@aztec/accounts 3.0.0-nightly.20251016 → 3.0.0-nightly.20251023

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1926,9 +1926,9 @@
1926
1926
  }
1927
1927
  }
1928
1928
  },
1929
- "bytecode": "H4sIAAAAAAAA/+ydB5QVRfP2Z0i7yy7sAopgYoxgJiioIDlnEMUACmJWghkTrBFQiWYFUUEFI0EEJCjmRDQARoyYRUEl83VpX5wZenb66TvV8//Oefuccnjr7aGq++mq/t0Lrq7z78iXz34DB1x2+aVX9Lt84KUnV3GcKlX/dbvCSstnKWFeyJd5+n9dSTFP/JZO05CPQhSHfHsofHsrfr99FL59Fb4aCp+niLGfwre/wneAwnegIsZBwnJDvoMVvpoKXy2F7xCF71CF7zCF73CF7wiF70iF7yiFr7bCV0fhq6vw1VP4jlb4jlH46it8DRS+YxW+4xS+4xW+hgpfI4XvBIWvscLXROFrqvA1U/iaK3wtFL6WCl8rha+1wtdG4Wur8LVT+NorfB0Uvo4KXyeFr7PC10Xh66rwdVP4uit8Jyp8PRS+kxS+kxW+ngrfKQrfqQrfaQrf6QpfL4Wvt8J3hsJ3psLXR+Hrq/CdpfD1U/jOlr4yjsZw5dOTz9pnd770yzoPHzKna6sXbrjhlN616n3f9uq5g8a2+PLPO9eJ///t0v/NjRmHZxPnnfg4zfy/d4Hz34JdmSc9D5L/+2D5pN83M+9d8ev3hC0WtqR08DcvHco3Zrg1gbnvltbfh6X6+x0YaP61gLnvAfkvs5T/IcDcxUD+y4H8VedwqTyHy+RzuXwu8Z3DFeLX7wv7QNiHWZ7DQ4G5K4B9+MiSjocBc98H8l9pKf/DgbkfAPmvyvIcfiTP3Ur5XCWfH/rO4Wrx64+FfSLs0yzP4RHA3NXAPnxmSccjgbkfA/l/bin/o4C5nwD5f5HlOfxMnrvP5fML+fzUdw7XiF9/KewrYV9neQ5rA3PXAPvwjSUd6wBzvwTy/9ZS/nWBuV8B+X+X5Tn8Rp67b+XzO/n82ncO14pffy/sB2E/ZnkO6wFz1wL78JMlHY8G5n4P5P+zpfyPAeb+AOT/S5bn8Cd57n6Wz1/k80ffOfxV/Po3YeuE/Z7lOawPzP0V2Ic/LOnYAJj7G5D/ekv5HwvMXQfkvyHLc/iHPHfr5XODfP7uO4d/il//JexvYRuzPIfHAXP/BPZhkyUdjwfm/gXkv9lS/g2BuX8D+W/J8hxukudus3xukc+NvnO4Vfx6m7DtwnZkeQ4bAXO3AvtAyWr+voGB5n8CMHcbkL9rKf/GwNztQP6lymR3Dul/0NOVz1LyucN3DkuLX5QRVlZYudC3reg+NAHmli6jvw85lnRsCswtA+Sfayn/ZsDcskD+eVmewxx57nLlM08+6bxl5pUXv8gXViCsQpbnsDkwtzywDxUt6dgCmJsP5F9oKf+WwNwCIP+iLM9hRXnuCuWzSD4r+M5hJfGLysKqCNsty3PYCphbCdiH3S3p2BqYWxnIv6ql/NsAc6sA+e+R5TncXZ67qvK5h3zu5juH1cQvqgvbU9heWZ7DtsDcasA+7G1Jx3bA3OpA/vtYyr89MHdPIP99szyHe8tzt4987iufe/nOYQ2KIWw/YftneQ47AHNrAPtwgCUdOwJzPSD/Ay3l3wmYux+Q/0FZnsMD5Lk7UD4Pks/9fefwYPGLmsJqCTsky3PYGZh7MLAPh1rSsQswtyaQ/2GW8u8KzK0F5H94lufwUHnuDpPPw+XzEN85PEL84khhRwmrneU57AbMPQLYhzqWdOwOzD0SyL+upfxPBOYeBeRfL8tzWEeeu7ryWU8+a/vO4dHiF8cIqy+sQZbnsAcw92hgH461pONJwNxjgPyPs5T/ycDc+kD+x2d5Do+V5+44+TxePhv4zmFD8YtGwk4Q1jjLc9gTmNsQ2IcmlnQ8BZjbCMi/qaX8TwXmngDk3yzLc9hEnrum8tlMPhv7zmFz8YsWwloKa5XlOTwNmNsc2IfWlnQ8HZjbAsi/jaX8ewFzWwL5t83yHLaW566NfLaVz1a+c9hO/KK9sA7COmZ5DnsDc9sB+9DJko5nAHPbA/l3tpT/mcDcDkD+XbI8h53kuessn13ks6PvHHYVv+gmrLuwE7M8h32AuV2BfehhSce+wNxuQP4nWcr/LGBudyD/k7M8hz3kuTtJPk+WzxN957Cn+MUpwk4VdlqW57AfMLcnsA+nW9LxbGDuKUD+vbLU8XSpWy/5PFU+T/Pp2Fv84gxhZwrrE9KxlHx6jl4KVRz9tfXVXZvbrZhyLi3XRO81dbLL80Agz7P0NXD9eWbeKyP/t6t6Aczb1Z/rFPl+3U/qerZ8niOf58rnefJ5vnxeIJ8XyudF8nmxfPaXzwHyOVA+B8nnJfJ5aWbxmU25oMx/m5HxXazwDVT4Li2z6yaGNzBOzMv0xdwrmziXx8cp4/+9w4V7mVxrP/k8Vz4v9xXuFeIXVwq7StjgLBvw2cAhvwJoYFfr/77KfbharvtK+bxKPgf79uEa8YtrhV0n7Poyu/6eNDzNfIfE51u6pHwzup0jn9fI5xBfvkPFL4qF3SDsxizzvUl/f4/OJs7N8XEq+H/v8L7cJPfhPPk8Xz5v9u3LLeIXtwobJmx4luf5AuA83wKc5xHAefYPNP8LgfxvBfK/zVL+FwH5DwPyvz3LfjJCnrvb5PN2+RzuO4d3iF+MFDZK2Ogsz+HFwD7cAezDGEs69gfyHwnkP9ZS/gOA/EcB+Y/L8hyOkedurHyOk8/RvnN4p/jFXcLuFnZPludwILAPdwL7cK8lHQcB+d8F5H+fpfwvAfK/G8j//izP4b3y3N0nn/fL5z2+c/iA+MWDwsYLm5DlObwU2IcHgH14KMt9eEiu+0H5HC+fE3z7MFH84mFhjwh7NEtum6Sfb6Eq30kyv4nyOVTBmZPFLx4T9riwJ6S/lLPrZyjHwT+ITgb2u5Tv11NkclPLOMEPd/R/FId8U6XPP9ADNxk4RFOi5/YKzXWnAhtQRuZdqoQ5XoQ/HNf//6GiTQGLJDOeDIv1ZJldT1FYGGSzS4i9MwHd3/epMtqbGVjTUxqHLS72VCBPZE1Pl7Cm8Lv+NT3tK6pc33r8a4oZrmJuqaVVzrii3OTe/Y6oWaHV79Uq33VTk9dG3tik5uHA77uzGDLFnyl4JLdnxPxnhT0XcyvF7S/yaesZQLdpYJModJLpztMMC316mSwCTi+DvzcD2EzTvGb4Dofn4AM9TMhH32eB9c9M6TDNNDxMz5seJgr4vMFhmsV8mCivWYaHyaQwZpXBufKFMrx5UfejGKWyyCtu7myggHb+w8GKroQ1HPxDo7XNrvl086YtBZ+UGv5I760vP1qnXP+XV32IrGFOGezWRNfwnFwDej7mgsWcJ5+zZaw58vlcGbV/LniDvyjmzxM2X76HnqvMedSdP0POLxOKE5fnM2Ww2tWdi+S+IMvajvv9M3WBfsR6FjjryHoXMq/3QsP1+mmx3JK9cms+ufmWz35qt/jJ+rX7V3+i45N19q3yQf/b3xi++KUd25H1vsS83osM1+sHmr0rH3XDpEfanT3moc/zH338ljPfbvLcwEeeGP5S62vXrp3cpPhpZL0vg+s1Xfciw563QPa0hfK5SD5fks+XfX5/PnEhXhHzXxX2Wpng/4H2vueAvX4dvFPRv1BBur8I5EPzXymDx3kFiPGG4flCdbgYyOlNZh0uLBM8F3Hz6Vy8YcARb4F7i66D9hS5c2lf3zJYh+vY6UFv66+lAv3eu/zAaLm2zPe3vcvs+n3vO+IX7wp7T9jimN4St7xzgTP9TkofTIG/sxKIt6RMFgGXlMHfWwpspmleSw0+mCYpBjLXH2+ZqRiZl9GTvQzoKsuZhaN/LDc4UMtTqjhkrj/eimxEXmGwQSssCYd+N+ifGxfjbGAN76d0IN43bMEfmB4ICviBwYH4kPlAUF4fGrRgVazY/+iCjIV2vqVleParjPPfX3KOW1tcXCMeo+Blff/b/+esH0lRVmYyzPzZ2EfyFJG/nJNy9jmOOgEnlEDV6TmT1m45bcVDd6789Zwnn5r69Clnzl3w8WMX7d53w6AO3W7uqHwZPSdnAdqvKoPtTmb3Ve+hdbAa/CzlhH5/T/n/7joO8s+NmXxwYG7Jk8P/UZaSJu/yH0ApYfKu/7GR6MmK/yBH5GTVf/wiarLyPzQRMVn9H2NQT474Dx8oJ0f9RwZUk2tHzFVNjv6h97tOLuEHzO8yuaQfwh6eXOIPPA9NLvmHiwcnx/wA7sDkuB927Z8c+4OlfZPjf/jyf5M1ftDxzsk6P1Q4M1nrB+/KyXo/5PbfyZo/UPafybo/dJUmN9WcS5Ob6c4Vk5EfuNnC0e/dHwPgGMzo3+FpxvkkPk6O//cOf++yWlLCx/LZUvo/8X3v8qn4xWfCPhf2Reh7l13+nEnZqf4bwR8sWfLk0A9xLHGy/wcmxvJlZTNtdllrTFK7/PDCEibv+oMCoyf7fyhf3FqXJbjWkpJS/YC8qMnKH0YXMdn/g9/i1ro82bVGJhXxQ9iUk6N+4JlqcldHf60rEl+rOqnoH/S16+QSfqjWLpP9P8Aq9sM/x1oVSZX4w6RCk0v+wU3Byf4fkhS31g+Y1hpOKu4HFvknx/5wIN9k/w/iiVvrh3xrDSSl8UNxdk7W+QE0mcn+H/YSt9aPWNf6X1J6P3jl38maP+Tkn8n+HygSt9aV3GuVSfXRnEuT++rOFZP9P7Qi9vsBw7Vm/mVST2869AMkPgW+31gDfMcAcJMLcIcL3NsucO+5wL3hAn3XBfqWC9S9C9SNa3ruOH/wx2fAufuyjJ38XWDu50D+X4F/MBD+3LVGft76Uj6/ks8vfJ+7vha/+EbYt8K+y/LPu78G1rYW/M4zvLa1ci3fyOe38vmdb23fi1/8IOxHYT9JP/0bHGVLCOY5ejll8e4/L5dV+JD4Jp/90RgtHTxGjXAMt+T5Nj6rx0228Rk6brKNz7Zxk2185oybbOOzYNxkG5/R4ibb+OwUN9nGZ5q4yTY+a8RN7qM5N5vPAHGTATb3Rfh3eJrTAQ4zjgGwUlZxvi9jJ84qwzg7BwpZqwDI+tnwD5Yz7xEwFTnBf+V15wtg3h9nuVFeFtM8R2e4O9fkP6S/iLx/FfabsHXCfhf2h7D1wjYI+1PYX8L+FrZR2CZhm4VtEbZV2DZh24XtkH/BwhVWSlhpYWWElRVWTliOsFxhecLKC8sXVlBWJpMRhpLJDfl+Vfh+U/jWKXy/K3x/KHzrFb4NCt+fCt9fCt/fCt9GhW+TwrdZ4dui8G1V+LYpfNsVvh0KH4kX9rkKXymFr7TCV0bhK6vwlVP4chS+XIUvT+Err/DlK3wF0ucf+8mn52iNQNHHNatfNOf+tmOH+6v2XMf9TXeuyHed3txx9EMkfteau+GfHzjxh87cNf/+cIr1GnObyx9ksSF+7pjMD734M3buwJ0/IOOvuLlz/vthGn/HzB3s+8EbG0ue28b/Qzo2lTh3beAHemwuaW7d4A//2FLC3JqhHxSyNXruLj/MZFvk3J7hs+5uj5pbvEtduDsi5hbvWkMu9SjF3FmKenNd5dyWqtp0S6nmdlHWsVtaMXe2uubdMrvOrRXRH9yyu8ydGNVL3HLhubUj+46bE5q7JrpHubnBuZeU0M/cvMDcTiX1Pre8f26/Evukm++be1TJPdUtKKsPXcQnSf2V5oKy2r18uT9ehbJZBKSXkX/tjIJX0N8gt6Lmokz/+jOtgWK44BoqgiJXctQ/RSkbkWPGMpXTc7TCBHItlAekKEzGhXLj/L4iBcGg3+0DJ9ktBA5IEbh5qDh0KArBw0R5FabUMfL193mCP14l045BASvhHWNCJaBjVGbuGLSGynjHmFA5pY6Rrx93vMrpOVphArlWkQdkt3DHqKLoGLsl0DGAk+xWAQ7Iboabh/6b2EhOuwPFsPMfQC4V5QFHvyRDruqqQDGo1hA3nfaoqkEnrppSJy6vf35n+uPtYdqJKeAeeCeeuQdw+Koxd2JaQzW8E8+sluXh0ymgqswFVB1cQ2agjQnRcE/gbCR5w5XXjztD5fQcrTCBXPeShbd3+IbbS3HD7Z3ADQd0CHcvQLS9DTcPPUhITvtkecPFvUPFs6fB7bAv861F697XQl6ZgWq4L6BhDWYNo5qsTnPWneuBDS0pGsjTr/XR/nj7mdIABdwPp4HR+wEbtD8zDdAa9sdpYPT+zDTwTyGU5S22A8Biyww0J0TDA1OigTz9uKNUTs/RChPI9SBZeAeHaeAgBQ0cnAANAB3CPQgQ7WDDzUMPEpJTTeabhIrnQINbtxYzDdC6a1nIKzNQDWsBGh7CrGFUk417D2myh6b03UCufq17/niHmdIABTwMpwHvMEDkw5lpgNZwOE4D3uHMNECFcGhZ3mI7whINIBoemRIN5OrHraFyeo5WmECuR8nCqx2mgaMUNFA7ARoAOoR7FCBabcPNQw8SklMd5puEiudIg1u3LjMN0LrrWsgrM1AN6wIa1mPWMKrJxr2HNNmjU6KBHP1aX+aPd4wpDVDAY3AaWHYMIHJ9ZhqgNdTHaWBZfWYaoEI4uixvsTWwRAOIhsemRAM5+nGXqpyeoxUmkOtxsvCOD9PAcQoaOD4BGgA6hHscINrxhpuHHiQkp4bMNwkVz7EGt24jZhqgdTeykFdmoBo2AjQ8gVnDqCYb9x7SZBunRAPl9Gu9rz9eE1MaoIBNcBro2wQQuSkzDdAamuI00LcpMw1QITQuy1tszSzRAKJh85RooJx+3D4qp+dohQnk2kIWXsswDbRQ0EDLBGgA6BBuC0C0loabhx4kJKdWzDcJFU9zg1u3NTMN0LpbW8grM1ANWwMatmHWMKrJxr2HNNm2KdFAWf1aX+WP186UBihgO5wGVrUDRG7PTAO0hvY4Daxqz0wDVAhty/IWWwdLNIBo2DElGiirH3elyuk5WmECuXaShdc5TAOdFDTQOQEaADqE2wkQrbPh5qEHCcmpC/NNQsXT0eDW7cpMA7TurhbyygxUw66Aht2YNYxqsnHvIU22e0o0UEa/1tv5451oSgMU8EScBtqdCIjcg5kGaA09cBpo14OZBqgQupflLbaTLNEAouHJKdFAGf24bVVOz9EKE8i1pyy8U8I00FNBA6ckQANAh3B7AqKdYrh56EFCcjqV+Sah4jnZ4NY9jZkGaN2nWcgrM1ANTwM0PJ1Zw6gmG/ce0mR7pUQDpfVrfbo/Xm9TGqCAvXEamN4bEPkMZhqgNZyB08D0M5hpgAqhV1neYjvTEg0gGvZJiQZK68edpnJ6jlaYQK59ZeGdFaaBvgoaOCsBGgA6hNsXEO0sw81DDxKSUz/mm4SKp4/BrXs2Mw3Qus+2kFdmoBqeDWh4DrOGUU027j2kyZ6bEg2U0q/1+f5455nSAAU8D6eB+ecBIp/PTAO0hvNxGph/PjMNUCGcW5a32C6wRAOIhhemRAOl9OPOUzk9RytMINeLZOFdHKaBixQ0cHECNAB0CPciQLSLDTcPPUhITv2ZbxIqngsNbt0BzDRA6x5gIa/MQDUcAGg4kFnDqCYb9x7SZAelRAOufq138Me7xJQGKOAlOA10uAQQ+VJmGqA1XIrTQIdLmWmACmFQWd5iu8wSDSAaXp4SDbj6cdurnJ6jFSaQ6xWy8K4M08AVChq4MgEaADqEewUg2pWGm4ceJCSnq5hvEiqeyw1u3cHMNEDrHmwhr8xANRwMaHg1s4ZRTTbuPaTJXpMSDTj6tV7sj3etKQ1QwGtxGii+FhD5OmYaoDVch9NA8XXMNECFcE1Z3mK73hINIBoOSYkGHP24Q1VOz9EL4891qCy84jANDFXQQHECNAB0CHcoIFqx4eahBwnJ6Qbmm4SKZ4jBrXsjMw3Qum+0kFdmoBreCGh4E7OGUU027j2kyd6cEg3s0P8vBAVo4BZTGqCAtxjQwC2AyLcy0wCt4VYDGriVmQaoEG4uy1tswyzRAKLh8JRowF88MSMxGhghC++2MA2MUNDAbQnQANAh3BGAaLdZogEkp9uZbxIqnuEGt+4dzDRA677DQl6ZgWp4B6DhSGYNo5ps3HtIkx2VEg1s16/1qf54o01pgAKOxmlg6mhA5DHMNEBrGIPTwNQxzDRAhTCqLG+xjbVEA4iG41Kige36NDBF5fQcrTCBXO+UhXdXmAbuVNDAXQnQANAh3DsB0e4qa7Z56EFCcrqb+Sah4hlncOvew0wDtO57LOSVGaiG9wAa3susYVSTjXsPabL3pUQD2/RrfbI/3v2mNEAB78dpYPL9gMgPMNMAreEBnAYmP8BMA1QI95XlLbYHLdEAouH4lGhgmz4NTFI5PUcrTCDXCbLwHgrTwAQFDTyUAA0AHcKdAIj2UFmzzUMPEpLTROabhIpnvMGt+zAzDdC6H7aQV2agGj4MaPgIs4ZRTTbuPaTJPpoSDWzVr/XV/niTTGmAAk7CaWD1JEDkycw0QGuYjNPA6snMNECF8GhZ3mJ7zBINIBo+nhINbNWngVUqp+dohQnk+oQsvClhGnhCQQNTEqABoEO4TwCiTSlrtnnoQUJymsp8k1DxPG5w6z7JTAO07ict5JUZqIZPAho+xaxhVJONew9psk+nRANb9Gt9iT/eM6Y0QAGfwWlgyTOAyM8y0wCt4VmcBpY8y0wDVAhPl+Uttucs0QCi4bSUaGCLPg0sVjk9RytMINfpsvBmhGlguoIGZiRAA0CHcKcDos0oa7Z56EFCcprJfJNQ8UwzuHWfZ6YBWvfzFvLKDFTD5wENZzFrGNVk495DmuwLKdHAZv1ar+6PN9uUBijgbJwGqs8GRJ7DTAO0hjk4DVSfw0wDVAgvlOUttrmWaADR8MWUaGCzPg1UUzk9RytMINd5svDmh2lgnoIG5idAA0CHcOcBos0va7Z56EFCclrAfJNQ8bxocOsuZKYBWvdCC3llBqrhQkDDl5g1jGqyce8hTfbllGhgk36tz/XHW2RKAxRwEU4DcxcBIr/CTAO0hldwGpj7CjMNUCG8XJa32F61RAOIhq+lRAOb9GlgjsrpOVphArm+LgvvjTANvK6ggTcSoAGgQ7ivA6K9UdZs89CDhOT0JvNNQsXzmsGt+xYzDdC637KQV2agGr4FaPg2s4ZRTTbuPaTJvpMSDWzUr/Xh/njvmtIABXwXp4Hh7wIiv8dMA7SG93AaGP4eMw1QIbxTlrfYFluiAUTDJSnRwEZ9GhimcnqOVphArktl4S0L08BSBQ0sS4AGgA7hLgVEW1bWbPPQg4TktJz5JqHiWWJw665gpgFa9woLeWUGquEKQMP3mTWMarJx7yFN9oOUaOBv/Vpv64/3oSkNUMAPcRpo+yEg8kfMNEBr+AingbYfMdMAFcIHZXmLbaUlGkA0XJUSDfytTwNtVE7P0QoTyHW1LLyPwzSwWkEDHydAA0CHcFcDon1c1mzz0IOE5PQJ801CxbPK4Nb9lJkGaN2fWsgrM1ANPwU0/IxZw6gmG/ce0mQ/T4kG/tKv9bH+eF+Y0gAF/AKngbFfACKvYaYBWsManAbGrmGmASqEz8vyFtuXlmgA0fCrlGjgL30aGKNyeo5WmECuX8vC+yZMA18raOCbBGgA6BDu14Bo35Q12zz0ICE5fct8k1DxfGVw637HTAO07u8s5JUZqIbfARquZdYwqsnGvYc02e9TooE/9Wt9kD/eD6Y0QAF/wGlg0A+AyD8y0wCt4UecBgb9yEwDVAjfl+Uttp8s0QCi4c8p0cCf+jQwUOX0HK0wgVx/kYX3a5gGflHQwK8J0ADQIdxfANF+LWu2eehBQnL6jfkmoeL52eDWXcdMA7TudRbyygxUw3WAhr8zaxjVZOPeQ5rsHynRwAb9Wl/oj7felAYo4HqcBhauB0TewEwDtIYNOA0s3MBMA1QIf5TlLbY/LdEAouFfKdHABn0aWKByeo5WmECuf8vC2ximgb8VNLAxARoAOoT7NyDaxrJmm4ceJCSnTcw3CRXPXwa37mZmGqB1b7aQV2agGm4GNNzCrGFUk417D2myW1OigfX6te75420zpQEKuA2nAW8bIPJ2ZhqgNWzHacDbzkwDVAhby/IW2w5LNABpWC4dGlivTwM1VE7P0QoTyNUt9++zVDknePPT/xGmAZqULQ0AHcJ1y+mLVqqc2eahBwnJqTRwkHb+w9F/h4rHKYcXdhn9vP5LztHPi9ZdxkJemYFqWAbQsCyzhlFNNu49pMmWA/Y1SRr4Q7/WC/zxcsplEZBeBmmgIAcQORc4PKZryAWLh9aQm2VR6xRCuXK8xZYHFltmoDkhGpZPiQb+0KeBfJXTc7TCBHLNl4VXEKaBfAUNFCRAA0CHcPMB0QrKmW0eepCQnCow3yRUPOUNbt2KzDRA665oIa/MQDWsCGhYyKxhVJONew9pskUp0cDv+rU+wB+vkikNUMBKOA0MqASIXJmZBmgNlXEaGFCZmQaoEIrK8RZbFUs0gGi4W0o08Ls+DfRXOT1HK0wg191l4VUN08DuChqomgANAB3C3R0QrWo5s81DDxKS0x7MNwkVz24Gt241ZhqgdVezkFdmoBpWAzSszqxhVJONew9psnumRAPr9Gu9kj/eXqY0QAH3wmmg0l6AyHsz0wCtYW+cBirtzUwDVAh7luMttn0s0QCi4b4p0cA6fRooUjk9RytMINcasvC8MA3UUNCAlwANAB3CrQGI5pUz2zz0ICE57cd8k1Dx7Gtw6+7PTAO07v0t5JUZqIb7AxoewKxhVJONew9psgemRAO/6Te0QLyDTGmAAh5UDn/vYOYbnvI6uNx/Ds/RH2gR0YE9sBxvUdS0dGsjutTKslB11lzLQMMkC+pXw4I6xLSgKOAhBgV1KHNBUV6HJlRQcdNJ+EPLmR0YTy9GoofklzL6OfrjHWZ6SCjgYQYd5zCgYg9nPlC0hsMNRD6c+TMYHaLDDfCgJrBfRzDjIO3tEYbFmhno2ToCWP+RzIgXdSPHvYfcyEcxa0h7dJTBRYDoQE2QPpuVVv1GYNyWjtk5c7A4nrZzl+HuXJPre6e22K86wuoKqyfsaGHHCKsvrIGwY4UdJ+x4YQ2FNRJ2grDGwpoIayqsmbDmwloIaymslbDWwtoIayusnbD2wjoI6yisk7DOwrqEvwOoLT/v+311FL66Cl89he9ohe8Yha++wtdA4TtW4TtO4Tte4Wuo8DVS+E5Q+BorfE0UvqYKXzOFr7nC10Lha6nwtVL4Wit8bRS+tgpfO4WvvcLXQeHrqPB1Uvg6K3xdyu363dJ+8uk5WiNQ9HHNprZmY6Lvoepoz3XcurpzRb719OaOE/m6R2vN3UBrc4/Rmbvmn31w62vMbf7vnrkN4ueOkfvrHhs7d2BGC/e4uLlzdurmHh8zd/B/GrsNS57bxnce3EYlzl3rPzvuCSXNrRs4Z27jEubWDJ5Jt0n03F6h8+s2jZzbM3zW3WZRc4t3qQu3ecTc4l1ryG2hnjtLUW9uS+XclqradFup5nZR1rHbWjF3trrm3Ta7zq0V0R/ctrvMnRjVS9x24bm1I/uO2z40d010j3I7BOdeUkI/czsG5nYqqfe5nfxz+5XYJ93OvrlHldxT3S4pfeLtot/Ll/vjdTX9xEsBu5aD/9RxeVf9DXK7aS7K9BMvraEb+ImX1tANFDmpPx0DDtcyldNztMIEcu0uD8iJYTLuLjfO7zuxXPZ/OgacZLc7cEBOBDcPFYcORXfwMFFe3VPqGJ3193mCP14P045BAXvgHWNCD6BjnMTcMWgNJ+EdY8JJKXWMzvpxx6ucnqMVJpDryfKA9Ax3jJMVHaNnAh0DOMnuycAB6Wm4eegXdUhOpwDFsPMfQC7d5AFHv6hDrupTgWJQrSFuOu3RqQad+NSUOnEn/fM70x/vNNNOTAFPwzvxzNOAw3c6cyemNZyOd+KZp2d5+HQK6FTmAuoFriEz0MaEaNgbOBtJ3nCd9OPOUDk9RytMINczZOGdGb7hzlDccGcmcMMBHcI9AxDtTMPNQw8SklOfLG+4uHeoeHob3A59mW8tWndfC3llBqphX0DDs5g1jGqyOs1Zd24/sKElRQMd9Wt9tD/e2aY0QAHPxmlg9NnABp3DTAO0hnNwGhh9DjMNUCH0K8dbbOeCxZYZaE6IhuelRAMd9eOOUjk9RytMINfzZeFdEKaB8xU0cEECNAB0CPd8QLQLDDcPPUhIThcy3yRUPOcZ3LoXMdMArfsiC3llBqrhRYCGFzNrGNVk495Dmmz/lL4b6KBf654/3gBTGqCAA3Aa8AYAIg9kpgFaw0CcBryBzDRAhdC/HG+xDbJEA4iGl6REAx304yb2c+culYV3WZgGLlXQwGUJ0ADQIdxLAdEuM9w89CAhOV3OfJNQ8VxicOtewUwDtO4rLOSVGaiGVwAaXsmsYVSTjXsPabJXpUQD7fVrfZk/3mBTGqCAg3EaWDYYEPlqZhqgNVyN08Cyq5lpgArhqnK8xXaNJRpANLw2JRporx93qcrpOVphArleJwvv+jANXKeggesToAGgQ7jXAaJdb7h56EFCchrCfJNQ8VxrcOsOZaYBWvdQC3llBqrhUEDDYmYNo5ps3HtIk70hJRpop1/rff3xbjSlAQp4I04DfW8ERL6JmQZoDTfhNND3JmYaoEK4oRxvsd1siQYQDW9JiQba6cfto3J6jlaYQK63ysIbFqaBWxU0MCwBGgA6hHsrINoww81DDxKS03Dmm4SK5xaDW3cEMw3QukdYyCszUA1HABrexqxhVJONew9psrenRANt9Wt9lT/eHaY0QAHvwGlg1R2AyCOZaYDWMBKngVUjmWmACuH2crzFNsoSDSAajk6JBtrqx12pcnqOVphArmNk4Y0N08AYBQ2MTYAGgA7hjgFEG2u4eehBQnIax3yTUPGMNrh172SmAVr3nRbyygxUwzsBDe9i1jCqyca9hzTZu1OigTb6td7OH+8eUxqggPfgNNDuHkDke5lpgNZwL04D7e5lpgEqhLvL8RbbfZZoANHw/pRooI1+3LYqp+dohQnk+oAsvAfDNPCAggYeTIAGgA7hPgCI9qDh5qEHCclpPPNNQsVzv8GtO4GZBmjdEyzklRmohhMADR9i1jCqyca9hzTZiSnRQGv9Wp/uj/ewKQ1QwIdxGpj+MCDyI8w0QGt4BKeB6Y8w0wAVwsRyvMX2qCUaQDSclBINtNaPO03l9BytMIFcJ8vCeyxMA5MVNPBYAjQAdAh3MiDaY4abhx4kJKfHmW8SKp5JBrfuE8w0QOt+wkJemYFq+ASg4RRmDaOabNx7SJOdmhINtNKv9fn+eE+a0gAFfBKngflPAiI/xUwDtIancBqY/xQzDVAhTC3HW2xPW6IBRMNnUqKBVvpx56mcnqMVJpDrs7LwngvTwLMKGnguARoAOoT7LCDac4abhx4kJKdpzDcJFc8zBrfudGYaoHVPt5BXZqAaTgc0nMGsYVSTjXsPabIzU6KBlvq13sEf73lTGqCAz+M00OF5QORZzDRAa5iF00CHWcw0QIUwsxxvsb1giQYQDWenRAMt9eO2Vzk9RytMINc5svDmhmlgjoIG5iZAA0CHcOcAos013Dz0ICE5vch8k1DxzDa4decx0wCte56FvDID1XAeoOF8Zg2jmmzce0iTXZASDbTQr/Vif7yFpjRAARfiNFC8EBD5JWYaoDW8hNNA8UvMNECFsKAcb7G9bIkGEA0XpUQDLfTjDlU5PUcrTCDXV2ThvRqmgVcUNPBqAjQAdAj3FUC0Vw03Dz1ISE6vMd8kVDyLDG7d15lpgNb9uoW8MgPV8HVAwzeYNYxqsnHvIU32zZRooLkhDbxlSgMU8C0DGngLEPltZhqgNbxtQANvM9MAFcKb5XiL7R1LNIBo+G5KNNA8BRp4Txbe4jANvKeggcUJ0ADQIdz3ANEWW6IBJKclzDcJFc+7BrfuUmYaoHUvtZBXZqAaLgU0XMasYVSTjXsPabLLU6KBZvq1PtUfb4UpDVDAFTgNTF0BiPw+Mw3QGt7HaWDq+8w0QIWwvBxvsX1giQYQDT9MiQaa6cedonJ6jlaYQK4fycJbGaaBjxQ0sDIBGgA6hPsRINpKw81DDxKS0yrmm4SK50ODW3c1Mw3QuldbyCszUA1XAxp+zKxhVJONew9psp+kRANN9Wt9sj/ep6Y0QAE/xWlg8qeAyJ8x0wCt4TOcBiZ/xkwDVAiflOMtts8t0QCi4Rcp0UBT/biTVE7P0QoTyHWNLLwvwzSwRkEDXyZAA0CHcNcAon1puHnoQUJy+or5JqHi+cLg1v2amQZo3V9byCszUA2/BjT8hlnDqCYb9x7SZL9NiQaa6Nf6an+870xpgAJ+h9PA6u8Akdcy0wCtYS1OA6vXMtMAFcK35XiL7XtLNIBo+ENKNNBEP+4qldNztMIEcv1RFt5PYRr4UUEDPyVAA0CHcH8ERPvJcPPQg4Tk9DPzTULF84PBrfsLMw3Qun+xkFdmoBr+Amj4K7OGUU027j2kyf6WEg001q/1Jf5460xpgAKuw2lgyTpA5N+ZaYDW8DtOA0t+Z6YBKoTfyvEW2x+WaADRcH1KNNBYP+5ildNztMIEct0gC+/PMA1sUNDAnwnQANAh3A2AaH8abh56kJCc/mK+Sah41hvcun8z0wCt+28LeWUGquHfgIYbmTWMarJx7yFNdlNKNHCCfq1X98fbbEoDFHAzTgPVNwMib2GmAVrDFpwGqm9hpgEqhE3leIttqyUaQDTclhINnKAft5rK6TlaYQK5bpeFtyNMA9sVNLAjARoAOoS7HRBth+HmoQcJycnJ4b1JqHi2Gdy6rn5e/yXnAGvJ+TcGd16ZgWrojxM3txSzhlFNNu49pMmWBvY1SRpopF/rc/3xyuRkEZBeBmlgbhlA5LLA4TFdQ1mweGgNZbMsap1CKJ3DW2zlwGLLDDQnRMMcIKckaaCR/oU2R+X0HK0wgVxzZeHl5TjBmz83Z1caoEnZ0gDQIdxcQLS8HLPNQw8SklN55puEiifH4NbNZ6YBWne+hbwyA9UwH9CwgFnDqCYb9x7SZCukRAMN9Wt9uD9eRVMaoIAVcRoYXhEQuZCZBmgNhTgNDC9kpgEqhAo5vMVWZIkGEA0rpUQDDfVpYJjK6TlaYQK5VpaFVyVMA5UVNFAlARoAOoRbGRCtSo7Z5qEHCclpN+abhIqnksGtuzszDdC6d7eQV2agGu4OaFiVWcOoJhv3HtJk90iJBo7Xr/W2/njVTGmAAlbDaaBtNUDk6sw0QGuojtNA2+rMNECFsEcOb7HtaYkGEA33SokGjtengTYqp+dohQnkurcsvH3CNLC3ggb2SYAGgA7h7g2Itk+O2eahBwnJaV/mm4SKZy+DW7cGMw3QumtYyCszUA1rABp6zBpGNdm495Amu19KNHCcfq2P9cfb35QGKOD+OA2M3R8Q+QBmGqA1HIDTwNgDmGmACmG/HN5iO9ASDSAaHpQSDRynTwNjVE7P0QoTyPVgWXg1wzRwsIIGaiZAA0CHcA8GRKuZY7Z56EFCcqrFfJNQ8RxkcOsewkwDtO5DLOSVGaiGhwAaHsqsYVSTjXsPabKHpUQDx+rX+iB/vMNNaYACHo7TwKDDAZGPYKYBWsMROA0MOoKZBqgQDsvhLbYjLdEAouFRKdHAsfo0MFDl9BytMIFca8vCqxOmgdoKGqiTAA0AHcKtDYhWJ8ds89CDhORUl/kmoeI5yuDWrcdMA7TuehbyygxUw3qAhkczaxjVZOPeQ5rsMSnRQAP9Wl/oj1fflAYoYH2cBhbWB0RuwEwDtIYGOA0sbMBMA1QIx+TwFtuxlmgA0fC4lGiggT4NLFA5PUcrTCDX42XhNQzTwPEKGmiYAA0AHcI9HhCtYY7Z5qEHCcmpEfNNQsVznMGtewIzDdC6T7CQV2agGp4AaNiYWcOoJhv3HtJkm6REA/X1a93zx2tqSgMUsClOA15TQORmzDRAa2iG04DXjJkGqBCa5PAWW3NLNIBo2CIlGqivTwM1VE7P0QoTyLWlLLxWYRpoqaCBVgnQANAh3JaAaK1yzDYPPUhITq2ZbxIqnhYGt24bZhqgdbexkFdmoBq2ATRsy6xhVJONew9psu1SooFj9Gu9wB+vvSkNUMD2OA0UtAdE7sBMA7SGDjgNFHRgpgEqhHY5vMXW0RINIBp2SokGjtGngXyV03O0wgRy7SwLr0uYBjoraKBLAjQAdAi3MyBalxyzzUMPEpJTV+abhIqnk8Gt242ZBmjd3SzklRmoht0ADbszaxjVZOPeQ5rsiSnRwNH6tT7AH6+HKQ1QwB44DQzoAYh8EjMN0BpOwmlgwEnMNECFcGIOb7GdbIkGEA17pkQDR+vTQH+V03O0wgRyPUUW3qlhGjhFQQOnJkADQIdwTwFEOzXHbPPQg4TkdBrzTULF09Pg1j2dmQZo3adbyCszUA1PBzTsxaxhVJONew9psr1TooF6+rVeyR/vDFMaoIBn4DRQ6QxA5DOZaYDWcCZOA5XOZKYBKoTeObzF1scSDSAa9k2JBurp00CRyuk5WmECuZ4lC69fmAbOUtBAvwRoAOgQ7lmAaP1yzDYPPUhITmcz3yRUPH0Nbt1zmGmA1n2OhbwyA9XwHEDDc5k1jGqyce8hTfa8lGigLvDDcv3xzjelAQp4fg7+3gXMNzzldUHOfw7P0R9oEdGBPS+HtygutHRrI7pclGWh6qz5IgMNkyyoOoYFdbFpQVHAiw0Kqj9zQVFe/RMqqLjpJHz/HLMD4+nFSPSQ1AZ+Sq0/3gDTQ0IBBxh0nAFAxQ5kPlC0hoEGIg9k/gxGh2igAR5cCOzXIGYcpL0dZFismYGerUHA+i9hRryoGznuPeRGvpRZQ9qjSw0uAkQHaoL02ay04jeqEY7rOiWOVv65MZNbB+aWPLlNcG6Jk9uG5pY0uV14bgmT2+8yN3pyh13nRk7uqJgbNbmTam7E5M7KuerJXdRzlZO7RsxVTe4WNVcxuXvk3F0nnxg9d5fJPUqYG558UklzQ5NPLnFucHLPkucGJp8SM9c/+dS4ub7Jp8XO/W/y6fFzd07upTE3M7m3zlw5+Qytuf9OPlNv7j+T+2jOpcl9deeKyWdpz3XcfvpzlcPLYprn6Ax3p76u753LxL1yubArhF0p7Cphg4VdLewaYdcKu07Y9cKGCBsqrFjYDcJuFHaTsJuF3SLsVmHDhA0XNkLYbcJuF3aHsJHCRgkbLWyMsLHCxoW/K71Mfi/q912u8F2h8F2p8F2l8A1W+K5W+K5R+K5V+K5T+K5X+IYofEMVvmKF7waF70aF7yaF72aF7xaF71aFb5jCN1zhG6Hw3abw3a7w3aHwjVT4Ril8oxW+MQrfWIVvXM6u38EfJp+eozUCRR8HZZdpAhx9X3+59lzHvUJ3rsj3Sr2540S+7lVaczfQ2tzBOnPX/LMP7tUac5v/u2fuNfFzx8j9da+NnTswo4V7XdzcOTt1c6+PmTv4P43dISXPbeM7D+7QEueu9Z8dt7ikuXUD58y9oYS5NYNn0r0xem6v0Pl1b4qc2zN81t2bo+YW71IX7i0Rc4t3rSH3VvXcWYp6c4cp57ZU1aY7XDW3i7KO3RGKubPVNe/etuvcWhH9wb19l7kTo3qJe0d4bu3IvuOODM1dE92j3FHBuZeU0M/c0YG5nUrqfe4Y/9x+JfZJd6xv7lEl91R3HPCFw9LK+nOXAXOXA3NXAHPfB+Z+AMz9EJj7ETB3JTB3lf7cRL/RHad/By/3x7vT9BtdCnhnDvy3apbfCRzsuzQXZfqNLq3hLvAbXVrDXTmYyEn97Q+gKSxTOT1HK0wg17vlAbkn/Inmbrlxft89Odn/7Q/gJLt3AwfkHnDzUHHoUNwNHibK6+6cdDrGWP19nuCPd69px6CA9+IdY8K9QMe4j7lj0BruwzvGhPtS6hhj9eOOVzk9RytMINf75QF5INwx7ld0jAcS6BjASXbvBw7IA4abh/5BFJLTg0Ax7PwHkMtd8oCjfxCFXNXjgWJQrSFuOu3ReINOPD6lTjxG//zO9MebYNqJKeAEvBPPnAAcvoeYOzGt4SG8E898KMvDp1NA45kLaCK4hsxAGxOi4cPA2UjyhhujH3eGyuk5WmECuT4iC+/R8A33iOKGezSBGw7oEO4jgGiPGm4eepCQnCZlecPFvUPF87DB7TCZ+daidU+2kFdmoBpOBjR8jFnDqCar05x15z4ONrSkaGC0fq2P9sd7wpQGKOATOA2MfgLYoCnMNEBrmILTwOgpzDRAhfB4Dm+xTQWLLTPQnBANn0yJBkbrxx2lcnqOVphArk/Jwns6TANPKWjg6QRoAOgQ7lOAaE8bbh56kJCcnmG+Sah4njS4dZ9lpgFa97MW8soMVMNnAQ2fY9YwqsnGvYc02WkpfTcwSr/WPX+86aY0QAGn4zTgTQdEnsFMA7SGGTgNeDOYaYAKYVoOb7HNtEQDiIbPp0QDo/TjJvZzVWfJwnshTAOzFDTwQgI0AHQIdxYg2guGm4ceJCSn2cw3CRXP8wa37hxmGqB1z7GQV2agGs4BNJzLrGFUk417D2myL6ZEAyP1a32ZP948UxqggPNwGlg2DxB5PjMN0Brm4zSwbD4zDVAhvJjDW2wLLNEAouHClGhgpH7cpSqn52iFCeT6kiy8l8M08JKCBl5OgAaADuG+BIj2suHmoQcJyWkR801CxbPQ4NZ9hZkGaN2vWMgrM1ANXwE0fJVZw6gmG/ce0mRfS4kG7tCv9b7+eK+b0gAFfB2ngb6vAyK/wUwDtIY3cBro+wYzDVAhvJbDW2xvWqIBRMO3UqKBO/Tj9lE5PUcrTCDXt2XhvROmgbcVNPBOAjQAdAj3bUC0dww3Dz1ISE7vMt8kVDxvGdy67zHTAK37PQt5ZQaq4XuAhouZNYxqsnHvIU12SUo0cLt+ra/yx1tqSgMUcClOA6uWAiIvY6YBWsMynAZWLWOmASqEJTm8xbbcEg0gGq5IiQZu14+7UuX0HK0wgVzfl4X3QZgG3lfQwAcJ0ADQIdz3AdE+MNw89CAhOX3IfJNQ8awwuHU/YqYBWvdHFvLKDFTDjwANVzJrGNVk495DmuyqlGjgNv1ab+ePt9qUBijgapwG2q0GRP6YmQZoDR/jNNDuY2YaoEJYlcNbbJ9YogFEw09TooHb9OO2VTk9RytMINfPZOF9HqaBzxQ08HkCNAB0CPczQLTPDTcPPUhITl8w3yRUPJ8a3LprmGmA1r3GQl6ZgWq4BtDwS2YNo5ps3HtIk/0qJRoYoV/r0/3xvjalAQr4NU4D078GRP6GmQZoDd/gNDD9G2YaoEL4Koe32L61RAOIht+lRAMj9ONOUzk9RytMINe1svC+D9PAWgUNfJ8ADQAdwl0LiPa94eahBwnJ6Qfmm4SK5zuDW/dHZhqgdf9oIa/MQDX8EdDwJ2YNo5ps3HtIk/05JRoYrl/r8/3xfjGlAQr4C04D838BRP6VmQZoDb/iNDD/V2YaoEL4OYe32H6zRAOIhutSooHh+nHnqZyeoxUmkOvvsvD+CNPA7woa+CMBGgA6hPs7INofhpuHHiQkp/XMNwkVzzqDW3cDMw3QujdYyCszUA03ABr+yaxhVJONew9psn+lRAPD9Gu9gz/e36Y0QAH/xmmgw9+AyBuZaYDWsBGngQ4bmWmACuGvHN5i22SJBhANN6dEA8P047ZXOT1HK0wg1y2y8LaGaWCLgga2JkADQIdwtwCibTXcPPQgITltY75JqHg2G9y625lpgNa93UJemYFquB3QcAezhlFNNu49pMlS0Wr+vonSwK36tV7sj+fmZhGQXgZpoNjV3yC3VC4vDdAaKAZIA8WlAJFVeekUgpPLW2ylAR38/wPNCdGwDJBTkjRwq37jGapyeo5WmECuZWXhlQv/V2DK5u5KAzQpWxoAOoRbFhCtXK7Z5qEHCckpBzzc6IGh4imTixd2bpaNI246rTvXQl6ZgWqYC2iYx6xhVJONew9psuVTooFbDGkg35QGKGC+AQ3kAyIXMNMAraHAgAYKmGmACqF8Lm+xVbBEA4iGFVOigVtSoIFCWXhFYRooVNBAUQI0AHQItxAQrcgSDSA5VWK+Sah4KhrcupWZaYDWXdlCXpmBalgZ0LAKs4ZRTTbuPaTJ7pYSDdysX+tT/fF2N6UBCrg7TgNTdwdErspMA7SGqjgNTK3KTANUCLvl8hbbHpZoANGwWko0cLM+DUxROT1HK0wg1+qy8PYM00B1BQ3smQANAB3CrQ6Itmeu2eahBwnJaS/mm4SKp5rBrbs3Mw3Quve2kFdmoBruDWi4D7OGUU027j2kye6bEg3cpF/rk/3xapjSAAWsgdPA5BqAyB4zDfyzaTgNTPaYaYAKYd9c3mLbzxINIBrunxIN3KRPA5NUTs/RChPI9QBZeAeGaeAABQ0cmAANAB3CPQAQ7cBcs81DDxKS00HMNwkVz/4Gt+7BzDRA6z7YQl6ZgWp4MKBhTWYNo5ps3HtIk62VEg3cqF/rq/3xDjGlAQp4CE4Dqw8BRD6UmQZoDYfiNLD6UGYaoEKolctbbIdZogFEw8NTooEb9WlglcrpOVphArkeIQvvyDANHKGggSMToAGgQ7hHAKIdmWu2eehBQnI6ivkmoeI53ODWrc1MA7Tu2hbyygxUw9qAhnWYNYxqsnHvIU22bko0cIN+rS/xx6tnSgMUsB5OA0vqASIfzUwDtIajcRpYcjQzDVAh1M3lLbZjLNEAomH9lGjgBn0aWKxyeo5WmECuDWThHRumgQYKGjg2ARoAOoTbABDt2FyzzUMPEpLTccw3CRVPfYNb93hmGqB1H28hr8xANTwe0LAhs4ZRTTbuPaTJNkqJBor1a726P94JpjRAAU/AaaD6CYDIjZlpgNbQGKeB6o2ZaYAKoVEub7E1sUQDiIZNU6KBYn0aqKZyeo5WmECuzWThNQ/TQDMFDTRPgAaADuE2A0Rrnmu2eehBQnJqwXyTUPE0Nbh1WzLTAK27pYW8MgPVsCWgYStmDaOabNx7SJNtnRINDNWv9bn+eG1MaYACtsFpYG4bQOS2zDRAa2iL08Dctsw0QIXQOpe32NpZogFEw/Yp0cBQfRqYo3J6jlaYQK4dZOF1DNNABwUNdEyABoAO4XYAROuYa7Z56EFCcurEfJNQ8bQ3uHU7M9MArbuzhbwyA9WwM6BhF2YNo5ps3HtIk+2aEg0M0a/14f543UxpgAJ2w2lgeDdA5O7MNEBr6I7TwPDuzDRAhdA1l7fYTrREA4iGPVKigSH6NDBM5fQcrTCBXE+ShXdymAZOUtDAyQnQANAh3JMA0U7ONds89CAhOfVkvkmoeHoY3LqnMNMArfsUC3llBqrhKYCGpzJrGNVk495DmuxpKdHA9fq13tYf73RTGqCAp+M00PZ0QORezDRAa+iF00DbXsw0QIVwWi5vsfW2RAOIhmekRAPX69NAG5XTc7TCBHI9UxZenzANnKmggT4J0ADQIdwzAdH65JptHnqQkJz6Mt8kVDxnGNy6ZzHTAK37LAt5ZQaq4VmAhv2YNYxqsnHvIU327JRo4Dr9Wh/rj3eOKQ1QwHNwGhh7DiDyucw0QGs4F6eBsecy0wAVwtm5vMV2niUaQDQ8PyUauE6fBsaonJ6jFSaQ6wWy8C4M08AFChq4MAEaADqEewEg2oW5ZpuHHiQkp4uYbxIqnvMNbt2LmWmA1n2xhbwyA9XwYkDD/swaRjXZuPeQJjsgJRq4Vr/WB/njDTSlAQo4EKeBQQMBkQcx0wCtYRBOA4MGMdMAFcKAXN5iu8QSDSAaXpoSDVyrTwMDVU7P0QoTyPUyWXiXh2ngMgUNXJ4ADQAdwr0MEO3yXLPNQw8SktMVzDcJFc+lBrfulcw0QOu+0kJemYFqeCWg4VXMGkY12bj3kCY7OCUauEa/1hf6411tSgMU8GqcBhZeDYh8DTMN0BquwWlg4TXMNECFMDiXt9iutUQDiIbXpUQD1+jTwAKV03O0wgRyvV4W3pAwDVyvoIEhCdAA0CHc6wHRhuSabR56kJCchjLfJFQ81xncusXMNEDrLraQV2agGhYDGt7ArGFUk417D2myN6ZEA1fr17rnj3eTKQ1QwJtwGvBuAkS+mZkGaA034zTg3cxMA1QIN+byFtstlmgA0fDWlGjgan0aqKFyeo5WmECuw2ThDQ/TwDAFDQxPgAaADuEOA0Qbnmu2eehBQnIawXyTUPHcanDr3sZMA7Tu2yzklRmohrcBGt7OrGFUk417D2myd6REA4P1a73AH2+kKQ1QwJE4DRSMBEQexUwDtIZROA0UjGKmASqEO3J5i220JRpANByTEg0M1qeBfJXTc7TCBHIdKwtvXJgGxipoYFwCNAB0CHcsINq4XLPNQw8SktOdzDcJFc8Yg1v3LmYaoHXfZSGvzEA1vAvQ8G5mDaOabNx7SJO9JyUauEq/1gf4491rSgMU8F6cBgbcC4h8HzMN0Bruw2lgwH3MNECFcE8ub7Hdb4kGEA0fSIkGrtKngf4qp+dohQnk+qAsvPFhGnhQQQPjE6ABoEO4DwKijc812zz0ICE5TWC+Sah4HjC4dR9ipgFa90MW8soMVMOHAA0nMmsY1WTj3kOa7MMp0cCV+rVeyR/vEVMaoICP4DRQ6RFA5EeZaYDW8ChOA5UeZaYBKoSHc3mLbZIlGkA0nJwSDVypTwNFKqfnaIUJ5PqYLLzHwzTwmIIGHk+ABoAO4T4GiPZ4rtnmoQcJyekJ5puEimeywa07hZkGaN1TLOSVGaiGUwANpzJrGNVk495DmuyTKdHAFfoNLRDvKVMaoIBP5eLvPc18w1NeT/s6p+foD7SI6MA+mctbFM9YurURXZ7NslB11vysgYZJFtTlhgX1nGlBUcDnDApqGnNBUV7TEiqouOkk/LRcswPj6cVI9JBclqOfoz/edNNDQgGnG3Sc6UDFzmA+ULSGGQYiz2D+DEaHaIYBHjwD7NdMZhykvZ1pWKyZgZ6tmcD6n2dGvKgbOe495Eaexawh7dEsg4sA0YGaIH02K636jcC4Zztm58zB4njazl2Gu3NNru+dF8R+zRY2R9hcYS8KmydsvrAFwhYKe0nYy8IWCXtF2KvCXhP2urA3hL0p7C1hbwt7R9i7wt4TtljYEmFLhS0TtlzYCmHvC/tA2Ifh7wBekJ/3/b7ZCt8chW+uwveiwjdP4Zuv8C1Q+BYqfC8pfC8rfIsUvlcUvlcVvtcUvtcVvjcUvjcVvrcUvrcVvncUvncVvvcUvsUK3xKFb6nCt0zhW67wrVD43lf4PlD4Pszd9bul/eTTc7RGoOjjms0Lmo2JvoearT3XcefozhX5ztWbO07k676oNXcDrc2dpzN3zT/74M7XmNv83z1zF8TPHSP3110YO3dgRgv3pbi5c3bq5r4cM3fwfxq7i0qe28Z3HtxXSpy71n923FdLmls3cM7c10qYWzN4Jt3Xo+f2Cp1f943IuT3DZ919M2pu8S514b4VMbd41xpy31bPnaWoN/cd5dyWqtp031XN7aKsY/c9xdzZ6pp3F+86t1ZEf3CX7DJ3YlQvcZeG59aO7DvustDcNdE9yl0enHtJCf3MXRGY26mk3ue+75/br8Q+6X7gm3tUyT3V/TBXH7qS/MT7oX4vX+6P91FuFgHpZfBPHZd/pL9B7krNRZl+4qU1UAwXXMNKUOSk/nQMOFzLVE7P0QoTyHWVPCCrw7SySm6c37c6N/s/HQNOsrsKOCCrwc1DxaFDsQo8TJTXqpQ6xgf6+zzBH+9j045BAT/GO8aEj4GO8Qlzx6A1fIJ3jAmfpNQxPtCPO17l9BytMIFcP5UH5LNwx/hU0TE+S6BjACfZ/RQ4IJ8Zbh76RR2S0+dAMez8B5DLSnnA0S/qkKv6C6AYVGuIm0579IVBJ/4ipU78vv75nemPt8a0E1PANXgnnrkGOHxfMndiWsOXeCee+WWWh0+ngL5gLqCvwDVkBtqYEA2/Bs5Gkjfc+/pxZ6icnqMVJpDrN7Lwvg3fcN8obrhvE7jhgA7hfgOI9q3h5qEHCcnpuyxvuLh3qHi+Nrgd1jLfWrTutRbyygxUw7WAht8zaxjVZHWas+7cH8CGlhQNrNCv9dH+eD+a0gAF/BGngdE/Ahv0EzMN0Bp+wmlg9E/MNECF8EMub7H9DBZbZqA5IRr+khINrNCPO0rl9BytMIFcf5WF91uYBn5V0MBvCdAA0CHcXwHRfjPcPPQgITmtY75JqHh+Mbh1f2emAVr37xbyygxUw98BDf9g1jCqyca9hzTZ9Sl9N7Bcv9Y9f7wNpjRAATfgNOBtAET+k5kGaA1/4jTg/clMA1QI63N5i+0vSzSAaPh3SjSwXD9uYj93bqMsvE1hGtiooIFNCdAA0CHcjYBomww3Dz1ISE6bmW8SKp6/DW7dLcw0QOveYiGvzEA13AJouJVZw6gmG/ce0mS3pUQDy/RrfZk/3nZTGqCA23EaWLYdEHkHMw3QGnbgNLBsBzMNUCFsy+UtNifPDg0gGrpATknSwDJ9PZeqnJ6jFSaQa6m8f5+l85zgzU//R5gGaFK2NAB0CLdUnr5opfPMNg89SEhOZcDDjR4YKh43Dy/ssvp5yUDB3z9uOq27rIW8MgPVsCygYTlmDaOabNx7SJPNAfY1SRpYql/rff3xcvOyCEgvgzTQNxcQOQ84PKZryAOLh9aQl2VR6xRCTh5vsZW3RAOIhvkp0cBSfRroo3J6jlaYQK4FsvAqhGmgQEEDFRKgAaBDuAWAaBXyzDYPPUhIThWZbxIqnnyDW7eQmQZo3YUW8soMVMNCQMMiZg2jmmzce0iTrZQSDSzRr/VV/niVTWmAAlbGaWBVZUDkKsw0QGuogtPAqirMNECFUCmPt9h2s0QDiIa7p0QDS/RpYKXK6TlaYQK5VpWFt0eYBqoqaGCPBGgA6BBuVUC0PfLMNg89SEhO1ZhvEiqe3Q1u3erMNEDrrm4hr8xANawOaLgns4ZRTTbuPaTJ7pUSDSzWr/V2/nh7m9IABdwbp4F2ewMi78NMA7SGfXAaaLcPMw1QIeyVx1ts+1qiAUTDGinRwGJ9GmircnqOVphArp4svP3CNOApaGC/BGgA6BCuB4i2X57Z5qEHCclpf+abhIqnhsGtewAzDdC6D7CQV2agGh4AaHggs4ZRTTbuPaTJHpQSDbynX+vT/fEONqUBCngwTgPTDwZErslMA7SGmjgNTK/JTANUCAfl8RZbLUs0gGh4SEo08J4+DUxTOT1HK0wg10Nl4R0WpoFDFTRwWAI0AHQI91BAtMPyzDYPPUhITocz3yRUPIcY3LpHMNMArfsIC3llBqrhEYCGRzJrGNVk495DmuxRKdHAu/q1Pt8fr7YpDVDA2jgNzK8NiFyHmQZoDXVwGphfh5kGqBCOyuMttrqWaADRsF5KNPCuPg3MUzk9RytMINejZeEdE6aBoxU0cEwCNAB0CPdoQLRj8sw2Dz1ISE71mW8SKp56BrduA2YaoHU3sJBXZqAaNgA0PJZZw6gmG/ce0mSPS4kG3tGv9Q7+eMeb0gAFPB6ngQ7HAyI3ZKYBWkNDnAY6NGSmASqE4/J4i62RJRpANDwhJRp4R58G2qucnqMVJpBrY1l4TcI00FhBA00SoAGgQ7iNAdGa5JltHnqQkJyaMt8kVDwnGNy6zZhpgNbdzEJemYFq2AzQsDmzhlFNNu49pMm2SIkG3tav9WJ/vJamNEABW+I0UNwSELkVMw3QGlrhNFDcipkGqBBa5PEWW2tLNIBo2CYlGnhbnwaGqpyeoxUmkGtbWXjtwjTQVkED7RKgAaBDuG0B0drlmW0eepCQnNoz3yRUPG0Mbt0OzDRA6+5gIa/MQDXsAGjYkVnDqCYb9x7SZDulRANvGdJAZ1MaoICdDWigMyByF2YaoDV0MaCBLsw0QIXQKY+32LpaogFEw24p0cBbKdBAd1l4J4ZpoLuCBk5MgAaADuF2B0Q70RINIDn1YL5JqHi6Gdy6JzHTAK37JAt5ZQaq4UmAhiczaxjVZOPeQ5psz5Ro4E39Wp/qj3eKKQ1QwFNwGph6CiDyqcw0QGs4FaeBqacy0wAVQs883mI7zRINIBqenhINvKlPA1NUTs/RChPItZcsvN5hGuiloIHeCdAA0CHcXoBovfPMNg89SEhOZzDfJFQ8pxvcumcy0wCt+0wLeWUGquGZgIZ9mDWMarJx7yFNtm9KNPCGfq1P9sc7y5QGKOBZOA1MPgsQuR8zDdAa+uE0MLkfMw1QIfTN4y22sy3RAKLhOSnRwBv6NDBJ5fQcrTCBXM+VhXdemAbOVdDAeQnQANAh3HMB0c7LM9s89CAhOZ3PfJNQ8ZxjcOtewEwDtO4LLOSVGaiGFwAaXsisYVSTjXsPabIXpUQDr+vX+mp/vItNaYACXozTwOqLAZH7M9MAraE/TgOr+zPTABXCRXm8xTbAEg0gGg5MiQZe16eBVSqn52iFCeQ6SBbeJWEaGKSggUsSoAGgQ7iDANEuyTPbPPQgITldynyTUPEMNLh1L2OmAVr3ZRbyygxUw8sADS9n1jCqyca9hzTZK1Kigdf0a32JP96VpjRAAa/EaWDJlYDIVzHTAK3hKpwGllzFTANUCFfk8RbbYEs0gGh4dUo08Jo+DSxWOT1HK0wg12tk4V0bpoFrFDRwbQI0AHQI9xpAtGvzzDYPPUhITtcx3yRUPFcb3LrXM9MArft6C3llBqrh9YCGQ5g1jGqyce8hTXZoSjTwqn6tV/fHKzalAQpYjNNA9WJA5BuYaYDWcANOA9VvYKYBKoShebzFdqMlGkA0vCklGnhVnwaqqZyeoxUmkOvNsvBuCdPAzQoauCUBGgA6hHszINoteWabhx4kJKdbmW8SKp6bDG7dYcw0QOseZiGvzEA1HAZoOJxZw6gmG/ce0mRHpEQDr+jX+lx/vNtMaYAC3obTwNzbAJFvZ6YBWsPtOA3MvZ2ZBqgQRuTxFtsdlmgA0XBkSjTwij4NzFE5PUcrTCDXUbLwRodpYJSCBkYnQANAh3BHAaKNzjPbPPQgITmNYb5JqHhGGty6Y5lpgNY91kJemYFqOBbQcByzhlFNNu49pMnemRINLNKv9eH+eHeZ0gAFvAungeF3ASLfzUwDtIa7cRoYfjczDVAh3JnHW2z3WKIBRMN7U6KBRfo0MEzl9BytMIFc75OFd3+YBu5T0MD9CdAA0CHc+wDR7s8z2zz0ICE5PcB8k1Dx3Gtw6z7ITAO07gct5JUZqIYPAhqOZ9YwqsnGvYc02Qkp0cDL+rXe1h/vIVMaoIAP4TTQ9iFA5InMNEBrmIjTQNuJzDRAhTAhj7fYHrZEA4iGj6REAy/r00AbldNztMIEcn1UFt6kMA08qqCBSQnQANAh3EcB0SblmW0eepCQnCYz3yRUPI8Y3LqPMdMArfsxC3llBqrhY4CGjzNrGNVk495DmuwTKdHAS/q1PtYfb4opDVDAKTgNjJ0CiDyVmQZoDVNxGhg7lZkGqBCeyOMttict0QCi4VMp0cBL+jQwRuX0HK0wgVyfloX3TJgGnlbQwDMJ0ADQIdynAdGeyTPbPPQgITk9y3yTUPE8ZXDrPsdMA7Tu5yzklRmohs8BGk5j1jCqyca9hzTZ6SnRwEL9Wh/kjzfDlAYo4AycBgbNAESeyUwDtIaZOA0MmslMA1QI0/N4i+15SzSAaDgrJRpYqE8DA1VOz9EKE8j1BVl4s8M08IKCBmYnQANAh3BfAESbnWe2eehBQnKaw3yTUPHMMrh15zLTAK17roW8MgPVcC6g4YvMGkY12bj3kCY7LyUaWKBf6wv98eab0gAFnI/TwML5gMgLmGmA1rAAp4GFC5hpgAphXh5vsS20RAOIhi+lRAML9GlggcrpOVphArm+LAtvUZgGXlbQwKIEaADoEO7LgGiL8sw2Dz1ISE6vMN8kVDwvGdy6rzLTAK37VQt5ZQaq4auAhq8xaxjVZOPeQ5rs6ynRwHz9Wvf88d4wpQEK+AZOA94bgMhvMtMAreFNnAa8N5lpgArh9TzeYnvLEg0gGr6dEg3M16eBGiqn52iFCeT6jiy8d8M08I6CBt5NgAaADuG+A4j2bp7Z5qEHCcnpPeabhIrnbYNbdzEzDdC6F1vIKzNQDRcDGi5h1jCqyca9hzTZpSnRwDz9Wi/wx1tmSgMUcBlOAwXLAJGXM9MArWE5TgMFy5lpgAphaR5vsa2wRAOIhu+nRAPz9GkgX+X0HK0wgVw/kIX3YZgGPlDQwIcJ0ADQIdwPANE+zDPbPPQgITl9xHyTUPG8b3DrrmSmAVr3Sgt5ZQaq4UpAw1XMGkY12bj3kCa7OiUaeFG/1gf4431sSgMU8GOcBgZ8DIj8CTMN0Bo+wWlgwCfMNECFsDqPt9g+tUQDiIafpUQDL+rTQH+V03O0wgRy/VwW3hdhGvhcQQNfJEADQIdwPwdE+yLPbPPQg4TktIb5JqHi+czg1v2SmQZo3V9ayCszUA2/BDT8ilnDqCYb9x7SZL9OiQbm6td6JX+8b0xpgAJ+g9NApW8Akb9lpgFaw7c4DVT6lpkGqBC+zuMttu8s0QCi4dqUaGCuPg0UqZyeoxUmkOv3svB+CNPA9woa+CEBGgA6hPs9INoPeWabhx4kJKcfmW8SKp61BrfuT8w0QOv+yUJemYFq+BOg4c/MGkY12bj3kCb7S0o0MEe/oQXi/WpKAxTw1zz8vd+Yb3jK67e8/xyeoz/QIqID+0seb1Gss3RrI7r8nmWh6qz5dwMNkyyo2YYF9YdpQVHAPwwKaj1zQVFe6xMqqLjpJPz6PLMD4+nFSPSQvJCrn6M/3gbTQ0IBNxh0nA1Axf7JfKBoDX8aiPwn82cwOkR/GuDBOmC//mLGQdrbvwyLNTPQs/UXsP6/mREv6kaOew+5kTcya0h7tNHgIkB0oCZIn81Kq34jMK7rmJ0zB4vjaTt3Ge7ONflz3ST2a7OwLcK2CtsmbLuwHVQ/5cVcYaWElRZWRlhZYeWE5QjLFZYnrLywfGEFwioIqyisUFiRsErCKgurImw3YbsLqypsD2HVyjvBz/ub5Od9v2+zwrdF4duq8G1T+LYrfDsUPlp82OcqfKUUvtIKXxmFr6zCV07hy1H4chW+PIWvvMKXr/AVKHwVFL6KCl+hwlek8FVS+CorfFUUvt0Uvt0VvqoK3x4KX7Xyu363tJ98eo7WCBR9XLPZpNmY6HuozdpzHXeL7lyR71a9ueNEvu42rbkbaG3udp25a/7ZB3eHxtzm/+6ZSzUYM3eM3F/XjZ07MKOFWypu7pydurmlY+YO/k9jt0zJc9v4zoNbtsS5a/1nxy1X0ty6gXPm5pQwt2bwTLq50XN7hc6vmxc5t2f4rLvlo+YW71IXbn7E3OJda8gtUM+dpag3t4JybktVbboVVXO7KOvYLVTMna2uebdo17m1IvqDW2mXuROjeolbOTy3dmTfcauE5q6J7lHubsG5l5TQz9zdA3M7ldT73Kr+uf1K7JPuHr65R5XcU91q5fWhK8lPvNXi+1Kmly/3x6tePouA9DL4p47Lq+tvkLun5qJMP/HSGiiGC65hT1DkpP50DDhcy1ROz9EKE8h1L3lA9g6T8V5y4/y+vctn/6djwEl29wIOyN7g5qHi0KHYCzxMlNdeKXWMPfT3eYI/3j6mHYMC7oN3jAn7AB1jX+aOQWvYF+8YE/ZNqWPsoR93vMrpOVphArnWkAfEC3eMGoqO4SXQMYCT7NYADohnuHnoF3VITvsBxbDzH0Aue8oDjn5Rh1zV+wPFoFpD3HTao/0NOvH+KXXiqvrnd6Y/3gGmnZgCHoB34pkHAIfvQOZOTGs4EO/EMw/M8vDpFND+zAV0ELiGzEAbE6LhwcDZSPKGq6ofd4bK6TlaYQK51pSFVyt8w9VU3HC1ErjhgA7h1gREq2W4eehBQnI6JMsbLu4dKp6DDW6HQ5lvLVr3oRbyygxUw0MBDQ9j1jCqyeo0Z925h4MNLSka2F2/1kf74x1hSgMU8AicBkYfAWzQkcw0QGs4EqeB0Ucy0wAVwuHleYvtKLDYMgPNCdGwdko0sLt+3FEqp+dohQnkWkcWXt0wDdRR0EDdBGgA6BBuHUC0uoabhx4kJKd6zDcJFU9tg1v3aGYaoHUfbSGvzEA1PBrQ8BhmDaOabNx7SJOtn9J3A7vp17rnj9fAlAYoYAOcBrwGgMjHMtMAreFYnAa8Y5lpgAqhfnneYjvOEg0gGh6fEg3sph83sZ8711AWXqMwDTRU0ECjBGgA6BBuQ0C0Roabhx4kJKcTmG8SKp7jDW7dxsw0QOtubCGvzEA1bAxo2IRZw6gmG/ce0mSbpkQDVfRrfZk/XjNTGqCAzXAaWNYMELk5Mw3QGprjNLCsOTMNUCE0Lc9bbC0s0QCiYcuUaKCKftylKqfnaIUJ5NpKFl7rMA20UtBA6wRoAOgQbitAtNaGm4ceJCSnNsw3CRVPS4Nbty0zDdC621rIKzNQDdsCGrZj1jCqyca9hzTZ9inRQGX9Wu/rj9fBlAYoYAecBvp2AETuyEwDtIaOOA307chMA1QI7cvzFlsnSzSAaNg5JRqorB+3j8rpOVphArl2kYXXNUwDXRQ00DUBGgA6hNsFEK2r4eahBwnJqRvzTULF09ng1u3OTAO07u4W8soMVMPugIYnMmsY1WTj3kOabI+UaKCSfq2v8sc7yZQGKOBJOA2sOgkQ+WRmGqA1nIzTwKqTmWmACqFHed5i62mJBhANT0mJBirpx12pcnqOVphArqfKwjstTAOnKmjgtARoAOgQ7qmAaKcZbh56kJCcTme+Sah4TjG4dXsx0wCtu5eFvDID1bAXoGFvZg2jmmzce0iTPSMlGijSr/V2/nhnmtIABTwTp4F2ZwIi92GmAVpDH5wG2vVhpgEqhDPK8xZbX0s0gGh4Vko0UKQft63K6TlaYQK59pOFd3aYBvopaODsBGgA6BBuP0C0sw03Dz1ISE7nMN8kVDxnGdy65zLTAK37XAt5ZQaq4bmAhucxaxjVZOPeQ5rs+SnRQKF+rU/3x7vAlAYo4AU4DUy/ABD5QmYaoDVciNPA9AuZaYAK4fzyvMV2kSUaQDS8OCUaKNSPO03l9BytMIFc+8vCGxCmgf4KGhiQAA0AHcLtD4g2wHDz0IOE5DSQ+Sah4rnY4NYdxEwDtO5BFvLKDFTDQYCGlzBrGNVk495DmuylKdFARf1an++Pd5kpDVDAy3AamH8ZIPLlzDRAa7gcp4H5lzPTABXCpeV5i+0KSzSAaHhlSjRQUT/uPJXTc7TCBHK9Shbe4DANXKWggcEJ0ADQIdyrANEGG24eepCQnK5mvkmoeK40uHWvYaYBWvc1FvLKDFTDawANr2XWMKrJxr2HNNnrUqKBCvq13sEf73pTGqCA1+M00OF6QOQhzDRAaxiC00CHIcw0QIVwXXneYhtqiQYQDYtTooEK+nHbq5yeoxUmkOsNsvBuDNPADQoauDEBGgA6hHsDINqNhpuHHiQkp5uYbxIqnmKDW/dmZhqgdd9sIa/MQDW8GdDwFmYNo5ps3HtIk701JRoo0K/1Yn+8YaY0QAGH4TRQPAwQeTgzDdAahuM0UDycmQaoEG4tz1tsIyzRAKLhbSnRQIF+3KEqp+dohQnkerssvDvCNHC7ggbuSIAGgA7h3g6Idofh5qEHCclpJPNNQsVzm8GtO4qZBmjdoyzklRmohqMADUczaxjVZOPeQ5rsmJRoIN+QBsaa0gAFHGtAA2MBkccx0wCtYZwBDYxjpgEqhDHleYvtTks0gGh4V0o0kJ8CDdwtC++eMA3craCBexKgAaBDuHcDot1jiQaQnO5lvkmoeO4yuHXvY6YBWvd9FvLKDFTD+wAN72fWMKrJxr2HNNkHUqKB8vq1PtUf70FTGqCAD+I0MPVBQOTxzDRAaxiP08DU8cw0QIXwQHneYptgiQYQDR9KiQbK68edonJ6jlaYQK4TZeE9HKaBiQoaeDgBGgA6hDsREO1hw81DDxKS0yPMNwkVz0MGt+6jzDRA637UQl6ZgWr4KKDhJGYNo5ps3HtIk52cEg3k6df6ZH+8x0xpgAI+htPA5McAkR9npgFaw+M4DUx+nJkGqBAml+cttics0QCi4ZSUaCBPP+4kldNztMIEcp0qC+/JMA1MVdDAkwnQANAh3KmAaE8abh56kJCcnmK+Sah4phjcuk8z0wCt+2kLeWUGquHTgIbPMGsY1WTj3kOa7LMp0UCufq2v9sd7zpQGKOBzOA2sfg4QeRozDdAapuE0sHoaMw1QITxbnrfYpluiAUTDGSnRQK5+3FUqp+dohQnkOlMW3vNhGpipoIHnE6ABoEO4MwHRnjfcPPQgITnNYr5JqHhmGNy6LzDTAK37BQt5ZQaq4QuAhrOZNYxqsnHvIU12Tko0kKNf60v88eaa0gAFnIvTwJK5gMgvMtMAreFFnAaWvMhMA1QIc8rzFts8SzSAaDg/JRrI0Y+7WOX0HJ0RpIEFsvAWhmlggYIGFiZAA0CHcBcAoi003Dz0ICE5vcR8k1DxzDe4dV9mpgFa98sW8soMVMOXAQ0XMWsY1WTj3kOa7Csp0UA5/Vqv7o/3qikNUMBXcRqo/iog8mvMNEBreA2ngeqvMdMAFcIr5XmL7XVLNIBo+EZKNFBOP241ldNztMIEcn1TFt5bYRp4U0EDbyVAA0CHcN8ERHvLcPPQg4Tk9DbzTULF84bBrfsOMw3Qut+xkFdmoBq+A2j4LrOGUU027j2kyb6XEg2U1a/1uf54i01pgAIuxmlg7mJA5CXMNEBrWILTwNwlzDRAhfBeed5iW2qJBhANl6VEA2X1485ROT1HK0wg1+Wy8FaEaWC5ggZWJEADQIdwlwOirTDcPPQgITm9z3yTUPEsM7h1P2CmAVr3BxbyygxUww8ADT9k1jCqyca9hzTZj1KigTL6tT7cH2+lKQ1QwJU4DQxfCYi8ipkGaA2rcBoYvoqZBqgQPirPW2yrLdEAouHHKdFAGf24w1ROz9EKE8j1E1l4n4Zp4BMFDXyaAA0AHcL9BBDtU8PNQw8SktNnzDcJFc/HBrfu58w0QOv+3EJemYFq+Dmg4RfMGkY12bj3kCa7JiUaKK1f62398b40pQEK+CVOA22/BET+ipkGaA1f4TTQ9itmGqBCWFOet9i+tkQDiIbfpEQDpfXjtlE5PUcrTCDXb2XhfRemgW8VNPBdAjQAdAj3W0C07ww3Dz1ISE5rmW8SKp5vDG7d75lpgNb9vYW8MgPV8HtAwx+YNYxqsnHvIU32x5RooJR+rY/1x/vJlAYo4E84DYz9CRD5Z2YaoDX8jNPA2J+ZaYAK4cfyvMX2iyUaQDT8NSUaKKUfd4zK6TlaYQK5/iYLb12YBn5T0MC6BGgA6BDub4Bo6ww3Dz1ISE6/M98kVDy/Gty6fzDTAK37Dwt5ZQaq4R+AhuuZNYxqsnHvIU12Q0o04OrX+iB/vD9NaYAC/onTwKA/AZH/YqYBWsNfOA0M+ouZBqgQNpTnLba/LdEAouHGlGjA1Y87UOX0HK0wgVw3ycLbHKaBTQoa2JwADQAdwt0EiLbZcPPQg4TktIX5JqHi2Whw625lpgFa91YLeWUGquFWQMNtzBpGNdm495Amuz0lGnD0a32hP94OUxqggDtwGli4AxE5n5cGaA0UA6SBhf689ALp//6ZQthenrfY3Hxgn3wDzQnRsBSQU5I04OifyQUqp+fohfHnWjr/32eZfCd485fO35UGaFK2NAB0CLc0IFqZfLPNQw8SklNZ8HDD+Jj/72FFC7tclo0jbjqtu5yFvDID1bAcoGEOs4ZRTTbuPaTJ5gL7miQN7MjTrnXPHy8vP4uA9DJIA14eIHJ5ZhqgNZTHacArz0wDVAi5+bzFlm+JBhANC1KiAX/xxIwaKqfnaIUJ5FpBFl7FMA1UUNBAxQRoAOgQbgVAtIr5ZpuHHiQkp0Lmm4SKp8Dg1i1ipgFad5GFvDID1bAI0LASs4ZRTTbuPaTJVk6JBrbr13qBP14VUxqggFVwGiioAoi8GzMN0Bp2w2mgYDdmGqBCqJzPW2y7W6IBRMOqKdHAdn0ayFc5PUcrTCDXPeTvVC1MA3soaKBaAjQAdAh3D0C0avlmm4ceJCSn6sw3CRVPVYNbd09mGqB172khr8xANdwT0HAvZg2jmmzce0iT3TslGtimX+sD/PH2MaUBCrgPTgMD9gFE3peZBmgN++I0MGBfZhqgQtg7n7fYaliiAURDLyUa2KZPA/1VTs/RChPIdT9ZePuHaWA/BQ3snwANAB3C3Q8Qbf98s81DDxKS0wHMN8k/xWNw6x7ITAO07gMt5JUZqIYHAhoexKxhVJONew9psgenRANb9Wu9kj9eTVMaoIA1cRqoVBMQuRYzDdAaauE0UKkWMw1QIRycz1tsh1iiAUTDQ1Oiga36NFCkcnqOVphArofJwjs8TAOHKWjg8ARoAOgQ7mGAaIfnm20eepCQnI5gvkmoeA41uHWPZKYBWveRFvLKDFTDIwENj2LWMKrJxr2HNNnaKdHAFv2GFohXx5QGKGCdfPy9usw3POVVN/8/h+foD7SI6MDWzuctinqWbm1El6OzLFSdNR9toGGSBbXZsKCOMS0oCniMQUHVZy4oyqt+QgUVN52Er59vdmA8vRiJHpJNefo5+uM1MD0kFLCBQcdpAFTsscwHitZwrIHIxzJ/BqNDdKwBHtQD9us4ZhykvT3OsFgzAz1bxwHrP54Z8aJu5Lj3kBu5IbOGtEcNDS4CRAdqgnmKHGk0ypcTSjnJdMlGwIb5PzCfIA9y4/AHZvo/ikO+xtLnH+gH5kbADp4QPbdXaK7bGLyeKO9SJczxIvzhuP7/DxXtBCBnf6AmYbGa5O96isLCIJtdQuydCej+vk3ztTczsKamGoctLnZjIE9kTc1KWFP4Xf+amvmKKte3Hv+aYoarmFtqaZUzrig3uXe/I2pWaPV7tcp33dTktZE3Nql5OPD77iyGTPFnCh7JrbmY30JYy/xkGbCFb7+r1a153KD7lu32aa39P2n68tNH3lV9w4GNPp3T9pF1m9/eKOb647UyZUAK2Epxx8UFbwXcva2ZGZDW0Fpxx8WtoTXYSelfE0zi++IWhl+XOaE4MesLHMg2/saJwiywUa6/C/iDxsTspRKnjQZ8hRfdBjhsbcFrKbOutr6OHbeXRe6iwjzv4evOm7tiznNNTnxfd11hcZF1tTNcV7sEsKctcLu2A9bUnvkDm64u4TCILh3ANaBNObMG3XxoTzvgjTMQI278X0FQtNYzo2NJjTPu9+lgWIgd9Runsql1MPhGpHaV7Aos4v/eOSinjgZ51QHzyowyoTjhUVJxxuXUCbgQgX11kbX6z0sn4EJSXRYm56Uuky7huIgunX1z96nX6cFF3S+cNvL4wjZ1y79//fu3Xljvo9Ejbjx0fXHPq8sdMA7Ya7euoS6dpS5JfgGC0KO/6XaRHxG62mpopr9/F4PD2M2w0XYroXB0cu1qkGt3w1y7Z1HklGs3g1yPzvJSiPsyi/LqbpDXMcleVrtMbyGbIkqDwH65yBr+r1AUWmeZcWIaFHViCRSleC0wKOaJBgez/v9BWumRz3OA6xveij0UHzM5qeAk39wqdZyVNb445urDqtYf2OXKm7/o8cyQ3SYdsraw2q9XNLpy06cD/UUZRxCm6z/JRwVRRY3WCPLxJps4pg3g5DQawMlZNoCTDRpAA8MGUBaMgxRAT2Au8nEFaRYNDIulp0aziFvTKcD6/aifZLMwXf8p/4c+QpwqP0Kclu/898cPnqM1Ir/QRb58jpsLfDHl7vyHg68B/eM50zXEzT2deb0k+OkGTbCXYcPulcXHsdMMc+1tmGvvLD6OUZ69DHI9nvnjGOXV2yCvhhY+jp1u8HEM2C+34f+HH8fQOsuMM7KhsdMNC+aMLGiMYp5hcDAbWfo4djrQtM/M5znAjQwJ48wEPo4h6+8DfBxrCBCW6fr7KNaP/qkzsv6+hvXT1yDP8J/kIXmeZZjnWVlejH0N6vwECxfjWQZ5NTbsP2HAjPsTWQQEgb1yG/9/eCn2NbwU+6VxKfbL8lLsZ3Aom/wfvBTPZjrATQwvhbMtX4rnAJdiY+BSNF3/OQzfUSK0mk0c0wZwbhoN4NwsG8C5Bg2gqaXvKJECOA+Yi1Ax0iyaGhbLeQl8R3k+8FcXGgLfUSLNwnT952fxtY0r30HP8AVAvZEW+U6wgNA8L8gPvu9p5Pnbjh3r/I3zQvn96UX5hknQixcZFPzFzH9tg+ZfYJBX/3z9jTTJizb8YoO8mif7cWKX35/y6m+QVwvDxo1+bwas320BfkRI6l+V6G94yw8wLT4KOCAff28gcLOZ5jUw/z+H5+gPk4M7MMs9QEYccofjXKzfULb2zzdrCHG/bwsLzcPkEhjkW2/c9wlJFuogw0K9xLRQKeAlBof0UuZCpbwuNSjUkv7do/DvFSesSd6ZA+dg7wXEvEz1R8Zxm0ybdWG+WcKacwMce1kJn8V0qvJSgz+iuhA4dJeDzBv++wK2hPcf1Cvk+1eqDkBcArTgyxK62uKmU5zLDdrqVcxsTRt4lUFegw2LYHAWH+auNMz1asNcr84iV9Nr9Jos9dY5T4MN8mrJ/EcglNfVBnm1Yv67AZTXNQaNF9gvt9X/h38MgtZ/ZlybzbegVxkW8rUl3LyK1wKDYl5rcDDbWPpjkKuAG/66fJ4D3Mbwm73rNL7ZDI/wGpH1Xw/8MUgr4JtN0/Vfn8DfDUDWP8SwfoYk8HcDkDyHGuY5NIu/G0D5DTGo87YWLsahBnm1s/R3A4Ce7AJ75bb7//BSHGJ4KRancSkWZ3kpFhscyvb/By/FG5gOcHvDS+EGy5fijcCl2A64FE3XfyPD3w1AaDWbOKYN4KY0GsBNWTaAmwwaQAdLfzcAKYCbgbkIFSPNooNhsdycwN8NuAX4uwGtgL8bgDQL0/Xfok98u/wMqMxXcihxXw6cl1sNa/NWgGTDPwNKd11hskPWNcxwXcPys/8ZUCXs6S59ahiwpuHMX73p6hIOg+gyAlwD+jOgMmvQzYf2dITinoj7VIH+WcT/BfpHaz0zbsvm8h9hWIi3ZfGHUbdGiBr3XhfmnwFFOd1mkFdXS59KRgCFczvwqQTYV7er4UV7exZfrQwzPC/dLP0MKESXOwBYAvba7Waoyx35yf8L3MifQfmb7kj5Z6mjbDU0099/pMFhHG3YaEfnm/8hIuU6yiDXMYa5jsmiyCnX0Qa5nsj8/SnlNcYgrx7Mf7B4jWyKKA0C++X2+P/wO1S0zjJjbBoUNTaLr1Ao5liDg3nS/0FaGZfPc4BPMrwVxyXwHSqy/juB71B7AF+LmK7/TobvUJGPN9nEMW0Ad6XRAO7KsgHcZdAATrb0HSpSAHcDc5GPK0izONmwWO5O4DvUe4D1dwO+Q0Wahen67/E1i6T+Vrb/IwTyX5q4Nz+LgPfm419o3QvcXPcBIpuu4T78y7JAXlqBQr9/3PQRMi/051IhDQTZ2/sBzXb+w9F/h/7u5v0GjfkBwxsS/Zll1wB79SDzl9qmezUe1BD9mER7hMQg7R40WMcE5tqj+Rca5PUQc16U0wSDvCZaqhHkX3x4OB/Tw/+fnKL//ZDch4ny+XB+9H8GKqPnI8IeFTYpPxQgtM64fJB1lhQn7t3J+ntUX/X766zjEYPz9JiFc/6oQV6Pgx8oCpz/oJP+92QZ8zH5fFw+h5T5b94TwjdF2FRhT8aco7h8n9LPt4Eq36c08n1a+J4R9qyw5/L/9Rc5wf98W1T+McN9wrCvOFgcT9u5y3B3rsn1vTNN5D1d2AxhM4U9L2yWsBeEzRY2R9hcYS8KmydsvrAFwhYKe0nYy8IWCXtF2KvCXhP2urA3hL0p7C1hbwt7R9i7wt4TtljYEmFL853gJwFKJjfkm67wzVD4Zip8zyt8sxS+FxS+2QrfHIVvrsL3osI3T+Gbr/AtUPgWKnwvKXwvK3yLFL5XFL5XFb7XFL7XFb43FL43Fb63FL63Fb53FL53Fb73FL7FCt8ShW+p9PnHfvLpOVojUPRxDW6a5tzfduxwp2vPddwZunNFvjP15o6j79Cf15q74Z/v22fpzF3z73fzL2jMbS6/x58dP3dM5jv/ObFzB+7884G5cXPn/PdnCS/GzB3s+3OHeSXPbeP/M4r5Jc5dG/jzjAUlza0b/LOPhSXMrRn6c5KXoufu8udYL0fO7Rk+6+6iqLnFu9SF+0rE3OJda8h9VT13lqLe3NeUc1uqatN9XTW3i7KO3TcUc2era959c9e5tSL6g/vWLnMnRvUS9+3w3NqRfcd9JzR3TXSPct8Nzr2khH7mvheY26mk3ucu9s/tV2KfdJf45h5Vck91lwLQleS3i0v1e/lyf7xl+VkEpJeRT6EUfJn+BrnLgcvMdA3LwU8ytIbloMiVnGT+vAk4XMtUTs/RChPIdYU8IO+HyXiF3Di/730FwaB/lxU4ye4K4IC8D24eKg4dihXgYaK8VqTUMZbo7/MEf7wPTDsGBfwA7xgTPgA6xofMHYPW8CHeMSZ8mFLHWKIfd7zK6TlaYQK5fiQPyMpwx/hI0TFWJtAxgJPsfgQckJWGm4d+MYvktAoohp3/AHJZLg84+ocLyFW9GigG1RriptMerTboxKtT6sSL9c/vTH+8j007MQX8GO/EMz8GDt8nzJ2Y1vAJ3olnfpLl4dMpoNXMBfQpuIbMQBsTouFnwNlI8oZbrB93hsrpOVphArl+Lgvvi/AN97nihvsigRsO6BDu54BoXxhuHnqQkJzWZHnDxb1DxfOZwe3wJfOtRev+0kJemYFq+CWg4VfMGkY1WZ3mrDv3a7ChJUUD7+nX+mh/vG9MaYACfoPTwOhvgA36lpkGaA3f4jQw+ltmGqBC+Dqft9i+A4stM9CcEA3XpkQD7+nHHaVyeo5WmECu38vC+yFMA98raOCHBGgA6BDu94BoPxhuHnqQkJx+ZL5JqHjWGty6PzHTAK37Jwt5ZQaq4U+Ahj8zaxjVZOPeQ5rsLyl9N/Cufq17/ni/mtIABfwVpwHvV0Dk35hpgNbwG04D3m/MNECF8Es+b7Gts0QDiIa/p0QD7+rHraFyeo5WmECuf8jCWx+mgT8UNLA+ARoAOoT7ByDaesPNQw8SktMG5puEiud3g1v3T2YaoHX/aSGvzEA1/BPQ8C9mDaOabNx7SJP9OyUaeEe/1pf54200pQEKuBGngWUbAZE3MdMArWETTgPLNjHTABXC3/m8xbbZEg0gGm5JiQbe0Y+7VOX0HK0wgVy3ysLbFqaBrQoa2JYADQAdwt0KiLbNcPPQg4TktJ35JqHi2WJw6+5gpgFa9w4LeWUGquEOpKEX8GoY1WTj3kOarKu/hkRp4G39Wu/rj1eqIIuA9DJIA31LASKXLuClAVoDxQBpoG9pQGRVXjqF4BbwFlsZsNgyA80J0bAskFOSNPC2fjPso3J6jlaYQK7lZOHlFDjBm79cwa40QJOypQGgQ7jlANFyCsw2Dz1ISE65zDcJFU/ZAryw87JsHHHTad15FvLKDFTDPEDD8swaRjXZuPeQJpufEg28pV/rq/zxCkxpgAIW4DSwqgAQuQIzDdAaKuA0sKoCMw1QIeQX8BZbRUs0gGhYmBINvKVPAytVTs/RChPItUgWXqUwDRQpaKBSAjQAdAi3CBCtUoHZ5qEHCcmpMvNNQsVTaHDrVmGmAVp3FQt5ZQaqYRVAw92YNYxqsnHvIU1295Ro4E39Wm/nj1fVlAYoYFWcBtpVBUTeg5kGaA174DTQbg9mGqBC2L2At9iqWaIBRMPqKdHAm/o00Fbl9BytMIFc95SFt1eYBvZU0MBeCdAA0CHcPQHR9iow2zz0ICE57c18k1DxVDe4dfdhpgFa9z4W8soMVMN9AA33ZdYwqsnGvYc02Rop0cAb+rU+3R/PM6WBfwLiNDDdA0Tej5kGaA374TQwfT9mGqBCqFHAW2z7W6IBRMMDUqKBN/RpYJrK6TlaYQK5HigL76AwDRyooIGDEqABoEO4BwKiHVRgtnnoQUJyOpj5JqHiOcDg1q3JTAO07poW8soMVMOagIa1mDWMarJx7yFN9pCUaOB1/Vqf7493qCkNUMBDcRqYfygg8mHMNEBrOAyngfmHMdMAFcIhBbzFdrglGkA0PCIlGnhdnwbmqZyeoxUmkOuRsvCOCtPAkQoaOCoBGgA6hHskINpRBWabhx4kJKfazDcJFc8RBrduHWYaoHXXsZBXZqAa1gE0rMusYVSTjXsPabL1UqKB1/RrvYM/3tGmNEABj8ZpoMPRgMjHMNMAreEYnAY6HMNMA1QI9Qp4i62+JRpANGyQEg28pk8D7VVOz9EKE8j1WFl4x4Vp4FgFDRyXAA0AHcI9FhDtuAKzzUMPEpLT8cw3CRVPA4NbtyEzDdC6G1rIKzNQDRsCGjZi1jCqyca9hzTZE1KigVf1a73YH6+xKQ1QwMY4DRQ3BkRuwkwDtIYmOA0UN2GmASqEEwp4i62pJRpANGyWEg28qk8DQ1VOz9EKE8i1uSy8FmEaaK6ggRYJ0ADQIdzmgGgtCsw2Dz1ISE4tmW8SKp5mBrduK2YaoHW3spBXZqAatgI0bM2sYVSTjXsPabJtUqKBVwxpoK0pDVDAtgY00BYQuR0zDdAa2hnQQDtmGqBCaFPAW2ztLdEAomGHlGjglRRooKMsvE5hGuiooIFOCdAA0CHcjoBonSzRAJJTZ+abhIqng8Gt24WZBmjdXSzklRmohl0ADbsyaxjVZOPeQ5pst5RoYJF+rU/1x+tuSgMUsDtOA1O7AyKfyEwDtIYTcRqYeiIzDVAhdCvgLbYelmgA0fCklGhgkT4NTFE5PUcrTCDXk2Xh9QzTwMkKGuiZAA0AHcI9GRCtZ4HZ5qEHCcnpFOabhIrnJINb91RmGqB1n2ohr8xANTwV0PA0Zg2jmmzce0iTPT0lGnhZv9Yn++P1MqUBCtgLp4HJvQCRezPTAK2hN04Dk3sz0wAVwukFvMV2hiUaQDQ8MyUaeFmfBiapnJ6jFSaQax9ZeH3DNNBHQQN9E6ABoEO4fQDR+haYbR56kJCczmK+Sah4zjS4dfsx0wCtu5+FvDID1bAfoOHZzBpGNdm495Ame05KNPCSfq2v9sc715QGKOC5OA2sPhcQ+TxmGqA1nIfTwOrzmGmACuGcAt5iO98SDSAaXpASDbykTwOrVE7P0QoTyPVCWXgXhWngQgUNXJQADQAdwr0QEO2iArPNQw8SktPFzDcJFc8FBrduf2YaoHX3t5BXZqAa9gc0HMCsYVSTjXsPabIDU6KBhfq1vsQfb5ApDVDAQTgNLBkEiHwJMw3QGi7BaWDJJcw0QIUwsIC32C61RAOIhpelRAML9WlgscrpOVphArleLgvvijANXK6ggSsSoAGgQ7iXA6JdUWC2eehBQnK6kvkmoeK5zODWvYqZBmjdV1nIKzNQDa8CNBzMrGFUk417D2myV6dEAwv0a726P941pjRAAa/BaaD6NYDI1zLTAK3hWpwGql/LTANUCFcX8BbbdZZoANHw+pRoYIE+DVRTOT1HK0wg1yGy8IaGaWCIggaGJkADQIdwhwCiDS0w2zz0ICE5FTPfJFQ81xvcujcw0wCt+wYLeWUGquENgIY3MmsY1WTj3kOa7E0p0cB8/Vqf6493sykNUMCbcRqYezMg8i3MNEBruAWngbm3MNMAFcJNBbzFdqslGkA0HJYSDczXp4E5KqfnaIUJ5DpcFt6IMA0MV9DAiARoAOgQ7nBAtBEFZpuHHiQkp9uYbxIqnmEGt+7tzDRA677dQl6ZgWp4O6DhHcwaRjXZuPeQJjsyJRqYp1/rw/3xRpnSAAUchdPA8FGAyKOZaYDWMBqngeGjmWmACmFkAW+xjbFEA4iGY1OigXn6NDBM5fQcrTCBXMfJwrszTAPjFDRwZwI0AHQIdxwg2p0FZpuHHiQkp7uYbxIqnrEGt+7dzDRA677bQl6ZgWp4N6DhPcwaRjXZuPeQJntvSjTwon6tt/XHu8+UBijgfTgNtL0PEPl+ZhqgNdyP00Db+5lpgArh3gLeYnvAEg0gGj6YEg28qE8DbVROz9EKE8h1vCy8CWEaGK+ggQkJ0ADQIdzxgGgTCsw2Dz1ISE4PMd8kVDwPGty6E5lpgNY90UJemYFqOBHQ8GFmDaOabNx7SJN9JCUamKtf62P98R41pQEK+ChOA2MfBUSexEwDtIZJOA2MncRMA1QIjxTwFttkSzSAaPhYSjQwV58GxqicnqMVJpDr47LwngjTwOMKGngiARoAOoT7OCDaEwVmm4ceJCSnKcw3CRXPYwa37lRmGqB1T7WQV2agGk4FNHySWcOoJhv3HtJkn0qJBubo1/ogf7ynTWmAAj6N08CgpwGRn2GmAVrDMzgNDHqGmQaoEJ4q4C22Zy3RAKLhcynRwBx9GhiocnqOVphArtNk4U0P08A0BQ1MT4AGgA7hTgNEm15gtnnoQUJymsF8k1DxPGdw685kpgFa90wLeWUGquFMQMPnmTWMarJx7yFNdlZKNDBbv9YX+uO9YEoDFPAFnAYWvgCIPJuZBmgNs3EaWDibmQaoEGYV8BbbHEs0gGg4NyUamK1PAwtUTs/RChPI9UVZePPCNPCiggbmJUADQIdwXwREm1dgtnnoQUJyms98k1DxzDW4dRcw0wCte4GFvDID1XABoOFCZg2jmmzce0iTfSklGnhBv9Y9f7yXTWmAAr6M04D3MiDyImYaoDUswmnAW8RMA1QILxXwFtsrlmgA0fDVlGjgBX0aqKFyeo5WmECur8nCez1MA68paOD1BGgA6BDua4BorxeYbR56kJCc3mC+Sah4XjW4dd9kpgFa95sW8soMVMM3AQ3fYtYwqsnGvYc02bdTooFZ+rVe4I/3jikNUMB3cBooeAcQ+V1mGqA1vIvTQMG7zDRAhfB2AW+xvWeJBhANF6dEA7P0aSBf5fQcrTCBXJfIwlsapoElChpYmgANAB3CXQKItrTAbPPQg4TktIz5JqHiWWxw6y5npgFa93ILeWUGquFyQMMVzBpGNdm495Am+35KNPC8fq0P8Mf7wJQGKOAHOA0M+AAQ+UNmGqA1fIjTwIAPmWmACuH9At5i+8gSDSAarkyJBp7Xp4H+KqfnaIUJ5LpKFt7qMA2sUtDA6gRoAOgQ7ipAtNUFZpuHHiQkp4+ZbxIqnpUGt+4nzDRA6/7EQl6ZgWr4CaDhp8waRjXZuPeQJvtZSjQwU7/WK/njfW5KAxTwc5wGKn0OiPwFMw3QGr7AaaDSF8w0QIXwWQFvsa2xRAOIhl+mRAMz9WmgSOX0HK0wgVy/koX3dZgGvlLQwNcJ0ADQIdyvANG+LjDbPPQgITl9w3yTUPF8aXDrfstMA7Tuby3klRmoht8CGn7HrGFUk417D2mya1OigRn6DS0Q73tTGqCA3xfg7/3AfMNTXj8U/OfwHP2BFhEd2LUFvEXxo6VbG9HlpywLVWfNPxlomGRBTTcsqJ9NC4oC/mxQUL8wFxTl9UtCBRU3nYT/pcDswHh6MRI9JNPy9XP0x/vV9JBQwF8NOs6vQMX+xnygaA2/GYj8G/NnMDpEvxngwY/Afq1jxkHa23WGxZoZ6NlaB6z/d2bEi7qR495DbuQ/mDWkPfrD4CJAdKAmSJ/NSqt+IzDu0/lm58zB4njazl2Gu3NNru+d9WK/Ngj7U9hfwv4WtlHYJmGbhW0RtlXYNmHbhe2guqogfg9hpYSVFlZGWFlh5YTlCMsVliesvLB8YQXCKgirKKxQWJGwSsIqV3CCn/fXy8/7ft8Ghe9Phe8vhe9vhW+jwrdJ4dus8G1R+LYqfNsUvu0K3w6FjzY37HMVvlIKX2mFr4zCV1bhK6fw5Sh8uQpfnsJXXuHLV/gKFL4KCl9Fha9Q4StS+CopfJUr7Prd0n7y6TlaI1D0cc1mvWZjou+hNmjPddw/deeKfP/SmztO5Ov+rTV3A63N3agzd80/++Bu0pjb/N89czfHzx0j99fdEjt3YEYLd2vc3Dk7dXO3xcwd/J/G7vaS57bxnQd3R4lz1/rPjks9IXJu3cA5c90S5tYMnkm3VPTcXqHz65aOnNszfNbdMlFzi3epC7dsxNziXWvILaeeO0tRb26Ocm5LVW26uaq5XZR17OYp5s5W17xbfte5tSL6g5u/y9yJUb3ELQjPrR3Zd9wKoblronuUWzE495IS+plbGJjbqaTe5xb55/YrsU+6lXxzjyq5p7qVK+hDV5KfeCtX0O7ly/3xqlTIIiC9DP6p4/Iq+hvk7qa5KNNPvLQGiuGCa9gNFDmpPx0DDtcyldNztMIEct1dHpCqYTLeXW6c31e1QvZ/OgacZHd34IBUBTcPFYcOxe7gYaK8dk+pY1TS3+cJ/nh7mHYMCrgH3jEm7AF0jGrMHYPWUA3vGBOqpdQxKunHHa9yeo5WmECu1eUB2TPcMaorOsaeCXQM4CS71YEDsqfh5qFf1CE57QUUw85/ALnsJg84+kUdclXvDRSDag1x02mP9jboxHun1ImL9M/vTH+8fUw7MQXcB+/EM/cBDt++zJ2Y1rAv3oln7pvl4dMpoL2ZC6gGuIbMQBsToqEHnI0kb7gi/bgzVE7P0QoTyHU/WXj7h2+4/RQ33P4J3HBAh3D3A0Tb33Dz0IOE5HRAljdc3Dv/FI/B7XAg861F6z7QQl6ZgWp4IKDhQcwaRjVZneasO/dgsKElRQOF+rU+2h+vpikNUMCaOA2MrglsUC1mGqA11MJpYHQtZhqgQji4Am+xHQIWW2agOSEaHpoSDRTqxx2lcnqOVphArofJwjs8TAOHKWjg8ARoAOgQ7mGAaIcbbh56kJCcjmC+Sah4DjW4dY9kpgFa95EW8soMVMMjAQ2PYtYwqsnGvYc02dopfTdQUb/WPX+8OqY0QAHr4DTg1QFErstMA7SGujgNeHWZaYAKoXYF3mKrZ4kGEA2PTokGKurHTeznzh0jC69+mAaOUdBA/QRoAOgQ7jGAaPUNNw89SEhODZhvEiqeow1u3WOZaYDWfayFvDID1fBYQMPjmDWMarJx7yFN9viUaKCCfq0v88draEoDFLAhTgPLGgIiN2KmAVpDI5wGljVipgEqhOMr8BbbCZZoANGwcUo0UEE/7lKV03O0wgRybSILr2mYBpooaKBpAjQAdAi3CSBaU8PNQw8SklMz5puEiqexwa3bnJkGaN3NLeSVGaiGzQENWzBrGNVk495DmmzLlGigQL/W+/rjtTKlAQrYCqeBvq0AkVsz0wCtoTVOA31bM9MAFULLCrzF1sYSDSAatk2JBgr04/ZROT1HK0wg13ay8NqHaaCdggbaJ0ADQIdw2wGitTfcPPQgITl1YL5JqHjaGty6HZlpgNbd0UJemYFq2BHQsBOzhlFNNu49pMl2TokG8vVrfZU/XhdTGqCAXXAaWNUFELkrMw3QGrriNLCqKzMNUCF0rsBbbN0s0QCiYfeUaCBfP+5KldNztMIEcj1RFl6PMA2cqKCBHgnQANAh3BMB0XoYbh56kJCcTmK+Sah4uhvcuicz0wCt+2QLeWUGquHJgIY9mTWMarJx7yFN9pSUaKC8fq2388c71ZQGKOCpOA20OxUQ+TRmGqA1nIbTQLvTmGmACuGUCrzFdrolGkA07JUSDZTXj9tW5fQcrTCBXHvLwjsjTAO9FTRwRgI0AHQItzcg2hmGm4ceJCSnM5lvEiqeXga3bh9mGqB197GQV2agGvYBNOzLrGFUk417D2myZ6VEA3n6tT7dH6+fKQ1QwH44DUzvB4h8NjMN0BrOxmlg+tnMNECFcFYF3mI7xxINIBqemxIN5OnHnaZyeo5WmECu58nCOz9MA+cpaOD8BGgA6BDueYBo5xtuHnqQkJwuYL5JqHjONbh1L2SmAVr3hRbyygxUwwsBDS9i1jCqyca9hzTZi1OigVz9Wp/vj9fflAYoYH+cBub3B0QewEwDtIYBOA3MH8BMA1QIF1fgLbaBlmgA0XBQSjSQqx93nsrpOVphArleIgvv0jANXKKggUsToAGgQ7iXAKJdarh56EFCcrqM+Sah4hlkcOtezkwDtO7LLeSVGaiGlwMaXsGsYVSTjXsPabJXpkQDOfq13sEf7ypTGqCAV+E00OEqQOTBzDRAaxiM00CHwcw0QIVwZQXeYrvaEg0gGl6TEg3k6Mdtr3J6jlaYQK7XysK7LkwD1ypo4LoEaADoEO61gGjXGW4eepCQnK5nvkmoeK4xuHWHMNMArXuIhbwyA9VwCKDhUGYNo5ps3HtIky1OiQbK6dd6sT/eDaY0QAFvwGmg+AZA5BuZaYDWcCNOA8U3MtMAFUJxBd5iu8kSDSAa3pwSDZTTjztU5fQcrTCBXG+RhXdrmAZuUdDArQnQANAh3FsA0W413Dz0ICE5DWO+Sah4bja4dYcz0wCte7iFvDID1XA4oOEIZg2jmmzce0iTvS0lGihrSAO3m9IABbzdgAZuB0S+g5kGaA13GNDAHcw0QIVwWwXeYhtpiQYQDUelRANlU6CB0bLwxoRpYLSCBsYkQANAh3BHA6KNsUQDSE5jmW8SKp5RBrfuOGYaoHWPs5BXZqAajgM0vJNZw6gmG/ce0mTvSokGyujX+lR/vLtNaYAC3o3TwNS7AZHvYaYBWsM9OA1MvYeZBqgQ7qrAW2z3WqIBRMP7UqKBMvpxp6icnqMVJpDr/bLwHgjTwP0KGnggARoAOoR7PyDaA4abhx4kJKcHmW8SKp77DG7d8cw0QOsebyGvzEA1HA9oOIFZw6gmG/ce0mQfSokGSuvX+mR/vImmNEABJ+I0MHkiIPLDzDRAa3gYp4HJDzPTABXCQxV4i+0RSzSAaPhoSjRQWj/uJJXTc7TCBHKdJAtvcpgGJiloYHICNAB0CHcSINpkw81DDxKS02PMNwkVz6MGt+7jzDRA637cQl6ZgWr4OKDhE8waRjXZuPeQJjslJRoopV/rq/3xpprSAAWcitPA6qmAyE8y0wCt4UmcBlY/yUwDVAhTKvAW21OWaADR8OmUaKCUftxVKqfnaIUJ5PqMLLxnwzTwjIIGnk2ABoAO4T4DiPas4eahBwnJ6Tnmm4SK52mDW3caMw3QuqdZyCszUA2nARpOZ9YwqsnGvYc02Rkp0YCrX+tL/PFmmtIABZyJ08CSmYDIzzPTAK3heZwGljzPTANUCDMq8BbbLEs0gGj4Qko04OrHXaxyeo5WmECus2XhzQnTwGwFDcxJgAaADuHOBkSbY7h56EFCcprLfJNQ8bxgcOu+yEwDtO4XLeSVGaiGLwIazmPWMKrJxr2HNNn5KdGAo1/r1f3xFpjSAAVcgNNA9QWAyAuZaYDWsBCngeoLmWmACmF+Bd5ie8kSDSAavpwSDTj6caupnJ6jF8af6yJZeK+EaWCRggZeSYAGgA7hLgJEe8Vw89CDhOT0KvNNQsXzssGt+xozDdC6X7OQV2agGr4GaPg6s4ZRTTbuPaTJvpESDewo0K71uf54b5rSAAV8E6eBuW8CIr/FTAO0hrdwGpj7FjMNUCG8UYG32N62RAOIhu+kRAP+4okZc1ROz9EKE8j1XVl474Vp4F0FDbyXAA0AHcJ9FxDtvQpmm4ceJCSnxcw3CRXPOwa37hJmGqB1L7GQV2agGi4BNFzKrGFUk417D2myy1Kige36tT7cH2+5KQ1QwOU4DQxfDoi8gpkGaA0rcBoYvoKZBqgQllXgLbb3LdEAouEHKdHAdn0aGKZyeo5WmECuH8rC+yhMAx8qaOCjBGgA6BDuh4BoH1Uw2zz0ICE5rWS+Sah4PjC4dVcx0wCte5WFvDID1XAVoOFqZg2jmmzce0iT/TglGtimX+tt/fE+MaUBCvgJTgNtPwFE/pSZBmgNn+I00PZTZhqgQvi4Am+xfWaJBhANP0+JBrbp00AbldNztMIEcv1CFt6aMA18oaCBNQnQANAh3C8A0dZUMNs89CAhOX3JfJNQ8XxucOt+xUwDtO6vLOSVGaiGXwEafs2sYVSTjXsPabLfpEQDW/Vrfaw/3remNEABv8VpYOy3gMjfMdMAreE7nAbGfsdMA1QI31TgLba1lmgA0fD7lGhgqz4NjFE5PUcrTCDXH2Th/RimgR8UNPBjAjQAdAj3B0C0HyuYbR56kJCcfmK+Sah4vje4dX9mpgFa988W8soMVMOfAQ1/YdYwqsnGvYc02V9TooEt+rU+yB/vN1MaoIC/4TQw6DdA5HXMNEBrWIfTwKB1zDRAhfBrBd5i+90SDSAa/pESDWzRp4GBKqfnaIUJ5LpeFt6GMA2sV9DAhgRoAOgQ7npAtA0VzDYPPUhITn8y3yRUPH8Y3Lp/MdMArfsvC3llBqrhX4CGfzNrGNVk495DmuzGlGhgs36tL/TH22RKAxRwE04DCzcBIm9mpgFaw2acBhZuZqYBKoSNFXiLbYslGkA03JoSDWzWp4EFKqfnaIUJ5LpNFt72MA1sU9DA9gRoAOgQ7jZAtO0VzDYPPUhITjuYbxIqnq0Gt65TkZcGaN0UgzuvzEA19MeJm+tW5NUwqsnGvYc02VLAviZJA5v0a93zxytdMYuA9DJIA15pQOQywOExXUOZijANeGWyLGqdQihVkbfYyoLFlhloToiG5ZCz4SRHA5v0aaCGyuk5WmECuebIwsut6ARv/pyKu9IATcqWBoAO4eYAouVWNNs89CAhOeUx3yRUPOUMbt3yzDRA6y5vIa/MQDUsD2iYz6xhVJONjQWsoSAlGtioX+sF/ngVTGmAAlbAaaCgAiByRWYaoDVUxGmgoCIzDVAhFFTkLbZCSzSAaFiUEg1s1KeBfJXTc7TCBHKtJAuvcpgGKilooHICNAB0CLcSIFrlimabhx4kJKcqzDcJFU+Rwa27GzMN0Lp3s5BXZqAa7gZouDuzhlFNNu49pMlWTYkG/tav9QH+eHuY0gAF3AOngQF7ACJXY6YBWkM1nAYGVGOmASqEqhV5i626JRpANNwzJRr4W58G+qucnqMVJpDrXrLw9g7TwF4KGtg7ARoAOoS7FyDa3hXNNg89SEhO+zDfJFQ8exrcuvsy0wCte18LeWUGquG+gIY1mDWMarJx7yFN1kuJBv7Sr/VK/nj7mdIABdwPp4FK+wEi789MA7SG/XEaqLQ/Mw38UwgVeYvtAEs0gGh4YEo08Jc+DRSpnJ6jFSaQ60Gy8A4O08BBCho4OAEaADqEexAg2sEVzTYPPUhITjWZbxIqngMNbt1azDRA665lIa/MQDWsBWh4CLOGUU027j2kyR6aEg38qd/QAvEOM6UBCnhYRfy9w5lveMrr8Ir/OTxHf6BFRAf20Iq8RXGEpVsb0eXILAtVZ81HGmiYZEFtMCyoo0wLigIeZVBQtZkLivKqnVBBxU0n4WtXNDswnl6MRA/J+gL9HP3x6pgeEgpYx6Dj1AEqti7zgaI11DUQuS7zZzA6RHUN8OAIYL/qMeMg7W09w2LNDPRs1QPWfzQz4kXdyHHvITfyMcwa0h4dY3ARIDqUlF/cu/W11+/Wp99bHMl/mm4mVn25tsfy/30+Lp9Dyvw3r4GYc6yw44QdXzG7fBvq59tAlW9DjXwbiTknCGssrEnFf/302be0Kkoo/9ikDD+qOVgcT9u5y3B3rsn1vdNU5N1MWHNhLYS1FNZKWGthbYS1FdZOWHthHYR1FNZJWGdhXYR1FdZNWHdhJwrrIewkYScL6ynsFGGnCjtN2OnCegnrLewMYWeGv2NpKr9P8fuaKXzNFb4WCl9Lha+Vwtda4Wuj8LVV+NopfO0Vvg4KX0eFr5PC11nh66LwdVX4uil83RW+ExW+HgrfSQrfyQpfT4XvFIXvVIXvNIXvdIWvl8LXW+E7Q+E7s+Ku393tJ5+eozUCRR/X4JpqzqXv+Zppz3Xc5rpzRb4t9OaOE/m6LbXmbqC1ua105q75Zx/c1hpzm/+7Z26b+Llj5P66bWPnDsxo4baLmztnp25u+5i5g//T2O1Q8tw2vvPgdixx7lr/2XE7lTS3buCcuZ1LmFszeCbdLtFze4XOr9s1cm7P8Fl3u0XNLd6lLtzuEXOLd60h90T13FmKenN7KOe2VNWme5JqbhdlHbsnK+bOVte823PXubUi+oN7yi5zJ0b1EvfU8NzakX3HPS00d010j3JPD869pIR+5vYKzO1UUu9ze/vn9iuxT7pn+OYeVXJPdc8EoCvJbxTO1O/ly/3x+lTMImCfivCf6i7vo79Bbl/gMjNdQ9+K2CcDWkNfUOSk/vQROFzLVE7P0QoTyPUseUD6hcn4LLlxfl+/itn/6SNwkt2zgAPSD9w8VBw6FGeBh4nyOiuljnGG/j5P8Mc727RjUMCz8Y4x4WygY5zD3DFoDefgHWPCOSl1jDP0445XOT1HK0wg13PlATkv3DHOVXSM8xLoGMBJds8FDsh5hpuHfhGK5HQ+UAw7/wHk0lcecPSLUOSqvgAoBtUa4qbTHl1g0IkvSKkT99Y/vzP98S407cQU8EK8E8+8EDh8FzF3YlrDRXgnnnlRlodPp4AuYC6gi8E1ZAbamBAN+wNnI8kbrrd+3Bkqp+dohQnkOkAW3sDwDTdAccMNTOCGAzqEOwAQbaDh5qEHCclpUJY3XNw7VDz9DW6HS5hvLVr3JRbyygxUw0sADS9l1jCqyeo0Z925l4ENLSka6KVf66P98S43pQEKeDlOA6MvBzboCmYaoDVcgdPA6CuYaYAK4bKKvMV2JVhsmYHmhGh4VUo00Es/7iiV03O0wgRyHSwL7+owDQxW0MDVCdAA0CHcwYBoVxtuHnqQkJyuYb5JqHiuMrh1r2WmAVr3tRbyygxUw2sBDa9j1jCqyca9hzTZ61P6buB0/Vr3/PGGmNIABRyC04A3BBB5KDMN0BqG4jTgDWWmASqE6yvyFluxJRpANLwhJRo4XT9uYj/X70ZZeDeFaeBGBQ3clAANAB3CvREQ7SbDzUMPEpLTzcw3CRXPDQa37i3MNEDrvsVCXpmBangLoOGtzBpGNdm495AmOywlGjhNv9aX+eMNN6UBCjgcp4FlwwGRRzDTAK1hBE4Dy0Yw0wAVwrCKvMV2myUaQDS8PSUaOE0/7lKV03O0wgRyvUMW3sgwDdyhoIGRCdAA0CHcOwDRRhpuHnqQkJxGMd8kVDy3G9y6o5lpgNY92kJemYFqOBrQcAyzhlFNNu49pMmOTYkGTtWv9b7+eONMaYACjsNpoO84QOQ7mWmA1nAnTgN972SmASqEsRV5i+0uSzSAaHh3SjRwqn7cPiqn52iFCeR6jyy8e8M0cI+CBu5NgAaADuHeA4h2r+HmoQcJyek+5puEiudug1v3fmYaoHXfbyGvzEA1vB/Q8AFmDaOabNx7SJN9MCUaOEW/1lf54403pQEKOB6ngVXjAZEnMNMArWECTgOrJjDTABXCgxV5i+0hSzSAaDgxJRo4RT/uSpXTc7TCBHJ9WBbeI2EaeFhBA48kQANAh3AfBkR7xHDz0IOE5PQo801CxTPR4NadxEwDtO5JFvLKDFTDSYCGk5k1jGqyce8hTfaxlGigp36tt/PHe9yUBijg4zgNtHscEPkJZhqgNTyB00C7J5hpgArhsYq8xTbFEg0gGk5NiQZ66sdtq3J6jlaYQK5PysJ7KkwDTypo4KkEaADoEO6TgGhPGW4eepCQnJ5mvkmoeKYa3LrPMNMArfsZC3llBqrhM4CGzzJrGNVk495DmuxzKdHAyfq1Pt0fb5opDVDAaTgNTJ8GiDydmQZoDdNxGpg+nZkGqBCeq8hbbDMs0QCi4cyUaOBk/bjTVE7P0QoTyPV5WXizwjTwvIIGZiVAA0CHcJ8HRJtluHnoQUJyeoH5JqHimWlw685mpgFa92wLeWUGquFsQMM5zBpGNdm495AmOzclGjhJv9bn++O9aEoDFPBFnAbmvwiIPI+ZBmgN83AamD+PmQaoEOZW5C22+ZZoANFwQUo0cJJ+3Hkqp+dohQnkulAW3kthGliooIGXEqABoEO4CwHRXjLcPPQgITm9zHyTUPEsMLh1FzHTAK17kYW8MgPVcBGg4SvMGkY12bj3kCb7ako00EO/1jv4471mSgMU8DWcBjq8Boj8OjMN0Bpex2mgw+vMNECF8GpF3mJ7wxINIBq+mRIN9NCP217l9BytMIFc35KF93aYBt5S0MDbCdAA0CHctwDR3jbcPPQgITm9w3yTUPG8aXDrvstMA7Tudy3klRmohu8CGr7HrGFUk417D2myi1OigRP1a73YH2+JKQ1QwCU4DRQvAUReykwDtIalOA0UL2WmASqExRV5i22ZJRpANFyeEg2cqB93qMrpOVphArmukIX3fpgGViho4P0EaADoEO4KQLT3DTcPPUhITh8w3yRUPMsNbt0PmWmA1v2hhbwyA9XwQ0DDj5g1jGqyce8hTXZlSjTQ3ZAGVpnSAAVcZUADqwCRVzPTAK1htQENrGamASqElRV5i+1jSzSAaPhJSjTQPQUa+FQW3mdhGvhUQQOfJUADQIdwPwVE+8wSDSA5fc58k1DxfGJw637BTAO07i8s5JUZqIZfABquYdYwqsnGvYc02S9TooFu+rU+1R/vK1MaoIBf4TQw9StA5K+ZaYDW8DVOA1O/ZqYBKoQvK/IW2zeWaADR8NuUaKCbftwpKqfnaIUJ5PqdLLy1YRr4TkEDaxOgAaBDuN8Boq013Dz0ICE5fc98k1DxfGtw6/7ATAO07h8s5JUZqIY/ABr+yKxhVJONew9psj+lRANd9Wt9sj/ez6Y0QAF/xmlg8s+AyL8w0wCt4RecBib/wkwDVAg/VeQttl8t0QCi4W8p0UBX/biTVE7P0QoTyHWdLLzfwzSwTkEDvydAA0CHcNcBov1uuHnoQUJy+oP5JqHi+c3g1l3PTAO07vUW8soMVMP1gIYbmDWMarJx7yFN9s+UaKCLfq2v9sf7y5QGKOBfOA2s/gsQ+W9mGqA1/I3TwOq/mWmACuHPirzFttESDSAabkqJBrrox12lcnqOVphArptl4W0J08BmBQ1sSYAGgA7hbgZE22K4eehBQnLaynyTUPFsMrh1tzHTAK17m4W8MgPVcBug4XZmDaOabNx7SJPdkRINdNav9SWBeIVZBKSXQRpYQu94mjHcQl4aoDVQDJAGlrj6a1DmpVMIOyryFlspQAf//0BzQjQsDeSUJA101i/axSqn52iFCeRaRhZe2UwHyNz8ZQp3pQGalC0NAB3CLQOIVrbQbPPQg4TkVA483OiBoeIpXYgXdk6WjSNuOq07x0JemYFqmANomMusYVSTjXsPabJ5wL4mSQOd9Gu9uj9eeVMaoIDlcRqoXh4QOZ+ZBmgN+TgNVM9npgEqhLxC3mIrsEQDiIYVUqKBTvo0UE3l9BytMIFcK8rCKwzTQEUFDRQmQANAh3ArAqIVFpptHnqQkJyKmG8SKp4KBrduJWYaoHVXspBXZqAaVgI0rMysYVSTjXsPabJVUqKBjvq1PtcfbzdTGqCAu+E0MHc3QOTdmWmA1rA7TgNzd2emASqEKoW8xVbVEg0gGu6REg101KeBOSqn52iFCeRaTRZe9TANVFPQQPUEaADoEG41QLTqhWabhx4kJKc9mW8SKp49DG7dvZhpgNa9l4W8MgPVcC9Aw72ZNYxqsnHvIU12n5RooIN+rQ/3x9vXlAYo4L44DQzfFxC5BjMN0Bpq4DQwvAYzDVAh7FPIW2yeJRpANNwvJRrooE8Dw1ROz9EKE8h1f1l4B4RpYH8FDRyQAA0AHcLdHxDtgEKzzUMPEpLTgcw3CRXPfga37kHMNEDrPshCXpmBangQoOHBzBpGNdm495AmWzMlGmivX+tt/fFqmdIABayF00DbWoDIhzDTAK3hEJwG2h7CTANUCDULeYvtUEs0gGh4WEo00F6fBtqonJ6jFSaQ6+Gy8I4I08DhCho4IgEaADqEezgg2hGFZpuHHiQkpyOZbxIqnsMMbt2jmGmA1n2UhbwyA9XwKEDD2swaRjXZuPeQJlsnJRpop1/rY/3x6prSAAWsi9PA2LqAyPWYaYDWUA+ngbH1mGmACqFOIW+xHW2JBuoBOR2TEg2006eBMSqn52iFCeRaXxZegzAN1FfQQIMEaADoEG59QLQGhWabhx4kJKdjmW8SKp5jDG7d45hpgNZ9nIW8MgPV8DhAw+OZNYxqsnHvIU22YUo00Fa/1gf54zUypQEK2AingUGNAJFPYKYBWsMJOA0MOoGZBqgQGhbyFltjSzSAaNgkJRpoq08DA1VOz9EKE8i1qSy8ZmEaaKqggWYJ0ADQIdymgGjNCs02Dz1ISE7NmW8SKp4mBrduC2YaoHW3sJBXZqAatgA0bMmsYVSTjXsPabKtUqKBNvq1vtAfr7UpDVDA1jgNLGwNiNyGmQZoDW1wGljYhpkGqBBaFfIWW1tLNIBo2C4lGmijTwMLVE7P0QoTyLW9LLwOYRpor6CBDgnQANAh3PaAaB0KzTYPPUhITh2ZbxIqnnYGt24nZhqgdXeykFdmoBp2AjTszKxhVJONew9psl1SooHW+rXu+eN1NaUBCtgVpwGvKyByN2YaoDV0w2nA68ZMA1QIXQp5i627JRpANDwxJRporU8DNVROz9EKE8i1hyy8k8I00ENBAyclQANAh3B7AKKdVGi2eehBQnI6mfkmoeI50eDW7clMA7TunhbyygxUw56AhqcwaxjVZOPeQ5rsqSnRQCv9Wi/wxzvNlAYo4Gk4DRScBoh8OjMN0BpOx2mg4HRmGqBCOLWQt9h6WaIBRMPeKdFAK30ayFc5PUcrTCDXM2ThnRmmgTMUNHBmAjQAdAj3DEC0MwvNNg89SEhOfZhvEiqe3ga3bl9mGqB197WQV2agGvYFNDyLWcOoJhv3HtJk+6VEAy31a32AP97ZpjRAAc/GaWDA2YDI5zDTAK3hHJwGBpzDTANUCP0KeYvtXEs0gGh4Xko00FKfBvqrnJ6jFSaQ6/my8C4I08D5Chq4IAEaADqEez4g2gWFZpuHHiQkpwuZbxIqnvMMbt2LmGmA1n2RhbwyA9XwIkDDi5k1jGqyce8hTbZ/SjTQQr/WK/njDTClAQo4AKeBSgMAkQcy0wCtYSBOA5UGMtMAFUL/Qt5iG2SJBhANL0mJBlro00CRyuk5WmECuV4qC++yMA1cqqCByxKgAaBDuJcCol1WaLZ56EFCcrqc+Sah4rnE4Na9gpkGaN1XWMgrM1ANrwA0vJJZw6gmG/ce0mSvSokGmgP/fQR/vMGmNEABBxfi713NfMNTXlcX/ufwHP2BFhEd2KsKeYviGku3NqLLtVkWqs6arzXQMMmCamZYUNeZFhQFvM6goK5nLijK6/qECipuOgl/faHZgfH0YiR6SJoCP7PeH2+I6SGhgEMMOs4QoGKHMh8oWsNQA5GHMn8Go0M01AAPrgH2q5gZB2lviw2LNTPQs1UMrP8GZsSLupHj3kNu5BuZNaQ9utHgIkB0oCZIn81Kq34jMG4jw//kmYPF8bSduwx355pc3zs3if26Wdgtwm4VNkzYcGEjhN0m7HZhdwgbKWyUsNHCxggbK2ycsDuF3SXsbmH3CLtX2H3C7hf2gLAHhY0XNkHYQ8ImCntY2CPCHg1/B3CT/Lzv992s8N2i8N2q8A1T+IYrfCMUvtsUvtsVvjsUvpEK3yiFb7TCN0bhG6vwjVP47lT47lL47lb47lH47lX47lP47lf4HlD4HlT4xit8ExS+hxS+iQrfwwrfIwrfo4W7fre0n3x6jtYIFH1cs7lJszHR91A3a8913Ft054p8b9WbO07k6w7TmruB1uYO15m75p99cEdozG3+7565t8XPHSP31709du7AjBbuHXFz5+zUzR0ZM3fwfxq7o0qe28Z3HtzRJc5d6z877piS5tYNnDN3bAlzawbPpDsuem6v0Pl174yc2zN81t27ouYW71IX7t0Rc4t3rSH3HvXcWYp6c+9Vzm2pqk33PtXcLso6du9XzJ2trnn3gV3n1oroD+6Du8ydGNVL3PHhubUj+447ITR3TXSPch8Kzr2khH7mTgzM7VRS73Mf9s/tV2KfdB/xzT2q5J7qPgpAaJKfeB/V7+XL/fEmmX7ipYCTCuE/dVw+SX+D3MmaizL9xEtrmAx+4qU1TAZFTupPx4DDtUzl9BytMIFcH5MH5PEwGT8mN87ve7ww+z8dA06y+xhwQB4HNw8Vhw7FY+BhorweS6ljPKK/zxP88Z4w7RgU8Am8Y0x4AugYU5g7Bq1hCt4xJkxJqWM8oh93vMrpOVphArlOlQfkyXDHmKroGE8m0DGAk+xOBQ7Ik4abh35Rh+T0FFAMO/8B5DJZHnD0izrkqn4aKAbVGuKm0x49bdCJn06pEz+sf35n+uM9Y9qJKeAzeCee+Qxw+J5l7sS0hmfxTjzz2SwPn04BPc1cQM+Ba8gMtDEhGk4DzkaSN9zD+nFnqJyeoxUmkOt0WXgzwjfcdMUNNyOBGw7oEO50QLQZhpuHHiQkp5lZ3nBx71DxTDO4HZ5nvrVo3c9byCszUA2fBzScxaxhVJPVac66c18AG1pSNDBRv9ZH++PNNqUBCjgbp4HRs4ENmsNMA7SGOTgNjJ7DTANUCC8U8hbbXLDYMgPNCdHwxZRoYKJ+3FEqp+dohQnkOk8W3vwwDcxT0MD8BGgA6BDuPEC0+Yabhx4kJKcFzDcJFc+LBrfuQmYaoHUvtJBXZqAaLgQ0fIlZw6gmG/ce0mRfTum7gYf0a93zx1tkSgMUcBFOA94iQORXmGmA1vAKTgPeK8w0QIXwciFvsb1qiQYQDV9LiQYe0o+b2M+de10W3hthGnhdQQNvJEADQIdwXwdEe8Nw89CDhOT0JvNNQsXzmsGt+xYzDdC637KQV2agGr4FaPg2s4ZRTTbuPaTJvpMSDUzQr/Vl/njvmtIABXwXp4Fl7wIiv8dMA7SG93AaWPYeMw1QIbxTyFtsiy3RAKLhkpRoYIJ+3KUqp+dohQnkulQW3rIwDSxV0MCyBGgA6BDuUkC0ZYabhx4kJKflzDcJFc8Sg1t3BTMN0LpXWMgrM1ANVwAavs+sYVSTjXsPabIfpEQD4/Vrva8/3oemNEABP8RpoO+HgMgfMdMAreEjnAb6fsRMA1QIHxTyFttKSzSAaLgqJRoYrx+3j8rpOVphArmuloX3cZgGVito4OMEaADoEO5qQLSPDTcPPUhITp8w3yRUPKsMbt1PmWmA1v2phbwyA9XwU0DDz5g1jGqyce8hTfbzlGjgQf1aX+WP94UpDVDAL3AaWPUFIPIaZhqgNazBaWDVGmYaoEL4vJC32L60RAOIhl+lRAMP6sddqXJ6jlaYQK5fy8L7JkwDXyto4JsEaADoEO7XgGjfGG4eepCQnL5lvkmoeL4yuHW/Y6YBWvd3FvLKDFTD7wAN1zJrGNVk495Dmuz3KdHAA/q13s4f7wdTGqCAP+A00O4HQOQfmWmA1vAjTgPtfmSmASqE7wt5i+0nSzSAaPhzSjTwgH7ctiqn52iFCeT6iyy8X8M08IuCBn5NgAaADuH+Aoj2q+HmoQcJyek35puEiudng1t3HTMN0LrXWcgrM1AN1wEa/s6sYVSTjXsPabJ/pEQD9+vX+nR/vPWmNEAB1+M0MH09IPIGZhqgNWzAaWD6BmYaoEL4o5C32P60RAOIhn+lRAP368edpnJ6jlaYQK5/y8LbGKaBvxU0sDEBGgA6hPs3INpGw81DDxKS0ybmm4SK5y+DW3czMw3QujdbyCszUA03AxpuYdYwqsnGvYc02a0p0cB9+rU+3x9vmykNUMBtOA3M3waIvJ2ZBmgN23EamL+dmQaoELYW8hbbDks0AGlYlA4N3Ke/F/NUTs/RChPI1S3691mqyAne/PR/hGmAJmVLA0CHcN0ifdFKFZltHnqQkJxKAwdp5z8c/XeoeJwivLDL6Of1X3KOfl607jIW8soMVMMygIZlmTWMarJx7yFNthywr0nSwL36td7BHy+nKIuA9DJIAx1yAJFzgcNjuoZcsHhoDblZFrVOIZQr4i22PLDYMgPNCdGwfEo0cK8+DbRXOT1HK0wg13xZeAVhGshX0EBBAjQAdAg3HxCtoMhs89CDhORUgfkmoeIpb3DrVmSmAVp3RQt5ZQaqYUVAw0JmDaOabNx7SJMtSokG7tGv9WJ/vEqmNEABK+E0UFwJELkyMw3QGirjNFBcmZkGqBCKiniLrYolGkA03C0lGrhHnwaGqpyeoxUmkOvusvCqhmlgdwUNVE2ABoAO4e4OiFa1yGzz0IOE5LQH801CxbObwa1bjZkGaN3VLOSVGaiG1QANqzNrGNVk495DmuyeKdHA3YY0sJcpDVDAvQxoYC9A5L2ZaYDWsLcBDezNTANUCHsW8RbbPpZoANFw35Ro4O4UaKCGLDwvTAM1FDTgJUADQIdwawCieZZoAMlpP+abhIpnX4Nbd39mGqB1728hr8xANdwf0PAAZg2jmmzce0iTPTAlGrhLv9an+uMdZEoDFPAgnAamHgSIfDAzDdAaDsZpYOrBzDRAhXBgEW+x1bREA4iGtVKigbv0aWCKyuk5WmECuR4iC+/QMA0coqCBQxOgAaBDuIcAoh1aZLZ56EFCcjqM+Sah4qllcOsezkwDtO7DLeSVGaiGhwMaHsGsYVSTjXsPabJHpkQDd+rX+mR/vKNMaYACHoXTwOSjAJFrM9MAraE2TgOTazPTABXCkUW8xVbHEg0gGtZNiQbu1KeBSSqn52iFCeRaTxbe0WEaqKeggaMToAGgQ7j1ANGOLjLbPPQgITkdw3yTUPHUNbh16zPTAK27voW8MgPVsD6gYQNmDaOabNx7SJM9NiUaGKdf66v98Y4zpQEKeBxOA6uPA0Q+npkGaA3H4zSw+nhmGqBCOLaIt9gaWqIBRMNGKdHAOH0aWKVyeo5WmECuJ8jCaxymgRMUNNA4ARoAOoR7AiBa4yKzzUMPEpJTE+abhIqnkcGt25SZBmjdTS3klRmohk0BDZsxaxjVZOPeQ5ps85RoYKx+rS/xx2thSgMUsAVOA0taACK3ZKYBWkNLnAaWtGSmASqE5kW8xdbKEg0gGrZOiQbG6tPAYpXTc7TCBHJtIwuvbZgG2ihooG0CNAB0CLcNIFrbIrPNQw8SklM75puEiqe1wa3bnpkGaN3tLeSVGaiG7QENOzBrGNVk495DmmzHlGhgjH6tV/fH62RKAxSwE04D1TsBIndmpgFaQ2ecBqp3ZqYBKoSORbzF1sUSDSAadk2JBsbo00A1ldNztMIEcu0mC697mAa6KWigewI0AHQItxsgWvcis81DDxKS04nMNwkVT1eDW7cHMw3QuntYyCszUA17ABqexKxhVJONew9psienRAOj9Wt9rj9eT1MaoIA9cRqY2xMQ+RRmGqA1nILTwNxTmGmACuHkIt5iO9USDSAanpYSDYzWp4E5KqfnaIUJ5Hq6LLxeYRo4XUEDvRKgAaBDuKcDovUqMts89CAhOfVmvkmoeE4zuHXPYKYBWvcZFvLKDFTDMwANz2TWMKrJxr2HNNk+KdHAKP1aH+6P19eUBihgX5wGhvcFRD6LmQZoDWfhNDD8LGYaoELoU8RbbP0s0QCi4dkp0cAofRoYpnJ6jlaYQK7nyMI7N0wD5yho4NwEaADoEO45gGjnFpltHnqQkJzOY75JqHjONrh1z2emAVr3+RbyygxUw/MBDS9g1jCqyca9hzTZC1OigZH6td7WH+8iUxqggBfhNND2IkDki5lpgNZwMU4DbS9mpgEqhAuLeIutvyUaQDQckBINjNSngTYqp+dohQnkOlAW3qAwDQxU0MCgBGgA6BDuQEC0QUVmm4ceJCSnS5hvEiqeAQa37qXMNEDrvtRCXpmBangpoOFlzBpGNdm495Ame3lKNHCHfq2P9ce7wpQGKOAVOA2MvQIQ+UpmGqA1XInTwNgrmWmACuHyIt5iu8oSDSAaDk6JBu7Qp4ExKqfnaIUJ5Hq1LLxrwjRwtYIGrkmABoAO4V4NiHZNkdnmoQcJyela5puEimewwa17HTMN0Lqvs5BXZqAaXgdoeD2zhlFNNu49pMkOSYkGbtev9UH+eENNaYACDsVpYNBQQORiZhqgNRTjNDComJkGqBCGFPEW2w2WaADR8MaUaOB2fRoYqHJ6jlaYQK43ycK7OUwDNylo4OYEaADoEO5NgGg3F5ltHnqQkJxuYb5JqHhuNLh1b2WmAVr3rRbyygxUw1sBDYcxaxjVZOPeQ5rs8JRo4Db9Wl/ojzfClAYo4AicBhaOAES+jZkGaA234TSw8DZmGqBCGF7EW2y3W6IBRMM7UqKB2/RpYIHK6TlaYQK5jpSFNypMAyMVNDAqARoAOoQ7EhBtVJHZ5qEHCclpNPNNQsVzh8GtO4aZBmjdYyzklRmohmMADccyaxjVZOPeQ5rsuJRoYIR+rXv+eHea0gAFvBOnAe9OQOS7mGmA1nAXTgPeXcw0QIUwroi32O62RAOIhvekRAMj9GmghsrpOVphArneKwvvvjAN3KuggfsSoAGgQ7j3AqLdV2S2eehBQnK6n/kmoeK5x+DWfYCZBmjdD1jIKzNQDR8ANHyQWcOoJhv3HtJkx6dEA8P1a73AH2+CKQ1QwAk4DRRMAER+iJkGaA0P4TRQ8BAzDVAhjC/iLbaJlmgA0fDhlGhguD4N5KucnqMVJpDrI7LwHg3TwCMKGng0ARoAOoT7CCDao0Vmm4ceJCSnScw3CRXPwwa37mRmGqB1T7aQV2agGk4GNHyMWcOoJhv3HtJkH0+JBobp1/oAf7wnTGmAAj6B08CAJwCRpzDTAK1hCk4DA6Yw0wAVwuNFvMU21RINIBo+mRINDNOngf4qp+dohQnk+pQsvKfDNPCUggaeToAGgA7hPgWI9nSR2eahBwnJ6Rnmm4SK50mDW/dZZhqgdT9rIa/MQDV8FtDwOWYNo5ps3HtIk52WEg3cql/rlfzxppvSAAWcjtNApemAyDOYaYDWMAOngUozmGmACmFaEW+xzbREA4iGz6dEA7fq00CRyuk5WmECuc6Sv9MLYRqYpaCBFxKgAaBDuLMA0V4oMts89CAhOc1mvkmoeJ43uHXnMNMArXuOhbwyA9VwDqDhXGYNo5ps3HtIk30xJRq4Rb+hBeLNM6UBCjivCH9vPvMNT3nN97Udz9EfaBHRgX2xiLcoFli6tRFdFmZZqDprXmigYZIFdbNhQb1kWlAU8CWDgnqZuaAor5cTKqi46ST8y0VmB8bTi5HoIbmpUD9Hf7xFpoeEAi4y6DiLgIp9hflA0RpeMRD5FebPYHSIXjHAgwXAfr2a5RriptPevmpYrJmBnq1XgfW/xox4UTdy3HvIjfw6s4a0R68bXASIDpnfe43vN/Ac/fG/uf+b+7+5/5v7v7n/m/u/uf+b+7+5/5v7//Fcl3i4oOy/XJwvn+XlM08+c+UzRz7LyWdZ+Swjn6Xls5R8uvLpyOeOMv8+t8vnNvncKp9b5HOzfG6Sz43y+bd8/iWff8rnBvlcL59/yOfv8rlOPn+Tz1/l8xf57FLu32dn+ewknx3ls4N8tpfPdvLZVj7byGdr+Wwlny3ls4V8NpfPZvLZVD6byGdj+TxBPhvJZ0P5PF4+j5PPY+WzgXzWl89j5PNo+awnn3Xls4581pbPcTn/PsfK5xj5HC2fo+RzpHzeIZ+3y+dt8jlCPofL5zD5vFU+b5HPm+XzJvm8UT5vkM9i+Rwqn0Pk83r5vE4+r5XPa+TzavkcLJ9XyeeV8nmFfF4un5fJ54e5/z4/kM/35XOFfC6Xz2XyuVQ+l8jnYvl8Tz7flc935PNt+XxLPt+Uzzfk83X5fE0+X5XPV+RzkXy+LJ8vyedC+Vwgn/Plc558viifc+VzjnzOls8X5LNa+X+fe8hnVfncXT53k88q8llZPivJZ5F8FspnRfmsIJ8F8pkvn+XlM08+c+UzRz7LyWdZ+Swjn6Xls5R8uvLpyOeOvH+f2+Vzm3xulc8t8rlZPjfJ5/qCf58b5PNP+fxLPv+Wz43yuUk+N8vnFvncKp/b5HO7fO6QT6eCzFs+S8nntPx/n9Plc4Z8zpTP5+Vzlny+IJ+z5XOOfM6Vzxflc558zpfPBfK5UD5fEs/Md5lviO9Q3hT2lrC3hb0j7F1h7wlbLGyJsKXClglbLmyFsPeFfSDsQ2EfCVspbJWw1cI+FvaJsE+FfSbsc2FfCFsj7EthXwn7Wtg3wr4V9p2wtcK+F/aDsB+F/STsZ2G/CPtV2G/C1gn7XdgfwtYL2yDsT2F/Cftb2EZhm4RtFrZF2FZh24RtF7aDvh+sJNYurJSw0sLKCCsrrJywHGG5wvKElReWL6xAWAVhFYUVCisSVklYZWFVhO0mbHdhVYXtIayasOrC9hS2l7C9he0jbF9hNYR5wvYTtr+wA4QdKOwgYQcLqymslrBDhB0q7DBhhws7QtiRwo4SVltYHWF1hdUTdrSwY4TVF9ZA2LHCjhN2vLCGwhoJO0FYY2FNhDUV1kxYc2EthLUU1kpYa2FthLUV1k5Ye2EdhHUU1klYZ2FdhHUV1k1Yd2EnCush7CRhJwvrKewUYacKO03Y6cJ6Cest7AxhZwrrI6yvsLOE9RN2trBzhJ0r7Dxh5wu7QNiFwi4SdrGw/sIGCBsobJCwS4RdKuwyYZcLu0LYlcKuEjZY2NXCrhF2rbDrhF0vbIiwocKKhd0g7EZhNwm7Wdgtwm4VNkzYcGEjhN0m7HZhdwgbKWyUsNHCxggbK2ycsDuF3SXsbmH3CLtX2H3C7hf2gLAHhY0XNkHYQ8ImCntY2CPCHhU2SdhkYY8Je1zYE8KmCJsq7ElhTwl7Wtgzwp4V9pywacKmC5shbKaw54XNqiT7ixP8O0Keoz805677594ulPe4fN4in7fK5zD5HC6fI+TzNvm8XT7vkM+R8jlKPkfL5xj5HCuf4+SzacV/n83ks7l8tpDPlvLZSj5by2cb+Wwrn+3ks718dpDPjvLZST47y2eXiv/9vZ4XxJ7PFjZH2FxhLwqbJ2y+sAXCFgp7SdjLwhYJe0XYq8JeE/Z6pX//MK7At7Gu71lV/voNMe9NYW8Je1vYO8LeFfaesMXClghbKmyZsOXCVgh7X9gHwj4U9pGwlcJWCVst7GNhn1SSQTJ/34qC5IZ8byp8byl8byt87yh87yp87yl8ixW+JQrfUoVvmcK3XOFbofC9r/B9oPB9qPB9pPCtVPhWKXyrFb6PFb5PpI8OTQVHfWgy/2r6p2LuZ8I+F/aFsDXCvhT2lbCvhX0j7Fth3wlbK+x7YT8I+1HYT8J+FvaLsF+F/SZsnbDfhf0hbL2wDcL+FPaXsL+FbRS2Sdjm8MH6VLGQzxS+zxW+LxS+NQrflwrfVwrf1wrfNwrftwrfdwrfWoXve4XvB4XvR4XvJ4XvZ4XvF4XvV4XvN4VvncL3u8L3h8K3XuHboPD9qfD9pfD9rfBtVPg2KXybgWLYIuZuFbZN2HZhO+iQVhZzhJUSVlpYGWFlhZUTliMsV1iesPLC8oUVCKsgrKKwQmFFwioJqyysirDdhO0urKqwPYRVE1a9cijpLYqFbFX4til82xW+HQofLSzscxW+UgpfaYWvjMJXVuErp/DlKHy5Cl+ewlde4ctX+AoUvgoKX0WFr1DhK1L4Kil8lRW+Kgrfbgrf7gpfVYVvD4WvmsJXvbJ+Mewp5u4lbG9h+wjbV1gNYZ6w/YTtL+wAYQcKO0jYwcJqCqsl7BBhhwo7TNjhwo4QdqSwo4TVFlZHWF1h9YQdLewYYfWFNRB2bLgY9lQsZC+Fb2+Fbx+Fb1+Fr4bC5yl8+yl8+yt8Byh8Byp8Byl8Byt8NRW+WgrfIQrfoQrfYQrf4QrfEQrfkQrfUQpfbYWvjsJXV+Grp/AdrfAdo/DVV/gaKHzHAsVwnJh7vLCGwhoJO0FYY2FNhDUV1kxYc2EthLUU1kpYa2FthLUV1k5Ye2EdhHUU1klYZ2FdhHUV1k1Yd2EnCush7CRhJwvrGS6G4xQLOV7ha6jwNVL4TlD4Git8TRS+pgpfM4WvucLXQuFrqfC1UvhaK3xtFL62Cl87ha+9wtdB4euo8HVS+DorfF0Uvq4KXzeFr7vCd6LC10PhO0nhO1nh6wkUwyli7qnCThN2urBewnoLO0PYmcL6COsr7Cxh/YSdLewcYecKO0/Y+cIuEHahsIuEXSysv7ABwgYKGyTsEmGXCrtM2OXCrhB2ZbgYTlEs5FSF7zSF73SFr5fC11vhO0PhO1Ph66Pw9VX4zlL4+il8Zyt85yh85yp85yl85yt8Fyh8Fyp8Fyl8Fyt8/RW+AQrfQIVvkMJ3icJ3qcJ3mcJ3ucJ3hcJ3JVAMV4m5g4VdLewaYdcKu07Y9cKGCBsqrFjYDcJuFHaTsJuF3SLsVmHDhA0XNkLYbcJuF3aHsJHCRgkbLWyMsLHCxgm7U9hdwu4OF8NVioUMVviuVviuUfiuVfiuU/iuV/iGKHxDFb5ihe8Ghe9Ghe8mhe9mhe8Whe9WhW+Ywjdc4Ruh8N2m8N2u8N2h8I1U+EYpfKMVvjEK31iFb5zCd6fCd5fCdzdQDPeIufcKu0/Y/cIeEPagsPHCJgh7SNhEYQ8Le0TYo8ImCZss7DFhjwt7QtgUYVOFPSnsKWFPC3tG2LPCnhM2Tdh0YTOEzRT2fLgY7lEs5F6F7z6F736F7wGF70GFb7zCN0Hhe0jhm6jwPazwPaLwParwTVL4Jit8jyl8jyt8Tyh8UxS+qQrfkwrfUwrf0wrfMwrfswrfcwrfNIVvusI3Q+GbqfA97yuGss5/I/DvL1f+9/lCZSc4MhXjOVrDpd8oMzfuL6pTQhWdZP6l7xcqa8/NKo6rP3fn701jdnhj0X+L4ecy+hs7pzK2oMxJybxHwpRzggtA/82Rj+TfPPIcvTxo/soyvILsHLTAHCe4wJ2/o40E/AP+91mAEptreBJU76EnwD83LvY5jtkmojkhJ/Jcx05OpRz9nM5z7ORU2tHP6XwnmZzi4lzg6Offu4yd6+BCx06cixw7cS527GjZ39HXsq8lLQc4duIMdOzEGeTYiXOJYyfOpY6dOJc5duJc7tiJc4VjJ86Vjp04Vzl24gx27MS52rET5xrHTpxrHTtxrnPsxLnesRNniGMnzlDHTpxix06cGxw7cW507MS5ybET52bHTpxbHDtxbnXsxBnm2Ikz3LETZ4RjJ85tjp04tzt24tzh2Ikz0rETZ5RjJ85ox06cMY6dOGMdO3HGOXbi3OnYiXOXYyfO3Y6dOPc4duLc69iJc59jJ879jp04Dzh24jzo2Ikz3rETZ4JjJ85Djp04Ex07cR527MR5xLET51HHTpxJjp04kx07cR5z7MR53LET5wnHTpwpjp04Ux07cZ507MR5yrET52nHTpxnHDtxnnXsxHnOsRNnmmMnznTHTpwZjp04Mx07cZ537MSZ5diJ84JjJ85sx06cOY6dOHMdO3FedOzEmefYiTPfsRNngWMnzkLHTpyXHDtxXnbsxFnk2InzimMnzquOnTivOXbivO7YifOGYyfOm46dOG85duK87diJ845jJ867jp047zl24ix27MRZ4tiJs9SxE2eZYyfOcsdOnBWOnTjvO3bifODYifOhYyfOR46dOCsdO3FWOXbirHbsxPnYsRPnE8dOnE8dO3E+c+zE+dyxE+cLx06cNY6dOF86duJ85diJ87VjJ843jp043zp24nzn2Imz1rET53vHTpwfHDtxfnTsxPnJsRPnZ8dOnF8cO3F+dezE+c2xE2edYyfO746dOH84duKsd+zE2eDYifOnYyfOX46dOH87duJsdOzE2eTYibPZsRNni2MnzlbHTpxtjp042x07cXY4duLQC5pzAwP9d4ldX5y4f5f4+zJ2cioF5LTK0r/fXNq1E6eMpThlLcUpZylOjqU4uZbi5FmKU95SnHxLcQosxalgKU5FS3EKLcUpshSnkqU4lS3FqWIpzm6W4uxuKU5VS3H2sBSnmqU41S3F2dNSnL0sxdnbUpx9LMXZ11KcGpbieJbi7Ad8hskmzv6+ONVntl6yqX6rntXn939rr4+ennntJ8NHzfv83YOPLHYPmPzstbOyiXOA4b6hn/0OBPbtrIQ+jyb5c+8OsnS+DrakR01AjzmWfoxoLUt7fIilOIdainOYpTiHW4pzhKU4R1qKc5SlOLUtxaljKU5dS3HqWYpztKU4x1iKU99SnAaW4hxrKc5xluIcbylOQ0txGlmKc4KlOI0txWliKU5TS3GaWYrT3FKcFpbitLQUp5WlOK0txWljKU5bS3HaWYrT3lKcDpbidLQUp5OlOJ0txeliKU5XS3G6WYrT3RenpO9oftuxY0c2cU60tJ4eluKcZCnOyZbi9LQU5xRLcU61FOc0S3FOtxSnl6U4vS3FOcNSnDMtxeljKU5fS3HOshSnn6U4Z1uKc46lOOdainOepTjnW4pzgaU4F1qKc5GlOBdbitPfUpwBluIMtBRnkKU4l1iKc6mlOJdZinO5pThXWIpzpaU4V1mKM9hSnKstxbnGUpxrLcW5zlKc6y3FGWIpzlBLcYotxbnBUpwbLcW5yVKcmy3FucVSnFstxRlmKc5wS3FGWIpzm6U4t1uKc4elOCMtxRllKc5oS3HGWIoz1lKccZbi3Gkpzl2W4txtKc49luLcaynOfZbi3G8pzgOW4jxoKc54S3EmWIrzkKU4Ey3FedhSnEcsxXnUUpxJluJMthTnMUtxHrcU5wlLcaZYijPVUpwnLcV5ylKcpy3FecZSnGctxXnOUpxpluJMtxRnhqU4My3Fed5SnFmW4rxgKc5sS3HmWIoz11KcFy3FmWcpznxLcRZYirPQUpyXLMV52VKcRZbivGIpzquW4rxmKc7rluK8YSnOm5bivGUpztuW4rxjKc67luK8ZynOYktxlliKs9RSnGWW4iy3FGeFpTjvW4rzgaU4H1qK85GlOCstxVllKc5qS3E+thTnE0txPrUU5zNLcT63FOcLS3HWWIrzpaU4X1mK87WlON9YivOtpTjfWYqz1lKc7y3F+cFSnB8txfnJUpyfLcX5xVKcXy3F+c1SnHWW4vxuKc4fluKstxRng6U4f1qK85elOH9birPRUpxNluJsthRni6U4Wy3F2WYpznZLcXZYikM/hFhzbuhFLI5rKU4pS3FKW4pTxlKcspbilLMUJ8dSnFxLcfIsxSlvKU6+pTgFluJUsBSnoqU4hZbiFFmKU8lSnMqW4lSxFGc3S3F2txSnqqU4e1iKU81SnOqW4uxpKc5eluLsbSnOPpbi7GspTg1LcTxLcfazFGd/S3EOsBTnQEtxDrIU52BLcWpailPLUpxDLMU51FKcwyzFOdxSnCMsxTnSUpyjLMWpbSlOHUtx6lqKU89SnKMtxTnGUpz6luI0sBTnWEtxjrMU53hLcRpaitPIUpwTLMVpbClOE0txmlqK08xSnOaW4rSwFKelpTitLMVpbSlOG0tx2lqK085SnPaW4nSwFKejpTidLMXpbClOF0txulqK080wDvrfaO7uixP332ieXdlOTicCOTXPN8vJCz3jcurh18MtefLp+SXlv9afv/tGUYlrbeOf+//a+w4wuWprf83ueL1jrz3rdcMFe1zAxoVeTPfiDrbpEFrMYi/G4Ia9BoONWVywTTME0gvppEDKC6kvyUtI8pI8kpeE5J9KHoEkLz0hL5Be/hK+Z/fsb87VSPdq7w549H3nmztXR79zJB0d6Uq6ul+08y7czHi/VIH3po918365Eu/H13Xx/ldF3vX3Eu/jlXnvOyPi/YoD75wf7ef9qgvv08+9wPvfTrzPv8Lwfs2N9/7fad6vu/L+S+W+4cz7r9wTjrzG9r/Zg3eJjTf3kSE9cK+38X60J++GH1l4Pwa8Tx8Zz/tx5D3qwVjeT5TxvnlqHO+/l/Me9tEY3k8KvB87W+b9lMR7zlyR99Mi77wPS7z/IfN+pFPg/UwM722d5byfjeO97eIy3sdieV92OfJ+Lp73iinA+3kL79Sje/J+gfMut9p6D49bgt8KIXdhnbucb3m0qf/X7N6mvt3s3qa+0+zepr7b7N6mvtfs3qa+3+zepn7Q7N6mnmx2b1M/bHZvU//T7N6mnmp2b1M/anZvU083u7epZ5rd29SPm93b1E+a3cceP/UYe/yvx9jjZx5jj597jD1+4TH2+KXH2ONXHmOPX3uMPX7jMfb4rcfY43ceY49nPcYev/cYe/xfczbj7os8fPcfPHz3cx6++3kP3/1HD9/9Jw/f/WcP3/0XD9/9Vw/f/TcP3/13D9/9Dw/f/U8P3/0vD9+tPMZDOY/xUJ3HeKh+iLvvzg9x9939hrj77oYh7r67fyVe5rsbK/J2++5CZd4u3z3AgZd890AX3sh3Nznx7vfdg4Y4+ljNO9iVV/vuojPvv3LNjrzGdw8Zko3vvtjDd7cMcffdQz2eZYd5PMsO93iWHeHxLDvS41n2II9n2VEez7KjPZ5lx3g8y471eJY92ONZdpzHs+x4D99d8vDdEzx890QP3z3Jw3dP9vDdh3j47kM9fPcUD9891cN3H+bhu6d5+O7pHr57hofvnunhuw/38N1HePjuIzPy3S/z8N1Hefjuoz189zEevvtYD999nIfvPt7Dd5/g4btnefjuEz1890kevvtkD999iofvPtXDd5/m4btP9/Ddsz18d6uH7z7Dw3fP8fDdcz189zwP3z3fw3cv8PDdCz189yIP332mh+8+y8N3L/bw3Us8fPdSD999dka++xIP332Oh+8+18N3n+fhu8/38N0XePjuCz1890UevvtiD9/9Mg/ffYmH777Uw3df5uG7L/fw3Vd4+O6Xe/juZR6++0oP393m4buv8vDdyz189woP393u4buv9vDdKz189zUevnuVh+++1sN3X+fhu1d7+O41Hr57bUa++1IP373Ow3ev9/Dd13v47g0evnujh+/u8PDdmzx89w0evvtGD9+92cN33+Thu2/28N1bPHz3Vg/ffYuH797m4btv9fDdnR6++zYP373dw3fv8PDdOz189y4P3327h+/e7eG793j47r0evvsOD999p4fvvsvDd9+dke++zMN33+Phu/d5+O57PXz3fR6++xUevvt+D9/9gIfvfqWH736Vh+9+tYfvfo2H736th+9+nYfvfr2H736Dh+9+o4fvfpOH737Qw3e/2cN3v8XDd7/Vw3e/zcN3v93Dd7/Dw3e/08N3P+Thu9/l4bvf7eG73+Phu9/r4bsfzsh3X+7hux/x8N3v8/Dd7/fw3R/w8N0f9PDd/+bhuz/k4bsf9fDdH/bw3f/p4bu/6OG7v+Thu7/s4bv/y8N3P+7hu7/i4bu/6uG7/9vDd3/Nw3d/3cN3f8PDdz/h4bu/6eG7v+Xhu/+fh+/+tofv/o6H7/6uh+/+nofv/r6H7/5BRr77Cg/f/aSH7/6hh+/+Hw/f/ZSH7/6Rh+9+2sN3P+Phu3/s4bt/4uG7f+rhu//Xw3f/zMN3/9zDd//Cw3f/0sN3/8rDd//aw3f/xsN3/9bDd//Ow3c/6+G7f+/hu//Pw3f/wcN3P+fhu5/38N1/9PDdf/Lw3X/28N1/8fDdf83Id7/cw3f/zcN3/93Dd//Dw3f/08N3/8vDd6sWd9+da3H33XUt7r67vsXdd+db3H13vxZ3393Q4u67+7e4++7GFnffXWhx990DWtx998AWd9/d1OLuuwe1uPvuwS3uvrtYiZf57uaKvN2+e0hl3i7f3eLAS757qAtv5LuHOfHu993DWxx9rOYd4cqrffdIZ95/5Q5y5DW+e1TC9/RL8Fsh5JZ5+O7RLe6+e0yLu+8e2+Luuw9ucffd41rcffd4D99d8vDdEzx890QP3z3Jw3dP9vDdh3j47kM9fPcUD9891cN3H+bhu6d5+O7pHr57hofvnunhuw/38N1HePjuIz1891EevvtoD999jIfvPtbDdx/n4buP9/DdJ3j47lkZ+e4rPXz3iR6++yQP332yh+8+xcN3n+rhu0/z8N2ne/ju2R6+u9XDd5/h4bvnePjuuR6+e56H757v4bsXePjuhR6+e5GH7z7Tw3ef5eG7F3v47iUevnuph+8+28N3n+Phu8/18N3nefju8z189wUevvtCD999kYfvvjgj393m4btf5uG7L/Hw3Zd6+O7LPHz35R6++woP3/1yD9+9zMN3X+nhu9s8fPdVHr57uYfvXuHhu9s9fPfVHr57pYfvvsbDd6/y8N3Xevju6zx892oP373Gw3ev9fDd6zx893oP3329h+/e4OG7N3r47g4P373Jw3ffkJHvvsrDd9/o4bs3e/jumzx8980evnuLh+/e6uG7b/Hw3ds8fPetHr6708N33+bhu7d7+O4dHr57p4fv3uXhu2/38N27PXz3Hg/fvdfDd9/h4bvv9PDdd3n47rs9fPc9Hr57n4fvvtfDd9/n4btf4eG77/fw3Q94+O5XZuS7l3v47ld5+O5Xe/ju13j47td6+O7Xefju13v47jd4+O43evjuN3n47gc9fPebPXz3Wzx891s9fPfbPHz32z189zs8fPc7PXz3Qx6++10evvvdHr77PR6++70evvthD9/9iIfvfp+H736/h+/+gIfv/qCH7/43D9/9IQ/f/WhC352LfkuO7CvqnPX/HU+IZ5dXyk9dzl2n9ozOeL/a4zz1X+ezqY+VGZ2jf01GclZlJOfajORcl5Gc1RnJWZORnLUZyVmXkZz1Gcm5PiM5GzKSszEjOR0ZydmUkZwbMpJzY0ZyNmck56aM5NyckZwtGcnZmpGcWzKSsy0jObdmJKczIzm3ZSRne0ZydmQkZ2dGcnZlJOf2jOTszkjOnozk7M1Izh0ZybkzIzl3ZSTn7ozk3JORnH0Zybk3Izn3ZSTnFRnJuT8jOQ9kJOeVGcl5VUZyXp2RnNdkJOe1Gcl5XUZyXp+RnDdkJOeNGcl5U0ZyHsxIzpszkvOWjOS8NSM5b8tIztszkvOOjOS8MyM5D2Uk510ZyXl3RnLek5Gc92Yk5+GM5DySkZz3ZSTn/RnJ+UBGcj6YkZx/y0jOhzKS82hGcj6ckZyPZCTnoxnJ+VhGcj6ekZxPZCTn3zOS88mM5HwqIzmfzkjOf2Qk5zMZyflsRnIey0jO5zKS8/mM5HwhIzn/mZGcL2Yk50sZyflyRnL+KyM5j2ck5ysZyflqRnL+OyM5X8tIztczkvONjOQ8kZGcb2Yk51sZyfl/Gcn5dkZyvpORnO9mJOd7Gcn5fkZyfpCRnCczkvPDjOT8T0ZynspIzo8ykvN0RnKeyUjOjzOS85OM5Pw0Izn/m5Gcn2Uk5+cZyflFRnJ+mZGcX2Uk59cZyflNRnJ+m5Gc32Uk59mM5Pw+Izn/l5GcP2Qk57mM5DyfkZw/ZiTnTxnJ+XNGcv6SkZy/ZiTnbxnJ+XtGcv6RkZx/ZiTnXxnJUfXZyMllJKcuIzn1GcnJZySnX0ZyGjKS0z8jOY0ZySlkJGdARnIGZiSnKSM5gzKSMzgjOcWM5DRnJGdIRnJaMpIzNCM5wzKSMzwjOSMykjMyIzkHZSRnVEZyRmckZ0xGcsZmJOfgjOSMy0jO+IzklDKSMyEjORMzkjMpIzmTM5JzSEZyDs1IzpSM5EzNSM5hGcmZlpGc6RnJmZGRnJkZyTk8IzlHZCTnyIzkHJWRnKMzknNMRnKOzUjOcRnJOT4jOSdkJGdWRnJOzEjOSRnJOTkjOadkJOfUjOSclpGc0zOSMzsjOa0ZyTkjIzlzMpIzNyM58zKSMz8jOQsykrMwIzmLMpJzZkZyzspIzuKM5CzJSM7SjOScnZGcczKSc25Gcs7LSM75Gcm5ICM5F2Yk56KM5FyckZyXZSTnkozkXJqRnMsyknN5RnKuyEjOyzOSsywjOVdmJKctIzlXZSRneUZyVmQkpz0jOVdnJGdlRnKuyUjOqozkXJuRnOsykrM6IzlrMpKzNiM56zKSsz4jOddnJGdDRnI2ZiSnIyM5mzKSc0NGcm7MSM7mjOTclJGcmzOSsyUjOVszknNLRnK2ZSTn1ozkdGYk57aM5GzPSM6OjOTszEjOrozk3J6RnN0ZydmTkZy9Gcm5IyM5d2Yk566M5NydkZx7MpKzLyM592Yk576M5LwiIzn3ZyTngYzkvDIjOa/KSM6rM5LzmozkvDYjOa/LSM7rM5LzhozkvDEjOW/KSM6DGcl5c0Zy3pKRnLcyOUeuWLrh6aPefNjHzpn3kdtue9kVU4/5+cKbPr7+vjlPP3//synlvC2j/Lw9IznvyEjOOxPKqQM5lep2snLX6aFAOlWS8y4P2/x4SzbllFfu+r87o7rrp9x1ek9GOjUod53em5FO/ZW7Tg9npFOjctfpkYx0Kih3nd6XkU4DlLtO789Ip4HKXacPZKRTk3LX6YMZ6TRIuev0bxnpNFi56/ShjHQqKnedHs1Ip2blrtOHM9JpiHLX6SMZ6dSi3HX6aEY6DVXuOn0sI52GKXedPp6RTsOVu06fyEinEcpdp3/PSKeRyl2nT2ak00HKXadPZaTTKOWu06cz0mm0ctfpPzLSaYxy1+kzGek0Vrnr9NmMdDpYuev0WEY6jVPuOn0uI53GK3edPp+RTiXlrtMXMtJpgnLX6T8z0mmictfpixnpNEm56/QlD53qIzJ71U1o13S1ppWartG0StO1mq7TtFrTGk1rNa3TtF7T9Zo2aNqoqUPTJk03aLpR02ZNN2m6WdMWTVs13aJpm6ZbNXVquk3Tdk07NO3UtEvT7Zp2a9qjaa+mOzTdqekuTXdrukfTPk33arpP0ys03a/pAU2v1PQqTa/W9BpNr9X0Ok2v1/QGTW/U9CZND2p6s6a3aHqrprdperumd2h6p6aHNL1L07s1vUfTezU9rOkRTe/T9H5NH9D0QU3/pulDmh7V9GFNH9H0UU0f0/RxTZ/Q9O+aPqnpU5o+rek/NH1G02c1Pabpc5o+r+kLmv5T0xc1fUnTlzX9l6bHNX1F01c1/bemr2n6uqZvaHpC0zc1fUvT/9P0bU3f0fRdTd/T9H1NP9D0pKYfavofTU9p+pGmpzU9o+nHmn6i6aea/lfTzzT9XNMvNP1S0680/VrTbzT9VtPvNBm7/L2m/9P0B03PaXpe0x81/UnTnzX9RdNfNf1N0981/UPTPzX9S5OZgM5pqtNUrymvqZ+mBk39NTVqKmgaoGmgpiZNgzQN1lTU1KxpiKYWTUM1DdM0XNMITSM1HaRplKbRmsZoGqvpYE3jNI3XVNI0QdNETZM0TdZ0iKZDNU3RNFXTYZqmaZquaYammZoO13SEpiM1HaXpaE3HaDpW03Gajtd0gqZZmk7UdJKmkzWdoulUTadpOl3TbE2tms7QNEfTXE3zNM3XtEDTQk2LNJ2p6SxNizUt0bRU09maztF0rqbzNJ2v6QJNF2q6SNPFml6m6RJNl2q6TNPlmq7Q9HJNyzRdqalN01Walmtaoald09WaVmq6RtMqTddquk7Tak1rNK3VtE7Tek3Xa9qgaaOmDk2bNN2g6UZNmzXdpOlmTVs0bdV0i6Ztmm7V1KnpNk3bNe3QtFPTLk23a9qtaY+mvZru0HSnprs03a3pHk37NN2r6T5Nr9B0v6YHNL1S06s0vVrTazS9VtPrNL1e0xs0vVHTmzQ9qOnNmt6i6a2a3qbp7Zreoemdmh7S9C5N79b0Hk3v1fSwpkc0vU/T+zV9QNMHNf2bpg9pelTThzV9RNNHNX1M08c1fULTv2v6pKZPafq0pv/Q9BlNn9X0mKbPafq8pi9o+k9NX9T0JU1f1vRfmh7X9BVNX9X035q+punrmr6h6QlN39T0LU3/T9O3NX1H03c1fU/T9zX9QNOTmn6o6X80PaXpR5qe1vSMph9r+ommn2r6X00/0/RzTb/Q9EtNv9L0a02/0fRbTb/T9Kym32v6P01/0PScpuc1/VHTnzT9WdNfNP1V0980/V3TPzT9U9O/NJlOMKepTlO9prymfpoaNPXX1KipoGmApoGamjQN0jRYU1FTs6Yhmlo0DdU0TNNwTSM0jdR0kKZRmkZrGqNprKaDNY3TNN6cUa9pgqaJmiZpmqzpEE2HapqiaaqmwzRN0zRd0wxNMzUdrukITUdqOkrT0ZqO0XSspuM0Ha/pBE2zNJ2o6SRNJ2s6RdOpmk7TdLqm2ZpaNZ2haY6muZrmaZqvaYGmhZoWaTpT01maFmtaommpprM1naPpXE3naTpf0wWaLtR0kaaLNb1M0yWaLtV0mabLNV2h6eWalmm6UlObpqs0Lde0QlO7pqs1rdR0jaZVmq7VdJ2m1ZrWaFqraZ2m9Zqu17RB00ZNHZo2abpB042aNmu6SdPNmrZo2qrpFk3bNN2qqVPTbZq2a9qhaaemXZpu17Rb0x5NezXdoelOTXdpulvTPZr2abpX032aXqHpfk0PaHqlpldperWm12h6rabXaXq9pjdoeqOmN2l6UNObNb1F01s1vU3T2zW9Q9M7NT2k6V2a3q3pPZreq+lhTY9oep+m92v6gKYPavo3TR/S9KimD2sy36k335A333c3314330U33yw33xM33/o23+E238g2368235Y2330232Q230s23zI23xk23wA23+c1384137U135w134M132o131E13zg13x813wY13+0039Q037s036I034k033A031c03z403yU03ww03/Mz39oz38Ez36gz348z33Yz310z30Qz3ysz3xIz3/ky3+Ay38cy364y35Uy33wy32My30oy3zEy3xgy3/8x3+Yx380x37Qx35sx34Ix32kx31Ax3zcx3x4x3wUx3+ww39Mw37ow36Ew34gwA0/zbQXz3QPzTQLzvQBzlr85Z9+cgW/Opzdnx5tz3c2Z6+Y8dHNWuTlH3Jzxbc7fNmdjm3OrzZnS5rxncxazOSfZnGFszhc2Z/+ac3nNmbnmPFtz1qw5B/aFM1o1mbNNzbmj5kxQc16nOUvTnHNpzqA050OasxvNuYrmzENzHqE5K9Cc42fO2DPn35mz6cy5ceZMN3PemjkLzZxTZs4QM+d7mbO3zLlY5swqc56UOevJnMNkzkgy5xeZs4XMuT/mTB5zXo45y8acM2POgDHns5izU8y5JubMEXMeiDmrw5yjYc64MOdPmLMhzLkN5kwFc96BOYvAnBNg3uE379ebd9/Ne+nmnXHzPrd519q8B23eUTbvD5t3e817t+adWPMMYN4lNe95mncwzfuR5t1F816heefPvI9n3pUz77GZd8zM+1/m3Szz3pR5p8m8b2TeBTLv6Zh3aMz7LebdE/NeiHlnw7xPYd51MO8hmHcEzP59s7fe7Hs3e9LNfnGzl9vsszZ7oM3+ZLN32OzrNXtuzX5Ys1fV7CM1ezzN/kuzN9LsWzR7Cs1+P7MXz+yTM3vYzP4ys/fL7Msye6bMfiaz18jsAzJ7dMz+GbO3xew7MXtCzH4Ns5fC7HMw+wrMmr9ZNzfr1GZd2KzDmnVPs85o1vXMOppZtzLrRGZdxqyDmHUHM89v5tXNPLaZNzbztGZe1MxDmnk/M89m5rXMPJKZtzHzJGZewswDmOdu85xrnivNc5xpJuaZjELUbb7wzGbW/816u1nfNuvJZv3WrJea9UmzHmjW38x6l1lfMus5Zv3ErFeY9QEzH2/mv818s5nfNfOpZv7SzBea+TkzH2bmn8x8j5lfofmMCWr/8/EktX+fxiGaDtU0RdNUTYdpmqZpuqYZmmZqOlzTEZqO1HSUpqM1HaPpWE3HaTpe0wmaZmk6UdNJmk7WdIqmUzWdpul0TbM1tWo6Q9McTXM1zdM0X9MCTQs1LdJ0pqazNC3WtETTUk1nazpH07maztN0vqYLNF2o6SJNF2t6maZLNF2q6TJNl2u6QtPLNS3TdKWmNk1XaVquaYUqDwvY9UPR770r//Px537V/+uc792WuP+Kfl/e+OCnznhi4CM87nFL3NctcU9Y4n4b/f7uSyunzzjpwjt43N+i36cf/erajRsHfYnHmee2uDyMssSdHMWNb5j37fOmf+4HPeTVxcf9ez4+bktDfNzJjfFxTxb2/0rl8kNL3DOWuJ9Y4n5tifutJe5Plri/WuL+YYn7lyWu/4D4uIIlbrAlrtkSN8wSN8ISN84SV7LETbTETbbEzbDEHW6JO8YSd5wl7qQo7uBvnvfY+ta/X3OMig8l5RQuSJH2mhRp21OkLTnfLA/LU6RdnSJtW4q0q1KkXZMibZo6WpEi7bIUaTemSHt9irQbUqTtSJG25HyzPGxJkTZN209jz2tTpE1TzrekSFtyvlke0pRVmrZQcr5ZHtLU0boUafuqHaWR+2LsQ2s+VmViz1enSFtyvlkeNqdIW3K+WR7S9EdpdE7j2+v4n5xf2tx1A5PtF/CVs8ZTzsm154xYtpJyCrXnDJVJHdWeM9zT1p4z3NPWnjNUJm2h5HyzPNSeM1Qm7aj2nKGq3jZqzxnuaWvPGY6ht58zTqk9Z8SylZRTqD1nqEzqqPac4Z629pzhnrb2nKEyaQsl55vlofacoTJpR7XnDFX1tlF7znBPW3vOcAy9/ZwxO3rO+O2oLXd991/P7OZxrVHcl29uaDum7U9rZ1twSsopHGjPIAfa2KnkfLM81MaoKhM/VnK+WR7SPOul6R/TtN/a2FhVvW2kqd808x5pyjlN/aaxyTT1m2ZcnWZeK43OfdV399WzXl+Vc8n5Znl4MY7nS843y0NtrkZVvU2maUcl55vloa/mTDalSJumrNL0KWl8+0vyeXyx5R2npZa4iy1xl1jiLrPEXWGJa7fErbTErbbErbXErbfEbbDEbbHEbbPE3WaJ22GJu9MSd7cl7hWWuAcscV+O4qR3Nvc2xcctGRwfN6g5Pu6dLft/n1YX5K78wcGXiROXUSgpp3B+irRp/Eea/rCvnnXS+NqS883ykGZ+Os3Yoa/ym2bMkqYvXZkibV+NK2tjYZWJXZWcb5aHNOWcxl/1VX5vTJG2r9YZ0thkyflmeeirubc0fiONXaVJ21drBWn6hZLzzfLQV8/Q61OkTTNmSFO/N0g3S8opHGhzq2n2V6bpf9O0o8NTpC053ywPffV81Fd9d1/1CyXnm+XhqhRpb0qRtuR8szyk2R+dxl+laftp0h5offeVKdK+GJ8X+moveW0OSmVSRy/GOag0+T3Q5qCmpkibZmzWV2kPS5H2yhRp0+j8Qnh3tAYgnVn5SExcdLurkts2bmzf0LFs+bo169s6Vl21un3Zug1ty/XPDe0bNq5at3bZjRva1q9v3zAi4o+Opuxa9DPrcPXueucaWTr/9J1zGxHQK716IX1OJZW/P/8mTcL8qwZShKXnuhCuOR93ILseBPIT6j83rf4tFp2pbuYw/pJyCvVm+czkM1ryeiHvk6PrTR2rVq/quKn1BVOd02WpZ79gqBftt1MEzMH/OTH3BzC984zHvUw2zyXM+ui3H7vmIQ+/xDM8+i0w+fTr8s3k73/h+W8/eubRa4ZAehOobkw+x0XXK9tNg1/bocuvY9mqtRs72tYub9cXHe0b1ratPj7i6uOWfmHKln5hSkvPNbI0CdKLLR11MaFJ9WxRPI1pEWPZ9cEsjQnzGF4O4uYLciluQYweJixkcXmIW8Ti+kHcmSyuAeLOYnH9IW4xi2uEuCUsrgBxS1ncAIg7m8UNhLhzWFwTxJ3L4gZB3HksbjDEnc/iihB3AYsj70a2xVush23No/QtydI3twjyCYs88ZHRf1N+o6PryBMvaNdueL//WBS5j2YGzy2Oa8f/5+F/P/jfAP/7w/9G+F+A/wPg/0D43wT/B8H/wfC/CP8xv1SS/L5vyPViXA7u5WLSNqn4/r1JVfZi3FvmIY73r/0grh+La4C4BhbXH+L6s7hGiOM9UAHieF87AOIGsLiBEDeQxTVBXBOLGwRxg1jcYIgbzOKKEFdkcc0Q18ziyP4CjGcuTDueOS767e3xDJXbinbz+LJuY/uya/QghkY5fTx+WZBy/LLgpTJ+GcyusW/0Hb+kzFNXv5msZai6FhXv5ajfPCj6Xy/wclvqx3ikclXCvZyK9874ZKhYvoYepb4z/qnjbpo+4vh1Z9+w86kLHtk27G2H/ax40G83nXLDX55ch3mps+ju20Pw8knpmRak9Uw0fu5tz0T5XN2x3yfNiP6/VHxSwvZXl7L9iT7JNuKQfBLaqAnkhyr5K+6TCDuln56fskxzLSreh5BPmsgTqO5y6qfi23IeeA9maYZG16R7v2S6N+AIjwdphIc+qFHQOydgST6VdDb4Uxku8qE+3HZxNCrZopFTiq6l2Tul3OtakpMT5Eg+mttEX/vhKdFvb/thyfZJhwZVuR+LKz+asVuxauPydXqmfNna9huXrWnfuLFtZfvGgdG8ZR87+/tTOvv7q2UA+gqW3nUASmn6q+5Gba4vj65TTqOnLRuvaXTiKymnUE/p5yZL32V385Klr6P089nNknIKXbrjBGXJLf0gSr9Qkv3cxu+88/G7P/T5d3U89I5XDfn+oNcOnDHg1l27fjfmt2Nf9+yut1FaPsnpke8GSn+mJPu0j9Zfes0H/7pu4IId77/x+99bumnQ2LbHxu95x6VfuG/8L5bdTmnPktL+/K7X31p8/yveXJr+1ecbFuz79bI/LOo36/tf3Trqc9v//otnu9r5YintE5f+/YePFu+/efPdH98ya+rQtofv/87vf/nFx99X/MPTj1z/neMoLZ9oTeKjliZL30zpz06Wfgil55O6Lh0IBUp/bjL5XXV+HrtZsqfJoWw+eeyhe1fZX5AsfVc7vZDdLNHFbW9/1w9b7/7qkT/++4A7lrTt3HzMnd+8+Dc3H/TQIT+99pGxD3eV+0VS2mc65tzXMXLN8b9p/NrdR71lzMFPPffQoz/7403ts379s59/ZMIfKO3FUtoKgdK+TEh70NFTTlz/mq8Pe3LqxB/M/szDhz8w6rnJpzz5sYVvefavX/4zS3tJ9OtZ112+6dJk6bvK+7Jk6fOU/vJk6cdQ+ivYzZJyCv0o7cvltLkdEze+unB3bslj22c+2jTgsV+0PnjGnK8+vvOO8cWHH6S0y4S0004pPPuOO7btUj966Ff3/HHaJ2fPHDKudcjh33r9t8es3XDZqGcp7ZUkSHnleSylb2PpQXdroPRXsfQefUJX+uUsve92AxNWsPRK+fsIvs+spJxCV9qr/dN22TrtYfLMd5e9XZMsfX9KvypZ+kZKf22y9AMp/XXJ0jd1TSAlSz+e0q9h6T3stkTp1yaT35V+XTL5Myn9+mTpj6T01ydLfxSl38DSe+R/NqXfmEx+K6XvSJZ+HqXflCz9fEp/Q7L0Syn9jcnSL6P0m5Olb6P0NyVLfxWlvzlZ+uWUfkuy9Cso/dZk6dsp/S3J0l9N6bclS7+S0t+aLP01lL4zWfpVlP62ZOmvo/Tbk6VfTel3JEu/htLvTJZ+LaXflSz9Okp/e7L06yn97mTpN1D6PcnSb6T0e5Ol76D0dyRLv4nS35ks/Q2U/q5k6TdT+ruTpb+J0t+TLP0WSr8vWfpbKP29LL17/5vrGjffx+6WlEvIdU0cfyXa8yzN9Xnk5RyctCcMjp1wQezgHOAp1XO+VQF+AXTxlJfLAR7Jw/zhRHo/QZeiEIdl3E+Q00+QUxTitgbE2h0Q65aAWLsCYoXM446AWJ0BsXYGxNoWEGtNQKyQZR+yDe2pUqzNAbFC2kTIsg9pX1sCYnUGxAppEzcHxNoVEOvOgFjV2j/SmBU3XBC+9Ety8B7JKQBW0nGPlK+8IM/GX2/hb3DEN9uQaXNStCl/bvtVm1YuXlf21mge/i+KUXEs8C23qIa4OSC8Pxbu1Qu8PJjs0RuHUfbmt3csv+aCtpUr21foTJa934pIC2Pu44CU89BgvAE0LSmnUOdilBy/ALokNUrJaKTGZkqV3vKISnXxurYVc9rWb9y0uj3ujQ2UkgNUfk+q0xzTTFn4FsL/JUI6JWCbeKq5RrhfUk6hgG8F8CC9FYBbT/hbAbw2MUj70Ehn88j5xIhuXORDfXh94BsMfM/cQCYb67VBkEP6S3uA+wNWg5CO0lSSVx+Tjl/bHp1dWhvlw4SiICPuLRSOkdIrDKt2r0D5659M3tAcpOfyOCa+1dMoxBEWtcOGGCy+f5HzfzH6LQKfCReDjEZBX36PyseU2WOgO76dplSYcuR4pBe/x/ELKpVd5mz1xvOHdpLQx7a4lDvXR3pTC/cCk99riMGitHng/1b0W1Tlfh/tpCDoy+9xO/ka6I5vLSqVuhxbXe2E8AsqlV3mbPXG84d2Ukgmb7ZLuXN9pP6Zly3vAxtisChtHvifjn6LwGcC2skAQV9+j9vJk9F1Y4y+JeUUbpTGLWhnOG4pKacw1tXOCL+gUtV7zlaOUnuTxl6UtijE4aPWQEHOQEFOUYjbHRBrV0CsmwNibQ2ItadKsToDYu0MiLUtINaagFjbA2KFtPtqLC9bP+SLZUJnQKy9AbFuDYgV0lZD5nFzQKxqbdv3BMRaHxBrX/SL4zzCN6FRlbc932cTjkd68nscvwC6JB3rSOUijRkpf03J5A3JQXouj2PiaReDhDjCovdkG2KwKG0e+KdFBVoEPhNwTD1I0Jff42PqQyLcwYK+OL/ga488fdyJIBRvQoj64nikJ7/H8Qsqlf3nbPYhlQvlb1Ayec0u9cv1kU5K4WVriJZDGmKwKG0e+E8Ce+Qn/6A9Dhb05fe4PR6X66k7njhkQspynOdqJ4RfUKnsMmerN54/tJPByeTNdSl3ro90ag4vW0N0ak5DDBalzQP/ArATfiIU2klR0Jff43ZyBtgJnkRlQrpyzP3e1U4Iv6BS2WXOVm+S/6b8FRPJyz3rUu5cH+kEJV62hujd8oYYLEqbB/4LwE74iWBXgYxmQV9+j9vJ2WAneEKZCenKscsUK9oJ4RdUqvads9Wb5Fcpf83J5LW6lDvXh8p6iBBHWLSi2hCDRWnzwN8GdjKE6YT+ZIigL7/H7eTyCHewoC/On7v6qaKQnvgkmzNUUk7hAqlOPdJfj3VEGFy3hOckHuXaHgi/oMrtJUl7aAF5cfVNeR8q6FIU4rCOhgpyhgpyikLcrQGxtgbEWhMQ6+aAWNsDYm0OiNUZEGtHQKyQNrElINaNAbH2BMKS/GcavXYHxNobECtk274nIFZIX9gZEGtnQKyQ9bgvIFZIm+gMiBWqbZsQMo8hbWJXQKxq9RMh9ToQxky1Pq3vyj5ke7wlIFbIPN5VpXqFHE+EzCP1tfSsyJ8tc9Fvoypvex7PraflAI/05Pc4fgF08ZSXs5ULzx8+Jw8TdCkKcficPEyQM0yQUxTibg2ItTUg1pqAWCHz2BkQa2dArL0BsUKW/T0BsWr16Ie1LyBWSJvYEhBrV0CskP5rT0CskGUf0lZDln21+q+QthrSvnYExApZjyHtK2QbCmlfuwNibQ6IFTKP1TqWC5nHkOOJaq3Hah3L3RUQq1rHOZ0BsWrjiZdGGwrpJ0LqFcq+zHVzICwT7giIFbLsQ44BqK/FfV+Eb0LKObAJOcAjPfk9jl9Q5XUZag5M2kNG+RuWTF7JpR64PlTWw4U4wqIzPhpisChtHvgvjjJVBD4TrgIZwwV9+T2+d+q86M9gQd+0axE8PZYRT4f2mLC+6l3tkfALKpX952z2IZWLZB+UtijEYfm71qsNa7AK71ubhfw0Cemwnrl+HuXu/K4A/8p4CrvK2cpfKhfK34hk8prRV3B5HJP0obIeKcQRFn2jsSEGi9LmgX8j+J2RTCf0OyMFffk97nfWgt+R2kRSu5f86UtNTpOQDttXQvvr59q+CL+gUrXnnM3epXKR7J3SFoU4LH9XO30xYpH9jbDIsfkVSQ5PP6ImJ5WcJiEdtlter+7tKPcj13ZL+AWVyk/kbHYrlQvl76BE8nJPYV/G5XFM0ofKepQQR1ijo/8NMViUNg/8b4V+cRTTCfvFUYK+/B7vF99Y11N3XrZoJ8nKURVd7YTwCyqNXXbbiVRvkn+j/I1KJm+wS7lzfaisRwtxhDUm+t8Qg0Vp88D/frCT0UwnfOdltKAvv8ft5D3Rn8YYfUvKKTwtlbVH+jc3qvKy80h/GKUfkyz9xyj92GTpP0LpD06W/jZKPy5Z+pdR+vHJ0l/RCPye6adS+gnJ0h9D6ScmS/9zSj8pWfqFlH5ysvQfp/SHJEt/H6U/NFn6OZR+SrL0z1P6qcnSd33W9bBk6Z+l9NNZep85Nko/M1n6etJ3Br8p6ET45OunMf5czC9hYRzJKgBW0n5R0p3rh+PKGUwez2Mc1gxPrEYhLkmdTFfx+eL4TRZdUE8T8KyVpHk2YUtArBsCYu0OhGWuDwqEZcL1AfUaFRBrdECsMQGx6gJhmdARUK+xAbEOrlKscQGxxgfEKgXEmhAQa2JArEmBsEy4O6BekwNhmXB7QL0OCYh1aECsUH2HuZ4SEGtqQKzDAmGZcFWVYs2NflPOFyxKOV9wUsr5giUp5wvOTzlfsCDlfMHclM/7i5sE/lz0Kz3Le4zbl+YATyn5+YfwC6CLp7yu558JIA/zh+s+EwVdikIc2vhEQc5EQU5RiNsZEOvOgFibA2JtD4jVGRBrS0CsNQGxdgTE2hoQa0+VYoW01W0BsUKVvdQvVoutdgbE2hsQq1rb4x0BsUK2oWot+1sDYoX0EyH72pA+OmTZhyyvarWv7QGxQtZjyLI/EPzEPYGwzPXoQFgmdATUa0wVYpmwMaBeYwNhmRCq7E24sQr1MtfjAmLVBcIyIZRNmHBDICxzfXAgLBNC1mNIvULZajX7wmIgLBNC+q+Q9RhSr2osLxNC2ur4QFgmhOw7QvkvE/YFxAo5/rolIFZnQKyQY/LtAbFCzj3S+J7mscexuFz0m3IOf3AO8EhPfo/jF0AXT3nWOXyePyoXab+gh7xBLvXA9aGyniTEERatCTfEYFHaPPB/JirYIvCZgHt7Jwn68ntUPmZv77/X99Sdly3aScJydP7WJeEXVCq7zNnqjeePykGqN0pbFOLq2LVPeUt1tzsg1q6AWDcHxNoaEGtPlWJ1BsTaGRBrW0CsNQGxbg+IFbINdQbEujMg1uaAWHsDYoVs2yHtK2QbCulXD4Sy3xEQK6SPJl9I71/y8Uwe5PiOvXl64kv5vsp5Kd9XuSjl+ypn07joEHYzF/1K75J4jNFuywGeUvKYkPALoIunvK4x4RSQh/nDMeFUQZeiEIf7f6YKcqYKcopC3M6AWHcGxNocEGt7QKzOgFhbAmKtCYh1e0Cs3QGxOgNiVaut7g2ItTUgVkj7CulzdgXEOhDKfkdArJB53FOlWCHb9raAWKHK3lyPCoRlQkhbrdYxQEisWr9d67dfLH1Hrd+u9du1fvulWfbVaqt3BMQKWV4hfU7Isr81IFbINhSy365WH12t44mQeQw59g1ZjyHL/kDwE/cEwsqp8j0KabAmBsQKNU9uricFwjJhY0C9ioGwTOgIiHVjQKwbAmGZ68kBsV7qZW+uRwfEGhMQa2wgLBNCltehAbFC2aoJIdtQtdp9tebxpe4LQ+plQq3vePH3HSZsCoRlrkPueQhVXuZ6fECsgwNiheprTQjZP4YqLxOqse8wYV9ArJDPfLcExOoMiBVyHmB7QKyQ+3P2RL+014vvDctFv42qvL0YOSXlFGbkAI/05Pc4fgF08ZSXs5ULzx+VC+X9MEGXohCH/vAwQc5hgpyiENcZEGtPQKybA2LtCoh1Z0CsrQGxdlepXlsCYq0JiHVPQKz1AbH2BcQKWV47A2KFbI97A2KFtPuQvjBkPd4SECukzwlpEzsCYoUs+81VqtftAbFC2kRnQKyQ/XbIetwbECuk/wppXyHbY7X66JBYIe1rW0As/MY0f77JRb+NkC6nvJ6dJucAj/Tk9zh+AXTxlJezlYv0DEt5ny7oUhTicA1Y+kbKdEFOUYjbHRBrV0CsmwNibQ2ItadKsToDYu0MiLUtINaagFi3B8TaHBArZHvcGxCrMyBWyPLaHhArpH2FbEMh/WpImwjpV6u1bYdsj50Bse4MiBWyPR4I9rUjIFbIMQCeg8DHy3gOgu+YnacnviYhXS76bQT9csprDH1fDvBIT36P4xdUeZ6TjNml8pfKxed7g+Y65PfzdgbEujMg1uaAWNsDYnUGxAr5rcc1AbFCfUfMhFDfjTShMyBWtdrq3oBYWwNihbSvkD5nV0CsA6HsdwTECpnHPVWKFbJtbwuIFarszXWo796aENJWq3UMEBKrWvvtkGUfcgwQ0kd3BsSqVlut9dt916fVxuR+WLUxed/ZV21c2Hf2VY3jQhNClle12uodAbFClldInxOy7G8NiBWyDYXsO6rVR1drnxYyjyHHviHrMWTZHwh+4p5AWDlVvkcpjV4bA+o1MSBWMSBWyPWhkOU1PhCWCTcGxLohEJa5nhwQK5RNmNARECtU2Yds26HbY6g2ZK4nBcIyIWR7PBDsa3RArDEBscYGwjIhZHkdGhArlC80IaSPrla7r9Y8vtT72pB6mVAbm7z4+w4TNgXCCjmeMCFUeZnrUGNyc31wQKxQfa0JIfvHkM8w1dh3mLAvIFbIOYVbAmJ1BsQKOc+0PSBWyP2FeA4K39uai34bVXl7MXJKyik05QCP9OT3OH4BdPGUl7OVi7RPmvI3M5m8gTlIz+VxTNKHyvpwIY6wjoj+N8RgUdo88D/dsP+3CHwm4LeCDxf05feofMy3gp9s6Kk7L1u0k4TleLCrnRB+QaWyy5yt3qT2I9UbpS0KcTgH4lreUt3tDoi1KyDWzQGxtgbE2lOlWJ0BsXYGxNoWEGtNQKzbA2KFbEOdAbHuDIi1OSDW3oBYIdt2SPsKqVfIegypV0g/EdImQtbjjoBYIf09vm/Hx0b4vp1t/CjJ4emJr0lIl4t+G1X5GMVjvLQrB3ikJ7/H8QuqPM9JxmdS+UvlQnk/QtClKMTh3M0RgpwjBDlFIW5nQKw7A2JtDoi1PSBWZ0CsLQGx1gTEuj0g1u6AWJ0BsarVVvcGxNoaECukfYXUK2Q9htQrpF8NaRMh63FHQKyQZb+nSrFC+oltAbFClb25HhUIy4SQtlqt44mQWLUxQG0M0Jt+tTYGqI0BamOA2higElbI8qpWW70jIFbI8qpWP3FrQKyQbaha+45qHftWq32FHEeHrMeQZX8g+Il7AmHlVPk+hjRYEwNihZq/N9eTAmGZsDGgXsVAWCZ0BMS6sQr1Cl2PIcvrhkBYoW0iVD2a69EBscYExBobCMuEkOV1aECsyYGwTKhWW621x77LYzXalwm1fqhm9xi3KRCWuQ65RySkfY0PiHVwQKxQ/bYJIfvaUOVlQjW2RxP2BcQK+Sx6S0CszoBYIecntgfECrmfCd/vqWNxueiX9gUW2X0jp6ScQj4HeKQnv8fxC6CLp7yufYFFkIf5o2vK+0GCLkWIMwHfkzlIkHOQICcrLKm+DJWUU7gQy4MwODbff+BRNwe52gLhF1R53SSxhVEgL65cKe+jBV2KQhyW8WhBzmhBTlGI2xkQ67Yq1WtXICxz3RgIK3Qe1wTE2hEQa09ArG0BsUKW196AWHcHxLo9INbWgFghy74zINaWgFgh83hPQKz1AbH2Rb/Uf/GxT6C+e1DSvjvhuNHad/P8UblQ/kYnk9fkUg9cHyrrMUIcYdHcckMMFqXNA//NUedWBD4TcMw4RtCX36PyMe9pb4pwBwv6jgNcqdxHCbhFIT3xNQrpSnTx3MbvvPPxuz/0+Xd1PPSOVw35/qDXDpwx4NZdu3435rdjX/fsrrenrM+LKf2YZOmHUvqxydK3UPrxydLPpfQTk6VvpfST2M2SU1I1hNJOTiQ796z0Llmdc3rVSOmPSJb+eEp/ZLL0J1D6o1h6j/w/RemPZndL0e/kb3+i/5/esy//b999dt2Nz0+7/78W3P3p957yiq/OPK3z/B+/6rdLKO0xiWSrwZT+WEF2hXAypT1OSnvaR+svveaDf103cMGO99/4/e8t3TRobNtj4/e849Iv3Df+F8t2U9rjpbRPXPr3Hz5avP/mzXd/fMusqUPbHr7/O7//5Rcff1/xD08/cv13jje+aR/4phOipJR/ujY0K/rfj8UtZzyUNg/81w7uTnd/JM9l7qMedCkppzDKtc+ke6HmPupBHuYPn3fzgi5FiDMBxz95QU5ekCNh7QuItSYg1u0BsbYGxNoZEGtLQKzOgFgh87gtIFa12tfmgFi7A2LtDYjVGRArZHltD4gV0r5CtqFdAbFC2kRIv4prIDwOxwH92H2PfrnOdRxA+AUl98sl5RS6xgH9QF5cuQzU1BJdb+pYtXpVx02L17WtmNO2fuOm1e04MsLRGC8Vjsrv5VTP3PO4eriHfGfC/yVCOiVgm3iquYFwv6ScwhSyiilCJMVNBWweF/cFbQz1gv6kc39NT4zoxkU+1IfXx1SIK7C4w5hsrNd+ghzSv07gLwBWPyEdpakk70BuiVI9UdqiEIdt0XXkn8RD0Kxb5CHmtl+1aeXidSsVhDz8XxSj4kHAtyRGtZyAmwPC+7h4Wa/sLsj2EOhiMkqVdzIcaznIqXUyL6VOhvAKLE4qCcKkKQ6ep0JMOmzUeK9O4O8HWP2EdOiMpfQcg6dD3RpVeV5LdHHb29/1w9a7v3rkj/8+4I4lbTs3H3PnNy/+zc0HPXTIT699ZOzDLUbWnxrjywUdFpVTvwr5ywP/EWzq52+RPGORI6P4yCLP2LT6uvPaOzasar+hXfu2jQpCJTO6EP5fJKSTQpMqr2p0DAkbqrNjIPyCkk2lpJxCl2OQRuU8f8kcAxoEjqpCO4aL4H+S0Sf22CXlFLxHnziKOAzk0jUGycGQzr6jT14fOPrkDRVHn7xe84IcdHicHx2e5DzR4cXJq3XR+0PtOZCF2nOgoH9vPwdiun6qvOVid0+8h0aKpGyxaghLhzrW+uz9odZns1DrswX9e7vPljwJeonefMTnsnHN2IQSXTzTMee+jpFrjv9N49fuPuotYw5+6rmHHv3ZH29qn/Xrn/38IxOeS+k1Lkrp7S406VojI6KHMd4OsB1TzxS3Dk9p88C/oNCdbl50beIOieIjj3JR2+pVK9o62uetvX5T+6b2FUvXdbRvbF27Yt4N7Ws7vB/NzoL/i4V0UhjA8IYz/HrIpAk4hxW1wa4NYMiDBUT8Z0URpiF/L7opGR3p0wTpKd4EMoqRoHtJOQXnrojwC6BL0q5oJMjD/CXrirg5Y6lwVH6vr7uihFs2vbuiAsTxrojXJgapKyKdfbsiXh/YFfHXQLAr4vU6UpBD+tcJ/AcB1kghHXZFcfLqhXQ4lMjBfT6XNVyQjXNZy5l3eHJEfDkMV/HlwPVBPXvxFaCLXb1JX70C5OdNuKVwKRcBKvFwXh6kaULkk2ovL6TDQCWWB523sk54DXT6PF8DQB/J2vk9HCTx9MQnyemfUk5/QQ5Z8kCWrg3imixxgxjmAIhrZumWQ9wQFncxxLUwzP4QN9SCOUzANHU3ZkA3nqFJjE+ydFyFmMD04Wn5/37Aa0J79JsH3n3Mrm4Du+KtGO3K9+VHnv4gFS+nf0o5/QU52FuZgLYzSsgrvmBoAtaztNmf4sYJ+aK48RbMkoBp6qdlQE8+rH8T0m0GVxe5enzCL4AuST3+ZJCH+cMXRw5JJu/CHKTn8jgm6YOjMixbQzTyaYjBorR54H9D1N6KwGcCvjgyRdCX3+Mvjry60FN3Xra5mF/CxXvYvnjeqX5IzgSWbjnT5y2Fnnnhfqpelfs1eiBGXzWWrQq+HXwVT491J7WTpPmfJORxsCovmwZ2HWffky1yGiz56a36bAA53M/y+vwA1OchLA59tLmml3LyyM/q80NQn1JblMoZ+yXfch4gyOntcsb+ZUpAORyLT+4YOgywsJypnqic+dMmPsFNY3G4lFIPaTg/x5DwCaOSDX6+IOctzgZJVh74fzmoO90XE9rgFIjjfQXvF7kevBw4Px5wR3o2xPDH5eu/2VPnUyN6YlJ6Xla8LtD/Ev83GOYzI2Q9eb4msHs4GSnZw2FCvqQynaYqy+blvCRGdoOy22Ie+L8rlCn2Czy91I4Ggy5TK+iO7ZunxxkXni6tH5F0rtQmn/ZskxOja7Tdb7I2+RNokzYb4Trjc4RvOfcX5PR2OeMzwrSAcjgW9gszAAvLmeqJypl/zHsGpOMfCMSPftdDGs7PMSR8137h+YKctzgbJFl54P8Ys8E/W56LbTY4DeJ4mWK/UMkfTgR+0rtB2fvbPPD/y9IvSO2V+1rsF4i/bkA3JvYL04V8TWD3sF+wfei9Upnih9cnCFi8nLFfkMqU538C5J/4Cyz/tn6B0kvzESsgjs9HHAJx/CV7HLPyF+inQByfj8C5Ef7iO/q7EovjNoLzEQMt+WliGDjfx+ft8MCGZhY3GuL4do8xEMfn7cZB3FAWNx7ihrG4Essrzdvh4ui46H7KdTtx64ptXjQX86uUW3/At1blQM7IgHI41pkg56CAcvBwTy5ntCAn5YETzuushF9Q5W03yTyZdICIdPCM38oIHoXCS4Wj8nu8pDHOtjJiQpp1VsIbx+KkksCZc56ncTHpeFko4V6dwD8GsOKOmKmPkSfVKE+HFpOD+3HrkYSRB/4TWG/1U+itJVm8PLDHJN3jdkygDsR/MtPheyNkzHxMvkbHYC4d0F0epw2QMZWAKeVrHOQLdcCjgIj/DGEkUA88qI90j8pfCWnxv2Qzw4F/fIX8YD0R/0JLPY0SdOBtckkFHZBnXIwOiwUdBO82Z936myLvpiDg5vAc/MeSx3XbUQJOXKDSMFZIFlkPuOipUA7HQZ1MzmmM0vVq3+r2jvaYvKPnzsXIrFNywPGoUuV9aMI+zbkPJfyCki2vpJxCDr0cycP84SbPMYIuRSGO1y/akU2OqVMak0Z1en7Hug1xVeraueYEtTC9qoCFVV1i9z2K3ntzUw7i+BQfDiP5Ixp3ahgw3zw/xrn83GPjEy9TfFzi5nkYxPGmMg3iuClNhzju8GdAHH90o+mUwaq8vvhjFo8zoV64h0Nsnr5kkdOSUk6LIEdaGkfbnMDu94YbIvyCStUWutzQBJAXVy64jMnTStMMuBGN7Pk3bIB0Izy6822xWK4J38I53rVcCb8AuiQt14EgD/OH5dok6FKEOBPwWxRNgpwmQY6EtSsg1h0BsXYGxNoSEGtNQKyQeQxZjyHzeHNArJB53BEQ6/aAWNsDYm0NiLU3IFZnQKyQNhGyPYZsQyFtImR5bQuItScgVsiyvyUgVsiy3x0QK2R5hfSFmwNihSyvavWFIcsrpM85EMZMIW0iZL8dquzNdWMgLBM6A2KFLPtbA2KFtPuQeQzpJ0KOAUKW1z0BsfZFvzTHxOchSiBHeuYfaJHD0w90wJLmD2x5LAn8AU/lIxWPA74lMarlBNwcEN4/Du7VC7wcm7+O3hTdnyTwpXxD5egc4CklTyv11RsqlHdp93BRiMNPR9veTOFyikLcroBYOwJi3R4Qa3tArK0BsfYGxOoMiBXSJnYGxFoTECukTYQsr20BsUKW1y0BsUKW1x0BsULa6paAWAdCPe4OiBWyvEL2Q5sDYoUsr2rth0KWV0h/H9K+QvqckO0xpE2EHDOFKntz3RgIy4TOgFghy/7WgFgh7T5kHkP6iWodf90TEGtf9Cu9mVoCOb5vR/P0kx2wJglYtjyWBP6A0ySk4lHAtyRGtZyAmwPC+0fBvUrTJLgr54poLiflDjvxBZJSdD0YZJprvtuMxynlNlPH0zdZ5AxKKWeQo5xiSjlFQU6TkC4X80ty8J5tZr8IckoB5ZRY3PLol8qNT4WhHUwCOXHNWrKDSTFY/VS3ztcxHtzWTu01L2Ca0MbiOf/GqA2ZXZzvjd44ojKdwNIvZ/psGmjXlafluuKhJK9jL4pujjClcqZ6l+xgEsSVBLkSJrYt37obJOhgw+L11Qz8VBcNMfyEh3W3ndUdvpBK6ePsZ1KMDtx++CsJcfZzewL72TPQrivaTzPIJv6tzH7uBPvhZWyzn2aIK7E4KiPJZ+JOXV+f2SLoJ8mxHfiFduR74FezICfr3eotEMdfSh4KcXy3+jCI4y86Yx80g8XhS7L8pXt8SfZwFtcMcUewON6WMNTDf162ps28j7UZ5FMgU3p5nuK4v8BDNPhLu/iy51DQFe+hzfD0Q2Ow+Otn3IcsZ/Gc/01R5k07fs/AnvnihwFSmaR8eeaYHOApJS+D4cszw5LJs748w/OHy2AlQRfJTx3Mrnkcl1MS5Ejjnc6AWHsCYt0cEGtXQKw7A2JtDYi1u0r12hIQa01ArHsCYq0PiLUvIFbI8toZECtke9wbECuk3Yf0hSHr8ZaAWCHrMaT/ClletwfE2hwQK2R5hWxDnQGxQpbX9oBYNb/qhxXSr4Yqe3PdGAjLhM6AWCHL/taAWCHtPmQeQ/qJbQGxqnW8en1ALBqv0twDf0bHuQfpeXi0RQ5PPzomnbnmcw629YGUb7/X5wCP9OH3OH5fvf0+WdClKMTxMuRxXI5tyZNjuRzoIc192GyjJPAHXPIkFY8GvktjVKsTcHNAeP9ouBe35EnY1Iz41BMuO/FitBWttOw0zCKnOaWcZkc5g1LKGeQopyWlnBZHOQellHOQIIeasvTdFDNtemyTLJMvqfDpWlySI/51bCr2hKaeeeTLEgMh//xFEDx7kX8/Bl0vX3r3cIXOB48QfkGV22QS1zsE5GH+uFtyP0MQWwBuSEB+zquEuHq4h4vwAyFdkjMEW1icVBJ4hiDPU0tMOl4WSrhXJ/APAawhQjrSvd6SnmPwdGgxObjPW9hwQXYe+BdFlSGdISjJ4uWBm29I97hz4VAH4l/CdMCz6YawNFK+sDW3wH9uW+0x8q9iXubcJlm+EuRj/rhXizufbwjoQPwXsjLA8waHCulVzD3sGYZC3FALbwHyIn0/j9sink04rELesf6J/3JL/Q8SdLB9+RN1QJ5CjA5XCjqkO5sQvRzWEtbEIAEnLlBpGIsl68XSwdaBcui/ZAFpzyZsipFZp+TQpGTdTGhUqfpK576Z8AtKtryScgo59J4kD/OHj0VDBF2KQlxcK60kJ+XZhHGdtuQsML2CtDnhngnGnPE7yLVHjXg5B8KjBmJJjxAmbIh+0bHfxhw7ftJgGNNDwrwEdJBmAaQdTcRfEvhHC3mksuSzFCUH2bwssSOc4KmrNLsygfGMBl1LLG6yp66XZqzrMEHXlLt2vHeW4S4wvrMMd4HxnWUjII7vLMNdYHxn2SSI4zvLShDHd5bhI/4RLG4IxB3J4vjZpRiwL+Dlbtrlu8d34yIfv47zKbzNLgEdhwp541MUjQybyykpp9BlB9JDMWHz4YaHjS3nOlGQhi50rwC6eMrrGrrUgzzMHw5d8oIuRYgzYSPjw7h64V6dBWtNQKzbA2JtDoi1OyDW3oBYnQGxQpbX9oBYIe1rZ0CsXQGxQtrE1kBYlD6UXnsCYoW0iZsDYoW0iR0BsUL61ZBtO5StmlCtfjWkTewMiBWyDYW0iZDltS0gVsjy2hIQq7NK9ar1231XXiHHqyF9dMgxwB0BsUL6r2q1ic6AWCHbY8g8hnyGCZnHuwNi1fzqS8N/hazHmwJihSyvzoBYIW21WseFtwTECtkeQ/a1IeuxWser66pUr5B+9daAWJ0BsarVR4fUK2TZV6ufCDkmPxCea0P223dWqV4hn2tD1mPI9hjyGSbkvG9IrJA2gW0oF/3nPG3segWL5/x0alDKteIVuBZLGBy7X0LsHOAp1VNPBfhNgjzSqxATV1L2sPeDn3v94t98+Rc5SE+64D3cM9Ig8Etr2lRW/Vl6j7Ki3Zg9yodkU1yexfWDOF4upIP5faDUU7+GhPq5lB/HLwr8FzM+n7oYonraArd32qvDTw7Ck6gms7gS6HCIoAPnnwD8tG+nIYaf8PLAvz1qr3yj9mDgMdeDYuRx/fg9296+KTFY0gllJpwdo/sepjvuhZsq6CdtIyX+wwR+vt+J9JHK5jAly+b54fV5HeSH+O8R8iO1P7KpRoZDcR5tZ5CR82CpWw6WG28/lcrIBCzTaQI/LysqkyLw8/KlOP561FSIK7G4yaDDOEEHblu4v4q3K35y3h6HExSrqV2/2bFdj4mRx/WztWue3rddXxuj+zs92/UYQb9qatcPO7Zrsqlau67cricJOri2a0ornbY6g8URLt/HPTG6zgP/v1tsdqYq15WXOZbv4QI/3++Kp1byfbKHQxxPNxXi+D7ZaaDDEaq8HLheuD+d+D/HyuHR0v5rydZJr5S23irZ+hGMAW39SBZXL/BjXRwl8PN9wlQmReDHeuH/ORYvU9zzTmXUIPBzvDzw/7fg+0k/7vuOAN2neep+kKC7dJomb1PPw/sw3G9MApnTLDIl/0x7yRti+AkvD/zfFcoLfSNvB7yc+gEm8f/A4g9ILs/XBHYPbVAq++lCvqQynQFxXHd+yilhI2bK9nmG1D55/rF92vJqApaN5Fu57VL9F1W5PzwM4njbmA5ypD7S1f65DT1dkHHj+pux0TXa128s9iW1G+mjDTZ75HaC/Q23r+kQx9NNhjhepjhWlPpdrhc+AxL/8479TSB7bpHsmdss2rPNPk3w7fupTIqqvD9AfyjZLC9T7G+ojBqU7GcILw/8L1SwkvsbPm6bAbpP8dQ9SXv7PPQ3hzA+7G+mWGRiWu4v4vobwsPngQFCeeVABm8HvJywvyH+QQzT5ZlpArvn+8xE+khliqdjc93JFqT2SXwp2+fQvn72wf6G+0N8LuJtYyrIkeYJXO2f29AHoL/B5yaOxe3CZo+83VA9oT2WLPZoa2cmYJlL9svtivSR7BGfebjuNnsM9Cx+kWSPPP9oj7a8mpB0fqOoym3VZo/YP4d63n5LZI8078/fxfYoV+/3VXMQx8vtTIiTxvc5QU49/Of5MfX+c5jrUQIWySywOPz6AD+b4DCI4/Mn0yCOz7lPhzj+Tv8MiOPHM8yEODzmwwSqy4Qn+DsfaUH4BdDFU17Xe6GV3r2ltuZ33FTc6QQ5QOX3uIViXD3cQ74L4X+S46b4EUBSSeBxUzxPw2PS8bJQwr06gX8YYMWd+lAfI0+qUen4IMKQ0vFejadxaQHDAb+knILzWZeEH6oFVKp3slXK+whBl6IQh3YtnU85QpAjYbkcEBPXalMcEJOD/8Ni1KgT0isLFk9jyxJvOi6ncknnHuWB/1LhwcOW3oQm4R6afUIzdHb8hF9Q5SaRxOylz/Lw/KHZDxN0KSq7i8I6tMkJaKomXBijhtSjqApY2JIlU+V7I5bEyG4Q+CVTJf5rLHMKdUJ6g/mnxp6yZzM+kn2Cite1FXRFnhNAV+Jfy3T9HujKzXl2dN0E6SneBGpSZ4DuJeUUnJsU4RdAl6RN6gyQh/lLNpY6gV1jqXBUfs9mxZVazkL47zOWopqbC/dLyinMI6uYJ0RS3HyGfQLELWBxvDYxSE8tpLOx4Cc8nlp4fcyHuDksbgGTjfV6hiCH9K8T+OcA1hlCOir7SvLqhXQnAEYO7vOZkNmC7Dzw3868w5Mj4sthtlKx5UD/Rwl6YnlTvAkpbfJlrt6E8AuqvO6TeJO5IA/zl8ybcEvhUi4GVOLhvDxczDRTMXxS7Y0W0mGgEsuDzg9GVmSs797oerAqt94G0IfrYPPLRSE98Uly+qeU01+QQ5Y8i6Vrg7gTVXleKe4klm45xJ3M4i6GuFOEfFHcqRbM0yyYpwtxpu4mF3vycW+Ui/k1oV64h2V6hqAr1R33ADjnKLW2uRY5PD3xNQnp0uZH0lkaO1FeX/jC5eDuNLw35V6b2zHtHcsD/4dHdKd7BNrbPJaedJTKGduibzk3CHJ6u5yxTc0PKIdjLWf8hhYCFpYz1ROVMx/tLIR0i1gc5+MjgoXs/iJBtoRPGJVs8NOD5bzF2SDJygP/65gNfjahDc6HOD6CxP6Q9ODlwPlxryjp2RDDH5evL1me7c4Q0ku6N4Eu8y26m4C2yNPjyLU3bJ7LrGQ/3wD7WcDiJPuhsyrzwL+D2c+3wH74CK038m9r13wkhzPLUruT/Aem4210sIMOCwWdi0J64msS0qW1DUnnSrbxDNjGIhYn2cbE6DoP/KuZbfwUbIP7T9JRKmccA/qWc39BTm+XM47vzgwoh2Nh/7YYsLCcqZ6onM9icYshHZ+T4ny8f1vM7i8RZEv4rv3bHwfLeYuzQZKVB/5zmQ3+xfJMY7PBMyGOlyn3vVg/tjrIgd4NMfxnQr6IX0VjfGl/j9Rez2SY6MuJv55h4n6KLrnK/rRss8WzhHxJZbpYVZbNy3lJjOwGJec/zlYGWMqU0veLyQ+WKfEPspSpVEa2MpXa2GIhX4OFPGMZzRGweDm7lCnP/xzIP/EPE8pUGrfMAd352AHHkNI4jPOPB36pjUljE2xjoy2622Yl+dzCCojjcwvzIO4kFofPYiezuAUQx+cWWiHuVBaH/d9pLG4RxJ3O4rjt09xCHvI6Jbqfcm2h7MNZHEsq31zMr1Ju/eksxpMDOb0xbyLJmRNQDsfCPo0/s+GKt++8AU9vezY8MaWcEwU5iEU+2QQ+JqL2lAf+E1m7/mipJ+Y8Qb8T2b0llrxie+ZYVGfUPrjv6421N8IvgC6e8nI2n8vzh8vZCwRdikJcXJ1yOdJytq9eAb8ySiqOAb4lMarlBNwcEN4fA/fqBV6OnVXT60s5A1LKGSDI6e2pzgEgp5Wl44875xe703ATlh53TDg7+sUp5dPZ485FEab0uBPX7Lit8aUOtG2SF7eN4aQY/S5jrhe/W3cS5JnnU9J5HpOBck1oi9HhShiqJHTF4lAFp0L5kG4WxPGhB68bHqdUd33we2hzrYIcxIrrJqlccUi30rOb5Pa5xJLXeRDHuyYsB0mO5N6lcrDJGZhSzkBBjq3bT+pLJJ3xUcIE7ks6wJfMZ3HSkGZp9JsH/pnMl9xo8SVcR/wv+eW4fjLOl8yN0W+rxZdIQ8OlFp35IyDKNaEtRofbwJfgUlBJuQXJl+DSBPd/eFSOb1/I02fVFw4COb297CdN97eyax5HcvCezb/gY3hce9xXlGVK7RH7Nc7//PDudK+A9hhiqS6uTSjlttw1T5AT54NMsPVBxP86Sx9Uaehve1SL0y+v5DZ1lerOcxyWEu4RP+//cPpiAfDOt/Ci3ty2J0XX5Iv4c4uHLzpTWragQHFnxeiEoR7+c71MnX6i1I2LfCiT5/UsiOPT9Ytj5NUJvHSNbe1rkd0Ze3242BOPt1+sfzzmjU/fY3oT2kA+8X+A2f2PSrJ8tBcTroh+pSnglhjdTJCm1bF98/S4pMWnCNH2FsTk8SvQd+IyU0k5hVayAax3jr0kIbZLf8TxmwR5pFdBiMs76LL2T23HtDXc/OUcpCdd8B5OkSwV+FsEfior/szlUVanSq+4kmyK4+1gCcT1Y3Gkg3SM49KE+rmUH8cvCvxXMz6fuigKchYGxJqfEIuOl5SWkaRxTRvEtbI4vgXxNzA+4b57COjqOwbj6Tmf5JulpVr09b8EP8R9pod9HYt9I2Fw7MUJsV39EOE3qfh6LQhxLn7omr+3rn/svG8enFPl/rZeuOeyfDlE4E/Zzo+U/BD6Gu6HFkMc90Okg+SHEvYpR7qUH8cvCvzoh1zroijIWRgQa35CLPJD0hYByQ+tgLhWIT/cD+UB4zk2vvsdbJfm46k2kMP9DW7HXmiJWyRgGtkDonfkU46BFktjIAU68Pb3MojjbY2XJQZpPE86mzby41I3LvKhPtL2hDoVbwf0n9/LC3qYa3yeJP76qLxfaOPNPXH5M50JfCzfCrpLaxYGs19zPF+rhY/bHNo27ztnQRxvuydCXCWbw2ftQWCLXPe0c1mEZeYw6cXraBluQXvH+de0bWhfcX778g3tHdzCsNXzUqT/VPpomQr4TMAVuNPhP44mcIPgIgGnkkxppoUfjIG17zLTwtPPrwI5Q1PKGSrI6c1ZQi5T2lTCZ+/GNnenwdYurcxcGv3ipoMNbPZufIRJZclbGpZzK4vD8wF4W5BWYTD/PH1rTU5wOcNTyhkuyJGetNK2A0nnSu3g2EDt4BDWDk6wtAOuI0+vlNvGHJ4eV47nV8C6FLBcZ9BbHeTY/GCroxyX/Njk9GV+CEt66ud1cIlFrwWAtbAC1mWAJb0AYvPFOQFTkmPrb060yFmQUs4CRzlZ5WdeSjnzHOUMSylnmCBHetpM628lnSv52yvA30ov+PG0uIpP/EOZv70S/K309PBSLedFAeVwrOUgJ64+V0N9Si8U2OqT+P82rDvdOof6lMpmoSU/fCYgrq6lF65yApZtNhfLgfNLfUovzq4OcbEDjl8AXTzldW2qtb00ZQLfvEr2HD01t7ZvPOroWXP1I/NN6zviZlqbuVCmP/Ir+I/pjG554DlRkGEC2s8i4MN6p/uI76JTJd5K8ZKvOysmn0q5+Tqe/sQYrLhdEFQ/OFt5W6Sw6y4I6UUe23gA2x3y1Qt5GKDk9rpKyfrxPC+x5Jn491jyvKBCnnH8Lo0d0TchX72Qh0Yl79jBnVo8Do8s9LUnnj6rvnMEyInr0x6APk3a2cR3vtCHS3AF7uesT3s19GnSWLC38x+3o5Hni3+EJe7ZJi9gmtDG4jn/m2EGFg+FKCm3IM3A4stfswT9Tf7eCnUq5d1Wp8T/fVan73CoU1v7kHbi2nzBXAu/9KzYKvDbxo3pVopzP3KxUY5fAF087aFrvCG9SMvzl3S8QbhPsQxx/SuNNzCdbbyBvHFtD8cAC+F+pfGGpFMcb5rxxqKYfCrl1j/w9MRH9tkK+peUUyiRLnxtBXeIIT5vp3WqvC1K/NIYg+OjH6b0eSWXzXIWz/k/zsYSPyvtv5bqYmSMfkq51QVPn1VfNRLktAaUw7GobKU5UX6YPY8jOXE+WfqAhW338qKUchYJclxs3YS10W+lMdHjnv0nrlQT/x2s//xv6D+lt+9sc+guc+K8rl3WKmzt2rWdSuOBEmD5vpnD08eN4/KC7ia0sXjO/xsYlyV8Y+wcaRcJtb+UY75zXNo4x5d2EJBeBSHOZYfYLwqn/NevPvT6r+UgPemC91zmjkoCf8qdekukHWL8AAQTuI0shDi+Q4x0kHaIJRyvLXEpP45fFPjbGZ9PXUhYSxJi0a4u6Rm7r3xS3NwL+SccO/zBMg8h+SbpTTfbW3Po0zCP6HNMKCk5/AsC4VH59xdkxe2K/SvL9y9LPXWNWyPMx+TH9oZMTsWXDcqQ3pA5WvXUbYGDbtJ8EMdojdHTYEhriGi3vjua5wr6SHLGpZQzTpBj65Pwl+TgPdt65DiQEzduahrSnYb7k7j1kbiDHzezcVMxwpTeQsY1V+kNeGl/AZZ9g5LnNdGfEP+wSCfprVVpftjFzvKCXBPaYnQYFenQm/NMmKe8KvetJpyj5DzFzRdjGSwU+Jdb+KX1Jm5X6LNth7FR3t47tFuHEthxpfyfH4P5tpZuzEmemBfEYB47pBvzUEvb4B/6w/KRygzbP0+PO1alw5tS7jh1PhSH8AuqPM9J5tOk+QGpXKQDvnB9lse57NOwfczwJEe9Ah6KQyqOBL4lMarlBNwcEN4fCfekKTmObcx8dNQdkJnzs9JmAP4pDKNeuIdmztMTnyQnn1JOXpBjw5ohYBH/qQJ/XuAPaBqk4ljgW25RDXErmcZYuBdnGhTqQaa5xnMrsGpQx8ECxixLnuqFe7bj6E61yJmZUs5MQQ6OEi6FUQKX7+Etd+Nxg4TBsVsTYrt6fsKX3hcivaTPFLnMekz79C1vPXnSNWfnID3pgvewSUpPkTMF/pSzTzulWQ9+do0J0syYNOtBOkizHgmPmtvpUn4cX5qlxlkP17qQsJYkxKJZD368pq0tZ+UzekOODUuaCSF+KpsGJa8UoU8i/hXs6Qm/LiiVtxLu1alyf3Re9DtYwKqL0V2SrVR5ufH0xNeLPrGfr08sqPI8JxkNS+1DKhc8J4unxR3AJuCZGr4rAtWOxW0Tj+2leOmX5OA9lMPbKtZBa0A53F5d7DypHI61HOTgzKH06ypH2rGTsg9eIM22UZBWZNAu+Ni6FeL4agiWP9+VOA/i+K7ZY9k1hnr4z8vB+OPflLpxkY+CtCMP+yXft0yknUyVzuS6b4gsM+5Mrrjzqe5kszQPDInPI65ESjN30nvnOCZ/bQYzdy8lG09ix5MndOMiHwWpjnHsJa1ESDv1KR+Sv8ajk7mPXQBxvP/GHf7cl61gfOhPpVUEnBE9VdBdGjfNcpBjGzfNEuSkHBt5fwAVZy+lcnG1MdLZ2NhlDjaGfSfqhmXkMu4mHeJWLdDPEf8nLKsWxMNn4K9jmGgHXIYCDBPaQAfi/w/wfQmfM0Xfh30iL0PiSynXeZaa8Augi6e8rnF5pVVqPuXn/qFT3gIlj4v8nFcJcfVw7yTgw5NNknw2OeHprAux1+LBt9fitYlB8hp87d7ns8m8PvDjHtyLdJ2MosrrdZ4gh/SvE/jxfRLpVFIq+0rypFkB9PpSOvP/eCFNyCceLMcQWL2wJ2yoq8ch/IJK1U66PI60P0jalyC1nbh3E7lPyEEclyPtZ5ewTgmEZcLFNawaVg2rhtUHWC5PhryfwncjuR88DfTzXajm6W0L4uNSyhknyGkS0iXtk4sWnaWneyw33315PL3rqfJDWmSZ0gyWCfREhjNKW9kM1rCWnjpLT/MmSHuGeD0QBqZtZDpQnMf4YrAZAz9Y6paD5cpXKF3GIdhObLMy3BZc62g81BF+iQXT4p5G4m9ndTQxupbqwGXfkLSHEtthg8DP8fLAPyXSia/KuXzlhtLHzbqOjZE3ncl7Bp6JesHuhkp2x/0M2p000yX5M5u/4G0P94rxesOVWGmvnm0fK6VvUHIdEF4e+I8X6hztLu6dJ6xX4j/RsV6pLHujXnlZYb1Kq9zS+4A2O5BW5KV+4GTAOlnAkvaturZlwsO2NddSr5L/4npivRL/Asd65e+vEg7Fpa1XXlZYr9L4Q9ovabMD3j9QmUgz+qdDXCuLw5lSyX9zO3Cpc14/cf77fKHOceyIfsGlf+Ezi3TeZjSzeH7Hug3t0dSigmCbCjT/58Wo0SKkV5A2B/fwoxiS+7RNqJPsuI0s6D6J/1KhyG3u1wSXLdS8untjcprwC6rcZJNMFVVyazhVZGtmPK4KTNWExTFq5IT0CrBywj0TpG3NtlGg5N0kE8NeK25EQHi4N+taS89RaY3R5ZQOaUQk5R9PdOTpWmPk8B6NmxH2aMR/vWOPxtctCYfi0vZovIywR5NmFmxv3kpvxUizpUXg52Uv9Wj4NpDr6BRHYzj6wCcrm71I+bWVj2RffMS9COJ4OttTMN9fYULIp2CeH7QFW92aEHeaC+fn9Y1PI3zfBT5R87aE7wVUOgHWZgt8tmMIPBFL5+XbZNpmZqQ3BnEP0L3MF8Sdzub6xE/89wv+xZYH22jVNgsi2TrvP3BPUFYrqLgnSDp1Rtr3g3uCeP+La/xx30/CgH00LwfXfW9oD4TrY/Pclu6DvWZ82DcVZEpDLH4PbZ6nJz5JTj6lnLwgx4Y1VcAifmmM08uvNZGKk4BvuUU1xM0B4f1JcK9e4OVBqqZZMXor5VZN0qQBYvGtP5cyHjzMh3cHhwGW7yIAT49DUtLrS5EbbRTke7iv+23bsgk74fb5+3OAp5T85BW3pZrrJW3ld3mF6RPvOnfQNx+b1fUKjutWPeJvFfgPE/hTbi29VxpW8e7ABO5WToM411eYWhmfj34u5cfxpS3t+AqT77ZJHndpQix6hYlPXOGCXm/7GHzk+qowzMpaF+r2n7AM+SpNJuICLNfdtmiK+fL1l7Mc5UxPKWe6IKe3F2eng5y4Bbmn4LHxVBYnDceujX5x8eM17MCHZ+DxQ5oqySm5/+F9pAnYXnFxBnnmxuj3M2afuF0X88zzKel8GpOhAMOENtCB+H8NfW+r6pn3knIL0nZd7vPRh2G/nFCu84wo4Wf9Gp3fdl1cJuSlwlH5vZzqmXseV2niEz8enmS7bsJRgvcHzPFhkz808trEID0Y8lGFz3ZdXh/4AV6+nrCYycZ6bRXkkP51Av9cwGoV0lHZV5InjXLwwAApnfl/nJAm5IuQtk39SbGkrb8pJ0mcP0OBxzQmbCddHkeaULJ9gkM6MlLaQoNPi0mPIDTXiwJizQuEZcLFNawaVg2r6rBcXqbk/cEl0a/0VIZryb5PlDy9bUK1mFJOUZDTJKRL2vcVLTq7fNrB94AE6ZMclY6RPGmoLDPuGEl8wiP+vewJ79ShPXWWnvBMkJ6meT0QBqZtZDpQnEc/PkhaEOTliguC0iIE56etwrYtQJItuNbRQqgj23ZBrg/uodnA6uis6FraEIBHQFbaC3Id8FMeXbfFEv85kU6VtsWeGiMvblZiaYy8C5i8DLbFDpHsjvsZl212kj+z+Qtpj490oApus+NljONS3y2z0jY725ZZ4r9SsAfsi9A24vSTyi3wNrvWGDWahfQK0ubgXnMMFuGYe3ySw2WbnfR2ArqIlUKR26rMhNo2uxfdNrszY9TICekVYOWEeyZI2+ykI2FcilgqqqQbtG8UTNrmYaURlm0kIK05uHyoXjomE+VIG8dNwB6N+Lc59miBRlJij8bLCHs015kT4q+0FQebmrQlzfZk49oMcZuJZKfSSK3S9hWXF1uk41Wkpwc8CJ+ns42q+ccaTQg5qk7zspnvFkTcVslnwPAITN4d4Utd0ijK1Rb40xM+WVV6GSZu7Zn7AI6BW+GI/w2CDyDMVmXPm4u/a2U8eISTdPSOdAySbdsn8aW0xybJHnn+XZ7yOL9vW7W9hGZ7WbIV5FSyG9sWOL52+RSsu3I5E0CmZCdSWRSF9MQnycmnlCMdgWTDmiBg2eq7l7fAkYpjgG+5RTXEzQHh/TFwr17g5UGqplNi9FbKrZokc5bkzEopZ5ajnENSyjlEkFO2xSVyuymX0Xe4LJgl/I7XjhzgKSU/TRG+tJuY9CoIcS5b535bvPALq59753tykJ50wXsuu+0PEfiprPjitEdZdUpdE19oNoG7ozMhjncvpIO0de6shPq5lB/HLwr8uHXOtS4krCUJsWjrnPSNrKx8Bm6d+w4bQuHWud7WJevNHHhiIz83zvfERr6Zw+fERl6mXDcsI2kLGNod6eB6YiPx/y+rc9wCRmlcT2zk34hDuSa0xejwK+hDEm6MELeA4eNh3DlxqKtU5raTrIkvZR687Ri3TnK/j5tkuD3gNvGlLO4kiDubxeEZgfy7XLiwcy6La4W481gctyMMUnvjb9W8b2Q3LvIpkMnrHjdPcb9DZShNWU1h1zyOdMV7aDM8vW177dyUcuYKcqSpOz7e6sXXF5xntPErKwm/JtM1o207W+MFxaJfXBDlaaWFo7gtu1zOFEGOr1698IGl6cAX99GNnICbA8L70+Fe3GMY/ZdMvzVGb6XcTJ+nz7qJVdpZPmKYLDPuaCP87Crxn8c+XzmKXdte+D9D9YzjcuaA/tI+kJRvRzm7AMIvgC5JXYDrerLfTmk8ZJSXCkfl92wtAdeucFnxREjns1Oa5EpzatJBMba1GkzHy0IJ9+oEfluHdBLoXm9JzzF4OrSYHNznrW22IBt3TMyIWpUZcPwUBsmSLF4elXYFIA/qQPxHMh2+F7Oel4/JF7Zm7OC5bbXHyJ/HvMyxMV5MCfIxf7yHaYjRN+7okFmsDGyfdcJ3afEeLwOeNu4/5z0B8sL/S7Y4G/hPr5B3rH/iP91S/ycJOpBeJiypoAPynBCjwxxBB8Frzlm3/qaYFXocS6CXw1rCmjhJwIkLVBrGYsl6sXSwdaAc+i9ZgMl5BNs9NFvd3hG3OwF7hFkxMuuUHJqUrJsJfbXh5KRk8qwbTnj+km44iWulleSk3HAS12lLzgLTK0ibE+6ZYMx5X7RK+FIbPiNW3NbGDdEvdlKXMQf1TEwnWReDeQnoID2hSbNBxC8toNtOOo77pmycbF6WcV+Zd9W10gYT/F4P12+hp66XZqzrKYKuKWcvvGflcAaNz8rhDBqvS5yx47NyrRDHZ+VwNtt1Vg4fW/msHL4acD6LO51dY5Bm7KjcTbt89/huXOTj13E+xXUTAPch+Ngt2ZTtlNRFDEvahHNMdJ0H/q0WfyStFNnaQaXztvA8Oz79cxbE8XT8lGrCVsCXclOKeBYZzw9uSuGrMfUCP5bNEoGftzncJMXrdxHEcd+Cs8TS+YFG96YhPflCfPFFOpX/YtBnQUA5HKsN5PC+bXn0a/L9iph2xdsJT7s2+sWVx/exh8tXwhSWtNkPX8N5DWtn902IT4+bs6SNS7bv8tnyyfmPicnnm5iej5b2X/fi5sSi73mQko+xnQdpa6e8TIqqvE3imEcaP3GbrLTiiXVAeLja+G5hEkF6lQy/MNTqqXuSzZOPRy9ASGdGpn21Wfp6EmLVxei/Fvj58QKSbOQnm+ATVJJ/zgP/R1hdPTBBxlRK7pPnxejcEMN/FuhA/J8Q7MXmB7j9nwmYxP8phokHA1XCPCoG8zOWsYbUTm1ne1bqT3E8wcsRJ5G57tgvLmbysU7vA/kch9saylUWfaVXFW36Yn9Dcd9h/dXj0XUj4Hn66npbXU0T9HWtq3mW/CEWpcurcnu0tRFeHk8MkzH7eWL+P6FPl8YqKxj+dxzG+dxXo1+WnnP5OEcaG+BrnYTxQ6E9Sn09YaXr63M/8n29t1LZhHoRwYSrIE56ZTt0X/rW5p64lc7DPRv0qDTGmxxdox/+tcUPS2VoK/NK523j7iZeH2dCnGSzWdtjludPoz1K/Ydkjy7nT7vaIz9/+gEY20lnZUs+GvWpNObGXXmkX0MMP/r8rj5h+P5fadyzVNDB9pxwtsC/VNB5MOqgytslpePtkpcJviRI//uz/Nj8caA5D/ElQV5uaP+2MjIBy/QcgZ+XFZVJEfh5+Ur2vxTipHkkW5t1bRuU1pTDavDVoefn0FcT/0jBJmx5s/nq3pqfs/nq3rTVap2f47bqOj93hcNYwPaCaqU1CPRf0tn4Uj+ML+T6fneAp19gkTMspZxhgpzenIPkMqWxDebHdy6Ep18I+VkYMD+Szrgb2YTl0a+x1ROHd6eJ8208LfZ3xH/+8O50p0TX0i542wvUNtttVT31rDSHdCnLv1K9MeZU/fp6zInjSt5f4nq59LYBtz3edxKPAh17o7xCvrwulS9vE1QG+GYVt0Pbl4ttZek6DuFvuRzbXFl/28ENlewDP3RQRWt0fT4GQFvwXaNDf8nlSP4S65j7V46Ba1bEv9wydpTswGY3lZ7p8FtS3DbwbRVpnr8XfUhV282ZECfNO7raDfoQ7s95H039t22OLKd69pPcnjl/fQzOAsDJwf0B7D5PdzjkGcdIiH0E8FM+G2L4CQ/HIjdb5hIWVdDhSNDhzAo6LAIdiH+boIOt/E2wjQlTvpWezwEe6cPvcfyCku2jpJxCDsuP5El2YAK2Zak9SWslNh8otXMJ68SAWK3Rdcr6OkvybRSkfV74XMH92CUQx+d52hgGhnr4z/Nj7PrVE7pxkQ915fXF13PRxhYJaRcJ2H3VHhYlk2dtD9IzgG97wDX2A709xO17NKEa2gOvL9JbKiMTSsotuLSXhCdhTHBtL4Qfqr1Itie1l5QnkZTMo9gA1dNXmXAvw5PWMXh9hao/aY6rr+ov4ckC1vqTnuFD1h8fX/jUnzT3h2fE+s798fRZzf01g5y4ub/PwNyf9Gxqm/sj/q+zub/PWeb+XOame3G+rt53f2Lo71XjuoM0VyPNtWPfHmr+aWzM/BOVqwlrhbTYtnOqfP6J60H8uCcOeXD/WtfeHPYs9b2YdTNp/xrXH232u5b5lN7ev8bLGfeDxY3pCVup8jED5Y/ifPoFqU3w/GCbkNbiOb/vWjzaPV9TxgOUsX2pGCybrgtS6Ir1yOsK9w0QL7dLrj/aJfH/0nHfAJV5b9S/bT5NKlPbfFqlMsVnGtueAtt8WqX3W2zzadyHfAb6L+6/W0Gm1D9IfkJaU8B5I7LLv7L6x726fH+PtI68NAbzHxZfJ+WhVciDax9ne6/hTEs63i4bBVkluviXPRAe2Ud/QRb2M11tdUR3ml+WZF1yqE+F0IvPZKUc4Cn1knomGx/imUwa5/ExcBHag9TGeNrV0S+2seEjutO1xGAqJbdb23uFXJ99xZ64vbWeLLVd2xgG1xmlPfikA9+fLa09TY6ucQx4MGubtneZwqxP5n4v9Yt8XIj9om0MaALWhW0cxcukqMr7TJz7luyL13XcqaFxezTxPQTin8rqwPapGOy353vqHrcvgcdh28B2XOmjAHHvtHO75Bg0LsF2fxQrk2di3tfhOrSye7573vF9QmkdSprDoH2EUnvh76xT/igu7bpslnth8CB423uB/B0AnCeWjkMzuneA75XeG+B1G/f+oPSuqrkeG13j+4NzLPYVel8hvrvjujeL2n4vzt209PXcDdWty94hac6rCXB4eRvdzwf7kvpJnnZidI395AUWe1liyaMJvn0U6SM9Dy+FOJ4ObUl6HiQdzhbKgeuFZ7MQ/+WO44VAz9Gtkn3yZ1+0T9t+ehOwLs4V+Pkee9xHz8/dWAxY0vwWL9O4d/4alPwMH/dOx0rLeIH3T2eD7md66t4q6C61N96m/jh4/7X0nI9j1jMtMjEt73saYvjjnj+vF8oL/Zk0n2SuxwMm8XdY/IHUp85h93z3jeE6Ci8X3DcmPXf03nhendHX+8ao/l32G/ruG3O1f25Dz4D98/78DJBpG8diWi4nzv7j9m3tsdi/7bncXI8GTOK/02L/Ulna7L/SGME2RrKtMdrWvgKNz+f19fgc7d82Puf+1+X9SFf75zb0jcE9caX3b3la+uIPvn/7Rk/7SvP+Lenj8v4tT4fzM9LYFesxrp/B5xTif4fjeCvQPuChfe3Pcd1CGt/a/KdtnVTyn1J/if7zA47zM7bzKVx0bxV0l9obb1Ofhv6GP/tif1Ppg3j4Dj+167j+Bo81J/5PWPob/myG80FSf0P8n/J8Xrf1N5We13E+SDpPQnqWtz2vBzoLalhvv+tTaa6M6t/lQ5XS+2loB1yOq/1zG3pPZP/pynXz/TmmC2HXC5x5+CWeb0Q2WWDy6TfvoMf3v/D8tx898+g1+PUbE6iOzJqNqf+vgP3nGS+VJT9+GPdC1INuUroc6ID8dQI/4TYJcXmWh6RlNOaT7V8//clfPlmpjJLi7z06P+SeS5Ys7C38r/f/1XOP/+fKe3sL/yeN58yr+/Bd43sL/zXPLT1ux0GTfudjo2QLfO8upaN1zEHsvocvdD7umvALoIunvK512kEgD/OX7FMUA9k1lgpH5ffiWilppmL40EOY4PMpCqq5ItwvKafQTFbRLERSHLeygRDXwuJ4bWKoF/QnnY2VPgE7gZSARTJ5fQyBuMEsroXJxnodJMgh2XUC/2DAGiSko7KvJK9eSDcQMHJwn4/S6gXZeeBX0Xe8TNk+OUL1yOdA1fM/t7920FHqVVTMPcwHvumBck1oVKk8wRBXz0P4BSWXd0k5hS7P0wTyMH/JPA/2+SSlGVCJh/Py0Mw0UzF8Uo0uFdJhoHRNMZgmNKpyS/Uo5SbXWqV7BdAlaa3WgzzMH+77SWi1A21WhJhKyZ6Plwf3UA0xWJQ2D/wjIk9RVOWe6mKQIXkxfo/Kx3irISN7yqO4SSO7eQ6Krgcr2f75dZ0gu06QXRTSoyfi4/Q2iOvH4vB86AZLXH9LXCPkhccVWLrlEDdAwDT6rRvZkw/bufSrVHkbMgHLXKpj7tnwGUayMbTJOKxLAYunHwxYxQpYlwAWT09pyTbqhXRNghz0Z/xdF4/2PsjVnxF+AXRJ6s+aQR7mD/3ZkGTymnKQnsvjmPjeTosQR1j02ZiGGCxKmwf+E8GftTCd0J+1CPrye9yfHQttjpdt0jYnvUNF9YPP7iYsZ/qcNrJnXoosTvKP10W/eeB/gPnjVvDH3P5Ix8FKri9+LdldsyX/Uhvo7XJGP5wLKIfHLQeZks3xNkn1ROUs2TylG8risO2iPXN+jiHhE0YlGzxvpJw3yQa5rDzw38Rs8ELLmABtkNtnDuJykBfOJ9knr7PrgJ/0bhD4OV4e+C9nT2E4/07peVlxvfBdB+JfxjBx/l3yv9JTic0WJX8tlWkLYA0UsHh+cA1IKlPePgdC/on/aqFMsV/n6aUx3wqI43P1TRDXwOIGQVx/FjcY4viYD8effN4P/f0AFsdtZB2Mpyk/G6L7jUq2+5JyC9LX3tFH8jn9RojjttUAcbwMB0Acl9cP4ni9FCCO1zXVwwDl5otMwP6Q+Lda2pfkP6XxFPEPE/i5zyb+waq8TeF5jTwdtks8v5FfR69G9SgHrte10W8e+HeycrCtd5NeKdfTmqT1tOGMAdfT2KRWV744P9bFSIF/BOOhMikCv+TrJL/JyxR9nTSWHSbg41h2n8XXcV85HHTPeeourVFJ7Zq3qfMsY0Xsb4dYZGJaLqdB+Y0jXmvpb6XxMdcL+1vif4PFH0hlaetvJf/RIuRLKtOhEBf3XEXYiJmyfQ6S2ifPP7ZPW15NSOorpTNn8fmetw20f2kewdX+uQ3R81fSNbxXfn7mwt+d+5txSdbw+LwQpaP+P+HM9me5/hSkOQrCL4AunvK65iikcSPPX6A518/kID2XJ63EpFwTrcf5JKwbbqdxc7aUNg/8j8FchG2ui8/B4fyHND/H79X1EZbURnk5Up2YdvgxKAtplcnFtiUdeX3huHVAQDkca3n0K9m7oZJyCkfjmgFhcGxuNx62fbGrryD8gkrVlnI2G5PWH6S2R2mLqtzGNjK+SvbH5UhYe6sUa2tArB0BsW4PiBWyvDoDYu0MiLUtINaagFgh87irSvW6OSBWyPYYsh63BMTqDIi1JyBWyHoMaat3BsQKaV+7A2LdHRArpN1Xq88Jmcd7AmKtD4i1LyBWyPIKOTYJaV/VOi4MaffVOpbbHBBre0CsA2EsV612H3JsUuvT/LCqdSxXrb4w5FgupC8MWY8hy6tax1/XB8TaFxArZHndEhArZNsO2YZCllfIfihkG6rWsg/pv0LOy1Xr3FBI+wo59q3WMWY19h3muikQlgn7ot/BMdj82rb2KsnJCTpL66R8/R7XRBXDSfm2pPM3lQi/ALp4ysvZ6kdaW8U90zxtUYjDuvLdt82x8gGxcC+JZDfSup9veQ1kvNHbeXPbr9q0cvG6lQpCHv4vilHxIuC7JEa1egE3B4T3L4J79QIvx5aaZP8YvZVya5I8fZNFTm80ffzfL/pvey2rF5a/l7u6gRfL8ncH40vbHdwVECvk9GvIIVW1PqqGzGPIZcBqnZKv1umL2wJiHQg2UZuu7ruyD1leIad7QuYx5KNqtS63hZy+CGn3twbEqtap3JA2URt/vTR8dMi+9saAWAeCL9wXECukz7kpINYdAbGqdco0ZJ9Wm2L2wzoQloZDtqFq3VZU6zteGn1HbSm972yiNqfQd3kMud28Wp+HQpZ9Z0Csap0vDDnOqfmJvhtP1PxE35V9Z0CskH5iX/Tbi9tAGnKAR3ryexy/mreBmICv3yfdunGgYfXikaEnu9pYXx0ZKh0OT2mLEGfCJsaHcfXCvToL1uaAWJ0BsbYHxNoaEGtLQKw1AbH2BsTaFRArZB5vDogVMo87AmLdHhDrjoBYIe0rZHsMaV8hfWFIvXYGxApp9weCTdwaECukfe0JiBUyjyHL/paAWCHtfndArJqfeGn4iZB5vDsgVsjxRLWW/T0BsWptyA/rxoBYtTbUd2XfGRAr5DPyvujX9gmLlJ9cmZADPNKT3+P4BdDFU17OVi7SvBnlryWZvFIO0nN50pHJVNZxn8QwREcGN8RgUdo88P9+1P7fIvCZcBXIkI495veofMy7S7+OcG1HOie1R54ey4inQ3tMWF/OnwAl/IJKZf85m31I5SLZB6UtCnFxnyKgeBP6qsz6JZNnLTOevyRlZkJ79CuVS85dz5tRLmFwbH78t0cZLHYtc8IvqPIySFLmtuPNTcAyHy7oUoQ4E25gfBhXL9yrs2DtCoi1NyDW1oBYawJi3RoQa3NArD0BsUKWV8g8htJL8lPVYqu7A2KFbNshbWJnQKya/6r5r97MY8iyvzkgVki7vyMgVsi2Xa3tMaSPrta+NmQ9bgmIdSD0QwdCHkPqFdKvVmu/va5K9QpZXncFxOoMiBVybFKtfVqtPfZdHqu13z4QntNC2sRNAbGq1e5vD4hVrXMddwbE6g0fLX06GNe9bGtokhyevsUip19KOf0EOdKnRXPRb8q5/0E5wCM9+T2OX1DleQ419y+VC+VveDJ5TS52xfWhspY+g0xY9BnkhhgsSpsH/g+O3v9bBD4T8F0M6VPO/B5fM304wkVbMKGknMKx0uel0cZ4mXjUwWBXGyP8gkpV5zlbGUq+hPI+UtClKMTF2QOXM1KQUxTiLq5h1bBqWEGwHPxf3deGvnxTw9uvWD5zyqB5vz+o5YEdp3/+7u2nT5mBfp9047jcB3j4I+cjsgm/oFL525ytTKU+hPJ+kKBLEeJMaGd8GFcv3KuLwZJ8aVIsE9qi3xT9YB7r2iNtsVHQqeSUVB1HaaPtT751XqD0o5OlH0Dpx7CbJXuarmOWKe1YIe3Qo9R3xj913E3TRxy/7uwbdj51wSPbhr3tsJ8VD/rtplNu+MuT6yjtwULamEBNp8tuCyxyefRrxkU/iwqDbGsci6uHtOaabCsP/JeN6U73y9E9ZfM2jf6ijt33qIsZrv6C8AugS1J/UQfyMH/oL+oFXYoQZ8Imxodx9cI9G9augFh3BMTaGRBrS0CsNQGx7gyItTkg1vaAWJ0Bsaq1HkPaasj2GFKvmwNibQ2ItScgVkibuCUgVkib2B0QK2R5hfRfIfXaGxArZD2G1Kta+46Q9Riy7EO27ZB5vCcg1vqAWPsCYh0I/XbItt0bfS2t0/DnsYEQV8/iBkAc/4xXHeiXF/TLW/Tj6fMx6TAfLu/bNEDaknIKzu/bEH6o920aQB7mD581+wu6FIU4/OSaVD85QY6vXgE/k0bx04FvSYxqOQE3B4T3p8M9qSg49mCIl0wfTSauaIsx6U1osshpEtKRaQ5gOk5g8fgptwmCjhMsOvL0xCfJyaWUkxPkIJY0TWXChug3D/wromkqk4dnRvTEnCjoZ2sGkwT+iYyH9JHKhtI2CbJzMb8kRym7DXEdGkDOpIByJjGePMiZHFDOZMYzEOQcElDOIYxnAEtn/h/K4ridkR5TBD2o25nK7nt0A85LIoRfAF085XV1O1NBHuYPfc9hgi5FiDMBl7MOE+QcJsjJCqtJlecf65LntTfqkvALKpXt5GzlwvOHdTlN0KUIcSZczfgwrl64VxeDRfkKhUXtNGV9TcPy4IHipjPsqRA3g/FfAnEzWVwbw8BQD/95fkz/9eoJ3bjIh7py/0V6D1blNsZ9R5wvkOynKKQnPuqDSc83sKWi14zpqec4ht0GeRjP4rDNloQ4g79mXM+8cnvAcZCvD+HpiU+SMyilnEGCHMTKM6xGhrWSxXP+T0blTu0E22NJOYWV2BYIg2PPSIjt6jMJv0mQR3oVhLi8gy75L77ts5+49rlzcqq8XdcL93CMOFPglz69S2V1OEvvUVZX8a+cK5BNcfyxbwbE8UdV0sHY9wOlnvrNTKifS/lx/KLAP5/x+dSFhLUyEBZvbyGwGhJiDVHlfRK1acknDQY5vj6Jpye+JiFdLuaX5OC9uHEalymN05ZHv8aOPz+mOw0vB/6syNOijyT+143vTvfFCHOwKveXNt+Px/H4lnOzIKe3y7kZ8jPdkp/pQn6mO+ZnOuRnesD82HSWfDIf59GcEuVf8k+SvzahpNyCNBbEfvMIdt/D1zof8UX4BZXKt3c9axwB8jB/2NcdmUxeydTnAFXuC+9leLzsuByqr0o+5EfgQ2awOMmHrI5+88C/h/mQHwNmJTu8NPqt2aFTeFHaYQ7+x+m8NvqVbOFwiOPlx/sMwlaq3IZMwKWVknIKE8w48cFStxzMD77uI9UP56e8FlV5Gc6AON5vYZlWal/0XF5rX07hJenn68d2p0nj529gfr4hBlMp2Q4vi36l+RhKKz1/mVBSbkGal0I7TPjs6WyHhC89iyexQ8lnSs9GKdtZDzvktsDtkJcdl8PrK84ncZ3Rz08VsCR/xcfShK1UuQ2ZENLP8/ygn3ft04qqvAxxHYGP57EceBnh/Jj0fMLb3krA4ulxnnSaoF9OwHSZs+bpp1nkzEwpZ6Ygp1GVl6mHHRwu9fEUKI63AZwb5356JsQdxeJ4XWCQ5sYpP8ZOfzehGxf5UFde3qS39OyLr0f7PvsOEXRNOUfqXRfTII7XBdcPg1TepLMp72MnduMiH+rDyxTLm5cD+hPfebV+gq4p+7ojsEx5kMoUjwPm9s3LAYNU3nxedpVHefMyJd1S9olHYl6VIJfnFefoj2b810DcMSyujWFgkMqI8mPK6PUeZcTtgfSWbBL9vq9NSmM72/NHUjkzBTn4v1/0/1AWT2tnOL5dxsa3F0TjW2lMOUf1jOP2dSiTe/HYnnnntoJlfJQqz/tRlrzz9FiXXM7MlHJmOsrpzfxMteTHd+12pqCzJGdaSjnTHOUMSSlniKOc6SnlTHeU0y+lnH6CnJTrt0ehr+YBfbXUnx3D4nz7M9LZtz/jZUq6pRzTepcDjml5n4X92bEsro1hYKg0pvXpz7g9cL257nkl9y9zIJ74d0U+29jADugD+JiHr7d9HPx8b+81keZ7qHxS2ojzHi7cc5B2D5f0nGHbwzVT0EXy8XisgDQ3Ic3rSVj5gFiBnlODtmncwxWqTfvs4eqNNv3mqH2mLOuyZ0eOVWv71dX2TcC9NGna6xEBsWpt373tu/a9OYiL8xHzIJ74P836/U9Cv8/t+0gm+/+g3+f6Y9v3ndOcIuS3SUjX120/4Zjc2valcnmp9Ps4N5VwndJ7bgptiM9NYdtPMzdF+fFt+9xuud5p2vT3oN9PWNZiv4/rM9XQ9hPOrzu3fcIP1fYrrRnb2j7ukXgx9PuB1kO85+fRhvh4Ads+9wttDANDpbWSpG3/SIiT5rB434sYXEbKcnY+rhTbRcI+2NoupDW3gar7fb7o1eMF7R3nbLpq9arlZ7XftLF17Ypz2jZ0rGpb3bpixYb2jRu50lzQIHafx/OAPHQdt4BpazA8M0uiX5cFgiMqYOFmQltDPrICFm6ckjbh4P9+qlxPWmyoc8DBxinphRtpeEPHjvPoCli4MYCnx4fvYypgnQtYPD1Py//3U+V6YnnZcAwdV0Gva0CvY1n64wDr+ApYqwCLpz8esE6wYJnrUYDF0/O0/H8/Va4nlpcNx9CsCnqNBr1OYHGzAOtEC5YJ1wIWT38iYJ1UAes6wOLpeVr+v58q1xPLy4Zj6OQKei0AvU5i6U+GOF7O+F1F340WPH1WLxngOfQnB5TDsZazdCbuFJae+1ZpIEQyqPM/ld3vjUEx4RdAF095XZ3/qSAP84eD4tMEXYpCHO9XeRyXc5ogR8KaGRDrFMgPfwDgm1iPOrinzFNZnG3jcx74F7JF/mMjzMGq3FZOdsjjqYI84j89+t8g8HO8PPCfGOlkBtFPRYd3FAWdTovRBftTtBPiMaERZPdWGyH8giqv/yRt5HSQF2dvlPfZgi5FIY6PpXgclzNbkCNhHRUQ61TIT1wbWRiojRzF2shZVdhGzgnQRvgYqkm4h20koc06txHCL4AuSduIVBc8f9hGThd0KQpxfPwc1xZPF+RIWMcFxHJtI8ugjRzL4lzaCPGPZm3kKmgjvIywjUjPK8cK8oif6qxB4Od4eeBf6dhGjovRxVzzcXOTKtcf20hCm3VuI4RfUOX2k6SNSM97PH/YRk4UdCkKcfyZCcuxXrhXZ8FyeeZyxToW8hPXRm4I1EbqWRu5qQrbyDbPNiLp3hvPXtL8Av8GUlwZSbZbFNIfB3HTBTmVbGTPwbI+cTZCz+954P/9uO50d1psBDdacJ1xwcX3WXqKIMdlYjmh/+nn6u8IP9TEcqW5MvR3xwu6FFW578SDyiS/Ko09XixY5pq+h2LrB33beVGV29EUkHN8QDk8P1nMGZmwHOTgnKT06yqHY7WBnDi/9R7wW7NYnOS3aH4vD/xPM7/1SITZCDye7fRU0v1UIVKa7zkO4vh4+HiIm83isO5bWRwfu2CQFv0or6YP/cPEblzkw3xw334axPWCz3UeY9Z8bhis2vNCz7aEzws8jn9PDv1avXCvzoJ1bEAsWstIWV/B/JoJuGFhNotrYxgYJN9F+fHdsCD5LmwnyMf7F2ndUNIrJ+Bge6I4af2PvsMmrTGOABm+bX6EoK/LPBq3Lw8bqndt84Qfah5Naj+2ebRZgi5FIQ7nvqR12VmCHAkLn+v5s3Jf95/HJpNn7T+lb1eGsK+4ejjeIu/EZPLqSJ607n2sIM8c0NGgyuswbn1eWtfm9RXX5rls3Jvju9+BY+HenONj8hBXB9L8j22PQh7iGtl4/c8H9+ShfSV/P7ib56/RteTz+VxHw7iefLhH5QXZqrx+eqPtEX4BdEna9qR64Pnjttlf2W2E11HcnqWjhbygzR5VQSe0WUmWVKd8DxfWKd/oyudCB1j4jhT4pDjzn++hw83OxDsowjDl3DSpZx55etzn5nsYJ09vO/Rzeko50wU5TUI6bEMJNx07z7kRfkGV5zlJG5I2f0vlgntZeFqsGxPwmU3aGyntG3mxYJlr+hawbfO7S71KcrgdZbV/KovDbU1YDnKOCCiHY7VFvykPwfN+PsQN7XzeC+tyNovD8m9lcUdA3Bksbga7xiA9V1I5GF9dnNSNi3wUUm5Ur/rywwP9eJDKj79IUCu/nvsfMYQsv75+GU0qPz6GxfLj4zfeb2CQyoi/qOYzb81tjPI0UHV/1KP7RYyz2m+6qG31qhVtHavWrT2v/fpN7Rs78FNt2ANgDzc9Rmv8lFyc1ibUQdwMiL9Y4OOhSUhHMlIeseX8ZIPHuyZs6dbjXXn+cFR2pKBLUYg7iF1ji6gX7tVZsKYGxMKjfhO2dO9Xz2ZAXG+9epb0tVPp1W6K45/pWQFx41m6wyGuxOIIX/pMD5ddZNc8zoR64R7WdVGQKcmJHF3X0yXl8fboohH4kvakvfAEd6qrr4h7ZZbrJb3C6vKpnD8NnT3z/978+9fnVLm/llaP6xg++nPiLwr8KUc0JzUxGUqV96wm8Nfap0GcdKyk9KmchKujJ7mUH8cvCvztjM+nLqQnwKRH3dInafgsAbUdan/jWNwkiOPtDHcxTRR0mGjJzxRBhyYhHbbHSex+b/TdhF9QqXxLV989CeTFlYvk4ymtdOwgHhnh64M51riAWNTXpKyvqVgePKDflmxI2vEpzZi0MQwMUt9N+fHtu3kZ40xlrV31fruaIuiCZWYCHscwRZAjfXpVKv9DA2KR/aSsrylYHjxIPghtiI+VsF3xNtfGMDD0VrvCY8ZI934CbySia2xJvB9jK2//A2Ngnp4+gSx9SvoQiOO2Pg7iJgk65UAG343B7R4/qU38/8FWXx4tyZh1MZi8TpXq2ZYpH41MLsV52OBnpc8W8M9G47GsUrvh/Dhulfov3paoDKT+C9us5H/5p7RpBU8qL9KxN8qL64DldWgFnbG8pPLl5UBlIPml8YA1XsDiZWgrL9KxN8qL64DldUgFnbG8pPLlnyqnMiiq8rIsAZZUXrw9LgF+St8g8HO8PPD/gPkEfHuE+zWs6wkCNveNOcDg+SgI+WiCOJ7W4P5sdE9c6Q0iaccJ8UsnIPDdJfhpD77LgdKm3C1TVTujpRl6nmcMUt9M5eA6Q58DOYTLy98EtIlpgo7SLvjjHHGJv9JunzoHvfmOELSh4wW9pd0+02PkSLstTYjbzf8X1pafidqy5E+7dhMxHIrzsOfBkj/lZYT+VGqz0u5A1zaLO8v52264U5mXMcmU7Ivvitrj8baftAtN2nGDttcQw094ZTvAImfL/bXNnqWd3UntmechrT3z8sK36oi/yPKagT0P6m17lk5Fsb2Ny9/0PxbiJHvOqXIf5utf+c6wG1K+7Wqzf8pbnP3j267EP95i/1L5Srteid920kMl+z8N4ni66TFy4vw52j/xH+po/yS7N+yflxHav+sJJsQ/W+CXTlKQTg+x2f9pICeU/S/zODXkdItMTMvzFmf/hJcH/uMt9j9b0MFWH60C/2zGg/bP89AKcTzd9Bg53P55eaH9E/+pjvY/O7ruDfvnZYT2fwaLqxf4sbznCPx8/I2n+sxhcXgqFi/jVpAj+UFX++en7SxMeWqOzf6lU3M4f9ypOUss9i+1QWmXpqs/stn/bIiTdk+hHG7/vLzQ/on/Akf7J9m9Yf+zGQPafyuLqxf4sbxt7YWXSVGVtw2b/c8GOaHs/yiw/xzjGwoyc4JMfg/n8DG9hMX3R7Wx6xUsnvPTp41pnoKXv4cdLGliaRTD4NgJbWwJzyuFerjH8Zti5JlQEOJc9j98btZnznrr344ZlIP0pAveQzvuJ/APFfiprBpA95JyCmdJbZ1/1kup8rzzON5eSQdp/0O/hPq5lB/HLwr8uNPetS6GqJ62gPZuaIaAxdcAcD6I9kBxP80x1ka/eeC/WfDThCnt0ZOOWid+aX8c35dI+gwGHXha6bRn22eniS9l/yF+dprnB/sP6S0oaS8g8UsnQUufbywCPy8nqf+wHdc+g+le7/C5+N6wr7teBPbFdzUTtlIHrn3xPSiu9vWjMT31kfbZ9bfoL9mj7ZOX0wQ9pJOpbHXLPwdhQsK6bZDqlucH61Y6kV/a+4xtj/NLn1EtqnK7xzfYeN3OADnSnjvJJ0i2wD8J9fnIFky5fGVEzzR8jSUX/VJfzr9w4FH+dTnAI/35PY5fAF085XXt1xkE8jB/VI/m7QQ6uTt6O2HxurYVc9rWb9y0ur2OQ0fcdI2lwlH5vZzqmXsehyNh5DsL/i8R0ikB28RTzRXhfkk5hWayimYhkuL4x38GQhw/g53XJoZ6QX/S2VjpE/CEqgQsksnrYwjEDWZxLUw21usgQQ7JrhP4BwPWICEdlX0lefVCuoGA0SikK9HFz+96/a3F97/izaXpX32+YcG+Xy/7w6J+s77/1a2jPrf977949gHUWQk6Yz0OBF7pl3THe7grblBArKKARWXTzO572PxwV29F+AWVqo11eatmkIf5w7wPEXQpCnHog4YIcoYIciSsuoBY9YGwTLi4hlXDqmHVsF7kWBTH+/sixPH+E8/54f4ZP8pZJ+hXZ9GPp8e+RxrjUr/L/brPjh/XfhdnaBPORHf1u/UgL65cUo6lu2aEi4I8xDQBx962PrMhBovS5oG/vrT/twh8JqBdS+MSfo/KxzxZ/nN8T93x2Ub6Vco+1iuq8rxTXNZ2P4ClWx79mnwPLMky+WwcT4urcsS/q9SdbnCpp87SrLcJg+Ee2pBS8ix/b+zQ43nEWRXJ7jk/7TyU3tjNQxzPzwCWnxT+Z5jk23gdjy6pHvnJszjJrnAnJfGvLXWnOzi6luyYP4/x9KqCPOKn8m8Q+DleHvgnlvb/8lVwSb+BMfJ4eUgrayjv0FK3PNtKNPfDSiW22+GS3fL2hHbLbbRe4MdnIpudS7bM7bwBsCTfxe0AVwEofYOS64Dw8sB/VGn/r7TzwWbnUr0S/7EM01avgfyRWK+8rLBeG1icVLZYr5Id8PrCfoTXeX/AklZ5eV271CvXj/CwXk8v7f+V6lXqo6Q+BPuoMximrV6pLHujXnlZudSr1N8Tf3+Bn9crrjDzumwELMlH87p2qVeeH/TRxL+ktP9XqtekfvgchtlXfpiPF7FepTbD+bFeJTuQyraoyuu8AHE4/8rl+PpoqV+2+Wjiv7y0/1d6m2qQkN6mn1RuJo+00yRaBTm/Y92G9mgZREGwLVuY68ExagwT0isLFk9jyxJfGsAiJ1kNSp5exyIn/uWl/b+8yLEIUR+XR+SETcZ5IY3wQz0iVxp64mOSrZlJXQzWUyU5AU3VhLNi1MgJ6VUFLPpven8aNfPqxlG9bSSAaQ3RaNF1JED8G0v7f6Ueo9KTGXoU20oF10fKfzPE8XQDY+S4jlCI/+ZSd15tPRnJ7o2ejJcR9mTSTKE0o0L8LQI/X0nBEQpfdcXmx8u4GeRUaua4v0CyU+lJWbIv20i7kn2RbUpPpTb7ss2KBLKFwX1tC1Q2ki3YZtTQFqQulvsEtIUBghycGTMBR9v8l9IQrglUHyZg/fF3vXl9mTCA3a8XsPpDOuJ/U2n/Lw1f+CiS0hcF+Xz0qGL05vfqgL8g8BcEflM+ry516yzpif0Xz2u9wM+HP5z/baVume+IrnH/L5dn7n3IwpeL+ZV05vrYyqhe4CfZAwR+iuM7Gnib5Dy8vDhWgcVz/g+W9v9SnfD65u0S5fOnSBWjd1x/jFj1wj1uO+8p7b8usHuE5Ts0NAH3n/N7XPYA1fP8Bfp12VP/oeNmnDToZYd2DoH0ofAHfeFjZz/95/WHVsLn++VS7m9vIL/ZIERSHM4a8ThuWy9jfBhw7Mp1NvjzJ3XjIh/qw9tj/xhMaSzRDryU5zoBF/0FH1dgedFKFc48frPUneZLJRmvTvUsVxOuiH6zrlv0czxUqr9NHvXH20V/iOP9fRvE4WOainT4YWn/dV+1hd4uL8nepfJaAXHSLCgvL6k+4lbYOV4aH7f7mX99964to37r4+NQfoOD3rnAep/64I17m457/wd7y/c/MvCJMz71YOPLfcqFni0aQBZdc3vh97l9t7F4zv+H0v5falN8bODRphTmh2NJ+tdb9MdZcRMuidG/acL+X2Pvfyr1lCe14cGqPJ/4zMPHKi66EP/fS/t/K80DkF4pn/3y0rMfH7O6rCxKY37iHyjw8+cuKhPpWd9lNp2XKU6hUhk1KPsqCdpD/8gepFlrbps4487z3ghx0uoh7t4woS36NTyTIj1SvjfZH/sjHnBsxvOI9iD5zgGgE4/jdek7XuDvZ06e0I2LfBQk/4Dttb+QD6kt4zNSvaBXtbU7sn1pJRftzdWG+0NcvUUeL4dGlgeyYeyPpF0My1m6KRO68Xi5S/OqJqA/Jf7TmG+fFl1Lu4/QHiQ/gbooJfshnLOS3juWxo9UL9Teub162JbzV9EIv6BS+Zcc+luSh3WEuxITjhPy2MdyeVI9NCu5TLl8nB+RbMTmT+ohTvInUvvDtsnbH/aNUv9va398Pcdl3BS3ZkFpsZ88Y0J3updB25J8ra3ebO9x2nwf11Uqe5x3LwA2vx5okSPp1STwD7ToxX0yvrOIbyvZ8uDaVwUaI/bz3TUplYttba7Sm2TYRqS3vnz7NlxzkPr4Sn3by2L6KJ4PaSeNtOTM+zfq+3h/mQNduAz+XH+d6smfdEfllUyHSrt1TFggYOYEGUqVl0sb6EB8K5gO/zFp/7W0S47qPOWcziBuOxSkfpPwpfNWkvSb0nONtNaY8jmgyWan0nhHmsfCtk7tIe4Ziz+Tc/7ro7rFHWom4G5+aVwh9RdGt9UTeuqeZi3HNo7jfpf7DxP4OPYG8BHSzlSeFnfZE/+WCd3pboK+VrLNAcruM6StQGgfDTH8cTv8brX4DGn8zvVaEIO5nWHiWR+SXUj1h7bK+aU5bWnMhPNQki/rxR2l4llkPP9x7ZL0iWszxC+NyXB8bkIR+KX+kuuC82c2WzQB+8i4eWlqV0nnUE8+5J6Dxnz5+qbemqPtlx/z2tL7r1zsM0crjb3rAJeXd50q93HnRb82/5fy+dL5Wzb4fJlm3TauvUvPl9KcFj4v8faB/Y3UdqR9EFlhSe0d6zLhs7TzXAHhF1Qq28n5+idpDhLnVrnvwvKX/Jr0TPdiweLt3zaH5FKvkhzbOLC3xlK4Ttk/oByOtRzkNAaUw7HaQE5e0MHk/zMTunF5HceNkeLWjH4woTvd5yb05CHdv8B4vh5dNzLZSnm35YI0b01BWh9Au5XmSvBMJ8k++PN/I8TxE2LaGR+GevjPy8H1+x1SWSbctl5VZelaXpRXg+nztW1ub5Qn/rxiawdcLraD/2E2/mtoW9IcotSe6X6ldUt8VuD+mdI2Cuk8bGIg1i0PUt2iTfC6RZvgr7qgTfD9x9i++J5bHBvzINkLlYNP+/p1jI8kGegj8fkhL+jLfW+lNam0/QLHwvFcb/Tbkpze6k/bQY5UDyb/f4M65HOoUh2ujX5xzmjkxO50/wTMSnMBhCk9v/ePSYd62WTVJZRVFyPLNs8grU1lsK7Y4GIzHL831xWldT6f5z4sWx7H5bg8q6HNpMVymctxxXKZA3PFwv0dPM9UHwMEWTztanYPy5/8s/SWKU+L/f6YyC+Yuv7eCBmzX0x+18ZgjmOYOO8YeiyBc4vSWEJKx/tCKS36Cz5GxD6hiemOcnBtcgD8Lwg40nMex4wrR9tb77Z1xUrl2ATppLX/uLToSwcw/RArbh1XCbi4BtlgSdcIMrmc+wDH9ra/1P5dx0+836Y+XRo/9cLaXH/ua7j+/B7Hz3ptDvtdntY2RssJcbY+roYVDqta1gjPmtidhqeLWyNcGf3iGuGlbHy8FDDrIR/oa6ndS2uKuLdJeneb+1cFfCnXvvr7nrpRaY3p3OhX2t+Rgzj0V1wHqYz4+EeyUcl26L5tnCvVg/RcYdu/2Iv7WftX8/ok7r/LYn3yLDZ+dOkfff2Nq41hu7Y9M+YEvVLuOWl0yRfHLyi5bZWUU8j5tj1pjwuuZ9v2v7juTQm5z6WGFQ7L1gdU6rd3Qh+bY3G2ficP/HtZv707upb6Yf7eP8pUyu6vbO3C9szl2ydJvtXn3TNedjxv10S/uAf5PuE5vRf7uca+7ueoTKR+Lu69Ii5T6re43e4U+i3ca4E2Q/dq+1LKy8qE2r4U77Kt7Ut5kWHx9l/bl1JZTjXvS/k8jGsq7UvBvpn4n2Ljmi9O7MlDun+Z8Xwruq7tS+kOvBx81s2xLGv7Usr5MB/c3kLuS3mG2fiz0LZq+1J6xr1Y9qU8G+MjSQb6SNd9KZ8Xxt/SsxU+P/F3NBXwm9DG4jn/X8BPJBw/iWd38PcPUX+ffQfSeIKCNH+TgzhpPVwav+H8rtSuXG2K8mr0eszBplzeN24Q8mF7FzmL941NWAE682dDnDMwwbbWEOLdi61f2fDQP4e893+r5Xyc4VH9p3wm6rPzcQ6P9De2M2pST3lSu+vN83HGRfIrzfdw30M4FOczpyDN9xzo5+McxuqgL8/HmQft6kA9H8enf2kQ8lE7H6dnnKsNY59Yb5EXt4+GbDjufJwQa4VSO6Jn0JRtp04aNyr39DmX+eCE/eW/XMqJ44eaD5bmEKX5YMpfIZm8f5pnHno+lcZxWHZcDo7NEz4L/lPyAfzZzARu+/xZ6y/gvxPOUfwzpQ3/o9I632WTunF52UnrfDwf2G9eycZRL4dxFLdHvs4n+Wb0Cbg3kPPi+AyfE6Ry4/zSnlzJ3+M47Wo2RnDZkyv1PYi5Shj72fy/1OaIv9K4C9cubXtyue44T8bvSfWTA16ugwntgk5x/6W9pXE62Nag8jGYKBPtwQTb/hjebi5jdYnnUyc9p0jqSxToI41/pPHfyxkfBmk8RjobDJ/zqaW2FLLvp/v92H2UWw+8ceu4Upn11toLrh31t+ifAxzbuje2N+nXVd+coK/Ul6SVw7GWgRxez7zP2gd9lnT+Ck97efSL84MPsD7rFY59FvoKnocr2b24d1Nyqty3moDPr9g3IU9/yBPxv1bom6Q5Rv4O2+sdxgDSuAvHAB9n5fkmy1wKzuNLz59KlfennNeE9pgyeCfT422T4mXhM6uUR4PxrkkyH9eB8yGG1De6nMNmm/dSSvYdDRYZUn9l21Mr9afSWsCACvHSPgIl3KsT+CuNCwbEYEu40tldkn/G+ZucEIe+h+dX2nuOPg391j6HuUf6bxtz9bfo7jLeabDoLpUf9x9J57T3rBr7fx+afdzdPnPaUh/N+4gvOPQRPG3cGbtPMl/yJagjac9Y7Yxdb3m1M3ZV+V5TaU7ypXbG7o9Y2/qjxf+57CO17TutnbEbnz/bfHegdabaGbssjo8r/xjTR/F8cP/nesbuF9jco1LJ579zDJN0onzy53feJ3G5nI/PQyfQpateBjCZ9aAfx88D/4DJPXGk5wBpjzDxS990qxfkSt//G+iJ1QhY/VNgcRtG/v4J9ZKwGgCrIGBJvtDU3T8iezV1RZ8RXtnesWxj+9oV7RuWXb1uw7KOtpUbR4IaCafUc7jlzi9953zpEcZD/vyUW0DTLil0VdVclp7rwrcYDmLXZI5NlvQUN0/Aa1TlrtJD77kpp1DrWlS5fO4mTB7pEcSYNtnb+g2rbmjraF/Q3nH+CwY5f92GC7Q54ixkDv5TPPLZglEjXW+7eT7J4N6xXuDMwy/x0MfGkj7Nff8Lz3/70TOPXlPpaY5a+sbylk4q9HFLn5eypc9L2VJzKVuM2NJRFxOkCWRK0191t2ruEVJ6sbRlo1pUvOei1kwbZ4XWfD60ZoTH1pwT7pOolC12XtoWOzz67e0WOyW6XruuY9XVNy1bvqFdF+SKZWs3rV696upVuv2u29C2fHX7shs3tK1f376h1or3s9dacXzwbcUHR9dRK176giXO2W+IS8kOUUitLe8PvGAnRtfYltd1tEMzPjri7ONmvCRlM16ScidNIeWsqtiMpRl1soTFLO1ikGlr6tLqKQ3HU7qi+Wlnll1mrRPO6jqf4Ig74tLOWks74uJOcCQeLo/HSTNFFCe9vWl+xzI+rFvbrouzII7Poixm+FPY9dToOmW3saQ3u40c05eCNJuBJwc1CvwUx2cucDfzAHZfmknCNyuI/9DoV5oxwpkWLh9nWiS9bTNZPjMz45nO1B3PYHho62T/9QKe6b4Piq7F7lt3PQoC7sDBnrwuRhdMh7uN+gl8yiIrjpfyGmDksCTtyOGo6Le3Rw5Uxhva1q5Yt+alNshP6NEynZSTBvK2SbmUus1NOWrItcTIN0Ea5NMYeFPHqtWrOm7SE2/nvWBr81e1r16BLoAXki0cSIN76jauNgW2bHX7xo3LOq5pWzsqut3HbXVByra6IKU91qWcSBbbqjSpnHSUzifbX3hvm6UxYT6TFaiNz8+ijQ/lCVh8g4r3d01K9suEm7JJL0jbpGlEk1Wvu2zZxus3dHw3+tfHLfnclC353GqZWlvK0rtOrVEabK2jWRoTzmZ4OYg7R5CbMk9n9+YyGdX3nGTYXfY2l90sKbdAaecJaQ86esqJ61/z9WFPTp34g9mfefjwB0Y9N/mUJz+28C3P/vXLf2Zp5yfTewylXyDIrhD6UdqFctrcjokbX124O7fkse0zH20a8NgvWh88Y85XH995x/jiww9S2kVC2mmnFJ59xx3bdqkfPfSre/447ZOzZw4Z1zrk8G+9/ttj1m64bNSzlPZMEqS88jyW0p+VLH1XmfO5K65/hdBlK0vYzZJyCjnqcVqZLkZ+X5/SYQJfGseAPQ/X2eAvYLjIh/pIb4ogZg54TVgCvPjGTNwpLDyunyovL2rzeeA9lqWZGoNXp8r9L5VF1nWL8z88VKq/Gxgu8qFM3ifjG62oQ0m5BWkXOo5Wud8nfJOH00CHrNtSb5e37c0qPkpfDHFSP8nLS6rPuhj8wKPbc9OObqm/7O3RLffVvX06APm3lOtBtdMBukPtdACQWel0gM+ADtV0OgCN90y9Xc5wedn5ng7QxtLRW54v1dMBVka/Rt4TMZi+pwNcyzD/H2C+VE8HkN52jftfDacD0DNxpdMBqE1JzydJ37AIeTrAQsaHQRpv8dMBfJ5PXNepczG/Stn7frpfOx1Abm/Sr6u+OUHf3j4dYBHI4fXM+6x7GS7XL+50ABrj4pufr2Tp7o+u05wOwOdhfE8HmAP80ukAnCfudIDXRb+8b5Kex+awvL8BZCc9HeATLN2D0XVvng6wBPQg3odYmrdbZOHcb9zpAO+O4eM6cD7EqJ0OUJ43Jdx7KZ4OgGOGuNMByKdV0+kAqHvc6QDkP6hsam8jKvUNwJH8jm0PV+1tRNVrbyN+PrpOc0rzmE+2f/30J3/5ZKV5r6T4P2k8Z17dh+8aXwmfdtWYtyn379dadtVNHe0b3xrd7+P140tTrh9f+mLatdXCrocBP+8T6lW5X6+SVyhHSHNeuL8ZsXkc70f5cyO9ftXHO9VG2HaxpF37pnnubQwPZeXc8azPWynreSS3YQr4vMbxCypVuXfNH+dBHuYP20HC+eoROUjP5Uk2Ko1xeNnyMU9DDFbcKSiTol/pa1Bx+5u5vtK7BkbuONC9N9ZTsI3H2aOvnJT1W7KdvN6LJydNcG03WZycJNlFynWlUg7Sc3nSvCqebo5lawjH0IjFx9Cc/4ToV/pam8uJQXHjv6NBd+n9/aTtRnq+S7mGk9ZmR6SziZy4lqec03evg/Iy5c++s9l9jKsX0uLcF/HPY+moD3ddg7KtE+H7P8jfD/Qh/kVMn0uj65RrktavV+WEe/UCD1+n3Bldu8zn8zzzZ2+uj6dtiKdFoa/mJz31hq/m74ClqJsuX+16uhXlb1AyeSW+Rh63Ls7LznYqlsvJVybweWOyaVsbkk42i1uvjJtvxvZF/LTObOx4N2CGPmGsAfLD7X2QJa98fEnYCvjS7QFSI03+72ByMP+4xmXLqwlYNoMF/kHAY0IR+CU743lsAgxpnVuaj0S7aVCy3XC/zfnXRb8vnFoH+kn1kxN0kZ7hcb7Upb8jPTgu/6U0hGtCo8DPfRiFUO+x3hL9VvN7rDcwnVPuqbs0BzJ999TtAF1x7FFS9uCzp47mGnr1rbrensSUDAs7am6c9QI/31jD+e+JfvkiC05WcXkvHG1u4cvF/Eo6c31sRl0v8JPsAQI/xfFBIHfynIeXF8cqxMijxRyqE95A+cAA5eNEsaR3XAeMWPXCPd7YaeGeLw4Tlu+AzQRp4CLZVpq28PX+v3ru8f9cee+LfEJ/ecoJ/eW1Cf1MJ/THv8Qn9MfXJvRfCCWX/ojjv8gm9MfnID2XV5vQL79Xm9B3CrUJfdCnNqHfU8cqnNAfX5vQl/u02oR+bUKf49cm9HvqWpvQ7+ap4gn9Um1CvzahX5vQ79Y55YT+8hzIrE3oq2QZqU3o1yb0lapN6JvgOqFPp4WZCf217Zs7lrWtX2++gbKsbWP0VZTaqY0vhNqpjeUh01MbTeuks8a7P4m0VNts6/r1F7StbN24/4Mq2PNIXlKp8mkYTFcn8PEgDbu47imHBS+akyFpSXDFqg3tyztW3dC+bNXaG9o3dJBcKofhDCeJ3xiWLL14ztNwdk246N+UhwwKvK4w4IgBh6ToHz3k5+L0yAnMtGw4jN0bDnHdddmxTq/zrli1eQhombAPTPsWZpc1JJycrJesgT8Q8bc7CV/BNclM+RbnANsDWUGQizx5VR7QW+Xhfr0Dr2Q1FCc9eLmMOaUHNZwE5Py8hzKhXwwWPkSifaStoxZBJulGYyfu+TraV7ZvWHb9pnUdq9rXdmDbTjjVV0fpByZLL/pAPjrG6V30VTzkYv5L/WUcb86CK1kFYVJtcH0pH/8fGQ7hSybmEQA=",
1930
