLSZT+ZaJO8bgA81P9qBTZ0jWH7bh/w/w6XQmRLyqPUDbn6pPvGPbJDt5v7LvPgT75PuqTQT4CbcbXEab1XIvAibue8TVCN0YcqAuPC9THCmE963bS9dwdxPVA+eBDpPhjzoUoD0wPdVD6w44L36fpsvn5oMZKovS3AB/8KeC6OMgHu6E4WKd4XMjFhx1Qem13SgSPt0mU/t8B4wLVXyHX4nFhK17tCp14XKA+3B40LgR9wDtXnfZAutoTumA943GBqlNY/vao/Dp9MSh/0Lig81PrEdNQHFyP6Izi4EP2eM4KH6DHK/JwPQKvjWRBHOa7diAO+ghej6gTUJ4SoAOv98F1O/zChnogrgWKg9s9WqI4uG7XBsU1BHFZFNcIxLUDZdXrdvjmaGvvfMT7duTWlaB10YTPUYhw4wHcWpVAOE0ZcaCuEQinGSMOfrknxGlB4ER84UTo+6xaf1pU7bs262TUC0SoF8+Y3RnBr0KBtQK1wnOwpnFcnPdZtb42II6qCbxyDsvUxicfrAtBnCsg0rdEuvxeMVPog0e1KMyHPSaBzvvdj9Q6kij9jmC0+hWN1hQWrA88Ymrb/XZMYBt0+v7Ahm+a0DqTPuVq4aNzfO2K+hhYm9YpCJ1UudqgcmEb8KuAdPoyYiZQiNJge6hzuv4FkRf/T/lMY5Q+m6M8uJ10+pEB7dScsAH2ydE5bMBp2vjYMJawgWC3oXPnLfHYTaBAPYsG/8c1j+/bNif0+AVdG8oLtUdSuwxaEPmaE3qwTarkeo6y9dG+2TMWzvApO2buhA9mgaADno8KUXUMtRzTQo+hWn9a0J6XFaFCArOcxsPlw5s8WxK2ZIg42L7Yj4JwVJvqOanXpnssnDvfr0nDDq4JwiycX+TQhZu6HTgf5+amBIqDSy54GgkvASGp4YDLDcujyOV3g41PsE7xZRZ0T3wpBbvKtigOulI3FAcJvzuKy4I4fQlcKqq2F7zMgnEqFBLn8BQb5m8XgNMgIk4DAoe6NY59E94CjIOGtP60iNQXttIQtTxB1Qu+jQnzUssMeCOa9ucvwATpaHTpnoYGeseIT+HsGLZetf40ssW2XusgPFw+XK8lhC0ZFKcC/hZFCYFTQuBQutYy6jqeUdcaRl3LGHXNYdTFWUbOduQs41JGXZxlXM2oax2jrlWMupYz6trIqKucURenT3D2R84+xOkTnPW1glHXBkZdnHV/LKMuzrpfz6iLs744uXAxoy7O+qquXMhZX5yc80eYM3H6BOe4zVX36ncxky4Vyhl1cdb9SkZdnH7PWUZOnuCcA3DW1yZGXZu9o15jgusQ7RAOdc1fJwAH5q8TQhe1fhBUxnZEesa38mkT+6J0o31MSxB6E0jw+b7oXCGRFuqGj6OXeOdjeEKldwLpE4JeVsrXEyq67NTu4QwRhz8dHfRkCsTJEHFrGXWtZtS1jlHXKkZdyxl1bWTUVc6oi9Mn1jDqmsOoi9MnOOtrBaMuzvo6llEXZ30dz6iL01eXMer6I7TjekZdnPXFOQ4tZtTFWV/VdRzirC9Ovuf0L07O4eyPnD7BOWfiqnv1u5hJlwrljLo4634loy5Ov+csIydPVNf51yZGXZu9I/VkajuEY/p0NMzfKYQu6no4qIztiPSMyyTaxO1RutE+piUIvQkk+Pz26FyuZRK8K+dAby0n4g478gESrasUYarfcLcZjBMi3EodzF8SgFM3Ik7dkDiZiDgZAqeEyJfwOWocfC5oZT+DcNox4kBdU72jrje4FIb9gHohUccAHJi/o48u/YiCCkeANHhbu+6vSUKnCpNBPEw/3+tDtaTc5z1xpOu0Pcg/FdizsE6wrTAvtBW/lORM8KDoMZ5Oqp51u1N+0BHFtSNwKZ24b5m2XV3ChiBdsL3qofS6LVI+6bU+3HbHgbbDD6Tq/H7+09HHBug/8JGEyT42rLXwn/V1gm3F/lMPYev0y4D/HI/8B9ZxkP/UQ3HQf3QdUZyJd+qacmYDwj4KJ+iFX9iPTF/4VY/Acb1bvQGKgw+BN0RxcLd6IxQHHzbGY1B3EIcfkoUPPuOHZOED+fVQXE8QB/sSDoXof1i3qs88CPoMTicQJmz7oAeU8YP18KFd/LBnQ2QrPod9BuZv6KMLPn4GOWQqiIfpz/EKr/rxZXUqlwu+DFDXScSHZ/okkD4h6Ntg+OGZRnZ4gQ/PwPLh22DtCFsonmoNfsM4iNOOwKHmO+WMujYw6lrKqGsto64TGHUtZ9S1vpratYxR1xxGXZsYdR3FqGszoy7O+lrDqIuzP25k1MXp95xcyNmOxzLq4mxHTv7irK91jLoWM+rirC/OPlTOqIuzvlYx6qrh1fzxKlfdq9/FTLpUKGfUxVn3Kxl1cfo9Zxk5eWIFo67qOl+dz6hLz1f12gO8RsdrD9T1cIsAHJi/hU8+9RuuOQTdH4j49HthAunT9sBzUH++nn7vRNiSIeJgHcI4iBN0yxPqCvNCD2rtI8g3qDIy3vLUJvZG6fb0Ma2A0JtAgs/3Ruf8bnlq3bobwaUnfNsJVmNQ1VK3nRoF4NSLiFMvJE7diDh1Q+I0iIjTICROs4g4zQgc3ZWp76aoZdM+JTQmvKUCl2vxLTmdfg5Yit2xpHIZ4W2JOqj88EEQ/O5F+P0YTL3w1rsBFYZ+8YjWnxZVfdKGeusjPFw+SEvh3yGIewDekIDTw7SCiCtE5/BN+Doon807BBuAOKom8DsEYZka+OSDdSGIcwVE+vpIV30in7a9MCA/1AHzYY9JoPN+7xDUOpIo/SivMdTNH/wOQQoL1gfefKNt93svHLZBpx8HbMDvpqsP8lDlwr25Afof+tZ0H/wpgGV2L6HxBYGPywdZze/9fPWRDTr9nqAO8PsGGxL5hc85PDI0RHENA9KmUVmo7+dBX8TvJmyUo+y4/XX6AwLavy5hQ9CXP7ENOE3ax4ZDCBuivZsQsxxuJdwSdQk9fkHXhvJY7b24dnDvwDj6f8oDor6bsMQHs0DQoUTQtqlQLCKNlaHHZq0/LWjPy4pQIYHZU+Ph8uHLovqELRkizq+X5sKJ+G5Cv0GbIgucX6C8CeKcCvDB05pLjdw4f4RLDayLuoRQYT/viIm9HBA7/qRBI2AHpXMSsoFaBaB2NOn07Yj0LYgy6rqEqxTtQmDDusQDYXtDW6nVFbgS1QLZCu3rZGjrno5tbUTYGnHXjvHOMrwLDO4sw7vA4M6yJigO7izDu8DgzrKOKA7uLGuH4uDOMnyJ3xPE1UdxvUBcFvzGAY8FsN5VvxzctkIvTgd/+3EK7LOjkY1w8gw5RC9RFAPdECcrQoWtfkBdFGvdcLph4GPToE06UFMXfS6NbDHE2zp1KUR4uHx46pIkbMmgOBUWgHQ4rpA4VxCgaw6jrnWMuhYz6lrPqGsjo65yRl2c9bWKURenf61h1LWWURenTyxn0qXzc9m1gVEXp08sZdTF6ROrGXVx8ipn3+byVRWqK69y+sQaRl2cfYjTJzjrawWjLs76Wsaoq7ya2lUzbuevvjjnq5wczTkHOJ5RFyd/VVefKGfUxdkfOcvIeQ3DWcaTGHXV8Or/Bn9xtuMSRl2c9VXOqIvTV6vrvPBYRl2c/ZFzrOVsx+o6X51XTe3i5NWVjLrKGXVVV47mtIuz7qsrT3DOyf8I17Wc4/YJ1dQuzutaznbk7I+c1zCc676cujh9AvehhPc/TDMZ/J4G4mF6/dagiPeKp+N7sVoH1F1kqTuB9AlR2U6B9JcQeNqutE9cVgSHjdfdf9a4Lx/9NIHya1vwObxnJEWkp+5p67qqBfIb1NXUEoAhELaOS4K4IhQH60XboI7dspXtS1naF6b+oP4MkX4iSGfSFvVFZV+A/q736sA3B+E3UQW9EJN6KSX1pJlOr/fmpHzSa31JlP44r7/CjdqlKI36XdcHD9oHzwXt7evio8vvDWVtfWxfD2zHe+G6EvZR20h1+m2J9HBPk7aHqpttBY0NywPb8whUHp3+JKI8VP/TPlUM9Og4g75TV+HsmK3AwfUG+0+uOlIB12k3Ij2sK10nGZQe1q+Og49HdUVx7UAc3rvXhrAB7s/D+6ug38E3560P8QbF6tSvzw3Zr1v64EH7gvo1zG/Sr1U43Mf2iwz7dUvCvurUr68I2a+1T9X069z9uiNhQ9h+rfNSb1vtAeK0XriPu4P3O4nS3x7gs9uJqrbCOsf125NID/e04rdWwr2wPVEczIffXAj3wnZDNvQi6gHahfen6/T3gXoYm93ym/J1bVdEXy+jfL0XSIB9Hb4Vu5BIj9uiN5F+e5BG10kGpcftAv+HumCd4j3vuo5SRHqoL4nSP0lwv7YPcl8vZHs3Q9ubEbZTb9OEfep79DwM5I2OCLNbACbFz3q/eMonvdaXROlfJuoLcyPsB7CeipBOnf61AD7QuLBckLuwD1J1350oF1WnPVActF37AtU/dbqI/XMI1T9h+XH/DCqrCrhuKG6FvqvbPyOq8uG2KA72je4Ihxojw/o/9KF30rRev/Gmlfcb+9cXAf5F9Rvqow1B/gj9BI830L+6oziYrxOKg3WK54rUuAvT42tAnf77kOMNkz83oPwZ+iz25yD/VMF07Nd1khFVxwPMh5TPwrbG442uo5Sg20DrS6L0vweMN3De1gPZ3sXQdpv+dj8ab+AXNfB40yUAE+eFfOE33mh9+HogXbrlSI03nYHt+PqLGm90+hKgM8w1U9B4k+uaSdtD1em2KA7arn2B6p86XcT+2TDf1z54vIF8iK+LYN/oinCodYKw/g996Bo03uDrJqgL+kWQP8J+o9sJ+2PbAH8M6mcq4Dqn/Bf6lbaH8kd8zQNtD/JHpmvxvSl/hOXH/hhUVhVs1zcyoqqvBvkjHp+5rrfP8/xRr/vDZ7EN6tX4edUEioP1PALFwTqC7YNDIfoflke1++9orUcQujRmGsThrw/AdxN0RXFw/WRbFAfX3LuhOPhMf3cUB1/P0APF4dd8qKDb0vIN/qFfaaH1p5EthnhbnwvN9eyt7mtmr5vyeztBAmmF56CH4rhCdA6n2w39b/O6KfgKIKom8OumYJka++SDdSGIcwVE+kZIl99bHwp98KgWpV4fpHVQ+eCoBvOE6QGNkf6sCBVCv+tS6+fqAbnaXfuqLnsTwpYMEYf9mno/ZRMCh9IV5gUxfr02wgtiEuj/Rj5mFBD5RYAumCeoSLDrhHkrF/XeoyRKvx9x4RGUX4US4hx2e0s3DE38Wn9aVHUJG7enPssDy4fdvhFhS0YEUxRuwyAcRldVYTcfM6gRReTQhXsy5apwb8RoH+wUkZ5yVZ1+JuGqusoLiPxK54/FlbEHg3Qaeyfhb2sZshWn2QnZqtMfCWz9BtkK3Xmw97sE5dfxKuguNQTZnhWhQugupfWnkS22XWoIwsPls5tL7QR+41qBWuG5IC/O1XOGof9N5lK65Yah81kRKgzXXjGciNRxI4DunVDcSBAHWxMH6qpF26w8+FODqxbYHvgqaiiIGwmwcbsOIXC0/QVE+qFI1xAin677XHiFRL6dkI4EOg9XQgYT2EmUfi1gh++a+NfDYCF860H/35ywE9e3jlchok/uG5ZNtP60qNr2NmwyDOHh8tmxCfQUiLIP0qrTwLQw7AMsEz7pqNZrQeTDQddYEtn8N8+LlPdt9n6Xiqrem0L2QBuCeDlD5NfpKJxaEXFqETjak/uBfJNR3M6iall1XH+QbyqK2wXETURxA4hy6biBATp3DdA5iIhTbdchUzkdZKOEz1GFQuIcrtMhhK267SAD4DVHqrcNC8CB+XW6EiJf1PJQNlNzJ13W/3zhsrQiDxxNIWtDP9Z7x5Io/RNNKvJdifrbcJBf20jVM+6LpvWcInDirmfcp0Yw4kBdU0F6JaOQLlzPup10PcPZziiUD87ZYTo4IxgFzo8msCn9WkcuH7yrlC6bnw9qrCRKfx3wwXssfXAEioMzSDweajtgPcD0eK+otjPlk96vXA8HXNsNIfJTtpcgW0YE2K4C9kWYH89c4/B5iJnLf55B/jMSxFH+0977nUTp/wr853nkP3CGFkf5g/o1nMnhlWWq31H8gfPBPloawoZRhM0ZIr9OV0Lki+oblM25fONd5BujQRzlGx2830mUfjXwjQ+Qb0D+1DZS9YzngKb1XIvAibue8fxuDCMO1IXHt3FIF65n3U66nseCuHEo33gQB9PB8W0cOD+ewKb0hx3ffiily+bngxoridIfBnzwnwHXNEE+OAbFwTqF3IvbJ6gNEsjulE/6MahcOv3vAft7qP46BujEXK7TF2QqdOL9FBoXlou6Wg7yxbFEuag6HSdyY8N6Hu2DnRJ0+f18JQ3Kj+tU5y/yKQ+uU52+JKBOqToKqlOqj40jylVKlHk80jWU0AXrOUydwvIPReXX6RsSdUrNW4Yi2+HcAc8hqXkYTI/3F1F9jJqb4D7WPMD2oFVJuLYwDcXBtYXhKK4/iMPXYruAuJEoDq4tlKG4gSAOj3+7gji8t2YQiIO+r9cWkqis23jnI95bqPLhLKiLqt+Ez1GIcONpP5AmgXDiWDehcIYy4kBdQdds+I636boBzB+Es3NEnJ0JHKxLc7IKcE6k+1MSpe8H+vWEbGWdwwn7dgbnRgeUFfdnqEu3me4fkPviuPem9aeRLYZ4iSDOheXDt7NHErZkiDi/NoU41O1sU7sYvzKqTWyJ0o32MS1B6E0gwedbonOFRFqo21XXyydO7Yg4tQmcuJc6ayOcMpAPXu5MylTkgS7sd7mDH1XR6fcGlzt7eTqpyx2/bgd9Dd7qwL6t8fy2MfT3sW9/QL34u3X9iTK3DbB5OMDAuCpM9rHhEDRVsaRicqqCl0LhlK4fioNTD9g2ME6IirqA57DPlRE4WJffMKnrFU/pDjUcJqFvjw4o63AUB/kV1wOFQ9E7VQ9BOHUi4tQhcIKGfVsuoWzGlxIqQC5ZgLhkBIijpjQTvGMSpR8GuOToAC7B4yOeamB+9Rsn/bhkmI99ywK4hJoaTgiwGV4CYlwVJvvYUI64BN8KyopwgeISfGsC8h9+VY7pWAjzuxoL6yKcuG/7Ucv90G9hnMbB54L4BV+G+/XHTRkak+qPeFyrhAP64ymoP3LcqvPrE0KEu901nMDx4yAVgsYgnf7MgDEo19Q/6FLNz76koPvUFFFRZj9dgjin08PxDy9fjERpRwSkxXZD3+7o/dZchG8pZ0WoMFr782giEt/SgDbpOLiMuAdIh0Mh+h/arNp7YrZCL06H7YH1MMZHJ9Xnp6O0W5fCCb34dhHsx7i+JvrYgNtYhQO8I+7vt2Yq9F+Nxhk4Phq07RjqlpQOuP1w3eFAtZ+2S7VfebZCL06HMWE9j0VxkFcno7gykA+2x315qi98zQ9DPuprGorLVV86Tpe3gMinfycR3sfAXx9E+nYGWNj/8asR4e0ZnF+FyQhfp38UjBWPZ7f8LhVVx1f8BAXUTc2P8TjXwMcuqpyQJ0chu3XaD5Cv4tutWREqlOk2HodsgrrHW+pOIH1C0MuOWn8Jgbf1NhsRlwxhy5yfpvSZklr6aALl17bgc3ipcAKRvgGRXtfVbiC/QV0NpB711tg6Dvr2eBRXBOK0DdTrTCdY2hem/qD+DJF+Bkhn0hYZAqeMUdcIS136NavU7VTMuSpMRnHU2K/asch7BpriofrIVlMegvlNeAjPdXXaAs/WiPPHHah5IOahcZa6w/KQ1l8i/Ns1TcSF4aHDfi2bd9+k51snRFW+LSTOhbmNX59IH7Gf96J4CHMN5KFxKA7ykLaB4iHLMaVXmPqD+jNEesxDYdsiQ+CUMeoaYalL8xA1B6d4CM/vRhPlgTxUZU2hXkWaWvUq6woz71YBP5YwIiBuFKFTYbesV3Ee8lXKO8LrSHyNRm0r0v/Dc9DXYR689qDTNwJ1Ux/ZB6//YTmhfdRcHa5LNqnnn250QLqw8/t+KI7aNh22XfBY0QaNFZYPf5HrnlqXWu/WD+l7t2xHzli4x2FT5s+YvseMafNnLIRXVNQoiFcy4SOCfkFbgu/WDkL/l6H/8WrmKEJPLkxqdR2+RAXjUndeMCvVI2zOJ07DiDgNCRyKlRI+R42DzwWt9OLXc8BVObjS26NeRR7oE3ClF+bd0zviVc+NjSvy9QqYQQbVM36XhGk9N6rBiRWncUScxgRO3P2gMSoPZH1cb6Z3pGD+YY5xcvXrsfVozLD9WqcfAPr1hBD9OqiMQZvSyogyYk7y07Un0hX27lFZCJygu0dlIXHClCcIJ5/l0bqou46wDSYF2DUS6RqVQ9deSBd1R4PyQWyz6eoEzL9zAM7IiDgjQ+K4Ks/wiDjDQ+I0iojTiMChrjCijh+Uzbn4diHiW+rhVpgX72DR6bcFfHsM4lu4uvW/Xs+jGXGgLvyyAr/2XI3ak3qYJqg9dfoGoD3XhWhPqm5GBZQHrrT5tTX1sGGC0BW0mwTXA0xPjSkxrqjWD+MHUH8a2WKIt3VDedADgyrAjdvan71VgLIZC7bv3W+YXAJYMm+h3+pqPQgK7MfpBfof51O2JVGanQkMFbD/jEbpcLvr81h/GJtypc0VT3HdWJ9yChGO62D+nX10+e0A0u2DV5r+4hkcdgcQ9RBb0HwA9zucrpAoQ21B99dZgrYPlnl0QJl1+nMDyjwyR5nx/J2aO2JuwukKiTIUC3q3Gt6lCOPw6zpN/QnmdzV2NkE4fmPaFWhMo3b1wV1f+qM9eAX+90YV+a5GYxo1F4y7/H67eWG54AeI/K5tkoROFSaDeJj+Fp67j+SKMr6D0o+wX5XvNtSmVNmD2lSn/xa06Z0h2jSof1C70IO4YFhAeupasYxIHzRv1O0D7yiHb5/EO2F8FOpPI1sM/WHrfIN6iByWz3a+ofW+DQoE7c8138D5guYbOK1f38NzgFHofK75BmWTX9oo843RPuUUItz4APPrdNo/y5D9WREqZLUtw4Ad2hbo82XI9uHARtwXqfTUHAPqxzys8ycFXTdTQTxM/wyYSzyV3fKbaoumPvYJEa4tYH5XY1VThFPGiAN14ScKYLvijwqZrkfD/EHr3qMj4lBP1ITxdRXmesdcc6L3DMdPfOddp/87GD8/ROMn9eSp6b0xXH7Y1mHuvQT167D9lJoPZJEu06fSYH6/eVySsF2FySC+UnpvQhXxacndqd0ruv9FnPPtHqaPQ/0lBJ62K03EhdkV9ml6wGOf33DW0wmUX9uCz4VZO8oS6aPNv8R4alcY3LGiAvSRUSgO7grTNlC7wizna+PD1B/UnyHSTwfpTNqC0jXaUpfeyUVdY+eLk/zWXjQ/4blDba/vh30CmHrKM+iJUcxpuIyYc1TICjr8joLWp+u/FoGFd8LqtPVBuZ/NVrbV7x5h0qc8QU+HJYR/3WAM6umwPqKybSND2EatB0EdZT52Kh3UPUTst6ZPVA4j7KFw2kTEaUPgBI1J+Khx8Lmg+5FtEI7fvKlD/Yo8kE/87o/M9o74ftdmMG/axtNJPYGP77ni3XuQE1TAHKjzpwS9ron5RKfvBvoVfmKbWh+eDXT6+VnYp4R0+l5oPhPHOhMuU1JU5VYVxvqUyW+9GNfBKCL91ID01P0m6FeYs4NeRKjLdl/DCht2Qn6cq/x+a/63N6jQ2d9Q53gfnWPrV+gcGNA34Ecucf1QdYb7P8yPd+BSLy4rRnYa+mHoF0Jp/WlRtcw262nU+gBVL9TL7fD9WRgXZp9G0Ic8+4e0i/GFUNrEpijdaB/TEoTeBBJ8vik6Ry3JQd3Kzbf3hgPt5vA9gd2R/gFARyFxDrs5zK/TUTjJiDhJAidIV3dCl04/kEifJNIzuoY2sRVKNzXANKw3l2u0Quf8XEOHQoSZEFXf2YKbBttYSujoF1CmQuIcbup+BBaF0yMiTg8CB88SjkKzBIhvwJbr8as2tQ6ou8xSd1jm1/qpZ0S0XdQnusKsemx797Hn79LhsN0SKL+2BZ/DXZK6iqQ+XR9x9WkNteoB39ukArUyRq16aBuoVY/hlvaFqT+on1qlxqseYduC0jXaUpde9YCvlg3qy644Iw6cIF3USohOr+smJeg7RZiTdPpl4OoJf1mTqm9BnCsQVfkIv4ob6irwsZ3CFqJqvcH8Ol2MnFhkyolpUbXMNrNhqn9Q9YLfEQfz4h3AKuB3Y5jeEajuuqBv4ldW63jqqHHwOYwD+ypugzJGHOivYfzcFgfqwrtv8cohdQyLQ+3YiTgGj6RW23Sg7shgv6CebabeR4XrH66yDEdxcNfsDuA3DoXof1gPio9fyFboxel0oHbk4XHJ9CkTaicTddcdrjZeWp/G9HsfHb5Lq9OfD1ZprqjvX0Z8TUSt3MEyTkZ4Ov21Dlbu/pd83MaP67Sr0IvT6UC1MZ57UXciqJ36uhwUX+PXhkOOHYni4PiNd/hDLpsG0mE+pe4i4BXRgYTt1LypXwicoHlTPwIn4tzI+OO/ePWSqpewPqZtVj42JISP4bET24brKMy8W9vgd9cC85xO/2zAXQudBq7AHwF0Yj+AGALpUGEyskGnfwlxn+V1Jsl9eEyEdajTRcQNvUqt9aeRLYZ4W+flue5SwyW/8B/5hT2QYlycHqYVRFwhOtcfpRuF/rf5ZLjlm4lH4VELBtNRC7YmDhRrwHv3Jp8Mh+2B38YCWWQMwMbtOpzA0fZTb0XEz5NQb+TVdZ8Lj1oVwKxP5VP/70jk4bziwfXIoSuGPWENwzKO1p8WkfrJVsah9gdR+xKovuP3bCLkhASKgzjUfnZK1wAmXSpMrNFVo6tGV42uPOgKc2UIxyn8bCTkwV2RfaY3qmH+oBvibSLitCFwSoh8tmNyJsBm6uoe15vpvjyYP+wXFbo0oDGpFSwV9BUZXlE6DaxgdWtQ2Wbqal4Fas8QbAetA+ctBjboOIP5RamaA++YrcDB9QrvUIaZh8z2jnjPMyw75Qth22hH1Eb4K0Q4L97TqNMvB220s/ebaoMw+4aoPZS4H6aI9FBfEqXf1bMJ3pUL84Unnd9v1bWVD94QgPczuiaKwe8aUn4HeQb7HbXSRfFZEF/Avof3ikHuwXdiqb16QftYdf6UoNtA60ui9OOJNsd+5/fME25XnX73kO2q6zKOdoV1hduVustNPQ8Y5AfUHXlqHNgF6dqF0EXtWw3bl7U+3LcOCGhXir+gnbhddfqDQ7YrfH5V69FxUdsV1hVuV2r+Qe2XDPIDOD7oOqFW9AehuDIQh1dKKf6GfhCmzWH7+PH34USb47kj5oUw4wtcWdTvD/VWFvdYOHf+DG9pUaAQtBSo/vfbe9qAyC9Q3gQ6hz+EQdFn0IK6xvbbyILpU6c/iqjyIPpVIcwWatjccSxOa/1pUdVlbZaKctEaXioK6mYwrhq4qgp+T0MkiPwC6UoQ51SgtjUHzQIpdqNcDI9afjMCrQ/vzTouYOTIdY8xzFs6qBkRVX78RkeYr8wHB45o0I3wiKbTbwg5osH7llqPjos6osE6wiMatbIQ9OQt9VQMtVqaQelh3VMjGvb/sLNTPBvDsw98ZRXkL1R5g+qH8i/qvfTUvfygq2C4v0IFzqtgWB7sC0Ftq4Lf21xgetje+GoE7rvAK0+wL/k9QQdxwvoCXO3ogq6IYVv1C4EZtDJDPTGI9wBdArjA7+1sYa/4dfrLCX4JKkPQbDVoFYTydTh+4D1Bru6g4j1B1FtnqH0/eE/QOBCH7/H7fTMJBzxGw3oIu+8N+4PWa+Lz0JcuRXvN4LSvC8KkpljwHPZ5mF+no3CSEXGSBE6Qri6ELp2emuPE/FiTNrEDSjc1wDSsN4EEn++AzhUSaWGgmqmfj91ChGsmatEA64Jbf/YEafDLfOBw0BXpMr0JAPPjKam2622PRosJfAP6Oi1oW7bWbbl9/rQE0icEfeXlt6Ua2kVt5Q/zCNPtl06s+/x9/bY+ghN2q55OX0ak70qkj7i19GRqWgWHAxUgreyK4sI+wlRmaV+Y+oP6qS3t00E6k7agdO1pqUs/wgQXrvANvbg5Bl9yfUBMs1zboof9TwOmfLkWE/ENWGh70E1TXC5TvuwXEqdbRJxuBE7cN2e7IRy/G3I/osvGgSCOmo4d7h3xzY9rwAsffkaXH9RSSULQ4w8cI1XA/RXfnMFphvnY92/gn3i7Li4zLCdl864AQyAdKkxGNuj0hV4dReRUcrsu5HzMYXhctsQNvSKq9bt+jM5suy6+TQhrBWqF5xKiculhXK6FT/zKJ5vtupazBOMPluOLTXjRCFsTB+rCEM4qTLbrwvbAH92F9xPGAWzcrmUEjra/gEg/DOkqI/Lpus+FR81y8AsDqHzq/75EHs4HIYM29dvqorb+RlwkCf0ZCvyaRst+spVxqAWloE9wUK+MpLbQ4KtF21cQqt+2ryCkdA1n0qXCxBpdNbpqdFU7XWEepoTjAf7cHLVtIoHioH1BV5Qwf9CCaiYiTobAKSHy2Y59mQCbw3zawfQFCdQnOXK9RnJiQxrT7zWS+ApPpz8PXOHt2bCyzdQVngrU1TRsB60D5y0GNug4g3G8LnVDENYrviFI3YSA6fVW4aAtQJQvhG2jQ1AbBW0XhPbgPTQbQRtN9X5TGwLwKyBz7QU5AqXXZQy7LVann+nZlGtb7EAfPL9ViQk+eEcAPAfbYutTfgd5Jsw2O4rPgviC2uNDvVAFb7ODdYznpaZbZqltdkFbZnX6Ywh/wGMR9g0/+6h6Y95mV+ZjRj0iv0B5E+hcPR9dWo86Bxc5wmyzo55OwBSxgqjyoCZToWab3X/dNju/Bx8SRH6BdCWIcypQ2+yoV8KEqWKqqmw3aG8iXDqIYakZVtBMgLrnEPTxQGrWM9AHh9o4rgIe0XT6P4Uc0ZhmUuSIBusIj2hhV050+lxbcXBXo7akBV3ZhO2GeJsJ5afUTC3X9pUwD7ZQr1ehrh7wi/BhvqBZNfxYowqcs+ooD5uZbkHE2yrhkIhfgQmHI/xie2oWFdYX4NUTvrLK9TCM371nyAFQx2zviO8j3UBwgNZZJoLLFobvykAa/Aon6tU71GuQgrZ96nQR/bGE8kdY/jBXeTC9aV8Neggt6GHJMoSTy2+CtsDBe5c/ovuuEKcdwqT8hKqLDJFfp6NwkhFxqFcgBelqR+gKau+Yt8BpE1uidFMDTMN6E0jw+ZboXCGRFgaqmQb42C1EuGai3JnC6RcRp19InE4RcToROFW2uPDcvl8d5oaZ5Xe8VieQPiHoqymtn9pNrO1KE3Fhts59ldnrwdnfX3x5AuXXtuBzYXbbdyLS67qCN6cN6qqcGprgjWYVIB2NQXFweNE2UFvnxlraF6b+oP4MkR5vnQvbFpSu0Za69NY56htZrjgDb537Ckyh8Na5uG1xvZkDv7FxHEhv+sZGuJnD5I2NsE7x941M39iobQj7xkad/jfQ5ngLmM4T9o2N8BtxGFeFyT42FHjLJxE3RpBbwPDlod974rCtVJ0Hvclap4tYBmM/xlsnIe/jTTLwSRa8TXwCiOuP4nYDcXjavTuIwzd24A3bMhQ3CcRBP8KB6m/wqZoHm1boxekEwoRtjzdPQd7RdUgtWXUGv2GcthWfwz4D8wdtrx0WEWcYgUMt3cH5VoyPL4Re0cZfWbH8mszWFe2gd2v8xzDviG+IwrzUjSO/LbsQpzOBY2pXDB9Y6obS+X10I0HoTSDB57uhc36XYfp/yvXLfOwWIpzrw/yuu1iuneU9GtGYfq82wp9d1elngc9X9gK/gx74HyIqx0Gcoch+ah9IxKejQlOA1p9GtthSQNj7yWY7pfFLRmGtQK3wXFBPwPeu8G3FnVE+k53SGpdaU6NeFBN0rwbng3UhiHMFRPqgAak/sr0wID/UAfNhj0mg87C3DSaw8Y6JoV6vUhOOX9EkmcKC9ZFrVwBOg23Q6UcCG77xuZ+X9CkX7s14gIe+Nd0H/0DAMmN9WEwQ+Lh8cIRJ+djr9+qQ3UAdBH3WCT9Li8/BOoB5/f6HaXdCZYH/U744GKUflKPsuP11+r0D2r8/YYO2S4XROWzAaXbysWF/wgaCNYfOnbfE5w49nktglsOthFuiP6HHL+jaUB6rvRfXDu4dGEf/T3mAKrmntmJqNnvGQr/dCXhE6OeDWSDoUCJo21TI14aT/nZ4gRtOYPlsN5z49dJcOBE3nPgN2hRZ4PwC5U0Q51RQ7rzJu0v4vzZ9xrr8tjbu5x3xIDUfENTPPoNkgY/OScgG6gqNWg3S6akb6EFvOvb7pqwfNqzLMO/ICbI11wYT/L0eaN8oQ1v3dGzrAMLWiKsXxqtyeAUNrsrhFTS4KodX7OCqXBmKg6tyeDU77KocvmyFfQA/GrAHiBsEfuNArdjpelf9cnDbCr04HfztxylhNwFADsGX3ZRPBb0ldTTQVUjo2N87JlH60wL4iLpTFNQPcr1vC7/PDpZhLIqD+eBbqrVugdJF3JRCvosMlgdvSoF3YwqJ9LhuxhPpYZ/Dm6RgnxuN4iC34FVi6v2ByvYO9Sun4/jiC/VW/onInpGMOFDXZIQDxza4nHWZT7+C/QTmnesd8Z3HB8HF5ZVoCYva7Icfw7kG9LPF7fzz481Z1MaloO/yBZUT1t/+PuW8Cdg5Nrvld4ybEzOm74OkOCbofZBB/RTWSUZU7ZN4zkPNn2Cd5rrjidtM68N3G+8hFhGoR8nwF4bKDG232Tz5nvcABPXOyKiPNlNfT8K6Cnzsn4vSw9cLUNg4vfYJuEBF8XMSpX8StNWydrROQdhAtZHGS/mkH4ts0OmfJfwliAeg/49BOnX6F4BO/GKgXDp7++h8OWCuQfXToHd75hpP8XwC1uN4FAdtx+PiOICP2/RkhA/1QF/DuCLAXupRxSB78Xij474C49V7aPcCnFsYcHVhUFttS9gbtq2GB5QP69L5kqKqPwb1EVgfnzaidRYZ6vyCGNOpuco0oP+rEPN8yNWYl6nrXDjPoeYG+LFOreN7oj9SY73WFW2sT7xj+nhvrrrhehBBhSkojnpkm3ssva1eZb1B78NVv9siO4LmeOr3dt5vzMOFjbccKR6m6jCoznO9bxvvboLtMQbFUT7r2h9dvn8a+yM1flD+GGZtLaw/wvdPX4HmdtS7simOxvbkmnPjXXma41M+6THn6/TNgB/jec8Ewoag64TdiPQTCJtLkQ0wL8aG/RLWCX5IUP/fhuiXMa55kA8JwnrD/h9URyrgOt2dSA/rStdJBqWH9Uv5/wQUR60jBfXZsH1D51X1sBpxNef6HMXVOv12AVxNlS2Iq+Nanwvi6jh9tbquz0FfDbs+tzDEXCDoAdVc9yAwf1HvxqfGYfxArul3B2D+kQE4jSLiNCJw4lyDhJjU3AaXx3QtBOYfhcozirE8lM14N7IKcE1198YVefy4DebF451Of3jjinx7eL+pXfBBD1AH+W6ZqGxnrjWkPUH5hYhjzimK8j3nxPNKOF7i++XU0wbQ9+DYqdMIZGMc9cX58DpVv7BP6DrAT1ZBP6TWX/HD61Rdhp2HwKdcxtbLbX/Qixty+Qf+0EE1ukeX9zkA9gXTe3SYLyEOxZe4jSG/Qh34npVOvzRg7kj5QZDf5LqmwxtzoW/gp1Wodf4YOaRa+80YFEetO4b1G8whkM/hGK3H76A1soSoPE5Cf4bpC330jER6Euh8bXAe5uuJyoznSFh3L5RelzPlk17rw3ORUwLWEkbnsGF7ZMOYHDaMRjbo9H8ibAiqfxWC5oQRn0pPJpA+bQ88B/WnBe0fWREqJHD9aTzKD1TAfZnqT9S9kiAOpPo5pWtnRl34yUzL9hpLcZsO1D4vfF0BeWwSioPrPJOBDhwK0f+wPMqvV7Sr0IvTYVthe8H7udjHRhN5RxO689UfRtvhBfYH6hrAtD/ge+x/9P7gt+9RherQH2B7abupOlIhK8KFMP3F8k0Y7cL2F62fq79Qvkf1l4hvIsmqS7HaojJXqXAg0Efdx4DtxdV+1BpXvtrP8s0Cge1HXcNzth+cX5i0H7X2h98Ra7r2B/O7Wvurh3DgtSBc+3sZrf1R16YwL1770+k/Bmt/r6G1P9P1vRjX6wpN9ycG7UFQwfT+Ob7vEHb9CY/t1EvVwq4/wZee9vBZf9L1qsJcIi/u2wlRdf0J2qHT4z1xOA3ev7Z1bw64lvrG574ZtX8N2o999uuA9ZS496/Besb7wfzm9Fq3EFXnDLp8Os5kXKD6BCwP7hPUvXiY3vRePPZ7eE95DNKF+5fw0RVk68gItuJ2hG2F9w3otNAvof3YL7f2Jc8Xc+0b0HUeR/sHradRdRq0nparTvE1TdCegqD1tFxr55gTRxA2wDGRWt8sQ5jU+EDxBMXpeN1I+2V90P54ry7c30PdR57go7MR4VNBZSgjyhB2jAt6rmFMQD7YL4sJrKz+8Xtw0Pq0f9QisPA4o9O2AvX0bJa2JYHtyRFivCbLJpA+If6nrsnaclyTUfM8OAfeBvUHqo/BvEd6R9zHujepyNfVR6cQdL8Neq4Q2rMpU1lvXPeTqb4bNIfB9xmpPfjaBrg/m7r3hPdO6fQ7gL4Z9CwTz/3JxLfUuAjnhXhcDJoDqoDbImgeBeskI6qOmXjtm/Iv2NZ+bw3126OJn0PQ6QeBNgj6VAwet0cY2u63LwHG4b6B+3GujwL47bulrn3Vb71fG/f7UQFjK7VWUAbOme55x88TUvehqDUMvY+Q6i/wmXVdPh0X9b6sy70w+EXwQc8FwmcAgrgXXisvQNxLPTcA29bv+UHqWVX1u5X3Gz8/uH+Af3HvK8TP7oRdu9F9P8a1mwb5XrvRbRtm7QZyIV7zKwNx8PmRSci/qHES5u3g/cbj5BEB/jI+oIwqmI5R2h7qengCioP5sC9R14Paht2IeoB24Xez6PQLQs4XmK6jyyj/hNe+2D+D9tOrgNtiIpEe7rHH++jhezfGIV3U+hasU8xd1DMdEwj9+JmOFQHzBTg+7YZsH2NoexlhO9XfYJ/6oXTLb+o6H89ZxwRg4rxw7En5pPe7/txA1BfmM2o9Sf1uj3Tq9CcE8AE1pg4F50z3jeH7KLBe8L4x6rojvvm8GJLvfWO6/cPsNzTdNxbW/6EPvYv8H47nQxBm0DwW54U4fv7vt2/r3AD/D7ouV79bIJ06/fmGa19B/p9rjhA0Rwq6x6j5Jsb5+fB8z8+x/wfNzyH/hnk+Mqz/Qx96prSyXur5W5hXf/EHP397o6F/RXn+VtsT5vlbmA+vz1BzV9yOfuMMvk7R6e8MOd9i2gfcMN98ju9bUPPbIP4Muk9K8Sc1XmL+fDjk+kzQ+ynC2F5G2E71N9in7kLjDbz2xeNNrg/i4Wf4db/2G2/wa811+mcDxht4bUatB+HxRqd/wfB6PWi8yXW9jteDqPdJUNfyQdfrTO+CahT3sz651sp0+4f5UCX1fBr2A4gT1v+hD13m+X+0el18agLYonUXEimT6KjTfOL5ZBrg62MyhB2vPfjDSzeO6X0k/vqNCrqN1D0b1f7vI/+Hr1HWdQlfP4zXMAuRbVS+BLIBpy8g0mu9JURcEpTBto5a3jnjmUFvfPZGrjqy1b+xd7L+pv3Gj4pL/zO1Pv/+8YdmnhyX/g+Kdx9ecNOJbePS/5fvJ/Rd3azD1yY+qn0B7t3V+fR9zLrgvAEXhn7dtdafRrYY4m29T1sX4eHy2X2Kog74jWsFaoXn/Hqptkz4pMMMocJoIp8gdKt43XIZdD4rQoV62ivqEZE6DnpZHRTXAMTB1sShkLBf26y89FO0E0gQujQmbI/6KK4UxDUA2Lhd6xI4GruASF+KdNUl8um6z4VXSOSrg3Qk0Hk4SysksJMofVPvO16qbr9rIiqVs46o/D/0v+nIRmpUET7ncDnwkx4YV4ViEYkJ6odlHq0/Lej6zopQYSvzlCA8XD475sFjvkaph7TqNDAtDPWAZcInHdWiE4h8OOh8JT46VSgWVT3VoJZLwraqPpdGtti2aiHCw+XD+34svbZOkBdhnULQzAfrAzJUykeXzptE6Xt4TJERVZlqIsKgWAye0/Wj2KpL08p4Oq5/04o0Pb3fpYL2f/i7gMAuILAzRH7MRHCePhnFFYE4/H7oVEBcrYC4YlQWGJcG+aaiuNqETmXfuqaV0+F+Th2FqNqHVMB1TrUxZDZ8DUP5GPZJP117Il0wfynSlcmhaxLSBfPrvNo3Col8JQQO5jP4rItBf68bls+0/jSyxZbP6iE8XD7MZ/Xt8EoSKD/EgzrxczsNiDitS382JuWjS+dNovS7Iz5rAGzCfNaAsBeeg3w2FvU5WLe2fY56hkq3D752VwHu69yraeWyZEAcxY9HeMckSn8F4ON9ER9D/9M2lgq6veBvyu/qBZSf6gNx1zPm4QQjDoybijApn4N9UreTrmfK53W+hiAO913szzA91EHp1zpy+eCspnTZKB+EWEmU/mTgg7MD5gTYB6F/JlBcApUFpqP8E7bZESi9tjtFpIf6kij9AnAVhtffdX5YV9Au/KyDTn800InX3yn+pa5KgnyR4muqThsgXXUIXbA8+B4QVaewf9ZB5dfpjyXqFI/rMD8155uG4uBafQmKS4G4uiiuFogrRXFwzofnn3DdD/N9bRAHfWQdmk/r8mz0zhcL2u+zIlygvvaOORKu6RejOOhbKRQH67A2ioN4RSgOtksaxcG21u1QW4TjIhXweKjTnxbQvyj+pOZTOn0jIj3kbJ2+VFTtU/h9jTAf7pf4/Y3wt/e4V6V6gHYd7h2TKP1ZoB6C7ndruyLeTyuh7qc1Bgnw/TSwqLW1XDA9boumRPomII2ukwxKT3EdxZuwTjHXUXPZRoR+PJe9OIDrIFc2RrYnDG2n7lFR/Rr2qVkBc0U83tYPwMR5IU5KmM0jrg0Yb6n5MbQLj7c6/Q0BfEDVZdB4S/FHA6JcVJ02RHF+11VaN9YZsX/WpfonLD/un0FlVcGWK6l3zuLre9g3sP9T6whh/R/6kL7+sr2H96cHeoz6euKXbWzu4cF1IZ1Pj/+WK9v3Qvt1oNYotP40ssUQb+saBTVvhOVjWnO9J4HyQzzqTkzEe6KFeD0Jtw30U781W503idK/itYigta64BocXv+g1ufguYI86aL6KKxH3SaqHz6N6oK6yxTGtykbYXvheWttRhyoS19fU/6uJCtChd74noHWAXVDvzHw7X3CcoXWnxaR+lIiyMeo+w9U39N5M6Kqjy0A6XL5H8ShdG2sprqWM+pazahrHaMuzvoqZ9S1hlHXCkZdcxh1cZZxbTW1aymjLs7+yNmOyxh1lTPq2sCoi7MdOX31BEZdnP61nlHXSYy6OP2+unIOZxk3Meo6ilHXZkZdnPXFOTfh9K/qOi/k9PvqOpdbzKhrFaOuP8Jcrrr6PefcpGZMM9NVXedy1ZULOedynFzI2Y6c9VVd51/zGXVtZtTFWV/HMuri7NucfYizvjjHIc4+VF3rnpO/ONflquvaEKd/cc59q+scszqOHep3CZMuFTZ7x1If3fB30L1XCidB2EzdJ4X37/E9UQH0RHxaMvQ3lbT+NLLFEC8R1D7UvVW8ZxrmzRBxuK1M921DXUlGXXgvCeU31H0/0/qqA9J6T+cNmzF10cxxc2cKFJLo/+E+Ju6N0k3yMa2Q0JtAgs/vjc4VEmmhbqpL1vKxW4hwXRLmLwnAiaPr4/+LvP+DHsuK4fb3tLA08N9y+3shSBd1ODiRURfn8ivnlKq6XqpylpHzNmB1XZKvrssXxzHq+iP4RM1ydf7qnrO+OJd7OMvIealaXW+3cS5fcPr9SkZd1XUpl9MnauZf/xsczTnWHsOo64/AhZsZdXFyzhJGXccz6qquS6acY1rNErOZrj/CrWHOPlRdtxXVjB3/G2NHza30/PlEzZpC/srIud28ul4PcdZ9OaOu6rpeyDnPqeGJ/M0nangif3VfzqiLkyc2e8cYt4GkEkifthOeg/qr8zYQFfDj97ZbN/5oumJ8ZeguYX0sX68MpV4Or/NmUJwKi0A6HFdInCsI0LWYUVc5o65VjLqWM+paxqhrDqOujYy61jLq4izjUkZdnGVczahrHaOu4xl1cfoXZ3/k9C9OLuS0aw2jLk6//yP4xEpGXZz+tYFRF2cZOev+WEZdnH6/nlFXDU/8b/AEZxlPYtTFOZ+ornW/iVFXTR8y03UMo66aPpS/ui9n1MV5jbzZOwZ9wiLiJ1dCf3JR608jWwzxEkH1Qq2bUZ940XkzRJzfq991vAr5qrMiO7zAOoPls6kzFaZ7R6peEuHtXEq9zhnXOXwVs0EdjAtb51p/WlStA5s6D/v6aV32RoQtGRSnwtEgHY4rJM4VBOhay6hrI6Ou5Yy65jDqWsmoazGjrg2Mujjri7OMXHZRPFVdfHU9oy7Ovs3pE2sYddXwVw1/xVlGzrpfyqiL0++PZ9TF2bera3/k5OjqOtZytuMyRl1/hHHoj1BGTrs4ebW6jtvzqqldnPV1IqOuckZdnHOT6jqm1fTH/JWxuo7bf4TrNE6fWMKoq7r6/TpGXdV1reMERl1xcLR+1xlcw8KfFTe9dwTz1w/AKYqIU0TglBD5Et4x4tp/3QTSp+2E56D+tKhaZq61f6pedPka2eGVhPEraA/+rC2uWyX6k7R+n4rVeZMo/a0tthwzKJ0KExFGY8Je6tO5yl9u8PRiX1AhK0KFHfA9Fm0L1AvrxKANSsP6mNafFpHaPBFUhxSX6LI3IWzJEHF+/gBxmhA4GSJuYo2uGl01ulh0heC/gqcbHrwodeFB03p0rjv822YNTl896IGTVg3q3J36nDnmP8gBBnwU+pXEWn9aROLbRFCdUmOILntTwpYMilNhOkiH4wqJcwU+uigutdWlwmTvGGEcTOK2NsibKSZsyobKKvrqvM28E4Ztntb5m9vlr63ztwAns8F5tr7WVudtSeRtuL14ue3bfZd0a7Lj3N2OXvP2nletaHRB148zzb5aNODon9+Yq/O2IvL6BN11tvptGkRO9Y5qXvSVVxjtW61BXCHKq35r30qi9FNbVuT7tkVlbNinMV8UgPMGbdE9LF9o/Wlkiy1fFCA8XD7MF4WELRkUpwJ+rrCQwCkkcChdaxl1Hc+oaw2jrmWMuuYw6jqBUddiRl2rGHWVM+qqru3I6auc/ZHTrqWMupYz6trAqIvTJ45l1MXpE+sZdXHWFyd/cdq1kVEXZzty2lVdxw7OduSse86+zVnGTYy6jmLUtZlR1x9h3Obs23GMtfo+Dbweq4PiCkFcbRSXBHEFyL4kYV8ywD6YP+mTD5cjzPM2KZQ3K0KF0M/baP1cz9ukEB4uH77WrEXYkiHiYB36tU+CwDG1i/GzVDq+G0o32se0BKE3gQSf74bOUVUBdZeieMr1scv4VW3GJ78KJQE4JUQ+7Zq1gY1ZEI8/nZUVVW3MBtgI8+t0FE4iIk6CwMG6qGUqFfbzjkmU/ghvmUqV4ecmlXW2I+yj2kqfb0+kbwfSaHuoutF5SwjshM9R4wgR7EPQhhTCac+I0x6kSSKcDow4HUCaOginIyNOR5CmNsin/u8E4qCfaTu2IezQw05ncN5gGAh9S0TrTyNbDPG2DjudER4uH+aeLoQtGRSnAr6d1YXA6ULguNJVIqqWH7clLGscban1p0Uk30kE1QssH27LroQtGRSnwgyQDscVEucKfHTpcnHp0v00Ynt1xfUBg47bFujujOLgXGISiusO4iYDHTgUov9hedT4taJdhV6cDtsK+UvbXSqq+hjkDj8uoPwnQ+TX6fQYrO28ANwqOrdlZTtbA92TURnagDjcZ9sScUp/lzaVywr9Ac+DTDkE5tfpKJy6EXHqEjhYVxLoKga6DgXxMP39Xr3rfoL7Y1aECjNxX9A6oO5ulrrDcqbWX0LgabvSRFwyhC3Jhy+49/bDv989Iar260LiHJ4jdifSU5861XXVA+Q3qKup8KvSAmHrOHjZ1w3FwUtVbYPy727ZyvZ1t7QvTP1B/Rki/VCQzqQtKF2HMumC/Y1DV8pSV31RdUzSfZripFKEY8pJML9OV0LkS/gcNQ4+5zdPg5jUPG2qd1R+/HjLijywHuC1IsyLOVKn375tRb6nPJ3UmKltjMh33an5gQ46DvIDtAEHau6g7VL9+qV2FXpxOowJ26AHioPjxnYoDvpiT+93UP3Zzjmo6w8Kp2tEnK4Ejus2x31tOxDXFcX1BHGwLXDI5Ssz21foxemwrbC+td2lomod4UcNTDmzHmFrxDGqB65vGKj6xnN+WN/QPhyo+tY2q/q+0qC+YZ1q20pF1XrAj1xQ8xJ4LuiRC50u4pxlO1ynMFB1il+t1QvEwXrAgapvOMd516C+YZ1q24pFVd8wqIeeuKyCwIVl7Y7itgfpD0NxvUHcZKADB6qOdHlUHTXsUKEXp8O2Qn/QdlM+iXnf1Cdh/u4BOF0j4nQlcPD/Rd7/nUC8vg5NorQtwLwi4+3ppMaBfUTlOOhfnQBug1aVyw59BddxL1G17L0Cyg7z47aEOF0j4nQNiRNneboElMd0fkyto1E4nSPidA7AgXF4vDWd+9QjbKZwukXE6RYSpygiThGBE3HNsBfmahgwV1PjWW8QZzqewXXBdy3na9q2iGtCxvWA51FwzMLjWR8QNxnowIGqI10e0/EM+gO0G9qeFPT4sg+K1+kHe5ytfGBXNAbAOY/GVukWIp6Pe902zP0QSx8JfT9E6+e6H0LdWwi6H9KNsIXiKvyITpQ1oCSjLrw2UR36NL4fwtWnTe6HxNGnD/D6Z8S6rvTYuEC6avp+9er7KgwF6aL21+0YddX0/fB9P+zYm0BxfhyxL4rX6ZeAcf8YNO5D/+4JsK9C4z60H/d90+uHbYjyBq3j56vvW87JA/s+VS//K+M+XpuyXJ82XpvCPgTXpnDfj7I2BdenTfo+tc4QtU+fjsZ9y7omx32tqzr1fcvyhe77Wj9X36f6UVDf707YkhFV/QGP+6brihBnO0Zd2scjtpfx+jz2IThfwH0f8sJkoAOHuPp+TxRH3SeEYy/WATEi1nPoV//gfmE5Bgf2C2qfXR1Rsd7sbeMfOWPh7oumzp41beyMJQvK5kzffcr8hbOmzC6bPn3+jAULoNEQCG5kgvEw4DT6t98NzKAOAwsz2jtSNyO7I13b5dC1J9IV1JF75tA1CemC+WFe+H+RqGqnvtlQEEIP7pyUXXshu2BHxwPn9jl0HYp0wfz44rt3Dl0zkS6YH+aF/xeJqnbi+grSo2SHHHYdhuzqA/LvgHT1zaFrFtIF8/dFunYM0KV+N0O6YH6YF/5fJKraiesrSI+SnXLY1RzZtSOI2wnp6hegS4XDkS6Yvx/StXMOXUcgXTA/zAv/LxJV7cT1FaRHSf8cds1Gdu0M8vdHcbCe8TdKTDdXw/x4gwk1GOKjxsHngm6Y4Xc69mfEgbqmgnwqbheQH3IrNRHSGHrwHwDOxzEp1vrTyBZDvK2D/wCEh8uHJ8UDCVsyRBy+ATiQwBlI4FC6ujPq2gWVB14AwM2DX6CFngEgjrp40ON3EqUvBDf5v0YLONBX+oco4wACT6ff1fs/RaSH+pIo/feeTWoS/aP3IFyGsGmgjy14PMV+otOoUIyw4+ojWn9aVG1/mz6yK8Lz8zdd9kGELRkiDs6lYBzEGUTgULp6MeoagMrj10cKW1fGtO0jX7SpyJfydFanPlLHsylKH4FzqBLiHO4jlj4buo9o/Wlki20fodoClg/3kV0JWzJEHJw/+/XFXQkcStcOjLrC9pEWqI/0AXFh+ohO/yLoI61RH4F1hPsIdb3Sh8DT6XWbpYj0UF8SpW8fso/s4GOL+g3nzSWiqv24j1j6bOg+ovWnRVX/sekj1PUeLB/uI/0IWzJEHLxmwvVYSJwrCNAV5porrK4+qDx+fWR7pj5yN+gjO1TDPrKzYR+hbI/j2otaX4DvE/erI8p3M0T+HVBcVwInl48MbU3b4+cj+vo9idJfCXxkRICP4I0W0GZ8w8X0WnobAifMwrIl/xSF5Tutn2thOddaGea7voQtGVGVO/FD/xSvUnOP/xZd6rd+t3DQOGjazzOiqh9tg3D6MuLA8rhYM1JhKsLBa5LUMSwO1DUZ4fjx1gzEWzuBOIq39PpeEqU/G/DWYZ7OYpTGsJ8O0LYPICKp9Z4dUBycD/dFcfB6Erf9YBAH5y44UDf9dFnVGHpEhwq9OB0uB+T2gSguBs4NPces4VweXTXXC5X7Er5egHHw2wyY1wqJcwUBuvow6tL3MiK2FxuvqYA3LMA1tMlABw4Ud+nymG5YoLgL9xOcDo4v1H1Dyq4EoQf3Jx1H3f/T3zSg7jE2Rhimfb4xYW+YdTToXwY+VBi2z2v9XOtoVP8JWkfbibAlQ8ThtS/qvuxOBA6lC1/Xw2vlfI+ffezwAsdP6jswHP7l1w59A/D62eEVaDzqvncfAk896JcSVdvQ7/48dV8btpdfn4fYo72j7X4HqGtPpKuvTxn82oBa/wnao5BEcfd7c/T/fHOudeU0el/JLSDNTd5vivPhWse9KB3eo6JCxOuC0H1P608jW2z7HtUOsHzQN2uJYB+BbeS3Z2l7oizYZ3vlsAn7LIVFtSncw4XbFG50hWuhDwak60mko+LU/3APHd7srNM+AtYq13SoXEaIi/e5mW4+3o6wxdWD2GE2OcO6imPNDb+YLOom520Rnl+94L0sMC9uGxXwNRu1N5LaN/Lfokv91t/V0nVDvcwuTLtSONQLueLePxXGz21xqPWuoP1RtjhQ12TvqPsm5No4rw+3RXFw3Qu3JVz3wvU/GMThl2SVgTjTh/51PSiuXh9iTSziRvVqX3/dwW8cqPqDDxLU1F/l/Y84cNYfbCeD+jN+GA3XH5z34fqDc1hcf3D+BscNHKg60mU1XbeGPqbLpB7E0C/BrXgQY+yMJXtPmT1r+pSFs+bOmTTjqEUzFizEnz3AIwAeebb1sRp/lsHPahUKUBz+VMNEIh0MJUQ+jRHxFVuhr2y0fup1sTazMmpWQj3CiT0b5s0QcfDrsLhHFBLnCgJ0dWbUpf0mYk83fvQMvwI4rkfPYG82WcmlHu3WcfCV19NQXBuQD796sy2I0/qpV15D7Az4DeNUKCTO4bbOEJgUjlc1Vb4SW+bZVozSGfrHwDBXcJZ31AaG5Qq/2Ty0i7q7F+a10z81HNzj/8779qyEqMrXQXf3dHrqajBDpI84o+lfAjCEqDrqqgAfa++K4uBruOBsAr922vJqvH+Y+oP6qZ0F00E6k7agrsw6W+rSr3eGqwS67+j+1xrEtUdxsJ/hXUztCBvaBZRnG8KGEiIf7o/twfk4xm6tPy0iccvWsbs9wvOrF4rjdV7qNX34lRGmHAx1tWbUpceaiO3VGdcHDNQKJvYh6ulYamVmMtCBAzV26/KYjt2wjvFKZU2/ir9fbUPYgutMhaEgHY4rJM4F1X8nRl3afyK21za4PmCgOAj7ELWTmupzk4EOHOLqV/g1Y9r2IiJt1vudRGkXgJ1yZ6I5MMzvXYSTn2XriOKgr7dGce0JmxIIA+7GgH6PP0+n0y/17FZ1OTZL6yzw0QnbVIjKfVmXoxjg6jgDH7xX2bVjtgIH1pkK+LWsVL+B6fG8NejTY7AOqPEL99l2hK4O4Jy+g0fVl7YxjvqCNuD66pTDZlxfVP3CetB1QPFSG6SrDaEL1mFQfWkb46gvaAOur445bMb1RdUv/OyfroOMqFqXbZEuqr5gfxyN0uv8KSI91JdE6c8AnICfHoG8hts6S+iG3JhAOmA50kQ5SlAczKv0ftWisl7qCSJqx4lOT70BAe4uwXMvuMtB5424W6Za7YymVuhhmXGgxmZdD2FX6BMIR+uF9a8C9okuhI3ULvgdQurV6XPt9ikIYTfcEYJ9qC9hN7Xbp6sPDrXbUoXZ3hHv5r8R9GX9+VmKTzV2RD4tpfgU1hHmU6rPUrsDw/ZZvLMcPu2GdyrDOtaYlH/BXVFDDZ72o3ahUTtusO+lfNJrfVV2gBF8HeTP1M5uW3+GZYjqz7C+8FN1Ov1jbv25btz+TL0VJehpXPikfx8UR/lzQlTlMFN+hTvDto/4tGuQ/+uy+fk/ftpVp38twP+p+qV2ver0QW96yOX/A1EczNfVB8ePz7H/6/TvhvR/jR2H/8M6wv4f9g0mOj319hDqTQrU20OC/H8gwuHy/xYGbw3ZNQAT54Vl8/N/rS+J0n8b4P9U/Qa1x2AiPbXTgyr/YBRHzT8xDvR/WF/Y/3X6f4b0f40dh/8PBgmw/5eBuEIiPa7vIUT6MpAGv9VnCIjDb8WCdTwY4VA8GNb/K71tJ+Jbc4L8n3prDkzv99acYu/ClfJ/qg9SuzTD8lGQ/w9CcdTuKYwD/R/WF/Z/nT4Dyhrk/1vrBujRcVH9H9YR9v/BIK6QSI/ru4xIPxikwW/sgX0jyP8HIRwu//8CvVktAdI1QJgJAhOew2v4OD+lC+6Pmgx+TwPxML3+pKxep4D1b+AH40tAHgF0QN2WPjYellWHQnQO6i/xwVMhTcSF2f9wf797xp7/rz51Eyi/tgWfw35cRKRvQKTXdZVCtmdFqDCW6uvws15CVC07jIP9VdtA7X8osrQvTP1B/RkiPd5pH7Yt6ovKvoD9XQm1T6UWoUunp15ZDfeG4D1JkIPwq/Spp2GC9rNE5O4Uxd2wPGE+0Rr0qfkeRHq4/07XTQalh/WEd/lDzARKC3HgfRvM3X6vVtef6Vb18n6TynngGiXmNfiGcIP6LwjLa1p/GtliiLf1fnddhIfLp9tR7e7VHOXt7h03d8r0oVPmLVg0ewbeXVsH/Ma1ArXCcwlRufQwDo8kON1I9P9oIp8gdKt43XIZdD4rQoV62ivqEZE6Dr6nuA6KgyM5bE0cqBV0bbPy0k/RDE8QujQmbA/8PuNSENcAYON2rUvgaOwCIn0p0lWXyKfrPhdeIZGvDtJRTOTL6h+fnHjWysw1p56X7fbkD6mRm7845LvRRf1ee3J58/tX/frpN6djmwVhM27HOigtddS243N4V0ldRl0ZQpeuG/jhVAOfbxyWrbT+tIjUx7ayVT2Eh8uHy16fsIV6dzjmoPoETn0Ch9JVwKirkEmXChNrdNXoqtFVo+u/XJeOg+N9BsXB8RO/JwPyM/6oXQFhX0GAfTA/HnuoOa4edyGvm9wxDzvu4hUOy5WcreNuIcLzq5eIc+mtKyoZAg/rVAHPvYPGzJSPLp03idL/1VsNy6B0KmC/puYl8JyuH3Vl+ae2lW2nVsnCtDPUmxFVy67jXPt9bZBvqndU5T6/LY0JV7VhXryqrdO3ylbku6htZZupVSMVStE57ENC0KtkcexwgWXEqyqU38P0s70j9cRbEsXB8tQG5YnAP40oboNtfB1q4ySIo/wK70Tamj5bke9GTyflx/B6DOYXOfB0el3/KSI91JdE6W8j7iJR9tXxwYP1Qa1MY7y7Qt7JgTwshLXfNqb8FvYn7LfQRwuJ9PiaKMjPKV+Gfp5Cuijugn6Ad+3p/ClBt4HWl0TpHwm4cxjk51S76vSPh2xXJj4i2xXWFW7XFIij6ha3K+UHsL3wOALbvBbSRd0lgW0dpl2hfVofbteXAtqVGqOoMQSPUa+GbFddl3G0K6yrMO1Kjfc6fS0iPWxXfIcGtmUx0kVxNGzrMO0Ky4M5Wqf/IKBdbXn442rAw3C+iNuV6jMwPW5Xyg+ous2Iqm2eRnF4/RXimHI0NS4HcbRO/x3R5viaEPOCn31Uvaky6idkvbsgeyycO3+GdxtEoBB020L9LvUxoxGRXwTognmCigRvDeAq11gpQS+v4yrX6X8hqhxXIbYnzCWyZZcJfSNN6+e6RM419cSXSUHdjBpicDvlwmF0VRVG+piRIPKLHLr0/2r017Nm2Nx4Vh80E8B5lejZYtiZgE5fO7vlSI0Yua7MMKME3amA9lDlr4fiYL46PjhhZyg6ff1sRVmDRjKNHcdIBusIj2TUSiG1oqLTNyDSwzspeIYC77ri7gfruB7CydXN8f4Cyk+pK2XKv4Jm2rn8S/smdVUa5F9BqyJMvlCab1/QdUP5QtCKGvYFaoiFnIB9oTaBg1fGVMCzbXjUebReFYqJ9DoOPisJ20sAe5IgH9RVC+XT6ftmtxz19AXOInX+DIEPZ4/Cx254rgClTxPp00R6VT/bZStspuzE4xcsayGRHk5/YPr+2QrMAd5vvH8O4qlzYwLSJXyOlM3QnqA6KiTSa+zaRHodB3c0wD4J08D6grrSIB6mH5XdctRtAtsb9kuMD68ihY/dfuMx1lVInIO+U5bd8jsNzmldplNDFfD+TXgOYtcWlZ9f1scwe1Jv6Nu9f919tymvj/Jz6a/74K27vfvPedvk0k/tl4PjmKl/+915UGG6d4y4T7ZA54erFiJ8/gS1QppAthXb2fZ7mHqC+tOCngNmRaiw9XIGczMuH77jl7bD+7caU2uLqnMU2Jaw7iBOLWRDbUsbqLmOxoQ8JxCOwr+7Q2UbLC8j/x3Rh3+jVoemekfVbodmK/TCuoPXDdTlehKlPyJbkW+W95t6vgHOGUpF1f6FOUHXdwGRFq8Mw/+p1Uh8yax9JuVT1hQqq05/VHbLUeF904TWCesP2lXgo3Mh0Pkz0ml6F6UOkZ5aUS8VVftOHZQP2g7nEPgc1T4JlBbaoMJ0wia//9OEHj8bigk91B3qNLKVWs2G/QbP2wsJHNin4JgXcfmqiBpLBLIH3wGDcbBsB4F0OBSi/6HNSsfEbIVenA7bQ/UlzrFfny8C5zEuXr9KobT4mhLaGGX+jecn1DMz+v9aAfYnkJ4kka9E0P2NOoa1N0HYG+fOFBUO9o4Rx7yWuXYjnJWt0Os35lFzDjzmnZetyPc373euMU/H4XmfCoeAc5jT8TwK6lABL9trjkwB/TBNMSqTTn9RdssRjm0Uh2hdquyXZCtjF4O4oHEkidI/mK3Id7n3u1RUrS9dn9T45TfmFKG0KkxHdui012cr8lyT9ceC18V+ZfzPTpUsnQ7aANNhHbbjGjW/wn03zPyKWvMqDsDAfOw3dmvfqJMjvjZRNkGcKyDSF/uUVxDY6Rx6qbvXFL/jO6AJIg5zDyxv2HVjyFua06j+khCVy1Ublas4oFwJIh/u59D2WgG2U/UH+cN2DWL9e7+/cuKy5l/FtcYx8NxjNpb0vea6uPRfVee5IXedW3ywyRqKbucUwtK/YX3D83DuMRnEw/SvZbccI65RCFweijeCrs/w2iu2f5KP/d9ltxyVb72VrYxHXZ9QfcZv/C0KaYtO/352yzHX/TS4ZqH16DiDOk9S91Agr4XZoUetnev0ua4tdZ1Q98zC7EqBdYrnNLqOUoK+vsf3b3X6r7JbjtTuD4qbdRwsO+bFQgKXWouc7B1VmtrttvyOOL+tRc0jdCgR/vyP/QGWkboXhec3sC3x/QUYqGtI+J6AOu0q9OJ0OlD8gPsrta4SNF+k+p3WX936nfZ9akck9rewPuw3n6PwYD3AsVr7sN+aPuzT8JqrtF2FPljv1P4EFTCf6vSd2lXkq+/9pnbxY3+geALbIgTNQ2Gu5UuIfLpdqPsIJms/sH2hnfAc1J8WkfglgflW4+E2wmv9lvOEJB5jIR7VDvUEXafU/QB8rUit9wRdJwXxCdX/cN+k1hGoMSToek5jwzXzMPMmv70/fusZXdtV5BuE+hbFtUHtFvQ+lCDug7ZSdY/3r1DX/vp3nQAcyq4SIn2dALsgJ+N3f+Cn/oPKEHasYpojFpk+fUTVS9Aet1xvZMB9hHp7gunYhvfuUGN8rrFtkM8YBctB7Uintm7C8U2PfXC8TCBbIAa8/j9CVE5v+2TSSGBDrl3vKswmdCYIDCGq1stkZINONxbY8EyHLb+D7gdEfI9UXeg7OlDjptZPvffLZtykrmuoPXsRrwNKgvyUmu9Q6zC4r+v+4HeNBa/JYfp9vbbFT3qogJ+KpeYV1HihbNujXWXb47onA3kX8ocKcB57EOII6gkvmBc/rarTT21XkW8yGmsp36wtgjmDukeP/cPvPrffkzKHBnAGNX+Hds320TkL6MT3uSm/oNoP+ypMT+0loOZMeB2K4rIYn8wi34kJy+/XL7U9fn1Gp6fmZNQ9pwxKT42X0Ba8fhbkiyoE3TOHfUf3K9s11F06bWrW8tGjSuJaoy1Ktjwze83kcSZrtNTcuwDphfWN70mrMMY7htlLZnl9Gfqbavj6MupesrDXl9SaFr5egv0DjzdU36H2E7vSRfV33JaW19Kh1wrwvkBL30mY8hO1BonXViF34fqneI26pvtv0QX7f9AaUph2pXCC5oFxzaXwvpRajDhQ11SEg+/tUsewOFDXZISTJGz4z33MdhV6YRv7zZH87hnd164i3+XtKqfRtl8J0tzi/S4G2EIY9+U0tW6tA3V/APsttVaC341K+Qe8/i9GcfBNi9NBOhwK0f+wHhRemO9IUXVpuW+3WtVl2PrSZVU6jwhRX3jfGSwTvF4J6gcQF/eDB4GPP4/6FrWGSPVnfT7XfcugPUU6b8T95HVw28JAtS32Cdi22CfgI+PYJ+BzfLh/wWfX8NwYBspf4H73sP3reR+O1BiYI/H1A7XPCXIvdU8K73lSIeJ+3HZhxhWoP41sMcQLfJwclg+vLVnO0bMJlB/iBa2bhNmP4vfGDr/7Eh94bYvnNCpMQRhh7+Up3LfbVbY9jueRYPuE8UfL9grtj3itM6o/Uv4R5I+Wa53ZMO1L8WIca53fI3+Ec1LsjyZrnV8jf4xrfo7vF1J1CnVpDi4l8sP9E7i+VciKcCHM/XPLa+L/b+/qYys7rvrc956f37O99trZFEQLfcmiFEqJ1KKIgoKSyOt1drObpPlovut4d1+8VnfXm13vZpMiEQmCUNUoKYHyJRAgAZWgQqgFqqr9g5RWgkJTNSKiaAUCChJBlSi0CIkK6A332D///Ju5cz/e89vEI1n3+c6ZM+fMnJk5M3POudFjg/fEVe/P1Z5YzUUVfeV66CuHY+9hwJfnK5dnM9+8drMM1qNs5tN0OnvyvuXeazfLtQlnnhzekz135TAqXZFyGJo3kea17Klkgf3blE4yQFuwa+o+2zde+WwC+Q75B8WOL46IvDu+gul1Oc9fV9M8Pw/z/Pd7cDqn5fDe7Kli1FhZpU+mqefiUowuXvJMPFoO+T6lqi6e579ak71eT/nmpwnl0GeXx/a87RyaeZ5X9nRqvgrd4aIMpanOeR754Xk+dk3jfQXyHbJBjYnorc4PUE4fI1zqvlad+/H9juonPBNUc4Dye+K289lZWNvx2cFiNvcoe4PYedvgY+/Ulc0k++RhuZCsGtwgZHWYfiEsv3i+zXe5ypdOyRWuTddFrDGDkK8HrgD5Cum8b0T5UmfIefLVhH4O+Twknqdz23UA5/zzeprYXmAQ98KqnkHd156getQ5f8r/eRrLyp8cy/LYNPjnQAe9SDjzbM1Y71D7Ki7HdIXqapSsq+GpK2THpnwfhuC30o6RGcQ/SL8VNe8WsSvitsU8rCfGFohlpiqumPOEWFwxNpaxuPjeA3lWOqEqexrecfur+E04JnhvavAvwFweE78J+V3z4PxIQA+o+66abVdD8Zt8sRNUWZ4v1Bpq/08B7VwP+7744jUhHqX7cbwB1Y44j8b488S24xSVU+cqvrI8l4biLfj8hJzAyz4u7UC5DtWJ9TxPeHx7dd/4j72fx3X7fEB/GoDvxzjONUg/vkP8w/b9UPfl7BeldLRE5IXWuF1c9eEaFR+Uz5Ium+eDYmc67IPyZdCPP19y/6x8VnifivNy6KwDzyeNXsTZc1FpXO1FkR/Wl/Jsalayp9o/JpSn7tmV/mN5qP/k3c/w+hbSc1U/qH1FyD9+gHdk46Ps/8L+3cPwf/lswfWx6HwTK2M8rkN7xkTQVdHOpxPDF+LvOj22ei4qJUXHnrIrYn+pkM1RrD1QnX6Uu7jqwxVaA/LW7W/RGptAXmjdaRF8sn+z3P9mOGPjTvK48s1XoXER2nMVXZPU3Fokthm2HfJ2MnvyeX03azvcpw9wnevs9DpnbaLWOd5vKP1ArVsot98S61bTbe/bXb/HXb/HXb/HXb/HXb/HcvWMst/jjfs38WIf++7reG02+PtAr7lp/1YYo/0WgDmS/e5A3c4VHsu7fo9ue1vu+j1uh2M+UN7q9Ht8EGT8JI2tXb/HrXlXit/jSc8caXXwHBnr93gj7Gc4NrQ6W7b60dfOEXyaHoV8hH+c5omS+pOMDW24Kt79tJU+YUmd3ySUp+7Dlf7G57tqXMXKlPGa0vVyhEzFxLNsCz5CsS6HEc8yTceJZtwb8plBmkJ3DVa2SmyfH/+Lc7/zP7O/+8+jEn/9WRpjJfdEOxZ//bdh/frw/q31qXE3yPjrH4k878G5x/BYXpEzhZ22g+QxOQrx138D+mAn469/hsZVyTuKKz7+epH1hf01ME/5J+zGX9+ahzLMa2IzUJ/PjsZkeMJt9V93rnCbNRLA67KyRhOOIdTHndt6RsDxEEv6tm20ofpuFc5TXarX4F/avxWPuutV55UGr74D3BT1qm9GTxbE1SFc4xVwobwx/HhJuhQu9rPrClxq3Ur77kWQ2bI62s+svuXfP37zDc+W+c4wyg+eW71CezIV0xTL+r5J8DXQd75C+o66A9n9JkHh+na/SeC2352qNXYYezise9DfJPg6jK3x793Kv9I/Qv0Wukfd/SaBn7+Q/lbTvmn3mwSQh/qeyXxoXcD5j88N1RjDtc/ov7jaf2LpzNp6/x8yDtCA3LniEzYfwhcr//QLHUZYqLx7oeJFRtJx2zutiEJrjX07lGda0qSM6axMOii+B36/HcrzhBa6DKi4GN5RNXBFaOKwPDUALE85BKflv7ux+d7XHspYqWJ7rI16exjcc0Qf5j0PeTzBfxjy2Bj4ZyEPN++8IJeRr5L9cWDO+RUve86Xw70xjx2Alz0Xl6zsQrm6m1b+YLnyDSu/WK58y8rfCuUTV7ztDpWqP9lov8OuVP0b5W8rVf9m+SNQ3rni/B8tV/+YbWi/D8Y1jmXDqZ7Obd+QpcnmwGEHJFVOCLxJULiU85RSqFpDrqdO4/xhO5+pjSe3kcKlNtqhA/ndeka7nooX7R2jJS+IU4yReAi+UxA+z7giZvMfwj9ZEH6qIPyegvDTkfBsGGM40mSygIYxZS4TEqIF3yH+LtFSdM5jQx6sx3iZLYe7G8uL4e+6Sm2XVKR3Y/6fc1vp5fY1/DMEz7QjrMKVJpOpSXh/YX311Or6k4v99du/fZJwvuFBic2KVTM8/7bU8eBpuu3iwGVZlWQbITVF4fuO533X837C837S837K836P5/2002me/r+N/r81AI9Lwl63PSX0x+8H9b8bYl110GoyqX4nAZgY/8qSant0bEq801P09lxU2piamlQf88dHMyVV4V5C5bE+tSXgOzLVT8ruRdl08d3FqeypYgqE5qHQPVM6Lley39MuLFe+dleqgTrb5jZS286K/RUdp8PwD3vbquSD79qUjUzRfh0krjQdGFFcZcdBiK7Q/Bkjb6qeouOibD2Iy9ZsdaSBap1PnkNHGljeZxuOuFD1mw/QtRtXrrjfJo+nKr6WbyRcVeWIY36mycZcus7+qodmtGHAPYvpyi2Cfy7ZLPfr2bsBxr4q/S2gYR0/VrS/7cWsFUiPGo9sT6BiCar4amxf/rHsqeSU17ZYmU9p+2j2O8aXp+hRoPL5UTKXpp6LSzHzfcnrveiYMOzbXXW+V/0Vmu9jfLtDsof1xPpQt0YQV5oOjCiuwwOgq86rIDVGTeaK+nw1KS80/xVdj7E8XrVzXpG9YN56/JKHZt96zPtyg78J1uMvZ+9C8XMSt7U9ndNnGKwXK3OfxG2XFYXrIOFqBujKi121QLiUbIXkAHEtEi61RobGFuI6SriUrayVCfk9p0+OHaTipsbi4mu4cYErFPcwcdt5DZ15zXjK++ppVaynJerpiHrSv56LSgfV2C9Qfln5mBcov2rlJ8uVP2Xlp8qV71v5PeXKn7Dy0+XK96z8TLny6+r6r0D5NXWFVaD8ipWfK1f+jK0dV8FLlu198L7AunQ1jglLSv80/F2ipWB9G/rnPqqP+WP982pBy4zI4zF+tajnalGPwjVWI66JGnFN1ohrqkZce2rENV0jrpkace0dUR5na8RVp0zU2fZ1tledY7tOuuZqxFWnrNbZjyZfrzc90/ZiBvvuLKPj4bPnotKbYuJEloxf9CakyZJa/w2/8uXns1aOFdNz4XR6/ztv/L2Hv3lNQuWNFn4XY7KmdAmlBxdoq33KtcHqVq4NE5SHc469Q9cGpecXoS+m/RD/jIDn86jYvph1el5NE5994PhRMaA6lKdcQvgeFMc+312mv313d+lv2wOjvyfv953T+28+h1LfYCnaljOivG+f7zsfQn9chF9MNst9KPHzFXPe0Y2kvevB1RK0p+k2ot3gj2b0pv11PblHqbbF85555+eV23YyBxefX6mxZbimcnDx+RWWZz1sTw4uPr/C8qybT+fg4vMrLM/6zkwAF46vaVF+hvJCclP0HFfJc8jHuWw9E5H1hHyN8ZzZuWoxud9JLjXYPzw/ow1kyB5iRsAfcZv1WHlHOAbBT6cgP2rsMj+8tlh55wbfP6FYPmpsIfwC8YN6OusfyE93gPyE+idvnl4kftTcOkr9kxdr6WiAn6kAP6PYPziXK372BPgZxf5J3PbYCMjPNOX54pSaHhVaP1C/sTlV6cV47/dS9lvpGTMRfIZ0SzVP8F3iz2V8pW1+sKF5jNXhDP4XAKfpcKG1suyaHNpPYLnE87R6+F3IdottGlXswrL9heV9e3HLV0+rJ4+fUPxqHGd4d/1bJP+TkBeaE1sE325slvtohjOkr6t7qQJzyazxNSsyLQ/P4zi+F6Ym/Y90pbJ+COYshuM6sQ/mKA/3B1dRHur7dkcSs7dT+wrVXwaPceLUnGr4WgT/xzD2L9N8omKgqtjYvCf8lJhPmE7kK+QqqdzCpgVfqk35/F3Vje0876m77TT/08S/wf9JoE2t/JiHH25Tg//TQJuqNgq1qXLbmxV8qX0mn4Vz3WmaF7i47rYH3vC1CP4LgTY1mDEPP2MenF8MtOlVxFdem4buTpGeabe9HfcFyvEZgeJP0bpH1J3QX2hspekglbN62k7LLvedwf+16Dt1JsVtFDrvw3r5fgHpUHyxHmTwfwt0/h2tDQPQm8eV3ox0jnn4MnoYns8FsN9D+87pAfJTZd/J5wJD3ndKfkIx4kKxstPE5wLqXFHxg7pV3fx0CvITOhdAfoZwbjM+zHOB0D66pnOB8WGeC8xRXgJ5bEuOerRvn4x56MuiztB5Xlfn8eq7MAZvfeHTdfHeD+EnM2KVDqH2RypeI++PpgHn9R5dD/kK6RAh/RTpUW3KOhvSHpr7OcZ2SdltK9lF/ll283TxovsAjouJa5/vbpXb1zfn4RzB8q/klPffaWJfPnxaGcObpo6AtzykB/srTXhu1BS4+BshBv82OPdJE9p443zA9XOcbkW3OhNKBK6meIc+Sr3GJs3V5PXSCwnVOea29ocj/C2C/8HGVlpx/oyxr/ibz33zlU8cftfpvPjiZfF/tXPnQuMPP/TWPPyqv5tUhr/LwvANyEf4G+Ds6IdJn2YfMnu3EIBLPE9FM9ITkrWmgLe6JwS85eE8wT5suP40Ba6up755GoM4bjC2L9eP66nz0O2z1WFcTfEOx+CNJPclfW8Sq1v5DynZqjIW9nzuk3f8/X+dvS4mln9M6MOO27qWF+Q92l92p2JQVPSr6iVUHutTfqWhmBeGS8VEiYnnfh+dN9QVE+UukpNB+eLhvJMnj8P2364qj0o+QvI4bP/tcZFnuGzO9flv45qJ8Cskj6gXsjyq+A/qmwIpbcdIHqusmyHfSz5ry/MFnM+eyq8wFM45TT0Xl3j+QBwVfcGjx8ZO+YIbf2VDg6e2NhNu+9g7BPh89l/8/cyS88FbVf8X4SHPj/eS557cZ6dpfPDY/XPQZz/gwemcHgdsn6j8WFVfvsagi0uhu/SKNunR48Dwd12lcbcxDvLOiHkclLTT3jIOfN8k9NmU+mxpFc0o50oWupQ3ZFvFa+q25QmdQYa+SRJjZ4qyaGfru+MrKl2R4ytvnv8VmpPV99VC87zBfxLm+V8jnLhGKjlke29Vn9Jn09RzcSlmLzBsfafqXkCN79BeoA59B+UoRt9he7FQGHI1zzcELqUX81kwt61zg5nnkR/ffsfo4fbwxZtDvtV+gttB+SMl9D/SgHLK/hFNgUv5KDUoT/XThAv3u7oHY30A56HQXtHgPx24W4qdtw0+9jvOyo5qkvKUn+EA762lrPrOXxOn7xPVeabB532rjeUX74z43glpQRsFn1ypdSvWVjkkX0rfZPn6YkH5UvvPWPliH5xY+QrpvG9E+UIeQ/KFe9xLFe+qvjT+r9/4wudXnh/UXdXHb3jHj+65/7qn8/CbX9BKf31p+cL6yaUnVtfP9M+fvz5736EyRXWRjqA/vvzTz3QYYaHy7hnTbarQb2VKlN8Y3wegvNJfeQ3FMulYugp+YwwcnsfUGs56XkleFire0dys5hvUE5zzn9OnSd1zvOZXnv2u2NcLFdvn5jnn79+Nu7Dsf7XvSoiPknTcgmPNktpv2LuuqzZGEsJn9TF/9judYy1OxubnRm759uxz3/9PPkgkIr4Z3mM+JoZhOIYPKa8T8H7kjU2y50gbm7hNmisamzyTUJ2FjU2I1qILbKyxibX5sQurp04snT6/snTs1Nrx938je73D6+tTFdfXpyquCddWvGfdEF/8PKaKjdwkOC6D08ytAHOrB+YQwBzywBwGmMMeGPymz20emCMAc8QDcxRgjnpgbgeY2z0wdwDMHR6YOwHmTg/MewDmPR6YuwDmLg/M3QBztwfmHoC5xwNzL8Dc64F5L8C81wNzH8Dc54G5H2Du98A8ADAPeGAeBJgHPTAPAcxDHpiHAeZhD8wjAPOIB+Z9APM+D8wSwCx5YB4FmEc9MMsAs+yBOQYwxzwwxwHmuAfmBMCc8MD0AabvgXkMYB7zwKwAzArANAHmJMCcJJiO266uFJgvF6vaIYVscyralESfkxv+rqu09mzorersUdmUq/1LQnkqLrPav9jvVJ2bBzjuWz5jRX16hfJQ/TkJ+PFT9L451PjC+p3bvncs2darFeVub+jcXrU9n3HFtH2angS4mvbNqxXbbtb2lers3fpq1LcneI+QplHcnhwEmg3nPOAro5cfKFd+r5VfKFd+47PvB8uVv9nOK/4ye1FVT4+xJytpqzQbu27s1LekKt4f702oPNan7iSUHw22bfpn47LtweWLq2d6Vp3fREnLPUK0Y9smnqfh5Xd89o+8++6bi9ozPAnlThLOvHt39gG3NmkLeMTHd02nsmfK38senD6+fDgfh3Jr2W81dg8C3BNO85+4cJvG8t/w0HrBbfL/iodWpAdpZT2WZeEDAbgxAcfy5JzWJRcIXtk8K5rYbvIn3CbvL3twYvsjXfMEz+3PMEyDwf8k0PAK4WxDG/D84qAd1NyYpp6LSklV2xVlY5bEl69qw9VR94woXx8kulCfVWOL+8rgn4dyz2a/VbxoXkOU7ciE0/6oiefpXNw8reLgGH3TUIb5ThOPq71Qb5NwKHjTPVsAjzETeQ4y+F/Mnmm7fSX7reIUYZ/+sqdu5SeNtHLdH4Ny7BuOdXM8H2xn1gumBS3YzgeIFoP/TbfZDpfdZjs4t7Xvre5qx/9u9rV4IlAP929MfEmEZ/uCULxQbBMVX3OK8rCNOXaPsntQdilqPOJc8MEI+qdFWYNXcZkQnr+LafB/kD3VOjQL9Kkx1fLg/CMo9wm3lX8Vzy+Fe9FTN/LfFPwYPMdQYnhfDKVPOT//ewX/eF3EOrbBfwZwXvbQiXypOdXeqzhGc4Kvabe9XTjuGrY98vZiAAfHArD6JpyWiUmiFfOwfuRdje1ZQWuor2dFPdzXf5Y9sa/V2sUxKxV9OO55jE8JXLhuVLw6fSoBWgx3U0D6rk7te3uj6qc/aNuqN3+6/6WbLr96eVD4x1pv/qXe7z965PUcx+Afs2cqe/+U/eazWqwvffcfAbjE81Q0Iz32btTjGHw9e45yHINXs987EcfgO7Lfy+vry8dPLp3qn1laX9s0t7DvD++wucXpiuYWpyteJczVZW6BpgohcwufeUMTYI4AzBEPjM+8AWF85g0I4zNvQBifeQPC+MwbEMZn3oAwPvMGhPGZNyCMz7wBYXzmDQjjM29AGJ95A8L4zBsQxmfegDA+8waE8Zk3pPkVr8tvq+PaEseI4XCu8nV59LXH6+26/F0Ax30bui5/iPJweX8Y8P8Y/Oaj+iGZWj9ScZ7fOyhTa2v7iqbWj1Rsn70hU2tWTZ3TKt1OX4nfmD1H+Ur8BqD5Cr8Sb1a8Em9Y+cVy5Teu5G8tV37Gyh8qV37ayh8uVT7ZcGH4avZm0GGaEqpnUOF3eM4uaYbQMpo7QAcf6TL+9K8LNDYJh4JnfYHxd+vhxzE/eDWiXG3VVZyLry9RV3EF6O3wFelPZ8+0r9lUF48ZuQ3TxKbhU0QTw8SYFeC2ma9RDB71kFcJp3J5VDJu7/NC37KLKPIw7akbZVR94sn6kI9qey4uMe0oczOiPr6GWiE8dsSF/azC/xr8XlGvCvnOR/ZWb9pvX8t+d9z2tizQFj2jSV0Phj6ZYfCnodz7s98cbgXHbwp3Ft4j7kmnx/6eAN7pCLy+K89F4sngL0C581R328PTJU/deAXRCfDU9vB0CeCc0/ucOq45/43oQd2OrznzPp1Zdo6YcdtlORRqqEP1JKIedZXJ82fbA2/4eP78qeyZtttYspW+MVE+fWfrhAqXwWXwfCu0bqi9acisA3VuNbcfIn4N/q+g3LOE08r75mzcKzCvZeZsPOpvenAqHn6e8NjYxTZOBB6WFawXdR6es9tUL87ZIVlLk9q3pqnn4hLLBeKo2A9dbCNL6jyIQ44m5eoLhhxFGli/Lnne1fGFGcL9jAqDo2SmmUPzfPYMhZxqCtwMV/Gc5Du5jSci6kXeffwdJP4QV5vK+doR8TYFfUjDAQ99HReeK2JlbCHAzxiVGyvJD5ab8NDXcfntFtM/iwF+qvSPr705VJE6/1N6DvLtXL16Tih0Vp7pvZ2xKBMsXvdKnkGOhWjhOTVNqm3HqZxqW+7L2Lmg4tzTjuWvQfw1A/z5zmvzxp4yQUzcdn5DY7xif4+Pan/zXKTGeoxO6+NngvhRuEJywfyo/uL5MU1qvsF1I011zjcJAHAb5ekLJpP8eSfkN3TGaeY23G4Mi3uIEB0tgjfTZDxXCt0RDaJ9Uc64fdV6iPCs3ygXGz6DS5MKnchhFZX9Assq1oPtPe+28qjkH/d7FU33TidAi+FuCkif6d6/ZM8r/RM7gzatG6Tpm4V+SfvuP7PfeaZvrcQPl3ieimakx96NuulbI0MwyqZv/+228jBM07dBm8m+Lft9fn3tXH9p9cxS/1L/+IX11bUzS8eXj5/sL62dWz5+qr/0xLnls2f7534kA99hU7vFDiMsVH4zUkbJJbBZl6kdqrshU7sDUJav2EPRBStuExYq8plUvKZsxqgQiL/qtTXWNWyTKv7iklJZFK52QVyD7BNsK+wTg7G8kLlSrKlYD+BYxtlUDJe8g4DjB+D3O7LfFc0KFyuOOTfn/OomqyfO6WV9p82f3p49R9n8aT/QbOYvPwT4fDKuol6q4wDczlYYbw2jpSVoUdeiqRrzluz32XOrF5fX+3enq/uhMwu2ts+nSztXhPKD8tdw/vUJ+VE4mlBepRqCRS4mVHfRbdO7s+egt01mTnBi9Vz/+PrqxVTdutg/t44mPWm6GvCU0an2lSu/RdYd0YJ4WfdzBeqwhH3FibdWPO5ZdyxQf+KjQ8mneQbug3fWHt+VPbEv1/sr/XNLj19YW1/tn1lnaksaPm0YJpaMQSB7FTdGk1xh9myJconn/wY9Q7BJAO+UyDOc1htI7wTlbfbG+trSueUTq5dsTGKUEKuxSCtiJI8S5TfGZlmdS/Ui6gC8X8BWZj3GaCkZVWMipIN0Rb0MoySrQf+36H0zAlZJluUpXSPmqETpJkpKud1R3hQu1ptYPqr20Zyo02j7P0fkd6CdTgoA",
6316
- "debug_symbols": "tf3driU9cp0L30sf90EyGD8M34qxYciytiGgIRmyvIEPgu/9mxkkY0RVaXHlmmv1ierR21UxMknGmJlkJPkff/kf//Tf/8///G///C//77/+77/8l//6H3/57//2z3/72z//z//2t3/9x3/493/+1395/df/+Mt1/5/Gf/kvjaz/37/+pd3/v9Pr///rX7zPP3j+IfMPnX/Y/GPMPzz+aNe1/mzrT1p/9vUnrz9l/anrT1t/jvXnitdWvLbitRWvrXhtxWsrXlvx2orXVry24tGKRyserXi04tGKRyserXi04tGKRyteX/H6itdXvL7i9RWvr3h9xesrXl/x+orHKx6veLzi8YrHKx6veLzi8YrHKx6veLLiyYonK56sePKK1+8/Zf2p609bf77i6f2nzz/1Wn++4vn95x3v/ovaN/AG2aAbbMN9lXyDL7BrQ9tAG/oG3iAbdINt2JHtjiwvGNeGtuGOfN/86Bt4wysyBegG2zA2+AK/NrQNtKFv4A07su/IviPfKUR3s9xJdAPdWTShbaANfQNvkA26wTaMDTty25Hbjtx25LYjtx257chtR247ctuR245MOzLtyLQj0458ZxfJDbJBN9iGscEX3Dk2oW2gDX3Djtx35L4j9x2578h9R+YdmXdk3pF5R+YdmXdk3pF5R+YdmXdk2ZFlR5YdWXZk2ZFlR5YdWXZk2ZFlR9YdWXdk3ZF1R9YdWXdk3ZF1R9YdWXdk25FtR7Yd2XZk25FtR7Yd2XZk25FtRx478tiRx448duQ7B2ncIBt0g20YG3xB5GBA20Ab+oYd2Xdk35HvHOzthrHBJ/Q7B7ve0DbQhr6BN8gG3WAbxgZf0HbktiO3Hbkt3+iNN8gG3WAbxoblSJ2uDW0DbdiRaUemHfnOwe432IaxwRfcOTihbaANfQNvkA07ct+R+4585yBfL7hzcELbQBv6Bt4gG3SDbRgbdmTZkWVHvnOQ+w19A2+4I9sNusE2jA2+4M7BCW0DbegbeMOOrDuy7si6I+uObDuy7ci2I9uObDuy7ci2I9uObDuy7chjRx478tiRx448duSxI48deezIY0ceO7LvyL4j+47sO7LvyL4j+47sO7LvyL4i83VtaBtoQ9/AG2SDbrANY8OO3HbktiO3HbntyG1Hbjty25Hbjtx25LYj045MOzLtyLQj045MOzLtyLQj045MO3LfkfuO3HfkviP3HbnvyH1H7jty35H7jsw7Mu/IvCPzjsw7Mu/IvCPzjsw7Mu/IsiPLjiw7suzIsiPvHOSdg7xzkCMH/QZfEDkY0DbQhr6BN8gG3WAbdmTdkW1Hth3ZdmTbkW1Hth3ZdmTbkW1Hth157MhjRx478tiRx448duSxI48deezIY0f2Hdl3ZN+RfUf2Hdl3ZN+RfUf2HdlXZLmuDW0DbegbeINs0A22YWzYkduO3HbktiO3HbntyG1Hbjty25Hbjtx2ZNqRaUemHZl2ZNqRaUemHZl2ZNqRaUfuO3LfkfuO3HfkviP3HbnvyH1H7jty35F5R+YdmXdk3pF5R+YdmXdk3pF5R+YdWXZk2ZFlR5YdWXZk2ZFlR5Ydeeeg7ByUnYOyc1B2DsrOQdk5KDsHZeeg7ByUnYOyc1B2DsrOQdk5KDsHZeeg7ByUnYOyc1B2DsrOQdk5KDsHZeeg7ByUnYNy56DQDbrBNowNvuDOwQltA23oG3jDjuw7su/IviP7iqzXtaFtoA19A2+QDbrBNowNO/Kdg9JvaBtowx1ZbuANskE32IaxwRfcOTihbaANOzLtyLQj045MOzLtyLQj9x2578h9R+47ct+R+47cd+S+I/cdue/IvCPzjsw7Mu/IvCPzjsw7Mu/Idw6K3uAL7hyccEe2G2hD33BH9htkg254Rda7v2I+JsAXxIwM39A20Ia+gTfIBt1gG8YGX2A7su3ItiPfOaj3Nd85OEE26AbbMDb4gjsHJ7QNtGFHHjvy2JHvHNRxg20YG3zBnYMT2gba0DfwBtmwI/uO7Duyr8h2XRvaBtrQN/AG2aAbbMPYsCO3HbntyG1Hbjty25Hbjtx25LYjtx257ci0I9OOTDsy7ci0I9OOTDsy7ci0I9OO3HfkviP3HbnvyH1H7jty35H7jtx35L4j847MOzLvyLwj847MOzLvyLwj847MO7LsyLIjy44sO7LsyLIjy44sO7LsyLIj646sO7LuyLoj646sO7LuyLoj646sO7LtyLYj245sO7LtyLYj245sO7LtyLYj3zlo7Ya2gTb0DbxBNugG2zA2+ALfkX1H9h3Zd2TfkX1H9h3Zd2TfkX1FHte1oW2gDX0Db5ANusE2jA07ctuR247cduS2I7cdue3IbUduO3LbkduOTDsy7ci0I9OOTDsy7ci0I9OOTDsy7ch9R+47ct+R+47cd+S+I/cdue/IfUfuOzLvyLwj847MOzLvyLwj847MOzLvyLwjy44sO7LsyLIjy44sO7LsyLIjy44sO7LuyLoj646sO7LuyLoj646sO7LuyLoj245sO7LtyLYj245sO7LtyLYj245sO/LOwbFzcOwcHDsHx87BsXNw7BwcOwfHzsGxc3DsHBw7B8fOwbFzcOwcHDsHx87BsXNw7BwcOwd956DvHPSdg75z0HcO+s5B3znoOwd956DvHPSdg75z0HcO+s5B3znoOwd956DvHPSdg75z0HcO+s5B3znoOwd956DvHPSdg75z0HcO+s5B3znoOwd956DvHPSdg75z0HcO+s5B3znoOwd956DvHPSdg75z0HcO+s5BjxzkG2zD2OALIgcD2gba0DfwBtmwI8uOLDty5KDcK8PXhraBNvQNvEE26AbbMDbsyLYj245sO7LtyLYj245sO7LtyLYj2448duSxI48deezIY0ceO/LYkceOPHbksSP7juw7su/IviP7juw7su/IviP7juwr8muV/UpqSZTUkzhJkjTJkkZSarTUaKnRUqOlRkuNlhotNVpqRFpakG+KxJz00hhXECX1JE6SJE2ypJHkm+4UXZQaPTV6avTU6KnRU6OnRk+NnhqcGpwanBqcGpwanBqcGpwanBqcGpIakhqSGpIakhqSGpIakhqSGpIamhqaGpoamhqaGpoamhqaGpoamhqWGpYalhqWGpYalhqWGpYalhqWGiM1RmqM1BipMVJjpMZIjZEaIzVGanhqeGp4anhqeGp4anhqeGp4avjWiHKaRS2JknoSJ0mSJlnSSEqNlhotNVpqtNRoqdFSo6VGS42WGi01KDUyz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPI8qokFBmmRJI8k3RZ5PakmU1JM4KTU8NTw1PDV8a0RR0aKWREk9iZMkSZMsaSSlRkuNlhotNVpqtNRoqdFSo6VGS42WGpQalBqUGpQalBqUGpQalBqUGpQaPTV6avTU6KnRU6OnRk+Nnho9NXpqcGpwanBqcGpwanBqcGpwanBqcGpIakhqSGpIakhqSGpIakhqSGpIamhqaGpoamhqaGpoamhqaGpoamhqWGpYalhqWGpYalhqRJ73IEsaSb4p8nxSS6KknsRJkpQaIzVGaozU8NTw1PDU8NTw1PDU8NTw1PDU8K0RhUuLWhIl9SROkiRNsqSRlBotNVpqtNRoqdFSo6VGS42WGi01WmpQalBqUGpQalBqUGpQalBqUGpQavTU6KnRU6OnRk+Nnho9NXpq9NToqcGpwanBqcGpwanBqcGpwanBqcGpIakReS5BlNSTbo0RJEmaZEkjyTdFnk9qSZTUk1JDU0NTQ1NDU0NTw1LDUsNSw1LDUsNSw1LDUsNSw1JjpMZIjZEaIzVGaozUGKkxUmOkxkgNTw1PDU8NTw1PDU8NTw1PDU8N3xpRHLWoJVFST+IkSdIkSxpJqdFSo6VGS42WGi01Wmq01Gip0VKjpQalBqUGpQalBqUGpQalBqUGpQalRk+Nnho9NXpq9NToqdFTo6dGT42eGpwanBqcGpwanBqcGpwanBqcGpwakhqSGpIakhqZ55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5Lpnnknmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z51ET5i1oJPmmO88XtSRK6kmcJEmalBqSGpIad547BbUkSupJnCRJmmRJI8k3WWpYalhqWGpYalhqWGpYalhqWGqM1BipMVJjpMZIjZEaIzVGaozUGKnhqeGp4anhqeGp4anhqeGp4anhWyMKyRa1JErqSZwkSZpkSSMpNVpqtNRoqdFSo6VGS42WGi01Wmq01KDUuPPcOYiSetKtoUGSpEmWNJJ8053ni1oSJfWk1Oip0VOjp0ZPjZ4anBqcGpwanBqcGpwanBqcGpwanBqSGpIakhqSGpIakhqSGpIakhqSGpoamhqaGpoamhqaGpoamhqaGpoalhqWGpYalhqWGpYalhqWGpYalhojNUZqjNQYqTFSY6TGSI2RGiM1Rmp4anhqeGp4anhqeGp4anhqeGr41ohitUUtiZJ6EidJkiZZ0khKjZYaLTVaarTUaKnRUqOlRkuNlhotNSg1KDUoNSg1Ms8989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzz33nOV07z+naeU7XznO6dp7TtfOcrp3ndO08p2vnOV07z+m6UqOlRkuNlhotNVpqtNRoqdFSo6VGSw1KDUoNSg1KDUoNSg1KDUoNSg1KjZ4aPTV6avTU6KnRU6OnRk+Nnho9NTg1ODU4NTg1ODU4NTg1ODU4NTg1JDUkNSQ1JDUkNSQ1JDUkNSQ1JDU0NTQ1NDU0NTQ1NDU0NTQ1NDU0NSw1LDUsNSw1LDUsNSw1LDUsNSw1RmqM1BipMVJjpMZIjZEaIzVGaozU8NTw1PDUiDz3IE6SJE2ypJHki6IeblFLoqSedGtIkCRpkiWNJN8UeT6pJVFST0qNlhotNVpqtNRoqUGpQalBqUGpQalBqUGpQalBqUGp0VOjp0ZPjZ4aPTV6avTU6KnRU6OnBqcGpwanBqcGpwanBqcGpwanBqeGpIakhqSGpIakhqTGneevwRBowAH0xDvXNzYgATuQgQKEmkJNoRbbXbXrxtjwamFL9GtuREVRa9YW3mJtbrYkQAUacAB9Y5SXbWxAAnYgAwWoQAMOINQa1BrUGtQa1BrUGtQa1BrUGtQa1AhqBDWCGkGNoEZQI6gR1AhqBLUOtQ61DrUOtQ61DrUOtQ61DrUONYYaQ42hxlBjqDHUGGqxRVzTwAH0xNgrbmEDEjDULJCBAlSgAQfQEyPdFjYgAaEW6dZGoABDzQMNOICeONNtYgMS8FYjCmSgAG814kADDuCtRnG9sefcwgYkYAcy8FaLXaiiaG2jAQfwVutxZWEaCxsw4kpgxI1BEP7Q53+NCHdLRlnaxgYkYAcyMOJ6oAINOICeGP6wsAEJ2IEMhFr4w72jE0Wd2sZb7d7MiaJSbWH4w8IGJGAH3mrMgQJUoAEH0BPDHxY2IAE7EGrhDyyBCgw1DRxATwx/WHirSbRD+MPCDmSgABV4q0kLHEBPDH9Y2IAE7EAGClCBUAt/uHejoKhoWxj+sDBaMoZc+MPCDhzAiBC9Gdkt0TqR0vcmCxRFaRsVaMABvINpXGSk9MIGJGAHMvBW07iLSOmFBhxAT4yUXtiABOxABkItHg802iEeDxYOYKjdoy+q1TY2YKhpYKhZYKh5oAAVaMAB9MRIdKPADmSgABVoiZGF90dlFAVlG28Ji+uNfLMR2IEMFKACLTHywuJ6Iy8WDqAnRl4sbEACdiADBQg1gZpATaCmUFOoxS/kXflMUd31WiMIvCPcNWkU9V0L47dw4R1hRHdHtizsQAYKUIERNzogkmFEB0QyjLiySIaFAowI0dSRDAsH0BMjGRY24K3mcceRDAtvNY+bj2RYqMA77r1kQlGo9ZqcDOzAuF4LjAgcqEADDmDEvdshCrY2NmCoaWAHMhBqDWoNag1q8fs2MX7fxsQGJGAHMlCAY3dhVGbNLozSrNlZUZu1kYGy+yLKszYacACzN6NEa2Pb/RZFWhv77qwo09oowJFdGPk2+03Qm5Fvswsj32ZDCdpX0L6C9o18m50l6E1Fb0a+zc5S9KaiNxVqCjWFmkJN0ZuRDB5NEsmwcABfl/N6ibsxNjxd2IAE7EAGClCBBhw3xuXENsSBUfe0sQEJ2IGhNgIFqEADhpoHemJsTrzwVot34qiB2tiBt1q8H+vcInWiAg14q7V7wOjcGLUHErADGRhxJTDiamDEtcAB9MTYrnhhqMUdx5bFCzuQgbcaxb3FjsXx1hHFTxR7J0f1E63tfW+J2MA26p82ErADGShABYZatHrsY7zwVutxObGX8cIGJGAHMlCACjTgAEJNoaZQU6gp1BRqCjWFmkJNoRY7HsdrVBRHbWxAAnYgAwUYcaOzYr/jibHj8cIGJGAHMlCACjQg1AbUHGoONYeaQ82h5lBzqDnUHGqeanZdwAYkYAcyUIAKNOAAQq1BrUGtQa1BrUGtQa1BrUGtQa1BjaBGUCOoEdQIagQ1ghpBjaBGUOtQ61DrUOtQ61DrUOtQ61DrUOtQY6gx1BhqDDWGGkONocZQY6gx1ARqAjWBmkBNoCZQE6gJ1ARqAjWFmkJNoaZQU6gp1BRqCjWFmkLNoGZQM6gZ1AxqBjWDmkENXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi+x6SUc2IEM1O2INg1k4gCm6Y7rAjYgATuQgQJUoAEHEGoNag1qDWoNag1qDWoNag1qDWoNagQ1ghpBjaBGUCOoEdQIagQ1glqHWodah1qHWodah1qHWodah1qHGkONocZQY6gx1BhqDDWGGkONoSZQE6gJ1ARqAjWBmkBNoCZQE6gp1BRqCjWFmkJNoaZQU6gp1PDYMfDYMfDYMfDYMfDYMfDYMfDYMQxqBjWDmkFtQG1AbUBtQG1AbUBtQG1AbUBtQM2h5lBzqDnUHGoONXjJgJcMeMmAlzi8xOElPr3EAjuQgaHmgQo0YKiNQE+cXjKxAQnYgbcaU6AAFXircVxveMlCTwwvWdiABLzVYgY5Kr82CjDUJNCAA+iJ4RoxmRyFXcTRUOEPCw0YEaKhwh8mhj8svK835pV9HqkysQMZeKvFVLDPo1UmGnAkzuNUovnm8Sk9UIAKjOsNicj5hZ4YOb+wAQnYgaEWjToPVZmoQAMOoCfO41UmNiABOxBqBjWDmkHNoGZQG1AbUJvHrkR3R3bH7HhUcm004AB6YmT3wgYkYAcyEGoONYeaQ823Wo+6ro0NSMAOZKAAFWjAAYRag1qDWoNag1qDWoNag1qDWoNagxpBjaBGUCOoEdQIagQ1ghpBjaDWodah1qHWodah1qHWodah1qHWocZQY6gx1BhqDDWGGkONocZQY6gJ1ARqAjWBmkBNoCZQE6gJ1ARqCjWFmkJNoaZQU6gp1BRqCjWFmkHNoGZQM6gZ1AxqBjWDmkHNoDagNqA2oDagNqA2oDagNqA2oDag5lBzqDnUppdYIAMFqEADDqBvbNNLJjYgAW81vQIZKMBQG4EGHEBPnF4ysQEJ2IEMFCDUGtTCS+4lvh7lZAvDSxZ24B3hXofsUSq2MSJooCeGPyxsQAJ24H29Fk0S/rBQgQa81SyEwx8mhj8svNUsrjf8YWEHhloPFKACDRhqHBhqcb3hBBZ9HE6wkIECjLgeeMcdcRfhBCMuJ5xghFo4wcIGJOCtNuJywgkWClCBoRbXG+k/4nIi/Uf0fKS/x+VE+ntIRPovZKAAFWjAAbzVPK4h0n8h5TAaGFGR8wsFqEADYqQOjFTHSI2cXwg1h5pDzaHmUIuc92izyPmFvnEepOgW2IAE7EAGClCBBhxAT2xQa1CLnL/LUvs8YnEhAwWoQAMOoCdGzi9sQKgR1AhqBLXwh3uFqa/DFuXG+aQwsQEJ2IEMFKACDTiAUGOoMdQYagw1hhpDjaHGUGOoMdQEagI1gZpATaAmUBOoCdQEagI1hZpCTaGmUFOoKdQUago1hZpCzaBmUDOoGdQMagY1g5pBzaBmUBtQG1AbUBtQG1AbUBtQG1AbUBtQc6g51BxqDjWHmkPNoeZQc6h5qvXrAjYgATuQgQJUoAEHEGoNag1qDWoNag1qDWoNag1qDWoNagQ1ghpBjaBGUCOoEdQIagQ1eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML4mN4vpdt9Kj1G9jBzJQgAo04AB64u0lG6HGUGOoMdQYagw1hhpDjaEmUMsZzs7TSyaGWgtkoAAVaMAB9EQNtR7YgAQMNQ5koABDLa5MDTiA0W8RbHrJxAYkYAcyUIAKNOBIDNe4p657FCFujLuIATMYKEAFGnAAPdGjzSywAQkYaiOQgQIMtbiyOHZ64QDGzPQdLPaV29iABOxABgpQgQYciXH49F1s1aM0cWMH3ndxF1v1KE3cqMD7Lu4Kqx6liRvvNruLrXqUJm5swFvtrrDqUZq4kYECVKABBzDU7jEZ+8ttbEACdiADZdUN9lWwKIG7ALDPgsWFDUjADmSgAHVVCPbYWm7jAHpiFBOPiQ1IwA5koAAVaMCRqOh5Rc8rel7R84qeV/S8oucVPa/oeUPPG3re0POGnjf0vKHnDT1v6HlDzxt6fqDnB3p+oOcHen6g5wd6fqDnB3re0fOOnnf0vKPnHT3v6HlHzzt63tHznj0ftZazh6LWciMBO5CBAlSgAbPno6qy3xWNPaoqN3YgA6Mv5j9ToAEHMMp770Ggsxx5YgMSsAMZKEAFWuLMbgtsQAJ2IAMFqEADDqAnMtQYagw1hlr8+lNcZPz6L1SgAQfQE+PXn6LV75zfSMAODLVo9fj1X6jAUBuBt1qfEp4Yv/4LG5CAHchAASrwVrtLhHoUWG4MtTuzosByYwMSMNTi0sMJFgpQgQYcQE8MJ1gYatFD4QQLQy1aJ5xgoQAVaMCQuM0xai03NiABO/CW4GiSeBBYqEADDqBvjFrLfn+c1qPWciMBO5CBAlSgAQfQExvUwiruIoIetZYbOzDUJFCACgw1Cwy1ERhqd+tEreXGBiRgBzIwijSCRpJvmhVRQS2JNkUG31UHPYodNzIwar6DNMmSRpJvimmASRFx4t0M8eQepYt9/seR5Jvmo3hQS6KknsRJkhQicV+RhgtvFYkuijScGGm4MC4zuihSK5baogpxY0w3B0WA6MLIrIUNSMAO5N0kI5tzZHOObM6RzTmyOSORZiNGysxGjJSJBbCoLtwYtxpXGikTGNWFPRbsorqQJ1FST+IkSdKkO2KsmEWtYI8Vh6gVjASJUsFFknT/6/n3LGkk+aY4n35SSwqRCBPjfuHd7/f3eD1KBDcqMC7z7s0o++uxQhdlfxvv64zbiN/C2TDxW7jQgAMYYe/ejKq/jQ1I2eAzkyYyEGoMNYYaQ42hJlATqAnUBGoCNYGaQE2gJlCL7JsYs2oRQHNQR9Hfxg5koCTG75RGhEimhQaMt9Qg3zTnu4JaEiX1JE6SJE2ypNQYqeGp4anhqRG/UbH+GiV4GwV430ysqUYJ3sa7EWNdN0rwJkYJ3sYGJGAHMjDUNFCBBgw1DvTE+I1aGGoWSMAOjEXXIEnSJEsaSb4p8tEmxpV64H2lsSYcBXUbB9AT45E1Fo1jR7WNBOxABsZSZ1CI9UADDmCI3T0atXcbGzDEoi0iSxeGWNxaZOlCBcb4DRpJvmmmaFBLoqSIGI0VORcr1lF11+/P93pU3W1sQALeVxrvZVF1t1GACjRgqAX5pvjZmxSNEkRJPYmTJEmTQiSGXDx2LvTE+BlcGJcZjR+PkgtjVAeNJN8Uj5Q+sQEJGC0S9xHpujB+taJ5XYH3L0/M80VNHcd8XNTU8T25x1FTx/eME1/z93EiATuQgQJUoAFDzQJDbdzYQs0Db7V7AoGjeo7vWQOO6rmNCjTgAHpi/IQujGAUKEAFGnAAPbFfwAgWDdXjn3HgAHoiX8D73uIu75Rb1JM4SZI0yZJGkm+6s21RakhqSGpIakhqSGpIakhqSGpoamhqaGpoamhqaGpoamhq3MnGMRLuZFvUkzhJkjTJkkaSb7p/OhelxkiNkRojNUZqjNQYqTFSY6SGp4anhqeGp4anhqeGp4ZvjSgQ4/vplqNAjFv810iM+yNPjlIwvl9QOKq3+P6N5tj7a6MA4xEzItzDWiLAPaoX+aZ7TC9qSZTUkzhJkjQpNXpqxFi/fyQ5arP4foDiqM2SuMR7ZC+ypJHkm+6RvaglUVJP4qTUkNSQ1JDUkNTQ1NDU0NS4R/b9zsNRnrVIkm6NaOl7ZC8am2KM3y9iHIVX3KODY0T3aKYY0gsNOICeGMN6YQMSsAMZCLUBtQG1GN49RlaM74kxwBc2IAE7kIECVKABoeapFjVYGxuQgB14d4MHSZImWdJI8k0tInJgXKkEvv71/erGUVC1aCS9/vX9jsdRTbWoJVFST+KkuPF7LETJFN/PChwlUxsJGLcYlxk/MAsFqEADDqAnxs/OwgYkINQYavHTw3Hp8duz0IC3Gkc/xM/PxPj94WjW+AHiaNb4BQp7i5KpjQwMtRCOX6GFt9o908JRMsUSwne6aijc6bqoJVFST+KkiBideT/sscRFR3JGjkcB1MYOvK800jwKoDYq0IAjMZIz8j+KmliidyMN5yCMNFxowAH0xEjDhQ1IwA681TQaLtJwoQJvtTkwIw0X+sYoatp4q0UCRFHTxg68m9eCJEmT7kTSoJHkm+7ftUUtiZLuLhxBnCRJcT890IAD6IlEwGgRDlRgRJDAAfTEO2stGuRO2kWU1JM4SZI0yZJGkm/i1ODU4NTg1ODU4NTg1ODU4NTg1JDUkNSQ1JDUkNSQ1IjcnF0TublwAKO9onfiKXFhA8aT0RXYgfFsFL0Tj4oLFWjAAYyHsOi+yOaF8RgWfTafJ+PK5gNljMj5RDlRgKEWFzkfKicO4N2EoXD//i5qSZTUkzgpIt65GQVFPOK2I49HtGzk8cIOZOB9pSNuO/J4oQEH0DdGQVG0Be+jojnKiXjM/xhaFsjAV9T5z/epFMx7J1vmvZMt897JlqMOiO/ZAI46oI0D6InxLrawAQkYbxAtkIECtH1VsZPtJN8UO9lyUEuipAg+kYECjDcUDTRgvAfFvcZv68T4bV3Y5t7FzHvnaua9czXz3rmaee9czbx3rmbeO1cz752rmffO1cx752pmSQ1JDUkNSQ1JDUkNSQ1JDUkNTQ1NDU0NTQ1NjflKF8NlvtNNNGC0WHRo5OnEyNOF8fLogQTsQAbez3dXjN47T+WKcRC7WM//fST5pjtL5YohcafpRgJ2IAMFqEADDqAnOtQcag612NI6bjy2tJ4kSZpkSSPJF0Wpz6KWREk9iZPifnqgAg04gJ7YLmADErADGRhqHKhAS6QLGBE0MCJYoAAVaMC43ri3eH+dGC+wCxuQgB3IQAEq0IBQ61BjqDHUGGoMNQ41DxTgrRYzUlHls3EAb7WYZYoqn40NSMAOZKAAFRhq0VnxCrzQE+MleGGoSSABO5CBAgy1uPl4F144gJ5oF7ABQy0ayjqQgQJUoAEH0BPDExY2INTCE+59tThqfzYKMCY7oiXDE2IiJiqCNsacSgzw8ISFMasSrROesLADGShABRpwAH1jVARtbEACdiADBahAAw4g1BrUGtQa1BrUGtQa1BrUGtQa1BrUCGoENYIaQY2gRlAjqBHUCGoEtQ61DrUOtTkfpoEMFKAC76qkmMfWuW33RE+c23ZPbEACdiADBRh3cZtjVARJzLZFRdDGuF4PZKAAFWjAAfTEcIKYyooqn9UkijuOnF84gJ4YOR8zYFHls5GAHYjeNKgZetPQm4beNPTmQG9Gzs9riJxfiN4c6M3I+XkNkfMLDQi1ATWHGnJekfOKnFfkvDrGjqMlHS3paMnI+biGKPjZ2ICpZsh5Q84bct6Q84acN+S8Iedt5rwGNiABO5CB0ZIUqMBoyR44gJ4YOb8w7i2CRc4v7EAGClCBBhzAULsTJyqBNuYAjx3VJCblYke1jQJUYA6N2FFtIzqL0VmMzmICdiA6i9FZjM5idBajsxidJRewATE0Iv1jsi8KkDYa8I7L0Q6R/jHvFzVIGxuQgB3IQAEq0BItHwxjl7SNBIy4MR7CFBZG3LihMIWFBoy7iO4OU5gYprAw7iJ6PkxhYQcyUIAKNOAAemKYwkKoxdGzcRNx9OwkTbpfwuMO4ujZSb4oypYkpkajbGkjAWNBpAUyUIA6DzzlsQ+g5bEPoOWxD6DlsQ+g5bEPoOWxD6DlsQ+g5bEPoOWxD6Dl0VKjpUZLjZYalBqUGpQalBqUGpQalBqUGpQalBo9NeI3PSaBowhqYwdGg3GgAGMRqQcacABjHekeU1EFtTHUQjhSfWGoeSADBXi/EEZH7fNoeezzaHns82h57PNoeezzaDkqnSQmeqOmSXT+1/tKY8Y2apoWRjovbMD7SmNidMxVr4kMFKACQ80CB9ATI8kXNiABQy2aKJJ8oQAVaMAB9MRI8oUNSECoRZJrNH0k+UIFxqpetGQkuUVDRZJPjCSPickootp4q8UkYJRRbWSgABVowAH0jVFGtbEBCdiBDBSgAg04gFBrUGtQa1BrUGtQa1BrUGtQa1BrUCOoEdQIagQ1ghpBjaBGUCOoEdTilz/mSKPwaiMBO/B+/r7mPxOgAg04gJ4YT/sLG5CAcRcaGNdrgZ4YP+wxJR0VVRsJ2IEMFKACI+49wKOmajWJ4o4j5xcKUIF3+8bEctRUbfTEyPmF6E2DmqE3Db1p6E1Dbxp609CbkfPzcgZ6c6A3B3pz4N4i52N6PQqxNt5qd3EdRyHWxgH0xMj5+EWOWqyNBOxABgpQgQYMtRgEkfM3yjUT3QNDwgI7kIEC1NUBEgVYGwfQE9sFbEAC7s6SKxNdrkx0uTLR5cpElysTXa5MdLky0eXKRJeo0JL7p1qiQmujAuMuoh0ipT2uLFJ6YqT0wgYkYAcyUIAKjLjtxvhZX9iABIy4FMhAASpw/zRLVHJt9MRI9IUNSMAOZKAAx1z9kajemqRX0r14FSPkTv1FPSmuf/5FASrwXmaMcXnn/SLfFFnvExuQgH2uR0lUeC2SJE2ypJHkm+50X9SSKCk1RmqM1BipMVJjpMZIDU8NTw1PDU8NTw1PDU+NyG6Ppo3sXugbY8exWJaT2HFsY7SYB3YgA+/18HtpRGLHsY0GHEBPjIX3hQ1IwHvt/V5nkdhxbKMAFRhqPXAAPTHqZRY2YKhxYAcy8G5HCtIkSxpJvime8ie1JErqSZyUGj01emr01OipwanBqcGpwanBqcGpwdFo0bNswAH0RLmADUjADoxGG4ECVGCoaeAAemIU07To+qimWUhAAd7FyHE/UTI9Kf5RdJsRsAMZKEAF3pfY4mrvVN/oieMChlokwCBgB95qFFd7Z/xGBUaBVwzfMYCeeKf9xluN4jbvxFeK6/WIG83vCjTgAEbcO8+jwk3veVmJCje9Z5okKtz0nvuRqHDbyEAB3mrR6lHktnEAPTHy/K5zkyh507vOTWJrMb3nwCS2FtMelxPJzSERyb3QgAPoiZHcCxswCrHiGiK5F+Ygiv3ENhpwAD2xX8CQiBvqBOzAqPaK2+wCVKABB9AT+QI2IAE7EGoMtUhzju6ONF84gJ4Yab6wAQnYgQwUINQEagI1gdqsmYuenwVy0fOzQm6iABUYcT1wAD3RLmBbFS4yy+kWdiADBahAA47EyHmZSMAOZKAAFXhfr8TwjDyWGJMeEXogAwUYEWJwRXYvvNtBorsjuwOjcG5jXK8GErADGShABRow1CzQEyO7FzYgATuQV7GbRLncbIcol9uYrRP7fuk9UyWx79dGAnYgA+MuPFCBBhzAqAEMtcjuhQ0YZYA9sAMZeKvNG4rsXmjAKDi8AkMtuiWyW6NRI7s1Wieye2EHRty4t8jjhQPoiZHHGvcWGRuDK8roNgpQgSNRd72ozDq5hR24q0hl1sktVKABB9ATZ9XrxAYkYJRwRpvFT/NCAw7gffMWnRU/zQsbkIBxF9FvsxZ2ogAVaMAB9ES/gA0Y1cvRULP4fGLcRbRvJO/CAfSNUS2n97ydRLncRgJ2IAMFGJXZI9CAA+iJ7QI2IAE7kIECjLvgQE+M5F3YgHEXEtiBDBRg3MVEAw6gJ85q9okNSMAOjL7QQAMOoCdGmi5swHj7DepJnCRJmmRJ62sM4TmbdtOcTAtqSZTUk+LKJ8Y1RvvHj+nCBox7b4EdyEABKtCAA+iJkbsLGxBqBjWDmkHNoGZQM6gZ1GbuemAHMlCAd+vEj3QUym0cQE+Mx+qFDUjADoyq77ic+DleqEADhlqkcWR0YNTLbWxA2p0lM6MnMlCACjTgAOZ4iKK5jXEXPZCBAoy74MC4CwkcQE+MjF4Yd6GBBOxABoaaB95qMUcVpXQbB9AT4+d4YQMSsAMZKECoRZ573Gbk+UJPjDxf2IAE7EAGCjDULDDU4o7jR3qhJ8aP9MIGJGAHMlCACoRazLRdMbhiqm1izLUtbEACdiADBajAe74t3vajlG6jJ9oFbEACdiADQy0GrSnQgAPoiVEEv7ABCRjVDEGcJEmaZEljk0fEaFmP7xCuQAHeTkbzLxhwAH1jFMZtbEACdiAD4zOKFhjfUVCgJ7YL2IAE7EAGxl30QAUacABD7R7lUQK3sQEJ2IEMFGCoSWCoaeAAeuL82mViAxKw777QzkABKtCAA+iJ87uXiQ3I6zt5mVtlLVRgxB2BA3jHjTme2CprYwPedxETO1EYt5GB911QdMCd7RsNOICeGNlO0TqR7QsJ2IEMFKACLTHyOuaO5vZXMf0eJXAW00hRArdxAOPKYihHri68ryymnKIEbmMH3lcWjwBRArdRgQYcQE+8f+E3hloMeydgBzJQgAq0fcdR7GZ3QZhEsdtGAnZgxOVAASrQgGNtPCFzd6uJsXPIwgYkYAcyUIDROnHpkccTI48XNmDchQZ2IAMFqGuDEYmyto0D6Imxq8jCBiRgB0brWKABBzDu4h5cUcu2sQHjLiJYfKy2MD6DiiaJz9UWKvBWi1nDqGXb6ImRxwsbkIAdGGoUKEAFGnAAPTG2HIkJgrmlVkxHzD21YlZgbqq1UIEGHEBPjLnyhW3tRSRR4baxAxkYanFlc9OgiQYcQE+MLbgWNiABO/COGzM/UctmHDkU2b3QEyO7FzYgATsw+iKSLLJ7oQINeN9FzIOs7blunNtzLWxAAnYgAwWowLiLO9+iqm1jA8ZdaGAHMjDuwgIVGHcxAgfQEyPnY3I0Ctw2ErADGShABd5qMZ8ZdW4bPTF+uxc2IAGjzeKGevZ8FLXNfouito3Z81HUtrEBCdiB2fODBahAA2bPz629Jgp6XtDzgp4X9Lyg5wU9L+j5O01bHIcuUaSWPAo7+B76Hj+jUeG18B76GxuQgB14f4AVP7lR4bVRgQYcQN8YFV4bG5CAHcjAWy1+yqPCa6MBb7X4eY4Kr4XxpefCWy1+RqPCy+NXMiq8PH6sosLL4ychKrw2KtCAA+iJd0J4jJSo8NpIwA5koAAVaMAB9MQOtQ61DrUecePeugItMaoxwwJit6uNoRY3FAWZE6Mic2EDErAD495GYFxDdGF8tbnQgAPoifHl5sIGJGAHMhBqCjWFmkJNoWZQu3+sPPwk6rM8TCTqs1ajGvrC0BcjIlBgAxKwAxkowFCbaMBbTaaEJ0bGLozrjaEcWRhrNFFztTGuN+4isvDuFo39rzY2IAEjrgYyUIC6uluj/GrjAEKtQa1BrUEtsnBiZItM7EBOjAF+P0No1DttZOB9kff6iEa900YD3hd5P/5oVEEtvH8H/H5w0Gt+9TyRgLfavUaj1/zweaIAFWjAAfTE+fkzBzYgATuQgQLc3a1RBhWDVqMOavVQJM5CAqJjFR2r6NhInIXoWEXHqifaBWwrWzTKoTZ2IAMFqEADDqAnRopoXFmkyMIB9MRIkYUNSMAOZKAAoeZQc6h5qkWR08YGJGAHMjDUJFCBBhxAT4x0WtiABOxABkKtQa1BrUGtQY2gRlAjqBHUCGoENYIaQY2gRlDrUOtQ61DrUOtQ61DrUOtQ61DrUGOoMdQYagw1hhpDjaHGUGOoMdQEagI1gZpATaAmUBOoCdQEagI1hZpCTaGmUFOoKdQUago1hZpCzaBmUDOoGdQMagY1g5pBzaBmUBtQG1AbUBtQG1AbUBtQG1AbUBtQc6g51BxqDjWHmkPNoeZQc6h5qtF1ARuQgB3IQAEq0IADCDV4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBS2h6iQWG2ghkoAAVaMAB9I19esnEBiRgB95qd1WLRtnWRgWGmgcOoCeGl9wFIxplWxsJeKvdFQ8aZVt+Vx5obH22UYEGHEBPDC9Z2IAE7ECoEdQIagQ1ghpBrUOtQ61DrUOtQ61DrUOtQ61DrUONocZQY6gx1BhqDDWGGkONocZQE6gJ1ARqAjWBmkBNoCZQE6gJ1BRqCjWFmkJNoaZQU6gp1BRqCjWDmkHNoGZQM6gZ1AxqBjWDmkFtQG1AbUBtQG1AbUBtQG1AbUBtQM2h5lBzqDnUHGoONYeaQ82h5qkWVWQbG5CAHchAASrQgAMItQa1BrUGtQY1eAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZfI9BIPVKABB9ATp5dMbEACdiADoUZQI6gR1Ahq00sksAEJ2IEMFKACDTiAnshQY6gx1BhqDDWGGkONocZQY6gJ1ARqAjWBmkBNoCZQE6gJ1ARqCjWFmkJNoaZQU6gp1BRqCjWFmkHNoGZQM6gZ1AxqBjWDmkHNoDagNqA2oDagNqA2oDagNqA2oDag5lBzqDnUHGoONYeaQ82h5lDzVNPrAjYgATuQgQJUoAEHEGoNag1qDWoNag1qDWoNag1qDWoNagQ1ghpBjaBGUCOoEdQIagQ1ghq8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLombO7+pqjZq5jR3IQAEq0IC32l36rFEztzC8ZGEDErADGRhqFqhAAw6gJ4aXLGxAAnYgA6FmUDOoGdQMagNqA2oDagNqA2oDagNqA2oDagNqDjWHmkPNoeZQc6g51BxqDjVPNbsuYAMSsAMZKEAFGnAAodag1qDWoNag1qDWoNag1qDWoNagRlAjqBHUCGoENYIaQY2gRlAjqHWodah1qHWodah1qHWodah1qHWoMdQYagw1hhpDjaHGUGOoMdQYagI1gZpATaAmUBOoCdQEagI1gZpCTaGmUFOoKdTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4yYCXDHjJgJcMeMmAlwx4yYCXDHjJgJcMeMmAlwx4yYCXDHjJgJcMeMmAlwx4yYCXDHjJgJdE5Z/fH8VoVP5t7MBb7T6dTqPyb6MCb7X7exONyr+NnhhesrABCdiBDBSgAqHWodahNreyuj9O0TH3slpMhXthLiyFtbAVHoUdLEVXiq4UXSm6UnSl6ErRlaIrRVeKrhZdLbpadLXoatHVoqtFV4uuFl0tulZ0reja1OXgXpgLS2EtbIVHYQePq3ArXHRH0Z1vKDFS57tIXOV8F5noG2dx48IGJGAHMlCACjTgAEKtQa1BrUGtQa1BrUGtQa1BrUGtQY2gRlAjqBHUCGoENYIaQY2gRlDrUOtQ61DrUOtQ61DrUOtQ61DrUGOoMdQYagw1hhpDjaHGUGOoMdQEagI1gZpATaAmUBOoCdQEagI1hZpCTaGmUFOoKdQUago1hZpCzaBmUDOoGdQMagY1g5pBzaBmUBtQG1AbUBtQG1AbUBtQG1AbUBtQc6g51BxqPm1DgrmwFNbCVngU9s0WlZrJ065GMBXuhaeuBkthBedCrV25UGtXLtTarMdcyEABRrT7gzaL/fCSR+G4i/tTQ4st8ZJb4biL+wtCi3LPZC4shbWwFR6FHdyvwq1w0e1Fd+6EeX9YaNfcCvM+qNKuuRfmYis8Cjt4PkQsboWpcC/MhYvufIho0bPzIWLxKOzg+RCxuBWmwr0wF5bCRXc+RFD013yIWOzg+RCxuBWmwr0wF5bCoUsx2udDxOIBnj/+FCN5/vgvtsJ7IcCuXFKxK5dU7MolFbtyScWuXFKxK5dU7MolFbtyScWuXFKxa0BtQM2h5lBzqDnUHGoONYeaQ82hlksq1nJJxVouqVjLJRVruaRiLZdUrOWSirVcUrFZgnovMNgsQV3oie0CNiABZydFtGkK9wck1qYpUPydaQqLW2Eq3AtzYSmsha3wKFx0e9HtRbcX3V50+54PtFlnulCBBhxAT5zzExMbkIAdCDWG2jSC+1MXa9MIFo/CDp5GsLgVpsK98J6FtFlvulCBUzQuZrrAYgdPF1jcClPhXpgLR4feH+VYmy6w2AqPwg6erxKLW2Eq3AvHzcZ9z4mLiQo04AB6Yk5cWFSSvgJLsBUehR3sV+FWeF6sBvfCXFgKa2ErHG+10aZhD4GzqnRhAxKwA6eiBUthLRyv0T1wAD2xzdscwa0wFe6FubAU1sJWOJqX44KnqUyeprK4FabCvTAXlsJaOHQ57muaBEcjTJNYzIVnnLjOtYv2ZCs8Cjt47aQ9uRWmwr0wFy660zAkrn8axuJR2MHTMBa3wlS4F+bCoSvRPvPJYbEVHoWnbrTV9IzFrfDUjXuZnrGYC0thLWyFR2EHT89Y3AoX3ekZGvc4px8WS2EtbIVHYQfP6YfFrfCMz8Hz78c1TLtY3ArHdd6Fl0bTLhZzYSmsha3wKOzJfb53LG6FqXDo3u8+1qdpLJbCWtgKj8IOnr6xuBUO3XvTL+vTNxZzYSk8dUewFR6Fp27cy/SNxa0wFe6FubAU1sJWeBQuuvNhZMQ9zoeRxVS4F+bCUlgLW+EBnn4yon2mnyzuhbmwFNbCM74Ej8JxX/cuTdannyyeuhZMhadu9MX0k8VTN9pn+sni0L23obA+/WRx6MaPV59+sjh0Pe59+sni0I3fqT79ZHHoetzj9JPFUzfucfrJ4qkb9zj9ZPHUjXucfrJ46sY9Tj9ZPHXjHqefLL512xX3GH6y2YPjHsNPNu/ZcZs1pws7kIECVOBUjFYao7CDfSpGC4QjbabCvTAXlsJa2AqPwp4cBajJrfCMr8EzjgXPOCPYwe0q3ApTYVx/lJcmS2EtbIVH4XL9VK6fyvUTFS66VHTJcI/9wj32cv29XH/vhbmwFC7X38v193L9vVw/l+vncv1crp/L9XO5fi7txkWXi65cuEfpuEcp1y/l+kULW+HS71KuX8v1a7l+Ldev5fq1XL+W69dy/VquX0u7adG1omsd92iKe7Ry/Vau38q4HWXcjtLvo/T7mPE9mAvnQo3x0MJWeIBnXsc8Hs/8jfk6nvnb4vpn/i62wnH9MX/FM3+DZebv4laYCvfCXFgKa2ErPAoX3VZ0Z77fu4WZzHxf3AtzYSmsha3wKOzgme+Liy4VXZrxR/CM48EOnvm+uBWmwr0wF5bCWtgKh+69D7zJzPfJM98Xt8JUuBfmwlJYC1vhostT9/4VlukDi1thKtwLc2EprIWt8ChcdKc/xPyhTH9YTIV7YS4shbWwFR6FQzemXmT6w+LQjRmRKAZ9cbQPFkJNsBBqgoVQEyyEmmAh1AQLoSZYCDXBQqgJFkJNsBBqMoruKLrhJ61P1sJWeBR28Hx+WNwKU+FemAtP3cid6T+LrfAo7Mk6/Wfx/PsePAo7ePrG4laYCsd13vt9mU7fmDzzPWYPdOb74l54/v24nukDi7VwXKfMmKOwg6c/xJu4Tn9YTIV7YS4shbWwFR6FHcxFl4suF93pDxxtNf1hsRTWwlZ4FHbw9IfFrTAVLrpSdKc/3HurmE5/WGyFR2EHT39Y3ApT4V6YCxddLbpadLXoatG1omtF14quFV0rulZ0reha0bWia0V3FN1RdEfRHUV3FN3pDzHbo9MfFlvhUdjB0x8Wt8JUuBfmwlNXg6du9Pv0h8WjsCfb9IfFrTAV7oW5sBTWwqF77x9jNn1msYOnzyxuhalwL8yFBZzF4mZZLG6WxeJmWSxuNr0nZptses9iLWyFR2EHT+9Z3ApT4V646Pai24tuL7q96Paiy0WXiy4XXS66XHSn99zb8Jgx1huNrfAoPHWDp/csboWpcC/MhaWwFrbCo3DRnd4TM382vWcxFe6FubAU1sJWeBQO3Zh1s+k9i1vh0I1aAJves5gLS2EtbIVHYQdP71ncChfd6T335+Rm03sWS2EtbIVHYQdP71ncCk9dC5bCWnjGj7yfHrM44se60Zges7gVjvix1DemxyzmwlJYC1vhUdjB02MWt8JFtxXdVnRb0W1FtxXdVnRb0aWiS0WXii4VXSq6VHSnL8Us5pi+tHgUdvD0pcWtcFggB86QPdgKj8IzZPz9aTmLW2Eq3AtzYSmsha3wKFx0p7XEBOus/2wxqTrrPzdLYS1shUdhB09ridf7Wf+5mQr3wlxYCmthAxumdWadZ4vJ31nnubkX5sLzvkawFrbCo7CDp4UsboXndEnEH70wF5bCWtgKj8IO9qswpnuGl/uaFrJYC1vhcl+O+/LrKtwKU+FemAvjvvzSwlZ4FMZ9ebsKt8JUuBfWvHdvuC9fVjHZwcsqJpf7onJfVO6Lyn2RFNbCVrjcF5X7KtOp3st99XJfvdxX58KlPXtpzzVtGvfO5b64FabCvXC5Ly73xeW+uNwXj8JlnEgZJ1LuS8p9lWlWl3JfUu5Lyn1JGSdS2lNKe+aXKeb5ZYp5fpliPk0jVm58msZiKzwKO3iayeJWmAr3wly46FrRtaJrRdeK7ii6o+iOojuK7ii600xiRcqnmSy2wqPwLFWKjpurv4tbYSrcC3NhKayFbfOYFaXtXs0as6J0cy/MhaWwFp73osGjsIOngSxuhalwL8yFpbAWLrrTWO6VtjFrTxdPY1k8dT2YCt+6dM99j1l7ulmCe7AWtmAOHoUdHMayuRWmwr0wF5bCWrjo9qLbiy4XXS66XHS56HLR5aLLRZeLLhddLrpSdKXoStGVoitFV4quFF0pulJ0pehq0dWiq0VXi64WXS26WnS16GrR1aJrRdeKrhVdm7qRI8aFpbAWnroxVm0UdvC4CrfCVLgX5sJSWAsX3VF0R9H1outF14uuF10vul50fca//SdKVV/swVQ44tzrTyOqVZOlsBa2wqOwg9uM2YLR17ED6mr/Waq62cF0FY5rvuvFxyxV3dwLc2GMsUZFt3hIKx7Sioe04iGteEhbHhLX03thLiyFFdczPWTxKFx0i4e04iGteEgrHtKKh7TiIY0xthuXdubSzlzaeXrIvB4p7SylnYuHtOIhrXhIKx7Sioe04iGteEjT0r/LQyaXdtbSzlr6d3rI4tLOxUNa8ZBWPKQVD2nFQ1rxkGblfq3cb/GQVjykWWlnK+1spZ2nh9ynMY02PWTxbOeIPz1kMReWwvN+LdgKj8IOnh6yuBWmwr3w1A2vmB6y2JDL009a+IZ7cpS8JrfCGEt09cJcWAprYSs8CqNPZ+Xr5laYCvfCXFgKa2GMpVnhSvehT2NWuG6mwhH//qZizApXorjO6UWLtbAVHoUdPL1ocStM4Dk+e7TzHJ+LtXBocVzbHJ+LHTzH5+JWmAr3wlxYCmvhojuK7ii6c7xx3MscY3fV75iVkfO/z8pIug/5GLMyku61ujErIzf3wlxYCmthKzyvTYMdPMfV4qlrwVN3BE9dDw7de41wzMrIeS+zMnIz7rGvsRTx11ia3AtzYSmsha3wKOzgNZYmT924lzWW4l7m79piLiyFp27c7/xdWzwKO3j+ri1uhalwLxwxe7Th/G261+bHrGKkHuNh/h71aMP5e7RYCmthB8/flx5jaf6+LJ5xYjzM35EebTV/F3q01fxdWMyFp260z8q7yVZ4IP7Mu/nfZ94tboWpcEc7zLxbLIW1cLnf6f/zHqf/L0Y78MyRuwJ78MyRey1tzNq+zaOwg2eOLI7495EPY9bw0V1pPWYN32YtbIVH4Yh/r7GNWcO3uRWmwr0wF5bCU7cHW+FR2MEzXxa3wlS4F55a0Z4zRxZb4VHYwTNHFrfCVLgX5sJFl4vuzKN7LWvwfPZb7OCZX4tbYSrc0S9S+lRKn0rp05lf92kLY9bw0b3L8pg1fJut8Cg8ry3G0nxOW9wKU+FemAtLYS08dWOcz3xc7OCZj4tbYSrcCwvud+agxfifOTh55uC8x5mDi6lwLxz3YtGe8xlssRaOe7EY2/N5bLFnnFn/t7kVpsK9MBeWwlrYCo/CRbcVrZn7d23KmPV8m63wKDy95b6XWc+3uRWmwnH9dy3CkJn7i6WwFrbCo7CDZ+4vboWpcNHtRbcX3V50e9HtRXfm+32e0Jj1fHSfMDNmDR/ddRVj1vBtHoUdPHN5cStMhec1R7/MXF4shbWw4Xrme9xiB8/3uMWtMBXuhcs9Tn+YfOfsiHSJsroRozyq6oZFQ90Ju9ET73Td2IAE7EAGClCBUBuhFr0yPNEvYAMSsAMZKEAFGhBqnmpRPrcx1CiQgB3IQAEq0IAD6IntAkKtQa1F3LuzYpfEca/Tj6i720jADmSgABVowAH0xB4SFkjADmSgABVowAH0RL6AITECI5gHKtCAd7C7nmBEvdzCOxU3NiABO5CBAlSgASExM2qOjZlRi6WwFrbCo7CD5y/u4laYChddK7pWdK3oWtG1ojt/cedgmr+4i1thKtwLc2EprIWt8ChcdL3oetH1outF14vu+lWO4bl+lSdP3Rgc61d5sifPqrfNrTAV7oW5cMSPMTCr2Oiu1hizim1zxLlLGcasYtvMhaWwFrbCo7CD56/yXR4xbP4qL6bCU1eDubAU1sJWeBR28PxVvlc0x6x82xy6Hm0yf5UXc2EprIWt8Cjs4PkU7tG282n7/qZtzEq2zTNO3Pv8hV7s4PkLvbgVpsK9MBeeutEO8xd6sRWeutEm8xd68vyFXtwKU+FemAtL4ak7gg08vSJW9WaV2uZemAvfMfsVbRtesdkKj8IeHO0fXrG5FabCvTAXlsJaeMaPfvSrcCtMhWf8HsyFpbAWnvcVueOjsCfPKrXNrTAV7oW58CumxyTz3J5wYuwXsvCuTb1LI8bcnnBhB96lArFUNLcnXKjAiHv39txyMJaM5paDC+8IsegztxyMeeK55eBCu5ECB9ATY/uxmBKfWw4uJGAHMlCACjTgAHoiQ42hxlBjqDHUYqOxmIeP4rGNnhgbjS1sQAJ2YMSNHooNQBYqMNSih2KjsYWeGBuNxbR91JF5zNRHGdnGUIseinKQhQK81WICOyrINt5qMZUd+wd6zDRHWdnGW42iSWKjsYUdeD+1RLpHtdhGT4zn9oUNSMAOZKAAFQi1AbUBNYeaQ82h5lBzqDnUHGqxx0dY09xnMFxk7jO4kIGRThSoQAMOoCfO5J3YgBG3BwpQgQaMuBzoiVGwvrABCdiBDBSgJvZs1Kji2kh5DZGxCxGsI1gvwQyIS++4dMalMy6dcemMS2eoMdQYagw1hhpDTaAmUBOoCdQiY2kiujAS8i5nH7M+a44HxShRjJJIyIUKNOAAQsIwSgyjJBJyYQcyEGPSMCbni3SM6vkiHWp4kXa8SDtepB0v0o4XaceLtI8BzNd29wvYgFDDi7TjRdrxIu14kXa8SDtepD1fpP3KF2m/rgYkYAcyUID7RdqvfJH2K1+k/coXab/yRdqvfJH2K1+kPUquNjJQgFBrUJsv3RK4X6T9yhdpv/JF2q98kfYrX6Q96qM2NiABO5CB+0Xar3yR9itfpP3KF2m/8kXaoxJqIwE7kIECtPX+7VHfFG/aHuVNGwm4X6T9yhdpv/JF2q98kfYrX6Q96po2eqJewAYkICQUN68RIS7HLmADEjB+ZiKCMVCACjTgAHri/Amd2IAEhNqA2oDagNqA2oDa/AltN86f0InRqBOjUWN4Ruot9I2xSd7GBowm6YHRWRyoQAMOoCdGkt3vmh7b4W0kYAcyUIAKDDUNHEBPjNRb2IAE7EAGhoQFGnAAPTFyc2EDErADGShAqHWoRZreNcke5UYLI00XNiABO5Cz1RmdxegsRmfNUR19PMdv9PEcvxM9cY7fiTF+oy/m+J3YgQwUoAINOIChFlc2x+/EBiRgBzJQgJb3FmP9fuv2qHPZSPuGosplIwMFGJdugQYcwLj0uwOivGVjywgNag1qDWoNajHWFxpwALNbothlI9RoSvzfv/7lJfsff4nhcS/Sx+AIkA26wTaMDb4gjD2gbaANO7LsyLIjy44sO7LsyLIj646sO7LuyLoj646sO7LuyLoj646sO7LtyLYjh7HHbgF9A2+QDbrBNowNviASIaBt2JHHjjx25LEjjx157MhjRx47su/IviP7juw7su/IMdTvgoDw9wDbMDb4gmnsk1oSJfUkTpIkTbKkkZQaLTVaarTUaKnRUqOlRkuNlhotNVpqUGpQalBqUGpQalBqUGpQaoS736UX09yDwtsntSRK6kmhITdJkiaFxrhpJN0a9wYI09EntSRK6kmcJEmaZEkjKTUkNSQ1JDUkNWZ+3tcc6XgXcUWN5yJK6kmcJEmaZEkjyTdZalhqWGpYalhqWGpEet6FaPPnatJI8k2RopNaEiX1JE6SpNQYqTFSY6SGp4anhqeGp4anhqeGp4anhqdGZO1dchYVmotaEiX1JNsUOXiX3s3fnrtgbv70TOpJnCRJmmRJI8k3RQ5OSg1KDUoNSg1KDUoNSg1KDUqNnho9NXpq9NToqdFTo6dGT42eGj01ODU4NTg1ODU4NTg1ODU4NTg1ODUkNSQ1JDUkNSQ1JDUkNSQ1JDUkNTQ1NDU0NTQ1NDU0NTQ1NDU0NTQ1LDUsNSw1LDUsNSw1LDUsNSw1LDVGaozUGKkxUmOkxkiNkRoza+2mkeSbZtYGtSRKCo1xEydJkiZZ0kjyRX1mbVBLoqSexEmSpEmWNJJSo6VGS422faPTldSSKKknxRX4TZY0knxTZONd8BO1qIso6Y53l/dEFeoiSdIkSxpJvimycVJLoqTU4NTg1ODU4NTg1ODUkNSIbLxLevrMRr6pJ3GSJGmSJY0k36RXUktKDU0NTQ1NDU0NTQ1NDU0NSw1LDUsNSw1LDUsNSw1LDUsNS42RGiM1RmqM1BipMVJjpMZIjZEaIzU8NTw1PDU8NTw1PCPPZ9tXxvN8tg1qSTFy+KaeFCMn/ldJ0qT9vMbXSPJNkW93WVZUzS6ipP0sxY2TJEmTLGk/r0WV7LgLuKIWdtxlvVEJO+4i3aiDXWRJI8k3zQwNakmU1JM46da4i3+j/nWRJY2kW+MuFo2610Ut6da4S3aj4nURJ6UGpwanBqcGp4akhqSGpIakhqRGZOj8e5pkSSMpNTQ1NDU0NTQ1NDUiQ+9C3aiLXWRJeR+RoUGRoZNaEiWFxj1yIkMnhcY9DiJDJ1lSaNxjIzI0KDJ0UkuipJ7ESZKkSZaUGiM1PDU8NTw1PDU8NTw1PDU8NTw1fGtE3euilkRJPYmTJEmTLGkkpUZLjZYaLTVaakT+3uXHUQm7aKwMjWrXGC9R67qoJVFST+IkSdI1rqK6ddFI8k0zp++rmjkdREk9iZMkSZMsaWwaWfMlw4ADmIVm4hewAQnYgQwUINQcag41TzW9LmADZo2XXh3IQAEq0IADmEVlcwfDhQ0ItQa1BrUGtQa1BrVZi3Uvx+gsxQqkrCSb2x8uJGAHMlCACszStbmPYVSZze0Ko7Bs7la4MMvE5l6FC7NIbO5UuLABCdiBDJxq9x3P6qqJBszasLlB4cRZWTWxAQnYgQycanajArMkTGUAsyBMVz1VYAMSsAMZOOPezTcrLe+p5FVoOTHrwFaZ5UQGClCBBhzALDxb9ZX3FPUqr5xIwCz+WrWVEwWoQAMOYJabrarKiW0Xia2ayokzmMfBcsAB9I22yqJi9rUBCdiBWeo19wZcqEADDmBWl82CyoUNyLv0a1ZNLlSgAccu+5oVkxPpAjZglnbNasmFDBSgAg04gKuW7DU/3+/5+VvH7veSW2VC38AbZIMGvP4t3/92xF/oc6p5gm6wDWODL7j7fULbQBv6hh3Zd2TfkX1H9h3Zd+SYal4Usfe0st2P2TGtvEiTLCnC6ZoutvtHN6aLF0mSbpoNNdaU7yJJ0qTQ8DXlu8g39Svpvub7IS2mbe3+wY4pWrt/kmM61u4vyGI6dpEm3Rr3I2FMxy7yTbftLWpJEU/WJKzdD4LxCf4i36RXUkuifVW3gy3iJEnSJEsaSb7JrqSIZ2sSdpEkaVLEG2ty1e6HpZhcXcRJkqRJljSS7mu5i1picnVRS7rj2Z5ItbvwJCZS7X5EiInU2S6e7ee7/WIidVFLimvWVx7JnUcWQjLXiSb0DbxBNuiGWza2QBwbfMG4NkRkm+tEE+JfjZWYUSvuC+ad+0rMgPtfRR1D38Ab7usZOzHHTsyxE3PsxByZmCMTcxIlRfRM1rHXduz+JY91HBuReqEQKRXxIpFaEiX1JE6SJE2ypPuS7x/fmZhBkZiTWhIl3ZHv3+hYgVkUUWinrUdiUlJP4iRJ0iRLGklxVZnK94/mTOVJlNSTOEmSNMmSQmPslA+KlL9/VudazP2jOddiJt1P//cP3lyLmXQ//V875cf9szXXYu7fnLkWc8lK+UnxlnoXFc+1mCuSOjTGsoFxFwzPtZhJt8ZdOTzXYlquxbRci2lhIb4p3lIntSRK6km3xl23O9diJmlSaPCyi3FX3M61mKbLLha1pNC47yjeUu8K27kWc5fSzrUYupaFLLKkW4NyLeauop1rMZRrMXcF4VyLmXRr3PWDs4CAwmBC455XjrfUSZY0knxTvKVOakkReew1m0mSpEkR2feazSTfFO+rk1oSJfUkTgoNf9mjRglB/Ka2WTAwwTaMDfF72v7v69/87V//8R/+/Z//9V/+27//2z/90/3v93/433/5L//1P/7yv/7h3/7pX/79L//lX/7P3/7217/8f//wt/8Tf+l//69/+Jf489//4d9e/+urK/7pX/7H689XwP/3n//2Tzf937/iX18f/9PXEoysf/1ag7EM8HrWeBriNUPbVojXJCwhRPv1KugQou+L6C4I8PrReRhA226D16tdBnitEvwSgD8O8LK0HeHlVePDEHJqh3s0r3aw/mGIU1PGFOsMMYZ/2JR26ND4gHh26GvFASE6/xJifLc3jrfhiHCND2+jHWKI9t0hL0QM8V9DtFOf3j8Lq0+FPgxxGFfxXBIRRmfch/DjCDF5PSNo+zjC09uwj2/j1Jh27RR9oX8YQk9GcT/9LKPg9mEI+3ZTHEYmxblr8yJe70UZg+nXEH64iPs5fF6E24cXQYfGfAnrHt434zJeK4HPb6Xdm6ysW5H20a3QYWjFpNXMsuvDAOccc81h0fpHfUr8fdM7xeDYXypivNZxDj8gevRvyiQprfF6QPg1xmF8ytg98ponLRGuLwwNON99tl/7cGjQYYg6jz1GXcqV9N/6pZ9+1+3KTHnNyWSMr/SK7YR/rU/Zh73SDyO0xYLibA5vWmLIrzH6IcZrzh/+91qoKlF+fUbp/P3x0eW74+N8L3ppXsZr9vXjezn9xMfZCcs6ylPCy1J+jTG+PT78J2zwHOVpxnD7fsYwfbdFzr3rjIdIr89Ov/Uunxy12Q7ywtq7v8WQ0y8D72H2mv0vrmy/tcfBUSXOYp0/Dq1kzB8xTtfh2vMn6jpcx2GkquZ1vJYV7MMYx55Rwlh9LejYhz0jB09VyhHyWkvSj2McRiq3azsiN6K3YkicM7d6hvi9e+l9x3i9vh3ag0+PD+z5iK5vxoiZyvUIYvRejIGn29e8zseeehwhdo0cIa/H/o+vZPxdfyFeqzE5Uu8D4D+8Dj09h7So2ZpRXnNC1wdupu3v6ocWn5Wte3H5uGe0/13b9OWG+Rhybyv28XWcvKzbyBdrr1fy66uD6nfb9HgVnDMdxHx9eBXHpzLLKYLXTN/48KlMD7/bJN3zdfCXvP01hh1GKY98d+DxSwx9HEM4r0PY+8cx6PvPhvbtUXpu0ZFjQ6m91yvaEePUK4cxynHW+vqF+uUJlb9wHQO/+yQfX8fBS1v3NGT+ZZT+eh3mp5ms/KXsfdjHMU7XwcWQ28cxxslLe2NMnuhbbfpaBsfr/ngva/uVU0mvK7IPY4zTm5RTDpAXu3/kYqfraDKyXw5jfZy89DJMoPzyO/nrBMg4vEndZ0quGPeReW/FuPeKy2ktaR/H8O87kF9/Twd6PRJa9orZeyOs55tYZ/IPY3j/7vzz8So4X8S61knw36/i8EvbyitD77Vf+/MYzjlGr3F9HOMwvnzkc4d7ebrtv/3C+cHD4rDOGaI82d539TjbJJ+xXz8yH4/ydl3H5sifp6tY6R8z2Qcr7TkDzNfH87ftOi0WSfaK6nV9PH17nR4qr9g0aE9cUP9w0sHPj3P5UCn+8QBp12leimnfj0iZ3f99ySfOEft239j3+2b8RN/4T/TNeXZcFK+3H654nB5wsYbFpvLxOthpAen1AJW/+681g48z7xgkjsyZQajTIQh/fz2tybcX1E4hnq6oPb2Tw5La4ybl/ma/NOYMcnh4aMdVh4dr143a9xdyzrcjms+Xerydfhoi+fJwn8f7sZ0dg0S5yQzyeuU/BJEfWEDW768g67cHPP3Awil9e+W0nValXsM9B9mrRTHIlN7slUPynodHTkzfB6q+N8ZGc/Rtfdv+PchxYUo4X3OtTJH//rh7zjvPGZ3X5PbhN6Lr90f7aWnq4Wjv368SeHwn79q75+o6X5d+3KT8AxUo/P0SFP5+DQq3v3eTCp4Pr/HeLyZfLaenLj71y2ml/2FxEY8f6Fv/ft/69/t2fL9vzy363YdluXJp/LWEeygaOy0FaRxvtJa1+sGS5fADE/vU7peH62NHPreHoT3Gm236sGrrtCJFnK36etfkj2P490f6aUXq4Ug/hXg40h/fyWGkH1sU89KvFtX3Yki+070WUvrHLXp66/eclxZXfzNG5ycxziPsWWGgju+PjvHt0XFaS3pYktfsNNP/qCbveBUPH9VPq1EPH9Xt5KQtl5K0lW7941H9eRB9MwjnyrxyWTT9M4h9u1+O94I6lDbevRfKIaavzH83SKaLkr/bNT2LN7RO9v8RZJxWTl+/XznR9uL+8XzdMcwXKmqPYSx//V+s7e0wjtnDUR5UvxjmaWVbOy0vPS1ta+Pb1X7n6zByrCHQ4ToeB/F3g2T3vFDeC/JapyhD7hqnMMdOdkOhzVUesL46VsqE9SgPrl8N01oJc0jH57/oH78d+XFlFXN4H/+GnZ+gHxWnN/cfeFk8BokP8WeQTh+/ttJ1rKbKRU0y/rjU/qJvP4fT1b/7pHUM8exJi04rVg+fcei0YPX0Qw77/nTk816xQ68cR4fCnwe/FeMuFs6bcXs3xvXtGB2PWr28Pn8thqI+ZHwc47TG8/D96JMYj96PzvfCGGSs4/sx3hxjPXYvWTHGx317+niqlec0o1PWnS4kvoGdF/L6mfjwQk6rVU879xzjBzrXGu7lkLinD21ez5u5AnAXqLzZqJ4LieMwyk7rTM+W7+n0CVXzLOx6+cfHrybH6+Ccf+MyPP54ez3/ZudCJPe6vvOlH35mXEjr7wbJEcJ8enro7fsrvHQqg368wnu8He+7g6VddLgd+Ynb0b/z7UjLIPJaQjnczvjus+7xMjiHq7y86OPL4FO1Scv0LYV39NuH/MTfrvk/X0W+gtfk/fMq+ulGcoaVqZQi6fMQ8faDNyG53gvigtcpLw+7XwuCjyBaXUn8SqPmLAv7qWvH3zXEPTGCd+bRPr6V8RM9M36iZ8b3e+acuVoeIn7ZseEL6a8t70abjXeD5PPd65re/MlTzmcR/aWU8EtBes6JqNjHVUAk4wd+I07rPT/yG6GSReKvlc3D7Zy+pnotS12ZO+LlMe8LV2K95S9N59OV9O/PROj3KwFJv10JeAzxcCZC7fszEcelp2czEecPIh7OROj3qxo/GR3PZiJOMZ7ORHwS4/p2jIcvmvZ0hVTea9OnMyLnGM9mRE5fMj19aT7HePbSfLwXvnJ8MH24Ykyj/b2v49nMzOMYb+bc05mZIT8wM2PyAwNE/s4d83BW5fhJ1dNZlfOFPJtV8W9/sBJ7JX97VsXbd2dVPnuIwQLra7DwR4/dx2+iygi5g4x3gjx8RfzsZp5dx3FziqzetUsP8wdyKhGnnD7A80f/0ouMl0XIS956G3r9Q0cQ+uhtqF/0/VeqY5Afef1/2iL9J1pEf6JF9Lstcl40R+2t+2hvrrx7Toi+ghxqALz/yMr7KYxiaykd1j58nTqFwCuZOtl7IfL7HXX5MMS5ECerPLVfb9cV5Q/VK8ihmuf4UYRntZbVm/nahzeeD+7m/nGQftoc73WvOb1j/OFDRG/fr1rt9O2q1WOIZ++o/bjP37N31E7frgjsx63+Hr6jPu+Vj5+Xz6MDn2a8pkv6xz1r335M/eQ6Hn0y208fVT17Ouynj6rUFBtkjY9rfo7X8ezpsH+yOeeFYTrealJq+B66ffzk309fVD1tUvn+A/fxOh4uY56/MMs9LkYbH2/me/6M+dmXCMe9Xx99RND5+r4dn5anHtrxKcRDO358J/Zegz78huC4IcOjTwj6cYu/Z+/7n8R49gnBtz8aPH4B/bgO+bx769P64U+iPCwfPu4B+7Dc9nkMfzPGs2Lb8x6fT5/4z+36tNT2eC3PR8p519KHhbbnKD9yR89Hrf/EqD3uw/pw1D6P4W/GeDZqj1+8Ph+155HytLL78ebrHz9a6XerVI4bQl+5cPh6Hqirj79txXj6uqmTYx2jfTSBeA6B2q5fNnX7PcQPTDGdHjIVn4f/slvo743xA4dOdPuBYyfo2xNMp/cpzY32tBYf/b53+ilCPplpqdSnr+wBL1faqZTqpT/2gD9uHUB4uCsbB/2xT/hpcerpFnnnzVOfbdL5ydbpdJW7+Xir4H7a8e9hzh5DPMvZ8e0xenohI8OOgWYfzfef3gufjfJjhEej/LxhyLNRft4N/+EoP69KPRzlx9Nq8ttOenG5kP48hmSbksghxjFT4nS81SLj+njb5e767Uw5hniWKadFqYeZ8rw5fql9/spO9ow6kLJYSG/HGN+PUYtSv7KjvmH3Zxsf70LP1/FIjZxBZSo382eQ0+895WRMrynzxSA9V9ip67tB8ORB3X4gSKnA/tIRAVeuOejl7c3OKbvTuF/v9nCuw3Bvh3Z9ePDC5fpWi0j33DqkHnfwR4ynB1GMQ9q073/px+1oiRfqp0gPF3KaZJI8aMCkfhEyfotxPBhtwJvrMsrv13HaGtvLTgT1A4rfYpynuy7GJMZVd5YcX2nW3LLnl+1+/2zWYxAvtW0fD5Lz2QsNcw9Khx9fPr2SPXrB/eQ6MsR9HeNwHXqcfMgX/lZKqO3XZ6vjKSExlKeNcPv4Oo6nhPScvpBfd3P+ygkfsCId+l4MrJLd880fP1gde4Zz34wX89tRcJKU8ukUmPHdd4BjhEfvAJ+c71GqSvz6qPyBTx9Qect5d28fPmmeQ+BEHCcab73m9txG9cXm7/WslTUZk+aH59VvT06dQzx6fGf+9uTUF5qD3m9UbE0p/c2kM7yevVivQ9fo97tGv981f983q1+bw663u8ZKlPZhlFN16zMnO0Z4NptxPJun5ZvIiw+ezPLtqZ1jiJcb4jfG9MMP0z4JYuW0EPvww7TPgpRzk2y85auD8BjyWqA6nCN1qoP4mZOTKJ8RqRan/XFy0tMYjd6LIYyzrrW9FeN1/bnT7vXLS9FvJ8pc35+xP5571CR3MKVR8/8LMXrujiO9fjPwWww+fUD10JiPIZ4Zs/p3jfncGPm2K1y/F/i9MU67/+mVxRB6/XJ20u9BDr//gq8n2/Xhm935MlAN2n7Zu/gr99Jyj9zXe1F7N0hONN/7570dJD9KbW+e8fX4nLBv/17at38vj2eVPZz9P5939mz2n8cPzP7bcXuurJ7m63DUGH9/dYq/vzrF31+dOn4Cit1+X2vX753/1rEL8yvGx+ce8SeHUT1alWb/gd+4Y3F9HnWo5fnlz8ugn7iXH9g45fjVU0tLbvTLRiP9tws5PXxg6rBYmH3hPCrFBg5D3zuP6mniH8+0sjyszEc9F7h9IQZOj/RRN6j9Woz8oGXUkvYvnK31movFfha1+uq307WO1+EXzviiN+/FFV/4GL8Vo71mpFFLdpXzRX+PIqc1nR8K80sxeP/43LJzEKx0EZWXuq8F6Zqvl/Xr6z/6+PwGkysh3D4+T07a92uPP4nx7LDBc5CHzyGfXMmzBxFpP3Ae5fn0s2cfHEn7/vkp8v1S6GOIZxXuz+/kUOF+Pk/u0Uc68gM79J0PlMP3l/rLh4/0hSCGfWStfunzpSBPv9M5Bxm5mqLjtN/2J+fj1a2p6xqzfCVMY5xd9HIVeztMno57hzx8EHpu3vwgQo3p3T7CXj/jOuxDftpW9uGHP9fxcNtH31KdYzz7lkq+/y2V/MS3VPID31KduzZn7l69TG9mTrt6Kdnn/u6QxwHIL7a3E7ChvrP98k3m72eQHh8c4fbXVTb9+uNhjem7r+HnEI9ew4X57xri2Zv8uUEHPpMvc+a/t+fg7777Cv/ADmrCP7CD2vGUbclfm9eKyMe7Wx5P2W55LuzoxO/FkHzLGkIf7+cq0r87zs+Xkc/fQw6H9YnIt9PtGOJZroh9N1fG8VDJZ6enn+aans3LHiM8mpc9Tpo9fB86T7w9fB06Lck+fx26vv86pN8/PFX024enHkM8fB16fCen16Hr+69DxyWqp69D9BOvQ/QTr0P0E69D9BOvQ/1nXof6z7wO9Z95HaKfeB2in3gd+vbGY8fsefw6dH3/dWj0b78ODf6B16HRv9+k9BOvQ/1nXof6z7wO9R95HTo9C0g+TfzyrchXniZyzVv541Ve/fbT/3GbradP/87ff/o/LfJ2yl2lej3y7vdF3mMMy4Xi7r/Uhz+PwVd62St9Pl5sFv/+UbmfxHg4/34M8nT+/Xwlzx449fqBQoDjB7Ncquaafdg3pxik2Ne6HiH4pRiSyU9q/GEMPc58P8w8PR5N9fS9+9gi+cxJdunhbo4vNs82Lj/uHMCKzxns46OdtX3/BDVt3z9BTdu3T1A7hnj2TqI/8F2Vtm+foKbtB05Qe94rduiV75+gdozxcN/yz2Jc347xbN9yPe0c9nDf8vN1PNu3/JMYj/YtV/r+NlWfxHj07ny+l2f7lutpP5ifuY5H+5Y/j/Fmzj3ct1zP32Q927f8k8H+cID0v3PHPNu3XPuxBOfZvuWfXMijfcu1f3tnSj3ulPfwXfd4Hc/edT97hnm0b7ket4N+uF+4fv9oq09v5tl16KOHqX4RffxC1b/7onwuh37yonz+pCNPx35hnfz/wmchik9L1Pt7MUZ+WUr1BfVrn5aQoU8+vhc+nQHz9PuUY5Bne2ufQzzaW/uTEE/21j72imWmvF4Zrvd69pcY/GYMQox+GGH67Y9TzyEerfip0t81xEMPPLan/qdf+32tT8rLsb/pHPU63o0x8tnlhe/GwEbUxxjfdnP9tpt/8j15/tg70ZufpGe97ws/mow6fp7/qCXOH/g/aYnjpgnW8nMl++VzgS9svDBydu+1mNDejIF9ZIa/uQHEEFzHuxtRjHxdeYV7dyOKhrcEers9HDEO/XJaD5N85WGx/gMx3tsghDV3XmAVfjPGyLcEO42xUwzLDx55yOFT9mONkeaPilndeOm3misdp8/7JUf7q3H4w+Wjz67E8krocCV+3LQdnytqmb7pX7gOy1lGs5J2f17HaaUf54GakByCnFZNsbFW6Zl7v5DHQ2TgZdQPeybo6QOMx0PktD3f4yHyyZU8HCLj20PkeB0Ph4id1tWfDhE7Hl//7SEiOKxJ6llNvw8RO60gCw18VV9/7sZvMfhYeIGF9bpx61fuRfPXrr7E/Xkv+gP3Yn/fe8HZxi9879dOelbE/LZRwRdiEK6D5AdiaHszxsCmC9f1ZgzLJxka77Zp1kpIP+TLOUZHDD7sLnzcATY/n6RaHvD77q3Wvr0JxTnEoxdbO23t9wMhHm4wdGrPjk1Oun28G67Rd7egOF4F4+26bhvz51Xw9x2M5NsOdt5fmLD5PsmH93KOITitRT9uj+7n/WuebXR8CvJsbu8c4tHc3ichnsztHTfSfvSWft6K+8lb+nHL+kfXcN70/tGcyemoi4cHO55jPDvXsevxpMun52Ucwzwcn8cQz8bnOcST8Xk+rubpwR+fRPmBg2aejpFzjIdjRH5mjMj3x4h8f4zIt8fIef+tnOMrv25iTwPgVBgpG4G/HrgfXwHl8tkLy5d/To9DxH7YMwSXLUC/EkJzzUq0bM38pRBi3w1hOSLE6L22cMx0/pJn74aQN0Nkp9YTWL8QQvGBh1701lUo53O9srwX4lJs665vNadSznEqtbc6VbFNrtbvBr4SoucHocqlzvbdG3k3RK40KZU3gy+FyGO1fz2r+CshcqX815OKv9Kc+VP0Qv12j1wfj0477qPWGZUYr2t6b2xwfpT69th49o5z3M0F57DcleBv5drrH3I5bUjeDNIFhe3d9M0g2Ln4l90cvxSkFKXLL59zfSlIaRO2w0g71se3jpHW+mGk2XHPPsZ5si8e9iNhvL8bhnIG+8Xib7cNNptqvZ46+EeY06PpfQZCJnMf490wP+AJr5FCZej1N4eeXBh69QHxS0H0QrGZ0ptXoh1XokzvBbEBY6jVFl8KMrDb9GtNub8bBLdTV6P/GCmnKZCns1un1aifcH6s8N+ferzbIjVIu94NcpUgbw41L580ObefCDLeDYLfIBf5gTZ5N4hnmdKLzX8gyNB3g5Q6XKcfaJM3g+gFX7vfdn4gCPVv384ryJs/GEPLeW3D3rwdfJiol/EPBHnvJfgO0kqQ9xJQG37/tDX6iSD+5u3gAydtpN9vk7eDtD4QRK6fCGLvBsGJPvVUvvfb5N0gLVdTX/xu7vwSxPkHbsflzSC95I68+eOlih8v1Td/MrS8yqm+dTtj5ITxC8tTEvfnIbIyxK+ymc3vIeLR8MOpVqFSXlIK/3Q8DyIX42S/Wgn5R5BDjcpr6gZfOpYr0a9cR+53Iq1uhPWlm8FL4Ovl4hTk22fyjP79PajOt4Lvx+g69cvpuxyT8hG7yMe7pRyvRS0/7NdfPoX//VpOC3pUzhjEL/Bv3wZ/chlZcKsm9t4Q0ZFb2uuo37Lp4/eT1zJN7vJ9lYXzL+T/LyHKDMwf+X/6YOpHgrTRy2k6482OMezrU4/k+1rHdHRMeQr4I4hc3+/dY5AfyN6X+MDN8JtG9Gxbv27f9zI/DhBstjD6dfKQoxWhNvTFZu+GMcwKv2bC+d0woxzxV9drvxomFx+aOb9/U0hCq190fTUMWQkjH4eRn2mb06c3Ix8+Rz25WNsXfgOp4eecDoZ//hDpye+Ofrs86Rzi0dL+JyG+ubRPDZuV1Nes3yuazyHyo8FWi4O+EgJftlLZ2Pf3EON4chIefPv1Zogsd9fyO/GVG6mHOJT546+E0Jxu/fUr3y+EsFwVJ+vvdSrlkjbVNdivhOj5gPhqlfbeVeBr5X691ZzM+arKv5wL6I9fD3G+WGvlYegLF9Ea5prq6WJfCdFxkGb3965CqC7xvRdCMeE8/L0bybfc14LYezfSGUtX8t6NKPa+UnvvKvA52Otn/q3B2RxtUb/S+0IIyy9qjfWdAKVcTt5rh6vUD+rHg3s4/z3T1PP5xOm9hsCxRCbfbMn3ArwWQvOTC6kTp88DCALU+c7HARQTDLXQ9wsBnnzsdbyFkWV6r8W1dwKgSE/GGwEcx3X9soz8PADewOW9AFns6L/UOvbnKdmQko3fCkFZ3/eaw/dvh7DxVoier+6tPkO8G+KX4oIvhBD83tQ9Dr/SI4KDxn4p/fhCCMbxF9q/HcLevApsQd0uezMEHqiu98ZFYzxQ/VLY8F6IX+b8vxAiE7XRdb0ZoiPEewMce1E0orduRHAywQvfsn1se1BPR3gcgDh/+ojbhzuSOX3/XDOnb59rdgzxbNPM53fy8aZ3x5evnCak+qXyFyII4Uuw/uHmjt6P79OPNnf8JMajPfOeX8fHMY7jc+DbOm4fX8W3D4k4hng4tvrhc/yHG7J6Px6G8mRDVj9uuXeNepaBfDyh6McvwhjPSnIdNlI/nef0bKXy3KqoEqAmH04p+ulAp0eTkudGbWz4UePDOROf9c3Dj7k+CeNWNt1v/G6YsvXmVXfM/mIYw96Kl2l7O4yXz+Xq48uXxq3lbKWb0mHcPg7i7wZxvPe6vBfk+fdynw28h98iPrbqD/cUdTnujbNDmH1skT/xuav/xPeuLvIjfSPfXvA4h3i04PFJiG8ueDSTslRYT2j47YTk8356T34wzhN/OZvrrB9exTEElz1r+1shLDfFavUDvD/b4ngY2LNTBPx0YtTTUwSOa0i5XwlR/cr095s5fimlhhlZtfbxmfHnIKXu0FQ+DHJ8GOCy8W0/3M6pdH8oPtIsm0C5Po/xy3df/c0Ymk9HqmWq/I8Yp22kRob4Zd/a6wuXYbgMs49vZZxGas8vXnr96uueC3kehLMS5DW1dApy2vLs4TZhxyYxZK9J+Zj4jyY5nmWaO/mW8oLfz0Ucp3FqWRX+mrKtxVO/X8apMuYyZEz9ToW/0h4o83k9A7SP2+N0Wg0+dmm/VD7xbz+3pzMWcWyOlA2B/wjhPzFU/SeGqv/dhypOiXklr33YNcdlJs2Bxtb64W6Oxyzi3Dsu7v5bsbCfPogix8b3V/kOifw3e/fjFkpYHuf6RVQfvwX5gXPnP7kSxvRdnVj+7Uruc5uPw+TRdoOvKO27C0DH3umUp8X1+snb773zupDTJn1X7iwg9SuV9viZhlHX9nqZ93ee8RhPVlyz5vcQ91vC9x/yXlF+4Kyoz56uslnvp6uP3kTadTyc4OEz2jnK0yO4+Sfa5PSwKPliRfLLDrm/d/LptCfCqiFd3Q7p147n+uYaE13jGEV+wgpOB0c9W1D/JMajFe1P7ubh/qWvKH56Vnu2gWm7Tjs1PdvB9DxmW95Op+s6DLfT3n33wXX5El2rQf+8nf4TA+W4g9+jgXJ+ucijE/SwCHd8xXl4PvgxxKMDwj97Wbvwsta//5Y0+tsvOI+69hzkcep1+onU69/eX/r4boHK8vL0+tunHcf3ilGOF35xeSLQr7wVPO1f/4n+9Z/p3x+xVv6+tR5f+/AiXKvg+PfThU/LWYyHce71670/3qZP4ySfKOpx5f/JhfBPODz/yKMA/8CjAP/AowD/yKMA/8h4lb/vePUsEqibPvw5TOS0Ot/wwlZrYL42XlFHc7V2upLTgC3l+72+UP/ZrD8yYOUHBqz8wICVHxmw8iMDVq+/6w9ow+nLzfzkbKejochzgoDqwtx/EuV0yN7lOOm7Hp7D+oVreQ3UfBr/5SDGP69FfsKrT9vRPh/6at8f+scYD4f+8W4eD327fmLo27cPnvhkpKDksTc/meTpMETGEYLsvb87avEZXyc7Xov8hGHbj4xa+4FRaz8wau1HRu34kVE7vj1qz7PtZde8ek7Ab7Ptd7nIYcxyfl3idU8M/kIMyZqQWpL5xRjYiuKXT+K/EkPxNXs98+DtGPJuDMX+D++2h2Z76NvtYXkv9nZ71BjvtketGXq3PSzbw95uD+x2MN5ujxrj3fYY+UXXsLevA9+Lj3evw3NjLH+7PWqMt69joCDs4/FxXKszbHf9Qjus1R2PjWQUY9SvFn4L0tppccuwj5QRjVOU43qs/Se+3Pv1hdsxwj4jTG+2iWWJnNrobwbB6aY6DrW3ny1fPnuMOMZ49D3HZzGePYocF3SfPoq09hOTr619e/L1FeM0P/Bwn4JXlOOGqk82KvgkxqOdCj65m4ebFXwS5eFmA+cF9ysf0F4rSvTxgnujn6gfaPT9BDzHeJY857t5nDynla3nyXM6nerpc/yxpkLQxaXO/D/p4lMJQcvC2dfbrHxUU/EKcizQytHW6tL/b6fBvYL4aaUt1/vqaYFfCjGwL9V4N0SOkevjq/ikTIWw2d8vT52/XcdpaYsl65m4rjx+I4h/FORx6U49tvDPYdaP9S6oz+Y+DrdzOjPrKgdy/LJD3u9BTmO1ld39m1zjR8LUGXL9yrs4NiE5Vr6dHvlcrhxupSb596XD+X3uhy8G+ag16jf2v5ebNX72Ml43Gvjt4fMV49sPsJ9cR248IXU/1j9j6E/YPNv3n5F4/MQz0mmB6+kz0jHGw2ek49083IHokyiPn5FONSpX/899+o/EOS1x9Xz543I7v0+mtdOKUMeR7vU7C+1fuJeGw7h6P97LD5xg/ory7fOpP7mSx89q+hNzrk2/P+f6+OMT/vjjk9eFnCoBn+0i+kll1sPX0GON2PPe+RGLVfu79s6v1cl06h3/gaWTZj/yymU/8MplP/DKZT/yymU/8spl8vcdKD2btXdpHw6UYxDGqznXnWv+HG2nusSfifLsG9RPYjz6CPWzGE++Qv1k3uTh9oifzeE8fD75ZK7vyfYtn8V4snXYJ7OwhlOCxttTufkd6Ovl+LBZwPFbspYfxb+S6OMP0lo71STl3RQr4a/UAz86dPn08QflPg78yy9F/23hop1KLH+ZLuEPd095BTk9DDzbnOcV5OSsj3ZQOcd4toXKF27GTjdzalbP6Z/m3g9BTg+vz3a2+exKGB9+lImK34PQaa6/Z8bw9fGeMPcmVydfffYt2jnK01WyT67l4ZLQJ1GergmdozxdsqPjR1yXl901vB4DJV+MU7fuKd/HfTHOa2Ylv8Fqvxxc+dU4+CDzFVNOcdr3VxI/i/Ls9+ecTZx7unHZ6u8/calTkSL22aO6z96XvKF8LkD1VOE/Wva0WvXUG07fYTWcFt287j+v9IUrediun/Tws8eUz0bt1cvuSPx2Ns7ZjRWn2fvZ2LA99D0B9GGc6zjknmwu1oiOhSNPdhd7xTh/opavPr/ciz4+0alrfiHatZ6taP48hJaPO9v3Q8h7IbCxmNYvMr8QAqfsdKsv118IgeMDX3bwXltYvlh3qyecvxvivU4dOXfZa4XVl0LkXEUf/F6njvztfKG/eRU5Loa+2am5w9sL37qK13oB9u2pv5dfCPFLIUP/MESj4+ZjhF3lqU5RfOXQhKyhJ7X3biWXQKnr9V6IHOKvWYC3suSeSsDcRH8zxIUQ/O0Q1N9sTkyP0HjvKjraQvzbV/Fep3ImSV27/cpUAALQWwGe7b90CPDs6+ZTgEffNp8C5DGPWh7+vnQF352QebRhxMmksD3+fQhvWS1+vuub5uvxa/nG3woxspbnhe9dheN7o6tufP08BF05ouiX5+cvXAWKttsvj/JfCZFd2kZ760bqPuLN37uKjoPN+eK3QnA5SrUsmP8e4vXjeJro//55Ox2nsXZ7rzWwZ11jat9u0DdDXGUX3XokrD3f212w143wewc5CDZ5lPHesQFKOKm3y7dD8MfHBjQ6fh5FOT8odV+m3x7RGtm5YByv7+W97vlz3r0zZN7Mm+dBlM2ITa5vhzgcKdFo0A806fkznm83ab0Ze2+gG2Fn1/5er5RDDge1b4c4XMWrQcdP9Ir/XXtlCG5G3jsEpsw5e9dvh+BxaNLTms3jJj0tHv1Ak9ab0fcS3zHd7e2tXiF8M/56dHov3QYeWoa/mW5YARv+5lUYaozePGMImzm/8L0TbRQLIvbmiTaK5qxb5H4hxOsF68IbVt2UR34d4nF274ezr9gOvq6xPn9mIcoDZ+mXRec/L+O4o6ShPKJ8LmB/BDnYaCfCYcnlJePPIKctThgHgjEfdkbo7ekcVf3B//3purf2/cf8T6I8fdLvrX/7Sf+TZulZQE2vidW3XgObomWPw/64vHTRwPEQvxyLbV8Kg4rwe/Od/lGY40Sk5sTXi/njFDq/AuHQstcLTH8nSGfLOXsp687yW2l6P30LxVfWcr+uqRRL/D7YTpsFNhJ8v/Bqn0P3nJaWeta1cit1hvLu7ZQKkj9v57hF0IPzJc7X0T0n5LjZ6TqOLluq9Xsv83Lyx7Wcvkt+WjfZ6Sf2COr923sEvWK0k1k/rKrrp00Dn576+0mUh+flvqLw6UfsySmv5xhPD3p9RdEf+Nl4eDsm73byw48yXlFOGwk/PAW49dPa09PueRjj2CbnA3iedjH/xJPBsWEfno38iVvjsYvrktwfLnn6uKrjkOVe7e2Pn8HTt1Vj5BbaY9T3z98XKfvxSyJMm79Wx+pmX/0LUTpj9/lajPnFKJpf8nUrS3x/RpFT3fCjgw5aP+0g+PSkgzm1fHh2e3TA6heiHM5Y/STKwwNOvxDlcMbpZ3f07MjXT6OgvOjwjvzZHT07cvXTKI9OXf0kysMjkr8Qxd5ul4cHJX8hCh1b95SND48Maf1HNt/rp8+tnj9Tnha1nj5Tnr+3evpMaddPPFMeozx+pjydxPD0oeV4msPjB47jN0pPHzge3s7x+enYydiPgere6f/J7diPdM/4ge4ZP9Am4/iimsnzdrs+flYf9BPP6sd9vB626+g/MexPx2Y9HvbHRnn8nC3nL8j2U9xp3/J+WvR6um/5+UoeblzeT9vbP94MN6Zjv/8L5j+x+1X37+9+1Z1/IgmPe4g8TsLTNi9Pk9D1J5LQxw8k4bFRfiQJH27GzsfPOB9uxv5JEj7cjZ1PGxM9/kKdL/6BLORLfiAL+fSNxcMs5OPC2NMs5Gv8QBbyeWnsURYeYzzOQj4taT3NwnOjPM7C47SIEaZF5DBFw+14Lpi3DPPrh+r2e5jTau7T414+mQFzPMRddeHk+kIQblg5aaXw9P0g5dOJLwbJCopf14G+FKRnFRj3+v3ub0H4uFHgw6oUPi2OPaxK+eRKNJftpRb5vR+kbhzztSDptVJfor4WRPIR7oXv3g4+9ZH6LWcbXxknnKVtL5cah3FyquVC6fovc0S/rdJxP5cZYwm17pr2Z5RT8cAQnJw4fq0o/VocK5VyVneM+DPO6WtBLP+PZu9GMaymjus6ts1xfzwtm9XXlfuv3lPOrH/nnkbagtX9Er4Rpe4N8sXexnbgbdSNuP+Mc1qgGpKfQ476Gcl/EuX0oIwvIt0ufjcKPl9/PQi9fS2l4OqTdnka5f07GjnufOjbDlEa5sXnzD7GMWwg5qb6dhxHhdB10buO9fq3+BTsuvzUPnIs9cNZkS8ecopzfN3LVS+nbu9GeZwLj6O09iNR3r6jx7kgP5IL8iPZfR4xhm9iXm10egI4ncL1WnjLp+fWLqW348TWcitOG9+IU3al/VacsgNI62+3s125J2yzdv1UHH87TlnAfb33/1Cc4xPkOQ7BuYyOjvyFOOP9++pcvvmw621nx36kLz4+K532ILy/w8m8eP1gydtxDIvCZkf3+UIc02/EQTvbsb9MfuBt93S+1eO33fMdjTJyhoy3W2aUHv9lL4ff43zykpjvvKz940pbHsevOvLD/1G3R/slxPEb8fxUkL3U3P9RSc2nBSUSHAAvJSXt8XUINimWmtT/yXUcT59VwmKsjv7xDNppka2jY3rdL+5xObe2rHD6dRv4+27+n9f/+w//+M//9t/+9q//+A///s//+i//+/6XTe7xcs8kN73p/nFrljSSfBNdQa9mo5ZEQa/Lp57EQa8OotC4W4hC4zZksqSRFBr3a22/kkLj3vu+U1JP4qTQuLfV6JpkSaFxD5bum/hKakmU1JM4SZI0yZJSg1NDUkNSQ1JDUkNSQ1JDUkNSQ1JDUkNTQ1NDU0NTQ1NDU0NTQ1NDU0NTw1LDUsNSw1LDUsNSw1LDUsNSw1JjpMZIjZEaIzVGaozUGKkxUmOkxkgNTw1PDU8NTw1PDU8NTw1PDU8NT43XsxywAQnYgSF0P3i8cvTG+zft9bgMNOAAemK7gA1IwFC7vzh5PbkCQ+2uE2oz8ScaMNQ80BNn8k+81fj+oK1F+nML7EAOvNXCARZqoN1ogRFsAD0xbGBhAxKwAxkoQAVCrUOtQ42hxlBjqDHUGGoMNYYaQ42hxlATqAnUBGoCNYGaQE2gJlATqAnUFGoKNYWaQk2hplBTqCnUFGoKNYOaQc2gZlAzqBnUDGoGNYOaQW1AbUBtQG1AbUBtQG1AbUBtQG1AzaHmUHOoOdQcag41h5pDzaHmqUbXBWxAAnYgAwWoQAMOINQa1BrUGtQa1BrUGtQa1BrUGtQa1AhqBDWCGkGNoEZQI6jBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSzq8pMNLOrykw0s6vKTDSzq8pMNLOrykw0s6vKTDSzq8pMNLOrykw0s6vKTDSzq8pMNLOrykw0s6vKTDSzq8pMNLOrykw0s6vKTDSzq8pMNLOrykw0s6vKTDSzq8pMNLOrykw0s6vKTDSzq8pMNLOrykw0s6vKTDSzq8pMNLOrykw0s6vKTDSzq8pMNLOrykw0s6vKTDSzq8pMNLOrykw0s6vKTDSzq8pMNLOrykw0s6vKTDSzq8pMNLOrykw0s6vKTDSzq8pMNLOrykw0s6vKTDSzq8pMNLOrykw0s6vKTDSzq8pMNLOrykw0s6vKTDSzq8pMNLOrykw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4iU0vuTcxs+klEz1xesnEBiRgBzJQgAqEmkHNoDagNqA2oDagNqA2oDagNqA2oDag5lBzqDnUHGoONYeaQ82h5lDzVBvXBZxqciMBO3Cq6Y0CVKABB9AzwvSSiVCbXhJ/d3rJRKg1qDWoNag1qDWoEdQIaoR7I9wbQY2gRlAjqBHUppcETi+Z2IC4tw616SUTBahAA0KtQ42hxlBjqDFaknFvjHtj3BtDbXrJRLSkoCUFLSlQE6gJ1ARqAjVBSwruTXBvintTqCn6TdGSipZUtKRCTaGmUFOoGdQMLWm4N8O9Ge7NoGboN0NLGlrS0JIDagNqA2oDagNqAy05cG8D9zZwbwNqjn5ztKSjJR0t6VBzqDnUHGoONc+W9OsCNiABU80vBgpQgQYciAC1BrUGNXiJw0scXuLwEoeXeINaG8BsSYeXOLzECWoENXiJw0scXuLwEoeXOLzE4SXeodYJiJaElzi8xDvUOtTgJQ4vcXiJw0scXuLwEoeXOEON0W/wEoeXOLzEBWoCNXiJw0scXuLwEoeXOLzE4SUuUFP0G7zE4SUOL3GFmkINXuLwEoeXOLzE4SUOL3F4iRvUDP0GL3F4icNL3KBmUIOXOLzE4SUOL3F4icNLHF7iA2oD/QYvcXiJw0vcoeZQg5c4vMThJQ4vcXiJw0vaBTO5z9zeei+mwr0wF5bCWuJY4VG46LaiC195MRXuhblw0W1a2AqPwg6moktFl4ouFV0qunCZF5f7pXK/VO6Xim6/Cpd27qWde2nnXnR70e1FtxfdXnR7aWcu98vlfrncLxddLv3LpZ25tDOXduaiy0VXiq4UXSm6UtpZyv1KuV8p9ytFV0r/SmlnLe2spZ216GrR1aKrRVeLrpZ21nK/Wu7Xyv1a0bXSv1ba2Uo7W2lnK7pWdK3oWtEdRXeUdh7lfke531HudxTdUfp3lHYepZ1HaWcvul50veh60fWi66Wdvdyvl/v1cr8O3XZdhVthKtwLQ7fhbaq14let+FUrftWKX7XiV634VSt+1VrRbVxYCmthK1x0W9EtftWKX7XiV634VSt+1YpfteJXq+526tIoXNq5+FUrftV60e1Ft/hVK37Vil+14let+FUrftWKXzUuulz6t/hVK37Vil81LrpcdItfteJXrfhVK37Vil+14let+NWqyZ26Uvq3+FUrftWKXzUtulp0i1+14let+FUrftWKX7XiV6341arQnbpW+rf4VSt+1YpfNSu6VnSLX7XiV634VSt+1YpfteJXrfjVqteduqP0b/GrVvyqFb9qo+iOolv8qhW/asWvWvGrVvyqFb9qxa9W9e7U9dK/xa+o+BUVvyK8rjUqfkXl+YrK8xUVvyK8s7VVyLu46Ba/ouJXVPyKyvPVKue9d95vq563Rw3/9KvFVngUdvD0q8WtMBXuhbnw1I1PA6ZfLZ66cZ3TrxY7/s70q8UNf2f61eJe/g4XnroeXHSnXy0uutOvJnPRnX61uOhOv1pcdLnc7/SreQ1cdKdfLS66068WF93pV4uL7vSrxUVXyv1Ov5rXIEVXSjtr0dXSzlp0tbSzFt3pV4uLrpb7nX41r0GLrpV2tqJrpZ2t6FppZyu6068WF10r9zv9al7DKLqjtPMouqO08yi6o7TzKLqjjOdRdEe53+lX8xq86HppZy+6XtrZi66Xdvai62U8O3RXkfDiltewyoTXf++FobsqhRdr+TtWeJS/g/G8yoXn32mtMOEapl/d3/O1VTK8WAprYSs8Cjt4+tXi0I3vslbp8OJemAtLYS1shUdhB0+/Wlx0p19JXM/0q8VcOHTv7QzaKiS+P5luq5J48Sjs4OlXi0P3PiugrXLie8fntuqJF3NhKayFrfAo7ODpVxZa069s/ncq3AtzYSmsha3wKOzg6VeLp26Mq+lXi3thLiyFtbAVHoUdPP1qcdG1omtF14quFV0rulZ0reha0R1FdxTdUXRH0R1FdxTdUXRH0R1FdxRdL7pedL3oetH1outF14uuF10vug7dVYi8uBWmwr0wF5bCWtgKj8Khe+8b02ZJcnxn31ZN8rg3Gfj//uHf/vkf/vvf/ul//+W//Mf9+fX/+Zd/3J9av/7ff////a/9v/z3f/vnv/3tn//nf/tf//av//hP/+P//Ns/3Z9l3//bX674LPv1f/9r079Suz/bbuu//9fX+pn+9bVcpv9P/Mf/6vfuXa8Jdnv9/z3+9y6v/53l/t/vfyCvBZ+/ymv55v4PLf6G2h3B77i044q2199qK4rw6/+TljGEXv+v7QivZfm/vhbh73/f739//wvyv3bff5+vv74u4PU/8w7/euL76+spaIV/XYDZ/suvh9zXTV47+Os59PX/6v2vJf/1K+DruWNf3PXX4PmvXw+sr8e6/Nev34zX09n9r3Vf2uvRkilv5XVjr+D3x/D/fw==",
6320
+ "bytecode": "H4sIAAAAAAAA/+xdB5wURdav2Z0ddmDZIecwJAEBQRBFBGHJWcSciSKKgAQlCSsZA5jOO089PXPOOZ0555xzzn6m09Pzqzq62LdvX/d0Vb+u2Tu3fr+3PdtV9f6vql79q7q6ujshtoQm3vHoGfNnHbrkkHnzZx09ZeGMQ6YsWnjYMbMWrq8lxKfFW1IkpBR6xwIpWXROH+Hv+kS6hlIGo3PKinJ0rilxrhWhrzVxrg1xri1xLktgtCPOtSfOdSDOdfR0JkWIkPCOWe/Ya/qE+e9uf17XWycOv/m44/Y9qEufT0YtuW3eKUPf/eG0b2T88YUVaXOE7lFwTgiPE6k8J+bGKYC6S0RFxar/VX2oYyfv/xO8/5Vene4k+XuTlM1STi6klWdFuOI1NCjbKWHrMLF7OXQglW+wiGZnRxHezlPDt3UC2knlw+2fS1+hgZ1JUUEuVRQZ4ibCp60IyoBagscAk7QQ77RCqMEQUGU29aTTDLzj9MLwrbnVKGFWhtMLzfOdbsBm1aGR/xSlkf9kUUF/Mmy4SoAifN4zwjfEdjb6VTjdwslNMP7saGj8S26cIqgbD41neH7wZ+/Ywjv/FzA0nil//1XKWVLORkNjIbI3V/FaGqQ908DfzrGsb1P7Oxmk/auB/X8zsJ9qx3O89vubdzzLO54N2vFc+fs8KX+Xcr53vkDQJKZDVoQzKQVs0XkukBgXSrlIysVSLpFyqZTLpFwu5QopV0q5SsrVUq6Rcq2U66RcL+UGKTdKuUnKzVJukXKrlNuk3C7lDil3SrlLyt1S/iHlHin3SrmvsLIt98v/H5DyoJSHpDws5REpj0p5TMrjUp6Q8qSUp6Q8LeUZKc9KeU7K81JekPKilJekvCzlFSmvSnlNyutS3pDyppS3pLwt5R0p70p5z3Oy973jB97xQ+/4kZ4r6aOquGJ07kLi3EXEuYuJc5cQ5y4lzl1GnLucOHcFce5K4txVxLmriXPXEOeuJc5dR5y7njh3A3HuRuLcTcS5m4lztxDnbiXO3Uacu504dwdx7k7i3F3EubuJc/8gzt1DnLuXOHcfce5+4twDxLkHiXMPEeceJs49Qpx7lDj3GHHuceLcE8S5J4lzTxHnnibOPUOce5Y49xxx7nni3AvEuReJcy8R514mzr1CnHuVOPcace514twbxLk3iXNvEefeJs69Q5x7lzj3HnHuQ+8cDHiylmtATYC0OUJCEXLItJUzGtr0cXicBPwni46VY6uGCyrhBCe+sLJNgYkvQvYHJb4YlzUg8SVV6sU/8aVV69A38WVEffslvpxqG5/EV5DtSCe+km5zMvFVPv5BJb7az5eIxNf4+l3VxNf6+2iVxNcF+DNOfH2Q76PENwT2k8qJbwzuU5US35Sj/8HEN+fqqyDxLTn7dUXiW3NzwNbEt4XgC5349jDc4iW+IxQPbUl8ZzjO+k/iu0Lym0p8d1guTGyZ34RKKxPfY8Cx9xaG5+5PHI0Rn+bGqQV14wtBNcYkPHvVUV8IKb063Wfy9+dSvpDyZWFl5e2QvT60tjXcbzDWPGAw1jxoMNY8ZDDWPGww1jxiMNY8ajDWPGYw1jxuMNY8YTDWPGkw1jxlMNY8bTDWPGMw1jxrMNY8ZzDWPG8w1rxgMNa8aDDWvGQw1rxsMNa8YjDWvGow1rxmMNa8bjDWvGEw1rxpMNa8ZTDWvG0w1rxjMNa8a5D2M4Nx6SvLcUnTfjZc8sR7BvZ/bmD/147sf9/A/i8M7P/GwH5qvP7KG5+/9o7feMcvwXj9rfz9f1K+k/I9Gq9Nb2J8a1C2HwzqjCrbD15Z/s87fucdvwdl+1H+/knKP6X8XMh7Z+3DkGX9+vff/w3xfimMAKgymyxWKPBfDCr6XwYNaFuGfxWaTVxVGf7laIL8a3icZBSc33LjFELd2Pl/9epQy4/e/78B5/+3/P174ZaMiWRFXmhnjlDt26sgGRqnkKpHlV8dP/LK+G+iHgvlj6SUIikptKXKlCBPNehftcKXrdKmGJ0vCc5VyWBo97mGA5E+DvZ+F0tj0lJqS6kjpURKXSmlUjJS6kmpL6WBlIZSGklpLKWJlKZSmklpLqWFlJZSWklpLaWNlLaqvFLaSWkvpYOUjlI6SdlGSmcpXaR0lbKtlG5SukvpIWU7KT2l9JKyvZTeUvpI2UFKXyk7StlJSj8pO0vpL2UXKQOkDJSyq5RBUgZLKZMyRMpQKcOkDJcyQsrIpNcYatW5QERvjOKkXecSRjiJSraO8hx/tN4CpT1LRfyIzqlEeInddEoFC5mDbRKjkuF71WjLyjO9RWBi0xhoU47EsJ7HeHVvMq0xsTuMLTqMTUYAVJmrUGmOjGMN6HGcQWPYlmFckujJOTKOM3RGU6YY7dklzPKxslU6D2w1wSvzbpitJhBstRsDW6UN2GqCgTPu5oitTGyaaMlWE2NgqwmWbLV7MgLg7hZstbsBW02Kma1UGSZZsNWkmNlqN88uYZaPla1q54Gt9vTKvBdmqz0JttqLga1qG7DVngbOuJcjtjKxaW9Ltto7Brba05Kt9klGANzHgq32MWCrfWNmK1WGfS3Yat+Y2Wovzy5hlo+Vrerkga3298p8AGar/Qm2OoCBreoYsNX+Bs54gCO2MrHpQEu2OjAGttrfkq0OSkYAPMiCrQ4yYKuDY2YrVYaDLdjq4JjZ6gDPLmGWj5WtSvLAVpO9Mk/BbDWZYKspDGxVYsBWkw2ccYojtjKxaaolW02Nga0mW7LVtGQEwGkWbDXNgK2mx8xWqgzTLdhqesxsNcWzS5jlY2Wrunlgq0O9Ms/EbHUowVYzGdiqrgFbHWrgjDMdsZWJTYdZstVhMbDVoZZsNSsZAXCWBVvNMmCrw2NmK1WGwy3Y6vCY2WqmZ5cwy8fKVqV5YKvZXpmPxGw1m2CrIxnYqtSArWYbOOORjtjKxKY5lmw1Jwa2mm3JVnOTEQDnWrDVXAO2mhczW6kyzLNgq3kxs9WRnl3CLB8rW2XywFbzvTIvwGw1n2CrBQxslTFgq/kGzrjAEVuZ2LTQkq0WxsBW8y3ZalEyAuAiC7ZaZMBWR8fMVqoMR1uw1dExs9UCzy5hlo+Vrerlga0We2VegtlqMcFWSxjYqp4BWy02cMYljtjKxKallmy1NAa2WmzJVsuSEQCXWbDVMgO2Wh4zW6kyLLdgq+Uxs9USzy5hlo+Vrernga1WeGVeidlqBcFWKxnYqr4BW60wcMaVjtjKxKZyS7Yqj4GtVliy1XHJCIDHWbDVcQZstSpmtlJlWGXBVqtiZquVnl3CLB8rWzXIA1ut8cq8FrPVGoKt1jKwVQMDtlpj4IxrHbGViU3rLNlqXQxstcaSrdYnIwCut2Cr9QZstSFmtlJl2GDBVhtiZqu1nl3CLB8rWzXMA1sd75X5BMxWxxNsdQIDWzU0YKvjDZzxBEdsZWLTiZZsdWIMbHW8JVudlIwAeJIFW51kwFabYmYrVYZNFmy1KWa2OsGzS5jlY2WrRnlgq5O9Mp+C2epkgq1OYWCrRgZsdbKBM57iiK1MbDrVkq1OjYGtTrZkq9OSEQBPs2Cr0wzY6vSY2UqV4XQLtjo9ZrY6xbNLmOVjZavGeWCrM7wy/xmz1RkEW/2Zga0aG7DVGQbO+GdHbGVi018s2eovMbDVGZZsdWYyAuCZFmx1pgFb/TVmtlJl+KsFW/01Zrb6s2eXMMvHylZN8sBWZ3tlPgez1dkEW53DwFZNDNjqbANnPMcRW5nY9DdLtvpbDGx1tiVbnZuMAHiuBVuda8BW58XMVqoM51mw1Xkxs9U5nl3CLB8rWzXNA1ud75X5AsxW5xNsdQEDWzU1YKvzDZzxAkdsZWLThZZsdWEMbHW+JVtdlIwAeJEFW11kwFYXx8xWqgwXW7DVxTGz1QWeXcIsHytbNcsDW13qlfkyzFaXEmx1GQNbNTNgq0sNnPEyR2xlYtPllmx1eQxsdaklW12RjAB4hQVbXWHAVlfGzFaqDFdasNWVMbPVZZ5dwiwfK1s1zwNbXe2V+RrMVlcTbHUNA1s1N2Crqw2c8RpHbGVi07WWbHVtDGx1tSVbXZeMAHidBVtdZ8BW18fMVqoM11uw1fUxs9U1nl3CLB8rW7XIA1vd6JX5JsxWNxJsdRMDW7UwYKsbDZzxJkdsZWLTzZZsdXMMbHWjJVvdkowAeIsFW91iwFa3xsxWqgy3WrDVrTGz1U2eXcIsHytbtcwDW93ulfkOzFa3E2x1BwNbtTRgq9sNnPEOR2xlYtOdlmx1ZwxsdbslW92VjAB4lwVb3WXAVnfHzFaqDHdbsNXdMbPVHZ5dwiwfK1u1ygNb3eOV+V7MVvcQbHUvA1u1MmCrewyc8V5HbGVi032WbHVfDGx1jyVb3Z+MAHi/BVvdb8BWD8TMVqoMD1iw1QMxs9W9nl3CLB8rW7XOA1s95JX5YcxWDxFs9TADW7U2YKuHDJzxYUdsZWLTI5Zs9UgMbPWQJVs9mowA+KgFWz1qwFaPxcxWqgyPWbDVYzGz1cOeXcIsHytbtckDWz3hlflJzFZPEGz1JANbtTFgqycMnPFJR2xlYtNTlmz1VAxs9YQlWz2djAD4tAVbPW3AVs/EzFaqDM9YsNUzMbPVk55dwiwfK1u1zQNbPeeV+XnMVs8RbPU8A1u1NWCr5wyc8XlHbGVi0wuWbPVCDGz1nCVbvZiMAPiiBVu9aMBWL8XMVqoML1mw1Usxs9Xznl3CLB8rW2XzwFaveGV+FbPVKwRbvcrAVlkDtnrFwBlfdcRWJja9ZslWr8XAVq9YstXryQiAr1uw1esGbPVGzGylyvCGBVu9ETNbverZJczysbJVuzyw1Vtemd/GbPUWwVZvM7BVOwO2esvAGd92xFYmNr1jyVbvxMBWb1my1bvJCIDvWrDVuwZs9V7MbKXK8J4FW70XM1u97dklzPKxslX7PLDVB16ZP8Rs9QHBVh8ysFV7A7b6wMAZP3TEViY2fWTJVh/FwFYfWLLVx8kIgB9bsNXHBmz1ScxspcrwiQVbfRIzW33o2SXM8rGyVYc8sNVnXpk/x2z1GcFWnzOwVQcDtvrMwBk/d8RWJjZ9YclWX8TAVp9ZstWXyQiAX1qw1ZcGbPVVzGylyvCVBVt9FTNbfe7ZJczysbJVxzyw1Tdemb/FbPUNwVbfMrBVRwO2+sbAGb91xFYmNv2fJVv9Xwxs9Y0lW32XjAD4nQVbfWfAVt/HzFaqDN9bsNX3MbPVt55dwiwfK1t1ygNb/eiV+SfMVj8SbPUTA1t1MmCrHw2c8SdHbGVi0z8t2eqfMbDVj5Zs9XMyAuDPFmz1swFb/RIzW6ky/GLBVr/EzFY/eXYJs3ysbLVNHtjqV6/Mv2G2+pVgq98Y2GobA7b61cAZf3PEViY2/duSrf4dA1v9aslWvycjAP5uwVa/G7CVKIqXrf7TO4rM2QraFa4gSH+O5L95dgmzfKxs1TkPbFXglbmwSFTuMSoCs5VKFJWtOhuwVYGBMxYW2VWeKVuZ2JQssmOrZBE/WxUY2qJDUVEEQJXZlK2KwjdkIhUzW6kypCzYKhUzWxV6dgmzfKxs1SUPbFXslTmN2aqYYKs0A1t1MWCrYgNnTDtiKxObaluyVe0Y2KrYkq3qFEUArGPBVnUM2KokZrZSZSixYKuSmNkq7dklzPKxslXXPLBVqVfmDGarUoKtMgxs1dWArUoNnDHjiK1MbKpnyVb1YmCrUku2ql8UAbC+BVvVN2CrBjGzlSpDAwu2ahAzW2U8u4RZPla22jYPbNXIK3NjzFaNCLZqzMBW2xqwVSMDZ2zsiK1MbGpiyVZNYmCrRpZs1bQoAmBTC7ZqasBWzWJmK1WGZhZs1Sxmtmrs2SXM8rGyVbc8sFULr8wtMVu1INiqJQNbdTNgqxYGztjSEVuZ2NTKkq1axcBWLSzZqnVRBMDWFmzV2oCt2sTMVqoMbSzYqk3MbNXSs0uY5WNlq+55YKusV+Z2mK2yBFu1Y2Cr7gZslTVwxnaO2MrEpvaWbNU+BrbKWrJVh6IIgB0s2KqDAVt1jJmtVBk6WrBVx5jZqp1nlzDLx8pWPfLAVtt4Ze6M2Wobgq06M7BVDwO22sbAGTs7YisTm7pYslWXGNhqG0u26loUAbCrBVt1NWCrbWNmK1WGbS3YatuY2aqzZ5cwy8fKVtvlga26e2XugdmqO8FWPRjYajsDtupu4Iw9HLGViU3bWbLVdjGwVXdLtupZFAGwpwVb9TRgq14xs5UqQy8LtuoVM1v18OwSZvlY2apnHtiqt1fmPpitehNs1YeBrXoasFVvA2fs44itTGzawZKtdoiBrXpbslXfogiAfS3Yqq8BW+0YM1upMuxowVY7xsxWfTy7hFk+VrbqlQe26ueVeWfMVv0IttqZga16GbBVPwNn3NkRW5nY1N+SrfrHwFb9LNlql6IIgLtYsNUuBmw1IGa2UmUYYMFWA2Jmq509u4RZPla22j4PbLWrV+ZBmK12JdhqEANbbW/AVrsaOOMgR2xlYtNgS7YaHANb7WrJVmVFEQDLLNiqzICthsTMVqoMQyzYakjMbDXIs0uY5WNlq955YKthXpmHY7YaRrDVcAa26m3AVsMMnHG4I7YysWmEJVuNiIGthlmy1ciiCIAjLdhqpAFbjYqZrVQZRlmw1aiY2Wq4Z5cwy8fKVn3ywFZjvDKPxWw1hmCrsQxs1ceArcYYOONYR2xlYtM4S7YaFwNbjbFkq/FFEQDHW7DVeAO2mhAzW6kyTLBgqwkxs9VYzy5hlo+VrXbIA1tN9Mq8O2ariQRb7c7AVjsYsNVEA2fc3RFbmdg0yZKtJsXAVhMt2WqPogiAe1iw1R4GbLVnzGylyrCnBVvtGTNb7e7ZJczysbJV3zyw1d5emffBbLU3wVb7MLBVXwO22tvAGfdxxFYmNu1ryVb7xsBWe1uy1X5FEQD3s2Cr/QzYav+Y2UqVYX8Ltto/Zrbax7NLmOVjZasd88BWB3plPgiz1YEEWx3EwFY7GrDVgQbOeJAjtjKx6WBLtjo4BrY60JKtDimKAHiIBVsdYsBWk2NmK1WGyRZsNTlmtjrIs0uY5WNlq53ywFZTvTJPw2w1lWCraQxstZMBW001cMZpjtjKxKbplmw1PQa2mmrJVjOKIgDOsGCrGQZsdWjMbKXKcKgFWx0aM1tN8+wSZvlY2apfHtjqMK/MszBbHUaw1SwGtupnwFaHGTjjLEdsZWLT4ZZsdXgMbHWYJVsdURQB8AgLtjrCgK1mx8xWqgyzLdhqdsxsNcuzS5jlY2WrnfPAVnO8Ms/FbDWHYKu5DGy1swFbzTFwxrmO2MrEpnmWbDUvBraaY8lWRxVFADzKgq2OMmCr+TGzlSrDfAu2mh8zW8317BJm+VjZqn8e2GqhV+ZFmK0WEmy1iIGt+huw1UIDZ1zkiK1MbDrakq2OjoGtFlqy1TFFEQCPsWCrYwzYanHMbKXKsNiCrRbHzFaLPLuEWT5WttolD2y11CvzMsxWSwm2WsbAVrsYsNVSA2dc5oitTGxabslWy2Ngq6WWbHVsUQTAYy3Y6lgDtloRM1upMqywYKsVMbPVMs8uYZaPla0G5IGtyr0yH4fZqpxgq+MY2GqAAVuVGzjjcY7YysSmVZZstSoGtiq3ZKvVRREAV1uw1WoDtloTM1upMqyxYKs1MbPVcZ5dwiwfK1sNzANbrfPKvB6z1TqCrdYzsNVAA7ZaZ+CM6x2xlYlNGyzZakMMbLXOkq02FkUA3GjBVhsN2Or4mNlKleF4C7Y6Pma2Wu/ZJczysbLVrnlgqxO9Mp+E2epEgq1OYmCrXQ3Y6kQDZzzJEVuZ2LTJkq02xcBWJ1qy1eaiCICbLdhqswFbnRwzW6kynGzBVifHzFYneXYJs3ysbDUoD2x1qlfm0zBbnUqw1WkMbDXIgK1ONXDG0xyxlYlNp1uy1ekxsNWplmz1p6IIgH+yYKs/GbDVGTGzlSrDGRZsdUbMbHWaZ5cwy8fKVoPzwFZ/8cp8JmarvxBsdSYDWw02YKu/GDjjmY7YysSmv1qy1V9jYKu/WLLVWUURAM+yYKuzDNjq7JjZSpXhbAu2OjtmtjrTs0uY5WNlq7I8sNXfvDKfi9nqbwRbncvAVmUGbPU3A2c81xFbmdh0niVbnRcDW/3Nkq3+XhQB8O8WbPV3A7Y6P2a2UmU434Ktzo+Zrc717BJm+VjZakge2OpCr8wXYba6kGCrixjYaogBW11o4IwXOWIrE5sutmSri2Ngqwst2eqSogiAl1iw1SUGbHVpzGylynCpBVtdGjNbXeTZJczysbLV0Dyw1eVema/AbHU5wVZXMLDVUAO2utzAGa9wxFYmNl1pyVZXxsBWl1uy1VVFEQCvsmCrqwzY6uqY2UqV4WoLtro6Zra6wrNLmOVjZatheWCra70yX4fZ6lqCra5jYKthBmx1rYEzXueIrUxsut6Sra6Pga2utWSrG4oiAN5gwVY3GLDVjTGzlSrDjRZsdWPMbHWdZ5cwy8fKVsPzwFY3e2W+BbPVzQRb3cLAVsMN2OpmA2e8xRFbmdh0qyVb3RoDW91syVa3FUUAvM2CrW4zYKvbY2YrVYbbLdjq9pjZ6hbPLmGWj5WtRuSBre70ynwXZqs7Cba6i4GtRhiw1Z0GzniXI7YyseluS7a6Owa2utOSrf5RFAHwHxZs9Q8DtronZrZSZbjHgq3uiZmt7vLsEmb5WNlqZB7Y6j6vzPdjtrqPYKv7GdhqpAFb3WfgjPc7YisTmx6wZKsHYmCr+yzZ6sGiCIAPWrDVgwZs9VDMbKXK8JAFWz0UM1vd79klzPL9x6HSoqLTRrHh3EIXbEUny4owIbG1TAmQ5xFZb49KeUzK41KekPKklKekPC3lGSnPSnlOyvNSXpDyopSXpLws5RUpr0p5TcrrUt6Q8qaUt6S8LeUdKe9KeU/K+1I+kPKhlI+kfIxZ9hGPUeG5R4lzjxHnHifOPUGce5I49xRx7mni3DPEuWeJc88R554nzr1AnHuROPcSce5l4twrxLlXiXOvEedeJ869QZx7kzj3FnHubeLcO8S5d4lz7xHn3ifOfUCc+5A49xFx7mNi9G7nHbMiVKjU6XOR5yMhyVmN9I+GTisSj4VNK+19PFzaU9Wg90SotN//Z4B8Mkzad7YMpk+FSDvEG3ifzp32ZD1IP5Mz7dytA/qzudLeWjH4P5cj7WIwUXg+OO1IOKl4ITDtx5UmIC8Gpe1debLyUkDazmhi87J/2gPxJOgV37T7VJkwveqXtrzq5Oo1n7TlxETsdTrtTdSk7Q0y7TBygvcmlXY3ejL4FpH2Fp+J49tV03bxm2S+UyXtub4T0ndx2l7+k9f3UNp3Aia671dOe1TQpPiDSmnHB06gP4RppwVPtj8CaXvmmJh/bDCxNLl6yBEq4ebg8mch3id+Vw9hAD8pMrs8U+CfhK+gxKchC+V39RCmDJ8WmV11qDJ8atjIXOsPBs71DHUyK0LBVLL1M89BPscz48+8ioPnPmdYfzDw5MRnBg7yuWHlmTaOcorPDJ1J2fVZnhjjo/D1fA7E+8KWMRTgF+aMcc4XBozxZcyMocrwpTljnPNlnhjjo/C4Z1MnsyIUTCVbv/Ic5GvMGF8RjPE1A2MYeHLiKwMH+dqy8kxXLE1s+sagM2z9Y2DLp56DV1kUzIFlMlR/a9AZqDLkSq7q6FsLJv42T0z8YXj/vQHi/Z8tEyvA/zNn4hv+z8D5vouZiVUZvjNn4hu+i+h8YTrQtzF3oO8Ny6CDKTGZtOEPBr7BOcJ9GB73eupkVoSCqWTrj17H+wmPcD8SI9xPDCOcAUMkfjRotJ8sK8/UkUxs+mfEES5XHtV5frAYHX6OedRS5f7ZgV06mLbhzwZt+EvMbehHsmHIOWzafxkSGtds4IPwfX0zxPvVdjagAH81nw1s/tWggn6LeTagyvCb+Wxg828xzwZUR/hXUbyd7d+GnU0HU5tM2vD3PM0GPgiPu4k6mRWhYCrbmvLOpkTlkV9F4NmAShR1NmDAEAllQ5i033i2hbShUuWZOpKJTQUpM+c2dRjVeX63GHULw9tVYZwIb5cqd2Eqfrt0MG3DQoM2TMbchn4kmyufCckWGdQr52zg/fB9PQvxUqkIgCqz4WwgmzJo5FoGzmNbhlqGnUeVoVbETh2mIxSl4u1sxYadTQdTm0zaMG1gE+ds4P3ws4G21MmsCAVTydbaXserg2cDtYnZQB2G2YABQyRqGzRanZRd5Zk6kolNJTGPJKrzpC1G3boxzwZUues6sEsH0zasa9CGpTG3oR/J5spnQrKZPM0G3gvf15+BePVsZwMKsJ75bOCZegaNXD/m2YAqQ33z2cAz9WOeDaiOkEnF29kaOJoNmLRhwzzNBt4LPxt4mjqZFaFgKtnayOt4jfFsoBExG2jMMBswYIhEI4NGa5yyqzxTRzKxqUnMI4nqPA0tRt2mMc8GVLmbOrBLB9M2bGrQhs1ibkM/ks2Vz4Rkm+dpNvBu+L4+BeK1sJ0NKMAW5rOBKS0MGrllzLMBVYaW5rOBKS1jng2ojtA8FW9na+VoNmDShq3zNBt4N/xsYDJ1MitCwVSytY3X8dri2UAbYjbQlmE2YMAQiTYGjdY2ZVd5po5kYlM25pFEdZ7WFqNuu5hnA6rc7RzYpYNpG7YzaMP2MbehH8nmymdCsh3yNBt4J3xffwXidbSdDSjAjuazgVc6GjRyp5hnA6oMncxnA690ink2oDpCh1S8nW0bR7MBkzbsnKfZwDvhZwMvUyezIhRMJVu7eB2vK54NdCFmA10ZZgMGDJHoYtBoXVN2lWfqSCY2bRvzSKI6T2eLUbdbzLMBVe5uDuzSwbQNuxm0YfeY29CPZHPlMyHZHnmaDbwdvq+Phnjb2c4GFOB25rOB0dsZNHLPmGcDqgw9zWcDo3vGPBtQHaFHKt7O1svRbMCkDbfP02zg7fCzgVHUyawIBVPJ1t5ex+uDZwO9idlAH4bZgAFDJHobNFqflF3lmTqSiU07xDySqM6zvcWo2zfm2YAqd18Hdulg2oZ9Ddpwx5jb0I9kc+UzIdmd8jQbeCt8X78O4vWznQ0owH7ms4Hr+hk08s4xzwZUGXY2nw1ct3PMswHVEXZKxdvZ+juaDZi04S55mg28FX42cC11MitCwVSydYDX8Qbi2cAAYjYwkGE2YMAQiQEGjTYwZVd5po5kYtOuMY8kqvPsYjHqDop5NqDKPciBXTqYtuEggzYcHHMb+pFsrnwmJFuWp9nAm+H7+p0Qb4jtbEABDjGfDdw5xKCRh8Y8G1BlGGo+G7hzaMyzAdURylLxdrZhjmYDJm04PE+zgTfDzwbuoE5mRSiYSraO8DreSDwbGEHMBkYyzAYMGCIxwqDRRqbsKs/UkUxsGhXzSKI6z3CLUXd0zLMBVe7RDuzSwbQNRxu04ZiY29CPZHPlMyHZsXmaDbwRvq+PhXjjbGcDCnCc+Wxg7DiDRh4f82xAlWG8+Wxg7PiYZwOqI4xNxdvZJjiaDZi04W55mg28EX42MIY6mRWhYCrZOtHreLvj2cBEYjawO8NswIAhEhMNGm33lF3lmTqSiU2TYh5JVOfZzWLU3SPm2YAq9x4O7NLBtA33MGjDPWNuQz+SzZXPhGT3ytNs4PXwfb0c4u1tOxtQgHubzwbK9zZo5H1ing2oMuxjPhso3yfm2YDqCHul4u1s+zqaDZi04X55mg28Hn42sJI6mRWhYCrZur/X8Q7As4H9idnAAQyzAQOGSOxv0GgHpOwqz9SRTGw6MOaRRHWe/SxG3YNing2och/kwC4dTNvwIIM2PDjmNvQj2Vz5TEj2kDzNBl6znA1Mtp0NKMDJFrOByQaNPCXm2YAqwxSL2cCUmGcDqiMckoq3s011NBswacNpeZoNvJaH2cB0r+PNwLOB6cRsYAbDbMCAIRLTDRpthqPZgIlNh8Y8kqjOM81i1J0Z82xAlXumA7t0MG3DmQZteFjMbehHsrnymZDsrDzNBl4N39cvg3iH284GFODh5rOByw43aOQjYp4NqDIcYT4buOyImGcDqiPMSsXb2WY7mg2YtOGReZoNvBp+NnApdTIrQsFUsnWO1/Hm4tnAHGI2MJdhNmDAEIk5Bo02N2VXeaaOZGLTvJhHEtV5jrQYdY+KeTagyn2UA7t0MG3DowzacH7MbehHsrnymZDsgjzNBl4J39cvhHgLbWcDCnCh+WzgwoUGjbwo5tmAKsMi89nAhYting2ojrAgFW9nO9rRbMCkDY/J02zglfCzgQuok1kRCqaSrYu9jrcEzwYWE7OBJQyzAQOGSCw2aLQlKbvKM3UkE5uWxjySqM5zjMWouyzm2YAq9zIHdulg2obLDNpwecxt6EeyufKZkOyxeZoNvBy+r78K8VbYzgYU4Arz2cCrKwwaeWXMswFVhpXms4FXV8Y8G1Ad4dhUvJ2t3NFswKQNj8vTbODl8LOBV6iTWREKppKtq7yOtxrPBlYRs4HVDLMBA4ZIrDJotNUpu8ozdSQTm9bEPJKoznOcxai7NubZgCr3Wgd26WDahmsN2nBdzG3oR7K58pmQ7Po8zQZeCt/Xn4J4G2xnAwpwg/ls4KkNBo28MebZgCrDRvPZwFMbY54NqI6wPhVvZzve0WzApA1PyNNs4KXws4EnqZNZEQqmkq0neh3vJDwbOJGYDZzEMBswYIjEiQaNdlLKrvJMHcnEpk0xjySq85xgMepujnk2oMq92YFdOpi24WaDNjw55jb0I9lc+UxI9pQ8zQZeDN/Xm0O8U21nAwrwVPPZQPNTDRr5tJhnA6oMp5nPBpqfFvNsQHWEU1LxdrbTHc0GTNrwT3maDbwYfjbQjDqZFaFgKtl6htfx/oxnA2cQs4E/M8wGDBgicYZBo/05ZVd5po5kYtNfYh5JVOf5k8Woe2bMswFV7jMd2KWDaRueadCGf425Df1INlc+E5I9K0+zgRfC9/XbIN7ZtrMBBXi2+WzgtrMNGvmcmGcDqgznmM8Gbjsn5tmA6ghnpeLtbH9zNBswacNz8zQbeCH8bOBW6mRWhIKpZOt5Xsf7O54NnEfMBv7OMBswYIjEeQaN9veUXeWZOpKJTefHPJKoznOuxah7QcyzAVXuCxzYpYNpG15g0IYXxtyGfiSbK58JyV6Up9nA8+H7+gaId7HtbEABXmw+G9hwsUEjXxLzbECV4RLz2cCGS2KeDaiOcFEq3s52qaPZgEkbXpan2cDz4WcD66mTWREKppKtl3sd7wo8G7icmA1cwTAbMGCIxOUGjXZFyq7yTB3JxKYrYx5JVOe5zGLUvSrm2YAq91UO7NLBtA2vMmjDq2NuQz+SzZXPhGSvydNs4LnwfX0UxLvWdjagAK81nw2Mutagka+LeTagynCd+Wxg1HUxzwZUR7gmFW9nu97RbMCkDW/I02zgufCzgZHUyawIBVPJ1hu9jncTng3cSMwGbmKYDRgwROJGg0a7KWVXeaaOZGLTzTGPJKrz3GAx6t4S82xAlfsWB3bpYNqGtxi04a0xt6EfyebKZ0Kyt+VpNvBs+L5+CsS73XY2oABvN58NnHK7QSPfEfNsQJXhDvPZwCl3xDwbUB3htlS8ne1OR7MBkza8K0+zgWfDzwZOpk5mRSiYSrbe7XW8f+DZwN3EbOAfDLMBA4ZI3G3QaP9I2VWeqSOZ2HRPzCOJ6jx3WYy698Y8G1DlvteBXTqYtuG9Bm14X8xt6EeyufKZkOz9eZoNPBO+r8+DeA/YzgYU4APms4F5Dxg08oMxzwZUGR40nw3MezDm2YDqCPen4u1sDzmaDZi04cN5mg08E342MJc6mRWhYCrZ+ojX8R7Fs4FHiNnAowyzAQOGSDxi0GiPpuwqz9SRTGx6LOaRRHWehy1G3cdjng2ocj/uwC4dTNvwcYM2fCLmNvQj2Vz5TEj2yTzNBp4O39fvhnhP2c4GFOBT5rOBu58yaOSnY54NqDI8bT4buPvpmGcDqiM8mYq3sz3jaDZg0obP5mk28HT42cBd1MmsCAVTydbnvI73PJ4NPEfMBp5nmA0YMETiOYNGez5lV3mmjmRi0wsxjySq8zxrMeq+GPNsQJX7RQd26WDahi8atOFLMbehH8nmymdCsi/naTbwVPi+noV4r9jOBhTgK+azgewrBo38asyzAVWGV81nA9lXY54NqI7wcirezvaao9mASRu+nqfZwFPhZwNtqZNZEQqmkq1veB3vTTwbeIOYDbzJMBswYIjEGwaN9mbKrvJMHcnEprdiHklU53ndYtR9O+bZgCr32w7s0sG0Dd82aMN3Ym5DP5LNlc+EZN/N02zgyfB9vQTivWc7G1CA75nPBkreM2jk92OeDagyvG8+Gyh5P+bZgOoI76bi7WwfOJoNmLThh3maDTwZfjZQhzqZFaFgKtn6kdfxPsazgY+I2cDHDLMBA4ZIfGTQaB+n7CrP1JFMbPok5pFEdZ4PLUbdT2OeDahyf+rALh1M2/BTgzb8LOY29CPZXPlMSPbzPM0Gngjf1+dAvC9sZwMK8Avz2cCcLwwa+cuYZwOqDF+azwbmfBnzbEB1hM9T8Xa2rxzNBkza8Os8zQaeCD8bOJI6mRWhYCrZ+o3X8b7Fs4FviNnAtwyzAQOGSHxj0Gjfpuwqz9SRTGz6v5hHEtV5vrYYdb+LeTagyv2dA7t0MG3D7wza8PuY29CPZHPlMyHZH/I0G3g8fF+vD/F+tJ0NKMAfzWcD9X80aOSfYp4NqDL8ZD4bqP9TzLMB1RF+SMXb2f7paDZg0oY/52k28Hj42UA96mRWhIKpZOsvXsf7F54N/ELMBv7FMBswYIjELwaN9q+UXeWZOpKJTb/GPJKozvOzxaj7W8yzAVXu3xzYpYNpG/5m0Ib/jrkN/Ug2Vz4Tkv09T7OBx8ITWmW8WhEAVWbTfIla8Y7wyq5ErYoTWRE+mHYi5bC/p+LtFAW13IzaJu1SWCtaRw1T5kKLNuTsUI9adqikbYdSgEmLDlUUc4dSdhUxdahcyVXDF9Wyc5hsOAxWJ3mkyKCDgYwpWydRgCqzae9OGfTYWjE7lCpDLYtGrlUrmvOFcaJatcynBwUG9VUcsQy5kqu6LbbsrDqY+laxQfnTEUeOXHn8RuRc+UxG5Noxt6Gqo9oWA4FJOyQ9KQQ2ZrFCQ/yPi8z9zRTjIwcYHzrA+MABxvsOMN5zgPGuA4x3HGC87QDjLQcYbzrAeMMBxusOMF5zgPGqA4xXHGC87ADjJQcYLzrAeMEBxvMOMJ5zgPGsA4xnHGA87QDjKQcYTzrAeMIBxuMOMB5zgPGoA4xHLDBgyEZIlhXhgr5mVGXT963qyGuqEil1pZRKyUipJ6W+lAZSGkppJKWxlCZSmkppJqW5lBbedXhLvdqk7+3V8S7U4LkS4lxd4lwpcS5DnKtHnKtPnGtAnGtJXOCa3nsMf6GWEB8brKK1Mrj4hmWi8pktEiQq6chlZ2tLO1sz1L3BBWyitUGZ2liWqQ1D3bcxsLOtpZ1tGere4MI+0dagTFnLMmUj171I1InJThhM6/k9A35534Bf2lnWczsGH29nUM/tLe1sz+DjBgsyifYGZepgWaYODHXfwcDOjpZ2dmSoe4OFqkRHgzJ1sixTJwZ+KYnJThhM6/ktA35524BftrGs520YfHwbg3rubGlnZwYfN1hgTHQ2KFMXyzJ1Yaj7LgZ2drW0sytD3RssvCa6GpRpW8sybcvAL3VjshMG03p+zYBfXjfgl26W9dyNwce7GdRzd0s7uzP4uMGCeaK7QZl6WJapB0Pd9zCwcztLO7djqHuDGwmJ7QzK1NOyTD0Z+KU0JjthMK3nlwz45WUDfullWc+9GHy8l0E9b29p5/YMPm5wAyixvUGZeluWqTdD3fc2sLOPpZ19GOre4MZYoo9BmXawLNMODPySiclOGKJ8vSpHUvG8Ab/0taznvgw+3tegnne0tHNHBh83uKGZ2NGgTDtZlmknhrrfycDOfpZ29mOoe4MbvYl+BmXa2bJMOzPwS72Y7IQhylvuciQVTxvwS3/Leu7P4OP9Dep5F0s7d2HwcYMb9IldDMo0wLJMAxjqfoCBnQMt7RzIUPcGGxcSAw3KtKtlmXZl4Jf6MdkJg2k9P2bAL48b8Msgy3oexODjgwzqebClnYMZfNxgw0lisEGZyizLVMZQ92UGdg6xtHMIQ90bbMRJDDEo01DLMg1l4JcGMdmJbTaxqaEjnEaOcBo7wmniCKepI5xmjnCaO8JpYYCjHjBST4nDh4zqRcSvY1FOU4wSBxh1HWCUOsDIOMCo5wCjvgOMBpZ9NCxGuWU+W7yafLHkbRchb1b7JOTaYdLvhksZIWWklFFSRksZI2WslHFSxkuZIGU3KROl7C5lkpQ9aonKE7ZhnhPDc8OJcyOIcyOJc6OIc6OJc2OIc2OJc5OIc3t45zjfIDUuQmcOi6NsgrbuWWvLcS/cKCoi6tuixoWcRX8t0+5pMOPey9HMxBXOeEc4Exzh7OYIZ6IjnN0d4YTtL/MqVP8nmL5ewWDGmxhmWXZTmwxmyInhjmwymFEnRjiyyWAGnhjpyCaDGXtilCObDGb4idGObDK4IkiMcWSTwRVEYiyTTUEY6s8kA5v2CDvH+P33RBUgEb6e9g5pUzk20BBnn5A4h6c/mhkFZ9+QOHfMvHptFJz9QuIMmPPd/Cg4+4fEuWi3H/pHwTkgJM7upZNWRsE5MCTOWUWHnRgF56CQOG1Xv3pFFJyDQ+Ic8M6TzZXuuh6GmquoY4l3rOsdS71jxjvW8471vWMD77i3dzyhMNxxUq2KCzx13Mc77usd9/OO+3vHA7zjgd7xIO+oynuIlMlSpkiZKmWalOlSZkg5tNaWi8e0qLiuCqrfHCFxiIOLR7HFZMu8ia1lSgBFM6Xdh0mZJeVwfBE607sIhecOI87NIs4dXqvqBWyRkcGVKzWXg880GIgOC51WJGYZXEQfbuAEnM43+b/U+Y6Qds+WcqSUOdj5jiCcajZx7kji3BwG55ts4HxHGDjfbAPnO9LA+ebkyfmm/Jc631xp9zwpR0mZj51vLuFU84hzRxHn5jM43xQD55tr4HzzDJzvKAPnm58n55v6X+p8C6TdC6UsknI0dr4FhFMtJM4tIs4dzeB8Uw2cb4GB8y00cL5FBs53dJ6cb9p/qfMdI+1eLGWJlKXY+Y4hnGoxcW4JcW4pg/NNM3C+Ywycb7GB8y0xcL6leXK+6f+lzrdM2r1cyrFSVmDnW0Y41XLi3LHEuRUMzjfdwPmWGTjfcgPnO9bA+Vbkyflm/Jc630ppd7mU46Ssws63knCqcuLcccS5VQzON8PA+VYaOF+5gfMdZ+B8q/LkfIf+lzrfamn3GilrpazDzreacKo1xLm1xLl1DM53qIHzrTZwvjUGzrfWwPnWGTiBqiNd3xd464wXeseLvOPF3vES73ipd7zMO17uHa/wjld6x6u849Xe8RrveK13vM47Xu8db/CON3rHm7zjzd7xFu94q3e8zTve7h3v8I53ese7vOPd3vEf3vEe73ivd7zPO97vHR/wjg96x4e848Pe8RHv+Kh3fMw7Pu4dn/COT3rHp7zj097xGe/4rHd8zjs+7x1f8I4veseXvOPL3vEV7/iqd3zNO77uHd/wjm96x7e849ve8R3v+K53fM87jk5uOe7mHffyjgd4xynecaZ3PNI7LvCOS7zjSu+41jue4B1P8Y5/9o7neMcLvONl3vEa73iTd7zDO97rHR/2jk96x+e946ve8W3v+KF3/Nw7fusdf/KOv3nHwqItx7R3zHjHxt6xpXds5x07e8ce3rGPd9zZOw7yjsO941jvuLt33Mc7HuQdp3nHWd5xrndc5B2XecfjvON673iSdzzNO57pHc/1jhd5xyu843Xe8RbveJd3vN87Hu7dH5jlHQ/zjjO94xzveKR3nO0dj/CO873jUd5xnnec6x2P9o6LvONC77jAOy71jku842LveIx3XOEdj/WOy73jMu+4yjse5x3LveNK77jOO671jmu842rv+LHsB+sVGYKQ8I5ZESok1huMFWrwU19HLAxQmBXhcBPAVhsdI197ckFQ3tp3l7ds/s8XR/RoNveIX85oeeCkhcV1T7tg131SE76YUHTKjy+TSk1v+MO0OUJim/BpI9mUEOFt6izc2FQgwtvURdjZZOr4XYVZO+tg+vjTtgY4JxW6KXs3kLbTRU/t83C/x94/YaeXxqz7fKB48R/v9P+oSe/+A09LD/9sTnrbKDjdhZvy9BA8fpwLZzsRvi1PMWxLU1t+lPr/VRjeHpW2MGmO01OEx/ix0E079DKw6VRHfWp74Qant3CD00e4wdlBuMHpK9zg7Cjc4Owk3OD0E25wdhZucPoLNzi7CDc4A4QbnIHCDc6uwg3OIOEGZ7Bwg1Mm3OAMEW5whgo3OMOEG5zhwg3OCOEGZ6RwgzNKuMEZLdzgjBFucMYKNzjjhBuc8cINzgThBmc3Ybf+YIozUbgpz+7CDc4k4QZnD+EGZ0/hBmcv4QZnb+EGZx/hBmdf4QZnP+EGZ3/hBucA4QbnQOEG5yDhBudg4QbnEOEGZ7JwgzNFuMGZKtzgTBNucKYLNzgzhBucQ4UbnJnCDc5hwg3OLOEG53DhBucI4QZntnCDc6RwgzNHuMGZK9zgzBNucI4SbnDmCzc4C4QbnIXCDc4i4QbnaOEG5xjhBmexcIOzRLjBWSrc4CwTbnCWCzc4xwo3OCuEG5yVwg1OuXCDc5xwg7NKuMFZLdzgrBFucNYKNzjrhBuc9cINzgbhBmejcINzvHCDc4Jwg3OicINzknCDs0m4wdks3OCcLNzgnCLc4Jwq3OCcJtzgnC7c4PxJuME5Q7jB+bNwg/MX4QbnTOEG56/CDc5Zwg3O2cINzjnCDc7fhBucc4UbnPOEG5y/Czc45ws3OBcINzgXCjc4Fwk3OBcLNziXCDc4lwo3OJcJNziXCzc4Vwg3OFcKNzhXCTc4Vws3ONcINzjXCjc41wk3ONcLNzg3CDc4Nwo3ODcJNzg3Czc4twg3OLcKNzi3CTc4tws3OHcINzh3Cjc4dwk3OHcLNzj/EG5w7hFucO4VbnDuE25w7hducB4QbnAeFG5wHhJucB4WbnAeEW5wHhVucB4TbnAeF25wnhBucJ4UbnCeEm5wnhZucJ4RbnCeFW5wnhNucJ4XbnBeEG5wXhRucF4SbnBeFm5wXhFucF4VbnBeE25wXhducN4QbnDeFG5w3hJucN4WbnDeEW5w3hVucN4TbnDeF25wPhBucD4UbnA+Em5wPhZucD4RbnA+FW5wPhNucD4XbnC+EG5wvhRucL4SbnC+Fm5wvhFucL4VbnD+T7jB+U64wfleuMH5QbjB+VG4wflJuMH5p3CD87Nwg/OLcIPzL+EG51fhBuc34Qbn38INzu/CDY7KEDItymiGk3CEU+AIp9ARTtIRTpEjnJQjnFqOcIod4aQd4dR2hFPHEU6JI5y6jnBKHeFkHOHUc4RT3xFOA0c4DR3hNHKE09gRThNHOE0d4TRzhNPcEU4LRzgtHeG0coTT2hFOG0c4bR3hZB3htHOE094RTgdHOB0d4XRyhLONI5zOjnC6OMLp6ghnW0c43RzhdHeE08MRznaOcHo6wunlCGd7Rzi9HeH0cYSzgyOcvo5wdnSEs5MjnH6OcHZ2hNPfEc4ujnAGOMIZ6AhnV0c4gxzhDHaEU+YIZ4gjnKGOcIY5whnuCGeEI5yRjnBGOcIZ7QhnjCOcsY5wxjnCGe8IZ4IjnN0c4Ux0hLO7I5xJjnD2cISzpyOcvRzh7O0IZx9HOPs6wtnPEc7+jnAOcIRzoCOcgxzhHOwI5xBHOJMd4UxxhDPVEc40RzjTHeHMcIRzqCOcmY5wDnOEM8sRzuGOcI5whDPbEc6RjnDmOMKZ6whnniOcoxzhzHeEs8ARzkJHOIsc4RztCOcYRziLHeEscYSz1BHOMkc4yx3hHOsIZ4UjnJWOcMod4RznCGeVI5zVjnDWOMJZ6whnnSOc9Y5wNjjC2egI53hHOCc4wjnREc5JjnA2OcLZ7AjnZEc4pzjCOdURzmmOcE53hPMnRzhnOML5syOcvzjCOdMRzl8d4ZzlCOdsRzjnOML5myOccx3hnOcI5++OcM53hHOBI5wLHeFc5AjnYkc4lzjCudQRzmWOcC53hHOFI5wrHeFc5Qjnakc41zjCudYRznWOcK53hHODI5wbHeHc5AjnZkc4tzjCudURzm2OcG53hHOHI5w7HeHc5Qjnbkc4/3CEc48jnHsd4dznCOd+RzgPOMJ50BHOQ45wHnaE84gjnEcd4TzmCOdxRzhPOMJ50hHOU45wnnaE84wjnGcd4TznCOd5RzgvOMJ50RHOS45wXnaE84ojnFcd4bzmCOd1RzhvOMJ50xHOW45w3naE844jnHcd4bznCOd9RzgfOML50BHOR45wPnaE84kjnE8d4XzmCOdzRzhfOML50hHOV45wvnaE840jnG8d4fyfI5zvHOF87wjnB0c4PzrC+ckRzj8d4fzsCOcXRzj/coTzqyOc3xzh/NsRzu+OcESBG5yEI5wCRziFjnCSjnCKHOGkHOHUcoRT7Agn7QintiOcOo5wShzh1HWEU+oIJ+MIp54jnPqOcBo4wmnoCKeRI5zGjnCaOMJp6ginmSOc5o5wWjjCaekIp5UjnNaOcNo4wmnrCCfrCKedI5z2jnA6OMLp6AinkyOcbRzhdHaE08URTldHONs6wunmCKe7I5wejnC2c4TT0xFOL0c42zvC6e0Ip48jnB0c4fR1hLOjI5ydHOH0c4SzsyOc/o5wdnGEM8ARzkBHOLs6whnkCGewI5wyRzhDHOEMdYQzzBHOcEc4IxzhjHSEM8oRzmhHOGMc4Yx1hDPOEc54RzgTHOHs5ghnoiOc3R3hTHKEs4cjnD0d4ezlCGdvRzj7OMLZ1xHOfo5w9neEc4AjnAMd4RzkCOdgRziHOMKZ7AhniiOcqY5wpjnCme4IZ4YjnEMd4cx0hHOYI5xZjnAOd4RzhCOc2Y5wjnSEM8cRzlxHOPMc4RzlCGe+I5wFjnAWOsJZ5AjnaEc4xzjCWewIZ4kjnKWOcJY5wlnuCOdYRzgrHOGsdIRT7gjnOEc4qxzhrHaEs8YRzlpHOOsc4ax3hLPBEc5GRzjHO8I5wRHOiY5wTnKEs8kRzmZHOCc7wjnFEc6pjnBOc4RzuiOcPznCOcMRzp8d4fzFEc6ZjnD+6gjnLEc4ZzvCOccRzt8c4ZzrCOc8Rzh/d4RzviOcCxzhXOgI5yJHOBc7wrnEEc6ljnAuc4RzuSOcKxzhXOkI5ypHOFc7wrnGEc61jnCuc4RzvSOcGxzh3OgI5yZHODc7wrnFEc6tjnBuc4RzuyOcOxzh3OkI5y5HOHc7wvmHI5x7HOHc6wjnPkc49zvCecARzoOOcB5yhPOwI5xHHOE86gjnMUc4jzvCecIRzpOOcJ5yhPO0I5xnHOE86wjnOUc4zzvCecERzouOcF5yhPOyI5xXHOG86gjnNUc4rzvCecMRzpuOcN5yhPO2I5x3HOG86wjnPUc47zvC+cARzoeOcD5yhPOxI5xPHOF86gjnM0c4nzvC+cIRzpeOcL5yhPO1I5xvHOF86wjn/xzhfOcI53tHOD84wvnREc5PjnD+6QjnZ0c4vzjC+ZcjnF8d4fzmCOffjnB+d4QjCt3gJBzhFDjCKXSEk3SEU+QIJ+UIp5YjnGJHOGlHOLUd4dRxhFPiCKeuI5xSRzgZRzj1HOHUd4TTwBFOQ0c4jRzhNHaE08QRTlNHOM0c4TR3hNPCEU5LRzitHOG0doTTxhFOW0c4WUc47RzhtHeE08ERTkdHOJ0c4WzjCKezI5wujnC6OsLZ1hFON0c43R3h9HCEs50jnJ6OcHo5wtneEU5vRzh9HOHs4AinryOcHR3h7OQIp58jnJ0d4fR3hLOLI5wBjnAGOsLZ1RHOIEc4gx3hlDnCGeIIZ6gjnGGOcIY7whnhCGekI5xRjnBGO8IZ4whnrCOccY5wxjvCmeAIZzdHOBMd4ezuCGeSI5w9HOHs6QhnL0c4ezvC2ccRzr6OcPZzhLO/I5wDHOEc6AjnIEc4BzvCOcQRzmRHOFMc4Ux1hDPNEc50RzgzHOEc6ghnpiVOAcLpNX3C/He3P6/rrROH33zccfse1KXPJ6OW3DbvlKHv/nDaNzK+owhv02FMNuXCmVUY3v5aSTf1lBTh7T/cUdsVifA2HeHIppQIb9NsRzbVEuFtOtKRTcUivE1zHNmUFuFtmuvIptoivE3zHNlUR4S36ShHNpWI8DbNd2RTXRHepgWObCoV4W1a6MimjAhv0yJHNtUT4W062pFN9UV4m45xZFMDEd6mxY5saijC27TEkU2NRHibljqyqbEIb9MyRzY1EeFtWu7IpqYivE3HOrKpmQhv0wpHNjUX4W1a6cimFiK8TeWObGopwtt0nCObWonwNq1yZFNrEd6m1Y5saiPC27TGkU1tRXib1jqyKSvC27TOkU3tRHib1juyqb0Ib9MGRzZ1EOFt2mhgU6HYsg6o1kRV2EZKZyldpHSVsq2UblK6S+khZTspPZW9UraX0ltKHyk7SOkrZUcpO0npJ2VnKf2l7CJlgJSBUnaVMkjKYCllUoZIGSplmJThUkZIGSlllJTRUsZIGStlnJTxUiZI2U3KRCm7S5kkZQ8pe0rZS8reUvaRsq+U/aTsL+UAKQdKOUjKwVIOkTJZyhQpU6VMU+WXMkPKoVJmSjlMyiwph0s5QspsKUdKmSNlrpR5Uo6SMl/KAikLpSyScrSUY6QslrJEylIpy6Qsl3KslBVSVkopl3KclFVSVktZI2WtlHVS1kvZIGWjlOOlnCDlRCknSdkkZbOUk6WcIuVUKadJOV3Kn6ScIeXPUv4i5Uwpf5VylpSzpZwj5W9SzpVynpS/SzlfygVSLpRykZSLpVwi5VIpl0m5XMoVUq6UcpWUq6VcI+VaKddJuV7KDVJulHKTlJul3CLlVim3Sbldyh1S7pRyl5S7pfxDyj1S7pVyn5T7pTwg5UEpD0l5WMojUh6V8piUx6U8IeVJKU9JeVrKM1KelfKclOelvCDlRSkvSXlZyitSXpXympTXpbwh5U0pb0l5W8o7Ut6V8p6U96V8IOVDKR9J+VjKJ1I+lfKZlM+lfCHlSylfSflaiuqT30r5PynfSfleyg9SfpTyk5R/SvlZyi9S/iXlVym/Sfm3lN+lqE6XkFIgpVBKUkqRlJSUWlKKpaSl1JZSR0qJlLpSSqVkpNSTUl9KAykNpTSS0lhKEylNpTST0lxKCyktpbSS0lpKGyltpWSltJPSXkoHKR2ldJKyjZTOUrpI6SplWyndpHSX0kPKdlJ6SuklZXspvaX0kbKDlL5SdpSyk5R+UnaW0l/KLlIGSBkoZVcpg6QMllImZYiUoVKGSRkuZYSUkVJGSRktZYyUsVLGSRkvZYKU3aRMlLK7lElS9pCyp5S9pOwtZR8p+0rZT8r+Ug6QcqCUg6QcLOUQKZOlTJEyVco0KdOlzJByqJSZUg6TMkvK4VKOkDJbypFS5kiZK2WelKOkzJeyQMpCKYukHC3lGCmLpSyRslTKMinLpRwrZYWUlVLKpRwnZZWU1VLWSFkrZZ2U9VI2SNko5XgpJ0g5UcpJUjZJ2SzlZCmnSDlVymlSTpfyJylnSPmzlL9IOVPKX6WcJeVsKedI+ZuUc6WcJ+XvUs6XcoGUC6VcJOViKZdIuVTKZVIul3KFlCulXCXlainXSLlWynVSrpdyg5Qbpdwk5WYpt0i5VcptUm6XcoeUO6XcJeVuKf+Qco+Ue6XcJ+V+KQ9IeVDKQ1IelvKIlEelPCblcSlPSHlSylNSnpbyjJRnpTwn5XkpL0h5UcpLUl6W8oqUV6W8JuV1KW9IeVPKW1LelvKOlHelvCflfSkfSPlQykdSPpbyiZRPpXwm5XMpX0j5UspXUr6W8o2Ub6X8n5TvpHwv5QcpP0r5Sco/pfws5Rcp/5Lyq5TfpPxbyu9S1AQgIaVASqGUpJQiKSkptaQUS0lLqS2ljpQSKXWllErJSKknpb6UBlIaSmkkpbGUJlKaSmkmpbmUFlJaSmklpbWUNlLaqvfASGknpb2UDlI6SukkZRspnaV0kdJVyrZSuknpLqWHlO2k9JTSS8r2UnpL6SNlByl9pewoZScp/aTsLKW/lF2kDJAyUMquUgZJGSylTMoQKUOlDJMyXMoIKSOljJIyWsoYKWOljJMyXsoEKbtJmShldymTpOwhZU8pe0nZW8o+UvaVsp+U/aUcIOVAKQdJOVjKIVImS5kiZaqUaVKmS5kh5VApM6UcJmWWlMOlHCFltpQjpcyRMlfKPClHSZkvZYGUhVIWSTlaivpOvfqGvPq+u/r2uvouuvpmufqeuPrWt/oOt/pGtvp+tfq2tPrus/oms/pesvqWsfrOsPoGsPo+r/p2rvqurfrmrPoerPpWq/qOqvrGqfr+qPo2qPpup/qmpvrepfoWpfpOpPqGo/q+ovr2ofouofpmoPqen/rWnvoOnvpGnfp+nPq2m/rumvommvpemfqWmPrOl/oGl/o+lvp2lfqulPrmk/oek/pWkvqOkfrGkPr+j/o2j/pujvqmjfrejPoWjPpOi/qGivq+ifr2iPouiPpmh/qehvrWhfoOhfpGhPp+g/q2gvrugfomgfpegHqXv3rPvnoHvno/vXp3vHqvu3rnunofunpXuXqPuHrHt3r/tno3tnpvtXqntHrfs3oXs3pPsnqHsXq/sHr3r3ovr3pnrnqfrXrXrHoPrHpHq3p/qnq3qXrvqHonqHpfp3qXpnrPpXoHpXo/pHp3o3qvonrnoXofoXpXoHqPn3rHnnr/nXo3nXpvnHqnm3rfmnoXmnpPmXqHmHq/l3r3lnovlnpnlXqflHrXk3oPk5p4q/cXqXcLqff+qHfyqPflqHfZqPfMqHfAqPezqHenqPeaqHeOqPeBqHd1qPdoqHdcqPdPqHdDqPc2qHcqqPcdqHcRqPcEqGf41fP16tl39Vy6emZcPc+tnrX+z3PQUtTzw+rZXvXcrXomVj2vqp4lVc95qmcw1fOR6tlF9VyheuZPPY+nnpVTz7GpZ8zU81/q2Sz13JR6pkk9b6SeBVLP6ahnaNTzLerZE/VciHpmQz1PoZ51UM8hqGcE1P59tbde7XtXe9LVfnG1l1vts1Z7oNX+ZLV3WO3rVXtu1X5YtVdV7SNVezzV/ku1N1LtW1R7CtV+P7UXT+2TU3vY1P4ytfdL7ctSe6bUfia110jtA1J7dNT+GbW3Re07Udc/ar+G2kuh9jmofQXqnr+6b67uU6v7wuo+rLrvqe4zqvt66j6aum+l7hOp+zLqPoi676DW+dW6ulrHVuvGap1WrYuqdUi17qfW2dS6llpHUus2ap1ErUuodQB13a2uc9V1pbqOU66irsl08IaO/1y3qfv/6n67ur+t7ier+7fqfqm6P6nuB6r7b+p+l7q/pO7nqPsn6n6Fuj+g1uPV+rdab1bru2o9Va1fqvVCtT6n1sPU+pNa71HrK3o9o53Ycn3cQWzZp9FJVA07gd+NvePJMx96/PvPaz0D0zUNiGvmHR965cBWHRo3fwXGHeYdT99tfMeWP49dDeOODdCpfF6FtqnhL03qdv/rMO6xpH++J7y4cZOvyZ7ZMlkE454KyPdMQL7nAvK9GBD3coDOVwPyvR6Q782AfO8ExL0XoPODgHwfBeT7JCDf5wFxXwbo/Dog37cB+b4LyPdjQNw/A3T+EpDv14B8/w7Ilyjyjyss8tdZFJCvVkC+dEC+koC40gCd9QLyNQjI1yggX9OAuOYBOlsG5GsdkK9tQL69vbj9655VclGjL/4C4w4MiJsaEHdYQNycgLiFAXFLA+LKA+JWeXHJNzb2GDZht436fG3v2MU7TlmwYMb8hYdMm3vkvCkLZ02dPeOQufOnTJOHo2fMXzBr7pxDjpk/Zd68GfObeOmLvWOBd1Tjn6LxrAgVEsUgn3n+8mHFWKFRfvGf/Alhi7+l/HrMt8mf0oaA/NAWrVfNH+qA33URvqX9w6La3yDAZt02Q0H6rAgVCpVfqnLW806osnf0fi9aOGv2rIVLyv7jqkO3eupu/3HUvbf4KVaYQP8P9TlfG9idBGnC18niYVqnN535zxywkEiZREedRs/J0gBfH8PsKX3twR9eunFM7yPro/wq6LapDXCmz1owba7s34fMmXHMIUfOWLBgyswZC2p7tZ3nDn5qxA5+akQHTxSDPBb5t3bwU0B+bIsKJaJyR4J5annx+vcB3u+Inf/U6tr5dd5hVN7vF7x88eMn3fDApQsvueiM+q/VPbNO99or1679uuVXrf76zdoLdN7hwKaECI2d0vlHUNi73lK4/2HX/TK3zsjV1xzz2qsTFtVtNeW+thsu2v/BU9p+esg6nXcklfeTE89ambnm1POy3Z78ITVy8xeHfDe6qN9rTy5vfv+qXz/95jSddxSV97n9f33zxsxpSxefdNuyfl0aTrnytJe//ezhx6/OfPfuVUe93FfnHQ3KbNNHx4D8BpvXt7b1WLv8W/HH2eUv0PnHg/wG5a+n808AJ7P6x3EXXvpm2UlP9nr/19rHj5+yZnGfE57f58ulzS7p9OHhV7W6sr7OuxuV972FQ09Z2PTIHb8sfvqk7f/esvXb319y48c/LpnR74uPP7m53Xc670Qqb46g8+5O5G3Wu/PO8/7yTKM3urR/ffA9V253evPvOw5449ZRf//ml0f/CfJO8o6G9bW1vvewy5/U+fe0y7+VH/YC+Q36+FZ/29su/1b8fezyb62/fUF+g/IP1vn3AyezwXm2Dis67/522KU6/wHhsXUo0nkPtMJObLX9IBo7sbr9gj+nT0qMv29VjxtLat/3adm5Q4Y++fia49tmrjxX5z2YyLvtgPQ3Fx2/Yq1455LPN/247Z2De9RvU1Z/uxfOeqnlnPkHNP9G5z1kqyVGddZK558M8iPbA4POPwXkN/C3rfmngvymFzkqTAP5hTDvb9PByawIFbbmnWGed2s/O1QrE0bl3uqvM+3yb51LHGaXv5bOP8suf7HOf7hd/jo6/xF2+Ut0/tl2+evq/Efa5W+r888B+Q36TVbnn2uHvzX/PDv8Hjr/UXb5e+n88+3yb6/zL7DLX6bzL7TLP1znX2SXf4TOf7Rd/gk6/zF2+Q/R+Rfb5Z+i8y+xyz9V519ql3+azr/MLv90nX+5Xf4ZOv+xdvkP1flX2OWfqfOvtMt/mM5fbpd/ls5/nF3+I3T+VXb5Z+v8q+3yH6nzr7HLP0fnX2uXf67Ov84u/zydf71d/vk6/wa7/At0/o12+Rfq/Mfb5V+k859gl/9onf9Eu/yLdf6T7PIv0fk32eVfpvNvtst/rM5/MjiZFWFCQugF8Pe9Oy3UWp2BLRP1+mJhJZTKuu0WvP+zb7WSPiEqr5cKpD+NbDHESySQPo2Hy6frSpe9iLAlQ8ThOi4icIoInAwRt5xR13pGXccy6lrLqIuzjKsZdZUz6lrDqGsFo645jLo4656zD22oproWM+ri9AnOuuf0r2WMusoZdXH6xFJGXWsZdZ3AqKu6jo96zqnnDnCukfA5ahx8TuOkkS7beQ9VriSBF5S+MCB9KqR+tSkj4/32NmUMmzF10cxxc2cKFJLo/+E+JrZC6aYGmIb1JpDg863QuUIiLQyqeHqfk1e8ETMWTjtszykzZ86YLgu5AOfAmob5nMcTUphGT8ZTyNKsCBUKwjgl1J9Gttg6JeU0VGdTtdrA++3V6ri5U6YPnTJvwaLZMwqgalHZclwrUCs8R7VpAlgmAtINQ/+PJvIJQreK1y1XjM5nRaiQ1l6RJiJ1XG2kG8bVAXGwNXEoJOzXNqtLzk+bVOjF6bA9sD1qo7haIK4OwMbtmiJwtP0FRPpaSFeKyKfz5MIr9MkHfwddOofpbbocKmQIDI0dIys0qu6soMtXyw6vYQLlh3hQp7ZH13UxEad16X6Y8tEF9wnC9A95xwxKp8JEhFFM2AvP6fpRdXYvsh3WLfaTKPUI9Wm74DmoPy0i+WUiqN1g+bCfWHJsgzD1Du3BnIzrFvJeykeXzptE6Z/3jhlRlfexn6QJe+E56CdPIdth3WI/sazHsrB+ovWnRSS/TAS1Gywf9pO0Hd7gMPUO7aHGZ1i3cAxM+ejSeZMo/TveMYPSqYD9pDZhLzwH/UQ/YFXsY29WhArHUPMW7Gd43pIVoUKrsH6m9adFpHZPBNUj1d+ouZfOmyHi8KVWHQKnDoGTIeLWM+pay6hrKaOu5Yy6NlRTXeWMutYw6lrBqGsOo65VjLo4/b461lfQOGSqS4VyRl0bGXWtZNTF6aucZVzMqKu69u1NjLqOYtS12TvieZ7Wr0KxqNr3TK9NoD5tJzwH9aeRLbZzHapeqDmjLl+JHV79BMoP8aBObY+u67pEnNZV6v2f8tGl8yZR+q5ehWZQOhXwnLouYS88B+fUHT29pYS9eH3B1B9hflxHMB/2xyjtBfVpO+E5qD8tIvl/Isg/qHrR5atrh1cvTPtCe3RdlxJxWpe+HZLy0aXzJlH6nZE/lgKbsD+WEvbCc9Afd0hUth3WLfYTy3ocHtZPtP60iOSXiaB2g+XDflJqhzcsTL1De3RdZ4g4rUs/15zy0aXzJlH6EchPMsAm7CcZwl54DvpJGfITWLfYT+zqMfFtWD/R+tMikl8mgtqN4m9dvowVXuKbMPUO7dF1XY+I07r0M9wpH106bxKl3wP5ST1g0xSEUY+wF56DfjIB+QmsW+wndvX4n1dOVtKn7YLnoP60iNS/E0HtRvGqLl89O7yyMPUO7dF1XZ+I07r0HdWUjy6dN4nST0Z+Uh/YhPmkPmEvPAf95ABPbylhL14/D8tTGSK/Tkf5nJKsCBX2pNrUIP9RuI20DmhbA3DewF+2D9sftP60qOovNv2hAcLza29d9oaELRkiDrdRQwKnIYGTIeJWMupazqhrDqOupYy6VjHqWsyoq5xR12pGXZw+sYxR1zGMujYw6aL4M4pd6xl1bWTUxdm3NzHq4uTCckZdaxh1cbbjZkZdnD5RzqiLq2+rwFlGTp9Yy6iruvIEp11/hDlTzZiWv7rn7I/HMuriLOOJ1dQuzvkEZxn1WKuvFeG1ZcI7Fouqfc/gunXXBNKn7YTnoP40ssUQLxFUL7B8+Dq5EWFLhojD18mNCJxGBE6GiFvJqGs5o645jLo4y1jOqGsNo66NjLo4634To66adjTTtZlRF6dPLGPUtZZRFyd/bWDUxVn3nL7KWffVlb84fZXTv1Yz6uJsR07/4uxDnP61nlHXYkZdnGWsrnM5zjJyzieqaztW17nciYy6qus8p5xRV8184n+jD3HyBKddXP6lftdj0qXC8Yy6OOuecw6gx1q870vrVyHiGli7BNKn7YTnoP60qNqWXGtg1B4yXb5GdnjZMO0A7dF13ZiI07r0Oz5SPrp03iRKv7dXqAxKp8IUhNGYsBeeg3undvf+KSXsjXovAubHdQTzYX+0bK/CsP6o9adFJP9PBPkHVS+Uf+i8GSIO13/Ydg3SVSr4ubUeUZ4SIh9uZ2ifQb2HflYAftsogl8lguqfqhddviZ2ePUwV0A8qFPbo+u6KRGndelvaKZ8dOm8SZR+PuKdpsCmKQijKWEvPAd550jEO1SfsPV7ik//13BKiHy4f1n6X1HY/qX1p0Wk/pwI8neqXih/13kzRByu/7B++t+oS/tfkwCcIF6hcGD+JjU4kXBKiHy438J2Dd+PEu+E7bdaf1pE4olEkN9S9aLL18wKL/E2HssgHtSp7dF13ZyI07paeP+nfHTpvEmU/u9oXGwObJqCMJoT9sJzcFw8u6Cy7bBusZ/Y1aPIhPUTrT8tovhlhZ9Q7Ubxmy5fczu80jD1Du3Rdd2CiNO6Wnr/p3x06bxJlP5q5CctgE34mZcWhL3wHPSTy7x/in3szYpQ4V2qrg3yn1csqtadQf6uOn9Lu/y36vyt7PLfrPO3tst/nM7fxi7/vjp/W7v8BxWj9Ib5u+j87ezy99H529vl/0Tn72CXf5TO39Eu/206fye7/Kfo/NvY5R+q83e2y/+Dzt/FLv9pOn9Xu/zf6PzdQH6TNTadv4dd/kJtb3d4krBJ69dcvy1In/A5al04TmOlkS7bcZGyHdqH55XdAR4so5+u7oa6iok4mzbpJvzLBfWXBNiC7VQBv2vFtswqLGPUdTSjrvVMutTvZky6VJjPaFdzRl0tGHW1ZNRVwKRLhYWMdrVi1NW6mupqw6irLaOuLKOudoy62jPq6sCkS4WTGO3qyKRLhXWMdnVi1LUNoy6usUP97syoqwujrq5MulSYUk116c+XR1wvGB1xvaB/xPWC8RHXC/aIuF4wMuJ6wbCI1/vjSoj0Ce9IXcsbzNv163a26hOCvv7R+tPIFkO8rdc/7RAeLh++79OesCVDxGEfb0/gtCdwMkTcGkZdJzDqWsyoaxWjrnJGXcsYdc1h1LWaUddyRl0bqqkuTl9dwaiLq+6pcbG6+Go5o66NjLqqa388nlEXZx+qrnW/klEXJ09wjrWcHM1Z95z1VV39axWjLs525Kz7PwJPbGLSpX63YNKlwkJGu1pWQ10qLGC0qxWTLhW46l6FY6qhXep3G0ZdBUy6VODyCRWOZtKlfrdm0qUCZzty2sXlq9WZCzNMulTg5C/OduS0qzrWlwqcvtqWSZcKnGMHF3+psJlRF+f861hGXeWMujjn5KsYdXGuPer5vV7HbgPiEt4x4hp+aQLp03bCc1B/GtliiBe4hg/Lp+uF2i9ogFc3TDtAe3RddyDitC59Tzjlo0vnTaL0//AqNoPSqYD39nYg7IXndP2ovb23F1a2HdYt9hPLegz9rUutPy0i+WUiqN1g+XQ9UO2m82aIuALw26S+qbZbz6hrLaOupYy6ljPq2lBNdZUz6lrDqGsFo645jLrWMeri7EPljLpOYNS1mFHXRkZdnH2b0784+xAnr/4R6n41oy5OjtZcqJ+/hPOZJMIxnXvD/DpdxOdVJkV8XmXviM+r7KbnRZ3AyYR3pJ4lMZijHZdA+oSg54RafxrZYoi3dU7YGeHh8uE5YRfClgwRh/f/dCFwuhA4GSJuDaOuExh1LWbUtYpRVzmjrmWMuuYw6lrHqGs9o65yRl3V1Vc3MupazqiL0784OWcto64/Qt2vZtTFWcYN1VQXZ99ewaiLq+7V7+ZMulTg9NXqOgfg1FUzbteM2/8tY0fNuF0zbteM2/+bdV9dffV4Rl2c9cXJOZx1v5JRF2cf4hy3qytHV9f5BGcZOee+nO3IWfd/BJ7YxKQrIaruUYiiqz2jLq51cvW7A5MuFRYw2pVh0qXCQkZdxzDqOppJl/rdkVHX/3rdq98tGHW1ZNTVikmXCpz1tQ2jLi5fVYGzD1VXv6+uZfxf50JOu1SoGTv++8cOFRYx6VK/Ofc8cNWX+t2WUVdrRl1cY60KnOMjV32pUB3HDhU2M+rivOY7llFXOaMuznWAVYy6OPfnbBBbgt7rBfeGJbxjsajaXxROVoQK3RNIn/Dyw3NQfxrZYoiXCKoXWD5dL7rsXQlbMkQc5sOuBE5XAidDxJUz6trAqGspo661jLpOYNS1nFHX+mpq1zJGXXMYdW1i1HUUo67NjLo462sNoy7O/riRURen33NyIWc7Hsuoi5NzOH1iNaMuzrpfXE3tWseoi9Mnyhl1cY7bnO24kVEXJ39x+hdnf6yuHM2pi9O/VjDqwt+Yhtc3Ce9YjPIlhNG1U8cE0qfthOeg/jSyxRAvEVQv1DWsLns3wpYMEYfvAVPfSOlG4GSIuPWMutYy6lrKqGs5o64N1VRXOaOuNYy6VjDqmsOoax2jrsWMujj740ZGXeWMujjraxWjLk7/4uxDnLzK6ROcvFpd+zZnfyxn1HUCoy7O/vhH8K/VjLo45wD4PQhwvozfg2A6Z4f5dboSIl/COxYj+xLCaA59SgLp03bCc1B/WlQts82cnap/ql5MvjeofnN+P28No64TGHUtZtS1ilFXOaMuzm89zmHUxfUdMRW4vhupQjmjrurqqxsZdS1n1MXpX5ycs5ZR1x+h7lcz6uIs44Zqqouzb69g1MVV9+o313dvVeD01eo6B+DUVV3Hbc6655wDcHJ0OaOu6uqrNeN2/sa0mjm5ma6aOXn+/KtmXpg//6qO80IVOOuruvrq8Yy6OOuLk3M4634loy7OPsQ5dlRXjq6uYxpnGTnnvpztyFn3fwSe2MSkKyGq7lGKYtcCRrvaM+rKMOrivD/EWV9tmXSpcAyjrqOZdKnfHRl1cfmECgsZdXHVPWff5u6PXH1I/e7ApEsFzv74R/CvFoy6WjLqasWkSwXO+tqGURcXF6rAydHV1e+raxn/18daTrtUqJmb/PePHSosYtLFOZ9Qgau+1G+uObn63ZpRF9dYqwLn+Mh5DVMdxw4VNjPq4lxTOJZRVzmjLs51plWMujj3F+L3oMC9rQnvWCyq9heFkxWhQkkC6dN2wnNQfxrZYoiXCKoXap+0Ll8PO7w6CZQf4kGd2h5d19sRcVpXT+//lI8unTeJ0r+T2nLMoHQq4G8Fb0fYC8/p+lHfCn49Vdl2WLfYTyzrsXVYP9H60yKSXyaC2o3qP1S76bwZIg6vgYStb6rt1jPqWsuoaymjruWMujZUU13ljLrWMOpawahrDqOudYy6OPtQOaOuExh1LWbUtZFRF2ff5vQvTrs425HTLk6e4PQJznZczaiLk+/x83ZwboSftwuaP1I4ML9OV0LkS3jHYlF1jmIwX1qbQPq0nfAc1J8WVctsMz+j6p+qF132noQtGSIOr930JHB6EjgZIm4No64TGHUtZtS1ilFXOaOuZYy65jDqWseoaz2jrnJGXdXVVzcy6lrOqIvTvzjt4mxHTrs4eZXTJzjbcTWjLs6631BNdXHyxApGXVx1r343Z9KlAqevVtf5BKeumjlAzRwgTl6tmQPUzAFq5gA1c4Bcujjrq7r66vGMujjrq7ryxEpGXZx9qLqOHdV17ltd/YtzHs3Zjpx1/0fgiU1MuhKi6j6GKLraM+riWr9Xvzsw6VJhAaNdGSZdKixk1HVMNbSLux056+toJl3cPsHVjup3C0ZdLRl1tWLSpQJnfW3DqKsjky4Vqquv1vTH/JWxOvqXCjXjUI3f47hFTLrUb849Ipz+1ZZRV2tGXVzjtgqcYy1XfalQHfujCpsZdXFeix7LqKucURfn+sQqRl2c+5nw8z0FIC7hHfW+wAw4r3CyIlRIJpA+bSc8B/WnkS2GeFv3BWYQHi6f/q3L3oywJYPiVMDPyTQjcJoROK50Ue2lJCtChb1wfWgdUDfcf2DQNs3C+oLWnxZV28bGF5ojPL961WVvQdiSIeJwHbcgcFoQOBkibg2jruOqqV1rmXSp38VMurjLOIdR12pGXRsYda1g1MVZXxsZdZ3EqGsdo67ljLo4676cUdcyRl2cZdzEqOsoRl2bvaMev+Dch2nsrms7dlvOGwPHblg+XS+6fC3s8ErCtAO0R9d1SyJO69JryykfXTpvEqVf4g1uGZROBTxnbEnYC8/p+lHPaS/09JYS9rZBeql6b07ozRD5dbpiIl9W//h+wcsXP37SDQ9cuvCSi86o/1rdM+t0r71y7dqvW37V6q/frL0wYnvuo/O3tMvfUOdvZZe/gc7f1i5/fZ2/vV3+YTp/B7v8ZTp/R3AyGyprhe12z5IlvtH5e4L8BaHzi2Kdv5dd/h11/u3t8u+k8/cG+Q3K/7bO3weczXrHji/dXuunyzcnr3/lm7nH/LDtaY+NPOnuKwac+mSPXcv3eP+Mr8brvDsQeXOEXXTevlTeXW8p3P+w636ZW2fk6muOee3VCYvqtppyX9sNF+3/4CltPz1kvc67I5X3uf1/ffPGzGlLF59027J+XRpOufK0l7/97OHHr8589+5VR728o+KmTYibdtK1ISqPM0r6ef8XgbipII3Om0TpZ5VW5DvVwwuz9lGIbMmKUKF52DFTn+Na+yhEeLh8+Ho3SdiSQXEq4PlPksBJEjiUrs2MuuYw6lrHqGs5o641jLqWMeoqZ9TFWcYVjLqqq38tZtS1nlHXRkZd5Yy6OOtrFaMuTv/i7ENrGXVx+gQnr+J7IDAOzwOKwHmDcbkg7DxA608LelzOilBh6zygCOH51UsdKQ2834sWzpo9a+GScXOnTB86Zd6CRbNn4JkRno3BWoFa4bmEqFx6GFeIzuF0I9D/o4l8gtCt4nXL1UHnsyJU6Ky9ojMRqeO6IN0wzu8L2jgUEvZrm2tJ+bRJhV6cDtsD26MLikuDuK4AG7drEYGj7S8g0qeRriIin86TC++P3BOpdtJ5M0Qc7othZ/42DKFX3TyGGDZj6qKZ4+bOFCgk0f/DfUxshtKN9jEtQehNIMHn8c3LQhFMQUEXgWFcRoiqgwzUNRXh1Awy/0uDjNaXBnFUTWideokDlintkw93anyugEhfhHQVEfkwGVP5oQ6YD9tWLKqWNat/HHfhpW+WnfRkr/d/rX38+ClrFvc54fl9vlza7JJOHx5+VasrGyisH4v96wUTlq6nohzlS6L024Gln188POWRTb14zyOHLJp9xKQZC+fPmnH0DMltCwQKudxoAvp/NyIfFUpE1abGxGDZUUMTg9afFrSrZEWosJUYqFk5LJ8dMWCHwLMqbmLYDf1vM/vEI3ZWhArGs088i+iKcPVvHCiC0Tabzj5he+DZJ+yoePYJ2zVJ4GDCg+kx4VHkiQnPD69miN4Saq4DQai5DiTsj/s6EOcrElV7Lh7uddpOniERe6yoD/JhG2vG7C2hZswGoWbMJuyPe8ymmASzRJyX+BAb3zNWIat/vLdw6CkLmx6545fFT5+0/d9btn77+0tu/PjHJTP6ffHxJze3+z4ia+wdke32UvkGe06kL8ZgP8D9WI9Mfvfhdd4kSj8iXZFvmPdbxXXy4j1G2XvK7FnTpyycMXzOUYtmLJoxfcLchTMWlM2ZPvzoGXMWGl+ajUT/jyLyUaE20NcY6C9EhVQBr2F5fXDrBjCcBleQTj/Gi1Ad+RvvJOV02p4SlF/Hq6CdoimyPStChdBDkdafRrbYDkVNER4un91QBN0Z1wrUCs/leyiy3LJpPBSlURwcimBr4kANRdpm06EItgceiuBjIHgogu3alMDR9hcQ6ZshXU2JfHgo8sMrJPLhqUQCnYdrWY0JbLyWNRWww3dN/OuhsfCvB2gPtjPGR4D2Ccsm+XoEyIxNoKdAlL2RVp0GpoVhb2CZ8ElHtV6SyIeDrrEksnkZGIRno0Eflqs2sofydngOT5Jgfp2OwqkVEacWgaM9uQ7INxnFlQTE1QU6a6O4eiAfvr9TH8RNRHENgM5aKK5hgM5GhE7Vdi1qV+hT0hGkozwd34VoD+yBeeH/RSitCtO9YxKl3QT8qhz5FezF2K9MH36E+ZsJf5xaEXFqETh4tFJhMoprTpQVP2CoAm5narO/jmtDlEvHZQN0tiN0qvapX7tyOtz+KmjG7wTOm1yUhGV8rT+NbLFl/E4ID5cPPzjS2Q5vrwTKD/GgTm0PNfOCdatEz25SPrp03iRKf5bX3zIonQr4wZEuhL3wHHxw5Ix0Zdth3SZ8jlovPof7Fyy7bh+NA/lmKrDnvHTlskCeKhRVeU1fEGOuagnuCl6AuArmx21H9RPb8nckylgqqtZNCvz28+9OATipgPLE1Z4phAN5FrbnNag9O4M4zNHqt34oJ4nSJ0F7Xo/ak+qLVD3jccm0nmsTOHHXMx5fujDiQF1wcUfJtkgXrmfdTrqe4RXltigf/KArXgQtRHlgeqiD0q915PLB+9N02fx8UGMlUfpP61bke8jSB7ugODhWwHER2gHrAabHL7jTdqZ80vuV60lw1fljk8o6dX5YV7AtMP/q9M8AnT83oe2E5YLjAV6MpPxhW6JcVJ12E7mxYT2P9sFOiWBfTKL0LxN1iscFmJ/qR6XIlq45bMf9G+bX6UqIfFF5hLI5V598x7BPdvB+Y999DvTJ91GfDPIRaDO+jjCt51oETtz1jK8RujHiQF14XKA+VgjrWbeTrufuIK4HygcfIsUfcy5EeWB6qIPSH3Zc+D5Nl83PBzVWEqW/BfjgTwHXxUE+2A3FwTrF40IuPuyA0mu7UyJ4vE2i9P8OGBeo/gq5Fo8LW/FqV+jE4wL14fagcSHoA9656rQH0tWe0AXrGY8LVJ3C8rdH5dfpi0H5g8YFnZ9aj5iG4uB6RGcUBx+yx3NW+AA9XpGH6xF4bSQL4jDftQNx0EfwekSdgPKUAB14vQ+u2+EXNtQDcS1QHNzu0RLFwXW7NiiuIYjLorhGIK4dKKtet8M3R1t75yPetyO3rgStiyZ8jkKEGw/g1qoEwmnKiAN1jUA4zRhx8Ms9IU4LAifiCydC32fV+tOiat+1WSejXiBCvXjG7M4IfhUKrBWoFZ6DNY3j4rzPqvW1AXFUTeCVc1imNj75YF0I4lwBkb4l0uX3iplCHzyqRWE+7DEJdN7vfqTWkUTpdwSj1a9otKawYH3gEVPb7rdjAtug0/cHNnzThNaZ9ClXCx+d42tX1MfA2rROQeikytUGlQvbgF8FpNOXETOBQpQG20Od0/UviLz4f8pnGqP02Rzlwe2k048MaKfmhA2wT47OYQNO08bHhrGEDQS7DZ07b4nHbgIF6lk0+D+ueXzftjmhxy/o2lBeqD2S2mXQgsjXnNCDbVIl13OUrY/2zZ6xcIZP2TFzJ3wwCwQd8HxUiKpjqOWYFnoM1frTgva8rAgVEpjlNB4uH97k2ZKwJUPEwfbFfhSEo9pUz0m9Nt1j4dz5fk0adnBNEGbh/CKHLtzU7cD5ODc3JVAcXHLB00h4CQhJDQdcblgeRS6/G2x8gnWKL7Oge+JLKdhVtkVx0JW6oThI+N1RXBbE6UvgUlG1veBlFoxToZA4h6fYMH+7AJwGEXEaEDjUrXHsm/AWYBw0pPWnRaS+sJWGqOUJql7wbUyYl1pmwBvRtD9/ASZIR6NL9zQ00DtGfApnx7D1qvWnkS229VoH4eHy4XotIWzJoDgV8LcoSgicEgKH0rWWUdfxjLrWMOpaxqhrDqMuzjJytiNnGZcy6uIs42pGXesYda1i1LWcUddGRl3ljLo4fYKzP3L2IU6f4KyvFYy6NjDq4qz7Yxl1cdb9ekZdnPXFyYWLGXVx1ld15ULO+uLknD/CnInTJzjHba66V7+LmXSpUM6oi7PuVzLq4vR7zjJy8gTnHICzvjYx6trsHfUaE1yHaIdwqGv+OgE4MH+dELqo9YOgMrYj0jO+lU+b2BelG+1jWoLQm0CCz/dF5wqJtFA3fBy9xDsfwxMqvRNInxD0slK+nlDRZad2D2eIOPzp6KAnUyBOhohby6hrNaOudYy6VjHqWs6oayOjrnJGXZw+sYZR1xxGXZw+wVlfKxh1cdbXsYy6OOvreEZdnL66jFHXH6Ed1zPq4qwvznFoMaMuzvqqruMQZ31x8j2nf3FyDmd/5PQJzjkTV92r38VMulQoZ9TFWfcrGXVx+j1nGTl5orrOvzYx6trsHaknU9shHNOno2H+TiF0UdfDQWVsR6RnXCbRJm6P0o32MS1B6E0gwee3R+dyLZPgXTkHems5EXfYkQ+QaF2lCFP9hrvNYJwQ4VbqYP6SAJy6EXHqhsTJRMTJEDglRL6Ez1Hj4HNBK/sZhNOOEQfqmuoddb3BpTDsB9QLiToG4MD8HX106UcUVDgCpMHb2nV/TRI6VZgM4mH6+V4fqiXlPu+JI12n7UH+qcCehXWCbYV5oa34pSRnggdFj/F0UvWs253yg44orh2BS+nEfcu07eoSNgTpgu1VD6XXbZHySa/14bY7DrQdfiBV5/fzn44+NkD/gY8kTPaxYa2F/6yvE2wr9p96CFunXwb853jkP7COg/ynHoqD/qPriOJMvFPXlDMbEPZROEEv/MJ+ZPrCr3oEjuvd6g1QHHwIvCGKg7vVG6E4+LAxHoO6gzj8kCx88Bk/JAsfyK+H4nqCONiXcChE/8O6VX3mQdBncDqBMGHbBz2gjB+shw/t4oc9GyJb8TnsMzB/Qx9d8PEzyCFTQTxMf45XeNWPL6tTuVzwZYC6TiI+PNMngfQJQd8Gww/PNLLDC3x4BpYP3wZrR9hC8VRr8BvGQZx2BA413yln1LWBUddSRl1rGXWdwKhrOaOu9dXUrmWMuuYw6trEqOsoRl2bGXVx1tcaRl2c/XEjoy5Ov+fkQs52PJZRF2c7cvIXZ32tY9S1mFEXZ31x9qFyRl2c9bWKUVcNr+aPV7nqXv0uZtKlQjmjLs66X8moi9PvOcvIyRMrGHVV1/nqfEZder6q1x7gNTpee6Cuh1sE4MD8LXzyqd9wzSHo/kDEp98LE0iftgeeg/rz9fR7J8KWDBEH6xDGQZygW55QV5gXelBrH0G+QZWR8ZanNrE3SjfJx7QCQm8CCT7fG53zu+WpdetuBJee8G0nWI1BVUvddmoUgFMvIk69kDh1I+LUDYnTICJOg5A4zSLiNCNwdFemvpuilk37lNCY8JYKXK7Ft+R0+jlgKXbHksplhLcl6qDywwdB8LsX4fdjMPXCW+8GVBj6xSNaf1pU9Ukb6q2P8HD5IC2Ff4cg7gF4QwJOD9MKIq4QncM34eugfDbvEGwA4qiawO8QhGVq4JMP1oUgzhUQ6esjXfWJfNr2woD8UAfMhz0mgc77vUNQ60ii9KO8xlA3f/A7BCksWB9484223e+9cNgGnX4csAG/m64+yEOVC/fmBuh/6FvTffCnAJaZWELjCwIflw+ymt/7+eojG3T6PUEd4PcNNiTyC59zeGRoiOIaBqRNo7JQ38+DvojfTdgoR9lx++v0BwS0f13ChqAvf2IbcJq0jw2HEDZEezchZjncSrgl6hJ6/IKuDeWx2ntx7eDegXH0/5QHRH03YYkPZoGgQ4mgbVOhWEQaK0OPzVp/WtCelxWhQgKzp8bD5cOXRfUJWzJEnF8vzYUT8d2EfoM2RRY4v0B5E8Q5FeCDpzWXGrlx/giXGlgXdQmhwr7eERN7OSB2/EmDRsAOSueeyAZqFYDa0aTTtyPStyDKqOsSrlK0C4EN6xIPhO0NbaVWV+BKVAtkK7Svk6Gtkxzb2oiwNeKuHeOdZXgXGNxZhneBwZ1lTVAc3FmGd4HBnWUdURzcWdYOxcGdZfgSvyeIq4/ieoG4LPiNAx4LYL2rfjm4bYVenA7+9uMU2GdHIxvh5BlyiF6iKAa6IU5WhApb/YC6KNa64XTDwMemQZt0oKYu+lwa2WKIt3XqUojwcPnw1CVJ2JJBcSosAOlwXCFxriBA1xxGXesYdS1m1LWeUddGRl3ljLo462sVoy5O/1rDqGstoy5On1jOpEvn57JrA6MuTp9YyqiL0ydWM+ri5FXOvs3lqypUV17l9Ik1jLo4+xCnT3DW1wpGXZz1tYxRV3k1tatm3M5ffXHOVzk5mnMOcDyjLk7+qq4+Uc6oi7M/cpaR8xqGs4wnMeqq4dX/Df7ibMcljLo466ucURenr1bXeeGxjLo4+yPnWMvZjtV1vjqvmtrFyasrGXWVM+qqrhzNaRdn3VdXnuCck/8Rrms5x+0TqqldnNe1nO3I2R85r2E41305dXH6BO5DCe9/mGYy+D0NxMP0+q1BEe8VT8f3YrUOqLvIUncC6ROisp0C6S8h8LRdaZ+4rAgOG6+7/6xxXz76aQLl17bgc3jPSIpIT93T1nVVC+Q3qKupJQBDIGwdlwRxRSgO1ou2QR27ZSvbl7K0L0z9Qf0ZIv1EkM6kLeqLyr4A/V3v1YFvDsJvogp6ISb1UkrqSTOdXu/NSfmk1/qSKP1xXn+FG7VLURr1u64PHrQPngva29fFR5ffG8ra+ti+HtiO98J1JeyjtpHq9NsS6eGeJm0PVTfbChoblge25xGoPDr9SUR5qP6nfaoY6NFxBn2nrsLZMVuBg+sN9p9cdaQCrtNuRHpYV7pOMig9rF8dBx+P6ori2oE4vHevDWED3J+H91dBv4Nvzlsf4g2K1alfnxuyX7f0wYP2BfVrmN+kX6twuI/tFxn265aEfdWpX18Rsl9rn6rp17n7dUfChrD9Wuel3rbaA8RpvXAfdwfvdxKlvz3AZ7cTVW2FdY7rtyeRHu5pxW+thHthe6I4mA+/uRDuhe2GbOhF1AO0C+9P1+nvA/UwNrvlN+Xr2q6Ivl5G+XovkAD7OnwrdiGRHrdFbyL99iCNrpMMSo/bBf4PdcE6xXvedR2liPRQXxKlf5Lgfm0f5L5eyPZuhrY3I2yn3qYJ+9T36HkYyBsdEWa3AEyKn/V+8ZRPeq0vidK/TNQX5kbYD2A9FSGdOv1rAXygcWG5IHdhH6TqvjtRLqpOe6A4aLv2Bap/6nQR++cQqn/C8uP+GVRWFXDdUNwKfVe3f0ZU5cNtURzsG90RDjVGhvV/6EPvpGm9fuNNK+839q8vAvyL6jfURxuC/BH6CR5voH91R3EwXycUB+sUzxWpcRemx9eAOv33IccbJn9uQPkz9Fnsz0H+qYLp2K/rJCOqjgeYDymfhW2NxxtdRylBt4HWl0Tpfw8Yb+C8rQeyvYuh7Tb97X403sAvauDxpksAJs4L+cJvvNH68PVAunTLkRpvOgPb8fUXNd7o9CVAZ5hrpqDxJtc1k7aHqtNtURy0XfsC1T91uoj9s2G+r33weAP5EF8Xwb7RFeFQ6wRh/R/60DVovMHXTVAX9Isgf4T9RrcT9se2Af4Y1M9UwHVO+S/0K20P5Y/4mgfaHuSPTNfie1P+CMuP/TGorCrYrm9kRFVfDfJHPD5zXW+f5/mjXveHz2Ib1Kvx86oJFAfreQSKg3UE2weHQvQ/LI9q99/RWo8gdGnMNIjDXx+A7yboiuLg+sm2KA6uuXdDcfCZ/u4oDr6eoQeKw6/5UEG3peUb/EO/0kLrTyNbDPG2Phea69lb3dfMXjfl93aCBNIKz0EPxXGF6BxONwH9b/O6KfgKIKom8OumYJka++SDdSGIcwVE+kZIl99bHwp98KgWpV4fpHVQ+eCoBvOE6QGNkf6sCBVCv+tS6+fqAbnaXfuqLnsTwpYMEYf9mno/ZRMCh9IV5gUxfr02wgtiEuj/Rj5mFBD5RYAumCeoSLDrhHkrF/XeoyRKvx9x4RGUX4US4hx2e0s3DE38Wn9aVHUJG7enPssDy4fdvhFhS0YEUxRuwyAcRldVYYKPGdSIInLowj2ZclW4N2K0D3aKSE+5qk4/k3BVXeUFRH6l88fiytiDQTqNvZPwt7UM2YrT7IRs1emPBLZ+g2yF7jzY+12C8ut4FXSXGoJsz4pQIXSX0vrTyBbbLjUE4eHy2c2ldgK/ca1ArfBckBfn6jnD0P8mcyndcsPQ+awIFYZrrxhOROq4EUD3TihuJIiDrYkDddWibVYe/KnBVQtsD3wVNRTEjQTYuF2HEDja/gIi/VCkawiRT9d9LrxCIt9OSEcCnYcrIYMJ7CRKvxaww3dN/OthsBC+9aD/b07Yietbx6sQ0Sf3DcsmWn9aVG17GzYZhvBw+ezYBHoKRNkHadVpYFoY9gGWCZ90VOu1IPLhoGssiWz+m+dFyvs2e79LRVXvTSF7oA1BvJwh8ut0FE6tiDi1CBztyf1AvskobmdRtaw6rj/INxXF7QLiJqK4AUS5dNzAAJ27BugcRMSptuuQqZwOslHC56hCIXEO1+kQwlbddpAB8Joj1duGBeDA/DpdCZEvankom6m5ky7rf75wWVqRB46mkLWhH+u9Y0mU/okmFfmuRP1tOMivbaTqGfdF03pOEThx1zPuUyMYcaCuqSC9klFIF65n3U66nuFsZxTKB+fsMB2cEYwC50cT2JR+rSOXD95VSpfNzwc1VhKlvw744D2WPjgCxcEZJB4PtR2wHmB6vFdU25nySe9XrocDru2GEPkp20uQLSMCbFcB+yLMj2eucfg8xMzlP88g/xkJ4ij/ae/9TqL0fwX+8zzyHzhDi6P8Qf0azuTwyjLV7yj+wPlgHy0NYcMowuYMkV+nKyHyRfUNyuZcvvEu8o3RII7yjQ7e7yRKvxr4xgfINyB/ahupesZzQNN6rkXgxF3PeH43hhEH6sLj2zikC9ezbiddz2NB3DiUbzyIg+ng+DYOnB9PYFP6w45vP5TSZfPzQY2VROkPAz74z4BrmiAfHIPiYJ1C7sXtE9QGCWR3yif9GFQunf73gP09VH8dA3RiLtfpCzIVOvF+Co0Ly0VdLQf54liiXFSdjhO5sWE9j/bBTgm6/H6+kgblx3Wq8xf5lAfXqU5fElCnVB0F1SnVx8YR5Solyjwe6RpK6IL1HKZOYfmHovLr9A2JOqXmLUOR7XDugOeQ1DwMpsf7i6g+Rs1NcB9rHmB70KokXFuYhuLg2sJwFNcfxOFrsV1A3EgUB9cWylDcQBCHx79dQRzeWzMIxEHf12sLSVTWbbzzEe8tVPlwFtRF1W/C5yhEuPG0H0iTQDhxrJtQOEMZcaCuoGs2fMfbdN0A5g/C2Tkizs4EDtalOVkFOCfS/SmJ0vcD/XpCtrLO4YR9O4NzowPKivsz1KXbTPcPyH1x3HvT+tPIFkO8RBDnwvLh29kjCVsyRJxfm0Ic6na2qV2MXxnVJrZE6Ub7mJYg9CaQ4PMt0blCIi3U7arr5ROndkSc2gRO3EudtRFOGcgHL3cmZSryQBf2u9zBj6ro9HuDy529PJ3U5Y5ft4O+Bm91YN/WeH7bGPr72Lc/oF783br+RJnbBtg8HGBgXBUm+9hwCJqqWFIxOVXBS6FwStcPxcGpB2wbGCdERV3Ac9jnyggcrMtvmNT1iqd0hxoOk9C3RweUdTiKg/yK64HCoeidqocgnDoRceoQOEHDvi2XUDbjSwkVIJcsQFwyAsRRUxp9aZhE6YcBLjk6gEvw+IinGphf/cZJPy4Z5mPfsgAuoaaG4wNshpeAGFeFyT42lCMuwbeCsiJcoLgE35qA/IdflWM6FsL8rsbCuggn7tt+1HI/9FsYp3HwuSB+wZfhfv1xU4bGpPojHtcq4YD+eArqjxy36vz6hBDhbncNJ3D8OEiFoDFIpz8zYAzKNfUPulTzsy8p6D41RVSU2U+XIM7p9HD8w8sXI1HaEQFpsd3Qtzt6vzUX4VvKWREqjNb+PJqIxLc0oE06Di4j7g7S4VCI/oc2q/bePVuhF6fD9sB6GOOjk+rz01HarUvhhF58uwj2Y1xfE31swG2swgHeEff3WzMV+q9G4wwcHw3adgx1S0oH3H647nCg2k/bpdqvPFuhF6fDmLCex6I4yKuTUVwZyAfb47481Re+5ochH/U1DcXlqi8dp8tbQOTTv5MI72Pgrw8ifTsDLOz/+NWI8PYMzq/CZISv0z8KxorHs1t+l4qq4yt+ggLqpubHeJxr4GMXVU7Ik6OQ3TrtB8hX8e3WrAgVynQbj0M2Qd3jLXUnkD4h6GVHrb+EwNt6m42IS4awZc5PU/pMSS19NIHya1vwObxUOIFI34BIr+tqN5DfoK4GUo96a2wdB317PIorAnHaBup1phMs7QtTf1B/hkg/A6QzaYsMgVPGqGuEpS79mlXqdirmXBUmozhq7FftWOQ9A03xUH1kqykPwfwmPITnujptgWdrxPnjDtQ8EPPQOEvdYXlI6y8R/u2aJuLC8NBhv5bNu2/S860ToirfFhLnwtzGr0+kj9jPe1E8hLkG8tA4FAd5SNtA8ZDlmNIrTP1B/RkiPeahsG2RIXDKGHWNsNSleYiag1M8hOd3o4nyQB6qsqZQryJNrXqVdYWZd6uAH0sYERA3itCpsFvWqzgP+SrlHeF1JL5Go7YV6f/hOejrMA9ee9DpG4G6qY/sg9f/sJzQPmquDtclm9TzTzc6IF3Y+X0/FEdtmw7bLnisaIPGCsuHv8h1T61LrXfrh/S9W7YjZyzc47Ap82dM32PGtPkzFsIrKmoUxCuZ8BFBv6AtwXdrB6H/y9D/eDVzFKEnFya1ug5fooJxqTsvmJXqETbnE6dhRJyGBA7FSgmfo8bB54JWevHrOeCqHFzp7VGvIg/0CbjSC/NO8o541XNj44p8vQJmkEH1jN8lYVrPjWpwYsVpHBGnMYETdz9ojMoDWR/Xm+kdKZh/mGOcXP16bD0aM2y/1ukHgH49IUS/Dipj0Ka0MqKMmJP8dE1CusLePSoLgRN096gsJE6Y8gTh5LM8Whd11xG2wZ4Bdo1Eukbl0LUH0kXd0aB8ENtsujoB8+8cgDMyIs7IkDiuyjM8Is7wkDiNIuI0InCoK4yo4wdlcy6+XYj4lnq4FebFO1h0+m0B3x6D+Baubv2v1/NoRhyoC7+swK89V6P2pB6mCWpPnb4BaM91IdqTqptRAeXBD8lQbU09bJggdAXtJsH1ANNTY0qMK6r1w/gB1J9Gthjibd1QHvTAoApw47b2Z28VoGzGgu179xsmlwCWzFvot7paD4IC+3F6gf7H+ZRtSZRmZwJDiKr+Mxqlw+2uz2P9YWzKlTZXPMV1Y33KKUQ4roP5d/bR5bcDSLcPXmn6i2dw2B1A1ENsQfMB3O9wukKiDLUF3V9nCdo+WObRAWXW6c8NKPPIHGXG83dq7oi5CacrJMpQLOjdaniXIozDr+s09SeY39XY2QTh+I1pV6AxjdrVB3d96Y/24BX43xtV5LsajWnUXDDu8vvt5oXlgh8g8ru2SRI6VZgM4mH6W3juPpIryvgOSj/CflW+21CbUmUPalOd/lvQpneGaNOg/kHtQg/igmEB6alrxTIifdC8UbcPvKMcvn0S74TxUag/jWwx9Iet8w3qIXJYPtv5htb7NigQtD/XfAPnC5pv4LR+fQ/PAUah87nmG5RNfmmjzDdG+5RTiHDjA8yv02n/LEP2Z0WokNW2DAN2aFugz5ch24cDG3FfpNJTcwyoH/Owzp8UdN1MBfEw/TNgLvFUdstvqi2a+tgnRLi2gPldjVVNEU4ZIw7UhZ8ogO2KPypkuh4N8wete4+OiEM9URPG11WY6x1zzYneMxw/8Z13nf7vYPz8EI2f1JOnpvfGcPlhW4e59xLUr8P2U2o+kEW6TJ9Kg/n95nFJwnYVJoP4Sum9CVXEpyUnUrtXdP+LOOebGKaPQ/0lBJ62K03EhdkV9ml6wGOf33DW0wmUX9uCz4VZO8oS6aPNv8R4alcY3LGiAvSRUSgO7grTNlC7wizna+PD1B/UnyHSTwfpTNqC0jXaUpfeyUVdY+eLk/zWXjQ/4blDba/vh30CmHrKM+iJUcxpuIyYc1TICjr8joLWp+u/FoGFd8LqtPVBuZ/NVrbV7x5h0qc8QU+HJYR/3WAM6umwPqKybSND2EatB0EdZT52Kh3UPUTst6ZPVA4j7KFw2kTEaUPgBI1J+Khx8Lmg+5FtEI7fvKlD/Yo8kE/87o/M9o74ftdmMG/axtNJPYGP77ni3XuQE1TAHKjzpwS9ron5RKfvBvoVfmKbWh+eDXT6+VnYp4R0+l5oPhPHOhMuU1JU5VYVxgi6TH7rxbgORhHppwakp+43Qb/CnB30IkJdtvsaVtiwE/LjXOUf66Pz9gYVOvsb6vS7jzC2foXOgQF9A37kEtcPVWe4/8P8eAcu9eKyYmSnoR+GfiGU1p8WVctss55GrQ9Q9UK93A7fn4VxYfZpBH3Is39IuxhfCKVNbIrSjfYxLUHoTSDB55uic9SSHNSt3Hx7bzjQbg7fE9gd6R8AdBQS57Cbw/w6HYWTjIiTJHCCdHUndOn0A4n0SSI9o2toE1uhdFMDTMN6c7lGK3TOzzV0KESYCVH1nS24abCNpYSOfgFlKiTO4abuR2BROD0i4vQgcPAs4Sg0S4D4Bmy5Hr9qU+uAusssdYdlfq2fekZE20V9oivMqse2dx97/i4dDtstgfJrW/A53CWpq0jq0/URV5/WUKse8L1NKlArY9Sqh7aBWvUYbmlfmPqD+qlVarzqEbYtKF2jLXXpVQ/4atmgvuyKM+LACdJFrYTo9LpuUoK+U4Q5SadfBq6e8Jc1qfoWxLkCUZWP9vOOpYSuAh/bKWwhqtYbzK/TxciJRaacmBZVy2wzG6b6B1Uv+B1xMC/eAawCfK7Qjy+D7ghUd13QN/Erq3U8ddQ4+BzGgX0Vt0EZIw701zB+bosDdeHdt3jlkDqGxaF27EQcg0dSq206UHdksF9QzzZT76PC9Q93JQ5HcXDX7A7gNw6F6H9YD4qPX8hW6MXpdKB25OFxyfQpE2onE3XXHa42XlqfxvR7Hx2+S6vTnw9Waa6o719GfE1ErdzBMk5GeDr9tQ5W7v6XfNzGj+u0q9CL0+lAtTGee1F3Iqid+rocFF/j14ZDjh2J4uD4jXf4Qy6bBtJhPqXuIuAV0YGE7dS8qV8InKB5Uz8CJ+LcyPjjv3j1kqqXsD6mbVY+NiSEj+GxE9uG6yjMvFvb4HfXAvOcTv9swF0LnQauwB8BdGI/gBgC6VBhMrJBp38JcZ/ldSbJfXhMhHWo00XEDb1KrfWnkS2GeFvn5bnuUsMlv/Af+YU9kGJcnB6mFURcITrXH6Ubhf63+WS45ZuJR+FRCwbTUQu2Jg4Ua8B79yafDIftgd/GAllkDMDG7TqcwNH2U29FxM+TUG/k1XWfC49aFcCsT+VT/+9I5OG84sH1yKErhj1hDcMyjtafFpH6yVbGofYHUfsSqL7j92wi5IQEioM41H52StcAJl0qTKzRVaOrRleNrjzoCnNlCMcp/Gwk5MFdkX2mN6ph/qAb4m0i4rQhcEqIfLZjcibAZurqHteb6b48mD/sFxW6NKAxqRUsFfQVGV5ROg2sYHVrUNlm6mpeBWrPEGwHrQPnLQY26DiD+UWpmgPvmK3AwfUK71CGmYfM9o54zzMsO+ULYdtoR9RG+CtEOC/e06jTLwdttLP3m2qDMPuGqD2UuB+miPRQXxKl39WzCd6VC/OFJ53fb9W1lQ/eEID3M7omisHvGlJ+B3kG+x210kXxWRBfwL6H94pB7sF3Yqm9ekH7WHX+lKDbQOtLovTjiTbHfuf3zBNuV51+Ysh21XUZR7vCusLtSt3lpp4HDPID6o48NQ7sgnTtQuii9q2G7ctaH+5bBwS0K8Vf0E7crjr9wSHbFT6/qvXouKjtCusKtys1/6D2Swb5ARwfdJ1QK/qDUFwZiMMrpRR/Qz8I0+awffz4+3CizfHcEfNCmPEFrizq94d6K4t7LJw7f4a3tChQCFoKVP/77T1tQOQXKG8CncMfwqDoM2hBXWP7bWTB9KnTH0VUeRD9qhBmCzVs7jgWp7X+tKjqsjZLRbloDS8VBXUzGFcNXFUFv6chEkR+gXQliHMqUNuag2aBFLtRLoZHLb8ZgdaH92YdFzBy5LrHGOYtHdSMiCo/fqMjzFfmgwNHNOhGeETT6TeEHNHgfUutR8dFHdFgHeERjVpZCHrylnoqhlotzaD0sO6pEQ37f9jZKZ6N4dkHvrIK8heqvEH1Q/kX9V566l5+0FUw3F+hAudVMCwP9oWgtlXB720uMD1sb3w1Avdd4JUn2Jf8nqCDOGF9Aa52dEFXxLCt+oXADFqZoZ4YxHuALgFc4Pd2trBX/Dr95QS/BJUhaLYatApC+TocP/CeIFd3UPGeIOqtM9S+H7wnaByIw/f4/b6ZhAMeo2E9hN33hv1B6zXxeehLl6K9ZnDa1wVhUlMseA77PMyv01E4yYg4SQInSFcXQpdOT81xYn6sSZvYAaWbGmAa1ptAgs93QOcKibQwUM3Uz8duIcI1E7VogHXBrT+TQBr8Mh84HHRFukxvAsD8eEqq7Xrbo9FiAt+Avk4L2patdVtunz8tgfQJQV95+W2phnZRW/nDPMJ0+6W7133+vn5bH8EJu1VPpy8j0ncl0kfcWnoyNa2Cw4EKkFZ2RXFhH2Eqs7QvTP1B/dSW9ukgnUlbULomWerSjzDBhSt8Qy9ujsGXXB8Q0yzXtuhh/9OAKV+uxUR8AxbaHnTTFJfLlC/7hcTpFhGnG4ET983ZbgjH74bcj+iycSCIo6Zjh3tHfPPjGvDCh5/R5Qe1VJIQ9PgDx0gVcH/FN2dwmmE+9v0b+CferovLDMtJ2bwrwBBIhwqTkQ06faFXRxE5ldyuCzkfcxgely1xQ6+Iav2uH6Mz266LbxPCWoFa4bmEqFx6GJdr4RO/8slmu67lLMH4g+X4YhNeNMLWxIG6MISzCpPturA98Ed34f2EcQAbt2sZgaPtLyDSD0O6yoh8uu5z4VGzHPzCACqf+r8vkYfzQcigTf22uqitvxEXSUJ/hgK/ptGyn2xlHGpBKegTHNQrI6ktNPhq0fYVhOq37SsIKV3DmXSpMLFGV42uGl3VTleYhynheIA/N0dtm0igOGhf0BUlzB+0oJqJiJMhcEqIfLZjXybA5jCfdjB9QQL1SY5cr5HcvSGN6fcaSXyFp9OfB67w9mxY2WbqCk8F6moatoPWgfMWAxt0nME4Xpe6IQjrFd8QpG5CwPR6q3DQFiDKF8K20SGojYK2C0J78B6ajaCNpnq/qQ0B+BWQufaCHIHS6zKG3Rar08/0bMq1LXagD57fqsR4H7wjAJ6DbbH1Kb+DPBNmmx3FZ0F8Qe3xoV6ogrfZwTrG81LTLbPUNrugLbM6/TGEP+CxCPuGn31UvTFvsyvzMaMekV+gvAl0rp6PLq1HnYOLHGG22VFPJ2CKWEFUeVCTqVCzze6/bpud34MPCSK/QLoSxDkVqG121CthwlQxVVW2G7Q3ES4dxLDUDCtoJkDdcwj6eCA16xnog0NtHFcBj2g6/Z9CjmhMMylyRIN1hEe0sCsnOn2urTi4q1Fb0oKubMJ2Q7zNhPJTaqaWa/tKmAdbqNerUFcP+EX4MF/QrBp+rFEFzll1lIfNTLcg4m2VcEjEr8CEwxF+sT01iwrrC/DqCV9Z5XoYxu/eM+QAqGO2d8T3kW4gOEDrLBPBZQvDd2UgDX6FE/XqHeo1SEHbPnW6iP5YQvkjLH+YqzyY3rSvBj2EFvSwZBnCyeU3QVvg4L3LH9F9V4jTDmFSfkLVRYbIr9NROMmIONQrkIJ0tSN0BbV3zFvgtIktUbqpAaZhvQkk+HxLdK6QSAsD1UwDfOwWIlwzUe5M4fSLiNMvJE6niDidCJwqW1x4bt+vDnPDzPI7XqsTSJ8Q9NWU1k/tJtZ2pYm4MFvnvsrs9eDs7y++PIHya1vwuTC77TsR6XVdwZvTBnVVTg1N8EazCpCOxqA4OLxoG6itc2Mt7QtTf1B/hkiPt86FbQtK12hLXXrrHPWNLFecgbfOfQWmUHjrXNy2uN7Mgd/YOA6kN31jI9zMYfLGRlin0DZcR9QWMOx32oawb2zU6X8DbY63gOk8Yd/YCL8Rh3FVmOxjQ4G3fBJxYwS5BQxfHvq9Jw7bStV50JusdbqIZTD2Y7x1EvI+3iQDn2TB28QngLj+KG43EIen3fCmLL6xszuIK0Nx8LIP+hEOVH+DT9U82LRCL04nECZse7x5CvKOrkNqyaoz+A3jtK34HPYZmD9oe+2wiDjDCBxq6Q7Ot2J8fCH0ijb+yorl