- "debug_symbols": "7P3Nsuy6cqWJvstpq0F3+A+gVym7lqbKUpXJTCaVKZW3I8t3v0En4cPnXCcwMSNi305V56xv77OXDxKgjwABJ/Bff/s//vl//5//13/7l3/7P//9f/ztH/+3//rb//4f//Kv//ov/9d/+9d//+//9J//8u//9vi3//W34/wfkr/9I1H3//UPf6Pzn9sR/2yPf+b4/+1v/9iZH/+vT+gntAeME+TxHx4Bj7/S8q/QmP/BMf+DE2gCT2gTZIJOsBvk/Ft0POLLGX88/gr9w9+GXH/o9Yddf/j1R7/+GPEHHcf9J91/8v1nu/+U+0+9/7T7T7//7Pefdzy649Edj+54dMejOx7d8eiOR3c8uuPRHY/veHzH4zse3/H4jsd3PL7j8R2P73h8x2t3vHbHa3e8dsdrd7x2x2t3vHbHa3e8dseTO57c8eSOJ3c8uePJHU/ueHLHkzue3PH0jqd3PL3j6R1P73j6iHc+aGr3n37/2e8/H/Hs8acd9590//mIdz5/dsY7/0OTCTrBJviEPuG8Sjmf+GMCTeAJbYJM0Ak2wSf0CTNyPyPrCTSBJ5yRz5vvMkEnPCJzgE/oE8YN45hAE3hCmyATdMKMPGbkMSOfOXRmO59JdAFN4AltgkzQCTbBJ/QJMzLNyDQj04xMMzLNyDQj04xMMzLNyDQj84zMMzLPyDwj84x8ZhfrCTbBJ/QJ44YzxS6gCTyhTZAJM3KbkduM3GbkNiPLjCwzsszIMiPLjCwzsszIMiPLjCwzss7IOiPrjKwzss7IOiPrjKwzss7IOiPbjGwzss3INiPbjGwzss3INiPbjGwzss/IPiP7jOwzss/IPiP7jOwzss/IPiP3GbnPyH1G7jNyn5HPHOR+gk3wCX3CuCFyMIAm8IQ2QSbMyGNGHjPymYONThgXtDMHL3hEbnYCT2gTZIJOsAk+oU8YN5w5eMGMTDMyzch0+0YjnWATfEKfcDtS42MCTeAJbcKMzDMyz8hnDrZxQp8wbjhz8AKawBPaBJmgE2zCjNxm5DYjnzkoxwk0gSe0CTJBJ9gEn9AnjBt0RtYZWWfkMwelnSATdMIZ2U/wCX3CuOHMwQtoAk9oE2SCTpiRbUa2GdlmZJ+RfUb2GdlnZJ+RfUb2GdlnZJ+RfUbuM3KfkfuM3GfkPiP3GbnPyH1G7jNyn5HHjDxm5DEjjxl5zMhjRh4z8piRx4w87shyHBNoAk9oE2SCTrAJPqFPmJFpRqYZmWZkmpFpRqYZmWZkmpFpRqYZmWdknpF5RuYZmWdknpF5RuYZmWdknpHbjNxm5DYjtxm5zchtRm4zcpuR24zcZmSZkWVGlhlZZmSZkWVGlhlZZmSZkWVG1hlZZ2SdkXVG1hlZZ+SZgzJzUGYOSuTgwzckcjCAJvCENkEm6ASb4BP6hBnZZ2SfkX1G9hnZZ2SfkX1G9hnZZ2SfkfuM3GfkPiP3GbnPyH1G7jNyn5H7jNxn5DEjjxl5zMhjRh4z8piRx4w8ZuQxI487sh7HBJrAE9oEmaATbIJP6BNmZJqRaUamGZlmZJqRaUamGZlmZJqRaUbmGZlnZJ6ReUbmGZlnZJ6ReUbmGZln5DYjtxm5zchtRm4zcpuR24zcZuQ2I7cZWWZkmZFlRpYZWWZkmZFlRpYZWWZkmZF1RtYZWWdknZF1RtYZWWdknZF1Rp45qDMHdeagzhzUmYM6c1BnDurMQZ05qDMHdeagzhzUmYM6c1BnDurMQZ05qDMHdeagzhzUmYM6c1BnDurMQZ05qDMHdeagnjmofIJP6BPGDWcOXkATeEKbIBN0wow8ZuQxI487sh3HBJrAE9oEmaATbIJP6BNmZJqRzxzUdgJPaBPOyHqCTrAJPqFPGDecOXgBTeAJbcKMzDMyz8g8I/OMzDNym5HbjNxm5DYjtxm5zchtRm4zcpuR24wsM7LMyDIjy4wsM7LMyDIjy4wsM/KZg/oYz9uZgxfQhDOyn9AmyIQz8jjBJviER2Q7+yvmY06ICZmAc0ZGTuAJbYJM0Ak2wSf0CeOGMwcvmJF9RvYZ+cxBO6/5zMELbIJP6BPGDWcOXkATeEKbMCP3GbnPyGcOWj+hTxg3nDl4AU3gCW2CTNAJNmFGHjPyuCP7cUygCTyhTZAJOsEm+IQ+YUamGZlmZJqRaUamGZlmZJqRaUamGZlmZJ6ReUbmGZlnZJ6ReUbmGZlnZJ6ReUZuM3KbkduM3GbkNiO3GbnNyG1GbjNym5FlRpYZWWZkmZFlRpYZWWZkmZFlRpYZWWdknZF1RtYZWWdknZF1RtYZWWdknZFtRrYZ2WZkm5FtRrYZ2WZkm5FtRrYZ2Wdkn5F9RvYZ2Wdkn5F9RvYZ2Wdkn5H7jHzmoNMJPKFNkAk6wSb4hD5h3HDm4AUz8piRx4w8ZuQxI48ZeczIY0Yed+R+HBNoAk9oE2SCTrAJPqFPmJFpRqYZmWZkmpFpRqYZmWZkmpFpRqYZmWdknpF5RuYZmWdknpF5RuYZmWdknpHbjNxm5DYjtxm5zchtRm4zcpuR24zcZmSZkWVGlhlZZmSZkWVGlhlZZmSZkWVG1hlZZ2SdkXVG1hlZZ2SdkXVG1hlZZ2SbkW1GthnZZmSbkW1GthnZZmSbkW1G9hnZZ2SfkX1G9hnZZ2SfkX1G9hnZZ+Q+I88c7DMH+8zBPnOwzxzsMwf7zME+c7DPHOwzB/vMwT5zsM8c7DMH+8zBPnOwzxzsMwf7zMExc3DMHBwzB8fMwTFzcMwcHDMHx8zBMXNwzBwcMwfHzMExc3DMHBwzB8fMwTFzcMwcHDMHx8zBMXNwzBwcMwfHzMExc3DMHBwzB8fMwTFzcMwcHDMHx8zBMXNwzBwcMwfHzMExc3DMHBwzB8fMwTFzcMwcHDMHx8zBMXNwzBwcMwdH5KCc0CeMGyIHA2gCT2gTZIJOsAkzss7IOiNHDuoJNIEntAkyQSfYBJ/QJ4wbfEb2GdlnZJ+RfUb2GdlnZJ+RfUb2GbnPyH1G7jNyn5H7jNxn5D4j9xm5z8h9Rh4z8piRx4w8ZuQxI48ZeczIY0YeM/K4Iz8W2Y8kSuKkliRJmmRJntSTUoNSg1KDUoNSg1KDUoNSg1KDUiPy0qM44EiipLNe4QhqSZKkSZbkST1pTDpT9CZKSo2WGi01Wmq01Gip0VKjpYakhqSGpIakhqSGpIakhqSGpIakhqaGpoamhqaGpoamhqaGpoamhqaGpYalhqWGpYalhqWGpYalhqWGpYanhqeGp4anhqeGp4anhqeGp4anRk+Nnho9NXpq9NToqdFTo6dGT42eGiM1RmqM1BipMVJjpMZIjZEaIzXG1IhqmpsoiZNakiRpkiV5Uk9KDUoNSg1KDUoNSg1KDUoNSg1KDUoNTg1OjcxzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjznzHPOPOfMc84858xzzjyPMqLOQZ7Uk8akyPOLKImTWpIkaVJqjNQYqTGmRhQV3URJnNSSJEmTLMmTelJqUGpQalBqUGpQalBqUGpQalBqUGpwanBqcGpwanBqcGpwanBqcGpwarTUaKnRUqOlRkuNlhotNVpqtNRoqSGpIakhqSGpIakhqSGpIakhqSGpoamhqaGpoamhqaGpoamhqaGpoalhqWGpYalhqWGpYalhqWGpYalhqeGp4anhqeGp4anhqeGpEXnegnrSmBR5fhElcVJLkiRNsqTU6KnRU2OkxkiNkRojNUZqjNQYqTFSY6TGmBpRuHQTJXFSS5IkTbIkT+pJqUGpQalBqUGpQalBqUGpQalBqUGpwanBqcGpwanBqcGpwanBqcGpwanRUqOlRkuNlhotNVpqtNRoqdFSo6WGpIakhqSGpIakhqSGpIakhqSGpIamhqZG5LkGtSRJOjV6kCV5Uk8akyLPL6IkTmpJkpQalhqWGpYalhqeGp4anhqeGp4anhqeGp4anhqeGj01emr01Oip0VOjp0ZPjZ4aPTV6aozUGKkxUmOkxkiNkRojNUZqjNQYUyOKo26iJE5qSZKkSZbkST0pNSg1KDUoNSg1KDUoNSg1KDUoNSg1ODU4NTg1ODU4NTg1ODU4NTg1ODVaarTUaKnRUqOlRkuNlhotNVpqtNSQ1JDUkNSQ1JDUkNSQ1JDUkNSQ1NDU0NTQ1NDU0NTIPNfMc80818xzzTzXzHPNPNfMc80818xzzTzXzHPNPNfMc80818xzzTzXzHPNPNfMc80818xzzTzXzHPNPNfMc80818xzzTzXzHPNPNfMc80818xzzTzXzHPNPNfMc80818xzzTzXzHPNPNfMc808t8xzyzy3zHPLPLfMc8s8t8xzyzy3zHPLPLfMc8s8t8xzyzy3zHPLPLfMc8s8t8xzyzy3zHPLPLfMc8s8t8xzyzy3zHPLPLfMc8s8t8xzyzy3zHPLPLfMc8s8t8xzyzy3zHPLPLfMc8s8t8xzyzy3zHPLPLfMc8s8t8xzyzy3zHPLPLfMc8s8t8xzyzy3zHPLPLfMc8s8t8xzyzy3zHPLPLfMc8s8t8xzyzy3zHPLPLfMc8s8t8xzyzy3zHPLPLfMc8s8t8xzyzy3zHPLPLfMc8s8t8xzyzy3zHPLPLfMc8s8t8xzyzy3zHPLPLfMc8s8t8xzyzy3zHPLPPfMc88898xzzzz3zHPPPPfMc88898xzzzz3zHPPPPfMc88898xzzzz3zHPPPPfMc88898xzzzz3zHPPPPfMc88898xzzzz3zHPPPPfMc88898xzzzz3zHPPPPfMc88898xzzzz3zHPPPPfMc88898xzzzz3zHPPPI+isEFBY9KZ5zdREie1JEnSJEvypNTQ1LDUOPN8xDfe8eXsRS1JkjTJkjypJ41JZ57flBqeGp4anhqeGp4anhqeGp4aPTV6avTU6KnRU6OnRk+Nnho9NXpqjNQYqTFSY6TGSI2RGiM1RmqM1BhTIwrJbqIkTmpJkqRJluRJPSk1KDUoNSg1KDUoNSg1KDUoNSg1KDU4NTg1zjwf8eXzmec3SdKpYUGW5Ek9aUw68/wmSuKkliRJqdFSo6VGS42WGpIakhqSGpIakhqSGpIakhqSGpIamhqaGpoamhqaGpoamhqaGpoamhqWGpYalhqWGpYalhqWGpYalhqWGp4anhqeGp4anhqeGp4anhqeGp4aPTV6avTU6KnRU6OnRk+Nnho9NXpqjNQYqTFSY6TGSI2RGiM1RmqM1BhTI4rVbqIkTmpJkqRJluRJPSk1KDUoNSg1KDUoNSg1KDUoNSg1KDU4NTg1ODU4NTg1Ms9H5vnIPB+Z5yPzfGSej8zzkXk+Ms9H5vnIPB+Z5yPzfGSej8zzkXk+Ms9H5vnIPB+Z5yPzfGSej8zzkXk+Ms9H5vnIPB+Z5yPzfGSej8zzkXk+Ms9H5vnIPB+Z5yPzfGSej8zzkXk+Ms9H5vnIPB+Z5yPzfGSej8zzkXk+Ms9H5vnIPB+Z5yPzfGSej8zzkXk+Ms9H5vnIPB+Z5yPzfGSej8zzkXk+Ms9H5vnIPB+Z5yPzfGSej8zzkXk+Ms9H5vmYec7HzHM+Zp7zMfOcj5nnfMw852PmOR8zz/mYec7HzHM+jtSg1KDUoNSg1KDUoNSg1KDUoNSg1ODU4NTg1ODU4NTg1ODU4NTg1ODUaKnRUqOlRkuNlhotNVpqtNRoqdFSQ1JDUkNSQ1JDUkNSQ1JDUkNSQ1JDU0NTQ1NDU0NTQ1NDU0NTQ1NDU8NSw1LDUsNSw1LDUsNSw1LDUsNSw1PDU8NTw1PDU8NTw1PDU8NTw1Ojp0ZPjZ4aPTV6avTU6KnRU6OnRk+NkRojNUZqjNSIPB9BmmRJntSTxk1RD3cTJXFSS5KkU0ODLMmTetKYFHl+ESVxUkuSpNSg1KDUoNSg1ODU4NTg1ODU4NTg1ODU4NTg1ODUaKnRUqOlRkuNlhotNVpqtNRoqdFSQ1JDUkNSQ1JDUkNSQ1JDUkNSQ1JDU0NTQ1NDU0NTQ1NDU+PM88djEdiBI/FM9YkEZGADClCBBoSaQc2gFvtd0RFIQE4cdO1ExVFrRjeeYnRtu2RAB3bgmBjVZRMJyMAGFKACDejADoQaQY2gRlAjqBHUCGoENYIaQY2gxlBjqDHUGGoMNYYaQ42hxlBjqDWoNag1qDWoNag1qDWoNag1qDWoCdQEagI1gZpATaAmUBOoxR5xZIEjMXaKu5GADGzAUPNABRrQgR04EiPdbiQgAxsQapFu1AMNGGojsANH4pVuFxKQgQ14qp27L3IUqk004KkWmzFGrdrEkRhbznFcb2w6dyMDG1CACjzVYj+qKFqb2IEj8fzdfRh7IAEZGHE1MOLGQxD+0M5/G1VpD3sPJCADG1CACoy4I9CBHTgSwx9uJCADG1CACoRa+MO5pRNHndrEU+3czYmjUm0iARnYgAI81UQCDejADhyJ4Q83EpCBDShAqIU/SHRL+MONoWaBIzH84UYCnmoa7RD+cKMAFWhAB55qSoEjMfzhRgIysAEFqEADOhBq4Q/ndhQcFW0TCRgtGY9c+MONAhyJkfMavRnZrdE6kdLnLgscRWkTHdiBIzFS2uIiI6VvZGADClCBp5rFXURK39iBIzFS+kYCMrABBahAqMXwwKIdYnhw45gYxWp07ubAUa02kYGhZoGh5oGhNgIN6MAOHImR/jeecZ0DBahAAzqwJ0YWnh+VcRSU3RhZ6HG9kW/eAwWoQAM6sCdGXnhcb+TFjSMx8uJGAjKwAQWoQANCTaGmUDOoGdQMavELeVY+c1R3PVYLAs8IPbo78uJGAp4RenR3ZMuNAlSgAT0xUqRHB0Qy9OiASIYeVxbJcKMBI0I0dSTDjSMxkuFGAjLwVBtxx5EMN55qI24+kuFGnxi1W3QumXAUaj2mKQMFGNfrgRFBAh3YgSMxHvB46YiCrYkMDDULFKACoUZQI6gR1OL37UaafRG1WxMbUIAKNOCYXRiVWVcXRmnW1VlRmzVRgTb7IsqzJnZg9mZUaE0kIM9+iyKtiZKdJQo04MgujHy7+k3Rm5FvVxdGvl0NpWhfRfsq2jfy7eosQ28aejPy7eosQ28aetOgZlAzqBnUDL0ZyTCiSSIZbhyJsd/pEa0TO57eyMAGFKACDejADhwnnpcTZU8TCcjABhRgqPVAAzqwA0PtfIyiAGoiAU+1eCeOGqiJAjzV4v3Yrj1SL3RgB55qdD4wdu2M2gIbUIAKjLgaGHEtMOJ64EiM3YpvJGCoxR3HnsU3ClCBp9q1K3tsWRxvHVH8xLF5clQ/8b3R7ykRO9hG/dPEBhSgAg3owFCLVo+NjC+MrYxbXE5sZnwjAxtQgAo0oAM7cCQa1AxqBjWDmkHNoGZQM6gZ1AxqseVxvEZFcdREBjagABVowIgbnRUbHt9IQAY2oAAVaEAHdiDUBtQG1AbUBtQG1AbUBtQG1AbURqr5cQAJyMAGFKACDejADoQaQY2gRlAjqBHUCGoENYIaQY2gxlBjqDHUGGoMNYYaQ42hxlBjqDWoNag1qDWoNag1qDWoNag1qDWoCdQEagI1gZpATaAmUBOoCdQEago1hZpCTaGmUFOoKdQUago1hZpBzaBmUDOoGdQMagY1g5pBzaDmUHOoOdQcag41h5pDzaHmUIOXOLzE4SUOL3F4icNLHF7i8BKHlzi8xOElDi9xeInDS/zyEgkUoAJ9OqJfBnLhmNiPA0hABjagABVoQAd2INQIagQ1ghpBjaBGUCOoEdQIagQ1hhpDjaHGUGOoMdQYagw1hhpDrUGtQa1BrUGtQa1BrUGtQa1BrUFNoCZQE6gJ1ARqAjWBmkBNoCZQU6gp1BRqCjWFmkJNoaZQU6gp1AxqBjWDmkHNoGZQM6gZ1AxqBjUMOzqGHR3Djo5hR8ewo2PY0THs6A41h5pDrUOtQ61DrUOtQ61DrUOtQ61DrUNtQG1AbUBtQG1AbUBtQA1e0uElHV4y4CUDXjLgJePyEg8UoAJDbQQ6sAND7Rwgj8tLLiQgAxtQgKeacKABHXiqSVxveMmF4SU3EpCBDXiqxQxyVH5NNGCoaWAHjsTwkhsjrgVGhGio8IcbOzAiREOFP9xIwPN6Y155XGeqXChABZ5qMRU8rrNVLuzAkXidpxLNd52f0gIN6MC43pCInL8wcv5GAjKwAQUYatGo16kqFzqwA0fidbrKhQRkYAMKEGoONYeaQ82h1qHWodahdp27Et0d2R2z41HJNbEDR2Jk940EZGADClCBUBtQG1AbU61FWddEAjKwAQWoQAM6sAOhRlAjqBHUCGoENYIaQY2gRlAjqDHUGGoMNYYaQ42hxlBjqDHUGGoNag1qDWoNag1qDWoNag1qDWoNagI1gZpATaAmUBOoCdQEagI1gZpCTaGmUFOoKdQUago1hZpCTaFmUDOoGdQMagY1g5pBzaBmUDOoOdQcag41h5pDzaHmUHOoOdQcah1qHWodah1qHWodah1qHWodah1qA2oDagNqA2qXl3igAg3owA4cE+nykgsJyMAGPNXsCFSgAUOtB3bgSLy85EICMrABBahAA0KNoBZeci7xtSgnm0hAAZ4RznXIFqViEyPC2b5RLDaRgAxsQAGe1+vRJOEPNzqwA081D+HwhxsJeKp5XG/4w40CDLUWaEAHdmCoyYnhDx7XG07g0cfhBDcq0IARdwSecXvcRThBj8sJJ+ihFk5wIwMb8FTrcTnhBDca0IGhFtcb6d/jciL9e/R8pP+Iy4n0HyER6X+jAg3owA4ciZH+I64h0v/Glo9RxxMVOX+jAR3YgXhSB57UgSc1cv5GqA2oDagNqA2oRc6PaLPI+cDrHMUb44Y8kIENKEAFGtCBHTgSI+dvhBpBLXL+LEtt1xmLNyrQgA7swJEYOX8jARkINYYaQ42hFv5wrjC1+7RFDSQgAxtQgAo0oAM7cCQK1ARqAjWBmkBNoCZQE6gJ1ARqCjWFmkJNoaZQU6gp1BRqCjWFmkHNoGZQM6gZ1AxqBjWDmkHNoOZQc6g51BxqDjWHmkPNoeZQc6h1qHWodah1qHWodah1qHWodah1qA2oDagNqA2oDagNqA2oDagNqI1Ua8cBJCADG1CACjSgAzsQagQ1ghpBjaBGUCOoEdQIagQ1ghpDjaHGUGOoMdQYagw1hhpDjaEGL2nwkgYvafCSBi9p8JIGL2nwkgYvafCSBi9p8JIGL2nwkgYvafCSBi9p8JIGL2nwkgYvafCSBi9p8JIGL2nwkgYvafCSBi9p8JIGL2nwkgYvafCSBi9p8JIGL2nwkgYvafCSBi9p8JIGL2nwkgYvafCSBi9p8JIGL2nwkgYvafCSBi9p8JIGL2nwkgYvafCSBi9p8JIGL2nwkgYvafCSBi9p8JIGL2nwkgYvafASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwktgorp11Ky1K/SYKUIEGdGAHjsTTSyYSEGoCNYGaQE2gJlATqAnUFGoKtZzhbHJ5yYWhRoEKNKADO3Ak2gEMtRbIwAYMNQlUoAFDLa7MOnAkXl4SwS4vuZCBDShABRrQgR04EsM1zqnrFkWIE+Mu4oHpCjSgAztwJI4DGG3mgQxswFDrgQo0YKjFlcW50zeOiVGayNeRw+EaNzKwAQWoQAM6sANHYpw+fRZbtShNnCjA8y7OYqsWpYkTHXjexVlh1aI08cbTH9pZbNWiNHEiA0+1s8KqRWniRAUa0IEdOBLjhGqSQAIysAEFqEC76wbbXbB4dvdVsDguJCADG1CACjSg3xWCLbaWmzgSo5j4RrorMNtV3HhjAwpQgQZ0YAeOREPPG3re0POGnjf0vKHnDT1v6HlHzzt63tHzjp539Lyj5x097+h5R887er6j5zt6vqPnO3q+o+c7er6j5zt6fqDnB3p+oOcHen6g5wd6fqDnB3p+oOdH9rwdBzB7PmotJzagABVoQAd2YPZ8VFW2s6KxRVXlRAEqMPri+msO7MCRGOXIZ8l5s6sc+UIGNqAAFWhAB/bEK7s9kIENKEAFGtCBHTgS49f/RqgJ1ARqArX49ee4yPj1v9GBHTgS49f/xlONo9XPnJ/YgAIMtWj1+PW/0YGh1gNPtRYS8et/IwEZ2IACVKABHXiqnSVCLQosbwwnOD84a1FgOZGBDRhqcenhBDca0IEdOBLDCW4kYKhFD4UT3Bhq0TrhBDca0IE9MQYCZ2FAi1rLiQxsQAGeEhJNEgOBGx3YgWNi1FpOPNXOj9Na1FpObEABKtCADuzAkUgHEGphFWcRQYtay4kCDDUNNKADQ80DQ+1syai1bGeNQItay4kMbEABKjCKNILGpKskKoiSOKlNigw+qw5aFDtOVGDUfAd5Uk8ak2Ie4CJKiogXns0QI/coXWzXvxyTIhsvimFlECe1JEnSJEsKkbivSMMbTxWNLoo0vJGAcZnRRZFasdQWVYgTY7r5pMisWByLIsSJDGxAAepskp7N2bM5ezZnz+Yc2ZyRSFcjRspcjRgpEwtgUV04MW71vNKoLpx4Xmks2EV1oVzUkiRJkyzJJ0VaxIpZ1Aq2WHGIWsFIkCgVvMmSzr99/Xc9aUyK8+kvoiROCpEIE8/9jWe/n9/jtSgRnOiJMQA2DYwIFijA8zrjNuK38GqY+C28sQNHYvwWnl/8taj6m8jAlg1+ZdKFCoSaQE2gJlBTqCnUFGoKNYWaQk2hplBTqCnUIvtupPtRj6K/6/GNor+JAlSgJcbvlEWESKYbOzDeUk+6JryCKImTWpIkaZIleVJPSo2RGiM1RmqM1IjfqFh/jRK8iQY8bybWVKMEb+LZiLGuGyV4EwnIwAYUoAJDzQId2IGhdj7lUYI3kYCh5oENKMBYdA2yJE/qSWNSzG5dFBEvjCsdgeeVxppwFNRNHImRjzeeVxqLxrGj2sQGFKACY6kzKMRaYAeOxMjSeG2J2ruJDAyxaIvI0htDLG4tsvRGB8bzGzQmXTkaREmc1JIiYjRW5FysWEfVXTs/32tRdTeRgQ14Xmm8l0XV3UQDOrADQ+2k+N27iJKiUYJakiRpkiV5UojEIxfDzgvjx/HGBozLjMaPoeSN8VQHjUkxprworvJCBjZgtEjcR6TrjfGrFc07HHj+8sQ8X9TUyTkfJ1FTJ+fknkRNnZzTeHJcv48XNqAAFWhAB3ZgqOmJFHEtsAEFqMCI64Fn3BHUk8ak+Pm8iJI4qSVJkiZZUmpwanBqtNRoqdFSo6VGS42WGi01Wmq01GipIakhqSGpIalx5qNEu5zpeNOYdKbjTZTESS1JkjTJklJDU0NTw1LDUsNSw1LDUsNSw1LDUsNSw1LDU8NTw1PDU+P8VRSKB7gr0IAO7MCReObbRAKeWueslkThmVA8y5Fa5zyIRP2XnG/6EvVfEzswJM4ui/qvc8AqUf51Eye1JEnSJEvypJ40JnFqcGrEI39+OypR8yXnUFqi5kvjHs4H/KLzAb+JkjipJUmSJlmSJ6VGSw1JDUkNSQ1JDUkNSY141DluKp7r87VNYuMvOXfZkajlmihABRrQgR04EuMBv5GAUDOoGdTiKee43njMb3RgB47EeNRvJCADG1CAUHOoOdQcag61DrVzvKnxgJ7jzZtakiRpkiVFxNOpo15LOJ75M1Useun8abpJkx5/2+IRPH+XbupJ46Yo1LqJkuLGR+B5i+errkTp1cSReKabtPhrZ75NZGADClCBBnRgB45EhhpDLX6BzpksidKriQIMNQ00YKhZYKh5YKjFzccv0Y0EPNUkhOPH6MZT7XyLlCjIEgnhM13Pd0SJeqybetKYdKbrTZQUES88r1TioiM5w46jvOrG+CW68bzSc55HorxqYgMKUIERN24w0lCjdyMNNW4w0vBGASrQgA7swJEYaXhjqEXDRRre2IChFs0ZaXijAR0YatFmkYYXRhreeDZvtNOZhje1pDOR4oE40/AmS/KknjQmnT9tFk15/rLdxElxP9GDQ4AKNOCYGKVPcs4ISZQ+TYwIHqhAAz6u9HyHlKh8umlMiuPlL6IkTmpJkqRJlpQalBqUGpwanBqcGpwanBqcGpwanBqcGpwaLTVaarTUiNw856gkCpwmKvBsr3MKQqLAaWIHnv0QbhoFThPP59Wid2LEeGMDClCBoRbdF9l8Y6hFn0U2x8MSBU5yTl1IFDhNZGAMyeIir7HlhQo8m1CCPKknjUnnj+9NlBQRow2vYWPc9jVubIEj8Ro5XkjAGDvGbV+DxwsFqEADnpd60UOsx41EFns0UGSxx/13Aj6i9lCdZ1tIFBqNCBT74V7ESeclXdEjFW9UoAEd2IFjYlQZSehHldFEBsp9VTLPsRCZ51hI1BWd76wSZUU3jUnx23quGkoUFU1kYNxKDxRg3IoHGtCB/doRWGTufy0y978Wmftfi8z9r0Xm/tcic/9rkbn/tcjc/1pk7n8twqnBqdFSo6VGS42WGi01Wmq01Gip0VKjpYakhqRG5Ok5HSJRPDRRgPECGR0aeXqjA+MdkgJHYuTpjQSM98jo3sjTEc9B7JEbYrFH7kWWFFLR6fFDfONIjFHyjQRkYAMKUIEGhJpBzaAWG2PHsxQbY1/ESS1JkjTJkjypJ41JPTV6avS4Hw1sQAEq0IAO7MCRGK+dNxIw1OIJCU+4UYA+MeqCJC4y6oIkui3qgiY2oADP0fw5JyRRFzTRgR04EuMd9kYCMrABBQg1ghpBjaBGUGOoxevsOXElUS00MdRaoAAVGGoS6MAOHInx9nsjARnYgKGmgQo0oANDzQNHYrwH30hABp5qMfcQNUQTFWhAB3bgqUbRUKchTCQgAxtQgAo0oAM7EGoWahxIQAaGWrSkhVo0lCkw1OIBNweGWrSOjUQ/gARkYAMKUIEGdCDUHGodah1qHWodah1qHWodah1qHWodagNqA2oDagNqA2oDagNqA2oDaiPVot5oIgEZ2IACVKABHdiBUAsvObc3k9jbbSIDG/CsC4qn2q5NwS80oAM7cCRem4JfSEAGxl2MwJhZu/7tSAx/iMmzqDeayMAGFKACDRhxz2SIGqK7SQR3fOX8hQo0YEwEtsAOHImR8zeiNxVqit5U9KaiNxW9qejNK+fjGq6cDzT0pqE3I+eva4icv1GAUDOoGdSQ84acN+S8IefN8ew4WtLRko6WjJy/rsHRko6WRM4bct6Q84acN+S8IecNOW/IebtyPq6hoyU7WnKgJQdaMnI+ZhijnGhitKQGKtCADox7u4KNiVFONJGADGxAASow1EagA/MBjxoijUm5qCGayMAGzEfDr9nvCw3owA7Mx975AGZnRQ3RxAYUoAIN6MAOzEcj6og0JvuikGiiAM+4Ldoh0j/m/WJntokdOBJjeHAjARnYgALMgaFfbwYXjsQwhZhljNqkiRE3bihM4UYBxl1Ed4cp3OjAuIvo+TCFC8MUbiQgAxtQgAo0oAOhFgfYxr3HAbYXtaTzJTxuMQ6wvciSzogxNRoVThNHYiR+TJhGidNEBrbrGFHxeYyt+DzGVnweYys+j7EVn8fYis9jbMXnMbbi8xhb8XmMrfhIjZEaIzVGaozUGKkxj7GVPo+xlT6PsZU+j7GVPo+xlT6PsZU+j7GVPo+xlT6PsZXYWU1jEjh2VrsxUv3GaDALZODZ4TFhHNVSExV4dnjM/EbB1MRYSToCR2KkekzWRtHURAaeL4QXSZImWZIn9UnXEhgHxlpUC4zFqLjBa8XrQgd2YFxp3Pa16nUhARnYgKE2AhVoQAd24EiMJI+pwqiYmsjABhSgAg3owA4ciQa1SPJYqomSqYkNGGrRkpHksaAQJVMTQy2ehEjyG0MtWid++W8kIAMbUIAKNKADOxBqHWodah1qHWodah1qHWodah1qHWoDagNqA2oDagNqA2oDagNqA2oj1aJIayIBGdiAAlSgAUPNAztwJIYz3HiOv+M9Ooq0JjagABVoQAd24EgMD4g569j7TGN2Okq1Jp7XG1PSUao1cSTGaP9GAjKwAc+4MTEd9Vd3kwjuOHL+RgY24Nm+MZ8d9VcTDejADgmoKXpT0ZuK3lT0pqI3Fb155XxcjqI3Fb2p6E3DvUXOx/R6VGxNjNaJvoicv1GBBox7u4J14EiMnL+RgAxsQAGGWjwEkfM39uysSPSYrY96rYkEZGDLDujorI7O6uisjs6KRL9xJCLRBxJ9INEHEn0g0QcSfSDRBxJ9ZKJrFHLpuRSgUcg1sQHPuOfnMxqFXHrWF2oUck10YAeOxEjpGwnIwAaMuC3QgR04EuNn/dz3RqOYayIDG3D+NGsUdE00oAM7cCReRS8XEpCBeq3+aBRx3eRJ5+KVB41JZ+bfFNd/IQMb8FxmjA478/4mS4qm6oEdOBLPrL+680z6mzipJUmSJlmSJ/WkMclSw1LDUsNSw1LDUsNSw1LDUsNSw1PDU8NTw1MjsvtcGtHYz2yiAf1eltPYz2zi2WIjnvVI9BsJGKUv8aRetS8XClCBBnRgB47ESPQRj1Ek+o0MbMBQi4cqEv1GAzqwA0PtfFxiP7OJBDzbkYNakiRpkiV5Uk8ak860v4mSUoNSg1KDUoNSg1KDUoNSg1ODU4NTI/L/LH7VKG6bqEADOrADR2Lk/41nfcS53qBR9jaxAUOtByrQgGclxhEXGdU0N45EYeBZDHyRJ8Vfim6TkXhm+UQCMrABz0oRiqs9U32iAR0YZVcUOBLtAEblVVzZmfETGzDUWqACDejAUJPAUIvr9Ygbze8NKEAFRtwReMbluIszz43jcs48Nw61M88nEpCBUaUWlxPVNTcq0IChFtcbdTUclxOFNRz9HpU1LS4nSmtaSEQh3I0CVKABHdiBp9q5h7pe9XA35kMUu5VNFKACDejAkLDAkUgHMG7IAxnYgAJUoAEd2IEjkQ8g1BhqHGojUIAKNKADO3AktgNIQAZCrUGtQa1BLdL8nPjSu0DuCCQgAxvwjHtW5WnsVjbRgA7sd4WLXuV0F16F3RcSkIENKEAFRpHfhSMxcv5GAjKwAeN6W2BEiGfSI4IGEpCBESEersjuG6Mdorsju290YFxvNHVk94WR3TcSkIENKMBQiy6M7L7RgR04EiPRb4yiwLj0SOmrHSKlb0TrREpr9Hyk9I1jYuwqNpGA512c81capXUTBajAUy2GqVFaN7EDQ+3sgKium0jAULPABhRgqHFgqHlgqPXAUBuBIzGy+8YzrsW9RR7fqEADRilj3FtkbDxcUUY3kYENqMBZL6pXndyFUSd346wi1atO7sYGFKACDejADhyJ8dNs0Wbx03yjABUYNx+dFT/NN3bgSIxim0inKIubyMAGFKACDejAnngVn0dDXcXnF8ZdRPtG8t6oQAPGXVzBOnAkRvLeSEAGRq10tGSU2NyoQAM6sANHYpTY3EhABsZdxLMeyXujAzsw7uLMgCiwm0hABkbB/oUCVKABHdiBIzEq7m6MvuiBAlSgAR3YgTGRc1K8al9ESZzUkiQpZjyCLMmTetKYdM2kBcWVj8DzGs/ZM42yuYkdGPd+PvVROTeRgAxsQAEq0IAO7ECoKdQUago1hZpCTaGmUIvcPSebNArlJhKQgVHtzYECVKABHdiBIzF+jm8Mtbic+Dm+sQEFGGoSaEAHduDIzoqMvpGADGxAASoQz0PH8xA/vDHPEuVxExkYcePBjJ/jeN2PLbYmGtCBcReRC5HRgVFKN5GAUSpPgadazFFFKd1EBRrQgR04EuPn+EYCMhBqkednZa1GKd1EAzqwA0di/BzfSEAGhtoIPNViXiRK6SYa0IEdOBLjp/tGAjKwAaEWv+JnoadGKd1EB3bgSIwh+I0EZGADhpoHKtCADuzAkRgv4zcS8Czvj0mCKKWbKEAFGtCBHTgSrxX0IEripJYkSZoUEaNlTw/wePWLwriJ4WTXfyBABRrQgR04Eq9Pyi4kYLRAXE6PFohe6AZ0YAeOxNMDJhIw7kIDG1CACgy1eMqHAztwTIwSuIkEZGCoeWCo9UAFGtCBHTgS44OX6IsogZvIwAYUoAIN6MCeGPvoxLMfxW4TGzA+dDkCFRifulwRHNiB8bXL2bF2fe5yIQHjgxcNbEABKtCAoRatE1PrN47EmFy/kYAMbEABRtzT367NtWLyNErgPKaRogRuogLPK4tHOUrgJp5XFlNOUQJ3Y3yzcuN5ZTEEiBK4iQ0oQAUa0IGhFp1lI9EPIAEZ2ICSdxzfsvCFHTgS+wGMuPHYdwY2oAD13s5Brw2zbnRgB47E2OfgRgIyMFon8i3y+EYHdmDcxdndUdY2kYAMbPe2HXrtknWjAg3owA4cidcOJBdG61woQAWedxFvHlHLNrEDz7s4i8c0atkmnncRk8RRyzaxAU+1mDWMWraJBnRgB47EyOMbQ00CGdiAAlSgAc82i5cmv7YLirvI7YLUc7sgvTbeulGACjSgA/u9w49GhduNkd03EjDUoqGu3UguFKACDejADhyJ13ZBF55xY1omatn8LK3TqGWbaEAHduBIjOy+MfoiWjKy+8YGFOB5FzFZE2VuEx3YgSPx2srrQgIysAHjLqID4rf7xg6Mu4gki9/uGwkYdxHdEr/dN553EfOkUd020YCnWkyORoHbxDExStwmEpCBDRhqHKhAAzqwA0di5Hy8E19bgEXPR1Hb1W9R1DbRgA7swOz5zgcwe74zAxtQgNnz115gNzqwA7Pnrx3CbiQgA7Pno0btsYLXgqWwFjZwLANfdxLrwDc6sANHYqwF3xjFnXF/V3XnhQ0oQAUa0IEdOBL7AYRaDzUPbEABhloPNKADT7V4cKPCq1+PXVR6Xs9PlHrGlGVUeE1sQAEq0ICnWkw4RoXXxDExKrwmEpCBDShABRrQgR0ItVgDjiclarkmSiLHv22BAgw1CTSgAztwJLYDGPemgXENFtiAAlSgAR3YgSNRDiABoSZQE6gJ1ARqArWo34jJsajP6jGjHvVZd6Mq+kLRF1GwEbPZUZ81cSRGzcaNBGRgqF0owFMtJuKjPmuiJ0Zuxk951Fz1+OWLmquJ8aTGXVx11tEtkYU3duBIjCwM14jyq4kMbNndkYU34tnpUOtQ61DrUIssvPH8t+ess8UuWBMJGP+BnRiFDzcSMC7SAxtQgNGoPdCA0agjsANHYpRAnNNgFlVQExnYgAJUoAFPtXOa0aIKauJIjHS6kYAMnN1tx5U4cW+ROGcPWRRCTRyJcgAJyMAGnB1rhyjQgA7sd7ZYlEPdeKXThQRkYAMKUIGWGCnicWWRIjcq0IAO7MCRGIlzIwEZCDWHmkPNoeZQc6g51DrUOtQinTy6MNLpRgEq0IAO7MCRGOl0IwGhNqA2oDagNqA2oDagNlItipwmEpCBDShABRrQgR0INYIaQY2gRlAjqBHUCGoENYIaQY2hxlBjqDHUGGoMNYYaQ42hxlBrUGtQa1BrUGtQa1BrUGtQa1BrUBOoCdQEagI1gZpATaAmUBOoCdQUago1hZpCTaGmUFOoKdQUago1g5pBzaBmUDOoGdQMagY1g5pBzaHmUHOoOdQcag41h5pDzaHmUOtQ61CDlxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsKXl5zjKL68RAMJyMAGFKACDejADhyJHWqXl/RABjZgqFmgAg14qp1l4cbXR5UXjsTrs8oWeKr1uOPrw8oLG1CACjSgAztwTGzXB5YXEpCBDShABRrQgR0INYIaQY2gRlAjqBHUCGoENYIaQY2hxlBjqDHUGGoMNYYaQ42hxlBrUGtQa1BrUGtQa1BrUGtQa1BrUBOoCdQEagI1gZpATaAmUBOoCdQUago1hZpCTaGmUFOoKdQUago1g5pBzaBmUDOoGdQMagY1g5pBzaHmUHOoOdQcag41h5pDzaHmUOtQ61DrUOtQ61DrUOtQ61DrUOtQG1CDlzR4SYOXNHhJg5c0eEmDlzR4SYOXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJXF5igQ0oQAUa0IEdOCbq5SUXEpCBDShABRow1DiwA0fi5SUXEpCBDShABRoQagQ1ghpDjaHGUGOoMdQYagw1hhpDjaHWoNag1qDWoNag1qDWoNag1qDWoCZQE6gJ1ARqAjWBmkBNoCZQE6gp1BRqCjWFmkJNoaZQU6gp1BRqBjWDmkHNoGZQM6gZ1AxqBjWDmkPNoeZQc6g51BxqDjWHmkPNodah1qHWodah1qHWodah1qHWodahNqA2oDagNqA2oDagNqA2oDagNlLNjgNIQAY2oAAVaEAHdiDU4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvsctLeuBIvLzkQgIysAEFqEADOhBqDWoCtctLRiADG/BUO+txLTaem2hAB3bgSAwvufFUOz9vtth4bmIDClCBBnRgqHngSAwvuZGADGxAASrQgA6EmkHNoeZQc6g51BxqDjWHmkPNoeZQ61DrUOtQ61DrUOtQ61DrUOtQ61AbUBtQG1AbUBtQG1AbUBtQG1AbqRYVehMJyMAGFKACDejADoQaQY2gRlAjqBHUCGoENYIaQY2gxlBjqDHUGGoMNYYaQ42hxlBjqDWoNag1qDWoNag1qDWoNag1qDWoCdQEagI1gZpATaAmUBOoCdQEago1hZpCTaGmUFOoKdQUavASh5c4vMThJQ4vcXiJw0scXuLwEoeXOLzE4SUOL3F4icNLHF7i8BKHlzi8xOElDi9xeInDSxxe4vASh5c4vMThJQ4vcXiJw0scXuLwEoeXOLzE4SUOL3F4icNLHF7i8BKHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXRD3gOL/BsKgHnGhAP7EFduBIjP3vz6PXLeoBJzKwAQWoQAM6sANHYoNag1qDWmyGf34CYLEt3kQFGtCBHTgSY0/8GwnIQKgJ1ARqAjWBmkBNoKZQU6gp1BRqCjWFmkJNoaZQU6gZ1AxqBjWDmkHNQk0CDejADhyJsTH+jQRkYAMKEGoONaysXAWLHj1/rcdeyMAGFKACDejADhwTr4LFGwnIwAYUoAIN6MAOhBpBjaBGUCOoEdQIagQ1ghpBjaDGUGOoMdQYagw1hhpDjaHGUGOoNag1qDWoNag1qDWoNag1qDWoNagJ1ARqAjWBmkBNoCZQE6gJ1ARqCjWFmkJNoaZQU6gp1BRqCjWFmkHNoGZQM6gZ1AxqBjWDmkHNoOZQc6g51BxqDjWHmkPNoeZQc6h1qHWodah1qHWodaj1cA0NdGAHjsQ4/eZGAjKwAcOjeqACDRhqFtiB40Y/rqmII1CACjSgAzvwDMaBp1VMJOB56ecXYR6lnxMFeF76+UWYR+nnRAd24EiMn/wbCcjABhQg1Bhq8ZN/fgbmUfo5zk+lPEo/b4yf/BsJyMAGFKACDehAqMVP/vndlUdB6EQCMrABBahAAzqwA6EWP/kt+iJ+8m9kYAMKUIEGdGAHnmrn5woeO+VNJGD8t/FMxg/2hfGDfeNcBPAjFzj8yAUOP3KBw49c4PAjFzj8yAUOP3KBw49c4PAjFzj86FDrUOtQ61DrUOtQ61DrUOtQG1AbUBtQG1AbUBtQG1AbUBtQy8VSp1zgcMoFDqdc4HDKBQ6nXOBwygUOj9LPcX7X4VHkOc4vOPwq8uwXNqAAFWhAB8b1jsCReE00XkhABjZgPJMXKvB8Js+vSDyKPCd24EiM7L6RgAxswIjbAiNCtG9k7I0RIRoqMvbGBhSgAg3owA4MtWizyNgbCRhqcfORsTcKUIEGdGAHnmrnhxQehZsTTzWNm49B+o0NKEAFGtCBPTGG4xrNFwPv87sDj2LMiREhbjMOprqxA0dinE11IwEZ2IChFnfcFWjAU83i5uMH+8aRGD/YNxKQgQ0owFPt/EjEoxhzYuRFdPeVxxeOiVcx5o0EZGC8VlOgABVoQAd24EikA0hABkKNoBa/6OdnEB7FmBMd2IEj8TrE7kICMnBOiftVjHmjAkPtQgd24Ei8jrO7kIAMbMDoNwtUoAEd2IEj8TrY7kICMjDu7QgUoAIN6MAOnJMvHlWVwy40oAM7cCRGot8YF9kDGdiAAlSgAWMWJZ6HSPQbR2L8uN9IQAaG2ggUoAJjziZ6yB3YgaeaR+uEKdxIQAY2oAAVaMBTzUMiTOHGkRimcCMBGdiAAlRgqJ3eF5WS43yT8KiUnNiAZ4QYjkel5EQDOrADR2IM3W8kIAMbEGqR6GfxqEel5EQHduBIjES/kYAMbMBQi3aIH/cbDejAUIsmiUS/MBL9xlMtsiUqJSc2oAAVaEAHduBIjES/EWqR6OFRUSk5UYAKNKADO3AkxkDgxohrgf3c4/8I5TO9J5/5nUzBFMyFW2EprIWtsBfuhQfYj8JF1y9dCW6FpbAWtsJeuBce4H4UvnSjfToXboWlcOhStFW3wl44dCnupQ/wOApTYS7cCkthLWyFvXDRHZfueY9REZlMhblwKyyFtbAVdjBd8S2YCnPhVlgKa+Ervgd74eu+evAA86U7gqlw6MY0QxREJoduzC5ESWRy6MYbfxRFJofuuY+MR1nk5Ba6MS0QhZHJl64Gt8KXbtxj08KXbtxj88KXbtxjG2C5dOMehQqHbot7jH0GJoduvGlHmWRy6La4R/HCodviHmWAda5reNRKTmRgAwpQgZditJJ64V74UowWuBzpZirMhVthKayFrbAX7oWLrhfdy3nidVYuh4kXSLkcRqKFL4e5eYAvh7mZCpfr7+X6e7n+Xq6/l+vv5fp7uf5ern+U6x+l3UbRHUX3cpLrHi/HiHvUA9evBxXmwq2wFMb162GFvXAvjOtXOgpTYS7cCkvhoktF93KMuEe9nOG6Ry7Xz+X6L2e42Qp74XL9XK6/letv5fpbuf5Wrr+V62/l+lu5/lbarRXdVnRvB4h7vDM97lHK9Uu5fumF8dxGJWNy6Xe9+p2CW+G59uaaK32uudLnmit9rldOy8VXjBZ8tX1c+5W7N1vh69rjnq7cvXmAr9y9mQpz4VZYCmthK1x0veh60b1zPfrhzvWLuXArLIW1sBX2wr3wAI+iO4ruNWqIeRm9RgcafXWNDm4eyXbl+s1UmAu3wlJYC1vhS1eCe+EBvnL9ZirMhVthKayFrXDRvUYNMU10nWV78zVquJkKc+FWWAprYSvshYvu5Q0xpWSXN9xMhblwKyyFtbAV9sKhGzMidnnDxdeoISYs7Bo1WLSPzPVtN2lAASrQgA7swJGoB5CAUFOoadxjzHRECWOyFfbCvfAAX95yMxXmwq3wpevBWtgKe+FeeIAvr/B45i+vuLkXHuDLK26mwnGdHv11ecXFV47Hm79dOX4zF77++7ieK/dv1sJxnf2K6YV74bjOeLv2yxNupsJcuBWWwlrYCnvhXrjoUtGlont5wrmRsPvlCTdLYS1shb1wLzzAlyfcTIWLLhfdyxNiCcUvT7jZCnvhXniAL0+4mQpz4Va46Lai24puK7qt6LaiK0VXiq4UXSm6UnSl6ErRlaIrRVeKrhZdLbpadLXoXv4Qszh++cPNVtgL98IDfPnDzVSYC7fCl24PDt2YwfbLH272wr3wAF9jkpupMBduhaVw0b18ZkSbXD5zcy88wJfP3EyFuXArLIVnWb97fiDhnh9IuOcHEu6X98Tskl/ec7MWtsJeuBceyf3ynpupMBduhaWwFrbCXrgXLrpUdKnoUtGlont5z7kxrF/lie1CAzrwEvXgAb6M52YqzIVbYSmsha2wFy66YTwU03xRqphMhblwKyyFtbAV9sI9WIIHWI7Cl260j3DhVlgKa2Er7IV74QHWo3DR1Uu3B7fCUlgLW2Ev3AsPsB2FL90RLIW1cMSPKbyoW0yO+PEiFZWLk8NgJkf8cwNpj+LF5FZYCmthK+yFe+EB7kfhotuLbi+6vej2otuLbi+6vej2ojuK7ii6o+iOojuK7rh049kbVtgL98IjOYork8P/KPAKqcFW2AtfIS14gOkoTIW5cCsshbWwFfbCRZev+B58xe/BrbAU1sJW2Av3wtd76dnM4xrT3EyFuXArLIW1sBXGHM64LCRmesdlITdz4VY47itmgMdlITdbYS/cCw/wZSE3X3M7EV+5cCsshbWwFfbCvTDm4oZhbifKJed9XRZysxa2wuW+rNyXlfvycl+XhdzMhVvhcl9e7qvMkQ4v9+Xlvrzc1zVGubm0Zy/tec+Fxr33cl+3VVzcCw/wKPc1yn2Ncl+j3Ncoz8koz8koz8ko9zXKfWHutB/HUZgKc+FWWApr4T7vvR9H3lc/6ChMhblw3lc/SAprYSvshXvhAeZyX1zui8t9cbkvLvfF5b7YCnvhDs5PsfqRn2L1Iz/F6sc1HjmXafpxjUdutsJeuBce4MtMbqbCXLgVLrpSdKXoStGVoitFV4uuFl0tulp0r/HIufzUj2s8crMV9sKXrgQP8DUeuZkKX7oa3ApLYS1shb1wLzzAt5lYcCsshbXwFT/6+hqP3NwLD/A1HuFIlms8cjMXboWlsBa2wg6+zSQezttMLubCrXDUHl5/VYEGdGAHjolRmTmRgAyMSz1X6Dpd442be+EBvnzjZioct3CuwXW6fONmKayFrbAX7oUHmI/CVLjoXuOQ81Wp0zUOuVkLX7oe7IVD91yn6HS94lx8veKc6xSdrlecm0P3XIfodL3i3CyFtbAV9sK98ABflnIzFS66UnSl6ErRlaIrRVeKrhRdLbpadLXoatHVoqtFV4uuFl0tulp0reha0bWia0XXiq4VXSu6VnSt6FrR9aLrRdeLrhddL7pedL3oetG9rEYiRy6rufiympup8KUbz+plNTdLYS1shb1wLzzAlwXdTIWL7ii6o+iOojuK7ii6o+gO6PJxFL7iW/AVx4O98BWnBw/w5T83U2Eu3ApL4Svmaa3M6Gu+PCTany8PuVkKa+G45nNtrPPlITf3wgPc8IxxK7rFQ7h4CBcP4eIhXDyEbw+J62m9MJ4xlqMw4XouD7m5FS66xUO4eAgXD+HiIVw8hIuHsOLZZi3trKWdtbTz5SHX9WhpZy3tXDyEi4dw8RAuHsLFQ7h4CBcPYSv9e3vIxaWdrbSzlf69POTm0s7FQ7h4CBcP4eIhXDyEi4ewl/v1cr/FQ7h4CPfSzr20cy/tfHnIuc7a+fKQm692vuL3wgN8ecjN1/1GXl8ecnMrLIW1sBX2wr3wpXt6Rbs85GbOXG6Xn5zb4feoVk3WwlYYz1I7emH0aaOjMBXmwq0w+rSRFrbCXrgXRp82PgpTYS583VcPtsJe+LqvaJ/Liyyu8/Kim6kwF26FpbAWtsIOji+eKC4zvni6kYAMbEABKtCAZ1X6OQPXr+0hz0m0fm0PeU6Q9WsjSIpnI75toujq+LbpRgUa0IEdOCZe+zye81P92ufxRgUa0IEdOBLjw6OzvLNf5X90Ltz2q/yPzsXafpX/TW6FpbAWjo44F3H7VeZH57bC/Srzm0yFuXArfMXXYC1shb1wLzzAl/nffOlaMBduhaWwFrbCXriDL8P36KfL8G/mwq2wFNbCVtgL98ID7EXXi+5l+B5dfRn+zVJYC1thL9zRL176tJc+7aVPL9M+y/X7VbxHPZ6xy5xv5sKtcFxbj2fpMuebrbAX7oVH8lXsN5kKX7oU3ApLYS1shb1wB1/mHPd7FfjRucDfr0K+yZr3eBXyTfbCvfB1L2d76mXCN1Ph6140uBUWxOGiy0WXiy4X3cucL25HYSrMhVvhotuK1pX7Ftd85f7NXLgVvkw+7uU+SuxiK+yF4/rPIph+Ff7dfOX+zVSYC7fCUlgLW2EvXHS16FrRtaJrRdeK7pXvZ/FNv4r/6PyqqF8Ff2TxXF25fHMrLIW1sBX2wlcuR7/cuRx85/LFVJhxPdfg7WYprIWtsBfuhcs9Xv4QfB21Gyl1HbUbGXsdtRsP/HXU7o0CVKABHdiBIzGO2r2RgFCLgzsjo66jdm9UoAEd2IEjMQ7xu5GADIQaQ42hFgd3hplcB/De2IEjMQ7uvJGADGxAASoQag1qcdTu+Yl0j0I6Pz/D7FFIN9GBHTgS9QASkIENKMCQiKckTt29sQNHYpy6eyMBGdiAAlRgSJz5ch2qe37X1K9DdW9k4BlsxEMbx27eqEADOrADR2IctXsjARkIiThgM2YSYsu+G+OAzRvPCPFKEqV1ExvwDBbvC9ehujca8IwbL2LXQbnxjhU1chMjQguMCBJowPOO49UpyuMmjsTIwniHitq4iQxsQAEq0IAO7MCRyFBjqDHUGGoMtci3eFm7Dsq9cSRGvt1IQAY2YMTtgQo0YKiNwA4ciZGF8X4TdW5u0UNx4PWNp5pFD8WB1zcq8FSz6LfI2BtPtfgJjvo2j1/XKG+bGGrRJJGxNzbg+cbB13/bgSMx9s65kYAMbEABKtCAUDOoGdQcag41h5pDzaHmUHOoxatkLORce+TFGs21R96NAowI0Zvx0nijAztwJEZp2o0EjLjR8/HSeKMBHXjGbfFoxEtj4LUb3o0EZGADClCBlkjZqNdmdzfyvIZrs7sbEYwQjEowB3YgLp1x6YxLZ1w649IZagw1hhpDjaHGUGtQa1BrUGtQi+2wzm/PehSDXZ0V9V/9/PKsR/nX9TxE9ddEASrQgA7sQEjoASQgAxtQgArMZ7Jbjrm65ZirW46CujWgABVoQAd2YI65orJrIgGh5jkKiqquiQo0oAM7MMdcUc81kYAMhFqHWodaz1FQFHJN7MAcc0UV10QCMrABBahAqI1UG0eOucaRY65xGNCBHZhjrkEHkIAMbEAB5phrkAM7MMdcgw8gARnYgAJUYI65otjqGl1FrdVEBuaYKwqtJirQgA7swBxzRenVRAIyEBKCm4+EPOJyIiFvJCADz4Q8IkIk5I0KNKADO3Akxk/ojQRkINQMagY1g5pBzaAWP6HH6QTX9nM3RqNeGI0aj+c1kL1wJF4D2QsJGI0qgdFZGmhAB3bgSIwkG5EMkWQ3MrABBahAA4ZaPOtxfvyN48YRVU8TCcjABhRgSPRAB3bgSIzcvJGADGxAASoQagS1SNMxAkdipOmNBGRgA8rd6iMqnSYa0BNjdojPh2dEbVNyKyzBLVgLW2Ev3AsPcMwmTabCXLgVLrpSdKXo6hVHgq//Pu5Lrfz769os+Lq26G0dYDsKU2Eu3ApL4evaovfMCnvhSzf6J2aK+Jy9H7F33IOjnWPWiM9linFVKN334q1wucdrRqhH/GtG6OJrRuhmKsyFW2EprIWtsBe+dONerhmhEfdyzQjdTIW5cOiOuN9rxvhmLWyFvXAvPJLpmjG++YrPwVecFnz9XQm+/u7ZhncZ0s1UmAtr4SuOBQ/wNdMbLnKXD0U23+VAkZd3OdDF1wztzdfzdgRz4VZYEP/OwevfW2Ev3AsPtMM1o3szFebC5X6vmdvrHq+Z25tLO1w/fPFXr5+4aOXrJ+5CBjZg/MRFhOsn7kIDOrADR+L1E3chAUMtrj7eEm8UoAIN6MCeGGuP173F2mNk/HU47o2aNxQvjDc6sAPj0uO5iBfGGwkYlx4PRaw93igZYUBtQG1AbUAtXiMDr/3YbiQgAxtQgJfE//qHvz1k/+tv8dMl7fGPFv94/szI+f86/lEf/9jPf4wR2VmaE+Mxsce/H/mf9ePxj2fqPf45Vj3jn+n853jTOz0w3vMC5kpwm+vAba4Ct7kG3OYKcJvrv7H98bnOG2975ypvbH18rvHGFsfnCm+88p2rs/HCFzBXfGWu98pc7ZW51itzpTfGied6rM6lXZ0LuzqXdXUu6upc0tW5oOv5c+v5Y3vbe3wVP3/kPH/uPH9kPX9iPX9ge/689vxx7fnT2vOHtefPak+NnhodP+ScP6GaPzqe/67nj2r+jF5OfCMBGdiAAlRg/n5eVaQ3duCYP6SXd8fv6GXd8TN6OXf8il71o3HdRAJUYP5q3gZ+IQEZ2IACVKABHdiBY/5uTvs/L70RkIENmD+TdyHohQZ0YAfmL+Q0/UACyvypnM7eThzzh/Iu4Tx/B+4KzgsZ2IAGzJ/FuxjzQpo/YHfJ5fn7eFdQnj+DdwHlhQTM30PyBhSgZlw3/FsHduBI7Pk7eFdNXsjABsS99fwJvAsjL7zv+DQxDhOL6dbHNcUAPaBNkAk6wSb4hD5h3BAv1gEzcpuR24zcZuQ2I7cZuc3I8SJ9rtnFa/QJ15R0v8zwgog8LjO8QCboBJvgE/qEccM1/XwCTZiRdUbWGVlnZJ2RdUaOyatzTTMmqc5Cl5iXij0OT4nYm+AMGBsQyASdYBN8Qp8QceyyzgtoAk9oE2SCTrAJETmmwU6Il4IJNIEntAkyIQKeAwCb4BP6hLjUcXvsTZTESS1JkjTJkmZbhrfeNCbFu+1FlMSTriXI+Mlu/+/T/v8+7f+PedplDlgfa2//6/Ev/vXf//s//ee//Pu//bf//I9//ufz/5v/4n/87R//t//62//9T//xz//2n3/7x3/7n//6r//wt//vP/3r/4z/6H/83//0b/Hnf/7Tfzz+30fH/vO//R+PPx8B/89/+dd/Pul//QP+9vH8r2o7R7Hxt7U1yQDUdyM0O79CiQjtsVqNCPT1IngR4vwe5oowFAHMdgMYzSawhgDt+BpAngd4vKTOCI+BSn8aQlftwJbt4O1piFVTds2GeCwDPG1Kfx6C+VycjxDcGq7iMQT8EqK/2xvL2xiIcPSnt0Gr59La7JAHIoaOryFo1afn8O/uU+WnIRbPVZhVROg1N1S2I3SZt/FYYnseYfc2/PltrBrTj5miDxxPQ9jiuZJzQep6rlToaQh/uykWT+bjnS0f7oc1ZwzhryHG4iLOH+zrIoY/vQheNOa549Z8vE/GZTTu+7cS3/rdt6L07FZ48WhxT989ngZY59hI73dqz/qU5X3TW8UQ5nkjwrb4AbGlf3MmSWmNx/v81xiL51P77BE7tEQ4fvFowPnOjXTo6aPBi0f0sdA4n9HH6mL5OdOvMdriStiPzBRntOlvesVnwouoP+2VtnhCHzObMpvjMetaYujXGG0RQ7nD/0Trz4l/jSLvPx9N330+1vdih+VlmI7n97L6iY+vLW7rKKOEh6V8jdHffj7GJ2xwHWU3Y4Tezxjhd1tk3btDMIgcdez0rXdl5ahRe3056mO2qfTutxi6+mWQ+Zhxr67s39pj4agaG8ddPw5UMuaPGKvriFNF7p+oY3Ediyf1PL96pp2TP42x7JnHr1Q+ZdbqD/+3VtWFpxrnE2KN7XmMxZMqsVPY5arE/FIMjR0x7p5hee1eWpsxHq9vi/aQ1fBBRg7R7cUY8YJ8D0GcX4vRMbrtx/MY6yfEj55PyGPY//xK+l/6C+GUr4B0nsHz9DpsNQ55/PDO7n2wH0/czOgv9UOPkxPvexn6vGes/aVten5sN6/j/Gjs+XWsvKx5zxfrUa/k66uD2btturwKyZkOFjmeXsVyVOY5RfBYpOlPR2W2+N1mbSNfB7/k7dcYvnhKpee7g/QvMWw7hkpeh8poz2Pw+2NDf/spXbdoz2fDmF7rFWuIseqVxTMqR89eoS8jVPnFdXT87rM+v46Flz4WH9OQ5ctT+vU6fKxmsvKXsrXuz2OsrkOKIdPzGH3lpY0Ekyf2Upu2A9OsR38ta9uRU0mPK/KnMfrqTWpwPiAPHuOZi62uIzYGuPtl8az3lZfGRuD3W9CX38mvEyB98Sb1WL2Zt3LutPxSjPOTvpzWUnoeY7zvQOP4Kx3oMST07BX3156wlm9iTXg8jTHau/PPy6uQfBFrVifBv1/F4peWyitDa7Vf236MOND0ekaPfjyP4au3Ss8mfaQNwdXb97tZuFgcsHe9IJexbWvHfr5pjrIfPzPPn/PYLnnRIPkDdRQz/WMue2GmLeeA5Xg+g0vHarlIs1/MjuP5BO6xGlYecaT2nLrg9nTaYawHdDms1PH8EYndnZ+Pgnjej2qZ3/++6EOHfaBv/P2+6Z/om/GJvlnPj6vhBffpmsdqiItVLHHT5ythqyWkduQvTHusGjzPvGWQqI27gnDjRRB5f0WN9O0ltVWI3TW13TtZLKptN6m0F/uFRDLIYvhAy3WHzdVrYnp/KWd9O2o5wrTl7bTVI5KvD+dBDs/tbBmk82zYc+P8RRD9wBKyvb+GbG8/8PyBpVN+e+2UVutSjXJm+jF8KTP1Ri/2yiJ5149HTk2fe+q/9ox1Gujb+r79PchyaUolx3deJsm/D3jXeTdyTucxvb34jWj2/tO+WpzafNrb+3UC23fyqr2PXF+X47DnTSofqEGR94tQ5P0qFKG/ukkV48Ojv/aLKUdWrMkhq35ZrfVvlhdJ/0Dfjvf7drzft/39vl236LuDZT1ycfyxiLsoG1stBhk3y4WttrBkXfzADCpr0sdzR163h6M9+ottulm3tVqTYslWfbxryvMY4/0nfbUmtfmkr0JsPunbd7J40pctipnpR4vaazE03+keSynteYuu3vpHzkzrsPFijCY7MdZP2F5poPX3n47+9tOxWk3aLMqLnVKf117sVOUtr2JzqL5aj9ocqvvKSSkXk4xKt/4xVN8PYi8GkVybNynLpn8G8bf7ZXkvqESh/uq9cD5i9sj8V4NkuhiPV7umZfmG1en+P4L01drp4/crJ9oe3J7P1y3D/KKmdhnG89f/wUYvhxmYPexloPrLMLu1bbRaYNotbosPRN+rPFhfh/PAGgIvrmM7yHg1SHbPA/W1II91ivLIHX0VZtnJw1Fqc5QB1m+flTJh3cvA9bdhiEqYRTru/6I/fzsay7VVzOE9/w1bj6C3ytPjI9+3XxaXQdqRs/hnOz4LwseyniqXNdnlebH9wW+Pw/lo7460liH2Rlq8WrHaHOPwasFq91MOf386cr9XfNEry6fD4M9dXorRYhfy+2aGvxrjeDtGw1Crldfn38UwVIj05zFWazyb70c/xNh6P1rfi+AhE+vvx3jxGWs8cr1K+vO+XX0+RWWc5rzKutWFxLbC14U8fiaeXshqtWq3c9cxPtC5TriXReKuPrV5jDdzBeAsUXmxUUcuJPbFU7ZaZ9pbvufVR1Q0srTr4R/PX02W1yE5/ybl8fjj7XX9m50LkdLq+s6vfvhFcCHUXg2ST4jIavTQ6P0VXl4VQm+v8C5vJw5rvJKGDl7cjn7iduwvvh2lDKKPJZTF7fR3x7rLy5B8XFXH83Eqy6rahDJ9S+ndYwD0LcTbVf/rq8hX8Jq8f15FW91IzrAKl1Ik2w8Rbz94E9LjtSBD8To1ymD3d0HwGQTVlcTfNGrOsshYdW3/S0OcEyN4Z+70/Fb6J3qmf6Jn+vs9s85cK4OIL3s2/CL9jfJujLy/GiTHd49revEnzyTHIvallPBXQVrOiZj68yog1v6B34jVes9HfiNMs0z8sbK5uJ3V91SPZakjc0dHGeb94kq8Uf7SNFldSXt/JsLerwRke7sScBlicybC/P2ZiOXS095MxPqTiM2ZCHu/qvGHp2NvJmIVY3cm4ocYx9sxNl80fXeFVF9r090ZkXWMvRmR1bdMuy/N6xh7L83Le5Ejnw/hpyvG3Omvvo69mZntGC/m3O7MTNcPzMy4fuAB0b+4YzZnVZYfVe3OqqwvZG9WZbz9wQoP/sCsyqB3Z1V+GsRggfXxsMizYffyq6jyhJxB+itBNl8Rf7qZvetYbk+R1bt+2GL+QFcl4pzTBxh/tF+9yIyyCHnoS29Dj784EISfvQ21g99/pVoG+cjr/26LtE+0iH2iRezdFlkvmqP2doxOL668j5wQfQRZ1ACM9pGV91UYw+ZS1p2evk6tQuCVzAb7ayHy+x0b+jTEuhAnqzytHS/XFeUP1SPIoppn+VHEyGotrzfzuw9vRg7cfYznQdpqe7zHveb0jsvTQUSj96tWG79dtboMsfeO2pY7/e29ozZ+uyKwLTf723xH3e+V5+Pl9dOBTzMe0yXtec/628PUH65j65PZtvqoam902FYfVZkbtsjqz2t+ltexNzpsP2zPeeAx7S81KRO+h6bnI/+2+qJqt0n1/QH38jo2lzHXX5jlLhed+vPtfNefMe99ibDc/XXrI4Imx/t2vFqe2rTjVYhNO96+E3+tQTe/IVhuyLD1CUFbbvK3977/Q4y9Twje/mhw+QX0dh3yev/W3frhH6Jslg8vd4HdLLfdjzFejLFXbLve5XN3xL9u191S2+W17D8p631LNwtt11E+ckf7T+34xFO73Il186ndjzFejLH31C6/eN1/atdPym5l9/b268+HVvZulcpyS+gjFw4f44G6+vhtM8bV102NB9Yx6NkE4joEaru+bOv2PcQHpphWg0zD5+Ff9gv93hgfOHai+QcOnuC3J5hW71OWW+1ZLT76vnv6KkKOzKxU6vNvdoHXI+1US/XSH7vAL7cOYAzuysZBf+wUvlqc2t0kb7196t42nT9sns5HuZvnmwW31Z5/mzm7DLGXs/3tZ3T1QsaOPQPdn833r94L957yZYStp3y9YcjeU77eD3/zKV+vSm0+5cvzavLbTn5wuZC2H0OzTVl1EWOZKXEe1d0i/Xi+8XIb9namLEPsZcpqUWozU/ab40vt82/2shfUgZTFQn45Rn8/Ri1K/c2e+o79n70/34d+d0/9o1T5/mY/fG0j94SoO9n/ak/9I6fo7RiLvf13zynoizY93t+VSo7llqMHimvYnl/Iao7MNfehdx1Pj0ETWn/3hMStc+zfr2M10z/KZ+q1ut5/0yC5E8uXfVz5d0FGKVl63r3rTfUJr5TGC0+V1bvP1nvLD9eRIc7r6IvrWO6hmj+ZB5XKWP/6k7k8/kFoDkAe+Pw6lsc/tHwr1a/b9P7m6AYYkXV7LQYWP85pxOe/l8uekdwO4cHychQcEWSyOt6jvzu0W0bYGtr9cHBDKRYYx7NVbVlt9XceST/nPujpAGIdAkedDOb+0ttLy90xH+zjtZ71MtXuSs+jSON3R2XrEFujMlkvB709KvvaHPx6o2LHQW0vJp1j1P1gOxZd09/vmv5216y/nHq/a740hx8vd42XKPQ0yqpocc/JlhH2XlKXh65QywnyTgtPFrF339iXIR5uiN+Yx0r58VoQL8dA+NPvjX4KUg7E8f6Sr3bGMOSx7rA4IGi1vP2ZI3E4x4hca47+OBJnNwbxazE0q9JYjV6K8bj+3ED1+PI68+2okOP9idjlgTakuTEl95r/v4hRz3SupeDfYsjyy6k9Y16G2DNmo3eNed0Y+Z6qUsvAvzfG0g+PXOO248uhON+DLM86S1um4+kb5voyUORHX7ak/c29UG59+ngvoleD5PzhuS3ay0HyW0N68fCm7QOg3v699Ld/L5eHUG1O6q4Pstqb1BX/wPk+vtx1KYti5VicISX+9lTqOsSeAfnbU6nLL/uwietjSfK1g70aNtd9xHh+oI30D+whIasdxnZ/45Y103mGnZXxy5+XIZ+4lw8snC4/ZqG0ZOIv+0e0bxey2oYKk37FwvwXBw0Zvsvv9uJBQ5uJvz6syPD+8mXTtj8OK1ofeVS+MvK6ceIvo+CD63r6ym8OTqJDsFlBLa35dnTS+ko6lSOc2qv301G4pL3Uxv4uytcvuI6nUeT/D2G+VPu25wdTrYNwvmky1yv5VZBm+aJZP6/9o5/X7zK5miH0/Mgw/cBucj/E2DtPbh1kc0Tyw5XsDUl0fTLVnjOtj7fa+6JEj/d3/Nfj7R3/lyH2Spj372RRwrzulq2vMJRW56ZuFg8vTwzDB3b25cu2P04MWxXHYaNQr59y/CrI7ocY6yA911WsrzZU/uEAtLr3cF1r1t+EOY9ezfUIKYd8/zZMHoB6hlx88bdu3qx4Nxd+tY+wmUs/FhtNr/YN3fyy41ieX7r1scw6xt7HMvr+nn/6iT3/9AN7/q27NgdIj17mFzOHjlZqsqW9+sjjjNsH+8sJSCjgoy8f3X0/ZHI9WsOHzDrKMtr30Zq2t8sA1yG23si12V8aYu+l/ofB+Ci7OdVq+V+cpbz3IqzygaP/VD5w9N/yLGXNBnksjzzfwXB5ljLl2Z+9sbwWQ7OgsCs/37NTV8Vee0/6+jJyCN51cSCbrnZA30y4ZYi9bJHxbrb05cGBe2dkr8633pukXUbYmqRdbimz+Uq0Put7841I9RNvRMf7b0Tq778R6dtn/yxDbL4Rbd/J6o3oeP+NyPgDb0T8iTci/sQbEX/ijYg/8UbUPvNG1D7zRtQ+80bEn3gj4k+8Eb29udQye7bfiI7334iW31PtvRG5feCNyPX9JuVPvBG1z7wRtc+8EbWPvBGtxgKao4kv3wP8ZjSRC+Amz5d87e3Rf//APuraP7CPui+rRXLnoFaPNfu+4ruM4TgKfXwpFt+PIUd62SN9nq8863h/f4cfYmxOwS+D7E7Br69kc8A5PlAVsF5/LiV05E/7ZhWDDXsX12PifhVDM/n58au5eEY+sDu1jg/sTr1ukRxzsh/PW8SOD2xOvfw6XAzfNvjz43vteH9vajve35vajrf3pl6G2HsnseP9vanteHtvajs+sDf1fq/4olfe35t6GWNzb+qfYhxvx9jbm9ro/b2p19extzf1DzG29qY2en9v6h9ibL07r+9lb29q+8DBUj9cx9be1PsxXsy5zb2pjT+wN/UPD/vmA6J/ccfs7U1t/IG9qX+4kK29qa29vTe1tQ/sTb28jr133Z/GMFt7U1v7wN7UyyCbNaM/3czedfStwVQ7mJ+/ULV3X5TXtdE7L8rr7zvyBOQH1sn/X3wjYvjOxEZ7LUbPz0y5vqD+7jsTdvTJ83uR1X7hux+rLIPs7Z+8DrG1f/IPIXb2T172imemPF4Zjtd69ksMeTEGI0ZbPWFvf6m6DrG14mcqf2mITQ9ctqf93U//ftcn5eV4vOgc9TpejdFz7PLAV2Ngs+FljLfd3N528x8+Ls8f+8H84vfpWfL7wGeTUctv9bdaYv21/05LLHdQcMpvl/zLtwO/2IWh5+zel8ry38XAljJ9vLgbRFdcx6u7UvR8XXmEe3VXCsJbAr/cHgMxFv2yGtBqvvKIevtAjNd2CxHLbRjEVF6M0fMtwVfP2CqG59eP0nXxXftqdt81hyxe55C+11xZX33rr/m0PxpHni4f/XQluSmN9tWVrJb6Dd8uWpm+ab+5jpGL9Nba4joWz7u3HP1467QIshrY5m6FdT9r/rbQuHxEOl5Gx2IDBVuXoe0+Iv0Dj8gPV7L3iIzj7Ufkh8K8vUdktdXf9iOy+u7v/UdEcSCP1vN4/nhEVp/pKHd8Yl9/7r517mqTPnPGwnrdnPM392L5a1df4v68l/6Bexl/7b3g/NoHvvZrpy0rYr7tWvCLGIzrYP1ADKMXY3TswHAcL8bwHMlwf7VNs1ZC2yJf1jEaYshiB9nlJ3r5FSXX8oDvO3T68faOFOsQWy+2vt7l7+0Qm7sNLb9WxI4nzZ/veOr07n4Uy6sQvF3XPWT+vAp728F8dX7EpoOt95BlbLDO+vRe1jEUJ3LY8/ZoY72Zzd5mtqsge3N76xBbc3s/hNiZ21tulrz1lr7ebnnnLX25LfnWNaw3Nt+aM1kdZ7B5eN86xt7Zfc2WpxnunomwDLP5fNrbc88/hNh5PtdHkuwe7vBDlA8cJrL7jKxjbD4j+pln5P31ifb++kR7f31i0bmD8pVlUCtDUuvbIXAb48tJAPsh2A/+ewscvwjxWNzNM8COuki7H6K3dMIupSjyN22RFXO1Qx/L2NsBcied2p2/CZCLkaOsRf4iAB0Ez6hn/vwiBOdsK7GNt0OUycXfhMDO29TKfhevhijb//8qRPrEI7/aaz2iOECpnlr0mxCC3aGtvR3CX7wKfONCh78YohxX/NpzQYITtso8/qsh6tY9vwmRiUp8HC+GaAjx2gOOxS5ifu1Gyoaf9X1g3/wPgXG/FACr401fCqAo4BivBJDcFVO+nAHxix/AfL3r/EqARuW4gzcDtOfd6Ku9+XbflVdfFW2+Kx8707jty1TOfmdyLmvJSw80vp0TfqkzJQ83qSWN5Mf240SoU6f6ls79FyEyq6i+F/4mBIqa+BhPQ3hfbcGDBeR2vBgiS0StFDP+5kbqFl5lJfw3ISxz42uB1y9CeH7x+rCL1zqV87MQZn8tRMuPfriOqn51FShUa8dLzSmC4+2+7A899n88GwYSxWh+cRGPn36MAvpLTxY1bEjYxmtXoeUMNfHXQhg+fujjtRvBFi6NX7uRJhgp62s3Yvjsyfy1q0AlwGNk89LDSWU7m1qg8YsQnuNLF3slQJkp0dfa4ShTR/b84e6rj4zeT9OR9SGDX2sIw0mr+mZLvhbg/CgZPlHb8jdjkqw9egxPymvPtyOx+nJtiPOY9FYPs/tlkPwtfKC9GgRfFnLzDwSpuwv4frOObBH5MmHzmxAoGxjjeCkE55cS0sheCdHHNK0+6tlP2w95+3vTTvt/v+f8Xa/ruF//fl99lGSYyKwr9L+JkMt9Vs6u+F2E+evhR3uhFVTzcVIt7dD2AygC1Pm/7QCGr5Dqas4vAuxU9CxvoWedhNbD+/YD5NcDj1ivBMBeTA98qQ1Q6Fn3g9oOwJLPAQs9/QarL09S2ftMuK+2s9v7THgZYu8z4f07ef6Z3/KdIysSuNZm/SKCMta+W3vemmP1Grn1OesPMba+Ety/jucxls9nPa796UekXdrbz9YqxOaztTz2dO8T9L4692jvE/S+2sbuMRNdd2/S53ta9dXBp4/Vs1y80eP5wmRf7Yf3ZS2tvH3YL1qV8kiqx/QRPW3VVV0Wl5NCn0dYNioJdpR/cFs0qn9i+fqHMMPLNkN1Yex3YcrHxkfdI+SXYcoZBEc98Ou3YUYpEKjrKb96bj0n6R6rsLx4breDjFeDDLzuDX0tyH6FwE8P3mb1xbZVP/2Kuq9Odto6oXbdrJvFGz8E2ave6Kv9B3/RN7bcs2+nemMdYqt644cQb1ZvkOPjdve6J9W3HT9X5zLt/WCs57tyEnOIPb2KZQgpX+m3l0J4fgZE48uBjt/bYlUctLlvUvfVprab+yYtl06yQpvrVM2fN7PaxsEcE5Hm9HRXrB+CtI4g9mzvpb7cBapL+dT/eff25fdI3fDdW/nsZdh+DJPcftmkvRgDB3aalRniP2KsPvLoGeLLl/rHry7jwGW055ex3CccxwepPK/1+SFILwf/tEWQ5VaQaFT35x2z+hqptVy5ba380p2lJvtBJLfobCqrIKvvkTY/81o2icOLvhym/EeTLD+Vz8Xwenr5t45Zfo7keRTreU4UYsj3y1jvCIH8r5UB8ou8c3yX8BjR0PP2WA3tUF7w+L2oF/JtPLX6IgnbHmopEPgeYhwfeFTXQTYf1XH85Y8q5l4fyevPumasdmATywdN6tFsf97NcsdR7Fss5bdqfN/JfXVsycDGRUf59IQHfQuy/AQGa9xSJpMfvf0tyAeODvrhSgSTkbWDv18JHcunZOtr0bFasNmb2V32zWO1qOWaTzGSP/pmeaoTDs3To+6wuT08E89hxGNeYrwyXBUMEqWmzPcQgz4wXB30geHqT8NEDCXs+Qnkgz4w1lwG2TwPon/iwJH1Pq4Hjv3+srXBtw7m5XnqOTlJfSzOq1wHwe6pQ1ZB9AMOsDpFaW+BbB1ia4Hqh1vZ++R8rL5F2f3kfLStWsXVJ+frZ5VyFr3x8fxNcaw2yXusiaA6rYwk/ryZ9oEnZLXetPeErF8lcqMrW1Q0L1/P9k5zWYfYO85l+WKFc2noyx7sv3o7q0Hkec39WB3jtFnZO1Yf+G1W9v5wM46b8fZii5Spc9fjA0EW32QM0Q80q/3FzVpvxl+dBnDGXGR7tW86phI70weCLK5k/LBHwlbfKP/FfdMVN6PjxRYZeO0dzT4QRPqiWe0Dzep/cbPWm7FXTWDgbfPLsYW/CcIHfnuP1Rzc9tRXby/PWm39gP8QZHNwZR/Y8mnY21s+LaeLBlZ8cSfS9qeKCAdCkJfx++uTRb29PM+zNzo7PtG5Th/o3NWi1W7nrqbxMLFZS5O/98zqiyfB3Iq0uq3gH5Ojq+MH8+2snh7253XYB8bv/oEdwYb3t9/wliH23vD8A5uKjf6J57T/tc/pyAH8KKdb/PF8rLbQU8LMW/1S9HfPKb42PYgWF7I8VrqXyqKxaNNPPKj9/Qe1v/+gfmL3uzE+8aAO/kt/Lbd/7FYrVjxyhpdrlcifQVbfnRwD52zVrWu/Pe/LK2kYmLUvpyD8cSX+AWdeNez2A7/8udt74Ne/mFsP/PpW9h54Oo4P7Pf4iPL2ho/rZwQbATQaz03xcSGrxxU798to7cXHlSm37mdfXoq/b9Bn7dX7Dywdx9tP7A8xth7Zn+5m95mljzyz9P4zu1wjbbm6QXV3vm/vm4/rWH7Zlx/2lRKY80Px/RiadYl14fmXMdyzOsFejGG5ycuXnQZfjqGvxsj2sJfbw7I97OX28LwXf7k9aoxX26PWrb7aHp7t4S+3R8976S+3R43xanv0/Ji2+8vXkYU4vb96HTFZcb2QvNweNcbL19FRlPz8+VhWWOyeIr4u01BBQWDdyufPY4xXTypl1zhzX0WxVVmB/x1fbjx+cTubp3b/EGTvZPV1kM2T1X+oOtka9y5DbH1R+EOIraHzugZndxgiH5hafUR5e271EWM1F7C5Pcwjiq8WFHb2h/khxtYGMT/czeYeMT9E2dzjZV0kdQg+0a/7q3wrkqJDPzBh/IjS3h/DL2NsjuGVP5E8q9Wr/eRZrV/tjuGXdXA4npXLd05/p4uXJ+fmQunjRbb+DH8LYsvvLvJpo1qy9e2z+UeQd7/+/yHEzuf/P4XY+P7/h9LCXKrR48uA8/tlrN6tFPtB1DmjN4KMZ0G2qy3rOQF/PmW2PIscy/HS+uJ2VqdAHPm9sVE9nf17EF9v24gz3kmP/pEwdS7cfvMajq2flqXKq/WnkRsP6lE+ifm+Mvj45+U3/rl5R91zov0RY+89vG76wN/nnvztsesP15Hb/Tye/1WM/gmXX1XE7g6R+gd20Du/cX5/iLSMsTlE6h/Y9+2HKNtDpNWC2NH+vk//kTir1ayW731SbuePebS+LL7OzSbrZ37WfnEvdOBkmra8lw8cGXZtwPvuUK1/4NAwOsZHplvfPxNq/9tHef7t47U58tNfi44Dl3upefr2Ffe6tnbvHXRd47vdNx8x2DH+0r75+jkJP+8bWp2Gvb1mQp8o0HlEef99ax1jL4npE5VC54Z4H3hQ6PC/9kFp2DqvfTkfkvaDCN7Lpe7j/ufTtpoG+kyUvQ0QfoixtQPCTzF2tkD4YdJkc0vanyZw9kYnP0zz7Wwd9kOInS3cfph8dRTI9pdncHMLgsd78WKfmuWHv5T7sTxS6PnXw0SrffnybkqJ3fcqzHUNdf/7X1H9rqo8JxgeQV4tku+On/HFsRY/VNof+Ih5cYzCD59SYMcqP169EkPD1q0Qfvexzdb5U8v9M3ODJ/nyK96+rSZR253Hkqfbqj2C0GquY2vXvkeQ1W/n1tZq6xh7e6v94mZ8dTPLnV2QNmO0RZDVVwN7W979dCU4ob6u9f0ZZOGKDYcAH75q19Vc1uZn3esou0uXP1zL5jrdD1E2F+p+iLK7jkqrBa7ztRDbbo2y28z3HaJ+jFP39CvfqvwyzuP/TZN8/O7563Hwtcnjv9RFnHWP7y3v/hRlb3SwzibJ02ekHtmlv/FtxolAXE8E+pU3PH5BcofRx/v18yCrdapdb9BVLw8tG2EVbzD6xZVst+t4fxD501N7tLJtorycjY8bRhaRv56NhOMSHjGfZ9H6kdvZdZRotdi0t+3odcbE8+F1vm60L/di+/tQ5Ht6Xcj4zegLAfilAHt7Ya3eIbe+1l4F2PpWexVg6xDW468cA2/terE8AyT37SY76jYx29fweNyzsNTKrii/CdEVL1n62lUMx3li9VS0/RB84LTlL5b1i6tA8SJ9cc/fhBh4a6WXbqQeMkfjtatouQT1WMiVl0IINjHRsnr0PcTjalezZ+8f+dMyTan5a62B/QNJmN5u0NdCYNcf+fLT8YvDXcqWyFYPbNje475ZbtXTTJ6fSLIMYWWbHXo/hL4WAjtVW3/pDJDm+Bl2fekkktZzFPsYRr7WFu7ZI17GsC+HeK1Te65Gtlou/asQuf7QurzWqT3fuR44XryKfC66vdipuWX4A1+6CqaBjWCPl86G+VqZ2J6GeAyMVxsvM07n4rrs8JvD5/KHmc1fu5WBoz7teC1EPuKPmf2XsuRcHsB6Q3sxxIEQ8nYIbi82J5Y8uL92FQ1toePtq3itUx9vAAdeAeoOCd/WCXlVvNexd3ydd93/TXy8rOFdt24H8OdlrJb6CdOuX1L+dzEcMfx5jFVVtHRs11hOCXlMhn2Psqr+444TDuuk3v4rKj9yNlO2zu//0ay8fFJxxm4rJbP+R5D1mWMd61m0CLKyUuUysd5osdbP63399l6Wfoiy+aZyng/9/mvCD1F23xTiiXjzTeEXN7QYpv/U1Q1ba2mru4390dVt9ze8RvnjapYLOtudtB1l2TLrxaXdrl6VNG139bJxWxaecuvHSzMGZOif5Q9QW54Ywh2nurTyMmL+qzCopH1cQCllt+2j7IgH9h1rRCvXlWW1pqJa80uhJX+PsporbdgiR56+8P4QA7/utWL7zxir8rf8IRr1eKbj+yO7Xlc68O5d3nofQ9vvUZbf+WaLlLEff9twm3hV8bJdo8Wrj6e2a7R4dTjMZrU0L0++2q0vZl0P4rZOdf4hyuZ5yI8oi5+PvVN81zF2D/J9RPmE0S47aPMQ9Mel2Eea1j/QtHsxfNWwywcf8/akrz74myXxjxf31S/y5snX5+v/++1qH3lk7ROP7LJRNs/yXnv+KJbfeWH55suf5LyUx+BpFeUTm5mwfWD3a2I/3jf91W6C+6a/2k5w3/SX17Kdh6vPsfbzcPUh1G4ermLs56F/4nVs2Sj7ebgYvxkOg6/nbP8xflt+f7R5PAjx8quQzfNBHlFWGwzvVkxxX41qd3ee4L48v2Xr670fWmXvrBLi/pFxbf/IuLZ/YFzbPzKuHR8Z146PjGvHBwYJ4yODhPGJQcLm7SzHgf0jY+PVdoO/6J7+ge7pH2iTD4yN+yfGxm25+rX7m9xWH1ZttusyxvZj35Y7Dm4+9utG2f5NXv2ebu9W0j6yR187PjGsbfT+sLbRJ4a1jT4xrF1fy3YK0SeGtY3eH9YuY+ynEH1gWLtulM+k0O5uMG21QLa7G0zj5ftyw+ce8nwflmUQPrC0/eW42D+CrL5izcfty66O/VfXgeHoUT47+fM69K+9DsICRa1O/12jliWKN4Jofz9I9TZePCPLr3mwnHsuSL0YRIj/3lLWG0H01SCMyR2Rl4OgOlHHB27n9SCO2+n9/SBfNuv5VRAlBKlbgf8RZLydw+vryPQ7S62fX8dqDWvvOn74rdg7QfNxIe8foflTkL3Nspp8YLOsXwR5ulnWfssud8tq8oHdspqsv/HCadriLwbp+Krhy8kkvwoysgLdDx6vBfGe4wHvQs+DrL6J2t/86zdhiF68pZHl0z7MXg2SO3k/grzYzR2HWPWhix7S/pnG7Z9o3N2l/jKm/jtL/atp3p4/g485CnleuNCWH2hpbtDWvmxy/meU1ed8qPcvVcRnHdBvroTySqzZ6ko+cHTqI8ontnVp9va2Lo8Y/ROv2avVsP3X7OW1bL9m+ydWcZu/P0G7jLH/mu0fmKBdN8r+6tHSErKo9jGnvEjmZZTH0ADrR/UX8Y9EXB6ShUdOa6nxn6tQ62vJIq92lGnaP6+lL2vFFK7NdjwvW2vLPZbymXu8gSCh9dX7WZr2cj2snDvw/OPeHy4kyz7bsSp7a6udUT7SIrk30uNC/OmFrL95y72izrfk59WNy29DcTaUabmXX5RYapkE4Zci4OsRbvQswlXf+vzhyPG525cX9e+GtFoxUsY+Uc2XUT6xG18bn9gRvo33d4Rv4wNbcF1b577/a7zuZ0Xb1kM3/+yh1erT45cPTy2Ve/pujXIsPwXO97mH2deBfv/VxVB+481UzwH882JWWwuVzTIeLAu7Xzaw5+5x7vVgw+8NLKvNTy3fgOpHqA/l7zFWj249X9UXG6jKaq/Ca//O+7Fb7Mr1YxRsT7HYluuHKOW7bz6O16M0RKFVlOWPWD4tTWXVuqs1qG2rk4+cwSXvn8F1bdfzttXJ+jOvTatbR9ktGhB6v6B2GWP7lUFovP/KsHs7rq928m5Nhyy/IdruHn6/9mA3xrpN2ts1Het23X1TFvYPvCnHqsrb7do/8divVhi2H/tlo+y+Ka9/lfObzy8Hafzxq7zaavoxU5hvHc3b6tdnNbjN2+nL8cHqZC7cTa+Hk9hvWqQrvmDy1XWsNw9NP3nweD7wktWma9vjt91XqfI94vdXKVnOp2Clkb9MSQp9j7Ka2zkM2/TVsvg/nnvh1bVgD2+ri7h/XktbLplgV+XyJSF9X+WT5RdireHTu2oqJN+jrOoOOB8WrQt931cLZfWJ2GMhCZvA1QTqv7kSy7cXfUwDfCBI3Ub/d0Fy8wetP8i/C6K5wdQDX70dbJOidf/EP4PIcmYm/UDKpl9/50FZln/n5glet6//86FdfSDmWYleX+a+z0YuQ4x87EfJnT9DLPeb3qthEl3+Bu7VMC2D7NYwib5dd/DDdezVMInRX3sdmzVMPwWhDwTZq2FaB9msYRJbfsm4V8O0DrJZw/SLIPpqkL0app+CbNUw7d/O60H2api2g6xqmNZBNmuYxN+uQ/zhOvZqmGT1Odiul6x+KPAh5FFy749fitXxXLsVTD8E2atgkuXGhpsVTL8I8ryK44eRQC5wPsZ9vBgJ9PUWxvniNmq9wp9RlpUGnieI16Pc/nhQlgd04Su71upWiX9cyarO4GAsKrb2YhD86DTy8WqQnDxpX9bhvgdZfcH1eL0hvHWtgnygQluWi2B7TjA+UKEtqwWwT1zH7uhmfKBC+4cgm6Ob8YEKbVktN22PbpZBdkc3+0H01SCbo5sfguyNbrZv5/Ugm6Ob3SDL0c0yyOboRlfff+3m8Hh/dKOrb792r2Np0Ch0sIWn6fLLr8132GWQXZdXettdf7iOPZdXsr/2OjZd/qcg9IEgey6/DrLp8rr84GvT5ddBNl3+F0H01SB7Lv9TkC2X37+d14Psufx2kJXLr4Psunx7211/uI5Nl2/817q8Z0Ecuy0atckHkm8ZZDf59oPoq0E2k++HIHvJt307rwfZTL7dIMvkWwbZTT55+4PaH65jM/nk/Yms5Ys05xLO44dv0b2rjQ93X6R1+bnX7jhtFWR7nKbve+v6OjbHacp/7XXsjtN+CEIfCLI5TpPdj1RW47TlotbuT8UyyO5PxX4QfTXI5k/FD0H2fiq2b+f1IJs/FbtBlj8VyyC7PxX2/rvW+jo2fyqsv+8l/oG3cT8+YND+9iLsD9exadDe/trr2DVoPz5g0Osgmwa9DLJr0KsvurYNehlk16D3g+irQTYN+ocgewa9fTuvB9k06N0gS4NeBtk16O7v53D/gEH38dca9O6L9PjELNb4xCzW+MQs1vjELNb4xCzW+MQs1vjELNb4xCzW+MAslh3vv2mND8xi2fH+LNayYkCxdWw98pP+vJDl1nB5XjF5KV4Yx/cgq69YRhZ00NDFPoJ2LD9B3Dse7Kcoe+eU/eaOfHVHuhrhZBcxjcW2NEbL6Uq0iy9OSfwhSsf488s58X9GWT23R0fVzbAPRKGDXr2jYfi++lje0WpKC0fqaK1T+V0UOzxPQTsGvRrFsl3MyV98dtnyu/MvOwL8naduLO1lqwjIlvsabhYB2fLgr80ioHWQzSKgH4LsFQEZy/tzl7Y8Imtz7nIZZPfV2Pjt4ewP17H3amw8/trr2Hw1/ikIfSDI3qvxOsjmq7F9YpnLPrHMZZ9Y5rJPLHPZJ5a57BPLXPaJZS77xDKXfWKZy95f5rJPLHPZ+8tcP7j83tylyQc+ZDF5eyL2h+vYNOj3F7nW17Fr0PKBD1l+CLJp0PKBD1lM9QMGvQyya9D7QfTVIJsG/UOQPYPevp3Xg2wa9G6QpUEvg+watL1dUPjDdWwa9PuLXGuD3py7NPvAwsE6yG7y2QcWDn4Ispl89oGFg/3beT3IZvLZBxYO1kF2k+/9r7d+uI7N5PMPvGktz/LeKwKy5YlVuy/S/QN11tbfH7f2D9RZW9e/9jp2h1j9A3XWPwTZHGL1D9RZ2/jAeQfrILsuvx9EXw2y6fLjA+cd7N/O60E2XX43yNLlxwfOO7DxvruOD5x34Ae97yX0/juwLw/d2pzpXAbZdXk/3nbXH65jz+X98L/2OjZd/qcg9IEgey6/DrLp8r78bGvT5ddBNl3+F0H01SB7Lv9TkC2X37+d14Psufx2kJXLr4Nsurzz2+76w3Vsujy3v9blN1+knT8wi7UOspt8/IFZrB+CbCYff2AWa/92Xg+ymXz8gVmsdZDd5Gtvz2L9cB2bydfen8Var/W38g68OH7QV9sSesdZNnhE9NWaA10cbfVDlJ5348cyym5JU90Q7VtJky83JTzyIJtzI/EM8v0oAl+tZ5Hjke9yLK5ktX2l5BlB5UH7M8QHDuryTxzUtV+0Vq/kj8RZLWntnRKxvJCuuR11N1tdyGpNy/jIPRobL6OsNhDCbrjSlVZRVhts727T7asztra36fbVLlGb23S77pYvrLbpdl1upL65Tff6WnZ3PfblEVu7ux77amPCzV2PlzG2dz321daEu7serxtld9fjdQrh3DEZvtj91VfLW/sptDyoazuFVktcuylk/okUWi9ybW6C7quDukbuDjr45fvZTsOPHNPlHzimyz9yTJd/4pgu/8gxXcs01COj6LH8PVwudG1un+yrb2R2t09eX8nm9sn7QRbbJ/8QZG/75HWQze2T10E2t0/+4UGxPITpqEf8/PGg9A/ss+39A/tsr69k90HZDrJ6UPoH9tleB9l9ULp+4kGxT/z4rE7r2v3xWY71W54xbHXH7z8f2bFsFJw+1tVejoKPFvpYRFm/A+Fs395VXowyRv6cjjH4xSiPn8KB38K2egtaxyH23MGfeOjLcWJ64I7zZV7zl3EGZiMea1mvtjJxOZ2KiV++r2Y5cDnPeF3E6cd6chLzilIPSmi/inJgipPGJ6KsrmXdMo+ZzWwZeQyHXm1hGUKIszqKoq8+b+qqOPvEnxv5fpBycuNvgxiC+KtBZCvI+tiSMcqnQIujQvr6Y63ZP1Z3WmZ9McZYxVgeKpMvilSPyPk+kbW8kHh1u5q1fpH0/UKWzdo4f05ao8VpMH31sZc2PPgPLm9F38/I6aulsY+ckSP5W81S1tn3Dyx9DDYk/bbVQ5C+n7z6uJvlfun4VaPFqbh9/TnQ7lGWnVdjqd2jLH+4mN2jLDv/xUchPZZNsIJSh2RnF/1/Hv/4T//9X/7jv/3rv//3f/rPf/n3f/sf59/0Eb+fjxvox0nnJXZK4qSWJEmaZEme1JPGpJEaIzVGaozUGKkxUmOkxkiNkRojNeg4gARkYAMKUIEGdGAHQo2gRlAjqBHUCGoENYIaQY2gRlBjqDHUGGoMNYYaQ42hxlBjqDHUGtQa1BrUGtQa1BrUGtQa1BrUGtQEagI1gZpATaAmUBOoCdQEagI1hZpCTaGmUFOoKdQUago1hZpCzaBmUDOoWaidlQNkAlRgqLX4bx0Yam2cOBI91M7x+mPtD8jABhRgqJ3z/o8BPtCBoWaBI/EyjvMtmy7nuDDURvwHDShABRrQgR04Ei8LuZCAUBtQG1AbUBtQCydp5/YJFFZy46nWTjfm8JIbT7V2jvI5vKSdP3McXtLOXxkOL2lnoQOHl7RzKZrDS24MtfNnlMNLbgy1swM4vOTGUDuHiBxe0s5XcQ4vuVGACgy1c6aJw0tu7MCRGF4SJxtyeMmNDGxAAV5q522yAR3YgSOxHcB8JrkxMNTO78M4vOTGUDsndDm8pJ3rpRxecmOoefy3oXYuMXN4yY0EjHs766M5vORGAYba+XPO4SU3hto5Z8bhJTeOxPCSG0Pt3O+I9VI7nx291M5rUAGG2vkay+Elco6hObxEzh9yDi+58VSTc7jJ4SU3EpCBDShABRrQgR0INYeaQ82h5lBzqDnUHGrhJRLJEF5yY6idlSEcXiKniXF4yY2hFs9DeMmNAlSgAR3YgSMxvORGAkJtQG1AbUBtQG1AbUBtpFo7DiABGdiAAlSgAR3YgVAjqBHUCGoENYIaQY0utXGiAzsw1E7faeElNxKQgQ0oGYEVCLXwkvu/7UCoNag1qDWoNag1qDWoNag13FvDvTWoCdQEagI1gVp4yY0KNCDuTaAmI1EPIAEZCDWFmkJNoaZQU7Sk4t4M92a4N4Pa5SUXoiUNLWloSYOaQc2g5lBzqDla0nFvjntz3JtDzdFvjpZ0tGRHS3aodah1qHWodah1tGTHvXXcW8e9DagN9NtASw605EBLDqgNqA2oDaiNVJPjABKQgQ2YanIo0IAO7ECoEdQIagQ1ghoJUIEGdCDUKPtN+AASkIFQY6gx1Bhq8BKBlwi8ROAlAi+RBrXWgGhJeInAS6RBrUENXiLwEoGXCLxE4CUCLxF4iQjUBP0GLxF4icBLRKGmUIOXCLxE4CUCLxF4icBLBF4iBjVDv8FLBF4i8BIxqBnU4CUCLxF4icBLBF4i8BKBl4hDzdFv8BKBlwi8RBxqHWrwEoGXCLxE4CUCLxF4icBLpEOto9/gJQIvEXiJDKgNqMFLBF4i8BKBlwi8ROElCi/RI9X0aEABKtCAjggdCDV4icJLFF6i8BKFlyi8RDEuUYxLFF6i8BKFlyjGJYpxicJLFF6i8BKFlyi8ROElCi/RBrVGQLQkvEThJdqg1qAGL1F4icJLFF6i8BKFlyi8RAVqgn6Dlyi8ROElKlBTqMFLFF6i8BKFlyi8ROElCi9RhZqi3+AlCi9ReIka1Axq8BKFlyi8ROElCi9ReInCS9Sh5ug3eInCSxReog41hxq8ROElCi9ReInCSxReovAS7VDr6Dd4icJLFF6iA2oDavAShZcovEThJQovUXiJwkvsSDU7CMjABhSgIoIBHdiBUIOXGLzE4CUGLzGCGinQgA7sQKjhHcfgJQYvMXiJwUsMXmLwEoOXGEONs98MXmLwEoOXGN5xrEENXmLwEoOXGLzE4CUGLzF4iQnUBP0GLzF4icFLDO84JlCDlxi8xOAlBi8xeInBSwxeYgo1Rb/BSwxeYvASwzuOGdTgJQYvMXiJwUsMXmLwEoOXmEPN0W/wEoOXGLzE8I5jDjV4icFLDF5i8BKDlxi8xOAl1qHW0W/wEoOXGLzE8I5jA2rwEoOXGLzE4CUGLzF4icFLbEBtZL85vMThJQ4vcbzj+CFABRrQgR2Y9+bwEoeXOEGNGlCACjQg1OAljnGJY1zi8BLHO44z1DBf4vASh5c4vMQxLvF7XPKY1vSWc0HeCMjABhSgAg3owA7MmScXqAnUBGoCNYGaQE2gJlATqAnUFGoKNYWaQk2hplBTqCnUFGoKNYOaQc2gZlDDO45jvsQxX+LwEoeXOLzEMS5xjEscXuLwEoeXOLzE4SUOL3F4icNLHF7i8BLvUOtQg5c4vMThJY53HMd8icNLHF7i8BKHlzi8xOElDi/xAbXhQOQbvKTDSzrecTrmSzq8pMNLOrykw0s6vKTDSzq8pBPUiIAMbEABQg3zJR1e0glqGJd0jEs6vKRjXNIxLunwko651465184O7ECoYb6kY76kY+61Y1zSMS7pGJd0jEs6xiUdc6+9od8ELSloSYxLOt5xOuZLOuZLOuZeO8YlHeOSjnFJx7ikY1zSMffaFf2maElFS2Jc0vGO0zFf0jFf0jH32jEu6RiXdIxLOsYlHeOSDi/phn4ztKShJTEu6fCSjvmSjvmSjrnXDi/p8JIOL+nwkg4v6Zh77R39Bi/p8JIOL+l4x+mYL+nwkg4v6fCSDi/p8JIOL+nwko651z7Qb/CSDi/p8JKOd5yB+ZIBLxnwkgEvGfCSAS8Z8JIBLxmYex1H9tuAlwx4yYCXDLzjDMyXDHjJgJcMeMmAlwx4yYCXDHjJwLhkYFwy4CUDXjLgJQPjkoFxyYCXDHjJgJcMeMmAlwx4yYCXDMy9DqzjDHjJgJcMeMnAO87AfMmAlwx4yYCXDHjJgJcMeMmAlwzMvQ6s4wx4yYCXDHjJwDvOwHzJgJcMeMmAlwx4yYCXDHjJgJcMjEsGxiUDXjLgJQNeMjAuGRiXDHjJgJcMeMmAlwx4yYCXDHjJwNzrwDrOgJcMeMmAlwy84wzMlwx4yYCXDHjJgJcMeMmAlwx4ycDc68A6zoCXDHjJgJcMvOMMzJcMeAkdMJMHU2Eu3ApLYS2cog/2wr3wAMNWHlx0qehS0aWiS0UX5vJgL9wLl/vloovVnfPDv8KtsBQuulx0uehy0eWi20o7t3K/rdxvK/fbii7Weh5c2rmVdm6lnVvRlaIrRVeKrhRdKe0s5X6l3K+U+5WiK6V/tbSzlnbW0s5adLXoatHVoqtFV0s7a7lfK/dr5X6t6FrpXyvtbKWdrbSzFV0rulZ0veh60fXSzl7u18v9erlfL7pe+tdLO3tp517auRfdXnR70e1FtxfdXtq5l/vt5X57ud9RdEfp31HaeZR2HqWdR9EdRXcU3VF0i19R8SsqfkXFr6j4FWGSlwgrRkTFr6j4FRW/oqPoUtEtfkXFr6j4FRW/ouJXVPyKil8RFV3M0xAVv6LiV1T8irjoctEtfkXFr6j4FRW/ouJXVPyKil9RK7pYTSIqfkXFr6j4FbWi24pu8SsqfkXFr6j4FRW/ouJXVPyKpOhK6d/iV1T8iopfkRZdLbrFr6j4FRW/ouJXVPyKil9R8Suyomulf4tfUfErKn5FVnSLX5GV+7Vyv8WvyIuuF10vusWvqPgVFb8iL/d7j6Q4OKeviHyA+1GYCnPhVlgKa2Er7IWLbi+6o+iOojuK7ii6o+iOojuK7ii6o+ii5o4YRXfEqLojRtkdMeruiFF4R4zKO2KU3hGj9o4YxXfER9GloktFFy9uxJgFIsY0EHHxKy5+xcWvuIyvuIyvuPgVF7/i4ldc/IqLX3HxKy5+xcWvuPgVF7/iVnRb0S1+xcWvuPgVt6Lbim7xKy5+xcWvuPgVF7/i4ldc/Iql6GL1irj4FRe/4uJXLEVXi27xKy5+xcWvuPgVF7/i4ldc/Iq16GIti7j4FRe/4uJXbEXXim7xK7aiW8ZXXMZXXPyKy/iKy/iKi1+xl/710s5e2rmMr9iLrhddL7q96JbxFZfxFZfxFZfxFZfxFfei20v/9tLOvbRzGV/xKLqj6I6iO4puGV9xGV9xGV9xGV9xGV81TFRTw6oXNSx7UcMaOrUyvmrlfbBhioka5pioYcKaWhlftTK+amV81cr4qpXxVSt+1bAGRqVomErVMJWyYSp1w1QKh6lUDlMpHaZSO0yt+FUrftWKX5X6YWpcdLG6Tq34VSt+1YpflSpiaq3oFr9qxa9a8atW/KrUElMpJqZSTUxNiq6U/i1+1YpfteJXpaaYmhTd4let+FUrftWKX5XKYiqlxVRqi6lp0dXSv8WvWvGrVvyqVBhTs6Jb/KoVv2rFr1rxq1JnTKXQmEqlMbUyvmplfNWKX7XiV634Vak3plbGV634VSt+1YpfteJXpeqYStkxlbpjar3o9tK/xa9a8atW/KpUH1MbRbf4VSt+1YpfteJXpQaZShEylSpkaqPoYl2NpPiVFL+S4lelFpmkzF9J8SspfiXFr6T4ValIplKSTKUmmaSMr6SMr6T4lRS/kuJXpTKZpIyvpPiVFL+S4ldS/KrUJ1MpUKZSoUzCRRdrbiTFr6T4lRS/KnXKJGX+SopfSfErKX4lxa9KtTKVcmUq9cokUnSl9G/xKyl+JcWvStUySZm/kuJXUvxKil9J8atSu0yleJlK9TKJFl0t/Vv8SopfSfGrUsNMUuavpPiVFL+S4ldS/KpUMlMpZaZSy0xS3gfFSv8Wv5LiV1L8qlQ0k5T3QSl+JcWvpPiVFL8qdc1UCpupVDaT9KLbS/8Wv5LiV1L8qtQ3k5T5Kyl+JcWvpPiVFL8qVc5Uypyp1DmTjKI7Sv8Wv5LiV1r8qlQ7k5b5Ky1+pcWvtPiVFr8qNc9Uip6pVD2Tlvl2xToeafErLX6lxa9K7TNpeR/U4lda/EqLX2nxq1IBTaUEmkoNNGmZb1es6pEWv9LiV1r8qlRCk5b5Ky1+pcWvtPiVFr8q9dBUCqKpVESTlvl2baV/i19p8SstflXqoknL/JUWv9LiV1r8SotflepoKuXRVOqjSct8u2rp3+JXWvxKi1+VKmnSMn+lxa+0+JUWv9LiV6VWmkqxNJVqadIyf6Vl/kqLX2nxKy1+VWqmSct8uxa/0uJXWvxKi1+VymkqpdNUaqdJy3y79tK/xa+0+JUWvyoV1KRlvl2LX2nxKy1+pcWvSh01lUJqKpXUpGW+XUfp3+JXWvxKi1+VemqyMt9uxa+s+JUVv7LiV6WqmkpZNZW6arIy325lfdCKX1nxKyt+VaqrqZRXU6mvplJgTVb8qpRYk5X5divzV6XKmkqZNZU6ayqF1jQrrTkY83V3rfXNvTDm6wwlkmSokSRDkSQZqiTJUCZJhjpJslZ0W9FtRbcVXSm6UnSl6ErRlaIrRVeKrhRdKbpSdLXoatHVoqtFV4uuFl0tulp0tehq0S3vg1bmr6zMX5V6bCoF2VQqsqmUZFOpySYrfmXFr0pZNlnxKyt+ZcWvrPhVqc2mUpxNpTqbrKwPWlkftOJXVvzKil+VGm2yMn9lxa+s+JUVv7LiV6VSm0qpNpVabbKyPmhlfdCKX1nxKyt+VSq2ycr8lRW/8uJXXvzKi1+Vum0qhdtUKrfJy/qgl/VBL37lxa+8+FWp3yYv81de/MrL+qCX8ZWX8VWp4iYv4ysv46tSyE1e5ttLKTeVWm4qxdxUqrmplHNTqeemUtBNXsZXXsZXXsZXXsZXXsZXXubbvawPelkf9FLP4GV85eV90Mv8lZf5Ky/z7V7GV17GV17GV17GV17GV17m272sD3pZH/RSz+BlfOXlfdDL/JWX+Ssv8+1exldexldexldexldexlde/MrL+mAp+qZS9U2l7JtK3TeVwm8qld9USr+p1H6TF7/y4lde/KrUf5OX+XYv9Qxe/MqLX3nxq1IFTl7mr7z4lRe/8uJXXvyq1IJTKQanUg1OXubbvdQzePErL37lxa9KTTh5mb/y4lde/MqLX/XiV6UynEppOJXacOplvr2XeoZe/KoXv+rFr0qFOPUyf9WLX/XiV734VS9+VerEqRSKU6kUp17GV72Mr3rxq178qhe/KvXi1Mv4qhe/6sWvevGrXvyqVI1TKRunUjdOvcy397I+2Itf9eJXvfhVqR6nXuavevGrXvyqF7/qxa9KDTmVInIqVeTUy3x7L+uDvfhVL37Vi1+VWnLqZf6qF7/qxa968ate/KpUlFMpKadSU069jK96GV/14le9+FUvflUqy6mX8VUvftWLX/XiV734Vakvp1JgTqXCnHqZb+9lfbAXv+rFr3rxq1JnTr3MX/XiV734VS9+1YtflWpzKuXmVOrNqZf59l7WB3vxq178qhe/KlXn1Mv8VS9+1Ytf9eJXvfhVqT2nUnxOpfqcRplvH2V9cBS/GsWvRvGrUoNOo8xfjeJXo/jVKH41il+VSnQqpehUatFplPfBUdYHR/GrUfxqFL8qFek0yvvgKH41il+N4lej+FWpS6dSmE6lMp1GmW8fZX1wFL8axa9G8atSn06jzF+N4lej+NUofjWKX5UqdSpl6lTq1GmU+fZR1gdH8atR/GoUvyrV6jTK/NUofjWKX43iV6P4ValZp1K0TqVqnUaZbx9lfXAUvxrFr0bxq1K7TqO8D47iV6P41Sh+NYpflQp2KiXsVGrYaZT59lHWB0fxq1H8ahS/KpXsNMr81Sh+NYpfjeJXo/hVqWenUtBOpaKdRplvH2V9cBS/GsWvRvGrUtdOo8xfjeJXo/jVKH41il+V6nYq5e1U6tv5wHw7H1gf5AN+xQf8ig/4FZf6dj4wf8UH/IoP+BUfR9GFX3Gpb+dS386lvp0PKrqYv+IDfsUH/IoP+BWX+nY+uOjy/6+0u9mRZDkOLPwuXPci3cz8b16FIASJwxkQIESBIw0wGPDdVeVRcf2DpJ02hLFudZ5yj67TmRkHnnADbsC9vgr69qBvD/r2+ATce38wPsk+J/uc7HPCTbgJN+Em3GSfk/UW6y3WW3CL61vsc7HPxT4X3IJbcDvcDrezz531dtbbWW+H27m+nX3u7PNgnwfcwXoH6x2sd8AdcAfcAXew3sl6J9zJen+eX50TSudv79fFT9/+Mw/mybyY951vLxqf24vGhyMZP5zJ+OFQxg+nMn44lvHDuYwfDmb8cDLjh6MZP5zN+OFwxg+nM344nvHD+YwfDmj8cELjhyMaP7cXjXZ70Wi3F412e9FotxeNdnvRaLcXjXZ70Wi3Fw369mj3/ato9/2roG8P+vagbw/69qBvj4avGr6ib4+Grxq+aviq4Sv69qBvD/r2aAE34OKrhq8avqJvj5Zw8VXDVw1fNXxF3x707UHfHq3g3vuD0fBVw1cNX7WCW3DxVcNXDV81fEXfHvTtQd8ercO99wej4auGrxq+om+PNuDiqzbgDriDfcZXbbDewXrxVRtc38k+T/Z5ss8T7oQ74U64E+5knyfrXax3sd4Fd3F9F/u82OfFPi+4C+6Cu+FuuJt93qx3s97NejfczfXd7PPtGSJ4fhX39WDEff8q4r5/FXHfb4/g+VXw/Cp4fhU8vwqeXwW+int/MOjbg7496NuDvj3o24O+Pejbg749Al8Fvgp8Rd8eEXBvzxCBrwJfBb6ib49IuPgq8FXgq8BX9O1B3x707REJN7m++CrwVeAr+vaIgouvAl8Fvgp8Rd8e9O1B3x7R4XauL74KfBX4ir49osPFV4GvAl8FvqJvD/r2oG+P4PlV8Pwq8FXgq8BX9O0RPL8KfBX4KvBV4Cv69qBvD/r2iAV3cX3xVeCrwFf07RELLr4KfBX4KvAVfXvQtwd9e8SGu7m++CrwVeAr+vbI+/5VJL5KfJX4KvEVfXvQtwd9eyTPr5LnV4mvEl8lvqJvj+T5VeKrxFeJrxJf0bcHfXvQt0cG3Ht/MDgcOzgdOzgeO+jbgwOygxOygyOygzOyg0Oyg7496NuDvj04KDs4KTs4KjsSXyW+om8PjssOzssODswOTswOjswO+vagbw/69uDY7ODc7ODg7Eh8lfiKvj04PDs4PTs4Pjs4Pzs4QDvo24O+Pejbg0O0g1O0g2O0I/FV4iv69uAo7eAs7eAw7eA07eA47aBvD/r2oG8PjtQOztQODtWOxFeJr+jbg4O1g5O1g6O1g7O1g8O1g7496NuDvj04YDs4YTs4YjsSXyW+om8PjtkOztkODtoOTtoOjtoO+vagbw/69uC47eC87eDA7Sh8VfiKvj04dDs4dTs4djs4dzs4eDvo24O+Pejbg8O3g9O3g+O3o/BV4Sv69uAI7uAM7uAQ7uAU7uAY7qBvD/r2oG8PjuIOzuIODuOOwleFr+jbgwO5gxO5gyO5gzO5g0O5g7496NuDvj04mPtr5vriq8JXha/o24PjuYPzuYMDuoMTuoMjuoO+Pejbg749OKY7OKc7OKg7Cl8VvqJvDw7rDk7rDo7rDs7rDg7sDvr2oG8P+vbg0O7g1O7g2O4ofFX4ir49OLo7OLs7OLw7OL07OL476NuDvj3o24MjvIMzvINDvKPwVeEr+vbgIO/gJO/gKO/gLO/gMO+gbw/69qBvDw70Dk70Do70jo6vOr6ibw/69qBvD/r24GTvoG+PzvvtHO4d9O1B3x707UHfHm/fHmd+1tvP/HDPB/E8vhrP9x/ueL7/cMfz/Yf7/QmD8dO3/8yHO8/H/Dy++pkPdz4f9BPMh3s+WOinb//5MKDOPJgP9/looMdXP/Ph7vMxQI+vfubD3ednfnz1Mx/uPo/5+Opn7szf3P45+3B89c7rzId7fPUzH1+9c2P+5n5d8TMnczH3M5+f+fiqt/NzHl+98+G2s8/HVz/z8VU/Hx709O3vHMyHez6Z6+nb3/lwz0cMPX37O0/mw83zsx1f/czHVz3Pz3Z89c6HW3XmZC7mwz2f3fX07e98uM/f7eOr3p8PfNp3Pr5658PtzydBBfPh9vOYx1fv3JkP9/k7f3z1zof7/H0+vvqZj6/e+XDH+TmPr975cOfZ2+Ordz7cedZ+fPXOhzufx1zM+7f56dv7+XSup29/58M9vxdP3/7OxXy45/Oznr79nQ/3+4NG4+nb3/mbez6oNp6+/Z0bc5w5z5zMdebDPb4a7fn+ceY682RezPvOx1fvfLhtnDmYk7mYH+75GY6vxvl7/vTt77yY952Pr74e+cyNOZgP93yW3dO3jzis46t3HsyHm2fPj6/e+XDP79HTt79zYw7mwz2/X0/f/s6He36nnr79nSfz4Z7fr6dv/5mPr8b5XXv69nc+3PP79fTt73y45wPunr79nQfz4fbn8Rfz4Z5/O56+/Z0b8+Ge36+nb3/nwz2/X0/f/s6He/4defr2d17Mh7vOnh9fvfPhno+ue/r2dz7c8zF1T9/+zod7/q15+vZ3nsyHu89eHV/9zMdX8/zb8fTt7xzMyVxnPn8nj6/eeTDPM5+f+fhqfs7PeXz1M++He/ZhN+bDfX43j6/euZgP9/x79PTt73y4z+/L8dU779/mp2+f56Mfn779nQ/3/O48ffs7H+75+/z07e88mA8355kX8+GeT8B7+vZ3bsyHez5I8unbZ52P1Du+eufOPJgP9/y+PH37O+87H1+98+Ge36Onb5/nudPTt79zMXfmwz2f2Pj07e98uPN5zH3n46t3bszBnMzF3JkH82SGm3ALbsEtuAW34BbcgltwC27B7XA73A63w+1wO9wOt8PtcDvcAXfAPb6a6/w9Ob5652I+3PP89unb33kyL+Z95+Orn8c5vnpnuDP5/mKGO+FOuBPuhLvgLrgL7mK9i/UuuAvugrvgLriPr37mxhzMrHfDfXz1Mw/mybyYL/fp29+5MQdzMhdzZx7Mk/lyn779Z24f5sYczHAb3Aa3wW1w22JmvcF6g/UG3EjmYu7MgxluwA24CTfhJvucrDdZb7LehJuTmX1O9rnY54JbcAtuwS24xT4X6y3WW6y3w+1c384+d/a5s88dbofb4Xa4He5gnwfrHax3sF58tQbXd7DPg30e7DO+WhPuhDvh4quFrxa+Wvhq4as14U6uL75a+Grhq7XgLrj4auGrha8Wvlr4auGrha/Whru5vvhq4auFr9aGu+Hiq42vNr7a+Grjq42vNr7an8vdn8m8mO8+b3y1G9wGF19tfLXx1cZXG19tfLXx1Q640ZiDOZmLGW7AxVcbX218tfHVxlcbX218tRNudmb2GV9tfLUTbsHFVxtfbXy18dXGVxtfbXy1C25xffHVxlcbX+0Ot8PFVxtfbXy18dXGVxtfbXy1eX61eX618dXGVxtfbZ5fbZ5fbXy18dXGVxtfbXy18dXGV3vCnVxffLXx1cZXe8FdcPHVxlcbX218tfHVxlcbX+0Nd3N98dXGVxtf7Q13w8VXG1/t66v8XF/l5/oqP9dX+bm+ys/nN25+Pp15ME/mxQy3wW1wG9wG9/oqP9dX+bm+ys/1VX4a3LbvfH2Vn+ur/Fxf5SfgBtyAG3AD7vVVfoL1JutN1ptwM5nZ52Sfk31OuAk34Rbcglvsc7HeYr3FegtucX2LfS72ubPPHW6H2+F2uB1uZ5876+2st7PeAXdwfQf7PNjnwT4PuAPugDvgDriTfZ6sd7LeyXon3Mn1nezzZJ8n+zzhLrgL7oK74C72ebHexXoX611wF9d3s8+bfd7s84a74W64G+6Gu9lnfNXwVcNX7XO57ZPMxdyZB/PkcRYzXHzV8FXDVw1fNXzV8FVrcNtkXsx3nxu+agE34OKrhq8avmr4quGrhq8avmoJNxsz+4yvGr5qCTfh4quGrxq+aviq4auGrxq+agW3uL74quGrhq9awe1w8VXDVw1fNXzV8FXDVw1ftQ63c33xVcNXDV+1ARdftcF6B+vFV23AHXAnXHzV8FXDV22y3h9f1Zkf7jzzZF7M+84/vnrmxhzMyVzMnRnugrvgLrgb7oa74W64G+6Gu+FuuBvuvtz4fJgbczAnczF35sE8mRcz3B9f7TM35mA+3O97jvn07e/cmQfzZF48zr5zwH189Xz/46ufGW7ADbgBN+AG3ICbcJP1JutNuAk34SbchPv46mfed3589TOz3oL746tnLubOPJjhFtyC2+F2uJ197qy3s97OejvcH189M/vc2efBPg+4A+6AO+AOuIN9Hqx3sN7BeifcyfWd7PNknyf7POFOuBPuhDvhLvZ5sd7FehfrXXAX13exz4t9Xuzzgrvhbrgb7oa72efNejfr3ax3w933+ubnw9yYg/lyn779nTvzYJ7Mi/mu9+nb37kxw23JXMydeTDDbXAb3ICLrxJfJb5KfJX4KgNuTObFzD7jq6dv/3mchIuvEl8lvkp8lfgq8VXiqyy4xfXFV4mvEl89ffv7OHDxVeKrxFeJrxJfJb5KfJUdbuf64qvEV4mvnr7953EGXHyV+CrxVeKrxFeJrxJf5YA7uL74KvFV4qunb/95nAkXXyW+SnyV+CrxVeKrxFe54C6uL75KfJX46unb38eBi68SXyW+SnyV+CrxVeKr3HA31xdfJb4qfPX07c/jPH37OydzMXfmwTyZF/Ndb/H8qnh+Vfiq8FXhq+L5VfH8qvBV4avCV4WvCl8Vvip8VQE3OvNgnsyLGW7CxVeFrwpfFb4qfFX4qvBVJdzk+uKrwleFr56+/edxCi6+KnxV+KrwVeGrwleFr6rD7VxffFX4qvDV07e/jwMXXxW+KnxV+KrwVeGrwlc14A6uL74qfFX46unbfx5nwsVXha8KXxW+KnxV+KrwVS24i+uLrwpfFb56+vb3ceDiq8JXha8KXxW+KnxV+Ko23M31xVeFrwpfPX378zhP3/7OjTmYk7mYO/NgnsyX2z/3+nZ81fFVx1ed14Od14MdX3V81fFVx1cdX3V81fFVD7iRzMXcmQcz3ICLrzq+6viq46uOrzq+6viqJ9yczOwzvur4qvN68Onb3xkuvur4quOrjq86vur4qne4neuLrzq+6viq83rw6dvfGS6+6viq46uOrzq+6viqD7iD64uvOr7q+KrzevDp298ZLr7q+Krjq46vOr7q+KpPuJPri686vur4qvN68Onb3xkuvur4quOrjq86vur4qm+4m+uLrzq+6viq83rw6dvf+XIHvhr4auCrga8Gvhr4anwud3wm82K++zzw1eD14MBXg+dXg+dXA18NXg+OBpf3rwa+Gvhq4KvB86vx8/wqzvxbL5rj9qI5bi+a4/aiOW4vmuP2ojluL5rj9qI5bi+a4/aiOW4vmuP2ojluL5rj9qI5Em7CLbgFt+AW3IJbcAtuwS24BbfD7XA73A63w+1wO9wOt8PtcAfcAZf32wf3Bwfvtw/uDw7uDw7ebx/cHxzcHxy83z5uL5pjwuX99sH77WPCnXAn3AmX+4NjwV1wF9zFehfr5f7g4P7g4P7gWHAX3Ntf5bj9VY7bi+bg/uDYcG9/leP2VzluL5rj9qI5uD84uT84uT846RkmPcO8/VXO21/lvL1oTu4PTnqGefurnLe/ynl70Zy3F83J/cHJ/cHJ/cFJzzDpGebtr3I21husl/uDk55h3v4q5+2vct5eNOftRXNyf3Byf3Byf3DSM0x6hpnsc7LeZL3cH5z0DPP2VzmTfU72udhn7g9O7g9O7g9OeoZJzzCLfS7WW6yX+4OTnmF2rm9nnzv73Nln7g9O7g9O7g9OeoZJzzAH+zxY72C93B+kb8/J/cHJ/cE52GfuD9K356RnmNwfnNwfpG9P+vakb0/69qRvz0nPMCfXF19NfDXx1aRnmPQM9O1J35707Unf/jWzXnxF356TnmFuri++om9P+vac9AyTnoG+Penbk7496duTvj3p25O+PRc9w6K/om9P+vakb89Fz7DoGejbk7496duTvj3p25O+Penbc9EzLPor+vakb0/69lz0DIuegb496duTvj3p25O+Penbk749Fz3Dor+ib0/69qRvz0XPsOgZ6NuTvj3p25O+Penbk7496dtz0TMs+iv69qRvT/r2XPQMi56Bvj3p25O+Penbk7496duTvj0Xz68Wz6/o25O+Penbc/H8avH8ir496duTvj3p25O+Penbk749F/3Vor+ib0/69qRvz0V/teiv6NuTvj3p25O+Penbk7496dtz0V8t+iv69qRvT/r2XPRXi/6Kvj3p25O+Penbk7496duTvj03/dWmv6JvT/r2pG/PTX+16a/o25O+Penbk7496duTvj3p23PTX236K/r2pG9P+vbc9Feb/oq+Penbk7496duTvj3p25O+PTf91aa/om9P+vakb89Nf7Xpr+jbk7496duTvj3p25O+Penbc9Nfbfor+vakb0/69tz0V5v+ir496duTvj3p25O+Penbk749N/3Vpr+ib0/69qRvz83rwc3rQfr2pG9P+vakb0/69qRvT/r23PSim16Uvj3p25O+PTevBze9KH170rcnfXvStyd9e9K3J317bnrRTS9K35707UnfnpvXg5telL496duTvj3p25O+vejbi769PrcXrc/tRYu+vejbi769Pvf1YH1uL1r07UXfXvTtRd9e9O1F31707fVpcG8vWvTtRd9e9O31CbgBN+AG3IB7fVX07UXfXvTt9Um4txct+vaiby/69vok3ISbcBNuwi32uVhvsd5ivQW3uL7FPhf7XOxzwe1wO9wOt8Pt7HNnvZ31dtbb4Xau72CfB/s82OcBd7DewXoH6x1wB9wBd8KdrHey3gl3st7bi9bn9qL1ub1ofW4vWp/bi9bn9qL1ub1ofW4vWp/bi9bn9qL1ub1ofRbcBXfBXXA33A13w91wN9wNd8PdcDfc24tWu71otduLVru9aLXbi1a7vWi124tWu71otduLVru9aLUP3Pt+e7V7f7Dafb+92r0/WO3eH6x232+vdu8PVrv3B6vd99ur3V60WsC977dXu++3Vwu4ATfgBtyAG3ADbsJN1pusN+Em3ISbcBPu7a+q3f6q2u1FqxXrLbi3v6p2+6tqtxetdnvRagW34BbcDrfD7exzZ72d9XbW2+He/qpaZ587+zzY5wF3wB1wB9wBd7DPg/UO1jtY74Q7ub6TfZ7s82SfJ9wJd8KdcCfcxT4v1rtY72K9C+7i+i72ebHPi31ecDfcDXfD3XA3+7xZ72a9m/VuuLe/qrj9VcXtRStuL1px7w9W3PuDFff+YMXtGSpuz1Bx+6uK219V3F604t4fLPr2int/sOLeH6y4vWjFvT9Y9O0VDW6DG3DxFX170bcXfXvRt1cE3NtfFX170bcXfXtFwk24+Iq+vejbi7696NuLvr3o2ysKbnF98RV9e9G3VxTcgouv6NuLvr3o24u+vejbi769osPtXF98Rd9e9O0VHe6Ai6/o24u+vejbi7696NuLvr1iwB1cX3xF31707RUT7oSLr+jbi7696NuLvr3o24u+vWLBXVxffEXfXvTtFQvugouv6NuLvr3o24u+vejbi769YsPdXF98Rd9e9O2Vt2eovD1D0bcXfXvRtxd9e9G3F3170bdX8vwqeX5F31707UXfXsnzq+T5FX170bcXfXvRtxd9e9G3F317ZcC9/VXRtxd9e9G3VwbchIuv6NuLvr3o24u+vejbi769MuEm1xdf0bcXfXtlwS24+Iq+vejbi7696NuLvr3o2ys73M71xVf07UXfXtnhdrj4ir696NuLvr3o24u+vejbKwfcwfXFV/TtRd9eOeFOuPiKvr3o24u+vejbi7696NsrF9zF9cVX9O1F31654C64+Iq+vejbi7696NuLvr3o2ys33M31xVf07UXfXnn7q6rbXxV9e9G3F3170bcXfXvRtxd9e9Xtr6puf1X07UXfXvTtVbweLF4P0rcXfXvRtxd9e9G3F3170bdXBdzbixZ9e9G3F317Fa8HK+DiK/r2om8v+vaiby/69qJvr0q4txct+vaiby/69ipeD1bBxVf07UXfXvTtRd9e9O1F317V4XauL76iby/69ipeD1aHi6/o24u+vejbi7696NuLvr1qwB1cX3xF31707VW8HqwJF1/Rtxd9e9G3F3170bcXfXvVhDu5vviKvr3o26t4PVgLLr6iby/69qJvL/r2om8v+vaqDXdzffEVfXvRt1fxerA2XHxF31707UXfXvTtRd9e9O3Vby9a/faiRd9e9O1F316d14P07dV5ftV5fkXfXp3Xg73B5f0r+vaiby/69uo8v+q3F62fvv37DPN6+vb1eb5nnLmdeTIv5n3n46t3bszBnMzF3JnhJtyEm3ALbsEtuAW34BbcgltwC2493LPn/cPcmIM5mYu5Mw/mybyY4Q64A+6AO+AOuAPugDvgDrgD7oQ74U64E+6EO+FOuBPuhDvhLrgL7oK74C64C+6Cu+AuuAvuhrvhbrgb7oa74W64G+6Guy/36dvfuTEHczIXc2cezJN5McNtcBvcBrfBbXAb3Aa3wW1wG9yAG3ADbsANuAE34AbcgBtwE27CTbgJN+Em3ISbcBNuwi24BbfgFtyCW3ALbsEtuPhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KuBrya+mvhq4quJrya+mvhq4quJrya+mvhq4quJrya+mvhq4quJrya+mvhq4quJrya+mvhq4quJrya+mvhq4quJrya+mvhq4quJrya+mvhq4quJrya+mvhq4quJrya+mvhq4quJrya+mvhq4quJrya+mvhq4quJrya+mvhq4quJrya+mvhq4quJrya+mvhq4quJrya+mvhq4quJrya+mvhq4quJrya+evr29f3ZJfX07ev7s0vq6dtXe77ncL8/W6Gevv2dD/f7c0nq6dtXfN9nf/r2FefPPr6K/fdfv/u///i3P//jP/3lT//nd//j/3/93//1b//8x3/981//+ef//uv/+5f3v/zT3/78l7/8+X//w7/87a9//NP//Le//ekf/vLXP37/t999vv/n+9f0918/cbQ/fH1z++1LtX71/P5S/PalqF+xv7+Uv30p61eeL9XPA/5+fb2Z+Wt9vcP3h/Nov99fN+F+7a+7V384f+7rv9fn67/3z/d///4DX08Ox6+vZ4XnD7TzHTO+H6G+H7ffn3H+ivj+0vjPP/b8z19a31/6Bsb6leuFVf2q8/Pu/2Lt7Mf+FQffng05X4pfX0t5H2j0X/Pz/sRf9xa/HuP8cC3ejfi6of/r6yb3z7Jb679a9PePtxi/Wv625K8b4L++bnafB8j/7gPUf1zG3//+h7//Ow==",
1931
- "verification_key": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEZRAAAAAAAAAAAAAAAAAAAAsIjHuQMmwvZguxj2Hkmi0KsAAAAAAAAAAAAAAAAAAAAAACfPfAvcG9qI8awme2fKsQAAAAAAAAAAAAAAAAAAAKaLXObBLtotOKmckvJsdaZ/AAAAAAAAAAAAAAAAAAAAAAAASkG34Bp4szyzQkounEAAAAAAAAAAAAAAAAAAAAB0rG2uV1KbNST8Xp0Izr412wAAAAAAAAAAAAAAAAAAAAAAJZfijAYrkts4A1BeQUIaAAAAAAAAAAAAAAAAAAAApB7efflIUZ28CRBXtEGAHGAAAAAAAAAAAAAAAAAAAAAAAAWbgNfigj1A5s/A7UYJdgAAAAAAAAAAAAAAAAAAANHu/hpk4Yn10c/2Xyl0QpqTAAAAAAAAAAAAAAAAAAAAAAAnfYMzrqtQ6+9Qh1T8lxAAAAAAAAAAAAAAAAAAAAC6S3uPHzIwkwlBGEFjkhBldAAAAAAAAAAAAAAAAAAAAAAAJxTDFJNSoXzr5DNtGP/0AAAAAAAAAAAAAAAAAAAAJ1cS0X8CiNQ9j/IVqL9uq6oAAAAAAAAAAAAAAAAAAAAAAAGCsIQvInJC7kIcZ/FjoAAAAAAAAAAAAAAAAAAAAF5ysS/iKLsh+lRuJMOjQdmsAAAAAAAAAAAAAAAAAAAAAAAuSIb+l1cJzP4cgAKzP0kAAAAAAAAAAAAAAAAAAAB82rZLJUMZSTMHjUeBF7dJQAAAAAAAAAAAAAAAAAAAAAAAFmioqGhNXEVAtq/p3eu9AAAAAAAAAAAAAAAAAAAAfGhq5C0TydsiDYAAPr+IR9gAAAAAAAAAAAAAAAAAAAAAAB4Qzfmv9IUrkJG4fp7dvwAAAAAAAAAAAAAAAAAAABRdmJRpO5QTO45EtJ6DcGBOAAAAAAAAAAAAAAAAAAAAAAAoINOBZi/2Co5OJd/gVicAAAAAAAAAAAAAAAAAAADwGbxNFURFnOkzme+cujM0wgAAAAAAAAAAAAAAAAAAAAAADpGyrp7H6m4X83d3lwYzAAAAAAAAAAAAAAAAAAAAIjx7zf4ErK3TUbUjPHWvo0EAAAAAAAAAAAAAAAAAAAAAABJB8o1i6Ip9b013Xwim2AAAAAAAAAAAAAAAAAAAANbtA9MMEnI01SmAvBq147tMAAAAAAAAAAAAAAAAAAAAAAAB4gue2VkVG3TYKDAdd9gAAAAAAAAAAAAAAAAAAAA+OFP4UjjMKDwDu6YE0HGOigAAAAAAAAAAAAAAAAAAAAAABBPbUj7dLDbvLV74scQOAAAAAAAAAAAAAAAAAAAAOmlDz2zIoDefnMlhCXEVjeoAAAAAAAAAAAAAAAAAAAAAABsR566rBr32xLPcvwDYoQAAAAAAAAAAAAAAAAAAAOtBjR1Wu1QQGd/eTyw5/38CAAAAAAAAAAAAAAAAAAAAAAAa9SRhqGcu9ZY7tMExNo4AAAAAAAAAAAAAAAAAAABH8+4oyA1gUv5hOmhNxnK0pAAAAAAAAAAAAAAAAAAAAAAAGpWX17Q0uCXDObICqBJGAAAAAAAAAAAAAAAAAAAAvD7MJYgunxrecuenVc93NO0AAAAAAAAAAAAAAAAAAAAAAAI18sykljPMCfUjC7q42wAAAAAAAAAAAAAAAAAAAH1gUTcmUsHGYqtF1o8rHp4vAAAAAAAAAAAAAAAAAAAAAAAuqOIyaGKnXUh4nFpRaIEAAAAAAAAAAAAAAAAAAAAtuDmbjyYzWldu0ZdvgQkaQAAAAAAAAAAAAAAAAAAAAAAAEDHP9f0BsU9poTGY9CDHAAAAAAAAAAAAAAAAAAAAVKU9ypuj/dTgUeKA11omDtEAAAAAAAAAAAAAAAAAAAAAAAlM33/TLjGQsLYQ5KvhfQAAAAAAAAAAAAAAAAAAAEE3LcYjpUDpves0+WumRBQFAAAAAAAAAAAAAAAAAAAAAAAdpgUV8Os4p0Bp+H5hVCEAAAAAAAAAAAAAAAAAAACG9YTcaCpEetHoKCP5CNKWagAAAAAAAAAAAAAAAAAAAAAABK7syUJ+VKyCphHc3Z+YAAAAAAAAAAAAAAAAAAAAu40KrxWtUHMUKc6dUA+L7eAAAAAAAAAAAAAAAAAAAAAAAAPZA6T2tVbVMvVGftb3XQAAAAAAAAAAAAAAAAAAAPxWP3hhvjWZAnc1CUBivFIAAAAAAAAAAAAAAAAAAAAAAAAfgzJHCuZ1H66fvaGxUxUAAAAAAAAAAAAAAAAAAAC/SzzASAeJ3AfEU7fLP+pmUQAAAAAAAAAAAAAAAAAAAAAAF4jP3rE5rkXopseV0GYrAAAAAAAAAAAAAAAAAAAAVIyo34H6YJ+JkniKSj1SSRoAAAAAAAAAAAAAAAAAAAAAAB7ebMoe9EBspTlHgkjm/QAAAAAAAAAAAAAAAAAAAOtreL7Ah0GYpSBI9BvEa142AAAAAAAAAAAAAAAAAAAAAAAOcUEhWWRdz2V0ZGuQHkQAAAAAAAAAAAAAAAAAAAC1VnjjU0/6y6F0zgFsw6W9ywAAAAAAAAAAAAAAAAAAAAAAKFTK1/BlrtvEivds4xWAAAAAAAAAAAAAAAAAAAAAZOED1ObtFJYIMJrZPWq+nQAAAAAAAAAAAAAAAAAAAAAAAC5G2rMMuoG3Yt6DgLQumgAAAAAAAAAAAAAAAAAAAF5q5tjZyDYpzACP2fhHVCSZAAAAAAAAAAAAAAAAAAAAAAAQzltPsLO2qQiVjyBDMSgAAAAAAAAAAAAAAAAAAAA9WFuBjfuecVQlaqVKrJdPdAAAAAAAAAAAAAAAAAAAAAAALpIcKf/YkfvDS9yOrXcvAAAAAAAAAAAAAAAAAAAAhVIaU2zUuo5mLzsEggUrVOsAAAAAAAAAAAAAAAAAAAAAACbG+SoYuzTxs99U9k9OtAAAAAAAAAAAAAAAAAAAANgYmnHf6QwXHw4+hxQK+LKrAAAAAAAAAAAAAAAAAAAAAAAlTiGWANbVweyBviZO8UkAAAAAAAAAAAAAAAAAAACHtCFC/u+HBQa3AWpu4TrpHQAAAAAAAAAAAAAAAAAAAAAAKI1D+hQb7jsl/hUO/dUjAAAAAAAAAAAAAAAAAAAAWJki1c7x6ck8W0AHyU7T+3cAAAAAAAAAAAAAAAAAAAAAAA1RFw+rwXMRVDRdiwmXQgAAAAAAAAAAAAAAAAAAAHRrToPVee3y+/8+soyU3RTBAAAAAAAAAAAAAAAAAAAAAAAWv48lmKVY9GXgmZOmI6IAAAAAAAAAAAAAAAAAAAAAEyBoQaqdbNCuqMJKulqjDAAAAAAAAAAAAAAAAAAAAAAAFJJrf7cZIt3MPAuoG/gmAAAAAAAAAAAAAAAAAAAAovWc3yUBh6I8GM1MOPpbnzoAAAAAAAAAAAAAAAAAAAAAAAJVFmqjgalkQra3/aSSXAAAAAAAAAAAAAAAAAAAAOTZdYM1I47ZfHe2VKZ0QxQjAAAAAAAAAAAAAAAAAAAAAAAagpiNDkfq+hYCGx7DhNAAAAAAAAAAAAAAAAAAAAAaLMeHO577YzhqPFNNBSiE4QAAAAAAAAAAAAAAAAAAAAAAHcL7P8xQfjUGjBnreWp4AAAAAAAAAAAAAAAAAAAAACdh+xadDA9STEOHdvEFo48AAAAAAAAAAAAAAAAAAAAAAB9MobWQ0HpLW79U2xT92QAAAAAAAAAAAAAAAAAAAMIHFdZ9FD9eplafxB33EOiHAAAAAAAAAAAAAAAAAAAAAAAMcEmE96gtMYvHfbSJV/4AAAAAAAAAAAAAAAAAAABVXhtfMrMNSAm3gZB7gkkVOQAAAAAAAAAAAAAAAAAAAAAALGfoT7N6hVYjcypGSM69AAAAAAAAAAAAAAAAAAAAHVz+0Gc/vhtvTv9F6oulbTcAAAAAAAAAAAAAAAAAAAAAAAnY2Lo6P2k+I3wr68yzRgAAAAAAAAAAAAAAAAAAAIf3ohQ3QNQA9+ndPnamffpeAAAAAAAAAAAAAAAAAAAAAAACbKwip2KxlNxEHO7ryckAAAAAAAAAAAAAAAAAAAB2EJrfgWxHTDpuyGstHcoJoAAAAAAAAAAAAAAAAAAAAAAAJ3lWlcMMVwaOGHWDHwqZAAAAAAAAAAAAAAAAAAAALWwRYu5gExkNwK0WCeylR7oAAAAAAAAAAAAAAAAAAAAAAABfqnBgwKTe7rYwqIXW9gAAAAAAAAAAAAAAAAAAAG7U3g0vBmH7IjS484yFSYIcAAAAAAAAAAAAAAAAAAAAAAAs4Zzo7vvSmCvv0rNkj9YAAAAAAAAAAAAAAAAAAACqbzAPKi26CDc4Bi4cfTvx3AAAAAAAAAAAAAAAAAAAAAAAIp3wIGXd3t4wQUS3czLMAAAAAAAAAAAAAAAAAAAA33D+ij5BgJ+VlDobI4klZS8AAAAAAAAAAAAAAAAAAAAAACQBbOelk+6o0/jyukSZuAAAAAAAAAAAAAAAAAAAAFa388MLR7ZX8kfiR10SlW3DAAAAAAAAAAAAAAAAAAAAAAAoh7EjYkBLNfVOVygCdFQAAAAAAAAAAAAAAAAAAAAQbO/DPpbsTsJvn64WEMwY+gAAAAAAAAAAAAAAAAAAAAAACq49EjgMQVBDNiW2MNjKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEn2TBU0muk6l8Yo1t5ribzwAAAAAAAAAAAAAAAAAAAAAAF8UXpJHFeDrOumvKt7H7AAAAAAAAAAAAAAAAAAAAisqf8q7i0wBPUZb/7my0w/8AAAAAAAAAAAAAAAAAAAAAABhBdBoytLzqjqjUSsUlPQAAAAAAAAAAAAAAAAAAAGvMegX/lalrKJQkxfczZw2WAAAAAAAAAAAAAAAAAAAAAAAAxDcm91tv2g3iLODg36sAAAAAAAAAAAAAAAAAAAAdCgnXF47JO614WPluZPC0jQAAAAAAAAAAAAAAAAAAAAAAL5tuC04sAZaN5cMkgqp9AAAAAAAAAAAAAAAAAAAAXdsR09mZ0q/lSNdpuQW9QoYAAAAAAAAAAAAAAAAAAAAAACfZ/bajT7bsP7B7gj4icQAAAAAAAAAAAAAAAAAAAK8Q9yBpJk5QR1r8hBZKdMqfAAAAAAAAAAAAAAAAAAAAAAAMIAnvhJBhS4qotnpGypU="
1929
+ "bytecode": "H4sIAAAAAAAA/+ydB5QVRfP2Z0i7yy7sAopgYoxgJiioIDlnEMUACmJWghkTrBFQiWYFUUEFI0EEJCjmRDQARoyYRUEl83VpX5wZenb66TvV8//Oefuccnjr7aGq++mq/t0Lrq7z78iXz34DB1x2+aVX9Lt84KUnV3GcKlX/dbvCSstnKWFeyJd5+n9dSTFP/JZO05CPQhSHfHsofHsrfr99FL59Fb4aCp+niLGfwre/wneAwnegIsZBwnJDvoMVvpoKXy2F7xCF71CF7zCF73CF7wiF70iF7yiFr7bCV0fhq6vw1VP4jlb4jlH46it8DRS+YxW+4xS+4xW+hgpfI4XvBIWvscLXROFrqvA1U/iaK3wtFL6WCl8rha+1wtdG4Wur8LVT+NorfB0Uvo4KXyeFr7PC10Xh66rwdVP4uit8Jyp8PRS+kxS+kxW+ngrfKQrfqQrfaQrf6QpfL4Wvt8J3hsJ3psLXR+Hrq/CdpfD1U/jOlr4yjsZw5dOTz9pnd770yzoPHzKna6sXbrjhlN616n3f9uq5g8a2+PLPO9eJ///t0v/NjRmHZxPnnfg4zfy/d4Hz34JdmSc9D5L/+2D5pN83M+9d8ev3hC0WtqR08DcvHco3Zrg1gbnvltbfh6X6+x0YaP61gLnvAfkvs5T/IcDcxUD+y4H8VedwqTyHy+RzuXwu8Z3DFeLX7wv7QNiHWZ7DQ4G5K4B9+MiSjocBc98H8l9pKf/DgbkfAPmvyvIcfiTP3Ur5XCWfH/rO4Wrx64+FfSLs0yzP4RHA3NXAPnxmSccjgbkfA/l/bin/o4C5nwD5f5HlOfxMnrvP5fML+fzUdw7XiF9/KewrYV9neQ5rA3PXAPvwjSUd6wBzvwTy/9ZS/nWBuV8B+X+X5Tn8Rp67b+XzO/n82ncO14pffy/sB2E/ZnkO6wFz1wL78JMlHY8G5n4P5P+zpfyPAeb+AOT/S5bn8Cd57n6Wz1/k80ffOfxV/Po3YeuE/Z7lOawPzP0V2Ic/LOnYAJj7G5D/ekv5HwvMXQfkvyHLc/iHPHfr5XODfP7uO4d/il//JexvYRuzPIfHAXP/BPZhkyUdjwfm/gXkv9lS/g2BuX8D+W/J8hxukudus3xukc+NvnO4Vfx6m7DtwnZkeQ4bAXO3AvtAyWr+voGB5n8CMHcbkL9rKf/GwNztQP6lymR3Dul/0NOVz1LyucN3DkuLX5QRVlZYudC3reg+NAHmli6jvw85lnRsCswtA+Sfayn/ZsDcskD+eVmewxx57nLlM08+6bxl5pUXv8gXViCsQpbnsDkwtzywDxUt6dgCmJsP5F9oKf+WwNwCIP+iLM9hRXnuCuWzSD4r+M5hJfGLysKqCNsty3PYCphbCdiH3S3p2BqYWxnIv6ql/NsAc6sA+e+R5TncXZ67qvK5h3zu5juH1cQvqgvbU9heWZ7DtsDcasA+7G1Jx3bA3OpA/vtYyr89MHdPIP99szyHe8tzt4987iufe/nOYQ2KIWw/YftneQ47AHNrAPtwgCUdOwJzPSD/Ay3l3wmYux+Q/0FZnsMD5Lk7UD4Pks/9fefwYPGLmsJqCTsky3PYGZh7MLAPh1rSsQswtyaQ/2GW8u8KzK0F5H94lufwUHnuDpPPw+XzEN85PEL84khhRwmrneU57AbMPQLYhzqWdOwOzD0SyL+upfxPBOYeBeRfL8tzWEeeu7ryWU8+a/vO4dHiF8cIqy+sQZbnsAcw92hgH461pONJwNxjgPyPs5T/ycDc+kD+x2d5Do+V5+44+TxePhv4zmFD8YtGwk4Q1jjLc9gTmNsQ2IcmlnQ8BZjbCMi/qaX8TwXmngDk3yzLc9hEnrum8tlMPhv7zmFz8YsWwloKa5XlOTwNmNsc2IfWlnQ8HZjbAsi/jaX8ewFzWwL5t83yHLaW566NfLaVz1a+c9hO/KK9sA7COmZ5DnsDc9sB+9DJko5nAHPbA/l3tpT/mcDcDkD+XbI8h53kuessn13ks6PvHHYVv+gmrLuwE7M8h32AuV2BfehhSce+wNxuQP4nWcr/LGBudyD/k7M8hz3kuTtJPk+WzxN957Cn+MUpwk4VdlqW57AfMLcnsA+nW9LxbGDuKUD+vbLU8XSpWy/5PFU+T/Pp2Fv84gxhZwrrE9KxlHx6jl4KVRz9tfXVXZvbrZhyLi3XRO81dbLL80Agz7P0NXD9eWbeKyP/t6t6Aczb1Z/rFPl+3U/qerZ8niOf58rnefJ5vnxeIJ8XyudF8nmxfPaXzwHyOVA+B8nnJfJ5aWbxmU25oMx/m5HxXazwDVT4Li2z6yaGNzBOzMv0xdwrmziXx8cp4/+9w4V7mVxrP/k8Vz4v9xXuFeIXVwq7StjgLBvw2cAhvwJoYFfr/77KfbharvtK+bxKPgf79uEa8YtrhV0n7Poyu/6eNDzNfIfE51u6pHwzup0jn9fI5xBfvkPFL4qF3SDsxizzvUl/f4/OJs7N8XEq+H/v8L7cJPfhPPk8Xz5v9u3LLeIXtwobJmx4luf5AuA83wKc5xHAefYPNP8LgfxvBfK/zVL+FwH5DwPyvz3LfjJCnrvb5PN2+RzuO4d3iF+MFDZK2Ogsz+HFwD7cAezDGEs69gfyHwnkP9ZS/gOA/EcB+Y/L8hyOkedurHyOk8/RvnN4p/jFXcLuFnZPludwILAPdwL7cK8lHQcB+d8F5H+fpfwvAfK/G8j//izP4b3y3N0nn/fL5z2+c/iA+MWDwsYLm5DlObwU2IcHgH14KMt9eEiu+0H5HC+fE3z7MFH84mFhjwh7NEtum6Sfb6Eq30kyv4nyOVTBmZPFLx4T9riwJ6S/lLPrZyjHwT+ITgb2u5Tv11NkclPLOMEPd/R/FId8U6XPP9ADNxk4RFOi5/YKzXWnAhtQRuZdqoQ5XoQ/HNf//6GiTQGLJDOeDIv1ZJldT1FYGGSzS4i9MwHd3/epMtqbGVjTUxqHLS72VCBPZE1Pl7Cm8Lv+NT3tK6pc33r8a4oZrmJuqaVVzrii3OTe/Y6oWaHV79Uq33VTk9dG3tik5uHA77uzGDLFnyl4JLdnxPxnhT0XcyvF7S/yaesZQLdpYJModJLpztMMC316mSwCTi+DvzcD2EzTvGb4Dofn4AM9TMhH32eB9c9M6TDNNDxMz5seJgr4vMFhmsV8mCivWYaHyaQwZpXBufKFMrx5UfejGKWyyCtu7myggHb+w8GKroQ1HPxDo7XNrvl086YtBZ+UGv5I760vP1qnXP+XV32IrGFOGezWRNfwnFwDej7mgsWcJ5+zZaw58vlcGbV/LniDvyjmzxM2X76HnqvMedSdP0POLxOKE5fnM2Ww2tWdi+S+IMvajvv9M3WBfsR6FjjryHoXMq/3QsP1+mmx3JK9cms+ufmWz35qt/jJ+rX7V3+i45N19q3yQf/b3xi++KUd25H1vsS83osM1+sHmr0rH3XDpEfanT3moc/zH338ljPfbvLcwEeeGP5S62vXrp3cpPhpZL0vg+s1Xfciw563QPa0hfK5SD5fks+XfX5/PnEhXhHzXxX2Wpng/4H2vueAvX4dvFPRv1BBur8I5EPzXymDx3kFiPGG4flCdbgYyOlNZh0uLBM8F3Hz6Vy8YcARb4F7i66D9hS5c2lf3zJYh+vY6UFv66+lAv3eu/zAaLm2zPe3vcvs+n3vO+IX7wp7T9jimN4St7xzgTP9TkofTIG/sxKIt6RMFgGXlMHfWwpspmleSw0+mCYpBjLXH2+ZqRiZl9GTvQzoKsuZhaN/LDc4UMtTqjhkrj/eimxEXmGwQSssCYd+N+ifGxfjbGAN76d0IN43bMEfmB4ICviBwYH4kPlAUF4fGrRgVazY/+iCjIV2vqVleParjPPfX3KOW1tcXCMeo+Blff/b/+esH0lRVmYyzPzZ2EfyFJG/nJNy9jmOOgEnlEDV6TmT1m45bcVDd6789Zwnn5r69Clnzl3w8WMX7d53w6AO3W7uqHwZPSdnAdqvKoPtTmb3Ve+hdbAa/CzlhH5/T/n/7joO8s+NmXxwYG7Jk8P/UZaSJu/yH0ApYfKu/7GR6MmK/yBH5GTVf/wiarLyPzQRMVn9H2NQT474Dx8oJ0f9RwZUk2tHzFVNjv6h97tOLuEHzO8yuaQfwh6eXOIPPA9NLvmHiwcnx/wA7sDkuB927Z8c+4OlfZPjf/jyf5M1ftDxzsk6P1Q4M1nrB+/KyXo/5PbfyZo/UPafybo/dJUmN9WcS5Ob6c4Vk5EfuNnC0e/dHwPgGMzo3+FpxvkkPk6O//cOf++yWlLCx/LZUvo/8X3v8qn4xWfCPhf2Reh7l13+nEnZqf4bwR8sWfLk0A9xLHGy/wcmxvJlZTNtdllrTFK7/PDCEibv+oMCoyf7fyhf3FqXJbjWkpJS/YC8qMnKH0YXMdn/g9/i1ro82bVGJhXxQ9iUk6N+4JlqcldHf60rEl+rOqnoH/S16+QSfqjWLpP9P8Aq9sM/x1oVSZX4w6RCk0v+wU3Byf4fkhS31g+Y1hpOKu4HFvknx/5wIN9k/w/iiVvrh3xrDSSl8UNxdk7W+QE0mcn+H/YSt9aPWNf6X1J6P3jl38maP+Tkn8n+HygSt9aV3GuVSfXRnEuT++rOFZP9P7Qi9vsBw7Vm/mVST2869AMkPgW+31gDfMcAcJMLcIcL3NsucO+5wL3hAn3XBfqWC9S9C9SNa3ruOH/wx2fAufuyjJ38XWDu50D+X4F/MBD+3LVGft76Uj6/ks8vfJ+7vha/+EbYt8K+y/LPu78G1rYW/M4zvLa1ci3fyOe38vmdb23fi1/8IOxHYT9JP/0bHGVLCOY5ejll8e4/L5dV+JD4Jp/90RgtHTxGjXAMt+T5Nj6rx0228Rk6brKNz7Zxk2185oybbOOzYNxkG5/R4ibb+OwUN9nGZ5q4yTY+a8RN7qM5N5vPAHGTATb3Rfh3eJrTAQ4zjgGwUlZxvi9jJ84qwzg7BwpZqwDI+tnwD5Yz7xEwFTnBf+V15wtg3h9nuVFeFtM8R2e4O9fkP6S/iLx/FfabsHXCfhf2h7D1wjYI+1PYX8L+FrZR2CZhm4VtEbZV2DZh24XtkH/BwhVWSlhpYWWElRVWTliOsFxhecLKC8sXVlBWJpMRhpLJDfl+Vfh+U/jWKXy/K3x/KHzrFb4NCt+fCt9fCt/fCt9GhW+TwrdZ4dui8G1V+LYpfNsVvh0KH4kX9rkKXymFr7TCV0bhK6vwlVP4chS+XIUvT+Err/DlK3wF0ucf+8mn52iNQNHHNatfNOf+tmOH+6v2XMf9TXeuyHed3txx9EMkfteau+GfHzjxh87cNf/+cIr1GnObyx9ksSF+7pjMD734M3buwJ0/IOOvuLlz/vthGn/HzB3s+8EbG0ue28b/Qzo2lTh3beAHemwuaW7d4A//2FLC3JqhHxSyNXruLj/MZFvk3J7hs+5uj5pbvEtduDsi5hbvWkMu9SjF3FmKenNd5dyWqtp0S6nmdlHWsVtaMXe2uubdMrvOrRXRH9yyu8ydGNVL3HLhubUj+46bE5q7JrpHubnBuZeU0M/cvMDcTiX1Pre8f26/Evukm++be1TJPdUtKKsPXcQnSf2V5oKy2r18uT9ehbJZBKSXkX/tjIJX0N8gt6Lmokz/+jOtgWK44BoqgiJXctQ/RSkbkWPGMpXTc7TCBHItlAekKEzGhXLj/L4iBcGg3+0DJ9ktBA5IEbh5qDh0KArBw0R5FabUMfL193mCP14l045BASvhHWNCJaBjVGbuGLSGynjHmFA5pY6Rrx93vMrpOVphArlWkQdkt3DHqKLoGLsl0DGAk+xWAQ7Iboabh/6b2EhOuwPFsPMfQC4V5QFHvyRDruqqQDGo1hA3nfaoqkEnrppSJy6vf35n+uPtYdqJKeAeeCeeuQdw+Koxd2JaQzW8E8+sluXh0ymgqswFVB1cQ2agjQnRcE/gbCR5w5XXjztD5fQcrTCBXPeShbd3+IbbS3HD7Z3ADQd0CHcvQLS9DTcPPUhITvtkecPFvUPFs6fB7bAv861F697XQl6ZgWq4L6BhDWYNo5qsTnPWneuBDS0pGsjTr/XR/nj7mdIABdwPp4HR+wEbtD8zDdAa9sdpYPT+zDTwTyGU5S22A8Biyww0J0TDA1OigTz9uKNUTs/RChPI9SBZeAeHaeAgBQ0cnAANAB3CPQgQ7WDDzUMPEpJTTeabhIrnQINbtxYzDdC6a1nIKzNQDWsBGh7CrGFUk417D2myh6b03UCufq17/niHmdIABTwMpwHvMEDkw5lpgNZwOE4D3uHMNECFcGhZ3mI7whINIBoemRIN5OrHraFyeo5WmECuR8nCqx2mgaMUNFA7ARoAOoR7FCBabcPNQw8SklMd5puEiudIg1u3LjMN0LrrWsgrM1AN6wIa1mPWMKrJxr2HNNmjU6KBHP1aX+aPd4wpDVDAY3AaWHYMIHJ9ZhqgNdTHaWBZfWYaoEI4uixvsTWwRAOIhsemRAM5+nGXqpyeoxUmkOtxsvCOD9PAcQoaOD4BGgA6hHscINrxhpuHHiQkp4bMNwkVz7EGt24jZhqgdTeykFdmoBo2AjQ8gVnDqCYb9x7SZBunRAPl9Gu9rz9eE1MaoIBNcBro2wQQuSkzDdAamuI00LcpMw1QITQuy1tszSzRAKJh85RooJx+3D4qp+dohQnk2kIWXsswDbRQ0EDLBGgA6BBuC0C0loabhx4kJKdWzDcJFU9zg1u3NTMN0LpbW8grM1ANWwMatmHWMKrJxr2HNNm2KdFAWf1aX+WP186UBihgO5wGVrUDRG7PTAO0hvY4Daxqz0wDVAhty/IWWwdLNIBo2DElGiirH3elyuk5WmECuXaShdc5TAOdFDTQOQEaADqE2wkQrbPh5qEHCcmpC/NNQsXT0eDW7cpMA7TurhbyygxUw66Aht2YNYxqsnHvIU22e0o0UEa/1tv5451oSgMU8EScBtqdCIjcg5kGaA09cBpo14OZBqgQupflLbaTLNEAouHJKdFAGf24bVVOz9EKE8i1pyy8U8I00FNBA6ckQANAh3B7AqKdYrh56EFCcjqV+Sah4jnZ4NY9jZkGaN2nWcgrM1ANTwM0PJ1Zw6gmG/ce0mR7pUQDpfVrfbo/Xm9TGqCAvXEamN4bEPkMZhqgNZyB08D0M5hpgAqhV1neYjvTEg0gGvZJiQZK68edpnJ6jlaYQK59ZeGdFaaBvgoaOCsBGgA6hNsXEO0sw81DDxKSUz/mm4SKp4/BrXs2Mw3Qus+2kFdmoBqeDWh4DrOGUU027j2kyZ6bEg2U0q/1+f5455nSAAU8D6eB+ecBIp/PTAO0hvNxGph/PjMNUCGcW5a32C6wRAOIhhemRAOl9OPOUzk9RytMINeLZOFdHKaBixQ0cHECNAB0CPciQLSLDTcPPUhITv2ZbxIqngsNbt0BzDRA6x5gIa/MQDUcAGg4kFnDqCYb9x7SZAelRAOufq138Me7xJQGKOAlOA10uAQQ+VJmGqA1XIrTQIdLmWmACmFQWd5iu8wSDSAaXp4SDbj6cdurnJ6jFSaQ6xWy8K4M08AVChq4MgEaADqEewUg2pWGm4ceJCSnq5hvEiqeyw1u3cHMNEDrHmwhr8xANRwMaHg1s4ZRTTbuPaTJXpMSDTj6tV7sj3etKQ1QwGtxGii+FhD5OmYaoDVch9NA8XXMNECFcE1Z3mK73hINIBoOSYkGHP24Q1VOz9EL4891qCy84jANDFXQQHECNAB0CHcoIFqx4eahBwnJ6Qbmm4SKZ4jBrXsjMw3Qum+0kFdmoBreCGh4E7OGUU027j2kyd6cEg3s0P8vBAVo4BZTGqCAtxjQwC2AyLcy0wCt4VYDGriVmQaoEG4uy1tswyzRAKLh8JRowF88MSMxGhghC++2MA2MUNDAbQnQANAh3BGAaLdZogEkp9uZbxIqnuEGt+4dzDRA677DQl6ZgWp4B6DhSGYNo5ps3HtIkx2VEg1s16/1qf54o01pgAKOxmlg6mhA5DHMNEBrGIPTwNQxzDRAhTCqLG+xjbVEA4iG41Kige36NDBF5fQcrTCBXO+UhXdXmAbuVNDAXQnQANAh3DsB0e4qa7Z56EFCcrqb+Sah4hlncOvew0wDtO57LOSVGaiG9wAa3susYVSTjXsPabL3pUQD2/RrfbI/3v2mNEAB78dpYPL9gMgPMNMAreEBnAYmP8BMA1QI95XlLbYHLdEAouH4lGhgmz4NTFI5PUcrTCDXCbLwHgrTwAQFDTyUAA0AHcKdAIj2UFmzzUMPEpLTROabhIpnvMGt+zAzDdC6H7aQV2agGj4MaPgIs4ZRTTbuPaTJPpoSDWzVr/XV/niTTGmAAk7CaWD1JEDkycw0QGuYjNPA6snMNECF8GhZ3mJ7zBINIBo+nhINbNWngVUqp+dohQnk+oQsvClhGnhCQQNTEqABoEO4TwCiTSlrtnnoQUJymsp8k1DxPG5w6z7JTAO07ict5JUZqIZPAho+xaxhVJONew9psk+nRANb9Gt9iT/eM6Y0QAGfwWlgyTOAyM8y0wCt4VmcBpY8y0wDVAhPl+Uttucs0QCi4bSUaGCLPg0sVjk9RytMINfpsvBmhGlguoIGZiRAA0CHcKcDos0oa7Z56EFCcprJfJNQ8UwzuHWfZ6YBWvfzFvLKDFTD5wENZzFrGNVk495DmuwLKdHAZv1ar+6PN9uUBijgbJwGqs8GRJ7DTAO0hjk4DVSfw0wDVAgvlOUttrmWaADR8MWUaGCzPg1UUzk9RytMINd5svDmh2lgnoIG5idAA0CHcOcBos0va7Z56EFCclrAfJNQ8bxocOsuZKYBWvdCC3llBqrhQkDDl5g1jGqyce8hTfbllGhgk36tz/XHW2RKAxRwEU4DcxcBIr/CTAO0hldwGpj7CjMNUCG8XJa32F61RAOIhq+lRAOb9GlgjsrpOVphArm+LgvvjTANvK6ggTcSoAGgQ7ivA6K9UdZs89CDhOT0JvNNQsXzmsGt+xYzDdC637KQV2agGr4FaPg2s4ZRTTbuPaTJvpMSDWzUr/Xh/njvmtIABXwXp4Hh7wIiv8dMA7SG93AaGP4eMw1QIbxTlrfYFluiAUTDJSnRwEZ9GhimcnqOVphArktl4S0L08BSBQ0sS4AGgA7hLgVEW1bWbPPQg4TktJz5JqHiWWJw665gpgFa9woLeWUGquEKQMP3mTWMarJx7yFN9oOUaOBv/Vpv64/3oSkNUMAPcRpo+yEg8kfMNEBr+AingbYfMdMAFcIHZXmLbaUlGkA0XJUSDfytTwNtVE7P0QoTyHW1LLyPwzSwWkEDHydAA0CHcFcDon1c1mzz0IOE5PQJ801CxbPK4Nb9lJkGaN2fWsgrM1ANPwU0/IxZw6gmG/ce0mQ/T4kG/tKv9bH+eF+Y0gAF/AKngbFfACKvYaYBWsManAbGrmGmASqEz8vyFtuXlmgA0fCrlGjgL30aGKNyeo5WmECuX8vC+yZMA18raOCbBGgA6BDu14Bo35Q12zz0ICE5fct8k1DxfGVw637HTAO07u8s5JUZqIbfARquZdYwqsnGvYc02e9TooE/9Wt9kD/eD6Y0QAF/wGlg0A+AyD8y0wCt4UecBgb9yEwDVAjfl+Uttp8s0QCi4c8p0cCf+jQwUOX0HK0wgVx/kYX3a5gGflHQwK8J0ADQIdxfANF+LWu2eehBQnL6jfkmoeL52eDWXcdMA7TudRbyygxUw3WAhr8zaxjVZOPeQ5rsHynRwAb9Wl/oj7felAYo4HqcBhauB0TewEwDtIYNOA0s3MBMA1QIf5TlLbY/LdEAouFfKdHABn0aWKByeo5WmECuf8vC2ximgb8VNLAxARoAOoT7NyDaxrJmm4ceJCSnTcw3CRXPXwa37mZmGqB1b7aQV2agGm4GNNzCrGFUk417D2myW1OigfX6te75420zpQEKuA2nAW8bIPJ2ZhqgNWzHacDbzkwDVAhby/IW2w5LNABpWC4dGlivTwM1VE7P0QoTyNUt9++zVDknePPT/xGmAZqULQ0AHcJ1y+mLVqqc2eahBwnJqTRwkHb+w9F/h4rHKYcXdhn9vP5LztHPi9ZdxkJemYFqWAbQsCyzhlFNNu49pMmWA/Y1SRr4Q7/WC/zxcsplEZBeBmmgIAcQORc4PKZryAWLh9aQm2VR6xRCuXK8xZYHFltmoDkhGpZPiQb+0KeBfJXTc7TCBHLNl4VXEKaBfAUNFCRAA0CHcPMB0QrKmW0eepCQnCow3yRUPOUNbt2KzDRA665oIa/MQDWsCGhYyKxhVJONew9pskUp0cDv+rU+wB+vkikNUMBKOA0MqASIXJmZBmgNlXEaGFCZmQaoEIrK8RZbFUs0gGi4W0o08Ls+DfRXOT1HK0wg191l4VUN08DuChqomgANAB3C3R0QrWo5s81DDxKS0x7MNwkVz24Gt241ZhqgdVezkFdmoBpWAzSszqxhVJONew9psnumRAPr9Gu9kj/eXqY0QAH3wmmg0l6AyHsz0wCtYW+cBirtzUwDVAh7luMttn0s0QCi4b4p0cA6fRooUjk9RytMINcasvC8MA3UUNCAlwANAB3CrQGI5pUz2zz0ICE57cd8k1Dx7Gtw6+7PTAO07v0t5JUZqIb7AxoewKxhVJONew9psgemRAO/6Te0QLyDTGmAAh5UDn/vYOYbnvI6uNx/Ds/RH2gR0YE9sBxvUdS0dGsjutTKslB11lzLQMMkC+pXw4I6xLSgKOAhBgV1KHNBUV6HJlRQcdNJ+EPLmR0YTy9GoofklzL6OfrjHWZ6SCjgYQYd5zCgYg9nPlC0hsMNRD6c+TMYHaLDDfCgJrBfRzDjIO3tEYbFmhno2ToCWP+RzIgXdSPHvYfcyEcxa0h7dJTBRYDoQE2QPpuVVv1GYNyWjtk5c7A4nrZzl+HuXJPre6e22K86wuoKqyfsaGHHCKsvrIGwY4UdJ+x4YQ2FNRJ2grDGwpoIayqsmbDmwloIaymslbDWwtoIayusnbD2wjoI6yisk7DOwrqEvwOoLT/v+311FL66Cl89he9ohe8Yha++wtdA4TtW4TtO4Tte4Wuo8DVS+E5Q+BorfE0UvqYKXzOFr7nC10Lha6nwtVL4Wit8bRS+tgpfO4WvvcLXQeHrqPB1Uvg6K3xdyu363dJ+8uk5WiNQ9HHNprZmY6Lvoepoz3XcurpzRb719OaOE/m6R2vN3UBrc4/Rmbvmn31w62vMbf7vnrkN4ueOkfvrHhs7d2BGC/e4uLlzdurmHh8zd/B/GrsNS57bxnce3EYlzl3rPzvuCSXNrRs4Z27jEubWDJ5Jt0n03F6h8+s2jZzbM3zW3WZRc4t3qQu3ecTc4l1ryG2hnjtLUW9uS+XclqradFup5nZR1rHbWjF3trrm3Ta7zq0V0R/ctrvMnRjVS9x24bm1I/uO2z40d010j3I7BOdeUkI/czsG5nYqqfe5nfxz+5XYJ93OvrlHldxT3S4pfeLtot/Ll/vjdTX9xEsBu5aD/9RxeVf9DXK7aS7K9BMvraEb+ImX1tANFDmpPx0DDtcyldNztMIEcu0uD8iJYTLuLjfO7zuxXPZ/OgacZLc7cEBOBDcPFYcORXfwMFFe3VPqGJ3193mCP14P045BAXvgHWNCD6BjnMTcMWgNJ+EdY8JJKXWMzvpxx6ucnqMVJpDryfKA9Ax3jJMVHaNnAh0DOMnuycAB6Wm4eegXdUhOpwDFsPMfQC7d5AFHv6hDrupTgWJQrSFuOu3RqQad+NSUOnEn/fM70x/vNNNOTAFPwzvxzNOAw3c6cyemNZyOd+KZp2d5+HQK6FTmAuoFriEz0MaEaNgbOBtJ3nCd9OPOUDk9RytMINczZOGdGb7hzlDccGcmcMMBHcI9AxDtTMPNQw8SklOfLG+4uHeoeHob3A59mW8tWndfC3llBqphX0DDs5g1jGqyOs1Zd24/sKElRQMd9Wt9tD/e2aY0QAHPxmlg9NnABp3DTAO0hnNwGhh9DjMNUCH0K8dbbOeCxZYZaE6IhuelRAMd9eOOUjk9RytMINfzZeFdEKaB8xU0cEECNAB0CPd8QLQLDDcPPUhIThcy3yRUPOcZ3LoXMdMArfsiC3llBqrhRYCGFzNrGNVk495Dmmz/lL4b6KBf654/3gBTGqCAA3Aa8AYAIg9kpgFaw0CcBryBzDRAhdC/HG+xDbJEA4iGl6REAx304yb2c+culYV3WZgGLlXQwGUJ0ADQIdxLAdEuM9w89CAhOV3OfJNQ8VxicOtewUwDtO4rLOSVGaiGVwAaXsmsYVSTjXsPabJXpUQD7fVrfZk/3mBTGqCAg3EaWDYYEPlqZhqgNVyN08Cyq5lpgArhqnK8xXaNJRpANLw2JRporx93qcrpOVphArleJwvv+jANXKeggesToAGgQ7jXAaJdb7h56EFCchrCfJNQ8VxrcOsOZaYBWvdQC3llBqrhUEDDYmYNo5ps3HtIk70hJRpop1/rff3xbjSlAQp4I04DfW8ERL6JmQZoDTfhNND3JmYaoEK4oRxvsd1siQYQDW9JiQba6cfto3J6jlaYQK63ysIbFqaBWxU0MCwBGgA6hHsrINoww81DDxKS03Dmm4SK5xaDW3cEMw3QukdYyCszUA1HABrexqxhVJONew9psrenRANt9Wt9lT/eHaY0QAHvwGlg1R2AyCOZaYDWMBKngVUjmWmACuH2crzFNsoSDSAajk6JBtrqx12pcnqOVphArmNk4Y0N08AYBQ2MTYAGgA7hjgFEG2u4eehBQnIax3yTUPGMNrh172SmAVr3nRbyygxUwzsBDe9i1jCqyca9hzTZu1OigTb6td7OH+8eUxqggPfgNNDuHkDke5lpgNZwL04D7e5lpgEqhLvL8RbbfZZoANHw/pRooI1+3LYqp+dohQnk+oAsvAfDNPCAggYeTIAGgA7hPgCI9qDh5qEHCclpPPNNQsVzv8GtO4GZBmjdEyzklRmohhMADR9i1jCqyca9hzTZiSnRQGv9Wp/uj/ewKQ1QwIdxGpj+MCDyI8w0QGt4BKeB6Y8w0wAVwsRyvMX2qCUaQDSclBINtNaPO03l9BytMIFcJ8vCeyxMA5MVNPBYAjQAdAh3MiDaY4abhx4kJKfHmW8SKp5JBrfuE8w0QOt+wkJemYFq+ASg4RRmDaOabNx7SJOdmhINtNKv9fn+eE+a0gAFfBKngflPAiI/xUwDtIancBqY/xQzDVAhTC3HW2xPW6IBRMNnUqKBVvpx56mcnqMVJpDrs7LwngvTwLMKGnguARoAOoT7LCDac4abhx4kJKdpzDcJFc8zBrfudGYaoHVPt5BXZqAaTgc0nMGsYVSTjXsPabIzU6KBlvq13sEf73lTGqCAz+M00OF5QORZzDRAa5iF00CHWcw0QIUwsxxvsb1giQYQDWenRAMt9eO2Vzk9RytMINc5svDmhmlgjoIG5iZAA0CHcOcAos013Dz0ICE5vch8k1DxzDa4decx0wCte56FvDID1XAeoOF8Zg2jmmzce0iTXZASDbTQr/Vif7yFpjRAARfiNFC8EBD5JWYaoDW8hNNA8UvMNECFsKAcb7G9bIkGEA0XpUQDLfTjDlU5PUcrTCDXV2ThvRqmgVcUNPBqAjQAdAj3FUC0Vw03Dz1ISE6vMd8kVDyLDG7d15lpgNb9uoW8MgPV8HVAwzeYNYxqsnHvIU32zZRooLkhDbxlSgMU8C0DGngLEPltZhqgNbxtQANvM9MAFcKb5XiL7R1LNIBo+G5KNNA8BRp4Txbe4jANvKeggcUJ0ADQIdz3ANEWW6IBJKclzDcJFc+7BrfuUmYaoHUvtZBXZqAaLgU0XMasYVSTjXsPabLLU6KBZvq1PtUfb4UpDVDAFTgNTF0BiPw+Mw3QGt7HaWDq+8w0QIWwvBxvsX1giQYQDT9MiQaa6cedonJ6jlaYQK4fycJbGaaBjxQ0sDIBGgA6hPsRINpKw81DDxKS0yrmm4SK50ODW3c1Mw3QuldbyCszUA1XAxp+zKxhVJONew9psp+kRANN9Wt9sj/ep6Y0QAE/xWlg8qeAyJ8x0wCt4TOcBiZ/xkwDVAiflOMtts8t0QCi4Rcp0UBT/biTVE7P0QoTyHWNLLwvwzSwRkEDXyZAA0CHcNcAon1puHnoQUJy+or5JqHi+cLg1v2amQZo3V9byCszUA2/BjT8hlnDqCYb9x7SZL9NiQaa6Nf6an+870xpgAJ+h9PA6u8Akdcy0wCtYS1OA6vXMtMAFcK35XiL7XtLNIBo+ENKNNBEP+4qldNztMIEcv1RFt5PYRr4UUEDPyVAA0CHcH8ERPvJcPPQg4Tk9DPzTULF84PBrfsLMw3Qun+xkFdmoBr+Amj4K7OGUU027j2kyf6WEg001q/1Jf5460xpgAKuw2lgyTpA5N+ZaYDW8DtOA0t+Z6YBKoTfyvEW2x+WaADRcH1KNNBYP+5ildNztMIEct0gC+/PMA1sUNDAnwnQANAh3A2AaH8abh56kJCc/mK+Sah41hvcun8z0wCt+28LeWUGquHfgIYbmTWMarJx7yFNdlNKNHCCfq1X98fbbEoDFHAzTgPVNwMib2GmAVrDFpwGqm9hpgEqhE3leIttqyUaQDTclhINnKAft5rK6TlaYQK5bpeFtyNMA9sVNLAjARoAOoS7HRBth+HmoQcJycnJ4b1JqHi2Gdy6rn5e/yXnAGvJ+TcGd16ZgWrojxM3txSzhlFNNu49pMmWBvY1SRpopF/rc/3xyuRkEZBeBmlgbhlA5LLA4TFdQ1mweGgNZbMsap1CKJ3DW2zlwGLLDDQnRMMcIKckaaCR/oU2R+X0HK0wgVxzZeHl5TjBmz83Z1caoEnZ0gDQIdxcQLS8HLPNQw8SklN55puEiifH4NbNZ6YBWne+hbwyA9UwH9CwgFnDqCYb9x7SZCukRAMN9Wt9uD9eRVMaoIAVcRoYXhEQuZCZBmgNhTgNDC9kpgEqhAo5vMVWZIkGEA0rpUQDDfVpYJjK6TlaYQK5VpaFVyVMA5UVNFAlARoAOoRbGRCtSo7Z5qEHCclpN+abhIqnksGtuzszDdC6d7eQV2agGu4OaFiVWcOoJhv3HtJk90iJBo7Xr/W2/njVTGmAAlbDaaBtNUDk6sw0QGuojtNA2+rMNECFsEcOb7HtaYkGEA33SokGjtengTYqp+dohQnkurcsvH3CNLC3ggb2SYAGgA7h7g2Itk+O2eahBwnJaV/mm4SKZy+DW7cGMw3QumtYyCszUA1rABp6zBpGNdm495Amu19KNHCcfq2P9cfb35QGKOD+OA2M3R8Q+QBmGqA1HIDTwNgDmGmACmG/HN5iO9ASDSAaHpQSDRynTwNjVE7P0QoTyPVgWXg1wzRwsIIGaiZAA0CHcA8GRKuZY7Z56EFCcqrFfJNQ8RxkcOsewkwDtO5DLOSVGaiGhwAaHsqsYVSTjXsPabKHpUQDx+rX+iB/vMNNaYACHo7TwKDDAZGPYKYBWsMROA0MOoKZBqgQDsvhLbYjLdEAouFRKdHAsfo0MFDl9BytMIFca8vCqxOmgdoKGqiTAA0AHcKtDYhWJ8ds89CDhORUl/kmoeI5yuDWrcdMA7TuehbyygxUw3qAhkczaxjVZOPeQ5rsMSnRQAP9Wl/oj1fflAYoYH2cBhbWB0RuwEwDtIYGOA0sbMBMA1QIx+TwFtuxlmgA0fC4lGiggT4NLFA5PUcrTCDX42XhNQzTwPEKGmiYAA0AHcI9HhCtYY7Z5qEHCcmpEfNNQsVznMGtewIzDdC6T7CQV2agGp4AaNiYWcOoJhv3HtJkm6REA/X1a93zx2tqSgMUsClOA15TQORmzDRAa2iG04DXjJkGqBCa5PAWW3NLNIBo2CIlGqivTwM1VE7P0QoTyLWlLLxWYRpoqaCBVgnQANAh3JaAaK1yzDYPPUhITq2ZbxIqnhYGt24bZhqgdbexkFdmoBq2ATRsy6xhVJONew9psu1SooFj9Gu9wB+vvSkNUMD2OA0UtAdE7sBMA7SGDjgNFHRgpgEqhHY5vMXW0RINIBp2SokGjtGngXyV03O0wgRy7SwLr0uYBjoraKBLAjQAdAi3MyBalxyzzUMPEpJTV+abhIqnk8Gt242ZBmjd3SzklRmoht0ADbszaxjVZOPeQ5rsiSnRwNH6tT7AH6+HKQ1QwB44DQzoAYh8EjMN0BpOwmlgwEnMNECFcGIOb7GdbIkGEA17pkQDR+vTQH+V03O0wgRyPUUW3qlhGjhFQQOnJkADQIdwTwFEOzXHbPPQg4TkdBrzTULF09Pg1j2dmQZo3adbyCszUA1PBzTsxaxhVJONew9psr1TooF6+rVeyR/vDFMaoIBn4DRQ6QxA5DOZaYDWcCZOA5XOZKYBKoTeObzF1scSDSAa9k2JBurp00CRyuk5WmECuZ4lC69fmAbOUtBAvwRoAOgQ7lmAaP1yzDYPPUhITmcz3yRUPH0Nbt1zmGmA1n2OhbwyA9XwHEDDc5k1jGqyce8hTfa8lGigLvDDcv3xzjelAQp4fg7+3gXMNzzldUHOfw7P0R9oEdGBPS+HtygutHRrI7pclGWh6qz5IgMNkyyoOoYFdbFpQVHAiw0Kqj9zQVFe/RMqqLjpJHz/HLMD4+nFSPSQ1AZ+Sq0/3gDTQ0IBBxh0nAFAxQ5kPlC0hoEGIg9k/gxGh2igAR5cCOzXIGYcpL0dZFismYGerUHA+i9hRryoGznuPeRGvpRZQ9qjSw0uAkQHaoL02ay04jeqEY7rOiWOVv65MZNbB+aWPLlNcG6Jk9uG5pY0uV14bgmT2+8yN3pyh13nRk7uqJgbNbmTam7E5M7KuerJXdRzlZO7RsxVTe4WNVcxuXvk3F0nnxg9d5fJPUqYG558UklzQ5NPLnFucHLPkucGJp8SM9c/+dS4ub7Jp8XO/W/y6fFzd07upTE3M7m3zlw5+Qytuf9OPlNv7j+T+2jOpcl9deeKyWdpz3XcfvpzlcPLYprn6Ax3p76u753LxL1yubArhF0p7Cphg4VdLewaYdcKu07Y9cKGCBsqrFjYDcJuFHaTsJuF3SLsVmHDhA0XNkLYbcJuF3aHsJHCRgkbLWyMsLHCxoW/K71Mfi/q912u8F2h8F2p8F2l8A1W+K5W+K5R+K5V+K5T+K5X+IYofEMVvmKF7waF70aF7yaF72aF7xaF71aFb5jCN1zhG6Hw3abw3a7w3aHwjVT4Ril8oxW+MQrfWIVvXM6u38EfJp+eozUCRR8HZZdpAhx9X3+59lzHvUJ3rsj3Sr2540S+7lVaczfQ2tzBOnPX/LMP7tUac5v/u2fuNfFzx8j9da+NnTswo4V7XdzcOTt1c6+PmTv4P43dISXPbeM7D+7QEueu9Z8dt7ikuXUD58y9oYS5NYNn0r0xem6v0Pl1b4qc2zN81t2bo+YW71IX7i0Rc4t3rSH3VvXcWYp6c4cp57ZU1aY7XDW3i7KO3RGKubPVNe/etuvcWhH9wb19l7kTo3qJe0d4bu3IvuOODM1dE92j3FHBuZeU0M/c0YG5nUrqfe4Y/9x+JfZJd6xv7lEl91R3HPCFw9LK+nOXAXOXA3NXAHPfB+Z+AMz9EJj7ETB3JTB3lf7cRL/RHad/By/3x7vT9BtdCnhnDvy3apbfCRzsuzQXZfqNLq3hLvAbXVrDXTmYyEn97Q+gKSxTOT1HK0wg17vlAbkn/Inmbrlxft89Odn/7Q/gJLt3AwfkHnDzUHHoUNwNHibK6+6cdDrGWP19nuCPd69px6CA9+IdY8K9QMe4j7lj0BruwzvGhPtS6hhj9eOOVzk9RytMINf75QF5INwx7ld0jAcS6BjASXbvBw7IA4abh/5BFJLTg0Ax7PwHkMtd8oCjfxCFXNXjgWJQrSFuOu3ReINOPD6lTjxG//zO9MebYNqJKeAEvBPPnAAcvoeYOzGt4SG8E898KMvDp1NA45kLaCK4hsxAGxOi4cPA2UjyhhujH3eGyuk5WmECuT4iC+/R8A33iOKGezSBGw7oEO4jgGiPGm4eepCQnCZlecPFvUPF87DB7TCZ+daidU+2kFdmoBpOBjR8jFnDqCar05x15z4ONrSkaGC0fq2P9sd7wpQGKOATOA2MfgLYoCnMNEBrmILTwOgpzDRAhfB4Dm+xTQWLLTPQnBANn0yJBkbrxx2lcnqOVphArk/Jwns6TANPKWjg6QRoAOgQ7lOAaE8bbh56kJCcnmG+Sah4njS4dZ9lpgFa97MW8soMVMNnAQ2fY9YwqsnGvYc02WkpfTcwSr/WPX+86aY0QAGn4zTgTQdEnsFMA7SGGTgNeDOYaYAKYVoOb7HNtEQDiIbPp0QDo/TjJvZzVWfJwnshTAOzFDTwQgI0AHQIdxYg2guGm4ceJCSn2cw3CRXP8wa37hxmGqB1z7GQV2agGs4BNJzLrGFUk417D2myL6ZEAyP1a32ZP948UxqggPNwGlg2DxB5PjMN0Brm4zSwbD4zDVAhvJjDW2wLLNEAouHClGhgpH7cpSqn52iFCeT6kiy8l8M08JKCBl5OgAaADuG+BIj2suHmoQcJyWkR801CxbPQ4NZ9hZkGaN2vWMgrM1ANXwE0fJVZw6gmG/ce0mRfS4kG7tCv9b7+eK+b0gAFfB2ngb6vAyK/wUwDtIY3cBro+wYzDVAhvJbDW2xvWqIBRMO3UqKBO/Tj9lE5PUcrTCDXt2XhvROmgbcVNPBOAjQAdAj3bUC0dww3Dz1ISE7vMt8kVDxvGdy67zHTAK37PQt5ZQaq4XuAhouZNYxqsnHvIU12SUo0cLt+ra/yx1tqSgMUcClOA6uWAiIvY6YBWsMynAZWLWOmASqEJTm8xbbcEg0gGq5IiQZu14+7UuX0HK0wgVzfl4X3QZgG3lfQwAcJ0ADQIdz3AdE+MNw89CAhOX3IfJNQ8awwuHU/YqYBWvdHFvLKDFTDjwANVzJrGNVk495DmuyqlGjgNv1ab+ePt9qUBijgapwG2q0GRP6YmQZoDR/jNNDuY2YaoEJYlcNbbJ9YogFEw09TooHb9OO2VTk9RytMINfPZOF9HqaBzxQ08HkCNAB0CPczQLTPDTcPPUhITl8w3yRUPJ8a3LprmGmA1r3GQl6ZgWq4BtDwS2YNo5ps3HtIk/0qJRoYoV/r0/3xvjalAQr4NU4D078GRP6GmQZoDd/gNDD9G2YaoEL4Koe32L61RAOIht+lRAMj9ONOUzk9RytMINe1svC+D9PAWgUNfJ8ADQAdwl0LiPa94eahBwnJ6Qfmm4SK5zuDW/dHZhqgdf9oIa/MQDX8EdDwJ2YNo5ps3HtIk/05JRoYrl/r8/3xfjGlAQr4C04D838BRP6VmQZoDb/iNDD/V2YaoEL4OYe32H6zRAOIhutSooHh+nHnqZyeoxUmkOvvsvD+CNPA7woa+CMBGgA6hPs7INofhpuHHiQkp/XMNwkVzzqDW3cDMw3QujdYyCszUA03ABr+yaxhVJONew9psn+lRAPD9Gu9gz/e36Y0QAH/xmmgw9+AyBuZaYDWsBGngQ4bmWmACuGvHN5i22SJBhANN6dEA8P047ZXOT1HK0wg1y2y8LaGaWCLgga2JkADQIdwtwCibTXcPPQgITltY75JqHg2G9y625lpgNa93UJemYFquB3QcAezhlFNNu49pMlS0Wr+vonSwK36tV7sj+fmZhGQXgZpoNjV3yC3VC4vDdAaKAZIA8WlAJFVeekUgpPLW2ylAR38/wPNCdGwDJBTkjRwq37jGapyeo5WmECuZWXhlQv/V2DK5u5KAzQpWxoAOoRbFhCtXK7Z5qEHCckpBzzc6IGh4imTixd2bpaNI246rTvXQl6ZgWqYC2iYx6xhVJONew9psuVTooFbDGkg35QGKGC+AQ3kAyIXMNMAraHAgAYKmGmACqF8Lm+xVbBEA4iGFVOigVtSoIFCWXhFYRooVNBAUQI0AHQItxAQrcgSDSA5VWK+Sah4KhrcupWZaYDWXdlCXpmBalgZ0LAKs4ZRTTbuPaTJ7pYSDdysX+tT/fF2N6UBCrg7TgNTdwdErspMA7SGqjgNTK3KTANUCLvl8hbbHpZoANGwWko0cLM+DUxROT1HK0wg1+qy8PYM00B1BQ3smQANAB3CrQ6Itmeu2eahBwnJaS/mm4SKp5rBrbs3Mw3Quve2kFdmoBruDWi4D7OGUU027j2kye6bEg3cpF/rk/3xapjSAAWsgdPA5BqAyB4zDfyzaTgNTPaYaYAKYd9c3mLbzxINIBrunxIN3KRPA5NUTs/RChPI9QBZeAeGaeAABQ0cmAANAB3CPQAQ7cBcs81DDxKS00HMNwkVz/4Gt+7BzDRA6z7YQl6ZgWp4MKBhTWYNo5ps3HtIk62VEg3cqF/rq/3xDjGlAQp4CE4Dqw8BRD6UmQZoDYfiNLD6UGYaoEKolctbbIdZogFEw8NTooEb9WlglcrpOVphArkeIQvvyDANHKGggSMToAGgQ7hHAKIdmWu2eehBQnI6ivkmoeI53ODWrc1MA7Tu2hbyygxUw9qAhnWYNYxqsnHvIU22bko0cIN+rS/xx6tnSgMUsB5OA0vqASIfzUwDtIajcRpYcjQzDVAh1M3lLbZjLNEAomH9lGjgBn0aWKxyeo5WmECuDWThHRumgQYKGjg2ARoAOoTbABDt2FyzzUMPEpLTccw3CRVPfYNb93hmGqB1H28hr8xANTwe0LAhs4ZRTTbuPaTJNkqJBor1a726P94JpjRAAU/AaaD6CYDIjZlpgNbQGKeB6o2ZaYAKoVEub7E1sUQDiIZNU6KBYn0aqKZyeo5WmECuzWThNQ/TQDMFDTRPgAaADuE2A0Rrnmu2eehBQnJqwXyTUPE0Nbh1WzLTAK27pYW8MgPVsCWgYStmDaOabNx7SJNtnRINDNWv9bn+eG1MaYACtsFpYG4bQOS2zDRAa2iL08Dctsw0QIXQOpe32NpZogFEw/Yp0cBQfRqYo3J6jlaYQK4dZOF1DNNABwUNdEyABoAO4XYAROuYa7Z56EFCcurEfJNQ8bQ3uHU7M9MArbuzhbwyA9WwM6BhF2YNo5ps3HtIk+2aEg0M0a/14f543UxpgAJ2w2lgeDdA5O7MNEBr6I7TwPDuzDRAhdA1l7fYTrREA4iGPVKigSH6NDBM5fQcrTCBXE+ShXdymAZOUtDAyQnQANAh3JMA0U7ONds89CAhOfVkvkmoeHoY3LqnMNMArfsUC3llBqrhKYCGpzJrGNVk495DmuxpKdHA9fq13tYf73RTGqCAp+M00PZ0QORezDRAa+iF00DbXsw0QIVwWi5vsfW2RAOIhmekRAPX69NAG5XTc7TCBHI9UxZenzANnKmggT4J0ADQIdwzAdH65JptHnqQkJz6Mt8kVDxnGNy6ZzHTAK37LAt5ZQaq4VmAhv2YNYxqsnHvIU327JRo4Dr9Wh/rj3eOKQ1QwHNwGhh7DiDyucw0QGs4F6eBsecy0wAVwtm5vMV2niUaQDQ8PyUauE6fBsaonJ6jFSaQ6wWy8C4M08AFChq4MAEaADqEewEg2oW5ZpuHHiQkp4uYbxIqnvMNbt2LmWmA1n2xhbwyA9XwYkDD/swaRjXZuPeQJjsgJRq4Vr/WB/njDTSlAQo4EKeBQQMBkQcx0wCtYRBOA4MGMdMAFcKAXN5iu8QSDSAaXpoSDVyrTwMDVU7P0QoTyPUyWXiXh2ngMgUNXJ4ADQAdwr0MEO3yXLPNQw8SktMVzDcJFc+lBrfulcw0QOu+0kJemYFqeCWg4VXMGkY12bj3kCY7OCUauEa/1hf6411tSgMU8GqcBhZeDYh8DTMN0BquwWlg4TXMNECFMDiXt9iutUQDiIbXpUQD1+jTwAKV03O0wgRyvV4W3pAwDVyvoIEhCdAA0CHc6wHRhuSabR56kJCchjLfJFQ81xncusXMNEDrLraQV2agGhYDGt7ArGFUk417D2myN6ZEA1fr17rnj3eTKQ1QwJtwGvBuAkS+mZkGaA034zTg3cxMA1QIN+byFtstlmgA0fDWlGjgan0aqKFyeo5WmECuw2ThDQ/TwDAFDQxPgAaADuEOA0Qbnmu2eehBQnIawXyTUPHcanDr3sZMA7Tu2yzklRmohrcBGt7OrGFUk417D2myd6REA4P1a73AH2+kKQ1QwJE4DRSMBEQexUwDtIZROA0UjGKmASqEO3J5i220JRpANByTEg0M1qeBfJXTc7TCBHIdKwtvXJgGxipoYFwCNAB0CHcsINq4XLPNQw8SktOdzDcJFc8Yg1v3LmYaoHXfZSGvzEA1vAvQ8G5mDaOabNx7SJO9JyUauEq/1gf4491rSgMU8F6cBgbcC4h8HzMN0Bruw2lgwH3MNECFcE8ub7Hdb4kGEA0fSIkGrtKngf4qp+dohQnk+qAsvPFhGnhQQQPjE6ABoEO4DwKijc812zz0ICE5TWC+Sah4HjC4dR9ipgFa90MW8soMVMOHAA0nMmsY1WTj3kOa7MMp0cCV+rVeyR/vEVMaoICP4DRQ6RFA5EeZaYDW8ChOA5UeZaYBKoSHc3mLbZIlGkA0nJwSDVypTwNFKqfnaIUJ5PqYLLzHwzTwmIIGHk+ABoAO4T4GiPZ4rtnmoQcJyekJ5puEimeywa07hZkGaN1TLOSVGaiGUwANpzJrGNVk495DmuyTKdHAFfoNLRDvKVMaoIBP5eLvPc18w1NeT/s6p+foD7SI6MA+mctbFM9YurURXZ7NslB11vysgYZJFtTlhgX1nGlBUcDnDApqGnNBUV7TEiqouOkk/LRcswPj6cVI9JBclqOfoz/edNNDQgGnG3Sc6UDFzmA+ULSGGQYiz2D+DEaHaIYBHjwD7NdMZhykvZ1pWKyZgZ6tmcD6n2dGvKgbOe495Eaexawh7dEsg4sA0YGaIH02K636jcC4Zztm58zB4njazl2Gu3NNru+dF8R+zRY2R9hcYS8KmydsvrAFwhYKe0nYy8IWCXtF2KvCXhP2urA3hL0p7C1hbwt7R9i7wt4TtljYEmFLhS0TtlzYCmHvC/tA2Ifh7wBekJ/3/b7ZCt8chW+uwveiwjdP4Zuv8C1Q+BYqfC8pfC8rfIsUvlcUvlcVvtcUvtcVvjcUvjcVvrcUvrcVvncUvncVvvcUvsUK3xKFb6nCt0zhW67wrVD43lf4PlD4Pszd9bul/eTTc7RGoOjjms0Lmo2JvoearT3XcefozhX5ztWbO07k676oNXcDrc2dpzN3zT/74M7XmNv83z1zF8TPHSP3110YO3dgRgv3pbi5c3bq5r4cM3fwfxq7i0qe28Z3HtxXSpy71n923FdLmls3cM7c10qYWzN4Jt3Xo+f2Cp1f943IuT3DZ919M2pu8S514b4VMbd41xpy31bPnaWoN/cd5dyWqtp031XN7aKsY/c9xdzZ6pp3F+86t1ZEf3CX7DJ3YlQvcZeG59aO7DvustDcNdE9yl0enHtJCf3MXRGY26mk3ue+75/br8Q+6X7gm3tUyT3V/TBXH7qS/MT7oX4vX+6P91FuFgHpZfBPHZd/pL9B7krNRZl+4qU1UAwXXMNKUOSk/nQMOFzLVE7P0QoTyHWVPCCrw7SySm6c37c6N/s/HQNOsrsKOCCrwc1DxaFDsQo8TJTXqpQ6xgf6+zzBH+9j045BAT/GO8aEj4GO8Qlzx6A1fIJ3jAmfpNQxPtCPO17l9BytMIFcP5UH5LNwx/hU0TE+S6BjACfZ/RQ4IJ8Zbh76RR2S0+dAMez8B5DLSnnA0S/qkKv6C6AYVGuIm0579IVBJ/4ipU78vv75nemPt8a0E1PANXgnnrkGOHxfMndiWsOXeCee+WWWh0+ngL5gLqCvwDVkBtqYEA2/Bs5Gkjfc+/pxZ6icnqMVJpDrN7Lwvg3fcN8obrhvE7jhgA7hfgOI9q3h5qEHCcnpuyxvuLh3qHi+Nrgd1jLfWrTutRbyygxUw7WAht8zaxjVZHWas+7cH8CGlhQNrNCv9dH+eD+a0gAF/BGngdE/Ahv0EzMN0Bp+wmlg9E/MNECF8EMub7H9DBZbZqA5IRr+khINrNCPO0rl9BytMIFcf5WF91uYBn5V0MBvCdAA0CHcXwHRfjPcPPQgITmtY75JqHh+Mbh1f2emAVr37xbyygxUw98BDf9g1jCqyca9hzTZ9Sl9N7Bcv9Y9f7wNpjRAATfgNOBtAET+k5kGaA1/4jTg/clMA1QI63N5i+0vSzSAaPh3SjSwXD9uYj93bqMsvE1hGtiooIFNCdAA0CHcjYBomww3Dz1ISE6bmW8SKp6/DW7dLcw0QOveYiGvzEA13AJouJVZw6gmG/ce0mS3pUQDy/RrfZk/3nZTGqCA23EaWLYdEHkHMw3QGnbgNLBsBzMNUCFsy+UtNifPDg0gGrpATknSwDJ9PZeqnJ6jFSaQa6m8f5+l85zgzU//R5gGaFK2NAB0CLdUnr5opfPMNg89SEhOZcDDjR4YKh43Dy/ssvp5yUDB3z9uOq27rIW8MgPVsCygYTlmDaOabNx7SJPNAfY1SRpYql/rff3xcvOyCEgvgzTQNxcQOQ84PKZryAOLh9aQl2VR6xRCTh5vsZW3RAOIhvkp0cBSfRroo3J6jlaYQK4FsvAqhGmgQEEDFRKgAaBDuAWAaBXyzDYPPUhIThWZbxIqnnyDW7eQmQZo3YUW8soMVMNCQMMiZg2jmmzce0iTrZQSDSzRr/VV/niVTWmAAlbGaWBVZUDkKsw0QGuogtPAqirMNECFUCmPt9h2s0QDiIa7p0QDS/RpYKXK6TlaYQK5VpWFt0eYBqoqaGCPBGgA6BBuVUC0PfLMNg89SEhO1ZhvEiqe3Q1u3erMNEDrrm4hr8xANawOaLgns4ZRTTbuPaTJ7pUSDSzWr/V2/nh7m9IABdwbp4F2ewMi78NMA7SGfXAaaLcPMw1QIeyVx1ts+1qiAUTDGinRwGJ9GmircnqOVphArp4svP3CNOApaGC/BGgA6BCuB4i2X57Z5qEHCclpf+abhIqnhsGtewAzDdC6D7CQV2agGh4AaHggs4ZRTTbuPaTJHpQSDbynX+vT/fEONqUBCngwTgPTDwZErslMA7SGmjgNTK/JTANUCAfl8RZbLUs0gGh4SEo08J4+DUxTOT1HK0wg10Nl4R0WpoFDFTRwWAI0AHQI91BAtMPyzDYPPUhITocz3yRUPIcY3LpHMNMArfsIC3llBqrhEYCGRzJrGNVk495DmuxRKdHAu/q1Pt8fr7YpDVDA2jgNzK8NiFyHmQZoDXVwGphfh5kGqBCOyuMttrqWaADRsF5KNPCuPg3MUzk9RytMINejZeEdE6aBoxU0cEwCNAB0CPdoQLRj8sw2Dz1ISE71mW8SKp56BrduA2YaoHU3sJBXZqAaNgA0PJZZw6gmG/ce0mSPS4kG3tGv9Q7+eMeb0gAFPB6ngQ7HAyI3ZKYBWkNDnAY6NGSmASqE4/J4i62RJRpANDwhJRp4R58G2qucnqMVJpBrY1l4TcI00FhBA00SoAGgQ7iNAdGa5JltHnqQkJyaMt8kVDwnGNy6zZhpgNbdzEJemYFq2AzQsDmzhlFNNu49pMm2SIkG3tav9WJ/vJamNEABW+I0UNwSELkVMw3QGlrhNFDcipkGqBBa5PEWW2tLNIBo2CYlGnhbnwaGqpyeoxUmkGtbWXjtwjTQVkED7RKgAaBDuG0B0drlmW0eepCQnNoz3yRUPG0Mbt0OzDRA6+5gIa/MQDXsAGjYkVnDqCYb9x7SZDulRANvGdJAZ1MaoICdDWigMyByF2YaoDV0MaCBLsw0QIXQKY+32LpaogFEw24p0cBbKdBAd1l4J4ZpoLuCBk5MgAaADuF2B0Q70RINIDn1YL5JqHi6Gdy6JzHTAK37JAt5ZQaq4UmAhiczaxjVZOPeQ5psz5Ro4E39Wp/qj3eKKQ1QwFNwGph6CiDyqcw0QGs4FaeBqacy0wAVQs883mI7zRINIBqenhINvKlPA1NUTs/RChPItZcsvN5hGuiloIHeCdAA0CHcXoBovfPMNg89SEhOZzDfJFQ8pxvcumcy0wCt+0wLeWUGquGZgIZ9mDWMarJx7yFNtm9KNPCGfq1P9sc7y5QGKOBZOA1MPgsQuR8zDdAa+uE0MLkfMw1QIfTN4y22sy3RAKLhOSnRwBv6NDBJ5fQcrTCBXM+VhXdemAbOVdDAeQnQANAh3HMB0c7LM9s89CAhOZ3PfJNQ8ZxjcOtewEwDtO4LLOSVGaiGFwAaXsisYVSTjXsPabIXpUQDr+vX+mp/vItNaYACXozTwOqLAZH7M9MAraE/TgOr+zPTABXCRXm8xTbAEg0gGg5MiQZe16eBVSqn52iFCeQ6SBbeJWEaGKSggUsSoAGgQ7iDANEuyTPbPPQgITldynyTUPEMNLh1L2OmAVr3ZRbyygxUw8sADS9n1jCqyca9hzTZK1Kigdf0a32JP96VpjRAAa/EaWDJlYDIVzHTAK3hKpwGllzFTANUCFfk8RbbYEs0gGh4dUo08Jo+DSxWOT1HK0wg12tk4V0bpoFrFDRwbQI0AHQI9xpAtGvzzDYPPUhITtcx3yRUPFcb3LrXM9MArft6C3llBqrh9YCGQ5g1jGqyce8hTXZoSjTwqn6tV/fHKzalAQpYjNNA9WJA5BuYaYDWcANOA9VvYKYBKoShebzFdqMlGkA0vCklGnhVnwaqqZyeoxUmkOvNsvBuCdPAzQoauCUBGgA6hHszINoteWabhx4kJKdbmW8SKp6bDG7dYcw0QOseZiGvzEA1HAZoOJxZw6gmG/ce0mRHpEQDr+jX+lx/vNtMaYAC3obTwNzbAJFvZ6YBWsPtOA3MvZ2ZBqgQRuTxFtsdlmgA0XBkSjTwij4NzFE5PUcrTCDXUbLwRodpYJSCBkYnQANAh3BHAaKNzjPbPPQgITmNYb5JqHhGGty6Y5lpgNY91kJemYFqOBbQcByzhlFNNu49pMnemRINLNKv9eH+eHeZ0gAFvAungeF3ASLfzUwDtIa7cRoYfjczDVAh3JnHW2z3WKIBRMN7U6KBRfo0MEzl9BytMIFc75OFd3+YBu5T0MD9CdAA0CHc+wDR7s8z2zz0ICE5PcB8k1Dx3Gtw6z7ITAO07gct5JUZqIYPAhqOZ9YwqsnGvYc02Qkp0cDL+rXe1h/vIVMaoIAP4TTQ9iFA5InMNEBrmIjTQNuJzDRAhTAhj7fYHrZEA4iGj6REAy/r00AbldNztMIEcn1UFt6kMA08qqCBSQnQANAh3EcB0SblmW0eepCQnCYz3yRUPI8Y3LqPMdMArfsxC3llBqrhY4CGjzNrGNVk495DmuwTKdHAS/q1PtYfb4opDVDAKTgNjJ0CiDyVmQZoDVNxGhg7lZkGqBCeyOMttict0QCi4VMp0cBL+jQwRuX0HK0wgVyfloX3TJgGnlbQwDMJ0ADQIdynAdGeyTPbPPQgITk9y3yTUPE8ZXDrPsdMA7Tu5yzklRmohs8BGk5j1jCqyca9hzTZ6SnRwEL9Wh/kjzfDlAYo4AycBgbNAESeyUwDtIaZOA0MmslMA1QI0/N4i+15SzSAaDgrJRpYqE8DA1VOz9EKE8j1BVl4s8M08IKCBmYnQANAh3BfAESbnWe2eehBQnKaw3yTUPHMMrh15zLTAK17roW8MgPVcC6g4YvMGkY12bj3kCY7LyUaWKBf6wv98eab0gAFnI/TwML5gMgLmGmA1rAAp4GFC5hpgAphXh5vsS20RAOIhi+lRAML9GlggcrpOVphArm+LAtvUZgGXlbQwKIEaADoEO7LgGiL8sw2Dz1ISE6vMN8kVDwvGdy6rzLTAK37VQt5ZQaq4auAhq8xaxjVZOPeQ5rs6ynRwHz9Wvf88d4wpQEK+AZOA94bgMhvMtMAreFNnAa8N5lpgArh9TzeYnvLEg0gGr6dEg3M16eBGiqn52iFCeT6jiy8d8M08I6CBt5NgAaADuG+A4j2bp7Z5qEHCcnpPeabhIrnbYNbdzEzDdC6F1vIKzNQDRcDGi5h1jCqyca9hzTZpSnRwDz9Wi/wx1tmSgMUcBlOAwXLAJGXM9MArWE5TgMFy5lpgAphaR5vsa2wRAOIhu+nRAPz9GkgX+X0HK0wgVw/kIX3YZgGPlDQwIcJ0ADQIdwPANE+zDPbPPQgITl9xHyTUPG8b3DrrmSmAVr3Sgt5ZQaq4UpAw1XMGkY12bj3kCa7OiUaeFG/1gf4431sSgMU8GOcBgZ8DIj8CTMN0Bo+wWlgwCfMNECFsDqPt9g+tUQDiIafpUQDL+rTQH+V03O0wgRy/VwW3hdhGvhcQQNfJEADQIdwPwdE+yLPbPPQg4TktIb5JqHi+czg1v2SmQZo3V9ayCszUA2/BDT8ilnDqCYb9x7SZL9OiQbm6td6JX+8b0xpgAJ+g9NApW8Akb9lpgFaw7c4DVT6lpkGqBC+zuMttu8s0QCi4dqUaGCuPg0UqZyeoxUmkOv3svB+CNPA9woa+CEBGgA6hPs9INoPeWabhx4kJKcfmW8SKp61BrfuT8w0QOv+yUJemYFq+BOg4c/MGkY12bj3kCb7S0o0MEe/oQXi/WpKAxTw1zz8vd+Yb3jK67e8/xyeoz/QIqID+0seb1Gss3RrI7r8nmWh6qz5dwMNkyyo2YYF9YdpQVHAPwwKaj1zQVFe6xMqqLjpJPz6PLMD4+nFSPSQvJCrn6M/3gbTQ0IBNxh0nA1Axf7JfKBoDX8aiPwn82cwOkR/GuDBOmC//mLGQdrbvwyLNTPQs/UXsP6/mREv6kaOew+5kTcya0h7tNHgIkB0oCZIn81Kq34jMK7rmJ0zB4vjaTt3Ge7ONflz3ST2a7OwLcK2CtsmbLuwHVQ/5cVcYaWElRZWRlhZYeWE5QjLFZYnrLywfGEFwioIqyisUFiRsErCKgurImw3YbsLqypsD2HVyjvBz/ub5Od9v2+zwrdF4duq8G1T+LYrfDsUPlp82OcqfKUUvtIKXxmFr6zCV07hy1H4chW+PIWvvMKXr/AVKHwVFL6KCl+hwlek8FVS+CorfFUUvt0Uvt0VvqoK3x4KX7Xyu363tJ98eo7WCBR9XLPZpNmY6HuozdpzHXeL7lyR71a9ueNEvu42rbkbaG3udp25a/7ZB3eHxtzm/+6ZSzUYM3eM3F/XjZ07MKOFWypu7pydurmlY+YO/k9jt0zJc9v4zoNbtsS5a/1nxy1X0ty6gXPm5pQwt2bwTLq50XN7hc6vmxc5t2f4rLvlo+YW71IXbn7E3OJda8gtUM+dpag3t4JybktVbboVVXO7KOvYLVTMna2uebdo17m1IvqDW2mXuROjeolbOTy3dmTfcauE5q6J7lHubsG5l5TQz9zdA3M7ldT73Kr+uf1K7JPuHr65R5XcU91q5fWhK8lPvNXi+1Kmly/3x6tePouA9DL4p47Lq+tvkLun5qJMP/HSGiiGC65hT1DkpP50DDhcy1ROz9EKE8h1L3lA9g6T8V5y4/y+vctn/6djwEl29wIOyN7g5qHi0KHYCzxMlNdeKXWMPfT3eYI/3j6mHYMC7oN3jAn7AB1jX+aOQWvYF+8YE/ZNqWPsoR93vMrpOVphArnWkAfEC3eMGoqO4SXQMYCT7NYADohnuHnoF3VITvsBxbDzH0Aue8oDjn5Rh1zV+wPFoFpD3HTao/0NOvH+KXXiqvrnd6Y/3gGmnZgCHoB34pkHAIfvQOZOTGs4EO/EMw/M8vDpFND+zAV0ELiGzEAbE6LhwcDZSPKGq6ofd4bK6TlaYQK51pSFVyt8w9VU3HC1ErjhgA7h1gREq2W4eehBQnI6JMsbLu4dKp6DDW6HQ5lvLVr3oRbyygxUw0MBDQ9j1jCqyeo0Z925h4MNLSka2F2/1kf74x1hSgMU8AicBkYfAWzQkcw0QGs4EqeB0Ucy0wAVwuHleYvtKLDYMgPNCdGwdko0sLt+3FEqp+dohQnkWkcWXt0wDdRR0EDdBGgA6BBuHUC0uoabhx4kJKd6zDcJFU9tg1v3aGYaoHUfbSGvzEA1PBrQ8BhmDaOabNx7SJOtn9J3A7vp17rnj9fAlAYoYAOcBrwGgMjHMtMAreFYnAa8Y5lpgAqhfnneYjvOEg0gGh6fEg3sph83sZ8711AWXqMwDTRU0ECjBGgA6BBuQ0C0Roabhx4kJKcTmG8SKp7jDW7dxsw0QOtubCGvzEA1bAxo2IRZw6gmG/ce0mSbpkQDVfRrfZk/XjNTGqCAzXAaWNYMELk5Mw3QGprjNLCsOTMNUCE0Lc9bbC0s0QCiYcuUaKCKftylKqfnaIUJ5NpKFl7rMA20UtBA6wRoAOgQbitAtNaGm4ceJCSnNsw3CRVPS4Nbty0zDdC621rIKzNQDdsCGrZj1jCqyca9hzTZ9inRQGX9Wu/rj9fBlAYoYAecBvp2AETuyEwDtIaOOA307chMA1QI7cvzFlsnSzSAaNg5JRqorB+3j8rpOVphArl2kYXXNUwDXRQ00DUBGgA6hNsFEK2r4eahBwnJqRvzTULF09ng1u3OTAO07u4W8soMVMPugIYnMmsY1WTj3kOabI+UaKCSfq2v8sc7yZQGKOBJOA2sOgkQ+WRmGqA1nIzTwKqTmWmACqFHed5i62mJBhANT0mJBirpx12pcnqOVphArqfKwjstTAOnKmjgtARoAOgQ7qmAaKcZbh56kJCcTme+Sah4TjG4dXsx0wCtu5eFvDID1bAXoGFvZg2jmmzce0iTPSMlGijSr/V2/nhnmtIABTwTp4F2ZwIi92GmAVpDH5wG2vVhpgEqhDPK8xZbX0s0gGh4Vko0UKQft63K6TlaYQK59pOFd3aYBvopaODsBGgA6BBuP0C0sw03Dz1ISE7nMN8kVDxnGdy65zLTAK37XAt5ZQaq4bmAhucxaxjVZOPeQ5rs+SnRQKF+rU/3x7vAlAYo4AU4DUy/ABD5QmYaoDVciNPA9AuZaYAK4fzyvMV2kSUaQDS8OCUaKNSPO03l9BytMIFc+8vCGxCmgf4KGhiQAA0AHcLtD4g2wHDz0IOE5DSQ+Sah4rnY4NYdxEwDtO5BFvLKDFTDQYCGlzBrGNVk495DmuylKdFARf1an++Pd5kpDVDAy3AamH8ZIPLlzDRAa7gcp4H5lzPTABXCpeV5i+0KSzSAaHhlSjRQUT/uPJXTc7TCBHK9Shbe4DANXKWggcEJ0ADQIdyrANEGG24eepCQnK5mvkmoeK40uHWvYaYBWvc1FvLKDFTDawANr2XWMKrJxr2HNNnrUqKBCvq13sEf73pTGqCA1+M00OF6QOQhzDRAaxiC00CHIcw0QIVwXXneYhtqiQYQDYtTooEK+nHbq5yeoxUmkOsNsvBuDNPADQoauDEBGgA6hHsDINqNhpuHHiQkp5uYbxIqnmKDW/dmZhqgdd9sIa/MQDW8GdDwFmYNo5ps3HtIk701JRoo0K/1Yn+8YaY0QAGH4TRQPAwQeTgzDdAahuM0UDycmQaoEG4tz1tsIyzRAKLhbSnRQIF+3KEqp+dohQnkerssvDvCNHC7ggbuSIAGgA7h3g6Idofh5qEHCclpJPNNQsVzm8GtO4qZBmjdoyzklRmohqMADUczaxjVZOPeQ5rsmJRoIN+QBsaa0gAFHGtAA2MBkccx0wCtYZwBDYxjpgEqhDHleYvtTks0gGh4V0o0kJ8CDdwtC++eMA3craCBexKgAaBDuHcDot1jiQaQnO5lvkmoeO4yuHXvY6YBWvd9FvLKDFTD+wAN72fWMKrJxr2HNNkHUqKB8vq1PtUf70FTGqCAD+I0MPVBQOTxzDRAaxiP08DU8cw0QIXwQHneYptgiQYQDR9KiQbK68edonJ6jlaYQK4TZeE9HKaBiQoaeDgBGgA6hDsREO1hw81DDxKS0yPMNwkVz0MGt+6jzDRA637UQl6ZgWr4KKDhJGYNo5ps3HtIk52cEg3k6df6ZH+8x0xpgAI+htPA5McAkR9npgFaw+M4DUx+nJkGqBAml+cttics0QCi4ZSUaCBPP+4kldNztMIEcp0qC+/JMA1MVdDAkwnQANAh3KmAaE8abh56kJCcnmK+Sah4phjcuk8z0wCt+2kLeWUGquHTgIbPMGsY1WTj3kOa7LMp0UCufq2v9sd7zpQGKOBzOA2sfg4QeRozDdAapuE0sHoaMw1QITxbnrfYpluiAUTDGSnRQK5+3FUqp+dohQnkOlMW3vNhGpipoIHnE6ABoEO4MwHRnjfcPPQgITnNYr5JqHhmGNy6LzDTAK37BQt5ZQaq4QuAhrOZNYxqsnHvIU12Tko0kKNf60v88eaa0gAFnIvTwJK5gMgvMtMAreFFnAaWvMhMA1QIc8rzFts8SzSAaDg/JRrI0Y+7WOX0HJ0RpIEFsvAWhmlggYIGFiZAA0CHcBcAoi003Dz0ICE5vcR8k1DxzDe4dV9mpgFa98sW8soMVMOXAQ0XMWsY1WTj3kOa7Csp0UA5/Vqv7o/3qikNUMBXcRqo/iog8mvMNEBreA2ngeqvMdMAFcIr5XmL7XVLNIBo+EZKNFBOP241ldNztMIEcn1TFt5bYRp4U0EDbyVAA0CHcN8ERHvLcPPQg4Tk9DbzTULF84bBrfsOMw3Qut+xkFdmoBq+A2j4LrOGUU027j2kyb6XEg2U1a/1uf54i01pgAIuxmlg7mJA5CXMNEBrWILTwNwlzDRAhfBeed5iW2qJBhANl6VEA2X1485ROT1HK0wg1+Wy8FaEaWC5ggZWJEADQIdwlwOirTDcPPQgITm9z3yTUPEsM7h1P2CmAVr3BxbyygxUww8ADT9k1jCqyca9hzTZj1KigTL6tT7cH2+lKQ1QwJU4DQxfCYi8ipkGaA2rcBoYvoqZBqgQPirPW2yrLdEAouHHKdFAGf24w1ROz9EKE8j1E1l4n4Zp4BMFDXyaAA0AHcL9BBDtU8PNQw8SktNnzDcJFc/HBrfu58w0QOv+3EJemYFq+Dmg4RfMGkY12bj3kCa7JiUaKK1f62398b40pQEK+CVOA22/BET+ipkGaA1f4TTQ9itmGqBCWFOet9i+tkQDiIbfpEQDpfXjtlE5PUcrTCDXb2XhfRemgW8VNPBdAjQAdAj3W0C07ww3Dz1ISE5rmW8SKp5vDG7d75lpgNb9vYW8MgPV8HtAwx+YNYxqsnHvIU32x5RooJR+rY/1x/vJlAYo4E84DYz9CRD5Z2YaoDX8jNPA2J+ZaYAK4cfyvMX2iyUaQDT8NSUaKKUfd4zK6TlaYQK5/iYLb12YBn5T0MC6BGgA6BDub4Bo6ww3Dz1ISE6/M98kVDy/Gty6fzDTAK37Dwt5ZQaq4R+AhuuZNYxqsnHvIU12Q0o04OrX+iB/vD9NaYAC/onTwKA/AZH/YqYBWsNfOA0M+ouZBqgQNpTnLba/LdEAouHGlGjA1Y87UOX0HK0wgVw3ycLbHKaBTQoa2JwADQAdwt0EiLbZcPPQg4TktIX5JqHi2Whw625lpgFa91YLeWUGquFWQMNtzBpGNdm495Amuz0lGnD0a32hP94OUxqggDtwGli4AxE5n5cGaA0UA6SBhf689ALp//6ZQthenrfY3Hxgn3wDzQnRsBSQU5I04OifyQUqp+fohfHnWjr/32eZfCd485fO35UGaFK2NAB0CLc0IFqZfLPNQw8SklNZ8HDD+Jj/72FFC7tclo0jbjqtu5yFvDID1bAcoGEOs4ZRTTbuPaTJ5gL7miQN7MjTrnXPHy8vP4uA9DJIA14eIHJ5ZhqgNZTHacArz0wDVAi5+bzFlm+JBhANC1KiAX/xxIwaKqfnaIUJ5FpBFl7FMA1UUNBAxQRoAOgQbgVAtIr5ZpuHHiQkp0Lmm4SKp8Dg1i1ipgFad5GFvDID1bAI0LASs4ZRTTbuPaTJVk6JBrbr13qBP14VUxqggFVwGiioAoi8GzMN0Bp2w2mgYDdmGqBCqJzPW2y7W6IBRMOqKdHAdn0ayFc5PUcrTCDXPeTvVC1MA3soaKBaAjQAdAh3D0C0avlmm4ceJCSn6sw3CRVPVYNbd09mGqB172khr8xANdwT0HAvZg2jmmzce0iT3TslGtimX+sD/PH2MaUBCrgPTgMD9gFE3peZBmgN++I0MGBfZhqgQtg7n7fYaliiAURDLyUa2KZPA/1VTs/RChPIdT9ZePuHaWA/BQ3snwANAB3C3Q8Qbf98s81DDxKS0wHMN8k/xWNw6x7ITAO07gMt5JUZqIYHAhoexKxhVJONew9psgenRANb9Wu9kj9eTVMaoIA1cRqoVBMQuRYzDdAaauE0UKkWMw1QIRycz1tsh1iiAUTDQ1Oiga36NFCkcnqOVphArofJwjs8TAOHKWjg8ARoAOgQ7mGAaIfnm20eepCQnI5gvkmoeA41uHWPZKYBWveRFvLKDFTDIwENj2LWMKrJxr2HNNnaKdHAFv2GFohXx5QGKGCdfPy9usw3POVVN/8/h+foD7SI6MDWzuctinqWbm1El6OzLFSdNR9toGGSBbXZsKCOMS0oCniMQUHVZy4oyqt+QgUVN52Er59vdmA8vRiJHpJNefo5+uM1MD0kFLCBQcdpAFTsscwHitZwrIHIxzJ/BqNDdKwBHtQD9us4ZhykvT3OsFgzAz1bxwHrP54Z8aJu5Lj3kBu5IbOGtEcNDS4CRAdqgnmKHGk0ypcTSjnJdMlGwIb5PzCfIA9y4/AHZvo/ikO+xtLnH+gH5kbADp4QPbdXaK7bGLyeKO9SJczxIvzhuP7/DxXtBCBnf6AmYbGa5O96isLCIJtdQuydCej+vk3ztTczsKamGoctLnZjIE9kTc1KWFP4Xf+amvmKKte3Hv+aYoarmFtqaZUzrig3uXe/I2pWaPV7tcp33dTktZE3Nql5OPD77iyGTPFnCh7JrbmY30JYy/xkGbCFb7+r1a153KD7lu32aa39P2n68tNH3lV9w4GNPp3T9pF1m9/eKOb647UyZUAK2Epxx8UFbwXcva2ZGZDW0Fpxx8WtoTXYSelfE0zi++IWhl+XOaE4MesLHMg2/saJwiywUa6/C/iDxsTspRKnjQZ8hRfdBjhsbcFrKbOutr6OHbeXRe6iwjzv4evOm7tiznNNTnxfd11hcZF1tTNcV7sEsKctcLu2A9bUnvkDm64u4TCILh3ANaBNObMG3XxoTzvgjTMQI278X0FQtNYzo2NJjTPu9+lgWIgd9Runsql1MPhGpHaV7Aos4v/eOSinjgZ51QHzyowyoTjhUVJxxuXUCbgQgX11kbX6z0sn4EJSXRYm56Uuky7huIgunX1z96nX6cFF3S+cNvL4wjZ1y79//fu3Xljvo9Ejbjx0fXHPq8sdMA7Ya7euoS6dpS5JfgGC0KO/6XaRHxG62mpopr9/F4PD2M2w0XYroXB0cu1qkGt3w1y7Z1HklGs3g1yPzvJSiPsyi/LqbpDXMcleVrtMbyGbIkqDwH65yBr+r1AUWmeZcWIaFHViCRSleC0wKOaJBgez/v9BWumRz3OA6xveij0UHzM5qeAk39wqdZyVNb445urDqtYf2OXKm7/o8cyQ3SYdsraw2q9XNLpy06cD/UUZRxCm6z/JRwVRRY3WCPLxJps4pg3g5DQawMlZNoCTDRpAA8MGUBaMgxRAT2Au8nEFaRYNDIulp0aziFvTKcD6/aifZLMwXf8p/4c+QpwqP0Kclu/898cPnqM1Ir/QRb58jpsLfDHl7vyHg68B/eM50zXEzT2deb0k+OkGTbCXYcPulcXHsdMMc+1tmGvvLD6OUZ69DHI9nvnjGOXV2yCvhhY+jp1u8HEM2C+34f+HH8fQOsuMM7KhsdMNC+aMLGiMYp5hcDAbWfo4djrQtM/M5znAjQwJ48wEPo4h6+8DfBxrCBCW6fr7KNaP/qkzsv6+hvXT1yDP8J/kIXmeZZjnWVlejH0N6vwECxfjWQZ5NTbsP2HAjPsTWQQEgb1yG/9/eCn2NbwU+6VxKfbL8lLsZ3Aom/wfvBTPZjrATQwvhbMtX4rnAJdiY+BSNF3/OQzfUSK0mk0c0wZwbhoN4NwsG8C5Bg2gqaXvKJECOA+Yi1Ax0iyaGhbLeQl8R3k+8FcXGgLfUSLNwnT952fxtY0r30HP8AVAvZEW+U6wgNA8L8gPvu9p5Pnbjh3r/I3zQvn96UX5hknQixcZFPzFzH9tg+ZfYJBX/3z9jTTJizb8YoO8mif7cWKX35/y6m+QVwvDxo1+bwas320BfkRI6l+V6G94yw8wLT4KOCAff28gcLOZ5jUw/z+H5+gPk4M7MMs9QEYccofjXKzfULb2zzdrCHG/bwsLzcPkEhjkW2/c9wlJFuogw0K9xLRQKeAlBof0UuZCpbwuNSjUkv7do/DvFSesSd6ZA+dg7wXEvEz1R8Zxm0ybdWG+WcKacwMce1kJn8V0qvJSgz+iuhA4dJeDzBv++wK2hPcf1Cvk+1eqDkBcArTgyxK62uKmU5zLDdrqVcxsTRt4lUFegw2LYHAWH+auNMz1asNcr84iV9Nr9Jos9dY5T4MN8mrJ/EcglNfVBnm1Yv67AZTXNQaNF9gvt9X/h38MgtZ/ZlybzbegVxkW8rUl3LyK1wKDYl5rcDDbWPpjkKuAG/66fJ4D3Mbwm73rNL7ZDI/wGpH1Xw/8MUgr4JtN0/Vfn8DfDUDWP8SwfoYk8HcDkDyHGuY5NIu/G0D5DTGo87YWLsahBnm1s/R3A4Ce7AJ75bb7//BSHGJ4KRancSkWZ3kpFhscyvb/By/FG5gOcHvDS+EGy5fijcCl2A64FE3XfyPD3w1AaDWbOKYN4KY0GsBNWTaAmwwaQAdLfzcAKYCbgbkIFSPNooNhsdycwN8NuAX4uwGtgL8bgDQL0/Xfok98u/wMqMxXcihxXw6cl1sNa/NWgGTDPwNKd11hskPWNcxwXcPys/8ZUCXs6S59ahiwpuHMX73p6hIOg+gyAlwD+jOgMmvQzYf2dITinoj7VIH+WcT/BfpHaz0zbsvm8h9hWIi3ZfGHUbdGiBr3XhfmnwFFOd1mkFdXS59KRgCFczvwqQTYV7er4UV7exZfrQwzPC/dLP0MKESXOwBYAvba7Waoyx35yf8L3MifQfmb7kj5Z6mjbDU0099/pMFhHG3YaEfnm/8hIuU6yiDXMYa5jsmiyCnX0Qa5nsj8/SnlNcYgrx7Mf7B4jWyKKA0C++X2+P/wO1S0zjJjbBoUNTaLr1Ao5liDg3nS/0FaGZfPc4BPMrwVxyXwHSqy/juB71B7AF+LmK7/TobvUJGPN9nEMW0Ad6XRAO7KsgHcZdAATrb0HSpSAHcDc5GPK0izONmwWO5O4DvUe4D1dwO+Q0Wahen67/E1i6T+Vrb/IwTyX5q4Nz+LgPfm419o3QvcXPcBIpuu4T78y7JAXlqBQr9/3PQRMi/051IhDQTZ2/sBzXb+w9F/h/7u5v0GjfkBwxsS/Zll1wB79SDzl9qmezUe1BD9mER7hMQg7R40WMcE5tqj+Rca5PUQc16U0wSDvCZaqhHkX3x4OB/Tw/+fnKL//ZDch4ny+XB+9H8GKqPnI8IeFTYpPxQgtM64fJB1lhQn7t3J+ntUX/X766zjEYPz9JiFc/6oQV6Pgx8oCpz/oJP+92QZ8zH5fFw+h5T5b94TwjdF2FRhT8aco7h8n9LPt4Eq36c08n1a+J4R9qyw5/L/9Rc5wf98W1T+McN9wrCvOFgcT9u5y3B3rsn1vTNN5D1d2AxhM4U9L2yWsBeEzRY2R9hcYS8KmydsvrAFwhYKe0nYy8IWCXtF2KvCXhP2urA3hL0p7C1hbwt7R9i7wt4TtljYEmFL853gJwFKJjfkm67wzVD4Zip8zyt8sxS+FxS+2QrfHIVvrsL3osI3T+Gbr/AtUPgWKnwvKXwvK3yLFL5XFL5XFb7XFL7XFb43FL43Fb63FL63Fb53FL53Fb73FL7FCt8ShW+p9PnHfvLpOVojUPRxDW6a5tzfduxwp2vPddwZunNFvjP15o6j79Cf15q74Z/v22fpzF3z73fzL2jMbS6/x58dP3dM5jv/ObFzB+7884G5cXPn/PdnCS/GzB3s+3OHeSXPbeP/M4r5Jc5dG/jzjAUlza0b/LOPhSXMrRn6c5KXoufu8udYL0fO7Rk+6+6iqLnFu9SF+0rE3OJda8h9VT13lqLe3NeUc1uqatN9XTW3i7KO3TcUc2era959c9e5tSL6g/vWLnMnRvUS9+3w3NqRfcd9JzR3TXSPct8Nzr2khH7mvheY26mk3ucu9s/tV2KfdJf45h5Vck91lwLQleS3i0v1e/lyf7xl+VkEpJeRT6EUfJn+BrnLgcvMdA3LwU8ytIbloMiVnGT+vAk4XMtUTs/RChPIdYU8IO+HyXiF3Di/730FwaB/lxU4ye4K4IC8D24eKg4dihXgYaK8VqTUMZbo7/MEf7wPTDsGBfwA7xgTPgA6xofMHYPW8CHeMSZ8mFLHWKIfd7zK6TlaYQK5fiQPyMpwx/hI0TFWJtAxgJPsfgQckJWGm4d+MYvktAoohp3/AHJZLg84+ocLyFW9GigG1RriptMerTboxKtT6sSL9c/vTH+8j007MQX8GO/EMz8GDt8nzJ2Y1vAJ3olnfpLl4dMpoNXMBfQpuIbMQBsTouFnwNlI8oZbrB93hsrpOVphArl+Lgvvi/AN97nihvsigRsO6BDu54BoXxhuHnqQkJzWZHnDxb1DxfOZwe3wJfOtRev+0kJemYFq+CWg4VfMGkY1WZ3mrDv3a7ChJUUD7+nX+mh/vG9MaYACfoPTwOhvgA36lpkGaA3f4jQw+ltmGqBC+Dqft9i+A4stM9CcEA3XpkQD7+nHHaVyeo5WmECu38vC+yFMA98raOCHBGgA6BDu94BoPxhuHnqQkJx+ZL5JqHjWGty6PzHTAK37Jwt5ZQaq4U+Ahj8zaxjVZOPeQ5rsLyl9N/Cufq17/ni/mtIABfwVpwHvV0Dk35hpgNbwG04D3m/MNECF8Es+b7Gts0QDiIa/p0QD7+rHraFyeo5WmECuf8jCWx+mgT8UNLA+ARoAOoT7ByDaesPNQw8SktMG5puEiud3g1v3T2YaoHX/aSGvzEA1/BPQ8C9mDaOabNx7SJP9OyUaeEe/1pf54200pQEKuBGngWUbAZE3MdMArWETTgPLNjHTABXC3/m8xbbZEg0gGm5JiQbe0Y+7VOX0HK0wgVy3ysLbFqaBrQoa2JYADQAdwt0KiLbNcPPQg4TktJ35JqHi2WJw6+5gpgFa9w4LeWUGquEOpKEX8GoY1WTj3kOarKu/hkRp4G39Wu/rj1eqIIuA9DJIA31LASKXLuClAVoDxQBpoG9pQGRVXjqF4BbwFlsZsNgyA80J0bAskFOSNPC2fjPso3J6jlaYQK7lZOHlFDjBm79cwa40QJOypQGgQ7jlANFyCsw2Dz1ISE65zDcJFU/ZAryw87JsHHHTad15FvLKDFTDPEDD8swaRjXZuPeQJpufEg28pV/rq/zxCkxpgAIW4DSwqgAQuQIzDdAaKuA0sKoCMw1QIeQX8BZbRUs0gGhYmBINvKVPAytVTs/RChPItUgWXqUwDRQpaKBSAjQAdAi3CBCtUoHZ5qEHCcmpMvNNQsVTaHDrVmGmAVp3FQt5ZQaqYRVAw92YNYxqsnHvIU1295Ro4E39Wm/nj1fVlAYoYFWcBtpVBUTeg5kGaA174DTQbg9mGqBC2L2At9iqWaIBRMPqKdHAm/o00Fbl9BytMIFc95SFt1eYBvZU0MBeCdAA0CHcPQHR9iow2zz0ICE57c18k1DxVDe4dfdhpgFa9z4W8soMVMN9AA33ZdYwqsnGvYc02Rop0cAb+rU+3R/PM6WBfwLiNDDdA0Tej5kGaA374TQwfT9mGqBCqFHAW2z7W6IBRMMDUqKBN/RpYJrK6TlaYQK5HigL76AwDRyooIGDEqABoEO4BwKiHVRgtnnoQUJyOpj5JqHiOcDg1q3JTAO07poW8soMVMOagIa1mDWMarJx7yFN9pCUaOB1/Vqf7493qCkNUMBDcRqYfygg8mHMNEBrOAyngfmHMdMAFcIhBbzFdrglGkA0PCIlGnhdnwbmqZyeoxUmkOuRsvCOCtPAkQoaOCoBGgA6hHskINpRBWabhx4kJKfazDcJFc8RBrduHWYaoHXXsZBXZqAa1gE0rMusYVSTjXsPabL1UqKB1/RrvYM/3tGmNEABj8ZpoMPRgMjHMNMAreEYnAY6HMNMA1QI9Qp4i62+JRpANGyQEg28pk8D7VVOz9EKE8j1WFl4x4Vp4FgFDRyXAA0AHcI9FhDtuAKzzUMPEpLT8cw3CRVPA4NbtyEzDdC6G1rIKzNQDRsCGjZi1jCqyca9hzTZE1KigVf1a73YH6+xKQ1QwMY4DRQ3BkRuwkwDtIYmOA0UN2GmASqEEwp4i62pJRpANGyWEg28qk8DQ1VOz9EKE8i1uSy8FmEaaK6ggRYJ0ADQIdzmgGgtCsw2Dz1ISE4tmW8SKp5mBrduK2YaoHW3spBXZqAatgI0bM2sYVSTjXsPabJtUqKBVwxpoK0pDVDAtgY00BYQuR0zDdAa2hnQQDtmGqBCaFPAW2ztLdEAomGHlGjglRRooKMsvE5hGuiooIFOCdAA0CHcjoBonSzRAJJTZ+abhIqng8Gt24WZBmjdXSzklRmohl0ADbsyaxjVZOPeQ5pst5RoYJF+rU/1x+tuSgMUsDtOA1O7AyKfyEwDtIYTcRqYeiIzDVAhdCvgLbYelmgA0fCklGhgkT4NTFE5PUcrTCDXk2Xh9QzTwMkKGuiZAA0AHcI9GRCtZ4HZ5qEHCcnpFOabhIrnJINb91RmGqB1n2ohr8xANTwV0PA0Zg2jmmzce0iTPT0lGnhZv9Yn++P1MqUBCtgLp4HJvQCRezPTAK2hN04Dk3sz0wAVwukFvMV2hiUaQDQ8MyUaeFmfBiapnJ6jFSaQax9ZeH3DNNBHQQN9E6ABoEO4fQDR+haYbR56kJCczmK+Sah4zjS4dfsx0wCtu5+FvDID1bAfoOHZzBpGNdm495Ame05KNPCSfq2v9sc715QGKOC5OA2sPhcQ+TxmGqA1nIfTwOrzmGmACuGcAt5iO98SDSAaXpASDbykTwOrVE7P0QoTyPVCWXgXhWngQgUNXJQADQAdwr0QEO2iArPNQw8SktPFzDcJFc8FBrduf2YaoHX3t5BXZqAa9gc0HMCsYVSTjXsPabIDU6KBhfq1vsQfb5ApDVDAQTgNLBkEiHwJMw3QGi7BaWDJJcw0QIUwsIC32C61RAOIhpelRAML9WlgscrpOVphArleLgvvijANXK6ggSsSoAGgQ7iXA6JdUWC2eehBQnK6kvkmoeK5zODWvYqZBmjdV1nIKzNQDa8CNBzMrGFUk417D2myV6dEAwv0a726P941pjRAAa/BaaD6NYDI1zLTAK3hWpwGql/LTANUCFcX8BbbdZZoANHw+pRoYIE+DVRTOT1HK0wg1yGy8IaGaWCIggaGJkADQIdwhwCiDS0w2zz0ICE5FTPfJFQ81xvcujcw0wCt+wYLeWUGquENgIY3MmsY1WTj3kOa7E0p0cB8/Vqf6493sykNUMCbcRqYezMg8i3MNEBruAWngbm3MNMAFcJNBbzFdqslGkA0HJYSDczXp4E5KqfnaIUJ5DpcFt6IMA0MV9DAiARoAOgQ7nBAtBEFZpuHHiQkp9uYbxIqnmEGt+7tzDRA677dQl6ZgWp4O6DhHcwaRjXZuPeQJjsyJRqYp1/rw/3xRpnSAAUchdPA8FGAyKOZaYDWMBqngeGjmWmACmFkAW+xjbFEA4iGY1OigXn6NDBM5fQcrTCBXMfJwrszTAPjFDRwZwI0AHQIdxwg2p0FZpuHHiQkp7uYbxIqnrEGt+7dzDRA677bQl6ZgWp4N6DhPcwaRjXZuPeQJntvSjTwon6tt/XHu8+UBijgfTgNtL0PEPl+ZhqgNdyP00Db+5lpgArh3gLeYnvAEg0gGj6YEg28qE8DbVROz9EKE8h1vCy8CWEaGK+ggQkJ0ADQIdzxgGgTCsw2Dz1ISE4PMd8kVDwPGty6E5lpgNY90UJemYFqOBHQ8GFmDaOabNx7SJN9JCUamKtf62P98R41pQEK+ChOA2MfBUSexEwDtIZJOA2MncRMA1QIjxTwFttkSzSAaPhYSjQwV58GxqicnqMVJpDr47LwngjTwOMKGngiARoAOoT7OCDaEwVmm4ceJCSnKcw3CRXPYwa37lRmGqB1T7WQV2agGk4FNHySWcOoJhv3HtJkn0qJBubo1/ogf7ynTWmAAj6N08CgpwGRn2GmAVrDMzgNDHqGmQaoEJ4q4C22Zy3RAKLhcynRwBx9GhiocnqOVphArtNk4U0P08A0BQ1MT4AGgA7hTgNEm15gtnnoQUJymsF8k1DxPGdw685kpgFa90wLeWUGquFMQMPnmTWMarJx7yFNdlZKNDBbv9YX+uO9YEoDFPAFnAYWvgCIPJuZBmgNs3EaWDibmQaoEGYV8BbbHEs0gGg4NyUamK1PAwtUTs/RChPI9UVZePPCNPCiggbmJUADQIdwXwREm1dgtnnoQUJyms98k1DxzDW4dRcw0wCte4GFvDID1XABoOFCZg2jmmzce0iTfSklGnhBv9Y9f7yXTWmAAr6M04D3MiDyImYaoDUswmnAW8RMA1QILxXwFtsrlmgA0fDVlGjgBX0aqKFyeo5WmECur8nCez1MA68paOD1BGgA6BDua4BorxeYbR56kJCc3mC+Sah4XjW4dd9kpgFa95sW8soMVMM3AQ3fYtYwqsnGvYc02bdTooFZ+rVe4I/3jikNUMB3cBooeAcQ+V1mGqA1vIvTQMG7zDRAhfB2AW+xvWeJBhANF6dEA7P0aSBf5fQcrTCBXJfIwlsapoElChpYmgANAB3CXQKItrTAbPPQg4TktIz5JqHiWWxw6y5npgFa93ILeWUGquFyQMMVzBpGNdm495Am+35KNPC8fq0P8Mf7wJQGKOAHOA0M+AAQ+UNmGqA1fIjTwIAPmWmACuH9At5i+8gSDSAarkyJBp7Xp4H+KqfnaIUJ5LpKFt7qMA2sUtDA6gRoAOgQ7ipAtNUFZpuHHiQkp4+ZbxIqnpUGt+4nzDRA6/7EQl6ZgWr4CaDhp8waRjXZuPeQJvtZSjQwU7/WK/njfW5KAxTwc5wGKn0OiPwFMw3QGr7AaaDSF8w0QIXwWQFvsa2xRAOIhl+mRAMz9WmgSOX0HK0wgVy/koX3dZgGvlLQwNcJ0ADQIdyvANG+LjDbPPQgITl9w3yTUPF8aXDrfstMA7Tuby3klRmoht8CGn7HrGFUk417D2mya1OigRn6DS0Q73tTGqCA3xfg7/3AfMNTXj8U/OfwHP2BFhEd2LUFvEXxo6VbG9HlpywLVWfNPxlomGRBTTcsqJ9NC4oC/mxQUL8wFxTl9UtCBRU3nYT/pcDswHh6MRI9JNPy9XP0x/vV9JBQwF8NOs6vQMX+xnygaA2/GYj8G/NnMDpEvxngwY/Afq1jxkHa23WGxZoZ6NlaB6z/d2bEi7qR495DbuQ/mDWkPfrD4CJAdKAmSJ/NSqt+IzDu0/lm58zB4njazl2Gu3NNru+d9WK/Ngj7U9hfwv4WtlHYJmGbhW0RtlXYNmHbhe2guqogfg9hpYSVFlZGWFlh5YTlCMsVliesvLB8YQXCKgirKKxQWJGwSsIqV3CCn/fXy8/7ft8Ghe9Phe8vhe9vhW+jwrdJ4dus8G1R+LYqfNsUvu0K3w6FjzY37HMVvlIKX2mFr4zCV1bhK6fw5Sh8uQpfnsJXXuHLV/gKFL4KCl9Fha9Q4StS+CopfJUr7Prd0n7y6TlaI1D0cc1mvWZjou+hNmjPddw/deeKfP/SmztO5Ov+rTV3A63N3agzd80/++Bu0pjb/N89czfHzx0j99fdEjt3YEYLd2vc3Dk7dXO3xcwd/J/G7vaS57bxnQd3R4lz1/rPjks9IXJu3cA5c90S5tYMnkm3VPTcXqHz65aOnNszfNbdMlFzi3epC7dsxNziXWvILaeeO0tRb26Ocm5LVW26uaq5XZR17OYp5s5W17xbfte5tSL6g5u/y9yJUb3ELQjPrR3Zd9wKoblronuUWzE495IS+plbGJjbqaTe5xb55/YrsU+6lXxzjyq5p7qVK+hDV5KfeCtX0O7ly/3xqlTIIiC9DP6p4/Iq+hvk7qa5KNNPvLQGiuGCa9gNFDmpPx0DDtcyldNztMIEct1dHpCqYTLeXW6c31e1QvZ/OgacZHd34IBUBTcPFYcOxe7gYaK8dk+pY1TS3+cJ/nh7mHYMCrgH3jEm7AF0jGrMHYPWUA3vGBOqpdQxKunHHa9yeo5WmECu1eUB2TPcMaorOsaeCXQM4CS71YEDsqfh5qFf1CE57QUUw85/ALnsJg84+kUdclXvDRSDag1x02mP9jboxHun1ImL9M/vTH+8fUw7MQXcB+/EM/cBDt++zJ2Y1rAv3oln7pvl4dMpoL2ZC6gGuIbMQBsToqEHnI0kb7gi/bgzVE7P0QoTyHU/WXj7h2+4/RQ33P4J3HBAh3D3A0Tb33Dz0IOE5HRAljdc3Dv/FI/B7XAg861F6z7QQl6ZgWp4IKDhQcwaRjVZneasO/dgsKElRQOF+rU+2h+vpikNUMCaOA2MrglsUC1mGqA11MJpYHQtZhqgQji4Am+xHQIWW2agOSEaHpoSDRTqxx2lcnqOVphArofJwjs8TAOHKWjg8ARoAOgQ7mGAaIcbbh56kJCcjmC+Sah4DjW4dY9kpgFa95EW8soMVMMjAQ2PYtYwqsnGvYc02dopfTdQUb/WPX+8OqY0QAHr4DTg1QFErstMA7SGujgNeHWZaYAKoXYF3mKrZ4kGEA2PTokGKurHTeznzh0jC69+mAaOUdBA/QRoAOgQ7jGAaPUNNw89SEhODZhvEiqeow1u3WOZaYDWfayFvDID1fBYQMPjmDWMarJx7yFN9viUaKCCfq0v88draEoDFLAhTgPLGgIiN2KmAVpDI5wGljVipgEqhOMr8BbbCZZoANGwcUo0UEE/7lKV03O0wgRybSILr2mYBpooaKBpAjQAdAi3CSBaU8PNQw8SklMz5puEiqexwa3bnJkGaN3NLeSVGaiGzQENWzBrGNVk495DmmzLlGigQL/W+/rjtTKlAQrYCqeBvq0AkVsz0wCtoTVOA31bM9MAFULLCrzF1sYSDSAatk2JBgr04/ZROT1HK0wg13ay8NqHaaCdggbaJ0ADQIdw2wGitTfcPPQgITl1YL5JqHjaGty6HZlpgNbd0UJemYFq2BHQsBOzhlFNNu49pMl2TokG8vVrfZU/XhdTGqCAXXAaWNUFELkrMw3QGrriNLCqKzMNUCF0rsBbbN0s0QCiYfeUaCBfP+5KldNztMIEcj1RFl6PMA2cqKCBHgnQANAh3BMB0XoYbh56kJCcTmK+Sah4uhvcuicz0wCt+2QLeWUGquHJgIY9mTWMarJx7yFN9pSUaKC8fq2388c71ZQGKOCpOA20OxUQ+TRmGqA1nIbTQLvTmGmACuGUCrzFdrolGkA07JUSDZTXj9tW5fQcrTCBXHvLwjsjTAO9FTRwRgI0AHQItzcg2hmGm4ceJCSnM5lvEiqeXga3bh9mGqB197GQV2agGvYBNOzLrGFUk417D2myZ6VEA3n6tT7dH6+fKQ1QwH44DUzvB4h8NjMN0BrOxmlg+tnMNECFcFYF3mI7xxINIBqemxIN5OnHnaZyeo5WmECu58nCOz9MA+cpaOD8BGgA6BDueYBo5xtuHnqQkJwuYL5JqHjONbh1L2SmAVr3hRbyygxUwwsBDS9i1jCqyca9hzTZi1OigVz9Wp/vj9fflAYoYH+cBub3B0QewEwDtIYBOA3MH8BMA1QIF1fgLbaBlmgA0XBQSjSQqx93nsrpOVphArleIgvv0jANXKKggUsToAGgQ7iXAKJdarh56EFCcrqM+Sah4hlkcOtezkwDtO7LLeSVGaiGlwMaXsGsYVSTjXsPabJXpkQDOfq13sEf7ypTGqCAV+E00OEqQOTBzDRAaxiM00CHwcw0QIVwZQXeYrvaEg0gGl6TEg3k6Mdtr3J6jlaYQK7XysK7LkwD1ypo4LoEaADoEO61gGjXGW4eepCQnK5nvkmoeK4xuHWHMNMArXuIhbwyA9VwCKDhUGYNo5ps3HtIky1OiQbK6dd6sT/eDaY0QAFvwGmg+AZA5BuZaYDWcCNOA8U3MtMAFUJxBd5iu8kSDSAa3pwSDZTTjztU5fQcrTCBXG+RhXdrmAZuUdDArQnQANAh3FsA0W413Dz0ICE5DWO+Sah4bja4dYcz0wCte7iFvDID1XA4oOEIZg2jmmzce0iTvS0lGihrSAO3m9IABbzdgAZuB0S+g5kGaA13GNDAHcw0QIVwWwXeYhtpiQYQDUelRANlU6CB0bLwxoRpYLSCBsYkQANAh3BHA6KNsUQDSE5jmW8SKp5RBrfuOGYaoHWPs5BXZqAajgM0vJNZw6gmG/ce0mTvSokGyujX+lR/vLtNaYAC3o3TwNS7AZHvYaYBWsM9OA1MvYeZBqgQ7qrAW2z3WqIBRMP7UqKBMvpxp6icnqMVJpDr/bLwHgjTwP0KGnggARoAOoR7PyDaA4abhx4kJKcHmW8SKp77DG7d8cw0QOsebyGvzEA1HA9oOIFZw6gmG/ce0mQfSokGSuvX+mR/vImmNEABJ+I0MHkiIPLDzDRAa3gYp4HJDzPTABXCQxV4i+0RSzSAaPhoSjRQWj/uJJXTc7TCBHKdJAtvcpgGJiloYHICNAB0CHcSINpkw81DDxKS02PMNwkVz6MGt+7jzDRA637cQl6ZgWr4OKDhE8waRjXZuPeQJjslJRoopV/rq/3xpprSAAWcitPA6qmAyE8y0wCt4UmcBlY/yUwDVAhTKvAW21OWaADR8OmUaKCUftxVKqfnaIUJ5PqMLLxnwzTwjIIGnk2ABoAO4T4DiPas4eahBwnJ6Tnmm4SK52mDW3caMw3QuqdZyCszUA2nARpOZ9YwqsnGvYc02Rkp0YCrX+tL/PFmmtIABZyJ08CSmYDIzzPTAK3heZwGljzPTANUCDMq8BbbLEs0gGj4Qko04OrHXaxyeo5WmECus2XhzQnTwGwFDcxJgAaADuHOBkSbY7h56EFCcprLfJNQ8bxgcOu+yEwDtO4XLeSVGaiGLwIazmPWMKrJxr2HNNn5KdGAo1/r1f3xFpjSAAVcgNNA9QWAyAuZaYDWsBCngeoLmWmACmF+Bd5ie8kSDSAavpwSDTj6caupnJ6jF8af6yJZeK+EaWCRggZeSYAGgA7hLgJEe8Vw89CDhOT0KvNNQsXzssGt+xozDdC6X7OQV2agGr4GaPg6s4ZRTTbuPaTJvpESDewo0K71uf54b5rSAAV8E6eBuW8CIr/FTAO0hrdwGpj7FjMNUCG8UYG32N62RAOIhu+kRAP+4okZc1ROz9EKE8j1XVl474Vp4F0FDbyXAA0AHcJ9FxDtvQpmm4ceJCSnxcw3CRXPOwa37hJmGqB1L7GQV2agGi4BNFzKrGFUk417D2myy1Kige36tT7cH2+5KQ1QwOU4DQxfDoi8gpkGaA0rcBoYvoKZBqgQllXgLbb3LdEAouEHKdHAdn0aGKZyeo5WmECuH8rC+yhMAx8qaOCjBGgA6BDuh4BoH1Uw2zz0ICE5rWS+Sah4PjC4dVcx0wCte5WFvDID1XAVoOFqZg2jmmzce0iT/TglGtimX+tt/fE+MaUBCvgJTgNtPwFE/pSZBmgNn+I00PZTZhqgQvi4Am+xfWaJBhANP0+JBrbp00AbldNztMIEcv1CFt6aMA18oaCBNQnQANAh3C8A0dZUMNs89CAhOX3JfJNQ8XxucOt+xUwDtO6vLOSVGaiGXwEafs2sYVSTjXsPabLfpEQDW/Vrfaw/3remNEABv8VpYOy3gMjfMdMAreE7nAbGfsdMA1QI31TgLba1lmgA0fD7lGhgqz4NjFE5PUcrTCDXH2Th/RimgR8UNPBjAjQAdAj3B0C0HyuYbR56kJCcfmK+Sah4vje4dX9mpgFa988W8soMVMOfAQ1/YdYwqsnGvYc02V9TooEt+rU+yB/vN1MaoIC/4TQw6DdA5HXMNEBrWIfTwKB1zDRAhfBrBd5i+90SDSAa/pESDWzRp4GBKqfnaIUJ5LpeFt6GMA2sV9DAhgRoAOgQ7npAtA0VzDYPPUhITn8y3yRUPH8Y3Lp/MdMArfsvC3llBqrhX4CGfzNrGNVk495DmuzGlGhgs36tL/TH22RKAxRwE04DCzcBIm9mpgFaw2acBhZuZqYBKoSNFXiLbYslGkA03JoSDWzWp4EFKqfnaIUJ5LpNFt72MA1sU9DA9gRoAOgQ7jZAtO0VzDYPPUhITjuYbxIqnq0Gt65TkZcGaN0UgzuvzEA19MeJm+tW5NUwqsnGvYc02VLAviZJA5v0a93zxytdMYuA9DJIA15pQOQywOExXUOZijANeGWyLGqdQihVkbfYyoLFlhloToiG5ZCz4SRHA5v0aaCGyuk5WmECuebIwsut6ARv/pyKu9IATcqWBoAO4eYAouVWNNs89CAhOeUx3yRUPOUMbt3yzDRA6y5vIa/MQDUsD2iYz6xhVJONjQWsoSAlGtioX+sF/ngVTGmAAlbAaaCgAiByRWYaoDVUxGmgoCIzDVAhFFTkLbZCSzSAaFiUEg1s1KeBfJXTc7TCBHKtJAuvcpgGKilooHICNAB0CLcSIFrlimabhx4kJKcqzDcJFU+Rwa27GzMN0Lp3s5BXZqAa7gZouDuzhlFNNu49pMlWTYkG/tav9QH+eHuY0gAF3AOngQF7ACJXY6YBWkM1nAYGVGOmASqEqhV5i626JRpANNwzJRr4W58G+qucnqMVJpDrXrLw9g7TwF4KGtg7ARoAOoS7FyDa3hXNNg89SEhO+zDfJFQ8exrcuvsy0wCte18LeWUGquG+gIY1mDWMarJx7yFN1kuJBv7Sr/VK/nj7mdIABdwPp4FK+wEi789MA7SG/XEaqLQ/Mw38UwgVeYvtAEs0gGh4YEo08Jc+DRSpnJ6jFSaQ60Gy8A4O08BBCho4OAEaADqEexAg2sEVzTYPPUhITjWZbxIqngMNbt1azDRA665lIa/MQDWsBWh4CLOGUU027j2kyR6aEg38qd/QAvEOM6UBCnhYRfy9w5lveMrr8Ir/OTxHf6BFRAf20Iq8RXGEpVsb0eXILAtVZ81HGmiYZEFtMCyoo0wLigIeZVBQtZkLivKqnVBBxU0n4WtXNDswnl6MRA/J+gL9HP3x6pgeEgpYx6Dj1AEqti7zgaI11DUQuS7zZzA6RHUN8OAIYL/qMeMg7W09w2LNDPRs1QPWfzQz4kXdyHHvITfyMcwa0h4dY3ARIDqUlF/cu/W11+/Wp99bHMl/mm4mVn25tsfy/30+Lp9Dyvw3r4GYc6yw44QdXzG7fBvq59tAlW9DjXwbiTknCGssrEnFf/302be0Kkoo/9ikDD+qOVgcT9u5y3B3rsn1vdNU5N1MWHNhLYS1FNZKWGthbYS1FdZOWHthHYR1FNZJWGdhXYR1FdZNWHdhJwrrIewkYScL6ynsFGGnCjtN2OnCegnrLewMYWeGv2NpKr9P8fuaKXzNFb4WCl9Lha+Vwtda4Wuj8LVV+NopfO0Vvg4KX0eFr5PC11nh66LwdVX4uil83RW+ExW+HgrfSQrfyQpfT4XvFIXvVIXvNIXvdIWvl8LXW+E7Q+E7s+Ku393tJ5+eozUCRR/X4JpqzqXv+Zppz3Xc5rpzRb4t9OaOE/m6LbXmbqC1ua105q75Zx/c1hpzm/+7Z26b+Llj5P66bWPnDsxo4baLmztnp25u+5i5g//T2O1Q8tw2vvPgdixx7lr/2XE7lTS3buCcuZ1LmFszeCbdLtFze4XOr9s1cm7P8Fl3u0XNLd6lLtzuEXOLd60h90T13FmKenN7KOe2VNWme5JqbhdlHbsnK+bOVte823PXubUi+oN7yi5zJ0b1EvfU8NzakX3HPS00d010j3JPD869pIR+5vYKzO1UUu9ze/vn9iuxT7pn+OYeVXJPdc8EoCvJbxTO1O/ly/3x+lTMImCfivCf6i7vo79Bbl/gMjNdQ9+K2CcDWkNfUOSk/vQROFzLVE7P0QoTyPUseUD6hcn4LLlxfl+/itn/6SNwkt2zgAPSD9w8VBw6FGeBh4nyOiuljnGG/j5P8Mc727RjUMCz8Y4x4WygY5zD3DFoDefgHWPCOSl1jDP0445XOT1HK0wg13PlATkv3DHOVXSM8xLoGMBJds8FDsh5hpuHfhGK5HQ+UAw7/wHk0lcecPSLUOSqvgAoBtUa4qbTHl1g0IkvSKkT99Y/vzP98S407cQU8EK8E8+8EDh8FzF3YlrDRXgnnnlRlodPp4AuYC6gi8E1ZAbamBAN+wNnI8kbrrd+3Bkqp+dohQnkOkAW3sDwDTdAccMNTOCGAzqEOwAQbaDh5qEHCclpUJY3XNw7VDz9DW6HS5hvLVr3JRbyygxUw0sADS9l1jCqyeo0Z925l4ENLSka6KVf66P98S43pQEKeDlOA6MvBzboCmYaoDVcgdPA6CuYaYAK4bKKvMV2JVhsmYHmhGh4VUo00Es/7iiV03O0wgRyHSwL7+owDQxW0MDVCdAA0CHcwYBoVxtuHnqQkJyuYb5JqHiuMrh1r2WmAVr3tRbyygxUw2sBDa9j1jCqyca9hzTZ61P6buB0/Vr3/PGGmNIABRyC04A3BBB5KDMN0BqG4jTgDWWmASqE6yvyFluxJRpANLwhJRo4XT9uYj/X70ZZeDeFaeBGBQ3clAANAB3CvREQ7SbDzUMPEpLTzcw3CRXPDQa37i3MNEDrvsVCXpmBangLoOGtzBpGNdm495AmOywlGjhNv9aX+eMNN6UBCjgcp4FlwwGRRzDTAK1hBE4Dy0Yw0wAVwrCKvMV2myUaQDS8PSUaOE0/7lKV03O0wgRyvUMW3sgwDdyhoIGRCdAA0CHcOwDRRhpuHnqQkJxGMd8kVDy3G9y6o5lpgNY92kJemYFqOBrQcAyzhlFNNu49pMmOTYkGTtWv9b7+eONMaYACjsNpoO84QOQ7mWmA1nAnTgN972SmASqEsRV5i+0uSzSAaHh3SjRwqn7cPiqn52iFCeR6jyy8e8M0cI+CBu5NgAaADuHeA4h2r+HmoQcJyek+5puEiudug1v3fmYaoHXfbyGvzEA1vB/Q8AFmDaOabNx7SJN9MCUaOEW/1lf54403pQEKOB6ngVXjAZEnMNMArWECTgOrJjDTABXCgxV5i+0hSzSAaDgxJRo4RT/uSpXTc7TCBHJ9WBbeI2EaeFhBA48kQANAh3AfBkR7xHDz0IOE5PQo801CxTPR4NadxEwDtO5JFvLKDFTDSYCGk5k1jGqyce8hTfaxlGigp36tt/PHe9yUBijg4zgNtHscEPkJZhqgNTyB00C7J5hpgArhsYq8xTbFEg0gGk5NiQZ66sdtq3J6jlaYQK5PysJ7KkwDTypo4KkEaADoEO6TgGhPGW4eepCQnJ5mvkmoeKYa3LrPMNMArfsZC3llBqrhM4CGzzJrGNVk495DmuxzKdHAyfq1Pt0fb5opDVDAaTgNTJ8GiDydmQZoDdNxGpg+nZkGqBCeq8hbbDMs0QCi4cyUaOBk/bjTVE7P0QoTyPV5WXizwjTwvIIGZiVAA0CHcJ8HRJtluHnoQUJyeoH5JqHimWlw685mpgFa92wLeWUGquFsQMM5zBpGNdm495AmOzclGjhJv9bn++O9aEoDFPBFnAbmvwiIPI+ZBmgN83AamD+PmQaoEOZW5C22+ZZoANFwQUo0cJJ+3Hkqp+dohQnkulAW3kthGliooIGXEqABoEO4CwHRXjLcPPQgITm9zHyTUPEsMLh1FzHTAK17kYW8MgPVcBGg4SvMGkY12bj3kCb7ako00EO/1jv4471mSgMU8DWcBjq8Boj8OjMN0Bpex2mgw+vMNECF8GpF3mJ7wxINIBq+mRIN9NCP217l9BytMIFc35KF93aYBt5S0MDbCdAA0CHctwDR3jbcPPQgITm9w3yTUPG8aXDrvstMA7Tudy3klRmohu8CGr7HrGFUk417D2myi1OigRP1a73YH2+JKQ1QwCU4DRQvAUReykwDtIalOA0UL2WmASqExRV5i22ZJRpANFyeEg2cqB93qMrpOVphArmukIX3fpgGViho4P0EaADoEO4KQLT3DTcPPUhITh8w3yRUPMsNbt0PmWmA1v2hhbwyA9XwQ0DDj5g1jGqyce8hTXZlSjTQ3ZAGVpnSAAVcZUADqwCRVzPTAK1htQENrGamASqElRV5i+1jSzSAaPhJSjTQPQUa+FQW3mdhGvhUQQOfJUADQIdwPwVE+8wSDSA5fc58k1DxfGJw637BTAO07i8s5JUZqIZfABquYdYwqsnGvYc02S9TooFu+rU+1R/vK1MaoIBf4TQw9StA5K+ZaYDW8DVOA1O/ZqYBKoQvK/IW2zeWaADR8NuUaKCbftwpKqfnaIUJ5PqdLLy1YRr4TkEDaxOgAaBDuN8Boq013Dz0ICE5fc98k1DxfGtw6/7ATAO07h8s5JUZqIY/ABr+yKxhVJONew9psj+lRANd9Wt9sj/ez6Y0QAF/xmlg8s+AyL8w0wCt4RecBib/wkwDVAg/VeQttl8t0QCi4W8p0UBX/biTVE7P0QoTyHWdLLzfwzSwTkEDvydAA0CHcNcBov1uuHnoQUJy+oP5JqHi+c3g1l3PTAO07vUW8soMVMP1gIYbmDWMarJx7yFN9s+UaKCLfq2v9sf7y5QGKOBfOA2s/gsQ+W9mGqA1/I3TwOq/mWmACuHPirzFttESDSAabkqJBrrox12lcnqOVphArptl4W0J08BmBQ1sSYAGgA7hbgZE22K4eehBQnLaynyTUPFsMrh1tzHTAK17m4W8MgPVcBug4XZmDaOabNx7SJPdkRINdNav9SWBeIVZBKSXQRpYQu94mjHcQl4aoDVQDJAGlrj6a1DmpVMIOyryFlspQAf//0BzQjQsDeSUJA101i/axSqn52iFCeRaRhZe2UwHyNz8ZQp3pQGalC0NAB3CLQOIVrbQbPPQg4TkVA483OiBoeIpXYgXdk6WjSNuOq07x0JemYFqmANomMusYVSTjXsPabJ5wL4mSQOd9Gu9uj9eeVMaoIDlcRqoXh4QOZ+ZBmgN+TgNVM9npgEqhLxC3mIrsEQDiIYVUqKBTvo0UE3l9BytMIFcK8rCKwzTQEUFDRQmQANAh3ArAqIVFpptHnqQkJyKmG8SKp4KBrduJWYaoHVXspBXZqAaVgI0rMysYVSTjXsPabJVUqKBjvq1PtcfbzdTGqCAu+E0MHc3QOTdmWmA1rA7TgNzd2emASqEKoW8xVbVEg0gGu6REg101KeBOSqn52iFCeRaTRZe9TANVFPQQPUEaADoEG41QLTqhWabhx4kJKc9mW8SKp49DG7dvZhpgNa9l4W8MgPVcC9Aw72ZNYxqsnHvIU12n5RooIN+rQ/3x9vXlAYo4L44DQzfFxC5BjMN0Bpq4DQwvAYzDVAh7FPIW2yeJRpANNwvJRrooE8Dw1ROz9EKE8h1f1l4B4RpYH8FDRyQAA0AHcLdHxDtgEKzzUMPEpLTgcw3CRXPfga37kHMNEDrPshCXpmBangQoOHBzBpGNdm495AmWzMlGmivX+tt/fFqmdIABayF00DbWoDIhzDTAK3hEJwG2h7CTANUCDULeYvtUEs0gGh4WEo00F6fBtqonJ6jFSaQ6+Gy8I4I08DhCho4IgEaADqEezgg2hGFZpuHHiQkpyOZbxIqnsMMbt2jmGmA1n2UhbwyA9XwKEDD2swaRjXZuPeQJlsnJRpop1/rY/3x6prSAAWsi9PA2LqAyPWYaYDWUA+ngbH1mGmACqFOIW+xHW2JBuoBOR2TEg2006eBMSqn52iFCeRaXxZegzAN1FfQQIMEaADoEG59QLQGhWabhx4kJKdjmW8SKp5jDG7d45hpgNZ9nIW8MgPV8DhAw+OZNYxqsnHvIU22YUo00Fa/1gf54zUypQEK2AingUGNAJFPYKYBWsMJOA0MOoGZBqgQGhbyFltjSzSAaNgkJRpoq08DA1VOz9EKE8i1qSy8ZmEaaKqggWYJ0ADQIdymgGjNCs02Dz1ISE7NmW8SKp4mBrduC2YaoHW3sJBXZqAatgA0bMmsYVSTjXsPabKtUqKBNvq1vtAfr7UpDVDA1jgNLGwNiNyGmQZoDW1wGljYhpkGqBBaFfIWW1tLNIBo2C4lGmijTwMLVE7P0QoTyLW9LLwOYRpor6CBDgnQANAh3PaAaB0KzTYPPUhITh2ZbxIqnnYGt24nZhqgdXeykFdmoBp2AjTszKxhVJONew9psl1SooHW+rXu+eN1NaUBCtgVpwGvKyByN2YaoDV0w2nA68ZMA1QIXQp5i627JRpANDwxJRporU8DNVROz9EKE8i1hyy8k8I00ENBAyclQANAh3B7AKKdVGi2eehBQnI6mfkmoeI50eDW7clMA7TunhbyygxUw56AhqcwaxjVZOPeQ5rsqSnRQCv9Wi/wxzvNlAYo4Gk4DRScBoh8OjMN0BpOx2mg4HRmGqBCOLWQt9h6WaIBRMPeKdFAK30ayFc5PUcrTCDXM2ThnRmmgTMUNHBmAjQAdAj3DEC0MwvNNg89SEhOfZhvEiqe3ga3bl9mGqB197WQV2agGvYFNDyLWcOoJhv3HtJk+6VEAy31a32AP97ZpjRAAc/GaWDA2YDI5zDTAK3hHJwGBpzDTANUCP0KeYvtXEs0gGh4Xko00FKfBvqrnJ6jFSaQ6/my8C4I08D5Chq4IAEaADqEez4g2gWFZpuHHiQkpwuZbxIqnvMMbt2LmGmA1n2RhbwyA9XwIkDDi5k1jGqyce8hTbZ/SjTQQr/WK/njDTClAQo4AKeBSgMAkQcy0wCtYSBOA5UGMtMAFUL/Qt5iG2SJBhANL0mJBlro00CRyuk5WmECuV4qC++yMA1cqqCByxKgAaBDuJcCol1WaLZ56EFCcrqc+Sah4rnE4Na9gpkGaN1XWMgrM1ANrwA0vJJZw6gmG/ce0mSvSokGmgP/fQR/vMGmNEABBxfi713NfMNTXlcX/ufwHP2BFhEd2KsKeYviGku3NqLLtVkWqs6arzXQMMmCamZYUNeZFhQFvM6goK5nLijK6/qECipuOgl/faHZgfH0YiR6SJoCP7PeH2+I6SGhgEMMOs4QoGKHMh8oWsNQA5GHMn8Go0M01AAPrgH2q5gZB2lviw2LNTPQs1UMrP8GZsSLupHj3kNu5BuZNaQ9utHgIkB0oCZIn81Kq34jMG4jw//kmYPF8bSduwx355pc3zs3if26Wdgtwm4VNkzYcGEjhN0m7HZhdwgbKWyUsNHCxggbK2ycsDuF3SXsbmH3CLtX2H3C7hf2gLAHhY0XNkHYQ8ImCntY2CPCHg1/B3CT/Lzv992s8N2i8N2q8A1T+IYrfCMUvtsUvtsVvjsUvpEK3yiFb7TCN0bhG6vwjVP47lT47lL47lb47lH47lX47lP47lf4HlD4HlT4xit8ExS+hxS+iQrfwwrfIwrfo4W7fre0n3x6jtYIFH1cs7lJszHR91A3a8913Ft054p8b9WbO07k6w7TmruB1uYO15m75p99cEdozG3+7565t8XPHSP31709du7AjBbuHXFz5+zUzR0ZM3fwfxq7o0qe28Z3HtzRJc5d6z877piS5tYNnDN3bAlzawbPpDsuem6v0Pl174yc2zN81t27ouYW71IX7t0Rc4t3rSH3HvXcWYp6c+9Vzm2pqk33PtXcLso6du9XzJ2trnn3gV3n1oroD+6Du8ydGNVL3PHhubUj+447ITR3TXSPch8Kzr2khH7mTgzM7VRS73Mf9s/tV2KfdB/xzT2q5J7qPgpAaJKfeB/V7+XL/fEmmX7ipYCTCuE/dVw+SX+D3MmaizL9xEtrmAx+4qU1TAZFTupPx4DDtUzl9BytMIFcH5MH5PEwGT8mN87ve7ww+z8dA06y+xhwQB4HNw8Vhw7FY+BhorweS6ljPKK/zxP88Z4w7RgU8Am8Y0x4AugYU5g7Bq1hCt4xJkxJqWM8oh93vMrpOVphArlOlQfkyXDHmKroGE8m0DGAk+xOBQ7Ik4abh35Rh+T0FFAMO/8B5DJZHnD0izrkqn4aKAbVGuKm0x49bdCJn06pEz+sf35n+uM9Y9qJKeAzeCee+Qxw+J5l7sS0hmfxTjzz2SwPn04BPc1cQM+Ba8gMtDEhGk4DzkaSN9zD+nFnqJyeoxUmkOt0WXgzwjfcdMUNNyOBGw7oEO50QLQZhpuHHiQkp5lZ3nBx71DxTDO4HZ5nvrVo3c9byCszUA2fBzScxaxhVJPVac66c18AG1pSNDBRv9ZH++PNNqUBCjgbp4HRs4ENmsNMA7SGOTgNjJ7DTANUCC8U8hbbXLDYMgPNCdHwxZRoYKJ+3FEqp+dohQnkOk8W3vwwDcxT0MD8BGgA6BDuPEC0+Yabhx4kJKcFzDcJFc+LBrfuQmYaoHUvtJBXZqAaLgQ0fIlZw6gmG/ce0mRfTum7gYf0a93zx1tkSgMUcBFOA94iQORXmGmA1vAKTgPeK8w0QIXwciFvsb1qiQYQDV9LiQYe0o+b2M+de10W3hthGnhdQQNvJEADQIdwXwdEe8Nw89CDhOT0JvNNQsXzmsGt+xYzDdC637KQV2agGr4FaPg2s4ZRTTbuPaTJvpMSDUzQr/Vl/njvmtIABXwXp4Fl7wIiv8dMA7SG93AaWPYeMw1QIbxTyFtsiy3RAKLhkpRoYIJ+3KUqp+dohQnkulQW3rIwDSxV0MCyBGgA6BDuUkC0ZYabhx4kJKflzDcJFc8Sg1t3BTMN0LpXWMgrM1ANVwAavs+sYVSTjXsPabIfpEQD4/Vrva8/3oemNEABP8RpoO+HgMgfMdMAreEjnAb6fsRMA1QIHxTyFttKSzSAaLgqJRoYrx+3j8rpOVphArmuloX3cZgGVito4OMEaADoEO5qQLSPDTcPPUhITp8w3yRUPKsMbt1PmWmA1v2phbwyA9XwU0DDz5g1jGqyce8hTfbzlGjgQf1aX+WP94UpDVDAL3AaWPUFIPIaZhqgNazBaWDVGmYaoEL4vJC32L60RAOIhl+lRAMP6sddqXJ6jlaYQK5fy8L7JkwDXyto4JsEaADoEO7XgGjfGG4eepCQnL5lvkmoeL4yuHW/Y6YBWvd3FvLKDFTD7wAN1zJrGNVk495Dmuz3KdHAA/q13s4f7wdTGqCAP+A00O4HQOQfmWmA1vAjTgPtfmSmASqE7wt5i+0nSzSAaPhzSjTwgH7ctiqn52iFCeT6iyy8X8M08IuCBn5NgAaADuH+Aoj2q+HmoQcJyek35puEiudng1t3HTMN0LrXWcgrM1AN1wEa/s6sYVSTjXsPabJ/pEQD9+vX+nR/vPWmNEAB1+M0MH09IPIGZhqgNWzAaWD6BmYaoEL4o5C32P60RAOIhn+lRAP368edpnJ6jlaYQK5/y8LbGKaBvxU0sDEBGgA6hPs3INpGw81DDxKS0ybmm4SK5y+DW3czMw3QujdbyCszUA03AxpuYdYwqsnGvYc02a0p0cB9+rU+3x9vmykNUMBtOA3M3waIvJ2ZBmgN23EamL+dmQaoELYW8hbbDks0AGlYlA4N3Ke/F/NUTs/RChPI1S3691mqyAne/PR/hGmAJmVLA0CHcN0ifdFKFZltHnqQkJxKAwdp5z8c/XeoeJwivLDL6Of1X3KOfl607jIW8soMVMMygIZlmTWMarJx7yFNthywr0nSwL36td7BHy+nKIuA9DJIAx1yAJFzgcNjuoZcsHhoDblZFrVOIZQr4i22PLDYMgPNCdGwfEo0cK8+DbRXOT1HK0wg13xZeAVhGshX0EBBAjQAdAg3HxCtoMhs89CDhORUgfkmoeIpb3DrVmSmAVp3RQt5ZQaqYUVAw0JmDaOabNx7SJMtSokG7tGv9WJ/vEqmNEABK+E0UFwJELkyMw3QGirjNFBcmZkGqBCKiniLrYolGkA03C0lGrhHnwaGqpyeoxUmkOvusvCqhmlgdwUNVE2ABoAO4e4OiFa1yGzz0IOE5LQH801CxbObwa1bjZkGaN3VLOSVGaiG1QANqzNrGNVk495DmuyeKdHA3YY0sJcpDVDAvQxoYC9A5L2ZaYDWsLcBDezNTANUCHsW8RbbPpZoANFw35Ro4O4UaKCGLDwvTAM1FDTgJUADQIdwawCieZZoAMlpP+abhIpnX4Nbd39mGqB1728hr8xANdwf0PAAZg2jmmzce0iTPTAlGrhLv9an+uMdZEoDFPAgnAamHgSIfDAzDdAaDsZpYOrBzDRAhXBgEW+x1bREA4iGtVKigbv0aWCKyuk5WmECuR4iC+/QMA0coqCBQxOgAaBDuIcAoh1aZLZ56EFCcjqM+Sah4qllcOsezkwDtO7DLeSVGaiGhwMaHsGsYVSTjXsPabJHpkQDd+rX+mR/vKNMaYACHoXTwOSjAJFrM9MAraE2TgOTazPTABXCkUW8xVbHEg0gGtZNiQbu1KeBSSqn52iFCeRaTxbe0WEaqKeggaMToAGgQ7j1ANGOLjLbPPQgITkdw3yTUPHUNbh16zPTAK27voW8MgPVsD6gYQNmDaOabNx7SJM9NiUaGKdf66v98Y4zpQEKeBxOA6uPA0Q+npkGaA3H4zSw+nhmGqBCOLaIt9gaWqIBRMNGKdHAOH0aWKVyeo5WmECuJ8jCaxymgRMUNNA4ARoAOoR7AiBa4yKzzUMPEpJTE+abhIqnkcGt25SZBmjdTS3klRmohk0BDZsxaxjVZOPeQ5ps85RoYKx+rS/xx2thSgMUsAVOA0taACK3ZKYBWkNLnAaWtGSmASqE5kW8xdbKEg0gGrZOiQbG6tPAYpXTc7TCBHJtIwuvbZgG2ihooG0CNAB0CLcNIFrbIrPNQw8SklM75puEiqe1wa3bnpkGaN3tLeSVGaiG7QENOzBrGNVk495DmmzHlGhgjH6tV/fH62RKAxSwE04D1TsBIndmpgFaQ2ecBqp3ZqYBKoSORbzF1sUSDSAadk2JBsbo00A1ldNztMIEcu0mC697mAa6KWigewI0AHQItxsgWvcis81DDxKS04nMNwkVT1eDW7cHMw3QuntYyCszUA17ABqexKxhVJONew9psienRAOj9Wt9rj9eT1MaoIA9cRqY2xMQ+RRmGqA1nILTwNxTmGmACuHkIt5iO9USDSAanpYSDYzWp4E5KqfnaIUJ5Hq6LLxeYRo4XUEDvRKgAaBDuKcDovUqMts89CAhOfVmvkmoeE4zuHXPYKYBWvcZFvLKDFTDMwANz2TWMKrJxr2HNNk+KdHAKP1aH+6P19eUBihgX5wGhvcFRD6LmQZoDWfhNDD8LGYaoELoU8RbbP0s0QCi4dkp0cAofRoYpnJ6jlaYQK7nyMI7N0wD5yho4NwEaADoEO45gGjnFpltHnqQkJzOY75JqHjONrh1z2emAVr3+RbyygxUw/MBDS9g1jCqyca9hzTZC1OigZH6td7WH+8iUxqggBfhNND2IkDki5lpgNZwMU4DbS9mpgEqhAuLeIutvyUaQDQckBINjNSngTYqp+dohQnkOlAW3qAwDQxU0MCgBGgA6BDuQEC0QUVmm4ceJCSnS5hvEiqeAQa37qXMNEDrvtRCXpmBangpoOFlzBpGNdm495Ame3lKNHCHfq2P9ce7wpQGKOAVOA2MvQIQ+UpmGqA1XInTwNgrmWmACuHyIt5iu8oSDSAaDk6JBu7Qp4ExKqfnaIUJ5Hq1LLxrwjRwtYIGrkmABoAO4V4NiHZNkdnmoQcJyela5puEimewwa17HTMN0Lqvs5BXZqAaXgdoeD2zhlFNNu49pMkOSYkGbtev9UH+eENNaYACDsVpYNBQQORiZhqgNRTjNDComJkGqBCGFPEW2w2WaADR8MaUaOB2fRoYqHJ6jlaYQK43ycK7OUwDNylo4OYEaADoEO5NgGg3F5ltHnqQkJxuYb5JqHhuNLh1b2WmAVr3rRbyygxUw1sBDYcxaxjVZOPeQ5rs8JRo4Db9Wl/ojzfClAYo4AicBhaOAES+jZkGaA234TSw8DZmGqBCGF7EW2y3W6IBRMM7UqKB2/RpYIHK6TlaYQK5jpSFNypMAyMVNDAqARoAOoQ7EhBtVJHZ5qEHCclpNPNNQsVzh8GtO4aZBmjdYyzklRmohmMADccyaxjVZOPeQ5rsuJRoYIR+rXv+eHea0gAFvBOnAe9OQOS7mGmA1nAXTgPeXcw0QIUwroi32O62RAOIhvekRAMj9GmghsrpOVphArneKwvvvjAN3KuggfsSoAGgQ7j3AqLdV2S2eehBQnK6n/kmoeK5x+DWfYCZBmjdD1jIKzNQDR8ANHyQWcOoJhv3HtJkx6dEA8P1a73AH2+CKQ1QwAk4DRRMAER+iJkGaA0P4TRQ8BAzDVAhjC/iLbaJlmgA0fDhlGhguD4N5KucnqMVJpDrI7LwHg3TwCMKGng0ARoAOoT7CCDao0Vmm4ceJCSnScw3CRXPwwa37mRmGqB1T7aQV2agGk4GNHyMWcOoJhv3HtJkH0+JBobp1/oAf7wnTGmAAj6B08CAJwCRpzDTAK1hCk4DA6Yw0wAVwuNFvMU21RINIBo+mRINDNOngf4qp+dohQnk+pQsvKfDNPCUggaeToAGgA7hPgWI9nSR2eahBwnJ6Rnmm4SK50mDW/dZZhqgdT9rIa/MQDV8FtDwOWYNo5ps3HtIk52WEg3cql/rlfzxppvSAAWcjtNApemAyDOYaYDWMAOngUozmGmACmFaEW+xzbREA4iGz6dEA7fq00CRyuk5WmECuc6Sv9MLYRqYpaCBFxKgAaBDuLMA0V4oMts89CAhOc1mvkmoeJ43uHXnMNMArXuOhbwyA9VwDqDhXGYNo5ps3HtIk30xJRq4Rb+hBeLNM6UBCjivCH9vPvMNT3nN97Udz9EfaBHRgX2xiLcoFli6tRFdFmZZqDprXmigYZIFdbNhQb1kWlAU8CWDgnqZuaAor5cTKqi46ST8y0VmB8bTi5HoIbmpUD9Hf7xFpoeEAi4y6DiLgIp9hflA0RpeMRD5FebPYHSIXjHAgwXAfr2a5RriptPevmpYrJmBnq1XgfW/xox4UTdy3HvIjfw6s4a0R68bXASIDpnfe43vN/Ac/fG/uf+b+7+5/5v7v7n/m/u/uf+b+7+5/5v7//Fcl3i4oOy/XJwvn+XlM08+c+UzRz7LyWdZ+Swjn6Xls5R8uvLpyOeOMv8+t8vnNvncKp9b5HOzfG6Sz43y+bd8/iWff8rnBvlcL59/yOfv8rlOPn+Tz1/l8xf57FLu32dn+ewknx3ls4N8tpfPdvLZVj7byGdr+Wwlny3ls4V8NpfPZvLZVD6byGdj+TxBPhvJZ0P5PF4+j5PPY+WzgXzWl89j5PNo+awnn3Xls4581pbPcTn/PsfK5xj5HC2fo+RzpHzeIZ+3y+dt8jlCPofL5zD5vFU+b5HPm+XzJvm8UT5vkM9i+Rwqn0Pk83r5vE4+r5XPa+TzavkcLJ9XyeeV8nmFfF4un5fJ54e5/z4/kM/35XOFfC6Xz2XyuVQ+l8jnYvl8Tz7flc935PNt+XxLPt+Uzzfk83X5fE0+X5XPV+RzkXy+LJ8vyedC+Vwgn/Plc558viifc+VzjnzOls8X5LNa+X+fe8hnVfncXT53k88q8llZPivJZ5F8FspnRfmsIJ8F8pkvn+XlM08+c+UzRz7LyWdZ+Swjn6Xls5R8uvLpyOeOvH+f2+Vzm3xulc8t8rlZPjfJ5/qCf58b5PNP+fxLPv+Wz43yuUk+N8vnFvncKp/b5HO7fO6QT6eCzFs+S8nntPx/n9Plc4Z8zpTP5+Vzlny+IJ+z5XOOfM6Vzxflc558zpfPBfK5UD5fEs/Md5lviO9Q3hT2lrC3hb0j7F1h7wlbLGyJsKXClglbLmyFsPeFfSDsQ2EfCVspbJWw1cI+FvaJsE+FfSbsc2FfCFsj7EthXwn7Wtg3wr4V9p2wtcK+F/aDsB+F/STsZ2G/CPtV2G/C1gn7XdgfwtYL2yDsT2F/Cftb2EZhm4RtFrZF2FZh24RtF7aDvh+sJNYurJSw0sLKCCsrrJywHGG5wvKElReWL6xAWAVhFYUVCisSVklYZWFVhO0mbHdhVYXtIayasOrC9hS2l7C9he0jbF9hNYR5wvYTtr+wA4QdKOwgYQcLqymslrBDhB0q7DBhhws7QtiRwo4SVltYHWF1hdUTdrSwY4TVF9ZA2LHCjhN2vLCGwhoJO0FYY2FNhDUV1kxYc2EthLUU1kpYa2FthLUV1k5Ye2EdhHUU1klYZ2FdhHUV1k1Yd2EnCush7CRhJwvrKewUYacKO03Y6cJ6Cest7AxhZwrrI6yvsLOE9RN2trBzhJ0r7Dxh5wu7QNiFwi4SdrGw/sIGCBsobJCwS4RdKuwyYZcLu0LYlcKuEjZY2NXCrhF2rbDrhF0vbIiwocKKhd0g7EZhNwm7Wdgtwm4VNkzYcGEjhN0m7HZhdwgbKWyUsNHCxggbK2ycsDuF3SXsbmH3CLtX2H3C7hf2gLAHhY0XNkHYQ8ImCntY2CPCHhU2SdhkYY8Je1zYE8KmCJsq7ElhTwl7Wtgzwp4V9pywacKmC5shbKaw54XNqiT7ixP8O0Keoz805677594ulPe4fN4in7fK5zD5HC6fI+TzNvm8XT7vkM+R8jlKPkfL5xj5HCuf4+SzacV/n83ks7l8tpDPlvLZSj5by2cb+Wwrn+3ks718dpDPjvLZST47y2eXiv/9vZ4XxJ7PFjZH2FxhLwqbJ2y+sAXCFgp7SdjLwhYJe0XYq8JeE/Z6pX//MK7At7Gu71lV/voNMe9NYW8Je1vYO8LeFfaesMXClghbKmyZsOXCVgh7X9gHwj4U9pGwlcJWCVst7GNhn1SSQTJ/34qC5IZ8byp8byl8byt87yh87yp87yl8ixW+JQrfUoVvmcK3XOFbofC9r/B9oPB9qPB9pPCtVPhWKXyrFb6PFb5PpI8OTQVHfWgy/2r6p2LuZ8I+F/aFsDXCvhT2lbCvhX0j7Fth3wlbK+x7YT8I+1HYT8J+FvaLsF+F/SZsnbDfhf0hbL2wDcL+FPaXsL+FbRS2Sdjm8MH6VLGQzxS+zxW+LxS+NQrflwrfVwrf1wrfNwrftwrfdwrfWoXve4XvB4XvR4XvJ4XvZ4XvF4XvV4XvN4VvncL3u8L3h8K3XuHboPD9qfD9pfD9rfBtVPg2KXybgWLYIuZuFbZN2HZhO+iQVhZzhJUSVlpYGWFlhZUTliMsV1iesPLC8oUVCKsgrKKwQmFFwioJqyysirDdhO0urKqwPYRVE1a9cijpLYqFbFX4til82xW+HQofLSzscxW+UgpfaYWvjMJXVuErp/DlKHy5Cl+ewlde4ctX+AoUvgoKX0WFr1DhK1L4Kil8lRW+Kgrfbgrf7gpfVYVvD4WvmsJXvbJ+Mewp5u4lbG9h+wjbV1gNYZ6w/YTtL+wAYQcKO0jYwcJqCqsl7BBhhwo7TNjhwo4QdqSwo4TVFlZHWF1h9YQdLewYYfWFNRB2bLgY9lQsZC+Fb2+Fbx+Fb1+Fr4bC5yl8+yl8+yt8Byh8Byp8Byl8Byt8NRW+WgrfIQrfoQrfYQrf4QrfEQrfkQrfUQpfbYWvjsJXV+Grp/AdrfAdo/DVV/gaKHzHAsVwnJh7vLCGwhoJO0FYY2FNhDUV1kxYc2EthLUU1kpYa2FthLUV1k5Ye2EdhHUU1klYZ2FdhHUV1k1Yd2EnCush7CRhJwvrGS6G4xQLOV7ha6jwNVL4TlD4Git8TRS+pgpfM4WvucLXQuFrqfC1UvhaK3xtFL62Cl87ha+9wtdB4euo8HVS+DorfF0Uvq4KXzeFr7vCd6LC10PhO0nhO1nh6wkUwyli7qnCThN2urBewnoLO0PYmcL6COsr7Cxh/YSdLewcYecKO0/Y+cIuEHahsIuEXSysv7ABwgYKGyTsEmGXCrtM2OXCrhB2ZbgYTlEs5FSF7zSF73SFr5fC11vhO0PhO1Ph66Pw9VX4zlL4+il8Zyt85yh85yp85yl85yt8Fyh8Fyp8Fyl8Fyt8/RW+AQrfQIVvkMJ3icJ3qcJ3mcJ3ucJ3hcJ3JVAMV4m5g4VdLewaYdcKu07Y9cKGCBsqrFjYDcJuFHaTsJuF3SLsVmHDhA0XNkLYbcJuF3aHsJHCRgkbLWyMsLHCxgm7U9hdwu4OF8NVioUMVviuVviuUfiuVfiuU/iuV/iGKHxDFb5ihe8Ghe9Ghe8mhe9mhe8Whe9WhW+Ywjdc4Ruh8N2m8N2u8N2h8I1U+EYpfKMVvjEK31iFb5zCd6fCd5fCdzdQDPeIufcKu0/Y/cIeEPagsPHCJgh7SNhEYQ8Le0TYo8ImCZss7DFhjwt7QtgUYVOFPSnsKWFPC3tG2LPCnhM2Tdh0YTOEzRT2fLgY7lEs5F6F7z6F736F7wGF70GFb7zCN0Hhe0jhm6jwPazwPaLwParwTVL4Jit8jyl8jyt8Tyh8UxS+qQrfkwrfUwrf0wrfMwrfswrfcwrfNIVvusI3Q+GbqfA97yuGss5/I/DvL1f+9/lCZSc4MhXjOVrDpd8oMzfuL6pTQhWdZP6l7xcqa8/NKo6rP3fn701jdnhj0X+L4ecy+hs7pzK2oMxJybxHwpRzggtA/82Rj+TfPPIcvTxo/soyvILsHLTAHCe4wJ2/o40E/AP+91mAEptreBJU76EnwD83LvY5jtkmojkhJ/Jcx05OpRz9nM5z7ORU2tHP6XwnmZzi4lzg6Offu4yd6+BCx06cixw7cS527GjZ39HXsq8lLQc4duIMdOzEGeTYiXOJYyfOpY6dOJc5duJc7tiJc4VjJ86Vjp04Vzl24gx27MS52rET5xrHTpxrHTtxrnPsxLnesRNniGMnzlDHTpxix06cGxw7cW507MS5ybET52bHTpxbHDtxbnXsxBnm2Ikz3LETZ4RjJ85tjp04tzt24tzh2Ikz0rETZ5RjJ85ox06cMY6dOGMdO3HGOXbi3OnYiXOXYyfO3Y6dOPc4duLc69iJc59jJ879jp04Dzh24jzo2Ikz3rETZ4JjJ85Djp04Ex07cR527MR5xLET51HHTpxJjp04kx07cR5z7MR53LET5wnHTpwpjp04Ux07cZ507MR5yrET52nHTpxnHDtxnnXsxHnOsRNnmmMnznTHTpwZjp04Mx07cZ537MSZ5diJ84JjJ85sx06cOY6dOHMdO3FedOzEmefYiTPfsRNngWMnzkLHTpyXHDtxXnbsxFnk2InzimMnzquOnTivOXbivO7YifOGYyfOm46dOG85duK87diJ845jJ867jp047zl24ix27MRZ4tiJs9SxE2eZYyfOcsdOnBWOnTjvO3bifODYifOhYyfOR46dOCsdO3FWOXbirHbsxPnYsRPnE8dOnE8dO3E+c+zE+dyxE+cLx06cNY6dOF86duJ85diJ87VjJ843jp043zp24nzn2Imz1rET53vHTpwfHDtxfnTsxPnJsRPnZ8dOnF8cO3F+dezE+c2xE2edYyfO746dOH84duKsd+zE2eDYifOnYyfOX46dOH87duJsdOzE2eTYibPZsRNni2MnzlbHTpxtjp042x07cXY4duLQC5pzAwP9d4ldX5y4f5f4+zJ2cioF5LTK0r/fXNq1E6eMpThlLcUpZylOjqU4uZbi5FmKU95SnHxLcQosxalgKU5FS3EKLcUpshSnkqU4lS3FqWIpzm6W4uxuKU5VS3H2sBSnmqU41S3F2dNSnL0sxdnbUpx9LMXZ11KcGpbieJbi7Ad8hskmzv6+ONVntl6yqX6rntXn939rr4+ennntJ8NHzfv83YOPLHYPmPzstbOyiXOA4b6hn/0OBPbtrIQ+jyb5c+8OsnS+DrakR01AjzmWfoxoLUt7fIilOIdainOYpTiHW4pzhKU4R1qKc5SlOLUtxaljKU5dS3HqWYpztKU4x1iKU99SnAaW4hxrKc5xluIcbylOQ0txGlmKc4KlOI0txWliKU5TS3GaWYrT3FKcFpbitLQUp5WlOK0txWljKU5bS3HaWYrT3lKcDpbidLQUp5OlOJ0txeliKU5XS3G6WYrT3RenpO9oftuxY0c2cU60tJ4eluKcZCnOyZbi9LQU5xRLcU61FOc0S3FOtxSnl6U4vS3FOcNSnDMtxeljKU5fS3HOshSnn6U4Z1uKc46lOOdainOepTjnW4pzgaU4F1qKc5GlOBdbitPfUpwBluIMtBRnkKU4l1iKc6mlOJdZinO5pThXWIpzpaU4V1mKM9hSnKstxbnGUpxrLcW5zlKc6y3FGWIpzlBLcYotxbnBUpwbLcW5yVKcmy3FucVSnFstxRlmKc5wS3FGWIpzm6U4t1uKc4elOCMtxRllKc5oS3HGWIoz1lKccZbi3Gkpzl2W4txtKc49luLcaynOfZbi3G8pzgOW4jxoKc54S3EmWIrzkKU4Ey3FedhSnEcsxXnUUpxJluJMthTnMUtxHrcU5wlLcaZYijPVUpwnLcV5ylKcpy3FecZSnGctxXnOUpxpluJMtxRnhqU4My3Fed5SnFmW4rxgKc5sS3HmWIoz11KcFy3FmWcpznxLcRZYirPQUpyXLMV52VKcRZbivGIpzquW4rxmKc7rluK8YSnOm5bivGUpztuW4rxjKc67luK8ZynOYktxlliKs9RSnGWW4iy3FGeFpTjvW4rzgaU4H1qK85GlOCstxVllKc5qS3E+thTnE0txPrUU5zNLcT63FOcLS3HWWIrzpaU4X1mK87WlON9YivOtpTjfWYqz1lKc7y3F+cFSnB8txfnJUpyfLcX5xVKcXy3F+c1SnHWW4vxuKc4fluKstxRng6U4f1qK85elOH9birPRUpxNluJsthRni6U4Wy3F2WYpznZLcXZYikM/hFhzbuhFLI5rKU4pS3FKW4pTxlKcspbilLMUJ8dSnFxLcfIsxSlvKU6+pTgFluJUsBSnoqU4hZbiFFmKU8lSnMqW4lSxFGc3S3F2txSnqqU4e1iKU81SnOqW4uxpKc5eluLsbSnOPpbi7GspTg1LcTxLcfazFGd/S3EOsBTnQEtxDrIU52BLcWpailPLUpxDLMU51FKcwyzFOdxSnCMsxTnSUpyjLMWpbSlOHUtx6lqKU89SnKMtxTnGUpz6luI0sBTnWEtxjrMU53hLcRpaitPIUpwTLMVpbClOE0txmlqK08xSnOaW4rSwFKelpTitLMVpbSlOG0tx2lqK085SnPaW4nSwFKejpTidLMXpbClOF0txulqK080wDvrfaO7uixP332ieXdlOTicCOTXPN8vJCz3jcurh18MtefLp+SXlv9afv/tGUYlrbeOf+//a+w4wuWprf83ueL1jrz3rdcMFe1zAxoVeTPfiDrbpJZSYxV6MwQ17DQYbs7hgm2YIpBfSSYGUF1JfkpeQ5CV5JC8JyT+VPAJJXnpCXiC9/CV8z+7Z35yrke7V3h3w6PvON3eujn7nSDo60pV0db9o5124mfF+qQLvTR/r5v1yJd6Pr+vi/a+KvOvvJd7HK/Ped0bE+xUH3jk/2s/7VRfep597gfe/nXiff4Xh/Zob7/2/07xfd+X9l8p9w5n3X7knHHmN7X+zB+8SG2/uI0N64F5v4/1oT94NP7Lwfgx4nz4ynvfjyHvUg7G8nyjjffPUON5/L+c97KMxvJ8UeD92tsz7KYn3nLki76dF3nkflnj/Q+b9SKfA+5kY3ts6y3k/G8d728VlvI/F8l5yOfJ+Lp73iinA+3kL79Sje/J+gfMut9p6D49bgt8KIXdhnbucb3m0qf/X7N6mvt3s3qa+0+zepr7b7N6mvtfs3qa+3+zepn7Q7N6mnmx2b1M/bHZvU//T7N6mnmp2b1M/anZvU083u7epZ5rd29SPm93b1E+a3cceP/UYe/yvx9jjZx5jj597jD1+4TH2+KXH2ONXHmOPX3uMPX7jMfb4rcfY43ceY49nPcYev/cYe/xfczbj7os8fPcfPHz3cx6++3kP3/1HD9/9Jw/f/WcP3/0XD9/9Vw/f/TcP3/13D9/9Dw/f/U8P3/0vD9+tPMZDOY/xUJ3HeKh+iLvvzg9x9939hrj77oYh7r67fyVe5rsbK/J2++5CZd4u3z3AgZd890AX3sh3Nznx7vfdg4Y4+ljNO9iVV/vuojPvv3LNjrzGdw8Zko3vvtjDd7cMcffdQz2eZYd5PMsO93iWHeHxLDvS41n2II9n2VEez7KjPZ5lx3g8y471eJY92ONZdpzHs+x4D99d8vDdEzx890QP3z3Jw3dP9vDdh3j47kM9fPcUD9891cN3H+bhu6d5+O7pHr57hofvnunhuw/38N1HePjuIzPy3Zd4+O6jPHz30R6++xgP332sh+8+zsN3H+/hu0/w8N2zPHz3iR6++yQP332yh+8+xcN3n+rhu0/z8N2ne/ju2R6+u9XDd5/h4bvnePjuuR6+e56H757v4bsXePjuhR6+e5GH7z7Tw3ef5eG7F3v47iUevnuph+8+OyPf/TIP332Oh+8+18N3n+fhu8/38N0XePjuCz1890UevvtiD999iYfvfpmH777Uw3df5uG7L/fw3Vd4+O6Xe/juZR6++0oP393m4buv8vDdyz189woP393u4buv9vDdKz189zUevnuVh+++1sN3X+fhu1d7+O41Hr57bUa++1IP373Ow3ev9/Dd13v47g0evnujh+/u8PDdmzx89w0evvtGD9+92cN33+Thu2/28N1bPHz3Vg/ffYuH797m4btv9fDdnR6++zYP373dw3fv8PDdOz189y4P3327h+/e7eG793j47r0evvsOD999p4fvvsvDd9+dke++zMN33+Phu/d5+O57PXz3fR6++xUevvt+D9/9gIfvfqWH736Vh+9+tYfvfo2H736th+9+nYfvfr2H736Dh+9+o4fvfpOH737Qw3e/2cN3v8XDd7/Vw3e/zcN3v93Dd7/Dw3e/08N3P+Thu9/l4bvf7eG73+Phu9/r4bsfzsh3X+7hux/x8N3v8/Dd7/fw3R/w8N0f9PDd/+bhuz/k4bsf9fDdH/bw3f/p4bu/6OG7v+Thu7/s4bv/y8N3P+7hu7/i4bu/6uG7/9vDd3/Nw3d/3cN3f8PDdz/h4bu/6eG7v+Xhu/+fh+/+tofv/o6H7/6uh+/+nofv/r6H7/5BRr77Cg/f/aSH7/6hh+/+Hw/f/ZSH7/6Rh+9+2sN3P+Phu3/s4bt/4uG7f+rhu//Xw3f/zMN3/9zDd//Cw3f/0sN3/8rDd//aw3f/xsN3/9bDd//Ow3c/6+G7f+/hu//Pw3f/wcN3P+fhu5/38N1/9PDdf/Lw3X/28N1/8fDdf83Id7/cw3f/zcN3/93Dd//Dw3f/08N3/8vDd6sWd9+da3H33XUt7r67vsXdd+db3H13vxZ3393Q4u67+7e4++7GFnffXWhx990DWtx998AWd9/d1OLuuwe1uPvuwS3uvrtYiZf57uaKvN2+e0hl3i7f3eLAS757qAtv5LuHOfHu993DWxx9rOYd4cqrffdIZ95/5Q5y5DW+e1TC9/RL8Fsh5JZ5+O7RLe6+e0yLu+8e2+Luuw9ucffd41rcffd4D99d8vDdEzx890QP3z3Jw3dP9vDdh3j47kM9fPcUD9891cN3H+bhu6d5+O7pHr57hofvnunhuw/38N1HePjuIz1891EevvtoD999jIfvPtbDdx/n4buP9/DdJ3j47lkZ+e4rPXz3iR6++yQP332yh+8+xcN3n+rhu0/z8N2ne/ju2R6+u9XDd5/h4bvnePjuuR6+e56H757v4bsXePjuhR6+e5GH7z7Tw3ef5eG7F3v47iUevnuph+8+28N3n+Phu8/18N3nefju8z189wUevvtCD999kYfvvjgj393m4bsv8fDdL/Pw3Zd6+O7LPHz35R6++woP3/1yD9+9zMN3X+nhu9s8fPdVHr57uYfvXuHhu9s9fPfVHr57pYfvvsbDd6/y8N3Xevju6zx892oP373Gw3ev9fDd6zx893oP3329h+/e4OG7N3r47g4P373Jw3ffkJHvvsrDd9/o4bs3e/jumzx8980evnuLh+/e6uG7b/Hw3ds8fPetHr6708N33+bhu7d7+O4dHr57p4fv3uXhu2/38N27PXz3Hg/fvdfDd9/h4bvv9PDdd3n47rs9fPc9Hr57n4fvvtfDd9/n4btf4eG77/fw3Q94+O5XZuS7l3v47ld5+O5Xe/ju13j47td6+O7Xefju13v47jd4+O43evjuN3n47gc9fPebPXz3Wzx891s9fPfbPHz32z189zs8fPc7PXz3Qx6++10evvvdHr77PR6++70evvthD9/9iIfvfp+H736/h+/+gIfv/qCH7/43D9/9IQ/f/WhC352LfkuO7CvqnPX/HU+IZ5dXyk9dzl2n9ozOeL/a4zz1X+ezqY+VGZ2jf01GclZlJOfajORcl5Gc1RnJWZORnLUZyVmXkZz1Gcm5PiM5GzKSszEjOR0ZydmUkZwbMpJzY0ZyNmck56aM5NyckZwtGcnZmpGcWzKSsy0jObdmJKczIzm3ZSRne0ZydmQkZ2dGcnZlJOf2jOTszkjOnozk7M1Izh0ZybkzIzl3ZSTn7ozk3JORnH0Zybk3Izn3ZSTnFRnJuT8jOQ9kJOeVGcl5VUZyXp2RnNdkJOe1Gcl5XUZyXp+RnDdkJOeNGcl5U0ZyHsxIzpszkvOWjOS8NSM5b8tIztszkvOOjOS8MyM5D2Uk510ZyXl3RnLek5Gc92Yk5+GM5DySkZz3ZSTn/RnJ+UBGcj6YkZx/y0jOhzKS82hGcj6ckZyPZCTnoxnJ+VhGcj6ekZxPZCTn3zOS88mM5HwqIzmfzkjOf2Qk5zMZyflsRnIey0jO5zKS8/mM5HwhIzn/mZGcL2Yk50sZyflyRnL+KyM5j2ck5ysZyflqRnL+OyM5X8tIztczkvONjOQ8kZGcb2Yk51sZyfl/Gcn5dkZyvpORnO9mJOd7Gcn5fkZyfpCRnCczkvPDjOT8T0ZynspIzo8ykvN0RnKeyUjOjzOS85OM5Pw0Izn/m5Gcn2Uk5+cZyflFRnJ+mZGcX2Uk59cZyflNRnJ+m5Gc32Uk59mM5Pw+Izn/l5GcP2Qk57mM5DyfkZw/ZiTnTxnJ+XNGcv6SkZy/ZiTnbxnJ+XtGcv6RkZx/ZiTnXxnJUfXZyMllJKcuIzn1GcnJZySnX0ZyGjKS0z8jOY0ZySlkJGdARnIGZiSnKSM5gzKSMzgjOcWM5DRnJGdIRnJaMpIzNCM5wzKSMzwjOSMykjMyIzkHZSRnVEZyRmckZ0xGcsZmJOfgjOSMy0jO+IzklDKSMyEjORMzkjMpIzmTM5JzSEZyDs1IzpSM5EzNSM5hGcmZlpGc6RnJmZGRnJkZyTk8IzlHZCTnyIzkHJWRnKMzknNMRnKOzUjOcRnJOT4jOSdkJGdWRnJOzEjOSRnJOTkjOadkJOfUjOSclpGc0zOSMzsjOa0ZyTkjIzlzMpIzNyM58zKSMz8jOQsykrMwIzmLMpJzZkZyzspIzuKM5CzJSM7SjOScnZGcczKSc25Gcs7LSM75Gcm5ICM5F2Yk56KM5FyckZxLMpLzsozkXJqRnMsyknN5RnKuyEjOyzOSsywjOVdmJKctIzlXZSRneUZyVmQkpz0jOVdnJGdlRnKuyUjOqozkXJuRnOsykrM6IzlrMpKzNiM56zKSsz4jOddnJGdDRnI2ZiSnIyM5mzKSc0NGcm7MSM7mjOTclJGcmzOSsyUjOVszknNLRnK2ZSTn1ozkdGYk57aM5GzPSM6OjOTszEjOrozk3J6RnN0ZydmTkZy9Gcm5IyM5d2Yk566M5NydkZx7MpKzLyM592Yk576M5LwiIzn3ZyTngYzkvDIjOa/KSM6rM5LzmozkvDYjOa/LSM7rM5LzhozkvDEjOW/KSM6DGcl5c0Zy3pKRnLcyOUeuWLrh6aPefNjHzpn3kdtuu+SKqcf8fOFNH19/35ynn7//2ZRy3pZRft6ekZx3ZCTnnQnl1IGcSnU7Wbnr9FAgnSrJeZeHbX68JZtyyit3/d+dUd31U+46vScjnRqUu07vzUin/spdp4cz0qlRuev0SEY6FZS7Tu/LSKcByl2n92ek00DlrtMHMtKpSbnr9MGMdBqk3HX6t4x0GqzcdfpQRjoVlbtOj2akU7Ny1+nDGek0RLnr9JGMdGpR7jp9NCOdhip3nT6WkU7DlLtOH89Ip+HKXadPZKTTCOWu079npNNI5a7TJzPS6SDlrtOnMtJplHLX6dMZ6TRauev0HxnpNEa56/SZjHQaq9x1+mxGOh2s3HV6LCOdxil3nT6XkU7jlbtOn89Ip5Jy1+kLGek0Qbnr9J8Z6TRRuev0xYx0mqTcdfqSh071EZm96ia0a7pa00pN12hapelaTddpWq1pjaa1mtZpWq/pek0bNG3U1KFpk6YbNN2oabOmmzTdrGmLpq2abtG0TdOtmjo13aZpu6YdmnZq2qXpdk27Ne3RtFfTHZru1HSXprs13aNpn6Z7Nd2n6RWa7tf0gKZXanqVpldreo2m12p6nabXa3qDpjdqepOmBzW9WdNbNL1V09s0vV3TOzS9U9NDmt6l6d2a3qPpvZoe1vSIpvdper+mD2j6oKZ/0/QhTY9q+rCmj2j6qKaPafq4pk9o+ndNn9T0KU2f1vQfmj6j6bOaHtP0OU2f1/QFTf+p6YuavqTpy5r+S9Pjmr6i6aua/lvT1zR9XdM3ND2h6ZuavqXp/2n6tqbvaPqupu9p+r6mH2h6UtMPNf2Ppqc0/UjT05qe0fRjTT/R9FNN/6vpZ5p+rukXmn6p6Veafq3pN5p+q+l3moxd/l7T/2n6g6bnND2v6Y+a/qTpz5r+oumvmv6m6e+a/qHpn5r+pclMQOc01Wmq15TX1E9Tg6b+mho1FTQN0DRQU5OmQZoGaypqatY0RFOLpqGahmkarmmEppGaDtI0StNoTWM0jdV0sKZxmsZrKmmaoGmipkmaJms6RNOhmqZomqrpME3TNE3XNEPTTE2HazpC05GajtJ0tKZjNB2r6ThNx2s6QdMsTSdqOknTyZpO0XSqptM0na5ptqZWTWdomqNprqZ5muZrWqBpoaZFms7UdJamxZqWaFqq6WxN52g6V9N5ms7XdIGmCzVdpOliTZdoepmmSzVdpulyTVdoermmZZqu1NSm6SpNyzWt0NSu6WpNKzVdo2mVpms1XadptaY1mtZqWqdpvabrNW3QtFFTh6ZNmm7QdKOmzZpu0nSzpi2atmq6RdM2Tbdq6tR0m6btmnZo2qlpl6bbNe3WtEfTXk13aLpT012a7tZ0j6Z9mu7VdJ+mV2i6X9MDml6p6VWaXq3pNZpeq+l1ml6v6Q2a3qjpTZoe1PRmTW/R9FZNb9P0dk3v0PROTQ9pepemd2t6j6b3anpY0yOa3qfp/Zo+oOmDmv5N04c0Parpw5o+oumjmj6m6eOaPqHp3zV9UtOnNH1a039o+oymz2p6TNPnNH1e0xc0/aemL2r6kqYva/ovTY9r+oqmr2r6b01f0/R1Td/Q9ISmb2r6lqb/p+nbmr6j6buavqfp+5p+oOlJTT/U9D+antL0I01Pa3pG0481/UTTTzX9r6afafq5pl9o+qWmX2n6tabfaPqtpt9pelbT7zX9n6Y/aHpO0/Oa/qjpT5r+rOkvmv6q6W+a/q7pH5r+qelfmkwnmNNUp6leU15TP00NmvpratRU0DRA00BNTZoGaRqsqaipWdMQTS2ahmoapmm4phGaRmo6SNMoTaM1jdE0VtPBmsZpGm/OqNc0QdNETZM0TdZ0iKZDNU3RNFXTYZqmaZquaYammZoO13SEpiM1HaXpaE3HaDpW03Gajtd0gqZZmk7UdJKmkzWdoulUTadpOl3TbE2tms7QNEfTXE3zNM3XtEDTQk2LNJ2p6SxNizUt0bRU09maztF0rqbzNJ2v6QJNF2q6SNPFmi7R9DJNl2q6TNPlmq7Q9HJNyzRdqalN01Walmtaoald09WaVmq6RtMqTddquk7Tak1rNK3VtE7Tek3Xa9qgaaOmDk2bNN2g6UZNmzXdpOlmTVs0bdV0i6Ztmm7V1KnpNk3bNe3QtFPTLk23a9qtaY+mvZru0HSnprs03a3pHk37NN2r6T5Nr9B0v6YHNL1S06s0vVrTazS9VtPrNL1e0xs0vVHTmzQ9qOnNmt6i6a2a3qbp7Zreoemdmh7S9C5N79b0Hk3v1fSwpkc0vU/T+zV9QNMHNf2bpg9pelTThzWZ79Sbb8ib77ubb6+b76Kbb5ab74mbb32b73Cbb2Sb71ebb0ub7z6bbzKb7yWbbxmb7wybbwCb7/Oab+ea79qab86a78Gab7Wa76iab5ya74+ab4Oa73aab2qa712ab1Ga70Sabzia7yuabx+a7xKabwaa7/mZb+2Z7+CZb9SZ78eZb7uZ766Zb6KZ75WZb4mZ73yZb3CZ72OZb1eZ70qZbz6Z7zGZbyWZ7xiZbwyZ7/+Yb/OY7+aYb9qY782Yb8GY77SYb6iY75uYb4+Y74KYb3aY72mYb12Y71CYb0SYgaf5toL57oH5JoH5XoA5y9+cs2/OwDfn05uz48257ubMdXMeujmr3Jwjbs74Nudvm7OxzbnV5kxpc96zOYvZnJNszjA25wubs3/NubzmzFxznq05a9acA/vCGa2azNmm5txRcyaoOa/TnKVpzrk0Z1Ca8yHN2Y3mXEVz5qE5j9CcFWjO8TNn7Jnz78zZdObcOHOmmzlvzZyFZs4pM2eImfO9zNlb5lwsc2aVOU/KnPVkzmEyZySZ84vM2ULm3B9zJo85L8ecZWPOmTFnwJjzWczZKeZcE3PmiDkPxJzVYc7RMGdcmPMnzNkQ5twGc6aCOe/AnEVgzgkw7/Cb9+vNu+/mvXTzzrh5n9u8a23egzbvKJv3h827vea9W/NOrHkGMO+Smvc8zTuY5v1I8+6iea/QvPNn3scz78qZ99jMO2bm/S/zbpZ5b8q802TeNzLvApn3dMw7NOb9FvPuiXkvxLyzYd6nMO86mPcQzDsCZv++2Vtv9r2bPelmv7jZy232WZs90GZ/stk7bPb1mj23Zj+s2atq9pGaPZ5m/6XZG2n2LZo9hWa/n9mLZ/bJmT1sZn+Z2ftl9mWZPVNmP5PZa2T2AZk9Omb/jNnbYvadmD0hZr+G2Uth9jmYfQVmzd+sm5t1arMubNZhzbqnWWc063pmHc2sW5l1IrMuY9ZBzLqDmec38+pmHtvMG5t5WjMvauYhzbyfmWcz81pmHsnM25h5EjMvYeYBzHO3ec41z5XmOc40E/NMRiHqNl94ZjPr/2a93axvm/Vks35r1kvN+qRZDzTrb2a9y6wvmfUcs35i1ivM+oCZjzfz32a+2czvmvlUM39p5gvN/JyZDzPzT2a+x8yv0HzGBLX/+XiS2r9P4xBNh2qaommqpsM0TdM0XdMMTTM1Ha7pCE1HajpK09GajtF0rKbjNB2v6QRNszSdqOkkTSdrOkXTqZpO03S6ptmaWjWdoWmOprma5mmar2mBpoWaFmk6U9NZmhZrWqJpqaazNZ2j6VxN52k6X9MFmi7UdJGmizVdoullmi7VdJmmyzVdoenlmpZpulJTm6arNC3XtEKVhwXs+qHo996V//n4c7/q/3XO925L3H9Fvy9vfPBTZzwx8BEe97gl7uuWuCcscb+Nfn/3pZXTZ5x04R087m/R79OPfnXtxo2DvsTjzHNbXB5GWeJOjuLGN8z79nnTP/eDHvLq4uP+PR8ft6UhPu7kxvi4Jwv7f6Vy+aEl7hlL3E8scb+2xP3WEvcnS9xfLXH/sMT9yxLXf0B8XMESN9gS12yJG2aJG2GJG2eJK1niJlriJlviZljiDrfEHWOJO84Sd1IUd/A3z3tsfevfrzlGxYeScgoXpEh7TYq07SnSlpxvloflKdKuTpG2LUXaVSnSrkmRNk0drUiRdlmKtBtTpL0+RdoNKdJ2pEhbcr5ZHrakSJum7aex57Up0qYp51tSpC053ywPacoqTVsoOd8sD2nqaF2KtH3VjtLIfTH2oTUfqzKx56tTpC053ywPm1OkLTnfLA9p+qM0Oqfx7XX8T84vbe66gcn2C/jKWeMp5+Tac0YsW0k5hdpzhsqkjmrPGe5pa88Z7mlrzxkqk7ZQcr5ZHmrPGSqTdlR7zlBVbxu15wz3tLXnDMfQ288Zp9SeM2LZSsop1J4zVCZ1VHvOcE9be85wT1t7zlCZtIWS883yUHvOUJm0o9pzhqp626g9Z7inrT1nOIbefs6YHT1n/HbUlru++69ndvO41ijuyzc3tB3T9qe1sy04JeUUDrRnkANt7FRyvlkeamNUlYkfKznfLA9pnvXS9I9p2m9tbKyq3jbS1G+aeY805ZymftPYZJr6TTOuTjOvlUbnvuq7++pZr6/KueR8szy8GMfzJeeb5aE2V6Oq3ibTtKOS883y0FdzJptSpE1TVmn6lDS+/SX5PL7Y8o7TUkvcxZa4l1niLrPEXWGJa7fErbTErbbErbXErbfEbbDEbbHEbbPE3WaJ22GJu9MSd7cl7hWWuAcscV+O4qR3Nvc2xcctGRwfN6g5Pu6dLft/n1YX5K78wcGXiROXUSgpp3B+irRp/Eea/rCvnnXS+NqS883ykGZ+Os3Yoa/ym2bMkqYvXZkibV+NK2tjYZWJXZWcb5aHNOWcxl/1VX5vTJG2r9YZ0thkyflmeeirubc0fiONXaVJ21drBWn6hZLzzfLQV8/Q61OkTTNmSFO/N0g3S8opHGhzq2n2V6bpf9O0o8NTpC053ywPffV81Fd9d1/1CyXnm+XhqhRpb0qRtuR8szyk2R+dxl+laftp0h5offeVKdK+GJ8X+moveW0OSmVSRy/GOag0+T3Q5qCmpkibZmzWV2kPS5H2yhRp0+j8Qnh3tAYgnVn5SExcdLurkts2bmzf0LFs+bo169s6Vl21un3Zug1ty/XPDe0bNq5at3bZjRva1q9v3zAi4o+Opuxa9DPrcPXueucaWTr/9J1zGxHQK716IX1OJZW/P/8mTcL8qwZShKXnuhCuOR93ILseBPIT6j83rf4tFp2pbuYw/pJyCvVm+czkM1ryeiHvk6PrTR2rVq/quKn1BVOd02WpZ79gqBftt1MEzMH/OTH3BzC984zHvUw2zyXM+ui3H7vmIQ+/xDM8+i0w+fTr8s3k73/h+W8/eubRa4ZAehOobkw+x0XXK9tNg1/bocuvY9mqtRs72tYub9cXHe0b1ratPj7i6uOWfmHKln5hSkvPNbI0CdKLLR11MaFJ9WxRPI1pEWPZ9cEsjQnzGF4O4uYLciluQYweJixkcXmIW8Ti+kHcmSyuAeLOYnH9IW4xi2uEuCUsrgBxS1ncAIg7m8UNhLhzWFwTxJ3L4gZB3HksbjDEnc/iihB3AYsj70a2xVush23No/QtydI3twjyCYs88ZHRf1N+o6PryBMvaNdueL//WBS5j2YGzy2Oa8f/5+F/P/jfAP/7w/9G+F+A/wPg/0D43wT/B8H/wfC/CP8xv1SS/L5vyPViXA7u5WLSNqn4/r1JVfZi3FvmIY73r/0grh+La4C4BhbXH+L6s7hGiOM9UAHieF87AOIGsLiBEDeQxTVBXBOLGwRxg1jcYIgbzOKKEFdkcc0Q18ziyP4CjGcuTDueOS767e3xDJXbinbz+LJuY/uya/QghkY5fTx+WZBy/LLgpTJ+GcyusW/0Hb+kzFNXv5msZai6FhXv5ajfPCj6Xy/wclvqx3ikclXCvZyK9874ZKhYvoYepb4z/qnjbpo+4vh1Z9+w86kLHtk27G2H/ax40G83nXLDX55ch3mps+ju20Pw8knpmRak9Uw0fu5tz0T5XN2x3yfNiP6/VHxSwvZXl7L9iT7JNuKQfBLaqAnkhyr5K+6TCDuln56fskxzLSreh5BPmsgTqO5y6qfi23IeeA9maYZG16R7v2S6N+AIjwdphIc+qFHQOydgST6VdDb4Uxku8qE+3HZxNCrZopFTiq6l2Tul3OtakpMT5Eg+mttEX/vhKdFvb/thyfZJhwZVuR+LKz+asVuxauPydXqmfNna9huXrWnfuLFtZfvGgdG8ZR87+/tTOvv7q2UA+gqW3nUASmn6q+5Gba4vj65TTqOnLRuvaXTiKymnUE/p5yZL32V385Klr6P089nNknIKXbrjBGXJLf0gSr9Qkv3cxu+88/G7P/T5d3U89I5XDfn+oNcOnDHg1l27fjfmt2Nf9+yut1FaPsnpke8GSn+mJPu0j9Zfes0H/7pu4IId77/x+99bumnQ2LbHxu95x6VfuG/8L5bdTmnPktL+/K7X31p8/yveXJr+1ecbFuz79bI/LOo36/tf3Trqc9v//otnu9r5YintE5f+/YePFu+/efPdH98ya+rQtofv/87vf/nFx99X/MPTj1z/neMoLZ9oTeKjliZL30zpz06Wfgil55O6Lh0IBUp/bjL5XXV+XjL5XeV3frL0XW2Nn+dToovb3v6uH7be/dUjf/z3AXcsadu5+Zg7v3nxb24+6KFDfnrtI2Mf7iq7C6W0z3TMua9j5Jrjf9P4tbuPesuYg5967qFHf/bHm9pn/fpnP//IhD9Q2ouktBUCpb1YSHvQ0VNOXP+arw97curEH8z+zMOHPzDqucmnPPmxhW959q9f/jNLe0n061lfXeX1smTp85T+0mTpu/zbZexmyZ6mq1ujtJcnkz2G0l/hLptCP0r7cjltbsfEja8u3J1b8tj2mY82DXjsF60PnjHnq4/vvGN88eEHKe0yIe20UwrPvuOObbvUjx761T1/nPbJ2TOHjGsdcvi3Xv/tMWs3XDbqWUp7JQlSXnkeS+nbWHrQ3Roo/VUsvUef0JV+OUvvu93AhBUsvVL+/oXvMyspp9CV9mr/tF3tjPYweea7y96uSZa+P6VflSx9I6W/Nln6gZT+umTpm7omkJKlH0/p17D0HnZbovRrk8nvSr8umfyZlH59svRHUvrrk6U/itJvYOk98j+b0m9MJr+V0nckSz+P0m9Kln4+pb8hWfqllP7GZOmXUfrNydK3UfqbkqW/itLfnCz9ckq/JVn6FZR+a7L07ZT+lmTpr6b025KlX0npb02W/hpK35ks/SpKf1uy9NdR+u3J0q+m9DuSpV9D6XcmS7+W0u9Kln4dpb89Wfr1lH53svQbKP2eZOk3Uvq9ydJ3UPo7kqXfROnvTJb+Bkp/V7L0myn93cnS30Tp70mWfgul35cs/S2U/l6W3r3/zXWNm+9jd0vKJeS6Jo6/Eu15lub6PPJyDk7aEwbHTrggdnAO8JTqOd+qAL8AunjKy+UAj+Rh/nAivZ+gS1GIwzLuJ8jpJ8gpCnFbA2LtDoh1S0CsXQGxQuZxR0CszoBYOwNibQuItSYgVsiyD9mG9lQp1uaAWCFtImTZh7SvLQGxOgNihbSJmwNi7QqIdWdArGrtH2nMihsuCF/6JTl4j+QUACvpuEfKV16QZ+Ovt/A3OOKbbci0OSnalD+3/apNKxevK3trNA//F8WoOBb4lltUQ9wcEN4fC/fqBV4eTPbojcMoe/PbO5Zfc0HbypXtK3Qmy95vRaSFMfdxQMp5aDDeAJqWlFOoczFKjl8AXZIapWQ0UmMzpUpveUSlunhd24o5bes3blrdHvfGBkrJASq/J9VpjmmmLHwL4f8SIZ0SsE081Vwj3C8pp1DAtwJ4kN4KwK0n/K0AXpsYpH1opLN55HxiRDcu8qE+vD7wDQa+Z24gk4312iDIIf2lPcD9AatBSEdpKsmrj0nHr22Pzi6tjfJhQlGQEfcWCsdI6RWGVbtXoPz1TyZvaA7Sc3kcE9/qaRTiCIvaYUMMFt+/yPm/GP0Wgc+Ei0BGo6Avv0flY8rsMdAd305TKkw5cjzSi9/j+AWVyi5ztnrj+UM7SehjW1zKnesjvamFe4HJ7zXEYFHaPPB/K/otqnK/j3ZSEPTl97idfA10x7cWlUpdjq2udkL4BZXKLnO2euP5QzspJJM326XcuT5S/8zLlveBDTFYlDYP/E9Hv0XgMwHtZICgL7/H7eTJ6LoxRt+Scgo3SuMWtDMct5SUUxjrameEX1Cp6j1nK0epvUljL0pbFOLwUWugIGegIKcoxO0OiLUrINbNAbG2BsTaU6VYnQGxdgbE2hYQa01ArO0BsULafTWWl60f8sUyoTMg1t6AWLcGxAppqyHzuDkgVrW27XsCYq0PiLUv+sVxHuGb0KjK257vswnHIz35PY5fAF2SjnWkcpHGjJS/pmTyhuQgPZfHMfG0i0FCHGHRe7INMViUNg/806ICLQKfCTimHiToy+/xMfUhEe5gQV+cX/C1R54+7kQQijchRH1xPNKT3+P4BZXK/nM2+5DKhfI3KJm8Zpf65fpIJ6XwsjVEyyENMViUNg/8J4E98pN/0B4HC/rye9wej8v11B1PHDIhZTnOc7UTwi+oVHaZs9Ubzx/ayeBk8ua6lDvXRzo1h5etITo1pyEGi9LmgX8B2Ak/EQrtpCjoy+9xOzkD7ARPojIhXTnmfu9qJ4RfUKnsMmerN8l/U/6KieTlnnUpd66PdIISL1tD9G55QwwWpc0D/wVgJ/xEsKtARrOgL7/H7eRssBM8ocyEdOXYZYoV7YTwCypV+87Z6k3yq5S/5mTyWl3KnetDZT1EiCMsWlFtiMGitHngbwM7GcJ0Qn8yRNCX3+N2cnmEO1jQF+fPXf1UUUhPfJLNGSopp3CBVKce6a/HOiIMrlvCcxKPcm0PhF9Q5faSpD20gLy4+qa8DxV0KQpxWEdDBTlDBTlFIe7WgFhbA2KtCYh1c0Cs7QGxNgfE6gyItSMgVkib2BIQ68aAWHsCYUn+M41euwNi7Q2IFbJt3xMQK6Qv7AyItTMgVsh63BcQK6RNdAbECtW2TQiZx5A2sSsgVrX6iZB6HQhjplqf1ndlH7I93hIQK2Qe76pSvUKOJ0Lmkfpaelbkz5a56LdRlbc9j+fW03KAR3ryexy/ALp4ysvZyoXnD5+Thwm6FIU4fE4eJsgZJsgpCnG3BsTaGhBrTUCskHnsDIi1MyDW3oBYIcv+noBYtXr0w9oXECukTWwJiLUrIFZI/7UnIFbIsg9pqyHLvlr9V0hbDWlfOwJihazHkPYVsg2FtK/dAbE2B8QKmcdqHcuFzGPI8US11mO1juXuCohVreOczoBYtfHES6MNhfQTIfUKZV/mujkQlgl3BMQKWfYhxwDU1+K+L8I3IeUc2IQc4JGe/B7HL6jyugw1BybtIaP8DUsmr+RSD1wfKuvhQhxh0RkfDTFYlDYP/BdHmSoCnwlXgYzhgr78Ht87dV70Z7Cgb9q1CJ4ey4inQ3tMWF/1rvZI+AWVyv5zNvuQykWyD0pbFOKw/F3r1YY1WIX3rc1CfpqEdFjPXD+Pcnd+V4B/ZTyFXeVs5S+VC+VvRDJ5zegruDyOSfpQWY8U4giLvtHYEINFafPAvxH8zkimE/qdkYK+/B73O2vB70htIqndS/70pSanSUiH7Suh/fVzbV+EX1Cp2nPOZu9SuUj2TmmLQhyWv6udvhixyP5GWOTY/Iokh6cfUZOTSk6TkA7bLa9X93aU+5FruyX8gkrlJ3I2u5XKhfJ3UCJ5uaewL+PyOCbpQ2U9SogjrNHR/4YYLEqbB/63Qr84iumE/eIoQV9+j/eLb6zrqTsvW7STZOWoiq52QvgFlcYuu+1EqjfJv1H+RiWTN9il3Lk+VNajhTjCGhP9b4jBorR54H8/2MlophO+8zJa0Jff43bynuhPY4y+JeUUnpbK2iP9mxtVedl5pD+M0o9Jlv5jlH5ssvQfofQHJ0t/G6Uflyz9JZR+fLL0VzQCv2f6qZR+QrL0x1D6icnS/5zST0qWfiGln5ws/ccp/SHJ0t9H6Q9Nln4OpZ+SLP3zlH5qsvRdn3U9LFn6Zyn9dJbeZ46N0s9Mlr6e9J3Bbwo6ET75+mmMPxfzS1gYR7IKgJW0X5R05/rhuHIGk8fzGIc1wxOrUYhLUifTVXy+OH6TRRfU0wQ8ayVpnk3YEhDrhoBYuwNhmeuDAmGZcH1AvUYFxBodEGtMQKy6QFgmdATUa2xArIOrFGtcQKzxAbFKAbEmBMSaGBBrUiAsE+4OqNfkQFgm3B5Qr0MCYh0aECtU32GupwTEmhoQ67BAWCZcVaVYc6PflPMFi1LOF5yUcr5gScr5gvNTzhcsSDlfMDfl8/7iJoE/F/1Kz/Ie4/alOcBTSn7+IfwC6OIpr+v5ZwLIw/zhus9EQZeiEIc2PlGQM1GQUxTidgbEujMg1uaAWNsDYnUGxNoSEGtNQKwdAbG2BsTaU6VYIW11W0CsUGUv9YvVYqudAbH2BsSq1vZ4R0CskG2oWsv+1oBYIf1EyL42pI8OWfYhy6ta7Wt7QKyQ9Riy7A8EP3FPICxzPToQlgkdAfUaU4VYJmwMqNfYQFgmhCp7E26sQr3M9biAWHWBsEwIZRMm3BAIy1wfHAjLhJD1GFKvULZazb6wGAjLhJD+K2Q9htSrGsvLhJC2Oj4Qlgkh+45Q/suEfQGxQo6/bgmI1RkQK+SYfHtArJBzjzS+p3nscSwuF/2mnMMfnAM80pPf4/gF0MVTnnUOn+ePykXaL+ghb5BLPXB9qKwnCXGERWvCDTFYlDYP/J+JCrYIfCbg3t5Jgr78HpWP2dv77/U9dedli3aSsBydv3VJ+AWVyi5ztnrj+aNykOqN0haFuDp27VPeUt3tDoi1KyDWzQGxtgbE2lOlWJ0BsXYGxNoWEGtNQKzbA2KFbEOdAbHuDIi1OSDW3oBYIdt2SPsK2YZC+tUDoex3BMQK6aPJF9L7l3w8kwc5vmNvnp74Ur6vcl7K91UuSvm+ytk0LjqE3cxFv9K7JB5jtNtygKeUPCYk/ALo4imva0w4BeRh/nBMOFXQpSjE4f6fqYKcqYKcohC3MyDWnQGxNgfE2h4QqzMg1paAWGsCYt0eEGt3QKzOgFjVaqt7A2JtDYgV0r5C+pxdAbEOhLLfERArZB73VClWyLa9LSBWqLI316MCYZkQ0lardQwQEqvWb9f67RdL31Hrt2v9dq3ffmmWfbXa6h0BsUKWV0ifE7Lsbw2IFbINhey3q9VHV+t4ImQeQ459Q9ZjyLI/EPzEPYGwcqp8j0IarIkBsULNk5vrSYGwTNgYUK9iICwTOgJi3RgQ64ZAWOZ6ckCsl3rZm+vRAbHGBMQaGwjLhJDldWhArFC2akLINlStdl+teXyp+8KQeplQ6zte/H2HCZsCYZnrkHseQpWXuR4fEOvggFih+loTQvaPocrLhGrsO0zYFxAr5DPfLQGxOgNihZwH2B4QK+T+nD3RL+314nvDctFvoypvL0ZOSTmFGTnAIz35PY5fAF085eVs5cLzR+VCeT9M0KUoxKE/PEyQc5ggpyjEdQbE2hMQ6+aAWLsCYt0ZEGtrQKzdVarXloBYawJi3RMQa31ArH0BsUKW186AWCHb496AWCHtPqQvDFmPtwTECulzQtrEjoBYIct+c5XqdXtArJA20RkQK2S/HbIe9wbECum/QtpXyPZYrT46JFZI+9oWEAu/Mc2fb3LRbyOkyymvZ6fJOcAjPfk9jl8AXTzl5WzlIj3DUt6nC7oUhThcA5a+kTJdkFMU4nYHxNoVEOvmgFhbA2LtqVKszoBYOwNibQuItSYg1u0BsTYHxArZHvcGxOoMiBWyvLYHxAppXyHbUEi/GtImQvrVam3bIdtjZ0CsOwNihWyPB4J97QiIFXIMgOcg8PEynoPgO2bn6YmvSUiXi34bQb+c8hpD35cDPNKT3+P4BVWe5yRjdqn8pXLx+d6guQ75/bydAbHuDIi1OSDW9oBYnQGxQn7rcU1ArFDfETMh1HcjTegMiFWttro3INbWgFgh7Sukz9kVEOtAKPsdAbFC5nFPlWKFbNvbAmKFKntzHeq7tyaEtNVqHQOExKrWfjtk2YccA4T00Z0BsarVVmv9dt/1abUxuR9WbUzed/ZVGxf2nX1V47jQhJDlVa22ekdArJDlFdLnhCz7WwNihWxDIfuOavXR1dqnhcxjyLFvyHoMWfYHgp+4JxBWTpXvUUqj18aAek0MiFUMiBVyfShkeY0PhGXCjQGxbgiEZa4nB8QKZRMmdATEClX2Idt26PYYqg2Z60mBsEwI2R4PBPsaHRBrTECssYGwTAhZXocGxArlC00I6aOr1e6rNY8v9b42pF4m1MYmL/6+w4RNgbBCjidMCFVe5jrUmNxcHxwQK1Rfa0LI/jHkM0w19h0m7AuIFXJO4ZaAWJ0BsULOM20PiBVyfyGeg8L3tuai30ZV3l6MnJJyCk05wCM9+T2OXwBdPOXlbOUi7ZOm/M1MJm9gDtJzeRyT9KGyPlyII6wjov8NMViUNg/8Tzfs/y0Cnwn4reDDBX35PSof863gJxt66s7LFu0kYTke7GonhF9QqewyZ6s3qf1I9UZpi0IczoG4lrdUd7sDYu0KiHVzQKytAbH2VClWZ0CsnQGxtgXEWhMQ6/aAWCHbUGdArDsDYm0OiLU3IFbIth3SvkLqFbIeQ+oV0k+EtImQ9bgjIFZIf4/v2/GxEb5vZxs/SnJ4euJrEtLlot9GVT5G8Rgv7coBHunJ73H8girPc5LxmVT+UrlQ3o8QdCkKcTh3c4Qg5whBTlGI2xkQ686AWJsDYm0PiNUZEGtLQKw1AbFuD4i1OyBWZ0CsarXVvQGxtgbECmlfIfUKWY8h9QrpV0PaRMh63BEQK2TZ76lSrJB+YltArFBlb65HBcIyIaStVut4IiRWbQxQGwP0pl+tjQFqY4DaGKA2BqiEFbK8qtVW7wiIFbK8qtVP3BoQK2Qbqta+o1rHvtVqXyHH0SHrMWTZHwh+4p5AWDlVvo8hDdbEgFih5u/N9aRAWCZsDKhXMRCWCR0BsW6sQr1C12PI8rohEFZomwhVj+Z6dECsMQGxxgbCMiFkeR0aEGtyICwTqtVWa+2x7/JYjfZlQq0fqtk9xm0KhGWuQ+4RCWlf4wNiHRwQK1S/bULIvjZUeZlQje3RhH0BsUI+i94SEKszIFbI+YntAbFC7mfC93vqWFwu+qV9gUV238gpKaeQzwEe6cnvcfwC6OIpr2tfYBHkYf7omvJ+kKBLEeJMwPdkDhLkHCTIyQpLqi9DJeUULsTyIAyOzfcfeNTNQa62QPgFVV43SWxhFMiLK1fK+2hBl6IQh2U8WpAzWpBTFOJ2BsS6rUr12hUIy1w3BsIKncc1AbF2BMTaExBrW0CskOW1NyDW3QGxbg+ItTUgVsiy7wyItSUgVsg83hMQa31ArH3RL/VffOwTqO8elLTvTjhutPbdPH9ULpS/0cnkNbnUA9eHynqMEEdYNLfcEINFafPAf3PUuRWBzwQcM44R9OX3qHzMe9qbItzBgr7jAFcq91ECblFIT3yNQroSXTy38TvvfPzuD33+XR0PveNVQ74/6LUDZwy4ddeu34357djXPbvr7Snr82JKPyZZ+qGUfmyy9C2Ufnyy9HMp/cRk6Vsp/SR2s+SUVA2htJMTyc49K71LVuecXjVS+iOSpT+e0h+ZLP0JlP4olt4j/09R+qPZ3VL0O/nbn+j/p/fsy//bd59dd+Pz0+7/rwV3f/q9p7ziqzNP6zz/x6/67RJKe0wi2WowpT9WkF0hnExpj5PSnvbR+kuv+eBf1w1csOP9N37/e0s3DRrb9tj4Pe+49Av3jf/Fst2U9ngp7ROX/v2Hjxbvv3nz3R/fMmvq0LaH7//O73/5xcffV/zD049c/53jjW/aB77phCgp5Z+uDc2K/vdjccsZD6XNA/+1g7vT3R/Jc5n7qAddSsopjHLtM+leqLmPepCH+cPn3bygSxHiTMDxT16QkxfkSFj7AmKtCYh1e0CsrQGxdgbE2hIQqzMgVsg8bguIVa32tTkg1u6AWHsDYnUGxApZXtsDYoW0r5BtaFdArJA2EdKv4hoIj8NxQD9236NfrnMdBxB+Qcn9ckk5ha5xQD+QF1cuAzW1RNebOlatXtVx0+J1bSvmtK3fuGl1O46McDTGS4Wj8ns51TP3PK4e7iHfmfB/iZBOCdgmnmpuINwvKacwhaxiihBJcVMBm8fFfUEbQ72gP+ncX9MTI7pxkQ/14fUxFeIKLO4wJhvrtZ8gh/SvE/gLgNVPSEdpKsk7kFuiVE+UtijEYVt0Hfkn8RA06xZ5iLntV21auXjdSgUhD/8Xxah4EPAtiVEtJ+DmgPA+Ll7WK7sLsj0EupiMUuWdDMdaDnJqncxLqZMhvAKLk0qCMGmKg+epEJMOGzXeqxP4+wFWPyEdOmMpPcfg6VC3RlWe1xJd3Pb2d/2w9e6vHvnjvw+4Y0nbzs3H3PnNi39z80EPHfLTax8Z+3CLkfWnxvhyQYdF5dSvQv7ywH8Em/r5WyTPWOTIKD6yyDM2rb7uvPaODavab2jXvm2jglDJjC6A/xcK6aTQpMqrGh1Dwobq7BgIv6BkUykpp9DlGKRROc9fMseABoGjqtCO4UL4n2T0iT12STkF79EnjiIOA7l0jUFyMKSz7+iT1weOPnlDxdEnr9e8IAcdHudHhyc5T3R4cfJqXfT+UHsOZKH2HCjo39vPgZiunypvudjdE++hkSIpW6wawtKhjrU+e3+o9dks1PpsQf/e7rMlT4Jeojcf8blsXDM2oUQXz3TMua9j5Jrjf9P4tbuPesuYg5967qFHf/bHm9pn/fpnP//IhOdSeo2LUnq7C0261siI6GGMtwNsx9Qzxa3DU9o88C8odKebF12buEOi+MijXNS2etWKto72eWuv39S+qX3F0nUd7Rtb166Yd0P72g7vR7Oz4P9iIZ0UBjC84Qy/HjJpAs5hRW2wawMY8mABEf9ZUYRpyN+LbkpGR/o0QXqKN4GMYiToXlJOwbkrIvwC6JK0KxoJ8jB/yboibs5YKhyV3+vrrijhlk3vrqgAcbwr4rWJQeqKSGffrojXB3ZF/DUQ7Ip4vY4U5JD+dQL/QYA1UkiHXVGcvHohHQ4lcnCfz2UNF2TjXNZy5h2eHBFfDsNVfDlwfVDPXnwF6GJXb9JXrwD5eRNuKVzKRYBKPJyXh4uYZiqGT6q9vJAOA5VYHnTeyjrhNdDp83wNAH0ka+f3cJDE0xOfJKd/Sjn9BTlkyQNZujaIa7LEDWKYAyCumaVbDnFDWNxFENfCMPtD3FAL5jAB09TdmAHdeIYmMT7J0nEVYgLTh6fl//sBrwnt0W8eePcxu7oN7Iq3YrQr35cfefqDVLyc/inl9BfkYG9lAtrOKCGv+IKhCVjP0mZ/ihsn5IvixlswSwKmqZ+WAT35sP5NSLcZXF3k6vEJvwC6JPX4k0Ee5g9fHDkkmbwLc5Cey+OYpA+OyrBsDdHIpyEGi9Lmgf8NUXsrAp8J+OLIFEFffo+/OPLqQk/dednmYn4JF+9h++J5p/ohORNYuuVMn7cUeuaF+6l6Ve7X6IEYfdVYtir4dvBVPD3WndROkuZ/kpDHwaq8bBrYdZx9T7bIabDkp7fqswHkcD/L6/MDUJ+HsDj00eaaXsrJIz+rzw9BfUptUSpn7Jd8y3mAIKe3yxn7lykB5XAsPrlj6DDAwnKmeqJy5k+b+AQ3jcXhUko9pOH8HEPCJ4xKNvj5gpy3OBskWXng/+Wg7nRfTGiDUyCO9xW8X+R68HLg/HjAHenZEMMfl6//Zk+dT43oiUnpeVnxukD/S/zfYJjPjJD15PmawO7hZKRkD4cJ+ZLKdJqqLJuX85IY2Q3Kbot54P+uUKbYL/D0UjsaDLpMraA7tm+eHmdceLq0fkTSuVKbfNqzTU6MrtF2v8na5E+gTdpshOuMzxG+5dxfkNPb5YzPCNMCyuFY2C/MACwsZ6onKmf+Me8ZkI5/IBA/+l0PaTg/x5DwXfuF5wty3uJskGTlgf9jzAb/bHkuttngNIjjZYr9QiV/OBH4Se8GZe9v88D/L0u/ILVX7muxXyD+ugHdmNgvTBfyNYHdw37B9qH3SmWKH16fIGDxcsZ+QSpTnv8JkH/iL7D82/oFSi/NR6yAOD4fcQjE8ZfscczKX6CfAnF8PgLnRviL7+jvSiyO2wjORwy05KeJYeB8H5+3wwMbmlncaIjj2z3GQByftxsHcUNZ3HiIG8biSiyvNG+Hi6Pjovsp1+3ErSu2edFczK9Sbv0B31qVAzkjA8rhWGeCnIMCysHDPbmc0YKclAdOOK+zEn5BlbfdJPNk0gEi0sEzfisjeBQKLxWOyu/xksY428qICWnWWQlvHIuTSgJnznmexsWk42WhhHt1Av8YwIo7YqY+Rp5UozwdWkwO7setRxJGHvhPYL3VT6G3lmTx8sAek3SP2zGBOhD/yUyH742QMfMx+Rodg7l0QHd5nDZAxlQCppSvcZAv1AGPAiL+M4SRQD3woD7SPSp/JaTF/5LNDAf+8RXyg/VE/Ast9TRK0IG3ySUVdECecTE6LBZ0ELzbnHXrb4q8m4KAm8Nz8B9LHtdtRwk4cYFKw1ghWWQ94KKnQjkcB3UyOacxSterfavbO9pj8o6eOxcjs07JAcejSpX3oQn7NOc+lPALSra8knIKOfRyJA/zh5s8xwi6FIU4Xr9oRzY5pk5pTBrV6fkd6zbEValr55oT1ML0qgIWVnWJ3fcoeu/NTTmI41N8OIzkj2jcqWHAfPP8GOfyc4+NT7xM8XGJm+dhEMebyjSI46Y0HeK4w58BcfzRjaZTBqvy+uKPWTzOhHrhHg6xefqSRU5LSjktghxpaRxtcwK73xtuiPALKlVb6HJDE0BeXLngMiZPK00z4EY0suffsAHSjfDozrfFYrkmfAvneNdyJfwC6JK0XAeCPMwflmuToEsR4kzAb1E0CXKaBDkS1q6AWHcExNoZEGtLQKw1AbFC5jFkPYbM480BsULmcUdArNsDYm0PiLU1INbegFidAbFC2kTI9hiyDYW0iZDltS0g1p6AWCHL/paAWCHLfndArJDlFdIXbg6IFbK8qtUXhiyvkD7nQBgzhbSJkP12qLI3142BsEzoDIgVsuxvDYgV0u5D5jGknwg5BghZXvcExNoX/dIcE5+HKIEc6Zl/oEUOTz/QAUuaP7DlsSTwBzyVj1Q8DviWxKiWE3BzQHj/OLhXL/BybP46elN0f5LAl/INlaNzgKeUPK3UV2+oUN6l3cNFIQ4/HW17M4XLKQpxuwJi7QiIdXtArO0BsbYGxNobEKszIFZIm9gZEGtNQKyQNhGyvLYFxApZXrcExApZXncExAppq1sCYh0I9bg7IFbI8grZD20OiBWyvKq1HwpZXiH9fUj7CulzQrbHkDYRcswUquzNdWMgLBM6A2KFLPtbA2KFtPuQeQzpJ6p1/HVPQKx90a/0ZmoJ5Pi+Hc3TT3bAmiRg2fJYEvgDTpOQikcB35IY1XICbg4I7x8F9ypNk+CunCuiuZyUO+zEF0hK0fVgkGmu+W4zHqeU20wdT99kkTMopZxBjnKKKeUUBTlNQrpczC/JwXu2mf0iyCkFlFNiccujXyo3PhWGdjAJ5MQ1a8kOJsVg9VPdOl/HeHBbO7XXvIBpQhuL5/wbozZkdnG+N3rjiMp0Aku/nOmzaaBdV56W64qHkryOvSi6OcKUypnqXbKDSRBXEuRKmNi2fOtukKCDDYvXVzPwU100xPATHtbddlZ3+EIqpY+zn0kxOnD74a8kxNnP7QnsZ89Au65oP80gm/i3Mvu5E+yHl7HNfpohrsTiqIwkn4k7dX19ZougnyTHduAX2pHvgV/Ngpysd6u3QBx/KXkoxPHd6sMgjr/ojH3QDBaHL8nyl+7xJdnDWVwzxB3B4nhbwlAP/3nZmjbzPtZmkE+BTOnleYrj/gIP0eAv7eLLnkNBV7yHNsPTD43B4q+fcR+ynMVz/jdFmTft+D0De+aLHwZIZZLy5ZljcoCnlLwMhi/PDEsmz/ryDM8fLoOVBF0kP3Uwu+ZxXE5JkCONdzoDYu0JiHVzQKxdAbHuDIi1NSDW7irVa0tArDUBse4JiLU+INa+gFghy2tnQKyQ7XFvQKyQdh/SF4asx1sCYoWsx5D+K2R53R4Qa3NArJDlFbINdQbEClle2wNi1fyqH1ZIvxqq7M11YyAsEzoDYoUs+1sDYoW0+5B5DOkntgXEqtbx6vUBsWi8SnMP/Bkd5x6k5+HRFjk8/eiYdOaazznY1gdSvv1enwM80off4/h99fb7ZEGXohDHy5DHcTm2JU+O5XKghzT3YbONksAfcMmTVDwa+C6JUa1OwM0B4f2j4V7ckidhUzPiU0+47MSL0Va00rLTMIuc5pRymh3lDEopZ5CjnJaUcloc5RyUUs5BghxqytJ3U8y06bFNsky+pMKna3FJjvjXsanYE5p65pEvSwyE/PMXQfDsRf79GHS9fOndwxU6HzxC+AVVbpNJXO8QkIf5427J/QxBbAG4IQH5Oa8S4urhHi7CD4R0Sc4QbGFxUkngGYI8Ty0x6XhZKOFencA/BLCGCOlI93pLeo7B06HF5OA+b2HDBdl54F8UVYZ0hqAki5cHbr4h3ePOhUMdiH8J0wHPphvC0kj5wtbcAv+5bbXHyL+KeZlzm2T5SpCP+eNeLe58viGgA/FfyMoAzxscKqRXMfewZxgKcUMtvAXIi/T9PG6LeDbhsAp5x/on/sst9T9I0MH25U/UAXkKMTpcKeiQ7mxC9HJYS1gTgwScuEClYSyWrBdLB1sHyqH/kgWkPZuwKUZmnZJDk5J1M6FRpeornftmwi8o2fJKyink0HuSPMwfPhYNEXQpCnFxrbSSnJRnE8Z12pKzwPQK0uaEeyYYc8bvINceNeLlHAiPGoglPUKYsCH6Rcd+G3Ps+EmDYUwPCfNS0EGaBZB2NBF/SeAfLeSRypLPUpQcZPOyxI5wgqeu0uzKBMYzGnQtsbjJnrpekrGuwwRdU+7a8d5ZhrvA+M4y3AXGd5aNgDi+swx3gfGdZZMgju8sK0Ec31mGj/hHsLghEHcki+Nnl2LAvoCXu2mX7x7fjYt8/DrOp/A2uwR0HCrkjU9RNDJsLqeknEKXHUgPxYTNhxseNrac60RBGrrQvQLo4imva+hSD/Iwfzh0yQu6FCHOhI2MD+PqhXt1Fqw1AbFuD4i1OSDW7oBYewNidQbEClle2wNihbSvnQGxdgXECmkTWwNhUfpQeu0JiBXSJm4OiBXSJnYExArpV0O27VC2akK1+tWQNrEzIFbINhTSJkKW17aAWCHLa0tArM4q1avWb/ddeYUcr4b00SHHAHcExArpv6rVJjoDYoVsjyHzGPIZJmQe7w6IVfOrLw3/FbIebwqIFbK8OgNihbTVah0X3hIQK2R7DNnXhqzHah2vrqtSvUL61VsDYnUGxKpWHx1Sr5BlX61+IuSY/EB4rg3Zb99ZpXqFfK4NWY8h22PIZ5iQ874hsULaBLahXPSf87Sx6xUsnvPTqUEp14pX4FosYXDsfgmxc4CnVE89FeA3CfJIr0JMXEnZw94Pfu71i3/z5V/kID3pgvdwz0iDwC+taVNZ9WfpPcqKdmP2KB+STXF5FtcP4ni5kA7m94FST/0aEurnUn4cvyjwX8T4fOpiiOppC9zeaa8OPzkIT6KazOJKoMMhgg6cfwLw076dhhh+wssD//aovfKN2oOBx1wPipHH9eP3bHv7psRgSSeUmXB2jO57mO64F26qoJ+0jZT4DxP4+X4n0kcqm8OULJvnh9fndZAf4r9HyI/U/simGhkOxXm0nUFGzoOlbjlYbrz9VCojE7BMpwn8vKyoTIrAz8uX4vjrUVMhrsTiJoMO4wQduG3h/irervjJeXscTlCspnb9Zsd2PSZGHtfP1q55et92fW2M7u/0bNdjBP2qqV0/7NiuyaZq7bpyu54k6ODarimtdNrqDBZHuHwf98ToOg/8/26x2ZmqXFde5li+hwv8fL8rnlrJ98keDnE83VSI4/tkp4EOR6jycuB64f504v8cK4dHS/uvJVsnvVLaeqtk60cwBrT1I1lcvcCPdXGUwM/3CVOZFIEf64X/51i8THHPO5VRg8DP8fLA/9+C7yf9uO87AnSf5qn7QYLu0mmavE09D+/DcL8xCWROs8iU/DPtJW+I4Se8PPB/Vygv9I28HfBy6geYxP8Diz8guTxfE9g9tEGp7KcL+ZLKdAbEcd35KaeEjZgp2+cZUvvk+cf2acurCVg2km/ltkv1X1Tl/vAwiONtYzrIkfpIV/vnNvR0QcaN62/GRtdoX7+x2JfUbqSPNtjskdsJ9jfcvqZDHE83GeJ4meJYUep3uV74DEj8zzv2N4HsuUWyZ26zaM82+zTBt++nMimq8v4A/aFks7xMsb+hMmpQsp8hvDzwv1DBSu5v+LhtBug+xVP3JO3t89DfHML4sL+ZYpGJabm/iOtvCA+fBwYI5ZUDGbwd8HLC/ob4BzFMl2emCeye7zMT6SOVKZ6OzXUnW5DaJ/GlbJ9D+/rZB/sb7g/xuYi3jakgR5oncLV/bkMfgP4Gn5s4FrcLmz3ydkP1hPZYstijrZ2ZgGUu2S+3K9JHskd85uG62+wx0LP4RZI98vyjPdryakLS+Y2iKrdVmz1i/xzqefstkT3SvD9/F9ujXL3fV81BHC+3MyFOGt/nBDn18J/nx9T7z2GuRwlYJLPA4vDrA/xsgsMgjs+fTIM4Puc+HeL4O/0zII4fzzAT4vCYDxOoLhOe4O98pAXhF0AXT3ld74VWeveW2prfcVNxpxPkAJXf4xaKcfVwD/kugP9JjpviRwBJJYHHTfE8DY9Jx8tCCffqBP5hgBV36kN9jDypRqXjgwhDSsd7NZ7GpQUMB/yScgrOZ10SfqgWUKneyVYp7yMEXYpCHNq1dD7lCEGOhOVyQExcq01xQEwO/g+LUaNOSK8sWDyNLUu86bicyiWde5QH/kuFBw9behOahHto9gnN0NnxE35BlZtEErOXPsvD84dmP0zQpajsLgrr0CYnoKmacEGMGlKPoipgYUuWTJXvjVgSI7tB4JdMlfivscwp1AnpDeafGnvKns34SPYJKl7XVtAVeU4AXYl/LdP1e6ArN+fZ0XUTpKd4E6hJnQG6l5RTcG5ShF8AXZI2qTNAHuYv2VjqBHaNpcJR+T2bFVdqOQvhv89YimpuLtwvKacwj6xinhBJcfMZ9gkQt4DF8drEID21kM7Ggp/weGrh9TEf4uawuAVMNtbrGYIc0r9O4J8DWGcI6ajsK8mrF9KdABg5uM9nQmYLsvPAfzvzDk+OiC+H2UrFlgP9HyXoieVN8SaktMlLXL0J4RdUed0n8SZzQR7mL5k34ZbCpVwMqMTDeXm4mGmmYvik2hstpMNAJZYHnR+MrMhY373R9WBVbr0NoA/XweaXi0J64pPk9E8pp78ghyx5FkvXBnEnqvK8UtxJLN1yiDuZxV0EcacI+aK4Uy2Yp1kwTxfiTN1NLvbk494oF/NrQr1wD8v0DEFXqjvuAXDOUWptcy1yeHriaxLSpc2PpLM0dqK8vvCFy8HdaXhvyr02t2PaO5YH/g+P6E73CLS3eSw96SiVM7ZF33JuEOT0djljm5ofUA7HWs74DS0ELCxnqicqZz7aWQjpFrE4zsdHBAvZ/UWCbAmfMCrZ4KcHy3mLs0GSlQf+1zEb/GxCG5wPcXwEif0h6cHLgfPjXlHSsyGGPy5fX7I8250hpJd0bwJd5lt0NwFtkafHkWtv2DyXWcl+vgH2s4DFSfZDZ1XmgX8Hs59vgf3wEVpv5N/WrvlIDmeWpXYn+Q9Mx9voYAcdFgo6F4X0xNckpEtrG5LOlWzjGbCNRSxOso2J0XUe+Fcz2/gp2Ab3n6SjVM44BvQt5/6CnN4uZxzfnRlQDsfC/m0xYGE5Uz1ROZ/F4hZDOj4nxfl4/7aY3V8iyJbwXfu3Pw6W8xZngyQrD/znMhv8i+WZxmaDZ0IcL1Pue7F+bHWQA70bYvjPhHwRv4rG+NL+Hqm9nskw0ZcTfz3DxP0UXXKV/WnZZotnCfmSynSxqiybl/OSGNkNSs5/nK0MsJQppe8Xkx8sU+IfZClTqYxsZSq1scVCvgYLecYymiNg8XJ2KVOe/zmQf+IfJpSpNG6ZA7rzsQOOIaVxGOcfD/xSG5PGJtjGRlt0t81K8rmFFRDH5xbmQdxJLA6fxU5mcQsgjs8ttELcqSwO+7/TWNwiiDudxXHbp7mFPOR1SnQ/5dpC2YezOJZUvrmYX6Xc+tNZjCcHcnpj3kSSMyegHI6FfRp/ZsMVb995A57e9mx4Yko5JwpyEIt8sgl8TETtKQ/8J7J2/dFST8x5gn4nsntLLHnF9syxqM6ofXDf1xtrb4RfAF085eVsPpfnD5ezFwi6FIW4uDrlcqTlbF+9An5llFQcA3xLYlTLCbg5ILw/Bu7VC7wcO6um15dyBqSUM0CQ09tTnQNATitLxx93zi92p+EmLD3umHB29ItTyqezx52LIkzpcSeu2XFb40sdaNskL24bw0kx+l3GXC9+t+4kyDPPp6TzPCYD5ZrQFqPDlTBUSeiKxaEKToXyId0siONDD143PE6p7vrg99DmWgU5iBXXTVK54pBupWc3ye1ziSWv8yCOd01YDpIcyb1L5WCTMzClnIGCHFu3n9SXSDrjo4QJ3Jd0gC+Zz+KkIc3S6DcP/DOZL7nR4ku4jvhf8stx/WScL5kbo99Wiy+RhoZLLTrzR0CUa0JbjA63gS/BpaCScguSL8GlCe7/8Kgc376Qp8+qLxwEcnp72U+a7m9l1zyO5OA9m3/Bx/C49rivKMuU2iP2a5z/+eHd6V4B7THEUl1cm1DKbblrniAnzgeZYOuDiP91lj6o0tDf9qgWp19eyW3qKtWd5zgsJdwjft7/4fTFAuCdb+FFvbltT4quyRfx5xYPX3SmtGxBgeLOitEJQz3853qZOv1EqRsX+VAmz+tZEMen6xfHyKsTeOka29rXIrsz9vpwsSceb79Y/3jMG5++x/QmtIF84v8As/sflWT5aC8mXBH9SlPALTG6mSBNq2P75ulxSYtPEaLtLYjJ41eg78RlppJyCq1kA1jvHHtJQmyX/ojjNwnySK+CEJd30GXtn9qOaWu4+cs5SE+64D2cIlkq8LcI/FRW/JnLo6xOlV5xJdkUx9vBEojrx+JIB+kYx6UJ9XMpP45fFPivZnw+dVEU5CwMiDU/IRYdLyktI0njmjaIa2VxfAvib2B8wn33ENDVdwzG03M+yTdLS7Xo638Jfoj7TA/7Ohb7RsLg2IsTYrv6IcJvUvH1WhDiXPzQNX9vXf/Yed88OKfK/W29cM9l+XKIwJ+ynR8p+SH0NdwPLYY47odIB8kPJexTjnQpP45fFPjRD7nWRVGQszAg1vyEWOSHpC0Ckh9aAXGtQn64H8oDxnNsfPc72C7Nx1NtIIf7G9yOvdASt0jANLIHRO/IpxwDLZbGQAp04O3vYojjbY2XJQZpPE86mzby41I3LvKhPtL2hDoVbwf0n9/LC3qYa3yeJP76qLxfaOPNPXH5M50JfCzfCrpLaxYGs19zPF+rhY/bHNo27ztnQRxvuydCXCWbw2ftQWCLXPe0c1mEZeYw6cXraBluQXvH+de0bWhfcX778g3tHdzCsNXzUqT/VPpomQr4TMAVuNPhP44mcIPgIgGnkkxppoUfjIG17zLTwtPPrwI5Q1PKGSrI6c1ZQi5T2lTCZ+/GNnenwdYurcxcEv3ipoMNbPZufIRJZclbGpZzK4vD8wF4W5BWYTD/PH1rTU5wOcNTyhkuyJGetNK2A0nnSu3g2EDt4BDWDk6wtAOuI0+vlNvGHJ4eV47nV8C6BLBcZ9BbHeTY/GCroxyX/Njk9GV+CEt66ud1cKlFrwWAtbAC1ssAS3oBxOaLcwKmJMfW35xokbMgpZwFjnKyys+8lHLmOcoZllLOMEGO9LSZ1t9KOlfyt1eAv5Ve8ONpcRWf+Icyf3sl+Fvp6eGlWs6LAsrhWMtBTlx9rob6lF4osNUn8f9tWHe6dQ71KZXNQkt++ExAXF1LL1zlBCzbbC6WA+eX+pRenF0d4mIHHL8AunjK69pUa3tpygS+eZXsOXpqbm3feNTRs+bqR+ab1nfEzbQ2c6FMf+RX8B/TGd3ywHOiIMMEtJ9FwIf1TvcR30WnSryV4iVfd1ZMPpVy83U8/YkxWHG7IKh+cLbytkhh110Q0os8tvEAtjvkqxfyMEDJ7XWVkvXjeV5iyTPx77HkeUGFPOP4XRo7om9CvnohD41K3rGDO7V4HB5Z6GtPPH1WfecIkBPXpz0AfZq0s4nvfKEPl+AK3M9Zn/Zq6NOksWBv5z9uRyPPF/8IS9yzTV7ANKGNxXP+N8MMLB4KUVJuQZqBxZe/Zgn6m/y9FepUyrutTon/+6xO3+FQp7b2Ie3EtfmCuRZ+6VmxVeC3jRvTrRTnfuRioxy/ALp42kPXeEN6kZbnL+l4g3CfYhni+lcab2A623gDeePaHo4BFsL9SuMNSac43jTjjUUx+VTKrX/g6YmP7LMV9C8pp1AiXfjaCu4QQ3zeTutUeVuU+KUxBsdHP0zp80oum+UsnvN/nI0lflbafy3VxcgY/ZRyqwuePqu+aiTIaQ0oh2NR2Upzovwwex5HcuJ8svQBC9vu5UUp5SwS5LjYuglro99KY6LHPftPXKkm/jtY//nf0H9Kb9/Z5tBd5sR5XbusVdjatWs7lcYDJcDyfTOHp48bx+UF3U1oY/Gc/zcwLkv4xtg50i4San8px3znuLRxji/tICC9CkKcyw6xXxRO+a9ffej1X8tBetIF77nMHZUE/pQ79ZZIO8T4AQgmcBtZCHF8hxjpIO0QSzheW+JSfhy/KPC3Mz6fupCwliTEol1d0jN2X/mkuLkX8k84dviDZR5C8k3Sm262t+bQp2Ee0eeYUFJy+BcEwqPy7y/IitsV+1eW71+Weuoat0aYj8mP7Q2ZnIovG5QhvSFztOqp2wIH3aT5II7RGqOnwZDWENFufXc0zxX0keSMSylnnCDH1ifhL8nBe7b1yHEgJ27c1DSkOw33J3HrI3EHP25m46ZihCm9hYxrrtIb8NL+Aiz7BiXPa6I/If5hkU7SW6vS/LCLneUFuSa0xegwKtKhN+eZME95Ve5bTThHyXmKmy/GMlgo8C+38EvrTdyu0GfbDmOjvL13aLcOJbDjSvk/LwbzbS3dmJM8Mc+PwTx2SDfmoZa2wT/0h+UjlRm2f54ed6xKhzel3HHqfCgO4RdUeZ6TzKdJ8wNSuUgHfOH6LI9z2adh+5jhSY56BTwUh1QcCXxLYlTLCbg5ILw/Eu5JU3Ic25j56Kg7IDPnZ6XNAPxTGEa9cA/NnKcnPklOPqWcvCDHhjVDwCL+UwX+vMAf0DRIxbHAt9yiGuJWMo2xcC/ONCjUg0xzjedWYNWgjoMFjFmWPNUL92zH0Z1qkTMzpZyZghwcJVwKowQu38Nb7sbjBgmDY7cmxHb1/IQvvS9EekmfKXKZ9Zj26VveevKka87OQXrSBe9hk5SeImcK/Clnn3ZKsx787BoTpJkxadaDdJBmPRIeNbfTpfw4vjRLjbMernUhYS1JiEWzHvx4TVtbzspn9IYcG5Y0E0L8VDYNSl4pQp9E/CvY0xN+XVAqbyXcq1Pl/uiy6HewgFUXo7skW6nycuPpia8XfWI/X59YUOV5TjIaltqHVC54ThZPizuATcAzNXxXBKodi9smHttL8dIvycF7KIe3VayD1oByuL262HlSORxrOcjBmUPp11WOtGMnZR+8QJptoyCtyKBd8LF1K8Tx1RAsf74rcR7E8V2zx7JrDPXwn5eD8ce/KXXjIh8FaUce9ku+b5lIO5kqncl13xBZZtyZXHHnU93JZmkeGBKfR1yJlGbupPfOcUz+2gxm7l5KNp7EjidP6MZFPgpSHePYS1qJkHbqUz4kf41HJ3MfuwDieP+NO/y5L1vB+NCfSqsIOCN6qqC7NG6a5SDHNm6aJchJOTby/gAqzl5K5eJqY6SzsbHLHGwM+07UDcvIZdxNOsStWqCfI/5PWFYtiIfPwF/HMNEOuAwFGCa0gQ7E/x/g+xI+Z4q+D/tEXobEl1Ku8yw14RdAF095XePySqvUfMrP/UOnvAVKHhf5Oa8S4urh3knAhyebJPlscsLTWRdir8WDb6/FaxOD5DX42r3PZ5N5feDHPbgX6ToZRZXX6zxBDulfJ/Dj+yTSqaRU9pXkSbMC6PWldOb/8UKakE88WI4hsHphT9hQV49D+AWVqp10eRxpf5C0L0FqO3HvJnKfkIM4Lkfazy5hnRIIy4SLalg1rBpWDasPsFyeDHk/he9Gcj94Gujnu1DN09sWxMellDNOkNMkpEvaJxctOktP91huvvvyeHrXU+WHtMgypRksE+iJDGeUtrIZrGEtPXWWnuZNkPYM8XogDEzbyHSgOI/xxWAzBn6w1C0Hy5WvULqMQ7Cd2GZluC241tF4qCP8EgumxT2NxN/O6mhidC3Vgcu+IWkPJbbDBoGf4+WBf0qkE1+Vc/nKDaWPm3UdGyNvOpP3DDwT9YLdDZXsjvsZtDtppkvyZzZ/wdse7hXj9YYrsdJePds+VkrfoOQ6ILw88B8v1DnaXdw7T1ivxH+iY71SWfZGvfKywnqVVrml9wFtdiCtyEv9wMmAdbKAJe1bdW3LhIdta66lXiX/xfXEeiX+BY71yt9fJRyKS1uvvKywXqXxh7Rf0mYHvH+gMpFm9E+HuFYWhzOlkv/mduBS57x+4vz3+UKd49gR/YJL/8JnFum8zWhm8fyOdRvao6lFBcE2FWj+z4tRo0VIryBtDu7hRzEk92mbUCfZcRtZ0H0S/6VCkdvcrwkuW6h5dffG5DThF1S5ySaZKqrk1nCqyNbMeFwVmKoJi2PUyAnpFWDlhHsmSNuabaNAybtJJoa9VtyIgPBwb9a1lp6j0hqjyykd0ohIyj+e6MjTtcbI4T0aNyPs0Yj/esceja9bEg7Fpe3ReBlhjybNLNjevJXeipFmS4vAz8te6tHwbSDX0SmOxnD0gU9WNnuR8msrH8m++Ih7EcTxdLanYL6/woSQT8E8P2gLtro1Ie40F87P6xufRvi+C3yi5m0J3wuodAKszRb4bMcQeCKWzsu3ybTNzEhvDOIeoHuZL4g7nc31iZ/47xf8iy0PttGqbRZEsnXef+CeoKxWUHFPkHTqjLTvB/cE8f4X1/jjvp+EAftoXg6u+97QHgjXx+a5Ld0He834sG8qyJSGWPwe2jxPT3ySnHxKOXlBjg1rqoBF/NIYp5dfayIVJwHfcotqiJsDwvuT4F69wMuDVE2zYvRWyq2apEkDxOJbfy5hPHiYD+8ODgMs30UAnh6HpKTXlyI32ijI93Bf99u2ZRN2wu3z9+cATyn5yStuSzXXS9rK7/IK0yfede6gbz42q+sVHNetesTfKvAfJvCn3Fp6rzSs4t2BCdytnAZxrq8wtTI+H/1cyo/jS1va8RUm322TPO6ShFj0ChOfuMIFvd72MfjI9VVhmJW1LtTtP2EZ8lWaTMQFWK67bdEU8+XrL2c5ypmeUs50QU5vL85OBzlxC3JPwWPjqSxOGo5dG/3i4sdr2IEPz8DjhzRVklNy/8P7SBOwveLiDPLMjdHvZ8w+cbsu5pnnU9L5NCZDAYYJbaAD8f8a+t5W1TPvJeUWpO263OejD8N+OaFc5xlRws/6NTq/7bq4TMhLhaPyeznVM/c8rtLEJ348PMl23YSjBO8PmOPDJn9o5LWJQXow5KMKn+26vD7wA7x8PWExk4312irIIf3rBP65gNUqpKOyryRPGuXggQFSOvP/OCFNyBchbZv6k2JJW39TTpI4f4YCj2lM2E66PI40oWT7BId0ZKS0hQafFpMeQWiuFwXEmhcIy4SLalg1rBpW1WG5vEzJ+wP83Jy0bSIHcVw/2xMlT2+bUC2mlFMU5DQJ6ZL2fUWLzi6fdvA9IEH6JEelYyRPGirLjDtGEp/wiH8ve8I7dWhPnaUnPBOkp2leD4SBaRuZDhTn0Y8PkhYEebnigqC0CMH5aauwbQuQZAuudbQQ6si2XZDrg3toNrA6Oiu6ljYE4BGQlfaCXAf8lEfXbbHEf06kU6VtsafGyIublVgaI+8CJi+DbbFDJLvjfsZlm53kz2z+QtrjIx2ogtvseBnjuNR3y6y0zc62ZZb4rxTsAfsitI04/aRyC7zNrjVGjWYhvYK0ObjXHINFOOYen+Rw2WYnvZ2ALmKlUOS2KjOhts3uRbfN7swYNXJCegVYOeGeCdI2O+lIGJcilooq6QbtGwWTtnlYaYRlGwlIaw4uH6qXjslEOdLGcROwRyP+bY49WqCRlNij8TLCHs115oT4K23FwaYmbUmzPdm4NkPcZiLZqTRSq7R9xeXFFul4FenpAQ/C5+lso2r+sUYTQo6q07xs5rsFEbdV8hkwPAKTd0f4Upc0inK1Bf70hE9WlV6GiVt75j6AY+BWOOJ/g+ADCLNV2fPm4u9aGQ8e4SQdvSMdg2Tb9kl8Ke2xSbJHnn+XpzzO79tWbS+h2V6WbAU5lezGtgWOr10+BeuuXM4EkCnZiVQWRSE98Uly8inlSEcg2bAmCFi2+u7lLXCk4hjgW25RDXFzQHh/DNyrF3h5kKrplBi9lXKrJsmcJTmzUsqZ5SjnkJRyDhHklG1xidxuymX0HS4LZgm/47UjB3hKyU9ThC/tJia9CkKcy9a53xYv/MLq5975nhykJ13wnstu+0MEfiorvjjtUVadUtfEF5pN4O7oTIjj3QvpIG2dOyuhfi7lx/GLAj9unXOtCwlrSUIs2jonfSMrK5+BW+e+w4ZQuHWut3XJejMHntjIz43zPbGRb+bwObGRlynXDctI2gKGdkc6uJ7YSPz/y+oct4BRGtcTG/k34lCuCW0xOvwK+pCEGyPELWD4eBh3ThzqKpW57SRr4kuZB287xq2T3O/jJhluD7hNfCmLOwnizmZxeEYg/y4XLuycy+JaIe48FsftCIPU3vhbNe8b2Y2LfApk8rrHzVPc71AZSlNWU9g1jyNd8R7aDE9v2147N6WcuYIcaeqOj7d68fUF5xlt/MpKwq/JdM1o287WeEGx6BcXRHlaaeEobssulzNFkOOrVy98YGk68MV9dCMn4OaA8P50uBf3GEb/JdNvjdFbKTfT5+mzbmKVdpaPGCbLjDvaCD+7Svznsc9XjmLXthf+z1A947icOaC/tA8k5dtRzi6A8AugS1IX4Lqe7LdTGg8Z5aXCUfk9W0vAtStcVjwR0vnslCa50pyadFCMba0G0/GyUMK9OoHf1iGdBLrXW9JzDJ4OLSYH93lrmy3Ixh0TM6JWZQYcP4VBsiSLl0elXQHIgzoQ/5FMh+/FrOflY/KFrRk7eG5b7THy5zEvc2yMF1OCfMwf72EaYvSNOzpkFisD22ed8F1avMfLgKeN+895T4C88P+SLc4G/tMr5B3rn/hPt9T/SYIOpJcJSyrogDwnxOgwR9BB8Jpz1q2/KWaFHscS6OWwlrAmThJw4gKVhrFYsl4sHWwdKIf+SxZgch7Bdg/NVrd3xO1OwB5hVozMOiWHJiXrZkJfbTg5KZk864YTnr+kG07iWmklOSk3nMR12pKzwPQK0uaEeyYYc94XrRK+1IbPiBW3tXFD9Iud1GXMQT0T00nWxWBeCjpIT2jSbBDxSwvotpOO474pGyebl2XcV+Zdda20wQS/18P1W+ip6yUZ63qKoGvK2QvvWTmcQeOzcjiDxusSZ+z4rFwrxPFZOZzNdp2Vw8dWPiuHrwacz+JOZ9cYpBk7KnfTLt89vhsX+fh1nE9x3QTAfQg+dks2ZTsldRHDkjbhHBNd54F/q8UfSStFtnZQ6bwtPM+OT/+cBXE8HT+lmrAV8KXclCKeRcbzg5tS+GpMvcCPZbNE4OdtDjdJ8fpdBHHct+AssXR+oNG9aUhPvhBffJFO5b8I9FkQUA7HagM5vG9bHv2afL8ipl3xdsLTro1+ceXxfezh8pUwhSVt9sPXcF7D2tl9E+LT4+YsaeOS7bt8tnxy/mNi8vkmpuejpf3Xvbg5seh7HqTkY2znQdraKS+ToipvkzjmkcZP3CYrrXhiHRAerja+W5hEkF4lwy8MtXrqnmTz5OPRCxDSmZFpX22Wvp6EWHUx+q8Ffn68gCQb+ckm+ASV5J/zwP8RVlcPTJAxlZL75HkxOjfE8J8FOhD/JwR7sfkBbv9nAibxf4ph4sFAlTCPisH8jGWsIbVT29melfpTHE/wcsRJZK479ouLmXys0/tAPsfhtoZylUVf6VVFm77Y31Dcd1h/9Xh03Qh4nr663lZX0wR9XetqniV/iEXp8qrcHm1thJfHE8NkzH6emP9P6NOlscoKhv8dh3E+99Xol6XnXD7OkcYG+FonYfxQaI9SX09Y6fr63I98X++tVDahXkQw4SqIk17ZDt2XvrW5J26l83DPBj0qjfEmR9foh39t8cNSGdrKvNJ527i7idfHmRAn2WzW9pjl+dNoj1L/Idmjy/nTrvbIz59+AMZ20lnZko9GfSqNuXFXHunXEMOPPr+rTxi+/1ca9ywVdLA9J5wt8C8VdB6MOqjydknpeLvkZYIvCdL//iw/Nn8caM5DfEmQlxvav62MTMAyPUfg52VFZVIEfl6+kv0vhThpHsnWZl3bBqU15bAafHXo+Tn01cQ/UrAJW95svrq35udsvro3bbVa5+e4rbrOz13hMBawvaBaaQ0C/Zd0Nr7UD+MLub7fHeDpF1jkDEspZ5ggpzfnILlMaWyD+fGdC+HpF0J+FgbMj6Qz7kY2YXn0a2z1xOHdaeJ8G0+L/R3xnz+8O90p0bW0C972ArXNdltVTz0rzSFdwvKvVG+MOVW/vh5z4riS95e4Xi69bcBtj/edxKNAx94or5Avr0vly9sElQG+WcXt0PblYltZuo5D+FsuxzZX1t92cEMl+8APHVTRGl2fjwHQFnzX6NBfcjmSv8Q65v6VY+CaFfEvt4wdJTuw2U2lZzr8lhS3DXxbRZrn70UfUtV2cybESfOOrnaDPoT7c95HU/9tmyPLqZ79JLdnzl8fg7MAcHJwfwC7z9MdDnnGMRJiHwH8lM+GGH7Cw7HIzZa5hEUVdDgSdDizgg6LQAfi3yboYCt/E2xjwpRvpedzgEf68Hscv6Bk+ygpp5DD8iN5kh2YgG1Zak/SWonNB0rtXMI6MSBWa3Sdsr7OknwbBWmfFz5XcD92KcTxeZ42hoGhHv7z/Bi7fvWEblzkQ115ffH1XLSxRULaRQJ2X7WHRcnkWduD9Azg2x5wjf1Abw9x+x5NqIb2wOuL9JbKyISScgsu7SXhSRgTXNsL4YdqL5LtSe0l5UkkJfMoNkD19FUm3MvwpHUMXl+h6k+a4+qr+kt4soC1/qRn+JD1x8cXPvUnzf3hGbG+c388fVZzf80gJ27u7zMw9yc9m9rm/oj/62zu73OWuT+XuelenK+r992fGPp71bjuIM3VSHPt2LeHmn8aGzP/ROVqwlohLbbtnCqff+J6ED/uiUMe3L/WtTeHPUt9L2bdTNq/xvVHm/2uZT6lt/ev8XLG/WBxY3rCVqp8zED5oziffkFqEzw/2CaktXjO77sWj3bP15TxAGVsXyoGy6brghS6Yj3yusJ9A8TL7ZLrj3ZJ/L903DdAZd4b9W+bT5PK1DafVqlM8ZnGtqfANp9W6f0W23wa9yGfgf6L++9WkCn1D5KfkNYUcN6I7PKvrP5xry7f3yOtIy+NwfyHxddJeWgV8uDax9neazjTko63y0ZBVoku/mUPhEf20V+Qhf1MV1sd0Z3mlyVZlxzqUyH04jNZKQd4Sr2knsnGh3gmk8Z5fAxchPYgtTGednX0i21s+IjudC0xmErJ7db2XiHXZ1+xJ25vrSdLbdc2hsF1RmkPPunA92dLa0+To2scAx7M2qbtXaYw65O530v9Ih8XYr9oGwOagHVhG0fxMimq8j4T574l++J1HXdqaNweTXwPgfinsjqwfSoG++35nrrH7Uvgcdg2sB1X+ihA3Dvt3C45Bo1LsN0fxcrkmZj3dbgOreye7553fJ9QWoeS5jBoH6HUXvg765Q/iku7LpvlXhg8CN72XiB/BwDniaXj0IzuHeB7pfcGeN3GvT8ovatqrsdG1/j+4ByLfYXeV4jv7rjuzaK234tzNy19PXdDdeuyd0ia82oCHF7eRvfzwb6kfpKnnRhdYz95gcVelljyaIJvH0X6SM/DSyGOp0Nbkp4HSYezhXLgeuHZLMR/ueN4IdBzdKtkn/zZF+3Ttp/eBKyLcwV+vsce99HzczcWA5Y0v8XLNO6dvwYlP8PHvdOx0jJe4P3T2aD7mZ66twq6S+2Nt6k/Dt5/LT3n45j1TItMTMv7noYY/rjnz+uF8kJ/Js0nmevxgEn8HRZ/IPWpc9g9331juI7CywX3jUnPHb03nldn9PW+Map/l/2GvvvGXO2f29AzYP+8Pz8DZNrGsZiWy4mz/7h9W3ss9m97LjfXowGT+O+02L9Uljb7rzRGsI2RbGuMtrWvQOPzeX09Pkf7t43Puf91eT/S1f65DX1jcE9c6f1bnpa++IPv377R077SvH9L+ri8f8vT4fyMNHbFeozrZ/A5hfjf4TjeCrQPeGhf+3Nct5DGtzb/aVsnlfyn1F+i//yA4/yM7XwKF91bBd2l9sbb1Kehv+HPvtjfVPogHr7DT+06rr/BY82J/xOW/oY/m+F8kNTfEP+nPJ/Xbf1Nped1nA+SzpOQnuVtz+uBzoIa1tvv+lSaK6P6d/lQpfR+GtoBl+Nq/9yG3hPZf7py3Xx/julC2PUCZx5+iecbkU0WmHz6zTvo8f0vPP/tR888eg1+/cYEqiOzZmPq/ytg/3nGS2XJjx/GvRD1oJuULgc6IH+dwE+4TUJcnuUhaRmN+WT7109/8pdPViqjpPh7j84PuedlSxb2Fv7X+//qucf/c+W9vYX/k8Zz5tV9+K7xvYX/mueWHrfjoEm/87FRsgW+d5fS0TrmIHbfwxc6H3dN+AXQxVNe1zrtIJCH+Uv2KYqB7BpLhaPye3GtlDRTMXzoIUzw+RQF1VwR7peUU2gmq2gWIimOW9lAiGthcbw2MdQL+pPOxkqfgJ1ASsAimbw+hkDcYBbXwmRjvQ4S5JDsOoF/MGANEtJR2VeSVy+kGwgYObjPR2n1guw88KvoO16mbJ8coXrkc6Dq+Z/bXzvoKPUqKuYe5gPf9EC5JjSqVJ5giKvnIfyCksu7pJxCl+dpAnmYv2SeB/t8ktIMqMTDeXloZpqpGD6pRpcK6TBQuqYYTBMaVbmlepRyk2ut0r0C6JK0VutBHuYP9/0ktNqBNitCTKVkz8fLg3uohhgsSpsH/hGRpyiqck91EciQvBi/R+VjvNWQkT3lUdykkd08B0XXg5Vs//y6TpBdJ8guCunRE/FxehvE9WNxeD50gyWuvyWuEfLC4wos3XKIGyBgGv3WjezJh+1c+lWqvA2ZgGUu1TH3bPgMI9kY2mQc1iWAxdMPBqxiBaxLAYunp7RkG/VCuiZBDvoz/q6LR3sf5OrPCL8AuiT1Z80gD/OH/mxIMnlNOUjP5XFMfG+nRYgjLPpsTEMMFqXNA/+J4M9amE7oz1oEffk97s+OhTbHyzZpm5PeoaL6wWd3E5YzfU4b2TMvRRYn+cfrot888D/A/HEr+GNuf6TjYCXXF7+W7K7Zkn+pDfR2OaMfzgWUw+OWg0zJ5nibpHqicpZsntINZXHYdtGeOT/HkPAJo5INnjdSzptkg1xWHvhvYjZ4oWVMgDbI7TMHcTnIC+eT7JPX2XXAT3o3CPwcLw/8l7OnMJx/p/S8rLhe+K4D8S9jmDj/Lvlf6anEZouSv5bKtAWwBgpYPD+4BiSVKW+fAyH/xH+1UKbYr/P00phvBcTxufomiGtgcYMgrj+LGwxxfMyH408+74f+fgCL4zayDsbTlJ8N0f1GJdt9SbkF6Wvv6CP5nH4jxHHbaoA4XoYDII7L6wdxvF4KEMfrmuphgHLzRSZgf0j8Wy3tS/Kf0niK+IcJ/NxnE/9gVd6m8LxGng7bJZ7fyK+jV6N6lAPX69roNw/8O1k52Na7Sa+U62lN0nracMaA62lsUqsrX5wf62KkwD+C8VCZFIFf8nWS3+Rlir5OGssOE/BxLLvP4uu4rxwOuuc8dZfWqKR2zdvUeZaxIva3QywyMS2X06D8xhGvtfS30viY64X9LfG/weIPpLK09beS/2gR8iWV6VCIi3uuImzETNk+B0ntk+cf26ctryYk9ZXSmbP4fM/bBtq/NI/gav/chuj5K+ka3is/P3Ph7879zbgka3h8XojSUf+fcGb7s1x/CtIcBeEXQBdPeV1zFNK4kecv0JzrZ3KQnsuTVmJSronW43wS1g2307g5W0qbB/7HYC7CNtfF5+Bw/kOan+P36voIS2qjvBypTkw7/BiUhbTK5GLbko68vnDcOiCgHI61PPqV7N1QSTmFo3HNgDA4NrcbD9u+2NVXEH5BpWpLOZuNSesPUtujtEVVbmMbGV8l++NyJKy9VYq1NSDWjoBYtwfECllenQGxdgbE2hYQa01ArJB53FWlet0cECtkewxZj1sCYnUGxNoTECtkPYa01TsDYoW0r90Bse4OiBXS7qvV54TM4z0BsdYHxNoXECtkeYUcm4S0r2odF4a0+2ody20OiLU9INaBMJarVrsPOTap9Wl+WNU6lqtWXxhyLBfSF4asx5DlVa3jr+sDYu0LiBWyvG4JiBWybYdsQyHLK2Q/FLINVWvZh/RfIeflqnVuKKR9hRz7VusYsxr7DnPdFAjLhH3R7+AYbH5tW3uV5OQEnaV1Ur5+j2uiiuGkfFvS+ZtKhF8AXTzl5Wz1I62t4p5pnrYoxGFd+e7b5lj5gFi4l0SyG2ndz7e8BjLe6O28ue1XbVq5eN1KBSEP/xfFqHgR8F0ao1q9gJsDwvsXwb16gZdjS02yf4zeSrk1SZ6+ySKnN5o+/u8X/be9ltULy9/LXd3Ai2X5u4Pxpe0O7gqIFXL6NeSQqlofVUPmMeQyYLVOyVfr9MVtAbEOBJuoTVf3XdmHLK+Q0z0h8xjyUbVal9tCTl+EtPtbA2JV61RuSJuojb9eGj46ZF97Y0CsA8EX7guIFdLn3BQQ646AWNU6ZRqyT6tNMfthHQhLwyHbULVuK6r1HS+NvqO2lN53NlGbU+i7PIbcbl6tz0Mhy74zIFa1zheGHOfU/ETfjSdqfqLvyr4zIFZIP7Ev+u3FbSANOcAjPfk9jl/N20BMwNfvk27dONCwevHI0JNdbayvjgyVDoentEWIM2ET48O4euFenQVrc0CszoBY2wNibQ2ItSUg1pqAWHsDYu0KiBUyjzcHxAqZxx0BsW4PiHVHQKyQ9hWyPYa0r5C+MKReOwNihbT7A8Embg2IFdK+9gTECpnHkGV/S0CskHa/OyBWzU+8NPxEyDzeHRAr5HiiWsv+noBYtTbkh3VjQKxaG+q7su8MiBXyGXlf9Gv7hEXKT65MyAEe6cnvcfwC6OIpL2crF2nejPLXkkxeKQfpuTzpyGQq67hPYhiiI4MbYrAobR74fz9q/28R+Ey4CmRIxx7ze1Q+5t2lX0e4tiOdk9ojT49lxNOhPSasL+dPgBJ+QaWy/5zNPqRykeyD0haFuLhPEVC8CX1VZv2SybOWGc9fkjIzoT36lcol567nzSiXMDg2P/7bowwWu5Y54RdUeRkkKXPb8eYmYJkPF3QpQpwJNzA+jKsX7tVZsHYFxNobEGtrQKw1AbFuDYi1OSDWnoBYIcsrZB5D6SX5qWqx1d0BsUK27ZA2sTMgVs1/1fxXb+YxZNnfHBArpN3fERArZNuu1vYY0kdXa18bsh63BMQ6EPqhAyGPIfUK6Vertd9eV6V6hSyvuwJidQbECjk2qdY+rdYe+y6P1dpvHwjPaSFt4qaAWNVq97cHxKrWuY47A2L1ho+WPh2M6162NTRJDk/fYpHTL6WcfoIc6dOiueg35dz/oBzgkZ78HscvqPI8h5r7l8qF8jc8mbwmF7vi+lBZS59BJiz6DHJDDBalzQP/B0fv/y0Cnwn4Lob0KWd+j6+ZPhzhoi2YUFJO4Vjp89JoY7xMPOpgsKuNEX5BparznK0MJV9CeR8p6FIU4uLsgcsZKcgpCnEX1bBqWDWsIFgO/q/ua0Nfvqnh7Vcsnzll0LzfH9TywI7TP3/39tOnzEC/T7pxXO4DPPyR8xHZhF9QqfxtzlamUh9CeT9I0KUIcSa0Mz6Mqxfu1cVgSb40KZYJbdFvin4wj3XtkbbYKOhUckqqjqO00fYn3zovUPrRydIPoPRj2M2SPU3XMcuUdqyQduhR6jvjnzrupukjjl939g07n7rgkW3D3nbYz4oH/XbTKTf85cl1lPZgIW1MoKbTZbcFFrk8+jXjop9FhUG2NY7F1UNac022lQf+y8Z0p/vl6J6yeZtGf1HH7nvUxQxXf0H4BdAlqb+oA3mYP/QX9YIuRYgzYRPjw7h64Z4Na1dArDsCYu0MiLUlINaagFh3BsTaHBBre0CszoBY1VqPIW01ZHsMqdfNAbG2BsTaExArpE3cEhArpE3sDogVsrxC+q+Qeu0NiBWyHkPqVa19R8h6DFn2Idt2yDzeExBrfUCsfQGxDoR+O2Tb7o2+ltZp+PPYQIirZ3EDII5/xqsO9MsL+uUt+vH0+Zh0mA+X920aIG1JOQXn920IP9T7Ng0gD/OHz5r9BV2KQhx+ck2qn5wgx1evgJ9Jo/jpwLckRrWcgJsDwvvT4Z5UFBx7MMRLpo8mE1e0xZj0JjRZ5DQJ6cg0BzAdJ7B4/JTbBEHHCRYdeXrik+TkUsrJCXIQS5qmMmFD9JsH/hXRNJXJwzMjemJOFPSzNYNJAv9ExkP6SGVDaZsE2bmYX5KjlN2GuA4NIGdSQDmTGE8e5EwOKGcy4xkIcg4JKOcQxjOApTP/D2Vx3M5IjymCHtTtTGX3PboB5yURwi+ALp7yurqdqSAP84e+5zBBlyLEmYDLWYcJcg4T5GSF1aTK8491yfPaG3VJ+AWVynZytnLh+cO6nCboUoQ4E65mfBhXL9yri8GifIXConaasr6mYXnwQHHTGfZUiJvB+C+FuJksro1hYKiH/zw/pv969YRuXORDXbn/Ir0Hq3Ib474jzhdI9lMU0hMf9cGk5xvYUtFrxvTUcxzDboM8jGdx2GZLQpzBXzOuZ165PeA4yNeH8PTEJ8kZlFLOIEEOYuUZViPDWsniOf8no3KndoLtsaScwkpsC4TBsWckxHb1mYTfJMgjvQpCXN5Bl/wX3/bZT1z73Dk5Vd6u64V7OEacKfBLn96lsjqcpfcoq6v4V84VyKY4/tg3A+L4oyrpYOz7gVJP/WYm1M+l/Dh+UeCfz/h86kLCWhkIi7e3EFgNCbGGqPI+idq05JMGgxxfn8TTE1+TkC4X80ty8F7cOI3LlMZpy6NfY8efH9OdhpcDf1bkadFHEv/rxnen+2KEOViV+0ub78fjeHzLuVmQ09vl3Az5mW7Jz3QhP9Md8zMd8jM9YH5sOks+mY/zaE6J8i/5J8lfm1BSbkEaC2K/eQS77+FrnY/4IvyCSuXbu541jgB5mD/s645MJq9k6nOAKveF9zI8XnZcDtVXJR/yI/AhM1ic5ENWR7954N/DfMiPAbOSHV4S/dbs0Cm8KO0wB//jdF4b/Uq2cDjE8fLjfQZhK1VuQybg0kpJOYUJZpz4YKlbDuYHX/eR6ofzU16LqrwMZ0Ac77ewTCu1L3our7Uvp/CS9PP1Y7vTpPHzNzA/3xCDqZRshy+LfqX5GEorPX+ZUFJuQZqXQjtM+OzpbIeELz2LJ7FDyWdKz0Yp21kPO+S2wO2Qlx2Xw+srzidxndHPTxWwJH/Fx9KErVS5DZkQ0s/z/KCfd+3Tiqq8DHEdgY/nsRx4GeH8mPR8wtveSsDi6XGedJqgX07AdJmz5umnWeTMTClnpiCnUZWXqYcdHC718RQojrcBnBvnfnomxB3F4nhdYJDmxik/xk5/N6EbF/lQV17epLf07IuvR/s++w4RdE05R+pdF9MgjtcF1w+DVN6ksynvYyd24yIf6sPLFMublwP6E995tX6Crin7uiOwTHmQyhSPA+b2zcsBg1TefF52lUd58zIl3VL2iUdiXpUgl+cV5+iPZvzXQNwxLK6NYWCQyojyY8ro9R5lxO2B9JZsEv2+r01KYzvb80dSOTMFOfi/X/T/UBZPa2c4vl3GxrcXRONbaUw5R/WM4/Z1KJN78dieeee2gmV8lCrP+1GWvPP0WJdczsyUcmY6yunN/Ey15Md37XamoLMkZ1pKOdMc5QxJKWeIo5zpKeVMd5TTL6WcfoKclOu3R6Gv5gF9tdSfHcPifPsz0tm3P+NlSrqlHNN6lwOOaXmfhf3ZsSyujWFgqDSm9enPuD1wvbnueSX3L3Mgnvh3RT7b2MAO6AP4mIevt30c/Hxv7zWR5nuofFLaiPMeLtxzkHYPl/ScYdvDNVPQRfLxeKyANDchzetJWPmAWIGeU4O2adzDFapN++zh6o02/eaofaYs67JnR45Va/vV1fZNwL00adrrEQGxam3fve279r05iIvzEfMgnvg/zfr9T0K/z+37SCb7/6Df5/pj2/ed05wi5LdJSNfXbT/hmNza9qVyean0+zg3lXCd0ntuCm2Iz01h208zN0X58W373G653mna9Peg309Y1mK/j+sz1dD2E86vO7d9wg/V9iutGdvaPu6ReDH0+4HWQ7zn59GG+HgB2z73C20MA0OltZKkbf9IiJPmsHjfixhcRspydj6uFNtFwj7Y2i6kNbeBqvt9vujV4wXtHedsumr1quVntd+0sXXtinPaNnSsalvdumLFhvaNG7nSXNAgdp/H84A8dB23gGlrMDwzS6JflwWCIypg4WZCW0M+sgIWbpySNuHg/36qXE9abKhzwMHGKemFG2l4Q8eO8+gKWLgxgKfHh+9jKmCdC1g8PU/L//dT5XpiedlwDB1XQa9rQK9jWfrjAOv4ClirAIunPx6wTrBgmetRgMXT87T8fz9VrieWlw3H0KwKeo0GvU5gcbMA60QLlgnXAhZPfyJgnVQB6zrA4ul5Wv6/nyrXE8vLhmPo5Ap6LQC9TmLpT4Y4Xs74XUXfjRY8fVYvGeA59CcHlMOxlrN0Ju4Ulp77VmkgRDKo8z+V3e+NQTHhF0AXT3ldnf+pIA/zh4Pi0wRdikIc71d5HJdzmiBHwpoZEOsUyA9/AOCbWI86uKfMU1mcbeNzHvgXskX+YyPMwarcVk52yOOpgjziPz363yDwc7w88J8Y6WQG0U9Fh3cUBZ1Oi9EF+1O0E+IxoRFk91YbIfyCKq//JG3kdJAXZ2+U99mCLkUhjo+leByXM1uQI2EdFRDrVMhPXBtZGKiNHMXayFlV2EbOCdBG+BiqSbiHbSShzTq3EcIvgC5J24hUFzx/2EZOF3QpCnF8/BzXFk8X5EhYxwXEcm0jy6CNHMviXNoI8Y9mbeQqaCO8jLCNSM8rxwryiJ/qrEHg53h54F/p2EaOi9HFXPNxc5Mq1x/bSEKbdW4jhF9Q5faTpI1Iz3s8f9hGThR0KQpx/JkJy7FeuFdnwXJ55nLFOhbyE9dGbgjURupZG7mpCtvINs82IuneG89e0vwC/wZSXBlJtlsU0h8HcdMFOZVsZM/Bsj5xNkLP73ng//247nR3WmwEN1pwnXHBxfdZeoogx2ViOaH/6efq7wg/1MRypbky9HfHC7oUVbnvxIPKJL8qjT1eLFjmmr6HYusHfdt5UZXb0RSQc3xAOTw/WcwZmbAc5OCcpPTrKodjtYGcOL/1HvBbs1ic5Ldofi8P/E8zv/VIhNkIPJ7t9FTS/VQhUprvOQ7i+Hj4eIibzeKw7ltZHB+7YJAW/Sivpg/9w8RuXOTDfHDffhrE9YLPdR5j1nxuGKza80LPtoTPCzyOf08O/Vq9cK/OgnVsQCxay0hZX8H8mgm4YWE2i2tjGBgk30X58d2wIPkubCfIx/sXad1Q0isn4GB7ojhp/Y++wyatMY4AGb5tfoSgr8s8GrcvDxuqd23zhB9qHk1qP7Z5tFmCLkUhDue+pHXZWYIcCQuf6/mzcl/3n8cmk2ftP6VvV4awr7h6ON4i78Rk8upInrTufawgzxzQ0aDK6zBufV5a1+b1FdfmuWzcm+O734Fj4d6c42PyEFcH0vyPbY9CHuIa2Xj9zwf35KF9JX8/uJvnr9G15PP5XEfDuJ58uEflBdmqvH56o+0RfgF0Sdr2pHrg+eO22V/ZbYTXUdyepaOFvKDNHlVBJ7RZSZZUp3wPF9Yp3+jK50IHWPiOFPikOPOf76HDzc7EOyjCMOXcNKlnHnl63OfmexgnT2879HN6SjnTBTlNQjpsQwk3HTvPuRF+QZXnOUkbkjZ/S+WCe1l4WqwbE/CZTdobKe0bebFgmWv6FrBt87tLvUpyuB1ltX8qi8NtTVgOco4IKIdjtUW/KQ/B834+xA3tfN4L63I2i8Pyb2VxR0DcGSxuBrvGID1XUjkYX12c1I2LfBRSblSv+vLDA/14kMqPv0hQK7+e+x8xhCy/vn4ZTSo/PobF8uPjN95vYJDKiL+o5jNvzW2M8jRQdX/Uo/tFjLPab7qobfWqFW0dq9atPa/9+k3tGzvwU23YA2APNz1Ga/yUXJzWJtRB3AyIv0jg46FJSEcyUh6x5fxkg8e7Jmzp1uNdef5wVHakoEtRiDuIXWOLqBfu1VmwpgbEwqN+E7Z071fPZkBcb716lvS1U+nVborjn+lZAXHjWbrDIa7E4ghf+kwPl11k1zzOhHrhHtZ1UZApyYkcXdfTJeXx9uiiEfiS9qS98AR3qquviHtlluslvcLq8qmcPw2dPfP/3vz71+dUub+WVo/rGD76c+IvCvwpRzQnNTEZSpX3rCbw19qnQZx0rKT0qZyEq6MnuZQfxy8K/O2Mz6cupCfApEfd0idp+CwBtR1qf+NY3CSI4+0MdzFNFHSYaMnPFEGHJiEdtsdJ7H5v9N2EX1CpfEtX3z0J5MWVi+TjKa107CAeGeHrgznWuIBY1NekrK+pWB48oN+WbEja8SnNmLQxDAxS30358e27eRnjTGWtXfV+u5oi6IJlZgIexzBFkCN9elUq/0MDYpH9pKyvKVgePEg+CG2Ij5WwXfE218YwMPRWu8Jjxkj3fgJvJKJrbEm8H2Mrb/8DY2Cenj6BLH1K+hCI47Y+DuImCTrlQAbfjcHtHj+pTfz/wVZfHi3JmHUxmLxOlerZlikfjUwuxXnY4Gelzxbwz0bjsaxSu+H8OG6V+i/elqgMpP4L26zkf/mntGkFTyov0rE3yovrgOV1aAWdsbyk8uXlQGUg+aXxgDVewOJlaCsv0rE3yovrgOV1SAWdsbyk8uWfKqcyKKrysiwBllRevD0uAX5K3yDwc7w88P+A+QR8e4T7NazrCQI29405wOD5KAj5aII4ntbg/mx0T1zpDSJpxwnxSycg8N0l+GkPvsuB0qbcLVNVO6OlGXqeZwxS30zl4DpDnwM5hMvL3wS0iWmCjtIu+OMccYm/0m6fOge9+Y4QtKHjBb2l3T7TY+RIuy1NiNvN/xfWlp+J2rLkT7t2EzEcivOw58GSP+VlhP5UarPS7kDXNos7y/nbbrhTmZcxyZTsi++K2uPxtp+0C03acYO21xDDT3hlO8AiZ8v9tc2epZ3dSe2Z5yGtPfPywrfqiL/I8pqBPQ/qbXuWTkWxvY3L3/Q/FuIke86pch/m61/5zrAbUr7tarN/yluc/ePbrsQ/3mL/UvlKu16J33bSQyX7Pw3ieLrpMXLi/DnaP/Ef6mj/JLs37J+XEdq/6wkmxD9b4JdOUpBOD7HZ/2kgJ5T9L/M4NeR0i0xMy/MWZ/+Elwf+4y32P1vQwVYfrQL/bMaD9s/z0ApxPN30GDnc/nl5of0T/6mO9j87uu4N++dlhPZ/BourF/ixvOcI/Hz8jaf6zGFxeCoWL+NWkCP5QVf756ftLEx5ao7N/qVTczh/3Kk5Syz2L7VBaZemqz+y2f9siJN2T6Ecbv+8vND+if8CR/sn2b1h/7MZA9p/K4urF/ixvG3thZdJUZW3DZv9zwY5oez/KLD/HOMbCjJzgkx+D+fwMb2ExfdHtbHrFSye89OnjWmegpe/hx0saWJpFMPg2AltbAnPK4V6uMfxm2LkmVAQ4lz2P3xu1mfOeuvfjhmUg/SkC95DO+4n8A8V+KmsGkD3knIKZ0ltnX/WS6nyvPM43l5JB2n/Q7+E+rmUH8cvCvy40961LoaonraA9m5ohoDF1wBwPoj2QHE/zTHWRr954L9Z8NOEKe3Rk45aJ35pfxzfl0j6DAYdeFrptGfbZ6eJL2X/IX52mucH+w/pLShpLyDxSydBS59vLAI/Lyep/7Ad1z6D6V7v8Ln43rCvu14E9sV3NRO2UgeuffE9KK729aMxPfWR9tn1t+gv2aPtk5fTBD2kk6lsdcs/B2FCwrptkOqW5wfrVjqRX9r7jG2P80ufUS2qcrvHN9h43c4AOdKeO8knSLbAPwn1+cgWTLl8ZUTPNHyNJRf9Ul/Ov3DgUf51OcAj/fk9jl8AXTzlde3XGQTyMH9Uj+btBDq5O3o7YfG6thVz2tZv3LS6vY5DR9x0jaXCUfm9nOqZex6HI2HkOwv+LxHSKQHbxFPNFeF+STmFZrKKZiGS4vjHfwZCHD+DndcmhnpBf9LZWOkT8ISqBCySyetjCMQNZnEtTDbW6yBBDsmuE/gHA9YgIR2VfSV59UK6gYDRKKQr0cXP73r9rcX3v+LNpelffb5hwb5fL/vDon6zvv/VraM+t/3vv3j2AdRZCTpjPQ4EXumXdMd7uCtuUECsooBFZdPM7nvY/HBXb0X4BZWqjXV5q2aQh/nDvA8RdCkKceiDhghyhghyJKy6gFj1gbBMuKiGVcOqYdWwXuRYFMf7+yLE8f4Tz/nh/hk/ylkn6Fdn0Y+nx75HGuNSv8v9us+OH9d+F2doE85Ed/W79SAvrlxSjqW7ZoSLgjzENAHH3rY+syEGi9Lmgb++tP+3CHwmoF1L4xJ+j8rHPFn+c3xP3fHZRvpVyj7WK6ryvFNc1nY/gKVbHv2afA8syTL5bBxPi6tyxL+r1J1ucKmnztKstwmD4R7akFLyLH9v7NDjecRZFcnuOT/tPJTe2M1DHM/PAJafFP5nmOTbeB2PLqke+cmzOMmucCcl8a8tdac7OLqW7Jg/j/H0qoI84qfybxD4OV4e+CeW9v/yVXBJv4Ex8nh5SCtrKO/QUrc820o098NKJbbb4ZLd8vaEdstttF7gx2cim51LtsztvAGwJN/F7QBXASh9g5LrgPDywH9Uaf+vtPPBZudSvRL/sQzTVq+B/JFYr7yssF4bWJxUtlivkh3w+sJ+hNd5f8CSVnl5XbvUK9eP8LBeTy/t/5XqVeqjpD4E+6gzGKatXqkse6NeeVm51KvU3xN/f4Gf1yuuMPO6bAQsyUfzunapV54f9NHEv6S0/1eq16R++ByG2Vd+mI8XsV6lNsP5sV4lO5DKtqjK67wAcTj/yuX4+mipX7b5aOK/vLT/V3qbapCQ3qafVG4mj7TTJFoFOb9j3Yb2aBlEQbAtW5jrwTFqDBPSKwsWT2PLEl8awCInWQ1Knl7HIif+5aX9v7zIsQhRH5dH5IRNxnkhjfBDPSJXGnriY5KtmUldDNZTJTkBTdWEs2LUyAnpVQUs+m96fxo18+rGUb1tJIBpDdFo0XUkQPwbS/t/pR6j0pMZehTbSgXXR8p/M8TxdANj5LiOUIj/5lJ3Xm09GcnujZ6MlxH2ZNJMoTSjQvwtAj9fScERCl91xebHy7gZ5FRq5ri/QLJT6UlZsi/bSLuSfZFtSk+lNvuyzYoEsoXBfW0LVDaSLdhm1NAWpC6W+wS0hQGCHJwZMwFH2/yX0hCuCVQfJmD98Xe9eX2ZMIDdrxew+kM64n9Taf8vDV/4KJLSFwX5fPSoYvTm9+qAvyDwFwR+Uz6vLnXrLOmJ/RfPa73Az4c/nP9tpW6Z74iucf8vl2fufcjCl4v5lXTm+tjKqF7gJ9kDBH6K4zsaeJvkPLy8OFaBxXP+D5b2/1Kd8Prm7RLl86dIFaN3XH+MWPXCPW477yntvy6we4TlOzQ0Afef83tc9gDV8/wF+nXZU/+h42acNOiSQzuHQPpQ+IO+8LGzn/7z+kMr4fP9cin3tzeQ32wQIikOZ414HLetixkfBhy7cp0N/vxJ3bjIh/rw9tg/BlMaS7QDL+W5TsBFf8HHFVhetFKFM4/fLHWn+VJJxqtTPcvVhCui36zrFv0cD5Xqb5NH/fF20R/ieH/fBnH4mKYiHX5Y2n/dV22ht8tLsnepvFZAnDQLystLqo+4FXaOl8bH7X7mX9+9a8uo3/r4OJTf4KB3LrDepz54496m497/wd7y/Y8MfOKMTz3Y+HKfcqFniwaQRdfcXvh9bt9tLJ7z/6G0/5faFB8beLQphfnhWJL+9Rb9cVbchEtj9G+asP/X2PufSj3lSW14sCrPJz7z8LGKiy7E//fS/t9K8wCkV8pnv7z07MfHrC4ri9KYn/gHCvz8uYvKRHrWd5lN52WKU6hURg3KvkqC9tA/sgdp1prbJs6487w3Qpy0eoi7N0xoi34Nz6RIj5TvTfbH/ogHHJvxPKI9SL5zAOjE43hd+o4X+PuZkyd04yIfBck/YHvtL+RDasv4jFQv6FVt7Y5sX1rJRXtzteH+EFdvkcfLoZHlgWwY+yNpF8Nylm7KhG48Xu7SvKoJ6E+J/zTm26dF19LuI7QHyU+gLkrJfgjnrKT3jqXxI9ULtXdurx625fxVNMIvqFT+JYf+luRhHeGuxITjhDz2sVyeVA/NSi5TLh/nRyQbsfmTeoiT/InU/rBt8vaHfaPU/9vaH1/PcRk3xa1ZUFrsJ8+Y0J3uEmhbkq+11ZvtPU6b7+O6SmWP8+4FwObXAy1yJL2aBP6BFr24T8Z3FvFtJVseXPuqQGPEfr67JqVysa3NVXqTDNuI9NaXb9+Gaw5SH1+pb7skpo/i+ZB20khLzrx/o76P95c50IXL4M/116me/El3VF7JdKi0W8eEBQJmTpChVHm5tIEOxLeC6fAfk/ZfS7vkqM5TzukM4rZDQeo3CV86byVJvyk910hrjSmfA5psdiqNd6R5LGzr1B7inrH4Mznnvz6qW9yhZgLu5pfGFVJ/YXRbPaGn7mnWcmzjOO53uf8wgY9jbwAfIe1M5Wlxlz3xb5nQne4m6Gsl2xyg7D5D2gqE9tEQwx+3w+9Wi8+Qxu9crwUxmNsZJp71IdmFVH9oq5xfmtOWxkw4DyX5sl7cUSqeRcbzH9cuSZ+4NkP80pgMx+cmFIFf6i+5Ljh/ZrNFE7CPjJuXpnaVdA715EPuOWjMl69v6q052n75Ma8tvf/KxT5ztNLYuw5weXnXqXIfd1n0a/N/KZ8vnb9lg8+XadZt49q79HwpzWnh8xJvH9jfSG1H2geRFZbU3rEuEz5LO88VEH5BpbKdnK9/kuYgcW6V+y4sf8mvSc90LxYs3v5tc0gu9SrJsY0De2ssheuU/QPK4VjLQU5jQDkcqw3k5AUdTP4/M6Ebl9dx3Bgpbs3oBxO6031uQk8e0v0LjOfr0XUjk62Ud1suSPPWFKT1AbRbaa4Ez3SS7IM//zdCHD8hpp3xYaiH/7wcXL/fIZVlwm3rVVWWruVFeTWYPl/b5vZGeeLPK7Z2wOViO/gfZuO/hrYlzSFK7ZnuV1q3xGcF7p8pbaOQzsMmBmLd8iDVLdoEr1u0Cf6qC9oE33+M7YvvucWxMQ+SvVA5+LSvX8f4SJKBPhKfH/KCvtz3VlqTStsvcCwcz/VGvy3J6a3+tB3kSPVg8v83qEM+hyrV4droF+eMRk7sTvdPwKw0F0CY0vN7/5h0qJdNVl1CWXUxsmzzDNLaVAbrig0uNsPxe3NdUVrn83nuw7LlcVyOy7Ma2kxaLJe5HFcslzkwVyzc38HzTPUxQJDF065m97D8yT9Lb5nytNjvj4n8gqnr742QMfvF5HdtDOY4honzjqHHEji3KI0lpHS8L5TSor/gY0TsE5qY7igH1yYHwP+CgCM953HMuHK0vfVuW1esVI5NkE5a+49Li750ANMPseLWcZWAi2uQDZZ0jSCTy7kPcGxv+0vt33X8xPtt6tOl8VMvrM31576G68/vcfys1+aw3+VpbWO0nBBn6+NqWOGwqmWN8KyJ3Wl4urg1wpXRL64RXsrGx0sBsx7ygb6W2r20poh7m6R3t7l/VcCXcu2rv++pG5XWmM6NfqX9HTmIQ3/FdZDKiI9/JBuVbIfu28a5Uj1IzxW2/Yu9uJ+1fzWvT+L+uyzWJ89i40eX/tHX37jaGLZr2zNjTtAr5Z6TRpd8cfyCkttWSTmFnG/bk/a44Hq2bf+L696UkPtcaljhsGx9QKV+eyf0sTkWZ+t38sC/l/Xbu6NrqR/m7/2jTKXs/srWLmzPXL59kuRbfd4942XH83ZN9It7kO8TntN7sZ9r7Ot+jspE6ufi3iviMqV+i9vtTqHfwr0WaDN0r7YvpbysTKjtS/Eu29q+lBcZFm//tX0pleVU876Uz8O4ptK+FOybif8pNq754sSePKT7lxnPt6Lr2r6U7sDLwWfdHMuyti+lnA/zwe0t5L6UZ5iNPwttq7YvpWfci2VfyrMxPpJkoI903ZfyeWH8LT1b4fMTf0dTAb8JbSye8/8F/ETC8ZN4dgd//xD199l3II0nKEjzNzmIk9bDpfEbzu9K7crVpiivRq/HHGzK5X3jBiEftneRs3jf2IQVoDN/NsQ5AxNsaw0h3r3Y+pUND/1zyHv/t1rOxxke1X/KZ6I+Ox/n8Eh/YzujJvWUJ7W73jwfZ1wkv9J8D/c9hENxPnMK0nzPgX4+zmGsDvryfJx50K4O1PNxfPqXBiEftfNxesa52jD2ifUWeXH7aMiG487HCbFWKLUjegZN2XbqpHGjck+fc5kPTthf/sulnDh+qPlgaQ5Rmg+m/BWSyfuneeah51NpHIdlx+Xg2Dzhs+A/JR/An81M4LbPn7X+Av474RzFP1Pa8D8qrfNdNqkbl5edtM7H84H95pVsHPVyGEdxe+TrfJJvRp+AewM5L47P8DlBKjfOL+3Jlfw9jtOuZmMElz25Ut+DmKuEsZ/N/0ttjvgrjbtw7dK2J5frjvNk/J5UPzng5TqY0C7oFPdf2lsap4NtDSofg4ky0R5MsO2P4e3mMlaXeD510nOKpL5EgT7S+Eca/72c8WGQxmOks8HwOZ9aaksh+36634/dR7n1wBu3jiuVWW+tveDaUX+L/jnAsa17Y3uTfl31zQn6Sn1JWjkcaxnI4fXM+6x90GdJ56/wtJdHvzg/+ADrs17h2Gehr+B5uJLdi3s3JafKfasJ+PyKfRPy9Ic8Ef9rhb5JmmPk77C93mEMII27cAzwcVaeb7LMpeA8vvT8qVR5f8p5TWiPKYN3Mj3eNileFj6zSnk0GO+aJPNxHTgfYkh9o8s5bLZ5L6Vk39FgkSH1V7Y9tVJ/Kq0FDKgQL+0jUMK9OoG/0rhgQAy2hCud3SX5Z5y/yQlx6Ht4fqW95+jT0G/tc5h7pP+2MVd/i+4u450Gi+5S+XH/kXROe8+qsf/3odnH3e0zpy310byP+IJDH8HTxp2x+yTzJV+COpL2jNXO2PWWVztjV5XvNZXmJF9qZ+z+iLWtP1r8n8s+Utu+09oZu/H5s813B1pnqp2xy+L4uPKPMX0Uzwf3f65n7H6BzT0qlXz+O8cwSSfKJ39+530Sl8v5+Dx0Al266mUAk1kP+nH8PPAPmNwTR3oOkPYIE7/0Tbd6Qa70/b+BnliNgNU/BRa3YeTvn1AvCasBsAoCluQLTd39I7JXU1f0GeGV7R3LNravXdG+YdnV6zYs62hbuXEkqJFwSj2HW+780nfOlx5hPOTPT7kFNO2SQldVzWXpuS58i+Egdk3m2GRJT3HzBLxGVe4qPfSem3IKta5FlcvnbsLkkR5BjGmTva3fsOqGto72Be0d579gkPPXbbhAmyPOQubgP8Ujny0YNdL1tpvnkwzuHesFzjz8Eg99bCzp09z3v/D8tx898+g1lZ7mqKVvLG/ppEIft/R5KVv6vJQtNZeyxYgtHXUxQZpApjT9VXer5h4hpRdLWzaqRcV7LmrNtHFWaM3nQ2tGeGzNOeE+iUrZYuelbbHDo9/ebrFTouu16zpWXX3TsuUb2nVBrli2dtPq1auuXqXb77oNbctXty+7cUPb+vXtG2qteD97rRXHB99WfHB0HbXipS9Y4pz9hriU7BCF1Nry/sALdmJ0jW15XUc7NOOjI84+bsZLUjbjJSl30hRSzqqKzViaUSdLWMzSLgaZtqYurZ7ScDylK5qfdmbZZdY64ayu8wmOuCMu7ay1tCMu7gRH4uHyeJw0U0Rx0tub5ncs48O6te26OAvi+CzKYoY/hV1Pja5TdhtLerPbyDF9KUizGXhyUKPAT3F85gJ3Mw9g96WZJHyzgvgPjX6lGSOcaeHycaZF0ts2k+UzMzOe6Uzd8QyGh7ZO9l8v4Jnu+6DoWuy+ddejIOAOHOzJ62J0wXS426ifwKcssuJ4Ka8BRg5L0o4cjop+e3vkQGW8oW3tinVrXmqD/IQeLdNJOWkgb5uUS6nb3JSjhlxLjHwTpEE+jYE3daxavarjJj3xdt4LtjZ/VfvqFegCeCHZwoE0uKdu42pTYMtWt2/cuKzjmra1o6LbfdxWF6RsqwtS2mNdyolksa1Kk8pJR+l8sv2F97ZZGhPmM1mB2vj8LNr4UJ6AxTeoeH/XpGS/TLgpm/SCtE2aRjRZ9brLlm28fkPHd6N/fdySz03Zks+tlqm1pSy969QapcHWOpqlMeFshpeDuHMEuSnzdHZvLpNRfc9Jht1lb3PZzZJyC5R2npD2oKOnnLj+NV8f9uTUiT+Y/ZmHD39g1HOTT3nyYwvf8uxfv/xnlnZ+Mr3HUPoFguwKoR+lXSinze2YuPHVhbtzSx7bPvPRpgGP/aL1wTPmfPXxnXeMLz78IKVdJKSddkrh2XfcsW2X+tFDv7rnj9M+OXvmkHGtQw7/1uu/PWbthstGPUtpzyRByivPYyn9WcnSd5U5n7vi+lcIXbayhN0sKaeQox6nleli5Pf1KR0m8KVxDNjzcJ0N/gKGi3yoj/SmCGLmgNeEJcCLb8zEncLC4/qp8vKiNp8H3mNZmqkxeHWq3P9SWWRdtzj/w0Ol+ruB4SIfyuR9Mr7RijqUlFuQdqHjaJX7fcI3eTgNdMi6LfV2edverOKj9MUQJ/WTvLyk+qyLwQ88uj037eiW+sveHt1yX93bpwOQf0u5HlQ7HaA71E4HAJmVTgf4DOhQTacD0HjP1NvlDJeXne/pAG0sHb3l+VI9HWBl9GvkPRGD6Xs6wLUM8/8B5kv1dADpbde4/9VwOgA9E1c6HYDalPR8kvQNi5CnAyxkfBik8RY/HcDn+cR1nToX86uUve+n+7XTAeT2Jv266psT9O3t0wEWgRxez7zPupfhcv3iTgegMS6++flKlu7+6DrN6QB8Hsb3dIA5wC+dDsB54k4HeF30y/sm6XlsDsv7G0B20tMBPsHSPRhd9+bpAEtAD+J9iKV5u0UWzv3GnQ7w7hg+rgPnQ4za6QDleVPCvZfi6QA4Zog7HYB8WjWdDoC6x50OQP6Dyqb2NqJS3wAcye/Y9nDV3kZUvfY24uej6zSnNI/5ZPvXT3/yl09WmvdKiv+TxnPm1X34rvGV8GlXjXmbcv9+rWVX3dTRvvGt0f0+Xj++NOX68aUvpl1bLex6GPDzPqFelfv1KnmFcoQ054X7mxGbx/F+lD830utXfbxTbYRtF0vatW+a597G8FBWzh3P+ryVsp5HchumgM9rHL+gUpV71/xxHuRh/rAdJJyvHpGD9FyeZKPSGIeXLR/zNMRgxZ2CMin6lb4GFbe/mesrvWtg5I4D3XtjPQXbeJw9+spJWb8l28nrvXhy0gTXdpPFyUmSXaRcVyrlID2XJ82r4unmWLaGcAyNWHwMzflPiH6lr7W5nBgUN/47GnSX3t9P2m6k57uUazhpbXZEOpvIiWt5yjl99zooL1P+7Dub3ce4eiEtzn0R/zyWjvpw1zUo2zoRvv+D/P1AH+JfxPSh0+dSrklav16VE+7VCzx8nXJndO0yn8/zzJ+9uT6etiGeFoW+mp/01Bu+mr8DlqJuuny16+lWlL9ByeSV+Bp53Lo4LzvbqVguJ1+ZwOeNyaZtbUg62SxuvTJuvhnbF/HTOrOx492AGfqEsQbID7f3QZa88vElYSvgS7cHSI00+b+DycH84xqXLa8mYNkMFvgHAY8JReCX7IznsQkwpHVuaT4S7aZByXbD/TbnXxf9vnBqHegn1U9O0EV6hsf5Upf+jvTguPyX0hCuCY0CP/dhFEK9x3pL9FvN77HewHROuafu0hzI9N1TtwN0xbFHSdmDz546mmvo1bfqensSUzIs7Ki5cdYL/HxjDee/J/rliyw4WcXlvXC0uYUvF/Mr6cz1sRl1vcBPsgcI/BTHB4HcyXMeXl4cqxAjjxZzqE54A+UDA5SPE8WS3nEdMGLVC/d4Y6eFe744TFi+AzYTpIGLZFtp2sLX+//qucf/c+W9L/IJ/eUpJ/SX1yb0M53QH/8Sn9AfX5vQfyGUXPojjv8im9Afn4P0XF5tQr/8Xm1C3ynUJvRBn9qEfk8dq3BCf3xtQl/u02oT+rUJfY5fm9DvqWttQr+bp4on9Eu1Cf3ahH5tQr9b55QT+stzILM2oa+SZaQ2oV+b0FeqNqFvguuEPp0WZib017Zv7ljWtn69+QbKsraN0VdRaqc2vhBqpzaWh0xPbTStk84a7/4k0lJts63r11/QtrJ14/4PqmDPI3lJpcqnYTBdncDHgzTs4rqnHBa8aE6GpCXBFas2tC/vWHVD+7JVa29o39BBcqkchjOcJH5jWLL04jlPw9k14aJ/Ux4yKPC6woAjBhySon/0kJ+L0yMnMNOy4TB2bzjEdddlxzq9zrti1eYhoGXCPjDtW5hd1pBwcrJesgb+QMTf7iR8BdckM+VbnANsD2QFQS7y5FV5QG+Vh/v1DryS1VCc9ODlMuaUHtRwEpDz8x7KhH4xWPgQifaRto5aBJmkG42duOfraF/ZvmHZ9ZvWdaxqX9uBbTvhVF8dpR+YLL3oA/noGKd30VfxkIv5L/WXcbw5C65kFYRJtcH1pXz8f9wED2Um5hEA",
1930
+ "debug_symbols": "7P3Bsiy7bmWJ/sttq+EAQYDQr5Q9S1NlqcpkJpPKlMrXkeW/v3C4ExNr7RtcXBFxXqeqc/c4556N6U46ZtBJOPlff/s//vl//5//13/7l3/7P//9f/ztH/+3//rb//4f//Kv//ov/9d/+9d//+//9J//8u//9vi3//W34/wfkr/9I9Gw//UPf6Pzn9sR/6yPf+b4//Vv/ziYH/+vTRgntAf4CfL4D4+Ax19p+VfI539wzP/gBJrAE9oEmdAn6A1y/i06HvHljO+Pv0L/8DeX649+/aHXH3b9Ma4/PP6g47j/pPtPvv9s959y/9nvP/X+0+4/x/3nHY/ueHTHozse3fHojkd3PLrj0R2P7nh0x+M7Ht/x+I7Hdzy+4/Edj+94fMfjOx7f8dodr93x2h2v3fHaHa/d8dodr93x2h2v3fHkjid3PLnjyR1P7nhyx5M7ntzx5I4nd7x+x+t3vH7H63e8fsfrj3jng9b1/tPuP8f95yOePv7U4/6T7j8f8c7nT89453+oMqFP0Ak2YUw4r1LOJ/6YQBN4QpsgE/oEnWATxoQZeZyR+wk0gSeckc+bHzKhT3hE5gCbMCb4DX5MoAk8oU2QCX3CjOwzss/IZw6d2c5nEl1AE3hCmyAT+gSdYBPGhBmZZmSakWlGphmZZmSakWlGphmZZmSakXlG5hmZZ2SekXlGPrOL+wk6wSaMCX7DmWIX0ASe0CbIhBm5zchtRm4zcpuRZUaWGVlmZJmRZUaWGVlmZJmRZUaWGbnPyH1G7jNyn5H7jNxn5D4j9xm5z8h9RtYZWWdknZF1RtYZWWdknZF1RtYZWWdkm5FtRrYZ2WZkm5FtRrYZ2WZkm5FtRh4z8piRx4w8ZuQxI585yOMEnWATxgS/IXIwgCbwhDZBJszIPiP7jHzmYKMT/IJ25uAFj8hNT+AJbYJM6BN0gk0YE/yGMwcvmJFpRqYZmW7faNQn6ASbMCbcjtT4mEATeEKbMCPzjMwz8pmDzU8YE/yGMwcvoAk8oU2QCX2CTpiR24zcZuQzB+U4gSbwhDZBJvQJOsEmjAl+Q5+R+4zcZ+QzB6WdIBP6hDOynWATxgS/4czBC2gCT2gTZEKfMCPrjKwzss7INiPbjGwzss3INiPbjGwzss3INiPbjDxm5DEjjxl5zMhjRh4z8piRx4w8ZuQxI/uM7DOyz8g+I/uM7DOyz8g+I/uM7HdkOY4JNIEntAkyoU/QCTZhTJiRaUamGZlmZJqRaUamGZlmZJqRaUamGZlnZJ6ReUbmGZlnZJ6ReUbmGZlnZJ6R24zcZuQ2I7cZuc3IbUZuM3KbkduM3GZkmZFlRpYZWWZkmZFlRpYZWWZkmZFlRu4zcp+R+4zcZ+Q+I/cZeeagzByUmYMSOfjwDYkcDKAJPKFNkAl9gk6wCWPCjGwzss3INiPbjGwzss3INiPbjGwzss3IY0YeM/KYkceMPGbkMSOPGXnMyGNGHjOyz8g+I/uM7DOyz8g+I/uM7DOyz8h+R+7HMYEm8IQ2QSb0CTrBJowJMzLNyDQj04xMMzLNyDQj04xMMzLNyDQj84zMMzLPyDwj84zMMzLPyDwj84zMM3KbkduM3GbkNiO3GbnNyG1GbjNym5HbjCwzsszIMiPLjCwzsszIMiPLjCwzsszIfUbuM3KfkfuM3GfkPiP3GbnPyH1GnjnYZw72mYN95mCfOdhnDvaZg33mYJ852GcO9pmDfeZgnznYZw72mYN95mCfOdhnDvaZg33mYJ852GcO9pmDfeZgnznYZw72mYP9zMHOJ9iEMcFvOHPwAprAE9oEmdAnzMg+I/uM7HdkPY4JNIEntAkyoU/QCTZhTJiRaUY+c7C3E3hCm3BG7if0CTrBJowJfsOZgxfQBJ7QJszIPCPzjMwzMs/IPCO3GbnNyG1GbjNym5HbjNxm5DYjtxm5zcgyI8uMLDOyzMgyI8uMLDOyzMgyI5852B/jeT1z8AKacEa2E9oEmXBG9hN0gk14RNazv2I+5oSYkAk4Z2TkBJ7QJsiEPkEn2IQxwW84c/CCGdlmZJuRzxzU85rPHLxAJ9iEMcFvOHPwAprAE9qEGXnMyGNGPnNQxwljgt9w5uAFNIEntAkyoU/QCTOyz8h+R7bjmEATeEKbIBP6BJ1gE8aEGZlmZJqRaUamGZlmZJqRaUamGZlmZJqReUbmGZlnZJ6ReUbmGZlnZJ6ReUbmGbnNyG1GbjNym5HbjNxm5DYjtxm5zchtRpYZWWZkmZFlRpYZWWZkmZFlRpYZWWbkPiP3GbnPyH1G7jNyn5H7jNxn5D4j9xlZZ2SdkXVG1hlZZ2SdkXVG1hlZZ2SdkW1GthnZZmSbkW1GthnZZmSbkW1Gthl5zMhnDhqdwBPaBJnQJ+gEmzAm+A1nDl4wI/uM7DOyz8g+I/uM7DOyz8h+Rx7HMYEm8IQ2QSb0CTrBJowJMzLNyDQj04xMMzLNyDQj04xMMzLNyDQj84zMMzLPyDwj84zMMzLPyDwj84zMM3KbkduM3GbkNiO3GbnNyG1GbjNym5HbjCwzsszIMiPLjCwzsszIMiPLjCwzsszIfUbuM3KfkfuM3GfkPiP3GbnPyH1G7jOyzsg6I+uMrDOyzsg6I+uMrDOyzsg6I9uMbDOyzcg2I9uMbDOyzcg2I9uMbDPymJFnDo6Zg2Pm4Jg5OGYOjpmDY+bgmDk4Zg6OmYNj5uCYOThmDo6Zg2Pm4Jg5OGYOjpmDY+agzxz0mYM+c9BnDvrMQZ856DMHfeagzxz0mYM+c9BnDvrMQZ856DMHfeagzxz0mYM+c9BnDvrMQZ856DMHfeagzxz0mYM+c9BnDvrMQZ856DMHfeagzxz0mYM+c9BnDvrMQZ856DMHfeagzxz0mYM+c9BnDvrMQZ856DMHPXJQThgT/IbIwQCawBPaBJnQJ+iEGbnPyH1GjhzsJ9AEntAmyIQ+QSfYhDHBb7AZ2WZkm5FtRrYZ2WZkm5FtRrYZ2WbkMSOPGXnMyGNGHjPymJHHjDxm5DEjjxnZZ2SfkX1G9hnZZ2SfkX1G9hnZZ2S/Iz8W2Y8kSuKkliRJPUmTLGkkpQalBqUGpQalBqUGpQalBqUGpUbkpUVxwJFESWe9whHUkiSpJ2mSJY0kn3Sm6E2UlBotNVpqtNRoqdFSo6VGSw1JDUkNSQ1JDUkNSQ1JDUkNSQ1JjZ4aPTV6avTU6KnRU6OnRk+Nnho9NTQ1NDU0NTQ1NDU0NTQ1NDU0NTQ1LDUsNSw1LDUsNSw1LDUsNSw1LDVGaozUGKkxUmOkxkiNkRojNUZqjNTw1PDU8NTw1PDU8NTw1PDU8NTwqRHVNDdREie1JEnqSZpkSSMpNSg1KDUoNSg1KDUoNSg1KDUoNSg1ODU4NTLPKfOcMs8p85wyzynznDLPKfOcMs8p85wyzynznDLPKfOcMs8p85wyzynznDLPKfOcMs8p85wyzynznDLPKfOcMs8p85wyzynznDLPKfOcMs8p85wyzynznDLPKfOcMs8p85wyzynznDLPKfOcMs8p85wyzynznDLPKfOcMs8p85wyzynznDLPKfOcMs8p85wyzynznDLPKfOcMs8p85wyzynznDLPKfOcMs8p85wyzynznDLPKfOcMs8p85wyzynznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfOcM88585wzzznznDPPOfM8yogGB1nSSPJJkecXURIntSRJ6kmp4anhqeFTI4qKbqIkTmpJktSTNMmSRlJqUGpQalBqUGpQalBqUGpQalBqUGpwanBqcGpwanBqcGpwanBqcGpwarTUaKnRUqOlRkuNlhotNVpqtNRoqSGpIakhqSGpIakhqSGpIakhqSGp0VOjp0ZPjZ4aPTV6avTU6KnRU6OnhqaGpoamhqaGpoamhqaGpoamhqaGpYalhqWGpYalhqWGpUbkeQsaST4p8vwiSuKkliRJPUmTUmOkxkgNTw1PDU8NTw1PDU8NTw1PDU8NnxpRuHQTJXFSS5KknqRJljSSUoNSg1KDUoNSg1KDUoNSg1KDUoNSg1ODU4NTg1ODU4NTg1ODU4NTg1OjpUZLjZYaLTVaarTUaKnRUqOlRksNSQ1JDUkNSQ1JDUkNSQ1JDUkNSY2eGj01Is97UEuSpFNjBGmSJY0knxR5fhElcVJLkqTU0NTQ1NDU0NSw1LDUsNSw1LDUsNSw1LDUsNSw1BipMVJjpMZIjZEaIzVGaozUGKkxUsNTw1PDU8NTw1PDU8NTw1PDU8OnRhRH3URJnNSSJKknaZIljaTUoNSg1KDUoNSg1KDUoNSg1KDUoNTg1ODU4NTg1ODU4NTg1ODU4NTg1Gip0VKjpUZLjZYaLTVaarTUaKnRUkNSQ1JDUkNSQ1JDUkNSQ1JDUkNSo6dGT42eGj01empknvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+Z5zzzvmec987xnnvfM85553jPPe+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWaea+a5Zp5r5rlmnmvmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5rllnlvmuWWeW+a5ZZ5b5rllnlvmeRSFOQX5pDPPb6IkTmpJktSTNMmSUqOnhqbGmece33jHl7MXtSRJ6kmaZEkjySedeX5TalhqWGpYalhqWGpYalhqWGqM1BipMVJjpMZIjZEaIzVGaozUGKnhqeGp4anhqeGp4anhqeGp4anhUyMKyW6iJE5qSZLUkzTJkkZSalBqUGpQalBqUGpQalBqUGpQalBqcGpwapx57vHl85nnN0nSqaFBmmRJI8knnXl+EyVxUkuSpNRoqdFSo6VGSw1JDUkNSQ1JDUkNSQ1JDUkNSQ1JjZ4aPTV6avTU6KnRU6OnRk+Nnho9NTQ1NDU0NTQ1NDU0NTQ1NDU0NTQ1LDUsNSw1LDUsNSw1LDUsNSw1LDVGaozUGKkxUmOkxkiNkRojNUZqjNTw1PDU8NTw1PDU8NTw1PDU8NTwqRHFajdREie1JEnqSZpkSSMpNSg1KDUoNSg1KDUoNSg1KDUoNSg1ODU4NTg1ODU4NTLPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcZ57zMfOcj5nnfMw852PmOR8zz/mYec7HzHM+Zp7zMfOcjyM1KDUoNSg1KDUoNSg1KDUoNSg1KDU4NTg1ODU4NTg1ODU4NTg1ODU4NVpqtNRoqdFSo6VGS42WGi01Wmq01JDUkNSQ1JDUkNSQ1JDUkNSQ1JDU6KnRU6OnRk+Nnho9NXpq9NToqdFTQ1NDU0NTQ1NDU0NTQ1NDU0NTQ1PDUsNSw1LDUsNSw1LDUsNSw1LDUmOkxkiNkRojNUZqjNQYqTFSY6TGSA1PDU8NTw1PjchzD+pJmmRJI8lvinq4myiJk1qSJJ0aPUiTLGkk+aTI84soiZNakiSlBqUGpQalBqUGpwanBqcGpwanBqcGpwanBqcGp0ZLjZYaLTVaarTUaKnRUqOlRkuNlhqSGpIakhqSGpIakhqSGpIakhqSGj01emr01Oip0VOjp0ZPjTPPH49F4AB64pnqEwnIwAYUYAcqEGoKNYVa7HdFRyABOdHp2omKo9aMbjzF6Np2SYEGHECfGNVlEwnIwAYUYAcq0IADCDWCGkGNoEZQI6gR1AhqBDWCGkGNocZQY6gx1BhqDDWGGkONocZQa1BrUGtQa1BrUGtQa1BrUGtQa1ATqAnUBGoCNYGaQE2gJlCLPeJIAz0xdoq7kYAMbMBQs8AOVKABB9ATI91uJCADGxBqkW40AhUYah44gJ54pduFBGRgA55q5+6LHIVqExV4qsVmjFGrNtETY8s5juuNTeduZGADCrADT7XYjyqK1iYOoCeev7sPYw8kIAMjbg+MuPEQhD+0899GVdrD3gMJyMAGFGAHRlwPNOAAemL4w40EZGADCrADoRb+cG7pxFGnNvFUO3dz4qhUm0hABjagAE81kUAFGnAAPTH84UYCMrABBQi18AeJbgl/uDHUNNATwx9uJOCp1qMdwh9uFGAHKtCAp1qnQE8Mf7iRgAxsQAF2oAINCLXwh3M7Co6KtokEjJaMRy784UYBemLkfI/ejOzu0TqR0ucuCxxFaRMNOICeGCmtcZGR0jcysAEF2IGnmsZdRErfOICeGCl9IwEZ2IAC7ECoxfBAox1ieHCjT4xiNTp3c+CoVpvIwFDTwFCzwFDzQAUacAA9MdL/xjOucaAAO1CBBhyJkYXnR2UcBWU3RhZaXG/km41AAXagAg04EiMvLK438uJGT4y8uJGADGxAAXagAqHWodahplBTqCnU4hfyrHzmqO56rBYEnhFGdHfkxY0EPCOM6O7IlhsF2IEKtMRIkREdEMkwogMiGUZcWSTDjQqMCNHUkQw3emIkw40EZOCp5nHHkQw3nmoeNx/JcKNNjNotOpdMOAq1HtOUgQKM67XAiCCBBhxAT4wHPF46omBrIgNDTQMF2IFQI6gR1Ahq8ft2I82+iNqtiQ0owA5UoM8ujMqsqwujNOvqrKjNmtiBOvsiyrMmDmD2ZlRoTSQgz36LIq2Jkp0lHahAzy6MfLv6raM3I9+uLox8uxqqo3072rejfSPfrs5S9KaiNyPfrs5S9KaiNxVqCjWFmkJN0ZuRDB5NEslwoyfGfqdHtE7seHojAxtQgB2oQAMOoJ94Xk6UPU0kIAMbUIChNgIVaMABDLXzMYoCqIkEPNXinThqoCYK8FSL92O99ki90IADeKrR+cDotTNqC2xAAXZgxO2BEVcDI64FemLsVnwjAUMt7jj2LL5RgB14ql27sseWxfHWEcVPHJsnR/UT3xv9nhKxg23UP01sQAF2oAINGGrR6rGR8YWxlXGLy4nNjG9kYAMKsAMVaMAB9ESFmkJNoaZQU6gp1BRqCjWFmkIttjyO16gojprIwAYUYAcqMOJGZ8WGxzcSkIENKMAOVKABBxBqDjWHmkPNoeZQc6g51BxqDjVPNTsOIAEZ2IAC7EAFGnAAoUZQI6gR1AhqBDWCGkGNoEZQI6gx1BhqDDWGGkONocZQY6gx1BhqDWoNag1qDWoNag1qDWoNag1qDWoCNYGaQE2gJlATqAnUBGoCNYFah1qHWodah1qHWodah1qHWodah5pCTaGmUFOoKdQUago1hZpCTaFmUDOoGdQMagY1g5pBzaBmUIOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBS+zyEgkUYAfadES7DORCnziOA0hABjagADtQgQYcQKgR1AhqBDWCGkGNoEZQI6gR1AhqDDWGGkONocZQY6gx1BhqDDWGWoNag1qDWoNag1qDWoNag1qDWoOaQE2gJlATqAnUBGoCNYGaQE2g1qHWodah1qHWodah1qHWodah1qGmUFOoKdQUago1hZpCTaGmUFOoYdgxMOwYGHYMDDsGhh0Dw46BYccwqBnUDGoDagNqA2oDagNqA2oDagNqA2oDag41h5pDzaHmUHOoOdTgJQNeMuAlDi9xeInDS/zyEgsUYAeGmgcacABD7Rwg++UlFxKQgQ0owFNNOFCBBjzVJK43vOTC8JIbCcjABjzVYgY5Kr8mKjDUeuAAemJ4yY0RVwMjQjRU+MONAxgRoqHCH24k4Hm9Ma/s15kqFwqwA0+1mAr262yVCwfQE6/zVKL5rvNTWqACDRjXGxKR8xdGzt9IQAY2oABDLRr1OlXlQgMOoCdep6tcSEAGNqAAoWZQM6gZ1AxqA2oDagNq17kr0d2R3TE7HpVcEwfQEyO7byQgAxtQgB0INYeaQ82nWouyrokEZGADCrADFWjAAYQaQY2gRlAjqBHUCGoENYIaQY2gxlBjqDHUGGoMNYYaQ42hxlBjqDWoNag1qDWoNag1qDWoNag1qDWoCdQEagI1gZpATaAmUBOoCdQEah1qHWodah1qHWodah1qHWodah1qCjWFmkJNoaZQU6gp1BRqCjWFmkHNoGZQM6gZ1AxqBjWDmkHNoDagNqA2oDagNqA2oDagNqA2oDag5lBzqDnUHGqXl1hgByrQgAPoE+nykgsJyMAGPNX0COxABYbaCBxAT7y85EICMrABBdiBCoQaQS285Fzia1FONpGAAjwjnOuQLUrFJkaEs32jWGwiARnYgAI8r9eiScIfbjTgAJ5qFsLhDzcS8FSzuN7whxsFGGotUIEGHMBQkxPDHyyuN5zAoo/DCW7sQAVGXA884464i3CCEZcTTjBCLZzgRgY24Kk24nLCCW5UoAFDLa430n/E5UT6j+j5SH+Py4n095CI9L+xAxVowAH0xEh/j2uI9L+x5WM08ERFzt+oQAMOIJ5Ux5PqeFIj52+EmkPNoeZQc6hFznu0WeR84HWO4o1xQxbIwAYUYAcq0IAD6ImR8zdCjaAWOX+WpbbrjMUbO1CBBhxAT4ycv5GADIQaQ42hxlALfzhXmNp92mIPJCADG1CAHahAAw6gJwrUBGoCNYGaQE2gJlATqAnUBGodah1qHWodah1qHWodah1qHWodago1hZpCTaGmUFOoKdQUago1hZpBzaBmUDOoGdQMagY1g5pBzaA2oDagNqA2oDagNqA2oDagNqA2oOZQc6g51BxqDjWHmkPNoeZQ81RrxwEkIAMbUIAdqEADDiDUCGoENYIaQY2gRlAjqBHUCGoENYYaQ42hxlBjqDHUGGoMNYYaQw1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlsVFcO+tWWpT6TRRgByrQgAPoiaeXTCQg1ARqAjWBmkBNoCZQE6h1qHWo5Qxnk8tLLgw1CuxABRpwAD1RD2CotUAGNmCoSWAHKjDU4sp0AD3x8pIIdnnJhQxsQAF2oAINOICeGK5xTl23KEKcGHcRD8zoQAUacAA90Q9gtJkFMrABQ20EdqACQy2uLM6dvtEnRmkiX0cOh2vcyMAGFGAHKtCAA+iJcfr0WWzVojRxogDPuziLrVqUJk404HkXZ4VVi9LEG09/aGexVYvSxIkMPNXOCqsWpYkTO1CBBhxAT4wTqkkCCcjABhRgB+pdN9jugsWzu6+CRb+QgAxsQAF2oALtrhBssbXcRE+MYuIb6a7AbFdx440NKMAOVKABB9ATFT2v6HlFzyt6XtHzip5X9Lyi5w09b+h5Q88bet7Q84aeN/S8oecNPW/o+YGeH+j5gZ4f6PmBnh/o+YGeH+h5R887et7R846ed/S8o+cdPe/oeUfPe/a8Hgcwez5qLSc2oAA7UIEGHMDs+aiqbGdFY4uqyokC7MDoi+uvGXAAPTHKkc+S86ZXOfKFDGxAAXagAg04Eq/stkAGNqAAO1CBBhxAT4xf/xuhJlATqAnU4tef4yLj1/9GAw6gJ8av/42nGkernzk/sQEFGGrR6vHrf6MBQ20EnmotJOLX/0YCMrABBdiBCjTgqXaWCLUosLwxnOD84KxFgeVEBjZgqMWlhxPcqEADDqAnhhPcSMBQix4KJ7gx1KJ1wgluVKABR2IMBM7CgBa1lhMZ2IACPCUkmiQGAjcacAB9YtRaTjzVzo/TWtRaTmxAAXagAg04gJ5IBxBqYRVnEUGLWsuJAgy1HqhAA4aaBYba2ZJRa9nOGoEWtZYTGdiAAuzAKNII8klXSVQQJXFSmxQZfFYdtCh2nNiBUfMdZEkjySfFPMBFlBQRLzybIUbuUbrYrn/pkyIbL4phZRAntSRJ6kmaFCJxX5GGN54qPboo0vBGAsZlRhdFasVSW1QhTozp5pMis2JxLIoQJzKwAQXYZ5OMbM6RzTmyOUc2p2dzRiJdjRgpczVipEwsgEV14cS41fNKo7pw4nmlsWAX1YVyUUuSpJ6kSTYp0iJWzKJWsMWKQ9QKRoJEqeBNmnT+7eu/G0k+Kc6nv4iSOClEIkw89zee/X5+j9eiRHCiJcYAWHtgRNBAAZ7XGbcRv4VXw8Rv4Y0D6InxW3h+8dei6m8iA1s2+JVJF3Yg1ARqAjWBWodah1qHWodah1qHWodah1qHWodaZN+NdD/qUfR3Pb5R9DdRgB2oifE7pREhkunGAYy31JOuCa8gSuKkliRJPUmTLGkkpYanhqeGp4anRvxGxfprlOBNVOB5M7GmGiV4E89GjHXdKMGbSEAGNqAAOzDUNNCAAxhq51MeJXgTCRhqFtiAAoxF1yBNsqSR5JNiduuiiHhhXKkHnlcaa8JRUDfREyMfbzyvNBaNY0e1iQ0owA6Mpc6gEGuBA+iJkaXx2hK1dxMZGGLRFpGlN4ZY3Fpk6Y0GjOc3yCddORpESZzUkiJiNFbkXKxYR9VdOz/fa1F1N5GBDXheabyXRdXdRAUacABD7aT43buIkqJRglqSJPUkTbKkEIlHLoadF8aP440NGJcZjR9DyRvjqQ7ySTGmvCiu8kIGNmC0SNxHpOuN8asVzesGPH95Yp4vaurknI+TqKmTc3JPoqZOzmk8Oa7fxwsbUIAdqEADDmCo9RMp4mpgAwqwAyOuBZ5xPWgk+aT4+byIkjipJUlST9Kk1ODU4NRoqdFSo6VGS42WGi01Wmq01Gip0VJDUkNSQ1JDUuPMR4l2OdPxJp90puNNlMRJLUmSepImpUZPjZ4amhqaGpoamhqaGpoamhqaGpoamhqWGpYalhqWGuevolA8wKMDFWjAAfTEM98mEvDUOme1JArPhOJZjtQ650Ek6r/kfNOXqP+aOIAhcXZZ1H+dA1aJ8q+bOKklSVJP0iRLGkk+iVODUyMe+fPbUYmaLzmH0hI1Xz3u4XzALzof8JsoiZNakiT1JE2ypNRoqSGpIakhqSGpIakhqRGPOsdNxXN9vrZJbPwl5y47ErVcEwXYgQo04AB6YjzgNxIQago1hVo85RzXG4/5jQYcQE+MR/1GAjKwAQUINYOaQc2gZlAbUDvHmz0e0HO8eVNLkqSepEkR8XTqqNcSjmf+TBWNXjp/mm7qSY+/rfEInr9LN40kvykKtW6ipLhxDzxv8XzVlSi9muiJZ7pJi7925ttEBjagADtQgQYcQE9kqDHU4hfonMmSKL2aKMBQ64EKDDUNDDULDLW4+fglupGAp5qEcPwY3XiqnW+REgVZIiF8puv5jihRj3XTSPJJZ7reREkR8cLzSiUuOpIz7DjKq26MX6Ibzys953kkyqsmNqAAOzDixg1GGvbo3UjDHjcYaXijADtQgQYcQE+MNLwx1KLhIg1vbMBQi+aMNLxRgQYMtWizSMMLIw1vPJs32ulMw5ta0plI8UCcaXiTJlnSSPJJ50+bRlOev2w3cVLcT/SgC7ADFegTo/RJzhkhidKniRHBAjtQgY8rPd8hJSqfbvJJcbz8RZTESS1JknqSJqUGpQalBqcGpwanBqcGpwanBqcGpwanBqdGS42WGi01IjfPOSqJAqeJHXi21zkFIVHgNHEAz34IN40Cp4nn86rROzFivLEBBdiBoRbdF9l8Y6hFn0U2x8MSBU5yTl1IFDhNZGAMyeIir7HlhR14NqEEWdJI8knnj+9NlBQRow2vYWPc9jVubIGeeI0cLyRgjB3jtq/B44UC7EAFnpd60UNsxI1EFls0UGSxxf0PAj6ijlCdZ1tIFBp5BIr9cC/ipPOSruiRijd2oAINOIA+MaqMJPSjymgiA+W+KpnnWIjMcywk6orOd1aJsqKbfFL8tp6rhhJFRRMZGLcyAgUYt2KBCjTguHYEFpn7X4vM/a9F5v7XInP/a5G5/7XI3P9aZO5/LTL3vxaZ+1+LcGpwarTUaKnRUqOlRkuNlhotNVpqtNRoqSGpIakReXpOh0gUD00UYLxARodGnt5owHiHpEBPjDy9kYDxHhndG3nq8RzEHrkhFnvkXqRJIRWdHj/EN3pijJJvJCADG1CAHahAqCnUFGqxMXY8S7Ex9kWc1JIkqSdpkiWNJJ80UmOkxoj76YENKMAOVKABB9AT47XzRgKGWjwh4Qk3CtAmRl2QxEVGXZBEt0Vd0MQGFOA5mj/nhCTqgiYacAA9Md5hbyQgAxtQgFAjqBHUCGoENYZavM6eE1cS1UITQ60FCrADQ00CDTiAnhhvvzcSkIENGGo9sAMVaMBQs0BPjPfgGwnIwFMt5h6ihmhiByrQgAN4qlE01GkIEwnIwAYUYAcq0IADCDUNNQ4kIANDLVpSQy0aSjsw1OIBVwOGWrSOeqIdQAIysAEF2IEKNCDUDGoDagNqA2oDagNqA2oDagNqA2oDag41h5pDzaHmUHOoOdQcag41T7WoN5pIQAY2oAA7UIEGHECohZec25tJ7O02kYENeNYFxVOt16bgFyrQgAPoidem4BcSkIFxFx4YM2vXv/XE8IeYPIt6o4kMbEABdqACI+6ZDFFDdDeJ4I6vnL+wAxUYE4EtcAA9MXL+RvRmh1pHb3b0ZkdvdvRmR29eOR/XcOV8oKI3Fb0ZOX9dQ+T8jQKEmkJNoYacV+S8IucVOa+GZ8fQkoaWNLRk5Px1DYaWNLQkcl6R84qcV+S8IucVOa/IeUXO65XzcQ0DLTnQko6WdLRk5HzMMEY50cRoyR7YgQo0YNzbFcwnRjnRRAIysAEF2IGh5oEGzAc8aoh6TMpFDdFEBjZgPhp2zX5fqEADDmA+9sYHMDsraogmNqAAO1CBBhzAfDSijqjHZF8UEk0U4Bm3RTtE+se8X+zMNnEAPTGGBzcSkIENKMAcGNr1ZnChJ4YpxCxj1CZNjLhxQ2EKNwow7iK6O0zhRgPGXUTPhylcGKZwIwEZ2IAC7EAFGhBqcYBt3HscYHtRSzpfwuMW4wDbizTpjBhTo1HhNNETI/FjwjRKnCYysF3HiIrNY2zF5jG2YvMYW7F5jK3YPMZWbB5jKzaPsRWbx9iKzWNsxTw1PDU8NTw1PDU8NeYxtjLmMbYy5jG2MuYxtjLmMbYy5jG2MuYxtjLmMbYy5jG2Ejur9ZgEjp3VboxUvzEaTAMZeHZ4TBhHtdTEDjw7PGZ+o2BqYqwkHYGeGKkek7VRNDWRgecL4UWS1JM0yZLGpGsJjANjLaoFxmJU3OC14nWhAQcwrjRu+1r1upCADGzAUPPADlSgAQfQEyPJY6owKqYmMrABBdiBCjTgAHqiQi2SPJZqomRqYgOGWrRkJHksKETJ1MRQiychkvzGUIvWiV/+GwnIwAYUYAcq0IADCLUBtQG1AbUBtQG1AbUBtQG1AbUBNYeaQ82h5lBzqDnUHGoONYeap1oUaU0kIAMbUIAdqMBQs8AB9MRwhhvP8Xe8R0eR1sQGFGAHKtCAA+iJ4QExZx17n/WYnY5SrYnn9caUdJRqTfTEGO3fSEAGNuAZNyamo/7qbhLBHUfO38jABjzbN+azo/5qogINOCABtY7e7OjNjt7s6M2O3uzozSvn43I6erOjNzt6U3FvkfMxvR4VWxOjdaIvIudv7EAFxr1dwQbQEyPnbyQgAxtQgKEWD0Hk/I0jOysSPWbro15rIgEZ2LIDBjproLMGOmugsyLRb/REJLoj0R2J7kh0R6I7Et2R6I5E90z0HoVc/VwK6FHINbEBz7jn5zM9Crn6WV/Yo5BrogEH0BMjpW8kIAMbMOK2QAMOoCfGz/q5702PYq6JDGzA+dPco6BrogINOICeeBW9XEhABvZr9adHEddNlnQuXlmQTzoz/6a4/gsZ2IDnMmN02Jn3N2lSNNUIHEBPPLP+6s4z6W/ipJYkST1JkyxpJPkkTQ1NDU0NTQ1NDU0NTQ1NDU0NTQ1LDUsNSw1Ljcjuc2mkx35mExVo97Jcj/3MJp4t5vGsR6LfSMAofYkn9ap9uVCAHahAAw6gJ0aiezxGkeg3MrABQy0eqkj0GxVowAEMtfNxif3MJhLwbEcOakmS1JM0yZJGkk860/4mSkoNSg1KDUoNSg1KDUoNSg1ODU4NTo3I/7P4tUdx28QOVKABB9ATI/9vPOsjzvWGHmVvExsw1EZgByrwrMQ44iKjmuZGTxQGnsXAF1lS/KXoNvHEM8snEpCBDXhWilBc7ZnqExVowCi7okBP1AMYlVdxZWfGT2zAUGuBHahAA4aaBIZaXK9F3Gh+a0ABdmDE9cAzLsddnHmuHJdz5rlyqJ15PpGADIwqtbicqK65sQMVGGpxvVFXw3E5UVjD0e9RWdPicqK0poVEFMLdKMAOVKABB/BUO/dQ71c93I35EMVuZRMF2IEKNGBIaKAn0gGMG7JABjagADtQgQYcQE/kAwg1hhqHmgcKsAMVaMAB9MR2AAnIQKg1qDWoNahFmp8TX/0ukDsCCcjABjzjnlV5PXYrm6hAA467wqVf5XQXXoXdFxKQgQ0owA6MIr8LPTFy/kYCMrAB43pbYESIZ9IiQg8kIAMjQjxckd03RjtEd0d232jAuN5o6sjuCyO7byQgAxtQgKEWXRjZfaMBB9ATI9FvjKLAuPRI6asdIqVvROtESvfo+UjpG31i7Co2kYDnXZzzVz1K6yYKsANPtRimRmndxAEMtbMDorpuIgFDTQMbUIChxoGhZoGhNgJDzQM9MbL7xjOuxr1FHt/YgQqMUsa4t8jYeLiijG4iAxuwA2e9aL/q5C6MOrkbZxVpv+rkbmxAAXagAg04gJ4YP80abRY/zTcKsAPj5qOz4qf5xgH0xCi2iXSKsriJDGxAAXagAg04Eq/i82ioq/j8wriLaN9I3hs7UIFxF1ewAfTESN4bCcjAqJWOlowSmxs7UIEGHEBPjBKbGwnIwLiLeNYjeW804ADGXZwZEAV2EwnIwCjYv1CAHahAAw6gJ0bF3Y3RFyNQgB2oQAMOYEzknBSv2hdREie1JEmKGY8gTbKkkeSTrpm0oLhyDzyv8Zw961E2N3EA497Ppz4q5yYSkIENKMAOVKABBxBqHWodah1qHWodah1qHWqRu+dkU49CuYkEZGBUe3OgADtQgQYcQE+Mn+MbQy0uJ36Ob2xAAYaaBCrQgAPo2VmR0TcSkIENKMAOxPMw8DzED2/Ms0R53EQGRtx4MOPnOF73Y4utiQo0YNxF5EJkdGCU0k0kYJTKU+CpFnNUUUo3sQMVaMAB9MT4Ob6RgAyEWuT5WVnbo5RuogINOICeGD/HNxKQgaHmgadazItEKd1EBRpwAD0xfrpvJCADGxBq8St+Fnr2KKWbaMAB9MQYgt9IQAY2YKhZYAcq0IAD6InxMn4jAc/y/pgkiFK6iQLsQAUacAA98VpBD6IkTmpJktSTImK07OkBFq9+URg3MZzs+g8E2IEKNOAAeuL1SdmFBIwWiMsZ0QLRC0OBBhxATzw9YCIB4y56YAMKsANDLZ5yN+AA+sQogZtIQAaGmgWG2gjsQAUacAA9MT54ib6IEriJDGxAAXagAg04EmMfnXj2o9htYgPGhy5HYAfGpy5XBAMOYHztcnasXp+7XEjA+OClBzagADtQgaEWrRNT6zd6Ykyu30hABjagACPu6W/X5loxeRolcBbTSFECN7EDzyuLRzlK4CaeVxZTTlECd2N8s3LjeWUxBIgSuIkNKMAOVKABQy06Sz3RDiABGdiAkncc37LwhQPoieMARtx47AcDG1CA/d7OoV8bZt1owAH0xNjn4EYCMjBaJ/It8vhGAw5g3MXZ3VHWNpGADGz3th392iXrxg5UoAEH0BOvHUgujNa5UIAdeN5FvHlELdvEATzv4iwe61HLNvG8i5gkjlq2iQ14qsWsYdSyTVSgAQfQEyOPbww1CWRgAwqwAxV4tlm8NNm1XVDcRW4X1C23C+rXxls3CrADFWjAce/w06PC7cbI7hsJGGrRUNduJBcKsAMVaMAB9MRru6ALz7gxLRO1bHaW1vWoZZuoQAMOoCdGdt8YfREtGdl9YwMK8LyLmKyJMreJBhxAT7y28rqQgAxswLiL6ID47b5xAOMuIsnit/tGAsZdRLfEb/eN513EPGlUt01U4KkWk6NR4DbRJ0aJ20QCMrABQ40DO1CBBhxAT4ycj3fiawuw6Pkoarv6LYraJirQgAOYPT/4AGbPD2ZgAwowe/7aC+xGAw5g9vy1Q9iNBGRg9nzUqD1W8FqwFO6FFRzLwNedxDrwjQYcQE+MteAbo7gz7u+q7rywAQXYgQo04AB64jiAUBuhZoENKMBQG4EKNOCpFg9uVHiN67GLSs/r+YlSz5iyjAqviQ0owA5U4KkWE45R4TXRJ0aF10QCMrABBdiBCjTgAEIt1oDjSYlaromSyPFvW6AAQ00CFWjAAfTEdgDj3npgXIMGNqAAO1CBBhxAT5QDSECoCdQEagI1gZpALeo3YnIs6rNGzKhHfdbdqB190dEXUbARs9lRnzXRE6Nm40YCMjDULhTgqRYT8VGfNdESIzfjpzxqrkb88kXN1cR4UuMurjrr6JbIwhsH0BMjC8M1ovxqIgNbdndk4Y14dgbUBtQG1AbUIgtvPP/tOeussQvWRALGf6AnRuHDjQSMi7TABhRgNOoIVGA0qgcOoCdGCcQ5DaZRBTWRgQ0owA5U4Kl2TjNqVEFN9MRIpxsJyMDZ3XpciRP3Folz9pBGIdRET5QDSEAGNuDsWD2kAxVowHFni0Y51I1XOl1IQAY2oAA7UBMjRSyuLFLkxg5UoAEH0BMjcW4kIAOhZlAzqBnUDGoGNYPagNqAWqSTRRdGOt0owA5UoAEH0BMjnW4kINQcag41h5pDzaHmUPNUiyKniQRkYAMKsAMVaMABhBpBjaBGUCOoEdQIagQ1ghpBjaDGUGOoMdQYagw1hhpDjaHGUGOoNag1qDWoNag1qDWoNag1qDWoNagJ1ARqAjWBmkBNoCZQE6gJ1ARqHWodah1qHWodah1qHWodah1qHWoKNYWaQk2hplBTqCnUFGoKNYWaQc2gZlAzqBnUDGoGNYOaQc2gNqA2oAYvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hC8vOcdRfHlJDyQgAxtQgB2oQAMOoCcOqF1eMgIZ2IChpoEdqMBT7SwLV74+qrzQE6/PKlvgqTbijq8PKy9sQAF2oAINOIA+sV0fWF5IQAY2oAA7UIEGHECoEdQIagQ1ghpBjaBGUCOoEdQIagw1hhpDjaHGUGOoMdQYagw1hlqDWoNag1qDWoNag1qDWoNag1qDmkBNoCZQE6gJ1ARqAjWBmkBNoNah1qHWodah1qHWodah1qHWodahplBTqCnUFGoKNYWaQk2hplBTqBnUDGoGNYOaQc2gZlAzqBnUDGoDagNqA2oDagNqA2oDagNqA2oDag41eEmDlzR4SYOXNHhJg5c0eEmDlzR4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXyOUlGtiAAuxABRpwAH1iv7zkQgIysAEF2IEKDDUOHEBPvLzkQgIysAEF2IEKhBpBjaDGUGOoMdQYagw1hhpDjaHGUGOoNag1qDWoNag1qDWoNag1qDWoNagJ1ARqAjWBmkBNoCZQE6gJ1ARqHWodah1qHWodah1qHWodah1qHWoKNYWaQk2hplBTqCnUFGoKNYWaQc2gZlAzqBnUDGoGNYOaQc2gNqA2oDagNqA2oDagNqA2oDagNqDmUHOoOdQcag41h5pDzaHmUPNU0+MAEpCBDSjADlSgAQcQavAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFl+jlJSPQEy8vuZCADGxAAXagAg0ItQY1gdrlJR7IwAY81c56XI2N5yYq0IAD6InhJTeeaufnzRobz01sQAF2oAINGGoW6InhJTcSkIENKMAOVKABoaZQM6gZ1AxqBjWDmkHNoGZQM6gZ1AbUBtQG1AbUBtQG1AbUBtQG1AbUHGoONYeaQ82h5lBzqDnUHGqealGhN5GADGxAAXagAg04gFAjqBHUCGoENYIaQY2gRlAjqBHUGGoMNYYaQ42hxlBjqDHUGGoMtQa1BrUGtQa1BrUGtQa1BrUGtQY1gZpATaAmUBOoCdQEagI1gZpArUOtQ61DrUOtQ61DrUOtQw1eYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8JIBLxnwkgEvGfCSAS8Z8JIBLxnwkgEvGfCSAS8Z8JIBLxnwkqgH9PMbDI16wIkKtBNb4AB6Yux/fx69rlEPOJGBDSjADlSgAQfQExvUGtQa1GIz/PMTAI1t8SZ2oAINOICeGHvi30hABkJNoCZQE6gJ1ARqArUOtQ61DrUOtQ61DrUOtQ61DrUONYWaQk2hplBTqGmoSaACDTiAnhgb499IQAY2oAChZlDDyspVsGjR89d67IUMbEABdqACDTiAPvEqWLyRgAxsQAF2oAINOIBQI6gR1AhqBDWCGkGNoEZQI6gR1BhqDDWGGkONocZQY6gx1BhqDLUGtQa1BrUGtQa1BrUGtQa1BrUGNYGaQE2gJlATqAnUBGoCNYGaQK1DrUOtQ61DrUOtQ61DrUOtQ61DTaGmUFOoKdQUago1hZpCTaGmUDOoGdQMagY1g5pBzaBmUDOoGdQG1AbUBtQG1AbUBtRGuEYPNOAAemKcfnMjARnYgOFRI7ADFRhqGjiAfqMd11TEESjADlSgAQfwDMaBp1VMJOB56ecXYRalnxMFeF76+UWYRennRAMOoCfGT/6NBGRgAwoQagy1+Mk/PwOzKP3081Mpi9LPG+Mn/0YCMrABBdiBCjQg1OIn//zuyqIgdCIBGdiAAuxABRpwAKEWP/kt+iJ+8m9kYAMKsAMVaMABPNXOzxUsdsqbSMD4b+OZjB/sC+MH+8a5CGBHLnDYkQscduQChx25wGFHLnDYkQscduQChx25wGFHLnDYMaA2oDagNqA2oDagNqA2oDag5lBzqDnUHGoONYeaQ82h5lDLxVKjXOAwygUOo1zgMMoFDqNc4DDKBQ6L0k8/v+uwKPL08wsOu4o8x4UNKMAOVKAB43o90BOvicYLCcjABoxn8sIOPJ/J8ysSiyLPiQPoiZHdNxKQgQ0YcVtgRIj2jYy9MSJEQ0XG3tiAAuxABRpwAEMt2iwy9kYChlrcfGTsjQLsQAUacABPtfNDCovCzYmnWo+bj0H6jQ0owA5UoAFHYgzHezRfDLzP7w4sijEnRoS4zTiY6sYB9MQ4m+pGAjKwAUMt7nh0oAJPNY2bjx/sGz0xfrBvJCADG1CAp9r5kYhFMebEyIvo7iuPL/SJVzHmjQRkYLxWU6AAO1CBBhxAT6QDSEAGQo2gFr/o52cQFsWYEw04gJ54HWJ3IQEZOKfE7SrGvLEDQ+1CAw6gJ17H2V1IQAY2YPSbBnagAg04gJ54HWx3IQEZGPd2BAqwAxVowAGcky8WVZWuFyrQgAPoiZHoN8ZFjkAGNqAAO1CBMYsSz0Mk+o2eGD/uNxKQgaHmgQLswJiziR4yAw7gqWbROmEKNxKQgQ0owA5U4KlmIRGmcKMnhincSEAGNqAAOzDUTu+LSkk/3yQsKiUnNuAZIYbjUSk5UYEGHEBPjKH7jQRkYANCLRL9LB61qJScaMAB9MRI9BsJyMAGDLVoh/hxv1GBBgy1aJJI9Asj0W881SJbolJyYgMKsAMVaMAB9MRI9BuhFokeHhWVkhMF2IEKNOAAemIMBG6MuBo4zj3+j1A+03vymd/JFEzBXLgVlsK9sBa2wqOwg+0oXHTt0pXgVlgK98Ja2AqPwg4eR+FLN9pncOFWWAqHLkVbDS1shUOX4l6Gg/0oTIW5cCsshXthLWyFi65fuuc9RkVkMhXmwq2wFO6FtbCB6YqvwVSYC7fCUrgXvuJbsBW+7msEO5gvXQ+mwqEb0wxREJkcujG7ECWRyaEbb/xRFJkcuuc+MhZlkZNb6Ma0QBRGJl+6PbgVvnTjHlsvfOnGPTYrfOnGPTYHy6Ub9yhUOHRb3GPsMzA5dONNO8okk0O3xT2KFQ7dFvcoDu5zXcOiVnIiAxtQgB14KUYrdSs8Cl+K0QKXI91MhblwKyyFe2EtbIVH4aJrRfdynnidlcth4gVSLoeRaOHLYW528OUwN1Phcv2jXP8o1z/K9Y9y/aNc/yjXP8r1e7l+L+3mRdeL7uUk1z1ejhH32A9cfz+oMBduhaUwrr8fWtgKj8K4/k5HYSrMhVthKVx0qehejhH32C9nuO6Ry/Vzuf7LGW7Wwla4XD+X62/l+lu5/lauv5Xrb+X6W7n+Vq6/lXZrRbcV3dsB4h7vTI97lHL9Uq5fRmE8t1HJmFz6vV/9TsGt8Fx7s54rfdZzpc96rvRZv3JaLr5itOCr7ePar9y9WQtf1x73dOXuzQ6+cvdmKsyFW2Ep3Atr4aJrRdeK7p3r0Q93rl/MhVthKdwLa2ErPAo72IuuF91r1BDzMv0aHfToq2t0cLMn65XrN1NhLtwKS+FeWAtfuhI8Cjv4yvWbqTAXboWlcC+shYvuNWqIaaLrLNubr1HDzVSYC7fCUrgX1sJWuOhe3hBTSnp5w81UmAu3wlK4F9bCVjh0Y0ZEL2+4+Bo1xISFXqMGjfaRub5tKg0owA5UoAEH0BP7ASQg1DrUetxjzHRECWOyFrbCo7CDL2+5mQpz4Vb40rXgXlgLW+FR2MGXV1g885dX3DwKO/jyipupcFynRX9dXnHxlePx5q9Xjt/Mha//Pq7nyv2be+G4znHFtMKjcFxnvF3b5Qk3U2Eu3ApL4V5YC1vhUbjoUtGlont5wrmRsNnlCTdL4V5YC1vhUdjBlyfcTIWLLhfdyxNiCcUuT7hZC1vhUdjBlyfcTIW5cCtcdFvRbUW3Fd1WdFvRlaIrRVeKrhRdKbpSdKXoStGVoitFtxfdXnR70e1F9/KHmMWxyx9u1sJWeBR28OUPN1NhLtwKX7ojOHRjBtsuf7jZCo/CDr7GJDdTYS7cCkvhonv5jEebXD5z8yjs4MtnbqbCXLgVlsKzrN8sP5Awyw8kzPIDCbPLe2J2yS7vubkX1sJWeBT25HF5z81UmAu3wlK4F9bCVngULrpUdKnoUtGlont5z7kxrF3lie1CBRrwErVgB1/GczMV5sKtsBTuhbWwFS66YTwU03xRqphMhblwKyyFe2EtbIVHsAQ7WI7Cl260j3DhVlgK98Ja2AqPwg7uR+Gi2y/dEdwKS+FeWAtb4VHYwXoUvnQ9WAr3whE/pvCibjE54seLVFQuTg6DmRzxzw2kLYoXk1thKdwLa2ErPAo7eByFi+4ouqPojqI7iu4ouqPojqI7iq4XXS+6XnS96HrR9Us3nj3XwlZ4FPbkKK5MDv+jwCtkD9bCVvgKqcEOpqMwFebCrbAU7oW1sBUuunzFt+Ar/ghuhaVwL6yFrfAofL2Xns3s15jmZirMhVthKdwLa2HM4fhlITHT65eF3MyFW+G4r5gB9stCbtbCVngUdvBlITdfczsRv3PhVlgK98Ja2AqPwpiLc8XcTpRLzvu6LOTmXlgLl/vScl9a7svKfV0WcjMXboXLfVm5rzJH6lbuy8p9Wbmva4xyc2nPUdrznguNex/lvm6ruHgUdrCX+/JyX17uy8t9eXlOvDwnXp4TL/fl5b4wdzqO4yhMhblwKyyFe+Ex730cR97XOOgoTIW5cN7XOEgK98Ja2AqPwg7mcl9c7ovLfXG5Ly73xeW+WAtb4QHOT7HGkZ9ijSM/xRrHNR45l2nGcY1HbtbCVngUdvBlJjdTYS7cChddKbpSdKXoStGVotuLbi+6vej2onuNR87lp3Fc45GbtbAVvnQl2MHXeORmKnzp9uBWWAr3wlrYCo/CDr7NRINbYSncC1/xo6+v8cjNo7CDr/EIR7Jc45GbuXArLIV7YS1s4NtM4uG8zeRiLtwKR+3h9Vc7UIEGHECfGJWZEwnIwLjUc4Vu0DXeuHkUdvDlGzdT4biFcw1u0OUbN0vhXlgLW+FR2MF8FKbCRfcah5yvSoOuccjNvfCla8FWOHTPdYpB1yvOxdcrzrlOMeh6xbk5dM91iEHXK87NUrgX1sJWeBR28GUpN1PhoitFV4quFF0pulJ0pehK0e1FtxfdXnR70e1FtxfdXnR70e1FtxddLbpadLXoatHVoqtFV4uuFl0tulp0reha0bWia0XXiq4VXSu6VnQvq5HIkctqLr6s5mYqfOnGs3pZzc1SuBfWwlZ4FHbwZUE3U+Gi60XXi64XXS+6XnS96Dp0+TgKX/E1+IpjwVb4ijOCHXz5z81UmAu3wlL4inlaKzP6mi8Pifbny0NulsK9cFzzuTY2+PKQm0dhBzc8Y9yKbvEQLh7CxUO4eAgXD+HbQ+J62iiMZ4zlKEy4nstDbm6Fi27xEC4ewsVDuHgIFw/h4iHc8WxzL+3cSzv30s6Xh1zX00s799LOxUO4eAgXD+HiIVw8hIuHcPEQ1tK/t4dcXNpZSztr6d/LQ24u7Vw8hIuHcPEQLh7CxUO4eAhbuV8r91s8hIuH8CjtPEo7j9LOl4ec66yDLw+5+WrnK/4o7ODLQ26+7jfy+vKQm1thKdwLa2ErPApfuqdXtMtDbubM5Xb5ybkd/ohq1eReWAvjWWrHKIw+bXQUpsJcuBVGnzbqhbWwFR6F0aeNj8JUmAtf9zWCtbAVvu4r2ufyIo3rvLzoZirMhVthKdwLa2EDxxdPFJcZXzzdSEAGNqAAO1CBZ1X6OQM3ru0hz0m0cW0PeU6QjWsjSIpnI75toujq+Lbpxg5UoAEH0Cde+zye81Pj2ufxxg5UoAEH0BPjw6OzvHNc5X90LtyOq/yPzsXacZX/TW6FpXAvHB1xLuKOq8yPzm2Fx1XmN5kKc+FW+Irfg3thLWyFR2EHX+Z/86WrwVy4FZbCvbAWtsIDfBm+RT9dhn8zF26FpXAvrIWt8CjsYCu6VnQvw7fo6svwb5bCvbAWtsID/WKlT0fp01H69DLts1x/XMV7NOIZu8z5Zi7cCse1jXiWLnO+WQtb4VHYk69iv8lU+NKl4FZYCvfCWtgKD/BlznG/V4EfnQv84yrkm9zzHq9CvslWeBS+7uVsz36Z8M1U+LqXHtwKC+Jw0eWiy0WXi+5lzhe3ozAV5sKtcNFtRevKfY1rvnL/Zi7cCl8mH/dyHyV2sRa2wnH9ZxHMuAr/br5y/2YqzIVbYSncC2thK1x0e9HVoqtFV4uuFt0r38/im3EV/9H5VdG4Cv5I47m6cvnmVlgK98Ja2ApfuRz9cudy8J3LF1NhxvVcg7ebpXAvrIWt8Chc7vHyh+DrqN1Iqeuo3cjY66jdeOCvo3ZvFGAHKtCAA+iJcdTujQSEWhzcGRl1HbV7Ywcq0IAD6IlxiN+NBGQg1BhqDLU4uDPM5DqA98YB9MQ4uPNGAjKwAQXYgVBrUIujds9PpEcU0tn5GeaIQrqJBhxAT+wHkIAMbEABhkQ8JXHq7o0D6Ilx6u6NBGRgAwqwA0PizJfrUN3zu6ZxHap7IwPPYB4PbRy7eWMHKtCAA+iJcdTujQRkICTigM2YSYgt+26MAzZvPCPEK0mU1k1swDNYvC9ch+reqMAzbryIXQflxjtW1MhNjAgtMCJIoALPO45XpyiPm+iJkYXxDhW1cRMZ2IAC7EAFGnAAPZGhxlBjqDHUGGqRb/Gydh2Ue6MnRr7dSEAGNmDEHYEdqMBQ88AB9MTIwni/iTo30+ihOPD6xlNNo4fiwOsbO/BU0+i3yNgbT7X4CY76Notf1yhvmxhq0SSRsTc24PnGwdd/O4CeGHvn3EhABjagADtQgVBTqCnUDGoGNYOaQc2gZlAzqMWrZCzkXHvkxRrNtUfejQKMCNGb8dJ4owEH0BOjNO1GAkbc6Pl4abxRgQY847Z4NOKlMfDaDe9GAjKwAQXYgZpI2ajXZnc38ryGa7O7GxGMEIxKMAMOIC6dcemMS2dcOuPSGWoMNYYaQ42hxlBrUGtQa1BrUIvtsM5vz0YUg12dFfVf4/zybET51/U8RPXXRAF2oAINOICQ6AeQgAxsQAF2YD6TQ3PMNTTHXENzFDS0AQXYgQo04ADmmCsquyYSEGqWo6Co6prYgQo04ADmmCvquSYSkIFQG1AbUBs5CopCrokDmGOuqOKaSEAGNqAAOxBqnmp+5JjLjxxz+aFAAw5gjrmcDiABGdiAAswxl5MBBzDHXM4HkIAMbEABdmCOuaLY6hpdRa3VRAbmmCsKrSZ2oAINOIA55orSq4kEZCAkBDcfCXnE5URC3khABp4JeUSESMgbO1CBBhxAT4yf0BsJyECoKdQUago1hZpCLX5Cj9MJru3nboxGvTAaNR7PayB7oSdeA9kLCRiNKoHRWT1QgQYcQE+MJPNIhkiyGxnYgALsQAWGWjzrcX78jX6jR9XTRAIysAEFGBIj0IAD6ImRmzcSkIENKMAOhBpBLdLUPdATI01vJCADG1DuVveodJqoQEuM2SE+Hx6P2qbkVliCW3AvrIWt8Cjs4JhNmkyFuXArXHSl6ErR7VccCb7++7ivruXfX9emwde1RW93B+tRmApz4VZYCl/XFr2nWtgKX7rRPzFTxOfsvcfecQ+Odo5ZIz6XKfyqULrvxVrhco/XjNCI+NeM0MXXjNDNVJgLt8JSuBfWwlb40o17uWaEPO7lmhG6mQpz4dD1uN9rxvjmXlgLW+FR2JPpmjG++YrPwVecFnz9XQm+/u7ZhncZ0s1UmAv3wlccDXbwNdMbLnKXD0U23+VAkZd3OdDF1wztzdfzdgRz4VZYEP/Owevfa2ErPAo72uGa0b2ZCnPhcr/XzO11j9fM7c2lHa4fvvir109ctPL1E3chAxswfuIiwvUTd6ECDTiAnnj9xF1IwFCLq4+3xBsF2IEKNOBIjLXH695i7TEy/joc98aeNxQvjDcacADj0uO5iBfGGwkYlx4PRaw93igZwaHmUHOoOdTiNTLw2o/tRgIysAEFeEn8r3/420P2v/4WP13SHv+o8Y/nz4yc/6/hH/vjH8f5jzEiO0tzYjwm+vj3nv/ZOB7/eKbe459j1TP+mc5/jje90wPjPS9grgS3uQ7c5ipwm2vAba4At7n+G9sfn+u88bZ3rvLG1sfnGm9scXyu8MYr37k6Gy98AXPFV+Z6r8zVXplrvTJXemOceK7H9rm02+fCbp/Lun0u6va5pNvngq7lz63lj+1t7/FV/PyRs/y5s/yRtfyJtfyBHfnzOvLHdeRP68gf1pE/qyM1RmoM/JBz/oT2/NGx/Hcjf1TzZ/Ry4hsJyMAGFGAH5u/nVUV64wD6/CG9vDt+Ry/rjp/Ry7njV/SqH43rJhJgB+av5m3gFxKQgQ0owA5UoAEH0Ofv5rT/89IbARnYgPkzeReCXqhAAw5g/kJO0w8koMyfyuns7USfP5R3Cef5O3BXcF7IwAZUYP4s3sWYF9L8AbtLLs/fx7uC8vwZvAsoLyRg/h6SNaAAe8Y1xb814AB64sjfwbtq8kIGNiDubeRP4F0YeeF9x6eJcZhYTLc+rikG6AFtgkzoE3SCTRgT/IZ4sQ6YkduM3GbkNiO3GbnNyG1Gjhfpc80uXqNPuKakx2WGF0Rkv8zwApnQJ+gEmzAm+A3X9PMJNGFG7jNyn5H7jNxn5D4jx+TVuaYZk1RnoUvMS8Ueh6dE7E1wBowNCGRCn6ATbMKYEHH0ss4LaAJPaBNkQp+gEyJyTIOdEC8FE2gCT2gTZEIEPAcAOsEmjAlxqX577E2UxEktSZJ6kibNtgxvvcknxbvtRZTEk64lyPjJbv/v0/7/Pu3/j3naZQ5YH2tv/+vxL/713//7P/3nv/z7v/23//yPf/7n8/+b/+J//O0f/7f/+tv//U//8c//9p9/+8d/+5//+q//8Lf/7z/96/+M/+h//N//9G/x53/+0388/t9Hx/7zv/0fjz8fAf/Pf/nXfz7pf/0D/vbx/K/2do5i42/31iQD0NiN0PT8CiUitMdqNSLQ14vgRYjze5grgncEUN0NoDSbQBsCtONrAHke4PGSOiM8BirjaYi+agfWbAdrT0OsmnL0bIjHMsDTprTnIZjPxfkIwa3hKh5DwC8hxru9sbwNR4RjPL0NWj2X2maHPBAxun8NQas+PYd/d592fhpi8VyFWUWEUXOjy3aEIfM2HktszyPs3oY9v41VY9oxU/SB/jSELp4rORekrueqCz0NYW83xeLJfLyz5cP9sOaMIfw1hC8u4vzBvi7C7elF8KIxzwnLO8Q5X4k8Z9+/kfjS776RTs9uhBcPFo903eNpgHWGeTq/UXvWoyzvW94qhjDPGxHWxc+HLt2bM0VKazze5r/GWDydfcwe0aOXCMf+g9EoH4xm/emDwYvH87HIOJ/Px8piiaFfr6MtroPtyCwxRov+pk9sJrtIt6d90hbP52NWU2afPGZcS4z+NUZbxOg84H3S60+JfY0i7z8drb/7dKzvRQ/Ny9Duz+9l9fMeX1rcxlFGCA9D+RpjvP18+PsWuIyxmS1C72eL8Lutse5ZFwwevY6ZvvWsrLw0aq4vL33MMpWe/Rajr34TZD5iPKofj2/tsfDSHhvGXT8LVLLljxir64jTRO4fp2NxHYun9Dy3eqackT2NseyZx+/TDPJYNqo/+N9atS/8VDmfEG2sz2MsnlSJHcIuRyXml2L02Anj7hmW1+6ltRnj8dq2aA9ZDRzEc2iuL8aIF+N78GH8WoyBUe04nsdYPyF2jHxCHsP951cy/tJfB6N89aPz7J2n16GL3j2/AZrd+2A7nriZ0l/qhxYnJt734v15z2j7S9v0/MhuXsf5sdjz61h5WbORL9Rer+TrK4Pqu226vArJGQ4WOZ5exXJEZjk18FicGU9HZLr41ebePF8Dv+Tt1xi2eEpl5FuDjC8xdDtGl7yOLt6ex+D3x4X29lO6btGRz4YyvdYr2hBj1SuLZ1SOkb1CX0an8ovrGPjd5/78OhZe+lh0TEOWL0/p1+swX81g5S9la8Oex1hdhxRDpucxxspLGwkmTfSlNm0HpleP8VrWtiOnkB5XZE9jjNVblHM+IA92f+Ziq+uIDQHuflk862PlpbEB+P0G9OV38uvUx1i8RT1WbeatnDssvxTj/JQvp7M6PY/h7zuQH3+lAz2GhJa9YvbaE9byTawJ+9MY3t6dd15eheSLWNM6+f39Kha/tFReGVqr/dr2Y8RBptczeozjeYzF8+Ujxx3uZXTbvv3C+cLD4li9K0QZ2T5Sbz/beo6xHz8yz5/y2CR50Rz583QUK/1jBnthpS1nfuV4Pm9Lx+pNnymnsNmktMf3ZYnVoPKIg7Sv5+PB7emkg6+Hczmo7P78AYk9nZ+PgXg+Zb2XWf3vSz106Af6xt7vm/GJvvFP9M16XrwrXm+frnSsBrhYuxLT/nz9a7Vw1I78fWmP1YLnmbcMEhVxVxBuvAgi76+jUX97IW0VYnclbfdOFktp200q7cV+IZEMshg80Gq9YXfNmpjeX8JZ307XHF/q8nba6hHJl4fz+IbndrYMMng27Lld/iJI/8DCsb6/cqxvP/D8gQVTfnvFlFYrUo1yXvrxClDn6duLvbJI3vXjkRPT5076rz1jgxx9W9+2vwdZLkp1yddcK1Pk34e767zznNF5TG4vfiOavv+0r5alNp/29n51wPadvGrvnuvqchz6vEnlA5Un8n7pibxfeyL0Vzdpx/jwGK/9YsqRdWpyyKpfVmv8m0VFMj7Qt/5+3/r7fTve79t1i747WO5HLos/lnAXxWKrpSDlprms1RaW3Bc/ME4dLw/Hc0det4ehPcaLbbpZrbVakWLJVn28a8rzGP7+k75akdp80lchNp/07TtZPOnLFsW89KNF9bUYPd/pHgsp7XmLrt76Peelu6u/GKPJToz1E7ZXEKjj/adjvP10rNaSNovxYn/U55UXO9V4y6vYHKqvVqM2h+q2clLKpSSl0q1/DNX3g+iLQSRX5lXKoumfQeztflneC+pQaLx6L5yPmD4y/9UgmS7K/mrXtCze0DrZ/0eQwau56XwD8vqk/VkCuwqyXUe7CkI5B3J+R/1iEM6xpddZst8F2axno9Wi0m5BW3wM+l61wfo6jB0rB7y4ju0g/mqQtMUH9teCPFYnsKjzeAVZhVl2sc8sdimvD7982AQPW9dXg+Ra2SPIIgH3f8Gfvw35ciUVc3bPf7PWI+atMvT4lPftl8NlkHbkrH3j56+pfCyrp7Jj2OR5Uf3Bb4+7+WjvjqyWIfZGVrxaodoc0/BqgWr3gw17f/pxv1ds0SvLp0PhzENeitFir/H7ZtxejXG8HaNhaNXKz/fvYijqQcbzGKs1nc33oR9ibL0Pre9F8JCJjvdjvPiMPX4Ccn1KxvO+XX0k9ZjyKMWoq6xbXUhsHnxdyONn4umFrFandjt3HeMDnWuEe1kk7uqjmscSes74nwUpLzaq58LhWDxlq3WlveV6Xn0sRZ6FXA//eP4qsrwOyfk2KY/HH2+r69/sXHiUVtdzfvXDL4ILofZqkHxCRFajh0bvr+jyqux5e0V3eTtxJOOVNHTw4nb6J25H/+Lb6ZRB+mPJZHE7492x7vIyJB/X3v35OJVlVV1Cmb6l0O4xAPoW4u0a//VV5IR7Td4/r6KtbiRnVIVL6ZHuh6Bj5PcsD+7Ha0E8f6keXAa7vwuCjx6orhz+plHz4z7xVdeOvzTE44fK8bY86PmtjE/0zPhEz4z3e2aduVoGEV92ZvhF+ivl3SjZeDVIju8e1/TiT55KjkX0S+ngr4K0/EpYuz2v+uE+PvAbsVrf+chvhPYsCn+sZC5uZ/X11GMZ6sjc6V6Geb+4EmtZDGlNVlfS3p+J0Pcr/1jfrvxbhticiVB7fyZiudS0NxOx/gBicyZC369i/OHp2JuJWMXYnYn4IcbxdozNF03bXRHtr7Xp7ozIOsbejMjqy6Xdl+Z1jL2X5uW9yJHPh/DTFWIe9Fdfx97MzHaMF3Nud2Zm9A/MzFj/wAPS/+KO2ZxVWX5CtTursr6QvVkVf/sDFXb+wKyK07uzKj8NYhq2KvEuz4bdy2+gyhNyBhmvBNl8RfzpZvauY7kZRVbr2qGL+YO+KgnnnD7A+KP96kXGW3mR6S+9DT3+oiMIP3sbasu1kM1XqmWQj7z+77ZI+0SL6CdaRN9tkfVyOWpt3Qe9uObuOSH6CLJY/ff2kTX3VRjFNlI6jJ6+Tq1C4JVMne21EPm9jnp/GmJdeJNVndqOl+uI8ofqEWRRvbP8CMKzOsvqzfzuQxvPgbu5Pw/SVtvgPe41p3dMng4iGr1fpdr47SrVZYi9d9S23NFv7x218dsVgG25qd/mO+p+rzwfL6+fDnyK8Zguac971t4epv5wHVufyLbVR1R7o8O2+ojq/H2blyGLT2SX17E3Omw/bMJ54DEdLzUpE75/pucj/7b6gmq3Sfv7A+7ldWwuY66/KMs9LQaN55v2rj9b3vvyYLnH69ZHA02O9+14tTy1acerEJt2vH0n9lqDbn4zsNyAYeuTgbbc0m/vff+HGHufDLz9keByh9XNuuNljM2K4WWMzYLh5f6XmyW2+zH8xRh7Bbbsnxjrr/fP3SuvXd7N7hOyirFZXLve3fQD97L7pPr7T+pyl9XNJ3U/hr8YY+9JXX7Puv+kLlt1s4Z7e0P158MofbciZbnR85GP+uO3v640fhtTrr5cauxYs6Bnk4XrEKjj+rJh2/cQH5hOWg0oFZ9+f9kJ9HtjfOAgiWYfOEqC355MWr07aW6ip7XQ6PuO6KsIOQrTUpXPv9nZvR85wddLpdIfO7svtwVgDOTKpkB/7P+9Woja3f5uvTHq3gacP2yJzke5m+fbALfVbn6bObsMsZez4+1ndPXyxYbdAM2eze2v3gH3nvJlhK2nfL0ZyN5Tvt7lfvMpX69AbT7lyxNo8rtNfnC5kLYfo2ebcu+LGMtMiROm7hYZx/MtlZvr25myDLGXKasFqM1M2W+OL3XOv9mlXlDzURYG+eUY4/0YtQD1N7vlG3Z2tvF8h/nd3fKPUtH7m53ue/Pc76HuUf+r3fKPnI7Xwxe79u+eQDAWbXq8v+OUHMvNRA8U0rA+v5DVfJj13GHeuj892Exo/Y0TErfOp3+/jtWsvpdP0Gslvf2mQXKXlS87tPLvgngpT3revevt8im7l5QXniqrd5+t95YfriNDnNcxFtex3B81fzIPKlWw9vUnc3mwg9AcgDzw+XUsD3Zo+U7av27A+5tDGWBEOvS1GFjoOKcMn/9eLntGcquDB8vLUXDwj8rq4I7x7tBuGWFraPfDkQylMMCPZyvYstrG7zxkHjNB9lIIHGLizOOlt5eWO18+2Py1nrUyrW6dnkeRxu+OytYhtkZlsl76eXtU9rU5+PVGxW6Cvb2YdIZR94P1WHTNeL9rxttds/5K6v2u+dIcdrzcNVai0NMoqwLFPSdbRth7SV0ep0It1+MHLTxZRN99Y1+GeLghfmNMn35b9EMQKwc82NNvi34KUo66sfGSrw7GMGS01dE/q6Xszxx2wzlG5Fpf9MdhN7sxiF+L0bMC7TG/Ti/FeFx/bo56fHmd+XYIyPH+ROzyqBrquekkj5r/v4hRT2muZd/fYsjyK6k9Y16G2DNmpXeNed0Y+Z7apZZ8f2+MpR8euZ6tx5fjbr4HWZ5ilrZMx9M3zPVloKCPvmw3+5t7odzW9PFeRK8GyflDrauNvw2S3xXSi8cybR/t9Pbvpb39e7k8XmpzUnd9RNXepK7YB07useUOS1kAK8fidCixt6dS1yH2DMjenkpdfsWHDVofS5KvHdnVsHHuI8bzo2pkfGC/CFntJbb7G7esj87T6bSMX/68DPnEvXxg4XT54QqlJRN/2SuifbuQ1ZZTmPQrFma/OEJI8Q3+0NeOENpN/OUxRJbnS/moR7nSL2LgwD8fdU/R38XIopxRq5J/cRwSHYItCcrv5PcDkZbX4QeOZeIX78UVH2nUSt5fxKDHXHL27XGUIyG/R5H/P4T5Us/bnh81tQ7C+X7JXF7qfhekab5e1g9o/+jj9RtMrmEIPT8CrH9gv7gfYuydD7cOsjkO+eFK9gYifX3W1J4frQ+s2vtmpB/v7+Hfj7f38F+G2CtS3r+TRZHyulu2vrPotDoHdbM8eLl0qLn57QNLjeAfZ4AtN79F5YDV35rfBNn91GJ9Jb2hwE9fP9Ks7MXjdYVZfxPmPEo1VyFE7eUweaDpGXLxTd+x3kofzUv6YvMK5hHrAtGfQWz1LrD17caxPI9063OYdYy9z2H6+7v69U/s6tc/sKvfumtzcffRy+3FzKGjlW+Dpb36yOPM2gfbywlIKNujr5/VHb8YOMLtj6Ps2/R9sNbb27V/6xBbr+G96V8aYu9Nft2gA186lznz7+055N133y4fOMmvywdO8lsejNzTmR8rIs83KFwejEx5+O1oLK/F6PmWNTo/35Kzr+q79p7z9WXk+Hv0xflqfbXB+Wa6LUPs5Yr4u7kylucA7h14vTqsem9edhlha152uWPM5vvQ+uDuzdeh3j/xOnS8/zrU7f3Xof72UT7LEJuvQ9t3snodOt5/HVL+wOsQf+J1iD/xOsSfeB3iT7wOtc+8DrXPvA61z7wO8Sdeh/gTr0Nv7x21zJ7t16Hj/deh5SdUe69Dph94HbL+fpPyJ16H2mdeh9pnXofaR16HVmOBnqOJL58A/GY0kWveKs9XefXt0f/4wDbpfXxgm3RbFojkxkCtnlL2fZF3GcNwsrl/qQ/fjyFHjose6fN8sbn7+9s3/BBjc/59GWR3/n19JZsDTv9AIcB6yblUzZE97ZtVDFZsTayqr8XomfysJotn5AObT3f/wObT6xbJMSfb8bxF9PjA3tPLD8JF8TmDPT+NV4/3t57W4/2tp/V4e+vpZYi9dxI93t96Wo+3t57W4wNbT+/3ii165f2tp5cxNree/inG8XaMva2nld7fenp9HXtbT/8QY2vraaX3t57+IcbWu/P6Xva2ntYPnBv1w3VsbT29H+PFnNvcelr5A1tP//Cwbz4g/S/umL2tp5U/sPX0DxeytfW0tre3ntb2ga2nl9ex96770xhma+tpbR/YenoZZLNM9Keb2buOsTWYagfz8xeq9u6L8roceudFef1JB6Yz+6iT/7/4LETxaYl6ey3GyC9Lub6g/u7TEjb0yfN7kdV24LvfpyyD7G2PvA6xtT3yDyF2tkde9oplppxT1q/17JcY8mIMRoy2esLe/jh1HWJrxU+7/KUhNj1w2Z76d7/2+12flJdjf9E56nW8GmPk2OWBr8bAXsLLGG+7ub7t5j98T07YJJFf/CQ9630f+Gwyavl5/lZLrD/w32mJ5aYJRvm5kn35XOAXGy+MnN3ro9GLMbCLzPAXN4AYHdfx6kYUI19XHuFe3YiC8JbAL7eHI8aiX1YD2p6vPNKtfSDGaxuEiObOC6JdXowx8i3BVs/YKoblB48y+uJT9tXsvmn+qJjV5c5vNVc6Vp/393zaH40jT5ePfroSyyvh1ZWslvoVnytqmb5pv7gOLNKblbT78zoWz7vhSEfr3BdBVgPb3KCwLkSf+4VsPyIDL6O+2DNBl2Vo24/I+MAj8sOV7D0ifrz9iCyvY/cRWe3ut/2IrD71e/8R6Thvp9fjdv54RFbf6HQe+Kq+/tyNbzFWry3G814eS0jjWYz1vWj+2tWXuD/vZXzgXvyvvRccT/vA137tesuKmG8bFfwiBuM66v7bL8dQejHGwKYLx/FiDMuRDI9X2zRrJXpb5Ms6RkMMWWwau/w+Lz+f5Foe8H1TTjve3oRiHWLrxdbWG/u9HWJzg6Hlp4rY5KTZ801Ojd7dgmJ5FYK367ptzJ9XoW87mK2Oh9h0sPW2sYwaQ+5P72Udo+PADX3eHs3X+9fs7V+7CrI3t7cOsTW390OInbm95f7IW2/p6x2Wd97SlzuRb13Dei/zrTmT1fkFm2fzrWPsHc3XdHlY4e4hCMswm8+nvj33/EOInedzfZrL3mkO6xgfODNk8/lYx9h8Pvpnno/31yba+2sT7f21ieWBQfm64tTKcFTHdgjchn/Z+H8/BNvBf29x4xchHgu7ebzXURdo90OMli44pBRE/qYtsBdI6dDmsh0gN86p3fmbALkQ6fWziv0AdFCWhR5lDPubEJwzrcTqb4coE4u/CYGNtqmVjS5eDVF2+/9ViPSJR36113qkYxeTekTRb0IIvq3V9nYIe/Eq8H0LHfZiiHIS8WvPBeUqFVH9RXwxhPbXQmSiEh/HiyEaQrz2gGOhi5hfu5Gyv2d9F9g3/0Ng3C8FwMp46y8F6Cje8FcCSG6CKV+OfPjFD2C+2g1+JUCjcrrBmwHa82601VZ8u+/Jqy+KNt+Tj50p3PZlGme/M3MvLpGXHmh8Nyf8UmdKnmVSyxnJju3HiVCjTvUNnccvQmRWUX0n/E0IFDRx2c/hewgbq713sHjcjhdD5CqHlkLG39xI3burrIL/JoRmbnwt7vpFCMttch928Vqncn4SwmyvhWj5wQ/XUdWvrgJFau14qTlFcJrdl+2gff/Hs2EgUYzmFxfx+OnHKGC89GQRTtJ84GtX0cuRaWKvhVB8+DD8tRvJ98jHSPm1G2mCkXJ/7UYUnzypvXYVqAJ4jGxeejjJ0Ra1OOMXISzHlyb6SoAyU9Jfa4eD8Rqozx/usfrA6P009awNcX6tIbAbpfU3W/K1AOcHyfCJ2pa/GZPkLN5jeFJee76dgDWW60KcJ6C3enbdL4Pkb+ED9dUg+KqQm30gSPlV/h5k1ayeLSJfJmx+EwIlA+7HSyE4v5KQRvpKiOHTtIbXo562H/L296ad9v/+yPm7Uddwv/79sfogSTGRWVfnfxMhl/q0HFXxuwhZhnK0F1qh93yceq/1NPsBOgLU+b/tAIovkOpKzi8C7FTzLG9hZI1Er2f17QfILwcesV4JgH2YHvhSG6DIs+4FtR2AJZ8DFnr6/dVYHpyy94nwWG1kt/eJ8DLE3ifC+3fy/BO/5TtHViN82UPmFxE6Y927teet6avXyK1PWX+IsfWF4P51PI+xfD7r6exPPyAd0t5+tlYhNp+t5Smne5+fj9UxR3ufn4/VFnbeskzeWxklfl8gHatTTh9rZ7l004/ny5JjtRPel5W08u6hv2hTyvOnHpNH9LRNVxVZXI4FfR5h2aTDsa2+26JJ7f2F6x86N9/RXdp4MciRcx6Pt8PjxSCUr7deJxx+2SaENcrGLz6rltNyj3VXXjyr20H81SCOFzzvrwXZrwn4oWn3ai22rfnpF9NjdXDT1gG060bdLNb4IchetcZQ/kjPrMLsVWusQ2xVa/wQ4s1qDTJ8yG5W95/6trun8bs/Eev5rZy0dNGnV7EMIeWL/PZSCMtPfsi/nNf4vS1WxUCbeyQNW21gu7lH0nKpJKuxuU7N/Hkzqy0b1DDxqEZPd8D6IUgbCKLP9lkayx2fhpTP+p9371h+ezQU37iVT1xc92Oo5FbLKu3FGDiPU7XMCP8RY/VBR54zpF++yj9+dRkHLqM9v4zVDrIdZwR1eV7b80MQJF4fbRFkdTeGRjV73jGrL49ay5Xa1sov3Vlash9EcjvO1mUVZPXt0eYnXcsmMXjRl7OS/2iS5WfxufhdDyf/9tO//PTI8qTVx+xLmUeT75ex3v0B+V8rAeQ37YFvEB4jGnreHquBHcoJHr8X9UK+jadWXx9hi8NeCgK+h/DjA4/qOsjmo+rHX/6oYq71kbz2rGt8tduaaD5oYtQWd7PcXRR7FEv5rfLvu7avzidxbFJ0lM9M2OlbkOXnLljTlnqSXPv+lHzgjKAfrkQw+Vjr9L5fCR3Lp2Try1BfLdDszeQu++axOtRyjacYyR99szy+CSfj9aPuprk9PBPLYYRY81eGq4JBotSU+R7C6QPDVacPDFd/GiZiKKHPDxh3+sBYcxlk8+yH8YnDRdZ7tmIf+f5lG4NvHcyr7SNRfM1He/4l9DLI4+UqvegYqyD9Aw6wOi5pb0FsHWJrQWp9K5ufl/vq25Pdz8u9bdUmrj4vXz+rlDfT+Hj+puhtefqCYSMoPxY30z7whKzWl/aekPWrRG5qpYsK5uXr2d7JLesQe0e3LF+scAYNfdlv/VdvZzWIPK+x99WRTZuVvL76mG+zkveHmzHcjLUXW8Sw6aL14wNBFt9guPQPNKv+xc1ab8ZenQYwxlxke7VvBqYSB9MHgiyuxH/YD2Grbzr/xX0zOm6m+4st4njt9aYfCCJj0az6gWa1v7hZ683oqybgeNt0erFvHuO6rME+VnNw21Nfo708a7X1A74Osju40g9s7+T69vZOy+kixyEyaFNp+1NFhMMfyMok7euTRaO9PM+zNzo7PtG5Rh/o3NWi1W7nrqbxMLFZS5G/98zqCyfB3Iq0uoXgH5Ojq6MG8z1x2OIJWS1bbY/f7QO7f7mNt9/wliH23vDsAxuI+fjEczr+2ufUcwDv5SSLP56P1XZ5nTDzVr8M/d1ziq9LD6LFhawe1PLlVKvTon+06Sce1PH+gzref1A/sdOd+yceVOe/9Ndy+8dutWLFjpMTa5XIn0FW35kcjjO16ja1ovtX0jAwa19OPPjjSuwDzrxq2O0Hfvlzt/fAr38xtx745a1sPvB0HB/Y2/ER5e3NHdfPCD78b+TPTfE6VPTp44pd+sVbe/FxZcpt+tmWl2LvG/RZe/X+A0vH8fYT+0OMrUf2h7vZfmbpI88svf/MLtdIW65uUN2J79sa6eM6ll/y5Yd8pQTm/DB8P0bPusT6GcAvY+RBsL0u5/8qhuamLl92FXw5Rn81RraHvtwemu2hL7eH5b3Yy+1RY7zaHrVu9dX2sGwPe7k9Rt7LeLk9aoxX22Pkx7PDXr6OLMQZ49XriMmK64Xk5faoMV6+joGi5OfPx7rCYvPE8HUQJmwVuzwxfHmOk2K2yfoyiq7KCuzv+HJr9Ivb2Tyhexlk9xT19ZVsnqL+Q9XJ1rh3GWLrC8IfQmwNnZc1ONvDEPnA1Oojyttzq48Yq7mAze1gHlFstaCwsx/MDzG2NoT54W4294T5Icrmni7rIqlD8El+3U/lW5EUHf0DE8aPKO39MfwyxuYYvvMnkme1erWfPKv1q90x/LIODkexcvnK6e908fKU3FwofbzI1p/hb0F0+d1FPm1US7a+fSb/CPLu1/4/hNj53P+nEBvf+/9QWphLNf34MuD8fhmrd6uO/R9q8cgbQfxZkO1qy3omwJ9PmS7PHcdyfP1e8s/bWZ34cOT3xUr1JPbvQWy9TSPOc6d+jI+EqXPh+pvXcGz1tCxVXq0/eW402I/yScz3lcHHPy+/6c/NOuo3se37vJHtvYfXTR7a9wfF3h67/nAdub3P4/lfxRifcPlVRezuEGl8YMe8RxR6f4i0jLE5RBof2OfthyjbQ6TVgtjR/r5P/5E4q9WsJvnAltv5Yx5tLIuvc3PJ+pmftl/cCx04haYt7+UDx4NdG+6+O1QbHzggjA7/yHTr++c/7X/7KM+/fbw2Q376azFwuPIoNU/fvuJe19buvYMua3z3++YjBuv+l/bN189J+Hnf0Ork6+01E/pEgc4jyvvvW+sYe0lMn6gUOjfA+8CDQof9tQ9Kw1Z57ctZkLQfRPBeLnXf9j+fttU00Gei7G2A8EOMrR0QfoqxswXCD5Mmm1vQ/jSBszc6+WGab2ersB9C7GzZtp43lVw5eUy+thcnXyWH9Cx1w51vQdYf/lLuxvL4e8+/HiZa7cOXxUvFSL5XYa5rqLG3/vCXS9NzguER5NUi+WH4GV8cY/FDpf2Bj5gXxyb88CkFzl6w49UrwQeqVLdC+N3HNltnTS33y6R0xC+/4u3bahK13XksebqN2iMIreY6tnbpewRZ/nbubKW2jrG3l9ovbsZWN7Pc2QVp494WQVZfDextcffTleA0+qNMIf0ZZOGKDQf+HrZq19WebJufdf8QZXPpch1ld53uh2vZXKj7IcruOiqtFrjO10LsVO1lt5nvO0T9GAcO+WB9Nc7j/02TfPzu2etx8LXJ47/sizjLVt5c3v0hyuboYJ1NkqfNSD2iq//GtxknAHE9AehX3vD4BcmUfLxfPw+yWqfa9Ya+6mXvZSOsutNa+8WVbLervz+I/OmpPRo+oqnzH799+gkN81gAeD0bCccjPGI+z6L1I7ezyyjRarFpb5vR60yJ58PrfN1oX+9le29iyUrpupDxm9EXAvBLAfb2wlq9Q259rb0KsPWt9irA1oGrx185Bt7a9WJ55kfu00161OUX3g6hOTP/mMD2l0KMjpes/tpVOCruj3oK2n4IPnCy8hfL+sVVoHjx3JjwtRCOt1Z66UbqoXLkr11FyyWox0KuvBRC0uoeq6X9aYjH1a5mz94/4qdlmlKz11oD+weSML3doK+FwK4/8uWn4xeHueQb8+P3qx7QsP278fiJyc3HVJ6fQLIMoWWbHXo/RH8tBPam1vHSmR/N8DNs/aWTR9rIUexjGPlaW1hOljcrY9iXQ7zWqSNXI1stl/5ViFx/aENe69SR71wP9BevIp+LoS92ap4d9cCXroLJsRHs8dJZMF8rE9vTEI+B8WrjZcZpXFyXHX5z2Fz+MLPaa7fiONpTj9dC5CP+mNl/KUvO5QGsN7QXQxwIIW+H4PZic2LJg8drV9HQFt3fvorXOrUPrHqOMj9IjxeKr4/4qnhvYOf4Ou+6/5u4PYHFy0+rBk6P/VKQ9X0KYD+KLqOsJvh54DzCeirx/gvmY1CnWPLgVd+s55sy8+sRJfY9CH+igp75A59bP6K8/b31I0Z7f8nyEWU5JbJ3bOUPUTYPfCRe7e63d0zhOsbuSYWPKOPt143t27H+aidv1rsRL9dyNo+xfETh97tnM8ayTRp/ootb/0AXLxv2/cM9CR/DPSYvdOGQbfnFFWNt+ainDqn9Kkwpbj6kFPPq9rl3xD23LX0MFsuvz5+3tNoykK3j0f9Spcnfo6yWQhv215Gnb8s/xMDQoJZ7/xlj9eUV57FB9TSn4/vYYPXd1WO5Di/u5ZWZvy24E6/3DMwWKQNH9u+/X/KBnUseUT5RCcjyfqk1908UJ/Nq18D939JllO3f0tUi0K5Zr2LsG23/hNEuO2jzxPRHFPtI044PNO14/3dw+eBj0p/6qw/+9vhieS7T9vhCP/DI6kceWf3EI7tslM2xwdrzvVj+4IXlLz/Cwkv2OR2/ivKJ0nxefT+1b/qrbQR3TX959NW26Vv7hOmvj+HazcPV90/7eWgfeA2zj7yG2Sdew5aNsp+Hi/Gb4uT4Wjbzx/ht+THI5tkijyirR2XzcJFHlPaJ2arV1oLb21bwqgZ089O/H1pl76CTa07rfYsbHxnXjg+Ma/0j41r/yLjWPzKu9Q8MEvwjgwT/xCBh83aW40D/yNh4uX/jfvf4B7rH32+T8YGxsX9ibNxW31Nt/ya31Weem+26jLH92LfVV1m7j/26UbZ/k5ffZe1uddKOTwxrG31iWNvo/WFto08Maxt9Yli7vpbtFKJPDGsbvT+sXcbYTyH6wLB23SifSaHdrWQaL48h2ttKpvHyfbnhWxF5vonLMggfWBf/ctbsH0FWn0rn4/ZlS8jxq+vAcPSoa9J/XIf+tddBObb+Utr+u0alfF7fCdLH+0Gqt/HiGVku2jTYSavb9v4qiGCRoxbyvRGkvxqEMbkj8nIQlDZ2/8DtvB7EcDtjvB/ky04/vwrSCUHqPuLfgywPz9rL4fV1ZPqdddqL6+B3r4P390vQxW+FLDdf2Tp/86cgeztttdVC2O5OW78I8nSnrf2WXW611VbrAbtbbbXVgoBioVK/nEz6qyADn0R8OdbkV0E8y9ftYH8tiI0cD9gQWgRZf3y3uXPYb8IQvXhLnrXX5qqvBsltwB9BXuzmgROwhvdVD/lnGtc/0bi7S/1lTP13lvqXe/7g2NZR/fp74ULT5eZDWcLXvuyQ/meU5bnaWQdYSpAfS4K/uhLKK9GmqyvRT7xmq33iNXu1Hrb7mq3+idfs9W6Cu6/Zy2vZfs22T6ziNnt/gnYZY/812z4wQbtulP3Vo6Ul5PZOjzXXRTIvozyGBlg/qr+IfyTiamvCjkeuU0nEP1eh1teSJ1O2o0zT/nktq4EPccfB4dz9edlaW56zlc/c4w0ECd1fvZ+laa/Ww+qhBc+/DP7hQvI41nasyt7aenPCD7RIbqzU6sHh3y9k+bWblkUFK5UH30sBlx+W4mAp7eVefvEZTS+TIPxSBHx6wo2eRaC2PmEzx+emX17UvxvSasWoMzaZaraMIp/4NV4tge3/Gi+3idr8NV6etLX9a7xcA9v+NV73cxauPh759ryH5Fg+ckcOaPncd/OpNcqxLP3O9zmqHU06fnUxOEPw3C3DFxez+sbmkUcoPuVymMIfdr8+ZTa3rTGrpyL+2cDLY95zT+k629z+iLF6dOvhrLbYfVVWWxRem3/ej91iS68fo2Bvi8WeXj9EKR+N83G8HgU/6wetoix/xHJflseL9ap16RObUcpqPWzb6mKfnjetTlYLP9tWJ8uVrF2rW0fZLRoQer+gdhlj+5VBVt+I7b4y7N6O9Vc7ebemQ1ZfD+13D79fe7AbY90m8nZNx7pdd9+UZfV52PabcizNvN2u/onHvtEHHvtlo+y+Ka9/lfOT0y+ncPzxq9yWXyPm9rbnPMPq12d5iN28nbEcH6y2LsTdjHqyif6mRUbHF0y2uo5V3wzDLizDxvP3bFntCrY9ftt9lerH01cpWc6nYKWRv0xJCn2PsvyQUPGxWy2L/+O5l1UlrWQns9ZF3D+vRZZLJtiSeZQVuu+rfLL8QuwxCs0nv5oKfX/yV2tanfPHp9eFvu+rhbL6ROyxkMRYSBqLIKsr0Xx76Y9pgA8EqXvw/y5Ijv96/UH+XZCeH2k+8NXbwR4r584HiyB9uVaYLwtSdgz7Ow/KahaB8pBso7oA9MdD29ezCDmyLifh0C9CeD72XnLnzxCrfeI3a5ikL38D92qYlkF2a5hE3647+OE69mqYRPmvvY7NGqafgtAHguzVMK2DbNYwiS6/ZNyrYVoH2axh+kWQ/mqQvRqmn4Js1TDt387rQfZqmLaDrGqY1kE2a5jE3q5D/OE69mqYZPU52K6XrH4o8CHkUXLvj1+K1RlUuxVMPwTZq2CS1brXbgXTL4I8r+L4YSSA82u4Vk780cFjWdOMFzev9Qp/RllVGnTL48frOXB/PCjLo7nwlV1rdZ/FP65kVWdwMBYVW3sxCH50Gpm/GiQnTxrT4kpWX3A9Xm8Ib12rIB+o0JblItieE/gHKrTF+197HbujG/9AhfYPQTZHN/6BCu1+HO+PbtZBNkc3vwjSXw2yN7r5KcjW6Gb/dl4Psje62Q6yGt2sg2yObvrq+6+9HP7hOvZGN3159NOmlywNGoUOuvC0vvzya/Mddhlk1+U7ve2uP1zHnsv31T6In7iOTZf/KQh9IMiey6+D7Lr88oOvXZdfBtl1+f0g/dUgmy7/Q5A9l9++ndeDbLr8bpClyy+D7Lp8e9tdf7iOTZdv7a91ecuCOP5SU/fHdfQPJN8yyG7y7QfprwbZTL4fguwl3/btvB5kM/l2gyyTbxlkN/nk7Q9qf7iOzeST9yeyli/S2Gfz8cO36N7Vxoe7L9J9+bnX7jhtFWR7nNbf99b1dWyO03r7a69jd5z2QxD6QJDNcZrsfqSyGqctF7V2fyqWQXZ/KvaD9FeDbP5U/BBk76di+3ZeD7L5U7EbZPlTsQyy+1Oh779rra9j86dC358VWLv85tv4aqPDbYO2txdhf7iOTYM2+WuvY9egfwhCHwiyadDLILsGvfqia9ugl0F2DXo/SH81yKZB/xBkz6C3b+f1IJsGvRtkadDLILsGPcb7OewfMGg//lqD3n2R9k/MYvknZrH8E7NY/olZLP/ELJZ/YhbLPzGL5Z+YxfIPzGLp8f6bln9gFkuP92exlhUDPc8hsHpeKP15Icut4fKwY7JSvODH9yCrr1gcHyF7X+wjqMfyE8S9s8V+irJ3yNlv7shWd6SrEY7hC0RfbEujtJyuRLvY4ojFH6IMjD/rljJ/J8rquT0Gqm5cPxCFDnr1jlzxffWxvKPVlBYOFO21TuV3UR6PZB6CfDi9GkWzXdTIXnx2WfO78weunt3laV+bRUC63NdwswhIl2d9bRYBrYNsFgH9EGSvCEi5vz93qctTujbnLpdBdl+Nld8ezv5wHXuvxtqOv/Y6Nl+NfwpCHwiy92q8DrL5aqyfWObSTyxz6SeWufQTy1z6iWUu/cQyl35imUs/scyln1jm0veXufQTy1z6/jLXDy6/N3ep8oEPWVTenoj94To2Dfr9Ra71dewatHzgQ5YfgmwatHzgQ5bYDuVtg14G2TXo/SD91SCbBv1DkD2D3r6d14NsGvRukKVBL4PsGrS+XVD4w3VsGvT7i1xrg96cu1T9wMLBOshu8ukHFg5+CLKZfPqBhYP923k9yGby6QcWDtZBdpPv/a+3friOzeQbH3jTWr1IbxYB6fLEqt0X6fGBOmsd749bxwfqrHXoX3sdu0Os8YE66x+CbA6xxgfqrNU/cN7BOsiuy+8H6a8G2XR5/8B5B/u383qQTZffDbJ0ef/AeQd2vO+u/oHzDuzg972E338HtuWhW5szncsguy5vx9vu+sN17Lm8HeOvvY5Nl/8pCH0gyJ7Lr4NsurwtP9vadPl1kE2X/0WQ/mqQPZf/KciWy+/fzutB9lx+O8jK5ddBdl2e33bXH65j0+VZ/lqX33yRNv7ALNY6yG7y8QdmsX4Ispl8/IFZrP3beT3IZvLxB2ax1kF2k6+9PYv1w3VsJl97fxZrvdbfyjvw4vhBW21LaANn2eAR6a/WHPTF0VY/RBl5N3Yso+yWNNUN0b4VUdhyU8LDsV/38fwoAlutZ5HhkR9yLK5ktX2l5BlB5UH7M8QHDuqyTxzUtV+0Vq/kj8RZLWntnRKxvJDRWzar6upCVmtaykfu0dh4GWW1gRB2w5XRaRVltcH27jbdtjpja3ubblvtErW5Tbf13fKF1Tbd1pcbqW9u072+lt1dj215xNburse22phwc9fjZYztXY9ttTXh7q7H60bZ3fV4nUI4d0zcFru/2mp5az+Flgd1bafQaolrN4V0fCKF1otcm5ug2+qgLs/dQZ1fvp/tNPzIMV32gWO67CPHdNknjumyjxzTtUzDfmSUfix/D5cLXZvbJ9vqG5nd7ZPXV7K5ffJ+kMX2yT8E2ds+eR1kc/vkdZDN7ZN/eFA0D2E66hE/fzwo4wP7bNv4wD7b6yvZfVC2g6welPGBfbbXQXYflKGfeFDsEz8+q9O6dn98lmP9lmcMa93x+89H1peNgtPHRteXo+CjheGLKOt3IJztO0aXF6O458+pu/OLUR4/hY7fwrZ6C1rHIbbcwZ+4HIj42zgmeHH4Mq/5yziO2YjHWtarrUxcTqdi4pfvq2kOXM6TYhdxxrGenMS8otSDEtqvohyY4iT/RJTVtaxb5jGzmS0jj+HQqy0sLoQ4q6MoxurzptE7zj6x50a+H6Sc3PjbIIog9moQ2QqyPrbEvXwKtDgqZKw/1pr9o3WnZe4vxvBVjOWhMjkHRfWInO8TWcsLwbk0o36R9P1Cls3aOH9OWqPFaTBj9bFXlyOPm3twe35GzlgtjX3kjBzJ32qWss6+f2Dp42cEZwo+fpqen7z6uJvlfun4VaPFqbhj/TnQ7lGWg1djqd2jLH+4mN2jLAf/xUchPca6/nfHumcX/X8e//hP//1f/uO//eu///d/+s9/+fd/+x/n3zSP389H3o3jpPMSByVxUkuSpJ6kSZY0knySp4anhqeGp4anhqeGp4anhqeGpwYdB5CADGxAAXagAg04gFAjqBHUCGoENYIaQY2gRlAjqBHUGGoMNYYaQ42hxlBjqDHUGGoMtQa1BrUGtQa1BrUGtQa1BrUGtQY1gZpATaAmUBOoCdQEagI1gZpArUOtQ61DrUOtQ61DrUOtQ61DrUNNoaZQU6hpqJ1Hv5EKsANDrcV/a8BQO2dpST3RQu1cznus/QEZ2IACDLVzbPMY4AMNGGoa6ImXcZzOQ5dzXBhqHv9BAwqwAxVowAH0xMtCLiQg1BxqDjWHmkMtnKSdL8MUVnLjqdbOhXUOL7nxVGvn6ZgcXhIn9XJ4STt/Rzi8pJ3f5HJ4SWt8ogJD7Rx4cHjJjaF2dgCHl9wYaudBVhxe0s5XcQ4vuVGAHRhq50wTh5fcOICeGF7Szh9SDi+5kYENKMBQO1dTOLzkRgMOoCeGl9yYzyQ3Boba+X0Yh5fceKmd1xte0s5zZTi85MZQs/hvQ+2cAuPwkhsJGPd21kdzeMmNAgy187WHw0tuDLVzzozDS270xH4AL7Xzcvqldj474SXtfGHl8JIbQ+0canJ4iZyLpxxeIudUEYeX3HiqyTnc5PCSGwnIwAYUYAcq0IADCDWDmkHNoGZQM6gZ1Axq4SUSyRBecmOonZUhHF4ip4lxeMmNoRbPQ3jJjQLsQAUacAA90Q8gAaHmUHOoOdQcag41h5qnWjsOIAEZ2IAC7EAFGnAAoUZQI6gR1AhqBDWCWniJ9ONEAw5gqJ2+08JLbiQgAxtQMkJ4yY1QY8N/O4BQa1BrUGtQa1BrUGtQa1BruLeGe2tQE6gJ1ARqAjURYAcqEPcmUBNP7AeQgAyEWodah1qHWodaR0t23Jvi3hT3plC7vORCtKSiJRUtqVBTqCnUDGoGNUNLGu7NcG+GezOoGfrN0JKGlhxoyQG1AbUBtQG1AbWBlhy4t4F7G7g3h5qj3xwt6WhJR0s61BxqDjWHmqeaHAeQgAxswFSTowMVaMABhBpBjaBGUCOokQA7UIEGhBplvwkfQAIyEGoMNYYaQw1eIvASgZcIvETgJdKg1hoQLQkvEXiJNKg1qMFLBF4i8BKBlwi8ROAlAi8RgZqg3+AlAi8ReIl0qHWowUsEXiLwEoGXCLxE4CUCLxGFmqLf4CUCLxF4iSjUFGrwEoGXCLxE4CUCLxF4icBLxKBm6Dd4icBLBF4iBrUBNXiJwEsEXiLwEoGXCLxE4CUyoDbQb/ASgZcIvEQcag41eInASwReIvASgZd0eEmHl/Qj1frRgALsQAUaIgwg1OAlHV7S4SUdXtLhJR1e0jEu6RiXdHhJh5d0eEnHuKRjXNLhJR1e0uElHV7S4SUdXtLhJb1BrREQLQkv6fCS3qDWoAYv6fCSDi/p8JIOL+nwkg4v6QI1Qb/BSzq8pMNLukCtQw1e0uElHV7S4SUdXtLhJR1e0jvUOvoNXtLhJR1e0hVqCjV4SYeXdHhJh5d0eEmHl3R4STeoGfoNXtLhJR1e0g1qBjV4SYeXdHhJh5d0eEmHl3R4SR9QG+g3eEmHl3R4SXeoOdTgJR1e0uElHV7S4SUdXtLhJXqkmh4EZGADCrAjggINOIBQg5covEThJQovUYIadaACDTiAUMM7jsJLFF6i8BKFlyi8ROElCi9Rhhpnvym8ROElCi9RvONogxq8ROElCi9ReInCSxReovASFagJ+g1eovAShZco3nFUoAYvUXiJwksUXqLwEoWXKLxEO9Q6+g1eovAShZco3nFUoQYvUXiJwksUXqLwEoWXKLxEDWqGfoOXKLxE4SWKdxw1qMFLFF6i8BKFlyi8ROElCi/RAbWBfoOXKLxE4SWKdxx1qMFLFF6i8BKFlyi8ROElCi9Rh5pnvxm8xOAlBi8xvOPYIcAOVKABBzDvzeAlBi8xgho1oAA7UIFQg5cYxiWGcYnBSwzvOMZQw3yJwUsMXmLwEsO4xG4veUxrWsu5IGsEZGADCrADFWjAAcyZJxOoCdQEagI1gZpATaAmUBOoCdQ61DrUOtQ61DrUOtQ61DrUOtQ61BRqCjWFmkIN7ziG+RLDfInBSwxeYvASw7jEMC4xeInBSwxeYvASg5cYvMTgJQYvMXiJwUtsQG1ADV5i8BKDlxjecQzzJQYvMXiJwUsMXmLwEoOXGLzEHGpuQOQbvGTASwbecQbmSwa8ZMBLBrxkwEsGvGTASwa8ZBDUiIAMbEABQg3zJQNeMghqGJcMjEsGvGRgXDIwLhnwkoG514G518EGHECoYb5kYL5kYO51YFwyMC4ZGJcMjEsGxiUDc6+jod8ELSloSYxLBt5xBuZLBuZLBuZeB8YlA+OSgXHJwLhkYFwyMPc6OvqtoyU7WhLjkoF3nIH5koH5koG514FxycC4ZGBcMjAuGRiXDHjJUPSboiUVLYlxyYCXDMyXDMyXDMy9DnjJgJcMeMmAlwx4ycDc6xjoN3jJgJcMeMnAO87AfMmAlwx4yYCXDHjJgJcMeMmAlwzMvQ5Hv8FLBrxkwEsG3nEc8yUOL3F4icNLHF7i8BKHlzi8xDH36kf2m8NLHF7i8BLHO45jvsThJQ4vcXiJw0scXuLwEoeXOMYljnGJw0scXuLwEse4xDEucXiJw0scXuLwEoeXOLzE4SWOuVfHOo7DSxxe4vASxzuOY77E4SUOL3F4icNLHF7i8BKHlzjmXh3rOA4vcXiJw0sc7ziO+RKHlzi8xOElDi9xeInDSxxe4hiXOMYlDi9xeInDSxzjEse4xOElDi9xeInDSxxe4vASh5c45l4d6zgOL3F4icNLHO84jvkSh5c4vMThJQ4vcXiJw0scXuKYe3Ws4zi8xOElDi9xvOM45kscXkIHzOTBVJgLt8JSuBdO0Qdb4VHYwbCVBxddKrpUdKnoUtGFuTzYCo/C5X656GJ15/zwr3ArLIWLLhddLrpcdLnottLOrdxvK/fbyv22oou1ngeXdm6lnVtp51Z0pehK0ZWiK0VXSjtLuV8p9yvlfqXoSunfXtq5l3bupZ170e1FtxfdXnR70e2lnXu5Xy33q+V+tehq6V8t7aylnbW0sxZdLbpadK3oWtG10s5W7tfK/Vq5Xyu6VvrXSjtbaedR2nkU3VF0R9EdRXcU3VHaeZT7HeV+R7lfL7pe+tdLO3tpZy/t7EXXi64XXS+6xa+o+BUVv6LiV1T8ijDJS4QVI6LiV1T8iopf0VF0qegWv6LiV1T8iopfUfErKn5Fxa+Iii7maYiKX1HxKyp+RVx0uegWv6LiV1T8iopfUfErKn5Fxa+oFV2sJhEVv6LiV1T8ilrRbUW3+BUVv6LiV1T8iopfUfErKn5FUnSl9G/xKyp+RcWvqBfdXnSLX1HxKyp+RcWvqPgVFb+i4lekRVdL/xa/ouJXVPyKtOgWvyIt96vlfotfkRVdK7pWdItfUfErKn5FVu739qsWnNNXdNXq3jyOwlSYC7fCUrgX1sJWuOiOoutF14uuF10vul50veh60fWi60UXNXfEKLojRtUdMcruiFF3R4zCO2JU3hGj9I4YtXfEKL4jPoouFV0qunhxI8YsEDGmgYiLX3HxKy5+xWV8xWV8xcWvuPgVF7/i4ldc/IqLX3HxKy5+xcWvuPgVt6Lbim7xKy5+xcWvuBXdVnSLX3HxKy5+xcWvuPgVF7/i4lcsRRerV8TFr7j4FRe/Yim6vegWv+LiV1z8iotfcfErLn7Fxa+4F12sZREXv+LiV1z8irXoatEtfsVadMv4isv4iotfcRlfcRlfcfErttK/VtrZSjuX8RVb0bWia0V3FN0yvuIyvuIyvuIyvuIyvuJRdEfp31HaeZR2LuMr9qLrRdeLrhfdMr7iMr7iMr7iMr7iMr5qmKimhlUvalj2ooY1dGplfNXK+2DDFBM1zDFRw4Q1tTK+amV81cr4qpXxVSvjq1b8qmENjErRMJWqYSplw1TqhqkUDlOpHKZSOkyldpha8atW/KoVvyr1w9S46GJ1nVrxq1b8qhW/KlXE1FrRLX7Vil+14let+FWpJaZSTEylmpiaFF0p/Vv8qhW/asWvSk0xNSm6xa9a8atW/KoVvyqVxVRKi6nUFlPrRbeX/i1+1YpfteJXpcKYmhbd4let+FUrftWKX5U6YyqFxlQqjamV8VUr46tW/KoVv2rFr0q9MbUyvmrFr1rxq1b8qhW/KlXHVMqOqdQdUxtFd5T+LX7Vil+14lel+piaF93iV634VSt+1YpflRpkKkXIVKqQqXnRxboaSfErKX4lxa9KLTJJmb+S4ldS/EqKX0nxq1KRTKUkmUpNMkkZX0kZX0nxKyl+JcWvSmUySRlfSfErKX4lxa+k+FWpT6ZSoEylQpmEiy7W3EiKX0nxKyl+VeqUScr8lRS/kuJXUvxKil+VamUq5cpU6pVJpOhK6d/iV1L8SopflaplkjJ/JcWvpPiVFL+S4ldS/KoUL1OpXibpRbeX/i1+JcWvpPhVqWEmKfNXUvxKil9J8SspflUqmamUMlOpZSYp74OipX+LX0nxKyl+VSqaScr7oBS/kuJXUvxKil+VumYqhc1UKptJRtEdpX+LX0nxKyl+VeqbScr8lRS/kuJXUvxKil+VKmcqZc5U6pxJvOh66d/iV1L8qhe/KtXO1Mv8VS9+1Ytf9eJXvfhVqXmmUvRMpeqZeplv71jHo178qhe/6sWvSu0z9fI+2Itf9eJXvfhVL35VKqCplEBTqYGmXubbO1b1qBe/6sWvevGrUglNvcxf9eJXvfhVL37Vi1+VemgqBdFUKqKpl/n23kr/Fr/qxa968atSF029zF/14le9+FUvftWLX5XqaCrl0VTqo6mX+fbeS/8Wv+rFr3rxq1IlTb3MX/XiV734VS9+1YtflVppKsXSVKqlqZf5q17mr3rxq178qhe/KjXT1Mt8ey9+1Ytf9eJXvfhVqZymUjpNpXaaeplv76P0b/GrXvyqF78qFdTUy3x7L37Vi1/14le9+FWpo6ZSSE2lkpp6mW/vXvq3+FUvftWLX5V6atIy367Fr7T4lRa/0uJXpaqaSlk1lbpq0jLfrmV9UItfafErLX5VqquplFdTqa+mUmBNWvyqlFiTlvl2LfNXpcqaSpk1lTprKoXWNCutWzDm6+5a65tHYczXKUokSVEjSYoiSVJUSZKiTJIUdZKkrei2otuKbiu6UnSl6ErRlaIrRVeKrhRdKbpSdKXo9qLbi24vur3o9qLbi24vur3o9qLbi255H9Qyf6Vl/qrUY1MpyKZSkU2lJJtKTTZp8SstflXKskmLX2nxKy1+pcWvSm02leJsKtXZpGV9UMv6oBa/0uJXWvyq1GiTlvkrLX6lxa+0+JUWvyqV2lRKtanUapOW9UEt64Na/EqLX2nxq1KxTVrmr7T4lRW/suJXVvyq1G1TKdymUrlNVtYHrawPWvErK35lxa9K/TZZmb+y4ldW1getjK+sjK9KFTdZGV9ZGV+VQm6yMt9eSrmp1HJTKeamUs1NpZybSj03lYJusjK+sjK+sjK+sjK+sjK+sjLfbmV90Mr6oJV6BivjKyvvg1bmr6zMX1mZb7cyvrIyvrIyvrIyvrIyvrIy325lfdDK+qCVegYr4ysr74NW5q+szF9ZmW+3Mr6yMr6yMr6yMr6yMr6y4ldW1gdL0TeVqm8qZd9U6r6pFH5TqfymUvpNpfabrPiVFb+y4lel/puszLdbqWew4ldW/MqKX5UqcLIyf2XFr6z4lRW/suJXpRacSjE4lWpwsjLfbqWewYpfWfErK35VasLJyvyVFb+y4ldW/GoUvyqV4VRKw6nUhtMo8+2j1DOM4lej+NUoflUqxGmU+atR/GoUvxrFr0bxq1InTqVQnEqlOI0yvhplfDWKX43iV6P4VakXp1HGV6P41Sh+NYpfjeJXpWqcStk4lbpxGmW+fZT1wVH8ahS/GsWvSvU4jTJ/NYpfjeJXo/jVKH5VasipFJFTqSKnUebbR1kfHMWvRvGrUfyq1JLTKPNXo/jVKH41il+N4lelopxKSTmVmnIaZXw1yvhqFL8axa9G8atSWU6jjK9G8atR/GoUvxrFr0p9OZUCcyoV5jTKfPso64Oj+NUofjWKX5U6cxpl/moUvxrFr0bxq1H8qlSbUyk3p1JvTqPMt4+yPjiKX43iV6P4Vak6p1Hmr0bxq1H8ahS/GsWvSu05leJzKtXn5GW+3cv6oBe/8uJXXvyq1KCTl/krL37lxa+8+JUXvyqV6FRK0anUopOX90Ev64Ne/MqLX3nxq1KRTl7eB734lRe/8uJXXvyq1KVTKUynUplOXubbvawPevErL37lxa9KfTp5mb/y4lde/MqLX3nxq1KlTqVMnUqdOnmZb/eyPujFr7z4lRe/KtXq5GX+yotfefErL37lxa9KzTqVonUqVevkZb7dy/qgF7/y4lde/KrUrpOX90EvfuXFr7z4lRe/KhXsVErYqdSwk5f5di/rg178yotfefGrUslOXuavvPiVF7/y4lde/KrUs1MpaKdS0U5e5tu9rA968SsvfuXFr0pdO3mZv/LiV178yotfefGrUt1OpbydSn07H5hv5wPrg3zAr/iAX/EBv+JS384H5q/4gF/xAb/i4yi68Csu9e1c6tu51LfzQUUX81d8wK/4gF/xAb/iUt/OBxddLrpcdLnowq+41LdzqW/nUt/OBxddrA/+/0q7mx1JluPAwu/CdS/Czcz/5lUIQpA4nAEBQhQ40gCDAd9dVR6V1z9I2mlDGOtW5yn36DqdmXHgGU+yz8k+J/uccBNuwk24CTfZ52S9xXqL9Rbc4voW+1zsc7HPBbfgFtwOt8Pt7HNnvZ31dtbb4Xaub2efO/s82OcBd7DewXoH6x1wB9wBd8AdrHey3gl3st4fX50TSudv79fFT9/+Mw/mybyY951vLxrP7UXj4UjGhzMZHw5lfDiV8eFYxodzGR8OZnw4mfHhaMaHsxkfDmd8OJ3x4XjGh/MZHw5ofDih8eGIxuf2otFuLxrt9qLRbi8a7fai0W4vGu32otFuLxrt9qJB3x7tvn8V7b5/FfTtQd8e9O1B3x707dHwVcNX9O3R8FXDVw1fNXxF3x707UHfHi3gBlx81fBVw1f07dESLr5q+Krhq4av6NuDvj3o26MV3Ht/MBq+aviq4atWcAsuvmr4quGrhq/o24O+Pejbo3W49/5gNHzV8FXDV/Tt0QZcfNUG3AF3sM/4qg3WO1gvvmqD6zvZ58k+T/Z5wp1wJ9wJd8Kd7PNkvYv1Lta74C6u72KfF/u82OcFd8FdcDfcDXezz5v1bta7We+Gu7m+m32+PUMEz6/ivh6MuO9fRdz3ryLu++0RPL8Knl8Fz6+C51fB86vAV3HvDwZ9e9C3B3170LcHfXvQtwd9e9C3R+CrwFeBr+jbIwLu7Rki8FXgq8BX9O0RCRdfBb4KfBX4ir496NuDvj0i4SbXF18Fvgp8Rd8eUXDxVeCrwFeBr+jbg7496NsjOtzO9cVXga8CX9G3R3S4+CrwVeCrwFf07UHfHvTtETy/Cp5fBb4KfBX4ir49gudXga8CXwW+CnxF3x707UHfHrHgLq4vvgp8FfiKvj1iwcVXga8CXwW+om8P+vagb4/YcDfXF18Fvgp8Rd8eed+/isRXia8SXyW+om8P+vagb4/k+VXy/CrxVeKrxFf07ZE8v0p8lfgq8VXiK/r2oG8P+vbIgHvvDwaHYwenYwfHYwd9e3BAdnBCdnBEdnBGdnBIdtC3B3170LcHB2UHJ2UHR2VH4qvEV/TtwXHZwXnZwYHZwYnZwZHZQd8e9O1B3x4cmx2cmx0cnB2JrxJf0bcHh2cHp2cHx2cH52cHB2gHfXvQtwd9e3CIdnCKdnCMdiS+SnxF3x4cpR2cpR0cph2cph0cpx307UHfHvTtwZHawZnawaHakfgq8RV9e3CwdnCydnC0dnC2dnC4dtC3B3170LcHB2wHJ2wHR2xH4qvEV/TtwTHbwTnbwUHbwUnbwVHbQd8e9O1B3x4ctx2ctx0cuB2Frwpf0bcHh24Hp24Hx24H524HB28HfXvQtwd9e3D4dnD6dnD8dhS+KnxF3x4cwR2cwR0cwh2cwh0cwx307UHfHvTtwVHcwVncwWHcUfiq8BV9e3Agd3Aid3Akd3Amd3Aod9C3B3170LdHFdzi+uKrwleFr+jbg+O5g/O5gwO6gxO6gyO6g7496NuDvj04pjs4pzs4qDsKXxW+om8PDusOTusOjusOzusODuwO+vagbw/69uDQ7uDU7uDY7ih8VfiKvj04ujs4uzs4vDs4vTs4vjvo24O+PejbgyO8gzO8g0O8o/BV4Sv69uAg7+Ak7+Ao7+As7+Aw76BvD/r2oG8PDvQOTvQOjvSOjq86vqJvD/r2oG8P+vbgZO+gb4/O++0c7h307UHfHvTtQd8en749z/xyx5lf7vkgntdX4/3+wx3v9x/ueL//cL8/RzJ++vaf+XDn+Zif11c/8+HO94N+gvlwzwcL/fTtPx8G1JkH8+G+Hw30+upnPtx9Pgbo9dXPfLj7/Myvr37mw93nMV9f/cyd+Zvbn7MPx1ef+Zv7dTXPvO98fPWZG3Oc+Xxw0fHVZy7mfubzMx9f9XZ+zuOrz/xyzz73fefjq34+POjt2z9zMB/u+WSut2//zId7PmLo7ds/82Q+3Dw/2/HVz3x81fP8bMdXn/lwvz8yON6+/TMX8+Gez+56+/bPfLjv3+3jq97fD3zadz6++syH299Pggrmw+3nMY+vPnNnPtz37/yazIf7/n0+vvqZj68+8+HO83MeX33mw51nb4+vPvPhzrP246vPfLjzfczFvH+b3769n0/nevv2z3y45/fi7ds/czEf7vn8rLdv/8yHu/PMi/mbO86HbL19+2duzHHmOnMy15kP9/hqtPf7x5n7mSfzYt53Pr76zIfb5pmDOZmL+eWen+H4apy/52/f/pkX877z8dXXo525MQfz4Z7Psnv79hGHdXz1mQfz4ebZ8+Orz3y45/fo7ds/c2MO5sM9v19v3/6ZD/f8Tr19+2eezId7fr/evv1nPr4a53ft7ds/8+Ge36+3b//Mh3s+4O7t2z/zYD7c/j7+Yj7c82/H27d/5sZ8uOf36+3bP/Phnt+vt2//zId7/h15+/bPvJgPd509P776zId7Prru7ds/8+Gej6l7+/bPfLjn35q3b//Mk/lw99mr46uf+fhqnn873r79MwdzMteZz9/J46vPPJjnmc/PfHw1n/NzHl/9zPvlnn3Yjflw39/N46vPXMyHe/49evv2z3y47+/L8dVn3r/Nb98+z0c/vn37Zz7c87vz9u2f+XDP3+e3b//Mg/lwc515MR/u+QS8t2//zI35cM8HSb59+6zzkXrHV5+5Mw/mwz2/L2/f/pn3neNhPtzze/T27fM8d3r79s9czJ35cM8nNr59+2c+3PU+5r7z8dVnbszBnMzF3JkH82SGm3ALbsEtuAW34BbcgltwC27B7XA73A63w+1wO9wOt8PtcDvcAXfAHS/3/D0ZyVzML/dc3zGYJ/Ni3neez32c2ZjhzuT7ixnuhDvhTrgT7oK74C64i/Uu1rvgLrgL7oK74L6++pkbczCz3g339dXPPJgn82K+3Ldv/8yNOZiTuZg782CezJf79u0/c3uYG3Mww21wG9wGt8Fti5n1BusN1htwI5mLuTMPZrgBN+Am3ISb7HOy3mS9yXoTbk5m9jnZ52KfC27BLbgFt+AW+1yst1hvsd4Ot3N9O/vc2efOPne4HW6H2+F2uIN9Hqx3sN7BevHVGlzfwT4P9nmwz/hqTbgT7oSLrxa+Wvhq4auFr9aEO7m++Grhq4Wv1oK74OKrha8Wvlr4auGrha8Wvlob7ub64quFrxa+WhvuhouvNr7a+Grjq42vNr7a+Go/l7ufybyY7z5vfLUb3AYXX218tfHVxlcbX218tfHVDrjRmIM5mYsZbsDFVxtfbXy18dXGVxtfbXy1E252ZvYZX218tRNuwcVXG19tfLXx1cZXG19tfLULbnF98dXGVxtf7Q63w8VXG19tfLXx1cZXG19tfLV5frV5frXx1cZXG19tnl9tnl9tfLXx1cZXG19tfLXx1cZXe8KdXF98tfHVxld7wV1w8dXGVxtfbXy18dXGVxtf7Q13c33x1cZXG1/tDXfDxVcbX+3rq3yur/K5vsrn+iqf66t8nt+4+TydeTBP5sUMt8FtcBvcBvf6Kp/rq3yur/K5vsqnwW37ztdX+Vxf5XN9lU/ADbgBN+AG3OurfIL1JutN1ptwM5nZ52Sfk31OuAk34Rbcglvsc7HeYr3FegtucX2LfS72ubPPHW6H2+F2uB1uZ5876+2st7PeAXdwfQf7PNjnwT4PuAPugDvgDriTfZ6sd7LeyXon3Mn1nezzZJ8n+zzhLrgL7oK74C72ebHexXoX611wF9d3s8+bfd7s84a74W64G+6Gu9lnfNXwVcNX7bnc9iRzMXfmwTx5nMUMF181fNXwVcNXDV81fNUa3DaZF/Pd54avWsANuPiq4auGrxq+aviq4auGr1rCzcbMPuOrhq9awk24+Krhq4avGr5q+Krhq4avWsEtri++aviq4atWcDtcfNXwVcNXDV81fNXwVcNXrcPtXF981fBVw1dtwMVXbbDewXrxVRtwB9wJF181fNXwVZus98dX/cwvd515Mi/mfecfX71zYw7mZC7mzgx3wV1wF9wNd8PdcDfcDXfD3XA33A13X248D3NjDuZkLubOPJgn82KG+/rq+95Hvn37Zw7mw/2+55hv3/6ZO/NgnsyLx9l3Drivr97vf331M8MNuAE34AbcgBtwE26y3mS9CTfhJtyEm3BfX/3M+86vr35m1ltwX1/9zMXcmQcz3IJbcDvcDrezz531dtbbWW+H+/rqZ2afO/s82OcBd8AdcAfcAXewz4P1DtY7WO+EO7m+k32e7PNknyfcCXfCnXAn3MU+L9a7WO9ivQvu4vou9nmxz4t9XnA33A13w91wN/u8We9mvZv1brj7Xt+3b//MjTmYL/ft2z9zZx7Mk3kx3/Vme5gbM9yWzMXcmQcz3Aa3wQ24+CrxVeKrxFeJrzLgxmRezOwzvsqEm3DxVeKrxFeJrxJfJb5KfJUFt7i++CrxVeKrLLgFF18lvkp8lfgq8VXiq8RX2eF2ri++SnyV+Co73AEXXyW+SnyV+CrxVeKrxFc54A6uL75KfJX4KifcCRdfJb5KfJX4KvFV4qvEV7ngLq4vvkp8lfgqF9wFF18lvkp8lfgq8VXiq8RXueFuri++SnxV+Kqey60nmJO5mDvzYJ7Mi/mut3h+VTy/KnxV+KrwVfH8qnh+Vfiq8FXhq8JXha8KXxW+qoAbnXkwT+bFDDfh4qvCV4WvCl8Vvip8VfiqEm5yffFV4avCV1VwCy6+KnxV+KrwVeGrwleFr6rD7VxffFX4qvBVdbgdLr4qfFX4qvBV4avCV4WvasAdXF98Vfiq8FVNuBMuvip8Vfiq8FXhq8JXha9qwV1cX3xV+KrwVS24Cy6+KnxV+KrwVeGrwleFr2rD3VxffFX4qvBV7cvtz8PcmIM5mYu5Mw/myXy5/bnXt+Orjq86vuq8Huy8Huz4quOrjq86vur4quOrjq96wI1kLubOPJjhBlx81fFVx1cdX3V81fFVx1c94eZkZp/xVcdXndeDveDiq46vOr7q+Krjq46vOr7qHW7n+uKrjq86vuq8HuwdLr7q+Krjq46vOr7q+Krjqz7gDq4vvur4quOrzuvBPuHiq46vOr7q+Krjq46vOr7qE+7k+uKrjq86vuq8HuwLLr7q+Krjq46vOr7q+Krjq77hbq4vvur4quOrzuvBvuHiq4GvBr4a+Grgq4GvBr4az+WOZzIv5rvPA18NXg8OfDV4fjV4fjXw1eD14Ghwef9q4KuBrwa+Gjy/Gj++yjP/1ovmuL1ojtuL5ri9aI7bi+a4vWiO24vmuL1ojtuL5ri9aI7bi+a4vWiO24vmuL1ojoSbcAtuwS24BbfgFtyCW3ALbsHtcDvcDrfD7XA73A63w+1wO9wBd8Dl/fbB/cHB++2D+4OD+4OD99sH9wcH9wcH77eP24vmmHB5v33wfvuYcCfcCXfC5f7gWHAX3AV3sd7Ferk/OLg/OLg/OBbcBff2Vzluf5Xj9qI5uD84NtzbX+W4/VWO24vmuL1oDu4PTu4PTu4PTnqGSc8wb3+V8/ZXOW8vmpP7g5OeYd7+Kuftr3LeXjTn7UVzcn9wcn9wcn9w0jNMeoZ5+6ucjfUG6+X+4KRnmLe/ynn7q5y3F815e9Gc3B+c3B+c3B+c9AyTnmEm+5ysN1kv9wcnPcO8/VXOZJ+TfS72mfuDk/uDk/uDk55h0jPMYp+L9Rbr5f7gpGeYnevb2efOPnf2mfuDk/uDk/uDk55h0jPMwT4P1jtYL/cH6dtzcn9wcn9wDvaZ+4P07TnpGSb3Byf3B+nbk7496duTvj3p23PSM8zJ9cVX9O1fM/tMzzDpGejbk7496duTvj3p27/eQmO9+GrSM8zN9cVX9O1J356TnmHSM9C3J3170rcnfXvStyd9e9K356JnWPRX9O1J35707bnoGRY9A3170rcnfXvStyd9e9K3J317LnqGRX9F35707UnfnoueYdEz0LcnfXvStyd9e9K3J3170rfnomdY9Ff07UnfnvTtuegZFj0DfXvStyd9e9K3J3170rcnfXsueoZFf0XfnvTtSd+ei55h0TPQtyd9e9K3J3170rcnfXvSt+fi+dXi+RV9e9K3J317Lp5fLZ5f0bcnfXvStyd9e9K3J3170rfnor9a9Ff07UnfnvTtueivFv0VfXvStyd9e9K3J3170rcnfXsu+qtFf0XfnvTtSd+ei/5q0V/Rtyd9e9K3J3170rcnfXvSt+emv9r0V/TtSd+e9O256a82/RV9e9K3J3170rcnfXvStyd9e276q01/Rd+e9O1J356b/mrTX9G3J3170rcnfXvStyd9e9K356a/2vRX9O1J35707bnprzb9FX170rcnfXvStyd9e9K3J317bvqrTX9F35707Unfnpv+atNf0bcnfXvStyd9e9K3J3170rfnpr/a9Ff07UnfnvTtuXk9uHk9SN+e9O1J35707UnfnvTtSd+em15004vStyd9e9K35+b14KYXpW9P+vakb0/69qRvT/r2pG/PTS+66UXp25O+Penbc/N6cNOL0rcnfXvStyd9e9K3F3170bfXc3vRem4vWvTtRd9e9O313NeD9dxetOjbi7696NuLvr3o24u+vejb62lwby9a9O1F31707fUE3IAbcANuwL2+Kvr2om8v+vZ6Eu7tRYu+vejbi769noSbcBNuwk24xT4X6y3WW6y34BbXt9jnYp+LfS64HW6H2+F2uJ197qy3s97OejvczvUd7PNgnwf7POAO1jtY72C9A+6AO+BOuJP1TtY74U7We3vRem4vWs/tReu5vWg9txet5/ai9dxetJ7bi9Zze9F6bi9az+1F61lwF9wFd8HdcDfcDXfD3XA33A13w91wby9a7fai1W4vWu32otVuL1rt9qLVbi9a7fai1W4vWu32otUeuPf99mr3/mC1+357tXt/sNq9P1jtvt9e7d4frHbvD1a777dXu71otYB732+vdt9vrxZwA27ADbgBN+AG3ISbrDdZb8JNuAk34Sbc219Vu/1VtduLVivWW3Bvf1Xt9lfVbi9a7fai1QpuwS24HW6H29nnzno76+2st8O9/VW1zj539nmwzwPugDvgDrgD7mCfB+sdrHew3gl3cn0n+zzZ58k+T7gT7oQ74U64i31erHex3sV6F9zF9V3s82KfF/u84G64G+6Gu+Fu9nmz3s16N+vdcG9/VXH7q4rbi1bcXrTi3h+suPcHK+79wYrbM1TcnqHi9lcVt7+quL1oxb0/WPTtFff+YMW9P1hxe9GKe3+w6NsrGtwGN+DiK/r2om8v+vaib68IuLe/Kvr2om8v+vaKhJtw8RV9e9G3F3170bcXfXvRt1cU3OL64iv69qJvryi4BRdf0bcXfXvRtxd9e9G3F317RYfbub74ir696NsrOtwBF1/Rtxd9e9G3F3170bcXfXvFgDu4vviKvr3o2ysm3AkXX9G3F3170bcXfXvRtxd9e8WCu7i++Iq+vejbKxbcBRdf0bcXfXvRtxd9e9G3F317xYa7ub74ir696Nsrb89QeXuGom8v+vaiby/69qJvL/r2om+v5PlV8vyKvr3o24u+vZLnV8nzK/r2om8v+vaiby/69qJvL/r2yoB7+6uiby/69qJvrwy4CRdf0bcXfXvRtxd9e9G3F317ZcJNri++om8v+vbKgltw8RV9e9G3F3170bcXfXvRt1d2uJ3ri6/o24u+vbLD7XDxFX170bcXfXvRtxd9e9G3Vw64g+uLr+jbi769csKdcPEVfXvRtxd9e9G3F3170bdXLriL64uv6NuLvr1ywV1w8RV9e9G3F3170bcXfXvRt1duuJvri6/o24u+vfL2V1W3vyr69qJvL/r2om8v+vaiby/69qrbX1Xd/qro24u+vejbq3g9WLwepG8v+vaiby/69qJvL/r2om+vCri3Fy369qJvL/r2Kl4PVsDFV/TtRd9e9O1F31707UXfXpVwby9a9O1F31707VW8HqyCi6/o24u+vejbi7696NuLvr2qw+1cX3xF31707VW8HqwOF1/Rtxd9e9G3F3170bcXfXvVgDu4vviKvr3o26t4PVgTLr6iby/69qJvL/r2om8v+vaqCXdyffEVfXvRt1fxerAWXHxF31707UXfXvTtRd9e9O1VG+7m+uIr+vaib6/i9WBtuPiKvr3o24u+vejbi7696Nur3160+u1Fi7696NuLvr06rwfp26vz/Krz/Iq+vTqvB3uDy/tX9O1F31707dV5ftVvL1qfvn2f+Zu7nvd7xpnjzJN5Me87H1995sYczMlczJ0ZbsJNuAm34BbcgltwC27BLbgFt+AeX6129vz46jM35mBO5mLuzIN5Mi9muAPugDvgDrgD7oA74A64A+6AO+FOuBPuhDvhTrgT7oQ74U64C+6Cu+AuuAvugrvgLrgL7oK74W64G+6Gu+FuuBvuhrvh7st9+/bP3JiDOZmLuTMP5sm8mOE2uA1ug9vgNrgNboPb4Da4DW7ADbgBN+AG3IAbcANuwA24CTfhJtyEm3ATbsJNuAk34RbcgltwC27BLbgFt+AWXHw18NXAVwNfDXw18NXAVwNfDXw18NXAVwNfDXw18NXAVwNfDXw18NXAVwNfDXw18NXAVwNfDXw18NXAVwNfDXw18NXAVwNfDXw18NXAVwNfDXw18NXAVwNfDXw18NXAVwNfDXw18NXAVwNfDXw18NXAVxNfTXw18dXEVxNfTXw18dXEVxNfTXw18dXEVxNfTXw18dXEVxNfTXw18dXEVxNfTXw18dXEVxNfTXw18dXEVxNfTXw18dXEVxNfTXw18dXEVxNfTXw18dXEVxNfTXw18dXEVxNfTXw18dXEVxNfTXw18dXEVxNfTXw18dXEVxNfTXw18dXEVxNfTXw18dXEVxNfTXw18dXEVxNfTXw18dXEVxNfzR9fzTO/3H3mw433ew73+7MV6u3bP/Phfn8uSb19+4rv++xv377y/NnXV/n8/dfv/u8//u3P//hPf/nT//nd//j/X//3f/3bP//xX//813/++b//+v/+5fNf/ulvf/7LX/78v//hX/721z/+6X/+29/+9A9/+esfv//b757v//n+Nf19G7+i/eHrm9tvX6r1q+f3l+K3L339bLG/v5S/fSnrV54v1c8D/n59vZn5a329w/eH82i/31834X7tr7tXfzh/7uu/1/P13/vz/d+//8DXk8Px6+tZ4fkD7XzHjO9HqO/H7fdnnL8ivr80/vOPPf/zl9b3l76BX7uY6wOr+lXn593/xdrZj/0rDr69G3K+FL++lvJ5oNF/zefzE3/dW/x6jPPDtfhsxNcN/V9fN7l/lt1a/9Wif/54i/Gr5W9L/roB/uvrZvd5gPzvPkD9x2X8/e9/+Pu/Aw==",
1931
+ "verification_key": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEZRAAAAAAAAAAAAAAAAAAAAsIjHuQMmwvZguxj2Hkmi0KsAAAAAAAAAAAAAAAAAAAAAACfPfAvcG9qI8awme2fKsQAAAAAAAAAAAAAAAAAAAKaLXObBLtotOKmckvJsdaZ/AAAAAAAAAAAAAAAAAAAAAAAASkG34Bp4szyzQkounEAAAAAAAAAAAAAAAAAAAAB0rG2uV1KbNST8Xp0Izr412wAAAAAAAAAAAAAAAAAAAAAAJZfijAYrkts4A1BeQUIaAAAAAAAAAAAAAAAAAAAApB7efflIUZ28CRBXtEGAHGAAAAAAAAAAAAAAAAAAAAAAAAWbgNfigj1A5s/A7UYJdgAAAAAAAAAAAAAAAAAAANHu/hpk4Yn10c/2Xyl0QpqTAAAAAAAAAAAAAAAAAAAAAAAnfYMzrqtQ6+9Qh1T8lxAAAAAAAAAAAAAAAAAAAAC6S3uPHzIwkwlBGEFjkhBldAAAAAAAAAAAAAAAAAAAAAAAJxTDFJNSoXzr5DNtGP/0AAAAAAAAAAAAAAAAAAAAJ1cS0X8CiNQ9j/IVqL9uq6oAAAAAAAAAAAAAAAAAAAAAAAGCsIQvInJC7kIcZ/FjoAAAAAAAAAAAAAAAAAAAAF5ysS/iKLsh+lRuJMOjQdmsAAAAAAAAAAAAAAAAAAAAAAAuSIb+l1cJzP4cgAKzP0kAAAAAAAAAAAAAAAAAAAB82rZLJUMZSTMHjUeBF7dJQAAAAAAAAAAAAAAAAAAAAAAAFmioqGhNXEVAtq/p3eu9AAAAAAAAAAAAAAAAAAAAfGhq5C0TydsiDYAAPr+IR9gAAAAAAAAAAAAAAAAAAAAAAB4Qzfmv9IUrkJG4fp7dvwAAAAAAAAAAAAAAAAAAABRdmJRpO5QTO45EtJ6DcGBOAAAAAAAAAAAAAAAAAAAAAAAoINOBZi/2Co5OJd/gVicAAAAAAAAAAAAAAAAAAADwGbxNFURFnOkzme+cujM0wgAAAAAAAAAAAAAAAAAAAAAADpGyrp7H6m4X83d3lwYzAAAAAAAAAAAAAAAAAAAAIjx7zf4ErK3TUbUjPHWvo0EAAAAAAAAAAAAAAAAAAAAAABJB8o1i6Ip9b013Xwim2AAAAAAAAAAAAAAAAAAAANbtA9MMEnI01SmAvBq147tMAAAAAAAAAAAAAAAAAAAAAAAB4gue2VkVG3TYKDAdd9gAAAAAAAAAAAAAAAAAAAA+OFP4UjjMKDwDu6YE0HGOigAAAAAAAAAAAAAAAAAAAAAABBPbUj7dLDbvLV74scQOAAAAAAAAAAAAAAAAAAAAOmlDz2zIoDefnMlhCXEVjeoAAAAAAAAAAAAAAAAAAAAAABsR566rBr32xLPcvwDYoQAAAAAAAAAAAAAAAAAAAOtBjR1Wu1QQGd/eTyw5/38CAAAAAAAAAAAAAAAAAAAAAAAa9SRhqGcu9ZY7tMExNo4AAAAAAAAAAAAAAAAAAABH8+4oyA1gUv5hOmhNxnK0pAAAAAAAAAAAAAAAAAAAAAAAGpWX17Q0uCXDObICqBJGAAAAAAAAAAAAAAAAAAAAvD7MJYgunxrecuenVc93NO0AAAAAAAAAAAAAAAAAAAAAAAI18sykljPMCfUjC7q42wAAAAAAAAAAAAAAAAAAAH1gUTcmUsHGYqtF1o8rHp4vAAAAAAAAAAAAAAAAAAAAAAAuqOIyaGKnXUh4nFpRaIEAAAAAAAAAAAAAAAAAAAAtuDmbjyYzWldu0ZdvgQkaQAAAAAAAAAAAAAAAAAAAAAAAEDHP9f0BsU9poTGY9CDHAAAAAAAAAAAAAAAAAAAAVKU9ypuj/dTgUeKA11omDtEAAAAAAAAAAAAAAAAAAAAAAAlM33/TLjGQsLYQ5KvhfQAAAAAAAAAAAAAAAAAAAEE3LcYjpUDpves0+WumRBQFAAAAAAAAAAAAAAAAAAAAAAAdpgUV8Os4p0Bp+H5hVCEAAAAAAAAAAAAAAAAAAACG9YTcaCpEetHoKCP5CNKWagAAAAAAAAAAAAAAAAAAAAAABK7syUJ+VKyCphHc3Z+YAAAAAAAAAAAAAAAAAAAAu40KrxWtUHMUKc6dUA+L7eAAAAAAAAAAAAAAAAAAAAAAAAPZA6T2tVbVMvVGftb3XQAAAAAAAAAAAAAAAAAAAPxWP3hhvjWZAnc1CUBivFIAAAAAAAAAAAAAAAAAAAAAAAAfgzJHCuZ1H66fvaGxUxUAAAAAAAAAAAAAAAAAAAC/SzzASAeJ3AfEU7fLP+pmUQAAAAAAAAAAAAAAAAAAAAAAF4jP3rE5rkXopseV0GYrAAAAAAAAAAAAAAAAAAAAVIyo34H6YJ+JkniKSj1SSRoAAAAAAAAAAAAAAAAAAAAAAB7ebMoe9EBspTlHgkjm/QAAAAAAAAAAAAAAAAAAAOtreL7Ah0GYpSBI9BvEa142AAAAAAAAAAAAAAAAAAAAAAAOcUEhWWRdz2V0ZGuQHkQAAAAAAAAAAAAAAAAAAAC1VnjjU0/6y6F0zgFsw6W9ywAAAAAAAAAAAAAAAAAAAAAAKFTK1/BlrtvEivds4xWAAAAAAAAAAAAAAAAAAAAAZOED1ObtFJYIMJrZPWq+nQAAAAAAAAAAAAAAAAAAAAAAAC5G2rMMuoG3Yt6DgLQumgAAAAAAAAAAAAAAAAAAAF5q5tjZyDYpzACP2fhHVCSZAAAAAAAAAAAAAAAAAAAAAAAQzltPsLO2qQiVjyBDMSgAAAAAAAAAAAAAAAAAAAA9WFuBjfuecVQlaqVKrJdPdAAAAAAAAAAAAAAAAAAAAAAALpIcKf/YkfvDS9yOrXcvAAAAAAAAAAAAAAAAAAAAhVIaU2zUuo5mLzsEggUrVOsAAAAAAAAAAAAAAAAAAAAAACbG+SoYuzTxs99U9k9OtAAAAAAAAAAAAAAAAAAAANgYmnHf6QwXHw4+hxQK+LKrAAAAAAAAAAAAAAAAAAAAAAAlTiGWANbVweyBviZO8UkAAAAAAAAAAAAAAAAAAACHtCFC/u+HBQa3AWpu4TrpHQAAAAAAAAAAAAAAAAAAAAAAKI1D+hQb7jsl/hUO/dUjAAAAAAAAAAAAAAAAAAAAWJki1c7x6ck8W0AHyU7T+3cAAAAAAAAAAAAAAAAAAAAAAA1RFw+rwXMRVDRdiwmXQgAAAAAAAAAAAAAAAAAAAHRrToPVee3y+/8+soyU3RTBAAAAAAAAAAAAAAAAAAAAAAAWv48lmKVY9GXgmZOmI6IAAAAAAAAAAAAAAAAAAAAAEyBoQaqdbNCuqMJKulqjDAAAAAAAAAAAAAAAAAAAAAAAFJJrf7cZIt3MPAuoG/gmAAAAAAAAAAAAAAAAAAAAovWc3yUBh6I8GM1MOPpbnzoAAAAAAAAAAAAAAAAAAAAAAAJVFmqjgalkQra3/aSSXAAAAAAAAAAAAAAAAAAAAOTZdYM1I47ZfHe2VKZ0QxQjAAAAAAAAAAAAAAAAAAAAAAAagpiNDkfq+hYCGx7DhNAAAAAAAAAAAAAAAAAAAAAaLMeHO577YzhqPFNNBSiE4QAAAAAAAAAAAAAAAAAAAAAAHcL7P8xQfjUGjBnreWp4AAAAAAAAAAAAAAAAAAAAACdh+xadDA9STEOHdvEFo48AAAAAAAAAAAAAAAAAAAAAAB9MobWQ0HpLW79U2xT92QAAAAAAAAAAAAAAAAAAAMIHFdZ9FD9eplafxB33EOiHAAAAAAAAAAAAAAAAAAAAAAAMcEmE96gtMYvHfbSJV/4AAAAAAAAAAAAAAAAAAABVXhtfMrMNSAm3gZB7gkkVOQAAAAAAAAAAAAAAAAAAAAAALGfoT7N6hVYjcypGSM69AAAAAAAAAAAAAAAAAAAAHVz+0Gc/vhtvTv9F6oulbTcAAAAAAAAAAAAAAAAAAAAAAAnY2Lo6P2k+I3wr68yzRgAAAAAAAAAAAAAAAAAAAIf3ohQ3QNQA9+ndPnamffpeAAAAAAAAAAAAAAAAAAAAAAACbKwip2KxlNxEHO7ryckAAAAAAAAAAAAAAAAAAAB2EJrfgWxHTDpuyGstHcoJoAAAAAAAAAAAAAAAAAAAAAAAJ3lWlcMMVwaOGHWDHwqZAAAAAAAAAAAAAAAAAAAALWwRYu5gExkNwK0WCeylR7oAAAAAAAAAAAAAAAAAAAAAAABfqnBgwKTe7rYwqIXW9gAAAAAAAAAAAAAAAAAAAG7U3g0vBmH7IjS484yFSYIcAAAAAAAAAAAAAAAAAAAAAAAs4Zzo7vvSmCvv0rNkj9YAAAAAAAAAAAAAAAAAAACqbzAPKi26CDc4Bi4cfTvx3AAAAAAAAAAAAAAAAAAAAAAAIp3wIGXd3t4wQUS3czLMAAAAAAAAAAAAAAAAAAAA33D+ij5BgJ+VlDobI4klZS8AAAAAAAAAAAAAAAAAAAAAACQBbOelk+6o0/jyukSZuAAAAAAAAAAAAAAAAAAAAFa388MLR7ZX8kfiR10SlW3DAAAAAAAAAAAAAAAAAAAAAAAoh7EjYkBLNfVOVygCdFQAAAAAAAAAAAAAAAAAAAAQbO/DPpbsTsJvn64WEMwY+gAAAAAAAAAAAAAAAAAAAAAACq49EjgMQVBDNiW2MNjKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEn2TBU0muk6l8Yo1t5ribzwAAAAAAAAAAAAAAAAAAAAAAF8UXpJHFeDrOumvKt7H7AAAAAAAAAAAAAAAAAAAAisqf8q7i0wBPUZb/7my0w/8AAAAAAAAAAAAAAAAAAAAAABhBdBoytLzqjqjUSsUlPQAAAAAAAAAAAAAAAAAAAGvMegX/lalrKJQkxfczZw2WAAAAAAAAAAAAAAAAAAAAAAAAxDcm91tv2g3iLODg36sAAAAAAAAAAAAAAAAAAAAdCgnXF47JO614WPluZPC0jQAAAAAAAAAAAAAAAAAAAAAAL5tuC04sAZaN5cMkgqp9AAAAAAAAAAAAAAAAAAAAhGizfhDghN678/BvPdVyeZAAAAAAAAAAAAAAAAAAAAAAABP8MEXsXcism66kuZ6hugAAAAAAAAAAAAAAAAAAALSFZmQJ4zJievrMBCtdWDUYAAAAAAAAAAAAAAAAAAAAAAATHr6UQ9MIxtY9B5E67mY="
1932
1932
  },
1933
1933
  {
1934
1934
  "name": "entrypoint",
@@ -3932,9 +3932,9 @@
3932
3932
  }
3933
3933
  }
3934
3934
  },
3935