12S2rmgHvVvjP4Z5R3xDFOalbhz5bdmFOJ0JHFO7YvjAUjeUzu+jGwlCbwIJPt8NnfO7DNP/U65f5mO3EOFcH+Z33cVy7Szv0YjG9Hu1Ef7sqk4/C3y+shf4HfTA/xBROQ7iDEX2U/tAIj4dFZoCtP40ssWWAsLeTzbbKY1fMgprBWqF54J6Ar53hW8r7ozymeyU1rjUmhr1opigezU4H6wLQZwrINIHDUj9ke2FAfmhDpgPe0wCnYe9bTCBjXdMDPV6lZpw/IomyRQWrI9cuwJwGmyDTj8S2PCNz/28pE+5cG/GAzz0rek++AcClhnrw2KCwMflgyNMysdev1eH7AbqIOizTvhZWnwO1gHM6/c/TLsTKgv8n/LFwSj9oBxlx+2v0+8d0P79CRu0XSqMzmEDTrOTjw37EzYQrDl07rwlPnfo8VwCsxxuJdwS/Qk9fkHXhvJY7b24dnDvwDj6f8oDVMk9tRVTs9kzFvrtTsAjQj8fzAJBhxJB26ZCvjac9LfDC9xwAstnu+HEr5fmwom44cRv0KbIAucXKG+COKeCcudN3l3C/7XpM9blt7VxX++IB6n5gKB+9hkkC3x07olsoK7QqNUgnZ66gR70pmO/b8r6YcO6DPOOnCBbc20wwd/rgfaNMrR1kmNbBxC2Rly9MF6VwytocFUOr6DBVTm8YgdX5cpQHFyVw6vZYVfl8GUrbCv8aMAeIG4Q+I0DtWKn6131y8FtK/TidPC3H6eE3QQAOQRfdlM+FfSW1NFAVyGhY3/vmETpTwvgI+pOUVA/yPW+Lfw+O1iGsSgO5oNvqda6BUoXcVMK+S4yWB68KQXejSkk0uO6GU+kh30Ob5KCfW40ioPcgleJqfcHKts71K+cjuOLL9Rb+Scie0Yy4kBdkxEOHNvgctZlPv0K9hOYd653xHceHwQXl1eiJSxqsx9+DOca0M8Wt/PPjzdnURuXgr7LF1ROWH/7+5TzJmDn2OyW3zFuTsyYvg+S4pig90EG9VNYJxlRtU/iOQ81f4J1muuOJ24zrQ/fbbyHWESgHiXDXxgqM7TdZvPke94DENQ7I6M+2kx9PQnrKvCxfy5KD18vQGHj9Non4AIVxc9JlP5J0FbL2tE6BWED1UYaL+WTfiyyQad/lvCXIB6A/j8G6dTpXwA68YuBcuns7aPz5YC5BtVPg97tmWs8xfMJWI/jURy0HY+L4wA+btOTET7UA30N44oAe6lHFYPsxeONjvsKjFfvod0LcG5hwNWFQW21LWFv2LYaHlA+rEvnS4qq/hjUR2B9fNqI1llkqPMLYkyn5irTgP6vQszzIVdjXqauc+E8h5ob4Mc6tY7vif5IjfVaV7SxPvGO6eO9ueqG60EEFaagOOqRbe6x9LZ6lfUGvQ9X/W6L7Aia46nf23m/MQ8XNt5ypHiYqsOgOs/1vm28uwm2xxgUR/msa390+f5p7I/U+EH5Y5i1tbD+CN8/fQWa21HvyqY4GtuTa86Nd+Vpjk/5pMecr9M3A36M5z0TCBuCrhN2I9JPIGwuRTbAvBgb9ktYJ/ghQZ2+DdEvY1zzIB8ShPWG/T+ojlTAdTqRSA/rStdJBqWH9Uv5/wQUR60jBfXZsH1D51X1sBpxNef6HMXVOv12AVxNlS2Iq+Nanwvi6jh9tbquz0FfDbs+tzDEXCDoAdVc9yAwf1HvxqfGYfxArul3B2D+kQE4jSLiNCJw4lyDhJjU3AaXx3QtBOYfhcozirE8lM14N7IKcE11YuOKPH7cBvPi8U6nP7xxRb49vN/ULvigB6iDfLdMVLYz1xrSJFB+IeKYc4qifM858bwSjpf4fjn1tAH0PTh26jQC2RhHfXE+vE7VL+wTug7wk1XQD6n1V/zwOlWXYech8CmXsfVy2x/04oZc/oE/dFCN7tHlfQ6AfcH0Hh3mS4hD8SVuY8ivUAe+Z6XTLw2YO1J+EOQ3ua7p8MZc6Bv4aRVqnT9GDqnWfjMGxVHrjmH9BnMI5HM4RuvxO2iNLCEqj5PQn2H6Qh89I5GeBDpfG5yH+XqiMuM5EtbdC6XX5Uz5pNf68FzklIC1hNE5bNge2TAmhw2jkQ06/Z8IG4LqX4WgOWHEp9KTCaRP2wPPQf1pQftHVoQKCVx/Go/yAxVwX6b6E3WvJIgDqX5O6dqZURd+MtOyvcZS3KYDtc8LX1dAHtsTxcF1nslABw6F6H9YHuXXK9pV6MXpsK2wveD9XOxjo4m8ownd+eoPo+3wAvsDdQ1g2h/wPfY/en/w2/eoQnXoD7C9tN1UHamQFeFCmP5i+SaMdmH7i9bP1V8o36P6S8Q3kWTVpVhtUZmrVDgQ6KPuY8D24mo/ao0rX+1n+WaBwPajruE52w/OL0zaj1r7w++INV37g/ldrf3VQzjwWhCu/b2M1v6oa1OYF6/96fQfg7W/19Dan+n6XozrdYWm+xOD9iCoYHr/HN93CLv+hMd26qVqYdef4EtPe/isP+l6VWEukRf37YSouv4E7dDp8Z44nAbvX9u6NwdcS33jc9+M2r8G7cc++3XAekrc+9dgPeP9YH5zeq1biKpzBl0+HWcyLlB9ApYH9wnqXjxMb3ovHvs9vKc8BunC/UsI/+8l+9k6MoKtuB1hW+F9Azot9EtoP/bLrX3J88Vc+wZ0ueNo/6D1NKpOg9bTctUpvqYJ2lMQtJ6Wa+0cc+IIwgY4JlLrm2UIkxofKJ6gOB2vG2m/rA/aH+/Vhft7qPvI4310NiJ8KqgMZUQZwo5xQc81jAnIB/tlMYGV1T9+Dw5an/aPWgQWHmd02lagnp7N0rYksD05QozXZNkE0ifE/9Q1WVuOazJqngfnwNug/kD1MZj3SO+I+1j3JhX5uvroFILut0HPFUJ7NmUq643rfjLVd4PmMPg+I7UHX9sA92dT957w3imdfgfQN4OeZeK5P5n4lhoX4bwQj4tBc0AVcFsEzaNgnWRE1TETr31T/gXb2u+toX57NPFzCDr9INAGQZ+KweP2CEPb/fYlwDjcN3A/zvVRAL99t9S1r/qt92vjfj8qYGyl1grKwDnTPe/4eULqPhS1hqH3EVL9BT6zrsun46Lel3W5Fwa/CD7ouUD4DEAQ98Jr5QWIe6nnBmDb+j0/SD2rqn638n7j5wf3D/Av7n2F+NmdsGs3uu/HuHbTIN9rN7ptw6zdQC7Ea35lIA4+PzIJ+Rc1TsK8HbzfeJw8IsBfxgeUUQXTMUrbQ10PT0BxMB/2Jep6UNuwG1EP0C78bhadfkHI+QLTdXQZ5Z/w2hf7Z9B+ehVwW+xOpId77PE+evjejXFIF7W+BesUcxf1TMcEQj9+pmNFwHwBjk+7IdvHGNpeRthO9TfYp34o3fKbus7Hc9YxAZg4Lxx7Uj7p/a4/NxD1hfmMWk9Sv9sjnTr9CQF8QI2pQ8E5031j+D4KrBe8b4y67ohvPi+G5HvfmG7/MPsNTfeNhfV/6EPvIv+H4/kQhBk0j8V5IY6f//vt2zo3wP+DrsvV7xZIp05/vuHaV5D/55ojBM2Rgu4xar6JcX4+PN/zc+z/QfNzyL9hno8M6//Qh54prayXev4W5tVf/MHP395o6F9Rnr/V9oR5/hbmw+sz1NwVt6PfOIOvU3T6O0POt5j2ATfMN5/j+xbU/DaIP4Puk1L8SY2XmD8fDrk+E/R+ijC2lxG2U/0N9qm70HgDr33xeJPrg3j4GX7dr/3GG/xac53+2YDxBl6bUetBeLzR6V8wvF4PGm9yXa/j9SDqfRLUtXzQ9TrTu6Aaxf2sT661Mt3+YT5UST2fhv0A4oT1f+hDl3n+H61eF5+aALZo3YVEyiQ66jSfeD6ZBvj6mAxhx2sP/vDSjWN6H4m/fqOCbiN1z0a1//vI/+FrlHVdwtcP4zXMQmQblS+BbMDpC4j0Wm8JEZcEZbCto5Z3znhm0BufvZGrjmz1b+ydrL9pv/Gj4tL/TK3Pv3/8oZknx6X/g+KJwwtuOrFtXPr/8v2EvqubdfjaxEe1L8C9uzqfvo9ZF5w34MLQr7vW+tPIFkO8rfdp6yI8XD67T1HUAb9xrUCt8JxfL9WWCZ90mCFUGE3kE4RuFa9bLoPOZ0WoUE97RT0iUsdBL6uD4hqAONiaOBQS9mublZd+inYCCUKXxoTtUR/FlYK4BgAbt2tdAkdjFxDpS5GuukQ+Xfe58AqJfHWQjgQ6D2dphQR2EqVv6n3HS9Xtd01EpXLWEZX/h/43HdlIjSrC5xwuB37SA+OqUCwiMUH9sMyj9acFXd9ZESpsZZ4ShIfLZ8c8eMzXKPWQVp0GpoWhHrBM+KSjWnQ8kQ8Hna/ER6cKxaKqpxrUcknYVtXn0sgW21YtRHi4fHjfj6XX1gnyIqxTCJr5YH1Ahkr56NJ5kyh9D48pMqIqU01EGBSLwXO6fhRbdWlaGU/H9W9akaan97tU0P4PfxcQ2AUEdobIj5kIztMno7giEIffD50KiKsVEFeMygLj0iDfVBRXm9Cp7FvXtHI63M+poxBV+5AKuM6pNobMhq9hKB/DPumnaxLSBfOXIl2ZHLr2RLpgfp1X+0Yhka+EwMF8Bp91MejvdcPymdafRrbY8lk9hIfLh/msvh1eSQLlh3hQJ35upwERp3Xpz8akfHTpvEmUfiLiswbAJsxnDQh74TnIZ2NRn4N1a9vnqGeodPvga3cV4L7OvZpWLksGxFH8eIR3TKL0VwA+3hfxMfQ/bWOpoNsL/qb8rl5A+ak+EHc9Yx5OMOLAuKkIk/I52Cd1O+l6pnxe52sI4nDfxf4M00MdlH6tI5cPzmpKl43yQYiVROlPBj44O2BOgH0Q+mcCxSVQWWA6yj9hmx2B0mu7U0R6qC+J0i8AV2F4/V3nh3UF7cLPOuj0RwOdeP2d4l/qqiTIFym+puq0AdJVh9AFy4PvAVF1CvtnHVR+nf5Yok7xuA7zU3O+aSgOrtWXoLgUiKuL4mqBuFIUB+d8eP4J1/0w39cGcdBH1qH5tC7PRu98saD9PivCBepr75gj4Zp+MYqDvpVCcbAOa6M4iFeE4mC7pFEcbGvdDrVFOC5SAY+HOv1pAf2L4k9qPqXTNyLSQ87W6UtF1T6F39cI8+F+id/fCH97j3tVqgdo1+HeMYnSnwXqIeh+t7Yr4v20Eup+WmOQAN9PA4taW8sF0+O2aEqkbwLS6DrJoPQU11G8CesUcx01l21E6Mdz2YsDuA5yZWNke8LQduoeFdWvYZ+aFTBXxONt/QBMnBfipITZPOLagPGWmh9Du/B4q9PfEMAHVF0GjbcUfzQgykXVaUMU53ddpXVjnRH7Z12qf8Ly4/4ZVFYVbLmSeucsvr6HfQP7P7WOENb/oQ/p6y/be3h/eqDHqK93/7KNzT08uC6k8+nx33Jl+15ovw7UGoXWn0a2GOJtXaOg5o2wfExrrvckUH6IR92JiXhPtBCvJ+G2gX7qt2ar8yZR+lfRWkTQWhdcg8PrH9T6HDxXkCddVB+F9ajbRPXDp1FdUHeZwvg2ZSNsLzxvrc2IA3Xp62vK35VkRajQG98z0Dqgbug3Br69T1iu0PrTIlJfSgT5GHX/gep7Om9GVPWxBSBdLv+DOJSujdVU13JGXasZda1j1MVZX+WMutYw6lrBqGsOoy7OMq6tpnYtZdTF2R8523EZo65yRl0bGHVxtiOnr57AqIvTv9Yz6jqJURen31dXzuEs4yZGXUcx6trMqIuzvjjnJpz+VV3nhZx+X13ncosZda1i1PVHmMtVV7/nnJvUjGlmuqrrXK66ciHnXI6TCznbkbO+quv8az6jrs2Mujjr61hGXZx9m7MPcdYX5zjE2Yeqa91z8hfnulx1XRvi9C/OuW91nWNWx7FD/S5h0qXCZu9Y6qMb/g6690rhJAibqfuk8P49vicqgJ6IT0uG/qaS1p9GthjiJYLah7q3ivdMw7wZIg63lem+bagryagL7yWh/Ia672daX3VAWu/pvGEzpi6aOW7uTIFCEv0/3MfEvVG6PX1MKyT0JpDg83ujc4VEWqib6pK1fOwWIlyXhPlLAnDi6Pr4/yLv/6DHsmK4/T0tLA38t9z+XgjSRR0OTmTUxbn8yjmlqq6Xqpxl5LwNWF2X5Kvr8sVxjLr+CD5Rs1ydv7rnrC/O5R7OMnJeqlbX222cyxecfr+SUVd1Xcrl9Ima+df/BkdzjrXHMOr6I3DhZkZdnJyzhFHX8Yy6quuSKeeYVrPEbKbrj3BrmLMPVddtRTVjx//G2FFzKz1/PlGzppC/MnJuN6+u10OcdV/OqKu6rhdyznNqeCJ/84kanshf3Zcz6uLkic3eMcZtIKkE0qfthOeg/uq8DUQF/Pi97daNP5quGF8ZuktYH8vXK0Opl8PrvBkUp8IikA7HFRLnCgJ0LWbUVc6oaxWjruWMupYx6prDqGsjo661jLo4y7iUURdnGVcz6lrHqOt4Rl2c/sXZHzn9i5MLOe1aw6iL0+//CD6xklEXp39tYNTFWUbOuj+WURen369n1FXDE/8bPMFZxpMYdXHOJ6pr3W9i1FXTh8x0HcOoq6YP5a/uyxl1cV4jb/aOQZ+wiPjJldCfXNT608gWQ7xEUL1Q62bUJ1503gwR5/fqdx2vQr7qrMgOL7DOYPls6kyF6d6RqpdEeDuXUq9zxnUOX8VsUAfjwta51p8WVevAps7Dvn5al70RYUsGxalwNEiH4wqJcwUButYy6trIqGs5o645jLpWMupazKhrA6MuzvriLCOXXRRPVRdfXc+oi7Nvc/rEGkZdNfxVw19xlpGz7pcy6uL0++MZdXH27eraHzk5urqOtZztuIxR1x9hHPojlJHTLk5era7j9rxqahdnfZ3IqKucURfn3KS6jmk1/TF/Zayu4/Yf4TqN0yeWMOqqrn6/jlFXdV3rOIFRVxwcrd91Btew8GfFTe8dwfz1A3CKIuIUETglRL6Ed4y49l83gfRpO+E5qD8tqpaZa+2fqhddvkZ2eCVh/Aragz9ri+tWif4krd+nYnXeJEp/a4stxwxKpwLe+96YsJf6dK7ylxs8vdgXVMiKUGEHfI9F2wL1wjoxaIPSsD6m9adFpDZPBNUhxSW67E0IWzJEnJ8/QJwmBE6GiJtYo6tGV40uFl0h+K/g6YYHL0pdeNC0Hp3rDv+2WYPTVw964KRVgzp3pz5njvkPcoABH4V+JbHWnxaR+DYRVKfUGKLL3pSwJYPiVJgO0uG4QuJcgY8uikttdakw2TtGGAeTuK0N8maKCZuyobKKvjpvM++EYZundf7mdvlr6/wtwMlscJ6tr7XVeVsSeRtuL15u+3bfJd2a7Dh3t6PXvL3nVSsaXdD140yzrxYNOPrnN+bqvK2IvD5Bd52tfpsGkVO9o5oXfeUVRvtWaxBXiPKq39q3kij91JYV+b5tURkb9mnMFwXgvEFbdA/LF1p/GtliyxcFCA+XD/NFIWFLBsWpgJ8rLCRwCgkcStdaRl3HM+paw6hrGaOuOYy6TmDUtZhR1ypGXeWMuqprO3L6Kmd/5LRrKaOu5Yy6NjDq4vSJYxl1cfrEekZdnPXFyV+cdm1k1MXZjpx2Vdexg7MdOeues29zlnETo66jGHVtZtT1Rxi3Oft2HGOtvk8Dr8fqoLhCEFcbxSVBXAGyL0nYlwywD+ZP+uTD5QjzvE0K5c2KUCH08zZaP9fzNimEh8uHrzVrEbZkiDhYh37tkyBwTO1i/CyVju+G0o32MS1B6E0gwee7oXNUVUDdpSiecn3sMn5Vm/HJr0JJAE4JkU+7Zm1gYxbE409nZUVVG7MBNsL8Oh2Fk4iIkyBwsC5qmUqFfb1jEqU/wlumUmX4uUllne0I+6i20ufbE+nbgTTaHqpudN4SAjvhc9Q4QgT7ELQhhXDaM+K0B2mSCKcDI04HkKYOwunIiNMRpKkN8qn/O4E46Gfajm0IO/Sw0xmcNxgGQt8S0frTyBZDvK3DTmeEh8uHuacLYUsGxamAb2d1IXC6EDiudJWIquXHbQnLGkdbav1pEcl3EkH1AsuH27IrYUsGxakwA6TDcYXEuQIfXbpcXLp0P43YXl1xfcCg47YFujujODiX2BPFdQdxk4EOHArR/7A8avxa0a5CL06HbYX8pe0uFVV9DHKHHxdQ/pMh8ut0egzWdl4AbhWd27Kyna2B7smoDG1AHO6zbYk4pb9Lm8plhf6A50GmHALz63QUTt2IOHUJHKwrCXQVA12HgniY/n6v3nU/wf0xK0KFmbgvaB1QdzdL3WE5U+svIfC0XWkiLhnCluTDF9x7++HfT0yIqv26kDiH54jdifTUp051XfUA+Q3qair8qrRA2DoOXvZ1Q3HwUlXboPy7W7ayfd0t7QtTf1B/hkg/FKQzaQtK16FMumB/49CVstRVX1Qdk3SfpjipFOGYchLMr9OVEPkSPkeNg8/5zdMgJjVPm+odlR8/3rIiD6wHeK0I82KO1Om3b1uR7ylPJzVmahsj8l13an6gg46D/ABtwIGaO2i7VL9+qV2FXpwOY8I26IHi4LixHYqDvtjT+x1Uf7ZzDur6g8LpGhGnK4Hjus1xX9sOxHVFcT1BHGwLHHL5ysz2FXpxOmwrrG9td6moWkf4UQNTzqxH2BpxjOqB6xsGqr7xnB/WN7QPB6q+tc2qvq80qG9Yp9q2UlG1HvAjF9S8BJ4LeuRCp4s4Z9kO1ykMVJ3iV2v1AnGwHnCg6hvOcd41qG9Yp9q2YlHVNwzqoScuqyBwYVm7o7jtQfrDUFxvEDcZ6MCBqiNdHlVHDTtU6MXpsK3QH7TdlE9i3jf1SZi/ewBO14g4XQkc/H+R938nEK+vQ5MobQswr8h4ezqpcWBvUTkO+lcngNugVeWyQ1/BddxLVC17r4Cyw/y4LSFO14g4XUPixFmeLgHlMZ0fU+toFE7niDidA3BgHB5vTec+9QibKZxuEXG6hcQpiohTROBEXDPshbkaBszV1HjWG8SZjmdwXfBdy/mati3impBxPeB5FByz8HjWB8RNBjpwoOpIl8d0PIP+AO2GticFPb7sjeJ1+sEeZysf2BWNAXDOo7FVuoWI5+Netw1zP8TSR0LfD9H6ue6HUPcWgu6HdCNsobgKP6ITZQ0oyagLr01Uhz6N74dw9WmT+yFx9OkDvP4Zsa4rPTYukK6avl+9+r4KQ0G6qP11O0ZdNX0/fN8PO/YmUJwfR+yD4nX6JWDcPwaN+9C/ewLsq9C4D+3Hfd/0+mEborxB6/j56vuWc/LAvk/Vy//KuI/XpizXp43XprAPwbUp3PejrE3B9WmTvk+tM0Tt06ejcd+yrslxX+uqTn3fsnyh+77Wz9X3qX4U1Pe7E7ZkRFV/wOO+6boixNmOUZf28YjtZbw+j30Izhdw34e8MBnowCGuvt8TxVH3CeHYi3VAjIj1HPrVP7hfWI7Bgf2C2mdXR1SsN3vb+EfOWDhx0dTZs6aNnbFkQdmc6ROnzF84a8rssunT589YsAAaDYHgRiYYDwNOo3/73cAM6jCwMKO9I3UzsjvStV0OXZOQrqCO3DOHrj2RLpgf5oX/F4mqduqbDQUh9ODOSdm1B7ILdnQ8cG6fQ9ehSBfMjy++e+fQNRPpgvlhXvh/kahqJ66vID1Kdshh12HIrj4g/w5IV98cumYhXTB/X6RrxwBd6nczpAvmh3nh/0Wiqp24voL0KNkph13NkV07gridkK5+AbpUOBzpgvn7IV0759B1BNIF88O88P8iUdVOXF9BepT0z2HXbGTXziB/fxQH6xl/o8R0czXMjzeYUIMhPmocfC7ohhl+p2N/RhyoayrIp+J2Afkht1ITIY2hB/8B4Hwck2KtP41sMcTbOvgPQHi4fHhSPJCwJUPE4RuAAwmcgQQOpas7o65dUHngBQDcPPgFWugZAOKoiwc9fidR+kJwk/9rtIADfaV/iDIOIPB0+l29/1NEeqgvidJ/79mkJtE/eg/CZQibBvrYgsdT7Cc6jQrFCDuuPqL1p0XV9rfpI7siPD9/02UfRNiSIeLgXArGQZxBBA6lqxejrgGoPH59pLB1ZUzbPvJFm4p8KU9ndeojdTybovQROIcqIc7hPmLps6H7iNafRrbY9hGqLWD5cB/ZlbAlQ8TB+bNfX9yVwKF07cCoK2wfaYH6SB8QF6aP6PQvgj7SGvURWEe4j1DXK30IPJ1et1mKSA/1JVH69iH7yA4+tqjfcN5cIqraj/uIpc+G7iNaf1pU9R+bPkJd78Hy4T7Sj7AlQ8TBayZcj4XEuYIAXWGuucLq6oPK49dHtmfqI3eDPrJDNewjOxv2Ecr2OK69qPUF+D5xvzqifDdD5N8BxXUlcHL5yNDWtD1+PqKv35Mo/ZXAR0YE+AjeaAFtxjdcTK+ltyFwwiwsW/JPUVi+0/q5FpZzrZVhvutL2JIRVbkTP/RP8So19/hv0aV+63cLB42Dpv08I6r60TYIpy8jDiyPizUjFaYiHLwmSR3D4kBdkxGOH2/NQLy1E4ijeEuv7yVR+rMBbx3m6SxGaQz76QBt+wAiklrv2QHFwflwXxQHrydx2w8GcXDuggN100+XVY2hR3So0IvT4XJAbh+I4mLg3NBzzBrO5dFVc71QuS/h6wUYB7/NgHmtkDhXEKCrD6MufS8jYnux8ZoKeMMCXEObDHTgQHGXLo/phgWKu3A/weng+ELdN6TsShB6cH/ScdT9P/1NA+oeY2OEYdrnGxP2hllHg/5l4EOFYfu81s+1jkb1n6B1tJ0IWzJEHF77ou7L7kTgULrwdT28Vs73+NnHDi9w/KS+A8PhX37t0DcAr58dXoHGo+579yHw1IN+KVG1Df3uz1P3tWF7+fV5iD3aO9rud4C68N6cvj5l8GsDav0naI9CEsXd783R//PNudaV0+h9JbeANDd5vynOh2sd96J0eI+KChGvC0L3Pa0/jWyx7XtUO8DyQd+sJYJ9BLaR356l7YmyYJ/tlcMm7LMUFtWmcA8XblO40RWuhT4YkK4nkY6KU//DPXR4s7NO+whYq1zToXIZIS7e52a6+Xg7whZXD2KH2eQM6yqONTf8YrKom5y3RXh+9YL3ssC8uG1UwNds1N5Iat/If4su9Vt/V0vXDfUyuzDtSuFQL+SKe/9UGD+3xaHWu4L2R9niQF2TvaPum5Br47w+3BbFwXUv3JZw3QvX/2AQh1+SVQbiTB/61/WguHp9iDWxiBvVq339dQe/caDqDz5IUFN/lfc/4sBZf7CdDOrP+GE0XH9w3ofrD85hcf3B+RscN3Cg6kiX1XTdGvqYLpN6EEO/BLfiQYyxM5bsPWX2rOlTFs6aO2fSjKMWzViwEH/2AI8AeOTZ1sdq/FkGP6tVKEBx+FMNE4l0MJQQ+TRGxFdshb6y0fqp18XazMqoWQn1CCf2bJg3Q8TBr8PiHlFInCsI0NWZUZf2m4g93fjRM/wK4LgePYO92WQll3q0W8fBV15PQ3FtQD786s22IE7rp155DbEz4DeMU6GQOIfbOkNgUjhe1VT5SmyZZ1sxSmfoHwPDXMFZ3lEbGJYr/Gbz0C7q7l6Y107/1HBwj/8779uzEqIqXwfd3dPpqavBDJE+4oymfwnAEKLqqKsCfKy9K4qDr+GCswn82mnLq/H+YeoP6qd2FkwH6Uzagroy62ypS7/eGa4S6L6j+19rENcexcF+hncxtSNsaBdQnm0IG0qIfLg/tgfn4xi7tf60iMQtW8fu9gjPr14ojtd5qdf04VdGmHIw1NWaUZceayK2V2dcHzBQK5jYh6inY6mVmclABw7U2K3LYzp2wzrGK5U1/Sr+frUNYQuuMxWGgnQ4rpA4F1T/nRh1af+J2F7b4PqAgeIg7EPUTmqqz00GOnCIq1/h14xp24uItFnvdxKlXQB2yp2J5sAwv3cRTn6WrSOKg77eGsW1J2xKIAy4GwP6Pf48nU6/1LNb1eXYLK2zwEcnbFMhKvdlXY5igKvjDHzwXmXXjtkKHFhnKuDXslL9BqbH89agT4/BOqDGL9xn2xG6OoBz+g4eVV/axjjqC9qA66tTDptxfVH1C+tB1wHFS22QrjaELliHQfWlbYyjvqANuL465rAZ1xdVv/Czf7oOMqJqXbZFuqj6gv1xNEqv86eI9FBfEqU/A3ACfnoE8hpu6yyhG3JjAumA5UgT5ShBcTCv0vtVi8p6qSeIqB0nOj31BgS4uwTPveAuB5034m6ZarUzmlqhh2XGgRqbdT2EXaFPIBytF9a/CtgnuhA2UrvgdwipV6fPtdunIITdcEcI9qG+hN3Ubp+uPjjUbksVZntHvJv/RtCX9ednKT7V2BH5tJTiU1hHmE+pPkvtDgzbZ/HOcvi0G96pDOtYY1L+BXdFDTV42o/ahUbtuMG+l/JJr/VV2QFG8HWQP1M7u239GZYhqj/D+sJP1en0j7n157px+zP1VpSgp3Hhk/59UBzlzwlRlcNM+RXuDNs+4tOuQf6vy+bn//hpV53+tQD/p+qX2vWq0we96SGX/w9EcTBfVx8cPz7H/q/TvxvS/zV2HP4P6wj7f9g3mOj01NtDqDcpUG8PCfL/gQiHy/9bGLw1ZNcATJwXls3P/7W+JEr/bYD/U/Ub1B6DifTUTg+q/INRHDX/xDjQ/2F9Yf/X6f8Z0v81dhz+PxgkwP5fBuIKifS4vocQ6ctAGvxWnyEgDr8VC9bxYIRD8WBY/6/0tp2Ib80J8n/qrTkwvd9bc4q9C1fK/6k+SO3SDMtHQf4/CMVRu6cwDvR/WF/Y/3X6DChrkP9vrRugR8dF9X9YR9j/B4O4QiI9ru8yIv1gkAa/sQf2jSD/H4RwuPz/C/RmtQRI1wBhJghMeA6v4eP8lC64P2oy+D0NxMP0+pOyep0C1r+BH4wvAXkE0AF1W/rYeFhWHQrROai/xAdPhTQRF2b/w/397hl7/r/61E2g/NoWfA77cRGRvgGRXtdVCtmeFaHCWKqvw896CVG17DAO9ldtA7X/ocjSvjD1B/VniPR4p33YtqgvKvsC9ncl1D6VWoQunZ56ZTXcG4L3JEEOwq/Sp56GCdrPEpG7UxR3w/KE+URr0KfmexDp4f47XTcZlB7WE97lDzETKC3EgfdtMHf7vVpdf6Zb1cv7TSrngWuUmNfgG8IN6r8gLK9p/WlkiyHe1vvddREeLp9uR7W7V3OUt7t33Nwp04dOmbdg0ewZeHdtHfAb1wrUCs8lROXSwzg8kuB0I9H/o4l8gtCt4nXLZdD5rAgV6mmvqEdE6jj4nuI6KA6O5LA1caBW0LXNyks/RTM8QejSmLA98PuMS0FcA4CN27UugaOxC4j0pUhXXSKfrvtceIVEvjpIRzGRL6t/fHLiWSsz15x6Xrbbkz+kRm7+4pDvRhf1e+3J5c3vX/Xrp9+cjm0WhM24HeugtNRR247P4V0ldRl1ZQhdum7gh1MNfL5xWLbS+tMiUh/bylb1EB4uHy57fcIW6t3hmIPqEzj1CRxKVwGjrkImXSpMrNFVo6tGV42u/3JdOg6O9xkUB8dP/J4MyM/4o3YFhH0FAfbB/Hjsoea4etyFvG5yxzzsuItXOCxXcraOu4UIz69eIs6lt66oZAg8rFMFPPcOGjNTPrp03iRK/1dvNSyD0qmA/Zqal8Bzun7UleWf2la2nVolC9POUG9GVC27jnPt97VBvqneUZX7/LY0JlzVhnnxqrZO3ypbke+itpVtplaNVChF57APCUGvksWxwwWWEa+qUH4P08/2jtQTb0kUB8tTG5QnAv80orgNtvF1qI2TII7yK7wTaWv6bEW+Gz2dlB/D6zGYX+TA0+l1/aeI9FBfEqW/jbiLRNlXxwcP1ge1Mo3x7gp5JwfysBDWftuY8lvYn7DfQh8tJNLja6IgP6d8Gfp5CumiuAv6Ad61p/OnBN0GWl8SpX8k4M5hkJ9T7arTPx6yXZn4iGxXWFe4XVMgjqpb3K6UH8D2wuMIbPNaSBd1lwS2dZh2hfZpfbhdXwpoV2qMosYQPEa9GrJddV3G0a6wrsK0KzXe6/S1iPSwXfEdGtiWxUgXxdGwrcO0KywP5mid/oOAdrXl4Y+rAQ/D+SJuV6rPwPS4XSk/oOo2I6q2eRrF4fVXiGPK0dS4HMTROv13RJvja0LMC372UfWmyqifkPXuguyxcO78Gd5tEIFC0G0L9bvUx4xGRH4RoAvmCSoSvDWAq1xjpQS9vI6rXKf/hahyXIXYnjCXyJZdJvSNNK2f6xI519QTXyYFdTNqiMHtlAuH0VVVGOljRoLIL3Lo0v+r0V/PmmFz41l90EwA51WiZ4thZwI6fe3sliM1YuS6MsOMEnSnAtpDlb8eioP56vjghJ2h6PT1sxVlDRrJNHYcIxmsIzySUSuF1IqKTt+ASA/vpOAZCrzrirsfrON6CCdXN8f7Cyg/pa6UKf8Kmmnn8i/tm9RVaZB/Ba2KMPlCab59QdcN5QtBK2rYF6ghFnIC9oXaBA5eGVMBz7bhUefRelUoJtLrOPisJGwvAexJgnxQVy2UT6fvm91y1NMXOIvU+TMEPpw9Ch+74bkClD5NpE8T6VX9bJetsJmyE49fsKyFRHo4/YHp+2crMAd4v/H+OYinzo0JSJfwOVI2Q3uC6qiQSK+xaxPpdRzc0QD7JEwD6wvqSoN4mH5UdstRtwlsb9gvMT68ihQ+dvuNx1hXIXEO+k5ZdsvvNDindZlODVXA+zfhOYhdW1R+flkfw+xJvaFv9/51992mvD7Kz6W/7oO37vbuP+dtk0s/tV8OjmOm/u1350GF6d4x4j7ZAp0frlqI8PkT1AppAtlWbGfb72HqCepPC3oOmBWhwtbLGczNuHz4jl/aDu/fakytLarOUWBbwrqDOLWQDbUtbaDmOhoT8pxAOAr/7g6VbbC8jPx3RB/+jVodmuodVbsdmq3QC+sOXjdQl+tJlP6IbEW+Wd5v6vkGOGcoFVX7F+YEXd8FRFq8Mgz/p1Yj8SWz9pmUT1lTqKw6/VHZLUeF900TWiesP2hXgY/OhUDnz0in6V2UOkR6akW9VFTtO3VQPmg7nEPgc1T7JFBaaIMK0wmb/P5PE3r8bCgm9FB3qNPIVmo1G/YbPG8vJHBgn4JjXsTlqyJqLBHIHnwHDMbBsh0E0uFQiP6HNisdu2cr9OJ02B6qL3GO/fp8ETiPcfH6VQqlxdeU0MYo8288P6GemdH/1wqwP4H0JIl8JYLub9QxrL0Jwt44d6aocLB3jDjmtcy1G+GsbIVevzGPmnPgMe+8bEW+v3m/c415Og7P+1Q4BJzDnI7nUVCHCnjZXnNkCuiHaYpRmXT6i7JbjnBsozhE61JlvyRbGbsYxAWNI0mU/sFsRb7Lvd+lomp96fqkxi+/MacIpVVhOrJDp70+W5Hnmqw/Frwu9ivjf3aqZOl00AaYDuuwHdeo+RXuu2HmV9SaV3EABuZjv7Fb+0adHPG1ibIJ4lwBkb7Yp7yCwE7n0Evdvab4Hd8BTRBxmHtgecOuG0Pe0pxG9ZeEqFyu2qhcxQHlShD5cD+HttcKsJ2qP8gftmsQ69/7/ZUTlzX/Kq41joHnHrOxpO8118Wl/6o6zw2569zig03WUHQ7pxCW/g3rG56Hc4/JIB6mfy275RhxjULg8lC8EXR9htdesf17+tj/XXbLUfnWW9nKeNT1CdVn/MbfopC26PTvZ7ccc91Pg2sWWo+OM6jzJHUPBfJamB161Nq5Tp/r2lLXCXXPLMyuFFineE6j6ygl6Ot7fP9Wp/8qu+VI7f6guFnHwbJjXiwkcKm1yMneUaWp3W7L74jz21rUPEKHEuHP/9gfYBmpe1F4fgPbEt9fgIG6hoTvCajTrkIvTqcDxQ+4v1LrKkHzRarfaf3Vrd9p36d2RGJ/C+vDfvM5Cg/WAxyrtQ/7renDPg2vuUrbVeiD9U7tT1AB86lO36ldRb763m9qFz/2B4onsC1C0DwU5lq+hMin24W6j2Cy9gPbF9oJz0H9aRGJXxKYbzUebiO81m85T0jiMRbiUe1QT9B1St0PwNeK1HpP0HVSEJ9Q/Q/3TWodgRpDgq7nNDZcMw8zb/Lb++O3ntG1XUW+QahvUVwb1G5B70MJ4j5oK1X3eP8Kde2vf9cJwKHsKiHS1wmwC3IyfvcHfuo/qAxhxyqmOWKR6dNHVL0E7XHL9UYG3EeotyeYjm147w41xuca2wb5jFGwHNSOdGrrJhzf9NgHx8sEsgViwOv/I0Tl9LZPJo0ENuTa9a7CbEJngsAQomq9TEY26HRjgQ3PdNjyO+h+QMT3SNWFvqMDNW5q/dR7v2zGTeq6htqzF/E6oCTIT6n5DrUOg/u67g9+11jwmhym39drW/ykhwr4qVhqXkGNF8q2PdpVtj2uezKQdyF/qADnsQchjqCe8IJ58dOqOv3UdhX5JqOxlvLN2iKYM6h79Ng//O5z+z0pc2gAZ1Dzd2jXbB+ds4BOfJ+b8guq/bCvwvTUXgJqzoTXoSgui/HJLPKdmLD8fv1S2+PXZ3R6ak5G3XPKoPTUeAltwetnQb6oQtA9c9h3dL+yXUPdpdOmZi0fPaokrjXaomTLM7PXTB5nskZLzb0LkF5Y3/ietAr7eccwe8ksry9Df1MNX19G3UsW9vqSWtPC10uwf+Dxhuo71H5iV7qo/o7b0vJaOvRaAd4XaOk7CVN+otYg8doq5C5c/xSvUdd0/y26YP8PWkMK064UTtA8MK65FN6XUosRB+qainDwvV3qGBYH6pqMcJKEDf+5j9muQi9sY785kt89o/vaVeS7vF3lNNr2K0GaW7zfxQBbCOO+nKbWrXWg7g9gv6XWSvC7USn/gNf/xSgOvmlxOkiHQyH6H9aDwgvzHSmqLi337VarugxbX7qsSucRIeoL7zuDZYLXK0H9AOLifvAg8PHnUd+i1hCp/qzP57pvGbSnSOeNuJ+8Dm5bGKi2xT4B2xb7BHxkHPsEfI4P9y/47BqeG8NA+Qvc7x62fz3vw5EaA3Mkvn6g9jlB7qXuSeE9TypE3I/bLsy4AvWnkS2GeIGPk8Py4bUlyzl6NoHyQ7ygdZMw+1H83tjhd1/iA69t8ZxGhSkII+y9PIX7drvKtsfxPBJsnzD+aNleof0Rr3VG9UfKP4L80XKtMxumfSlejGOt83vkj3BOiv3RZK3za+SPcc3P8f1Cqk6hLs3BpUR+uH8C17cKWREu/H97Vx9b2XHV5773/Pye7bXXzqYgWuhLFqVQSqQWRRQUlERe29nNbpImTfNdx9l98VrdXSe73s0mRSISBKGqUVIC5UsgQAIqQYVQC1RV+wcprQSFpmpERNEKBBQkgipRaBESFbQ3vcf++effzJ378Z7fJh7Jus93zpw5Z+bMzJmZc86NuT8vuSeOHhu8J656f672xGouqugr10NfORx7DwC+PF+5PJv55tVbZbAeZTOfptPZk/ctd129Va5NOPPk8I7suSeHUemylMPQvIk0r2dPJQvs36Z0kgHagl1V99m+8cpnE8h3yD8odnxxROS98RVMr8l5/pqa5vl5mOd/0IPTOS2Hd2ZPFaPGyip9Mk09F5didPGSZ+LRcsj3KVV18Tz/1Zrs9XrKNz9NKIc+uzy2523n0MzzvLKnU/NV6A4XZShNdc7zyA/P87FrGu8rkO+QDWpMRG91foBy+gjhUve16tyP73dUP+GZoJoDlN8Tt53PzsLajs8OlrK5R9kbxM7bBh97p65sJtknD8uFZNXgBiGrw/QLYfnF822+y1W+dEqucG26JmKNGYR83XsZyFdI5309ypc6Q86Tryb0c8jnIfE8ndupAzjnn9fTxPYCg7gXVvUM6r72BNWjzvlT/s/RWFb+5FiWx6bBPws66AXCmWdrxnqH2ldxOaYrVFejZF0NT10hOzbl+zAEv5V2jMwg/kH6rah5t4hdEbct5mE9MbZALDNVccWcJ8TiirGxjMXF9x7Is9IJVdnT8I7bX8VvwjHBe1ODfx7m8pj4TcjvugfnhwN6QN131Wy7Gorf5IudoMryfKHWUPt/Cmjnetj3xRevCfEo3Y/jDah2xHk0xp8nth2nqJw6V/GV5bk0FG/B5yfkBF72cWkHynWoTqznOcLj26v7xn/s/Tyu2+cC+tMAfD/Gca5B+vEd4h+274e6L2e/KKWjJSIvtMbt4aoP16j4oHyGdNk8HxQ702EflC+Bfvy5kvtn5bPC+1Scl0NnHXg+afQizp6LSuNqL4r8sL6UZ1Ozmj3V/jGhPHXPrvQfy0P9J+9+hte3kJ6r+kHtK0L+8QO8IxsfZf8X9u8ehv/LZwquj0Xnm1gZ43Ed2jMmgq6Kdj6dGL4Qf9fpsdVzUSkpOvaUXRH7S4VsjmLtger0o9zDVR+u0BqQt25/k9bYBPJC606L4JODW+X+P8MZG3eSx5VvvgqNi9Ceq+iapObWIrHNsO2Qt5PZk8/ru1nb4T59gOtcZ7fXOWsTtc7xfkPpB2rdQrn9pli3mm5n3+75Pe75Pe75Pe75Pe75PZarZ5T9Hq8/uIUX+9h3X8drs8HfDXrNDQe3wxjtNwHM0ex3B+p2rvBY3vN7dDvbcs/vcScc84HyVqff430g4ydpbO35PW7Pu1z8Hk965kirg+fIWL/H62E/w7Gh1dmy1Y++do7g0/QQ5CP8YzRPlNSfZGxow1Xx7qet9AlL6vwmoTx1H670Nz7fVeMqVqaM15SulyJkKiaeZVvwEYp1OYx4lmk6TjTj3pDPDNIUumuwslVi+/zkX539vf+b/f1/HZX468/QGCu5J9q1+Ou/C+vXhw5ur0+Nu0HGX/9w5HkPzj2Gx/KKnCnsth0kj8lRiL/+W9AHuxl//dM0rkreUVz28deLrC/sr4F5yj9hL/769jyUYV4Tm4H6fHY0JsMTbrv/unOF26yRAF6XlTWacAyhPu7c9jMCjodY0rdtsw3Vd6twnupSvQb/4sHteNRdrzqvNHj1HeCmqFd9M3qyIK4O4RqvgAvljeHHS9KlcLGfXVfgUutW2ncvgMyW1dF+bu1N//mxG697psx3hlF+8NzqZdqTqZimWNb3TYKvgr7zZdJ31B3I3jcJCte3900Ct/PuVK2xw9jDYd2D/ibB12BsjX//dv6V/hHqt9A96t43Cfz8hfS3mvZNe98kgDzU90zmQ+sCzn98bqjGGK59Rv+Ftf7jy2fWN/r/lHGABuTOFZ+w+RC+WPmnnu8wwkLl3fMVLzKSjtvZaUUUWmvsW6E805ImZUxnZdJB8X3w+61Qnie00GVAxcXwtqqBK0ITh+WpAWB5yiE4Lf+9ja33vvZQxkoV22N91NvD4J4l+jDvOcjjCf5DkMfGwD8Pebh55wW5jHyV7I9Dc86veNlzvhzuzXnsELzsubhkZRfK1d2w8ovlyres/FK58k0rfzOUT1zxtjtcqv5ks/2OuFL1b5a/pVT9W+WPQnnnivN/rFz9Y7ah/QEY1ziWDad6OrdzQ5YmmwOHHZBUOSHwJkHhUs5TSqFqDbmeOo3zh+18pjae3EYKl9pohw7k9+oZ7XoqXrR3jJa8IE4xRuIh+E5B+DzjipjNfwj/ZEH4qYLw+wrCT0fCs2GM4UiTyQIaxpS5TEiIFnyH+LtES9E5jw15sB7jZbYc7m4sL4a/6yq1XVKR3s35f85tp5fb1/DPEDzTjrAKV5pMpibh/fmNtVNrG08s9Tdu/fZJwrmGByU2K1bN8PzbUseDp+l2igOXZVWSbYTUFIXvO573Xc/7Cc/7Sc/7Kc/7fZ73006nefr/Fvr/5gA8Lgn73c6U0B+/H9T/boh11UGryaT6nQRgYvwrS6rt0bEp8U5P0dtzUWlzampSfcwfH82UVIV7CZXH+tSWgO/IVD8puxdl08V3F6eyp4opEJqHQvdM6bhczX5Pu7Bc+dpdqQbqbJvbSG07K/ZXdJwOwz/sbauSD75rUzYyRft1kLjSdGhEcZUdByG6QvNnjLypeoqOi7L1IC5bs9WRBqp1PnkOHWlgeZ9tOOJC1W8+QNdeXLnifps8nqr4Wr6ecFWVI475mSYbc+k6++semtGGAfcspiu3CP7ZZKvcb2bvBhj7qvS3gIZ1/FjR/rYXs1YgPWo8sj2BiiWo4quxfflHs6eSU17bYmU+pe0j2e8YX56iR4HK50fJXJp6Li7FzPclr/eiY8Kwb3fV+V71V2i+j/HtDske1hPrQ90aQVxpOjSiuI4MgK46r4LUGDWZK+rz1aS80PxXdD3G8njVznlF9oJ56/GLHpp96zHvyw3+BliPv5S9C8XPSdz29nROn2GwXqzMfRK3U1YUrgXC1QzQlRe7aolwKdkKyQHiWiRcao0MjS3EdYxwKVtZKxPye06fHDtIxU2NxcXXcOMCVyjuYeJ28ho685rxlPfV06pYT0vU0xH1pH89F5UW1dgvUH5F+ZgXKL9m5SfLlT9l5afKle9b+X3lyp+w8tPlyves/Ey58hvq+q9A+XV1hVWg/KqVnytX/oytHVfAS5btA/C+wLp0JY4JS0r/NPxdoqVgfZv65wGqj/lj/fNKQcuMyOMxfqWo50pRj8I1ViOuiRpxTdaIa6pGXPtqxDVdI66ZGnHtH1EeZ2vEVadM1Nn2dbZXnWO7TrrmasRVp6zW2Y8mX681PdP2Ygb7ziyj4+Gz56LSG2LiRJaMX/QGpMmSWv8Nv/Ll57NWjhXTc+F0+uDbr/+DB75xVULljRZ+F2OypnQJpQcXaKsDyrXB6lauDROUh3OOvUPXBqXnF6Evpv0Q/4yA5/Oo2L6YdXpeTROffeD4UTGgOpSnXEL4HhTHPt9dpr99d3fpb9sDo78n7/ed0/tvPodS32Ap2pYzorxvn+87H0J/XIRfSrbKfTDx8xVz3tGNpL3rwdUStKfpFqLd4I9l9Kb9dS25R6m2xfOeeefnldt2MgcXn1+psWW4pnJw8fkVlmc9bF8OLj6/wvKsm0/n4OLzKyzP+s5MABeOr2lRfobyQnJT9BxXyXPIx7lsPROR9YR8jfGc2blqMbnfTi412D88P6MNZMgeYkbAH3Vb9Vh5RzgGwU+nID9q7DI/vLZYeecG3z+hWD5qbCH8EvGDejrrH8hPd4D8hPonb55eJH7U3DpK/ZMXa+lYgJ+pAD+j2D84lyt+9gX4GcX+SdzO2AjIzzTl+eKUmh4VWj9Qv7E5VenFeO/3YvZb6RkzEXyGdEs1T/Bd4i9kfKVtvtjQPMbqcAb/S4DTdLjQWll2TQ7tJ7Bc4nlaPfwuZLvFNo0qdmHZ/sLyvr245aun1ZPHTyh+NY4zvLv+HZL/ScgLzYktgm83tsp9JMMZ0tfVvVSBuWTW+JoVmZaH53Ec3wtTk/5HulJZPwxzFsNxndgHc5SH+4MrKA/1fbsjidnbqX2F6i+Dxzhxak41fC2C/1MY+5doPlExUFVsbN4TflLMJ0wn8hVylVRuYdOCL9WmfP6u6sZ2nvfU3Xaa/2ni3+D/LNCmVn7Mww+3qcH/eaBNVRuF2lS57c0KvtQ+k8/Cue40zQtcXHfbA2/4WgT/+UCbGsyYh58xD84vBNr0CuIrr01Dd6dIz7Tb2Y4HAuX4jEDxp2jdJ+pO6C80ttK0QOWsnrbTsst9Z/B/K/pOnUlxG4XO+7Bevl9AOhRfrAcZ/N8Dnf9Aa8MA9OZxpTcjnWMevowehudzAez30L5zeoD8VNl38rnAkPedkp9QjLhQrOw08bmAOldU/KBuVTc/nYL8hM4FkJ8hnNuMD/NcILSPrulcYHyY5wJzlJdAHtuSox7t2ydjHvqyqDN0ntfVebz6LozBW1/4dF2890P4yYxYpUOo/ZGK18j7o2nAea1H10O+QjpESD9FelSbss6GtIfmfo6xXVJ220p2kX+W3TxdvOg+gONi4trnu1vl9vXNeThHsPwrOeX9d5rYlw+fVsbwpqkj4C0P6cH+ShOeGzUFLv5GiMG/Bc590oQ23jgfcP0cp1vRrc6EEoGrKd6hj1KvsUVzNXm9+HxCdY657f3hCH+L4H+4sZ1WnD9j7Cv+7rPfePnjR95xOi++eFn8X+ncvtD44w++OQ+/6u8mleHvsjB8A/IR/jo4O/pR0qfZh8zeLQTgEs9T0Yz0hGStKeCt7gkBb3k4T7APG64/TYGr66lvnsYgjhuM7cv143rqPHT7bHUYV1O8wzF4Pcl9Sd+bxOpW/kNKtqqMhX2f/cRt//g/j14TE8s/JvRhx21fywvyHu0vu1sxKCr6VfUSKo/1Kb/SUMwLw6ViosTEc7+bzhvqiolyB8nJoHzxcN7Jk8dh+29XlUclHyF5HLb/9rjIM1w25/r8t3HNRPhVkkfUC1keVfwH9U2BlLaHSR6rrJsh30s+a8vzBZzPnsqvMBTOOU09F5d4/kAcFX3Bo8fGbvmCG39lQ4OntjYTbufYOwz4fPZf/P3MkvPBm1X/F+Ehz4/3ouee3GenaXzw2P1L0Gff78HpnB4HdpYZ8mNVffkqgy4uhe7SK9qkR48Dw991lcbd5jjIOyPmcVDSTnvbOPB9k9BnU+qzpVU0o5wrWehS3pBtFa+q25YndAYZ+iZJjJ0pyiLb7O6Nr2C6LMdX3jz/azQnq++rheZ5g/8EzPO/QThxjVRyyPbeqj6lz6ap5+JSzF5g2PpO1b2AGt+hvUAd+g7KUYy+w/ZioTDkap5vCFxKL+azYG5b5wYzzyM/vv2O0cPt4Ys3h3yr/QS3g/JHSuh/pAHllP0jmgKX8lFqUJ7qpwkX7nd1D8b6AM5Dob2iwX8qcLcUO28bfOx3nJUd1STlKT/DAd5bS1n1nb8mTt8nqvNMg8/7VhvLL94Z8b0T0oI2Cj65UutWrK1ySL6Uvsny9YWC8qX2n7HyxT44sfIV0nlfj/KFPIbkC/e4FyveVX1x/N+//vnPrT43qLuqj133th/fd881T+XhN7+g1f7G8sr5jZPLj69tnOmfO3dt9r5DZYrqIh1Bf3z5p57uMMJC5d3TpttUod/KlCi/Ob4PQXmlv/IaimXSsXQF/MYYODyPqTWc9bySvCxUvKO5Uc03qCc45z+nT5O653jVrzz7XbGvFyq2z41zzt+/m3dh2f9q35UQHyXpuAnHmiW137B3XVdtjCSEz+pj/ux3OsdanIytz43c9O3Z5+7vTD5IJCK+Ed5jPiaGYTiGDymvE/B+5I1NsudIG5u4LZorGps8nVCdhY1NiNaiC2yssYm1+cPn106dWD59bnX54VPrx9/39ez1Lq+vT1ZcX5+suCZcXfGedVN88fOYKjZyk+C4DE4zNwPMzR6YwwBz2ANzBGCOeGDwmz63eGCOAsxRD8wxgDnmgbkVYG71wNwGMLd5YG4HmNs9MO8CmHd5YO4AmDs8MHcCzJ0emHcDzLs9MHcBzF0emPcAzHs8MHcDzN0emHsA5h4PzL0Ac68H5j6Auc8Dcz/A3O+BeQBgHvDAPAgwD3pg3gsw7/XALAPMsgfmIYB5yAOzAjArHpiHAeZhD8xxgDnugTkBMCc8MH2A6XtgHgGYRzwwqwCzCjBNgDkJMCcJpuN2qisF5sulqnZIIducijYl0efkhr/rKq09m3qrOntUNuVq/5JQnorLrPYv9jtV5+YBjvuWz1hRn16lPFR/TgJ+/BS9bw41vrB+53buHUu29VpFudsfOrdXbc9nXDFtn6YnAK6mffNaxbabtX2lOnu3vhr17QneI6RpFLcni0Cz4ZwHfGX08kPlyu+38gvlym9+Nn6xXPkb7bzir7MXVfX0GHuykrZKs7Hrxm59S6ri/fH+hMpjfepOQvnRYNumfzYu2x5cvrh6pmfV+U2UtNyDRDu2beJ5Gl5+x2f/yLvvvrmoPcMTUO4k4cy7d18keGuTtoBHfHzXdCp7pvy95MHp48uH8zEot579VmN3EeAed5r/xIXbNJb/hofW826L/5c9tCI9SCvrsSwL7w/AjQk4lifntC65QPDK5lnRxHaTP+W2eH/JgxPbH+maJ3huf4ZhGgz+p4GGlwlnG9qA5xcH7aDmxjT1XFRKqtquKBuzJL58VRuujrpnRPn6ANGF+qwaW9xXBv8clHsm+63iRfMaomxHJpz2R008T+fi5mkVB8fom4YyzHeaeFzth3qbhEPBm+7ZAniMmchzkMH/cvZM2+3L2W8Vpwj79Fc9dSs/aaSV6/4olGPfcKyb4/lgO7NeMC1owXY+RLQY/G+7rXa45LbawbntfW91Vzv+d7OvxhOBerh/Y+JLIjzbF4TihWKbqPiaU5SHbcyxe5Tdg7JLUeMR54IPRNA/LcoavIrLhPD8XUyD/6PsqdahWaBPjamWB+efQLmPu+38q3h+KdwLnrqR/6bgx+A5hhLD+2IofdL5+d8v+MfrItaxDf7TgPOSh07kS82p9l7FMZoTfE27ne3Ccdew7ZG3FwI4OBaA1TfhtExMEq2Yh/Uj72pszwpaQ309K+rhvv6L7Il9rdYujlmp6MNxz2N8SuDCdaPi1emTCdBiuJsC0nd1at/bG1U//UHbVr3xU/0v3nDplUuDwj/WeuOv9P7woaOv5TgG/5w9U9n7l+w3n9Vifem7/wrAJZ6nohnpsXejHsfga9lzlOMYvJL93o04Bt+V/V7Z2Fg5fnL5VP/M8sb6lrmFfX94l80tTlc0tzhd8Sphri5zCzRVCJlb+MwbmgBzFGCOemB85g0I4zNvQBifeQPC+MwbEMZn3oAwPvMGhPGZNyCMz7wBYXzmDQjjM29AGJ95A8L4zBsQxmfegDA+8waE8Zk3IIzPvCHNr3hdfksd15Y4RgyHc5Wvy6OvPV5r1+XvADju29B1+f2Uh8v7A4D/J+A3H9UPydT6wYrz/P5BmVpb21c0tX6wYvvsD5las2rqnFbpdvtK/PrsOcpX4tcBzZf5lXij4pX45pX6UrnyTSt/c7nyM1b+cLny01b+SKnyyaYLw1eyN4MO05RQPYMKv8NzdkkzhJbR3AE6+EiX8ad/XaCxSTgUPOsLjL9bDz+O+cGrEeVqq67iXHx9ibqKK0Bvh69IfzZ7pn3Nprp4zMhtmCZe96eIJoaJMSvAbTNfoxg86iGvEE7l8qhk3N7nhb5lF1HkYdpTN8qo+sST9SEf1fZcXGLaUeZmRH18DbVKeOyIC/tZhf81+P2iXhXynY/srd60376a/e64nW1ZoC16RpO6Hgx9MsPgT0O592W/OdwKjt8U7lF4j7gnnR77+wJ4pyPw+q48F4kngz8P5c5R3W0PTxc9deMVRCfAU9vD00WAc07vc+q45vwPogd1O77mzPt0Ztk5YsbtlOVQqKEO1ZOIetRVJs+fbQ+84eP582eyZ9puY8l2+sZE+fSdrRMqXAaXwfOt0Lqh9qYhsw7UudXcfpj4Nfi/gXLPEE4r75uzca/AvJaZs/Gov+nBqXj4RcJjYxfbOBF4WFawXtR5eM5uU704Z4dkLU1q35qmnotLLBeIo2I/dLGNLKnzIA45mpSrLxhyFGlg/brkeVfHF2YI9zMqDI6SmWYOzfPZMxRyqilwM1zFc5Lv5jaeiKgXeffxt0D8Ia42lfO1I+JtCvqQhkMe+jouPFfEythSgJ8xKjdWkh8sN+Ghr+Py2y2mfxYD/FTpH197c6gidf6n9Bzk27l69ZxQ6Kw803s7Y1EmWLzulTyDHAvRwnNqmlTbjlM51bbcl7FzQcW5px3LX4P4awb4853X5o09ZYKYuJ38hsZ4xf4eH9X+5rlIjfUYndbHzwTxo3CF5IL5Uf3F82Oa1HyD60aa6pxvEgDgNsrTF0wm+fNOyG/ojNPMbbjdGBb3ECE6WgRvpsl4rhS6IxpE+6Kccfuq9RDhWb9RLjZ8BpcmFTqRwyoq+wWWVawH23vebedRyT/u9yqa7p1OgBbD3RSQPtO9f8uel/sndgZtWjdI0zcL/ZL23X9nv/NM31qJHy7xPBXNSI+9G3XTt0aGYJRN3/7XbedhmKZvgzaTfUv2+9zG+tn+8tqZ5f7F/vHzG2vrZ5aPrxw/2V9eP7ty/FR/+fGzK48+2j/7Yxn4LpvaLXUYYaHyW5EySi6BzbpM7VDdDZnaHYKyfMUeii5YcZuwUJHPpOI1ZTNGhUD8Va+tsa5hm1TxF5eUyqJwtQviGmSfYFthnxiM5YXMlWJNxXoAxzLOpmK45C0Cjh+C32/Lflc0K1yqOObcnPOrm6yeOKeX9d02f3pr9hxl86eDQLOZv/wI4PPJuIp6qY4DcDtbYbw1jJaWoEVdi6ZqzJuy34+eXbuwstG/M13dD59ZsLV9Pl3auSKUH5S/hvOvT8iPwtGE8irVECxyKaG6i26b3pk9B71tMnOCE2tn+8c31i6k6taF/tkNNOlJ05WAp4xOdaBc+W2y7ogWxMu6nytQhyXsK068teJxz7pjgfoTHx1KPs0z8AC8s/b4nuyJfbnRX+2fXX7s/PrGWv/MBlNb0vBp07CxZAwC2au4MZrkCrNnS5RLPP836BmCTQJ4p0Se4bTeQHonKG+rNzbWl8+unFi7aGMSo4RYjUVaESN5lCi/OTbL6lyqF1EH4P0CtjLrMUZLyagaEyEdpCvqZRglWQ36v0XvmxGwSrIsT+kaMUclSjdRUsrtjvKmcLHexPJRtY/mRJ1G27cAR4DXL51OCgA=",
6321
+ "debug_symbols": "tb3djuY8cqV7L33cB2Iwfhi+FWPD6PF4Dxpo2IO2PcCGMfe+XwXJWFFVTpbyzfxOOp+uLzOWRDKWJDJE/def/ue//I///F//9Nd//X//7d//9A//+F9/+h9//+vf/vbX//VPf/u3f/7Lf/z13/719a//9afr/p/Gf/qHRtb/75//1O7/7/T6/3/+k/f5g+cPmT90/rD5Y8wfHj/ada2fbf2k9bOvn7x+yvqp66etn2P9XPHaitdWvLbitRWvrXhtxWsrXlvx2orXVjxa8WjFoxWPVjxa8WjFoxWPVjxa8WjF6yteX/H6itdXvL7i9RWvr3h9xesrXl/xeMXjFY9XPF7xeMXjFY9XPF7xeMXjFU9WPFnxZMWTFU9e8fr9U9ZPXT9t/XzF0/unz596rZ+veH7/vOPdv6h9A2+QDbrBNtxHyTf4Ars2tA20oW/gDbJBN9iGHdnuyPKCcW1oG+7I98mPvoE3vCJTgG6wDWODL/BrQ9tAG/oG3rAj+47sO/KdQnQ3y51EN9CdRRPaBtrQN/AG2aAbbMPYsCO3HbntyG1Hbjty25Hbjtx25LYjtx257ci0I9OOTDsy7ch3dpHcIBt0g20YG3zBnWMT2gba0DfsyH1H7jty35H7jtx3ZN6ReUfmHZl3ZN6ReUfmHZl3ZN6ReUeWHVl2ZNmRZUeWHVl2ZNmRZUeWHVl2ZN2RdUfWHVl3ZN2RdUfWHVl3ZN2RdUe2Hdl2ZNuRbUe2Hdl2ZNuRbUe2Hdl25LEjjx157MhjR75zkMYNskE32IaxwRdEDga0DbShb9iRfUf2HfnOwd5uGBt8Qr9zsOsNbQNt6Bt4g2zQDbZhbPAFbUduO3Lbkdvyjd54g2zQDbZhbFiO1Ona0DbQhh2ZdmTake8c7H6DbRgbfMGdgxPaBtrQN/AG2bAj9x2578h3DvL1gjsHJ7QNtKFv4A2yQTfYhrFhR5YdWXbkOwe539A38IY7st2gG2zD2OAL7hyc0DbQhr6BN+zIuiPrjqw7su7ItiPbjmw7su3ItiPbjmw7su3ItiPbjjx25LEjjx157MhjRx478tiRx448duSxI/uO7Duy78i+I/uO7Duy78i+I/uO7CsyX9eGtoE29A28QTboBtswNuzIbUduO3LbkduO3HbktiO3HbntyG1Hbjsy7ci0I9OOTDsy7ci0I9OOTDsy7ci0I/cdue/IfUfuO3LfkfuO3HfkviP3HbnvyLwj847MOzLvyLwj847MOzLvyLwj844sO7LsyLIjy44sO/LOQd45yDsHOXLQb/AFkYMBbQNt6Bt4g2zQDbZhR9Yd2XZk25FtR7Yd2XZk25FtR7Yd2XZk25HHjjx25LEjjx157MhjRx478tiRx448dmTfkX1H9h3Zd2TfkX1H9h3Zd2TfkX1Fluva0DbQhr6BN8gG3WAbxoYdue3IbUduO3LbkduO3HbktiO3HbntyG1Hph2ZdmTakWlHph2ZdmTakWlHph2ZduS+I/cdue/IfUfuO3LfkfuO3HfkviP3HZl3ZN6ReUfmHZl3ZN6ReUfmHZl3ZN6RZUeWHVl2ZNmRZUeWHVl2ZNmRdw7KzkHZOSg7B2XnoOwclJ2DsnNQdg7KzkHZOSg7B2XnoOwclJ2DsnNQdg7KzkHZOSg7B2XnoOwclJ2DsnNQdg7KzkHZOSh3DgrdoBtsw9jgC+4cnNA20Ia+gTfsyL4j+47sO7KvyHpdG9oG2tA38AbZoBtsw9iwI985KP2GtoE23JHlBt4gG3SDbRgbfMGdgxPaBtqwI9OOTDsy7ci0I9OOTDty35H7jtx35L4j9x2578h9R+47ct+R+47MOzLvyLwj847MOzLvyLwj845856DoDb7gzsEJd2S7gTb0DXdkv0E26IZXZL37K+ZjAnxBzMjwDW0DbegbeINs0A22YWzwBbYj245sO/Kdg3of852DE2SDbrANY4MvuHNwQttAG3bksSOPHfnOQR032IaxwRfcOTihbaANfQNvkA07su/IviP7imzXtaFtoA19A2+QDbrBNowNO3LbkduO3HbktiO3HbntyG1Hbjty25Hbjkw7Mu3ItCPTjkw7Mu3ItCPTjkw7Mu3IfUfuO3LfkfuO3HfkviP3HbnvyH1H7jsy78i8I/OOzDsy78i8I/OOzDsy78i8I8uOLDuy7MiyI8uOLDuy7MiyI8uOLDuy7si6I+uOrDuy7si6I+uOrDuy7si6I9uObDuy7ci2I9uObDuy7ci2I9uObDvynYPWbmgbaEPfwBtkg26wDWODL/Ad2Xdk35F9R/Yd2Xdk35F9R/Yd2VfkcV0b2gba0DfwBtmgG2zD2LAjtx257chtR247ctuR247cduS2I7cdue3ItCPTjkw7Mu3ItCPTjkw7Mu3ItCPTjtx35L4j9x2578h9R+47ct+R+47cd+S+I/OOzDsy78i8I/OOzDsy78i8I/OOzDuy7MiyI8uOLDuy7MiyI8uOLDuy7MiyI+uOrDuy7si6I+uOrDuy7si6I+uOrDuy7ci2I9uObDuy7ci2I9uObDuy7ci2I+8cHDsHx87BsXNw7BwcOwfHzsGxc3DsHBw7B8fOwbFzcOwcHDsHx87BsXNw7BwcOwfHzsGxc9B3DvrOQd856DsHfeeg7xz0nYO+c9B3DvrOQd856DsHfeeg7xz0nYO+c9B3DvrOQd856DsHfeeg7xz0nYO+c9B3DvrOQd856DsHfeeg7xz0nYO+c9B3DvrOQd856DsHfeeg7xz0nYO+c9B3DvrOQd856DsHfeeg7xz0yEG+wTaMDb4gcjCgbaANfQNvkA07suzIsiNHDsq9MnxtaBtoQ9/AG2SDbrANY8OObDuy7ci2I9uObDuy7ci2I9uObDuy7chjRx478tiRx448duSxI48deezIY0ceO7LvyL4j+47sO7LvyL4j+47sO7LvyL4iv1bZr6SWREk9iZMkSZMsaSSlRkuNlhotNVpqtNRoqdFSo6VGpKUF+aZIzEkvjXEFUVJP4iRJ0iRLGkm+6U7RRanRU6OnRk+Nnho9NXpq9NToqcGpwanBqcGpwanBqcGpwanBqcGpIakhqSGpIakhqSGpIakhqSGpIamhqaGpoamhqaGpoamhqaGpoamhqWGpYalhqWGpYalhqWGpYalhqWGpMVJjpMZIjZEaIzVGaozUGKkxUmOkhqeGp4anhqeGp4anhqeGp4anhm+NKKdZ1JIoqSdxkiRpkiWNpNRoqdFSo6VGS42WGi01Wmq01Gip0VKDUiPzvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfM86giGhSkSZY0knxT5PmklkRJPYmTUsNTw1PDU8O3RhQVLWpJlNSTOEmSNMmSRlJqtNRoqdFSo6VGS42WGi01Wmq01GipQalBqUGpQalBqUGpQalBqUGpQanRU6OnRk+Nnho9NXpq9NToqdFTo6cGpwanBqcGpwanBqcGpwanBqcGp4akhqSGpIakhqSGpIakhqSGpIakhqaGpoamhqaGpoamhqaGpoamhqaGpYalhqWGpYalhqVG5HkPsqSR5Jsizye1JErqSZwkSakxUmOkxkgNTw1PDU8NTw1PDU8NTw1PDU8N3xpRuLSoJVFST+IkSdIkSxpJqdFSo6VGS42WGi01Wmq01Gip0VKjpQalBqUGpQalBqUGpQalBqUGpQalRk+Nnho9NXpq9NToqdFTo6dGT42eGpwanBqcGpwanBqcGpwanBqcGpwakhqR5xJEST3p1hhBkqRJljSSfFPk+aSWREk9KTU0NTQ1NDU0NTQ1LDUsNSw1LDUsNSw1LDUsNSw1LDVGaozUGKkxUmOkxkiNkRojNUZqjNTw1PDU8NTw1PDU8NTw1PDU8NTwrRHFUYtaEiX1JE6SJE2ypJGUGi01Wmq01Gip0VKjpUZLjZYaLTVaalBqUGpQalBqUGpQalBqUGpQalBq9NToqdFTo6dGT42eGj01emr01OipwanBqcGpwanBqcGpwanBqcGpwakhqSGpIakhqZF5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5Lpnnknkumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5HjVh3oJGkm+683xRS6KknsRJkqRJqSGpIalx57lTUEuipJ7ESZKkSZY0knyTpYalhqWGpYalhqWGpYalhqWGpcZIjZEaIzVGaozUGKkxUmOkxkiNkRqeGp4anhqeGp4anhqeGp4anhq+NaKQbFFLoqSexEmSpEmWNJJSo6VGS42WGi01Wmq01Gip0VKjpUZLDUqNO8+dgyipJ90aGiRJmmRJI8k33Xm+qCVRUk9KjZ4aPTV6avTU6KnBqcGpwanBqcGpwanBqcGpwanBqSGpIakhqSGpIakhqSGpIakhqSGpoamhqaGpoamhqaGpoamhqaGpoalhqWGpYalhqWGpYalhqWGpYalhqTFSY6TGSI2RGiM1RmqM1BipMVJjpIanhqeGp4anhqeGp4anhqeGp4ZvjShWW9SSKKkncZIkaZIljaTUaKnRUqOlRkuNlhotNVpqtNRoqdFSg1KDUoNSg1Ij89wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3Hee07XznK6d53TtPKdr5zldO8/p2nlO185zunae07XznK4rNVpqtNRoqdFSo6VGS42WGi01Wmq01KDUoNSg1KDUoNSg1KDUoNSg1KDU6KnRU6OnRk+Nnho9NXpq9NToqdFTg1ODU4NTg1ODU4NTg1ODU4NTg1NDUkNSQ1JDUkNSQ1JDUkNSQ1JDUkNTQ1NDU0NTQ1NDU0NTQ1NDU0NTw1LDUsNSw1LDUsNSw1LDUsNSw1JjpMZIjZEaIzVGaozUGKkxUmOkxkgNTw1PDU+NyHMP4iRJ0iRLGkm+KOrhFrUkSupJt4YESZImWdJI8k2R55NaEiX1pNRoqdFSo6VGS42WGpQalBqUGpQalBqUGpQalBqUGpQaPTV6avTU6KnRU6OnRk+Nnho9NXpqcGpwanBqcGpwanBqcGpwanBqcGpIakhqSGpIakhqSGrcef4aDIEGHEBPvHN9YwMSsAMZKECoKdQUarHdVbtujA2vFrZEv+ZGVBS1Zm3hLdbmZksCVKABB9A3RnnZxgYkYAcyUIAKNOAAQq1BrUGtQa1BrUGtQa1BrUGtQa1BjaBGUCOoEdQIagQ1ghpBjaBGUOtQ61DrUOtQ61DrUOtQ61DrUOtQY6gx1BhqDDWGGkONoRZbxDUNHEBPjL3iFjYgAUPNAhkoQAUacAA9MdJtYQMSEGqRbm0ECjDUPNCAA+iJM90mNiABbzWiQAYK8FYjDjTgAN5qFMcbe84tbEACdiADb7XYhSqK1jYacABvtR5HFqaxsAEjrgRG3BgE4Q99/mtEuFsyytI2NiABO5CBEdcDFWjAAfTE8IeFDUjADmQg1MIf7h2dKOrUNt5q92ZOFJVqC8MfFjYgATvwVmMOFKACDTiAnhj+sLABCdiBUAt/YAlUYKhp4AB6YvjDwltNoh3CHxZ2IAMFqMBbTVrgAHpi+MPCBiRgBzJQgAqEWvjDvRsFRUXbwvCHhdGSMeTCHxZ24ABGhOjNyG6J1omUvjdZoChK26hAAw7gHUzjICOlFzYgATuQgbeaxllESi804AB6YqT0wgYkYAcyEGpxe6DRDnF7sHAAQ+0efVGttrEBQ00DQ80CQ80DBahAAw6gJ0aiGwV2IAMFqEBLjCy8XyqjKCjbeEtYHG/km43ADmSgABVoiZEXFscbebFwAD0x8mJhAxKwAxkoQKgJ1ARqAjWFmkItrpB35TNFdddrjSDwjnDXpFHUdy2Ma+HCO8KI7o5sWdiBDBSgAiNudEAkw4gOiGQYcWSRDAsFGBGiqSMZFg6gJ0YyLGzAW83jjCMZFt5qHicfybBQgXfce8mEolDrNTkZ2IFxvBYYEThQgQYcwIh7t0MUbG1swFDTwA5kINQa1BrUGtTi+jYxrm9jYgMSsAMZKMCxuzAqs2YXRmnW7KyozdrIQNl9EeVZGw04gNmbUaK1se1+iyKtjX13VpRpbRTgyC6MfJv9JujNyLfZhZFvs6EE7StoX0H7Rr7NzhL0pqI3I99mZyl6U9GbCjWFmkJNoabozUgGjyaJZFg4gK/DeT3E3Rgbni5sQAJ2IAMFqEADjhvjcGIb4sCoe9rYgATswFAbgQJUoAFDzQM9MTYnXnirxTNx1EBt7MBbLZ6PdW6ROlGBBrzV2j1gdG6M2gMJ2IEMjLgSGHE1MOJa4AB6YmxXvDDU4oxjy+KFHcjAW43i3GLH4njqiOInir2To/qJ1va+t0RsYBv1TxsJ2IEMFKACQy1aPfYxXnir9Tic2Mt4YQMSsAMZKEAFGnAAoaZQU6gp1BRqCjWFmkJNoaZQix2P4zEqiqM2NiABO5CBAoy40Vmx3/HE2PF4YQMSsAMZKEAFGhBqA2oONYeaQ82h5lBzqDnUHGoONU81uy5gAxKwAxkoQAUacACh1qDWoNag1qDWoNag1qDWoNag1qBGUCOoEdQIagQ1ghpBjaBGUCOodah1qHWodah1qHWodah1qHWodagx1BhqDDWGGkONocZQY6gx1BhqAjWBmkBNoCZQE6gJ1ARqAjWBmkJNoaZQU6gp1BRqCjWFmkJNoWZQM6gZ1AxqBjWDmkHNoAYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDl9j0Eg7sQAbqdkSbBjJxANN0x3UBG5CAHchAASrQgAMItQa1BrUGtQa1BrUGtQa1BrUGtQY1ghpBjaBGUCOoEdQIagQ1ghpBrUOtQ61DrUOtQ61DrUOtQ61DrUONocZQY6gx1BhqDDWGGkONocZQE6gJ1ARqAjWBmkBNoCZQE6gJ1BRqCjWFmkJNoaZQU6gp1BRquO0YuO0YuO0YuO0YuO0YuO0YuO0YBjWDmkHNoDagNqA2oDagNqA2oDagNqA2oDag5lBzqDnUHGoONYcavGTASwa8ZMBLHF7i8BKfXmKBHcjAUPNABRow1EagJ04vmdiABOzAW40pUIAKvNU4jje8ZKEnhpcsbEAC3moxgxyVXxsFGGoSaMAB9MRwjZhMjsIu4mio8IeFBowI0VDhDxPDHxbexxvzyj4/qTKxAxl4q8VUsM9Pq0w04Eicn1OJ5pufT+mBAlRgHG9IRM4v9MTI+YUNSMAODLVo1PlRlYkKNOAAeuL8vMrEBiRgB0LNoGZQM6gZ1AxqA2oDavOzK9Hdkd0xOx6VXBsNOICeGNm9sAEJ2IEMhJpDzaHmUPOt1qOua2MDErADGShABRpwAKHWoNag1qDWoNag1qDWoNag1qDWoEZQI6gR1AhqBDWCGkGNoEZQI6h1qHWodah1qHWodah1qHWodah1qDHUGGoMNYYaQ42hxlBjqDHUGGoCNYGaQE2gJlATqAnUBGoCNYGaQk2hplBTqCnUFGoKNYWaQk2hZlAzqBnUDGoGNYOaQc2gZlAzqA2oDagNqA2oDagNqA2oDagNqA2oOdQcag616SUWyEABKtCAA+gb2/SSiQ1IwFtNr0AGCjDURqABB9ATp5dMbEACdiADBQi1BrXwknuJr0c52cLwkoUdeEe41yF7lIptjAga6InhDwsbkIAdeB+vRZOEPyxUoAFvNQvh8IeJ4Q8LbzWL4w1/WNiBodYDBahAA4YaB4ZaHG84gUUfhxMsZKAAI64H3nFHnEU4wYjDCScYoRZOsLABCXirjTiccIKFAlRgqMXxRvqPOJxI/xE9H+nvcTiR/h4Skf4LGShABRpwAG81j2OI9F9IOYwGRlTk/EIBKtCAGKkDI9UxUiPnF0LNoeZQc6g51CLnPdoscn6hb5wfUnQLbEACdiADBahAAw6gJzaoNahFzt9lqX1+YnEhAwWoQAMOoCdGzi9sQKgR1AhqBLXwh3uFqa+PLcqN805hYgMSsAMZKEAFGnAAocZQY6gx1BhqDDWGGkONocZQY6gJ1ARqAjWBmkBNoCZQE6gJ1ARqCjWFmkJNoaZQU6gp1BRqCjWFmkHNoGZQM6gZ1AxqBjWDmkHNoDagNqA2oDagNqA2oDagNqA2oDag5lBzqDnUHGoONYeaQ82h5lDzVOvXBWxAAnYgAwWoQAMOINQa1BrUGtQa1BrUGtQa1BrUGtQa1AhqBDWCGkGNoEZQI6gR1Ahq8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXhIbxfW7bqVHqd/GDmSgABVowAH0xNtLNkKNocZQY6gx1BhqDDWGGkNNoJYznJ2nl0wMtRbIQAEq0IAD6Ikaaj2wAQkYahzIQAGGWhyZGnAAo98i2PSSiQ1IwA5koAAVaMCRGK5xT133KELcGGcRA2YwUIAKNOAAeqJHm1lgAxIw1EYgAwUYanFk8dnphQMYM9N3sNhXbmMDErADGShABRpwJMbHp+9iqx6liRs78D6Lu9iqR2niRgXeZ3FXWPUoTdx4t9ldbNWjNHFjA95qd4VVj9LEjQwUoAINOIChdo/J2F9uYwMSsAMZKKtusK+CRQncBYB9FiwubEACdiADBairQrDH1nIbB9ATo5h4TGxAAnYgAwWoQAOOREXPK3pe0fOKnlf0vKLnFT2v6HlFzxt63tDzhp439Lyh5w09b+h5Q88bet7Q8wM9P9DzAz0/0PMDPT/Q8wM9P9Dzjp539Lyj5x097+h5R887et7R846e9+z5qLWcPRS1lhsJ2IEMFKACDZg9H1WV/a5o7FFVubEDGRh9Mf9MgQYcwCjvvQeBznLkiQ1IwA5koAAVaIkzuy2wAQnYgQwUoAINOICeyFBjqDHUGGpx9ac4yLj6L1SgAQfQE+PqT9Hqd85vJGAHhlq0elz9Fyow1EbgrdanhCfG1X9hAxKwAxkoQAXeaneJUI8Cy42hdmdWFFhubEAChlocejjBQgEq0IAD6InhBAtDLXoonGBhqEXrhBMsFKACDRgStzlGreXGBiRgB94SHE0SNwILFWjAAfSNUWvZ75fTetRabiRgBzJQgAo04AB6YoNaWMVdRNCj1nJjB4aaBApQgaFmgaE2AkPtbp2otdzYgATsQAZGkUbQSPJNsyIqqCXRpsjgu+qgR7HjRgZGzXeQJlnSSPJNMQ0wKSJOvJsh7tyjdLHPfxxJvmneige1JErqSZwkSSES5xVpuPBWkeiiSMOJkYYL4zCjiyK1YqktqhA3xnRzUASILozMWtiABOxA3k0ysjlHNufI5hzZnCObMxJpNmKkzGzESJlYAIvqwo1xqnGkkTKBUV3YY8Euqgt5EiX1JE6SJE26I8aKWdQK9lhxiFrBSJAoFVwkSfdfz9+zpJHkm+L79JNaUohEmBj3C+9+v9/H61EiuFGBcZh3b0bZX48Vuij723gfZ5xGXAtnw8S1cKEBBzDC3r0ZVX8bG5CywWcmTWQg1BhqDDWGGkNNoCZQE6gJ1ARqAjWBmkBNoBbZNzFm1SKA5qCOor+NHchASYzrlEaESKaFBoyn1CDfNOe7gloSJfUkTpIkTbKk1Bip4anhqeGpEdeoWH+NEryNArxPJtZUowRv492Isa4bJXgTowRvYwMSsAMZGGoaqEADhhoHemJcoxaGmgUSsANj0TVIkjTJkkaSb4p8tIlxpB54H2msCUdB3cYB9MS4ZY1F49hRbSMBO5CBsdQZFGI90IADGGJ3j0bt3cYGDLFoi8jShSEWpxZZulCBMX6DRpJvmika1JIoKSJGY0XOxYp1VN31+/W9HlV3GxuQgPeRxnNZVN1tFKACDRhqQb4pLnuTolGCKKkncZIkaVKIxJCL286FnhiXwYVxmNH4cSu5MEZ10EjyTXFL6RMbkIDRInEeka4L46oVzesKvK88Mc8XNXUc83FRU8f35B5HTR3fM058zevjRAJ2IAMFqEADhpoFhtq4sYWaB95q9wQCR/Uc37MGHNVzGxVowAH0xLiELoxgFChABRpwAD2xX8AIFg3V4884cAA9kS/gfW5xlnfKLepJnCRJmmRJI8k33dm2KDUkNSQ1JDUkNSQ1JDUkNSQ1NDU0NTQ1NDU0NTQ1NDU0Ne5k4xgJd7It6kmcJEmaZEkjyTfdl85FqTFSY6TGSI2RGiM1RmqM1Bip4anhqeGp4anhqeGp4anhWyMKxPi+u+UoEOMW/xqJcb/kyVEKxvcDCkf1Ft/XaI69vzYKMG4xI8I9rCUC3KN6kW+6x/SilkRJPYmTJEmTUqOnRoz1+yLJUZvF9w0UR22WxCHeI3uRJY0k33SP7EUtiZJ6EielhqSGpIakhqSGpoamhqbGPbLvZx6O8qxFknRrREvfI3vR2BRj/H4Q4yi84h4dHCO6RzPFkF5owAH0xBjWCxuQgB3IQKgNqA2oxfDuMbJifE+MAb6wAQnYgQwUoAINCDVPtajB2tiABOzAuxs8SJI0yZJGkm9qEZED40gl8PXX96MbR0HVopH0+uv7GY+jmmpRS6KknsRJceL3WIiSKb7vFThKpjYSME4xDjMuMAsFqEADDqAnxmVnYQMSEGoMtbj0cBx6XHsWGvBW4+iHuPxMjOsPR7PGBYijWeMKFPYWJVMbGRhqIRxXoYW32j3TwlEyxRLCd7pqKNzpuqglUVJP4qSIGJ153+yxxEFHckaORwHUxg68jzTSPAqgNirQgCMxkjPyP4qaWKJ3Iw3nIIw0XGjAAfTESMOFDUjADrzVNBou0nChAm+1OTAjDRf6xihq2nirRQJEUdPGDryb14IkSZPuRNKgkeSb7uvaopZESXcXjiBOkqQ4nx5owAH0RCJgtAgHKjAiSOAAeuKdtRYNciftIkrqSZwkSZpkSSPJN3FqcGpwanBqcGpwanBqcGpwanBqSGpIakhqSGpIakhqRG7OroncXDiA0V7RO3GXuLAB487oCuzAuDeK3olbxYUKNOAAxk1YdF9k88K4DYs+m/eTcWTzhjJG5LyjnCjAUIuDnDeVEwfwbsJQuK+/i1oSJfUkToqId25GQRGPOO3I4xEtG3m8sAMZeB/piNOOPF5owAH0jVFQFG3B+1PRHOVEPOY/hpYFMvAVdf75/ioF897JlnnvZMu8d7LlqAPiezaAow5o4wB6YjyLLWxAAsYTRAtkoABtH1XsZDvJN8VOthzUkigpgk9koADjCUUDDRjPQXGucW2dGNfWhW3uXcy8d65m3jtXM++dq5n3ztXMe+dq5r1zNfPeuZp571zNvHeuZpbUkNSQ1JDUkNSQ1JDUkNSQ1NDU0NTQ1NDU0NSYj3QxXOYz3UQDRotFh0aeTow8XRgPjx5IwA5k4H1/d8XovfNUrhgHsYv1/O8jyTfdWSpXDIk7TTcSsAMZKEAFGnAAPdGh5lBzqMWW1nHisaX1JEnSJEsaSb4oSn0WtSRK6kmcFOfTAxVowAH0xHYBG5CAHcjAUONABVoiXcCIoIERwQIFqEADxvHGucXz68R4gF3YgATsQAYKUIEGhFqHGkONocZQY6hxqHmgAG+1mJGKKp+NA3irxSxTVPlsbEACdiADBajAUIvOikfghZ4YD8ELQ00CCdiBDBRgqMXJx7PwwgH0RLuADRhq0VDWgQwUoAINOICeGJ6wsAGhFp5w76vFUfuzUYAx2REtGZ4QEzFREbQx5lRigIcnLIxZlWid8ISFHchAASrQgAPoG6MiaGMDErADGShABRpwAKHWoNag1qDWoNag1qDWoNag1qDWoEZQI6gR1AhqBDWCGkGNoEZQI6h1qHWodajN+TANZKAAFXhXJcU8ts5tuyd64ty2e2IDErADGSjAOIvbHKMiSGK2LSqCNsbxeiADBahAAw6gJ4YTxFRWVPmsJlGcceT8wgH0xMj5mAGLKp+NBOxA9KZBzdCbht409KahNwd6M3J+HkPk/EL05kBvRs7PY4icX2hAqA2oOdSQ84qcV+S8IufVMXYcLeloSUdLRs7HMUTBz8YGTDVDzhty3pDzhpw35Lwh5w05bzPnNbABCdiBDIyWpEAFRkv2wAH0xMj5hXFuESxyfmEHMlCACjTgAIbanThRCbQxB3jsqCYxKRc7qm0UoAJzaMSOahvRWYzOYnQWE7AD0VmMzmJ0FqOzGJ3F6Cy5gA2IoRHpH5N9UYC00YB3XI52iPSPeb+oQdrYgATsQAYKUIGWaHljGLukbSRgxI3xEKawMOLGCYUpLDRgnEV0d5jCxDCFhXEW0fNhCgs7kIECVKABB9ATwxQWQi0+PRsnEZ+enaRJ90N4nEF8enaSL4qyJYmp0Shb2kjAWBBpgQwUoM4PnvLYH6DlsT9Ay2N/gJbH/gAtj/0BWh77A7Q89gdoeewP0PLYH6Dl0VKjpUZLjZYalBqUGpQalBqUGpQalBqUGpQalBo9NeKaHpPAUQS1sQOjwThQgLGI1AMNOICxjnSPqaiC2hhqIRypvjDUPJCBArwfCKOj9vdoeezv0fLY36Plsb9Hy2N/j5aj0kliojdqmkTnv95HGjO2UdO0MNJ5YQPeRxoTo2Ouek1koAAVGGoWOICeGEm+sAEJGGrRRJHkCwWoQAMOoCdGki9sQAJCLZJco+kjyRcqMFb1oiUjyS0aKpJ8YiR5TExGEdXGWy0mAaOMaiMDBahAAw6gb4wyqo0NSMAOZKAAFWjAAYRag1qDWoNag1qDWoNag1qDWoNagxpBjaBGUCOoEdQIagQ1ghpBjaAWV/6YI43Cq40E7MD7/vuafyZABRpwAD0x7vYXNiAB4yw0MI7XAj0xLuwxJR0VVRsJ2IEMFKACI+49wKOmajWJ4owj5xcKUIF3+8bEctRUbfTEyPmF6E2DmqE3Db1p6E1Dbxp609CbkfPzcAZ6c6A3B3pz4Nwi52N6PQqxNt5qd3EdRyHWxgH0xMj5uCJHLdZGAnYgAwWoQAOGWgyCyPkb5ZqJ7oEhYYEdyEAB6uoAiQKsjQPoie0CNiABd2fJlYkuVya6XJnocmWiy5WJLlcmulyZ6HJloktUaMl9qZao0NqowDiLaIdIaY8ji5SeGCm9sAEJ2IEMFKACI267MS7rCxuQgBGXAhkoQAXuS7NEJddGT4xEX9iABOxABgpwzNUfieqtSXol3YtXMULu1F/Uk+L45y8KUIH3MmOMyzvvF/mmyHqf2IAE7HM9SqLCa5EkaZIljSTfdKf7opZESakxUmOkxkiNkRojNUZqeGp4anhqeGp4anhqeGpEdns0bWT3Qt8YO47FspzEjmMbo8U8sAMZeK+H30sjEjuObTTgAHpiLLwvbEAC3mvv9zqLxI5jGwWowFDrgQPoiVEvs7ABQ40DO5CBdztSkCZZ0kjyTXGXP6klUVJP4qTU6KnRU6OnRk8NTg1ODU4NTg1ODU4NjkaLnmUDDqAnygVsQAJ2YDTaCBSgAkNNAwfQE6OYpkXXRzXNQgIK8C5GjvOJkulJ8UfRbUbADmSgABV4H2KLo71TfaMnjgsYapEAg4AdeKtRHO2d8RsVGAVeMXzHAHrinfYbbzWK07wTXymO1yNuNL8r0IADGHHvPI8KN73nZSUq3PSeaZKocNN77keiwm0jAwV4q0WrR5HbxgH0xMjzu85NouRN7zo3ia3F9J4Dk9haTHscTiQ3h0Qk90IDDqAnRnIvbMAoxIpjiORemIMo9hPbaMAB9MR+AUMiTqgTsAOj2itOswtQgQYcQE/kC9iABOxAqDHUIs05ujvSfOEAemKk+cIGJGAHMlCAUBOoCdQEarNmLnp+FshFz88KuYkCVGDE9cAB9ES7gG1VuMgsp1vYgQwUoAINOBIj52UiATuQgQJU4H28EsMz8lhiTHpE6IEMFGBEiMEV2b3wbgeJ7o7sDozCuY1xvBpIwA5koAAVaMBQs0BPjOxe2IAE7EBexW4S5XKzHaJcbmO2Tuz7pfdMlcS+XxsJ2IEMjLPwQAUacACjBjDUIrsXNmCUAfbADmTgrTZPKLJ7oQGj4PAKDLXolshujUaN7NZoncjuhR0YcePcIo8XDqAnRh5rnFtkbAyuKKPbKEAFjkTd9aIy6+QWduCuIpVZJ7dQgQYcQE+cVa8TG5CAUcIZbRaX5oUGHMD75C06Ky7NCxuQgHEW0W+zFnaiABVowAH0RL+ADRjVy9FQs/h8YpxFtG8k78IB9I1RLaf3vJ1EudxGAnYgAwUYldkj0IAD6IntAjYgATuQgQKMs+BAT4zkXdiAcRYS2IEMFGCcxUQDDqAnzmr2iQ1IwA6MvtBAAw6gJ0aaLmzAePoN6kmcJEmaZEnrbQzhOZt205xMC2pJlNST4sgnxjFG+8fFdGEDxrm3wA5koAAVaMAB9MTI3YUNCDWDmkHNoGZQM6gZ1AxqM3c9sAMZKMC7deIiHYVyGwfQE+O2emEDErADo+o7DicuxwsVaMBQizSOjA6MermNDUi7s2Rm9EQGClCBBhzAHA9RNLcxzqIHMlCAcRYcGGchgQPoiZHRC+MsNJCAHcjAUPPAWy3mqKKUbuMAemJcjhc2IAE7kIEChFrkucdpRp4v9MTI84UNSMAOZKAAQ80CQy3OOC7SCz0xLtILG5CAHchAASoQajHTdsXgiqm2iTHXtrABCdiBDBSgAu/5tnjaj1K6jZ5oF7ABCdiBDAy1GLSmQAMOoCdGEfzCBiRgVDMEcZIkaZIljU0eEaNlPd5DuAIFeDsZzV8w4AD6xiiM29iABOxABsZrFC0w3qOgQE9sF7ABCdiBDIyz6IEKNOAAhto9yqMEbmMDErADGSjAUJPAUNPAAfTE+bbLxAYkYN99oZ2BAlSgAQfQE+d7LxMbkNd78jK3ylqowIg7AgfwjhtzPLFV1sYGvM8iJnaiMG4jA++zoOiAO9s3GnAAPTGynaJ1ItsXErADGShABVpi5HXMHc3tr2L6PUrgLKaRogRu4wDGkcVQjlxdeB9ZTDlFCdzGDryPLG4BogRuowINOICeeF/hN4ZaDHsnYAcyUIAKtH3GUexmd0GYRLHbRgJ2YMTlQAEq0IBjbTwhc3eribFzyMIGJGAHMlCA0Tpx6JHHEyOPFzZgnIUGdiADBahrgxGJsraNA+iJsavIwgYkYAdG61igAQcwzuIeXFHLtrEB4ywiWLystjBeg4omidfVFirwVotZw6hl2+iJkccLG5CAHRhqFChABRpwAD0xthyJCYK5pVZMR8w9tWJWYG6qtVCBBhxAT4y58oVt7UUkUeG2sQMZGGpxZHPToIkGHEBPjC24FjYgATvwjhszP1HLZhw5FNm90BMjuxc2IAE7MPoikiyye6ECDXifRcyDrO25bpzbcy1sQAJ2IAMFqMA4izvfoqptYwPGWWhgBzIwzsICFRhnMQIH0BMj52NyNArcNhKwAxkoQAXeajGfGXVuGz0xrt0LG5CA0WZxQj17PoraZr9FUdvG7PkoatvYgATswOz5wQJUoAGz5+fWXhMFPS/oeUHPC3pe0POCnhf0/J2mLT6HLlGkljwKO/ge+h6X0ajwWngP/Y0NSMAOvF/AiktuVHhtVKABB9A3RoXXxgYkYAcy8FaLS3lUeG004K0Wl+eo8FoYb3ouvNXiMhoVXh5Xyajw8rhYRYWXxyUhKrw2KtCAA+iJd0J4jJSo8NpIwA5koAAVaMAB9MQOtQ61DrUecePcugItMaoxwwJit6uNoRYnFAWZE6Mic2EDErAD49xGYBxDdGG8tbnQgAPoifHm5sIGJGAHMhBqCjWFmkJNoWZQuy9WHn4S9VkeJhL1WatRDX1h6IsRESiwAQnYgQwUYKhNNOCtJlPCEyNjF8bxxlCOLIw1mqi52hjHG2cRWXh3i8b+VxsbkIARVwMZKEBd3a1RfrVxAKHWoNag1qAWWTgxskUmdiAnxgC/7yE06p02MvA+yHt9RKPeaaMB74O8b380qqAW3tcBv28c9JpvPU8k4K12r9HoNV98nihABRpwAD1xvv7MgQ1IwA5koAB3d2uUQcWg1aiDWj0UibOQgOhYRccqOjYSZyE6VtGx6ol2AdvKFo1yqI0dyEABKtCAA+iJkSIaRxYpsnAAPTFSZGEDErADGShAqDnUHGqealHktLEBCdiBDAw1CVSgAQfQEyOdFjYgATuQgVBrUGtQa1BrUCOoEdQIagQ1ghpBjaBGUCOoEdQ61DrUOtQ61DrUOtQ61DrUOtQ61BhqDDWGGkONocZQY6gx1BhqDDWBmkBNoCZQE6gJ1ARqAjWBmkBNoaZQU6gp1BRqCjWFmkJNoaZQM6gZ1AxqBjWDmkHNoGZQM6gZ1AbUBtQG1AbUBtQG1AbUBtQG1AbUHGoONYeaQ82h5lBzqDnUHGqeanRdwAYkYAcyUIAKNOAAQg1eQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEppeYoGhNgIZKEAFGnAAfWOfXjKxAQnYgbfaXdWiUba1UYGh5oED6InhJXfBiEbZ1kYC3mp3xYNG2ZbflQcaW59tVKABB9ATw0sWNiABOxBqBDWCGkGNoEZQ61DrUOtQ61DrUOtQ61DrUOtQ61BjqDHUGGoMNYYaQ42hxlBjqDHUBGoCNYGaQE2gJlATqAnUBGoCNYWaQk2hplBTqCnUFGoKNYWaQs2gZlAzqBnUDGoGNYOaQc2gZlAbUBtQG1AbUBtQG1AbUBtQG1AbUHOoOdQcag41h5pDzaHmUHOoeapFFdnGBiRgBzJQgAo04ABCrUGtQa1BrUENXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUyvcQDFWjAAfTE6SUTG5CAHchAqBHUCGoENYLa9BIJbEACdiADBahAAw6gJzLUGGoMNYYaQ42hxlBjqDHUGGoCNYGaQE2gJlATqAnUBGoCNYGaQk2hplBTqCnUFGoKNYWaQk2hZlAzqBnUDGoGNYOaQc2gZlAzqA2oDagNqA2oDagNqA2oDagNqA2oOdQcag41h5pDzaHmUHOoOdQ81fS6gA1IwA5koAAVaMABhFqDWoNag1qDWoNag1qDWoNag1qDGkGNoEZQI6gR1AhqBDWCGkGNoAYvUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovCSqJnzu7pao2ZuYwcyUIAKNOCtdpc+a9TMLQwvWdiABOxABoaaBSrQgAPoieElCxuQgB3IQKgZ1AxqBjWD2oDagNqA2oDagNqA2oDagNqA2oCaQ82h5lBzqDnUHGoONYeaQ81Tza4L2IAE7EAGClCBBhxAqDWoNag1qDWoNag1qDWoNag1qDWoEdQIagQ1ghpBjaBGUCOoEdQIah1qHWodah1qHWodah1qHWodah1qDDWGGkONocZQY6gx1BhqDDWGmkBNoCZQE6gJ1ARqAjWBmkBNoKZQU6gp1BRqCjV4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeMuAlA14y4CUDXjLgJQNeMuAlA14y4CUDXjLgJQNeMuAlA14y4CUDXjLgJQNeMuAlA14y4CVR+ef3SzEalX8bO/BWu79Op1H5t1GBt9r9volG5d9GTwwvWdiABOxABgpQgVDrUOtQm1tZ3S+n6Jh7WS2mwr0wF5bCWtgKj8IOlqIrRVeKrhRdKbpSdKXoStGVoitFV4uuFl0tulp0tehq0dWiq0VXi64WXSu6VnRt6nJwL8yFpbAWtsKjsIPHVbgVLrqj6M4nlBip81kkjnI+i0z0jbO4cWEDErADGShABRpwAKHWoNag1qDWoNag1qDWoNag1qDWoEZQI6gR1AhqBDWCGkGNoEZQI6h1qHWodah1qHWodah1qHWodah1qDHUGGoMNYYaQ42hxlBjqDHUGGoCNYGaQE2gJlATqAnUBGoCNYGaQk2hplBTqCnUFGoKNYWaQk2hZlAzqBnUDGoGNYOaQc2gZlAzqA2oDagNqA2oDagNqA2oDagNqA2oOdQcag41n7YhwVxYCmthKzwK+2aLSs3kaVcjmAr3wlNXg6WwgnOh1q5cqLUrF2pt1mMuZKAAI9r9QpvFfnjJo3Ccxf2qocWWeMmtcJzF/QahRblnMheWwlrYCo/CDu5X4Va46PaiO3fCvF8stGtuhXl/qNKuuRfmYis8Cjt43kQsboWpcC/MhYvuvIlo0bPzJmLxKOzgeROxuBWmwr0wF5bCRXfeRFD017yJWOzgeROxuBWmwr0wF5bCoUsx2udNxOIBnhd/ipE8L/6LrfBeCLArl1TsyiUVu3JJxa5cUrErl1TsyiUVu3JJxa5cUrErl1TsGlAbUHOoOdQcag41h5pDzaHmUHOo5ZKKtVxSsZZLKtZyScVaLqlYyyUVa7mkYi2XVGyWoN4LDDZLUBd6YruADUjA2UkRbZrC/QKJtWkKFL8zTWFxK0yFe2EuLIW1sBUehYtuL7q96Pai24tu3/OBNutMFyrQgAPoiXN+YmIDErADocZQm0Zwv+pibRrB4lHYwdMIFrfCVLgX3rOQNutNFypwisbBTBdY7ODpAotbYSrcC3Ph6ND7pRxr0wUWW+FR2MHzUWJxK0yFe+E42TjvOXExUYEGHEBPzIkLi0rSV2AJtsKjsIP9KtwKz4PV4F6YC0thLWyF46k22jTsIXBWlS5sQAJ24FS0YCmsheMxugcOoCe2eZojuBWmwr0wF5bCWtgKR/NyHPA0lcnTVBa3wlS4F+bCUlgLhy7HeU2T4GiEaRKLufCME8e5dtGebIVHYQevnbQnt8JUuBfmwkV3GobE8U/DWDwKO3gaxuJWmAr3wlw4dCXaZ945LLbCo/DUjbaanrG4FZ66cS7TMxZzYSmsha3wKOzg6RmLW+GiOz1D4xzn9MNiKayFrfAo7OA5/bC4FZ7xOXj+fhzDtIvFrXAc5114aTTtYjEXlsJa2AqPwp7c53PH4laYCofu/exjfZrGYimsha3wKOzg6RuLW+HQvTf9sj59YzEXlsJTdwRb4VF46sa5TN9Y3ApT4V6YC0thLWyFR+GiO29GRpzjvBlZTIV7YS4shbWwFR7g6Scj2mf6yeJemAtLYS0840vwKBznde/SZH36yeKpa8FUeOpGX0w/WTx1o32mnywO3XsbCuvTTxaHbly8+vSTxaHrce7TTxaHblyn+vSTxaHrcY7TTxZP3TjH6SeLp26c4/STxVM3znH6yeKpG+c4/WTx1I1znH6y+NZtV5xj+MlmD45zDD/ZvGfHbdacLuxABgpQgVMxWmmMwg72qRgtEI60mQr3wlxYCmthKzwKe3IUoCa3wjO+Bs84FjzjjGAHt6twK0yFcfxRXposhbWwFR6Fy/FTOX4qx09UuOhS0SXDOfYL59jL8fdy/L0X5sJSuBx/L8ffy/H3cvxcjp/L8XM5fi7Hz+X4ubQbF10uunLhHKXjHKUcv5TjFy1shUu/Szl+Lcev5fi1HL+W49dy/FqOX8vxazl+Le2mRdeKrnWcoynO0crxWzl+K+N2lHE7Sr+P0u9jxvdgLpwLNcZDC1vhAZ55HfN4PPM35ut45m+L45/5u9gKx/HH/BXP/A2Wmb+LW2Eq3AtzYSmsha3wKFx0W9Gd+X7vFmYy831xL8yFpbAWtsKjsINnvi8uulR0acYfwTOOBzt45vviVpgK98JcWAprYSscuvc+8CYz3yfPfF/cClPhXpgLS2EtbIWLLk/d+yos0wcWt8JUuBfmwlJYC1vhUbjoTn+I+UOZ/rCYCvfCXFgKa2ErPAqHbky9yPSHxaEbMyJRDPriaB8shJpgIdQEC6EmWAg1wUKoCRZCTbAQaoKFUBMshJpgIdRkFN1RdMNPWp+sha3wKOzgef+wuBWmwr0wF566kTvTfxZb4VHYk3X6z+L5+x48Cjt4+sbiVpgKx3He+32ZTt+YPPM9Zg905vviXnj+fhzP9IHFWjiOU2bMUdjB0x/iSVynPyymwr0wF5bCWtgKj8IO5qLLRZeL7vQHjraa/rBYCmthKzwKO3j6w+JWmAoXXSm60x/uvVVMpz8stsKjsIOnPyxuhalwL8yFi64WXS26WnS16FrRtaJrRdeKrhVdK7pWdK3oWtG1ojuK7ii6o+iOojuK7vSHmO3R6Q+LrfAo7ODpD4tbYSrcC3PhqavBUzf6ffrD4lHYk236w+JWmAr3wlxYCmvh0L33jzGbPrPYwdNnFrfCVLgX5sICzmJxsywWN8ticbMsFjeb3hOzTTa9Z7EWtsKjsIOn9yxuhalwL1x0e9HtRbcX3V50e9HlostFl4suF10uutN77m14zBjrjcZWeBSeusHTexa3wlS4F+bCUlgLW+FRuOhO74mZP5ves5gK98JcWAprYSs8CoduzLrZ9J7FrXDoRi2ATe9ZzIWlsBa2wqOwg6f3LG6Fi+70nvt1crPpPYulsBa2wqOwg6f3LG6Fp64FS2EtPONH3k+PWRzxY91oTI9Z3ApH/FjqG9NjFnNhKayFrfAo7ODpMYtb4aLbim4ruq3otqLbim4ruq3oUtGloktFl4ouFV0qutOXYhZzTF9aPAo7ePrS4lY4LJADZ8gebIVH4Rkyfn9azuJWmAr3wlxYCmthKzwKF91pLTHBOus/W0yqzvrPzVJYC1vhUdjB01ri8X7Wf26mwr0wF5bCWtjAhmmdWefZYvJ31nlu7oW58DyvEayFrfAo7OBpIYtb4TldEvFHL8yFpbAWtsKjsIP9KozpnuHlvKaFLNbCVricl+O8/LoKt8JUuBfmwjgvv7SwFR6FcV7ersKtMBXuhTXP3RvOy5dVTHbwsorJ5byonBeV86JyXiSFtbAVLudF5bzKdKr3cl69nFcv59W5cGnPXtpzTZvGuXM5L26FqXAvXM6Ly3lxOS8u58WjcBknUsaJlPOScl5lmtWlnJeU85JyXlLGiZT2lNKe+WaKeb6ZYp5vpphP04iVG5+msdgKj8IOnmayuBWmwr0wFy66VnSt6FrRtaI7iu4ouqPojqI7iu40k1iR8mkmi63wKDxLlaLj5urv4laYCvfCXFgKa2HbPGZFabtXs8asKN3cC3NhKayF57lo8Cjs4Gkgi1thKtwLc2EprIWL7jSWe6VtzNrTxdNYFk9dD6bCty7dc99j1p5uluAerIUtmINHYQeHsWxuhalwL8yFpbAWLrq96Paiy0WXiy4XXS66XHS56HLR5aLLRZeLrhRdKbpSdKXoStGVoitFV4quFF0pulp0tehq0dWiq0VXi64WXS26WnS16FrRtaJrRdembuSIcWEprIWnboxVG4UdPK7CrTAV7oW5sBTWwkV3FN1RdL3oetH1outF14uuF12f8W//iVLVF3swFY449/rTiGrVZCmsha3wKOzgNmO2YPR17IC62n+Wqm52MF2F45jvevExS1U398JcGGOsUdEtHtKKh7TiIa14SCse0paHxPH0XpgLS2HF8UwPWTwKF93iIa14SCse0oqHtOIhrXhIY4ztxqWdubQzl3aeHjKPR0o7S2nn4iGteEgrHtKKh7TiIa14SCse0rT07/KQyaWdtbSzlv6dHrK4tHPxkFY8pBUPacVDWvGQVjykWTlfK+dbPKQVD2lW2tlKO1tp5+kh99eYRpsesni2c8SfHrKYC0vheb4WbIVHYQdPD1ncClPhXnjqhldMD1lsyOXpJy18wz05Sl6TW2GMJbp6YS4shbWwFR6F0aez8nVzK0yFe2EuLIW1MMbSrHCl+6NPY1a4bqbCEf9+p2LMCleiOM7pRYu1sBUehR08vWhxK0zgOT57tPMcn4u1cGhxHNscn4sdPMfn4laYCvfCXFgKa+GiO4ruKLpzvHGcyxxjd9XvmJWR899nZSTdH/kYszKS7rW6MSsjN/fCXFgKa2ErPI9Ngx08x9XiqWvBU3cET10PDt17jXDMysh5LrMycjPOsa+xFPHXWJrcC3NhKayFrfAo7OA1liZP3TiXNZbiXOZ1bTEXlsJTN853XtcWj8IOnte1xa0wFe6FI2aPNpzXpnttfswqRuoxHub1qEcbzuvRYimshR08ry89xtK8viyecWI8zOtIj7aa14UebTWvC4u58NSN9ll5N9kKD8SfeTf/febd4laYCne0w8y7xVJYC5fznf4/z3H6/2K0A88cuSuwB88cudfSxqzt2zwKO3jmyOKIf3/yYcwaProrrces4dusha3wKBzx7zW2MWv4NrfCVLgX5sJSeOr2YCs8Cjt45sviVpgK98JTK9pz5shiKzwKO3jmyOJWmAr3wly46HLRnXl0r2UNnvd+ix0882txK0yFO/pFSp9K6VMpfTrz6/7awpg1fHTvsjxmDd9mKzwKz2OLsTTv0xa3wlS4F+bCUlgLT90Y5zMfFzt45uPiVpgK98KC8505aDH+Zw5Onjk4z3Hm4GIq3AvHuVi057wHW6yF41wsxva8H1vsGWfW/21uhalwL8yFpbAWtsKjcNFtRWvm/l2bMmY932YrPApPb7nPZdbzbW6FqXAc/12LMGTm/mIprIWt8Cjs4Jn7i1thKlx0e9HtRbcX3V50e9Gd+X5/T2jMej66vzAzZg0f3XUVY9bwbR6FHTxzeXErTIXnMUe/zFxeLIW1sOF45nPcYgfP57jFrTAV7oXLOU5/mHzn7Ih0ibK6EaM8quqGRUPdCbvRE+903diABOxABgpQgVAboRa9MjzRL2ADErADGShABRoQap5qUT63MdQokIAdyEABKtCAA+iJ7QJCrUGtRdy7s2KXxHGv04+ou9tIwA5koAAVaMAB9MQeEhZIwA5koAAVaMAB9ES+gCExAiOYByrQgHewu55gRL3cwjsVNzYgATuQgQJUoAEhMTNqjo2ZUYulsBa2wqOwg+cVd3ErTIWLrhVdK7pWdK3oWtGdV9w5mOYVd3ErTIV7YS4shbWwFR6Fi64XXS+6XnS96HrRXVflGJ7rqjx56sbgWFflyZ48q942t8JUuBfmwhE/xsCsYqO7WmPMKrbNEecuZRizim0zF5bCWtgKj8IOnlfluzxi2LwqL6bCU1eDubAU1sJWeBR28Lwq3yuaY1a+bQ5djzaZV+XFXFgKa2ErPAo7eN6Fe7TtvNu+32kbs5Jt84wT5z6v0IsdPK/Qi1thKtwLc+GpG+0wr9CLrfDUjTaZV+jJ8wq9uBWmwr0wF5bCU3cEG3h6RazqzSq1zb0wF75j9ivaNrxisxUehT042j+8YnMrTIV7YS4shbXwjB/96FfhVpgKz/g9mAtLYS08zytyx0dhT55VaptbYSrcC3PhV0yPSea5PeHE2C9k4V2bepdGjLk94cIOvEsFYqlobk+4UIER9+7tueVgLBnNLQcX3hFi0WduORjzxHPLwYV2IwUOoCfG9mMxJT63HFxIwA5koAAVaMAB9ESGGkONocZQY6jFRmMxDx/FYxs9MTYaW9iABOzAiBs9FBuALFRgqEUPxUZjCz0xNhqLafuoI/OYqY8yso2hFj0U5SALBXirxQR2VJBtvNViKjv2D/SYaY6yso23GkWTxEZjCzvwvmuJdI9qsY2eGPftCxuQgB3IQAEqEGoDagNqDjWHmkPNoeZQc6g51GKPj7Cmuc9guMjcZ3AhAyOdKFCBBhxAT5zJO7EBI24PFKACDRhxOdATo2B9YQMSsAMZKEBN7NmoUcW1kfIYImMXIlhHsF6CGRCH3nHojENnHDrj0BmHzlBjqDHUGGoMNYaaQE2gJlATqEXG0kR0YSTkXc4+Zn3WHA+KUaIYJZGQCxVowAGEhGGUGEZJJOTCDmQgxqRhTM4H6RjV80E61PAg7XiQdjxIOx6kHQ/SjgdpHwOYj+3uF7ABoYYHaceDtONB2vEg7XiQdjxIez5I+5UP0n5dDUjADmSgAPeDtF/5IO1XPkj7lQ/SfuWDtF/5IO1XPkh7lFxtZKAAodagNh+6JXA/SPuVD9J+5YO0X/kg7Vc+SHvUR21sQAJ2IAP3g7Rf+SDtVz5I+5UP0n7lg7RHJdRGAnYgAwVo6/nbo74pnrQ9yps2EnA/SPuVD9J+5YO0X/kg7Vc+SHvUNW30RL2ADUhASChOXiNCHI5dwAYkYFxmIoIxUIAKNOAAeuK8hE5sQAJCbUBtQG1AbUBtQG1eQtuN8xI6MRp1YjRqDM9IvYW+MTbJ29iA0SQ9MDqLAxVowAH0xEiy+1nTYzu8jQTsQAYKUIGhpoED6ImRegsbkIAdyMCQsEADDqAnRm4ubEACdiADBQi1DrVI07sm2aPcaGGk6cIGJGAHcrY6o7MYncXorDmqo4/n+I0+nuN3oifO8Tsxxm/0xRy/EzuQgQJUoAEHMNTiyOb4ndiABOxABgrQ8txirN9P3R51Lhtpn1BUuWxkoADj0C3QgAMYh353QJS3bGwZoUGtQa1BrUEtxvpCAw5gdksUu2yEGk2J//vnP71k/+tPMTzuRfoYHAGyQTfYhrHBF4SxB7QNtGFHlh1ZdmTZkWVHlh1ZdmTdkXVH1h1Zd2TdkXVH1h1Zd2TdkXVHth3ZduQw9tgtoG/gDbJBN9iGscEXRCIEtA078tiRx448duSxI48deezIY0f2Hdl3ZN+RfUf2HTmG+l0QEP4eYBvGBl8wjX1SS6KknsRJkqRJljSSUqOlRkuNlhotNVpqtNRoqdFSo6VGSw1KDUoNSg1KDUoNSg1KDUqNcPe79GKae1B4+6SWREk9KTTkJknSpNAYN42kW+PeAGE6+qSWREk9iZMkSZMsaSSlhqSGpIakhqTGzM/7mCMd7yKuqPFcREk9iZMkSZMsaST5JksNSw1LDUsNSw1LjUjPuxBtXq4mjSTfFCk6qSVRUk/iJElKjZEaIzVGanhqeGp4anhqeGp4anhqeGp4akTW3iVnUaG5qCVRUk+yTZGDd+ndvPbcBXPz0jOpJ3GSJGmSJY0k3xQ5OCk1KDUoNSg1KDUoNSg1KDUoNXpq9NToqdFTo6dGT42eGj01emr01ODU4NTg1ODU4NTg1ODU4NTg1ODUkNSQ1JDUkNSQ1JDUkNSQ1JDUkNTQ1NDU0NTQ1NDU0NTQ1NDU0NTQ1LDUsNSw1LDUsNSw1LDUsNSw1LDUGKkxUmOkxkiNkRojNUZqzKy1m0aSb5pZG9SSKCk0xk2cJEmaZEkjyRf1mbVBLYmSehInSZImWdJISo2WGi012vaNTldSS6KknhRH4DdZ0kjyTZGNd8FP1KIuoqQ73l3eE1WoiyRJkyxpJPmmyMZJLYmSUoNTg1ODU4NTg1ODU0NSI7LxLunpMxv5pp7ESZKkSZY0knyTXkktKTU0NTQ1NDU0NTQ1NDU0NSw1LDUsNSw1LDUsNSw1LDUsNSw1RmqM1BipMVJjpMZIjZEaIzVGaozU8NTw1PDU8NTw1PCMPO9tXxnP8942qCXFyOGbelKMnPivkqRJ+36Nr5HkmyLf7rKsqJpdREn7XoobJ0mSJlnSvl+LKtlxF3BFLey4y3qjEnbcRbpRB7vIkkaSb5oZGtSSKKkncdKtcRf/Rv3rIksaSbfGXSwada+LWtKtcZfsRsXrIk5KDU4NTg1ODU4NSQ1JDUkNSQ1JjcjQ+XuaZEkjKTU0NTQ1NDU0NTQ1IkPvQt2oi11kSXkekaFBkaGTWhIlhcY9ciJDJ4XGPQ4iQydZUmjcYyMyNCgydFJLoqSexEmSpEmWlBojNTw1PDU8NTw1PDU8NTw1PDU8NXxrRN3ropZEST2JkyRJkyxpJKVGS42WGi01WmpE/t7lx1EJu2isDI1q1xgvUeu6qCVRUk/iJEnSNa6iunXRSPJNM6fvo5o5HURJPYmTJEmTLGlsGlnzJcOAA5iFZuIXsAEJ2IEMFCDUHGoONU81vS5gA2aNl14dyEABKtCAA5hFZXMHw4UNCLUGtQa1BrUGtQa1WYt1L8foLMUKpKwkm9sfLiRgBzJQgArM0rW5j2FUmc3tCqOwbO5WuDDLxOZehQuzSGzuVLiwAQnYgQycavcZz+qqiQbM2rC5QeHEWVk1sQEJ2IEMnGp2owKzJExlALMgTFc9VWADErADGTjj3s03Ky3vqeRVaDkx68BWmeVEBgpQgQYcwCw8W/WV9xT1Kq+cSMAs/lq1lRMFqEADDmCWm62qyoltF4mtmsqJM5jHh+WAA+gbbZVFxexrAxKwA7PUa+4NuFCBBhzArC6bBZULG5B36desmlyoQAOOXfY1KyYn0gVswCztmtWSCxkoQAUacABXLdlrfr7f8/O3jt3PJbfKhL6BN8gGDXj9Ld9/O+IX+pxqnqAbbMPY4Avufp/QNtCGvmFH9h3Zd2TfkX1H9h05ppoXRew9rWz3bXZMKy/SJEuKcLqmi+2+6MZ08SJJ0k2zocaa8l0kSZoUGr6mfBf5pn4l3cd836TFtK3dF+yYorX7khzTsXa/QRbTsYs06da4bwljOnaRb7ptb1FLiniyJmHtvhGMV/AX+Sa9kloS7aO6HWwRJ0mSJlnSSPJNdiVFPFuTsIskSZMi3liTq3bfLMXk6iJOkiRNsqSRdB/LXdQSk6uLWtIdz/ZEqt2FJzGRavctQkykznbxbD/f7RcTqYtaUhyzvvJI7jyyEJK5TjShb+ANskE33LKxBeLY4AvGtSEi21wnmhB/NVZiRq24L5hn7isxA+6/ijqGvoE33MczdmKOnZhjJ+bYiTkyMUcm5iRKiuiZrGOv7dh9JY91HBuReqEQKRXxIpFaEiX1JE6SJE2ypPuQ74vvTMygSMxJLYmS7sj3NTpWYBZFFNpp65GYlNSTOEmSNMmSRlIcVabyfdGcqTyJknoSJ0mSJllSaIyd8kGR8vdlda7F3BfNuRYz6b77vy94cy1m0n33f+2UH/dla67F3NecuRZzyUr5SfGUehcVz7WYK5I6NMaygXEXDM+1mEm3xl05PNdiWq7FtFyLaWEhvimeUie1JErqSbfGXbc712ImaVJo8LKLcVfczrWYpssuFrWk0LjPKJ5S7wrbuRZzl9LOtRi6loUssqRbg3It5q6inWsxlGsxdwXhXIuZdGvc9YOzgIDCYELjnleOp9RJljSSfFM8pU5qSRF57DWbSZKkSRHZ95rNJN8Uz6uTWhIl9SROCg1/2aNGCUFcU9ssGJhgG8aGuJ62//v6m7/92z//5T/++m//+k//8fd/+Zf77/c//Puf/uEf/+tP//svf/+Xf/2PP/3Dv/7n3/725z/9n7/87T/jl/79f//lX+Pnf/zl76//+uqKf/nX//n6+Qr4//71b/9y0//9M/76+vhPX0swsv76tQZjGeB1r/E0xGuGtq0Qr0lYQoj241HQIUTfB9FdEOB10XkYQNtug9ejXQZ4rRL8EIA/DvCytB3h5VXjwxByaod7NK92sP5hiFNTxhTrDDGGf9iUdujQeIF4duhrxQEhOv8QYny1N46n4YhwjQ9Pox1iiPbdIS9EDPEfQ7RTn96XhdWnQh+GOIyruC+JCKMzzkP4cYSYvJ4RtH0c4elp2MencWpMu3aKvtA/DKEno7jvfpZRcPswhH25KQ4jk+K7a/MgXs9FGYPpxxB+OIj7PnwehNuHB0GHxvT4iFyEuOtHkefkz0+k3VusrBOR9tGJ0GFgxZTVzLHrwwDnDHPNQdH6Rz1K/HXLO8Xg2F0qYrxWcQ6XDz26N2WKlNZ43R78GOMwOmXsHnnNkpYI1/OB0VsOjNdC4ocDgw7D03ns8elSjuO1XPpDjH66ptuVWfKaj8kYn+kT28n+WpuyD/ukH8Zni8XE2SfetMSQH2P0Q4zXfD+877VIVaL8eH/S+eujo8tXR8f5XPTSPIzXzOvH53K6vMd3E5ZxlDuEl6H8GGN8eXz41y3wGONhtnD7erYwfbU1zj3rjJtHr/dMP/Usn7y02Q7ywtqzP8WQ0zWB9xB7zfoXPx4/tcfBSyW+wTovC61kyy8xTsfh2vPidB2O4zBKVfM4XssJ9mGMY89obPc0e+a1kGMf9owc/FQpR8hrDUk/jnEYqdyu7YbciN6KIfF9udUzxO+dS+87xuux7dAefLpxYM9bc30zRsxQrpsPo/diDNzVvuZzPvbT4wixa+QIed3uf3wk4w+9OrxWYXKk3h9+//A49NC79+c9dvfenwG4PnAzbX+oH1q8TrbOxeXjntH+h7bpyw3zFuTeTuzj4zh5WbeRD9Rej+THRwbVr7bp8Sg4ZziI+frwKI53ZJZTA68ZvvHhHZkertok3fMx8Ie8/TGGHUYpj3xq4PFDDH0cQziPQ9j7xzHo6/eF9uVRem7RkWNDqb3XK9oR49QrhzHK8Y31dYX64e6UP3EcA9d9ko+P4+ClrXsaMv8wSn88DvPTDFZeKXsf9nGM03FwMeT2cYxx8tLeGJMm+labvpa/8aA/3svafuUU0uuI7MMY4/QU5ZQD5MXuH7nY6TiajOyXw1gfJy+9DFMnP1wnf5z6GIenqPtbkivG/am8t2Lce8TldJa0j2P41x3Irz/SgV63hJa9YvbeCOv5JNaZ/MMY3r8673w8Cs4Hsa518vvnozhcaVt5ZOi99mt/HsM5x+g1ro9jHMaXj7zvcC93t/2nK5wfPCw+0jlDlDvbV+o9zzbJe+zXRebjUd6u69gceXm6ipX+MoN9sNKeM798fTxv267Tk358m2AeBhmX9vh5WeJ0U3nFZkFzfLy4fzjp4OfbubypFP94gLTrNCfFtEeZSJnV/3mpJ74f9uW+sa/3zfiOvvHv6JvzvLgoHm8/XOk43eBi7YpN5eP1r9PC0esGKq/7r9WCjzPvGCQ+lTODUKdDEP76OlqTLy+knUI8XUl7eiaHpbTHTcr9zX5pzBnkcPPQTusNT9esG7WvL+GcT0c07y/1eDr9NETy4eH+Du/HdnYMEmUmM8jrkf8QRL5h4Vi/vnKsXx7w9A0LpvTlFdN2WpF6DfccZK8WLbbc3+yVQ/Keh0dOTN8fUn1vjI3m6Nv6tP1zkOOilHA+5lqZIv/5dvecd54zOq/J7cM1ouvXR/tpWerhaO9frw54fCbv2rvnujpfl37cpPwNlSf89dIT/nrtCbc/ukkF94fXeO+KyVfL6amLT/1yWuN/WFTE4xv61r/et/71vh1f79tzi371ZlmuXBZ/LeEeisVOS0EanzVay1r9YMlyuMDE/rT74eH62JHP7WFoj/Fmmz6s1jqtSBFnq76eNfnjGP71kX5akXo40k8hHo70x2dyGOnHFsW89KtF9b0Yks90r4WU/nGLnp76PeelxdXfjNH5SYzzCHtWEKjj66NjfHl0nNaSHhbjNTvN9D+qxjsexcNb9dNq1MNbdTs5aculJG2lW3+5VX8eRN8Mwrkyr1wWTX8NYl/ul+O5oA6ljXfPhXKI6Svz3w2S6aLk73ZNz+INrZP9vwQZdJqbzicgryPt1xLYU5DHdbSnIC3nQO49NN8MQnlv6XWW7HNBHtaztdOi0tOCtja+XN93Pg4jx8oBHY7jcRB/N0ja4gvlvSCv1Qks6rweQU5hjl3sO4udy+PDJwcbY7CJvhsk18peQQ4J+PwK/vHTkB9XUjFn9/E163zH/KgMvbl/w8PhMUi8cD+DdPr4MZWuY/VUdsxrGePjovqLvnzfTVf/6p3VMcSzOys6rVA9vKeh0wLV0xc27OvTj897xQ69chwdCmce/FaMuzg4T8bt3RjXl2N03Fr1cvn+XAxFPcj4OMZpTefh89BvYjx6HjqfC2OQsY6vx3hzjHXKi1Tn8XHfnl6Sek15lGLUU9adDiTedZ0H8rpMfHggp9Wpp517jvENnWsN53JI3NNLNa8l9JzxvwtS3mxUz4XDcRhlp3WlZ8v1dHpZqnkWcr384+NHkeNxcM63cRkevzytnq/ZufDIva7nfOrCz4wDaf3dIDlCmE93D719fUWXTmXPj1d0j6fjfXewtIsOpyPfcTr6B5+OtAwiryWTw+mMr97rHg+Dc7jKy4s+Pgw+VZe0TN9SaEc/vbBP/OUa//NR5IR7Td5fj6KfTiRnVJlK6ZE+D9Guke+zvFiu94J4XqleXG52PxcELz20unL4mUbNl/vYT107/tAQrwuV42l5tI9PZXxHz4zv6Jnx9Z45Z66Wm4gfdmb4RPpry7PRZuPdIHl/9zqmNy95ynkvoj+UDn4qSM+3hFXs46ofkvEN14jT+s63XCNUsij8tZJ5OJ3T21OvZagrc0e83OZ94kisZzGkdT4dSf/6TIR+vfKP9MuVf8cQD2ci1L4+E3Fcano2E3F+AeLhTIR+vYrxN6Pj2UzEKcbTmYjfxLi+HOPhg6Y9XRGV99r06YzIOcazGZHTm0tPH5rPMZ49NB/Pha8cH0wfrhDTaH/0cTybmXkc482cezozM+QbZmZMvmGAyB/cMQ9nVY6vUD2dVTkfyLNZFf/yCyqxJ/KXZ1W8fXVW5Xc3MR1blbjwR7fdx3egygi5g4x3gjx8RPzdyTw7juNmFFmta5ce5g/kVBJOOX2A+4/+qQcZ7+VBRt56Gnr9oSMIffQ01I9rIQ8fqY5BvuXx/2mL9O9oEf2OFtGvtsh5uRy1tu6jvbnm7jkh+gpyWP33/i1r7qcwim2kdFj78HHqFAKPZOpk74XI93XU5cMQ58KbrOrUfr1dR5QXqleQQ/XO8SUIz+osqyfzuRdtPG/czf3jIP20Dd7rXHN6x/jDm4jevl6l2unLVarHEM+eUftxR79nz6idvlwB2I+b+j18Rn3eKx/fL59HB17FeE2X9I971r58m/qb43j0imw/vUT17O6wn16iuq9v+zD48Irs8Tie3R3232zCeWGYjrealBref24f3/n30xtUT5tUvn7DfTyOh8uY5zfKck+L0cbHm/aeX1t+9ubBcY/XRy8NdL6+bsen5amHdnwK8dCOH5+JvdegD98ZOG7A8OiVgX7c0u/Z8/5vYjx7ZeDLLwked1h9WHd8jPGwYvgY42HB8HH/y4clts9j+JsxnhXYkn/Hvf55/9xn5bXHs3k6Qk4xHhbXnnc3/YZzeTpS/esj9bjL6sOR+jyGvxnj2Ug9vs/6fKQeW/VhDffjDdU/vo3Sr1akHDd6vnKov679daXxp3vK05tLnRxrFu2jycJzCNRx/bBh288hvmE66XRDqXj1+4edQH9ujG/4kES3b/iUBH15Mun07KS5iZ7WQqOfd0Q/Rci7MC1V+fSZnd3lygk+KZVKv+zsftwWgHAjVzYF+mX/79NC1NPt784boz7bgPM3W6LTVc7m422A+2k3v4c5ewzxLGfHl8fo6eGLDLsBmn00t396Bnw2yo8RHo3y82Ygz0b5eZf7h6P8vAL1cJQfv0CT723Si8uB9OcxJNuURA4xjpkSX7xbLTKuj7dU7q5fzpRjiGeZclqAepgpz5vjhzrnz+xSz6j5KAuD9HaM8fUYtQD1M7vlG3Z2tvHxDvN8HT+VkbeCTOVkfg1yut5TTrz0mjKfDNJzNZ26vhsEdx7U7RuClGrrT23/f+X6gl7e3uycsvOM+/VuD+eaC/d2aNeHH1W4XN9qEeme24LUTxn8EuPpRybGIW3a19/q43a0xAu1UqSHAzlNKEl+RMCkvv0xfopx/NjZgDfXJZOfj+O07bWXXQbqyxI/xThu5teuXGV4cd01cnymWXM7nh+28v21WY9BvNSxfTxIzt9VaDlImtLh4sunR7JHD7i/OY4McR/HOByHHqcectKglXJp+/He6vgFkBjK00a4fXwcxy+A9Jy8kB93av7M1ztgRTr0vRhYEbvnlj++sTr2DOeeGC/mt6PgC1HKpy+8jK8+AxwjPHoG+M23O0oFiV8flTrw6WUpbznH/poytLdC4Gs3TjTeesztuUXqi83f61kr6y8mzQ/3q1+enDqHeHT7zvzlyalPNAe936jYdlL6m0lneDx7sV6HrtGvd41+vWv+2CerH5vDrre7xkqU9mGUUyXrMyc7Rng2m3H87k7LJ5EXHzyZ5ctTO8cQLzfENcb0w5fQfhPEypdA7MOX0H4XpHwTycZbvjoItyGjn74Rdap5+J6vIlHeI1ItRPvlq0hPYzR6L4Ywvl+t7a0Yr+PPXXSvHx6KfvpazPX1GfvjN42a5O6kNGr+fyJGz/U+6fX9gJ9i8OllqYfGfAzxzJjVv2rM58bIp13h+m7Az41x2tlPryx80OuH7yL9HORw/Re8KdmuD5/szoeBys/2w77EnzmXlvvfvp6L2rtBcqJZ67L0Z4PkC6jtze93Pf4G2Jevl/bl6+XxO2QPZ//P3zJ7NvvP4xtm/+24FVdWSvN1+IwYf311ir++OsVfX506vu6JnXxfa9fvfdutY4flV4yPv2nEv/nQ1KNVafZvuMYdC+nzM4Za7l9+PQz6jnP5hk1Sjm84tbTkRj9sKtJ/OpDTzQemDouF2Se+NaXYrGHoe9+aepr4x+9VWX6IzEf95m/7RAx8GdJH3Xz2czGyemvU8vVPfDfrNReLvSvKdfLnL2cdj8MvfL+L3jwXV7zNU0u+PxGjvWaks2+vq3w79OcoclrT+aYwPxR+94+/SXYOgpUuovJQ97kgXfPxsr5p/Usfn59gciWE28ffipP29Trj38R49iHBc5CH9yG/OZJnNyLSvuFbk+cvmz17uUja17+NIl8vez6GeFbN/vxMDtXs52/FPXohR75hN77zx+I0d0l+YSkm/eVjccddklFiYvVa85kgT9/JOR+JdFSC6vvfviubNnldY9bPhGmM7xK9XMXeDpNfvr1DHl7+vM7fXEDz1qX3TzUvYx6xLhD9GsROzwKPXvK5jh+uffTe1DnGs/em5OvvTcl3vDcl3/De1Llrc3H31cv9zcxpVy8vkXN/d8jj48YvtrcTsKG+s/34/uX1iRtHuP11lQ2+frlZY/rqY/g5xKPHcGH+Q0M8e5I/N+jAK/Flzvzn9hz81Wdf4W/YLU34G3ZLO35BW9KZXysiH+9kefyCdsuvJI9O/F4MyaesIfTx3q0i/avj/HwYef895PAhPhH5crodQzzLFbGv5so4fjDy2ZfRT3NNz+ZljxEezcseJ80ePg+dJ94ePg6dlmSfPw5dX38c0q9/GFX0yx9GPYZ4+Dj0+ExOj0PX1x+HjktUTx+H6Dseh+g7HofoOx6H6Dseh/r3PA7173kc6t/zOETf8ThE3/E49OVNxo7Z8/hx6Pr649DoX34cGvwNj0Ojf71J6Tseh/r3PA7173kc6t/yOHS6F5C8m/jhXZHP3E3kmrfyx6u8+uW7/+OWWk/v/p2/fvd/WuTtlDtI9fo5u58XeY8xLBeKu/9QH/48Bl95X/RKn48Xm8W//hnc38R4OP9+DPJ0/v18JM9uOPX6hkKA4wuzXKrmmn3YN6cYpNjDWlXfiyGZ/KTGH8bQ48z3w8zT42eonj53H1sk7znJLj2czfHB5tkm5cedA1jxOoN9/NlmbV//Wpq2r38tTduXv5Z2DPHsmUS/4b0qbV/+Wpq2b/ha2vNesUOvfP1raccYD/co/12M68sxnu1Rrqddwh7uUX4+jmd7lP8mxqM9ypW+viXVb2I8enY+n8uzPcr1tBvM9xzHoz3Kn8d4M+ce7lGu53eynu1R/pvB/nCA9D+4Y57tUa79WILzbI/y3xzIoz3KtX95F0o97or38Fn3eBzPnnV/dw/zaI9yPW79/HBvcP36Z6x+ezLPjkMf3Uz1i+jjB6r+1Qflczn0kwfl8ysdmM6UUSf/P/FaiOLVEvX+XoyRb5ZSfUD93KslZOiTj8+FT997efp+yjHIs320zyEe7aP9mxBP9tE+9oplptxT1u/17A8x+M0YhBj9MML0yy+nnkM8WvFTpT80xEMPPLan/rdv+32uT8rDsb/pHPU43o0x8t7lhe/GwKbTxxhfdnP9spv/5n3yht006c1X0rPe94UfTUYdX89/1BLnF/yftMRx0wRr+bqS/fC6wCc2Xhg5u/daTGhvxsA+MsPf3ABiCI7j3Y0oRj6uvMK9uxFFw1MCvd0ejhiHfjmth0k+8rBY/4YY720Qwpo7L7AKvxlj5FOCncbYKYblC4885PAq+7HGSPOiYlaXO3+quYrl749bNUf7q3H4w+Wj3x2J5ZHQ4Uj8uEE7XlfUMn3TP3EcWKQ3K2n363EcrtWGb3+akByCnFZNsbFW6Zl7v5DHQ2TgYdQPeybo6QWMx0PktD3f4yHymyN5OETGl4fI8TgeDhE7ras/HSJ2/FT9l4eI4MNMUr/L9PMQsdMKstDAW/X1cjd+inF6bDHa5/JaQhofxTifi+bVrj7E/Xou+g3nYn/sueA7xi9872onPStiftqo4BMxCMdRN2p/O4a2N2MMbLpwXW/GsLyTofFum2athPRDvpxjdMTgw+7Cxx1g8/VJquUBP+/eau3Lm1CcQzx6sLXT1n7fEOLhBkOn9uzY5KTbx7vhGn11C4rjUTCeruu2Mb8eBX/dwUi+7GDn/YUJNYYkH57LOYbgyyz6cXt0P+9f82yj41OQZ3N75xCP5vZ+E+LJ3N5xI+1HT+nnrbifPKUft6x/dAznTe8fzZmcPnTx8COO5xjPvuHY9fhVy6dfyziGeTg+jyGejc9ziCfj8/zZn2ef/TjH+IaPyzwcH+cYD8eHfM/4kK+PD/n6+JAvj4/z3ls5v1eubGJPA+CLMFI2AX/dbD8+AsqlsxeWNwG8Pw4Re2HPEFy2//xMCM31KtGyLfOnQoh9NYTliBCj99rCMcv5Q569G0LeDJGdWr+0+okQeuWucHrRW0ehnPf0yvJeiEuxpbu+1ZxKOb+p1N7qVMUWuVrfGfhMiJ4vgyqXGtt3T+TdELnKpFSeCj4VIj+f/eM3iT8TIlfJf/wi8WeaMy9FL9Qv98j18ei04x5qnVGF8Tqm98YG5wupb4+NZ883x51c8A2Wuwr8rVx7/SGXLw3Jm0G6oKi9m74ZBLsW/7CT46eClIJ0+eFVrk8FKW3Cdhhpx9r41jHSWj+MNDvu18f4buyLh31LGO/vhqGcvX6x+Nttg42mWq/fG/wlzOnW9P7+QSZzH+PdMN/gCa+RQmXo9TeHnlwYevUG8VNB9EKhmdKbR6IdR6JM7wWxAWOolRafCjKw0/RrPbm/GwSnU1eifxkpp+mPpzNbp5Wo73B+rO7fr3m82yI1SLveDXKVIG8ONS+vMzm37wgy3g2Ca5CLfEObvBvEs0TpxebfEGTou0FKDa7TN7TJm0H0gq/dTzvfEIT6l0/nFeTNC8bQ8q22YW+eDl5K1Mv4G4K89xB8B2klyHsJqA3XP22NviOIv3k6eLlJG+nX2+TtIK0PBJHrO4LYu0HwNZ/6Rb732+TdIC1XUl/8bu78EMT5G07H5c0gveSOvHnxUsXFS/XNS4aWRznVt05njJwwfmG5S+JPhMiqEL/KRjY/h4hbww+nWoVKaUkp+tPxPIhcjK/61SrIX4Ic6lNeUzd4y7EciX7mOHJfEGl1E6xPnQweAl8PF6cgX/4ez+hf33/qfCp4d4yuU7+c38mxctdYdwj+aanmeCxq+VK//vAa/M/HclrMo/J9QVyBf3ov+DeHkUtXamLvDREduZ29jvoemz5+Pnkt0+QS2lUWzT+R/z+EKDMwv+T/6WWpbwnSRi9f0hlvdkx+w1Ktfo7vcx3T0THlLuCXIHJ9vXePQb4he1/iAyfDbxrRsy39un3dy04e8nqgx52i9ZOH+PlGAh+xbMUCPhmmddzLt/oc/LkwVO5IqN7WfC5Mb7hj7Pb+SUm5e9Xxfph66+kfh5HvaZvTazcjbz5H/WqxfsJXhBou53Qw/PNLSE+uO/rl0qRziEdL+78J8cWlfWrYqKQ+Zv1czXwOkS8MtloY9JkQeKuVyqa+P4cYx68m4ca3X2+GyFJ3LdeJz5xI/YBDmT/+TAjN6dYf3/D9RAjLVXGy/l6nUi5pU12D/UyInjeIr1Zp7x0F3lTu11vNyZyPqvzDNwH98eMhvi3W6rXlEwfRGuaa6pfFPhOi4yOa3d87CqG6xPdeCMWjw/D3TiSfcl9X7fdOpDOWruS9E1Hse6X23lHgVbBm/tbgbI62qG/ofSKE5du0xvpOgFIuJ++1w5VrOz983v0X53X+I9PUs+7E6b2GwCeJTL7Yku8FeC2E5usWUidOnwcQBKjznY8DKCYYapHvJwI8edHreAojy/Rei2vvBECRnow3Ajg+1fXDMjI/DoAncHkvQBY7+g+1jvw8JRtSsvFbISjr+15z+P7lEDbeCtHz0b3Ve4h3Q/xQXPCJEILrTd3f8DM9IvjI2A+lH58Iwfj0hfYvh7A3jwLbT7fL3gyBG6rrvXHRGDdUPxQ2vBfihzn/T4TIRG10XW+G6Ajx3gDHPhSN6K0TEXyV4IVv2T62PKhfRngcgDgvfcTtw93InL7+TTOnL3/T7Bji2YaZz8/k4w3vjg9fOU34w47qn4gghLfA+ocbO3o/Pk8/2tjxNzEe7Zf3/Dg+jnEcnwPv1XH7+Ci+/IGIY4iHY6ufPi31bDNW78cPoTzZjNVP2+15z01jvNvH04l+fBeMcack12ELdaavrlOe2xQ1AtTkwwlFP33K6dGU5LlJh+Mjs26HJj3e/T57jes3nZuTFc59vBnkGlgO9+vNIC2f873OvHyyTRoeCTq9OVaxYuKmdBirj4P4u0EcT7ou7wV5/obcb5r22ZuHj635w/1DXY774OwQZh9b4ne82urf8W6ri3xLz8iXFzjOIR4tcPwmxBcXOJphFc3qevhPnw3w8955Ty4R54m+nL111g+P4hiCy/60/a0QlhtgtfrC3a9tcfzw17MvBvjp61BPvxhwXDPKvUmI6lulP5/M8c0otausY7ePvw9/DlLqDE3lwyDHyz+XTW774XROpfoIIqMU9rg+j6E9J+CU25sx4osCM4aWletfYpy2jBq5FvfDHrXXJw7DcBgmH5/KOI3Unm+49PqW1z338TwIZ+XHayrpFOS0vdnDLcGOTWKcm0tbvWP+pUmO3y3NXXvLB79+/gbiOI1Tyyrw1xRtLZb6+TBOlTCXIWPqeyn8mfZoto/EtExn/dIepy/T4OWW9kOlE/90B3L6niI+kSNl899fQvh3DFX/jqHqf/hQxavyZsURf+6a47KS5kDjlxkczub4SUV8446Lu/tPI/70AhQ5Nrm/iquS/2TvftwuCcvhXN+A6j+Pkm/4xvxvjoQxXVcnkvsvH7m7jsPk0daCryjtqws+x97plF+G6/UVt59753Ugpw35rtxJQOpbKe3xPQ1bvt3M1v2dezzGnRUbf3yPdz8lfP0m7xXlG74L9bu7K+7l7uqjJ5F2Xf71e7RzlKef2+bvaJPTzaLgc6Tyw264P3fy6ctOhFVCurod0q8dv+Gba0p0jWMU+Q4rOH0k6tkC+m9iPFrB/s3ZPNyr9BXFT/dqzzYrbddpX6Znu5Wex2zL0+l0XYfhRsev+Ro+LFDn8349nf4dA+W4W9+jgXJ+uMjPJOhh0e34iPPwW+DHEI8+Bv6bh7VsC61vUL39lDT62w84j7r2HORx6nX6jtTrX95L+vhs4fhiLVr1p1c5js8Vg3q++/vispCnn3kqeNq//h3969/Tv99irfx1az0+9uFBuFa98c+30acFLMbNOPf6tt4vT9OncZJ3FKNOLv56IPwdDs/fcivA33ArwN9wK8DfcivA3zJe5Y8dr55FAXWTh1+HiZxW4xse2GrNy+fGK+pmrtZOR3IasKVcv9cH6l+b9VsGrHzDgJVvGLDyLQNWvmXA6vWHXkAbvrTczE/OdvoMFHlOEFBdmPtvopw+qHc5vupdP5TD+oljeQ3UvBv/4aOLvx6LfIdXn7aefT701b4+9I8xHg7949k8Hvp2fcfQty9/ZOI3IwUljr35ySRPHz5kfC6Qvfd3Ry1e2+tkx2OR7zBs+5ZRa98wau0bRq19y6gd3zJqx5dH7Xm2veySV78J8NNs++s4TmOW820Sr3tg8CdiSNaE1BLMT8bA1hM/vAL/mRiKt9fr9w3ejiHvxlAspr7bHprtoW+3h+W52NvtUWO82x61Zujd9rBsD3u7PbC7wXi7PWqMd9tj5Btcw94+DrwfPt49Dr9Q8Xd9Q4y3j2OgIOzj8XFeq4O1v7Ad1upOQajhozV1s7SfgrR2Hb99jqkok2OU43qs/Te+3Hv7xOn0fAHlh8r2T7XJa5kHQQ5tcj4SwUOB6KFJfrN8+ew24hjj0fsbv4vx7FbkuKD79Fakte+YfG3ty5Ovrxin+YGH+xLcH78/tOyjjQl+E+PRzgS/OZuHmxP8JsrDzQXOC+5X3qC9VpTo4wX3Rt9RP9Do6wl4jvEsec5n8zh5Titbz5Pn9CWqp/fxx5oKQReXKvP/potPJQQtC2dfT7PyUU3FK8ixQCtHW6tL/z99+e0VxE8rbbneV78M+KkQA/tQjXdD5Bi5Pj6K35SpEDb3++Gu86fjOC1tsWQ9E9eVxy8E8Y+CPC7dqZ8o/HWY9WO9C+qz6wsrv57O6ftYV/kAxw874v0c5DRWW9nNv8k1viVMnSHXzzyLY9ORY+Xb6ZbP5crhVj5C+/PS4Xwf98MHg5zJGvWlpJ/LzRo/exivGwv0nwcKf/kG9jfHkRtNSN1/9dcY+h02z/b1eyQe33GPdFrgenqPdIzx8B7peDYPdxz6TZTH90inGpWr//c+/UvinJa4OueALafz82RaO60IdXy+vb5nof0T59Lw8a3ej+fyDV8rb7Fz3lfv1eQbvlfemn7HnGvTr8+5Pn75hD9++eR1IKcpgme7hv6mMuvhY+ixRux573yLxar9ob3zY3UynXrHv2HppNm3PHLZNzxy2Tc8ctm3PHLZtzxymfyxA6Vns/Yu7cOBcgzCeDTnulPNr6PtVJf4PVGevYP6mxiPXkL9XYwnb6H+Zt7k4XaIv5vDeXh/8pu5vifbtfwuxpOtws4TqJxLKK9Z2P7mLCznbT1x3fXg5yDHd8lavhL/+ruPX0hr7VSTlGVNxUp+rtU8F/M++cDy6eUPapl1P1wp+k8LF+1UYvnDdAl/uFvKK8jpZuDZZjyvICdnfbRjyjnGsy1TPnEydjqZU7N6Tv80934Icrp5fbaTze+OhPHiR5mo+DkIneb6e2YMXx/vAXNvanXI3Yfvov0mysNVsnOUp0tCvzmWp2tC5yhPl+zo+BLX5WVnTq+ffdJPxsGeby/Wd+O8ZlbyHaz2w4cqPxsHL2S+YsopTvv6SuJvojy8/pyziXMPNy5b+/03LnUqUsS+elT31fuUN7yuIJmS9SvCv3jDabXqqTec3sNq+Dp087qJ/k/zDucjediuv+nhZ7cpvxu1V8fLHPUp+7Ojv3wX4HXb+n42NmwHfU8AfRjnOg65J5uJNaJj4ciT3cReMc6vqOWjz4/n8ngLwtev5pvvWr8hMa7nIbS83Nm+HkLeC4GtxLS+kfmJEPiqTrf6cP2JEPhc4MsO3msLywfrbvWL5u+GeK9TR85d9lph9akQOVfRB7/XqSOvnS/0N48ix8XQNzs19zx/4VtH8VovwL499dPsnwjxQyFD/zBEIz7um4pd5KlOUXzmIwlZQ09q751KLoHS7btvhcgh/poFeCtL7qkEzE30N0NcCMFfDkH9zebE9AiN946ioy3Ev3wU73UqZ5LUtdvPTAUgAL0V4Nn+S4cAz95uPgV49G7zKYBgF6r+3hF8dULm0YYRJ5PCdvj3R3fLvSc9DqG5GPlavvG3Qgx8Q2rIe0fheN/oqhtdPw9BV44o+uH++RNHgaLtezO890Jkl7bR3jqRum948/eOouND5nzxWyG4fDq1LJj/HOJ1cTxN9H/9+zodX1/t9l5rcO6b05jalxv0zRBXzr7e75mhKewTn6LFXjfC7324QbDJo4z3PhOghG+9dflyCP74MwGNjq9HUZa7Sd2X6adbtEbHWXVsz6ZWnuue3+fdO0Pmybz5/QfLffeayfXlEIdPSDQa9A1Nen6N58tNWk/G3hvoRtjZtb/XKwNlf4Pal0McjuLVoOM7esX/0F4ZgpOR9z76UuacveuXQ/A4NOlpzeZxk54Wj76hSevJ6HuJ75ju9vZWrxDeGX/dOr2XbgM3LcPfTDesgA1/8ygMNUZvflMImzm/8L0v2CgWROzNL9hg6esV7a1P8SjmpbVW0bTX89oPQ7xfhxnygc3g6xrrJ+5ZBm6+hvLpMOy4jJLPB/UDG/ZLkHFaL35Yz9Ov79i7orcv711xf9Xqz1+v9uin96mefn3yN8fysKb1FYVPyffso4mvKIcx++ybhecYTz9b2OJrzl98/PlNo3z9M5ANafy6zIxDEtLxCaZjt5TXIzbG7U+bhf0ujGDK4arVHz+FOV2xJG9FSNw/PKHjIx2hILX3uvnL8yBd8AKSlE0y5fq5QU6rkFeWt/NVi2Haz0FOC3akV5mwllPnnApSM3e4lYuGvHs6pajm19M5ueyTT26cj6N7zlFys8Nx9GMVQHmBofcyVSk/H0v/jn3p+umNqOeXns5fv/R0+Y5Lz/G9qseXnmOUh58MfkUZX79oHF+renzROK08Pb5oPDwdk3c7+fE1/fQ+0/Nr+unNqqfd8zDGsU1OMT7Rxd9xX3Bs2If3Bb9xa6yWcl2l/MUl5byOjhXs+n3Gny+DcrDaMXJX8THqI7n93Cpy3IvNsJX+Vfc/65+I0hkb8tc7lE9G0Xy5sVtplv8myunl/kfffnjFOFUwP/z4w/3B9NPgf/aN2U9EOXxm9jdRHn7j9RNRDp95/d0ZPfvq7W+joOLqMG3wuzN69tXZ30Z59OHZ30R5+JXoT0Sxt9vl4beiPxGFjq17ysaHX1G5dzj7jnvK04tSz+8pT59heHpPedpJ8Pk95ekFpef3lMcoj+8pT3vvPb1pMf2OGw77+jrs49M53j8dOxlbVLwcoR+inDYSfN49p8Wup93zMMa5Tej4oJrJ83a7Pr5XP73o9Pxefdg3tKt9x7A/rXk9HvbHRnl8n328i3u2lXv3b9jK/XwkD/dy7/4de7l3/47NpLt/x5vY3b++2UX38R1J6P4NScinV0YeJuExxuMk5Iu+IQmPjfItSfhwf3o+rYg93Z/+N0n4cIN6Pq6KPX1pn79lWYy/ZVmMv2FZjL9lKYqPy2KPs/C0zeDTLDx+QutxFh5fdXqYhedGeZ6Fp/sdI0yLyGGKJh6TPo6C/fJfTzjtw0/XvMJ8xxdwzjNgjO14uE6N/DoDdqwHVnwBoMzSvB+kFLF+MkiW9HJ7+3RQd8lcEvHnIEzH7TGfFerwaXHsYaHOb45EKXcIq3WP7wepe+l8Lkh6rdSHqM8FkbyFe+G7p4O3n174ce/8Zpyk1XL96vAv4+S0Nlaq+X+YI/rZUvpx7mDkPB7VjeR+jXIqHRiCj0mOH4tsPxfHSvGg1dfFf41zuEsYDVtvN3s3imE1dVzXsW1Ot3HlA5cvZnr7nHJm/SvnNNIWrG4h8YUodbuUT/Y2dkhvo+5N/muc0wLVkLT/Ud+s+W+inG6U8ZKo28XvRsEb/a8bobePpdSg/aZdnkZ5/4xGjjsf+rZDlIZ58Tmzj3EMJSxuqm/H8Rx7rzUDetexXn+Lt+Ouy0/tc9qV8HUHQ3ivSYec4hwf93LVy6nbu1Ee58LjKK19S5S3z+hxLsi35IJ8S3afR4zhNaFXG53uAI6bFDYUL7V2Kb0dJ3bbW3Hqbfin45SNer8Up2yK0vrb7WxX7mfSrF3fFcffjlMWcF/P/d8U53gHeY5DcC6joyN/Is54/7w6l9dg7Hrb2bFF64uP90qnbQzvV5MyL14XLHk7jmFR2OzoPp+IY/qFOGhnO/aX+Tc87Z4+1vX4afd8RqOMnCHj7ZYZpcd/2N7C+2ceEqXs1aMfV9ryOC1b5IRE3QqhPS73fT0oY2fSQ9nx6yj0uHiCzcRePfRxqS6Pb3gngse3TP6Ob5n89W+Y/PXveCeC/TveifhNP4+WB6ODDzOUvxku2BNF6wb3v4Q5Lbb17CLudafDxzX32vOlzNf01/Xj4P9/Xv/3L//817//09/+7Z//8h9//bd//ff7L5vcaX3vM9X0pns+t1nSSPJNdN10L9NQS6KgV49QT+Kg1y0PhcZ9taTQuF/7JEsaSaFxv+jWr6TQuPez7JTUkzgpNG4/7JpkSaFx339238RXUkuipJ7ESZKkSZaUGpwakhqSGpIakhqSGpIakhqSGpIakhqaGpoamhqaGpoamhqaGpoamhqaGpYalhqWGpYalhqWGpYalhqWGpYaIzVGaozUGKkxUmOkxkiNkRojNUZqeGp4anhqeGp4anhqeGp4anhqeGq8brmBDUjADpxCfGMo3bcer6caoAEH0BPbBWxAAoba7eqvBwxgqN3v37aZ+BMNeKvxFeiJkfwLW+DtHJH+3AI78FbjeyGphQMs1MB2owVGsAH0xLCBhQ1IwA5koAAVCLUOtQ41hhpDjaHGUGOoMdQYagw1hhpDTaAmUBOoCdQEagI1gZpATaAmUFOoKdQUago1hZpCTaGmUFOoKdQMagY1g5pBzaBmUDOoGdQMaga1AbUBtQG1AbUBtQG1AbUBtQG1ATWHmkPNoeZQc6g51BxqDjWHmqcaXRewAQnYgQwUoAINOIBQa1BrUGtQa1BrUGtQa1BrUGtQa1AjqBHUCGoENYIaQY2gBi8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4vYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CW2vMRuHEBPXF4S2IAE7EAGClCBUDOoGdQG1AbUBtQG1AbUBtQG1AbUBtQG1BxqDjWHmkPNoeZQc6g51BxqnmrjuoBTzW8kYAeG2l38MKaXTFSgAQfQM8LykkCoTS+J351eMhFqDWoNag1qDWoNagQ1ghrh3AjnRlAjqBHUCGoEteklgdNLJjYgzq1DbXlJoAAVaECodagx1BhqDDVGSzLOjXFujHNjqC0vCURLClpS0JICNYGaQE2gJlATtKTg3ATnpjg3hZqi3xQtqWhJRUsq1BRqCjWFmkHN0JKGczOcm+HcDGqGfjO0pKElDS05oDagNqA2oDagNtCSA+c2cG4D5zag5ug3R0s6WtLRkg41h5pDzaHmUPNsSb8uYAMSMNX8YqAAFWjAgQhQa1BrUIOXOLzE4SUOL3F4iTeotQHMlnR4icNLnKBGUIOXOLzE4SUOL3F4icNLHF7iHWqdgGhJeInDS7xDrUMNXuLwEoeXOLzE4SUOL3F4iTPUGP0GL3F4icNLXKAmUIOXOLzE4SUOL3F4icNLHF7iAjVFv8FLHF7i8BJXqCnU4CUOL3F4icNLHF7i8BKHl7hBzdBv8BKHlzi8xA1qBjV4icNLHF7i8BKHlzi8xOElPqA20G/wEoeXOLzEHWoONXiJw0scXuLwEoeXOLykXTCT+2vxW+/FVLgX5sJSWEscKzwKF91WdOErL6bCvTAXLrpNC1vhUdjBVHSp6FLRpaJLRRcu8+JyvlTOl8r5UtHtV+HSzr20cy/t3ItuL7q96Pai24tuL+3M5Xy5nC+X8+Wiy6V/ubQzl3bm0s5cdLnoStGVoitFV0o7SzlfKecr5Xyl6ErpXyntrKWdtbSzFl0tulp0tehq0dXSzlrOV8v5WjlfK7pW+tdKO1tpZyvtbEXXiq4VXSu6o+iO0s6jnO8o5zvK+Y6iO0r/jtLOo7TzKO3sRdeLrhddL7pedL20s5fz9XK+Xs7Xoduuq3ArTIV7Yeg2PE21VvyqFb9qxa9a8atW/KoVv2rFr1oruo0LS2EtbIWLbiu6xa9a8atW/KoVv2rFr1rxq1b8atfdzjrhUbi0c/GrVvyq9aLbi27xq1b8qhW/asWvWvGrVvyqFb/aVbihy6V/i1+14let+FXjostFt/hVK37Vil+14let+FUrftWKX+2a3NCV0r/Fr1rxq1b8qmnR1aJb/KoVv2rFr1rxq1b8qhW/asWvdoVu6Frp3+JXrfhVK37VrOha0S1+1YpfteJXrfhVK37Vil+14le7Xjd0R+nf4let+FUrftVG0R1Ft/hVK37Vil+14let+FUrftWKX+3q3dD10r/Fr6j4FRW/IjyuNSp+ReX+isr9FRW/IjyztV3IO7noFr+i4ldU/IrK/dUq5733BmirnrdHDf96eJtshUdhBy+/mtwKU+FemAuHLserAdOvFocux3FOv1rs+J3pV4sbfmf61eJefocLT90eXHSnXy0uutOvJnPRnX61uOhOv1pcdLmc7/SreQxcdKdfLS66068WF93pV4uL7vSrxUVXyvlOv5rHIEVXSjtr0dXSzlp0tbSzFt3pV4uLrpbznX41j0GLrpV2tqJrpZ2t6FppZyu6068WF10r5zv9ah7DKLqjtPMouqO08yi6o7TzKLqjjOdRdEc53+lX8xi86HppZy+6XtrZi66Xdvai62U8O3RXkfDilsewyoTXv/fC0F2Vwou1/I4VHuV3MJ5XufD8ndYKE45h+tX9Pl9bJcOLpbAWtsKjsIOnXy0O3Xgva5UOL+6FubAU1sJWeBR28PSrxUV3+pXE8Uy/WsyFp64Hh+79LmxblcSLR2EHT79aHLr3rrdtlRPfGxO1VU+8mAtLYS1shUdhB0+/stCafmXz36lwL8yFpbAWtsKjsIOnXy0O3RHjavrV4l6YC0thLWyFR2EHT79aXHSt6FrRtaJrRdeKrhVdK7pWdEfRHUV3FN1RdEfRHUV3FN1RdEfRHUXXi64XXS+6XnS96HrR9aLrRdeLrkN3FSIvboWpcC/MhaWwFrbCo/DUlZvna5f3dght1STHXhD/5y9//+tf/sff/uXf//QP/3W/fv2f//rP+1Xr1//9j//vf+//8j/+/te//e2v/+uf/vff/+2f/+V//uff/+V+Lfv+b3+64rXs1//+Y9M/U7tf227r3//xtX6mf34tl+n/E//4j35vsvaaYLfX/+/x37u8/jvL/d/vP5DXgs+f5bV8c/9Di99QuyP4HZd2XNH2+q22osjLekVaxhB6/V/bEV7L8n9+LcLff9/vv7//4nXP2X3//svQXwfw+s+8w7/u+P78ugta4V8HYLZ/+XWT+zrJawd/3Ye+/q/efy3516+Ar/uOfXDXn4PnX9P48+u2Lv+62+v/xqnpPrTXLS1TnsrrxF7B75fh/38=",
6317
6322
  "verification_key": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEZRAAAAAAAAAAAAAAAAAAAAnoMNOjrqk6mP3Bkk6f9sbEsAAAAAAAAAAAAAAAAAAAAAAChL15ANC7AdL7a4Dp/cQAAAAAAAAAAAAAAAAAAAANC0XRdRcaobWX+UEViWe5NhAAAAAAAAAAAAAAAAAAAAAAAJlWKmqkfGrdA7pn2w0Y0AAAAAAAAAAAAAAAAAAAD3r+3Nr34Ad+ce+tTFqCAeOAAAAAAAAAAAAAAAAAAAAAAAJ+/F6hQnf6y7I1gJr8prAAAAAAAAAAAAAAAAAAAAHmLzIzYJ4XjlSXT1+9Tp38cAAAAAAAAAAAAAAAAAAAAAACq5ydXdyGi4V6iCHYKyjAAAAAAAAAAAAAAAAAAAAPVawjBe5r7u04upAEgg8ALTAAAAAAAAAAAAAAAAAAAAAAAWi1+kVlyf8xURemxxXvwAAAAAAAAAAAAAAAAAAADGJn9tH83ZUIsc4hL5Sy4jgAAAAAAAAAAAAAAAAAAAAAAAKHynRFaIcDzi4ojnfw5kAAAAAAAAAAAAAAAAAAAAli9XBzSQ2py4mQ+BfGs5NwsAAAAAAAAAAAAAAAAAAAAAAC1BGFnxPdxAAsmcbL1WMgAAAAAAAAAAAAAAAAAAACnrYuFFcckoVyR0J1x4L4UAAAAAAAAAAAAAAAAAAAAAAAAaUuQGQbyluPkrXGPzfzsAAAAAAAAAAAAAAAAAAADAh4dBVMzZEA/FsOKsln2mpAAAAAAAAAAAAAAAAAAAAAAAAA1S39SdvFgV6oB6HEEhAAAAAAAAAAAAAAAAAAAA/38z3SHCs7pE+4JnNxKj5Q0AAAAAAAAAAAAAAAAAAAAAAB+Xud0qpMqJqQpmGAiCzgAAAAAAAAAAAAAAAAAAAEjFUU7OGfte2C2S7QZvxtGfAAAAAAAAAAAAAAAAAAAAAAAhK8/0LWTC9oJmS+WwjpYAAAAAAAAAAAAAAAAAAAA0UEvPvNiYUN5Baxqr5u8URQAAAAAAAAAAAAAAAAAAAAAAF34nEvku4wkE6a+MEcgqAAAAAAAAAAAAAAAAAAAAIjx7zf4ErK3TUbUjPHWvo0EAAAAAAAAAAAAAAAAAAAAAABJB8o1i6Ip9b013Xwim2AAAAAAAAAAAAAAAAAAAANbtA9MMEnI01SmAvBq147tMAAAAAAAAAAAAAAAAAAAAAAAB4gue2VkVG3TYKDAdd9gAAAAAAAAAAAAAAAAAAABLc8fhcQaN5MCGNhxTZk2eugAAAAAAAAAAAAAAAAAAAAAAF8yGuxVrdoyUkNV/bKziAAAAAAAAAAAAAAAAAAAAZA8ggO/Oah+nQS6mCJ1VcvAAAAAAAAAAAAAAAAAAAAAAABtAsZxoUvwkRVL1cTBhDwAAAAAAAAAAAAAAAAAAAK2Zm3VQoiI0BWk4RwcFeozgAAAAAAAAAAAAAAAAAAAAAAApkKULGQKgEYcMtXCpdGEAAAAAAAAAAAAAAAAAAACtfNG4oR75XugXCbKnTL9q1wAAAAAAAAAAAAAAAAAAAAAAL59yNzQGFA7DpndDKLCkAAAAAAAAAAAAAAAAAAAAFhK0OXcIrwgGtDR79FstEiQAAAAAAAAAAAAAAAAAAAAAAA7Bua2b35wAFgkNQGSv6AAAAAAAAAAAAAAAAAAAALu6DqcGbaplEQ1YpciJjrWaAAAAAAAAAAAAAAAAAAAAAAAozdN9yZMkVl1bOz/NFkYAAAAAAAAAAAAAAAAAAAD823syZBzNWnGGjnzT1yMg5AAAAAAAAAAAAAAAAAAAAAAAATDBDUq0HRHSx0+PInBuAAAAAAAAAAAAAAAAAAAAbGP6UV+RTMDMVJE9AtswcMAAAAAAAAAAAAAAAAAAAAAAAC8fAcvKUFeoLDHLV9S0EgAAAAAAAAAAAAAAAAAAAIhfu6Ia56+xq+/5G9Y6a3/CAAAAAAAAAAAAAAAAAAAAAAAoWhCM5rBQuSgHA5cqjzwAAAAAAAAAAAAAAAAAAADicoT37E4pM2ETqtidhIEjwQAAAAAAAAAAAAAAAAAAAAAADmOlkZkuBArunLiu1948AAAAAAAAAAAAAAAAAAAA07i+aqRG1Igx9CdLw9iYoEoAAAAAAAAAAAAAAAAAAAAAABV8bQVEw00EgI7bO2YJiAAAAAAAAAAAAAAAAAAAAFLKdcra8iMQDvqccKIhZor2AAAAAAAAAAAAAAAAAAAAAAAVJePI3ZhGeRM+LVpwcagAAAAAAAAAAAAAAAAAAABGRemkcKpNNoOGI7UGcSj0kgAAAAAAAAAAAAAAAAAAAAAAIvx/MplqeTV1/KROXDTHAAAAAAAAAAAAAAAAAAAARNHT2BPgCDH6z3JnPxGbBZoAAAAAAAAAAAAAAAAAAAAAABCEjOQhFsdcI9SKgV36cAAAAAAAAAAAAAAAAAAAABCpqE66cjtGKUSauYShtpoVAAAAAAAAAAAAAAAAAAAAAAAkGkHugGftiO42Q9cKoHQAAAAAAAAAAAAAAAAAAACLxf1k1wDsSX7c4UqAYYqYOQAAAAAAAAAAAAAAAAAAAAAABrlgpMBJHiWZutBLRtmLAAAAAAAAAAAAAAAAAAAAtHj1k3Bqcpq6+4FSKG1YkHMAAAAAAAAAAAAAAAAAAAAAABeU4asT+yaAnA4ko1P6rgAAAAAAAAAAAAAAAAAAAGBthGBzoviYZ9L3c99mSioDAAAAAAAAAAAAAAAAAAAAAAAvZfzDiwBAMn2U24J/Vo8AAAAAAAAAAAAAAAAAAAAueQ1XxwV8Eqp0Je2PlLjhtAAAAAAAAAAAAAAAAAAAAAAAIDnvkkyJtg839S5mkAq0AAAAAAAAAAAAAAAAAAAA9ap0l283OdoRngoBY0vD9BkAAAAAAAAAAAAAAAAAAAAAAAH7phJgTz3O0J0jOGi71wAAAAAAAAAAAAAAAAAAAJZSAmnrLNrpgRzfM9OO531yAAAAAAAAAAAAAAAAAAAAAAANGBe8zRN8rItiwOCm3IAAAAAAAAAAAAAAAAAAAACvioyfPAJkoIEWrj9Alxk5FQAAAAAAAAAAAAAAAAAAAAAAAdJJlkOH6vYYlAZ9elu3AAAAAAAAAAAAAAAAAAAAsAkFoh3ymVK850XrVTqOg+QAAAAAAAAAAAAAAAAAAAAAACsFZ/YMUBgwnerCwZAvpQAAAAAAAAAAAAAAAAAAAN3+mcGlzYnKRCCbpNhCsrBpAAAAAAAAAAAAAAAAAAAAAAASA5KMYdnR8uvZ78QnYQAAAAAAAAAAAAAAAAAAAACt6BNRiIjBd55mwwwoD66sfAAAAAAAAAAAAAAAAAAAAAAAKWVujDac1s3sKCAI7u8OAAAAAAAAAAAAAAAAAAAAsYDnzlTzxLsKNpWTxNnl+z8AAAAAAAAAAAAAAAAAAAAAACyJAaVUHgcvqYUvHQ52LgAAAAAAAAAAAAAAAAAAAMDr2Diax5xEp7dbUuO1GmA6AAAAAAAAAAAAAAAAAAAAAAALRCYROAUuTRpeXXl0WcYAAAAAAAAAAAAAAAAAAACAExlkJaspYTT1JU6z6JM+SAAAAAAAAAAAAAAAAAAAAAAAK2YmrPIlZtg5wuLsJhcUAAAAAAAAAAAAAAAAAAAAmWWeJscVbmWcaenxYq0uLAIAAAAAAAAAAAAAAAAAAAAAABFw7hJZcFYQXe4yJEsHxgAAAAAAAAAAAAAAAAAAANbDLQYwndZp0Qf+2/YArI0GAAAAAAAAAAAAAAAAAAAAAAAur1IIedyR1LIkfaVoXtsAAAAAAAAAAAAAAAAAAABw5nj6hOzBySS3Eavd8q5x/wAAAAAAAAAAAAAAAAAAAAAABSO1nYvGj9tRvIqzLebCAAAAAAAAAAAAAAAAAAAAMLi3V0s/377mKgqA5juKuX0AAAAAAAAAAAAAAAAAAAAAAADNZa/Ir3LR7ROGdnj/bAAAAAAAAAAAAAAAAAAAACD42DFJABtmoKX9Ni2wygbsAAAAAAAAAAAAAAAAAAAAAAAbygfvY+K2o7e/uRXf/JUAAAAAAAAAAAAAAAAAAAAm3WidinRPwtGDw8Q0gPl6ugAAAAAAAAAAAAAAAAAAAAAAFYvdS+9JLB8rfLeVCcDdAAAAAAAAAAAAAAAAAAAAEQHGaJRYKW6rGbweOT5N/soAAAAAAAAAAAAAAAAAAAAAACpctoK9xBt0v3xf+LsrlgAAAAAAAAAAAAAAAAAAAHTNUWdH5LMaA+Op5JW0vblcAAAAAAAAAAAAAAAAAAAAAAAPbTLqPWqjRaE6g5DrLCQAAAAAAAAAAAAAAAAAAADG2YJt0q1baLp4btBBWDaQ0gAAAAAAAAAAAAAAAAAAAAAAJ6EmrTdSRt6D4TDSPEgdAAAAAAAAAAAAAAAAAAAA4/7GrA2liRROmKecutS0j1cAAAAAAAAAAAAAAAAAAAAAACGrMGkfv3528Wntq96mFgAAAAAAAAAAAAAAAAAAAMU8+26rvG/ZdzM7gMYBV676AAAAAAAAAAAAAAAAAAAAAAABg286dpI2UYFTywsmNnkAAAAAAAAAAAAAAAAAAACAGL8fszsvDbPctfsOyl4uRwAAAAAAAAAAAAAAAAAAAAAALGLZSjQK7FPnZCsl4aNKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABD5CBKnUNtE0poGbXB3vP+7AAAAAAAAAAAAAAAAAAAAAAADX1+36vi9sFfUSMSsXRxAAAAAAAAAAAAAAAAAAAAym1+c03UZXOcXbemg+hDmO8AAAAAAAAAAAAAAAAAAAAAAAJXaSo199QSGHVx9gzpHwAAAAAAAAAAAAAAAAAAAGvMegX/lalrKJQkxfczZw2WAAAAAAAAAAAAAAAAAAAAAAAAxDcm91tv2g3iLODg36sAAAAAAAAAAAAAAAAAAAAdCgnXF47JO614WPluZPC0jQAAAAAAAAAAAAAAAAAAAAAAL5tuC04sAZaN5cMkgqp9AAAAAAAAAAAAAAAAAAAAhGizfhDghN678/BvPdVyeZAAAAAAAAAAAAAAAAAAAAAAABP8MEXsXcism66kuZ6hugAAAAAAAAAAAAAAAAAAALSFZmQJ4zJievrMBCtdWDUYAAAAAAAAAAAAAAAAAAAAAAATHr6UQ9MIxtY9B5E67mY="
6318
6323
  },
6319
6324
  {
@@ -6695,7 +6700,7 @@
6695
6700
  },
6696
6701
  "105": {
6697
6702
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/macros/functions/utils.nr",
6698
- "source": "use crate::macros::{\n functions::{\n auth_registry::AUTHORIZE_ONCE_REGISTRY, call_interface_stubs::stub_fn, stub_registry,\n },\n notes::NOTES,\n utils::{\n add_to_hasher, fn_has_authorize_once, fn_has_noinitcheck, get_fn_visibility,\n is_fn_contract_library_method, is_fn_initializer, is_fn_internal, is_fn_private,\n is_fn_public, is_fn_test, is_fn_utility, is_fn_view, modify_fn_body, module_has_initializer,\n module_has_storage,\n },\n};\nuse std::meta::{ctstring::AsCtString, type_of};\n\npub(crate) comptime fn transform_private(f: FunctionDefinition) {\n let fn_stub = stub_fn(f);\n stub_registry::register(f.module(), fn_stub);\n\n let module_has_initializer = module_has_initializer(f.module());\n let module_has_storage = module_has_storage(f.module());\n\n // Private functions undergo a lot of transformations from their Aztec.nr form into a circuit that can be fed to the\n // Private Kernel Circuit.\n // First we change the function signature so that it also receives `PrivateContextInputs`, which contain information\n // about the execution context (e.g. the caller).\n let original_params = f.parameters();\n f.set_parameters(&[(\n quote { inputs },\n quote { crate::context::inputs::private_context_inputs::PrivateContextInputs }.as_type(),\n )]\n .append(original_params));\n\n let mut body = f.body().as_block().unwrap();\n\n // The original params are hashed and passed to the `context` object, so that the kernel can verify we've received\n // the correct values.\n // TODO: Optimize args_hasher for small number of arguments\n let args_hasher_name = quote { args_hasher };\n let args_hasher = original_params.fold(\n quote {\n let mut $args_hasher_name = dep::aztec::hash::ArgsHasher::new();\n },\n |args_hasher, param: (Quoted, Type)| {\n let (name, typ) = param;\n let appended_arg = add_to_hasher(args_hasher_name, name, typ);\n quote {\n $args_hasher\n $appended_arg\n }\n },\n );\n\n let context_creation = quote {\n let mut context = dep::aztec::context::private_context::PrivateContext::new(inputs, dep::aztec::protocol_types::traits::Hash::hash($args_hasher_name));\n };\n\n // Modifications introduced by the different marker attributes.\n let internal_check = if is_fn_internal(f) {\n create_internal_check(f)\n } else {\n quote {}\n };\n\n let view_check = if is_fn_view(f) {\n create_view_check(f)\n } else {\n quote {}\n };\n\n let (assert_initializer, mark_as_initialized) = if is_fn_initializer(f) {\n (create_assert_correct_initializer_args(f), create_mark_as_initialized(f))\n } else {\n (quote {}, quote {})\n };\n\n let storage_init = if module_has_storage {\n quote {\n // Some functions don't access storage, but it'd be quite difficult to only inject this variable if it is\n // referenced. We instead ignore 'unused variable' warnings for it.\n #[allow(unused_variables)]\n let storage = Storage::init(&mut context);\n }\n } else {\n quote {}\n };\n\n // Initialization checks are not included in contracts that don't have initializers.\n let init_check = if module_has_initializer & !is_fn_initializer(f) & !fn_has_noinitcheck(f) {\n create_init_check(f)\n } else {\n quote {}\n };\n\n // All private functions perform message discovery, since they may need to access notes. This is slightly\n // inefficient and could be improved by only doing it once we actually attempt to read any. Note that the message\n // discovery call syncs private events as well. We do not sync those here if there are no notes because we don't\n // have an API that would access events from private functions.\n let message_discovery_call = if NOTES.len() > 0 {\n create_message_discovery_call()\n } else {\n quote {}\n };\n\n // Inject the authwit check if the function is marked with #[authorize_once].\n let authorize_once_check = if fn_has_authorize_once(f) {\n create_authorize_once_check(f)\n } else {\n quote {}\n };\n\n // Finally, we need to change the return type to be `PrivateCircuitPublicInputs`, which is what the Private Kernel\n // circuit expects.\n let return_value_var_name = quote { macro__returned__values };\n\n let return_value_type = f.return_type();\n let return_value = if body.len() == 0 {\n quote {}\n } else if return_value_type != type_of(()) {\n // The original return value is passed to a second args hasher which the context receives.\n let (body_without_return, last_body_expr) = body.pop_back();\n let return_value = last_body_expr.quoted();\n let return_value_assignment =\n quote { let $return_value_var_name: $return_value_type = $return_value; };\n let return_hasher_name = quote { return_hasher };\n let return_value_into_hasher =\n add_to_hasher(return_hasher_name, return_value_var_name, return_value_type);\n\n body = body_without_return;\n\n quote {\n let mut $return_hasher_name = dep::aztec::hash::ArgsHasher::new();\n $return_value_assignment\n $return_value_into_hasher\n context.set_return_hash($return_hasher_name);\n }\n } else {\n let (body_without_return, last_body_expr) = body.pop_back();\n if !last_body_expr.has_semicolon()\n & last_body_expr.as_for().is_none()\n & last_body_expr.as_assert().is_none()\n & last_body_expr.as_for_range().is_none()\n & last_body_expr.as_assert_eq().is_none()\n & last_body_expr.as_let().is_none() {\n let unused_return_value_name = f\"_{return_value_var_name}\".quoted_contents();\n body = body_without_return.push_back(\n quote { let $unused_return_value_name = $last_body_expr; }.as_expr().unwrap(),\n );\n }\n quote {}\n };\n\n let context_finish = quote { context.finish() };\n\n // A quote to be injected at the beginning of the function body.\n let to_prepend = quote {\n dep::aztec::oracle::version::assert_compatible_oracle_version();\n $args_hasher\n $context_creation\n $assert_initializer\n $init_check\n $internal_check\n $view_check\n $storage_init\n $message_discovery_call\n $authorize_once_check\n };\n\n let to_append = quote {\n $return_value\n $mark_as_initialized\n $context_finish\n };\n let modified_body = modify_fn_body(body, to_prepend, to_append);\n f.set_body(modified_body);\n f.set_return_type(\n quote { dep::protocol_types::abis::private_circuit_public_inputs::PrivateCircuitPublicInputs }\n .as_type(),\n );\n f.set_return_data();\n}\n\npub(crate) comptime fn transform_public(f: FunctionDefinition) {\n let fn_stub = stub_fn(f);\n stub_registry::register(f.module(), fn_stub);\n\n let module_has_initializer = module_has_initializer(f.module());\n let module_has_storage = module_has_storage(f.module());\n\n // Public functions undergo a lot of transformations from their Aztec.nr form.\n let original_params = f.parameters();\n\n let args_len_quote = if original_params.len() == 0 {\n // If the function has no parameters, we set the args_len to 0.\n quote { 0 }\n } else {\n // The following will give us <type_of_struct_member_1 as Serialize>::N + <type_of_struct_member_2 as Serialize>::N + ...\n original_params\n .map(|(_, param_type): (Quoted, Type)| {\n quote {\n <$param_type as $crate::protocol_types::traits::Serialize>::N\n }\n })\n .join(quote {+})\n };\n\n // Unlike in the private case, in public the `context` does not need to receive the hash of the original params.\n let context_creation = quote {\n let mut context = dep::aztec::context::public_context::PublicContext::new(|| {\n // We start from 1 because we skip the selector for the dispatch function.\n let serialized_args : [Field; $args_len_quote] = dep::aztec::context::public_context::calldata_copy(1, $args_len_quote);\n dep::aztec::hash::hash_args_array(serialized_args)\n });\n };\n\n // Modifications introduced by the different marker attributes.\n let internal_check = if is_fn_internal(f) {\n create_internal_check(f)\n } else {\n quote {}\n };\n\n let view_check = if is_fn_view(f) {\n create_view_check(f)\n } else {\n quote {}\n };\n\n let (assert_initializer, mark_as_initialized) = if is_fn_initializer(f) {\n (create_assert_correct_initializer_args(f), create_mark_as_initialized(f))\n } else {\n (quote {}, quote {})\n };\n\n let storage_init = if module_has_storage {\n // Some functions don't access storage, but it'd be quite difficult to only inject this variable if it is\n // referenced. We instead ignore 'unused variable' warnings for it.\n quote {\n #[allow(unused_variables)]\n let storage = Storage::init(&mut context);\n }\n } else {\n quote {}\n };\n\n // Initialization checks are not included in contracts that don't have initializers.\n let init_check = if module_has_initializer & !fn_has_noinitcheck(f) & !is_fn_initializer(f) {\n create_init_check(f)\n } else {\n quote {}\n };\n\n // Inject the authwit check if the function is marked with #[authorize_once].\n let authorize_once_check = if fn_has_authorize_once(f) {\n create_authorize_once_check(f)\n } else {\n quote {}\n };\n\n let to_prepend = quote {\n $context_creation\n $assert_initializer\n $init_check\n $internal_check\n $view_check\n $storage_init\n $authorize_once_check\n };\n\n let to_append = quote {\n $mark_as_initialized\n };\n\n let body = f.body().as_block().unwrap();\n let modified_body = modify_fn_body(body, to_prepend, to_append);\n f.set_body(modified_body);\n\n // All public functions are automatically made unconstrained, even if they were not marked as such. This is because\n // instead of compiling into a circuit, they will compile to bytecode that will be later transpiled into AVM\n // bytecode.\n f.set_unconstrained(true);\n f.set_return_public(true);\n}\n\npub(crate) comptime fn transform_utility(f: FunctionDefinition) {\n let fn_stub = stub_fn(f);\n stub_registry::register(f.module(), fn_stub);\n\n // Create utility context\n let context_creation =\n quote { let mut context = dep::aztec::context::utility_context::UtilityContext::new(); };\n\n // Initialize Storage if module has storage\n let storage_init = if module_has_storage(f.module()) {\n quote {\n // Some functions don't access storage, but it'd be quite difficult to only inject this variable if it is\n // referenced. We instead ignore 'unused variable' warnings for it.\n #[allow(unused_variables)]\n let storage = Storage::init(context);\n }\n } else {\n quote {}\n };\n\n // All utility functions perform message discovery, since they may need to access private notes that would be\n // found during this process or they may be used to sync private events from TypeScript\n // (`sync_private_state` function gets invoked by PXE::getPrivateEvents function).\n let message_discovery_call = create_message_discovery_call();\n\n // A quote to be injected at the beginning of the function body.\n let to_prepend = quote {\n dep::aztec::oracle::version::assert_compatible_oracle_version();\n $context_creation\n $storage_init\n $message_discovery_call\n };\n let body = f.body().as_block().unwrap();\n let modified_body = modify_fn_body(body, to_prepend, quote {});\n f.set_body(modified_body);\n\n f.set_return_public(true);\n}\n\ncomptime fn create_internal_check(f: FunctionDefinition) -> Quoted {\n let name = f.name();\n let assertion_message = f\"Function {name} can only be called internally\";\n quote { assert(context.msg_sender().unwrap() == context.this_address(), $assertion_message); }\n}\n\ncomptime fn create_view_check(f: FunctionDefinition) -> Quoted {\n let name = f.name();\n let assertion_message = f\"Function {name} can only be called statically\";\n if is_fn_private(f) {\n // Here `context` is of type context::PrivateContext\n quote { assert(context.inputs.call_context.is_static_call, $assertion_message); }\n } else {\n // Here `context` is of type context::PublicContext\n quote { assert(context.is_static_call(), $assertion_message); }\n }\n}\n\ncomptime fn create_assert_correct_initializer_args(f: FunctionDefinition) -> Quoted {\n let fn_visibility = get_fn_visibility(f);\n f\"dep::aztec::macros::functions::initialization_utils::assert_initialization_matches_address_preimage_{fn_visibility}(context);\"\n .quoted_contents()\n}\n\ncomptime fn create_mark_as_initialized(f: FunctionDefinition) -> Quoted {\n let fn_visibility = get_fn_visibility(f);\n f\"dep::aztec::macros::functions::initialization_utils::mark_as_initialized_{fn_visibility}(&mut context);\"\n .quoted_contents()\n}\n\ncomptime fn create_init_check(f: FunctionDefinition) -> Quoted {\n let fn_visibility = get_fn_visibility(f);\n f\"dep::aztec::macros::functions::initialization_utils::assert_is_initialized_{fn_visibility}(&mut context);\"\n .quoted_contents()\n}\n\n/// Injects a call to `aztec::messages::discovery::discover_new_messages`, causing for new notes to be added to PXE and made\n/// available for the current execution.\npub(crate) comptime fn create_message_discovery_call() -> Quoted {\n quote {\n /// Safety: message discovery returns nothing and is performed solely for its side-effects. It is therefore\n /// always safe to call.\n unsafe {\n dep::aztec::messages::discovery::discover_new_messages(\n context.this_address(),\n _compute_note_hash_and_nullifier,\n );\n };\n }\n}\n\n/// Injects an authwit verification check of the form:\n/// ```\n/// if (!from.eq(context.msg_sender().unwrap())) {\n/// assert_current_call_valid_authwit::<N>(&mut context, from);\n/// } else {\n/// assert(authwit_nonce, \"Invalid authwit nonce. When 'from' and 'msg_sender' are the same, authwit_nonce must be zero\");\n/// }\n/// ```\n/// where `from` and `authwit_nonce` are the names of the parameters that are expected to be present in the function definition.\n/// This check is injected by the `#[authorize_once(\"from_arg_name\", \"nonce_arg_name\")]`, which allows the user to define\n/// which parameters to use.\npub(crate) comptime fn create_authorize_once_check(f: FunctionDefinition) -> Quoted {\n let maybe_authorize_once_args = AUTHORIZE_ONCE_REGISTRY.get(f);\n let authorize_once_args = if maybe_authorize_once_args.is_some() {\n maybe_authorize_once_args.unwrap()\n } else {\n // We need to for authorize_once to have already executed so that we can retrieve its params - this depends on\n // the order in which the attributes are applied.\n panic(\n f\"Functions marked with #[authorize_once] must have the #[private] or #[public] attribute placed last\",\n )\n };\n\n let (from_arg_name, nonce_arg_name) = authorize_once_args;\n let name: Quoted = f.name();\n\n let from_arg_candidates =\n f.parameters().filter(|(name, _)| name == f\"{from_arg_name}\".quoted_contents());\n let (from_arg_name_quoted, from_arg_type) = if from_arg_candidates.len() == 1 {\n from_arg_candidates[0]\n } else {\n panic(\n f\"Function {name} does not have a {from_arg_name} parameter. Please specify which one to use in #[authorize_once(\\\"...\\\", \\\"authwit_nonce\\\")]\",\n )\n };\n if from_arg_type\n != quote { dep::protocol_types::address::aztec_address::AztecAddress }.as_type() {\n panic(\n f\"Argument {from_arg_name_quoted} in function {name} must be of type AztecAddress, but is of type {from_arg_type}\",\n )\n }\n\n let nonce_arg_candidates =\n f.parameters().filter(|(name, _)| name == f\"{nonce_arg_name}\".quoted_contents());\n let (nonce_arg_name_quoted, nonce_arg_type) = if nonce_arg_candidates.len() == 1 {\n nonce_arg_candidates[0]\n } else {\n panic(\n f\"Function {name} does not have a {nonce_arg_name}. Please specify which one to use in #[authorize_once(\\\"from\\\", \\\"...\\\")]\",\n )\n };\n if nonce_arg_type != quote { Field }.as_type() {\n panic(\n f\"Argument {nonce_arg_name_quoted} in function {name} must be of type Field, but is of type {nonce_arg_type}\",\n );\n }\n\n let nonce_check_quote = f\"{nonce_arg_name_quoted} == 0\".quoted_contents();\n\n let fn_call = if is_fn_private(f) {\n // At this point, the original args of the fn have already been altered by the macro\n // to include PrivateContextInputs, so we need to adjust the args_len accordingly.\n let args_len = f.parameters().len() - 1;\n quote { dep::aztec::authwit::auth::assert_current_call_valid_authwit::<$args_len> }\n } else {\n quote { dep::aztec::authwit::auth::assert_current_call_valid_authwit_public }\n };\n let invalid_nonce_message = f\"Invalid authwit nonce. When '{from_arg_name}' and 'msg_sender' are the same, '{nonce_arg_name}' must be zero\"\n .as_ctstring()\n .as_quoted_str();\n quote { \n if (!$from_arg_name_quoted.eq(context.msg_sender().unwrap())) {\n $fn_call(&mut context, $from_arg_name_quoted);\n } else {\n assert($nonce_check_quote, $invalid_nonce_message);\n }\n }\n}\n\n/// Checks if each function in the module is marked with either #[private], #[public], #[utility],\n/// #[contract_library_method], or #[test]. Non-macroified functions are not allowed in contracts.\npub(crate) comptime fn check_each_fn_macroified(m: Module) {\n for f in m.functions() {\n let name = f.name();\n if !is_fn_private(f)\n & !is_fn_public(f)\n & !is_fn_utility(f)\n & !is_fn_contract_library_method(f)\n & !is_fn_test(f) {\n panic(\n f\"Function {name} must be marked as either #[private], #[public], #[utility], #[contract_library_method], or #[test]\",\n );\n }\n }\n}\n"
6703
+ "source": "use crate::macros::{\n functions::{\n auth_registry::AUTHORIZE_ONCE_REGISTRY,\n call_interface_stubs::{\n register_private_fn_stub, register_public_fn_stub, register_utility_fn_stub,\n },\n },\n notes::NOTES,\n utils::{\n fn_has_authorize_once, fn_has_noinitcheck, is_fn_contract_library_method, is_fn_external,\n is_fn_initializer, is_fn_internal, is_fn_test, is_fn_view, modify_fn_body,\n module_has_initializer, module_has_storage,\n },\n};\nuse dep::protocol_types::meta::utils::derive_serialization_quotes;\nuse std::meta::{ctstring::AsCtString, type_of};\n\npub(crate) comptime fn transform_private(f: FunctionDefinition) {\n register_private_fn_stub(f);\n\n let module_has_initializer = module_has_initializer(f.module());\n let module_has_storage = module_has_storage(f.module());\n\n // Private functions undergo a lot of transformations from their Aztec.nr form into a circuit that can be fed to the\n // Private Kernel Circuit.\n // First we change the function signature so that it also receives `PrivateContextInputs`, which contain information\n // about the execution context (e.g. the caller).\n let original_params = f.parameters();\n f.set_parameters(&[(\n quote { inputs },\n quote { crate::context::inputs::private_context_inputs::PrivateContextInputs }.as_type(),\n )]\n .append(original_params));\n\n let mut body = f.body().as_block().unwrap();\n\n // The original params are hashed and passed to the `context` object, so that the kernel can verify we've received\n // the correct values.\n let (args_serialization, _, serialized_args_name) =\n derive_serialization_quotes(original_params, false);\n\n let context_creation = quote {\n $args_serialization\n let args_hash = dep::aztec::hash::hash_args_array($serialized_args_name);\n let mut context = dep::aztec::context::private_context::PrivateContext::new(inputs, args_hash);\n };\n\n let function_name = f.name();\n\n // Modifications introduced by the different marker attributes.\n let internal_check = if is_fn_internal(f) {\n let assertion_message = f\"Function {function_name} can only be called internally\";\n quote { assert(context.msg_sender().unwrap() == context.this_address(), $assertion_message); }\n } else {\n quote {}\n };\n\n let view_check = if is_fn_view(f) {\n let assertion_message =\n f\"Function {function_name} can only be called statically\".as_ctstring().as_quoted_str();\n quote { assert(context.inputs.call_context.is_static_call, $assertion_message); }\n } else {\n quote {}\n };\n\n let (assert_initializer, mark_as_initialized) = if is_fn_initializer(f) {\n (\n quote { aztec::macros::functions::initialization_utils::assert_initialization_matches_address_preimage_private(context); },\n quote { aztec::macros::functions::initialization_utils::mark_as_initialized_private(&mut context); },\n )\n } else {\n (quote {}, quote {})\n };\n\n let storage_init = if module_has_storage {\n quote {\n // Some functions don't access storage, but it'd be quite difficult to only inject this variable if it is\n // referenced. We instead ignore 'unused variable' warnings for it.\n #[allow(unused_variables)]\n let storage = Storage::init(&mut context);\n }\n } else {\n quote {}\n };\n\n // Initialization checks are not included in contracts that don't have initializers.\n let init_check = if module_has_initializer & !is_fn_initializer(f) & !fn_has_noinitcheck(f) {\n quote { aztec::macros::functions::initialization_utils::assert_is_initialized_private(&mut context); }\n } else {\n quote {}\n };\n\n // All private functions perform message discovery, since they may need to access notes. This is slightly\n // inefficient and could be improved by only doing it once we actually attempt to read any. Note that the message\n // discovery call syncs private events as well. We do not sync those here if there are no notes because we don't\n // have an API that would access events from private functions.\n let message_discovery_call = if NOTES.len() > 0 {\n create_message_discovery_call()\n } else {\n quote {}\n };\n\n // Inject the authwit check if the function is marked with #[authorize_once].\n let authorize_once_check = if fn_has_authorize_once(f) {\n create_authorize_once_check(f, true)\n } else {\n quote {}\n };\n\n // Finally, we need to change the return type to be `PrivateCircuitPublicInputs`, which is what the Private Kernel\n // circuit expects.\n let return_value_var_name = quote { macro__returned__values };\n\n let return_value_type = f.return_type();\n let return_value = if body.len() == 0 {\n quote {}\n } else if return_value_type != type_of(()) {\n // The original return value is serialized and hashed before being passed to the context.\n let (body_without_return, last_body_expr) = body.pop_back();\n let return_value = last_body_expr.quoted();\n let return_value_assignment =\n quote { let $return_value_var_name: $return_value_type = $return_value; };\n\n let (return_serialization, _, serialized_return_name) =\n derive_serialization_quotes([(return_value_var_name, return_value_type)], false);\n\n body = body_without_return;\n\n quote {\n $return_value_assignment\n $return_serialization\n context.set_return_hash($serialized_return_name);\n }\n } else {\n let (body_without_return, last_body_expr) = body.pop_back();\n if !last_body_expr.has_semicolon()\n & last_body_expr.as_for().is_none()\n & last_body_expr.as_assert().is_none()\n & last_body_expr.as_for_range().is_none()\n & last_body_expr.as_assert_eq().is_none()\n & last_body_expr.as_let().is_none() {\n let unused_return_value_name = f\"_{return_value_var_name}\".quoted_contents();\n body = body_without_return.push_back(\n quote { let $unused_return_value_name = $last_body_expr; }.as_expr().unwrap(),\n );\n }\n quote {}\n };\n\n let context_finish = quote { context.finish() };\n\n // A quote to be injected at the beginning of the function body.\n let to_prepend = quote {\n dep::aztec::oracle::version::assert_compatible_oracle_version();\n $context_creation\n $assert_initializer\n $init_check\n $internal_check\n $view_check\n $storage_init\n $message_discovery_call\n $authorize_once_check\n };\n\n let to_append = quote {\n $return_value\n $mark_as_initialized\n $context_finish\n };\n let modified_body = modify_fn_body(body, to_prepend, to_append);\n f.set_body(modified_body);\n f.set_return_type(\n quote { dep::protocol_types::abis::private_circuit_public_inputs::PrivateCircuitPublicInputs }\n .as_type(),\n );\n f.set_return_data();\n}\n\npub(crate) comptime fn transform_public(f: FunctionDefinition) {\n register_public_fn_stub(f);\n\n let module_has_initializer = module_has_initializer(f.module());\n let module_has_storage = module_has_storage(f.module());\n\n // Public functions undergo a lot of transformations from their Aztec.nr form.\n let original_params = f.parameters();\n\n let args_len_quote = if original_params.len() == 0 {\n // If the function has no parameters, we set the args_len to 0.\n quote { 0 }\n } else {\n // The following will give us <type_of_struct_member_1 as Serialize>::N + <type_of_struct_member_2 as Serialize>::N + ...\n original_params\n .map(|(_, param_type): (Quoted, Type)| {\n quote {\n <$param_type as $crate::protocol_types::traits::Serialize>::N\n }\n })\n .join(quote {+})\n };\n\n // Unlike in the private case, in public the `context` does not need to receive the hash of the original params.\n let context_creation = quote {\n let mut context = dep::aztec::context::public_context::PublicContext::new(|| {\n // We start from 1 because we skip the selector for the dispatch function.\n let serialized_args : [Field; $args_len_quote] = dep::aztec::context::public_context::calldata_copy(1, $args_len_quote);\n dep::aztec::hash::hash_args_array(serialized_args)\n });\n };\n\n let name = f.name();\n // Modifications introduced by the different marker attributes.\n let internal_check = if is_fn_internal(f) {\n let assertion_message = f\"Function {name} can only be called internally\";\n quote { assert(context.msg_sender().unwrap() == context.this_address(), $assertion_message); }\n } else {\n quote {}\n };\n\n let view_check = if is_fn_view(f) {\n let name = f.name();\n let assertion_message =\n f\"Function {name} can only be called statically\".as_ctstring().as_quoted_str();\n quote { assert(context.is_static_call(), $assertion_message); }\n } else {\n quote {}\n };\n\n let (assert_initializer, mark_as_initialized) = if is_fn_initializer(f) {\n (\n quote { aztec::macros::functions::initialization_utils::assert_initialization_matches_address_preimage_public(context); },\n quote { aztec::macros::functions::initialization_utils::mark_as_initialized_public(&mut context); },\n )\n } else {\n (quote {}, quote {})\n };\n\n let storage_init = if module_has_storage {\n // Some functions don't access storage, but it'd be quite difficult to only inject this variable if it is\n // referenced. We instead ignore 'unused variable' warnings for it.\n quote {\n #[allow(unused_variables)]\n let storage = Storage::init(&mut context);\n }\n } else {\n quote {}\n };\n\n // Initialization checks are not included in contracts that don't have initializers.\n let init_check = if module_has_initializer & !fn_has_noinitcheck(f) & !is_fn_initializer(f) {\n quote { aztec::macros::functions::initialization_utils::assert_is_initialized_public(&mut context); }\n } else {\n quote {}\n };\n\n // Inject the authwit check if the function is marked with #[authorize_once].\n let authorize_once_check = if fn_has_authorize_once(f) {\n create_authorize_once_check(f, false)\n } else {\n quote {}\n };\n\n let to_prepend = quote {\n $context_creation\n $assert_initializer\n $init_check\n $internal_check\n $view_check\n $storage_init\n $authorize_once_check\n };\n\n let to_append = quote {\n $mark_as_initialized\n };\n\n let body = f.body().as_block().unwrap();\n let modified_body = modify_fn_body(body, to_prepend, to_append);\n f.set_body(modified_body);\n\n // All public functions are automatically made unconstrained, even if they were not marked as such. This is because\n // instead of compiling into a circuit, they will compile to bytecode that will be later transpiled into AVM\n // bytecode.\n f.set_unconstrained(true);\n f.set_return_public(true);\n}\n\npub(crate) comptime fn transform_utility(f: FunctionDefinition) {\n register_utility_fn_stub(f);\n\n // Create utility context\n let context_creation =\n quote { let mut context = dep::aztec::context::utility_context::UtilityContext::new(); };\n\n // Initialize Storage if module has storage\n let storage_init = if module_has_storage(f.module()) {\n quote {\n // Some functions don't access storage, but it'd be quite difficult to only inject this variable if it is\n // referenced. We instead ignore 'unused variable' warnings for it.\n #[allow(unused_variables)]\n let storage = Storage::init(context);\n }\n } else {\n quote {}\n };\n\n // All utility functions perform message discovery, since they may need to access private notes that would be\n // found during this process or they may be used to sync private events from TypeScript\n // (`sync_private_state` function gets invoked by PXE::getPrivateEvents function).\n let message_discovery_call = create_message_discovery_call();\n\n // A quote to be injected at the beginning of the function body.\n let to_prepend = quote {\n dep::aztec::oracle::version::assert_compatible_oracle_version();\n $context_creation\n $storage_init\n $message_discovery_call\n };\n let body = f.body().as_block().unwrap();\n let modified_body = modify_fn_body(body, to_prepend, quote {});\n f.set_body(modified_body);\n\n f.set_return_public(true);\n}\n\n/// Injects a call to `aztec::messages::discovery::discover_new_messages`, causing for new notes to be added to PXE and made\n/// available for the current execution.\npub(crate) comptime fn create_message_discovery_call() -> Quoted {\n quote {\n /// Safety: message discovery returns nothing and is performed solely for its side-effects. It is therefore\n /// always safe to call.\n unsafe {\n dep::aztec::messages::discovery::discover_new_messages(\n context.this_address(),\n _compute_note_hash_and_nullifier,\n );\n };\n }\n}\n\n/// Injects an authwit verification check of the form:\n/// ```\n/// if (!from.eq(context.msg_sender().unwrap())) {\n/// assert_current_call_valid_authwit::<N>(&mut context, from);\n/// } else {\n/// assert(authwit_nonce, \"Invalid authwit nonce. When 'from' and 'msg_sender' are the same, authwit_nonce must be zero\");\n/// }\n/// ```\n/// where `from` and `authwit_nonce` are the names of the parameters that are expected to be present in the function definition.\n/// This check is injected by the `#[authorize_once(\"from_arg_name\", \"nonce_arg_name\")]`, which allows the user to define\n/// which parameters to use.\n///\n/// # Arguments\n/// * `f` - The function definition to inject the authwit verification check into. The function must have parameters\n/// matching the names specified in the `#[authorize_once]` attribute.\n/// * `is_private` - Whether the function is a private function (`true`) or a public function (`false`). This determines\n/// which authwit verification method to use: `assert_current_call_valid_authwit` for private functions\n/// or `assert_current_call_valid_authwit_public` for public functions.\npub(crate) comptime fn create_authorize_once_check(\n f: FunctionDefinition,\n is_private: bool,\n) -> Quoted {\n let maybe_authorize_once_args = AUTHORIZE_ONCE_REGISTRY.get(f);\n let authorize_once_args = if maybe_authorize_once_args.is_some() {\n maybe_authorize_once_args.unwrap()\n } else {\n // We need to for authorize_once to have already executed so that we can retrieve its params - this depends on\n // the order in which the attributes are applied.\n panic(\n f\"Functions marked with #[authorize_once] must have the #[external(\\\"private\\\")] or #[external(\\\"public\\\")] attribute placed last\",\n )\n };\n\n let (from_arg_name, nonce_arg_name) = authorize_once_args;\n let name: Quoted = f.name();\n\n let from_arg_candidates =\n f.parameters().filter(|(name, _)| name == f\"{from_arg_name}\".quoted_contents());\n let (from_arg_name_quoted, from_arg_type) = if from_arg_candidates.len() == 1 {\n from_arg_candidates[0]\n } else {\n panic(\n f\"Function {name} does not have a {from_arg_name} parameter. Please specify which one to use in #[authorize_once(\\\"...\\\", \\\"authwit_nonce\\\")]\",\n )\n };\n if from_arg_type\n != quote { dep::protocol_types::address::aztec_address::AztecAddress }.as_type() {\n panic(\n f\"Argument {from_arg_name_quoted} in function {name} must be of type AztecAddress, but is of type {from_arg_type}\",\n )\n }\n\n let nonce_arg_candidates =\n f.parameters().filter(|(name, _)| name == f\"{nonce_arg_name}\".quoted_contents());\n let (nonce_arg_name_quoted, nonce_arg_type) = if nonce_arg_candidates.len() == 1 {\n nonce_arg_candidates[0]\n } else {\n panic(\n f\"Function {name} does not have a {nonce_arg_name}. Please specify which one to use in #[authorize_once(\\\"from\\\", \\\"...\\\")]\",\n )\n };\n if nonce_arg_type != quote { Field }.as_type() {\n panic(\n f\"Argument {nonce_arg_name_quoted} in function {name} must be of type Field, but is of type {nonce_arg_type}\",\n );\n }\n\n let nonce_check_quote = f\"{nonce_arg_name_quoted} == 0\".quoted_contents();\n\n let fn_call = if is_private {\n // At this point, the original args of the fn have already been altered by the macro\n // to include PrivateContextInputs, so we need to adjust the args_len accordingly.\n let args_len = f.parameters().len() - 1;\n quote { dep::aztec::authwit::auth::assert_current_call_valid_authwit::<$args_len> }\n } else {\n quote { dep::aztec::authwit::auth::assert_current_call_valid_authwit_public }\n };\n let invalid_nonce_message = f\"Invalid authwit nonce. When '{from_arg_name}' and 'msg_sender' are the same, '{nonce_arg_name}' must be zero\"\n .as_ctstring()\n .as_quoted_str();\n quote { \n if (!$from_arg_name_quoted.eq(context.msg_sender().unwrap())) {\n $fn_call(&mut context, $from_arg_name_quoted);\n } else {\n assert($nonce_check_quote, $invalid_nonce_message);\n }\n }\n}\n\n/// Checks if each function in the module is marked with either #[external(...)], #[contract_library_method], or #[test].\n/// Non-macroified functions are not allowed in contracts.\npub(crate) comptime fn check_each_fn_macroified(m: Module) {\n for f in m.functions() {\n let name = f.name();\n if !is_fn_external(f) & !is_fn_contract_library_method(f) & !is_fn_test(f) {\n panic(\n f\"Function {name} must be marked as either #[external(...)], #[contract_library_method], or #[test]\",\n );\n }\n }\n}\n"
6699
6704
  },
6700
6705
  "107": {
6701
6706
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/macros/notes.nr",
@@ -6911,45 +6916,49 @@
6911
6916
  },
6912
6917
  "329": {
6913
6918
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/meta/mod.nr",
6914
- "source": "/// Generates the generic parameter declarations for a struct's trait implementation.\n///\n/// This function takes a struct type definition and generates the generic parameter declarations\n/// that go after the `impl` keyword. For example, given a struct with generics `N: u32` and `T`,\n/// it generates `<let N: u32, T>`.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate generic declarations for\n///\n/// # Returns\n/// A quoted code block containing the generic parameter declarations, or an empty quote if the struct\n/// has no generic parameters\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Container<T, let N: u32> {\n/// items: [T; N],\n/// count: u32\n/// }\n/// ```\n///\n/// This function generates:\n/// ```\n/// <let N: u32, T>\n/// ```\ncomptime fn get_generics_declarations(s: TypeDefinition) -> Quoted {\n let generics = s.generics();\n\n if generics.len() > 0 {\n let generics_declarations_items = generics\n .map(|(name, maybe_integer_typ)| {\n // The second item in the generics tuple is an Option of an integer type that is Some only if\n // the generic is numeric.\n if maybe_integer_typ.is_some() {\n // The generic is numeric, so we return a quote defined as e.g. \"let N: u32\"\n let integer_type = maybe_integer_typ.unwrap();\n quote {let $name: $integer_type}\n } else {\n // The generic is not numeric, so we return a quote containing the name of the generic (e.g. \"T\")\n quote {$name}\n }\n })\n .join(quote {,});\n quote {<$generics_declarations_items>}\n } else {\n // The struct doesn't have any generics defined, so we just return an empty quote.\n quote {}\n }\n}\n\n/// Generates the `where` clause for a trait implementation that constrains non-numeric generic type parameters.\n///\n/// This function takes a struct type definition and a trait name, and generates a `where` clause that\n/// requires all non-numeric generic type parameters to implement the specified trait.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate the where clause for\n/// - `trait_name`: The name of the trait that non-numeric generic parameters must implement\n///\n/// # Returns\n/// A quoted code block containing the where clause, or an empty quote if the struct has no non-numeric\n/// generic parameters\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Container<T, let N: u32> {\n/// items: [T; N],\n/// count: u32\n/// }\n/// ```\n///\n/// And trait name \"Serialize\", this function generates:\n/// ```\n/// where T: Serialize\n/// ```\ncomptime fn get_where_trait_clause(s: TypeDefinition, trait_name: Quoted) -> Quoted {\n let generics = s.generics();\n\n // The second item in the generics tuple is an Option of an integer type that is Some only if the generic is\n // numeric.\n let non_numeric_generics =\n generics.filter(|(_, maybe_integer_typ)| maybe_integer_typ.is_none());\n\n if non_numeric_generics.len() > 0 {\n let non_numeric_generics_declarations =\n non_numeric_generics.map(|(name, _)| quote {$name: $trait_name}).join(quote {,});\n quote {where $non_numeric_generics_declarations}\n } else {\n // There are no non-numeric generics, so we return an empty quote.\n quote {}\n }\n}\n\n/// Generates a `Serialize` trait implementation for a struct type.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A quoted code block containing the trait implementation\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Log<N> {\n/// fields: [Field; N],\n/// length: u32\n/// }\n/// ```\n///\n/// This function generates code equivalent to:\n/// ```\n/// impl<let N: u32> Serialize for Log<N> {\n/// let N: u32 = <[Field; N] as Serialize>::N + <u32 as Serialize>::N;\n///\n/// #[inline_always]\n/// fn serialize(self) -> [Field; Self::N] {\n/// let mut result = [0; _];\n/// let mut offset = 0;\n///\n/// let serialized_member = Serialize::serialize(self.fields);\n/// let serialized_member_len = <[Field; N] as Serialize>::N;\n/// for i in 0..serialized_member_len {\n/// result[i + offset] = serialized_member[i];\n/// }\n/// offset += serialized_member_len;\n///\n/// let serialized_member = Serialize::serialize(self.length);\n/// let serialized_member_len = <u32 as Serialize>::N;\n/// for i in 0..serialized_member_len {\n/// result[i + offset] = serialized_member[i];\n/// }\n/// offset += serialized_member_len;\n///\n/// result\n/// }\n/// }\n/// ```\npub comptime fn derive_serialize(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n let params = nested_struct.0.fields(nested_struct.1);\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Serialize` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_serialize_clause = get_where_trait_clause(s, quote {Serialize});\n\n // The following will give us <type_of_struct_member_1 as Serialize>::N + <type_of_struct_member_2 as Serialize>::N + ...\n let right_hand_side_of_definition_of_n = params\n .map(|(_, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n <$param_type as $crate::traits::Serialize>::N\n }\n })\n .join(quote {+});\n\n // For structs containing a single member, we can enhance performance by directly returning the serialized member,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let function_body = if params.len() > 1 {\n // For multiple struct members, generate serialization code that:\n // 1. Serializes each member\n // 2. Copies the serialized fields into the result array at the correct offset\n // 3. Updates the offset for the next member\n let serialization_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let serialized_member = $crate::traits::Serialize::serialize(self.$param_name);\n let serialized_member_len = <$param_type as $crate::traits::Serialize>::N;\n for i in 0..serialized_member_len {\n result[i + offset] = serialized_member[i];\n }\n offset += serialized_member_len;\n }\n })\n .join(quote {});\n\n quote {\n let mut result = [0; _];\n let mut offset = 0;\n\n $serialization_of_struct_members\n\n result\n }\n } else {\n let param_name = params[0].0;\n quote {\n $crate::traits::Serialize::serialize(self.$param_name)\n }\n };\n\n quote {\n impl$generics_declarations $crate::traits::Serialize for $typ\n $where_serialize_clause\n {\n let N: u32 = $right_hand_side_of_definition_of_n;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n $function_body\n }\n }\n }\n}\n\n/// Generates a `Deserialize` trait implementation for a given struct `s`.\n///\n/// # Arguments\n/// * `s` - The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A `Quoted` block containing the generated trait implementation\n///\n/// # Requirements\n/// Each struct member type must implement the `Deserialize` trait (it gets used in the generated code).\n///\n/// # Example\n/// For a struct like:\n/// ```\n/// struct MyStruct {\n/// x: AztecAddress,\n/// y: Field,\n/// }\n/// ```\n///\n/// This generates:\n/// ```\n/// impl Deserialize for MyStruct {\n/// let N: u32 = <AztecAddress as Deserialize>::N + <Field as Deserialize>::N;\n///\n/// fn deserialize(serialized: [Field; Self::N]) -> Self {\n/// let mut offset = 0;\n/// let mut member_fields = [0; <AztecAddress as Deserialize>::N];\n/// for i in 0..<AztecAddress as Deserialize>::N {\n/// member_fields[i] = serialized[i + offset];\n/// }\n/// let x = <AztecAddress as Deserialize>::deserialize(member_fields);\n/// offset += <AztecAddress as Deserialize>::N;\n///\n/// let mut member_fields = [0; <Field as Deserialize>::N];\n/// for i in 0..<Field as Deserialize>::N {\n/// member_fields[i] = serialized[i + offset];\n/// }\n/// let y = <Field as Deserialize>::deserialize(member_fields);\n/// offset += <Field as Deserialize>::N;\n///\n/// Self { x, y }\n/// }\n/// }\n/// ```\npub(crate) comptime fn derive_deserialize(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n let params = nested_struct.0.fields(nested_struct.1);\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Deserialize` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_deserialize_clause = get_where_trait_clause(s, quote {Deserialize});\n\n // The following will give us <type_of_struct_member_1 as Deserialize>::N + <type_of_struct_member_2 as Deserialize>::N + ...\n let right_hand_side_of_definition_of_n = params\n .map(|(_, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n <$param_type as $crate::traits::Deserialize>::N\n }\n })\n .join(quote {+});\n\n // For structs containing a single member, we can enhance performance by directly deserializing the input array,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let function_body = if params.len() > 1 {\n // This generates deserialization code for each struct member and concatenates them together.\n let deserialization_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let mut member_fields = [0; <$param_type as Deserialize>::N];\n for i in 0..<$param_type as Deserialize>::N {\n member_fields[i] = serialized[i + offset];\n }\n let $param_name = <$param_type as Deserialize>::deserialize(member_fields);\n offset += <$param_type as Deserialize>::N;\n }\n })\n .join(quote {});\n\n // We join the struct member names with a comma to be used in the `Self { ... }` syntax\n // This will give us e.g. `a, b, c` for a struct with three fields named `a`, `b`, and `c`.\n let struct_members = params\n .map(|(param_name, _, _): (Quoted, Type, Quoted)| quote { $param_name })\n .join(quote {,});\n\n quote {\n let mut offset = 0;\n\n $deserialization_of_struct_members\n\n Self { $struct_members }\n }\n } else {\n let param_name = params[0].0;\n quote {\n Self { $param_name: $crate::traits::Deserialize::deserialize(serialized) }\n }\n };\n\n quote {\n impl$generics_declarations $crate::traits::Deserialize for $typ\n $where_deserialize_clause\n {\n let N: u32 = $right_hand_side_of_definition_of_n;\n\n #[inline_always]\n fn deserialize(serialized: [Field; Self::N]) -> Self {\n $function_body\n }\n }\n }\n}\n\n/// Generates a `Packable` trait implementation for a given struct `s`.\n///\n/// # Arguments\n/// * `s` - The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A `Quoted` block containing the generated trait implementation\n///\n/// # Requirements\n/// Each struct member type must implement the `Packable` trait (it gets used in the generated code).\n///\n/// # Example\n/// For a struct like:\n/// ```\n/// struct MyStruct {\n/// x: AztecAddress,\n/// y: Field,\n/// }\n/// ```\n///\n/// This generates:\n/// ```\n/// impl Packable for MyStruct {\n/// let N: u32 = 2;\n///\n/// fn pack(self) -> [Field; 2] {\n/// let mut result: [Field; 2] = [0_Field; 2];\n/// let mut offset: u32 = 0_u32;\n/// let packed_member: [Field; 1] = self.x.pack();\n/// let packed_member_len: u32 = <Field as Packable>::N;\n/// for i in 0_u32..packed_member_len {\n/// {\n/// result[i + offset] = packed_member[i];\n/// }\n/// }\n/// offset = offset + packed_member_len;\n/// let packed_member: [Field; 1] = self.y.pack();\n/// let packed_member_len: u32 = <Field as Packable>::N;\n/// for i in 0_u32..packed_member_len {\n/// {\n/// result[i + offset] = packed_member[i];\n/// }\n/// }\n/// offset = offset + packed_member_len;\n/// result\n/// }\n///\n/// fn unpack(packed: [Field; 2]) -> Self {\n/// let mut offset: u32 = 0_u32;\n/// let mut member_fields: [Field; 1] = [0_Field; 1];\n/// for i in 0_u32..<AztecAddress as Packable>::N {\n/// member_fields[i] = packed[i + offset];\n/// }\n/// let x: AztecAddress = <AztecAddress as Packable>::unpack(member_fields);\n/// offset = offset + <AztecAddress as Packable>::N;\n/// let mut member_fields: [Field; 1] = [0_Field; 1];\n/// for i in 0_u32..<Field as Packable>::N {\n/// member_fields[i] = packed[i + offset];\n/// }\n/// let y: Field = <Field as Packable>::unpack(member_fields);\n/// offset = offset + <Field as Packable>::N;\n/// Self { x: x, y: y }\n/// }\n/// }\n/// ```\npub comptime fn derive_packable(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n let params = nested_struct.0.fields(nested_struct.1);\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Packable` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_packable_clause = get_where_trait_clause(s, quote {Packable});\n\n // The following will give us <type_of_struct_member_1 as Packable>::N + <type_of_struct_member_2 as Packable>::N + ...\n let right_hand_side_of_definition_of_n = params\n .map(|(_, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n <$param_type as $crate::traits::Packable>::N\n }\n })\n .join(quote {+});\n\n // For structs containing a single member, we can enhance performance by directly returning the packed member,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let pack_function_body = if params.len() > 1 {\n // For multiple struct members, generate packing code that:\n // 1. Packs each member\n // 2. Copies the packed fields into the result array at the correct offset\n // 3. Updates the offset for the next member\n let packing_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let packed_member = $crate::traits::Packable::pack(self.$param_name);\n let packed_member_len = <$param_type as $crate::traits::Packable>::N;\n for i in 0..packed_member_len {\n result[i + offset] = packed_member[i];\n }\n offset += packed_member_len;\n }\n })\n .join(quote {});\n\n quote {\n let mut result = [0; Self::N];\n let mut offset = 0;\n\n $packing_of_struct_members\n\n result\n }\n } else {\n let param_name = params[0].0;\n quote {\n $crate::traits::Packable::pack(self.$param_name)\n }\n };\n\n // For structs containing a single member, we can enhance performance by directly unpacking the input array,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let unpack_function_body = if params.len() > 1 {\n // For multiple struct members, generate unpacking code that:\n // 1. Unpacks each member\n // 2. Copies packed fields into member array at correct offset\n // 3. Updates offset for next member\n let unpacking_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let mut member_fields = [0; <$param_type as $crate::traits::Packable>::N];\n for i in 0..<$param_type as $crate::traits::Packable>::N {\n member_fields[i] = packed[i + offset];\n }\n let $param_name = <$param_type as $crate::traits::Packable>::unpack(member_fields);\n offset += <$param_type as $crate::traits::Packable>::N;\n }\n })\n .join(quote {});\n\n // We join the struct member names with a comma to be used in the `Self { ... }` syntax\n let struct_members = params\n .map(|(param_name, _, _): (Quoted, Type, Quoted)| quote { $param_name })\n .join(quote {,});\n\n quote {\n let mut offset = 0;\n $unpacking_of_struct_members\n Self { $struct_members }\n }\n } else {\n let param_name = params[0].0;\n quote {\n Self { $param_name: $crate::traits::Packable::unpack(packed) }\n }\n };\n\n quote {\n impl$generics_declarations $crate::traits::Packable for $typ\n $where_packable_clause\n {\n let N: u32 = $right_hand_side_of_definition_of_n;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n $pack_function_body\n }\n\n #[inline_always]\n fn unpack(packed: [Field; Self::N]) -> Self {\n $unpack_function_body\n }\n }\n }\n}\n\nmod test {\n use crate::traits::{Deserialize, Packable, Serialize};\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct Smol {\n a: Field,\n b: Field,\n }\n\n #[derive(Deserialize, Eq, Serialize)]\n pub struct HasArray {\n a: [Field; 2],\n b: bool,\n }\n\n #[derive(Deserialize, Eq, Serialize)]\n pub struct Fancier {\n a: Smol,\n b: [Field; 2],\n c: [u8; 3],\n d: str<16>,\n }\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct HasArrayWithGenerics<T, let N: u32> {\n pub fields: [T; N],\n pub length: u32,\n }\n\n #[test]\n fn serde_on_smol() {\n let smol = Smol { a: 1, b: 2 };\n let serialized = smol.serialize();\n assert(serialized == [1, 2], serialized);\n let deserialized = Smol::deserialize(serialized);\n assert(deserialized == smol);\n\n // None of the struct members implements the `Packable` trait so the packed and serialized data should be the same\n let packed = smol.pack();\n assert_eq(packed, serialized, \"Packed does not match serialized\");\n }\n\n #[test]\n fn serde_on_has_array() {\n let has_array = HasArray { a: [1, 2], b: true };\n let serialized = has_array.serialize();\n assert(serialized == [1, 2, 1], serialized);\n let deserialized = HasArray::deserialize(serialized);\n assert(deserialized == has_array);\n }\n\n #[test]\n fn serde_on_fancier() {\n let fancier =\n Fancier { a: Smol { a: 1, b: 2 }, b: [0, 1], c: [1, 2, 3], d: \"metaprogramming!\" };\n let serialized = fancier.serialize();\n assert(\n serialized\n == [\n 1, 2, 0, 1, 1, 2, 3, 0x6d, 0x65, 0x74, 0x61, 0x70, 0x72, 0x6f, 0x67, 0x72, 0x61,\n 0x6d, 0x6d, 0x69, 0x6e, 0x67, 0x21,\n ],\n serialized,\n );\n let deserialized = Fancier::deserialize(serialized);\n assert(deserialized == fancier);\n }\n\n #[test]\n fn serde_on_contains_array_with_generics() {\n let struct_with_array_of_generics = HasArrayWithGenerics { fields: [1, 2, 3], length: 3 };\n let serialized = struct_with_array_of_generics.serialize();\n assert(serialized == [1, 2, 3, 3], serialized);\n let deserialized = HasArrayWithGenerics::deserialize(serialized);\n assert(deserialized == struct_with_array_of_generics);\n }\n\n #[test]\n fn packable_on_contains_array_with_generics() {\n let struct_with_array_of_generics = HasArrayWithGenerics { fields: [1, 2, 3], length: 3 };\n let packed = struct_with_array_of_generics.pack();\n assert(packed == [1, 2, 3, 3], packed);\n\n let unpacked = HasArrayWithGenerics::unpack(packed);\n assert(unpacked == struct_with_array_of_generics);\n }\n\n}\n"
6919