- "bytecode": "H4sIAAAAAAAA/+xdB5zVxNfNYzttadLL0ntHRECkKl1sqFiQJqD03ll674qIqIAoWBCRJlZExYaIWEBUBHsXC1aUby4mGGJ2N/e+yXnM9ze/3yVLXmbOPWdmTublpUSsv5fs9rrXgGFDRg8a2HfAsDcKWNbRvH9vjaiIs9fZVKR5tjlr9995ffbLr6KpZ1tBFemebYV8thX3qa+Ez7aSPttK+WxL88Eo7bOtjM+2sj7byvlgVPDZVslHq8o+26r4bKvmU18Nn/1q+myr5bOtjk999Xz2O9tnW32fbQ186mvos18jn22NfbY18amvqc9+zXy2NffZ1lJFsmdbK3sdbwVYIvY6zV7X6tlxyJHaKys/2qnV1kmTrry2Ut3PW4/ePmhRiyPHlhxVn98f98++WSzVosF5IGucMu66c1r/EI7YedK6vPVPx43Y9Tr7Paj+Xq/iIRUb4k6vPM6TbxZLpCJj3wfjguvwcHC9T1u4+Vdi7Luekf9GUP6VGfs+xMj/EUb+fv3wYbsfbrTXj9jrDa5+uEn9vVnFFhVbo+yHVRj7bmLosA3UjlUZ+25m5P8oKP9qjH23MPLfHmU/3Gb3u0ft9XZ7vdXVDx9Tfz+u4gkVT0bZD6sz9n2MocNToHaswdj3cUb+T4Pyr8nY9wlG/jui7IdP2f3uaXu9w14/6eqHz6i/d6p4VsVzUfbDWox9n2Ho8DyoHWsz9t3JyH8XKP86jH2fZeT/QpT98Hm73+2y1y/Y6+dc/fBF9fdLKl5W8UqU/bAuY98XGTrsBrVjPca+LzHyfxWU/9mMfV9m5L8nyn642+53r9rrPfb6FVc/fE39vVfF6yr2RdkP6zP2fY2hwxugdjyHse9eRv5vgvJvwNj3dUb+b0XZD9+w+92b9vote73P1Q/fVn/vV3FAxTtR9sNzGfu+zdDhIKgdGzL23c/I/11Q/o0Y+x5g5P9elP3woN3v3rXX79nrd1z98H319yEVH6g4HGU/bMzY932GDkdA7XgeY99DjPw/BOXfhLHvB4z8P4qyHx6x+92H9voje33Y1Q8/Vn9/ouJTFZ9F2Q/PZ+z7MUOHz0Ht2JSx7yeM/L8A5d+Mse+njPy/jLIffm73uy/s9Zf2+jNXP/xK/f21im9UfBtlP2zO2Pcrhg7fgdqxBWPfrxn5HwXl35Kx7zeM/L+Psh9+Z/e7o/b6e3v9rasf/qD+/lHFTyqORdkPWzH2/YGhw89R6vCzzftHe/2TvT7m0uEX9fevKn5T8btHh2z2Os0KlkJ+Kzi3P4Jyi1ycTjnH2ZyoXFMrujzLWcHzPB68DSLuPJ1y8fb/I34FmHlHgu/7z0IJZLNimEBmgFmp/2dw9ctEg/NX1jhp7rq9I+1Pe2R5f8H9yzXSTsT9XSiiIpvn926u43B+wT3BcJy4eMyRg/MLrhUfPP94UP6cX3AjjPwTGPn79UNqP1rH2+sEe039zdkvUf2RpCJZRUqU/ZDzC24iQ4fsoHbk/IKbxMg/Byh/zi+4yYz8c0bZD7Pb/S6Hvc5pr1Nc/TCX+iO3ilQVeaLsh5xfcHMxdMgLakfOL7i5GfnnA+XP+QU3lZF//ij7YV673+Wz1/ntdR5XPyyg/jhLRUEVhaLsh5xfcAswdCgMakfOL7hnMfIvAsqf8wtuQUb+RaPsh4XtflfEXhe114Vc/bCY+qO4ihIqSkbZDzm/4BZj6FAK1I6cX3CLM/JPA+XP+QW3BCP/0lH2w1J2v0uz16XtdUlXPyyj/iiropyK8lH2Q84vuGUYOlQAtSPnF9yyjPwrgvLn/IJbjpF/pSj7YQW731W015XsdXlXP6ys/qiioqqKalH2Q84vuJUZOlQHtSPnF9wqjPxrgPLn/IJblZF/zSj7YXW739Ww1zXtdTVXP6yl/qitoo6KulH2Q84vuLUYOtQDtSPnF9zajPzPBuXP+QW3DiP/+lH2w3p2vzvbXte313Vd/fAc9UcDFeeqaBhlP+T8gnsOQ4dGoHZsyti3ASP/xqD8mzH2PZeR/3lR9sNGdr9rbK/Ps9cNXf2wifrjfBVNVTSLsh9yfsFtwtChOagdWzD2PZ+Rf4so27G53W4t7HVTe93M1Y4t1R+tVFyg4kJ7u/PrVUZLmhUspURXLk6Z1gqgjYq2KtqpaK+ig4qOKi5S0UnFxSouUXGpistUXK6is4orVFyp4ioVXVRcreIaFdequE5FVxXXq+imoruKHip6quil4gYVveNPz6WP+n9fFTequElFPxX9VQxQMVDFIBWDVQxRMVTFMBXDVYxQMVLFKBWjVYxRMVbFOBXjVUxQMVFFuopJKiarmKJiqoppKqarmGE3wEx7Pctez7bXc+Jt4ZzGIOG890228dnW1mdbO59t7X22dfDZ1tFn20U+2zr5bLvYZ9slPtsu9dl2mc+2y322dfbZdoXPtit9tl3ls62Lz7arfbZd47PtWp9t1/ls6+qz7Xqfbd18tnX32dbDZ1tPn229fLbd4LOtt8+2Pj7b+vpsu9Fn200+2/r5bOvvs22Az7aBPtsG+Wwb7LNtiM+2oT7bhvlsG+6zbYTPtpE+20b5bBvts22Mz7axPtvG+Wwb77Ntgs+2iT7b0n22TfLZNtln2xSfbVN9tk3z2TbdZ9sMn22z7W3uxXvJR1YH1Ihr3yyWCBlywH1PL8jMaW5wnIj7P2me9emf/ntpfRpO5ju3OT2nTHdu68k/s53beblmsnP7f+mS8c4d/q1hhjt39NE7o50v8mubDHbu5NuO/jtf7N/mvjtfkkH/8Nv50oz6ks/Ol2XY7/698+UZ99F/7dw5k/7s3fmKzPq+Z+crMx0np+98VeZj6rSdu2Qx/tw7X53VWHXtfE2W4/qfna/N2gNO7XxdAL9wdu4axFvsna8P5EN/79wtmGed3Ll7QH+jnXsE9cLI3/ObQPuqnXsxPPaG+ODePQ90jJifNU6Su27vF0E6xkTsfGntfBGiep39Fqg/FqpYpGJx/OmVl/bkm4GtnVr6MI41fRnHmhsZx5qbGMeafoxjTX/GsWYA41gzkHGsGcQ41gxmHGuGMI41QxnHmmGMY81wxrFmBONYM5JxrBnFONaMZhxrxjCONWMZx5pxjGPNeMaxZgLjWDORcaxJZxxrJjGONZMZx5opjGPNVMaxZhrjWDOdse8CxnFpifC4xD3xOYOR/0JG/jeD8p/JyH8RI/9bGPn7Ha+X2Mfnm+31LfZ6set4vVT9cauKZSpuiz+9Tu6tEEsZ3JYzNPPjttzmcqu9Xmavb3Nxu139sULFHSrutLfntPyPQ965VFY5zQ7I9bsTJ/5y493lJsEFpMKckxUEfhdD6JWMBpRyWBnPm7gSh5WgCfKq4Djx0eCszhonzl23t/OvsjV04nb7/6tdnf9u9ccaFfeouDf+n7LuPLNYzvj2WhscJ85Px7U2tzn2+m4fHdepP+5Tcb+KB6I0yOOMu2ceZBqkc4LTKRdv/XO/2L8KMPNuyTwQOeum9t/rVfmHVGxQ8bCKjSoeUbFJxWYVW1RsVbFNxaMqtqt4TMXjKp5Q8aSKp1Q8rWKHimdU7FTxrIrnVDyvYpeKF1S8qOIlFS+reEXFbhWvqtij4jUVe1W8rmKfijdUvKniLRVvq9iv4oCKd1QcVPGuivdUvK/ikIoPVBxWcUTFhyo+UvGxik9UfKriMxWfq/hCxZcqvlLxtdMQuax/Okw0jbFeOLgsFk7ktFy/sTv+t06PcnobffCzZxvt5D3Fzp1SrQ9+eI18wzhqfSsUj/sTASen79w5ZbGzW+fvbO050xpO3kFycZaj8VEAHvWZ1mRV8CjDHr9nNIaUw/c+h8msCn7P7Ixcp/jWzsvildPqVg/FwK1+tDn/5HWrH33c6icNbvUQw61+ZHTGn0BuxcnpmNCtjoXgVj8K3ern+CgAfxa41c8Mt/olZLciDr8I3OqXkN3qJzsvi1dOq1ttiIFb/WZz/t3rVr/5uNXvGtxqA8OtfmN0xt9BbsXJ6Q+hW/0Rglv9JnSr4/FRAB4XuNVxhlv9GbJbEYc/BW71Z8hu9budl8Urp9WtHo6BW51wOCdYp4+YEz5uRTtF61YPM9zqBKczJmDcipNTJEHmVlROt1udELpVtoQoAKkw162yBW/ISFxCuG5FHAiD61ZxzM7IdQrq7HEJ/2xIC1ZOq1ttjIFbJdicE71ulZDwb7dK1OBWGxlulcDojIkgt+LklCR0q6QQ3CqBmYuzJCdEAZgscKtkhlulhOxWxCFF4FYpIbtVop2XxSun1a0eiYFb5bA55/S6VQ4ft8qpwa0eYbhVDkZnzAlyK05OuYRulSsEt8ohdKvcCVEA5ha4VW6GW6WG7FbEIVXgVqkhu1VOOy+LV06rW22KgVvltTnn87pVXh+3yqfBrTYx3CovozPmA7kVJ6f8QrfKH4Jb5RW6VYGEKAALCNyqAMOtzgrZrYjDWQK3Oitkt8pn52Xxyml1q80xcKtCNufCXrcq5ONWhTW41WaGWxVidMbCILfi5FRE6FZFQnCrQkK3KpoQBWBRgVsVZbhVsZDdijgUE7hVsZDdqrCdl8Urp9WttsTArUrYnEt63aqEj1uV1OBWWxhuVYLRGUuC3IqTUymhW5UKwa1KCN0qLSEaQIFbpTHcqnTIbkUcSgvcqnTIblXSzsvildPqVltj4FZlbc7lvG5V1setymlwq60MtyrL6IzlQG7Fyam80K3Kh+BWZYVuVSEhCsAKAreqwHCriiG7FXGoKHCriiG7VTk7L4tXTqtbbYuBW1W2OVfxulVlH7eqosGttjHcqjKjM1YBuRUnp6pCt6oagltVFrpVtYQoAKsJ3Koaw62qh+xWxKG6wK2qh+xWVey8LF45rW71aAzcqqbNuZbXrWr6uFUtDW71KMOtajI6Yy2QW3Fyqi10q9ohuFVNoVvVSYgCsI7Areow3KpuyG5FHOoK3KpuyG5Vy87L4pXT6lbbY+BWZ9uc63vd6mwft6qvwa22M9zqbEZnrA9yK05O5wjd6pwQ3OpsoVs1SIgCsIHArRow3OrckN2KOJwrcKtzQ3ar+nZeFq+cVrd6LAZu1cjm3NjrVo183KqxBrd6jOFWjRidsTHIrTg5nSd0q/NCcKtGQrdqkhAFYBOBWzVhuNX5IbsVcThf4Fbnh+xWje28LF45rW71eAzcqpnNubnXrZr5uFVzDW71OMOtmjE6Y3OQW3FyaiF0qxYhuFUzoVu1TIgCsKXArVoy3KpVyG5FHFoJ3KpVyG7V3M7L4pXT6lZPxMCtLrQ5t/a61YU+btVag1s9wXCrCxmdsTXIrTg5tRG6VZsQ3OpCoVu1TYgCsK3Ardoy3KpdyG5FHNoJ3KpdyG7V2s7L4pXT6lZPxsCtOticO3rdqoOPW3XU4FZPMtyqA6MzdgS5FSeni4RudVEIbtVB6FadEqIA7CRwq04Mt7o4ZLciDhcL3OrikN2qo52XxSun1a2eioFbXWpzvszrVpf6uNVlGtzqKYZbXcrojJeB3IqT0+VCt7o8BLe6VOhWnROiAOwscKvODLe6ImS3Ig5XCNzqipDd6jI7L4tXTqtbPR0Dt7rK5tzF61ZX+bhVFw1u9TTDra5idMYuILfi5HS10K2uDsGtrhK61TUJUQBeI3CraxhudW3IbkUcrhW41bUhu1UXOy+LV06rW+2IgVt1tTlf73Wrrj5udb0Gt9rBcKuujM54PcitODl1E7pVtxDcqqvQrbonRAHYXeBW3Rlu1SNktyIOPQRu1SNkt7rezsvildPqVs/EwK162Zxv8LpVLx+3ukGDWz3DcKtejM54A8itODn1FrpV7xDcqpfQrfokRAHYR+BWfRhu1TdktyIOfQVu1Tdkt7rBzsvildPqVjtj4FY32Zz7ed3qJh+36qfBrXYy3OomRmfsB3IrTk79hW7VPwS3uknoVgMSogAcIHCrAQy3GhiyWxGHgQK3GhiyW/Wz87J45bS61bMxcKvBNuchXrca7ONWQzS41bMMtxrM6IxDQG7FyWmo0K2GhuBWg4VuNSwhCsBhArcaxnCr4SG7FXEYLnCr4SG71RA7L4tXTqtbPRcDtxppcx7ldauRPm41SoNbPcdwq5GMzjgK5FacnEYL3Wp0CG41UuhWYxKiABwjcKsxDLcaG7JbEYexArcaG7JbjbLzsnjltLrV8zFwq/E25wletxrv41YTNLjV8wy3Gs/ojBNAbsXJaaLQrSaG4FbjhW6VnhAFYLrArdIZbjUpZLciDpMEbjUpZLeaYOdl8cppdatdMXCrKTbnqV63muLjVlM1uNUuhltNYXTGqSC34uQ0TehW00JwqylCt5qeEAXgdIFbTWe41YyQ3Yo4zBC41YyQ3WqqnZfFK6fVrV6IgVvNsjnP9rrVLB+3mq3BrV5guNUsRmecDXIrTk5zhG41JwS3miV0q7kJUQDOFbjVXIZbzQvZrYjDPIFbzQvZrWbbeVm8clrd6sUYuNUCm/NCr1st8HGrhRrc6kWGWy1gdMaFILfi5LRI6FaLQnCrBUK3WpwQBeBigVstZrjVkpDdijgsEbjVkpDdaqGdl8Urp9WtXoqBW91ic17qdatbfNxqqQa3eonhVrcwOuNSkFtxcrpV6Fa3huBWtwjdallCFIDLBG61jOFWt4XsVsThNoFb3RayWy2187J45bS61csxcKvbbc4rvG51u49brdDgVi8z3Op2RmdcAXIrTk53CN3qjhDc6nahW92ZEAXgnQK3upPhVneF7FbE4S6BW90VslutsPOyeOW0utUrMXCrVTbn1V63WuXjVqs1uNUrDLdaxeiMq0FuxcnpbqFb3R2CW60SutWahCgA1wjcag3Dre4J2a2Iwz0Ct7onZLdabedl8cppdavdMXCrtTbndV63WuvjVus0uNVuhlutZXTGdSC34uR0n9Ct7gvBrdYK3er+hCgA7xe41f0Mt3ogZLciDg8I3OqBkN1qnZ2XxSun1a1ejYFbrbc5P+R1q/U+bvWQBrd6leFW6xmd8SGQW3Fy2iB0qw0huNV6oVs9nBAF4MMCt3qY4VYbQ3Yr4rBR4FYbQ3arh+y8LF45rW61JwZutcnmvNnrVpt83GqzBrfaw3CrTYzOuBnkVpyctgjdaksIbrVJ6FZbE6IA3Cpwq60Mt9oWslsRh20Ct9oWsltttvOyeOW0utVrMXCr7Tbnx7xutd3HrR7T4FavMdxqO6MzPgZyK05Ojwvd6vEQ3Gq70K2eSIgC8AmBWz3BcKsnQ3Yr4vCkwK2eDNmtHrPzsnjltLrV3hi41dM25x1et3rax612aHCrvQy3eprRGXeA3IqT0zNCt3omBLd6WuhWOxOiANwpcKudDLd6NmS3Ig7PCtzq2ZDdaoedl8Urp9WtXo+BWz1vc97ldavnfdxqlwa3ep3hVs8zOuMukFtxcnpB6FYvhOBWzwvd6sWEKABfFLjViwy3eilktyIOLwnc6qWQ3WqXnZfFK6fVrfbFwK1esTnv9rrVKz5utVuDW+1juNUrjM64G+RWnJxeFbrVqyG41StCt9qTEAXgHoFb7WG41WshuxVxeE3gVq+F7Fa77bwsXjmtbvVGDNzqdZvzPq9bve7jVvs0uNUbDLd6ndEZ94HcipPTG0K3eiMEt3pd6FZvJkQB+KbArd5kuNVbIbsVcXhL4FZvhexW++y8LF45rW71Zgzcar/N+YDXrfb7uNUBDW71JsOt9jM64wGQW3FyekfoVu+E4Fb7hW51MCEKwIMCtzrIcKt3Q3Yr4vCuwK3eDdmtDth5WbxyWt3qrRi41fs250Net3rfx60OaXCrtxhu9T6jMx4CuRUnpw+EbvVBCG71vtCtDidEAXhY4FaHGW51JGS3Ig5HBG51JGS3OmTnZfHKaXWrt2PgVh/ZnD/2utVHPm71sQa3epvhVh8xOuPHILfi5PSJ0K0+CcGtPhK61acJUQB+KnCrTxlu9VnIbkUcPhO41Wchu9XHdl4Wr5xWt9ofA7f6wub8pdetvvBxqy81uNV+hlt9weiMX4LcipPTV0K3+ioEt/pC6FZfJ0QB+LXArb5muNU3IbsVcfhG4FbfhOxWX9p5WbxyWt3qQAzc6jub81GvW33n41ZHNbjVAYZbfcfojEdBbsXJ6XuhW30fglt9J3SrHxKiAPxB4FY/MNzqx5Ddijj8KHCrH0N2q6N2XhavnFa3eicGbnXM5vyz162O+bjVzxrc6h2GWx1jdMafQW7FyekXoVv9EoJbHRO61a8JUQD+KnCrXxlu9VvIbkUcfhO41W8hu9XPdl4Wr5xWtzoYA7f6w+Z83OtWf/i41XENbnWQ4VZ/MDrjcZBbcXL6U+hWf4bgVn8I3eqvhCgA/xK41V8MtzoRslsRhxMCtzoRslsdt/OyeOW0utW7MXCrSOLf62yJ1ukjhj7wuhXtFK1bvctwK8ohyL5H7dwC5nDawnUrTk5xiTK3ikvU71YRZi7OEp8YBSAV5rpVfPCGjCQwGkPKgTC4bpXA7Ixcp8hm52Xxyml1q/di4FZJNudkr1sl+bhVsga3eo/hVkmMzpgMcitOTilCt0oJwa2ShG6VPTEKwOwCt8rOcKscIbsVccghcKscIbtVsp2XxSun1a3ej4Fb5bI55/a6VS4ft8qtwa3eZ7hVLkZnzA1yK05OqUK3Sg3BrXIJ3SpPYhSAeQRulYfhVnlDdivikFfgVnlDdqvcdl4Wr5xWtzoUA7fKb3Mu4HWr/D5uVUCDWx1iuFV+RmcsAHIrTk5nCd3qrBDcKr/QrQomRgFYUOBWBRluVShktyIOhQRuVShktypg52Xxyml1qw9i4FZFbM5FvW5VxMetimpwqw8YblWE0RmLgtyKk1MxoVsVC8GtigjdqnhiFIDFBW5VnOFWJUJ2K+JQQuBWJUJ2q6J2XhavnFa3OhwDtyplc07zulUpH7dK0+BWhxluVYrRGdNAbsXJqbTQrUqH4FalhG5VJjEKwDICtyrDcKuyIbsVcSgrcKuyIbtVmp2XxSun1a2OxMCtytucK3jdqryPW1XQ4FZHGG5VntEZK4DcipNTRaFbVQzBrcoL3apSYhSAlQRuVYnhVpVDdiviUFngVpVDdqsKdl4Wr5xWt/owBm5V1eZczetWVX3cqpoGt/qQ4VZVGZ2xGsitODlVF7pV9RDcqqrQrWokRgFYQ+BWNRhuVTNktyIONQVuVTNkt6pm52Xxyml1q49i4Fa1bc51vG5V28et6mhwq48YblWb0RnrgNyKk1NdoVvVDcGtagvdql5iFID1BG5Vj+FWZ4fsVsThbIFbnR2yW9Wx87J45bS61ccxcKtzbM4NvG51jo9bNdDgVh8z3OocRmdsAHIrTk7nCt3q3BDc6hyhWzVMjAKwocCtGjLcqlHIbkUcGgncqlHIbtXAzsvildPqVp/EwK3Oszk38brVeT5u1USDW33CcKvzGJ2xCcitODmdL3Sr80Nwq/OEbtU0MQrApgK3aspwq2YhuxVxaCZwq2Yhu1UTOy+LV06rW30aA7dqYXNu6XWrFj5u1VKDW33KcKsWjM7YEuRWnJxaCd2qVQhu1ULoVhckRgF4gcCtLmC41YUhuxVxuFDgVheG7FYt7bwsXjmtbvVZDNyqjc25rdet2vi4VVsNbvUZw63aMDpjW5BbcXJqJ3SrdiG4VRuhW7VPjAKwvcCt2jPcqkPIbkUcOgjcqkPIbtXWzsvildPqVp/HwK0usjl38rrVRT5u1UmDW33OcKuLGJ2xE8itODldLHSri0Nwq4uEbnVJYhSAlwjc6hKGW10aslsRh0sFbnVpyG7Vyc7L4pXT6lZfxMCtLrc5d/a61eU+btVZg1t9wXCryxmdsTPIrTg5XSF0qytCcKvLhW51ZWIUgFcK3OpKhltdFbJbEYerBG51Vchu1dnOy+KV0+pWX8bAra62OV/jdaurfdzqGg1u9SXDra5mdMZrQG7FyelaoVtdG4JbXS10q+sSowC8TuBW1zHcqmvIbkUcugrcqmvIbnWNnZfFK6fVrb6KgVt1szl397pVNx+36q7Brb5iuFU3RmfsDnIrTk49hG7VIwS36iZ0q56JUQD2FLhVT4Zb9QrZrYhDL4Fb9QrZrbrbeVm8clrd6usYuFVvm3Mfr1v19nGrPhrc6muGW/VmdMY+ILfi5NRX6FZ9Q3Cr3kK3ujExCsAbBW51I8OtbgrZrYjDTQK3uilkt+pj52Xxyp3sULmtfwZtNDm0hLiV/25pVpAlcopTxFWmv9JtgIqBKgapGKxiiIqhKoapGK5ihIqRKkapGK1ijIqxKsapGK9igoqJKtJVTFIxWcUUFVNVTFMxXcUMFTNVzFIxW8UcFXO9LtvfdlT3tgE+2wb6bBvks22wz7YhPtuG+mwb5rNtuM+2ET7bRvpsG+WzbbTPtjE+28b6bBvns228z7YJPtsm+mxL99k2yWfbZJ9tU3y2TfXZNs1n23SfbTN8ts302TbLZ9tsn21zfLbN9Tl6l7bXaVag5bRBn5V59g9oznSkHxB4XysyMOi+Kt9BwfZdTAe9wYH2/enkAXJIkH0P/30wHRpg3+b2gXdY1vsudA7Sw7Pcd+CpA/qIrPZ99J+D/8gs9h3lmiiMynzfC92TitGZ7vvZaROQMZntW+f0ycrYTPat6JnYjMt432u8k6DxGe57xb8mTBMy2jf935OriRnsm+4zEUv333eL36Rtku++LX0neJP99r3IfzI4xWffbRlMHKf+e99KGU0yp/1r37synJBO9+5bK+PJ6wzPvoczmejOPH3fwZlNimedtm+HTCfQs9379sh8sj3HtW/NLCbmcxkTS863hyyW03Cz8PLX3XjzMvr2EARwXiLv6xmBzwsuUGR+QFIZfXsIwmF+Iu9bB3GYz2xkXecfGJ1rr9/GNCsQzGm5LrA7yELvzHiBLZx720IN5x8YPTmygNFBFjLF4zYOdYoFzM5EeS2IkWPMCa7zHW68RVLHIMBFfMe4YxHDMRaH7BjEYTHfMe5YHCPHmBMcd4XfxjQrEMxpuS6xO8jNXsdY4uMYN2twDEZPjixhdJCbheJxz1hycrqFMRhO/cPIZb7dwf91UjALLM6heiljMPhxyGp30mipwImXxsiJZwfvv5vceLdKnZgAb+U78aZbGZ1vWchOTByW8Z1407IoO1+QAbQ05AF0G5ODs3CNidOGyxl9Q+cRbnZw3Ef8NqZZgWBOy/V2e+Ct8B7hbvc5wq3QcIRjOETkdkajrRCKx+1InJzuiPIIl1UZGjzLBUeHO0M+ahHvOwF5OQu3De9ktOFdIbdhRiYbxJyD7ruSaWi6ZgOzgo/1BW68VdLZAAGu4s8GFqxiCLQ65NkAcVjNnw0sWB3ybIAGwsrEcAfb3czB5izcnDhtuCZGs4FZwXHn+21MswLBnJbrPfbAu9c7G7jHZzZwr4bZAMMhIvcwGu1eoXjcjsTJaW3IRxIaPGsER911Ic8GiPc6QF7Owm3DdYw2vC/kNszIZLMqxzHZ+2N0bmBm8LGe5sZ7QDobIMAH+LOBtAcYjfxgyLMB4vAgfzaQ9mDIswEaCPcnhjvY1oNmA5w2fChGs4GZwXFL+W1MswLBnJbrBnvgPeydDWzwmQ08rGE2wHCIyAZGoz0sFI/bkTg5bQz5SEKD5yHBUfeRkGcDxPsRQF7Owm3DRxhtuCnkNszIZLMqxzHZzTGaDcwIPtb3uvG2SGcDBLiFPxvYu4XRyFtDng0Qh6382cDerSHPBmggbE4Md7BtA80GOG34aIxmAzOC477mtzHNCgRzWq7b7YH3mHc2sN1nNvCYhtkAwyEi2xmN9phQPG5H4uT0eMhHEho8jwqOuk+EPBsg3k8A8nIWbhs+wWjDJ0Nuw4xMNqtyHJN9KkazgenBx3o3N97T0tkAAT7Nnw10e5rRyDtCng0Qhx382UC3HSHPBmggPJUY7mB7BjQb4LThzhjNBqYHx73eb2OaFQjmtFyftQfec97ZwLM+s4HnNMwGGA4ReZbRaM8JxeN2JE5Oz4d8JKHBs1Nw1N0V8myAeO8C5OUs3DbcxWjDF0Juw4xMNqtyHJN9MUazgWnBx/oBN95L0tkAAb7Enw0ceInRyC+HPBsgDi/zZwMHXg55NkAD4cXEcAfbK6DZAKcNd8doNjAtOO5+v41pViCY03J91R54e7yzgVd9ZgN7NMwGGA4ReZXRaHuE4nE7Eien10I+ktDg2S046u4NeTZAvPcC8nIWbhvuZbTh6yG3YUYmm1U5jsnui9FsYGrwsd7GjfeGdDZAgG/wZwNt3mA08pshzwaIw5v82UCbN0OeDdBA2JcY7mB7CzQb4LTh2zGaDUwNjtvab2OaFQjmtFz32wPvgHc2sN9nNnBAw2yA4RCR/YxGOyAUj9uRODm9E/KRhAbP24Kj7sGQZwPE+yAgL2fhtuFBRhu+G3IbZmSyWZXjmOx7MZoNTAk+1je68d6XzgYI8H3+bGDj+4xGPhTybIA4HOLPBjYeCnk2QAPhvcRwB9sHoNkApw0Px2g2MCU47sN+G9OsQDCn5XrEHngfemcDR3xmAx9qmA0wHCJyhNFoHwrF43YkTk4fhXwkocFzWHDU/Tjk2QDx/hiQl7Nw2/BjRht+EnIbZmSyWZXjmOynMZoNTA4+1p9w430mnQ0Q4Gf82cATnzEa+fOQZwPE4XP+bOCJz0OeDdBA+DQx3MH2BWg2wGnDL2M0G5gcHPdxv41pViCY03L9yh54X3tnA1/5zAa+1jAbYDhE5CtGo30tFI/bkTg5fRPykYQGz5eCo+63Ic8GiPe3gLychduG3zLa8LuQ2zAjk82qHMdkj8ZoNjAp+Fhv58b7XjobIMDv+bOBdt8zGvmHkGcDxOEH/myg3Q8hzwZoIBxNDHew/QiaDXDa8KcYzQYmBcdt67cxzQoEc1qux+yB97N3NnDMZzbws4bZAMMhIscYjfazUDxuR+Lk9EvIRxIaPD8Jjrq/hjwbIN6/AvJyFm4b/spow99CbsOMTDarchyT/T1Gs4H04GM93Y33h3Q2QIB/8GcD6X8wGvl4yLMB4nCcPxtIPx7ybIAGwu+J4Q62P0GzAU4b/hWj2UB6cNyJfhvTrEAwp+V6whl4SdbpR/4TPrMB2ina2QDDISInOAMvSSYetyNxcook8To3t8PQ4PlLcNTNFjyvf5KzgudFvAkj7LychduGbpys9o0LuQ0zMtmsynFMNp6hq87ZwEThbCAhKQpAKsydDSQwGjmR0XmkHBKT+LOBxCgHdZCBEJ8U7mBLYg42Z+HmxGnDZEZOOmcDE2MwG0ixB15272wgJenfs4HsGmYDDIeIpDAaLTtoNsDJKUfIRxIaPMmCo27OkGcDxDsnIC9n4bZhTkYb5gq5DTMy2azKcUw2d4xmAxOCj/X73Hip0tkAAabyZwP3pTIaOU/IswHikIc/G7gvT8izARoIuZPCHWx5QbMBThvmi9FsYELw2cA6v41pViCY03LNbw+8At7ZQH6f2UABDbMBhkNE8jMarUCSTDxuR+LkdFbIRxIaPPkER92CIc8GiHdBQF7Owm3Dgow2LBRyG2ZkslmV45hs4RjNBsYHH+tr3HhFpLMBAqTCzNnAGioTFKNoUrizAeJAGMzZwJqiwTn45hVkIBROCnewFWO0g/s/3Jw4bVickZPO2cD44LOBu/02plmBYE7LtUTS3+uSSdbpR/4SSf+eDdBO0c4GGA4RKcFotJJJMvG4HYmTUylm5+Z2GBo8xZP4AzstSuPIaveTvAF5OQu3DdMYbVg65DbMyGSzKscx2TIMXXXOBsYFH+vvuPHKJkUBWJY/G3inLKORy4U8GyAO5fizgXfKhTwboIFQJincwVYeNBvgtGGFGM0GxgWfDRzw25hmBYI5LdeK9sCr5J0NVPSZDVTSMBtgOESkIqPRKiXJxON2JE5OlUM+ktDgqSA46lYJeTZAvKsA8nIWbhtWYbRh1ZDbMCOTzaocx2SrxWg2MDb4WN/jxqsunQ0QYHX+bGBPdUYj1wh5NkAcavBnA3tqhDwboIFQLSncwVYTNBvgtGGtGM0GxgafDbzqtzHNCgRzWq617YFXxzsbqO0zG6ijYTbAcIhIbUaj1UmSicftSJyc6oZ8JKHBU0tw1K0X8myAeNcD5OUs3Dasx2jDs0Nuw4xMNqtyHJOtH6PZwJjgY72IG+8c6WyAAM/hzwaKnMNo5AYhzwaIQwP+bKBIg5BnAzQQ6ieFO9jOBc0GOG3YMEazgTHBZwOF/TamWYFgTsu1kT3wGntnA418ZgONNcwGGA4RacRotMZJMvG4HYmT03khH0lo8DQUHHWbhDwbIN5NAHk5C7cNmzDa8PyQ2zAjk82qHMdkm8ZoNjA6+Fjf7sZrJp0NEGAz/mxgezNGIzcPeTZAHJrzZwPbm4c8G6CB0DQp3MHWAjQb4LRhyxjNBkYHnw086rcxzQoEc1qureyBd4F3NtDKZzZwgYbZAMMhIq0YjXZBkkw8bkfi5HRhyEcSGjwtBUfd1iHPBoh3a0BezsJtw9aMNmwTchtmZLJZleOYbNsYzQZGBR/rM9147aSzAQJsx58NzGzHaOT2Ic8GiEN7/mxgZvuQZwM0ENomhTvYOoBmA5w27Bij2cCo4LOBGX4b06xAMKflepE98Dp5ZwMX+cwGOmmYDTAcInIRo9E6JcnE43YkTk4Xh3wkocHTUXDUvSTk2QDxvgSQl7Nw2/ASRhteGnIbZmSyWZXjmOxlMZoNjAw+1lu78S6XzgYI8HL+bKD15YxG7hzybIA4dObPBlp3Dnk2QAPhsqRwB9sVoNkApw2vjNFsYGTw2cCFfhvTrEAwp+V6lT3wunhnA1f5zAa6aJgNMBwichWj0bokycTjdiROTleHfCShwXOl4Kh7TcizAeJ9DSAvZ+G24TWMNrw25DbMyGSzKscx2etiNBsYEXysL3LjdZXOBgiwK382sKgro5GvD3k2QByu588GFl0f8myABsJ1SeEOtm6g2QCnDbvHaDYwIvhsYKHfxjQrEMxpufawB15P72ygh89soKeG2QDDISI9GI3WM0kmHrcjcXLqFfKRhAZPd8FR94aQZwPE+wZAXs7CbcMbGG3YO+Q2zMhksyrHMdk+MZoNDA8+1ge58fpKZwME2Jc/GxjUl9HIN4Y8GyAON/JnA4NuDHk2QAOhT1K4g+0m0GyA04b9YjQbGB58NjDQb2OaFQjmtFz72wNvgHc20N9nNjBAw2yA4RCR/oxGG5AkE4/bkTg5DQz5SEKDp5/gqDso5NkA8R4EyMtZuG04iNGGg0Nuw4xMNqtyHJMdEqPZwLDgY/0pN95Q6WyAAIfyZwNPDWU08rCQZwPEYRh/NvDUsJBnAzQQhiSFO9iGg2YDnDYcEaPZwLDgs4En/TamWYFgTst1pD3wRnlnAyN9ZgOjNMwGGA4RGclotFFJMvG4HYmT0+iQjyQ0eEYIjrpjQp4NEO8xgLychduGYxhtODbkNszIZLMqxzHZcTGaDQwNPtbT3HjjpbMBAhzPnw2kjWc08oSQZwPEYQJ/NpA2IeTZAA2EcUnhDraJoNkApw3TYzQbGBp8NlDKb2OaFQjmtFwn2QNvsnc2MMlnNjBZw2yA4RCRSYxGm5wkE4/bkTg5TQn5SEKDJ11w1J0a8myAeE8F5OUs3DacymjDaSG3YUYmm1U5jslOj9FsYEjwsZ7TjTdDOhsgwBn82UDOGYxGnhnybIA4zOTPBnLODHk2QANhelK4g20WaDbAacPZMZoNDAk+G8jhtzHNCgRzWq5z7IE31zsbmOMzG5irYTbAcIjIHEajzU2SicftSJyc5oV8JKHBM1tw1J0f8myAeM8H5OUs3Dacz2jDBSG3YUYmm1U5jskujNFsYHDwsT7AjbdIOhsgwEX82cCARYxGXhzybIA4LObPBgYsDnk2QANhYVK4g20JaDbAacObYzQbGBx8NtDfb2OaFQjmtFxvsQfeUu9s4Baf2cBSDbMBhkNEbmE02tIkmXjcjsTJ6daQjyQ0eG4WHHWXhTwbIN7LAHk5C7cNlzHa8LaQ2zAjk82qHMdkl8doNjAo+FjP68a7XTobIMDb+bOBvLczGnlFyLMB4rCCPxvIuyLk2QANhOVJ4Q62O0CzAU4b3hmj2cCg4LOBPH4b06xAMKflepc98FZ6ZwN3+cwGVmqYDTAcInIXo9FWJsnE43YkTk6rQj6S0OC5U3DUXR3ybIB4rwbk5SzcNlzNaMO7Q27DjEw2q3Ick10To9nAwOCGdhrePdLZAAHek8Qvd2/IR3jK696kfzakWcEX7iCiDrsmKdxBsRZ01Oa0y7ooB2oQzusEbahzQA0QDqj7pAOKAO8TDKj7Qx5QlNf9mgZUVrtTw9+fJOswacEwtHaS/onBc3TjPSDtJAT4gMBxHmCM2AdD7lDE4UFBIz8Y8ncw6kQPCqYHaxl6rQ95OkjarhcOVmfh9q31DP4PhTzFy+iInFU5zhF5Q8htSBptEBwIOO1AJphg/fOVMuKDw8Wfm8jvb1yMOQCM2QCMWQCMmQCMGQCM6QCMaQCMqQCMKQCMyQCMSQCMdADGRADGBADGeADGOADGWADGGADGaADGKADGSADGCADGcADGMADGUADGEADGYADGIADGQADGAABGfwGGe0mLYrc0K9jifGckbs7vVg+r71QbVTyiYpOKzSq2qNiqYpuKR1VsV/GYisdVPKHiSRVPqXja/h6+w/t738P2FzX3to0+2x7x2bbJZ9tmn21bfLZt9dm2zWfbDp8vuNzfHoN/UYtYcxln0Z5hfPl2c/IrxztJEDmtjqzy3CnMc6cG7RlfYCM7GZyeFXJ6VoP2zzLyfE6Y53MatGd8sY88x+D0vJDT81Frb0UeDilP98LVeQbDX2Yy/GWXUOddGvr4LobOLwjzfEFDH2eckIm8wOD0opDTixq0f5GR50vCPF/SoD3jRFXkJQanl4WcXtbgLxtDytO9cHWewvCXqQx/eUWo8ysa+vgrDJ13C/PcraGPM04wRnYzOL0q5PSqBu1fZeS5R5jnHg3aM068RvYwOL0m5PSaBn95JKQ83QtX54kMf0ln+Mteoc57NfTxvQydXxfm+bqGPs44YR55ncFpn5DTPg3a72Pk+YYwzzc0aM/4ISHyBoPTm0JOb2rwl00h5eleuDqPZfjLOIa/vCXU+S0Nffwths5vC/N8W0MfZ/wAFHmbwWm/kNN+DdrvZ+R5QJjnAQ3aM34YixxgcHpHyOkdDf6yOaQ83Us0b6/KYldrFMNfDgp1Pqihjx9k6PyuMM93NfRxxg+akXcZnN4TcnpPg/bvMfJ8X5jn+xq0Z/zQG3mfwemQkNMhDf6yJaQ83Us0T7nLYldrGMNfPhDq/IGGPv4BQ+fDwjwPa+jjjB/oI4cZnI4IOR3RoP0RRp4fCvP8UIP2jAsXIh8yOH0k5PSRBn/ZGlKe7oWr80CGvwxi+MvHQp0/1tDHP2bo/Ikwz0809HHGBSeRTxicPhVy+lSD9p8y8vxMmOdnGrRnXIgT+YzB6XMhp881+Mu2kPL05szJ6VEQznYQzmMgnMdBOE+AcJ4E4TwFwnmagUM3GSm7Oe0mozxR4j8s4MnF2AjAeASAsQmAsRmAsQWAsRWAsU04RoNipAvLSfH+KxdK2dJRlE1z+qTba79Q/e5LFV+p+FrFNyq+VfGdiqMqvlfxg4ofVfyk4piKn1X8ouLXJOv0CdsXdid2b/vSZ9tXPtu+9tn2jc+2b322feez7ajPtl98tv1qb9P5BKnvoxjMQXEoJ3euvyX9vf7d2yj0QbRPi/o+4Cz6O7Xvb4wZ9++gmQkK5wcQzo8gnJ9AOMdAOD+DcIKOl0H/VH1y4T5egTHjjXwh5M7NiTFDjnwJyokxo458BcqJMQOPfA3KiTFjj3wDyokxw498C8qJ8Y0g8h0oJ8Y3iMhRTTllhkH//MLI6degc4wTJyL/ArKC6/RHwJzSvQkycY5rOtZkhfNnQJwbUz7tHQ3OXwFxHu/90LRocE4ExGk84Mch0eDQpDjNynq556JjDaPBiQTEuTj3JROjwckWEOf2hD5zo8GJC4hTaso7D0SDEx8Q5+rDrxahunPZGDQnovVGe/2Ivd5krzfb6y32equ93mav/7DXxwOuf0n654skrf+013/Z6xP2mvobrSP2Opu9jrPXxDdBRaKKJBXJKlJUZFeRQ0XO5L+/pOa2/vn+lpm+WSyRhOTA+/ouacF2i5eXjZzidFIf++9cKu/cKlJV5Em2Tv+ySx96t+X22Zbqsy1P8r+/KCewEj5d1Kw6eK6A+9IBL3fgfa1IatB9Vb55GJ1AZ+dLNLTz5VV551ORX0UBbwfK69Op8vlsy++zrYCGzpfI6Hx5GZ0vH6Pz5Wd0vgIx6nxJhna+s1TeBVUUUlHY24HO8ulUBX22FfLZVlhD50tidL6zGJ2vIKPzFWJ0vsIx6nzJhna+IirvoiqKqSju7UBFfDpVUZ9txXy2FdfQ+ZIZna8Io/MVZXS+YozOVzxGnS/F0M5XQuVdUkUpyt/bgUr4dKqSPttK+WxL09D5UhidrwSj85VkdL5SjM6XFqPOl93Qzlda5V1GRVkV5bwdqLRPpyrjs62sz7ZyGjpfdkbnK83ofGUYna8so/OVi1Hny2Fo5yuv8q6goqKKSt4OVN6nU1Xw2VbRZ1slDZ0vB6PzlWd0vgqMzleR0fkqxajz5TS081VWeVdRUVVFNW8HquzTqar4bKvqs62ahs6Xk9H5KjM6XxVG56vK6HzVGJ2ANEq0163j/163sddt7XU7e93eXnew1x3t9UX2upO9vtheX2KvL7XXl9nry+11Z3t9hb2+0l5fZa+72Our7fU19vpae32dve5qr6+3193sdXd73cNe97TXvez1Dfa6t73uY6/72usb7fVN9rqfve5vrwfY64H2epC9Hmyvh9jrofZ6mL0ebq9H2OuR9nqUvR5tr8fY67H2epy9Hm+vJ9jrifY63V5PsteT7fUUez3VXk+z19Pt9Qx7/a29/sle/26vacCc7Cf2Oqe9zmevC9vrkva6nL2uYq9r2ev69rqxvW5ur1vb6472+jJ73cVeX2+vb7DX/ez1EHs9yl5PsNdT7fVse73QXi+11yvs9Wp7vc5eP2SvN9vrx+z1Dnu9y17vttf77PUBe33IXn9sr7+010ft9c/2+ri9zpb49zrZXue21wXsdVF7nWavK9jrava6jr1uYK+b2OuW9rqtve5krzvb62vsdXd73cde0ylaWqfa69z2Ope9LmCv89vrfPY6r70ubK8L2euC9vose13cXhez10XtdRF7nWavS9nrkva6hL0uZ6/L2usy9rq0va5kryva6wr2ury9rmavq9rrKva6sr2eq/p7dc/BImKv06xAS6Q641ih8x1ALa3guG68GslRAFJh7sUDNYIfnCI1GWJKOdRM/ne5rLBqMmd3dKFkXCb7pFmBlsSTgyy6Oi4VluslLDcMXK6vsNwAYbnewnJpwnJjheVqCcuNF5ZLE5brJiw3VFguTVjuBmE56TiSlksTlhskLCdtv9HCclJdhpCXRjwbucePSPB9/4XBBuMedJxvwhklkGYFw30w/gwmiZ4+qa/tp10TWCua6VMt5vSJwGsxpk+1AdOn2szpE3Go/d/06b/p09/Lf9Mn/yVNWO6/6ZPecmnCcv9Nn7JesNMnzkFHUj9NkyTnEurEaMZTMfi+p+HVlc54KtqFueXqhTyLobzquc76pVn8hfusGPecOitOZzNmfKf+sYLXX8n6mz+XQyUGRv2QBx9pVF8w+M5h/lLm/KroLsfFJJMgM+LeGV0zpJl/A6YBpVj+v/+GaUDR4JS3MDjc78ncflPF+rvPcMdpHGPfKhZfK/EROVpTyPKneOtvU+AKVp8xeM5lcuDmEvFgBOXM1aphyG1BndDpwO5yWcFIO29W+TQK+YDkHFS9fIMcjIPuy5kYNY5yEpFVmco2hsUrd/JAkt3655KcfyXCyAF1QKlgYXDO1AOXFIcz5tzPmznP7ldNkqM42DQWzvTOy2SmFwTzPMEBqDFjYJ8v5OVXjvtTPifPpkwD4uZCnZgxoTh5kD8nOdxvbs1CPsgQh4aCg33zkPMiI5ZMQloA9GokyKtlyHmR0Uv0agU4pSXJ64IYndKqHnzf0/AulJ7Sqm4X5pZrHfIpLcqrtfCUluQgd76gk0zLE25edMBpJshrOjMvZ+HO9NswDlYMrSKM/H1n+llev2f93be4B84aDIy2IRsbad9W0DfaCSdb7TRMttoyPKM9c7LlLNw+3CH2ffjkwu2L9JsL5xsx7d9U0F86hnx2qAGTRwMhj4sAEzNJXp1idOqaM9GIBqeqhcHpEGX7ZtVOtazwT13XsvhaRbx/pAUqZkXahixYTetvw+cKxjlIXMwcPLoeWRx00J44ceKw3/Y0K2sM+sed6yX2ZPhS56JI58h8ie067m2X+iTIPW/dKVhDLFYNEbmE0WiXMsXjdjzqQJeAvjmQ4zcXuP5lyeHn1UKQ1+WAvFoK8uoMyKuVIK8rAHldIMjrSkZe5As0G1hp/5/6JvUD0pz4UV30+L7/4r9AhHCsJJDvdxKMlauYv+lU99meZvEWrg9clRw+RhfAdQAXM+YJzgSS255XR8kjyPyCodXJCe3VgolwF4ZW1+D6cMT7R1qgYpg+fE24x+NTHhPml5prDfCjawFteV3IfkS6cdqF9r1O0PbXMTC6GjCOEW3f9cwcx9k4/eV6A8bx9YC27BbyiSb6/uKcnXOXywpGemYuq3y6A+Yf3Zjzj+4C3+rG6Os9DPAtRF/vcWb6VhzHt3oa4Fs9AW3ZK+T5B/0ywp1/9BKM414MjBsMGMeItr/hzBzH8Zz+0tuAcdwb0JZ9Qh7H1CYdmOO4j2Ac92Fg9DVgHCPavq8BY4DOeQbcV4xxowE6zI0PH+MmQZ/zw8lq/PULjpMtVnr3A4y//gb0u7WAfjfAAB1WAXQYCBp/g4LjJMRK70GA8TcYpPeQ4DiJsdJ7CEDvoSC9hwXHSYqV3sMAeg8H6T0iOE5yrPQeAdB7JEjvUcFxUmKl9yiA3qNBeo8JjpM9VnqPAeg9FqT3uOA4OWKl9ziA3uNBek8IjpMzVnpPAOg9EaR3enCcXLHSOx2g9ySQ3pOD4+SOld6TAXpPAek9NThOaqz0ngrQexpI7+nBcfLESu/pAL1ngPSeGRwnb6z0ngnQexZI79nBcfLFSu/ZAL3ngPSeGxwnf8x+DwHoPQ+k9/zgOAVipfd8gN4LQHovDI5zVqz0XgjQexFI78XBcQrGSu/FAL2XgPS+OThOoVjpfTNA71tAei8NjlM4VnovBeh9K0jvZcFxisRK72UAvW8D6b08OE7RWOm9HKD37SC9VwTHKRYrvVcA9L4DpPedwXGKx0rvOwF63wXSe2VwnBKx0nslQO9VIL1XB8cpGSu9VwP0vhuk95rgOKVipfcagN73gPS+NzhOWqz0vheg91qQ3uuC45SOld7rAHrfZ8B1q3/GhY9xP6jfPRAcp2ys9H4A0O8eBOm9PjhOuVjpvR6g90MgvTcExykfK703APR+GKT3xuA4FWKl90aA3o+A9N4UHKdirPTeBNB7M0jvLcFxKsVK7y0AvbeC9N4WHKdyrPTeBtD7UZDe24PjVImV3tsBej8G0vvx4DhVY6X34wC9nzDge9/9gO99T4L63VPBcarHSu+nAP3uaZDeO4Lj1IiV3jsAej8D0ntncJyasdJ7J0DvZ0F6Pxccp1as9H4OoPfzIL13BcepHSu9dwH0fgGk94vBcerESu8XAXq/BNL75eA4dWOl98sAvV8B6b07OE69WOm9G6D3qyC99wTHOTtWeu8B6P0aSO+9wXHqx0rvvQC9XwfpvS84zjmx0nsfQO83QHq/GRynQaz0fhOg91sgvd8OjnNurPR+G6D3fpDeB4LjNIyV3gcAer8D0vtgcJxGsdL7IEDvd0F6vxccp3Gs9H4PoPf7IL0PBcc5L1Z6HwLo/QFI78PBcZrESu/DAL2PgPT+MDjO+bHS+0OA3h+B9P44OE7TWOn9MUDvT0B6fxocp1ms9P4UoPdnIL0/D47TPFZ6fw7Q+wuQ3l8Gx2kRK72/BOj9FUjvr4PjtIyV3l8D9P4GpPe3wXFaxUrvbwF6fwfS+2hwnAtipfdRgN7fg/T+ITjOhbHS+weA3j+C9P4pOE7rWOn9E0DvYyC9fw6O0yZWev8M0PsXkN6/BsdpGyu9fwXo/RtI79+D47SLld6/A/T+A6T38eA47WP23iyA3n+C9P4rOE6HWOn9F0DvEyC9rZTAOB1jpTcjR1chHkYkBaN3tuA4F8VK72wAveNAescHx+kUK73jAXongPRODI5zcaz0TgTonQTSOzk4ziWx0jsZoHcKSO/swXEujZXe2QF65wDpnTM4zmWx0jsnQO9cIL1zB8e5PFZ65wbonQrSO09wnM6x0jsPQO+8IL3zBce5IlZ65wPonR+kd4HgOFfGSu8CAL3PAuldMDjOVbHSuyBA70IgvQsHx+kSK70LA/QuAtK7aHCcq2Old1GA3sVAehcPjnNNrPQuDtC7BEjvksFxro2V3iUBepcC6Z0WHOe6WOmdBtC7NEjvMsFxusZK7zIAvcuC9C4XHOf6WOldDqB3eZDeFYLjdIuV3hUAelcE6V0pOE73WOldCaB3ZZDeVYLj9IiV3lUAelcF6V0tOE7PWOldDaB3dZDeNYLj9IqV3jUAetcE6V0rOM4NsdK7FkDv2iC96wTH6R0rvesA9K4L0rtecJw+sdK7HkDvs0F61w+O0zdWetcH6H0OSO8GwXFujJXeDQB6nwvSu2FwnJtipXdDgN6NQHo3Do7TL1Z6NwbofR5I7ybBcfrHSu8mAL3PB+ndNDjOgFjp3RSgdzOQ3s2D4wyMld7NAXq3AOndMjjOoFjp3RKgdyuQ3hcExxkcK70vAOh9IUjv1sFxhsRK79YAvduA9G4bHGdorPRuC9C7HUjv9sFxhsVK7/YAvTuA9O4YHGd4rPTuCND7IpDenYLjjIiV3p0Ael8M0vuS4DgjY6X3JQC9LwXpfVlwnFGx0vsygN6Xg/TuHBxndKz07gzQ+wqQ3lcGxxkTK72vBOh9FUjvLsFxxsZK7y4Ava8G6X1NcJxxsdL7GoDe14L0vi44zvhY6X0dQO+uIL2vD44zIVZ6Xw/QuxtI7+7BcSbGSu/uAL17gPTuGRwnPVZ69wTo3Quk9w3BcSbFSu8bAHr3BundJzjO5Fjp3Qegd1+Q3jcGx5kSK71vBOh9E0jvfsFxpsZK734AvfuD9B4QHGdarPQeANB7IEjvQcFxpsdK70EAvQeD9B4SHGdGrPQeAtB7KEjvYcFxZsZK72EAvYeD9B4RHGdWrPQeAdB7JEjvUcFxZsdK71EAvUeD9B4THGdOrPQeA9B7LEjvccFx5sZK73EAvceD9J4QHGderPSeANB7Ikjv9OA482OldzpA70kgvScHx1kQK70nA/SeAtJ7anCchbHSeypA72kgvacHx1kUK72nA/SeAdJ7ZnCcxbHSeyZA71kgvWcHx1kSK71nA/SeA9J7bnCcm2Ol91yA3vNAes8PjnNLrPSeD9B7AUjvhcFxlsZK74UAvReB9F4cHOfWWOm9GKD3EpDeNwfHWRYrvW8G6H0LSO+lwXFui5XeSwF63wrSe1lwnOWx0nsZQO/bQHovD45ze6z0Xg7Q+3aQ3iuC46yIld4rAHrfAdL7zuA4d8RK7zsBet8F0ntlcJw7Y6X3SoDeq0B6rw6Oc1es9F4N0PtuJga3/rbJltUpmd8+t+YJN6/2dl7ZmHmtCa5XJGwONdQ/rRWHOE+5LJ8ty9i3dXLwfe9haHPqHyt4mZo2hsUrZ8WryK4iwa9SZg7VLYs9JiU41SwMTlWLh+MdL1nVT+O/XTJvXHZI/mdDmsVfuBp0Z7zjOpvr73vtvrg25R9MNjhj0JysO85e32uXo86dy5OYpJEaMxupMbORTpw48avf9jQrazz6x81vnS38fSnW6aKss1vCve0+l8DcxiGSbQVHr9tCdn7Kq70gr+XMvJwlPjjOYoUTWZcSPKf7GEcNhq6RoFydjsnVkgbuOsHRyA8rq91p/8aC9r4/5NldRWFeD4ScVwVhXg+GnFejZFle60POq7wly+uhkPOinJoI8toQcl4Pxsv0ehig13mCvDYy8qLjKn2DaGr/nzyGxjONHeqn1CdIf+JK9R5P+v8dfvpwtH8kuPbJjONf8vKQ5yB0/Hskhd/XNjH6Gk36avhsT7N4C5fbppTwMTYzMbiTesrnHsY8jPalnLg4mxkYW3BtH/H+kRaoGKbttwgwaOF6y9bYe0vk1D8Wz1u2CrxlmwHesg3Qvx4N2VvoLBjXWx4VeMujDIztBngLou23g7zlsdh7y8nuJPGWxwTe8rgB3vI4oH89EbK30Jlvrrc8IfCWJxgYTxrgLYi2fxLkLU/F3ltOpizxlqcE3vK0Ad7yNKB/7QjZW+iXHq637BB4yw4GxjMGeAui7Z8BecvO2HvLyZ9TJN6yU+AtzxrgLc8C+tdzIXsL/ZLO9ZbnBN7yHAPjeQO8BdH2z4O8ZVfsveXkRS4Sb9kl8JYXDPCWFwD968WQvYXaZy3TW14UeMuLDIyXDPAWRNu/BPKWl2PvLYn0j8RbXhZ4yysGeMsrgP61O2RvkV6hx23PV0P+7Zv62auCfnZ/lL+TBvFiakPveM8KZjfDi/cwrqHi8I2VbyPG1R6Qb78We98+eZWCZDy9JhhPew3w7b2A/vU6YE54L3NO+LpgTvg6A2OfAXNCRNvvA3nLGwzfD+PaWSuK3/ffEHjLmwxdqW7nGnB3OUmu96bIxqezb1a83hLycpeTzPs6Mud9HQXzvrcB89eLmDwuEvDYb8Bxja5HDLivGOOAATrMjQ8f4x0DdOiXHD7GQQN0WAvoD+8aoMMqgA7vGaDDIMC4eN8AHYYAdDhkgA7DADp8YIAOIwA6HDZAh1EAHY4YoMMYgA4fGqDDOIAOHxmgwwSADh8boEM6QIdPDNBhMkCHTw3QYSpAh88M0GE6QIfPDdBhJkCHLwzQYTZAhy9NOB8F0OErA3SYD9DhawN0WAjQ4RsDdFgM0OFbA3S4GaDDdwbosBSgw1EDdFgG0OF7A3RYDtDhBwN0WAHQ4UcDdLgToMNPBuiwEqDDMQN0WA3Q4WcDdFgD0OEXA3S4F6DDrwbosA6gw28G6PBnXPgYvxugwwOA/vCHATqsB+hw3AAdNgB0+NMAHTYCdPjLAB02AXQ4YYAOWwA60KPoA+4bu2eUAXSIGKDDdoAO2QzQ4XGADnEG6HA/YD4Zb4AOTwH6Q4IBOuwA6JBogA47ATokGaDDcwAdkg3QYRdAhxQDdHgRoEN2A3R4GaBDDgN02A3QIacBOuwB6JDLAB32AnTIbYAO+wA6pBqgw5sAHfIYoMPbAB3yGqDDAYAO+QzQ4SBAh/wG6PAeQIcCBuhwCKDDWQbocBigQ0EDdPgQoEOh7HwMWrhvGOY8N6Rw8Jwi7v9wnzNThIET0nNm/i5gnZ53VrvTsz7WCJ691pbx1uOiDG04b4Smh0TntDwN51Rkr9OsYLh1g+97Gl6x7FEAUmFuueLZgwsvzat49n82pFnBFy4WDeS3BA85eoQ5KJzF+5LWrPJ7lWE0JRjtwnjAYOSRKB80lVUu9ay/29trwllh1WNglMwebj8i7Utm53MvlZ036J2HSvmV4x7ESjL6S5rwIBZmfy8d+/5+cpE8dIzxkLQITSCKCPpWmezh8+AcWIlHUQGPsgwe1N9SrH/63WkJeHCzypdzQI4Gp7aFwSkdpQdm1U71rb/9iduP4hj71rf4WkW8f6QFKmZFSoYs2NnW3ybMFYxj3OWYgyeX9U8+mXHLKsegg/bEiROH/banWVlj0D/uXMvbk8YK2a3Tj5blbddxb6vgkyD3K0jZYA2xWDVEpDyj0SowxeN2POpA5YUzbMmjH29kPvrxMsGjHytmD5/HTUwelwt4VALw6M/k0VnAozKAxwAmjysEPKoAeAxk8rhSwKNqyN+AiMdgQV7VAHkNFeRVHZDXcEFeNQB5jRTkVROQ12hBXrUAeY0V5FUbkNd4QV51AHlNFORVF5DXJEFe9QB5TRHkdTYgr2mCvOoD8pohyOscQF6zBHk1AOQ1R5DXuYC85gnyagjIa4Egr0aAvBYJ8moMyGuJIK/zAHndIsirCSCvWwV5nQ/I6zZBXk0Bed0uyKsZIK87BHk1B+R1lyCvFoC8VgnyagnI625BXq0Aed0jyOsCQF5rBXldCMjrPkFerQF53S/Iqw0grwcFebUF5PWQIK92gLweFuTVHpDXI4K8OgDy2izIqyMgr62CvC4C5PWoIK9OgLweE+R1MSCvJwR5XQLI60lBXpcC8npakNdlgLyeEeR1OSCvZwV5dQbk9bwgrysAeb0gyOtKQF4vCfK6CpDXK4K8ugDyelWQ19WAvF4T5HUNIK/XBXldC8jrDUFe1wHyekuQV1dAXvsFeV0PyOsdQV7dAHm9K8irOyCv9wV59QDk9YEgr56AvI4I8uoFyOsjQV43APL6RJBXb0Benwny6gPI6wtBXn0BeX0lyOtGQF7fCPK6CZDXd4K8+gHy+l6QV39AXj8K8hoAyOuYIK+BgLx+EeQ1CJDXb4K8BgPy+kOQ1xBAXn8K8hoKyOuEIK9hgLwigjtUhwPyihPkNQKQV4Igr5GAvJIEeY0C5JUiyGs0IK8cgrzGAPLKJchrLCCvVEFe4wB55RXkNR6QV35BXhMAeZ0lyGsiIK9CgrzSAXkVEeQ1CZBXMUFekwF5lRDkNQWQVylBXlMBeZUW5DUNkFdZQV7TAXmVF+Q1A5BXRUFeMwF5VRbkNQuQV1VBXrMBeVUX5DUHkFdNQV5zAXnVFuQ1D5BXXUFe8wF5nS3IawEgr3MEeS0E5HWuIK9FgLwaCfJaDMjrPEFeSwB5nS/I62ZAXs0Eed0CyKuFIK+lgLxaCfK6FZDXhYK8lgHyaiPI6zZAXu0EeS0H5NVBkNftgLwuEuS1ApDXxYK87gDkdakgrzsBeV0uyOsuQF5XCPJaCcjrKkFeqwB5XS3IazUgr2sFed0NyKurIK81gLy6CfK6B5BXD0Fe9wLy6iXIay0gr96CvNYB8uoryOs+QF43CfK6H5BXf0FeDwDyGijI60FAXoMFea0H5DVUkNdDgLyGC/LaAMhrpCCvhwF5jRbktRGQ11jJk+0BeY0X5LUJkNdEQV6bAXlNEuS1BZDXFEFeWwF5TRPktQ2Q1wxBXo8C8polyGs7IK85grweA+Q1T5DX44C8FgjyegKQ1yJBXk8C8loiyOspQF63CPJ6GpDXrYK8dgDyuk2Q1zOAvG4X5LUTkNcdgryeBeR1lyCv5wB5rRLk9Twgr7sFee1i5EXvQ6ipYqX9f3rGPj2fnp7tTs9Fp2eK0/O76VnZ9FxqegY0PW+Znm1MzxGmZ/bS83HpWbT03Fd6xio9z5SeHUrP6aRnYtLzJ+lZj/RcRXqGIT0vkJ7NR8/Bo2fO0fPd6Flq9NwyekYYPY+Lnn1Fz5miZzrR85PoWUX0XCB6Bg8974aeLUPPcaFnptDzSehZIPTcDXrGBT1Pgp7dQM9JoGcS0P3/dK893ddO95DT/dp0bzTdh0z3/NL9tXQvK903Svdo0v2QdO8h3edH99TR/Wt0rxjdl0X3QNH9RnRvD91HQ/es0P0hdC8G3fdA9xjQ9fx07Txdp07XhNP113StM11XTNfw0vWydG0qXQdK11zS9Y10LSFdt0fXyNH1aHTtF11nRdc00fVDdK0OXRdD16DQ9R50bQVdx0DXDNDv8/RbOP3uTL/x0u+p9Nsl/U5Iv8nR71/0WxP9rkO/odDvFfTbAJ2Hp3PedH6ZzuXSeVM6R0nnA+ncG53nonNKdP6GzpXQeQk6B0Dft+m7LX2PpO9s9P2IvovQvJ/m2DSfpbkjzdNoTkTzDzrW03GVjmF0vCBvJh8kz6HxTWOJ+q1wrCTQ+y7oXR3csfJC9uBjJZs9VrxLmsVbuD7AyVGK8SITg/sOBMrH/aKarNrFeXEOtz1fipJHVvVTTgytTr7Ih3Li6vUiQ6uXcX044v0jLVAxTB9+mYkh9ZgwX+b0igF+9AqgLXeH7Ef05jdOu9C+uwVtv5uB8aoB4xjR9q+emeM4G6e/7DFgHO8BtOVrUbZlVjrT9xfnrYTuclnBSN9ImFU+ewHzj9eY84+9At96jdHXXzfAtxB9/fUz07fiOL61zwDf2gdoyzdCnn/QG2G58483BOP4DQbGmwaMY0Tbv3lmjuN4Tn95y4Bx/BagLd8OeRxTm5RmjuO3BeP4bQbGfgPGMaLt94c7jiOI8wEHGBwof+fdx065WI3t40nhY7xjgMfNjQ8f46ABOvRLDh/jXQN0WAvoD+8ZoMMqgA7vG6DDIMC4OGSADkMAOnxggA7DADocNkCHEQAdjhigwyiADh8aoMMYgA4fGaDDOIAOHxugwwSADp8YoEM6QIdPDdBhMkCHzwzQYSpAh88N0GE6QIcvDNBhJkCHLw3QYTZAh69MOB8F0OFrA3SYD9DhGwN0WAjQ4VsDdFgM0OE7A3S4GaDDUQN0WArQ4XsDdFgG0OEHA3RYDtDhRwN0WAHQ4ScDdLgToMMxA3RYCdDhZwN0WA3Q4RcDdFgD0OFXA3S4F6DDbwbosA6gw+8G6PBnXPgYfxigwwOA/nDcAB3WA3T40wAdNgB0+MsAHTYCdDhhgA6bADpYOc58HbYAdIgYoMM2gA7ZDNBhO0CHOAN0eBygQ7wBOtwPmE8mGKDDU4D+kGiADjsAOiQZoMNOgA7JBujwHECHFAN02AXQIbsBOrwI0CGHATq8DNAhpwE67AbokMsAHfYAdMhtgA57ATqkGqDDPoAOeQzQ4U2ADnkN0OFtgA75DNDhAECH/AbocBCgQwEDdHgPoMNZBuhwCKBDQQN0OAzQoZABOnwI0KGwATp8DNChiAE6fArQoagBOnwO0KGYATp8CdChuAE6fA3QoYQBOnwL0KGkATocBehQygAdfgDokGaADj8BdChtgA4/A3QoY4AOvwJ0KGuADr8DdChngA7HATqUN0CHvwA6VDBAByslfIyKBuiQDaBDJQN0iAfoUNkAHRIBOlQxQIdkgA5VDdAhO0CHagbokBOgQ3UDdMgN0KGGATrkAehQ0wAd8gF0qGWADgUAOtQ2QIeCAB3qGKBDYYAOdQ3QoShAh3oG6FAcoMPZBuhQEqBDfQN0SAPocI4BOpQB6NDAAB3KAXQ41wAdKgB0aGiADpUAOjQyQIcqAB0aG6BDNYAO5xmgQw2ADk0M0KEWQIfzDdChDkCHpgboUA+gQzMDdKgP0KG5ATo0AOjQwgAdGgJ0aGmADo0BOrQyQIcmAB0uMECHpgAdLjRAh+YAHVoboENLgA5tDNDhAoAObQ3QoTVAh3YG6NAWoEN7A3RoD9ChgwE6dATo0NEAHToBdLjIAB0uAejQyQAdLgPocLEBOnQG6HCJATpcCdDhUgN06ALQ4TIDdLgGoMPlBuhwHUCHzgbocD1AhysM0KE7QIcrDdChJ0CHqwzQ4QaADl0M0KEPQIerDdDhRoAO1xigQz+ADtcaoMMAgA7XGaDDIIAOXQ3QYQhAh+sN0GEYQIduBugwAqBDdwN0GAXQoYcBOowB6NDTAB3GAXToZYAOEwA63GCADukAHXoboMNkgA59DNBhKkCHvgboMB2gw40G6DAToMNNBugwG6BDPwN0mAvQob8BOswH6DDAAB0WAnQYaIAOiwE6DDJAh5sBOgw2QIelAB2GGKDDMoAOQw3QYTlAh2EG6LACoMNwA3S4E6DDCAN0WAnQYaQBOqwG6DAqBw8jG7P+ktktq2zwd6VH0uz9vTxq9ew45EjtlZUf7dRq66RJV15bqe7nrUdvH7SoxZFjS46qz0czeXB1qqf+Ka7yimPmVY+xb/HswfcdE5xv5NQ/VvAyZ9sYFq+cFa9C0bAS/Cpl5lDX4vd/CU4dC4NT2wp/rJVijrXS2f/ZkGbxF64Ge4Pnd4o/LWPtvjguxz+YbHDGoDlZd5y9HmuXo86dy5OYpJHKMBupDLORTpw48avf9jQrazz6x81vvC38hBzW6aKMt1vCvW2CS2Bu4zjCcJ3/tTzhOn+aMK+9zLycJT44zmKFExmfI3hOExhHDYaukaBcnY7J1ZIG7njB0YiWbEyse9Ss6/7gM68I7X8ghW8EboyscpqYI3zODzA5vyPg/ACDczqA84NMzgcFnB9kcJ4E4LyeyfldAef1DM6TAZwfYnJ+T8D5IQbnKQDOG5ic3xdw3sDgPBXA+WEm50MCzg8zOE8DcN7I5PyBgPNGBufpIX8TJw6HU/hziBmAvI4I8poJyOtDQV6zAHl9JMhrNiCvjwV5zQHk9Ykgr7mAvD4V5DUPkNdngrzmA/L6XJDXAkBeXwjyWgjI60tBXosAeX0lyGsxIK+vBXktAeT1jSCvmwF5fSvI6xZAXt8J8loKyOuoIK9bAXl9L8hrGSCvHwR53QbI60dBXssBef0kyOt2QF7HBHmtAOT1syCvOwB5/SLI605AXr8K8roLkNdvgrxWAvL6XZDXKkBefwjyWg3I67ggr7sBef0pyGsNIK+/BHndA8jrhCCvewF5WYLfI9cC8ooI8loHyCubIK/7AHnFCfK6H5BXvCCvBwB5JQjyehCQV6Igr/WAvJIEeT0EyCtZkNcGQF4pgrweBuSVXZDXRkBeOQR5PQLIK6cgr02AvHIJ8toMyCu3IK8tgLxSBXltBeSVR5DXNkBeeQV5PQrIK58gr+2AvPIL8noMkFcBQV6PA/I6S5DXE4C8CgryehKQVyFBXk8x8qLrbmupaGr/n64TpOvm6Doyuq6KrjOi627oOhS6LoOugaDrDei3ffodnX6zpt+H6bdY+t2TfmOk3/PotzP6nYp+E6LfX+i3Dvpdgc7h0/lyOjdN54HpnCud36RziXTejs6R0fkoOvdD51nonAadP6Dv6vS9mL6D0vc9+m5F32PoOwPNz2kuTPNOmuPRfIrmLjRPoGMyHf/oWEO+Th5KfkXeQOOQ+jz1L2rLp3L468PR/ung2iczro9N5l4LzO1rdH0s5c7tazuC8z15zVAtn+1pFm/hcuPkKMV4JsrrtLKqn/Jx33wQ5HpnyomL8wwDYyeu7SPeP9ICFcO0/U4BBi1cb3k29t4SOfWPxfOWZwXe8pwB3vIcoH89H7K30F1yXG95XuAtzzMwdhngLYi23wXylhdi7y0nu5PEW14QeMuLBnjLi4D+9VLI3kJ3xnK95SWBt7zEwHjZAG9BtP3LIG95JfbecjJlibe8IvCW3QZ4y25A/3o1ZG+hO8G53vKqwFteZWDsMcBbEG2/B+Qtr8XeW07ebi3xltcE3rLXAG/ZC+hfr4fsLfSkDa63vC7wltcZGPsM8BZE2+8DecsbsfeWkw/BkXjLGwJvedMAb3kT0L/eCtlbqH3GMb3lLYG3vMXAeNsAb0G0/dsgb9kfe29JpH8k3rJf4C0HDPCWA4D+9U7I3iJ9ghe3PQ8yeUj62UFBPzsa5e+kQbyY2tA73rOCeYfhxe8G1zbC4Rsr30aMq3dBvv1e7H07if6RjKf3BOPpfQN8+31A/zoEmBOOZc4JDwnmhIcYGB8YMCdEtP0HIG85zPD9MJ6tZ0Xx+/5hgbccYehKdTvPiHSXk+Q6NodsfDr7ZsXrQyEvdzlufm+nWFbJ7Lz90wTzvo9C9sH9TB77hTw+NuC4djwpfIxPDNBhbnz4GJ8aoEO/5PAxPjNAh7WA/vC5ATqsAujwhQE6DAKMiy8N0GEIQIevDNBhGECHrw3QYQRAh28M0GEUQIdvDdBhDECH7wzQYRxAh6MG6DABoMP3BuiQDtDhBwN0mAzQ4UcDdJgK0OEnA3SYDtDhmAE6zATo8LMBOswG6PCLCeejADr8aoAO8wE6/GaADgsBOvxugA6LATr8YYAONwN0OG6ADksBOvxpgA7LADr8ZYAOywE6nDBAhxUAHaycZ74OdwJ0iBigw0qADtkM0GE1QIc4A3RYA9Ah3gAd7gXokGCADusAOiQaoMOfceFjJBmgwwOA/pBsgA7rATqkGKDDBoAO2Q3QYSNAhxwG6LAJoENOA3TYAtAhlwE6bAPokNsAHbYDdEg1QIfHATrkMUCH+wHzybwG6PAUoD/kM0CHHQAd8hugw06ADgUM0OE5gA5nGaDDLoAOBQ3Q4UWADoUM0OFlgA6FDdBhN0CHIgbosAegQ1EDdNgL0KGYATrsA+hQ3AAd3gToUMIAHd4G6FDSAB0OAHQoZYAOBwE6pBmgw3sAHUoboMMhgA5lDNDhMECHsgbo8CFAh3I5+Ri0eJ9nEeQ5PUH3LR88p4j7P9znzFRg4IT0nJmTi1fLrOqn54IcYD7bbrTguTQVGX2DHv6c0/I0iJOABzerfM8Nvu9peJVyRgFIhbnlKucMLqY0r8o5/9mQZgVfuFg0QD8UdJLfmJ3dWeI9OFnld5BhIFUY7cJ4cGCEwTVy6h8reC4Nrb/bm2sIDRkYVXOG249I+6o5+dyr5eQNeudhUX7luAenqoz+Ul14cAqzv9eIfX8/uUgeJsZ4+FmEJgYVBH2rZs7weTAOlid5VBTwqMU8IKdY//S70xLw4GaVL+eAHA3OORYGp0aUHphVOzW2/vYnbj+KY+zb2OJrFfH+kRaomBWpGrJgjay/TZgrGMe4azMHTy7rn3wy45ZVjkEH7YkTJw77bU+zssagf9y51rEnjXWdKblztKxju457W12fBLmPda4VrCEWq4aI1GE0Wl2meNyORx2ojnCGLfna9g7za1tFwSMd6+UMn8dBJo9KAh5nA3i8y+RRWcCjPoDHe0weVQQ8zgHweJ/Jo6qARwMAj0NMHtUEPM4F8PiAyaO6gEdDAI/DTB41BDwaAXgcYfKoKeDRGMDjQyaPWgIe5wF4fMTkUVvAowmAx8dMHnUEPM4H8PiEyaOugEdTAI9PmTzqCXg0A/D4jMnjbAGP5gAenzN51BfwaAHg8QWTxzkCHi0BPL5k8mgg4NEKwOMrJo9zBTwuAPD4msmjoYDHhQAe3zB5NBLwaA3g8S2TR2MBjzYAHt8xeZwn4NEWwOMok0cTAY92AB7fM3mcL+DRHsDjByaPpgIeHQA8fmTyaCbg0RHA4ycmj+YCHhcBeBxj8mgh4NEJwONnJo+WAh4XA3j8wuTRSsDjEgCPX5k8LhDwuBTA4zcmjwsFPC4D8PidyaO1gMflAB5/MHm0EfDoDOBxnMmjrYDHFQAefzJ5tBPwuBLA4y8mj/YCHlcBeJxg8ugg4NEFwMPKwePRUcDjagCPCJPHRQIe1wB4ZGPy6CTgcS2ARxyTx8UCHtcBeMQzeVwi4NEVwCOByeNSAY/rATwSmTwuE/DoBuCRxORxuYBHdwCPZCaPzgIePQA8Upg8rhDw6AngkZ3J40oBj14AHjmYPK4S8LgBwCMnk0cXAY/eAB65mDyuFvDoA+CRm8njGgGPvgAeqUwe1wp43AjgkYfJ4zoBj5sAPPIyeXQV8OgH4JGPyeN6AY/+AB75mTy6CXgMAPAowOTRXcBjIIDHWUwePQQ8BgF4FGTy6CngMRjAoxCTRy8BjyEAHoWZPG4Q8BgK4FGEyaO3gMcwAI+iTB59BDyGA3gUY/LoK+AxAsCjOJPHjQIeIwE8SjB53CTgMQrAoySTRz8Bj9EAHqWYPPoLeIwB8Ehj8hgg4DEWwKM0k8dAAY9xAB5lmDwGCXiMB/Aoy+QxWMBjAoBHOSaPIQIeEwE8yjN5DBXwSAfwqMDkMUzAYxKAR0Umj+ECHpMBPCoxeYwQ8JgC4FGZyWOkgMdUAI8qTB6jBDymAXhUZfIYLeAxHcCjGpPHGAGPGQAe1Zk8xgp4zATwqMHkMU7AYxaAR00mj/ECHrMBPGoxeUwQ8JgD4FGbyWOigMdcAI86TB7pAh7zADzqMnlMEvCYD+BRj8ljsoDHAgCPs5k8pgh4LATwqM/kMVXAYxGAxzlMHtMEPBYDeDRg8pgu4LEEwONcJo8ZAh43A3g0ZPKYKeBxC4BHIyaPWQIeSwE8GjN5zBbwuBXA4zwmjzkCHssAPJowecwV8LgNwON8Jo95Ah7LATyaMnnMF/C4HcCjGZPHAgGPFQAezZk8Fgp43AHg0YLJY5GAx50AHi2ZPBYLeNwF4NGKyWOJgMdKAI8LmDxuFvBYBeBxIZPHLQIeqwE8WjN5LBXwuBvAow2Tx60CHmsAPNoyeSwT8LgHwKMdk8dtAh73Ani0Z/JYLuCxFsCjA5PH7QIe6wA8OjJ5rBDwuA/A4yImjzsEPO4H8OjE5HGngMcDAB4XM3ncJeDxIIDHJUweKwU81gN4XMrksUrA4yEAj8uYPFYLeGwA8LicyeNuAY+HATw6M3msEfDYCOBxBZPHPQIejwB4XMnkca+AxyYAj6uYPNYKeGwG8OjC5LFOwGMLgMfVTB73CXhsBfC4hsnjfgGPbQAe1zJ5PCDg8SiAx3VMHg8KeGwH8OjK5LFewOMxAI/rmTweEvB4HMCjG5PHBgGPJwA8ujN5PCzg8SSARw8mj40CHk8BePRk8nhEwONpAI9eTB6bBDx2AHjcwOSxWcDjGQCP3kweWwQ8dgJ49GHy2Crg8SyAR18mj20CHs8BeNzI5PGogMfzAB43MXlsF/DYBeDRj8njMQGPFwA8+jN5PC7g8SKAxwAmjycEPF4C8BjI5PGkgMfLAB6DmDyeEvB4BcBjMJPH0wIeuwE8hjB57BDweBXAYyiTxzMCHnsAPIYxeewU8HgNwGM4k8ezAh57ATxGMHk8J+DxOoDHSCaP5wU89gF4jGLy2CXg8QaDB70fvraKlfb/6Z3j9L5uetc1vSea3rFM7yemd/vSe3HpnbL0PlZ6lym9B5TeoUnvn6R3N9J7D+mdgfS+PXpXHb3njd6RRu8Xo3dz0Xut6J1Q9D4lehcRvceH3oFD74+hd6/Qe0vonR/0vgx61wS9p4HecUDvB6Bn69Nz6emZ7vQ8dHqWOD2Hm55hTc9/pmcn03OH6Zm99LxbelYsPWeVnlFKz/ekZ2PScyXpmYz0PEN6FiA9R4+eQUfPb6Nnn9Fzw+iZW/S8KnrWEz0niZ4xRM/noWfb0HNh6Jkq9DwSepYHPQeDniFBz1+gZxfQff90zzzdb073atN9znSPMN1fS/em0n2ddE8k3U9I9+LRfWx0DxjdP0X3HtF9O3TPC90vQvda0H0KdI0/XR9P15bTddl0TTNdD0zX0tJ1qHQNJ13/SNcO0nV3dM0aXe9F10rRdUZ0jQ5d30LXhtB1FXRNAv2eT7+F0+/I9Bss/X5Jv/3R72b0mxP9XkO/ddDvBHSOnc5P07ldOi9K5xTpfBydy6LzQHQOhc4/0Hd3+t5L3xnp+xZ9V6F5Ps2RaX5JczOa19CcgI6ndCwiHycPJP+gsUf99lTn9/T5LJaEqqpsrZz8sfJmzuBjJZs9VrxLmsVbmNwinBylGG/lDNf7KJ/aOYO3SyMVVQXt+XaUPLKqn3JiaBWh/Sknrl5vMbTaj+vDEe8faYGKYfrwfiaG1GO4bVmV0ZYHDPCjA4C2fCdkPzrX+nssO/sHGffvCNr+HQbGQQPGMaLtD56Z4zgbp7+8a8A4fhfQlu9F2ZZZ6UzfXxrba3e5rGDiGPs2ZuTzPmD+8R5z/vG+wLfeY/T1Qwb4FqKvHzozfSuO41sfGOBbHwDa8nDI849zLP7847BgHB9mYBwxYBwj2v7ImTmO4zn95UMDxvGHgLb8KORxTG1SgzmOPxKM448YGB8bMI4Rbf9xuOM4gjgf8AmDA+UfZ6+dcrEa28eTwsf41ACPmxsfPsZnBujQLzl8jM8N0GEtoD98YYAOqwA6fGmADoMA4+IrA3QYAtDhawN0GAbQ4RsDdBgB0OFbA3QYBdDhOwN0GAPQ4agBOowD6PC9ATpMAOjwgwE6pAN0+NEAHSYDdPjJAB2mAnQ4ZoAO0wE6/GyADjMBOvxigA6zATr8asL5KIAOvxmgw3yADr8boMNCgA5/GKDDYoAOxw3Q4WaADn8aoMNSgA5/GaDDMoAOJwzQYTlAByvXma/DCoAOEQN0uBOgQzYDdFgJ0CHOAB1WA3SIN0CHNQAdEgzQ4V6ADokG6LAOoEOSATr8GRc+RrIBOjwA6A8pBuiwHqBDdgN02ADQIYcBOmwE6JDTAB02AXTIZYAOWwA65DZAh20AHVIN0GE7QIc8BujwOECHvAbocD9gPpnPAB2eAvSH/AbosAOgQwEDdNgJ0OEsA3R4DqBDQQN02AXQoZABOrwI0KGwATq8DNChiAE67AboUNQAHfYAdChmgA57AToUN0CHfQAdShigw5sAHUoaoMPbAB1KGaDDAYAOaQbocBCgQ2kDdHgPoEMZA3Q4BNChrAE6HAboUM4AHT4E6FDeAB0+BuhQwQAdPgXoUNEAHT4H6FDJAB2+BOhQ2QAdvgboUMUAHb4F6FDVAB2OAnSoZoAOPwB0qG6ADj8BdKhhgA4/A3SoaYAOvwJ0qGWADr8DdKhtgA7HATrUMUCHvwA61DVAByslfIx6BuiQDaDD2QboEA/Qob4BOiQCdDjHAB2SATo0MECH7AAdzjVAh5wAHRoaoENugA6NDNAhD0CHxgbokA+gw3kG6FAAoEMTA3QoCNDhfAN0KAzQoakBOhQF6NDMAB2KA3RoboAOJQE6tDBAhzSADi0N0KEMQIdWBuhQDqDDBQboUAGgw4UG6FAJoENrA3SoAtChjQE6VAPo0NYAHWoAdGhngA61ADq0N0CHOgAdOhigQz2ADh0N0KE+QIeLDNChAUCHTgbo0BCgw8UG6NAYoMMlBujQBKDDpQbo0BSgw2UG6NAcoMPlBujQEqBDZwN0uACgwxUG6NAaoMOVBujQFqDDVQbo0B6gQxcDdOgI0OFqA3ToBNDhGgN0uASgw7UG6HAZQIfrDNChM0CHrgbocCVAh+sN0KELQIduBuhwDUCH7gbocB1Ahx4G6HA9QIeeBujQHaBDLwN06AnQ4QYDdLgBoENvA3ToA9ChjwE63AjQoa8BOvQD6HCjAToMAOhwkwE6DALo0M8AHYYAdOhvgA7DADoMMECHEQAdBhqgwyiADoMM0GEMQIfBBugwDqDDEAN0mADQYagBOqQDdBhmgA6TAToMN0CHqQAdRhigw3SADiMN0GEmQIdRBugwG6DDaAN0mAvQYYwBOswH6DDWAB0WAnQYZ4AOiwE6jDdAh5sBOkwwQIelAB0mGqDDMoAO6QbosBygwyQDdFgB0GGyATrcCdBhigE6rAToMNUAHVYDdJiWi4eRjVl/1ZyWVStn8P2r2/t7edTq2XHIkdorKz/aqdXWSZOuvLZS3c9bj94+aFGLI8eWHFWfT2fy4OrUUP1TWeUVx8yrIWPfyjmD7zsjON/IqX+s4GUa2RgWr5wVryK7igS/Spk5nGvx+78Ep4GFwTnHCn+sVWOOtRo5/9mQZvEXrgbvB8/vFH9aZtp9cVaufzDZ4IxBc7LuOHs90y5HnTuXJzFJI9VkNlJNZiOdOHHiV7/taVbWePSPm99sW/g5uazTRZltt4R72xyXwNzGcYThOn/7fOE6f3VhXh2YeTlLfHCcxUfpLGSu4DnNYRw1GLpGgnJ1OiZXSxq4swVHI1qyMbHG5LCsiTmCc6f9P8nBNwI3RlY5zc0VPud0JudPBZzTGZznAThPYnL+TMB5EoPzfADnyUzOnws4T2ZwXgDgPIXJ+QsB5ykMzgsBnKcyOX8p4DyVwXkRgPM0JuevBJynMTgvBnCezuT8tYDzdAbnJQDOM5icvxFwnsHgfDOA80wm528FnGcyON8C4DyLyfk7AedZDM5LAZxnMzkfFXCezeB8K4DzHCbn7wWc5zA4LwNwnsvk/IOA81wG59sAnOcxOf8o4DyPwXk5gPN8JuefBJznMzjfDuC8gMn5mIDzAgbnFQDOC5mcfxZwXsjgfAeA8yIm518EnBcxON8J4LyYyflXAefFDM53ATgvYXL+TcB5CYPzSgDnm5mcfxdwvpnBeRWA8y1Mzn8ION/C4LwawHkpk/NxAeelDM53AzjfyuT8p4DzrQzOawCclzE5/yXgvIzB+R4A59uYnE8ION/G4HwvgPNyJmcrJ5/zcgbntQDOtzM5RwScb2dwXgfgvILJOZuA8woG5/sAnO9gco4TcL6Dwfl+AOc7mZzjBZzvZHB+AMD5LibnBAHnuxicHwRwXsnknCjgvJLBeT2A8yom5yQB51UMzg8BOK9mck4WcF7N4LwBwPluJucUAee7GZwfBnBew+ScXcB5DYPzRgDne5iccwg438Pg/AiA871MzjkFnO9lcN4E4LyWyTmXgPNaBufNAM7rmJxzCzivY3DeAuB8H5NzqoDzfQzOWwGc72dyziPgfD+D8zYA5weYnPMKOD/A4PwogPODTM75BJwfZHDeDuC8nsk5v4DzegbnxwCcH2JyLiDg/BCD8+MAzhuYnM8ScN7A4PwEgPPDTM4FBZwfZnB+EsB5I5NzIQHnjQzOTwE4P8LkXFjA+REG56cBnDcxORcRcN7E4LwDwHkzk3NRAefNDM7PADhvYXIuJuC8hcF5J4DzVibn4gLOWxmcnwVw3sbkXELAeRuD83MAzo8yOZcUcH6Uwfl5AOftTM6lBJy3MzjvAnB+jMk5TcD5MQbnFwCcH2dyLi3g/DiD84sAzk8wOZcRcH6CwfklAOcnmZzLCjg/yeD8MoDzU0zO5QScn2JwfoXBme7Lr6Oiqf1/uo+Y7qul+0zpvku6D5Huy6P71Oi+LbqPie7roftc6L4Pug+C7gug6+TpunG6jpquK6brbOm6U7oOk65LpOv06Lo1uo6Lrmui63zouhe6DoSui6DrBOh3c/odmX5Xpd8Z6Xc3+h2Kfpeh3ynovD2dx6bzunSek8770XkwOi9E50novAF9j6bvlfQ9i7530Dyc5qU0T6N5Cx3H6bhGPk++Rz5A44L6ySu5/PVxt1NW2u8Orn0y4/755A4hP8OA7p+n3L3lsuL7anC+J/t8HZ/taRZv4XLj5CjF2BOlz2RVP+XjfjhJVu1C+1JOXJw9DIzXcG0f8f6RFqgYpu1fE2DQwvWWvbH3lsipfyyet+wVeMvrBnjL64D+tS9kb6GnaHG9ZZ/AW/YxMN4wwFsQbf8GyFvejL23nOxOEm95U+AtbxngLW8B+tfbIXsLPTmP6y1vC7zlbQbGfgO8BdH2+0HeciD23nIyZYm3HBB4yzsGeMs7gP51MGRvoSdFcr3loMBbDjIw3jXAWxBt/y7IW96LvbecfByjxFveE3jL+wZ4y/uA/nUoZG+hJ/FyveWQwFsOMTA+MMBbEG3/AchbDsfeW04+JFviLYcF3nLEAG85AuhfH4bsLdQ+s5je8qHAWz5kYHxkgLcg2v4jkLd8HHtvSaR/JN7yscBbPjHAWz4B9K9PQ/YW6RP+ue35GZOHpJ99JpkfR/k7aRAvpjb0jvesYD5lePHnwbWNcPjGyrcR4+pzkG9/EXvfTqJ/JOPpC8F4+tIA3/4S0L++AswJZzLnhF8J5oRfMTC+NmBOiGj7r0He8g3D98N494YVxe/73wi85VuGrlS38w4ZdzlJrjNzycans29WvL4T8nKX4+b3UQ7LqpqTt391wbzvaMg++DGTx8dCHt8bcFw7nhQ+xg8G6DA3PnyMHw3QoV9y+Bg/GaDDWkB/OGaADqsAOvxsgA6DAOPiFwN0GALQ4VcDdBgG0OE3A3QYAdDhdwN0GAXQ4Q8DdBgD0OG4ATqMA+jwpwE6TADo8JcBOqQDdDhhgA6TATpYuc98HaYCdIgYoMN0gA7ZDNBhJkCHOAN0mA3QId4AHeYCdEgwQIf5AB0SDdBhIUCHJAN0WAzQIdkAHW4G6JBigA5LATpkN0CHZQAdchigw3KADjkN0GEFQIdcBuhwJ0CH3AbosBKgQ6oBOqwG6JDHAB3WAHTIa4AO9wJ0yGeADusAOuQ3QIc/48LHKGCADg8A+sNZBuiwHqBDQQN02ADQoZABOmwE6FDYAB02AXQoYoAOWwA6FDVAh20AHYoZoMN2gA7FDdDhcYAOJQzQ4X7AfLKkATo8BegPpQzQYQdAhzQDdNgJ0KG0ATo8B9ChjAE67ALoUNYAHV4E6FDOAB1eBuhQ3gAddgN0qGCADnsAOlQ0QIe9AB0qGaDDPoAOlQ3Q4U2ADlUM0OFtgA5VDdDhAECHagbocBCgQ3UDdHgPoEMNA3Q4BNChpgE6HAboUMsAHT4E6FA7Nx+DFu77wTjPDakTPKeI+z/c58zUZeCE9JyZk4tXy6zqp+eCfMJ8tt10wXNp6jH6Bj38OaflaRAnAQ9uVvmeH3zf0/DOzh0FIBXmlqufO7iY0rzq5/5nQ5oVfOFi0QD9TtBJPmV2dmeJ9+Bkld9nDAM5h9EujAcHRhhcI6f+sYLn0tT6u725htCUgdEgd7j9iLRvkJvP/dzcvEHvPCzKrxz34NSA0V8aCg9OYfb3RrHv7ycXycPEGA8/i9DEoK6gbzXOHT4PxsHyJI96Ah7nMQ/IKdY//e60BDy4WeXLOSBHg3OehcFpFKUHZtVOza2//Ynbj+IY+za3+FpFvH+kBSpmRRqELFgz628TZr9Vi2F8TZiDR43pU/lkxi2rHIMO2hMnThz2255mZY1B/7hzPd+eNDbNbZ1+tDzfdh33tqY+CXIf63xesIZYfJTchNFoTZnicTsedaDzhTNsyde2T5lf2+oJHunYLHf4PD5j8jhbwKM5gMfnTB71BTxaAHh8weRxjoBHSwCPL5k8Ggh4tALw+IrJ41wBjwsAPL5m8mgo4HEhgMc3TB6NBDxaA3h8y+TRWMCjDYDHd0we5wl4tAXwOMrk0UTAox2Ax/dMHucLeLQH8PiByaOpgEcHAI8fmTyaCXh0BPD4icmjuYDHRQAex5g8Wgh4dALw+JnJo6WAx8UAHr8webQS8LgEwONXJo8LBDwuBfD4jcnjQgGPywA8fmfyaC3gcTmAxx9MHm0EPDoDeBxn8mgr4HEFgMefTB7tBDyuBPD4i8mjvYDHVQAeJ5g8Ogh4dAHwsHLxeHQU8LgawCPC5HGRgMc1AB7ZmDw6CXhcC+ARx+RxsYDHdQAe8Uwelwh4dAXwSGDyuFTA43oAj0Qmj8sEPLoBeCQxeVwu4NEdwCOZyaOzgEcPAI8UJo8rBDx6AnhkZ/K4UsCjF4BHDiaPqwQ8bgDwyMnk0UXAozeARy4mj6sFPPoAeORm8rhGwKMvgEcqk8e1Ah43AnjkYfK4TsDjJgCPvEweXQU8+gF45GPyuF7Aoz+AR34mj24CHgMAPAoweXQX8BgI4HEWk0cPAY9BAB4FmTx6CngMBvAoxOTRS8BjCIBHYSaPGwQ8hgJ4FGHy6C3gMQzAoyiTRx8Bj+EAHsWYPPoKeIwA8CjO5HGjgMdIAI8STB43CXiMAvAoyeTRT8BjNIBHKSaP/gIeYwA80pg8Bgh4jAXwKM3kMVDAYxyARxkmj0ECHuMBPMoyeQwW8JgA4FGOyWOIgMdEAI/yTB5DBTzSATwqMHkME/CYBOBRkcljuIDHZACPSkweIwQ8pgB4VGbyGCngMRXAowqTxygBj2kAHlWZPEYLeEwH8KjG5DFGwGMGgEd1Jo+xAh4zATxqMHmME/CYBeBRk8ljvIDHbACPWkweEwQ85gB41GbymCjgMRfAow6TR7qAxzwAj7pMHpMEPOYDeNRj8pgs4LEAwONsJo8pAh4LATzqM3lMFfBYBOBxDpPHNAGPxQAeDZg8pgt4LAHwOJfJY4aAx80AHg2ZPGYKeNwC4NGIyWOWgMdSAI/GTB6zBTxuBfA4j8ljjoDHMgCPJkwecwU8bgPwOJ/JY56Ax3IAj6ZMHvMFPG4H8GjG5LFAwGMFgEdzJo+FAh53AHi0YPJYJOBxJ4BHSyaPxQIedwF4tGLyWCLgsRLA4wImj5sFPFYBeFzI5HGLgMdqAI/WTB5LBTzuBvBow+Rxq4DHGgCPtkweywQ87gHwaMfkcZuAx70AHu2ZPJYLeKwF8OjA5HG7gMc6AI+OTB4rBDzuA/C4iMnjDgGP+wE8OjF53Cng8QCAx8VMHncJeDwI4HEJk8dKAY/1AB6XMnmsEvB4CMDjMiaP1QIeGwA8LmfyuFvA42EAj85MHmsEPDYCeFzB5HGPgMcjAB5XMnncK+CxCcDjKiaPtQIemwE8ujB5rBPw2ALgcTWTx30CHlsBPK5h8rhfwGMbgMe1TB4PCHg8CuBxHZPHgwIe2wE8ujJ5rBfweAzA43omj4cEPB4H8OjG5LFBwOMJAI/uTB4PC3g8CeDRg8ljo4DHUwAePZk8HhHweBrAoxeTxyYBjx0AHjcweWwW8HgGwKM3k8cWAY+dAB59mDy2Cng8C+DRl8ljm4DHcwAeNzJ5PCrg8TyAx01MHtsFPHYBePRj8nhMwOMFAI/+TB6PC3i8COAxgMnjCQGPlwA8BjJ5PCng8TKAxyAmj6cEPF4B8BjM5PG0gMduAI8hTB47BDxeBfAYyuTxjIDHHgCPYUweOwU8XgPwGM7k8ayAx14AjxFMHs8JeLwO4DGSyeN5AY99AB6jmDx2CXi8AeAxmsnjBQGPNwE8xjB5vCjg8RaAx1gmj5cEPN4G8BjH5PGygMd+AI/xTB6vCHgcAPCYwOSxW8DjHQCPiUwerwp4HATwSGfy2CPg8S6AxyQmj9cEPN4D8JjM5LFXwON9AI8pTB6vC3gcAvCYyuSxT8DjAwCPaUwebwh4HGbwoPfD11Wx0v4/vXOc3tdN77qm90TTO5bp/cT0bl96Ly69U5bex0rvMqX3gNI7NOn9k/TuRnrvIb0zkN63R++qo/e80TvS6P1i9G4ueq8VvROK3qdE7yKi9/jQO3Do/TH07hV6bwm984Pel0HvmqD3NNA7Duj9APRsfXouPT3TnZ6HTs8Sp+dw0zOs6fnP9Oxkeu4wPbOXnndLz4ql56zSM0rp+Z70bEx6riQ9k5GeZ0jPAqTn6NEz6Oj5bfTsM3puGD1zi55XRc96ouck0TOG6Pk89Gwbei4MPVOFnkdCz/Kg52DQMyTo+Qv07AK675/umaf7zelebbrPme4Rpvtr6d5Uuq+T7omk+wnpXjy6j43uAaP7p+jeI7pvh+55oftF6F4Luk+BrvGn6+Pp2nK6LpuuaabrgelaWroOla7hpOsf6dpBuu6Orlmj673oWim6zoiu0aHrW+jaELqugq5JoN/z6bdw+h2ZfoOl3y/ptz/63Yx+c6Lfa+i3DvqdgM6x0/lpOrdL50XpnCKdj6NzWXQeiM6h0PkH+u5O33vpOyN936LvKjTPpzkyzS9pbkbzGpoT0PGUjkXk4+SB5B809qjfnur8nj6fxZLQQJU9Lzd/rBzJHXysZLPHindJs3gLk1uEk6MU48Pc4Xof5dMkd/B2aaaigaA9P4qSR1b1U04MrSK0P+XE1etDhlYf4/pwxPtHWqBimD78MRND6jHctmzAaMtPDPCjTwBt+WnIfnS+9fdYdvYPMu4/FbT9pwyMzwwYx4i2/+zMHMfZOP3lcwPG8eeAtvwiyrbMSmf6/tLcXrvLZQUTx9i3OSOfLwHzjy+Y848vBb71BaOvf2WAbyH6+ldnpm/FcXzrawN862tAW34T8vzjPIs///hGMI6/YWB8a8A4RrT9t2fmOI7n9JfvDBjH3wHa8mjI45japBFzHB8VjOOjDIzvDRjHiLb/PtxxHEGcD/iBwYHyj7PXTrlYje3jSeFj/GiAx82NDx/jJwN06JccPsYxA3RYC+gPPxugwyqADr8YoMMgwLj41QAdhgB0+M0AHYYBdPjdAB1GAHT4wwAdRgF0OG6ADmMAOvxpgA7jADr8ZYAOEwA6nDBAh3SADlbqma/DZIAOEQN0mArQIZsBOkwH6BBngA4zATrEG6DDbIAOCQboMBegQ6IBOswH6JBkgA4LATokG6DDYoAOKQbocDNAh+wG6LAUoEMOA3RYBtAhpwE6LAfokMsAHVYAdMhtgA53AnRINUCHlQAd8higw2qADnkN0GENQId8BuhwL0CH/AbosA6gQwEDdPgzLnyMswzQ4QFAfyhogA7rAToUMkCHDQAdChugw0aADkUM0GETQIeiBuiwBaBDMQN02AbQobgBOmwH6FDCAB0eB+hQ0gAd7gfMJ0sZoMNTgP6QZoAOOwA6lDZAh50AHcoYoMNzAB3KGqDDLoAO5QzQ4UWADuUN0OFlgA4VDNBhN0CHigbosAegQyUDdNgL0KGyATrsA+hQxQAd3gToUNUAHd4G6FDNAB0OAHSoboAOBwE61DBAh/cAOtQ0QIdDAB1qGaDDYYAOtQ3Q4UOADnUM0OFjgA51DdDhU4AO9QzQ4XOADmcboMOXAB3qG6DD1wAdzjFAh28BOjQwQIejAB3ONUCHHwA6NDRAh58AOjQyQIefATo0NkCHXwE6nGeADr8DdGhigA7HATqcb4AOfwF0aGqADlZK+BjNDNAhG0CH5gboEA/QoYUBOiQCdGhpgA7JAB1aGaBDdoAOFxigQ06ADhcaoENugA6tDdAhD0CHNgbokA+gQ1sDdCgA0KGdAToUBOjQ3gAdCgN06GCADkUBOnQ0QIfiAB0uMkCHkgAdOhmgQxpAh4sN0KEMQIdLDNChHECHSw3QoQJAh8sM0KESQIfLDdChCkCHzgboUA2gwxUG6FADoMOVBuhQC6DDVQboUAegQxcDdKgH0OFqA3SoD9DhGgN0aADQ4VoDdGgI0OE6A3RoDNChqwE6NAHocL0BOjQF6NDNAB2aA3ToboAOLQE69DBAhwsAOvQ0QIfWAB16GaBDW4AONxigQ3uADr0N0KEjQIc+BujQCaBDXwN0uASgw40G6HAZQIebDNChM0CHfgbocCVAh/4G6NAFoMMAA3S4BqDDQAN0uA6gwyADdLgeoMNgA3ToDtBhiAE69AToMNQAHW4A6DDMAB36AHQYboAONwJ0GGGADv0AOow0QIcBAB1GGaDDIIAOow3QYQhAhzEG6DAMoMNYA3QYAdBhnAE6jALoMN4AHcYAdJhggA7jADpMNECHCQAd0g3QIR2gwyQDdJgM0GGyATpMBegwxQAdpgN0mGqADjMBOkwzQIfZAB2mG6DDXIAOMwzQYT5Ah5kG6LAQoMMsA3RYDNBhtgE63AzQYY4BOiwF6DDXAB2WAXSYZ4AOywE6zDdAhxUAHRYYoMOdAB0WGqDDSoAOiwzQYTVAh8WpPIxszPob5Las83IH37+hvb+XR62eHYccqb2y8qOdWm2dNOnKayvV/bz16O2DFrU4cmzJUfX5EiYPrk5N1T/1VV5xzLyaMvatnzv4vjcH5xs59Y8VvEwzG8PilbPiVWRXkeBXKTOH8y1+/5fgNLEwOOdZ4Y+1c5ljrVHufzakWfyFq8GXwfM7xZ+WW+y+uDT1H0z+FxGGSVDdcfb6Frscde5cnsQkjdSY2UiNmY104sSJX/22p1lZ49E/bn632sIvS7VOF+VWuyXc25a5BOY2jiMM1/nPLRCu8zcU5tWQmZezxAfHWaxwIremBs9pGeOowdA1EpSr0zG5WtLAvVVwNKIlGxNrhhrhc3MF5077/5CLbwRujKxyui01fM7zmJx/FHCex+C8HMB5PpPzTwLO8xmcbwdwXsDkfEzAeQGD8woA54VMzj8LOC9kcL4DwHkRk/MvAs6LGJzvBHBezOT8q4DzYgbnuwCclzA5/ybgvITBeSWA881Mzr8LON/M4LwKwPkWJuc/BJxvYXBeDeC8lMn5uIDzUgbnuwGcb2Vy/lPA+VYG5zUAzsuYnP8ScF7G4HwPgPNtTM4nBJxvY3C+F8B5OZOzlZvPeTmD81oA59uZnCMCzrczOK8DcF7B5JxNwHkFg/N9AM53MDnHCTjfweB8P4DznUzO8QLOdzI4PwDgfBeTc4KA810Mzg8COK9kck4UcF7J4LwewHkVk3OSgPMqBueHAJxXMzknCzivZnDeAOB8N5NzioDz3QzODwM4r2Fyzi7gvIbBeSOA8z1MzjkEnO9hcH4EwPleJuecAs73MjhvAnBey+ScS8B5LYPzZgDndUzOuQWc1zE4bwFwvo/JOVXA+T4G560AzvczOecRcL6fwXkbgPMDTM55BZwfYHB+FMD5QSbnfALODzI4bwdwXs/knF/AeT2D82MAzg8xORcQcH6IwflxAOcNTM5nCThvYHB+AsD5YSbnggLODzM4PwngvJHJuZCA80YG56cAnB9hci4s4PwIg/PTAM6bmJyLCDhvYnDeAeC8mcm5qIDzZgbnZwCctzA5FxNw3sLgvBPAeSuTc3EB560Mzs8COG9jci4h4LyNwfk5AOdHmZxLCjg/yuD8PIDzdibnUgLO2xmcdwE4P8bknCbg/BiD8wsAzo8zOZcWcH6cwflFAOcnmJzLCDg/weD8EoDzk0zOZQWcn2RwfhnA+Skm53ICzk8xOL8C4Pw0k3N5AeenGZx3AzjvYHKuIOC8g8H5VQDnZ5icKwo4P8PgvAfAeSeTcyUB550Mzq8BOD/L5FxZwPlZBue9AM7PMTlXEXB+jsH5dQDn55mcqwo4P8/gvA/AeReTczUB510Mzm8AOL/A5FxdwPkFBuc3AZxfZHKuIeD8IoPzWwDOLzE51xRwfonB+W0A55eZnGsJOL/M4LwfwPkVJufaAs6vMDgfYHCm+/LrqWhq/5/uI6b7auk+U7rvku5DpPvy6D41um+L7mOi+3roPhe674Pug6D7Aug6ebpunK6jpuuK6Tpbuu6UrsOk6xLpOj26bo2u46Lrmug6H7ruha4Doesi6DoB+t2cfkem31Xpd0b63Y1+h6LfZeh3CjpvT+ex6bwuneek8350HozOC9F5EjpvQN+j6Xslfc+i7x00D6d5Kc3TaN5Cx3E6rpHPk++RD9C4oH5yINVfH3c7ZaX9O8G1T2bcP5/cMORnGND985S7t1xWfA8G53uyz9fz2Z5m8RYuN06OUox3o/SZrOqnfNwPJ8mqXWhfyomL8y4D4z1c20e8f6QFKoZp+/cEGLRwveX92HtL5NQ/Fs9b3hd4yyEDvOUQoH99ELK30FO0uN7ygcBbPmBgHDbAWxBtfxjkLUdi7y0nu5PEW44IvOVDA7zlQ0D/+ihkb6En53G95SOBt3zEwPjYAG9BtP3HIG/5JPbecjJlibd8IvCWTw3wlk8B/euzkL2FnhTJ9ZbPBN7yGQPjcwO8BdH2n4O85YvYe8vJxzFKvOULgbd8aYC3fAnoX1+F7C30JF6ut3wl8JavGBhfG+AtiLb/GuQt38TeW04+JFviLd8IvOVbA7zlW0D/+i5kb6H2Wcr0lu8E3vIdA+OoAd6CaPujIG/5Pvbekkj/SLzle4G3/GCAt/wA6F8/huwt0if8c9vzJyYPST/7SdDPXo7yd9IgXkxt6B3vWcH8yPDiY8G1jXD4xsq3EePqGMi3f469byfRP5Lx9LNgPP1igG//AuhfvwLmhLcw54S/CuaEvzIwfjNgToho+99A3vI7w/fDePeGFcXv+78LvOUPhq5Ut/MOGXc5Sa63pMrGp7NvVryOC3m5y3HzO5rLshrk5u3fUDDv+zNkH/yeyeN7IY+/DDiuHU8KH+OEATrMjQ8fw8pz5uvQLzl8jIgBOqwF9IdsBuiwCqBDnAE6DAKMi3gDdBgC0CHBAB2GAXRINECHEQAdkgzQYRRAh2QDdBgD0CHFAB3GAXTIboAOEwA65DBAh3SADjkN0GEyQIdcBugwFaBDbgN0mA7QIdUAHWYCdMhjgA6zATrkNUCHuQAd8hmgw3yADvkN0GEhQIcCBuiwGKDDWQbocDNAh4IG6LAUoEMhA3RYBtChsAE6LAfoUMQAHVYAdChqgA53AnQoZoAOKwE6FDdAh9UAHUoYoMMagA4lDdDhXoAOpQzQYR1AhzQDdPgzLnyM0gbo8ACgP5QxQIf1AB3KGqDDBoAO5QzQYSNAh/IG6LAJoEMFA3TYAtChogE6bAPoUMkAHbYDdKhsgA6PA3SoYoAO9wPmk1UN0OEpQH+oZoAOOwA6VDdAh50AHWoYoMNzAB1qGqDDLoAOtQzQ4UWADrUN0OFlgA51DNBhN0CHugbosAegQz0DdNgL0OFsA3TYB9ChvgE6vAnQ4RwDdHgboEMDA3Q4ANDhXAN0OAjQoaEBOrwH0KGRATocAujQ2AAdDgN0OM8AHT4E6NAkDx+DFu77wTjPDTk/eE4R93+4z5lpysAJ6TkzJxevllnVT88F+YH5bLslgufSNBP2DS5O86xxsrnrzmnZD5u2/0/Xx9C6hf1/el5IxK7X2a+F+rulilYqLrC357A8HchVpzv/LJZIizzyccoGa2XxwLj100A9LugsbxSQdZZ4D05W+f3EMJIL8wTfl/EAwQiDa+TUPxavjSl3bhu0ZnREqtt54JJfOa7Bt2Ls20Zo8GH2lbax7ysnF8kDuRgPEIvQwbWpoG+1yxM+D8YB5ySPZgIe7UETHve+WXG5wMLkFLGC53ShhckpmxU8p9YWJqc4K3hObSw9OWWF09YKnv8vcbKcuMepdlZ0nhDkmPInw8Np3zZ5+DzaW+Hz+IvB4y8hjw4Wpi92tIJz+SMuOm2zyuV2NSlYGR88H9p3XTwf5yIrOMbt8Zh26MTI6TjIEy62MDiXWBicSy0MzmUWBudyC4PT2cLgXGFhcK60MDhXWRicLhYG52oLg3ONhcG51sLgXGdhcLpaGJzrLQxONwuD093C4PSwMDg9LQxOLwuDc4OFweltYXD6WBicvhYG50YLg3OThcHpZ2Fw+lsYnAEWBmegFfw7TDQ4gywMn8EWBmeIhcEZamFwhlkYnOEWBmeEhcEZaWFwRlkYnNEWBmeMhcEZa2FwxlkYnPEWBmeChcGZaGFw0i0MziQLgzPZwuBMsTA4Uy0MzjQLgzPdwuDMsDA4My0MziwLgzPbwuDMsTA4cy0MzjwLgzPfwuAssDA4Cy0MziILg7PYwuAssTA4N1sYnFssDM5SC4Nzq4XBWWZhcG6zMDjLLQzO7RYGZ4WFwbnDwuDcaWFw7rIwOCstDM4qC4Oz2sLg3G1hcNZYGJx7LAzOvRYGZ62FwVlnYXDuszA491sYnAcsDM6DFgZnvYXBecjC4GywMDgPWxicjRYG5xELg7PJwuBstjA4WywMzlYLg7PNwuA8amFwtlsYnMcsDM7jFgbnCQuD86SFwXnKwuA8bWFwdlgYnGcsDM5OC4PzrIXBec7C4DxvYXB2WRicFywMzosWBuclC4PzsoXBecXC4Oy2MDivWhicPRYG5zULg7PXwuC8bmFw9lkYnDcsDM6bFgbnLQuD87aFwdlvYXAOWBicdywMzkELg/OuhcF5z8LgvG9hcA5ZGJwPLAzOYQuDc8TC4HxoYXA+sjA4H1sYnE8sDM6nFgbnMwuD87mFwfnCwuB8aWFwvrIwOF9bGJxvLAzOtxYG5zsLg3PUwuB8b2FwfrAwOD9aGJyfLAzOMQuD87OFwfnFwuD8amFwfrMwOL9bGJw/LAzOcQuD86eFwfnLwuCcsDA4VCDgvp6CPJwICCcbE8dbf5BnZrUQPAMrDsQ/HsC/rYB/Aoh/IggnCYSTDMJJAeFkB+HkAOHkBOHkAuHkBuGkgnDygHDygnDygXDyg3AKgHDOAuEUBOEUAuEUBuEUAeEUBeEUA+EUB+GUAOGUBOGUAuGkgXBKg3DKgHDKgnDKgXDKg3AqgHAqgnAqgXAqg3CqgHCqgnCqgXCqg3BqgHBqgnBqgXBqg3DqCHGieW9MVjnVZeYkeQfJbYzn9NP+J1L5OPUiwTFuSw2f83ImZysPH+dsBuflAM63MzlHBJzrMzjfDuC8gsk5m4DzOQzOKwCc72ByjhNwbsDgfAeA851MzvECzucyON8J4HwXk3OCgHNDBue7AJxXMjknCjg3YnBeCeC8isk5ScC5MYPzKgDn1UzOyQLO5zE4rwZwvpvJOUXAuQmD890AzmuYnLMLOJ/P4LwGwPkeJuccAs5NGZzvAXC+l8k5p4BzMwbnewGc1zI55xJwbs7gvBbAeR2Tc24B5xYMzusAnO9jck4VcG7J4HwfgPP9TM55BJxbMTjfD+D8AJNzXgHnCxicHwBwfpDJOZ+A84UMzg8COK9ncs4v4NyawXk9gPNDTM4FBJzbMDg/BOC8gcn5LAHntgzOGwCcH2ZyLijg3I7B+WEA541MzoUEnNszOG8EcH6EybmwgHMHBudHAJw3MTkXEXDuyOC8CcB5M5NzUQHnixicNwM4b2FyLibg3InBeQuA81Ym5+ICzhczOG8FcN7G5FxCwPkSBudtAM6PMjmXFHC+lMH5UQDn7UzOpQScL2Nw3g7g/BiTc5qA8+UMzo8BOD/O5FxawLkzg/PjAM5PMDmXEXC+gsH5CQDnJ5mcywo4X8ng/CSA81NMzuUEnK9icH4KwPlpJufyAs5dGJyfBnDeweRcQcD5agbnHQDOzzA5VxRwvobB+RkA551MzpUEnK9lcN4J4Pwsk3NlAefrGJyfBXB+jsm5ioBzVwbn5wCcn2dyrirgfD2D8/MAzruYnKsJOHdjcN4F4PwCk3N1AefuDM4vADi/yORcQ8C5B4PziwDOLzE51xRw7sng/BKA88tMzrUEnHsxOL8M4PwKk3NtAecbGJxfAXDezeRcR8C5N4PzbgDnV5mc6wo492FwfhXAeQ+Tcz0B574MznsAnF9jcj5bwPlGBufXAJz3MjnXF3C+icF5L4Dz60zO5wg492Nwfh3AeR+TcwMB5/4MzvsAnN9gcj5XwHkAg/MbAM5vMjk3FHAeyOD8JoDzW0zOjQScBzE4vwXg/DaTc2MB58EMzm8DOO9ncj5PwHkIg/N+AOcDTM5NBJyHMjgfiJJzVvXTvdjt8gTfv02ev/ePeHCy4jwsEi6PBrkt68fcwfdvqPZtlpvPYziAx09MHs0FPEYAeBxj8mgh4DESwONnJo+WAh6jADx+YfJoJeAxGsDjVyaPCwQ8xgB4/MbkcaGAx1gAj9+ZPFoLeIwD8PiDyaONgMd4AI/jTB5tBTwmAHj8yeTRTsBjIoDHX0we7QU80gE8TjB5dBDwmATgYaXyeHQU8JgM4BFh8rhIwGMKgEc2Jo9OAh5TATzimDwuFvCYBuARz+RxiYDHdACPBCaPSwU8ZgB4JDJ5XCbgMRPAI4nJ43IBj1kAHslMHp0FPGYDeKQweVwh4DEHwCM7k8eVAh5zATxyMHlcJeAxD8AjJ5NHFwGP+QAeuZg8rhbwWADgkZvJ4xoBj4UAHqlMHtcKeCwC8MjD5HGdgMdiAI+8TB5dBTyWAHjkY/K4XsDjZgCP/Ewe3QQ8bgHwKMDk0V3AYymAx1lMHj0EPG4F8CjI5NFTwGMZgEchJo9eAh63AXgUZvK4QcBjOYBHESaP3gIetwN4FGXy6CPgsQLAoxiTR18BjzsAPIozedwo4HEngEcJJo+bBDzuAvAoyeTRT8BjJYBHKSaP/gIeqwA80pg8Bgh4rAbwKM3kMVDA424AjzJMHoMEPNYAeJRl8hgs4HEPgEc5Jo8hAh73AniUZ/IYKuCxFsCjApPHMAGPdQAeFZk8hgt43AfgUYnJY4SAx/0AHpWZPEYKeDwA4FGFyWOUgMeDAB5VmTxGC3isB/CoxuQxRsDjIQCP6kweYwU8NgB41GDyGCfg8TCAR00mj/ECHhsBPGoxeUwQ8HgEwKM2k8dEAY9NAB51mDzSBTw2A3jUZfKYJOCxBcCjHpPHZAGPrQAeZzN5TBHw2AbgUZ/JY6qAx6MAHucweUwT8NgO4NGAyWO6gMdjAB7nMnnMEPB4HMCjIZPHTAGPJwA8GjF5zBLweBLAozGTx2wBj6cAPM5j8pgj4PE0gEcTJo+5Ah47ADzOZ/KYJ+DxDIBHUyaP+QIeOwE8mjF5LBDweBbAozmTx0IBj+cAPFoweSwS8HgewKMlk8diAY9dAB6tmDyWCHi8AOBxAZPHzQIeLwJ4XMjkcYuAx0sAHq2ZPJYKeLwM4NGGyeNWAY9XADzaMnksE/DYDeDRjsnjNgGPVwE82jN5LBfw2APg0YHJ43YBj9cAPDoyeawQ8NgL4HERk8cdAh6vA3h0YvK4U8BjH4DHxUwedwl4vAHgcQmTx0oBjzcBPC5l8lgl4PEWgMdlTB6rBTzeBvC4nMnjbgGP/QAenZk81gh4HADwuILJ4x4Bj3cAPK5k8rhXwOMggMdVTB5rBTzeBfDowuSxTsDjPQCPq5k87hPweB/A4xomj/sFPA4BeFzL5PGAgMcHAB7XMXk8KOBxGMCjK5PHegGPIwAe1zN5PCTg8SGARzcmjw0CHh8BeHRn8nhYwONjAI8eTB4bBTw+AfDoyeTxiIDHpwAevZg8Ngl4fAbgcQOTx2YBj88BPHozeWwR8PgCwKMPk8dWAY8vATz6MnlsE/D4CsDjRiaPRwU8vgbwuInJY7uAxzcAHv2YPB4T8PgWwKM/k8fjAh7fAXgMYPJ4QsDjKIDHQCaPJwU8vgfwGMTk8ZSAxw8AHoOZPJ4W8PgRwGMIk8cOAY+fADyGMnk8I+BxDMBjGJPHTgGPnwE8hjN5PCvg8QuAxwgmj+cEPH4F8BjJ5PG8gMdvAB6jmDx2CXj8DuAxmsnjBQGPPwA8xjB5vCjgcRzAYyyTx0sCHn8CeIxj8nhZwOMvAI/xTB6vCHicAPCYwOSxW8CDEgu4r5jHRCaPVwU8IgAe6UweewQ8sgF4TGLyeE3AIw7AYzKTx14Bj3gAjylMHq8LeCQAeExl8tgn4JEI4DGNyeMNAY8kAI/pTB5vCngkA3jMYPJ4S8AjBcBjJpPH2wIe2QE8ZjF57BfwyAHgMZvJ44CAR04AjzlMHu8IeOQC8JjL5HFQwCM3gMc8Jo93BTxSATzmM3m8J+CRB8BjAZPH+wIeeQE8FjJ5HBLwyAfgsYjJ4wMBj/wAHouZPA4LeBQImQe9x719nuD703vcaX8uj7OYPE4VZOIUBOEUAuEUBuEUAeEUBeEUA+EUB+GUAOGUBOGUAuGkgXBKg3DKgHDKgnDKgXDKg3AqgHAqgnAqgXAqg3CqgHCqgnCqgXCqg3BqgHBqgnBqgXBqg3DqgHDqgnDqgXDOBuHUB+GcA8JpAMI5F4TTEITTCITTGIRzHginCQjnfBBOUxBOMxBOcxBOCxBOSxBOKxDOBSCcC0E4rUE4bUA4bUE47UA47UE4HUA4HUE4F4FwOoFwLgbhXALCuRSEcxkI53IQTmcQzhUgnCtBOFeBcLqAcK4G4VwDwrkWhHMdCKcrCOd6EE43EE53EE4PEE5PEE4vEM4NIJzeIJw+IJy+IJwbQTg3gXD6gXD6g3AGgHAGgnAGgXAGg3CGgHCGgnCGgXCGg3BGgHBGgnBGgXBGg3DGgHDGgnDGgXDGg3AmgHAmgnDSQTiTQDiTQThTQDhTQTjTQDjTQTgzQDgzQTizQDizQThzQDhzQTjzQDjzQTgLQDgLQTiLQDiLQThLQDg3g3BuAeEsBeHcCsJZBsK5DYSzHIRzOwhnBQjnDhDOnSCcu0A4K0E4q0A4q0E4d4Nw1oBw7gHh3AvCWQvCWQfCuQ+Ecz8I5wEQzoMgnPUgnIdAOBtAOA+DcDaCcB4B4WwC4WwG4WwB4WwF4WwD4TwKwtkOwnkMhPM4COcJEM6TIJynQDhPg3B2gHCeAeHsBOE8C8J5DoTzPAhnFwjnBRDOiyCcl0A4L4NwXgHh7AbhvArC2QPCeQ2EsxeE8zoIZx8I5w0QzpsgnLdAOG+DcPaDcA6AcN4B4RwE4bwLwnkPhPM+COcQCOcDEM5hEM4REM6HIJyPQDgfg3A+AeF8CsL5DITzOQjnCxDOlyCcr0A4X4NwvgHhfAvC+Q6EcxSE8z0I5wcQzo8gnJ9AOMdAOD+DcH4B4fwKwvkNhPM7COcPEM5xEM6fIJy/QDgnQDhWHAYnAsLJBsKJA+HEg3ASQDiJIJwkEE4yCCcFhJMdhJMDhJMThJMLhJMbhJMKwskDwskLwskHwskPwikAwjkLhFMQhFMIhFMYhFMEhFMUhFMMhFMchFMChFMShFMKhJMGwikNwikDwikLwikHwikPwqkAwqkIwqkEwqkMwqkCwqkKwqkGwqkOwqkBwqkJwqkFwqkNwqkDwqkLwqkHwjkbhFMfhHMOCKcBCOdcEE5DEE4jEE5jEM55IJwmIJzzQThNQTjNQDjNQTgtQDgtQTitQDgXgHAuBOG0BuG0AeG0BeG0A+G0B+F0AOF0BOFcBMLpBMK5GIRzCQjnUhDOZSCcy0E4nUE4V4BwrgThXAXC6QLCuRqEcw0I51oQznUgnK4gnOtBON1AON1BOD1AOD1BOL1AODeAcHqDcPqAcPqCcG4E4dwEwukHwukPwhkAwhkIwhkEwhkMwhkCwhkKwhkGwhkOwhkBwhkJwhkFwhkNwhkDwhkLwhkHwhkPwpkAwpkIwkkH4UwC4UwG4UwB4UwF4UwD4UwH4cwQ4mTz4NTq2XHIkdorKz/aqdXWSZOuvLZS3c9bj94+aFGLI8eWHFWfl7OC5zSTmRM3l1YqWucJvn8btW/bPHxtZ4G0jbeC5zQblFOCFTynOaCcEq3gOc0F5ZRkBc9pHiinZCt4TvNBOaVYwXNaAMopuxU8p4WgnHJYwXNaBMoppxU8p8WgnHJZwXNaAsoptxU8p5tBOaVawXO6BZRTHit4TktBOeW1gud0KyinfFbwnJaBcspvBc/pNlBOBazgOS0H5XSWFTyn20E5FbSC57QClFMhK3hOd4ByKmwFz+lOUE5FrOA53QXKqagVPKeVoJyKWcFzWgXKqbgVPKfVoJxKWMFzuhuUU0kreE5rQDmVsoLndA8opzQreE73gnIqbQXPaS0opzJW8JzWgXIqawXP6T5GTnF2LnQdCS0XqLhQRWsVbVS0VdFORXsVHVR0VHGRik4qLlZxiYpLVVym4nIVnVVcoeJKFVep6KLiahXXqLhWxXUquqq4XkU3Fd1V9CB8Fb1U3KCit4o+KvqquFHFTSr6qeivYoCKgSoGqRisYoiKoSqGqRiuYoSKkSpGqRitYoyKsSrGqRivYoKKiSrSVUxSMVnFFBVTVUxTMV3FDBUzVcxSMVvFHBVzVcxTMV/FAhULVSxSsVjFEhU3q7hFxVIVt6pYpuI2FctV3K5ihYo7VNyp4i4VK1WsUrFaxd0q1qi4R8W9KtaqWKfiPhX3q3hAxYMq1qt4SMUGFQ+r2KjiERWbVGxWsUXFVhXbVDyqYruKx1Q8ruIJFU+qeErF0yp2qHhGxU4Vz6p4TsXzKnapeEHFiypeUvGyildU7Fbxqoo9Kl5TsVfF6yr2qXhDxZsq3lLxtor9Kg6oeEfFQRXvqnhPxfsqDqn4QMVhFUdUfKjiIxUfq/hExacqPlPxuYovVHyp4isVX6v4RsW3Kr5TQWPiexU/qPhRxU8qjqn4WcUvKn5V8ZuK31X8oeK4ij9V/KXihAo6qRtRkU1FnIp4FQkqElUkqUhWkaIiu4ocKnKqyKUit4pUFXlU5FWRT0V+FQVUnKWioIpCKgqrKKKiqIpiKoqrKKGipIpSKtJUlFZRRkVZFeVUlFdRQUVFFZVUVFZRRUVVFdVUVFdRQ0VNFbVU1FZRR0VdFfVUnK2ivopzVDRQca6KhioaqWis4jwVTVScr6KpimYqmqtooaKlilYqLlBxoYrWKtqoaKuinYr2Kjqo6KjiIhWdVFys4hIVl6q4TMXlKjqruELFlSquUtFFxdUqrlFxrYrrVHRVcb2Kbiq6q+ihoqeKXipuUNFbRR8VfVXcqOImFf1U9FcxQMVAFYNUDFYxRMVQFcNUDFcxQsVIFaNUjFYxRsVYFeNUjFcxQcVEFekqJqmYrGKKiqkqpqmYrmKGipkqZqmYrWKOirkq5qmYr2KBioUqFqlYrGKJiptV3KJiqYpbVSxTcZuK5SpuV7FCxR0q7lRxl4qVKlapWK3ibhVrVNyj4l4Va1WsU3GfivtVPKDiQRXrVTykYoOKh1VsVPGIik0qNqvYomKrim0qHlWxXcVjKh5X8YSKJ1U8peJpFTtUPKNip4pnVTyn4nkVu1S8oOJFFS+peFnFKyp2q3hVxR4Vr6nYq+J1FftUvKHiTRVvqXhbxX4VB1S8o+KgindVvKfifRWHVHyg4rCKIyo+VPGRio9VfKLiUxWfqfhcxRcqvlTxlYqvVXyj4lsV36k4quJ7FT+o+FHFTyqOqfhZxS8qflXxm4rfVfyh4riKP1X8peKECjroRVRkUxGnIl5FgopEFUkqklWkqMiuIoeKnCpyqcitIlVFHhV5VeRTkV9FARVnqSioopCKwiqKqCiqopiK4ipKqCipohQ9u1JFaRVlVJRVUU5FeRUVVFRUUUlFZRVVVFRVUU1FdRU1VNRUUUtFbRV1VNRVUU/F2SrqqzhHRQMV56poqKKRisYqzlPRRMX5KpqqaKaiuYoWKlqqaKXiAhUXqmitoo2KtiraqWivooOKjiouUtFJxcUqLlFxqYrLVFyuorOKK1RcqeIqFV1UXK3iGhXXqrhORVcV16vopqK7ih4qeqropeIGFb1V9FHRV8WNKm5S0U9FfxUDVAxUMUjFYBVDVAxVMUzFcBUjVIxUMUrFaBVjVIxVMU7FeBUTVExUka5ikorJKqaomKpimorpKmaomKlilorZKuaomKtinor5KhaoWKhikYrFKpaouFnFLSqWqqB329N75+md8PS+dnqXOr3nnN5BTu8Hp3d303u16Z3X9D5qelc0vceZ3rFM7z+mdxPTe4Ppnb70vl16Fy69p5beIUvvd6V3r9J7UemdpfQ+UXrXJ72Hk96RSe+vpHdL0nsf6Z2M9L5EepchvWeQ3gFI7+ejd+fRe+3onXP0Pjh6Vxu9R43ecUbvH6N3g9F7u+idWvS+K3oXFb0nit7hRO9Xoncf0XuJ6J1B9D4fetcOvQeH3lFD74+hd7vQe1fonSj0vhJ6lwi954PewUHvx6B3V9B7JeidD/Q+BnpXAr3HgN4xQM//p2fz03Pz6Zn29Lx5ehY8PaednqFOzzenZ4/Tc8Hpmd30PG161jU9h5qeEU3Pb6ZnK9Nzj+mZxPS8YHqWLz1nl56BS8+npWfH0sSXnrlKz0OlZ5XSc0TpGZ/0/E16NiY9t5KeKUnPe6RnMdJzEukZhvR8QXr2Hz2Xj56ZR8+zo2fN0XPg6Blt9Pw0erYZPXeMnglGz+uiZ2nRc67oGVT0fKiTz25SQc88oucR0bOC6Dk+9Iwdev4NPZuGnhtDz3Sh563Qs1DoOSX0DBF6vgc9e4Oei0HPrKDnSdCzHug5DPSMBHp+AT1bgO77p3vy6X55uped7jOne8Dp/my6d5rua6Z7jul+YLpXl+6jpXtc6f5TujeU7tukeyrpfke6F5HuE6R7+Oj+Orr3je5Lo3vG6H4uuteK7oOie5To/iG6t4fuu6F7Yuh+FbqXhO7zoHsw6P4IuneB7iuga/7peny6Vp6+f9A15nT9N12bTddN0zXNdL0xXQtM1+nSNbR0fStde0rXhdI1m3Q9JV3rSNch0jWCdP0eXVtH173RNWl0vRhdy0XXWdE1UHR9El07RNf10DU3dD0MXatC15HQNR50/QVdG0HXItDv+PS7Of1OTb8L0++w9Lsn/c5Iv+vR72j0uxX9TkS/y9DvIPS7A53np/PqdB6bzhvTeVo6L0rnIem8H51no/NadB6JztvQeRI6L0HnAeh7N33Ppe+V9D2Ouip9J3MW+9B18nsb/f5Pv7fT79v0ezL9fku/l9Lvk/R7IP3+Rr930e9L9HsO/X5Cv1fQ7wN0Pp7Of9P5Zjq/S+dT6fwlnS+k83N0PozOP9H5Hjq/4pzPKG39/f24rPX3tR3lVVRQUVFFJRWVVVRRUVVFNRXVVdRQUVNFLRW1VdRRUVdFPRVnq6iv4hwVDVScq6KhikYqGqs4T0UTFeeraKqimYrmKlqoaGn9fU2Hd7nM5++FvXe98tNXSXvd+3XO5LPn7fXNF3UoV+y3dlPcnx3MpBz1MVpKJbZ6+5Kqz77r/qxiQsblKtuftb9+Q9ptxeIT3J9VzaRc9UzK1cykXJ1MPquXSZ31MynXIJNyDTMpd14mn52fSZ3NMinXIpNyrTIp1zqTz9pmUmf7TMp1zKRcp0zKXZrJZ5dnUucVmZS7KpNyV2dS7rpMPrs+kzq7Z1KuZyblbsikXN9MPrspkzr7Z1JuYCblBmdSblgmn43IpM5RmZQbk0m5cZmU22x/1iXX7TnvKfD1Mvdnj2Xy2Y5MPtuVyWe7M/lsXyafHcjks0OZfPZ9Jtx/tT/7dn72qYe+OrjA/dnxTMrlTMz4s8L2Z+kVrszVsNrZm9yfDUnKGG9sUsblNiZljLcpk89OHtwz+CxHcsZ4z2VSrndKxhwGpWRc56GUjOs8nMln1bNn/FmD7BnjfZ9JuZtzZMzhjhwZ15kjZ8Z15srksy6ZfNYrZ8Z4JXNlXO6ZXBlzeDlXxnU2yJ1xnQ0z+Wx6Bp+l2utK9rrb0KG9hgzr2mNg/0HdhvXt3q9X14FDuvVQqxG9hgztO3BA15FDug0a1GtIQXt/u6ud+m2D5qo0HUqzAi2RZFc5fvn0lsneClnlrZPlI5YU/2/+zvxcUj7RScRV3p2LUy/ZRA7X37k8+ML8W0abf75McnbapoVr/zQr0BJHw5945rE3EPdy9t/Dh/Xt13fY6GYnu2qLUz31opMdtfPf/dRbYcTz/xYZbM/uyjvetU9wTUa1dOq0vxac/L4W57NnvGft7HOWvU5x4TvrINd/H3z+2Nub29bpn9dTnhanbbK7cHr2HdpjoBrfXQf0Gtm1f6+hQ7v17jW0gK12jAf44igH+OIoO3gk2VVGUP7UAF/kKu/NhZac1ukDyV0myf7c+ftq++8oB/9i5OB39kuzAi2n+k1LWflsTvlWsvKn8r/AVZ6hTZpT/kL3RivQEueUbe1X9qeh++99Zd6m59YNW3vP0rwHc92Wo1r2idOmfVfs2+LLj0672ynbxpU3g3eiU76tH3aTbXFd+mz8fWCOC6dsGHnwnY7DcxXvtrPUzHu6PL+o1Bddpztl2/mV/Xzu7RNTNyxemVb11WOJFy74uuuPbRIaHHx1XJFnJx//4ugSp2x7v7L7uhx/f3PqkjGj5m0f26BS/m4PLtn//ZcvvPJQ6o9H1g/ef7ZTtoOLs8SjOvphZ1DG+cMpe5HrA8ZNOqfKd5KVP5X7xbLyp8bJJa7yDO3yOOUvdW1Mc/6YtGbd+83mvVrro+PZZ3foNnVU3TlvXPHNmMJry39y4/riD+Z1yl7mV/bDYS0WDSvUv/43ya/Nq72qWIkPflq7+bOfR/dq8PVnn28t/aNT9nK/slksTlnnZCCT86nxeYUPduE6Fc8dtGxvgfcqlXm36Y4Ha9xc5Kdyjd97tPWqo7+/9KsL+0oZ9qn2ukpWPt4p38VVnuEPp7hfLcNv6pS/RlY+t1P+WtfGNCvQkuCUvU6EHTnVdl39sSNTygy9NWVepMPOydU358y+84tmdzVv8eorU2eXSn3wLqfs9T5lqzROOXrP7AnTrMNrv5r/c5UnmlbPW7JZ3hpv3v52sQFDri5y1Cnb7VQmLM2KO+W7u8p7cs90ccr3kOGfKt/TVZ6Bf8rjerk2plmBllNlb+CXPTXWejuVWSzep/pbH1n5U8fivrLySU75G2Xlk53yN8nKO+eoTl7IJyif0ynfX1Y+l1N+gKx8Kaf8QFd5hleemgMOkpWv7pQfLCtfyyk/RFa+tlN+qKx8M6f8MFn5Vk754bLyFzjlR8jKd3TKj5SV7+qUHyUr380pP1pWvrtTfoysfA+n/FhZ+Z5O+XGy8r2c8uNl5W9wyk+Qle/tlJ8oK9/HKZ8uK9/XKT9JVv4mp/xkWfl+TvkpsvL9nfJTZeUHOOWnycoPdMpPl5Uf5JSfISs/xCk/U1Z+qFN+lqz8MKf8bFn54U75ObLyI5zyc2XlRznl58nKj3bKz5eVH+uUXyArP94pv9C1Mc0KskQs5wT45/YvLX7n6hi5dHLOL8adhnJ63bIT3ievcT+tPss6/Xyp5ak/xZMLEy8S8dTn4Hn5OVo53BN8ckn1+cyrcYIPToIPTqrPZ+M01jVDY13jNdY1TWNdOjlO0VhXusa6pmqsa4LGugZqrEun9jrH0MwztK5RGuvS2Sd0aq+zf43VWFe6xrp09okxGuuaprGuORrrOlOPj86c05k7uOcakQzWDo53m4OT4qlLOu/x4xXvg5fZ/nGZ7J8YsH66KMO5gMi+KKNlr+7De7cf2NvyLPGe/7fJIMXinv16ZJKat96IJ7zbi3u2xfns616InnOdk03vgl7DevS5rFvv3r16KpJDvSW8NbXOYLt3Qurex5mMJ3oyTbMCLdmCdEp3/SmeXKSd0q/T+A02UjWf/betavuB3Xq26DZo6PB+vbK5q7ZOz9yrirtW9za/No24MrMy2a+15/8dfMpZPnXT507LJXu2p1mBlhSnV6T4fOh8lt1Tt/uzHK7P3K3pXeJ88ndypq+c3xb8p17vft583O2R3fNZkuuzHC5sb7sm+uA4+Wfz2T/JU1eiTzmnTFZ4cRmUc/+d2VfnIKPN4UFLqg+Ggx2iKxQ4013B4Zckw8sf8ZR347nrdPJxtE72+cypyxmHiRnU5b5O0L3/Lnud6tmPlss9GMk++bq3OfqQZs94cndr6+0n0ejors/Jy73NXX+KFVW/jGTWbm5+3n4i9Nh8QXR35+P1ZK+2bt9LzKAup2y8Z/837HWq9W/f9/aTFJ983dvc/WSPJ3e3tt5+ItSxWdB+4tSfYkXVLyOZtZubn7efpMjwmgbR3Z2P3/HZra37GJiYQV1O2XjP/oftdapnP1q8/SS7T77ube5+4tyomJxBvmlWoGWk37zF28+885Y0K9BSPGg/c+pPsaJq90hmOvqNN7+5l1M21ecz71etHD44OXxwUn0+m6Gxrmka6xqjsa5xGuuaeYbWla6xrqka65qgsa6BGuuarLEunf3+TNQrs+MQty5a0jXWNUtjXRM11qWzr+rkOEpjXWfq2J6vsa7BGutaYK+98zynflqSrX+PPe53E3d9Tp7ube76Uzy5SOc6frr4zRkdfjlleHkjnvJuPHedTj6O1rl8PnPqsm9rPW1O7a7LKRvv2b+yLWiqZz9avHPqXD75ure559Tl7Hpz++TrPb/A7Y/u8l6N3OW8/TGa9nLX5+Tp3uauP8WKqv9HMusffro4/HLJ8PIEaV93Po7WuX0+c+pyfg5JzKAup2y8Z/9zPf0xtysnb3/M7ZOve5u7P9aLnJ67W1tvPxHq2CpoP3HqT7Gi6peRzNrNzc/bT3LL8FoG0d2dj6N1qs9nTl3Ofc2JGdTllI337H+Bp5+kunLy9pNUn3zd29z9pJmnn7i19fYTmY6R74P2E6f+FCuqfhnJrN38/NvhlyrCixwNors7H0frPD6fOXU593AnZlCXUzbes/+lnn6Sx5VTKw9GHp983dvc/aSjp5+4tfX2E5mOJx9Pe1p9Tl7ube76U6yoxncks3bz81WHXx4ZXrMgurvzcbTO6/OZU5fzi2piBnU5ZeM9+1/v6Sd5XTl5/SSvT77ube5+crVdb26ffL3nz4P6VKpPeWc/vz5HkWYFWi7za1NG+cHeNnLqcOeWz7Wd0V9qBx0PTv0p1r/7i2Q85PPgZdTeDvf8Prmk+nzmbaP8Pjj5fXBSfT6bqLGucRrrGqixrjEa65qssa5RGutK11jXFI116ewTYzXWNVJjXTM11eXnn9HkNUNjXbM01qVzbM/XWJdOL0zXWNdUjXXpbMcFGuvS2SfSNdala2zTopOjzj4xTWNdZ6pP6Mzrf2HO9N8xLXba6xyP4zXWpZPj3DM0L53zCZ0cnWOt813R/d0yYq+TrX+PPcb31iYRT31Onu5t7vpTPLkw8SKZ6eLm5/2eXMAnl1Sfz7zfkwv44BTwwUn1+WyixrrGaaxroMa6dHJM11jXVI11zdJYl07t52us67925NW1QGNdOvvEWI11TdNYl07/mqmxLp3a6+yrOrU/U/1LZ1/V2b+maKxLZzvq7F86x5DO/jVDY12jNNalk+OZOpfTyVHnfOJMbcczdS43V2NdZ+o8J11jXf/NJ/5/jCGdPqEzL139i/7Oo6kuWmZrrEun9jrnAM6x1nvdl1M/LVGeAysd8dTn5One5q4/xfp3W+o6B+Z3DZnDr4AMLy1IO7jzcbQ+y+czpy7nGR+JGdTllI337N/ZJpXq2Y8W7zV2Z/nk697mvnbqYvs/uX3yjfa3CHd5r0buct7+KGyvuKD90ak/xYqq/0cy6x9+uvj1D6dsqs9nXv2DtmtmdeW29HtrHh8+OX3KedvZnR9D98D3CrjfbRRFv4pkpr+fLg6/gjK8PF6vcOO563TycbQu5POZU1dh+/+JGdTllI337D/E4zuFXDl5faeQT77ubW7f6e/xHb8xIe33fn76/w0np0857/gS9r+EoOPLqT/Fimo8RzLr7366+PV3p2yqz2de/YP2UxPrcvpfwUxwMvMVPxx3+YL/4USFk9OnnHfcuts1+DiKHA46bp36U6yofCKSWb/108XhV1iEF/nAeyxz47nrdPJxtC7i85lTV1H7/4kZ1OWUjffsv8pzXCziysl7XCzik697m/u4uCLb6bm7tfX2E5mOVmrQfuLUn2JF0y//6Sd+7ebnbw6/IjK83EF0d+fjaF3U5zOnrmL2/xMzqMspG+/Z/yFPPynqysl7z0tRn3zd29z95D77P8kZ5JtmBVqO+GnNKL8y2fq3dozylZ3yxWTlH3XKF5eV3+qULyErP8kpX1JW/kqnfClZ+WuTPfszy1dyypeWla/rlC8jK/+5U76srHxrp3w5WfntTvnysvKLnPIVZOVbOOUrysofc8pXkpVf4pSvLCt/1Clf1VWec47NKV9dVj7Oybeae6NPTk79jtdXce0fyWDt1OX9zMFK8dQlPS765e7OzzuvrObCc3PMqK5qzLqSfT6TtElVK2Ne7vpzZpKLN09avM9akXKmZazGukZorGuGprro78Ka6qJliMa8imisq6jGuopprCubprpoGaYxr+Ia6ypxhtZVUmNdpTTWlaaxrtIa6yqjsa6ymuqiZZ7GvMppqouW6RrzKq+xrgoa69J17KC/K2qsq5LGuiprqouWVmdoXS3sdZTnC9pEeb6gYZTnCzpEeb7g0ijPF1wY5fmCllF+32+f02f/iL32+y7PmLc7j9s5VZ9l+X//cepP8eTCxDv1/ae0B8/Lz/u7TxmfXFJ9PvP28TI+OGV8cFJ9Ppuqsa45GusapbGuyRrrStdY11iNdQ3UWNcUjXWN01jXzDO0Lp19dYLGunRp73dcPFP6arrGumZprOtMHY+zNdalcwydqdpP1FiXTp/QeazV6dE6tdep15navyZrrEtnO+rU/n/BJ+Zrqov+LqqpLlqGacyr2BlYFy1DNeZVXFNdtOjSnpaRZ2Be9HdJjXVl01QXLbr6BC0jNNVFf5fQVBctOttRZ166+uqZ7IWpmuqiRad/6WxHnXmdiXrRorOvltJUFy06jx26/IuWBRrr0jn/Gq+xrnSNdemck0/WWJfOc4/O/N45j13S9VnEXkd5Dj93xFOfk6d7m7v+FE8uTLxMz+G7+Tm6+F0vyMDLFaQd3Pk4Wpf1+cypy/lNODGDupyy8Z79n7aFTfXsR4v32t6yPvm6tzn60LW9j8WdnrtbW28/EeoY+F2XTv0pVlT9MpJZu7n5OTr4tZtTNtXns2yuvzl6+7XdDI11TdNY1xiNdY3TWNfMM7SudI11TdVY1wSNdQ3UWNd0jXXpHEPpGuuao7GuURrrmqWxLp1jW2f/0jmGdPrq/4L2UzTWpdOjHS907r90z2fiPTjcube7vLNflPerXBLl/Sqdo7xf5SJnXlTetTFir/3uJWHM0SZFPPVZlv+c0Kk/xZMLE+/UnLCiB8/LzzsnrOSTS6rPZ97rfyr54FTywUn1+WyqxrrmaKxrlMa6JmusK11jXWM11jVQY13TNdY1Q2Nd6RrrOlP76iyNdY3TWJfO/qXTc6ZprOt/QfspGuvSyXHmGVqXzrE9QWNdurSnv4toqosWnX31TJ0D6Kzrv+P2f8dtU44d/x23/ztu/3fc/v+p/ZnaV2drrEunXjo9R6f2EzXWpXMM6Txun6kefabOJ3Ry1Dn31dmOOrX/X/CJ+Zrqilj/vkYhmrrKaKxL13ly+rusprpoGaoxr1RNddEyTGNdIzXWNUJTXfR3OY11/X/Xnv4uqrGuYhrrKq6pLlp06lVBY126+iotOsfQmdrvz1SO/9+9UGdetPx37DD/2EHLcE110d86r3nQpRf9XUpjXSU01qXrWEuLzuOjLr1oOROPHbQs0FjXQHuto67xGutK11iXzvMAkzXWpfP6nJn22rnWy31tWMReJ1v/Hi+Ek2YFWqpFPPU5ebq3uetP8eTCxItkpoubn6OLw72yTy6pPp95/bCyD05lH5xUn8/SNdY1U2NdYzTWNU1jXXM01jVOY10zztC8xmqsa6DGuuZrrGuwxroWaKxLp15TNdalczzO0liXzn6v0wt1tuN4jXXp9BydfWKKxrp0aj/qDM1rusa6dPaJdI116Txu62zHWRrr0ulfOvuXzvF4pnq0zrp09q8JGuvyvmPa/f0mYq+TPeUiFuu7U7mIpz4nT/c2d/0pnlyYeJHMdPH7Dutwr+qTS6rPZ97fgP3ekVLVByfV57MZGuuaprGuMRrrGqexrplnaF3pGuuaqrGuCRrrGqixruka6xqlsS6d43GWxrrSNdalU6/JGuvS2b90jiGdvqqzT+j01TN1bOscj+ka65qjsS6d4/F/oX9N0ViXzjmA9zkI7vmy9zkI3Dm7u7yzX06fchF7nezJL2Kx5tCLIp76nDzd29z1p1j/5iyZs/vp76cL532D9LfO9+dN1VjXHI11jdJY12SNdaVrrEvnux4HaqxL13vEaNH13kha0jXWdab21Vka6xqnsS6d/Uun50zTWNf/gvZTNNalk+PMM7QunWN7gsa6dGlPf+t67y0tOvvqmToH0FnXmXrc1qm9zjmATo9O11jXmdpX/ztux+6Y9t+cnFfXf3Py2PWv/+aFsetfZ+K8kBadep2pfXW2xrp06qXTc3RqP1FjXTrHkM5jx5nq0WfqMU0nR51zX53tqFP7/wWfmK+proj172uUoslrqMa8ymisK1VjXTp/H9KpVylNddEyUmNdIzTVRX+X01iXrj5ByzCNdenSXufY1j0edY0h+rusprpo0Tke/xf6V1GNdRXTWFdxTXXRolOvChrr0uWFtOj06DO135+pHP+/H2t15kXLf3MT848dtAzXVJfO+QQtuvSiv3XNyenvEhrr0nWspUXn8VHnd5gz8dhBywKNdQ3UWNd4jXWla6xL53mmyRrr0nl9ofc5KO5rWyP2Otn693ghnDQr0JIz4qnPydO9zV1/iicXJl4kM138rpN2+FWX4eWIeMq78dx1Ovk4Wtfw+cypq6b9/8QM6nLKxnv2P5z49zrVsx8t3ncF1/DJ173N0YfeFfxu4um5u7X19hOhjiWC9hOn/hQrqn4Zyazd/MaPX7s5ZVN9PvOeAwmqt1/bzdBY1zSNdY3RWNc4jXXNPEPrStdY11SNdU3QWNdAjXVN11iXzjGUrrGuORrrGqWxrlka69I5tnX2L5156WxHnXnp9AmdfUJnO07RWJdOv/feb+eeG3nvt8ts/uiH4y7v7JfTp1zEXidb/56jMOZL0yKe+pw83dvc9adY/+YsmZ/56e+ni8O9pk8uqT6fec/d1PTBqemDk+rz2VSNdc3RWNcojXVN1lhXusa6xmqsa6DGuqZrrGuGxrrSNdZ1pvbVWRrrGqexLp39S2deOttRZ146fVVnn9DZjlM01qVT+5lnaF06fWKCxrp0aU9/F9FUFy06++qZOp/QWZdOvf6bA/w3B/hvDvDfHCCruv6bA/w3BwhTrzO1r87WWJdOvc5Un5iosS6dY+hMPXbo1P5MnZvo5KhzHq2zHXVq/7/gE/M11RWx/n0dQzR1ldFYl67z9/R3WU110TJUY16pmuqiZZjGukaegXnpbkedeo3QVJfuPqGrHenvohrrKqaxruKa6qJFp14VNNZVTlNdtJypffW/8Rg7jmdi/6Llv+PQf/3e+9lwTXXR3zqvEdHZv0pprKuExrp0Hbdp0Xms1aUXLWfieKRlgca6Bmqsa7zGutI11qXz/MRkjXXpvJ7Je39PNtdnEXvtXBeY6tpOOGlWoCU+4qnPydO9zV1/iicXJt6p6wJTPXhefs7fDvfCPrmkej6jxXufTGEfnMI+OKi6/NqLIs0KtFzu1cOpw123+/oDRtsUDtoXnPpTrH+3jaQvFPHgZaSrw72oTy6pPp95NS7qg1PUByfV57OpGuuadIbmNU1TXfR3sqa6dHMcqLGuKRrrmqmxrgka69Kp1yyNdc3TWNd0jXWN01iXTu3TNdY1VmNdOjnO11jXYI11LbDXzvHLPffRdOzOJT12C+eNmR673fwcXRx+RWV4OYO0gzsfR+tiPp85dTnnlhMzqMspG+/Zf7R9cEv17EeLd85YzCdf9zZHH7pPe5hdb26ffEt66vXTvYhPvak+5Z39kn3KpTl//DR0/72vzNv03Lpha+9ZmvdgrttyVMs+cdq074p9W3z50WlromzPK5zyxWTl8zvli8vK53PKl5KVz+uULyMr39IpX1ZWvplTvpxrY1qgov/kLruXLHLUKV/TVT5b4PJWslO+lqx8fad8bVn5c5zydVzlGfw/cMrXdW1Ns9fl3n4s6Zf7F8Q/cuDowJHHqix5+cJ5Tz3QePGr1ZukX/rR0m87OGXr+ZTNYmnklD3br2yTbXFd+mz8fWCOC6dsGHnwnY7DcxXvtrPUzHu6PL+o1BddZzhl6/uV3dfl+PubU5eMGTVv+9gGlfJ3e3DJ/u+/fOGVh1J/PLJ+8P765E3zPd50jqOGdfpxhqKB/f8E12c9XPs4ZeM9+w/I/U+5xTZekHMfcZ5c0qxAS5Ggx0xnm65zH3EePC8/7/fdeJ9cUj2f0eKd/8T74MT74PjVtUBjXQM11jVdY13jNNY1VWNdYzXWla6xLp0cJ2is60ztX6M01jVDY12zNNaVrrEunXpN1liXzv6lcwxN01iXzj6h01e9v4G4P/POAxJc2xnH5WxB5wFO/SmW/3E5zQq0nJoHJHjwMtIlh4p89t/Dh/Xt13fY6PYDu/Vs0W3Q0OH9enlnRt7ZmFsVd63ubRHrdPbuz+I827z7tfX8v4NPOcunbvrcabkcnu1pVqClotMrKvp86HxWyVO3+7OM3qDtXeJ88ndyTlLxbcF/6vXu583H3R6VPJ+luD6r7ML2tmuCD46Tfzaf/VM8dSX4lHPKZIX3vzwS/drJKZvq85mTe5TfVFj9nJY2ns/c/dzLpYrrM+4YcLbRGDjGGAMZeZB3/zifbd6jhbuuHh6c/44W/5+OFk59Ka7P/JRw6nTOVbg5pWRQzq2F5bMtm8/+CZ66EnzKeV3Vr7y7Dnc5b27J1r+5pjl/TFqz7v1m816t9dHx7LM7dJs6qu6cN674ZkzhteU/uXF98QfzEdYfyRnr4j6n4dYpIQt+8Z7967rO4Zyw8ahHFrI/t3tk8+H9brqk17AhfXuN6NV+YO+hlmfJqhtd6vn/ZT7l/Jac1r+b2msMwoEa2Bic+lOsqA4Kp4zBb3rt5iczBm+H8B4adBvDZZ7/S6aR3kNvmhVoYU8jvYfQyh5c52/v4mcwTs7caaS7PbzTSPdA9U4j3e0a74PjNTz3/l7D8zNPr+FlhPffIfrv5b8vdK7lvy90PvmH/YXOWy7B+vfI9R7unX2r2IlEOWKtvK5y3hz/O2b/vfx3zHYt/x2zffIP+5jt5yRelwjzK74b23tKhZY0548Ph7VYNKxQ//rfJL82r/aqYiU++Gnt5s9+Ht2rwdeffb619E9RukbnKN3ucirXyu5Ezpcx9zjwjmPnyJTRD+pO2XjP/u1S/inXxv6bPitvf247Sudu/fr27DasV6sBg4f3Gt6rZ8eBw3oNbTagZ6sRvQYMY381a+f5f3ufcn5Ldld9Z7nqj/OQpKWDB98eg6eu5PLu4xXI2f8i+wMayL/bG/06nZNPTk9553NanE5RyJN7mhVoCXwocupP8eQiPRQV8uB5+ckORe7u7FXFXat7W6wPRcJrL9mHohTPZ+5Dkbs1vYvfocjJmXsocreH91Dkvp/Deyhyt2shHxwn/2w++xf21FXIp5z3UJQRXpxPOe9UIuLZ7j6XdZYPtvdcVm+XO/xZMGMdzrIy1sGdjzfPEO/luSKom8TqXh6em7h7ihuls6dWZx/3vu6lsyszK4P9/Fov3qecd3EUi/fknO46CA/2HPTdvLJ78vHr7e5t3kmSu7yznx9OUpQ4ST44Tk/O4SrX3fNZzkw++7/23gXMrqM6E63d56jVp9Xdp/XyE9unLb8lP7ARlt9qW29LtrEjY14WejS2QJaMJIONbVCwDeZlM4GZm4QvCTfvZEKAD5LJZEgykGHIAwYuuTAhcS6ZCXkQEmaYkAchkOtt7dX9999/1am9d53utt31ff2d3btWrbVq1apVVatW1R4GnIOUNwrl9lLeUsjbSXnLAOdiylsewLlC4Mzb7ozBKXz531kApzSddyHOBH6wLP6/iGDzNFH8Ngn2faBXj5FeYS9mvSp7ihHLn+T8dBbXpLNY0OHRKk+sOyeLuvJJwTxxO6uofcs7XdTL8joBnGMCZ94+JwxOh+P2z5NZ/LPhfZlFSazFN/wt4qWqxT+b6HH9+ATIudXo7cyoPNJDnMaPmnmhbPM/m930e3BZ2SbBf7Dob22Ce4ZRonGe4Bff4QmQD7Sm846yzTy/hpffcf/Culv7GB20N3uBn59pTa8L2qmGm2nXbEHMtqoDu4I/T7YKy3PbqX5Stf5niTqOuJmy6Ydnn36fHaDTH6hPr9qzn+igncX2/Di157mQxzY6f7bTNU2Cb0F7/gdqT9UXlZx5XCor50FBp9dy5vHlvIR0EBc6d/K/CwgXy9nayeSMK8oLqBx+mZWdoA0qg/CIQ+E3HN108Hdaum4+HTRaTYL/5vBUud+vqIPnUR6OFTguIh8oB4Tnm+qMz34PvK9eX4RVp018eCxBWWFbsP01+C8BzsaJmk+sF44H7IxU+nCBqJeS6WrXnTbKeYeHdr8L62KT4J8SMuVxAcurfjRCvJzfhXfu31je4IZEubp2RPHcrU/+eck+uap4Zt3979An/4r6ZEhHkGdeR5SV82JBp9dy5jXC6oR0EBePC+qrgyhnayeT8xrIu5DK4WlQ/ipzg8ogPOJQ+GPHhe+0dN18Omi0mgT/CdDBfwmsi0M6uJryUKY8LnSzh6sI3vjud+HxtknwjWLyocYF1V/R1vK4MDk2AU4eF9QX2EPjQuhL3N1keiHhOlPgQjnzuKBkivU/k+pv8MNCpmpcsPLKH7GP8tAfcS7l4Wl5nrPiSXj2yKM/gn0jHchjezcGeagj7I9YEqjPEOBgfx/67fjmhVHIO4XyMNzjVMpDv93plLcc8jqUtwLyxqCu5rfjzdEzi/c19+1k6ErIL5p5fp2LGw8wtCojOicmpIO4thGdkxLS4Vs6kc4pgk7NmyOi91kNf8vN7LtV/GTqJhB1g0y5nRG+0wSlgljxHUqa83q5z2r4Toc8JQn2nGOdTveUQ1k48a5PwJ9KuHx3xTQ89FSLYjnWmIze+/YjDUeT4K+C0aqfRmtFC+XBI6bx7ouYYB4M/jrgwSImGGfTU69TPDhvHZySx/WDGqcTOFW9Tqd6MQ98p4/BbxIzgQbBMD/qncnfibL8v9KZlQTf6VIfbieD3x5op5MFD9gnd3ThgWFO9/Bwi+BBWLcbDt37QGHdHCUODs/of5Y879ueLPD4kkkj10LTSBVlcIood7LAwzzlNbc5SlHzDRMHJo5OeOrOljvz0OxzOvF81LmZY2jFMS16DDX8Lac1r+OiUsZWzuhx/TjI81TBS1vkYfuyHoXo5G1qc9KiTW87euiwr0ljB9dMsMXlXRdc3NRj8L6E6EsHN2WUhy4XnkbiEhCNGieuN9YnNy6tE6fwMhzzijLlZRaqJy+lsKtcQHmoSqspDw3+GsrrQJ4tgUfczPbCZRbm5akh3vEUG8uPBegsq0lnmaCjtsZZN3ELsBdmyPC3XK2+MGmGlHtCyYW3MbGscjNwIJrp87dggvQgLd1bQJflWvEUzotj5Wr4W8RLVbkuIXpcP5brkOClTXl54o9KDAk6Q4KOwvVYQlzvTIjr0YS4HkyI61BCXCnrmLIdU9bxTQlxpazjIwlxvS0hrrcmxPVQQlzvSIjrWEJcKXUiZX9M2YdS6kRKeb05Ia7HE+JKKfuHE+JKKfu3J8SVUl4pbeH9CXGllNd8tYUp5ZXS5jwf5kwpdSLluJ1K9vnzQCJceTqWEFdK2b8lIa6Uep+yjintRMo5QEp5PZEQ15PFr/mY0A8xRnTUmn9JgA6WXxKBS/kPQnUcE/BL3NRHLSZd93vuu2v7obscJd5p2OphcS3B7fCwlgm8Gf3x+7X0riFgETceRx8q3vfghMqlGeFzTruV5uqEitVdRQ+3RR5/Azp0MgXptEXeYwlxPZIQ19sS4nprQlwPJcT1joS4jiXElVInHk2I61BCXCl1IqW83pwQV0p5PZwQV0p5vTMhrpS6+mBCXM+Hdnx7Qlwp5ZVyHLo/Ia6U8pqv41BKeaW09yn1K6XNSdkfU+pEyjlTKtnnzwOJcOXpWEJcKWX/loS4Uup9yjqmtBPzdf71REJcTxa/6mTqGNEpezoay58dgUuth0N1HBPwCd0kxuILCW6Hh7VM4M3oj9+/kN51c5NwVM7uwpdTM8JOHiAxXCNEM3/GaDPMcy7OU4flhwJ0hmvSGY6k065Jpy3oDIlymefX6PC7kGe/TXTGEtJBXHuLX5MbusJYD9SFRGcF6GD5szy47IhCng4ADIe1W39tCpx52gP5CP/Gog8tfvrvsxDFmcOcCeX3Aj8PLAnzimWRV76U5MfhoOhDBU4lZ2t3pQdnUd6YoKtwct8q23bDgocQLmyvUYK3tuj3wBs+bru3QdvxgVQr79Ofszw8oP7gkQSf/ryzgv68m/SHeWX9GSXaBn8M9OdJ0h+UcUh/RikP9cdkpGwmR+qWtZnLBH+KTujCL9ajshd+jQo6sx2tvozy8BD4csrDaPUVlIeHjXkMWgN5fEgWDz7zIVk8kD9KeRdDHvYlTg36H2Wb95nPl4icx7YPHVDmg/V4aJcPey4nXvkd6wyWX+7BhcfP0IbshXyE/8mi8nk//uUl0+uFlwGaTGoenrksI3zO6W0wPjyzohq94OEZrB9vg40JXpSdOg2eMQ/pjAk6ar5zLCGuxxPielNCXI8lxPWuhLgeSojr7fOUrwcT4jqUENcTCXG9PiGuJxPiSimvRxPiStkf35EQV0q9T2kLU7bjwwlxpWzHlPYrpbzelhDX/QlxpZRXyj50LCGulPJ6a0JcC3Z17uxqKtnnzwOJcOXpWEJcKWX/loS4Uup9yjqmtBNvTohrvs5XDyfE9WTxa74HXKOz70Gth08J0MHyp3jK5c/ocwjtD9Q8/d7ICJ/xg+8Q/1ydfj9b8NIWeShDzEM6oS1PxBVzoYfyfYR0Q9Ux4ZansXgpwd3hYa1P4M3oj99fSu98W56G27oRup542wnFGBKt2nZaEaAzWpPOaCSd4Zp0hiPpLKtJZ1kknZNq0jlJ0LGurL6bkrtN1w1pmrilgu5a3pIz+CPgir1qaHodcVtiCdUfD4Lw3Yv4/Rg2vbj1XsIURl88YvhbbqZOVjG9S4ke1w/NUvwdgtwDOCCB4RHWibwGveNN+CVUrsodgssgT0mC7xDEOi3zlENZOPGuT8AvJVxLRTnjvREojziwHGtMRu99dwgajibB7ygaI9/84TsEFS2UBwffGO++e+GYB4N/CfDAd9MthTKqXtybl9H/qFsTHvqvASuzc0jTd4I+1w+tmu9+vqXEg8G/DGTA9w0uF+Wd5x2PDMspb3kAtkV1Ud/PQ13kuwlXdKk7t7/BvzrQ/sOCh9CXP5kHhml5eNgneKh3NyFbOW4lbolhgceXTBq5xpr2snS4dzAd+19pQN27CYc8NPucTkNO85anAVdrrIwemw1/y2nN67iolLH1NHpcP14WLRW8tEWer5d2o1PzbkLfoK2MBZd3VDYT7/KEB08Xlhrd6TwflhqMSy0h8vSK4pcN+2Ng2PmTBiuAD4XzduJBeQFURJPBjwn4U0QdTZbopRiLoI2y5IHwzJK8Ku8KeqJOIV6Rv7NL8nrHLPO6QvBaM2qndGQZR4FhZBlHgWFk2QmUh5FlHAWGkWVnUR5Glo1RHkaW8RL/YshbSnmXQF4HnjnxWIByz/vltjOm8DIcPvtsCvbZHcQjTp7RhpiLYgBwI52Oi0qTeqAWxYYbpxsldGwv8mRJTV3sXYt4KUlvcurSIHpcP566NAUvbcrL0xGA47yGeNcXwHUoIa63JcR1f0Jcb0+I6x0JcR1LiCulvN6aEFdK/Xo0Ia7HEuJKqRMPJcJl5VPx9XhCXCl14k0JcaXUiUcS4kppV1P27VS6mqf5aldT6sSjCXGl7EMpdSKlvN6cEFdKeT2YENexecrXwrg9d/JKOV9NaaNTzgHemRBXSvs1X3XiWEJcKftjyjqmXMOkrON7EuJasKvPDfuVsh0fSIgrpbyOJcSVUlfn67zw4YS4UvbHlGNtynacr/PVe+cpXynt6lsS4jqWENd8tdEp+Uop+/lqJ1LOyZ8P69qU4/a75ilfKde1KdsxZX9MuYZJ6fdNiSulTnAfyor/EWYPPO+DfIS3W4Nq7hXv471Yw4G4F1XEnRE+56bz6Qj/kKBnfLU8eR0XTu/46G9/YPvf/u7XMypvvPA7jhnpF/BqT9tktRjKl5DVniGg4Yi25TUhbxHloVyMh/x3bWc6f/0V+YuRH+JvC/idAFemLZa66bqA+m6xOnhzEN9EFboQU11KqU6aGbzF5vR74A1fk+DfVvRXDNQeIZj8edhDD/nDd6HYvvM8uHw3lJ3h4f3dwDvHwp0v+FNhpAZ/gYDHmCbjR8nmAqdpY32wPQ9QfQz+h0R9VP8znRoAPJZXou8M53TWd6bosNyw/3STUZ5YpqsFPMrKZNImeJSv5eHxqPMpbwzyOHbvdMEDxudxfBXqHd6c9+6IGxTnU7/+6ch+faqHHvIX6tdYvky/ztPrPLz/Ysl+fargbz71649E9mvTqYV+3b1fnyV4iO3XVlbdtnoh5BlejONeVTw3Cf63Ajp7kZvJK8qc5XuxgMeYVr61EmNhL6Y8LMc3F14MeauJh0uEHJAvjk83+M+AHHZ2jj8rXTe+aur6uNL1SwCAdR1vxW4IeG6LSwX8CwHGZNImeG4X/B9xoUw55t1k1C/gEV+T4L8obL/xh7bvEuJ9dUneTxK8q9s0sU99h87DoN04i2iuDtBU9tnixfs98IavSfBPCXmxbcR+gHJaRDgN/qsBe2B0sV5ou1gHlezXiHopmV5Ieci76YLqnwZXs39er/on1p/7Z6iueWLZKNuKumvt33Yz7eEFlId9Yw3RUWNkrP6jDv15S+P1jTcvKJ5Zv74V0C/Vb9RHG0L6iHrC4w3q1xrKw3JnUx7KlOeKatxFeF4DGvx3IsebRPq8TOkz6izrc0g/81R27DeZtN3M8YDtodJZbGseb0xG/U63geFrEnxz5PivGm9w3nYh8X5eSd6r9LffofEGv6jB4815AZpcFu2Fb7wxfLweGBHyyogG9gOUE483Br8UcMasmULjTbc1k/GjZHoB5SHvpguqfxpczf65fK7XPjzeoD3kdRH2jfOJjvITxOo/6tDHabzhdRPiQr0I6SP2G2sn1sezAvoY6md5Ypkr/UW9Mn6UPvKaB3kP6WOitfjtSh+x/qyPobrmqap/o+1m6mpIH3l8TrXe/plCH83vj2exS8i19HnVjPJQztsoD2WE7cOpQf9jffJ2b5X4+gDeN8BfH8C7Cc6nPPSfXEB56HNfTXl4pn8N5eH1DBdSHl/zkSdry4o3+EdfaWH4W8RLSXqT50K7nb21vlbuuinf7QQZYcV3qKGc16B3DHcb/V/luim8AkhJgq+bwjqt9JRDWTjxrk/AryBcvlsfGh56qkXV9UGGQ5XDUQ3LxPSAlYS/46JS9F2Xhj9VD+jW7qarVvcTBC9tkcd6re6nPEHQUbhiLojx9doaF8Rk9P8KDxt9orwL4MIyoSph14m5lUvde9Qk+DvFwiNUPk9D4h2rfUU1jDb8hr/lZqpEFbVXn+XB+rHarxC8tF3YRHEbhugkVNU83eZhQ40orgsu7slKVTE2YoeHdr+AV6pq8AcCPoU+UT7H+d2B6bTXA5zRvtz5eR0nXhnmcuLV4A8Dr3bZWhvoOuJniMpbfp6sS11PvHdcVIruUoa/RbxU7VLXEz2uX7W51OXwzFJBrPgupMXdes4W+r/MXMpabgO977iotNG0YqPItLxNgPtyytsMedianNSqxXjONfibJ0zhZTjmB9tjE+XdAHmbgTa36/WCjvHfJ+BvIFzXi3Im+270GqLc5YQjo/foCVkvaDcJ/p1gHb53gl8O653zysH+P1nwyfK2/DzV1Mk7Yq2J4W+5mW1fxZpsIHpcv2rWBDUFqbyUsBoMwmJ6KXDmPHCq9U4R5TiZxJrE808VWpRr3/uL5xE3U3v7iR/kIWSX26K8wSk6i2vSWSzomCavg3J7KO8KN7OulncllNtLeVdB3k7Ku1rUy/KuCeC8NoDzOpGXt9157elwaI0yz2+eGuIdy/R6wau1HVoA9jmq3rYhQAfLG9yQKFe3PopnNXeyuj7zhcuRqTI4mqLVRj222LEmwf8/J0yV+yj1t41Q3nhUcua+WFbO/YJOr+XMfWpTQjqIay/A539bCBfL2drJ5IyznS1UbivkIRzOCLbA+62CtsJvOLrp4KdGdN18Omi0mgT/q6CDn66og5soD2eQPB4aHygHhOdYUeOz3wPvq9dnA2u760V5xfsQ8bIpwHueWBexPM9ce6HzSLOb/nyJ9Gcz5Cn9ObN4bhL8T4D+/CHpD87QelH/UL/GmRx7llW/U/aDy2EfHYngYYvguS3KG9yQKFdXNxTP3XTjL0g3tkKe0o1VxXOT4B8H3fg66QbaT+NRyZnngGXlvFjQ6bWceX63LSEdxMXj23bCxXK2djI53wh526kc+qQQDse37fB+h6Ct8MeOb/88ouvm00Gj1ST4e0AHvxdY04R0cBvloUzR9nL7hNogI777PfDbqF6T9Szm+Cq+R/XXbYCTbbnBLwacHE9hdLFearUc0sUbRb2UTLe77rRRzjs8tPudrr9PV0YCMrXyizz1YZka/NKATJWMQjJVfWy7qNeIqDPL6AaBC+UcI1Os/w1Uf4M/SchUzVtuIN5x7sBzSDUPQ3iOL1J9TM1NuI+dHuA95JVE38I+ykPfwkbKuxLyeC12FeRtpjz0LYxT3jWQx+PftZC3lfKugzzUffMtNKmuq4v3NfcWZnw4C3Ep+WaeX+fixtN1AJMRnV74TRSdGxLSQVw8puGajXe8y/oNsHxobXhFTTpXCDqMy2xynnBOZP2pSfDXQL++ozMd50bB3xXwbkegrtyfEZe1mfUPtH292Hsz/C3ipSS9LGRzsX68nb1Z8NIWeb42RTpqO7ssXwm/MmosnkpwOzysZQJvRn/8/lR61xCwiHu2ut5c0hmsSWdQ0Om1q3OQ6IxDOVzuvLQ9VQZV2Lfc4aMqBv8KWO68vMCplju+boe6hlsdrNtGzxfGcKWHv11gevm7dVeKOp8R4Hkj0GC6edrj4WEfTVUqmmI5VWFXKE7p1lEeTj2wbTDPuSlZ4DvWuXFBh3H5hkmTK0/pXldymETd3hGo60bKw6GJ5aDoKPOu5BCis6QmnSWCTmjYr2pLFM+8lMgT2pL7yZZsgjw1pbm1+G0S/FawJQ8GbAnyyP8ru+wbJ322ZIOHv2MBW6KmhrcGeMYlINPN0x4PD4+RLeGtoI6LS8qW8NYE2r9h4r/sWIjlZ2ssHCY6vd72U+5+1FvMMzr8LmRfeBnu64/va2uaqj/yuIbwS6E//jvqjym26nx9wrm47a6Ngo7PBuUpNAYZ/I8HxqBuU//QUs3HX9PpPrUR6uzD5cQ7g8fxj90Xmwl2UwCW+UbdPqt4NlvEW8odF5W2mj5vFZm8pYE8WR66EV8KcJwa9D/ynLf3KzpTeBmO+UE5bPPgVH1+gmCtzn0CL28XYT9mee308MBtnKdXFb/c33+jPYX/YzTO4Jq0RNtuU1tSlrj9WHacVPtNbiU8/ffOzhRehmOaKOcbKQ/tKodqjUM5bI/PzJG8eM2PaS7ktY/yusnL8qy+faKcPTeJ3t+Avv4e4bsCaLH+89WIuD3D5fPEczGD/28wVnypc/x5xM0cX/kEBeJW82Me55Z5+FL1RDu5hfg22K+TrvJ2a8dFpXFr4+3EE+LeURF3Rvic025HPqKL9IyvlshrRvBy8B93X7a7/02/m1F544XfsavwJgG/TMCbrG6G8iVkdY066m20LQ91ewflLYI840FdZ3pTRf5i5If42wL+NQBXpi3ags54QlybKuKya1bVdirb3DzxOKTG/rwdB4sz0MoOLSVey9ohLF/GDvFc12AXF7zWnD++SM0D2Q5tr4g71g4Z/iHnb9eWyIuxQ3f/y/i9n7r1D07L3Ex72xDvYrbxlwr4mv38EmWH2NagHdpOeWiHjAdlhyqOKZfEyA/xtwU826HYtmgLOuMJcW2qiMvskJqDKzvE87utoj5oh2b4FEanYIZGp+OKmXfniY8lbArkbRE4c9qd0an3aK/6i19cR/IaTYUV2f/4DnUdy7DvweBPBtmcQPzh+h/rifypuTr6JU8d9cNtDcDFzu/XUZ4Km45tFx4rVtFYwftHHReXlN/TcOX+bjukX2zZbp44etvduw9P7LttYu/hiaO4olKjIHsy8YigLxknvFt7Hf0/Tv+zN3OLwNONpvKu4yUqTFftvLBVGhU8zyWd5TXpLBd0lFXKPL9Gh9+FPL18PQd65dDTe+noVBnUCfT0Ytk7il/2ej6xcqrc2sAMMiRnvkuirJxXLNDpKZ2VNemsFHR63Q9WUn3Q6rPcyu5IYfkNs0ynW7++ZVTTjO3XBj8O/fq2iH4dqmMoKG1c1JFtkg/XHYQrdvdoPIJOaPdoPJJOTH1CdOayPoZL7TpiG9we4Gsz4drSBdfLCJfa0VA6yDyX9U5g+SsCdDbXpLM5ks5s1WdjTTobI+msqElnhaCjVhh1xw/Fczd7+wDZW3W4FctyBIvBXwz29iGyt+jdeq7LeWtCOohrL9Hxtefj1J7qME2oPQ3+RGjPd0W0p5LNlkB9MELI19bqsGEmcIWiSVgOCK/GlB56VJfG6AHibxEvJelNBpSHDgzmCQO3TZ8LL8D4xJEXXrpuw9MugAfuPerzro4iUeCf4R39z+Vy3poEc4WgkSfWn60Ex+1u7xl/DE/dYLvlK1t3o6eezsXZOix/hQeXLwLI2oc9TT9WMBwbAaQOsYXmA9zvGK4h6jDodH99rdP8YZ13BOps8D8dqPPmLnXm+buaO7JtYriGqMOA09FqHKWIeXxdZ1l9wvKzNXaeQHR8Y9pHaExTUX0Y9WUf7WEPfBPGtI/RmKbmgr2uvy+aF+uFHyDyrW2aAmeeOHrD4D+RZvdRepR5B2Wd4D+v329Sm6q6h9rU4P9hxVS5T0a0aah/qCj0kC3YEIBXa8VxAR+aN1r74I5yfPtkfxqjo4i/RbyU1IfJ+YY6RI71qzrfMLxfhQoh/93mG1wuNN9gWF/f4znAFnrfbb6hePLB1plvbPXU07m48QHLG5zp5zjx33FRqWO8bAA+jBfU+XHiHSOEuS8qeDXHQPxsh61802nZ7IV8hP8SzCX+sHP8WbXFiR7+nItrCyw/W2PViURnPCEdxGWyVT5R/JAD5hkdn01WH8sI+b231qSzVdCJ0fU8hS44wDnRX5YcP3nn3eB/FsbPv6bxU508Lbs3xvXHto7Zewn169h+quYDHcJV9lQalvfN45qC9zz5Tku2iglVzdOSt6joFet/Ned8t8T0ccQ/JOgZXy2RFxMV9vXW1b/3jY994PMZlTde+F2M76gj4OvNv9wOFRWGESt5Qh3ZQnkYFWY8qKiwivO1HTHyQ/xtAT8BcGXaQuHaURGXRXKpNfZc2SSf78XsE88d2kXfjz0BrE55hk6Msk3jOrLNyVPH6fSvlAyfyX+xoMWRsAZ7AtT7jzvTefXtETY99QmdDsucXzZMQ50Ou8xN521zBG/KH4Q4xj185jjUHiLrbdkTlRsEP4rO6TXpnC7ohMYk/jU6/C60H3k60fHNm85bOlUG7Ylvf+Se4pf3u94P86bVBU51Ap/3XDl6D21CntgGWvl+p/2abE8M/hLoV3xiW/mH7wGcPj2LPSVk8GtpPtMLPxPXqelm2tY83ex0nXz+YpbBFgG/NwCv9ptQr9hmhy4itLp9ZvkUD1eTHner/y0enL+1bArndSVxvsSD85alUzivD/QN/Mgly0fJjPs/lucIXHVx2QDxWVIPoy+EMvwtN7POVfxpyj+g5KIut+P9WcyLidMIfcjzyki+El4IZSyeSHA7PKxlAm9Gf/z+RHqnXHKIO1fzFxfDgak53hO4hvBfDTga4h2rOZY3OEWnWZNOU9AJ4VojcBn8NQK+KeATqoax+AKC2xtgjfF2U40X0DufalhqEM38me9s4aZhHkcEjnWBOjXEu9BVjNcE6FxYk86Fgg7PEt5AswSkX8Javp2v2jQciHu8Iu5Yy2/41RkR40t9oivG63HBbz78k1etuvvmjMobL/yOu6RaRapP19f0Pj2qvB54b1OelGdMeT2MB+X12FiRvxj5IX7lpWavR2xbKFw7KuIyrwdeLRvqy7NlM3pBJ4RLeUIM3mTT7/ROEdskgz8Gqyf+sqaStxPv+txMe3RT8TsicPV5eFe0nZspNyxvcD20iYvK2sSWm1nnKrNh1T+UXPiOOCzLEcB54rsxyu4IzHdcqJt8ZbXlq1+jw++YDvZVboPxhHRQX2P0vCodxLWX6LDnUP3G0lEROzXH4M3K22ZJ7ciwXqizzeo+KpY/RiVupDyMmn0RPHNq0P8oh9we/3+dKbwMZ0lF5PG4VPaUiYpk6nYf3YeWapq+++h4l9bgfw68NB9Z6q8j70Qqzx3W0ee5+5VZ8Nw9l3S8ih6vHJvCy3CWVBvz3EvtRKhIfauHstd8bTja2M2Uh+M3R/ijLdsHcGxP1S4Ce0SvEbyredO6CDqhedM6Qafm3Kj0x3/Ze6nkEqtjxnOuY9sjdIzHTuaNZRQz7zYefLsWbOcM/suBXQuDQQ/8AcDJeoA0HOHIE9s+g/9jsn0V15nS9vGYiDI0uJp0o73Uk1EnxEtJepPz8m671Ojyi//IL/ZAZXEZHmGdyGvQuysJbjv9X+WT4RVvJt7CoxamsqMWtiYnZTVw777MJ8OxPfg2FrQi24A2t+tGQcf4V7ci8nkSdSOvyb4bPeUVYKuvyuX/v1iUSbniYTmmwNWDmLDlsRbH8LdcrX4yaXFUfJCKS1B9x3c2EW1CRnlIR8WzK1xXJ8KVp50LuBZwLeBawDUHuGJWhjhO8dlItIPXEn9lN6qxfGhD/PSadE4XdIZEuapjcjvAs1rds9zKxuVh+dgvKly4TNNUHqw82YqMPUo/DB6sS5ZN51mt5vOkYoawHQwHlx0AHiyvxPxiJJ8Dr+9M0WG54g5lzDzEYus45hnrrnQhto2uojbirxBxWY5pNPgfhDa6tnhWbRATN6RiKLkf9gt4xNck+BsKnnBXLuYLT1be53V9gYfeZqBnH5Ttod4tV3qHdob1Tnm6lD0L2QvsexwrhraHd2JVrF4ojtXK9zvdBoavSfC3ijZnvfOdeeJ2Nfidke1qsuxFu6KsuF3VLrc6DxjSA7Ujr8aBqwjXVQKXiluN7cuGj/vWqwPtquwX8sntavB7I9sVz68aHsur264oK25XNf9Q8ZIhPcDxwWSiPPrXUd445LGnVNlv1IOYNsf28dnvQ6LNee7IdiFmfEHPot0fWngWbzt66PBE4Vp0lEKuwPz/jR42lonyjsrmf5j4QxjKfIYc6kbbF8jC5tPg3yBEHjK/eYoJocbm7oVz2vC33EyVreIq6mbW2FUU6maYNw9UNU/bPWxkorwjXJl4lycV1hyaBSrrplSMRy3fjMDwcWzW2wIjR7c9xphbOtSMSNWfb3TEcuMeOjiioRrxiGbw74kc0XDf0vBYXt0RDWXEI5ryLIRO3qpTMcpb2iZ4lL0a0fg0UOzslGdjWFatrEL6ouobko/SL3UvvdrLD62CMb4iTylXwVgf1oVQ2+bJd5sLwmN782oE4y7Y84R9ic8FdLsBNqQL6O24kFbE2FbrImiGPDPqxCDHAP0S2ALf7WyxK36D/7CwL6E6hGarIS+I0nUcPzgmaLZ2UDkmSN06o+J+OCYIx1/e4/d9M4kTj9Eoh9i4N9YHw1tG51GXPkSxZjjtO49oqikWvmOdx/IGp+g0a9JpCjohXOcJXAav5jg9PtZkLK4iuL0B1hhvRn/8fhW9awhYTKqZ1nn4di6umZTTgHFh6M8dAMOX+eBwcD7hKrsJgOV5Smp8fa0wowOCfgnz9b5QWLbhrhg+/76M8DmnV16+kGrkS4Xyxxxh+vWff8nwH3xq3eQRnNhQPYMfF/DnC/iaoaXvVdMqHA7yhGblWsqLPcI0XpG/GPkhfhXSzkeYyoZNYt4dFXHZESZ0XPGGXq9tDC+5vi6mWbPNiw373wxM+bo5E3kDFnkPbZpyvcray3WRdFbXpLNa0On15uxqouPbkPsuLRuvgTw1HXtd8cubHx+HCx++T8sP5SrJnB5/cIzME/dX3pxhmA0e/hoFfypcl+uM9VQ8Xws0HOHI0x7iYdLlUfBQ06bKcF20+WzDeFyuSDfaI2r4Z/sYXblwXd4mRKkgVnyXuem1x7xujk/+WHiVcN2Ks4TSHyznxSYuGrE1OamFIc4qyoTrYnvwR3dxP2E70OZ2HRd0jP8+Ab+BcI2Lcib7bvTULIcvDFDl8v/XijIpD0KGgvqr4lKhvzWdJNGfoeBrGiv2k0mLoxxKoU9wqCsjVQgNrxarXkGYP29NiGtjIlx52rmAawHXAq55hyvmMCWOB/y5ORU2kVEe8hdaUWL5kEO1XZNOW9AZEuWqjn3tAM8xn3Yoe0GC+iRHt2skb1+uafqukeQVnsH/DKzwXrZ8Os9qhZcntZrGdjAcXHYAeLC8EuP4sNoQRLnyhqDahED4A8VvKARI6UJsG+2jNgqFCyI/HEPzBLTRXcWzCgjgKyC7xYIcIHirY2xYrMEfgFV4KCz2Gg89n1fiVg+9e4HeLITFLlV6h3YmJsxO2bOQvVAxPupCFQ6zQxnzvLRsyKwKswuFzBr8Q0IfeCxi3fDxp+SWOMxu3MPGqCjvqGxG70Y9uAxP/g6dHDFhdup0ApuIR4TIQ02Wp4Uwu2ddmN02DxuZKO8IVybe5UmF2akrYWJErERVNUD7fUKlQxZWzbBCMwG15xD6eKCa9VzjoaMCx/PEI5rB/2jkiJZoJiVHNJQRj2ixnhOD7xaKw11NhaSFVjax3ZDDTJSeqplat/CVmIMt6noVtXrgi/CxXGhWjR9rzFPKWXWdw2ZlQxA5rBI9YHwFJg5HfLG9mkXF6gKunnhl1e0wjG/vGW0A4uBQOIP/NWEDDOe4C9ctxt6NAwxf4aSu3lHXIIXCPg2upj4OKX3E+ses8hC+bF8NHUILHZYcJzrd9CYUAod7l9+lfVekM0Y0lZ4oWbRFeYNTdJo16agrkEK4xgSuUHv3OATOWDyV4PYGWGO8Gf3x+1PpXUPAYlLNdLWHb+fimkmps6KzriaddZF0zq5J52xBZ0aIS5rt+0diNswqfsfrkYzwOadXU4ZfRRMbXy2RFxM69832zk8f+PbP/mJG5Y0XfhcTbX+2gDdZ4eZ0CVkdU0MTbjTnCc3RNsrD4cV4UKFzN1bkL0Z+iL8t4Dl0LrYtFK4dFXFZ6Jz6RtZs2QwOnfs7mEJx6FyveZntYA6+sRHvjSt7YyMGc5S5sRFliryxjFQIGOud8RB7Y6PB962Y4p1DwKxM7I2N+I04ppunPR4eFhc81AyMkCFgvDz03RPHvCqZh26yNriadSitxxw6iXafg2RQHzhM/CbIu5LyboY8viPwFsjjjZ2XQN445d0KeahHnFR/w1M1nyd3jxO4VIAUB0+h3TEZKpfVufCMecYrv2OdwfKh8NoNNelsEHSU6w7nWz08vhDt0eavrFT8msykRzt0t8YzjBW/vCGKZdXGkS9kF+mcK+iU5asHH1haTXC+j25kAm9Gf/x+Nb3zLcPsf6X64x6+nYtTfSw/212sW2T5pSs0Td/VRvzZVYM/CJ+vXAvPoQP/17vpeUjnBuJfxYHUPB0VbQIMf4t4qWoCYveTy0VK8yWjKBXEiu9CPYH3rnhb8QoqVyZS2ugqn5q6KCa0V8PlUBZOvOsT8KEB6UrivREojziwHGtMRu+xt60XtDliYgtMkvvJt6xooTy6RQUwDPNg8NsDE3U816jqxb2ZB3jUrQkP/d1gZW7xWDEn6HP9cITp9/DruzrkB0AGoc868VlafocywLK+/xH2cqoL/q90cT3BW8SJr+7c/gb/ikD7Xyl4ML7ytKMLDwxzuYeHXYIHYTVvOHTvA54dep5LsJXjVuKWuFLg8SWTRq6xpr0sHe4dTMf+VxqQ17xAOzU1OzBx1BedwCPCOg/NPqfTkNO85WmuAk6urEYvGHCC9asacOLrpd3o1Aw48Q3aylhweUdlM/EuT7k6P1HsEj7Xps+Myxfa+IrilwepN4KBaniCXvo8OG8nHtQKTXmDDF5toIduOvZ9U9ZHG2Xp+8p8LK/dAkz4ez3I35aSvN4xy7xeLXit6b0o7ZVjDxp65diDhm3JHjv0yo1THnrl2Jsd65XjZSt65fhowG2Qdx08c1IeO5N73i+3nTGFl+Hw2WdTYoMA0IbwslvpVOiW1K2AqyFwvLL4bRL8DwfskdopCvWDbvdt8X126P65kfKwHN5SbbgdwdUMSpF3kWF9OCgFd2MaAp5ls0PAY5/jICls362Uh7aFvcTq/sCc9/OWTodL8cUXdSv/TuJnc0I6iGsP0cGxbW/xm9f7lz39CvsJlmV3lsH/HiwuP0ouLBXsx8dwPg797K1j/vIcnKUCl0Lf5QvVE+X3Sk89fx343Nk5/tzD4MR22fsglY0J3QcZ6qcok7ab2Sd5zqPmTyjTbjue3GaGj3cbPy2cCOooGX9haLwk71WCJ/+yOACh7oyse7RZfT2JcfV5+OfAYbxeQNFmeNMJdFAp+9wk+C9CWz02pnE6wYNqI6PX74G/kXgw+C8LfQnZAdT/bYTT4L8COPlioG44L/XgfCow11D9NHS3Z7fxlOcTKEd2IiPvPC5uB/rcpu8l+ogHdY3pugC/6qhiiF8ebyzv72C8+kuKXkA7VcJWN0JtdYHgN7atNgbqx7isXNPN1MdQH0F5fHOFxrmoJM5viTFdzVX2Af6/i5jno61mu6zWuTjPUXMDPtZpOL4j+qMa6w1XvbE++9Oyx3u7ySbVQQTnZh5EUEe2U4+lvzk6HW/oPtz8+QziIzTHy58vKp7ZDg+sPP6r7LCSYUjm3e7b5ugmbI9tlKd0drb1cTbvn2Z9VOOH0seY+6dj9RHvn/4Ize3UXdnKRjM/3ebcHJVn/PV74NnmG/xpoMc877lJ8BBaJ9ws4G8SPI8QD1iWaWO/RJnwIUGDXyX6ZQ99HvKQIMqN9T8kozyxTG8R8Cgrk0mb4FG+Sv9vojzlRwr12di+YWVzOTxOtjqlf07ZaoO/LGCrVd1CtrpX/rmQre6lrs5X/xzqaqx/7oGIuUDogGq3PQi2X+pufDUO8zq57HcHsPzmAJ0VNemsEHR66YNEmmpuw/Up6wvB8luoPlsS1kfxzNHIedpb/Oa6unPlVBmfbcOyPN4Z/KGVU+XuKJ5VFHzoAHVId8fddD67+ZDugPo714s5p1s013NOnlfieMn75eq0Aeoejp0G44jHXsgr5eF1JV/sEyYDPlmFehj6cnFIlrHzEDzlcstod/5DFzd00w/+0ME82qOb8zkA60LZPTq2l0hH2UtuY7SviIP3rAz+LYG5o9KDkN50W9Pxt6RQN/i0ivLz99CGzGu92UZ5yu8YqzdsQ9Ce4xht43fIR5a56eMk6jPCNzx4NhOejN4PwnssdzHVmedIjPsSgrd69nvgDR/PRf5dwJewtQsPLyQetnXhYSvxYPA/KngIyT9PoTlhzVPpzYzwGT/4DvG3nNaPjotKGcvP6Ck9yBP3ZdWf1F5JyAaqfq5wXZEQF5/MrNheNyrbZknFefG6Au3Y7ZSHfp49gINTg/7H+uR6/fjYFF6GY16xvXA/l3Vsqyi7VeCeq/6wtRq9YH9Qa4Cy/YH32J/v/cEX95in+dAfsL2MbyWjPHVcXIrpLxVvwhiL7S+GP1V/Ubqn+kvNm0g6+VJs0E23VXm6E/CpfQxsr1Ttp3xcc9V+FW8WCLafWsOnbD+cX5RpP+X74ztiy/r+sPxs+f5GiQ6uBfcWv/na4Sny/am1KZZl35/B/w34/r5Kvr+y/r0e+usaZeMTU3+vmvcdYv1PPLarS9Vi/U946emlHv+TydW56e3ni7PL3Ez/E/Jh8BwTxzAcvzYZmwNrKT6MqHQWbY7Pn/LtgD+l1/FrKGeOB/PN6Q23czPnDFY/yyszLqg+gfXhPqH24hG+7F486z3uKfMFyty/8nSrwBXidXMNXrkdsa04bsBgUS+Rf9ZLg+8v9Ltb3IDJvBftH/KnKZmG/GndZMprmlBMQcif1s13zjZxk+ABx0Tl3xwnmmp8UHZC2XT2G5lengDtz7G6GN+j9pFv9eA8WehUqA7jog6xY1zoXMO2QDnslwOCVsce/jWcDJ/px2JBi8cZgx0DOf1xR/OSMT9dUg/XZJ2M8Dn3nFqTnZFiTabmeTgHXk3zCdXHsOzB4pf72AtPmCp3kQenc7rfhs4VIj/va0/H26v9ZNV3Q3MY3mdUMfjGA8Znq70njp0y+Cugb4bOMqXZn8y+pcZFnBfyuBiaA+aJ2yI0j0KZtN3MMZN930q/sK19t4b6YjT5HILBb4A2CH0qhsftTSV598UlYB73De7H3T4K4DvTrta++bPFa3O/3xEYW5WvYBzelY155/OEah9K+TAsjlD1FzyzbvWzvLr7srMZC8MXwYfOBeIZAPYTq+vQct7vJ9urzg1g2/rOD6qzqvnzC4pnPj+4K6BfqeMK+exOrO/G+n4PfTfL5tp3Y20b47tBW8g+v3HIw/MjLyX9UuMkll1VPPM4eW9AX3YE6pinsmOU8aPWwzdRHpZjXVLrQePhZiEH5IvvZjH4+yPnC4nW0eNKP3Hty/oZiqfPE7fFSwQ8xthzHD3eu7GdcCn/FsrUd+av3+k1vO9MxyOB+QKOTzcT79tK8j4ueFf9DfvUP48cf1brfJ6zbgvQ5LI49vR74H3rz/cIebE9U/6k/PlMwmnw7w3YAzWm3gDvysaN8T4KyoXjxtS6o3fzeXf9XMeNWfvHxBuWjRuL1X/Uob8g/cfx/HqiGZrHclmk49N/X9zWTwf0P7Quz59PIZwG/3MlfV8h/e82RwjNkUJ7jGZvejg/3zjX83PW/9D8HO1vzPnIWP1HHfrSyHS86vwtlrUv/vD52/9YUr/qnL81fmLO32I59s+ouSu3o2+c4XWKwX8ycr6VKA54+Vzbc963UPPbkP0M7ZMq+6nGS7afn430z4Tup4jhfVzwrvob9qlP0XiDa18eb7p9EI/P8Fu/9o03vNdm8F8OjDe4NlP+IB5vDP4rJdfrofGm23qd/UHqPgm1lg+t1xPdBbWi12d9uvnKrP1jPlSpzqexHiCdWP1HHfrlQv/ryfX+H8qAF8PdEJBN+jWYvy30swX07bcZwccfffrvv/zxbZfew1+/yZO1Ub5nk7f/X5FPFq9RNlni9cMcC9Eg3lS5jHhg+D4Bb3iHRF6zZh2Yr0UCviHgl7hKX97A6jOLJ1G5HR7WsgBeFq/9fxK9azh/U+QpF2dVlTv1ExNfuO6pv36qm8pVxf+OS5tLn3jZji29wv+Fxd/49u//17ve2yv8Xxu4ZWPfr7z7jF7h/+Fv37T2kZNW/a8yXd66FoZCWznbFh6G9yWGlujbww1/i3gpSW9y23uY6HH9qn3ZYwk8s1QQK74L9bQGvePey/e9l/myh7Vcm953XFQaNa0YFZmWh1q2hPKWQR62JqeG4N94zrX0m6ClDMf8YHsspbwRyFsGtLldhwUdo90n4EcI17AoZ7LvRq8hyi0hHBm9x0lvQ9BuEvxYMdHNZfu9E9y0ei5x0/9H/ZsgHtUg7TzvuB58cIbp5mnA1bIES2Mtj+FvOS3vjotKk5ZniOhx/apZHp6qGJVRwmowCItpFDhzHjjVoreKcpys3JAHZ54G3ExNLSHlodhWtXct4qVqqzaIHtePw6gqau2SkBYxTue05UN5oIXq9+Cysk2Cv5zcEmipdhINZcXwncnnmVD2E6fTs7wNJ07BXFE8jzit//jcJ2iraX5blGdLhPPqPZSHywO+brs/kLc4kDdAdcG8FpTbS3mDAmfO33tPnA7H/Vz9OjezD+WJZa7aGC0bLwmVjrFO+nDdQbiw/AjhanfBdTvhwvJW1nSjIcoNCTpsz/DoUIn+Phxrzwx/i3ipas9GiR7Xj+3Z0mr0hjIqj/QQJx+DWibyDJd9haffg8vKNgn+5WTPlgFPbM+WCX7xHdqzndTnULZV+5w6kmbtw66QPO0FfnaRK7MNeco+Hih+mwT/K2CP95A9Rv0zHkecbi98Vno3Gqi/6gO9ljPb4SwhHczbSzSVzmGftHYyOSudt3LLIY/7LuszwiMOhd9wdNPBIyfquikdRFpNgv9R0ME3BOYErIOonxnlZVQXhFP6iW12gOCN734Bj/iaBP8wrMJ4O8PKo6yQLz46YvDHACdvZyj7q1YlIV1U9lrJdBnhWiJwYX3Y16lkiv1zCdXf4N8uZMrjOpZXc759lId+1yHK64e8YcpbDHkjlIdzPp5/ot+P7f0g5KGOvJfm01af9xXvB5zW+46LS+xLVDYSt0gGKA91q5/yUIaDlIf0FlEetkuL8rCtrR0GXZwtyhOPhwb/Y4H+peynmk8Z/AoBjzbb4EfczD7F119iOe6XfB0mPhen56bJAfl6XfHbJPifATmEwgeMr5rbk0Nqe3IlAPD2JDi1JuuF8NwWJwr4EwDGZNImeGXrlN1EmbKtU3PZFQI/z2U/ErB1aCtXEu9ZSd7Vlp/q19injgTmijzeLg3Q5LJIp9+Vm0f8emC8VfNj5IvHW4P/jYA9ULIMjbfKfiwT9VIyXU55vnWV4WacNfvnsOqfWH/un6G65qmqrVRX+PL6HvsG67/yI8TqP+qQrb+q7uH92/9y4Zb/9ZK/Pb3KHh76haycjf8VPdufRP4tKR+F4W8RLyXpTfoo1LwR65fI5/qfMyqP9NROTM090Qb7k7htUE99Plsr2yT4PyNfRMjXhT449n8o/xy+65sjXKqPohytTfJ++BWShdplitFtxSO2F89bBxPSQVx7i1+l7/lfx0WlS3nPwHAgbtSbErr90lhbYfhbrlZfykI6pvYfVN+zsm03U8eOAFw3/UM6Ctc75imuhxLieiQhrrclxJVSXscS4no0Ia43J8R1KCGulHV8bJ7y9aaEuFL2x5Tt+GBCXMcS4no8Ia6U7ZhSV9+VEFdK/Xp7QlzvSYgrpd7PV5uTso5PJMT1+oS4nkyIK6W8Us5NUurXfJ0XptT7+TqXuz8hrrcmxJVS7+frXG6+6n3KuUnKdnw+jGnzdS43X21hyrlcSluYsh1Tyiulrqacfx1OiOvJhLhSyuvhhLhS9u2UfSilvFKOQyn70HyVfUr7ldIvN199Qyn1K+Xcd77OMVPKPtXYkT8PJcKVpyeL3xEPbnwO7b0qOpngWe2T4v4974k6wFPztGT0J6oMf4t4KUkvC7WP2lvlmGks2xZ53FZl47YRVzMhLo4lUXqj9v3KyqviEf88bfWweDvB3e5hrSHwZvTH72+ndw0Bi7hVl1zs4du5uC6J5YcCdHrR9fn/RcX/oWNZPdj+3htrBp4t299HAa7ucPDuhLhSul9TTqnm61I1ZR1TbgMeSogrpU7MV/fFDybE9XzQiQV39dzJPqW8Urp7UtYx5VJ1vm63pXRfpNT7tyTElVInUrpyU+rEwvzruWGjU461b0yI6/lgC59MiOtQQlwPJMT1zoS45qvLNOWYtuBiLofr+bA1nLIPzdewooWx47kxdixspc+dTiz4FOaujinDzefreiil7I8lxDVf/YUp5zkLdmLu5hMLdmLuZH8sIa6UduLJ4reHYSD9GeEzPvEd4p/PYSB54uP3VUM3nm+4enhl6FWxOjZXV4aqy+GtbJvy8nQfwHFeQ7zrC+C6PyGuYwlxvTUhrocS4nowIa5DCXG9IyGuxxLiSlnHNyXElbKOjyTE9baEuN6ZEFdK/UrZH1PqV0pbmJKvRxPiSqn3zwedeEtCXCn16/GEuFLWMaXsH06IK6Xevz0hrgU78dywEynr+J6EuFLOJ+ar7J9IiGuhD5XD9caEuBb60NzJ/lhCXCnXyE8Wv6FPWNT85Er0JxcNf4t4KUkvC8lF+c3UJ16sbFvk+a5+t/w8zZXMFlWjF5QZ1q+KzPI0UfwquWTxfL5JXefMMsermEvIYHuszA1/y82UQRWZx14/bXVfIXhpU16e3gBwnNcQ7/oCuB5LiOsdCXE9lBDXoYS43pIQ1/0JcT2eEFdKeaWsYyq+lJ2aL7r69oS4UvbtlDrxaEJcC/ZrwX71so4pZf+mhLhS6v07E+JK2bfna39MaaPn61ibsh0fTIjr+TAOPR/qmJKvlHZ1vo7b985TvlLK690JcR1LiCvl3GS+jmkL/XHu6jhfx+3nwzotpU48kBDXfNX7tyXENV99He9KiKsXNjr0+cWM8pBOaO8Iyy8N0FlUk84iQWdIlMuK35q+/+GM8Bmf+A7xt9zMOqfy/Su5WP1WVKM3FKNXyA9/1pZlm//ZJ2l9n4q1sk2C/9Qpx3/bBJcnjn1fKfhVn87N9eU3CrysC3nquKj0It5jMV4QL8qkRBuMxOqY4W+5Wm2ehWSobInV/QTBS1vk+fQB6Zwg6LRF3s4FXAu4FnAlwRVh//o+v/zO+/p/+lV7Lzx3eOO3Tlr2/keu+y/veet1565RnzNn+4c2oIQ9ir6S2PC3XC17m4VkqsYQq/uJgpc25eVpAuA4ryHe9XlwKVtaFVee9hS/NcbBJrd1ibLtAcFTJ6qoW2tlTypelGzzlpU/uVr5QSt/CrzshMtMXmtrZU8VZZe/0P33M7669oHVJ7z40M1vePSrP/ChN6/4qfP/sn3SN++7+g3feeqQlX2BKOtJ1nUm9bYFmXuL33xe9E9FZUy3ToO8BpXNn023mgR/4NSpct89ZTpt7NNsL/rgfYm2WBNrLwx/i3ipai/6iB7Xj+1FQ/DSprw88bnChqDTEHQUrscS4npnQlyPJsT1YEJchxLieldCXPcnxPXWhLiOJcQ1X9sxpa6m7I8p+XpTQlwPJcT1eEJcKXXi4YS4UurE2xPiSimvlPYrJV/vSIgrZTum5Gu+jh0p2zGl7FP27ZR1fCIhrtcnxPVkQlzPh3E7Zd/uxVhr+zS4HltCeQ3IG6Q8/GxSH/HXFPw1A/xh+aanHNcj5rxNP5XtuKgUfd7G8Kc6b9NP9Lh+vNZcLHhpizz+xJVqn0zQKctXws9SWf5qgtvhYS0TeDP64/er6Z0SBeIeoXyl+qwyPtG2PeXzNBSgMyTKmWoOAo8dyOdPZ3XcTB47AR6xvMEpOllNOpmgw7iUmypPryh+mwR/X+GmyuvQOHE6zjHBn2ore3+mgB8DGONHycbKDgnamefX6DgX1iHkoZ/onJmQzpkA0yQ6qxLSWQUwS4jOWQnpnAUwg1Au//9syEM9Mz7OEXzYsHMuvC8xDERviRj+FvFSkt7ksHMu0eP6se05T/DSprw88XbWeYLOeYLObOEacjPrz22Jde1FWxr+lqulO1lILlg/bsvzBS9tysvTawCO8xriXZ8Hl9UrFS7rpzXb63yWBybLuwBwn0t5OJe4nfLWQN4ewMGpQf9jffLx6/GxKbwMx7yi/TK+R9xMHUPb4bMFSn/aorzB2RhsfH4Itop+4dTpfJ4GuPdQHU6HPO6zZ4i8HP+lp0+vK+oDz4PK2hAsb3CKznBNOsOCDuNqAq4BwHUX5CP85wq5Wz/h/thxUeku7guGA3Gvrog71mYa/iFBz/hqibxmBC/Nz/zUJ3/9td++JXMz+3VDvOM54hoBrz51arK6EMqXkNUe/Kq0I9qWh8u+1ZSHS1XjIdfvtZ3p/K2pyF+M/BB/W8BvBrgybaFw3ZUIF/a3FLj6K+Ja6maOSdanlU0aITplbRKWN7ghUS7z/BodfuebpyFNNU/bW/zmevylU6fKoBxwrYhl2UYa/FVnTJX7wwKnGjONx5r2bo2aH1iyPLQPyAMnNXcwvvJ+/adjU3gZjmliG1xIeThuXER5qIsXF88h+VWdc6j1h6Jzfk065ws6s93m3NcugrzzKe9iyMO24NRNV15/5hRehmNeUd7G94ibKSM+alDWZo4KXmuOUReyvDEpefOcH+WN/HFS8jaec3n/agl5o0yNtxE3Uw585ELNS/Bd6MiFwdWcs1zEMsWkZMpXa10CeSgHTkreOMf5Rgl5o0yNtwE3UzdKyOFirqsTdLGuayjvhQC/n/Iuhbyya02rTy6j01ZN4WU45hX1wfhWOsl2v6xOYvk1ATrn16RzvqDD/y8q/j8b8m0d2iTYs2BecXIR06nGgZe76XmoX2cD3Re8YHrdUVdYxpe4mXW/JFB3LM9tiXTOr0nn/Eg6vazPeYH6lJ0fKz+aonNuTTrnBuhgHo+3Zec+o4JnRWd1TTqrI+ksqklnkaBT02d4CdtqTGyr1Xh2KeSVHc/QL/iNivM1462mT6i0HHgehWMWj2eXQV7Z8czqU3Y8Q31AvpH3ptPjy8sp3+C3FTY714EtNAbgnMdo53BvJjvfa79tzH5IRR2J3g8x/Kn2Q9TeQmg/ZLXgRdkqPqJTxwfUTIiLfRPzoU/zfkiqPl1mP6QXfXqi6J81ZT3t2LgjXAt9f371/TxtBri6/fWihLgW+n58348dezPK89mIDZRv8I/AuP+DNO6jfl8MtP8DjfvIP/f9suuHc0R9Q378uer7Fefkwb6v5PJcGffZN1XRP13aN8U6hL4p7vt1fFPony7T95WfoW6f/nEa9yvKWo77hms+9f2K9Yvu+4Y/Vd9X/SjU99cIXtpupj7wuF/Wr4h0LkqIy3S8ZnuV9s+zDuF8gfs+2oW56PsXU57aJ8Sxl3EgjZpyjr76h/tFxTE42C9UnN0SN+VvLsL4N08cveW+PQf2771x4oEj4wf33bL78NH9uw+M79t3eOLIEWQaCWEgE+ZjYhh79m1ghjoMVsYOCqjNyDWE66IuuO4gXKGOfHEXXLcTLiyPZfH/RW4mn7bZ0BeBhzun4utlxBd2dB44X9gF112EC8vz4vvSLrjuJlxYHsvi/4vcTD5ZXiE8+d+LuvC1n/i6DMq/iHCt7YLrtYQLy68lXC8O4MqfTyJcWB7L4v+L3Ew+WV4hPPnf5V34Opn4ejHkXU641gVw5el1hAvLryNcV3TBdYBwYXksi/8vcjP5ZHmF8OR/V3bh6x7i6woofyXloZz5GyVlg6uxPAeYqMGQf40OvwttmPGdjlcmpIO49kK5PO8qKI+2VU2EjIYN/lfD+15Mig1/i3gpSW9y8L+a6HH9eFJ8jeClLfJ4A/AaQecaQUfhWpMQ11VUH1wAYPDgP5Cj52rIU4sHG7+bBD8Mm/zfIQcO6sqVEXW8WtAz+GuL//sFPOJrEvz3C57ySbRdxtUWPF3j4YXHU9YTg8nTANHuVR8x/C03s/2r9JFriZ5P36zu1wle2iIP51KYh3SuE3QUrksS4rqa6uPrI8OnTadZtY/8w+lT5UYLnPOpj6wseKrTR3AONSTecR+pqLPRfcTwt4iXqn1EtQXWj/vItYKXtsjD+bOvL14r6ChcL0qIK7aPnEV95DLIi+kjBv9V6CPnUh9BGXEfUeuVywQ9g7c26xfwiK9J8Gsi+8iLPLzkzzhvHnIz+ec+UlFno/uI4W+5mfpTpY+o9R7Wj/vIOsFLW+Thmonl2BDv+gK4YtZcsbguo/r4+shVifrI70AfuXYe9pEbSvYRxXsv1l7Kv4D3iftkpHS3Lcq/iPLOF3S66ciO0zQ/Ph2x9XuT4H8VdOSWgI5woAXyzBsuZdfS5wg6MY7livZnUay9M/ypHMvdfGVs79YKXtpupu3kQ//Krqq5x7MFV/5sdwuHxsGy/bztZurROURnbUI6WJ/Z8BnlaS/RYZ+k+o2lg7j2EB2f3TpEdutyyFN2y/x7TYL/WbBbhwucAwRTsp9ebbxfLTKVv+dFlIfz4bWUh+tJbvv1kIdzF05q08/qmo+h962awstwXA+07ddQXg9sbvQcc8HmpsG1sF6Y3pd4vYB5+G0GtmsN8a4vgOuyhLhsL6NmeyWza3nigAX0oZUNWLD6lA1YULaL+wnD4fii9g0VX5nAw/3J8tT+n33TQO0xriQaZfv8SsFvjB8N9auEDjVi+7zhT+VHU/0n5Ee7XPDSFnns+1L7spcLOgoXr+txrTzX4+dl1egFx0/1HZgU+uVrh7UBeuuq0eszemrf+zJBLz/o1+9mtqFvf17ta2N7+fo80ubYnLLxDoiLY3PWeurgawPl/wnFKDQp73PFHP2Zb86dNh3G4ko+CTC/VTwrm4++jt8nOI5RyVPNdUF03zP8LeKlat9T7YD1Q91c7MI6gm3ki1l6oagL6+wlXXhinVW0VJtiDBe3KQa6oi/08wG4iwWcysv/xxg6DnY22C+Cr/KJVdPriHQ5zq1s8PFFgpfZOogdE+SMsuqFz40vJqsb5HwB0fPJhWNZsCy3TZ54zaZiI1XcyLMFV/5s39Uy2ajL7GLaVdFRF3L1On4qRs+r0lH+rlB8VFU6iMvWW9Y30db2cn14AeWh34vbEv1eLP/1kMeXZI1DXtlD/yaH3Fb/mwifWM1A9XkvvzXwzEnJDw8SLMhvevwjp5Tyw3YqIb/Sh9FYfjjvY/nhHJblh/M3HDc4KRlZXcv6rVHHrE75QQy7BHfqIMaNEw/cvvvA/n27j+4/dPDWidffN3HkKH/2gEcAHnku8HDNn2XwcZ2nPsrjTzXsFHCYhkQ5o1Hziq3olY3hV9fFVpmVqVmJOsLJmo1l2yIPvw7LPaIh3vUFcJ2bEJfpTc2eXvroGV8B3KujZ9iby3hy1dFuy8Mrr/dR3ulQjq/ePAPyDL+68hppt+EZ8/LUEO+4rduCpqJTiGbGV2JvLHgbILiS+nFNzAqu4o7aNbG2wjebR77U7l7MtdP/uHz9hf/ng9/6QOZm2uvQ7p7Bq9VgW8DXnNFcOQQ0nJs56uYJj7WfT3l4DRfOJvja6Yqr8Stj5If4VWTBBMCVaQu1Mju3Ii673hm9BNZ3rP+dBnlnUh72M45iGhM8jAXqc47gYUiU4/54Jrzvxdht+Fuulm2ZHLvPJHo+uSgbb2XVNX18ZURZG4y4TkuIy8aamu11LssDk/Jgsg6p07HKM1N27Lb6lB27UcbsqVzoV73vV+cIXlhmeeLrGM4RdNRnjJT8z06Iy/SnZnudw/LApGwQ65CKpFZ9bi76FV8zZrwvErCd4rlJsA9DpNxP0RwYyxeLcPlZtrMoD3X9NMo7U/CUEQ2MxkC958/TGfyjBd+5LHd2NM4+D05sU+em92WrxwDQtbwSOvjJnK/1nSk6KLM88bWsqt8gPM9b1fiFfclkoMYv7rNjAtcqeGc7eEpexmMv5IU8sLzO7sIzy0vJF+VgMlB26XTCdbrAhTIMyct47IW8kAeW11ldeGZ5KfniZ/9MBm03U5ZnEC4lL+yP/GlSK98v4BFfk+A/CDaBT4+gXeO27gjcaBszwoH1aIl6DFEels3x/tMp0/GqE0Qq4sTg1Q0IGF3Ccy+McrCyNaNl5lVktPLQY505qbHZ5BDroc+IjuFF+eeJdeI8waOKgn9RJF6D7xbt0xfBN0aEsA6tFXyraJ/zPXRUtGWefNH8vwl92T4/q+yp0a5pT0eUPUUZsT1VfVZFB8b2WY4sx9NuHKmMMjaaSr8wKmpHidN+KgpNRdyw7vV74A3fjAgwYa9D+qwiu6vqM9ahrj6jvA5QXQ3+/51dfR7utT6rW1FCp3HxpP9llKf0OXMzbVhZ+4qRYVfVPO0a0n+rm0//+bSrwX8toP9Kvirq1eBDNz100/9rKA/Lne+h47PnrP8G/41I/TfavdB/lBHrf+wNJgavbg9RNymo20NC+n8N0Uml/2eVuDXk2gBNLot18+m/4WsS/HcD+q/kG2qP9QJeRXqo+q+nPDX/ZDqo/ygv1n+D7ztjqq4h/TfavdD/9QDA+j8OeQ0Bz/K+XsCPAwzf6nM95PGtWCjj9URH2cFY/cfbdoZr3poT0n91aw7C+27NWQY6wfqv+qCK0oy1RyH9v47yVPQU00H9R3mx/hv8yZH6b7R7of8oI9b/9ZDXEPAs73EBvx5g+MYe7Bsh/b+O6KTS/3+gm9UygFtGNDNBE9+xD5/LK1wYH7UHnvdBPsLbJ2XNT4HyL6EHO4agjAMciLuiju3Aulpq0DvEP+Shl6eWyIuJf/jtdf/5xp/87mXDGZU3Xvgd6/EiAb9MwJus+on3jotKN6q+jp/1cm5m3TEP+6vxoOIfFlXkL0Z+iL8t4DnSPrYtlrrpusD6nv+pOJXFApfBqyurMTaEY5LQBvFV+uo0TCiepabt7le2G+sT84nW0KfmLxTwGH9nsmkTPMqJo/yRZkawSAf3bdh2+65Wt89053L5qxOml0EfJds1vCG8hPz7Yu2a4W8RLyXpTe53DxM9rp+1Yx7dazaqiO7dfmj3vht233vkvgMTHF27BJ5ZKogV32Vueu0xj0cShruR/t8hyjmBO8+3lmvT+46LSqOmFaMi0/LwnuIllIcjObYmJ+VBN55zLf0maCnDMT/YHnyf8QjkLQPa3K7Dgo7R7hPwI4RrWJQz2Xej1xDllhCOAVGuYw9/9e4PvKX94R/6YGf15/6+f/OTf7Pr77YuWvdHn3vo5N9+6798/X+/n3l2gmduxyUEq36Nd37HUSXDCXG1BS6TDX44tYTOr4y1Voa/5Wr1sUlrNUr0uH5c96WCF3V3ONugpYLOUkFH4epLiKuRCFeedi7gWsC1gGsB17Mcl+XheN+mPBw/+Z4MtM/8Ubs+wV9fgD8sz2OPmuPauIt2vcyOeey4yx6Oip6cyXG3QfR8cqk5l570qLQFPcaZJ557h8bMfg8uK9sk+J8uvGFtgssT67Wal+A7k0++svyJM6bzrrxkMe2MeNtuZt0tb7b1fhDK7S1+83r/0hmaJnq1sSx7tQ3+nM5UuQ+fMZ1n5TXK0wi9Yx1yTnvJehHhgnVkr4rSe4S3yB114q1JeVifQahPDfuzQtk2bOP/RG3chDylVxyJNFmHzlS53yxwKj3G9RiWd13oGbzJv1/AI74mwf+22EVS/C3x0EN5KM800/tM5E4O2mHnKuvtSqW32J9Yb1FHGwKe10QhPVe6jHreT7iU7UI94Kg9K9/vdBsYvibBfzGwcxjSc9WuBv+lyHZNZI9ku6KsuF37IU/JlttV6QG2F48j2OaLCZfaJcG2jmlX5M/wcbv+aaBd1RilxhAeo/4ssl1Nlr1oV5RVTLuq8d7gFwt4bFfeocG2HCBcykZjW8e0K9aHbbTBfzPQrlXt8LfmgR3G+SK3q+ozCM/tqvRAybbtZrZ5i/LY/4p0ytpoNS6HbLTBf0+0Oa8J2S74+FNyy+toJ2SLXZDbjh46PFFsgzhKoW2L/HnEw8YKUd4FcGGZUJVwa4BFbrT6nXavs8gnu0jn+C+KnEXI/MQskSt2meiNNMOfaoncberJy6RQN1NDDLdTNzoJVTVPN3rYyER51wWX/Z+P/jZrxubmWX1oJsBl8z+bLcbOBAx+Ref4rxoxuq3M2KKEdiqQH1X/UcrDcks8dGJnKAZ/ameqrqGRzGj3YiRDGfFIpjyFyqNi8MsEPO6k8AwFd125+6GMR4lOt27O8QVKT9VKWelXaKbdTb9MN9WqNKRfIa9IIl0YmWtdMNkoXQh51FgX1BCLNoF1YVDQYc9Ynni2jb9WxvDmaUDAWx6elcT2csBPE8ohrsVUzuCv6xz/tekLziKtfFvQx9mj8/CN7/oIviXgWwI+l8+6zhTPik8ev7CuDQGP0x+E39CZormpeOb4OaSXv/uBAFzm+VU8Iz8hGTUEvNEeFPCWhxEN2CcRBuWFuFqQj/C3do7/Wptge2O/ZPq4inQevn3jMeNqiHeoOzd2jj+34J3hKjs1zBPHb+I7pD3opp9ftt+YmNSPrV1z5fAd5xxbSuVT4R/+9K/d/D/+6d5zuuFX8XI4jpXVb9/OQ55sElszTrbPyqPXwsWXz5SHNCPeBqrx9q8xckL8LafngB0XlSaXM2ybuX6849eqRu/7+Zg66GbOUbAtUXZIZzHxMFiRBzXXMZpo5xzRyen/zqrpPFRcRn6/pg5/T3mH9ha/ebvd25nCi7LDdYNarjcJ/r7OVLkjxbM634BzhhE3s3+xTTB59wlY9gzj/8obyUtm05l+T137qa4G/2Dn+G9O759P0DhRfshXnwfnmwFng9aYZXdRlgh45VEfcTP7zhIqh7zjHILfqfbJCBZ5yNOE4Mn3f0vg8fEwIPCoHeoW8aq82dhveN7eEHSwT+GYV9N9tUiNJY744R0wzMO67QI4Tg36H3nOcbyiM4WX4Zgf1ZdSjv32fhG8Z7rsv+onWF5TIo915t88P1FnZuz/xQH+M8LTFOWGnO5v6jeW30zw28vIlDy9uvitOead2i0a4Wc6U3h9Y56ac/CY94udqXI/Xzx3G/Msj+d9edoN79im8zwKceSJ3fZmI/sBP8IMUJ0M/sOd4784tikbYrjyun+0M532AOSFxpEmwX++M1Xu48XziJspL5OnGr+4DwwCLwibpwniw2A/0Zkq8x87flq4LvbV8ZlIlY6GQx4QjnFUHdfU/Ir7bsz8Svm8BgI02B77xm7TjSVd8gdF3Zx41yfgBzz1dYJ2qwtetXut7DvvgGYij20P1jfWb4x2y2ya6i+Zm16vQarXQKBemSjH/Rx5XxzgXckP7UdVH8Tb/+e//uG7Hzz5m73ycVzzE298x9DaD3+0V/g/tOSL1//GTwzcWcaHYu3cT7TsGeWN73HusQfyEf5rneO/NX0Ujuuj7EZofca+V+b/dg//3+sc/81166860+mp9YnqM77xd1EkLwb/t53jv93209BnYXgsr4TMm2oPBe1aTISe8p0bfLe1pclE7ZnFRKWgTHlOYzLqd3p9z/u3Bv9PneO/KvpD2WbLw7qzXWwIusoXaX0sh1kxdvy55vx2sZpHWBpyfvvP+oB1VHtRPL/BtuT9BUxqDYn3BKwcm8LLcJaUfeD+qvwqofmi6neGf771O9N9FRHJ+harw775nKKHcsCx2nTY59PHPo1rrpPGpvCh3FV8Qp7Ynhr8xWNT5U4tnlUUP+uDshPMi3PaDsWs5YdEOWsXtY9QxveD7Yt84jvE33K17EvG9tbocRuxr7/iPKHJYyzSU+0w6rRM1X4ArxWVvye0TgrZE9X/uG8qP4IaQ0LrOaONPvOYeZMv9sfnz7hsbKrcVupbytaG2i10H0rI9iGvSvYcv6LW/va8JEBH8TUk4JcE+EKbzHd/8Kn/UB1ix6pEc8RFZU8fKbmEYty63cjAfUTdnlB2bOPYHTXGdxvbtnrGKKyHikhXoZs4vtnYh+NlRrwgDVz/H3DT4aueTHoJ8NAt6j1P9wicmaDh3Ey58LrS4HYCD3+06vhzaD+g5j1Sw6g7ltS4afjVvV9Vxk21rlExezXXAUMhPVXzHeWH4b5u/cG3xsI1OcLvKdqWT3rkiU/FqnmFGi9y3l41Np33Xu3JoN1F+5EnnMfeRTZCnfDCsnxa1eAPjE2Vey2NtUo3B13YZqg9etYP3z6376TMvQGboebvyNc9HpxHACfvcyu9UO3HuorwKpZAzZnYD6VsWQ9PZsk7MbH+vn5p/Pj6jMGrOZnac2oTvBovkRf2n4V0MU+hPXPsO9avqvpQrzr7iZNO/d3XD/XKR7uoeeqPdD786u1lfLRq7t1HeFHevCedp5uK35hYsorry+hvqvH6sm4sWez6Uvm0eL2E/YPHG9V3VDzxbOFS/Z3bsuJaOtpXwHGBFXUnK2uflA+Sfatou1j+yq6pNd2zBRf2/5APKaZdFZ3QPLBXcymOS1mckA7i2kt0eG9X/cbSQVx7iE5T8PDMPubYFF5sY98cybdn9NmxqXIfH5sOY7z/KsB8sngeANrOle7LLeW3tqT2B1hvla+E70ZV+oHr/wHKw5sWJwCOU4P+Rznk9GK+I6VkWTFud17JMlZeVtcc530R8uK4M6wTrldC/QDpcj/4POj4n1DfUj5E1Z/tfbd9y1BMkZWtGU++hNsWk2pb1glsW9YJPDLOOoHn+Lh/4dk1nhtjUvqC8e6x/etPPDbSaLCN5PWDinNC26v2pDjmKU8143HHYsYVxN8iXkrSCx4nx/qxb6niHL2TUXmkF/KbxMSj+G7s8O1LfLNoW57T5Gkj0Yjdy8vpfn1sOu+9OI+E7ROjjxXbK1of2ddZVx+VfoT0saKvsxPTvsou9sLX+X3SR5yTsj6W8XV+h/SxV/Nz3i9UMkVcZoNHRHmMn2B556nj4lLM/nnFNXF03+A1cd39c7UmVrao5lm5Dp6Vw753J+DrdlauW8z88JlTZZCOipnP08Hil9ctu86cKjdKOLvp4R3F74IeRqVnpR6G7CbyvKn4VbrA59vUnKSHsWBjqX37Vlf2TWC9Q+eDYvsX34i80L+C6Tlp5y9JZOd3gJ2/zIPTOa2HLyt+1R01VlbNJ/PUcXEpZi5e0ScerYe8n1J3Lt7t/GqieL2OOpufJ9RDX1wex/P2d+GZ7byKp1P2KrSHizqUp5R2HuvDdj52TON1BdY7FIMac6O38h+gnt5FuNR+rfL78f6Oaif0CSoboM49sex8cRYmO/YdvKSwPSreINZuG3zsnrqKmeQzeVgupKsG1wtdnc1zIay/6N/mvVx1lk7pFY5Nl0SMMb3Qr73PAv0KzXmfj/qlfMjd9GsY2jl05iHz/Do3cw7gnN+u54njBXqxL6zo9Gq/doLoKD9/Xv+HqS+r8+RYlvumwf8IzEGPEc5usWY871DrKi7HfIVo9VWk1eehFYpjU2cfZuHcSn+MziD+Xp5bUXa3TFwRyxbzkE5MLBDrTF1cMf6EWFwxMZaxuHjfA+us5oSq7EF4x/JX9zdhn+C1qcH/GNjymPubsL6bPDg/GJgHpN6r5tjV0P1NvrsTVFm2F2oMtf+HgHemw2dffPc1IR419+P7BpQc0Y7GnOeJleMQlVN+FV9ZtqWh+xZ854ScwMtnXPoD5QaIJtJ5L+HxrdV9/T92fx7H7YcD86cenP1YjLYG+cd3iH+2z36o/XI+F6XmaJnIC41xC7jS4ZovZ1A+R3PZbmdQzKfDZ1CegvnxFyqun9WZFV6nol0O+TrQP2n8Is6Oi0qL1VoU68PzpW4xNXcXv2r9mFGe2mdX8x/Lw/lPt/0ZHt9C81zVDmpdETof38M9ssXz+fwLn++ejfMvnys5Ppa1N7E6xv06tGbMBF8143wGYuqF+FtO962Oi0pZ2b6n4or4vFQo5ig2HijlOcoFXOlwhcaAbuN2/6rpZTLIC407TYJfsmqqXKt4jr13kvuVz16F+kVozVV2TFK2tczdZig7rNv+4pf99csLeeE6vYfj3MBcj3MmEzXO8XpDzQ/UuIV62w/yXDj3GEwL5x7dzPpzWy6cezyeFs496l+jw+9863fsWwvnHrvTqXLucRPNa7qde+Sx2eB3w7xm66rpMMb7jQBze/E8ALSdK92XF849upmyXDj3OBOO64H6lvLc4z7Q8cPUtxbOPU7Pe7acezzssZFGg21k7LnHTWL+rdZWvH7Cs3aO4PO0B/IR/kGyExXnT/JuaMNVc++nX80nLCn/TUZ5aj9czd/Yv6v6VaxOWV1zvv4kQqdi7rPsF/UI3XU5G/dZ5mkf8YxrQ/YZ5Cm012Bl69zt89BnD//c95f++7+YL/ev/1/Uxyquiebs/vWPwPj1AfJPqX7Xy/vXPxjp70HbY3gsr4xPYa7jILlPzof71/89tMFc3r/+GepXFfconvX3r5cZX/i8Buap8wkL969Pz0Md5jGxEaDni6MxHR5008+vO1daZn0Z4HVFWeMJ+xDOx52b7iPg+xArnm2blKH6bhXaKb7X2+C/smo6HrXXq/yVBq++A9wQdNU3o5eUxDVAuBbXwIX6xvCLK/KlcPE5u5bApcatvO0+CzpbdY72+P4X/J+PrV/7nirfGUb92Qt8/SmtyfohT/nlfd8k+EeY7/wZzXfUHsjCNwlK01v4JoGbuXeqxtjn2jcJvgt9a+lZ0+uv5h+hdgvtoy58k8Bfv9D8LdG6aeGbBJCH8z3T+dC4gPYv9psENvYtL94dmTi668jEwX0Th3e95tDhXUd333WkGEWnhZI7V950szu+XPljGwcYYanybmPNLY1swM1svjJTWxP7BiivjhmqsDors9hNqWv+bOpZc+urrmzcMkGfp2Pmas+7UbH6d/ce3v+G3Ucnbps4etszSrfp0OEfeFrlGH1Gz5l4b6TqWaD7NxpOXHU0BGSTfg1mZfFbdYb7R5/++y9/fNul98TeYP6G/RNv3HXw0NGJ/1nkznE/fX/Nfvr++dJPb4bysf3UyuT6fjo8r4byPAUJbd/VnL7eYuWrXjUTGuotTw1ZlqeO8D8jm76p9z55qPDCmvK4d77Lw+DeS/xh3r+BPJ6S/RDkcfj++yAP3W1Yh6r6VbE9NiwT9AeAtzzdAHlZPO5JO7ahWvlJ+huhfBldsfKbqpWf5H8zInVxycpuqUa7YeW3VivfZ+W3VSvftPI3ViqfTdZ/e6XyU/LDrQ/nyrfdTdXoL7I50/lgF9AWGE7169xMF0yezIbO9hXE6tgRuwUULnVcUi2hmrNMJ+VxnNk+bqpcTSwjhUu51kJbcAt05jedmqE1A8ZLt2vbYo6FhOAHSsJ3C6eKcfeF8C8pCT9UEn64JPxIJDyHwhmOPJkuYChcmbE+xuYh/hbxUtbmcege0rG6LK2GuxVbF8PfcrVkl9Xkd9L+L3PT+WX5Gv42wTPvCKtw5cl0agm8v+/o/gP7jz6weeLoTU97Io70eVCiWJE0w/OzpQEPnoabqQ5clpcBHBWoTBS+H/C8b3neD3reL/G8H/K8H/a8H3E6baL/t9P/NwTgcUgYdTNTRn/8vlf/u1mklYJX00n1nAVgYk5UV5y2R99Ga+9SnahuED2uH7t2Kk6FOxmVR3pqScC74qqdVKSbiuLk3Ur76qm6RSRkhxriHUZQ3F08j7iwXvnkrqYGajeLZaSWnTXbK/pmHsM/28tWpR+8u66i4sq2ay9x5WnzPMVVtR+E+ArZzxh9U3TK9ouqdBCXjdnKpYHTOp8+h1waWN53GgRx4dRvU4CvhZsky5/U5v5U53T18wlXXT3iW37zZH0uH2d/3MMzRi3hmsXmynzz7HuzqXL/d/Guh7fdVf7612y5H2tG3HdixgrkR/VHjiBSt4eqGxX5RMkvF79KT3lsi9X5nLdfKJ5jTu+VdQWqU35K5/LUcXEpxt5X3B6MvgUKo85T2HvVXiF7H3ObQ0j3kE7srQnNeYgrT5vnKa4NPeAr5VaQ6qOmc2VPeTYoL2T/yo7HWB636jmvzFqw23j8BQ/PvvGY1+UGvx7G4z8o3oVuzMrcdHk6p30YPC9W4UKZm6krCtdWwtUI8NXttrothEvpVkgPENc2wqXGyFDfQlw3ES4VHW9lQjcd5L98W5i6KTkWF2/DLRa4QjedZm5mXUM+r7anvI9OsyadpqCjQkfzv46LSptU3y9RfreVH6xWfr+VX1Kt/AErP1St/ISVH65Wfp+VH6lWvmPl29XKH1XbfyXKH1JbWCXK32Xll1Urf9DGjuXwknV7BbwvMS6txD5hSc0/DX+LeClJb3L+uYLocf14/rlS8NIWedzHVwo6KwUdhWtRQlyDCXEtSYhrKCGu4YS4RhLiaifENTpP67g0Ia6UOpFS9inllbJvp+RrWUJcKXU1ZTuafj3X5pm2FjPYK4qMAU89Oy4qnRBzM2zFG8tOQJ4sqfHf8KvbO9jXyrdDdVw43bPqhVf/0iv/fiyj8sYLv4sJWVNzCTUPLiGrFepohNFWRyMGKQ9tDh5xO71vOn9LKvIXIz/E3xbw7I+KbYulTtvVPLHvA/sP+5fy5wHKU0dKeB8U+z7vXebPvr27/NnWwHjCm9f7zun1N/uh1FeXysqyLcr71vk+/xCewEf4LdlUufdk/nrF+Dtakby3PLiagvc8bSfeDf6mgt+8vS6m41VKtujvYf9VyIeypAsu9l+pvmW4hrrgYv8Vlud52HAXXOy/wvI8Nx/pgov9V1ie5zvtAC7sXyOifJvyQnpT1o+r9Dl0q0FVOoORdEK3C6Cf2bl6t/BfSkdqsH3YPmMMZCgeoi3g8QS+lXeEoxf1GShZH9V3uT48tlh553rfPqHbu1TfQvgtVB+cp/P8A+vT6mF9Qu3TzU5vo/oo2zqf2qfb7Wo3BeozFKjPfGwftOWqPsOB+szH9snczNtQsD4jlOe7mdjmUaHxA+c3ZlPVvBj3/WxPUM0z2hH1DM0tlZ3gvcR/W9Qrl/nmPl3H2Dmcwf8w4LQ5XGisrDomh9YTWC7z/BodfheK3eKYRnVbadX2wvK+tbjlq1+j060+oRvrsZ/h3vXPkv4vgbyQTWwS/OK+qXK/UOAMzdfVvlQJW7LU6rVUZFoe+uP4vhNMDfof+cp1fRvYLIZjmtgGyygP1wfLKQ/n+7ZHErO2U+sK1V4GjzdDKptq+JoE/2vQ958ie6JuPVa34fOa8D8Je8J8Yr1CRyXVsbARUS8lU/a/K9oo500e2v1O13+E6m/wnwrI1Mov8tSHZWrwnw7IVMkoJFN1bG+pqJdaZ7IvnGnnaZPAxbT7PfCGr0nwnw3I1GAWeeqzyIPz8wGZLqd6dZNpaO8U+RlxM+W4IlCOfQSqforXYUE7o79Q38rTVipndPqd1l1uO4P/img75ZNiGYX8fUiX9xeQD1UvngcZ/FeBz6/S2NCDefNiNW9GPhd56mX8MDz7BbDdQ+vOkR7Wp866k/0Cs7zulPUJ3QoZuh0/T+wXUH5FVR+cW6Wuz0DJ+oT8AlifWfDbLJ5Nv0BoHZ3IL7B4Nv0CyygvgzyOJcd5tG+djHl4lkX50NmuK3+8+hKUwVtb+Oa6uO83re0KZtUcQq2P1A2tvD5qA86LPXM9rFdoDhGanyI/SqY8Z0PeQ7bf3tXU3X6lu1h/1t1uc/Gy6wC+CRfHPt/eKsvXZ/PQRrD+Kz3l9Xee+Cwf/loZw5unAQFvecgPtlee0G/UELj4q0AGfx74ffKEMd5oD5g+38yv+FY+oUzgaoh3eEZprG+K53r6ev/7M6JZ9r7Vi/qm84r2sxf3rZbF/7WBWzb2/cq7z+iGX7V3g8rwl5gYvg/yEf7F4DtaR/NpPkNm7zYF4DLPr+IZ+QnpWkPAG+1BAW95aCf4DBuOPw2BC/faEX4D9UHsN3ibN9PH8dR5+PbF6jCuhniHffAa0vuKZ28yo63ODyndqtMXhj/9azf/j3+695yYr3fEXH044KaP5SXrHn1edq7uoKh5rqqTUXmkp86Vhu68MFzqTpSYLzjcQf6GVHei3EZ60quzeGh3uunjbJ/frquPSj9C+jjb57cXizzDZTbXd34bx0yEv5v0EeeFrI/q/gf1FZGct72kj3XGzdDZS/a1dTsLyDFeWD50HXSeOi4usf1AHIZ7gOrQcVEpum/M1Vlwq1/Vq8XzWJtBN7Pv4RXIvvivxcRDRXtwRrdzuPfTulp9zUedfeWx4PdgPvqgB6dzWo85vlD1daVreeq4uMR2B3HUbOdoPTb8LTezT1bR49gvIdWMmZ+mx9hPUI998aXsjxrowvPG4jd0Jlmd5Q3FGib6ktFYWR+iah+Et7qq+M2YrwjF9q8txe9C/4pKz8r+1c3Of4BssvoiYsjOG/yvgZ3/ccKJY5zSQ47XVvTUfDRPHReXYubyFfUiWg/5rrK6c/nYK7Zrzsem6SHqEeqh7wuIHO/V7RpxtvN9Apea17Ivl2XrXG/sPNaH7Xy3u+TYzquvG6r1AMtBnSfK6H/kAfWUzzc0BC51xqiP8lQ7Dbpwu6t9LJ4PoB1SsuO13icCe0Oxdtvgu8XMcjuosxQqRiqkq4n2NcdS76OzbNT+Ie6Nsf7i3hjvdSIvHNOp9EqNW90+KxWjX2q+yfr130rql1o/xuoXnxeK1a/QnPf5qF++s6isX7jGvb/mXtMXFn/j27//X+96b6/2mj62ds2Vw3ecc6wbfjvXc9fE0V277zt696437j96cOLIkYuK9wNUpuxcZEDwH1/+2GMDjLBUefeYzW3q8G9lKpRP9qnP5fCMd9iwHVNjOM/zKtZlY809lvXK3uA8wTm/nz1Pap8il8dpxXPNtt5YUz7rlzl/+9pe1nnF/2rdlVE9KvIxjn3Nklpv2LuWq9dHMsJn9Lh+9pzbabvnYupzIeNPW5+XHjc+yCQiXg/vMR8TwzAcw4cmr4Pwfr4Hi5xb/M7nYJGOm+K5ZrDIYxnRLBssciHxWnaAjQ0WMZnvuW//gX277jly1649Bw7tfd23i9dzPL4+VHN8fajmmHBmzX3SSfXFuHh1t3GD4LgMmpltALPNA3MjwNzogdkOMNs9MDsAZocH5iaAuckDczPA3OyBuQVgbvHAvARgXuKBuRVgbvXA3AYwt3lgfgBgfsADsxNgdnpgbgeY2z0wLwWYl3pg7gCYOzwwLwOYl3lgXg4wL/fAvAJgXuGBeSXAvNID8yqAeZUH5k6AudMDswtgdnlgXg0wr/bA7AaY3R6YPQCzxwOzF2D2emD2Acw+D8wEwEx4YF4DMK/xwNwFMHd5YO4GmLs9MPsBZj/ANADmtQDzWoIZcDOnKyXs5da6cUSh2JqaMSHRfnLD33K1xp7JeavyPaqYcLV+yShP3aus1i/2nE/nbgA4blv2seJ8ej/l4fTntYD/Jnj22VCrF9J3bubasaKsX1dT70ZDfnsle/Zxxcg+Tw8CXKJ18+tqym7pMjeTPi8b5vvyxOY283l5sgl4Npw3AL78r+PikpVHv08ZO2vlN1YrP7ku2FSt/KiV31yt/ORn27dUK7/e/CWfK17UXSfExKNV3N9dGjtuzdW3qGru745mVB7pqbNt6hwOyjb/M7vQ78Hlu5fP5nkpv6mSl9tFvKt4lJh2Rrxq39a33102nuJBKPdawqnaCceCLQRvMukX8IiP75Q4WPzm9fsDD05fvXw4j0C51xfPqu9uAbgHnK5/5sIyja1/n4fXN7qp+n/Zwyvyg7zyPJp14eEA3CIBx/rknJ7LbiZ4FTOteOJ9zh90U3X/Aw9OlL/am/fJn2GYB4N/DHj4MuHsBxmwfXFu5vfjKsavZTVj1AbUPiO27zvhPdrB2O/dGPx7odx7imd13zPbcBU7Muhm3rPjXH07ifu3bMuHoAzXO0+s1yNAt0E4FDzexdMgHMoGGPwPF7+53L5SPKv7ibBNf9RDG9tU3TXMtD8E5X6seA7dtarOKPO4PCR4UXESTYL/STclh6fclBycm972Rrue+98tfeY+EKDD7cv6o859IzzHF3Q79826i7oySHko4yGio2I8UN4bqY59go6yEyOB+rJ+ZG5q7dXvged7lQz+o8WvGgfawJ/qU00Pzl+Fch930+uP7XgDwH3KQxvr3xD1MfhRUX+EbxOvBv/rzl//EVF/5GsD4TT43wCcT3n4xHopm2rv1Rn9UVEvdYePlWXZc90+FcDB90QYvUGndaJFvKp7xTI3ve6qb7cFr6G2bgs63Na/W/xiW6uxi+8vUPxhv+c+ru5CwHGj5tbpQxnwYrgbAtK3dfrF4ne+nrPvdWzVqZ+Y+MJ1T/31U73Cv6h56o90Pvzq7c/lewj+rPjNde/Pi2f21SK9/N3fBeAyz6/iGfmxd/P9HoJvFb/z+R6Cvy6e5+IeghOL591Hj+7ee/euAxMHdx09NBVuYd8PnuNwi4M1wy0O1txKWJYq3GI7lA+FW/hCIBoA4wuBQBhfCATC+EIgEMYXAoEwvhAIhPGFQCCMLwQCYXwhEAizE2B2emB8IRAI4wuBQBhfCATC+EIgEMYXAoEwvhAIhPGFQCCMLwQiz6+5Xb49xbYl9hHD4Vzt7fLobYfn2nb5pQDHbRvaLn8l5eHw/irAfw08s5tolkKt76xp50d7FWptsq8Zan1nTfmMhkKteWrqnJ7SzfWW+NXF73zeEl8LPKst8RJt1qm5JZ7V3BIfrbkl3qi5Jd5Xc0t8ckt9a7XybSu/rVr5ESt/Y6Xy2eQRiK8Vb3p9TVNGdHp1/Q7b/IphBE3jeQD4YJcw48//WsBjg3AoeJ5vMP5Wmvo4rg9urYSukmC3RsfFkat5ncIAb3G+rfjN25rDgW0JrNooT7zFPkQ8MUxMWAAuu/n4qcHjPOavCadyQyodt/fdtkB4WwnrMOKhjTqqPvFkbYju2Co6h9sVysXL1xEb/N2Ex1xk2M7q+l+DHxV01ZXv7Fo2unm7/a2nLosED3m6wVOXe6Dc64pnvn4G+18Od6+H9hKn++5wAO9IBF6sE27HbfHU6T4od4Ro93vqdL+HNm5BDATq1O+p0/0A55xe56TY5vzfxA/O7WK2OX1zwTJ9XG1zlrlqKBN0kBfuR4a73wNv+Nj+PVr85nJblE3nb5Eon78zO6+uy+Ay6N8K2X21Ng2FdeCcW9nmbVRfg/8SlHsP4bTyPpuLawWuaxWbi67+hgenqsO/JTzWd1HGmcDDuoJ0cc7CNref6KLNDelantS6NU8dF5dYLxBHzXZooYwsKX8QXxmaVaMXvDIUeeD5cUV/10DMNUPqGhylM40uPNsaNXTlVEPgZriafpKTWMaDEXSx7r76bab6Ia5+KueTI+JtCP5CIX94zWjIVsTq2KZAfRZRuUUV66OuoWH+Blx3ucW0z5ZAfeq0j0/efFWR8v+peQ7W27m085w6V2fxZ4p4DWs8K5l1XFRaFOKFbWqelGwXUzklW27LWFtQ0/b0x9avj+rXCNTP56/t1vdUSFzmZtY31Mdrtvfi+drebItUX4+Z0/rqw1dJKVwhveD6qPZi+5gnZW9w3MhTSnuTAQDLqNt8wXSSP8+E9Q35KC3chuXGsLiGCPHRJHgLTUa/UGiPqBfyRT1j+arxEOF5fqOOuLAPLU/qk4aLKU/FL7CuIh2U9waqo9J/XO/VDN07mAEvhrshIH2he18vfp/tn8jpdWhdL0Pf7OqXvO3+oXjuFvrWzPxwmedX8Yz82Lv5HvrWVyCYz6Fv33XT6zCboW+9DpM9vXjeN7Hnvrt2HTh0167dhw/vfmDXocO79x6Y2PXGw7vvvXfisEUmzXGE3Z0DjLBU+dqRF6ekirDDXfJQhN0GKItlUHM2AsxGD8wmgNnkgdkMMJs9MFsAZosHZuESpunPDLNwCdP0Z4aZL5cwhS7trLn63ljTjpzUw8jDk2NmGoh/PkQehqLfYiMPrwE4blvDV9PL8Kqa7Z71sN37no3tzjPUFO2O+HF2vwWebcyqGYF8Z0074pYJ+jzTne+Rkrhbkaf5GCm53k3xXDNSMrNIOZ5DNIkfbEvmH3UY4RsCPl/VmPyKC3k35JP97YfucpTYrGQeFk+icjd4WMsCeBE/vj+J3inHDOJOcN3snYarquPFpla9drxYUPHBQ0f3v+aBXUcmju66Z//BXYcn3jBx+Oj+PU+v147s3zexa+I1r5nYe3TX3kP3HTw6cZiWcnaWao6XchtrLuU21jSds3b3e7elXJ7f7X74YXhGR0mNoWdjL4ceM3Gmz7kJuqh4vvfw/jfsPjpx0zMqfNvE0R37D946qb+3Pa2+G5/R3huOKy9TVRZDvW+4JJZhY13LcELx22vLsKZ4LizDxMHX3zdx38S+Xffet+fA/r27XnPfwb1H9x86uGvv7gMHzBKcWpSZY0uwpaYl2FJzUt2sOXGWlkBtv3dzxjRcd2dMnkLWQh2N2kh5DUFfLSyMLvbk/HlZ8VzTAm2ZDQu0svg/t0DnFs/TLNDGoqfc8kxH2VT0kxue7iZMzjc5YtJYFfy/KfBw4gHJqlLTjG2pa8ZOKX57bcbMG/2MmSraacp47c9HhIO7D9jt/nNsuLbXNFzbaxqeRXXPcBhd9BqrOOsyhsvnIUYYn4c4T8q4+a5JQj6UcdtMeU3Bm9q/Np7QgOTPJ0GZPLHnGvPQY53o3Oi2mrsXfaGrhuuuamue/+szg21GuodXujawv0++pHeIf7avdM0HK7O4hRHMB6Rbjj/aGIWcIvY+UZNsOkfTfBvOA1dmTLP/Fwm8vvL8jvlV0RkoLdNUddFhH5VrEG6kzb4W5rMRwJ9RfqMLzzGRxwnG++11x3tbTvR6vLfeXixb9h6eeFrB9+06eN+BA/tfs3+G78JWUwu+i1oDSbLv1g3Bs/kong1+CTuYlxta+77ctFXBDccV8SbTQybCdjIT743gXLsgbAbT675sQt23//DT/pv9b5h4er6e+3X4o6MrAU+VTruiWvlpdtgRL4iXjYsrQcMSthUnjhzjvQo2TiXoZz4+MgFsy/gV8M7kYbMPbMujE3c9bZBff9/THWTi4FHmtuK57Ml7E5ZUKy9bFeO+ljDB4letwjPP/330G4LNAniHRJ7htNZAfgcpb6o1jh7adXj3vv33W580KVaNS7LyVWe4Vr7qjFy1Is6WOS6K7S/SNF4qXto9mAn6an+QW9pglGb10f9Net+IgFWaZXlqfzQmElTtpyotZbmjvilcvNfL+lG3jZYJmsbb/w9ur1k4VW4SAA==",
3936
- "debug_symbols": "tL3briy9cp35LvtaF8lgHEi/SqNhqN2yIWBDMmS5bwS/exeDZIyYc6k4c1bVf6P17V9rxUgeYlQmGcn8j7/9v//0//zv//Ff//lf/vu//q+//Zf/6z/+9v/82z///e///D/+69//9b/947//87/+y+O//sffrvF/Cv/tvxRq9f/8w9/K+N+dHv/7H/7W6/yD5x8y/9D5h80/2vyj+x/lutafZf1J68+6/uT1p6w/df1p68+2/lzxyopXVryy4pUVr6x4ZcUrK15Z8cqKV1Y8WvFoxaMVj1Y8WvFoxaMVj1Y8WvFoxasrXl3x6opXV7y64tUVr654dcWrK15d8XjF4xWPVzxe8XjF4xWPVzxe8XjF4xVPVjxZ8WTFkxVPHvHq+FPWn7r+tPXnI56OP/v8U6/15yNeH3+OeOMvat3AG2SDbrAN4yp5QF9g14aygTbUDbxBNugG27Aj24gsD2jXhrJhRB6Nb3UDb3hEJgfdYBvahr6gXxvKBtpQN/CGHbnvyH1HHilEo1tGEg2gkUUTygbaUDfwBtmgG2xD27Ajlx257MhlRy47ctmRy45cduSyI5cduezItCPTjkw7Mu3II7tIBsgG3WAb2oa+YOTYhLKBNtQNO3LdkeuOXHfkuiPXHZl3ZN6ReUfmHZl3ZN6ReUfmHZl3ZN6RZUeWHVl2ZNmRZUeWHVl2ZNmRZUeWHVl3ZN2RdUfWHVl3ZN2RdUfWHVl3ZN2RbUe2Hdl2ZNuRbUe2Hdl2ZNuRbUe2HbntyG1Hbjty25FHDlIbIBt0g21oG/oCz0GHsoE21A07ct+R+448crCWAW1Dn1BHDlYdUDbQhrqBN8gG3WAb2oa+oOzIZUcuO3JZvlELb5ANusE2tA3LkSpdG8oG2rAj045MO/LIwdoH2Ia2oS8YOTihbKANdQNvkA07ct2R6448cpCvB4wcnFA20Ia6gTfIBt1gG9qGHVl2ZNmRRw5yHVA38IYR2QboBtvQNvQFIwcnlA20oW7gDTuy7si6I+uOrDuy7ci2I9uObDuy7ci2I9uObDuy7ci2I7cdue3IbUduO3LbkduO3HbktiO3HbntyH1H7jty35H7jtx35L4j9x2578h9R+4rMl/XhrKBNtQNvEE26Abb0DbsyGVHLjty2ZHLjlx25LIjlx257MhlRy47Mu3ItCPTjkw7Mu3ItCPTjkw7Mu3ItCPXHbnuyHVHrjty3ZHrjlx35Loj1x257si8I/OOzDsy78i8I/OOzDsy78i8I/OOLDuy7MiyI8uOLDvyzkHeOcg7B9lzsA/oCzwHHcoG2lA38AbZoBtsw46sO7LtyLYj245sO7LtyLYj245sO7LtyLYjtx257chtR247ctuR247cduS2I7cdue3IfUfuO3LfkfuO3HfkviP3HbnvyH1H7iuyXNeGsoE21A28QTboBtvQNuzIZUcuO3LZkcuOXHbksiOXHbnsyGVHLjsy7ci0I9OOTDsy7ci0I9OOTDsy7ci0I9cdue7IdUeuO3LdkeuOXHfkuiPXHbnuyLwj847MOzLvyLwj847MOzLvyLwj844sO7LsyLIjy44sO7LsyLIjy468c1B2DsrOQdk5KDsHZeeg7ByUnYOyc1B2DsrOQdk5KDsHZeeg7ByUnYOyc1B2DsrOQdk5KDsHZeeg7ByUnYOyc1B2DsrOQRk5KDRAN9iGtqEvGDk4oWygDXUDb9iR+47cd+S+I/cVWa9rQ9lAG+oG3iAbdINtaBt25JGDUgeUDbRhRJYBvEE26Abb0Db0BSMHJ5QNtGFHph2ZdmTakWlHph2ZduS6I9cdue7IdUeuO3LdkeuOXHfkuiPXHZl3ZN6ReUfmHZl3ZN6ReUfmHXnkoOiAvmDk4IQR2QbQhrphRO4DZINueETWMV6+HuPQF/iKDA8oG2hD3cAbZINusA1tQ19gO7LtyLYjjxzUcc0jByfIBt1gG9qGvmDk4ISygTbsyG1HbjvyyEFtA2xD29AXjBycUDbQhrqBN8iGHbnvyH1H7iuyXdeGsoE21A28QTboBtvQNuzIZUcuO3LZkcuOXHbksiOXHbnsyGVHLjsy7ci0I9OOTDsy7ci0I9OOTDsy7ci0I9cdue7IdUeuO3LdkeuOXHfkuiPXHbnuyLwj847MOzLvyLwj847MOzLvyLwj844sO7LsyLIjy44sO7LsyLIjy44sO7LsyLoj646sO7LuyLoj646sO7LuyLoj645sO7LtyLYj245sO7LtyLYj245sO7LtyCMHrQwoG2hD3cAbZINusA1tQ1/Qd+S+I/cdue/IfUfuO3LfkfuO3HfkviK369pQNtCGuoE3yAbdYBvahh257MhlRy47ctmRy45cduSyI5cduezIZUemHZl2ZNqRaUemHZl2ZNqRaUemHZl25Loj1x257sh1R647ct2R645cd+S6I9cdmXdk3pF5R+YdmXdk3pF5R+YdmXdk3pFlR5YdWXZk2ZFlR5YdWXZk2ZFlR5YdWXdk3ZF1R9YdWXdk3ZF1R9YdWXdk3ZFtR7Yd2XZk25FtR7Yd2XZk25FtR7Ydeedg2znYdg62nYNt52DbOdh2Dradg23nYNs52HYOtp2Dbedg2znYdg62nYNt52DbOdh2Dradg33nYN852HcO9p2Dfedg3znYdw72nYN952DfOdh3Dvadg33nYN852HcO9p2Dfedg3znYdw72nYN952DfOdh3Dvadg33nYN852HcO9p2Dfedg3znYdw72nYN952DfOdh3Dvadg33nYN852HcO9p2Dfedg3znYdw72nYN952DfOdg9B3mAbWgb+gLPQYeygTbUDbxBNuzIsiPLjuw5KGNn+NpQNtCGuoE3yAbdYBvahh3ZdmTbkW1Hth3ZdmTbkW1Hth3ZdmTbkduO3HbktiO3HbntyG1Hbjty25Hbjtx25L4j9x2578h9R+47ct+R+47cd+S+I/cV+bHLfgWVIAqqQRwkQRpkQS0oNEpolNAooVFCo4RGCY0SGiU0PC3NqW/yxJz00GiXEwXVIA6SIA2yoBbUN40UXRQaNTRqaNTQqKFRQ6OGRg2NGhocGhwaHBocGhwaHBocGhwaHBocGhIaEhoSGhIaEhoSGhIaEhoSGhIaGhoaGhoaGhoaGhoaGhoaGhoaGhoWGhYaFhoWGhYaFhoWGhYaFhoWGi00Wmi00Gih0UKjhUYLjRYaLTRaaPTQ6KHRQ6OHRg+NHho9NHpo9NDoW8PLaRaVIAqqQRwkQRpkQS0oNEpolNAooVFCo4RGCY0SGiU0SmiU0KDQiDwvkecl8rxEnpfI8xJ5XiLPS+R5iTwvkecl8rxEnpfI8xJ5XiLPS+R5iTwvkecl8rxEnpfI8xJ5XiLPS+R5iTwvkecl8rxEnpfI8xJ5XiLPS+R5iTwvkecl8rxEnpfI8xJ5XiLPS+R5iTwvkecl8rxEnpfI8xJ5XiLPS+R5iTwvkecl8rxEnpfI8xJ5XiLPS+R5iTwvkecl8rxEnpfI8xJ5XiLPS+R5iTwvkecl8rxEnpfI8xJ5XiLPS+R5iTwvkecl8rxEnpfI8xJ5XiLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfLcq4gaOWmQBbWgvsnzfFIJoqAaxEGh0UOjh0YPjb41vKhoUQmioBrEQRKkQRbUgkKjhEYJjRIaJTRKaJTQKKFRQqOERgkNCg0KDQoNCg0KDQoNCg0KDQoNCo0aGjU0amjU0KihUUOjhkYNjRoaNTQ4NDg0ODQ4NDg0ODQ4NDg0ODQ4NCQ0JDQkNCQ0JDQkNCQ0JDQkNCQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQsNCw0LDQsNCw0LDQ8z6uTBbWgvsnzfFIJoqAaxEESFBotNFpotNDoodFDo4dGD40eGj00emj00Oih0beGFy4tKkEUVIM4SII0yIJaUGiU0CihUUKjhEYJjRIaJTRKaJTQKKFBoUGhQaFBoUGhQaFBoUGhQaFBoVFDo4ZGDY0aGjU0amjU0KihUUOjhgaHBocGhwaHBocGhwaHBocGhwaHhoSG57k4UVANGhrNSYI0yIJaUN/keT6pBFFQDQoNDQ0NDQ0NDQ0NDQsNCw0LDQsNCw0LDQsNCw0LDQuNFhotNFpotNBoodFCo4VGC40WGi00emj00Oih0UOjh0YPjR4aPTR6aPSt4cVRi0oQBdUgDpIgDbKgFhQaJTRKaJTQKKFRQqOERgmNEholNEpoUGhQaFBoUGhQaFBoUGhQaFBoUGjU0KihUUOjhkYNjRoaNTRqaNTQqKHBocGhwaHBocGhwaHBocGhwaHBoSGhIaEhoSGhEXkukecSeS6R5xJ5LpHnEnkukecSeS6R5xJ5LpHnEnkukecSeS6R5xJ5LpHnEnkukecSeS6R5xJ5LpHnEnkukecSeS6R5xJ5LpHnEnkukecSeS6R5xJ5LpHnEnkukecSeS6R5xJ5LpHnEnkukecSeS6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecWeW6R5xZ5bpHnFnlukecWeW6R5xZ5bpHnFnlukecWeW6R5xZ5bpHnFnlukecWeW6R5xZ5bpHnFnlukecWeW6R5xZ5bpHnFnlukecWeW6R5xZ5bpHnFnlukecWeW6R5xZ5bpHnFnlukecWeW6R5xZ5bpHnFnnuNWG9OLWgvmnk+aISREE1iIMkSINCQ0JDQmPkeSenEkRBNYiDJEiDLKgF9U0WGhYaFhoWGhYaFhoWGhYaFhoWGi00Wmi00Gih0UKjhUYLjRYaLTRaaPTQ6KHRQ6OHRg+NHho9NHpo9NDoW8MLyRaVIAqqQRwkQRpkQS0oNEpolNAooVFCo4RGCY0SGiU0SmiU0KDQGHne2YmCatDQUCcJ0iALakF908jzRSWIgmpQaNTQqKFRQ6OGRg0NDg0ODQ4NDg0ODQ4NDg0ODQ4NDg0JDQkNCQ0JDQkNCQ0JDQkNCQ0JDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NCw0LDQsNCw0LDQsNCw0LDQsNC40WGi00Wmi00Gih0UKjhUYLjRYaLTR6aPTQ6KHRQ6OHRg+NHho9NHpo9K3hxWqLShAF1SAOkiANsqAWFBolNEpolNAooVFCo4RGCY0SGiU0SmhQaFBoUGhQaESe98jzHnneI8975HmPPO+R5z3yvEee98jzHnneI8975HmPPO+R5z3yvEee98jzHnneI8975HmPPO+R5z3yvEee98jzHnneI8975HmPPO+R5z3yvEee98jzHnneI8975HmPPO+R5z3yvEee98jzHnneI8975HmPPO+R5z3yvEee98jzHnneI8975HmPPO+R5z3yvEee98jzHnneI8975HmPPO+R5z3yvEee98jzHnneI8975HmPPO+R5z3yvEee98jzHnned57TtfOcrp3ndO08p2vnOV07z+naeU7XznO6dp7TtfOcris0SmiU0CihUUKjhEYJjRIaJTRKaJTQoNCg0KDQoNCg0KDQoNCg0KDQoNCooVFDo4ZGDY0aGjU0amjU0KihUUODQ4NDg0ODQ4NDg0ODQ4NDg0ODQ0NCQ0JDQkNCQ0JDQkNCQ0JDQkNCQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0PDQsNCw0LDQsNCw0LDQsNCw0LDQqOFRguNFhotNFpotNBoodFCo4VGC40eGj00emh4nncnDpIgDbKgFtQXeT3cohJEQTVoaIiTBGmQBbWgvsnzfFIJoqAaFBolNEpolNAooVFCg0KDQoNCg0KDQoNCg0KDQoNCg0KjhkYNjRoaNTRqaNTQqKFRQ6OGRg0NDg0ODQ4NDg0ODQ4NDg0ODQ4NDg0JDQkNCQ0JDQkNCY2R54/J4GjABuyBI9c3FiABK5CBAoSaQk2h5sddlWugH3i1sAT2ax5ERV5rVhYOsTIPWxKgAg3YgH2jl5dtLEACViADBahAAzYg1ArUCtQK1ArUCtQK1ArUCtQK1ArUCGoENYIaQY2gRlAjqBHUCGoEtQq1CrUKtQq1CrUKtQq1CrUKtQo1hhpDjaHGUGOoMdQYan5EXFHHBuyBflbcwgIkoKuZIwMFqEADNmAP9HRbWIAEhJqnW2mOAnS17mjABuyBM90mFiABh9o4Dom8UG2jABVowAbsgX7m3MKhNg8/83PnFlagq3n/NgEq0IAN2APdNOrlWIAErMCh5gddefXaRgV63OFWXqz2+MVw9Ajzv3oEcxSgAg3YgD3Q/aE2xwIkYAUyUIAKNGAD9kCCmvvDOH2KvFht41Bjb6b7w0IBKtCADTjUxilS5EVrGwuQgBXIQAEq0IANCDX3B/ZhcX9Y6GriWIEMFKCreT+4PyxswB7o/rCwAIeaXI4VyEABKtCADdgD3R8WFiDU3B+kODJQgN42n3LuDwtb4DxZcqJH8NH07BbvnXmI5EiyOo+RnFiABKzAEUz9Ij2lFyrQgA3YAz2l1VvhKb2QgBXIQAEq0IAN2Dd6tdpGVyNHAlagq1VHASrQ1cTR1dTR1UYWet3axgIkYAUycMQ1v0hP9IU90BN9YQFSoGfheGGRvKps45Awv17Pt/E6GnkR2cYe6Pm2sAAp0PPC/Ho9LxZWIAMFqEADNmAP9LxYCDWFmkJNoaZQU6j5L6SNPPYSrzJqp8lrvErz4fa8WCjAEaH5cHu2LGzAHuiJs7AAPa4PgCdD8wHwZGh+ZZ4MEz0ZFnoE72pPhoUVyEABKtDVvMWeDAuHWh+N95KujQU44o69PPJqrTI2XcjLtTb69Y657gVbj0VPxwIkYAV6XHYUoAJdTRwbsAcS1AhqBDWCmv++LZQ9Fl7AtdGADRij6UVcG+seQi/PmkPo9VlzsLxAa2OMppdozbHwGq2NBKxABgpQ97h5pdbGFoPFGE3BaHoWziH0fJvjJhhNz7c5hJ5vs6MU/avoX0X/er7NwVKMpmI0Pd/mYClGUzGaCjWDmkHNoGYYTU+G7l3iybCwAv1yvHc8GRYq0IAN2DfqTIaJBUjAh9rj6dGRgQJUoAEbsA8c1+sVUBsLkICu1hwZKEBX8yvzY1IXNuBQ82dtnYelTixAAg41fwT32qfHE6yjARuwB/pxxeMMavICKBpnTpNXQJE/RnkJ1EYGCtDVvMV+ePHCBuyBfoSxP8J4ART5U4dXQD2eWx2HhN/Qew3U4znFUYEGbMAe6GcZLyxAV/Ne9xONF7qaX46farxQgQZswB7o5xsvLEACViDUFGoKNYWaQk2hZlAzqBnUDGp+9rE/RnmF1EYFGrABe6Cfg7xwxPVHLi+K2ihABRqwAXugn4K8sAAJCLUOtQ61DrUOtQ61Hmp2XcACJGAFMlCACjRgA0KtQK1ArUCtQK1ArUCtQK1ArUCtQI2gRlAjqBHUCGoENYIaQY2gRlCrUKtQq1CrUKtQq1CrUKtQq1CrUGOoMdQYagw1hhpDjaHGUGOoMdQEagI1gZpATaAmUBOoCdQEagI1hZpCTaGmUFOoKdQUago1hZpCzaBmUDOoGdQMagY1g5pBzaBmUGtQa1BrUIOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBS2x6SXVswL6xTQO5HAlYgQwUoAIN2IBhuq1cQKgVqBWoFagVqBWoFagVqBWoEdQIagQ1ghpBjaBGUCOoEdQIahVqFWoVahVqFWoVahVqFWoVahVqDDWGGkONocZQY6gx1BhqDDWGmkBNoCZQE6gJ1ARqAjWBmkBNoKZQU6gp1BRqCjWFmkJNoaZQU6gZ1AxqBjWDGm47Gm47Gm47Gm47Gm47Gm47Gm47WoNag1qDWoNag1qDWoNag1qDWodah1qHWodah1qHWodah1qHWg+1fl3AAiRgBTJQgAp0NXVswB44vaQ5FiABXc0cGShABRqwAYcaD/f0qq+NBTjU2K/XvWQhAwWoQAMONV9B9vKvhe4lC12NHQlYgQz0uOMZx6u7HmtKjgVIQI/gHeX+sFCAfr3d0YAN2APnJ1a8QfMjKxMJWIEjrq8K9/khlfFo1OenVCYWoI+mS8ycn8hAASrQgA3oat6p8/MqEwuQgBXIQAEq0IANCLUGtQa1BrUGtQa1BrUGNc958eH27PbVcS/n2kjACmSgABVowAbsC6vXdW0sQAJWIAMFqEADNiDUCtQK1ArUCtQK1ArUCtQK1ArUCtQIagQ1ghpBjaBGUCOoEdQIagS1CrUKtQq1CrUKtQq1CrUKtQq1CjWGGkONocZQY6gx1BhqDDWGGkNNoCZQE6gJ1ARqAjWBmkBNoCZQU6gp1BRqCjWFmkJNoaZQU6gp1AxqBjWDmkHNoGZQM6gZ1AxqBrUGtQa1BrUGtQa1BrUGtQa1BrUGtQ61DrUOtQ61DrUOtQ61DrXpJerYN5bpJRMLkIAVyEABKtCArtYde+D0komuZo4ErEAGClCBBmzAHji9ZCLUCGruJWOLr3pN2UYBtkD3h7EPWb1ebKNHEEcGClCBBmzAcb3qXeL+sLAACTjUzIXdHxYKcKiZX6/7w8IGHGpGA90fFhYgAV2tOrqaX687gfkYuxMs7IHuBAs9bnP0uN4Kd4Lml+NO0FzNnWChAg041JpfjjvBRHeChQU41Jpfr6d/88vx9G8+8p7+zS/H07+7hKf/wh7o6b+wAAlYgUOt+zV4+i+0mEYNM8pzfqLn/MICJCBmasdM7ZipnvMLodah1kNtfkhxYQF6g8SxAhnoDVJHBRqwAXug5/zCAiRgBTIQagVqnvO9OTZgD/ScX1iABKxABgpQgVAjqBHUKtTcH8YOU12fXWRHASrQgA3YA+edwsQCJGAFQo2hxlBjqDHUGGoCNYGaQE2gJlATqAnUBGoCNYGaQk2hplBTqCnUFGoKNYWaQk2hZlAzqBnUDGoGNYOaQc2gZlAzqDWoNag1qDWoNag1qDWoNag1qDWodah1qHWodah1qHWodah1qHWo9VCr1wUsQAJWIAMFqEADNiDUCtQK1ArUCtQK1ArUCtQK1ArUCtQIagQ1ghpBjaBGUCOoEdQIagS1CrUKtQq1CjV4SYWXVHhJhZdUeEmFl1R4SYWXVHhJhZdUeEmFl1R4SYWXVHhJhZdUeEmFl1R4SYWXVHhJhZdUeEmFl1R4SYWXVHhJhZdUeEmFl1R4SYWXVHhJhZdUeEmFl1R4SYWXVHhJhZdUeEmFl1R4SYWXVHhJhZdUeEmFl1R4SYWXVHhJhZdUeEmFl1R4SYWXVHhJhZdUeEmFl1R4SYWXVHhJhZdUeEmFlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXiJnxZHo26leqnfxgbsge4lCwuQgBXIQAFCjaHGUGOoCdQEagI1gZpATaAWK5yVp5dMfKg9fs7+YWAPHF6ysQAJWIEMlIHkqEADulp17IF2AV3Nr8wIWIE+bh5seslEBRqwAXtgu4AFSMAK9NVmcTSgt8InTOuB/QIWIAErkIHeZ+qoQAO6mjn2jV6EuNHVxJGAFegr6eooQAUasAF7YLmABUjACvRWNEcDNqC3YsxJL03cWICjFaPCqnpp4sbRZ6PYqnpp4kYFDrVRYVW9NHFjD/RPVC8sQAJWoKtVRwEq0IAN2AO9jNGfhFfBIjvuAsA6CxYXKtCADdgDZ8HixLIqBKufL7exAhkoqwKzzuLGhQZswB7oxY0LC5CAFYiRV4y8YuQVI28YecPIG0beMPKGkTeMvGHkDSNvGHnDyDeMfMPIN4x8w8g3jHzDyDeMfMPIN4x8w8h3jHzHyHeMfMfId4x8x8h3jHyPkV+1lhNj5Fet5cQKZGCMvNdabjRgA8bIe63lxgIkYAV67/iVec4vbMAe6Dlf/J95zi8kYAV6ee/lKEAFGrABe+AsR55YgAT0MVZHBRqwAXsgX8ACJGAFMhBqDDWGGkNt5PzjaWzgyPmNBUjACmTgUCPv9ZHzGw3YgK7mve6//gsL0NXMcahVl/Bf/4UCVKABG7AHuhMsLMChNkqEqhdYbnQ1chSgAg3oan7p7gQT3QkWFiABK5CBAnQ1HyF3goWu5r3jTjDR7wkWFiABXaI5ClCBBmzAITE2+6vXWm4sQAJWIAOH2ng5rXqt5UYDNmAPLBewAAlYgQyEmlvFKCKoXmu5sQFdbcxJr7XcWICupo6uZo6u1hwFqEADNmAPnEVRTjWIgyRIg2yTZ/CoOqhe7LixB/r9u/e8375PoqAaxEESNCKOMoXqpYvV79y9dLFOqkEc5LeVThpkQS2ob5q/yE4u4qPlabhwqIi31tNwoQD9Mn2IPLV8q82rEDf6I4qTB/Ah9MxaqEADNmDfXdKjO3t0Z4/u7NGdPbrTE8k70c92m53o1YXVN8C8unCjN7U5MtCvtDs+rpRnLAtqQX2Tf8B+UgkaEXXiuCbfcfBaQZ//Xio4yT9SP2n8a3KioBrEQRKkQS4ysQHHuKsH99vihQXol8mOHkEcG3Bcp1+7/xbOjvHfwoUErEAPq44CVKBFh3smLeyBAjWBmkBNoCZQE6gJ1ARqAjWBmkJNoaZQU6h59i2UNdW96G9OXy/629iAPdBTcKL/TqlfgifTQgL6U6oTB0mQBllQC+qb5lKXUwmioNDoodFDo4dGDw3/jfL9Vy/Bm+gleBtHY3xP1UvwNo5O9H1dL8HbKEAFGrABe6D/RvkGrZfgbSTgUPPNXC/B2yjAoebbtl6Ct7EBfdN1kK9wTSpBFFSDOMgjDp/xgrrqe8JeUFd9T9gL6jZWIAPHlfqmsR+rttGADdgD55a60xDznWSvvdtYgUPMH1u89m6jAl1sBmtAF/OmeZYuLECfv041iIMkSINsk2di887ynPMda6+6q92nlv/kLVSgAceV+nOZV90t9KRbWIAEHGou5r97kyTIO8XJglpQ3+QJPakEuYhPOb/tXMhAC/RbSX/487K6jT5XnGoQB/lVeu/5LeVCA3qP+LV4ug5kr6mrY9GQvaZu4/jlGet87DV1PNbj2GvqeCzusdfU8Vhx4mv+Pk40YAP2wPkbObEACehq6uhq5uhqfr3F1fwi/cez+EX6r+fCAiRgBTJQgB7Mm1kvYAESsAIZKEAP5h3F/s+qYwUyUICjbd60kXKLWlDfNPJtUQmioBrEQRIUGhIaEhoSGhoaGhoaGhoaGhoaGhoaGhoaGhoaFhoWGhYaI9nYh38k26IW1DeNZFtUgiioBnGQBIVGC40WGi00emj00Oih0UOjh0YPjR4aPTR6aPSt4RVpi0rQ1vACMR5P+uwFYjyWDdgLxHjc87KXgvF4yZO9eovHkz77AWALfVov9FtMjzCmtfi/GrN6EQdJkAZZUAvqm8YPz6ISFBocGj7XyZvmE3v8XrLXZo3nB/bSrEUUVIM4SII0yIJaUN+koaGhoaGhoaGhoaGhoaGhMWa2eF+OmT1pzOxFQ8ObOWb2ohrkvdAd/VHAB9hndPVR9Sm9kIAVyEABKtCADdgDO9Q61DrUfHpXHzWf3wsFqEADNmDf6DVYGwuQgBXIQAEq0IANOIZh9KmXYC0qQRRUgzjIIw43pvlExo6Pf60ee/ykLKpBj389HuzYq6kWaZAFtaC+yX9Vxj0Pe8kUj99y9pKpjQb0JjbHHsgXsAAJWIEMFKACDQg1hpr/9IxnW/aSqY0EHGrs/eI/PwuHGnu3+g8Qe7f6LxB74/0naGEP9B8hdmH/FVroaj5c/jskLjzSVT3sSNdFGmRBLahv8h8d8QEZN3vsFuUFUCzzLxiwAceVugl4AdTGAiRgBXpcb6CnoVuBFzWxeAM9DRcSsAIZKEAFGrABXW10nBc1bSzAoTaWK9iLmjYyUIBDzSexFzVtbMDRvaNpXtO0qASNRFKnGsRBEqRBFjSGsDn1TSNbF432eGZ6IdPGCmSgBfrP41gOYS9O2ugR2LECGfi4UvP2jqRdZEEtqG8aCbuoBFFQDeKg0ODQ4NDg0ODQkNCQ0JDQkNCQ0JDQkNCQ0JDQkNDQ0PDcHAtF7CVIGyvQ+8vH3e8SFyrQx8HnoN8oLvR7Ix8dv1VcWIAErEC/CfPh82xe6LdhPmbzftKvbN5Q+qyad5SO85Zyoqv5Rc6byokVOLrQw47f30UaZEEtqG+at5A+a+f9ojfb87h5knkeL2zAvtELing8x7MXFG0kYAUycFyqOD3EVijXYkfXUsceuD8nybw/TcG8j7Nl3sfZMu/jbNnrgHisBrDXAW2sQAYKUIEG9CcIv1S/q53oabuQ9lX5cbaTOGhcs7fOj7OdZEEe3Bvnv60T/bd1oT+heKv8t3WhPwd5BP9tXShAnUceM+/jq5n38dXM+/hq5n18NfM+vpp5H1/NvI+vZt7HVzPv46uZJTQkNCQ0JDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NOYj3cQCJKD3mA+o5+lCAfrDY3M0YAP2QM9TX7Hw8h7xFQsv71n/sQZx0LiZ9/UMr/jZaMAG7IHj53ljARKwAhkItQ61DjU/19ob4+daD/J6n0UliIJqEAdJkAZZUAsKDb819rUcr/LZSMAKZKAAFWjABuyB5GrVsQAJKECPII4eYcwbr+fZWIAE9Os1RwYKUIEGbMAe6E+xCwuQgFBjqDHUGGoMNYYau5qPhT/1LhxqviLlVT4bK3Co+SqTV/lsVKABG7AH+vPvwgJ0NR8sfwReyEABuho7GrABe6A/CS90NW+8PwsvrEAGClCBruYdZQ3YA9sFLEACViADBahAqLknjHO12Gt/FronLPTFDu9J9wRfiPGKoI2+puIT3D1hoa+qeO+4JyxswL7RK4I2FiABK5CBAlSgARsQagVqBWoFagVqBWoFagVqBWoFagVqBDWCGkGNoEZQI6gR1AhqBDWCWoVahVqFWoVahVqFWoVahdpcDxPHHjhXxCYW4KhK8pTWeWz3RAYKUIEGbMAeOI/tnuitUEe/XnM0oF9vc+yB7g8LC5CAFchAjzuSwat8VpcYWuw5v7ACGTj611fAvMpnowEbEKPZoNYwmg2j2TCaDaPZMJqe8/MaPOcXYjQbRtNzfl6D5/xCAkKtQ61DDTmvyHlFzity3q6YO3YVIAErkPc1eMHPRgUa4jYg1JDzhpw35Lwh5w05bzPn/RqKAg3YgNGTXvAjvsLoBT8bvSfJsQIZKEBv2wxmwAbsgZ7zCwuQgBXoauoowJjgfqKa+KKcn6i20BN9YQHG1PAT1TZisBiDxRgsNmADYrAEgyUYLMFgCQZLMFgiQAVianj6+2KfFyBtJKC3wvvB09/X/bwGaaMCDdiAPdCtYmEBEjBuDP2UtI0G9Lg+H9wUJrop+Cqj1ydtJOBoBftwuyksFKC3wkfeTWFhA/ZAN4WFBUjACmSgAKHm358dTfPapUUlaDyEi1MN4iCP2B0VaEDfELkce6An/sIyv5PKbX+Fltv+Ci23/RVabvsrtNz2V2i57a/QcttfoeW2v0LLbX+FlhuFBoUGhQaFBoUGhQaFBoUGhUYNjRoaNTRqaNTQqKHhv+m+COxFUBsb0DvMR8FTfaFvIpEjASvQ95F8eDzVF7qaORrQ1fxyPNUnzl2xieOB0K9mf5SW2/4oLbf9UVpu+6O03PZHabnNLTCfBp7Ovo7rNU3iK7Ze07RRgAocV+oLo23uek3sgXPfa2IBupo6ViADBahAA7qad5En+URP8oUFSMAKZKAAFWhAqHmS+7qyl09tLEDf1fOe9CT3FVEvodo41Hxh0ouoNg41X5j0MqqNfaOXUW0sQAJWIAMFqEADNiDUCtQK1ArUCtQK1ArUCtQK1ArUCtQIagQ1ghpBjaBGUCOoEdQIagS1CrUKtQq1CrUKNf/l92VaL7zaaMAGHPffl6O/CbSwAAlYgQwUoAIt0D3Al2y9nEp8ddrrqTb69ZqjAg3YgD3Qf+4XFqDHbY7oX0WLPecnes4vLEDv3+5YgQwUIEbToGYYTcNoNoxmw2g2jGbDaHrOz8tpGM2G0WwYzYa2ec77mrgXYm0caqO4jr0Qa2MFMnCo+VK612JtNGAD9oXitVgbC5CAriaODNQ1WOIFWDJW68ULsDb2QE/0hWUNgFyFgBXIQAEq0IB7sOSKRJcrEl2uSHS5ItHlikSXKxJdrkh0uSLRxSu0ZGwFiFdobSxA7yjvB0/p5lfmKb1QgAo0YAP2QP+xX1iAXjNwOQpQgQYcccePsHgV10JP6YUFuH+axSu5NjJQgAo0YAP2QE/0hXXu/ohXby2SoLF55R06Un9RC/Lr99noib+wAMc2o0+wkfeLOMi7ynU86xcasM39KPEKr0kj5xeVIAqqQRwkQRpkQaHRQqOHRg+NHho9NHpo9NDoodFDo4dG3xpe4bWoBHk5ijpWIANlbcuJnzi20XusOTZgD5ylL92xAAlYgQwUoAINOPbeL79033yf6LvvCwtw7PGPDQDxE8c2MlCAChwb/ePhTrySbWMP9Lt8/6t+lz+JgmoQB0mQBllQC+qbODQ4NDg0ODQ4NDg0ODQ4NDg0ODQkNMQ7zUdWCFiBDBSgAg3YgN5pI3G97G1jAbqaOFYgA13Nh96raRZaoF3AUYzs7fGS6UleCOXDZgZswB448nxjAY5LLH61I9U3MlCAruYJ0AzYgK7mV9svYAF6gZdP316BDBTgUBuL/uJ1bzrW9MUr3HSspYhXuG0kYAV6XHX0uObocbvjiDvWfsQr3Db2QK+tWTjUxiqaeJHbxgpk4FCrfr1eV1P9cjy5xxqY+NFiWv1yPLnZJTy5FxKwAhkoQAV6IZZfgyf3xBqTyM8T20jACmSgAF3CG1QN2IBe7eXN5AtYgASsQAYKUIEGbECoCdQ8zdmH29N8YQUyUIAKNGAD9kBP84VQU6gp1BRqs2bOR34WyPnIzwo5R0/zhQXocZtjBTJQgLoqXGSW0y1swB44C3AmFiABK9B7Z6IBG7AHes4vLMBxveLT0/NYfE6OX3AdSzjihXMTvXBu44gwFoHEC+c2jn4Y9YHihXMbBTiudywCiRfObWzAHujZvbAACehq6shAASrQgA3YV7GbeLnc7Acvl9vIQI9rjgo0YAP2QM/usX4lXlq3kYAV6DWArubZvVCBXgboA+DZvbAHenbPBnl2LySgq3VHV/Nh8exW71TPbvXe8exe2AI9j9Xb5nm8sAIZ6HG9bZ6xPrm8jG6hZ+zCAqzAXS8qs05uYQPuKlKZdXILC5CAFchAASrQAv2nWb3P/Kd5IQErcDTefLD8p3mhAg3orfBxm7WwjrMWdmIBErACGShABXr18uioWS230CtRiyMBK5CB3gpyVKABG7AHzrLXiV6ZbY4ErEAGClCBBmzAHjjL1Sd6K6ojAwWoQG8FOzZgD/TkXeitmEjACmSgABVowBboaeoPn15bt7ECGShABfrTr1ML6pvkCipBFLTexhCeq2lOEqRBFtQ2ecL6k61XzanN/ypABXrbL8cG7IGeuwsLkIAVyEABKhBqBjWDWoNag1qDWoNag9rM3ebYgD3Qf2IXeu90RwJWIAMFqEADNqBXfY/L8VK5jQVIwKE2VuXEy+U2ClCBtgdLZkZP7IEzoycWIAErkIEC9NJ1cuyBs3h9oreiOnor2LECGShAb4U4GrABe6BntK+TeSmd+hqVl9JtrEAGClCBBmzAHug/xwuh5nnevZme5wsZKEAFGrABe6DfbC90NXV0NW+x/0gvZKAAFWjABuyB/tO9sACh5ittl08uX2pbKEAFGrABe+Dwh40FONbb/GnfS+k2MlCACjRgA/bA5mo+aVsBErACGShABRrQqxmc+qZZVONUgiioBnlE79nuVzrswAvjNg4nG/VI4oVxGyuQgQJUoAEbsAcWf43icvT3KIojAwWoQAM2YA8kf52CHAuQgBXoatVRgAo0YAP2wHoBXY0dXU0cK5CBAlSgAVuMRcUIMUbI33lZSMAKZKAAFdjXe/Iyj8paWIDeCnOsQG+FR5jvukxU4GiFL+x4YdzGHugvvJAPwMj2jQSsQAYONfLe8WxfaMAG7IGe7QsLkIAeVx3bOiRAvATOfBnJS+A2VqBfmU9lz9WFfmXeD56rCxtwXJnfAngJ3MYCJGAFMlCAQ80XorwEbmMD9o1eArexAGm32IvdzBcbvdhtowEb0OOOWeLFbhsLkIB1HTwh83SrhQJUoAEbsAf66VYLvXf80j2PFwpQgd4KcWzAHuh5vLCsA0bE5qkiEyuQgQJUoAFboGesPzR5LdvGCvRWmKMAFeitmMEa0FvhXeKvqy0swKHmq4Zey7aRgQJUoAEb0F+68rnjebywAAlYgQwcfeYLBPNILV+OmGdq+arAPFRrYQESsAIZKMAxFr4O4hVuGxuwB85Dg/zK5qFBEwlYgQwUoAIN2AL97BFf+fFaNmPPIc/uhQwUoAIN2IA+FiPJvMRtYwEScLTC10HW8VwTBahAAzZgD/TTghYWoLeCHQWoQG+FODZgD/Tfbl9I9dq2jd4Kc6xABrpac1SgARuwB3rOLyxAV+uOFchAASrQgN5n3iCOkfeitjluXtS2kYECVKABGxAjLxh5wcgLRl4w8oKRF4y8YOQFIy8YecHIK0ZeMfIjTR9bk97kkafBNTEnHi3R+U97oN8pT/S3udzevJZrotdybSxAAlbgKOFz//Naro0KNGAD9sByAQuQgBUINX+n073Sa7k2GnCouRV6LddCf9lz4VDzsfNaru7J47Vc3dPEa7m6T32v5dqoQAM2YA8cU7/7s4DXcm0kYAUyUIAKNGAD9kCGGkONocYe19vmL3outEAvvvRlJq/E2uhq3iB/O3Oiv565sAAJWIHeNp8w/o6mr2b7SVgbDdiAPdAuYAESsAIZCDWDmkHNoGZQa1DzdzL9t9MrsbonjldirU5tGIuGsegegRwLkIAVyEAButpEAw41nRJ9oXol1ka/Xnb0COJoQL/e4tjXsKgXWm0sQAJ6XHVkoAB1Dbd6odXGBoQaQY2gRlDzLJzo2aITK5ADfYKPpXz1I6s2MnBc5Fi/V6932mjAcZHmXeKvOE/0d5zHerh6vdNGAg418173SuaFAlSgARuwB3o6mY+bp9NCAlYgAwWI4Z4vOHvbPHHmCHniLCQgBtYwsIaB9cRZiIE1DKz1wHYBy8oW9eKnjRXIQAEq0IAN2AM9RcyvzFNkYQP2jV7MtLEACViBDBSgAg3YgFArUCtQK1ArUCtQ83QaWwTq5UwbDdiAPdDTaWEBErACGQg1ghpBjaBGUKtQq1CrUKtQq1CrUKtQq1CrUKtQY6gx1BhqDDWGGkONocZQY6gx1ARqAjWBmkBNoCZQE6gJ1ARqAjWFmkJNoaZQU6gp1BRqCjWFmkLNoGZQM6gZ1AxqBjWDmkHNoGZQa1BrUGtQa1BrUGtQa1BrUGtQa1DrUOtQ61DrUOtQ61DrUOtQ61DroUbXBSxAAlYgAwWoQAM2INQK1ArUCtQK1ArU4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheUuElFV5Sp5eYo6s1RwYKUIEGbMAeOL1kYgESEGruJWOnWb1Aa6MCXa07NmAPdC8Zm8Pqp5xtJOBQG693qJdt9eYtdi9ZqEADNmAPdC9ZWIAErECoVahVqFWoVahVqDHUGGoMNYYaQ42hxlBjqDHUGGoCNYGaQE2gJlATqAnUBGoCNYGaQk2hplBTqCnUFGoKNYWaQk2hZlAzqBnUDGoGNYOaQc2gZlAzqDWoNag1qDWoNag1qDWoNag1qDWodah1qHWodah1qHWodah1qHWo9VDj6wIWIAErkIECVKABGxBqBWoFagVqBWoFagVqBWoFagVqBWoENYIaQY2gBi9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxheIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASmV7SHRVowAbsgdNLJhYgASuQgVCrUKtQq1CrUJteIo4FSMAKZKAAFWjABuyBAjWBmkBNoCZQE6gJ1ARqAjWBmkJNoaZQU6gp1BRqCjWFmkJNoWZQM6gZ1AxqBjWDmkHNoGZQM6g1qDWoNag1qDWoNag1qDWoNag1qHWodah1qHWodah1qHWodah1qPVQ0+sCFiABK5CBAlSgARsQagVqBWoFagVqBWoFagVqBWoFagVqBDWCGkGNoEZQI6gR1AhqBDWCWoVahVqFWoVahVqFWoVahVqFWoUavEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCS7w6ro+32dWr4zZWIAMFqEADDrVR2KdeHbfQvWRhARKwAhnoauaoQAM2YA90L1lYgASsQAZCrUGtQa1BrUGtQ61DrUOtQ61DrUOtQ61DrUOth5rX120sQAJWIAMFqEADNiDUCtQK1ArUCtQK1ArUCtQK1ArUCtQIagQ1ghpBjaBGUCOoEdQIagS1CrUKtQq1CrUKtQq1CrUKtQq1CjWGGkONocZQY6gx1BhqDDWGGkNNoCZQE6gJ1ARqAjWBmkBNoCZQU6gp1BRqCjWFmkJNoaZQU6gp1AxqBjWDmkHNoAYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvafCSBi9p8JIGL2nwkgYvafCSBi9p8JIGL2nwkgYvafCSBi9p8JIGL2nwkgYvafCSBi9p8JIGL2nwkgYvafCSBi9p8JIGL2nwkgYvafASr/F77LYXZ0pcE7NzdZbEmticu3NL3MHz9KrFJTElrok5sSTWxEmXky4nXT+19hovN6hXAwZT4pqYE0tiTWyJW+IO1qSrSVeTriZdTbqadDXpatLVpKtJ15KuJV1LupZ0Lela0rWka0nXkq4l3ZZ0W9JtU5eda2JOLIk1sSVuiTu4X4lL4qTboTurIH1LY9Y7jnfjdNY7LuyB8/FkYgESsAIZKEAFQq1ArUCNoEZQI6gR1AhqBDWCGkGNoEZQq1CrUKtQq1CrUKtQq1CrUKtQq1BjqDHUGGoMNYYaQ42hxlBjqDHUBGoCNYGaQE2gJlATqAnUBGoCNYWaQk2hplBTqCnUFGoKNYWaQs2gZlAzqBnUDGoGNYOaQc2gZlBrUGtQa1BrUGtQa1BrUGtQa1BrUOtQ61DrUOtQ61DrUOtQ61DrUOtbzWYl5sICJOC0DXHmxJJYE1vilriDy5V42lVzpsQ18dRVZ0ms4Ni7tSv2bu2KvVubJZoLGShAjzbeRXuwJW6JvRXjTCLzU/KCS2JvBXnvzZuIxZxYEmtiS9wSd/C8iVhcEiddTrrzJmIciGTXvIkYb6rZNW8iFlvilriD503E4pKYEtfEnDjpzpsI8pGdNxGLW+IOnjcRi0tiSlwTc2JJnHTnTUT18Zo3EYs7eN5ELC6JKXFNzIklsetWn+3zJmJxA88f/+ozef74L7bEe2/ArthlsSt2WeyKXRa7YpfFrthlsSt2WeyKXRa7YpfFrthlsatDLXZZrMQui5XYZbESuyxWYpfFSuyyWIldFiuxy2IldlmsxC6LlQtqBWoFagVqBWoFagVqBWpl70TYrEpd2APpAhYgAecgebRpCuOdEivTFKr/nWkKi0tiSlwTc2JJrIktcUucdDnpctLlpMtJl/cSoc3S04UKNGAD9sC5ZDGxAAlYgVATqE0jGG+/WJlGsLgl7uBpBItLYkpcE++FSZslqAsVOEX9YqYLLO7g6QKLS2JKXBNzYh/Q8Z6OlekCiy1xS9zB81FicUlMiWtib6y3e65lTFSgARuwB8Zahnlx6SOwOFvilrgHe4FpcEk8L1ada2JOLIk1sSWez7XFuYPnjcTikpgS18RT15wlsSaez9PVuSXuYJrtbc4lMSWuiTmxJNbElth1xa95usvk6S6LS2JKXBNzYkmsiV1XvF3TLcT7YbrFYk484/h1zluIxZa4Je7geQuxuCSmxDUxJ0660znUr386x+KWuIOncywuiSlxTcyJXVe9f+YtxGJL3BJPXe+raR6LS+Kp622Z5rGYE0tiTWyJW+IOnuaxuCROutM8zNs41yEWS2JNbIlb4g6e6xCLS+IZn53n3x/XUKdvLC6J/TpHUabV6RuLObEk1sSWuCXu4Okbi0vipDt9wx+C6vSNxZJYE1vilriDp28sLolddxw1ZHX6xmJOLImnrvfV9I3FLfHU9bZM31hcElPimpgTS2JNbIlb4qQ770q6t3HelSymxDUxJ5bEmtgSN/D0k+79M/1kcU3MiSWxJp7xxbkl9naNA4+sTj9ZPHXNmRJPXR+L6SeLp673z/STxUO3jJOdzQtPg7vzyCMvPQ0uzt5295PN1bk6c2Jx9ja6n2yeut5Ga4mnrrexXYmnrrexUeKp621snHjqehubJnbd4m10P9nsusXb6H6yOdbLrXZKXBNzYkmsiaeu91VviXuwF6Y+WJxLYkpcE3NiSayJLXFL3MEl6ZakW2Z8dZ5xzHnGac4dTFfikpgSp+undP2Urp/S9VO6fkrXT+n6a7r+mq6/pn6rSbcm3WpoI19oI6fr53T987N+izmxJE7Xz+n6OV0/p+uXdP2Srl/S9Uu6fknXL6nfJOlK0tULbdSKNmq6fk3Xr5rYEqdx13T9lq7f0vVbun5L12/p+i1dv6Xrt3T9lvrNkm5LutMHZhtnvs82tnT9LV1/S/O2p3nb07j3NO59xu/OnDj2bYy7JrbEsW9jMvPal/Vk5q8v38nM33Hwk8nM38WW2K/fl7Nk5u/kmb+LS2JKXBNzYkmsiS1x0i1Jl5LuzPdxhpXJzPfFNTEnlsSa2BK3xB08831x0q1Jt874zXnG6c4dPPN9cUlMiWtiTiyJNbEldt3q4z7zffLM98UlMSWuiTmxJNbEljjpytQdv8UyfWBxSUyJa2JOLIk1sSVuiZPu9AdfTpTpD4spcU3MiSWxJrbELbHr+kqMTH9Y7Lq+QCLz/oG9f7AvaoJ9URPsi5pgX9QE+6Im2Bc1wb6oCfZFTbAvaoJ9UZOedHvSdT8pPFkTW+KWuAfrvH9YXBJT4pqYE09dcdbElrgl7uDpP4vn3+/OLXEHT99YXBJTYr/OcViR6fSNyTPffQ1BZ74vronn3/frmT6wWBP7deqM2RJ38PQHfx7X6Q+LKXFNzIklsSa2xC1xB0vSlaQrSXf6g3hfTX9YLIk1sSVuiTt4+sPikpgSJ11NutMfxukrptMfFlvilriDpz8sLokpcU3MiZOuJV1LupZ0Lem2pNuSbku6Lem2pNuSbku6Lem2pNuSbk+6Pen2pNuTbk+60x98zUenPyy2xC1xD7bpD4tLYkpcE3PiqavOU7c7W+KWuIOnPywuiSlxTcyJJXHSnT4zTpgxmz6zuIOnzywuiSlxTcyJBRzl5GZRTm4W5eRmUU5uNr3H15xses9iTWyJW+IOnt6zuCSmxDVx0uWky0mXky4nXU66knQl6UrSlaQrSXd6j/l8EWw/mljilnjqOk/vWVwSU+KamBNLYk1siVvipDu9x9f/bHrPYkpcE3NiSayJLXFL7Lq+9mbTexaXxK7rpQE2vWcxJ5bEmtgSt8QdPL1ncUmcdKf3NM/16T2LJbEmtsQtcQ9u03sWl8RT15wlsSae8btzS+zxfRupTY9ZXBJ7fN/5a9NjFnNiSayJLXFL3MHTYxaXxEmXki4lXUq6lHQp6VLSpaRbk25NujXp1qRbk25NutOXfC1z1pJubok7ePrS4pLYLZAdZ8jqbIlb4hnS//60nMUlMSWuiTmxJNbElrglTrrTWnyZdZaDFl9aneWgmyWxJrbELXEHT2vxx/tZDrqZEtfEnFgSa2IDNyzrzLLP4kvAs+xzc03MiWe7mrMmtsQtcQdPC1lcEs/lEo/fa2JOLIk1sSVuiXtwv67EWO7pF9rVp4Us1sSWGO3qF9rVy5W4JKbENTEnRrt60cSWuCVO7aLUrrVsOpkS18SKtlNq17KKyR28rGJyaldN7aqpXTW1q0piTWyJU7tqaldaTu2c2sWpXZzaxZw49Sen/lzLpt52Se2SkpgS18SpXZLaJaldktolaZ5Imiea5ommdmlqV1pm7ZrapaldmtqlaZ5o6k9N/RnvrliPd1esx7sr5oWmj6XFy1kTW+KWuIPdTDaXxJS4JubESbcl3ZZ0W9JtSbcn3Z50e9LtSbcn3T51i7MmtsQt8axcegxcu+Ye8OKSmBLXxJxYEmtiA5fZFnGmxDUxJ5bEmni2RZ1b4g6mK3FJTIlrYk4siTVx0qWpa84dXK/EU7c7U2LXHWvfbZaibnbd8a2KNktRN7vuWAtrsxR1cwe7sWwuiSlxTcyJJbEmTrqcdDnpStKVpCtJV5KuJF1JupJ0JelK0pWkq0lXk64mXU26mnQ16WrS1aSrSVeTriVdS7qWdC3pWtK1pGtJ15KuJV1Lui3ptqTbku70ouI5Mr1osSTWxFPX5+r0osUdPL1ocUlMiWtiTiyJNXHS7Um3Q9fLW4NLYkpcE3NiSTzjD/8p03/GHlUr038We5yx/9TK9J/FklgTW+KWuIOnt4yb0lYIY12mh3j/z8rVzR08PWSxX/MoH2+zcnVzTcyJMcdKTbrJQ0rykJI8pCQPKclDyvIQvx6uiTmxJFZcz/SQxS1x0k0eUpKHlOQhJXlISR5SkocUwdwukvpZUj9L6ufpIfN6NPWzpn5OHlKSh5TkISV5SEkeUpKHlOQhxdL4Lg+ZnPrZUj9bGt/pIYtTPycPKclDSvKQkjykJA8pyUNKS+1tqb3JQ0rykNJSP7fUzy318/SQ8c3oVqaHLJ797PGnhyzmxJJ4ttfzenrI4pa4B89a2M0lMSWuiaduc5bEFrk8619p7GW2Wf+6uFyJS2LMJSo1MSeWxJrYErfEGNNZ/7q5JKbENTEnlsSaGHNp1rnS+JhRm3Wumymxx6/eP9OLql/n9KLFmtgSt8QdPL1ocUlM4Dk/2ft5zs/Fmti1xK9tzs/FHTzn5+KSmBLXxJxYEmvipNuTbofurKGkcWZ/m7WSNGp/26yPXP99zqvxPeU26yNp7NW1WR+5uSbmxJJYE1vieW3q3MFzXi2euuY8dZvz1O3Orjv2CNusj1xtmfNqcWrjmksef82lyTUxJ5bEmtgSt8QdvObS5KnrbVlzydsyf9cWc2JJPHW9vfN3bXFL3MHzd21xSUyJa2KPyd6H87eJfZ7M3yP2+TB/j9j7cP4eLZbEmriD5+8L+1yavy+LZxyfD/N3hL2v5u8Ce1/N34XFnHjqev+svJtsiRviz7yb/33m3eKSmBJX9MPMu8WSWBOjvbN2cLZx1g5uRj/wzJFRh9145sjYS2uztm9zS9zBM0cWe/zxUYg2a/ho1Fu3WcO3WRNb4pbY4489tjZr+DaXxJS4JubEknjqep/MfFncEnfwzJfFJTElromnlvfnzJHFlrgl7uCZI4tLYkpcE3PipCtJd+bR2MtqPO/9FnfwzK/FJTElrhgXTWOqaUw1jenMr/E9hjZr+Gicw9xmDd9mS9wSz2vzuTTv0xaXxJS4JubEklgTT12f5zMfF3fwzMfFJTElrokF7Z052Hz+zxx0lpmD3sZZ57eZEtfE3pZxSnSb9X+bNbG3ZewNtln/t7kjTkm6JemWpFuS7vzdXCyJNbElbomTLiWtmfvq1zxzf7Elbomnt3hbZu4vLokpsV//qEVoMnN/sSTWxJa4Je7gmfuLS2JKnHQ56XLS5aTLSZeT7sz38cWhNuv5aHyDps0aPhp1FW3W8G1uiTt45vLikpgSz2v2cZm5vFgSa2LD9cznuMUdPJ/jFpfElLgmTm2c/jB55Gyb6TJSts1ZPjK2Ne+okbAbe+BI140FSMAKZKAAFQi17mo+Kr1v9EK6jQVIwApkoAAVaMAGhFqBWnE1ciRgBTJQgAo0YAP2QLqAUCOokccdg+XnKLaxT9+87m4jASuQgQJUoAEbsAeyS5gjASuQgQJUoAEbsAfKBXSJ5ujBuqMCDTiCjXqC5vVyC0cqbixAAlYgAwWoQANCYmbUnBszoxZLYk1siVviDp6/uItLYkqcdFvSbUm3Jd2WdFvSnb+4czLNX9zFJTElrok5sSTWxJa4JYburHrbXBJT4pqYE09dddbEU7c7t8QdPH+VF5fElLgm5sQe3+fArGKjUa3RZhXbZo8zShnarGLbzIklsSa2xC1xB89f5e79MH+VF1Piqet9Mn+VF0tiTWyJW+IOnr/KY0ezzcq3zUO3Xt4n/qu8mRNLYk1siVviDpYZ3/tWZhxy1sQzjrddWuIO9l/ozSUxJa6JOfHU9X5QTWyJp673iXawXYlLYkpcE3NiSTx1m7OB24zp87NR4pqYE3vM4n3rXrHZErfE3pbi/e9esbkkpsQ1MSeWxJp4xh/jOKvRNpfElHjGr86cWBJr4tkudm6JO7hciUtiSlwTc+JHzO6LzPMAw4l+fMjCUZs6SiPaPMBwYQWOUgHfKpoHGC5UoMcdo+11ZN23jLyMbOOI4Js+XkTWfZ3Ya8g22kDvPz+NbGEP9NPIfEncy8c2ErACGShABRqwAXugQE2gJlATqAnU/NwxX4f34rGNPdDPHVtYgASsQI/rI+TngSxUoKv5CPm5Ywt7oJ875sv2XkfWfaXey8g2upqPkJeDLBTgUPMFbK8g2zjUfCnbjxPsvtLsZWUbh1r1LvFzxxZW4Ajm6e7VYht7oJ/usbAACViBDBSgAqHWodZDbX6SeWEBErACGShABXoyjI6axw66i8xjBxcy0NOJHBVowAbsgTN5Jxagx62OAlSgAT0uO/ZAL1hfWIAErEAGClADGZ3K6FTP2HkNnrELEYwRjFMwA+LSGZcuuHTBpQsuXXDpAjWBmkBNoCZQE6gp1BRqCjWFmmdsnYgh9IQc5ext1mfN+WCYJYZZ4gm5UIEGbEBINMyShlniCbmwAhmIOdkwJ+eDtM/q+SDtaniQ7niQ7niQ7niQ7niQ7niQ7r0B92N7v64LWIAE3A/S/YoH6X7Fg3S/4kG6X/Eg3a94kO5XPEj3Kx6k+1UKkIBQK1ArUIsH6X7Fg3S/4kG6X