+ "source": "use utils::derive_serialization_quotes;\n\npub mod utils;\n\n/// Generates the generic parameter declarations for a struct's trait implementation.\n///\n/// This function takes a struct type definition and generates the generic parameter declarations\n/// that go after the `impl` keyword. For example, given a struct with generics `N: u32` and `T`,\n/// it generates `<let N: u32, T>`.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate generic declarations for\n///\n/// # Returns\n/// A quoted code block containing the generic parameter declarations, or an empty quote if the struct\n/// has no generic parameters\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Container<T, let N: u32> {\n/// items: [T; N],\n/// count: u32\n/// }\n/// ```\n///\n/// This function generates:\n/// ```\n/// <let N: u32, T>\n/// ```\ncomptime fn get_generics_declarations(s: TypeDefinition) -> Quoted {\n let generics = s.generics();\n\n if generics.len() > 0 {\n let generics_declarations_items = generics\n .map(|(name, maybe_integer_typ)| {\n // The second item in the generics tuple is an Option of an integer type that is Some only if\n // the generic is numeric.\n if maybe_integer_typ.is_some() {\n // The generic is numeric, so we return a quote defined as e.g. \"let N: u32\"\n let integer_type = maybe_integer_typ.unwrap();\n quote {let $name: $integer_type}\n } else {\n // The generic is not numeric, so we return a quote containing the name of the generic (e.g. \"T\")\n quote {$name}\n }\n })\n .join(quote {,});\n quote {<$generics_declarations_items>}\n } else {\n // The struct doesn't have any generics defined, so we just return an empty quote.\n quote {}\n }\n}\n\n/// Generates the `where` clause for a trait implementation that constrains non-numeric generic type parameters.\n///\n/// This function takes a struct type definition and a trait name, and generates a `where` clause that\n/// requires all non-numeric generic type parameters to implement the specified trait.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate the where clause for\n/// - `trait_name`: The name of the trait that non-numeric generic parameters must implement\n///\n/// # Returns\n/// A quoted code block containing the where clause, or an empty quote if the struct has no non-numeric\n/// generic parameters\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Container<T, let N: u32> {\n/// items: [T; N],\n/// count: u32\n/// }\n/// ```\n///\n/// And trait name \"Serialize\", this function generates:\n/// ```\n/// where T: Serialize\n/// ```\ncomptime fn get_where_trait_clause(s: TypeDefinition, trait_name: Quoted) -> Quoted {\n let generics = s.generics();\n\n // The second item in the generics tuple is an Option of an integer type that is Some only if the generic is\n // numeric.\n let non_numeric_generics =\n generics.filter(|(_, maybe_integer_typ)| maybe_integer_typ.is_none());\n\n if non_numeric_generics.len() > 0 {\n let non_numeric_generics_declarations =\n non_numeric_generics.map(|(name, _)| quote {$name: $trait_name}).join(quote {,});\n quote {where $non_numeric_generics_declarations}\n } else {\n // There are no non-numeric generics, so we return an empty quote.\n quote {}\n }\n}\n\n/// Generates a `Serialize` trait implementation for a struct type.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A quoted code block containing the trait implementation\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Log<N> {\n/// fields: [Field; N],\n/// length: u32\n/// }\n/// ```\n///\n/// This function generates code equivalent to:\n/// ```\n/// impl<let N: u32> Serialize for Log<N> {\n/// let N: u32 = <[Field; N] as Serialize>::N + <u32 as Serialize>::N;\n///\n/// #[inline_always]\n/// fn serialize(self) -> [Field; Self::N] {\n/// let mut serialized_params = [0; _];\n/// let mut offset = 0;\n///\n/// let serialized_member = Serialize::serialize(self.fields);\n/// let serialized_member_len = <[Field; N] as Serialize>::N;\n/// for i in 0..serialized_member_len {\n/// serialized_params[i + offset] = serialized_member[i];\n/// }\n/// offset += serialized_member_len;\n///\n/// let serialized_member = Serialize::serialize(self.length);\n/// let serialized_member_len = <u32 as Serialize>::N;\n/// for i in 0..serialized_member_len {\n/// serialized_params[i + offset] = serialized_member[i];\n/// }\n/// offset += serialized_member_len;\n///\n/// serialized_params\n/// }\n/// }\n/// ```\npub comptime fn derive_serialize(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n\n // We care only about the name and type so we drop the last item of the tuple\n let params = nested_struct.0.fields(nested_struct.1).map(|(name, typ, _)| (name, typ));\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Serialize` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_serialize_clause = get_where_trait_clause(s, quote {Serialize});\n\n let (function_body, params_len_quote, serialized_params_name) =\n derive_serialization_quotes(params, true);\n\n quote {\n impl$generics_declarations $crate::traits::Serialize for $typ\n $where_serialize_clause\n {\n let N: u32 = $params_len_quote;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n $function_body\n\n $serialized_params_name\n }\n }\n }\n}\n\n/// Generates a `Deserialize` trait implementation for a given struct `s`.\n///\n/// # Arguments\n/// * `s` - The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A `Quoted` block containing the generated trait implementation\n///\n/// # Requirements\n/// Each struct member type must implement the `Deserialize` trait (it gets used in the generated code).\n///\n/// # Example\n/// For a struct like:\n/// ```\n/// struct MyStruct {\n/// x: AztecAddress,\n/// y: Field,\n/// }\n/// ```\n///\n/// This generates:\n/// ```\n/// impl Deserialize for MyStruct {\n/// let N: u32 = <AztecAddress as Deserialize>::N + <Field as Deserialize>::N;\n///\n/// fn deserialize(serialized: [Field; Self::N]) -> Self {\n/// let mut offset = 0;\n/// let mut member_fields = [0; <AztecAddress as Deserialize>::N];\n/// for i in 0..<AztecAddress as Deserialize>::N {\n/// member_fields[i] = serialized[i + offset];\n/// }\n/// let x = <AztecAddress as Deserialize>::deserialize(member_fields);\n/// offset += <AztecAddress as Deserialize>::N;\n///\n/// let mut member_fields = [0; <Field as Deserialize>::N];\n/// for i in 0..<Field as Deserialize>::N {\n/// member_fields[i] = serialized[i + offset];\n/// }\n/// let y = <Field as Deserialize>::deserialize(member_fields);\n/// offset += <Field as Deserialize>::N;\n///\n/// Self { x, y }\n/// }\n/// }\n/// ```\npub(crate) comptime fn derive_deserialize(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n let params = nested_struct.0.fields(nested_struct.1);\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Deserialize` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_deserialize_clause = get_where_trait_clause(s, quote {Deserialize});\n\n // The following will give us <type_of_struct_member_1 as Deserialize>::N + <type_of_struct_member_2 as Deserialize>::N + ...\n let right_hand_side_of_definition_of_n = params\n .map(|(_, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n <$param_type as $crate::traits::Deserialize>::N\n }\n })\n .join(quote {+});\n\n // For structs containing a single member, we can enhance performance by directly deserializing the input array,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let function_body = if params.len() > 1 {\n // This generates deserialization code for each struct member and concatenates them together.\n let deserialization_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let mut member_fields = [0; <$param_type as Deserialize>::N];\n for i in 0..<$param_type as Deserialize>::N {\n member_fields[i] = serialized[i + offset];\n }\n let $param_name = <$param_type as Deserialize>::deserialize(member_fields);\n offset += <$param_type as Deserialize>::N;\n }\n })\n .join(quote {});\n\n // We join the struct member names with a comma to be used in the `Self { ... }` syntax\n // This will give us e.g. `a, b, c` for a struct with three fields named `a`, `b`, and `c`.\n let struct_members = params\n .map(|(param_name, _, _): (Quoted, Type, Quoted)| quote { $param_name })\n .join(quote {,});\n\n quote {\n let mut offset = 0;\n\n $deserialization_of_struct_members\n\n Self { $struct_members }\n }\n } else {\n let param_name = params[0].0;\n quote {\n Self { $param_name: $crate::traits::Deserialize::deserialize(serialized) }\n }\n };\n\n quote {\n impl$generics_declarations $crate::traits::Deserialize for $typ\n $where_deserialize_clause\n {\n let N: u32 = $right_hand_side_of_definition_of_n;\n\n #[inline_always]\n fn deserialize(serialized: [Field; Self::N]) -> Self {\n $function_body\n }\n }\n }\n}\n\n/// Generates a `Packable` trait implementation for a given struct `s`.\n///\n/// # Arguments\n/// * `s` - The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A `Quoted` block containing the generated trait implementation\n///\n/// # Requirements\n/// Each struct member type must implement the `Packable` trait (it gets used in the generated code).\n///\n/// # Example\n/// For a struct like:\n/// ```\n/// struct MyStruct {\n/// x: AztecAddress,\n/// y: Field,\n/// }\n/// ```\n///\n/// This generates:\n/// ```\n/// impl Packable for MyStruct {\n/// let N: u32 = 2;\n///\n/// fn pack(self) -> [Field; 2] {\n/// let mut result: [Field; 2] = [0_Field; 2];\n/// let mut offset: u32 = 0_u32;\n/// let packed_member: [Field; 1] = self.x.pack();\n/// let packed_member_len: u32 = <Field as Packable>::N;\n/// for i in 0_u32..packed_member_len {\n/// {\n/// result[i + offset] = packed_member[i];\n/// }\n/// }\n/// offset = offset + packed_member_len;\n/// let packed_member: [Field; 1] = self.y.pack();\n/// let packed_member_len: u32 = <Field as Packable>::N;\n/// for i in 0_u32..packed_member_len {\n/// {\n/// result[i + offset] = packed_member[i];\n/// }\n/// }\n/// offset = offset + packed_member_len;\n/// result\n/// }\n///\n/// fn unpack(packed: [Field; 2]) -> Self {\n/// let mut offset: u32 = 0_u32;\n/// let mut member_fields: [Field; 1] = [0_Field; 1];\n/// for i in 0_u32..<AztecAddress as Packable>::N {\n/// member_fields[i] = packed[i + offset];\n/// }\n/// let x: AztecAddress = <AztecAddress as Packable>::unpack(member_fields);\n/// offset = offset + <AztecAddress as Packable>::N;\n/// let mut member_fields: [Field; 1] = [0_Field; 1];\n/// for i in 0_u32..<Field as Packable>::N {\n/// member_fields[i] = packed[i + offset];\n/// }\n/// let y: Field = <Field as Packable>::unpack(member_fields);\n/// offset = offset + <Field as Packable>::N;\n/// Self { x: x, y: y }\n/// }\n/// }\n/// ```\npub comptime fn derive_packable(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n let params = nested_struct.0.fields(nested_struct.1);\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Packable` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_packable_clause = get_where_trait_clause(s, quote {Packable});\n\n // The following will give us <type_of_struct_member_1 as Packable>::N + <type_of_struct_member_2 as Packable>::N + ...\n let right_hand_side_of_definition_of_n = params\n .map(|(_, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n <$param_type as $crate::traits::Packable>::N\n }\n })\n .join(quote {+});\n\n // For structs containing a single member, we can enhance performance by directly returning the packed member,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let pack_function_body = if params.len() > 1 {\n // For multiple struct members, generate packing code that:\n // 1. Packs each member\n // 2. Copies the packed fields into the result array at the correct offset\n // 3. Updates the offset for the next member\n let packing_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let packed_member = $crate::traits::Packable::pack(self.$param_name);\n let packed_member_len = <$param_type as $crate::traits::Packable>::N;\n for i in 0..packed_member_len {\n result[i + offset] = packed_member[i];\n }\n offset += packed_member_len;\n }\n })\n .join(quote {});\n\n quote {\n let mut result = [0; Self::N];\n let mut offset = 0;\n\n $packing_of_struct_members\n\n result\n }\n } else {\n let param_name = params[0].0;\n quote {\n $crate::traits::Packable::pack(self.$param_name)\n }\n };\n\n // For structs containing a single member, we can enhance performance by directly unpacking the input array,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let unpack_function_body = if params.len() > 1 {\n // For multiple struct members, generate unpacking code that:\n // 1. Unpacks each member\n // 2. Copies packed fields into member array at correct offset\n // 3. Updates offset for next member\n let unpacking_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let mut member_fields = [0; <$param_type as $crate::traits::Packable>::N];\n for i in 0..<$param_type as $crate::traits::Packable>::N {\n member_fields[i] = packed[i + offset];\n }\n let $param_name = <$param_type as $crate::traits::Packable>::unpack(member_fields);\n offset += <$param_type as $crate::traits::Packable>::N;\n }\n })\n .join(quote {});\n\n // We join the struct member names with a comma to be used in the `Self { ... }` syntax\n let struct_members = params\n .map(|(param_name, _, _): (Quoted, Type, Quoted)| quote { $param_name })\n .join(quote {,});\n\n quote {\n let mut offset = 0;\n $unpacking_of_struct_members\n Self { $struct_members }\n }\n } else {\n let param_name = params[0].0;\n quote {\n Self { $param_name: $crate::traits::Packable::unpack(packed) }\n }\n };\n\n quote {\n impl$generics_declarations $crate::traits::Packable for $typ\n $where_packable_clause\n {\n let N: u32 = $right_hand_side_of_definition_of_n;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n $pack_function_body\n }\n\n #[inline_always]\n fn unpack(packed: [Field; Self::N]) -> Self {\n $unpack_function_body\n }\n }\n }\n}\n\nmod test {\n use crate::traits::{Deserialize, Packable, Serialize};\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct Smol {\n a: Field,\n b: Field,\n }\n\n #[derive(Deserialize, Eq, Serialize)]\n pub struct HasArray {\n a: [Field; 2],\n b: bool,\n }\n\n #[derive(Deserialize, Eq, Serialize)]\n pub struct Fancier {\n a: Smol,\n b: [Field; 2],\n c: [u8; 3],\n d: str<16>,\n }\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct HasArrayWithGenerics<T, let N: u32> {\n pub fields: [T; N],\n pub length: u32,\n }\n\n #[test]\n fn serde_on_smol() {\n let smol = Smol { a: 1, b: 2 };\n let serialized = smol.serialize();\n assert(serialized == [1, 2], serialized);\n let deserialized = Smol::deserialize(serialized);\n assert(deserialized == smol);\n\n // None of the struct members implements the `Packable` trait so the packed and serialized data should be the same\n let packed = smol.pack();\n assert_eq(packed, serialized, \"Packed does not match serialized\");\n }\n\n #[test]\n fn serde_on_has_array() {\n let has_array = HasArray { a: [1, 2], b: true };\n let serialized = has_array.serialize();\n assert(serialized == [1, 2, 1], serialized);\n let deserialized = HasArray::deserialize(serialized);\n assert(deserialized == has_array);\n }\n\n #[test]\n fn serde_on_fancier() {\n let fancier =\n Fancier { a: Smol { a: 1, b: 2 }, b: [0, 1], c: [1, 2, 3], d: \"metaprogramming!\" };\n let serialized = fancier.serialize();\n assert(\n serialized\n == [\n 1, 2, 0, 1, 1, 2, 3, 0x6d, 0x65, 0x74, 0x61, 0x70, 0x72, 0x6f, 0x67, 0x72, 0x61,\n 0x6d, 0x6d, 0x69, 0x6e, 0x67, 0x21,\n ],\n serialized,\n );\n let deserialized = Fancier::deserialize(serialized);\n assert(deserialized == fancier);\n }\n\n #[test]\n fn serde_on_contains_array_with_generics() {\n let struct_with_array_of_generics = HasArrayWithGenerics { fields: [1, 2, 3], length: 3 };\n let serialized = struct_with_array_of_generics.serialize();\n assert(serialized == [1, 2, 3, 3], serialized);\n let deserialized = HasArrayWithGenerics::deserialize(serialized);\n assert(deserialized == struct_with_array_of_generics);\n }\n\n #[test]\n fn packable_on_contains_array_with_generics() {\n let struct_with_array_of_generics = HasArrayWithGenerics { fields: [1, 2, 3], length: 3 };\n let packed = struct_with_array_of_generics.pack();\n assert(packed == [1, 2, 3, 3], packed);\n\n let unpacked = HasArrayWithGenerics::unpack(packed);\n assert(unpacked == struct_with_array_of_generics);\n }\n\n}\n"
6915
6920
  },
6916
6921
  "330": {
6922
+ "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/meta/utils.nr",
6923
+ "source": "/// Generates serialization code for a list of parameters and the total length of the serialized array\n///\n/// # Parameters\n/// - `params`: A list of (name, type) tuples to serialize\n/// - `use_self_prefix`: If true, parameters are accessed as `self.$param_name` (for struct members).\n/// If false, parameters are accessed directly as `$param_name` (for function parameters).\n///\n/// # Returns\n/// A tuple containing:\n/// - Quoted code that serializes the parameters into an array named `serialized_params`\n/// - Quoted code that evaluates to the total length of the serialized array\n/// - Quoted code containing the name of the serialized array\npub comptime fn derive_serialization_quotes(\n params: [(Quoted, Type)],\n use_self_prefix: bool,\n) -> (Quoted, Quoted, Quoted) {\n let prefix_quote = if use_self_prefix {\n quote { self. }\n } else {\n quote {}\n };\n\n let params_len_quote = get_params_len_quote(params);\n let serialized_params_name = quote { serialized_params };\n\n let body = if params.len() == 0 {\n quote {\n let $serialized_params_name: [Field; 0] = [];\n }\n } else if params.len() == 1 {\n // When we have only a single parameter on the input, we can enhance performance by directly returning\n // the serialized member, bypassing the need for loop-based array construction. While this optimization yields\n // significant benefits in Brillig where the loops are expected to not be optimized, it is not relevant in ACIR\n // where the loops are expected to be optimized away.\n\n let param_name = params[0].0;\n quote {\n let $serialized_params_name = $crate::traits::Serialize::serialize($prefix_quote$param_name);\n }\n } else {\n // For multiple struct members, generate serialization code that:\n // 1. Serializes each member\n // 2. Copies the serialized fields into the serialize array at the correct offset\n // 3. Updates the offset for the next member\n let serialization_of_struct_members = params\n .map(|(param_name, param_type): (Quoted, Type)| {\n quote {\n let serialized_member = $crate::traits::Serialize::serialize($prefix_quote$param_name);\n let serialized_member_len = <$param_type as $crate::traits::Serialize>::N;\n for i in 0..serialized_member_len {\n $serialized_params_name[i + offset] = serialized_member[i];\n }\n offset += serialized_member_len;\n }\n })\n .join(quote {});\n\n quote {\n let mut $serialized_params_name = [0; $params_len_quote];\n let mut offset = 0;\n\n $serialization_of_struct_members\n }\n };\n\n (body, params_len_quote, serialized_params_name)\n}\n\n/// Generates a quoted expression that computes the total serialized length of function parameters.\n///\n/// # Parameters\n/// * `params` - An array of tuples where each tuple contains a quoted parameter name and its Type. The type needs\n/// to implement the Serialize trait.\n///\n/// # Returns\n/// A quoted expression that evaluates to:\n/// * `0` if there are no parameters\n/// * `(<type1 as Serialize>::N + <type2 as Serialize>::N + ...)` for one or more parameters\npub comptime fn get_params_len_quote(params: [(Quoted, Type)]) -> Quoted {\n if params.len() == 0 {\n quote { 0 }\n } else {\n let params_quote_without_parentheses = params\n .map(|(_, param_type): (Quoted, Type)| {\n quote {\n <$param_type as $crate::traits::Serialize>::N\n }\n })\n .join(quote {+});\n quote { ($params_quote_without_parentheses) }\n }\n}\n"
6924
+ },
6925
+ "331": {
6917
6926
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/point.nr",
6918
6927
  "source": "pub use dep::std::embedded_curve_ops::EmbeddedCurvePoint as Point;\nuse crate::{hash::poseidon2_hash, traits::{Deserialize, Empty, Hash, Packable, Serialize}};\n\npub global POINT_LENGTH: u32 = 3;\n\n// Note: Not deriving this because it's not supported to call derive_serialize on a \"remote\" struct (and it will never\n// be supported).\nimpl Serialize for Point {\n let N: u32 = POINT_LENGTH;\n\n fn serialize(self: Self) -> [Field; Self::N] {\n [self.x, self.y, self.is_infinite as Field]\n }\n}\n\nimpl Hash for Point {\n fn hash(self) -> Field {\n poseidon2_hash(self.serialize())\n }\n}\n\nimpl Empty for Point {\n /// Note: Does not return a valid point on curve - instead represents an empty/\"unpopulated\" point struct (e.g.\n /// empty/unpopulated value in an array of points).\n fn empty() -> Self {\n Point { x: 0, y: 0, is_infinite: false }\n }\n}\n\nimpl Deserialize for Point {\n let N: u32 = POINT_LENGTH;\n\n fn deserialize(serialized: [Field; Self::N]) -> Self {\n Point { x: serialized[0], y: serialized[1], is_infinite: serialized[2] != 0 }\n }\n}\n\n// TODO(#11356): use compact representation here.\nimpl Packable for Point {\n let N: u32 = POINT_LENGTH;\n\n fn pack(self) -> [Field; Self::N] {\n self.serialize()\n }\n\n fn unpack(packed: [Field; Self::N]) -> Self {\n Self::deserialize(packed)\n }\n}\n"
6919
6928
  },
6920
- "331": {
6929
+ "332": {
6921
6930
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/poseidon2.nr",
6922
6931
  "source": "use crate::constants::TWO_POW_64;\nuse crate::traits::{Deserialize, Serialize};\nuse std::meta::derive;\n// NB: This is a clone of noir/noir-repo/noir_stdlib/src/hash/poseidon2.nr\n// It exists as we sometimes need to perform custom absorption, but the stdlib version\n// has a private absorb() method (it's also designed to just be a hasher)\n// Can be removed when standalone noir poseidon lib exists: See noir#6679\n\ncomptime global RATE: u32 = 3;\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct Poseidon2Sponge {\n pub cache: [Field; 3],\n pub state: [Field; 4],\n pub cache_size: u32,\n pub squeeze_mode: bool, // 0 => absorb, 1 => squeeze\n}\n\nimpl Poseidon2Sponge {\n #[no_predicates]\n pub fn hash<let N: u32>(input: [Field; N], message_size: u32) -> Field {\n Poseidon2Sponge::hash_internal(input, message_size, message_size != N)\n }\n\n pub(crate) fn new(iv: Field) -> Poseidon2Sponge {\n let mut result =\n Poseidon2Sponge { cache: [0; 3], state: [0; 4], cache_size: 0, squeeze_mode: false };\n result.state[RATE] = iv;\n result\n }\n\n fn perform_duplex(&mut self) {\n // add the cache into sponge state\n for i in 0..RATE {\n // We effectively zero-pad the cache by only adding to the state\n // cache that is less than the specified `cache_size`\n if i < self.cache_size {\n self.state[i] += self.cache[i];\n }\n }\n self.state = std::hash::poseidon2_permutation(self.state, 4);\n }\n\n pub fn absorb(&mut self, input: Field) {\n assert(!self.squeeze_mode);\n if self.cache_size == RATE {\n // If we're absorbing, and the cache is full, apply the sponge permutation to compress the cache\n self.perform_duplex();\n self.cache[0] = input;\n self.cache_size = 1;\n } else {\n // If we're absorbing, and the cache is not full, add the input into the cache\n self.cache[self.cache_size] = input;\n self.cache_size += 1;\n }\n }\n\n pub fn squeeze(&mut self) -> Field {\n assert(!self.squeeze_mode);\n // If we're in absorb mode, apply sponge permutation to compress the cache.\n self.perform_duplex();\n self.squeeze_mode = true;\n\n // Pop one item off the top of the permutation and return it.\n self.state[0]\n }\n\n fn hash_internal<let N: u32>(\n input: [Field; N],\n in_len: u32,\n is_variable_length: bool,\n ) -> Field {\n let iv: Field = (in_len as Field) * TWO_POW_64;\n let mut sponge = Poseidon2Sponge::new(iv);\n for i in 0..input.len() {\n if i < in_len {\n sponge.absorb(input[i]);\n }\n }\n\n // In the case where the hash preimage is variable-length, we append `1` to the end of the input, to distinguish\n // from fixed-length hashes. (the combination of this additional field element + the hash IV ensures\n // fixed-length and variable-length hashes do not collide)\n if is_variable_length {\n sponge.absorb(1);\n }\n sponge.squeeze()\n }\n}\n"
6923
6932
  },
6924
- "338": {
6933
+ "339": {
6925
6934
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/public_keys.nr",
6926
6935
  "source": "use crate::{\n address::public_keys_hash::PublicKeysHash,\n constants::{\n DEFAULT_IVPK_M_X, DEFAULT_IVPK_M_Y, DEFAULT_NPK_M_X, DEFAULT_NPK_M_Y, DEFAULT_OVPK_M_X,\n DEFAULT_OVPK_M_Y, DEFAULT_TPK_M_X, DEFAULT_TPK_M_Y, GENERATOR_INDEX__PUBLIC_KEYS_HASH,\n },\n hash::poseidon2_hash_with_separator,\n traits::{Deserialize, Hash, Serialize},\n};\n\nuse dep::std::embedded_curve_ops::EmbeddedCurvePoint as Point;\nuse std::{default::Default, meta::derive};\n\npub trait ToPoint {\n fn to_point(self) -> Point;\n}\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct NpkM {\n pub inner: Point,\n}\n\nimpl ToPoint for NpkM {\n fn to_point(self) -> Point {\n self.inner\n }\n}\n\n// Note: If we store npk_m_hash directly we can remove this trait implementation. See #8091\nimpl Hash for NpkM {\n fn hash(self) -> Field {\n self.inner.hash()\n }\n}\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct IvpkM {\n pub inner: Point,\n}\n\nimpl ToPoint for IvpkM {\n fn to_point(self) -> Point {\n self.inner\n }\n}\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct OvpkM {\n pub inner: Point,\n}\n\nimpl Hash for OvpkM {\n fn hash(self) -> Field {\n self.inner.hash()\n }\n}\n\nimpl ToPoint for OvpkM {\n fn to_point(self) -> Point {\n self.inner\n }\n}\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct TpkM {\n pub inner: Point,\n}\n\nimpl ToPoint for TpkM {\n fn to_point(self) -> Point {\n self.inner\n }\n}\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct PublicKeys {\n pub npk_m: NpkM,\n pub ivpk_m: IvpkM,\n pub ovpk_m: OvpkM,\n pub tpk_m: TpkM,\n}\n\nimpl Default for PublicKeys {\n fn default() -> Self {\n PublicKeys {\n npk_m: NpkM {\n inner: Point { x: DEFAULT_NPK_M_X, y: DEFAULT_NPK_M_Y, is_infinite: false },\n },\n ivpk_m: IvpkM {\n inner: Point { x: DEFAULT_IVPK_M_X, y: DEFAULT_IVPK_M_Y, is_infinite: false },\n },\n ovpk_m: OvpkM {\n inner: Point { x: DEFAULT_OVPK_M_X, y: DEFAULT_OVPK_M_Y, is_infinite: false },\n },\n tpk_m: TpkM {\n inner: Point { x: DEFAULT_TPK_M_X, y: DEFAULT_TPK_M_Y, is_infinite: false },\n },\n }\n }\n}\n\nimpl PublicKeys {\n pub fn hash(self) -> PublicKeysHash {\n PublicKeysHash::from_field(poseidon2_hash_with_separator(\n self.serialize(),\n GENERATOR_INDEX__PUBLIC_KEYS_HASH as Field,\n ))\n }\n}\n\npub struct AddressPoint {\n pub inner: Point,\n}\n\nimpl ToPoint for AddressPoint {\n fn to_point(self) -> Point {\n self.inner\n }\n}\n\nmod test {\n use crate::{\n point::POINT_LENGTH,\n public_keys::{IvpkM, NpkM, OvpkM, PublicKeys, TpkM},\n traits::{Deserialize, Serialize},\n };\n use dep::std::embedded_curve_ops::EmbeddedCurvePoint as Point;\n\n #[test]\n unconstrained fn compute_public_keys_hash() {\n let keys = PublicKeys {\n npk_m: NpkM { inner: Point { x: 1, y: 2, is_infinite: false } },\n ivpk_m: IvpkM { inner: Point { x: 3, y: 4, is_infinite: false } },\n ovpk_m: OvpkM { inner: Point { x: 5, y: 6, is_infinite: false } },\n tpk_m: TpkM { inner: Point { x: 7, y: 8, is_infinite: false } },\n };\n\n let actual = keys.hash();\n let expected_public_keys_hash =\n 0x0fecd9a32db731fec1fded1b9ff957a1625c069245a3613a2538bd527068b0ad;\n\n assert(actual.to_field() == expected_public_keys_hash);\n }\n\n #[test]\n unconstrained fn compute_default_hash() {\n let keys = PublicKeys::default();\n\n let actual = keys.hash();\n let test_data_default_hash =\n 0x1d3bf1fb93ae0e9cda83b203dd91c3bfb492a9aecf30ec90e1057eced0f0e62d;\n\n assert(actual.to_field() == test_data_default_hash);\n }\n\n #[test]\n unconstrained fn serde() {\n let keys = PublicKeys {\n npk_m: NpkM { inner: Point { x: 1, y: 2, is_infinite: false } },\n ivpk_m: IvpkM { inner: Point { x: 3, y: 4, is_infinite: false } },\n ovpk_m: OvpkM { inner: Point { x: 5, y: 6, is_infinite: false } },\n tpk_m: TpkM { inner: Point { x: 7, y: 8, is_infinite: false } },\n };\n\n // We use the PUBLIC_KEYS_LENGTH constant to ensure that there is a match between the derived trait\n let serialized: [Field; POINT_LENGTH * 4] = keys.serialize();\n let deserialized = PublicKeys::deserialize(serialized);\n\n assert_eq(keys, deserialized);\n }\n}\n"
6927
6936
  },
6928
- "359": {
6937
+ "360": {
6929
6938
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/traits.nr",
6930
6939
  "source": "use crate::meta::{derive_deserialize, derive_packable, derive_serialize};\nuse crate::utils::field::field_from_bytes;\n\n// Trait: is_empty\n//\n// The general is_empty trait checks if a data type is is empty,\n// and it defines empty for the basic data types as 0.\n//\n// If a Field is equal to zero, then it is regarded as zero.\n// We will go with this definition for now, however it can be problematic\n// if a value can actually be zero. In a future refactor, we can\n// use the optional type for safety. Doing it now would lead to a worse devex\n// and would make it harder to sync up with the cpp code.\n// Preferred over Default trait to convey intent, as default doesn't necessarily mean empty.\npub trait Empty: Eq {\n fn empty() -> Self;\n\n fn is_empty(self) -> bool {\n self.eq(Self::empty())\n }\n\n // Requires this Noir fix: https://github.com/noir-lang/noir/issues/9002\n // fn assert_not_empty<let U: u32>(self, msg: str<U>) { // This msg version was failing with weird compiler errors.\n // // We provide a default impl but it's likely inefficient.\n // // The reason we include this function is because there's a lot of\n // // opportunity for optimisation on a per-struct basis.\n // // You only need to show one element is not empty to know that the whole thing\n // // is not empty.\n // // If you know an element of your struct which should always be nonempty,\n // // you can write an impl that solely checks that that element is nonempty.\n // assert(!self.is_empty(), msg);\n // }\n\n // This default impl is overwritten by types like arrays, because there's a much\n // more efficient approach.\n fn assert_empty<let S: u32>(self, msg: str<S>) {\n assert(self.is_empty(), msg);\n }\n}\n\nimpl Empty for Field {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\n\nimpl Empty for u1 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u8 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u16 {\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u32 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u64 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u128 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\n\nimpl<T, let N: u32> Empty for [T; N]\nwhere\n T: Empty,\n{\n #[inline_always]\n fn empty() -> Self {\n [T::empty(); N]\n }\n\n fn is_empty(self) -> bool {\n self.all(|elem| elem.is_empty())\n }\n\n fn assert_empty<let S: u32>(self, msg: str<S>) -> () {\n self.for_each(|elem| elem.assert_empty(msg))\n }\n}\n\nimpl<T> Empty for [T]\nwhere\n T: Empty,\n{\n #[inline_always]\n fn empty() -> Self {\n [T::empty()]\n }\n\n fn is_empty(self) -> bool {\n self.all(|elem| elem.is_empty())\n }\n\n fn assert_empty<let S: u32>(self, msg: str<S>) -> () {\n self.for_each(|elem| elem.assert_empty(msg))\n }\n}\nimpl<A, B> Empty for (A, B)\nwhere\n A: Empty,\n B: Empty,\n{\n #[inline_always]\n fn empty() -> Self {\n (A::empty(), B::empty())\n }\n}\n\nimpl<T> Empty for Option<T>\nwhere\n T: Eq,\n{\n #[inline_always]\n fn empty() -> Self {\n Option::none()\n }\n}\n\n// pub fn is_empty<T>(item: T) -> bool\n// where\n// T: Empty,\n// {\n// item.eq(T::empty())\n// }\n\n// pub fn is_empty_array<T, let N: u32>(array: [T; N]) -> bool\n// where\n// T: Empty,\n// {\n// array.all(|elem| is_empty(elem))\n// }\n\n// pub fn assert_empty<T>(item: T) -> ()\n// where\n// T: Empty,\n// {\n// assert(item.eq(T::empty()))\n// }\n\n// pub fn assert_empty_array<T, let N: u32>(array: [T; N]) -> ()\n// where\n// T: Empty,\n// {\n// // A cheaper option than `is_empty_array` for if you don't need to gracefully\n// // handle a bool result.\n// // Avoids the `&` operator of `is_empty_array`'s `.all()` call.\n// for i in 0..N {\n// assert(is_empty(array[i]));\n// }\n// }\n\npub trait Hash {\n fn hash(self) -> Field;\n}\n\npub trait ToField {\n fn to_field(self) -> Field;\n}\n\nimpl ToField for Field {\n #[inline_always]\n fn to_field(self) -> Field {\n self\n }\n}\n\nimpl ToField for bool {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u1 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u8 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u16 {\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u32 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u64 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u128 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl<let N: u32> ToField for str<N> {\n #[inline_always]\n fn to_field(self) -> Field {\n assert(N < 32, \"String doesn't fit in a field, consider using Serialize instead\");\n field_from_bytes(self.as_bytes(), true)\n }\n}\n\npub trait FromField {\n fn from_field(value: Field) -> Self;\n}\n\nimpl FromField for Field {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value\n }\n}\n\nimpl FromField for bool {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value != 0\n }\n}\nimpl FromField for u1 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u1\n }\n}\nimpl FromField for u8 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u8\n }\n}\nimpl FromField for u16 {\n fn from_field(value: Field) -> Self {\n value as u16\n }\n}\nimpl FromField for u32 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u32\n }\n}\nimpl FromField for u64 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u64\n }\n}\nimpl FromField for u128 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u128\n }\n}\n\n// docs:start:serialize\n/// Trait for serializing Noir types into arrays of Fields.\n///\n/// An implementation of the Serialize trait has to follow Noir's intrinsic serialization (each member of a struct\n/// converted directly into one or more Fields without any packing or compression). This trait (and Deserialize) are\n/// typically used to communicate between Noir and TypeScript (via oracles and function arguments).\n///\n/// # On Following Noir's Intrinsic Serialization\n/// When calling a Noir function from TypeScript (TS), first the function arguments are serialized into an array\n/// of fields. This array is then included in the initial witness. Noir's intrinsic serialization is then used\n/// to deserialize the arguments from the witness. When the same Noir function is called from Noir this Serialize trait\n/// is used instead of the serialization in TS. For this reason we need to have a match between TS serialization,\n/// Noir's intrinsic serialization and the implementation of this trait. If there is a mismatch, the function calls\n/// fail with an arguments hash mismatch error message.\n///\n/// # Associated Constants\n/// * `N` - The length of the output Field array, known at compile time\n///\n/// # Example\n/// ```\n/// impl<let N: u32> Serialize for str<N> {\n/// let N: u32 = N;\n///\n/// fn serialize(self) -> [Field; Self::N] {\n/// let bytes = self.as_bytes();\n/// let mut fields = [0; Self::N];\n/// for i in 0..bytes.len() {\n/// fields[i] = bytes[i] as Field; // Each byte gets its own Field\n/// }\n/// fields\n/// }\n/// }\n/// ```\n#[derive_via(derive_serialize)]\npub trait Serialize {\n let N: u32;\n\n fn serialize(self) -> [Field; N];\n}\n// docs:end:serialize\n\nimpl<let M: u32> Serialize for str<M> {\n let N: u32 = M;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let bytes = self.as_bytes();\n let mut fields = [0; Self::N];\n for i in 0..bytes.len() {\n fields[i] = bytes[i] as Field;\n }\n fields\n }\n}\n\n/// Implementation of Deserialize for BoundedVec.\n///\n/// This implementation deserializes a BoundedVec from an array of Fields. The array contains:\n/// 1. The serialized items, each taking up T::N Fields\n/// 2. The length of the BoundedVec as the last Field\n///\n/// # Type Parameters\n/// * `T` - The type of items stored in the BoundedVec, must implement Deserialize\n/// * `M` - The maximum length of the BoundedVec\n///\n/// # Fields Array Layout\n/// [item1_field1, item1_field2, ..., item2_field1, item2_field2, ..., length]\n/// Where:\n/// - itemN_fieldM: The M-th Field of the N-th item (T::N Fields per item)\n/// - length: The number of items in the BoundedVec (1 Field)\n///\n/// Total length N = T::N * M + 1, where:\n/// - T::N is the number of Fields needed to deserialize one item\n/// - M is the maximum length of the BoundedVec\n/// - +1 is for storing the length\n///\n/// # Note\n/// Not deriving this because it's not supported to call derive_deserialize on a \"remote\" struct (and it will never\n/// be supported).\nimpl<T, let M: u32> Deserialize for BoundedVec<T, M>\nwhere\n T: Deserialize,\n{\n let N: u32 = <T as Deserialize>::N * M + 1;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n let mut new_bounded_vec: BoundedVec<T, M> = BoundedVec::new();\n\n // Length is stored in the last field as we need to match intrinsic Noir serialization and the `len` struct\n // field is after `storage` struct field (see `bounded_vec.nr` in noir-stdlib)\n let len = fields[<T as Deserialize>::N * M] as u32;\n\n for i in 0..len {\n let mut nested_fields = [0; <T as Deserialize>::N];\n for j in 0..<T as Deserialize>::N {\n nested_fields[j] = fields[i * <T as Deserialize>::N + j];\n }\n\n let item = T::deserialize(nested_fields);\n new_bounded_vec.push(item);\n }\n\n new_bounded_vec\n }\n}\n\n// This may cause issues if used as program input, because noir disallows empty arrays for program input.\n// I think this is okay because I don't foresee a unit type being used as input. But leaving this comment as a hint\n// if someone does run into this in the future.\nimpl Deserialize for () {\n let N: u32 = 0;\n\n fn deserialize(_fields: [Field; Self::N]) -> Self {\n ()\n }\n}\n\n// Note: Not deriving this because it's not supported to call derive_serialize on a \"remote\" struct (and it will never\n// be supported).\nimpl<T, let M: u32> Serialize for BoundedVec<T, M>\nwhere\n T: Serialize,\n{\n let N: u32 = <T as Serialize>::N * M + 1; // +1 for the length of the BoundedVec\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let mut fields = [0; Self::N];\n\n let storage = self.storage();\n\n for i in 0..M {\n let serialized_item = storage[i].serialize();\n\n for j in 0..<T as Serialize>::N {\n fields[i * <T as Serialize>::N + j] = serialized_item[j];\n }\n }\n\n // Length is stored in the last field as we need to match intrinsic Noir serialization and the `len` struct\n // field is after `storage` struct field (see `bounded_vec.nr` in noir-stdlib)\n fields[<T as Serialize>::N * M] = self.len() as Field;\n\n fields\n }\n}\n\n// docs:start:deserialize\n/// Trait for deserializing Noir types from arrays of Fields.\n///\n/// An implementation of the Deserialize trait has to follow Noir's intrinsic serialization (each member of a struct\n/// converted directly into one or more Fields without any packing or compression). This trait is typically used when\n/// deserializing return values from function calls in Noir. Since the same function could be called from TypeScript\n/// (TS), in which case the TS deserialization would get used, we need to have a match between the 2.\n///\n/// # Associated Constants\n/// * `N` - The length of the input Field array, known at compile time\n///\n/// # Example\n/// ```\n/// impl<let M: u32> Deserialize for str<M> {\n/// let N: u32 = M;\n///\n/// #[inline_always]\n/// fn deserialize(fields: [Field; Self::N]) -> Self {\n/// str::<Self::N>::from(fields.map(|value| value as u8))\n/// }\n/// }\n/// ```\n#[derive_via(derive_deserialize)]\npub trait Deserialize {\n let N: u32;\n\n fn deserialize(fields: [Field; N]) -> Self;\n}\n// docs:end:deserialize\n\nimpl<let M: u32> Deserialize for str<M> {\n let N: u32 = M;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n str::<Self::N>::from(fields.map(|value| value as u8))\n }\n}\n\n/// Trait for efficiently packing and unpacking Noir types into and from arrays of Fields.\n///\n/// The `Packable` trait allows types to be serialized and deserialized with a focus on minimizing the size of\n/// the resulting Field array. This trait is used when storage efficiency is critical (e.g. when storing data\n/// in the contract's public storage).\n///\n/// # Associated Constants\n/// * `N` - The length of the Field array, known at compile time\n#[derive_via(derive_packable)]\npub trait Packable {\n let N: u32;\n\n /// Packs the current value into a compact array of `Field` elements.\n fn pack(self) -> [Field; N];\n\n /// Unpacks a compact array of `Field` elements into the original value.\n fn unpack(fields: [Field; N]) -> Self;\n}\n\n#[test]\nunconstrained fn bounded_vec_serialization() {\n // Test empty BoundedVec\n let empty_vec: BoundedVec<Field, 3> = BoundedVec::from_array([]);\n let serialized = empty_vec.serialize();\n let deserialized = BoundedVec::<Field, 3>::deserialize(serialized);\n assert_eq(empty_vec, deserialized);\n assert_eq(deserialized.len(), 0);\n\n // Test partially filled BoundedVec\n let partial_vec: BoundedVec<[u32; 2], 3> = BoundedVec::from_array([[1, 2]]);\n let serialized = partial_vec.serialize();\n let deserialized = BoundedVec::<[u32; 2], 3>::deserialize(serialized);\n assert_eq(partial_vec, deserialized);\n assert_eq(deserialized.len(), 1);\n assert_eq(deserialized.get(0), [1, 2]);\n\n // Test full BoundedVec\n let full_vec: BoundedVec<[u32; 2], 3> = BoundedVec::from_array([[1, 2], [3, 4], [5, 6]]);\n let serialized = full_vec.serialize();\n let deserialized = BoundedVec::<[u32; 2], 3>::deserialize(serialized);\n assert_eq(full_vec, deserialized);\n assert_eq(deserialized.len(), 3);\n assert_eq(deserialized.get(0), [1, 2]);\n assert_eq(deserialized.get(1), [3, 4]);\n assert_eq(deserialized.get(2), [5, 6]);\n}\n"
6931
6940
  },
6932
- "361": {
6941
+ "362": {
6933
6942
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/type_packing.nr",
6934
6943
  "source": "use crate::traits::Packable;\n\nglobal BOOL_PACKED_LEN: u32 = 1;\nglobal U8_PACKED_LEN: u32 = 1;\nglobal U16_PACKED_LEN: u32 = 1;\nglobal U32_PACKED_LEN: u32 = 1;\nglobal U64_PACKED_LEN: u32 = 1;\nglobal U128_PACKED_LEN: u32 = 1;\nglobal FIELD_PACKED_LEN: u32 = 1;\nglobal I8_PACKED_LEN: u32 = 1;\nglobal I16_PACKED_LEN: u32 = 1;\nglobal I32_PACKED_LEN: u32 = 1;\nglobal I64_PACKED_LEN: u32 = 1;\n\nimpl Packable for bool {\n let N: u32 = BOOL_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> bool {\n (fields[0] as u1) != 0\n }\n}\n\nimpl Packable for u8 {\n let N: u32 = U8_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u8\n }\n}\n\nimpl Packable for u16 {\n let N: u32 = U16_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u16\n }\n}\n\nimpl Packable for u32 {\n let N: u32 = U32_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u32\n }\n}\n\nimpl Packable for u64 {\n let N: u32 = U64_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u64\n }\n}\n\nimpl Packable for u128 {\n let N: u32 = U128_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u128\n }\n}\n\nimpl Packable for Field {\n let N: u32 = FIELD_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0]\n }\n}\n\nimpl Packable for i8 {\n let N: u32 = I8_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as u8 as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u8 as i8\n }\n}\n\nimpl Packable for i16 {\n let N: u32 = I16_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as u16 as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u16 as i16\n }\n}\n\nimpl Packable for i32 {\n let N: u32 = I32_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as u32 as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u32 as i32\n }\n}\n\nimpl Packable for i64 {\n let N: u32 = I64_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as u64 as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u64 as i64\n }\n}\n\nimpl<T, let M: u32> Packable for [T; M]\nwhere\n T: Packable,\n{\n let N: u32 = M * <T as Packable>::N;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n let mut result: [Field; Self::N] = std::mem::zeroed();\n for i in 0..M {\n let serialized = self[i].pack();\n for j in 0..<T as Packable>::N {\n result[i * <T as Packable>::N + j] = serialized[j];\n }\n }\n result\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n let mut reader = crate::utils::reader::Reader::new(fields);\n let mut result: [T; M] = std::mem::zeroed();\n reader.read_struct_array::<T, <T as Packable>::N, M>(Packable::unpack, result)\n }\n}\n\n#[test]\nfn test_u16_packing() {\n let a: u16 = 10;\n assert_eq(a, u16::unpack(a.pack()));\n}\n\n#[test]\nfn test_i8_packing() {\n let a: i8 = -10;\n assert_eq(a, i8::unpack(a.pack()));\n}\n\n#[test]\nfn test_i16_packing() {\n let a: i16 = -10;\n assert_eq(a, i16::unpack(a.pack()));\n}\n\n#[test]\nfn test_i32_packing() {\n let a: i32 = -10;\n assert_eq(a, i32::unpack(a.pack()));\n}\n\n#[test]\nfn test_i64_packing() {\n let a: i64 = -10;\n assert_eq(a, i64::unpack(a.pack()));\n}\n"
6935
6944
  },
6936
- "362": {
6945
+ "363": {
6937
6946
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/type_serialization.nr",
6938
6947
  "source": "use crate::traits::{Deserialize, Serialize};\n\nglobal U1_SERIALIZED_LEN: u32 = 1;\nglobal BOOL_SERIALIZED_LEN: u32 = 1;\nglobal U8_SERIALIZED_LEN: u32 = 1;\nglobal U16_SERIALIZED_LEN: u32 = 1;\nglobal U32_SERIALIZED_LEN: u32 = 1;\nglobal U64_SERIALIZED_LEN: u32 = 1;\nglobal U128_SERIALIZED_LEN: u32 = 1;\nglobal FIELD_SERIALIZED_LEN: u32 = 1;\nglobal I8_SERIALIZED_LEN: u32 = 1;\nglobal I16_SERIALIZED_LEN: u32 = 1;\nglobal I32_SERIALIZED_LEN: u32 = 1;\nglobal I64_SERIALIZED_LEN: u32 = 1;\n\nimpl Serialize for bool {\n let N: u32 = BOOL_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for bool {\n let N: u32 = BOOL_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> bool {\n fields[0] != 0\n }\n}\n\nimpl Serialize for u1 {\n let N: u32 = U1_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u1 {\n let N: u32 = U1_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u1\n }\n}\n\nimpl Serialize for u8 {\n let N: u32 = U8_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u8 {\n let N: u32 = U8_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u8\n }\n}\n\nimpl Serialize for u16 {\n let N: u32 = U16_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u16 {\n let N: u32 = U16_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u16\n }\n}\n\nimpl Serialize for u32 {\n let N: u32 = U32_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u32 {\n let N: u32 = U32_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u32\n }\n}\n\nimpl Serialize for u64 {\n let N: u32 = U64_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u64 {\n let N: u32 = U64_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u64\n }\n}\n\nimpl Serialize for u128 {\n let N: u32 = U128_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u128 {\n let N: u32 = U128_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u128\n }\n}\n\nimpl Serialize for Field {\n let N: u32 = FIELD_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self]\n }\n}\n\nimpl Deserialize for Field {\n let N: u32 = FIELD_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0]\n }\n}\n\nimpl Serialize for i8 {\n let N: u32 = I8_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u8 as Field]\n }\n}\n\nimpl Deserialize for i8 {\n let N: u32 = I8_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u8 as i8\n }\n}\n\nimpl Serialize for i16 {\n let N: u32 = I16_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u16 as Field]\n }\n}\n\nimpl Deserialize for i16 {\n let N: u32 = I16_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u16 as i16\n }\n}\n\nimpl Serialize for i32 {\n let N: u32 = I32_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u32 as Field]\n }\n}\n\nimpl Deserialize for i32 {\n let N: u32 = I32_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u32 as i32\n }\n}\n\nimpl Serialize for i64 {\n let N: u32 = I64_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u64 as Field]\n }\n}\n\nimpl Deserialize for i64 {\n let N: u32 = I64_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u64 as i64\n }\n}\n\nimpl<T, let M: u32> Serialize for [T; M]\nwhere\n T: Serialize,\n{\n let N: u32 = <T as Serialize>::N * M;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let mut result: [Field; _] = std::mem::zeroed();\n for i in 0..M {\n let serialized_t = self[i].serialize();\n for j in 0..<T as Serialize>::N {\n result[i * <T as Serialize>::N + j] = serialized_t[j];\n }\n }\n result\n }\n}\n\nimpl<T, let M: u32> Deserialize for [T; M]\nwhere\n T: Deserialize,\n{\n let N: u32 = <T as Deserialize>::N * M;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n let mut reader = crate::utils::reader::Reader::new(fields);\n let mut result: [T; M] = std::mem::zeroed();\n reader.read_struct_array::<T, <T as Deserialize>::N, M>(Deserialize::deserialize, result)\n }\n}\n\nimpl<T> Serialize for Option<T>\nwhere\n T: Serialize,\n{\n let N: u32 = <T as Serialize>::N + 1;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let mut result: [Field; Self::N] = std::mem::zeroed();\n\n result[0] = if self.is_some() { 1 } else { 0 };\n\n let value_serialized = self.unwrap_unchecked().serialize();\n for i in 0..<T as Serialize>::N {\n result[1 + i] = value_serialized[i];\n }\n\n result\n }\n}\n\nimpl<T> Deserialize for Option<T>\nwhere\n T: Deserialize,\n{\n let N: u32 = <T as Deserialize>::N + 1;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n if fields[0] == 1 {\n let mut value_fields = [0; <T as Deserialize>::N];\n for i in 0..<T as Deserialize>::N {\n value_fields[i] = fields[1 + i];\n }\n\n Option::some(T::deserialize(value_fields))\n } else {\n Option::none()\n }\n }\n}\n\nmod test {\n use crate::traits::{Deserialize, Serialize};\n\n #[test]\n fn u16_serialization() {\n let a: u16 = 10;\n assert_eq(a, u16::deserialize(a.serialize()));\n }\n\n #[test]\n fn i8_serialization() {\n let a: i8 = -10;\n assert_eq(a, i8::deserialize(a.serialize()));\n }\n\n #[test]\n fn i16_serialization() {\n let a: i16 = -10;\n assert_eq(a, i16::deserialize(a.serialize()));\n }\n\n #[test]\n fn i32_serialization() {\n let a: i32 = -10;\n assert_eq(a, i32::deserialize(a.serialize()));\n }\n\n #[test]\n fn i64_serialization() {\n let a: i64 = -10;\n assert_eq(a, i64::deserialize(a.serialize()));\n }\n\n #[test]\n fn option_field_serialization() {\n let opt_some = Option::some(5);\n assert_eq(Option::<_>::deserialize(opt_some.serialize()), opt_some);\n\n let opt_none = Option::none();\n assert_eq(Option::<Field>::deserialize(opt_none.serialize()), opt_none);\n }\n\n #[test]\n fn option_array_serialization() {\n let opt_some = Option::some([2, 5]);\n assert_eq(Option::<_>::deserialize(opt_some.serialize()), opt_some);\n\n let opt_none = Option::none();\n assert_eq(Option::<Field>::deserialize(opt_none.serialize()), opt_none);\n }\n}\n"
6939
6948
  },
6940
- "379": {
6949
+ "380": {
6941
6950
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/utils/field.nr",
6942
6951
  "source": "global KNOWN_NON_RESIDUE: Field = 5; // This is a non-residue in Noir's native Field.\n\npub fn field_from_bytes<let N: u32>(bytes: [u8; N], big_endian: bool) -> Field {\n assert(bytes.len() < 32, \"field_from_bytes: N must be less than 32\");\n let mut as_field = 0;\n let mut offset = 1;\n for i in 0..N {\n let mut index = i;\n if big_endian {\n index = N - i - 1;\n }\n as_field += (bytes[index] as Field) * offset;\n offset *= 256;\n }\n\n as_field\n}\n\n// Convert a 32 byte array to a field element by truncating the final byte\npub fn field_from_bytes_32_trunc(bytes32: [u8; 32]) -> Field {\n // Convert it to a field element\n let mut v = 1;\n let mut high = 0 as Field;\n let mut low = 0 as Field;\n\n for i in 0..15 {\n // covers bytes 16..30 (31 is truncated and ignored)\n low = low + (bytes32[15 + 15 - i] as Field) * v;\n v = v * 256;\n // covers bytes 0..14\n high = high + (bytes32[14 - i] as Field) * v;\n }\n // covers byte 15\n low = low + (bytes32[15] as Field) * v;\n\n low + high * v\n}\n\n// TODO: This currently only exists to aid point compression in compress_to_blob_commitment().\n// Once compression is part of BigCurve it can either be removed or optimized to be used elsewhere.\npub fn byte_to_bits_be(byte: u8) -> [u1; 8] {\n let mut mut_byte = byte;\n let mut bits: [u1; 8] = [0; 8];\n for i in 0..8 {\n bits[7 - i] = (mut_byte & 1) as u1;\n mut_byte >>= 1;\n }\n bits\n}\n\n// TODO to radix returns u8, so we cannot use bigger radixes. It'd be ideal to use a radix of the maximum range-constrained integer noir supports\npub fn full_field_less_than(lhs: Field, rhs: Field) -> bool {\n lhs.lt(rhs)\n}\n\npub fn full_field_greater_than(lhs: Field, rhs: Field) -> bool {\n rhs.lt(lhs)\n}\n\npub fn min(f1: Field, f2: Field) -> Field {\n if f1.lt(f2) {\n f1\n } else {\n f2\n }\n}\n\nglobal C1: u32 = 28;\nglobal C3: Field = 40770029410420498293352137776570907027550720424234931066070132305055;\nglobal C5: Field = 19103219067921713944291392827692070036145651957329286315305642004821462161904;\n\npub fn pow(x: Field, y: Field) -> Field {\n let mut r = 1 as Field;\n let b: [u1; 254] = y.to_le_bits();\n\n for i in 0..254 {\n r *= r;\n r *= (b[254 - 1 - i] as Field) * x + (1 - b[254 - 1 - i] as Field);\n }\n\n r\n}\n\n/// Returns Option::some(sqrt) if there is a square root, and Option::none() if there isn't.\npub fn sqrt(x: Field) -> Option<Field> {\n // Safety: if the hint returns the square root of x, then we simply square it\n // check the result equals x. If x is not square, we return a value that\n // enables us to prove that fact (see the `else` clause below).\n let (is_sq, maybe_sqrt) = unsafe { __sqrt(x) };\n\n if is_sq {\n let sqrt = maybe_sqrt;\n validate_sqrt_hint(x, sqrt);\n Option::some(sqrt)\n } else {\n let not_sqrt_hint = maybe_sqrt;\n validate_not_sqrt_hint(x, not_sqrt_hint);\n Option::none()\n }\n}\n\n// Boolean indicating whether Field element is a square, i.e. whether there exists a y in Field s.t. x = y*y.\nunconstrained fn is_square(x: Field) -> bool {\n let v = pow(x, -1 / 2);\n v * (v - 1) == 0\n}\n\n// Tonelli-Shanks algorithm for computing the square root of a Field element.\n// Requires C1 = max{c: 2^c divides (p-1)}, where p is the order of Field\n// as well as C3 = (C2 - 1)/2, where C2 = (p-1)/(2^c1),\n// and C5 = ZETA^C2, where ZETA is a non-square element of Field.\n// These are pre-computed above as globals.\nunconstrained fn tonelli_shanks_sqrt(x: Field) -> Field {\n let mut z = pow(x, C3);\n let mut t = z * z * x;\n z *= x;\n let mut b = t;\n let mut c = C5;\n\n for i in 0..(C1 - 1) {\n for _j in 1..(C1 - i - 1) {\n b *= b;\n }\n\n z *= if b == 1 { 1 } else { c };\n\n c *= c;\n\n t *= if b == 1 { 1 } else { c };\n\n b = t;\n }\n\n z\n}\n\n// NB: this doesn't return an option, because in the case of there _not_ being a square root, we still want to return a field element that allows us to then assert in the _constrained_ sqrt function that there is no sqrt.\nunconstrained fn __sqrt(x: Field) -> (bool, Field) {\n let is_sq = is_square(x);\n if is_sq {\n let sqrt = tonelli_shanks_sqrt(x);\n (true, sqrt)\n } else {\n // Demonstrate that x is not a square (a.k.a. a \"quadratic non-residue\").\n // Facts:\n // The Legendre symbol (\"LS\") of x, is x^((p-1)/2) (mod p).\n // - If x is a square, LS(x) = 1\n // - If x is not a square, LS(x) = -1\n // - If x = 0, LS(x) = 0.\n //\n // Hence:\n // sq * sq = sq // 1 * 1 = 1\n // non-sq * non-sq = sq // -1 * -1 = 1\n // sq * non-sq = non-sq // -1 * 1 = -1\n //\n // See: https://en.wikipedia.org/wiki/Legendre_symbol\n let demo_x_not_square = x * KNOWN_NON_RESIDUE;\n let not_sqrt = tonelli_shanks_sqrt(demo_x_not_square);\n (false, not_sqrt)\n }\n}\n\nfn validate_sqrt_hint(x: Field, hint: Field) {\n assert(hint * hint == x, f\"The claimed_sqrt {hint} is not the sqrt of x {x}\");\n}\n\nfn validate_not_sqrt_hint(x: Field, hint: Field) {\n // We need this assertion, because x = 0 would pass the other assertions in this\n // function, and we don't want people to be able to prove that 0 is not square!\n assert(x != 0, \"0 has a square root; you cannot claim it is not square\");\n // Demonstrate that x is not a square (a.k.a. a \"quadratic non-residue\").\n //\n // Facts:\n // The Legendre symbol (\"LS\") of x, is x^((p-1)/2) (mod p).\n // - If x is a square, LS(x) = 1\n // - If x is not a square, LS(x) = -1\n // - If x = 0, LS(x) = 0.\n //\n // Hence:\n // 1. sq * sq = sq // 1 * 1 = 1\n // 2. non-sq * non-sq = sq // -1 * -1 = 1\n // 3. sq * non-sq = non-sq // -1 * 1 = -1\n //\n // See: https://en.wikipedia.org/wiki/Legendre_symbol\n //\n // We want to demonstrate that this below multiplication falls under bullet-point (2):\n let demo_x_not_square = x * KNOWN_NON_RESIDUE;\n // I.e. we want to demonstrate that `demo_x_not_square` has Legendre symbol 1\n // (i.e. that it is a square), so we prove that it is square below.\n // Why do we want to prove that it has LS 1?\n // Well, since it was computed with a known-non-residue, its squareness implies we're\n // in case 2 (something multiplied by a known-non-residue yielding a result which\n // has a LS of 1), which implies that x must be a non-square. The unconstrained\n // function gave us the sqrt of demo_x_not_square, so all we need to do is\n // assert its squareness:\n assert(\n hint * hint == demo_x_not_square,\n f\"The hint {hint} does not demonstrate that {x} is not a square\",\n );\n}\n\n#[test]\nunconstrained fn bytes_field_test() {\n // Tests correctness of field_from_bytes_32_trunc against existing methods\n // Bytes representing 0x543e0a6642ffeb8039296861765a53407bba62bd1c97ca43374de950bbe0a7\n let inputs = [\n 84, 62, 10, 102, 66, 255, 235, 128, 57, 41, 104, 97, 118, 90, 83, 64, 123, 186, 98, 189, 28,\n 151, 202, 67, 55, 77, 233, 80, 187, 224, 167,\n ];\n let field = field_from_bytes(inputs, true);\n let return_bytes: [u8; 31] = field.to_be_bytes();\n assert_eq(inputs, return_bytes);\n // 32 bytes - we remove the final byte, and check it matches the field\n let inputs2 = [\n 84, 62, 10, 102, 66, 255, 235, 128, 57, 41, 104, 97, 118, 90, 83, 64, 123, 186, 98, 189, 28,\n 151, 202, 67, 55, 77, 233, 80, 187, 224, 167, 158,\n ];\n let field2 = field_from_bytes_32_trunc(inputs2);\n let return_bytes2: [u8; 31] = field.to_be_bytes();\n\n assert_eq(return_bytes2, return_bytes);\n assert_eq(field2, field);\n}\n\n#[test]\nunconstrained fn max_field_test() {\n // Tests the hardcoded value in constants.nr vs underlying modulus\n // NB: We can't use 0-1 in constants.nr as it will be transpiled incorrectly to ts and sol constants files\n let max_value = crate::constants::MAX_FIELD_VALUE;\n assert_eq(max_value, 0 - 1);\n // modulus == 0 is tested elsewhere, so below is more of a sanity check\n let max_bytes: [u8; 32] = max_value.to_be_bytes();\n let mod_bytes = std::field::modulus_be_bytes();\n for i in 0..31 {\n assert_eq(max_bytes[i], mod_bytes[i]);\n }\n assert_eq(max_bytes[31], mod_bytes[31] - 1);\n}\n\n#[test]\nunconstrained fn sqrt_valid_test() {\n let x = 16; // examples: 16, 9, 25, 81\n let result = sqrt(x);\n assert(result.is_some());\n assert_eq(result.unwrap() * result.unwrap(), x);\n}\n\n#[test]\nunconstrained fn sqrt_invalid_test() {\n let x = KNOWN_NON_RESIDUE; // has no square root in the field\n let result = sqrt(x);\n assert(result.is_none());\n}\n"
6943
6952
  },
6944
- "383": {
6953
+ "384": {
6945
6954
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/utils/reader.nr",
6946
6955
  "source": "pub struct Reader<let N: u32> {\n data: [Field; N],\n offset: u32,\n}\n\nimpl<let N: u32> Reader<N> {\n pub fn new(data: [Field; N]) -> Self {\n Self { data, offset: 0 }\n }\n\n pub fn read(&mut self) -> Field {\n let result = self.data[self.offset];\n self.offset += 1;\n result\n }\n\n pub fn read_u32(&mut self) -> u32 {\n self.read() as u32\n }\n\n pub fn read_u64(&mut self) -> u64 {\n self.read() as u64\n }\n\n pub fn read_bool(&mut self) -> bool {\n self.read() != 0\n }\n\n pub fn read_array<let K: u32>(&mut self) -> [Field; K] {\n let mut result = [0; K];\n for i in 0..K {\n result[i] = self.data[self.offset + i];\n }\n self.offset += K;\n result\n }\n\n pub fn read_struct<T, let K: u32>(&mut self, deserialise: fn([Field; K]) -> T) -> T {\n let result = deserialise(self.read_array());\n result\n }\n\n pub fn read_struct_array<T, let K: u32, let C: u32>(\n &mut self,\n deserialise: fn([Field; K]) -> T,\n mut result: [T; C],\n ) -> [T; C] {\n for i in 0..C {\n result[i] = self.read_struct(deserialise);\n }\n result\n }\n\n pub fn finish(self) {\n assert_eq(self.offset, self.data.len(), \"Reader did not read all data\");\n }\n}\n"
6947
6956
  },
6948
- "392": {
6957
+ "393": {
6949
6958
  "path": "/home/aztec-dev/nargo/github.com/noir-lang/sha256/v0.2.0/src/sha256.nr",
6950
6959
  "source": "use std::hash::sha256_compression;\nuse std::runtime::is_unconstrained;\n\nuse constants::{\n BLOCK_BYTE_PTR, BLOCK_SIZE, HASH, INITIAL_STATE, INT_BLOCK, INT_BLOCK_SIZE, INT_SIZE,\n INT_SIZE_PTR, MSG_BLOCK, MSG_SIZE_PTR, STATE, TWO_POW_16, TWO_POW_24, TWO_POW_32, TWO_POW_8,\n};\n\npub(crate) mod constants;\nmod tests;\n\n// Implementation of SHA-256 mapping a byte array of variable length to\n// 32 bytes.\n\n// Deprecated in favour of `sha256_var`\n// docs:start:sha256\npub fn sha256<let N: u32>(input: [u8; N]) -> HASH\n// docs:end:sha256\n{\n digest(input)\n}\n\n// SHA-256 hash function\n#[no_predicates]\npub fn digest<let N: u32>(msg: [u8; N]) -> HASH {\n sha256_var(msg, N as u64)\n}\n\n// Variable size SHA-256 hash\npub fn sha256_var<let N: u32>(msg: [u8; N], message_size: u64) -> HASH {\n let message_size = message_size as u32;\n assert(message_size <= N);\n\n if std::runtime::is_unconstrained() {\n // Safety: SHA256 is running as an unconstrained function.\n unsafe {\n __sha256_var(msg, message_size)\n }\n } else {\n let (mut h, mut msg_block, mut msg_byte_ptr) =\n process_full_blocks(msg, message_size, INITIAL_STATE);\n\n finalize_sha256_blocks(msg, message_size, N, h, msg_block, msg_byte_ptr)\n }\n}\n\npub(crate) unconstrained fn __sha_var<let N: u32>(\n msg: [u8; N],\n message_size: u32,\n initial_state: STATE,\n) -> HASH {\n let num_full_blocks = message_size / BLOCK_SIZE;\n // Intermediate hash, starting with the canonical initial value\n let mut h: STATE = initial_state;\n // Pointer into msg_block on a 64 byte scale\n for i in 0..num_full_blocks {\n let (msg_block, _) = build_msg_block(msg, message_size, BLOCK_SIZE * i);\n h = sha256_compression(msg_block, h);\n }\n\n // Handle setup of the final msg block.\n // This case is only hit if the msg is less than the block size,\n // or our message cannot be evenly split into blocks.\n\n finalize_last_sha256_block(h, message_size, msg)\n}\n\n// Helper function to finalize the message block with padding and length\npub(crate) unconstrained fn finalize_last_sha256_block<let N: u32>(\n mut h: STATE,\n message_size: u32,\n msg: [u8; N],\n) -> HASH {\n let modulo = message_size % BLOCK_SIZE;\n let (mut msg_block, mut msg_byte_ptr): (INT_BLOCK, u32) = if modulo != 0 {\n let num_full_blocks = message_size / BLOCK_SIZE;\n let msg_start = BLOCK_SIZE * num_full_blocks;\n let (new_msg_block, new_msg_byte_ptr) = build_msg_block(msg, message_size, msg_start);\n (new_msg_block, new_msg_byte_ptr)\n } else {\n // If we had modulo == 0 then it means the last block was full,\n // and we can reset the pointer to zero to overwrite it.\n ([0; INT_BLOCK_SIZE], 0)\n };\n\n // Pad the rest such that we have a [u32; 2] block at the end representing the length\n // of the message, and a block of 1 0 ... 0 following the message (i.e. [1 << 7, 0, ..., 0]).\n // Here we rely on the fact that everything beyond the available input is set to 0.\n let index = msg_byte_ptr / INT_SIZE;\n msg_block[index] = set_item_byte_then_zeros(msg_block[index], msg_byte_ptr, 1 << 7);\n\n // If we don't have room to write the size, compress the block and reset it.\n let (h, mut msg_byte_ptr): (STATE, u32) = if msg_byte_ptr >= MSG_SIZE_PTR {\n // `attach_len_to_msg_block` will zero out everything after the `msg_byte_ptr`.\n (sha256_compression(msg_block, h), 0)\n } else {\n (h, msg_byte_ptr + 1)\n };\n msg_block = attach_len_to_msg_block(msg_block, msg_byte_ptr, message_size);\n\n hash_final_block(msg_block, h)\n}\n\n// Variable size SHA-256 hash\nunconstrained fn __sha256_var<let N: u32>(msg: [u8; N], message_size: u32) -> HASH {\n __sha_var(msg, message_size, INITIAL_STATE)\n}\n\npub(crate) fn process_full_blocks<let N: u32>(\n msg: [u8; N],\n message_size: u32,\n mut h: STATE,\n) -> (STATE, MSG_BLOCK, u32) {\n let mut msg_block: MSG_BLOCK = [0; INT_BLOCK_SIZE];\n let mut msg_byte_ptr = 0;\n let num_blocks = N / BLOCK_SIZE;\n for i in 0..num_blocks {\n let msg_start = BLOCK_SIZE * i;\n let (new_msg_block, new_msg_byte_ptr) =\n // Safety: separate verification function\n unsafe { build_msg_block(msg, message_size, msg_start) };\n\n if msg_start < message_size {\n msg_block = new_msg_block;\n }\n\n // Verify the block we are compressing was appropriately constructed\n let new_msg_byte_ptr = verify_msg_block(msg, message_size, msg_block, msg_start);\n if msg_start < message_size {\n msg_byte_ptr = new_msg_byte_ptr;\n }\n\n // If the block is filled, compress it.\n // An un-filled block is handled after this loop.\n if (msg_start < message_size) & (msg_byte_ptr == BLOCK_SIZE) {\n h = sha256_compression(msg_block, h);\n }\n }\n (h, msg_block, msg_byte_ptr)\n}\n\n// Take `BLOCK_SIZE` number of bytes from `msg` starting at `msg_start`.\n// Returns the block and the length that has been copied rather than padded with zeros.\npub(crate) unconstrained fn build_msg_block<let N: u32>(\n msg: [u8; N],\n message_size: u32,\n msg_start: u32,\n) -> (MSG_BLOCK, BLOCK_BYTE_PTR) {\n let mut msg_block: MSG_BLOCK = [0; INT_BLOCK_SIZE];\n\n // We insert `BLOCK_SIZE` bytes (or up to the end of the message)\n let block_input = if message_size < msg_start {\n // This function is sometimes called with `msg_start` past the end of the message.\n // In this case we return an empty block and zero pointer to signal that the result should be ignored.\n 0\n } else if message_size < msg_start + BLOCK_SIZE {\n message_size - msg_start\n } else {\n BLOCK_SIZE\n };\n\n // Figure out the number of items in the int array that we have to pack.\n // e.g. if the input is [0,1,2,3,4,5] then we need to pack it as 2 items: [0123, 4500]\n let int_input = (block_input + INT_SIZE - 1) / INT_SIZE;\n\n for i in 0..int_input {\n let mut msg_item: u32 = 0;\n // Always construct the integer as 4 bytes, even if it means going beyond the input.\n for j in 0..INT_SIZE {\n let k = i * INT_SIZE + j;\n let msg_byte = if k < block_input {\n msg[msg_start + k]\n } else {\n 0\n };\n msg_item = lshift8(msg_item, 1) + msg_byte as u32;\n }\n msg_block[i] = msg_item;\n }\n\n // Returning the index as if it was a 64 byte array.\n // We have to project it down to 16 items and bit shifting to get a byte back if we need it.\n (msg_block, block_input)\n}\n\n// Verify the block we are compressing was appropriately constructed by `build_msg_block`\n// and matches the input data. Returns the index of the first unset item.\n// If `message_size` is less than `msg_start` then this is called with the old non-empty block;\n// in that case we can skip verification, ie. no need to check that everything is zero.\nfn verify_msg_block<let N: u32>(\n msg: [u8; N],\n message_size: u32,\n msg_block: MSG_BLOCK,\n msg_start: u32,\n) -> BLOCK_BYTE_PTR {\n let mut msg_byte_ptr = 0;\n let mut msg_end = msg_start + BLOCK_SIZE;\n if msg_end > N {\n msg_end = N;\n }\n // We might have to go beyond the input to pad the fields.\n if msg_end % INT_SIZE != 0 {\n msg_end = msg_end + INT_SIZE - msg_end % INT_SIZE;\n }\n\n // Reconstructed packed item.\n let mut msg_item: u32 = 0;\n\n // Inclusive at the end so that we can compare the last item.\n let mut i: u32 = 0;\n for k in msg_start..=msg_end {\n if k % INT_SIZE == 0 {\n // If we consumed some input we can compare against the block.\n if (msg_start < message_size) & (k > msg_start) {\n assert_eq(msg_block[i], msg_item as u32);\n i = i + 1;\n msg_item = 0;\n }\n }\n // Shift the accumulator\n msg_item = lshift8(msg_item, 1);\n // If we have input to consume, add it at the rightmost position.\n if k < message_size & k < msg_end {\n msg_item = msg_item + msg[k] as u32;\n msg_byte_ptr = msg_byte_ptr + 1;\n }\n }\n\n msg_byte_ptr\n}\n\n// Verify the block we are compressing was appropriately padded with zeros by `build_msg_block`.\n// This is only relevant for the last, potentially partially filled block.\nfn verify_msg_block_padding(msg_block: MSG_BLOCK, msg_byte_ptr: BLOCK_BYTE_PTR) {\n // Check all the way to the end of the block.\n verify_msg_block_zeros(msg_block, msg_byte_ptr, INT_BLOCK_SIZE);\n}\n\n// Verify that a region of ints in the message block are (partially) zeroed,\n// up to an (exclusive) maximum which can either be the end of the block\n// or just where the size is to be written.\nfn verify_msg_block_zeros(\n msg_block: MSG_BLOCK,\n mut msg_byte_ptr: BLOCK_BYTE_PTR,\n max_int_byte_ptr: u32,\n) {\n // This variable is used to get around the compiler under-constrained check giving a warning.\n // We want to check against a constant zero, but if it does not come from the circuit inputs\n // or return values the compiler check will issue a warning.\n let zero = msg_block[0] - msg_block[0];\n\n // First integer which is supposed to be (partially) zero.\n let mut int_byte_ptr = msg_byte_ptr / INT_SIZE;\n\n // Check partial zeros.\n let modulo = msg_byte_ptr % INT_SIZE;\n if modulo != 0 {\n let zeros = INT_SIZE - modulo;\n let mask = if zeros == 3 {\n TWO_POW_24\n } else if zeros == 2 {\n TWO_POW_16\n } else {\n TWO_POW_8\n };\n assert_eq(msg_block[int_byte_ptr] % mask, zero);\n int_byte_ptr = int_byte_ptr + 1;\n }\n\n // Check the rest of the items.\n for i in 0..max_int_byte_ptr {\n if i >= int_byte_ptr {\n assert_eq(msg_block[i], zero);\n }\n }\n}\n\n// Verify that up to the byte pointer the two blocks are equal.\n// At the byte pointer the new block can be partially zeroed.\nfn verify_msg_block_equals_last(\n msg_block: MSG_BLOCK,\n last_block: MSG_BLOCK,\n mut msg_byte_ptr: BLOCK_BYTE_PTR,\n) {\n // msg_byte_ptr is the position at which they are no longer have to be the same.\n // First integer which is supposed to be (partially) zero contains that pointer.\n let mut int_byte_ptr = msg_byte_ptr / INT_SIZE;\n\n // Check partial zeros.\n let modulo = msg_byte_ptr % INT_SIZE;\n if modulo != 0 {\n // Reconstruct the partially zero item from the last block.\n let last_field = last_block[int_byte_ptr];\n let mut msg_item: u32 = 0;\n // Reset to where they are still equal.\n msg_byte_ptr = msg_byte_ptr - modulo;\n for i in 0..INT_SIZE {\n msg_item = lshift8(msg_item, 1);\n if i < modulo {\n msg_item = msg_item + get_item_byte(last_field, msg_byte_ptr) as u32;\n msg_byte_ptr = msg_byte_ptr + 1;\n }\n }\n assert_eq(msg_block[int_byte_ptr], msg_item);\n }\n\n for i in 0..INT_SIZE_PTR {\n if i < int_byte_ptr {\n assert_eq(msg_block[i], last_block[i]);\n }\n }\n}\n\n// Set the rightmost `zeros` number of bytes to 0.\n#[inline_always]\nfn set_item_zeros(item: u32, zeros: u32) -> u32 {\n lshift8(rshift8(item, zeros), zeros)\n}\n\n// Replace one byte in the item with a value, and set everything after it to zero.\nfn set_item_byte_then_zeros(msg_item: u32, msg_byte_ptr: BLOCK_BYTE_PTR, msg_byte: u8) -> u32 {\n let zeros = INT_SIZE - msg_byte_ptr % INT_SIZE;\n let zeroed_item = set_item_zeros(msg_item, zeros);\n let new_item = byte_into_item(msg_byte, msg_byte_ptr);\n zeroed_item + new_item\n}\n\n// Get a byte of a message item according to its overall position in the `BLOCK_SIZE` space.\nfn get_item_byte(mut msg_item: u32, msg_byte_ptr: BLOCK_BYTE_PTR) -> u8 {\n // How many times do we have to shift to the right to get to the position we want?\n let max_shifts = INT_SIZE - 1;\n let shifts = max_shifts - msg_byte_ptr % INT_SIZE;\n msg_item = rshift8(msg_item, shifts);\n // At this point the byte we want is in the rightmost position.\n msg_item as u8\n}\n\n// Project a byte into a position in a field based on the overall block pointer.\n// For example putting 1 into pointer 5 would be 100, because overall we would\n// have [____, 0100] with indexes [0123,4567].\n#[inline_always]\nfn byte_into_item(msg_byte: u8, msg_byte_ptr: BLOCK_BYTE_PTR) -> u32 {\n let mut msg_item = msg_byte as u32;\n // How many times do we have to shift to the left to get to the position we want?\n let max_shifts = INT_SIZE - 1;\n let shifts = max_shifts - msg_byte_ptr % INT_SIZE;\n lshift8(msg_item, shifts)\n}\n\n// Construct a field out of 4 bytes.\n#[inline_always]\nfn make_item(b0: u8, b1: u8, b2: u8, b3: u8) -> u32 {\n let mut item = b0 as u32;\n item = lshift8(item, 1) + b1 as u32;\n item = lshift8(item, 1) + b2 as u32;\n item = lshift8(item, 1) + b3 as u32;\n item\n}\n\n// Shift by 8 bits to the left between 0 and 4 times.\n// Checks `is_unconstrained()` to just use a bitshift if we're running in an unconstrained context,\n// otherwise multiplies by 256.\n#[inline_always]\nfn lshift8(item: u32, shifts: u32) -> u32 {\n if is_unconstrained() {\n // Brillig wouldn't shift 0<<4 without overflow.\n if shifts >= 4 {\n 0\n } else {\n item << (8 * shifts)\n }\n } else {\n // We can do a for loop up to INT_SIZE or an if-else.\n if shifts == 0 {\n item\n } else if shifts == 1 {\n item * TWO_POW_8\n } else if shifts == 2 {\n item * TWO_POW_16\n } else if shifts == 3 {\n item * TWO_POW_24\n } else {\n // Doesn't make sense, but it's most likely called on 0 anyway.\n 0\n }\n }\n}\n\n// Shift by 8 bits to the right between 0 and 4 times.\n// Checks `is_unconstrained()` to just use a bitshift if we're running in an unconstrained context,\n// otherwise divides by 256.\n#[inline_always]\nfn rshift8(item: u32, shifts: u32) -> u32 {\n if is_unconstrained() {\n if 8 * shifts >= 32 {\n 0\n } else {\n item >> (8 * shifts)\n }\n } else {\n // Division wouldn't work on `Field`.\n if shifts == 0 {\n item\n } else if shifts == 1 {\n item / TWO_POW_8\n } else if shifts == 2 {\n item / TWO_POW_16\n } else if shifts == 3 {\n item / TWO_POW_24\n } else {\n 0\n }\n }\n}\n\n// Zero out all bytes between the end of the message and where the length is appended,\n// then write the length into the last 8 bytes of the block.\nunconstrained fn attach_len_to_msg_block(\n mut msg_block: MSG_BLOCK,\n mut msg_byte_ptr: BLOCK_BYTE_PTR,\n message_size: u32,\n) -> MSG_BLOCK {\n // We assume that `msg_byte_ptr` is less than 57 because if not then it is reset to zero before calling this function.\n // In any case, fill blocks up with zeros until the last 64 bits (i.e. until msg_byte_ptr = 56).\n // There can be one item which has to be partially zeroed.\n let modulo = msg_byte_ptr % INT_SIZE;\n if modulo != 0 {\n // Index of the block in which we find the item we need to partially zero.\n let i = msg_byte_ptr / INT_SIZE;\n let zeros = INT_SIZE - modulo;\n msg_block[i] = set_item_zeros(msg_block[i], zeros);\n msg_byte_ptr = msg_byte_ptr + zeros;\n }\n\n // The rest can be zeroed without bit shifting anything.\n for i in (msg_byte_ptr / INT_SIZE)..INT_SIZE_PTR {\n msg_block[i] = 0;\n }\n\n // Set the last two 4 byte ints as the first/second half of the 8 bytes of the length.\n let len = 8 * message_size;\n let len_bytes: [u8; 8] = (len as Field).to_be_bytes();\n msg_block[INT_SIZE_PTR] = (len_bytes[0] as u32) << 24\n | (len_bytes[1] as u32) << 16\n | (len_bytes[2] as u32) << 8\n | (len_bytes[3] as u32);\n\n msg_block[INT_SIZE_PTR + 1] = (len_bytes[4] as u32) << 24\n | (len_bytes[5] as u32) << 16\n | (len_bytes[6] as u32) << 8\n | (len_bytes[7] as u32);\n\n msg_block\n}\n\n// Verify that the message length was correctly written by `attach_len_to_msg_block`,\n// and that everything between the byte pointer and the size pointer was zeroed,\n// and that everything before the byte pointer was untouched.\nfn verify_msg_len(\n msg_block: MSG_BLOCK,\n last_block: MSG_BLOCK,\n msg_byte_ptr: BLOCK_BYTE_PTR,\n message_size: u32,\n) {\n // Check zeros up to the size pointer.\n verify_msg_block_zeros(msg_block, msg_byte_ptr, INT_SIZE_PTR);\n\n // Check that up to the pointer we match the last block.\n verify_msg_block_equals_last(msg_block, last_block, msg_byte_ptr);\n\n // We verify the message length was inserted correctly by reversing the byte decomposition.\n std::static_assert(\n INT_SIZE_PTR + 2 == INT_BLOCK_SIZE,\n \"INT_SIZE_PTR + 2 must equal INT_BLOCK_SIZE\",\n );\n let reconstructed_len_hi = msg_block[INT_SIZE_PTR] as Field;\n let reconstructed_len_lo = msg_block[INT_SIZE_PTR + 1] as Field;\n\n let reconstructed_len: Field =\n reconstructed_len_hi * TWO_POW_32 as Field + reconstructed_len_lo;\n let len = 8 * (message_size as Field);\n assert_eq(reconstructed_len, len);\n}\n\n// Perform the final compression, then transform the `STATE` into `HASH`.\nfn hash_final_block(msg_block: MSG_BLOCK, mut state: STATE) -> HASH {\n let mut out_h: HASH = [0; 32]; // Digest as sequence of bytes\n // Hash final padded block\n state = sha256_compression(msg_block, state);\n\n // Return final hash as byte array\n for j in 0..8 {\n let h_bytes: [u8; 4] = (state[j] as Field).to_be_bytes();\n for k in 0..4 {\n out_h[4 * j + k] = h_bytes[k];\n }\n }\n\n out_h\n}\n\npub(crate) fn finalize_sha256_blocks<let N: u32>(\n msg: [u8; N],\n message_size: u32,\n total_len: u32,\n mut h: STATE,\n mut msg_block: MSG_BLOCK,\n mut msg_byte_ptr: u32,\n) -> HASH {\n let modulo = total_len % BLOCK_SIZE;\n // Handle setup of the final msg block.\n // This case is only hit if the msg is less than the block size,\n // or our message cannot be evenly split into blocks.\n if modulo != 0 {\n let num_blocks = total_len / BLOCK_SIZE;\n let msg_start = BLOCK_SIZE * num_blocks;\n let (new_msg_block, new_msg_byte_ptr) =\n // Safety: separate verification function\n unsafe { build_msg_block(msg, message_size, msg_start) };\n\n if msg_start < message_size {\n msg_block = new_msg_block;\n }\n\n let new_msg_byte_ptr = verify_msg_block(msg, message_size, msg_block, msg_start);\n if msg_start < message_size {\n msg_byte_ptr = new_msg_byte_ptr;\n verify_msg_block_padding(msg_block, msg_byte_ptr);\n }\n }\n\n // If we had modulo == 0 then it means the last block was full,\n // and we can reset the pointer to zero to overwrite it.\n if msg_byte_ptr == BLOCK_SIZE {\n msg_byte_ptr = 0;\n }\n\n // Pad the rest such that we have a [u32; 2] block at the end representing the length\n // of the message, and a block of 1 0 ... 0 following the message (i.e. [1 << 7, 0, ..., 0]).\n // Here we rely on the fact that everything beyond the available input is set to 0.\n let index = msg_byte_ptr / INT_SIZE;\n msg_block[index] = set_item_byte_then_zeros(msg_block[index], msg_byte_ptr, 1 << 7);\n\n msg_byte_ptr = msg_byte_ptr + 1;\n let last_block = msg_block;\n\n // If we don't have room to write the size, compress the block and reset it.\n if msg_byte_ptr > MSG_SIZE_PTR {\n h = sha256_compression(msg_block, h);\n\n // `attach_len_to_msg_block` will zero out everything after the `msg_byte_ptr`.\n msg_byte_ptr = 0;\n }\n\n // Safety: separate verification function\n msg_block = unsafe { attach_len_to_msg_block(msg_block, msg_byte_ptr, message_size) };\n\n verify_msg_len(msg_block, last_block, msg_byte_ptr, message_size);\n\n hash_final_block(msg_block, h)\n}\n\n/**\n * Given some state of a partially computed sha256 hash and part of the preimage, continue hashing\n * @notice used for complex/ recursive offloading of post-partial hashing\n *\n * @param N - the maximum length of the message to hash\n * @param h - the intermediate hash state\n * @param msg - the preimage to hash\n * @param message_size - the actual length of the preimage to hash\n * @return the intermediate hash state after compressing in msg to h\n */\npub fn partial_sha256_var_interstitial<let N: u32>(\n mut h: [u32; 8],\n msg: [u8; N],\n message_size: u32,\n) -> [u32; 8] {\n assert(message_size % BLOCK_SIZE == 0, \"Message size must be a multiple of the block size\");\n if std::runtime::is_unconstrained() {\n // Safety: running as an unconstrained function\n unsafe {\n __sha_partial_var_interstitial(h, msg, message_size)\n }\n } else {\n let (mut h, _, _) = process_full_blocks(msg, message_size, h);\n\n h\n }\n}\n\n/**\n * Given some state of a partially computed sha256 hash and remaining preimage, complete the hash\n * @notice used for traditional partial hashing\n *\n * @param N - the maximum length of the message to hash\n * @param h - the intermediate hash state\n * @param msg - the remaining preimage to hash\n * @param message_size - the size of the current chunk\n * @param real_message_size - the total size of the original preimage\n * @return finalized sha256 hash\n */\npub fn partial_sha256_var_end<let N: u32>(\n mut h: [u32; 8],\n msg: [u8; N],\n message_size: u32,\n real_message_size: u32,\n) -> [u8; 32] {\n assert(message_size % BLOCK_SIZE == 0, \"Message size must be a multiple of the block size\");\n if std::runtime::is_unconstrained() {\n // Safety: running as an unconstrained function\n unsafe {\n h = __sha_partial_var_interstitial(h, msg, message_size);\n\n // Handle setup of the final msg block.\n // This case is only hit if the msg is less than the block size,\n // or our message cannot be evenly split into blocks.\n\n finalize_last_sha256_block(h, real_message_size, msg)\n }\n } else {\n let (mut h, mut msg_block, mut msg_byte_ptr) = process_full_blocks(msg, message_size, h);\n finalize_sha256_blocks(msg, real_message_size, N, h, msg_block, msg_byte_ptr)\n }\n}\n\nunconstrained fn __sha_partial_var_interstitial<let N: u32>(\n mut h: [u32; 8],\n msg: [u8; N],\n message_size: u32,\n) -> [u32; 8] {\n let num_full_blocks = message_size / BLOCK_SIZE;\n // Intermediate hash, starting with the canonical initial value\n // Pointer into msg_block on a 64 byte scale\n for i in 0..num_full_blocks {\n let (msg_block, _) = build_msg_block(msg, message_size, BLOCK_SIZE * i);\n h = sha256_compression(msg_block, h);\n }\n h\n}\n\nmod equivalence_test {\n\n #[test]\n fn test_implementations_agree(msg: [u8; 100], message_size: u64) {\n let message_size = message_size % 100;\n // Safety: test function\n let unconstrained_sha = unsafe { super::__sha256_var(msg, message_size as u32) };\n let sha = super::sha256_var(msg, message_size);\n assert_eq(sha, unconstrained_sha);\n }\n}\n"
6951
6960
  },
6952
- "393": {
6961
+ "394": {
6953
6962
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-contracts/contracts/libs/ecdsa_public_key_note/src/lib.nr",
6954
6963
  "source": "use aztec::{\n protocol_types::{address::AztecAddress, traits::{FromField, Packable, ToField}},\n macros::notes::note\n};\n\n\n// Stores an ECDSA public key composed of two 32-byte elements\n// TODO: Do we need to include a nonce, in case we want to read/nullify/recreate with the same pubkey value?\n#[note]\n#[derive(Eq)]\npub struct EcdsaPublicKeyNote {\n pub x: [u8; 32],\n pub y: [u8; 32],\n pub owner: AztecAddress,\n}\n\nimpl EcdsaPublicKeyNote {\n pub fn new(x: [u8; 32], y: [u8; 32], owner: AztecAddress) -> Self {\n EcdsaPublicKeyNote { x, y, owner }\n }\n}\n\nimpl Packable for EcdsaPublicKeyNote {\n let N: u32 = 5;\n\n // Cannot use the automatic packing since x and y don't fit. Pack the note as 5 fields where:\n // [0] = x[0..31] (upper bound excluded)\n // [1] = x[31]\n // [2] = y[0..31]\n // [3] = y[31]\n // [4] = owner\n fn pack(self) -> [Field; Self::N] {\n let mut x: Field = 0;\n let mut y: Field = 0;\n let mut mul: Field = 1;\n\n for i in 1..32 {\n let byte_x: Field = self.x[31 - i] as Field;\n x = x + (byte_x * mul);\n let byte_y: Field = self.y[31 - i] as Field;\n y = y + (byte_y * mul);\n mul *= 256;\n }\n\n let last_x = self.x[31] as Field;\n let last_y = self.y[31] as Field;\n\n [x, last_x, y, last_y, self.owner.to_field()]\n }\n\n // Cannot use the automatic unpacking for the aforementioned reasons\n fn unpack(packed_note: [Field; Self::N]) -> Self {\n let mut x: [u8; 32] = [0; 32];\n let mut y: [u8; 32] = [0; 32];\n\n let part_x:[u8; 32] = packed_note[0].to_be_bytes();\n for i in 0..31 {\n x[i] = part_x[i + 1];\n }\n x[31] = packed_note[1].to_be_bytes::<32>()[31];\n\n let part_y:[u8; 32] = packed_note[2].to_be_bytes();\n for i in 0..31 {\n y[i] = part_y[i + 1];\n }\n y[31] = packed_note[3].to_be_bytes::<32>()[31];\n\n EcdsaPublicKeyNote { x, y, owner: AztecAddress::from_field(packed_note[4]) }\n }\n}\n"
6955
6964
  },
@@ -6967,7 +6976,7 @@
6967
6976
  },
6968
6977
  "50": {
6969
6978
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-contracts/contracts/account/ecdsa_r_account_contract/src/main.nr",
6970
- "source": "// Account contract that uses ECDSA signatures for authentication on random version of the p256 curve (to use with touchID).\nuse dep::aztec::macros::aztec;\n\n#[aztec]\npub contract EcdsaRAccount {\n use dep::aztec::{\n authwit::{account::AccountActions, entrypoint::app::AppPayload},\n context::PrivateContext,\n macros::{functions::{initializer, noinitcheck, private, view}, storage::storage},\n messages::message_delivery::MessageDelivery,\n oracle::{auth_witness::get_auth_witness, notes::{get_sender_for_tags, set_sender_for_tags}},\n state_vars::PrivateImmutable,\n };\n\n use dep::ecdsa_public_key_note::EcdsaPublicKeyNote;\n\n #[storage]\n struct Storage<Context> {\n signing_public_key: PrivateImmutable<EcdsaPublicKeyNote, Context>,\n }\n\n // Creates a new account out of an ECDSA public key to use for signature verification\n #[private]\n #[initializer]\n fn constructor(signing_pub_key_x: [u8; 32], signing_pub_key_y: [u8; 32]) {\n let this = context.this_address();\n let pub_key_note = EcdsaPublicKeyNote::new(signing_pub_key_x, signing_pub_key_y, this);\n\n // Safety: The sender for tags is only used to compute unconstrained shared secrets for emitting logs.\n // Since this value is only used for unconstrained tagging and not for any constrained logic,\n // it is safe to load from an unconstrained context.\n // TODO(#15752): Improve the sender_for_tags handling here when the original sender is undefined.\n let original_sender = unsafe { get_sender_for_tags().unwrap_or(this) };\n\n // We set the sender for tags to this contract because we don't want to force the user corresponding to this\n // account to add the account deployer as a sender to their PXE. By setting it to this contract, user's PXE\n // will manage to find the note even if the account deployer is not registered as a sender (i.e\n // `pxe.registerSender(accountDeployer)` was not called)\n\n // Safety: Comment from above applies here as well.\n unsafe { set_sender_for_tags(this) };\n storage.signing_public_key.initialize(pub_key_note).emit(\n &mut context,\n this,\n MessageDelivery.CONSTRAINED_ONCHAIN,\n );\n // Safety: Comment from above applies here as well.\n unsafe { set_sender_for_tags(original_sender) };\n }\n\n // @dev: If you globally change the entrypoint signature don't forget to update account_entrypoint.ts file (specifically `getEntrypointAbi()`)\n // using noinitcheck is an optimization, it reduces gates by omitting a check that the contract has been initialized\n #[private]\n #[noinitcheck]\n fn entrypoint(app_payload: AppPayload, fee_payment_method: u8, cancellable: bool) {\n // Safety: The sender for tags is only used to compute unconstrained shared secrets for emitting logs.\n // Since this value is only used for unconstrained tagging and not for any constrained logic,\n // it is safe to set from a constrained context.\n unsafe { set_sender_for_tags(context.this_address()) };\n\n let actions = AccountActions::init(&mut context, is_valid_impl);\n actions.entrypoint(app_payload, fee_payment_method, cancellable);\n }\n\n #[private]\n #[noinitcheck]\n #[view]\n fn verify_private_authwit(inner_hash: Field) -> Field {\n let actions = AccountActions::init(&mut context, is_valid_impl);\n actions.verify_private_authwit(inner_hash)\n }\n\n #[contract_library_method]\n fn is_valid_impl(context: &mut PrivateContext, outer_hash: Field) -> bool {\n // Load public key from storage\n let storage = Storage::init(context);\n let public_key = storage.signing_public_key.get_note();\n\n // Load auth witness\n // Safety: The witness is only used as a \"magical value\" that makes the signature verification below pass.\n // Hence it's safe.\n let witness: [Field; 64] = unsafe { get_auth_witness(outer_hash) };\n let mut signature: [u8; 64] = [0; 64];\n for i in 0..64 {\n signature[i] = witness[i] as u8;\n }\n\n // Verify payload signature using Ethereum's signing scheme\n // Note that noir expects the hash of the message/challenge as input to the ECDSA verification.\n let outer_hash_bytes: [u8; 32] = outer_hash.to_be_bytes();\n let hashed_message: [u8; 32] = sha256::digest(outer_hash_bytes);\n std::ecdsa_secp256r1::verify_signature(\n public_key.x,\n public_key.y,\n signature,\n hashed_message,\n )\n }\n}\n"
6979
+ "source": "// Account contract that uses ECDSA signatures for authentication on random version of the p256 curve (to use with touchID).\nuse dep::aztec::macros::aztec;\n\n#[aztec]\npub contract EcdsaRAccount {\n use dep::aztec::{\n authwit::{account::AccountActions, entrypoint::app::AppPayload},\n context::PrivateContext,\n macros::{functions::{external, initializer, noinitcheck, view}, storage::storage},\n messages::message_delivery::MessageDelivery,\n oracle::{auth_witness::get_auth_witness, notes::{get_sender_for_tags, set_sender_for_tags}},\n state_vars::PrivateImmutable,\n };\n\n use dep::ecdsa_public_key_note::EcdsaPublicKeyNote;\n\n #[storage]\n struct Storage<Context> {\n signing_public_key: PrivateImmutable<EcdsaPublicKeyNote, Context>,\n }\n\n // Creates a new account out of an ECDSA public key to use for signature verification\n #[external(\"private\")]\n #[initializer]\n fn constructor(signing_pub_key_x: [u8; 32], signing_pub_key_y: [u8; 32]) {\n let this = context.this_address();\n let pub_key_note = EcdsaPublicKeyNote::new(signing_pub_key_x, signing_pub_key_y, this);\n\n // Safety: The sender for tags is only used to compute unconstrained shared secrets for emitting logs.\n // Since this value is only used for unconstrained tagging and not for any constrained logic,\n // it is safe to load from an unconstrained context.\n // TODO(#15752): Improve the sender_for_tags handling here when the original sender is undefined.\n let original_sender = unsafe { get_sender_for_tags().unwrap_or(this) };\n\n // We set the sender for tags to this contract because we don't want to force the user corresponding to this\n // account to add the account deployer as a sender to their PXE. By setting it to this contract, user's PXE\n // will manage to find the note even if the account deployer is not registered as a sender (i.e\n // `pxe.registerSender(accountDeployer)` was not called)\n\n // Safety: Comment from above applies here as well.\n unsafe { set_sender_for_tags(this) };\n storage.signing_public_key.initialize(pub_key_note).emit(\n &mut context,\n this,\n MessageDelivery.CONSTRAINED_ONCHAIN,\n );\n // Safety: Comment from above applies here as well.\n unsafe { set_sender_for_tags(original_sender) };\n }\n\n // @dev: If you globally change the entrypoint signature don't forget to update account_entrypoint.ts file (specifically `getEntrypointAbi()`)\n // using noinitcheck is an optimization, it reduces gates by omitting a check that the contract has been initialized\n #[external(\"private\")]\n #[noinitcheck]\n fn entrypoint(app_payload: AppPayload, fee_payment_method: u8, cancellable: bool) {\n // Safety: The sender for tags is only used to compute unconstrained shared secrets for emitting logs.\n // Since this value is only used for unconstrained tagging and not for any constrained logic,\n // it is safe to set from a constrained context.\n unsafe { set_sender_for_tags(context.this_address()) };\n\n let actions = AccountActions::init(&mut context, is_valid_impl);\n actions.entrypoint(app_payload, fee_payment_method, cancellable);\n }\n\n #[external(\"private\")]\n #[noinitcheck]\n #[view]\n fn verify_private_authwit(inner_hash: Field) -> Field {\n let actions = AccountActions::init(&mut context, is_valid_impl);\n actions.verify_private_authwit(inner_hash)\n }\n\n #[contract_library_method]\n fn is_valid_impl(context: &mut PrivateContext, outer_hash: Field) -> bool {\n // Load public key from storage\n let storage = Storage::init(context);\n let public_key = storage.signing_public_key.get_note();\n\n // Load auth witness\n // Safety: The witness is only used as a \"magical value\" that makes the signature verification below pass.\n // Hence it's safe.\n let witness: [Field; 64] = unsafe { get_auth_witness(outer_hash) };\n let mut signature: [u8; 64] = [0; 64];\n for i in 0..64 {\n signature[i] = witness[i] as u8;\n }\n\n // Verify payload signature using Ethereum's signing scheme\n // Note that noir expects the hash of the message/challenge as input to the ECDSA verification.\n let outer_hash_bytes: [u8; 32] = outer_hash.to_be_bytes();\n let hashed_message: [u8; 32] = sha256::digest(outer_hash_bytes);\n std::ecdsa_secp256r1::verify_signature(\n public_key.x,\n public_key.y,\n signature,\n hashed_message,\n )\n }\n}\n"
6971
6980
  },
6972
6981
  "51": {
6973
6982
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/authwit/account.nr",
@@ -6991,7 +7000,7 @@
6991
7000
  },
6992
7001
  "67": {
6993
7002
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/context/private_context.nr",
6994
- "source": "use crate::{\n context::{inputs::PrivateContextInputs, returns_hash::ReturnsHash},\n hash::{ArgsHasher, hash_args_array, hash_calldata_array},\n keys::constants::{NULLIFIER_INDEX, NUM_KEY_TYPES, OUTGOING_INDEX, sk_generators},\n messaging::process_l1_to_l2_message,\n oracle::{\n block_header::get_block_header_at,\n call_private_function::call_private_function_internal,\n enqueue_public_function_call::{\n notify_enqueued_public_function_call, notify_set_min_revertible_side_effect_counter,\n notify_set_public_teardown_function_call,\n },\n execution_cache,\n key_validation_request::get_key_validation_request,\n logs::notify_created_contract_class_log,\n notes::{notify_created_nullifier, notify_nullified_note},\n },\n};\nuse dep::protocol_types::{\n abis::{\n block_header::BlockHeader,\n call_context::CallContext,\n function_selector::FunctionSelector,\n gas_settings::GasSettings,\n log_hash::LogHash,\n note_hash::NoteHash,\n nullifier::Nullifier,\n private_call_request::PrivateCallRequest,\n private_circuit_public_inputs::PrivateCircuitPublicInputs,\n private_log::{PrivateLog, PrivateLogData},\n public_call_request::PublicCallRequest,\n validation_requests::{KeyValidationRequest, KeyValidationRequestAndGenerator},\n },\n address::{AztecAddress, EthAddress},\n constants::{\n CONTRACT_CLASS_LOG_SIZE_IN_FIELDS, MAX_CONTRACT_CLASS_LOGS_PER_CALL,\n MAX_ENQUEUED_CALLS_PER_CALL, MAX_INCLUDE_BY_TIMESTAMP_DURATION,\n MAX_KEY_VALIDATION_REQUESTS_PER_CALL, MAX_L2_TO_L1_MSGS_PER_CALL,\n MAX_NOTE_HASH_READ_REQUESTS_PER_CALL, MAX_NOTE_HASHES_PER_CALL,\n MAX_NULLIFIER_READ_REQUESTS_PER_CALL, MAX_NULLIFIERS_PER_CALL,\n MAX_PRIVATE_CALL_STACK_LENGTH_PER_CALL, MAX_PRIVATE_LOGS_PER_CALL,\n NULL_MSG_SENDER_CONTRACT_ADDRESS, PRIVATE_LOG_SIZE_IN_FIELDS,\n },\n hash::poseidon2_hash,\n messaging::l2_to_l1_message::L2ToL1Message,\n side_effect::Counted,\n traits::{Empty, Hash, ToField},\n utils::arrays::{ClaimedLengthArray, trimmed_array_length_hint},\n};\n\n/// # PrivateContext\n///\n/// The **main interface** between a #[private] function and the Aztec blockchain.\n///\n/// An instance of the PrivateContext is initialized automatically at the outset\n/// of every private function, within the #[private] macro, so you'll never\n/// need to consciously instantiate this yourself.\n///\n/// The instance is always named `context`, and it is always be available within\n/// the body of every #[private] function in your smart contract.\n///\n/// > For those used to \"vanilla\" Noir, it might be jarring to have access to\n/// > `context` without seeing a declaration `let context = PrivateContext::new(...)`\n/// > within the body of your function. This is just a consequence of using\n/// > macros to tidy-up verbose boilerplate. You can use `nargo expand` to\n/// > expand all macros, if you dare.\n///\n/// Typical usage for a smart contract developer will be to call getter\n/// methods of the PrivateContext.\n///\n/// _Pushing_ data and requests to the context is mostly handled within\n/// aztec-nr's own functions, so typically a smart contract developer won't\n/// need to call any setter methods directly.\n///\n/// > Advanced users might occasionally wish to push data to the context\n/// > directly for lower-level control. If you find yourself doing this, please\n/// > open an issue on GitHub to describe your use case: it might be that\n/// > new functionality should be added to aztec-nr.\n///\n/// ## Responsibilities\n/// - Exposes contextual data to a private function:\n/// - Data relating to how this private function was called.\n/// - msg_sender\n/// - this_address - (the contract address of the private function being\n/// executed)\n/// - See `CallContext` for more data.\n/// - Data relating to the transaction in which this private function is\n/// being executed.\n/// - chain_id\n/// - version\n/// - gas_settings\n/// - Provides state access:\n/// - Access to the \"Anchor block\" header.\n/// Recall, a private function cannot read from the \"current\" block header,\n/// but must read from some historical block header, because as soon as\n/// private function execution begins (asynchronously, on a user's device),\n/// the public state of the chain (the \"current state\") will have progressed\n/// forward. We call this reference the \"Anchor block\".\n/// See `BlockHeader`.\n/// - Enables consumption of L1->L2 messages.\n/// - Enables calls to functions of other smart contracts:\n/// - Private function calls\n/// - Enqueueing of public function call requests\n/// (Since public functions are executed at a later time, by a block\n/// proposer, we say they are \"enqueued\").\n/// - Writes data to the blockchain:\n/// - New notes\n/// - New nullifiers\n/// - Private logs (for sending encrypted note contents or encrypted events)\n/// - New L2->L1 messages.\n/// - Provides args to the private function (handled by the #[private] macro).\n/// - Returns the return values of this private function (handled by the\n/// #[private] macro).\n/// - Makes Key Validation Requests.\n/// - Private functions are not allowed to see master secret keys, because we\n/// do not trust them. They are instead given \"app-siloed\" secret keys with\n/// a claim that they relate to a master public key. They can then request\n/// validation of this claim, by making a \"key validation request\" to the\n/// protocol's kernel circuits (which _are_ allowed to see certain master\n/// secret keys).\n///\n/// ## Advanced Responsibilities\n///\n/// - Ultimately, the PrivateContext is responsible for constructing the\n/// PrivateCircuitPublicInputs of the private function being executed.\n/// All private functions on Aztec must have public inputs which adhere\n/// to the rigid layout of the PrivateCircuitPublicInputs, in order to be\n/// compatible with the protocol's kernel circuits.\n/// A well-known misnomer:\n/// - \"public inputs\" contain both inputs and outputs of this function.\n/// - By \"outputs\" we mean a lot more side-effects than just the\n/// \"return values\" of the function.\n/// - Most of the so-called \"public inputs\" are kept _private_, and never leak\n/// to the outside world, because they are 'swallowed' by the protocol's\n/// kernel circuits before the tx is sent to the network. Only the\n/// following are exposed to the outside world:\n/// - New note_hashes\n/// - New nullifiers\n/// - New private logs\n/// - New L2->L1 messages\n/// - New enqueued public function call requests\n/// All the above-listed arrays of side-effects can be padded by the\n/// user's wallet (through instructions to the kernel circuits, via the\n/// PXE) to obscure their true lengths.\n///\n/// ## Syntax Justification\n///\n/// Both user-defined functions _and_ most functions in aztec-nr need access to\n/// the PrivateContext instance to read/write data. This is why you'll see the\n/// arguably-ugly pervasiveness of the \"context\" throughout your smart contract\n/// and the aztec-nr library.\n/// For example, `&mut context` is prevalent. In some languages, you can access\n/// and mutate a global variable (such as a PrivateContext instance) from a\n/// function without polluting the function's parameters. With Noir, a function\n/// must explicitly pass control of a mutable variable to another function, by\n/// reference. Since many functions in aztec-nr need to be able to push new data\n/// to the PrivateContext, they need to be handed a mutable reference _to_ the\n/// context as a parameter.\n/// For example, `Context` is prevalent as a generic parameter, to give better\n/// type safety at compile time. Many `aztec-nr` functions don't make sense if\n/// they're called in a particular runtime (private, public or utility), and so\n/// are intentionally only implemented over certain\n/// [Private|Public|Utility]Context structs. This gives smart contract\n/// developers a much faster feedback loop if they're making a mistake, as an\n/// error will be thrown by the LSP or when they compile their contract.\n///\n#[derive(Eq)]\npub struct PrivateContext {\n // docs:start:private-context\n pub inputs: PrivateContextInputs,\n pub side_effect_counter: u32,\n\n pub min_revertible_side_effect_counter: u32,\n pub is_fee_payer: bool,\n\n pub args_hash: Field,\n pub return_hash: Field,\n\n pub include_by_timestamp: u64,\n\n pub note_hash_read_requests: BoundedVec<Counted<Field>, MAX_NOTE_HASH_READ_REQUESTS_PER_CALL>,\n pub nullifier_read_requests: BoundedVec<Counted<Field>, MAX_NULLIFIER_READ_REQUESTS_PER_CALL>,\n key_validation_requests_and_generators: BoundedVec<KeyValidationRequestAndGenerator, MAX_KEY_VALIDATION_REQUESTS_PER_CALL>,\n\n pub note_hashes: BoundedVec<Counted<NoteHash>, MAX_NOTE_HASHES_PER_CALL>,\n pub nullifiers: BoundedVec<Counted<Nullifier>, MAX_NULLIFIERS_PER_CALL>,\n\n pub private_call_requests: BoundedVec<PrivateCallRequest, MAX_PRIVATE_CALL_STACK_LENGTH_PER_CALL>,\n pub public_call_requests: BoundedVec<Counted<PublicCallRequest>, MAX_ENQUEUED_CALLS_PER_CALL>,\n pub public_teardown_call_request: PublicCallRequest,\n pub l2_to_l1_msgs: BoundedVec<Counted<L2ToL1Message>, MAX_L2_TO_L1_MSGS_PER_CALL>,\n // docs:end:private-context\n\n // Header of a block whose state is used during private execution (not the block the transaction is included in).\n pub anchor_block_header: BlockHeader,\n\n pub private_logs: BoundedVec<Counted<PrivateLogData>, MAX_PRIVATE_LOGS_PER_CALL>,\n pub contract_class_logs_hashes: BoundedVec<Counted<LogHash>, MAX_CONTRACT_CLASS_LOGS_PER_CALL>,\n\n // Contains the last key validation request for each key type. This is used to cache the last request and avoid\n // fetching the same request multiple times.\n // The index of the array corresponds to the key type (0 nullifier, 1 incoming, 2 outgoing, 3 tagging).\n pub last_key_validation_requests: [Option<KeyValidationRequest>; NUM_KEY_TYPES],\n}\n\nimpl PrivateContext {\n pub fn new(inputs: PrivateContextInputs, args_hash: Field) -> PrivateContext {\n let max_allowed_include_by_timestamp = inputs.anchor_block_header.global_variables.timestamp\n + MAX_INCLUDE_BY_TIMESTAMP_DURATION;\n PrivateContext {\n inputs,\n side_effect_counter: inputs.start_side_effect_counter + 1,\n min_revertible_side_effect_counter: 0,\n is_fee_payer: false,\n args_hash,\n return_hash: 0,\n include_by_timestamp: max_allowed_include_by_timestamp,\n note_hash_read_requests: BoundedVec::new(),\n nullifier_read_requests: BoundedVec::new(),\n key_validation_requests_and_generators: BoundedVec::new(),\n note_hashes: BoundedVec::new(),\n nullifiers: BoundedVec::new(),\n anchor_block_header: inputs.anchor_block_header,\n private_call_requests: BoundedVec::new(),\n public_call_requests: BoundedVec::new(),\n public_teardown_call_request: PublicCallRequest::empty(),\n l2_to_l1_msgs: BoundedVec::new(),\n private_logs: BoundedVec::new(),\n contract_class_logs_hashes: BoundedVec::new(),\n last_key_validation_requests: [Option::none(); NUM_KEY_TYPES],\n }\n }\n\n /// Returns the contract address that initiated this function call.\n ///\n /// This is similar to `msg.sender` in Solidity (hence the name).\n ///\n /// Important Note: Since Aztec doesn't have a concept of an EoA (\n /// Externally-owned Account), the msg_sender is \"null\" for the first\n /// function call of every transaction.\n /// The first function call of a tx is likely to be a call to the user's\n /// account contract, so this quirk will most often be handled by account\n /// contract developers.\n ///\n /// # Returns\n /// * `Option<AztecAddress>` - The address of the smart contract that called\n /// this function (be it an app contract or a user's account contract).\n /// Returns `Option<AztecAddress>::none` for the first function call of\n /// the tx. No other _private_ function calls in the tx will have a `none`\n /// msg_sender, but _public_ function calls might (see the PublicContext).\n ///\n pub fn msg_sender(self) -> Option<AztecAddress> {\n let maybe_msg_sender = self.inputs.call_context.msg_sender;\n if maybe_msg_sender == NULL_MSG_SENDER_CONTRACT_ADDRESS {\n Option::none()\n } else {\n Option::some(maybe_msg_sender)\n }\n }\n\n /// \"Unsafe\" versus calling `context.msg_sender()`, because it doesn't\n /// translate `NULL_MSG_SENDER_CONTRACT_ADDRESS` as\n /// `Option<AztecAddress>::none`.\n /// Used by some internal aztecnr functions.\n pub fn msg_sender_unsafe(self) -> AztecAddress {\n self.inputs.call_context.msg_sender\n }\n\n /// Returns the contract address of the current function being executed.\n ///\n /// This is equivalent to `address(this)` in Solidity (hence the name).\n /// Use this to identify the current contract's address, commonly needed for\n /// access control or when interacting with other contracts.\n ///\n /// # Returns\n /// * `AztecAddress` - The contract address of the current function being\n /// executed.\n ///\n pub fn this_address(self) -> AztecAddress {\n self.inputs.call_context.contract_address\n }\n\n /// Returns the chain ID of the current network.\n ///\n /// This is similar to `block.chainid` in Solidity. Returns the unique\n /// identifier for the blockchain network this transaction is executing on.\n ///\n /// Helps prevent cross-chain replay attacks. Useful if implementing\n /// multi-chain contract logic.\n ///\n /// # Returns\n /// * `Field` - The chain ID as a field element\n ///\n pub fn chain_id(self) -> Field {\n self.inputs.tx_context.chain_id\n }\n\n /// Returns the Aztec protocol version that this transaction is executing\n /// under. Different versions may have different rules, opcodes, or\n /// cryptographic primitives.\n ///\n /// This is similar to how Ethereum has different EVM versions.\n ///\n /// Useful for forward/backward compatibility checks\n ///\n /// Not to be confused with contract versions; this is the protocol version.\n ///\n /// # Returns\n /// * `Field` - The protocol version as a field element\n ///\n pub fn version(self) -> Field {\n self.inputs.tx_context.version\n }\n\n /// Returns the gas settings for the current transaction.\n ///\n /// This provides information about gas limits and pricing for the\n /// transaction, similar to `tx.gasprice` and gas limits in Ethereum.\n /// However, Aztec has a more sophisticated gas model with separate\n /// accounting for L2 computation and data availability (DA) costs.\n ///\n /// # Returns\n /// * `GasSettings` - Struct containing gas limits and fee information\n ///\n pub fn gas_settings(self) -> GasSettings {\n self.inputs.tx_context.gas_settings\n }\n\n /// Returns the function selector of the currently executing function.\n ///\n /// Low-level function: Ordinarily, smart contract developers will not need\n /// to access this.\n ///\n /// This is similar to `msg.sig` in Solidity, which returns the first 4\n /// bytes of the function signature. In Aztec, the selector uniquely\n /// identifies which function within the contract is being called.\n ///\n /// # Returns\n /// * `FunctionSelector` - The 4-byte function identifier\n ///\n /// # Advanced\n /// Only #[private] functions have a function selector as a protocol-\n /// enshrined concept. The function selectors of private functions are\n /// baked into the preimage of the contract address, and are used by the\n /// protocol's kernel circuits to identify each private function and ensure\n /// the correct one is being executed.\n ///\n /// Used internally for function dispatch and call verification.\n ///\n pub fn selector(self) -> FunctionSelector {\n self.inputs.call_context.function_selector\n }\n\n /// Returns the hash of the arguments passed to the current function.\n ///\n /// Very low-level function: You shouldn't need to call this. The #[private]\n /// macro calls this, and it makes the arguments neatly available to the\n /// body of your private function.\n ///\n /// # Returns\n /// * `Field` - Hash of the function arguments\n ///\n /// # Advanced\n /// * Arguments are hashed to reduce proof size and verification time\n /// * Enables efficient argument passing in recursive function calls\n /// * The hash can be used to retrieve the original arguments from the PXE.\n ///\n pub fn get_args_hash(self) -> Field {\n self.args_hash\n }\n\n /// Pushes a new note_hash to the Aztec blockchain's global Note Hash Tree\n /// (a state tree).\n ///\n /// A note_hash is a commitment to a piece of private state.\n ///\n /// Low-level function: Ordinarily, smart contract developers will not need\n /// to manually call this. Aztec-nr's state variables (see `../state_vars/`)\n /// are designed to understand when to create and push new note hashes.\n ///\n /// # Arguments\n /// * `note_hash` - The new note_hash.\n ///\n /// # Advanced\n /// From here, the protocol's kernel circuits will take over and insert the\n /// note_hash into the protocol's \"note hash tree\" (in the Base Rollup\n /// circuit).\n /// Before insertion, the protocol will:\n /// - \"Silo\" the `note_hash` with the contract address of this function,\n /// to yield a `siloed_note_hash`. This prevents state collisions\n /// between different smart contracts.\n /// - Ensure uniqueness of the `siloed_note_hash`, to prevent Faerie-Gold\n /// attacks, by hashing the `siloed_note_hash` with a unique value, to\n /// yield a `unique_siloed_note_hash` (see the protocol spec for more).\n ///\n /// In addition to calling this function, aztec-nr provides the contents\n /// of the newly-created note to the PXE, via the `notify_created_note`\n /// oracle.\n ///\n /// > Advanced users might occasionally wish to push data to the context\n /// > directly for lower-level control. If you find yourself doing this,\n /// > please open an issue on GitHub to describe your use case: it might be\n /// > that new functionality should be added to aztec-nr.\n ///\n pub fn push_note_hash(&mut self, note_hash: Field) {\n self.note_hashes.push(Counted::new(note_hash, self.next_counter()));\n }\n\n /// Pushes a new nullifier to the Aztec blockchain's global Nullifier Tree\n /// (a state tree).\n ///\n /// See also: `push_nullifier_for_note_hash`.\n ///\n /// Low-level function: Ordinarily, smart contract developers will not need\n /// to manually call this. Aztec-nr's state variables (see `../state_vars/`)\n /// are designed to understand when to create and push new nullifiers.\n ///\n /// A nullifier can only be emitted once. Duplicate nullifier insertions are\n /// rejected by the protocol.\n ///\n /// Generally, a nullifier is emitted to prevent an action from happening\n /// more than once, in such a way that the action cannot be linked (by an\n /// observer of the blockchain) to any earlier transactions.\n ///\n /// I.e. a nullifier is a random-looking, but deterministic record of a\n /// private, one-time action, which does not leak what action has been\n /// taken, and which preserves the property of \"tx unlinkability\".\n ///\n /// Usually, a nullifier will be emitted to \"spend\" a note (a piece of\n /// private state), without revealing which specific note is being spent.\n ///\n /// (Important: in such cases, use the below `push_nullifier_for_note_hash`).\n ///\n /// Sometimes, a nullifier might be emitted completely unrelated to any\n /// notes. Examples include initialization of a new contract; initialization\n /// of a PrivateMutable, or signalling in Semaphore-like applications.\n /// This `push_nullifier` function serves such use cases.\n ///\n /// # Arguments\n /// * `nullifier`\n ///\n /// # Advanced\n /// From here, the protocol's kernel circuits will take over and insert the\n /// nullifier into the protocol's \"nullifier tree\" (in the Base Rollup\n /// circuit).\n /// Before insertion, the protocol will:\n /// - \"Silo\" the `nullifier` with the contract address of this function,\n /// to yield a `siloed_nullifier`. This prevents state collisions\n /// between different smart contracts.\n /// - Ensure the `siloed_nullifier` is unique (the nullifier tree is an\n /// indexed merkle tree which supports efficient non-membership proofs).\n ///\n pub fn push_nullifier(&mut self, nullifier: Field) {\n notify_created_nullifier(nullifier);\n self.nullifiers.push(Nullifier { value: nullifier, note_hash: 0 }.count(self.next_counter()));\n }\n\n /// Pushes a nullifier that corresponds to a specific note hash.\n ///\n /// Low-level function: Ordinarily, smart contract developers will not need\n /// to manually call this. Aztec-nr's state variables (see `../state_vars/`)\n /// are designed to understand when to create and push new nullifiers.\n ///\n /// This is a specialized version of `push_nullifier` that links a nullifier\n /// to the specific note hash it's nullifying. This is the most common\n /// usage pattern for nullifiers.\n /// See `push_nullifier` for more explanation on nullifiers.\n ///\n /// # Arguments\n /// * `nullifier`\n /// * `nullified_note_hash` - The note hash of the note being nullified\n ///\n /// # Advanced\n /// Important: usage of this function doesn't mean that the world will _see_\n /// that this nullifier relates to the given nullified_note_hash (as that\n /// would violate \"tx unlinkability\"); it simply informs the user's PXE\n /// about the relationship (via `notify_nullified_note`). The PXE can then\n /// use this information to feed hints to the kernel circuits for\n /// \"squashing\" purposes: If a note is nullified during the same tx which\n /// created it, we can \"squash\" (delete) the note and nullifier (and any\n /// private logs associated with the note), to save on data emission costs.\n ///\n pub fn push_nullifier_for_note_hash(&mut self, nullifier: Field, nullified_note_hash: Field) {\n let nullifier_counter = self.next_counter();\n notify_nullified_note(nullifier, nullified_note_hash, nullifier_counter);\n self.nullifiers.push(Nullifier { value: nullifier, note_hash: nullified_note_hash }.count(\n nullifier_counter,\n ));\n }\n\n /// Returns the anchor block header - the historical block header that this\n /// private function is reading from.\n ///\n /// A private function CANNOT read from the \"current\" block header,\n /// but must read from some older block header, because as soon as\n /// private function execution begins (asynchronously, on a user's device),\n /// the public state of the chain (the \"current state\") will have progressed\n /// forward.\n ///\n /// # Returns\n /// * `BlockHeader` - The anchor block header.\n ///\n /// # Advanced\n /// * All private functions of a tx read from the same anchor block header.\n /// * The protocol asserts that the `include_by_timestamp` of every tx\n /// is at most 24 hours beyond the timestamp of the tx's chosen anchor\n /// block header. This enables the network's nodes to safely prune old txs\n /// from the mempool. Therefore, the chosen block header _must_ be one\n /// from within the last 24 hours.\n ///\n pub fn get_anchor_block_header(self) -> BlockHeader {\n self.anchor_block_header\n }\n\n /// Returns the header of any historical block at or before the anchor\n /// block.\n ///\n /// This enables private contracts to access information from even older\n /// blocks than the anchor block header.\n ///\n /// Useful for time-based contract logic that needs to compare against\n /// multiple historical points.\n ///\n /// # Arguments\n /// * `block_number` - The block number to retrieve (must be <= anchor\n /// block number)\n ///\n /// # Returns\n /// * `BlockHeader` - The header of the requested historical block\n ///\n /// # Advanced\n /// This function uses an oracle to fetch block header data from the user's\n /// PXE. Depending on how much blockchain data the user's PXE has been set\n /// up to store, this might require a query from the PXE to another Aztec\n /// node to get the data.\n /// > This is generally true of all oracle getters (see `../oracle`).\n ///\n /// Each block header gets hashed and stored as a leaf in the protocol's\n /// Archive Tree. In fact, the i-th block header gets stored at the i-th\n /// leaf index of the Archive Tree. Behind the scenes, this\n /// `get_block_header_at` function will add Archive Tree merkle-membership\n /// constraints (~3k) to your smart contract function's circuit, to prove\n /// existence of the block header in the Archive Tree.\n ///\n /// Note: we don't do any caching, so avoid making duplicate calls for the\n /// same block header, because each call will add duplicate constraints.\n ///\n /// Calling this function is more expensive (constraint-wise) than getting\n /// the anchor block header (via `get_block_header`). This is because the\n /// anchor block's merkle membership proof is handled by Aztec's protocol\n /// circuits, and is only performed once for the entire tx because all\n /// private functions of a tx share a common anchor block header. Therefore,\n /// the cost (constraint-wise) of calling `get_block_header` is effectively\n /// free.\n ///\n pub fn get_block_header_at(self, block_number: u32) -> BlockHeader {\n get_block_header_at(block_number, self)\n }\n\n /// Sets the hash of the return values for this private function.\n ///\n /// Very low-level function: this is called by the #[private] macro.\n ///\n /// # Arguments\n /// * `returns_hasher` - A hasher containing the return values to hash\n ///\n pub fn set_return_hash(&mut self, returns_hasher: ArgsHasher) {\n self.return_hash = returns_hasher.hash();\n execution_cache::store(returns_hasher.fields, self.return_hash);\n }\n\n /// Builds the PrivateCircuitPublicInputs for this private function, to\n /// ensure compatibility with the protocol's kernel circuits.\n ///\n /// Very low-level function: This function is automatically called by the\n /// #[private] macro.\n pub fn finish(self) -> PrivateCircuitPublicInputs {\n PrivateCircuitPublicInputs {\n call_context: self.inputs.call_context,\n args_hash: self.args_hash,\n returns_hash: self.return_hash,\n min_revertible_side_effect_counter: self.min_revertible_side_effect_counter,\n is_fee_payer: self.is_fee_payer,\n include_by_timestamp: self.include_by_timestamp,\n note_hash_read_requests: ClaimedLengthArray::from_bounded_vec(\n self.note_hash_read_requests,\n ),\n nullifier_read_requests: ClaimedLengthArray::from_bounded_vec(\n self.nullifier_read_requests,\n ),\n key_validation_requests_and_generators: ClaimedLengthArray::from_bounded_vec(\n self.key_validation_requests_and_generators,\n ),\n note_hashes: ClaimedLengthArray::from_bounded_vec(self.note_hashes),\n nullifiers: ClaimedLengthArray::from_bounded_vec(self.nullifiers),\n private_call_requests: ClaimedLengthArray::from_bounded_vec(self.private_call_requests),\n public_call_requests: ClaimedLengthArray::from_bounded_vec(self.public_call_requests),\n public_teardown_call_request: self.public_teardown_call_request,\n l2_to_l1_msgs: ClaimedLengthArray::from_bounded_vec(self.l2_to_l1_msgs),\n start_side_effect_counter: self.inputs.start_side_effect_counter,\n end_side_effect_counter: self.side_effect_counter,\n private_logs: ClaimedLengthArray::from_bounded_vec(self.private_logs),\n contract_class_logs_hashes: ClaimedLengthArray::from_bounded_vec(\n self.contract_class_logs_hashes,\n ),\n anchor_block_header: self.anchor_block_header,\n tx_context: self.inputs.tx_context,\n }\n }\n\n /// Designates this contract as the fee payer for the transaction.\n ///\n /// Unlike Ethereum, where the transaction sender always pays fees, Aztec\n /// allows any contract to voluntarily pay transaction fees. This enables\n /// patterns like sponsored transactions or fee abstraction where users\n /// don't need to hold fee-juice themselves. (Fee juice is a fee-paying\n /// asset for Aztec).\n ///\n /// Only one contract per transaction can declare itself as the fee payer,\n /// and it must have sufficient fee-juice balance (>= the gas limits\n /// specified in the TxContext) by the time we reach the public setup phase\n /// of the tx.\n ///\n pub fn set_as_fee_payer(&mut self) {\n dep::protocol_types::debug_log::debug_log_format(\n \"Setting {0} as fee payer\",\n [self.this_address().to_field()],\n );\n self.is_fee_payer = true;\n }\n\n /// Declares the end of the \"setup phase\" of this tx.\n ///\n /// Only one function per tx can declare the end of the setup phase.\n ///\n /// Niche function: Only wallet developers and paymaster contract developers\n /// (aka Fee-payment contracts) will need to make use of this function.\n ///\n /// Aztec supports a three-phase execution model: setup, app logic, teardown.\n /// The phases exist to enable a fee payer to take on the risk of paying\n /// a transaction fee, safe in the knowledge that their payment (in whatever\n /// token or method the user chooses) will succeed, regardless of whether\n /// the app logic will succeed. The \"setup\" phase enables such a payment to\n /// be made, because the setup phase _cannot revert_: a reverting function\n /// within the setup phase would result in an invalid block which cannot\n /// be proven. Any side-effects generated during that phase are guaranteed\n /// to be inserted into Aztec's state trees (except for squashed notes &\n /// nullifiers, of course).\n ///\n /// Even though the end of the setup phase is declared within a private\n /// function, you might have noticed that _public_ functions can also\n /// execute within the setup phase. This is because any public function\n /// calls which were enqueued _within the setup phase_ by a private\n /// function are considered part of the setup phase.\n ///\n /// # Advanced\n /// * Sets the minimum revertible side effect counter of this tx to be the\n /// PrivateContext's _current_ side effect counter.\n ///\n pub fn end_setup(&mut self) {\n // dep::protocol_types::debug_log::debug_log_format(\n // \"Ending setup at counter {0}\",\n // [self.side_effect_counter as Field]\n // );\n self.min_revertible_side_effect_counter = self.side_effect_counter;\n notify_set_min_revertible_side_effect_counter(self.min_revertible_side_effect_counter);\n }\n\n /// Sets a deadline (an \"include-by timestamp\") for when this transaction\n /// must be included in a block.\n ///\n /// Other functions in this tx might call this setter with differing\n /// values for the include-by timestamp. To ensure that all functions'\n /// deadlines are met, the _minimum_ of all these include-by timestamps will\n /// be exposed when this tx is submitted to the network.\n ///\n /// If the transaction is not included in a block by its include-by\n /// timestamp, it becomes invalid and it will never be included.\n ///\n /// This expiry timestamp is publicly visible. See the \"Advanced\" section\n /// for privacy concerns.\n ///\n /// # Arguments\n /// * `include_by_timestamp` - Unix timestamp (seconds) deadline for inclusion.\n /// The include-by timestamp of this tx will be\n /// _at most_ the timestamp specified.\n ///\n /// # Advanced\n /// * If multiple functions set differing `include_by_timestamp`s, the\n /// kernel circuits will set it to be the _minimum_ of the two. This\n /// ensures the tx expiry requirements of all functions in the tx are met.\n /// * Rollup circuits will reject expired txs.\n /// * The protocol enforces that all transactions must be included within\n /// 24 hours of their chosen anchor block's timestamp, to enable safe\n /// mempool pruning.\n /// * The DelayedPublicMutable design makes heavy use of this functionality,\n /// to enable private functions to read public state.\n /// * A sophisticated Wallet should cleverly set an include-by timestamp\n /// to improve the privacy of the user and the network as a whole.\n /// For example, if a contract interaction sets include-by to some\n /// publicly-known value (e.g. the time when a contract upgrades), then\n /// the wallet might wish to set an even lower one to avoid revealing that\n /// this tx is interacting with said contract.\n /// Ideally, all wallets should standardise on an approach in order to\n /// provide users with a large anonymity set -- although the exact apprach\n /// will need to be discussed. Wallets that deviate from a standard might\n /// accidentally reveal which wallet each transaction originates from.\n ///\n // docs:start:include-by-timestamp\n pub fn set_include_by_timestamp(&mut self, include_by_timestamp: u64) {\n // docs:end:include-by-timestamp\n self.include_by_timestamp = std::cmp::min(self.include_by_timestamp, include_by_timestamp);\n }\n\n /// Makes a request to the protocol's kernel circuit to ensure a note_hash\n /// actually exists.\n ///\n /// \"Read requests\" are used to prove that a note hash exists without\n /// revealing which specific note was read.\n ///\n /// This can be used to prove existence of both settled notes (created in\n /// prior transactions) and transient notes (created in the current\n /// transaction).\n /// If you need to prove existence of a settled note _at a specific block\n /// number_, use `note_inclusion::prove_note_inclusion`.\n ///\n /// Low-level function. Ordinarily, smart contract developers will not need\n /// to call this directly. Aztec-nr's state variables (see `../state_vars/`)\n /// are designed to understand when to create and push new note_hash read\n /// requests.\n ///\n /// # Arguments\n /// * `note_hash` - The note hash to read and verify\n ///\n /// # Advanced\n /// In \"traditional\" circuits for non-Aztec privacy applications, the merkle\n /// membership proofs to check existence of a note are performed _within_\n /// the application circuit.\n ///\n /// All Aztec private functions have access to the following constraint\n /// optimisation:\n /// In cases where the note being read was created earlier in the same tx,\n /// the note wouldn't yet exist in the Note Hash Tree, so a hard-coded\n /// merkle membership check which then gets ignored would be a waste of\n /// constraints.\n /// Instead, we can send read requests for all notes to the protocol's\n /// kernel circuits, where we can conditionally assess which notes actually\n /// need merkle membership proofs, and select an appropriately-sized\n /// kernel circuit.\n ///\n /// For \"settled notes\" (which already existed in the Note Hash Tree of the\n /// anchor block (i.e. before the tx began)), the kernel does a merkle\n /// membership check.\n ///\n /// For \"pending notes\" (which were created earlier in _this_ tx), the\n /// kernel will check that the note existed _before_ this read request was\n /// made, by checking the side-effect counters of the note_hash and this\n /// read request.\n ///\n /// This approach improves latency between writes and reads:\n /// a function can read a note which was created earlier in the tx (rather\n /// than performing the read in a later tx, after waiting for the earlier tx\n /// to be included, to ensure the note is included in the tree).\n ///\n pub fn push_note_hash_read_request(&mut self, note_hash: Field) {\n let side_effect = Counted::new(note_hash, self.next_counter());\n self.note_hash_read_requests.push(side_effect);\n }\n\n /// Requests to read a specific nullifier from the nullifier tree.\n ///\n /// Nullifier read requests are used to prove that a nullifier exists without\n /// revealing which specific nullifier preimage was read.\n ///\n /// This can be used to prove existence of both settled nullifiers (created in\n /// prior transactions) and transient nullifiers (created in the current\n /// transaction).\n /// If you need to prove existence of a settled nullifier _at a specific block\n /// number_, use `nullifier_inclusion::prove_nullifier_inclusion`.\n ///\n /// Low-level function. Ordinarily, smart contract developers will not need\n /// to call this directly. Aztec-nr's state variables (see `../state_vars/`)\n /// are designed to understand when to create and push new nullifier read\n /// requests.\n ///\n /// # Arguments\n /// * `nullifier` - The nullifier to read and verify\n ///\n /// # Advanced\n /// This approach improves latency between writes and reads:\n /// a function can read a nullifier which was created earlier in the tx\n /// (rather than performing the read in a later tx, after waiting for the\n /// earlier tx to be included, to ensure the note is included in the tree).\n ///\n pub fn push_nullifier_read_request(&mut self, nullifier: Field) {\n let request = Counted::new(nullifier, self.next_counter());\n self.nullifier_read_requests.push(request);\n }\n\n /// Requests the app-siloed nullifier secret key (nsk_app) for the given\n /// (hashed) master nullifier public key (npk_m), from the user's PXE.\n ///\n /// Advanced function: Only needed if you're designing your own notes and/or\n /// nullifiers.\n ///\n /// Contracts are not allowed to compute nullifiers for other contracts, as\n /// that would let them read parts of their private state. Because of this,\n /// a contract is only given an \"app-siloed secret key\", which is\n /// constructed by hashing the user's master nullifier secret key with the\n /// contract's address.\n /// However, because contracts cannot be trusted with a user's master\n /// nullifier secret key (because we don't know which contracts are honest\n /// or malicious), the PXE refuses to provide any master secret keys to\n /// any app smart contract function. This means app functions are unable to\n /// prove that the derivation of an app-siloed nullifier secret key has been\n /// computed correctly. Instead, an app function can request to the kernel\n /// (via `request_nsk_app`) that it validates the siloed derivation, since\n /// the kernel has been vetted to not leak any master secret keys.\n ///\n /// A common nullification scheme is to inject a nullifier secret key into\n /// the preimage of a nullifier, to make the nullifier deterministic but\n /// random-looking. This function enables that flow.\n ///\n /// # Arguments\n /// * `npk_m_hash` - A hash of the master nullifier public key of the user\n /// whose PXE is executing this function.\n ///\n /// # Returns\n /// * The app-siloed nullifier secret key that corresponds to the given\n /// `npk_m_hash`.\n ///\n pub fn request_nsk_app(&mut self, npk_m_hash: Field) -> Field {\n self.request_sk_app(npk_m_hash, NULLIFIER_INDEX)\n }\n\n /// Requests the app-siloed nullifier secret key (nsk_app) for the given\n /// (hashed) master nullifier public key (npk_m), from the user's PXE.\n ///\n /// See `request_nsk_app` and `request_sk_app` for more info.\n ///\n /// The intention of the \"outgoing\" keypair is to provide a second secret\n /// key for all of a user's outgoing activity (i.e. for notes that a user\n /// creates, as opposed to notes that a user receives from others). The\n /// separation of incoming and outgoing data was a distinction made by\n /// zcash, with the intention of enabling a user to optionally share with a\n /// 3rd party a controlled view of only incoming or outgoing notes.\n /// Similar functionality of sharing select data can be achieved with\n /// offchain zero-knowledge proofs. It is up to an app developer whether\n /// they choose to make use of a user's outgoing keypair within their\n /// application logic, or instead simply use the same keypair (the address\n /// keypair (which is effectively the same as the \"incooming\" keypair)) for\n /// all incoming & outgoing messages to a user.\n ///\n /// Currently, all of the exposed encryption functions in aztec-nr ignore\n /// the outgoing viewing keys, and instead encrypt all note logs and event\n /// logs to a user's address public key.\n ///\n /// # Arguments\n /// * `ovpk_m_hash` - Hash of the outgoing viewing public key master\n ///\n /// # Returns\n /// * The application-specific outgoing viewing secret key\n ///\n pub fn request_ovsk_app(&mut self, ovpk_m_hash: Field) -> Field {\n self.request_sk_app(ovpk_m_hash, OUTGOING_INDEX)\n }\n\n /// Pushes a Key Validation Request to the kernel.\n ///\n /// Private functions are not allowed to see a user's master secret keys,\n /// because we do not trust them. They are instead given \"app-siloed\" secret\n /// keys with a claim that they relate to a master public key.\n /// They can then request validation of this claim, by making a \"key\n /// validation request\" to the protocol's kernel circuits (which _are_\n /// allowed to see certain master secret keys).\n ///\n /// When a Key Validation Request tuple of (sk_app, Pk_m, app_address) is\n /// submitted to the kernel, it will perform the following derivations\n /// to validate the relationship between the claimed sk_app and the user's\n /// Pk_m:\n ///\n /// (sk_m) ----> * G ----> Pk_m\n /// | |\n /// v We use the kernel to prove this\n /// h(sk_m, app_address) | sk_app-Pk_m relationship, because app\n /// | circuits must not be trusted to see sk_m.\n /// v |\n /// sk_app - - - - - - - - -\n ///\n /// The function is named \"request_\" instead of \"get_\" to remind the user\n /// that a Key Validation Request will be emitted to the kernel.\n ///\n fn request_sk_app(&mut self, pk_m_hash: Field, key_index: Field) -> Field {\n let cached_request = self.last_key_validation_requests[key_index as u32].unwrap_or(\n KeyValidationRequest::empty(),\n );\n\n if cached_request.pk_m.hash() == pk_m_hash {\n // We get a match so the cached request is the latest one\n cached_request.sk_app\n } else {\n // We didn't get a match meaning the cached result is stale\n // Typically we'd validate keys by showing that they are the preimage of `pk_m_hash`, but that'd require\n // the oracle returning the master secret keys, which could cause malicious contracts to leak it or learn\n // about secrets from other contracts. We therefore silo secret keys, and rely on the private kernel to\n // validate that we siloed secret key corresponds to correct siloing of the master secret key that hashes\n // to `pk_m_hash`.\n\n // Safety: Kernels verify that the key validation request is valid and below we verify that a request\n // for the correct public key has been received.\n let request = unsafe { get_key_validation_request(pk_m_hash, key_index) };\n assert_eq(request.pk_m.hash(), pk_m_hash, \"Obtained invalid key validation request\");\n\n self.key_validation_requests_and_generators.push(\n KeyValidationRequestAndGenerator {\n request,\n sk_app_generator: sk_generators[key_index as u32],\n },\n );\n self.last_key_validation_requests[key_index as u32] = Option::some(request);\n request.sk_app\n }\n }\n\n /// Sends an \"L2 -> L1 message\" from this function (Aztec, L2) to a smart\n /// contract on Ethereum (L1). L1 contracts which are designed to\n /// send/receive messages to/from Aztec are called \"Portal Contracts\".\n ///\n /// Common use cases include withdrawals, cross-chain asset transfers, and\n /// triggering L1 actions based on L2 state changes.\n ///\n /// The message will be inserted into an Aztec \"Outbox\" contract on L1,\n /// when this transaction's block is proposed to L1.\n /// Sending the message will not result in any immediate state changes in\n /// the target portal contract. The message will need to be manually\n /// consumed from the Outbox through a separate Ethereum transaction: a user\n /// will need to call a function of the portal contract -- a function\n /// specifically designed to make a call to the Outbox to consume the\n /// message.\n /// The message will only be available for consumption once the _epoch_\n /// proof has been submitted. Given that there are multiple Aztec blocks\n /// within an epoch, it might take some time for this epoch proof to be\n /// submitted -- especially if the block was near the start of an epoch.\n ///\n /// # Arguments\n /// * `recipient` - Ethereum address that will receive the message\n /// * `content` - Message content (32 bytes as a Field element).\n /// This content has a very specific layout.\n /// docs:start:context_message_portal\n pub fn message_portal(&mut self, recipient: EthAddress, content: Field) {\n let message = L2ToL1Message { recipient, content };\n self.l2_to_l1_msgs.push(message.count(self.next_counter()));\n }\n\n /// Consumes a message sent from Ethereum (L1) to Aztec (L2).\n ///\n /// Common use cases include token bridging, cross-chain governance, and\n /// triggering L2 actions based on L1 events.\n ///\n /// Use this function if you only want the message to ever be \"referred to\"\n /// once. Once consumed using this method, the message cannot be consumed\n /// again, because a nullifier is emitted.\n /// If your use case wants for the message to be read unlimited times, then\n /// you can always read any historic message from the L1-to-L2 messages tree;\n /// messages never technically get deleted from that tree.\n ///\n /// The message will first be inserted into an Aztec \"Inbox\" smart contract\n /// on L1.\n /// Sending the message will not result in any immediate state changes in\n /// the target L2 contract. The message will need to be manually\n /// consumed by the target contract through a separate Aztec transaction.\n /// The message will not be available for consumption immediately. Messages\n /// get copied over from the L1 Inbox to L2 by the next Proposer in batches.\n /// So you will need to wait until the messages are copied before you can\n /// consume them.\n ///\n /// # Arguments\n /// * `content` - The message content that was sent from L1\n /// * `secret` - Secret value used for message privacy (if needed)\n /// * `sender` - Ethereum address that sent the message\n /// * `leaf_index` - Index of the message in the L1-to-L2 message tree\n ///\n /// # Advanced\n /// Validates message existence in the L1-to-L2 message tree and nullifies\n /// the message to prevent double-consumption.\n ///\n pub fn consume_l1_to_l2_message(\n &mut self,\n content: Field,\n secret: Field,\n sender: EthAddress,\n leaf_index: Field,\n ) {\n let nullifier = process_l1_to_l2_message(\n self.anchor_block_header.state.l1_to_l2_message_tree.root,\n self.this_address(),\n sender,\n self.chain_id(),\n self.version(),\n content,\n secret,\n leaf_index,\n );\n\n // Push nullifier (and the \"commitment\" corresponding to this can be \"empty\")\n self.push_nullifier(nullifier)\n }\n\n /// Emits a private log (an array of Fields) that will be published to an\n /// Ethereum blob.\n ///\n /// Private logs are intended for the broadcasting of ciphertexts: that is,\n /// encrypted events or encrypted note contents.\n /// Since the data in the logs is meant to be _encrypted_, private_logs are\n /// broadcast to publicly-visible Ethereum blobs.\n /// The intended recipients of such encrypted messages can then discover and\n /// decrypt these encrypted logs using their viewing secret key.\n /// (See `../messages/discovery` for more details).\n ///\n /// Important note: This function DOES NOT _do_ any encryption of the input\n /// `log` fields. This function blindly publishes whatever input `log` data\n /// is fed into it, so the caller of this function should have already\n /// performed the encryption, and the `log` should be the result of that\n /// encryption.\n ///\n /// The protocol does not dictate what encryption scheme should be used:\n /// a smart contract developer can choose whatever encryption scheme they\n /// like.\n /// Aztec-nr includes some off-the-shelf encryption libraries that\n /// developers might wish to use, for convenience. These libraries not only\n /// encrypt a plaintext (to produce a ciphertext); they also prepend the\n /// ciphertext with a `tag` and `ephemeral public key` for easier message\n /// discovery. This is a very dense topic, and we will be writing more\n /// libraries and docs soon.\n ///\n /// > Currently, AES128 CBC encryption is the main scheme included in\n /// > aztec.nr.\n /// > We are currently making significant changes to the interfaces of the\n /// > encryption library.\n ///\n /// In some niche use cases, an app might be tempted to publish\n /// _un-encrypted_ data via a private log, because _public logs_ are not\n /// available to private functions. Be warned that emitting public data via\n /// private logs is strongly discouraged, and is considered a \"privacy\n /// anti-pattern\", because it reveals identifiable information about _which_\n /// function has been executed. A tx which leaks such information does not\n /// contribute to the privacy set of the network.