/Eg3a94kO5XPEj3Kx6ku5dcbWSgAKFGUJsP3eK4H6T7FQ/S/YoH6X7Fg3S/4kG6e33UxgIkYAUycD9I9ysepPsVD9L9igfpfsWDdPdKqI0ErEAGCtDW83f3+iZ/0u5e3rSRgPtBul/xIN2veJDuVzxI9ysepLvXNW3sgXYBC5CAkDA03jyCX067gAVIQP+Z8QiekAsFqEADNmAPnD+hEwuQgFDrUOtQ61DrUOtQmz+hDyfo86i9hd6pE71TybEBe6Cn3sIC9C6pjj5Y7KhAAzZgD/QkG8+aDyxAAlYgAwWoQFdTxwbsgZ56CwuQgBXIQJcwRwM2YA/03FxYgASsQAYKEGoMNU/TUZPcvdxooafpwgIkYAVy9LpgsASDJRisOat9jOf89TGe83diD5zzd6LPXx+LOX8nViADBahAAzagq40rmx8dXliABKxABgrQdtvml4bHU3ef3xReSLtB85vCCxkoQL90czRgA/qljwGY3xReWCICQY2gRlAjqPk94kIDNmAMy/ym8EKo1Snxf/7hbw/Z//jbaJTJ9fifdfxPn5Bjz96no4NusA1tQ1/gk9ChbKANdcOOLDuy7MiyI8uOLDuy7si6I+uOrDuy7si6I+uOrDuy7si6I9uObDuy7cjmkcdLT7xBNugG29A29AX+4+FQNtCGHbntyG1Hbjty25Hbjtx25L4j9x2578h9R+47ct+R/XZu1Af4zZxD29AX+K/CohJEQTWIgyRIgyyoBYVGCY0SGiU0SmiU0CihUUKjhEYJjRIaFBoUGhQaFBoUGhQaFBoUGhQa/isySjHmj8ikEkRBNYiDXEMGaZAFuUYb1Df5r8g4EGH+iEyioBrEQRKkQRbUgvomCQ0JDQkNCQ0JjZmg45o9H0dRl9eXLqpBHCRBGmRBLahv8sScFBoWGhYaFhoWGhYanp+jMM3rRxf1TZ6ik0oQBdUgDpIgDQqNFhotNHpo9NDoodFDo4dGD40eGj00emj0reG/hW2UoPlP4SIKqkEc1DZ5Do5SPP+5a6OAzn/tFnGQBGmQBbWgvslzcFIJCg0KDQoNCg0KDQoNCg0KjRoaNTRqaNTQqKFRQ6OGRg2NGho1NDg0ODQ4NDg0ODQ4NDg0ODQ4NDg0JDQkNCQ0JDQkNCQ0JDQkNCQ0JDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NCw0LDQsNCw0LDQsNCw0LDQsNCw0Wmi00Gih0UKjhUYLjRYaLTRm1tqgvmlmrVMJoqAa5BptkARpkAW1oL6ozqx1KkEUVIM4SII0yIJaUGiU0CihUUKDtm9UKkEUVIM4yK+gD2pBfdPMRqcRbxQAeR3soho04o1yH6+AXaRBFtSC+ibPxkkliIJqUGhwaHBocGhwaHBoSGhIaHg2jhKfOrORB3GQBGmQBbWgvmlmo1MJoqDQ0NDQ0NDQ0NDQ0NDQsNCw0LDQsNCw0LDQsNCw0LDQsNBoodFCo4VGC40WGi00Wmi00Gih0UKjh0YPjR4aPTR6aPTQ6Dsyz3tbGVSCKMhnjv89DvKZ4/9fDbKgfb/G175f43lv6+QzRwdRUA3a91JcJEiDLKgF7fs1P2WzjYIur8Nto8zXq3DbKNr1GtxFLahv8gydVIIoqAZxkAQNjVEM7PW2i1pQ3+QZOopHvc52EQUNjVHC66dqLpKg0ODQ4NDg0JDQkNCQ0JDQkNCQ0PAMnX/PglpQ36ShoaGhoaGhoaGhoeEZOgp3/VzNRS0o2uEZOqkEUVANco0xczxDJ7nGmAeeoZNakGuMueEZOqkEUVAN4iAJ0iALakGh0UOjh0YPjR4aPTR6aPTQ6KHRQ6NvDa+6XVSCKKgGcZAEaZAFtaDQKKFRQqOERgmNEhqev6Mc2atqF/WVoX5yps8Xr6FdREE1iIMkSINszSuvrF3UN3lOT/KcHlc1c9qpBnGQBGmQBbWgvgl1X4KyL2lRbSb9AhYgASuQgQJUINQ61Hqo6XUBC5CAUeelKPPSS4AKNGADRmWZlgtYgASEWoFagVqBWoFagdqsth7bM/PQxIVRTTaPTFxYgQwUoAINGOVruiq7fPVsFnCVgQqMsjGtDRhFY7pqtxwLkIAVyMCpNlo8a6knGjBqxeZBiRPn+xQTC5CAFcjAqWYDFRglYioNGAViuuq6HAuQgBXIwBl3dN+q0KKBBRh1YWoVyEABKtCADRiFaLPO02vGdJVuORIwisG0MVCACjRgA0b52azuXFh20dis7Vw4g3X/yh2wAftGW+VZvg5bgASswCj9skuACjRgA0a1mZULWIC8S8HmGYQLFWjAtsvA5vmDE+kCFmCUes2qzYUMFKACDdiAq7bssUDPY4F+6Nh4LhkqE+oG3iAb1OHxb2X82+b/s84l5gltQ18wRnlC2UAb6gbeIBt25L4j9x2578i+xLyoBFGQR9/LyTZutH05eVEL6puKx9O1TGzjZ9eXiRdZUNs0O6atpd5FFtSCXKOvpd5FJYiCxjWP2zRfwrXxk+3LtTZ+lH1p1sY7Zb40u0iDhu64KfSl2UV90zC+RSXI442Wi/9bXQuyi/omvYJKEO2r0hrEQRKkQRbUgvomu4I8nq0F2UUSpEEer62FVhu3S77QuoiDJEiDLKgFjWsZZS6+0LqoBI14bS+q2ihF8UVVGzcJvqg6+6VH//Xdf76ouqgE+TXrI5N0ZNJwdPPjQOsG3iAbdINtGGJ+KGJf0K4NZYNHtrlVNMH/VVs5OsslNpQNtGH8K69s4A2yYVxP3znad472naM9crRHjvbI0R45OsnD7+0d656P/vci97pnkscb4+XGNYmCahAHSZAGWdC4RR2/unM7xslvgyeVIAoaN7/jx3luwkzyKLSytV2ejxRUgzhIgjTIglqQX9XO4DZ+LefmyiQKqkEcJEEaZEGu0VamT/IH1fF7Ordjxq/l3I6ZNDTGL93cjpk0NMrO9DZ+r+Z2zPixmdsxRVamT/IH1VFdPLdjiueya7SV/W1UDs/tmElDY5QQz+0YKiv7Fw0Ncufom/xBdVIJoqAaNDRGAe/cjpmkQa7ByyXaKL2d2zGkyyUWlSDXGC3yB9VRaju3Y0ZN7dyOqddyjkUWNDRqbMeMctq5HVNjO2aUEs7tmElDYxQSzu2Y6r7iGmNB2R9UJ1lQC+qb/EF1UgnyyG1v20ySIA3yyH1v20zqm/yRdVIJoqAaxEGu0R+uaO6K/vNalvU5+I9refyF5sUG/hdGsUH3/zmsQ8Y/H436j3nfIvu+xcE2tA19gf8yOwxjGev5/rvsMGxlHPZQeYNs8MhjCdwjt6FdUAdR/s/jP/z9X//bP/77P//rv/zXf/+3f/qn8f/b/+F//e2//F//8bf/+Y//9k//8u9/+y//8r///vd/+Nv/949//9/+l/7X//zHf/E///0f/+3x/31MkX/6l//38ecj4H//57//06D/8w/419fzf/rYHZL1rx/bQxYBHrdDd0M8Fo/LCvFYHyaEKF+vgg4h6r6Ix5oqAqjeDaBl98HjWTMCPB5MvgTg5wEeVrsjPDy0PQ0hp34Yeb76werTEKeu9L2iGaK1/rQr7TCgfvrJHNDHZghCVP4Sor07GsdmdES42tNmlEMM0boH5IGI8UjhLyHKaUzHz/gaU6GnIQ7zym/IPMLDVtEO4dsRvMhnRnBvehLhbjPseTNOnWnXTtEH9qch9GQU4752GQWXpyHs7a44zEzyz+TNi3g8ukUMpq8h+uEixkPXvIhuTy+CDp35ENY9vQfjMh7blfebUsav6WqKlGdNocPU8jMdZpZdTwOcc6xrTItSn40pfcA3TzHYDwjzGI8tpsMPiB6vg+I6Um88bly+xjjMT2l7RB5ruCnC9YupAecbn1wsT6cGHaZo57bnaJd0JY8d3i8x6ul33a7IlMciUcT4zajYTvjH1pk9HZV6mKHF90Rnd/SiKYZ8jVEPMcSXk9fQsuSfk6/3KJXfnx9V3p0f57bopXEZKv15W04/8f4hkWUd6S7hYSlfY7S350f/hA2eo9zNGC7vZwzTuz1yHt3OMMOe752+jS4fZmottoM8MI/utxhy+mXgPc2o5VtR+9YfB0d97FzugXlsWJbnMU7X0bXGT9R1uI7DTFWN63jsc9jTGMeRUcJcfeww2dORkYOnPjbNKJ4ySJ/HOMxU9g/WTlctRC/FeOwV1xgZ4tfaUuuO8Xh8O/QHn24fuMctur4Ywxey1y2I0WsxGu5uHyttzz31OEPsajFD5urrkytpf+kvhJV4BCzje/dPr0NP9yHFC+lmlMda1fXEzbT8pX5o/mroakuX5yOj9S/t03EG3b6Oxv35HYSevKxaiwfrnq/k66OD6rt9erwKjpUOYr6eXsXxrsxiieCxAtme3pXp4XebpPZ4HPySt19j2GGWcosFE25fYujtGMJxHcK9Po9B798b2tuz9NyjLeaGUnltVLQixmlUDnOUrxajUr7cofIvrqPhd5/k+XUcvLTUHobMX2bp1+uwflrJil/KWps9j3G6Dk6GXJ7HaCcv9f31vXiiL/VpvbDMerXXsrZesZT0uCJ7GqOdnqQ6xQR5cO/PXOx0HUVajMthrreTl16GBZQvv5NfF0Da4UlqfGxzxTD78mR5P8Y4+C6WtaQ8j9Hfd6B+/ZUO9LgltBgVs9dmWI0nscrUn8bo9d315+NVcDyIVc2L4N+v4vBLW9IjQ615XOv9GJ1jjl7teh7DTk+VFl36SJsCV6/fW3NwsW67MT3d29Z63c83ibvsx8/M83leruvYIfEDdSUz/WMt+2CmNdaA+Xq+gluu03aRxLioXtfzBdzrdFt5+SFUe+mC6tNlh36+oYvbSunPp0i5TitTTLs9Iml9//umT7n0A2Nj749N+8TY9E+MzXl9XBQPuE/3PE63uNjFYlN5vhN22kJ63ELFL/9j1+B55h2D+Je1ZhCqdAjC7++oFXl7S+0U4u6e2t2WHDbVbncp1xfHpTBHkMPtQznuO9zchTlfiWjcHOrxSo4bpnHnP74y/NyJjkG8smYGeTyvH4J8YK7S+3OV3p+rp32pu7ue1N7d9ix0vGmPReXHnUdaZNfy4qgc8u48PWJVeXwO9rU51krH2OZH5e9Bziv+HLdmlta3v9+rnvOux3LMY2X6YO+nvam7s73q27P9FOLmbL/dkleducfWOF+XPu9Svt7v0tPG1M0uPYW42aW3W/Jylwpu7a722o8dXyXWli4+jctpY+pmZRDbB8a2vT+27f2xtffH9tyj797nyhX72o/910PFl9TT/lrV2JOqB0s+bQb56cX7vv967sjn/jD0R3uxT2+WXMnph5+jVx+Pifw8Rnt/pkt/e6afQtyc6bdbcpjpxx7FovKjR/W1GBKPY49dkKdVU0VPW5Y9FpWla38xRuU7Mc4z7F5Vn9rbs0Pfrww8bjncq6crp82kewV1x6u4eat+2o66eat+2o3SEvtAWtKw/nGrfj+IvhiEY1tdOe14/hlE3x2Xc1tQRFLaq22hmGL6yPxXg0S6KPVXh6ZG5YXmlfo/gpw2pR7rI1FHNrg+X2o7hvlFOewxjMWv/4O1vBymY+GvpRvVX4a5W5ZWTmvmd+vSymmD6V7RwPk6jDqW/+lwHbeD9FeDxPA8UF4L8thiSFPuaqcwx0HuhiqZK91g/XaupLXmlm5cfxumlBTmkI73f9GfPx3100IA1lfs+W/Y+Q76VmV5OW1Z3X5YPAbxYxNmkNGPz4LQdSymjh1JMn5eJ3+9/zIKXW+/jXIMce9Oiy5++x6HThtWd9/C0PeXI++Pih1G5Tg7FP7c+KUYo9I3GtPt1RjX2zEqbrVqenz+XQxFcUd7HqPUt5+Pfohx6/no3BbGJGNt78d4cY5VP1VmxWjPx/b0xlFJ92lGp6w7XYhJTJDHz8TTCzntVt0d3HOMDwyuFbTlkLh0LAKIqtAyqkte7NQee4DtMMtO+0z3dt7p+A5Vj6qsh388fzQ5XgfH+hun6fHH0+v5Nzs2Irnm/Z1f/fAz40JKfTVIzBDm091D/cDmLJ1qdu++XHxuTq97gKVcdGjOJ974q/IXN0dKBJHCp+bYu/e6x8vgmK7y8KLDZfRT2kT6pqo5+vYWPvH7r/wdryIewXPy/nkVpy2eEiusTKmKSO+H8KcfPAnJ9VqQLnic6ulm93dB8AZDyTuJv+nUWGXhfhpa+0tDjIURPDO38rQp5yB3R8Y+MTL2/sicM1fTTcSX4xZ+kf5aojVarL0aJO7vHtf04k+ectyL6JcqwF8FqbEmomLPq4BI7AO/Eaf9no/8RqhEhfdjZ/PQnOPrVOJfBlrt6ek27xdXYn5g3/ylqXy6Enp/JeL0QtXdlYjT3tPNlYhTiJsrEcfXqW6uRBy3nu6tRGj7wErE7VE5PCWeZ8e9lQil91cifohxvR3j5oOm3d0hldf69O6KyDnGvRURs/cfms8x7j00H9vCV8wPpqc7xtSuv/o67q3M3I7xYs7dXZk5vlJ1d2XG+AMThP/igbm5qtLaB1ZVzhdyb1Xl9FLVzVWVXj6wqnK6jnurKj/dxGCD9TFZ+Nltd+dzEE5B2itBbj4i/tSYe9dxsEPVqN61Sw/rB3IqEadYPsD9R/3Vg0xPm5CXvPQ09PiHHUHo2dNQvcr7j1THIB95/L/bI/SJHpFP9Ii82yPnTXPU3vbeyos77z0WRB9BDjUAnT6y834KozgXSpuVp49TpxB4JNNO9lqIePVGuzwNcS7EiSpPrdfLdUXxQ/UIcqjmOb4U0aNay3JjfvfiTY8bd+v9eZB6OuavWLyo/sCnNxG1vF+1WsvbVavHEPeeUSuVt59RK71dEVhP+1R3n1Hvj4odRuU0O/BqRun96XNdPW1U3bxN/eE6br3tWk8vVd27O6ynl6rUFKdbtec1P8fruHd3eOyOxzS9ME3bS11KBa8yl+d3/vX0RtXNLj1uUN284T5ex81tzPMbZnFARSvt+Um85zeQ772JcDy49dZLBLX29+34tD11045PIW7a8e2W2GsdevMdguNZCrdeIains/VuPu//EOPeKwRvV/8fX16+XYd8Pnr1bv3wD1Fulg8fD3C9WW57P0Z/Mca9YtvzAZ137/jP/Xq31PZ4LfdnyvnI0ZuFtucoH2nR/VnbPzFrj4eo3py192P0F2Pcm7VcPjJrzzPlbmX37ZPTn99a6btVKsfTnK/YOHzcD+Tdx2/nKB6PVaKOfYzybAHxHAK1XV9OZPsWwj6wxHS6yVS8Hv7lqM9vnWH1/T3uelpwv7vHfXoautkfp4XQOCVPc/HR94PPTxHizkxTpT795gB3ucJOJVUv/XGA+/EQeMLNXTrz549DvtvxiKp759udTz69d8LmD+ee05Va8/yc39rq2zl7DHEvZ9vbi6CnpzoyHPdn9my9/1RzeG+WHyPcmuXHZ9Obs/xcgHlzlp93pW7O8uOnZuLdTnpwupB6P4ZEnz62WQ4xjpni3yxcPdKu52cm19NJbDcz5RjiXqacNqVuZsr97vhS+/ybY+gZdSBps5BejtHej5GLUn9zHL7h6GZrz4+Q59Nxf0yxgsqUGvNnkFNrKBZjak6ZXwapscNOVV8NgjsPqvaBIKkC+1fn+1+x56BXLy8OTjqdpvfr1RGOfRiu5dCvN7+acHV9qUfEnXvGyN8q+CPG3a9ItEPalPff9ONytMQL9VOkhws5vZAq8ZUAk/xGyPcnwtPRlLXBm/M2yvfrOH01paeTCPILFN9jHBcxLsYixpUPhWy/6dY4sufLWb1/dusxSE+1bc8nyfnDCQVrD0qHH18+7U/desD94ToixLiOdrgOOS4+xAN/SSXU9vXe6viJD5+G00a4PL+O4yc+aixfyNejmH/zeQ5YkTZ9LQZ2ycZ68/Mbq+PIcJyb8WB+OQo+A6V8+oRLe/cZ4Bjh1jPADx/nSFUl/XpW/sCnR5FeYt29l6d3mucQ+JxNJ2ovPebWOAH1wdZfG1lLezIm5XkUrm8vTp1D3Lp9Z357ceoX3UGvdyqOppT6YtIZHs8erNfhUeLtJ6tziJtD89c+WX3tDrteHhpLUcrTKFrfdTKtb69mHD+sU+JJ5MEHT+bTuX/3lnaOIR5uiN8Y06cvpv0QxNKnPuzpi2k/BUkfPbL2kq82wm3IY4Pq8BGoU/XiZz57RHGPSLk47Y/PHt2NUei1GML4ULWWl2I8rj9O2r2+PBR9+xzM9f6K/fGjRUXiBFNqOf9/EaPG6ThS8zsD32Lw6QWqm8Z8DHHPmLW9a8znzoinXeH8vsD3zjgF0SuKIfT68uGj70FON+54e7JcT5/szpeBatDy5ezi37SlxBm5j+ei8mqQWGge5+e9HCReSi0vfqDr9ke+3v69tLd/L48fGru5+n/+WNm91X9uH1j9P31b67EwGKtl1+E7Yfz+7hS/vzvF7+9OHbe1cdpvtRc/3lZxCvMjxvOPFvHxzambu9Lc+vu/cf144mZkS7p/+eMyjntUd9vSP3BwyvEzTiUsudCXg0bqtws5rchi6TBZmP3iY1KKAxyavvgxqZuJf/4gleL55cvpfn98kOr8Wav0OprlEzZ/GQVv5ucv7Pzm41iPFVmcapFrsL59Hut8Ja2kz3TVV9vTUOEmLRVR/y7K11f9rqdR5OK/PMyXsvD6/ONj5yDY8yLKV/KrIF5jtZ5D2vMg/fwsE3siXJ5/Fk6u96uQf4hx75uB5yA370h+uJJ7tyRyOq3vrjOdP2F279UjKe9/SUXK219SOYa4V+t+vyWHWvfzR+Fuva4jHzir7/xVOLyJqV9egfzjq3CnI1hwoqzld35+FeTuGzvnIC32VbSdTt7+4SN3+ZDqvNssvwkzPq8b+xGcPuT+2zDxkdsR8vBq6Ll749UINaZXxwin/rTrcCL5dVwvvvUK0HU+oObOW1XnGPfeqpL336qST7xVJR94q+o8tHGD9BhlejFzylVT8T7XV6c8vmP8YHs5AQsqPcuXtzO/f0j0fNOHN96lp220P+7WThtY957IzyFuPZEL1780xL2H+h9uxns69iu/VvGL72XfexAW/sBxasIfOE7t+L1siQ55bI88P+ry+L3sEt93bZX4tRgSladN6PnhriL07kw/X0bcgjc5fLlPhN9OuGOIe9kib79EcFo0uvsd9NMxN/cWaY8Rbi3Stg88ErVPPBGdzi+6/0R0vf9EpO9/SVX07S+pHkPcfCK63ZLTE9H1/hPRaan39hMRfeKJiD7xRESfeCKiTzwR1c88EdXPPBHVzzwR0SeeiOgTT0Tl/dv36wNPRNf7T0SN3n4iavUDT0SN3u9S+sQTUf3ME1H9zBNR/cgT0eleQOJu4suLI7+5m4gNcOXnW7769t3/8cytu3f/p+2422UrxwrLOGKq5u/ffd/xPcYwfO6+fykWvx+Dr/CyR/o833mW/v53c3+IcXMJ/vyUeXMJ/nwl92449fpAVcCxsoBTCV2xp2NzikGKQ67z9wR/FUMi+enxq/k0hh7P/7uZeXr8TtXd5+5jj8Q9J9mlh9a08wLRnVPMj8cIsOLdBnv+nWct739OTcv7n1PT8vbn1I4h7j2T6AdestLy9ufUtHzgc2r3R8UOo/L+59SOMW4eYv5TjOvtGPcOMdfTMWI3DzE/X8e9Q8x/iHHrEHOl98+s+iHGrWfnc1vuHWKup0P3PnMdtw4xvx/jxZy7eYi5nr5QdfcQ8x8m+80JQn/xwNw7xFzr8Su19w4x/+FCbh1irvXtYyr1eGzezWfd43Xce9b96R7m1iHmejwb+ubh4fr+d65+bMy965BbN1P1Inr+QFXffVA+10bfeVA+v98Rn8p+YF78/8U7Ior3TLTX12K0eM2U8gPq794zIcOYPG8Ln17PuvuyyjHIvYO2zyFuHbT9Q4g7B23reZYzHhmu10b2Swx+MQYhRj3NsLffVD2HuLXjp1r+0hA3PfDYn/qfvvr3uzFJD8f9RefI1/FqjBb3Lg98NQZOpT7GeNvN9W03/+Hl8vix70Qvvp8eJb8PfLYYdXxX/1ZPnN/2v9MTxxMUrMS7S/bl3YFfnMLQYnXvS2X572LgUJnWXzwNogmu49VTKVo8rjzCvXoqRcFTAr3cHx0xDuNy8j+JRx4Wqx+I8dppIY9lyliVU+EXY7R4SrDTHDvFsHj7kZsc3mtvx7N+4pbF8hrS95orPVXmsMRsf3QOP90++ulK4lAaaacrOW31K95d1LR8U39zHT026bU+f91GTy9TWY27H6utHIKcdk1xylaq/qJvG43HKdLwMNoPByjo6VWq21Pk9CLH7Snyw5XcmyKnzZubU+R8HXenSH9/itjxW/ZvTxHBl5skf7jp+xSx06a4UMMr9vnnrn2LUY+FF9hYz6e4/qYtGr92+SHuz7bIB9qif21b8KHjB772ayc1KmK+nVrwixiE6yD5QAwtL8ZoOIHhul6MYXEnQ+3VPo1aCamHfDnHqIjBh6OGj8fBxluUlMsDvh/lauXtEynOIW492NrpnL8PhLh52tCpPytOPKn2/Ghco3fPozheBePpOp8h8+dV1Pcd7LT1fNPBzocNE07iJ3nalnMMwadb9Hl/1NPP9e1Tj09B7q3tnUPcWtv7IcSdtb3jqdq3ntLP53LfeUo/nl9/6xrOJ+DfWjM5fffi5lcezzHufeSxHg+Ouv3xjGOYm/PzGOLe/DyHuDM/z9+uufsVkB+ifOCrM3fnyDnGzTkin5kj8v4ckffniLw9R65Tl17o0vzbpO1uCLKL/rPdiV+E0FhZa+mQtXGrfjMAlgh7LjL7FsDkWGcau5Gp6q42+hbi9OOI255cef9HiHtXkd9H+BbiNKBRDN3zWPzRE/ZuM07f/I4aJs3rcSK3p5QKplT+DMD9EHeLF0/NiK8fSTrw/vEseTeAUOwMPzC91trvh/BT7GcITkfd/iaExnasaDqC/FchxN4NYWE0j4Wv1/qiYxH/y0/IqyHkxRAxqPlLw78IoXh3SS966SqU45FVWV4LcSk+X6AvdadSLN8rlZcGVXEctOZXYn4TosZx4cqphPzVhrwaIjZRldJD769CxOfjv36T+zchGrz3em124un9gfr2iFzPZ6edXjAqlVFk9Lim1+YGx/vWL8+Ne4/vpztowfeGxksOL+Xa4x9y+qqWvBikCt7ZqKYvBsEJ3V9OLf1VkPS+hXx5U/FXQVKfsB1m2vG4voL9gwcfZpqdX3fCd5Mf3OwjYXp9NQzF5syDpb/cN3Ej9eD8dc0/wpxKSse3PiKZa2uvhvmAJzxmCqWpV1+cenJh6uUbxF8F0Qt1lEovXolWXIkyvRbEGowhFxL9KkjDqerSuL4aBM3JhRbfg7QPbD21D2w9nRvT0SP9erVHcpByvRrkSkFenGo9va3XuXwiSHs1CH6DusgH+uTVIF1xqGi3/oEgTV8NkkrMO32gT14Mohd8bTztfCAI1beb8wjy4g9G0/RdwmYvNgfv3Opl/IEgrz0EjyAlBXktAbXg909LoU8E6S82B+/uaSF9v09eDlJqQxC5PhHEXg2CL1flr0++3ievBilRKPDgV3PnS5DOH2hOlxeD1JQ78uKPlyp+vFRf/MnQ9Cin+lJzWov15gemuyS+v/TeouipX+mcpu8h2vHjU0Kpcoqe7iEcg8jF+IJlLvL9I0i9uZuRrkR/cx1xlI+UfMbbrxqDh8DHw8UpyNsFJe39b0/90BS8GknXaVxO7/GZpPMZRJ4fBHS8FrU4s0K/nPLw/VpONUeUvqWJX+Bvr73/cBmx46Um9toU0RafbtCWX9O8v/H22P1TbJy1V/L/S4i0AvNH/p8O8ftIkNJq+mpUe3FgDEdW5U9P/m5gKgYm3QX8EeT0scW7o3sM8oHsVXwdYOx5v2hE906sZHvfy/pxguAckVavk4ccrQhlzw82ezWMYVXYLD+a/C5MS5+yzKUIvw0Tmw/FOr/eKCSh5XKA34YhS2HkeRj9TN+c3hFucfPZ8he69frFbyAV/JzTwfBN3v3dsberVs4hblWt/BDizaoVKjiHJz9mfS/WP4eI92FLrnv7TQi8tE1XfxqitWO5f9z41uvFEHEEhqbfid80JH+iJK0f/yaExnLr1xfYfxHCYlecrL42qBRb2pT3YH8TosYN4qNXymtXgRfx6/VSdzLHoyp/+f5lv/14iO/olZJuhn5xEaVgrSl/Re83ISo+uFT7a1chlLf4XguhWHBu/bWG4Ij6Sq81pDK2ruS1hiiOdVN77SrwpuPjZ/6lyVnScf35BdRfhLB4WdxYXwmQKkHltX64UmmsPp/c/eK/Mk173J90eq0jIke7yZs9+VqAx0ZovE0keeH0fgBBgLzeeTuAYoEh17D/IsCd9xiPTWhRpvfYXHslAIr0pL0QoMcuff+yjXy/cBRP4PJagCh27F9qHel+ShakZOGXQlDU9z3W8PvbIay9FKLGo3vJ9xCvhvhSXPCLEILfm1wB+5sRiUnxMEl6LUS8XvIIUd8OYS9eBU5XL5e9GAI3VNdr86Iwbqi+FDa8FuLLmv8vQkSiFrquF0NUhHhtguOYlUL0UkMEH9144Eu2jxM98oc/bgcgjp8+4vL0sL1+PGzv3nmw/fRq373zYI8h7p0He78lz89zPD58xTIh5ZfwfxFBCC851qfnlnZ+/9zSH2LcOg7y/nU8j3Gcnw2vjXJ5fhVvfxHyGOLm3Dp9A+rmWcOdj9/5uXPWcJfjj0DLn+mQ5wuK/bSB1Bn3SnIdvhFw+grUvZ3Kc6+iSoCKPF1S7MeXnu4sSp47tTA+HfzgeujU89jcfE/xhzDd0vckCr8aJp0qe+XD4H8ZJn1s+jItL4fp6U3QfPvyq3lrsVrZTekwb28H6a8G6Xju7fJakPuvgv408W6+Znvbqp8el+tlgk+tWuNIH3tukfKBN7l/CHLvNd3+mVe5+/uvcvf3X+Xu+ldueBSTtFWYPz7ytdSnH7ePbv1gnBf+YjW3sz69imMITscx15dCWJz3VvILeH/2xfkb5FhVPnwgwz9V9nRL+v13TKnEUTxE+S3T7405vimlhhVZtfLsxMmfgqS6Q1N5GuR4M8DpTOd6aM6pdL8pXtJM55t1vR/jy3tf9cUYGndHqmmp/I8Yp7P2W4T4ciTz9YvLMFyG2fOmnD4HVWu88VLzW19jLeR+EI5KkMfS0inI6dMlN0/AO3aJIXtN0svEf3TJ8dOjcUh1Ki/4/snP0zl8YlEV/liyzcVT3y/jVBlzGTImv6fCv5iphjIfy6/c/9EfpzPd8bJL+VL5xN/uQE4H8eGLUJLOuv4e4vF7/oG5+kOUm5P1EeUvn634BtIjf+3Z6JTruNWkMdn4y5EIf7bn+F0ofNeRk8V/W3QbN18Hk+/4ssOV3kaib3XHjyjHQ8KwS875xaj6R4NOxxzf/pbo+VoY63h5mP+4ltMXL+4eqfmIUt7dCTqPUKU4BaTml9/+HKFyOvvsijMGJL+vUu6foIEKt8djfX/lbo9xj8U5eb6HKFfR92/3HlHs/fu9n+6zolvHfdazZ5LHpfT379bOUW5+af50x3e/T46nysUjFsmXY6C/D/LprL6CBb7Sej3k3zkKakQ7H6PIJ7yA9N2t9R9i3Nrb/qk19w7pfUT5wCm95aqnH/Zbx/Se52yJBelK13WYbqfPRj32F1Dyls/J+LM59RMTpfK7E+X8mBHfB9HDdtzxYQf7cfrl2zHXL0LEyOQu/d3zEl6H11yK+PLzUqsvP+rcGtofgtxNvdNW0v3UO70bdTP1Tk8ZqDFP97DfXvI4PmG09A3tB6c7Av3V48HNAf7x8eBm8l6fGeKPuKu8767HZ0A8FeeSuD+eAU97W4wbcq75Vb4/Hq1PUyV+yFteafzzQvgTJi8fuRuQD9wNyAfuBuQjdwPykfmqf+187VExkE+A+HOa6GmrvuChLRfE/G6+oqjmKuV0JceP8ra0pdtP3fqRCasfmLD6gQmrH5mw+pEJa9df+hta8JXxYv3kbHa6fcVJoZR36f6TKIdbAr46vmifPxLF+otrqVe4bP3ywdE/r0U+4dWmn5j6Zu9PfbP3p77pJ6b+aaPr/tQ/fQv+3tT/Yaag/rGWfjLJdpq1+FQm91pfnbV4p6+SHa9FPmHY7SOztn1g1rYPzNr2kVnbPzJr+wdm7XHZPZ2hlz+I8ceyez9NWo53TXo+IYN/EUOiQiTvZvwyBg6m+PKC/G9iKN5tzx/3eDmGvBpDcRrEq/2h0R/6cn9YtMVe7o8c49X+yBVEr/aHRX/Yy/2Bsw/ay/2RY7zaHy3e72r28nXg7fH26nX0OCarv9wfOcbL19FQHnaaH6ctO8Pp1w98fs7ADxt/wijOyG8xfI9STltchnOljKidohz3Zu0/cebHzttv2mOEg0eYXu0Vi6I5tVZfjYJv+WqzU5TzRua9m4ljjFuvePwU494NyXlr9+YNSaFPrMIWensV9hHjtEpw8+iCR5TjGat3zi74Icatwwt+aM3N8wt+iHLz/IEftt6vuE177C3R8633Uj9RSlDq+xl4jnEve35ozd3sOe1x3c+e0xe3bt/OH8srBGOcis//kzE+VROUqKZ9PNXKs/KK4sdBPn2ysJhuJVcBfPv64SNIP226xdZf/jrmr0I0HFbVXg0RNX3X86v4oWKFcALgl5vPb9dx2uViifImzstIbwTpT4PcLuPJ3+n8c57xsfYFVdtc26E9p4/EXekzHV/Ozfse5DRZSzrzv8jVPhImL5Xrrx7KcTbJuRbudOvnb4asGZdqlf/YRyyn7S7cb7X87n39I8a9x/J8AMH3m9Ai79/Inq8jDqSQfE7rnzH0E1Z/+o7V3RslaZ+4UTrtdd29UTrGuHmjdGzNzZOJfohy/0bpVLJy1f/cq//InNN2V42nQE7t+Z7C5bQ7hE+ucX4BQ+tvGlPwma5aj42xT9z1aXv/ju18JXfv2OwTC7DF3l6Avf9aCj9/LeVxIcfKwFvni/5QqXXzafRcM3Z7dD5ismZ/6eh8rVam0+j0D+yjlPaRB6/2gQev9oEHr/aRB6/2kQevJn/tRKnRrbVKeTpRjkEYD+icz7T5c7ad6hQ/E+Xe26k/xLj1eupPMe68n/rD8snNgxN/Wsq5eYfyw5LfnYNdfopx51Cxn5ZjDR8Qaq8v6sY7oo9n5MNBAsf3zEq8MP9Io+cvq5VyKlGK5qSavO/Vm+fy3jvfGj+9DkJxxgN/+a2o37Yg6FRx+WXVhJ+erPIIcroduHdwzyPIyVtvna5yjnHveJVfNMZOjTl1a49VoMcsqocgp9vXe6fe/HQl8URNeY/pjyCnRf8aGcOXHfr15CK33087Rrm9ZXa+lrubQ+codzeHzlHubt/R8bWuq6eTN3r+RJT8Mk4+1ie9MffLOIVxvEH58lHL38bBe5qPmHKKUz6wqfhDlHu/P+ds4jjvjbWeXOpUs4gz+Cifwfcrb0gvEFD+4vAfQU7bVne94fRmVsGXpEvPZ9Nr+cWV3O3X8wjfvE/5YdZeNZ2cxC9n41x+WnGKvZ6NBUdHlyLPs+g6Trk7B48Vqscykjsnjz1inF9ai4efL23R2+/SVo13Rqvm7y5aux9C0+ue5f0Q8loIHDqm+ZNivwiBL/BUy4/XvwiBTws+7OC1vjCLEbH89fNXQ7w2qC1WL2uut/pViFitqI1fG9QWv50P7C9eRcyLpi8Oapz+9sCXruKxZ4AzffLv5S9CfKloqE9DFDoeTEY4cZ7yIsVvPqgQX8kgtdeaEjuhND6Z8lKImOKPdYCXsmQsJmB1or4Y4kIIfjsE1Re7Ewsk1F67ioq+kP72Vbw2qBxJkndwf7MUgAD0UoB7ZzMdAtx73/kU4NbbzqcAsVqt6ebvV1fw7oLMrSMkTiaFo/PHB3rT7vftaxgfJ40Q6ZiR34RoUdLzwNeuolsY3ZUPxb4fgq6YUfTl/vkXV4ES7vLlVv43ITrO0SgvNSSfMV76a1dR8dFzTpUVvwnB6TOradP8e4jivy9PZ/j73+Kp+FJrtdd6A+fZFabydoe+GOJKJ+zmz8VavZ/uOP1G+LWPPAgOgJT22icFlPAV3ypvh+DnnxQodHxbimJ9UPJJTeX7fV47147j8T09192/zxunRkZjXvxWRDqo2OR6O8ThcxOFOn2gS88v9bzdpbkx9tpEN8Kpr/W1UUkfQGxU3g5xuIpCp5eW749K/0tHpQkaI699ICatOfeqb4fg598SKfW0Z3O3S+tp8+gDXZobo68lfsdydy8vjQrhFfLHrdNr6dbaf35+2K9C4Dayv3gVhiqjF78/hIOeH/ja124UGyL24tduFN2Zj8/9RYjHA9aFJ6x8Ss+3ypNaDivkDUfF5z3W+/csUhSPmulJ77FV9P0y7ANbXrWc7kZbFBzzl2Lh75sG96PoKQpdn2gRnTY3776DV4k+sJlyvBaNDYMv5VL3l9hLweNXyQcXfZuxx7WV+PQxfSlx+GPSnzaXqBrKcdI7KvZHkFNxHxE+250eaf8McirXF0q1BbUciuoq9fcf0X+IcvP5uNTTW1F3H05/iHL3+bTW+vbz6S8adHg4/GmoK256peangD+G+vQlqS/L3znKnx1jHxkk+0TPHKPcHmq+PjHUR2eItzzosfPz0jpVUYzP8Xf59I5Uuajh2za1PT/K74cweG1lHG5Xn4U5L6/gY4mPUa6vGHctgvNg0s+h3O7Xig55jAY/i/Doj9PrGRIfsCRJ+6vy/YfwdJrgPD1x9WlaY5HvAyyfKD+up8/J3C4/rqdXrG6+DFRPrzbdLk6tp5es7n5W+4coNz9I/Yhy8IJ7n1E+x7j7JeVHlPYBa7vZHJNXu+TWF5l/mGzYEyny6mS7+5ZV1ZM53vzc9yMKvz9NbsY4js0pxv2pdnq56fZUO3bszY+g/+TVcb/08Or23KuPRwo2fOqipRe4//jVOL1l1VqckN9aXkyy771yPlTQ8GmIKx/kV38R5fHLFFFyZfUvo2g84z5azqcop/Mp7n3RpJ7etLr9RZN6etPq7peUfxHl8DHlH6Lc/JLxL6IcPmb8U4vufdv5xyioFbzayy26923lH6Pc+rzyD1Fufgv9F1Hs5X65+UX0X0ShY++esvHul4Fq/8i9bf/IvW3/wL1t/8i9bf/IvW3/yL1t/8C9bf/IvW3/xL1t/8C97XGQccYK5U8j/BGFr/KB4eFTGf7N4bkb49wnH7hX75+4V+fTcS+379X59C2r2/1qH5j2fPX3p/25U27fZx/v4u59k4DLB75JcL6Smx8l4PKJjxJw+cSp6Fw+cYoAl/ePauHyiWNJ+PhhrdtJeNoZu5uEdH0iCU/7YreT8NgpH0nCmx9a4ONxgTc/tPBDEt780gKfNsduHzjBpy2T+1n4kU9r8fuf1nrEKJ/IwkqfyMLTztjdLKz1E1l4OnXwdhYeO+V+Fp7ud4ywLCKHJRo+nTtYtZcI8/XcCfse5iNfczqugD1uZuK0vZIeXv5cATseLXDhIKh0K/h6kLRb+LsgJdYimF5uDuNoLM7v0X8Lwnw84fVeiRmfDiC8WWL2w5VoVEVIrth9PUg+B+p3QeJtJMkPUb8LIjFjJW/S/S4I3tuT/GL2HwWAx3kiJVw/F2T/MU9OmxXpPZQva0Tle4zj2kGLdTzKlU1/RpFjlQg+jNq+lof/Lo6lslfLB8D8Gedwl9CwVd6KvRrFetxrtOs69s3pNi59rHVstNDLbYqV9Xfa1MIWLB9+8kaUfNTPL0cbJ/2Xls/Y/zPOaYOqSVQKtvxO2H8S5XSjjNebu138ahScRfG4EXr5WlL15A/9cjfK6y1C1WL/UrX4u7FOHfPgc2Yf4xjOA+ym+nKcjmqa66JXHevxb/Fe53X1U//YyYcVn4J9cJNTnOPjXux6dar2apTbuXA7SikfifJyi27ngn0kF+wj2X2eMYYX3B59dLoDOH2Wq8zvR+9NOKWX4xRFnNLeiJMOmn4rTjrOp9SX+9muOOS5WLk+Fae/HCdt4D6e+z8U53gHeY5DcC6joyP/Ik57vV2V0wtcdr3s7Dhe+MHHe6V++qUxRX49frDk5TiGTWGzo/v8Io7pG3HQz3Ycr+OXi28+7crpy9K3n3bPLWpp5jRpL/dMSyP+5WCW/psSo8f0jAUWS0+a3x8S5TpWb6V3I9Jr+uXbMUg/VEzFJ8QfCZ5O9iu/CaLxBjHl24HvQeS0SUYqKUg+ekt+E6VrvNbw4HTizPcVsB/CSEyYR5hen4cp5zfmowpG8u/4pb/pXsMbLF+O1/zeveX4SWV8SCC/SfPHxy+OUerj8TvO83n8Qh2697jjxjjbQfgw1j/0C6I0fnXutuiXxy/TYe6WD02X9oHpcr6Yu4l07pde8D3j+ryUUk7vfxXCjdGXAvzvKU0fmbnnS6kovEo/AH9eyrFUI478HJvbhyCnjWIq8TrOg9Nv2h+T5fRG2v21/mMYGsf6xb5bqXQIc25UvGthX74a9sswhAPjidNP4x9hTjtvPZVN5cXt3w22tvTOrr44Y5rhbe5yCHLaNNNq8VypfF2HGXMMIwXfVn1s9/KLYR52FMeb15IKB3851BqNevzA0WHGnN4Eu3nm+znGvTPff4hx68z3c88yHtgfrIee5fJ+lxxj3OySc4xbXXL8Gao4Imd8q/z5zxB/ojRH+BOlOcLvl+YIf6I0R/gTpTki75fmHGPcLgoQ+UBpzrlTPvIeSvXPca1Zm1/3+z5rj8sUj75ARUzeh//DDY7vk+HpYSwKoFu0/epiSpwrR1+q6P+8mPaRm5bzZ8Ru3rScFhZKvIry9RN84w3V//vxP//xv/3zv/3Xv//rf/vHf//nf/2X/zX+ZbUx8CP3ahs0/KD2TXwFlSAKqkEcJEEaZEGhwaEhoSGhIaEhoSGhIaEhoSGhIaEhoaGhoaGhoaGhoaGhoaGhoaGhoaGhYaFhoWGhYaFhoWGhYaFhoWGhYaHRQqO5xvipahTkGuMHqnGQawxDaxrkGuN3obnG8PbmGmOtrV9BJYiCahAHSZAGWVALCo3HwjSwAAlYgQwUoAIN2IBQK1ArUCtQK1ArUCtQK1ArUCtQK1AjqBHUCGoENYIaQY2gRlAjVxuHBBTqgfUCutr4BXzYB7ACGShABRqwAXvgNISJUGOoMdQYagw1hhpDjaHGUBOoCdQEagI1gZpATaAmUBOoCdQUago1hZpCTaGmUFOoKdQUago1g5pBzaBmUDOoGdQMagY1g5pBrUGtQa1BrUGtQa1BrUGtQa1BrUGtQ61DrUOtQ61DrUOtQ206yVgWK9NKxvp8mV4ykKaXTCxAAlYgAwU41HisepJ7ycLmWAf2QPeShUONyZGAFciOOnCocXVUoKuN8zzIvWShqw1HJ/cSHmdbkHvJQgJWIAMFqEADNmAPrFCrUKtQq1CrUKtQq1CrUKtQq1BjqDHUGGoMNYYaQ42hxlBjqDHUBGoCNYGaQE2gJlATqAnUBGoCNYWaQk2hplBTqCnUFGoKNYWaQs2gZlAzqBnUDGoGNYOaQc2gZlBrUGtQa1BrUGtQa1BrUGtQa1BrUOtQ61DrUOtQ61DrUOtQ61DrUOuhVq8LWIAErEAGClCBBmxAqBWoFagVqBWoFagVqBWoFagVqBWowUsqvKTCSyq8pMJLKrykwksqvKTCSyq8pMJLKrykwksqvKTCSyq8pMJLKrykwksqvKTCSyq8pMJLKrykwksqvKTCSyq8pMJLKrykwksqvKTCSyq8pMJLKrykwksqvKTCSyq8pMJLKrykwksqvKTCSyq8pMJLKrykwksqvKTCSyq8pMJLKrykwksqvKTCSyq8pMJLKrykwksqvKTCSyq8pMJLKrykwksqvKTCSyq8pMJLKrykwksqvKTCSyq8pMJLKrykwksqvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8pMFLGrykwUsavKTBSxq8pMFLGrykwUsavKTBSxq8pMFLGrykwUsavKTBSxq8pMFLGrykwUsavKTBSxq8pMFLGrykwUsavKTBSxq8pMFLGrykwUsavKTBSxq8pMFLGrykwUsavKTBSxq8pMFLGrykwUsavKTBSxq8pMFLGrykwUsavKTBSxq8pMFLGrykwUsavKTBSxq8pC0vGQUSy0scCViBDBSgAg3YgD3QoGZQM6gZ1AxqBjWDmkHNoGZQa1BrUGtQa1BrUGtQa1BrUGtQa1DrUOtQ61DrUFte0gcKUIGuNurv2vSSiX1jn14ysQBpR+jLSxwZKPi7CjRgA0KtQK1ArUCtQK1ArQhQgVArUCtQI6gR1KaXTKxABqJtBLXlJY4N2AOXlzhCrUKtQq1CrUKtoicr2lbRtoq2MdSWlziiJxk9yehJhhpDjaHGUGOoCXpS0DZB2wRtE6gJxk3Qk4KeFPSkQE2hplBTqCnUFD2paJuibYq2KdQU42boSUNPGnrSoGZQM6gZ1Axqhp40tK2hbQ1ta1BrGLeGnmzoyYaebFBrUGtQ61DrUOvoyY62dbSto23wkt4xbh092aMnx3cuEofegylxTcyJJbEmtsQtcQeXpFtKYkpcE3PipFuSbkm6JemWpAuDeXBqL6X2UmovJV2SxJrYErfESbcm3Zp0a9KtSbemfq6pvTW1t6b21qRb0/hy6mdO/cypnznpctLlpMtJl5Mup37m1F5J7ZXUXkm6ksZXUj9L6mdJ/SxJV5KuJF1Nupp0NfWzpvZqaq+m9mrS1TS+mvpZUz9b6mdLupZ0Lela0rWka6mfLbXXUnsttbcl3ZbGt6V+bqmfW+rnlnRb0m1JtyXdlnR76uee2ttTe3tqb0+6PY1vT/3cUz/31M+49ykFNz+lJL8qya9K8quS/KokvyrJr0ryq3JBt1wY35L8qiS/KsmvZqXtilOSbvKrkvyqJL8qya9K8quS/KokvyqUdKkm5sSSWBMnXUq6ya9K8quS/KokvyrJr0ryq5L8qtSkWy1x6ufkVyX51azCXXE46Sa/KsmvSvKrkvyqJL8qya9K8qsiSVfS+Ca/KsmvSvKrWZO74yTd5Fcl+VVJflWSX5XkVyX5VUl+VTTpahrf5Fcl+VVJfjUrdFccS7rJr0ryq5L8qiS/KsmvSvKrkvyqWNK1NL7Jr0ryq5L8atbrrjgt6Sa/KsmvSvKrkvyqJL8qya9K8qvSk25P45v8qiS/KsmvSk+6Pekmv6LkV5T8ipJfUfIrSn5Fya9WGS/PGnxL3BKjnyn5FZWkW5Ju8itKfkXJryj5FSW/ouRXlPxqF/W6LpXElLgm5sRJl5Ju8itKfkXJryj5FSW/ouRXlPxql/i6bpXEqZ+TX1HyK6pJl5Nu8itKfkXJryj5FSW/ouRXlPxqF/y6LqfxTX5Fya8o+RVJ0pWkm/yKkl9R8itKfkXJryj5FSW/2uW/rqtpfJNfUfIrSn5FmnQ16Sa/ouRXlPyKkl9R8itKfkXJr3YxsOtaGt/kV5T8ipJfUUu6Lekmv6LkV5T8ipJfUfIrSn5Fya92abDr9jS+ya8o+RUlv6KedJNfUbq/onR/Rcmvanoe3FXCkylxTX+fE0tiTTzbS86zvercwWuZaXJJTIlrYk4siTWxJXbd8cZpWXXDk6dfqV/n9KvFlP5OTczp70hiTX/HEk/d6px0p18tTrrTrxYn3elXi5Pu9KvFSbem9k6/mtfASXf61eKkO/1qcdKdfrU46U6/Wpx0ObV3+tW8Bkm6kvpZkq6kfpakK6mfJelOv1qcdDW1d/rVvAZNupr6WZOupn7WpKupnzXpTr+abEnXUnunX81rsKRrqZ8t6VrqZ0u6lvrZkm5L87kl3ZbaO/1qXkNLui31c0u6LfVzS7ot9XNPuj3N5550e2rv9Kt5DT3p9tTPPen21M8duqsQeTF0Vyny4pr+DieWuIZVjuyvGq565MUtcQdPv1pcElPimth118uFklgTW+KWuIOnXy0uiSlxTZx0p1+ZX8/0q8WWeOp2Z9cdZ4WVVaa8uCSmxDWx64530MuqVR7nzZRVrLzYErfEHTz9anFJTIldt7vW9Ks+/7sk1sSWuCXu4OlXi0tiSlwTJ133K7l8jrlfbbbELXEHu19tLokpcU3MiZOuJl1Nupp0Nela0rWka0nXkq4lXUu6lnQt6VrStaTbkm5Lui3ptqTbkm5Lui3ptqTbkm5Luj3p9qTbk25Puj3p9qTbk25Puj3pdujOYufNJTElnrriPHT9cMIyK55lfC6qzJLnzZbYdcuM47rF47hfSfG/4361mRK77vgSTpmlz0Ku634l463PMoufN1ti1x1HV5RZ/7zY/WpzSey649MwZdZAS/Vrphnfr8F9ScapzmUWPG/2+OOkgDJLnjd7/OrtdV/aXBNz4qk1/61Bt7b03+ezgPcDX2gvl8SUuKKNzIklsSa2xKkPOfWhpD6Ugn6T1IdSEzP6c/pPnf/dErfEHTz9Z/HsT++T6T+La2JOLIk1sSVuiTt4+s/ipGtJ15KuJV1LupZ0Lela0rWk25JuS7ot6bak25JuS7ot6bak25Lu9J85l6b/LC6J//+y7mi3EeS4wvC7+Hou2FXdVd15FcMIbMcJDBi2sbEDBMG+eyiSmv6Q3CzOUKL+0az1j3zqUBvkJE/yIhe5yZt8ue+B9Hce5CAneZIXuchN3mS4A+6AO+AOuAPugDvgDrgD7oAbcANuwA24ATfgBtyAG3ADbsJNuAk34SbchJtwE27CTbgT7oQ74U64E+6EO+FOuBPuhLvgLrgL7oK74C64C+6Cu+AuuAW34BbcgltwC27BLbgFt+A23IbbcBtuw224DbfhNtyGu+FuuBvuhrvhbrgb7oa74eKrwleFrwpfFb4qfFX4qvBV4avCV4WvGl81vmp81fiq8VXjq8ZXja8aXzW+anzV+KrxVeOrxleNrxpfNb5qfNX4qvFV46vGV42vGl81vmp81fiq8VXjq8ZXja8aXzW+anzV+KrxVeOrxleNrxpfNb5qfNX4qvFV46vGV42vGl81vmp81fiq8VXjq8ZXja8aXzW+anzV+KrxVeOrxleNrxpfNb5qfNX4qvFV46vGV42vGl81vmp81fiq8VXjq8ZXja8aXzW+anzV+KrxVeOrxleNrxpfNb5qfNX4qvFV46vGV42vGl81vmp81fhq46uNrza+2vhq46uNrza+2vhq46uNrza+2vhq46uNrza+2vhq46uNrza+2vhq46uNrza+2vhq46uNrza+2vhq46uNrza+2vhq46uNrza+2vhq46uNrza+2vhq46uNrza+2vhq46uNrza+2vhq46uNrza+2vhq46uNrza+2vhq46uNrza+2vhq46uNrza+2vhq46uNrza+2vhq46uNrza+2vhq46uNrza+2vhq46uNrza+2vhq46uNrza+2vhq46uNrza+2vhq46uNrza+2vhq46uNrza+2vhq46uNrza+2vjq4KuDrw6+Ovjq4Kv3ovzdybwn5d/5/f9/Xz/V7O2rT35zX+/z8dU7D3KQkzzJi/z+fPOVm7zJ5+aPr955kIOc5EleZLgBN+AG3ISbcBNuwk24CTfhJtyEm3An3Al3wp1wJ9wJd8KdcCfcCXfBXXAX3AV3wV1wF9wFd8FdcAtuwS24BbfgFtyC+/HV63/DH1+987n501+tVx7kIL97pHrlyeOLXOQmb/K5ecPdcDfcnWS4G+6Gu+FuuBvugXvgHrgH7oF74B64B+6Be35y471X/86DHOQkT/IiF7nJmwx3wB1wB9wBd8AdcAfcAXfAHXADbsANuAE34AbcgBtwA27ATbgJN+Em3ISbcBNuws2fX0fxyHPzhHs79njcjj0en479nX927PG4HXs8bscej9uxx+N27PG4HXs8bscej9uxx+N27PHeq7969Xhv1F89eTxuxx6P27HH43bs8bgdezzqZ+ccj9uxx+N27PG4HXs8bscej9uxx+N27PG4HXs8bscej9uxx6PhNtyG23AbbsNtuA234TbcDXfD3XA33A13w91wN9wNd8M9cA/cA/fAPXAP3AP3wD1wz+WOx4M8yEFO8iQvcpGbvMlwB9wBd8AdcAfcAXfAHXAH3AE34AbcgBtwA27ADbgBN+AG3ISbcBNuwk24CTfhJtyEm3An3Al3wp1wJ9wJd8KdcCfcCXfBXXAX3AV3wV1wF9wFd8FdcPHVwFcDXw18NfDVwFcDXw18NfDVwFcDXw18NfDVwFcDXw18NfDVwFcDXw18NfDVwFcDXw18NfDVwFcDXw18NfDVwFcDXw18NfDVwFcDXw18NfDVwFcDXw18Ffgq8FXgq8BXga8CXwW+CnwV+CrwVeCrwFeBrwJfBb4KfBX4KvBV4KvAV4GvAl8Fvgp8Ffgq8FXgq8BXga8CXwW+CnwV+CrwVeCrwFeBrwJfBb4KfBX4KvBV4Ku4nVXE7awibmcVcTuriNtZRdzOKuJ2VhG3s4q4nVXE7awiFtwFd8FdcBfcBXfBLbgFt+AW3IJbcAtuwS24BbfhNtyG23AbbsNtuA234TbcDXfD3XA33A13w91wN9wNd8M9cA/cA/fAPXAP3AP3wD1wb2cVeTuryNtZRd7OKvJ2VpG3s4q8HXvk7dgjb8ceeTv2yAfcAXfAHXAH3AF3wB1wB9wBd8ANuAE34AbcgBtwA27ADbgBN+Em3ISbcBNuwk24CTfhJtwJd8KdcPFV4qvEV4mvEl8lvkp8lfgq8VXiq8RXia8SXyW+SnyV+CrxVeKrxFeJrxJfJb5KfJX4KvFV4qvEV4mvEl8lvkp8lfgq8VXiq8RXia8SXyW+SnyV+CrxVeKrxFeJrxJfJb5KfJX4KvFV4qvEV4mvEl8lvkp8lfgq8dXEVxNfTXw18dXEVxNfzduxx3w0+WfHHvNxbr4de8zbsce8HXvM27HHvB17zNuxx/z46p1/drAxb8ce83bsMW/HHvN27DFvxx7zduwxb8ce83bsMW/HHjPgBtyAm3ATbsJNuAk34SbchJtwE+6EO+FOuBPuhDvhTrgT7oQ74S64C+6Cu+AuuAvugrvgLrgLbsEtuAW34BbcgltwC27BLbgNt+E23IbbcBtuw224Dbfhbrgb7oa74W64G+6Gu+FuuBvugXvgHrgH7oF74B64B+6Bey73s1H/5EEOcpIneZGL3ORNhjvgDrgD7oA74A64Ay6+Wvhq4auFrxa+Wvhq4av18dV85UUu8u26Fx37omP/3q7XKw8eD3KSJ3mRiww34SZcOvbPjv2T4U64E+6EO+FOuBPuhLvgLrgL7oK74C64C+6Cu+AuuAW34BbcgltwC27BLbgFt+A23IbbcBtuw224DbfhNtyGu+FuuBvuhrvhbrgb7oa74W64B+6Be+AeuAfu4evo8HV04L599br7fDbtr/zZtH/yz9eYxGfT/slJnuRFLnKT39z9yufmT381Xvn9Ob4fT/IkL3KRb4dTdFZFZ1V0VkVnVXRWRWdVdFZFZ1V0VkVnVXRWRWdVdFZFZ1V0VkVnVXRWRWdVdFZFZ1V0VkVnVXRWRWdVdFZFx1507EXHXnTsRcdedOxFx1507EXHXnTsRcdedOxFx1507EXHXnTsRcdedOxFx1507EXHXnTsRcdedOxFx1507EXHXnTsRcdedOxFx1507EXHXnTsRcdedOxFx1507EXHXnTsRcdedOxFx1507EXHXnTsRcdedOxFx1507EXHXnTsRcdedOxFx1507EXH3nTsTcfedOxNx9507E3H3nTsTcfedOxNx9507E3H3nTsTcfedOxNx9507I2vGl81vmp81fiq8VXjq8ZXja8aXzW+anzV+KrxVeOrxleNrxpfNb5qfNX4qvFV46vGV42vGl81vmp81fiq8VXjq8ZXja8aXzW+anzV+KrxVeOrxleNrxpfNb5qfNX4qvFV46vGV42vGl81vmp81fiq8VXjq8ZXja8aXzW+anzV+KrxVeOrxleNrxpfNb5qfNX4qvFV46vGV42vGl81vmp81fiq8VXjq8ZXja8aXzW+Ysce7NiDHXuwYw927MGOPdixBzv2YMce7NiDHXuwYw927MGOPdixBzv2YMce7NiDHXuwYw927MGOPdixBzv2YMce7NiDHXuwYw927MGOPdixBzv2YMce7NiDHXuwYw927MGOPdixBzv2YMce7NiDHXuwYw927MGOPdixBzv2YMce7NiDHXuwYw927MGOPdixBzv2YMce7NiDHXuwYw927MGOPdixBzv2YMce7NiDHXuwYw927MGOPdixBzv2YMce7NiDHXuwYw927MGOPdixBzv2YMce7NiDHXuwYw927MGOPdixBzv2YMce7NiDHXuwYw927MGOPdixBzv2YMce7NiDHXuwYw927MGOPdixBzv2YMceB18dfHXw1cFXB18dfHXw1cFXB18dfHXw1cFXB18dfHXw1cFXB18dfHXw1cFXB18dfHXw1cFXB18dfHXw1cFXB18dfHXw1cFXB18dfHXw1cFXB18dfHXw1cFXB18dfHXw1cFXB18dfHXw1cFXB18dfHXw1cFXB18dfHXw1cFXB18dfPXZsb9uQJ8d+ye//96fr1zkN/f9Ppt8bu4HeZCDnOTbwR469kPHfujYDx37oWM/dOyHjv3QsR869kPHfujYDx37oWM/dOyHjv3QsR869kPHfujYDx37oWM/dOyHjv3QsZ/bsefjduz5uB17Pm7Hno/bsefjduz5uB17Pm7Hno/bsefjduz5eMAdcAfcAXfAHXAH3AF3wB1wB9yAG3ADbsANuAE34AbcgBtwE27CTbgJN+Em3ISbcBNuwp1wJ9wJd8KdcCfcCXfCnXAn3AV3wV1wF9wFd8FdcBfcBXfBLbgFt+AW3IJbcAtuwS24BbfhNtyG23AbbsNtuA234TbcDffjq/nKQU7yz647H7djz8ft2PN7016vvHn83Hw79nzcjj0ft2PPx+3Y83HgHrgH7u3Y83Hg3tfd5Livu8lxX3eT477uJsd93U2O+7qbHPd1Nznu625y3Nfd5Livu8nxgDvgDrgD7oA74A64A+6AO+AOuAE34AbcgBtwA27ADbgBN+Am3ISbcBNuwk24CTfhJtyEO+FOuBPuhDvhTrgT7oQ74U64C+6Cu+7X0VhJhvv21dfdJz+b9k9u8s/X++Rn0/7O9SAPcpCTPMlv7n7lIr8/3/HKP1/vk9879nce5CAn+WeHk+zYkx17smNPduzJjj3ZsSc79mTHnuzYkx17smNPduzJjj3ZsSc79mTHnuzYkx17smNPduzJjj3ZsSc79mTHnuzYkx17smNPduzJjj3ZsSc79mTHnuzYkx17smNPduzJjj3ZsSc79mTHnuzYkx17smNPduzJjj3ZsSc79mTHnuzYkx17smNPduzJjj3ZsSc79mTHnuzYkx17smNPduzJjj3ZsSc79mTHnuzYkx17smNPduwZE+6EO+FOuBPuhDvhLrgL7oK74C64C+6Cu+AuuAtuwS24BbfgFtyCW3ALbsEtuA234TbchouvAl8Fvgp8Ffgq8FXgq8BXga8CXwW+CnwV+CrwVeCrwFeBrwJfBb4KfBX4KvBV4KvAV4GvAl8lvkp8lfgq8VXiq8RXia8SXyW+SnyV+CrxVeKrxFeJrxJfJb5KfJX4KvFV4qvEV4mvEl8lvkp8lfgq8VXiq8RXia8SXyW+SnyV+CrxVeKrxFeJrxJfJb5KfJX4KvFV4qvEV4mvEl8lvkp8lfgq8VXiq8RXia8SXyW+Ysee7NiTHXuyY0927MmOPdmxJzv2ZMee7NiTHXuyY0927MmOPdmxJzv2ZMee7NiTHXuyY0927MmOPdmxJzv2ZMee7NiTHXuyY0927MmOPdmxJzv2ZMee7NiTHXuyY0927MmOPdmxJzv2ZMee7NiTHXuyY0927MmOPdmxJzv2ZMee83bsOW/HnvN27DkfcAfcAXfAHXAH3AF3wB1wB9wBN+AG3IAbcANuwA24ATfgBtyEm3ATbsJNuAk34SbchJtwJ9wJd8KdcCfcCXfCnXAn3Al3wV1wF9wFd8FdcBdcfDXx1cRXE19NfDXx1cRXE19NfDXx1cRXE19NfDXx1cRXE19NfDXx1cRXE19NfDXx1cRXE19NfDXx1cRXE19NfDXx1cRXE19NfDXx1cRXE19NfDXx1cRXE19NfDXx1cRXC18tfLXw1cJXC18tfLXw1cJXC18tfLXw1cJXC18tfLXw1cJXC18tfLXw1cJXnx371w0oPzv2T37/vT9fOck/X++T3zv2dy5ykzf53JwP8u1gFx37omNfdOyLjn3RsS869kXHvujYFx37omNfdOyLjn3RsS869kXHvujYFx37omNfdOyLjn3RsS869kXHvujYFx37omNfdOyLjn3RsS869kXHvujYFx37omNfdOyLjn3RsS869kXHvujYFx37omNfdOyLjn3RsS869kXHvujYFx372nA33A13w91wN9wNd8PdcA/cA/fAPXAP3AP3wD1wD1xugsVNsLgJFjfB4iZY3ASLm2BxEyxugsVNsLgJFjfB4iZY3ASLm2BxEyxugsVNsLgJFjfB4iZY3ASLm2BxEyxugsVNsLgJFjfB4iZY3ASLm2BxEyx8Vfiq8FXhq8JXha8KX9X92VZZ92db5ffPZn/n23UXHXvRsX9v2uuVF48XucmbfDv2omMvOvZacBdcOvZacBfcBXfBXXALbsEtuAW34BbcgltwC27BbbgNt+E23IbbcBtuw224DXfD3XA33A2Xm2BxEyxugrXhchMsboLFTbC4CRY3weImWNwEi5tgcRMsboLFTbC4CTY3weYm2NwEm5tgcxNsboLNTbC5CTY3we+fzf71tfP9s9nfGe7bVytfOckv7upXfnHXeeUiN3mTz81vX33yi/v13xfLz6a9Hr/++M1//f6XP//+D3/503/+5l/+5/nLf//nX//4jz//7a+fX/7jv//+/ZY//PLnv/zlz//xr3//5W9//NO//fOXP/3rX/72x6+3/ebx9Y+vT/G3o37E+N3zncfn8d/uZ4f8Yz+L1d+9Hvzted6xfpznMej563y9fa7n29f6evvXE55/980fz3+crwfG6z26vz7C+fq48f9R+Y16flfxfGJ8PvDXd3fP729+ftjnH+zz25TvD9rPP//O/nr+/Hr+1zPi/Mjz/f7P70/n+nrz+v7wz8PEj2dZ//nw1T9en8PrnZ+3mOdv5vH9wZ/nkucv6+vZ9fPZzw/4rMe/f3OPH6/8fvbzFve8Pvx8dvbzl6/Ptr9/azV+9Ph+/z4/9vx6875/GM+nxNdD5+dDMZ6817+K+6/nWYzN1zPH+L9/jr/++rtf/xc=",
3937
- "verification_key": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEZRAAAAAAAAAAAAAAAAAAAAv2p5RFoILxVTBKAZX4nKLDYAAAAAAAAAAAAAAAAAAAAAAAfZReoNCyWOkT5tlON39gAAAAAAAAAAAAAAAAAAADS7HGLmQH+UcpuvvUYc9Wu9AAAAAAAAAAAAAAAAAAAAAAAYiTpMVkgEMCRf/YPDoLoAAAAAAAAAAAAAAAAAAABd0fUGQUTidxxBu7AJjn8GlQAAAAAAAAAAAAAAAAAAAAAAAu4g2sf56i42NK9ufNiyAAAAAAAAAAAAAAAAAAAA6WrQRqVj67or+rEdm9vHnyoAAAAAAAAAAAAAAAAAAAAAAB4lZytRswg2aHTu6haOjAAAAAAAAAAAAAAAAAAAAI5T20HbJcYYPQT29kwLAm5DAAAAAAAAAAAAAAAAAAAAAAAQrz3ujbEd5ymTAMbwp08AAAAAAAAAAAAAAAAAAAC28LYjHdmVGy6EOHo++kwpogAAAAAAAAAAAAAAAAAAAAAAFdW0U8463eNXUckhMKO2AAAAAAAAAAAAAAAAAAAAgKtys46w2aAfMrEPcpJwInsAAAAAAAAAAAAAAAAAAAAAAA04R8FuVbBq+is3zpXLRAAAAAAAAAAAAAAAAAAAAOzjyVdGrWn4HuNaOv1vYk2WAAAAAAAAAAAAAAAAAAAAAAANbGo6VzPymsZcxdYa63AAAAAAAAAAAAAAAAAAAAAz9kDxar6WBzF9XydoemXxVgAAAAAAAAAAAAAAAAAAAAAAH1AqEVMOWdzdNYuwJ54wAAAAAAAAAAAAAAAAAAAAAN0Ka4as1/1s8w2brqXm9+YAAAAAAAAAAAAAAAAAAAAAAADYQPeJ2uGtW4QP9KEqRQAAAAAAAAAAAAAAAAAAAMhw9bKNMR+MySELtdMF6N7qAAAAAAAAAAAAAAAAAAAAAAAWjGTmFs10eXzDFYDiBpUAAAAAAAAAAAAAAAAAAADgUfWJiKzKecHIg37ZaGxMfgAAAAAAAAAAAAAAAAAAAAAAJFDLZ0kLIHoCYClxquLCAAAAAAAAAAAAAAAAAAAAIjx7zf4ErK3TUbUjPHWvo0EAAAAAAAAAAAAAAAAAAAAAABJB8o1i6Ip9b013Xwim2AAAAAAAAAAAAAAAAAAAANbtA9MMEnI01SmAvBq147tMAAAAAAAAAAAAAAAAAAAAAAAB4gue2VkVG3TYKDAdd9gAAAAAAAAAAAAAAAAAAADNIw/PBFJbYTr8g/bVa2i+jgAAAAAAAAAAAAAAAAAAAAAAL9BbptnijKBcoVYkIOBRAAAAAAAAAAAAAAAAAAAAUUrABQY+rJ3nLeU4QbYveeYAAAAAAAAAAAAAAAAAAAAAADBI7AjctBOHPq2qdNcd3wAAAAAAAAAAAAAAAAAAAJwHOPlTyUOEHjD/qERDzD6MAAAAAAAAAAAAAAAAAAAAAAAW2bXRwoKUXGSlUF1yQ5oAAAAAAAAAAAAAAAAAAADvKGuq9yXL+TlPXWURtghDjAAAAAAAAAAAAAAAAAAAAAAAEfdOnGISj+uFyHCwn/p+AAAAAAAAAAAAAAAAAAAAnGmXX1jELEunbTdNA48caGIAAAAAAAAAAAAAAAAAAAAAABbzOvQbJgM7CvMqp4kegQAAAAAAAAAAAAAAAAAAAKvuj3HweKXqGOsHXwqwZSvUAAAAAAAAAAAAAAAAAAAAAAAk/s9CcBwz/II/5Pvx41wAAAAAAAAAAAAAAAAAAAD823syZBzNWnGGjnzT1yMg5AAAAAAAAAAAAAAAAAAAAAAAATDBDUq0HRHSx0+PInBuAAAAAAAAAAAAAAAAAAAAbGP6UV+RTMDMVJE9AtswcMAAAAAAAAAAAAAAAAAAAAAAAC8fAcvKUFeoLDHLV9S0EgAAAAAAAAAAAAAAAAAAAF2f52f81VpsEx2xbdhVjm0UAAAAAAAAAAAAAAAAAAAAAAAsrbf8rw4vuQtKSHG/hjgAAAAAAAAAAAAAAAAAAABjwF0S8hiw4mdbbTOn8rB+fAAAAAAAAAAAAAAAAAAAAAAACcxrhs5nACVotkiB3pJiAAAAAAAAAAAAAAAAAAAAuVgLx2uLmeImv9wN0Xa8dzkAAAAAAAAAAAAAAAAAAAAAACd8TVyIPuVCM/wlV3dLaQAAAAAAAAAAAAAAAAAAAMwhl4N5FX7AogVPWe2nuPdUAAAAAAAAAAAAAAAAAAAAAAAJG/d1q1aVxULw3bQLdSMAAAAAAAAAAAAAAAAAAABfDGKLBbgZny+pRcL/1I/3xAAAAAAAAAAAAAAAAAAAAAAAG3tXfYtuBP9o+fA3m6xoAAAAAAAAAAAAAAAAAAAAj3U8ZjXd1p81IWtxTDLs2jcAAAAAAAAAAAAAAAAAAAAAAAI/A1YQ5izQuYtNzMOuKAAAAAAAAAAAAAAAAAAAAIKNMkDu/9tB77CEnx4L+dVPAAAAAAAAAAAAAAAAAAAAAAAFEZSgCdzwOtpxXnOa1D4AAAAAAAAAAAAAAAAAAADbg5YiuY8BR5loONe8e2si9QAAAAAAAAAAAAAAAAAAAAAAB2LZ7g+wlP86IquB/zFCAAAAAAAAAAAAAAAAAAAA4NaymkHfouU9Qh5oTr9Tv74AAAAAAAAAAAAAAAAAAAAAACoIdKvTA6bQCYAAAUxtKwAAAAAAAAAAAAAAAAAAABpb+ZyR8nuUemCaWdE5au/KAAAAAAAAAAAAAAAAAAAAAAAvMnMRQ50RTThMQJAaOkQAAAAAAAAAAAAAAAAAAADPoiMIiV5KC85N5b9UuNIS2QAAAAAAAAAAAAAAAAAAAAAAAoTQhjaH5Eml0a7zjT24AAAAAAAAAAAAAAAAAAAAD57EgsNjNdVbFQtW24EHdvQAAAAAAAAAAAAAAAAAAAAAACU0sOCC0HMNtzusl3YkgAAAAAAAAAAAAAAAAAAAAAiJes+edTmoVwqxAB3Y1eiEAAAAAAAAAAAAAAAAAAAAAAAWBDTe26wtsZIGg1V8MF0AAAAAAAAAAAAAAAAAAACZZYPpidshIcsLvGTfv9G6yQAAAAAAAAAAAAAAAAAAAAAAJ3Zz8TRYxnIdetX+VH3AAAAAAAAAAAAAAAAAAAAAxQRxeUrHN/qjs6eSJ3w785IAAAAAAAAAAAAAAAAAAAAAABBWOtN7rZ9UPYE+fxOi4AAAAAAAAAAAAAAAAAAAAAEqS/h0abM1E6IVtnVasG7jAAAAAAAAAAAAAAAAAAAAAAAUyNiKYJpGAapIURN/08oAAAAAAAAAAAAAAAAAAAADYc5B1tyu816ZHdo/MpgWoQAAAAAAAAAAAAAAAAAAAAAAI+aMMfw6ct/2L/4titP0AAAAAAAAAAAAAAAAAAAAjlm0JJXl6sI7fjXpkYbX1ZMAAAAAAAAAAAAAAAAAAAAAABfLAK2KvnlA3TMuI5EAlwAAAAAAAAAAAAAAAAAAAEzDyIFuKhylNFzzfTR6KnHjAAAAAAAAAAAAAAAAAAAAAAAY0PYbWXUogUg8SENJAe0AAAAAAAAAAAAAAAAAAABpMyZ/wHFa6ztfQSz409NpaAAAAAAAAAAAAAAAAAAAAAAAJLz3tuW093Ji1jIp4YjbAAAAAAAAAAAAAAAAAAAA957ICHUEJQuSquAOqwsLsqgAAAAAAAAAAAAAAAAAAAAAAC7FWx+XnO75kl+nEMsORwAAAAAAAAAAAAAAAAAAAFvq2HujmplcFHroP18jVoscAAAAAAAAAAAAAAAAAAAAAAAqZHm8bHiE3r2Mg1tldt8AAAAAAAAAAAAAAAAAAABeWr6HP43kEeoWeUY1bd4w9wAAAAAAAAAAAAAAAAAAAAAAGQnU3cgrcRE6qpSPYOVPAAAAAAAAAAAAAAAAAAAAXxRF32rk0qeDaK+MrgUxst0AAAAAAAAAAAAAAAAAAAAAAB1/mySX+a5AmZ7/22020QAAAAAAAAAAAAAAAAAAAOAmJiHfwsL9rIHKrt4JQDIsAAAAAAAAAAAAAAAAAAAAAAApL+mwxqrUsimVRwD5ZcYAAAAAAAAAAAAAAAAAAADx2n2JJrz17IkXfYDOR0Po8AAAAAAAAAAAAAAAAAAAAAAAG8IK2JXUVD74AbBhdSWwAAAAAAAAAAAAAAAAAAAAYzlvW+172TOYgWkUUUh2/24AAAAAAAAAAAAAAAAAAAAAAAluEyPOah2X7RDy126vxgAAAAAAAAAAAAAAAAAAAIfLBtleqZSVTXrrCN7f9vVgAAAAAAAAAAAAAAAAAAAAAAAtnxbJ0Gm56dgjGnxhXRQAAAAAAAAAAAAAAAAAAACM5UlxB5fRrvSHh/2ngTwxAQAAAAAAAAAAAAAAAAAAAAAAHVDH93R+VZoDDBT4Ag2aAAAAAAAAAAAAAAAAAAAAsa5dmATPGopi6epL4rZqLXYAAAAAAAAAAAAAAAAAAAAAACiS/dumBD9h36AnqHwl6gAAAAAAAAAAAAAAAAAAAA96+783Idykyau8tIFzHa8YAAAAAAAAAAAAAAAAAAAAAAAjxfcRf3orhGigOWSKNkUAAAAAAAAAAAAAAAAAAADwnCJCRUREW/Cfhs4k57yjMQAAAAAAAAAAAAAAAAAAAAAAEBv2dCir+02VxaBxZLcpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACxFUZ8rZksCMt0SCBVx1wD/QAAAAAAAAAAAAAAAAAAAAAAJ0uZknypA8fg5NCS4AN7AAAAAAAAAAAAAAAAAAAAk32t3a/4sfdQOYrueTEFFR0AAAAAAAAAAAAAAAAAAAAAAB3FG4jkfOTc6hT73OTREgAAAAAAAAAAAAAAAAAAAGvMegX/lalrKJQkxfczZw2WAAAAAAAAAAAAAAAAAAAAAAAAxDcm91tv2g3iLODg36sAAAAAAAAAAAAAAAAAAAAdCgnXF47JO614WPluZPC0jQAAAAAAAAAAAAAAAAAAAAAAL5tuC04sAZaN5cMkgqp9AAAAAAAAAAAAAAAAAAAAXdsR09mZ0q/lSNdpuQW9QoYAAAAAAAAAAAAAAAAAAAAAACfZ/bajT7bsP7B7gj4icQAAAAAAAAAAAAAAAAAAAK8Q9yBpJk5QR1r8hBZKdMqfAAAAAAAAAAAAAAAAAAAAAAAMIAnvhJBhS4qotnpGypU="
3935
+ "bytecode": "H4sIAAAAAAAA/+xdB5zVxNfNYzttadLL0ntHRECkKl1sqFiQJqD03ll674qIqIAoWBCRJlZExYaIWEBUBHsXC1aUby4mGGJ2N/e+yXnM9ze/3yVLXmbOPWdmTublpUSsv5fs9rrXgGFDRg8a2HfAsDcKWNbRvH9vjaiIs9fZVKR5tjlr9995ffbLr6KpZ1tBFemebYV8thX3qa+Ez7aSPttK+WxL88Eo7bOtjM+2sj7byvlgVPDZVslHq8o+26r4bKvmU18Nn/1q+myr5bOtjk999Xz2O9tnW32fbQ186mvos18jn22NfbY18amvqc9+zXy2NffZ1lJFsmdbK3sdbwVYIvY6zV7X6tlxyJHaKys/2qnV1kmTrry2Ut3PW4/ePmhRiyPHlhxVn98f98++WSzVosF5IGucMu66c1r/EI7YedK6vPVPx43Y9Tr7Paj+Xq/iIRUb4k6vPM6TbxZLpCJj3wfjguvwcHC9T1u4+Vdi7Luekf9GUP6VGfs+xMj/EUb+fv3wYbsfbrTXj9jrDa5+uEn9vVnFFhVbo+yHVRj7bmLosA3UjlUZ+25m5P8oKP9qjH23MPLfHmU/3Gb3u0ft9XZ7vdXVDx9Tfz+u4gkVT0bZD6sz9n2MocNToHaswdj3cUb+T4Pyr8nY9wlG/jui7IdP2f3uaXu9w14/6eqHz6i/d6p4VsVzUfbDWox9n2Ho8DyoHWsz9t3JyH8XKP86jH2fZeT/QpT98Hm73+2y1y/Y6+dc/fBF9fdLKl5W8UqU/bAuY98XGTrsBrVjPca+LzHyfxWU/9mMfV9m5L8nyn642+53r9rrPfb6FVc/fE39vVfF6yr2RdkP6zP2fY2hwxugdjyHse9eRv5vgvJvwNj3dUb+b0XZD9+w+92b9vote73P1Q/fVn/vV3FAxTtR9sNzGfu+zdDhIKgdGzL23c/I/11Q/o0Y+x5g5P9elP3woN3v3rXX79nrd1z98H319yEVH6g4HGU/bMzY932GDkdA7XgeY99DjPw/BOXfhLHvB4z8P4qyHx6x+92H9voje33Y1Q8/Vn9/ouJTFZ9F2Q/PZ+z7MUOHz0Ht2JSx7yeM/L8A5d+Mse+njPy/jLIffm73uy/s9Zf2+jNXP/xK/f21im9UfBtlP2zO2Pcrhg7fgdqxBWPfrxn5HwXl35Kx7zeM/L+Psh9+Z/e7o/b6e3v9rasf/qD+/lHFTyqORdkPWzH2/YGhw89R6vCzzftHe/2TvT7m0uEX9fevKn5T8btHh2z2Os0KlkJ+Kzi3P4Jyi1ycTjnH2ZyoXFMrujzLWcHzPB68DSLuPJ1y8fb/I34FmHlHgu/7z0IJZLNimEBmgFmp/2dw9ctEg/NX1jhp7rq9I+1Pe2R5f8H9yzXSTsT9XSiiIpvn926u43B+wT3BcJy4eMyRg/MLrhUfPP94UP6cX3AjjPwTGPn79UNqP1rH2+sEe039zdkvUf2RpCJZRUqU/ZDzC24iQ4fsoHbk/IKbxMg/Byh/zi+4yYz8c0bZD7Pb/S6Hvc5pr1Nc/TCX+iO3ilQVeaLsh5xfcHMxdMgLakfOL7i5GfnnA+XP+QU3lZF//ij7YV673+Wz1/ntdR5XPyyg/jhLRUEVhaLsh5xfcAswdCgMakfOL7hnMfIvAsqf8wtuQUb+RaPsh4XtflfEXhe114Vc/bCY+qO4ihIqSkbZDzm/4BZj6FAK1I6cX3CLM/JPA+XP+QW3BCP/0lH2w1J2v0uz16XtdUlXPyyj/iiropyK8lH2Q84vuGUYOlQAtSPnF9yyjPwrgvLn/IJbjpF/pSj7YQW731W015XsdXlXP6ys/qiioqqKalH2Q84vuJUZOlQHtSPnF9wqjPxrgPLn/IJblZF/zSj7YXW739Ww1zXtdTVXP6yl/qitoo6KulH2Q84vuLUYOtQDtSPnF9zajPzPBuXP+QW3DiP/+lH2w3p2vzvbXte313Vd/fAc9UcDFeeqaBhlP+T8gnsOQ4dGoHZsyti3ASP/xqD8mzH2PZeR/3lR9sNGdr9rbK/Ps9cNXf2wifrjfBVNVTSLsh9yfsFtwtChOagdWzD2PZ+Rf4so27G53W4t7HVTe93M1Y4t1R+tVFyg4kJ7u/PrVUZLmhUspURXLk6Z1gqgjYq2KtqpaK+ig4qOKi5S0UnFxSouUXGpistUXK6is4orVFyp4ioVXVRcreIaFdequE5FVxXXq+imoruKHip6quil4gYVveNPz6WP+n9fFTequElFPxX9VQxQMVDFIBWDVQxRMVTFMBXDVYxQMVLFKBWjVYxRMVbFOBXjVUxQMVFFuopJKiarmKJiqoppKqarmGE3wEx7Pctez7bXc+Jt4ZzGIOG890228dnW1mdbO59t7X22dfDZ1tFn20U+2zr5bLvYZ9slPtsu9dl2mc+2y322dfbZdoXPtit9tl3ls62Lz7arfbZd47PtWp9t1/ls6+qz7Xqfbd18tnX32dbDZ1tPn229fLbd4LOtt8+2Pj7b+vpsu9Fn200+2/r5bOvvs22Az7aBPtsG+Wwb7LNtiM+2oT7bhvlsG+6zbYTPtpE+20b5bBvts22Mz7axPtvG+Wwb77Ntgs+2iT7b0n22TfLZNtln2xSfbVN9tk3z2TbdZ9sMn22z7W3uxXvJR1YH1Ihr3yyWCBlywH1PL8jMaW5wnIj7P2me9emf/ntpfRpO5ju3OT2nTHdu68k/s53beblmsnP7f+mS8c4d/q1hhjt39NE7o50v8mubDHbu5NuO/jtf7N/mvjtfkkH/8Nv50oz6ks/Ol2XY7/698+UZ99F/7dw5k/7s3fmKzPq+Z+crMx0np+98VeZj6rSdu2Qx/tw7X53VWHXtfE2W4/qfna/N2gNO7XxdAL9wdu4axFvsna8P5EN/79wtmGed3Ll7QH+jnXsE9cLI3/ObQPuqnXsxPPaG+ODePQ90jJifNU6Su27vF0E6xkTsfGntfBGiep39Fqg/FqpYpGJx/OmVl/bkm4GtnVr6MI41fRnHmhsZx5qbGMeafoxjTX/GsWYA41gzkHGsGcQ41gxmHGuGMI41QxnHmmGMY81wxrFmBONYM5JxrBnFONaMZhxrxjCONWMZx5pxjGPNeMaxZgLjWDORcaxJZxxrJjGONZMZx5opjGPNVMaxZhrjWDOdse8CxnFpifC4xD3xOYOR/0JG/jeD8p/JyH8RI/9bGPn7Ha+X2Mfnm+31LfZ6set4vVT9cauKZSpuiz+9Tu6tEEsZ3JYzNPPjttzmcqu9Xmavb3Nxu139sULFHSrutLfntPyPQ965VFY5zQ7I9bsTJ/5y493lJsEFpMKckxUEfhdD6JWMBpRyWBnPm7gSh5WgCfKq4Djx0eCszhonzl23t/OvsjV04nb7/6tdnf9u9ccaFfeouDf+n7LuPLNYzvj2WhscJ85Px7U2tzn2+m4fHdepP+5Tcb+KB6I0yOOMu2ceZBqkc4LTKRdv/XO/2L8KMPNuyTwQOeum9t/rVfmHVGxQ8bCKjSoeUbFJxWYVW1RsVbFNxaMqtqt4TMXjKp5Q8aSKp1Q8rWKHimdU7FTxrIrnVDyvYpeKF1S8qOIlFS+reEXFbhWvqtij4jUVe1W8rmKfijdUvKniLRVvq9iv4oCKd1QcVPGuivdUvK/ikIoPVBxWcUTFhyo+UvGxik9UfKriMxWfq/hCxZcqvlLxtdMQuax/Okw0jbFeOLgsFk7ktFy/sTv+t06PcnobffCzZxvt5D3Fzp1SrQ9+eI18wzhqfSsUj/sTASen79w5ZbGzW+fvbO050xpO3kFycZaj8VEAHvWZ1mRV8CjDHr9nNIaUw/c+h8msCn7P7Ixcp/jWzsvildPqVg/FwK1+tDn/5HWrH33c6icNbvUQw61+ZHTGn0BuxcnpmNCtjoXgVj8K3ern+CgAfxa41c8Mt/olZLciDr8I3OqXkN3qJzsvi1dOq1ttiIFb/WZz/t3rVr/5uNXvGtxqA8OtfmN0xt9BbsXJ6Q+hW/0Rglv9JnSr4/FRAB4XuNVxhlv9GbJbEYc/BW71Z8hu9budl8Urp9WtHo6BW51wOCdYp4+YEz5uRTtF61YPM9zqBKczJmDcipNTJEHmVlROt1udELpVtoQoAKkw162yBW/ISFxCuG5FHAiD61ZxzM7IdQrq7HEJ/2xIC1ZOq1ttjIFbJdicE71ulZDwb7dK1OBWGxlulcDojIkgt+LklCR0q6QQ3CqBmYuzJCdEAZgscKtkhlulhOxWxCFF4FYpIbtVop2XxSun1a0eiYFb5bA55/S6VQ4ft8qpwa0eYbhVDkZnzAlyK05OuYRulSsEt8ohdKvcCVEA5ha4VW6GW6WG7FbEIVXgVqkhu1VOOy+LV06rW22KgVvltTnn87pVXh+3yqfBrTYx3CovozPmA7kVJ6f8QrfKH4Jb5RW6VYGEKAALCNyqAMOtzgrZrYjDWQK3Oitkt8pn52Xxyml1q80xcKtCNufCXrcq5ONWhTW41WaGWxVidMbCILfi5FRE6FZFQnCrQkK3KpoQBWBRgVsVZbhVsZDdijgUE7hVsZDdqrCdl8Urp9WttsTArUrYnEt63aqEj1uV1OBWWxhuVYLRGUuC3IqTUymhW5UKwa1KCN0qLSEaQIFbpTHcqnTIbkUcSgvcqnTIblXSzsvildPqVltj4FZlbc7lvG5V1setymlwq60MtyrL6IzlQG7Fyam80K3Kh+BWZYVuVSEhCsAKAreqwHCriiG7FXGoKHCriiG7VTk7L4tXTqtbbYuBW1W2OVfxulVlH7eqosGttjHcqjKjM1YBuRUnp6pCt6oagltVFrpVtYQoAKsJ3Koaw62qh+xWxKG6wK2qh+xWVey8LF45rW71aAzcqqbNuZbXrWr6uFUtDW71KMOtajI6Yy2QW3Fyqi10q9ohuFVNoVvVSYgCsI7Areow3KpuyG5FHOoK3KpuyG5Vy87L4pXT6lbbY+BWZ9uc63vd6mwft6qvwa22M9zqbEZnrA9yK05O5wjd6pwQ3OpsoVs1SIgCsIHArRow3OrckN2KOJwrcKtzQ3ar+nZeFq+cVrd6LAZu1cjm3NjrVo183KqxBrd6jOFWjRidsTHIrTg5nSd0q/NCcKtGQrdqkhAFYBOBWzVhuNX5IbsVcThf4Fbnh+xWje28LF45rW71eAzcqpnNubnXrZr5uFVzDW71OMOtmjE6Y3OQW3FyaiF0qxYhuFUzoVu1TIgCsKXArVoy3KpVyG5FHFoJ3KpVyG7V3M7L4pXT6lZPxMCtLrQ5t/a61YU+btVag1s9wXCrCxmdsTXIrTg5tRG6VZsQ3OpCoVu1TYgCsK3Ardoy3KpdyG5FHNoJ3KpdyG7V2s7L4pXT6lZPxsCtOticO3rdqoOPW3XU4FZPMtyqA6MzdgS5FSeni4RudVEIbtVB6FadEqIA7CRwq04Mt7o4ZLciDhcL3OrikN2qo52XxSun1a2eioFbXWpzvszrVpf6uNVlGtzqKYZbXcrojJeB3IqT0+VCt7o8BLe6VOhWnROiAOwscKvODLe6ImS3Ig5XCNzqipDd6jI7L4tXTqtbPR0Dt7rK5tzF61ZX+bhVFw1u9TTDra5idMYuILfi5HS10K2uDsGtrhK61TUJUQBeI3CraxhudW3IbkUcrhW41bUhu1UXOy+LV06rW+2IgVt1tTlf73Wrrj5udb0Gt9rBcKuujM54PcitODl1E7pVtxDcqqvQrbonRAHYXeBW3Rlu1SNktyIOPQRu1SNkt7rezsvildPqVs/EwK162Zxv8LpVLx+3ukGDWz3DcKtejM54A8itODn1FrpV7xDcqpfQrfokRAHYR+BWfRhu1TdktyIOfQVu1Tdkt7rBzsvildPqVjtj4FY32Zz7ed3qJh+36qfBrXYy3OomRmfsB3IrTk79hW7VPwS3uknoVgMSogAcIHCrAQy3GhiyWxGHgQK3GhiyW/Wz87J45bS61bMxcKvBNuchXrca7ONWQzS41bMMtxrM6IxDQG7FyWmo0K2GhuBWg4VuNSwhCsBhArcaxnCr4SG7FXEYLnCr4SG71RA7L4tXTqtbPRcDtxppcx7ldauRPm41SoNbPcdwq5GMzjgK5FacnEYL3Wp0CG41UuhWYxKiABwjcKsxDLcaG7JbEYexArcaG7JbjbLzsnjltLrV8zFwq/E25wletxrv41YTNLjV8wy3Gs/ojBNAbsXJaaLQrSaG4FbjhW6VnhAFYLrArdIZbjUpZLciDpMEbjUpZLeaYOdl8cppdatdMXCrKTbnqV63muLjVlM1uNUuhltNYXTGqSC34uQ0TehW00JwqylCt5qeEAXgdIFbTWe41YyQ3Yo4zBC41YyQ3WqqnZfFK6fVrV6IgVvNsjnP9rrVLB+3mq3BrV5guNUsRmecDXIrTk5zhG41JwS3miV0q7kJUQDOFbjVXIZbzQvZrYjDPIFbzQvZrWbbeVm8clrd6sUYuNUCm/NCr1st8HGrhRrc6kWGWy1gdMaFILfi5LRI6FaLQnCrBUK3WpwQBeBigVstZrjVkpDdijgsEbjVkpDdaqGdl8Urp9WtXoqBW91ic17qdatbfNxqqQa3eonhVrcwOuNSkFtxcrpV6Fa3huBWtwjdallCFIDLBG61jOFWt4XsVsThNoFb3RayWy2187J45bS61csxcKvbbc4rvG51u49brdDgVi8z3Op2RmdcAXIrTk53CN3qjhDc6nahW92ZEAXgnQK3upPhVneF7FbE4S6BW90VslutsPOyeOW0utUrMXCrVTbn1V63WuXjVqs1uNUrDLdaxeiMq0FuxcnpbqFb3R2CW60SutWahCgA1wjcag3Dre4J2a2Iwz0Ct7onZLdabedl8cppdavdMXCrtTbndV63WuvjVus0uNVuhlutZXTGdSC34uR0n9Ct7gvBrdYK3er+hCgA7xe41f0Mt3ogZLciDg8I3OqBkN1qnZ2XxSun1a1ejYFbrbc5P+R1q/U+bvWQBrd6leFW6xmd8SGQW3Fy2iB0qw0huNV6oVs9nBAF4MMCt3qY4VYbQ3Yr4rBR4FYbQ3arh+y8LF45rW61JwZutcnmvNnrVpt83GqzBrfaw3CrTYzOuBnkVpyctgjdaksIbrVJ6FZbE6IA3Cpwq60Mt9oWslsRh20Ct9oWsltttvOyeOW0utVrMXCr7Tbnx7xutd3HrR7T4FavMdxqO6MzPgZyK05Ojwvd6vEQ3Gq70K2eSIgC8AmBWz3BcKsnQ3Yr4vCkwK2eDNmtHrPzsnjltLrV3hi41dM25x1et3rax612aHCrvQy3eprRGXeA3IqT0zNCt3omBLd6WuhWOxOiANwpcKudDLd6NmS3Ig7PCtzq2ZDdaoedl8Urp9WtXo+BWz1vc97ldavnfdxqlwa3ep3hVs8zOuMukFtxcnpB6FYvhOBWzwvd6sWEKABfFLjViwy3eilktyIOLwnc6qWQ3WqXnZfFK6fVrfbFwK1esTnv9rrVKz5utVuDW+1juNUrjM64G+RWnJxeFbrVqyG41StCt9qTEAXgHoFb7WG41WshuxVxeE3gVq+F7Fa77bwsXjmtbvVGDNzqdZvzPq9bve7jVvs0uNUbDLd6ndEZ94HcipPTG0K3eiMEt3pd6FZvJkQB+KbArd5kuNVbIbsVcXhL4FZvhexW++y8LF45rW71Zgzcar/N+YDXrfb7uNUBDW71JsOt9jM64wGQW3FyekfoVu+E4Fb7hW51MCEKwIMCtzrIcKt3Q3Yr4vCuwK3eDdmtDth5WbxyWt3qrRi41fs250Net3rfx60OaXCrtxhu9T6jMx4CuRUnpw+EbvVBCG71vtCtDidEAXhY4FaHGW51JGS3Ig5HBG51JGS3OmTnZfHKaXWrt2PgVh/ZnD/2utVHPm71sQa3epvhVh8xOuPHILfi5PSJ0K0+CcGtPhK61acJUQB+KnCrTxlu9VnIbkUcPhO41Wchu9XHdl4Wr5xWt9ofA7f6wub8pdetvvBxqy81uNV+hlt9weiMX4LcipPTV0K3+ioEt/pC6FZfJ0QB+LXArb5muNU3IbsVcfhG4FbfhOxWX9p5WbxyWt3qQAzc6jub81GvW33n41ZHNbjVAYZbfcfojEdBbsXJ6XuhW30fglt9J3SrHxKiAPxB4FY/MNzqx5Ddijj8KHCrH0N2q6N2XhavnFa3eicGbnXM5vyz162O+bjVzxrc6h2GWx1jdMafQW7FyekXoVv9EoJbHRO61a8JUQD+KnCrXxlu9VvIbkUcfhO41W8hu9XPdl4Wr5xWtzoYA7f6w+Z83OtWf/i41XENbnWQ4VZ/MDrjcZBbcXL6U+hWf4bgVn8I3eqvhCgA/xK41V8MtzoRslsRhxMCtzoRslsdt/OyeOW0utW7MXCrSOLf62yJ1ukjhj7wuhXtFK1bvctwK8ohyL5H7dwC5nDawnUrTk5xiTK3ikvU71YRZi7OEp8YBSAV5rpVfPCGjCQwGkPKgTC4bpXA7Ixcp8hm52Xxyml1q/di4FZJNudkr1sl+bhVsga3eo/hVkmMzpgMcitOTilCt0oJwa2ShG6VPTEKwOwCt8rOcKscIbsVccghcKscIbtVsp2XxSun1a3ej4Fb5bI55/a6VS4ft8qtwa3eZ7hVLkZnzA1yK05OqUK3Sg3BrXIJ3SpPYhSAeQRulYfhVnlDdivikFfgVnlDdqvcdl4Wr5xWtzoUA7fKb3Mu4HWr/D5uVUCDWx1iuFV+RmcsAHIrTk5nCd3qrBDcKr/QrQomRgFYUOBWBRluVShktyIOhQRuVShktypg52Xxyml1qw9i4FZFbM5FvW5VxMetimpwqw8YblWE0RmLgtyKk1MxoVsVC8GtigjdqnhiFIDFBW5VnOFWJUJ2K+JQQuBWJUJ2q6J2XhavnFa3OhwDtyplc07zulUpH7dK0+BWhxluVYrRGdNAbsXJqbTQrUqH4FalhG5VJjEKwDICtyrDcKuyIbsVcSgrcKuyIbtVmp2XxSun1a2OxMCtytucK3jdqryPW1XQ4FZHGG5VntEZK4DcipNTRaFbVQzBrcoL3apSYhSAlQRuVYnhVpVDdiviUFngVpVDdqsKdl4Wr5xWt/owBm5V1eZczetWVX3cqpoGt/qQ4VZVGZ2xGsitODlVF7pV9RDcqqrQrWokRgFYQ+BWNRhuVTNktyIONQVuVTNkt6pm52Xxyml1q49i4Fa1bc51vG5V28et6mhwq48YblWb0RnrgNyKk1NdoVvVDcGtagvdql5iFID1BG5Vj+FWZ4fsVsThbIFbnR2yW9Wx87J45bS61ccxcKtzbM4NvG51jo9bNdDgVh8z3OocRmdsAHIrTk7nCt3q3BDc6hyhWzVMjAKwocCtGjLcqlHIbkUcGgncqlHIbtXAzsvildPqVp/EwK3Oszk38brVeT5u1USDW33CcKvzGJ2xCcitODmdL3Sr80Nwq/OEbtU0MQrApgK3aspwq2YhuxVxaCZwq2Yhu1UTOy+LV06rW30aA7dqYXNu6XWrFj5u1VKDW33KcKsWjM7YEuRWnJxaCd2qVQhu1ULoVhckRgF4gcCtLmC41YUhuxVxuFDgVheG7FYt7bwsXjmtbvVZDNyqjc25rdet2vi4VVsNbvUZw63aMDpjW5BbcXJqJ3SrdiG4VRuhW7VPjAKwvcCt2jPcqkPIbkUcOgjcqkPIbtXWzsvildPqVp/HwK0usjl38rrVRT5u1UmDW33OcKuLGJ2xE8itODldLHSri0Nwq4uEbnVJYhSAlwjc6hKGW10aslsRh0sFbnVpyG7Vyc7L4pXT6lZfxMCtLrc5d/a61eU+btVZg1t9wXCryxmdsTPIrTg5XSF0qytCcKvLhW51ZWIUgFcK3OpKhltdFbJbEYerBG51Vchu1dnOy+KV0+pWX8bAra62OV/jdaurfdzqGg1u9SXDra5mdMZrQG7FyelaoVtdG4JbXS10q+sSowC8TuBW1zHcqmvIbkUcugrcqmvIbnWNnZfFK6fVrb6KgVt1szl397pVNx+36q7Brb5iuFU3RmfsDnIrTk49hG7VIwS36iZ0q56JUQD2FLhVT4Zb9QrZrYhDL4Fb9QrZrbrbeVm8clrd6usYuFVvm3Mfr1v19nGrPhrc6muGW/VmdMY+ILfi5NRX6FZ9Q3Cr3kK3ujExCsAbBW51I8OtbgrZrYjDTQK3uilkt+pj52Xxyp3sULmtfwZtNDm0hLiV/25pVpAlcopTxFWmv9JtgIqBKgapGKxiiIqhKoapGK5ihIqRKkapGK1ijIqxKsapGK9igoqJKtJVTFIxWcUUFVNVTFMxXcUMFTNVzFIxW8UcFXO9LtvfdlT3tgE+2wb6bBvks22wz7YhPtuG+mwb5rNtuM+2ET7bRvpsG+WzbbTPtjE+28b6bBvns228z7YJPtsm+mxL99k2yWfbZJ9tU3y2TfXZNs1n23SfbTN8ts302TbLZ9tsn21zfLbN9Tl6l7bXaVag5bRBn5V59g9oznSkHxB4XysyMOi+Kt9BwfZdTAe9wYH2/enkAXJIkH0P/30wHRpg3+b2gXdY1vsudA7Sw7Pcd+CpA/qIrPZ99J+D/8gs9h3lmiiMynzfC92TitGZ7vvZaROQMZntW+f0ycrYTPat6JnYjMt432u8k6DxGe57xb8mTBMy2jf935OriRnsm+4zEUv333eL36Rtku++LX0neJP99r3IfzI4xWffbRlMHKf+e99KGU0yp/1r37synJBO9+5bK+PJ6wzPvoczmejOPH3fwZlNimedtm+HTCfQs9379sh8sj3HtW/NLCbmcxkTS863hyyW03Cz8PLX3XjzMvr2EARwXiLv6xmBzwsuUGR+QFIZfXsIwmF+Iu9bB3GYz2xkXecfGJ1rr9/GNCsQzGm5LrA7yELvzHiBLZx720IN5x8YPTmygNFBFjLF4zYOdYoFzM5EeS2IkWPMCa7zHW68RVLHIMBFfMe4YxHDMRaH7BjEYTHfMe5YHCPHmBMcd4XfxjQrEMxpuS6xO8jNXsdY4uMYN2twDEZPjixhdJCbheJxz1hycrqFMRhO/cPIZb7dwf91UjALLM6heiljMPhxyGp30mipwImXxsiJZwfvv5vceLdKnZgAb+U78aZbGZ1vWchOTByW8Z1407IoO1+QAbQ05AF0G5ODs3CNidOGyxl9Q+cRbnZw3Ef8NqZZgWBOy/V2e+Ct8B7hbvc5wq3QcIRjOETkdkajrRCKx+1InJzuiPIIl1UZGjzLBUeHO0M+ahHvOwF5OQu3De9ktOFdIbdhRiYbxJyD7ruSaWi6ZgOzgo/1BW68VdLZAAGu4s8GFqxiCLQ65NkAcVjNnw0sWB3ybIAGwsrEcAfb3czB5izcnDhtuCZGs4FZwXHn+21MswLBnJbrPfbAu9c7G7jHZzZwr4bZAMMhIvcwGu1eoXjcjsTJaW3IRxIaPGsER911Ic8GiPc6QF7Owm3DdYw2vC/kNszIZLMqxzHZ+2N0bmBm8LGe5sZ7QDobIMAH+LOBtAcYjfxgyLMB4vAgfzaQ9mDIswEaCPcnhjvY1oNmA5w2fChGs4GZwXFL+W1MswLBnJbrBnvgPeydDWzwmQ08rGE2wHCIyAZGoz0sFI/bkTg5bQz5SEKD5yHBUfeRkGcDxPsRQF7Owm3DRxhtuCnkNszIZLMqxzHZzTGaDcwIPtb3uvG2SGcDBLiFPxvYu4XRyFtDng0Qh6382cDerSHPBmggbE4Md7BtA80GOG34aIxmAzOC477mtzHNCgRzWq7b7YH3mHc2sN1nNvCYhtkAwyEi2xmN9phQPG5H4uT0eMhHEho8jwqOuk+EPBsg3k8A8nIWbhs+wWjDJ0Nuw4xMNqtyHJN9KkazgenBx3o3N97T0tkAAT7Nnw10e5rRyDtCng0Qhx382UC3HSHPBmggPJUY7mB7BjQb4LThzhjNBqYHx73eb2OaFQjmtFyftQfec97ZwLM+s4HnNMwGGA4ReZbRaM8JxeN2JE5Oz4d8JKHBs1Nw1N0V8myAeO8C5OUs3DbcxWjDF0Juw4xMNqtyHJN9MUazgWnBx/oBN95L0tkAAb7Enw0ceInRyC+HPBsgDi/zZwMHXg55NkAD4cXEcAfbK6DZAKcNd8doNjAtOO5+v41pViCY03J91R54e7yzgVd9ZgN7NMwGGA4ReZXRaHuE4nE7Eien10I+ktDg2S046u4NeTZAvPcC8nIWbhvuZbTh6yG3YUYmm1U5jsnui9FsYGrwsd7GjfeGdDZAgG/wZwNt3mA08pshzwaIw5v82UCbN0OeDdBA2JcY7mB7CzQb4LTh2zGaDUwNjtvab2OaFQjmtFz32wPvgHc2sN9nNnBAw2yA4RCR/YxGOyAUj9uRODm9E/KRhAbP24Kj7sGQZwPE+yAgL2fhtuFBRhu+G3IbZmSyWZXjmOx7MZoNTAk+1je68d6XzgYI8H3+bGDj+4xGPhTybIA4HOLPBjYeCnk2QAPhvcRwB9sHoNkApw0Px2g2MCU47sN+G9OsQDCn5XrEHngfemcDR3xmAx9qmA0wHCJyhNFoHwrF43YkTk4fhXwkocFzWHDU/Tjk2QDx/hiQl7Nw2/BjRht+EnIbZmSyWZXjmOynMZoNTA4+1p9w430mnQ0Q4Gf82cATnzEa+fOQZwPE4XP+bOCJz0OeDdBA+DQx3MH2BWg2wGnDL2M0G5gcHPdxv41pViCY03L9yh54X3tnA1/5zAa+1jAbYDhE5CtGo30tFI/bkTg5fRPykYQGz5eCo+63Ic8GiPe3gLychduG3zLa8LuQ2zAjk82qHMdkj8ZoNjAp+Fhv58b7XjobIMDv+bOBdt8zGvmHkGcDxOEH/myg3Q8hzwZoIBxNDHew/QiaDXDa8KcYzQYmBcdt67cxzQoEc1qux+yB97N3NnDMZzbws4bZAMMhIscYjfazUDxuR+Lk9EvIRxIaPD8Jjrq/hjwbIN6/AvJyFm4b/spow99CbsOMTDarchyT/T1Gs4H04GM93Y33h3Q2QIB/8GcD6X8wGvl4yLMB4nCcPxtIPx7ybIAGwu+J4Q62P0GzAU4b/hWj2UB6cNyJfhvTrEAwp+V6whl4SdbpR/4TPrMB2ina2QDDISInOAMvSSYetyNxcook8To3t8PQ4PlLcNTNFjyvf5KzgudFvAkj7LychduGbpys9o0LuQ0zMtmsynFMNp6hq87ZwEThbCAhKQpAKsydDSQwGjmR0XmkHBKT+LOBxCgHdZCBEJ8U7mBLYg42Z+HmxGnDZEZOOmcDE2MwG0ixB15272wgJenfs4HsGmYDDIeIpDAaLTtoNsDJKUfIRxIaPMmCo27OkGcDxDsnIC9n4bZhTkYb5gq5DTMy2azKcUw2d4xmAxOCj/X73Hip0tkAAabyZwP3pTIaOU/IswHikIc/G7gvT8izARoIuZPCHWx5QbMBThvmi9FsYELw2cA6v41pViCY03LNbw+8At7ZQH6f2UABDbMBhkNE8jMarUCSTDxuR+LkdFbIRxIaPPkER92CIc8GiHdBQF7Owm3Dgow2LBRyG2ZkslmV45hs4RjNBsYHH+tr3HhFpLMBAqTCzNnAGioTFKNoUrizAeJAGMzZwJqiwTn45hVkIBROCnewFWO0g/s/3Jw4bVickZPO2cD44LOBu/02plmBYE7LtUTS3+uSSdbpR/4SSf+eDdBO0c4GGA4RKcFotJJJMvG4HYmTUylm5+Z2GBo8xZP4AzstSuPIaveTvAF5OQu3DdMYbVg65DbMyGSzKscx2TIMXXXOBsYFH+vvuPHKJkUBWJY/G3inLKORy4U8GyAO5fizgXfKhTwboIFQJincwVYeNBvgtGGFGM0GxgWfDRzw25hmBYI5LdeK9sCr5J0NVPSZDVTSMBtgOESkIqPRKiXJxON2JE5OlUM+ktDgqSA46lYJeTZAvKsA8nIWbhtWYbRh1ZDbMCOTzaocx2SrxWg2MDb4WN/jxqsunQ0QYHX+bGBPdUYj1wh5NkAcavBnA3tqhDwboIFQLSncwVYTNBvgtGGtGM0GxgafDbzqtzHNCgRzWq617YFXxzsbqO0zG6ijYTbAcIhIbUaj1UmSicftSJyc6oZ8JKHBU0tw1K0X8myAeNcD5OUs3Dasx2jDs0Nuw4xMNqtyHJOtH6PZwJjgY72IG+8c6WyAAM/hzwaKnMNo5AYhzwaIQwP+bKBIg5BnAzQQ6ieFO9jOBc0GOG3YMEazgTHBZwOF/TamWYFgTsu1kT3wGntnA418ZgONNcwGGA4RacRotMZJMvG4HYmT03khH0lo8DQUHHWbhDwbIN5NAHk5C7cNmzDa8PyQ2zAjk82qHMdkm8ZoNjA6+Fjf7sZrJp0NEGAz/mxgezNGIzcPeTZAHJrzZwPbm4c8G6CB0DQp3MHWAjQb4LRhyxjNBkYHnw086rcxzQoEc1qureyBd4F3NtDKZzZwgYbZAMMhIq0YjXZBkkw8bkfi5HRhyEcSGjwtBUfd1iHPBoh3a0BezsJtw9aMNmwTchtmZLJZleOYbNsYzQZGBR/rM9147aSzAQJsx58NzGzHaOT2Ic8GiEN7/mxgZvuQZwM0ENomhTvYOoBmA5w27Bij2cCo4LOBGX4b06xAMKflepE98Dp5ZwMX+cwGOmmYDTAcInIRo9E6JcnE43YkTk4Xh3wkocHTUXDUvSTk2QDxvgSQl7Nw2/ASRhteGnIbZmSyWZXjmOxlMZoNjAw+1lu78S6XzgYI8HL+bKD15YxG7hzybIA4dObPBlp3Dnk2QAPhsqRwB9sVoNkApw2vjNFsYGTw2cCFfhvTrEAwp+V6lT3wunhnA1f5zAa6aJgNMBwichWj0bokycTjdiROTleHfCShwXOl4Kh7TcizAeJ9DSAvZ+G24TWMNrw25DbMyGSzKscx2etiNBsYEXysL3LjdZXOBgiwK382sKgro5GvD3k2QByu588GFl0f8myABsJ1SeEOtm6g2QCnDbvHaDYwIvhsYKHfxjQrEMxpufawB15P72ygh89soKeG2QDDISI9GI3WM0kmHrcjcXLqFfKRhAZPd8FR94aQZwPE+wZAXs7CbcMbGG3YO+Q2zMhksyrHMdk+MZoNDA8+1ge58fpKZwME2Jc/GxjUl9HIN4Y8GyAON/JnA4NuDHk2QAOhT1K4g+0m0GyA04b9YjQbGB58NjDQb2OaFQjmtFz72wNvgHc20N9nNjBAw2yA4RCR/oxGG5AkE4/bkTg5DQz5SEKDp5/gqDso5NkA8R4EyMtZuG04iNGGg0Nuw4xMNqtyHJMdEqPZwLDgY/0pN95Q6WyAAIfyZwNPDWU08rCQZwPEYRh/NvDUsJBnAzQQhiSFO9iGg2YDnDYcEaPZwLDgs4En/TamWYFgTst1pD3wRnlnAyN9ZgOjNMwGGA4RGclotFFJMvG4HYmT0+iQjyQ0eEYIjrpjQp4NEO8xgLychduGYxhtODbkNszIZLMqxzHZcTGaDQwNPtbT3HjjpbMBAhzPnw2kjWc08oSQZwPEYQJ/NpA2IeTZAA2EcUnhDraJoNkApw3TYzQbGBp8NlDKb2OaFQjmtFwn2QNvsnc2MMlnNjBZw2yA4RCRSYxGm5wkE4/bkTg5TQn5SEKDJ11w1J0a8myAeE8F5OUs3DacymjDaSG3YUYmm1U5jslOj9FsYEjwsZ7TjTdDOhsgwBn82UDOGYxGnhnybIA4zOTPBnLODHk2QANhelK4g20WaDbAacPZMZoNDAk+G8jhtzHNCgRzWq5z7IE31zsbmOMzG5irYTbAcIjIHEajzU2SicftSJyc5oV8JKHBM1tw1J0f8myAeM8H5OUs3Dacz2jDBSG3YUYmm1U5jskujNFsYHDwsT7AjbdIOhsgwEX82cCARYxGXhzybIA4LObPBgYsDnk2QANhYVK4g20JaDbAacObYzQbGBx8NtDfb2OaFQjmtFxvsQfeUu9s4Baf2cBSDbMBhkNEbmE02tIkmXjcjsTJ6daQjyQ0eG4WHHWXhTwbIN7LAHk5C7cNlzHa8LaQ2zAjk82qHMdkl8doNjAo+FjP68a7XTobIMDb+bOBvLczGnlFyLMB4rCCPxvIuyLk2QANhOVJ4Q62O0CzAU4b3hmj2cCg4LOBPH4b06xAMKflepc98FZ6ZwN3+cwGVmqYDTAcInIXo9FWJsnE43YkTk6rQj6S0OC5U3DUXR3ybIB4rwbk5SzcNlzNaMO7Q27DjEw2q3Ick10To9nAwOCGdhrePdLZAAHek8Qvd2/IR3jK696kfzakWcEX7iCiDrsmKdxBsRZ01Oa0y7ooB2oQzusEbahzQA0QDqj7pAOKAO8TDKj7Qx5QlNf9mgZUVrtTw9+fJOswacEwtHaS/onBc3TjPSDtJAT4gMBxHmCM2AdD7lDE4UFBIz8Y8ncw6kQPCqYHaxl6rQ95OkjarhcOVmfh9q31DP4PhTzFy+iInFU5zhF5Q8htSBptEBwIOO1AJphg/fOVMuKDw8Wfm8jvb1yMOQCM2QCMWQCMmQCMGQCM6QCMaQCMqQCMKQCMyQCMSQCMdADGRADGBADGeADGOADGWADGGADGaADGKADGSADGCADGcADGMADGUADGEADGYADGIADGQADGAABGfwGGe0mLYrc0K9jifGckbs7vVg+r71QbVTyiYpOKzSq2qNiqYpuKR1VsV/GYisdVPKHiSRVPqXja/h6+w/t738P2FzX3to0+2x7x2bbJZ9tmn21bfLZt9dm2zWfbDp8vuNzfHoN/UYtYcxln0Z5hfPl2c/IrxztJEDmtjqzy3CnMc6cG7RlfYCM7GZyeFXJ6VoP2zzLyfE6Y53MatGd8sY88x+D0vJDT81Frb0UeDilP98LVeQbDX2Yy/GWXUOddGvr4LobOLwjzfEFDH2eckIm8wOD0opDTixq0f5GR50vCPF/SoD3jRFXkJQanl4WcXtbgLxtDytO9cHWewvCXqQx/eUWo8ysa+vgrDJ13C/PcraGPM04wRnYzOL0q5PSqBu1fZeS5R5jnHg3aM068RvYwOL0m5PSaBn95JKQ83QtX54kMf0ln+Mteoc57NfTxvQydXxfm+bqGPs44YR55ncFpn5DTPg3a72Pk+YYwzzc0aM/4ISHyBoPTm0JOb2rwl00h5eleuDqPZfjLOIa/vCXU+S0Nffwths5vC/N8W0MfZ/wAFHmbwWm/kNN+DdrvZ+R5QJjnAQ3aM34YixxgcHpHyOkdDf6yOaQ83Us0b6/KYldrFMNfDgp1Pqihjx9k6PyuMM93NfRxxg+akXcZnN4TcnpPg/bvMfJ8X5jn+xq0Z/zQG3mfwemQkNMhDf6yJaQ83Us0T7nLYldrGMNfPhDq/IGGPv4BQ+fDwjwPa+jjjB/oI4cZnI4IOR3RoP0RRp4fCvP8UIP2jAsXIh8yOH0k5PSRBn/ZGlKe7oWr80CGvwxi+MvHQp0/1tDHP2bo/Ikwz0809HHGBSeRTxicPhVy+lSD9p8y8vxMmOdnGrRnXIgT+YzB6XMhp881+Mu2kPL05szJ6VEQznYQzmMgnMdBOE+AcJ4E4TwFwnmagUM3GSm7Oe0mozxR4j8s4MnF2AjAeASAsQmAsRmAsQWAsRWAsU04RoNipAvLSfH+KxdK2dJRlE1z+qTba79Q/e5LFV+p+FrFNyq+VfGdiqMqvlfxg4ofVfyk4piKn1X8ouLXJOv0CdsXdid2b/vSZ9tXPtu+9tn2jc+2b322feez7ajPtl98tv1qb9P5BKnvoxjMQXEoJ3euvyX9vf7d2yj0QbRPi/o+4Cz6O7Xvb4wZ9++gmQkK5wcQzo8gnJ9AOMdAOD+DcIKOl0H/VH1y4T5egTHjjXwh5M7NiTFDjnwJyokxo458BcqJMQOPfA3KiTFjj3wDyokxw498C8qJ8Y0g8h0oJ8Y3iMhRTTllhkH//MLI6degc4wTJyL/ArKC6/RHwJzSvQkycY5rOtZkhfNnQJwbUz7tHQ3OXwFxHu/90LRocE4ExGk84Mch0eDQpDjNynq556JjDaPBiQTEuTj3JROjwckWEOf2hD5zo8GJC4hTaso7D0SDEx8Q5+rDrxahunPZGDQnovVGe/2Ivd5krzfb6y32equ93mav/7DXxwOuf0n654skrf+013/Z6xP2mvobrSP2Opu9jrPXxDdBRaKKJBXJKlJUZFeRQ0XO5L+/pOa2/vn+lpm+WSyRhOTA+/ouacF2i5eXjZzidFIf++9cKu/cKlJV5Em2Tv+ySx96t+X22Zbqsy1P8r+/KCewEj5d1Kw6eK6A+9IBL3fgfa1IatB9Vb55GJ1AZ+dLNLTz5VV551ORX0UBbwfK69Op8vlsy++zrYCGzpfI6Hx5GZ0vH6Pz5Wd0vgIx6nxJhna+s1TeBVUUUlHY24HO8ulUBX22FfLZVlhD50tidL6zGJ2vIKPzFWJ0vsIx6nzJhna+IirvoiqKqSju7UBFfDpVUZ9txXy2FdfQ+ZIZna8Io/MVZXS+YozOVzxGnS/F0M5XQuVdUkUpyt/bgUr4dKqSPttK+WxL09D5UhidrwSj85VkdL5SjM6XFqPOl93Qzlda5V1GRVkV5bwdqLRPpyrjs62sz7ZyGjpfdkbnK83ofGUYna8so/OVi1Hny2Fo5yuv8q6goqKKSt4OVN6nU1Xw2VbRZ1slDZ0vB6PzlWd0vgqMzleR0fkqxajz5TS081VWeVdRUVVFNW8HquzTqar4bKvqs62ahs6Xk9H5KjM6XxVG56vK6HzVGJ2ANEq0163j/163sddt7XU7e93eXnew1x3t9UX2upO9vtheX2KvL7XXl9nry+11Z3t9hb2+0l5fZa+72Our7fU19vpae32dve5qr6+3193sdXd73cNe97TXvez1Dfa6t73uY6/72usb7fVN9rqfve5vrwfY64H2epC9Hmyvh9jrofZ6mL0ebq9H2OuR9nqUvR5tr8fY67H2epy9Hm+vJ9jrifY63V5PsteT7fUUez3VXk+z19Pt9Qx7/a29/sle/26vacCc7Cf2Oqe9zmevC9vrkva6nL2uYq9r2ev69rqxvW5ur1vb6472+jJ73cVeX2+vb7DX/ez1EHs9yl5PsNdT7fVse73QXi+11yvs9Wp7vc5eP2SvN9vrx+z1Dnu9y17vttf77PUBe33IXn9sr7+010ft9c/2+ri9zpb49zrZXue21wXsdVF7nWavK9jrava6jr1uYK+b2OuW9rqtve5krzvb62vsdXd73cde0ylaWqfa69z2Ope9LmCv89vrfPY6r70ubK8L2euC9vose13cXhez10XtdRF7nWavS9nrkva6hL0uZ6/L2usy9rq0va5kryva6wr2ury9rmavq9rrKva6sr2eq/p7dc/BImKv06xAS6Q641ih8x1ALa3guG68GslRAFJh7sUDNYIfnCI1GWJKOdRM/ne5rLBqMmd3dKFkXCb7pFmBlsSTgyy6Oi4VluslLDcMXK6vsNwAYbnewnJpwnJjheVqCcuNF5ZLE5brJiw3VFguTVjuBmE56TiSlksTlhskLCdtv9HCclJdhpCXRjwbucePSPB9/4XBBuMedJxvwhklkGYFw30w/gwmiZ4+qa/tp10TWCua6VMt5vSJwGsxpk+1AdOn2szpE3Go/d/06b/p09/Lf9Mn/yVNWO6/6ZPecmnCcv9Nn7JesNMnzkFHUj9NkyTnEurEaMZTMfi+p+HVlc54KtqFueXqhTyLobzquc76pVn8hfusGPecOitOZzNmfKf+sYLXX8n6mz+XQyUGRv2QBx9pVF8w+M5h/lLm/KroLsfFJJMgM+LeGV0zpJl/A6YBpVj+v/+GaUDR4JS3MDjc78ncflPF+rvPcMdpHGPfKhZfK/EROVpTyPKneOtvU+AKVp8xeM5lcuDmEvFgBOXM1aphyG1BndDpwO5yWcFIO29W+TQK+YDkHFS9fIMcjIPuy5kYNY5yEpFVmco2hsUrd/JAkt3655KcfyXCyAF1QKlgYXDO1AOXFIcz5tzPmznP7ldNkqM42DQWzvTOy2SmFwTzPMEBqDFjYJ8v5OVXjvtTPifPpkwD4uZCnZgxoTh5kD8nOdxvbs1CPsgQh4aCg33zkPMiI5ZMQloA9GokyKtlyHmR0Uv0agU4pSXJ64IYndKqHnzf0/AulJ7Sqm4X5pZrHfIpLcqrtfCUluQgd76gk0zLE25edMBpJshrOjMvZ+HO9NswDlYMrSKM/H1n+llev2f93be4B84aDIy2IRsbad9W0DfaCSdb7TRMttoyPKM9c7LlLNw+3CH2ffjkwu2L9JsL5xsx7d9U0F86hnx2qAGTRwMhj4sAEzNJXp1idOqaM9GIBqeqhcHpEGX7ZtVOtazwT13XsvhaRbx/pAUqZkXahixYTetvw+cKxjlIXMwcPLoeWRx00J44ceKw3/Y0K2sM+sed6yX2ZPhS56JI58h8ie067m2X+iTIPW/dKVhDLFYNEbmE0WiXMsXjdjzqQJeAvjmQ4zcXuP5lyeHn1UKQ1+WAvFoK8uoMyKuVIK8rAHldIMjrSkZe5As0G1hp/5/6JvUD0pz4UV30+L7/4r9AhHCsJJDvdxKMlauYv+lU99meZvEWrg9clRw+RhfAdQAXM+YJzgSS255XR8kjyPyCodXJCe3VgolwF4ZW1+D6cMT7R1qgYpg+fE24x+NTHhPml5prDfCjawFteV3IfkS6cdqF9r1O0PbXMTC6GjCOEW3f9cwcx9k4/eV6A8bx9YC27BbyiSb6/uKcnXOXywpGemYuq3y6A+Yf3Zjzj+4C3+rG6Os9DPAtRF/vcWb6VhzHt3oa4Fs9AW3ZK+T5B/0ywp1/9BKM414MjBsMGMeItr/hzBzH8Zz+0tuAcdwb0JZ9Qh7H1CYdmOO4j2Ac92Fg9DVgHCPavq8BY4DOeQbcV4xxowE6zI0PH+MmQZ/zw8lq/PULjpMtVnr3A4y//gb0u7WAfjfAAB1WAXQYCBp/g4LjJMRK70GA8TcYpPeQ4DiJsdJ7CEDvoSC9hwXHSYqV3sMAeg8H6T0iOE5yrPQeAdB7JEjvUcFxUmKl9yiA3qNBeo8JjpM9VnqPAeg9FqT3uOA4OWKl9ziA3uNBek8IjpMzVnpPAOg9EaR3enCcXLHSOx2g9ySQ3pOD4+SOld6TAXpPAek9NThOaqz0ngrQexpI7+nBcfLESu/pAL1ngPSeGRwnb6z0ngnQexZI79nBcfLFSu/ZAL3ngPSeGxwnf8x+DwHoPQ+k9/zgOAVipfd8gN4LQHovDI5zVqz0XgjQexFI78XBcQrGSu/FAL2XgPS+OThOoVjpfTNA71tAei8NjlM4VnovBeh9K0jvZcFxisRK72UAvW8D6b08OE7RWOm9HKD37SC9VwTHKRYrvVcA9L4DpPedwXGKx0rvOwF63wXSe2VwnBKx0nslQO9VIL1XB8cpGSu9VwP0vhuk95rgOKVipfcagN73gPS+NzhOWqz0vheg91qQ3uuC45SOld7rAHrfZ8B1q3/GhY9xP6jfPRAcp2ys9H4A0O8eBOm9PjhOuVjpvR6g90MgvTcExykfK703APR+GKT3xuA4FWKl90aA3o+A9N4UHKdirPTeBNB7M0jvLcFxKsVK7y0AvbeC9N4WHKdyrPTeBtD7UZDe24PjVImV3tsBej8G0vvx4DhVY6X34wC9nzDge9/9gO99T4L63VPBcarHSu+nAP3uaZDeO4Lj1IiV3jsAej8D0ntncJyasdJ7J0DvZ0F6Pxccp1as9H4OoPfzIL13BcepHSu9dwH0fgGk94vBcerESu8XAXq/BNL75eA4dWOl98sAvV8B6b07OE69WOm9G6D3qyC99wTHOTtWeu8B6P0aSO+9wXHqx0rvvQC9XwfpvS84zjmx0nsfQO83QHq/GRynQaz0fhOg91sgvd8OjnNurPR+G6D3fpDeB4LjNIyV3gcAer8D0vtgcJxGsdL7IEDvd0F6vxccp3Gs9H4PoPf7IL0PBcc5L1Z6HwLo/QFI78PBcZrESu/DAL2PgPT+MDjO+bHS+0OA3h+B9P44OE7TWOn9MUDvT0B6fxocp1ms9P4UoPdnIL0/D47TPFZ6fw7Q+wuQ3l8Gx2kRK72/BOj9FUjvr4PjtIyV3l8D9P4GpPe3wXFaxUrvbwF6fwfS+2hwnAtipfdRgN7fg/T+ITjOhbHS+weA3j+C9P4pOE7rWOn9E0DvYyC9fw6O0yZWev8M0PsXkN6/BsdpGyu9fwXo/RtI79+D47SLld6/A/T+A6T38eA47WP23iyA3n+C9P4rOE6HWOn9F0DvEyC9rZTAOB1jpTcjR1chHkYkBaN3tuA4F8VK72wAveNAescHx+kUK73jAXongPRODI5zcaz0TgTonQTSOzk4ziWx0jsZoHcKSO/swXEujZXe2QF65wDpnTM4zmWx0jsnQO9cIL1zB8e5PFZ65wbonQrSO09wnM6x0jsPQO+8IL3zBce5IlZ65wPonR+kd4HgOFfGSu8CAL3PAuldMDjOVbHSuyBA70IgvQsHx+kSK70LA/QuAtK7aHCcq2Old1GA3sVAehcPjnNNrPQuDtC7BEjvksFxro2V3iUBepcC6Z0WHOe6WOmdBtC7NEjvMsFxusZK7zIAvcuC9C4XHOf6WOldDqB3eZDeFYLjdIuV3hUAelcE6V0pOE73WOldCaB3ZZDeVYLj9IiV3lUAelcF6V0tOE7PWOldDaB3dZDeNYLj9IqV3jUAetcE6V0rOM4NsdK7FkDv2iC96wTH6R0rvesA9K4L0rtecJw+sdK7HkDvs0F61w+O0zdWetcH6H0OSO8GwXFujJXeDQB6nwvSu2FwnJtipXdDgN6NQHo3Do7TL1Z6NwbofR5I7ybBcfrHSu8mAL3PB+ndNDjOgFjp3RSgdzOQ3s2D4wyMld7NAXq3AOndMjjOoFjp3RKgdyuQ3hcExxkcK70vAOh9IUjv1sFxhsRK79YAvduA9G4bHGdorPRuC9C7HUjv9sFxhsVK7/YAvTuA9O4YHGd4rPTuCND7IpDenYLjjIiV3p0Ael8M0vuS4DgjY6X3JQC9LwXpfVlwnFGx0vsygN6Xg/TuHBxndKz07gzQ+wqQ3lcGxxkTK72vBOh9FUjvLsFxxsZK7y4Ava8G6X1NcJxxsdL7GoDe14L0vi44zvhY6X0dQO+uIL2vD44zIVZ6Xw/QuxtI7+7BcSbGSu/uAL17gPTuGRwnPVZ69wTo3Quk9w3BcSbFSu8bAHr3BundJzjO5Fjp3Qegd1+Q3jcGx5kSK71vBOh9E0jvfsFxpsZK734AvfuD9B4QHGdarPQeANB7IEjvQcFxpsdK70EAvQeD9B4SHGdGrPQeAtB7KEjvYcFxZsZK72EAvYeD9B4RHGdWrPQeAdB7JEjvUcFxZsdK71EAvUeD9B4THGdOrPQeA9B7LEjvccFx5sZK73EAvceD9J4QHGderPSeANB7Ikjv9OA482OldzpA70kgvScHx1kQK70nA/SeAtJ7anCchbHSeypA72kgvacHx1kUK72nA/SeAdJ7ZnCcxbHSeyZA71kgvWcHx1kSK71nA/SeA9J7bnCcm2Ol91yA3vNAes8PjnNLrPSeD9B7AUjvhcFxlsZK74UAvReB9F4cHOfWWOm9GKD3EpDeNwfHWRYrvW8G6H0LSO+lwXFui5XeSwF63wrSe1lwnOWx0nsZQO/bQHovD45ze6z0Xg7Q+3aQ3iuC46yIld4rAHrfAdL7zuA4d8RK7zsBet8F0ntlcJw7Y6X3SoDeq0B6rw6Oc1es9F4N0PtuJga3/rbJltUpmd8+t+YJN6/2dl7ZmHmtCa5XJGwONdQ/rRWHOE+5LJ8ty9i3dXLwfe9haHPqHyt4mZo2hsUrZ8WryK4iwa9SZg7VLYs9JiU41SwMTlWLh+MdL1nVT+O/XTJvXHZI/mdDmsVfuBp0Z7zjOpvr73vtvrg25R9MNjhj0JysO85e32uXo86dy5OYpJEaMxupMbORTpw48avf9jQrazz6x81vnS38fSnW6aKss1vCve0+l8DcxiGSbQVHr9tCdn7Kq70gr+XMvJwlPjjOYoUTWZcSPKf7GEcNhq6RoFydjsnVkgbuOsHRyA8rq91p/8aC9r4/5NldRWFeD4ScVwVhXg+GnFejZFle60POq7wly+uhkPOinJoI8toQcl4Pxsv0ehig13mCvDYy8qLjKn2DaGr/nzyGxjONHeqn1CdIf+JK9R5P+v8dfvpwtH8kuPbJjONf8vKQ5yB0/Hskhd/XNjH6Gk36avhsT7N4C5fbppTwMTYzMbiTesrnHsY8jPalnLg4mxkYW3BtH/H+kRaoGKbttwgwaOF6y9bYe0vk1D8Wz1u2CrxlmwHesg3Qvx4N2VvoLBjXWx4VeMujDIztBngLou23g7zlsdh7y8nuJPGWxwTe8rgB3vI4oH89EbK30Jlvrrc8IfCWJxgYTxrgLYi2fxLkLU/F3ltOpizxlqcE3vK0Ad7yNKB/7QjZW+iXHq637BB4yw4GxjMGeAui7Z8BecvO2HvLyZ9TJN6yU+AtzxrgLc8C+tdzIXsL/ZLO9ZbnBN7yHAPjeQO8BdH2z4O8ZVfsveXkRS4Sb9kl8JYXDPCWFwD968WQvYXaZy3TW14UeMuLDIyXDPAWRNu/BPKWl2PvLYn0j8RbXhZ4yysGeMsrgP61O2RvkV6hx23PV0P+7Zv62auCfnZ/lL+TBvFiakPveM8KZjfDi/cwrqHi8I2VbyPG1R6Qb78We98+eZWCZDy9JhhPew3w7b2A/vU6YE54L3NO+LpgTvg6A2OfAXNCRNvvA3nLGwzfD+PaWSuK3/ffEHjLmwxdqW7nGnB3OUmu96bIxqezb1a83hLycpeTzPs6Mud9HQXzvrcB89eLmDwuEvDYb8Bxja5HDLivGOOAATrMjQ8f4x0DdOiXHD7GQQN0WAvoD+8aoMMqgA7vGaDDIMC4eN8AHYYAdDhkgA7DADp8YIAOIwA6HDZAh1EAHY4YoMMYgA4fGqDDOIAOHxmgwwSADh8boEM6QIdPDNBhMkCHTw3QYSpAh88M0GE6QIfPDdBhJkCHLwzQYTZAhy9NOB8F0OErA3SYD9DhawN0WAjQ4RsDdFgM0OFbA3S4GaDDdwbosBSgw1EDdFgG0OF7A3RYDtDhBwN0WAHQ4UcDdLgToMNPBuiwEqDDMQN0WA3Q4WcDdFgD0OEXA3S4F6DDrwbosA6gw28G6PBnXPgYvxugwwOA/vCHATqsB+hw3AAdNgB0+NMAHTYCdPjLAB02AXQ4YYAOWwA60KPoA+4bu2eUAXSIGKDDdoAO2QzQ4XGADnEG6HA/YD4Zb4AOTwH6Q4IBOuwA6JBogA47ATokGaDDcwAdkg3QYRdAhxQDdHgRoEN2A3R4GaBDDgN02A3QIacBOuwB6JDLAB32AnTIbYAO+wA6pBqgw5sAHfIYoMPbAB3yGqDDAYAO+QzQ4SBAh/wG6PAeQIcCBuhwCKDDWQbocBigQ0EDdPgQoEOh7HwMWrhvGOY8N6Rw8Jwi7v9wnzNThIET0nNm/i5gnZ53VrvTsz7WCJ691pbx1uOiDG04b4Smh0TntDwN51Rkr9OsYLh1g+97Gl6x7FEAUmFuueLZgwsvzat49n82pFnBFy4WDeS3BA85eoQ5KJzF+5LWrPJ7lWE0JRjtwnjAYOSRKB80lVUu9ay/29trwllh1WNglMwebj8i7Utm53MvlZ036J2HSvmV4x7ESjL6S5rwIBZmfy8d+/5+cpE8dIzxkLQITSCKCPpWmezh8+AcWIlHUQGPsgwe1N9SrH/63WkJeHCzypdzQI4Gp7aFwSkdpQdm1U71rb/9iduP4hj71rf4WkW8f6QFKmZFSoYs2NnW3ybMFYxj3OWYgyeX9U8+mXHLKsegg/bEiROH/banWVlj0D/uXMvbk8YK2a3Tj5blbddxb6vgkyD3K0jZYA2xWDVEpDyj0SowxeN2POpA5YUzbMmjH29kPvrxMsGjHytmD5/HTUwelwt4VALw6M/k0VnAozKAxwAmjysEPKoAeAxk8rhSwKNqyN+AiMdgQV7VAHkNFeRVHZDXcEFeNQB5jRTkVROQ12hBXrUAeY0V5FUbkNd4QV51AHlNFORVF5DXJEFe9QB5TRHkdTYgr2mCvOoD8pohyOscQF6zBHk1AOQ1R5DXuYC85gnyagjIa4Egr0aAvBYJ8moMyGuJIK/zAHndIsirCSCvWwV5nQ/I6zZBXk0Bed0uyKsZIK87BHk1B+R1lyCvFoC8VgnyagnI625BXq0Aed0jyOsCQF5rBXldCMjrPkFerQF53S/Iqw0grwcFebUF5PWQIK92gLweFuTVHpDXI4K8OgDy2izIqyMgr62CvC4C5PWoIK9OgLweE+R1MSCvJwR5XQLI60lBXpcC8npakNdlgLyeEeR1OSCvZwV5dQbk9bwgrysAeb0gyOtKQF4vCfK6CpDXK4K8ugDyelWQ19WAvF4T5HUNIK/XBXldC8jrDUFe1wHyekuQV1dAXvsFeV0PyOsdQV7dAHm9K8irOyCv9wV59QDk9YEgr56AvI4I8uoFyOsjQV43APL6RJBXb0Benwny6gPI6wtBXn0BeX0lyOtGQF7fCPK6CZDXd4K8+gHy+l6QV39AXj8K8hoAyOuYIK+BgLx+EeQ1CJDXb4K8BgPy+kOQ1xBAXn8K8hoKyOuEIK9hgLwigjtUhwPyihPkNQKQV4Igr5GAvJIEeY0C5JUiyGs0IK8cgrzGAPLKJchrLCCvVEFe4wB55RXkNR6QV35BXhMAeZ0lyGsiIK9CgrzSAXkVEeQ1CZBXMUFekwF5lRDkNQWQVylBXlMBeZUW5DUNkFdZQV7TAXmVF+Q1A5BXRUFeMwF5VRbkNQuQV1VBXrMBeVUX5DUHkFdNQV5zAXnVFuQ1D5BXXUFe8wF5nS3IawEgr3MEeS0E5HWuIK9FgLwaCfJaDMjrPEFeSwB5nS/I62ZAXs0Eed0CyKuFIK+lgLxaCfK6FZDXhYK8lgHyaiPI6zZAXu0EeS0H5NVBkNftgLwuEuS1ApDXxYK87gDkdakgrzsBeV0uyOsuQF5XCPJaCcjrKkFeqwB5XS3IazUgr2sFed0NyKurIK81gLy6CfK6B5BXD0Fe9wLy6iXIay0gr96CvNYB8uoryOs+QF43CfK6H5BXf0FeDwDyGijI60FAXoMFea0H5DVUkNdDgLyGC/LaAMhrpCCvhwF5jRbktRGQ11jJk+0BeY0X5LUJkNdEQV6bAXlNEuS1BZDXFEFeWwF5TRPktQ2Q1wxBXo8C8polyGs7IK85grweA+Q1T5DX44C8FgjyegKQ1yJBXk8C8loiyOspQF63CPJ6GpDXrYK8dgDyuk2Q1zOAvG4X5LUTkNcdgryeBeR1lyCv5wB5rRLk9Twgr7sFee1i5EXvQ6ipYqX9f3rGPj2fnp7tTs9Fp2eK0/O76VnZ9FxqegY0PW+Znm1MzxGmZ/bS83HpWbT03Fd6xio9z5SeHUrP6aRnYtLzJ+lZj/RcRXqGIT0vkJ7NR8/Bo2fO0fPd6Flq9NwyekYYPY+Lnn1Fz5miZzrR85PoWUX0XCB6Bg8974aeLUPPcaFnptDzSehZIPTcDXrGBT1Pgp7dQM9JoGcS0P3/dK893ddO95DT/dp0bzTdh0z3/NL9tXQvK903Svdo0v2QdO8h3edH99TR/Wt0rxjdl0X3QNH9RnRvD91HQ/es0P0hdC8G3fdA9xjQ9fx07Txdp07XhNP113StM11XTNfw0vWydG0qXQdK11zS9Y10LSFdt0fXyNH1aHTtF11nRdc00fVDdK0OXRdD16DQ9R50bQVdx0DXDNDv8/RbOP3uTL/x0u+p9Nsl/U5Iv8nR71/0WxP9rkO/odDvFfTbAJ2Hp3PedH6ZzuXSeVM6R0nnA+ncG53nonNKdP6GzpXQeQk6B0Dft+m7LX2PpO9s9P2IvovQvJ/m2DSfpbkjzdNoTkTzDzrW03GVjmF0vCBvJh8kz6HxTWOJ+q1wrCTQ+y7oXR3csfJC9uBjJZs9VrxLmsVbuD7AyVGK8SITg/sOBMrH/aKarNrFeXEOtz1fipJHVvVTTgytTr7Ih3Li6vUiQ6uXcX044v0jLVAxTB9+mYkh9ZgwX+b0igF+9AqgLXeH7Ef05jdOu9C+uwVtv5uB8aoB4xjR9q+emeM4G6e/7DFgHO8BtOVrUbZlVjrT9xfnrYTuclnBSN9ImFU+ewHzj9eY84+9At96jdHXXzfAtxB9/fUz07fiOL61zwDf2gdoyzdCnn/QG2G58483BOP4DQbGmwaMY0Tbv3lmjuN4Tn95y4Bx/BagLd8OeRxTm5RmjuO3BeP4bQbGfgPGMaLt94c7jiOI8wEHGBwof+fdx065WI3t40nhY7xjgMfNjQ8f46ABOvRLDh/jXQN0WAvoD+8ZoMMqgA7vG6DDIMC4OGSADkMAOnxggA7DADocNkCHEQAdjhigwyiADh8aoMMYgA4fGaDDOIAOHxugwwSADp8YoEM6QIdPDdBhMkCHzwzQYSpAh88N0GE6QIcvDNBhJkCHLw3QYTZAh69MOB8F0OFrA3SYD9DhGwN0WAjQ4VsDdFgM0OE7A3S4GaDDUQN0WArQ4XsDdFgG0OEHA3RYDtDhRwN0WAHQ4ScDdLgToMMxA3RYCdDhZwN0WA3Q4RcDdFgD0OFXA3S4F6DDbwbosA6gw+8G6PBnXPgYfxigwwOA/nDcAB3WA3T40wAdNgB0+MsAHTYCdDhhgA6bADpYOc58HbYAdIgYoMM2gA7ZDNBhO0CHOAN0eBygQ7wBOtwPmE8mGKDDU4D+kGiADjsAOiQZoMNOgA7JBujwHECHFAN02AXQIbsBOrwI0CGHATq8DNAhpwE67AbokMsAHfYAdMhtgA57ATqkGqDDPoAOeQzQ4U2ADnkN0OFtgA75DNDhAECH/AbocBCgQwEDdHgPoMNZBuhwCKBDQQN0OAzQoZABOnwI0KGwATp8DNChiAE6fArQoagBOnwO0KGYATp8CdChuAE6fA3QoYQBOnwL0KGkATocBehQygAdfgDokGaADj8BdChtgA4/A3QoY4AOvwJ0KGuADr8DdChngA7HATqUN0CHvwA6VDBAByslfIyKBuiQDaBDJQN0iAfoUNkAHRIBOlQxQIdkgA5VDdAhO0CHagbokBOgQ3UDdMgN0KGGATrkAehQ0wAd8gF0qGWADgUAOtQ2QIeCAB3qGKBDYYAOdQ3QoShAh3oG6FAcoMPZBuhQEqBDfQN0SAPocI4BOpQB6NDAAB3KAXQ41wAdKgB0aGiADpUAOjQyQIcqAB0aG6BDNYAO5xmgQw2ADk0M0KEWQIfzDdChDkCHpgboUA+gQzMDdKgP0KG5ATo0AOjQwgAdGgJ0aGmADo0BOrQyQIcmAB0uMECHpgAdLjRAh+YAHVoboENLgA5tDNDhAoAObQ3QoTVAh3YG6NAWoEN7A3RoD9ChgwE6dATo0NEAHToBdLjIAB0uAejQyQAdLgPocLEBOnQG6HCJATpcCdDhUgN06ALQ4TIDdLgGoMPlBuhwHUCHzgbocD1AhysM0KE7QIcrDdChJ0CHqwzQ4QaADl0M0KEPQIerDdDhRoAO1xigQz+ADtcaoMMAgA7XGaDDIIAOXQ3QYQhAh+sN0GEYQIduBugwAqBDdwN0GAXQoYcBOowB6NDTAB3GAXToZYAOEwA63GCADukAHXoboMNkgA59DNBhKkCHvgboMB2gw40G6DAToMNNBugwG6BDPwN0mAvQob8BOswH6DDAAB0WAnQYaIAOiwE6DDJAh5sBOgw2QIelAB2GGKDDMoAOQw3QYTlAh2EG6LACoMNwA3S4E6DDCAN0WAnQYaQBOqwG6DAqBw8jG7P+ktktq2zwd6VH0uz9vTxq9ew45EjtlZUf7dRq66RJV15bqe7nrUdvH7SoxZFjS46qz0czeXB1qqf+Ka7yimPmVY+xb/HswfcdE5xv5NQ/VvAyZ9sYFq+cFa9C0bAS/Cpl5lDX4vd/CU4dC4NT2wp/rJVijrXS2f/ZkGbxF64Ge4Pnd4o/LWPtvjguxz+YbHDGoDlZd5y9HmuXo86dy5OYpJHKMBupDLORTpw48avf9jQrazz6x81vvC38hBzW6aKMt1vCvW2CS2Bu4zjCcJ3/tTzhOn+aMK+9zLycJT44zmKFExmfI3hOExhHDYaukaBcnY7J1ZIG7njB0YiWbEyse9Ss6/7gM68I7X8ghW8EboyscpqYI3zODzA5vyPg/ACDczqA84NMzgcFnB9kcJ4E4LyeyfldAef1DM6TAZwfYnJ+T8D5IQbnKQDOG5ic3xdw3sDgPBXA+WEm50MCzg8zOE8DcN7I5PyBgPNGBufpIX8TJw6HU/hziBmAvI4I8poJyOtDQV6zAHl9JMhrNiCvjwV5zQHk9Ykgr7mAvD4V5DUPkNdngrzmA/L6XJDXAkBeXwjyWgjI60tBXosAeX0lyGsxIK+vBXktAeT1jSCvmwF5fSvI6xZAXt8J8loKyOuoIK9bAXl9L8hrGSCvHwR53QbI60dBXssBef0kyOt2QF7HBHmtAOT1syCvOwB5/SLI605AXr8K8roLkNdvgrxWAvL6XZDXKkBefwjyWg3I67ggr7sBef0pyGsNIK+/BHndA8jrhCCvewF5WYLfI9cC8ooI8loHyCubIK/7AHnFCfK6H5BXvCCvBwB5JQjyehCQV6Igr/WAvJIEeT0EyCtZkNcGQF4pgrweBuSVXZDXRkBeOQR5PQLIK6cgr02AvHIJ8toMyCu3IK8tgLxSBXltBeSVR5DXNkBeeQV5PQrIK58gr+2AvPIL8noMkFcBQV6PA/I6S5DXE4C8CgryehKQVyFBXk8x8qLrbmupaGr/n64TpOvm6Doyuq6KrjOi627oOhS6LoOugaDrDei3ffodnX6zpt+H6bdY+t2TfmOk3/PotzP6nYp+E6LfX+i3Dvpdgc7h0/lyOjdN54HpnCud36RziXTejs6R0fkoOvdD51nonAadP6Dv6vS9mL6D0vc9+m5F32PoOwPNz2kuTPNOmuPRfIrmLjRPoGMyHf/oWEO+Th5KfkXeQOOQ+jz1L2rLp3L468PR/ung2iczro9N5l4LzO1rdH0s5c7tazuC8z15zVAtn+1pFm/hcuPkKMV4JsrrtLKqn/Jx33wQ5HpnyomL8wwDYyeu7SPeP9ICFcO0/U4BBi1cb3k29t4SOfWPxfOWZwXe8pwB3vIcoH89H7K30F1yXG95XuAtzzMwdhngLYi23wXylhdi7y0nu5PEW14QeMuLBnjLi4D+9VLI3kJ3xnK95SWBt7zEwHjZAG9BtP3LIG95JfbecjJlibe8IvCW3QZ4y25A/3o1ZG+hO8G53vKqwFteZWDsMcBbEG2/B+Qtr8XeW07ebi3xltcE3rLXAG/ZC+hfr4fsLfSkDa63vC7wltcZGPsM8BZE2+8DecsbsfeWkw/BkXjLGwJvedMAb3kT0L/eCtlbqH3GMb3lLYG3vMXAeNsAb0G0/dsgb9kfe29JpH8k3rJf4C0HDPCWA4D+9U7I3iJ9ghe3PQ8yeUj62UFBPzsa5e+kQbyY2tA73rOCeYfhxe8G1zbC4Rsr30aMq3dBvv1e7H07if6RjKf3BOPpfQN8+31A/zoEmBOOZc4JDwnmhIcYGB8YMCdEtP0HIG85zPD9MJ6tZ0Xx+/5hgbccYehKdTvPiHSXk+Q6NodsfDr7ZsXrQyEvdzlufm+nWFbJ7Lz90wTzvo9C9sH9TB77hTw+NuC4djwpfIxPDNBhbnz4GJ8aoEO/5PAxPjNAh7WA/vC5ATqsAujwhQE6DAKMiy8N0GEIQIevDNBhGECHrw3QYQRAh28M0GEUQIdvDdBhDECH7wzQYRxAh6MG6DABoMP3BuiQDtDhBwN0mAzQ4UcDdJgK0OEnA3SYDtDhmAE6zATo8LMBOswG6PCLCeejADr8aoAO8wE6/GaADgsBOvxugA6LATr8YYAONwN0OG6ADksBOvxpgA7LADr8ZYAOywE6nDBAhxUAHaycZ74OdwJ0iBigw0qADtkM0GE1QIc4A3RYA9Ah3gAd7gXokGCADusAOiQaoMOfceFjJBmgwwOA/pBsgA7rATqkGKDDBoAO2Q3QYSNAhxwG6LAJoENOA3TYAtAhlwE6bAPokNsAHbYDdEg1QIfHATrkMUCH+wHzybwG6PAUoD/kM0CHHQAd8hugw06ADgUM0OE5gA5nGaDDLoAOBQ3Q4UWADoUM0OFlgA6FDdBhN0CHIgbosAegQ1EDdNgL0KGYATrsA+hQ3AAd3gToUMIAHd4G6FDSAB0OAHQoZYAOBwE6pBmgw3sAHUoboMMhgA5lDNDhMECHsgbo8CFAh3I5+Ri0eJ9nEeQ5PUH3LR88p4j7P9znzFRg4IT0nJmTi1fLrOqn54IcYD7bbrTguTQVGX2DHv6c0/I0iJOABzerfM8Nvu9peJVyRgFIhbnlKucMLqY0r8o5/9mQZgVfuFg0QD8UdJLfmJ3dWeI9OFnld5BhIFUY7cJ4cGCEwTVy6h8reC4Nrb/bm2sIDRkYVXOG249I+6o5+dyr5eQNeudhUX7luAenqoz+Ul14cAqzv9eIfX8/uUgeJsZ4+FmEJgYVBH2rZs7weTAOlid5VBTwqMU8IKdY//S70xLw4GaVL+eAHA3OORYGp0aUHphVOzW2/vYnbj+KY+zb2OJrFfH+kRaomBWpGrJgjay/TZgrGMe4azMHTy7rn3wy45ZVjkEH7YkTJw77bU+zssagf9y51rEnjXWdKblztKxju457W12fBLmPda4VrCEWq4aI1GE0Wl2meNyORx2ojnCGLfna9g7za1tFwSMd6+UMn8dBJo9KAh5nA3i8y+RRWcCjPoDHe0weVQQ8zgHweJ/Jo6qARwMAj0NMHtUEPM4F8PiAyaO6gEdDAI/DTB41BDwaAXgcYfKoKeDRGMDjQyaPWgIe5wF4fMTkUVvAowmAx8dMHnUEPM4H8PiEyaOugEdTAI9PmTzqCXg0A/D4jMnjbAGP5gAenzN51BfwaAHg8QWTxzkCHi0BPL5k8mgg4NEKwOMrJo9zBTwuAPD4msmjoYDHhQAe3zB5NBLwaA3g8S2TR2MBjzYAHt8xeZwn4NEWwOMok0cTAY92AB7fM3mcL+DRHsDjByaPpgIeHQA8fmTyaCbg0RHA4ycmj+YCHhcBeBxj8mgh4NEJwONnJo+WAh4XA3j8wuTRSsDjEgCPX5k8LhDwuBTA4zcmjwsFPC4D8PidyaO1gMflAB5/MHm0EfDoDOBxnMmjrYDHFQAefzJ5tBPwuBLA4y8mj/YCHlcBeJxg8ugg4NEFwMPKwePRUcDjagCPCJPHRQIe1wB4ZGPy6CTgcS2ARxyTx8UCHtcBeMQzeVwi4NEVwCOByeNSAY/rATwSmTwuE/DoBuCRxORxuYBHdwCPZCaPzgIePQA8Upg8rhDw6AngkZ3J40oBj14AHjmYPK4S8LgBwCMnk0cXAY/eAB65mDyuFvDoA+CRm8njGgGPvgAeqUwe1wp43AjgkYfJ4zoBj5sAPPIyeXQV8OgH4JGPyeN6AY/+AB75mTy6CXgMAPAowOTRXcBjIIDHWUwePQQ8BgF4FGTy6CngMRjAoxCTRy8BjyEAHoWZPG4Q8BgK4FGEyaO3gMcwAI+iTB59BDyGA3gUY/LoK+AxAsCjOJPHjQIeIwE8SjB53CTgMQrAoySTRz8Bj9EAHqWYPPoLeIwB8Ehj8hgg4DEWwKM0k8dAAY9xAB5lmDwGCXiMB/Aoy+QxWMBjAoBHOSaPIQIeEwE8yjN5DBXwSAfwqMDkMUzAYxKAR0Umj+ECHpMBPCoxeYwQ8JgC4FGZyWOkgMdUAI8qTB6jBDymAXhUZfIYLeAxHcCjGpPHGAGPGQAe1Zk8xgp4zATwqMHkMU7AYxaAR00mj/ECHrMBPGoxeUwQ8JgD4FGbyWOigMdcAI86TB7pAh7zADzqMnlMEvCYD+BRj8ljsoDHAgCPs5k8pgh4LATwqM/kMVXAYxGAxzlMHtMEPBYDeDRg8pgu4LEEwONcJo8ZAh43A3g0ZPKYKeBxC4BHIyaPWQIeSwE8GjN5zBbwuBXA4zwmjzkCHssAPJowecwV8LgNwON8Jo95Ah7LATyaMnnMF/C4HcCjGZPHAgGPFQAezZk8Fgp43AHg0YLJY5GAx50AHi2ZPBYLeNwF4NGKyWOJgMdKAI8LmDxuFvBYBeBxIZPHLQIeqwE8WjN5LBXwuBvAow2Tx60CHmsAPNoyeSwT8LgHwKMdk8dtAh73Ani0Z/JYLuCxFsCjA5PH7QIe6wA8OjJ5rBDwuA/A4yImjzsEPO4H8OjE5HGngMcDAB4XM3ncJeDxIIDHJUweKwU81gN4XMrksUrA4yEAj8uYPFYLeGwA8LicyeNuAY+HATw6M3msEfDYCOBxBZPHPQIejwB4XMnkca+AxyYAj6uYPNYKeGwG8OjC5LFOwGMLgMfVTB73CXhsBfC4hsnjfgGPbQAe1zJ5PCDg8SiAx3VMHg8KeGwH8OjK5LFewOMxAI/rmTweEvB4HMCjG5PHBgGPJwA8ujN5PCzg8SSARw8mj40CHk8BePRk8nhEwONpAI9eTB6bBDx2AHjcwOSxWcDjGQCP3kweWwQ8dgJ49GHy2Crg8SyAR18mj20CHs8BeNzI5PGogMfzAB43MXlsF/DYBeDRj8njMQGPFwA8+jN5PC7g8SKAxwAmjycEPF4C8BjI5PGkgMfLAB6DmDyeEvB4BcBjMJPH0wIeuwE8hjB57BDweBXAYyiTxzMCHnsAPIYxeewU8HgNwGM4k8ezAh57ATxGMHk8J+DxOoDHSCaP5wU89gF4jGLy2CXg8QaDB70fvraKlfb/6Z3j9L5uetc1vSea3rFM7yemd/vSe3HpnbL0PlZ6lym9B5TeoUnvn6R3N9J7D+mdgfS+PXpXHb3njd6RRu8Xo3dz0Xut6J1Q9D4lehcRvceH3oFD74+hd6/Qe0vonR/0vgx61wS9p4HecUDvB6Bn69Nz6emZ7vQ8dHqWOD2Hm55hTc9/pmcn03OH6Zm99LxbelYsPWeVnlFKz/ekZ2PScyXpmYz0PEN6FiA9R4+eQUfPb6Nnn9Fzw+iZW/S8KnrWEz0niZ4xRM/noWfb0HNh6Jkq9DwSepYHPQeDniFBz1+gZxfQff90zzzdb073atN9znSPMN1fS/em0n2ddE8k3U9I9+LRfWx0DxjdP0X3HtF9O3TPC90vQvda0H0KdI0/XR9P15bTddl0TTNdD0zX0tJ1qHQNJ13/SNcO0nV3dM0aXe9F10rRdUZ0jQ5d30LXhtB1FXRNAv2eT7+F0+/I9Bss/X5Jv/3R72b0mxP9XkO/ddDvBHSOnc5P07ldOi9K5xTpfBydy6LzQHQOhc4/0Hd3+t5L3xnp+xZ9V6F5Ps2RaX5JczOa19CcgI6ndCwiHycPJP+gsUf99lTn9/T5LJaEqqpsrZz8sfJmzuBjJZs9VrxLmsVbmNwinBylGG/lDNf7KJ/aOYO3SyMVVQXt+XaUPLKqn3JiaBWh/Sknrl5vMbTaj+vDEe8faYGKYfrwfiaG1GO4bVmV0ZYHDPCjA4C2fCdkPzrX+nssO/sHGffvCNr+HQbGQQPGMaLtD56Z4zgbp7+8a8A4fhfQlu9F2ZZZ6UzfXxrba3e5rGDiGPs2ZuTzPmD+8R5z/vG+wLfeY/T1Qwb4FqKvHzozfSuO41sfGOBbHwDa8nDI849zLP7847BgHB9mYBwxYBwj2v7ImTmO4zn95UMDxvGHgLb8KORxTG1SgzmOPxKM448YGB8bMI4Rbf9xuOM4gjgf8AmDA+UfZ6+dcrEa28eTwsf41ACPmxsfPsZnBujQLzl8jM8N0GEtoD98YYAOqwA6fGmADoMA4+IrA3QYAtDhawN0GAbQ4RsDdBgB0OFbA3QYBdDhOwN0GAPQ4agBOowD6PC9ATpMAOjwgwE6pAN0+NEAHSYDdPjJAB2mAnQ4ZoAO0wE6/GyADjMBOvxigA6zATr8asL5KIAOvxmgw3yADr8boMNCgA5/GKDDYoAOxw3Q4WaADn8aoMNSgA5/GaDDMoAOJwzQYTlAByvXma/DCoAOEQN0uBOgQzYDdFgJ0CHOAB1WA3SIN0CHNQAdEgzQ4V6ADokG6LAOoEOSATr8GRc+RrIBOjwA6A8pBuiwHqBDdgN02ADQIYcBOmwE6JDTAB02AXTIZYAOWwA65DZAh20AHVIN0GE7QIc8BujwOECHvAbocD9gPpnPAB2eAvSH/AbosAOgQwEDdNgJ0OEsA3R4DqBDQQN02AXQoZABOrwI0KGwATq8DNChiAE67AboUNQAHfYAdChmgA57AToUN0CHfQAdShigw5sAHUoaoMPbAB1KGaDDAYAOaQbocBCgQ2kDdHgPoEMZA3Q4BNChrAE6HAboUM4AHT4E6FDeAB0+BuhQwQAdPgXoUNEAHT4H6FDJAB2+BOhQ2QAdvgboUMUAHb4F6FDVAB2OAnSoZoAOPwB0qG6ADj8BdKhhgA4/A3SoaYAOvwJ0qGWADr8DdKhtgA7HATrUMUCHvwA61DVAByslfIx6BuiQDaDD2QboEA/Qob4BOiQCdDjHAB2SATo0MECH7AAdzjVAh5wAHRoaoENugA6NDNAhD0CHxgbokA+gw3kG6FAAoEMTA3QoCNDhfAN0KAzQoakBOhQF6NDMAB2KA3RoboAOJQE6tDBAhzSADi0N0KEMQIdWBuhQDqDDBQboUAGgw4UG6FAJoENrA3SoAtChjQE6VAPo0NYAHWoAdGhngA61ADq0N0CHOgAdOhigQz2ADh0N0KE+QIeLDNChAUCHTgbo0BCgw8UG6NAYoMMlBujQBKDDpQbo0BSgw2UG6NAcoMPlBujQEqBDZwN0uACgwxUG6NAaoMOVBujQFqDDVQbo0B6gQxcDdOgI0OFqA3ToBNDhGgN0uASgw7UG6HAZQIfrDNChM0CHrgbocCVAh+sN0KELQIduBuhwDUCH7gbocB1Ahx4G6HA9QIeeBujQHaBDLwN06AnQ4QYDdLgBoENvA3ToA9ChjwE63AjQoa8BOvQD6HCjAToMAOhwkwE6DALo0M8AHYYAdOhvgA7DADoMMECHEQAdBhqgwyiADoMM0GEMQIfBBugwDqDDEAN0mADQYagBOqQDdBhmgA6TAToMN0CHqQAdRhigw3SADiMN0GEmQIdRBugwG6DDaAN0mAvQYYwBOswH6DDWAB0WAnQYZ4AOiwE6jDdAh5sBOkwwQIelAB0mGqDDMoAO6QbosBygwyQDdFgB0GGyATrcCdBhigE6rAToMNUAHVYDdJiWi4eRjVl/1ZyWVStn8P2r2/t7edTq2XHIkdorKz/aqdXWSZOuvLZS3c9bj94+aFGLI8eWHFWfT2fy4OrUUP1TWeUVx8yrIWPfyjmD7zsjON/IqX+s4GUa2RgWr5wVryK7igS/Spk5nGvx+78Ep4GFwTnHCn+sVWOOtRo5/9mQZvEXrgbvB8/vFH9aZtp9cVaufzDZ4IxBc7LuOHs90y5HnTuXJzFJI9VkNlJNZiOdOHHiV7/taVbWePSPm99sW/g5uazTRZltt4R72xyXwNzGcYThOn/7fOE6f3VhXh2YeTlLfHCcxUfpLGSu4DnNYRw1GLpGgnJ1OiZXSxq4swVHI1qyMbHG5LCsiTmCc6f9P8nBNwI3RlY5zc0VPud0JudPBZzTGZznAThPYnL+TMB5EoPzfADnyUzOnws4T2ZwXgDgPIXJ+QsB5ykMzgsBnKcyOX8p4DyVwXkRgPM0JuevBJynMTgvBnCezuT8tYDzdAbnJQDOM5icvxFwnsHgfDOA80wm528FnGcyON8C4DyLyfk7AedZDM5LAZxnMzkfFXCezeB8K4DzHCbn7wWc5zA4LwNwnsvk/IOA81wG59sAnOcxOf8o4DyPwXk5gPN8JuefBJznMzjfDuC8gMn5mIDzAgbnFQDOC5mcfxZwXsjgfAeA8yIm518EnBcxON8J4LyYyflXAefFDM53ATgvYXL+TcB5CYPzSgDnm5mcfxdwvpnBeRWA8y1Mzn8ION/C4LwawHkpk/NxAeelDM53AzjfyuT8p4DzrQzOawCclzE5/yXgvIzB+R4A59uYnE8ION/G4HwvgPNyJmcrJ5/zcgbntQDOtzM5RwScb2dwXgfgvILJOZuA8woG5/sAnO9gco4TcL6Dwfl+AOc7mZzjBZzvZHB+AMD5LibnBAHnuxicHwRwXsnknCjgvJLBeT2A8yom5yQB51UMzg8BOK9mck4WcF7N4LwBwPluJucUAee7GZwfBnBew+ScXcB5DYPzRgDne5iccwg438Pg/AiA871MzjkFnO9lcN4E4LyWyTmXgPNaBufNAM7rmJxzCzivY3DeAuB8H5NzqoDzfQzOWwGc72dyziPgfD+D8zYA5weYnPMKOD/A4PwogPODTM75BJwfZHDeDuC8nsk5v4DzegbnxwCcH2JyLiDg/BCD8+MAzhuYnM8ScN7A4PwEgPPDTM4FBZwfZnB+EsB5I5NzIQHnjQzOTwE4P8LkXFjA+REG56cBnDcxORcRcN7E4LwDwHkzk3NRAefNDM7PADhvYXIuJuC8hcF5J4DzVibn4gLOWxmcnwVw3sbkXELAeRuD83MAzo8yOZcUcH6Uwfl5AOftTM6lBJy3MzjvAnB+jMk5TcD5MQbnFwCcH2dyLi3g/DiD84sAzk8wOZcRcH6CwfklAOcnmZzLCjg/yeD8MoDzU0zO5QScn2JwfoXBme7Lr6Oiqf1/uo+Y7qul+0zpvku6D5Huy6P71Oi+LbqPie7roftc6L4Pug+C7gug6+TpunG6jpquK6brbOm6U7oOk65LpOv06Lo1uo6Lrmui63zouhe6DoSui6DrBOh3c/odmX5Xpd8Z6Xc3+h2Kfpeh3ynovD2dx6bzunSek8770XkwOi9E50novAF9j6bvlfQ9i7530Dyc5qU0T6N5Cx3H6bhGPk++Rz5A44L6ySu5/PVxt1NW2u8Orn0y4/755A4hP8OA7p+n3L3lsuL7anC+J/t8HZ/taRZv4XLj5CjF2BOlz2RVP+XjfjhJVu1C+1JOXJw9DIzXcG0f8f6RFqgYpu1fE2DQwvWWvbH3lsipfyyet+wVeMvrBnjL64D+tS9kb6GnaHG9ZZ/AW/YxMN4wwFsQbf8GyFvejL23nOxOEm95U+AtbxngLW8B+tfbIXsLPTmP6y1vC7zlbQbGfgO8BdH2+0HeciD23nIyZYm3HBB4yzsGeMs7gP51MGRvoSdFcr3loMBbDjIw3jXAWxBt/y7IW96LvbecfByjxFveE3jL+wZ4y/uA/nUoZG+hJ/FyveWQwFsOMTA+MMBbEG3/AchbDsfeW04+JFviLYcF3nLEAG85AuhfH4bsLdQ+s5je8qHAWz5kYHxkgLcg2v4jkLd8HHtvSaR/JN7yscBbPjHAWz4B9K9PQ/YW6RP+ue35GZOHpJ99JpkfR/k7aRAvpjb0jvesYD5lePHnwbWNcPjGyrcR4+pzkG9/EXvfTqJ/JOPpC8F4+tIA3/4S0L++AswJZzLnhF8J5oRfMTC+NmBOiGj7r0He8g3D98N494YVxe/73wi85VuGrlS38w4ZdzlJrjNzycans29WvL4T8nKX4+b3UQ7LqpqTt391wbzvaMg++DGTx8dCHt8bcFw7nhQ+xg8G6DA3PnyMHw3QoV9y+Bg/GaDDWkB/OGaADqsAOvxsgA6DAOPiFwN0GALQ4VcDdBgG0OE3A3QYAdDhdwN0GAXQ4Q8DdBgD0OG4ATqMA+jwpwE6TADo8JcBOqQDdDhhgA6TATpYuc98HaYCdIgYoMN0gA7ZDNBhJkCHOAN0mA3QId4AHeYCdEgwQIf5AB0SDdBhIUCHJAN0WAzQIdkAHW4G6JBigA5LATpkN0CHZQAdchigw3KADjkN0GEFQIdcBuhwJ0CH3AbosBKgQ6oBOqwG6JDHAB3WAHTIa4AO9wJ0yGeADusAOuQ3QIc/48LHKGCADg8A+sNZBuiwHqBDQQN02ADQoZABOmwE6FDYAB02AXQoYoAOWwA6FDVAh20AHYoZoMN2gA7FDdDhcYAOJQzQ4X7AfLKkATo8BegPpQzQYQdAhzQDdNgJ0KG0ATo8B9ChjAE67ALoUNYAHV4E6FDOAB1eBuhQ3gAddgN0qGCADnsAOlQ0QIe9AB0qGaDDPoAOlQ3Q4U2ADlUM0OFtgA5VDdDhAECHagbocBCgQ3UDdHgPoEMNA3Q4BNChpgE6HAboUMsAHT4E6FA7Nx+DFu77wTjPDakTPKeI+z/c58zUZeCE9JyZk4tXy6zqp+eCfMJ8tt10wXNp6jH6Bj38OaflaRAnAQ9uVvmeH3zf0/DOzh0FIBXmlqufO7iY0rzq5/5nQ5oVfOFi0QD9TtBJPmV2dmeJ9+Bkld9nDAM5h9EujAcHRhhcI6f+sYLn0tT6u725htCUgdEgd7j9iLRvkJvP/dzcvEHvPCzKrxz34NSA0V8aCg9OYfb3RrHv7ycXycPEGA8/i9DEoK6gbzXOHT4PxsHyJI96Ah7nMQ/IKdY//e60BDy4WeXLOSBHg3OehcFpFKUHZtVOza2//Ynbj+IY+za3+FpFvH+kBSpmRRqELFgz628TZr9Vi2F8TZiDR43pU/lkxi2rHIMO2hMnThz2255mZY1B/7hzPd+eNDbNbZ1+tDzfdh33tqY+CXIf63xesIZYfJTchNFoTZnicTsedaDzhTNsyde2T5lf2+oJHunYLHf4PD5j8jhbwKM5gMfnTB71BTxaAHh8weRxjoBHSwCPL5k8Ggh4tALw+IrJ41wBjwsAPL5m8mgo4HEhgMc3TB6NBDxaA3h8y+TRWMCjDYDHd0we5wl4tAXwOMrk0UTAox2Ax/dMHucLeLQH8PiByaOpgEcHAI8fmTyaCXh0BPD4icmjuYDHRQAex5g8Wgh4dALw+JnJo6WAx8UAHr8webQS8LgEwONXJo8LBDwuBfD4jcnjQgGPywA8fmfyaC3gcTmAxx9MHm0EPDoDeBxn8mgr4HEFgMefTB7tBDyuBPD4i8mjvYDHVQAeJ5g8Ogh4dAHwsHLxeHQU8LgawCPC5HGRgMc1AB7ZmDw6CXhcC+ARx+RxsYDHdQAe8Uwelwh4dAXwSGDyuFTA43oAj0Qmj8sEPLoBeCQxeVwu4NEdwCOZyaOzgEcPAI8UJo8rBDx6AnhkZ/K4UsCjF4BHDiaPqwQ8bgDwyMnk0UXAozeARy4mj6sFPPoAeORm8rhGwKMvgEcqk8e1Ah43AnjkYfK4TsDjJgCPvEweXQU8+gF45GPyuF7Aoz+AR34mj24CHgMAPAoweXQX8BgI4HEWk0cPAY9BAB4FmTx6CngMBvAoxOTRS8BjCIBHYSaPGwQ8hgJ4FGHy6C3gMQzAoyiTRx8Bj+EAHsWYPPoKeIwA8CjO5HGjgMdIAI8STB43CXiMAvAoyeTRT8BjNIBHKSaP/gIeYwA80pg8Bgh4jAXwKM3kMVDAYxyARxkmj0ECHuMBPMoyeQwW8JgA4FGOyWOIgMdEAI/yTB5DBTzSATwqMHkME/CYBOBRkcljuIDHZACPSkweIwQ8pgB4VGbyGCngMRXAowqTxygBj2kAHlWZPEYLeEwH8KjG5DFGwGMGgEd1Jo+xAh4zATxqMHmME/CYBeBRk8ljvIDHbACPWkweEwQ85gB41GbymCjgMRfAow6TR7qAxzwAj7pMHpMEPOYDeNRj8pgs4LEAwONsJo8pAh4LATzqM3lMFfBYBOBxDpPHNAGPxQAeDZg8pgt4LAHwOJfJY4aAx80AHg2ZPGYKeNwC4NGIyWOWgMdSAI/GTB6zBTxuBfA4j8ljjoDHMgCPJkwecwU8bgPwOJ/JY56Ax3IAj6ZMHvMFPG4H8GjG5LFAwGMFgEdzJo+FAh53AHi0YPJYJOBxJ4BHSyaPxQIedwF4tGLyWCLgsRLA4wImj5sFPFYBeFzI5HGLgMdqAI/WTB5LBTzuBvBow+Rxq4DHGgCPtkweywQ87gHwaMfkcZuAx70AHu2ZPJYLeKwF8OjA5HG7gMc6AI+OTB4rBDzuA/C4iMnjDgGP+wE8OjF53Cng8QCAx8VMHncJeDwI4HEJk8dKAY/1AB6XMnmsEvB4CMDjMiaP1QIeGwA8LmfyuFvA42EAj85MHmsEPDYCeFzB5HGPgMcjAB5XMnncK+CxCcDjKiaPtQIemwE8ujB5rBPw2ALgcTWTx30CHlsBPK5h8rhfwGMbgMe1TB4PCHg8CuBxHZPHgwIe2wE8ujJ5rBfweAzA43omj4cEPB4H8OjG5LFBwOMJAI/uTB4PC3g8CeDRg8ljo4DHUwAePZk8HhHweBrAoxeTxyYBjx0AHjcweWwW8HgGwKM3k8cWAY+dAB59mDy2Cng8C+DRl8ljm4DHcwAeNzJ5PCrg8TyAx01MHtsFPHYBePRj8nhMwOMFAI/+TB6PC3i8COAxgMnjCQGPlwA8BjJ5PCng8TKAxyAmj6cEPF4B8BjM5PG0gMduAI8hTB47BDxeBfAYyuTxjIDHHgCPYUweOwU8XgPwGM7k8ayAx14AjxFMHs8JeLwO4DGSyeN5AY99AB6jmDx2CXi8AeAxmsnjBQGPNwE8xjB5vCjg8RaAx1gmj5cEPN4G8BjH5PGygMd+AI/xTB6vCHgcAPCYwOSxW8DjHQCPiUwerwp4HATwSGfy2CPg8S6AxyQmj9cEPN4D8JjM5LFXwON9AI8pTB6vC3gcAvCYyuSxT8DjAwCPaUwebwh4HGbwoPfD11Wx0v4/vXOc3tdN77qm90TTO5bp/cT0bl96Ly69U5bex0rvMqX3gNI7NOn9k/TuRnrvIb0zkN63R++qo/e80TvS6P1i9G4ueq8VvROK3qdE7yKi9/jQO3Do/TH07hV6bwm984Pel0HvmqD3NNA7Duj9APRsfXouPT3TnZ6HTs8Sp+dw0zOs6fnP9Oxkeu4wPbOXnndLz4ql56zSM0rp+Z70bEx6riQ9k5GeZ0jPAqTn6NEz6Oj5bfTsM3puGD1zi55XRc96ouck0TOG6Pk89Gwbei4MPVOFnkdCz/Kg52DQMyTo+Qv07AK675/umaf7zelebbrPme4Rpvtr6d5Uuq+T7omk+wnpXjy6j43uAaP7p+jeI7pvh+55oftF6F4Luk+BrvGn6+Pp2nK6LpuuaabrgelaWroOla7hpOsf6dpBuu6Orlmj673oWim6zoiu0aHrW+jaELqugq5JoN/z6bdw+h2ZfoOl3y/ptz/63Yx+c6Lfa+i3DvqdgM6x0/lpOrdL50XpnCKdj6NzWXQeiM6h0PkH+u5O33vpOyN936LvKjTPpzkyzS9pbkbzGpoT0PGUjkXk4+SB5B809qjfnur8nj6fxZLQQJU9Lzd/rBzJHXysZLPHindJs3gLk1uEk6MU48Pc4Xof5dMkd/B2aaaigaA9P4qSR1b1U04MrSK0P+XE1etDhlYf4/pwxPtHWqBimD78MRND6jHctmzAaMtPDPCjTwBt+WnIfnS+9fdYdvYPMu4/FbT9pwyMzwwYx4i2/+zMHMfZOP3lcwPG8eeAtvwiyrbMSmf6/tLcXrvLZQUTx9i3OSOfLwHzjy+Y848vBb71BaOvf2WAbyH6+ldnpm/FcXzrawN862tAW34T8vzjPIs///hGMI6/YWB8a8A4RrT9t2fmOI7n9JfvDBjH3wHa8mjI45japBFzHB8VjOOjDIzvDRjHiLb/PtxxHEGcD/iBwYHyj7PXTrlYje3jSeFj/GiAx82NDx/jJwN06JccPsYxA3RYC+gPPxugwyqADr8YoMMgwLj41QAdhgB0+M0AHYYBdPjdAB1GAHT4wwAdRgF0OG6ADmMAOvxpgA7jADr8ZYAOEwA6nDBAh3SADlbqma/DZIAOEQN0mArQIZsBOkwH6BBngA4zATrEG6DDbIAOCQboMBegQ6IBOswH6JBkgA4LATokG6DDYoAOKQbocDNAh+wG6LAUoEMOA3RYBtAhpwE6LAfokMsAHVYAdMhtgA53AnRINUCHlQAd8higw2qADnkN0GENQId8BuhwL0CH/AbosA6gQwEDdPgzLnyMswzQ4QFAfyhogA7rAToUMkCHDQAdChugw0aADkUM0GETQIeiBuiwBaBDMQN02AbQobgBOmwH6FDCAB0eB+hQ0gAd7gfMJ0sZoMNTgP6QZoAOOwA6lDZAh50AHcoYoMNzAB3KGqDDLoAO5QzQ4UWADuUN0OFlgA4VDNBhN0CHigbosAegQyUDdNgL0KGyATrsA+hQxQAd3gToUNUAHd4G6FDNAB0OAHSoboAOBwE61DBAh/cAOtQ0QIdDAB1qGaDDYYAOtQ3Q4UOADnUM0OFjgA51DdDhU4AO9QzQ4XOADmcboMOXAB3qG6DD1wAdzjFAh28BOjQwQIejAB3ONUCHHwA6NDRAh58AOjQyQIefATo0NkCHXwE6nGeADr8DdGhigA7HATqcb4AOfwF0aGqADlZK+BjNDNAhG0CH5gboEA/QoYUBOiQCdGhpgA7JAB1aGaBDdoAOFxigQ06ADhcaoENugA6tDdAhD0CHNgbokA+gQ1sDdCgA0KGdAToUBOjQ3gAdCgN06GCADkUBOnQ0QIfiAB0uMkCHkgAdOhmgQxpAh4sN0KEMQIdLDNChHECHSw3QoQJAh8sM0KESQIfLDdChCkCHzgboUA2gwxUG6FADoMOVBuhQC6DDVQboUAegQxcDdKgH0OFqA3SoD9DhGgN0aADQ4VoDdGgI0OE6A3RoDNChqwE6NAHocL0BOjQF6NDNAB2aA3ToboAOLQE69DBAhwsAOvQ0QIfWAB16GaBDW4AONxigQ3uADr0N0KEjQIc+BujQCaBDXwN0uASgw40G6HAZQIebDNChM0CHfgbocCVAh/4G6NAFoMMAA3S4BqDDQAN0uA6gwyADdLgeoMNgA3ToDtBhiAE69AToMNQAHW4A6DDMAB36AHQYboAONwJ0GGGADv0AOow0QIcBAB1GGaDDIIAOow3QYQhAhzEG6DAMoMNYA3QYAdBhnAE6jALoMN4AHcYAdJhggA7jADpMNECHCQAd0g3QIR2gwyQDdJgM0GGyATpMBegwxQAdpgN0mGqADjMBOkwzQIfZAB2mG6DDXIAOMwzQYT5Ah5kG6LAQoMMsA3RYDNBhtgE63AzQYY4BOiwF6DDXAB2WAXSYZ4AOywE6zDdAhxUAHRYYoMOdAB0WGqDDSoAOiwzQYTVAh8WpPIxszPob5Las83IH37+hvb+XR62eHYccqb2y8qOdWm2dNOnKayvV/bz16O2DFrU4cmzJUfX5EiYPrk5N1T/1VV5xzLyaMvatnzv4vjcH5xs59Y8VvEwzG8PilbPiVWRXkeBXKTOH8y1+/5fgNLEwOOdZ4Y+1c5ljrVHufzakWfyFq8GXwfM7xZ+WW+y+uDT1H0z+FxGGSVDdcfb6Frscde5cnsQkjdSY2UiNmY104sSJX/22p1lZ49E/bn632sIvS7VOF+VWuyXc25a5BOY2jiMM1/nPLRCu8zcU5tWQmZezxAfHWaxwIremBs9pGeOowdA1EpSr0zG5WtLAvVVwNKIlGxNrhhrhc3MF5077/5CLbwRujKxyui01fM7zmJx/FHCex+C8HMB5PpPzTwLO8xmcbwdwXsDkfEzAeQGD8woA54VMzj8LOC9kcL4DwHkRk/MvAs6LGJzvBHBezOT8q4DzYgbnuwCclzA5/ybgvITBeSWA881Mzr8LON/M4LwKwPkWJuc/BJxvYXBeDeC8lMn5uIDzUgbnuwGcb2Vy/lPA+VYG5zUAzsuYnP8ScF7G4HwPgPNtTM4nBJxvY3C+F8B5OZOzlZvPeTmD81oA59uZnCMCzrczOK8DcF7B5JxNwHkFg/N9AM53MDnHCTjfweB8P4DznUzO8QLOdzI4PwDgfBeTc4KA810Mzg8COK9kck4UcF7J4LwewHkVk3OSgPMqBueHAJxXMzknCzivZnDeAOB8N5NzioDz3QzODwM4r2Fyzi7gvIbBeSOA8z1MzjkEnO9hcH4EwPleJuecAs73MjhvAnBey+ScS8B5LYPzZgDndUzOuQWc1zE4bwFwvo/JOVXA+T4G560AzvczOecRcL6fwXkbgPMDTM55BZwfYHB+FMD5QSbnfALODzI4bwdwXs/knF/AeT2D82MAzg8xORcQcH6IwflxAOcNTM5nCThvYHB+AsD5YSbnggLODzM4PwngvJHJuZCA80YG56cAnB9hci4s4PwIg/PTAM6bmJyLCDhvYnDeAeC8mcm5qIDzZgbnZwCctzA5FxNw3sLgvBPAeSuTc3EB560Mzs8COG9jci4h4LyNwfk5AOdHmZxLCjg/yuD8PIDzdibnUgLO2xmcdwE4P8bknCbg/BiD8wsAzo8zOZcWcH6cwflFAOcnmJzLCDg/weD8EoDzk0zOZQWcn2RwfhnA+Skm53ICzk8xOL8C4Pw0k3N5AeenGZx3AzjvYHKuIOC8g8H5VQDnZ5icKwo4P8PgvAfAeSeTcyUB550Mzq8BOD/L5FxZwPlZBue9AM7PMTlXEXB+jsH5dQDn55mcqwo4P8/gvA/AeReTczUB510Mzm8AOL/A5FxdwPkFBuc3AZxfZHKuIeD8IoPzWwDOLzE51xRwfonB+W0A55eZnGsJOL/M4LwfwPkVJufaAs6vMDgfYHCm+/LrqWhq/5/uI6b7auk+U7rvku5DpPvy6D41um+L7mOi+3roPhe674Pug6D7Aug6ebpunK6jpuuK6Tpbuu6UrsOk6xLpOj26bo2u46Lrmug6H7ruha4Doesi6DoB+t2cfkem31Xpd0b63Y1+h6LfZeh3CjpvT+ex6bwuneek8350HozOC9F5EjpvQN+j6Xslfc+i7x00D6d5Kc3TaN5Cx3E6rpHPk++RD9C4oH5yINVfH3c7ZaX9O8G1T2bcP5/cMORnGND985S7t1xWfA8G53uyz9fz2Z5m8RYuN06OUox3o/SZrOqnfNwPJ8mqXWhfyomL8y4D4z1c20e8f6QFKoZp+/cEGLRwveX92HtL5NQ/Fs9b3hd4yyEDvOUQoH99ELK30FO0uN7ygcBbPmBgHDbAWxBtfxjkLUdi7y0nu5PEW44IvOVDA7zlQ0D/+ihkb6En53G95SOBt3zEwPjYAG9BtP3HIG/5JPbecjJlibd8IvCWTw3wlk8B/euzkL2FnhTJ9ZbPBN7yGQPjcwO8BdH2n4O85YvYe8vJxzFKvOULgbd8aYC3fAnoX1+F7C30JF6ut3wl8JavGBhfG+AtiLb/GuQt38TeW04+JFviLd8IvOVbA7zlW0D/+i5kb6H2Wcr0lu8E3vIdA+OoAd6CaPujIG/5Pvbekkj/SLzle4G3/GCAt/wA6F8/huwt0if8c9vzJyYPST/7SdDPXo7yd9IgXkxt6B3vWcH8yPDiY8G1jXD4xsq3EePqGMi3f469byfRP5Lx9LNgPP1igG//AuhfvwLmhLcw54S/CuaEvzIwfjNgToho+99A3vI7w/fDePeGFcXv+78LvOUPhq5Ut/MOGXc5Sa63pMrGp7NvVryOC3m5y3HzO5rLshrk5u3fUDDv+zNkH/yeyeN7IY+/DDiuHU8KH+OEATrMjQ8fw8pz5uvQLzl8jIgBOqwF9IdsBuiwCqBDnAE6DAKMi3gDdBgC0CHBAB2GAXRINECHEQAdkgzQYRRAh2QDdBgD0CHFAB3GAXTIboAOEwA65DBAh3SADjkN0GEyQIdcBugwFaBDbgN0mA7QIdUAHWYCdMhjgA6zATrkNUCHuQAd8hmgw3yADvkN0GEhQIcCBuiwGKDDWQbocDNAh4IG6LAUoEMhA3RYBtChsAE6LAfoUMQAHVYAdChqgA53AnQoZoAOKwE6FDdAh9UAHUoYoMMagA4lDdDhXoAOpQzQYR1AhzQDdPgzLnyM0gbo8ACgP5QxQIf1AB3KGqDDBoAO5QzQYSNAh/IG6LAJoEMFA3TYAtChogE6bAPoUMkAHbYDdKhsgA6PA3SoYoAO9wPmk1UN0OEpQH+oZoAOOwA6VDdAh50AHWoYoMNzAB1qGqDDLoAOtQzQ4UWADrUN0OFlgA51DNBhN0CHugbosAegQz0DdNgL0OFsA3TYB9ChvgE6vAnQ4RwDdHgboEMDA3Q4ANDhXAN0OAjQoaEBOrwH0KGRATocAujQ2AAdDgN0OM8AHT4E6NAkDx+DFu77wTjPDTk/eE4R93+4z5lpysAJ6TkzJxevllnVT88F+YH5bLslgufSNBP2DS5O86xxsrnrzmnZD5u2/0/Xx9C6hf1/el5IxK7X2a+F+rulilYqLrC357A8HchVpzv/LJZIizzyccoGa2XxwLj100A9LugsbxSQdZZ4D05W+f3EMJIL8wTfl/EAwQiDa+TUPxavjSl3bhu0ZnREqtt54JJfOa7Bt2Ls20Zo8GH2lbax7ysnF8kDuRgPEIvQwbWpoG+1yxM+D8YB5ySPZgIe7UETHve+WXG5wMLkFLGC53ShhckpmxU8p9YWJqc4K3hObSw9OWWF09YKnv8vcbKcuMepdlZ0nhDkmPInw8Np3zZ5+DzaW+Hz+IvB4y8hjw4Wpi92tIJz+SMuOm2zyuV2NSlYGR88H9p3XTwf5yIrOMbt8Zh26MTI6TjIEy62MDiXWBicSy0MzmUWBudyC4PT2cLgXGFhcK60MDhXWRicLhYG52oLg3ONhcG51sLgXGdhcLpaGJzrLQxONwuD093C4PSwMDg9LQxOLwuDc4OFweltYXD6WBicvhYG50YLg3OThcHpZ2Fw+lsYnAEWBmegFfw7TDQ4gywMn8EWBmeIhcEZamFwhlkYnOEWBmeEhcEZaWFwRlkYnNEWBmeMhcEZa2FwxlkYnPEWBmeChcGZaGFw0i0MziQLgzPZwuBMsTA4Uy0MzjQLgzPdwuDMsDA4My0MziwLgzPbwuDMsTA4cy0MzjwLgzPfwuAssDA4Cy0MziILg7PYwuAssTA4N1sYnFssDM5SC4Nzq4XBWWZhcG6zMDjLLQzO7RYGZ4WFwbnDwuDcaWFw7rIwOCstDM4qC4Oz2sLg3G1hcNZYGJx7LAzOvRYGZ62FwVlnYXDuszA491sYnAcsDM6DFgZnvYXBecjC4GywMDgPWxicjRYG5xELg7PJwuBstjA4WywMzlYLg7PNwuA8amFwtlsYnMcsDM7jFgbnCQuD86SFwXnKwuA8bWFwdlgYnGcsDM5OC4PzrIXBec7C4DxvYXB2WRicFywMzosWBuclC4PzsoXBecXC4Oy2MDivWhicPRYG5zULg7PXwuC8bmFw9lkYnDcsDM6bFgbnLQuD87aFwdlvYXAOWBicdywMzkELg/OuhcF5z8LgvG9hcA5ZGJwPLAzOYQuDc8TC4HxoYXA+sjA4H1sYnE8sDM6nFgbnMwuD87mFwfnCwuB8aWFwvrIwOF9bGJxvLAzOtxYG5zsLg3PUwuB8b2FwfrAwOD9aGJyfLAzOMQuD87OFwfnFwuD8amFwfrMwOL9bGJw/LAzOcQuD86eFwfnLwuCcsDA4VCDgvp6CPJwICCcbE8dbf5BnZrUQPAMrDsQ/HsC/rYB/Aoh/IggnCYSTDMJJAeFkB+HkAOHkBOHkAuHkBuGkgnDygHDygnDygXDyg3AKgHDOAuEUBOEUAuEUBuEUAeEUBeEUA+EUB+GUAOGUBOGUAuGkgXBKg3DKgHDKgnDKgXDKg3AqgHAqgnAqgXAqg3CqgHCqgnCqgXCqg3BqgHBqgnBqgXBqg3DqCHGieW9MVjnVZeYkeQfJbYzn9NP+J1L5OPUiwTFuSw2f83ImZysPH+dsBuflAM63MzlHBJzrMzjfDuC8gsk5m4DzOQzOKwCc72ByjhNwbsDgfAeA851MzvECzucyON8J4HwXk3OCgHNDBue7AJxXMjknCjg3YnBeCeC8isk5ScC5MYPzKgDn1UzOyQLO5zE4rwZwvpvJOUXAuQmD890AzmuYnLMLOJ/P4LwGwPkeJuccAs5NGZzvAXC+l8k5p4BzMwbnewGc1zI55xJwbs7gvBbAeR2Tc24B5xYMzusAnO9jck4VcG7J4HwfgPP9TM55BJxbMTjfD+D8AJNzXgHnCxicHwBwfpDJOZ+A84UMzg8COK9ncs4v4NyawXk9gPNDTM4FBJzbMDg/BOC8gcn5LAHntgzOGwCcH2ZyLijg3I7B+WEA541MzoUEnNszOG8EcH6EybmwgHMHBudHAJw3MTkXEXDuyOC8CcB5M5NzUQHnixicNwM4b2FyLibg3InBeQuA81Ym5+ICzhczOG8FcN7G5FxCwPkSBudtAM6PMjmXFHC+lMH5UQDn7UzOpQScL2Nw3g7g/BiTc5qA8+UMzo8BOD/O5FxawLkzg/PjAM5PMDmXEXC+gsH5CQDnJ5mcywo4X8ng/CSA81NMzuUEnK9icH4KwPlpJufyAs5dGJyfBnDeweRcQcD5agbnHQDOzzA5VxRwvobB+RkA551MzpUEnK9lcN4J4Pwsk3NlAefrGJyfBXB+jsm5ioBzVwbn5wCcn2dyrirgfD2D8/MAzruYnKsJOHdjcN4F4PwCk3N1AefuDM4vADi/yORcQ8C5B4PziwDOLzE51xRw7sng/BKA88tMzrUEnHsxOL8M4PwKk3NtAecbGJxfAXDezeRcR8C5N4PzbgDnV5mc6wo492FwfhXAeQ+Tcz0B574MznsAnF9jcj5bwPlGBufXAJz3MjnXF3C+icF5L4Dz60zO5wg492Nwfh3AeR+TcwMB5/4MzvsAnN9gcj5XwHkAg/MbAM5vMjk3FHAeyOD8JoDzW0zOjQScBzE4vwXg/DaTc2MB58EMzm8DOO9ncj5PwHkIg/N+AOcDTM5NBJyHMjgfiJJzVvXTvdjt8gTfv02ev/ePeHCy4jwsEi6PBrkt68fcwfdvqPZtlpvPYziAx09MHs0FPEYAeBxj8mgh4DESwONnJo+WAh6jADx+YfJoJeAxGsDjVyaPCwQ8xgB4/MbkcaGAx1gAj9+ZPFoLeIwD8PiDyaONgMd4AI/jTB5tBTwmAHj8yeTRTsBjIoDHX0we7QU80gE8TjB5dBDwmATgYaXyeHQU8JgM4BFh8rhIwGMKgEc2Jo9OAh5TATzimDwuFvCYBuARz+RxiYDHdACPBCaPSwU8ZgB4JDJ5XCbgMRPAI4nJ43IBj1kAHslMHp0FPGYDeKQweVwh4DEHwCM7k8eVAh5zATxyMHlcJeAxD8AjJ5NHFwGP+QAeuZg8rhbwWADgkZvJ4xoBj4UAHqlMHtcKeCwC8MjD5HGdgMdiAI+8TB5dBTyWAHjkY/K4XsDjZgCP/Ewe3QQ8bgHwKMDk0V3AYymAx1lMHj0EPG4F8CjI5NFTwGMZgEchJo9eAh63AXgUZvK4QcBjOYBHESaP3gIetwN4FGXy6CPgsQLAoxiTR18BjzsAPIozedwo4HEngEcJJo+bBDzuAvAoyeTRT8BjJYBHKSaP/gIeqwA80pg8Bgh4rAbwKM3kMVDA424AjzJMHoMEPNYAeJRl8hgs4HEPgEc5Jo8hAh73AniUZ/IYKuCxFsCjApPHMAGPdQAeFZk8hgt43AfgUYnJY4SAx/0AHpWZPEYKeDwA4FGFyWOUgMeDAB5VmTxGC3isB/CoxuQxRsDjIQCP6kweYwU8NgB41GDyGCfg8TCAR00mj/ECHhsBPGoxeUwQ8HgEwKM2k8dEAY9NAB51mDzSBTw2A3jUZfKYJOCxBcCjHpPHZAGPrQAeZzN5TBHw2AbgUZ/JY6qAx6MAHucweUwT8NgO4NGAyWO6gMdjAB7nMnnMEPB4HMCjIZPHTAGPJwA8GjF5zBLweBLAozGTx2wBj6cAPM5j8pgj4PE0gEcTJo+5Ah47ADzOZ/KYJ+DxDIBHUyaP+QIeOwE8mjF5LBDweBbAozmTx0IBj+cAPFoweSwS8HgewKMlk8diAY9dAB6tmDyWCHi8AOBxAZPHzQIeLwJ4XMjkcYuAx0sAHq2ZPJYKeLwM4NGGyeNWAY9XADzaMnksE/DYDeDRjsnjNgGPVwE82jN5LBfw2APg0YHJ43YBj9cAPDoyeawQ8NgL4HERk8cdAh6vA3h0YvK4U8BjH4DHxUwedwl4vAHgcQmTx0oBjzcBPC5l8lgl4PEWgMdlTB6rBTzeBvC4nMnjbgGP/QAenZk81gh4HADwuILJ4x4Bj3cAPK5k8rhXwOMggMdVTB5rBTzeBfDowuSxTsDjPQCPq5k87hPweB/A4xomj/sFPA4BeFzL5PGAgMcHAB7XMXk8KOBxGMCjK5PHegGPIwAe1zN5PCTg8SGARzcmjw0CHh8BeHRn8nhYwONjAI8eTB4bBTw+AfDoyeTxiIDHpwAevZg8Ngl4fAbgcQOTx2YBj88BPHozeWwR8PgCwKMPk8dWAY8vATz6MnlsE/D4CsDjRiaPRwU8vgbwuInJY7uAxzcAHv2YPB4T8PgWwKM/k8fjAh7fAXgMYPJ4QsDjKIDHQCaPJwU8vgfwGMTk8ZSAxw8AHoOZPJ4W8PgRwGMIk8cOAY+fADyGMnk8I+BxDMBjGJPHTgGPnwE8hjN5PCvg8QuAxwgmj+cEPH4F8BjJ5PG8gMdvAB6jmDx2CXj8DuAxmsnjBQGPPwA8xjB5vCjgcRzAYyyTx0sCHn8CeIxj8nhZwOMvAI/xTB6vCHicAPCYwOSxW8CDEgu4r5jHRCaPVwU8IgAe6UweewQ8sgF4TGLyeE3AIw7AYzKTx14Bj3gAjylMHq8LeCQAeExl8tgn4JEI4DGNyeMNAY8kAI/pTB5vCngkA3jMYPJ4S8AjBcBjJpPH2wIe2QE8ZjF57BfwyAHgMZvJ44CAR04AjzlMHu8IeOQC8JjL5HFQwCM3gMc8Jo93BTxSATzmM3m8J+CRB8BjAZPH+wIeeQE8FjJ5HBLwyAfgsYjJ4wMBj/wAHouZPA4LeBQImQe9x719nuD703vcaX8uj7OYPE4VZOIUBOEUAuEUBuEUAeEUBeEUA+EUB+GUAOGUBOGUAuGkgXBKg3DKgHDKgnDKgXDKg3AqgHAqgnAqgXAqg3CqgHCqgnCqgXCqg3BqgHBqgnBqgXBqg3DqgHDqgnDqgXDOBuHUB+GcA8JpAMI5F4TTEITTCITTGIRzHginCQjnfBBOUxBOMxBOcxBOCxBOSxBOKxDOBSCcC0E4rUE4bUA4bUE47UA47UE4HUA4HUE4F4FwOoFwLgbhXALCuRSEcxkI53IQTmcQzhUgnCtBOFeBcLqAcK4G4VwDwrkWhHMdCKcrCOd6EE43EE53EE4PEE5PEE4vEM4NIJzeIJw+IJy+IJwbQTg3gXD6gXD6g3AGgHAGgnAGgXAGg3CGgHCGgnCGgXCGg3BGgHBGgnBGgXBGg3DGgHDGgnDGgXDGg3AmgHAmgnDSQTiTQDiTQThTQDhTQTjTQDjTQTgzQDgzQTizQDizQThzQDhzQTjzQDjzQTgLQDgLQTiLQDiLQThLQDg3g3BuAeEsBeHcCsJZBsK5DYSzHIRzOwhnBQjnDhDOnSCcu0A4K0E4q0A4q0E4d4Nw1oBw7gHh3AvCWQvCWQfCuQ+Ecz8I5wEQzoMgnPUgnIdAOBtAOA+DcDaCcB4B4WwC4WwG4WwB4WwF4WwD4TwKwtkOwnkMhPM4COcJEM6TIJynQDhPg3B2gHCeAeHsBOE8C8J5DoTzPAhnFwjnBRDOiyCcl0A4L4NwXgHh7AbhvArC2QPCeQ2EsxeE8zoIZx8I5w0QzpsgnLdAOG+DcPaDcA6AcN4B4RwE4bwLwnkPhPM+COcQCOcDEM5hEM4REM6HIJyPQDgfg3A+AeF8CsL5DITzOQjnCxDOlyCcr0A4X4NwvgHhfAvC+Q6EcxSE8z0I5wcQzo8gnJ9AOMdAOD+DcH4B4fwKwvkNhPM7COcPEM5xEM6fIJy/QDgnQDhWHAYnAsLJBsKJA+HEg3ASQDiJIJwkEE4yCCcFhJMdhJMDhJMThJMLhJMbhJMKwskDwskLwskHwskPwikAwjkLhFMQhFMIhFMYhFMEhFMUhFMMhFMchFMChFMShFMKhJMGwikNwikDwikLwikHwikPwqkAwqkIwqkEwqkMwqkCwqkKwqkGwqkOwqkBwqkJwqkFwqkNwqkDwqkLwqkHwjkbhFMfhHMOCKcBCOdcEE5DEE4jEE5jEM55IJwmIJzzQThNQTjNQDjNQTgtQDgtQTitQDgXgHAuBOG0BuG0AeG0BeG0A+G0B+F0AOF0BOFcBMLpBMK5GIRzCQjnUhDOZSCcy0E4nUE4V4BwrgThXAXC6QLCuRqEcw0I51oQznUgnK4gnOtBON1AON1BOD1AOD1BOL1AODeAcHqDcPqAcPqCcG4E4dwEwukHwukPwhkAwhkIwhkEwhkMwhkCwhkKwhkGwhkOwhkBwhkJwhkFwhkNwhkDwhkLwhkHwhkPwpkAwpkIwkkH4UwC4UwG4UwB4UwF4UwD4UwH4cwQ4mTz4NTq2XHIkdorKz/aqdXWSZOuvLZS3c9bj94+aFGLI8eWHFWfl7OC5zSTmRM3l1YqWucJvn8btW/bPHxtZ4G0jbeC5zQblFOCFTynOaCcEq3gOc0F5ZRkBc9pHiinZCt4TvNBOaVYwXNaAMopuxU8p4WgnHJYwXNaBMoppxU8p8WgnHJZwXNaAsoptxU8p5tBOaVawXO6BZRTHit4TktBOeW1gud0KyinfFbwnJaBcspvBc/pNlBOBazgOS0H5XSWFTyn20E5FbSC57QClFMhK3hOd4ByKmwFz+lOUE5FrOA53QXKqagVPKeVoJyKWcFzWgXKqbgVPKfVoJxKWMFzuhuUU0kreE5rQDmVsoLndA8opzQreE73gnIqbQXPaS0opzJW8JzWgXIqawXP6T5GTnF2LnQdCS0XqLhQRWsVbVS0VdFORXsVHVR0VHGRik4qLlZxiYpLVVym4nIVnVVcoeJKFVep6KLiahXXqLhWxXUquqq4XkU3Fd1V9CB8Fb1U3KCit4o+KvqquFHFTSr6qeivYoCKgSoGqRisYoiKoSqGqRiuYoSKkSpGqRitYoyKsSrGqRivYoKKiSrSVUxSMVnFFBVTVUxTMV3FDBUzVcxSMVvFHBVzVcxTMV/FAhULVSxSsVjFEhU3q7hFxVIVt6pYpuI2FctV3K5ihYo7VNyp4i4VK1WsUrFaxd0q1qi4R8W9KtaqWKfiPhX3q3hAxYMq1qt4SMUGFQ+r2KjiERWbVGxWsUXFVhXbVDyqYruKx1Q8ruIJFU+qeErF0yp2qHhGxU4Vz6p4TsXzKnapeEHFiypeUvGyildU7Fbxqoo9Kl5TsVfF6yr2qXhDxZsq3lLxtor9Kg6oeEfFQRXvqnhPxfsqDqn4QMVhFUdUfKjiIxUfq/hExacqPlPxuYovVHyp4isVX6v4RsW3Kr5TQWPiexU/qPhRxU8qjqn4WcUvKn5V8ZuK31X8oeK4ij9V/KXihAo6qRtRkU1FnIp4FQkqElUkqUhWkaIiu4ocKnKqyKUit4pUFXlU5FWRT0V+FQVUnKWioIpCKgqrKKKiqIpiKoqrKKGipIpSKtJUlFZRRkVZFeVUlFdRQUVFFZVUVFZRRUVVFdVUVFdRQ0VNFbVU1FZRR0VdFfVUnK2ivopzVDRQca6KhioaqWis4jwVTVScr6KpimYqmqtooaKlilYqLlBxoYrWKtqoaKuinYr2Kjqo6KjiIhWdVFys4hIVl6q4TMXlKjqruELFlSquUtFFxdUqrlFxrYrrVHRVcb2Kbiq6q+ihoqeKXipuUNFbRR8VfVXcqOImFf1U9FcxQMVAFYNUDFYxRMVQFcNUDFcxQsVIFaNUjFYxRsVYFeNUjFcxQcVEFekqJqmYrGKKiqkqpqmYrmKGipkqZqmYrWKOirkq5qmYr2KBioUqFqlYrGKJiptV3KJiqYpbVSxTcZuK5SpuV7FCxR0q7lRxl4qVKlapWK3ibhVrVNyj4l4Va1WsU3GfivtVPKDiQRXrVTykYoOKh1VsVPGIik0qNqvYomKrim0qHlWxXcVjKh5X8YSKJ1U8peJpFTtUPKNip4pnVTyn4nkVu1S8oOJFFS+peFnFKyp2q3hVxR4Vr6nYq+J1FftUvKHiTRVvqXhbxX4VB1S8o+KgindVvKfifRWHVHyg4rCKIyo+VPGRio9VfKLiUxWfqfhcxRcqvlTxlYqvVXyj4lsV36k4quJ7FT+o+FHFTyqOqfhZxS8qflXxm4rfVfyh4riKP1X8peKECjroRVRkUxGnIl5FgopEFUkqklWkqMiuIoeKnCpyqcitIlVFHhV5VeRTkV9FARVnqSioopCKwiqKqCiqopiK4ipKqCipohQ9u1JFaRVlVJRVUU5FeRUVVFRUUUlFZRVVVFRVUU1FdRU1VNRUUUtFbRV1VNRVUU/F2SrqqzhHRQMV56poqKKRisYqzlPRRMX5KpqqaKaiuYoWKlqqaKXiAhUXqmitoo2KtiraqWivooOKjiouUtFJxcUqLlFxqYrLVFyuorOKK1RcqeIqFV1UXK3iGhXXqrhORVcV16vopqK7ih4qeqropeIGFb1V9FHRV8WNKm5S0U9FfxUDVAxUMUjFYBVDVAxVMUzFcBUjVIxUMUrFaBVjVIxVMU7FeBUTVExUka5ikorJKqaomKpimorpKmaomKlilorZKuaomKtinor5KhaoWKhikYrFKpaouFnFLSqWqqB329N75+md8PS+dnqXOr3nnN5BTu8Hp3d303u16Z3X9D5qelc0vceZ3rFM7z+mdxPTe4Ppnb70vl16Fy69p5beIUvvd6V3r9J7UemdpfQ+UXrXJ72Hk96RSe+vpHdL0nsf6Z2M9L5EepchvWeQ3gFI7+ejd+fRe+3onXP0Pjh6Vxu9R43ecUbvH6N3g9F7u+idWvS+K3oXFb0nit7hRO9Xoncf0XuJ6J1B9D4fetcOvQeH3lFD74+hd7vQe1fonSj0vhJ6lwi954PewUHvx6B3V9B7JeidD/Q+BnpXAr3HgN4xQM//p2fz03Pz6Zn29Lx5ehY8PaednqFOzzenZ4/Tc8Hpmd30PG161jU9h5qeEU3Pb6ZnK9Nzj+mZxPS8YHqWLz1nl56BS8+npWfH0sSXnrlKz0OlZ5XSc0TpGZ/0/E16NiY9t5KeKUnPe6RnMdJzEukZhvR8QXr2Hz2Xj56ZR8+zo2fN0XPg6Blt9Pw0erYZPXeMnglGz+uiZ2nRc67oGVT0fKiTz25SQc88oucR0bOC6Dk+9Iwdev4NPZuGnhtDz3Sh563Qs1DoOSX0DBF6vgc9e4Oei0HPrKDnSdCzHug5DPSMBHp+AT1bgO77p3vy6X55uped7jOne8Dp/my6d5rua6Z7jul+YLpXl+6jpXtc6f5TujeU7tukeyrpfke6F5HuE6R7+Oj+Orr3je5Lo3vG6H4uuteK7oOie5To/iG6t4fuu6F7Yuh+FbqXhO7zoHsw6P4IuneB7iuga/7peny6Vp6+f9A15nT9N12bTddN0zXNdL0xXQtM1+nSNbR0fStde0rXhdI1m3Q9JV3rSNch0jWCdP0eXVtH173RNWl0vRhdy0XXWdE1UHR9El07RNf10DU3dD0MXatC15HQNR50/QVdG0HXItDv+PS7Of1OTb8L0++w9Lsn/c5Iv+vR72j0uxX9TkS/y9DvIPS7A53np/PqdB6bzhvTeVo6L0rnIem8H51no/NadB6JztvQeRI6L0HnAeh7N33Ppe+V9D2Ouip9J3MW+9B18nsb/f5Pv7fT79v0ezL9fku/l9Lvk/R7IP3+Rr930e9L9HsO/X5Cv1fQ7wN0Pp7Of9P5Zjq/S+dT6fwlnS+k83N0PozOP9H5Hjq/4pzPKG39/f24rPX3tR3lVVRQUVFFJRWVVVRRUVVFNRXVVdRQUVNFLRW1VdRRUVdFPRVnq6iv4hwVDVScq6KhikYqGqs4T0UTFeeraKqimYrmKlqoaGn9fU2Hd7nM5++FvXe98tNXSXvd+3XO5LPn7fXNF3UoV+y3dlPcnx3MpBz1MVpKJbZ6+5Kqz77r/qxiQsblKtuftb9+Q9ptxeIT3J9VzaRc9UzK1cykXJ1MPquXSZ31MynXIJNyDTMpd14mn52fSZ3NMinXIpNyrTIp1zqTz9pmUmf7TMp1zKRcp0zKXZrJZ5dnUucVmZS7KpNyV2dS7rpMPrs+kzq7Z1KuZyblbsikXN9MPrspkzr7Z1JuYCblBmdSblgmn43IpM5RmZQbk0m5cZmU22x/1iXX7TnvKfD1Mvdnj2Xy2Y5MPtuVyWe7M/lsXyafHcjks0OZfPZ9Jtx/tT/7dn72qYe+OrjA/dnxTMrlTMz4s8L2Z+kVrszVsNrZm9yfDUnKGG9sUsblNiZljLcpk89OHtwz+CxHcsZ4z2VSrndKxhwGpWRc56GUjOs8nMln1bNn/FmD7BnjfZ9JuZtzZMzhjhwZ15kjZ8Z15srksy6ZfNYrZ8Z4JXNlXO6ZXBlzeDlXxnU2yJ1xnQ0z+Wx6Bp+l2utK9rrb0KG9hgzr2mNg/0HdhvXt3q9X14FDuvVQqxG9hgztO3BA15FDug0a1GtIQXt/u6ud+m2D5qo0HUqzAi2RZFc5fvn0lsneClnlrZPlI5YU/2/+zvxcUj7RScRV3p2LUy/ZRA7X37k8+ML8W0abf75McnbapoVr/zQr0BJHw5945rE3EPdy9t/Dh/Xt13fY6GYnu2qLUz31opMdtfPf/dRbYcTz/xYZbM/uyjvetU9wTUa1dOq0vxac/L4W57NnvGft7HOWvU5x4TvrINd/H3z+2Nub29bpn9dTnhanbbK7cHr2HdpjoBrfXQf0Gtm1f6+hQ7v17jW0gK12jAf44igH+OIoO3gk2VVGUP7UAF/kKu/NhZac1ukDyV0myf7c+ftq++8oB/9i5OB39kuzAi2n+k1LWflsTvlWsvKn8r/AVZ6hTZpT/kL3RivQEueUbe1X9qeh++99Zd6m59YNW3vP0rwHc92Wo1r2idOmfVfs2+LLj0672ynbxpU3g3eiU76tH3aTbXFd+mz8fWCOC6dsGHnwnY7DcxXvtrPUzHu6PL+o1Bddpztl2/mV/Xzu7RNTNyxemVb11WOJFy74uuuPbRIaHHx1XJFnJx//4ugSp2x7v7L7uhx/f3PqkjGj5m0f26BS/m4PLtn//ZcvvPJQ6o9H1g/ef7ZTtoOLs8SjOrrKM260OdVXLpKVP4XfSVb+VF+/2FWewT+PU/4S18Y0549Ja9a932zeq7U+Op59doduU0fVnfPGFd+MKby2/Cc3ri/+YF6n7KV+ZT8c1mLRsEL963+T/Nq82quKlfjgp7WbP/t5dK8GX3/2+dbSPzplL/Mrm8XilL3cp2zhOhXPHbRsb4H3KpV5t+mOB2vcXOSnco3fe7T1qqO/v/Srq6xzMpCp1ym9r5CVj3fKXykrf8ofrnKVZ4zxU+W7yPCbOuWvdm1My7zMqcOaU/YaGXZup/y1wbGdJcEpe50IO3Iq967+2JEpZYbemjIv0mHn5Oqbc2bf+UWzu5q3ePWVqbNLpT54l1P2ep+yVRqnHL1n9oRp1uG1X83/ucoTTavnLdksb403b3+72IAhVxc56pTtdioTlmbFnfLdXeU9uWe6OOV7yPBPle/pKs/AP+WPvVwb06xAy6myN/DLnhrnvZ3KLBbvU/2tj6z8qWNxX1n5JKf8jbLyyU75m2TlnXNUJy/kE5TP6ZTvLyufyyk/QFa+lFN+oKs8w2dPzQEHycpXd8oPlpWv5ZQfIitf2yk/VFa+mVN+mKx8K6f8cFn5C5zyI2TlOzrlR8rKd3XKj5KV7+aUHy0r390pP0ZWvodTfqysfE+n/DhZ+V5O+fGy8jc45SfIyvd2yk+Ule/jlE+Xle/rlJ8kK3+TU36yrHw/p/wUWfn+TvmpsvIDnPLTZOUHOuWny8oPcsrPkJUf4pSfKSs/1Ck/S1Z+mFN+tqz8cKf8HFn5EU75ubLyo5zy82TlRzvl58vKj3XKL5CVH++UX+jamGYFWSKWcwL8c/uXFr9zdYxcOjnnF+NOQzm9btkJ75PXuJ9Wn2Wdfr7U8tSf4smFiReJeOpz8Lz8HK0c7gk+uaT6fObVOMEHJ8EHJ9Xns3Ea65qhsa7xGuuaprEunRynaKwrXWNdUzXWNUFjXQM11qVTe51jaOYZWtcojXXp7BM6tdfZv8ZqrCtdY106+8QYjXVN01jXHI11nanHR2fO6cwd3HONSAZrB8e7zcFJ8dQlnff48Yr3wcts/7hM9k8MWD9dlOFcQGRflNGyV/fhvdsP7G15lnjP/9tkkGJxz349MknNW2/EE97txT3b4nz2dS9Ez7nOyaZ3Qa9hPfpc1q137149Fcmh3hLemlpnsN07IXXv40zGEz2ZplmBlmxBOqW7/hRPLtJO6ddp/AYbqZrP/ttWtf3Abj1bdBs0dHi/XtncVVunZ+5VxV2re5tfm0ZcmVmZ7Nfa8/8OPuUsn7rpc6flkj3b06xAS4rTK1J8PnQ+y+6p2/1ZDtdn7tb0LnE++Ts501fObwv+U693P28+7vbI7vksyfVZDhe2t10TfXCc/LP57J/kqSvRp5xTJiu8uAzKuf/O7KtzkNHm8KAl1QfDwQ7RFQqc6a7g8EuS4eWPeMq78dx1Ovk4Wif7fObU5YzDxAzqcl8n6N5/l71O9exHy2UejGSffN3bHH1Is2c8ubu19faTaHR01+fk5d7mrj/FiqpfRjJrNzc/bz8Remy+ILq78/F6sldbt+8lZlCXUzbes/8b9jrV+rfve/tJik++7m3ufrLHk7tbW28/EerYLGg/cepPsaLql5HM2s3Nz9tPUmR4TYPo7s7H7/js1tZ9DEzMoC6nbLxn/8P2OtWzHy3efpLdJ1/3Nnc/cW5UTM4g3zQr0DLSb97i7WfeeUuaFWgpHrSfOfWnWFG1eyQzHf3Gm9/cyymb6vOZ96tWDh+cHD44qT6fzdBY1zSNdY3RWNc4jXXNPEPrStdY11SNdU3QWNdAjXVN1liXzn5/JuqV2XGIWxct6RrrmqWxroka69LZV3VyHKWxrjN1bM/XWNdgjXUtsNfeeZ5TPy3J1r/HHve7ibs+J0/3Nnf9KZ5cpHMdP1385owOv5wyvLwRT3k3nrtOJx9H61w+nzl12be1njandtfllI337F/ZFjTVsx8t3jl1Lp983dvcc+pydr25ffL1nl/g9kd3ea9G7nLe/hhNe7nrc/J0b3PXn2JF1f8jmfUPP10cfrlkeHmCtK87H0fr3D6fOXU5P4ckZlCXUzbes/+5nv6Y25WTtz/m9snXvc3dH+tFTs/dra23nwh1bBW0nzj1p1hR9ctIZu3m5uftJ7lleC2D6O7Ox9E61eczpy7nvubEDOpyysZ79r/A009SXTl5+0mqT77ube5+0szTT9zaevuJTMfI90H7iVN/ihVVv4xk1m5+/u3wSxXhRY4G0d2dj6N1Hp/PnLqce7gTM6jLKRvv2f9STz/J48qplQcjj0++7m3uftLR00/c2nr7iUzHk4+nPa0+Jy/3Nnf9KVZU4zuSWbv5+arDL48Mr1kQ3d35OFrn9fnMqcv5RTUxg7qcsvGe/a/39JO8rpy8fpLXJ1/3Nnc/udquN7dPvt7z50F9KtWnvLOfX5+jSLMCLZf5tSmj/GBvGzl1uHPL59rO6C+1g44Hp/4U69/9RTIe8nnwMmpvh3t+n1xSfT7ztlF+H5z8PjipPp9N1FjXOI11DdRY1xiNdU3WWNcojXWla6xrisa6dPaJsRrrGqmxrpma6vLzz2jymqGxrlka69I5tudrrEunF6ZrrGuqxrp0tuMCjXXp7BPpGuvSNbZp0clRZ5+YprGuM9UndOb1vzBn+u+YFjvtdY7H8Rrr0slx7hmal875hE6OzrHW+a7o/m4ZsdfJ1r/HHuN7a5OIpz4nT/c2d/0pnlyYeJHMdHHz835PLuCTS6rPZ97vyQV8cAr44KT6fDZRY13jNNY1UGNdOjmma6xrqsa6ZmmsS6f28zXW9V878upaoLEunX1irMa6pmmsS6d/zdRYl07tdfZVndqfqf6ls6/q7F9TNNalsx119i+dY0hn/5qhsa5RGuvSyfFMncvp5KhzPnGmtuOZOpebq7GuM3Wek66xrv/mE/8/xpBOn9CZl67+RX/n0VQXLbM11qVTe51zAOdY673uy6mflijPgZWOeOpz8nRvc9efYv27LXWdA/O7hszhV0CGlxakHdz5OFqf5fOZU5fzjI/EDOpyysZ79u9sk0r17EeL9xq7s3zydW9zXzt1sf2f3D75RvtbhLu8VyN3OW9/FLZXXND+6NSfYkXV/yOZ9Q8/Xfz6h1M21eczr/5B2zWzunJb+r01jw+fnD7lvO3szo+he+B7BdzvNoqiX0Uy099PF4dfQRleHq9XuPHcdTr5OFoX8vnMqauw/f/EDOpyysZ79h/i8Z1Crpy8vlPIJ1/3Nrfv9Pf4jt+YkPZ7Pz/9/4aT06ecd3wJ+19C0PHl1J9iRTWeI5n1dz9d/Pq7UzbV5zOv/kH7qYl1Of2vYCY4mfmKH467fMH/cKLCyelTzjtu3e0afBxFDgcdt079KVZUPhHJrN/66eLwKyzCi3zgPZa58dx1Ovk4Whfx+cypq6j9/8QM6nLKxnv2X+U5LhZx5eQ9Lhbxyde9zX1cXJHt9Nzd2nr7iUxHKzVoP3HqT7Gi6Zf/9BO/dvPzN4dfERle7iC6u/NxtC7q85lTVzH7/4kZ1OWUjffs/5CnnxR15XSZB6OoT77ube5+cp/9n+QM8k2zAi1H/LRmlF+ZbP1bO0b5yk75YrLyjzrli8vKb3XKl5CVn+SULykrf6VTvpSs/LXJnv2Z5Ss55UvLytd1ypeRlf/cKV9WVr61U76crPx2p3x5WflFTvkKsvItnPIVZeWPOeUrycovccpXlpU/6pSv6irPOcfmlK8uKx/n5FvNvdEnJ6d+x+uruPaPZLB26vJ+5mCleOqSHhf9cnfn551XVnPhuTlmVFc1Zl3JPp9J2qSqlTEvd/05M8nFmyct3metSDnTMlZjXSM01jVDU130d2FNddEyRGNeRTTWVVRjXcU01pVNU120DNOYV3GNdZU4Q+sqqbGuUhrrStNYV2mNdZXRWFdZTXXRMk9jXuU01UXLdI15lddYVwWNdek6dtDfFTXWVUljXZU11UVLqzO0rhb2OsrzBW2iPF/QMMrzBR2iPF9waZTnCy6M8nxByyi/77fP6bN/xF77fZdnzNudx+2cqs+y/L//OPWneHJh4p36/lPag+fl5/3dp4xPLqk+n3n7eBkfnDI+OKk+n03VWNccjXWN0ljXZI11pWusa6zGugZqrGuKxrrGaaxr5hlal86+OkFjXbq09zsunil9NV1jXbM01nWmjsfZGuvSOYbOVO0naqxLp0/oPNbq9Gid2uvU60ztX5M11qWzHXVq/7/gE/M11UV/F9VUFy3DNOZV7Aysi5ahGvMqrqkuWnRpT8vIMzAv+rukxrqyaaqLFl19gpYRmuqiv0toqosWne2oMy9dffVM9sJUTXXRotO/dLajzrzORL1o0dlXS2mqixadxw5d/kXLAo116Zx/jddYV7rGunTOySdrrEvnuUdnfu+cxy7p+ixir6M8h5874qnPydO9zV1/iicXJl6m5/Dd/Bxd/K4XZODlCtIO7nwcrcv6fObU5fwmnJhBXU7ZeM/+T9vCpnr2o8V7bW9Zn3zd2xx96Nrex+JOz92trbefCHUM/K5Lp/4UK6p+Gcms3dz8HB382s0pm+rzWTbX3xy9/dpuhsa6pmmsa4zGusZprGvmGVpXusa6pmqsa4LGugZqrGu6xrp0jqF0jXXN0VjXKI11zdJYl86xrbN/6RxDOn31f0H7KRrr0unRjhc691+65zPxHhzu3Ntd3tkvyvtVLonyfpXOUd6vcpEzLyrv2hix1373kjDmaJMinvosy39O6NSf4smFiXdqTljRg+fl550TVvLJJdXnM+/1P5V8cCr54KT6fDZVY11zNNY1SmNdkzXWla6xrrEa6xqosa7pGuuaobGudI11nal9dZbGusZprEtn/9LpOdM01vW/oP0UjXXp5DjzDK1L59ieoLEuXdrT30U01UWLzr56ps4BdNb133H7v+O2KceO/47b/x23/ztu///U/kztq7M11qVTL52eo1P7iRrr0jmGdB63z1SPPlPnEzo56pz76mxHndr/L/jEfE11Rax/X6MQTV1lNNal6zw5/V1WU120DNWYV6qmumgZprGukRrrGqGpLvq7nMa6/r9rT38X1VhXMY11FddUFy069aqgsS5dfZUWnWPoTO33ZyrH/+9eqDMvWv47dph/7KBluKa66G+d1zzo0ov+LqWxrhIa69J1rKVF5/FRl160nInHDloWaKxroL3WUdd4jXWla6xL53mAyRrr0nl9zkx77Vzr5b42LGKvk61/jxfCSbMCLdUinvqcPN3b3PWneHJh4kUy08XNz9HF4V7ZJ5dUn8+8fljZB6eyD06qz2fpGuuaqbGuMRrrmqaxrjka6xqnsa4ZZ2heYzXWNVBjXfM11jVYY10LNNalU6+pGuvSOR5naaxLZ7/X6YU623G8xrp0eo7OPjFFY106tR91huY1XWNdOvtEusa6dB63dbbjLI116fQvnf1L53g8Uz1aZ106+9cEjXV53zHt/n4TsdfJnnIRi/XdqVzEU5+Tp3ubu/4UTy5MvEhmuvh9h3W4V/XJJdXnM+9vwH7vSKnqg5Pq89kMjXVN01jXGI11jdNY18wztK50jXVN1VjXBI11DdRY13SNdY3SWJfO8ThLY13pGuvSqddkjXXp7F86x5BOX9XZJ3T66pk6tnWOx3SNdc3RWJfO8fi/0L+maKxL5xzA+xwE93zZ+xwE7pzdXd7ZL6dPuYi9TvbkF7FYc+hFEU99Tp7ube76U6x/c5bM2f3099OF875B+lvn+/Omaqxrjsa6Rmmsa7LGutI11qXzXY8DNdal6z1itOh6byQt6RrrOlP76iyNdY3TWJfO/qXTc6ZprOt/QfspGuvSyXHmGVqXzrE9QWNdurSnv3W995YWnX31TJ0D6KzrTD1u69Re5xxAp0ena6zrTO2r/x23Y3dM+29Ozqvrvzl57PrXf/PC2PWvM3FeSItOvc7UvjpbY1069dLpOTq1n6ixLp1jSOex40z16DP1mKaTo865r8521Kn9/4JPzNdUV8T69zVK0eQ1VGNeZTTWlaqxLp2/D+nUq5SmumgZqbGuEZrqor/LaaxLV5+gZZjGunRpr3Ns6x6PusYQ/V1WU1206ByP/wv9q6jGuopprKu4prpo0alXBY116fJCWnR69Jna789Ujv/fj7U686Llv7mJ+ccOWoZrqkvnfIIWXXrR37rm5PR3CY116TrW0qLz+KjzO8yZeOygZYHGugZqrGu8xrrSNdal8zzTZI116by+0PscFPe1rRF7nWz9e7wQTpoVaMkZ8dTn5One5q4/xZMLEy+SmS5+10k7/KrL8HJEPOXdeO46nXwcrWv4fObUVdP+f2IGdTll4z37H078e53q2Y8W77uCa/jk697m6EPvCn438fTc3dp6+4lQxxJB+4lTf4oVVb+MZNZufuPHr92csqk+n3nPgQTV26/tZmisa5rGusZorGucxrpmnqF1pWusa6rGuiZorGugxrqma6xL5xhK11jXHI11jdJY1yyNdekc2zr7l868dLajzrx0+oTOPqGzHadorEun33vvt3PPjbz322U2f/TDcZd39svpUy5ir5Otf89RGPOlaRFPfU6e7m3u+lOsf3OWzM/89PfTxeFe0yeXVJ/PvOduavrg1PTBSfX5bKrGuuZorGuUxroma6wrXWNdYzXWNVBjXdM11jVDY13pGus6U/vqLI11jdNYl87+pTMvne2oMy+dvqqzT+hsxyka69Kp/cwztC6dPjFBY126tKe/i2iqixadffVMnU/orEunXv/NAf6bA/w3B/hvDpBVXf/NAf6bA4Sp15naV2drrEunXmeqT0zUWJfOMXSmHjt0an+mzk10ctQ5j9bZjjq1/1/wifma6opY/76OIZq6ymisS9f5e/q7rKa6aBmqMa9UTXXRMkxjXSPPwLx0t6NOvUZoqkt3n9DVjvR3UY11FdNYV3FNddGiU68KGusqp6kuWs7UvvrfeIwdxzOxf9Hy33Hov37v/Wy4prrob53XiOjsX6U01lVCY126jtu06DzW6tKLljNxPNKyQGNdAzXWNV5jXeka69J5fmKyxrp0Xs/kvb8nm+uziL12rgtMdW0nnDQr0BIf8dTn5One5q4/xZMLE+/UdYGpHjwvP+dvh3thn1xSPZ/R4r1PprAPTmEfHFRdfu1FkWYFWi736uHU4a7bff0Bo20KB+0LTv0p1r/bRtIXinjwMtLV4V7UJ5dUn8+8Ghf1wSnqg5Pq89lUjXVNOkPzmqapLvo7WVNdujkO1FjXFI11zdRY1wSNdenUa5bGuuZprGu6xrrGaaxLp/bpGusaq7EunRzna6xrsMa6Fthr5/jlnvtoOnbnkh67hfPGTI/dbn6OLg6/ojK8nEHawZ2Po3Uxn8+cupxzy4kZ1OWUjffsP9o+uKV69qPFO2cs5pOve5ujD92nPcyuN7dPviU99frpXsSn3lSf8s5+yT7l0pw/fhq6/95X5m16bt2wtfcszXsw1205qmWfOG3ad8W+Lb786LQ1UbbnFU75YrLy+Z3yxWXl8znlS8nK53XKl5GVb+mULysr38wpX861MS1Q0X9yl91LFjnqlK/pKp8tcHkr2SlfS1a+vlO+tqz8OU75Oq7yDP4fOOXruram2etybz+W9Mv9C+IfOXB04MhjVZa8fOG8px5ovPjV6k3SL/1o6bcdnLL1fMpmsTRyyp7tV7bJtrgufTb+PjDHhVM2jDz4TsfhuYp321lq5j1dnl9U6ouuM5yy9f3K7uty/P3NqUvGjJq3fWyDSvm7Pbhk//dfvvDKQ6k/Hlk/eH998qb5Hm86x1HDOv04Q9HA/n+C67Mern2csvGe/Qfk/qfcYhsvyLmPOE8uaVagpUjQY6azTde5jzgPnpef9/tuvE8uqZ7PaPHOf+J9cOJ9cPzqWqCxroEa65qusa5xGuuaqrGusRrrStdYl06OEzTWdab2r1Ea65qhsa5ZGutK11iXTr0ma6xLZ//SOYamaaxLZ5/Q6ave30Dcn3nnAQmu7Yzjcrag8wCn/hTL/7icZgVaTs0DEjx4GemSQ0U+++/hw/r26ztsdPuB3Xq26DZo6PB+vbwzI+9szK2Ku1b3toh1Onv3Z3Gebd792nr+38GnnOVTN33utFwOz/Y0K9BS0ekVFX0+dD6r5Knb/VlGb9D2LnE++Ts5J6n4tuA/9Xr38+bjbo9Kns9SXJ9VdmF72zXBB8fJP5vP/imeuhJ8yjllssL7Xx6Jfu3klE31+czJPcpvKqx+Tksbz2fufu7lUsX1GXcMONtoDBxjjIGMPMi7f5zPNu/Rwl1XDw/Of0eL/09HC6e+FNdnfko4dTrnKtycUjIo59bC8tmWzWf/BE9dCT7lvK7qV95dh7ucN7dk699c05w/Jq1Z936zea/W+uh49tkduk0dVXfOG1d8M6bw2vKf3Li++IP5COuP5Ix1cZ/TcOuUkAW/eM/+dV3ncE7YeNQjC9mf2z2y+fB+N13Sa9iQvr1G9Go/sPdQy7Nk1Y0u8fz/Up9yfktO699N7TUG4UANbAxO/SlWVAeFU8bgN71285MZg7dDeA8Nuo3hUs//JdNI76E3zQq0sKeR3kNoZQ+u87d38TMYJ2fuNNLdHt5ppHugeqeR7naN98HxGp57f6/h+Zmn1/AywvvvEP338t8XOtfy3xc6n/zD/kLnLZdg/Xvkeg/3zr5V7ESiHLFWXlc5b47/HbP/Xv47ZruW/47ZPvmHfcz2cxKvS4T5Fd+N7T2lQkua88eHw1osGlaof/1vkl+bV3tVsRIf/LR282c/j+7V4OvPPt9a+qcoXaNzlG53OZVrZXci58uYexx4x7FzZMroB3WnbLxn/3Yp/5RrY/9Nn5W3P7cdpXO3fn17dhvWq9WAwcN7De/Vs+PAYb2GNhvQs9WIXgOGsb+atfP8v71POb8lu6u+s1z1x3lI0tLBg2+PwVNXcnn38Qrk7H+R/QEN5N/tjX6dzsknp6e88zktTqco5Mk9zQq0BD4UOfWneHKRHooKefC8/GSHInd39qrirtW9LdaHIuG1l+xDUYrnM/ehyN2a3sXvUOTkzD0UudvDeyhy38/hPRS527WQD46Tfzaf/Qt76irkU857KMoIL86nnHcqEfFsd5/LOssH23suq7fLHf4smLEOZ1kZ6+DOx5tniPfyXBHUTWJ1Lw/PTdw9xY3S2VOrs497X/fS2ZWZlcF+fq0X71POuziKxXtyTncdhAd7DvpuXtk9+fj1dvc27yTJXd7Zzw8nKUqcJB8cpyfncJXr7vksZyaf/V977wJm11Gdidbuc9Tq0+ru03r5ie3TftuSH9gIyy+stvW25Ad+YCBYSK3GFsiSkWSwsQ0KtsG8bCYwc5PwJeHmnUwI8EEymQxJBjIMecDAJRcmJM4lMyEPQsIME/IgBHK9rb26//77rzq1967T3ba7vq+/s3vXqrVWrVq1qmrVqtrDgHOQ8kah3ATlLYe8WylvBeBcSnkrAzhXCZx52502OI0v/zsT4JSm8y7E6cAPlsX/lxBsniaL3ybBvg/06jHSK+zFrFdlTzFi+ROcn87SmnSWCjo8WuWJdedEUVc+KZgnbmcVtW95p4p6WV4ngHNM4Mzb57jBmXDc/nkyi38WvC+zKIm1+Ia/RbxUtfhnET2uH58AOacavdsyKo/0EKfxo2ZeKNv8z2Y3/R5cVrZJ8B8s+lub4PLEJ0DOFfziOzwB8oHWTN5Rtpnn1/DyO+5fWHdrH6OD9mYC+PmZ1sy6oJ1quNl2zRbEbKs6sCv482SrsDy3neonVet/pqjjiJstm3549un3WQE6/YH69Ko9+4kO2llsz49Te54DeWyj82c7XdMk+Ba053+g9lR9UcmZx6Wych4UdHotZx5fzk1IB3Ghcyf/O59wsZytnUzOuKI8n8rhl1nZCdqgMgiPOBR+w9FNB3+npevm00Gj1ST4bw5Pl/v9ijp4LuXhWIHjIvKBckB4vqnO+Oz3wPvq9UVYddrEh8cSlBW2Bdtfg/8S4Gwcr/nEeuF4wM5IpQ/ni3opma5x3WmjnHd6aPe7sC42Cf4pIVMeF7C86kcjxMt5XXjn/o3lDW5IlKtrRxTP3frkn5fsk2cUz6y7/x365F9RnwzpCPLM64iycl4q6PRazrxGWJOQDuLicUF9dRDlbO1kcl4LeRdQOTwNyl9lblAZhEccCn/suPCdlq6bTweNVpPgPwE6+C+BdXFIB9dQHsqUx4Vu9vAMgje++114vG0SfKOYfKhxQfVXtLU8LkyNTYCTxwX1BfbQuBD6Enc3mV5AuE4XuFDOPC4omWL9T6f6G/ywkKkaF6y88kfspTz0R5xDeXhanueseBKePfLoj2DfSAfy2N6NQR7qCPsjlgXqMwQ42N+Hfju+eWEU8k6iPAz3OJny0G93KuWthLwO5a2CvDGoq/nteHP09OJ9zX07GboS8otmnl/n4sYDDK3KiM7xCekgru1E54SEdPiWTqRzkqBT8+aI6H1Ww99ys/tuFT+ZuglE3SBTbmeE7zRBqSBWfIeS5rxe7rMavlMhT0mCPedYp1M95VAWTrzrE/AnEy7fXTENDz3VoliONSaj9779SMPRJPgrYbTqp9Fa0UJ58IhpvPsiJpgHg78GeLCICcbZ9NTrJA/Olw5Oy+PaQY3TCZyqXqdSvZgHvtPH4DeLmUCDYJgf9c7k70RZ/l/pzGqC73SpD7eTwe8ItNOJggfskzu78MAwp3p4uEnwIKzbdQfvfaCwbo4SB4dn9D9LnvdtTxR4fMmkkWuhaaSKMjhJlDtR4GGe8prbHKWo+cbJ/ZNHJj11Z8udeWj2OZ14Purc7DG04pgWPYYa/pbTmtdxUSljK2f0uH4c5Hmy4KUt8rB9WY9CdPI2tTlp0aa3HDl4yNeksYNrJtji8q4LLm7qMXhfQvSlg5syykOXC08jcQmIRo0T1xvrkxuX1vHTeBmOeUWZ8jIL1ZOXUthVzqc8VKU1lIcGfy3ldSDPlsAjbnZ74TIL8/LUEO94io3lxwJ0VtSks0LQUVvjrJu4BdgLM2T4W65WX5gyQ8o9oeTC25hYVrkZOBDN9PlbMEF6kJbuLaDLcq14CufFsXI1/C3ipapclxE9rh/LdUjw0qa8PPFHJYYEnSFBR+F6LCGudybE9WhCXA8mxHUwIa6UdUzZjinr+KaEuFLW8ZGEuN6WENdbE+J6KCGudyTEdTQhrpQ6kbI/puxDKXUipbzenBDX4wlxpZT9wwlxpZT92xPiSimvlLbw/oS4UsprodrClPJKaXOeD3OmlDqRctxOJfv8eSARrjwdTYgrpezfkhBXSr1PWceUdiLlHCClvJ5IiOvJ4td8TOiHGCM6as2/LEAHyy+LwKX8B6E6jgn4ZW76oxZTrvs999214+BdjhLvNGzzsLiO4HZ6WMsE3oz++P06etcQsIgbj6MPFe97cELlkozwOafdSvN1QsXqrqKH2yKPvwEdOpmCdNoi77GEuB5JiOttCXG9NSGuhxLiekdCXEcT4kqpE48mxHUwIa6UOpFSXm9OiCulvB5OiCulvN6ZEFdKXX0wIa7nQzu+PSGulPJKOQ7dnxBXSnkt1HEopbxS2vuU+pXS5qTsjyl1IuWcKZXs8+eBRLjydDQhrpSyf0tCXCn1PmUdU9qJhTr/eiIhrieLX3UydYzolD0djeXPisCl1sOhOo4J+IRuEmPxhQS308NaJvBm9MfvX0jvurlJOCpnd+HLqRlhJw+QGK4Ropk/Y7QZ5jkX56nD8kMBOsM16QxH0mnXpNMWdIZEuczza3T4Xciz3yY6YwnpIK6J4tfkhq4w1gN1IdGZATpY/kwPLjuikKf9AMNh7dZfmwJnnvZAPsK/sehDS5/++yxEceYwp0P5CeDngWVhXrEs8sqXkvw4HBR9qMCp5GztrvTgTMobE3QVTu5bZdtuWPAQwoXtNUrw1hb9HnjDx233Nmg7PpBq5X36c6aHB9QfPJLg0593VtCfd5P+MK+sP6NE2+CPgv48SfqDMg7pzyjlof6YjJTN5EjdsjZzheBP0Qld+MV6VPbCr1FBZ66j1VdQHh4CX0l5GK2+ivLwsDGPQWshjw/J4sFnPiSLB/JHKe8iyMO+xKlB/6Ns8z7z+RKR89j2oQPKfLAeD+3yYc+VxCu/Y53B8is9uPD4GdqQCchH+J8sKp/3419eNrNeeBmgyaTm4ZlLM8LnnN4G48Mzq6rRCx6ewfrxNtiY4EXZqVPgGfOQzpigo+Y7RxPiejwhrjclxPVYQlzvSojroYS43r5A+XowIa6DCXE9kRDX6xPiejIhrpTyejQhrpT98R0JcaXU+5S2MGU7PpwQV8p2TGm/UsrrbQlx3Z8QV0p5pexDRxPiSimvtybEtWhX58+uppJ9/jyQCFeejibElVL2b0mIK6Xep6xjSjvx5oS4Fup89VBCXE8Wv+Z7wDU6+x7UevikAB0sf5KnXP6MPofQ/kDN0++NjPAZP/gO8c/X6fezBC9tkYcyxDykE9ryRFwxF3oo30dIN1QdE255GouXENztHtb6BN6M/vj9JfTOt+VpuK0boeuJt51QjCHRqm2nVQE6ozXpjEbSGa5JZziSzoqadFZE0jmhJp0TBB3ryuq7KbnbdP2QpolbKuiu5S05gz8Mrtgrh2bWEbclllH98SAI372I349h04tb7yVMYfTFI4a/5WbrZBXTu5zocf3QLMXfIcg9gAMSGB5hnchr0DvehF9G5arcIbgC8pQk+A5BrNMKTzmUhRPv+gT8csK1XJQz3huB8ogDy7HGZPTed4eg4WgS/M6iMfLNH75DUNFCeXDwjfHuuxeOeTD4m4EHvptuOZRR9eLevIL+R92a9NB/DViZ24Y0fSfoc/3Qqvnu51tOPBj8y0EGfN/gSlHeed7xyLCS8lYGYFtUF/X9PNRFvptwVZe6c/sb/KsD7T8seAh9+ZN5YJiWh4e9god6dxOyleNW4pYYFnh8yaSRa6xpL0uHewfTsf+VBtS9m3DIQ7PP6TTkNG95GnC1xsrosdnwt5zWvI6LShlbT6PH9eNl0XLBS1vk+XppNzo17yb0DdrKWHB5R2Uz8S5PePB0canRnc7zYanBuNQSIk+vKH7ZsD8Ghp0/abAK+FA47yAelBdARTQZ/JiAP0nU0WSJXoqxCNooSx4ITy/Jq/KuoCfqJOIV+TurJK+3zzGvqwSvNaN2SkeWcRQYRpZxFBhGlh1HeRhZxlFgGFl2JuVhZNkY5WFkGS/xL4K85ZR3MeR14JkTjwUo97xfbj9tGi/D4bPPpmCf3Uk84uQZbYi5KAYAN9LpuKg0pQdqUWy4cbpRQscmkCdLaupi71rES0l6U1OXBtHj+vHUpSl4aVNeng4DHOc1xLu+AK6DCXG9LSGu+xPientCXO9IiOtoQlwp5fXWhLhS6tejCXE9lhBXSp14KBEuK5+Kr8cT4kqpE29KiCulTjySEFdKu5qyb6fS1TwtVLuaUiceTYgrZR9KqRMp5fXmhLhSyuvBhLiOLlC+Fsft+ZNXyvlqShudcg7wzoS4UtqvhaoTRxPiStkfU9Yx5RomZR3fkxDXol19btivlO34QEJcKeV1NCGulLq6UOeFDyfElbI/phxrU7bjQp2v3rtA+UppV9+SENfRhLgWqo1OyVdK2S9UO5FyTv58WNemHLfftUD5SrmuTdmOKftjyjVMSr9vSlwpdYL7UFb8jzB74Hkv5CO83RpUc694L+/FGg7EvaQi7ozwOTeTT0f4hwQ946vlyeu4cHrHR3/7Azv+9ne/nlF544XfccxIv4BXe9omq6VQvoSs9gwBDUe0La8JeUsoD+ViPOS/6zoz+euvyF+M/BB/W8DfCnBl2mK5m6kLqO8Wq4M3B/FNVKELMdWllOqkmcFbbE6/B97wNQn+bUV/xUDtEYLJn4c99JA/fBeK7TvXg8t3Q9lpHt7fDbxzLNx5gj8VRmrw5wt4jGkyfpRszneaNtYH23M/1cfgf0jUR/U/06kBwGN5JfrOcE5nQ2eaDssN+083GeWJZbpGwKOsTCZtgkf5Wh4ejzqP8sYgj2P3ThU8YHwex1eh3uHNee+OuEFxIfXrn47s1yd76CF/oX6N5cv06zy9zsP7L5bs1ycL/hZSv/5IZL82nVrs19379ZmCh9h+bWXVbasXQJ7hxTjuM4rnJsH/VkBnL3SzeUWZs3wvEvAY08q3VmIs7EWUh+X45sKLIG8N8XCxkAPyxfHpBv8ZkMNtnWPPSteNr5q6Pq50/WIAYF3HW7EbAp7b4hIB/0KAMZm0CZ7bBf9HXChTjnk3GfULeMTXJPgvCttv/KHtu5h4X1OS9xME7+o2TexT36HzMGg3ziSaawI0lX22ePF+D7zhaxL8U0JebBuxH6CclhBOg/9qwB4YXawX2i7WQSX7taJeSqYXUB7ybrqg+qfB1eyf16r+ifXn/hmqa55YNsq2ou5a+7fdbHt4PuVh31hLdNQYGav/qEN/3tJ4fePNC4pn1q9vBfRL9Rv10YaQPqKe8HiD+rWW8rDcWZSHMuW5ohp3EZ7XgAb/ncjxJpE+r1D6jDrL+hzSzzyVHftNJm03ezxge6h0FtuaxxuTUb/TbWD4mgTfHDn2q8YbnLddQLyfW5L3Kv3td2i8wS9q8HhzboAml0V74RtvDB+vB0aEvDKigf0A5cTjjcEvB5wxa6bQeNNtzWT8KJmeT3nIu+mC6p8GV7N/rpzvtQ+PN2gPeV2EfeM8oqP8BLH6jzr0cRpveN2EuFAvQvqI/cbaifXxzIA+hvpZnljmSn9Rr4wfpY+85kHeQ/qYaC1+u9JHrD/rY6iuearq32i72boa0kcen1Ott3+m0Efz++NZ7BJyLX1eNaM8lPN2ykMZYftwatD/WJ+83Vslvj6A9w3w1wfwboLzKA/9J+dTHvrc11AenulfS3l4PcMFlMfXfOTJ2rLiDf7RV1oY/hbxUpLe1LnQbmdvra+Vu27KdztBRljxHWoo5zXoHcO9lP6vct0UXgGkJMHXTWGdVnvKoSyceNcn4FcRLt+tDw0PPdWi6vogw6HK4aiGZWJ6wGrC33FRKfquS8Ofqgd0a3fTVav7cYKXtshjvVb3Ux4n6ChcMRfE+HptjQtiMvp/lYeNPlHeBXBhmVCVsOvE3Mql7j1qEvydYuERKp+nIfGO1b6iGkYbfsPfcrNVooraq8/yYP1Y7VcJXtoubKK4DUN0Eqpqnl7qYUONKK4LLu7JSlUxNmKnh3a/gFeqavD7Az6FPlE+x/ndgZm0NwCc0b7M+XkdJ14Z5jLi1eAPAa922Vob6DriZ4jKW36erEtdS7x3XFSK7lKGv0W8VO1S1xI9rl+1udRl8MxSQaz4LqTF3XrOVvq/zFzKWm4jve+4qLTJtGKTyLS8zYD7MsrbAnnYmpzUqsV4zjX4m8dN42U45gfbYzPlXQd5W4A2t+u1go7x3yfgryNc14pyJvtu9Bqi3GWEI6P36AnZIGg3Cf6dYB2+d5xfDhuc88rB/j9R8Mnytvw81dTJO2KtieFvudltX8WabCR6XL9q1gQ1Bam8jLAaDMJiehlw5jxwqvVOEuU4mcSaxPNPFVqUa9/7i+cRN1t7+4kf5CFkl9uivMEpOktr0lkq6Jgmr4dyeyjvcje7rpZ3BZSboLwrIe9WyrtK1Mvyrg7gfEkA5zUiL2+7c9sz4dAaZZ7fPDXEO5bptYJXazu0AOxzVL1tY4AOlje4IVGubn0Uz2ruZHV95guXI9NlcDRFq416bLFjTYL/f46bLvdR6m+boLzxqOTMfbGsnPsFnV7LmfvU5oR0ENcEwOd/WwkXy9nayeSMs52tVG4b5CEczgi2wvttgrbCbzi66eCnRnTdfDpotJoE/6ugg5+uqIObKQ9nkDweGh8oB4TnWFHjs98D76vXZwNru2tFecX7EPGyOcB7nlgXsTzPXHuh80izm/58ifRnC+Qp/Tm9eG4S/E+A/vwh6Q/O0HpR/1C/xpkce5ZVv1P2g8thHx2J4GGr4LktyhvckChXVzcUz9104y9IN7ZBntKNM4rnJsE/DrrxddINtJ/Go5IzzwHLynmpoNNrOfP8bntCOoiLx7cdhIvlbO1kcr4e8nZQOfRJIRyObzvg/U5BW+GPHd/+eUTXzaeDRqtJ8PeADn4vsKYJ6eB2ykOZou3l9gm1QUZ893vgt1O9pupZzPFVfI/qr9sBJ9tyg18KODmewuhivdRqOaSL14t6KZnucN1po5x3emj3O11/n66MBGRq5Zd46sMyNfjlAZkqGYVkqvrYDlGvEVFnltF1AhfKOUamWP/rqP4Gf4KQqZq3XEe849yB55BqHobwHF+k+piam3AfOzXAe8grib6FvZSHvoVNlHcF5PFa7ErI20J56FsYp7yrIY/Hv5dA3jbKuwbyUPfNt9Ckuq4p3tfcW5j14SzEpeSbeX6dixtP1wNMRnR64TdRdK5LSAdx8ZiGazbe8S7rN8DyobXh5TXpXC7oMC6zyXnCOZH1pybBXw39+o7OTJybBH+Xw7udgbpyf0Zc1mbWP9D29WLvzfC3iJeS9LKQzcX68Xb2FsFLW+T52hTpqO3ssnwl/MqosXgywe30sJYJvBn98fuT6V1DwCLuuep680lnsCadQUGn167OQaIzDuVwufOy9nQZVGHfcoePqhj8K2G584oCp1ru+Lod6hpudbBuGz1fGMMVHv52genl79ZdIep8WoDnTUCD6eZpj4eHvTRVqWiK5VSFXaE4pVtPeTj1wLbBPOemZYHvWOfGBR3G5RsmTa48pXtdyWESdXtnoK6bKA+HJpaDoqPMu5JDiM6ymnSWCTqhYb+qLVE881IiT2hL7idbshny1JTm5uK3SfDbwJY8GLAlyCP/r+yyb5z02ZKNHv6OBmyJmhreHOAZl4BMN097PDw8RraEt4I6Li4pW8JbE2j/hon/smMhlp+rsXCY6PR620+5+1FvMc/o8LuQfeFluK8/vq+taar+yOMawi+H/vjvqD+m2Krz9Qnn4ra7Ngk6PhuUp9AYZPA/HhiDuk39Q0s1H39Np/vUJqizD5cT7wwexz92X2wh2M0BWOYbdfvM4tlsEW8pd1xU2mb6vE1k8pYG8mR56Ea8DeA4Neh/5Dlv71d2pvEyHPODctjuwan6/CTBWp37BF7eLsJ+zPK61cMDt3GeXlX8cn//jfY0/o/ROINr0hJtu11tSVni9mPZcVLtN7WV8PTfOzvTeBmOaaKcr6c8tKscqjUO5bA9PjNP8uI1P6b5kNdeyusmL8uz+vaJcvbcJHp/A/r6e4TvcqDF+s9XI+L2DJfPE8/FDP6/wVjxpc6x5xE3e3zlExSIW82PeZxb4eFL1RPt5Fbi22C/TrrK260dF5XGrY13EE+Ie2dF3Bnhc067HfmILtIzvloirxnBy4F/3H3p7v43/W5G5Y0XfseuwhsE/AoBb7K6EcqXkNXV6qi30bY81O2dlLcE8owHdZ3pDRX5i5Ef4m8L+NcAXJm2aAs64wlxba6Iy65ZVdupbHPzxOOQGvvzdhwszkArO7SceC1rh7B8GTvEc12DXVrwWnP++CI1D2Q7tKMi7lg7ZPiHnL9dWyIvxg7d/S/j937qpX9wSuZm29uGeBezjb9cwNfs5xcrO8S2Bu3QDspDO2Q8KDtUcUy5OEZ+iL8t4NkOxbZFW9AZT4hrc0VcZofUHFzZIZ7fbRP1QTs0y6cwOg0zNDoTV8y8O098LGFzIG+rwJnT7oxOv0d71V/84jqS12gqrMj+x3eo61iGfQ8GfyLI5jjiD9f/WE/kT83V0S958qgfblsALnZ+v57yVNh0bLvwWHEGjRW8f9RxcUn5PQ1X7u+2Q/rFlu2WySO33L370OTeWyYnDk0ewRWVGgXZk4lHBH3JOOHd2mvo/3H6n72ZWwWebjSVdx0vUWG6aueFrdKo4Hk+6aysSWeloKOsUub5NTr8LuTp5es50CuHnt5LRqfLoE6gpxfL3l78stfzidXT5dYFZpAhOfNdEmXlvGqRTk/prK5JZ7Wg0+t+sJrqg1af5VZ2RwrLb5xjOt369U2jmmZsvzb4cejXt0T061AdQ0Fp46KObJN8uG4nXLG7R+MRdEK7R+ORdGLqE6Izn/UxXGrXEdvgjgBfWwjX1i64Xka41I6G0kHmuax3AstfHqCzpSadLZF05qo+m2rS2RRJZ1VNOqsEHbXCqDt+KJ672dsHyN6qw61YliNYDP4isLcPkb1F79ZzXc7bEtJBXBNEx9eej1N7qsM0ofY0+OOhPd8V0Z5KNlsD9cEIIV9bq8OGmcAViiZhOSC8GlN66FFdHqMHiL9FvJSkNxVQHjowmCcM3DZ9LrwA45OHX3jJ+o1PuwAeuPeIz7s6ikSBf4Z39D+Xy3lrEszlgkaeWH+2ERy3u71n/DE8dYPtlq9s3fWeejoXZ+uw/OUeXL4IIGsf9jT9WMFwbASQOsQWmg9wv2O4hqjDoNP99bVO84d13hmos8H/dKDOW7rUmefvau7ItonhGqIOA05Hq3GUIubxdZ1l9QnLz9XYeRzR8Y1pH6ExTUX1YdSXfbSHPfBNGNM+RmOamgv2uv6+aF6sF36AyLe2aQqceeLoDYP/RJrdR+lR5h2U9YL/vH6/SW2q6h5qU4P/h1XT5T4Z0aah/qGi0EO2YGMAXq0VxwV8aN5o7YM7yvHtk/1pjI4i/hbxUlIfpuYb6hA51q/qfMPwfhUqhPx3m29wudB8g2F9fY/nAFvpfbf5huLJB1tnvrHNU0/n4sYHLG9wpp/jxH/HRaWO8bIR+DBeUOfHiXeMEOa+qODVHAPxsx228k2nZTMB+Qj/JZhL/GHn2LNqi+M9/DkX1xZYfq7GquOJznhCOojLZKt8ovghB8wzOj6brD6WEfJ7b6tJZ5ugE6PreQpdcIBzor8sOX7yzrvB/yyMn39N46c6eVp2b4zrj20ds/cS6tex/VTNBzqEq+ypNCzvm8c1Be958p2WbBUTqpqnJW9S0SvW/2rO+W6K6eOIf0jQM75aIi8mKuzrrat+7xsf+8DnMypvvPC7GN9RR8DXm3+5nSoqDCNW8oQ6spXyMCrMeFBRYRXnaztj5If42wJ+EuDKtIXCtbMiLovkUmvs+bJJPt+L2SeeO7SLvh97Alid8gydGGWbxnVkm5OnjtPpXykZPpP/UkGLI2EN9jio9x93ZvLq2yNseuoTOh2WOb9smIY6HXapm8nblgjelD8IcYx7+MxxqD1E1tuyJyo3Cn4UnVNr0jlV0AmNSfxrdPhdaD/yVKLjmzedu3y6DNoT3/7IPcUv73e9H+ZNawqc6gQ+77ly9B7ahDyxDbTy/U77NdmeGPzF0K/4xLbyD98DOH16FntKyODX0XymF34mrlPTzbatebrB6Tr5/MUsg60CfiIAr/abUK/YZocuIrS6fWblNA9XkR53q/+NHpy/tWIa5zUlcd7kwXnT8mmc1wb6Bn7kkuWjZMb9H8tzBK66uGyA+Cyph9EXQhn+lptd5yr+NOUfUHJRl9vx/izmxcRphD7keUUkXwkvhDIWjye4nR7WMoE3oz9+fzy9Uy45xJ2r+YuL4cDUHO8JXEv4rwIcDfGO1RzLG5yi06xJpynohHCtFbgM/moB3xTwCVXDWHwBwU0EWGO83VTjBfTOpxqWGkQzf+Y7W7hpmMcRgWN9oE4N8S50FePVAToX1KRzgaDDs4Q30CwB6Zewlm/nqzYNB+Ier4g71vIbfnVGxPhSn+iK8Xqc/5sP/+SVZ9x9Y0bljRd+x11SrSLVp+trep8eVV4PvLcpT8ozprwexoPyemyqyF+M/BC/8lKz1yO2LRSunRVxmdcDr5YN9eW5shm9oBPCpTwhBm+y6Xd6p4htksEfhdUTf1lTyduJd31utj16ZfE7InD1eXhXtJ2bLTcsb3A9tIlLytrElptd5yqzYdU/lFz4jjgsyxHAeeK7McruCCx0XKibfGW15atfo8PvmA72VW6D8YR0UF9j9LwqHcQ1QXTYc6h+Y+moiJ2aY/AW5W2zpHZkWC/U2WZ1HxXLH6MSN1EeRs2+CJ45Neh/lENuj/+/zjRehrOkIvJ4XCp7ykRFMnW7j+5DyzVN3310vEtr8D8HXpqPLPfXkXcilecO6+jz3P3KHHjunks6XkWPV49N42U4S6qNee6ldiJUpL7VQ9lrvjYcbewWysPxmyP80ZbtBTi2p2oXgT2iVwve1bxpfQSd0LxpvaBTc25U+uO/7L1UconVMeM517EdETrGYyfzxjKKmXcbD75dC7ZzBv/lwK6FwaAHfj/gZD1AGo5w5Iltn8H/Mdm+iutMaft4TEQZGlxNutFe6qmoE+KlJL2peXm3XWp0+cV/5Bd7oLK4DI+wTuQ16N0VBLeD/q/yyfCKNxNv5VELU9lRC1uTk7IauHdf5pPh2B58Gwtake1Am9t1k6Bj/KtbEfk8ibqR12TfjZ7yCrDVV+Xy/18syqRc8bAcU+DqQUzYyliLY/hbrlY/mbI4Kj5IxSWovuM7m4g2IaM8pKPi2RWuqxLhytOti7gWcS3iWsQ1D7hiVoY4TvHZSLSDLyH+ym5UY/nQhvipNemcKugMiXJVx+R2gGe1ume5lY3Lw/KxX1S4YIWmqTxYebIVGXuUfhg8WBevmMmzWs3nScUMYTsYDi47ADxYXon5xUg+B97QmabDcsUdyph5iMXWccwz1l3pQmwbXUltxF8h4rIc02jwPwht9JLiWbVBTNyQiqHkftgv4BFfk+CvK3jCXbmYLzxZeZ/X9QUeeluAnn1Qtod6t1LpHdoZ1jvl6VL2LGQvsO9xrBjaHt6JVbF6oThWK9/vdBsYvibBv1S0Oeud78wTt6vB3xbZribLXrQryorbVe1yq/OAIT1QO/JqHLiScF0pcKm41di+bPi4b7060K7KfiGf3K4GPxHZrnh+1fBYXt12RVlxu6r5h4qXDOkBjg8mE+XRv4byxiGPPaXKfqMexLQ5to/Pfh8Ubc5zR7YLMeMLehbt/tDCs3jLkYOHJgvXoqMUcgXm/2/ysLFClHdUNv/DxB/CUOYz5FA32r5AFjafBv8GIfKQ+c1TTAg1NncvnNOGv+Vmq2wVV1E3s8auolA3w7wFoKp52uFhIxPlHeHKxLs8qbDm0CxQWTelYjxq+WYEho9js94WGDm67THG3NKhZkSq/nyjI5Yb99DBEQ3ViEc0g39P5IiG+5aGx/LqjmgoIx7RlGchdPJWnYpR3tI2waPs1YjGp4FiZ6c8G8OyamUV0hdV35B8lH6pe+nVXn5oFYzxFXlKuQrG+rAuhNo2T77bXBAe25tXIxh3wZ4n7Et8LqDbDbAhXUBvxwW0Isa2Wh9BM+SZUScGOQbol8AW+G5ni13xG/yHhX0J1SE0Ww15QZSu4/jBMUFztYPKMUHq1hkV98MxQTj+8h6/75tJnHiMRjnExr2xPhjeMjqPuvQhijXDad+5RFNNsfAd6zyWNzhFp1mTTlPQCeE6V+AyeDXH6fGxJmPxDIKbCLDGeDP64/dn0LuGgMWkmmm9h2/n4ppJOQ0YF4b+3A4wfJkPDgfnEa6ymwBYnqekxtfXCjM6IOiXMF/vC4VlG+6K4fPvywifc3rl5QupRr5UKH/MEaZf//mbh//gU+unjuDEhuoZ/LiAP0/A1wwtfa+aVuFwkCc0Ky+hvNgjTOMV+YuRH+JXIe18hKls2CTm3V4Rlx1hQscVb+j12sbwkuvrYpo117zYsP/NwJSvmzORN2CR99CmKderrL1cH0lnTU06awSdXm/OriE6vg2579Ky8WrIU9Ox1xW/vPnxcbjw4fu0/FCukszp8QfHyDxxf+XNGYbZ6OGvUfCnwnW5zlhPxfNLgIYjHHnaQzxMuTwKHmraVBmuizafbRiPyxXpRntEDf9cH6MrF67L24QoFcSK7zI3s/aY183xyR8LrxKuW3GWUPqD5bzYxEUjtiYntTDEWUWZcF1sD/7oLu4n7ADa3K7jgo7x3yfgNxKucVHOZN+Nnprl8IUBqlz+/zpRJuVByFBQf1VcKvS3ppMk+jMUfE1jxX4yZXGUQyn0CQ51ZaQKoeHVYtUrCPPnbQlxbUqEK0+3LuJaxLWIa8HhijlMiePBHcWvWpXxXnLZFSWWDzlU2zXptAWdIVGu6tjXDvAc82mHshckqE9ydLtG8vaVmqbvGkle4Rn8z8AK7+UrZ/KsVnh5UqtpbAfDwWUHgAfLKzGOD6sNQZQrbwiqTQiE31/8hkKAlC7EttFeaqNQuCDywzE0T0Ab3VU8q4AAvgKyWyzIfoK3OsaGxRr8fliFh8Jir/bQ83klbvbQuxfozUFY7HKld2hnYsLslD0L2QsV46MuVOEwO5Qxz0vLhsyqMLtQyKzBPyT0gcci1g0ff0puicPsxj1sjIryjspm9G7Ug8vw5O/QyRETZqdOJ7CJeESIPNRkeVoMs3vWhdlt97CRifKOcGXiXZ5UmJ26EiZGxEpUVQO03ydUOmRh1QwrNBNQew6hjweqWc/VHjoqcDxPPKIZ/I9GjmiJZlJyREMZ8YgW6zkx+G6hONzVVEhaaGUT2w05zETpqZqpdQtfiTnYoq5XUasHvggfy4Vm1fixxjylnFXXOWxWNgSRwyrRA8ZXYOJwxBfbq1lUrC7g6olXVt0Ow/j2ntEGIA4OhTP4XxM2wHCOu3DdYuzdOMDwFU7q6h11DVIo7NPgaurjkNJHrH/MKg/hy/bV0CG00GHJcaLTTW9CIXC4d/ld2ndFOmNEU+mJkkVblDc4RadZk466AimEa0zgCrV3j0PgjMWTCW4iwBrjzeiP359M7xoCFpNqpqs8fDsX10xKnRWd9TXprI+kc1ZNOmcJOrNCXNJs3z8Ss2FW8Ttej2SEzzm9mjL8KprY+GqJvJjQuW+2b/v0/m//7C9mVN544Xcx0fZnCXiTFW5Ol5DVUTU04UZzntAcbac8HF6MBxU6d31F/mLkh/jbAp5D52LbQuHaWRGXhc6pb2TNlc3g0Lm/gykUh871mpe5DubgGxvx3riyNzZiMEeZGxtRpsgby0iFgLHeGQ+xNzYafN+qad45BMzKxN7YiN+IY7p52uPhYWnBQ83ACBkCxstD3z1xzKuSeegma4OrWYfSesyhk2j3OUgG9YHDxG+AvCso70bI4zsCb4I83ti5GfLGKe+lkId6xEn1NzxV83ly9ziBSwVIcfAU2h2ToXJZnQPPmGe88jvWGSwfCq/dWJPORkFHue5wvtXD4wvRHm3+ykrFr8lMebRDd2s8w1jxyxuiWFZtHPlCdpHOOYJOWb568IGlNQTn++hGJvBm9Mfv19A73zLM/leqP+7h27k41cfyc93FukWWX7JK0/RdbcSfXTX4A/D5ynXwHDrwf62bmYd0riP+VRxIzdNR0SbA8LeIl6omIHY/uVykNF8yilJBrPgu1BN474q3FS+ncmUipY2u8qmpi2JCezVcDmXhxLs+AR8akK4g3huB8ogDy7HGZPQee9sGQZsjJrbCJLmffMuKFsqjW1QAwzAPBr8jMFHHc42qXtybeYBH3Zr00N8NVuYmjxVzgj7XD0eYfg+/vqtDbgUZhD7rxGdp+R3KAMv6/kfYy6gu+L/SxQ0EbxEnvrpz+xv8KwPtf4XgwfjK084uPDDMZR4edgkehNW87uC9D3h26HkuwVaOW4lb4gqBx5dMGrnGmvaydLh3MB37X2lAXvMC7fTUbP/kEV90Ao8I6z00+5xOQ07zlqf5Cji5ohq9YMAJ1q9qwImvl3ajUzPgxDdoK2PB5R2VzcS7POXq/ESxS/hcmz4zLl9o4yuKXx6k3ggGquEJeunz4LyDeFArNOUNMni1gR666dj3TVkfbZSl7yvzsbx2CzDh7/Ugf1tL8nr7HPN6leC1pveitFeOPWjolWMPGrYle+zQKzdOeeiVY292rFeOl63oleOjAbdA3jXwzEl57Ezueb/cfto0XobDZ59NiQ0CQBvCy26lU6FbUrcBrobA8QPFb5Pgfzhgj9ROUagfdLtvi++zQ/fP9ZSH5fCWasPtCK5mUIq8iwzrw0EpuBvTEPAsm50CHvscB0lh+26jPLQt7CVW9wfmvJ+7fCZcii++qFv5byV+tiSkg7j2EB0c2yaK37zev+zpV9hPsCy7swz+92Bx+VFyYalgPz6G83HoZ28d85fn4CwVuBT6Ll+onii/H/DU89eBz9s6x557GJzYLnsfpLIxofsgQ/0UZdJ2s/skz3nU/All2m3Hk9vM8PFu46eFE0EdJeMvDI2X5L1K8ORfFgcg1J2RdY82q68nMa4+D/8cOIzXCyjaDG86gQ4qZZ+bBP9FaKvHxjROJ3hQbWT0+j3w1xMPBv9loS8hO4D6v51wGvxXACdfDNQN5yUenE8F5hqqn4bu9uw2nvJ8AuXITmTkncfFHUCf2/S9RB/xoK4xXRfgVx1VDPHL443l/R2MV39J0Qtop0rY6kaorc4X/Ma21aZA/RiXlWu62foY6iMoj2+u0jiXlMT5LTGmq7nKXsD/dxHzfLTVbJfVOhfnOWpuwMc6Dcd3RH9UY73hqjfWZ39a9nhvN9mkOojg3OyDCOrIduqx9DdHZ+IN3YebP59GfITmePnzhcUz2+GB1cd+lR1WMgzJvNt92xzdhO2xnfKUzs61Ps7l/dOsj2r8UPoYc/90rD7i/dMfobmduitb2Wjmp9ucm6PyjL9+DzzbfIM/BfSY5z03CB5C64QbBfwNgucR4gHLMm3slygTPiRo8GeIftlDn4c8JIhyY/0PyShPLNObBDzKymTSJniUr9L/GyhP+ZFCfTa2b1jZXA6Pk61O6Z9TttrgLw3YalW3kK3ulX8uZKt7qasL1T+Huhrrn3sgYi4QOqDabQ+C7Ze6G1+Nw7xOLvvdASy/JUBnVU06qwSdXvogkaaa23B9yvpCsPxWqs/WhPVRPHM0cp4mit9cV29bPV3GZ9uwLI93Bn9w9XS5O4pnFQUfOkAd0t1xN5PPbj6k26H+zvVizumWzPeck+eVOF7yfrk6bYC6h2OnwTjisRfySnl4XckX+4TJgE9WoR6GvlwckmXsPARPudw02p3/0MUN3fSDP3SwgPbo5n0OwLpQdo+O7SXSUfaS2xjtK+LgPSuDf0tg7qj0IKQ33dZ0/C0p1A0+raL8/D20IQtab7ZTnvI7xuoN2xC05zhG2/gd8pFlbuY4ifqM8A0Pni2EJ6P3g/Aey11EdeY5EuO+mOCtnv0eeMPHc5F/F/AlbOvCwwuJh+1deNhGPBj8jwoeQvLPU2hOWPNUejMjfMYPvkP8Laf1o+OiUsbyM3pKD/LEfVn1J7VXErKBqp8rXJcnxMUnMyu21/XKtllScV68rkA7dgfloZ9nD+Dg1KD/sT65Xj8+No2X4ZhXbC/cz2Ud2ybKbhO456s/bKtGL9gf1BqgbH/gPfbne3/wxT3maSH0B2wv41vJKE8dF5di+kvFmzDGYvuL4U/VX5Tuqf5S8yaSTr4UG3QzbVWe7gR8ah8D2ytV+ykf13y1X8WbBYLtp9bwKdsP5xdl2k/5/viO2LK+Pyw/V76/UaKDa8GJ4jdfOzxFvj+1NsWy7Psz+L8B399XyfdX1r/XQ39do2x8YurvVfO+Q6z/icd2dalarP8JLz29xON/Mrk6N7P9fHF2mZvtf0I+DJ5j4hiG49emYnNgLcWHEZXOos3x+VO+HfCn9Dp+DeXM8WC+Ob3hdm72nMHqZ3llxgXVJ7A+3CfUXjzCl92LZ73HPWW+QJn7V55uFrhCvG6pwSu3I7YVxw0YLOol8s96afD9hX53ixswmfei/UP+NCXTkD+tm0x5TROKKQj507r5ztkmbhY84Jio/JvjRFOND8pOKJvOfiPTy+Og/TlWF+N71D7yzR6cJwqdCtVhXNQhdowLnWvYHiiH/XJA0OrYw7+Gk+Ez/VgqaPE4Y7BjIKc/7mheMuanS+rhmqyTET7nnlNrstNSrMnUPA/nwGtoPqH6GJY9UPxyH3vhcdPlLvTgdE7329C5QuTnfe2ZeHu1n6z6bmgOw/uMKgbfeMD4bLX3xLFTBn859M3QWaY0+5PZt9S4iPNCHhdDc8A8cVuE5lEok7abPWay71vpF7a179ZQX4wmn0Mw+I3QBqFPxfC4vbkk7764BMzjvsH9uNtHAXxn2tXaN3+2eG3u9zsDY6vyFYzDu7Ix73yeUO1DKR+GxRGq/oJn1q1+lld3X3YuY2H4IvjQuUA8A8B+YnUdWs77/WR71bkBbFvf+UF1VjV/fkHxzOcHdwX0K3VcIZ/difXdWN/voe9mxXz7bqxtY3w3aAvZ5zcOeXh+5GWkX2qcxLJnFM88Tt4b0JedgTrmqewYZfyo9fANlIflWJfUetB4uFHIAfniu1kM/v7I+UKidfS40k9c+7J+huLp88RtcbOAxxh7jqNHv8gOwqX8WyhT35m/fqfX8L4zHY8E5gs4Pt1IvG8vyfu44F31N+xT/zxy7Fmt83nOuj1Ak8vi2NPvgfetP98j5MX2TPmT8ufTCafBvzdgD9SYeh28Kxs3xvsoKBeOG1Prjt7N59218x03Zu0fE29YNm4sVv9Rh/6C9B/H82uJZmgey2WRjk//fXFbPx3Q/9C6PH8+iXAa/M+V9H2F9L/bHCE0RwrtMZq96eH8fNN8z89Z/0Pzc7S/MecjY/UfdehLIzPxqvO3WNa++MPnb/9jSf2qc/7W+Ik5f4vl2D+j5q7cjr5xhtcpBv/JyPlWojjglfNtz3nfQs1vQ/YztE+q7KcaL9l+fjbSPxO6nyKG93HBu+pv2Kc+ReMNrn15vOn2QTw+w2/92jfe8F6bwX85MN7g2kz5g3i8MfivlFyvh8abbut19gep+yTUWj60Xk90F9SqXp/16eYrs/aP+VClOp/GeoB0YvUfdeiXC/2vJ9f7fygDXgx3Q0A26ddg/rbQzxbQt99mBB9/9Om///LHt19yD3/9Jk/WRvmeTd7+f0U+WbxG2WSJ1w9zLESDeFPlMuKB4fsEvOEdEnnNmnVgvpYI+IaAX+YqfXkDq88snkDldnpYywJ4Wbz2/wn0ruH8TZGnXJxVVe7kT0x+4Zqn/vqpbipXFf87Lmkuf+LlO7f2Cv8Xln7j27//X+96b6/wf23gpk19v/Lu03qF/4e/fcO6R04443+V6fLWtTAU2srZtvAwvC8xtETfHm74W8RLSXpT297DRI/rV+3LHsvgmaWCWPFdqKc16B33Xr7vvcyXPazl2vS+46LSqGnFqMi0PNSyZZS3AvKwNTk1BP/Gc66l3wQtZTjmB9tjOeWNQN4KoM3tOizoGO0+AT9CuIZFOZN9N3oNUW4Z4cjoPU56G4J2k+DHioluLtvvHedm1HOZm/k/6t8k8agGaed5x/XggzNMN08DrpYlWB5reQx/y2l5d1xUmrI8Q0SP61fN8vBUxaiMElaDQVhMo8CZ88CpFr1ZlONk5YY8OPM04GZragkpD8W2qr1rES9VW7VB9Lh+HEZVUWuXhbSIcTqnLR/KAy1UvweXlW0S/GXklkBLdSvRUFYM35l8ngllP34mPcvbePw0zOXF84jT+o/PfYK2mua3RXm2RDiv3kN5uDzg67b7A3lLA3kDVBfMa0G5CcobFDhz/t57/Ew47ufq17nZfShPLHPVxmjZeEmodIx10ofrdsKF5UcIV7sLrjsIF5a3sqYbDVFuSNBhe4ZHh0r09+FYe2b4W8RLVXs2SvS4fmzPllejN5RReaSHOPkY1AqRZ7jsKzz9HlxWtknwryB7tgJ4Ynu2QvCL79Ce3UZ9DmVbtc+pI2nWPuwKydME8LOLXJltyFP2cX/x2yT4XwF7vIfsMeqf8TjidHvhs9K70UD9VR/otZzZDmcJ6WDeBNFUOod90trJ5Kx03sqthDzuu6zPCI84FH7D0U0HDx+v66Z0EGk1Cf5HQQffEJgTsA6ifmaUl1FdEE7pJ7bZfoI3vvsFPOJrEvzDsArj7Qwrj7JCvvjoiMEfBZy8naHsr1qVhHRR2Wsl0xWEa5nAhfVhX6eSKfbPZVR/g3+7kCmP61hezfn2Uh76XYcorx/yhilvKeSNUB7O+Xj+iX4/tveDkIc68l6aT1t93le8H3Ba7zsuLrEvUdlI3CIZoDzUrX7KQxkOUh7SW0J52C4tysO2tnYYdHG2KE88Hhr8jwX6l7Kfaj5l8KsEPNpsgx9xs/sUX3+J5bhf8nWY+FycnpshB+TrdcVvk+B/BuQQCh8wvmpuTw6p7cnVAMDbk+DUmqoXwnNbHC/gjwMYk0mb4JWtU3YTZcq2Ts1lVwn8PJf9SMDWoa1cTbxnJXlXW36qX2OfOhyYK/J4uzxAk8sinX5Xbh7x64HxVs2PkS8ebw3+NwL2QMkyNN4q+7FC1EvJdCXl+dZVhptx1uyfw6p/Yv25f4bqmqeqtlJd4cvre+wbrP/KjxCr/6hDtv6quof3b//LBVv/181/e2qVPTz0C1k5G/8rerY/ifxbUj4Kw98iXkrSm/JRqHkj1i+Rz/U/Z1Qe6amdmJp7og32J3HboJ76fLZWtknwf0a+iJCvC31w7P9Q/jl81zdPuFQfRTlam+T98CskC7XLFKPbikdsL563Diakg7gmil+l7/lfx0WlS3jPwHAgbtSbErr9slhbYfhbrlZfykI6pvYfVN+zsm03W8cOA1w3/UM6Ctc7FiiuhxLieiQhrrclxJVSXkcT4no0Ia43J8R1MCGulHV8bIHy9aaEuFL2x5Tt+GBCXEcT4no8Ia6U7ZhSV9+VEFdK/Xp7QlzvSYgrpd4vVJuTso5PJMT1+oS4nkyIK6W8Us5NUurXQp0XptT7hTqXuz8hrrcmxJVS7xfqXG6h6n3KuUnKdnw+jGkLdS63UG1hyrlcSluYsh1Tyiulrqacfx1KiOvJhLhSyuvhhLhS9u2UfSilvFKOQyn70EKVfUr7ldIvt1B9Qyn1K+Xcd6HOMVPKPtXYkT8PJcKVpyeL3xEPbnwO7b0qOpngWe2T4v4974k6wFPztGT0J6oMf4t4KUkvC7WP2lvlmGks2xZ53FZl47YRVzMhLo4lUXqj9v3KyqviEf88bfOweDvB3eFhrSHwZvTH72+ndw0Bi7hVl1zq4du5uC6J5YcCdHrR9fn/JcX/oWNZPdj+nog1A8+W7e8jAFd3OHh3Qlwp3a8pp1QLdamaso4ptwEPJsSVUicWqvviBxPiej7oxKK7ev5kn1JeKd09KeuYcqm6ULfbUrovUur9WxLiSqkTKV25KXVicf713LDRKcfaNybE9XywhU8mxHUwIa4HEuJ6Z0JcC9VlmnJMW3Qxl8P1fNgaTtmHFmpY0eLY8dwYOxa30udPJxZ9CvNXx5Th5gt1PZRS9kcT4lqo/sKU85xFOzF/84lFOzF/sj+aEFdKO/Fk8dvDMJD+jPAZn/gO8S/kMJA88fH7qqEbzzdcPbwy9MpYHZuvK0PV5fBWtk15eboP4DivId71BXDdnxDX0YS43poQ10MJcT2YENfBhLjekRDXYwlxpazjmxLiSlnHRxLieltCXO9MiCulfqXsjyn1K6UtTMnXowlxpdT754NOvCUhrpT69XhCXCnrmFL2DyfElVLv354Q16KdeG7YiZR1fE9CXCnnEwtV9k8kxLXYh8rhemNCXIt9aP5kfzQhrpRr5CeL39AnLGp+ciX6k4uGv0W8lKSXheSi/GbqEy9Wti3yfFe/W36e5ktmS6rRC8oM61dFZnmaLH6VXLJ4Pt+krnNmmeNVzCVksCNW5oa/5WbLoIrMY6+ftrqvEry0KS9PbwA4zmuId30BXI8lxPWOhLgeSojrYEJcb0mI6/6EuB5PiCulvFLWMRVfyk4tFF19e0JcKft2Sp14NCGuRfu1aL96WceUsn9TQlwp9f6dCXGl7NsLtT+mtNELdaxN2Y4PJsT1fBiHng91TMlXSru6UMftexcoXynl9e6EuI4mxJVybrJQx7TF/jh/dVyo4/bzYZ2WUiceSIhroer92xLiWqi+jnclxNULGx36/GJGeUgntHeE5ZcH6CypSWeJoDMkymXFb03f/3BG+IxPfIf4W252nVP5/pVcrH6rqtEbitEr5Ic/a8uyzf/sk7S+T8Va2SbBf+qkY79tgsvTrURjteBXfTo315ffKPCyLuSp46LSi3iPxXhBvCiTEm0wEqtjhr/larV5FpKhsiVW9+MEL22R59MHpHOcoNMWebcu4lrEtYgrCa4I+9f3+ZV33tf/06+auOCc4U3fOmHF+x+55r+8563XnLNWfc6c7R/agBL2KPpKYsPfcrXsbRaSqRpDrO7HC17alJenSYDjvIZ41+fBpWxpVVx52lP81hgHm9zWJcq2BwRPnaiibp2VPaF4UbLNW1b+xGrlB638SfCyEy4zda2tlT1ZlF35QvffT/vqugfWHPfigze+4dGv3vqhN6/6qfP+sn3CN++76g3feeqglX2BKOtJ1nWm9LYFmRPFbz4v+qeiMqZbp0Beg8rmz6ZbTYLff/J0ue+eNJM29mm2F33wvkRbrI21F4a/RbxUtRd9RI/rx/aiIXhpU16e+FxhQ9BpCDoK12MJcb0zIa5HE+J6MCGugwlxvSshrvsT4nprQlxHE+JaqO2YUldT9seUfL0pIa6HEuJ6PCGulDrxcEJcKXXi7QlxpZRXSvuVkq93JMSVsh1T8rVQx46U7ZhS9in7dso6PpEQ1+sT4noyIa7nw7idsm/3Yqy1fRpcjy2jvAbkDVIefjapj/hrCv6aAf6wfNNTjusRc96mn8p2XFSKPm9j+FOdt+knelw/XmsuFby0RR5/4kq1TybolOUr4WepLH8Nwe30sJYJvBn98fs19E6JAnGPUL5SfVYZn2jbnvJ5GgrQGRLlTDUHgccO5POnszpuNo+dAI9Y3uAUnawmnUzQYVzKTZWnVxS/TYK/r3BT5XVoHD8T55jgT7WVvT9dwI8BjPGjZGNlhwTtzPNrdJwL6xDy0E90Tk9I53SAaRKdMxLSOQNglhGdMxPSORNgBqFc/v9ZkId6ZnycLfiwYecceF9iGIjeEjH8LeKlJL2pYeccosf1Y9tzruClTXl54u2scwWdcwWducI15GbXn9sS69qLtjT8LVdLd7KQXLB+3JbnCV7alJen1wAc5zXEuz4PLqtXKlzWT2u213ksD0yWdz7gPofycC5xB+Wthbw9gINTg/7H+uTj1+Nj03gZjnlF+2V8j7jZOoa2w2cLlP60RXmDszHY+PwQbBX9wskz+TwFcO+hOpwKedxnTxN5Of5LTp1ZV9QHngeVtSFY3uAUneGadIYFHcbVBFwDgOsuyEf4zxVyt37C/bHjotJd3BcMB+JeUxF3rM00/EOCnvHVEnnNCF6an/mpT/76a799U+Zm9+uGeMdzxLUCXn3q1GR1AZQvIas9+FVpR7QtD5d9aygPl6rGQ67f6zoz+Vtbkb8Y+SH+toDfAnBl2kLhuisRLuxvKXD1V8S13M0ek6xPK5s0QnTK2iQsb3BDolzm+TU6/M43T0Oaap42Ufzmevylk6fLoBxwrYhl2UYa/JWnTZf7wwKnGjONx5r2bq2aH1iyPLQPyAMnNXcwvvJ+/adj03gZjmliG1xAeThuXEh5qIsXFc8h+VWdc6j1h6JzXk065wk6c93m3NcuhLzzKO8iyMO24NRNV15/+jRehmNeUd7G94ibLSM+alDWZo4KXmuOURewvDEpefOcH+WN/HFS8jaec3n/agl5o0yNtxE3Ww585ELNS/Bd6MiFwdWcs1zIMsWkZMpXa10MeSgHTkreOMf5Rgl5o0yNtwE3WzdKyOEirqsTdLGuaynvhQC/j/Iugbyya02rTy6jU86YxstwzCvqg/GtdJLtflmdxPJrA3TOq0nnPEGH/19S/H8W5Ns6tEmwZ8K84sQiplONAy93M/NQv84Cui94wcy6o66wjC92s+t+caDuWJ7bEumcV5POeZF0elmfcwP1KTs/Vn40ReecmnTOCdDBPB5vy859RgXPis6amnTWRNJZUpPOEkGnps/wYrbVmNhWq/HsEsgrO56hX/AbFedrxltNn1BpOfA8CscsHs8uhbyy45nVp+x4hvqAfCPvTafHl5dTvsFvL2x2rgNbaQzAOY/RzuHeTHa+137bmP2QijoSvR9i+FPth6i9hdB+yBrBi7JVfESnjg+omRAX+yYWQp/m/ZBUfbrMfkgv+vRk0T9rynrGsXFHuBb7/sLq+3naAnB1++uFCXEt9v34vh879maU57MRGynf4B+Bcf8HadxH/b4IaP8HGveRf+77ZdcPZ4v6hvz489X3K87Jg31fyeW5Mu6zb6qif7q0b4p1CH1T3Pfr+KbQP12m7ys/Q90+/eM07leUtRz3DddC6vsV6xfd9w1/qr6v+lGo768VvLTdbH3gcb+sXxHpXJgQl+l4zfYq7Z9nHcL5Avd9tAvz0fcvojy1T4hjL+NAGjXlHH31D/eLimNwsF+oOLtlbtrfXITxb5k8ctN9e/bvm7h+8oHD4wf23rT70JF9u/eP7917aPLwYWQaCWEgE+ZjYhh79m1ghjoMVsYOCqjNyLWE68IuuG4nXKGOfFEXXHcQLiyPZfH/JW42n7bZ0BeBhzun4utlxBd2dB44X9gF112EC8vz4vuSLrjuJlxYHsvi/0vcbD5ZXiE8+d+LuvC1j/i6FMq/iHCt64LrtYQLy68jXC8O4MqfTyBcWB7L4v9L3Gw+WV4hPPnfZV34OpH4ejHkXUa41gdw5el1hAvLrydcl3fBtZ9wYXksi/8vcbP5ZHmF8OR/V3Th6x7i63IofwXloZz5GyVlg6uxPAeYqMGQf40OvwttmPGdjlckpIO4JqBcnncllEfbqiZCRsMG/6vgfS8mxYa/RbyUpDc1+F9F9Lh+PCm+WvDSFnm8AXi1oHO1oKNwrU2I60qqDy4AMHjwH8jRcxXkqcWDjd9Ngh+GTf7vkAMHdeWKiDpeJegZ/EuK//sFPOJrEvz3C57ySbRdxtUWPF3t4YXHU9YTg8nTANHuVR8x/C03u/2r9JGXED2fvlndrxG8tEUezqUwD+lcI+goXBcnxHUV1cfXR4ZPmUmzah/5h1Ony40WOBdSH1ld8FSnj+Acaki84z5SUWej+4jhbxEvVfuIagusH/eRlwhe2iIP58++vvgSQUfhelFCXLF95EzqI5dCXkwfMfivQh85h/oIyoj7iFqvXCroGby1Wb+AR3xNgl8b2Ude5OElf8Z585CbzT/3kYo6G91HDH/LzdafKn1ErfewftxH1gte2iIP10wsx4Z41xfAFbPmisV1KdXH10euTNRHfgf6yEsWYB+5rmQfUbz3Yu2l/At4n7hPRkp326L8iyjvPEGnm47sPEXz49MRW783Cf5XQUduCugIB1ogz7zhUnYtfbagE+NYrmh/lsTaO8OfyrHczVfG9m6d4KXtZttOPvSv7KqaezxbcOXPdrdwaBws28/bbrYenU101iWkg/WZC59RniaIDvsk1W8sHcS1h+j47NZBsluXQZ6yW+bfaxL8z4LdOlTgHCCYkv30KuP9KpGp/D0vojycD6+jPFxPcttvgDycu3BSm35W13wMve+MabwMx/VA23415fXA5kbPMRdtbhpci+uFmX2J1wuYh99mYLvWEO/6ArguTYjL9jJqtlcyu5YnDlhAH1rZgAWrT9mABWW7uJ8wHI4vat9Q8ZUJPNyfLE/t/9k3DdQe42qiUbbPrxb8xvjRUL9K6FAjts8b/lR+NNV/Qn60ywQvbZHHvi+1L3uZoKNw8boe18rzPX5eWo1ecPxU34FJoV++dlgXoLe+Gr0+o6f2vS8V9PKDfv1udhv69ufVvja2l6/PI22OzSkb74C4ODZnnacOvjZQ/p9QjEKT8j5XzNGf+ebcKTNhLK7kkwDzW8Wzsvno6/h9guMYlTzVXBdE9z3D3yJeqvY91Q5YP9TNpS6sI9hGvpilF4q6sM5e3IUn1llFS7UpxnBxm2KgK/pCPx+Au0jAqbz8f4yh42Bng/0i+CqfOGNmHZEux7mVDT6+UPAyVwexY4KcUVa98LnxxWR1g5zPJ3o+uXAsC5bltskTr9lUbKSKG3m24Mqf7btaJht1mV1Muyo66kKuXsdPxeh5VTrK3xWKj6pKB3HZesv6JtraXq4Pz6c89HtxW6Lfi+W/AfL4kqxxyCt76N/kkNvqfxPhE6sZqL7g5bcWnjkp+eFBgkX5zYx/5JRSfthOJeRX+jAayw/nfSw/nMOy/HD+huMGJyUjq2tZvzXqmNUpP4hhl+BOH8S4fvKB23fv37d395F9Bw+8dPL1900ePsKfPeARgEee8z1c82cZfFznqY/y+FMNtwo4TEOinNGoecVW9MrG8KvrYqvMytSsRB3hZM3Gsm2Rh1+H5R7REO/6ArjOSYjL9KZmTy999IyvAO7V0TPszWU8uepot+Xhldd7Ke9UKMdXb54GeYZfXXmNtNvwjHl5aoh33NZtQVPRKUQz6yux1xe8DRBcSf24OmYFV3FH7epYW+GbzSNfancv5trpf1y54YL/88FvfSBzs+11aHfP4NVqsC3ga85orhgCGs7NHnXzhMfaz6M8vIYLZxN87XTF1fgVMfJD/CqyYBLgyrSFWpmdUxGXXe+MXgLrO9b/ToG80ykP+xlHMY0JHsYC9Tlb8DAkynF/PB3e92LsNvwtV8u2TI3dpxM9n1yUjbey6po+vjKirA1GXKckxGVjTc32OoflgUl5MFmH1OlY5ZkpO3ZbfcqO3Shj9lQu9qve96uzBS8sszzxdQxnCzrqM0ZK/mclxGX6U7O9zmZ5YFI2iHVIRVKrPjcf/YqvGTPelwjYTvHcJNiHIVLup2gOjOWLRbj8LNuZlIe6fgrlnS54yogGRmOg3vPn6Qz+0YLvXJa3dTTOPg9ObFPnZvZlq8cA0LW8Ejr4yZyvDZ1pOiizPPG1rKrfIDzPW9X4hX3JZKDGL+6zYwLXGfDOdvCUvIzHXsgLeWB5ndWFZ5aXki/KwWSg7NKphOtUgQtlGJKX8dgLeSEPLK8zu/DM8lLyxc/+mQzabrYsTyNcSl7YH/nTpFa+X8AjvibBfxBsAp8eQbvGbd0RuNE2ZoQD69ES9RiiPCyb4/2nk2biVSeIVMSJwasbEDC6hOdeGOVgZWtGyyyoyGjlocc6c1Jjs8kh1kOfER3Di/LPE+vEuYJHFQX/oki8Bt8t2qcvgm+MCGEdWif4VtE+53noqGjLPPmi+X8T+rJ9flbZU6Nd056OKHuKMmJ7qvqsig6M7bMcWY6n3ThSGWVsNJV+YVTUzhKn/VQUmoq4Yd3r98AbvlkRYMJeh/RZRXZX1WesQ119Rnntp7oa/P87t/o83Gt9VreihE7j4kn/SylP6XPmZtuwsvYVI8OurHnaNaT/Vjef/vNpV4P/WkD/lXxV1KvBh2566Kb/V1MeljvPQ8dnz1n/Df4bkfpvtHuh/ygj1v/YG0wMXt0eom5SULeHhPT/aqKTSv/PLHFryEsCNLks1s2n/4avSfDfDei/km+oPTYIeBXpoeq/gfLU/JPpoP6jvFj/Db7vtOm6hvTfaPdC/zcAAOv/OOQ1BDzL+1oBPw4wfKvPtZDHt2KhjDcQHWUHY/Ufb9sZrnlrTkj/1a05CO+7NWcF6ATrv+qDKkoz1h6F9P8aylPRU0wH9R/lxfpv8CdG6r/R7oX+o4xY/zdAXkPAs7zHBfwGgOEbe7BvhPT/GqKTSv//gW5WywBuBdHMBE18xz58Lq9wYXzUHnjeC/kIb5+UNT8Fyr+EHuwcgjIOcCDuijq2E+tqqUHvEP+Qh16eWiIvJv7ht9f/5+t/8ruXDmdU3njhd6zHSwT8CgFvsuon3jsuKl2v+jp+1su52XXHPOyvxoOKf1hSkb8Y+SH+toDnSPvYtljuZuoC63v+p+JUlgpcBq+urMbYEI5JQhvEV+mr0zCheJaatrtf2W6sT8wnWkOfmr9AwGP8ncmmTfAoJ47yR5oZwSId3Ldh2+27Wt0+053L5a+Om1kGfZRs1/CG8BLy74u1a4a/RbyUpDe13z1M9Lh+1o55dK/ZqCK6d8fB3Xuv233v4fv2T3J07TJ4ZqkgVnyXuZm1xzweSRjuevp/pyjnBO4831quTe87LiqNmlaMikzLw3uKl1EejuTYmpyUB914zrX0m6ClDMf8YHvwfcYjkLcCaHO7Dgs6RrtPwI8QrmFRzmTfjV5DlFtGOAZEuY49/NW7P/CW9od/6IOdNZ/7+/4tT/7Nrr/btmT9H33uoRN/+63/8vX//X7m2QmeuR2XEaz6Nd75HUeVDCfE1Ra4TDb44dQSOr861loZ/par1cemrNUo0eP6cd2XC17U3eFsg5YLOssFHYWrLyGuRiJcebp1EdcirkVci7ie5bgsD8f7NuXh+Mn3ZKB95o/a9Qn++gL8YXkee9Qc18ZdtOtldsxjx132cFT05EyNuw2i55NLzbn0lEelLegxzjzx3Ds0ZvZ7cFnZJsH/dOENaxNcnliv1bwE35l88pXlT5w2k3flJYtpZ8TbdrPrbnlzrfeDUG6i+M3r/UunaZro1cay7NU2+LM70+U+fNpMnpXXKE8j9I51yDntJetFhAvWkb0qSu8R3iJ31Im3JuVhfQahPjXszypl27CN/xO1cRPylF5xJNJUHTrT5X6zwKn0GNdjWN51oWfwJv9+AY/4mgT/22IXSfG3zEMP5aE800zvM5E7OWiHnaust6uV3mJ/Yr1FHW0IeF4ThfRc6TLqeT/hUrYL9YCj9qx8v9NtYPiaBP/FwM5hSM9Vuxr8lyLbNZE9ku2KsuJ27Yc8JVtuV6UH2F48jmCbLyVcapcE2zqmXZE/w8ft+qeBdlVjlBpDeIz6s8h2NVn2ol1RVjHtqsZ7g18q4LFdeYcG23KAcCkbjW0d065YH7bRBv/NQLtWtcPfWgB2GOeL3K6qzyA8t6vSAyXbtpvd5i3KY/8r0ilro9W4HLLRBv890ea8JmS74ONPyS2vo52QLXZBbjly8NBksQ3iKIW2LfLnEQ8bq0R5F8CFZUJVwq0BFrnR6nfavc4in+oinWO/KHIWIfMTs0Su2GWiN9IMf6olcrepJy+TQt1MDTHcTt3oJFTVPF3vYSMT5V0XXPZ/PvrbrBmbm2f1oZkAl83/bLYYOxMw+FWdY79qxOi2MmOLEtqpQH5U/UcpD8st89CJnaEY/Mmd6bqGRjKj3YuRDGXEI5nyFCqPisGvEPC4k8IzFNx15e6HMh4lOt26OccXKD1VK2WlX6GZdjf9Mt1Uq9KQfoW8Iol0YWS+dcFko3Qh5FFjXVBDLNoE1oVBQYc9Y3ni2Tb+WhnDm6cBAW95eFYS28sBP00oh7iWUjmDv6Zz7NemLziLtPJtQR9nj87DN77rI/iWgG8J+Fw+6zvTPCs+efzCujYEPE5/EH5jZ5rm5uKZ4+eQXv7u1gBc5vlVPCM/IRk1BLzRHhTwlocRDdgnEQblhbhakI/wL+0c+7U2wfbGfsn0cRXpPHz7xmPG1RDvUHeu7xx7bsE7w1V2apgnjt/Ed0h70M08v2y/MTGpH1u39orhO84+upzKp8I//Olfu/F//NO9Z3fDr+LlcBwrq9++nYc82SS2Zpxsn5VHr4WLL58pD2lGvA1U4+1fY+SE+FtOzwE7LipNLWfYNnP9eMevVY3e9/MxddDNnqNgW6LskM5S4mGwIg9qrmM00c45opPT/50zZvJQcRn5/Zo6/D3lHZoofvN2u7czjRdlh+sGtVxvEvx9nelyh4tndb4B5wwjbnb/Yptg8u4TsOwZxv+VN5KXzKYz/Z669lNdDf7BzrHfnN4/H6dxovyQrz4PzjcDzgatMcvuoiwT8MqjPuJm951lVA55xzkEv1PtkxEs8pCnScGT7/+WwOPjYUDgUTvULeJVebOx3/C8vSHoYJ/CMa+m+2qJGksc8cM7YJiHddsFcJwa9D/ynON4ZWcaL8MxP6ovpRz77f0SeM902X/VT7C8pkQe68y/eX6izszY/0sD/GeEpynKDTnd39RvLL+Z4LeXkSl5enXxW3PMO7lbNMLPdKbx+sY8NefgMe8XO9Plfr547jbmWR7P+/K0G96xTed5FOLIE7vtzUb2A36EGaA6GfyHO8d+cWxTNsRw5XX/aGcm7QHIC40jTYL/fGe63MeL5xE3W14mTzV+cR8YBF4QNk+TxIfBfqIzXeY/dvy0cF3sq+MzkSodDYc8IBzjqDquqfkV992Y+ZXyeQ0EaLA99o3dphvLuuQPiro58a5PwA946usE7VYXvGr3Wtl33gHNRB7bHqxvrN8Y7ZbZNNVfMjezXoNUr4FAvTJRjvs58r40wLuSH9qPqj6It//Pf/3Ddz944jd75eO4+ife+I6hdR/+aK/wf2jZF6/9jZ8YuLOMD8XauZ9o2TPKG9/j3GMP5CP81zrHfmv6KBzXR9mN0PqMfa/M/x0e/r/XOfab69ZfdWbSU+sT1Wd84++SSF4M/m87x3677aehz8LwWF4JmTfVHgratZgIPeU7N/hua0uTidozi4lKQZnynMZk1O/0+p73bw3+nzrHflX0h7LNlod1Z7vYEHSVL9L6WA6zauzYc8357VI1j7A05Pz2n/UB66j2onh+g23J+wuY1BoS7wlYPTaNl+EsKfvA/VX5VULzRdXvDP9C63em+yoikvUtVod98zlFD+WAY7XpsM+nj30a11wnjE3jQ7mr+IQ8sT01+IvGpsudXDyrKH7WB2UnmBfntB2KWcsPiXLWLmofoYzvB9sX+cR3iL/latmXjO2t0eM2Yl9/xXlCk8dYpKfaYdRpmar9AF4rKn9PaJ0Usieq/3HfVH4ENYaE1nNGG33mMfMmX+yPz59x6dh0uW3Ut5StDbVb6D6UkO1DXpXsOX5Frf3teVmAjuJrSMAvC/CFNpnv/uBT/6E6xI5VieaIS8qePlJyCcW4dbuRgfuIuj2h7NjGsTtqjO82tm3zjFFYDxWRrkI3cXyzsQ/Hy4x4QRq4/t/vZsJXPZl0M/DQLeo9T/cInJmg4dxsufC60uBuAx7+6Ixjz6H9gJr3SA2j7lhS46bhV/d+VRk31bpGxezVXAcMhfRUzXeUH4b7uvUH3xoL1+QIv6doWz7pkSc+FavmFWq8yHl71dhM3nu1J4N2F+1HnnAeexfZCHXCC8vyaVWD3z82Xe61NNYq3Rx0YZuh9uhZP3z73L6TMvcGbIaavyNf93hwHgacvM+t9EK1H+sqwqtYAjVnYj+UsmU9PJkl78TE+vv6pfHj6zMGr+Zkas+pTfBqvERe2H8W0sU8hfbMse9Yv6rqQ73yrCdOOPl3Xz/UKx/tkubJP9L58Kt3lPHRqrl3H+FFefOedJ5eWfzGxJJVXF9Gf1ON15d1Y8li15fKp8XrJewfPN6ovqPiiecKl+rv3JYV19LRvgKOC6yoO1lZ+6R8kOxbRdvF8ld2Ta3pni24sP+HfEgx7arohOaBvZpLcVzK0oR0ENcE0eG9XfUbSwdx7SE6TcHDM/uYY9N4sY19cyTfntFnx6bLfXxsJozx/qsA88nieQBoO1e6L7eU39qS2h9gvVW+Er4bVekHrv8HKA9vWpwEOE4N+h/lkNOL+Y6UkmXFuN0FJctYeVldc5z3RciL486wTrheCfUDpMv94POg439CfUv5EFV/tvfd9i1DMUVWtmY8+TJuW0yqbVknsG1ZJ/DIOOsEnuPj/oVn13hujEnpC8a7x/avP/HYSKPBNpLXDyrOCW2v2pPimKc81YzHHYsZVxB/i3gpSS94nBzrx76linP0TkblkV7IbxITj+K7scO3L/HNom15TpOnTUQjdi8vp/v1sZm89+I8ErZPjD5WbK9ofWRfZ119VPoR0seKvs5OTPsqu9gLX+f3SR9xTsr6WMbX+R3Sx17Nz3m/UMkUcZkNHhHlMX6C5Z2njotLMfvnFdfE0X2D18R198/VmljZoppn5Tp4Vg773p2Ar9tZuW4x88OnT5dBOipmPk8Hil9et+w6fbrcKOHspoe3F7+LehiVnpV6GLKbyPPm4lfpAp9vU3OSHsaCjaX27Vtd2TeB9Q6dD4rtX3wj8mL/CqbnpJ2/OJGd3wl2/lIPTue0Hr6s+FV31FhZNZ/MU8fFpZi5eEWfeLQe8n5K3bl4t/OrieL1Oupsfp5QD31xeRzP29+FZ7bzKp5O2avQHi7qUJ5S2nmsD9v52DGN1xVY71AMasyN3sp/gHp6F+FS+7XK78f7O6qd0CeobIA698Sy88VZmOzYd3BzYXtUvEGs3Tb42D11FTPJZ/KwXEhXDa4XujqX50JYf9G/zXu56iyd0iscmy6OGGN6oV8TzwL9Cs15n4/6pXzI3fRrGNo5dOYh8/w6N3sO4JzfrueJ4wV6sS+s6PRqv3aS6Cg/f17/h6kvq/PkWJb7psH/CMxBjxLObrFmPO9Q6youx3yFaPVVpNXnoRWKY1NnH+bg3Ep/jM4g/l6eW1F2t0xcEcsW85BOTCwQ60xdXDH+hFhcMTGWsbh43wPrrOaEquwBeMfyV/c3YZ/gtanB/xjY8pj7m7C+mz04PxiYB6Teq+bY1dD9Tb67E1RZthdqDLX/h4B3psNnX3z3NSEeNffj+waUHNGOxpzniZXjEJVTfhVfWbalofsWfOeEnMDLZ1z6A+UGiCbSeS/h8a3Vff0/dn8ex+2HA/OnHpz9WIq2BvnHd4h/rs9+qP1yPhel5miZyAuNcYu40uFaKGdQPkdz2W5nUMynw2dQnoL58Rcqrp/VmRVep6JdDvk60D9p/CLOjotKS9VaFOvD86VuMTV3F79q/ZhRntpnV/Mfy8P5T7f9GR7fQvNc1Q5qXRE6H9/DPbKlC/n8C5/vnovzL58rOT6WtTexOsb9OrRmzARfNeN8BmLqhfhbTvetjotKWdm+p+KK+LxUKOYoNh4o5TnKRVzpcIXGgG7jdv8ZM8tkkBcad5oEv+yM6XKt4jn23knuVz57FeoXoTVX2TFJ2dYyd5uh7LBu+4pf9tevLOSF6/QejnMD8z3OmUzUOMfrDTU/UOMW6m0/yHPx3GMwLZ57dLPrz225eO7xWFo896h/jQ6/863fsW8tnnvsTqfKucfNNK/pdu6Rx2aD3w3zmm1nzIQx3q8HmNuL5wGg7Vzpvrx47tHNluXiucfZcFwP1LeU5x73go4for61eO5xZt6z5dzjIY+NNBpsI2PPPW4W82+1tuL1E561cwSfpz2Qj/APkp2oOH+Sd0Mbrpp7P/1qPmFJ+W8yylP74Wr+xv5d1a9idcrqmvP1JxE6FXOfZb+oR+iuy7m4zzJPe4lnXBuyzyBPob0GK1vnbp+HPnvo576//N//xUK5f/3/oj5WcU00b/evfwTGrw+Qf0r1u17ev/7BSH8P2h7DY3llfArzHQfJfXIh3L/+76EN5vP+9c9Qv6q4R/Gsv3+9zPjC5zUwT51PWLx/fWYe6jCPiY0APV8cjenwoJt5ft250jLrywCvK8oaT9iHcD7u3EwfAd+HWPFs25QM1Xer0E7xvd4G/5UzZuJRe73KX2nw6jvADUFXfTN6WUlcA4RraQ1cqG8Mv7QiXwoXn7NrCVxq3Mrb7rOgs1XnaI/ve8H/+diGde+p8p1h1J8J4OtPaU3WD3nKL+/7JsE/wnznz2i+o/ZAFr9JUJre4jcJ3Oy9UzXGPte+SfBd6FvLz5xZfzX/CLVbaB918ZsE/vqF5m+J1k2L3ySAPJzvmc6HxgW0f7HfJLCxb2Xx7vDkkV2HJw/snTy06zUHD+06svuuw8UoOiOU3Lnyppvd8eXKH900wAhLlXebam5pZANudvOVmdqa2DdCeXXMUIXVWZmlblpd82dTz5pbX3Vl41YI+jwdM1d73o2K1b+799C+N+w+MnnL5JFbnlG6zQcP3fq0yjH6jJ4z8d5I1bNA928ynLjqaAjIJv0azOrit+oM948+/fdf/vj2S+6JvcH8Dfsm37jrwMEjk/+zyJ3nfvr+mv30/Quln94I5WP7qZXJ9f1UeF4D5XkKEtq+qzl9vcnKV71qJjTUW54asixPHeF/RjZ90+998lDhhTXlce9Cl4fBvZf4w7x/A3k8JfshyOPw/fdBHrrbsA5V9atie2xcIegPAG95ug7ysnjcU3ZsY7XyU/Q3QfkyumLlN1crP8X/FkTq4pKV3VqNdp+V31atfNPKb69WvmHlr69UPpuq/45K5aflh1sfzpVvuxuq0V9ic6bzwC6gLTCc6te52S6YPJkNnesriNWxI3YLKFzquKRaQjXnmE7K4zhzfdxUuZpYRgqXcq2FtuAW6SxsOjVDawaMl27XtsUcCwnBD5SE7xZOFePuC+FfVhJ+qCT8cEn4kUh4DoUzHHkyXcBQuDJzhRibh/hbxEtZm8ehe0jH6rK8Gu5WbF0Mf8vVkl1Wk98p+7/CzeSX5Wv42wTPvCOswpUn06ll8P6+I/v27zvywJbJIzc87Yk43OdBiWJF0gzPz5YGPHgabrY6cFleBnBUoDJR+H7A877leT/oeb/M837I837Y837E6bSZ/t9B/18XgMchYdTNThn98fte/e/mkFYKXk0n1XMWgIk5UV1x2h59G629S3WiukH0uH7s2qk4Fe5kVB7pqSUB74qrdlKRbiqKk3cr7aun6haRkB1qiHcYQXF38Tziwnrlk7uaGqjdLJaRWnbWbK/om3kM/1wvW5V+8O66ioor2669xJWnLQsUV9V+EOIrZD9j9E3RKdsvqtJBXDZmK5cGTut8+hxyaWB532kQxIVTv80BvhZvkix/Upv7U53T1c8nXHX1iG/5zZP1uXyc/XEPzxi1hGsWmyvzzbPvzabL/d/Fux7edlf5619z5X6sGXHfiRkrkB/VHzmCSN0eqm5U5BMlv1z8Kj3lsS1W53PefqF4jjm9V9YVqE75KZ3LU8fFpRh7X3F7MPoWKIw6T2HvVXuF7H3MbQ4h3UM6sbcmNBcgrjxtWaC4NvaAr5RbQaqPms6VPeXZoLyQ/Ss7HmN53KrnvDJrwW7j8Rc8PPvGY16XG/wGGI//oHgXujErczPl6Zz2YfC8WIULZW62rihcWwlXI8BXt9vqthMupVshPUBc2wiXGiNDfQtx3UC4VHS8lQnddJD/8m1h6qbkWFy8DbdU4ArddJq52XUN+bzanvI+Os2adJqCjgodzf86LiptVn2/RPndVn6wWvl9Vn5ZtfL7rfxQtfKTVn64Wvm9Vn6kWvmOlW9XK39Ebf+VKH9QbWGVKH+XlV9RrfwBGztWwkvW7VXwvsS4tBr7hCU1/zT8LeKlJL2p+ecqosf14/nnasFLW+RxH18t6KwWdBSuJQlxDSbEtSwhrqGEuIYT4hpJiKudENfoAq3j8oS4UupEStmnlFfKvp2SrxUJcaXU1ZTtaPr1XJtn2lrMYC8vMgY89ey4qHRczM2wFW8sOw55sqTGf8Ovbu9gXyvfDtVx4XTPGS+86pd+4O/HMipvvPC7mJA1NZdQ8+ASslqljkYYbXU0YpDy0ObgEbdT+2byt6wifzHyQ/xtAc/+qNi2WO60Xc0T+z6w/7B/KX8eoDx1pIT3QbHv895l/uzbu8ufbQ2MJ7x5ve+cXn+zH0p9damsLNuivG+d7/MP4Ql8hN+aTZd7T+avV4y/oxXJe8uDqyl4z9MO4t3gbyj4zdvrIjpepWSL/h72X4V8KMu64GL/lepbhmuoCy72X2F5nocNd8HF/issz3PzkS642H+F5Xm+0w7gwv41Isq3KS+kN2X9uEqfQ7caVKUzGEkndLsA+pmdq3cL/yV0pAbbh+0zxkCG4iHaAh5P4Ft5Rzh6UZ+BkvVRfZfrw2OLlXeu9+0Tur1L9S2E3071wXk6zz+wPq0e1ifUPt3s9Daqj7KtC6l9ut2udkOgPkOB+izE9kFbruozHKjPQmyfzM2+DQXrM0J5vpuJbR4VGj9wfmM2Vc2Lcd/P9gTVPKMdUc/Q3FLZCd5L/LdFvXKZb+nTdYydwxn8DwNOm8OFxsqqY3JoPYHlMs+v0eF3odgtjmlUt5VWbS8s71uLW776NTrd6hO6sR77Ge5d/yzp/zLIC9nEJsEv7Zsu9wsFztB8Xe1LlbAly61ey0Wm5aE/ju87wdSg/5GvXNe3g81iOKaJbbCC8nB9sJLycL5veyQxazu1rlDtZfB4M6SyqYavSfC/Bn3/KbIn6tZjdRs+rwn/k7AnzCfWK3RUUh0LGxH1UjJl/7uijXLe7KHd73T9R6j+Bv+pgEyt/BJPfVimBv/pgEyVjEIyVcf2lot6qXUm+8KZdp42C1xMu98Db/iaBP/ZgEwNZomnPks8OD8fkOlKqlc3mYb2TpGfETdbjqsC5dhHoOqneB0WtDP6C/WtPG2lckan32nd5bYz+K+ItlM+KZZRyN+HdHl/AflQ9eJ5kMF/Ffj8Ko0NPZg3L1XzZuRziadexg/Ds18A2z207hzpYX3qrDvZLzDH605Zn9CtkKHb8fPEfgHlV1T1wblV6voMlKxPyC+A9ZkDv83SufQLhNbRifwCS+fSL7CC8jLI41hynEf71smYh2dZlA+d7bryx6svQRm8tYVvrov7fjParmBWzSHU+kjd0MrrozbgvMgz18N6heYQofkp8qNkynM25D1k++1dTd3tV7qL9Wfd7TYXL7sO4Jtwcezz7a2yfH02D20E67/SU15/54nP8uGvlTG8eRoQ8JaH/GB75Qn9Rg2Bi78KZPDngt8nTxjjjfaA6fPN/Ipv5RPKBK6GeIdnlMb6pnmup6/3vz8jmmXvW72wbyavaD97cd9qWfxfG7hpU9+vvPu0bvhVezeoDH+JieH7IB/hXwy+o/U0n+YzZPZucwAu8/wqnpGfkK41BLzRHhTwlod2gs+w4fjTELhwrx3hN1IfxH6Dt3kzfRxPnYdvX6wO42qId9gHrya9r3j2JjPa6vyQ0q06fWH407924//4p3vPjvl6R8zVhwNu5lhesu7R52Xn6w6KmueqOhmVR3rqXGnozgvDpe5EifmCwx3kb0h1J8otpCe9OouHdqebPs71+e26+qj0I6SPc31+e6nIM1xmc33nt3HMRPi7SR9xXsj6qO5/UF8RyXmbIH2sM26Gzl6yr63bWUCO8cLyoeug89RxcYntB+Iw3ANUh46LStF9Y77Oglv9ql4tnsfaDLrZfQ+vQPbFfy0lHirag9O6ncO9n9bV6ms+6uwrjwW/B/PRBz04ndN6bL5IdQ6V5cDzsY6LS2x3EEfNdo7WY8PfcrP7ZBU9jv0SUs2Y+Rl6jP0E9dgXX8r+qIEuPG8qfkNnktVZ3lCsYaIvGY2V9SGq9kF4q6uK34z5ilBs/+KY28X+FUzPyv7Vzc5/gGyy+iJiyM4b/K+Bnf9xwoljnNJD29MI3amg5qN56ri4FDOXr6gX0XrId5XVncvHXrFdcz42Qw9Rj1APfV9A5HivbteIs53vE7jUvJZ9uSxb53pj57E+bOe73SXHdl593VCtB1gO6jxRRv8jD6infL6hIXCpM0Z9lKfaadCF213tY/F8AO2Qkh2v9T4R2BuKtdsG3y1mlttBnaVQMVIhXU20rzmWeh+dZaP2D3FvjPUX98Z4rxN54ZhOpVdq3Or2WakY/VLzTdav/1ZSv9T6MVa/+LxQrH6F5rzPR/3ynUVl/cI17v0195q+sPQb3/79/3rXe3u11/SxdWuvGL7j7KPd8Nu5nrsmj+zafd+Ru3e9cd+RA5OHD19YvB+gMmXnIgOC//jyRx8bYISlyrvHbG5Th38rU6F8sk99roRnvMOG7Zgaw3meV7Eum2rusWxQ9gbnCc75/ex5UvsUuTxOKZ5rtvWmmvLZsML529f2ss4t/lfrrozqUZGPcexrltR6w961XL0+khE+o8f1s+fcTts9F9OfCxl/2vq87JjxQSYR8QZ4j/mYGIbhGD40eR2E9ws9WOSc4nchB4t03DTPNYNFHsuIZtlgkQuI17IDbGywiMl8z3379u/ddc/hu3bt2X9w4nXfLl7P8/j6UM3x9aGaY8LpNfdJp9R3G5RXdxs3CI7LoJnZDjDbPTDXA8z1HpgdALPDA7MTYHZ6YG4AmBs8MDcCzI0emJsA5iYPzM0Ac7MH5qUA81IPzC0Ac4sH5laAudUDcxvA3OaBuR1gbvfAvAxgXuaBuQNg7vDAvBxgXu6BeQXAvMID80qAeaUH5gcA5gc8MK8CmFd5YO4EmDs9MLsAZpcH5tUA82oPzG6A2e2B2QMwezwwEwAz4YHZCzB7PTCTADPpgXkNwLzGA3MXwNzlgbkbYO72wOwDmH0A0wCY1wLMawlmwM2erpSwl9vqxhGFYmtqxoRE+8kNf8vVGnum5q3K96hiwtX6JaM8da+yWr/Ycz6duw7guG3Zx4rz6X2Uh9Of1wL+G+DZZ0OtXkjfudlrx4qyfl1NvRsN+e2V7NnHFSP7PD0IcInWza+rKbvlK9xs+rxsWOjLE5vbLOTlyWbg2XBeB/jyv46LS1Ye/T5l7KyV31St/NS6YHO18qNWfku18lOffd9arfwG85d8rnhRd50QE49WcX93eey4NV/foqq5vzuaUXmkp862qXM4KNv8z+xCvweX714+m+el/KZKXm4X8a7iUWLaGfGqfVvffnfZeIoHodxrCadqJxwLthK8yaRfwCM+vlPiQPGb1+8PPDh99fLhPAzlXl88q767FeAecLr+mQvLNLb+fR5e3+im6/9lD6/ID/LK82jWhYcDcEsEHOuTc3ouu4XgVcy04on3OX/QTdf9Dzw4Uf5qb94nf4ZhHgz+MeDhy4SzH2TA9sW52d+Pqxi/ltWMURtQ+4zYvu+E92gHY793Y/DvhXLvKZ7Vfc9sw1XsyKCbfc+Oc/XtJO7fsi0fgjJc7zyxXo8A3QbhUPB4F0+DcCgbYPA/XPzmcvtK8azuJ8I2/VEPbWxTddcw0/4QlPux4jl016o6o8zj8pDgRcVJNAn+J920HJ5y03JwbmbbG+167n+3/Jn7QIAOty/rjzr3jfAcX9Dt3DfrLurKIOWhjIeIjorxQHlvojr2CTrKTowE6sv6kbnptVe/B57vVTL4jxa/ahxoA3+qTzU9OH8Vyn3czaw/tuN1APcpD22sf0PUx+BHRf0Rvk28GvyvO3/9R0T9ka+NhNPgfwNwPuXhE+ulbKq9V2f0R0W91B0+VpZlz3X7VAAH3xNh9Aad1okW8aruFcvczLqrvt0WvIbaui3ocFv/bvGLba3GLr6/QPGH/Z77uLoLAceNmlunD2XAi+FuCEjf1ukXi9+Fes6+17FVJ39i8gvXPPXXT/UK/5LmyT/S+fCrdzyX7yH4s+I3170/L57ZV4v08nd/F4DLPL+KZ+TH3i30ewi+Vfwu5HsI/rp4no97CI4vnncfObJ74u5d+ycP7DpycDrcwr4fPM/hFgdqhlscqLmVsCJVuMUOKB8Kt/CFQDQAxhcCgTC+EAiE8YVAIIwvBAJhfCEQCOMLgUAYXwgEwvhCIBDmNoC5zQPjC4FAGF8IBML4QiAQxhcCgTC+EAiE8YVAIIwvBAJhfCEQeX7N7fIdKbYtsY8YDudqb5dHbzs817bLLwE4btvQdvkPUB4O768C/FfDM7uJ5ijU+s6adn60V6HWJvuaodZ31pTPaCjUmqemzukp3XxviV9V/C7kLfF1wLPaEi/RZp2aW+JZzS3x0Zpb4n3zvCXesPLbqpVvW/nt1cqPWPnrK5XPpo5AfK140+trmjKi06vrd9jmVwwjaBrPA8AHu4QZf/7XAh4bhEPB83yD8bfS1MdxfXBrJXSVBLs1Oi6OXM3rFAZ4i/NtxW/e1hwObEtg1UZ54nnDEPHEMDFhAbjs5uOnBo/zmL8mnMoNqXTc3nfbAuFtJazDiIc26qj6xJO1Ibpjq+gcblcoFy9fR2zwdxMec5FhO6vrfw1+VNBVV76za9no5u32t566LBE85Ok6T13ugXKvK575+hnsfzncvR7ay5zuu8MBvCMReLFOanuW63QflDtMtPs9dbrfQxu3IAYCder31Ol+gHNOr3NSbHP+b+IH53Yx25y+uWCZPq62OctcNZQJOsgL9yPD3e+BN3xs/x4tfnO5Lclm8rdElM/fmZ1X12VwGfRvhey+WpuGwjpwzq1s83aqr8F/Ccq9h3BaeZ/NxbUC17WKzUVXf8ODU9Xh3xIe67so40zgYV1BujhnYZvbT3TR5oZ0LU9q3ZqnjotLrBeIo2Y7tFBGlpQ/iK8MzarRC14Zijzw/Liiv2sg5pohdQ2O0plGF55tjRq6cqohcDNcTT/JCSzjwQi6WHdf/TZT/RBXP5XzyRHxNgR/oZA/vGY0ZCtidWxroD5LqNySivVR19AwfwOuu9xi2mdLoD512scnb76qSPn/1DwH6+1c2nlOnauz+DM4vIY1npXMOi4qLQnxwjY1T0q2S6mcki23ZawtqGl7+mPr10f1awTq5/PXdut7KiQuc7PrG+rjNdt76UJtb7ZFqq/HzGl99eGrpBSukF5wfVR7sX3Mk7I3OG7kKaW9yQCAZdRtvmA6yZ9nwvqGfJQWbsNyY1hcQ4T4aBK8hSajXyi0R9QL+aKesXzVeIjwPL9RR1zYh5Yn9UnDpZSn4hdYV5EOynsj1VHpP673aobuHciAF8PdEJC+0L2vF7/P9k/k9Dq0rpehb3b1S952/1A8dwt9a2Z+uMzzq3hGfuzdQg996ysQLOTQt++6mXWYy9C3XofJnlo8753cc99du/YfvGvX7kOHdj+w6+Ch3RP7J3e98dDue++dPGSRSfMcYXfnACMsVb525MVJqSLscJc8FGG3EcpiGdScTQCzyQOzGWA2e2C2AMwWD8xWgNnqgVm8hGnmM8MsXsI085lhFsolTKFLO2uuvjfVtCMn9DDy8MSYmQbiXwiRh6Hot9jIw6sBjtvW8NX0MryqZrtnPWz3vmdju/MMNUW7I36c3W+FZxuzakYg31nTjrgVgj7PdBd6pCR6w/O0ECMlN7hpnmtGSmYWKcdziCbxg23J/KMOI3xDwOerGpNfcSHvxnyyv+PgXY4Sm5XMw+IJVO46D2tZAC/ix/cn0DvlmEHcCa6bvdNwVXW82NSq144XCyo+cPDIvtc8sOvw5JFd9+w7sOvQ5BsmDx3Zt+fp9drhfXsnd02+5jWTE0d2TRy878CRyUO0lLOzVPO8lNtUcym3qabpnLO737st5fL8bvfDD8MzOkpqDD2bejn0mIkzfc5N0IXF872H9r1h95HJG55R4Vsmj+zcd+ClU/p7y9Pqu+kZ7b3umPIyVWUx1PuGS2IZNtW1DMcVv722DGuL58IyTB54/X2T903u3XXvfXv275vY9Zr7Dkwc2XfwwK6J3fv3myU4uSgzz5Zga01LsLXmpLpZc+IsLYHafu/mjGm47s6YPIWshToatYnyGoK+WlgYXezJ+fOK4rmmBdo6FxZodfF/boHOKZ5nWKBNRU+56ZmOsrnoJ9c93U2YnG9yxKSxKvh/U+DhxAOSVaWmGdta14ydVPz22oyZN/oZM1W007Tx2pePCAd277fb/efZcO2oabh21DQ8S+qe4TC66DVWcdZlDJfPQ4wwPg9xnpRx812ThHwo48bxuk3Bm9q/Np7QgOTPJ0CZPLHnGvPQY53o3Oj2mrsXfaGrhuuuamue/+szg21GuodXujawv0+9pHeIf66vdM0HK7O4hRHMB6Sbjj3aGIWcIvY+UZNsJkczfBvOA1dmTLP/lwi8vvL8jvlV0RkoLdNUddFhH5VrEG6kzb4W5rMRwJ9RfqMLzzGRxwnG+x11x3tbTvR6vLfeXixbJg5NPq3ge3cduG///n2v2TfLd2GrqUXfRa2BJNl364bg2XwUzwa/hB3Myw2tfV9uxqrgumOKeIPpIRNhO5mJ90Zwvl0QNoPpdV82oe7dd+hp/82+N0w+PV/P/Tr80dHVgKdKp11VrfwMO+yIF8TLxsWVoGEJ24oTR47xXgUbpxL0Mx8fmQC2ZfwqeGfysNkHtuWRybueNsivv+/pDjJ54AhzW/Fc9tS9C8uqlZetinFfy5hg8atW4Znn/z76DcFmAbxDIs9wWmsgv4OUN90aRw7uOrR77777rU+aFKvGJVn5qjNcK191Rq5aEWfLHBfF9hdpGi8VL+0ezAR9tT/ILW0wSrP66P8mvW9EwCrNsjy1PxoTCar2U5WWstxR3xQu3utl/ajbRisETePt/werjYzfVW4SAA==",