\n ///\n /// * Unlike `emit_raw_note_log`, this log is not tied to any specific note\n ///\n /// # Arguments\n /// * `log` - The log data that will be publicly broadcast (so make sure\n /// it's already been encrypted before you call this function).\n /// Private logs are bounded in size (PRIVATE_LOG_SIZE_IN_FIELDS), to\n /// encourage all logs from all smart contracts look identical.\n /// * `length` - The actual length of the `log` (measured in number of\n /// Fields). Although the input log has a max size of\n /// PRIVATE_LOG_SIZE_IN_FIELDS, the latter values of the array might all\n /// be 0's for small logs. This `length` should reflect the trimmed length\n /// of the array. The protocol's kernel circuits can then append random\n /// fields as \"padding\" after the `length`, so that the logs of this\n /// smart contract look indistinguishable from (the same length as) the\n /// logs of all other applications. It's up to wallets how much padding\n /// to apply, so ideally all wallets should agree on standards for this.\n ///\n /// # Advanced\n ///\n pub fn emit_private_log(&mut self, log: [Field; PRIVATE_LOG_SIZE_IN_FIELDS], length: u32) {\n let counter = self.next_counter();\n let private_log = PrivateLogData { log: PrivateLog::new(log, length), note_hash_counter: 0 }\n .count(counter);\n self.private_logs.push(private_log);\n }\n\n // TODO: rename.\n /// Emits a private log that is explicitly tied to a newly-emitted note_hash,\n /// to convey to the kernel: \"this log relates to this note\".\n ///\n /// This linkage is important in case the note gets squashed (due to being\n /// read later in this same tx), since we can then squash the log as well.\n ///\n /// See `emit_private_log` for more info about private log emission.\n ///\n /// # Arguments\n /// * `log` - The log data as an array of Field elements\n /// * `length` - The actual length of the `log` (measured in number of\n /// Fields).\n /// * `note_hash_counter` - The side-effect counter that was assigned to the\n /// new note_hash when it was pushed to this\n // `PrivateContext`.\n ///\n /// Important: If your application logic requires the log to always be\n /// emitted regardless of note squashing, consider using `emit_private_log`\n /// instead, or emitting additional events.\n ///\n pub fn emit_raw_note_log(\n &mut self,\n log: [Field; PRIVATE_LOG_SIZE_IN_FIELDS],\n length: u32,\n note_hash_counter: u32,\n ) {\n let counter = self.next_counter();\n let private_log = PrivateLogData { log: PrivateLog::new(log, length), note_hash_counter };\n self.private_logs.push(private_log.count(counter));\n }\n\n pub fn emit_contract_class_log<let N: u32>(&mut self, log: [Field; N]) {\n let contract_address = self.this_address();\n let counter = self.next_counter();\n\n let log_to_emit: [Field; CONTRACT_CLASS_LOG_SIZE_IN_FIELDS] =\n log.concat([0; CONTRACT_CLASS_LOG_SIZE_IN_FIELDS - N]);\n // Note: the length is not always N, it is the number of fields we want to broadcast, omitting trailing zeros to save blob space.\n // Safety: The below length is constrained in the base rollup, which will make sure that all the fields beyond length are zero.\n // However, it won't be able to check that we didn't add extra padding (trailing zeroes)\n let length = unsafe { trimmed_array_length_hint(log_to_emit) };\n // We hash the entire padded log to ensure a user cannot pass a shorter length and so emit incorrect shorter bytecode.\n let log_hash = poseidon2_hash(log_to_emit);\n // Safety: the below only exists to broadcast the raw log, so we can provide it to the base rollup later to be constrained.\n unsafe {\n notify_created_contract_class_log(contract_address, log_to_emit, length, counter);\n }\n\n self.contract_class_logs_hashes.push(LogHash { value: log_hash, length: length }.count(\n counter,\n ));\n }\n\n /// Calls a private function on another contract (or the same contract).\n ///\n /// Very low-level function.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `args` - Array of arguments to pass to the called function\n ///\n /// # Returns\n /// * `ReturnsHash` - Hash of the called function's return values. Use\n /// `.get_preimage()` to extract the actual return values.\n ///\n /// This enables contracts to interact with each other while maintaining\n /// privacy. This \"composability\" of private contract functions is a key\n /// feature of the Aztec network.\n ///\n /// If a user's transaction includes multiple private function calls, then\n /// by the design of Aztec, the following information will remain private[1]:\n /// - The function selectors and contract addresses of all private function\n /// calls will remain private, so an observer of the public mempool will\n /// not be able to look at a tx and deduce which private functions have\n /// been executed.\n /// - The arguments and return values of all private function calls will\n /// remain private.\n /// - The person who initiated the tx will remain private.\n /// - The notes and nullifiers and private logs that are emitted by all\n /// private function calls will (if designed well) not leak any user\n /// secrets, nor leak which functions have been executed.\n ///\n /// [1] Caveats: Some of these privacy guarantees depend on how app\n /// developers design their smart contracts. Some actions _can_ leak\n /// information, such as:\n /// - Calling an internal public function.\n /// - Calling a public function and not setting msg_sender to Option::none\n /// (feature not built yet - see github).\n /// - Calling any public function will always leak details about the nature\n /// of the transaction, so devs should be careful in their contract\n /// designs. If it can be done in a private function, then that will give\n /// the best privacy.\n /// - Not padding the side-effects of a tx to some standardised, uniform\n /// size. The kernel circuits can take hints to pad side-effects, so a\n /// wallet should be able to request for a particular amount of padding.\n /// Wallets should ideally agree on some standard.\n /// - Padding should include:\n /// - Padding the lengths of note & nullifier arrays\n /// - Padding private logs with random fields, up to some standardised\n /// size.\n /// See also: https://docs.aztec.network/developers/reference/considerations/privacy_considerations\n ///\n /// # Advanced\n /// * The call is added to the private call stack and executed by kernel\n /// circuits after this function completes\n /// * The called function can modify its own contract's private state\n /// * Side effects from the called function are included in this transaction\n /// * The call inherits the current transaction's context and gas limits\n ///\n pub fn call_private_function<let ArgsCount: u32>(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n args: [Field; ArgsCount],\n ) -> ReturnsHash {\n let args_hash = hash_args_array(args);\n execution_cache::store(args, args_hash);\n self.call_private_function_with_args_hash(\n contract_address,\n function_selector,\n args_hash,\n false,\n )\n }\n\n /// Makes a read-only call to a private function on another contract.\n ///\n /// This is similar to Solidity's `staticcall`. The called function\n /// cannot modify state, emit L2->L2 messages, nor emit events. Any nested\n /// calls are constrained to also be staticcalls.\n ///\n /// See `call_private_function` for more general info on private function\n /// calls.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract to call\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `args` - Array of arguments to pass to the called function\n ///\n /// # Returns\n /// * `ReturnsHash` - Hash of the called function's return values. Use\n /// `.get_preimage()` to extract the actual return values.\n ///\n pub fn static_call_private_function<let ArgsCount: u32>(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n args: [Field; ArgsCount],\n ) -> ReturnsHash {\n let args_hash = hash_args_array(args);\n execution_cache::store(args, args_hash);\n self.call_private_function_with_args_hash(\n contract_address,\n function_selector,\n args_hash,\n true,\n )\n }\n\n /// Calls a private function that takes no arguments.\n ///\n /// This is a convenience function for calling private functions that don't\n /// require any input parameters. It's equivalent to `call_private_function`\n /// but slightly more efficient to use when no arguments are needed.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n ///\n /// # Returns\n /// * `ReturnsHash` - Hash of the called function's return values. Use\n /// `.get_preimage()` to extract the actual return values.\n ///\n pub fn call_private_function_no_args(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n ) -> ReturnsHash {\n self.call_private_function_with_args_hash(contract_address, function_selector, 0, false)\n }\n\n /// Makes a read-only call to a private function which takes no arguments.\n ///\n /// This combines the optimisation of `call_private_function_no_args` with\n /// the safety of `static_call_private_function`.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n ///\n /// # Returns\n /// * `ReturnsHash` - Hash of the called function's return values. Use\n /// `.get_preimage()` to extract the actual return values.\n ///\n pub fn static_call_private_function_no_args(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n ) -> ReturnsHash {\n self.call_private_function_with_args_hash(contract_address, function_selector, 0, true)\n }\n\n /// Low-level private function call.\n ///\n /// This is the underlying implementation used by all other private function\n /// call methods. Instead of taking raw arguments, it accepts a\n /// hash of the arguments.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `args_hash` - Pre-computed hash of the function arguments\n /// * `is_static_call` - Whether this should be a read-only call\n ///\n /// # Returns\n /// * `ReturnsHash` - Hash of the called function's return values\n ///\n pub fn call_private_function_with_args_hash(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n args_hash: Field,\n is_static_call: bool,\n ) -> ReturnsHash {\n let mut is_static_call = is_static_call | self.inputs.call_context.is_static_call;\n let start_side_effect_counter = self.side_effect_counter;\n\n // Safety: The oracle simulates the private call and returns the value of the side effects counter after\n // execution of the call (which means that end_side_effect_counter - start_side_effect_counter is\n // the number of side effects that took place), along with the hash of the return values. We validate these\n // by requesting a private kernel iteration in which the return values are constrained to hash\n // to `returns_hash` and the side effects counter to increment from start to end.\n let (end_side_effect_counter, returns_hash) = unsafe {\n call_private_function_internal(\n contract_address,\n function_selector,\n args_hash,\n start_side_effect_counter,\n is_static_call,\n )\n };\n\n self.private_call_requests.push(\n PrivateCallRequest {\n call_context: CallContext {\n msg_sender: self.this_address(),\n contract_address,\n function_selector,\n is_static_call,\n },\n args_hash,\n returns_hash,\n start_side_effect_counter,\n end_side_effect_counter,\n },\n );\n\n // TODO (fees) figure out why this crashes the prover and enable it\n // we need this in order to pay fees inside child call contexts\n // assert(\n // (item.public_inputs.min_revertible_side_effect_counter == 0 as u32)\n // | (item.public_inputs.min_revertible_side_effect_counter\n // > self.min_revertible_side_effect_counter)\n // );\n // if item.public_inputs.min_revertible_side_effect_counter\n // > self.min_revertible_side_effect_counter {\n // self.min_revertible_side_effect_counter = item.public_inputs.min_revertible_side_effect_counter;\n // }\n self.side_effect_counter = end_side_effect_counter + 1; // TODO: call `next_counter` instead, for consistency\n ReturnsHash::new(returns_hash)\n }\n\n /// Enqueues a call to a public function to be executed later.\n ///\n /// Unlike private functions which execute immediately on the user's device,\n /// public function calls are \"enqueued\" and executed some time later by a\n /// block proposer.\n ///\n /// This means a public function cannot return any values back to a private\n /// function, because by the time the public function is being executed,\n /// the private function which called it has already completed execution.\n /// (In fact, the private function has been executed and proven, along with\n /// all other private function calls of the user's tx. A single proof of the\n /// tx has been submitted to the Aztec network, and some time later a\n /// proposer has picked the tx up from the mempool and begun executing all\n /// of the enqueued public functions).\n ///\n /// # Privacy warning\n /// Enqueueing a public function call is an inherently leaky action.\n /// Many interesting applications will require some interaction with public\n /// state, but smart contract developers should try to use public function\n /// calls sparingly, and carefully.\n /// _Internal_ public function calls are especially leaky, because they\n /// completely leak which private contract made the call.\n /// See also: https://docs.aztec.network/developers/reference/considerations/privacy_considerations\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `args` - Array of arguments to pass to the public function\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n ///\n pub fn call_public_function<let ArgsCount: u32>(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n args: [Field; ArgsCount],\n hide_msg_sender: bool,\n ) {\n let calldata = [function_selector.to_field()].concat(args);\n let calldata_hash = hash_calldata_array(calldata);\n execution_cache::store(calldata, calldata_hash);\n self.call_public_function_with_calldata_hash(\n contract_address,\n calldata_hash,\n false,\n hide_msg_sender,\n )\n }\n\n /// Enqueues a read-only call to a public function.\n ///\n /// This is similar to Solidity's `staticcall`. The called function\n /// cannot modify state or emit events. Any nested calls are constrained to\n /// also be staticcalls.\n ///\n /// See also `call_public_function` for more important information about\n /// making private -> public function calls.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `args` - Array of arguments to pass to the public function\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n ///\n pub fn static_call_public_function<let ArgsCount: u32>(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n args: [Field; ArgsCount],\n hide_msg_sender: bool,\n ) {\n let calldata = [function_selector.to_field()].concat(args);\n let calldata_hash = hash_calldata_array(calldata);\n execution_cache::store(calldata, calldata_hash);\n self.call_public_function_with_calldata_hash(\n contract_address,\n calldata_hash,\n true,\n hide_msg_sender,\n )\n }\n\n /// Enqueues a call to a public function that takes no arguments.\n ///\n /// This is an optimisation for calling public functions that don't\n /// take any input parameters. It's otherwise equivalent to\n /// `call_public_function`.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n ///\n pub fn call_public_function_no_args(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n hide_msg_sender: bool,\n ) {\n let calldata_hash = hash_calldata_array([function_selector.to_field()]);\n self.call_public_function_with_calldata_hash(\n contract_address,\n calldata_hash,\n false,\n hide_msg_sender,\n )\n }\n\n /// Enqueues a read-only call to a public function with no arguments.\n ///\n /// This combines the optimisation of `call_public_function_no_args` with\n /// the safety of `static_call_public_function`.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n ///\n pub fn static_call_public_function_no_args(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n hide_msg_sender: bool,\n ) {\n let calldata_hash = hash_calldata_array([function_selector.to_field()]);\n self.call_public_function_with_calldata_hash(\n contract_address,\n calldata_hash,\n true,\n hide_msg_sender,\n )\n }\n\n /// Low-level public function call.\n ///\n /// This is the underlying implementation used by all other public function\n /// call methods. Instead of taking raw arguments, it accepts a\n /// hash of the arguments.\n ///\n /// Advanced function: Most developers should use `call_public_function`\n /// or `static_call_public_function` instead. This function is exposed for\n /// performance optimization and advanced use cases.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `calldata_hash` - Hash of the function calldata\n /// * `is_static_call` - Whether this should be a read-only call\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n ///\n pub fn call_public_function_with_calldata_hash(\n &mut self,\n contract_address: AztecAddress,\n calldata_hash: Field,\n is_static_call: bool,\n hide_msg_sender: bool,\n ) {\n let counter = self.next_counter();\n\n let mut is_static_call = is_static_call | self.inputs.call_context.is_static_call;\n\n notify_enqueued_public_function_call(\n contract_address,\n calldata_hash,\n counter,\n is_static_call,\n );\n\n let msg_sender = if hide_msg_sender {\n NULL_MSG_SENDER_CONTRACT_ADDRESS\n } else {\n self.this_address()\n };\n\n let call_request =\n PublicCallRequest { msg_sender, contract_address, is_static_call, calldata_hash };\n\n self.public_call_requests.push(Counted::new(call_request, counter));\n }\n\n /// Enqueues a public function call, and designates it to be the teardown\n /// function for this tx. Only one teardown function call can be made by a\n /// tx.\n ///\n /// Niche function: Only wallet developers and paymaster contract developers\n /// (aka Fee-payment contracts) will need to make use of this function.\n ///\n /// Aztec supports a three-phase execution model: setup, app logic, teardown.\n /// The phases exist to enable a fee payer to take on the risk of paying\n /// a transaction fee, safe in the knowledge that their payment (in whatever\n /// token or method the user chooses) will succeed, regardless of whether\n /// the app logic will succeed. The \"setup\" phase ensures the fee payer\n /// has sufficient balance to pay the proposer their fees.\n /// The teardown phase is primarily intended to: calculate exactly\n /// how much the user owes, based on gas consumption, and refund the user\n /// any change.\n ///\n /// Note: in some cases, the cost of refunding the user (i.e. DA costs of\n /// tx side-effects) might exceed the refund amount. For app logic with\n /// fairly stable and predictable gas consumption, a material refund amount\n /// is unlikely. For app logic with unpredictable gas consumption, a\n /// refund might be important to the user (e.g. if a hefty function reverts\n /// very early). Wallet/FPC/Paymaster developers should be mindful of this.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the teardown\n /// function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `args` - An array of fields to pass to the function.\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n pub fn set_public_teardown_function<let ArgsCount: u32>(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n args: [Field; ArgsCount],\n hide_msg_sender: bool,\n ) {\n let calldata = [function_selector.to_field()].concat(args);\n let calldata_hash = hash_calldata_array(calldata);\n execution_cache::store(calldata, calldata_hash);\n self.set_public_teardown_function_with_calldata_hash(\n contract_address,\n calldata_hash,\n false,\n hide_msg_sender,\n )\n }\n\n /// Low-level function to set the public teardown function.\n ///\n /// This is the underlying implementation for setting the teardown function\n /// call that will execute at the end of the transaction. Instead of taking\n /// raw arguments, it accepts a hash of the arguments.\n ///\n /// Advanced function: Most developers should use\n /// `set_public_teardown_function` instead.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the teardown\n /// function\n /// * `calldata_hash` - Hash of the function calldata\n /// * `is_static_call` - Whether this should be a read-only call\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n ///\n pub fn set_public_teardown_function_with_calldata_hash(\n &mut self,\n contract_address: AztecAddress,\n calldata_hash: Field,\n is_static_call: bool,\n hide_msg_sender: bool,\n ) {\n let counter = self.next_counter();\n\n let mut is_static_call = is_static_call | self.inputs.call_context.is_static_call;\n\n notify_set_public_teardown_function_call(\n contract_address,\n calldata_hash,\n counter,\n is_static_call,\n );\n\n let msg_sender = if hide_msg_sender {\n NULL_MSG_SENDER_CONTRACT_ADDRESS\n } else {\n self.this_address()\n };\n\n self.public_teardown_call_request =\n PublicCallRequest { msg_sender, contract_address, is_static_call, calldata_hash };\n }\n\n /// Increments the side-effect counter.\n ///\n /// Very low-level function.\n ///\n /// # Advanced\n ///\n /// Every side-effect of a private function is given a \"side-effect counter\",\n /// based on when it is created. This PrivateContext is in charge of\n /// assigning the counters.\n ///\n /// The reason we have side-effect counters is complicated. Consider this\n /// illustrative pseudocode of inter-contract function calls:\n /// ```\n /// contract A {\n /// let x = 5; // pseudocode for storage var x.\n /// fn a1 {\n /// read x; // value: 5, counter: 1.\n /// x = x + 1;\n /// write x; // value: 6, counter: 2.\n ///\n /// B.b(); // start_counter: 2, end_counter: 4\n ///\n /// read x; // value: 36, counter: 5.\n /// x = x + 1;\n /// write x; // value: 37, counter: 6.\n /// }\n ///\n /// fn a2 {\n /// read x; // value: 6, counter: 3.\n /// x = x * x;\n /// write x; // value: 36, counter: 4.\n /// }\n /// }\n ///\n /// contract B {\n /// fn b() {\n /// A.a2();\n /// }\n /// }\n /// ```\n ///\n /// Suppose a1 is the first function called. The comments show the execution\n /// counter of each side-effect, and what the new value of `x` is.\n ///\n /// These (private) functions are processed by Aztec's kernel circuits in an\n /// order that is different from execution order:\n /// All of A.a1 is proven before B.b is proven, before A.a2 is proven.\n /// So when we're in the 2nd execution frame of A.a1 (after the call to\n /// B.b), the circuit needs to justify why x went from being `6` to `36`.\n /// But the circuit doesn't know why, and given the order of proving, the\n /// kernel hasn't _seen_ a value of 36 get written yet.\n /// The kernel needs to track big arrays of all side-effects of all\n /// private functions in a tx. Then, as it recurses and processes B.b(), it\n /// will eventually see a value of 36 get written.\n ///\n /// Suppose side-effect counters weren't exposed:\n /// The kernel would only see this ordering (in order of proof verification):\n /// [ A.a1.read, A.a1.write, A.a1.read, A.a1.write, A.a2.read, A.a2.write ]\n /// [ 5, 6, 36, 37, 6, 36 ]\n /// The kernel wouldn't know _when_ B.b() was called within A.a1(), because\n /// it can't see what's going on within an app circuit. So the kernel\n /// wouldn't know that the ordering of reads and writes should actually be:\n /// [ A.a1.read, A.a1.write, A.a2.read, A.a2.write, A.a1.read, A.a1.write ]\n /// [ 5, 6, 6, 36, 36, 37 ]\n ///\n /// And so, we introduced side-effect counters: every private function must\n /// assign side-effect counters alongside every side-effect that it emits,\n /// and also expose to the kernel the counters that it started and ended\n /// with.\n /// This gives the kernel enough information to arrange all side-effects in\n /// the correct order.\n /// It can then catch (for example) if a function tries to read state\n /// before it has been written (e.g. if A.a2() maliciously tried to read\n /// a value of x=37) (e.g. if A.a1() maliciously tried to read x=6).\n ///\n /// If a malicious app contract _lies_ and does not count correctly:\n /// - It cannot lie about its start and end counters because the kernel\n /// will catch this.\n /// - It _could_ lie about its intermediate counters:\n /// - 1. It could not increment its side-effects correctly\n /// - 2. It could label its side-effects with counters outside of its\n /// start and end counters' range.\n /// The kernel will catch 2.\n /// The kernel will not catch 1., but this would only cause corruption\n /// to the private state of the malicious contract, and not any other\n /// contracts (because a contract can only modify its own state). If\n /// a \"good\" contract is given _read access_ to a maliciously-counting\n /// contract (via an external getter function, or by reading historic\n /// state from the archive tree directly), and they then make state\n /// changes to their _own_ state accordingly, that could be dangerous.\n /// Developers should be mindful not to trust the claimed innards of\n /// external contracts unless they have audited/vetted the contracts\n /// including vetting the side-effect counter incrementation.\n /// This is a similar paradigm to Ethereum smart contract development:\n /// you must vet external contracts that your contract relies upon, and\n /// you must not make any presumptions about their claimed behaviour.\n /// (Hopefully if a contract imports a version of aztec-nr, we will get\n /// contract verification tooling that can validate the authenticity\n /// of the imported aztec-nr package, and hence infer that the side-\n /// effect counting will be correct, without having to re-audit such logic\n /// for every contract).\n ///\n fn next_counter(&mut self) -> u32 {\n let counter = self.side_effect_counter;\n self.side_effect_counter += 1;\n counter\n }\n}\n\nimpl Empty for PrivateContext {\n fn empty() -> Self {\n PrivateContext {\n inputs: PrivateContextInputs::empty(),\n side_effect_counter: 0 as u32,\n min_revertible_side_effect_counter: 0 as u32,\n is_fee_payer: false,\n args_hash: 0,\n return_hash: 0,\n include_by_timestamp: 0,\n note_hash_read_requests: BoundedVec::new(),\n nullifier_read_requests: BoundedVec::new(),\n key_validation_requests_and_generators: BoundedVec::new(),\n note_hashes: BoundedVec::new(),\n nullifiers: BoundedVec::new(),\n private_call_requests: BoundedVec::new(),\n public_call_requests: BoundedVec::new(),\n public_teardown_call_request: PublicCallRequest::empty(),\n l2_to_l1_msgs: BoundedVec::new(),\n anchor_block_header: BlockHeader::empty(),\n private_logs: BoundedVec::new(),\n contract_class_logs_hashes: BoundedVec::new(),\n last_key_validation_requests: [Option::none(); NUM_KEY_TYPES],\n }\n }\n}\n"
7003
+ "source": "use crate::{\n context::{inputs::PrivateContextInputs, returns_hash::ReturnsHash},\n hash::{hash_args_array, hash_calldata_array},\n keys::constants::{NULLIFIER_INDEX, NUM_KEY_TYPES, OUTGOING_INDEX, sk_generators},\n messaging::process_l1_to_l2_message,\n oracle::{\n block_header::get_block_header_at,\n call_private_function::call_private_function_internal,\n enqueue_public_function_call::{\n notify_enqueued_public_function_call, notify_set_min_revertible_side_effect_counter,\n notify_set_public_teardown_function_call,\n },\n execution_cache,\n key_validation_request::get_key_validation_request,\n logs::notify_created_contract_class_log,\n notes::{notify_created_nullifier, notify_nullified_note},\n },\n};\nuse dep::protocol_types::{\n abis::{\n block_header::BlockHeader,\n call_context::CallContext,\n function_selector::FunctionSelector,\n gas_settings::GasSettings,\n log_hash::LogHash,\n note_hash::NoteHash,\n nullifier::Nullifier,\n private_call_request::PrivateCallRequest,\n private_circuit_public_inputs::PrivateCircuitPublicInputs,\n private_log::{PrivateLog, PrivateLogData},\n public_call_request::PublicCallRequest,\n validation_requests::{KeyValidationRequest, KeyValidationRequestAndGenerator},\n },\n address::{AztecAddress, EthAddress},\n constants::{\n CONTRACT_CLASS_LOG_SIZE_IN_FIELDS, MAX_CONTRACT_CLASS_LOGS_PER_CALL,\n MAX_ENQUEUED_CALLS_PER_CALL, MAX_INCLUDE_BY_TIMESTAMP_DURATION,\n MAX_KEY_VALIDATION_REQUESTS_PER_CALL, MAX_L2_TO_L1_MSGS_PER_CALL,\n MAX_NOTE_HASH_READ_REQUESTS_PER_CALL, MAX_NOTE_HASHES_PER_CALL,\n MAX_NULLIFIER_READ_REQUESTS_PER_CALL, MAX_NULLIFIERS_PER_CALL,\n MAX_PRIVATE_CALL_STACK_LENGTH_PER_CALL, MAX_PRIVATE_LOGS_PER_CALL,\n NULL_MSG_SENDER_CONTRACT_ADDRESS, PRIVATE_LOG_SIZE_IN_FIELDS,\n },\n hash::poseidon2_hash,\n messaging::l2_to_l1_message::L2ToL1Message,\n side_effect::Counted,\n traits::{Empty, Hash, ToField},\n utils::arrays::{ClaimedLengthArray, trimmed_array_length_hint},\n};\n\n/// # PrivateContext\n///\n/// The **main interface** between an #[external(\"private\")] function and the Aztec blockchain.\n///\n/// An instance of the PrivateContext is initialized automatically at the outset\n/// of every private function, within the #[external(\"private\")] macro, so you'll never\n/// need to consciously instantiate this yourself.\n///\n/// The instance is always named `context`, and it is always be available within\n/// the body of every #[external(\"private\")] function in your smart contract.\n///\n/// > For those used to \"vanilla\" Noir, it might be jarring to have access to\n/// > `context` without seeing a declaration `let context = PrivateContext::new(...)`\n/// > within the body of your function. This is just a consequence of using\n/// > macros to tidy-up verbose boilerplate. You can use `nargo expand` to\n/// > expand all macros, if you dare.\n///\n/// Typical usage for a smart contract developer will be to call getter\n/// methods of the PrivateContext.\n///\n/// _Pushing_ data and requests to the context is mostly handled within\n/// aztec-nr's own functions, so typically a smart contract developer won't\n/// need to call any setter methods directly.\n///\n/// > Advanced users might occasionally wish to push data to the context\n/// > directly for lower-level control. If you find yourself doing this, please\n/// > open an issue on GitHub to describe your use case: it might be that\n/// > new functionality should be added to aztec-nr.\n///\n/// ## Responsibilities\n/// - Exposes contextual data to a private function:\n/// - Data relating to how this private function was called.\n/// - msg_sender\n/// - this_address - (the contract address of the private function being\n/// executed)\n/// - See `CallContext` for more data.\n/// - Data relating to the transaction in which this private function is\n/// being executed.\n/// - chain_id\n/// - version\n/// - gas_settings\n/// - Provides state access:\n/// - Access to the \"Anchor block\" header.\n/// Recall, a private function cannot read from the \"current\" block header,\n/// but must read from some historical block header, because as soon as\n/// private function execution begins (asynchronously, on a user's device),\n/// the public state of the chain (the \"current state\") will have progressed\n/// forward. We call this reference the \"Anchor block\".\n/// See `BlockHeader`.\n/// - Enables consumption of L1->L2 messages.\n/// - Enables calls to functions of other smart contracts:\n/// - Private function calls\n/// - Enqueueing of public function call requests\n/// (Since public functions are executed at a later time, by a block\n/// proposer, we say they are \"enqueued\").\n/// - Writes data to the blockchain:\n/// - New notes\n/// - New nullifiers\n/// - Private logs (for sending encrypted note contents or encrypted events)\n/// - New L2->L1 messages.\n/// - Provides args to the private function (handled by the #[external(\"private\")] macro).\n/// - Returns the return values of this private function (handled by the\n/// #[external(\"private\")] macro).\n/// - Makes Key Validation Requests.\n/// - Private functions are not allowed to see master secret keys, because we\n/// do not trust them. They are instead given \"app-siloed\" secret keys with\n/// a claim that they relate to a master public key. They can then request\n/// validation of this claim, by making a \"key validation request\" to the\n/// protocol's kernel circuits (which _are_ allowed to see certain master\n/// secret keys).\n///\n/// ## Advanced Responsibilities\n///\n/// - Ultimately, the PrivateContext is responsible for constructing the\n/// PrivateCircuitPublicInputs of the private function being executed.\n/// All private functions on Aztec must have public inputs which adhere\n/// to the rigid layout of the PrivateCircuitPublicInputs, in order to be\n/// compatible with the protocol's kernel circuits.\n/// A well-known misnomer:\n/// - \"public inputs\" contain both inputs and outputs of this function.\n/// - By \"outputs\" we mean a lot more side-effects than just the\n/// \"return values\" of the function.\n/// - Most of the so-called \"public inputs\" are kept _private_, and never leak\n/// to the outside world, because they are 'swallowed' by the protocol's\n/// kernel circuits before the tx is sent to the network. Only the\n/// following are exposed to the outside world:\n/// - New note_hashes\n/// - New nullifiers\n/// - New private logs\n/// - New L2->L1 messages\n/// - New enqueued public function call requests\n/// All the above-listed arrays of side-effects can be padded by the\n/// user's wallet (through instructions to the kernel circuits, via the\n/// PXE) to obscure their true lengths.\n///\n/// ## Syntax Justification\n///\n/// Both user-defined functions _and_ most functions in aztec-nr need access to\n/// the PrivateContext instance to read/write data. This is why you'll see the\n/// arguably-ugly pervasiveness of the \"context\" throughout your smart contract\n/// and the aztec-nr library.\n/// For example, `&mut context` is prevalent. In some languages, you can access\n/// and mutate a global variable (such as a PrivateContext instance) from a\n/// function without polluting the function's parameters. With Noir, a function\n/// must explicitly pass control of a mutable variable to another function, by\n/// reference. Since many functions in aztec-nr need to be able to push new data\n/// to the PrivateContext, they need to be handed a mutable reference _to_ the\n/// context as a parameter.\n/// For example, `Context` is prevalent as a generic parameter, to give better\n/// type safety at compile time. Many `aztec-nr` functions don't make sense if\n/// they're called in a particular runtime (private, public or utility), and so\n/// are intentionally only implemented over certain\n/// [Private|Public|Utility]Context structs. This gives smart contract\n/// developers a much faster feedback loop if they're making a mistake, as an\n/// error will be thrown by the LSP or when they compile their contract.\n///\n#[derive(Eq)]\npub struct PrivateContext {\n // docs:start:private-context\n pub inputs: PrivateContextInputs,\n pub side_effect_counter: u32,\n\n pub min_revertible_side_effect_counter: u32,\n pub is_fee_payer: bool,\n\n pub args_hash: Field,\n pub return_hash: Field,\n\n pub include_by_timestamp: u64,\n\n pub note_hash_read_requests: BoundedVec<Counted<Field>, MAX_NOTE_HASH_READ_REQUESTS_PER_CALL>,\n pub nullifier_read_requests: BoundedVec<Counted<Field>, MAX_NULLIFIER_READ_REQUESTS_PER_CALL>,\n key_validation_requests_and_generators: BoundedVec<KeyValidationRequestAndGenerator, MAX_KEY_VALIDATION_REQUESTS_PER_CALL>,\n\n pub note_hashes: BoundedVec<Counted<NoteHash>, MAX_NOTE_HASHES_PER_CALL>,\n pub nullifiers: BoundedVec<Counted<Nullifier>, MAX_NULLIFIERS_PER_CALL>,\n\n pub private_call_requests: BoundedVec<PrivateCallRequest, MAX_PRIVATE_CALL_STACK_LENGTH_PER_CALL>,\n pub public_call_requests: BoundedVec<Counted<PublicCallRequest>, MAX_ENQUEUED_CALLS_PER_CALL>,\n pub public_teardown_call_request: PublicCallRequest,\n pub l2_to_l1_msgs: BoundedVec<Counted<L2ToL1Message>, MAX_L2_TO_L1_MSGS_PER_CALL>,\n // docs:end:private-context\n\n // Header of a block whose state is used during private execution (not the block the transaction is included in).\n pub anchor_block_header: BlockHeader,\n\n pub private_logs: BoundedVec<Counted<PrivateLogData>, MAX_PRIVATE_LOGS_PER_CALL>,\n pub contract_class_logs_hashes: BoundedVec<Counted<LogHash>, MAX_CONTRACT_CLASS_LOGS_PER_CALL>,\n\n // Contains the last key validation request for each key type. This is used to cache the last request and avoid\n // fetching the same request multiple times.\n // The index of the array corresponds to the key type (0 nullifier, 1 incoming, 2 outgoing, 3 tagging).\n pub last_key_validation_requests: [Option<KeyValidationRequest>; NUM_KEY_TYPES],\n}\n\nimpl PrivateContext {\n pub fn new(inputs: PrivateContextInputs, args_hash: Field) -> PrivateContext {\n let max_allowed_include_by_timestamp = inputs.anchor_block_header.global_variables.timestamp\n + MAX_INCLUDE_BY_TIMESTAMP_DURATION;\n PrivateContext {\n inputs,\n side_effect_counter: inputs.start_side_effect_counter + 1,\n min_revertible_side_effect_counter: 0,\n is_fee_payer: false,\n args_hash,\n return_hash: 0,\n include_by_timestamp: max_allowed_include_by_timestamp,\n note_hash_read_requests: BoundedVec::new(),\n nullifier_read_requests: BoundedVec::new(),\n key_validation_requests_and_generators: BoundedVec::new(),\n note_hashes: BoundedVec::new(),\n nullifiers: BoundedVec::new(),\n anchor_block_header: inputs.anchor_block_header,\n private_call_requests: BoundedVec::new(),\n public_call_requests: BoundedVec::new(),\n public_teardown_call_request: PublicCallRequest::empty(),\n l2_to_l1_msgs: BoundedVec::new(),\n private_logs: BoundedVec::new(),\n contract_class_logs_hashes: BoundedVec::new(),\n last_key_validation_requests: [Option::none(); NUM_KEY_TYPES],\n }\n }\n\n /// Returns the contract address that initiated this function call.\n ///\n /// This is similar to `msg.sender` in Solidity (hence the name).\n ///\n /// Important Note: Since Aztec doesn't have a concept of an EoA (\n /// Externally-owned Account), the msg_sender is \"null\" for the first\n /// function call of every transaction.\n /// The first function call of a tx is likely to be a call to the user's\n /// account contract, so this quirk will most often be handled by account\n /// contract developers.\n ///\n /// # Returns\n /// * `Option<AztecAddress>` - The address of the smart contract that called\n /// this function (be it an app contract or a user's account contract).\n /// Returns `Option<AztecAddress>::none` for the first function call of\n /// the tx. No other _private_ function calls in the tx will have a `none`\n /// msg_sender, but _public_ function calls might (see the PublicContext).\n ///\n pub fn msg_sender(self) -> Option<AztecAddress> {\n let maybe_msg_sender = self.inputs.call_context.msg_sender;\n if maybe_msg_sender == NULL_MSG_SENDER_CONTRACT_ADDRESS {\n Option::none()\n } else {\n Option::some(maybe_msg_sender)\n }\n }\n\n /// \"Unsafe\" versus calling `context.msg_sender()`, because it doesn't\n /// translate `NULL_MSG_SENDER_CONTRACT_ADDRESS` as\n /// `Option<AztecAddress>::none`.\n /// Used by some internal aztecnr functions.\n pub fn msg_sender_unsafe(self) -> AztecAddress {\n self.inputs.call_context.msg_sender\n }\n\n /// Returns the contract address of the current function being executed.\n ///\n /// This is equivalent to `address(this)` in Solidity (hence the name).\n /// Use this to identify the current contract's address, commonly needed for\n /// access control or when interacting with other contracts.\n ///\n /// # Returns\n /// * `AztecAddress` - The contract address of the current function being\n /// executed.\n ///\n pub fn this_address(self) -> AztecAddress {\n self.inputs.call_context.contract_address\n }\n\n /// Returns the chain ID of the current network.\n ///\n /// This is similar to `block.chainid` in Solidity. Returns the unique\n /// identifier for the blockchain network this transaction is executing on.\n ///\n /// Helps prevent cross-chain replay attacks. Useful if implementing\n /// multi-chain contract logic.\n ///\n /// # Returns\n /// * `Field` - The chain ID as a field element\n ///\n pub fn chain_id(self) -> Field {\n self.inputs.tx_context.chain_id\n }\n\n /// Returns the Aztec protocol version that this transaction is executing\n /// under. Different versions may have different rules, opcodes, or\n /// cryptographic primitives.\n ///\n /// This is similar to how Ethereum has different EVM versions.\n ///\n /// Useful for forward/backward compatibility checks\n ///\n /// Not to be confused with contract versions; this is the protocol version.\n ///\n /// # Returns\n /// * `Field` - The protocol version as a field element\n ///\n pub fn version(self) -> Field {\n self.inputs.tx_context.version\n }\n\n /// Returns the gas settings for the current transaction.\n ///\n /// This provides information about gas limits and pricing for the\n /// transaction, similar to `tx.gasprice` and gas limits in Ethereum.\n /// However, Aztec has a more sophisticated gas model with separate\n /// accounting for L2 computation and data availability (DA) costs.\n ///\n /// # Returns\n /// * `GasSettings` - Struct containing gas limits and fee information\n ///\n pub fn gas_settings(self) -> GasSettings {\n self.inputs.tx_context.gas_settings\n }\n\n /// Returns the function selector of the currently executing function.\n ///\n /// Low-level function: Ordinarily, smart contract developers will not need\n /// to access this.\n ///\n /// This is similar to `msg.sig` in Solidity, which returns the first 4\n /// bytes of the function signature. In Aztec, the selector uniquely\n /// identifies which function within the contract is being called.\n ///\n /// # Returns\n /// * `FunctionSelector` - The 4-byte function identifier\n ///\n /// # Advanced\n /// Only #[external(\"private\")] functions have a function selector as a protocol-\n /// enshrined concept. The function selectors of private functions are\n /// baked into the preimage of the contract address, and are used by the\n /// protocol's kernel circuits to identify each private function and ensure\n /// the correct one is being executed.\n ///\n /// Used internally for function dispatch and call verification.\n ///\n pub fn selector(self) -> FunctionSelector {\n self.inputs.call_context.function_selector\n }\n\n /// Returns the hash of the arguments passed to the current function.\n ///\n /// Very low-level function: You shouldn't need to call this. The #[external(\"private\")]\n /// macro calls this, and it makes the arguments neatly available to the\n /// body of your private function.\n ///\n /// # Returns\n /// * `Field` - Hash of the function arguments\n ///\n /// # Advanced\n /// * Arguments are hashed to reduce proof size and verification time\n /// * Enables efficient argument passing in recursive function calls\n /// * The hash can be used to retrieve the original arguments from the PXE.\n ///\n pub fn get_args_hash(self) -> Field {\n self.args_hash\n }\n\n /// Pushes a new note_hash to the Aztec blockchain's global Note Hash Tree\n /// (a state tree).\n ///\n /// A note_hash is a commitment to a piece of private state.\n ///\n /// Low-level function: Ordinarily, smart contract developers will not need\n /// to manually call this. Aztec-nr's state variables (see `../state_vars/`)\n /// are designed to understand when to create and push new note hashes.\n ///\n /// # Arguments\n /// * `note_hash` - The new note_hash.\n ///\n /// # Advanced\n /// From here, the protocol's kernel circuits will take over and insert the\n /// note_hash into the protocol's \"note hash tree\" (in the Base Rollup\n /// circuit).\n /// Before insertion, the protocol will:\n /// - \"Silo\" the `note_hash` with the contract address of this function,\n /// to yield a `siloed_note_hash`. This prevents state collisions\n /// between different smart contracts.\n /// - Ensure uniqueness of the `siloed_note_hash`, to prevent Faerie-Gold\n /// attacks, by hashing the `siloed_note_hash` with a unique value, to\n /// yield a `unique_siloed_note_hash` (see the protocol spec for more).\n ///\n /// In addition to calling this function, aztec-nr provides the contents\n /// of the newly-created note to the PXE, via the `notify_created_note`\n /// oracle.\n ///\n /// > Advanced users might occasionally wish to push data to the context\n /// > directly for lower-level control. If you find yourself doing this,\n /// > please open an issue on GitHub to describe your use case: it might be\n /// > that new functionality should be added to aztec-nr.\n ///\n pub fn push_note_hash(&mut self, note_hash: Field) {\n self.note_hashes.push(Counted::new(note_hash, self.next_counter()));\n }\n\n /// Pushes a new nullifier to the Aztec blockchain's global Nullifier Tree\n /// (a state tree).\n ///\n /// See also: `push_nullifier_for_note_hash`.\n ///\n /// Low-level function: Ordinarily, smart contract developers will not need\n /// to manually call this. Aztec-nr's state variables (see `../state_vars/`)\n /// are designed to understand when to create and push new nullifiers.\n ///\n /// A nullifier can only be emitted once. Duplicate nullifier insertions are\n /// rejected by the protocol.\n ///\n /// Generally, a nullifier is emitted to prevent an action from happening\n /// more than once, in such a way that the action cannot be linked (by an\n /// observer of the blockchain) to any earlier transactions.\n ///\n /// I.e. a nullifier is a random-looking, but deterministic record of a\n /// private, one-time action, which does not leak what action has been\n /// taken, and which preserves the property of \"tx unlinkability\".\n ///\n /// Usually, a nullifier will be emitted to \"spend\" a note (a piece of\n /// private state), without revealing which specific note is being spent.\n ///\n /// (Important: in such cases, use the below `push_nullifier_for_note_hash`).\n ///\n /// Sometimes, a nullifier might be emitted completely unrelated to any\n /// notes. Examples include initialization of a new contract; initialization\n /// of a PrivateMutable, or signalling in Semaphore-like applications.\n /// This `push_nullifier` function serves such use cases.\n ///\n /// # Arguments\n /// * `nullifier`\n ///\n /// # Advanced\n /// From here, the protocol's kernel circuits will take over and insert the\n /// nullifier into the protocol's \"nullifier tree\" (in the Base Rollup\n /// circuit).\n /// Before insertion, the protocol will:\n /// - \"Silo\" the `nullifier` with the contract address of this function,\n /// to yield a `siloed_nullifier`. This prevents state collisions\n /// between different smart contracts.\n /// - Ensure the `siloed_nullifier` is unique (the nullifier tree is an\n /// indexed merkle tree which supports efficient non-membership proofs).\n ///\n pub fn push_nullifier(&mut self, nullifier: Field) {\n notify_created_nullifier(nullifier);\n self.nullifiers.push(Nullifier { value: nullifier, note_hash: 0 }.count(self.next_counter()));\n }\n\n /// Pushes a nullifier that corresponds to a specific note hash.\n ///\n /// Low-level function: Ordinarily, smart contract developers will not need\n /// to manually call this. Aztec-nr's state variables (see `../state_vars/`)\n /// are designed to understand when to create and push new nullifiers.\n ///\n /// This is a specialized version of `push_nullifier` that links a nullifier\n /// to the specific note hash it's nullifying. This is the most common\n /// usage pattern for nullifiers.\n /// See `push_nullifier` for more explanation on nullifiers.\n ///\n /// # Arguments\n /// * `nullifier`\n /// * `nullified_note_hash` - The note hash of the note being nullified\n ///\n /// # Advanced\n /// Important: usage of this function doesn't mean that the world will _see_\n /// that this nullifier relates to the given nullified_note_hash (as that\n /// would violate \"tx unlinkability\"); it simply informs the user's PXE\n /// about the relationship (via `notify_nullified_note`). The PXE can then\n /// use this information to feed hints to the kernel circuits for\n /// \"squashing\" purposes: If a note is nullified during the same tx which\n /// created it, we can \"squash\" (delete) the note and nullifier (and any\n /// private logs associated with the note), to save on data emission costs.\n ///\n pub fn push_nullifier_for_note_hash(&mut self, nullifier: Field, nullified_note_hash: Field) {\n let nullifier_counter = self.next_counter();\n notify_nullified_note(nullifier, nullified_note_hash, nullifier_counter);\n self.nullifiers.push(Nullifier { value: nullifier, note_hash: nullified_note_hash }.count(\n nullifier_counter,\n ));\n }\n\n /// Returns the anchor block header - the historical block header that this\n /// private function is reading from.\n ///\n /// A private function CANNOT read from the \"current\" block header,\n /// but must read from some older block header, because as soon as\n /// private function execution begins (asynchronously, on a user's device),\n /// the public state of the chain (the \"current state\") will have progressed\n /// forward.\n ///\n /// # Returns\n /// * `BlockHeader` - The anchor block header.\n ///\n /// # Advanced\n /// * All private functions of a tx read from the same anchor block header.\n /// * The protocol asserts that the `include_by_timestamp` of every tx\n /// is at most 24 hours beyond the timestamp of the tx's chosen anchor\n /// block header. This enables the network's nodes to safely prune old txs\n /// from the mempool. Therefore, the chosen block header _must_ be one\n /// from within the last 24 hours.\n ///\n pub fn get_anchor_block_header(self) -> BlockHeader {\n self.anchor_block_header\n }\n\n /// Returns the header of any historical block at or before the anchor\n /// block.\n ///\n /// This enables private contracts to access information from even older\n /// blocks than the anchor block header.\n ///\n /// Useful for time-based contract logic that needs to compare against\n /// multiple historical points.\n ///\n /// # Arguments\n /// * `block_number` - The block number to retrieve (must be <= anchor\n /// block number)\n ///\n /// # Returns\n /// * `BlockHeader` - The header of the requested historical block\n ///\n /// # Advanced\n /// This function uses an oracle to fetch block header data from the user's\n /// PXE. Depending on how much blockchain data the user's PXE has been set\n /// up to store, this might require a query from the PXE to another Aztec\n /// node to get the data.\n /// > This is generally true of all oracle getters (see `../oracle`).\n ///\n /// Each block header gets hashed and stored as a leaf in the protocol's\n /// Archive Tree. In fact, the i-th block header gets stored at the i-th\n /// leaf index of the Archive Tree. Behind the scenes, this\n /// `get_block_header_at` function will add Archive Tree merkle-membership\n /// constraints (~3k) to your smart contract function's circuit, to prove\n /// existence of the block header in the Archive Tree.\n ///\n /// Note: we don't do any caching, so avoid making duplicate calls for the\n /// same block header, because each call will add duplicate constraints.\n ///\n /// Calling this function is more expensive (constraint-wise) than getting\n /// the anchor block header (via `get_block_header`). This is because the\n /// anchor block's merkle membership proof is handled by Aztec's protocol\n /// circuits, and is only performed once for the entire tx because all\n /// private functions of a tx share a common anchor block header. Therefore,\n /// the cost (constraint-wise) of calling `get_block_header` is effectively\n /// free.\n ///\n pub fn get_block_header_at(self, block_number: u32) -> BlockHeader {\n get_block_header_at(block_number, self)\n }\n\n /// Sets the hash of the return values for this private function.\n ///\n /// Very low-level function: this is called by the #[external(\"private\")] macro.\n ///\n /// # Arguments\n /// * `serialized_return_values` - The serialized return values as a field array\n ///\n pub fn set_return_hash<let N: u32>(&mut self, serialized_return_values: [Field; N]) {\n let return_hash = hash_args_array(serialized_return_values);\n self.return_hash = return_hash;\n execution_cache::store(serialized_return_values, return_hash);\n }\n\n /// Builds the PrivateCircuitPublicInputs for this private function, to\n /// ensure compatibility with the protocol's kernel circuits.\n ///\n /// Very low-level function: This function is automatically called by the\n /// #[external(\"private\")] macro.\n pub fn finish(self) -> PrivateCircuitPublicInputs {\n PrivateCircuitPublicInputs {\n call_context: self.inputs.call_context,\n args_hash: self.args_hash,\n returns_hash: self.return_hash,\n min_revertible_side_effect_counter: self.min_revertible_side_effect_counter,\n is_fee_payer: self.is_fee_payer,\n include_by_timestamp: self.include_by_timestamp,\n note_hash_read_requests: ClaimedLengthArray::from_bounded_vec(\n self.note_hash_read_requests,\n ),\n nullifier_read_requests: ClaimedLengthArray::from_bounded_vec(\n self.nullifier_read_requests,\n ),\n key_validation_requests_and_generators: ClaimedLengthArray::from_bounded_vec(\n self.key_validation_requests_and_generators,\n ),\n note_hashes: ClaimedLengthArray::from_bounded_vec(self.note_hashes),\n nullifiers: ClaimedLengthArray::from_bounded_vec(self.nullifiers),\n private_call_requests: ClaimedLengthArray::from_bounded_vec(self.private_call_requests),\n public_call_requests: ClaimedLengthArray::from_bounded_vec(self.public_call_requests),\n public_teardown_call_request: self.public_teardown_call_request,\n l2_to_l1_msgs: ClaimedLengthArray::from_bounded_vec(self.l2_to_l1_msgs),\n start_side_effect_counter: self.inputs.start_side_effect_counter,\n end_side_effect_counter: self.side_effect_counter,\n private_logs: ClaimedLengthArray::from_bounded_vec(self.private_logs),\n contract_class_logs_hashes: ClaimedLengthArray::from_bounded_vec(\n self.contract_class_logs_hashes,\n ),\n anchor_block_header: self.anchor_block_header,\n tx_context: self.inputs.tx_context,\n }\n }\n\n /// Designates this contract as the fee payer for the transaction.\n ///\n /// Unlike Ethereum, where the transaction sender always pays fees, Aztec\n /// allows any contract to voluntarily pay transaction fees. This enables\n /// patterns like sponsored transactions or fee abstraction where users\n /// don't need to hold fee-juice themselves. (Fee juice is a fee-paying\n /// asset for Aztec).\n ///\n /// Only one contract per transaction can declare itself as the fee payer,\n /// and it must have sufficient fee-juice balance (>= the gas limits\n /// specified in the TxContext) by the time we reach the public setup phase\n /// of the tx.\n ///\n pub fn set_as_fee_payer(&mut self) {\n dep::protocol_types::debug_log::debug_log_format(\n \"Setting {0} as fee payer\",\n [self.this_address().to_field()],\n );\n self.is_fee_payer = true;\n }\n\n /// Declares the end of the \"setup phase\" of this tx.\n ///\n /// Only one function per tx can declare the end of the setup phase.\n ///\n /// Niche function: Only wallet developers and paymaster contract developers\n /// (aka Fee-payment contracts) will need to make use of this function.\n ///\n /// Aztec supports a three-phase execution model: setup, app logic, teardown.\n /// The phases exist to enable a fee payer to take on the risk of paying\n /// a transaction fee, safe in the knowledge that their payment (in whatever\n /// token or method the user chooses) will succeed, regardless of whether\n /// the app logic will succeed. The \"setup\" phase enables such a payment to\n /// be made, because the setup phase _cannot revert_: a reverting function\n /// within the setup phase would result in an invalid block which cannot\n /// be proven. Any side-effects generated during that phase are guaranteed\n /// to be inserted into Aztec's state trees (except for squashed notes &\n /// nullifiers, of course).\n ///\n /// Even though the end of the setup phase is declared within a private\n /// function, you might have noticed that _public_ functions can also\n /// execute within the setup phase. This is because any public function\n /// calls which were enqueued _within the setup phase_ by a private\n /// function are considered part of the setup phase.\n ///\n /// # Advanced\n /// * Sets the minimum revertible side effect counter of this tx to be the\n /// PrivateContext's _current_ side effect counter.\n ///\n pub fn end_setup(&mut self) {\n // dep::protocol_types::debug_log::debug_log_format(\n // \"Ending setup at counter {0}\",\n // [self.side_effect_counter as Field]\n // );\n self.min_revertible_side_effect_counter = self.side_effect_counter;\n notify_set_min_revertible_side_effect_counter(self.min_revertible_side_effect_counter);\n }\n\n /// Sets a deadline (an \"include-by timestamp\") for when this transaction\n /// must be included in a block.\n ///\n /// Other functions in this tx might call this setter with differing\n /// values for the include-by timestamp. To ensure that all functions'\n /// deadlines are met, the _minimum_ of all these include-by timestamps will\n /// be exposed when this tx is submitted to the network.\n ///\n /// If the transaction is not included in a block by its include-by\n /// timestamp, it becomes invalid and it will never be included.\n ///\n /// This expiry timestamp is publicly visible. See the \"Advanced\" section\n /// for privacy concerns.\n ///\n /// # Arguments\n /// * `include_by_timestamp` - Unix timestamp (seconds) deadline for inclusion.\n /// The include-by timestamp of this tx will be\n /// _at most_ the timestamp specified.\n ///\n /// # Advanced\n /// * If multiple functions set differing `include_by_timestamp`s, the\n /// kernel circuits will set it to be the _minimum_ of the two. This\n /// ensures the tx expiry requirements of all functions in the tx are met.\n /// * Rollup circuits will reject expired txs.\n /// * The protocol enforces that all transactions must be included within\n /// 24 hours of their chosen anchor block's timestamp, to enable safe\n /// mempool pruning.\n /// * The DelayedPublicMutable design makes heavy use of this functionality,\n /// to enable private functions to read public state.\n /// * A sophisticated Wallet should cleverly set an include-by timestamp\n /// to improve the privacy of the user and the network as a whole.\n /// For example, if a contract interaction sets include-by to some\n /// publicly-known value (e.g. the time when a contract upgrades), then\n /// the wallet might wish to set an even lower one to avoid revealing that\n /// this tx is interacting with said contract.\n /// Ideally, all wallets should standardise on an approach in order to\n /// provide users with a large anonymity set -- although the exact apprach\n /// will need to be discussed. Wallets that deviate from a standard might\n /// accidentally reveal which wallet each transaction originates from.\n ///\n // docs:start:include-by-timestamp\n pub fn set_include_by_timestamp(&mut self, include_by_timestamp: u64) {\n // docs:end:include-by-timestamp\n self.include_by_timestamp = std::cmp::min(self.include_by_timestamp, include_by_timestamp);\n }\n\n /// Makes a request to the protocol's kernel circuit to ensure a note_hash\n /// actually exists.\n ///\n /// \"Read requests\" are used to prove that a note hash exists without\n /// revealing which specific note was read.\n ///\n /// This can be used to prove existence of both settled notes (created in\n /// prior transactions) and transient notes (created in the current\n /// transaction).\n /// If you need to prove existence of a settled note _at a specific block\n /// number_, use `note_inclusion::prove_note_inclusion`.\n ///\n /// Low-level function. Ordinarily, smart contract developers will not need\n /// to call this directly. Aztec-nr's state variables (see `../state_vars/`)\n /// are designed to understand when to create and push new note_hash read\n /// requests.\n ///\n /// # Arguments\n /// * `note_hash` - The note hash to read and verify\n ///\n /// # Advanced\n /// In \"traditional\" circuits for non-Aztec privacy applications, the merkle\n /// membership proofs to check existence of a note are performed _within_\n /// the application circuit.\n ///\n /// All Aztec private functions have access to the following constraint\n /// optimisation:\n /// In cases where the note being read was created earlier in the same tx,\n /// the note wouldn't yet exist in the Note Hash Tree, so a hard-coded\n /// merkle membership check which then gets ignored would be a waste of\n /// constraints.\n /// Instead, we can send read requests for all notes to the protocol's\n /// kernel circuits, where we can conditionally assess which notes actually\n /// need merkle membership proofs, and select an appropriately-sized\n /// kernel circuit.\n ///\n /// For \"settled notes\" (which already existed in the Note Hash Tree of the\n /// anchor block (i.e. before the tx began)), the kernel does a merkle\n /// membership check.\n ///\n /// For \"pending notes\" (which were created earlier in _this_ tx), the\n /// kernel will check that the note existed _before_ this read request was\n /// made, by checking the side-effect counters of the note_hash and this\n /// read request.\n ///\n /// This approach improves latency between writes and reads:\n /// a function can read a note which was created earlier in the tx (rather\n /// than performing the read in a later tx, after waiting for the earlier tx\n /// to be included, to ensure the note is included in the tree).\n ///\n pub fn push_note_hash_read_request(&mut self, note_hash: Field) {\n let side_effect = Counted::new(note_hash, self.next_counter());\n self.note_hash_read_requests.push(side_effect);\n }\n\n /// Requests to read a specific nullifier from the nullifier tree.\n ///\n /// Nullifier read requests are used to prove that a nullifier exists without\n /// revealing which specific nullifier preimage was read.\n ///\n /// This can be used to prove existence of both settled nullifiers (created in\n /// prior transactions) and transient nullifiers (created in the current\n /// transaction).\n /// If you need to prove existence of a settled nullifier _at a specific block\n /// number_, use `nullifier_inclusion::prove_nullifier_inclusion`.\n ///\n /// Low-level function. Ordinarily, smart contract developers will not need\n /// to call this directly. Aztec-nr's state variables (see `../state_vars/`)\n /// are designed to understand when to create and push new nullifier read\n /// requests.\n ///\n /// # Arguments\n /// * `nullifier` - The nullifier to read and verify\n ///\n /// # Advanced\n /// This approach improves latency between writes and reads:\n /// a function can read a nullifier which was created earlier in the tx\n /// (rather than performing the read in a later tx, after waiting for the\n /// earlier tx to be included, to ensure the note is included in the tree).\n ///\n pub fn push_nullifier_read_request(&mut self, nullifier: Field) {\n let request = Counted::new(nullifier, self.next_counter());\n self.nullifier_read_requests.push(request);\n }\n\n /// Requests the app-siloed nullifier secret key (nsk_app) for the given\n /// (hashed) master nullifier public key (npk_m), from the user's PXE.\n ///\n /// Advanced function: Only needed if you're designing your own notes and/or\n /// nullifiers.\n ///\n /// Contracts are not allowed to compute nullifiers for other contracts, as\n /// that would let them read parts of their private state. Because of this,\n /// a contract is only given an \"app-siloed secret key\", which is\n /// constructed by hashing the user's master nullifier secret key with the\n /// contract's address.\n /// However, because contracts cannot be trusted with a user's master\n /// nullifier secret key (because we don't know which contracts are honest\n /// or malicious), the PXE refuses to provide any master secret keys to\n /// any app smart contract function. This means app functions are unable to\n /// prove that the derivation of an app-siloed nullifier secret key has been\n /// computed correctly. Instead, an app function can request to the kernel\n /// (via `request_nsk_app`) that it validates the siloed derivation, since\n /// the kernel has been vetted to not leak any master secret keys.\n ///\n /// A common nullification scheme is to inject a nullifier secret key into\n /// the preimage of a nullifier, to make the nullifier deterministic but\n /// random-looking. This function enables that flow.\n ///\n /// # Arguments\n /// * `npk_m_hash` - A hash of the master nullifier public key of the user\n /// whose PXE is executing this function.\n ///\n /// # Returns\n /// * The app-siloed nullifier secret key that corresponds to the given\n /// `npk_m_hash`.\n ///\n pub fn request_nsk_app(&mut self, npk_m_hash: Field) -> Field {\n self.request_sk_app(npk_m_hash, NULLIFIER_INDEX)\n }\n\n /// Requests the app-siloed nullifier secret key (nsk_app) for the given\n /// (hashed) master nullifier public key (npk_m), from the user's PXE.\n ///\n /// See `request_nsk_app` and `request_sk_app` for more info.\n ///\n /// The intention of the \"outgoing\" keypair is to provide a second secret\n /// key for all of a user's outgoing activity (i.e. for notes that a user\n /// creates, as opposed to notes that a user receives from others). The\n /// separation of incoming and outgoing data was a distinction made by\n /// zcash, with the intention of enabling a user to optionally share with a\n /// 3rd party a controlled view of only incoming or outgoing notes.\n /// Similar functionality of sharing select data can be achieved with\n /// offchain zero-knowledge proofs. It is up to an app developer whether\n /// they choose to make use of a user's outgoing keypair within their\n /// application logic, or instead simply use the same keypair (the address\n /// keypair (which is effectively the same as the \"incooming\" keypair)) for\n /// all incoming & outgoing messages to a user.\n ///\n /// Currently, all of the exposed encryption functions in aztec-nr ignore\n /// the outgoing viewing keys, and instead encrypt all note logs and event\n /// logs to a user's address public key.\n ///\n /// # Arguments\n /// * `ovpk_m_hash` - Hash of the outgoing viewing public key master\n ///\n /// # Returns\n /// * The application-specific outgoing viewing secret key\n ///\n pub fn request_ovsk_app(&mut self, ovpk_m_hash: Field) -> Field {\n self.request_sk_app(ovpk_m_hash, OUTGOING_INDEX)\n }\n\n /// Pushes a Key Validation Request to the kernel.\n ///\n /// Private functions are not allowed to see a user's master secret keys,\n /// because we do not trust them. They are instead given \"app-siloed\" secret\n /// keys with a claim that they relate to a master public key.\n /// They can then request validation of this claim, by making a \"key\n /// validation request\" to the protocol's kernel circuits (which _are_\n /// allowed to see certain master secret keys).\n ///\n /// When a Key Validation Request tuple of (sk_app, Pk_m, app_address) is\n /// submitted to the kernel, it will perform the following derivations\n /// to validate the relationship between the claimed sk_app and the user's\n /// Pk_m:\n ///\n /// (sk_m) ----> * G ----> Pk_m\n /// | |\n /// v We use the kernel to prove this\n /// h(sk_m, app_address) | sk_app-Pk_m relationship, because app\n /// | circuits must not be trusted to see sk_m.