3936
+ "debug_symbols": "tP3driU9c52J3ouOfZAMxh99KxsbhtrtbggQpIbt3ieG733PDJIxoqq0WLnmXN+J6vleVcXIJBljZpKR5P/6p//zv/0f/+///V/+5d/+r3//H//0n/8//+uf/o///i//+q//8n//l3/99//6z//zX/79317/9X/903X/n8b/9J8bef/f/+mf2v2/B73+93/6p9HnHzz/kPmHzj9s/uHzjxF/tOtaf7b1J60/+/qT15+y/tT1p60/ff254rUVr614bcVrK15b8dqK11a8tuK1Fa+teLTi0YpHKx6teLTi0YpHKx6teLTi0YrXV7y+4vUVr694fcXrK15f8fqK11e8vuLxiscrHq94vOLxiscrHq94vOLxiscrnqx4suLJiicrnrzi9ftPWX/q+tPWn694ev855p96rT9f8cb95x3v/ovaN/AG2aAbbMN9lXzDWGDXhraBNvQNvEE26AbbsCPbHVle4NeGtuGOfN+89w284RWZAnSDbfANY8G4NrQNtKFv4A078tiRx458pxDdzXIn0Q10Z9GEtoE29A28QTboBtvgG3bktiO3HbntyG1Hbjty25Hbjtx25LYjtx2ZdmTakWlHph35zi6SG2SDbrANvmEsuHNsQttAG/qGHbnvyH1H7jty35H7jsw7Mu/IvCPzjsw7Mu/IvCPzjsw7Mu/IsiPLjiw7suzIsiPLjiw7suzIsiPLjqw7su7IuiPrjqw7su7IuiPrjqw7su7ItiPbjmw7su3ItiPbjmw7su3ItiPbjuw7su/IviP7jnznIPkNskE32AbfMBZEDga0DbShb9iRx448duQ7B3u7wTeMCf3Owa43tA20oW/gDbJBN9gG3zAWtB257chtR27LN3rjDbJBN9gG37AcqdO1oW2gDTsy7ci0I9852McNtsE3jAV3Dk5oG2hD38AbZMOO3HfkviPfOcjXC+4cnNA20Ia+gTfIBt1gG3zDjiw7suzIdw5yv6Fv4A13ZLtBN9gG3zAW3Dk4oW2gDX0Db9iRdUfWHVl3ZN2RbUe2Hdl2ZNuRbUe2Hdl2ZNuRbUe2Hdl3ZN+RfUf2Hdl3ZN+RfUf2Hdl3ZN+Rx448duSxI48deezIY0ceO/LYkceOPFZkvq4NbQNt6Bt4g2zQDbbBN+zIbUduO3LbkduO3HbktiO3HbntyG1Hbjsy7ci0I9OOTDsy7ci0I9OOTDsy7ci0I/cdue/IfUfuO3LfkfuO3HfkviP3HbnvyLwj847MOzLvyLwj847MOzLvyLwj844sO7LsyLIjy44sO/LOQd45yDsHOXJw3DAWRA4GtA20oW/gDbJBN9iGHVl3ZNuRbUe2Hdl2ZNuRbUe2Hdl2ZNuRbUf2Hdl3ZN+RfUf2Hdl3ZN+RfUf2Hdl35LEjjx157MhjRx478tiRx448duSxI48VWa5rQ9tAG/oG3iAbdINt8A07ctuR247cduS2I7cdue3IbUduO3LbkduOTDsy7ci0I9OOTDsy7ci0I9OOTDsy7ch9R+47ct+R+47cd+S+I/cdue/IfUfuOzLvyLwj847MOzLvyLwj847MOzLvyLwjy44sO7LsyLIjy44sO7LsyLIj7xyUnYOyc1B2DsrOQdk5KDsHZeeg7ByUnYOyc1B2DsrOQdk5KDsHZeeg7ByUnYOyc1B2DsrOQdk5KDsHZeeg7ByUnYOyc1DuHBS6QTfYBt8wFtw5OKFtoA19A2/YkceOPHbksSOPFVmva0PbQBv6Bt4gG3SDbfANO/Kdg9JvaBtowx1ZbuANskE32AbfMBbcOTihbaANOzLtyLQj045MOzLtyLQj9x2578h9R+47ct+R+47cd+S+I/cdue/IvCPzjsw7Mu/IvCPzjsw7Mu/Idw6K3jAW3Dk44Y5sN9CGvuGOPG6QDbrhFVnv/or5mICxIGZk+Ia2gTb0DbxBNugG2+AbxgLbkW1Hth35zkG9r/nOwQmyQTfYBt8wFtw5OKFtoA07su/IviPfOah+g23wDWPBnYMT2gba0DfwBtmwI48deezIY0W269rQNtCGvoE3yAbdYBt8w47cduS2I7cdue3IbUduO3LbkduO3HbktiPTjkw7Mu3ItCPTjkw7Mu3ItCPTjkw7ct+R+47cd+S+I/cdue/IfUfuO3LfkfuOzDsy78i8I/OOzDsy78i8I/OOzDsy78iyI8uOLDuy7MiyI8uOLDuy7MiyI8uOrDuy7si6I+uOrDuy7si6I+uOrDuy7si2I9uObDuy7ci2I9uObDuy7ci2I9uOfOegtRvaBtrQN/AG2aAbbINvGAvGjjx25LEjjx157MhjRx478tiRx448VmS/rg1tA23oG3iDbNANtsE37MhtR247ctuR247cduS2I7cdue3IbUduOzLtyLQj045MOzLtyLQj045MOzLtyLQj9x2578h9R+47ct+R+47cd+S+I/cdue/IvCPzjsw7Mu/IvCPzjsw7Mu/IvCPzjiw7suzIsiPLjiw7suzIsiPLjiw7suzIuiPrjqw7su7IuiPrjqw7su7IuiPrjmw7su3ItiPbjmw7su3ItiPbjmw7su3IOwd956DvHPSdg75z0HcO+s5B3znoOwd956DvHPSdg75z0HcO+s5B3znoOwd956DvHPSdg2Pn4Ng5OHYOjp2DY+fg2Dk4dg6OnYNj5+DYOTh2Do6dg2Pn4Ng5OHYOjp2DY+fg2Dk4dg6OnYNj5+DYOTh2Do6dg2Pn4Ng5OHYOjp2DY+fg2Dk4dg6OnYNj5+DYOTh2Do6dg2Pn4Ng5OHYOjp2DY+fg2Dk4dg6OnYNj5+DYOTgiB/kG2+AbxoLIwYC2gTb0DbxBNuzIsiPLjhw5KPfK8LWhbaANfQNvkA26wTb4hh3ZdmTbkW1Hth3ZdmTbkW1Hth3ZdmTbkX1H9h3Zd2TfkX1H9h3Zd2TfkX1H9h157MhjRx478tiRx448duSxI48deezIY0V+rbJfSS2JknoSJ0mSJlmSJ6VGS42WGi01Wmq01Gip0VKjpUakpQWNTZGYk14afgVRUk/iJEnSJEvypLHpTtFFqdFTo6dGT42eGj01emr01OipwanBqcGpwanBqcGpwanBqcGpwakhqSGpIakhqSGpIakhqSGpIakhqaGpoamhqaGpoamhqaGpoamhqaGpYalhqWGpYalhqWGpYalhqWGpYanhqeGp4anhqeGp4anhqeGp4anhqTFSY6TGSI2RGiM1RmqM1BipMVJjbI0op1nUkiipJ3GSJGmSJXlSarTUaKnRUqOlRkuNlhotNVpqtNRoqUGpkXneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWet8zzlnneMs9b5nnLPG+Z5y3zvGWeU+Y5ZZ5T5jllnlPmOWWeU+Y5ZZ5T5jllnlPmOWWeU+Y5ZZ5T5jllnlPmOWWeU+Y5ZZ5T5jllnlPmOWWeU+Y5ZZ5T5jllnlPmOWWeU+Y5ZZ5T5jllnlPmOWWeU+Y5ZZ5T5jllnlPmOWWeU+Y5ZZ5T5jllnlPmOWWeU+Y5ZZ5T5jllnlPmOWWeU+Y5ZZ5T5jllnlPmOWWeU+Y5ZZ5T5jllnlPmOWWeU+Y5ZZ5T5jllnlPmOWWeU+Y5ZZ5T5jllnlPmOWWeU+Y5ZZ5T5jllnlPmOWWeU+Z5VBE5BWmSJXnS2BR5PqklUVJP4qTUGKkxUmOkxtgaUVS0qCVRUk/iJEnSJEvypNRoqdFSo6VGS42WGi01Wmq01Gip0VKDUoNSg1KDUoNSg1KDUoNSg1KDUqOnRk+Nnho9NXpq9NToqdFTo6dGTw1ODU4NTg1ODU4NTg1ODU4NTg1ODUkNSQ1JDUkNSQ1JDUkNSQ1JDUkNTQ1NDU0NTQ1NDU0NTQ1NDU0NTQ1LDUsNSw1LDUsNS43I8x5kSZ40NkWeT2pJlNSTOEmSUsNTw1PDU2OkxkiNkRojNUZqjNQYqTFSY6TG2BpRuLSoJVFST+IkSdIkS/Kk1Gip0VKjpUZLjZYaLTVaarTUaKnRUoNSg1KDUoNSg1KDUoNSg1KDUoNSo6dGT42eGj01emr01Oip0VOjp0ZPDU4NTg1ODU4NTg1ODU4NTg1ODU4NSY3IcwmipJ50a3iQJGmSJXnS2BR5PqklUVJPSg1NDU0NTQ1NDU0NSw1LDUsNSw1LDUsNSw1LDUsNSw1PDU8NTw1PDU8NTw1PDU8NTw1PjZEaIzVGaozUGKkxUmOkxkiNkRpja0Rx1KKWREk9iZMkSZMsyZNSo6VGS42WGi01Wmq01Gip0VKjpUZLDUoNSg1KDUoNSg1KDUoNSg1KDUqNnho9NXpq9NToqdFTo6dGT42eGj01ODU4NTg1ODU4NTg1ODU4NTg1ODUkNSQ1JDUkNTLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wyzyXzXDLPJfNcMs8l81wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfPcMs8t89wyzy3z3DLPLfPcMs8t89wyzy3z3DLPLfPcMs8t89wyzy3z3DLPLfPcMs8t89wyzy3z3DLPLfPcMs8t89wyzy3z3DLPLfPcMs8t89wyzy3z3DLPLfPcMs8t89wyzy3z3DLPLfPcMs8t89wyzy3z3DLPoyZstCBPGpvuPF/UkiipJ3GSJGlSakhqSGrceT4oqCVRUk/iJEnSJEvypLHJUsNSw1LDUsNSw1LDUsNSw1LDUsNTw1PDU8NTw1PDU8NTw1PDU8NTY6TGSI2RGiM1RmqM1BipMVJjpMbYGlFItqglUVJP4iRJ0iRL8qTUaKnRUqOlRkuNlhotNVpqtNRoqdFSg1LjzvPBQZTUk24NDZIkTbIkTxqb7jxf1JIoqSelRk+Nnho9NXpq9NTg1ODU4NTg1ODU4NTg1ODU4NTg1JDUkNSQ1JDUkNSQ1JDUkNSQ1JDU0NTQ1NDU0NTQ1NDU0NTQ1NDU0NSw1LDUsNSw1LDUsNSw1LDUsNSw1PDU8NTw1PDU8NTw1PDU8NTw1PDUGKkxUmOkxkiNkRojNUZqjNQYqTG2RhSrLWpJlNSTOEmSNMmSPCk1Wmq01Gip0VKjpUZLjZYaLTVaarTUoNSg1KDUoNTIPB+Z5yPzfGSej8zzkXk+Ms9H5vnIPB+Z5yPzfGSej8zzkXk+Ms9H5vnIPB+Z5yPzfGSej8zzkXk+Ms9H5vnIPB+Z5yPzfGSej8zzkXk+Ms9H5vnIPB+Z5yPzfGSej8zzkXk+Ms9H5vnIPB+Z5yPzfGSej8zzkXk+Ms9H5vnIPB+Z5yPzfGSej8zzkXk+Ms9H5vnIPB+Z5yPzfGSej8zzkXk+Ms9H5vnIPB+Z5yPzfGSej8zzkXk+Ms9H5vnIPB+Z5yPzfOw8p2vnOV07z+naeU7XznO6dp7TtfOcrp3ndO08p2vnOV1XarTUaKnRUqOlRkuNlhotNVpqtNRoqUGpQalBqUGpQalBqUGpQalBqUGp0VOjp0ZPjZ4aPTV6avTU6KnRU6OnBqcGpwanBqcGpwanBqcGpwanBqeGpIakhqSGpIakhqSGpIakhqSGpIamhqaGpoamhqaGpoamhqaGpoamhqWGpYalhqWGpYalhqWGpYalhqWGp4anhqeGp4anhqeGp4anhqeGp8ZIjZEaIzUiz0cQJ0mSJlmSJ41FUQ+3qCVRUk+6NSRIkjTJkjxpbIo8n9SSKKknpUZLjZYaLTVaarTUoNSg1KDUoNSg1KDUoNSg1KDUoNToqdFTo6dGT42eGj01emr01Oip0VODU4NTg1ODU4NTg1ODU4NTg1ODU0NSQ1JDUkNSQ1JDUuPO89dgCDSgA0finesbG5CAHchAAUJNoaZQi+2u2nVjbHi1sCWOa25ERVFr1hbeYm1utiRABRrQgWNjlJdtbEACdiADBahAAzoQag1qDWoNag1qDWoNag1qDWoNag1qBDWCGkGNoEZQI6gR1AhqBDWCWodah1qHWodah1qHWodah1qHWocaQ42hxlBjqDHUGGoMtdgirmmgA0di7BW3sAEJGGoWyEABKtCADhyJkW4LG5CAUIt0ax4owFAbgQZ04Eic6TaxAQl4q93bIVEUqm0UoAIN6MCRGHvOLbzV5uZnse/cwg4MtWhfF6ACDejAkRim0a/ABiRgB95qsdFVVK9tVGDEvd0qitVevxiBEWH+14hggQJUoAEdOBLDH7oHNiABO5CBAlSgAR04Eglq4Q/37lMUxWobbzWO2wx/WChABRrQgbfavYsURdHaxgYkYAcyUIAKNKADoRb+wNEt4Q8LQ00CO5CBAgy1aIfwh4UOHInhDwsb8FaTK7ADGShABRrQgSMx/GFhA0It/EFaIAMFGPcWQy78YaEnzp0lJ0aE6M3IbonWmZtI3knW5zaSExuQgB14B9O4yEjphQo0oANHYqS0xl1ESi8kYAcyUIAKNKADx8aoVtsYahRIwA4MtR4oQAWGmgSGmgaG2p2FUbe2sQEJ2IEMvONaXGQk+sKRGIm+sAEpMbLw/mCRoqps4y1hcb2Rb/fnaBRFZBtHYuTbwgakxMgLi+uNvFjYgQwUoAIN6MCRGHmxEGoKNYWaQk2hplCLX0i78zhKvNpdO01R49U8ujvyYqEA7wge3R3ZstCBIzESZ2EDRtzogEgGjw6IZPC4skiGiZEMCyNCNHUkw8IOZKAAFRhqcceRDAtvtXHffJR0bWzAO+69lkdRrdXuRReKcq2Ncb33WI+CrdekZ2ADErADIy4HClCBoSaBDhyJBDWCGkGNoBa/bwtl90UUcG00oAOzN6OIa2PfXRjlWbMLoz5rdlYUaG3M3owSrdkXUaO1kYAdyEAB6u63qNTa6NlZjN4U9GZk4ezCyLfZb4LejHybXRj5NhtK0b6K9lW0b+Tb7CxFbyp6M/JtdpaiNxW9qVAzqBnUDGqG3oxkGNEkkQwLOzAuJ1onkmGhAg3owLFRZzJMbEACvtReb4+BDBSgAg3owHHjfb1RAbWxAQkYah7IQAGGWlxZbJO60IG3Wrxr69wsdWIDEvBWi1fwqH16vcEGGtCBIzG2K773oKYogKJ7z2mKCiiK16gogdrIQAGGWtxxbF680IEjMbYwjleYKICieOuICqjXe2vgLREP9FED9XpPCVSgAR04EmMv44UNGGrR6rGj8cJQi8uJXY0XKtCADhyJsb/xwgYkYAdCTaGmUFOoKdQUagY1g5pBzaAWex/Ha1RUSG1UoAEdOBJjH+SFd9x45YqiqI0CVKABHTgSYxfkhQ1IQKgNqA2oDagNqA2ojVSz6wI2IAE7kIECVKABHQi1BrUGtQa1BrUGtQa1BrUGtQa1BjWCGkGNoEZQI6gR1AhqBDWCGkGtQ61DrUOtQ61DrUOtQ61DrUOtQ42hxlBjqDHUGGoMNYYaQ42hxlATqAnUBGoCNYGaQE2gJlATqAnUFGoKNYWaQk2hplBTqCnUFGoKNYOaQc2gZlAzqBnUDGoGNYOaQc2h5lBzqMFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJTa9pAc6cGz0aSBXIAE7kIECVKABHZim6+0CQq1BrUGtQa1BrUGtQa1BrUGNoEZQI6gR1AhqBDWCGkGNoEZQ61DrUOtQ61DrUOtQ61DrUOtQ61BjqDHUGGoMNYYaQ42hxlBjqDHUBGoCNYGaQE2gJlATqAnUBGoCNYWaQk2hplBTqCnUFGoKNYWaQs2gZlAzqBnU8NjheOxwPHY4Hjscjx2Oxw7HY4c71BxqDjWHmkPNoeZQc6g51AbUBtQG1AbUBtQG1AbUBtQG1EaqjesCNiABO5CBAlRgqGmgA0fi9BIPbEAChpoFMlCACjSgA281vt0zqr42NuCtxnG94SULGShABRrwVosZ5Cj/WhhesjDUOJCAHcjAiHu/40R112tOKbABCRgRoqHCHxYKMK53BBrQgSNxHrESNzQPWZlIwA6848as8JgHqdyvRmMepTKxAaM3Q2Lm/EQGClCBBnRgqEWjzuNVJjYgATuQgQJUoAEdCDWHmkPNoeZQc6g51BxqkfMS3R3ZHbPjUc61kYAdyEABKtCADhwLe9R1bWxAAnYgAwWoQAM6EGoNag1qDWoNag1qDWoNag1qDWoNagQ1ghpBjaBGUCOoEdQIagQ1glqHWodah1qHWodah1qHWodah1qHGkONocZQY6gx1BhqDDWGGkONoSZQE6gJ1ARqAjWBmkBNoCZQE6gp1BRqCjWFmkJNoaZQU6gp1BRqBjWDmkHNoGZQM6gZ1AxqBjWDmkPNoeZQc6g51BxqDjWHmkPNoTagNqA2oDagNqA2oDagNqA2vUQDx8Y2vWRiAxKwAxkoQAUaMNRG4EicXjIx1CyQgB3IQAEq0IAOHInTSyZCjaAWXnIv8fWoKdsoQE8Mf7jXIXvUi22MCBLIQAEq0IAOvK9Xo0nCHxY2IAFvNQvh8IeFArzVLK43/GGhA281oxvDHxY2IAFDrQeGWlxvOIFFH4cTLByJ4QQLI64HRty4i3ACj8sJJ/BQCydYqEAD3moelxNOMDGcYGED3moe1xvp73E5kf4ePR/p73E5kf4jJCL9F47ESP+FDUjADrzVRlxDpP9Cy2HkGFGR8xMj5xc2IAExUgdG6sBIjZxfCLUBtZFq8yDFhQ0YNySBHcjAuCENVKABHTgSI+cXNiABO5CBUGtQi5wfHujAkRg5v7ABCdiBDBSgAqFGUCOodaiFP9wrTH0du8iBAlSgAR04EueTwsQGJGAHQo2hxlBjqDHUGGoCNYGaQE2gJlATqAnUBGoCNYGaQk2hplBTqCnUFGoKNYWaQk2hZlAzqBnUDGoGNYOaQc2gZlAzqDnUHGoONYeaQ82h5lBzqDnUHGoDagNqA2oDagNqA2oDagNqA2oj1fp1ARuQgB3IQAEq0IAOhFqDWoNag1qDWoNag1qDWoNag1qDGkGNoEZQI6gR1AhqBDWCGkGNoNah1qHWodahBi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML4nd4uiuW+lR6rfRgSMxvGRhAxKwAxkoQKgx1BhqDDWBmkBNoCZQE6gJ1HKGs/P0kokvtdfP2X+6cSTeXrKxAQnYgQyUGylQgQYMtR44Eu0ChlpcmRGwA6PfItj0kokKNKADR6JfwAYkYAfGbLMEGjDuIgaMj8RxARuQgB3IwGgzDVSgAUPNAsfGKELcGGoSSMAOjJl0DRSgAg3owJHYLmADErAD4y480IAOjLu4x2SUJm5swPsu7gqrHqWJG+82u4utepQmblTgrXZXWPUoTdw4EuOI6oUNSMAODLUeKEAFGtCBIzHKGONNeBUscuAuAOyzYHGhAg3owJE4CxYntlUh2GN/uY0dyEBZFZh9FjcuNKADR2IUNy5sQAJ2IHpe0fOKnlf0vKHnDT1v6HlDzxt63tDzhp439Lyh5w097+h5R887et7R846ed/S8o+cdPe/oeUfPD/T8QM8P9PxAzw/0/EDPD/T8yJ5ftZYTs+dXreXEDmRg9nzUWm40oAOz56PWcmMDErADo3XiyiLnFzpwJEbOt/hnkfMLCdiBUd57BQpQgQZ04Eic5cgTG5CA0ccaqEADOnAk8gVsQAJ2IAOhxlBjqDHU7px/vY3deOf8xgYkYAcy8FajaPU75zca0IGhFq0ev/4LGzDULPBW6yERv/4LBahAAzpwJIYTLGzAW+0uEepRYLkx1ChQgAo0YKjFpYcTTAwnWNiABOxABgow1KKHwgkWhlq0TjjBxHgmWNiABAwJDxSgAg3owFviXuzvUWu5sQEJ2IEMvNXuj9N61FpuNKADR2K7gA1IwA5kINTCKu4igh61lhsdGGr3mIxay40NGGoaGGoWGGoeKEAFGtCBI3EWRQX1JE6SJE2yTZHBd9VBj2LHjSMxnt+j5ePxfRIl9SROkqQ74l2m0KN0sceTe5Qu9kk9iZPisTJIkyzJk8am+YscFCLRW5GGC28VibuNNFwowLjM6KJIrVhqiyrEjfGKEhQBogsjsxYq0IAOHLtJRjbnyOYc2Zwjm3Nkc0YiRSPG3m6zEaO6sMcCWFQXboxb9UAGxpWOwNeV8oxlSZ40NsUB9pNa0h1RJ97XFCsOUSsY4z9KBSfFIfWT7n9NQZTUkzhJkjQpRCY68O53jeDxWLywAeMyOTAiSKAD7+uMa4/fwtkw8Vu4kIAdGGE1UIAKtGzwyKSFI1GgJlATqAnUBGoCNYGaQE2gJlBTqCnUFGoKtci+hbKGehT9zeEbRX8bHTgSIwUnxu+UxiVEMi0kYLylBnGSJGmSJXnS2DSnuoJaEiWlxkiNkRojNUZqxG9UrL9GCd7EKMHbeN9MrKlGCd7GuxFjXTdK8DYKUIEGdOBIjN+oWKCNEryNBLzVYjE3SvA2CvBWi2XbKMHb6MBYdL0pZrgmtSRK6kmcFBFvn4mCuh5rwlFQ12NNOArqNnYgA+8rjUXj2FZtowEdOBLnknrQLRYryVF7t7EDb7F4bYnau40KDLEZzIEhFrcWWbqwAWP8BvUkTpIkTbJNkYkejRU5FyvWUXXXRwyt+MlbqEAD3lca72VRdbcwkm5hAxLwVgux+N2bJEnRKEGW5EljUyT0pJYUIjHk4rFzIQMtMR4l4+Uvyuo2xlgJ6kmcFFcZrRePlAsNGC0S1xLpeiNHTV2/Jw05auo23r889zwfR00d3/NxHDV1fE/ucdTU8T3jxNf8fZxoQAeOxPkbObEBCRhqGhhqFhhqcb0t1OIi48ezxUXGr+fCBiRgBzJQgBEsbrNfwAYkYAcyUIARLBqK45/1wA5koADve4tbu1NukSeNTXe+LWpJlNSTOEmSUkNSQ1JDUkNTQ1NDU0NTQ1NDU0NTQ1NDU0NTw1LDUsNS4042ju6/k22RJ41Nd7ItakmU1JM4SZJSw1PDU8NTY6TGSI2RGiM1RmqM1BipMVJjpMbYGlGRtqglbY0oEOP7TZ+jQIzvaQOOAjG+n3k5SsH4/siTo3qL7zd9jg3AFsawXhiPmBHhHtYS/+oe1Ys4SZI0yZI8aWy6f3gWtaTU4NSIsU5xazGw799Ljtqs+/2BozRrESX1JE6SJE2yJE8amzQ1NDU0NTQ1NDU0NTQ1NDXukS3RlvfInnSP7EW3RtzmPbIX9aRohREYrwLRwTGie/RqDOmFBOxABgpQgQZ04EgcUBtQG1CL4d2j12J8LxSgAg3owLExarA2NiABO5CBAlSgAR14d8PdplGCtaglUVJP4qSIeLsxzTcyDnz9a43Y90/Kop70+tf3ix1HNdUiTbIkTxqb4lflfubhKJni+7eco2RqowHjFj1wJPIFbEACdiADBahAA0KNoRY/Pfe7LUfJ1EYC3moc7RI/PwtvNY5mjR8gjmaNXyCOm4+foIUjMX6EOITjV2hhqEV3xe+QhPCdrhph73RdpEmW5EljU/zoSHTI/bDHYVFRAMUy/4IBHXhfaZhAFEBtbEACdmDEjRuMNAwriKImlrjBSMOFBOxABgpQgQZ0YKjdDRdFTRsb8Fa7pys4ipo2MlCAt1oM4ihq2ujAu3nvW4uapkUt6U4kDepJnCRJmmRJdxd60Nh0Z+ui+34iM6OQaWMHMtAS4+fxng7hKE7aGBE4sAMZ+LpSi/u9k3aRJXnS2HQn7KKWREk9iZNSg1ODU4NTg1NDUkNSQ1JDUkNSQ1JDUkNSQ1JDUkNTI3LznijiKEHa2IHRXtHv8ZS4UIHRDzEG40FxYTwbRe/Eo+LCBiRgB8ZDWHRfZPPCeAyLPpvPk3Fl84EyRtV8ogycj5QTQy0ucj5UTuzAuwkj7P37u0iTLMmTxqb5CBmjdj4vxm1HHnskWeTxQgeOjVFQxPd7PEdB0UYCdiAD70uVoJfYChVaHBhaGjgS93GSzPtoCua9nS3z3s6WeW9ny1EHxPdsAEcd0MYOZKAAFWjAeIOIS42n2omRtgtpX1VsZzuJk+5rjruL7WwnWVIEj5uL39aJ8du6MN5Q4q7it3VhvAdFhPhtXShAnVseM+/tq5n39tXMe/tq5r19NfPevpp5b1/NvLevZt7bVzPv7auZJTUkNSQ1JDU0NTQ1NDU0NTQ1NDU0NTQ1NDU0NeYr3cQGJGC0WHRo5OlCAcbLowca0IEjMfI0ZiyivEdixiLKe9Z/7EmcdD/Mx3xGVPxsNKADR+L987yxAQnYgQyE2oDagFrsax03E/ta3xT1PotaEiX1JE6SJE2yJE9KjXg0jrmcqPLZSMAOZKAAFWhAB45ECrUe2IAEFGBEkMCIcI+bqOfZ2IAEjOu1QAYKUIEGdOBIjLfYhQ1IQKgx1BhqDDWGGkONQy36It56F95qMSMVVT4bO/BWi1mmqPLZqEADOnAkxvvvwgYMteiseAVeyEABhhoHGtCBIzHehBeGWtx8vAsv7EAGClCBoRYNZQ4ciX4BG5CAHchAASoQauEJ975aHLU/C8MTFsZkR7RkeEJMxERF0MaYU4kBHp6wMGZVonXCExY6cGyMiqCNDUjADmSgABVoQAdCrUGtQa1BrUGtQa1BrUGtQa1BrUGNoEZQI6gR1AhqBDWCGkGNoEZQ61DrUOtQ61DrUOtQ61DrUJvzYRI4EueM2MQGvKuSIqV1bts9kYECVKABHTgS57bdE+MuNDCu1wINGNfrgSMx/GFhAxKwAxkYce9kiCqf1SSGO46cX9iBDLzbN2bAospnowEdiN50qDl609Gbjt509KajNyPn5zVEzi9Ebzp6M3J+XkPk/EICQm1AbUANOa/IeUXOK3Lerhw7djUgATuQ9zVEwc9GBRriOhBqyHlDzhty3pDzhpy3mfNxDU2BBnRgtmQU/EjMMEbBz8ZoSQrsQAYKMO5tBjOgA0di5PzCBiRgB4aaBgowB3jsqCYxKRc7qi2MRF/YgDk0Yke1jegsRmcxOosN6EB0lqCzBJ0l6CxBZwk6SwSoQAyNSP+Y7IsCpI0EjLuIdoj0j3m/qEHaqEADOnAkhlUsbEAC5oNh7JK20YARN8ZDmMLEMIWYZYz6pI0EvO+Co7vDFBYKMO4iej5MYaEDR2KYwsIGJGAHMlCAUIvzZ+9bi9qlRS3pfgmXoJ7ESRFxBCrQgLEgcgWOxEj8hW2ek8q+T6Fl36fQsu9TaNn3KbTs+xRa9n0KLfs+hZZ9n0LLvk+hZafUoNSg1KDUoNSg1KDUoNSg1Oip0VOjp0ZPjZ4aPTXiNz0mgaMIaqMDo8GiFyLVF8YiEgUSsANjHSm6J1J9YahZoAFDLS4nUn3iXBWbeL8QxtXsQ2nZ96G07PtQWvZ9KC37PpSWfS6BxTCIdI553KhpkpixjZqmjQJU4H2lMTHqc9Vr4kic614TGzDUNLADGShABRow1KKJIsknRpIvbEACdiADBahAA0ItkjzmlaN8amMDxqpetGQkecyIRgnVxlstJiajiGrjrRYTk1FGtXFsjDKqjQ1IwA5koAAVaEAHQq1BrUGtQa1BrUGtQa1BrUGtQa1BjaBGUCOoEdQIagQ1ghpBjaBGUOtQ61DrUOtQ61CLX/6Ypo3Cq40GdOD9/H0FxpdACxuQgB3IQAEq0BLDA2LKNsqpJGano55qY1yvBSrQgA4cifFzv7ABI64Hon0Vdxw5PzFyfmEDRvuOwA5koADRmwY1Q28aetPRm47edPSmozcj5+flOHrT0ZuO3nTcW+R8zIlHIdbGW+0uruMoxNrYgQy81WIqPWqxNhrQgWOhRC3WxgYkYKhJIAN1dZZEAZbcs/USBVgbR2Ik+sK2OkCuRsAOZKAAFWjA3VlyZaLLlYkuVya6XJnocmWiy5WJLlcmulyZ6BIVWnIvBUhUaG1swGioaIdIaY8ri5ReKEAFGtCBIzF+7Bc2YNQMXIECVKAB77j3j7BEFdfCSOmFDbh/miUquTYyUIAKNKADR2Ik+sI+V38kqrcWSdK9eBUNeqf+Ik+K64/RGIm/sAHvZcYYYHfeL+KkaKrQiaxfaECf61ESFV6T7pxf1JIoqSdxkiRpkiWlhqfGSI2RGiM1RmqM1BipMVJjpMZIjbE1osJrUUuKchQN7EAGylqWk9hxbGO0mAc6cCTO0pcR2IAE7EAGClCBBrzX3q+49Fh8nxir7wsb8F7jvxcAJHYc28hAASrwXui/X+4kKtk2jsR4yo+/Gk/5kyipJ3GSJGmSJXnS2MSpwanBqcGpwanBqcGpwanBqcGpIakh0WjRs0LADmSgABVoQAdGo92JG2VvGxsw1CSwAxkYatH1UU2z0BLtAt7FyHE/UTI9KQqhotvMgA4ciXeeb2zA+xJbXO2d6hsZKMBQiwRwAzow1OJqxwVswCjwiuE7OpCBArzV7kl/ibo3vef0JSrc9J5Lkahw20jADoy4GhhxLTDijsA77j33I1HhtnEkRm3NwlvtnkWTKHLb2IEMvNV6XG/U1fS4nEjuew5MYmsx7XE5kdwcEpHcCwnYgQwUoAKjECuuIZJ7Ys9BFPuJbSRgBzJQgCERN9QN6MCo9orb5AvYgATsQAYKUIEGdCDUBGqR5hzdHWm+sAMZKEAFGtCBIzHSfCHUFGoKNYXarJmLnp8FctHzs0IuMNJ8YQNGXA/sQAYKUFeFi8xyuoUOHImzAGdiAxKwA6N1JhrQgSMxcn5hA97XKzE8I48lxuT9C673FI5E4dzEKJzbeEe4J4EkCuc23u1w1wdKFM5tFOB9vfckkETh3EYHjsTI7oUNSMBQ00AGClCBBnTgWMVuEuVysx2iXG4jAyOuBSrQgA4ciZHd9/yVRGndRgJ2YNQAhlpk90IFRhlgdEBk98KRGNk9byiyeyEBQ20Ehlp0S2S3RqNGdmu0TmT3Qk+MPNa4t8jjhR3IwIgb9xYZG4MryugWRsYubMAO3PWiMuvkFjpwV5HKrJNb2IAE7EAGClCBlhg/zRptFj/NCwnYgffNW3RW/DQvVKAB4y6i32YtbOCshZ3YgATsQAYKUIFRvXw31KyWWxiVqC2QgB3IwLgLClSgAR04EmfZ68SozLZAAnYgAwWoQAM6cCTOcvWJcRc9kIECVGDcBQc6cCRG8i6Mu5hIwA5koAAVaEBPjDSNl8+ordvYgQwUoALj7TfIk8YmuZJaEiWtrzGE52xakCRpkiX5pkjYeLONqjm1+V8FqMC49yvQgSMxcndhAxKwAxkoQAVCzaBmUHOoOdQcag41h9rMXQ904EiMn9iF0TojkIAdyEABKtCADoyq7/tyolRuYwMS8Fa7Z+UkyuU2ClCBtjtLZkZPHIkzoyc2IAE7kIECjNJ1ChyJs3h9YtxFD4y74MAOZKAA4y4k0IAOHImR0TFPFqV0GnNUUUq3sQMZKEAFGtCBIzF+jhdCLfJ8xG1Gni9koAAVaEAHjsR42F4YahoYanHH8SO9kIECVKABHTgS46d7YQNCLWbarhhcMdW2UIAKNKADR+LtDxsb8J5vi7f9KKXbyEABKtCADhyJHmoxaL0BCdiBDBSgAg0Y1QxBY9MsqglqSZTUkyJitOyIK73tIArjNt5OdtcjSRTGbexABgpQgQZ04Ehs8RnFFRjfUbRABgpQgQZ04Eik+JyCAhuQgB0Yaj1QgAo0oANHYr+AocaBoSaBHchAASrQgJ590dFDjB6Kb14WErADGShABY71nbzMrbIWNmDchQV2YNxFRJjfukxU4H0XMbEThXEbR2J88ELRAXe2byRgBzLwVqNoncj2hQZ04EiMbF/YgASMuBroa5MAiRI4i2mkKIHb2IFxZTGUI1cXxpVFO0SuLnTgfWXxCBAlcBsbkIAdyEAB3moxERUlcBsdODZGCdzGBqR9x1HsZjHZGMVuGw3owIh7j5IodtvYgATsa+MJmbtbLRSgAg3owJEYu1stjNaJS488XihABcZdSKADR2Lk8cK2NhgRm7uKTOxABgpQgQb0xMjYeGmKWraNHRh3YYECVGDcxQzmwLiLaJL4XG1hA95qMWsYtWwbGShABRrQgfHRVYydyOOFDUjADmTg3WYxQTC31IrpiLmnVswKzE21FjYgATuQgQK8+yLmQaLCbaMDR+LcNCiubG4aNJGAHchAASrQgJ4Ye4/EzE/UshlHDkV2L2SgABVoQAdGX9xJFiVuGxuQgPddxDzI2p5rogAVaEAHjsTYLWhhA8ZdcKAAFRh3IYEOHInx2x0TqVHbtjHuwgI7kIGh5oEKNKADR2Lk/MIGDLUR2IEMFKACDRhtFjfE2fNR1Db7LYraNjJQgAo0oAPR84KeF/S8oOcFPS/oeUHPC3pe0POCnhf0vKLnFT1/p+lraTJu+c7T5F6YC993ovOfjsR4Up4YX3OFvUUt18So5drYgATswLuEL/wvark2KtCADhyJ7QI2IAE7EGrxTWd4ZdRybTTgrRZWGLVcC+Njz4W3WvRd1HKNSJ6o5RqRJlHLNWLoRy3XRgUa0IEj8R76I94FopZrIwE7kIECVKABHTgSGWoMNYYaR9y4t/jQc6ElRvFlTDNFJdbGUIsbiq8zJ8bnmQsbkIAdGPcWAya+0YzZ7NgJa6MBHTgS7QI2IAE7kIFQM6gZ1AxqBjWHWnyTGb+dUYk1InGiEms1qqMvHH0xIgIFNiABO5CBAgy1iQa81XRKjIUalVgb43o5MCJIoAHjelvgWN2iUWi1sQEJGHE1kIEC1NXdGoVWGx0INYIaQY2gFlk4MbJFJ3YgJ8YAv6fyNbas2sjA+yLv+XuNeqeNBrwv0qJJ4hPnifGN8z0frlHvtJGAt5pFq0cl80IBKtCADhyJkU4W/RbptJCAHchAAaK75wfOcW+ROLOHInEWEhAda+hYQ8dG4ixExxo61kaiX8C2skWj+GljBzJQgAo0oANHYqSIxZVFiix04NgYxUwbG5CAHchAASrQgA6EWoNag1qDWoNag1qk071EoFHOtNGADhyJkU4LG5CAHchAqBHUCGoENYJah1qHWodah1qHWodah1qHWodahxpDjaHGUGOoMdQYagw1hhpDjaEmUBOoCdQEagI1gZpATaAmUBOoKdQUago1hZpCTaGmUFOoKdQUagY1g5pBzaBmUDOoGdQMagY1g5pDzaHmUHOoOdQcag41h5pDzaE2oDagNqA2oDagNqA2oDagNqA2Uo2uC9iABOxABgpQgQZ0INQa1BrUGtQa1BrU4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwhe0uElHV7Sp5dYYKh5IAMFqEADOnAkTi+Z2IAEhFp4yb3SrFGgtVGBoTYCHTgSw0vuxWGNXc42EvBWuz/v0CjbGh53HF6yUIEGdOBIDC9Z2IAE7ECodah1qHWodah1qDHUGGoMNYYaQ42hxlBjqDHUGGoCNYGaQE2gJlATqAnUBGoCNYGaQk2hplBTqCnUFGoKNYWaQk2hZlAzqBnUDGoGNYOaQc2gZlAzqDnUHGoONYeaQ82h5lBzqDnUHGoDagNqA2oDagNqA2oDagNqA2oj1fi6gA1IwA5koAAVaEAHQq1BrUGtQa1BrUGtQa1BrUGtQa1BjaBGUCOoEdTgJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLTS0agAg3owJE4vWRiAxKwAxkItQ61DrUOtQ616SUS2IAE7EAGClCBBnTgSBSoCdQEagI1gZpATaAmUBOoCdQUago1hZpCTaGmUFOoKdQUago1g5pBzaBmUDOoGdQMagY1g5pBzaHmUHOoOdQcag41h5pDzaHmUBtQG1AbUBtQG1AbUBtQG1AbUBupptcFbEACdiADBahAAzoQag1qDWoNag1qDWoNag1qDWoNag1qBDWCGkGNoEZQI6gR1AhqBDWCWodah1qHWodah1qHWodah1qHWocavEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCS6I6btxfs2tUx23sQAYKUIEGvNXuwj6N6riF4SULG5CAHcjAULNABRrQgSMxvGRhAxKwAxkINYeaQ82h5lAbUBtQG1AbUBtQG1AbUBtQG1AbqRb1dRsbkIAdyEABKtCADoRag1qDWoNag1qDWoNag1qDWoNagxpBjaBGUCOoEdQIagQ1ghpBjaDWodah1qHWodah1qHWodah1qHWocZQY6gx1BhqDDWGGkONocZQY6gJ1ARqAjWBmkBNoCZQE6gJ1ARqCjWFmkJNoaZQU6gp1BRqCjWFmkHNoGZQM6gZ1OAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlDi9xeInDSxxe4vASh5c4vMThJQ4vcXiJw0scXuLwEoeXOLzE4SUOL3F4icNLHF7i8BKHlzi8xOElDi9xeInDSxxe4vASh5c4vCRq/F6r7S2YCvfCHNyDpbAWtuAR7IUHeO5etbgVpsK9MBeWwlq46HLR5aIbu9Ze98cNGtWAyVS4F+bCUlgLW2EvPMBadLXoatHVoqtFV4uuFl0tulp0teha0bWia0XXiq4VXSu6VnSt6FrRtaLrRdeLrk9dDu6FubAU1sJW2AsP8LgKt8JFd0B3VkHGksasd7y/jdNZ77hwJM7Xk4kNSMAOZKAAFQi1BrUGNYIaQY2gRlAjqBHUCGoENYIaQa1DrUOtQ61DrUOtQ61DrUOtQ61DjaHGUGOoMdQYagw1hhpDjaHGUBOoCdQEagI1gZpATaAmUBOoCdQUago1hZpCTaGmUFOoKdQUago1g5pBzaBmUDOoGdQMagY1g5pBzaHmUHOoOdQcag41h5pDzaHmUBtQG1AbUBtQG1AbUBtQG1AbUBtbzWYl5sIGJOC0DQnmwlJYC1thLzzA7So87cqDqXAvPHU1WAorONdu7cq1W7ty7dZmieZCBgowot3for3YCnvhuIt7TyKLXfKSW+G4C4rWmw8Ri7mwFNbCVtgLD/B8iFjcChddLrrzIeLeEMmu+RBxf6lm13yIWGyFvfAAz4eIxa0wFe6FuXDRnQ8RFD07HyIWe+EBng8Ri1thKtwLc2EpXHTnQ0SP/poPEYsHeD5ELG6FqXAvzIWlcOj2GO3zIWKxg+ePf4+RPH/8F1vhvTZgV66y2JWrLHblKotducpiV66y2JWrLHblKotducpiV66y2DWglqss1nKVxVqusljLVRZrucpiLVdZrOUqi7VcZbGWqyzWcpXF2gW1BrUGtQa1BrUGtQa1BrW2VyJsVqUuHIl0ARuQgLOTIto0hfubEmvTFHr8nWkKi1thKtwLc2EprIWtsBcuulx0uehy0eWiy3uK0Gbp6UIFGtCBI3FOWUxsQAJ2INQEatMI7q9frE0jWOyFB3gaweJWmAr3wnti0mYJ6kIFTtG4mOkCiwd4usDiVpgK98JcODr0/k7H2nSBxVbYCw/wfJVY3ApT4V44bjbue85lTFSgAR04EnMuw6K49BVYgq2wFx7JUWCa3ArPi9XgXpgLS2EtbIXne20LHuD5ILG4FabCvfDUtWAprIXn+3QP9sIDTPN+PbgVpsK9MBeWwlrYCoeuxDVPd5k83WVxK0yFe2EuLIW1cOhK3Nd0C4l2mG6xmAvPOHGd8xFisRX2wgM8HyEWt8JUuBfmwkV3OofG9U/nWOyFB3g6x+JWmAr3wlw4dDXaZz5CLLbCXnjqRltN81jcCk/duJdpHou5sBTWwlbYCw/wNI/FrXDRneZhcY9zHmKxFNbCVtgLD/Cch1jcCs/4HDz//n0NffrG4lY4rvMuyrQ+fWMxF5bCWtgKe+EBnr6xuBUuutM34iWoT99YLIW1sBX2wgM8fWNxKxy691ZD1qdvLObCUnjqRltN31jshadu3Mv0jcWtMBXuhbmwFNbCVtgLF935VDLiHudTyWIq3AtzYSmsha2wg6efjGif6SeLe2EuLIW18IwvwV447uve8Mj69JPFU9eCqfDUjb6YfrJ46kb7TD9ZfOu2e2dni8LT5BF851GUnia34Lj38JPNPbgHc2EJjnsMP9k8deMezQtP3bhHvwpP3bhHp8JTN+7RufDUjXt0LRy6Le4x/GRz6La4x/CTzTlfbn1Q4V6YC0thLTx1o62GFx7JUZj6YgluhalwL8yFpbAWtsJeeIBb0W1Ft834GjzjWPCM48EDTFfhVpgKl+uncv1Urp/K9VO5firXT+X6e7n+Xq6/l3brRbcX3W64R75wj1yun8v1z2P9FnNhKVyun8v1c7l+Ltcv5fqlXL+U65dy/VKuX0q7SdGVoqsX7lE77lHL9Wu5ftXCVrj0u5brt3L9Vq7fyvVbuX4r12/l+q1cv5Xrt9JuVnS96E4fmPc4833eo5fr93L9XsbtKON2lH4fpd/HjD+CuXCu2xgPLWyFc93GZOZ1TOvJzN+YvpOZv/fGTyYzfxdb4bj+mM6Smb+TZ/4uboWpcC/MhaWwFrbCRbcVXSq6M9/vPaxMZr4v7oW5sBTWwlbYCw/wzPfFRbcX3T7je/CMM4IHeOb74laYCvfCXFgKa2ErHLo9+n3m++SZ74tbYSrcC3NhKayFrXDRlal7/xbL9IHFrTAV7oW5sBTWwlbYCxfd6Q8xnSjTHxZT4V6YC0thLWyFvXDoxkyMTH9YHLoxQSLz+YGjfbAuaoJ1UROsi5pgXdQE66ImWBc1wbqoCdZFTbAuaoJ1UZNRdEfRDT9pPFkLW2EvPJJ1Pj8sboWpcC/MhaeuBGthK+yFB3j6z+L590ewFx7g6RuLW2EqHNd5b1ZkOn1j8sz3mEPQme+Le+H59+N6pg8s1sJxnTpjeuEBnv4Q7+M6/WExFe6FubAU1sJW2AsPsBRdKbpSdKc/SLTV9IfFUlgLW2EvPMDTHxa3wlS46GrRnf5w775iOv1hsRX2wgM8/WFxK0yFe2EuXHSt6FrRtaJrRdeLrhddL7pedL3oetH1outF14uuF91RdEfRHUV3FN1RdKc/xJyPTn9YbIW98Ei26Q+LW2Eq3Atz4amrwVN3BFthLzzA0x8Wt8JUuBfmwlK46E6fuXeYMZs+s3iAp88sboWpcC/MhQWc5eRmWU5uluXkZllObja9J+acbHrPYi1shb3wAE/vWdwKU+FeuOhy0eWiy0WXiy4XXSm6UnSl6ErRlaI7vcdivAiWH02ssBeeusHTexa3wlS4F+bCUlgLW2EvXHSn98T8n03vWUyFe2EuLIW1sBX2wqEbc282vWdxKxy6URpg03sWc2EprIWtsBce4Ok9i1vhoju9xyPXp/cslsJa2Ap74ZHs03sWt8JT14KlsBae8UewF474sYzk02MWt8IRP1b+fHrMYi4shbWwFfbCAzw9ZnErXHSp6FLRpaJLRZeKLhVdKrq96Pai24tuL7q96PaiO30p5jJnLelmLzzA05cWt8JhgRw4Q/ZgK+yFZ8j4+9NyFrfCVLgX5sJSWAtbYS9cdKe1xDTrLAdtMbU6y0E3S2EtbIW98ABPa4nX+1kOupkK98JcWAprYQM7pnVm2WeLKeBZ9rm5F+bC8748WAtbYS88wNNCFrfCc7ok4o9emAtLYS1shb3wSB7XVRjTPePCfY1pIYu1sBXGfY0L9zXaVbgVpsK9MBfGfY2mha2wFy73ReW+1rTpZCrcCyvuncp9LauYPMDLKiaX++rlvnq5r17uq0thLWyFy331cl9lOnVwuS8u98XlvpgLl/bk0p5r2jTuXcp9SStMhXvhcl9S7kvKfUm5LynjRMo40TJOtNyXlvsq06xDy31puS8t96VlnGhpTy3tmd+u2MhvV2zktysWhaavqcUrWAtbYS88wGEmm1thKtwLc+Gi60XXi64XXS+6o+iOojuK7ii6o+iOqduCtbAV9sKzcunVcX7NNeDFrTAV7oW5sBTWwgZu814kmAr3wlxYCmvheS8a7IUHmK7CrTAV7oW5sBTWwkWXpq4FD3C/Ck/dEUyFQ/ee+/ZZiro5dO+zKnyWom4O3XsuzGcp6uYBDmPZ3ApT4V6YC0thLVx0uehy0ZWiK0VXiq4UXSm6UnSl6ErRlaIrRVeLrhZdLbpadLXoatHVoqtFV4uuFl0rulZ0reha0bWia0XXiq4VXSu6VnS96HrR9aI7vahFjkwvWiyFtfDUjbE6vWjxAE8vWtwKU+FemAtLYS1cdEfRHdCN8tbkVpgK98JcWArP+Lf/tOk/9xqVt+k/iyPOvf7kbfrPYimsha2wFx7g6S33Q6k3Ql+36SHR/rNydfMATw9ZHNd8l4/7rFzd3AtzYYyx1otu8ZBWPKQVD2nFQ1rxkLY8JK6He2EuLIUV1zM9ZLEXLrrFQ1rxkFY8pBUPacVDWvGQJhjbTUo7S2lnKe08PWRej5Z21tLOxUNa8ZBWPKQVD2nFQ1rxkFY8pFnp3+Uhk0s7W2lnK/07PWRxaefiIa14SCse0oqHtOIhrXhI83K/Xu63eEgrHtK8tLOXdvbSztND7jOjvU0PWTzbOeJPD1nMhaXwvN/I6+khi73wSJ61sJtbYSrcC09dD5bClrk861/pXsv0Wf+6uF2FW2GMJWq9MBeWwlrYCnth9Omsf93cClPhXpgLS2EtjLE061zpPszIZ53rZioc8Xu0z/SiHtc5vWixFrbCXniApxctboUJPMcnRzvP8blYC4eWxLXN8bl4gOf4XNwKU+FemAtLYS1cdEfRHdCdNZR079nvs1aS7tpfn/WR67/PcXWfp+yzPpLutTqf9ZGbe2EuLIW1sBWe16bBAzzH1eKpa8FT14On7ggO3XuN0Gd95LqXOa4Wl3tcYynir7E0uRfmwlJYC1thLzzAayxNnrpxL2ssxb3M37XFXFgKT9243/m7ttgLD/D8XVvcClPhXjhicrTh/G3iGCfz94hjPMzfI442nL9Hi6WwFh7g+fvCMZbm78viGSfGw/wd4Wir+bvA0Vbzd2ExF5660T4r7yZbYUf8mXfzv8+8W9wKU+GOdph5t1gKa2Hc76wdnPc4awc3ox145shdh+08c+ReS/NZ27fZCw/wzJHFEf8+FMJnDR/d9dY+a/g2a2Er7IUj/r3G5rOGb3MrTIV7YS4shadutMnMl8VeeIBnvixuhalwLzy1oj1njiy2wl54gGeOLG6FqXAvzIWLrhTdmUf3WpbzfPZbPMAzvxa3wlS4o1+09KmWPtXSpzO/7vMYfNbw0b0Ps88avs1W2AvPa4uxNJ/TFrfCVLgX5sJSWAtP3RjnMx8XD/DMx8WtMBXuhQX3O3PQY/zPHAyWmYNxj7PObzMV7oXjXu5don3W/23WwnEv99qgz/q/zQNxWtFtRbcV3VZ05+/mYimsha2wFy66VLRm7mtc88z9xVbYC09viXuZub+4FabCcf13LYLLzP3FUlgLW2EvPMAz9xe3wlS46HLR5aLLRZeLLhfdme/3iUM+6/noPoPGZw0f3XUVPmv4NnvhAZ65vLgVpsLzmqNfZi4vlsJa2HA98z1u8QDP97jFrTAV7oXLPU5/mHznrM90uVPW5yi/M9Y9GupO2I0j8U7XjQ1IwA5koAAVCLURatErY2yMQrqNDUjADmSgABVoQAdCrUGthRoFErADGShABRrQgSORLiDUCGoUce/Oin0U/V6n96i720jADmSgABVoQAeORA4JCyRgBzJQgAo0oANHolzAkPDACDYCFWjAO9hdT+BRL7fwTsWNDUjADmSgABVoQEjMjJpjY2bUYimsha2wFx7g+Yu7uBWmwkXXi64XXS+6XnS96M5f3DmY5i/u4laYCvfCXFgKa2Er7IWhO6veNrfCVLgX5sJTV4O18NQdwV54gOev8uJWmAr3wlw44scYmFVsdFdr+Kxi2xxx7lIGn1Vsm7mwFNbCVtgLD/D8VR7RDvNXeTEVnrrRJvNXebEU1sJW2AsP8PxVvlc0fVa+bb51+xVtEr/Km7mwFNbCVtgLD7DM+NG2MuNQsBaeceLexQsPcPxCb26FqXAvzIWnbrSDamErPHWjTXSA7SrcClPhXpgLS+Gp68EG9hkzxqdT4V6YC0fMFm0bXrHZCnvhuJcW7R9esbkVpsK9MBeWwlp4xr/7cVajbW6FqfCM34O5sBTWwvO+ONgLD3C7CrfCVLgX5sKvmCMmmecGhhNj+5CFd23qXRrhcwPDhR14lwrEUtHcwHChAiPu3dtRRzZiySjKyDbeEWLRJ4rIRswTRw3ZRrsx2i92I1s4EmM3spgSj/KxjQTsQAYKUIEGdOBIFKgJ1ARqAjWBWuw7FvPwUTy2cSTGvmMLG5CAHRhxo4diP5CFCgy16KHYd2zhSIx9x2LaPurIRszURxnZxlCLHopykIUCvNViAjsqyDbeajGVHdsJjphpjrKyjbdajyaJfccWduAdLNI9qsU2jsTY3WNhAxKwAxkoQAVCbUBtpNo8knlhAxKwAxkoQAVGMtwNNbcdDBeZ2w4uZGCkEwUq0IAOHIkzeSc2YMTtgQJUoAEjLgeOxChYX9iABOxABgpQExmNymjUyNh5DZGxCxGMEYxLMAPi0hmXLrh0waULLl1w6QI1gZpATaAmUBOoKdQUago1hVpkbJ+ILoyEvMvZfdZnzfFgGCWGURIJuVCBBnQgJByjxDFKIiEXdiADMSYdY3K+SMeoni/SoYYX6YEX6YEX6YEX6YEX6YEX6TEcuF/bx3VdwAYk4H6RHle+SI8rX6THlS/S48oX6XHli/S48kV6XPkiPa7WgASEWoNag1q+SI8rX6THlS/S48oX6XHli/S48kV6XPkiPaLkaiMDBQg1gtp86ZbA/SI9rnyRHle+SI8rX6THlS/SI+qjNjYgATuQgftFelz5Ij2ufJEeV75IjytfpEdUQm0kYAcyUIC23r9H1DfFm/aI8qaNBNwv0uPKF+lx5Yv0uPJFelz5Ij2irmnjSLQL2IAEhITh5i0ixOX4BWxAAsbPTESIhFwoQAUa0IEjcf6ETmxAAkJtQG1AbUBtQG1Abf6EvpxgzK32FkajToxGpUAHjsRIvYUNGE3SA6OzOFCBBnTgSIwku981X9iABOxABgpQgaGmgQ4ciZF6CxuQgB3IwJCwQAM6cCRGbi5sQAJ2IAMFCDWGWqTpXZM8otxoYaTpwgYkYAdytrqgswSdJeisOaqjj+f4jT6e43fiSJzjd2KM3+iLOX4ndiADBahAAzow1O4rm4cOL2xAAnYgAwVo+97mScP3W/eYZwovpH1D80zhhQwUYFy6BRrQgXHpdwfMM4UXtoxAUCOoEdQIavGMuNCADsxumWcKL4RanxL/+z/900v2f/3TfVMm1+t/9vt/xoC81+xjOAboBtvgG8aCGIQBbQNt6Bt2ZNmRZUeWHVl2ZNmRdUfWHVl3ZN2RdUfWHVl3ZN2RdUfWHdl2ZNuRbUe2iHx/9MQbZINusA2+YSyIH4+AtoE27Mi+I/uO7Duy78i+I/uOPHbksSOPHXnsyGNHHjtyPM7d9QHxMBfgG8aC+FVY1JIoqSdxkiRpkiV5Umq01Gip0VKjpUZLjZYaLTVaarTUaKlBqUGpQalBqUGpQalBqUGpQakRvyJ3Kcb8EZnUkiipJ3FSaMhNmmRJoeE3jU3xK3JviDB/RCZRUk/iJEnSJEvypLFJUkNSQ1JDUkNSYybofc2Rj3dRV9SXLupJnCRJmmRJnjQ2RWJOSg1LDUsNSw1LDUuNyM+7MC3qRxeNTZGik1oSJfUkTpIkTUoNTw1PjZEaIzVGaozUGKkxUmOkxkiNkRpja8Rvod8laPFTuIiSehIn+abIwbsUL37u/C6gi1+7RZwkSZpkSZ40NkUOTmpJqUGpQalBqUGpQalBqUGp0VOjp0ZPjZ4aPTV6avTU6KnRU6OnBqcGpwanBqcGpwanBqcGpwanBqeGpIakhqSGpIakhqSGpIakhqSGpIamhqaGpoamhqaGpoamhqaGpoamhqWGpYalhqWGpYalhqWGpYalhqWGp4anhqeGp4anhqeGp4anxsxau2lsmlkb1JIoqSeFht8kSZpkSZ40FvWZtUEtiZJ6EidJkiZZkielRkuNlhotNWj7RqeWREk9iZPiCsZNnjQ2zWwMuuPdBUBRB7uoJ93x7nKfqIBdpEmW5EljU2TjpJZEST0pNTg1ODU4NTg1ODUkNSQ1IhvvEp8+s5Fv4iRJ0iRL8qSxaWZjUEuipNTQ1NDU0NTQ1NDU0NSw1LDUsNSw1LDUsNSw1LDUsNSw1PDU8NTw1PDU8NTw1PDU8NTw1PDUGKkxUmOkxkiNkRojNcaOzPPZVm5qSZQUIyf+HifFyIn/ryZZ0n5e42s/r/F8tg2KkaM3UVJP2s9S3CRJkyzJk/bzWuyy6XdBV9Th+l3mG1W4fhftRg3uIk8amyJDJ7UkSupJnCRJt8ZdDBz1tos8aWyKDL2LR6POdhEl3Rp3CW/sqrlIklKDU4NTg1NDUkNSQ1JDUkNSQ1IjMnT+PUvypLFJU0NTQ1NDU0NTQ1MjMvQu3I19NRd5Ut5HZOiklkRJPSk07pETGTopNO5xEBk6yZNC4x4bkaGTWhIl9SROkiRNsiRPSo2RGiM1RmqM1BipMVJjpMZIjZEaY2tE1e2ilkRJPYmTJEmTLMmTUqOlRkuNlhotNVpqRP7e5chRVbtorAyNnTNjvEQN7SJK6kmcJEmaZGtcRWXtorEpcnpS5PR9VTOng3oSJ0mSJlmSJ41NqPsSlH2JZ7WZjAvYgATsQAYKUIFQG1AbqabXBWxAAmadl6LMSy8BKtCADszKMm0XsAEJCLUGtQa1BrUGtQa1WW19L8/MTRMXZjXZ3DJxYQcyUIAKNGCWr+mq7IrZs1nA1W5UYJaNaXdgFo3pqt0KbEACdiADp9p9x7OWeqIBs1ZsbpQ4cX5PMbEBCdiBDJxqdqMCs0RMxYFZIKarriuwAQnYgQycce/mWxVadGMDZl2YWgcyUIAKNKADsxBt1nlGzZiu0q1AAmYxmDoDBahAAzowy89mdefCtovGZm3nwhlsxCl3QAeOjbbKs2IetgEJ2IFZ+mWXABVoQAdmtZm1C9iAvEvB5h6ECxVoQN9lYHP/wYl0ARswS71m1eZCBgpQgQZ04Kote03Q8z1Bf+vY/V5yq0zoG3iDbNCA17+V+996/M8+p5gn+Iax4O7lCW0DbegbeINs2JHHjjx25LEjxxTzopZESRF9Tyfb/aAd08mLPGlsahFP1zSx3T+7MU28yJJ802wYX1O9iyzJk0JjrKneRS2Jku5rvh/TYgrX7p/smK61+0c5pmbt/qYspmYXadKtez8UxtTsorHpNr5FLSni3Xcu8W91TcguGpv0SmpJtK9KexInSZImWZInjU12JUU8WxOyiyRJkyKer4lWux+XYqJ1ESdJkiZZkifd13KXucRE66KWdMfzPalqdylKTKra/ZAQk6qzXUa239jtF5Oqi1pSXLO+MknvTLod3WI70L6BN8gG3WAbbrHYFHEs8GtD2xCRbS4VTYh/5StHZ7nEhraBNtz/KiobeINsuK9n7BwdO0fHztGROToyR0fm6MgcnRTh9/KOjcjH+HuZeyMyKeLd/RXGNYmSehInSZImWdL9iHr/6s7lmKB4DJ7Ukijpfvi9f5znIsykiEIrW/2KfKSknsRJkqRJluRJcVU7g/3+tZyLK5MoqSdxkiRpkiWFhq9MnxQvqvfv6VyOuX8t53LMpFvj/qWbyzGTbo22M93v36u5HHP/2MzlmCYr0yfFi+pdXTyXY1rkcmj4yn6/K4fncsykW+MuIZ7LMdRW9i+6NSicY2yKF9VJLYmSetKtcRfwzuWYSZoUGrxcwu/S27kcQ7pcYlFLCo37juJF9S61ncsxd03tXI7p13KORZZ0a/RcjrnLaedyTM/lmLuUcC7HTLo17kLCuRzTw1dC455QjhfVSZbkSWNTvKhOakkR2feyzSRJ0qSIPPayzaSxKV5ZJ7UkSupJnBQa4+WKFq4YP69tWV9A/Li211/wKDaIv3AXG4z4n7d1yP3P75v6X/O5RfZzS4Bt8A1jQfwyB9zGcs/nx+9ywG0r92YPnTfIhoh8T4FHZL+1G+og2v9+/Yd//ff/+s//81/+/d/+y//87//tv93/v/0f/sc//ef/z//6p//nn//7f/u3//lP//nf/t9//df/9E//v3/+1/83/tL/+H/++d/iz//5z//99f99DZH/9m//5+vPV8D/61/+9b/d9L//E/719fU/fa0OyfrXr+UhywCvx6GnIV6Tx22FeM0PE0K0X6+CDiH6vojXnCoCqD4NoG23wetdMwO8Xkx+CcBfB3hZ7Y7w8lD/MoSc2uHO89UO1r8McWrKWCuaIdzHl01phw6N3U9mh74WQxCi8y8h/NPeON7GQITLv7yNdogh2neHvBAxXin8S4h26tP7Z3z1qdCXIQ7jKh7IIsLLVnEfwo8jRJHPjBDe9EWEp7dhX9/GqTHt2in6wvFlCD0Zxf1cu4yC25ch7OOmOIxMimPy5kW8Xt0yBtOvIcbhIu6XrnkRw768CDo05ohzASPEXU6LPKfx/Eba/Vu6bkTaVzdCh4EVOzrMHLu+DHDOsKE5KFr/qkfpB1zzFINje7CI8VpgOvx86PE6KK+jtMbrseXXGIfRKb575DWDWyJczwdGbzkwXmucXw4MOgzPwb7H55ByHa+V3F9i9NNvul2ZJa8JoozxnT6xneyvZTP7sk/6YXy2WA+dfTKalhjya4x+iCHk8D6W+lPy6/NJ589HR5dPR8f5XvTSvAyV8fW9nH7e4xCRZRzlCeFlKL/G8I/Hx/jcAo8xHmYLt8+zhenT1jj37GDY4KjPTL/1LB9GaW+2g7yw9uxvMeT0m8B7iJHXR1D/rT0OXvpasdwPb6+FyvZ1jNN1DO3543QdruMwSlXzOl7rG/ZljGPPaOwTM3vmtbJkX/aMHPz0tVhG+XZB+nWMw0jlOKh2OmojeivGa424Z88Qv3cvve8Yr9e2Q3vw6cGBRz6a65sxYgJ7PXwYvRfD8VT7mmH72k+PI8QuzxEyZ12/uBL/h/46WMtXv3afc//ldeihd1/LD7K79z7u5vrCzbT9Q/3Q4pPQdS9Dvu4Z7f/QNr33ntvX4Ty+fnrQk5d183yhHvVKfn1lUP20TY9XwTnDQczXl1dxfCKznBp4zTz6l09kevjVJukjXwN/ydtfY9hhlLLnRAn7LzH0cQzhvA7h0b+OQZ8/F9rHo/Tcop5jQ6m91yvaEePUK4cxypdnr7Rfnk75G9fh+N0n+fo6Dl7a+khD5l9G6a/XYeM0g5W/lL27fR3jdB1cDLl9HcNPXhrr6nvSRN9q035hevXy97K2XzmF9Loi+zKGn96iBuUAefEYX7nY6TqaePbLYaz7yUsvw9TJL7+Tv059+OEt6j5kc8Uw++Wt8nmMe8O7nM6S9nWM8bkDjesf6UCvR0LLXjF7b4T1fBPrTOPLGKN/Ou98vArOF7GudfL796s4/NK28srQe+3X/jzG4Byjl19fxziMr+H53DFGebrtv/3CjYOHDdu3MsqT7Sv1nmeb5DP260fm61HeruvYHPnzdBUr/WMG+2ClPWd++fp63rZdpzf9OBRoXgYZl/b4fVni9FB5xdZTc3y8uH856TDOj3P5UCnj6wHSrtOcFNMeZSJlVv/3pZ526Q/0jX3eN/4TfTN+om/O8+KieL39cqXj9ICLtSs2la/Xv04LR68HqPzdf60WfJ15xyBxntYMQp0OQfjzdbQmHy+knUI8XUl7eieHpbTHTcr9zX5pzBnk8PDQTusNT1dfzlcimo+GeryS4zJpPvffZwt/7UTHIFFPM4O83tYPQX5grNLnY5U+H6un9aina53kny52Njo+sueU8uvpvU6x9zd75ZB35+GRc8r3IbDvjTFvA31bX5R/D3Ke7+d8Q7Uyu/37k+o570ZOxrzmpQ/2flqVejrau3482k8hHo72x3fyrjOPXBLn69Kvm5Svz5v0tCz1sElPIR426eM7ebtJBY92l7/3Y8dXy5mli0/9clqWelgPxPYDfeuf961/3rf2ed+eW/TT51y5ckX7tfp6qPOSflpd65orUv1gyaeloNizeD/3X1878rk9DO3hb7bpw0IrOf3wc7bq6zWRv47hn490GR+P9FOIhyP98Z0cRvqxRTGl/GpRfS+G5OvYaw3ky2qppqcFy5FTyjJ0vBmj85MY5xH2rJZP7ePRoZ/XAx4XHJ7V0bXTUtKzQrrjVTx8VD8tRj18VD+tRWnLVSBtpVv/eFR/HkTfDMK5qK5c1jv/DKKf9sv5XlBC0vzde6EcYvrK/HeDZLoojXe7pmfdhdZ5+j+CnJakhucb0Kgj7c/q1VOQxyWwpyAtpy/Gq6PeDEL5bDnqBNf3gjwsRWunmfKntWjttKj0rFDgfB1GA5P+dLiOx0HGu0HSFl8o7wV5LSxgPeb1CnIKc+zisbN4cHl9+OZgYww20XeD5DLXK8ghAZ//gn/9NjROL/6YT7Gvf7POT8yPKsjbaYnq8cvhMUhsjjCDdPr6NZWuY9l0dsxrBeLrevjr809O6Pr4m5NjiGdPVnTxx880dFqgevqthX4+/fi8V+zQK8fRoXBm57di3HW9eTPD3o1xfRyj49Gql5/v78VQlHL41zFa//h96C8xHr0Pne+FMchY/fMYb46xTvkj1dm/7tvTl0WvKY9SR3rKutOFmOQAef1MfHkhp9Wpp517jvEDnWsN93JIXDou+mctRrtrSd5s1JFrfn4YZad1pWcr7XT8VmpkDdbLP75+FTleB+d8G5fh8cfb6vk3Oxceudf1nG/98DPjQlp/N0iOEObT00P/gcVYOlXoPv2E+Hw7o+8OlnbR4XZ+4su+Lv/g25GWQaTx6Xbs02fd42VwDld5edHhMsYpbTJ9S40c/fatPfHnH/cdryIn3Gvy/nkVpyWdljOqTKVqSJ+HaJfnpygvluu9ICN/qV5cHna/FwTfK7S6cvidRs3v8nicutb+oSFeP1QDb8vevryVc5CnPWM/0TP2ec+cM1fLQ8Qvmyp8I/215d1oM383SD7fva7pzZ885XwW0V+q/r4VpOcHvir2ddUPif3Ab8RpfedHfiNUsp77tZJ5uJ3jx1MS5/+s+xnlMe8bV2I96xit8+lK6POZiNPnU09nIk5rTQ9nIk4hHs5EHD+eejgTcVxqejYTof4DMxGPe+XwlngeHc9mIpQ+n4n4S4zr4xgPXzTt6YqovNemT2dEzjGezYiYff7SfI7x7KX5eC985fhg+nKFmPz6R1/Hs5mZxzHezLmnMzPHD6iezswY/8AA4X9wxzycVXH/gVmV84U8m1U5fUL1cFZltB+YVTldx7NZlb89xHTsMjKEv3rsHnwOwiWIvxPk4Svi327m2XUc7FA1q3Xt0sP8gZxKwimnD/D80b/1IjN6eZGRt96GXv9wIAh99TbUj2shD1+pjkF+5PX/aYvQT7SI/ESLyKctcl4uR63tGN7eXHMfOSH6CnJY/R/0I2vupzCKHaDUrX35OnUKgVcyHWTvhchPbXTIlyHOhTdZ1an9eruOKH+oXkEO1TvHjyBGVmdZvZnvfWgz8sHdxvg6SD9t5tcsP0t/4ZcPEb19XqXa28dVqscQz95RO7WP31E7fVwB2E/rVE/fUZ/3ih165TQ68ClGG+PL97p+Wqh6+Jj6l+t49HVrP31E9ezpsNPxw9S0sdcv/Ndftx6v49nT4bE5XsP0wjD1t5qUGj5dbl8/+ffTF1QPm/S4QPXwgft4HQ+XMc9flOV2FN786/12z18cP/vy4Lg966OPBnofn9vxaXnqoR2fQjy048d3Yu816MNvBo57Jzz6ZKCfdtJ7+L7/lxjPPhn4uNr/uDnqw7rjY4yHFcPHGA8Lho9bVz4ssX0eY7wZ41mB7V9+mh4+65+3vn1WXnu8m6cj5BTjYXHteWPSH7iXpyN1fD5SjxukPhypz2OMN2M8G6ncfmSkHlv1YQ33473Qv36M0k8rUo57NF851F+//XWl8bdnyuOGSTSwZtG+miw8h0Ad1y97rf0Wwn5gOun0QKn49PuXTTx/awzrn69n99Pk+tP17NObz8P2OE165v53WguNft/M/BQhn8K0VOXTdzZllysn+KRUKv2xKftxY3fCg1zZz+ePrbv9uP3Us53rznuaPts78y+7mdNV7ubrHXy7949z9hjiWc76xxOepzc4MmzkZ/bV3P6pvvDZKD9GeDTKj++hD0f5udjy4Sg/r0A9HOXHw2Pyu016cbmQ/jyGZJu+llQOMY6ZEqcQrhbx6+vdkPtpl7WHmXIM8SxTTgtQDzPleXP8Uuf8nQ3mGTUfZWGQ3o7hn8eoBajf2ejesCmz+debw/NpKz/GoyBTuZk/g5zuhnLipdeU+WaQnqvp1PXdIHjyoG4/EKRUW39r5/4r1xf0Gu3Nzik7z4xxvdvDuebCvR3a9eF5CNfQt1pEwrlnjHoKwR8xnp4P4Ye0aZ9/1cftaIkXaqVIDxdy+vhUcv9/k/r1h/8W47TtZHd4c10y+f06TvtOjrLLQP1Y4vcY47gKnasML64bPvp3mjW34/llF94/m/UYZJQ6tq8HyflIhJaDpCkdfnz5tBb16AX3L9eRIe7r8MN1yHHqIScNWimXtl+frY6Hd8QwnDbC7evrOB7e0XPyQn7dZPk7B2/AitT1vRhYEbvnlr9+sDr2DOeeGC/mt6PgcCfl0+Es/uk7wDHCo3eAvxy7USpIxvVVqQOfXkVGyzn215ShvRUCB9UMIn/rNbfn7qYvtvFez1pZfzFpX0fh/vHk1DnEo8d35o8np77RHPR+o2LbSelvJp3h9ezFeh1eJT5+szqHeNg1/9g3q1+bw663u8ZKlPZlFO2fOpn2j2czjkfmtHwTefHBk/m0p9+zqZ1jiJcb4jfG9MuP0P4SxMohHvblR2h/C1KOMzJ/y1ed8Bji/XS806lS8WcONKJ8RqRaiPbHgUZPYzR6L4Ywjp7W9laM1/XnLrrXLy9Fvx30cn0+Y388jqhJ7k5KXvP/GzF6rvdJr98H/BaDTx9LPTTmY4hnxqz+qTGfGyPfdoXrtwG/N8YpiF5Z+KDXL0ca/R7k9OCOLyXb9eWb3fkyUPnZftmX+Dv30nL/29d7UXs3SE40a12W/m6Q/AC1vXn01uPjuz7+vbSPfy+PR4g9nP0/H0P2bPaf/Qdm/0+nZr0mBnO27DqcAMafr07x56tT/Pnq1HFZGzv5dnvzWLaOHZZfMb4+joiPX0k9XJVmH5//xo3jbpqZLeX55Y/LOK5RPb2X8QObpBwPaGppyY1+2VSk/3YhpxlZTB0WC7NvHBOl2KzB9b1jop4m/vGoKcszxIbX43rbN2LgUMfhdfPZ78XI6i2v5evfOPLqNReLvSvK7+Tvh14dr2NcOHqL3ryXofiap5Z8fyNGe81IZ99eVzn28/coclrT+aEwvxR+96+PEzsHwUoXUXmp+16QqKxabx/+dZBxfoPJlRBuXx/zJtfndcZ/ifHsDMBzkIfPIX+5kmcPInLaj++pH50PJXv2cZG0z89Gkfbx2SjHEM+q2Z/fyaGa/XzM26MPcuQHduM7n/OmuUvyC0sx6R/nvJ2CGEpMrP7WfCfI029yzlciHZWg+v6xdWXTplHXmPU7Ye7jcnMVgtXeDpOH1t4hDx9/HlumDzRvXXr/VvMy5hHrAtGfQY6zxI8+8rnOW9A8+W7qHOPZd1Py+XdT8hPfTckPfDd17tpc3H31cn8zc9rVy0fk3N8d8jiX+MX2dgI21He2X7+/vL7x4Ai3v66ywdcfD2unVatnr+HnEI9ew4X7PzTEszf5c4M6Pokvc+a/t+dp75Zn777CP7BbmvAP7JZ2PPxa0plfKyJf72R5PPy65QHH3onfiyH5luVCX+/dKkKfjvPzZeTzt8vhID4R/jjdjiGe5Yp8/N3AaZ7o6aHmp11sns3LHiM8mpf1H3gf8p94HTptT/T8dej6/HVIPz8YVfTjg1GPIR6+Dj2+k9Pr0PX569Bpdvfx6xD9xOsQ/cTrEP3E6xD9xOtQ/5nXof4zr0P9Z16H6Cdeh+gnXofa58/u1w+8Dl2fvw45ffw65P0HXoecPm9S+onXof4zr0P9Z16H+o+8Dp2eBSSfJn75VuQ7TxO55q389Sqvfvz0f9xS6+nT/2kF7nGlyrGoMneQ6vU4u98XeY8xDKfXj1/qw5/H4Cufi17p8/Vis4zPj8H9S4yH8+/HIE/n389X8uyBU68fKAQ4FhNwqZpr9mXfnGKQYg9rVX0vhmTykxp/GUOP2/s9zDw9HkP19L372CL5zEl26eFuTrPWDzcpP+4cwIrPGezrY5u1fX5amrbPT0vT9vFpaccQz95J9Ae+q9L28Wlp2n7gtLTnvWKHXvn8tLRjjId7lP8txvVxjGd7lOtpl7CHe5Sfr+PZHuV/ifFoj3Klz7ek+kuMR+/O53t5tke5nvbU+5nreLRH+fMYb+bcwz3K9XQA1dM9yv8y2B8OEPoHd8yzPcq1H4+ffbZH+V8u5NEe5do/3oVSj7viPXzXPV7Hs3fdvz3DPNqjXI9bPz/cG1w/P8bqrzfz7Drk0cNUv4i+fqHqn74on8uhn7wonz/pwHSmeJ38/8ZnIYpPS3T092J4fllK9QX1e5+WkKFPvr4XPn2R9fT7lGOQZ/ton0M82kf7LyGe7KOt51HOeGW43uvZX2LwmzEIMfpphH38ceo5xKMVP9X2Dw3x0AOP7an/4dd+3+uT8nI83nSOeh3vxvB8dnnhuzGw6fQxxsdurh+7+V++J2/YTZPe/CQ9631f+NVk1PHz/Ectcf7A/0lLHDdNsJafK9kvnwt8Y+MFz9m914pEezMG9pHx8eYGEC64jnc3ovB8XXmFe3cjioa3BHq7PQZiHPrl5H+Srzws1n8gxnsbhLymKXNWToXfjOH5lmCnMXaKYfnBI7scPmU/HUNimj8qZnW587eaKz1V5rDkaH81Dn+5fPS3K7G8EjpdyWmpX/G5opbpm/6N68AivVlJuz+u4/T9lOHsTxOSQ5DTqik21io9c+8X8niIOF5Gx2HPBD19PfV4iJy+4ng8RP5yJc+GyGnx5uEQOV7H4yEyPh8idjyq/uMhIjiYSeq5TL8PETstigs5vqqvP3f+W4zTY5DRvpfXEpJ/FeN8L5q/dvUl7s97kR+4F/3H3gvOMX7he7920rMi5reNCr4Rg3AddaP2t2NoezOGY9OF63ozhuWTDPm7bZq1EtIP+XKO0RGDD7sLH3eAzc8nqZYH/L57q7WPN6E4h3j0Ymunrf1+IMTDDYZO7dmxyUm3r3fDNfp0C4rjVTDeruu2MX9eRf/cwU5Lzw8d7Ly/MKHGkOTLeznHEJzMol+3Rz/9XD/e6PgU5Nnc3jnEo7m9v4R4Mrd33Ej70Vv6eSvuJ2/pxy3rH13DedP7R3Mmp4MuHh7ieI7x7AzHftwr6vFpGccwD8fnMcSz8XkO8WR8no/9eXbsxznGDxwu83B8nGM8HB/yM+NDPh8f8vn4kI/Hx6lrcQ3jl+Md1J+GILvoP1qZ+EYIzTHqZU+1+zH9YQBMD45aYPZbAJNjjWmuRNavAPy3hcjTrBzhkadW3f8R4tlVlAfq30McD6TavwWj9sUfLWGf3sbpOO+sX9I6FyfyeEipYEjVXf+fh3hauHi6jTzsSMr+9q/3yKcBhHJV+IXlI5fxeGBLbFo/Q3DZ2fY7ITSXYkXLjuPfCiH2aQhLoxGj99piYAL/l5+Qd0PImyGyU+shwt8IoVdueKgXvXUVyvm6qizvhbgUpxXoW82plFP3Su2tTlXs/qz1c5jvhOj5nbNyKR9/90beDZELqErlhfdbIfJk+F+P2/5OCIf3Xu+NTry5v1A/7pHr69Fpp4+LWmcUGL2u6b2xwfmt9dtj49mr++mjS8HxQvcHDm/l2usfcjlES94M0gXfa3TTN4NgQ+5fNin9VpDyrYX88pXit4KUNmE7jLTj7nytY6S1fhhpdv7UCUciv9jtR8KM/m4YyoWZF8t4u22wh1rr9SjNP8Kcyknvoz0ymbv7u2F+wBNeI4XK0OtvDj25MPTqA+K3guiFGkqlN69EO65Emd4LYg5jqEVE3wri2ERdnPu7QXA7tcji9yD+A8tO/gPLTuebGWiRcb3bIjVIu94NcpUgbw61Ub7UG9x+Ioi/GwS/QUPkB9rk3SAjq+9ebOMHgri+G6SUlw/6gTZ5M4he8LX7becHglD/+HZeQd78wXAtxxC6vXk7+N5WL+MfCPLeS/AdpJUg7yWgNvz+aWv0E0HGm7eD7/a0kX7eJm8Had0RRK6fCGLvBsFBVfWwyffb5N0gLYsEXvxu7vwSZPAP3M6QN4P0kjvy5o+XKn68VN/8ydDyKqf61u2453zzC8tTEn8jRBY8javs0fR7CD+eNSVUqqboyzWEYxC5GAdW1gLfP4L0h6sZ5Ur0O9eRW95Iq/u7fetm8BL4erk4Bfm4mMQ/P2rqL7eCzyLpOvXLcWOzcp7h6wnp+nIV8ngtarlfhf6yw8Pv13KqN6JydCZ+gX/75P0vl5ErXmpi7w0R9TypQb1+ovl84e21+qdYOPN38v+XEGUG5o/8P23g9yNBmvdySJS/2TF5PKtaPWnyex3T0THlKeCPIKezFZ/27jHID2TvS9xxM/ymET3brZLtcy87ecjrhR5PitZPHjLODxI4n7UVC/hmmNbxLN/qe/D3wlB5IqH6WPO9ML3hibHb+zcl5elV/f0w9dFzfB1Gf6ZtTt8Hez58ej2QW7/hK0INP+d0MHyTT3937OOqlXOIR1UrfwnxYdUKNezBU1+zfi/UP4fIb2FbrXn7Tgh8sE1lv+rfQ7gfS/3zwbdfb4bIrzi0/E5850bq2SRl/vg7ITSnW3/9eP0bISxXxcn6e51KuaRNdQ32OyF6PiC+WqW9dxX4CL9fbzUnc76q8i/HXY7Hr4c4Nq/V35ZvXERrmGuqh+Z9J0TH+bB9vHcVQnWJ770QilcHH+/dSL7lvn6137uRzli6kvduRLGlm9p7V4GvHJuNtwZnG2iL+vHpN0JYfihurO8EKJWg8l47XLm20y79enCPi/+RaTqy7mTQew2B07ZMPmzJ9wK8FkLzSyKpE6fPAwgC1PnOxwEUEwy1fv0bAZ58w3i8Bc8yvdfi2jsBUKQn/kaAgVPofllGfl44ijdweS9AFjuOX2od+XlKNqRk47dCUNb3vebwx8chzN8K0fPVvdVniHdD/FJc8I0Qgt+bWgH7nR4RnJ/3S+nHN0IwTnXR/nEIe/MqsLN6u+zNEHigut4bF43xQPVLYcN7IX6Z8/9GiEzURtf1ZoiOEO8NcGyx0ojeuhHBgRsvfMv2sZtHPfTjcQDi/Okjbl9utDeOG+092wt2nD7re7YX7DHEs71gn9/J13s5Hl++cprwl8MCvhFBCB849i/3LB38+Z6lf4nxaCvI59fxdYzj+HR8Msrt66v4+CjIY4iHY+t0/tPDfYYHH8/4ebLP8JDTM07P/ZBe2fT1dOI4LR8NxpOSXIfTAYQ+Xac8tylqBKjJlxOK4/jJ05MpyXOT+sD5ycMOTXp8+n32heJfOjcnKwZ3fzPI5VgOH9ebQVq+54868/LNNml4Jej05ljFiskwpcNYfRxkvBtk4E13yHtBnn/8+ZemffZR7WNr/nJr3CgL/NKacxnK7GtLlB/4avsvQZ59ljt+5rPt8fln2+Pzz7aH/iMXOJphFc3qevhvJ2KM43LRo5+I80Rfzt4O1i+v4hiCy9bL/a0Qlnu7tfrB3Z9tcT5sHLPIh8Mwhh+u5Ae+KaWW2+4Q1a9Kf7+Z45dRaldZx25f7S75tyClztBUvgxy/Pnnsn9zP9zOqVTfFR9llr3Mhj6P8ct3Xv3NGJrPQ6plavyPGKd99T1D/LL98vWNyzBchtnXt3I6+qn3/MKl16+87rmP50E4Kz9eU0mnIKdjSh7udndsEkP2mpSPh/9okuMxo7khdTnL7vfjPU977ollFfhrirYWS/1+GadKmMuQMfW7FP5Oe6Csx+on9n+0x2n/dnzc0n6pdOLfnkBOm+7h9Ccp+1r/HuI+zvnzsfqXKA8H6yvKP3y04ryjV/7aV73TruPSkuZg41+2QPjzfo5nQOEMRy4WP+j3IKcD3AdOcbjK10c02u9RjhuCYVWc64dQ/Y/B4sc6g4fnhp6vhTFvV2eU/7iW0+kWT7fPfEVpn678nHuoU+760evHbn/2UDvtc3blngJSv09pz3fMsPwVZuvjnac9xjMW1+T5PUS7mn7+uPeKYp8/7/3tOYt7ec766p3kdSnj86e1c5SHZ8qfnviet8lxBzmcuSu/bPn8eyef9uUjrBfS1e2Qf3Q8CDVXl+jyYxT5CS8g/XQp/S8xHq1l/+VuHm7I+4ryAzvytqufftgfbcl7HrMtb6fTdR2GWz8eWW04PaPO7P15O/0nBkrnTwfK+TUjzwLRw/Lb8WXn4YH3xxCPTrz/22vbhde2/vn7kve3X3Uede05yOPUOy0dPU+907dQD1Pv9JYxcCwzWvW3jzqObxhOLZfu/TVlUr4d+NbrwcMO/uvrwcPkvX6mi3/EXeVzdz2+A+KtuJbA/fEOeFrNYjyQc6+f7v3xan0aKvlQ4XWm8c8L4Z8wefmRpwH5gacB+YGnAfmRpwH5kfGq/9jxOrJCoO748Ocw0dPSfMNLWy2A+d54RRHN1drpSk4DttTu9/pa/Wez/siA1R8YsPoDA1Z/ZMDqjwxYu/6hv6ENJ4o3Gydns9PjK3YGpbpK9x9EOTwS8DVwen09EIr1G9fSr3xk678cLvrntchPeLXpTwx9s8+HvtnnQ9/0J4a+Xz8x9E/nvj8b+n8ZKah37G2cTNJPoxbHYvLo/d1Ri2/4OtnxWuQnDNt/ZNT6D4xa/4FR6z8yasePjNrxA6P2OO1e9syrh1/8Me0+ToOW89uSUXfE4G/EkKwQqQWZ34yBjSh++SD+OzEU37LXgzzejiHvxlDs/vBue2i2h77dHpb3Ym+3R43xbnvUCqJ328OyPezt9sBeB/52e9QY77aH5/dcbm9fB74W93evY1yo/7t+IMbb1+EoDzuNj+OSHcz9he20ZHeKQg3nM9XN036P0k5LXE0xIWVyjHJcm7X/wJl7b9+5n57TWr+Uun+vVebP0F7I5HfbVvBqIHqKcl7IfPYwcYzx6JOOv8V49kByXNp9+kDS6CdmYRt9PAv7inGaJXi4VcErynFP1Sd7FfwlxqPNCv5yNw/3K/hLlIf7Dfxl6f3Kx7TX2hJ9vfTe+k+UErT+eQaeYzzLnvPdPM6e0xrX8+w5na71+HH+WF4h6ONSev4f9PGpmqBlNe3rrVa+Kq9osf3jl4ZvOdxarQL47aTDV5BxWnTLpb96Eua3Qjg2p/J3Q+Qgub6+ir9UrBB2/Pvl4fO36zitcrFkeRPXRcgPgowvgzwu46lncv45zvhY+4Kq7foZy5/3czoQ7irHcvyyT97vQU6DtZU9/ptc/iNh6lS5fuulHHuRnGvhTo9+8V3IGnGlVvmPdcR2Wu7ynNTy+rHS79VnTZ69ltcNB35/CG3y+YPs+TpyAwqp+7L+GUN/wupP51Y9fVAS/4kHpdNa19MHpWOMhw9Kx7t5uBPRX6I8f1A6laxc/T/26j8y57Tc1TlHbLmf31O4nVaHcMQa1w8wtH/nZhqO5er9eDP2E0996p8/sR2v5PETm/3EBGyzjydgn3+Wwl9/lvK6kNNkwbP9RP9SqfXwbfRYM/a8d37EZM3+ob3za7UynXpn/MA6SvMfefHyH3jx8h948fIfefHyH3nxcvnHDpSezdq7tC8HyjEI4wWd6x42f462U53iz0R59nXqX2I8+jz1bzGefJ/6l+mThxsl/m0q5+ETyl+m/J5s5PK3GE82EfvLRCrnesprOra/Ox3L+WhPXHdE+C3K+Tuzlp/Lv/7d1x+rtXYqUcoqp2Imv1dvnst7n5wrfvochFrm3S+/Ff23JQg6VVz+MmvCX+6k8gpyehx4tlHPK8jJWx/tpnKO8Ww7lW/cjJ1u5tSsI2eBXqOoH4KcHl+f7XLztythfApSpiv+CHKa9O+ZMXzZoV1PLvL4+7RzlKdLZscojxeHztfydHHoHOXp8h0dP+u6Rtm1c9QjofSbcbAf3Iv13TiNsb1B++UQy+/GwXear5hyitN+YFHxHOXh7885mzj3d2PtJ5c61Sxizz2qe+59yxte95opWU8Y/iPIadnqqTecvsxqODm6jbrB/u9TD8credqu5x5++Jzyl1F7dXzeUd+zvzv6y5kB9zvs+3GwVXRr8nUWXcch92SjsUb9WEbyZKexV4zzR2v58vPrvTzenvD1V/ObeK3nS/j1PISWzz3b5yHkvRDYZkzrN5rfCIETd7rV1+tvhMBRgi87eK8tLF+tu9XTzt8N8V6nes5e9lpv9a0QOVvRnd/rVM/fzheON68ix4Xrm52a+6G/8K2reK0ZYE+femz7N0L8UtHQvwzRSI57qmKHeaqTFN85QCFL6kntvVvJlVC6ffetEDnEX/MAb2XJPZmA2Yn+ZogLIfjjENTfbE5MkJC/dxUdbSHj46t4r1M5k6Su4H5nKgAB6K0Az/ZmOgR49r3zKcCjr51PAfLIRy0Pf9+6gk8nZB5tIXEyKWyVfx/IW5496XEIzQXJ17LdeCuE43wpl/euYuDzo6tugv08BF05ouiX5+dvXAVKuO+N8t4LkV36WqF460bqnuJtvHcVHYec88VvheByrGpZNP89RIvfly9H+Odn73SczNrtvdbAfnaNqX3coG+GuHL29f5qE01h3zimFrvfCL93qINgA0jx944QUMI5cF0+DsFfHyHQ6Pi1FGXVm9Sdmn57RHsFOc2qY+s2tfJe9/w57941Mm/mzbMhrKcJm1wfhzgcL9Fo0A806fmjno+btN6MvTfQjbDra3+vVxzFf07t4xCHq2h0+mj5ea+Mf2ivuOBm5L0DYcqc8+j6cQj++uyQ1k9rNk+btJ8Wj36gSevN6HuJPzDdPdpbvUL4hPz16PReujkeWny8mW5YAfPx5lUYqozePG8IGz2/8L3TbRQLIvbm6TZY+mp1+9zvnOjiqKPxshbYXu9rvw7xdpghd2wUX9dYnz+zPF6s6qfdA78R5fQ06llwzL8UC/++aPA8ip6i0I+0C7XjUHv2DV4n+oHFlOO1aC4YaP2l+7Nt7TTr5jjjsp6n9K0oz67k6CN4Kfb6Me8fuUN2XPvLl9p6Yoz9EcRPRQ4Py9D6j2wf2D/fPvAV47h4/bBIqZ/2D3x6nOpfojw8iPQV5fAU8Oz4zHOMpydovqLox2/bj2/H5N1OfniC8SvK+Inu4evz7nkY49wmx4qYnOtrb7fr068H4njcrx9xnh1b+4oiP9Cu8hPD/vR91eNhf2yUzw/ibdgl4PUzqodfjePC00V4iL3qwVi/b9L4lzDlQ6+Ly2dNv4U5znppyUBT//KWTuO+CXb6KT/p8nxZkRyly2U2U35/xjltvEeSR5GSlEaV9nuQY60Tevgqs2fyRwf/xPch/fQh0fNf9NOHUU9/0fX6iV90bT/xi36M8vgnQ/vn1naK8dzaTt9XPba2h7dz/PU6xnh0tvZfBtvDX8DjYHv8C2jXT/wCWvt8mDyMcewbaz8x1Ix/YKjZ9fmv6N+8Oqd/X17tX3v18eMqxyEmXj7N/+NX47R+5Z5nH7jXaUL7o1VOn1dhdfP1Ulu3aOzfiNIZR4fUmvlvRtGcvXgNKj5EOR3E8PCsmn7aSPDxWTXdj29Oz87E/kaUw7HYf4ny8Ezqb0Q5HEv9tzt6dkr3X6OgCvTyt+/o2SnZf43y6KDsv0R5eKr9N6LY2+3y8Gz7b0ShY+uesvHpmU+x88Pnz7bjR55tx+fPtnz9xLMtXz/xbHuO8vTZlq/Pn22PMR4/cPD1A8+2T2/H5N1Ofjpbxcft4553z/iB7hkft8k5eZ49q5/b9emzOh+3GXz6rM7t80naY4znw779wCTtuVEeP2cfn+KenTbBx2OwHp42cb6Sh8dNMB0nnR9uYc70EweK8Gmfwce/YHz6oPvpLxjJTyTh8XOrx0l4WhB7moSnGM+T8LQe9jgJz9+g/UQSPjxCg/sPHKHxlyR8eIYG9584Q4P7T5w6wf0ndmnh/vlWWNx/YtsnPi6IPc7CH1gQO8Z4noWnk7UeZ+GxUR5n4XFaxAjTInKYomE+boc1sn7hNU92fX3AFp92HXx+TtdxBoyv/EHkVl5e/pwBOwWhC1t8lUfB94OUSsrvBWk5F8H09u0wNj3jukPCb0FYfqBKluXzKtm/XIlS7lxYa7HfD1J3+PpekPRaqS9R3wsiOWKlLtJ9Lwi+yLxr4L4Mch4nkuehci21/2Oc6LMvjH6ZI/rdUs7rYp7zeFRr1v6Mcqp0ec2Aoz7z18L/78WxUtBsdQuLP+Octl1pOByg2btRDG7r13VsGz2ucpcTRpTp7XvKmfVP7snTFqxua/NBlLqJ0zd7G2c4NK+nJ/wZ57RA5ZJfrXv92u8/iHJ6UMaH68MufjcKdhl5PQi9fS2lLvYv7fI0yvt3hHrU8Us96vf6ujTMi8+ZfYxj2OlxmOrbcUaOvdeaAb3rWK9/iy92r2uc2sePlbY45PfFLqc4x9e9XPUa1O3dKI9z4XGU1n4kytt39DgX/EdywX8ku88jxvDp4quNTk8A4/g96JVbILd2Kb0dpyniNP8gTtlC/KM4ZaOm1t9uZ7tyj6Vm7fqpOOPtOGUB9/Xe/0Nxjk+Q5zgE5zI6OvI34vj799W5fJpn19vOjo2jX3x6VpLzhoaK/Hr9YMnbcQyLwmYn9/lOHNMP4qCd7dRfcjpJ4enbrlz2+dvuX+7Iy8hx8bdbxkuP/7LlzujfeknMLWjZypvm7y+Jct5ZUMu57uU7rd9X788VU/kd0CvBy56N7TtBNL8Np/o48HsQacdDv6UEqZuqyXeiDHy+++JSS/P7DNhfwmg+bb3CFKv5M8xpzYGzCuz1F8uou/Q7zWs5zUK/bJz6R/OeTjJAKcHrktHRfxxrcozymgDH9lutWswf7ULnzQ3LB06Hvv5LuyCK87tj17NdXr9Mh7FLPzNcTktuj4fL+WKeJtK5XQY+MxzdD+1yKm0gK1/llcmw31OafmTkni+lo/Cq/AD8eSnHUo08tuK1uE1fBzmtub1+0HJbkRfT199pyHF7w8dz/ccw9HozyCKWe+/GQ5jzTeEUU+rlc/Jvhun5RbkRl+nGP8Oc1otL2VSd3P5eZ6uXr7H1zRHjhu/02yHIadFMu+cLmPLlhxFzDPMyH5w5Rt7eDNNbbuT94jIx8s2utrypF4/DiDl9fvVwN/9zjGe7+f8lxqPd/M8t+1ptywO/uPVDy7L/QJP4DzTJ5wccHH+GOjY/uk+h//pnSH6iNEfkJ0pzRD4vzRH5idIckZ8ozRH5vDTnGONxUYDID5TmnBvlR75D6XHQ2hq19XO/30ftcZqiXTldRnc9/dducPyeDG8PrQ7+18/bty4GlUL3Xt4Htz59lvaNh5ZTmMcPLddx3Xn8h+vO9xeq/9/X//zn//ov//2//Ou//9d//p//8u//9j/uf9nt7vg797rfdD+C9LGJr6SWREk9iZMkSZMsKTU4NSQ1JDUkNSQ1JDUkNSQ1JDUkNSQ1NDU0NTQ1NDU0NTQ1NDU0NTQ1NDUsNSw1LDUsNSw1LDUsNSw1LDUsNTw1PDTunyqnpNC49590TgqN26Bdk0Lj/l3w0Li93UPjXpocV1JLoqSexEmSpEmW5Emp8RrqwAYkYAcyUIAKNKADodag1qDWoNag1qDWoNag1qDWoNagRlAjqBHUCGoENYIaQY2gRqFmcuNI7Bcw1O4JytYJ2IEMFKACDejAkTgNYSLUGGoMNYYaQ42hxlBjqDHUBGoCNYGaQE2gJlATqAnUBGoCNYWaQk2hplBTqCnUFGoKNYWaQs2gZlAzqBnUDGoGNYOaQc2gZlBzqDnUHGoONYeaQ82h5lBzqDnUBtQG1AbUBtQG1AbUBtSmk9yLKC2shO/3iRZeEkjhJQsbkIAdyEAB3mp8z3pSeMnCULtLISm8ZGJ4ycJQ64EE7MBQu6cqKLyEOVCBoXZX4VF4ycJQux2dwkv4Xsel8JKFBOxABgpQgQZ04EjsUOtQ61DrUOtQ61DrUOtQ61DrUGOoMdQYagw1hhpDjaHGUGOoMdQEagI1gZpATaAmUBOoCdQEagI1hZpCTaGmUFOoKdQUago1hZpCzaBmUDOoGdQMagY1g5pBzaBmUHOoOdQcag41h5pDzaHmUHOoOdQG1AbUBtQG1AbUBtQG1AbUBtRGqvXrAjYgATuQgQJUoAEdCLUGtQa1BrUGtQa1BrUGtQa1BrUGNXhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5cwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlzi8xOElDi9xeInDSxxe4vASh5c4vMThJQ4vcXiJw0scXuLwEoeXOLzE4SUOL3F4icNLHF7i8BKHlzi8xOElDi9xeInDSxxe4vASh5c4vMThJQ4vcXiJw0scXuLwEoeXOLzE4SUOL3F4icNLHF7i8BKHlzi8xOElDi9xeInDSxxe4vASh5c4vMThJQ4vcXiJLy+5CySWlwQSsAMZKEAFGtCBI9GgZlAzqBnUDGoGNYOaQc2gZlBzqDnUHGoONYeaQ82h5lBzqDnUBtQG1AbUBtSWl+iNAlTgVLvrYJaXBI6NY3lJYAPSjjCWlwQyUPB3FWhAB0KtQa1BrUGtQa1BrQlQgVBrUGtQI6gR1JaXBHYgA3FvBLXlJYEOHInLSwKh1qHWodah1qHW0ZId99Zxbx33xlBbXhKIlmS0JKMlGWoMNYYaQ42hJmhJwb0J7k1wbwI1Qb8JWlLQkoKWFKgp1BRqCjWFmqIlFfemuDfFvSnUFP1maElDSxpa0qBmUDOoGdQMaoaWNNyb494c9+ZQc/SboyUdLeloSYeaQ82hNqA2oDbQkgP3NnBvA/cGLxkD/TbQkiNb8j7nonDqvZgK98JcWAprYSvshQe4Fd3WClPhXpgLF91WdFvRbUW3FV0YzIvL/VK5Xyr3S0WXpLAWtsJeuOj2otuLbi+6vej20s693G8v99vL/fai20v/cmlnLu3MpZ256HLR5aLLRZeLLpd25nK/Uu5Xyv1K0ZXSv1LaWUo7S2lnKbpSdKXoatHVoqulnbXcr5b71XK/WnS19K+WdtbSzlba2YquFV0rulZ0rehaaWcr92vlfq3crxddL/3rpZ29tLOXdvai60XXi64XXS+6o7TzKPc7yv2Ocr+j6I7Sv6O08yjtPEo749mnNTz8tFb8qhW/asWvWvGrVvyqFb9qxa/aBd12oX9b8atW/KoVv2qt6LaiW/yqFb9qxa9a8atW/KoVv2rFrxoVXeqFubAU1sJFl4pu8atW/KoVv2rFr1rxq1b8qhW/ar3oditc2rn4VSt+1bjoctEtftWKX7XiV634VSt+1YpfteJXTYqulP4tftWKX7XiV02KrhTd4let+FUrftWKX7XiV634VSt+1bToaunf4let+FUrftW06FrRLX7Vil+14let+FUrftWKX7XiV82KrpX+LX7Vil+14lfNi64X3eJXrfhVK37Vil+14let+FUrftVG0R2lf4tfteJXrfhVG0V3FN3iV1T8iopfUfErKn5Fxa+o+NUq45VZg2+FvTDamYpfUSu6regWv6LiV1T8iopfUfErKn5Fxa92UW/oUitMhXthLlx0qegWv6LiV1T8iopfUfErKn5Fxa92iW/odilc2rn4FRW/ol50uegWv6LiV1T8iopfUfErKn5Fxa92wW/ocunf4ldU/IqKX5EUXSm6xa+o+BUVv6LiV1T8iopfUfGrXf4bulr6t/gVFb+i4lekRVeLbvErKn5Fxa+o+BUVv6LiV1T8ahcDh66V/i1+RcWvqPgVedH1olv8iopfUfErKn5Fxa+o+BUVv9qlwaE7Sv8Wv6LiV1T8ikbRLX5F5fmKyvMVFb/q5X1wVwlPpsK9/H0uLIW18NQdwaF7fwDZVrXw5OlXi1thKtwLc2EprIWt8NT14AGefqVxndOvFlP5O70wl78jhbX8HSscuvdRam1VEM//Pv1qcdGdfrW46E6/Wlx0p18tLrq93O/0q3kNXHSnXy0uutOvFhfd6VeLi+70q8VFl8v9Tr+a1yBFV0o7S9GV0s5SdKW0sxTd6VeLi66W+51+Na9Bi66Wdtaiq6WdtehqaWctutOvJlvRtXK/06/mNVjRtdLOVnSttLMVXSvtbEXXy3j2ouvlfqdfzWvwouulnb3oemlnL7pe2nkU3VHG8yi6o9zv9Kt5DaPojtLOo+iO0s4DuqsQeTF0Vyny4l7+DheWvIZVjhyfGq565MVeeICnXy1uhalwLxy66+NCKayFrbAXHuDpV4tbYSrcCxfd6Vce1zP9arEVnroaPHVv315lyotbYSrcC4fuaMGhe29c1lax8mIr7IUHePrV4laYCt+6coVW+FWcWthm1fJmLWyFvfAAh19tboWpcC9cdGXqxhgTLWyFvfAA61W4FabCvTAXLrpadLXoatHVomtF14quFV0rulZ0reha0bWia0XXiq4XXS+6XnS96HrR9aLrRdeLrhddL7qj6I6iO4ruKLqj6I6iO4ruKLqj6A7ozmLnza0wFQ7de1/6NgueY3PCNiue5d7nq82S581WOHTbjBO6FHHCr4Ti74RfbabCoXvvkd5m6bNQ6IZfyf3VZ5vFz5utcOjeO0K3Wf+8OPxqcyscuvfRMG3WQMe+9W2WO8exsG3WO8u9D1ibBc+bI/69qVGbJc+bIz7H/YYvbe6FufDUmv/WoNu9/PfwIo524Av3y60wFe64x+lFi6WwFrbCpQ25tKGUNpxeNNtNShtOL1rMaM/pPzz/uxX2wgM8/WfxbM9ok+k/i3thLiyFtbAV9sIDPP1ncdG1omtF14quFV0rulZ0reha0fWi60XXi64XXS+6XnS96HrR9aL7/y/rjnYkO44riv6LnvvhZkRmRKZ/hSAEiaYNAoQo0JIBw+C/u7qquu+C9UKcru6qPTOc3hycODV8+ef1e+nln3ce5CAneZIXuchN3uSb+xpIf+VBDnKSJ3mRi9zkTYY74A64A+6AO+AOuAPugDvgDrgBN+AG3IAbcANuwA24ATfgJtyEm3ATbsJNuAk34SbchDvhTrgT7oQ74U64E+6EO+FOuAvugrvgLrgL7oK74C64C+6CW3ALbsEtuAW34BbcgltwC27DbbgNt+E23IbbcBtuw224G+6Gu+FuuBvuhrvhbrgbLr4qfFX4qvBV4avCV4WvCl8Vvip8Vfiq8VXjq8ZXja8aXzW+anzV+KrxVeOrxleNrxpfNb5qfNX4qvFV46vGV42vGl81vmp81fiq8VXjq8ZXja8aXzW+anzV+KrxVeOrxleNrxpfNb5qfNX4qvFV46vGV42vGl81vmp81fiq8VXjq8ZXja8aXzW+anzV+KrxVeOrxleNrxpfNb5qfNX4qvFV46vGV42vGl81vmp81fiq8VXjq8ZXja8aXzW+anzV+KrxVeOrxleNrxpfNb5qfNX4qvFV46vGV42vGl81vmp81fiq8VXjq8ZXja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja82vtr4auOrja8Ovjr46uCrg68Ovnotyl+dzGtS/pVf3Offavb21Su/uM+vefvqlQc5yEme5EV+cj/fzzBe6/KvvMnnzi9fvfMgBznJk7zIcANuwA24CTfhJtyEm3ATbsJNuAk34U64E+6EO+FOuBPuhDvhTrgT7oK74C64C+6Cu+AuuAvugrvgFtyCW3ALbsEtuAX35av1/D388tU7nzu/fRXPPMhBfv1+zmeePL7IRW7yJp87b7gb7oa7kwx3w91wN9wNd8M9cA/cA/fAPXAP3AP3wD1wzzc3rusiD3KQkzzJi1zkJm8y3AF3wB1wB9wBd8AdcAfcAXfADbgBN+AG3IAbcANuwA24ATfhJtyEm3ATbsJNuAk3v7+P4spz5wn37tjjujv2uN4d+yt/d+xx3R17XHfHHtfdscd1d+xx3R17XHfHHtfdscd1d+xxre87RVzvP1O9Hi9ykzf53Lm+O+e47o49rrtjj+vu2OO6O/a47o49rrtjj+vu2OO6O/a47o49robbcBtuw224DbfhNtyG23A33A13w91wN9wNd8PdcDfcDffAPXAP3AP3wD1wD9wD98A9N3dcF3mQg5zkSV7kIjd5k+EOuAPugDvgDrgD7oA74A64A27ADbgBN+AG3IAbcANuwA24CTfhJtyEm3ATbsJNuAk34U64E+6EO+FOuBPuhDvhTrgT7oK74C64C+6Cu+AuuAvugrvg4quBrwa+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvhq4KuBrwa+Gvgq8FXgq8BXga8CXwW+CnwV+CrwVeCrwFeBrwJfBb4KfBX4KvBV4KvAV4GvAl8Fvgp8Ffgq8FXgq8BXga8CXwW+CnwV+CrwVeCrwFeBrwJfBb4KfBX4KvBV4KvAV3F3VhF3ZxVxd1YRd2cVcXdWEXdnFXF3VhF3ZxVxd1YRd2cVseAuuAvugrvgLrgLbsEtuAW34BbcgltwC27BLbgNt+E23IbbcBtuw224Dbfhbrgb7oa74W64G+6Gu+FuuBvugXvgHrgH7oF74B64B+6Be3dWkXdnFXl3VpF3ZxV5d1aRd2cVeXfskXfHHnl37JF3xx55wR1wB9wBd8AdcAfcAXfAHXAH3IAbcANuwA24ATfgBtyAG3ATbsJNuAk34SbchJtwE27CnXAn3AkXXyW+SnyV+CrxVeKrxFeJrxJfJb5KfJX4KvFV4qvEV4mvEl8lvkp8lfgq8VXiq8RXia8SXyW+SnyV+CrxVeKrxFeJrxJfJb5KfJX4KvFV4qvEV4mvEl8lvkp8lfgq8VXiq8RXia8SXyW+SnyV+CrxVeKrxFeJrxJfTXw18dXEVxNfTXw18dW8O/Z4bdS/8nfHHvM6d7479ph3xx7z7thj3h17zLtjj3l37DHfvnrl7w425t2xx7w79ph3xx7z7thj3h17zLtjj3l37DHvjj3m3bHHDLgBN+Am3ISbcBNuwk24CTfhJtyEO+FOuBPuhDvhTrgT7oQ74U64C+6Cu+AuuAvugrvgLrgL7oJbcAtuwS24BbfgFtyCW3ALbsNtuA234TbchttwG27Dbbgb7oa74W64G+6Gu+FuuBvuhnvgHrgH7oF74B64B+6Be+Cem/veqL/zIAc5yZO8yEVu8ibDHXAH3AF3wB1wB9wBF18tfLXw1cJXC18tfLXw1Xr7ajzzIhf57roXHfuiY//aruczDx4PcpIneZGLDDfhJlw69veO/Z3hTrgT7oQ74U64E+6Eu+AuuAvugrvgLrgL7oK74C64BbfgFtyCW3ALbsEtuAW34DbchttwG27DbbgNt+E23Ia74W64G+6Gu+FuuBvuhrvhbrgH7oF74B64B+7h++jwfXTgvnz1vPu8N+3P/N60v/P3e0zivWl/5yRP8iIXuckv7nrmc+eXr573oK8d++vxJE/yIhf57nCKzqrorIrOquisis6q6KyKzqrorIrOquisis6q6KyKzqrorIrOquisis6q6KyKzqrorIrOquisis6q6KyKzqro2IuOvejYi4696NiLjr3o2IuOvejYi4696NiLjr3o2IuOvejYi4696NiLjr3o2IuOvejYi4696NiLjr3o2IuOvejYi4696NiLjr3o2IuOvejYi4696NiLjr3o2IuOvejYi4696NiLjr3o2IuOvejYi4696NiLjr3o2IuOvejYi4696NiLjr3o2IuOvejYm4696dibjr3p2JuOvenYm4696dibjr3p2JuOvenYm4696dibjr3p2JuOvfFV46vGV42vGl81vmp81fiq8VXjq8ZXja8aXzW+anzV+KrxVeOrxleNrxpfNb5qfNX4qvFV46vGV42vGl81vmp81fiq8VXjq8ZXja8aXzW+anzV+KrxVeOrxleNrxpfNb5qfNX4qvFV46vGV42vGl81vmp81fiq8VXjq8ZXja8aXzW+anzV+KrxVeOrxleNrxpfNb5qfNX4qvFV46vGV42vGl81vmp81fiq8VXjq8ZX7NiDHXuwYw927MGOPdixBzv2YMce7NiDHXuwYw927MGOPdixBzv2YMce7NiDHXuwYw927MGOPdixBzv2YMce7NiDHXuwYw927MGOPdixBzv2YMce7NiDHXuwYw927MGOPdixBzv2YMce7NiDHXuwYw927MGOPdixBzv2YMce7NiDHXuwYw927MGOPdixBzv2YMce7NiDHXuwYw927MGOPdixBzv2YMce7NiDHXuwYw927MGOPdixBzv2YMce7NiDHXuwYw927MGOPdixBzv2YMce7NiDHXuwYw927MGOPdixBzv2YMce7NiDHXuwYw927MGOPdixBzv2YMce7NiDHXuwYw927MGOPdixBzv2YMce7Njj4KuDrw6+Ovjq4KuDrw6+Ovjq4KuDrw6+Ovjq4KuDrw6+Ovjq4KuDrw6+Ovjq4KuDrw6+Ovjq4KuDrw6+Ovjq4KuDrw6+Ovjq4KuDrw6+Ovjq4KuDrw6+Ovjq4KuDrw6+Ovjq4KuDrw6+Ovjq4KuDrw6+Ovjq4KuDrw6+Ovjq4KuDr9479ucN6L1jf+cXdzxzkV/c19ds8rlzX+RBDnKS7w720LEfOvZDx37o2A8d+6FjP3Tsh4790LEfOvZDx37o2A8d+6FjP3Tsh4790LEfOvZDx37o2A8d+6FjP3Tsh4793B17XnfHntfdsed1d+x53R17XnfHntfdsed1d+x53R17XnfHntcFd8AdcAfcAXfAHXAH3AF3wB1wA27ADbgBN+AG3IAbcANuwE24CTfhJtyEm3ATbsJNuAl3wp1wJ9wJd8KdcCfcCXfCnXAX3AV3wV1wF9wFd8FdcBfcBbfgFtyCW3ALbsEtuAW34BbchttwG27DbbgNt+E23IbbcDfct6/GMwc5yd9dd153x57X3bHn16Y9n3nz+Lnz3bHndXfsed0de153x57XgXvgHrh3x57XgXu/7ybH/b6bHPf7bnLc77vJcb/vJsf9vpsc9/tuctzvu8lxv+8mx/2+mxwX3AF3wB1wB9wBd8AdcAfcAXfADbgBN+AG3IAbcANuwA24ATfhJtyEm3ATbsJNuAk34SbcCXfCnXAn3Al3wp1wJ9wJd8JdcBfcdX8fvTft7wz35avPu0++N+3v3OTv9/vke9P+ynWRBznISZ7kF3c9c5Ff3P3M3+/3ya8d+ysPcpCT/N3hJDv2ZMee7NiTHXuyY0927MmOPdmxJzv2ZMee7NiTHXuyY0927MmOPdmxJzv2ZMee7NiTHXuyY0927MmOPdmxJzv2ZMee7NiTHXuyY0927MmOPdmxJzv2ZMee7NiTHXuyY0927MmOPdmxJzv2ZMee7NiTHXuyY0927MmOPdmxJzv2ZMee7NiTHXuyY0927MmOPdmxJzv2ZMee7NiTHXuyY0927MmOPdmxJzv2ZMee7NiTHXvGhDvhTrgT7oQ74U64C+6Cu+AuuAvugrvgLrgL7oJbcAtuwS24BbfgFtyCW3ALbsNtuA234eKrwFeBrwJfBb4KfBX4KvBV4KvAV4GvAl8Fvgp8Ffgq8FXgq8BXga8CXwW+CnwV+CrwVeCrwFeJrxJfJb5KfJX4KvFV4qvEV4mvEl8lvkp8lfgq8VXiq8RXia8SXyW+SnyV+CrxVeKrxFeJrxJfJb5KfJX4KvFV4qvEV4mvEl8lvkp8lfgq8VXiq8RXia8SXyW+SnyV+CrxVeKrxFeJrxJfJb5KfJX4KvFV4qvEV4mv2LEnO/Zkx57s2JMde7JjT3bsyY492bEnO/Zkx57s2JMde7JjT3bsyY492bEnO/Zkx57s2JMde7JjT3bsyY492bEnO/Zkx57s2JMde7JjT3bsyY492bEnO/Zkx57s2JMde7JjT3bsyY492bEnO/Zkx57s2JMde7JjT3bsyY492bHnvDv2nHfHnvPu2HNecAfcAXfAHXAH3AF3wB1wB9wBN+AG3IAbcANuwA24ATfgBtyEm3ATbsJNuAk34SbchJtwJ9wJd8KdcCfcCXfCnXAn3Al3wV1wF9wFd8FdcBdcfDXx1cRXE19NfDXx1cRXE19NfDXx1cRXE19NfDXx1cRXE19NfDXx1cRXE19NfDXx1cRXE19NfDXx1cRXE19NfDXx1cRXE19NfDXx1cRXE19NfDXx1cRXE19NfDXx1cRXC18tfLXw1cJXC18tfLXw1cJXC18tfLXw1cJXC18tfLXw1cJXC18tfLXw1cJXX3/X+nnmQX5xxzMn+fv9Pvnesb9zkZu8yefOeZHvDnbRsS869kXHvujYFx37omNfdOyLjn3RsS869kXHvujYFx37omNfdOyLjn3RsS869kXHvujYFx37omNfdOyLjn3RsS869kXHvujYFx37omNfdOyLjn3RsS869kXHvujYFx37omNfdOyLjn3RsS869kXHvujYFx37omNfdOyLjn3Rsa8Nd8PdcDfcDXfD3XA33A33wD1wD9wD98A9cA/cA/fA5SZY3ASLm2BxEyxugsVNsLgJFjfB4iZY3ASLm2BxEyxugsVNsLgJFjfB4iZY3ASLm2BxEyxugsVNsLgJFjfB4iZY3ASLm2BxEyxugsVNsLgJFjfBwleFrwpfFb4qfFX4qvBV3X+3Vdb9d1vle9P+znfXXXTsRcf+tWnPZ148XuQmb/LdsRcde9Gx14K74NKx14K74C64C+6CW3ALbsEtuAW34BbcgltwC27DbbgNt+E23IbbcBtuw224G+6Gu+FuuNwEi5tgcROsDZebYHETLG6CxU2wuAkWN8HiJljcBIubYHETLG6CxU2wuQk2N8HmJtjcBJubYHMTbG6CzU2wuQm+N+3P7533pv2d4b58VdczJ/nJrfnMT27VMxe5yZt87vzy1Ts/uZ//f7F8b9qr//j403//5fdf/vLXX3/+rz/92/8+PvyPf/7tp3/88tvf3h/+43/+/vWZv/7+y6+//vKff/7777/99PO///P3n//8628/fX7uT9fnPz5/ij+M+ojx4+OLx/vxH/ajQ/7Yj2L1x+eDP5zHHevjPI5Bj4/z+fnHBenxRevz859PePy3b348/nE+HxjPr+j+fIXz+brxr6j8Qj3+VPF4Yrxf+PNX+PHnm++XXfn4cH+9aD/uX539+fz5+fzPZ8T5yPP19fP6mOvz0+vr5R+HiY9HWf9++cev4/Pn8Pzixy3m8YO5vl78cS55fFifz67vZz9e8FGPf/3gro9nfj079sfj+vD97OzHh8+fbX/90Gp89Pj6+j4fe35+et+/GI+nxOdD5/uhGA/e81/F/a/n8Yfr+XzmGP//1/GPP3784/8A",
3937
+ "verification_key": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEZRAAAAAAAAAAAAAAAAAAAAv2p5RFoILxVTBKAZX4nKLDYAAAAAAAAAAAAAAAAAAAAAAAfZReoNCyWOkT5tlON39gAAAAAAAAAAAAAAAAAAADS7HGLmQH+UcpuvvUYc9Wu9AAAAAAAAAAAAAAAAAAAAAAAYiTpMVkgEMCRf/YPDoLoAAAAAAAAAAAAAAAAAAABd0fUGQUTidxxBu7AJjn8GlQAAAAAAAAAAAAAAAAAAAAAAAu4g2sf56i42NK9ufNiyAAAAAAAAAAAAAAAAAAAA6WrQRqVj67or+rEdm9vHnyoAAAAAAAAAAAAAAAAAAAAAAB4lZytRswg2aHTu6haOjAAAAAAAAAAAAAAAAAAAAI5T20HbJcYYPQT29kwLAm5DAAAAAAAAAAAAAAAAAAAAAAAQrz3ujbEd5ymTAMbwp08AAAAAAAAAAAAAAAAAAAC28LYjHdmVGy6EOHo++kwpogAAAAAAAAAAAAAAAAAAAAAAFdW0U8463eNXUckhMKO2AAAAAAAAAAAAAAAAAAAAgKtys46w2aAfMrEPcpJwInsAAAAAAAAAAAAAAAAAAAAAAA04R8FuVbBq+is3zpXLRAAAAAAAAAAAAAAAAAAAAOzjyVdGrWn4HuNaOv1vYk2WAAAAAAAAAAAAAAAAAAAAAAANbGo6VzPymsZcxdYa63AAAAAAAAAAAAAAAAAAAAAz9kDxar6WBzF9XydoemXxVgAAAAAAAAAAAAAAAAAAAAAAH1AqEVMOWdzdNYuwJ54wAAAAAAAAAAAAAAAAAAAAAN0Ka4as1/1s8w2brqXm9+YAAAAAAAAAAAAAAAAAAAAAAADYQPeJ2uGtW4QP9KEqRQAAAAAAAAAAAAAAAAAAAMhw9bKNMR+MySELtdMF6N7qAAAAAAAAAAAAAAAAAAAAAAAWjGTmFs10eXzDFYDiBpUAAAAAAAAAAAAAAAAAAADgUfWJiKzKecHIg37ZaGxMfgAAAAAAAAAAAAAAAAAAAAAAJFDLZ0kLIHoCYClxquLCAAAAAAAAAAAAAAAAAAAAIjx7zf4ErK3TUbUjPHWvo0EAAAAAAAAAAAAAAAAAAAAAABJB8o1i6Ip9b013Xwim2AAAAAAAAAAAAAAAAAAAANbtA9MMEnI01SmAvBq147tMAAAAAAAAAAAAAAAAAAAAAAAB4gue2VkVG3TYKDAdd9gAAAAAAAAAAAAAAAAAAADNIw/PBFJbYTr8g/bVa2i+jgAAAAAAAAAAAAAAAAAAAAAAL9BbptnijKBcoVYkIOBRAAAAAAAAAAAAAAAAAAAAUUrABQY+rJ3nLeU4QbYveeYAAAAAAAAAAAAAAAAAAAAAADBI7AjctBOHPq2qdNcd3wAAAAAAAAAAAAAAAAAAAJwHOPlTyUOEHjD/qERDzD6MAAAAAAAAAAAAAAAAAAAAAAAW2bXRwoKUXGSlUF1yQ5oAAAAAAAAAAAAAAAAAAADvKGuq9yXL+TlPXWURtghDjAAAAAAAAAAAAAAAAAAAAAAAEfdOnGISj+uFyHCwn/p+AAAAAAAAAAAAAAAAAAAAnGmXX1jELEunbTdNA48caGIAAAAAAAAAAAAAAAAAAAAAABbzOvQbJgM7CvMqp4kegQAAAAAAAAAAAAAAAAAAAKvuj3HweKXqGOsHXwqwZSvUAAAAAAAAAAAAAAAAAAAAAAAk/s9CcBwz/II/5Pvx41wAAAAAAAAAAAAAAAAAAAD823syZBzNWnGGjnzT1yMg5AAAAAAAAAAAAAAAAAAAAAAAATDBDUq0HRHSx0+PInBuAAAAAAAAAAAAAAAAAAAAbGP6UV+RTMDMVJE9AtswcMAAAAAAAAAAAAAAAAAAAAAAAC8fAcvKUFeoLDHLV9S0EgAAAAAAAAAAAAAAAAAAAF2f52f81VpsEx2xbdhVjm0UAAAAAAAAAAAAAAAAAAAAAAAsrbf8rw4vuQtKSHG/hjgAAAAAAAAAAAAAAAAAAABjwF0S8hiw4mdbbTOn8rB+fAAAAAAAAAAAAAAAAAAAAAAACcxrhs5nACVotkiB3pJiAAAAAAAAAAAAAAAAAAAAuVgLx2uLmeImv9wN0Xa8dzkAAAAAAAAAAAAAAAAAAAAAACd8TVyIPuVCM/wlV3dLaQAAAAAAAAAAAAAAAAAAAMwhl4N5FX7AogVPWe2nuPdUAAAAAAAAAAAAAAAAAAAAAAAJG/d1q1aVxULw3bQLdSMAAAAAAAAAAAAAAAAAAABfDGKLBbgZny+pRcL/1I/3xAAAAAAAAAAAAAAAAAAAAAAAG3tXfYtuBP9o+fA3m6xoAAAAAAAAAAAAAAAAAAAAj3U8ZjXd1p81IWtxTDLs2jcAAAAAAAAAAAAAAAAAAAAAAAI/A1YQ5izQuYtNzMOuKAAAAAAAAAAAAAAAAAAAAIKNMkDu/9tB77CEnx4L+dVPAAAAAAAAAAAAAAAAAAAAAAAFEZSgCdzwOtpxXnOa1D4AAAAAAAAAAAAAAAAAAADbg5YiuY8BR5loONe8e2si9QAAAAAAAAAAAAAAAAAAAAAAB2LZ7g+wlP86IquB/zFCAAAAAAAAAAAAAAAAAAAA4NaymkHfouU9Qh5oTr9Tv74AAAAAAAAAAAAAAAAAAAAAACoIdKvTA6bQCYAAAUxtKwAAAAAAAAAAAAAAAAAAABpb+ZyR8nuUemCaWdE5au/KAAAAAAAAAAAAAAAAAAAAAAAvMnMRQ50RTThMQJAaOkQAAAAAAAAAAAAAAAAAAADPoiMIiV5KC85N5b9UuNIS2QAAAAAAAAAAAAAAAAAAAAAAAoTQhjaH5Eml0a7zjT24AAAAAAAAAAAAAAAAAAAAD57EgsNjNdVbFQtW24EHdvQAAAAAAAAAAAAAAAAAAAAAACU0sOCC0HMNtzusl3YkgAAAAAAAAAAAAAAAAAAAAAiJes+edTmoVwqxAB3Y1eiEAAAAAAAAAAAAAAAAAAAAAAAWBDTe26wtsZIGg1V8MF0AAAAAAAAAAAAAAAAAAACZZYPpidshIcsLvGTfv9G6yQAAAAAAAAAAAAAAAAAAAAAAJ3Zz8TRYxnIdetX+VH3AAAAAAAAAAAAAAAAAAAAAxQRxeUrHN/qjs6eSJ3w785IAAAAAAAAAAAAAAAAAAAAAABBWOtN7rZ9UPYE+fxOi4AAAAAAAAAAAAAAAAAAAAAEqS/h0abM1E6IVtnVasG7jAAAAAAAAAAAAAAAAAAAAAAAUyNiKYJpGAapIURN/08oAAAAAAAAAAAAAAAAAAAADYc5B1tyu816ZHdo/MpgWoQAAAAAAAAAAAAAAAAAAAAAAI+aMMfw6ct/2L/4titP0AAAAAAAAAAAAAAAAAAAAjlm0JJXl6sI7fjXpkYbX1ZMAAAAAAAAAAAAAAAAAAAAAABfLAK2KvnlA3TMuI5EAlwAAAAAAAAAAAAAAAAAAAEzDyIFuKhylNFzzfTR6KnHjAAAAAAAAAAAAAAAAAAAAAAAY0PYbWXUogUg8SENJAe0AAAAAAAAAAAAAAAAAAABpMyZ/wHFa6ztfQSz409NpaAAAAAAAAAAAAAAAAAAAAAAAJLz3tuW093Ji1jIp4YjbAAAAAAAAAAAAAAAAAAAA957ICHUEJQuSquAOqwsLsqgAAAAAAAAAAAAAAAAAAAAAAC7FWx+XnO75kl+nEMsORwAAAAAAAAAAAAAAAAAAAFvq2HujmplcFHroP18jVoscAAAAAAAAAAAAAAAAAAAAAAAqZHm8bHiE3r2Mg1tldt8AAAAAAAAAAAAAAAAAAABeWr6HP43kEeoWeUY1bd4w9wAAAAAAAAAAAAAAAAAAAAAAGQnU3cgrcRE6qpSPYOVPAAAAAAAAAAAAAAAAAAAAXxRF32rk0qeDaK+MrgUxst0AAAAAAAAAAAAAAAAAAAAAAB1/mySX+a5AmZ7/22020QAAAAAAAAAAAAAAAAAAAOAmJiHfwsL9rIHKrt4JQDIsAAAAAAAAAAAAAAAAAAAAAAApL+mwxqrUsimVRwD5ZcYAAAAAAAAAAAAAAAAAAADx2n2JJrz17IkXfYDOR0Po8AAAAAAAAAAAAAAAAAAAAAAAG8IK2JXUVD74AbBhdSWwAAAAAAAAAAAAAAAAAAAAYzlvW+172TOYgWkUUUh2/24AAAAAAAAAAAAAAAAAAAAAAAluEyPOah2X7RDy126vxgAAAAAAAAAAAAAAAAAAAIfLBtleqZSVTXrrCN7f9vVgAAAAAAAAAAAAAAAAAAAAAAAtnxbJ0Gm56dgjGnxhXRQAAAAAAAAAAAAAAAAAAACM5UlxB5fRrvSHh/2ngTwxAQAAAAAAAAAAAAAAAAAAAAAAHVDH93R+VZoDDBT4Ag2aAAAAAAAAAAAAAAAAAAAAsa5dmATPGopi6epL4rZqLXYAAAAAAAAAAAAAAAAAAAAAACiS/dumBD9h36AnqHwl6gAAAAAAAAAAAAAAAAAAAA96+783Idykyau8tIFzHa8YAAAAAAAAAAAAAAAAAAAAAAAjxfcRf3orhGigOWSKNkUAAAAAAAAAAAAAAAAAAADwnCJCRUREW/Cfhs4k57yjMQAAAAAAAAAAAAAAAAAAAAAAEBv2dCir+02VxaBxZLcpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACxFUZ8rZksCMt0SCBVx1wD/QAAAAAAAAAAAAAAAAAAAAAAJ0uZknypA8fg5NCS4AN7AAAAAAAAAAAAAAAAAAAAk32t3a/4sfdQOYrueTEFFR0AAAAAAAAAAAAAAAAAAAAAAB3FG4jkfOTc6hT73OTREgAAAAAAAAAAAAAAAAAAAGvMegX/lalrKJQkxfczZw2WAAAAAAAAAAAAAAAAAAAAAAAAxDcm91tv2g3iLODg36sAAAAAAAAAAAAAAAAAAAAdCgnXF47JO614WPluZPC0jQAAAAAAAAAAAAAAAAAAAAAAL5tuC04sAZaN5cMkgqp9AAAAAAAAAAAAAAAAAAAAhGizfhDghN678/BvPdVyeZAAAAAAAAAAAAAAAAAAAAAAABP8MEXsXcism66kuZ6hugAAAAAAAAAAAAAAAAAAALSFZmQJ4zJievrMBCtdWDUYAAAAAAAAAAAAAAAAAAAAAAATHr6UQ9MIxtY9B5E67mY="
3938
3938
  },
3939
3939
  {
3940
3940
  "name": "process_message",
@@ -4212,7 +4212,7 @@
4212
4212
  }
4213
4213
  },
4214
4214
  "bytecode": "H4sIAAAAAAAA/+29CZxc11Umfl93qdXV3VKpJVmSLdtqL1os2fLuOHGceLdla7PkLQ6OrdjCdqx4lR3LG7LlNbGTgIEJkz9LAllYMiETBhhgZiDAMJDJwMBABkgmYRvIAFmI2WYyw58b1+n++qvv3brv1SmpYvf9/aSqfvec75x77rnnru9WEV5Orfbn3ffedfPu++678e3//N+uW3df/c+PinZWo/05v/0Zn0+G2clop0JWKirQzmaqIKMI/ZcxFPovYzj0X0Yj9F/GvNB/GSOh/zLmh/7LGA39l9EM/ZcxFvovYzz0X8ZE6L+MBaH/MhaG/stohf7LWBSqy6gjZzIcHDmL82m/iX2eeFZF3pLQ/zpaGvov47DQfxnLQv9lLA/9l7Ei9F/G4aH/Mo4I/ZexMvRfxpGh/zKOCv2XcXTov4xVof8ypkL/ZRwT+i/j2NB/GceF/ss4PvRfxurQfxlrQv9lrA39l7Eu9F/GCaH/MtaH/svYEPov48TQfxknhf7L2Bj6L+Pk0H8Zp4T+yzg19F/GaaH/Mk4P/ZdxRui/jDND/2WcFfov4zWh/zLODv2X8drQfxmvC/2XcU7ov4zXh/7LODf0X8YbQv9lvDH0X8Z5of8yzg/9l3FB6L+MC0P/ZVwU+i/j4tB/GZeE/su4NPRfxmWh/zI2hf7LuDz0X8YVof8yNof+y9gS+i9ja+i/jG2h/zK2h/7LuDL0X8aOUF1GHTk7w8GRc1U4OHKuDjXkXEMC44GGeOAgHgiIG/ZxQz1ueMcN6bhhHDd044Zr3BCNG5ZxQzFu+MUNubhZFjey4uZS3PyJmzNx8yRubsTNh7g5EBfv4+J6XPyOi9Nx8dgWd4/5539x8TIuLsbFv7g4FxfP4uJWXHyKi0Nx8SYursTFj7g4ERcP4uQ+Tr7j5DhOXuPkMk7+4uQsTp7i5CZOPuLkIA7e4+A6Dn7j4DQOHuPg7rx//hcHR3HwEgcXsfOPnXPsPGPnFjuf2DnE4B2Dawx+MTjF4BEbd2x8sXFE542OFSv96lCerHJLzt8s2vDy49F29hCwVTgPUoySuGr8+//nKANW4g/f5I88o/X4rzH+Zj3+b7pvTO8FftTFcIfbnx8A3g+QTKP5E6D5E6IxfevZO7y3x/JOToTZZTSMALqN1cNejGWyNEzPEL8Zeqr7oiA8k8fls7YxATQmr6C8htDT8uZBntk/hr71QMd1O0p5pktMH6C8Ycj7YPvT6gT1qmCjH+7RX87ro7+c/63oLw3K8/AXxGB/MYyY/oTyRiDvTylvPuT9Gcg+E74faH/vMSZNx/CafdA3hwQsH7FMX0vD9BmT2clsPyroLa8JeWj7mMbg+bDAmk98Rn9G+3Nh+xPrxvhbQv4IyVd6K98sBNaweGb00T4ngc6GeSHQToWsNGy8Fynel+777Ic//cInf+Wjez/yoe+d/IMF3zd+4th3PPXUV1Z++ch/+dWnfth4L4ZyFCFb9ojxX6Jkv+Fnhq+/7RP/+67xSw98/B1/8Ptb719w5K5PrXr2Q9f/6neu+tKNTxvvpYr3L55//3e0Pv5dPzS14TN/O3Lpe/7qxq9vmnf2H3zmkcN/+YlvfOmrLxrvZYr3t6//xud/qvXiQw++8G8fPnvdkl0/8eJnv/a/fu3T/6r19T/62D2fPdN4N0GZ64zRLgf+Kudxjf+KevzT8jfX4x8y/i3AX6H8i4x/Kzycsi+P/8hHP3/+C5855U++MfbOLbuefPD0d/3OtX/90IqPrP6zt33syJ+YNN5tiveP9174nXuXv/2svx79zRdO/cDKo77w0kd+6s//bt/us//qz//ip4/5uvFuV7xdkvFeKXhXnLb2tXe/77eWfm7dsX943i/+xMbvPvyl41//uZ+97ANf/d+//g/Au6P9WdFe0/beWY+/YfxX1eOfjg9XA3+FNj7tb9fU45+Wf209/mn7XQcPp9I800MY431TPq+lecZ7veYtDhx7379ovlBs+dQTJ/3UxNinvnT+D15w4Wc+/eQ7V7V+4geN982Cd/3rm1/90Dsfeyp88SN/+e6/W/8L5500efT5kxv/2/t/b+Wd97758K8a77dBYSrU95HGfwPwk+7JZPxvAf4K9TXNfyPwVxl/GP9NwB9CdX/dBQ+nQlaa5n1rdd5pP73ZwEKlck/72y31+Kf74t31+Ocb/7fX4x81/lvr8Y8b/231+CeM//Z6/AuM/231+FcZ/x3AX6HdTBn/nnryp/nfXk/+ScZ/Zz3+U4z/rnr8pxr/3cBfZW5s/PfUk3++8d9bj/9i47+vHv8lxr+3Hv9W47+/Hv+Nxv9APf5dxv+OevxvNf4H6/HfbPz76vHfYvwP1ePfbfwP1+P/duN/pB7/rcb/aD3+24z/sXr8txv/d9Tjv8P499fj32P8j9fjf7vxP1GP/07jP1CP/y7jf7Ie/93G/1Q9/nuN/+l6/PcZ/zP1+Pca/7P1+O83/ufq8T9g/O+sx/+g8b+rHv8+43++Hv/Dxv9CPf5Hjf/dwJ/f/xbT4/b3wNOpkJOKb66BxbW8eUe//CRuWR7fzr1/7+17bt+77/z77tt9794L73r73bv23v7WPbu33bvr5j27r9l9732333VnJ+LsdGHJ8yhnxWw5l+7ee/XL3y686869ux/cO49wee29SX+P0d/j9DevR9tzta6dk2yNeQHhqc8QOtf0Y7J1yRZhYXlsXXkh5FXwr+2mZ0voadiL4HmFsd9ROeVE/CbpUlHe9N7FIpLH5cO9i5g3KXRpiTy28aSQMynktETeQ45YTzliPeyIdcARy7OMjztiPeaI9YQj1iOOWHc4Ynna3rMNPT2gWA84Ynn6hKftPf1rnyOWZ9v29IkHHbE8Y/RzjliD2j/aPMLGDjjWKEo+TQ4/MzlNwqo77lHlWiTkpehbCfrFmfjjgNMev1+0+63337r5rlsDJR5SX1yi4pFEd2NCNcYt6B8/P5KeDQtaTLF4y9rf28W7ZPfem2+7atett+6+5Z8LeR9zMNJFJc95QIo0NhhfTJpOhaw0lOOUiN8kXeo6pXIa1djGgbZt1c137brlwl1333f/nt14JAzdlKUUhIrPVJ0WoBk+GyO6i+jvTYIvCGw8zriUnk+FrHSYecVhItPylgF2i/KWQx7WJqdhob/pHJcBxo+ewWU61gfrYxnlLYG85SCb63WxkGP6Dwn6JYS1WPCZ7bvJGxZ8PC1NTZ1zWpuVI4SZrqYldO5jVFg66FHByreknrwlBfGjPMQ0fczWS0WeYVk7HCnBMt4G0X+9/dkiupi2k4ylQl98hkfWvky6o23ZT3qxI+KZXvgM8ZuhJ78sUvWG5WM/qRljF+fYHfXhmMy2xbg3UoJlvA2iN4O2QmfcZz85TOiLz9BP/g/pjrZlP6lpx+zjyobfDD35ZZGqNywf+8lh9eSdl2N31Ef1z2hb7ANHSrCMt0H0C8hPpv0ndPrJMqEvPkM/GW3jjpboOxWy0jvUuIX9DO1S5ThVrp8ZfjP0VO9Fyo6qvamxl/G2RB4vLS8XcpYLOS2R95Qj1gFHrAcdsR5yxHp6QLEec8R6whHrEUesOxyx9jtiefr9INor1Q9VxYrJ01efccR61BHL01c9y/iAI9agtu3nHbHudMSyYx08zjP8mEZDZ9urOjdBPNMTnyF+k3SpO9ZRdlFjRivfinryJgviR3mIafqYrQ8XeYZ1RPvvkRIs420Q/TVtg7aILiYeUx8u9MVnOKa+so27UOjL6wtV/RH52UbIx/7YS30hnumJzxC/GXry/yLlH8ouVr7D68lblFO/qI/Z+giRZ1gr23+PlGAZb4Pov5388QjQif3xCKEvPkN/3FXM1h1ty35S044X5/qJ4TdDT35ZpOoNy8d+ckQ9eRfl2B31MVuvFHmGZXtRIyVYxtsg+vvIT1aCTuwnK4W++Az95E7yE7Qt+0k9OxZfy/UTw2+GnvyySNWbit9WvpW15BVfzbE76mO2PlLkGdZR7b9HSrCMt0H0+8lPcO+TXy07UuiLz9BPHiY/Qduyn9SzY7gg108Mvxl6at9Fqt5UXLXyHVlP3vk5dkd9zNZHiTzDam/ZzfITxDLeBtG/QH5yFOjE8eQooS8+Qz95to27UOjL6+e5caol+I1O+Vz8NxWy0lWqTivw38N1ZBio29HwvIK/nJrbHgy/GTr9pU57OJrkldW3lX2V0KUl8riOVgk5q4Sclsh71BHrIUesOxyxHnTE2u+I9YAj1mOOWI87Ynn6xD5HrPsdsZ52wlLxsxe9nnLEesYRy7NtP++I5RkLPdvjE45YnvX4giOWp0942t6rbQfnMnr6xAFHrEGNE556vRrGTHN92qGzvWd7fNgRy7OM7xxQvTzHE55l5P0znFsW7c/R0Nn2Ksxb31AQnumJzxC/SbpUlFek7ILl43nylNClJfJSaxnD4tlQCVZMjzpiPeSIdYcjlmcZH3PEesIR6xlHLE/bP++INVeP1bBecMTy9Il9jlgHHLE849fTjlietvf0VU/bD2r88vRVT/963BHLsx49/cuzDXn611OOWA84YnmWcVDHcp5l9BxPDGo9DupY7p2OWIM6zvEcY86NJ14ZbcgzTnjq5eVf8fuRTlgxPeuI5Wl7zzGA9bV87svwY+pxDeyYgvBMT3yG+M3QWZdea2DqDJmVb6qevKmcekB9zNbHiDzDOrb990gJlvE2iP5Au1AtoouJz9gdI/TFZ2afeHbqsfYfC4W+ve5FID/bCPnYH6fgeYX6Gs71x6n292boyf+LlH8ouyj/MN6WyGP759ZrCmth8I+tR4ryTAg+rmfUr4Lds98VMPxm6MmvipT9p+AZx51j68lbxLEC5SGm6WO2Pk7kGZZdsTpSgmW8DaL/QYo7x4FOHHeOE/riM4w7/5LijmoTdf0e+Y3ulSZnQvBx+6rpf/Ny25fhN0NP7blI+buyi/J3422JvCn4XsVPvxWxzP+OTchJxRUlB/mPnZPTk5wJwcftFus1vx0VX8xtt4bfDD3FiSLlt8ouVr7ja8krvlAQP8pDTNPHbL1a5BnWmvbfIyVYxtsg+v9C/eJq0In7xdVCX3yG/eKvD83WHW3LflLPjqGV6yeG3wy9+OWMn6h6U/HNyre6nryFOXZHfczWa0SeYa1t/z1SgmW8DaL/Q/KTNaATv/OyRuiLz9BPfq/9x2iJvlMhK/2RsnUF/h8aDZ22q8B/gvGvrcf/s8a/rh7/Txv/CfX4Hzf+9fX4rzP+DfX4bzD+E+vxrzP+k+rxn278G+vx/4Xxn1yP/zLjP6Ue/781/lPr8X+n8Z9Wj/9C4z+9Hv/fGv8Z9fhfNP4z6/F/1fhfA/xV1tiM/7X1+IdN37PxodDJ8C3WnwX0RcmnYXGeyWoSVt1+UemO+vG48myQh2Uswzq7ItaoyKtTJ68J5eVC/ImELqxnTHzXSt0yx7TPEWuvI9ZTTlhqbNCLXnc56rXaEWuNI9ZaR6yFTlgx3euo1zpHrBMGFGu9I9YGR6wTHbFOcsTa6Ih1shNWTO9y1OsUJ6yYnnTU61RHrNMcsbz6jvj9dEesMxyxznTCiuktA4plPwnf43rBph7XC17X43rBlh7XC3b2uF5waY/rBRf1ON/fbGPlE+Fh0f5Uc/kK4/atBeGFoOc/ht8kXSrKm57/nETyuHy877NR6NISeezjG4WcjUJOS+Q94Yj1nCPWA45Y+x2xHnPE2ueIdYcj1uOOWA85Yj09oFievvqII5aX7VW/OCi+6tken3HEGtT2+KwjlmcbGlTbP+qI5RknPPtazxjtaXtPew2qf+13xPKsR0/bvxrixPNOWPH7GiesmO511GvtAGLFdI+jXuucsGLysn1M9w+gXvH7ekeshU5YMXn5REx7nbDi9xOcsGLyrEdPvbx8dZBj4UonrJg845dnPXrqNYj2isnTVzc4YcXk2Xd4xa+YXnDE8hx/PeyI5bmm4Dkm3++I5bn2aON7W8deD3lF+7PHNfyFBeGZnvgM8ZukS0V5yTV8LB+f7d1YT96CnHpAfczWJ4s8w7I94ZESLONtEP1ftQ3bIrqY+GzvyUJffIZne/98eLbuaFv2k5p2zP6tS8Nvhp78skjVG5aP93pOFrq0RN5C+F7F3qrunnLEOuCI9aAj1kOOWE8PKNZjjlhPOGI94oh1hyPWk45Ynm3Isx6fc8R6wBHrGUcsz7bt6V+ebcgzrr4abP+4I5ZnjLZYuDB0jmcWkZyqY2/kN7oe31fZ0eP7Ktf0+L7KNhsXnQoPi/anepekwhjt8YLwQtBjQsNvki4V5U2PCU8neVw+HhOeIXRpiTw+/3OGkHOGkNMSeU84Yj3niPWAI9Z+R6zHHLH2OWLd4Yj1pCPWU45YnrYfVF99xhHrIUcsT//yjDkHHLFeDbZ/3BHLs4xPDyiWZ9t+xBHLy/bx+2onrJg8fXVQxwD7HbHm+u25frufcXWu357rt+f67Vdevx2Tp70G1VefdcTytJdnzPG0/aOOWJ5tyLPfHtQYPajjCc8y7nfE8qxHT9u/GuLE805Y8ftCR6yNjlhe6+Tx+8lOWDHd46jXSiesmO51xLrfEWuvE1b8fooj1ivd9vH7GkestY5Y65ywYvK012mOWF6+GpNnGxpUvx/UMr7SY6GnXjHN9R3f+n1HTPc5YcXvnmcevOwVv29wxDrBEcurr43Js3/0sldMg9h3xPSCI5bnnO9hRyzPPR3PdYD9jlie53P4HRk8G1a0P9Wdx1HOVMhKJxaEZ3riM8Rvki4V5RUpu2D5zC5W9jOFLi2Rx/HwTCHnTCGnJfIec8R62hHrQUesA45YzzliPeSI9dSA6rXPEesOR6znHbHudMR6wRHL015POGJ5tsdnHLE8/d4zFnrW48OOWJ4xx9MnHnfE8rT9AwOq15OOWJ4+4Tk28ey3PetxUOOXp3897og1qDHaE8vTvx5xxOLfmMb5TdH+VL8vU2HudHxBeKYnPkP8JulSUV6Rsouaw1rZXyN0aYk83gNWv5HyGiGnJfKecsQ64Ij1oCPWQ45YTw8o1mOOWE84Yj3iiHWHI9aTjlgPOGJ5tsdnHLE8/cvTXvsdsTz9y7MNecZVT5/wjKuD2rY926NnG3rOEcuzPb4a/OtxRyzPMQDfg4DjZb4HoeqYHfmNbkLwFe3PHn/T8TsLwjM98RniN0NnmeuM2ZX9lV2q/N5g/O75+3lPOGI954j1gCPWfkesxxyxPH/r8Q5HLK/fEYvJ63cjY/K0/aD66jOOWA85Ynn6l2fMOeCI9Wqw/eOOWJ5lfHpAsTzb9iOOWF62j9+9fvc2Jk9fHdQxwH5HrEHttz1t7zkG8IzRnuOJQfXVuX770PVpc2PyalhzY/JD51+PO2LNjQurYQ3iuDAmT3sNqq8+64jlaS/PmONp+0cdsTzbkGffMagxelD7NM8y7nfE8qxHT9u/GuLE805Y8ftCJ6yY7nHUa6Mj1kpHLM/9IU97bXDCiul+R6y9Tljx+ymOWF4+EdO9jlhetvds297t0asNxe8nO2HF5NkeXw3+tcYRa60j1jonrJg87XWaI5ZXLIzJM0YPqt8Pahlf6X2tp14xzY1NvvX7jpjuc8LyHE/E5GWv+N1rTB6/n+CI5dXXxuTZP3rOYQax74jpBUcszzWFhx2xPPetPNeZ9jtieZ4v5HtQ8Gxr0f4cDZ3tJcqZCllpoiA80xOfIX6TdKkor0jZRZ2TtvK9tp688YL4UR5imj5m69eJPMM6p/33SAmW8TaIfsH8lz9bRBcT/1bw64S++MzsE38reHT+bN3RtuwnNe14VK6fGH4z9OSXRareVPtR9Wa8LZHHayC59lZ195Qj1gFHrAcdsR5yxHp6QLEec8R6whHrEUesOxyxnnTE8mxDnvX4nCPWA45YzzhiebZtT//y1MuzHj318owTnj7hWY+PO2J5xnt+3w7HRvy+XWr8qOQgv9FNCL6i/TkaOscoFcZLTxWEZ3riM8Rvhs4y1xmfKfsru1jZzxG6tEQer92cI+ScI+S0RN4TjljPOWI94Ii13xHrMUesfY5YdzhiPemI9ZQjlqftB9VXn3HEesgRy9O/PPXyrEdPvTzjqqdPeNbj445YnrZ/ekCxPOPEI45YXraP31c7YcXk6auDOp7Y74g1NwaYGwP0M67OjQHmxgBzY4C5MUA3LE97DaqvPuuI5WmvQY0TjzpiebahQe07BnXsO6j+td8Ry7MePW3/aogTzzthxe8LHbE2OmJ5rd/H7yc7YcV0j6NeK52wYrrXEev+AdTLux497bXXCcvbJ7zqMX5f44i11hFrnRNWTJ72Os0R6xQnrJgG1Vfn2uOhK+Mg+ldMc/3QnN9z3n1OWPG75xkRT//a4Ih1giOWV78dk2df62WvmAaxPcb0giOW51z0YUcsz30rz/WJ/Y5YnueZ+P2ehZBXtD/tXOBKeB7lTIWs1CgIz/TEZ4jfJF0qyps+F7iS5HH5zC5W9uOFLi3Ki4nfkzleyDleyDlYWKq+4r+pkJWuZnsYBmLj+YMKdbMi1xcMvxk666aOL6wmeWV2tbKvEbq0RB7beI2Qs0bIaYm8JxyxvmNA9TrghBW/L3XC8i7jHY5YjztiPe2I9Ygjlqe9nnHEepcj1pOOWA85Ynna/jFHrH2OWJ5lfN4R605HLBvbW/+FYx+nvntB3b675rgx2Xdj+cwuVr419eRN5NQD6mO2XivyDMvWlkdKsIy3QfQfHn35s0V0MfGYca3QF5+ZfeJ72h9o4y4U+q4nXGX31QK3JfiNblTwTdmXl+777Ic//cInf+Wjez/yoe+d/IMF3zd+4th3PPXUV1Z++ch/+dWnfqTH+rzW+NfW419i/Ovq8S82/g31+CeNf2M9/ouM/+R6/Ocb/ynwcCqLdUb3eu+SFV81flyjGcrmD6PG//p6/GcZ/7n1+F9j/G8A/grl/4LxvxGeTrU/j/+9n5v/9z/2nsa//u9fvesdf7v+xd+49IV//+Ov/67PnPSG/Tv/5Hu/vMV4z6slOyw0/vOF7C7pHOO9QPG+4WeGr7/tE//7rvFLD3z8HX/w+1vvX3Dkrk+tevZD1//qd6760o3PGO+Five3r//G53+q9eJDD77wbx8+e92SXT/x4me/9r9+7dP/qvX1P/rYPZ89K8a2X6DY1v7zm99b8D3+a7b/jnzWh90INMbbIPp3HTbD94ttogniMYwQZuJfE55XqIvDc/tcw2+GzrLX6XObJI/Lx/PlcaFLi/Ji4vHTuJAzLuQorBccse5wxHrSEeshR6wnHLH2OWI95ojlWcZHHLEG1b8ecMR6yhHrGUcsT//ytNd+RyxP//JsQwccsTx9wjOuPt3+nBB5PA6YgOcV+uWh3HGA4TdDZ79cZxwwQfLK7BKfLW5/v3/v7Xtu37tv8127brlw19333b9n9xBCh9mjIbYKouKzIswuPeYN07MxoruE/t4k+ILAjvlWc5P0fCpkpYvMKy4SmZZ3MWA3Ke8SyMPa5DQs9Ded4+Vs40fP4DId64P1cTHl4Uj6EpDN9arkmP5Dgr5FWBOCz2zfTd6ruSWqejLelsjjtpg78q8TIUxuO0JctPut99+6+a5bA6UG/X1xiYoriG5TiWqFwC3oHz9fQc+GQzoEpSaBOS4TE3cyiHUjyZnrZF5JnYzJbUGesoRh2hIHlqlVwseNmp8NCfoJwpoQfByMFT9iIB97zGjoLOuUfXn8Rz76+fNf+Mwpf/KNsXdu2fXkg6e/63eu/euHVnxk9Z+97WNH/sTiuBRzfLPcLrgUgnaa16V8DaLfDks/69pEUd/l7fy2R15w/547duzee+/tux/Y/c+x7b5AqZsbbaW/twk+lSZCZ1VzYKjZULMDg+E3g3aVqZCVpgODGpVj+eoFBnYIHlV5B4Zt9Hed0WeLnk+FrFR59DlKeTj6xNrkpEafpnPV0SfWB48+saHy6BPrdVzI4YCH9BzwVPDkgFcmb66LfjnNzQMhzc0Dhf79ngcy37zQ2XK5uzfane2MHlvsLH9hHef67JfTXJ8Naa7PFvr3u89WkYT3UPs5xUfZvGcc05R9+eO9F37n3uVvP+uvR3/zhVM/sPKoL7z0kZ/687/bt/vsv/rzv/jpY17qMWpc02O0uzpG2DtpMobtgNuxRceyfXjjbRD9WxbN8N0LkzE7Z9SOKNfs2nP7Lbv27r74znvu333/7lu23rV3933n33nLxQ/svnNv5anZpfT3ZYJPJTMEOtcCyhuDPA5gY6QjP2OnKkQZGKvM4IbVIPqH2srHwLD46NmYqiGh029KlHWc8sZJ325yUps0Raac5T3KWS7kpCYBdYOF0lkFJavPWMfPNGd4sGHj6gfybml/Noh+MzS4d1IDV0G1CDoQoY/FVLZmawcmmWaoRL/3gH8eRv45RGXGciqdJ0AGy43phhIdvpuGjAvC7LJPhbykhowcL3AZ/vAwW3/UVdmc/Qr5eRuhbGCFnyaHn7EcpTMPEjzkIJa1BbMb1gl3RgtIDj9Ldd4LqDyF0CH63webWia2RxW3GkS/FNrjh6g9oj8PUfmxDiYor2yqxTYdFs9SsWqiBCu3DzL6jyX6oG4LFNwHDWXo1wi6Tb0lzJS5DCuIZ0aP/d8Y0S4g2okELeuNvm2Hdg/2ZISntrjkciXQceo2GVlRYTKCdri4BFO1+V1Ea3F4SOC2iBbbMfLGtL1EB67jmN7U/uT2/p+bM/ifon7mYC1Joe04dVt2urTH+lNx9QbKU/E42uv3DpG9eDkT06Gw102U181elmfLNGoSzgelTd7/AX/9fcIrQBb7P7/csgTwmT8mHosZ/eehr/iuti0XEn/8PJpwEVvNZbifY/6QKOdiyOOJrdH+A/nqEuCp4KvnWx0vJZ0Q+7Ca2Gg/S2pp0fAnhDzTqynyGhm63Pn3u07fNfLQrxfEb7rwMz62skzQHy3ozVY4x6tgq3NxkSqQbDXPOIzy5kGe6RB9ej3pt6ymfjn2Q/yWoH8r0FWpi5aQM+qINVETazLM9lFshxxzY+J+SPX9sR4Pbw/gVBw6inQthK6pOMT8Qfyt4pAa68a0rK1rj+PHM8wmS0gnxF5aEzs3Dhn+RCiv16bIy4lDt33j/Ls/teN3jipCZ7wdFs84DimfPErQ99jOT1FxiGMNxqGllIdxyHRQcahmn3JKjv0QvyXoOQ7l1kVLyBl1xJqoiWVxCMcA1g5VHLqJ8iZFeTAO8RxjamyGZuXYbCxsY2Xj7pi2U95EIq8lMKPsk2Gii/FqpP2J80ieoy0RfAHKYM/Q15GH1x6Mfh3YZjXph20ay4n6qbE6rkuuHyunm0zQYb3cRLLQh8coD32S16661Qv3FadRX4HrG72uexpWXMuxuNPe3Ll0996dt+26d/ctO3fffO/uvbx7U9DfZSstPBMLRBcTnxyeT3/zliCvZrYETjeZanX9SPjOctVqPkelI4XOh1LOqh7lrBJy+r1Nu4rkqJXrHkdNx+ToifjN0Nmq6xzeUOeP1SpvjyspUwXxozzE5N5OzaANy6L4SAkWRn6k39wODC2ii+ktJGOx0BefYUS/lCI1riDjjsDWsdky1I4A8u6gchj9d7Zm+K6kmQb2UKn2OBVm61K1PU7NyemrnGN6lHOMkNPveHkMyRkTcno8djKZGy/5WGzNkUryWKw6mdHjjvAijg0oDzF590W9BMaxd6QEq+zozT0UL7HP4Hip+hN8hvFyD8UstfOVsntqNxL52UboMxiXHxjTMtVObUwcl43+IojL+zLicqqM6uSEihNlO4NlWDsIS80ODtYOupKTU56UnENZnlRbwDq4KqEXj3Umu2DtJCzkn6S8oYTOVU+SqNmtktPqUU4rU87BKs94j3JyT2yM9ShnTMjp90kfXnkoi7c/SPGWTyoy75b2J59UPA3i7Qcp3lYtf4/znOxxieE3Q6f96oxLusUHHpcsridvelySmhehPrwbwLaN/2wldKQEC3eEkf4naVyCOw48Llki9MVnOC75cZrHoW17bSdY9oPRHmPiN8nL2uPPUntcDHk57dHoj4D2+POJ9jhJOqNtxhLlwZOcZTFRjclTbaWVoFe+rsYEfdz5yo4rvMte8zTBdFxRu1Wq3YyD7PZq7fm77zv1tLMv+uel2n137y3bBVuEQgGD6QP9zXxRNz4xMiRkxMT+M0l0XO/2vFFDp2603fLVmGBJSTlDyBsTqN0Pxio7qWn10yD6z7QbnDqpqd5mQB9KndQcI76xEt2HRRnGgo4H3x60fljmTYkyG/1/S5R5QZcy8/wLy7WA+HBMyusXXIbR0OkDiKFsfGyYrXtVf0L+gzXGPJbklPVpX8xYa0V97PpWXmudD33an1Cfpsby/S5/2VsXWC68ipbnEQugnIwZE5+yM/q/8jklInf+eO2/EPrH8n2Z6lSVPVWnRv+PC2f4vpZRp6n2od4WSsWCiQS9WjdIXcWqxqe9jfOLL+b4KOI3SZeK/jA93lDjdCxf3fGG4X4BCoT6dxtvMF9qvMG0ZW2PxwAtet5tvKF0KqPtZbwxWVLOEPL6BzXnMf/kV26nQlaa4n5vOOi5Y9lr5ENBjymYXo0xEJ/jMJ6OVra5EfKRfl4bKI4lvodOL6MOx5XoF0JeXSD/weqrjiM5/dh3ionf/MJ6PQu+Y57J4WcsB/nHEnIme5Sj5sA5vh7TnvZntzHR8vHZuN36T5PL/eePQv95RPthat2t6t40l7/q3meqXee2UzUeOJGwqr49jPxl47iG0D0mHpcZ/WvbX3rcV92uThmaL/Q45tue08YRX+1pml5NkZdzevdLzdf/xl9+8v2/WRC/6cLPctaOThT0Pa6zblGnd3FNNSb0kRbl4eld00Gd3q05XtuSYz/EV3vHu4CuSl0orE01sezErdp7PFQxKfctWaN/I4wdcm5qwP4ntac8TnzjQvcQOmNOTFNBp3+iZHjT82whi99YMNpLoNzvO3q2rhNCV4sRwwkZQTwrQrltWMaQ4LWfdFHrOWW6qf1rxCjb+48Yaj+5bA6i9LJyxKT8NrWfvr5HOeuFnFSfxJ8mh5+l9nnXkxzkw3HTdTRuakGemnvd3v7ke0X/BYyb3kzjJiwP72WrtT91PoRtn3uzhtHfBO0q52aN2wEzZ50JdS5bZ9pN45l+rDNxmRqhM7bGdHnQZSpbL2YbtAT9jQl6td+EfsUxO3XmdXr8Aj63h/y4W/mvKMH8x4kZzLsqYm4uwdw/PoN5b6JtHB9my+P2z8+4/TN/TKr92/dR0rOiH2Zfzmf4zdBZ5jrraWp9QNllAmSwLi2Rx32jkqN+brkgrG56OV4ib5DLiW5TiWqFwC2Cdjn7ezk9U0VD7Ojmd7ebprk5hsqzCR91GRbPuMqQ3+iUnEU9ylkk5KSwzhZYRj9P0C8S9I6uYflHEt2NCdUYt5trHEnPylzD0jDJjN/LrkNFk6OOCwVGkSjTsHjGVV0IWUrOa3uU81ohh0cJH6ZRAsqvEC2fseg3Ag858tdcqX4G7WVJRf6y0/mol/qxv5xVj/X//tEPnnPcbdsK4jdd+Bk3STWLfK2g73H16Um16oH368WkVsbUqoc9U6seNS/LfDLHfoivVql3AV2VulBYm2pi2arHCPCn2vLBihn9kJPCUishRm+2GQl6p4hjktH/JMye3k+rEsreQTwbCp3x6Lr250KBtbBEdyXb8GNqCX6j62NMnIf1hHriM8Rvhs4y1xkNq/ah7GJlVytefII7Jr7DqOqOwKBjoW9OhE7/LUo+TQ4/YznYVheSnH69pZbj53XlIFbO7zjVlaNO7PTYB1e+84z9Ai8j5zHNpZDH9r8M8vhOXYzN58N3TsP0N9ohxuMfyLhjTb0Rxf1S1bfRCqFPt7eEPz+uZaq3hLFv4rfR/ghWab44Xl5G3olUK3dYxrKVuz+jMTn2LRX8UK7cGdYrycfr+PHv1vRjHnupnQjLU2MCFa8nKE+9EcdxEfFVLLsJ6Dieql0EXhGdJ3RX46YiQ05q3FQIOT2OjSr7ZkF5eP8qxk1OysdM5+hjE6tmcJmO9UGbsm5oo5xxt+lQtmvBcW6afmJGd961UDurt5Fc/I4yAmHExLFv+s6atg49zjNl7OM+MfVW/cH+CZle36rvtkuNS36D8xMyTaK7jP6u8xMyNe8LcP0JGaxNTipq4N79IPyEjOk/JOgnCGtc8Jntu8lTqwIc9RVf/PtCweM542E7emClzoTVHOUtyY04ht8MPbWT6YizkORx+bjsLaGLejedf+Cu7pmm+L3hhBXT9jmsOaw5rDmsQ4CVMzPEforfjcQ4yLO3qhvVyG90E4KP+7ea/c3C3P6NzzU36smb7t/UuTtllx777wWp/hQxy24cZdvGf7bZP1KCZbwNor+x7USefh1njNdPzNa9X+cQUwc0+un3ZSuQt05omWX3FNqMukH0vw0rkG+b0DqbDEup85A4hmdefK/D8qq01ziHuQBWPtB2VgaUqfwe6e1spNppa1Ae+gKvHJbV0f1URwXkqTriM6lG//NQRw+2v6s6yDn3VQh57EMjgh7x2IcehdWd9yd+3WO0RF7Zqvm6EnmPg7xraSWsD363RPkdtmf2O7VSqdp/qj/AmJCKSyy7EFipc8jGPxJ0HRheg+ifF3XOflf2zhrXq9G/J7NezZb9qFe0Vc4pBfU+Z8oP1IkK1Q+wHw8LLKxrrtdubdnwuG39y0S9qviFenK9Gv33Z9YrjnsMB/WdCllJ1ivaiutA9ddIn3MIknWNSe3IzKc8jon4XcVv9IOcOlf25Tr/UVHnPPZXcSH3/HJcX7N3/Nsrwzv33nXv7vbScKCUWsotQvn1fosFfyDegp4tpjwVPlMbIia77CASh0+j/0lh8lT4jSnnCDxWdz82F+yZ1xH4bmGNl/pSzUy9xnIIXTWmy0rUKAR/IKxCPItJHUvHauBRoIpuysXsO7+ZxPSGx2cLfjHRc6RGOEHok1oBRn1U+RdSXupGWaPFHg3diHs0o/+1zB7NZPejR0MbcY+mZtBIz/ZeJOjVard6paCgPLQxn30shBw1OuXRGPKqmVW3mR7jpOyj/Eu9za3OYqRmwXg+JgTfWTCWh30hVbcxsW3UW/RY3zwbwf3w1Ky5RXJScSmmlC/gzPFWmhHzihV+r/rGK/LjmSuMs/8TYkHZ7yDnzviN/ksivqTKUIgy1I2l2H/wma6DtQN+sM8tYpk5cR+Ndsg9t8j+YLhVfB596fN0VhDjzBkkUw2x8Bn7PPIbnZKzqEc5i4ScFNYZAisVS/r8WpqpeBzR3ZhQjXEL+sfPj6NnqrljUtVUlOgdQl41FSRfYeHRrR1Aw5cxYZd3JmFVXTRHfh6Smi5Ht9vpqJBfIXy9mDpWb9g1X394Ee1rSc28yo7Eo17qVYycV9B+7qNXLvidT509/QpV7lFLo1evbpwp6Hs8GvxeNazi18zUxgyGzkA6qFfQah4PfW+O/RC/Jeh3AV2VulBYO2pi2StoaC/eAOt3jOGLOY5rt2UcZh1sXazbXyd0ScUxbNu8ga4WtlW85HJVjZdFppzX9CjnNUJOahM/J/4pOUrnbhtyZy6Y4UH/Lhue26CANz++vGCG7+z2d3WBXtnb9kXQq4vcXnlzhmnGSvQ7F/yTj1tzmbGcSucRkBEIIyY+bm30F1DfWzOmyuPWPAXow2uQ2Suih+o1yGrHrXlRAK2CqPisCLNLj3ndFj4vob/rHLeuOUq40LziQpHJE1G0jZqIYm1yUhNDHFVUOW6N9XER5eF+wsUgm+t1VMgx/YcEPV/fr17ANNt3k6dGOXzhg+KLf18geFIj7pyWGRPvHYw5Yqmj2z0ukmT/jAgfR6vZTpLH0dQLk7zwjLzqCA2PylLH0FCOwpp0xBp3wopp+xzWHNYc1sBhqaMX/DIs9gf8c48Yu3i1o+qMEvlTC6ore5SzUsiZEHx1+75WQmd1FTfbreoFF8jPi/eoH87w3rtAy1RH0WLiGZ7RfwFmeC8umK2zmuHFpGbTWA8h6Nl+jxuCC9SGINqVx/5qEwLpb2t/po4AKV/IraMfoDpKHRdEffgMzX+COvoAzcLRt3N+plPJ43aYeyzW6D8Ms/DUsdh5JfLKViW2lMj7MZB3EI7FTiq/wziTc8xOxbNUvFBnfFqhM/bwMbuyuQjXvbJ3zjG71JFZo/9p4Q/cF7FvlOmn7OZ8zG60RI1Fgj8Qb0HPFpVgGU78Gxc5co7ZqbsiOET8O2HyVJXFNHfM7lvumN0lJWoUgj8QViGexaSO2SEut9iUiZWp6h7Q/oxw6VSETf34mRoJqD0HVf4JylPrwyxHHRyPiXs0o/9vmT2a00hK9mhoIy5X1R+P63YUh5uaOpKWmtnkNkM+ZqL8VI3Uuh1fyXmxhXUNQc8e+IcMeJUrBO0L9qwfo2osT87LZupomdF3O4JotuEXJtFOahTOx9/UKCrXF3D29N6SvTPERV8o23vGGIAYfBTO6P9GxADDHO1Stpx4h8McvoILhxgc79TeuPJHo+vRHyeUP2L5c2Z5qWuEu7XV1EtofAUZlpGHkd38JnUEDvcuz6QZH8o5iWRWvcb3JKG/krOoRzmLhJwU1kkCK1XffT4CZyquJLobE6oxbkH/+PlKeqaaOSZVTY0SvUPIqyblzkpO0aOcIlPOqT3KOVXI6Tji0u6LetxGP5CzYbawJjbay5KaTRm+2sAyvZoiL+fo3JdbV//qnpc+/GMF8Zsu/CznzYtTBb3ZquZv1u1XXZPJVkfnFlIedi+p36xbVFO/HPshvlr83wV0VepCYW2qiWVH57DrPNgxg4/OndRWVB2d67cuPR7mOMPa7Bki0/L4KDHmnQX0VW/cxMMcVW7cRJuybmgjs2nqBVOTl3vjptG/Huqcj4Dh77Ub5m0kV+nQEHJjuqFEh/OpD6l5MEIeAePpYeq3G6v+zi/yG12PZajsx3x0En/jmA/J4JFLPiaOPzLUpDz8FZdJynsd5PHGzjmQx0fxXg95WF+cVHvDt2qur9DesO7PpDyMO2ZDtWR1Ould9dgr8qeO1471KGdMyFFLd2i3Pr6+kL2izb+SM6+evOkV7dTdGt9UrP3JG6LIqzaOyo7sopzThZyqevXhB7I2EF3Zj6YUAregf/x8Az0rm4bZ38r1y67/CSHP9dWU7mA1sW4ny/cs1DLLrjbCLhXp71k4w3cXfLediLHwyrNtjs1iurv9yTZ7CIY6vELYAD0U5lWkg2q+aqhg9Gp1VV3nplYNxzNkoy3LfkI2V9duuw98GT/qt7CirjsOsq5q6tpj17bY2vxikWl5SwCbh1dLIY+HV4dBHg/nlkEeD6+WQ15BeSsgj4dsh0Mex7QjIG+Y8vBM2Xz4zkkN58zuke/qtTO4TBeoTCqm5K4QYwzhmKx2XAqBa88nAWuYMOL389rfG0T//kQ8Uj8fnGoHSwQ9LgHxZRQ4VVpCeciXuqjC6PpxUQWWh3cslkLesKBn2xwm6JcSTUyt0NnmJikPY4vJVDtiLdDdfnI8tcTJn6YrP+N+ErG2kz79uOI0phtIDvZtONb5REm7wnaCvHvan7ws9RkY3/wUnbRQO8F8RvNnoJ2dt66cn3fu1K7WwtDpBzymUuVE+vNKyvnvQM8L23r2cee6VfWCGBVjUhfEpNop2qQVOtskj3nU+En9eJDR83IY14Hh8VLUf4I64LN3WL4W6T5aUXfVn3TbWV9Ol3lgH8PvveRejawu52mVYA2V6L+H6JeCXCWb6c0nGiEdnxtE/7tQV5es05gh6D55vETnkRL6JaSD0f++8JdUHED/X0yYRv85sQyfi/mGEswvJMYaqp3i5U5V+1MeT6AdD6M81J37xaUgn+v0PSQfcdDXWG5I6KvOsaf05f7G8v4O+qv/RUvbOLaoEKuHU3V1ltA3t67GE+VjLONrhE5/TLURtMfXFmrMeRUxXxJ9uhqr3AT4f5cxzsdYzXEZYwa2w0/QmERdmsVjkm+I9qj6ep+LAYsvVn33o5ttOCaoy+C4Hwmhs7+J6S2Up97n8e5Lvzw2Gzd1WVr83EB6dBvj2bYIx+Hx9hcVh5UNUzZXc0Tsx3nrC+tjMeUpnz3Y/ojlZ39MlTWE6vNh9kfVfyh/5HFWt0v2Uv64AMr6xbY/qjm4yVQxuuqYu6DvFuNHSug55hv9FPgxj3uWCR1SaxfLBf0yosHyY7/E61zGh+0SbbKFymP0a0S77OOahzxBjnZj/0/ZKCa26QpBj7Yym7SIHu2r5gbLKA/lsp+pNpvbNow32uFnKVaPZeJyXEWfwP0FjtVGf1YiVquypWJ1t3jEN+Dlrs+lYnU/fXVQ1+eUPyr/wqMtP0j+pcY+qbcXcsc+qq/l2I58fEK/6pxeXaqr5Iz1KGdMyFHrSUXJp8nhZyxH6azaC5dH1c9kZnl4P2bSsTxKZ7VGjGuq17VmeDhODgte7u+M/t7WDN+b29/Vuif7Ta7v8proJNhAxewdUP4QZtvPcHuMY/NUHMM4nrPeifRVx14cqzDG8dtO6pQ++h72nUYTgmvcn1d1fTgVB2PK6ROxTVjZ1Bid147R3zj2Klui76XGIXis+YGx7vqn3uTq5h+8/4D9/FLKU/MV5QtG148xAJaHfSHVp8fEtlFzBuzn2RdwfrCY8rD+eRyhxm0qXnIdY3xFDN6zMvonEmNH5Qcpv+k2PuK5vFrDS80rD/bYcVD8htd9MfZU9RuOIRjPsY+2/lvFuyH6rsaSSD9cgtMinIKej8Fz5DuHysxjJMbmI7xWzpESesPjscj3JdYSFnfR4VzSYUkXHXjPxei/X+iQsn9MqTHhaOhsixXaTQP7IEs8pkT8ZtD+MRWyUsH2M3nKD2JSZ5e4PWEe98kqBqp2rrAKRyw+tl+zvir/cAXPK/Ae1Kso71LIuwEwOA3T31ie6Neb6ExBEFg8zkO9VaxZLHgXC+xD1R5qvgaXbA9qDlC1PfA68qu9PSymvEFrD1hfpreyUUxTIS/ltBesmwr2Pya3vRi+V3tRvqfaS4/74VPx9c6xMDtWxfRuwEPboZwlpEOv9afWuA5V/bXqyUvWn5rDe9Yfji+q1J9a++N1lKprf8h/sNb+JkgOzgVx7e8LtPan5qbIy2t/Rv8VWPv7Y1r7q7q+18f1uuFDvUfMdZa7/pSzR5x7Th33iLeWrD+ZXWPaI3i5bRdB78vwvhnvDTMNn80x+pdgLsWvFCufxZhTtp7y94n1FLVmkFqn7bZmkFprW0Z5ai9KtQmj67FNHHOo943Z73HfmPd/uX3FtEVgpXRt9aAr1yPW1QrCwnNoqm2wX073u+17JrqdGzCb96P+U+tpyqap9bRuNuU5Te65AZ6vdFs755io3rvAPlGNBcr2oFBmaiygYjpff3M41P/ikh8zRp/CMcGWEswjhU+lypC6ravbGTHTR/X/ixN8WFejQtaUffmndDI8nJexrLI1u+PBTu87WutSsD5dUh/X9KYKwgthsNb0epyzrMIxPfoHjunV2TKsLzWnwjHwxkUzPGVtDHnf1v7kNnbGohm+U0swQ6i+X4j6fLA5G9d7fJram885M5Q6g5/TL8bvfHbK6F8PbTP1LpPPPlPxtUO9z8T9Iu4z8ThH+VdqHI77KqoO+D0Eo78U6iD1LhOfBZyoqHtL6K7WkbFtcDtWe/SjAjfV7lFvO6/N7X57om9V556w3Vc998X7+blza3wn27AD0fVjX/Zgzq1N/5y5Nb4DwGsyOEbDsxrPUOzFteaU3xq9rT+XzX2Nt0H0bwX/OozaHOp6MZUD17vN56w/vpR0nwpZKfvKHcNvki4V5U2PNy4leVw+vNom/5cJeQcRrYKo+IxbMOYN07MxottGf9f5ZcJN9HwqZKXLzSsuF5mWdwVg86nLzZCHtclJ7ZCYzlV/mRDr4wrKuwzyNoNsrtdLhRzTX+3mX0ZYlwo+s303ecOCj1fTuafA3udiIZvf/nkIosMH1pXb4eJQbgf7uyn0ZHtbfkw9+uS1udHE8Juhs+7rRJNNJI/LVy+aoKeglGsI1WiQFtM1oBnS829Icu2NCz5OZrEG6fwizF2ebH9fGDrLxe/QKG/HZ7z+gfxGp+Qs6VHOEiFHjUn43onDEnm4LrWM8lYD342Utwby+D6NtYDJ7xZsTGBeJDBj3Z02OYNXQF5MytPNR60OtoE+yFuQHKSNaVf7s0G0Hwa/eh/5FbZi9qvLuuid8qvLQrmcJT3KWSLkpM4QWN4mUVbVI3M9XwF57DubRbksb0sCc6vAjPVzwuRsOq7/mCziXwnPK0Tga3IjvuE3SZe6Ef9Kksfl4/WqHfXkXV0QP8pDTNPHbL1T5BmWnVUZKcEy3gbRf7Ld3lpEFxP/7uVOoS8+M/tEP/lXi2brjrYtSj4Nl59x+8Kys79jvMH1u5+leT/69HDojGs28uRYde5hM3w/T7EK+bnuVDupW/7toowLQ6dt+L1j5d9XJuQsTpSnX/XJ67EYZ7E+f43qcwfkcYyO39uD3un6NPo1UJ+/QfWp2qKyM/dLVe28TMjpt525f9npKAex+Kc2riYstrPVk9kZ77+8mviugTykw1nX1fD8GiFb4RtGNx/8w0W6bGU+aLIaRD8OPvg/avrgTsrDvoLjuOmBdkD6dUGXa6SEvqxcfybWgbkvQVthXXD8Nfq/SKyjKt/C/oDXCpU/XC3KpWx6TeguG+28qUT2SEj7YoPov5JYW98u+FU7OoJ0uaqL7ty+kZ/PyCJfr3FE6dytTf5DxTZ5cvs7++5LS2f4/g+1yZSPoM48j6hq5yVCTr/tzHOEaxzlIBb3C9cRFtvZ6snsfC3kXUd8b4I8pMN+4Tp4/iYhW+Hn9gsTk7psZT5oshpE//vgg63J2eVX/YrywWsoD23K/UK3eHgy0ZveIyHd3zaIflm7LKpfUO0VYy33C0Z/OGByv2BysVypfkH54rWiXMqm1xHWNoGFduZ+QdkUy7+Nym/0U8Kmql8wfrUecRPloW47KO9yyOMxK+4Q7KQ8XI/gtRE8o8fxbivkoY/wesRkojy4b87rfbhux3vJqyHvcspbA3m8+4DrdpspbyPkbaG8iyBvK5TV1u34vpgz21963LeTP2OTWhctSj5DyOsPUvdQXOooB7EuITmXOcq5LFGey4Ucqy9sL/3YZzX8Zuhsu3XWya4geVy+ejsjHAnRKoiKz4owu/SY1899VpO7GfKUJXjlHMu0uYQPbRHEsyFBfwVhXSH4TPfhBD9iIB97TEHPy/YjDaNB9Fuht/oRukFXyUJ7lPlJ2YkJ1sHod4AO/LbAFcCjynV5CebuyRl7XD2pMYPAVOXaTOViHa4gHYz+TWIkMEw0rI96Fv/Gvd7NJfqpemJdsZcrKw/Xk9HfmKinTUIHbJObuujANJtLdLhZ6CCi24V33b2vHd0CJfzNCI5GyvK8b7tJ4JQls0b0QvNIdcrgcsG3if5uCp1iye3s3vRPQ+3ZvXd3Sdk5co+VyBwKOvF41PhiGg099WnZfajhN4P2vKmQlQqOciaPy8fvd18hdGmJPKxf9qOUnFinNvdv1+nOvXfdW1aluZ1rIdRi/kBYhXgWk1U1TgUqmH6b2iKyxNs0WCa1FM/DSFymxaDGicuN5YnB5SMVXg1Hm/I2GLonT8+wqfC0LnfqxtMznLrx0iPWF7/+hNvMw+IZD7GRf2tCztoe5awVctTWOPsm+n0/wpDhN0NPbWE6DKnlCWUX1T6MVy0z8EE0m3o32j1m7JreTVN3PBbLdq35KspZuXY1fK/X2XOvpFNLE3xdHx43ug/oOG9YPBtKYB1wxHrWEesJR6x9jlh3OGJ5ltGzHj3L+KAjlmcZH3fEetIRa78j1kOOWM84Yj3miOXpE57t0bMN7XfE8rTXI45YTztiedr+YUcsT9s/5YjlaS/PWPiAI5anvQY1Fnraa78j1qthzOTpE579tpft4/elTlgxefq9p+0fdcTy9HvPMnrGCc8xgKe9nnfEeqH9qa552Upyql7zgvyTGVhq/SBVRrWOMw4400v3b73/1s133Roo8U7DxSUqnkl0Zbd5FQK3oH/8/Ex6NixoETsuK93Z3rLo4xsqpxWEF4JeVjpUb6ioZWnjbYm80+A75qGcHUJOS+QdcMR63BHrSUes/Y5YDzliPeOI9ZgjlqdPPOGIdYcj1n5HLE97PeKI5Wmvhx2xPO31rCOWp6/uc8R6NdTjU45Ynvby7IcecMTytNeg9kOe9trviOXpX54xx7M9evqE55jJy/bx+1InrJg8/d7T9o86Ynn6vWcZPePEoI6/nnfE4mUSnFfzMknVt6OR/8oMLDUfTpWxz8skpuKpRLepRLVC4Bb0j5+fSs+6LZPwqZy9i1/+7PGEnXyBhE9p4XIQnjbDvBDyVuqQ/7CEnBU9ylGXTU8IPit3j3ZcgPZDPfEZ4jdDZ5nrLC+pU3LKLla+mstZE0XobKrDApNP3qXCirWfkRIs4+ULIJ5p+34rdIYUfkEyN3TFZcgnFs/WXZ0azKlnxFUhMccf68pBLL5oBG3D7ThVr0oO8m8vwbJXTGK6DWj4tQSs5yBk3wD5SP/d7fqKp3DfdsLL37tdKvO9i9O6Ii/qypfK/Dy86Pt9bUxlZ6t35QfbKe8wIVdhcmysWncrhA4pLKyv1URvdTFSQm94XHc/DHXHLxQbf5n/lLVx9B98paTMfz5Sw39+dHFaV/af1STb6L8f/OcnyH/Qxin/WU156D9mI9W38knrqn0r8qf68NSFbexHVS9sWy3k9NiHX6neGrCktmfWUh5eNrKR8vAF/4so72rI474BXyTnl5zxBXd+yRlfal9NeXjZArYlTsP0N9o2tpnr6UdMgsDil3bRhuotBb4UB1+6RgzMM135GfsM8m8swcLXBzGG3Aj5SP8f2m/gxHb8aRo/4GWOZpMeX346PWdcgPhN0qWivOTLT1g+3sbcKnRRMewE+I55KCf11gfmPeaI9bQj1oOOWAccsZ5zxHrIEeupAdVrnyPWHY5Yzzti3emI9YIjlqe9nnDE8myPzzhiefq9Zyz0rMeHHbE869Ezfnna60lHrAccsTzt5dmGPMcTnvba74g1F1cPXVz1sn38vtQJKyZPv/e0/aOOWJ5+71lGzzjxiCPWoI5X73LE4i1RnKPz2oOaD1+ekIP8l5fwxe+45tDH2wuGC8IzffAZ4h+q2wuuFLq0RB7aEPNQTmrLGrFyLmRRax8p31BldNyyNhVPI7odJaoNCdyC/vHz0+hZ2Za1YVszwqUn3nZCM6ZMq7adLkrIWd2jnNWZclb0KGdFppy1PcpZmynnsh7lXCbk8P2ZMeGWytVLtEzcUtkIuLwlZ/TvhaXY65bMLiNuS0xS+fEIBN+dib//w6EX7xGtEAqzL44x/Gbo9Mk6oXcNyePyYVhqr2Rn3AHJLQCtgqj4rAidUaMAzfAZb45PEl+dOyDXQp6yBN8BiWVaW8KHtgji2ZCgX0NYawSf6T6c4EcM5GOPKeh52R2QhtEg+re1W5W6A1LJQnvw4SnTvexeP9bB6O8EHfhuwTXAo8rFrXkt/Y2+tatE/gGIMvcu0fKDkM/lw6hWdr/iGtLB6B8AG/B9kRsFfyh5xj3DRsrbmKBtUVnwb+WLPGK5qEvZuf6N/tFE/a8QOpheMW3qogPTtEp0eFzo0NvdkhzluJa4JlYInLJk1ogea97L1uHWwXLsb+UBvd4teViJzKGgE9//bXwxjYae+srsvtnwm0F73lTISgVHT5PH5eNp0RqhS0vklbXSbnJ6vFuyrNNWwYL5A/EW4llM+OLw3FSju5xXw1SDsdQUIqa7258c2D8IgZ1/kuIi0ENhXkU6qFUAdaLJ6NXK1eWijGZLXKXYmiEbbckd4baKuqrVFVyJupx0Rf2urKjrjoOs60VC1x5P7VQ+WcanwPBkGZ8CQ7/jO27xZBmfAsOTZXwXLZ4s20p5eLKMp/h4smwN5V0PeXj3LCfuC9DusV1evXYGl+nwe1lMwTbLttwoyoZLFKOAjXKmQlZaa3LUpNiwcbhRwcduRp0sqaGLPWuSLhXlTQ9dhkkel4+HLg2hS4vyYroH6DhvWDwbSmDd4Yj1pCPWA45YTzliPeOI9Zgjlqe99jtiefrXE45YBxyxPH3iIScs4/fS62lHLE+feNARy9MnHnfEetIRa78jlpevxjSocdXTJzzjl2cb2u+I5WmvRxyxPO21zxHL01c99Zrrtw+dvTzHq54x2nMM8Kwj1n5HrEH1Cc84Maj9kOccxrOM73LEmourr4z45VmP73DE8rTXoMacQR0XPuyI5dkePftaz3oc1PHq2wdUL8+4+qgjlmecGNQY7amXp+0HNU7sd8R6NcxrPfvt5wZUL895rWc9erZHzznMkwOK5ekT3IaK9t9IcwN8vwnykd5uDepxr/gW3os1DMSeVxO7ILwQZusZCH9CyDO9miV5UyGdnvvEL79/81//+pcK4jdd+Bnugcd/I4Je7WmbreYDfwVbvXUCZASSbXkNyJtHeWgX0yF+rif9Rmrql2M/xG8Jer6tK7cuJsNsX0B/t7M6eHPQVsrDc0aHkQ7qUlH1ppnR2/mbkRJ6w2sQ/Q+32yse1F5INPH7ihJ5qB8+S53t21mCVXZD2YYS3X8UdOezcFcJ/dQxUqO/WtDjuSXTR9nm6qBlY3mwPm+j8hj9x0V5VPsznxoFHMur0HYWRDkXgBy2G7afbjaKiW16jaBHW5lNWkSP9rU8PJ93FeVh2+Gze5uFDng+j89Xod/hzXk/mnGD4iC161/KbNdXlMhD/VLtWv22e067junWEt1/rWK7vkLoN0jt+jOZ7dp8aq5dd2/X6hbQ3HaNN6rybavXQZ7h4jnuk9vfG0T/uYTPvil06oo2Z/teL+jx3CrfWonnXa+nPOS7ivLwvOs1pMObQ6cdUC8+n270fwp2uLD9Ap7yddOrR18/X/n6m4GAff3bIG9Y0HNd3CDovw1ozCYtoud6wb8RC23KZ97NRiOCHvEaRP8VEftNP4x9bybdr6mo+2VCd3WbJrapifaLNuaDGDd4HH5NQqaKz3YmfKSE3vAaRP+Pwl4cG7EdoJ0mCNPov5GIByYXy4Wxi31Q2f5aUS5l0+soD3U3X1Dt0+h6bJ8XqPaJ5ef2mSprTGwbFVvRd63+W6EzHl5Nedg2riU5qo/M9X/0oX9YpHHL+pt2CO3wr4XtzlH5l2o36kc3Uv6IfsL9DfrXtZSHfFdSHtqUx4qq30V6ngMa/TKwQ6q/cfLnxcqf0WfZn1P+GVPVvt9s0gqd/QHHQ+WzWNfc35iNRoKuA8NrEP0xUAfc3+C47TrSfWdF3eu0tz9stzfzQXyHifubnQmZzIvxoqy/MTyeD2wQ9ipIBrYDtBP3N0a/MREP1Jwp1d90mzPxDdhol6spD3U3X1Dt0+h6bJ9LDvXch/sbjIc8L8K2we9mqnWCXP9HH/o16m943oRY6Bcpf8R2M97+zv54fsIfU+0sJra58l/0K/4lAfRHnvOoX2/p41z8GuWPWH72x1RZY6q7vtEKnb6a8kfun73m2z/b9kdb98d3sSvY9SJ1g30gHS4G7DHKwxvT+J3US4FvAr5zGqa/sTyx3j9C45EgsExmC/Iupjy8m4B1xTUSvhoK19wvo7zVkMd1h9cz8K828DUfMVldXgTPK9Rl9pUWht8kXSrKm34v9CKSx+Wztlbtuqmy2wkKQsVnRej0sAI0w2djRLeV/q5z3RReAaQswddNYZkuLuFDWwTxbEjQX0RYFwk+0304wY8Y6vogw1B82KshT04LuJjwp0JWyr7r0vC9WkC3ejdf5aiJvC2RNwbfMQ/lXCLkKKwWYbUyde7xgpgx+vuiEjWGBH8gXm7aQyVYhsNNJ+dWLnXvUYPoHxYTjxR/TBPiGbt9TTfMDvyG3wydLlHH7TeSPC4fu/1FQpdWSIcorsOUHEdXjWlriRqqRwmEVYhnmKdcFcc3m0pkjwh65apG/1xiTWFU8Mex5fHN2bJRl2HiVbpeTroyzSjpavTvAV0PI13RVXmchffKcJO6gnSfClkpu0kZfpN0qdukriB5XL56YymsabYKouKzlBd3azk8m6gylrKa20LPp0JW2qru0rakZlWjlIczW6xNTmrWYjpHDx4/egaX6VgfrI9tlLcZ8raDbK7XK4QcvASa6TcT1hWCz2zfTd6w4BsljIKe40rIJiG7QfQfgejwgXXldtgUyu1gf68WerK9LT+Enn3yutxoYvjN0Fn3daLJFpLH5asXTfisi0m5llCNBmkxXQuaIT0PGbn21gg+TmaxBun8i20vit73ifZ39SsAi0nvqr8CsFjor+Qs6VHOEiHHPLkJfDdQ3rgoq+VhxLqR8jCy811iF4tyqXUixrw0gXmZyIt1d/Gy2XQYjYqSz5iGxbOys1ioq9UdRgC+61K1ti0JOchvdBOCr9fyKJ3V2Amvav/0YTM82Jti1EY/tvFmg+i/fNQM33+h9obja9NR2ZnbYlU7LxZy+m1nblPbHOUg1o1AH/+pOxDRzlZPqXV83utmOhwRqDOUiKHwDaObD37hMF22Mh8s+wXq3wEf/OOaPsjnG3EEmfML60jP01v1y9rbMsr1pcTcTv1qu9Kdz6NvS+geU+o8Oo9c++HzKLOb//wN+Y/6BXj0H1uSaBD9L4D//C35D47Q+lH+VLvGkRyvLKt2p+IH82EbPSJDh9Qv7RwhdFD3o/bqG0rnbr4xvGyGB2NXmW+c3P7O+7MfAt8YaWOq/VM+w4M68xiwqp2XCDn9tjOP73Y6ykEs7t/UPi3a2erJ7Ix7uFcTnzrDx/0b7vOqMwsKP7d/W75Ml63MB00Wn2F7J/jgEeSDyJ/ywdRZlLJ3KdAOqg4K0nukhL7sfM8x7bLUOd/DsdzojwfMnPM9arac8sWq53tSstHOm0pkjwRd/jJf2ZCwqXrPBMvDNjX6jQmbKhulbNrtXBCfQ8Ey89l79c4S2jnHplh+/jkqoz9T2FSNWzaT7jh24DGkGoch/UaiV21MjU24jZ2T0D21KolrCzdRHq4t8J3iuGfBczHcAkqtLfA6B+5ycv+HZ1B2UJ46Y4hrCw0q62Xt5z3uLcya9wfCUvYtSj5DyOtPm0DD53f6sW6i5Gx2lINY5jNqzsbvDFZdN0D+1NxwvEc540IOY1lMjgnHRHyO1eivh3a9mOK8+v2JcXi2KVFWbs+IZXXW4y+WZu+9Gf6h+sXS7UKXlsgrq1OUc5iQU1Uvx18ZNRVXEl3Zz4kUAregf/x8JT0bFrSIfbCa3qGUs6xHOcuEnH4vdS4jOWXTnb003em2pMyvqhj9gzDdeUdiulPW7NDXUkcuTF7ZMYaJEv0egdDLv1s3Icq8IaHzVpDBcmO6oUSHx2moUjMUy6EKL4XikK5JeTj04B9uxiHOsHjGPne5kMNYZd2k2ZWHdM9W7CbRtzclyspXGWDXxHZQclR4V3ZIyVneo5zlQk6q268bS5TOPJWICWPJ91As2QZ5akjD9W/03w6x5H2JWMJHwXiowfG1rJ8siyVl+n1/IpaooeGWhM44BWS5Md1QosMHKZbwVtBUyEsqlvDWBOp/eJitf9W+EPkPVl94OMnp97afWu7n+KK2o7Yn5KgttW7t8SeXaZmqPXK/hvQboT1+ktqjx1ZdWZsIIW+7a6uQUxaDYkr1QUb/84k+qNvQPzVVK9MPr5rDdvCWMFPmMqwgnhk99n+8fLGdaLclaFlv9O1T2t8tFvGW8lTISjvMn3eITN7SQJ3Uq5CoAyc+ooQ6x/peUeGQINphZwmmavO7iNbKPCRwebsI2zHba3uJDlzHMdmr19ze/2DZDP5vUT+Dy+UV6nan2pKyxPXHtuOk6s/0ivV3ac36u4ryMK7yUS0Vj6O9/vQQ2Yvn/JgOhb1uorxu9rI8K++Q4ONDqCavuXwG788Jbxxksf/zK/K4PcP8MfFYzOj/EvqK76LryLB/PZrkIbYaH3M/d3SJXqqc6tV0tttI226jodOfKvjq+VbHV5NOiH1NTeyC8ELQy46GPyHkmV5NkZdznemdf7/r9F0jD/16QfymCz/LuYLkaEFvtsIrXirY6lz1qrfJxnWREDptFhO+rm06qOtMr62pX479EL8l6N8KdFXqoiXkXO6Ita0mll2zqrZTOebGxP2Q6vtjPa5tt20Vh44iXavGIeSvEod4rGu0x1Mcqjl+PEONAzkOXV0TOzcOGf5EKK/XpsjLiUO3feP8uz+143eOKkJnvB0Wz3K28Y8S9D2281NUHOJYg3HoasrDOGQ6qDhUs085Jcd+iN8S9ByHcuuiJeRc7oi1rSaWxSE1Bldx6CbK2yHKg3GoY00BxmwnLJ+NlTPuDqFzHWRbIu9KgRlln7t85jnGK7tSWx2ltrGpOlZkf+Mz9HXk4bUHoz8LbHM66cc/3b5d6KfG6rguefbycrodCbrc8X2T8tSx6dx64b7iPOorar78Jdc9DSvKsmlEe8v20t17d962697dt+zcffO9u/fijEr1grySia8IliXThHdrL6O/+cUrXs28UuB0k6lW14+E7yxX7bxwVDpS6Hwo5azqUc4qIUdFpaLk0+Tws9RK7yqSg6tyuNK7bfkMD/oErvQiL1+sbfQ/fuQM347ECDJl56kwW5eqdp6ak9NXOcf0KOcYIaff7eAYKg9G/akwuzxVd6SQf8tBltOtXb99uZaZ266N/i3Qru/OaNepMqYOpaVOemzrgrWDsHJ3jy7PkJPaPbo8U05OeVJyDmV5DEvtOmIdXJXQi1dLr+yCxQft1Y6G8kHWuerqBPKPJ+Rs71HO9kw5B6s8W3uUszVTzlSPcqaEHDXD6LX/UDp3i7ffS/FWvdyKvDyDM/rNEG+/j+Itzihf6Xbe4SgHsfiygrL6/BDVp3qZJlWfRn8G1OdHM+pT2ebKRHm4b1F1rV42LARW6jQJ2wHpVZ/SxxXVyRw/QPwm6VJR3vSB8tQLgzHhwe2l7e/tVYDzd9936mlnX/TPSwD77t5btrq6CIWC/kwf6G/mi7o1iGZcyIiJ/WcH0XG923PGz9GpG223fBXrriopZwh5sQ75x0uwyk4A8cXvRv9z7XaeewJIvcSWGg9wu2O6YVGGsaDb67cHrR+WeVOizEb/S4kyb+9SZh6/q7EjxyamGxZlGA36tBqfUsS8Y8Ns3av6E/IfrL7zWJJT1qd9hvo0daoPT329of2dV+CPgT7tt6hPU2PBfpe/7DQvlusNQFM2t2kIzJj49IbR/77P7qNcUeYdlKbQ/5s/5EB1qsqeqlOjXwJ1+j8y6jTVPtQp9FQs2JKgV3NFtcaUGjda/eCOcn79FF/M8VHEb5IuFf1heryhXiJXP1hTdbxhuF+AAqH+3cYbzJcabzBtWdvjMcCV9LzbeEPpVEbby3hjR0k5Q8jrH5Df6Mw/a142OmW6bAE9TBf0+bI3VYZCZ1tU9GqMgfgch/HUnbLNjZCP9H8DY4nvSZyKO65EvxDy6gL5D1ZfdRzJ6ce6d0ypi+7Ogu+YZ3LKYnJL8KfWvXf0KGeHkJPj6zHtaX92GxM1VszG7dZ/8jzf6H955Qzf/DZm6s3TqntjXP6qey+pdp3bTtV44ETCqvpWGvKXjeMaQveYyt6WXNO2f49vS25Xp1es/fU45tue08YRf0LIM72aIi/nVNiXmq//jb/85Pt/syB+04Wf5awdnSjoext/hS3qVBieWIkJfYR/wAhPhZkO6lRYzfHalhz7IX5L0O8Cuip1obA21cSyk1xqjn2oYlLZ2ovFJx47nNhu+7lvAKu3PFNvjHJM4zJyzIlpKuj0T5QMz+w/X8jik7BGezqU+330GxZle4SNkvJsIz0Zo8w2LEO9HfbGMFu37Rm6qfUgxCjbt4wYag+R/bbqG5VbhD5Kzvoe5awXclJ9En+aHH6W2o9cT3LKxk0X07ip237X7e1P3u/6BIybLqNxE467eM9V3f6gzhew7cve2OZ4YvRboF3xG9tqffh2wCzzs9y3hIx+B41n+rHOxGVqhM7YGkL528hl68VsgysF/Y0JerXfhH7FMTt1EaGV7U+PmNHhTeTH3cp/RQnm5w6fwfy2ipibSzDfvmIG88ZE2zg+zJZX9SYO5OcTuOrislHSs6IfZl8INf2WXugsc531NLU+oOyiLrfj/VnMyzmncbyQUxBWN73Gg9uFUKbicqLbVKJaIXAL+sfPl9MztSSH2NHNd7a7A3Nz1Ptswr8YMIbFM3Zz5Dc6JWdRj3IWCTkprLMFltGrX4hbJOgdXcP+PpLobkyoxrjdXONIelbmGpaGSWb8zne2cNWwjgsFRjNRpmHxLHUV4yUJOa/tUc5rhRweJbxIowSUXyFaPsNXbRoGYtdcqX4mN/KXnQ5GvdRPdOWseqz/949+8JzjbttWEL/pws+4SapZ5GsFfY+rT0+qVQ+8tykmtTKmVj1MB7XqsbWmfjn2Q3y1Sr0L6KrUhcLaVBPLVj3watlUWz5YMaMfclJYqfuuzDYjQe8UcUwy+u+H2RP/sqaydxDPhkJnPLJ3zBcKrIUluivZhh9TS/DzT0f3ISbOqxoTm6GzzHVGw6p9KLvwHXHIyyeAY+KZetUdgUHHQt/kK6stX32aHH7GcrCtLiQ5/XpLJsfP68pBLD59yyuH6jNXjjqx048dIEtqR4b9Qr3brO6jYvvjqcStlIenZs+H75yG6W8eB/xAxt096kQe90tV3zJRJ5m63Uf3Gyu0zLL76MruZvsVWKX5zIryMvJOpFq5wzKWrdz99kFYuXsl+XgdP/7dmn7MYy+1E6FO6ls5VLzeRnnq7iqOi4ivYtlNQMfxVO0i8IroJUJ3NW5qZshJjZuaQk6PY6PKP/7Lq5fKLrk+ZjpHH5tYNYPLdKwP2pRXBnkFE2MV64g65N4za/RfT+xaqJ3V2wCT/QBlBMKIiWOf0f8Dxb6a80wZ+7hPVPe/9ig3e5Xa8JukS0V50+PybrvUuOS3uP29+4/8lp39KwgVnxWhs7UUoBk+45ZxGf1d5yfDa95MfCX3Wpiq9lp8awomFTVw777KT4ZjffBtLBhFdoJsrtetQo7pr25F5PdJtgo+s303eWpVgKO+4ot/Xyh4PGc8bEcPrD6cCVuSG3EMvxl6aifTEUedD1LnElTbKXs3EWNCQXkoR51nV1gXO2GF0LkSMIc1hzWHNYd1MLByZobYT/G7kRgHLyX9qm5UI39qQ3x9j3LWCzkTgq9un9xK6Kxm92y3qufykD/3FxUuP1zLLPuFE5uR8YrSv4EVrC2Hz9ZZzeZjUmeGsB4Mg3lHQQfLqzC+WBjHwBfAzJntijuUOeMQO1vHZ56x7MoXcuvoOqoj/hUi5uUzjUb/A1BHb25/V3WQc25InaHkdjgi6BGvQfQ3tXXCXTml3+Ul8spWXdeVyLsF5F1LKyl98Lslyu8wzrDfqZUuFc9S8QLbHp8Vw9jDO7HqrF7qHKvxjwRdB4bXIPq7RJ2z35W988T1avT3Ztar2bIf9Yq24npVu9zqfcCUH6gdedUPXERYFwksdW41ty0bHretRxP1quIX6sn1avT7M+sV3181HMvrtV7RVlyvavyhzkum/AD7B7OJWtG/jPLUbbWp+I1+kFPnWD9l8ft5Uec8duS4kNO/4Mrikvb39srizr133bu7vbQYKKWWAuPfZdeLLRb8gXgLeraY8lT4TC2om+yygywcPo3+RWHyVPiNKecINVZ3PxanDd/rCHW3sMZLRalmhnkD4KoxXVaiRiH4A2EV4llM6lhzahSooptyMe61ykYEhsdns3440XN022PMuaVDjYhU+flGR+S7vEQO9mjoRtyjGf2PZfZouG9pOJbXa4+GNuIeTa0spN68VW/FqNXSFtGj7VWPxm8D5Y5OeTTGow+eWaX8RZU3ZR/lX+peerWXn5oF4/mKmDxnwVge9oVU3cZUdptLTEaP9c2zETx3wStP2Jb49oZuN8CmfAFXOy6nGTHWVTNDZmplRr0xyGeAfh1iQdntbLkzfqP/zyK+pMqQGq2mVkGUr2P/wWeCDtYOKp8JUrfOqHM/fCYIz7bxHn/ZbyZx4j4a7ZB77o39wXCr+Dz60m/QWTMc9p1BMtUQC5+xzyO/0Sk5i3qUs0jISWGdIbCMXo1x+vxak6l4HNHdmFCNcQv6x8+Po2fDghaTqqZmid4h5FWTWjRgLDz6oy7ZUZsAZxJW1U0A5Och6bSe7RdzR4X8CuHrxdSxbMOueXz+xYLwQtAzr7Ij1aiXOsqf8wrTz330ygW/86mzp1/ByT2qZ/Tq6P+Zgr7Ho6XvVcMqfk0Jh1WXUl7uK0w1jxe+N8d+iN8S9LuArkpdKKwdNbHsFSZcuOINvX7HGJ5yjbTbMg6zDrYu1u2PC11ScUz9MIbSPbVpyuWqGi+bmXJe06Oc1wg5/d6cfQ3JKduQW3HEDA/6d9nw3AYFvPnxX+HCh5Xt7+oCtrJXobEvx9VFbq+8OcM0W0r0mwL/5OO6XGYsp9L5UpARCCMmPq5r9Kup760ZU+VxXZ4C9OE1uuwV0UP1Gl2147q8TYhWQVR8VoTZpce8bguf/AJmneO6NUcJlX+wnCebOGnE2uSkJoY4qqhyXBfrg390F/cTrgbZXK+XCzmm/5Cg30JY6gU+s303eWqUwxcGKL749wWCx/NFyNSh/rpY6uhvj4sk2T9Dwdc01mwn0xFHLSipF+7Uy1u84Id5PFusewVh/L7DEWurE1ZM2+ew5rDmsAYOK+dlSuwP+Ofm1LGJgvJQv9SMEvlTC6ore5SzUsiZEHx1+75WQuecn3aoekGC+kmObtdI3neElqmOosXEMzyj/xTM8B44YrbOaoYXk5pNYz0YBvP2uCG4QG0Iol15Q1BtQiC9HRVOHQFSvpBbR49THaWOC6I+fIbmx6GOnqRZuLpineWFLvK4HeYeizX652AWnjoWe0mJvLJViS0l8l4AeQfhWOyk8juMMznH7FQ8S8ULdcaHX3KP3/mYHdqYx6VVj8yqY3apI7NG/33CH7gvYt8o00/ZzfmY3eUlaiwS/IF4C3q2qATLcOIzXOTIOWan3k7gEPFDwuSpKotp7pjdt9wxu0tK1CgEfyCsQjyLSR2zU1fC5JhYmaruAe2fFC6dirBqhJUaCag9B1X+bZSnrslkOergeExl1+v8TGaP5jSSkj0a2oh7tNyVE6PvdhSHm1rqB13VzCa3GfIxE+WnaqTW7fhKzost6noVNXvgi/CRLzWqNrp+jKp7edms6hFEPlaJK2B8BSZ2RznX0uX6As6e7ivZO0Nc9IWyvWeMAYhxe/uT95F+V8QAw7y8S9ly4h0Oc/gKJ3X1jroGKXXs0+h69McJ5Y9Y/pxZXuoa2m5tNfUSWuplSR5GdvOb1BE43LtcQTM+lHMSyax6DexJQn8lZ1GPchYJOSmskwRWqr77fATOVFxJdDcmVGPcgv7x85X0bFjQYlLVVKZ3CHnVpNxZyWn2KKeZKefUHuWcKuR0HHFpG77HbfQDORtmNX/H60BBeCHo2ZThq9PEpldT5OUcnfty6+pf3fPSh3+sIH7ThZ/lnLY/VdD3+Bv3+1XXhBvNMWHXtJPysHsxHdTRuatq6pdjP8RvCfpdQFelLhTWpppYk2G2Xx2KmMFH5xa127I6OtdvXQ72YQ6+sfFqoMc65cRLBKhz1Rsb1WGOInTaSB0BY78zHXJvbDT6VVDnfATMePAIWOrGxm0gg+XGdEOJDsdTH1LzYIQ8AsbTw9Rv/1X9nVj1m4Q9lqGyH/PRSYz7fEgG32ThY+LXQt4E5V0HeXxH4Jsgjzd2roc8Por3ZshDP+Kk2hu+VXN9hfaGdc+HpzDumA3VktXp8B3zTFd+xj6D/KnjtVt6lLNFyFFLdzje6uPrC9kr2obfJF0qypte0U7drfFNxdqfvCGKvGrjqOzILso5XcipqlcffmBpA9FtKlGtELgF/ePnG+hZ2TTM/lauX3b9Twh5rq+mdAeriXU7Wb5tpZap9nC5S0X6d8HPV+6A76kX/q8Is/NQzmbSX50D6fHtqOwQYPhN0qVuCMjdT652UpovGUWrICo+S7UE3rvibcVx4qtyUtrkqjU1dVFMaq+G+dAWQTwbEvSpDmmCdB9O8CMG8rHHFPQcW9smIZtPTOyGQfKPrJuhL5OF9uh2KiB00cHob08M1PG9RlUubs3cwaNv7SqR/xhEmbeXRLEg5HP5sIcZKdH3YtLB6O8BG6R+1onfpeVnaAPkLfsbaUepLPi38kUu+2Vdys71b/QPJup/QuhgeoUMHZhmtESHR4QOImpeeNfd+0p26HkswVGOa4lrYkLglCWzRvRY8162DrcOlmN/Kw+IJV/a/j49NNuze2/Z6QTuEZolMoeCThNB6xbCoTtwMlFPXvLACZav7oGTslbaTU6PB07KOm0VLJg/EG8hnsUU3fkX2kCvtOEzY6lhcUx3tz+5k/puCFC8CXwx6KEweQVOzdDUapDRqw301E3HZb8pWyYbbckBfXtFXbsdMOHf60H9rqyoa859Pp66Xix07XH1ovKqHK+g4aocr6Dhqhyv2OGqHK+g4aocr2bnrsrxtBVX5fjVgG+DPLyvjpNasTO7x3Z59doZXKbD72UxJfcQAMYQnnYrn1KHXYx+B2CpQzjntb83iP7fJOKR2ilKtYNu923xfXbY7vi1FeTDW6oNOxBdP+4iw/LMA1xsL6YP07NtrhH02Ob4kBS2uR2Uh7GFV4lxOQXvBLx4xWw6tYvNn6YrP+N+ErH4RvHtjnIQ6waSg30bLmd9uqRdYTtB3j3tT955/HOYXP4XWsJSh/34NZz/Cu3svHXl/Hw4Sx1cSv0uX6qcSH9eSTk/C3pe2Nazj4cTW1Xvg1QxJnUfZKqdok1aobNN8phHjZ/KfkcPbTQSdB0YHu82/rFYRFCvkvEvDF1eUfc6hycbdF+b56vN6teTGGuoRP89RI/XCyjZTG8+gQtUKj43iP4rUFeXrNOYIeg+eWuJziMl9FeRDkb/deEvqTiA/r+TMI3+78RJi1zMN5Rg/mNirKHaaepuz279KY8n0I7XUB7qzv3i1SCf6/Q9JB9x+H5I1rlMX+5Tu+nL/Y3lLTry5c9vttn291HCqxirh1N1dZbQN7eutibKx1jG1wid/phqI2iP8SM15ryKmAvbONinq7HKTYC/iGSrGImxmuOymufiOEeNDfi1TsNYBvqnXkoxrN76+uKLVV/v7WYbrxcRYnoL5alXtr370j9cPhs3dR9u/L6B9Og2xntd+zvH4dWi3lM2TNm8233bfLoJ62Mn5SmfPdj+eDDvn2Z/VP2H8sec9apcf8T7pz/T9kc1B+e5x1UJfbqNuflUnsX4kRJ6jvlG/zrwYx73XCt0SM0TrhP01wqdF5IOyMuysV2iTfiko9GflxmPndY85EuCaDf2/5SNYmKbvknQo63MJi2iR/sq/7+W8tQ6UqrN5rYN4412+BDFau/1OY7VRr89EatV2VKxul/rc6lY3U9fHdT1OfTV3PW5780YC6ReUO22B8Hxa5vQQ/XD/EJu1d8dQP7tCTlTPcqZEnL6uQaJMtXYZorKU3UtBPmvpPJc6VgepbO6ZhDXVO+lOYyKbcjL/Z3RPw9zsvvb39Up+NQL1CnfLVsTLVtDwn2vEPox5gzzDvWYk8eV2F/yfrl62wB9D/tOowmkYz/s5fnyurIvtgmzAb9ZhX6o1l/55XVly9xxCL7l8vbl3fVPXdzQzT/4hw4GaI/ukI8B2Beq7tFxvEQ5Kl5yHWN8RQzeszL6/y8xdlR+kPKbbnM6vgwefYPfVlHr/H2MIQPtNzspT6075voNxxD0I+yjrf9OrZEVYXY/if6M9MMlONsJp6DnY/Ac+c6hMvMYibFfT/RWzpESesPjscgnE2sJO7rocC7psLOLDjtIB6P/GaFDyv4xpcaEPb6V3igIz/TBZ4jfDNo/pkJWKth+Jk/5QUzqXBO3J7VXkoqBqp0rrHFHLH4zs2Z9XaVimyV1zovnFRjHeN6K6zw3AAanYfobyxP9ehOdKQgCi8d5qLeKNTsE7w6Bfajaw4568pLtQc0BqrYH3mN/tbeHsnOPIQxGe8D6Mr2VjWKaCnkpp73UvAnjmNz2Yvhe7UX5nmovPd5EMrUovDyOwVgV07sBT+1jYH151Z9a4zpU9VfzZoFk/ak5vGf94fiiSv2ptb8j4Ttj56z9If/BWvs7kuTgXBDX/v6R1v7U3BR5ee1vum88aobvG7T2V3V9r4/rdcNVzyd6/1417zvkrj9x364uVctdf8JLT7eVrD+ZXWPaI3i5bRehc/0J9TB6PhPHNHx+bXqtoe1f6mVE5bMYc8rWUyYB82CfX0M783mwsjG9YYfQOWaw8llelX5BtQksD7cJtReP9FX34tnvcU95J2Fx+4ppi8BK6bq9B125HrGu+NyA0aJfov7sl0Z/nPBLVf9m837Uf2o9Tdk0tZ7WzaY8p0mdKUitp3VbO+eYuE3ogH2iWt/kPSjVP6g4oWI6rxuZX54O9c9ndfF8j9pH3lKCeVYi1qkypC5k7dbHpd5r2Jngw3Y5KmRN2Zd/SifDM/+YL2RxP2O0bwA7ve9orUvB+nRJfZyTTRWEF8Irak62ymNOpsZ5OAa+7KgZnrI2hrxva39yG9sKY+ArSjBD0O029V4h6vOTy2bj9ms/WbXd1BiG9xnVGXzTAc9nq70nPjtl9NdA20y9y+SzP1l8TfWLOC7kfjE1BoyJ6yI1jkKbtEJnn8lr38q/sK7Lbg0tO6PJ7yEY/S6og9RPxXC/va2i7mXnEjCP2wa3YzVHSv18jmr3qLed1+Z2/7ZE36rWClJ9a7cz7/w+odqHUmsYdo5QtRd8Z93KZ3m97ssezLMwfBF86r1AfAeA14nVdWhR9++h2KveG8C6LXt/UL2rGr+3Q1rH+4OPJPzL+1whv7uTu3Zjbb+PazeLD/XajdVtztoNxkJe81PvdUbd95J/qX4SeU9uf+d+8oWEv1yTKGNMVfsovkEax1/XUh7ysS+p+aDpcJ2wA+p1d/uzQfTfkzlecJpHn6/8E+e+7J+p8/QxcV1cL+jxjD2fo8d7N64mLLW+hTbl2KXe6bhW4PM7HT+UGC9g/3Qd6b6zou4q7qr2hm1qebu9qXk+j1l3JmQyL/Y9IyX0ZfPPHxP24nim1pPi942EafQfS8QD1aduhmdVz43xPgrahc+NqXlH/8bz4YJDfW6M+4/UecOq58Zy/X+WD5H/Y39+BclMjWOZF+WU+X/Zua1fSvh/al4ev68hTKP/lYprXyn/7zZGSI2RUnuMFm/6OD6/+FCPz9n/U+NzjL8570fm+j/60N8cNhtXvX+LvGvb3/n929+r6F+9vH/L463U+7fIx+szauzK9VjWz/A8xej/R+Z4y+kc8JJDHc9530KNb1PxM7VPquKn6i85fn4pc30mdT9Fju657Q3b1Bfa7U3dk8T9zbaETObFdl3W3/C15kb/9UR/g3MztR7E/Y3R/13F+Xqqv+k2X+f1IHWfhJrLp+brTndBLT3UP1TJ/U3qhyrV+2nsBygn1//Rhz7d9v/e7Prg/yxAF8MeFpQN+jSasbaf45kQ+8z5ZbE/+NW//b2fuvy0t08Sf0xWR3HPJtb/PGpTeI2y2RKvH+YL4YdJN8VXkA5MPyToDXdC5DWgDHVttOBXf3bbH/3D3Wu62agu/spf2P1bb/zc//pclTqYCJ11UJR8xjScwG4JrF3tT9vzGwH+CnFjyPjnk/ypLPZQWDnn4UPSbbSebv+UYyfEb5IuFeVN77eq66SxfLzfWvN32f8f7rdim8C6RNuhnPmkw1hNHVSfZDItD2OnyYny337CbB2GaurQow//34kwO87EhHvOJ1FcnA95w6Ez9lk5GkR/2tEzfKfQL+hxTIlpDPLni3z72+w9JGjxO/9turPdkN58ZqSkrCNUVqM/u10+dQbQaNB+qNdQCeY5gMljNfOrENJtzujVj5tjGzB91E/ljBMf6o7nOvmZqp+CaFGHmHYJncr+bgqcMh1GBQ73E4zJMtkfYuLx1bCQg20K+7xRIb9CO56n+pJA+oxQeTAPy4br8Zx4/IY6R4wV0IczHeuj2pJn32/P58FzljtMtCNEy2N/1HGeg44tIWeEcOcn9C8IpyH4JoJub+ozV99C6Kv6kl7lIJbdwd5jn7eSx9IxYZ/31ow+T405uM+7Ffq83Zl9nuXxuC8mvGeeYzqPoxAjJl63sRiZ+0M3Rr9H9G0qhhhWLPudZM9RyEv1Iw2ifx7seQ/ZE+1l9lT9V1mfM49oY9oVtA32gR4PHF0ui+duqowR4+GEHXcJOsao26+p8RW33ZzxFbdV5FMyOB6X9d18TqQsf0yULYhnQ4J+tKS8QchudsGdL3BUfOd3awqRx7EHy6vWIdT6AMattybaSxFml2uMyjWaKFch+Lido+7zE7or+2H8qLsG8cwf/9N/f/7hw7/crzWOc3/wHc9NnPnxT/QL/2Pjv33Bv/vB0bf0C/+35v/lS5/+j7e+t8oajfnRCMmy71if+BzHNvyr10b/IzQmrrkGIn/1muNSav6H+vN8MaarSvT/d9A/fJTspeY/qk2W9e/zMnUx+o+JeaNat8A1EcOxvAo2b6i1dIybPJ5W8Rzpq85dzSbqTkSWPU9goU15zGQ2Ggl6/cDw2B9+FuqA97pU7Lc8LDvH3WEhV611WhuLNP+N2lXN8fN8NU6xNBHK+xf1jiffIcFrcZiHdYn+yUnNUa2sUeffzZijqvjA7VWt26TGo6rdGf6gtTvz/VborBf2t1wfLhsvKnloBxwLmA+X7Rlgm8Y53X+nOcgI5Kk1M46nRv8ViO1/SLEdbcz+oOIE6xKCjkM5awUTgs/qRe1TVFlbwvpFPfEZ4jdDT/Gl4Hhr8riOeC+h5jihwX0sylP1sChom6r9Bp6LqvWk1DwsFU9U++O2qdYpVB+Smi+abFyTzxk3qbaFvNxPfh3aVnPV7PKrWJuqN/Qdpk/FPtRV2X6M8tTagn0fT8hRek0I+vGEXhiTkZdldytDbl/lNEaUd6tinXAbUXZBerbjAkE/ATTcRhZAHr+bk9u3jVGe6uO79W1N2tdR/QLGP54/qzaGfV+dcw63hdn0JmMk6LVQPMuB9JOrZnTg80vzQFez2+0CsxAyQui0C88rje4w0OE7Tnj5e2q/YTR02rWCny9A37Gk+k3Db4bO8tbpN9W8BsvH/WbNfnoi5adqvKPWebitW3som2PhnBzpj23XbYvoYuJzUmpcofqLqNtRFKf6teeDcRfjR0w4jl1LMaIBeWpP0tovt4UTV83wrae+VvnmWEjHDHUGgP2jbB+dY4bRn5KIGWr8jnrdXoJ5OmDyPrryC1V/7KtIr84qqDETr0OpWKb6YKPrsQ9eoPpgLH9ZuzR9ytqM0asxmdrTahG96i9RF14/S/liTKk9eWw7a6ENhNAZ04wnhM51QabHMxxIfwm0uctoLY5jtj27JkFXNf7wmklT0A8LepM9JugtD8ebWF9Ig/ZCrGaJvKuoTtAHcbzF8tHPQoneZeNHxhoWz7B/2LJqdhl6OT8Xk5pXKd/qZb3/T0e3Xzz0b55fVedMJp+ticnGEeOk+1TISr+U47+I3yRd6tga8Uwel4/HSRP15P1iQfwoDzHHSd6CevKGra5aAtt0WdT+e6REF+NtEP2d1GcsFDwtyouJx2CYNyyeDR0irJbAQjtancR2fgvZgufc6tNw+RnrqPa8U22wrhzEsnGm8vf4bypkpdNMzwVCT8NGv6ng29fmxgrDb4ae2lKR8jEsH+9jtIQurdDpY/cAXTf/QzkK65kBxXrIEetxR6wnHbE87fWYI9YTjliPOGLd4YjlWcYDA6rXg45Ynu3Rsx73OWJ5tqGnHbE869HTV59zxPL0r6ccsd7liOXp94MaczzL+Lwj1p2OWC84Ynnay3Ns4ulfgzou9PT7QR3LPeCItd8R69UwlhtUv/ccm8z1adWwBnUsN6ix0HMs5xkLPevR016DOv66yxFrUMdfDztiebZtzzbkaS/PfsizDQ2q7T3jl+e63KCuDXn6135HrEEdYw5i3xG/TzhhxWR9x8ISbPye2ntVcgqhs9onxbOSvCcaAGc0dNqiwj5U9m/AGn6TdKkor0jVj9pbtbIvErq0RB7X1SIhZ5GQo7Aajlg5Z4/Vvl9Ve40D7f17b99z+959F+1+6/23br7r1kCpQX9fXKLiNUR3VYlqwwK3oH/8/Bp6NixoEVs1yfkleoeQ1ySRfyIhpx9Nn/+26wLwaI4dJejj9vfNuWHgW2X7+16g67U7eKcjlufyq+eQalCnqp5l9NwGHNQl+UFdvvgOR6xXg0884Yg1qFOJQZ0SetrLc7nHs4z7HbEGdbvNc/nC0+8fdcQa1KVcT5+YG3+9MmK0Z197vyPWfkesQY2Fg7od8g5HrGcdsQZ1ydSzTxvUceGg9mmvhq1hzzY0qMeK5vqOV0bfMbeVfuh8Ym5N4dCV0fO4+aDOhzxt73lUdlDXCz3HOXNx4tCNJ+bixKGz/aDGCRt/9fEYyEhBeKYnPkP8QT4GEhO/fl/36MarDYv32Q0/ptHQWQcV6vycXB8z/GboyaeLlF1U27OyTwpdWpQX031Ax3nD4tlQAusBR6zHHLH2O2I95Ii1zxHrDkesZxyxDjhieZbxQUcszzI+7oj1pCPWs45Ynv7l2R49/cszFnrq9YQjlqffvxp84lFHLE//etoRy7OMnrZ/2BHL0++fcsSaixOvjDjhWcZ3OWJ5jicG1fbPO2LNtaFqWPc7Ys21oUNne8+5u+ccmdcgcU2laH+OEl8RKq3XHFMQnumJzxC/SbpUlFek7KLWzax8i+vJmyqIH+Uhpuljtl4i8gxrafvvkRIs420Q/fcf8/Jni+hiegvJWCL0xWdmn/ju0vvauAuFvosIt6o/Ij/bCPnYH2vW11CuPxp+M/Tk/0XKP5RdlH8Yb0vk8c8lqCu/D5XNerneusxm6iedqtgspl3tT2WXIl/Ph1iuYSD2UnhewQabc21u+M3QaYM6Nl9K8srigpX9MKFLi/Ji2gt0nDcsng0lsA44Yj3jiPWQI9YdjliPOmI94Ij1tCOWp708y+ill4pTg+KrTzliebZtT594whFrLn7Nxa9+ltHT9g86Ynn6/bOOWJ5te1Dbo2eMHtS+1rMe9zlivRr6oVdDGT318oyrg9pvv31A9fK01zsdsR5zxPIcmwxqnzbXHg9dGQe13341zNM8feIdjliD6vdPOmIN6lrHc45Y/YjRtnek9sQKykM5ixNykH9xQs68HuXME3ImBF/R/uxx7T/7p8B57b/m/k5y7V/Zxcp3WD15Ezl+hfqYrZeJPMNa3v57pATLeBtEf8OxL3+2iC4mfhdjmdAXn+Ge6XVtXPaFmKZCVjqD91hMF8RFm1Sog4W5Pmb4zdBTnRcpG6pYYmVfLnRpibwyf0A5y4WclsjbPoc1hzWH5YKVEf+GfnPJW+4f+ZEbbj5p7YKLv7Zi8XcfeOOvvPDEG9eeyHHfdENcjAEV4lH2FdmG3ww9xdsiZVPVh1jZVwhdWpQX0y6g47xh8WyoBEvF0rpYMd3Q/uyhH2xwXVfgbY0KnaayWMOZxnt4+0HFOm8a/xH1+MeMfyU8nErzTF+zbLxHCt4lp4bPrvrCmfs2LDvrrm0PPPmFqz722NIfPuHPWyu+fP/rH/jHz91lvEcJ3pJkTWfab5uQaT8VHcdFL7bHReZbR0PeMPHG7+ZbDaKff9wM3/ceO1s2tmmOF0PwvEJdnJgbLwy/SbrUjRdDJI/Lx/FiWOjSoryY+D3XYSFnWMhRWAccsZ51xHrCEWufI9YdjljPOWI94Ii13xHrMUesQa1HT189MKB6PeiI9ZAj1tOOWJ4+8bAjlqdPPOWI5Wkvz/jlqdczjlie9eip16D2HZ716Gl7z7btWcbnHbHudMR6wRHr1dBve7btfvS1tk+D87FxyhuGvDHKw5/xGiL9GkK/RkI/5G+U8HE5ct63GSHeqZCVst+3MXyv921GSB6Xj+ea84UuLZHHP7mm6qcQcqrq5fgzaZa/geg2lahWCNyC/vHzDfRMmQKxF1K+cn12mTLTtkr4Y5pIyJkQfOaaY6DjMZDPP+V2jNDxmISOyG90Sk7Ro5xCyGEstUwV093tzwbRLzru5c9YhmtXzcY8VuiXagbHCfpjgcb0UbYx3gkhuyj5NDkhpH0IdRghOcc5yjkOaBok53hHOccDzTjJWe0oZzXQjAFf/HsN5KGfmR5rhR7W7ayD5xW6gewtEcNvki4V5U13O+tIHpePY88JQpcW5cXE21knCDknCDkHC2sidJaf6xLL2o+6NPxm6Ml3ipRdsHxcl+uFLi3Ki+mtQMd5w+LZUAmWlcsLy9ppj/W1nu2ByfI2APY6yjsR6K+ivJMg7wbA4DRMf2N5Yv+1ad0MLtOxrhi/TO+FodPHMHaUxQLlPy3Bb3TWB5uel7U7jth3X3TcbD2PBuwbqAyrII/b7JTIi/iHr5ldVvQHHgdVjSHIb3RKzoIe5SwQchirAVijgHUz5CP9bW27Wzvh9jgVstKt3BYMA7FPrImdGzMNf0LIM72aIq+RoUvj1374l37ubS9tL0Jnux4Wz3iMeJKgVz+9a7baCPwVbPVW/JXzQLItD6d9J1IeTlVNh+jf60m/k2rql2M/xG8J+guBrkpdKKybnbCwvXlgjdTEmgydfZLVnYpJC0lO1ZiE/EY3IfiKkk+Tw8/KxmkoU43T8EjD3cfN8KAdcK6IvBwjjf6StTN897UxF4bOeJmK/XwdT1U7LxJy+m3nRVSeDYnybBDl2ZBZng1Ung2O5UnprGIyjvM2tT+t/Co+qXgd01TIS2osyP3myfC8QqzNvuLL8Juhp9g+Pdc4meRx+bivO6WevKlYn2OhMxa+G/DQdijH6qtbDHmeYsiJkKdiyNvanw2iPwNiyHsIs5sf7mh/zvlhVvqW9MOC/i7TeU/7U/nCRspD+2GfYdghdPpQTLy1MhWy0jFxnHjBqhk5XB5+3UfVD9JbWVuh04YnUh72W2zTbu3L5uVz7SsrvSLj/Med4vyxEOf/dQlmCNoPd7Y/1XqM8ar5V0xTIS+pdSn2w5pzz2w/NHw1F6/jhypmqrlRj+1slh+iL6Afou1QDtZXWUxCnTnOrxNYKl7hWNqwQ+j0oZg84zyWh+N8bp/WCp025H0EHM+zHdBGvD6m5ifY9m4mLOTnddL1Qr9CYOasWSP/+oSck3qUc5KQMxo6bVrBDzaqPt6S5WEb4LVxjNMnUd6pkId1wUmtjVt5op8+ccIMLtOxrmhv01vNffn16Kpz30mha49rpJXrYj3lYV2gfpyUvU3naO9fq2BvtCnbG+3A8aTquto8oWuPfd3JbFNMyqZ8HTD6N9qBk7I3rst+o4K90aamW4994ilc1iDkYll5jf40oN9NeadDXtX9MStPtNHG9TO4TMe6oj+Y3sonOe5X9Uk1tkvNP+rKOUnI4b/ntf9eA/m2d8bj23EY39qBDDWmvCbMzkP/WgNyh9sYVnb0FbbxqYA/LJ6lbMx1iXJO6lHOSZly+lmedYnyVN27PUnorOSs71HO+kw5kz3KmcyUs6FHORsy5czrUc48IafH/dtTOVZj4lit+rPTIa9qf2Y6V+3P0KamW49j2sp24DEt9lncn50BeVX7MxzTVunP0B9Qb9S9EXT/cg3lG/2p7ZgdfeBk6gNwzIP7bbspzvf7rIla7zH79Ogj2We4+MxBr2e41DwjdYbrJKGLivF8rYBam1Dregqr4YjlNE91bdN8hsurTVc5w9WPNr253T57tHXH3BGx5tr+YLX9mC4Eul7b68mOWHNtP7/t5/a9BeWVxYhrKd/o3wb9/m3U76N/nwKyf4D6fdSf237VNc21orwTgu9Qt/2aY/Jk21d2eaX0+7w2VXOfsvLaFPsQrk1x2+9lbcrKU7Xto9+i3r206aeo369pa9nv8/7MILT9muvr2W3f8L3afrc941Tb5zMS3wr9vtN+SOX1efYhHC9w28e4ULXt415J3bZ/CuWpNSzsexkDZfRo5+zrSrld1OyDk+1C7bmNh5n3+dqvHl+6e+/2+9+65/abr9i9777z77xl+657996+a8/5t9xy7+777kOlUdACeI75mJjGvpdtYKYaDBYm5yCqYZ3cBYsPE6Ya8ildsPjglDqEw3/PC5162mbDUAYON06lFx+kwYbOHedpXbBuJizk58n36V2wbiEs5Ede/Hte6NST7ZXCif/O7KLXbtLrDOA/k7DO6oL17YSF/GcR1msSWPH74YSF/MiLf88LnXqyvVI48d/ZXfQ6gvR6DeSdTVivTWDFdCthIf9rCet1XbBuIyzkR178e17o1JPtlcKJ/87potftpNfrgP8cykM78+8qVj1ogfwH6yUDvof+HEc5iHUj8MW81wM/xlY1EDIZ1vmfC8/7MSg2/CbpUlHedOd/Lsnj8vGg+A1Cl5bIw34V81DOG4QchXWSI9brqTw4AcBDrJ+nhZ5zIS918LlB9C+tmeH7Ii3goK+ck1HGc4U8o39j++8RQY94DaL/s7ZOcRD9/vabwi2h0xtKdOH+lP3EaGIaJdn9aiOG3wyd9V+njbyR5JX5m5X9PKFLS+ThWArzUM55Qo7COtUR61wqT1kbecmpjXwe2sjfD2Ab+YZDG8Ex1IR4xm2kps9mtxHDb5IudduIqgssH7eRNwpdWiIPx89lbfGNQo7COtMRK7eNjK+eLfMMyMtpI0b/H6GNLGxjqjkGtxE1XzlDyDN6q7MRQY94DaJf0tapWxs5s0SX+B3HzROhU39uIzV9NruNGH4zdPpPnTai5ntYPm4jrxW6tEQezpnYjsPi2VACK2fOlYt1BpWnrI0c69RGPg5tZPUAtpH1FduI0r0fcy+1voC/gVRmI+W7LcF/JuVtEHK6+cgZq7U+ZT5i8/cG0X8/+MhrEj7CBy1QZ95wqTqXXivk5Cws14w/83LjneF7LSx3WyvjeHeW0KUVOmMnX1Sm4qoae3yrYMXv9nsoqX6wajtvhU4/WktyznKUg+U5GGtGMd1IcnhNUn3mykEsvkirLG5dQ3HrbMhTccvW9xpE/wLErTe1MUeJpmI7Pdd0P1dkqvWeMykPx8NnUd55kMd1fz7k4diFk9r0s7LGPvTpCod3Mba/gfL6EHOzx5hzMdcHa26+MLst8XwB8/D35DiuDYtnQwmsMxyxbC+jx/pyi2sx8YGF8yCv6oEFK0/VAwsqdnE7YTrsX9S+odKrEDjcnixP7f/Z77CpPcZlJKNqm18m9M1ZR0P/quBDw7lt3vC91tFU+0mto50tdGmJPF77UvuyZws5Covn9ThXPtT95xn15CX7T/XblR7+VVYPZyXkvbaevCGTp/a9zxDy4gUdI6GzDsv259W+NtZXWZtH2Xw2p+p5B8TiszlnlZShrA7U+k/qjEKD8n6qPUaPcfhHVs+msXMlHwWaD7e/q5iPax3/muj4jEpMPc4Lstue4TdJl7ptT9UDlg99c35I+wjWUdmZpdNEWdhnT+2iE/uskqXqFM9wcZ3iQVdcC/3pBN0pgk7lxb/xDB0fdjbafwtrlT+4fnYZkZ/PuVW9jBP5U5d+buhRzgYhZ0LwcRuqeeg4e83N8Juhs8x12pA6/K3swmdZkJfrJiaes6mzkercyLcKVvxuvwWcOvyeU69KDvrRwTo/dTAut42J19xOdpSDWPw72zUvwas8P+QD7bjuxXV5HuSx/c+HvJMp7wLIOxG+c1LzSrNDjNUfzFgT6/Gg+sDbjy/0w6Tshy8SzNlv9vlHTp72O9Qvoyn74RiW7YfjN+w3OCkb4YtqVdat0cesTONh5kc9Zl7EuGL3vmt27bn9ll17b7/rzh2777l/9317+afauAfgHm5Didb8U3JlWsc0RHknUv52QYdpQvCZjB6v2Mqe2fD1rjVbevJ6Vywfj8pOEbq0RN4K+M4tYlg8G0pgrXPE4qt+a7b0yq+enUh5/Xr1rO5rp+rVbsvDn+m5ifJWAd9GypuCPMNXP9ODslvwHfNiGhbPuK5bQqaSc2z7e4PKeFpbt1Giq9uT9mEGd25urCh7ZRb1Uq+w5vxUzt8vOe+kv/mhr72/CJ3xWu0eDwE+x3Ojbwn6Hkc0r5sAGSF09qwx4Wvt6ylPXSupfiqn5u7o63Lsh/gtQb8L6KrUhZoB1r3q1n6SBlcJrO1Y+zsa8o6jPGxnfIrpWKHDsYnyrBU6TAg+bo/HwfN+9N2G3ww9xZbpvvs4kldmFxXjjVddO7gUvmMeyknFYMQ62hHL+poe62sd2wMTx23lQ+rEp1oxqdp3W3mq9t1oY16pnGtX/W9Xa4UubLOYLgQ6zhsWz1L2X+OIZf7TY32tZXtgUjGIfQjHStyusM0dinbF14yZ7vME7THt7w2ivQVOyr2TxsDI336pR/6U9GrKQ18/mvKOEzoVJANPY6Df301lMPo72npHW164TmMOlWBinYYwuy1bOUZBruVV8MFfUj9bAJtOHdeyqnaD9DxuVf0XtiWzgeq/uM2q+Is/pW07eMpepmM/7IU6sL3WdNGZ7aXsi3YwG6i4tIqwVgkstGHKXqZjP+yFOrC9VnfRme2l7Is/VW42aIVOW04RlrIXtsdNRG/8I4Ie8RpE/wzEBH57BOMa1/UxAhtjY0EYWI6mKMcE5SFvxH3x2Nm46g0ideLE6NUNCHi6hH/aA085GG+Pp2UG6mS0WqHHMnNSfbPZIXeFviA5hov2j4l9Yr3QUZ2CPzMT1+i7nfYZytAbT4SwD50l9FanfTaUyFGnLWO6vf3Jp/k/BG35Wohzpm8g2T3G04UqnqKNOJ6qNqtOB+a2WT5Zjm+78UlltLHJVP6Fp6LOqPC2nzqFpk7csO+NlNAbXscJMBGvU/6sTnbX9WcsQ6/+jPa6jcpq9D9/cP15Qb/9Wd2KknobF9/0P4PylD8XoTOGVY2veDLs2B7fdk35v5WtzP/5bVej/3TC/5V91alXo0/d9NDN/99Aeci3oUROWTxn/zf63870f5PdD/9HG7H/595gYvTnCXp1k4K6PSTl/28gOV7+P07+n7o15I0JmcyLZSvzf8NrEP0fJ/z/PKFDqj7OF/TnAQ37P5bhfMpDvg0lctD/0V7s/0b/pUz/P6/9vR/+jzZi/78A8oYFPdv7QkGP42++1QfXHPlWLLTx+SRHxcFc/8fbdl7q8daclP+rW3OQvuzWnH9M+L9qg+qUZm48Svn/eZSnTk+xHPR/tBf7v9Hbgko3/zfZ/fD/84CA/f98yBsW9GzvVHtBm7RCZ9tI+f95JMfL/z9P/l8A3RKSWQiZ+IzX8JlfYeH5qBvg+02Qj/T208a2ToH2r+AHWyaAJwAGYtf0sS1YVkvD9AzxJ0rkxdQUeTnnH3757F+84oP/5/QFBfGbLvyM/XieoF8i6M1WI6T7VMhKV6i2jj/rFUJn2TEP26vpoM4/zKupX479EL8l6PmkfW5dTIbZvsD+Hv+dKLBwD4DXg+wMFMZpxNjT/mwQ/RoRpw1TndFTV60bvTofh+cSTZ+FpAPyqtueUz87bXQ99h/yZ6exPNx/qLeg1FlAo1c3Qaufb2wRPdpJ9R+p69pPBN3LfoIe9emHf539LeBfeKrZsEN49foXnkHJ9a/nyb/UObv5Cf2VP6Z+8nK90EPdTJWqW/w5iJhq1u2IqlssD9etupFfnX3mtof06mdUW6HT7/kNNqzbE0mOOnOnYoLyBfxJqLvbvhDtMu/o2Ty4x1K0P60vx184qGD/oYLwTH98hvhN0qWivOnzOgtIHpfP6jG+nWA3d7ffTth8165bLtx1933379k9hNBtavvOVkFUfFaE2aXHPB4JM92l9PcmwRcEdsy3mmvR86mQlRaZVywSmZaHP/4zTnl4BzvWJqdhob/pHL10HLyU6VgfrI9JylsIeYtBNtfrAiHHZA8J+oWEtUDwme27yRsWfOOEMSr4puzLXzz//u9offy7fmhqw2f+duTS9/zVjV/fNO/sP/jMI4f/8hPf+NJXv5t1DkJnrsdxolWfpjs/41NxCxyxWgLLbLMInlfw+cNyo5XhN0NPbWw6Wi0ieVw+Lvuk0KUl8jgGTQo5k0KOwhpyxBp2wopp+xzWHNYc1hzWtziW5WF/36I87D/5nh+Mz/yjnENCv6GEfsjPfY8a41q/i3G9Qj+Y/WNyvEJbcyV6ut8dJnlldulxLD29Iox9+nAJZkw89k71mSMlWMbbIPqPt1d9WkQXE/u1GpfgM7NPnFn+2NrZuvPcRn2GkB7rtUJn2S3vYPv9GPDZHSKx3D+zVsvE1Tjk5V05oz913Qzfz62drbNa9Y5pIT1jHwpBr/L344QelpFXVZTfI72dPFRv7DYoD8szBuXpIf4sVbEN6/g/Uh03IE/5FZ+kNPojoI5/vY2p/BjnY8gfusgzerP/iKBHvAbR/xdYEbZdcKXfeIk8tIfaWWN5v525E41xOITafnuY8ltsT+y36KPDgp7nRCk/V76Mfj5CWCp2oR/wLoDxjwRdB4bXIPrPizrP8XNVr0b/xcx6dYpHsl7RVlyvI5CnbMv1qvwA64v7Eazz+YSldnmxrnPqFfUzPK7Xv0zUq+qjVB/CfdSXM+vVbNmPekVb5dSr6u+Nfr6gx3rlHWasy1HCUjEa6zqnXrE8HKON/h8T9Vo3Dn9jAOIwjhe5XlWbQXquV+UHyrat0FnnTcrj9VeUUzVGq345FaOn42N73KDeplog+FP6KbvFMtpJk/YuyM69d927u70NEiilti3i94UlaiwV/CGBhTypIuHWAJvcZI0EvbzOJjf6ljA5m5D1yZki12wy2Rtphu81Re429ORpUqqZqS6G66mbHEdXjenSEjUKwR+6YNnfsfe3UTNWN4/qUyMB5o3/bLSYOxIw+lXClRkTdcDRDkeU1E4F6qPKv4jykG+8RE7uCMXo10BZUz2Zye5HT4Y24p5MrRSqFRWjXyzocSeFRyi468rND228iOR0a+Z8vkD5qZopK/9KjbS7+Zf5ppqVpvwrtSri5AsLD7UvmG2UL6RW1NgXVBeLMYF9YUzIwZUxfPfaPnPO056z+t0rVv76PROTxB9AzlgP+J8888TXLbhuzf5+4c9rrPy+qY/ftLkbPp7FUbFuiHDjsxHAQfqYrmt/qhUOHo7gjKaCr2ffw2P4zaBj+FTIStPDETVjUysyVvZRoUuL8mLile9RIWdUyDlYWBOhs/xcl1jWCrbNvv3d8JuhJ98pUnZR5xDVHQ7G26K8mNj+TSGnKeR8q2Bh+5+gvy1ffZocfsZy1ApIKpbUlYOxYD7Jme8oB7H49vdRRzmIxb+42BA6xPLfS/clNSFPjZf414SN/gXYWbh/3Wwa0/0dQPNE+/soyA6hcltuctvEpMYH7Lc4JmVfw2k6+wfOpUYpD0+37QI6Tjy3Qzvk3j2ibFlzyj1Qtsy1l5W16k3h6G9WprGQ1w5QLreD94KP/wC1LbWKr9qzPR8X9Go3Z2HojM/GOyr4KvjEuDqFaUnVLfsE1i37BC7TsU/g3InbF84XeGyMSfmL2aFK+/qBkhhpMjhG8vykIfTF2Ft3fP/caY3Jd79py2X9mj+876WtZx5YcdxXqswf2CeQb+4s/zR0OLhn+YvQOYubO8s/m471eTWc5eeeBnu7YSG7QfT/AVY7P7AuzConn9tH/9tFOqo9/VDyjMvBszT1vsBo6CkSTOZGHsNvBm3vqZCVpiPPBMnj8tWLPDzOMCmLCNVokBbTItAslNCpGt0i+DgZH4/XQuis1WHimQpZaSK3Vu1Zk3SpW6tqq0n1rT167XjKixgzBB35eJvMIlTZdqbxNoj+d9vRQZ0k5nUJFcXwGa7x/hbNNS3vj2Ec/tn2d7Vmz/5d9cQm8nMkUvdcqHUMXmMbSeTNT+TxiRDMwzErr0GMCcyo38YTZtNxO1efIaTXKlJ1jJGNfylU+Rj7ZBkW/7ot8vNRgVYXLD71jvx8Wn5Y8E0IORzPar49tiA3nh2qt8esfJP15E0UxI/y1BtpavTIe022lT9SgmW8DaL/B4pnuDfG8Uztm+EzjGdfXzdbd7Rt3TbHJ+2xfrqdPP6/NPdtQZ6Kj7e1P/kMwM4TZvjsRXO1T8p7qFxf+D337QAVq9lH+mVnjsOFoxzMu5FkKp/DNmn1ZHZWPm98eKcTt132Z6RHDIVvGN18cPIEXbayU8Emq0H0Z4MPLiUfzN3HLyivoLIgnfJPrLPbiF69UaN8lt+oWdkuizpfY/xoK9RrC2Ea/dGAyXezqPirZiUpX1TxWtl0MWGpNVEsDx+/UzbF9jlO5Tf61cKm6uwCr1TgmO8mysP9pgnKwz2vBZSH+5wLKQ/HfKn9So73uB6MPmJjPj5Rf2r7eY/7NYHXElWMxPVSXvtF3yrbg8TyqfX+sj1FtBmPebEecJ8gFYti4v7Q6M9JtC8VP9V4yuiXCnqM2XwmDtvUUspDPm6XfBQWvx/W/hvtgHrd2v5sEP2FYIcLYexjZQmkV49npCbUGanDgIDPSC2DvGFBz3WxXNAvAxqzSYvoVaxTcRNtyrFOjWWXCnwey25NxDqMlYeR7kVF3XPP82GbmkyMFbm/nUzIZF6UU3aetWwccV2iv1XjY9SL+1ujf3MiHihbpvpbFT8Wi3Ipmy6hvLJ5lWEzZj/uasXyc/tMlTWmurGyFTrbD8/vsW2w/6t1hFz/Rx/6vz3uEX7Pr5x02Veu/Ouju+3hWb3VvNNzCMcQIczMDUKYPSbCPjuE2WdW+K2tZj1dpss4BjKHST/EbxD9YyfMxuFzbfgsJqy7mHiMip8oF9dSA/HmYo0S1vwesPDNI6afXxFrNIE1QlhNgaXOocW6u6ddN73saz97+5F/88nzznyhzr52P86fxZRaA+5VTu56cq9yEGsXyVHnI2L5301z+1HIU2cr9rQ/G0T/YzC3/07CVGd2C4Gp3hmZX8LHeqVkDdWUNVQiS/HOozx1R3LKt3o8jz2S4zOI3yRdKspLnsfG8tU5j822xTyUk3OGmn2mV6x5jlhDjli8h4hltvoYE7KQ923wjO1vsV69uYq8fB7vX8G4+rCjNea8kvLuKcH8RGKs7n3GD/t31AF5FR/2n4qX4wWOFbhP4BMrY0KHEDrLzzINR52/5vUoZUe1D1sQNtLn2nGC+EaF/mW8HEvHQD/GYlvx2e+mwFFn4kdLcIaEnPcQTuoGAdX+c881Yr/9bmgfPH7iPjOEnu/rn4+xBvXHZ4ivfl+hTt+j3p9V7xaq9Ul+b1KN0QqRl+rj5rD8sPo53kc/UWcrcO/rf9BYVt2Ig7w3tz95/f6vYXz8R4SpziOptYrUnpfaR8N19hBm2wjPBJi+iDkVstL8qjd5qPeMkf6W9qe6ka2gPPU+uBr/WB6Of5SPKt+x591uiuF6UPOKhaE8Dqk6Mrp+1BGWJ2dMm/p9AHUeX40v1XtsqSsi+Oakbr7D/eOwkINtOrd/rBpvcn2M23VqzlgIvUaD9sOpkJVGc8qF+F7nL3Pbntp/NV41nmI/Vm1W+bFaP9k+h3XIsVJ9QLd+e/n62TwF5KX6HT6HceT6Gb4j2t9VP4xr2CwzhHS8SrWL1Jyrap+kYqvqkxolctB2WLbd7c8G0R/ftle3u1ic+rnRQ93PmU1UP8fzDTU+UP0W+u1ysOfcfRHJNHdfROgsP9fl3H0RL6e5+yL0p8nhZ2Xzd2xb/Z6/v1rvi7iWxjXd7ovgvtno74VxzfXrZ9OY7t8GNLe2v8/dFzGT0A5V3mdnW87dF9FJx+VAf/O8L+J+8PED1Lbm7ouYnfetcl/EgZIYaTI4Rqb2VdCvrhXjbzW34vmT2VidF4jpBshH+ucpTtQcP8kz34bV497PiBpPWFLrNwXl5Z6f5/Vd1a5yfcrKGvX6/QyfUnVcUJ66Dd7yuN5iUmd4eY6oztqrdyB4nqLegSgIM4TONYOYUnsNHneaPPKf7/3I/5v88f9Z5exXlTUKfI7l4jZm9B+lNlZzTiTbGO95q7UZpb+ql6tK9P8l6L9+gtanVLtbGMrbXaovTekyfS4jc70HY4/hWF6VNQW13oOxntur6s/V/Cm3P+c2qcZTReiM96l2x/4wEvTaHt/1bPS/AHXA7xKgbzZJdyw7z5WHhVwVa6yNRZr/Tu2q5h7FfDW/s6T6EO5fME5x/8JjLMzDuqzav1hZq/YvI6Icqi1z/6LOzfVxndW93Znvq19PYX/L9WHuE4cT8srO0ZgP55xFxjn652j8OQJ5ag2S46nRfx1i+xcotqv13tT+MusSgo5DqTWXg3CONXtt8WCcY1XrxD2OExrcx6I8VQ+LgrapOiPH88vUeFWNSVPx5GCMV1E2/oZCzrhJtS3k5X7y76FtLdgwu/wq1qbqLbVnlIp9qKuyPd913yRs/D6ekKP0Uuc1xxN6YUxGXpbdrQy5fZXTGHGe6qtSv1SYOscaU849Ori+wm1E/dJ61b6Nz6aqPr5b32Y+n+oXMP7xGolqY9j3/f+1hYFvU3UGAA==",
4215
- "debug_symbols": "tf3djmQ9buUP30sf+yBEUaTkWxkMDI/HM2ig0R607Rd4Yfje/7EpiWtlVadyZ0Q+J10/PV3FpS8y9pYo7f/60//+1//1n//3n/781//zb//+p3/8H//1p//1tz//5S9//r//9Jd/+5d//o8//9tfn//1v/70uP6nVPnTP9Z/eP5Z//SPdv2pf/pHvf5s609bf/qf/rFff/b155h/6mP9Wdafsv6s609df7b1p60/lz1d9nTZa8teW/basteWvbbstWWvLXtt2WvLXlv2bNmzZc+WPVv2bNmzZc+WPVv2bNmzZc+XPV/2fNnzZc+XPV/2fNnzZc+XPV/2+rLXl72+7PVlry97fdnry15f9vqy15e9seyNZW8se2PZG8veWPbGsjeWvbHsjae98viHP8njsaFskA1Pm6VeoBvahqfZYhc87Ur85b5hLCiPDWWDbHhalnKBbmgbbINv6BvGAnlsKBtkw7Ysl2W5oG2wDU/LpV/QN4wF9bIcUDbIhrpBN7QNtsE39A1jgW7Lui3rtnz5Ur265XKmCW2DbfANfcNYcLnUhLJBNmzLbVtu23Lbltu23Lblti3btmzbsm3Lti3btmzbsm3Lti3btnx5Wb2G4HKzCWWDbKgbdEPbYBt8Q9+wLfdtuW/LfVvu23Lflvu23Lflvi33bblvy2NbHtvy2JbHtjy25bEtj215bMtjWx7Lcn08NpQNsqFu0A1tg23wDX3Dtly25bItl225bMtlWy7bctmWy7ZctuWyLcu2LNuybMuyLcu2LNuybMuyLcu2fPlgbU+4fHBC2SAb6gbd0DbYBt/QN2zLui3rtnz5YO0X1A264fqFrBfYBt/QN4wFlw9OKBtkQ92gG7blti23bbmtuFHbihvVHhvKBtlQN+iGtsE2+IZt2bZl35YvH1S7QDbUDbqhbbANvqFvGAsuH5ywLfdtuW/Llw+qX9A22Abf0DeMBZcPTigbZEPdsC2PbXlsy5cPtscFfcOYoJcPNr2gbJANdYNuaBtsg2/oG8aCsi2Xbblsy2VbLtty2ZbLtly25bItl21ZtmXZlmVblm1ZtmXZlmVblm1ZtmXZluu2XLflui3Xbbluy3Vbrtty3Zbrtly3Zd2WdVvWbVm3Zd2WdVvWbVm3Zd2WdVtu23Lbltu23Lblti23bblty21bbtty25ZtW7Zt2bZl25ZtW7Zt2bZl25ZtW7Zt2bdl35Z9W/Zt2bdl35Z9W/Zt2bdl35b7tty35b4t9225b8t9W+7bct+W+7bct+WxLY9teWzLY1se2/LYlse2PLblsS2PZbltH2zbB9v2wRY+aBfohrbBNviGvmEsCB8MKBtkw7ZctuWyLZdtuWzLZVsu27Jsy7Ity7Ys27Jsy7Ity7Ys27Jsy7It1225bst1W67bct2W67Zct+W6LddtuW7Lui3rtqzbsm7Lui3rtqzbsm7Lui3rtty25bYtt225bcttW27bctuW27bctuW2Ldu2bNuybcu2Ldu2bNuybcu2Ldu2bNuyb8u+Lfu27Nuyb8u+Lfu27Nuyb8u+LfdtuW/LfVvu23Lflvu23Lflvi33bblvy2NbHtvy2JbHtjy25bEtj215bMtjWx7Lsj0eG8oG2VA36Ia2wTb4hr5hW94+aNsHbfugbR+07YO2fdC2D9r2Qds+aNsHbfugbR+07YO2fdC2D9r2Qds+aNsHbfugbR+08MFxQdkgG+oG3dA22Abf0DeMBbot67as27Juy7ot67as27Juy7ot67bctuW2LbdtuW3LbVu+fNAeF9gG3/C0bHLBWHD54ISyQTbUDbqhbbANvmFbtm3Zt2Xfln1b9m3Zt2Xfln1b9m3Zt2Xflvu23Lflvi33bblvy31b7tty35b7tty35bEtj215bMuXD1q9QDe0DZdlvcA39A2X5ees88sHJ5QNl+VxQd2gG56WvVxgG3xD3zAWXD44oWyQDXWDbtiWy7ZctuXLB10vGAsuH5xQNsiGukE3tA22wTdsy7It12358kFvF8iGukE3tA22wTf0DWPB5YMTtmXdlnVb1m1Zt2XdlnVb1m1Zt+W2LbdtuW3LbVtu23Lbltu23Lblti23bdm2ZduWbVu2bdm2ZduWbVu2bdm2ZduWfVv2bdm3Zd+WfVv2bdm3Zd+WfVv2bblvy31b7tty35b7tty35b4t9225b8t9Wx7b8tiWx7Y8tuWxLY9teWzLY1se2/JYlvvjsaFskA11g25oG2yDb+gbtuWyLZdtuWzLZVsu23LZlsu2XLblsi2XbVm2ZdmWZVuWbVm25fDBfoFt8A19w1gQPhhQNsiGukE3bMt1W67bct2W67as27Juy7ot67as27Juy7ot67as27Juy21bbtty25bbtty25bYtt225bcttW27bsm3Lti3btmzbsm3Lti3btmzbsm3Lti37tuzbsm/Lvi37tuzbsm/Lvi37tuzbct+W+7bct+W+LfdtuW/LfVvu23Lflvu2PLblsS2PbXlsy2NbHtvy2JbHtjy25bEsj8djQ9kgG+oG3dA22Abf0Ddsy2VbLtty2ZbLtly25bItl225bMtlWy7bsmzLsi3LtizbsmzL2wfH9sGxfXBsHxzbB8f2wbF9cGwfHNsHx/bBsX1wbB8c2wfH9sGxfXBsHxzbB8f2wbF9cGwfHNsHx/bBsX1wbB8c2wfH9sGxfXBsHxzbB8f2wbF9cGwfHNsHx/bBsX1wbB8c2wfH9sGxfXBsHxzbB8f2wbF9cGwfHNsHx/bBsX1wbB8c2wfH9sGxfXBsHxzbB8f2wbF9cGwfHNsHx/bBsX1wbB8c2wfH9sGxfXBsHxzbB8f2wRH7guUC2VA36Ia2wTb4hr5hTCiPywkXlSRJqkmXeQlqSZbkST1pbLrccVFJkqSalBolNUpqlNQoqVFSQ1JDUkNSQ1JDUkNSQ1JDUkNSQ1KjpkZNjZoaNTVqatTUqKlRU6OmRk0NTQ1NDU0NTQ1NDU0NTQ1NDU0NTY2WGi01Wmq01Gip0VKjpUZLjZYaLTUsNSw1LDVi/16DNKklXRoe5Ek9aWyK3fxJJUmSapImtaTU8NTw1PDU6KnRU6OnRk+Nnho9NXpq9NToqdFTY6TGSI2RGiM1RmqM1BipMVJjpMbYGuXxSCpJklSTNKklWZIn9aTUKKlRUqOkRkmNkholNUpqlNQoqVFSQ1JDUkNSQ1JDUkNSQ1JDUkNSQ1KjpkZNjZoaNTVqatTUqKlRU6OmRk0NTQ1NDU0NTQ1NDU0NTQ1NDU0NTY2WGi01Wmq01Gip0VKjpUZLjZYaLTUsNSw1LDUsNSw1LDXSz0v6eUk/L+nnJf28pJ+X9POSfl7Sz0v6eUk/L+nnJf28pJ+X9POSfl7Sz0v6eUk/L+nnJf28pJ+X9POSfl7Sz0v6eUk/L+nnJf28pJ+X9POSfl7Sz0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+rmkn0v6uaSfS/q5pJ9L+nlNP6/p5zX9vKaf1/Tzmn5e089r+nlNP6/p5zX9vKaf1/Tzmn5e089r+nlNP6/p5zX9vKaf1/Tzmn5e089r+nlNP6/p5zX9vKaf1/Tzmn4eKUd9BJUkSapJmtSSLMmTetLYpKmhqaGpoamhqaGpoamhqaGpoanRUqOlRkuNlhotNVpqtNRoqdFSo6WGpYalhqWGpYalhqWGpYalhqWGpYanhqeGp4anhqeGp4anhqeGp4anRk+Nnho9NXpq9NToqdFTo6dGT42eGiM1RmqM1BipMVJjpMZIjZEaIzXG1ojEpUUlSZJqkia1JEvypJ6UGiU1SmqU1CipUVKjpEZJjZIaJTVKakhqXH4+HkGSVJM0qSVZkif1pLHp8vNFqVFTo6ZGTY2aGjU1amrU1KipoamhqaGpoamhqaGpoamhqaGpoanRUqOlRkuNlhotNVpqtNRoqdFSo6WGpYalhqWGpYalhqWGpYalhqWGpYanhqeGp4anhqeGp4anhqeGp4anRk+Nnho9NXpq9NToqdFTo6dGT42eGiM1RmqM1BipMVJjpMbl50OCPKknXRrP7ZoSyVGLSpIk1SRNakmW5Ek9KTVKapTUKKlRUqOkRkmNkholNUpqlNSQ1JDUkNSQ1JDUkNSQ1JDUkNSQ1KipUVOjpkZNjZoaNTVqatTUqKlRU0NTQ1NDU0NTQ1NDU0NTQ1NDU0NTo6VGS42WGi01Wmq01Gip0VKjpUZLDUsNSw1LDUsNSw1LDUsNSw1LDUsNTw1PDU8NTw1PDU8NTw1PDU8NT42eGj01emr01Oip0VOjp0ZPjZ4aPTVGaozUGKkxUmOkxkiNkRojNUZqpJ9b+rmln1v6uaWfW/q5pZ9b+rmln1v6uaWfW/q5pZ9b+rmln1v6uaWfW/q5pZ9b+rmln1v6uaWfW/q5pZ9b+rmln1v6uaWfW/q5pZ9b+rmln1v6uaWfW/q5pZ9b+rmln1v6uaWfW/q5pZ9b+rmln1v6uaWfW/q5pZ9b+rmln1v6uaWfW/q5pZ9b+rmln1v6uaWfW/q5pZ9b+rmln1v6uaWfW/q5pZ9b+rmln1v6uaWfW/q5pZ9b+rmln1v6uaWfW/q5pZ9b+rmln1v6uaWfW/q5pZ9b+rmln1v6uaWfW/q5pZ9b+rmln1v6uaWfW/q5pZ9b+rmln1v6uaWfe/q5p597+rmnn3v6uaefe/q5p597+rmnn3v6uaefe/q5p597+rmnn3v6uaefe/q5p597+rmnn3v6uaefe/q5p597+rmnn3v6uaefe/q5p597+rmnn3v6uaefe/q5p597+rmnn3v6uaefe/q5p597+rmnn3v6uaefe/q5p597+rmnn3v6uaefe/q5p597+rmnn3v6uaefe/q5p597+rmnn3v6uaefe/q5p597+rmnn3v6uaefe/q5p597+rmnn3v6uaefe/q5p597+rmnn3v6uaefe/q5p597+rmnn3v6uaefe/q5p59HAtnoQTVJk1qSJXlSTxqLIpFsUUmSpJqkSZfGCLIkT+pJY1P4+aSSJEk1SZNSo6RGSY2SGiU1JDUkNSQ1JDUkNSQ1JDUkNSQ1JDVqatTUqKlRU6OmRk2Nmho1NWpq1NTQ1NDU0NTQ1NDU0NTQ1NDU0NTQ1Gip0VKjpUZLjZYaLTVaarTUaKnRUsNSw1LDUsNSw1LDUuPy8+c2b6ADO3BceF0cEClpGwtQgBWowAY0oAM7EGodah1qHWodah1qHWodah1qHWodagNqA2oDagNqA2oDagNqA2oDaiPVxuMBLEABVqACG9CADuxAqBWoFagVqBWoFagVqBWoFagVqBWoCdQEagI1gZpATaAmUBOoCdQEahVqFWoVahVqFWoVahVqFWoVahVqCjWFmkJNoaZQU6gp1BRqCjWFWoNag1qDWoNag1qDWoNag1qDWoOaQc2gZlAzqBnUDGoGNYOaQQ2xZCCWDMSSgVgyEEsGYslALBmIJQOxZCCWDMSSgVgyEEsGYslALBmIJQOxZCCWDMSSgVgyEEsGYslALBmIJQOxZCCWDMSSgVgyEEsGYsnIWCKPjCXyyFgij4wl8shYIo+MJfLIWCKPjCXyyFgij4wl8nhArUCtQK1ArUCtQK1ArUCtQK1ArUBNoCZQE6gJ1ARqAjWBmkBNoCZQq1CrUKtQq1CrUKtQq1CrUKtQq1BTqCnUFGoKNYWaQk2hplBTqCnUGtQa1BrUGtQa1BrUGtQa1BrUGtQMagY1g5pBzaBmUDOoGdQMagY1h5pDzaHmUHOoOdQcag41h5pDrUOtQ61DrUOtQ61DrUOtQ61DrUNtQG1AbUBtQG1AbUBtQG1AbUANsaQglhTEkoJYUhBLCmJJQSwpiCUFsaQglhTEkoJYUhBLCmJJQSwpiCUFsaQglhTEkoJYUhBLCmJJQSwpiCUFsaQglhTEkoJYUhBLCmJJQSwpiCUFsaQglhTEkoJYUhBLCmJJQSwpM5ZY4EicsWRiAQqwAhXYgAZ0INRmLJELZyyZWIACrEAFNqABHdiBUDOoGdQMagY1g5pBzaBmUDOoGdQcag41h5pDzaHmUHOoOdQcag61DrUOtQ61DrUOtQ61DrUOtQ61DrUBtQG1AbUBtQG1AbUBtQG1AbWRaus6sYmXWpn3dQmwAhXYgAZ0YAeOxIglC6FWoFagFrGkeGADWmK4Xg8K3cDwsbizLNLzNgqwAhXYgAZ0YAeOxAa1BrUGtQa1BrUGtQa1BrUGtQY1g5pBzaBmUDOoGdQMagY1g5pBzaHmUHOoOdQcag41h5pDzaHmUOtQ61DrUOtQ61DrUOtQ61DrUOtQG1AbUBtQCx+TGqjABjSgAzsw1PQfrjvqHsACFGAFKrABDejADoRa+Ji0wAIMNQusQAU2oAEd2IGhNi6M3+uFBXip1RJYgQq81GrUN36vFzqwA0di/F4vvNSui78kMv82VqACQy1qFkFjoSdG1Ig73iLZ7/lLHXhZ0PlfLwsaPRnxYaEDO3AkRnxYGHaj+yI+LKxABTagAR3YgSMx4sNCqEV8uG7Tkkj223iptWhmxIeFBnRgB47EiA8tRjPiw0IBVqACG9CADuzAkdihFvGhxbBEfFgYajVQgQ1owFCLfoj4sHAkRnxYWIACDLWYXBEfFjagAR3YgWNjZARuLEABVmCojcAGNGCotcAOHInh8wsvC9fdIRIZfuW68EIixe9qZGT4les6C4kUv40CvOplUa/w7YUNeNXLQyB8e+Gl5RI4EsO3F15q1xUSEtl+GytQgQ1owLAbjYzffo/6xm+/R9vCtxc2oAGjvtGl4dsLR2L49sICvNR6tCJ8e6ECL7XrBKZEZt9GB3bgSAzfXnip9Riq8O2FFWjAsBBdEv66MCzEWIS/LqzAqG/0WfjrQgNGfWOMw18Xhlr0Q/jrwkttRNXDX0f0Q/jriEqGv47o9fDXhQZ0YAeOxPDXhQUYalGz8NcR1bn89fnYG9gujOpcninx8hYpfBMjh29jAQqwAhUYxjRwJM77dScWoAArUIFh7Or1SMB7PmQHCrACFRht64EGdGAHjsS4UHdhAQqwAhUItQq1CrUKtQo1hZpCTaGmUFOoKdQUago1hZpCrUGtQa2FsRFoQAd24EiMez4XFqAAK1CBUDOoGdQMagY1h5pDzaHmUHOoOdQcag41h5pDrUOtQ+1yJ4lLpCNz7vnaFnipxQtZ5MlJvIZFOpvEo3Tks20cieEMcbtzpLRJPKVGTtvGClRgAxrQgR04EuMC6oVQE6iFD8XDrc2LqCc2oAEd2IEjMXxoYQEKEGoVahVq4S1ydWoksUlcOx1ZbLIuca5ABTagAR3YgSMx/GJhAUKtQa1BrUGtQa1BrUGtQS0cJ94CIrFtowArUIENaEAHduBIdKg51Bxq4Tjx6B9ZbhsbMOxecT0S2CRePyKDTWrMnV6BCmxAAzqwA0fieAALEGoDagNq8UtWY+4MAzqwA8fGyGnbWIACrEAFNqABHdiBUCtQC5+Pl7PIb9tYgQpsQAOG3SswRfaaxCtbpK/JdTOzRP7axgY0oAM7cCSGHy8sQAFCrUKtQi1+C+MNMpLZNnbgSIzfwoUFGHZbYFiI7gs/XjgSw4/j9S7S1TYKsAIV2IAGdGAHjkSDmkEt/FhjWMKPFyrwUosXuche23ipxYtc5K9JvKdFApvEq0pksG0swEst3sgiiW3jpRavS5HGJvFiFHlszx+FQAd24EiMH8CFBXjZtahk+HG8LkWe2jPABY7E8OOFYSFGKPx4YQUqsAHD7tWgSESTeKOKTDS57hGUSEXbqMAGNKADO3Akhm8uvNSuWwMlctI2VuClFm9qkZa20YAOvNS8Bo7E+D1eGGotUIAVGGoa2IAGdGAHjsTw43gDjDS1jQIMtejq8OOFDWjAkRi/xx7DEr/HCy8L8aYWiWgbDXjVN14GIxdt40gMP15YgAKsQAU2oAGh1qDWoGZQM6gZ1AxqBjWDmkHNoGZQM6g51BxqDrXw43h5jey0jQ0YajE1wo8XdmCoxQiFHy+81K4TXBLZaRsrUIENeKnFy2tkp2281OI9NrLTJN5jIzvtuVwcWIACDLWYcuHzCxsw1GIaxW/3wg4cGyM7bWMBht0R6NdXPB6B/cISOBLjYxMLC1AurIEVqMAGNGCoaWCoeWCoRXXiAxSxtRMZZxsvu/EmEVlkNb5WE/liz8XpwAIU4FWz0gIV2IAGdGAHjsT4zES8t0S+2EYBatYsvvSy0ICXRLzYRJLYxpEY33yJjYFIEtsowKtB8S4SSWIbL7VY1o8ksY0ODDULHInxHZiFBSjAClRgAxrQgVAzqDnUHGoONYeaQ82h5lBzqDnUHGodah1q85sxMeXmV2MmKjDUYiLOb8dMdOClFm8okSS2ML4hs7AAL7V4fYgksbq+DnOpxdtBJIltNOClFs/rkSS2cSyskSS2sQAFWIEKbEADOrADoRbuf73Y1EgS2yjAClRgAxrQgR04EgVqArX4Bs31SlAjSWyjAhvQgA7swJEYAWRhAYaaB1agAj0xgsL1flEj8ate7xc1Er82VqACr/pqCTSgAztwJEZ8WFiAAqxABUKtQa1BrUGtQc2gFvHhetWokfi1MdQ0UIENGGoxjSI+LOzAkRjxYWEBCrACQy0GK+LDQgM6MNR64EiM+LCwAAV4qbWYfREfFjagAR3YgZdai36I+LCwAAVYgQpsQAM6sANTLRK/6vXmUyPxa6MAQ80DL7Vrb6dG4tfGS+16m6mR+LXxUrtebGokfi2M+LCwAAVYgQpsQAM6EGoFagI1gZpATaAmUBOoCdQEagI1gVqFWoVahVqFWoVahVqFWoVahVqFmkJNoaZQU6gp1BRqCjWFmkJNoRax5Ho3rZH4tVGAFRhqMXciliw0oAM7cCRGLFlYgAKsQKgZ1AxqBjWDmkHNoeZQc6hF1LheoGskc1ULZ4j4MDHiw/UuXSOZa6MAK1CBDWjAsHv9SESC1hqAgf4Nn1/YgAa8Wuzhm+HzC8fGSNDamHMnErQ2VqACG9CADuy7DjJ9PrA8gAUoWYfw+YUKhBp8XuDzAp8X+LzA5wU+L5IzVaQCFdiAlnUQB3Yg1ODzAp8X+LzA5wU+L/B5gc/L9PmoQ0VPVvSkoicVPRk+f62i1PkVyYXRk2E3fH6hAR0YbWuBIzF8fmEBCrACFdiAoWaBDswJPj8ueS181Pl5yYUCrEBMjXD0hRgsw2AZBssw7R3T3jFYjsFyDJZjsByD5Rgsx0R0TETH1Aj3v5Zv6vzo5EIFRiuiH8L9e9QsHg8WduBIjMeDhQUowApUYD6Gzo9PLhwb5wcor/WSOj9BuTDsamAFKvBqxbVIUufHKBc6MFphgSMxgsLCAhRgBSqwAQ3oQKjNFYFoRbj/wgoMuz2wAQ142b1WZ+r8ROXCkRjuP6Ifwv0XCvBSG9EP4f4LG9CADuzAkRjuv7AABQg1hZpCTaGmUFOoKdQa1BrUGtQa1BrUGtQa1BrU4id/xAhFJJgYkWBhqMUARCRYGGoxUyMSLGzAp5peS1M18sw29gtjuK9IsPCKBPqIEYoPXy4UYL0wqhOfv1zYgAZ0YE+Mz14+ombxmctHtCI+dHmtXdX5qcuFDuzAq74l5ll88nJhAQqwAi+1El0dH79caEAHduDYGLljem3K18gd2yjAClRgAxrQgR04EgvUSqh5oAArMNRG4KV2bfbXuF1u46V2rX7VyD7beKldi1s18s82FqAAK1CBDWhAB3Yg1CrUKtQq1CrUKtQq1CrUKtQq1CrUFGoKNYWaQk2hplBTqCnUFGoKtQa1BrUGtQa1BrUGtQa1+PitxOxrHTgS7QEMtZgPJsAKVGADGtCBHTgSIxLEd3EjV00lplz4/MLLwrVwVyNXbeNIjM/fLixAAVbgZfda+quRf7a6ZKDF4fMLBViBV4vjC8qRf7bRgA7EaI5Ui6y0jQUowApUYAPark5cMLexA3M0I21tY/RODRRg9E7YDZ9f2IAGjLZ5YAeOxPD5hQUowApUYKj1QAP2PViR4qaxnBcpbhsLUIB1D0CkuG1sQAM6sANHIhy9wdEbHL3B0RscvcHRGxy9wdEbHD2S2TSWH+OyuY0VeNmN9b7IdtNY5Itst40O7MCRGC69sAAFWIFhN6ZGOO/CDhyJ8eMeS4qR17ZRgBWYP81t/rhPNKADO3AkhqMvLEABxtZWqMVj/kIHRisscCSG+y+MVsQ0CvdfWIExFuFO4f4LDXi1Ir51HdfNbRwb48K52F6rcePcRgFWoAIb0IAO7MCRWKBWoFagVqBWoFagVqBWoFagVqAmUBOoCdQEauH+V/pIjUS9jQYMtRHYgdGT1+yLRL2NBXiNWyy4RqLeRgU2oAEd2IEjMSJBrNNGUt9GAVZgqEUzIxIsNKADOzDUopnxk7+wAC+1WAqOpL6NCmxAAzqwA0dixIeFBQg1g5pBzaBmUDOoGdQMag41h5pDLaJGrG1HUt/GBjSgAztwJEbUWBhqMZoRNRZWYKhJYAMaMNQssANHYkSNhfi7A3935N+N9L2NBSjAqFkPVGADRs1GoAM7cCTGg8DCAhRgBSqwAaFWoBYPArEQFkl9C+NBYGEBCrACFdiABnQg1ARqFWoVahEJYhEqkvo0VuAiqW+jAzsw7F6xJJL6NhagACOehUQsAyxsQAM6sANHYiwDLIze0UAFNqABHdgTw49jbTDS9zQWBCN9T2ORL9L3NjowLMTkCo+dGB4b62eRvrdRgFd9Y/Ur0vc2NqABHdiBIzE8tscQhscuFGAFKrABbeVz1UjqW/0Qv/ML0TvhsbECF0l9GxXYgAaMVsQkCO9eODbGRXQboxUtUIAVGGoe2IAGDLUe2IEjMbw7lgkjAVCvszs1EgD1yoSqkQCosZQWCYAbG/CyeyVF1Uj1Wxh+vLAAw260bXqsBRrQgT1xuunEutIj68zZW9iAtpIma1wwt7EDR2Lk3i4sQAFWoAKvSsbiYWTybRyJ8SO8MBofgxU/wgsrUIHRiuidyORb6MAOHImRybewAAVYgZHpG2qRs7cwWhH9G847MZx3YQFGK6Krw3kXKrABDejAncVcZ87exMjZW1iAAqxABTagAT0xnDfWJyM7b6MAKzBaER4QzrvQgA6MVoSLRHZe4MzOW1iAAqxABTbg0257TByJl5tuLEABVuA+PVFHaUADOrADR2Lk6cZ7bOTsbRRgBSqwAaMVYaxGfeO/VgFWYFjQwAY0oAM7cCSGHy8sQAFWINQUago1hZpCTaHWoNagdvlxu3Iia6TvbTSgA6N35j8bifYAFqAAK1CBDRhqLdCBHTgSPdQssAAFWIGag+UNaEAHduBI7A8g5kPHfOhh1wMN6MCw2wPD7uWFkai3sQAFeLWihF9c3r2xAQ14qZUYocu7Wyy1R6JeoEai3sYCFGAFKrABDejADgy1fmH4/MICFGAFKrABDejAS01K4KV2LcBrJOptLEABVqACG9CADuxAqNVQs8ACFGAFKrABDejADgy1caE+gAUowApUYAMa8FK7opxGUt/GkXjFh40FKMAKVOAVjWbV49d/oQM7cCTGr//CsBv9G5HgCkwaiXobw0JMgsjNnxi5+QsLUIAVqMAGNGD0Q0zl8PkaNQufXyjAClRgAxowWuGBHTgSIxIsDLWoTkSChRWowAY0oANDLUY+IsH1K62RkrexAAVYgQpseywiJW+jAztwJEYkWFiAAqxAW7cA6Lx1bWEHRiuuKRfJdxujFWEhfH5hBUYrWmADGvBqxXUaTCP5buNIDJ9fWICXWoveCZ9fqMAGNKADO3AkhndfC4I6b1Lr0Yrw2BYtDo+dGB678KpZi44Kj10YNQsL4bELGzBqFv0Qv/MLO3Akxu/8wgIUYKhZoAIb0IAO7MCRLY5f9BZdHb/oCxXYgGG3BzqwA0di3PTgoRY3PSwUYAUqsAEN6Inhx9eqpcY9aBsFWIEKvFphMVjhxwsd2IFjY6TZbbzUruU8jTS7jRWowAY0oAM7cCSGHy+EWvjxlcaokWa3UYGhZoEGdGCo9cBQu7ok0uzataKlkWa3UYAVqMAGvOx6VDL8eGL48cICFGBNjB/Wa4VII9ttY0hEfcMhr+Ubjby2heGQCwtQgDUxHKdHfcNxFiqwAQ3owA4cifGAvLAAoeZQc6g51BxqDrX4WbzWgjSSzlpE5Ug6az2GO34AFxowLMRwxw/gwpEYjrOwAAUYdmMAwhl6DEA4w7WSo5FetrEALwvXWpBGetlGBTagAR14qV0LQBrpZQvDGa61II30so0CDLsaGBZa4EiMCX4tWGkkkrVrgUIjkWxjBSow7HqgAR0Yaj1wJMa0Xwi1CrUKtQq1+PlaaHssIpFsYwfmaEYi2cYC1D2EkRw2hzCSw9ZgKUazYTTDh+ZYNIxmw2g2jGbDaDaMZvyozXFrGM34UZuDZRhNw2iGF84hDH+b42YYzelvMYThb7OjHP3r6F9H/4a/zcFyjKZjNMPf5mA5RtMxmh1qHWodah1qPUczMqzsWmbRyLDaqMB2oQQa0IEdOBIvZ9hYgAKswFCL6pQGNKADO3AkXo5jJep7Oc5GAVbgpXalrWlkWG004KVWomaX42wciTXUamABCrACQ00Dw24L7MCRqA9g2PXAsNsDw+4IVGADGvBSk2jx5U4bR+LlThsvNYm2XT5kEvW9fMgkqnP5kElU5/Ihq/OfObADR+LlQxsLUICXWo1evzxr46UW75CRQLXRgR04Ev0BLEABVqACoeZQc6g51BxqHWodah1qHWodaj3UYmp0AzqwA0fieAALMOzGYI0GNKADO3BsjBSsjQUowApUYAMa0IEdCLUCtQK1ArUCtQK1ArUCtQK1ArUCNYGaQE2gJlATqAnUBGoCNYGaQK1CrUKtQq1CrUKtQq1CrUKtQq1CTaGmUFOoKdQUago1hZpCTaGmUGtQa1BrUGtQa1BrUGtQa1BrUGtQM6gZ1AxqBjWDmkHNoGZQM6gZ1BxqDjWHmkPNoeZQc6g51BxqDrUOtQ61DrUOtQ61DrUOtQ61DrUOtQG1AbUBtQE1xJKGWNIQSxpiSUMsaYglhlhiiCWGWGKIJYZYYoglhlhiiCU2Y4kFjsQZSybKjog2A8hEBTagAR3YgRl0TR7AAoSaQE2gJlATqAnUBGoCtQq1CrUKtQq1CrUKtQq1CrUKtQo1hZpCTaGmUFOoKdQUago1hZpCrUGtQa1BrUGtQa1BrUGtQa1BrUHNoGZQM6gZ1AxqBjWDmkHNoGZQc6g51BxqDjWHmkPNoeZQc6g51DrUOtQ61DrUOtTw2GF47DA8dhgeOwyPHYbHDsNjhw2oDagNqA2oDagNqA2ojVTzxwNYgAKsQAU2oAEd2IFQK1ArUEMsccQSRyxxxBJHLHHEEp+xZASOxBlLJl5qVxazRhrYxgq81GJ9PdLANhrQgR04EiOWxDJ3pIFtFGAFKrABDejADhyJCjWFmkItYolG70QsWdiABnRgB4baFe0jOWxjAYaaB1agAhsw7F5vVJEctixEfFhYgZeFWICPlLGNBrzqG8vykTK2cSRGfFh4qcWyfKSMbaxABYbdaHz4fCzLRxrYRgFGfeOfhc8vbEADOrADR2L4fKzbR3LYRgFWoAIb0IAO7MCxMZLDNhagACtQgQ1oQAeG2jWEkQZmsR8QaWAbK1CBDWhAB3bgSAzvXgg1gZpATaAmUBOoCdQEagK1CrUKtQq1CrUKtQq1CrUKtQq1CjWFmkJNoaZQU6gp1BRqCjWFmkKtQa1BrUGtQa1BrUGtQa1BrUGtQc2gZlAzqBnUDGoGNYOaQc2gZlBzqDnUHGoONYeaQ82h5lBzqDnUOtQ61DrUOtQ61DrUOtQ61DrUOtQG1AbUBtQG1AbUBtQG1AbUBtRGqo3HA1iAAqxABTagAR3YgVArUEMsGYglA7FkIJYMxJKBWDIQSwZiyZix5PpJGjOWTCxAAVagAhvQgA7swEvtOgmgcUPdxgIMtRFYgQpsQAM6sANH4owlEwsQagq1iCWxkxl5bRsNOBIjPlwHEzQuoNsYFqJ/Iz4sNKADO3AkRnyIrcPIYNsowAq81DyEIz4sNOCl5lHfiA8LR2LEh9hmjAy2jQKswFBrgaEW9Y1IEPuQkau2MCLBwgK87MaOY1w1Z7GZF1fNWezgRQabxZ57ZLBtdGAHXmqxrxcZbBsLUIChFvUN9489n0hbs9g4ibQ1i42eSFuz2G+JtLXAFmlrGwtQgBWowEvt2qZpkba2sa9p1CJXbWH4/MICFGAFKrABDehAqBWoCdQEagK18PlrJ6hFrtrGBowG9UAHduBIDJ9fWIACrEAFNiDUKtQun/dr16hFrtrCy+c3FqAAK1CBDWhAB0JNodag1qAW8eFKc26P+aRggQZ0YAeOxPmkMLEABViBCoSaQc2gZlAzqDnUHGoONYeaQ82h5lBzqDnUHGodah1qHWodah1qHWodah1qHWodagNqA2oDagNqA2oDagNqA2oDaiPVyuMBLEABVqACG9CADuxAqBWoFagVqBWoFagVqBWoFagVqBWoCdQEagI1gZpATaAmUBOoCdQEahVqFWoVahVqFWoVahVqFWoVahVqCjWFmkJNoaZQU6gp1BRqCjWFWoNag1qDWoNagxpiSUEsKYglBbGkIJYUxJKCWFIQSwpiSUEsKYglBbGkIJYUxJKCWFIQSwpiSUEsKYglBbGkIJYUxJKCWFIQSwpiSUEsKYglBbGkIJYUxJKCWFIQSwpiSUEsKYglBbGkIJYUxJKCWFIQSwpiSUEsKYglBbGkIJYIYokglghiiSCWCGKJIJYIYokglghiiSCWCGKJIJYIYokglghiiSCWCGKJIJYIYokglghiiSCWCGKJIJYIYokglghiiSCWCGKJIJYIYokglghiiSCWCGKJIJYIYokglghiiSCWCGKJIJYIYokglghiiSCWCGKJIJYIYokglghiiSCWCGKJIJYIYokglghiSVxh59exoxbfUt04Eu0BLEABVqACG9CAUDOoGdQcag41h5pDzaHmUHOo5QpnkxlLJoaaXNgfwAIUYAUqsAFDTQMd2IGhdr0HRLrhxgIMtajZqEAFxriFsRlLJjqwA8fG+ngAC1CAFajAWL3tgR0YrbgmTCQhbixAAVagAhsw+izsFgd2YKhdD9ORsLixAEPNAytQgbEyHWpzV2OiAztwJNYHsAAFWIEKvFpx5X61SE3cOBLjDeXK/WqRmrhRgFcrrtyvFgmLG68+u7K8Wtxxt9GBoRbjFm8oE+MNZWEBCrACFRhqLdCADuzAkRjxYWFZWYptpjH2GAvb6YYtbrPb6MAOHIkzuXFiAcrKR2wruXGiAhvQVr5nm8mNCztwJM4U44kFKMAKVCBGvmPkO0Z+YOQHRn5g5AdGfmDkB0Z+YOQHRn5g5EeOfNxxt7EABViBCsyRjwzMjQ7swBz5yMDcmCMfuZZz5LXkyEeu5UYHdmCOfORabizAHHmVClRgA+bIR67lxg7MkY9cy40FKMAKVGD0jgV24EicPj8xxiJaMX1+YgUqMFLOa6ABHdiBI3Gm/08sQAFWYIxxtGJ698QOHInTuycWoAArUIENCDWDmkHNoBa//leaaIsEy40CrEAFNuClJtHrl89v7MCRGL/+Er0ev/4LBRhqI/BSqyERv/4LDejADhyJEQkWFqAAL7UaIxSRYGGohZtGJFjowA4MtavqkXa5sQAFWIEKbEADhloP7MBQu3on0i43FqAAK/CSuJIIWuRabnRgB47EeBC4tupb5FpuFGAFKrABQ00DHdiBI7E+gAUowApUYANCLULFdeKvRa7lxpEYoSIeJSLXcqMAQy16PUKFRk/G40GL3onHg4UO7MCRGI8HC+t1DU6QJrUkS/Kkvik8+Mo6aJHsuDA8eGG5PikVJEk1SZNakiWFxcstInXR48k9Uhfn3IsLpye1pKu6MV/jGrpJPWlsiqumJ5WkEInRCjdcePV1iyEKN1xowKjmNUSRhejXVluLLMSNVz3n/x8GeqABHdiBIzG+NjepJElSTdKkltR3J0Z24ezEyC70awOsRXbhxqup15VgLbILN141vTbsms1rZoJ60tg0r5sJKkmSFBajIuEAseMQuYIxDSNVcFFJuv51VC0ue5ukSS3JkjwpRDRwJMa8v44HtkgR3CjAqGaMVvwYWlQ+fgwnxt1t0bXxWzg7Jn4LF1agAsPs/GcGdGDPDg9PmhietBBqDjWHmkPNoeZQc6g51BxqHWodah1qHWodavFbuND2VO+Y1B2TumNSx0/hwrIxMvL8ukOsRUbexgq8nEmCWpIleVJPGpvicsZJJUmSalJqlNQoqVFSo6RG/EZ5YPxGLSzAaIwGVuDVide+bosUvI0GdGAHjsT4jVoYah4owAoMtRbYgAYMtRiHcNGFIzGuaY+/Gre0T5KkmqRJLSksXq4ZCXXeYzjD83rUP15IFyqwAa+axtNr3MG2sQNHYjyyLryqOinEoufDSxcqMMQs0IAODLHoi/DSieGlPZoWXrpQgFf0iirEhU+TWpIleVLfFJ44orPC50b0RfjciKkVz58LHdiBV01jbzqy7jYWoAAr8KpqtDoudZpkSVdVY2DntatBY9G8jG1SSZKkEJmowAbsifEoeR0ibJFWt/HqUA3SpJYUPdIDHdiBz4r22LONnLqN5cISKMB6oQTqhTWwXRhql7v2WHGKnLqNHTgS6wNYgAKswFCL+tZQG4GXWiwrRE5djwWEyJ7rsWoQ2XMbBViBCmxAS2xhLJrZClCAFajABrREC2PRURb/LEbVFNiABrzedWOoY2Fo0tgUy0KTSpIk1SRNakmWlBqeGp4aPTV6avTU6KnRU6OnRk+Nnho9NXpqjNQYqTFSY6RG3McQfRgn0CeNRWNeqhJUkiSpJmlSS7IkT+pJqVFSo6RGSY2SGiU1SmqU1CipUVKjpIakhqSGpIakRjhGvOlHgliPZYNIEOvXLUktUsG6xN/VwKsT4/6xjQV4Tet4VB7zYHeQJrUkS/KknjQ2zRPdQSVJklLDUuOa6z1WGCI3q8er1czNikbGJuqkmqRJLcmSPKknjU2xeTopNXpq9NToqdFTo6dGT42eGvNMx0XzSEdQSYol9KCapElXL1wncy0Sr/r1YGWReNWvX2+LxKuNFajABjSgAztwJJYHEGoFagVqJdQ0sAEN6MAOHInxe7OwAAVYgVATqAnUBGoCNYHazLsMKkmSVJM0qSWFxXZh/KbU+K+xnzmCapImRaZdkCV5Uk8am2Ifc1I0fGI0MSw2B3bg1cRrTcgiZWpjAQqwAhXYgAZ0YAdCzaHmoRaz1AVYgaEW4+ANGGrRrR5q0a0eatF4H4n9AbzUWghfvrrxUmvhNJe39hbC8XA4/6MleVJPGpvmDkVQWIzJfj3s9RaVDudsUdPrF2jj2BgJUP1a7rBIgNoowApUYNi9GhhJTf0KiBZJTf16D7VIatpYgQpsQAM6sANHYrjh9c5qkdS0UYChJoEKbEADhloN7MCROFcSg0qSJMW6aJAmtSRL8qSeFC/UF8X64aSSFO0JkXgAXKjABuyJ8fNoYSF+HheGhRjteOpb2IDxyhTkST1pbJrvZkElSZJqkia1pNSw1LDUsNTw1PDU8NTw1PDU8NTw1PDU8NTw1Oip0VMjfNNibodvLlRg9FdM825AB17jEL4YKUgLLwftc7pcP6gbBViBCrzU5lwIb154qXmMWXizR83Cm6MVkYK0sQBDbQRWoALjaSzIkjypJ41N4fSTLovXmoBFQlFf//X619elTxYJRRtHYvjxwqum13u8RULRxgpUYAPGc2NQdEtQaFlgaEX74+Vt4dPqiMpe7jmi9ZcrlkdYunxxYwFGreLvhjcuVGADGtCBHXjVa4TdeLBdWIB1V+zy1kUtya5qRR9fzrqxA8P+NV0i+WdjAV6tGdFd8Qu78GrNiJ6LX9iFBgy1GtiBI9EfwAIUYAUqsAENCDWHmkOtQ61DrUOtQ61DrUOtQ61DrUOtQ21ALbx4xGQKL15YgdGTMVjhxQsN6NccjEl4efHGsTGSfzaWC0ugXCiB0TYLVGADXpM76hspQRs7cCSWB7AABViBCmxAqBWoFaiV6Mlr9kVK0MYCFGAFKrABDejADoRahVqNtmmgACtQgQ1oQAd24EjUBzDUQlgFWIEGDAuXF0byz7iWjiySfzYKsAKjviOwAQ3owA4cifYAFqAAKxBqBjWDmkHNoGZQu+LDKDGrr/iw8VIrMauv+LBRgZdaiWl0xYeNDuzAkdgfwAIUYKjFYHUFNqABQy08q3fgSBwPYAGGWjR+VKACG9CADrzUJDoq4kNgJAptLEABVqACG9CADuzAULviTiQKbSzAUKuBoaaBCgy1FmjAULPADhyJ8gAWoAArUIENaECoCdQEahVqFWoVahVqFWoVahVqFWoVahVqCjWFmkJNoaZQU6gp1BRqCjWFWoNag1qDWoNag1qDWoNag1qDWsSSK9vGItVoYwEK8IrrZaICG9CADuzAkRjPGgsLMFrRA6O+I7ADr/rWmOARHxYWoAArUIENeNmNda9ICVpdMtDi8PmFCmzAq39juSxSgjZ24NjYHjma7VGAAqxABTagAX3XoU2fn5ij2coDWLIO4fMLKxBqBWoFavD5Bp9v8PkGn2+Sc6eJACtQgS3rIAZ0INTg8w0+3+DzDT7f4PMNPt/g8236fNShoicrerKiJxU9GT4fy5GRHbQxelIDFdiABoy2TWMdOBLD5xcWoAArUIGh1gMNmBM8rl8bsYIX169tLEABYmrEQ8NCDJZhsAyDZR2Iae8YLMdgOQbLMViOwXIMlmMiOiaiY2qE+8fKYGQrbazAy65GP4T7xyJhJCxtdGAHjsR4PFhYgAKswHwwbPNFYWIHht1rPsSVahvDrgUKsAKjFR7YgAaMVvTADhyJERQWFqAAK1CBDWhAqIX7P4JKkiTFAAdpUku6LMY6auQ4bezAq/6xuhppThsL8FJqQTVJk1qSJXlSTxqbwuEnlaTU0NTQ1NDU0NTQ1NDU0NRoqdFSo6VGS42WGi01WmrEb3qsGEfG1MaRGK7e4u+Gqy8MoZh04eoLFRhaMafC1ReG2gjswEstVnYjZWpjAV5qMU3C0ydpUkuyJN8Uv/GxKhwJUCMWfSMBasTybiRAbTSgA6+axipqZEAtDHdeWIACDLWoQ/zyL2xAAzqwA0Pt6qK49mxjAQqwAhXYgAZ0YAdCLZz8ytiyyLXaKMBL7cqNski3GrGcHflWGy+1WMWMjKuNl1qsYkbO1cJw/YUFKMAKVGADGtCBUBOoVahVqFWoVahVqFWoVahVqFWoVagp1BRqCjWFmkJNoaZQU6gp1BRqDWoNag1qDWoNag1qERhicTmytDZ24Ei0eP4ugQUowApUYAMa0IE9MWJALHBH7tWIpexIvtoY9Y1JGy6/sANHYkSChQUowAgkMcE7+rejxeHzCwtQgBGeourh8wsb0IAYzQG1kaMZaVgbC1CAFajAtqsT155tdGAHZtvim5gjltIja2tjRN4aWIEKbMBo2zTmwA4cieHzCwtQgBUYah7YgL4HK7K1RiztR7bWwnD0hQUoewAiW2ujAhvQgA7sQAwWHL3D0TscvcPROxy9w9E7HL3D0SOda8SmQaRzbRRg7BREP8ytgqjZ3CuYaEAHduBIjB/7hQUowLAbUyN+1hc6sAPDbkyN+FlfWIACzJ/mSPva2IAGdGAHjsT5kz+xAHVtFUWq1yJLit38oJ40NoXjxxZI5HptFGCkPwRpUkuKroppG16/sAPH2rwac/MuqCRJUk3SpJZkSZ7Uk1KjpEZJjZIaJTVKapTUKKlRUqOkRkkNSQ1JDUmN8O54PovryTY2oO09vLiebGOs78emyJgL/JPnCv/i2FCI3ZK4oiy5EitxIzZiJ+7EU/eaNGPuFC4uxEI8dTVYiRuxETvx1G3BA9wexLEVFSRJNUmTWpIleVJPGpvmzmFQalhqWGpYalhqWGpYalhqWGp4anhqzN3C2MMac7twsRI3YiN24k48wHPXMPYjxtw2XCzEUzcm69w5XNyI5y5szIq5ebi4g0chvrLpw/oVDxbNfxcjOTrx2OyRUJdciIU46nvtF/hj7gYubsRGHLrXMr9HYl3yAJe5D16CC7EQh+6VzumRXpfciI146tbgqRv1n9uA11qMP+Y+4OJKrMTTfg+e9qNdczOwRt1mtKihO6PF5BktFhfiuW8cdZvRYrESN+K5dxz1nxGiRt1mhLgW1fwxI0SNus0IoaE1I8TiSqzEjdiInTh0NeozI8TklvPO42Kz5EqsxI3YiKdWtHHmFywe4HgPeGi03QqxEFdiJW7ERuzEnXiAnXSddGf80JgbM34sVuJGbMRO3IkHeMaPxYWYdDvpdtLtpDvjh8Y8mWkGGvNk5hksLsRCPDfIw0+HEjdiI/aVleMzBXDh2DhTABcWoAArUIFz831yJx7gGUcWF2IhnvWW4GmnBk87evHKGphciKedFlyJZ79YcCM24ll/D+7EA7zyByYXYiGuxFO3BzdiI3biTjzAcSzEoikzRMzumSFiMXXbDBHXipqXGSIWd+IBng8Ri6NZ12KblxkuFldiJZ5ZJqE7w8ViJw5diyGa4WLyDBeLp260cYaLxZV46sY0meHCYuhmuLDo8hkuLLpthovFAzzDgkV7Z1hYrMSNOOx7tHe6/5yS0/0XF2IhVuKdJeszO3DhSBw7d9ZnduBCAVagAhvQgA7sG2U+NlzJiC7zsWFxJVbi6Idrgc9lPjYsduJOHK25hnQmBS4sQAFWoAIb0ICeOFPve2ABzsbU4EqsxI14NmZadOJOPMDT9xcX4kj5j76NQ18LFdiABnRgB47E8PmFBThb04IbsRE78WyNBQ/wdPnFhThaM7ECFdiABnRgB47E6dLX+p3LdOnFStyIjdiJ+zyF4jK/qXLR/KRKUEmSpJq0zqh4JBkusiRP6klj03Rpj5k2f7k9xmP+ci924uiF8Ijw74njASxAAVagAhvQgA6E2ki1msdvvD4KUIAVqMAGjNlzLa15nb/jk+fv+OJCHL0UzwN1vg8sVuJGbMRO3IkHeP7u96jb/N1fLMSVeOrW4EZsxE7ccwRX2uDk5fuTC7EQV2IlbsRGPNt1za463w0WF+LZrhY822XBStyIjXi2y4M78QDPKLA4dEeM4/zhH9GH84d/sRI3YiN24k48wPOHf3EhJt0ZJUa0fUaJxY3YiJ24Ew/wfE9YXIinbg+OrYpH9EM8EGxuxEbsxJ14gONBYXMhFmLS7VM35mRvxEbsxJ14gMeDuBAL8dSNOTOUuBEbsRN34pEcGYnJU3cEC3ElVuJGbMRO3ImvGH312vqIbFBJkqSapElzqylY5h5WCS7EES/nX6lABTagAR3YgSMxTiEsnLtjEjy3x2pwIzZiJ+7EA6wP4tkcDRbiSqzEU7cFG7ETd+IBbg/iQjx1Y0q0qevBStyIjdiJO/HAMBkNn9HwrU3IyZVYiRuxETs4DiJFtJi3mS0U4DQec3LGjcVhXKYRI3biaFSsi+mMG5Nn3FgcjZIYoBk3FldiJW7EUzc6bcaNxZ14gGfcWFyIhbgST/s9eKzbHbxNd4/luDbdfbESRzXDD9p098VRzVi+a9PdFw9wPIaUeFSJvMRkIa7EStyIjXjq1uBOPMAzVCwuxEJcsxtkmtdgJ+7EA1yn+RZciIW4Euu6TsTnnWULDejADhyJceZwYQHO7oo2zJCw2IideLbHgwd4hoTFhVjW9THe5p0xExXYgAZ0YAeOxOny8VbYpssvVuLZnpiC0+UXO3G0R6fNAZ7Zxhp9NNONFwtx6MbKbJvRYHEjNmIn7sQDPKNBrOq2GQ0WC3ElVuJGfPVlrJZEUmJc5uWRlBi3SnkkJW4UYAUqsAENeI1R/MZGquLGsTFSFTeGWg0UYAUqsAEN6MAOHIlx40ysjdmMB1eSpNuMB4sbsRE7cSce4BkPYgncZjxYLMSV+GpQLAnN+9kWGtCBHTgS4yDywgIU4GyOBRuxE8/mePAAz0eHxbM5PViIZ3NGsBI34tCNVWebcWJxJx7gGScWF2IhDt1YKbb56LC4ERuxE3fi6MtoomFyGE0Oo8lhNDmMJofR5DCaHEaTw2lyOE0Op8nhNDkck8MxORyTwzE5HJPDMTk6JkfH5OiYHPEzLo8YyPgZ36zELdnnb/R1m5T7/I1e7MTR/PjB8/kbPXn+Ri8uxEJciZW4ERuxE5NuIV0hXZl2PHj+/WjX/KGd/33+0F4nMj1SAJ9tfwRXYiVuxEbsxJ14BF+TL1IBkwvx1JXgqVuDp270s07dFmxoy3SwxdTG6TyxfOLTeRYrcSM2YifuxAM8n7sXF+KpG22ZbhVLLCv9b3EjNuKpG+2dbrV4gKdbLS7EQlyJlXjajD6cP6SxZOLzxzOWQ3z+ePbow/njudiIHTwfmRdPOzGX5iv14jkPYz7MV+d40Orz2TiWPfp8Nl7ciOdY12An7sQj7ffld/Hfl99NFuJKrNkPffrdYiN2sKC9ff7mRRv7/M1bjH7oc/7H+1+f8z/e4fqc/4uFuBIrccz/EroxzyVes+KjoJvbg7gQC3HYj/SGyJZLbsRG7MSdeIDDFyRe6SJpLlmIK7ESN2IjduKpFfPBH8SFWIgrsRI3YiN24k5Mup10+9SN+dOFuBIrcSM2Yse4dBrTTmM6aEzH/LcaPOt2+XJkzCUXYiGedfNgJW7ERuzEnXiAy4N46lqwEFdiJW7ERuzEI9sb2XRP7sGVWNFGacRG7MSzLSN4gOuDONoS7+MzgW5zhZ1KupV0K+lW0p2/iYtp7JTGTmnslMZOSVdJa/p+LAfOhLjNhViIZ2yJtkzfX9yIjXjOzxLciQd4+v7iQizElViJG7ERk66RrpGuk66TrpPu9PdYX5ypcBLrgjP9TWLNb6a/bRbiSqzEjdiIZ51jXJYvTx7g5cuTC+ozn0sXV2IlbsRG7MTUxhkfLu4zJUyudZ4+U8I2D/Cc/4sLsRBXYiVuxEZMupV0K+kq6SrpKukq6SrpKunq1C3BTtyJB3j6y+JCLMSVWIkbMek20m2k20jXSNdI10jXSNdI10jXSNdI10jXSNdJ10nXSddJ10nXSddJ10nXSddJt5NuJ91Oup10O+l20u2k20m3k24n3UG6g3QH6Q7SHaQ7SHeQ7iDdQboDuuXxIC7EQlyJlbgRG7ETd2LSLaRbSLeQbiHdQrqFdAvpFtItpFtIV0hXSFdIV0hXSFdIV0hXSFdIV0i3km4l3Uq6lXQr6VbSraRbSbeSbiVdJV0lXSVdJV0lXSVdileF4lWheFUoXhWKV4XiVaF4VSheFYpXheJVoXhVKF4VileF4lWheFUoXhWKV4XiVaF4VSheFYpXheJVoXhVKF4VileF4lWheFUoXhWKV4XiVaF4VSheFYpXheJVoXhVKF4VileF4lWheFUoXhWKV4XiVaF4VSheFYpXheJVoXhVKF4VileF4lWheFUoXhWKV4XilVC8EopXQvFKKF4JxSuheCUUr4TilVC8EopXQvFKKF4JxSuheCUUr4TilVC8EopXQvFKKF4JxSuheCUUr4TilVC8EopXQvFKKF4JxSuheCUUr4TilVC8khWvavDU1eBGbMRO3IkHeMWryYVYiCsx6a545cFG7MRTtwUP8IpXk6fuCBbiShy614ZPlxmvNPphxqvFTtyJB3jGq8WFWIgrsRKTrpGuka6RrpGuk66TrpOuk66TrpOuk66TrpOuk24n3U66nXQ76XbS7aTbSbeTbifdTrqDdAfpDtIdpDtId5DuIN1BuoN0B3Tr40FciIW4EitxIzZiJ+7EpFtIt5BuId1CuoV0C+kW0i2kW0i3kK6QrpCukK6QrpCukK6QrpCukK6QbiXdSrqVdCvpVtKtpFtJt5JuJd1Kukq6SrpKukq6SrpKukq6SrpKukq6jXQb6TbSbaTbSJfiVaV4VSleVYpXleJVpXhVKV5VileV4lWleFUpXlWKV5XiVaV4VSleVYpXleJVpXhVKV5VileV4lWleFUpXlWKV5XiVaV4VSleVYpXleJVpXhVKV5VileV4lWleFUpXlWKV5XiVaV4VSleVYpXleJVpXhVKV5VileV4pVSvFKKV0rxSileKcUrpXilFK+U4pVSvFKKV0rxSileKcUrpXilFK+U4pVSvFKKV0rxSileKcUrpXilFK+U4pVSvFKKV0rxSileKcUrpXilFK+U4pVSvFKKV0rxSileKcUrpXilFK+U4pVSvFKKV0rxSileKcUrpXilFK+U4pVSvFKKV0rxSileKcUrpXilFK+U4pWueNWCnbgTD/CKV5MLsRBXYiVuxKRrpGuka6TrpLviVQkW4kqsxI3YiJ24Ew/wileTSbeTbifdTrqddDvpdtLtpNtJd5DuIN1BuoN0B+kO0h2kO0h3kO6Abns8iAuxEFdiJW7ERuzEnZh0C+kW0i2kW0i3kG4h3UK6hXQL6RbSFdIV0hXSFdIV0hXSFdIV0hXSFdKtpFtJt5JuJd1KupV0K+lW0q2kW0lXSVdJV0lXSVdJV0lXSVdJV0lXSbeRbiPdRrqNdBvpNtJtpNtIt5FuI10jXSNdI10jXSNdI10jXSNdI10jXSddileN4lWjeNUoXjWKV43iVaN41SheNYpXjeJVo3jVKF41ileN4lWjeNUoXjWKV43iVaN41SheNYpXbcUrD67EStyIjdiJO/FIthWvJhdiIa7ESjx1e7ARO3HoXkl43Wa8mjzj1eJCLMSVWIlD90q96zPncrMTd+IBnvFqcSGeuhZciZW4ERuxE3fiAZ7xanEhJt1KupV0K+lW0q2kW0m3kq6SrpKukq6SrpKukq6SrpKukq6SbiPdRrqNdBvpNtJtpNtIt5FuI91Guka6RrpGuka6RrpGuka6RrpGuka6TrpOuk66TrpOuk66TrpOuk66TrqddDvpdtLtpNtJt5NuJ91Oup10O+kO0h2kO0h3kO4g3UG6g3QH6Q7SHdD1x4O4EAtxJVbiRmzETtyJSbeQbiHdQrqFdAvpFtItpFtIt5BuIV0hXSFdildO8copXjnFK6d45RSvnOKVU7xyildO8copXjnFK6d45RSvnOKVU7xyildO8copXjnFK6d45RSvnOKVU7xyildO8copXjnFK6d45RSvnOKVU7xyildO8copXjnFK6d45RSvnOKVU7xyildO8copXjnFK6d45RSvnOKVU7xyildO8copXjnFK6d45RSvnOKVU7yaubJyndToPuPV5BmvFofudYyk+4xXiytx6F6nQ/rMp91sxE7ciQd4xqvFhViIKzHpDtIdpDvj1XXfRZ95uZtHcp/xanEhFuJKrMSN2IiduBOTbiHdQrqFdAvpFtItpFtIt5BuId1CukK6QrpCukK6QrpCukK6QrpCujNeXddy9D7j1eJCLMSVWIkbsRE7cScmXSVd2qdbucHXobG+coMXG7ETd+IBXvkDkwuxEFdi0jXSNdI10jXSNdJ10nXSddJ10nXSddJ10nXSddJ10u2k20m3k24n3U66nXQ76XbS7aTbSXeQ7iDdQbqDdAfpDtIdpDtId5DugO7KPV5ciIW4EitxIzZiJ+7EpFtIt5BuId1CuoV0C+kW0i2kW0i3kK6QrpCukK6QrpCukK6QrpCukK6QbiXdSrqVdCvpVtKtpFtJt5JuJd1Kukq6SrpKukq6SrpKukq6SrpKukq683nmumqor3zmxUJciZW4ERuxE8946MEDPOPV4qnbgoW4EnvGzJWrvHiAVyyaXIiFeNqcrMSNONpyHfbt85rPzZ04dK+zSH3lOS8uxEJciZW4ERuxE3di0h2kO2PRdb6przzn6xxNX3nOi5W4ERuxE3fisXnMa0I3F2IhnroerMSN2IiduBMP8IxFiwuxEJPujEXXeaUxrwndbMRO3IkHeMaixYVYiEP3Oqs45vWhmxt4xpDrOoexcrwXK3HuGY0H9sjGA3tk44E9svHAHtl4YI9sPLBHNh7YIxsP7JGNB/bIxkNJV0lXSVdJV0m3kW4j3Ua6jXQb6TbSbaTbSLeRbiNdI10jXSNdI13skY0H9sjGA3tk44E9svHAHtl4YI9srFzuEfN8xo0R881zTXWsnO3FnXiA+4O4EM/69+BKrMSN2IideM7nyQMccaNeZ0LHzNneLMSVWIkbsRF78szNrtc50zFzsOt1znTMHOzN044FG7ETd+IBLg/iQizEU9eDlbgRT90e7MSdeIDlQVyIhXjqjmAlDt0SfRLPJJuduBMPcDyTbC7EQjztR9/WaUeDB1innWi7FmIhrsRK3IiN2ImnbvSDDnB7EE/d6JMmxJVYiRuxETtxJw7d67zkmDnVm6d/xdxY8WFyJVbiRmzEc+1i2uzEA+wP4kIsxJVYiRuxEZOuk67P9obf9QdxIRbiSqzEjdiIc69krJzqxQM844lMLsRCXImVuBEbsRPH+F5n8cbMqZ48c6o3F2IhrsRK3IiNeMbPEdyJB3jtoU8uxEKca2Jj5kVXCZ4xZHEhFuJKrMSzzh5sxE7ciQd4xpDFc13rESzElViJG7ERT90e3IkHeD6TXGt0Y+VFLxbi2d7otxlzFjdiI3biTjzAM+Ysjn6uoTVjzuJKrMSN2IiduBMP8Iw5V173mHnOtUY/mBE78bQT9bQB9gdxIRbiSqzEjdiInZh0ZwzRqP+MIYsLsRBXYiVuxEbsxKGr0T99gGcMWVyIp2701Ywhi5V46kZbZgxZ7MSdeCTPPOfNhViIK7ESN+LQjXg485w3d+IBns8wiwuxEFdiJZ72r3g185NrizrMuLFYiaOe4bMzP3mzE3fiAZ5xY3EhFuJKrMSkW6duDXbiTjzA81llcSEW4kqsxFM3+mfGjcVO3ImnbvTVjBuLC3HoerRlxo3FStyIjdiJO/EAz7ixuBCTrk3daKMpcSM2YifuxAM848ziQjztR//MeLLYiJ24Ew/wjCfX5c9j5iFvnu3y4Eo8dXtwI566MRYzniwO3R79M+PJ5BlPrrWRMfOQN4duDz+a8WRx6PZo+4wni0P3utdlzDzkzVM32jjjSfDMQ66xBjLzkDdPXQ+uxFO3BzfiqTuCnTh0Y81h5iEvnvHkuu9lzDzkzaF73fEyZh7y5ty3GisPebERO3EnHuD5PHPd8TJmHvJmIZ660Q8zLi1uxEbsxJ14gGdcWlyIhZh0K+nO+BPv7DOvuMZ78cwrriP6ecaZxZVYiRsx1V+p/kr1V6p/o/o3qn+j+jeqf6P6N+q3RrqNdGc8mW2ccWO20aj+RvWfcWOxE3diqr9T/Z3q71R/p/o71d+p/k71d6q/U7856XbSnXFjtnHGh9nGTvXvVP8ZHybP+LCYxn1Q/QfVf1D9B9V/UP0H1X9Q/QfqP/N+NxdiIa7Elm1sy9+vNraC+rdSiIW4EitxI77s63WH2Jh5vJtz/3Q07NuOhn3b0bBvO2a+rj4mTzsS3IOj/uG/i8N/N5fgaFf47+ZKrMSN2IiduBMPsD6ISVdJV0lXp26MhTZiI3biTjzA7UFciIW4EpNuI9027cfYxXOClhiveE7YXImVuBEbsRN34gEOf988dWuwEFdiJW7ERuzEnXiA+4OYdPvU1eBKrMSN2IiduBMP8HgQF2LSHVM35vBQ4kZsxE7ciUfyzLPdXIhDN9ZkZp7t5tCNdZKZZ6vXnVdj5dn6ZCfuxANcHsSFWIgrsRI3YtItpBvxRGONZebZLo54srkQC3ElVuJGbMROPHUteIBn/FlciIW4gmfcuO6nGjM/drMQV2IlbsRRzxpjN+PG5OnvsYYw81o3G/H8+1GfGQcWD3D87quGzRkfFgtx1DPex2de6+ZGbMRO3IkHeMaHxYVYiEnXSddJd8YHjb6a8WFxJx7gGR8WF2IhrsRK3IhJt5PujA+xfzTzWhfP+LC4EAtxJVbiRmzETky6A7ozr3VzIRbiSqzEjdiInbgTk24h3UK6hXQL6RbSLaRbSLeQ7owPseYz81oXz/iwuBALcSVW4kZsxE48dT04dGNdfea1bi7EQlyJlbgRG7ETd2LSnXGmRZ/MOLNYiCuxEjdiI3biDsY5oOE4BzQc54CG4xzQmHmqGutOM0918wDP+LO4EAtxJVbiRmzEpGuka6TrpOuk66TrpOuk66TrpOukO+NPizkz93BjT3/lqS4uxFPXgiuxEjdiI3biTjzAM/4sLsSkO+NPrAHOPNXNjdiInbgTj+SZp7q5EIdurL/NPNXNShy61wevxsxT3ezEnXiAZ/xZXIiFuBIrMenO+HPdTj9mnurmTjzAM/4sLsRCXImVeOr24E48wDPOxPrezEfdHPbj3Wrmo25W4rB/fRdvzHzUzU7ciQd4xpnFhViIK7ESk66SrpKukq6SbiPdRrqNdBvpNtJtpNtIt5FuI90Zl+L5c+bHbi7EQlyJlXjGwBiXGXM85tKMOYsL8bTZgiuxEjdiI3biTjzA85lncSEm3RlbYq115rhqrK/OHNfNnXiAZ2xZXIiFeL6rRj/P2LK4ERuxE3fikTxzXDdjbWfmsmqsA89c1s1G7MSzXSN4gGcMWVyIhbgSK/FcMwn7xYiduBNjrWbIg7gQC3ElxprPzFld7ZoxZPEArxgymdpVqV2V2lWpXSuGTDZiJ6Z2VWoXrZ0OpXYptUupXWvtdDL1p1J/rjXSaHujdq1YMVmIKzG1q1G7GrWrUbsazZNG88Ronhi1y6hdtKY6jNpl1C6jdhnNE6P+NOrPtXYabXdql9P8d5r/TvPfqV1O7XJqV6d2dZonneZJp3nSqV2d2kVrraNTuzq1q1O7Bs2TQf05qD9x1m8MnPUbA2f9xsxH1djHmfmoweUxE1KzULggXKhcUC40LhgXnAudC1yDwjUoXIPCNShcg8I1KFyDwjUoXIP5mHJtWV2FQYX5oLILhQuzBnUWKheUC40LswY6C86FzoVBhRmGdqFwQbhQuTB12iw4FzoXBhXmo8u1rXYVCheEC5ULs6U+C40LxgXnQufCoMIMTLtQuDB1+iw0LhgXnAszTXMZGFSYCa67ULggXKhcUC40LhgV5rPLmDNkPrzsgnChckG50LgQjRtz7sxQtAudC4MKMxrtQuGCcKFyQbnQuMA1mA85Y06x+ZSzC4MK8zlnzBkyH3R2YdZgzELlwlWDdu2RXIXGBYvC9NMIW1noXBgozEzZLBQuCBcqF5QLjQvGBedC5wLXoHANCtegcA0K16BwDQrXoHANCtegcA0K10C4BsI1EK6BcA2EayBcA+EaCNdAuAbCNahcg8o1qFyDyjWoXIPKNahcg8o1qFyDyjVQroFyDXTWQGahckG50Lgwa6Cz4FzoXBhUaA8uFC4IFyoXlAuNC1yDxjVoXIPGNTCugXENjGtgXAPjGtjUiR+JmYPbHjYLhQvTms9C5YJyoXHBuOBc6FTo03SfBZ4U3Wh8unOhc2FQYcwmjFkoXBAuVC7wtBxcAw5PhcNT4fBUODwJhydZ4UlmQbhQuaBcaKibrPC0Cs6FzjpcAw5PwuFJODwJhyfh8CSFHEOKccG50LkwqG7y4ELhAteAw5NweBIOT8LhSTg8CYcnEZoHssLTKvAoVB6FSvNAVnhaBR4FDk/C4Uk4PAmHJ+HwJByeRLkPlPuAw5NweBLlUVAeBeVRmOGpxI/rTOfNQtSgTJ0ZnnahckG5EDUoOgvGBedC58KgwgxPu1C4IFyYNWizoFwwBIeZAtyKzULnwqDCjGK7wJPPhQs89M5D7zz0zg7o7IDOQ+889J2HvvPQdx76zkPfefpzGJTOk28GuxKhc+b/ZqFwYXbv7LcZ7Mqs9Qx2u9C4YFxwLnQuDBRmJnAWChXmt8uazEKLQp0Fi0KbBedC58Kgwvyy2S4ULggXKheUC40LXIP59d9ms9C5MKgwv0u4C4ULwoXKBeVC44JxgWtQuQaVazA/Adp0FgoXhAuVC8qFxgXjgnOhc2FQoXENGtdgffbTZ2H+m5h8M0c3C4ULwoXKBeVC44JxwbnQqTA/RNjmTJxfItwF4ULlgnKhccG44FzoXBhUmJ8wtMcshGkrs9C4YFwI0zZdZn4GfBcGFeZXDXehcEG4ULmgXGhcMC6Q6MyabTpmYVBhPmDsQuGCcKFyIeJOe8xC44JxwbnQuTCoMB8wdqFwQbhQucA1mA8YrcyCccG5MGswO2Q+YKzCfMDYhVkDnYVZgzYLswY2C7MGfRYaF4wLzoXOhUGF+YBhU3Q+YOyCcKFyQbnQuGBccC50LgwqNK5B4xo0rsF8jLDZB/MxYhecCvO33nwWnAuzBrPZ87d+FeZv/S4ULggXKhdmH8xpOX/rfU6K+Vu/C86FzoVBhflbvwuFC8KFygXlAtegcw0616BzDTrXYHAN5m+9z9k7f9F9ztHBYzp4TAeN6cy1bVZnoXBBuFC5oFxoXJg1WAXnwmzPEh1UmNFlF2Z72ixMazYLzoXZHpmFgQGeubdZKFwQLkwdnwXlQuOCYSLNlN0sdC5wDSrXoHINKtdgRopVmB7sq1C5oFSYbtYfs1C5oFyIJszV8HlJbRacC9GEuQA+76ndhfkcP5e5ZwZtFoQLswZz5OZz/C40LhgXnAudC4MK09HnYvbMpc2CcKFyQbnQuMATabnz7IPlznO0lzuvgnCBp0vn6dJ5uix3XgWeLp2nS6eQNpNos1DgwTONNguVC8qFxgXjgnOhc2GgMFNBm9gsdC4MKsx5LT4LhQvChaio9FlQLjQuTJ2Y1zNZtNXHLAgXwlotsxDW6qz1/DXbhWh2rbPgXOhciPbUmGLzVtUsFC4IFyoXlAuNC8YF50LnAtfAuAbGNTCugXENpjPVNgvOhc6FQYXpTLtQuCBcmDpztKcz7ULjwqzBHO35q7kLnQuzBnO0p5vVOdrTzXZhPkHO0Z5utgvKhaiBznkw3WwXogY658F0M52jPd1sFaab6ezE6Wa7IFwI0zJFp//sQufCQGGmm2ahcEG4ULmgXGhcMC44FzoXuAaFa1C4BoVrULgGhWtQuAbzx1Wie2c+aROZBeFC5cK0VmehccG44FzoXBhUWKFmFaaOzoJyoXHBuDB12ix0LgwqzEfqXShcEC5ULigXGhd4SBoPyYwuq24zuuwCm25surHpGV12gRvXuHGNG2fcOOPGGTfOuAbGNTCugXENjGtgXAPjGjjXwLkGzjWY0UVXgSfFDBtqs8AzsfNM7DwTZ9jYhcYF44Jz4YMoz8TBM3GGjV0QLlQusC8M9oUxlwxCdGaJrkWymSa6lqhmnmgWKheUC40LxgXnQucCrbLNfNEscA0KrXHNlNEsKBcaF4wLzoXOBVrj6vLgQuEC10C4BsI1EFrj6mJccC50LtAaV68PLhQuCBcqF5QLXIPKNVirefFz2JXWuLo2LhgXnAudC7TK1tuDC4ULwoXKBVrjmqmhWXAudC7QGle3BxcKF4QLlQvKhbn29JiFucYVvzIzSzQLhQu0xjUTRbOgXGhcMC44FzoXaJVt5otmoXCBRTt31Vyzm28SMzl0F+aa3S4ULkR75pP3TBDNgnKhccG44FzoXBgozDzRLBQuCBcqF5QLjQvGBefCrEGdhUGFGRxsFeaQ6Cw4FzoXBhVmcNiFOSRtFubQ2yw0LhgXnAudC1MnXHOmhmahcEG4ULmgXGhcmDXos+Bc6FwYVJhL/btQuCBcqFyYomMWjAvOhc6FQYUZQ3ahcEG4ULmgXOAaNK7BDChziWpmkGZhUGEGlF0oXBAuVBo546E3HnrjoZ9hYy4qzXzQMheVZkJoFpwLnQuzonNMZ3DYhcIF4ULlgnKhccG4MGswa70CyioMKqyAsgqFC8KFyoVGfbBiyJw7K1JchfJYkaLNQuGCcKFyYTZuzELjgnEhGherUmUmhmZhkLXCNShcg8I1KFyD+RyyC40LxgXnQucC10CW6H//9z/86S//9i///B9//re//tN//O1f//VP//hf+R/+/U//+D/+60//75//9q9//Y8//eNf//Mvf/mHP/3//vkv/xl/6d//3z//Nf78j3/+2/P/fbbyX//6v59/Pg3+nz//5V8v+u9/wL9+fP5Pr58KX//8GiSYeC7cfDBSPjfSr6TDMPEMVTDg9YMBOdTicSUFzEo8lxM+NXFqyPWKlzaeT9yfNkQ/N6LXe0GYUKqFf+zN9vm/r9fvR/z753YZKtDsdiv00baJ60B5/bQV/rkR0bGbIc91cTLhd008G7IH5Ln5SU0pH/tiHEz0tDDQjF8G9PDvrexp/VzLy39fHx/7spRTZ9o2caUrfG5DTh1xLUiujvD6qY1TX/a2h+O58To+7ctymJgSFzvOIa2VZsXT3z7YOE3OmtUY6NDnb9j9hgxYePTPG3Kw8VzG32PyRNho46OJfhrWK/N3DWuTT00c5pb7HtTOAavpbQtddzOeLyefW7jbDP+8GafO9Mf2sSeOz0xc6wGfx4pre2XFCi2fmtB3u0IOM1Me+QMiz/ifNlQ+mrBDJWwH/+c7y+eV8NMPiFmjHyFUo0q/35RSPZvSyqdNOUwtQeB8fGrg7GPDclrQT8gvY1rL+2HvZENFdkNU7PPfkFqPIVzSSag3pJSPNg7zs/U9IvZoZOHxjamByBevL59OjXqYoiOOl8zHpEY1qe0XG6efdn+kpzwXyNPGd0bFt8M/n3b881E5zNDS8ZDyfNkmG788aZ2edJ57c4h/2vjn5ONjipb354fKu/Pj3BZ7WFbjue32eVtOv/GxyrFCBz0nXE+BH2y0t+eH/UQYPFu56zHa3/cYHe/2yHl0h+I5cvCz0y+j204RNRYYZkR9vrHS6P5iQ06/DLqnmXSOyv6xP9ohorZH3wPTCnnMbzZO9RhW8yfqcajHYaY+d5B3PZ67xP6pjePIPH+lcpZZ5R/+X3v1EFNNcoZYFfvcxmGmannsiKhF5CUbrUjNkRF9rS21bhvPN7jP+8PK6fFBRz6i24s23PFk6vKajY6n2+cu1ecx9ThD/JGrAvZ87P+8Ju0P/YXwki+BzzBfP48hdnoOef7w1lysee5jfBLNrP+h8fC5g5nx8Lnl+PnI+OMP7dOuudzy5PH5E4SfYllcZ7zerAfX5OOrg9d3+/RYC83VDlF9fFqL41OZ5xpBef5yfvpU5offbYlMmfU6+MFvf7FxmKXa891B+wcbdttG06xHU1o++s3GeP/ZsL89S8892nNumJTXRsUqbBxGpR/mqD56jkr58ISq36hHx+++tM/rcYil83qJtcD5YZZ+rEe300pW/lLWyiu9v9o41UMpIJeDjVMsjc/47MUTe6lP6wMrrc993ZfmR33kUtKzRv6pjXF6kxqSE6RcX2T4LIqd6hG7/2tcDnN9nGLpw7GA8uF38uMCyDi8SbllU9w/vFnet9EtVy+6tfK5DXs/Ag3/IyPQ85HQc1TcX5thNd/Eqsr41EZ5PN7cETjWQvNFrBqvgv9Wi9NeE70z1MoDW79hZGjO0gdvmv1mRE8vlp69euXJI7DX3xp0iGTDd3sGPd/W+rjvcy2ftJ8/NZ/P9fLwY5fkj9SDAuqv69mPQ0CtuQ6sj89XccvjtG3UcmTMHo9P1x1KOW4mDhEsX0j9dOnhOEueT3X5bNnGYZacdqCaym5Qa7TI/9vWT6nvD85pD+rm4Jy2oO4Pjv3I4BwXyZvhLffTjY/Tcy62stStfb4ddtpHej5HZVB8bh187npHI/LICC9VPjci5f1tNZG399VOJm5urN1uyWFn7XaXan1xXIpmPoAcniHKcfPh9i52f38/59ycOEC2jJyaUx+nKZLvEE/Uz8PZ0UiX3bFPG4eYWOX9CX/an7o54U8mbk74+v7+aalvb6CW0+bUc7rnJHv2KCaZlRdH5eC85+mR69Pex4tzrJeBseWX7l+NHPenmuYTntNK+a9ZF2e/G7mw81zjPvxGaH1/tp92qG7Odn07WeB+S14N7yPfRfTxsEOX/kAiir6fiaLvp6Jo/6O7tOH58NFf+8XUR8lVqocexqWdNvxv5hi19v7YNnt7bE8mbo7t7ZYcxvbco+8+LLdH7pA/d3IPuWOnHSGTarm7VQ8h2Q4/MKPQxvTj04h8ejt8bhhml4o4xnb8EtVN30+iKKedqbtr/mcjTQSPmFI/33osp92pKgOrf0U/WT88m6h4wuSF3V9NnCJIyVqolM9NnPvjZmpKnLP5fFcIK5nPR93PauI/kN5STrtT91YQjyYs19tNxosmMpIZxfXfTRwfph4V01QOvXHsUvhuo7WD34309xfLv5hmd7OGymmL6m7aUOnl3R3Mcz0kd9rlyYd6nIy0nCbyXO363Mi5Y90V66qPdujY9nY8O5q4F8+6/8Hx7EN/8KGC3+L70czdPKgyHse3RGxWNaUhftlI/wEjVl81ci+vq5w2m67fh3S//nkyVBmH8VHJ128V6pPfjdhx3Svf4dmLv2mkFqxH2qtGsGQl1X/AiMrByGl0bqa7yeP07PrIeWKPUV4cYnrHGuPx6jwZmatWi73YJzdTEeW0c8W5iI9hr3Vsi+9qTyOcAvi90bmZjXi7OafUyvvxpH8elOS0f3X3QMXp9NRzA7FgM98OFTltCLTMA/TGK3G/dOtp76rWjh9RXpv8tR5HF6ZDFZxL+KuN0+/fdUvj/v27blf6vDXHbs1X6Q+78b9369HIwNiMwy/X8ffcSs6S5xvz4TFJjmepsNbqny89f1GRtHFV5PP3LTlt+wzPB/tHoYdpL9+pyt2MYpHj+9K9lGI5nau6m1N8NHI3qfhcE80zwk/sL9akZs+2j2ko3+nYm/nNcjpgdTfB+WzkZobz2cjNFOcvmoOfHev2ohEkCLTR2otvCM9VuTxMbqqvm8H6y3Os/FUzd3O/pb6dgHU0cW/55Gzi3vLJea3wbg66HLe0biahy+nM1b31hq/qgTT05yNV+dSInhaDc41+lE9f0M8mEOuHSH/pBd1rZhs82ceLE95pqd9bGYcB7u+ue5xN3Fr3kPb4Y9c9PvaHvNGt2MRt9dWo5ljberI9Ph+d01bMzdE5mrg5OvYHj86H/vDH66PjZKa8aubuoRaxt88LHE3c/LE4mviBH4vnMmFeydLL6UHY9N09kKOJZ4TGQ4Vbe7xmxOm3z628aITmiPfXYn0XvKf0+nI0uX34Sfzxh5t5PlpmAnF98EutvmikyItGbh7nEte3n06O9bh5oOtspCku8rHympHneGT20OPDgtKvm+b6/j6znA5k3T1cJqcdoruZjEcjd4+oHY200jLNRHp50UjNhJdWxQ9G3n8m6O8/E/S3nwm+6I1c/Gxa2qE3+mmlvSp+hMfByPH1Pn+Fy+PThb5zNXKZ3cqHFLPvtKVkKtNzkay8aiS3vO358vaykZ5GDicyz+N781innPYvfsTI3cwKef9s1tHEzae98fbSwLk3bmZWfNGl9zIr6vlg1b3Mii9+aO6duT0buXnYtT5+4LRrffzAcdejEX3kWQR9HM7/1sfbSwNnE7d+aGp5e2ngOLh3T92ejdw8WHk2cvNM49kILoKr/uqEr0jyfBr5vCa1nI+83jqtUov/wDPeeXTuHVmt5d1LLI8W7l1jWeUH7rGs8gMXWdbTNmop+UxTOJ3i1wON9bQRdLNPT9W4eYT3bMRwQ1W3x4tGbp4DrvID2YRnI82wDvbh2r9fDxN/YcYrkhKdL+76rpkGM7RX/l0zN09I19MRq3snpI8mru8j5u4yPYj/ZuTcnF6oOfXlzu2Oh9dOh+i+aWbQUA9aWPu9c/94M8+nxFy4KfU0SicjSDwT4Zp8y0i19OnaD0bOF/YiA0fLIUSdTjrdvEy06o/coFnffz/4oiY33w/UfyBWHgfn5rn8ejp2dfdcfm3Hu7TyOfTayEgjv17V2t4/uF3b2we3jybuHVW63xI/tOTUo8j0KmN8fvntaXfrGdE0kyFsvFiPWzcu1Pb2dRi1nR4/R25ZPPFwce3JiONUnnNbvmXE3JBiSevQ3zPSs1ftQ9rpt4zcvIWiHlfEb99C8ZUZviiVk2C/ZeZaXchkCKWkpu+ayRutLpOHS4rPQ52XWphz1vX35ksGeuuPwzW053s58UGHevCgcy5t7uSUR38pGHx4uKHntV9tnA5Q3QwGfnxbyfu5nju6FAx+OaB/rMfdLj0ObT6/PkdZXnTA8qjIQ3roqw5YcGlZub5m87IZnKEsH24/+NXMF8/kD/wEDkrh+e1h+nSc6+Y63dHEvXW6Xv9QE/eW+r56W0KEbfzdivqt1bGbd+zV/hNPrycjN1eU+viBFaXxEzuxx269eWVgRL/PQ/S9OwPr6RI0bzlN3Iq9aOTmzYNHI73k80mvH3K2v2OkZfJrb1IPRt4+0v1FPfL9s7fD5SV1jPfrMd4NRno6JHQzGB174+atkvr4o43c/nLC4wcuxm7vboCeTdzaAD33xs0Fji+69N4Chx6vHrz7E3EMiDcvdNTT2a2baxNa3r91SMvbtw4dTdxbm7jfEj+0RN5em9DTZ6Nurk18UY9baxMqj3dfR/S0r3V3beJo5O7axLkmN9cmzkZurk2cjdxcm1D5kRsyvzJzc23ibOb22sRXZm6uTXwx1PfWJr4wcm9t4uhB916kj458c23ibOPe2oSeLiC8GQyOXwy6uTZxrMfNLj0P7b21iS/m6t21iS/M3F2b+MrMzbWJ82NWHvuyD5dlfOtJLRMRTT818UVa1r1vIejpM1l3P4ZwNHLvPVz1B+52Vf2Bu13POWaS3Vql1U975GzEcd/t+HCe/FuJajfH5viFqns7p0cbt9+Qjkbuvlica3LzxaLZD7xYPH7gqxna+h9s5O63N85GLLNUhD919z0jLQPjMyLp50ZMfiASWH0/EnzRJ/mSIv449MkXd0U9aNGVUvntW0Y+ZJbop0b8bETJSH/FyL2Vny8bc6sexwNByKqqjw9XQvxyIOiYL37rd/yLlPN7v+PHs00dORgfrq37zgEpw5ExG/VFIz1vG5DxaK8ZeQ6HY2ROzTn9kt88qnU0YrhX9Pka+ulBx6MJOK8N8ddM5KOAjfa5ifNkzwjvLx+h+2BEXzUiMFI/Hxd9/5CWvn9IS8+fznrbxN30+2OH2t89FvzNUaEfqvFqBOGavGyk5wPNE182gkW5o5Hjye97sf18ePxWbD9fiZHv4c+FqBdv1chMzid+egqovv87V9//nTvfE1TytJrry/cE5QvAh7ThbxrBRXl9vHpPUG+oib96dxIuD3zae/nGopxkbcjrfTJg5MU7tp6vXbns1Lz+hJEX79h6vkTkRV3WXr3ty/L0nPpxsp2MOD4z39vnRtrpmjtv+SjjvOfya+JGO61vastp/+we/XTt66ua5C13rZ9qcv4uAe4do82w+p165EdJnE+L/V6P03cJaj4Tee3lYOSUGoCbSClZQn5ZJT3PkY5l43G4/6Udrx+8O0eOS/G358j4gTlyOqZ1d46MH5gjp7G5PUek/aFzpD0yH649Th9nP31Cq0nHTQ38y/frJ+/7cd8I+wJ8kvdbjTF8BKN//kPRTt8lutuYWv7gxpSWjxOlvfir17CK98v1F98xIqiJtJ8wYuVVIx23eTwerxrJ42pPey93bG75tJdvIG0VH9KpevgsyPm7AHlyTnhn4dcr/Zu+ndB6NnHrzbdp/UNN3Lw47dihFbcCVX8cOvR0xOXO/Sbnaihev/niqN+r0d8PZjreDmZffHci09Ce2D5tzBdGMoRIs34wcjqbdvcLGCcj99YAzyZurQF+YeLOGuD5qzG33uG/+PDMnXf4Lz5/5fj8VX/xE1q4ouGJn+ZtNTu6XH6cQbTo5zbePy3Y7O3TgkcT9zLy7rfE5bUexf0sws+o37LRBG5f6+c2Tk+oo2Exw8aLNm5lBn4xwzrioH76obfmj7dnx8nEzdnh72cAtFPoEPpowMHCOUHrzocYmh/eou59mbX54dfeSmZ3WNHPk6u+YcReNKJ5LMGUFtx+NzLeHpdjW/C9j9JfbYvkFDN+sv2mkXQXk/Hq0FT8yPFNRL8Z6efDn7hW4smfZ7CezTxfcpE1ylkV3zRDF5E8+MbW75rBRy4enU9/fc9M51TYdqrNYeIOzU3v0R6f5+G1cdyyunM76bkenvsJw00+r8d9I+NVIzk8T2yvGSmPB025Rz+ZOZ/FdsrapAes784Vyr7uVV42UwqZObjj/V/0T1OE23j7Ey/nJ+hck/xwN9EvtbDj8aub3wY+G3kuy2wjVfrBSD0mFTQkFRxao28/h9spG+/ek9bRxL0nrdhWevMZx063At57xrHH8STpva/P3x8VP4zKcXYY4vPnCfVHG9enBLMxw1+18XjbBl3WVummnO/ZMKzd9c9tFHv7/egLG7fej85tUUwytf6+jRfnWJW87K1q/3xsj9cK0nOay8nrThXxhpsn7fNQePqo093BPdv4gcH1grYcHPd8ZsrpxEZ7tVPzmsXaD7NM3r47yE7JEXeP5Bzrce9Izhe/2bnsrnXoiz/8qqhIqa8ayRmienp6qOeT17dSve144upmqve5OaP23ML78PmxX5vjP9Gc/gc3p5U00ooemqOPN591z9XQnK6tjcNz6ukDWXFkb20TUS7gw38xUd99TzzXIl/B2Xl/r0U7vlTRZ7oe9Hxo3zHScZ7u+X73eM3IaHihGp9+A+bcI04f4D30yPhDTVyrGnjh7eXzTh0/0anjJzp1/MAcObqd0RNAH68FeENSgxXvrxrJhzP7uG3+HSOaDxL24XrJbxmp2Ob9+GmsX4y0H7gsyOzxBwd4azh2beXQnONJq5tHk4418VryZ6LqqSb6/jLC8VjRzWUEs7eXEU4mbi4jWH9/GcHG28sIx4M8d5cRbo/K4RXvPDvuLSOcbNxdRvjCxuNtGzffEv3u63t7rU/vLmecbdxbzvDx/hvv2ca9N95jWzSzK6vKp9u9kRD+x9bj3rLKbRsv+tzdZZXT8ajbyyr+A+tdbn/wwNxcEjntV91eEjlX5N6SyOlWrJtLIqf7224viQx5e0nki4eYW0ejY9vlZOTOkeSjkXsJjV825l49TlmAlpcM+cMOL//tsJaRb2a0h671Wy8yg3YQH+2lt6GCnPcny2dvQ/54O1X1aOLmyH7xyn2zP9pP9Ie//4p5NHKvR8773SPPRIwPd559a9N85Frm08hh+/74ubb7m+YnM/dSTc8mbqWafmHiTqrpFzk0maBp9fFyShA++sgfwv3VSDmd8PCRiVbOjfn1yxJfGMnHdh/jcyN+Okp08wpIP52tuvmG6sdL/m69oR5N3HtD9dMe0803VD8dqbj3hurHU1U331Dvj8rnT8vn2XHvOkuX96+z/KIet66z9Pr2dZZef+ASyWM97j0bHrvj5qWAZxv3LgX09y8F9J+4FNDfvxTwGEx7yQvGe+EjWb9G5FN69r1DBMcAdC//3/X9/H/Xt/P/jyZuhuPbLfHXOvRe+v/RxL3sf9f3s/+/sHErkMrbFy2fDtreTyE+Wrmd+vuFlZuZv6cIdDdT9r6N8aKNe3myx2h6+4n/3K93s2Sr/cRMObfobo7s2cqPtOj2rP3Cys1ZezpWeXfW3rcxXrRxb9aebNyftV/MlJtJ2ecf4FvJ1G7vJlPXYx50bhvq48NJ9Y9HGt3fPlB9NnFvicnf/7zPqRLDCp4y7dAZ7f0dbj+9+t++hvf9jwzU06HbW9/TOFq49TmN+hOfC/2Bj2l4P37o4N6dt3r8RGeu2D1fND//VPzRxrMXHtSaz69S8N7edtqjiXtO29+/DLWctrb9717/94sFeXeWHy3c+2hMeX+Wn99hbs7y86bUzVl+/F5xnsuUJ1NF6n0bN68uOHuKO/aC+odLxH/xlPc/XHU2cc9TTntSNz3lfneUw51B5bhiiDSQxpcgvGqjv2/jw30Ov17mdIwdOVGdhuW5Pf3BRj+delLJJVQVaszvRo5X5udqTGWX+aaRvOfyifaqETx6SPUfMMIfRvnFSDttwzxy08EefJj5W4ODLbLn49Dj1RHOjRit5fN+baczJY88JN4ew17qkVZx6WYdnw/N2W0oA6t/7jb9dPrp5uZFP975hy2yypdK/V6Rw/ucN99GvPFpjl9Gtxw/5tcRm3kf5Zd6nHZAZNAtAnz44Vcb5bg1rVjFeL6nft6aY7e29Dw+vf97tx6NDEpt+3ySHH9trGDxweTw49tPG1S33nC/qEeauOrRD/Xw4+pDvvHTl3SL/3opwiGMaMkLVbV8Xo+TjVZz/aLVw5W5dkxuRyiybq/ZwDbZteD8qY3zyGjeefFkfdlK+u+Tx6FP3v5ypL394cjj1yVKp7SS8fgs/6GfTlCNkgvvo3z6pHk2IXnWZ4j0l15za94d/GQfr42s0wqGt/K5lf7+dX/9/ev++vt39X2jO+T1Tu2wUl90Osfr2ZPtcRgaf39o/P2h+WPfrD52x+H64a+GxsnK5/eGns4c3ItkRws3P4F7aMnz5TK3Uno5xOR+et69t7RzNPGMhviNcfv0XNoXRpw+MuWfnkv7ygii+5Nfiqtd8Bjy3KE6LGicFjK7Wq4DdL5u8ztWRPC5HM5O+/UTE7dtFHnNRsMNps3KSzbufivH/f0l+5ON9lwG3E9V0tn/v2GjFlwb/OEW5F8m6+n81M3AfDRxLzD7493AfO6MfNttyscFfu2M0+ywR2ZD2OPDRwR/NXJ6/79zR+4X1UA6aPnwLbXvtKXkLczP96LyqpFcaL7uvnvZSJ5JLaN+PtdPx5YUF9zrwUZ/+/eyv/17eWrH3dX/o42bq/+9/8Dq//GTTo9Mn9bH4Zub/f3dqf7+7lR/f3fquJGLm3qrf/iwTLtvw7Ck41I/tdGPB6dubkvHd33e/Y0rj5O73PrUbR/1JxqjP9GY07NUyaBc5MM1IfWXmpwGGIuHFMS8fqMahisc+oe3sV+N6PvOfzbSDC8xH67n+/VrH1+YoQSo5q28bgbn853WVH83czzeorjcgpOx6uM7demZB10+fHnrm03qSHZrnfKpv2nm46G/x6dmxsP+cDMfUsR55+qXDj4bwfaXCNfkW0YqvuHHJ7J/H+rze03uj+iHuyU+uuM4fZ7p5qXTRxt3Pzt9NnLz6eSLmtx7PIkPsb0doUo9LrPcOYc0yvGeqluJ7+O4d3UrQ/po4l7i+/2WfJ4ldu7Re2d3hrx/8r+U48G9XGGxD+chf8nKPBpx3AzrfADoW0buHt85G8FHPK37ycg5H5kvm+ad5/YdM0UVB+/V/GUz+Y2my2Q7mDl2b56TMP4O5jfHCBcA9YcdjJw+O3fvPFA5nwS8c8TqbOPeEavx/hGr8RNHrMYPHLE6D63jKz5dXvSc8qiUyU93Kn1zypdGV1b4yw5YkPVZPhzV/NXMF499OP/eBu2p/fa8pvXd1/Px/vevhrY/1MTNT2h98UA+6A4wPmXxa5eWd9+Kh/7A3Wqj/cDdaqc3a2/ZIc/Nks8vrTzZ6EXzlGQVfc1GyzzU3uTza1pH0/en+qka+RDe24ecjV+rYW9Xo739ufZxTGG55S6ntY5u+dPdrX1+2d0pm/beku3Rwq0l2/N9NzdfiuwH3onsR1Zt/P13IrP334lOKTA334lOJm6+E91uyeGd6NijN9+JvLz/TnT6ksHtd6KTkdvvRMea3H0nOhq5/U70+Jl3osfPvBM9fuSd6Ny9N9+JzkZuvhM93r6lvXzxGZBb70RHGzffiU7fzbn5TtTbD7wT9fdfM89De/ed6PEz70SPn3knevzEO9HxWeDWZ0HPTxN3vgp62ne9+fQ/9Aee/scPfAmgn0+hZDKNfPiWt9634bmHXMeH1PH7NvSRsezpPp/vQ48x3l+EH+MHFuHHD6QIfFGTew+cz/3bn0gSOB3EV8qoK35IEjiMjeHKa/404LdstPR+ef5sfmrj2SM/8NmK68qBH3C+Y5/gQ9r+sEN7joH15rXmx5sF1HDa4cPt979upJXjCb1b15o/jdw9Cd8Oz/Pl7QttzjbuvZuUxw+cvXoaOb0k3bo57mnjNF1vXh33jbE5vWudZ8mt683PRm7eb/6lkcf7Ru7dcP7cgtabL4/txY69ecf5V0ZuXXL+bM7711p9ZeTmC/WxOffuOX8+KT/+8Jrcuun8G0ZedcCbd52Xx+mukLuXnX817+9OFP2jh+fefefPTjneWHTvwvOvqnLrxvPnG93b11o+bZT334bPNbn7OvzFM86tW8/LQ79Io7pz3fjZyt1dqK/ac7Mmfut5qz5EPn+mfrz7Qn3OqL7zQn0+FZIfx34ibxJ842SJ4XSKjfqajZ6HU4VfZL93OkUcY/J5W/rpeOrdIy5HI/fu5z6buHU/9xcm7tzP7ee3CsVbxeO1kf1gQ1+0IbBRPx+UK+n03a3BL2zc2ht82qh/rI2bGffnd4G/e2jwe+NCb9HjxejB9XjVRs9nmSe+agMXWh9tvB3R/e2I/sWx9PzVHyIvnmzPDOEnfrZudYw9t3rifE/AnZ443r0Qt23Ph1P/cObgG/c39FwJ/JCK/j0buI6mjxfvkegN9Xj1PouebzBPc6/eZ1Hw1iAv98eAjc/H5Zhg0fIdSJvXH7Dx2j0jzwXNXL2zpi/a6PnC4Ic5drTheW5Se/vcxnOT8HhNUD63OC8y/X5i4vSlFG0535/do4dt2i/qkjfatH6qyzh/oDTnmtHqTv1WTUbu6ls9HdQ5ncV6Prdk39Z+OtRyPIyFa7ooYUyk358pHa+n43ADw/Vh2Z+YKacNwfsz5Yu63J0p4/2Zcq7JzZlSzt85vTlTjmdr3p8pDZ+AavwFqN9myjHts0nHWX3+9fttA/ucyI5Neb4P9jutsfz14xe7v9Ma/4nW9D+2Nfhm8hNf+/1rNfNpfrkB4Rs2BPWQ9gM2rLxoo+M2h8fjRRuezzbSX+3TzLRo9eAzZxsVNvTzZ4rz1bJ5ElM4ueDXa2FLKW9fb/GFjXtvu+V0beBP2Lh5e9GpTytuUKn+OPSpvHvBxbEaipduvpTm71Sj/UAgE3s7kJ3vLxbc7i/t09acbTR8DsY+7xE//XbfvUj5aOTewt/ZxK2Fvy9M3Fn4O17Ufev1/XzV953X9+OV+LfqcL5U/04djt/SuPnlyLONex+O9OOdh7c/yHE0c3N+Hk3cm59nE3fm5/l7OLe/LHK28gNfsrk7R842bs6R9jNzpL0/R9r7c6S9PUdOVw0XZEQVjue/DO3ZRG47FI4g3zGBvTF5jE9NPLesj+9QAw+3r9rIzAOj7fHvNIWvjaDl1O+YsHzo+LhT+A0TnkcsnltBrw2rZBbic338NRM1s0yfvVJeqwV2POvjpe5UxXd4PlxPOO5aKLjm7Llz3V+pRCnI2uVLzr5jouIqnDpeq0Wjb72ov2bCkGHXx2sNwaHhKq81pGbcewaw1xpiyLI1f60WWE4uPl6anIUOUPMq/zdMeO7IudorBuhXtb3WDw96zLB2CL2ni8ne99ORuwxDXusJwzfh2ptd+ZqBajXXEkw///zH0YRR4nd530R7zQRyPe3wMZSTCUcuoTd5yUTPk1+VN+K+VYtMmfuQd/eyidcGtT+Qclcer5nIpfva9bVB7XlE8YnjxVrkvOj24qBm2H3iS7V4PnAaHjjtJRMfHvTqpyZKOR2RKoIfMqHuKN95TsvHbzF/rSmZzynVHq+ZwLeP5DUvuZ7v8LRYXzTxgAl924TUF7sTz6zSX6tFRV+08XYtXhzUm4dD5HG8ouHW4RA57SfdPRxyegtIh2/8JvLLKtc9A/KSgdbz1fJD6uZtA/cuqnj7auG3M7feTtw6jYJhf8LL58tIxzeYniHX6JXy1zsZj+8O+XpdjDK/vmOiN3zToL1Wi5Ef4JPHo7xiQh7YV/hw/vobtcA3lcqHk+DfMYGPiPTyUkOur93k+/V4rRb4TFVRTrP4hgk13MlK60e/Xfcp8oe+CD3fiXNMqr/WG5q3HRU+l/Rqh75ownHAw51Pbv9ywEPq8aOueLJwesm2+56GDxANtU+rcTShdFSlvmTCOz73++ErKL91xg98Ufpp5Qc+KX18Bu94BpfHqTmnE03mWEF5vu5+emHRV1byvbsY3+z8q5XTQaLngy8dd6mHFukx8dOQ+ElxaNg3jBjc17S+agRfuzGjoPq7EX33sefLijxQkXqoyPGOLVy73Shh5Lkw8C0rne7LricrpwY5etb9NDzHT01KTrfKH5h/+HesaF5sU5uerJw+BHo70/HYLY7Y9OGTZL91SzseHMmjSfwRwF+H57gL5PlOfV2zDiP6W0XOh6QQDjh5RL/jhI6MnOeTVjn0yfFGNqzQOn+kUcevVo7JgduBGh1z+js2fmTSth+ZtPbHT1qsdD5d2T8foONJJcsZp/yZg7/ToOOtPbj7S+lH7LfYdDpSIgOnex+01Cjj118xO958j407ffCbxW8NOu5v37xv7ou65PKB6IfH4d/qMo6z5V4CtZyOLrWWJydb4xZ9Y4Se61K5AMpZab+P0OkoV8NnKNqDL6u5/QSn/sDLeB2vPNMqniOVnef3Ryb/kWda/4Fn2i8fJfGcYZ9/3q/Eiun7D6T+9gWr54fa+yN0fDRuD3xX78MJoF+t9OO3BvF+3cfh5MAXVnAd0dCjFf2JcHC6z6+1Ry4rNtq0rN+xce9MxhetuXkmQ45ngO6eyZDTyah7ZzLO8+25Ypwbf/I4vVyezkU9nzORiUOPGb+3Z8hPzJTTyai7M+X42pEHxI2SiP/Oq4u+uwr9hY1bC9FfvIjh6ufy4ZrD773OsRWKbr9bOZ6KupkmXo9fMruXJv5Vexzt8fpqr9Dnspy/ffS6Fd7q/dVK/YmTUfUHTkZ9oz3+8gKCC5Y068sj1LEi2Xlt9XUrp7rU010xt0eolD96hHpDe3jb9Hu9MvCyPPjzYa9b4Uye3/u2/UTf2h/dt9weezkmDLyhfvheyLesyAO/y4/zUt7dpYheX1/5uvnrfrZy8/mryk+cnq7y9unp84LTwL3OaIzWbyw2FdzH+twfrD+x3HQcY/uRMbYfGePTXX/3x/i0JXZ7jE/LgVgk5V3KX8en1tO6F5ZmtPKNHb+vtJ6+XJcvdHyL/9+pSfuBZ/1af+KUfT3dLHPzWf9s495b4RetuTtj9UdmrP7BM3bkw/6gLKLf58npS1OtYAFPKOvimzO24xOw/EnP36tymrKPTteJj1PH/siU1R+YsvoDU1Z/ZMq2H5myrfyxP6S3fwbraU/subKQeT58cu7vWDldLPkYuAOfr4r6deof61Lx8FY/3EH6e13sJ8L1qXfvz/3jD+HNuX/+Mb0398+tuTv37ScuVqn29sUqX8yUkkdb6vNt4TBTTptiikszddT66qyVktdmih/rYj8Rse1HZq39wKy1H5i19iOz1n9k1vr7s/a8CVtzw6TwBRi/vff7adLmF9SUEm+u47X3bbRMzOTN7W/acM9ECHvRhj3yU1J8l8fLNtqrNrI/7OX+sOwPe7k/PNviL/cH23i1P5C46y/3h2d/+Mv90bMt/eX+YBuv9kfPtNvuL9cjU356f7UeI0+gjJf7g228XI+OGxsO8+OYwHH7W3/nNJCmSESk3bzfrNTjh2RLDo4Ln8v53crpG7/4EA3nmcv4Tnvufl3vCys3P4F4tnL3G4hfpLXc25082sDW4hP1RRv39sLPiT43H0j08RNrsfp4fy1WT5tft2/X0NM5rpu3a5xt3Lpd44vW3Lxg4wsrNy/I+CIR65GPaVX4dopfE7G0/MTqsp4+ynHTA8827nnPF6256z2nfa/73nPa+Lr9OH9MtsPnk2S00xgfP2+VO63Pt1r+Rf7VyOmDe/xdZUoJ+/VuTpXjEbzMAeEbMb9lIhNejU6zf9NEJno/Pq/FF/mLubXTHh8ePn+tx+k9q2Wyq/Iy0htGxqdGbid18t2cv8+z42Vdih19rf3QntPNq4/8Op0V/pzib0ZOk5U/yljao/+IGV4rt2+9lOPynHNm9GmzarTcjH/QyZzfNhP1tOWF561ON9f8lous9d5r+SifP4Rqff9B9lyPvDDl6QInG/4Tof6Udnv3QamOn3hQ0sf7D0pHGzcflI6tuXl11hdW7j8onTbNHvXvx+rfPOe031XzLVCpPb+6sOoxxzs/ZsBHDq1+pzHlgRuh67ExP3Fzv+r797F/UZO7T2ztJxZgtf3AAuztY5h6OIapp82u0vEBtE5JU79dfnFM2r35OnpOH749PD8SZVv/Y4fn4+kVOQyPPX5gJ0V/JLFH7QdevewHXr1+JMFI7Udevcz+4JlSs19r/fC5lu8cPVG8pD8XJ47zbfzRVu7dGvuFjVvXxn5l4869sV8sody83fOr5ZybTylfLPvho03WyotLh/jUK99OU7+1JOvItO2vL+zmzQjP92Q7WDkePy55e9PTkQ6HmPX08cxsDyXn/ZbHec7J7n//zNY3M9U7rssZL+fed8dvuvdXreA6kSf6q1ZsILHn8XJdDL3LVzR880zP29cySV4Rrh9+06v+Otfurm/p599J1nG8uIY+AX/4UrmeDn55LoB0ujzjt0vLjjZ6HnLq/LmW323cbczhc9rnbh3wnTHqoUdOBxFufsP6i5rg65G8G/h7TU6Xwd37cLSO0wrX3XPlRyu3NzfPdbm7jXe2cncb72zl7kZrO219lQedFXky1aZ90w5i5JPtVTvz/XetISpfkvldOzi9ci1VfG7nixG/uf37hZWbTwlHb7r58fOjWz/XyjIXszz6a7FBSl7pIeXwfft2/DL9vdjQymmU735U/liTu/16HuGbT5NfzNpHxWmcD7f8fXP2F3TMdZX363ZwC335cJ3n/Usc771yHw00GOB1+NsGbr0uvJ2qcGxCXmTZPmwD3Ddw5y6S03XnmenIL6K/PnueDOQg8Fvodwzk4+/o4xUD5VHwU1X0JROSXx2+EkveNnF4MTnetpgpcIVfx181IY/XTDR8mOFw/vw4IjkpyuNwbPxoIl9org/Ev23CX6wFnl7Kw180gVD5eG1eIIn+GWztbRPWXjOB91S+j+N7JipMvDbB8dH3IvJSQ+4lqb29VHVa+dYHbrMqhwcl9fffkttx4+jeW/LRxs235PuN+fwt+Xjfel6UJLxe/Q0LTfB1xfr5S3Y7HTL58JJ9GpWzETyYnN7U79fkcyPHadrxyUoth2r4+zPsZOPuDGvnN5xbN+G305bVzZvw22mL5/qmPL0St8PSRTttNw3Fg1N7HF5k22kn/N7Fyl90bam0kVcOXXvaRcDHZh4nE+X4I+f4ldPTEspXI3Tzc4lf2RlOr238aPpNO0bfOzSzl+3Q9TcPvtfu23YGfZTy0V+dwZ55NuPD7ULtdSvjZSsDH44a7UUr979M+eUMvPnZz9vh+/M1nXa6f5BPGJ2C5qlrb3439Csr974c+myO/cwA+dvfP/7Cxr1d4C9sfLoL/D+fhX/+lz//7Z/+8m//8s//8ed/++u/P//df1+m/vbnf/5ff/nXVfw///nXf6H/9z/+//9v/z//629//stf/vx//+n//e3f/uVf//d//u1fL0vX//enx/qf/9Efz1+P/hD5n//wp/IsP6PTs03XO9/1X+rzvzxfO1r8v9df92e3/cPTRx/Xf5h/vz78H67/Hf/zv68q/38="
4215
+ "debug_symbols": "tf3djiW/ceUN34uOdZAMBiNI38pgYMgezUCAIBuy/QIvDN/7szOYjLWqWpuVtXf1ifrHv7pj8StiJ8lI5n//4f/8+V/+6//981/+9n//7T/+8E//67//8C9//8tf//qX//fPf/23f/3Tf/7l3/72+K///Yfj/J9S5Q//VP/4+LP+4Z/s/FP/8E96/tmuP+360//wT/38s19/jvmnHtef5fpTrj/r9adef7brT7v+vOzpZU8ve+2y1y577bLXLnvtstcue+2y1y577bLXLnt22bPLnl327LJnlz277Nllzy57dtmzy55f9vyy55c9v+z5Zc8ve37Z88ueX/b8stcve/2y1y97/bLXL3v9stcve/2y1y97/bI3Lnvjsjcue+OyNy5747I3Lnvjsjcue+Nhrxx//IMcx4KyQBY8bJZ6gi5oCx5mi53wsCvxl/uCcUE5FpQFsuBhWcoJuqAtsAW+oC8YF8ixoCyQBcuynJblhLbAFjwsl35CXzAuqKflgLJAFtQFuqAtsAW+oC8YF+iyrMuyLsunL9WzW05nmtAW2AJf0BeMC06XmlAWyIJluS3LbVluy3Jbltuy3JZlW5ZtWbZl2ZZlW5ZtWbZl2ZZlW5ZPL6vnEJxuNqEskAV1gS5oC2yBL+gLluW+LPdluS/LfVnuy3Jflvuy3Jflviz3ZXksy2NZHsvyWJbHsjyW5bEsj2V5LMvjslyPY0FZIAvqAl3QFtgCX9AXLMtlWS7LclmWy7JcluWyLJdluSzLZVkuy7Isy7Isy7Isy7Isy7Isy7Isy7Isy6cP1vaA0wcnlAWyoC7QBW2BLfAFfcGyrMuyLsunD9Z+Ql2gC85fyHqCLfAFfcG44PTBCWWBLKgLdMGy3Jbltiy3K27UdsWNaseCskAW1AW6oC2wBb5gWbZl2Zfl0wfVTpAFdYEuaAtsgS/oC8YFpw9OWJb7styX5dMH1U9oC2yBL+gLxgWnD04oC2RBXbAsj2V5LMunD7bjhL5gTNDTB5ueUBbIgrpAF7QFtsAX9AXjgrIsl2W5LMtlWS7LclmWy7JcluWyLJdlWZZlWZZlWZZlWZZlWZZlWZZlWZZlWZbrslyX5bos12W5Lst1Wa7Lcl2W67Jcl2VdlnVZ1mVZl2VdlnVZ1mVZl2VdlnVZbstyW5bbstyW5bYst2W5LcttWW7LcluWbVm2ZdmWZVuWbVm2ZdmWZVuWbVm2ZdmXZV+WfVn2ZdmXZV+WfVn2ZdmXZV+W+7Lcl+W+LPdluS/LfVnuy3Jflvuy3JflsSyPZXksy2NZHsvyWJbHsjyW5bEsj8tyWz7Ylg+25YMtfNBO0AVtgS3wBX3BuCB8MKAskAXLclmWy7JcluWyLJdluSzLsizLsizLsizLsizLsizLsizLsizLslyX5bos12W5Lst1Wa7Lcl2W67Jcl+W6LOuyrMuyLsu6LOuyrMuyLsu6LOuyrMtyW5bbstyW5bYst2W5LcttWW7LcluW27Jsy7Ity7Ys27Jsy7Ity7Ys27Jsy7Ity74s+7Lsy7Ivy74s+7Lsy7Ivy74s+7Lcl+W+LPdluS/LfVnuy3Jflvuy3JflviyPZXksy2NZHsvyWJbHsjyW5bEsj2V5XJbtOBaUBbKgLtAFbYEt8AV9wbK8fNCWD9ryQVs+aMsHbfmgLR+05YO2fNCWD9ryQVs+aMsHbfmgLR+05YO2fNCWD9ryQVs+aOGD44SyQBbUBbqgLbAFvqAvGBfosqzLsi7LuizrsqzLsi7LuizrsqzLcluW27LcluW2LLdl+fRBO06wBb7gYdnkhHHB6YMTygJZUBfogrbAFviCZdmWZV+WfVn2ZdmXZV+WfVn2ZdmXZV+WfVnuy3Jflvuy3Jflviz3Zbkvy31Z7styX5bHsjyW5bEsnz5o9QRd0BaclvUEX9AXnJYfs85PH5xQFpyWxwl1gS54WPZygi3wBX3BuOD0wQllgSyoC3TBslyW5bIsnz7oesK44PTBCWWBLKgLdEFbYAt8wbIsy3Jdlk8f9HaCLKgLdEFbYAt8QV8wLjh9cMKyrMuyLsu6LOuyrMuyLsu6LOuy3Jbltiy3Zbkty21ZbstyW5bbstyW5bYs27Jsy7Ity7Ys27Jsy7Ity7Ys27Jsy7Ivy74s+7Lsy7Ivy74s+7Lsy7Ivy74s92W5L8t9We7Lcl+W+7Lcl+W+LPdluS/LY1key/JYlseyPJblsSyPZXksy2NZHpflfhwLygJZUBfogrbAFviCvmBZLstyWZbLslyW5bIsl2W5LMtlWS7LclmWZVmWZVmWZVmWZVkOH+wn2AJf0BeMC8IHA8oCWVAX6IJluS7LdVmuy3JdlnVZ1mVZl2VdlnVZ1mVZl2VdlnVZ1mW5LcttWW7LcluW27LcluW2LLdluS3LbVm2ZdmWZVuWbVm2ZdmWZVuWbVm2ZdmWZV+WfVn2ZdmXZV+WfVn2ZdmXZV+WfVnuy3Jflvuy3Jflviz3Zbkvy31Z7styX5bHsjyW5bEsj2V5LMtjWR7L8liWx7I8LsvjOBaUBbKgLtAFbYEt8AV9wbJcluWyLJdluSzLZVkuy3JZlsuyXJblsizLsizLsizLsizLsrx8cCwfHMsHx/LBsXxwLB8cywfH8sGxfHAsHxzLB8fywbF8cCwfHMsHx/LBsXxwLB8cywfH8sGxfHAsHxzLB8fywbF8cCwfHMsHx/LBsXxwLB8cywfH8sGxfHAsHxzLB8fywbF8cCwfHMsHx/LBsXxwLB8cywfH8sGxfHAsHxzLB8fywbF8cCwfHMsHx/LBsXxwLB8cywfH8sGxfHAsHxzLB8fywbF8cCwfHMsHx/LBsXxwLB8ccS5YTpAFdYEuaAtsgS/oC8aEcpxOeFFJkqSadJqXoJZkSZ7Uk8ai0x0vKkmSVJNSo6RGSY2SGiU1SmpIakhqSGpIakhqSGpIakhqSGpIatTUqKlRU6OmRk2Nmho1NWpq1NSoqaGpoamhqaGpoamhqaGpoamhqaGp0VKjpUZLjZYaLTVaarTUaKnRUqOlhqWGpYalRpzfa5AmtaRTw4M8qSeNRXGaP6kkSVJN0qSWlBqeGp4anho9NXpq9NToqdFTo6dGT42eGj01emqM1BipMVJjpMZIjZEaIzVGaozUGEujHEdSSZKkmqRJLcmSPKknpUZJjZIaJTVKapTUKKlRUqOkRkmNkhqSGpIakhqSGpIakhqSGpIakhqSGjU1amrU1KipUVOjpkZNjZoaNTVqamhqaGpoamhqaGpoamhqaGpoamhqtNRoqdFSo6VGS42WGi01Wmq01GipYalhqWGpYalhqWGpkX5e0s9L+nlJPy/p5yX9vKSfl/Tzkn5e0s9L+nlJPy/p5yX9vKSfl/Tzkn5e0s9L+nlJPy/p5yX9vKSfl/Tzkn5e0s9L+nlJPy/p5yX9vKSfl/Tzkn5e0s8l/VzSzyX9XNLPJf1c0s8l/VzSzyX9XNLPJf1c0s8l/VzSzyX9XNLPJf1c0s8l/VzSzyX9XNLPJf1c0s8l/VzSzyX9XNLPJf1c0s8l/VzSzyX9XNLPJf1c0s8l/VzSzyX9XNLPJf1c0s8l/VzSzyX9XNLPJf1c0s8l/VzSzyX9XNLPJf1c0s8l/VzSzyX9XNLPJf1c0s8l/VzSzyX9XNLPJf1c0s8l/VzSzyX9XNLPJf1c0s8l/VzSzyX9XNLPJf1c0s8l/VzSzyX9XNLPJf1c0s8l/VzSzyX9XNLPJf1c0s8l/VzSzyX9XNLPJf1c0s8l/VzSzyX9XNLPa/p5TT+v6ec1/bymn9f085p+XtPPa/p5TT+v6ec1/bymn9f085p+XtPPa/p5TT+v6ec1/bymn9f085p+XtPPa/p5TT+v6ec1/bymn9f080g56iOoJElSTdKklmRJntSTxiJNDU0NTQ1NDU0NTQ1NDU0NTQ1NjZYaLTVaarTUaKnRUqOlRkuNlhotNSw1LDUsNSw1LDUsNSw1LDUsNSw1PDU8NTw1PDU8NTw1PDU8NTw1PDV6avTU6KnRU6OnRk+Nnho9NXpq9NQYqTFSY6TGSI2RGiM1RmqM1BipMZZGJC5dVJIkqSZpUkuyJE/qSalRUqOkRkmNkholNUpqlNQoqVFSo6SGpMbp5+MIkqSapEktyZI8qSeNRaefX5QaNTVqatTUqKlRU6OmRk2NmhqaGpoamhqaGpoamhqaGpoamhqaGi01Wmq01Gip0VKjpUZLjZYaLTVaalhqWGpYalhqWGpYalhqWGpYalhqeGp4anhqeGp4anhqeGp4anhqeGr01Oip0VOjp0ZPjZ4aPTV6avTU6KkxUmOkxkiNkRojNUZqnH4+JMiTetKp8TiuKZEcdVFJkqSapEktyZI8qSelRkmNkholNUpqlNQoqVFSo6RGSY2SGpIakhqSGpIakhqSGpIakhqSGpIaNTVqatTUqKlRU6OmRk2Nmho1NWpqaGpoamhqaGpoamhqaGpoamhqaGq01Gip0VKjpUZLjZYaLTVaarTUaKlhqWGpYalhqWGpYalhqWGpYalhqeGp4anhqeGp4anhqeGp4anhqeGp0VOjp0ZPjZ4aPTV6avTU6KnRU6OnxkiNkRojNUZqjNQYqTFSY6TGSI30c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNLP7f0c0s/t/RzSz+39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f0c08/9/RzTz/39HNPP/f080ggGz2oJmlSS7IkT+pJ46JIJLuoJElSTdKkU2MEWZIn9aSxKPx8UkmSpJqkSalRUqOkRkmNkhqSGpIakhqSGpIakhqSGpIakhqSGjU1amrU1KipUVOjpkZNjZoaNTVqamhqaGpoamhqaGpoamhqaGpoamhqtNRoqdFSo6VGS42WGi01Wmq01GipYalhqWGpYalhqWGpcfr545g30IEdOE48Lw6IlLSFBSjAClRgAxrQgR0ItQ61DrUOtQ61DrUOtQ61DrUOtQ61AbUBtQG1AbUBtQG1AbUBtQG1kWrjOIAFKMAKVGADGtCBHQi1ArUCtQK1ArUCtQK1ArUCtQK1AjWBmkBNoCZQE6gJ1ARqAjWBmkCtQq1CrUKtQq1CrUKtQq1CrUKtQk2hplBTqCnUFGoKNYWaQk2hplBrUGtQa1BrUGtQa1BrUGtQa1BrUDOoGdQMagY1g5pBzaBmUDOoIZYMxJKBWDIQSwZiyUAsGYglA7FkIJYMxJKBWDIQSwZiyUAsGYglA7FkIJYMxJKBWDIQSwZiyUAsGYglA7FkIJYMxJKBWDIQSwZiyUAsGRlL5MhYIkfGEjkylsiRsUSOjCVyZCyRI2OJHBlL5MhYIscBtQK1ArUCtQK1ArUCtQK1ArUCtQI1gZpATaAmUBOoCdQEagI1gZpArUKtQq1CrUKtQq1CrUKtQq1CrUJNoaZQU6gp1BRqCjWFmkJNoaZQa1BrUGtQa1BrUGtQa1BrUGtQa1AzqBnUDGoGNYOaQc2gZlAzqBnUHGoONYeaQ82h5lBzqDnUHGoOtQ61DrUOtQ61DrUOtQ61DrUOtQ61AbUBtQG1AbUBtQG1AbUBtQE1xJKCWFIQSwpiSUEsKYglBbGkIJYUxJKCWFIQSwpiSUEsKYglBbGkIJYUxJKCWFIQSwpiSUEsKYglBbGkIJYUxJKCWFIQSwpiSUEsKYglBbGkIJYUxJKCWFIQSwpiSUEsKYglBbGkzFhigSNxxpKJBSjAClRgAxrQgVCbsUROnLFkYgEKsAIV2IAGdGAHQs2gZlAzqBnUDGoGNYOaQc2gZlBzqDnUHGoONYeaQ82h5lBzqDnUOtQ61DrUOtQ61DrUOtQ61DrUOtQG1AbUBtQG1AbUBtQG1AbUBtRGql3XiU081cq8r0uAFajABjSgAztwJEYsuRBqBWoFahFLigc2oCWG6/Wg0A0MH4s7yyI9b6EAK1CBDWhAB3bgSGxQa1BrUGtQa1BrUGtQa1BrUGtQM6gZ1AxqBjWDmkHNoGZQM6gZ1BxqDjWHmkPNoeZQc6g51BxqDrUOtQ61DrUOtQ61DrUOtQ61DrUOtQG1AbUBtfAxqYEKbEADOrADQ03/eN5RdwALUIAVqMAGNKADOxBq4WPSAgsw1CywAhXYgAZ0YAeG2jgxfq8vLMBTrZbAClTgqVajvvF7faEDO3Akxu/1hafaefGXRObfwgpUYKhFzSJoXOiJETXijrdI9nv8UgeeFnT+19OCRk9GfLjQgR04EiM+XBh2o/siPlxYgQpsQAM6sANHYsSHC6EW8eG8TUsi2W/hqdaimREfLjSgAztwJEZ8aDGaER8uFGAFKrABDejADhyJHWoRH1oMS8SHC0OtBiqwAQ0YatEPER8uHIkRHy4sQAGGWkyuiA8XNqABHdiBY2FkBC4sQAFWYKiNwAY0YKi1wA4cieHzF54WzrtDJDL8ynnhhUSK39nIyPAr53UWEil+CwV41suiXuHbFzbgWS8PgfDtC08tl8CRGL594al2XiEhke23sAIV2IAGDLvRyPjt96hv/PZ7tC18+8IGNGDUN7o0fPvCkRi+fWEBnmo9WhG+faECT7XzDUyJzL6FDuzAkRi+feGp1mOowrcvrEADhoXokvDXC8NCjEX464UVGPWNPgt/vdCAUd8Y4/DXC0Mt+iH89cJTbUTVw19H9EP464hKhr+O6PXw1wsN6MAOHInhrxcWYKhFzcJfR1Tn9NfHY29gOzGqc3qmxOItUvgmRg7fwgIUYAUqMIxp4Eic9+tOLEABVqACw9jZ65GA93jIDhRgBSow2tYDDejADhyJcaHuhQUowApUINQq1CrUKtQq1BRqCjWFmkJNoaZQU6gp1BRqCrUGtQa1FsZGoAEd2IEjMe75vLAABViBCoSaQc2gZlAzqDnUHGoONYeaQ82h5lBzqDnUHGodah1qpztJXCIdmXOPZVvgqRYLssiTk1iGRTqbxKN05LMtHInhDHG7c6S0STylRk7bwgpUYAMa0IEdOBLjAuoLoSZQCx+Kh1ubF1FPbEADOrADR2L40IUFKECoVahVqIW3yNmpkcQmce10ZLHJdYlzBSqwAQ3owA4cieEXFxYg1BrUGtQa1BrUGtQa1BrUwnFiFRCJbQsFWIEKbEADOrADR6JDzaHmUAvHiUf/yHJb2IBh94zrkcAmsfyIDDapMXd6BSqwAQ3owA4cieMAFiDUBtQG1OKXrMbcGQZ0YAeOhZHTtrAABViBCmxAAzqwA6FWoBY+H4uzyG9bWIEKbEADht0zMEX2msSSLdLX5LyZWSJ/bWEDGtCBHTgSw48vLEABQq1CrUItfgtjBRnJbAs7cCTGb+GFBRh2W2BYiO4LP75wJIYfx/Iu0tUWCrACFdiABnRgB45Eg5pBLfxYY1jCjy9U4KkWC7nIXlt4qsVCLvLXJNZpkcAmsVSJDLaFBXiqxYosktgWnmqxXIo0NomFUeSxPX4UAh3YgSMxfgAvLMDTrkUlw49juRR5ao8AFzgSw48vDAsxQuHHF1agAhsw7J4NikQ0iRVVZKLJeY+gRCraQgU2oAEd2IEjMXzzwlPtvDVQIidtYQWearFSi7S0hQZ04KnmNXAkxu/xhaHWAgVYgaGmgQ1oQAd24EgMP44VYKSpLRRgqEVXhx9f2IAGHInxe+wxLPF7fOFpIVZqkYi20IBnfWMxGLloC0di+PGFBSjAClRgAxoQag1qDWoGNYOaQc2gZlAzqBnUDGoGNYOaQ82h5lALP47Fa2SnLWzAUIupEX58YQeGWoxQ+PGFp9r5BpdEdtrCClRgA55qsXiN7LSFp1qsYyM7TWIdG9lpj+3iwAIUYKjFlAufv7ABQy2mUfx2X9iBY2Fkpy0swLA7Av38iscR2E8sgSMxPjZxYQHKiTWwAhXYgAYMNQ0MNQ8MtahOfIAijnYi42zhaTdWEpFFVuNrNZEv9ticDixAAZ41Ky1QgQ1oQAd24EiMz0zEuiXyxRYKULNm8aWXCw14SsTCJpLEFo7E+OZLHAxEkthCAZ4NirVIJIktPNViWz+SxBY6MNQscCTGd2AuLEABVqACG9CADoSaQc2h5lBzqDnUHGoONYeaQ82h5lDrUOtQm9+MiSk3vxozUYGhFhNxfjtmogNPtVihRJLYhfENmQsL8FSL5UMkidXr6zCnWqwOIklsoQFPtXhejySxhePCGkliCwtQgBWowAY0oAM7EGrh/ufCpkaS2EIBVqACG9CADuzAkShQE6jFN2jOJUGNJLGFCmxAAzqwA0diBJALCzDUPLACFeiJERTO9UWNxK96ri9qJH4trEAFnvXVEmhAB3bgSIz4cGEBCrACFQi1BrUGtQa1BjWDWsSHc6lRI/FrYahpoAIbMNRiGkV8uLADR2LEhwsLUIAVGGoxWBEfLjSgA0OtB47EiA8XFqAAT7UWsy/iw4UNaEAHduCp1qIfIj5cWIACrEAFNqABHdiBqRaJX/Vc+dRI/FoowFDzwFPtPNupkfi18FQ7VzM1Er8WnmrnwqZG4teFER8uLEABVqACG9CADoRagZpATaAmUBOoCdQEagI1gZpATaBWoVahVqFWoVahVqFWoVahVqFWoaZQU6gp1BRqCjWFmkJNoaZQU6hFLDnXpjUSvxYKsAJDLeZOxJILDejADhyJEUsuLEABViDUDGoGNYOaQc2g5lBzqDnUImqcC+gayVzVwhkiPkyM+HCupWskcy0UYAUqsAENGHbPH4lI0LoGYKB/w+cvbEADni328M3w+QvHwkjQWphzJxK0FlagAhvQgA7sqw4yfT6wHMAClKxD+PyFCoQafF7g8wKfF/i8wOcFPi+SM1WkAhXYgJZ1EAd2INTg8wKfF/i8wOcFPi/weYHPy/T5qENFT1b0pKInFT0ZPn/uotT5FckLoyfDbvj8hQZ0YLStBY7E8PkLC1CAFajABgw1C3RgTvD5cclz46POz0teKMAKxNQIR78Qg2UYLMNgGaa9Y9o7BssxWI7BcgyWY7Acg+WYiI6J6Jga4f7n9k2dH528UIHRiuiHcP8eNYvHgws7cCTG48GFBSjAClRgPobOj09eOBbOD1Ce+yV1foLywrCrgRWowLMV5yZJnR+jvNCB0QoLHIkRFC4sQAFWoAIb0IAOhNrcEYhWhPtfWIFhtwc2oAFPu+fuTJ2fqLxwJIb7j+iHcP8LBXiqjeiHcP8LG9CADuzAkRjuf2EBChBqCjWFmkJNoaZQU6g1qDWoNag1qDWoNag1qDWoxU/+iBGKSDAxIsGFoRYDEJHgwlCLmRqR4MIGfKjpuTVVI89sYT8xhvuMBBeekUCPGKH48OWFAqwnRnXi85cXNqABHdgT47OXR9QsPnN5RCviQ5fn3lWdn7q80IEdeNa3xDyLT15eWIACrMBTrURXx8cvLzSgAztwLIzcMT0P5Wvkji0UYAUqsAEN6MAOHIkFaiXUPFCAFRhqI/BUOw/7a9wut/BUO3e/amSfLTzVzs2tGvlnCwtQgBWowAY0oAM7EGoVahVqFWoVahVqFWoVahVqFWoVago1hZpCTaGmUFOoKdQUago1hVqDWoNag1qDWoNag1qDWnz8VmL2tQ4ciXYAQy3mgwmwAhXYgAZ0YAeOxIgE8V3cyFVTiSkXPn/haeHcuKuRq7ZwJMbnby8sQAFW4Gn33PqrkX92dclAi8PnLxRgBZ4tji8oR/7ZQgM6EKM5Ui2y0hYWoAArUIENaKs6ccHcwg7M0Yy0tYXROzVQgNE7YTd8/sIGNGC0zQM7cCSGz19YgAKsQAWGWg80YF+DFSluGtt5keK2sAAFWNcARIrbwgY0oAM7cCTC0RscvcHRGxy9wdEbHL3B0RscvcHRI5lNY/sxLptbWIGn3djvi2w3jU2+yHZb6MAOHInh0hcWoAArMOzG1AjnvbADR2L8uMeWYuS1LRRgBeZPc5s/7hMN6MAOHInh6BcWoADjaCvU4jH/QgdGKyxwJIb7XxitiGkU7n9hBcZYhDuF+19owLMV8a3ruG5u4VgYF87F8VqNG+cWCrACFdiABnRgB47EArUCtQK1ArUCtQK1ArUCtQK1AjWBmkBNoCZQC/c/00dqJOotNGCojcAOjJ48Z18k6i0swHPcYsM1EvUWKrABDejADhyJEQlinzaS+hYKsAJDLZoZkeBCAzqwA0Mtmhk/+RcW4KkWW8GR1LdQgQ1oQAd24EiM+HBhAULNoGZQM6gZ1AxqBjWDmkPNoeZQi6gRe9uR1LewAQ3owA4ciRE1Lgy1GM2IGhdWYKhJYAMaMNQssANHYkSNC/F3B/7uyL8b6XsLC1CAUbMeqMAGjJqNQAd24EiMB4ELC1CAFajABoRagVo8CMRGWCT1XRgPAhcWoAArUIENaEAHQk2gVqFWoRaRIDahIqlPYwcukvoWOrADw+4ZSyKpb2EBCjDiWUjENsCFDWhAB3bgSIxtgAujdzRQgQ1oQAf2xPDj2BuM9D2NDcFI39PY5Iv0vYUODAsxucJjJ4bHxv5ZpO8tFOBZ39j9ivS9hQ1oQAd24EgMj+0xhOGxFwqwAhXYgHblc9VI6rv6IX7nL0TvhMfGDlwk9S1UYAMaMFoRkyC8+8KxMC6iWxitaIECrMBQ88AGNGCo9cAOHInh3bFNGAmAer67UyMBUM9MqBoJgBpbaZEAuLABT7tnUlSNVL8Lw48vLMCwG22bHmuBBnRgT5xuOrFe6ZF15uxd2IB2JU3WuGBuYQeOxMi9vbAABViBCjwrGZuHkcm3cCTGj/CF0fgYrPgRvrACFRitiN6JTL4LHdiBIzEy+S4sQAFWYGT6hlrk7F0YrYj+DeedGM57YQFGK6Krw3kvVGADGtCBK4u5zpy9iZGzd2EBCrACFdiABvTEcN7Yn4zsvIUCrMBoRXhAOO+FBnRgtCJcJLLzAmd23oUFKMAKVGADPuy2Y+JIPN10YQEKsALX2xN1lAY0oAM7cCRGnm6sYyNnb6EAK1CBDRitCGM16hv/tQqwAsOCBjagAR3YgSMx/PjCAhRgBUJNoaZQU6gp1BRqDWoNaqcftzMnskb63kIDOjB6Z/6zkWgHsAAFWIEKbMBQa4EO7MCR6KFmgQUowArUHCxvQAM6sANHYj+AmA8d86GHXQ80oAPDbg8Mu6cXRqLewgIU4NmKEn5xevfCBjTgqVZihE7vbrHVHol6gRqJegsLUIAVqMAGNKADOzDU+onh8xcWoAArUIENaEAHnmpSAk+1cwNeI1FvYQEKsAIV2IAGdGAHQq2GmgUWoAArUIENaEAHdmCojRP1ABagACtQgQ1owFPtjHIaSX0LR+IZHxYWoAArUIFnNJpVj1//Cx3YgSMxfv0vDLvRvxEJzsCkkai3MCzEJIjc/ImRm39hAQqwAhXYgAaMfoipHD5fo2bh8xcKsAIV2IAGjFZ4YAeOxIgEF4ZaVCciwYUVqMAGNKADQy1GPiLB+SutkZK3sAAFWIEKbGssIiVvoQM7cCRGJLiwAAVYgXbdAqDz1rULOzBacU65SL5bGK0IC+HzF1ZgtKIFNqABz1acb4NpJN8tHInh8xcW4KnWonfC5y9UYAMa0IEdOBLDu88NQZ03qfVoRXhsixaHx04Mj73wrFmLjgqPvTBqFhbCYy9swKhZ9EP8zl/YgSMxfucvLEABhpoFKrABDejADhzZ4vhFb9HV8Yt+oQIbMOz2QAd24EiMmx481OKmhwsFWIEKbEADemL48blrqXEP2kIBVqACz1ZYDFb48YUO7MCxMNLsFp5q53aeRprdwgpUYAMa0IEdOBLDjy+EWvjxmcaokWa3UIGhZoEGdGCo9cBQO7sk0uzauaOlkWa3UIAVqMAGPO16VDL8eGL48YUFKMCaGD+s5w6RRrbbwpCI+oZDnts3GnltF4ZDXliAAqyJ4Tg96huOc6ECG9CADuzAkRgPyBcWINQcag41h5pDzaEWP4vnXpBG0lmLqBxJZ63HcMcP4IUGDAsx3PEDeOFIDMe5sAAFGHZjAMIZegxAOMO5k6ORXrawAE8L516QRnrZQgU2oAEdeKqdG0Aa6WUXhjOce0Ea6WULBRh2NTAstMCRGBP83LDSSCRr5waFRiLZwgpUYNj1QAM6MNR64EiMaX8h1CrUKtQq1OLn60JbYxGJZAs7MEczEskWFqCuIYzksDmEkRx2DZZiNBtGM3xojkXDaDaMZsNoNoxmw2jGj9oct4bRjB+1OViG0TSMZnjhHMLwtzluhtGc/hZDGP42O8rRv47+dfRv+NscLMdoOkYz/G0OlmM0HaPZodah1qHWodZzNCPDys5tFo0Mq4UKbCdKoAEd2IEj8XSGhQUowAoMtahOaUADOrADR+LpOFaivqfjLBRgBZ5qZ9qaRobVQgOeaiVqdjrOwpFYQ60GFqAAKzDUNDDstsAOHIl6AMOuB4bdHhh2R6ACG9CAp5pEi093WjgST3daeKpJtO30IZOo7+lDJlGd04dMojqnD1md/8yBHTgSTx9aWIACPNVq9PrpWQtPtVhDRgLVQgd24Ej0A1iAAqxABULNoeZQc6g51DrUOtQ61DrUOtR6qMXU6AZ0YAeOxHEACzDsxmCNBjSgAztwLIwUrIUFKMAKVGADGtCBHQi1ArUCtQK1ArUCtQK1ArUCtQK1AjWBmkBNoCZQE6gJ1ARqAjWBmkCtQq1CrUKtQq1CrUKtQq1CrUKtQk2hplBTqCnUFGoKNYWaQk2hplBrUGtQa1BrUGtQa1BrUGtQa1BrUDOoGdQMagY1g5pBzaBmUDOoGdQcag41h5pDzaHmUHOoOdQcag61DrUOtQ61DrUOtQ61DrUOtQ61DrUBtQG1AbUBNcSShljSEEsaYklDLGmIJYZYYoglhlhiiCWGWGKIJYZYYoglNmOJBY7EGUsmyoqINgPIRAU2oAEd2IEZdE0OYAFCTaAmUBOoCdQEagI1gVqFWoVahVqFWoVahVqFWoVahVqFmkJNoaZQU6gp1BRqCjWFmkJNodag1qDWoNag1qDWoNag1qDWoNagZlAzqBnUDGoGNYOaQc2gZlAzqDnUHGoONYeaQ82h5lBzqDnUHGodah1qHWodah1qeOwwPHYYHjsMjx2Gxw7DY4fhscMG1AbUBtQG1AbUBtQG1Eaq+XEAC1CAFajABjSgAzsQagVqBWqIJY5Y4ogljljiiCWOWOIzlozAkThjycRT7cxi1kgDW1iBp1rsr0ca2EIDOrADR2LEktjmjjSwhQKsQAU2oAEd2IEjUaGmUFOoRSzR6J2IJRc2oAEd2IGhdkb7SA5bWICh5oEVqMAGDLvniiqSwy4LER8urMDTQmzAR8rYQgOe9Y1t+UgZWzgSIz5ceKrFtnykjC2sQAWG3Wh8+Hxsy0ca2EIBRn3jn4XPX9iABnRgB47E8PnYt4/ksIUCrEAFNqABHdiBY2Ekhy0sQAFWoAIb0IAODLVzCCMNzOI8INLAFlagAhvQgA7swJEY3n0h1ARqAjWBmkBNoCZQE6gJ1CrUKtQq1CrUKtQq1CrUKtQq1CrUFGoKNYWaQk2hplBTqCnUFGoKtQa1BrUGtQa1BrUGtQa1BrUGtQY1g5pBzaBmUDOoGdQMagY1g5pBzaHmUHOoOdQcag41h5pDzaHmUOtQ61DrUOtQ61DrUOtQ61DrUOtQG1AbUBtQG1AbUBtQG1AbUBtQG6k2jgNYgAKsQAU2oAEd2IFQK1BDLBmIJQOxZCCWDMSSgVgyEEsGYsmYseT8SRozlkwsQAFWoAIb0IAO7MBT7XwTQOOGuoUFGGojsAIV2IAGdGAHjsQZSyYWINQUahFL4iQz8toWGnAkRnw4X0zQuIBuYViI/o34cKEBHdiBIzHiQxwdRgbbQgFW4KnmIRzx4UIDnmoe9Y34cOFIjPgQx4yRwbZQgBUYai0w1KK+EQniHDJy1S6MSHBhAZ5248QxrpqzOMyLq+YsTvAig83izD0y2BY6sANPtTjXiwy2hQUowFCL+ob7x5lPpK1ZHJxE2prFQU+krVmct0TaWmCLtLWFBSjAClTgqXYe07RIW1vYr2nUIlftwvD5CwtQgBWowAY0oAOhVqAmUBOoCdTC58+ToBa5agsbMBrUAx3YgSMxfP7CAhRgBSqwAaFWoXb6vJ+nRi1y1S48fX5hAQqwAhXYgAZ0INQUag1qDWoRH84053bMJwULNKADO3AkzieFiQUowApUINQMagY1g5pBzaHmUHOoOdQcag41h5pDzaHmUOtQ61DrUOtQ61DrUOtQ61DrUOtQG1AbUBtQG1AbUBtQG1AbUBtQG6lWjgNYgAKsQAU2oAEd2IFQK1ArUCtQK1ArUCtQK1ArUCtQK1ATqAnUBGoCNYGaQE2gJlATqAnUKtQq1CrUKtQq1CrUKtQq1CrUKtQUago1hZpCTaGmUFOoKdQUagq1BrUGtQa1BrUGNcSSglhSEEsKYklBLCmIJQWxpCCWFMSSglhSEEsKYklBLCmIJQWxpCCWFMSSglhSEEsKYklBLCmIJQWxpCCWFMSSglhSEEsKYklBLCmIJQWxpCCWFMSSglhSEEsKYklBLCmIJQWxpCCWFMSSglhSEEsKYklBLBHEEkEsEcQSQSwRxBJBLBHEEkEsEcQSQSwRxBJBLBHEEkEsEcQSQSwRxBJBLBHEEkEsEcQSQSwRxBJBLBHEEkEsEcQSQSwRxBJBLBHEEkEsEcQSQSwRxBJBLBHEEkEsEcQSQSwRxBJBLBHEEkEsEcQSQSwRxBJBLBHEEkEsEcQSQSwRxBJBLBHEEkEsEcSSuMLOz9eOWnxLdeFItANYgAKsQAU2oAGhZlAzqDnUHGoONYeaQ82h5lDLHc4mM5ZMDDU5sR/AAhRgBSqwAUNNAx3YgaF2rgMi3XBhAYZa1GxUoAJj3MLYjCUTHdiBY2E9DmABCrACFRi7tz2wA6MV54SJJMSFBSjAClRgA0afhd3iwA4MtfNhOhIWFxZgqHlgBSowdqZDbZ5qTHRgB47EegALUIAVqMCzFWfuV4vUxIUjMVYoZ+5Xi9TEhQI8W3HmfrVIWFx49tmZ5dXijruFDgy1GLdYoUyMFcqFBSjAClRgqLVAAzqwA0dixIcLy5Wl2GYaY4+xsJVu2OI2u4UO7MCROJMbJxagXPmI7UpunKjABrQr37PN5MYLO3AkzhTjiQUowApUIEa+Y+Q7Rn5g5AdGfmDkB0Z+YOQHRn5g5AdGfmDkR4583HG3sAAFWIEKzJGPDMyFDuzAHPnIwFyYIx+5lnPkteTIR67lQgd2YI585FouLMAceZUKVGAD5shHruXCDsyRj1zLhQUowApUYPSOBXbgSJw+PzHGIloxfX5iBSowUs5roAEd2IEjcab/TyxAAVZgjHG0Ynr3xA4cidO7JxagACtQgQ0INYOaQc2gFr/+Z5poiwTLhQKsQAU24Kkm0eunzy/swJEYv/4SvR6//hcKMNRG4KlWQyJ+/S80oAM7cCRGJLiwAAV4qtUYoYgEF4ZauGlEggsd2IGhdlY90i4XFqAAK1CBDWjAUOuBHRhqZ+9E2uXCAhRgBZ4SZxJBi1zLhQ7swJEYDwLnUX2LXMuFAqxABTZgqGmgAztwJNYDWIACrEAFNiDUIlScb/y1yLVcOBIjVMSjRORaLhRgqEWvR6jQ6Ml4PGjRO/F4cKEDO3AkxuPBhfW8BidIk1qSJXlSXxQefGYdtEh2vDA8+MJyflIqSJJqkia1JEsKi6dbROqix5N7pC7OuRcXTk9qSWd1Y77GNXSTetJYFFdNTypJIRKjFW544dnXLYYo3PBCA0Y1zyGKLEQ/j9paZCEuPOs5//8w0AMN6MAOHInxtblJJUmSapImtaS+OjGyC2cnRnahnwdgLbILF55NPa8Ea5FduPCs6Xlg12xeMxPUk8aied1MUEmSpLAYFQkHiBOHyBWMaRipgheVpPNfR9XisrdJmtSSLMmTQkQDR2LM+/P1wBYpggsFGNWM0YofQ4vKx4/hxLi7Lbo2fgtnx8Rv4YUVqMAwO/+ZAR3Ys8PDkyaGJ10INYeaQ82h5lBzqDnUHGoOtQ61DrUOtQ61DrX4LbzQ1lTvmNQdk7pjUsdP4YVlYWTk+XmHWIuMvIUVeDqTBLUkS/KknjQWxeWMk0qSJNWk1CipUVKjpEZJjfiN8sD4jbqwAKMxGliBZyee57otUvAWGtCBHTgS4zfqwlDzQAFWYKi1wAY0YKjFOISLXjgS45r2+KtxS/skSapJmtSSwuLpmpFQ5z2GMzyvR/1jQXqhAhvwrGk8vcYdbAs7cCTGI+uFZ1UnhVj0fHjphQoMMQs0oANDLPoivHRieGmPpoWXXijAM3pFFeLCp0ktyZI8qS8KTxzRWeFzI/oifG7E1Irnzwsd2IFnTeNsOrLuFhagACvwrGq0Oi51mmRJZ1VjYOe1q0HjonkZ26SSJEkhMlGBDdgT41HyfImwRVrdwrNDNUiTWlL0SA90YAc+KtrjzDZy6haWE0ugAOuJEqgn1sB2Yqid7tpjxyly6hZ24EisB7AABViBoRb1raE2Ak+12FaInLoeGwiRPddj1yCy5xYKsAIV2ICW2MJYNLMVoAArUIENaIkWxqKjLP5ZjKopsAENeK51Y6hjY2jSWBTbQpNKkiTVJE1qSZaUGp4anho9NXpq9NToqdFTo6dGT42eGj01emqM1BipMVJjpEbcxxB9GG+gTxoXjXmpSlBJkqSapEktyZI8qSelRkmNkholNUpqlNQoqVFSo6RGSY2SGpIakhqSGpIa4Rix0o8EsR7bBpEg1s9bklqkgnWJv6uBZyfG/WMLC/Cc1vGoPOaL3UGa1JIsyZN60lg03+gOKkmSlBqWGudc77HDELlZPZZWMzcrGhmHqJNqkia1JEvypJ40FsXh6aTU6KnRU6OnRk+Nnho9NXpqzHc6TpqvdASVpNhCD6pJmnT2wvlmrkXiVT8frCwSr/r5622ReLWwAhXYgAZ0YAeOxHIAoVagVqBWQk0DG9CADuzAkRi/NxcWoAArEGoCNYGaQE2gJlCbeZdBJUmSapImtaSw2E6M35Qa/zXOM0dQTdKkyLQLsiRP6kljUZxjToqGT4wmhsXmwA48m3juCVmkTC0sQAFWoAIb0IAO7ECoOdQ81GKWugArMNRiHLwBQy261UMtutVDLRrvI7EfwFOthfDpqwtPtRZOc3prbyEcD4fzP1qSJ/WksWieUASFxZjs58Neb1HpcM4WNT1/gRaOhZEA1c/tDosEqIUCrEAFht2zgZHU1M+AaJHU1M91qEVS08IKVGADGtCBHTgSww3PNatFUtNCAYaaBCqwAQ0YajWwA0fi3EkMKkmSFPuiQZrUkizJk3pSLKhPiv3DSSUp2hMi8QB4oQIbsCfGz6OFhfh5vDAsxGjHU9+FDRhLpiBP6klj0VybBZUkSapJmtSSUsNSw1LDUsNTw1PDU8NTw1PDU8NTw1PDU8NTo6dGT43wTYu5Hb55oQKjv2KadwM68ByH8MVIQbrwdNA+p8v5g7pQgBWowFNtzoXw5gtPNY8xC2/2qFl4c7QiUpAWFmCojcAKVGA8jQVZkif1pLEonH7SafHcE7BIKOrXfz3/9Xnpk0VC0cKRGH584VnTcx1vkVC0sAIV2IDx3BgU3RIUWhYYWtH+WLxd+LA6orKne45o/emK5QhLpy8uLMCoVfzd8MYLFdiABnRgB571GmE3HmwvLMC6KnZ660Utyc5qRR+fzrqwA8P+OV0i+WdhAZ6tGdFd8Qt74dmaET0Xv7AXGjDUamAHjkQ/gAUowApUYAMaEGoONYdah1qHWodah1qHWodah1qHWodah9qAWnjxiMkUXnxhBUZPxmCFF19oQD/nYEzC04sXjoWR/LOwnFgC5UQJjLZZoAIb8JzcUd9ICVrYgSOxHMACFGAFKrABoVagVqBWoifP2RcpQQsLUIAVqMAGNKADOxBqFWo12qaBAqxABTagAR3YgSNRD2CohbAKsAINGBZOL4zkn3FuHVkk/ywUYAVGfUdgAxrQgR04Eu0AFqAAKxBqBjWDmkHNoGZQO+PDKDGrz/iw8FQrMavP+LBQgadaiWl0xoeFDuzAkdgPYAEKMNRisLoCG9CAoRae1TtwJI4DWIChFo0fFajABjSgA081iY6K+BAYiUILC1CAFajABjSgAzsw1M64E4lCCwsw1GpgqGmgAkOtBRow1CywA0eiHMACFGAFKrABDQg1gZpArUKtQq1CrUKtQq1CrUKtQq1CrUJNoaZQU6gp1BRqCjWFmkJNoaZQa1BrUGtQa1BrUGtQa1BrUGtQi1hyZttYpBotLEABnnG9TFRgAxrQgR04EuNZ48ICjFb0wKjvCOzAs741JnjEhwsLUIAVqMAGPO3GvlekBF1dMtDi8PkLFdiAZ//GdlmkBC3swLGwHTma7ShAAVagAhvQgL7q0KbPT8zRbOUAlqxD+PyFFQi1ArUCNfh8g883+HyDzzfJudNEgBWowJZ1EAM6EGrw+Qafb/D5Bp9v8PkGn2/w+TZ9PupQ0ZMVPVnRk4qeDJ+P7cjIDloYPamBCmxAA0bbprEOHInh8xcWoAArUIGh1gMNmBM8rl8bsYMX168tLEABYmrEQ8OFGCzDYBkGyzoQ094xWI7BcgyWY7Acg+UYLMdEdExEx9QI94+dwchWWliBp12Nfgj3j03CSFha6MAOHInxeHBhAQqwAvPBsM2FwsQODLvnfIgr1RaGXQsUYAVGKzywAQ0YreiBHTgSIyhcWIACrEAFNqABoRbufwSVJEmKAQ7SpJZ0Wox91MhxWtiBZ/1jdzXSnBYW4KnUgmqSJrUkS/KknjQWhcNPKkmpoamhqaGpoamhqaGpoanRUqOlRkuNlhotNVpqtNSI3/TYMY6MqYUjMVy9xd8NV78whGLShatfqMDQijkVrn5hqI3ADjzVYmc3UqYWFuCpFtMkPH2SJrUkS/JF8Rsfu8KRADVi0zcSoEZs70YC1EIDOvCsaeyiRgbUheHOFxagAEMt6hC//Bc2oAEd2IGhdnZRXHu2sAAFWIEKbEADOrADoRZOfmZsWeRaLRTgqXbmRlmkW43Yzo58q4WnWuxiRsbVwlMtdjEj5+rCcP0LC1CAFajABjSgA6EmUKtQq1CrUKtQq1CrUKtQq1CrUKtQU6gp1BRqCjWFmkJNoaZQU6gp1BrUGtQa1BrUGtQa1CIwxOZyZGkt7MCRaPH8XQILUIAVqMAGNKADe2LEgNjgjtyrEVvZkXy1MOobkzZc/sIOHIkRCS4sQAFGIIkJ3tG/HS0On7+wAAUY4SmqHj5/YQMaEKM5oDZyNCMNa2EBCrACFdhWdeLas4UO7MBsW3wTc8RWemRtLYzIWwMrUIENGG2bxhzYgSMxfP7CAhRgBYaaBzagr8GKbK0RW/uRrXVhOPqFBShrACJba6ECG9CADuxADBYcvcPROxy9w9E7HL3D0TscvcPRI51rxKFBpHMtFGCcFEQ/zKOCqNk8K5hoQAd24EiMH/sLC1CAYTemRvysX+jADgy7MTXiZ/3CAhRg/jRH2tfCBjSgAztwJM6f/IkFqNdRUaR6XWRJcZof1JPGonD8OAKJXK+FAoz0hyBNaknRVTFtw+sv7MBxHV6NeXgXVJIkqSZpUkuyJE/qSalRUqOkRkmNkholNUpqlNQoqVFSo6SGpIakhqRGeHc8n8X1ZAsb0NYZXlxPtjD29+NQZMwN/slzh//iOFCI05K4oiy5EitxIzZiJ+7EU/ecNGOeFF5ciIV46mqwEjdiI3biqduCB7gdxHEUFSRJNUmTWpIleVJPGovmyWFQalhqWGpYalhqWGpYalhqWGp4anhqzNPCOMMa87jwYiVuxEbsxJ14gOepYZxHjHlseLEQT92YrPPk8OJGPE9hY1bMw8OLO3gU4jObPqyf8eCi+e9iJEcnHos9EuqSC7EQR33P8wI/5mngxY3YiEP33Ob3SKxLHuAyz8FLcCEW4tA90zk90uuSG7ERT90aPHWj/vMY8NyL8WOeA15ciZV42u/B0360ax4G1qjbjBY1dGe0mDyjxcWFeJ4bR91mtLhYiRvxPDuO+s8IUaNuM0Kcm2p+zAhRo24zQmhozQhxcSVW4kZsxE4cuhr1mRFicst553GxWXIlVuJGbMRTK9o48wsuHuBYBxwabbdCLMSVWIkbsRE7cSceYCddJ90ZPzTmxowfFytxIzZiJ+7EAzzjx8WFmHQ76XbS7aQ744fGPJlpBhrzZOYZXFyIhXgekIefDiVuxEbsV1aOzxTAC8fCmQJ4YQEKsAIVOA/fJ3fiAZ5x5OJCLMSz3hI87dTgaUdPvrIGJhfiaacFV+LZLxbciI141t+DO/EAX/kDkwuxEFfiqduDG7ERO3EnHuB4LcSiKTNEzO6ZIeJi6rYZIs4dNS8zRFzciQd4PkRcHM06N9u8zHBxcSVW4pllErozXFzsxKFrMUQzXEye4eLiqRttnOHi4ko8dWOazHBhMXQzXFh0+QwXFt02w8XFAzzDgkV7Z1i4WIkbcdj3aO90/zklp/tfXIiFWIlXlqzP7MALR+JYubM+swMvFGAFKrABDejAvlDmY8OZjOgyHxsursRKHP1wbvC5zMeGi524E0drziGdSYEXFqAAK1CBDWhAT5yp9z2wAGdjanAlVuJGPBszLTpxJx7g6fsXF+JI+Y++jZe+LlRgAxrQgR04EsPnLyzA2ZoW3IiN2Ilnayx4gKfLX1yIozUTK1CBDWhAB3bgSJwufe7fuUyXvliJG7ERO3Gfb6G4zG+qnDQ/qRJUkiSpJl3vqHgkGV5kSZ7Uk8ai6dIeM23+cnuMx/zlvtiJoxfCI8K/J44DWIACrEAFNqABHQi1kWo1X7/xehSgACtQgQ0Ys+fcWvM6f8cnz9/xiwtx9FI8D9S5HrhYiRuxETtxJx7g+bvfo27zd/9iIa7EU7cGN2IjduKeI3ilDU6+fH9yIRbiSqzEjdiIZ7vO2VXn2uDiQjzb1YJnuyxYiRuxEc92eXAnHuAZBS4O3RHjOH/4R/Th/OG/WIkbsRE7cSce4PnDf3EhJt0ZJUa0fUaJixuxETtxJx7guU64uBBP3R4cRxVH9EM8ECxuxEbsxJ14gONBYXEhFmLS7VM35mRvxEbsxJ14gMdBXIiFeOrGnBlK3IiN2Ik78UiOjMTkqTuChbgSK3EjNmIn7sRnjD577fqIbFBJkqSapEnzqClY5hlWCS7EES/nX6lABTagAR3YgSMx3kK4cJ6OSfA8HqvBjdiInbgTD7AexLM5GizElViJp24LNmIn7sQD3A7iQjx1Y0q0qevBStyIjdiJO/HAMBkNn9HwXYeQkyuxEjdiI3ZwvIgU0WLeZnahAKfxmJMzblwcxmUaMWInjkbFvpjOuDF5xo2Lo1ESAzTjxsWVWIkb8dSNTptx4+JOPMAzblxciIW4Ek/7PXhctzt4m+4e23FtuvvFShzVDD9o090vjmrG9l2b7n7xAMdjSIlHlchLTBbiSqzEjdiIp24N7sQDPEPFxYVYiGt2g0zzGuzEnXiA6zTfgguxEFdiva4T8Xln2YUGdGAHjsR45/DCApzdFW2YIeFiI3bi2R4PHuAZEi4uxHJdH+Nt3hkzUYENaEAHduBInC4fq8I2Xf5iJZ7tiSk4Xf5iJ4726LQ5wDPbWKOPZrrxxUIcurEz22Y0uLgRG7ETd+IBntEgdnXbjAYXC3ElVuJGfPZl7JZEUmJc5uWRlBi3SnkkJS4UYAUqsAENeI5R/MZGquLCsTBSFReGWg0UYAUqsAEN6MAOHIlx40zsjdmMB2eSpNuMBxc3YiN24k48wDMexBa4zXhwsRBX4rNBsSU072e70IAO7MCRGC8iX1iAApzNsWAjduLZHA8e4PnocPFsTg8W4tmcEazEjTh0Y9fZZpy4uBMP8IwTFxdiIQ7d2Cm2+ehwcSM2YifuxNGX0UTD5DCaHEaTw2hyGE0Oo8lhNDmMJofT5HCaHE6Tw2lyOCaHY3I4Jodjcjgmh2NydEyOjsnRMTniZ1yOGMj4GV+sxC3Z52/0eZuU+/yNvtiJo/nxg+fzN3ry/I2+uBALcSVW4kZsxE5MuoV0hXRl2vHg+fejXfOHdv73+UN7vpHpkQL4aPsRXImVuBEbsRN34hF8Tr5IBUwuxFNXgqduDZ660c86dVuwoS3TwS6mNk7nie0Tn85zsRI3YiN24k48wPO5++JCPHWjLdOtYovlSv+7uBEb8dSN9k63uniAp1tdXIiFuBIr8bQZfTh/SGPLxOePZ2yH+Pzx7NGH88fzYiN28Hxkvnjaibk0l9QXz3kY82EuneNBq89n49j26PPZ+OJGPMe6BjtxJx5pv19+F//98rvJQlyJNfuhT7+72IgdLGhvn7950cY+f/MuRj/0Of9j/dfn/I81XJ/z/2IhrsRKHPO/hG7Mc4llVnwUdHE7iAuxEIf9SG+IbLnkRmzETtyJBzh8QWJJF0lzyUJciZW4ERuxE0+tmA9+EBdiIa7EStyIjdiJOzHpdtLtUzfmTxfiSqzEjdiIHePSaUw7jemgMR3z32rwrNvpy5Exl1yIhXjWzYOVuBEbsRN34gEuB/HUtWAhrsRK3IiN2IlHtjey6R7cgyuxoo3SiI3YiWdbRvAA14M42hLr8ZlAt7jCTiXdSrqVdCvpzt/Ei2nslMZOaeyUxk5JV0lr+n5sB86EuMWFWIhnbIm2TN+/uBEb8ZyfJbgTD/D0/YsLsRBXYiVuxEZMuka6RrpOuk66TrrT32N/cabCSewLzvQ3iT2/mf62WIgrsRI3YiOedY5xuXx58gBfvjy5oD7zufTiSqzEjdiInZjaOOPDyX2mhMm5z9NnStjiAZ7z/+JCLMSVWIkbsRGTbiXdSrpKukq6SrpKukq6Sro6dUuwE3fiAZ7+cnEhFuJKrMSNmHQb6TbSbaRrpGuka6RrpGuka6RrpGuka6RrpOuk66TrpOuk66TrpOuk66TrpOuk20m3k24n3U66nXQ76XbS7aTbSbeT7iDdQbqDdAfpDtIdpDtId5DuIN0B3XIcxIVYiCuxEjdiI3biTky6hXQL6RbSLaRbSLeQbiHdQrqFdAvpCukK6QrpCukK6QrpCukK6QrpCulW0q2kW0m3km4l3Uq6lXQr6VbSraSrpKukq6SrpKukq6RL8apQvCoUrwrFq0LxqlC8KhSvCsWrQvGqULwqFK8KxatC8apQvCoUrwrFq0LxqlC8KhSvCsWrQvGqULwqFK8KxatC8apQvCoUrwrFq0LxqlC8KhSvCsWrQvGqULwqFK8KxatC8apQvCoUrwrFq0LxqlC8KhSvCsWrQvGqULwqFK8KxatC8apQvCoUrwrFq0LxqlC8EopXQvFKKF4JxSuheCUUr4TilVC8EopXQvFKKF4JxSuheCUUr4TilVC8EopXQvFKKF4JxSuheCUUr4TilVC8EopXQvFKKF4JxSuheCUUr4TilVC8EopXcsWrGjx1NbgRG7ETd+IBvuLV5EIsxJWYdK945cFG7MRTtwUP8BWvJk/dESzElTh0zwOfLjNeafTDjFcXO3EnHuAZry4uxEJciZWYdI10jXSNdI10nXSddJ10nXSddJ10nXSddJ10nXQ76XbS7aTbSbeTbifdTrqddDvpdtIdpDtId5DuIN1BuoN0B+kO0h2kO6Bbj4O4EAtxJVbiRmzETtyJSbeQbiHdQrqFdAvpFtItpFtIt5BuIV0hXSFdIV0hXSFdIV0hXSFdIV0h3Uq6lXQr6VbSraRbSbeSbiXdSrqVdJV0lXSVdJV0lXSVdJV0lXSVdJV0G+k20m2k20i3kS7Fq0rxqlK8qhSvKsWrSvGqUryqFK8qxatK8apSvKoUryrFq0rxqlK8qhSvKsWrSvGqUryqFK8qxatK8apSvKoUryrFq0rxqlK8qhSvKsWrSvGqUryqFK8qxatK8apSvKoUryrFq0rxqlK8qhSvKsWrSvGqUryqFK8qxSuleKUUr5TilVK8UopXSvFKKV4pxSuleKUUr5TilVK8UopXSvFKKV4pxSuleKUUr5TilVK8UopXSvFKKV4pxSuleKUUr5TilVK8UopXSvFKKV4pxSuleKUUr5TilVK8UopXSvFKKV4pxSuleKUUr5TilVK8UopXSvFKKV4pxSuleKUUr5TilVK8UopXSvFKKV4pxSu94lULduJOPMBXvJpciIW4EitxIyZdI10jXSNdJ90rXpVgIa7EStyIjdiJO/EAX/FqMul20u2k20m3k24n3U66nXQ76Q7SHaQ7SHeQ7iDdQbqDdAfpDtId0G3HQVyIhbgSK3EjNmIn7sSkW0i3kG4h3UK6hXQL6RbSLaRbSLeQrpCukK6QrpCukK6QrpCukK6QrpBuJd1KupV0K+lW0q2kW0m3km4l3Uq6SrpKukq6SrpKukq6SrpKukq6SrqNdBvpNtJtpNtIt5FuI91Guo10G+ka6RrpGuka6RrpGuka6RrpGuka6TrpUrxqFK8axatG8apRvGoUrxrFq0bxqlG8ahSvGsWrRvGqUbxqFK8axatG8apRvGoUrxrFq0bxqlG8ale88uBKrMSN2IiduBOPZLvi1eRCLMSVWImnbg82YicO3TMJr9uMV5NnvLq4EAtxJVbi0D1T7/rMuVzsxJ14gGe8urgQT10LrsRK3IiN2Ik78QDPeHVxISbdSrqVdCvpVtKtpFtJt5Kukq6SrpKukq6SrpKukq6SrpKukm4j3Ua6jXQb6TbSbaTbSLeRbiPdRrpGuka6RrpGuka6RrpGuka6RrpGuk66TrpOuk66TrpOuk66TrpOuk66nXQ76XbS7aTbSbeTbifdTrqddDvpDtIdpDtId5DuIN1BuoN0B+kO0h3Q9eMgLsRCXImVuBEbsRN3YtItpFtIt5BuId1CuoV0C+kW0i2kW0hXSFdIl+KVU7xyildO8copXjnFK6d45RSvnOKVU7xyildO8copXjnFK6d45RSvnOKVU7xyildO8copXjnFK6d45RSvnOKVU7xyildO8copXjnFK6d45RSvnOKVU7xyildO8copXjnFK6d45RSvnOKVU7xyildO8copXjnFK6d45RSvnOKVU7xyildO8copXjnFK6d45RSvZq6snG9qdJ/xavKMVxeH7vkaSfcZry6uxKF7vh3SZz7tYiN24k48wDNeXVyIhbgSk+4g3UG6M16d9130mZe7eCT3Ga8uLsRCXImVuBEbsRN3YtItpFtIt5BuId1CuoV0C+kW0i2kW0hXSFdIV0hXSFdIV0hXSFdIV0h3xqvzWo7eZ7y6uBALcSVW4kZsxE7ciUlXSZfO6a7c4POlsX7lBl9sxE7ciQf4yh+YXIiFuBKTrpGuka6RrpGuka6TrpOuk66TrpOuk66TrpOuk66TbifdTrqddDvpdtLtpNtJt5NuJ91OuoN0B+kO0h2kO0h3kO4g3UG6g3QHdK/c44sLsRBXYiVuxEbsxJ2YdAvpFtItpFtIt5BuId1CuoV0C+kW0hXSFdIV0hXSFdIV0hXSFdIV0hXSraRbSbeSbiXdSrqVdCvpVtKtpFtJV0lXSVdJV0lXSVdJV0lXSVdJV0l3Ps+cVw31K5/5YiGuxErciI3YiWc89OABnvHq4qnbgoW4EnvGzCtX+eIBvmLR5EIsxNPmZCVuxNGW82XfPq/5XNyJQ/d8F6lfec4XF2IhrsRK3IiN2Ik7MekO0p2x6Hy/qV95zud7NP3Kc75YiRuxETtxJx6Lx7wmdHEhFuKp68FK3IiN2Ik78QDPWHRxIRZi0p2x6HxfacxrQhcbsRN34gGesejiQizEoXu+qzjm9aGLG3jGkPM6h3HleF+sxHlmNA6ckY0DZ2TjwBnZOHBGNg6ckY0DZ2TjwBnZOHBGNg6ckY1DSVdJV0lXSVdJt5FuI91Guo10G+k20m2k20i3kW4jXSNdI10jXSNdnJGNA2dk48AZ2ThwRjYOnJGNA2dk48rlHjHPZ9wYMd8891THlbN9cSce4H4QF+JZ/x5ciZW4ERuxE8/5PHmAI27U853QMXO2FwtxJVbiRmzEnjxzs+v5numYOdj1fM90zBzsxdOOBRuxE3fiAS4HcSEW4qnrwUrciKduD3biTjzAchAXYiGeuiNYiUO3RJ/EM8liJ+7EAxzPJIsLsRBP+9G3ddrR4AHWaSfaroVYiCuxEjdiI3biqRv9oAPcDuKpG33ShLgSK3EjNmIn7sShe74vOWZO9eLpXzE3rvgwuRIrcSM24rl3MW124gH2g7gQC3ElVuJGbMSk66Trs73hd/0gLsRCXImVuBEbcZ6VjCun+uIBnvFEJhdiIa7EStyIjdiJY3zPd/HGzKmePHOqFxdiIa7EStyIjXjGzxHciQf4OkOfXIiFOPfExsyLrhI8Y8jFhViIK7ESzzp7sBE7cSce4BlDLp77WkewEFdiJW7ERjx1e3AnHuD5THLu0Y0rL/piIZ7tjX6bMefiRmzETtyJB3jGnIujn2tozZhzcSVW4kZsxE7ciQd4xpwzr3vMPOdaox/MiJ142ol62gD7QVyIhbgSK3EjNmInJt0ZQzTqP2PIxYVYiCuxEjdiI3bi0NXonz7AM4ZcXIinbvTVjCEXK/HUjbbMGHKxE3fikTzznBcXYiGuxErciEM34uHMc17ciQd4PsNcXIiFuBIr8bR/xquZn1xb1GHGjYuVOOoZPjvzkxc7cSce4Bk3Li7EQlyJlZh069StwU7ciQd4PqtcXIiFuBIr8dSN/plx42In7sRTN/pqxo2LC3HoerRlxo2LlbgRG7ETd+IBnnHj4kJMujZ1o42mxI3YiJ24Ew/wjDMXF+JpP/pnxpOLjdiJO/EAz3hyXv48Zh7y4tkuD67EU7cHN+KpG2Mx48nFodujf2Y8mTzjybk3MmYe8uLQ7eFHM55cHLo92j7jycWhe97rMmYe8uKpG22c8SR45iHX2AOZeciLp64HV+Kp24Mb8dQdwU4curHnMPOQL57x5LzvZcw85MWhe97xMmYe8uI8txpXHvLFRuzEnXiA5/PMecfLmHnIi4V46kY/zLh0cSM2YifuxAM849LFhViISbeS7ow/sWafecU11sUzr7iO6OcZZy6uxErciKn+SvVXqr9S/RvVv1H9G9W/Uf0b1b9RvzXSbaQ748ls44wbs41G9Teq/4wbFztxJ6b6O9Xfqf5O9Xeqv1P9nervVH+n+jv1m5NuJ90ZN2YbZ3yYbexU/071n/Fh8owPF9O4D6r/oPoPqv+g+g+q/6D6D6r/QP1n3u/iQizEldiyje3y97ONraD+rRRiIa7EStyIT/t63iE2Zh7v4jw/HQ3ntqPh3HY0nNuOma+rx+RpR4J7cNQ//Pfi8N/FJTjaFf67uBIrcSM2YifuxAOsBzHpKukq6erUjbHQRmzETtyJB7gdxIVYiCsx6TbSbdN+jF08J2iJ8YrnhMWVWIkbsRE7cSce4PD3xVO3BgtxJVbiRmzETtyJB7gfxKTbp64GV2IlbsRG7MSdeIDHQVyISXdM3ZjDQ4kbsRE7cSceyTPPdnEhDt3Yk5l5totDN/ZJZp6tnndejSvP1ic7cSce4HIQF2IhrsRK3IhJt5BuxBONPZaZZ3txxJPFhViIK7ESN2IjduKpa8EDPOPPxYVYiCt4xo3zfqox82MXC3ElVuJGHPWsMXYzbkye/h57CDOvdbERz78f9Zlx4OIBjt991bA548PFQhz1jPX4zGtd3IiN2Ik78QDP+HBxIRZi0nXSddKd8UGjr2Z8uLgTD/CMDxcXYiGuxErciEm3k+6MD3F+NPNaL57x4eJCLMSVWIkbsRE7MekO6M681sWFWIgrsRI3YiN24k5MuoV0C+kW0i2kW0i3kG4h3UK6Mz7Ens/Ma714xoeLC7EQV2IlbsRG7MRT14NDN/bVZ17r4kIsxJVYiRuxETtxJybdGWda9MmMMxcLcSVW4kZsxE7cwXgPaDjeAxqO94CG4z2gMfNUNfadZp7q4gGe8efiQizElViJG7ERk66RrpGuk66TrpOuk66TrpOuk66T7ow/LebMPMONM/0rT/XiQjx1LbgSK3EjNmIn7sQDPOPPxYWYdGf8iT3Amae6uBEbsRN34pE881QXF+LQjf23mae6WIlD9/zg1Zh5qouduBMP8Iw/FxdiIa7ESky6M/6ct9OPmae6uBMP8Iw/FxdiIa7ESjx1e3AnHuAZZ2J/b+ajLg77sbaa+aiLlTjsn9/FGzMfdbETd+IBnnHm4kIsxJVYiUlXSVdJV0lXSbeRbiPdRrqNdBvpNtJtpNtIt5HujEvx/DnzYxcXYiGuxEo8Y2CMy4w5HnNpxpyLC/G02YIrsRI3YiN24k48wPOZ5+JCTLoztsRe68xx1dhfnTmuizvxAM/YcnEhFuK5Vo1+nrHl4kZsxE7ciUfyzHFdjL2dmcuqsQ88c1kXG7ETz3aN4AGeMeTiQizElViJ555J2C9G7MSdGHs1Qw7iQizElRh7PjNn9WrXjCEXD/AVQyZTuyq1q1K7KrXriiGTjdiJqV2V2kV7p0OpXUrtUmrXtXc6mfpTqT+vPdJoe6N2XbFishBXYmpXo3Y1alejdjWaJ43midE8MWqXUbtoT3UYtcuoXUbtMponRv1p1J/X3mm03aldTvPfaf47zX+ndjm1y6ldndrVaZ50mied5kmndnVqF+21jk7t6tSuTu0aNE8G9eeg/sS7fmPgXb8x8K7fmPmoGuc4Mx81uBwzITULhQvChcoF5ULjgnHBudC5wDUoXIPCNShcg8I1KFyDwjUoXIPCNZiPKeeR1VkYVJgPKqtQuDBrUGehckG50Lgwa6Cz4FzoXBhUmGFoFQoXhAuVC1OnzYJzoXNhUGE+upzHamehcEG4ULkwW+qz0LhgXHAudC4MKszAtAqFC1Onz0LjgnHBuTDTNC8DgwozwXUVCheEC5ULyoXGBaPCfHYZc4bMh5dVEC5ULigXGheicWPOnRmKVqFzYVBhRqNVKFwQLlQuKBcaF7gG8yFnzCk2n3JWYVBhPueMOUPmg84qzBqMWahcOGvQzjOSs9C4YFGYfhphKwudCwOFmSmbhcIF4ULlgnKhccG44FzoXOAaFK5B4RoUrkHhGhSuQeEaFK5B4RoUrkHhGgjXQLgGwjUQroFwDYRrIFwD4RoI10C4BpVrULkGlWtQuQaVa1C5BpVrULkGlWtQuQbKNVCugc4ayCxULigXGhdmDXQWnAudC4MK7eBC4YJwoXJBudC4wDVoXIPGNWhcA+MaGNfAuAbGNTCugU2d+JGYObjtsFkoXJjWfBYqF5QLjQvGBedCp0Kfpvss8KToRuPTnQudC4MKYzZhzELhgnChcoGn5eAacHgqHJ4Kh6fC4Uk4PMkVnmQWhAuVC8qFhrrJFZ6ugnOhsw7XgMOTcHgSDk/C4Uk4PEkhx5BiXHAudC4MqpscXChc4BpweBIOT8LhSTg8CYcn4fAkQvNArvB0FXgUKo9CpXkgV3i6CjwKHJ6Ew5NweBIOT8LhSTg8iXIfKPcBhyfh8CTKo6A8CsqjMMNTiR/Xmc6bhahBmTozPK1C5YJyIWpQdBaMC86FzoVBhRmeVqFwQbgwa9BmQblgCA4zBbgVm4XOhUGFGcVWgSefCxd46J2H3nnonR3Q2QGdh9556DsPfeeh7zz0nYe+8/TnMCidJ98MdiVC58z/zULhwuze2W8z2JVZ6xnsVqFxwbjgXOhcGCjMTOAsFCrMb5c1mYUWhToLFoU2C86FzoVBhflls1UoXBAuVC4oFxoXuAbz67/NZqFzYVBhfpdwFQoXhAuVC8qFxgXjAtegcg0q12B+ArTpLBQuCBcqF5QLjQvGBedC58KgQuMaNK7B9dlPn4X5b2LyzRzdLBQuCBcqF5QLjQvGBedCp8L8EGGbM3F+iXAVhAuVC8qFxgXjgnOhc2FQYX7C0I5ZCNNWZqFxwbgQpm26zPwM+CoMKsyvGq5C4YJwoXJBudC4YFwg0Zk123TMwqDCfMBYhcIF4ULlQsSddsxC44JxwbnQuTCoMB8wVqFwQbhQucA1mA8YrcyCccG5MGswO2Q+YFyF+YCxCrMGOguzBm0WZg1sFmYN+iw0LhgXnAudC4MK8wHDpuh8wFgF4ULlgnKhccG44FzoXBhUaFyDxjVoXIP5GGGzD+ZjxCo4FeZvvfksOBdmDWaz52/9VZi/9atQuCBcqFyYfTCn5fyt9zkp5m/9KjgXOhcGFeZv/SoULggXKheUC1yDzjXoXIPONehcg8E1mL/1Pmfv/EX3OUcHj+ngMR00pjPXtlmdhcIF4ULlgnKhcWHW4Co4F2Z7LtFBhRldVmG2p83CtGaz4FyY7ZFZGBjgmXubhcIF4cLU8VlQLjQuGCbSTNnNQucC16ByDSrXoHINZqS4CtOD/SpULigVppv1YxYqF5QL0YS5Gz4vqc2CcyGaMDfA5z21qzCf4+c298ygzYJwYdZgjtx8jl+FxgXjgnOhc2FQYTr63MyeubRZEC5ULigXGhd4Il3uPPvgcuc52pc7XwXhAk+XztOl83S53Pkq8HTpPF06hbSZRJuFAg+eabRZqFxQLjQuGBecC50LA4WZCtrEZqFzYVBhzmvxWShcEC5ERaXPgnKhcWHqxLyeyaKtHrMgXAhrtcxCWKuz1vPXbBWi2bXOgnOhcyHaU2OKzVtVs1C4IFyoXFAuNC4YF5wLnQtcA+MaGNfAuAbGNZjOVNssOBc6FwYVpjOtQuGCcGHqzNGezrQKjQuzBnO056/mKnQuzBrM0Z5uVudoTzdbhfkEOUd7utkqKBeiBjrnwXSzVYga6JwH0810jvZ0s6sw3UxnJ043WwXhQpiWKTr9ZxU6FwYKM900C4ULwoXKBeVC44JxwbnQucA1KFyDwjUoXIPCNShcg8I1mD+uEt0780mbyCwIFyoXprU6C40LxgXnQufCoMIVaq7C1NFZUC40LhgXpk6bhc6FQYX5SL0KhQvChcoF5ULjAg9J4yGZ0eWq24wuq8CmG5tubHpGl1XgxjVuXOPGGTfOuHHGjTOugXENjGtgXAPjGhjXwLgGzjVwroFzDWZ00avAk2KGDbVZ4JnYeSZ2nokzbKxC44JxwbnwQZRn4uCZOMPGKggXKhfYFwb7wphbBiE6s0SvTbKZJnptUc080SxULigXGheMC86FzgXaZZv5olngGhTa45opo1lQLjQuGBecC50LtMfV5eBC4QLXQLgGwjUQ2uPqYlxwLnQu0B5XrwcXCheEC5ULygWuQeUaXLt58XPYlfa4ujYuGBecC50LtMvW28GFwgXhQuUC7XHN1NAsOBc6F2iPq9vBhcIF4ULlgnJh7j0dszD3uOJXZmaJZqFwgfa4ZqJoFpQLjQvGBedC5wLtss180SwULrBo566ae3ZzJTGTQ1dh7tmtQuFCtGc+ec8E0SwoFxoXjAvOhc6FgcLME81C4YJwoXJBudC4YFxwLswa1FkYVJjBwa7CHBKdBedC58KgwgwOqzCHpM3CHHqbhcYF44JzoXNh6oRrztTQLBQuCBcqF5QLjQuzBn0WnAudC4MKc6t/FQoXhAuVC1N0zIJxwbnQuTCoMGPIKhQuCBcqF5QLXIPGNZgBZW5RzQzSLAwqzICyCoULwoVKI2c89MZDbzz0M2zMTaWZD1rmptJMCM2Cc6FzYVZ0jukMDqtQuCBcqFxQLjQuGBdmDWatr4ByFQYVroByFQoXhAuVC4364Iohc+5ckeIslOOKFG0WCheEC5ULs3FjFhoXjAvRuNiVKjMxNAuDrBWuQeEaFK5B4RrM55BVaFwwLjgXOhe4BnKJ/s///PEPf/23f/3Tf/7l3/72z//59z//+Q//9N/5H/7jD//0v/77D//+p7//+W//+Yd/+tt//fWvf/zD/+9Pf/2v+Ev/8e9/+lv8+Z9/+vvj/3208s9/+z+PPx8G/+9f/vrnk/7nj/jXx/N/WoqcsTX+eSmPc8Q08di4+WCkPDfSxzLxCFUw4PWDAdnU4jiTAmYlHtsJT03sGnLEXbuXjcep5dOG6HMjeq4LwoRSLfxjb7bn/76evx/x7x/HZahAs9uteBxpjtWKx9lgf9oKf25EdKxmyGNfnEz4XROPhqwBeRx+UlPKx74YGxM9LYyKvqx3/72VNa2NZmU9PvZl2UzLorZMnOkKz23IriPODcmrI7w+tbHry97WcDwOXsfTviybiSlxseMc0lpRjfLwtw82dpOzZjUGubl9oyEDFo7+vCEbG49t/DUmD4SNNj6a6LthHekij0OKpyY2c8t9DWrngNX0toWuqxmPxclzC3eb4c+bsetMP5aPPXA8M3HuBzyPFRk15bHJ+dSEvtsVspmZcuQPiDzif9p4BPEPJmxTifNBdVZi+PNKbDrzvJF5/Yo9FhfwdBn3G1LO/eirIa08bchmYgnC5vHUwN7DhuWkKPXZiNbyftDb2VCR1RAVe/4LUus2gOezSaPekFI+2tjMztbXiNjRyMJxf2LERcbX4423pxOjbqbniFdLpo1G9Xj83H+0sftZ9yO95LE5nja+Mya+nP3xpOPPx2QzP0tv6xmnPBbaZOPTU9buKedxLofYp41/Sj4+omh5f3aovDs79m2xw7IajyO3523Z/b4XRwSkZ4RHQPloo709P+z9ELi1cdNbtL/vLTre7Y39yA7F8+PgZ6ZPI9t2sTQ2FmYsfaxUaWQ/2ZDdb4KuKSad43H/tDLZxNJ29PXw1gp5yy82dvUYVvPH6djUYzNLHyfHqx6P02F/amM7Mo/fp2XksefHP/ife3UTT01yhlgVe25jM1O1HCsaahF5yUYrUnNkRF9rS63LxmPl9rw/rOweHHTko7m9aMMdT6Qur9noeKp9nE49j6fbGeJHzxnyeNx/XpP2W38dvOTi7xHi6/MYYr7bpOkt9zbK4/ziSTSz/lvj4ePkMuPh46jx+cj48Vv7tGtuszx4PH968F0si2uMrxX14Jp8XDJ4fbdPt7XQ3OUQ1eNpLbZPZJ57A+Xxy/n0icw3v9oSGTLXMvCD336ysZml2nPVoP2DDbtto2nWoyltG/1iY7z/XNjfnqX7Hu05N0zKa6NiFTY2o9I3c1SPnqNSPjyd6jfq0fG7L+15PdpuZ3NkQNYPs/RjPbrtdrDyl7LW7s9t7OqhFJDLxsYulsbne9amib3Up/XADuvjPPel+VGP3EJ61Mif2hi7VdSQnCDl/BLDsyi2q0ec+l/jspnrYxdLD8fWyYffyY9bH2Ozinrsl6+muH9YVd630S33Lbq18tyGvR+Bhv/OCPR4JPQcFffXZljNldjjSGU8tVGO482TgG0tNBdi1Xj3+5da7M6YaM1QKw9s/YaRoTlLj35sjGym2HmP2FreDnrArZ9+5MqxiWPDV2sGPd0+3O++x7V8zn780Dyf6eXwbYfkT9RB4fTzLvaxCac1d3/1eL53W47dal9KbmOLK/XHp6OJsj1CHJJ+++D6dONhO0cez3T5ZNnGZo7szp2ayppordHW/i8HPqW+Pzi7k6ebg7M7eLo/OPYjg7PdHG+GNe7T447dUy4OsNStPT8E250ePZ6iMiQ+jgyeu97WiBwZ36XKcyNS3j9ME3n7NG1n4uZx2u2WbM7Tbnep1hfHpWhmAcjmCaLsDh3un133989x9s2J18YuI7vm1GM3RXIF8UB9Hs62Rrqsjn3Y2MTEKu9P+N251M0JvzNxc8LX909NS3372LTsjqUe0z0n2aNHKSzXF0dl47z76ZG7097Hi3Osl4Gx5SX3ZyPbk6mmudZ12if/nGux97uR2zqPHe7Nb4TW92f77mzq5mzXt1ME7rfk1fA+ciWix2GbLv2B9BN9P/9E309A0f67u7Th+fDor/1i6lFyj+rQzbi03UH/zcyi1t4f22Zvj+3OxM2xvd2Szdjue/Tdh+V25Nn44xx3kzG2Ow8yqZZnW3UTkm3zAzNKw+LheBqRd6vDx3FhdumHdcz4FNVN30+fKLtzqbs7/nsjTQSPmFKfHzyW3dlUlYG9v6JPdg/3JiqeMHlb97OJXQQpWQuV8tzEvj9uJqXE2zXPz4Swj/l41H1WE/+BxJayO5u6t3+4NWG5224yXjSRkcworv9qYvswdVRMU9n0xrZL4buN9g5+NdLf3yr/YprdzRcquwOquwlDpZd3zy/39ZA8Z5cHb+qxM9Jymshjt+u5kX3Humdobf1om45tb8ezrYl78az7b45nH/qj1E1835q5mwVVxrFdJeKoqikN8ctG+g8YsfqqkXtZXWV31HT+PqT79eepUGVsxkcll98q1Ce/GrHtvleu4dmLv2mkFuxH2qtGsGUl1X/ACL0J9KuR3ejcTHaTY/fseuQ8sWOUF4eY1lhjHK/Ok5GZarXYi31yMxFRdidXnIl4DHutY1t8TXsa4QTA743OzVzE283ZJVbejyf9eVCS3fnV3dcodu9MPc5kCo7ybVOR3YFAyyxAb7wT1z/ZqNuTZ/yI8t7k53psXZhepuBMws82dr9/592M6/fvvFPpeWu23ZpL6Q9n8b9269bIwNiMzS/X9vfcSs6Sx4p585gk2zeosNfqz7eev6hI2jgr8ny9Jbtjn+H5YH8Uepj28p2q3M0nFtmul+4lFMvubaq7GcVbI3dTivc1iQ8dz5po6S/WpGbPto9JKN/p2JvZzbJ7sepuevPeyM385r2RmwnOXzQHPzvW7UUjSBBoo7UXVwiPXTlP71F93Qz2Xx5j5a+auZv5LfXt9KutiXvbJ3sT97ZP9nuFdzPQZXukdTMFXXZvW93bb/iqHkhCfzxSladGdglYJffoR3m6QN+bQKwfIv2lBbrXzDZ4sI8XJ7zTVr+3MjYD3N/d99ibuLXvIe34vfseH/tD3uhWHOK2+mpUc+xtPdiO56OzO4q5OTpbEzdHx37z6HzoDz9eHx0nM+VVM3dfaRF7+22BrYmbPxZbEz/wY/HYJsyLWHrZPQibvnsGsjXxiNB4qHBrx2tGnH773MqLRmiOeH8t1nfBOqXXl6PJ7VefxI/fbubxaJkJxPXgRa2+aKTIi0Zuvswlrm8/nWzrcfN1rr2Rpri+x8prRh7jkdlDx4cNpc+H5vr+ObPsXse6+2qZ7E6I7mYybo3cfUFta6SVlmkm0suLRmomvLQqvjHy/jNBf/+ZoL/9TPBFb+TmZ9PSNr3RdzvtVfEjPDZGtsv7/BUux9ONvn01cpvdyocUs++0pWQq02OTrLxqJI+87bF4e9lITyOb9zH343vzpU7ZnV/8iJG7mRXy/ptZWxM3n/bG21sD+964mVnxRZfey6yo+9eq7mVWfPFDc++N272Rm6+61uMH3nWtxw+87Lo1oke+i6DH5u3fery9NbA3ceuHppa3twa2g3v3ndu9kZuvVe6N3HyjcW8E179Vf3XCVyR5Pow8r0kt+xdeb72tUov/wDPefnTuvbBay7tXV24t3Lu8ssoP3F5Z5Qeur6y7Y9RS8pmmcDrF5xca6+4g6Gaf7qpx8wXevRHLOyxLt+NFIzffAq7yA9mEWyPD82FkdE5SKd8xgnXR6HQH5HeN5AvJnV8D+p6Re29G192rVffejN6aOL+GmKfK9AD+i5FtY8aBxsir3TryiXUMfnf2O0bOy7Vzqh0HbUz82rG/38zjyTA3a0rdjdDOCJLNRGh38HtGqqUf174xsr+aF1k3WjZhafd2082LQ6v+yG2Z9f01wRc1ubkmUP+B+LgdnJvv4tfdq1Z338WvbXt7Vj57nocXaeTztazt/Ze1a3v7Ze2tiXuvJ91viW9asutRZHeVMZ5fdLs70Wojd43asPFiPW7dslDb21dg1LZfueZUN3oj4PMtC3sjjkx850eB7xg5P9KQEXFz38O+Jq3iYmp71cjNmyfqdhf89s0TX5kZ9A4aJ75+y8y5o5AJEEqJTN81k3dYnSY3VxJvO7jiUwPKWcXfGiXFcSHn/fxqZHsTJz7dUDcetM+fzclfjv5SMPjwcEMXHXy2sXtp6mYw8O0KJW/kepzikh9/eil/W4+7Xbod2szxfIxyfdEBy1GRe3Toqw5YcE1ZOb9b87IZvDdZPt54cHznwR6/gMdBTxW/PEvv3uC6uTW3NXFva67X32ri3u7eFz2aGZGPvu1PO/SLLcJ7V+rV/hOPrjsjN7eQ+viBLaTxE0ev2269eUNghL7n8fneFYF1d+uZt/zFciv2opGbFw1ujfSSu0i9fkjS/o6RlpsMvUndGHn7He4v6pGLz942t5XUMd6vx3g3FOnuraCboWjbGzcvkdTjdxu5/ZGE4wfuwW7vnnjuTdw68dz3xs3djS+69N7uhm7vGrz7E7ENiDdvcNTdy1o3Nya0vH/NkJa3rxnamri3MXG/Jb5piby9MaG7r0Pd3Jj4oh63NiZUjnfXIro7yLq7MbE3cnNjYmvk7sbEviY3Nyb2Rm5uTKj8yJWYX5m5uTGxN3N7Y+IrMzc3JvYdfHNjYm/k5sbE1oPuraK3jnxzY2Jv497GhO5uHLwZDHYXDt7dmNjW42aX7of23sbEF3P17sbEF2bubkx8ZebmxsT+MSvf87IPt2N860ktMw9Nn5r4Ig/r3qcPdPdFrLvfPtgaubcOV/2By1xVf+Ay131SmWS31scP2dMe2RtxXHA7PrxA/q3MtJtjs/0g1b1j062N2yukrZG7C4t9TW4uLJr9wMLi+IGPZGjrv9nI3U9t7I1YfvpWzF410jIwPiKSPjdi8gORwOr7keCLPslFivix6ZMvLofKJ+oHU+6+fctIxY1oo+lTI743omSkv2Lk3s7Pl425VY/tG0COTzUfH+6A+PQG0DZB/Nbv+Bc55vd+x7cvM2Hx1z7cU/edN6IM74jZqC8a6Xm9gIyjvWbkMRyOkdk1Z/dLfvPdrK0Rw0Wi1v3pm41bE3BeG+KvmchHARvtuYn9ZFes7F99Z+6DEX3ViMBIfT4u+v5bWfr+W1m6/1LW2ybu5ttvO9T+4XvA3xwV+qEar0YQrsnLRno+0DzwZSPYlNsa2b7qfS+2798WvxXb93dg5Dr8sRH14jUamcb5wKev/dT3f+fq+79z+4uB8rPHzfXli4FyAdB6La8awc14fbx6MVBvqIm/elkSbgt82Hv5iqKcZG3I630yYOTFS7Uey67cdmpef8LIi5dqPRYReTOXtVev97J8Xe6xAVZeNOL4onxvz4203b12bvlL4857tZ8SN9puf1NbTvtH9+jTva+vauJZE9nVZP8hAlw0Rodh9Rv1wGmHO7nfr/XYfYhA82UKb9I2RnapAbh6lEbmvPHo/hzp2DYemwtf2v6+wZtzZLsVf3uOjB+YI7v3su7OkfEDc2Q3NrfniLTfOkfacWR/HLtvse++mdWk42oG/uXrn2zsFjSeR2qPTZ7+zMYXjTF89aI//6Fouw8R3W1MLb+5MaXl40RpL/7qNezifbrv4jtGBDWR9hNGrLxqpOP6juN41Ui+p/aw93LH5pFPe/nK0ceBNozo5jsg+w8BKE60Gz+If4pp+nY6697ErZVv0/pbTdy8KW3boRXXAFU/Nh26e7/lzoUm+2oolt98U9Sv1ejvB7PdW1g3g9kXH5oQ5G5Ie9qYL4xkCJFmfWNk92La3U9e7Izc2wPcm7i1B/iFiTt7gPvPxNxaw3/xpZk7a/gvvnfl+N5Vf/GbWbiT4YFP87aabV0uv8YgWvS5jfdfFWz29quCWxP3MvLut8TltR7FhSwfsoG+ZaMJ3L7W5zZ2T6ijYTPDxos2bmUGfjHDOuKgPv2yW/Pj7dmxM3Fzdvj7GQBtFzqEvhKwsbBP0Lrz5YXmm1XUvU+xNt/82lvJ7A4r+jy56htG7EUjmq8lmNKG269Gxtvjsm0LPvBR+qttkZxixk+23zSS7mIyXh2aih85vnroFyO7n+vRB2774KRGGd8wcuRh6uDvKX7PSMlkiME31H3PiORVioO/gv49IzV370f1XU0203VoHnWPdjzPvmtje1B15xLSfT08TxGGmzyvx30j41UjGRYf2F4zUo4D9/4cR9+Z2Q5xbtsNpc/DfnOyKSYbnWh800jFsVnbOOD9X/CnKcFtvP0Nl/0Tc8aSxwHY02ci275udfPjv3sjj22YZaRK3xip2ySChiSCTWv07edu22Xf3Xuy2pq492QVx0hvPtPY7tq/e880dmzfHL33efn7o+KbUdnODkNkfp5Av7VxfiswGzP8VRvH2zboNrZKP9/fs2HYq+vPbRR7ez30hY1b66F9WxSTTK2/b+PFOVYlf6Sq9udju33JyYy+97Lzul1FvOFqSXseCndfbbo7uHsbPzC4XtCWjePu35FyekOjvdqpeY9i7ZtZJm9fFGS7ZIi7r+Bs63HvFZwvfrNzm13r0Bd/+FVRkVJfNZIzRHX39FD3b1rfSu227RtWN1O7980ZteeR3Yfvi31ujv9Ec/pvbk4raaQV3TRHjzefdffV0JyurY3Nc+ruC1jxit51LES5f4d/MlHfXSHua5H59uy8v9Zil+d+DPoO10HPh/YdIx3vzz1WdsdrRkb+Vj346Ude9j3i9IXdTY+M32ri8StDb+L28rxTx0906viJTh0/MEe2bmf0BNDHawHekMRgxfurRvLhzD4ek3/HCBJu7MNdkt8yUnGs+/HbV5+MtB+4HMjs+M0B3lqmU5iVTXO2b1bdfBVpWxOv+Vq+V93VRN/fRti+RnRzG8Hs7W2EnYmb2wjW399GsPH2NsL2xZ272wi3R2WzxNvPjnvbCDsbd7cRvrBxvG3j5irR7y7f22t9enc7Y2/j3naGj/dXvHsb91a827ZoZlNWlafHu5EA/nvrcW9b5baNF33u7rbK7nWo29sq/gP7XW6/eWBubonsTqpub4nsK3JvS2R3C9bNLZHdfW23t0SGvL0l8sVDzK1XoePYZWfkzivIWyP3Ehi/bMy9euyy/iwvFfLDNov/ttnLyJUZnZlr/dZCZtA9L0d7aTVUkOP+YHm2GvLj7dTUrYmbI/vFkvtmf7Sf6A9/f4m5NXKvR/Yn3aPhMx29vHhcPhQX2PbNwf32e2z3j8t3Zu6llu5N3Eot/cLEndTSL3JmMiHT6vFyChC+6shfuv1spOze6PCRiVXOjfn8GYkvjORju4/x3IjvXh26eeWj796lurlCdSnvrlC3Ju6tUH13xnRzheq7VyjurVB9+xbVzRXq/VF5/rS8nx33rq90ef/6yi/qcev6Sq9vX1/p9QcujdzW496z4bY7bl4CuLdx7xJAf/8SQP+JSwD9/UsAt8G0l7zfsRd+BetzRN6lY997aWAbgO7l+7u+n+/v+na+/9bEzXB8uyX+WofeS/ffmriX7e/6frb/FzZuBVJ5+2Ll3Yu1d1OGtzZuJvtubdzM9d3FnrvZsfdtjBdt3MuN3cbR28/62169mRm7bc3NGbK1cTMvdmvjJ9pyc6bu23Jvpmp/f6betzFetHFvpmr/iZm679V76df7H9tbidNu7yZO123Oc051PT68hf7pmdLffll6b+LedpK//+GeXSWGFTxR2qYz2vun2b5b5t++Yvf9DwjU3Qu1t76VsbVw61MZ9Se+A/oDH8rwvv2Iwb37bHX77c3cnXssKp9/931r49ELB7Xm+TUJ3tvbTrs1cc9p+/sXnW6/x+D/8Gq/Txbk3Vm+tXDvgzDl/Vm+X6/cnOX7A6ibs3z7IeJ851IeTBWp923cvJZg7ynuOPfpHy4I/+Qp73+Uam/inqfszp9uesr97iib+4DKdncQKR+NLzh41UZ/38aHuxo+X9S0jR05UZ2G5Uy7YBt994aT4llQhRrzq5Htdfi581LZZb5pJO+wfKC9agSPHlL9B4xQpvRnI2135HLkAYMd/KLytwYHx2GPx6Hj1RHOQxet5Xm/tt37I0e+AN6OYS/1SKu4ULOO50OzdxvKturP3abv3nS6eVDRt/f54Tis8oVRv1Zks5rz5suIN35zo3+ysf1QX0ds5jOTT/XYnXbIoBsC+EWHzzbK9hg6jxkebO15a7bd2tLz+M38X7t1a2RQGtvzSbL9tbGSk6SYbH58++4w6tYK94t6pImzHn1TD9/uPeSuQaFsaS+fjtU3YURLXpaq5Xk9djZazd2LVjfX4do2kR2hyLq9ZgNHYufm8lMb+5HRvM/iwfqylfTfB49Nn7z9VUh7+6OQ2y9HlE4pJON4luvQ63Z3OzfZH3uG/pIJyfd6hkh/aZlb817gB/t4bWSddjC8ledW+vtX+fX3r/Lr79/D943ukNc7tcNKfdHpHMuzB9uxGRp/f2j8/aH5vSurj92xuVr4q6FxsvL8TtDd+wX3ItnWws3P225a8lhcZuZGL5uY3HfPu/e2drYmHtEQvzFuT99B+8KI0wek/Ok7aF8ZQXR/8EtxtQseQ3rdOO/ujrDS1XIfoPNVmt+xIoJP4XAm2ufPR9y2UeQ1Gw23kzYrL9m4+x0c9/e37Hc22mMbcD1VSWf//4aNWnAl8Icbjj9N1t27UjcD89bEvcDsx7uBed8Zudptyq8GfO6M3eywIzMf7PjwgcDPRnbr/zv3335RDaR+lg/fSftOW0resPxYF5VXjeRGs/G59HeN5PunZdTnc333ipLi8nrd2Ohv/172t38vd+24u/u/tXFz97/3H9j9336u6chUaT0239Ps759O9fdPp/r7p1Pbg1zcwlv9w0dj2n0bhi0dl/rURt++JHXzWDq+2fPub1w5du5y6zO2fdSfaIz+RGN2z1Ilg3KRD1eC1E812Q0wNg8piHn9RjUM1zX0D6uxz0b0feffGhlx3Ds3D/pBvVq+Y6QLkrj4+thvGsksrt7axsj2JRbFFRb0e/nYsv5GTUaehw7+ctT3mjMML/Zw9vd3jDwcM3v2wfSRw89mxmG/3cyHJHA+r/rUuXsjOPQSofXd94xUfJWP37n+dZj3q5k8FdEPt0d8dMKx++DSzWuktzbufkh6b+TmM8kXNbn3UBKfVns7LpW63Vy586bRKNubqG6lto/tidWtHOitiXup7fdb8jw3bN+j997OGfL+u/1lNz3E8GFfo3t5Pr8WszeCb1g9sLxm5O4LOvuatIq0UNsZ2QboQfc3DT5vtu+YKap4tV7NXzaTX106TbaNmV3P1IHu5WP4b3WvYk+RD4t+NbL7kNy9N37K/l2/Oy9R7W3ce4lqvP8S1fiJl6jGD7xEtR/aPOh9jHJ90XPKUemNcq2vTvnS6FIKf9kBC3I9y8eXMY/vPDsi3B8HXfb1y+Oa1nfX5OP9D1oNbb/VxM1vYu17tOMNedpB/6VDy7sL4aE/cHXaaD9wddpuMe0tY/PjfOT5nZQ7G71ovgRZRV+z0XKp1Zs8v4V1NH1/ou+qkU/gvX1I0/hcDXu7Gu3tr6+PbdbKLWfZbW90yzcYu7Xnd9ntEmjv7dJuLdzapd1fZ3NzRWQ/sCCyH9mo8fcXRGbvL4h2WS83F0Q7EzcXRLdbslkQbXv05oLIy/sLot2HCm4viLZG7i6IjvEDC6JtTW4viI6fWRAdP7MgOn5kQbTtmbsLoq2Ruwui4+1L2MsXX/m4tSDa2ri5INp9FOfmgqi3H1gQ9ffXmPuhvbsgOn5mQXT8zILo+IkF0fZZ4NZXPvdPE3c+8rk7ar359D/0B57+xw9c9N/3L55k/ox8+DS33rfheWxcx4ds8fs29Mjnoof7PD96HmO8vwM/xg/swI8fyAr4oib3HjgfP9U/kRewe/NeKYmu+CYvYPdogxutzew1Gy29X8z1qY1Hj/zAVynOOwZ+wPm2fYLvYvthm/ZsA+vNW8u3lwmo4QWHD5fbf36UKNuX8m7dWv4wcvfl97Z5ni9v31ezt3FvbVKOH3jd6mFkt0i6dTHcw8Zuut68Ge4bY7Nba+1nya3by/dGbl5f/qWR430j9y4wf5w/683FY3uxY29eYf6VkVt3mD+a8/6tVV8Zubmg3jbn3jXmjyfl47fX5NZF5t8w8qoD3rzKvBy760Hu3mX+1by/O1H0dw/PvevMH52yvaLo3n3mX1Xl1oXmjxXd27dWPmyU91fD+5rcXQ5/8Yxz61Lzcuxuprh7m/jeyt0zqK/ac7Mmfut5qx4iz5+pj3cX1Psk6jsL6v2LINj2bJ0PCb7xMonhhRQb9TUbPd9HFV7Ifu+FFHGMyfO29N0bqXffatkauXf99t7Ereu3vzBx5/pt368qFKuK47WR/WBDX7QhsFGfD8qZbfru0eAXNm6dDT5s1N9r42aS/X4t8A/fE/zeuNAqerwYPbger9ro+SzzwFdt4L7qrY23I7q/HdG/eBO94CJOefFl9kwPfuCzfatt7LnVE/urAe70xPa6hbhMez6c+ofXDL5xZUPPncDWa3nRBm6g6ePFqyN6Qz1evcKi5wrmYe7VKywKVg3ycn8M2Hg+LtsEi5ZrIG1ef8DGa1eLPDY0c/fOmr5oo+eCwTdzbGvD81VJ7e25jcch4S7P2vJXxZ3PRn95XWL3IRRtOd8f3aObY9ov6uJZF9nVZey/P5pzzWh3p36nJjjVdyff+wc12fxiOz4d6k12b9Zs37/CzVw0PueFI7dnSsfydGwuXTi/G/sTM2V3IHh/pnxRl7szZbw/U7Y1uTtTyvYzpndnyvbFmvdnSsMXnhp/4OmXmbJN+mzS8Xo+//r1z0Z2DwMuqzWP06f+zMi+NZa/fryw+wet8Z9oTf+9rcEnkR/42u9fq5lP8+nSg2/YENSDb31/2YaVF210XOBwHC/a8Hy2kf5qn2amRasbn9nbqLChz58p9rfJ5iuYwskFn2+CLaW8faPFFzburXbL7qbAn7Bx88KiXZ9WXJpS/dj0qbx7p8W2GopFN99D8w+q0X4gkIm9Hcj2VxYLEhWlPW3N3kbD117seY/47rf77t3JWyP3Nv72Jm5t/H1h4s7G3/Zu7lvL9/3t3neW79tb8G/VYX+P/p06bD+ecfPDkHsb974L6dtrDm9/gWNr5ub83Jq4Nz/3Ju7Mz/2nhG5+SmS/yfX+B2tuzo+9jZvzo/3M/Gjvz4/2/vxob8+P3c3CBdlQhWP5p9XP3kQeORSOHt8xgXMxofcHP5t4HFdv108DD7av2sgFstHR+HeawvdF0Fbqd0xYPnB8PCX8hgnPW9oex0CvDatkBuJjb/w1EzUzTB+9Ul6rBU476/FSd6riszsfbiMcdy0U3Gr2OLXur1SiFGTs8p1m3zGBT3498LVaNPq0i/prJgzZdX281hB8D7vKaw2pGfceAey1hhgybM1fqwW2kouPlyZnGegL3uH/hgnP0zhXe8UA/aq21/rhyMXNh4vlfw29u3vI3vfTkScMQ17rCdyB5O3NrnzNQLWa+wimz7/2sTVhlPRd3jfRXjOBPE/bfPtkZ8KRR+hNXjLR862v+uFqrO/UIveYP+TcvWzitUHtB9LtyvGaidy2r11fG9Seryc+cLxYi5wX3V4c1Ay7D3ypFo8HTsMDp71k4sODXn1qopTd61FF8EMm1B3lO89p+fgt5q81JXM5pdrxmgl86khe85Lz+Q5Pi/VFEwdM6NsmpL7YnXhmlf5aLSr6oo23a/HioN58MUSO7fUMt14Mkd1Z0t0XQ3argHT4xiuRcrxgQF4y0PLmSvuQtnnbwL1LKt6+SfjtrK23k7Z2o4DTdPXyfBtpu4LpGXKNlpSfL2Pcrh1yeV2sjpdM9IZPGLTXajHye3tyHOUVE3LgTOHDu9ffqAU+oVS8v9YQxzdDenmpIefHbXJ9PV6rBb5KVZRTLL5hQjPYPU6d21MTReS3LoQea+Ick+qv9YbmTUeF30l6tUNfNOF4ucOd39r+9Hqx1O03XPFk4bTItvuehu8NDbWn1diaUHpNpb5kwju+7vvhoye/dMYPfED6YeUHviC9fQbveAaXY9ec3dtM5thBeSx3n15W9JWVXHc/2NpTK7uXiB4PvvSqS920SLdJn4akT4pDw75hxOC+pvVVI/i4jRkF1V+N6LuPPV9W5EBF6qYi2/u1cNd2o2SROvRbVuCEjVJf/oGVXYMcPeu+G57tlyXzBvJa+Xvyh3/HiualNrXpzsruu5+3sxy33eKITR++QPZLt7TtSyP5WhJ/8+/zL/D2FMhzTd06f0pRf6nI/gUphANOHNFv9QmycR5PWmXTJ9vb2LBD6/xNRh2frWwTA5cDNXrF6R/Y+JFJ235k0trvn7TY6Xy4sj8foO1bSpYz7rGuqbsGbW/swb1fSj9i4/Pk371OIgNv9h601Sjj86+Yba+8x8Gd8oca6ufZsst/uH3X3Bd1ye0D0Q+Pw7/UZWxny73kadm9ttRavjXZGudBfGOEHvtSuQHKGWm/jtDuNa6Gb0+0gy+quf0Ep35gMV7HK8+0iudIZef59ZHJf+SZ1n/gmfbLR0k8Z9jzr/mV2DF9/4HU375cdf9Qe3+Eto/GDVc1tg9v/3y20ndvHsaVBNd2Rd28NbC1UkbuQsnRt1b0J8LB7i6/1o7cVmxs5Ts27r2PsW/N3fcxZPv+z933MWT3VtS99zH28+2xY5wHf3LsFpe7d6LOC7xy42Acm/YM+YmZsnsr6u5M2S478uVw49H5demi7+5Cf2Hj1kb0FwsxXPtcPlxx+L3lHFuh6Parle0bUTdTxOv2w2X3UsS/ao+jPV5f7RXHRSbOHz163Qof9X62Un/iraj6A29FfaM9/vIGggu2NOvLI9SxI9l5b/V1K7u61N09MbdHqJTfPUK9oT18bPq9XhlYLA/+btjrVjiT59e+bT/Rt/a7+5bbYy/HhIEV6iivjpAcuR/4OLbaeuLdrYheX9/5uvnrvrVy9/mryk+8OV3l7Ten9xtOA3c6o2O1fmOzqeAu1sf5YP2J7abtGNuPjLH9yBjX4yfGeHckdnuMd9uB2CTlU8rP41Prbt8LWzNa+baOX3dad5+sy8Vl97qrSfuBZ/1af+IN+7q7Vebms/7exr1V4b41t2es/siM1d88Y0c+7A/KIvp1nuy+MdUKNvCEsi6+OWM7vvvK3/L8tSq7KUspiHX3MdyqPzJl9QemrP7AlNUfmbLtR6ZsK7/3h/T2z2DdnYk9dhYyz4ffnPsHVnaXSh4D99/zNVFq36hLxcNb/XD/6K91sZ8I17vevT/3tz+EN+f+/sf03tzftub23LefuFSl2tuXqnwxU0q+2lIfq4XNTNkdiikuzNRR66uzVkpemSm+rYv9RMS2H5m19gOz1n5g1tqPzFr/kVnr78/a/SFsxcfL+fKLz4ew1XeTNr+eppR4c75ee99Gy8RMvgb/mzby602N0wa+ZcOO1ZYP93i8bKO9aiP7w17uD8v+sJf7w7Mt/nJ/sI1X+wOJu/5yf3j2h7/cHz3b0l/uD7bxan/0TLvt/nI9MuWn91frMfINlPFyf7CNl+vRcWPDZn7sEzjufudvb0UK7mjafeivbr9nZdiV8ra1svu6Lz5C8yHPvHynPXe/rCdf3HRy7/OH+7rc/f7hF2kt904ntzZwtPhAfdHGvbPwbaLP3QcSPX5iL1aP9/didXf4dft2Dd29x3Xzdo29jVu3a3zRmpsXbHxh5eYFGV8kYh35mFaFb6f4nIil5Sd2l3X3QY6bHri3cc979q257T27c6/73rM7+Lr9OL9NtsOnk2S03RhvP22VJ62PVS3/In82svvYHn9TmVLCPt/LqbJ9BS9zQPg2zG+ZyIRXo7fZv2kiJ8nxvBZf5C/m0U47Pjx8fq7Hbp3VMtlVORflDSPjqZHbSZ18L+ev80y23w3Eib7WvmnP7tbVI79MZ4U/pfiLkd1k5Q8ylnb0HzHDe+X2rUU5Ls/ZZ0bvDqtGy8P4g97M+eUwUXdHXvh6Que71D7nImu9tywf5flDqNb3H2T39cgLUx4usLPhPxHqd2m3dx+U6viJByU93n9Q2tq4+aC0bc3Nq7O+sHL/QWl3aHbUfxyrf/Gc3XlXHB7NMab2fHZh1W2Od37IgF85tPqdxpQDt0HXbWN+4tZ+1ffvYt/X5PYTW/uJDVhtP7ABe/s1TN28hqm7w67S8fGzTklTv1x+sU3avbkc3aYP3x+eH4myrf/e4fn49opshsduXr+zPUnRH0nsUfuBpZf9wNLrRxKM1H5k6WX2m2dKzX6t9cOnWr7z6olikf7YnNjOt/G7rdy7NfYLG7eujf3Kxp17Y7/YQrl5u+dX2zk3n1K+2PbDB5uslRe3DvGZV76dpn5nM1XzTOWxJVtf3ZLVfLwXHb6xsn39uOTtTY9/uHmJWXcfzsxkJ4onv+Rx7nOycTNLH6/nu3dclzNezr3vjt90769awXUiD/RXrdhAYs/xcl3wgmzhKxq++U7P29cySX6YWD/8plf9PNfu7m/p828k69heXEOff998pVzH9pd0hZNOl2f8cmnZ1kbPH+POn2r51cbdxmw+pb3v1gHfGaNuemT3IsLN71d/URN8OfIovqnJ7jK4ex+N1rF5jr39Xvneyt3Dza2V28d4+7rcPcbbW7l70Np2R1/loHdFHkxB375pBzHywfaqnbn+vfYQlS/J/K4dvL1yblU8t7Pv5bvHv3srd58Stt5088PnW7d+7JWlH5SjvxYbpOSVHlI237Zv26/S34sNrexG+e4H5bc1uduv+xG++TT5xaw9Kt7G+XDL3zdnf0HHnFd5v24Ht9CXj9d53r9M89aSe2ugwQDvw982cGu58HaqwrYJeZFl+3AMcN/AnbtIdtedC74t8/w5eGcgB4FXod8xkL/jo49XDBRcKfFAfcmE5BeHz8SSt01sFibb2xYzBa7wcvxVE3K8ZqLhwwyb98+3I5KTohyb18a3JnJBc34c/m0T/mIt8PRSDn/RBELl8dq8QBL9I9ja2yasvWYC61S+j+N7JipMvDbB8cH3IvJSQ+4lqb29VbXb+dYDt1mVzYOS+vur5LY/OLq1St7auLlKvt+Y56vk7X3reVHShyfyb1hogi8r1ueL7LZ7yeTDIns3KnsjeDDZrdTv1+S5ke007ViQ0uL412r4+zNsZ+PuDGv7Fc6tm/Db7sjq5k34bXfEM2pZU31U/jKLfO7W3WHTUDw2tWOzjG27c/B71yp/0bElL0J9xOay6djdGQI+NXPsTOz6teerjYNH5x/0687KzQ8lfjXGeSg5OIfrm1aOPFgZB78g+T0rxfAiQW8v90vBQqHKq7PWM7NmfLhP6NdZe9vKeNnKwKeiRnvRyv1vUX7Vv/c+8nk7XD/fw2m+zWnBG0W7ILnr2JvfCf3Kyr0vhT6aYz8zPP72t46/sHHv1PcLG09Pff/3o/Cnf/3L3//5r//2r3/6z7/829/+4/Hv/uc09fe//Olf/vrnq/h//+tv/0r/73/+//99/T//8ve//PWvf/l///zvf/+3f/3z//mvv//5tHT+f384rv/5X/14/F70Q+R///EP5VF+/JA+2nSu8c7/Uh//5bHMaPH/nn/dH932x4eHHud/mH+/Hv7H83/H//6fs8r/Hw=="
4216
4216
  },
4217
4217
  {
4218
4218
  "name": "sync_private_state",
@@ -4397,7 +4397,7 @@
4397
4397
  }
4398
4398
  },
4399
4399
  "bytecode": "H4sIAAAAAAAA/+29C7xdZXkn/K5z9jk5Ozk5OzdIICHZSSABkgDhJopALoQkkAACgtViiJACJhLIjSSEmHtAQbz085vWzlSnFzsO1rY6vc20Uy+141h7sZ3asfZTazsqo1VarK3j1M9l9nPO//z3f717rbWfnWzIeX+/ZK+z3uf5P8/7vM/7vNe1VhJOpCmN3+17Hrp3w8PbHty1ccemDdt3/PD/9G7SyK2EkilpKeZ780/kDDQoeoCz94f/6iGfoAGSWIz/wNsHGLAQf/gRfxLKyj9R/pSnZPlDvykC/KiL4Y774b8JcP1jJL+k/m9vV/8pEZ2tblYCfT3kSr3Ge73ifWH7537x009/+BO/tOP9v/DuyZ+f+FMTFo9/89Gj35r597N++ttHf854V4FOScgtu9/4b1Cyr/2N3tc+8Kvf2zph9eEPPfr5/3nzzomzNn5szhO/8Nrff8ecr284ZryrFe/XnnrPm2sfeud764s+853+1c98Y8M/ru276vOf2XfWxw99/+vffpfxrlG8n33t9//6I7V37d399G89dtX5Uzc++67PPf/cH3z6l2v/+OUPPvK5K4x3LZS5TDu8EfgroVg7SNNN5fiH5a8rx99j/OuBv0D5Jxn/zXCzbhcHf/6X/nr505+55CvfH/+W9RuP7L7srX921zf3znj/eX/3xg/Oenay8d6ieP9mx8p37Jj+piu/OfDHTy9938xzvvjC+z/y1X/as+mqb3z1a78+9x+N91bF2yIZ76sE74xLF7784X/zJ9O+cP68v1r2e89e9JNnvXDuK7/wm2ve9+3vfeqfgfe2xm9Bew3b+/Zy/BXjv6Mc/3B8eDXwF2jjw/52Zzn+Yfl3leMftt9r4GY9zmMhdrjufiw/r6U+432t5k0Oz9v+/1afTtZ/7NCSjwyO/9jXl//sipWf+fSRt8ypPfuzxvs6wXvhK6vf/oW37D8avvT+//22f7rwvyxbMnn28skX/fl7/mLmQ9ted9a3jffHoTAF6nuW8d8N/KR7NBn/64G/QH0N828A/qLjhDTdA/whFPfXjXCzHnKlYd43FOcd9tN7DSwUKvewv91Xjn+4L95Ujn+c8f9EOf4B47+/HP8E43+gHP+g8T9Yjn+i8b+xHP8c498M/AXaTd34t5STP8z/pnLylxj/Q+X4LzH+reX4lxr/w8BfoPzLjP+RcvKXG/+2cvyrjH97Of4bjH9HOf6bjX9nOf4Nxr+rHP9G43+0HP8bjH93Of57jX9POf77jH9vOf5Nxv9YOf6fMP595fjvN/7Hy/E/YPz7y/E/aPxvLse/2fgPlOPfYvwHy/G/yfgPleN/yPgPl+PfavxHyvE/bPxHy/FvM/5j5fi3G//xcvw7jP+Jcvw7jf/Jcvy7jP8t5fh3G/9by/HvMf6nyvE/ZvxPl+N/3PjfBvz5+99keNz+DNythzwpCePDibW6vz3zxJ10/e7cRu7OHQ9ueXDHnuXbt2/atmPl1jc9vHHHg2/YsumWbRvv3bLpzk3btj+49aFmxNFpZcb9VM6M0XJWb9rx6hNXK7c+tGPT7h19hJvQ3z30dy/9XaG/Da8vg495WiVbl+wnHev52G8dbNCPI30Qe4D0rIdc6ZyE8EIYXc5A+FXSpaC8JCE8k8flszqzsleFLjWRxzauCjlVIacm8vY6Yh11xHrMEeuwI5ZnGQ86Yu13xDrkiLXPEWuzI5an7T3b0LEuxdrliOXpE5629/SvPY5Ynm3b0yd2O2J5xugnHbG6tX+08b2NHXCskWT8mhy+Z3KqhFV23KPKNSDkxejHRejH58RPx9W1xnVjXH39pjfsvH/d1vsDJR7qrspQcRbRbYioxrgJ/eP7s+her6DFlBavMVOx4t2wace9D9yx8f77N933w0JuZw5Guj7jPg9IkcYG4+NJ03rIlXryOCXiV0mXsk6pnEY1ttSqdoymYdV1Wzfet3Ljw9t3btnE0yycIrBVEBXvqTpNQDO810t019PfawVfENhpvtXcIN2vh1xponnFRJFpeUOAPY7yapCHtcmpV+hvOqeYz505gst0rA/WxxDlTYC8Gsjmeh0v5Jj+PYJ+AmGNF3xm+1byegUfT0tjU+c8rc3KkaaakGGyOxgVpnV7VLDyTSgnb2pC/CgPMU0fs/WgyDMsa4f9GVjGWyH6TzZ+a0SXpltJxqDQF++ZfdJlpI+S7mhb9pN27Ih4phfeQ/xqaMsvk1i9YfnYT0rG2Cl57I76cExm22Lc68/AMt4K0f9Z47cWmuM++8lEoS/eQz/5I9Idbct+UtKOy/P6ieFXQ1t+mcTqDcvHfjKxnLxleeyO+qj+GW2LfWB/BpbxVoj+S43fGtGlif1kSOiL99BP/qpxPZChbz3kSo+qcQv7GdqlyDGnvH5m+NXQVr0nMTuq9qbGXsZbE3m8tFwTcmpCTk3kHXXEOuyItdsRa68j1rEuxdrviHXIEWufI9ZmR6wDjlieft+N9or1Q0Wx0uTpq8cdsR53xPL0Vc8y7nLE6ta2/ZQj1kOOWHbcgsd5hp+mgdDc9orOTRDP9MR7iF8lXcqOdZRd1JjRyjepnLzJCfGjPMQ0fczWk0WeYdlKYn8GlvFWiP6ChkFrRJcmHlNPFvriPRxTn9vAHRL68vpCUX9EfrYR8rE/tlNfiGd64j3Er4a2/D+J+Yeyi5Vvcjl5k/LUL+pjtp4i8gxrauPv/gws460Q/cvJH6eATuyPU4S+eA/98fJktO5oW/aTknZclddPDL8a2vLLJFZvWD72kynl5F2fx+6oj9l6qsgzrGmNv/szsIy3QvQ3kJ9MBZ3YT6YKffEe+sly8hO0LftJOTsmz+f1E8Ovhrb8MonVm4rfVr6ppeQl385jd9THbD1N5BnWGY2/+zOwjLdC9LeTn0wDnfiRr2lCX7yHfnIz+Qnalv2knB3Dirx+YvjV0Fb7TmL1puKqlW9aOXnL89gd9TFbnyHyDMv2qfszsIy3QvT3kJ+cATpxPDlD6Iv30E9e18AdEvry+nneOFUT/EanfC79Vw+50h2qTgvwP8J1ZBio25lwv4C/LM3bHgy/Gpr9pUx7OJPkZdW3lX260KUm8riOpgs504Wcmsh73BFrryPWZkes3Y5YBxyxdjli7XfEOuiI5ekTexyxdjpiHXPCUvGzHb2OOmIdd8TybNtPOWJ5xkLP9njIEcuzHp92xPL0CU/be7Xt4FxGT5847IjVrXHCU6/TYcw01qedOtt7tsfHHLE8y/iWLtXLczzhWUbeP8O5ZdL4HQjNba/AvPXahPBMT7yH+FXSpaC8JGYXLB/Pk2cIXWoij+fJM4ScGUJOTeQ97oi11xFrsyOWZxn3O2IdcsQ67ojlafunHLHG6rEY1tOOWJ4+sccR67Ajlmf8OuaI5Wl7T1/1tH23xi9PX/X0r4OOWJ716Olfnm3I07+OOmLtcsTyLGO3juU8y+g5nujWeuzWsdxbHLG6dZzjOcYcG0+8NNqQZ5zw1MvLv9LraU5YaXrCEcvT9p5jAOtr+dyX4aepzTWwuQnhmZ54D/GrobkuvdbA1BkyK9+McvLqeeoB9TFbnyXyDOvsxt/9GVjGWyH6OxuFqhFdmviM3VlCX7yHZ6de1fhjSOjb7l4E8rONkI/9sWR99eb1R8Ovhrb8P4n5h7KL8g/jrYk8tn/eeo1hDQX/2DpNlGdQ8HE9o34F7J77WQHDr4a2/CqJ2V/Zxcp3djl5kzhWoDzENH3M1jNFnmHZ+4j6M7CMt0L02yjuzASdOO7MFPriPYw7b6K4o9pEWb9X8fSlJmdQ8HH7Kul/fXnbl+FXQ1vtOYn5u7KL8nfjrYk8tn9eP30xYpn/nR2RE4srSg7ynz0mpy05g4KP2y3Wa/52lHwpb7s1/GpoK04kMb9VdrHyzSolL/ki92UoDzFNH7P1OSLPsGY3/u7PwDLeCtG/j/rFc0An7hfPEfriPewXf6ZntO5oW/aTcnYMtbx+YvjV0I5fjviJqjcV36x855STN5TH7qiP2Xq2yDOsOY2/+zOwjLdC9L9MfjIbdOJnXmYLffEe+sl/aPwxkKFvPeRKX1a2LsD/3oHQbLsC/BcY/5xy/L85QPQF+X/d+OeW4z9o/PPK8b/G+OeX47/b+M8tx3++8Z9Xjv8y419Qjv9rxr+wHP8a4z+/HP9vGf8F5fjfYfwXluNfafyLyvF/x/gXl+N/l/EvKcf/beO/GPiLrLEZ/9Jy/L2m7yV4U+hk+BbrLwL6JOPXsDjPZFUJq2y/qHRH/XhceQnIwzJmYV1SEGtA5JWpk4tDdrkQfzCiC+uZJn7XStkyp2mPI9YOR6yjTljp9SwnrDRtddTrHEes2Y5Ycxyx+p2w0rTNUa+6I9bcLsWa54g13xHrXEes8xyxFjhiLXTCStNbHfU63wkrTUcc9brAEetCRyyvviO9XuSItdgRa4kTVppe36VY9qn2NtcL1ra5XvCKNtcL1re5XnB7m+sFq9tcL7i+zfn+Ohsrnws3k8avmssXGLfb63aG8ULQ8x/Dr5IuBeUNz3/OI3lcPt73WSB0qYk89vEFQs4CIacm8g45Yj3piLXLEeuAI9Z+R6w9jlibHbEOOmLtdcQ61qVYnr66zxHLy/aqX+wWX/Vsj8cdsbq1PT7hiOXZhrrV9o87YnnGCc++1jNGe9re017d6l8HHLE869HT9qdDnHjKCSu9nu2ElaZtjnrN6UKsND3iqFfdCStNXrZP084u1Cu9nueI1e+ElSYvn0jTDies9HquE1aaPOvRUy8vX+3mWDjVCStNnvHLsx499epGe6XJ01fnO2GlybPv8IpfaXraEctz/PWYI5bnmoLnmPyAI5bn2uOxxq+tY8+DvKTx2+Ya/lBCeKYn3kP8KulSUF50DR/Lx2d7F5STNzFPPaA+ZuuFIs+wbE+4PwPLeCtE/18bhq0RXZpuJRkLhb54D8/2/nbvaN3RtuwnJe2Y+1uXhl8NbfllEqs3LB/v9SwUutREXj9cF7G3qrujjliHHbF2O2LtdcQ61qVY+x2xDjli7XPE2uyIdcQRy7MNedbjk45YuxyxjjtiebZtT//ybEOecfV0sP1BRyzPGG2x0J6/xPHMAMkpOvZGfqNr83mV29p8XuXONp9XucXGRRfAzaTxq54lKTBGO5gQXgh6TGj4VdKloLzhMeEiksfl4zHhYqFLTeTx+Z/FQs5iIacm8g45Yj3piLXLEeuAI9Z+R6w9jlibHbGOOGIddcTytH23+upxR6y9jlie/uUZcw47Yp0Otj/oiOVZxmNdiuXZtvc5YnnZPr0+xwkrTZ6+2q1jgAOOWGP99li/3cm4OtZvj/XbY/32S6/fTpOnvbrVV59wxPK0l2fM8bT9445Ynm3Is9/u1hjdreMJzzIecMTyrEdP258OceIpJ6z0ut8Ra4Ejltc6eXq90AkrTY846jXVCStN2xyxdjpi7XDCSq/Pd8R6qds+vZ7tiDXHEavuhJUmT3td6Ijl5atp8mxD3er33VrGl3os9NQrTWN9x4u/70jTdies9NrzzIOXvdLr+Y5Ycx2xvPraNHn2j172SlM39h1petoRy3PO95gjlueejuc6wAFHLM/zOfyMDJ4NSxq/6p3HqZx6yJUWJ4RneuI9xK+SLgXlJTG7YPnMLlb2JUKXmsibC9eYh3KWCDk1kbffEeuYI9ZuR6zDjlhPOmLtdcQ62qV67XHE2uyI9ZQj1kOOWE87Ynna65Ajlmd7PO6I5en3nrHQsx4fc8TyjDmePnHQEcvT9ru6VK8jjliePuE5NvHstz3rsVvjl6d/HXTE6tYY7Ynl6V/7HLH4G9M4v0kav+r7MgXmTucmhGd64j3Er5IuBeUlMbuoOayV/WKhS03k8R7wxULOxUJOTeQddcQ67Ii12xFrryPWsS7F2u+IdcgRa58j1mZHrCOOWLscsTzb43FHLE//8rTXAUcsT//ybEOecdXTJzzjare2bc/26NmGnnTE8myPp4N/HXTE8hwD8HsQcLzM70EoOmZHfqMbFHxJ47fNbzq+IyE80xPvIX41NJe5zJhd2V/Zxcqe53uD6bXn9/MOOWI96Yi1yxHrgCPWfkcsz289bnbE8vqOWJq8vhuZJk/bd6uvHnfE2uuI5elfnjHnsCPW6WD7g45YnmU81qVYnm17nyOWl+3Ta6/v3qbJ01e7dQxwwBGrW/ttT9t7jgE8Y7TneKJbfXWs3z51fdrYmLwY1tiY/NT510FHrLFxYTGsbhwXpsnTXt3qq084YnnayzPmeNr+cUcszzbk2Xd0a4zu1j7Ns4wHHLE869HT9qdDnHjKCSu97nfCStMjjnotcMSa6ojluT/kaa/5Tlhp2umItcMJK70+3xHLyyfStM0Ry8v2nm3buz16taH0eqETVpo82+Pp4F+zHbHmOGLVnbDS5GmvCx2xvGJhmjxjdLf6fbeW8aXe13rqlaaxscmLv+9I03YnLM/xRJq87JVee43J0+u5jlhefW2aPPtHL3ulqRv7jjQ97YjluabwmCOW576V5zrTAUcsz/OF/B6UiyEvafwOhOb2ksqph1xpMCE80xPvIX6VdCkoL4nZBctndrHyLS0nb0JC/CgPMU0fs/WlIs+wLmv83Z+BZbwVov9SY+JdI7o03UoyLhX64j2zT/qt4L/qH6072pb9pKQdz8nrJ4ZfDW35ZRKrN9V+VL0Zb03k8RpIXnurujvqiHXYEWu3I9ZeR6xjXYq13xHrkCPWPkeszY5YRxyxPNuQZz0+6Yi1yxHruCOWZ9v29C9PvTzr0VMvzzjh6ROe9XjQEcsz3vPzdjg24uftYuNHJQf5jW5Q8CWN34HQPEYpMF46mhCe6Yn3EL8amstcZnym7K/sYmW/TOhSE3m8dnOZkHOZkFMTeYccsZ50xNrliHXAEWu/I9YeR6zNjlhHHLGOOmJ52r5bffW4I9ZeRyxP//LUy7MePfXyjKuePuFZjwcdsTxtf6xLsTzjxD5HLC/bp9fnOGGlydNXu3U8ccARa2wMMDYG6GRcHRsDjI0BxsYAY2OAVlie9upWX33CEcvTXt0aJx53xPJsQ93ad3Tr2Ldb/euAI5ZnPXra/nSIE085YaXX/Y5YCxyxvNbv0+uFTlhpesRRr6lOWGna5oi1swv18q5HT3vtcMLy9gmvekyvZztizXHEqjthpcnTXhc6Yp3vhJWmbvXVsfZ46srYjf6VprF+aMzvOW+7E1Z67XlGxNO/5jtizXXE8uq30+TZ13rZK03d2B7T9LQjludc9DFHLM99K8/1iQOOWJ7nmfj5nn7ISxq/di5wKtxP5dRDrlRJCM/0xHuIXyVdCsobPhc4leRx+cwuVvZZQpca5aWJn5OZJeTMEnJOFpaqr/RfPeRKr2Z7GAZi4/mDAnUzI68vGH41NNdNGV84h+Rl2dXKPlvoUhN5bOPZQs5sIacm8g45Yr25S/U67ISVXg86YXmXcbMj1kFHrGOOWPscsTztddwR662OWEccsfY6Ynnafr8j1h5HLM8yPuWI9ZAjlo3trf/CsY9T3z2xbN9dctwY7buxfGYXK9/scvIG89QD6mO2niPyDKve+Ls/A8t4K0S/p/HwTo3o0sRjxjlCX7xn9kmf097RwB0S+s4jXGX3cwRuTfAb3YDgq9vFC9s/94uffvrDn/ilHe//hXdP/vzEn5qwePybjx791sy/n/XT3z76823W513GP6cc/1Tjr5fjn2L888vxTzb+BeX4rzf+heX4lxv/+XCznot1RPdyz5Il3zZ+XKPpyc0fBoz/8nL8Vxr/FeX4X2b8VwJ/gfJ/0fhfBnfrjd9z/+K3x333A89Ufu0vv7310e9c+K7/vvrp3/2Pr3znZ5Zce+D2r7z779cb71WlZIch43+5kN0iXW28r1C81/5G72sf+NXvbZ2w+vCHHv38/7x558RZGz8254lfeO3vv2PO1zccN96rFe9nX/v9v/5I7V17dz/9W49ddf7Ujc++63PPP/cHn/7l2j9++YOPfO7KNLY9Q7EN+6RxcG11maaUz/qwDUSTpgrRv3FohO9dDXmDxBNCc5/bA/cL1MVZWAZLqs81/GpoLnuZPreH5HH5eL5cEbrUKC9NPH6qCDkVIUdhPe2ItdkR64gj1l5HrEOOWHscsfY7YnmWcZ8jVrf61y5HrKOOWMcdsTz9y9NeBxyxPP3Lsw0ddsTy9AnPuMp7KJjH44A+uF+gX+7JOw4w/Gpo7pfLjAP6SF6WXSb88N+UxvXOHQ9ueXDHnnVbN963cuPD23du2YSjCRwhsJSEUPFeEkaXHvN66V4v0d1Af68VfEFgp/lWc+Pofj3kSovMKxaJTMtbDNg8ssKvUWNtcuoV+pvO6e9zZ47gMh3rg/WxmPJwV24JyOZ67RNyTP8eQd9PWH2Cz2zfSt7p3BJVPRlvTeRxW8w78i8TIWqN60aEuH7TG3bev27r/YFShf5elaHiDKJbm6FaInAT+sf3Z9A9ZQrEjk0C87hMmriTwbwNJGesk3kpdTImF48nKEsYpi1xYJn6M/i4UfO9HkHfR1h9go+DseJHDORjjxkIzWWt28XBn/+lv17+9Gcu+cr3x79l/cYjuy9765/d9c29M95/3t+98YOznp2SyvruQLZduG7NTn0tylch+oth6ef/NOSlHjm9kd/wyBU7t2y+bdOObQ9u2rXph7Fte6DUyo1upr9vEXwqDYbmqubAULKh5g4Mhl8N2lXqIVcaDgxqVI7lKxcY2CF4VOUdGG6hv8uMPkuehSo8+uTuDEefWJuc1OjTdC46+sT64NEnNlQefSpPDEL/HkHPAU8FTw54WfLGuugTaWweCGlsHij07/Q8kPn6QnPL5e7eaBdUT/y22WLDZOBjHcf67BNprM+GNNZnC/073WerSJIQRien+Cib94zTVLeLv9mx8h07pr/pym8O/PHTS98385wvvvD+j3z1n/ZsuuobX/3ar899oc2ocWeb0e7VKd/yRuS0yRi/HwCvrWfK2oc33grRr66O8K1qXKcR5bxGfiOi3Llxy4P3bdyxadVDj+zctHPTfTdv3bFp+/KH7lu1a9NDOwpPzVbT32sEn0rjw0iBzyB8LGSaeA2r0QaHD5AxDRvI6G9qGCU12PONm8rpTJ9B4g+huSuaTrrXQ66Uuysy/CrpUrYrmk7yuHzluiJ2Z7QKouI9DhuYdzK6orPofj3kSoW7on7Kw64Ia5OT6opM56JdEdYHd0UzII+7IqzX6UKO6d8j6GcQ1nTBx11RlrxewcdDiYTu41rWGUI2r2XdC9HhhTOz7XBGyLaD/a0G72xvy09Tmz55V95oYvjV0Fz3ZaLJWSSPy1cumqCnoJQ7CdVokBbTnaAZ0vPfXHsVwcfJcCqk8z7ohN9EnT6Wa4j0Vt6O93iQhPxGp+RMaFPOBCHHPHkc8N1NeQORvCpgDlHeRODj/Z0a5N1KeZMAcwLlTY5gThOYad3NHD+Cl/6bB3TK03kXAg9YIy/+3Ue0adrY+K0Q7TPgVwfJr7AVs1/NaKF3zK9mhGw5E9qUM0HI4d4qTew7Z4myWt7ZwMf1PBPy2HdmiXJZ3jkRzNkCM62fKeNH03H9p8ki/rlwv8ikJG/EN/wq6VI24p9L8rh8PGE7r5y8VyfEj/IQ0/QxWy8QeYZlh/b7M7CMt0L0P9NobzWiSxM/eLJA6Iv38JD1/1sdrTvaNsn4NVy+x+0Ly271ww/npGkD6PO+6uiyYJzqDc1xzSbEHKtmwa7gz1OsQn6uO9VOypZ/nijjUGi2zXi4zvLvcyNyxkfK06n6HE9yMM5iff4K1ed5kMcxOr2uN64rTA/1+WGqT9UWlZ25Xypq5yEhp9N25v5lgaMcxOKHLC4gLLZzvXFtdsYXTV1AfIsgD+lw1nUB3F8kZCt8w2jlg5+o6rJl+aDJqhD9cxNH+P6gpA8uoDzsK7BfRD3QDkhfD7pc/Rn0WeX6I5h1fvfM0ZjGj7bCuuD4a/R/CpjfO1PrieVSD0YavfKHC0S5lE0Xhday0c5rM2T3h7gvVoj+L4VN1QOZF5DuiD2FdDm/he7cvpHf6AYFX7txROncqk1+uWCbtIcl2Xf/DNrk31KbjPkI6szziKJ2niDkdNrOPEdY5CgHsbhfWEJYbGerJ7MzrkLyyt5FkId02C/gSuVFQrbCz9svfKeqy5blgyarQvS/CT74z5F5ccwHF1Ee2pT7hVbxkF9iaHr3h3h/WyH6H0T6BdVeMdZyv2D0PeNHMLlfMLlYrli/oHxxsSiXsukSwlIP66OduV9QNsXy8wsEjL4K5Y/1C8av1iPuoTxcjziP8s6GPB6zzoS8BZSH6xG8NoIvJ+B4hy8FQB/h9YhxkfIMAAav9+G63VmUNxHyzqa8GuTNpDxct5tFeXhMhF8wMQ3yZkNZbd2ON0dnN+63uW8nj67E1kWTjN8Q8vUHfLQK5Ux3lINYN5CcGY5yeMcB5Zwt5Fh9zSS+esiVcu+zGn41NLfdMutkM0kel6/czghGG7YKouK9JIwuPeZ1cp/V5KrX950tMK2nwDLNyuBDWwRxr0fQzySsmYLPdO+N8CMG8rHHJHQ/az/SMCpE/zLorf4v9dZKFtqDe0zTPevEBOtg9FeDDs+fqTErGeU6OwPz5vEj9rh2vMYMAlOVaxaVi3WYSToY/QoxEuglGtZH3Uv/xpHRrAz9VD2xrtjLZZWH68no10Tq6SyhA7bJtS10YJpZGTqsEzqI6LZy68N7GtEtUOLD4Ryd2PK8b3uWwMlKhp96oXmkOmVwtuA7i/7uETqlJbcxyvCjfVs27diUUfYeoZuSyU8tWeLxqPGlaSC01afl7kMNvxq059VDrpRwlDN5XD4+Dj5T6FITeVi/7EcxOWmd2kvWGnV6+46t27KqNG/nmgi1QsjuZJMwuiqQp833gxU+3MRDOJwW8jASlxwwqHHicmN5fjQcnj6Cy3SsK9qUDz6hey6hPGwqF1EeutLFlIcB/xLKw6nb0sb1UGiuL5xmYV6aesU9HmIj/+yInEltypkk5KitcfbNku+eyx2GDL8a2moLw2FILU8ou/A2JvKqZQY+iGZT72/CAOlRmrrH3kVe8imcK/Pa1fC93kU+juRx+diuA0KXGuWlib9lMSDkDAg5CuuwI9YTjliHHLH2OGJtdsTyLKNnPXqWcbcjlmcZDzpiHXHEOuCItdcR67gj1n5HLE+f8GyPnm3ogCOWp732OWIdc8TytP1jjlietj/qiOVpL89YuMsRy9Ne3RoLPe11wBHrdBgzefqEZ7/tZfv0etAJK02efu9p+8cdsTz93rOMnnHCcwzgaa+nHLHsndO2xoTrEPx9YzXnHxeRg/zjcmCp9YNYGdU6juNb+UzFK4hubYZqicBN6B/fv4Lu9QpaxMbH0Tv4hMqlCeGFoJeVTtUTKlZ2dXq4JvL409OxJ1NQTk3kHXbEOuiIdcQR64Aj1l5HrOOOWPsdsTx94pAj1mZHrAOOWJ722ueI5WmvxxyxPO31hCOWp6/uccQ6HerxqCOWp708+6Fdjlie9urWfsjTXgccsTz9yzPmeLZHT5/wHDN52T69HnTCSpOn33va/nFHLE+/9yyjZ5zo1vHXU45YvEyC82peJin6dDTyn5sDa57AipWxw8skpuJSoluboVoicBP6x/eX0r1WyyR8KufuxlN/tixS8lSRfICET2nhchCeNsO8EPKt1CH/QEROtU051ZxyprYpZ6qQMyj4koxfk8P3Yiv7U0nObEc5iMUvqsClMPaDeSQnq1krP5iXgdUXRnR+AGj4WLu114rATNPdkI/02xttKF0W/Tic4kxpsl5KsnNCXFfkRV35pSQ/DQ+K7m5gKjtbvSs/mEd5s4Vchcltq2jdVYUOMSysr4lEb3XRn0FveFx3h6Du+IFU48/yn3kZOqD/4CMJWf5zrIT/PDEhriv7z0SSbfT7wH/eSv6DNo75z0TKQ/8xG6mYySd1i8bMSUI/JSf2wi/2o6Iv/Joo5LTZlxY+rT6J8vBB5MmUh6fVp1HexZDHfdAlkMcPyS6FPH5IFr8KPZHy8IvP2JY49dLfaNu0zXyywMl59fC9OuVuNjSfwfENYmCe6cr32GeQf3IGFj5+hjFkA+Qj/b9rFD5txx+YMLpc+DJAs4n5aMmHZy7LMy5A/CrpUlBe9OEZLB9vg80Wuqg4NReuMQ/lxJ4awLz9jljHHLF2O2IddsR60hFrryPW0S7Va48j1mZHrKccsR5yxHraEcvTXoccsTzb43FHLE+/94yFnvX4mCOWZz16xi9Pex1xxNrliOVpL882tN8Ry9NeBxyxxuLqqYurXrZPrwedsNLk6feetn/cEcvT7z3L6Bkn9jlidet4dasjFm+p4Ryd1x7UfPjsiBzkPzuDL73GNYcOPv3emxCe6YP3EP9UPf1+rtClJvLQhpiHcmJbnoiV54Ueau0j5huqjI5bnqbipUR3W4ZqPQI3oX98/1K6l7XladjWjHDpibed0Iwx06ptp2kRORPblDMxp5xqm3KqOeVMalPOpJxyZrQpZ4aQw+9fTBNuqVw+qGXilgou1/KWnNFvhaXYlw2OLiNuS4yj8uODIPzuRfx+DIfeGtwvEApzv3jE8Kuh2SfLhN4ayePyYVjK/w5BbgFoFUTFe0lojhoJaIb3eBN+HPGVeYfgJMhTluB3CGKZJmXwoS2CuNcj6GuEVRN8pntvhB8xkI89JqH72MLOELIrRL+20arUOwSVLLQHH74x3bPeC8c6GP160IHfTVcDHlUubs2T6G/0rY0Z8t8AUeZVg1p+EPK5fBjVst7PVyMdjP7VYAN+3+BkwR8y7nHPMJnyJkdo+RuN6vt56Iv8bkKL2lll5/o3+h+P1H9V6BD78ifrwDT9GTrcI3Ro792EHOW4lrgmqgInK5k1Uo8172XrcOtgOfa38oB23004kCGzJ+jE7482vhBG+uaSfWXuvtnwq0F7Xj3kSglHT5PH5eNpUU3oUhN5Wa20lZw2302Y1WmrYMH8gXgTcS9NqTvzd5DHphrZck6HqQZjqSlEmh5u/HJgPwiBnT9pMA30UJh3kA5qFUCdaDJ6tXJ1tiij2RJXKWbnkI225I5wTkFd1eoKrkSdTbqifucW1PW2k6zrNKFrm6d2Cp8s41NgeLKMT4HhybIzKe9iyONTYHiybB7l4cmy2ZSHJ8t4io8ny2qUdznk4btLOXFfgHZP2+VH54zgMh1eZ8UUbLNrScfJomy4RDEA2CinHnKlhSZHTYoNG4cbBXzsXtTJkhq62L0q6VJQ3vDQpZfkcfl46FIRutQoL02PAB3n9Yp7PRGszY5YRxyxdjliHXXEOu6Itd8Ry9NeBxyxPP3rkCPWYUcsT5/Y64Rl/F56HXPE8vSJ3Y5Ynj5x0BHriCPWAUcsL19NU7fGVU+f8Ixfnm3ogCOWp732OWJ52muPI5anr3rqNdZvnzp7eY5XPWO05xjgCUesA45Y3eoTnnGiW/shzzmMZxnf6og1FldfGvHLsx4fdcTytFe3xpxuHRc+5ojl2R49+1rPeuzW8eqbulQvz7j6uCOWZ5zo1hjtqZen7bs1ThxwxDod5rWe/faTXaqX57zWsx4926PnHOZIl2J5+gS3oaTxN9LcDdf3QD7S21uD2twrvo/3Yg0DsftKYieEF8JoPQPhDwp5plc1I68e4unJX/34e9Z981NfT4jfdOF7uAee/lPH5NSettmq5Lcy7TTmKPuYbMurQF4f5aFdTIf099n6aP1KflvzDXnsh/g1QX8r0BWpi8lhtC+gv9tZHXxzEL+J6lzI4/NR6qWUSD+H6Bc0/u7PoDe8CtEfarRXPKg9RDTpdTVDHuqH92Jn+xZkYGW9oWx+hu5PgO58Fu58oZ86Rmr0Fwj684HG9FG2uSBo2VgerM8HqDxG/zZRHtX+zKcGAMfyCrSdiamc36iPyGG7YftpZaM0sU0XCXq0ldmkRvRoX8vDx6POp7zY2b1ZQgc8n8fnq9SbFfGterE3KHZTu35vznY9M0Me6hdr18hfpF2n6f4M3X+xYLueKfTrpnb9bM52bT411q5bt+t5Qoe87dp41dtWl0Ce4eI57oWN6wrR/+eIz14UmnVFm7N9Lxb0eIaW31qJZ28vpjzkO5/y8OztItLhEmEH1IvPpxv9x8EOf1g/ca183fRq09eXK1+/BAjY1/Gt2L2CnuviUkGPZ4/NJjWi53rBvxELbcpn3s1G/YIe8SpE/0ci9pt+GPsuId0XFdR9htBdvU0T29R36HkYjBvzSOaiiEwVn+18en8GveFViP4vhb04NmI7QDv1EabR/1UkHphcLBfGLvZBZfvFolzKpvy2UtTdfEG1T6Nrs32uUO0Ty8/tM1bWNLFtVGxF37X6r4XmeHgB5WHbWExyVB+Z1//Rh75c1bhZ/U29cc3+9c2If6l2oz7aEPNH9BPub9C/FlMe8p1LeWhTHiuqfhfp54fRdjD67+Tsb5z8eYryZ/RZ9ueYf6apaN9vNqmF5v6A46HyWaxr7m/MRv1B14HhVYj+RxUcdH+D47YlpPuCgrqXaW+foP4Gv6jB/c2CiEzmxXiR1d8YHs8Hxgt7JSQD2wHaifsbo58ImHnmTLH+ptWcyfRRNr2A8lB38wXVPo2uzfY59VTPfbi/wXjI8yJsG+eTHLVOkNf/0Yd+hfobnjchFvpFzB+x3Vg9sT/WI/4Ya2dpYpsr/0W/Mn2UP/KcB3WP+aPTXPxO5Y9YfvbHWFnTVHZ9oxaafTXmj9w/e82339fwR1v3x2exC9i18POqvZSHffANlIf9LdYPp176G8vzo72OAl8fwP0P/voA7t0soTxcP7mI8qqQdzHl4TP9l1BeDfKWUh6/5iOEkbos+Qb/3K+0MPwq6VJQ3vBzoa2evbW2Vux1U1lvJ0gIFe8lodnDEtAM77HX3Ux/l3ndFL4CSFmCXzeFZTojgw9tEcS9HkE/jbCy3vrQmyFP1ah6fRDakfmwV0OePC3gDMKvh1wp97suDd+rBbSqd/NVK/uZQpeayEPdMQ/lnCnkKKw8L4jJarVtvCCG/56WoUaP4A/Ey007z2Y+Np08b+VS7z2qEP1rxcQjxp+mQXGP3b6kG+YO/IZfDc0uUcbt1Wd5sHzs9tOELrUQD1FchzE5jq6appsz1FA9SiCsRNzDPOWqeDZibYbsfkGvXNXoH4isKSSCP8X87sBo2cuBrjc0l491XUG6KhrU1egfAl2fJ11x7Gb6DBJ/CM1NaiXpXg+5Uu4mZfhV0qVsk1pJ8rh85cZS7H1oFUQNgjaIvFYt53r6u8hYympuFd2vh1zpBvOKG0Sm5a0G7ITy1kAe1iYnNWsxnVNvfY52qIPAMplYH6sp73rIWwOyuV5XCjmmf4+gv56wVgo+s30reb2CLyGMhO7jSshyIZtPRB6D6PACdbooa3kYnVSEOEfoyfYOoTmalPTJ1+SNJoZfDc11XyaarCJ5XL5y0QQ9BaXcRahGg7SY7gLNkJ7/5tqbLfg4GU6FdP7Zhhel3vf2xvVQaPbe8aQ36hCLyzXBb3RKzoQ25UwQctS7p+6mvIooK5/PTdMGynsl5N1KedeIclnetRHM6yKYy0Reqt+5tdF0GI2SjN809Yp7bNOVQlerO4wAfJZTtbZVETnIb3SDgq/d8iid1dgJX9X+gaERHuxNMWqjH9s6ZYXoP3PmCN8Hqb3dAPymo7Izt8Widh4v5HTaztymVjvKQawNQJ/+W0tYbGc+p4ejnbXEdyPkIR2OCHBcf6OQrfANo5UP/u6QLluWD5qsCtH/GvjgR0v64GrKwxEk94emB9oB6XlvyPTsz6DPKtd/i8ztVgp+pTtPtVdHdE8T+yLy88i1Ez6PMlv5z5+S/6yBPOU/vM9s9O8B//lz8h8coXWi/LF2jSM5XllW7U7FD+bDNjolhw5rhc41wc/7WsjXrm8onVv5xt+Qb9wIeco3+Lyq0R8B3/g78g2MnzE78xiwqJ0nCDmdtjOP725ylINY3L+tJyy2s9WT2Xkd5K0nPlzfQzrs39bD/ZuFbIWft3/7pyFdtiwfNFkVon8QfPBfInOamA/eRHloU14tuUnYQdVBQnr3Z9DfROUyettAVed7VHu9CTA5lht9L2DyeYphuSE+W4754jpRLmXT9aG1bLTz2gzZ/UGXP8tXxkdsavx9GeVhmxr9xIhNlY1iNlVtbL0o15AoM6/XXy+w0M55bIrlv57Kb/TThE3VuOV60h3HDjyGVOMwpOdzJaqNqbEJt7GzI7rHViVxbeEeysO1BT4TgnsWPBd7JeStoTxcW+B1jmshj/u/6yDvRspbBnno+7a2UKGyLmzcb3NvYdQ2XyAsZd8k4zeEfP1pD+mJcjqxbqLkXO8oB7G4TeGcjb/XUXTdAPljc8NKm3IqQg5jWUxOE46J+Byr0b8c2vUf10dj3iD0w/cDrI2UldszYlmdWfvA2NeJvTfDr5IuBeUlsZiL5ePt7DVCl5rIy6pTlKM+z1dUL8evjNrfM4lubYZqicBN6B/fn0n3egUtYp+spncq5Qy1KWdIyOn0UucQycma7txeG+FBF86a7sxvXPOS8l0w3bmzgammO1k+jb5m4TNN7NsmL+sYQ1+Gfq+D0MvfresTZZ4f0fkGkMFy03R3hg730FClZCiWQxVeCsUhXQ/lYSjDusG8EEZsgffY51YIOYyV1U2aXXlId3/BbhJ9e22krDdQHnZNbAclR4V3ZYeYnFqbcmpCTqzbLxtLlM48lUgTxpIdFEtWQ54a0thUrUL0qyCWPBqJJagj/63iclY/mRVLVmXoty8SS9TQcH1EZ5wCstw03Z2hw0GKJbwVVA/5koolvDWB8W8y6V+0L0T+k9UX8iHnTm/7qeV+ji9qO2pNRI7aUmvVHp+paZmqPXK/hvQToT2+k9qjx1ZdVpsIId921w1CTlYMSlOsDzL6n470Qa2G/rGpWpZ+eLAK28Hrw0iZs7CCuGf02P/x8sUaol0doWW90bftkSyLRbylXA+50o3mzzeKTN7SQJ0sD5cRXwV0nPiIEuqc1vdn6yO4TMf6oB1uysBUbX4j0VqZewQubxdhO2Z73ZqhA9dxmn6s8cvt/bdqI/gfon4Gl8sL1O1NakvKEtcf246Tqj/TK62/ZO4ILtOxTLTzOspTr4fk+RTXx8dPkb14zo/pVNjrHsprZS/Ls/L2CD4+hGryvgb++knCq4As9n9+NSJuzzB/mngsZvT/HfqKdQ1bDoXm/vVMkofYanzM/dyZGXqpcmKcXEt6G+3fka/ydms95ErLrY7Xk06IfXNJ7ITwQtDLjoY/KOSZXlWRl+d1pg99d+NlG/v3fiohftOF7/E8+BZBrx4QM1uhXxaw1TXqUW+TbXnojzdTHq4ZmA7qdaa3lNQvj/0Qvybo3wB0ReqiJuSscMRaXRLLXrOqtlM55qaJ+yHV96f12N84j6Xi0Bmka9E4hPxF4hCPdY22t6Frm+PHy9U4kOPQ+pLYeeOQ4Q+G7Hqtirw8ceiB7y9/+GO3/dk5SWiOt73iXp5t/DMEfZvt/BIVhzjWoD+upzyMQ6aDikMl+5RL8tgP8WuCnuNQ3rqoCTkrHLFWl8SyOKTG4CoO3UN5N4ryYBxqWlOYNEIzMGk0Vp5xd5r4sYTVkby1AjOVPQseY8V41d/4xXkkz9HUsSL7G++hryMPrz0Y/RlgmymkH87/sZyonxqr47rk9EnZdDdG6PKO73lLVh2bzlsv3FfMob6C94/qIV9S656GlW7Z2vissWW7etOO2x/YuG3Tfbdvunfbph04o1K9IK9k4iOCWck0Yaxl9PcK+ptXM9cKnFYy1eo6vxOg6ENQ04TOp1LO9DblTBdyVFRKMn5NDt+LrfROJzm4KocrvRdNGuFBn8CVXuS9rfHLq55vOWOEb2lkBBmzM76sq4ydZ4zJ6aics9qUc5aQ0+l2cBaVB6M+263ojhTyrzrJclq163WTtMy87dror4F2fUuOdh0rY+xQWuykx+oWWLcRVt7doxU55MR2j1bklJOnPDE5p7I8hqV2HbEO7ojotYaw1rbAup2w1I6G8kHWuejqBPJXInLWtClnTU45J6s8N7Qp54accma0KWeGkKNmGO32H0rnVvF2J8Vb9XAr8vIJFqNfBPF2N8VbXN16qdv5Rkc5iMUvK8iqzyNUn+phmlh9Gv1UqM/jOepT2WZtpDz84JGqa/WwYSKwYqdJ2A5Ir/qUDq6oTs7jB4hfJV0Kyhs+UK5WQbF8VvZ0FcDmlo1VgOWbti+99Krrf7gEsOfhHVmrq/heNNSf6QP9zXypbnzCuSJkhNDsPzcSHde73Wf8PDq1om2Vr2LduoxyhpAv1iF/ls2yTgBxmzf6n2oonPcEkHqILTYe4HbHdL2iDOODbq8/EbR+WOa1kTIb/XsjZV7Tosw8fldjR45NTNcryjAQ9Gk1PqWIeWeH0boX9SfkP1l959kkJ6tPe5b6NHWqD2PNlY1rXoEP0Kd9iPo0NRbsdPmzTvNiua4Emqy5jcJME5/eMPrf9Nl9lCvKvIPSI/RPy/fbVKeq7LE6Nfp/mDbC9zs56jTWPtQp9FgsWBWhV3NFtcYUGzda/eCOcv76Sb6Ux0cRv0q6FPSH4fGGeogcy1d2vGG4X4QCof6txhvMFxtvMG1W2+MxwFq632q8oXTKom1nvHFjRjlDyNc/IL/RmX+uIP3rIVeqmy6rQA/TBX2e14duAB25LSp6NcZAfI7DeOpO2WYD5CP9n8JY4pa5J65VXczM0C+EfHWB/Cerr5pJcjqx7p2m2IvuLoJrzDM5WTG5Jvhj6943tinnRiEnj6+naUvjt9WY6CsF+0/eeTf6fw/95/+i/hN1j63bxPZeuPxF915i7TpvO1XjgXMJq+hTacifNY5TNkpT1tOSfY0BVZtPS96qTq9Y+2tzzHdrnjaO+INCnulVFXl5ToV9vfrK//6/P/yeP06I33The3nWjs4V9O2Nv8J6dSoMT6ykSa2XqVNhpoM6FVZyvLY+j/0QvyboNwJdkbpQWGtLYtlJLjXHPlUxKWvtxeqbxw4TGm0/7xPA6inP2BOjHNO4jBxz0lQPOv2AkuGZ/ccJWXwS1minQLlvmzta16w9wkpGeWJPhyUh2zYso0fwviyM1m1NDt3UehBiZO1bphhqD5H9tugTlauEPkrOvDblzBNyYn0S/5ocvhfbj5xHcrLGTedOHuHBeJK1P/Jg45f3u94O46aFDUz1BD7vufLpPYwJIWQ/QZf1xDbHE6NfDO2Kn9hW68MPAmaWn1WE3DRlrTMtpfFMJ9aZuEyV0Bxb03RjRpmy1ovZBmsF/YYIvdpvQr/imB17EaGV7eNTR3S4ivy4VfmzMP/zlBHMqwtirsvAXDd5BPPaSNuYFUbLQ/som3H7R35eT0M+85sB0rOgH+Z+IZThV0Nzmcusp6n1AWUX9XI73p/FvDznNGYJOQlhtdLL8YVQlj+d6NZmqJYI3IT+8f3pdE8tySF2KuvSRndgbo7vCbyE8K8BjF5xj90c+Y1OyRloU86AkBPDukRgGf21gn5A0Du6hqk4i+g2RFRj3FauMYvuZbmGpV6SmV7zO1u4aljHIYGRx9x4j6u6R8hScpa2KWepkMOjhG00SkD5BaLlcX7VpmEg9oqS2Hkjv+GrZ0RML/WJrjyrHhf+7uP//ur5D9ySEL/pwvfYR9Qscqmgb3P16Yha9cD3NqVJrYypVQ/TQa16lHzN4pE89kN8tUq9EeiK1IXCWlsSy1Y98NWysbZ8smJGJ+TEsNRKiNGbbfqD3inimGT0+2D2xF/WVPYO4l5PaI5Hr2n8Dgms/gzdlWzDT1NN8BtdB2NiX9GYWA3NZS4zGlbtQ9mF3xGHvHwCOE34XGFWvIztCHQ7Fvomv7La8tWvyeF7LAfbaj/JWeEoR/WpMT8vKwex+PRtJ947mCZbSWmzD16jVtssqR0Z9gv1bLN6HxXbH08l8rsa8cTmy+GaUy/9zeOAV88dwWU6S+pEHvdLRZ8y6RH6tHof3X+YrGVmvY8u691sPwerNM9Ozi4j70SqlTssY9bK3a+ehJW7l5KPl/Hjp0r6MY+91E6EOqlv5VDxml8bjjF2DeVh/80n/DGW3QN0HE/VLgKviF4rdFfjpp4ccmLjph4hp82xUeGP//KYRdklr4+ZzqmPfTyHj3HfybqxjfKMu02HvO+ZNfrPRnYt1M7qA4DJfoAyAmGkiWOf0X+OYl/JeaaMfdwn8lsTHOTmXqU2/CrpUlDe8Li81S41Lvnl/8gvtkAVcdU6fxKaW0sCmuG9PqLj3qTMJ8NLvpl4LfdamIr2WvzWFEwqauDefZFPhmN98NtYMIrcBLK5Xm8Qckz/HkHPz5OoN/Ka7VvJU6sCHPUVX/r31YLHc8bDdvTA6sCZsKl5I47hV0Nb7WQ44qjzQepcgmo7Wc8mYkxIKA/lqPPsCusaJ6w03TqGNYY1hjWGdQqw8swMsZ/iZyMxDl5H+hXdqEb+2Ib4vDblzBNyBgVf2T65FtFZze7ZbkXP5SF/3i8qXDBFy1QrWGmyGRmvKP0krGAtnjJaZzWbT5M6M4T1YBjMOwA6WF6B8cVQOgb+jfqIHLYrjw9ajUPsbB2fecayK1/IW0cvozrqgTxVR3ym0egfhzp6ReNa1UGec0M9Qh63w35Bj3gVor+uoRPuyuX5wpPxZ6261jPkrQR536M5UQf8bqryO4wz7HdqpUvFs1i8wLbHZ8Uw9vBObI/Aip1jNf7+oOvA8CpEf7Ooc/a7rGee6oRp9K/KWa9my07UK9qK61XtcqvnAWN+oHbkVT/wSsJ6pcDCuuZ6bdWWDY/b1o9H6lXFL9SzTphGvyFnveLzqyH41ivaiutVjT+QPs/JCewfzCZqRX8Z5WFMZDkqfqMf5KlzrJ+s+L1Z1DmPHTku5OlfcGWxcUTaVhZv37F126bG0mKgFFsKTP/Oer3YFMEfiDehe1MoT4XP2IK6yc46yMLh0+i3CZPHwm+a8hyhxuruxOK04XsdoW4V1nipKNbMMK8LXDVNWW/2SwR/IKxE3AtBH2uOjQJVdFMuxr1W1ojA8Phs1qFIz9Fqj5F1UCN3NSJS5ef9SuRbkSEHezR0ozqV1eifzNmj4b6l4Vheuz0a2ijPymjsyVv1VIxaLa0RPdpe9WgcLvOOTnk0xqMPnlnF/EWVN2Yf5V/qvfRqLz82C8bzFSH4zoKxPOwLsbpNE9tmnaDH+ubZCJ674JUnbEtZT3qhnLy+gKsdF9CMGOsqz0wrtjLTI2TyGaBfgliQ9Xa2vDN+o/+PIr7EyhAbrcZWQZSvY//BZ4JO1g4qnwlSb51R5374TJD63q3l3Qx5WGZO3EejHfKee2N/MNwiPo++9B/orBkO+xaTTDXEwnvs88hvdErOQJtyBoScGNZigWX0aozT4ceaTMX5RLchohrjJvSP78+ne72CFpOqpp4MvUPIV01q0YCx8OjPbUDDL/PB7mAJYRXdBEB+HpKaXl9qhNEBIb9A+HpX7Fi2YZc8Pv+uhPBC0DOvrCPVqJc6yp/nEabf/qVXTfyzj101/AhO3qN6Rr9C0C8R9G0eLX27GlZhd5AmDJnXUV7eR5hWlNQvj/0QXx1p3wh0RepCYd1WEsseYcKFK97Q63SM4SnX34lh1snWxbr95yJDvlaLibwBi7rHNk3zdHnX5CxXTM7Fbcq5WMjp9ObsxSQna0PuuzRtvBby1HDMBgW8+fEr8MKH79H0Qy2VJEH3P9hHponbK2/OMM2qDP1+AP7Jx3W5zFhOpfN1ICMQRpruJh2G6Rs2ajOmyuO6PAXowGN0uVdEDf9kP0ZX7LgubxOiVRAV7yVhdOkxr9XCJx8dLXNct+QoofAHy3myiZNGrE1OamKIo4oix3WxPtZRHs481oNsrtcVQo7p3yPoVxHWCsFntm8lT41y+IUBii/9+xWCx/NByNih/rJY6uhvm4skuT9Dwa9pLNlOhiOOWlCKfYJDvTJSHaHh2WLZVxCm1zc6Yt3ghJWmW8ewxrDGsLoOK8/DlNgf8Ofm1LGJhPJQv9iMEvljC6pT25QzVcgZFHxl+75aROc8n3Yo+oIE5OfFexyv4gzvtqlaZtZrJHmGZ/Tvgxneq6eO1lnN8NKkZtNYD4bBvG1uCE5UG4JoV94QVJsQSP9A4zd2BEj5Qt46uofqKHZcEPXhMzRvgTq6t3GtDgRkvasutJDH7TDvsVijf6ChU6tjsddmyMtalVifIW8LyDsJx2InK7/DOJPnmJ2KZ7F4oc74qBeqLKM8tDGPS/MeSuBy5D0ya/S7hT9wX8S+kaWfspvzMbsVGWpMEvyBeBO6NykDy3DSe7jIkeeYnXo6gUPEm4XJY1WWprFjdi+6Y3ZZJ0ITwR8IKxH3QtDH7NQrYfKYWJmq7AHtZ4RLxyJs7ONZaiSg9hxiHw9Uo55rM+Sog+NpyvoI4Ltz9mhOIynZo6GNuEfLu3Ji9K2O4nBTU0fSYjObvM2Qj5koP1UjtVbHV/Ict1KvV1GzB34RPvLFRtX4scYQfEfV7TxsVvQIIs+GcAWMX4GJ3REfOVajqLy+gLMnnlm1ehgma+8ZYwBiPNj45X2kj4gYYJgrWpQtT7zDYQ6/wkm9eke9Bil27NPo2vTHQeWPWP48szykL9pWYw+hxR6W5GFkK7+JHYHDvcvv0r4ryjmPZCo/UbaoCX6jU3IG2pQzIOTEsM4TWLH67vAROFNxJtFtiKjGuAn94/sz6V6voMWkqumaDL1DyFdNyp2VnJ425fTklHNBm3IuEHKajrj4bN8fzrNhVvI7XocTwgtBz6YMX50mNr2qIi/P0bm/r73697e88IsfSIjfdOF77CPqtP0Fgt5sVfIb9wdU14QbzWnCUHsT5WH3Yjqoo3PrSuqXx36IXxP0G4GuSF0orLUlsezonPpG1smKGXx07lswhOKjc53W5WQf5uCVjPVAj3XKiZcIUOeib2xEm6JubCN1BIz9znTI+8ZGo/9XqHM+AmY8ed/YuBpksNw03Z2hQ29j+aTNgxHyCBhPD7PeE8e6KpuzHyO/0bVZhsJ+zEcnMe7zIRl8koWPid8CeX2Uhxuv/I7AV0Eeb+zg1G4F5d0OeehHnFR7w6dqPjl9BJfpAsnEuufDUxh3zIZqyWoRXGOe6cr32GeQP3a8dlWbclYJOWrpDsdbHXx8IfeKNn9lpeTXZIZXtGPv1viRYo1f3hBFXrVxlHVkF+UsEnKK6tWBDywtIrqsj24kAjehf3x/Ed3LmobZ38r1V2ToHUI+11dTupPVxFqdLL9ompaZ9Woj7FKR/o3w+cqlcB174H9lGJ2Hcq4n/dU5kDafjsodAgy/SrqUDQF595OLnZTO2rVOCBXvxVoC710xP7fuIielTa5aU1Mviont1TAf2iKIez2CPtYh9ZHuvRF+xEA+9piE7mNrWy5k84mJ6xutKh1w/F8aJCtZaI9WpwKYhnUw+jWgw/MZ+3mVjHJxa+YOHn1rY4b8uyHKrMuIYkHI5/JhD9OfoW/Wq0NuBRvEPuvEz9LyPbQB8mb9zfuUeI1/K19cTvTLQrzsXP9Gf1ek/vuEDqZXmta20EHRKB1eJ3QQUXPl1of3ZOzQ81iCoxzXEtdEn8DJSmaNlMe8l63DrYPl2N/KA9KSN2BHhmZbNu3IOp3AZc3qUXqCToNB65amU3XgpK+cvOiBEyxf2QMnWa20lZw2D5xkddoqWDB/IN5E3AsNtZ9p7Ni81IbPjJV1tPHhxi93UtshQH0vo5PsycC8g3RQMzS1GmT0agM99qbjrG/KZslGW3KwXlNQ11YHTPh7PahfVmeepettJ1nXa4Suba5eFF6V4xU0XJXjFTRcleMVO1yV4xU0XJXjMJl3VY6nrbgqx48GYPtYBtec1Iqd2T1tlx+dM4LLdHidFVPyHgLAGMLTbuVT6rCL0d8IWOoQzlWN6wrR/2QkHqmdolg7aPW+LZ684UGgdZSHfPiWasMORNeJd5FheXgyjbsxvYKebXOzoMc2x30PtrkbKQ9jC68So1x8J+C5k0fTqV1s/jVd+R7rili3kj5rHOUg1t0kB/s2XM76QEa7wnaCvFsav7zz+EmYXH6QlrDUYT9+DOdXoJ39y9xsfj6cpQ4uxb7LFysn0l+VUc5fBz3/sH7iuoOHE2tF3wepYkzsfZCxdoo2qYXmNsljHjV+yvqOHtqoP+g6MDzebfyoWERQj5KtJd1XFNS9zOHJrzQegFDvjGz30Wb19STG6snQfwvR4+sFlGymN5/ABSoVnytE/0dQV9+fqzFD0H3yDRk692fQryMdjP6zwl9icQD9/ybCNPr/AZj8YqBWmFdmYP5lZKyh2mns3Z6t+lMeT6Adb6Y81J37xfUgn+v0GZKPOOhrLDdE9FWPKsb05f7G8r4F/dVX6PQCji0KxOreWF1dJPTNW1c3RMrHWPyARd42gvZ4bprG7CuI+U3Rp6uxyj2A/60c43yM1RyX1TwXxzlqbMCPdRrGd0R7VH29YbXX1ydfKvp4byvbcEwo+yBCml5PeeqRbe++9LcnjcaNvQ83vZ5PerQa413auOY4XDnjxK+Kw8qGMZu3et82n27C+riJ8pTPnmx/PJnvn2Z/VP2H8sc875/O64/4/ulnaWyn3pWtYjTr02rMndWX92fQc8w3+rPAj3ncc4vQITZPuFXQ3yJ0HiIdkJdlY7tEm3B5jH6OaJcdXPOQDwmi3dj/YzZKE9v0VYIebWV2qBE92lf5/y2Up9aRYm02b9sw3tQORyhWe6/Pcaw2+osjsVqVLRarO7U+F4vVnfTVbl2fwzLmXZ/bmWMsEHtAtdUeBMev1UIP1Q/zA7lFvzuA/Gsicma0KWeGkNPJNUiUqcY2XJ6iayHIzzFqrWN5lM58GjlNuKb6qjNGeLJiG/Jyf2f0m88Y4bujca1OwcceoI75btaaaNYa0m1Q/hA6MeYMfad6zMnjSuwveb9cPW2Avod+aTSBdOyEvTwfXlf2VU+l8JNV6Idq/ZUfXle2zDsOwadc1k1qrX/sxQ2t/MNkdeEe3SkfA7AvFN2j43iJclS85DrG+IoYWxq/FaJ/LDJ2VH4Q85tWczr+lhT6Bj+totb5OxhDutpvbqI8te6Y1284hmA8xz7a+u/YGpldq7Ek0vdm4PDYM6H74+E+8l1GZeYxEmNfTvRWzv4M+uE1MKJ/Z2Qt4cYWOlxBOtzUQocbSQejf7fQIWb/NMXGhG0+lV5JCM/0wXuIXw3aP+ohV0rYfiZP+UGauC2r9qT2SmIxULVzhVVxxOInM0vW1zoV2yypc14cLzCO3UF5uM5zN2Bw6qW/sTypX/9g7ggu07GuWF/8uni174y8NwrsU9UebiwnL9oe1BygaHvgNarTvT1knXtMUze0B6wv01vZKE31kC/laS9YNwXsPzdvezF8r/aifE+1lzbfRFJPp2Ljw+hYlaa3AZ7ax8D68qo/tcZ1quqv5JsFovWn5vCe9YfjiyL1p9b+psE1Y+dZ+0P+k7X2N43k4FwQ1/7+ktb+1NwUeXntz+i/Bmt/f0Vrf0XX9zq4Xtdb9Hyi9/equc7yrj9lnUVEOXnXn/ClpxdlrD+ZXdO0RfBy205C8/pTEHrzmTim4fNrw2dzYC71fMa+mTq/hvqzz347sp7S6fNraGc+D5Y1pjfsEJrHDFY+yyvSL6g2geXhNqH24pG+6F48+z3uKd9EWNy+0rReYMV0XdOGrlyPKJvPDRgt+iXqz35p9D0NX2x1bsBs3on6j62nKZvG1tNa2ZTnNLEzBbH1tFZr5xwTVwsdsE9U65u8B6X6BxUnVEzndSPzyylQ/3xWF8/3qH3k9RmYZwifipVhhShD3j4u9lzDTRE+bJcDQlbdLn4QT4Zn/jFOyOJ+xmjPATvdNlfrkrA+LVIH52T1hPBCeEnNyeZ4zMnUOA/HwAupPag2hrxvbPxyG1ty5gjfhRmYIeh2G3uuEPV5pjYat1P7yartxsYwvM+IdcJ9Mp7PVntPfHbK6K+Athl7lslnfzJ5XvWLOC7kfjE2BkwT10VsHIU2qYXmPpPXvpV/YV3zOBz3NFQd8HMIRr8M6iD2qRjut1cX1D3rXEIS9L6UasetPgqQ9Uy7mvum1/Mb19zu10b6VrVWEOtbW5155+cJ1T6UWsPAZ7INOxBdJ/ZlT+ZZGH4RvPJn9WY9XidWr0NLdd9BsVc9N4B1mzVnV8+qptf1xjU/P/i6iH95nyvkZ3fyrt1Y2+/g2s2UU712Y3WbZ+0GYyHHL/VcZ6r77eRfqp9E3oWNa+4nt0T85eZIGdNUtI8yfdR8+BbKQz72JTUfNB1uFXZAvfjdLEa/I+d4wWkevVz5J8592T9j5+nTxHVxm6DHM/Z8jh7fu8FnkNT6FtqUY5d6puMWgc/PdLw5Ml5AGfx51JsK6q7irmpv2Kb+aejEtZrn85j1pohM5sW+pz+DPmv++aSwF8cztZ6UXi8gTKN/KhIPVJ96Pdwrem6M91HQLnxuTM07OjeeDytO9bkx7j9i5w2LnhvL6//oQ39D/o/9+UqSGRvHMi/KyfL/rHNb7434f2xenl7PJkyj/7mCa18x/281RoiNkWJ7jBZvOjg+X3Wqx+fs/7HxOcbfPM9H5vV/9KE/HRqNq56/Rd7Ga6Sanr/9TwX9q53nb3m8FXv+Fvl4fUaNXbkes/qZehhtB6P/nZzjLadzwFNPdTznfQs1vo3Fz9g+qYqfqr/k+Pnfcq7P8NrS6oK6521v2KZ+l/obnPtyf7M6IpN5sV1n9Tf8WnOj/2ykv1GfaEc7cX9j9P+j4Hw91t+0mq/zepB6n4Say8fm607vgprW6Wd9Wq2VcX8T+1Clej6N/QDl5PV/9KEPNPy/PbvufnsCuhh2r6Cs0K/RfL3hk1WQb795viz2+d//zl985MZL38Rfv0mT1VG6Z5PW/9+S/+PaVOzcivlsL+mm+BLSgel7BL3hqvMxFShDWRvN/C+b/uS6Lzz3hVY2Kov/5KWVyW/7sfVrOoX/J+P+9wuf/uT9b+8U/t8O3Lqq5z89NadT+P/mhZuvODxj/reK+Kj5Ap7dNT7bx5wI9wvEwtyvuzb8KulSUN7wPu1EksflM1tMCEU+RTEBrtkqiIr3slqpaRYy6DhCpGmt4AsCO823mqvR/XrIlSaZV0wSmZaHXjaB8qZAHtYmp16hv+mceulzdBIoCCyTifUxmfKGIG8KyOZ6nSjkmOweQT9EWBMFn9m+lbxewTeBMBK6j6O0XiG7QvQzGt/xSm37wplhVDknhNF/o/9tJB1VrxIy7nE5+EkPlpumgdBWJJicN/IYfjVoe9dDrjQceQZJHpevXOThPt+kTCJUo0FaTJNAs5BBp2p0veDjZHyDGZhpGgjNnlrAyoN5a9XuVUmXsrXaS/K4fHzup6TXToh5EWOGoCMf2gMjVH8GlvFWiP6iRqSoheZIxWc+VRTDe2afNFpdMH20PMu7evoIzSWNa/V5LfbvHiG7R8iuCX6ORDhO53cz90Eevx+6P5I3LpI3QGXBvCrwbaC88QIz1e/49NF03M7VbwjNbShNbHNVxxjZeA6jfIx9MgvrNsJC/iHCqrXAuoOwkN94zTd6Bd+gkMPxbBLcL9DeJ+aNZ4ZfJV3KxrNJJI/Lx/Fscjl5gwnxozzENH3U6BFtm/6zz8b0Z2AZb4XoX0XxbAroxPFsitAX72E8W0dtDm1bts3VQnPZrX547p4mPNd55/TRZalBnoqPDzR+K0T/LMTjH6N4jP5nOg4FXV94rfxuUqT8qg102s4chxNHOZi3gWQqn8M2afVkdlY+b3xTIY/bLvsz0iOGwjeMVj74xum6bMoHUVaF6N8BPvimyJiAfRD9M6G8hMqCdMo/sc4eIHrTu1/QI16F6HfALIzX340fbYV6qXdHp+lRwOT1dxV/1awk5osqXiubTiGsCQILy8P7Lsqm2D4nUPmNfr+wKffryK/GfPdQHq7VD1JeP+RNpLxxkDdEeTjm4/EnrvtxvB8Peegjx2k8beV5S+P+QNB+Xw/5kvraO8dIXNMfoDz0rX7KQxuOpzyUx995wnqpUh7WtdXD+JAvFqWJ+0Oj/8lI+1LxU42njH6aoMeYbfRDoblNTaM85ON2yc9w43Xjca9RdkC97m/8Voj+Z8AOsf1u06vN/bRBtZ92BhDwfhosag2XC+m5LqYL+jOBxmxSI3oV61TcRJtyrFNj2WkCn8ey74/EOoyVZ5DuSUHd8z5bjW3qjZGxIve3kyMymRfl9Idi44hfjfS3anyMenF/a/QficQDZctYf6vixxRRLmXTqZSXNa8ybMZss31OVO0Ty8/tM1bWNJWNleq9Ezy/x7bB/q/WEfL6P/qQzb/K7uH9P59YsuZbr/rm7DJ7eLguZHzW/5dc2f4o6m9JrVEYfpV0KShveI1CjRuxfE5rrr+XED/KUzsxbe6J9vJ6EtcN+mnWmq3xVoj+87QWEVvrwjU4Xv9Q63N4r+cUYak2ina0Oknb4Z+QLdQuUx7fVjpiffG4dbyjHMSy+bXy9/RfPeRKl/KegWEgNvpNAd++K2+sMPxqaKstJTEfU/sPqu0Zby00+9gjQNfK/1COwjrepVh7HbEOOmIdccTytNd+R6xDjlj7HLE2O2J5lvFwl+q12xHLsz161uMeRyzPNnTMEcuzHj199UlHLE//OuqI9VZHLE+/79aY41nGpxyxHnLEetoRy9NenmMTT//q1nGhp99361hulyPWAUes02Es161+7zk2GevTimF161iuW2Oh51jOMxZ61qOnvbp1/LXVEatbx1+POWJ5tm3PNuRpL89+yLMNdavtPeOX57pct64NefrXAUesbh1jdmPfkV4POmGlyfqOoQxsvI7tvSo5idBZ7ZPi/j3viQbAafNpydzfVDL8KulSUF4Sqx+1t8pnppG3JvK4roqe20asiiMWnyVRfqP2/YraawLQNp7Ou37TG3bev27r/YFShf5elaHinUR3R4ZqvQI3oX98/0661ytoEVs1yXEZeoeQr0ki/2BETieaPv/d1/g79lhWB7a/780bBl4s29/bgK7d7uAtjliey6+eQ6punap6ltFzG7Bbl+S7dfnizY5Yp4NPHHLE6tapRLdOCT3t5bnc41nGA45Y3brd5rl84en3jztidetSrqdPjI2/Xhox2rOv3emIdcARq1tjYbduhzzqiPWEI1a3Lpl69mndOi7s1j7tdNga9mxD3XqsaKzveGn0HWNb6afOJ8bWFE5dGT2Pm3frfMjT9p5HZbt1vdBznDMWJ07deGIsTpw623drnLDxVwePgfQnhGd64j3E7+ZjIGnix+/LHt043bA6+MrQq/P62Kl6Zah6Obzx1igvTduBjvN6xb2eCNYuR6z9jlgHHLH2OmLtccTa7Ih13BHrsCOWZxl3O2J5lvGgI9YRR6wnHLE8/cuzPXr6l2cs9NTrkCOWp9+fDj7xuCOWp38dc8TyLKOn7R9zxPL0+6OOWGNx4qURJzzL+FZHLM/xRLfa/ilHrLE2VAxrpyPWWBs6dbb3nLt7zpF5DVJ9wqLNT67MTQjP9MR7iF8lXQrKS2J2UetmVr4p5eTVE+JHeeqVyWbrrE9ipP/slcH9GVjGWyH66tknfmtEl6bXkwz12mO8Z/ZJn12qNHBjr3Qu64/IzzZCPvbHkvWV+xOghl8Nbfl/EvMPZRflH8ZbE3lZnyKw/DSdKpv1lZMXtRmWr4zN0rSx8avskuTXcy/LNQzExtd/F7DBurw2H277odkGZWwee715mtjmZwhdapSXph1Ax3m94l5PBOuwI9ZxR6y9jlibHbEed8Ta5Yh1zBHL016eZfTSS8WpbvHVo45Ynm3b0ycOOWKNxa+x+NXJMnrafrcjlqffP+GI5dm2u7U9esbobu1rPetxjyPW6dAPnQ5l9NTLM652a7/9pi7Vy9Neb3HE2u+I5Tk26dY+baw9nroydmu/fTrM0zx94lFHrG71+yOOWN261vGkI1YnYrT6dDDve8X20JQc5J8SkdPXppw+IUd9WjRp/La59j8xITzTE+8hfjU0l9lr7V/Zxcp3Rjl5g3n8CvUxW6vPIBuWfQa5PwPLeCtE/ynaM8XPNfOzGOpTzngP90w/0cBlX0hTPeRKl6vPS7OPoU0K1MFQXh8z/Gpoq86TmA1VLLGyTxe61ERelj+gnOlCTk3k3TqGNYY1huWClSP+9fzx1Nfv7P/5u+9dsnDiqudnTPnJw9d94ulD1y1czHHfdENcjAEF4lHuV2QbfjW0FW+TmE1VH2JlnyF0qVFemjYCHef1ins9GVgqlpbFStPdjd82+sEK13UB3tqA0KmeizVcYbxnNW4UrPOq8Z9djn+88c+Em/U4z/Brlo13luCdujR8bs4Xr9iz6Mwrt96y68gX7/jg/mk/d8FXazP+fucrd/3LF7Ya7zmCNyNZ0xn22ypk2qei03HRDxrGMN+aDXm9xJtem29ViH77zBG+npmjZWOb5njRA/cL1MXivPHC8KukS9l40UPyuHwcL3qFLjXKSxM/59or5PQKOQrrsCPWE45Yhxyx9jhibXbEetIRa5cj1gFHrP2OWN1aj56+erhL9drtiLXXEeuYI5anTzzmiOXpE0cdsTzt5Rm/PPU67ojlWY+eenVr3+FZj56292zbnmV8yhHrIUespx2xTod+27Ntd6KvtX0anI9NoLxeyBtPefgZrx7SryL0q0T0Q/5KBh+XI8/zNv3EWw+5Uu7nbQzf63mbfpLH5eO55jihS03k8SfXVP0kQk5RvRw/k2b5i4hubYZqicBN6B/fX0T3lCkQe4jyleuzy2SZtpbBn6bBiJxBwWeuOR50nAv5/Cm3uULHuREdkd/olJykTTmJkMNYapkqTQ83fitEv6+xNJWW4XtnjsacJ/SLNYP5gn4e0Jg+yjbGOyhkJxm/JieEuA+hDv0kZ76jnPlAUyE55zrKORdoJpCc8xzlnAc044Ev/XsB5KGfmR4LhR7W7ZwP9wt0A7m3RAy/SroUlDfc7ZxP8rh8HHsuELrUKC9NvJ11gZBzgZBzsrAGQ3P5uS6xrJ2oS8OvhrZ8J4nZBcvHdXmh0KVGeWl6A9BxXq+415OBZeXywrJ22mZ9Xcj2wGR5iwD7fMpbDPR3UN4SyLsbMDj10t9YnrT/+sHcEVymY10xfpneQ6HZxzB2ZMUC5T81wW901gebnh+BraJfoa2i2YB9N5VhDuRxm62LvBT/6OzRZUV/4HFQ0RiC/Ean5ExsU85EIYexKoA1AFj3Qj7S/3nD7tZOuD3WQ650P7cFw0DsxSWx88ZMwx8U8kyvqsir5NCl8gc/99HffuMLtyahuV33ins8Rlwi6NWnd81WFwF/AVu9Ab9yHki25eG0bzHl4VTVdEj9+9n6aP2WlNQvj/0QvyboVwJdkbpQWPc6YWF788DqL4k1OTT3SdamVUwaIjlFYxLyG92g4Esyfk0O38sap6FMNU7DIw1fmDnCg3bAuSLycow0+l+bM8L3xQbmUGiOl7HYz6/jKWrnSUJOp+08icqzKFKeRaI8i3KWZxGVZ5FjeWI6q5iM47y1jV8rv4pPKl6nqR7yJTUW5H7zYrhfINbmfsWX4VdDW7F9eK5xMcnj8nFfd0k5efW0PseH5lj4NsBD26Ecq69WMeSfKYYshjwVQ97Y+K0Q/Xshhvwfwmzlh7c1fsf8MFd6UfphQn9n6byl8at84SLKQ/thn2HYITT7UJp4a6UecqW56TjxN+ojcrg8/LiPqh+kt7LWQrMNF1Me9lts01bty+blY+0rV3pJxvmZs0Z42onzb4M4PzsDMwTth7c3ftV6jPGq+Vea6iFfUutS7Icl5565/dDw1Vy8jB+qmKnmRm22s1F+iL6Afoi2QzlYX1kxCXXmOH++wFLxCsfShh1Csw+lyTPOY3k4zuft02qh2Ya8j4DjebYD2ojXx9T8BNvevYSF/LxOeqHQLxGYedaskf/CiJwlbcpZIuQMhGabFvCDi1Qfb8nysA3w2jjG6SWUtxTysC44qbVxK0/qp3fNG8FlOtYV7W16q7kvPx5ddO47Weja5hpp4bq4kPKwLlA/TsrepnNq758pYG+0Kdsb7cDxpOi6Wp/Qtc2+7mK2KSZlU34dMPo32oGTsjeuy/5pAXujTU23NvvES7isQcjFsvIa/aVAv4nyLoO8ovtjVp7URr3zR3CZjnVFfzC9lU9y3C/qk2psF5t/lJWzRMjhv/safy+AfNs74/HtozC+3dIY36ox5Z1hdB761wKQu3XW6LKjr7CNl4bmsi+NlB35uS5RzpI25SzJKaeT5Tk/Up6ie7dLhM5KzoVtyrkwp5zJbcqZnFPOojblLMopp69NOX1CTpv7t0s5VmPiWK36s8sgr2h/ZjoX7c/QpqZbm2PawnbgMS32WdyfXQ55RfszHNMW6c/QH1Bv1L0SdP9yJ+Ub/b9txOzUB95DfQCOeXC/7U8pznf6rIla7zH7tOkjuc9w8ZmDds9wqXlG7AzXEqGLivH8WgG1NqHW9RRWxRHLaZ7q2qb5DJdXmy5yhqsTbfo3G+2zTVs3zR0Ra6ztd1fbT9NKoGu3vV7siDXW9vO3/bx9b0J5WTHiLso3+r+Afv/Pqd9H/74EZI9vvKtErWly2y+6prlQlHdQ8J3qtl9yTB5t+8ouL5V+n9emSu5TFl6bYh/CtSlu++2sTVl5irZ99FvUu502/Tz1+yVtLft93p/phrZfcn09d9s3fK+232rPONb2+YzEi6Hfd9oPKbw+zz6E4wVu+xgXirZ93Csp2/YvoTy1hoV9L2OgjDbtnPt1pdwuSvbB0Xah9twmhJHn+RqPHq/etOPWnW/Y8uC9N23as335Q/fdunHbjgc3bll+333bNm3fjkqjoIlwH/MxMY1dZ21gxhoMFibPQVTDurgFFh8mjDXkS1pg8cEpdQiH/+4LzXraZkNPDhxunEovPkiDDZ07zktbYN1LWMjPk+/LWmDdR1jIj7z4d19o1pPtFcNJ/13RQq9NpNflwH8FYV3ZAusnCAv5rySsl0Ww0uuzCAv5kRf/7gvNerK9Yjjpv6ta6HU26fUyyLuKsF4ewUrT/YSF/C8nrFe0wHqAsJAfefHvvtCsJ9srhpP+u7qFXg+SXq8A/qspD+3M31UsetAC+U/WQwb8HvqrHeUg1gbgS/NeCfwYW9VAyGRY538N3O/EoNjwq6RLQXnDnf81JI/Lx4Pia4UuNZGH/SrmoZxrhRyFtcQR65VUHpwA4CHWteeMlnkN5MUOPleI/h7Y5F9HCzjoK1fnKOM1Qp7RX9f4u1/QI16F6F/V0CkdRH+38fKOmtDp2gxduD9lPzGaNA2Q7E61EcOvhub6L9NGriN5Wf5mZV8mdKmJPBxLYR7KWSbkKKyljljXUHmy2sg9Tm1kLbSRe7uwjTzg0EZwDDUo7nEbKemzuduI4VdJl7JtRNUFlo/byHVCl5rIw/FzVlu8TshRWFc4YuVtI49SG7kc8vK0EaO/FNrIXmojaCNuI2q+crmQZ/RWZ/2CHvEqRP/mnG3kigxd0mscNw+GZv25jZT02dxtxPCrodl/yrQRNd/D8nEbebnQpSbycM7EduwV93oiWHnmXHmxLqfyZLWRtzm1kZnQRt7RhW3k3QXbiNK9E3Mvtb6A30DKspHy3Zrgv4LyFgk5rXzkvedofbJ8xObvFaKvgo/8XMRH+KAF6swbLkXn0guFnDwLyyXjT1/eeDdso9Bc5jLxrtVaGce7K4UutdAcO/lFZSquqrHHiwUrvbbvocT6waLtvBaa/WghybnSUQ6W52SsGaVpA8nhNUn1m1cOYvGLtLLi1scobl0FeSpu2fpehej/ZfYI3+83MAeIpmA7vcZ0v0ZkqvWeKygPx8NXUt4yyOO6Xw55OHbhpDb9rKxpH/q6+SO4TMflwNh+LeV1IObmHmOOxVwfrLH5wui2xPMFzMPvyXFc6xX3eiJYlzti2V5Gm/XlFtfSxAcWlkFe0QMLVp6iBxZU7OJ2wnTYv6h9Q6VXInC4PVme2v+z77CpPcYzSUbRNn+m0DfPOhr6VwEf6s3b5g3fax1NtZ/YOtpVQpeayOO1L7Uve5WQo7B4Xo9z5VPdf15eTl60/1TfrvTwr6x6uDIi7+Xl5PWYPLXvfbmQl76goz8012HW/rza18b6ymrzKJvP5hQ974BYfDbnyowyZNWBWv+JnVGoUF4dxuuTZo+msXMl04BmSuNaxXxc65hNdHxGJU1tzgtytz3Dr5IuZdueqgcsH/rmuBD3EayjrDNLl4qysM8ubaET+6ySpeoUz3BxneJBV1wLnRehu0TQqbz0bzxDx4edjfa8BkZq5x3zR5cR+fmcW9GXcSJ/7KWfi9qUs0jIGRR83IZKHjrOveZm+NXQXOYybUgd/lZ24bMsyMt1kyaes6mzkercyIsFK722bwHHDr/nqVclB/3oZJ2fOhkvt00Tr7ld7CgHsfg72yVfgld4fsgH2nHdi+tyGeSx/ZdD3sWUtwLyFsM1JzWvNDuksfrRHGtibR5U73r78Qv9MCn74YMEY/Ybff6Rk6f9TvXDaMp+OIZl++H4DfsNTspG+KBakXVr9DEr04Qw8lGPkQcxbtq0586NWx68b+OOB7c+dNumR3Zu2r6DP9XGPQD3cIsytOZPyWVpnaYeyltM+bcKOkyDgs9ktPmKrdwzG369a8mWHn29K5aPR2WXCF1qIm8GXHOL6BX3eiJY5zti8at+S7b0wo+eLaa8Tj16VvaxU/Vot+XhZ3ruobw5wHcR5dUhz/DVZ3pQdg2uMS9NveIe13VNyFRy5jWuK1TGf9e4GCC6sj1pB2Zw1+SNFVmPzKJe6hHWPJ/K+e7UZUv+4b3PvycJzfFa7R73AD7Hc6OvCfo2RzSvGAQZITT3rGnCx9ovpDz1Wkn1qZySu6OvyGM/xK8J+o1AV6Qu1Ayw7Ktu7ZM0uEpgbcfa32zIm0952M74FNM8ocO8SHkWCh0GBR+3x/lwvxN9t+FXQ1uxZbjvnk/ysuyiYrzxqtcOToNrzEM5sRiMWLMdsayvabO+zmd7YOK4rXxInfhUKyZF+24rT9G+G23MK5Vj7arz7Wqh0IVtlqaVQMd5veJezP4LHLHMf9qsr4VsD0wqBrEP4ViJ2xW2uVPRrvg1Y6Z7n6BtiBgeWxrtn8Cu2j/RGBj57RPI6lPS51Ee+vpsypsvdEpIBp7GQL9/mMpg9J+D3Zc/rGvMngxMrNMQRrdlK8cAyLW8Aj74UfXZgvOAgF/LqtoN0vO4VfVf2JbMBqr/4jar4i9+Stt28JS9TMdO2At1YHstaKEz20vZF+1gNlBxaQ5hzRFYaMOYvUzHTtgLdWB7nddCZ7aXsi9+qtxsUAvNtqwTlrIXtse1RG/8/YIe8SpE/48QE/jpEYxrXNdzBTbGxoQwsBxVUY5BykPeFPcHZ4/GVU8QqRMnRq/egICnS/jTHnjKwXjbPC3TVSej1Qo9lpmT6pvNDnlX6BOSY7ho/zSxT1wodFSn4K/IiWv0rU779OTQG0+EsA9dKfRWp30WZchRpy3T9GDjl0/zT240xLQ+vtdoyyqemuw24+mQiqdoI46nqs2q04F52yyfLMen3fikMtrYZCr/wlNR7y3wtJ86haZO3LDv9WfQG17TCTCoY4vXMX9WJ7vL+jOWoV1/Rns9QGU1+oUn158ndtqf1VtRYk/j4pP+l1Oe8uckNMewovEVT4a9rc2nXWP+b2XL8n9+2tXoXxbxf2VfderV6GNvemjl/9dSHvItypCTFc/Z/43+2pz+b7I74f9oI/b/vG8wMfplgl69SUG9PSTm/9eSHC//f7TAW0Oui8hkXixblv8bXoXob474/zKhQ6w+lgv6ZUDD/o9lWE55yLcoQw76P9qL/d/oX53T/5c1rjvh/2gj9v8VkNcr6NneKwU9jr/5rT645shvxUIbLyc5Kg7m9X982849bb41J+b/6q05SJ/11pxNEf9XbVCd0swbj2L+v4zy1OkploP+j/Zi/zf6LTn932R3wv+XAQH7/3LI6xX0bO9Ye0Gb1EJz24j5/zKS4+X/a8n/E6CbSjITIRPv8Ro+8yssPB91N1zfA/lIb582tnUKtH8BP1g/CDwBMBC7pI+tx7Ja6qV7iD+YIS9NVZGX5/zDx6/6vZv+/f+5bGJC/KYL32M/7hP0UwW92aqfdK+HXOkm1dbxs14hNJcd87C9mg7q/ENfSf3y2A/xa4KeT9rnrYvJYbQvsL+n/xYLLNwD4PUgOwOFcRoxtjR+K0T/ThGnDVOd0VOvWjd6dT4OzyWaPkOkA/Kqtz3HPjttdG32H/Kz01ge7j/UU1DqLKDRqzdBq8831oge7aT6j9jr2heD7jNzfC6+E/718y8C/8JTzYYdwunrX3gGJa9//fPM0fqoc3bjIvorf4x98vJCoYd6M1WsbvFzEGkqWbf9qm6xPFy36o386uwztz2kV59RrYVmv+cn2LBuF5McdeZOxQTlC/hJqC80fCG1y9+eOZoH91iSxq/15fiFgwL270kIz/THe4hfJV0Kyhs+rzOR5HH5rB7TpxPszd2NpxPWbd1438qND2/fuWVTD0I3qO2arYKoeC8Jo0uPeTwSZrrV9PdawRcEdppvNVej+/WQK00yr5gkMi0PP/4zgfLwHexYm5x6hf6mc+qlz9EMNQgsk4n1MZnyhiBvCsjmep0o5JjsHkE/RFgTBZ/ZvpW8XsE3gTAGBF/dLr721HveXPvQO99bX/SZ7/SvfuYbG/5xbd9Vn//MvrM+fuj7X//2T7LOQejM9TiBaNWv6c73+FTcREesmsAy20yC+wV8/oy80crwq6GtNjYcrSaRPC4fl32y0KUm8jgGTRZyJgs5CqvHEavXCStNt45hjWGNYY1hvcixLA/7+xrlYf/J7/nB+Mwf5ewR+vVE9EN+7nvUGNf6XYzrRU785O13eYW25Er0cL/bS/Ky7NLmWHp4Rbgm5DFmmnjsHesz+zOwjLdC9DPrJ35rRJcm9ms1LsF7Zp90ZnlmfbTuPLdRvyHEx3q10Fx2yzvZfj8e+PCdufPrWiauxiEv78oZ/b+tj/AtqI/WWa16p2mI7rEPhaBX+TtxQg/LyKsqyu+R3k4eqid2K5SH5RkP5Wkj/kxTsQ3r+NJ6GFWeCuQpv+KTlEZ/rD7Cd0XjWvkxzseQP7SQZ/Rm/35Bj3gVon9F/cQv7oIr/SZkyEN7qJ01lndtfURebCca43AIpf32DOW32J7Yb9FHewU9z4lifq58Gf28n7BU7EI/4F0A4+8Pug4Mr0L0a+snftXJh5ifq3o1+nWAGatXp3gk6xVtxfXaD3nKtlyvyg+wvrgfwTofR1hqlxfrOk+9on6Gx/V6V/3Er6pX1UepPoT7qNcCZqxezZadqFe0VZ56Vf290Y8T9FivvMOMdTlAWCpGY13nqVcsD8doo99UP/Gr6rVsHH4AME9VHMbxIterajNIz/Wq/EDZthaa67xKebz+inKKxmjVL8ditNHvqJ/4VU9TTRT8Mf2U3dIy2kmTxi7I7Tu2btvU2AYJlGLbFun1UIYa0wR/iGAhT6xIuDXAJjdZ/UEvr7PJjf6x+olfNDmbkPXJM0Uu2WRyb6QZvtcUudXQk6dJsWamuhiup1ZyHF01Tasz1EgEf2iBZX+nvb+NmrG6eVQfGwkwb/rPRot5RwJG/9b6iV/VY7SamXFEie1UoD6q/JMoD/kmZMjJO0Ix+nfWR8oa68lMdid6MrQR92RqpVCtqBj9FEGPOyk8QsFdV25+aONJJKdVM+fzBcpP1UxZ+VdspN3Kv8w31aw05l+xVREnXxg61b5gtlG+EFtRY19QXSzGBPaF8UIOr4yliUfb+Gs8hpumAUFvefisN9ZXAH0qwIdY44jP6H+9fuLXhi84ijT+mpCPo8eQoTfe6yH6qqCvCvrUPh+qj+is9OT+C8vaK+hx+IP0/7k+IvN3Gtd8/hflpfc+HaFLMn6VzqhPzEa9gt5kjxf0locnGrBNIg3aC7GqkI/0n6qf+LU6wfrGdsnycRYZMvTO6o8Zq1fcQ9/5WP3EdRXuGVbRoWGa+Pw53kPZ48Po9y/Yb54z9R++YvErJr5mwYHJxO+FP/H3f/OWL//zwwta4avzctiPFfXvrJ2HNG1s/LZ5zr/H+HHVIuTnT9QKaUK6DZTT7Qd57IT41aDHgPWQKw1PZzg2c/l4x69aTt6/pn3q+NA8RsG6RNuhnHGkw/iSOqixjsnEOBdITir/l+eP1qHkNPJf2/Th/6tWh3Bn5qv1EVy0Hc4b1HS9QvTfqI/wPde4Vs9n4ZhhKDS3L44JZu8eQcsrw/i3Wo3kKbP5TH9GWfuprEb/D/UTv6m858/UmGg/1KsnA/M7gMnPEhTdRZkg6NWK+lBobjsTiA91xzEE31P1kxAt6pCmjUKnrL+rAidLhwGBo3aoq6SrWs3GdsPj9l4hB9sU9nltLl/1qb4kkD68A4Z5WLbXAh2nXvobdU4xPlsfwWU61ke1Jc++3+73wX2Wy+tX/UTLc0rUsZ3xN49P1DN/9ve4iP4J4VQE32DQ7U395tU3Efp28mRKml7X+G2zz5vZ6jTCrLkjuFl9nhpzcJ83d+4I35zGdas+z/J43JemH4d7HNN5HIUYaeJle4uR/YCPNANUJqNf0CgH9m0qhhhWWvbzyZ4DkBfrRypEfwPYcxHZE+1l9lT9F7eB8aAL0qZpY9A2uAz0uGRutiycF2eV8UcnVeZqOtQB6RijbL+mxlfcdvOMr9Sa10BEBsfjrL7bfGNCi/zxomxB3OsR9AMZ5Q1CdrUFrtq9VvGdd0ATkcexB8ubd90Y49asSHtJwuhyjadyDUTKlQg+bueo+7iI7sp+GD/KrkEc/5sf/OVTj531951a47jmZx99cvCKD/1qp/A/OOGzK37nZwdeX2QNxeq5n2TZNdob7+PY427IR/rXNeqjzTWKwOVRcSM2P+O1V9b/jgz9d0D83kDtQs1PVJvJ6n/7cupi9Pc15LfaT8M1C8OxvAI2r6g9FIxreU7oqbVzo281tzSbqD2zPKdS0KY8pjEb9Qc9v+f9W6PfCnXApz9UbLY8LDvHxV4hV61FWhtLad5K7ark+HacGkdYGgzZ8Z/9Acuo9qJ4fIN1yfsLmNQcEt9z8tTcEVyms6TiA7dXta4SGy+qdmf43dbuzPfViUj2t7w+nDWeU/LQDthXmw9nreljm8Y51zNzR/DQ7up8Qpo4nhr9L0JsfyfFdrQx+4OKE6xLCDoO5ZnLDwo+qxe1j1Bk7QfrF/XEe4hfDW3Fl4TjrcnjOuK1/pLjhAr3sShP1cOkoG2q9gN4rqjWe2LzpFg8Ue2P26ZaR1B9SGw+Z7JxzTzPuCnr7E/WesYH5o7w/R61LRVrY/UWex9KLPahrsr2fH5Fzf3tekJEjtJrUNBPiOiFMZnf/cFP/cfKkLevchoj9hV9+kjZJXbGrdUbGbiNqLcnFO3b+OyO6uNb9W2/l9FHYTnUiXR1dBP7N+v7sL9MSBeUgfP/B8Jo+rJPJv030KHVqfc0PSgwEyEjhGa78LzS6P4QdPi9+SeuY/sBbb4HbyL6jiXVbxq+em9hmX5TzWvUmb025wGDMT9V4x21DsNt3dpD1hwL5+RI/z8bdctPeqSJn4pV4wrVX6S6/fnc0bp3ak8G4y7GjzThOPb/oxihnvBCXn5a1ei/MneE78vU1yrfHB/iMUPt0bN/ZO1zZz0p89VIzFDjd9TrwQzM5wCT97mVX6j6Y19FenWWQI2ZeB1KxbIOPpkl3+mL5c9ql6ZPVpsxejUmU3tONaJX/SXqwutnMV9MU2zPHNuOtauya6hXn/e2GTM/9chgp9Zo+yozf6r+oXvWFVmjVWPvHsJFe/OedJpe0/jNc5as5Pwy9zcheX7Z7lmyvPNLtabF8yVsH9zfqLajzhOfLCzV3rkuS86lc68V8LnAkr6TFI1Pag2S11YxdrH9VVxTc7oXCxa2/9gaUp56VXJi48BOjaX4XMo4RzmItYHk8N6u+s0rB7HuJjkVocOP9jHnjeBiHWeNkbL2jFbOG+FbNG80jem+BGiualwPgOwQCrflqlq3tqT2B9hv1VoJvxtV+QfO/wcoD9+0uBHoOPXS32iHVF6e7+ApW5Y8t9tVtsxrLytrivm6HPbic2dYJpyvxNoByuV2cAP4+B3UttQaomrPdr/VvmXsTJHxtnmefALXLSZVt+wTWLfsE/jIOPsEPsfH7QufXeOxMSblL3jePW/7uiMjRpoMjpE8f1DnnDD2ttqT8urn0sTjuU7020pOp/rTjSRH1UNa/nupDtV5P+Td0vjlNaM3Q/v+CcJstRZgmGr+Pi6Dj/WKyeopKasnQ1ZsnUHtTZ2EfcX+PD6D+J3cV1T7fEXmfWxbzEM5eeZq7DPtYuVZy8mLlWcNLC8Wn+/AMlt9tDqz/Ea4x/ZXz9dgmzBe7vcPQyzP83wNlndLBuYxwMzzfA22iaJjCV5bjD1fk3W2VfFyvMAxIvcJg6A7y+G9yaznaRBHzfP4PKiyI8bRPPutee04SHxq7z+Ll2Np7Dxs1j5uELi8B9kf4eNz1yjnGcLJOuOQ1f7zjp+w3743Mn7qwN7cOIw1qD/eQ/yTvTfH/S7yxsZoiciL9XFjWH5Y3bJH+GEay7baI7y38ct7hB+D8fGvE2YvlYNjrbV7tafIZ5swLsf2vnDf2vRFzHrIlcapvS8sD4+XWu0x3df4Vec7EsrjeIU6KBvh+Ef5qPIdux8b56p6UPOK2PnFDp5nHdfN+5N8/u5k7E9+uGD/WDTe5PUxbtexOWMi9GrzzMlAnnIhfjXotlUPuVJStO2pMy68nx07/5L3bIrnOZcxLD+sWB/Qqt/+BvWxCeTF+p0K0T8P/fa3Gtd5nwvmdpUVr2LtIjbnKtonqdha5NkztB2WbVPjl88g/4uYp3ewnxs41f2c2UT1c1nPFaFM1W+h335D9Ftj51JkGjuXEprLz3U5di7lRBo7l6J/TQ7fGzuX4iOnzLmUxfNHcLGOs/bruG82+tXzR/gunj+axnRfCjSvbFyPnUsZSWiHIvvmbMuxcynNdFwO9DfPcyk3go+/htrW2LmU0XkvlnMpr8mIkSaDY2TecykWe3H8reZWPH/CZzQD0aeJn7Ey+o0UJ0qOn+S7O/D5Q9a/yLkDNZ6wpNZvEspT++Fq/Mbru6pd5fUpK2uq18dz+FSe5437RTlizyKfjOeN03QP6YxzQ14zSFNsr8Hj2Yt9f7jt/f86+T/+r255P87j1MZKzolO2ftx3g3918H5o+WpdtfJ9+Mcg/g49n6c0Vhqr7oT78d5B9TBqXw/zgepXZ2u78cp0r/0i3KMvR9ndF5eH+Y+sTciL+scjfnw+DD6WeoQCtts+JNVVp7eMKITtiEcj4cweo2An1etltNl2IbqvaIYp/i9K0b/X+ePxlF7vWq90ujVdxp6hVz1TY8JBbEGCGtcG1job0w/riDWQASrn7CqAkv1W2nd/Rr4bNkx2hMPzvqHDy+74uky34FA/8F1q0/SnKzsO6P+GsY7n6LxjtoDGXtnVGF5Y++MCs17p6qPfam9M+rL0La+G5lL5NkXje2jjr0zKrt8Y++MGp2HdRob73m8M+q7GX0UlgPjH68bqjaGfd//D/F/N4aQTQUA",