\n /// v |\n /// sk_app - - - - - - - - -\n ///\n /// The function is named \"request_\" instead of \"get_\" to remind the user\n /// that a Key Validation Request will be emitted to the kernel.\n ///\n fn request_sk_app(&mut self, pk_m_hash: Field, key_index: Field) -> Field {\n let cached_request = self.last_key_validation_requests[key_index as u32].unwrap_or(\n KeyValidationRequest::empty(),\n );\n\n if cached_request.pk_m.hash() == pk_m_hash {\n // We get a match so the cached request is the latest one\n cached_request.sk_app\n } else {\n // We didn't get a match meaning the cached result is stale\n // Typically we'd validate keys by showing that they are the preimage of `pk_m_hash`, but that'd require\n // the oracle returning the master secret keys, which could cause malicious contracts to leak it or learn\n // about secrets from other contracts. We therefore silo secret keys, and rely on the private kernel to\n // validate that we siloed secret key corresponds to correct siloing of the master secret key that hashes\n // to `pk_m_hash`.\n\n // Safety: Kernels verify that the key validation request is valid and below we verify that a request\n // for the correct public key has been received.\n let request = unsafe { get_key_validation_request(pk_m_hash, key_index) };\n assert_eq(request.pk_m.hash(), pk_m_hash, \"Obtained invalid key validation request\");\n\n self.key_validation_requests_and_generators.push(\n KeyValidationRequestAndGenerator {\n request,\n sk_app_generator: sk_generators[key_index as u32],\n },\n );\n self.last_key_validation_requests[key_index as u32] = Option::some(request);\n request.sk_app\n }\n }\n\n /// Sends an \"L2 -> L1 message\" from this function (Aztec, L2) to a smart\n /// contract on Ethereum (L1). L1 contracts which are designed to\n /// send/receive messages to/from Aztec are called \"Portal Contracts\".\n ///\n /// Common use cases include withdrawals, cross-chain asset transfers, and\n /// triggering L1 actions based on L2 state changes.\n ///\n /// The message will be inserted into an Aztec \"Outbox\" contract on L1,\n /// when this transaction's block is proposed to L1.\n /// Sending the message will not result in any immediate state changes in\n /// the target portal contract. The message will need to be manually\n /// consumed from the Outbox through a separate Ethereum transaction: a user\n /// will need to call a function of the portal contract -- a function\n /// specifically designed to make a call to the Outbox to consume the\n /// message.\n /// The message will only be available for consumption once the _epoch_\n /// proof has been submitted. Given that there are multiple Aztec blocks\n /// within an epoch, it might take some time for this epoch proof to be\n /// submitted -- especially if the block was near the start of an epoch.\n ///\n /// # Arguments\n /// * `recipient` - Ethereum address that will receive the message\n /// * `content` - Message content (32 bytes as a Field element).\n /// This content has a very specific layout.\n /// docs:start:context_message_portal\n pub fn message_portal(&mut self, recipient: EthAddress, content: Field) {\n let message = L2ToL1Message { recipient, content };\n self.l2_to_l1_msgs.push(message.count(self.next_counter()));\n }\n\n /// Consumes a message sent from Ethereum (L1) to Aztec (L2).\n ///\n /// Common use cases include token bridging, cross-chain governance, and\n /// triggering L2 actions based on L1 events.\n ///\n /// Use this function if you only want the message to ever be \"referred to\"\n /// once. Once consumed using this method, the message cannot be consumed\n /// again, because a nullifier is emitted.\n /// If your use case wants for the message to be read unlimited times, then\n /// you can always read any historic message from the L1-to-L2 messages tree;\n /// messages never technically get deleted from that tree.\n ///\n /// The message will first be inserted into an Aztec \"Inbox\" smart contract\n /// on L1.\n /// Sending the message will not result in any immediate state changes in\n /// the target L2 contract. The message will need to be manually\n /// consumed by the target contract through a separate Aztec transaction.\n /// The message will not be available for consumption immediately. Messages\n /// get copied over from the L1 Inbox to L2 by the next Proposer in batches.\n /// So you will need to wait until the messages are copied before you can\n /// consume them.\n ///\n /// # Arguments\n /// * `content` - The message content that was sent from L1\n /// * `secret` - Secret value used for message privacy (if needed)\n /// * `sender` - Ethereum address that sent the message\n /// * `leaf_index` - Index of the message in the L1-to-L2 message tree\n ///\n /// # Advanced\n /// Validates message existence in the L1-to-L2 message tree and nullifies\n /// the message to prevent double-consumption.\n ///\n pub fn consume_l1_to_l2_message(\n &mut self,\n content: Field,\n secret: Field,\n sender: EthAddress,\n leaf_index: Field,\n ) {\n let nullifier = process_l1_to_l2_message(\n self.anchor_block_header.state.l1_to_l2_message_tree.root,\n self.this_address(),\n sender,\n self.chain_id(),\n self.version(),\n content,\n secret,\n leaf_index,\n );\n\n // Push nullifier (and the \"commitment\" corresponding to this can be \"empty\")\n self.push_nullifier(nullifier)\n }\n\n /// Emits a private log (an array of Fields) that will be published to an\n /// Ethereum blob.\n ///\n /// Private logs are intended for the broadcasting of ciphertexts: that is,\n /// encrypted events or encrypted note contents.\n /// Since the data in the logs is meant to be _encrypted_, private_logs are\n /// broadcast to publicly-visible Ethereum blobs.\n /// The intended recipients of such encrypted messages can then discover and\n /// decrypt these encrypted logs using their viewing secret key.\n /// (See `../messages/discovery` for more details).\n ///\n /// Important note: This function DOES NOT _do_ any encryption of the input\n /// `log` fields. This function blindly publishes whatever input `log` data\n /// is fed into it, so the caller of this function should have already\n /// performed the encryption, and the `log` should be the result of that\n /// encryption.\n ///\n /// The protocol does not dictate what encryption scheme should be used:\n /// a smart contract developer can choose whatever encryption scheme they\n /// like.\n /// Aztec-nr includes some off-the-shelf encryption libraries that\n /// developers might wish to use, for convenience. These libraries not only\n /// encrypt a plaintext (to produce a ciphertext); they also prepend the\n /// ciphertext with a `tag` and `ephemeral public key` for easier message\n /// discovery. This is a very dense topic, and we will be writing more\n /// libraries and docs soon.\n ///\n /// > Currently, AES128 CBC encryption is the main scheme included in\n /// > aztec.nr.\n /// > We are currently making significant changes to the interfaces of the\n /// > encryption library.\n ///\n /// In some niche use cases, an app might be tempted to publish\n /// _un-encrypted_ data via a private log, because _public logs_ are not\n /// available to private functions. Be warned that emitting public data via\n /// private logs is strongly discouraged, and is considered a \"privacy\n /// anti-pattern\", because it reveals identifiable information about _which_\n /// function has been executed. A tx which leaks such information does not\n /// contribute to the privacy set of the network.\n ///\n /// * Unlike `emit_raw_note_log`, this log is not tied to any specific note\n ///\n /// # Arguments\n /// * `log` - The log data that will be publicly broadcast (so make sure\n /// it's already been encrypted before you call this function).\n /// Private logs are bounded in size (PRIVATE_LOG_SIZE_IN_FIELDS), to\n /// encourage all logs from all smart contracts look identical.\n /// * `length` - The actual length of the `log` (measured in number of\n /// Fields). Although the input log has a max size of\n /// PRIVATE_LOG_SIZE_IN_FIELDS, the latter values of the array might all\n /// be 0's for small logs. This `length` should reflect the trimmed length\n /// of the array. The protocol's kernel circuits can then append random\n /// fields as \"padding\" after the `length`, so that the logs of this\n /// smart contract look indistinguishable from (the same length as) the\n /// logs of all other applications. It's up to wallets how much padding\n /// to apply, so ideally all wallets should agree on standards for this.\n ///\n /// # Advanced\n ///\n pub fn emit_private_log(&mut self, log: [Field; PRIVATE_LOG_SIZE_IN_FIELDS], length: u32) {\n let counter = self.next_counter();\n let private_log = PrivateLogData { log: PrivateLog::new(log, length), note_hash_counter: 0 }\n .count(counter);\n self.private_logs.push(private_log);\n }\n\n // TODO: rename.\n /// Emits a private log that is explicitly tied to a newly-emitted note_hash,\n /// to convey to the kernel: \"this log relates to this note\".\n ///\n /// This linkage is important in case the note gets squashed (due to being\n /// read later in this same tx), since we can then squash the log as well.\n ///\n /// See `emit_private_log` for more info about private log emission.\n ///\n /// # Arguments\n /// * `log` - The log data as an array of Field elements\n /// * `length` - The actual length of the `log` (measured in number of\n /// Fields).\n /// * `note_hash_counter` - The side-effect counter that was assigned to the\n /// new note_hash when it was pushed to this\n // `PrivateContext`.\n ///\n /// Important: If your application logic requires the log to always be\n /// emitted regardless of note squashing, consider using `emit_private_log`\n /// instead, or emitting additional events.\n ///\n pub fn emit_raw_note_log(\n &mut self,\n log: [Field; PRIVATE_LOG_SIZE_IN_FIELDS],\n length: u32,\n note_hash_counter: u32,\n ) {\n let counter = self.next_counter();\n let private_log = PrivateLogData { log: PrivateLog::new(log, length), note_hash_counter };\n self.private_logs.push(private_log.count(counter));\n }\n\n pub fn emit_contract_class_log<let N: u32>(&mut self, log: [Field; N]) {\n let contract_address = self.this_address();\n let counter = self.next_counter();\n\n let log_to_emit: [Field; CONTRACT_CLASS_LOG_SIZE_IN_FIELDS] =\n log.concat([0; CONTRACT_CLASS_LOG_SIZE_IN_FIELDS - N]);\n // Note: the length is not always N, it is the number of fields we want to broadcast, omitting trailing zeros to save blob space.\n // Safety: The below length is constrained in the base rollup, which will make sure that all the fields beyond length are zero.\n // However, it won't be able to check that we didn't add extra padding (trailing zeroes)\n let length = unsafe { trimmed_array_length_hint(log_to_emit) };\n // We hash the entire padded log to ensure a user cannot pass a shorter length and so emit incorrect shorter bytecode.\n let log_hash = poseidon2_hash(log_to_emit);\n // Safety: the below only exists to broadcast the raw log, so we can provide it to the base rollup later to be constrained.\n unsafe {\n notify_created_contract_class_log(contract_address, log_to_emit, length, counter);\n }\n\n self.contract_class_logs_hashes.push(LogHash { value: log_hash, length: length }.count(\n counter,\n ));\n }\n\n /// Calls a private function on another contract (or the same contract).\n ///\n /// Very low-level function.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `args` - Array of arguments to pass to the called function\n ///\n /// # Returns\n /// * `ReturnsHash` - Hash of the called function's return values. Use\n /// `.get_preimage()` to extract the actual return values.\n ///\n /// This enables contracts to interact with each other while maintaining\n /// privacy. This \"composability\" of private contract functions is a key\n /// feature of the Aztec network.\n ///\n /// If a user's transaction includes multiple private function calls, then\n /// by the design of Aztec, the following information will remain private[1]:\n /// - The function selectors and contract addresses of all private function\n /// calls will remain private, so an observer of the public mempool will\n /// not be able to look at a tx and deduce which private functions have\n /// been executed.\n /// - The arguments and return values of all private function calls will\n /// remain private.\n /// - The person who initiated the tx will remain private.\n /// - The notes and nullifiers and private logs that are emitted by all\n /// private function calls will (if designed well) not leak any user\n /// secrets, nor leak which functions have been executed.\n ///\n /// [1] Caveats: Some of these privacy guarantees depend on how app\n /// developers design their smart contracts. Some actions _can_ leak\n /// information, such as:\n /// - Calling an internal public function.\n /// - Calling a public function and not setting msg_sender to Option::none\n /// (feature not built yet - see github).\n /// - Calling any public function will always leak details about the nature\n /// of the transaction, so devs should be careful in their contract\n /// designs. If it can be done in a private function, then that will give\n /// the best privacy.\n /// - Not padding the side-effects of a tx to some standardised, uniform\n /// size. The kernel circuits can take hints to pad side-effects, so a\n /// wallet should be able to request for a particular amount of padding.\n /// Wallets should ideally agree on some standard.\n /// - Padding should include:\n /// - Padding the lengths of note & nullifier arrays\n /// - Padding private logs with random fields, up to some standardised\n /// size.\n /// See also: https://docs.aztec.network/developers/reference/considerations/privacy_considerations\n ///\n /// # Advanced\n /// * The call is added to the private call stack and executed by kernel\n /// circuits after this function completes\n /// * The called function can modify its own contract's private state\n /// * Side effects from the called function are included in this transaction\n /// * The call inherits the current transaction's context and gas limits\n ///\n pub fn call_private_function<let ArgsCount: u32>(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n args: [Field; ArgsCount],\n ) -> ReturnsHash {\n let args_hash = hash_args_array(args);\n execution_cache::store(args, args_hash);\n self.call_private_function_with_args_hash(\n contract_address,\n function_selector,\n args_hash,\n false,\n )\n }\n\n /// Makes a read-only call to a private function on another contract.\n ///\n /// This is similar to Solidity's `staticcall`. The called function\n /// cannot modify state, emit L2->L2 messages, nor emit events. Any nested\n /// calls are constrained to also be staticcalls.\n ///\n /// See `call_private_function` for more general info on private function\n /// calls.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract to call\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `args` - Array of arguments to pass to the called function\n ///\n /// # Returns\n /// * `ReturnsHash` - Hash of the called function's return values. Use\n /// `.get_preimage()` to extract the actual return values.\n ///\n pub fn static_call_private_function<let ArgsCount: u32>(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n args: [Field; ArgsCount],\n ) -> ReturnsHash {\n let args_hash = hash_args_array(args);\n execution_cache::store(args, args_hash);\n self.call_private_function_with_args_hash(\n contract_address,\n function_selector,\n args_hash,\n true,\n )\n }\n\n /// Calls a private function that takes no arguments.\n ///\n /// This is a convenience function for calling private functions that don't\n /// require any input parameters. It's equivalent to `call_private_function`\n /// but slightly more efficient to use when no arguments are needed.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n ///\n /// # Returns\n /// * `ReturnsHash` - Hash of the called function's return values. Use\n /// `.get_preimage()` to extract the actual return values.\n ///\n pub fn call_private_function_no_args(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n ) -> ReturnsHash {\n self.call_private_function_with_args_hash(contract_address, function_selector, 0, false)\n }\n\n /// Makes a read-only call to a private function which takes no arguments.\n ///\n /// This combines the optimisation of `call_private_function_no_args` with\n /// the safety of `static_call_private_function`.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n ///\n /// # Returns\n /// * `ReturnsHash` - Hash of the called function's return values. Use\n /// `.get_preimage()` to extract the actual return values.\n ///\n pub fn static_call_private_function_no_args(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n ) -> ReturnsHash {\n self.call_private_function_with_args_hash(contract_address, function_selector, 0, true)\n }\n\n /// Low-level private function call.\n ///\n /// This is the underlying implementation used by all other private function\n /// call methods. Instead of taking raw arguments, it accepts a\n /// hash of the arguments.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `args_hash` - Pre-computed hash of the function arguments\n /// * `is_static_call` - Whether this should be a read-only call\n ///\n /// # Returns\n /// * `ReturnsHash` - Hash of the called function's return values\n ///\n pub fn call_private_function_with_args_hash(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n args_hash: Field,\n is_static_call: bool,\n ) -> ReturnsHash {\n let mut is_static_call = is_static_call | self.inputs.call_context.is_static_call;\n let start_side_effect_counter = self.side_effect_counter;\n\n // Safety: The oracle simulates the private call and returns the value of the side effects counter after\n // execution of the call (which means that end_side_effect_counter - start_side_effect_counter is\n // the number of side effects that took place), along with the hash of the return values. We validate these\n // by requesting a private kernel iteration in which the return values are constrained to hash\n // to `returns_hash` and the side effects counter to increment from start to end.\n let (end_side_effect_counter, returns_hash) = unsafe {\n call_private_function_internal(\n contract_address,\n function_selector,\n args_hash,\n start_side_effect_counter,\n is_static_call,\n )\n };\n\n self.private_call_requests.push(\n PrivateCallRequest {\n call_context: CallContext {\n msg_sender: self.this_address(),\n contract_address,\n function_selector,\n is_static_call,\n },\n args_hash,\n returns_hash,\n start_side_effect_counter,\n end_side_effect_counter,\n },\n );\n\n // TODO (fees) figure out why this crashes the prover and enable it\n // we need this in order to pay fees inside child call contexts\n // assert(\n // (item.public_inputs.min_revertible_side_effect_counter == 0 as u32)\n // | (item.public_inputs.min_revertible_side_effect_counter\n // > self.min_revertible_side_effect_counter)\n // );\n // if item.public_inputs.min_revertible_side_effect_counter\n // > self.min_revertible_side_effect_counter {\n // self.min_revertible_side_effect_counter = item.public_inputs.min_revertible_side_effect_counter;\n // }\n self.side_effect_counter = end_side_effect_counter + 1; // TODO: call `next_counter` instead, for consistency\n ReturnsHash::new(returns_hash)\n }\n\n /// Enqueues a call to a public function to be executed later.\n ///\n /// Unlike private functions which execute immediately on the user's device,\n /// public function calls are \"enqueued\" and executed some time later by a\n /// block proposer.\n ///\n /// This means a public function cannot return any values back to a private\n /// function, because by the time the public function is being executed,\n /// the private function which called it has already completed execution.\n /// (In fact, the private function has been executed and proven, along with\n /// all other private function calls of the user's tx. A single proof of the\n /// tx has been submitted to the Aztec network, and some time later a\n /// proposer has picked the tx up from the mempool and begun executing all\n /// of the enqueued public functions).\n ///\n /// # Privacy warning\n /// Enqueueing a public function call is an inherently leaky action.\n /// Many interesting applications will require some interaction with public\n /// state, but smart contract developers should try to use public function\n /// calls sparingly, and carefully.\n /// _Internal_ public function calls are especially leaky, because they\n /// completely leak which private contract made the call.\n /// See also: https://docs.aztec.network/developers/reference/considerations/privacy_considerations\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `args` - Array of arguments to pass to the public function\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n ///\n pub fn call_public_function<let ArgsCount: u32>(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n args: [Field; ArgsCount],\n hide_msg_sender: bool,\n ) {\n let calldata = [function_selector.to_field()].concat(args);\n let calldata_hash = hash_calldata_array(calldata);\n execution_cache::store(calldata, calldata_hash);\n self.call_public_function_with_calldata_hash(\n contract_address,\n calldata_hash,\n false,\n hide_msg_sender,\n )\n }\n\n /// Enqueues a read-only call to a public function.\n ///\n /// This is similar to Solidity's `staticcall`. The called function\n /// cannot modify state or emit events. Any nested calls are constrained to\n /// also be staticcalls.\n ///\n /// See also `call_public_function` for more important information about\n /// making private -> public function calls.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `args` - Array of arguments to pass to the public function\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n ///\n pub fn static_call_public_function<let ArgsCount: u32>(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n args: [Field; ArgsCount],\n hide_msg_sender: bool,\n ) {\n let calldata = [function_selector.to_field()].concat(args);\n let calldata_hash = hash_calldata_array(calldata);\n execution_cache::store(calldata, calldata_hash);\n self.call_public_function_with_calldata_hash(\n contract_address,\n calldata_hash,\n true,\n hide_msg_sender,\n )\n }\n\n /// Enqueues a call to a public function that takes no arguments.\n ///\n /// This is an optimisation for calling public functions that don't\n /// take any input parameters. It's otherwise equivalent to\n /// `call_public_function`.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n ///\n pub fn call_public_function_no_args(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n hide_msg_sender: bool,\n ) {\n let calldata_hash = hash_calldata_array([function_selector.to_field()]);\n self.call_public_function_with_calldata_hash(\n contract_address,\n calldata_hash,\n false,\n hide_msg_sender,\n )\n }\n\n /// Enqueues a read-only call to a public function with no arguments.\n ///\n /// This combines the optimisation of `call_public_function_no_args` with\n /// the safety of `static_call_public_function`.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n ///\n pub fn static_call_public_function_no_args(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n hide_msg_sender: bool,\n ) {\n let calldata_hash = hash_calldata_array([function_selector.to_field()]);\n self.call_public_function_with_calldata_hash(\n contract_address,\n calldata_hash,\n true,\n hide_msg_sender,\n )\n }\n\n /// Low-level public function call.\n ///\n /// This is the underlying implementation used by all other public function\n /// call methods. Instead of taking raw arguments, it accepts a\n /// hash of the arguments.\n ///\n /// Advanced function: Most developers should use `call_public_function`\n /// or `static_call_public_function` instead. This function is exposed for\n /// performance optimization and advanced use cases.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `calldata_hash` - Hash of the function calldata\n /// * `is_static_call` - Whether this should be a read-only call\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n ///\n pub fn call_public_function_with_calldata_hash(\n &mut self,\n contract_address: AztecAddress,\n calldata_hash: Field,\n is_static_call: bool,\n hide_msg_sender: bool,\n ) {\n let counter = self.next_counter();\n\n let mut is_static_call = is_static_call | self.inputs.call_context.is_static_call;\n\n notify_enqueued_public_function_call(\n contract_address,\n calldata_hash,\n counter,\n is_static_call,\n );\n\n let msg_sender = if hide_msg_sender {\n NULL_MSG_SENDER_CONTRACT_ADDRESS\n } else {\n self.this_address()\n };\n\n let call_request =\n PublicCallRequest { msg_sender, contract_address, is_static_call, calldata_hash };\n\n self.public_call_requests.push(Counted::new(call_request, counter));\n }\n\n /// Enqueues a public function call, and designates it to be the teardown\n /// function for this tx. Only one teardown function call can be made by a\n /// tx.\n ///\n /// Niche function: Only wallet developers and paymaster contract developers\n /// (aka Fee-payment contracts) will need to make use of this function.\n ///\n /// Aztec supports a three-phase execution model: setup, app logic, teardown.\n /// The phases exist to enable a fee payer to take on the risk of paying\n /// a transaction fee, safe in the knowledge that their payment (in whatever\n /// token or method the user chooses) will succeed, regardless of whether\n /// the app logic will succeed. The \"setup\" phase ensures the fee payer\n /// has sufficient balance to pay the proposer their fees.\n /// The teardown phase is primarily intended to: calculate exactly\n /// how much the user owes, based on gas consumption, and refund the user\n /// any change.\n ///\n /// Note: in some cases, the cost of refunding the user (i.e. DA costs of\n /// tx side-effects) might exceed the refund amount. For app logic with\n /// fairly stable and predictable gas consumption, a material refund amount\n /// is unlikely. For app logic with unpredictable gas consumption, a\n /// refund might be important to the user (e.g. if a hefty function reverts\n /// very early). Wallet/FPC/Paymaster developers should be mindful of this.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the teardown\n /// function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `args` - An array of fields to pass to the function.\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n pub fn set_public_teardown_function<let ArgsCount: u32>(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n args: [Field; ArgsCount],\n hide_msg_sender: bool,\n ) {\n let calldata = [function_selector.to_field()].concat(args);\n let calldata_hash = hash_calldata_array(calldata);\n execution_cache::store(calldata, calldata_hash);\n self.set_public_teardown_function_with_calldata_hash(\n contract_address,\n calldata_hash,\n false,\n hide_msg_sender,\n )\n }\n\n /// Low-level function to set the public teardown function.\n ///\n /// This is the underlying implementation for setting the teardown function\n /// call that will execute at the end of the transaction. Instead of taking\n /// raw arguments, it accepts a hash of the arguments.\n ///\n /// Advanced function: Most developers should use\n /// `set_public_teardown_function` instead.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the teardown\n /// function\n /// * `calldata_hash` - Hash of the function calldata\n /// * `is_static_call` - Whether this should be a read-only call\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n ///\n pub fn set_public_teardown_function_with_calldata_hash(\n &mut self,\n contract_address: AztecAddress,\n calldata_hash: Field,\n is_static_call: bool,\n hide_msg_sender: bool,\n ) {\n let counter = self.next_counter();\n\n let mut is_static_call = is_static_call | self.inputs.call_context.is_static_call;\n\n notify_set_public_teardown_function_call(\n contract_address,\n calldata_hash,\n counter,\n is_static_call,\n );\n\n let msg_sender = if hide_msg_sender {\n NULL_MSG_SENDER_CONTRACT_ADDRESS\n } else {\n self.this_address()\n };\n\n self.public_teardown_call_request =\n PublicCallRequest { msg_sender, contract_address, is_static_call, calldata_hash };\n }\n\n /// Increments the side-effect counter.\n ///\n /// Very low-level function.\n ///\n /// # Advanced\n ///\n /// Every side-effect of a private function is given a \"side-effect counter\",\n /// based on when it is created. This PrivateContext is in charge of\n /// assigning the counters.\n ///\n /// The reason we have side-effect counters is complicated. Consider this\n /// illustrative pseudocode of inter-contract function calls:\n /// ```\n /// contract A {\n /// let x = 5; // pseudocode for storage var x.\n /// fn a1 {\n /// read x; // value: 5, counter: 1.\n /// x = x + 1;\n /// write x; // value: 6, counter: 2.\n ///\n /// B.b(); // start_counter: 2, end_counter: 4\n ///\n /// read x; // value: 36, counter: 5.\n /// x = x + 1;\n /// write x; // value: 37, counter: 6.\n /// }\n ///\n /// fn a2 {\n /// read x; // value: 6, counter: 3.\n /// x = x * x;\n /// write x; // value: 36, counter: 4.\n /// }\n /// }\n ///\n /// contract B {\n /// fn b() {\n /// A.a2();\n /// }\n /// }\n /// ```\n ///\n /// Suppose a1 is the first function called. The comments show the execution\n /// counter of each side-effect, and what the new value of `x` is.\n ///\n /// These (private) functions are processed by Aztec's kernel circuits in an\n /// order that is different from execution order:\n /// All of A.a1 is proven before B.b is proven, before A.a2 is proven.\n /// So when we're in the 2nd execution frame of A.a1 (after the call to\n /// B.b), the circuit needs to justify why x went from being `6` to `36`.\n /// But the circuit doesn't know why, and given the order of proving, the\n /// kernel hasn't _seen_ a value of 36 get written yet.\n /// The kernel needs to track big arrays of all side-effects of all\n /// private functions in a tx. Then, as it recurses and processes B.b(), it\n /// will eventually see a value of 36 get written.\n ///\n /// Suppose side-effect counters weren't exposed:\n /// The kernel would only see this ordering (in order of proof verification):\n /// [ A.a1.read, A.a1.write, A.a1.read, A.a1.write, A.a2.read, A.a2.write ]\n /// [ 5, 6, 36, 37, 6, 36 ]\n /// The kernel wouldn't know _when_ B.b() was called within A.a1(), because\n /// it can't see what's going on within an app circuit. So the kernel\n /// wouldn't know that the ordering of reads and writes should actually be:\n /// [ A.a1.read, A.a1.write, A.a2.read, A.a2.write, A.a1.read, A.a1.write ]\n /// [ 5, 6, 6, 36, 36, 37 ]\n ///\n /// And so, we introduced side-effect counters: every private function must\n /// assign side-effect counters alongside every side-effect that it emits,\n /// and also expose to the kernel the counters that it started and ended\n /// with.\n /// This gives the kernel enough information to arrange all side-effects in\n /// the correct order.\n /// It can then catch (for example) if a function tries to read state\n /// before it has been written (e.g. if A.a2() maliciously tried to read\n /// a value of x=37) (e.g. if A.a1() maliciously tried to read x=6).\n ///\n /// If a malicious app contract _lies_ and does not count correctly:\n /// - It cannot lie about its start and end counters because the kernel\n /// will catch this.\n /// - It _could_ lie about its intermediate counters:\n /// - 1. It could not increment its side-effects correctly\n /// - 2. It could label its side-effects with counters outside of its\n /// start and end counters' range.\n /// The kernel will catch 2.\n /// The kernel will not catch 1., but this would only cause corruption\n /// to the private state of the malicious contract, and not any other\n /// contracts (because a contract can only modify its own state). If\n /// a \"good\" contract is given _read access_ to a maliciously-counting\n /// contract (via an external getter function, or by reading historic\n /// state from the archive tree directly), and they then make state\n /// changes to their _own_ state accordingly, that could be dangerous.\n /// Developers should be mindful not to trust the claimed innards of\n /// external contracts unless they have audited/vetted the contracts\n /// including vetting the side-effect counter incrementation.\n /// This is a similar paradigm to Ethereum smart contract development:\n /// you must vet external contracts that your contract relies upon, and\n /// you must not make any presumptions about their claimed behaviour.\n /// (Hopefully if a contract imports a version of aztec-nr, we will get\n /// contract verification tooling that can validate the authenticity\n /// of the imported aztec-nr package, and hence infer that the side-\n /// effect counting will be correct, without having to re-audit such logic\n /// for every contract).\n ///\n fn next_counter(&mut self) -> u32 {\n let counter = self.side_effect_counter;\n self.side_effect_counter += 1;\n counter\n }\n}\n\nimpl Empty for PrivateContext {\n fn empty() -> Self {\n PrivateContext {\n inputs: PrivateContextInputs::empty(),\n side_effect_counter: 0 as u32,\n min_revertible_side_effect_counter: 0 as u32,\n is_fee_payer: false,\n args_hash: 0,\n return_hash: 0,\n include_by_timestamp: 0,\n note_hash_read_requests: BoundedVec::new(),\n nullifier_read_requests: BoundedVec::new(),\n key_validation_requests_and_generators: BoundedVec::new(),\n note_hashes: BoundedVec::new(),\n nullifiers: BoundedVec::new(),\n private_call_requests: BoundedVec::new(),\n public_call_requests: BoundedVec::new(),\n public_teardown_call_request: PublicCallRequest::empty(),\n l2_to_l1_msgs: BoundedVec::new(),\n anchor_block_header: BlockHeader::empty(),\n private_logs: BoundedVec::new(),\n contract_class_logs_hashes: BoundedVec::new(),\n last_key_validation_requests: [Option::none(); NUM_KEY_TYPES],\n }\n }\n}\n"
6995
7004
  },
6996
7005
  "70": {
6997
7006
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/context/utility_context.nr",
@@ -7003,7 +7012,7 @@
7003
7012
  },
7004
7013
  "75": {
7005
7014
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/hash.nr",
7006
- "source": "use dep::protocol_types::{\n address::{AztecAddress, EthAddress},\n constants::{\n GENERATOR_INDEX__FUNCTION_ARGS, GENERATOR_INDEX__MESSAGE_NULLIFIER,\n GENERATOR_INDEX__PUBLIC_BYTECODE, GENERATOR_INDEX__PUBLIC_CALLDATA,\n GENERATOR_INDEX__SECRET_HASH, MAX_PACKED_PUBLIC_BYTECODE_SIZE_IN_FIELDS,\n },\n hash::{\n poseidon2_hash_subarray, poseidon2_hash_with_separator, poseidon2_hash_with_separator_slice,\n sha256_to_field,\n },\n point::Point,\n traits::{Hash, ToField},\n};\n\npub use dep::protocol_types::hash::{compute_siloed_nullifier, pedersen_hash};\n\npub fn pedersen_commitment<let N: u32>(inputs: [Field; N], hash_index: u32) -> Point {\n std::hash::pedersen_commitment_with_separator(inputs, hash_index)\n}\n\npub fn compute_secret_hash(secret: Field) -> Field {\n poseidon2_hash_with_separator([secret], GENERATOR_INDEX__SECRET_HASH)\n}\n\npub fn compute_l1_to_l2_message_hash(\n sender: EthAddress,\n chain_id: Field,\n recipient: AztecAddress,\n version: Field,\n content: Field,\n secret_hash: Field,\n leaf_index: Field,\n) -> Field {\n let mut hash_bytes = [0 as u8; 224];\n let sender_bytes: [u8; 32] = sender.to_field().to_be_bytes();\n let chain_id_bytes: [u8; 32] = chain_id.to_be_bytes();\n let recipient_bytes: [u8; 32] = recipient.to_field().to_be_bytes();\n let version_bytes: [u8; 32] = version.to_be_bytes();\n let content_bytes: [u8; 32] = content.to_be_bytes();\n let secret_hash_bytes: [u8; 32] = secret_hash.to_be_bytes();\n let leaf_index_bytes: [u8; 32] = leaf_index.to_be_bytes();\n\n for i in 0..32 {\n hash_bytes[i] = sender_bytes[i];\n hash_bytes[i + 32] = chain_id_bytes[i];\n hash_bytes[i + 64] = recipient_bytes[i];\n hash_bytes[i + 96] = version_bytes[i];\n hash_bytes[i + 128] = content_bytes[i];\n hash_bytes[i + 160] = secret_hash_bytes[i];\n hash_bytes[i + 192] = leaf_index_bytes[i];\n }\n\n sha256_to_field(hash_bytes)\n}\n\n// The nullifier of a l1 to l2 message is the hash of the message salted with the secret\npub fn compute_l1_to_l2_message_nullifier(message_hash: Field, secret: Field) -> Field {\n poseidon2_hash_with_separator([message_hash, secret], GENERATOR_INDEX__MESSAGE_NULLIFIER)\n}\n\npub struct ArgsHasher {\n pub fields: [Field],\n}\n\nimpl Hash for ArgsHasher {\n fn hash(self) -> Field {\n hash_args(self.fields)\n }\n}\n\nimpl ArgsHasher {\n pub fn new() -> Self {\n Self { fields: [] }\n }\n\n pub fn add(&mut self, field: Field) {\n self.fields = self.fields.push_back(field);\n }\n\n pub fn add_multiple<let N: u32>(&mut self, fields: [Field; N]) {\n for i in 0..N {\n self.fields = self.fields.push_back(fields[i]);\n }\n }\n}\n\n// Computes the hash of input arguments or return values for private functions, or for authwit creation.\npub fn hash_args_array<let N: u32>(args: [Field; N]) -> Field {\n if args.len() == 0 {\n 0\n } else {\n poseidon2_hash_with_separator(args, GENERATOR_INDEX__FUNCTION_ARGS)\n }\n}\n\n// Same as `hash_args_array`, but takes a slice instead of an array.\npub fn hash_args(args: [Field]) -> Field {\n if args.len() == 0 {\n 0\n } else {\n poseidon2_hash_with_separator_slice(args, GENERATOR_INDEX__FUNCTION_ARGS)\n }\n}\n\n// Computes the hash of calldata for public functions.\npub fn hash_calldata_array<let N: u32>(calldata: [Field; N]) -> Field {\n poseidon2_hash_with_separator(calldata, GENERATOR_INDEX__PUBLIC_CALLDATA)\n}\n\n// Same as `hash_calldata_array`, but takes a slice instead of an array.\npub fn hash_calldata(calldata: [Field]) -> Field {\n poseidon2_hash_with_separator_slice(calldata, GENERATOR_INDEX__PUBLIC_CALLDATA)\n}\n\n/**\n * Computes the public bytecode commitment for a contract class.\n * The commitment is `hash([separator, ...bytecode])` where bytecode omits the length prefix present\n * in `packed_bytecode`.\n *\n * @param packed_bytecode - The packed bytecode of the contract class. 0th word is the length in bytes.\n * packed_bytecode is mutable so that we can avoid copying the array to construct one starting with\n * separator instead of length.\n * @returns The public bytecode commitment.\n */\npub fn compute_public_bytecode_commitment(\n mut packed_public_bytecode: [Field; MAX_PACKED_PUBLIC_BYTECODE_SIZE_IN_FIELDS],\n) -> Field {\n // First field element contains the length of the bytecode\n let bytecode_length_in_bytes: u32 = packed_public_bytecode[0] as u32;\n let bytecode_length_in_fields: u32 =\n (bytecode_length_in_bytes / 31) + (bytecode_length_in_bytes % 31 != 0) as u32;\n // Don't allow empty public bytecode.\n // AVM doesn't handle execution of contracts that exist with empty bytecode.\n assert(bytecode_length_in_fields != 0);\n assert(bytecode_length_in_fields < MAX_PACKED_PUBLIC_BYTECODE_SIZE_IN_FIELDS);\n\n // Packed_bytecode's 0th entry is the length. Replace it with separator before hashing.\n let separator = GENERATOR_INDEX__PUBLIC_BYTECODE.to_field();\n packed_public_bytecode[0] = separator;\n // +1 to length to account for the separator\n let nonzero_length = bytecode_length_in_fields + 1;\n\n poseidon2_hash_subarray(packed_public_bytecode, nonzero_length)\n // NOTE: we use poseidon2_hash_subarray here because we want to hash the bytecode only up to\n // its nonzero length. We do NOT want to include a `1` at the end to indicate \"variable length\",\n // and we want to enforce that all trailing elements are zero.\n}\n\n#[test]\nunconstrained fn compute_var_args_hash() {\n let mut input = ArgsHasher::new();\n for i in 0..100 {\n input.add(i as Field);\n }\n let hash = input.hash();\n dep::std::println(hash);\n // Used in yarn-project/stdlib test snapshots:\n assert(hash == 0x19b0d74feb06ebde19edd85a28986c97063e84b3b351a8b666c7cac963ce655f);\n}\n\n#[test]\nunconstrained fn compute_calldata_hash() {\n let mut input = [0; 100];\n for i in 0..input.len() {\n input[i] = i as Field;\n }\n let hash = hash_calldata_array(input);\n dep::std::println(hash);\n let hash_check = hash_calldata(input.as_slice());\n assert(hash == hash_check);\n // Used in cpp vm2 tests:\n assert(hash == 0x191383c9f8964afd3ea8879a03b7dda65d6724773966d18dcf80e452736fc1f3);\n}\n\n#[test]\nunconstrained fn public_bytecode_commitment() {\n let mut input = [0; MAX_PACKED_PUBLIC_BYTECODE_SIZE_IN_FIELDS];\n let len = 99;\n for i in 1..len + 1 {\n input[i] = i as Field;\n }\n input[0] = (len as Field) * 31;\n let hash = compute_public_bytecode_commitment(input);\n dep::std::println(hash);\n // Used in cpp vm2 tests:\n assert(hash == 0x16d621c3387156ef53754679e7b2c9be8f0bceeb44aa59a74991df3b0b42a0bf);\n}\n"
7015
+ "source": "use dep::protocol_types::{\n address::{AztecAddress, EthAddress},\n constants::{\n GENERATOR_INDEX__FUNCTION_ARGS, GENERATOR_INDEX__MESSAGE_NULLIFIER,\n GENERATOR_INDEX__PUBLIC_BYTECODE, GENERATOR_INDEX__PUBLIC_CALLDATA,\n GENERATOR_INDEX__SECRET_HASH, MAX_PACKED_PUBLIC_BYTECODE_SIZE_IN_FIELDS,\n },\n hash::{\n poseidon2_hash_subarray, poseidon2_hash_with_separator, poseidon2_hash_with_separator_slice,\n sha256_to_field,\n },\n point::Point,\n traits::ToField,\n};\n\npub use dep::protocol_types::hash::{compute_siloed_nullifier, pedersen_hash};\n\npub fn pedersen_commitment<let N: u32>(inputs: [Field; N], hash_index: u32) -> Point {\n std::hash::pedersen_commitment_with_separator(inputs, hash_index)\n}\n\npub fn compute_secret_hash(secret: Field) -> Field {\n poseidon2_hash_with_separator([secret], GENERATOR_INDEX__SECRET_HASH)\n}\n\npub fn compute_l1_to_l2_message_hash(\n sender: EthAddress,\n chain_id: Field,\n recipient: AztecAddress,\n version: Field,\n content: Field,\n secret_hash: Field,\n leaf_index: Field,\n) -> Field {\n let mut hash_bytes = [0 as u8; 224];\n let sender_bytes: [u8; 32] = sender.to_field().to_be_bytes();\n let chain_id_bytes: [u8; 32] = chain_id.to_be_bytes();\n let recipient_bytes: [u8; 32] = recipient.to_field().to_be_bytes();\n let version_bytes: [u8; 32] = version.to_be_bytes();\n let content_bytes: [u8; 32] = content.to_be_bytes();\n let secret_hash_bytes: [u8; 32] = secret_hash.to_be_bytes();\n let leaf_index_bytes: [u8; 32] = leaf_index.to_be_bytes();\n\n for i in 0..32 {\n hash_bytes[i] = sender_bytes[i];\n hash_bytes[i + 32] = chain_id_bytes[i];\n hash_bytes[i + 64] = recipient_bytes[i];\n hash_bytes[i + 96] = version_bytes[i];\n hash_bytes[i + 128] = content_bytes[i];\n hash_bytes[i + 160] = secret_hash_bytes[i];\n hash_bytes[i + 192] = leaf_index_bytes[i];\n }\n\n sha256_to_field(hash_bytes)\n}\n\n// The nullifier of a l1 to l2 message is the hash of the message salted with the secret\npub fn compute_l1_to_l2_message_nullifier(message_hash: Field, secret: Field) -> Field {\n poseidon2_hash_with_separator([message_hash, secret], GENERATOR_INDEX__MESSAGE_NULLIFIER)\n}\n\n// Computes the hash of input arguments or return values for private functions, or for authwit creation.\npub fn hash_args_array<let N: u32>(args: [Field; N]) -> Field {\n if args.len() == 0 {\n 0\n } else {\n poseidon2_hash_with_separator(args, GENERATOR_INDEX__FUNCTION_ARGS)\n }\n}\n\n// Same as `hash_args_array`, but takes a slice instead of an array.\npub fn hash_args(args: [Field]) -> Field {\n if args.len() == 0 {\n 0\n } else {\n poseidon2_hash_with_separator_slice(args, GENERATOR_INDEX__FUNCTION_ARGS)\n }\n}\n\n// Computes the hash of calldata for public functions.\npub fn hash_calldata_array<let N: u32>(calldata: [Field; N]) -> Field {\n poseidon2_hash_with_separator(calldata, GENERATOR_INDEX__PUBLIC_CALLDATA)\n}\n\n// Same as `hash_calldata_array`, but takes a slice instead of an array.\npub fn hash_calldata(calldata: [Field]) -> Field {\n poseidon2_hash_with_separator_slice(calldata, GENERATOR_INDEX__PUBLIC_CALLDATA)\n}\n\n/**\n * Computes the public bytecode commitment for a contract class.\n * The commitment is `hash([separator, ...bytecode])` where bytecode omits the length prefix present\n * in `packed_bytecode`.\n *\n * @param packed_bytecode - The packed bytecode of the contract class. 0th word is the length in bytes.\n * packed_bytecode is mutable so that we can avoid copying the array to construct one starting with\n * separator instead of length.\n * @returns The public bytecode commitment.\n */\npub fn compute_public_bytecode_commitment(\n mut packed_public_bytecode: [Field; MAX_PACKED_PUBLIC_BYTECODE_SIZE_IN_FIELDS],\n) -> Field {\n // First field element contains the length of the bytecode\n let bytecode_length_in_bytes: u32 = packed_public_bytecode[0] as u32;\n let bytecode_length_in_fields: u32 =\n (bytecode_length_in_bytes / 31) + (bytecode_length_in_bytes % 31 != 0) as u32;\n // Don't allow empty public bytecode.\n // AVM doesn't handle execution of contracts that exist with empty bytecode.\n assert(bytecode_length_in_fields != 0);\n assert(bytecode_length_in_fields < MAX_PACKED_PUBLIC_BYTECODE_SIZE_IN_FIELDS);\n\n // Packed_bytecode's 0th entry is the length. Replace it with separator before hashing.\n let separator = GENERATOR_INDEX__PUBLIC_BYTECODE.to_field();\n packed_public_bytecode[0] = separator;\n // +1 to length to account for the separator\n let nonzero_length = bytecode_length_in_fields + 1;\n\n poseidon2_hash_subarray(packed_public_bytecode, nonzero_length)\n // NOTE: we use poseidon2_hash_subarray here because we want to hash the bytecode only up to\n // its nonzero length. We do NOT want to include a `1` at the end to indicate \"variable length\",\n // and we want to enforce that all trailing elements are zero.\n}\n\n#[test]\nunconstrained fn compute_var_args_hash() {\n let mut input = [0; 100];\n for i in 0..100 {\n input[i] = i as Field;\n }\n let hash = hash_args_array(input);\n dep::std::println(hash);\n // Used in yarn-project/stdlib test snapshots:\n assert(hash == 0x19b0d74feb06ebde19edd85a28986c97063e84b3b351a8b666c7cac963ce655f);\n}\n\n#[test]\nunconstrained fn compute_calldata_hash() {\n let mut input = [0; 100];\n for i in 0..input.len() {\n input[i] = i as Field;\n }\n let hash = hash_calldata_array(input);\n dep::std::println(hash);\n let hash_check = hash_calldata(input.as_slice());\n assert(hash == hash_check);\n // Used in cpp vm2 tests:\n assert(hash == 0x191383c9f8964afd3ea8879a03b7dda65d6724773966d18dcf80e452736fc1f3);\n}\n\n#[test]\nunconstrained fn public_bytecode_commitment() {\n let mut input = [0; MAX_PACKED_PUBLIC_BYTECODE_SIZE_IN_FIELDS];\n let len = 99;\n for i in 1..len + 1 {\n input[i] = i as Field;\n }\n input[0] = (len as Field) * 31;\n let hash = compute_public_bytecode_commitment(input);\n dep::std::println(hash);\n // Used in cpp vm2 tests:\n assert(hash == 0x16d621c3387156ef53754679e7b2c9be8f0bceeb44aa59a74991df3b0b42a0bf);\n}\n"
7007
7016
  },
7008
7017
  "90": {
7009
7018
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/keys/ecdh_shared_secret.nr",
@@ -7019,7 +7028,7 @@
7019
7028
  },
7020
7029
  "96": {
7021
7030
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/macros/aztec.nr",
7022
- "source": "use crate::macros::{\n dispatch::generate_public_dispatch,\n functions::{stub_registry, utils::check_each_fn_macroified},\n notes::NOTES,\n storage::STORAGE_LAYOUT_NAME,\n utils::{get_trait_impl_method, module_has_storage},\n};\n\n/// Marks a contract as an Aztec contract, generating the interfaces for its functions and notes, as well as injecting\n/// the `sync_private_state` utility function.\n/// Note: This is a module annotation, so the returned quote gets injected inside the module (contract) itself.\npub comptime fn aztec(m: Module) -> Quoted {\n let interface = generate_contract_interface(m);\n\n // Functions that don't have #[private], #[public], #[utility], #[contract_library_method], or #[test] are not\n // allowed in contracts.\n check_each_fn_macroified(m);\n\n // We generate `_compute_note_hash_and_nullifier`, `sync_private_state` and `process_message`\n // functions only if they are not already implemented. If they are implemented we just insert empty\n // quotes.\n let contract_library_method_compute_note_hash_and_nullifier = if !m.functions().any(|f| {\n f.name() == quote { _compute_note_hash_and_nullifier }\n }) {\n generate_contract_library_method_compute_note_hash_and_nullifier()\n } else {\n quote {}\n };\n let sync_private_state = if !m.functions().any(|f| f.name() == quote { sync_private_state }) {\n generate_sync_private_state()\n } else {\n quote {}\n };\n let process_message = if !m.functions().any(|f| f.name() == quote { process_message }) {\n generate_process_message()\n } else {\n quote {}\n };\n let public_dispatch = generate_public_dispatch(m);\n\n quote {\n $interface\n $contract_library_method_compute_note_hash_and_nullifier\n $public_dispatch\n $sync_private_state\n $process_message\n }\n}\n\ncomptime fn generate_contract_interface(m: Module) -> Quoted {\n let module_name = m.name();\n let contract_stubs = stub_registry::get(m);\n let fn_stubs_quote = if contract_stubs.is_some() {\n contract_stubs.unwrap().join(quote {})\n } else {\n quote {}\n };\n\n let has_storage_layout = module_has_storage(m) & STORAGE_LAYOUT_NAME.get(m).is_some();\n let storage_layout_getter = if has_storage_layout {\n let storage_layout_name = STORAGE_LAYOUT_NAME.get(m).unwrap();\n quote {\n pub fn storage_layout() -> StorageLayoutFields {\n $storage_layout_name.fields\n }\n }\n } else {\n quote {}\n };\n\n let library_storage_layout_getter = if has_storage_layout {\n quote {\n #[contract_library_method]\n $storage_layout_getter\n }\n } else {\n quote {}\n };\n\n quote {\n pub struct $module_name {\n pub target_contract: dep::aztec::protocol_types::address::AztecAddress\n }\n\n impl $module_name {\n $fn_stubs_quote\n\n pub fn at(\n addr: aztec::protocol_types::address::AztecAddress\n ) -> Self {\n Self { target_contract: addr }\n }\n\n pub fn interface() -> Self {\n Self { target_contract: aztec::protocol_types::address::AztecAddress::zero() }\n }\n\n $storage_layout_getter\n }\n\n #[contract_library_method]\n pub fn at(\n addr: aztec::protocol_types::address::AztecAddress\n ) -> $module_name {\n $module_name { target_contract: addr }\n }\n\n #[contract_library_method]\n pub fn interface() -> $module_name {\n $module_name { target_contract: aztec::protocol_types::address::AztecAddress::zero() }\n }\n\n $library_storage_layout_getter\n\n }\n}\n\n/// Generates a contract library method called `_compute_note_hash_and_nullifier` which is used for note\n/// discovery (to create the `aztec::messages::discovery::ComputeNoteHashAndNullifier` function) and to implement the\n/// `compute_note_hash_and_nullifier` unconstrained contract function.\ncomptime fn generate_contract_library_method_compute_note_hash_and_nullifier() -> Quoted {\n if NOTES.len() > 0 {\n // Contracts that do define notes produce an if-else chain where `note_type_id` is matched against the\n // `get_note_type_id()` function of each note type that we know of, in order to identify the note type. Once we\n // know it we call we correct `unpack` method from the `Packable` trait to obtain the underlying note type, and\n // compute the note hash (non-siloed) and inner nullifier (also non-siloed).\n\n let mut if_note_type_id_match_statements_list = &[];\n for i in 0..NOTES.len() {\n let typ = NOTES.get(i);\n\n let get_note_type_id = get_trait_impl_method(\n typ,\n quote { crate::note::note_interface::NoteType },\n quote { get_id },\n );\n let unpack = get_trait_impl_method(\n typ,\n quote { crate::protocol_types::traits::Packable },\n quote { unpack },\n );\n\n let compute_note_hash = get_trait_impl_method(\n typ,\n quote { crate::note::note_interface::NoteHash },\n quote { compute_note_hash },\n );\n\n let compute_nullifier_unconstrained = get_trait_impl_method(\n typ,\n quote { crate::note::note_interface::NoteHash },\n quote { compute_nullifier_unconstrained },\n );\n\n let if_or_else_if = if i == 0 {\n quote { if }\n } else {\n quote { else if }\n };\n\n if_note_type_id_match_statements_list = if_note_type_id_match_statements_list.push_back(\n quote {\n $if_or_else_if note_type_id == $get_note_type_id() {\n // As an extra safety check we make sure that the packed_note BoundedVec has the expected\n // length, since we're about to interpret its raw storage as a fixed-size array by calling the\n // unpack function on it.\n let expected_len = <$typ as $crate::protocol_types::traits::Packable>::N;\n let actual_len = packed_note.len();\n assert(\n actual_len == expected_len,\n f\"Expected packed note of length {expected_len} but got {actual_len} for note type id {note_type_id}\"\n );\n\n let note = $unpack(aztec::utils::array::subarray(packed_note.storage(), 0));\n\n let note_hash = $compute_note_hash(note, storage_slot);\n \n // The message discovery process finds settled notes, that is, notes that were created in prior\n // transactions and are therefore already part of the note hash tree. We therefore compute the\n // nullification note hash by treating the note as a settled note with the provided note nonce.\n let note_hash_for_nullification = aztec::note::utils::compute_note_hash_for_nullification(\n aztec::note::retrieved_note::RetrievedNote{ \n note, \n contract_address, \n metadata: aztec::note::note_metadata::SettledNoteMetadata::new(note_nonce).into()\n }, \n storage_slot,\n );\n\n let inner_nullifier = $compute_nullifier_unconstrained(note, note_hash_for_nullification);\n\n Option::some(\n aztec::messages::discovery::NoteHashAndNullifier {\n note_hash, inner_nullifier\n }\n )\n }\n },\n );\n }\n\n let if_note_type_id_match_statements = if_note_type_id_match_statements_list.join(quote {});\n\n quote {\n /// Unpacks an array into a note corresponding to `note_type_id` and then computes its note hash\n /// (non-siloed) and inner nullifier (non-siloed) assuming the note has been inserted into the note hash\n /// tree with `note_nonce`.\n ///\n /// The signature of this function notably matches the `aztec::messages::discovery::ComputeNoteHashAndNullifier` type,\n /// and so it can be used to call functions from that module such as `discover_new_messages`, \n /// `do_process_message` and `attempt_note_discovery`.\n ///\n /// This function is automatically injected by the `#[aztec]` macro.\n #[contract_library_method]\n unconstrained fn _compute_note_hash_and_nullifier(\n packed_note: BoundedVec<Field, aztec::messages::discovery::private_notes::MAX_NOTE_PACKED_LEN>,\n storage_slot: Field,\n note_type_id: Field,\n contract_address: aztec::protocol_types::address::AztecAddress,\n note_nonce: Field,\n ) -> Option<aztec::messages::discovery::NoteHashAndNullifier> {\n $if_note_type_id_match_statements\n else {\n Option::none()\n }\n }\n }\n } else {\n // Contracts with no notes still implement this function to avoid having special-casing, the implementation\n // simply throws immediately.\n quote {\n /// This contract does not use private notes, so this function should never be called as it will\n /// unconditionally fail.\n ///\n /// This function is automatically injected by the `#[aztec]` macro.\n #[contract_library_method]\n unconstrained fn _compute_note_hash_and_nullifier(\n _packed_note: BoundedVec<Field, aztec::messages::discovery::private_notes::MAX_NOTE_PACKED_LEN>,\n _storage_slot: Field,\n _note_type_id: Field,\n _contract_address: aztec::protocol_types::address::AztecAddress,\n _nonce: Field,\n ) -> Option<aztec::messages::discovery::NoteHashAndNullifier> {\n panic(f\"This contract does not use private notes\")\n }\n }\n }\n}\n\ncomptime fn generate_sync_private_state() -> Quoted {\n // We obtain the `utility` function on the next line instead of directly doing\n // `#[aztec::macros::functions::utility]` in the returned quote because the latter would result in the function\n // attribute having the full path in the ABI. This is undesirable because we use the information in the ABI only\n // to determine whether a function is `private`, `public`, or `utility`.\n let utility = crate::macros::functions::utility;\n\n // All we need to do here is trigger message discovery, but this is already done by the #[utility] macro - we don't\n // need to do anything extra.\n quote {\n #[$utility]\n unconstrained fn sync_private_state() {\n }\n }\n}\n\ncomptime fn generate_process_message() -> Quoted {\n // We obtain the `utility` function on the next line instead of directly doing\n // `#[aztec::macros::functions::utility]` in the returned quote because the latter would result in the function\n // attribute having the full path in the ABI. This is undesirable because we use the information in the ABI only\n // to determine whether a function is `private`, `public`, or `utility`.\n let utility = crate::macros::functions::utility;\n\n quote {\n #[$utility]\n unconstrained fn process_message(\n message_ciphertext: BoundedVec<Field, aztec::messages::encoding::MESSAGE_CIPHERTEXT_LEN>,\n message_context: aztec::messages::processing::message_context::MessageContext,\n ) {\n aztec::messages::discovery::process_message::process_message_ciphertext(\n context.this_address(),\n _compute_note_hash_and_nullifier,\n message_ciphertext,\n message_context,\n );\n }\n }\n}\n"
7031
+ "source": "use crate::macros::{\n dispatch::generate_public_dispatch,\n functions::{stub_registry, utils::check_each_fn_macroified},\n notes::NOTES,\n storage::STORAGE_LAYOUT_NAME,\n utils::{get_trait_impl_method, module_has_storage},\n};\n\n/// Marks a contract as an Aztec contract, generating the interfaces for its functions and notes, as well as injecting\n/// the `sync_private_state` utility function.\n/// Note: This is a module annotation, so the returned quote gets injected inside the module (contract) itself.\npub comptime fn aztec(m: Module) -> Quoted {\n let interface = generate_contract_interface(m);\n\n // Functions that don't have #[external(...)], #[contract_library_method], or #[test] are not allowed in contracts.\n check_each_fn_macroified(m);\n\n // We generate `_compute_note_hash_and_nullifier`, `sync_private_state` and `process_message`\n // functions only if they are not already implemented. If they are implemented we just insert empty\n // quotes.\n let contract_library_method_compute_note_hash_and_nullifier = if !m.functions().any(|f| {\n f.name() == quote { _compute_note_hash_and_nullifier }\n }) {\n generate_contract_library_method_compute_note_hash_and_nullifier()\n } else {\n quote {}\n };\n let sync_private_state = if !m.functions().any(|f| f.name() == quote { sync_private_state }) {\n generate_sync_private_state()\n } else {\n quote {}\n };\n let process_message = if !m.functions().any(|f| f.name() == quote { process_message }) {\n generate_process_message()\n } else {\n quote {}\n };\n let public_dispatch = generate_public_dispatch(m);\n\n quote {\n $interface\n $contract_library_method_compute_note_hash_and_nullifier\n $public_dispatch\n $sync_private_state\n $process_message\n }\n}\n\ncomptime fn generate_contract_interface(m: Module) -> Quoted {\n let module_name = m.name();\n let contract_stubs = stub_registry::get(m);\n let fn_stubs_quote = if contract_stubs.is_some() {\n contract_stubs.unwrap().join(quote {})\n } else {\n quote {}\n };\n\n let has_storage_layout = module_has_storage(m) & STORAGE_LAYOUT_NAME.get(m).is_some();\n let storage_layout_getter = if has_storage_layout {\n let storage_layout_name = STORAGE_LAYOUT_NAME.get(m).unwrap();\n quote {\n pub fn storage_layout() -> StorageLayoutFields {\n $storage_layout_name.fields\n }\n }\n } else {\n quote {}\n };\n\n let library_storage_layout_getter = if has_storage_layout {\n quote {\n #[contract_library_method]\n $storage_layout_getter\n }\n } else {\n quote {}\n };\n\n quote {\n pub struct $module_name {\n pub target_contract: dep::aztec::protocol_types::address::AztecAddress\n }\n\n impl $module_name {\n $fn_stubs_quote\n\n pub fn at(\n addr: aztec::protocol_types::address::AztecAddress\n ) -> Self {\n Self { target_contract: addr }\n }\n\n pub fn interface() -> Self {\n Self { target_contract: aztec::protocol_types::address::AztecAddress::zero() }\n }\n\n $storage_layout_getter\n }\n\n #[contract_library_method]\n pub fn at(\n addr: aztec::protocol_types::address::AztecAddress\n ) -> $module_name {\n $module_name { target_contract: addr }\n }\n\n #[contract_library_method]\n pub fn interface() -> $module_name {\n $module_name { target_contract: aztec::protocol_types::address::AztecAddress::zero() }\n }\n\n $library_storage_layout_getter\n\n }\n}\n\n/// Generates a contract library method called `_compute_note_hash_and_nullifier` which is used for note\n/// discovery (to create the `aztec::messages::discovery::ComputeNoteHashAndNullifier` function) and to implement the\n/// `compute_note_hash_and_nullifier` unconstrained contract function.\ncomptime fn generate_contract_library_method_compute_note_hash_and_nullifier() -> Quoted {\n if NOTES.len() > 0 {\n // Contracts that do define notes produce an if-else chain where `note_type_id` is matched against the\n // `get_note_type_id()` function of each note type that we know of, in order to identify the note type. Once we\n // know it we call we correct `unpack` method from the `Packable` trait to obtain the underlying note type, and\n // compute the note hash (non-siloed) and inner nullifier (also non-siloed).\n\n let mut if_note_type_id_match_statements_list = &[];\n for i in 0..NOTES.len() {\n let typ = NOTES.get(i);\n\n let get_note_type_id = get_trait_impl_method(\n typ,\n quote { crate::note::note_interface::NoteType },\n quote { get_id },\n );\n let unpack = get_trait_impl_method(\n typ,\n quote { crate::protocol_types::traits::Packable },\n quote { unpack },\n );\n\n let compute_note_hash = get_trait_impl_method(\n typ,\n quote { crate::note::note_interface::NoteHash },\n quote { compute_note_hash },\n );\n\n let compute_nullifier_unconstrained = get_trait_impl_method(\n typ,\n quote { crate::note::note_interface::NoteHash },\n quote { compute_nullifier_unconstrained },\n );\n\n let if_or_else_if = if i == 0 {\n quote { if }\n } else {\n quote { else if }\n };\n\n if_note_type_id_match_statements_list = if_note_type_id_match_statements_list.push_back(\n quote {\n $if_or_else_if note_type_id == $get_note_type_id() {\n // As an extra safety check we make sure that the packed_note BoundedVec has the expected\n // length, since we're about to interpret its raw storage as a fixed-size array by calling the\n // unpack function on it.\n let expected_len = <$typ as $crate::protocol_types::traits::Packable>::N;\n let actual_len = packed_note.len();\n assert(\n actual_len == expected_len,\n f\"Expected packed note of length {expected_len} but got {actual_len} for note type id {note_type_id}\"\n );\n\n let note = $unpack(aztec::utils::array::subarray(packed_note.storage(), 0));\n\n let note_hash = $compute_note_hash(note, storage_slot);\n \n // The message discovery process finds settled notes, that is, notes that were created in prior\n // transactions and are therefore already part of the note hash tree. We therefore compute the\n // nullification note hash by treating the note as a settled note with the provided note nonce.\n let note_hash_for_nullification = aztec::note::utils::compute_note_hash_for_nullification(\n aztec::note::retrieved_note::RetrievedNote{ \n note, \n contract_address, \n metadata: aztec::note::note_metadata::SettledNoteMetadata::new(note_nonce).into()\n }, \n storage_slot,\n );\n\n let inner_nullifier = $compute_nullifier_unconstrained(note, note_hash_for_nullification);\n\n Option::some(\n aztec::messages::discovery::NoteHashAndNullifier {\n note_hash, inner_nullifier\n }\n )\n }\n },\n );\n }\n\n let if_note_type_id_match_statements = if_note_type_id_match_statements_list.join(quote {});\n\n quote {\n /// Unpacks an array into a note corresponding to `note_type_id` and then computes its note hash\n /// (non-siloed) and inner nullifier (non-siloed) assuming the note has been inserted into the note hash\n /// tree with `note_nonce`.\n ///\n /// The signature of this function notably matches the `aztec::messages::discovery::ComputeNoteHashAndNullifier` type,\n /// and so it can be used to call functions from that module such as `discover_new_messages`, \n /// `do_process_message` and `attempt_note_discovery`.\n ///\n /// This function is automatically injected by the `#[aztec]` macro.\n #[contract_library_method]\n unconstrained fn _compute_note_hash_and_nullifier(\n packed_note: BoundedVec<Field, aztec::messages::discovery::private_notes::MAX_NOTE_PACKED_LEN>,\n storage_slot: Field,\n note_type_id: Field,\n contract_address: aztec::protocol_types::address::AztecAddress,\n note_nonce: Field,\n ) -> Option<aztec::messages::discovery::NoteHashAndNullifier> {\n $if_note_type_id_match_statements\n else {\n Option::none()\n }\n }\n }\n } else {\n // Contracts with no notes still implement this function to avoid having special-casing, the implementation\n // simply throws immediately.\n quote {\n /// This contract does not use private notes, so this function should never be called as it will\n /// unconditionally fail.\n ///\n /// This function is automatically injected by the `#[aztec]` macro.\n #[contract_library_method]\n unconstrained fn _compute_note_hash_and_nullifier(\n _packed_note: BoundedVec<Field, aztec::messages::discovery::private_notes::MAX_NOTE_PACKED_LEN>,\n _storage_slot: Field,\n _note_type_id: Field,\n _contract_address: aztec::protocol_types::address::AztecAddress,\n _nonce: Field,\n ) -> Option<aztec::messages::discovery::NoteHashAndNullifier> {\n panic(f\"This contract does not use private notes\")\n }\n }\n }\n}\n\ncomptime fn generate_sync_private_state() -> Quoted {\n // We obtain the `external` function on the next line instead of directly doing\n // `#[aztec::macros::functions::external(\"utility\")]` in the returned quote because the latter would result in\n // the function attribute having the full path in the ABI. This is undesirable because we use the information in\n // the ABI only to determine whether a function is `external(\"private\")`, `external(\"public\")`, or `external(\"utility\")`.\n let external = crate::macros::functions::external;\n\n // All we need to do here is trigger message discovery, but this is already done by the #[external(\"utility\")] macro - we don't\n // need to do anything extra.\n quote {\n #[$external(\"utility\")]\n unconstrained fn sync_private_state() {\n }\n }\n}\n\ncomptime fn generate_process_message() -> Quoted {\n // We obtain the `external` function on the next line instead of directly doing\n // `#[aztec::macros::functions::external(\"utility\")]` in the returned quote because the latter would result in\n // the function attribute having the full path in the ABI. This is undesirable because we use the information in\n // the ABI only to determine whether a function is `external(\"private\")`, `external(\"public\")`, or `external(\"utility\")`.\n let external = crate::macros::functions::external;\n\n quote {\n #[$external(\"utility\")]\n unconstrained fn process_message(\n message_ciphertext: BoundedVec<Field, aztec::messages::encoding::MESSAGE_CIPHERTEXT_LEN>,\n message_context: aztec::messages::processing::message_context::MessageContext,\n ) {\n aztec::messages::discovery::process_message::process_message_ciphertext(\n context.this_address(),\n _compute_note_hash_and_nullifier,\n message_ciphertext,\n message_context,\n );\n }\n }\n}\n"
7023
7032
  }
7024
7033
  }
7025
7034
  }