4400
- "debug_symbols": "tb3Rjiw5bq39Ln3tixBJkZJf5eDAGNtjY4DBjDEe/8APw+9+UpTIpartVEVlVt/M/qa791oKKciMkBjSf//2r3/85//693/601/+7a//+ds//p///u2f//anP//5T//+T3/+67/84e9/+utfHv/0v3+7xv/0x//yP/zWy2//qI8/6Ld/bI8/eP4h8486/9D5h80/2vyj+x/lutafZf1J609ef8r6s64/df1p68+2/lx6ZemVpVeWXll6ZemVpVeWXll6ZemVpUdLj5YeLT1aerT0aOnR0qOlR0uPlh4vPV56vPR46fHS46XHS4+XHi89Xnqy9GTpydKTpSdLT5aeLD1ZerL0ZOnVpVeXXl16denVh165BtQADbCAh2bhAX2BXgEP2aIDHro0/mPlAAmoARpgAQ9lKgP6ArsCSgAFcIAE1AANsIBQtqFMD2hXQAl4KJfRCY0DJGAoO2iABbSAvmCEzoQSQAEcIAGh3EO5h/IIJR7dMoJpAI1omlACKIADJKAGaIAFtIBQLqFcQrmEcgnlEsollEsol1AuoVxCmUKZQplCmUJ5RBnTgBqgARbQAvqCEWsTSgAFcEAocyhzKHMocyhzKEsoSyhLKEsoSyhLKEsoSyhLKEso11CuoVxDuYZyDeUayjWUayjXUK6hrKGsoayhrKGsoayhrKGsoayhrKFsoWyhbKFsoWyhbKFsoWyhbKFsodxCuYVyC+UWyiMGuQ6oARpgAS2gL/CfL4cSQAEcEMo9lHsojxjkNqAF9Ak8YlB4QAmgAA6QgBqgARbQAvqCEsollEsol5U3uEhADdAAC2gBKyMxXQElgAJCmUKZQnnEoOgAC2gBfcGIwQklgAI4QAJqQChzKHMojxgUe8CIwQklgAI4QAJqgAZYQAsI5RrKNZRHDNZrAAdIwEO5ygANsIAW0BeMGJxQAiiAAyQglDWUNZQ1lDWULZQtlC2ULZQtlC2ULZQtlC2ULZRbKLdQbqHcQrmFcgvlFsotlFsot1DuodxDuYdyD+Ueyj2Ueyj3UO6h3JeyXFdACaAADpCAGqABFtACQrmEcgnlEsollEsol1AuoVxCuYRyCWUKZQplCmUKZQplCmUKZQplCmUKZQ5lDmUOZQ5lDmUOZQ5lDmUOZQ5lCWUJZQllCWUJZQllCWUJZQllCeUayjWUayjXUK6hHDEoEYMSMSgegzqgL/AYdCgBFMABElADNMACQllD2ULZQtlC2ULZQtlC2ULZQtlC2UK5hXIL5RbKLZRbKLdQbqHcQrmFcgvlHso9lHso91DuodxDuYdyD+Ueyn0p1+sKKAEUwAESUAM0wAJaQCiXUC6hXEK5hHIJ5RLKJZRLKJdQLqFMoUyhTKFMoUyhTKFMoUyhTKFMocyhzKHMocyhzKHMocyhzKHMocyhLKEsoSyhLKEsoSyhLKEsoSyhLKFcQ7mGcg3lGso1lGso11CuoRwxWCMGa8RgjRisEYM1YrBGDNaIwRoxWCMGa8RgjRisEYM1YrBGDNaIwRoxWCMGa8RgjRisEYM1YrBGDNaIwRoxWCMGa8Rg9RjsAzTAAlpAX+Ax6FACKIADJCCUeyj3UO6h3JeyXldACaAADpCAGqABFtACQnnEoF4DSgAFPJSVBkhADdAAC2gBfcGIwQklgAJCmUKZQplCmUKZQplCmUOZQ5lDmUOZQ5lDmUOZQ5lDmUNZQllCWUJZQllCWUJZQllCecSg8oC+YMTghKEsAyiAA4ayDqgBGjCUx3iNGJzQF4wYtDKgBFAAB0hADdAAC2gBfYGFsoWyhfKIQRttHjE4oQZogAW0gL5gxOCEEkABodxCuYXyiEGrAyygBfQFIwYnlAAK4AAJqAGh3EO5h3JfynZdASWAAjhAAmqABlhACwjlEsollEsol1AuoVxCuYRyCeUSyiWUKZQplCmUKZQplCmUKZQplCmUKZQ5lDmUOZQ5lDmUOZQ5lDmUOZQ5lCWUJZQllCWUJZQllCWUJZQllCWUayjXUK6hXEO5hnIN5RrKNZRrKNdQ1lDWUNZQ1lDWUNZQ1lDWUNZQ1lC2ULZQtlC2ULZQtlC2ULZQtlC2UPYYbANKAAVwgATUAA2wgBbQF/RQ7qHcQ7mHcg/lHso9lHso91DuS7ldV0AJoAAOkIAaoAEW0AJCuYRyCeUSyiWUSyiXUC6hXEK5hHIJZQplCmUKZQplCmUKZQplCmUKZQplDmUOZQ5lDmUOZQ5lDmUOZQ5lDmUJZQllCWUJZQllCWUJZQllCWUJ5RrKNZRrKNdQrqFcQ7mGcg3lGso1lDWUNZQ1lDWUNZQ1lDWUNZQ1lDWULZQtlC2ULZQtlC2ULZQtlC2ULZQjBlvEYIsYbBGDLWKwRQy2iMEWMdgiBlvEYIsYbBGDLWKwRQy2iMEWMdgiBlvEYIsYbBGDPWKwRwz2iMEeMdgjBnvEYI8Y7BGDPWKwRwz2iMEeMdgjBnvEYI8Y7BGDPWKwRwz2iMEeMdgjBnvEYI8Y7BGDPWKwRwz2iMEeMdgjBnvEYI8Y7BGDPWKwRwz2iMEeMdgjBnvEYI8Y7BGDPWKwRwz2iMEeMdgjBnvEYPd1wTLAAlpAX+Brgw4lgAI4QAJqQCjXUK6hPGKw0VghvgJKAAVwgATUAA2wgBYQyhbKFsoWyhbKFsoWyhbKFsoWyhbKLZRbKLdQbqHcQrmFcgvlFsotlFso91DuodxDuYdyD+Ueyj2Ueyj3UO5L+bHafiWVJEriJEmqSZpkSS0pPUp6lPQo6VHSo6RHSY+SHiU9fElenHqQL8tPGh7mREmcJEk1SZMsqSX1IF+qn5QenB6cHpwenB6cHpwenB6cHpIekh6SHpIekh6SHpIekh6SHpIeNT1qetT0qOlR06OmR02Pmh41PWp6aHpoemh6aHpoemh6aHpoemh6aHpYelh6WHpYelh6WHpYelh6WHpYerT0aOnR0qOlR0uPlh4tPVp6tPRo6dHTo6dHT4+eHj09enr09Ojp0dOjh8csq5lUkiiJkySpJmmSJbWk9CjpUdKjpEdJj5IeJT1KepT0KOlR0oPSI+O8ZJyXjPOScV4yzkvGeck4LxnnJeO8ZJyXjPOScV4yzkvGeck4LxnnJeO8ZJyXjPOScV4yzkvGeck4LxnnJeO8ZJyXjPOScV4yzkvGeck4LxnnJeO8ZJyXjPOScV4yzkvGeck4LxnnJeO8ZJyXjPOScV4yzkvGeck4LxnnJeO8ZJyXjPOScV4yzkvGeck4LxnnJeO8ZJyXjPOScV4yzkvGeck4LxnnJeO8ZJyXjPOScV4yzkvGeck4LxnnJeO8ZJyXjPOScV4yzkvGeck4p4xzyjinjHPKOKeMc8o4p4xzyjinjHPKOKeMc8o4p4xzyjinjHPKOKeMc8o4p4xzyjinjHPKOKeMc8o4p4xzyjinjHPKOKeMc8o4p4xzyjinjHPKOKeMc8o4p4xzyjinjHPKOKeMc8o4p4xzyjinjHPKOKeMc8o4p4xzyjinjHPKOKeMc8o4p4xzyjinjHPKOKeMc8o4p4xzyjinjHPKOKeMc8o4p4xzyjinjHPKOKeMc8o4p4xzyjinjHPKOKeMc8o4p4xzyjinjHPKOKeMc8o4p4xzryJq3UmTLKkl9SCP80kliZI4SZLSo6dHT4+eHj08vKhoUUmiJE6SpJqkSZbUktKjpEdJj5IeJT1KepT0KOlR0qOkR0kPSg9KD0oPSg9KD0oPSg9KD0oPSg9OD04PTg9OD04PTg9OD04PTg9OD0kPSQ9JD0kPSQ9JD0kPSQ9JD0mPmh41PWp61PSo6VHTo6ZHTY+aHjU9ND00PTQ9ND00PTQ9ND00PTQ9ND0sPSw9LD0sPSw9LD1GnPfLyZJaUg8acb6oJFESJ0lSTUqPlh4tPVp69PTo6dHTo6dHT4+eHj09enr09Ojh4YVLi0oSJXGSJNUkTbKklpQeJT1KepT0KOlR0qOkR0mPkh4lPUp6UHpQelB6UHpQelB6UHpQelB6UHpwenB6cHpwenB6cHpwenB6cHpwekh6SHpIekh6SHpIekh6SHpIekh61PQYcd7JiZI4aXhUp5qkSZbUknrQiPNFJYmSOCk9ND00PTQ9ND00PSw9LD0sPSw9LD0sPSw9LD0sPSw9Wnq09Gjp0dKjpUdLj5YeLT1aerT06OnR06OnR0+Pnh49PXp69PTo6dHDw4ujFpUkSuIkSapJmmRJLSk9SnqU9CjpUdKjpEdJj5IeJT1KepT0oPSg9KD0oPSg9KD0oPSg9KD0oPTg9OD04PTg9OD04PTg9OD04PTg9JD0kPSQ9JD0kPSQ9JD0kPSQ9JD0qOlR06OmR02PjPOacV4zzmvGec04rxnnNeO8ZpzXjPOacV4zzmvGec04rxnnNeO8ZpzXjPOacV4zzmvGec04rxnnNeO8ZpzXjPOacV4zzmvGec04rxnnNeO8ZpzXjPOacV4zzmvGec04rxnnNeO8ZpzXjPOacV4zzmvGec04rxnnmnGuGeeaca4Z55pxrhnnmnGuGeeaca4Z55pxrhnnmnGuGeeaca4Z55pxrhnnmnGuGeeaca4Z55pxrhnnmnGuGeeaca4Z55pxrhnnmnGuGeeaca4Z55pxrhnnmnGuGeeaca4Z55pxrhnnmnGuGeeaca4Z55pxrhnnmnGuGeeaca4Z55pxrhnnmnGuGeeaca4Z55pxrhnnmnGuGeeaca4Z55pxrhnnmnGuGeeaca4Z55pxrhnnmnGuGeeaca4Z55pxrhnnmnGuGeeaca4Z55pxrhnnmnGuGeeaca4Z55pxrhnnmnGuGeeaca4Z55pxrhnnmnGuGeeaca4Z55ZxbhnnlnFuGeeWcW4Z55ZxbhnnlnFuGeeWcW4Z55ZxbhnnlnFuGeeWcW4Z55ZxbhnnlnFuGeeWcW4Z55ZxbhnnlnFuGeeWcW4Z55ZxbhnnlnFuGeeWcW4Z55ZxbhnnlnFuGeeWcW4Z55ZxbhnnlnFuGeeWce41Yb05taQe5HE+qSRREidJUk3SpPSo6VHTw+O8O5UkSuIkSapJmmRJLakHWXpYelh6WHpYelh6WHpYelh6WHq09Gjp0dKjpUdLj5YeLT1aerT0aOnR06OnR0+Pnh49PXp69PTo6dHTo4eHF5ItKkmUxEmSVJM0yZJaUnqU9CjpUdKjpEdJj5IeJT1KepT0KOlB6THi/LFI6EhABspAdqxABRqwAXviCPjAAiQgA+HGcGO4MdwYbgw3gZvATeAmcBO4CdwEbgI3gZvArcKtwq3CrcKtwq3CrcKtwq3CrcJN4aZwU7gp3BRuCjeFm8JN4aZwM7gZ3AxuBjeDm8HN4GZwM7gZ3BrcGtwa3BrcGtwa3BrcGtwa3BrcOtw63DrcOtw63DrcOtw63Drcerp57VtgARKQgQKsQAUasAHhVuBW4FbgVuBW4FbgVuBW4FbgVuBGcCO4EdwIbsglHbmkI5d05JKOXNKRSzpySUcu6cglHbmkI5d05JKOXNKRSzpySUcu6cglHbmkI5d05JKOXNKRSzpySUcu6cglHbmkI5d05JKOXNKRSzpySUcu6cglHbmkI5d05JKOXNKRSzpySUcu6cglHbmkI5d05JKOXNKRSzpySUcu6cglHbmkI5d05JKOXNKRSzpySUcu6cglHbmkI5d05JKOXNKRSzpySUcu6cglHbmkI5d05JKOXNKRSzpySUcu6cglHbmkI5f0zCV0ZS6hK3MJXZlL6MpcQlfmEroyl9CVuYSuzCV0ZS6h64JbgVuBW4FbgVuBW4FbgVuBW4FbgRvBjeBGcCO4EdwIbgQ3ghvBjeDGcGO4MdwYbgw3hhvDjeHGcGO4CdwEbgI3gZvATeAmcBO4CdwEbhVuFW4VbhVuFW4VbhVuFW4VbhVuCjeFm8JN4aZwU7gp3BRuCjeFm8HN4GZwM7gZ3AxuBjeDm8HN4Nbg1uDW4Nbg1uDW4Nbg1uDW4Nbg1uHW4dbhNnOJOgqwAhVowAbsgWXmkokFSEAGuhs5VqACDdiAPXHmkokFSEAGwq3ArcCtwK3ArcCN4EZwI7gR3AhuBDeCG8GN4EZwY7gx3BhuDDeGG8ON4cZwY7gx3ARuAjeBm8BN4CZwE7gJ3ARuArcKtwq3CrcKtwq3CjfPJaU4GrABe6LnkoUFSEAGCrAC4aZwU7h5Lik20HPJwpLoodec3HficKC5d5UCDdiAPdBL9AILkIAMFGAFKtCADQi3ArcCtwK3ArcCtwK3ArcCtwK3AjeCG8GN4EZwI7gR3AhuBDeCG8GN4cZwY7gx3BhuDDeGG8ON4cZwE7gJ3ARuAjeBm8BN4CZw8xgjduyJHmMLC5CADHQ3caxABRqwAXuix9jCAiQgA+HmMUbVUYHupo4N2BM9xhYWIAEZ6G7dsQIVONy4ODZgT/Tfa/b2+u/1QgIyUIAVONx8Uy+v/AtswJ7ov9fsLfOksZCArkuOQ1f8JvD8IOOfemnfIzM7FiABGSjACnRddTRgA/ZEzw8LC5CADBRgBcLN88PYIIu82C9wuI29scjL/QILkIAMFOBwq8VRgQZswJ7o+WFhARKQgQKEm+eH6sPi+WGhu7FjT/T8sLAA3c37wfPDQgFWoAIN6G7NsSd6flhYgARkoAArUIEGhJvnh7G5B3lZYGABupvfcp4fFgqwJ3rMq4+mR7d673hIjz0ryCv7Ag3YgD3RQ1q9kR7SCwnIQAFWoLv5VXhIL2zAnughvbAACchAAVYg3PzxwLwf/PFgYQ/0ir8y9sYgL/kLJOBwM3YcbmNLC/Kyv8cijqMCDdiAPdHDf6HrdkcBVqACDdgSPQrHN3rkVXkLPQqbt9fjrVVHAVagAg3YEj0umrfX42JhT/S4WFiABGSgACtQgXCrcKtwU7gp3BRu/gs5CsnJS+QeU86OQ6H7cHtcLCzAodB9uD1aFgqwAhVoiR4i3QfAg6H7AHgwdG+ZB8NCBbqCd7UHw8Ke6MGwsAAJ6G5+xR4MC93NL96DYaEFegFcGStQ5NVuj6dkRwG6gjjq+KfF0YAN2BPHDU7+0uFVb4EEdDd2FGAFwq3ArcCtwM33zVxYYiy8AC6QgQKsQAX2GEIvb5tD6PVtc7C8wC2wAjXGwmvcAhswR9PL3AILkGLcvNItUHKwpAIV2HMIK+W4VYymx9scwlqzoyr6t6J/K/q39hwsxWgqRnPuHe29oxhNxWgq3BRuCjeFm2I0fcvmy7vEN21e2BN94+bLe8e3bl5IQAYKsAIVaMAGHG7+luq1Y4EFSEAGCnC4leqoQAM2oLuN28iryAIL0N3MkYECdLfmqEADNqC7jRvGa8fI34e8eCxQgBU4dMcG3OQFZOQvQV5BRv5a4iVkC8ePT2ABuptfMTNQgBXobn5t7Bbe3hFD5FtRewkZrd2Sh4XvB+xFZIEMFGAFKtCAw42916UnVnfz5tQCJCADBViBCjRgA/ZEhZvCTeGmcFO4KdwUbgo3hZvCzfdu99corzALJCADBViBCnRdHyzfuX1hARKQgQKsQAUasAHh1uHW4dbh1uHW4dbh1uHW4dbh1tPNC80CC5CADBRgBSrQgA0ItwK3ArcCtwK3ArcCtwK3ArcCtwI3ghvBjeBGcCO4EdwIbgQ3ghvBjeHGcGO4MdwYbgw3hhvDjeHGcBO4CdwEbgI3gZvATeAmcBO4Cdwq3CrcKtwq3CrcKtwq3CrcKtwq3BRuCjeFm8JN4aZwU7gp3BRuCjeDm8HN4GZwM7gZ3AxuBjeDG3KJIZcYcokhlxhyiSGXGHKJIZcYcokhlxhyiSGXGHKJIZd4FdvjHcxRgBVokRFtJpCJPbBdF7AACchAAVagAg3YgHArcCtwK3ArcCtwK3ArcCtwK3ArcCO4EdwIbgQ3ghvBjeBGcCO4EdwYbgw3hhvDjeHGcGO4MdwYbgw3gZvATeAmcBO4CdwEbgI3gZvArcKtwq3CrcKtwq3CrcKtwq3CrcJN4aZwU7gp3BRuCjeFm8JN4aZww2NHw2NHw2NHw2NHw2NHw2NHw2NHM7gZ3AxuDW4Nbg1uDW4Nbg1uDW4Nbg1uDW4dbh1uHW4dbh1uHW4dbsglDbmkIZd05JKOXNKRS7ys7TFd4yjAChxuPpnsZW2BDTjcfJrby9oCC5CADBSgu3VHBRrQ3by9nksmei5ZWIAEZOBw8xlkL2sLVOBw88lkL2sL7ImeSxYOXZ9M9lI1qt5Rnh8WNqAreEd5flhYgKO9Pq/spWqBAqxAd/ML8vywsAF7omcCnxX28jPymV4vPws0oPevW3jMT/SYX1iABGSgAN3NO9VjfqEBG7AneswvLEACMlCAcDO4GdwMbga3BrcGtwY3j3n14fbo9tlxLzQLbMCe6NG9sAAJyEABViDcOtw63Hq4sReaBRYgARkowApUoAEbEG4FbgVuBW4FbgVuBW4FbgVuBW4FbgQ3ghvBjeBGcCO4EdwIbgQ3ghvDjeHGcGO4MdwYbgw3hhvDjeEmcBO4CdwEbgI3gZvATeAmcBO4VbhVuFW4VbhVuFW4VbhVuFW4Vbgp3BRuCjeFm8JN4aZwU7gp3BRuBjeDm8HN4GZwM7gZ3AxuBjeDW4Nbg1uDW4Nbg1uDW4Nbg1uDW4Nbh1uHW4dbh9vMJeJYgQo0YAP2wDJzycQCJCAD3c0cK1CB7lYdG7AnzlwysQAJyEABVqAC4VbgNnNJHzhzycQCFKArNMcGHApjXY+9eCywAAnIQAGO9pp3ieeHhQZsQHdzY88PCwvQ3by9nh8WCnC4tctRgQZswOE2tnhlLx6j5u31TNB8jD0TLKxABbquOrquX4VngubN8UzQ3c0zwUICMnC4dW+OZ4KFCjTgcOveXg//7s3x8O8+8h7+3Zvjp9tdbuHn2y2sQAUasAF7op91d3kb/LS7hZy3UcMdNWN+ogIN2IC4Uzvu1I47dcb8RLh1uHW4dbh1uM2DKL3P5lGUA9dhlBP9gsSRgAwUYAUq0IAN2BPnAZUT4VbgNo+pVEcBVqACDdiAPXEeWjmxAAkIN4IbwY3g5kdYjhUmpvmkQI4FSEAGCrACFWjABuyJAjeBm8BN4CZwE7gJ3ARuAjeBW4VbhVuFW4VbhVuFW4VbhVuFW4Wbwk3hpnBTuCncFG4KN4Wbwk3hZnAzuBncDG4GN4Obwc3gZnAzuDW4Nbg1uDW4Nbg1uDW4Nbg1uDW4dbh1uHW4dbh1uHW4dbh1uHW49XTj6wIWIAEZKMAKVKABGxBuBW4FbgVuBW4FbgVuBW4FbgVuBW4EN4IbwY3gRnAjuBHcCG4EN4IbcgkjlzByCSOXMHIJI5cwcgkjlzByCSOXMHIJI5cwcgkjlzByCSOXMHIJI5cwcgkjlzByCSOXMHIJI5cwcgkjlzByCSOXMHIJI5cwcgkjlzByCSOXMHIJI5cwcgkjlzByCSOXMHIJI5cwcgkjlzByCSOXMHIJI5cwcgkjlzByCSOXMHIJI5cwcgkjlzByCSOXMHIJI5cwcgkjlzByCSOXMHIJI5cwcgkjlzByCSOXCHKJIJcIcokglwhyiSCXCHKJIJcIcokglwhyiSCXCHKJIJcIcokglwhyiSCXCHKJIJcIcokglwhyiSCXCHKJIJcIcokglwhyiSCXCHKJIJf4bns86lbYS/0CBViBCjRgA/ZEP157YQHCTeAmcBO4CdwEbgI3gVuFW4VbznCylxAGultzrEAFGrABe6Ifw71wuJXLkYAMHG6jqoe9sDBQge7mLfNjuRf2xJlLXGzmkokEZKAAK1CBBmzAnuhZY0xdsxchBvpV+A3jR3QvVKABG7An+mHdC73PxJGADHS36liBCnQ3b5m/tyzsgV6aSPPcZs8aCwnIQAFWoAIN2IA90d9QRrEVe2lioAD9KsxRgQb0q2iOPdHfUEaxFXtpYiABh9uosGIvTQysQAUasAF74sgPj2caxwIkIAMFWIFeGTfFohCSvWDRq/7YCxYDCchAAVagAr3izsfYnyoW9kR/qlhYVgUme3FjIAMFWIEKNGAD9kTFyCtGXjHyipFXjLxi5BUjrxh5w8gbRt4w8oaRN4y8YeQNI28YecPIG0a+YeQbRr5h5BtGvmHkG0a+YeQbRr5j5DtGvmPkO0a+Y+Q7Rr5j5DtGvmPke478rLVcmCPvtZaBDBRgBSrQgA2YI+9VlTwqGtmrKgMFWIE+FvOvGbABe6J/bjNKztm36QskIAMFWIEKNGBLnNEtjgRkoAArUIEGbMCe6L/+C+EmcBO4Cdz815+8kf7rv9CADdgT/dd/4XBj7/UR84EMFOBwY+91//VfaMDhNio72Qssmd3Cf/0XFiABGSjAClSgAd2tO/ZEzwTjgzP2AstAAjJwuIk33TPBQgUasAF7omeChQXobj5CngkWupv3jmeChQo0YEv0B4FRGMBeaxlIQAYK0C28S/xBYKEBG7AHeq1l4HAbH6ex11oGMlCAFahAAzZgT/QJzIVw81QxigjYay0DBehu5KhAA7qbOLrb6EmvteRRI8BeaxlIQAYKsAL9gdOpB/ljwKSSREkc5BE8qg7Yix0DK9BXApwsqSX1oLm64FSSXHGid4OPoMfj/Ic9yKNx0miuO3ssTuIkSapJmjRM/AHYKxYDh4v6EHkYLizAIervUV6FyL7U5lWIga4wyCPLF8e8CDGQgAwUYI0uadmdLbuzZXe27M6e3emBNDvRQ2Z2ooeML4B5dWGgN3S01KsLA72l5vhoqUziJEmqSZpkQR4WvmLmtYLsKw5eK+gB4qWCizRp/O3537WkHjRu/UUliZJ81F3G7/uFPu7FUYGW6He+kaMrsKMAx1X6Zfhv4ewY/y1c2IA90X8Lxxd/7FV/gQTk7HCPpIUVCDeBm8BN4FbhVuFW4VbhVuFW4VbhVuFW4Vbh5tG3sKxb3Yv+5u3rRX+BAqxATfTfKXMFD6aFDei/+IPmA6tTSaIkTpKkmqRJltSS0qOnR0+Pnh49Pfw3ytdfvQQvUIHDxtdUvQQvcBj5uq6X4AUWIAEZKMAKHG6+QOsleIEN6Ply3OVeghdYgMPNl229BC9QgJ7YnTTJklpSD5o/T06uONFbqo7eUm+//w4t7Ikejwu9pd2RgAwUYAX6g5bTMPOVZK+9C+yJHqX+2uK1d4EEHGa+kuy1d4HDzBeVvfYu0IAje3kTRpBOGjG6qCRREie5oneWx5yvWHvVHY/P99ir7gIJyMCRof29zKvuAhVowAYcTXXf8bu3qCSNpvrFjWfPRZJUkzTJktzEb7kRzgtHPAcy0Jvpnd8MOBS870esThqxumi08ppIQAZ6j/h19Ap0K+/ebkBvrHdk98Y+birxmjoZk3viNXUyZpzEa+oCGSjAClSgARtwuI25MPGaOhmzXuI1dTKmFcRr6mRMIIhXz8mYNRCvngs0YAP2RP8FXViALuaXSQo0YAP2RL6ABTjEyDtqxJyMqQLxKreFI+YCC/BxbdWvcoTcIkmqSZpkSS2pB41oW1SS0qOmR02Pmh41PWp61PSo6aHpoemh6aHpoemh6aHpoemh6TGCrfqdMIJtkSTVJE2ypJbUg0aoLSpJ6dHSo6VHS4+WHi09Wnq09Ojp0dOjp0dPj54ePT16evT06OHhBWIynm7FC8SE/J96YIyPPMVLwWS8oIhXb8n4jRbfECxQgeO2ZlcYt3V1gXFXTxo39aKSREmcJEk1SZMsKT04PcSzfnX0Nqrj42+rN3Hc2YtaUg8ad/aikkRJnCRJNSk9anrU9Kjpoemh6aHpoekx7uzxziNenrVIk4aH9/S4sxf1IP9BGS9i4oVXwj7A/vPB3k3++7GwAXui/4AsLEACMlCAFQi3BrcGt/lr43fW/LmZWIAEZKAAK1CBBmzAdPMarMACJCADBTiGQZ00yZJaUg8aEbXIFYujt5Qcx9/uTi2pB40flPGOJ15NtYiSOEmSapJf+LgXvGRKxrOCeMlUIAP9Er2Z/gOzUIEGbMCe6D87CwuQgAyEm8BN3M2bLgZswOFWfRz8YW/hcKverf64V71b/XnP05uXTAVWoD9HuXE14HAbMy3iJVNS3XiEq7nDCNdFlMRJklSTXNEHcz7seaM9OD3GvQAqUICjpR7mXgAVaMAG7IkenB7/XtQk6qPrYThvQg/DhQ3YEz0MFxYgARkoQHfzjvMwXGhAd/Pu9DB09KKmwAJ0t+7IQAGO7hUnTbKkh9WYWxAvaJo0wnBRSaIkThpDWJ1qkib57Mvl2IA90R8AFzLQp2+KowFdgRx7oj/1LRwt9Q4ZQbuIkySpJmmSJbWkHjSCdVF6SHpIekh6SHpIekh6SHpIetT0qOlR06OmR02Pmh41PTw259B4bC7sier95aMzgjOQgD4O5ihAn3Xy0fEXt4UGbMCe6G9uzYfPo3nhcGs+Zh7NzVvm0dz8jvRoXqhAd/NGejQv7Il+SK87+CG9kyiJkySpJrniiE0vKJLml+1x3LxnPY4XCrACR0u7X7bH8cIG7IFeUBQ4mkpONM8OFi8nkj7/4fAar/ni5USBD9X51+NoD5Hc6VYkd7oVyZ1uReZsZnVswJ44JzQnFiABGejtao4VqMAWDfMTe5z8xJ5JY1lxvGGLzL1tJzLQJ2YnVqACxzPtWGkVL/4JHE+183JH0AYWoLv5f5v7ZIvkPtkiuU+2SO6TLZL7ZIvkPtkiuU+2SO6TLZL7ZItUuFW4VbhVuFW4VbhVuFW4KdwUbgo3hZvCTeHmL3yX30z+xrewAb0nfaztAhbgeA0ZMxfixT+BAqxAd/N7298ML79F5j7Z8z/oiXOf7Inu5jeMvx4uZKAAK1CBBmzAnuiviQvh1uHW4Tb3yfaLn/tkT1SgARuwB87dyhYWIAEZKMAKHNfmEz9eEhTYgD1x/IgHFiABGSjACnS34mjAlkgF6Ars6AriqEADNqC316/NX3YXFiABGSjAClSgARsQbgI3gZvATeAmcPO5H58A85KgQHdrjg3YE30CyKekvCQokIAMFGAFKtCAw83nt7wkaKFPBS0swOE2qkHEC4UCBViBChxu5Bfv+WFhT/T8sLAACehu3lGeHxZWoAIN2IA90SePFhYgAeHm+WFswiVeKBSoQHfznvT84LM2Xj600PMD+w3u+WHhcPMJHC8fChRgBSrQgA3YA718KLAACchAAVagAg3YgHArcCtwK3ArcCtwK3ArcCtwK3ArcCO4EdwIbgQ3ghvBjeBGcCO4EdwYbgw3hhvDzXPJWKIRLzUKVKABR173SW8vNVro+yEuLEACMlCAFahAv4qRHL18qPrUnJcPBXp71bECFWjABuyJnh8Wuq4bK/pXccUe8wt7osf8Qu/f5khABgoQo2lwM4ymYTQNo9kwmg2j6TE/2+AxvxCj2TCaHvOzDR7zCxsQbh1uHW6IeUXMK2JeEfPace909GRHT/bsSZsx3xwLkIDpZoh5Q8wbYt4Q84aYN8S8IeZtxry3oRCQgQKsQHfrjgb06fHLsSd6zC8sQJ+GdzGP+YUCrEAFGrABe6LHvM/gedlQYN7gvv1a9Rk8334tUIEGzFvDt19bKBgswWAJBksYKEAMlmCwBIMlGCzBYFUMVi1AAuLW8PD3mUGvVgpsQO8o7wcPf58k9IKlQAIyUIAVqEADtkTLB0PfUi2QgUPXpyR9S7XAoetTkl7MFNiA4yqqD7cnhYUFONx8ztKrmQIFWIEKNGAD9kRPCgsLEG5+CKhfhB8COsmSxuuwX4EfAjpoHgI6yRXNkYAM9PY3xwpUoM3DZqXFkb/S4shfaXHkr7Q48ldaHPkrLY78lRZH/kqLI3+lxZG/0kp6lPQo6UHpQelB6UHpQelB6UHpQelB6UHpwenB6eG/6T5j7BVTgQL0Vc7iqEBf57wcG7Aneqj7NLGXTAX6gqobz5Xhib6kqo4VqECbJ/FKixOApcUJwNLiBGBpcQKwtDgBWNpcCfbbYC77zn/qLfULnAu/EwuQgKOlPovqFVCBFahAAw43nyP2bc8W+i//wgIkIAPdzbvIg3yhAg3YgD3Rg3xhARKQgXDzIDfveg/yhQZ0N+9JD3LzjvIgXzjcfBbTK64Ch5vPGHrNVWAFKtCADdgDveYqsAAJyEABVqACDdiAcCtwK3ArcCtwK3ArcCtwK3ArcCtwI7gR3AhuBDeCG8GN4EZwI7gR3Bhu/svvE6pepRXIQAH68/f8awo0YAP2xPm0P7EACchAvwp29PaOuPDiq0Bvb3UkIAMFWIEKtETPBD6L7QVYq0sUV+wxv1CBBvT+Ncee6DG/sAAxmgY3w2gaRtMwmobRNIymYTQ95mdzGkazYTQbRrPh2jzmfS7eq7YC3a07NmBP9Jhf6DUWLuYxv5CBAqxABRqwAb3W4nETVC/cCqQ1WNWrteqY2q9erRVYgQq0NQD1uhqwJ5YLWIAEZGAMVr0y0OuVgV6vDPR6ZaDXKwO9Xhno9cpAr1cGevVyrjp+qquXcwUa0DvK+2EWvnjLZuXLxAIkIAMFWIEKtET/WR8/rNXrvQIJyEDX7Y4VqEADxk9zXWVfjrPua2IBEpCBAqxABfa5VFS91GtRSRrLR36HjNBfJEmjzuGa/6ECDfhof/P7csT9pBH2i0Y5xTWRgAyUuXhVvRxskSZZUkvqQb5uN6kkURInpUdLj5YeLT1aerT06OnR06OnR0+Pnh49PXp69PQY0a2Xd+2I7om+PVlgWWt41bcnC/QeU0cBVqAPjjkasAF7otfKLCxAAjLQ3ZpjBSrQgMNtLABU355sodfWLCxAAg638atXvewtsAJHP3YnS2pJPWiE/qKSREmcJEk1KT04PTg9OD0kPSQ9JD0kPSQ9JD0kPbw0rvjIem3cwp7o1XELC5CADBSgd1p1VKAB3Y0de6LXyS10Nx96r5RbyEBN9O+K/Hr8s6JJXl7nw+ZRvlCAFahAA3ohn7fWemK7gAXobh4AjYECdDdvbVOgAd3Nb9/WE/sFLEB388scga/s7e1eKOjdP8I8sAF7oJfD6ZiirV4Op2Netno5nI6ZpurlcDrmfqqXwwVWoALdrTs2YE/0OF843EZRXPX6OBVvjgf3mAOrvg+ZijfHg1vcwoN7YQP2RA/uhQVIQHfzNnhwL8ybyDcfC2zAnsgXsACHRfULGoEdKMBxQdUvc8R2oAEbsCeO+A4sQAIyUIBwE7h5mFcfbg/zhT3Rw3xhARKQgQKsQAXCrcKtwk3h5mFefeS9+LX6yPuP/UIFGtB11bEn2gUsQFrlMHXW3i0UYAUq0IAN2BM95utEBgqwAhVoiR7d1W9Pj+Pq9+T4BdcxhVO9yi5QgV6A6jeXR/dCL0Edw+1VdoEFONo7JoGqV9kFCrACFWjABnS3MYQ8K14nFiABGSjAuirjqtfWzX7w2rqFdAFdtzoSkIECrEC/CnU0YAP2RI9uf0z1OrxAAg63Ud9XvRQvsAKH27wgj+6FDehuY+S9IE/Nh8Wj27xTPbrNe8eje6EAXdevzeN4YU/0OF7oun5tM2K7YwUq0IA9UaO4tM6iuoUCjJLTOovqFhqwAXvi/BxqYgESkIHeqd5n/tO8sAF7ov80mw+W/zQvJCAD/Sp83Gbh7EQFGrABe+IsnJ1YgAT0UmfvqFmpPtGvwvvXg3dhD/TSukCvAb8cCchAAVagAr2wujo2YE/0D0AWFiABGSjAClTguAp/aZZZyD6xAAnoV0GOAqxABfpVTGzAnuhFtAsLkIAMFOAYC38/9BK8wJ7oYbqwAAnoj0lOklSTNMmSWtL6dKN67d2ikkRJnCRJ3nJH/zFt3v/+Y7qQgP7VRnMUYAUq0IAN2BM9dhcWIAHhZnAzuBncDG4GN4Nbg5vHrk82edFcYAUq0HvHHBuwJ/oP78ICJCADBehu3hz/OV5owAZ0txHGXjQXWIAE5BisOiN6YgUq0IAN2BPLBSzAoTtW8qqXxwUq0L9LKY7+YQo59kSP6IUFOK7CpwN9H61AAVagu6mjuzXHBuyJ/nO8sAAJyEABVqAC4ebV8ZdfppfHT/T6+IUFSEAGCrACFTjK5H0OxUvpzOdFvJRuoVfKLyxAAjJQgBWoQAPCrbqb31z+McvCAiQgAwVYgQo04HDzt30vpVtoF7AACchAAVbgcPNJAi+lC2zAntguYAESkIE+geRUkzTJklpSD+qu6D3bvaXmqEDPZPM/aMAe6IVxgQVIQAYKsAK9B5qj98AYBS+BCyxAAjJQgBU4rmLUV1YvgQtswJ44coD57IiXwAUSkIECrEAFuhs5uhs79kS+gAVIQAZKjIWXwAUq0IAN2BM9BywsQAKOsfAQ92K3QAP6VVTHnujR7nM8vq9WIAH9KnxgPdoXVuC4CvYB8Ghf2IA90aN9oX/45L3j0b6QgQKsQAUasCV6XPvckRfG+Y4C1UvgzKeRvAQusCd6rM5b2WN1obfM+8FjdaEAvWXeD02BBmzAntgvYAG6m9/2nYECrEAFGrDFFXuxm42CsOrFboEMFODQ9Wkvm1+wTTRgA/a1S0WdW2EtLEACMlCAFajA0Tv+4OtlbYEFSEC/CnYUYAUq0NZuJHVuhbWwJ84tSCYWIAEZKEDvHXFswJ7oEetvHl7LFkhAvwoX81/thX4V3iX+q73QgO7WHHuix/HCAiQgAwXobt1RgQZswJ7ocbywrL2T6tx/y6cj1gZc3g9zB66JBmzAnuhT5QsLkNbGRdUr3AIFWIHDTb1lc7uuiQ3YE+d+XRMLkIAMFODQ9Zkfr2Wz6jHk0T3Ro3thARKQgQIcY+Gzsl7iFmjABhxX4fMgcy+vhQVIQAYKsAIVaIn+2+0TtF7VFkhAvwp2FGAF+lWIowH9KqpjT/SYX+hu6khABgqwAhVoQHczx57ov90LC5CADPSR9wviHHkvapvj5kVtC+UCFiABGSjAHHkvags0YANi5CtGvmLkK0a+YuQrRr5i5CtGvmLk1St0PIt5kVpyB9sF9mVgf/70Cq/AAiQgAwU4Fv/8OcYrvAIN2IA90Cu8AguQgAwUYAW6W3M0YAO62+gWr/AKLMDh5o+MXuHV/JHRK7yaP/t5hVfzhy2v8Ao0YAP2RLqAw81X0bzCK5CBAqxABRqwAXuirwkvhBvDjeHma8D+sOW1XIEtUfyfimMDuptfUL2ABUhABgrQr00dvQ0+hNWADdgTvZpjYQESkIECrEC4KdwUbgo3g5vBzes3/CnP67OaP655fdbqVMNYNIyFF2z487LXZwUyUIAVqMDhJhMbcLj585zXZwUWoFe2+K3sUejPUl5zFeh36uMq1GuufFjUN8sKJCADXVccK1CBtoZbvfwqsCcWuBW4FbgVuHkUTvRokYkCrIl+g48nLPV6p8AK9EY2RwM2oHeqd4mXPywcjRxpXr0KKpCBw23kdvUqqEAFGrABe6KH00J3I0cCMlCAFajAGG6dZVDs1+aBM0doFkJNZCAGVjGwioH1wFmIgVUMrF3AAqQVLerlUIECrEAFGrABe+IMsonev94yD5GFPdFDZGEBEpCBAqxABcKtw62nmxc5BRYgARkowAp0N3Y0YAP2RA+nhQVIQAYKsALhVuBW4FbgRnAjuBHcCG4EN4IbwY3gRnAjuDHcGG4MN4Ybw43hxnBjuDHcGG4CN4GbwE3gJnATuAncBG4CN4FbhVuFW4VbhVuFW4VbhVuFW4VbhZvCTeGmcFO4KdwUbgo3hZvCTeFmcDO4GdwMbgY3g5vBzeBmcDO4Nbg1uDW4Nbg1uDW4Nbg1uDW4Nbh1uHW4dbh1uHW4dbh1uHW4dbj1dKPrAhYgARkowApUoAEbEG7IJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCU0c0l1dDd1rEAFGrABeyDPXDKxAAnIQAG6W3dUoAHdzRx74swlE4fbqCJTL9sKZOBwG5UH6mVbbdTmqO+TFmjABuyJnksWFiABGShAuBHcCG4EN4Ibw43hxnBjuDHcGG4MN4Ybw43hJnATuAncBG4CN4GbwE3gJnATuFW4VbhVuFW4VbhVuFW4VbhVuFW4KdwUbgo3hZvCTeGmcFO4KdwUbgY3g5vBzeBmcDO4GdwMbgY3g1uDW4Nbg1uDW4Nbg1uDW4Nbg1uDW4dbh1uHW4dbh1uHW4dbh1uHW083ryILLEACMlCAFahAAzYg3ArcCtwK3ArcCtyQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSypySUUuqcglFbmkIpdU5JKKXFKRSypySUUuqcglFbmkIpdU5JKKXFKRS+rMJeZowAbsiTOXTCxAAjJQgBUIN4IbwY3gxnCbuYQdCchAAVagAg3YgD1x5pKJcBO4CdwEbgI3gZvATeAmcKtwq3CrcKtwq3CrcKtwq3CrcKtwU7gp3BRuCjeFm8JN4aZwU7gp3AxuBjeDm8HN4GZwM7gZ3AxuBrcGtwa3BrcGtwa3BrcGtwa3BrcGtw63DrcOtw63DrcOtw63DrcOt55uel3AAiQgAwVYgQo0YAPCrcCtwK3ArcCtwK3ArcCtwK3ArcCN4EZwI7gR3AhuBDeCG8GN4EZwY7ghlyhyiSKXKHKJIpcocokilyhyiSKXKHKJIpcocokilyhyiSKXKHKJIpcocokilyhyiSKX6Mwl3ZGBAqxABRqwAXvizCUTCxBuCjeFm+eS8emPes1coAGH2/jIR33juYWeSxYWIAEZKEB3E0cFGrABe+L8NH1iAbpbc2SgACtQgQZswJ44P1KfWIBw63DrcOtw63DrcOtw6+nmG88FFiABGSjAClSgARsQbgVuBW4FbgVuBW4FbgVuBW4FbgVuBDeCG8GN4EZwI7gR3AhuBDeCG8ON4cZwY7gx3BhuDDeGG8ON4SZwE7gJ3ARuAjeBm8BN4CZwE7hVuFW4VbhVuFW4VbhVuFW4VbhVuCncFG4KN4Wbwk3hpnBTuCncFG4GN4Obwc3gZnAzuBncDG4GN4Nbg1uDG3KJIZcYcokhlxhyiSGXGHKJIZcYcokhlxhyiSGXGHKJIZcYcokhlxhyiSGXNOSShlzSkEsacklDLmnIJQ25pCGXNOSShlzSkEsacklDLmnIJQ25pCGXNOSShlzSkEsacklDLmnIJQ25pCGXNOSShlzSkEsacklDLmnIJQ25pCGXNOSShlzSkEsacklDLmnIJV4P2Mb3gOr1gAs9lywcbuObOPV6wEAGDrfxtZO2uRfGRAUasAF7oueShQVIQAbCrcKtws1zyfgySn1bvMCe6LlkYQESkIECrEAFwk3hpnAzuBncDG4GN4Obwc3gZnAzuBncGtwa3BrcGtwa3BrcGtwa3BrcPJeMHZp0Fk0uLEACMlCAFahAAzZgus2iyYlYWZkFi+NzIp0FiwsVaMAG7Inz/WJiARKQgXAjuBHcCG4EN4Ibw43hxnBjuDHcGG4MN4Ybw43hJnATuAncBG4CN4GbwE3gJnATuFW4VbhVuFW4VbhVuFW4VbhVuFW4KdwUbgo3hZvCTeGmcFO4KdwUbgY3g5vBzeBmcDO4GdwMbgY3g1uDW4Nbg1uDW4Nbg1uDW4Nbg1uDW4dbh1uHW4dbh1uHW4dbh1uHWw83m2WXCwuQgAwUYAUq0IANCDd/Jhhfx9osu1xIQAYKsAIVaEDPUd2xJ3ouWehu5khABtpKYnbNVDGxJ85UMbEACchjG+GJAqxAHUiOBmzAPpAHjlQRWIAEZKAAK1CBBmxAuFW4+d624xQT89LPPjYbMy/9DBRgBSrQgA3YE/UCFiDc1N183FSAFahAAzZgT7QLWIAEhNtIFb34WIxUEahAAzZgTxypIrAACTjcit+0TYA1sft/6/dkZ6AAYxHArlzgsCsXOOzKBQ67coHDSi5wWMkFDiu5wGElFzis5AKHlVzgsJILHFZygcNKLnBYueBW4FbgVuBW4FbgVuBW4FbgVuBW4EZwI7gR3AhuucBhJRc4rOQCh5Vc4LCSCxxWcoHDvPSzj+86zIs8+/iCw2aRp040YAP2RLmABeivD5cjAwVYgQo04LgnaWJP9OgeX5GYF3kGEpCBAqxABVqix/E4V9e8cLOT969H7EJX8I7yiF1owAbsiR6xCwuQgO7mfeYRu7AChxv7xXvELmzAnugRu7AACTjcxocU5oWbgcON/eKbAg3YgD2xX8ACJKDrevf5bvTjuwPzYsyJXozZR8m5eTFmIAEZKMAKVKABh9v4rsO8GHOh70m/cLiN7zrMizEDGSjAClSgARvQ3UZy9GLMQI+L5khABgqwAhXocTHFGrAn8gUsQAIyUIAVqEC4Mdz8F318BmFejBlYgARkoAArUIExJW6zGHNhT/SYl4kFSEAGCrACFWhAHzdz7ImeCRYWIAEZKMAKVKBfm98ac0JwYk+cE4ITC5CAMfliXlXZxdEDfWEBEpCBAvRGeoh4oC80YAP2RA/0hT5n4/eDP8UvZKAAK1CBw616FHpSWNgDZ1XlmACyWVW5kIDj2sbHPeZVlYEVqEADNmBPnAdVTBw9Wd1iHlUxkYECrEAFGrABe+I8skIdh4K/SXilZKABh4I/jnul5EI/kGJhARKQgQKsQAUaEG4e6Ort9UBfWIAEZKAAK1CBBnQ37wf/cZ/ogb6wAIebPxN4pWSgAIebR4tXSgYasAF7ogf6wgIkIAMFCDcPdM9RXikZ2IA90R8EFhYgARkoQNcducTrHHtzY4/uhQIcLfMg8zrHQAM2YE/06F5YgARkoADh5sfPjG2rzOscAxuwB3qdY2ABEpCBAnQ3c1SgARtwuI2dsczrHAMLcLiN7bDM6xwDBViBCjRgA/ZEj+6FBQg3P5Om+wX5oTQLK1CBBmzAnjjPtp1YgK7r/eAxv1CBBmzAnugxPzbfMq9oDPSr6I4MlHFO6HU5143V2Xt7nmS7uDl7Z8yzbCfPw2z9rX2dZruYnMWZN56+fsXzRNvF01edbePp69c3T7WdPI+19Tf1da7t4unr1zhPtl3svsWvcZ5tu9h9i1+j7xUQ7L7+tuyljsG+V8BV/BqtbOy+xa/ReONYm7BZ77hQgQZswJ44D7kt3kutbEwbT0fvgSYb1411Y9u4bdzB/dq4bEwbb759852n2/or6TrI1l8C10m2Y4cBW0fZLuaNZeO6MdrvpY3JbWO036sbk8vGtDFvLBvXjTffsvnShWskxjXS1n7a2k+6sW3cNt7az1v7eWs/b+3nrf28tZ+39vPWft7az1u/8eYrm+8893pe48wM8xpla79s7Z+ZYfLMDIu3ca9b++vW/rq1v27tr1v769b+urW/bu3Xrf269Ztuvrr5rgzg1zgjfV6jbe23rf223be23be2jbtt426z38jZNo71M6u5Wmc1V+us5mqd1RnTNHlqiPPse2/7jN3JM3YXe9t9FqHO2F3MG8vGdWPd2DZuG/dknbG+uGxMG/PG87qac91YN7aN28YdPGN9cdmYNuaNN9+y+ZZ5XWPcvLDwweRMG/PGsnHdWDe2jdvGHTxjffH0rc60MW8sG9eNdWPbuG3cwTPWF2++6+h7deaNZeO6sW5sG7eNO3jmhsVl48135gafFtKZGxbXjXVj27ht3MEzNywuG7uvz2rozA2L3dcnHXQ+NYj3j8Yatc0qxIUN2BPtAhYgARkowAqEm8HN/Bp9tsLLEIPn88LisjFtzBvLxnVj3dg2nr4eLzPnTJ45Z3HZmDbmZFsH3JNz2Zg25o1l47qxt3N8JGo2c8XkGeP+9m4zxhfrxvO/9/bM2F/cwfN3Xl1z5oTFtLG309+QbeaExXVj3dg2bht38MwJi8vGtPHmy5svb74zJ6j31cwJi9vGHTxzwuKyMW3MG8vGdePNVzbfmRN8GcRmTpg8c8LisjFtzBvLxnVj3dg23nzr5qubr26+uvnq5qubr26+uvnq5qubr26+tvna5mubr22+tvna5mubr22+Mz/4TIzN/DB55ofFZWPamDeWjevGurFtPH27s/v6LLTN/LC4bEwb88aycd1YN7aN28bwbTPPjJMarM08s5g25o1l47qxbmwbN3B+5GAtP3Kwlh85WMuPHKzN3OMzRG3mnsUdPHPP4rIxbcwby8Z1Y91486XNlzZf3nx58+XNlzdf3nx58+XNlzffmXvGkRnmJYZz1dlLDAMLcJo2Z95YNq4b68a2cdu4g2fiWVw23nxn4vHZujYTz+K6sW5sG7eNO3gmnsVlY/f12bM2E89i2Xj6ev/MxLPYNm4bd/BMPIvLxrQxbywbb74z8Yx99a3NxLO4bdzBM/EsLhvTxryxbOy+PiHSZoJZ3MEzwfh8XZsJZrHr+4tUmwlmsWw89cVZN7aN28Y9uc8Es7hsTBvzxrJx3Vg3to3bxptv2XzL5ls237L5ls23bL5l8y2bb9l8Z1LyB88+k9LisjFtzBvLxp7/yHFKjlupz3yzuGw8Jc2ZN5aN68a6sW3cNu7g+ayzuGy8+c7U4nOpfaYWn0HtM7Usbht38Ewti8vGtPF8L/Vunqllcd1YN7aN28YdPFPLYszheM1jKT7T60WPybqxbdyci3MHzx1TF5eNaWPeWDae1+X6phvbxm1jzMn0dm1cNqaNeWPM7XjJY1xXaxt3cL823q6rb9fVt+vq23X1urFubBtv19XzutqFOdJ2XWVj2pg3lo3rxrpxj2tvXvE4r6t5yWMybcwb53U1L3tM1o1t47ZxB9O18XZdtF0XbddF23XRdl20XRfZxm3jrT/XHKlfO2/XxbJx3Vg33q6Lt+vi7bpkuy4pG9PGvPF2XbJdl2zXJdt1yXZdsl1X3e6TuvVn3fozP6dqV35O1a78nKp5PeSjYezcwXptXDamjXlj2bhurBvbxpuvbr62+drma5uvbb62+drma5uvbb42fcW5g9u1cdl4+lZn3lg2rhtPX3W2jdvGHbySzOSyMW3MG099c7aN28Y92WssH9ycy8a0MW88r6s71411Y9u4bdzBK8lMLhu7/lhua2Umk8W6sW3sNa3zr/ZEX6JdWIAEZKAAK1AT/XmjjBW65ttpJtPGvLFsXDeel1CdbeO2cQfPvLG4bEwb88aycd1485Xpq85t4w6u09eHu5aN3XesUzSvv0x237FO0bwCM9l9xzpE8xrM5LZxB8+UsrhsTBvzxrJx3Xjz1c1XN1/dfG3ztc3XNl/bfG3ztc3XNl/bfG3ztc23bb5t822bb9t82+bbNt+2+bbNt22+bfPtm2/ffPvm2zffvvn2zbdvvn3z7Ztvhy9d18Zl4+krzryxbFw3nr7qbBu3jTt4pprFZWPamDeWjevGm2/ZfMvmWzZf2nxp86XNlzZf2nxp6o8UTTP/jDWnRjP/LJ463Zk3lo3rxrqxbdzAM7eM9bZGgrGmmUNm/88csrht3MEzh4y1sUYzhyymjXlj3GNUN98th9CWQ2jLIbTlENpyCK0c4u3R7R7T7R7T7R6bOWS2Z+aQxbbx5rvlENpyCG05hLYcQlsOoS2HkG33tm39bFs/29bPM4fM9rStn9vWz1sOoS2H0JZDaMshtOUQ2nIIbTmE2ja+K4dM3vq5b/3ct/GdOWTx1s9bDqEth9CWQ2jLIbzlEN5yCF+0MW+M8eUth/ClG9vGbePZz+O3jGcOWTz72fVnDlnMG8vG83rVWTe2jdvGHTxzyOKyMW08fc1ZNtaMZZ75ZGxp37ziNLmDZ55ZjHuJmTbmjWXjurFubBtjTJm3MZVtTGUbU9nGVLYxFdm4bqwbz+saOY1XLppcNnZ98f6ZuUi8nTMXLa4b68a2cdu4g2cuWlySZd6fY72wybw/F9eN3WtUCDeZ9+fitnEHz/tzcdmYNuaNZeO68eZbNt+y+c77Tf1a5j025uiazPtq/fPZtjEWMu+rsb7YZN5Xi2lj3lg2rhvrxrNt1blt3MHzvhrrTE3mfTU+hmoy7yv1fp731Vh/arPKcV3LvK8Wb9c47yVx/XkvLaaNeWPZuG6sG9vGbeMOXveSX8u6l/xa5u/aYt5YNp6+fr3zd22xbdw27uB12tHksjFtPDW9D+dvU/X7ZP4eVb8f5u9R9T6cv0eLZeO6cQPP35fq99L8fVk8dfx+mL8jY8fnNusGyyi/b7NuMJg3nr7mXDfWjS31Z91g/PMOnnG3uGxM2Q+zbjBYNq4b43rrzP9+jbNuMBj9MOv3irnXjBGfrpn1e8G2cdu4g2eMjGPN26zfK83bM2Nhcd1YN7aNXX8sSbVZ17d4xsvisjFtzBvLxtPX+2TGy2LbuG3cwTNeFpeNaePp5f05Y2Sxbmwbt407eMbI4rIxbcwbb762+c44an6/zWe/xW3jDp7PfovLxoRxaduYtm1M2zamM76ax858TmseI/M5bbFubBvPtvm9NJ/TnGdtX3DZmDbmjWXjuvH0NWfbuG3cwTMeF5eNaWPJ6531fGUsG7ZZzxfc8xp1xuDisjFt7NcylhbbrPMLrhv7tYxvE9qs8wtum87my5svb768+c7fzcWycd1YN7aNN1/ZvGbsm7d5xv5i3dg2nrnFr2XG/uQZ+4vLxt7+UW/RZt1esGxcN9aNbeO2cQfP2F9cNt58dfPVzVc3X918dfOd8T5O/mw643p8xNN0xrL5fTVjebFt3Dbu4BnLi8vGs80+LjOWF8vGdWNFe+Z73OK2cQfP97jFZWPaeLvGmR+c5zm6/rg6z9Edpxq0eY6uPwTOc3QXNmBP9JM2FxYgARkowAqEm5+06U9pXp0X2BP9pM2FBUhABgqwAhUIN4Ibwc1P2vQHZi/ICyQgAwVYgQo0YAP2RIGbwM1P2vSH8Hlirj87zxNzFxYgARkowApUoAFboh+T60/hXiUXSEAGCrACFWjABuyJfvK1P+d73Zv5Y76XvQUq0MX8pvXzsBf2RD8Pe2EBEpCBAqxABcLCT8HtPhZ+Cu5CAQ6F7t3np+AuNOAQ637F46d2olesBbquOrqCORrQFZqjK4yInefdLhw1x76yOXe9W8jAUajmy5SzUG2hAg3YgD3RN75YWIAEZCDcCG4EN4Ibwc0/jR9fnLW5v91CBgqwAhVoQNdlx57o22EsdDdxJCAD3c1HyLfD8IW6ub/dQnfzEfJP4xf2RN8Xy9ff5v52C93Nx833xfIFsbm/3cLhVrxLfHF3oSV6bPpDkdeRBTJQgBWoQAM2YE8cP5aBcDO4GdwMbgY3g5vBzeBmcGtw8zD1h0jfks78uc63pAtsQA8G7zM/wnphARKQgQKsQA8y798ZpgP7DNOJBei65MhAAVagAg3YgD1xhvTE7FSv4wrUbIP/bi6EWIEYQcx/Nxei6YSmE5pOaDqh6YSmE9wIbgw3hhvDjeHGcGO4MdwYbh6xZWIO4dyobnyU2bxca94PXq0V2IA90X9CFxYgAWFRBViBCjRgA+Y96QVagfnM5SVZ85mraz4FdTVgA+Yzl1djBRYgARkowAqEm+VTULcGzKeg3i5gARKQgQKsQAXCrcGtwa3nU5AXZAUSkIECrEAFGrAB45mrex1WYAHGM1e/rnjm6le5gAVIQAYKsAIVaMCWSPHM1S8qQAIyUIAVqEADNmBP5Hjm6hfHM1e/uAIVGM9c/eIG7IlyAQuQgAwUYAUqEBYVF+8Bad4cD8iFFajA0V6bCg3YEz0gFxYgARkowApUINwUbgo3g5vBzeDmETvm8LqXOy2coTfR/5rfnh56CxkowAr0RhZHbw4N9CBbWIAEZKDrejB4kC1UoAEbsAd6fVKgu4kjARkowApUoAFbosfmeN3uXokUSEAGCrACFWjABuyJBDeCm4fpeIXvXpoUKMAKVKABW/S6b/y2kC9gDpZX4NiY/OtlPgIWRwIyUID+/OBjMR8BJxqwAXvifAScWIAEdDdv2XwEnFiBCjRgA/ZEv9fntfm93nyM/a5eqHlB82lwYgP2RL/Xm4+Q3+sLCehN9wHwe31hhQLcOtw63Hq6eYFMYAESkIECrMBp8T//8w+//fmv//KHv//pr3/5p7//7Y9//O0f/zv/wX/+9o//579/+48//O2Pf/n7b//4l//685//4bf/7w9//i//j/7zP/7wF//z73/42+PfPrrxj3/518efD8F/+9Of/zjof/4Bf/t6/lfHbJ+tvz5WGyDxCM4PIuW5SBvPbi7xeNaDgPEHATq0wnfomI14JN2nEqcLeaTalhqP5+enFyLPRWQs47mEbK2wj71Zn/99Hr/x/ve5ExpQ9fZViH/FOq9CqPDTq7DnIiQ9LoMey2ObhN2VeFxIDAg/ZjchUT72RT9IcM2+qBBQvSugJe7rxzx5CvD1UaCUU29qSDwWONtzDTr1xCj1Wj1h/FTj1Jl+xu2UeLxtPu3McrgziWrEGDFvt8Uj4D5o1HdH5HghHQpXe34hB42qHGPyQGjU/lGinYZ1TIOtYa30VOJwb/mvsSu0PWNVua3QJC7jMT/zXOHuZdjzyzh1pl0Rpg/szyRGsc3zZDF+3VeykPJUQt7tCjrcmXTlLwg9fgBSQ+ijhB4aoZH9H2+2zxthp18Q1br9CqEZTO3+pXhZ17qUWp5eyuHWopa593oqcI6xrnlbbL8hn8aUy/tp76QhRHEhQvr8R4T5mMIpg2TrDSrlo8bh/qwtRuSxaL0pXN+4NZD5xmeP5emtwYdb9DFLFffoY2pq+0mrnzROv+12ZaQ8FsVS4zujYhHwj8cdez4qhzv08aCeTymPl4hN49Oj1ulRp1JD/pO6/5x8fE6R8v79IfTu/XG+Fr00m/FY5n5+LaffeF+5Xqlje04Yj4EfNOrb94f+RBo8q9yNGGnvR4z0d3vkPLpd8BzZ92enT6NbTxnV6zBmRn28CW+j+0mDTr8MErcZtT0r28f+qIeMWn27gfnjULaI+UXj1I6unD9R16Edhzt1HJMYYfd4B32qcRyZx69U3mXjXPfnI3PIqUp5hyiTPtc43KniHxrOrFqIXtKoXhW9RobktWthDo1xFvxTDS2nxwfp+YiuL2r4jOR6BDF6TaPh6faxzPs8px7vELtyWmAc2Pe8JfV3/YWwki+BZWz1/rwdp+eQxw8v52zNY9X2STbT9rvmw7HvR15Lr89Hxq7ftU9HAXW047EQ//wJwk65jK3lm3XfW/Lx1cH43T49tkJytoNErqetOD6VWc4RPKY529OnMjv8blPlnq+DH+L2k8bhLpWW7w7SPmjobY0q2Y4qnZ9r9PefDdvbd+m5R1veG0rltVFRhsZhVNrhHhXf4mf9Qn14QpVvtKPhd5/q83YccmnhnglZPtylH9vR9DSTlb+UzPtU72eNUztkS8jloHHKpVwEkyf6Up/yhanWq70WtXzlVNKjRfZUo5/epDrlDfLg3p9lsVM7/LuoNS6He72fcqnvJ7begj78Tn6cAOmHN6mx0+XSGJsEvqQxqshzWquW5xr6fgbq9ntmoMcjoeWomL12h3G+ibFQf6rhG668OQF9aobkmxjrPg3+SzNOq03bSwPzPrL8DRE/VGbepte+bPaLiJzeLC279RE6BZmdf7mgQyrrFtfTtwdc5ut+0NV81H781jy/2X07kkOX5K/UtWXUzxPa1yGjck4Ey/V8Gtd3IXn6ClRzZFSv6+nEg29N8nz+ohNh/oL46dzD8S55PNblw2Xth7vktARVheKCat1m+X9Z+yn8/uCcFqFuDs5pDer+4OiPDM5xlrwqXnOfrnycHnSxliWm9fl62Gkhia/8neHH2sHz0DuK0JUpnpiei1B5f12N6O2FtZPEzZW121dyWFq73aXCL45LkawIoMNDRDmuPtxexm7vL+icL6dqPmeenol8O4Pnt0i+RIydiJ+ns6NIo+jYsfPrQYTev+FPC1Q3b/iTxM0bnt9fQC389gpqOa1Occn56ccDzDZfr+XFUTkE7/n2yAnqsSnsa/fY2Dspx3Z/6/4sclygqpJPeLZNlX9+6j3HXc+Zncck9+E3Qvj9u/20RHXzbpe3qwXuX8mr6b3nKrtclx669AcqUeT9UhR5vxZF2u/dpRXPh1d77RdTrpLTVJccxqWeVvxvFhnV+v7YVn17bE8SN8f29pUcxvbco+8+LNcrl8gfS7mH4rHTkpASay5v8SEl6+EHppdtZfp6npHP/WHoj/Zin96r3iqnlSmS7NXHu6Y819D37/TTytTNO/0kcfNOv30lhzv92KOYn370qL6mUfOd7rGg8rQAq5xWhGrP+enatb+owXJH43yH3SoQ9J0Q3rw7ThI3747TmtLN0jzfc+d5Bcat2jx7/1H9tCp181G9nTJpySUlLduw/vKofl9EXxSRXKFX2RZPfxWRd8flfC2oRynt1WuhvMX0EfmvimS4KPVXh4aziEP3Sf9fRU4rqI/FpJxoezA/n687ytwuKftCxvLXf5w0U16W6Zg9bNuD6jdl7la4ldMy090St9Lfrvo7t8OoYxGBDu24LdJfFcHnRNbrayLjrGGMztUOMudB7oaCm2t7wPruvbJNWLftwfW7Mtt3Uo0P4Xj/F/3p2xFdxxVWzOE9/w07P0HfKlKnS99/WTyL8JWz+KMfn4scq6pybZNMDlfT334Op3K9+6R1lLj5Ocdpxeru9xynBaubH3Qc16tuTkfeH5Xn7xRf3B2K/NzkJQ32/R/XxXR7VeN6W4PxqMXb6/P3NBR1Iu25xmmN5+b70Rcat96PztciuMlE2/saL95jTD3Xq6Q9H9vTR1Rle04zOkTdsSFW8wZ5/Ew8b0j7gcFtv/PgWsG1HAL39MHNPG9wPUKU+mqn9lxIbIe77LTOdG/5nk6fUj2eQvNauj1/NTm2Qwq+suZDdxx/s3MhUnhf3/nWD//+uXfhV0XyDhE5PT1we3+Fl07l0HdXeM+X0zkGuJbreSEBCf3E5fDvfDm1pEgtcrqc+uaz7rkZkrdrfeSiQzNO1SYlw3crwKNPH/WTvF37f25FvoLvwftLK+p1upCcYRXaSpH0voS//eBNqF6vifSK16m+Pex+TwQfQ5R9JfE7nZqzLNIPQ3ta5PkBiTExgnfmVp5eylnk7sjUnxiZ+gMjc4xc3R4iPuzd8I3w15JXo4/Z5VdF8vnu0aYXf/JU8llEP5QSfkuEc05Eqz2vAiKtP/AbcVrv+ZHfCK1ZLP5Y2TxdzukXvPYrY6f27THvGy0xLvlLw3Joyem7qrszEfZ+JSDZ25WAR4mbMxEm789EHJeebm4toT8wE2HvVzV+cXfcm4k4adydifhC43pb4+aLZru7Qlpf69O7MyJnjXszIqcvmu6+NJ817r00H69Frrw/hJ5vKdPa792OezMztzVejLm7MzOdfmBmptEP3CD0Ow/MzVmV46dVd2dVzg25N6vS3/5ihXr/gVmV3t6eVfniIQYLrI+bRZ48xPDxw6jtDhki7RWRm6+IX13MvXYcN6nI6l279DB/oKcSccrpAzx/8LdeZPq2CHnVl96GHn+xQ4T0aXf091+pjiI/8vp/t0euH+iR42dVd3uk8Ls9cl40R+1t7628uPLec0L0IfK8BoCu6ydW3o8yii2mtNnTCYCjBF7JtJO9JpHf72ivT0fmXIiTVZ7K18t1RflD9RA5VPMcP4roWa1l+8V878Obng/u1vtzET5tklcsv3l/4NOHCKb3q1aZ3q5aPUrce0fl435/995Rmd+uCOTjln8331Hvj4odRuV0d+DTjNL78+0Lj3v+3XtM/aIdtz6Z5dNHVfeeDvn0UZWaYqOs9rzm59iOe0+H/MUmnRdu0/ZSl1LB99Dl+ZM/n76outmlxwWqmw/cx3bc69IvvjDLvS5aaYddfY+fMd/6EuG8B+ytjwhY7P10fFqeupmOTxI30/HtK7HXOvTeNwRHiXufEPBxq7977/tfaNx733/7o8HjF9C365DPu7jerR/+QuVm+fBxL9ib5bb3NfqLGveKbc97fd5+4j/2691S22Nbbt8pX+xeerPQ9qzyI1d0+679QuXmXXvcj/XmXXtfo7+oce+uPX7xevuu/eJOuVnZfX8T9uePVvZulcpxY+grFw4fzwP76uOnjaFPXzcxdaxjlKcTiEcJ1HZ92Nzts8TbU0zHl6Gu+Dz8w66hnzqj/cD5E9x+4AAKfnuC6fQ+pbnhnu7FR59746SQT2a6VerTd/aCr1em07pVL/2yF/xx6wDCw922cdAvGqfFqbtb5Z03Ub23WecXW6jTtV3N8y2D+bTz382YPUrci9n+9j16eiEjw86BZs/m+0/vhffu8qPCrbv8vGHIvbv8vCv+zbv8vCp18y4/HluT33bSg7eG8H2Nmn36WOE4aBwjxU+RWz3SrufbL8vF70bKWeJWpMhpUepmpNzvjg+1z9/Z0V5QB7ItFtLLGu19jb0o9Ts76xt2gd4PD/tlN/pyPFojZ1CFtov5VeT0e085GcN7yHxThHOFnVhfFcGTB7H9gMhWgf2towKuXHPQq5cXB2fbnab369URznUY4fK8X+8ewHB1falHqv8aT4392INfNO4eSNGeh43Q+1/6CR1T4oX6KdJDQ06TTDUPHLC6fxHyaXTpeEBaQ27el1E+t+O0RXbfdiLYP6D4rHGc7roEkxjXvrNk+0635pY9H7b9/bVbjyJ9q2073CTHMxgK5h6UTj++p1eyWy+4X7QjJUY7DicOnV4helY/PuZ0thJq+/hsdTwtRPLQzQc+b8fxtBDO6Yv6cVfn75z0gVSkTV/TwCrZmG8+PFidRkZy34wHy8sqOFFK5XAazKkw/d47wFHh1jvAF+d8bFUl/SpPH71P92nJefdxhu5LEjgZpxO1l15zObdRfbD110bWtjUZq+V0vtbbk1NniXuP7/L25NQ3uoNe71RsTVn5xaAzvJ49WK/nKvX9N6v6/ptV/X3frD52h10vD41tKuWpyqm69V4mOyrcm804ntFT8k3kwYecLPr+1M5J4pEN8Rtj+vTDtC9EbDs1xJ5+mPaVyHZ+krWX8mojPIY8FqieB+/pA5sfOkGJ8hmR9uK0X05QuqtR6DWNKjj3WstLGo/2506714eXok8a9v6M/fH8o1JzB1Nqe/x/Q4Nzd5zK+zcDnzTk9AHVzcR8lLiXmE3fTcznzsi33Sr79wK/dEY7TURkMYReH85Q+ixy+P2v+HqyXE/f7M7NQDVo+bB38XeupeQeuY/3ovKqSE40j/3zXhbJj1LLi2d93T0vrL39e9ne/r08nll2c/b/fO7Zvdl/aT8w+9+O23Nl9bRchyPH5P3VKXl/dUreX506fgKK3X7ZXjwHjrEL80Pj+fFH8sWhVLdWpaX/wG/c8TwozTMPdXuA+bUd/f2Lqdf1ExdzepYqmZQLfdhqhD+15PT4gcnDLYnZd86lUuzh0PTVc6luBv8Xh1spXmI+bPH36+FW5zOyto/SbN9n87sy+EB/P63nW0dtPTywu8Vei/XpsK0v2tLKduwXv3xJDbVutW3l1N+U+fjV3/VUphb63WU+VIjz89PMziJY/iLaW/ItEdZ859w/yf51qM/vNbk+IuX5WXO1vF+R/IXGvaMIzyI3n06+aMm9x5NKP3Ba5flMtHufIVV6/1SV+n6B9FHiXt37/Ss5HQFyPGXu1qc79Qf27TsfM4evMvXD55C/HDN3qqjE7rK2f//zLZG7X++cRVqusWg77cL9xal5+4bV+8pz/Y7MOLU31yZkOx/+uzJ5du6QPGzQfO7e/ExCTejVMcIOQO067E5+2mz25udA5Xj07a0vrM4a976wqu9/YVV/4gur+gNfWJ2HNh+RHqNML0ZOuXgr5Bd+9ZbH8cgPtpcDsKDqs3z4UvOXo0nPj334/L32bU3tl+c16e++np8lbr2e11p+V4mbH+F/8UDet03A9o8svnEQ97234lp/YHO1Wn9gc7XjQdw1O+SxWPJ848vjQdwlj4xtTPKaRs061Fbp+VavVa93b/VzM/IhvNXDOX5V6e2IO0rcCxeVd8OlH8+bvHnAur07ZXtUuDVle5xPu/lSdJ6Tu/lOdFqtvT9rY++/E9n756r6Qsib70T29rmq96/k8E50Phb93jvRcfXq5jvR8Vz0u+9EJ5Hb70THltx9JzqK3H4nun7mnej6mXei60feic7de/Od6Cxy853oentPsmP03H0nOmrcfCfq19vvRL38wDtRv97v0v4T70TXz7wTXT/zTnT9xDvR8Vmg5tPEh89IvvM0kcvhKs+XkPndp3897sB18+lfr/L+0/9p/ZcpN5zi/TS8z+u/Rw3LNWTuH0rH72vIlbnsET7P16H1ev8U3S807k3Cn0VuPm9+0ZJ7D5x6/USNwPHoi62grtjz8T0da6DY8no/XfBbGjWDnx6/ms/vkeP0993IO55adTfyjj2Sz5xklx6uRs8zRHf2ND9uKiCKLx3s+anPWt4/XE3L+4erKb19uNpR4t47if7AJ1dKbx+upvQDh6vdH5VDUi3vH6521Li5pflXGtfbGve2NNfTpmI3tzQ/t+PeluZfaNza0lz5/R2svtC49e58vpZ7W5rraauYn2nHrS3N72u8GHM3tzTX8+da97Y0/+Jmv3mDXL/zwNzb0lzleGbtvS3Nv2jIrS3NVd7etFKPm+jdfNc9tuPeu+5XzzC3tjTX407RN7cS1/dPvfryYu61g289TPFF9Pxh+Xr3RflcKX3nRfn8tUcenP3AffL/G1+MKL460c6vabT86JT2F9TvfXVChjF5fi1yOh7m7qcrR5F7226fJW5tu/2FxJ1tt4+jYhkpj1eG67WR/aAhL2oQNPj5oKi+/d3qWeLWip9q/10lblbRH/tT/9cPAb83JtvLcX8xc+zteFWj5bPLA1/VwB7VR423s7m9nc2/+NQ8f+w70Ytfq2fV7wP70x/Hd3vi/O3/nZ447qdgJb9ksg/fEXxjT4aWs3sfysu/p4EtZlp/cW+Ixy2ZGq/uUdHydeUh9+oeFQVvCfRyf3RoPB+X474fNV95pBr/gMZre4c8pilzVk6rvKjR8i3BDvfYUcPyW0hp9TAu5xqjfGSxfQ7pc82VfxjzvFfzbn90jjxdPvqqJblFTW2nlhz3c8eXjLpN3/B32tFzkV6ZD+04rfRzPv0Yt+efqNjxyyrsubVVf9GnhcbjLdLwMtoP2ynY6SuMu7eInXbuu3uLfNWSW7eInRZv7t0iX7Tj3i1ip3X1+7dI+z1vkYpznOp+jNMvt8hpBblSwwf3+8/dp8E97Q6nRlhY3/d0/c61aP7a7S9xv14L/8C1yO97LTj2+IGv/dpVzoqYT3sYfEOD0A6qP6Ch5UWNhv0YrutFDcsnGWqv9mnWSlQ+xMtZg6Ehz58gzpvD5reUtJcHfN7Y1ejt/SnOErdebO20698PSNzce+jUn4z9T9iuQ3++vTvFqRWCt+t9R5lfWnFaNr6bwZjezmDnrYcJ+/JTfXotZ42Kg1z0eX/Idd7a5uYeyPT23N5R4t7c3lniztzecY/tW2/p512677ylH3ezv9WG8374t+ZMTqdg3Dzz8axx78hHtuMhmLeP0jjJ3Ls/zxK37s8vJO7cn+eTbG6fCXJW+YEzaO7eI2eNm/eI/sw9ou/fI/r+PaJv3yOHt41H3s6f6rLn809De5bIlYWyZ5DvSGD5i67+VML0+OLU8VD7okQWE+i27P2dC9n3e9jmTL8jofnE8XEp8BsSlt9GPNZ6XhtUygLCxyT4axKc5aGPXimvtQJLmny91J0iOD/nw76C/a5Cwf5kj6Xp9kojSkG57b472XckGHvYcH+tFXU7pEXsNQlFmVzrr10IvvZleu1COLPeI329diGKAlm111qBOeNi/aWbs2xfPu9T+d+QsFx2M9FXBLbf1PpaP1zbQ4Y+v7ntdLjU+2HacyWh02sdoTjKrb7Zk68JPF6ocl6mbhfB9wUqBLbAuC+gqGLb3wa+IXBnRvh4CS3n2ep+xMZ9gaw+eWi9INCz6n1/KONOtwVyEPZHsu8IZEFR33LsNwTKVRCS+3GP35CgXDEtpP1tiS3HfkcCJ3KU/RniVYn9GJvvSFT83uwfQnxnRCrOztwPrPyOhOC8B+W3JezFVuA71XLZixJ4oLpeuy/Kdi7Jthb/qsS+C993JDJQC13XixIMidducBSsFKKXLqRi+4IHvpT2URuxb6FwW+Dmyd/ttFJ088uadtxq69aXNUeJe1/W3L+S55Xxx5evWwd/X8cp5zvnfjd6/wuQLzRuFdbfb8dzjeP9uR+MW5634u3d9dr7u+u147lQ977aaqcpwXtfbTU6nnrc9g0P6vNtINpplagLnpXq9Xwur/FxvuTCh1vba5h+o1dLnunwSMflaa/ysYQSB3Y9Vzh26u1Dx78am5szvl/I3D12/AuZ7fuca/+s9psyd48v/0rm5vnl5/v25gHm3xDpr4rcO8L8KHJ/Uv2rG+/mgsXtVP30w6Mm755hfu7Wm+sdX4jcW/Bo8iMLHkeZewseZ4lbCx5fSLy54FEM34OZ7ds4fPwerJ0/Xbrzg3Ge+MvZ3C76tBVHCdk+bOOXJKzh6O8PJyJ97ovzfs63thpopyqeu1sNHNeQsqjpwwnPv1yMHqeFDTOyauX5YRNnEW4Q0fpU5Pw9xfZ1HB8u51R/1xSl4lulaNf7Giq5Y6EKv6iBE69Ut6nyXzROXy23lPjwcdv1rWZcaAY/b8bpJ6pi3/0qz6fWvhBp2375fBA5XY2hU82eD8zxUz2mvMt4+6UbMzv3RSR3tXpMlJ1ETtvs3ayMPnaJIRd9OI3wly45nr2bHy/ux39+GpjT4SjV8iyzcb4CNORzM07fyV2G+N8Lz+QbcWco5Xs80ZTn/XF6tEP12uP3Ym/Ip+ep01e22Cmobt9A/irxE7dq+4lbtf3utyo2xnkErz0dmnb6VkTzRpP9WJNfr+a44ye2+pPtt+pzKmqnfe06vvW/tmpN6p9+rI5bBeHQ68ds4JYU+fPV/MDekl+0RDAZuQ/w55acNtm7+4GFf1by3mLWcWyYcns83itYfxmb04c8FafN1GvflOr245lYPkY85iX6K4+rgodE2UPml0ei/hOPq/0HHle/ekzEo4Q+P8KzXz/wrHkUuVfxfXxcvd8jx+LiC+dmfvga8NMGxse9zzE5WVp//kHRFyLYcKzLSUTfzwD99GnTvZqAs8StNfkvLuXeV1r99GXT3a+0+unTpntfaZ3v1ZKz6EzX8zfFfjzeojLK9LYniV8v5ge+0+yn9aZ7d8j5VSL3htDDAuLx9ezmmZVHiVs7oJ9frLCVe/mwbem33s52EXm+xN3p/Q9HOr3/4cgXF2O4GOMXe2SbOrd6/YDIoQSin9ZZbner/c7dul+MvToNYIS5SH51bBqmEhuVHxA5tKSf1q/ujg3z7zw2Pl+5Lqb2F3uk47W3s/6AiLRDt9oPdGv7nbt1vxh9NQl0vG1+OOrnOyJ04bf3Os3B3Z76avzyrNW9l7yzyM2Hq+OK1d2Hq+N+e/cerk7TRR0rvrgS4ftTRQV7KBfbD9B+ebLoNLjtJwa3/cTgVvqBwT0tWt0c3HYu88rlhPZ0ZPrpRCjB3IrwvhPP53nNUzvwdrYfuPFrO+wHnt9Py1a3n99rf/sN7yhx7w3vfCk371P9iftUf9/7tOcDfN82hP7l/jjtn1ULZt72wszv3aco7rz2M3d/acjx3JG2VRb1Q5/+xI2q79+o+v6Nqj9xo9pP3KjGv+uv5d0fu35asaKeM7y0V4n8KnI8mqLjaIp9t7dP9/uxJYwHM/6wcfAvLWk/kJlPHXv7hm9vf49zlrh3w58v5eYNf3wMuXvDN3n3hj/fIai659IPKfF4jAp2upXO/OK9SiW3uiU7taT9QHJuP3Gv9vfv1f7+vdp+4l7tP3Gvdnn/KeK0Msq5plH2bWw+v7yfzlOUPMRQtrqX8Zn8bYmatYj7YvP3JMyyIEFfk9D8iurDdjyvStQXJbIv9NW+0OwLfbUvLC/EXu2LXeLFvthrVF/sC8u+sFf7ouWFtFf7Ypd4sS9afj3c7NVWZL1Nay+2whdZ52vHq32xS7zaiobC4+f3xbGK4u7hmudSjCoo+tu/jvvl4MbTUQNWclyMqJ1U7FQ6YP9LGmbq37icm4dZfiFy78DRs8jNA0e/qCy5tWp4lLj11eAXEnceOb6os7n3yFEu+oHp04fK2/On5aLjGaH39sJ5qBy3Z7yzGc4XGrd2w/niam5uiPOFys0Nbc6FUFc+iz2W/bemfCqEmueJvvuw/lCRd6PvC41bsfPV1dwNHrafCB5+e//dL2rdcGoZbd8y/TrEp/OguORi6ON1df8V/ixyOmN3P758K8v6tC3pQ+S4PWDWZezb1n5LIstMtbVXJbKo+nraii/KB3M5pl4fnjQ/N+P0KlWzyFT2eaE3RPozkdsVlfv2uf/LXXY8cRBL7sLt+eWcznLSK78p1rIfWvqLyOlW3Y8+LfVqPyKzz3frd166sc/VsRz5tMbUa66YX9tnL59X/x7Xc/yOP/JR27dx4V807r1473vZ0Oczw+vbz65ftCP3Nnrc/yeN/hNZXt/eiP+hUX7iEUnp/Ueko8bNR6Tj1dzc5O4LlduPSKdFr4v/9zz9S+Acj3jK9z7ZLudTAD8kjgXWebTI/imf8jeupVzYsJ1P13I6UOj+496p1uTuo9q5JXcf1Yx/Iojt/cnV2983yvPvG8t1WrUqDecQtq2u6dOX2uf62XvT3kV+ZGx+JMG263cdm4+fjNBhbBq9vzYyPvT/iQBsP/C+1X7gfav9yPtW+5H3rdZ+3xuFs1uZPxybVO6LCN7LZd8a7de77TQN9DMq9zY5+ELj1i4HX2nc2ebgi0mTm/vvfjWBc+/p5Itpvjvbg30hcWdnyi8mXw1FsO3lGdzcZuDxXnzYi+b4cW/JPVceIfT8C+FSjkcn5c6vuEE+V1qe66Tb//6l1Pcqx3OC4SHyaiF8M/yMH3aK/KKa/sKHyoedCb/4XAK7Utn1aksUHbtvd/C9D2puHctw+qqPchMn+fArzvLpJit357Hk6dZpDw06zXXc2pnvIXL67by1fdpZ497+ad+4GDtdzKlbO8Kmdz6InL4MuLet3VctwcGt+1rfryKnI3lvHdT+6NbTXNbNT7fPKneXLr9oy811ui9Ubi7UfaFydx21nBa4Hs8b29ZafdtR5vMuUF/q7Pv2bd+jfFOnCPYvevzu2es6+KLkoVlPOtf7y7tfqdx7OjhHk+SGrrLt8/u/ZKnTfBA22aV9k91v5YbHL0juIvp4v34uclqnupsb+DTKvW6bXW25Qcs3WnK3X88jfO8h8qu79uJta0R5ORofE+2IomKvR2PB2RAPzedRdB1vuTs7i86Nl5/+Qt/aWvShcSrMLvm6wR+uRW/vNcGa2yqw7l/uWbsvoduWCOV9ifqaBHYV1e1AwO9IGLrT9omPb0i0zEa8n3v9rVZYjohtuehlidcGteWsMu8Fb9+SyHkkbvLaoLb87Xxgf7EVeV80fXFQc3vXB77UisdKDjbt238vvyHxocKEn0o8stppNZZwpAzt00ffOTEpj8EitdcuJRenifV6TSJv8ccMzUtRMqZ5MG/EL0pckJC3JYhf7E5MXVF7rRWMvqj97Va8NqiSQbKvqn9nKgAC9JLAvc0XT49Nt7YHOQnc2hzk+Bp156DM6/eckLm1zdLp02icjVP02vclu92Govl6/FhN7S9JtIoZv/paK3rO99G1n3pxX4IunIj74fn5G61ABX358Cj/HYmOKdTy0oXsh4iU/lorOOshimz1Lt+REOyaVbdShs8Sj9aeSlXeP2yPM0wL22u9gQ1rH28a5e0O/Szxfx//9w//8qe//dOf//ovf/j7n/76l/98/M3/GWJ/+9Mf/vnPf1z/99/+6y//sv3bv////xH/5p//9qc///lP//5P//G3v/7LH//1v/72x6E0/t1v1/qf/9MeD9r/8HhOrP/3H34rj//fx3vtYxW7PP4/+79/PGw8/iMZ/378hTq2mnv8j/+F4v/FI+c//qf93/8ZTf5/"
4400
+ "debug_symbols": "tb3Rjiw5bq39Ln3tixBJkZJf5eDAGNtjY4DBjDEe/8APw+9+UpTIpartVEVlVt/M/qa791oRksiMkBjSf//2r3/85//693/601/+7a//+ds//p///u2f//anP//5T//+T3/+67/84e9/+utfHv/0v3+7xv/0x//yP/zWy2//qI8/6Ld/bI8/eP4h8486/9D5h80/2vyj+x/lutafZf1J609ef8r6s64/df1p68+2/lx6ZemVpVeWXll6ZemVpVeWXll6ZemVpUdLj5YeLT1aerT0aOnR0qOlR0uPlh4vPV56vPR46fHS46XHS4+XHi89Xnqy9GTpydKTpSdLT5aeLD1ZerL0ZOnVpVeXXl16denVh165BtQADbCAh2bhAX2BXgEP2aIDHro0/mPlAAmoARpgAQ9lKgP6ArsCSgAFcIAE1AANsIBQtqFMD2hXQAl4KJfRCI0DJGAoO2iABbSAvmCEzoQSQAEcIAGh3EO5h/IIJR7NMoJpAI1omlACKIADJKAGaIAFtIBQLqFcQrmEcgnlEsollEsol1AuoVxCmUKZQplCmUJ5RBnTgBqgARbQAvqCEWsTSgAFcEAocyhzKHMocyhzKEsoSyhLKEsoSyhLKEsoSyhLKEso11CuoVxDuYZyDeUayjWUayjXUK6hrKGsoayhrKGsoayhrKGsoayhrKFsoWyhbKFsoWyhbKFsoWyhbKFsodxCuYVyC+UWyiMGuQ6oARpgAS2gL/CfL4cSQAEcEMo9lHsojxjkNqAF9Ak8YlB4QAmgAA6QgBqgARbQAvqCEsollEsol5U3uEhADdAAC2gBKyMxXQElgAJCmUKZQnnEoOgAC2gBfcGIwQklgAI4QAJqQChzKHMojxgUe8CIwQklgAI4QAJqgAZYQAsI5RrKNZRHDNZrAAdIwEO5ygANsIAW0BeMGJxQAiiAAyQglDWUNZQ1lDWULZQtlC2ULZQtlC2ULZQtlC2ULZRbKLdQbqHcQrmFcgvlFsotlFsot1DuodxDuYdyD+Ueyj2Ueyj3UO6h3JeyXFdACaAADpCAGqABFtACQrmEcgnlEsollEsol1AuoVxCuYRyCWUKZQplCmUKZQplCmUKZQplCmUKZQ5lDmUOZQ5lDmUOZQ5lDmUOZQ5lCWUJZQllCWUJZQllCWUJZQllCeUayjWUayjXUK6hHDEoEYMSMSgegzqgL/AYdCgBFMABElADNMACQllD2ULZQtlC2ULZQtlC2ULZQtlC2UK5hXIL5RbKLZRbKLdQbqHcQrmFcgvlHso9lHso91DuodxDuYdyD+Ueyn0p1+sKKAEUwAESUAM0wAJaQCiXUC6hXEK5hHIJ5RLKJZRLKJdQLqFMoUyhTKFMoUyhTKFMoUyhTKFMocyhzKHMocyhzKHMocyhzKHMocyhLKEsoSyhLKEsoSyhLKEsoSyhLKFcQ7mGcg3lGso1lGso11CuoRwxWCMGa8RgjRisEYM1YrBGDNaIwRoxWCMGa8RgjRisEYM1YrBGDNaIwRoxWCMGa8RgjRisEYM1YrBGDNaIwRoxWCMGa8Rg9RjsAzTAAlpAX+Ax6FACKIADJCCUeyj3UO6h3JeyXldACaAADpCAGqABFtACQnnEoF4DSgAFPJSVBkhADdAAC2gBfcGIwQklgAJCmUKZQplCmUKZQplCmUOZQ5lDmUOZQ5lDmUOZQ5lDmUNZQllCWUJZQllCWUJZQllCecSg8oC+YMTghKEsAyiAA4ayDqgBGjCUR3+NGJzQF4wYtDKgBFAAB0hADdAAC2gBfYGFsoWyhfKIQRvXPGJwQg3QAAtoAX3BiMEJJYACQrmFcgvlEYNWB1hAC+gLRgxOKAEUwAESUANCuYdyD+W+lO26AkoABXCABNQADbCAFhDKJZRLKJdQLqFcQrmEcgnlEsollEsoUyhTKFMoUyhTKFMoUyhTKFMoUyhzKHMocyhzKHMocyhzKHMocyhzKEsoSyhLKEsoSyhLKEsoSyhLKEso11CuoVxDuYZyDeUayjWUayjXUK6hrKGsoayhrKGsoayhrKGsoayhrKFsoWyhbKFsoWyhbKFsoWyhbKFsoewx2AaUAArgAAmoARpgAS2gL+ih3EO5h3IP5R7KPZR7KPdQ7qHcl3K7roASQAEcIAE1QAMsoAWEcgnlEsollEsol1AuoVxCuYRyCeUSyhTKFMoUyhTKFMoUyhTKFMoUyhTKHMocyhzKHMocyhzKHMocyhzKHMoSyhLKEsoSyhLKEsoSyhLKEsoSyjWUayjXUK6hXEO5hnIN5RrKNZRrKGsoayhrKGsoayhrKGsoayhrKGsoWyhbKFsoWyhbKFsoWyhbKFsoWyhHDLaIwRYx2CIGW8RgixhsEYMtYrBFDLaIwRYx2CIGW8RgixhsEYMtYrBFDLaIwRYx2CIGe8RgjxjsEYM9YrBHDPaIwR4x2CMGe8RgjxjsEYM9YrBHDPaIwR4x2CMGe8RgjxjsEYM9YrBHDPaIwR4x2CMGe8RgjxjsEYM9YrBHDPaIwR4x2CMGe8RgjxjsEYM9YrBHDPaIwR4x2CMGe8RgjxjsEYM9YrBHDPaIwe7rgmWABbSAvsDXBh1KAAVwgATUgFCuoVxDecRgo7FCfAWUAArgAAmoARpgAS0glC2ULZQtlC2ULZQtlC2ULZQtlC2UWyi3UG6h3EK5hXIL5RbKLZRbKLdQ7qHcQ7mHcg/lHso9lHso91DuodyX8mO1/UoqSZTESZJUkzTJklpSepT0KOlR0qOkR0mPkh4lPUp6+JK8OPUgX5afNDzMiZI4SZJqkiZZUkvqQb5UPyk9OD04PTg9OD04PTg9OD04PSQ9JD0kPSQ9JD0kPSQ9JD0kPSQ9anrU9KjpUdOjpkdNj5oeNT1qetT00PTQ9ND00PTQ9ND00PTQ9ND00PSw9LD0sPSw9LD0sPSw9LD0sPSw9Gjp0dKjpUdLj5YeLT1aerT0aOnR0qOnR0+Pnh49PXp69PTo6dHTo6dHD49ZVjOpJFESJ0lSTdIkS2pJ6VHSo6RHSY+SHiU9SnqU9CjpUdKjpAelR8Z5yTgvGecl47xknJeM85JxXjLOS8Z5yTgvGecl47xknJeM85JxXjLOS8Z5yTgvGecl47xknJeM85JxXjLOS8Z5yTgvGecl47xknJeM85JxXjLOS8Z5yTgvGecl47xknJeM85JxXjLOS8Z5yTgvGecl47xknJeM85JxXjLOS8Z5yTgvGecl47xknJeM85JxXjLOS8Z5yTgvGecl47xknJeM85JxXjLOS8Z5yTgvGecl47xknJeM85JxXjLOS8Z5yTgvGecl47xknJeM85JxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnlHFOGeeUcU4Z55RxThnnXkXUupMmWVJL6kEe55NKEiVxkiSlR0+Pnh49PXp4eFHRopJESZwkSTVJkyypJaVHSY+SHiU9SnqU9CjpUdKjpEdJj5IelB6UHpQelB6UHpQelB6UHpQelB6cHpwenB6cHpwenB6cHpwenB6cHpIekh6SHpIekh6SHpIekh6SHpIeNT1qetT0qOlR06OmR02Pmh41PWp6aHpoemh6aHpoemh6aHpoemh6aHpYelh6WHpYelh6WHqMOO+XkyW1pB404nxRSaIkTpKkmpQeLT1aerT06OnR06OnR0+Pnh49PXp69PTo6dHDwwuXFpUkSuIkSapJmmRJLSk9SnqU9CjpUdKjpEdJj5IeJT1KepT0oPSg9KD0oPSg9KD0oPSg9KD0oPTg9OD04PTg9OD04PTg9OD04PTg9JD0kPSQ9JD0kPSQ9JD0kPSQ9JD0qOkx4ryTEyVx0vCoTjVJkyypJfWgEeeLShIlcVJ6aHpoemh6aHpoelh6WHpYelh6WHpYelh6WHpYelh6tPRo6dHSo6VHS4+WHi09Wnq09Gjp0dOjp0dPj54ePT16evT06OnR06OHhxdHLSpJlMRJklSTNMmSWlJ6lPQo6VHSo6RHSY+SHiU9SnqU9CjpQelB6UHpQelB6UHpQelB6UHpQenB6cHpwenB6cHpwenB6cHpwenB6SHpIekh6SHpIekh6SHpIekh6SHpUdOjpkdNj5oeGec147xmnNeM85pxXjPOa8Z5zTivGec147xmnNeM85pxXjPOa8Z5zTivGec147xmnNeM85pxXjPOa8Z5zTivGec147xmnNeM85pxXjPOa8Z5zTivGec147xmnNeM85pxXjPOa8Z5zTivGec147xmnNeM85pxXjPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzjXjXDPONeNcM84141wzzi3j3DLOLePcMs4t49wyzi3j3DLOLePcMs4t49wyzi3j3DLOLePcMs4t49wyzi3j3DLOLePcMs4t49wyzi3j3DLOLePcMs4t49wyzi3j3DLOLePcMs4t49wyzi3j3DLOLePcMs4t49wyzi3j3DLOLePcMs4t49xrwnpzakk9yON8UkmiJE6SpJqkSelR06Omh8d5dypJlMRJklSTNMmSWlIPsvSw9LD0sPSw9LD0sPSw9LD0sPRo6dHSo6VHS4+WHi09Wnq09Gjp0dKjp0dPj54ePT16evT06OnR06OnRw8PLyRbVJIoiZMkqSZpkiW1pPQo6VHSo6RHSY+SHiU9SnqU9CjpUdKD0mPE+WOR0JGADJSB7FiBCjRgA/bEEfCBBUhABsKN4cZwY7gx3BhuAjeBm8BN4CZwE7gJ3ARuAjeBW4VbhVuFW4VbhVuFW4VbhVuFW4Wbwk3hpnBTuCncFG4KN4Wbwk3hZnAzuBncDG4GN4Obwc3gZnAzuDW4Nbg1uDW4Nbg1uDW4Nbg1uDW4dbh1uHW4dbh1uHW4dbh1uHW49XTz2rfAAiQgAwVYgQo0YAPCrcCtwK3ArcCtwK3ArcCtwK3ArcCN4EZwI7gR3JBLOnJJRy7pyCUduaQjl3Tkko5c0pFLOnJJRy7pyCUduaQjl3Tkko5c0pFLOnJJRy7pyCUduaQjl3Tkko5c0pFLOnJJRy7pyCUduaQjl3Tkko5c0pFLOnJJRy7pyCUduaQjl3Tkko5c0pFLOnJJRy7pyCUduaQjl3Tkko5c0pFLOnJJRy7pyCUduaQjl3Tkko5c0pFLOnJJRy7pyCUduaQjl3Tkko5c0pFLOnJJRy7pyCUduaQjl3Tkko5c0pFLOnJJRy7pmUvoylxCV+YSujKX0JW5hK7MJXRlLqErcwldmUvoylxC1wW3ArcCtwK3ArcCtwK3ArcCtwK3AjeCG8GN4EZwI7gR3AhuBDeCG8GN4cZwY7gx3BhuDDeGG8ON4cZwE7gJ3ARuAjeBm8BN4CZwE7gJ3CrcKtwq3CrcKtwq3CrcKtwq3CrcFG4KN4Wbwk3hpnBTuCncFG4KN4Obwc3gZnAzuBncDG4GN4Obwa3BrcGtwa3BrcGtwa3BrcGtwa3BrcOtw63DbeYSdRRgBSrQgA3YA8vMJRMLkIAMdDdyrEAFGrABe+LMJRMLkIAMhFuBW4FbgVuBW4EbwY3gRnAjuBHcCG4EN4IbwY3gxnBjuDHcGG4MN4Ybw43hxnBjuAncBG4CN4GbwE3gJnATuAncBG4VbhVuFW4VbhVuFW6eS0pxNGAD9kTPJQsLkIAMFGAFwk3hpnDzXFJsoOeShSXRQ685ue/E4UBz7yoFGrABe6CX6AUWIAEZKMAKVKABGxBuBW4FbgVuBW4FbgVuBW4FbgVuBW4EN4IbwY3gRnAjuBHcCG4EN4Ibw43hxnBjuDHcGG4MN4Ybw43hJnATuAncBG4CN4GbwE3g5jFG7NgTPcYWFiABGehu4liBCjRgA/ZEj7GFBUhABsLNY4yqowLdTR0bsCd6jC0sQAIy0N26YwUqcLhxcWzAnui/1+zX67/XCwnIQAFW4HDzTb288i+wAXui/16zX5knjYUEdF1yHLrig8Dzg4x/6qV9j8zsWIAEZKAAK9B11dGADdgTPT8sLEACMlCAFQg3zw9jgyzyYr/A4Tb2xiIv9wssQAIyUIDDrRZHBRqwAXui54eFBUhABgoQbp4fqneL54eF7saOPdHzw8ICdDdvB88PCwVYgQo0oLs1x57o+WFhARKQgQKsQAUaEG6eH8bmHuRlgYEF6G4+5Dw/LBRgT/SYV+9Nj2711vGQHntWkFf2BRqwAXuih7T6RXpILyQgAwVYge7md+EhvbABe6KH9MICJCADBViBcPPHA/N28MeDhT3QK/7K2BuDvOQvkIDDzdhxuI0tLcjL/h6LOI4KNGAD9kQP/4Wu2x0FWIEKNGBL9Cgc3+iRV+Ut9Chsfr0eb606CrACFWjAluhx0fx6PS4W9kSPi4UFSEAGCrACFQi3CrcKN4Wbwk3h5r+Qo5CcvETuMeXsOBS6d7fHxcICHArdu9ujZaEAK1CBlugh0r0DPBi6d4AHQ/cr82BYqEBX8Kb2YFjYEz0YFhYgAd3N79iDYaG7+c17MCy0QC+AK2MFirza7fGU7ChAVxBHHf+0OBqwAXviGODkLx1e9RZIQHdjRwFWINwK3ArcCtx838yFJfrCC+ACGSjAClRgjy708rbZhV7fNjvLC9wCK1CjL7zGLbABsze9zC2wACn6zSvdAiU7SypQgT27sFL2W0VverzNLqw1G6qifSvat6J9a8/OUvSmojfn3tHeOoreVPSmwk3hpnBTuCl607dsvrxJfNPmhT3RN26+vHV86+aFBGSgACtQgQZswOHmb6leOxZYgARkoACHW6mOCjRgA7rbGEZeRRZYgO5mjgwUoLs1RwUasAHdbQwYrx0jfx/y4rFAAVbg0B0bcJMXkJG/BHkFGflriZeQLRw/PoEF6G5+x8xAAVagu/m9sVv49Y4YIt+K2kvIaO2WPCx8P2AvIgtkoAArUIEGHG7srS49sbqbX04tQAIyUIAVqEADNmBPVLgp3BRuCjeFm8JN4aZwU7gp3Hzvdn+N8gqzQAIyUIAVqEDX9c7yndsXFiABGSjAClSgARsQbh1uHW4dbh1uHW4dbh1uHW4dbj3dvNAssAAJyEABVqACDdiAcCtwK3ArcCtwK3ArcCtwK3ArcCtwI7gR3AhuBDeCG8GN4EZwI7gR3BhuDDeGG8ON4cZwY7gx3BhuDDeBm8BN4CZwE7gJ3ARuAjeBm8Ctwq3CrcKtwq3CrcKtwq3CrcKtwk3hpnBTuCncFG4KN4Wbwk3hpnAzuBncDG4GN4Obwc3gZnAzuCGXGHKJIZcYcokhlxhyiSGXGHKJIZcYcokhlxhyiSGXGHKJV7E93sEcBViBFhnRZgKZ2APbdQELkIAMFGAFKtCADQi3ArcCtwK3ArcCtwK3ArcCtwK3AjeCG8GN4EZwI7gR3AhuBDeCG8GN4cZwY7gx3BhuDDeGG8ON4cZwE7gJ3ARuAjeBm8BN4CZwE7gJ3CrcKtwq3CrcKtwq3CrcKtwq3CrcFG4KN4Wbwk3hpnBTuCncFG4KNzx2NDx2NDx2NDx2NDx2NDx2NDx2NIObwc3g1uDW4Nbg1uDW4Nbg1uDW4Nbg1uDW4dbh1uHW4dbh1uHW4YZc0pBLGnJJRy7pyCUducTL2h7TNY4CrMDh5pPJXtYW2IDDzae5vawtsAAJyEABult3VKAB3c2v13PJRM8lCwuQgAwcbj6D7GVtgQocbj6Z7GVtgT3Rc8nCoeuTyV6qRtUbyvPDwgZ0BW8ozw8LC3Bcr88re6laoAAr0N38hjw/LGzAnuiZwGeFvfyMfKbXy88CDejt6xYe8xM95hcWIAEZKEB380b1mF9owAbsiR7zCwuQgAwUINwMbgY3g5vBrcGtwa3BzWNevbs9un123AvNAhuwJ3p0LyxAAjJQgBUItw63DrcebuyFZoEFSEAGCrACFWjABoRbgVuBW4FbgVuBW4FbgVuBW4FbgRvBjeBGcCO4EdwIbgQ3ghvBjeDGcGO4MdwYbgw3hhvDjeHGcGO4CdwEbgI3gZvATeAmcBO4CdwEbhVuFW4VbhVuFW4VbhVuFW4VbhVuCjeFm8JN4aZwU7gp3BRuCjeFm8HN4GZwM7gZ3AxuBjeDm8HN4Nbg1uDW4Nbg1uDW4Nbg1uDW4Nbg1uHW4dbh1uE2c4k4VqACDdiAPbDMXDKxAAnIQHczxwpUoLtVxwbsiTOXTCxAAjJQgBWoQLgVuM1c0gfOXDKxAAXoCs2xAYfCWNdjLx4LLEACMlCA43rNm8Tzw0IDNqC7ubHnh4UF6G5+vZ4fFgpwuLXLUYEGbMDhNrZ4ZS8eo+bX65mgeR97JlhYgQp0XXV0Xb8LzwTNL8czQXc3zwQLCcjA4db9cjwTLFSgAYdb9+v18O9+OR7+3Xvew7/75fjpdpdb+Pl2CytQgQZswJ7oZ91dfg1+2t1CzmHUMKJmzE9UoAEbECO1Y6R2jNQZ8xPh1uHW4dbh1uE2D6L0NptHUQ5ch1FO9BsSRwIyUIAVqEADNmBPnAdUToRbgds8plIdBViBCjRgA/bEeWjlxAIkINwIbgQ3gpsfYTlWmJjmkwI5FiABGSjAClSgARuwJwrcBG4CN4GbwE3gJnATuAncBG4VbhVuFW4VbhVuFW4VbhVuFW4Vbgo3hZvCTeGmcFO4KdwUbgo3hZvBzeBmcDO4GdwMbgY3g5vBzeDW4Nbg1uDW4Nbg1uDW4Nbg1uDW4Nbh1uHW4dbh1uHW4dbh1uHW4dbTja8LWIAEZKAAK1CBBmxAuBW4FbgVuBW4FbgVuBW4FbgVuBW4EdwIbgQ3ghvBjeBGcCO4EdwIbsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXMLIJYxcwsgljFzCyCWMXCLIJYJcIsglglwiyCWCXCLIJYJcIsglglwiyCWCXCLIJYJcIsglglwiyCWCXCLIJYJcIsglglwiyCWCXCLIJYJcIsglglwiyCWCXCLIJYJc4rvt8ahbYS/1CxRgBSrQgA3YE/147YUFCDeBm8BN4CZwE7gJ3ARuFW4VbjnDyV5CGOhuzbECFWjABuyJfgz3wuFWLkcCMnC4jaoe9sLCQAW6m1+ZH8u9sCfOXOJiM5dMJCADBViBCjRgA/ZEzxpj6pq9CDHQ78IHjB/RvVCBBmzAnuiHdS/0NhNHAjLQ3apjBSrQ3fzK/L1lYQ/00kSa5zZ71lhIQAYKsAIVaMAG7In+hjKKrdhLEwMF6Hdhjgo0oN9Fc+yJ/oYyiq3YSxMDCTjcRoUVe2liYAUq0IAN2BNHfng80zgWIAEZKMAK9Mq4KRaFkOwFi171x16wGEhABgqwAhXoFXfex/5UsbAn+lPFwrIqMNmLGwMZKMAKVKABG7AnKnpe0fOKnlf0vKLnFT2v6HlFzxt63tDzhp439Lyh5w09b+h5Q88bet7Q8w0939DzDT3f0PMNPd/Q8w0939DzHT3f0fMdPd/R8x0939HzHT3f0fMdPd+z52et5cLsea+1DGSgACtQgQZswOx5r6rkUdHIXlUZKMAK9L6Yf82ADdgT/XObUXLOvk1fIAEZKMAKVKABW+KMbnEkIAMFWIEKNGAD9kT/9V8IN4GbwE3g5r/+5Bfpv/4LDdiAPdF//RcON/ZWHzEfyEABDjf2Vvdf/4UGHG6jspO9wJLZLfzXf2EBEpCBAqxABRrQ3bpjT/RMMD44Yy+wDCQgA4eb+KV7JlioQAM2YE/0TLCwAN3Ne8gzwUJ389bxTLBQgQZsif4gMAoD2GstAwnIQAG6hTeJPwgsNGAD9kCvtQwcbuPjNPZay0AGCrACFWjABuyJPoG5EG6eKkYRAXutZaAA3Y0cFWhAdxNHdxst6bWWPGoE2GstAwnIQAFWoD9wOvUgfwyYVJIoiYM8gkfVAXuxY2AF+kqAkyW1pB40VxecSpIrTvRm8B70eJz/sAd5NE4al+vOHouTOEmSapImDRN/APaKxcDhot5FHoYLC3CI+nuUVyGyL7V5FWKgKwzyyPLFMS9CDCQgAwVYo0laNmfL5mzZnC2bs2dzeiDNRvSQmY3oIeMLYF5dGOgXOq7UqwsD/UrN8XGlMomTJKkmaZIFeVj4ipnXCrKvOHitoAeIlwou0qTxt+d/15J60Bj6i0oSJXmvu4yP+4Xe78VRgZboI9/I0RXYUYDjLv02/LdwNoz/Fi5swJ7ov4Xjiz/2qr9AAnI2uEfSwgqEm8BN4CZwq3CrcKtwq3CrcKtwq3CrcKtwq3Dz6FtY1lD3or85fL3oL1CAFaiJ/jtlruDBtLAB/Rd/0HxgdSpJlMRJklSTNMmSWlJ69PTo6dHTo6eH/0b5+quX4AUqcNj4mqqX4AUOI1/X9RK8wAIkIAMFWIHDzRdovQQvsAE9X45R7iV4gQU43HzZ1kvwAgXoid1JkyypJfWg+fPk5IoT/UrV0a/Ur99/hxb2RI/HhX6l3ZGADBRgBfqDltMw85Vkr70L7Ikepf7a4rV3gQQcZr6S7LV3gcPMF5W99i7QgCN7+SWMIJ00YnRRSaIkTnJFbyyPOV+x9qo7Hp/vsVfdBRKQgSND+3uZV90FKtCADTgu1X3H796ikjQu1W9uPHsukqSapEmW5CY+5EY4LxzxHMhAv0xv/GbAoeBtP2J10ojVReMqr4kEZKC3iN9Hr0C38ubtBvSL9YbsfrGPQSVeUydjck+8pk7GjJN4TV0gAwVYgQo0YAMOtzEXJl5TJ2PWS7ymTsa0gnhNnYwJBPHqORmzBuLVc4EGbMCe6L+gCwvQxfw2SYEGbMCeyBewAIcYeUONmJMxVSBe5bZwxFxgAT7urfpdjpBbJEk1SZMsqSX1oBFti0pSetT0qOlR06OmR02Pmh41PTQ9ND00PTQ9ND00PTQ9ND00PUawVR8JI9gWSVJN0iRLakk9aITaopKUHi09Wnq09Gjp0dKjpUdLj54ePT16evT06OnR06OnR0+PHh5eICbj6Va8QEzI/6kHxvjIU7wUTMYLinj1lozfaPENwQIVOIY1u8IY1tUFxqieNAb1opJESZwkSTVJkywpPTg9xLN+dfRrVMfH31a/xDGyF7WkHjRG9qKSREmcJEk1KT1qetT0qOmh6aHpoemh6TFG9njnES/PWqRJw8NbeozsRT3If1DGi5h44ZWwd7D/fLA3k/9+LGzAnug/IAsLkIAMFGAFwq3BrcFt/tr4yJo/NxMLkIAMFGAFKtCADZhuXoMVWIAEZKAARzeokyZZUkvqQSOiFrlicfQrJcfxt7tTS+pB4wdlvOOJV1MtoiROkqSa5Dc+xoKXTMl4VhAvmQpkoN+iX6b/wCxUoAEbsCf6z87CAiQgA+EmcBN380sXAzbgcKveD/6wt3C4VW9Wf9yr3qz+vOfpzUumAivQn6PcuBpwuI2ZFvGSKaluPMLV3GGE6yJK4iRJqkmu6J05H/b8oj04Pca9ACpQgONKPcy9ACrQgA3YEz04Pf69qEnUe9fDcA5CD8OFDdgTPQwXFiABGShAd/OG8zBcaEB38+b0MHT0oqbAAnS37shAAY7mFSdNsqSH1ZhbEC9omjTCcFFJoiROGl1YnWqSJvnsy+XYgD3RHwAXMtCnb4qjAV2BHHuiP/UtHFfqDTKCdhEnSVJN0iRLakk9aATrovSQ9JD0kPSQ9JD0kPSQ9JD0qOlR06OmR02Pmh41PWp6eGzOrvHYXNgT1dvLe2cEZyABvR/MUYA+6+S94y9uCw3YgD3R39yad59H88Lh1rzPPJqbX5lHc/MR6dG8UIHu5hfp0bywJ/ohve7gh/ROoiROkqSa5IojNr2gSJrftsdx85b1OF4owAocV9r9tj2OFzZgD/SCosBxqeRE8+xg8XIi6fMfDq/xmi9eThT4UJ1/PY72EMmdbkVyp1uR3OlWZM5mVscG7IlzQnNiARKQgX5dzbECFdjiwvzEHic/sWfSWFYcb9gic2/biQz0idmJFajA8Uw7VlrFi38Cx1PtvN0RtIEF6G7+3+Y+2SK5T7ZI7pMtkvtki+Q+2SK5T7ZI7pMtkvtki+Q+2SIVbhVuFW4VbhVuFW4VbhVuCjeFm8JN4aZwU7j5C9/lg8nf+BY2oLek97VdwAIcryFj5kK8+CdQgBXobj62/c3w8iEy98me/0FPnPtkT3Q3HzD+eriQgQKsQAUasAF7or8mLoRbh1uH29wn229+7pM9UYEGbMAeOHcrW1iABGSgACtw3JtP/HhJUGAD9sTxIx5YgARkoAAr0N2KowFbIhWgK7CjK4ijAg3YgH69fm/+sruwAAnIQAFWoAIN2IBwE7gJ3ARuAjeBm8/9+ASYlwQFultzbMCe6BNAPiXlJUGBBGSgACtQgQYcbj6/5SVBC30qaGEBDrdRDSJeKBQowApU4HAjv3nPDwt7oueHhQVIQHfzhvL8sLACFWjABuyJPnm0sAAJCDfPD2MTLvFCoUAFupu3pOcHn7Xx8qGFnh/YB7jnh4XDzSdwvHwoUIAVqEADNmAP9PKhwAIkIAMFWIEKNGADwq3ArcCtwK3ArcCtwK3ArcCtwK3AjeBGcCO4EdwIbgQ3ghvBjeBGcGO4MdwYbgw3zyVjiUa81ChQgQYced0nvb3UaKHvh7iwAAnIQAFWoAL9LkZy9PKh6lNzXj4U6NerjhWoQAM2YE/0/LDQdd1Y0b6KO/aYX9gTPeYXevs2RwIyUIDoTYOboTcNvWnozYbebOhNj/l5DR7zC9GbDb3pMT+vwWN+YQPCrcOtww0xr4h5RcwrYl47xk5HS3a0ZM+WtBnzzbEACZhuhpg3xLwh5g0xb4h5Q8wbYt5mzPs1FAIyUIAV6G7d0YA+PX459kSP+YUF6NPwLuYxv1CAFahAAzZgT/SY9xk8LxsKzAHu269Vn8Hz7dcCFWjAHBq+/dpCQWcJOkvQWcJAAaKzBJ0l6CxBZwk6q6KzagESEEPDw99nBr1aKbABvaG8HTz8fZLQC5YCCchAAVagAg3YEi0fDH1LtUAGDl2fkvQt1QKHrk9JejFTYAOOu6je3Z4UFhbgcPM5S69mChRgBSrQgA3YEz0pLCxAuPkhoH4TfgjoJEsar8N+B34I6KB5COgkVzRHAjLQr785VqACbR42Ky2O/JUWR/5KiyN/pcWRv9LiyF9pceSvtDjyV1oc+SstjvyVVtKjpEdJD0oPSg9KD0oPSg9KD0oPSg9KD0oPTg9OD/9N9xljr5gKFKCvchZHBfo65+XYgD3RQ92nib1kKtAXVN14rgxP9CVVdaxABdo8iVdanAAsLU4AlhYnAEuLE4ClxQnA0uZKsA+Duew7/6lfqd/gXPidWIAEHFfqs6heARVYgQo04HDzOWLf9myh//IvLEACMtDdvIk8yBcq0IAN2BM9yBcWIAEZCDcPcvOm9yBfaEB385b0IDdvKA/yhcPNZzG94ipwuPmModdcBVagAg3YgD3Qa64CC5CADBRgBSrQgA0ItwK3ArcCtwK3ArcCtwK3ArcCtwI3ghvBjeBGcCO4EdwIbgQ3ghvBjeHmv/w+oepVWoEMFKA/f8+/pkADNmBPnE/7EwuQgAz0u2BHv94RF158FejXWx0JyEABVqACLdEzgc9iewHWahLFHXvML1SgAb19zbEneswvLED0psHN0JuG3jT0pqE3Db1p6E2P+Xk5Db3Z0JsNvdlwbx7zPhfvVVuB7tYdG7Aneswv9BoLF/OYX8hAAVagAg3YgF5r8RgE1Qu3Aml1VvVqrTqm9qtXawVWoAJtdUC9rgbsieUCFiABGRidVa8M9HploNcrA71eGej1ykCvVwZ6vTLQ65WBXr2cq46f6urlXIEG9IbydpiFL35ls/JlYgESkIECrEAFWqL/rI8f1ur1XoEEZKDrdscKVKAB46e5rrIvx1n3NbEACchAAVagAvtcKqpe6rWoJI3lIx8hI/QXSdKoc7jmf6hAAz6uv/m4HHE/aYT9olFOcU0kIANlLl5VLwdbpEmW1JJ6kK/bTSpJlMRJ6dHSo6VHS4+WHi09enr09Ojp0dOjp0dPj54ePT1GdOvlTTuie6JvTxZY1hpe9e3JAr3F1FGAFeidY44GbMCe6LUyCwuQgAx0t+ZYgQo04HAbCwDVtydb6LU1CwuQgMNt/OpVL3sLrMDRjt3JklpSDxqhv6gkURInSVJNSg9OD04PTg9JD0kPSQ9JD0kPSQ9JDy+NK96zXhu3sCd6ddzCAiQgAwXojVYdFWhAd2PHnuh1cgvdzbveK+UWMlAT/bsivx//rGiSl9d5t3mULxRgBSrQgF7I51drPbFdwAJ0Nw+AxkABuptfbVOgAd3Nh2/rif0CFqC7+W2OwFf26+1eKOjNP8I8sAF7oJfD6ZiirV4Op2Netno5nI6ZpurlcDrmfqqXwwVWoALdrTs2YE/0OF843EZRXPX6OBW/HA/uMQdWfR8yFb8cD25xCw/uhQ3YEz24FxYgAd3Nr8GDe2EOIt98LLABeyJfwAIcFtVvaAR2oADHDVW/zRHbgQZswJ444juwAAnIQAHCTeDmYV69uz3MF/ZED/OFBUhABgqwAhUItwq3CjeFm4d59Z734tfqPe8/9gsVaEDXVceeaBewAGmVw9RZe7dQgBWoQAM2YE/0mK8TGSjAClSgJXp0Vx+eHsfVx+T4BdcxhVO9yi5QgV6A6oPLo3uhl6CO7vYqu8ACHNc7JoGqV9kFCrACFWjABnS30YU8K14nFiABGSjAuirjqtfWzXbw2rqFdAFdtzoSkIECrEC/C3U0YAP2RI9uf0z1OrxAAg63Ud9XvRQvsAKH27whj+6FDehuo+e9IE/Nu8Wj27xRPbrNW8eje6EAXdfvzeN4YU/0OF7oun5vM2K7YwUq0IA9UaO4tM6iuoUCjJLTOovqFhqwAXvi/BxqYgESkIHeqN5m/tO8sAF7ov80m3eW/zQvJCAD/S6832bh7EQFGrABe+IsnJ1YgAT0UmdvqFmpPtHvwtvXg3dhD/TSukCvAb8cCchAAVagAr2wujo2YE/0D0AWFiABGSjAClTguAt/aZZZyD6xAAnod0GOAqxABfpdTGzAnuhFtAsLkIAMFODoC38/9BK8wJ7oYbqwAAnoj0lOklSTNMmSWtL6dKN67d2ikkRJnCRJfuWO/mPavP39x3QhAf2rjeYowApUoAEbsCd67C4sQALCzeBmcDO4GdwMbga3BjePXZ9s8qK5wApUoLeOOTZgT/Qf3oUFSEAGCtDd/HL853ihARvQ3UYYe9FcYAESkKOz6ozoiRWoQAM2YE8sF7AAh+5YyateHheoQP8upTj6hynk2BM9ohcW4LgLnw70fbQCBViB7qaO7tYcG7An+s/xwgIkIAMFWIEKhJtXx19+m14eP9Hr4xcWIAEZKMAKVOAok/c5FC+lM58X8VK6hV4pv7AACchAAVagAg0It+puPrj8Y5aFBUhABgqwAhVowOHmb/teSrfQLmABEpCBAqzA4eaTBF5KF9iAPbFdwAIkIAN9AsmpJmmSJbWkHtRd0Vu2+5WaowI9k83/oAF7oBfGBRYgARkowAr0FmiO3gKjF7wELrAACchAAVbguItRX1m9BC6wAXviyAHmsyNeAhdIQAYKsAIV6G7k6G7s2BP5AhYgARko0RdeAheoQAM2YE/0HLCwAAk4+sJD3IvdAg3od1Ede6JHu8/x+L5agQT0u/CO9WhfWIHjLtg7wKN9YQP2RI/2hf7hk7eOR/tCBgqwAhVowJboce1zR14Y5zsKVC+BM59G8hK4wJ7osTqHssfqQr8ybweP1YUC9CvzdmgKNGAD9sR+AQvQ3XzYdwYKsAIVaMAWd+zFbjYKwqoXuwUyUIBD16e9bH7BNtGADdjXLhV1boW1sAAJyEABVqACR+v4g6+XtQUWIAH9LthRgBWoQFu7kdS5FdbCnji3IJlYgARkoAC9dcSxAXuiR6y/eXgtWyAB/S5czH+1F/pdeJP4r/ZCA7pbc+yJHscLC5CADBSgu3VHBRqwAXuix/HCsvZOqnP/LZ+OWBtweTvMHbgmGrABe6JPlS8sQFobF1WvcAsUYAUON/Urm9t1TWzAnjj365pYgARkoACHrs/8eC2bVY8hj+6JHt0LC5CADBTg6AuflfUSt0ADNuC4C58HmXt5LSxAAjJQgBWoQEv0326foPWqtkAC+l2wowAr0O9CHA3od1Ede6LH/EJ3U0cCMlCAFahAA7qbOfZE/+1eWIAEZKD3vN8QZ897UdvsNy9qWygXsAAJyEABZs97UVugARsQPV/R8xU9X9HzFT1f0fMVPV/R8xU9r16h41nMi9SSO9gusC8D+/OnV3gFFiABGSjAsfjnzzFe4RVowAbsgV7hFViABGSgACvQ3ZqjARvQ3UazeIVXYAEON39k9Aqv5o+MXuHV/NnPK7yaP2x5hVegARuwJ9IFHG6+iuYVXoEMFGAFKtCADdgTfU14IdwYbgw3XwP2hy2v5QpsieL/VBwb0N38huoFLEACMlCAfm/q6NfgXVgN2IA90as5FhYgARkowAqEm8JN4aZwM7gZ3Lx+w5/yvD6r+eOa12etRjX0RUNfeMGGPy97fVYgAwVYgQocbjKxAYebP895fVZgAXpliw9lj0J/lvKaq0AfqY+7UK+58m5R3ywrkIAMdF1xrEAF2upu9fKrwJ5Y4FbgVuBW4OZRONGjRSYKsCb6AB9PWOr1ToEV6BfZHA3YgN6o3iRe/rBwXORI8+pVUIEMHG4jt6tXQQUq0IAN2BM9nBa6GzkSkIECrEAFRnfrLINivzcPnNlDsxBqIgPRsYqOVXSsB85CdKyiY+0CFiCtaFEvhwoUYAUq0IAN2BNnkE309vUr8xBZ2BM9RBYWIAEZKMAKVCDcOtx6unmRU2ABEpCBAqxAd2NHAzZgT/RwWliABGSgACsQbgVuBW4FbgQ3ghvBjeBGcCO4EdwIbgQ3ghvDjeHGcGO4MdwYbgw3hhvDjeEmcBO4CdwEbgI3gZvATeAmcBO4VbhVuFW4VbhVuFW4VbhVuFW4Vbgp3BRuCjeFm8JN4aZwU7gp3BRuBjeDm8HN4GZwM7gZ3AxuBjeDW4Nbg1uDW4Nbg1uDW4Nbg1uDW4Nbh1uHW4dbh1uHW4dbh1uHW4dbTze6LmABEpCBAqxABRqwAeGGXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCyCWEXELIJYRcQsglhFxCM5dUR3dTxwpUoAEbsAfyzCUTC5CADBSgu3VHBRrQ3cyxJ85cMnG4jSoy9bKtQAYOt1F5oF621UZtjvo+aYEGbMCe6LlkYQESkIEChBvBjeBGcCO4MdwYbgw3hhvDjeHGcGO4MdwYbgI3gZvATeAmcBO4CdwEbgI3gVuFW4VbhVuFW4VbhVuFW4VbhVuFm8JN4aZwU7gp3BRuCjeFm8JN4WZwM7gZ3AxuBjeDm8HN4GZwM7g1uDW4Nbg1uDW4Nbg1uDW4Nbg1uHW4dbh1uHW4dbh1uHW4dbh1uPV08yqywAIkIAMFWIEKNGADwq3ArcCtwK3ArcANuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuUSQSwS5RJBLBLlEkEsEuaQil1TkkopcUpFLKnJJRS6pyCUVuaQil1TkkopcUpFLKnJJRS6pyCUVuaTOXGKOBmzAnjhzycQCJCADBViBcCO4EdwIbgy3mUvYkYAMFGAFKtCADdgTZy6ZCDeBm8BN4CZwE7gJ3ARuArcKtwq3CrcKtwq3CrcKtwq3CrcKN4Wbwk3hpnBTuCncFG4KN4Wbws3gZnAzuBncDG4GN4Obwc3gZnBrcGtwa3BrcGtwa3BrcGtwa3BrcOtw63DrcOtw63DrcOtw63DrcOvpptcFLEACMlCAFahAAzYg3ArcCtwK3ArcCtwK3ArcCtwK3ArcCG4EN4IbwY3gRnAjuBHcCG4EN4YbcokilyhyiSKXKHKJIpcocokilyhyiSKXKHKJIpcocokilyhyiSKXKHKJIpcocokilyhyic5c0h0ZKMAKVKABG7AnzlwysQDhpnBTuHkuGZ/+qNfMBRpwuI2PfNQ3nlvouWRhARKQgQJ0N3FUoAEbsCfOT9MnFqC7NUcGCrACFWjABuyJ8yP1iQUItw63DrcOtw63DrcOt55uvvFcYAESkIECrEAFGrAB4VbgVuBW4FbgVuBW4FbgVuBW4FbgRnAjuBHcCG4EN4IbwY3gRnAjuDHcGG4MN4Ybw43hxnBjuDHcGG4CN4GbwE3gJnATuAncBG4CN4FbhVuFW4VbhVuFW4VbhVuFW4VbhZvCTeGmcFO4KdwUbgo3hZvCTeFmcDO4GdwMbgY3g5vBzeBmcDO4Nbg1uCGXGHKJIZcYcokhlxhyiSGXGHKJIZcYcokhlxhyiSGXGHKJIZcYcokhlxhySUMuacglDbmkIZc05JKGXNKQSxpySUMuacglDbmkIZc05JKGXNKQSxpySUMuacglDbmkIZc05JKGXNKQSxpySUMuacglDbmkIZc05JKGXNKQSxpySUMuacglDbmkIZc05JKGXOL1gG18D6heD7jQc8nC4Ta+iVOvBwxk4HAbXztpm3thTFSgARuwJ3ouWViABGQg3CrcKtw8l4wvo9S3xQvsiZ5LFhYgARkowApUINwUbgo3g5vBzeBmcDO4GdwMbgY3g5vBrcGtwa3BrcGtwa3BrcGtwa3BzXPJ2KFJZ9HkwgIkIAMFWIEKNGADptssmpyIlZVZsDg+J9JZsLhQgQZswJ443y8mFiABGQg3ghvBjeBGcCO4MdwYbgw3hhvDjeHGcGO4MdwYbgI3gZvATeAmcBO4CdwEbgI3gVuFW4VbhVuFW4VbhVuFW4VbhVuFm8JN4aZwU7gp3BRuCjeFm8JN4WZwM7gZ3AxuBjeDm8HN4GZwM7g1uDW4Nbg1uDW4Nbg1uDW4Nbg1uHW4dbh1uHW4dbh1uHW4dbh1uPVws1l2ubAACchAAVagAg3YgHDzZ4LxdazNssuFBGSgACtQgQb0HNUde6LnkoXuZo4EZKCtJGbXTBUTe+JMFRMLkIA8thGeKMAK1IHkaMAG7AN54EgVgQVIQAYKsAIVaMAGhFuFm+9tO04xMS/97GOzMfPSz0ABVqACDdiAPVEvYAHCTd3N+00FWIEKNGAD9kS7gAVIQLiNVNGL98VIFYEKNGAD9sSRKgILkIDDrfigbQKsid3/Wx+TnYECjEUAu3KBw65c4LArFzjsygUOK7nAYSUXOKzkAoeVXOCwkgscVnKBw0oucFjJBQ4rucBh5YJbgVuBW4FbgVuBW4FbgVuBW4FbgRvBjeBGcCO45QKHlVzgsJILHFZygcNKLnBYyQUO89LPPr7rMC/y7OMLDptFnjrRgA3YE+UCFqC/PlyODBRgBSrQgGNM0sSe6NE9viIxL/IMJCADBViBCrREj+Nxrq554WYnb1+P2IWu4A3lEbvQgA3YEz1iFxYgAd3N28wjdmEFDjf2m/eIXdiAPdEjdmEBEnC4jQ8pzAs3A4cb+803BRqwAXtiv4AFSEDX9ebz3ejHdwfmxZgTvRizj5Jz82LMQAIyUIAVqEADDrfxXYd5MeZC35N+4XAb33WYF2MGMlCAFahAAzagu43k6MWYgR4XzZGADBRgBSrQ42KKNWBP5AtYgARkoAArUIFwY7j5L/r4DMK8GDOwAAnIQAFWoAJjStxmMebCnugxLxMLkIAMFGAFKtCA3m/m2BM9EywsQAIyUIAVqEC/Nx8ac0JwYk+cE4ITC5CAMfliXlXZxdEDfWEBEpCBAvSL9BDxQF9owAbsiR7oC33OxseDP8UvZKAAK1CBw616FHpSWNgDZ1XlmACyWVW5kIDj3sbHPeZVlYEVqEADNmBPnAdVTBwtWd1iHlUxkYECrEAFGrABe+I8skIdh4K/SXilZKABh4I/jnul5EI/kGJhARKQgQKsQAUaEG4e6OrX64G+sAAJyEABVqACDehu3g7+4z7RA31hAQ43fybwSslAAQ43jxavlAw0YAP2RA/0hQVIQAYKEG4e6J6jvFIysAF7oj8ILCxAAjJQgK47conXOfbmxh7dCwU4rsyDzOscAw3YgD3Ro3thARKQgQKEmx8/M7atMq9zDGzAHuh1joEFSEAGCtDdzFGBBmzA4TZ2xjKvcwwswOE2tsMyr3MMFGAFKtCADdgTPboXFiDc/Eya7jfkh9IsrEAFGrABe+I823ZiAbqut4PH/EIFGrABe6LH/Nh8y7yiMdDvojsyUMY5odflXDdWZ2/teZLt4ubsjTHPsp08D7P1t/Z1mu1ichZn3nj6+h3PE20XT191to2nr9/fPNV28jzW1t/U17m2i6ev3+M82Xax+xa/x3m27WL3LX6PvldAsPv627KXOgb7XgFX8Xu0srH7Fr9H441jbcJmveNCBRqwAXviPOS2eCu1sjFtPB29BZpsXDfWjW3jtnEH92vjsjFtvPn2zXeebuuvpOsgW38JXCfZjh0GbB1lu5g3lo3rxrh+L21Mbhvj+r26MblsTBvzxrJx3XjzLZsvXbhHYtwjbddP2/WTbmwbt4236+ft+nm7ft6un7fr5+36ebt+3q6ft+vnrd1485XNd557Pe9xZoZ5j7Jdv2zXPzPD5JkZFm/9Xrfrr9v11+3663b9dbv+ul1/3a6/btev2/Xr1m66+ermuzKA3+OM9HmPtl2/bddv27i1bdza1u+29bvNdiNn2zjWz6zmap3VXK2zmqt1VmdM0+SpIc6z7f3aZ+xOnrG72K/dZxHqjN3FvLFsXDfWjW3jtnFP1hnri8vGtDFvPO+rOdeNdWPbuG3cwTPWF5eNaWPeePMtm2+Z9zX6zQsLH0zOtDFvLBvXjXVj27ht3MEz1hdP3+pMG/PGsnHdWDe2jdvGHTxjffHmu46+V2feWDauG+vGtnHbuINnblhcNt58Z27waSGduWFx3Vg3to3bxh08c8PisrH7+qyGztyw2H190kHnU4N4+2isUdusQlzYgD3RLmABEpCBAqxAuBnczO/RZyu8DDF4Pi8sLhvTxryxbFw31o1t4+nr8TJzzuSZcxaXjWljTrZ1wD05l41pY95YNq4b+3WOj0TNZq6YPGPc395txvhi3Xj+9349M/YXd/D8nVfXnDlhMW3s1+lvyDZzwuK6sW5sG7eNO3jmhMVlY9p48+XNlzffmRPU22rmhMVt4w6eOWFx2Zg25o1l47rx5iub78wJvgxiMydMnjlhcdmYNuaNZeO6sW5sG2++dfPVzVc3X918dfPVzVc3X918dfPVzVc3X9t8bfO1zdc2X9t8bfO1zdc235kffCbGZn6YPPPD4rIxbcwby8Z1Y93YNp6+3dl9fRbaZn5YXDamjXlj2bhurBvbxm1j+LaZZ8ZJDdZmnllMG/PGsnHdWDe2jRs4P3Kwlh85WMuPHKzlRw7WZu7xGaI2c8/iDp65Z3HZmDbmjWXjurFuvPnS5kubL2++vPny5subL2++vPny5sub78w948gM8xLDuersJYaBBThNmzNvLBvXjXVj27ht3MEz8SwuG2++M/H4bF2biWdx3Vg3to3bxh08E8/isrH7+uxZm4lnsWw8fb19ZuJZbBu3jTt4Jp7FZWPamDeWjTffmXjGvvrWZuJZ3Dbu4Jl4FpeNaWPeWDZ2X58QaTPBLO7gmWB8vq7NBLPY9f1Fqs0Es1g2nvrirBvbxm3jntxngllcNqaNeWPZuG6sG9vGbePNt2y+ZfMtm2/ZfMvmWzbfsvmWzbdsvjMp+YNnn0lpcdmYNuaNZWPPf+Q4JcdQ6jPfLC4bT0lz5o1l47qxbmwbt407eD7rLC4bb74ztfhcap+pxWdQ+0wti9vGHTxTy+KyMW0830u9mWdqWVw31o1t47ZxB8/UshhzOF7zWIrP9HrRY7JubBs35+LcwXPH1MVlY9qYN5aN5325vunGtnHbGHMyvV0bl41pY94Yczte8hj31drGHdyvjbf76tt99e2++nZfvW6sG9vG2331vK92YY60XVfZmDbmjWXjurFu3OPem1c8zvtqXvKYTBvzxnlfzcsek3Vj27ht3MF0bbzdF233Rdt90XZftN0XbfdFtnHbeGvPNUfq987bfbFsXDfWjbf74u2+eLsv2e5Lysa0MW+83Zds9yXbfcl2X7Ldl2z3VbdxUrf2rFt75udU7crPqdqVn1M1r4d8XBg7d7BeG5eNaWPeWDauG+vGtvHmq5uvbb62+drma5uvbb62+drma5uvTV9x7uB2bVw2nr7VmTeWjevG01edbeO2cQevJDO5bEwb88ZT35xt47ZxT/Yaywc357Ixbcwbz/vqznVj3dg2bht38Eoyk8vGrj+W21qZyWSxbmwbe03r/Ks90ZdoFxYgARkowArURH/eKGOFrvl2msm0MW8sG9eN5y1UZ9u4bdzBM28sLhvTxryxbFw33nxl+qpz27iD6/T17q5lY/cd6xTN6y+T3XesUzSvwEx237EO0bwGM7lt3MEzpSwuG9PGvLFsXDfefHXz1c1XN1/bfG3ztc3XNl/bfG3ztc3XNl/bfG3zbZtv23zb5ts237b5ts23bb5t822bb9t8++bbN9+++fbNt2++ffPtm2/ffPvm2+FL17Vx2Xj6ijNvLBvXjaevOtvGbeMOnqlmcdmYNuaNZeO68eZbNt+y+ZbNlzZf2nxp86XNlzZfmvojRdPMP2PNqdHMP4unTnfmjWXjurFubBs38MwtY72tkaCvaeaQ2f4zhyxuG3fwzCFjbazRzCGLaWPeGGOM6ua75RDacghtOYS2HEJbDqGVQ/x6dBtjuo0x3cbYzCHzemYOWWwbb75bDqEth9CWQ2jLIbTlENpyCNk2tm1rZ9va2bZ2njlkXk/b2rlt7bzlENpyCG05hLYcQlsOoS2H0JZDqG39u3LI5K2d+9bOfevfmUMWb+285RDacghtOYS2HMJbDuEth/BFG/PG6F/ecghfurFt3Dae7Tx+y3jmkMWznV1/5pDFvLFsPO9XnXVj27ht3MEzhywuG9PG09ecZWPNWOaZT8aW9s0rTpM7eOaZxRhLzLQxbywb1411Y9sYfcq89alsfSpbn8rWp7L1qcjGdWPdeN7XyGm8ctHksrHri7fPzEXi1zlz0eK6sW5sG7eNO3jmosUlWeb4HOuFTeb4XFw3dq9RIdxkjs/FbeMOnuNzcdmYNuaNZeO68eZbNt+y+c7xpn4vc4yNObomc1ytfz6vbfSFzHE11hebzHG1mDbmjWXjurFuPK+tOreNO3iOq7HO1GSOq/ExVJM5rtTbeY6rsf7UZpXjupc5rhZv9zjHkrj+HEuLaWPeWDauG+vGtnHbuIPXWPJ7WWPJ72X+ri3mjWXj6ev3O3/XFtvGbeMOXqcdTS4b08ZT09tw/jZVHyfz96j6eJi/R9XbcP4eLZaN68YNPH9fqo+l+fuyeOr4eJi/I2PH5zbrBssov2+zbjCYN56+5lw31o0t9WfdYPzzDp5xt7hsTNkOs24wWDauG+N+68z/fo+zbjAY7TDr94q514wRn66Z9XvBtnHbuINnjIxjzdus3yvNr2fGwuK6sW5sG7v+WJJqs65v8YyXxWVj2pg3lo2nr7fJjJfFtnHbuINnvCwuG9PG08vbc8bIYt3YNm4bd/CMkcVlY9qYN958bfOdcdR8vM1nv8Vt4w6ez36Ly8aEfmlbn7atT9vWpzO+msfOfE5rHiPzOW2xbmwbz2vzsTSf05xnbV9w2Zg25o1l47rx9DVn27ht3MEzHheXjWljyfud9XxlLBu2Wc8X3PMedcbg4rIxbez3MpYW26zzC64b+72MbxParPMLbpvO5subL2++vPnO383FsnHdWDe2jTdf2bxm7Jtf84z9xbqxbTxzi9/LjP3JM/YXl439+ke9RZt1e8Gycd1YN7aN28YdPGN/cdl489XNVzdf3Xx189XNd8b7OPmz6Yzr8RFP0xnL5uNqxvJi27ht3MEzlheXjec1e7/MWF4sG9eNFdcz3+MWt407eL7HLS4b08bbPc784DzP0fXH1XmO7jjVoM1zdP0hcJ6ju7ABe6KftLmwAAnIQAFWINz8pE1/SvPqvMCe6CdtLixAAjJQgBWoQLgR3AhuftKmPzB7QV4gARkowApUoAEbsCcK3ARuftKmP4TPE3P92XmemLuwAAnIQAFWoAIN2BL9mFx/CvcquUACMlCAFahAAzZgT/STr/053+vezB/zvewtUIEu5oPWz8Ne2BP9POyFBUhABgqwAhUICz8Ft3tf+Cm4CwU4FLo3n5+Cu9CAQ6z7HY+f2olesRbouuroCuZoQFdojq4wInaed7tw1Bz7yubc9W4hA0ehmi9TzkK1hQo0YAP2RN/4YmEBEpCBcCO4EdwIbgQ3/zR+fHHW5v52CxkowApUoAFdlx17om+HsdDdxJGADHQ37yHfDsMX6ub+dgvdzXvIP41f2BN9Xyxff5v72y10N+833xfLF8Tm/nYLh1vxJvHF3YWW6LHpD0VeRxbIQAFWoAIN2IA9cfxYBsLN4GZwM7gZ3AxuBjeDm8Gtwc3D1B8ifUs68+c635IusAE9GLzN/AjrhQVIQAYKsAI9yLx9Z5gO7DNMJxag65IjAwVYgQo0YAP2xBnSE7NRvY4rUPMa/HdzIcQKxAhi/ru5EJdOuHTCpRMunXDphEsnuBHcGG4MN4Ybw43hxnBjuDHcPGLLxOzCuVHd+CizebnWHA9erRXYgD3Rf0IXFiABYVEFWIEKNGAD5pj0Aq3AfObykqz5zNU1n4K6GrAB85nLq7ECC5CADBRgBcLN8imoWwPmU1BvF7AACchAAVagAuHW4Nbg1vMpyAuyAgnIQAFWoAIN2IDxzNW9DiuwAOOZq19XPHP1q1zAAiQgAwVYgQo0YEukeObqFxUgARkowApUoAEbsCdyPHP1i+OZq19cgQqMZ65+cQP2RLmABUhABgqwAhUIi4qb94A0vxwPyIUVqMBxvTYVGrAnekAuLEACMlCAFahAuCncFG4GN4Obwc0jdszhdS93WjhDb6L/NR+eHnoLGSjACvSLLI5+OTTQg2xhARKQga7rweBBtlCBBmzAHuj1SYHuJo4EZKAAK1CBBmyJHpvjdbt7JVIgARkowApUoAEbsCcS3AhuHqbjFb57aVKgACtQgQZs0eq+8dtCvoDZWV6BY2Pyr5f5CFgcCchAAfrzg/fFfAScaMAG7InzEXBiARLQ3fzK5iPgxApUoAEbsCf6WJ/35mO9eR/7qF6oeUPzaXBiA/ZEH+vNe8jH+kIC+qV7B/hYX1ihALcOtw63nm5eIBNYgARkoAArcFr8z//8w29//uu//OHvf/rrX/7p73/74x9/+8f/zn/wn7/94//579/+4w9/++Nf/v7bP/7lv/7853/47f/7w5//y/+j//yPP/zF//z7H/72+LePZvzjX/718edD8N/+9Oc/Dvqff8Dfvp7/1VG9Quuvj5XwmhKP4PwgUp6LtB4Sj2c9CBh/EKDDVfgOHfMiHkn3qcTpRh6/gJwaj1Xppzciz0VkLOO5hGxXYR9bsz7/+zx+4/3vc98uoOrtu3gsR/e4C378Pj69C3suQtLjNuixPLZJ2F2Jx41Eh/BjdhMS5WNb9IME12yLbVSp3hXQEuNat2HJ10eBchiXj5XYkHgscLbnGnRqiVHqtVriMRyfaZwa08+4nRKPt82njVkOI5OoRowRMy6jPALug0Z9t0eON9KhcLXnN3LQqMrRJw+ERu0fJdqpW3vGyGOJ8qnEYWz5r7ErtD1jVbmt0CRu4zE/81zh7m3Y89s4NaZdEaYP7M8kRrHN82SRaZOqlKcS8m5T0GFk0pW/IPT4AUiNRxb/IKGHixjvEvMiuj2/iENjdv8ucf6MPR6fEenU79+IF3WtG6nl6Y0cBha1zLzXU4FzhHXNQVH4WY9yeT/pnTSEKG5ESJ//hDAfE3g+nNStNaiUjxqH0Vlb9MhjyXpTuO4PDC45MNjq04HBh+H5mKGK8fmYlto09FNrnH7X7cooeSyIpcZ3+sQi2B+POva8Tw7j8/GQHg85j6ft7VmtfHrMOj3mVGrIfVL3n5KPzyhS3h8dQu+OjvO96KV5GY8l7uf3cvp9L4YMuD0jPBLKR4369vjQ91PgUeNmtEh7P1qkv9sa557tgufHvj8zferZesqlXn8xc+njDXjr2U8adPpNkBhi1PZ83D69mhxyafVtBubPQtmi5ReN03V05fxxug7XcRil43jECDkr9lTj2DOP36cQKeM89+c9c8inSjlClEmfaxxGqvgHhjOjFqKXNKpXQ6+eIXntXphDY5wB/1RDy+nBQXo+muuLGj4TuR4+jF7TaHiqfSzvPs+nxxFiV8sR8njcf34l9Xf9dbCSL39lbPH+/DrsNEvTak5uPObDrifZTNvvmg/Hfh95L70+7xm7ftc2HYXTcR2PBfjnTw92ymVsLd+o+34lH18ZjN9t0+NVSM5ykMj19CqOT2SWcwOP6c329InMDr/aVLnna+CHuP2kcRil0vKtQdoHDb2tUSWvo0rn5xr9/efC9vYoPbdoy7GhVF7rFWVoHHqlHcao+NY+6xfqw9OpfOM6Gn73qT6/jnqa2uyZkOXDKP14HU1PM1j5S8nc7LnG6TpkS8jloHHKpVwEkyb6UpvyhSnWq70WtXzlFNLjiuypRj+9RXXKAfLg3p9lsdN1+PdQq18OY72fcqnvI7begD78Tn6c+uiHt6ixw+XSGJsDvqQxqsdzOquW5xr6fgbq9ntmoMcjoWWvmL02wjjfxB5rKv2phm+08ubE8+kyJN/EWPfp718u47TKtL00MO89y98Q8cNk5jB9LN4fRA5jrLd89uh9e8LlT79yvhvJUxGLu+nb4+0j/u6HXM0H7ccvzfOh7puQHBokf6OuLZ9+nsa+DvmUc/pXrueTt773yPMFkpLz2GSytcentYlyXETslIH7YH4683AcI4+Huny0rP0wRk4LT1UoBlqt29z+Lys+hd/vnNPS083OOa083e8c/ZHOOc6OV8VL7tP1jtNjLlawxLQ+XwU7LR/xlb8y/FgzeB56RxG6MsET03MRKu+vphG9vZx2kri5nnb7Tg4LarebVPjFfimSdQB0eIQop1WH+4vX7f2FnPPtVM2nzNMTkW9i8HyI5CvE2H/4eTo7ijSKhh37vR5E6P0Bf1qYujngTxI3Bzy/v2xa+O1103Jal+KSs9OPF4F9tp5f7JVD8J6HR05Pj61gXxtjY8ek7Nv9nfuzyHFpqkq+7No2Uf75mfccdz3ndR5T3IffCOH3R/tpcermaJe3awTu38mr6b3n6rpclx6a9AfqT+T9AhR5vwJF2u/dpBXPh1d77RdTrpKTVJcc+qWeVvpvlhbV+n7fVn27b08SN/v29p0c+vbcou8+LNcrF8cfC7mHkrHTgpASay5u8SEl6+EHppeKl4freUY+t4ehPdqLbXqvZquc1qVIslUf75ryXEPfH+mndambI/0kcXOk376Tw0g/tihmpx8tqq9p1HyneyynPC28Kqf1oNpzdrp27S9qsNzROI+wW2WBvv/Bm6PjJHFzdJxWlG6W5PlOO8/rL27V5Nn7j+qnNambj+rtlElLLihp2br1l0f1+yL6oojk+rzKtnT6q4i82y/ne0E1Smmv3gvlENNH5L8qkuGi1F/tGs4SDt2n/H8V6afZ6XwD6vtI+1zBdRa5WUp2Fik5BzI+DnpRhPLZsu+zZN8TuVnVVk5LS3fL2kp/u8rvfB1GHUsHdLiO2yL9VRF8OmS9viYyzhXGs93VDjLnLu4RxV2214dvDjbBYKv6qkgumD1EDgF4/xf86dsQXcf1VMzZPf/NOj8x3ypGp0vffzk8i/CVs/ZM7SByrKHKjnksYxzupr/93E3levfJ6ihx86ON0wrV3a82TgtUNz/bOK5P3Zx+vN8rz98hvhgdiszc5CUN9l0e1810e1XjeluD8WjF28/39zQUVSHtucZpTefm+9AXGrfeh873Ihhkou19jRfH2OMnINenpD3v29OnUo+X6a0k9RB1xwuxmgPk8TPx/ELaD3Ru+5071wru5RC4p09r5qmCs1FHVcqLjdpz4bAdRtlpXenecj2dPpl6PH/mvXR7/ipyvA4p+JaaD81x/M3OhUfhfT3nWz/8+0fdhV8VyREicnp64Pb+ii6dip/vruieb6dzdHAt1/PCARL6idvh3/l2akmRWuR0O/XNZ93zZUgO1/rIRYfLOFWXlAzfrdyOPn26T/J2pf/5KnLCfQ/eX66iXqcbyRlVoa30SO9LlKsx9nRo9XpNpFdsLtG3h93vieDTh7KvHH6nUfMTP+mHrj0t6vyAxOOHquNtuZWnt3IWudsz9Sd6pv5AzxwjV7eHiA87NHwj/LXk3ehjNvlVkXy+e1zTiz95Kvksoh9KB78lwvmtsFZ7XvVDWn/gN+K0vvMjvxFaszT8sZJ5up3TL3jtV8ZO7dtj3jeuxDiLIY3lcCWnr6juzkTY+5V/ZG9X/h0lbs5EmLw/E3Fcarq5gYT+wEyEvV/F+MXouDcTcdK4OxPxhcb1tsbNF812d0W0vtamd2dEzhr3ZkRO3y/dfWk+a9x7aT7ei+ROVSz0fOOY1n7v67g3M3Nb48WYuzsz0+kHZmYa/cAAod+5Y27Oqhw/pLo7q3K+kHuzKv3tL1So9x+YVent7VmVLx5iGBuW9CpPHmL4+BnUNkKGSHtF5OYr4lc3c+86jltSZLWuXXqYP9BTSTjl9AGeP/hbLzKdtxeZ+tLb0OMvdoiQPm2O/v4r1VHkR17/77bI9QMtcvyM6m6LFH63Rc7L5ai17b2VF9fce06IPkSer/7Tdf3EmvtRRrGZlDZ7OgFwlMArmXay1yTyex3t9WnPnAtvsqpT+Xq5jih/qB4ih+qd40cQPauzbL+Z731o0/PB3Xp/LsKnzfCK5RfuD3z6EMH0fpUq09tVqkeJe++ofNzX7947KvPbFYB83Nrv5jvq/V6xQ6+cRgc+xSi9P9+m8Li3373H1C+u49Ynsnz6iOre0yGfPqIav29xGXL4RPZ4HfeeDvmLrTgvDNP2UpNSwffP5fmTP5++oLrZpMcFqpsP3MfruNekX3xRljtbtNIOe/ceP1u+9eXBeafXWx8NsNj76fi0PHUzHZ8kbqbj23dirzXovW8GjhL3Phng48Z+9973v9C4977/9keCx31Wb9YdHzVuVgwfNW4WDB93wbxZYntfo7+oca/AlvVHnvWPu+jeK6893s3NEXLUuFlce97j9Afu5eZIPd/LvZF63Gv15ki9r9Ff1Lg3Uo/fs94eqedWvVfDfX9b9eePUfZuRcpxu+crh/rjt39fafy86bQd57WxZlGeThYeJVDH9WHbts8Sb08nHV98uuLT7w/7gX5qjPYDJ0pw+4EjJfjtyaTTu5PmVnq6Fxp9bo2TQj6F6VaVT9/Z371eOcFXt0qlX/Z3P24LQHiQ2zYF+kXjtBB1dxO88/ao97bh/GJjdLq2u3m+GTCf9vS7GbNHiXsx298eo6eXLzLsCWj2bG7/9A54b5QfFW6N8vNmIPdG+Xmv+5uj/LwCdXOUHw+iye826cHbhfB9jZpt+ljNOGgcI8XPhVst0q7nGyvLxe9GylniVqTIaQHqZqTcb44Pdc7f2ateUPOxLQzSyxrtfY29APU7e+Yb9ne2dthnvhwPzMhHQaHtZn4VOf3eU0688B4y3xThXE0n1ldF8ORBbD8gslVbf+sQgCvXF/Tq5cXO2Xae6f16tYdzzUW4PG/Xu0crXF1fapHqv8ZTYz/Q4BeNu0dNtOdhI/T+V31Cx5R4oVaK9HAhpwmlmkcJWN2//mifNI5HnjXk5n3J5PN1nDa/7tsuA/vHEp81jhv4X4JjFq9918j2nWbN7Xg+bOj7a7MeRfpWx3YYJMfTFUoOkqJ0+vE9vZLdesH94jpSYlzH4Ryh0ytEz0rHcpWtXNo+PlsdzwGREk+qD3x+HcdzQDgnL+rH/Zq/c4YHUpE2fU0DK2JjbvnwYHXqGck9MR4sL6vgnCiVwzkvpyL0e+8AR4Vb7wBfnOCxVZD0qzx99D6N05Jz7ONU3JckcOZNJ2ovveZybpH6YOuv9axt6y9Wy+nUrLcnp84S9x7f5e3JqW80B73eqNh2svKLQWd4PXuwXs9V6vtvVvX9N6v6+75ZfWwOu17uGttUylOVUyXrvUx2VLg3m3E8fafkm8iDDzlZ9P2pnZPEIxviN8b06UdoX4jYdh6IPf0I7SuR7WQkay/l1UZ4DGl8CN7TxzQ/dDYS5TMi7YVov5yNdFej0GsaVXCStZaXNB7Xn7voXh9eij5p2Psz9seTjUrN3Ump7fH/DQ3O9b7K+/cBnzTk9LHUzcR8lLiXmE3fTcznxsi33Sr7twG/NEY7TURk4YNeH05H+ixy+P2v+FKyXE/f7M6XgcrP8mFf4u/cS8n9bx/vReVVkZxo1n1Z+rsi+QFqefEUr7sngbW3fy/b27+Xx9PIbs7+n080uzf7L+0HZv/bcSuurJSW63CYmLy/OiXvr07J+6tTx889sZMv24snvDF2WH5oPD/YSL44burWqrT0H/iNO570pHmaoW4PML9eR3//Zup1/cTNnJ6lSiblQh+2FeFPV3J6/MDk4ZbE7DsnTin2a2j64olTd4P/fGyV5Zlkve3H/5bviOCUyN72LWi/KZJFXG2vYv/OAVoPB+xhsf1efj5C63wl/cJRXvTq7XTFdz178fd3RB6BmS374O0w0c8y9bS880MyH2rA+fn5ZGcRLHoRbe933xNhzTfN/aPrX7v5/DaTqyJSnp8dV8v7NcdfaNw7WvAscvOZ5IsrufdQUukHTp88n3J270OjSu+fk1LfL4E+StyrbL9/J6dDPY7nxt36OKf+wM5854PjNHdMfuBWWPrLwXHHHZNRbmL7L853RO5+n3O+ksqoCtXXz8HbNnDq+3qzfkdmnMKbKxKi9rJMnoU7JA+bL5fz+Qto3n0Z/lvNK5hT3BeLfhWR03vBrQ9+yvEo21vfUJ017n1DVd//hqr+xDdU9Qe+oTp3bS70PnqZX4yccvH2Qbnwq0Mexx0/2F4OwIJaz/LxW8zrO8+OSPfXte329cvjmvR338nPErfeyWstv6vEza/szy3a8IH8NoP+uUF7efdFuNYf2Dut1h/YO+14qnbN3PxYH3m+r+XxVO2SxyY3JnlNo+arVqv0fCfXqte7A/18GfkE3urhWL6q9Ha8HSXuBYvKu8HSj8dH3jwt3d6dpT0q3JqlPU6h3XwjOk/D3XwhOi3Q3p+osfdfiOz9Y1J97ePNFyJ7+5jU+3dyeCE6n3J+74XouGB184XoeMz53Reio8jdF6LzLkE3X4iOV3L7hej6mRei62deiK4feSE6tszdF6KjyN0XouvtLceO0XP3heiocfOFqF9vvxD18gMvRP16v0n7T7wQXT/zQnT9zAvR9RMvRMdngZpPEx++HPnO00SugKs8XzXmd5/+9bjB1s2nf73K+0//pyVfptxPivfD7T4v+R41LJeNuX+oFr+vIVc+Fz3C5/nSs17vH4r7hca9GfizyM3nzS+u5N4Dp14/URZwPNliq6Er9rx/T6cWKHa0VtXXNGoGP6nJ8zFynPu+G3nHQ6nuRt6xRfKZk+zSw90cX2zubVl+3EdAFB832PNDnLW8f3aalvfPTlN6++y0o8S9dxL9ga+slN4+O03pB85Ou98rh6Ra3j877ahxc8fyrzSutzXu7Viupz3Dbu5Yfr6OezuWf6Fxa8dy5fc3qPpC49a78/le7u1Yrqe9YX7mOm7tWH5f48WYu7ljuZ6/0Lq3Y/kXg/3mALl+5465t2O5yrEK596O5V9cyK0dy1Xe3pNSj3vk3XzXPV7HvXfdr55hbu1YrseNoG/uFK7vH2r15c3cuw6+9TDFF9Hzh+Xr3Rflc3H0nRfl8wcemM6sbZ/8/8ZHIooPTbTzaxotvzOl/QX1ex+akKFPnt+LnE5/ufu1ylHk3q7aZ4lbu2p/IXFnV+1jr1hGypiyfq1nP2jIixoEDX7eKapvf6p6lri14qfaf1eJm4Xzx/bU//Xbv+/1yfZy3F/MHPt1vKrR8tnlga9qYAvqo8bb2dzezuZffF1esLcmvfiBepb8PrA//XF8tyXOn/vfaYnjFgpW8uMl+/DpwDe2YWg5u1cblxc1sKtM6y9uB/EYkqnx6rYULV9XHnKvbktR8JZAL7dHh8bzfjlu9VHzlUeq8Q9ovLZdyGOaMmfltMqLGi3fEuwwxo4alp8/SquHfjnWGGn+qJjty52faq78W5jnrZqj/dE48nT56KsrsbwSOl3Jcbt2fLyo2/QNf+M6sEhvtoXdr9dx+K02nARqlZ5/J2PHj6mwzdbWM2P3kNtDpOFltB92ULDTJxh3h4idNuu7O0S+upJbQ8ROizf3hsj5Om4OETutq98fIu33HCIVxzTV/ZSmX4bIaQW5UsM39vvPXfukcXptMYp7eSwhtWca53vR/LXbX+J+vRf+gXuR3/decKrxA1/7taucFTGfti34hgbhOvZt21/W0PKiRsMWDNf1ooblkwy1V9s0ayUqH+LlrMHQkOdPEOf9YPMjStrLAz7v5Wr09pYUZ4lbL7Z22ujvByRubjd0ak/Glids16E9396Q4nQVgrfrfROZX67itGx8N4MxvZ3BzrsNE2oMqT69l7NGxTkt+rw95DrvZnNz22N6e27vKHFvbu8scWdu77it9q239PPG3Hfe0o8b2N+6hvMW+LfmTE7HXtw80vGsce9ER7bjGZe3z844ydwbn2eJW+PzC4k74/N8CNDNQ0COGj9w1MzN8XHWuDk+9GfGh74/PvT98aFvj4/Dm8YjZ+fPdNlz+adXnrNEriqUPXt8RwJLX7R9+vdZwvT40tTxQPuiRL4P67bk/Z0b2Td62OZLvyOh+bTxcRnwGxKW26s91nle61TK4sHHBPhrEpyloY9WKa9dBZYz+XqpOUVwXM6HbQT7XYWC7cgey9LtlYsoBaW2+2Zk35HAUV0PfO0q6nYmi9hrEooSudZfuxGcY8302o1wZr1H+nrtRhTFsWqvXQXmi4v1lwZn6WiLfRr/GxKWS24m+orA9ptaX2uHK19tPuwI/0vmPZ0l9X6Y9lxF6PRaQ2DvIqtvtuRrAo+XqZyTqft87H2BCoH9Qe22gKKCbX8T+IbAndng4y20nGOr+4ka9wWy8uSh9YJAx75e20MZd7ktkJ2wP5J9RyCLifr+aeR9gXIVhOQ2D/UdCcrV0kLa35bYcux3JHAAR9mfIV6V2E+t+Y5Exe/N/hHEd3qkYjOy/XTK70gINshQflvCXrwKfKNaLntRAg9U12vjomzHkOxvtS9KbD9b35LIQC10XS9KMCReG+AoVilEL91IxdYFD3wp7aMuYt8+4bbAzUO922mV6OZXNe20P8+9r2qOEve+qrl/J8+r4o8vX7fO9L6O0813jvRu9P7XH19o3Cqqv38dzzWO43M/B7c8v4q3t9Vr72+r147HQN37YqudJgTvfbHVTrvqdc7Kss72/Njodlof6oInpXo9n8lrfJwtufDJ1vYSpt9o05IHODyScXnapnwsnsTpXM8Vjk1681Txs8jNud4vOvfeueJnkSsnfx6vydeLIjdPJ/+iTe4dT34eqzfPJ/+GSH9V5N4J5UeR+9PoXzTtveWJ26n56UdGTd49ovzcqDfXN74QubfA0eRHFjiOMvcWOM4StxY4vpB4c4GjGL79Mtu3bPi4t0A7f6Z05yfiPNGXs7dd9OlVHCVk+4iNX5KwhpO9Pxx49Lktzhs339pWoJ0qdu5uK3BcM8oCpg8HOP9yM3qcBjbMwKqV52dJnEW4QUTrU5HztxPbl3B8uJ1TrV1TlIVvVaFd72uo5O6EKvyiBg60Ut2mxn/ROH2hnHv064cP2a5vXcaFy+Dnl3HaEqRic/0qz6fSvhBB4NXGB5HT3Rga1ex5xxw/y+M8b4B5+6UbMzn3RSR3sHpMjJ1ETlvq3ayCPjaJIRd9OGzwlyY5Hq2bHyrup3t++uk/nX1SLY8qe0w4b2sX8vkyTt/EXYb434vM5DvtgbK9xxNNed4epwc7VKo9fi/2C/n0PHX6oha7AtXte8dfJX5iqLafGKrtdx+q2ATnEbz2tGva6bsQzYEmVvhwN8fdPbGtn2y/Vf3TiG+nPew6vuu/tspM6p9+rI7bAuFM68fs377z2+dR8gP7SH5xJYLJx31a/POV9OMh0Pc+pvBPSN5bvDr2DVNuhcd7teovfXP6aKfiSJl67RtQ3X48E8vHCDHurzyuCh4SZQ+ZXx6J+k88rvYfeFz96jERjxL6/ITOfv3As+ZR5F519/Fx9X6LHAuJsfVq/fDl36fNik+7nBPWOuni5x8P9fOxUrkwRlc7iej7GaCfPmO6VwNwlri1Bn++lZtfZPVyLE2590VWP33GdO+LrPNYLXkzTNfzN8V+PMdCDXsn9OtwMz/wTWY/rS/dGyHnV4ncB0IPC4bH17ObR1IeJW7tdn5+scK27eXDFqXfejvbReT5knan9z8S6fT+RyJf3IzhZoxfbBHDPkVWrx8QOZQ89NPKyu1mtd+5WfebsVenAYwwF8mv9k3DVGKj8gMihyvppxWru33D/Dv3jc9Xrpup/cUW6Xjt7aw/ICLt0Kz2A83afudm3W9GX00CHW+bvbzYN4/nuixGv05zcLenvhq/PGt17yXvfJrEzYer44rV3Yer49569x6uTtNFHfuuo02F708VFeyXXGw/H/vlyaJT57af6Nz2E51b6Qc697RodbNz27msK5cT2tOe6afTnwRzK8L7rjuf5zVP19HyPbEZH67DfuD5/bRsdfv5vfa33/COEvfe8I63cnec6k+MU/19x2nPB/i+bf78y/g47ZVVC2be9kLM741TFHNe++G6v1zIaaBun5Dx4XDqrj8xUPX9garvD1T9iYFqPzFQjX/XX8u7P3b9tGJFHYcN7VUiv4ocj6HoOIZi39lN9P6VMB7M+MMmwb9cSfuBzHxq2NsDvr39/c1Z4t6AP97K3QF/fAy5O+CbvDvgzyMEVfZc+iElHo9Mwa620plfHKtUcltbstOVtB9Izu0nxmp/f6z298dq+4mx2n9irHZ5/ynitDLKuaZR9i1rPq2M9tPZiZIHFspW9zI+i78tUbMWcS/9/55EHpdW9xX870hofjX1YeudVyXqixLZFvpqW2i2hb7aFpY3Yq+2xS7xYlvsNaovtoVlW9irbdHyRtqrbbFLvNgWLb8WbvbqVWS9TWsvXoUvss7XjlfbYpd49SoaCo+fj4tzFcXNgzTPIlSwg9rxIM3jsQKKGSWrRxU7lQ7Y/5KGmcs3bufmwZVHkbuHi56v5Obhol9UltxaNTxK3PpK8AuJO48c5zqbm48c5aIfmD59qLw9f1ouOp4Hem/vm4fKcSvGO5vffKFxa/ebL+7m5gY4X6jc3MDmXAh15bPYY9l/u5RPhVDz7NB3H9YfKvJu9H2hcSt2vrib28HD9hPBw2/vtftFrRtOKKPtS6Zfu/h09hOXXAx9vK7uv8KfRU7n6e5HlW9lWZ+2IH2IHLcCzLqMfYvab0lkmam29qpEjpHr6VV8UT6YyzH1+vCk+fkyTq9SNYtMZS8QeUOkPxO5XVG5b5X7v4yy4+mCWHLfv4n85XZO5zbpld8Qa9kPKP1F5DRU92NOS73aj8js8936nZdu7Gt1LEc+rTH1mivm1/bZy+fVv8f9HL/bj3zU9u9e+fPZ3vXei/e+dw1/Hij17WfXL64j9zJ6jP+TRv+JLH+qer37iHQ67eL+I5LS+49IR42bj0jHu7m5qd0XKrcfkU6LXhf/73n6l8A5HuckOWC32/kUwA+JY4F1HiOyf8qn/I17KRc2Z+fTvZwOD7r/uHeqNbn7qHa8ktuPasY/EcT2/uTq7e8b5fn3jeU6rVqVhjMH21bX9OlL7XP97L1p7yI/0jc/kmDb9bv2zcdPRujQN6ct/O6ujTxUfuR9q/3A+1b7gfet9iPvW+1H3rda+30HCmezMn84IqncFxG8l8u+Fdqvo+00DfQzKvc2OfhC49YuB19p3Nnm4ItJk5v77X41gXPv6eSLab4724F9IXFnJ8rzvKnkislj8pVfnHyVfKQn2TfV+Sxy/Li35I4rj7/3/AvhUo7HJOVOr7iMz5WW5zppbFfX+svl5znB8BB5tRC+GX7GDztDflFNf+FD5cNOhF98LoHtDO169UrwEWrZtzv43gc1t45gOH3VR3nqt3z4FWf5NMjK3XksebpV2kODTnMdt3bie4gcfzvvbJd21ri3X9o3bsZON3Nq1o6w6Z0PIqcvA+5tY/fVleCQ1mubQvpV5HT87q1D2R/NetrA5ean21+o3Fy6PKvcXaf74lpuLtR9oXJ3HbWcFrgezxvbttx921Hm8y5QX+ogQz5YX9Upgv2LHr979roOvih5aNaTzvX+8u4XKjefDs7RJLmBq2z7+v4vWeo0H4RNdWnfVPdbueHxC5Ih+Xi/fi5yWqe6mxv41Mu9bptd7bup8Teu5G67nnv43kPkV6P2Ynwos89/fHf0FzTM47fi9WgsOAviofk8iq7jkLuzk+jcaPnpL/StrUQfGqfC7JKvG/zxXm7vP/z4T3OjGN2/3GvXfQndtkQo70vU1ySwj6juOxl8Q8LQnLZPfHxDomU24v2M629dRU56sG256GWJ1zq15awy7wVv35LIeSRu8lqntvztfGB/8SpyXDR9sVPzwJMHvnQVj5UcbNq3pYzvSHyoMOGnEo+sdlqNJRwhQ/v00XdOSMrPFkjttVvJxWlivV6TyCH+mKF5KUrGNA/mjfhFiQsS8rYE8YvNiakraq9dBaMtan/7Kl7rVMkg2VfVvzMVAAF6SeDe5ounQoVb24OcBG5tDnISuHUo5vV7Tsjc2mbp9FaKs3CKXnstAN2W0Fwmfqym9pckWsWMX33tKjo+8br2Uy7uS9CF028/PD9/4ypQQT92wn1NomMKtbx0I/uhIaW/dhWc9RBFLnlJQvK5u9StlOGzxONqT6Uq7x+uxxmmhe211sCGtY83jfJ2g36W+L+P//uHf/nT3/7pz3/9lz/8/U9//ct/Pv7m/wyxv/3pD//85z+u//tv//WXf9n+7d////+If/PPf/vTn//8p3//p//421//5Y//+l9/++NQGv/ut2v9z/9pjwftf3g8J9b/+w+/lcf/7+O99rGKXR7/n/3fPx42Hv+RjH8//kIdW809/sf/QvH/4pHzH//T/u//jEv+fw=="
4401
4401
  },
4402
4402
  {
4403
4403
  "name": "verify_private_authwit",
@@ -6312,9 +6312,9 @@
6312
6312
  }
6313
6313
  }
6314
6314
  },
6315
- "bytecode": "H4sIAAAAAAAA/+xdB5wURdav2Z0ddmDZIecwJAEBQRBFBGHJWcGciSKKgAQlCSsZA5jOO089PXPOOZ0555xzzn6m09Pzqzq62LdvX/d0Vb+u2Tu3fr+3PdtV9f6vql79q7q6ujshtoQm3vHoGfNnHbrkkHnzZx09ZeGMQ6YsWnjYMbMWrq8lxKfFW1IkpBR6xwIpWXROH+Hv+kS6hlIGo3PKinJ0rilxrhWhrzVxrg1xri1xLktgtCPOtSfOdSDOdfR0JkWIkPCOWe/Ya/qE+e9uf17XW3cffvNxx+17UJc+n4xactu8U4a++8Np38j44wsr0uYI3aPgnBAeJ1J5TsyNUwB1l4iKilX/q/pQx07e/yd4/yu9Ot1J8vcmKZulnFxIK8+KcMVraFC2U8LWYWJiOXQglW+wiGZnRxHezlPDt3UC2knlw+2fS1+hgZ1JUUEuVRQZ4ibCp60IyoBagscAk7QQ77RCqMEQUGU29aTTDLzj9MLwrbnVKGFWhtMLzfOdbsBm1aGR/xSlkf9kUUF/Mmy4SoAifN4zwjfEdjb6VTjdwslNMP7saGj8S26cIqgbD41neH7wZ+/Ywjv/FzA0nil//1XKWVLORkNjIbI3V/FaGqQ908DfzrGsb1P7Oxmk/auB/X8zsJ9qx3O89vubdzzLO54N2vFc+fs8KX+Xcr53vkDQJKZDVoQzKQVs0XkukBgXSrlIysVSLpFyqZTLpFwu5QopV0q5SsrVUq6Rcq2U66RcL+UGKTdKuUnKzVJukXKrlNuk3C7lDil3SrlLyt1S/iHlHin3SrmvsLIt98v/H5DyoJSHpDws5REpj0p5TMrjUp6Q8qSUp6Q8LeUZKc9KeU7K81JekPKilJekvCzlFSmvSnlNyutS3pDyppS3pLwt5R0p70p5z3Oy973jB97xQ+/4kZ4r6aOquGJ07kLi3EXEuYuJc5cQ5y4lzl1GnLucOHcFce5K4txVxLmriXPXEOeuJc5dR5y7njh3A3HuRuLcTcS5m4lztxDnbiXO3Uacu504dwdx7k7i3F3EubuJc/8gzt1DnLuXOHcfce5+4twDxLkHiXMPEeceJs49Qpx7lDj3GHHuceLcE8S5J4lzTxHnnibOPUOce5Y49xxx7nni3AvEuReJcy8R514mzr1CnHuVOPcace514twbxLk3iXNvEefeJs69Q5x7lzj3HnHuQ+8cDHiylmtATYC0OUJCEXLItJUzGtr0cXicBPwni46VY6uGCyrhBCe+sLJNgYkvQvYHJb4YlzUg8SVV6sU/8aVV69A38WVEffslvpxqG5/EV5DtSCe+km5zMvFVPv5BJb7az5eIxNf4+l3VxNf6+2iVxNcF+DNOfH2Q76PENwT2k8qJbwzuU5US35Sj/8HEN+fqqyDxLTn7dUXiW3NzwNbEt4XgC5349jDc4iW+IxQPbUl8ZzjO+k/iu0Lym0p8d1guTGyZ34RKKxPfY8Cx9xaG5+5PHI0Rn+bGqQV14wtBNcYkPHvVUV8IKb063Wfy9+dSvpDyZWFl5e2QvT60tjXcbzDWPGAw1jxoMNY8ZDDWPGww1jxiMNY8ajDWPGYw1jxuMNY8YTDWPGkw1jxlMNY8bTDWPGMw1jxrMNY8ZzDWPG8w1rxgMNa8aDDWvGQw1rxsMNa8YjDWvGow1rxmMNa8bjDWvGEw1rxpMNa8ZTDWvG0w1rxjMNa8a5D2M4Nx6SvLcUnTfjZc8sR7BvZ/bmD/147sf9/A/i8M7P/GwH5qvP7KG5+/9o7feMcvwXj9rfz9f1K+k/I9Gq9Nb2J8a1C2HwzqjCrbD15Z/s87fucdvwdl+1H+/knKP6X8XMh7Z+3DkGX9+vff/w3xfimMAKgymyxWKPBfDCr6XwYNaFuGfxWaTVxVGf7laIL8a3icZBSc33LjFELd2Pl/9epQy4/e/78B5/+3/P174ZaMiWRFXmhnjlDt26sgGRqnkKpHlV8dP/LK+G+iHgvlj6SUIikptKXKlCBPNehftcKXrdKmGJ0vCc5VyWBo97mGA5E+DvZ+F0tj0lJqS6kjpURKXSmlUjJS6kmpL6WBlIZSGklpLKWJlKZSmklpLqWFlJZSWklpLaWNlLaqvFLaSWkvpYOUjlI6SdlGSmcpXaR0lbKtlG5SukvpIWU7KT2l9JKyvZTeUvpI2UFKXyk7StlJSj8pO0vpL2UXKQOkDJSyq5RBUgZLKZMyRMpQKcOkDJcyQsrIpNcYatW5QERvjOKkXecSRjiJSraO8hx/tN4CpT1LRfyIzqlEeInddEoFC5mDbRKjkuF71WjLyjO9RWBi0xhoU47EsJ7HeHVvMq0xsTuMLTqMTUYAVJmrUGmOjGMN6HGcQWPYlmFckujJOTKOM3RGU6YY7dklzPKxslU6D2w1wSvzbpitJhBstRsDW6UN2GqCgTPu5oitTGza3ZKtdo+BrSZYstXEZATAiRZsNdGArSbFzFaqDJMs2GpSzGy1m2eXMMvHyla188BWe3pl3guz1Z4EW+3FwFa1DdhqTwNn3MsRW5nYtLclW+0dA1vtaclW+yQjAO5jwVb7GLDVvjGzlSrDvhZstW/MbLWXZ5cwy8fKVnXywFb7e2U+ALPV/gRbHcDAVnUM2Gp/A2c8wBFbmdh0oCVbHRgDW+1vyVYHJSMAHmTBVgcZsNXBMbOVKsPBFmx1cMxsdYBnlzDLx8pWJXlgq8lemadgtppMsNUUBrYqMWCryQbOOMURW5nYNNWSrabGwFaTLdlqWjIC4DQLtppmwFbTY2YrVYbpFmw1PWa2muLZJczysbJV3Tyw1aFemWditjqUYKuZDGxV14CtDjVwxpmO2MrEpsMs2eqwGNjqUEu2mpWMADjLgq1mGbDV4TGzlSrD4RZsdXjMbDXTs0uY5WNlq9I8sNVsr8xHYraaTbDVkQxsVWrAVrMNnPFIR2xlYtMcS7aaEwNbzbZkq7nJCIBzLdhqrgFbzYuZrVQZ5lmw1byY2epIzy5hlo+VrTJ5YKv5XpkXYLaaT7DVAga2yhiw1XwDZ1zgiK1MbFpoyVYLY2Cr+ZZstSgZAXCRBVstMmCro2NmK1WGoy3Y6uiY2WqBZ5cwy8fKVvXywFaLvTIvwWy1mGCrJQxsVc+ArRYbOOMSR2xlYtNSS7ZaGgNbLbZkq2XJCIDLLNhqmQFbLY+ZrVQZlluw1fKY2WqJZ5cwy8fKVvXzwFYrvDKvxGy1gmCrlQxsVd+ArVYYOONKR2xlYlO5JVuVx8BWKyzZ6rhkBMDjLNjqOAO2WhUzW6kyrLJgq1Uxs9VKzy5hlo+VrRrkga3WeGVei9lqDcFWaxnYqoEBW60xcMa1jtjKxKZ1lmy1Lga2WmPJVuuTEQDXW7DVegO22hAzW6kybLBgqw0xs9Vazy5hlo+VrRrmga2O98p8Amar4wm2OoGBrRoasNXxBs54giO2MrHpREu2OjEGtjrekq1OSkYAPMmCrU4yYKtNMbOVKsMmC7baFDNbneDZJczysbJVozyw1clemU/BbHUywVanMLBVIwO2OtnAGU9xxFYmNp1qyVanxsBWJ1uy1WnJCICnWbDVaQZsdXrMbKXKcLoFW50eM1ud4tklzPKxslXjPLDVGV6Z/4zZ6gyCrf7MwFaNDdjqDANn/LMjtjKx6S+WbPWXGNjqDEu2OjMZAfBMC7Y604Ct/hozW6ky/NWCrf4aM1v92bNLmOVjZasmeWCrs70yn4PZ6myCrc5hYKsmBmx1toEznuOIrUxs+pslW/0tBrY625Ktzk1GADzXgq3ONWCr82JmK1WG8yzY6ryY2eoczy5hlo+VrZrmga3O98p8AWar8wm2uoCBrZoasNX5Bs54gSO2MrHpQku2ujAGtjrfkq0uSkYAvMiCrS4yYKuLY2YrVYaLLdjq4pjZ6gLPLmGWj5WtmuWBrS71ynwZZqtLCba6jIGtmhmw1aUGzniZI7YyselyS7a6PAa2utSSra5IRgC8woKtrjBgqytjZitVhist2OrKmNnqMs8uYZaPla2a54GtrvbKfA1mq6sJtrqGga2aG7DV1QbOeI0jtjKx6VpLtro2Bra62pKtrktGALzOgq2uM2Cr62NmK1WG6y3Y6vqY2eoazy5hlo+VrVrkga1u9Mp8E2arGwm2uomBrVoYsNWNBs54kyO2MrHpZku2ujkGtrrRkq1uSUYAvMWCrW4xYKtbY2YrVYZbLdjq1pjZ6ibPLmGWj5WtWuaBrW73ynwHZqvbCba6g4GtWhqw1e0GzniHI7YyselOS7a6Mwa2ut2Sre5KRgC8y4Kt7jJgq7tjZitVhrst2OrumNnqDs8uYZaPla1a5YGt7vHKfC9mq3sItrqXga1aGbDVPQbOeK8jtjKx6T5LtrovBra6x5Kt7k9GALzfgq3uN2CrB2JmK1WGByzY6oGY2epezy5hlo+VrVrnga0e8sr8MGarhwi2epiBrVobsNVDBs74sCO2MrHpEUu2eiQGtnrIkq0eTUYAfNSCrR41YKvHYmYrVYbHLNjqsZjZ6mHPLmGWj5Wt2uSBrZ7wyvwkZqsnCLZ6koGt2hiw1RMGzvikI7YysekpS7Z6Kga2esKSrZ5ORgB82oKtnjZgq2diZitVhmcs2OqZmNnqSc8uYZaPla3a5oGtnvPK/Dxmq+cItnqega3aGrDVcwbO+LwjtjKx6QVLtnohBrZ6zpKtXkxGAHzRgq1eNGCrl2JmK1WGlyzY6qWY2ep5zy5hlo+VrbJ5YKtXvDK/itnqFYKtXmVgq6wBW71i4IyvOmIrE5tes2Sr12Jgq1cs2er1ZATA1y3Y6nUDtnojZrZSZXjDgq3eiJmtXvXsEmb5WNmqXR7Y6i2vzG9jtnqLYKu3GdiqnQFbvWXgjG87YisTm96xZKt3YmCrtyzZ6t1kBMB3LdjqXQO2ei9mtlJleM+Crd6Lma3e9uwSZvlY2ap9HtjqA6/MH2K2+oBgqw8Z2Kq9AVt9YOCMHzpiKxObPrJkq49iYKsPLNnq42QEwI8t2OpjA7b6JGa2UmX4xIKtPomZrT707BJm+VjZqkMe2Oozr8yfY7b6jGCrzxnYqoMBW31m4IyfO2IrE5u+sGSrL2Jgq88s2erLZATALy3Y6ksDtvoqZrZSZfjKgq2+ipmtPvfsEmb5WNmqYx7Y6huvzN9itvqGYKtvGdiqowFbfWPgjN86YisTm/7Pkq3+Lwa2+saSrb5LRgD8zoKtvjNgq+9jZitVhu8t2Or7mNnqW88uYZaPla065YGtfvTK/BNmqx8JtvqJga06GbDVjwbO+JMjtjKx6Z+WbPXPGNjqR0u2+jkZAfBnC7b62YCtfomZrVQZfrFgq19iZqufPLuEWT5WttomD2z1q1fm3zBb/Uqw1W8MbLWNAVv9auCMvzliKxOb/m3JVv+Oga1+tWSr35MRAH+3YKvfDdhKFMXLVv/pHUXmbAXtClcQpD9H8t88u4RZPla26pwHtirwylxYJCr3GBWB2UolispWnQ3YqsDAGQuL7CrPlK1MbEoW2bFVsoifrQoMbdGhqCgCoMpsylZF4RsykYqZrVQZUhZslYqZrQo9u4RZPla26pIHtir2ypzGbFVMsFWaga26GLBVsYEzph2xlYlNtS3ZqnYMbFVsyVZ1iiIA1rFgqzoGbFUSM1upMpRYsFVJzGyV9uwSZvlY2aprHtiq1CtzBrNVKcFWGQa26mrAVqUGzphxxFYmNtWzZKt6MbBVqSVb1S+KAFjfgq3qG7BVg5jZSpWhgQVbNYiZrTKeXcIsHytbbZsHtmrklbkxZqtGBFs1ZmCrbQ3YqpGBMzZ2xFYmNjWxZKsmMbBVI0u2aloUAbCpBVs1NWCrZjGzlSpDMwu2ahYzWzX27BJm+VjZqlse2KqFV+aWmK1aEGzVkoGtuhmwVQsDZ2zpiK1MbGplyVatYmCrFpZs1booAmBrC7ZqbcBWbWJmK1WGNhZs1SZmtmrp2SXM8rGyVfc8sFXWK3M7zFZZgq3aMbBVdwO2yho4YztHbGViU3tLtmofA1tlLdmqQ1EEwA4WbNXBgK06xsxWqgwdLdiqY8xs1c6zS5jlY2WrHnlgq228MnfGbLUNwVadGdiqhwFbbWPgjJ0dsZWJTV0s2apLDGy1jSVbdS2KANjVgq26GrDVtjGzlSrDthZstW3MbNXZs0uY5WNlq+3ywFbdvTL3wGzVnWCrHgxstZ0BW3U3cMYejtjKxKbtLNlquxjYqrslW/UsigDY04KtehqwVa+Y2UqVoZcFW/WKma16eHYJs3ysbNUzD2zV2ytzH8xWvQm26sPAVj0N2Kq3gTP2ccRWJjbtYMlWO8TAVr0t2apvUQTAvhZs1deArXaMma1UGXa0YKsdY2arPp5dwiwfK1v1ygNb9fPKvDNmq34EW+3MwFa9DNiqn4Ez7uyIrUxs6m/JVv1jYKt+lmy1S1EEwF0s2GoXA7YaEDNbqTIMsGCrATGz1c6eXcIsHytbbZ8HttrVK/MgzFa7Emw1iIGttjdgq10NnHGQI7YysWmwJVsNjoGtdrVkq7KiCIBlFmxVZsBWQ2JmK1WGIRZsNSRmthrk2SXM8rGyVe88sNUwr8zDMVsNI9hqOANb9TZgq2EGzjjcEVuZ2DTCkq1GxMBWwyzZamRRBMCRFmw10oCtRsXMVqoMoyzYalTMbDXcs0uY5WNlqz55YKsxXpnHYrYaQ7DVWAa26mPAVmMMnHGsI7YysWmcJVuNi4Gtxliy1fiiCIDjLdhqvAFbTYiZrVQZJliw1YSY2WqsZ5cwy8fKVjvkga1298o8EbPV7gRbTWRgqx0M2Gp3A2ec6IitTGyaZMlWk2Jgq90t2WqPogiAe1iw1R4GbLVnzGylyrCnBVvtGTNbTfTsEmb5WNmqbx7Yam+vzPtgttqbYKt9GNiqrwFb7W3gjPs4YisTm/a1ZKt9Y2CrvS3Zar+iCID7WbDVfgZstX/MbKXKsL8FW+0fM1vt49klzPKxstWOeWCrA70yH4TZ6kCCrQ5iYKsdDdjqQANnPMgRW5nYdLAlWx0cA1sdaMlWhxRFADzEgq0OMWCryTGzlSrDZAu2mhwzWx3k2SXM8rGy1U55YKupXpmnYbaaSrDVNAa22smAraYaOOM0R2xlYtN0S7aaHgNbTbVkqxlFEQBnWLDVDAO2OjRmtlJlONSCrQ6Nma2meXYJs3ysbNUvD2x1mFfmWZitDiPYahYDW/UzYKvDDJxxliO2MrHpcEu2OjwGtjrMkq2OKIoAeIQFWx1hwFazY2YrVYbZFmw1O2a2muXZJczysbLVznlgqzlemeditppDsNVcBrba2YCt5hg441xHbGVi0zxLtpoXA1vNsWSro4oiAB5lwVZHGbDV/JjZSpVhvgVbzY+ZreZ6dgmzfKxs1T8PbLXQK/MizFYLCbZaxMBW/Q3YaqGBMy5yxFYmNh1tyVZHx8BWCy3Z6piiCIDHWLDVMQZstThmtlJlWGzBVotjZqtFnl3CLB8rW+2SB7Za6pV5GWarpQRbLWNgq10M2GqpgTMuc8RWJjYtt2Sr5TGw1VJLtjq2KALgsRZsdawBW62Ima1UGVZYsNWKmNlqmWeXMMvHylYD8sBW5V6Zj8NsVU6w1XEMbDXAgK3KDZzxOEdsZWLTKku2WhUDW5VbstXqogiAqy3YarUBW62Jma1UGdZYsNWamNnqOM8uYZaPla0G5oGt1nllXo/Zah3BVusZ2GqgAVutM3DG9Y7YysSmDZZstSEGtlpnyVYbiyIAbrRgq40GbHV8zGylynC8BVsdHzNbrffsEmb5WNlq1zyw1YlemU/CbHUiwVYnMbDVrgZsdaKBM57kiK1MbNpkyVabYmCrEy3ZanNRBMDNFmy12YCtTo6ZrVQZTrZgq5NjZquTPLuEWT5WthqUB7Y61SvzaZitTiXY6jQGthpkwFanGjjjaY7YysSm0y3Z6vQY2OpUS7b6U1EEwD9ZsNWfDNjqjJjZSpXhDAu2OiNmtjrNs0uY5WNlq8F5YKu/eGU+E7PVXwi2OpOBrQYbsNVfDJzxTEdsZWLTXy3Z6q8xsNVfLNnqrKIIgGdZsNVZBmx1dsxspcpwtgVbnR0zW53p2SXM8rGyVVke2OpvXpnPxWz1N4KtzmVgqzIDtvqbgTOe64itTGw6z5KtzouBrf5myVZ/L4oA+HcLtvq7AVudHzNbqTKcb8FW58fMVud6dgmzfKxsNSQPbHWhV+aLMFtdSLDVRQxsNcSArS40cMaLHLGViU0XW7LVxTGw1YWWbHVJUQTASyzY6hIDtro0ZrZSZbjUgq0ujZmtLvLsEmb5WNlqaB7Y6nKvzFdgtrqcYKsrGNhqqAFbXW7gjFc4YisTm660ZKsrY2Cryy3Z6qqiCIBXWbDVVQZsdXXMbKXKcLUFW10dM1td4dklzPKxstWwPLDVtV6Zr8NsdS3BVtcxsNUwA7a61sAZr3PEViY2XW/JVtfHwFbXWrLVDUURAG+wYKsbDNjqxpjZSpXhRgu2ujFmtrrOs0uY5WNlq+F5YKubvTLfgtnqZoKtbmFgq+EGbHWzgTPe4oitTGy61ZKtbo2BrW62ZKvbiiIA3mbBVrcZsNXtMbOVKsPtFmx1e8xsdYtnlzDLx8pWI/LAVnd6Zb4Ls9WdBFvdxcBWIwzY6k4DZ7zLEVuZ2HS3JVvdHQNb3WnJVv8oigD4Dwu2+ocBW90TM1upMtxjwVb3xMxWd3l2CbN8rGw1Mg9sdZ9X5vsxW91HsNX9DGw10oCt7jNwxvsdsZWJTQ9YstUDMbDVfZZs9WBRBMAHLdjqQQO2eihmtlJleMiCrR6Kma3u9+wSZvn+41BpUdFpo9hwbqELtqKTZUWYkNhapgTI84ist0elPCblcSlPSHlSylNSnpbyjJRnpTwn5XkpL0h5UcpLUl6W8oqUV6W8JuV1KW9IeVPKW1LelvKOlHelvCflfSkfSPlQykdSPsYs+4jHqPDco8S5x4hzjxPnniDOPUmce4o49zRx7hni3LPEueeIc88T514gzr1InHuJOPcyce4V4tyrxLnXiHOvE+feIM69SZx7izj3NnHuHeLcu8S594hz7xPnPiDOfUic+4g49zExerfzjlkRKlTq9LnI85GQ5KxG+kdDpxWJx8KmlfY+Hi7tqWrQeyJU2u//M0A+GSbtO1sG06dCpB3iDbxP5057sh6kn8mZdu7WAf3ZXGlvrRj8n8uRdjGYKDwfnHYknFS8EJj240oTkBeD0vauPFl5KSBtZzSxedk/7YF4EvSKb9p9qkyYXvVLW151cvWaT9pyYiL2Op32JmrS9gaZdhg5wXuTSrsbPRl8i0h7i8/E8e2qabv4TTLfqZL2XN8J6bs4bS//yet7KO07ARPd9yunPSpoUvxBpbTjAyfQH8K004In2x+BtD1zTMw/NphYmlw95AiVcHNw+bMQ7xO/q4cwgJ8UmV2eKfBPwldQ4tOQhfK7eghThk+LzK46VBk+NWxkrvUHA+d6hjqZFaFgKtn6mecgn+OZ8WdexcFznzOsPxh4cuIzAwf53LDyTBtHOcVnhs6k7PosT4zxUfh6PgfifWHLGArwC3PGOOcLA8b4MmbGUGX40pwxzvkyT4zxUXjcs6mTWREKppKtX3kO8jVmjK8IxviagTEMPDnxlYGDfG1ZeaYrliY2fWPQGbb+MbDlU8/BqywK5sAyGaq/NegMVBlyJVd19K0FE3+bJyb+MLz/3gDx/s+WiRXg/5kz8Q3/Z+B838XMxKoM35kz8Q3fRXS+MB3o25g70PeGZdDBlJhM2vAHA9/gHOE+DI97PXUyK0LBVLL1R6/j/YRHuB+JEe4nhhHOgCESPxo02k+WlWfqSCY2/TPiCJcrj+o8P1iMDj/HPGqpcv/swC4dTNvwZ4M2/CXmNvQj2TDkHDbtvwwJjWs28EH4vr4Z4v1qOxtQgL+azwY2/2pQQb/FPBtQZfjNfDaw+beYZwOqI/yrKN7O9m/DzqaDqU0mbfh7nmYDH4TH3USdzIpQMJVtTXlnU6LyyK8i8GxAJYo6GzBgiISyIUzabzzbQtpQqfJMHcnEpoKUmXObOozqPL9bjLqF4e2qME6Et0uVuzAVv106mLZhoUEbJmNuQz+SzZXPhGSLDOqVczbwfvi+noV4qVQEQJXZcDaQTRk0ci0D57EtQy3DzqPKUCtipw7TEYpS8Xa2YsPOpoOpTSZtmDawiXM28H742UBb6mRWhIKpZGttr+PVwbOB2sRsoA7DbMCAIRK1DRqtTsqu8kwdycSmkphHEtV50hajbt2YZwOq3HUd2KWDaRvWNWjD0pjb0I9kc+UzIdlMnmYD74Xv689AvHq2swEFWM98NvBMPYNGrh/zbECVob75bOCZ+jHPBlRHyKTi7WwNHM0GTNqwYZ5mA++Fnw08TZ3MilAwlWxt5HW8xng20IiYDTRmmA0YMESikUGjNU7ZVZ6pI5nY1CTmkUR1noYWo27TmGcDqtxNHdilg2kbNjVow2Yxt6EfyebKZ0KyzfM0G3g3fF+fAvFa2M4GFGAL89nAlBYGjdwy5tmAKkNL89nAlJYxzwZUR2ieireztXI0GzBpw9Z5mg28G342MJk6mRWhYCrZ2sbreG3xbKANMRtoyzAbMGCIRBuDRmubsqs8U0cysSkb80iiOk9ri1G3XcyzAVXudg7s0sG0DdsZtGH7mNvQj2Rz5TMh2Q55mg28E76vvwLxOtrOBhRgR/PZwCsdDRq5U8yzAVWGTuazgVc6xTwbUB2hQyrezraNo9mASRt2ztNs4J3ws4GXqZNZEQqmkq1dvI7XFc8GuhCzga4MswEDhkh0MWi0rim7yjN1JBObto15JFGdp7PFqNst5tmAKnc3B3bpYNqG3QzasHvMbehHsrnymZBsjzzNBt4O39dHQ7ztbGcDCnA789nA6O0MGrlnzLMBVYae5rOB0T1jng2ojtAjFW9n6+VoNmDShtvnaTbwdvjZwCjqZFaEgqlka2+v4/XBs4HexGygD8NswIAhEr0NGq1Pyq7yTB3JxKYdYh5JVOfZ3mLU7RvzbECVu68Du3QwbcO+Bm24Y8xt6EeyufKZkOxOeZoNvBW+r18H8frZzgYUYD/z2cB1/QwaeeeYZwOqDDubzwau2znm2YDqCDul4u1s/R3NBkzacJc8zQbeCj8buJY6mRWhYCrZOsDreAPxbGAAMRsYyDAbMGCIxACDRhuYsqs8U0cysWnXmEcS1Xl2sRh1B8U8G1DlHuTALh1M23CQQRsOjrkN/Ug2Vz4Tki3L02zgzfB9/U6IN8R2NqAAh5jPBu4cYtDIQ2OeDagyDDWfDdw5NObZgOoIZal4O9swR7MBkzYcnqfZwJvhZwN3UCezIhRMJVtHeB1vJJ4NjCBmAyMZZgMGDJEYYdBoI1N2lWfqSCY2jYp5JFGdZ7jFqDs65tmAKvdoB3bpYNqGow3acEzMbehHsrnymZDs2DzNBt4I39fHQrxxtrMBBTjOfDYwdpxBI4+PeTagyjDefDYwdnzMswHVEcam4u1sExzNBkzacLc8zQbeCD8bGEOdzIpQMJVs3d3reBPxbGB3YjYwkWE2YMAQid0NGm1iyq7yTB3JxKZJMY8kqvPsZjHq7hHzbECVew8Hdulg2oZ7GLThnjG3oR/J5spnQrJ75Wk28Hr4vl4O8fa2nQ0owL3NZwPlexs08j4xzwZUGfYxnw2U7xPzbEB1hL1S8Xa2fR3NBkzacL88zQZeDz8bWEmdzIpQMJVs3d/reAfg2cD+xGzgAIbZgAFDJPY3aLQDUnaVZ+pIJjYdGPNIojrPfhaj7kExzwZUuQ9yYJcOpm14kEEbHhxzG/qRbK58JiR7SJ5mA69ZzgYm284GFOBki9nAZINGnhLzbECVYYrFbGBKzLMB1REOScXb2aY6mg2YtOG0PM0GXsvDbGC61/Fm4NnAdGI2MINhNmDAEInpBo02w9FswMSmQ2MeSVTnmWYx6s6MeTagyj3TgV06mLbhTIM2PCzmNvQj2Vz5TEh2Vp5mA6+G7+uXQbzDbWcDCvBw89nAZYcbNPIRMc8GVBmOMJ8NXHZEzLMB1RFmpeLtbLMdzQZM2vDIPM0GXg0/G7iUOpkVoWAq2TrH63hz8WxgDjEbmMswGzBgiMQcg0abm7KrPFNHMrFpXswjieo8R1qMukfFPBtQ5T7KgV06mLbhUQZtOD/mNvQj2Vz5TEh2QZ5mA6+E7+sXQryFtrMBBbjQfDZw4UKDRl4U82xAlWGR+WzgwkUxzwZUR1iQirezHe1oNmDShsfkaTbwSvjZwAXUyawIBVPJ1sVex1uCZwOLidnAEobZgAFDJBYbNNqSlF3lmTqSiU1LYx5JVOc5xmLUXRbzbECVe5kDu3QwbcNlBm24POY29CPZXPlMSPbYPM0GXg7f11+FeCtsZwMKcIX5bODVFQaNvDLm2YAqw0rz2cCrK2OeDaiOcGwq3s5W7mg2YNKGx+VpNvBy+NnAK9TJrAgFU8nWVV7HW41nA6uI2cBqhtmAAUMkVhk02uqUXeWZOpKJTWtiHklU5znOYtRdG/NsQJV7rQO7dDBtw7UGbbgu5jb0I9lc+UxIdn2eZgMvhe/rT0G8DbazAQW4wXw28NQGg0beGPNsQJVho/ls4KmNMc8GVEdYn4q3sx3vaDZg0oYn5Gk28FL42cCT1MmsCAVTydYTvY53Ep4NnEjMBk5imA0YMETiRINGOyllV3mmjmRi06aYRxLVeU6wGHU3xzwbUOXe7MAuHUzbcLNBG54ccxv6kWyufCYke0qeZgMvhu/rzSHeqbazAQV4qvlsoPmpBo18WsyzAVWG08xnA81Pi3k2oDrCKal4O9vpjmYDJm34pzzNBl4MPxtoRp3MilAwlWw9w+t4f8azgTOI2cCfGWYDBgyROMOg0f6csqs8U0cysekvMY8kqvP8yWLUPTPm2YAq95kO7NLBtA3PNGjDv8bchn4kmyufCcmelafZwAvh+/ptEO9s29mAAjzbfDZw29kGjXxOzLMBVYZzzGcDt50T82xAdYSzUvF2tr85mg2YtOG5eZoNvBB+NnArdTIrQsFUsvU8r+P9Hc8GziNmA39nmA0YMETiPING+3vKrvJMHcnEpvNjHklU5znXYtS9IObZgCr3BQ7s0sG0DS8waMMLY25DP5LNlc+EZC/K02zg+fB9fQPEu9h2NqAALzafDWy42KCRL4l5NqDKcIn5bGDDJTHPBlRHuCgVb2e71NFswKQNL8vTbOD58LOB9dTJrAgFU8nWy72OdwWeDVxOzAauYJgNGDBE4nKDRrsiZVd5po5kYtOVMY8kqvNcZjHqXhXzbECV+yoHdulg2oZXGbTh1TG3oR/J5spnQrLX5Gk28Fz4vj4K4l1rOxtQgNeazwZGXWvQyNfFPBtQZbjOfDYw6rqYZwOqI1yTirezXe9oNmDShjfkaTbwXPjZwEjqZFaEgqlk641ex7sJzwZuJGYDNzHMBgwYInGjQaPdlLKrPFNHMrHp5phHEtV5brAYdW+JeTagyn2LA7t0MG3DWwza8NaY29CPZHPlMyHZ2/I0G3g2fF8/BeLdbjsbUIC3m88GTrndoJHviHk2oMpwh/ls4JQ7Yp4NqI5wWyreznano9mASRvelafZwLPhZwMnUyezIhRMJVvv9jreP/Bs4G5iNvAPhtmAAUMk7jZotH+k7CrP1JFMbLon5pFEdZ67LEbde2OeDahy3+vALh1M2/Begza8L+Y29CPZXPlMSPb+PM0Gngnf1+dBvAdsZwMK8AHz2cC8Bwwa+cGYZwOqDA+azwbmPRjzbEB1hPtT8Xa2hxzNBkza8OE8zQaeCT8bmEudzIpQMJVsfcTreI/i2cAjxGzgUYbZgAFDJB4xaLRHU3aVZ+pIJjY9FvNIojrPwxaj7uMxzwZUuR93YJcOpm34uEEbPhFzG/qRbK58JiT7ZJ5mA0+H7+t3Q7ynbGcDCvAp89nA3U8ZNPLTMc8GVBmeNp8N3P10zLMB1RGeTMXb2Z5xNBswacNn8zQbeDr8bOAu6mRWhIKpZOtzXsd7Hs8GniNmA88zzAYMGCLxnEGjPZ+yqzxTRzKx6YWYRxLVeZ61GHVfjHk2oMr9ogO7dDBtwxcN2vClmNvQj2Rz5TMh2ZfzNBt4Knxfz0K8V2xnAwrwFfPZQPYVg0Z+NebZgCrDq+azgeyrMc8GVEd4ORVvZ3vN0WzApA1fz9Ns4Knws4G21MmsCAVTydY3vI73Jp4NvEHMBt5kmA0YMETiDYNGezNlV3mmjmRi01sxjySq87xuMeq+HfNsQJX7bQd26WDahm8btOE7MbehH8nmymdCsu/maTbwZPi+XgLx3rOdDSjA98xnAyXvGTTy+zHPBlQZ3jefDZS8H/NsQHWEd1PxdrYPHM0GTNrwwzzNBp4MPxuoQ53MilAwlWz9yOt4H+PZwEfEbOBjhtmAAUMkPjJotI9TdpVn6kgmNn0S80iiOs+HFqPupzHPBlS5P3Vglw6mbfipQRt+FnMb+pFsrnwmJPt5nmYDT4Tv63Mg3he2swEF+IX5bGDOFwaN/GXMswFVhi/NZwNzvox5NqA6wuepeDvbV45mAyZt+HWeZgNPhJ8NHEmdzIpQMJVs/cbreN/i2cA3xGzgW4bZgAFDJL4xaLRvU3aVZ+pIJjb9X8wjieo8X1uMut/FPBtQ5f7OgV06mLbhdwZt+H3MbehHsrnymZDsD3maDTwevq/Xh3g/2s4GFOCP5rOB+j8aNPJPMc8GVBl+Mp8N1P8p5tmA6gg/pOLtbP90NBswacOf8zQbeDz8bKAedTIrQsFUsvUXr+P9C88GfiFmA/9imA0YMETiF4NG+1fKrvJMHcnEpl9jHklU5/nZYtT9LebZgCr3bw7s0sG0DX8zaMN/x9yGfiSbK58Jyf6ep9nAY+EJrTJerQiAKrNpvkSteEd4ZVeiVsWJrAgfTDuRctjfU/F2ioJabkZtk3YprBWto4Ypc6FFG3J2qEctO1TStkMpwKRFhyqKuUMpu4qYOlSu5Krhi2rZOUw2HAarkzxSZNDBQMaUrZMoQJXZtHenDHpsrZgdSpWhlkUj16oVzfnCOFGtWubTgwKD+iqOWIZcyVXdFlt2Vh1MfavYoPzpiCNHrjx+I3KufCYjcu2Y21DVUW2LgcCkHZKeFAIbs1ihIf7HReb+ZorxkQOMDx1gfOAA430HGO85wHjXAcY7DjDedoDxlgOMNx1gvOEA43UHGK85wHjVAcYrDjBedoDxkgOMFx1gvOAA43kHGM85wHjWAcYzDjCedoDxlAOMJx1gPOEA43EHGI85wHjUAcYjFhgwZCMky4pwQV8zqrLp+1Z15DVViZS6UkqlZKTUk1JfSgMpDaU0ktJYShMpTaU0k9JcSgvvOrylXm3S9/bqeBdq8FwJca4uca6UOJchztUjztUnzjUgzrUkLnBN7z2Gv1BLiI8NVtFaGVx8wzJR+cwWCRKVdOSys7Wlna0Z6t7gAjbR2qBMbSzL1Iah7tsY2NnW0s62DHVvcGGfaGtQpqxlmbKR614k6sRkJwym9fyeAb+8b8Av7SzruR2Dj7czqOf2lna2Z/BxgwWZRHuDMnWwLFMHhrrvYGBnR0s7OzLUvcFCVaKjQZk6WZapEwO/lMRkJwym9fyWAb+8bcAv21jW8zYMPr6NQT13trSzM4OPGywwJjoblKmLZZm6MNR9FwM7u1ra2ZWh7g0WXhNdDcq0rWWZtmXgl7ox2QmDaT2/ZsAvrxvwSzfLeu7G4OPdDOq5u6Wd3Rl83GDBPNHdoEw9LMvUg6HuexjYuZ2lndsx1L3BjYTEdgZl6mlZpp4M/FIak50wmNbzSwb88rIBv/SyrOdeDD7ey6Cet7e0c3sGHze4AZTY3qBMvS3L1Juh7nsb2NnH0s4+DHVvcGMs0cegTDtYlmkHBn7JxGQnDFG+XpUjqXjegF/6WtZzXwYf72tQzzta2rkjg48b3NBM7GhQpp0sy7QTQ93vZGBnP0s7+zHUvcGN3kQ/gzLtbFmmnRn4pV5MdsIQ5S13OZKKpw34pb9lPfdn8PH+BvW8i6WduzD4uMEN+sQuBmUaYFmmAQx1P8DAzoGWdg5kqHuDjQuJgQZl2tWyTLsy8Ev9mOyEwbSeHzPgl8cN+GWQZT0PYvDxQQb1PNjSzsEMPm6w4SQx2KBMZZZlKmOo+zIDO4dY2jmEoe4NNuIkhhiUaahlmYYy8EuDmOzENpvY1NARTiNHOI0d4TRxhNPUEU4zRzjNHeG0MMBRDxipp8ThQ0b1IuLXsSinKUaJA4y6DjBKHWBkHGDUc4BR3wFGA8s+Ghaj3DKfLV5NvljytouQN6t9EnLtMOl3w6WMkDJSyigpo6WMkTJWyjgp46VMkLKblN2lTJQyScoetUTlCdswz4nhueHEuRHEuZHEuVHEudHEuTHEubHEuUnEuT28c5xvkBoXoTOHxVE2QVv3rLXluBduFBUR9W1R40LOor+Wafc0mHHv5Whm4gpnvCOcCY5wdnOEs7sjnImOcML2l3kVqv8TTF+vYDDjTQyzLLupTQYz5MRwRzYZzKgTIxzZZDADT4x0ZJPBjD0xypFNBjP8xGhHNhlcESTGOLLJ4AoiMZbJpiAM9WeSgU17hJ1j/P57ogqQCF9Pe4e0qRwbaIizT0icw9MfzYyCs29InDtmXr02Cs5+IXEGzPlufhSc/UPiXLTbD/2j4BwQEmdi6aSVUXAODIlzVtFhJ0bBOSgkTtvVr14RBefgkDgHvPNkc6W7roeh5irqWOId63rHUu+Y8Y71vGN979jAO+7tHU8oDHecVKviAk8d9/GO+3rH/bzj/t7xAO94oHc8yDuq8h4iZbKUKVKmSpkmZbqUGVIOrbXl4jEtKq6rguo3R0gc4uDiUWwx2TJvYmuZEkDRTGn3YVJmSTkcX4TO9C5C4bnDiHOziHOH16p6AVtkZHDlSs3l4DMNBqLDQqcViVkGF9GHGzgBp/NN/i91viOk3bOlHCllDna+Iwinmk2cO5I4N4fB+SYbON8RBs4328D5jjRwvjl5cr4p/6XON1faPU/KUVLmY+ebSzjVPOLcUcS5+QzON8XA+eYaON88A+c7ysD55ufJ+ab+lzrfAmn3QimLpByNnW8B4VQLiXOLiHNHMzjfVAPnW2DgfAsNnG+RgfMdnSfnm/Zf6nzHSLsXS1kiZSl2vmMIp1pMnFtCnFvK4HzTDJzvGAPnW2zgfEsMnG9pnpxv+n+p8y2Tdi+XcqyUFdj5lhFOtZw4dyxxbgWD8003cL5lBs633MD5jjVwvhV5cr4Z/6XOt1LaXS7lOCmrsPOtJJyqnDh3HHFuFYPzzTBwvpUGzldu4HzHGTjfqjw536H/pc63Wtq9RspaKeuw860mnGoNcW4tcW4dg/MdauB8qw2cb42B8601cL51Bk6g6kh/oesCb53xQu94kXe82Dte4h0v9Y6XecfLveMV3vFK73iVd7zaO17jHa/1jtd5x+u94w3e8UbveJN3vNk73uIdb/WOt3nH273jHd7xTu94l3e82zv+wzve4x3v9Y73ecf7veMD3vFB7/iQd3zYOz7iHR/1jo95x8e94xPe8Unv+JR3fNo7PuMdn/WOz3nH573jC97xRe/4knd82Tu+4h1f9Y6vecfXveMb3vFN7/iWd3zbO77jHd/1ju95x9HJLcfdvONe3vEA7zjFO870jkd6xwXecYl3XOkd13rHE7zjKd7xz97xHO94gXe8zDte4x1v8o53eMd7vePD3vFJ7/i8d3zVO77tHT/0jp97x2+940/e8TfvWFi05Zj2jhnv2Ng7tvSO7bxjZ+/Ywzv28Y47e8dB3nG4dxzrHSd6x32840HecZp3nOUd53rHRd5xmXc8zjuu944necfTvOOZ3vFc73iRd7zCO17nHW/xjnd5x/u94+He/YFZ3vEw7zjTO87xjkd6x9ne8QjvON87HuUd53nHud7xaO+4yDsu9I4LvONS77jEOy72jsd4xxXe8VjvuNw7LvOOq7zjcd6x3Duu9I7rvONa77jGO672jh/LfrBeDT4gJLxjVoQKifUGY4Ua/BT3FgYozIpwuAlgq42Oka89uSAob+27y1s2/+eLI3o0m3vEL2e0PHDSwuK6p12w6z6pCV9MKDrlx5dJpaY3/GHaHCGxTfi0kWxKiPA2dRZubCoQ4W3qIuxsMnX8rsKsnXUwffxpWwOckwrdlL0bSNvpoqf2ebjfY++fsNNLY9Z9PlC8+I93+n/UpHf/gaelh382J71tFJzuwk15eggeP86Fs50I35anGLalqS0/Sv3/Kgxvj0pbmDTH6SnCY/xY6KYdehnYdKqjPrW9cIPTW7jB6SPc4Owg3OD0FW5wdhRucHYSbnD6CTc4Ows3OP2FG5xdhBucAcINzkDhBmdX4QZnkHCDM1i4wSkTbnCGCDc4Q4UbnGHCDc5w4QZnhHCDM1K4wRkl3OCMFm5wxgg3OGOFG5xxwg3OeOEGZ4Jwg7ObsFt/MMXZXbgpz0ThBmeScIOzh3CDs6dwg7OXcIOzt3CDs49wg7OvcIOzn3CDs79wg3OAcINzoHCDc5Bwg3OwcINziHCDM1m4wZki3OBMFW5wpgk3ONOFG5wZwg3OocINzkzhBucw4QZnlnCDc7hwg3OEcIMzW7jBOVK4wZkj3ODMFW5w5gk3OEcJNzjzhRucBcINzkLhBmeRcINztHCDc4xwg7NYuMFZItzgLBVucJYJNzjLhRucY4UbnBXCDc5K4QanXLjBOU64wVkl3OCsFm5w1gg3OGuFG5x1wg3OeuEGZ4Nwg7NRuME5XrjBOUG4wTlRuME5SbjB2STc4GwWbnBOFm5wThFucE4VbnBOE25wThducP4k3OCcIdzg/Fm4wfmLcINzpnCD81fhBucs4QbnbOEG5xzhBudvwg3OucINznnCDc7fhRuc84UbnAuEG5wLhRuci4QbnIuFG5xLhBucS4UbnMuEG5zLhRucK4QbnCuFG5yrhBucq4UbnGuEG5xrhRuc64QbnOuFG5wbhBucG4UbnJuEG5ybhRucW4QbnFuFG5zbhBuc24UbnDuEG5w7hRucu4QbnLuFG5x/CDc49wg3OPcKNzj3CTc49ws3OA8INzgPCjc4Dwk3OA8LNziPCDc4jwo3OI8JNziPCzc4Twg3OE8KNzhPCTc4Tws3OM8INzjPCjc4zwk3OM8LNzgvCDc4Lwo3OC8JNzgvCzc4rwg3OK8KNzivCTc4rws3OG8INzhvCjc4bwk3OG8LNzjvCDc47wo3OO8JNzjvCzc4Hwg3OB8KNzgfCTc4Hws3OJ8INzifCjc4nwk3OJ8LNzhfCDc4Xwo3OF8JNzhfCzc43wg3ON8KNzj/J9zgfCfc4Hwv3OD8INzg/Cjc4Pwk3OD8U7jB+Vm4wflFuMH5l3CD86twg/ObcIPzb+EG53fhBkdlCJkWZTTDSTjCKXCEU+gIJ+kIp8gRTsoRTi1HOMWOcNKOcGo7wqnjCKfEEU5dRziljnAyjnDqOcKp7wingSOcho5wGjnCaewIp4kjnKaOcJo5wmnuCKeFI5yWjnBaOcJp7QinjSOcto5wso5w2jnCae8Ip4MjnI6OcDo5wtnGEU5nRzhdHOF0dYSzrSOcbo5wujvC6eEIZztHOD0d4fRyhLO9I5zejnD6OMLZwRFOX0c4OzrC2ckRTj9HODs7wunvCGcXRzgDHOEMdISzqyOcQY5wBjvCKXOEM8QRzlBHOMMc4Qx3hDPCEc5IRzijHOGMdoQzxhHOWEc44xzhjHeEM8ERzm6OcHZ3hDPREc4kRzh7OMLZ0xHOXo5w9naEs48jnH0d4eznCGd/RzgHOMI50BHOQY5wDnaEc4gjnMmOcKY4wpnqCGeaI5zpjnBmOMI51BHOTEc4hznCmeUI53BHOEc4wpntCOdIRzhzHOHMdYQzzxHOUY5w5jvCWeAIZ6EjnEWOcI52hHOMI5zFjnCWOMJZ6ghnmSOc5Y5wjnWEs8IRzkpHOOWOcI5zhLPKEc5qRzhrHOGsdYSzzhHOekc4GxzhbHSEc7wjnBMc4ZzoCOckRzibHOFsdoRzsiOcUxzhnOoI5zRHOKc7wvmTI5wzHOH82RHOXxzhnOkI56+OcM5yhHO2I5xzHOH8zRHOuY5wznOE83dHOOc7wrnAEc6FjnAucoRzsSOcSxzhXOoI5zJHOJc7wrnCEc6VjnCucoRztSOcaxzhXOsI5zpHONc7wrnBEc6NjnBucoRzsyOcWxzh3OoI5zZHOLc7wrnDEc6djnDucoRztyOcfzjCuccRzr2OcO5zhHO/I5wHHOE86AjnIUc4DzvCecQRzqOOcB5zhPO4I5wnHOE86QjnKUc4TzvCecYRzrOOcJ5zhPO8I5wXHOG86AjnJUc4LzvCecURzquOcF5zhPO6I5w3HOG86QjnLUc4bzvCeccRzruOcN5zhPO+I5wPHOF86AjnI0c4HzvC+cQRzqeOcD5zhPO5I5wvHOF86QjnK0c4XzvC+cYRzreOcP7PEc53jnC+d4TzgyOcHx3h/OQI55+OcH52hPOLI5x/OcL51RHOb45w/u0I53dHOKLADU7CEU6BI5xCRzhJRzhFjnBSjnBqOcIpdoSTdoRT2xFOHUc4JY5w6jrCKXWEk3GEU88RTn1HOA0c4TR0hNPIEU5jRzhNHOE0dYTTzBFOc0c4LRzhtHSE08oRTmtHOG0c4bR1hJN1hNPOEU57RzgdHOF0dITTyRHONo5wOjvC6eIIp6sjnG0d4XRzhNPdEU4PRzjbOcLp6QinlyOc7R3h9HaE08cRzg6OcPo6wtnREc5OjnD6OcLZ2RFOf0c4uzjCGeAIZ6AjnF0d4QxyhDPYEU6ZI5whjnCGOsIZ5ghnuCOcEY5wRjrCGeUIZ7QjnDGOcMY6whnnCGe8I5wJjnB2c4SzuyOciY5wJjnC2cMRzp6OcPZyhLO3I5x9HOHs6whnP0c4+zvCOcARzoGOcA5yhHOwI5xDHOFMdoQzxRHOVEc40xzhTHeEM8MRzqGOcGY6wjnMEc4sRziHO8I5whHObEc4RzrCmeMIZ64jnHmOcI5yhDPfEc4CRzgLHeEscoRztCOcYxzhLHaEs8QRzlJHOMsc4Sx3hHOsI5wVjnBWOsIpd4RznCOcVY5wVjvCWeMIZ60jnHWOcNY7wtngCGejI5zjHeGc4AjnREc4JznC2eQIZ7MjnJMd4ZziCOdURzinOcI53RHOnxzhnOEI58+OcP7iCOdMRzh/dYRzliOcsx3hnOMI52+OcM51hHOeI5y/O8I53xHOBY5wLnSEc5EjnIsd4VziCOdSRziXOcK53BHOFY5wrnSEc5UjnKsd4VzjCOdaRzjXOcK53hHODY5wbnSEc5MjnJsd4dziCOdWRzi3OcK53RHOHY5w7nSEc5cjnLsd4fzDEc49jnDudYRznyOc+x3hPOAI50FHOA85wnnYEc4jjnAedYTzmCOcxx3hPOEI50lHOE85wnnaEc4zjnCedYTznCOc5x3hvOAI50VHOC85wnnZEc4rjnBedYTzmiOc1x3hvOEI501HOG85wnnbEc47jnDedYTzniOc9x3hfOAI50NHOB85wvnYEc4njnA+dYTzmSOczx3hfOEI50tHOF85wvnaEc43jnC+dYTzf45wvnOE870jnB8c4fzoCOcnRzj/dITzsyOcXxzh/MsRzq+OcH5zhPNvRzi/O8IRhW5wEo5wChzhFDrCSTrCKXKEk3KEU8sRTrEjnLQjnNqOcOo4wilxhFPXEU6pI5yMI5x6jnDqO8Jp4AinoSOcRo5wGjvCaeIIp6kjnGaOcJo7wmnhCKelI5xWjnBaO8Jp4winrSOcrCOcdo5w2jvC6eAIp6MjnE6OcLZxhNPZEU4XRzhdHeFs6winmyOc7o5wejjC2c4RTk9HOL0c4WzvCKe3I5w+jnB2cITT1xHOjo5wdnKE088Rzs6OcPo7wtnFEc4ARzgDHeHs6ghnkCOcwY5wyhzhDHGEM9QRzjBHOMMd4YxwhDPSEc4oRzijHeGMcYQz1hHOOEc44x3hTHCEs5sjnN0d4Ux0hDPJEc4ejnD2dISzlyOcvR3h7OMIZ19HOPs5wtnfEc4BjnAOdIRzkCOcgx3hHOIIZ7IjnCmOcKY6wpnmCGe6I5wZjnAOdYQz0xKnAOH0mj5h/rvbn9f11t2H33zccfse1KXPJ6OW3DbvlKHv/nDaNzK+owhv02FMNuXCmVUY3v5aSTf1lBTh7T/cUdsVifA2HeHIppQIb9NsRzbVEuFtOtKRTcUivE1zHNmUFuFtmuvIptoivE3zHNlUR4S36ShHNpWI8DbNd2RTXRHepgWObCoV4W1a6MimjAhv0yJHNtUT4W062pFN9UV4m45xZFMDEd6mxY5saijC27TEkU2NRHibljqyqbEIb9MyRzY1EeFtWu7IpqYivE3HOrKpmQhv0wpHNjUX4W1a6cimFiK8TeWObGopwtt0nCObWonwNq1yZFNrEd6m1Y5saiPC27TGkU1tRXib1jqyKSvC27TOkU3tRHib1juyqb0Ib9MGRzZ1EOFt2mhgU6HYsg6o1kRV2EZKZyldpHSVsq2UblK6S+khZTspPZW9UraX0ltKHyk7SOkrZUcpO0npJ2VnKf2l7CJlgJSBUnaVMkjKYCllUoZIGSplmJThUkZIGSlllJTRUsZIGStlnJTxUiZI2U3K7lImSpkkZQ8pe0rZS8reUvaRsq+U/aTsL+UAKQdKOUjKwVIOkTJZyhQpU6VMU+WXMkPKoVJmSjlMyiwph0s5QspsKUdKmSNlrpR5Uo6SMl/KAikLpSyScrSUY6QslrJEylIpy6Qsl3KslBVSVkopl3KclFVSVktZI2WtlHVS1kvZIGWjlOOlnCDlRCknSdkkZbOUk6WcIuVUKadJOV3Kn6ScIeXPUv4i5Uwpf5VylpSzpZwj5W9SzpVynpS/SzlfygVSLpRykZSLpVwi5VIpl0m5XMoVUq6UcpWUq6VcI+VaKddJuV7KDVJulHKTlJul3CLlVim3Sbldyh1S7pRyl5S7pfxDyj1S7pVyn5T7pTwg5UEpD0l5WMojUh6V8piUx6U8IeVJKU9JeVrKM1KelfKclOelvCDlRSkvSXlZyitSXpXympTXpbwh5U0pb0l5W8o7Ut6V8p6U96V8IOVDKR9J+VjKJ1I+lfKZlM+lfCHlSylfSflaiuqT30r5PynfSfleyg9SfpTyk5R/SvlZyi9S/iXlVym/Sfm3lN+lqE6XkFIgpVBKUkqRlJSUWlKKpaSl1JZSR0qJlLpSSqVkpNSTUl9KAykNpTSS0lhKEylNpTST0lxKCyktpbSS0lpKGyltpWSltJPSXkoHKR2ldJKyjZTOUrpI6SplWyndpHSX0kPKdlJ6SuklZXspvaX0kbKDlL5SdpSyk5R+UnaW0l/KLlIGSBkoZVcpg6QMllImZYiUoVKGSRkuZYSUkVJGSRktZYyUsVLGSRkvZYKU3aTsLmWilElS9pCyp5S9pOwtZR8p+0rZT8r+Ug6QcqCUg6QcLOUQKZOlTJEyVco0KdOlzJByqJSZUg6TMkvK4VKOkDJbypFS5kiZK2WelKOkzJeyQMpCKYukHC3lGCmLpSyRslTKMinLpRwrZYWUlVLKpRwnZZWU1VLWSFkrZZ2U9VI2SNko5XgpJ0g5UcpJUjZJ2SzlZCmnSDlVymlSTpfyJylnSPmzlL9IOVPKX6WcJeVsKedI+ZuUc6WcJ+XvUs6XcoGUC6VcJOViKZdIuVTKZVIul3KFlCulXCXlainXSLlWynVSrpdyg5Qbpdwk5WYpt0i5VcptUm6XcoeUO6XcJeVuKf+Qco+Ue6XcJ+V+KQ9IeVDKQ1IelvKIlEelPCblcSlPSHlSylNSnpbyjJRnpTwn5XkpL0h5UcpLUl6W8oqUV6W8JuV1KW9IeVPKW1LelvKOlHelvCflfSkfSPlQykdSPpbyiZRPpXwm5XMpX0j5UspXUr6W8o2Ub6X8n5TvpHwv5QcpP0r5Sco/pfws5Rcp/5Lyq5TfpPxbyu9S1AQgIaVASqGUpJQiKSkptaQUS0lLqS2ljpQSKXWllErJSKknpb6UBlIaSmkkpbGUJlKaSmkmpbmUFlJaSmklpbWUNlLaqvfASGknpb2UDlI6SukkZRspnaV0kdJVyrZSuknpLqWHlO2k9JTSS8r2UnpL6SNlByl9pewoZScp/aTsLKW/lF2kDJAyUMquUgZJGSylTMoQKUOlDJMyXMoIKSOljJIyWsoYKWOljJMyXsoEKbtJ2V3KRCmTpOwhZU8pe0nZW8o+UvaVsp+U/aUcIOVAKQdJOVjKIVImS5kiZaqUaVKmS5kh5VApM6UcJmWWlMOlHCFltpQjpcyRMlfKPClHSZkvZYGUhVIWSTlaivpOvfqGvPq+u/r2uvouuvpmufqeuPrWt/oOt/pGtvp+tfq2tPrus/oms/pesvqWsfrOsPoGsPo+r/p2rvqurfrmrPoerPpWq/qOqvrGqfr+qPo2qPpup/qmpvrepfoWpfpOpPqGo/q+ovr2ofouofpmoPqen/rWnvoOnvpGnfp+nPq2m/rumvommvpemfqWmPrOl/oGl/o+lvp2lfqulPrmk/oek/pWkvqOkfrGkPr+j/o2j/pujvqmjfrejPoWjPpOi/qGivq+ifr2iPouiPpmh/qehvrWhfoOhfpGhPp+g/q2gvrugfomgfpegHqXv3rPvnoHvno/vXp3vHqvu3rnunofunpXuXqPuHrHt3r/tno3tnpvtXqntHrfs3oXs3pPsnqHsXq/sHr3r3ovr3pnrnqfrXrXrHoPrHpHq3p/qnq3qXrvqHonqHpfp3qXpnrPpXoHpXo/pHp3o3qvonrnoXofoXpXoHqPn3rHnnr/nXo3nXpvnHqnm3rfmnoXmnpPmXqHmHq/l3r3lnovlnpnlXqflHrXk3oPk5p4q/cXqXcLqff+qHfyqPflqHfZqPfMqHfAqPezqHenqPeaqHeOqPeBqHd1qPdoqHdcqPdPqHdDqPc2qHcqqPcdqHcRqPcEqGf41fP16tl39Vy6emZcPc+tnrX+z3PQUtTzw+rZXvXcrXomVj2vqp4lVc95qmcw1fOR6tlF9VyheuZPPY+nnpVTz7GpZ8zU81/q2Sz13JR6pkk9b6SeBVLP6ahnaNTzLerZE/VciHpmQz1PoZ51UM8hqGcE1P59tbde7XtXe9LVfnG1l1vts1Z7oNX+ZLV3WO3rVXtu1X5YtVdV7SNVezzV/ku1N1LtW1R7CtV+P7UXT+2TU3vY1P4ytfdL7ctSe6bUfia110jtA1J7dNT+GbW3Re07Udc/ar+G2kuh9jmofQXqnr+6b67uU6v7wuo+rLrvqe4zqvt66j6aum+l7hOp+zLqPoi676DW+dW6ulrHVuvGap1WrYuqdUi17qfW2dS6llpHUus2ap1ErUuodQB13a2uc9V1pbqOU66irsl08IaO/1y3qfv/6n67ur+t7ier+7fqfqm6P6nuB6r7b+p+l7q/pO7nqPsn6n6Fuj+g1uPV+rdab1bru2o9Va1fqvVCtT6n1sPU+pNa71HrK3o9o53Ycn3cQWzZp9FJVA07gd+NvePJMx96/PvPaz0D0zUNiGvmHR965cBWHRo3fwXGHeYdT99tfMeWP49dDeOODdCpfF6FtqnhL03qdv/rMO6xpH++J7y4cZOvyZ7ZMlkE454KyPdMQL7nAvK9GBD3coDOVwPyvR6Q782AfO8ExL0XoPODgHwfBeT7JCDf5wFxXwbo/Dog37cB+b4LyPdjQNw/A3T+EpDv14B8/w7Ilyjyjyss8tdZFJCvVkC+dEC+koC40gCd9QLyNQjI1yggX9OAuOYBOlsG5GsdkK9tQL69vbj9655VclGjL/4C4w4MiJsaEHdYQNycgLiFAXFLA+LKA+JWeXHJNzb2GDZht436fG3v2MU7TlmwYMb8hYdMm3vkvCkLZ02dPeOQufOnTJOHo2fMXzBr7pxDjpk/Zd68GfObeOmLvWOBd1Tjn6LxrAgVEsUgn3n+8mHFWKFRfvGf/Alhi7+l/HrMt8mf0oaA/NAWrVfNH+qA33URvqX9w6La3yDAZt02Q0H6rAgVCpVfqnLW806osnf0fi9aOGv2rIVLyv7jqkO3eupu/3HUvbf4KVaYQP8P9TlfG9idBGnC18niYVqnN535zxywkEiZREedRs/J0gBfH8PsKX3twR9eunFM7yPro/wq6LapDXCmz1owba7s34fMmXHMIUfOWLBgyswZC2p7tZ3nDn5qxA5+akQHTxSDPBb5t3bwU0B+bIsKJaJyR4J5annx+vcB3u+Inf/U6tr5dd5hVN7vF7x88eMn3fDApQsvueiM+q/VPbNO99or1679uuVXrf76zdoLdN7hwKaECI2d0vlHUNi73lK4/2HX/TK3zsjV1xzz2qsTFtVtNeW+thsu2v/BU9p+esg6nXcklfeTE89ambnm1POy3Z78ITVy8xeHfDe6qN9rTy5vfv+qXz/95jSddxSV97n9f33zxsxpSxefdNuyfl0aTrnytJe//ezhx6/OfPfuVUe93FfnHQ3KbNNHx1DYPnn0D513LIgw2Pi+Nf84u/xbbR9vl79A558A8hvUXT2dfzdwMqt/HHfhpW+WnfRkr/d/rX38+ClrFvc54fl9vlza7JJOHx5+Vasr6+u8u1N531s49JSFTY/c8cvip0/a/u8tW7/9/SU3fvzjkhn9vvj4k5vbfafzTqTy5gg67yTvaFjmrf1zDwK7We/OO8/7yzON3ujS/vXB91y53enNv+844I1bR/39m18e/SfA3tMOe2t77WWXP6nz7w3yG/DDVn/bxy7/1rrb1y7/1vLvB/IblH+wzr+/Xf5Snf8AcDIrQoUinfdAK+zEVt85iMZOrG6/4M/pkxLj71vV48aS2vd9WnbukKFPPr7m+LaZK8/VeQ8m8m47IP3NRcevWCveueTzTT9ue+fgHvXblNXf7oWzXmo5Z/4Bzb/ReQ/ZaolRnbXS+SeD/Mj2wKDzTwH5DXxma/6pIL/pRY4K00B+Icz7zHRwMitCha15Z5jn3dpXDtXKhFG5t/rrTLv8W+cSh9nlr6Xzz7LLX6zzH26Xv47Of4Rd/hKdf7Zd/ro6/5F2+dvq/HNAfoN+k9X559rhb80/zw6/h85/lF3+Xjr/fLv82+v8C+zyl+n8C+3yD9f5F9nlH6HzH22Xf4LOf4xd/kN0/sV2+afo/Evs8k/V+Zfa5Z+m8y+zyz9d519ul3+Gzn+sXf5Ddf4Vdvln6vwr7fIfpvOX2+WfpfMfZ5f/CJ1/lV3+2Tr/arv8R+r8a+zyz9H519rln6vzr7PLP0/nX2+Xf77Ov8Eu/wKdf6Nd/oU6//F2+Rfp/CfY5T9a5z/RLv9inf8ku/xLdP5NdvmX6fyb7fIfq/OfDE5mRZiQEHoB/H3vTgu1Vmdgy+56fbGwEkpl3XYL3v/Zt1pJnxCV10sF0p9GthjiJRJIn8bD5dN1pcteRNiSIeJwHRcROEUEToaIW86oaz2jrmMZda1l1MVZxtWMusoZda1h1LWCUdccRl2cdc/ZhzZUU12LGXVx+gRn3XP61zJGXeWMujh9YimjrrWMuk5g1FVdx0c959RzBzjXSPgcNQ4+p3HSSJftvIcqV5LAC0pfGJA+FVK/2pSR8X57mzKGzZi6aOa4uTMFCkn0/3AfE1uhdFMDTMN6E0jw+VboXCGRFgZVPL3PySveiBkLpx2255SZM2dMl4VcgHNgTcN8zuMJKUyjJ+MpZGlWhAoFYZwS6k8jW2ydknIaqrOpWm3g/fZqddzcKdOHTpm3YNHsGQVQtahsOa4VqBWeo9o0ASwTAemGof9HE/kEoVvF65YrRuezIlRIa69IE5E6rjbSDePqgDjYmjgUEvZrm9Ul56dNKvTidNge2B61UVwtEFcHYON2TRE42v4CIn0tpCtF5NN5cuEV+uSDv4MuncP0Nl0OFTIEhsaOkRUaVXdW0OWrZYfXMIHyQzyoU9uj67qYiNO6dD9M+eiC+wRh+oe8YwalU2Eiwigm7IXndP2oOrsX2Q7rFvtJlHqE+rRd8BzUnxaR/DIR1G6wfNhPLDm2QZh6h/ZgTsZ1C3kv5aNL502i9M97x4yoyvvYT9KEvfAc9JOnkO2wbrGfWNZjWVg/0frTIpJfJoLaDZYP+0naDm9wmHqH9lDjM6xbOAamfHTpvEmU/h3vmEHpVMB+UpuwF56DfqIfsCr2sTcrQoVjqHkL9jM8b8mKUKFVWD/T+tMiUrsnguqR6m/U3EvnzRBx+FKrDoFTh8DJEHHrGXWtZdS1lFHXckZdG6qprnJGXWsYda1g1DWHUdcqRl2cfl8d6ytoHDLVpUI5o66NjLpWMuri9FXOMi5m1FVd+/YmRl1HMera7B3xPE/rV6FYVO17ptcmUJ+2E56D+tPIFtu5DlUv1JxRl6/EDq9+AuWHeFCntkfXdV0iTusq9f5P+ejSeZMofVevQjMonQp4Tl2XsBeeg3Pqjp7eUsJevL5g6o8wP64jmA/7Y5T2gvq0nfAc1J8Wkfw/EeQfVL3o8tW1w6sXpn2hPbquS4k4rUvfDkn56NJ5kyj9zsgfS4FN2B9LCXvhOeiPOyQq2w7rFvuJZT0OD+snWn9aRPLLRFC7wfJhPym1wxsWpt6hPbquM0Sc1qWfa0756NJ5kyj9COQnGWAT9pMMYS88B/2kDPkJrFvsJ3b1mPg2rJ9o/WkRyS8TQe1G8bcuX8YKL/FNmHqH9ui6rkfEaV36Ge6Ujy6dN4nS74H8pB6waQrCqEfYC89BP5mA/ATWLfYTu3r8zysnK+nTdsFzUH9aROrfiaB2o3hVl6+eHV5ZmHqH9ui6rk/EaV36jmrKR5fOm0TpJyM/qQ9swnxSn7AXnoN+coCnt5SwF6+fh+WpDJFfp6N8TklWhAp7Um1qkP8o3EZaB7StAThv4C/bh+0PWn9aVPUXm/7QAOH5tbcue0PClgwRh9uoIYHTkMDJEHErGXUtZ9Q1h1HXUkZdqxh1LWbUVc6oazWjLk6fWMao6xhGXRuYdFH8GcWu9Yy6NjLq4uzbmxh1cXJhOaOuNYy6ONtxM6MuTp8oZ9TF1bdV4Cwjp0+sZdRVXXmC064/wpypZkzLX91z9sdjGXVxlvHEamoX53yCs4x6rNXXivDaMuEdi0XVvmdw3bprAunTdsJzUH8a2WKIlwiqF1g+fJ3ciLAlQ8Th6+RGBE4jAidDxK1k1LWcUdccRl2cZSxn1LWGUddGRl2cdb+JUVdNO5rp2syoi9MnljHqWsuoi5O/NjDq4qx7Tl/lrPvqyl+cvsrpX6sZdXG2I6d/cfYhTv9az6hrMaMuzjJW17kcZxk55xPVtR2r61zuREZd1XWeU86oq2Y+8b/Rhzh5gtMuLv9Sv+sx6VLheEZdnHXPOQfQYy3e96X1qxBxDaxdAunTdsJzUH9aVG1LrjUwag+ZLl8jO7xsmHaA9ui6bkzEaV36HR8pH106bxKl39srVAalU2EKwmhM2AvPwb1TE71/Sgl7o96LgPlxHcF82B8t26swrD9q/WkRyf8TQf5B1QvlHzpvhojD9R+2XYN0lQp+bq1HlKeEyIfbGdpnUO+hnxWA3zaK4FeJoPqn6kWXr4kdXj3MFRAP6tT26LpuSsRpXfobmikfXTpvEqWfj3inKbBpCsJoStgLz0HeORLxDtUnbP2e4tP/NZwSIh/uX5b+VxS2f2n9aRGpPyeC/J2qF8rfdd4MEYfrP6yf/jfq0v7XJAAniFcoHJi/SQ1OJJwSIh/ut7Bdw/ejxDth+63WnxaReCIR5LdUvejyNbPCS7yNxzKIB3Vqe3RdNyfitK4W3v8pH106bxKl/zsaF5sDm6YgjOaEvfAcHBfPLqhsO6xb7Cd29SgyYf1E60+LKH5Z4SdUu1H8psvX3A6vNEy9Q3t0Xbcg4rSult7/KR9dOm8Spb8a+UkLYBN+5qUFYS88B/3kMu+fYh97syJUeJeqa4P85xWLqnVnkL+rzt/SLv+tOn8ru/w36/yt7fIfp/O3scu/r87f1i7/QcUovWH+Ljp/O7v8fXT+9nb5P9H5O9jlH6Xzd7TLf5vO38ku/yk6/zZ2+Yfq/J3t8v+g83exy3+azt/VLv83On83kN9kjU3n72GXv1Db2x2eJGzS+jXXbwvSJ3yOWheO01hppMt2XKRsh/bheWV3gAfL6Keru6GuYiLOpk26Cf9yQf0lAbZgO1XA71qxLbMKyxh1Hc2oaz2TLvW7GZMuFeYz2tWcUVcLRl0tGXUVMOlSYSGjXa0YdbWuprraMOpqy6gry6irHaOu9oy6OjDpUuEkRrs6MulSYR2jXZ0YdW3DqItr7FC/OzPq6sKoqyuTLhWmVFNd+hPkEdcLRkdcL+gfcb1gfMT1gj0irheMjLheMCzi9f64EiJ9wjtS1/IG83b9up2t+oSgr3+0/jSyxRBv6/VPO4SHy4fv+7QnbMkQcdjH2xM47QmcDBG3hlHXCYy6FjPqWsWoq5xR1zJGXXMYda1m1LWcUdeGaqqL01dXMOriqntqXKwuvlrOqGsjo67q2h+PZ9TF2Yeqa92vZNTFyROcYy0nR3PWPWd9VVf/WsWoi7MdOev+j8ATm5h0qd8tmHSpsJDRrpbVUJcKCxjtasWkSwWuulfhmGpol/rdhlFXAZMuFbh8QoWjmXSp362ZdKnA2Y6cdnH5anXmwgyTLhU4+YuzHTntqo71pQKnr7Zl0qUC59jBxV8qbGbUxTn/OpZRVzmjLs45+SpGXZxrj3p+r9ex24C4hHeMuIZfmkD6tJ3wHNSfRrYY4gWu4cPy6Xqh9gsa4NUN0w7QHl3XHYg4rUvfE0756NJ5kyj9P7yKzaB0KuC9vR0Ie+E5XT9qb+/thZVth3WL/cSyHkN/61LrT4tIfpkIajdYPl0PVLvpvBkirgD8Nqlvqu3WM+pay6hrKaOu5Yy6NlRTXeWMutYw6lrBqGsOo651jLo4+1A5o64TGHUtZtS1kVEXZ9/m9C/OPsTJq3+Eul/NqIuTozUX6ucv4XwmiXBM594wv04X8XmVSRGfV9k74vMqu+l5USdwMuEdqWdJDOZoxyWQPiHoOaHWn0a2GOJtnRN2Rni4fHhO2IWwJUPE4f0/XQicLgROhohbw6jrBEZdixl1rWLUVc6oaxmjrjmMutYx6lrPqKucUVd19dWNjLqWM+ri9C9OzlnLqOuPUPerGXVxlnFDNdXF2bdXMOriqnv1uzmTLhU4fbW6zgE4ddWM2zXj9n/L2FEzbteM2zXj9v9m3VdXXz2eURdnfXFyDmfdr2TUxdmHOMft6srR1XU+wVlGzrkvZzty1v0fgSc2MelKiKp7FKLoas+oi2udXP3uwKRLhQWMdmWYdKmwkFHXMYy6jmbSpX53ZNT1v1736ncLRl0tGXW1YtKlAmd9bcOoi8tXVeDsQ9XV76trGf/XuZDTLhVqxo7//rFDhUVMutRvzj0PXPWlfrdl1NWaURfXWKsC5/jIVV8qVMexQ4XNjLo4r/mOZdRVzqiLcx1gFaMuzv05G8SWoPd6wb1hCe9YLKr2F4WTFaFC9wTSJ7z88BzUn0a2GOIlguoFlk/Xiy57V8KWDBGH+bArgdOVwMkQceWMujYw6lrKqGsto64TGHUtZ9S1vpratYxR1xxGXZsYdR3FqGszoy7O+lrDqIuzP25k1MXp95xcyNmOxzLq4uQcTp9YzaiLs+4XV1O71jHq4vSJckZdnOM2ZztuZNTFyV+c/sXZH6srR3Pq4vSvFYy68Dem4fVNwjsWo3wJYXTt1DGB9Gk74TmoP41sMcRLBNULdQ2ry96NsCVDxOF7wNQ3UroROBkibj2jrrWMupYy6lrOqGtDNdVVzqhrDaOuFYy65jDqWseoazGjLs7+uJFRVzmjLs76WsWoi9O/OPsQJ69y+gQnr1bXvs3ZH8sZdZ3AqIuzP/4R/Gs1oy7OOQB+DwKcL+P3IJjO2WF+na6EyJfwjsXIvoQwmkOfkkD6tJ3wHNSfFlXLbDNnp+qfqheT7w2q35zfz1vDqOsERl2LGXWtYtRVzqiL81uPcxh1cX1HTAWu70aqUM6oq7r66kZGXcsZdXH6FyfnrGXU9Ueo+9WMujjLuKGa6uLs2ysYdXHVvfrN9d1bFTh9tbrOATh1Vddxm7PuOecAnBxdzqiruvpqzbidvzGtZk5upqtmTp4//6qZF+bPv6rjvFAFzvqqrr56PKMuzvri5BzOul/JqIuzD3GOHdWVo6vrmMZZRs65L2c7ctb9H4EnNjHpSoiqe5Si2LWA0a72jLoyjLo47w9x1ldbJl0qHMOo62gmXep3R0ZdXD6hwkJGXVx1z9m3ufsjVx9Svzsw6VKBsz/+EfyrBaOuloy6WjHpUoGzvrZh1MXFhSpwcnR19fvqWsb/9bGW0y4VauYm//1jhwqLmHRxzidU4Kov9ZtrTq5+t2bUxTXWqsA5PnJew1THsUOFzYy6ONcUjmXUVc6oi3OdaRWjLs79hfg9KHBva8I7Fouq/UXhZEWoUJJA+rSd8BzUn0a2GOIlguqF2iety9fDDq9OAuWHeFCntkfX9XZEnNbV0/s/5aNL502i9O+kthwzKJ0K+FvB2xH2wnO6ftS3gl9PVbYd1i32E8t6bB3WT7T+tIjkl4mgdqP6D9VuOm+GiMNrIGHrm2q79Yy61jLqWsqoazmjrg3VVFc5o641jLpWMOqaw6hrHaMuzj5UzqjrBEZdixl1bWTUxdm3Of2L0y7OduS0i5MnOH2Csx1XM+ri5Hv8vB2cG+Hn7YLmjxQOzK/TlRD5Et6xWFSdoxjMl9YmkD5tJzwH9adF1TLbzM+o+qfqRZe9J2FLhojDazc9CZyeBE6GiFvDqOsERl2LGXWtYtRVzqhrGaOuOYy61jHqWs+oq5xRV3X11Y2MupYz6uL0L067ONuR0y5OXuX0Cc52XM2oi7PuN1RTXZw8sYJRF1fdq9/NmXSpwOmr1XU+wamrZg5QMweIk1dr5gA1c4CaOUDNHCCXLs76qq6+ejyjLs76qq48sZJRF2cfqq5jR3Wd+1ZX/+KcR3O2I2fd/xF4YhOTroSouo8hiq72jLq41u/V7w5MulRYwGhXhkmXCgsZdR1TDe3ibkfO+jqaSRe3T3C1o/rdglFXS0ZdrZh0qcBZX9sw6urIpEuF6uqrNf0xf2Wsjv6lQs04VOP3OG4Rky71m3OPCKd/tWXU1ZpRF9e4rQLnWMtVXypUx/6owmZGXZzXoscy6ipn1MW5PrGKURfnfib8fE8BiEt4R70vMAPOK5ysCBWSCaRP2wnPQf1pZIsh3tZ9gRmEh8unf+uyNyNsyaA4FfBzMs0InGYEjitdVHspyYpQYS9cH1oH1A33Hxi0TbOwvqD1p0XVtrHxheYIz69eddlbELZkiDhcxy0InBYEToaIW8Oo67hqatdaJl3qdzGTLu4yzmHUtZpR1wZGXSsYdXHW10ZGXScx6lrHqGs5oy7Oui9n1LWMURdnGTcx6jqKUddm76jHLzj3YRq769qO3ZbzxsCxG5ZP14suXws7vJIw7QDt0XXdkojTuvTacspHl86bROmXeINbBqVTAc8ZWxL2wnO6ftRz2gs9vaWEvW2QXqremxN6M0R+na6YyJfVP75f8PLFj590wwOXLrzkojPqv1b3zDrda69cu/brll+1+us3ay+M2J776Pwt7fI31Plb2eVvoPO3tctfX+dvb5d/mM7fwS5/mc7fEZzMhspaYbvds2SJb3T+niB/Qej8oljn72WXf0edf3u7/Dvp/L1BfoPyv63z9wFns96x40u31/rp8s3J61/5Zu4xP2x72mMjT7r7igGnPtlj1/I93j/jq/E67w5E3hxhF523L5V311sK9z/sul/m1hm5+ppjXnt1wqK6rabc13bDRfs/eErbTw9Zr/PuSOV9bv9f37wxc9rSxSfdtqxfl4ZTrjzt5W8/e/jxqzPfvXvVUS/vqLhpE+KmnXRtiMrjjJJ+3v9FIG4qSKPzJlH6WaUV+U718MKsfRQiW7IiVGgedszU57jWPgoRHi4fvt5NErZkUJwKeP6TJHCSBA6lazOjrjmMutYx6lrOqGsNo65ljLrKGXVxlnEFo67q6l+LGXWtZ9S1kVFXOaMuzvpaxaiL0784+9BaRl2cPsHJq/geCIzD84AicN5gXC4IOw/Q+tOCHpezIlTYOg8oQnh+9VJHSgPv96KFs2bPWrhk3Nwp04dOmbdg0ewZeGaEZ2OwVqBWeC4hKpcexhWiczjdCPT/aCKfIHSreN1yddD5rAgVOmuv6ExE6rguSDeM8/uCNg6FhP3a5lpSPm1SoRenw/bA9uiC4tIgrivAxu1aROBo+wuI9Gmkq4jIp/Pkwvsj90SqnXTeDBGH+2LYmb8NQ+hVN48hhs2YumjmuLkzBQpJ9P9wHxOboXSjfUxLEHoTSPB5fPOyUARTUNBFYBiXEaLqIAN1TUU4NYPM/9Igo/WlQRxVE1qnXuKAZUr75MOdGp8rINIXIV1FRD5MxlR+qAPmw7YVi6plzeofx1146ZtlJz3Z6/1fax8/fsqaxX1OeH6fL5c2u6TTh4df1erKBgrrx2L/esGEpeupKEf5kij9dmDp5xcPT3lkUy/e88ghi2YfMWnGwvmzZhw9Q3LbAoFCLjfaDf2/O5GPCiWialNjYrDsqKGJQetPC9pVsiJU2EoM1Kwcls+OGLBD4FkVNzHsjv63mX3iETsrQgXj2SeeRXRFuPo3DhTBaJtNZ5+wPfDsE3ZUPPuE7ZokcDDhwfSY8CjyxITnh1czRG8JNdeBINRcBxL2x30diPMViao9Fw/3Om0nz5CIPVbUB/mwjTVj9pZQM2aDUDNmE/bHPWZTTIJZIs5LfIiN7xmrkNU/3ls49JSFTY/c8cvip0/a/u8tW7/9/SU3fvzjkhn9vvj4k5vbfR+RNfaOyHZ7qXyDPSfSF2OwH+B+rEcmv/vwOm8SpR+Rrsg3zPut4jp58R6j7D1l9qzpUxbOGD7nqEUzFs2YPmHuwhkLyuZMH370jDkLjS/NRqL/RxH5qFAb6GsM9BeiQqqA17C8Prh1AxhOgytIpx/jRaiO/I13knI6bU8Jyq/jVdBO0RTZnhWhQuihSOtPI1tsh6KmCA+Xz24ogu6MawVqhefyPRRZbtk0HorSKA4ORbA1caCGIm2z6VAE2wMPRfAxEDwUwXZtSuBo+wuI9M2QrqZEPjwU+eEVEvnwVCKBzsO1rMYENl7LmgrY4bsm/vXQWPjXA7QH2xnjI0D7hGWTfD0CZMYm0FMgyt5Iq04D08KwN7BM+KSjWi9J5MNB11gS2bwMDMKz0aAPy1Ub2UN5OzyHJ0kwv05H4dSKiFOLwNGeXAfkm4ziSgLi6gKdtVFcPZAP39+pD+ImorgGQGctFNcwQGcjQqdquxa1K/Qp6QjSUZ6O70K0B/bAvPD/IpRWheneMYnSbgJ+VY78CvZi7FemDz/C/M2EP06tiDi1CBw8WqkwGcU1J8qKHzBUAbcztdlfx7UhyqXjsgE62xE6VfvUr105HW5/FTTjdwLnTS5KwjK+1p9GttgyfieEh8uHHxzpbIe3VwLlh3hQp7aHmnnBulWiZzcpH106bxKlP8vrbxmUTgX84EgXwl54Dj44cka6su2wbhM+R60Xn8P9C5Zdt4/GgXwzFdhzXrpyWSBPFYqqvKYviDFXtQR3BS9AXAXz47aj+olt+TsSZSwVVesmBX77+XenAJxUQHnias8UwoE8C9vzGtSenUEc5mj1Wz+Uk0Tpk6A9r0ftSfVFqp7xuGRaz7UJnLjrGY8vXRhxoC64uKNkW6QL17NuJ13P8IpyW5QPftAVL4IWojwwPdRB6dc6cvng/Wm6bH4+qLGSKP2ndSvyPWTpg11QHBwr4LgI7YD1ANPjF9xpO1M+6f3K9SS46vyxSWWdOj+sK9gWmH91+meAzp+b0HbCcsHxAC9GUv6wLVEuqk67idzYsJ5H+2CnRLAvJlH6l4k6xeMCzE/1o1JkS9cctuP+DfPrdCVEvqg8Qtmcq0++Y9gnO3i/se8+B/rk+6hPBvkItBlfR5jWcy0CJ+56xtcI3RhxoC48LlAfK4T1rNtJ13N3ENcD5YMPkeKPOReiPDA91EHpDzsufJ+my+bngxoridLfAnzwp4Dr4iAf7IbiYJ3icSEXH3ZA6bXdKRE83iZR+n8HjAtUf4Vci8eFrXi1K3TicYH6cHvQuBD0Ae9cddoD6WpP6IL1jMcFqk5h+duj8uv0xaD8QeOCzk+tR0xDcXA9ojOKgw/Z4zkrfIAer8jD9Qi8NpIFcZjv2oE46CN4PaJOQHlKgA683gfX7fALG+qBuBYoDm73aIni4LpdGxTXEMRlUVwjENcOlFWv2+Gbo6298xHv25FbV4LWRRM+RyHCjQdwa1UC4TRlxIG6RiCcZow4+OWeEKcFgRPxhROh77Nq/WlRte/arJNRLxChXjxjdmcEvwoF1grUCs/BmsZxcd5n1fragDiqJvDKOSxTG598sC4Eca6ASN8S6fJ7xUyhDx7VojAf9pgEOu93P1LrSKL0O4LR6lc0WlNYsD7wiKlt99sxgW3Q6fsDG75pQutM+pSrhY/O8bUr6mNgbVqnIHRS5WqDyoVtwK8C0unLiJlAIUqD7aHO6foXRF78P+UzjVH6bI7y4HbS6UcGtFNzwgbYJ0fnsAGnaeNjw1jCBoLdhs6dt8RjN4EC9Swa/B/XPL5v25zQ4xd0bSgv1B5J7TJoQeRrTujBNqmS6znK1kf7Zs9YOMOn7Ji5Ez6YBYIOeD4qRNUx1HJMCz2Gav1pQXteVoQKCcxyGg+XD2/ybEnYkiHiYPtiPwrCUW2q56Rem+6xcO58vyYNO7gmCLNwfpFDF27qduB8nJubEigOLrngaSS8BISkhgMuNyyPIpffDTY+wTrFl1nQPfGlFOwq26I46ErdUBwk/O4oLgvi9CVwqajaXvAyC8apUEicw1NsmL9dAE6DiDgNCBzq1jj2TXgLMA4a0vrTIlJf2EpD1PIEVS/4NibMSy0z4I1o2p+/ABOko9Glexoa6B0jPoWzY9h61frTyBbbeq2D8HD5cL2WELZkUJwK+FsUJQROCYFD6VrLqOt4Rl1rGHUtY9Q1h1EXZxk525GzjEsZdXGWcTWjrnWMulYx6lrOqGsjo65yRl2cPsHZHzn7EKdPcNbXCkZdGxh1cdb9sYy6OOt+PaMuzvri5MLFjLo466u6ciFnfXFyzh9hzsTpE5zjNlfdq9/FTLpUKGfUxVn3Kxl1cfo9Zxk5eYJzDsBZX5sYdW32jnqNCa5DtEM41DV/nQAcmL9OCF3U+kFQGdsR6RnfyqdN7IvSjfYxLUHoTSDB5/uic4VEWqgbPo5e4p2P4QmV3gmkTwh6WSlfT6joslO7hzNEHP50dNCTKRAnQ8StZdS1mlHXOkZdqxh1LWfUtZFRVzmjLk6fWMOoaw6jLk6f4KyvFYy6OOvrWEZdnPV1PKMuTl9dxqjrj9CO6xl1cdYX5zi0mFEXZ31V13GIs744+Z7Tvzg5h7M/cvoE55yJq+7V72ImXSqUM+rirPuVjLo4/Z6zjJw8UV3nX5sYdW32jtSTqe0QjunT0TB/pxC6qOvhoDK2I9IzLpNoE7dH6Ub7mJYg9CaQ4PPbo3O5lknwrpwDvbWciDvsyAdItK5ShKl+w91mME6IcCt1MH9JAE7diDh1Q+JkIuJkCJwSIl/C56hx8Lmglf0MwmnHiAN1TfWOut7gUhj2A+qFRB0DcGD+jj669CMKKhwB0uBt7bq/JgmdKkwG8TD9fK8P1ZJyn/fEka7T9iD/VGDPwjrBtsK80Fb8UpIzwYOix3g6qXrW7U75QUcU147ApXTivmXadnUJG4J0wfaqh9Lrtkj5pNf6cNsdB9oOP5Cq8/v5T0cfG6D/wEcSJvvYsNbCf9bXCbYV+089hK3TLwP+czzyH1jHQf5TD8VB/9F1RHEm3qlrypkNCPsonKAXfmE/Mn3hVz0Cx/Vu9QYoDj4E3hDFwd3qjVAcfNgYj0HdQRx+SBY++IwfkoUP5NdDcT1BHOxLOBSi/2Hdqj7zIOgzOJ1AmLDtgx5Qxg/Ww4d28cOeDZGt+Bz2GZi/oY8u+PgZ5JCpIB6mP8crvOrHl9WpXC74MkBdJxEfnumTQPqEoG+D4YdnGtnhBT48A8uHb4O1I2yheKo1+A3jIE47Aoea75Qz6trAqGspo661jLpOYNS1nFHX+mpq1zJGXXMYdW1i1HUUo67NjLo462sNoy7O/riRURen33NyIWc7Hsuoi7MdOfmLs77WMepazKiLs744+1A5oy7O+lrFqKuGV/PHq1x1r34XM+lSoZxRF2fdr2TUxen3nGXk5IkVjLqq63x1PqMuPV/Vaw/wGh2vPVDXwy0CcGD+Fj751G+45hB0fyDi0++FCaRP2wPPQf35evq9E2FLhoiDdQjjIE7QLU+oK8wLPai1jyDfoMrIeMtTm9gbpdvTx7QCQm8CCT7fG53zu+WpdetuBJee8G0nWI1BVUvddmoUgFMvIk69kDh1I+LUDYnTICJOg5A4zSLiNCNwdFemvpuilk37lNCY8JYKXK7Ft+R0+jlgKXbHksplhLcl6qDywwdB8LsX4fdjMPXCW+8GVBj6xSNaf1pU9Ukb6q2P8HD5IC2Ff4cg7gF4QwJOD9MKIq4QncM34eugfDbvEGwA4qiawO8QhGVq4JMP1oUgzhUQ6esjXfWJfNr2woD8UAfMhz0mgc77vUNQ60ii9KO8xlA3f/A7BCksWB9484223e+9cNgGnX4csAG/m64+yEOVC/fmBuh/6FvTffCnAJbZvYTGFwQ+Lh9kNb/389VHNuj0e4I6wO8bbEjkFz7n8MjQEMU1DEibRmWhvp8HfRG/m7BRjrLj9tfpDwho/7qEDUFf/sQ24DRpHxsOIWyI9m5CzHK4lXBL1CX0+AVdG8pjtffi2sG9A+Po/ykPiPpuwhIfzAJBhxJB26ZCsYg0VoYem7X+tKA9LytChQRmT42Hy4cvi+oTtmSIOL9emgsn4rsJ/QZtiixwfoHyJohzKsAHT2suNXLj/BEuNbAu6hJChf28Iyb2ckDs+JMGjYAdlM5JyAZqFYDa0aTTtyPStyDKqOsSrlK0C4EN6xIPhO0NbaVWV+BKVAtkK7Svk6Gtezq2tRFha8RdO8Y7y/AuMLizDO8CgzvLmqA4uLMM7wKDO8s6oji4s6wdioM7y/Alfk8QVx/F9QJxWfAbBzwWwHpX/XJw2wq9OB387ccpsM+ORjbCyTPkEL1EUQx0Q5ysCBW2+gF1Uax1w+mGgY9NgzbpQE1d9Lk0ssUQb+vUpRDh4fLhqUuSsCWD4lRYANLhuELiXEGArjmMutYx6lrMqGs9o66NjLrKGXVx1tcqRl2c/rWGUddaRl2cPrGcSZfOz2XXBkZdnD6xlFEXp0+sZtTFyaucfZvLV1WorrzK6RNrGHVx9iFOn+CsrxWMujjraxmjrvJqalfNuJ2/+uKcr3JyNOcc4HhGXZz8VV19opxRF2d/5Cwj5zUMZxlPYtRVw6v/G/zF2Y5LGHVx1lc5oy5OX62u88JjGXVx9kfOsZazHavrfHVeNbWLk1dXMuoqZ9RVXTma0y7Ouq+uPME5J/8jXNdyjtsnVFO7OK9rOduRsz9yXsNwrvty6uL0CdyHEt7/MM1k8HsaiIfp9VuDIt4rno7vxWodUHeRpe4E0idEZTsF0l9C4Gm70j5xWREcNl53/1njvnz00wTKr23B5/CekRSRnrqnreuqFshvUFdTSwCGQNg6LgniilAcrBdtgzp2y1a2L2VpX5j6g/ozRPqJIJ1JW9QXlX0B+rveqwPfHITfRBX0QkzqpZTUk2Y6vd6bk/JJr/UlUfrjvP4KN2qXojTqd10fPGgfPBe0t6+Ljy6/N5S19bF9PbAd74XrSthHbSPV6bcl0sM9Tdoeqm62FTQ2LA9szyNQeXT6k4jyUP1P+1Qx0KPjDPpOXYWzY7YCB9cb7D+56kgFXKfdiPSwrnSdZFB6WL86Dj4e1RXFtQNxeO9eG8IGuD8P76+CfgffnLc+xBsUq1O/Pjdkv27pgwftC+rXML9Jv1bhcB/bLzLs1y0J+6pTv74iZL/WPlXTr3P3646EDWH7tc5LvW21B4jTeuE+7g7e7yRKf3uAz24nqtoK6xzXb08iPdzTit9aCffC9kRxMB9+cyHcC9sN2dCLqAdoF96frtPfB+phbHbLb8rXtV0Rfb2M8vVeIAH2dfhW7EIiPW6L3kT67UEaXScZlB63C/wf6oJ1ive86zpKEemhviRK/yTB/do+yH29kO3dDG1vRthOvU0T9qnv0fMwkDc6IsxuAZgUP+v94imf9FpfEqV/magvzI2wH8B6KkI6dfrXAvhA48JyQe7CPkjVfXeiXFSd9kBx0HbtC1T/1Oki9s8hVP+E5cf9M6isKuC6obgV+q5u/4yoyofbojjYN7ojHGqMDOv/0IfeSdN6/cabVt5v7F9fBPgX1W+ojzYE+SP0EzzeQP/qjuJgvk4oDtYpnitS4y5Mj68BdfrvQ443TP7cgPJn6LPYn4P8UwXTsV/XSUZUHQ8wH1I+C9sajze6jlKCbgOtL4nS/x4w3sB5Ww9kexdD22362/1ovIFf1MDjTZcATJwX8oXfeKP14euBdOmWIzXedAa24+svarzR6UuAzjDXTEHjTa5rJm0PVafbojhou/YFqn/qdBH7Z8N8X/vg8QbyIb4ugn2jK8Kh1gnC+j/0oWvQeIOvm6Au6BdB/gj7jW4n7I9tA/wxqJ+pgOuc8l/oV9oeyh/xNQ+0Pcgfma7F96b8EZYf+2NQWVWwXd/IiKq+GuSPeHzmut4+z/NHve4Pn8U2qFfj51UTKA7W8wgUB+sItg8Oheh/WB7V7r+jtR5B6NKYaRCHvz4A303QFcXB9ZNtURxcc++G4uAz/d1RHHw9Qw8Uh1/zoYJuS8s3+Id+pYXWn0a2GOJtfS4017O3uq+ZvW7K7+0ECaQVnoMeiuMK0Tmcbjf0v83rpuArgKiawK+bgmVq7JMP1oUgzhUQ6RshXX5vfSj0waNalHp9kNZB5YOjGswTpgc0RvqzIlQI/a5LrZ+rB+Rqd+2ruuxNCFsyRBz2a+r9lE0IHEpXmBfE+PXaCC+ISaD/G/mYUUDkFwG6YJ6gIsGuE+atXNR7j5Io/X7EhUdQfhVKiHPY7S3dMDTxa/1pUdUlbNye+iwPLB92+0aELRkRTFG4DYNwGF1Vhd18zKBGFJFDF+7JlKvCvRGjfbBTRHrKVXX6mYSr6iovIPIrnT8WV8YeDNJp7J2Ev61lyFacZidkq05/JLD1G2QrdOfB3u8SlF/Hq6C71BBke1aECqG7lNafRrbYdqkhCA+Xz24utRP4jWsFaoXngrw4V88Zhv43mUvplhuGzmdFqDBce8VwIlLHjQC6d0JxI0EcbE0cqKsWbbPy4E8Nrlpge+CrqKEgbiTAxu06hMDR9hcQ6YciXUOIfLruc+EVEvl2QjoS6DxcCRlMYCdR+rWAHb5r4l8Pg4XwrQf9f3PCTlzfOl6FiD65b1g20frTomrb27DJMISHy2fHJtBTIMo+SKtOA9PCsA+wTPiko1qvBZEPB11jSWTz3zwvUt632ftdKqp6bwrZA20I4uUMkV+no3BqRcSpReBoT+4H8k1GcTuLqmXVcf1BvqkobhcQNxHFDSDKpeMGBujcNUDnICJOtV2HTOV0kI0SPkcVColzuE6HELbqtoMMgNccqd42LAAH5tfpSoh8UctD2UzNnXRZ//OFy9KKPHA0hawN/VjvHUui9E80qch3Jepvw0F+bSNVz7gvmtZzisCJu55xnxrBiAN1TQXplYxCunA963bS9QxnO6NQPjhnh+ngjGAUOD+awKb0ax25fPCuUrpsfj6osZIo/XXAB++x9MERKA7OIPF4qO2A9QDT472i2s6UT3q/cj0ccG03hMhP2V6CbBkRYLsK2BdhfjxzjcPnIWYu/3kG+c9IEEf5T3vvdxKl/yvwn+eR/8AZWhzlD+rXcCaHV5apfkfxB84H+2hpCBtGETZniPw6XQmRL6pvUDbn8o13kW+MBnGUb3TwfidR+tXANz5AvgH5U9tI1TOeA5rWcy0CJ+56xvO7MYw4UBce38YhXbiedTvpeh4L4sahfONBHEwHx7dx4Px4ApvSH3Z8+6GULpufD2qsJEp/GPDBfwZc0wT54BgUB+sUci9un6A2SCC7Uz7px6By6fS/B+zvofrrGKATc7lOX5Cp0In3U2hcWC7qajnIF8cS5aLqdJzIjQ3rebQPdkrQ5ffzlTQoP65Tnb/Ipzy4TnX6koA6peooqE6pPjaOKFcpUebxSNdQQhes5zB1Css/FJVfp29I1Ck1bxmKbIdzBzyHpOZhMD3eX0T1MWpugvtY8wDbg1Yl4drCNBQH1xaGo7j+IA5fi+0C4kaiOLi2UIbiBoI4PP7tCuLw3ppBIA76vl5bSKKybuOdj3hvocqHs6Auqn4TPkchwo2n/UCaBMKJY92EwhnKiAN1BV2z4TvepusGMH8Qzs4RcXYmcLAuzckqwDmR7k9JlL4f6NcTspV1Difs2xmcGx1QVtyfoS7dZrp/QO6L496b1p9GthjiJYI4F5YP384eSdiSIeL82hTiULezTe1i/MqoNrElSjfax7QEoTeBBJ9vic4VEmmhblddL584tSPi1CZw4l7qrI1wykA+eLkzKVORB7qw3+UOflRFp98bXO7s5emkLnf8uh30NXirA/u2xvPbxtDfx779AfXi79b1J8rcNsDm4QAD46ow2ceGQ9BUxZKKyakKXgqFU7p+KA5OPWDbwDghKuoCnsM+V0bgYF1+w6SuVzylO9RwmIS+PTqgrMNRHORXXA8UDkXvVD0E4dSJiFOHwAka9m25hLIZX0qoALlkAeKSESCOmtJM8I5JlH4Y4JKjA7gEj494qoH51W+c9OOSYT72LQvgEmpqOCHAZngJiHFVmOxjQzniEnwrKCvCBYpL8K0JyH/4VTmmYyHM72osrItw4r7tRy33Q7+FcRoHnwviF3wZ7tcfN2VoTKo/4nGtEg7oj6eg/shxq86vTwgR7nbXcALHj4NUCBqDdPozA8agXFP/oEs1P/uSgu5TU0RFmf10CeKcTg/HP7x8MRKlHRGQFtsNfbuj91tzEb6lnBWhwmjtz6OJSHxLA9qk4+Ay4h4gHQ6F6H9os2rvidkKvTgdtgfWwxgfnVSfn47Sbl0KJ/Ti20WwH+P6muhjA25jFQ7wjri/35qp0H81Gmfg+GjQtmOoW1I64PbDdYcD1X7aLtV+5dkKvTgdxoT1PBbFQV6djOLKQD7YHvflqb7wNT8M+aivaSguV33pOF3eAiKf/p1EeB8Df30Q6dsZYGH/x69GhLdncH4VJiN8nf5RMFY8nt3yu1RUHV/xExRQNzU/xuNcAx+7qHJCnhyF7NZpP0C+im+3ZkWoUKbbeByyCeoeb6k7gfQJQS87av0lBN7W22xEXDKELXN+mtJnSmrpowmUX9uCz+GlwglE+gZEel1Xu4H8BnU1kHrUW2PrOOjb41FcEYjTNlCvM51gaV+Y+oP6M0T6GSCdSVtkCJwyRl0jLHXp16xSt1Mx56owGcVRY79qxyLvGWiKh+ojW015COY34SE819VpCzxbI84fd6DmgZiHxlnqDstDWn+J8G/XNBEXhocO+7Vs3n2Tnm+dEFX5tpA4F+Y2fn0ifcR+3oviIcw1kIfGoTjIQ9oGiocsx5ReYeoP6s8Q6TEPhW2LDIFTxqhrhKUuzUPUHJziITy/G02UB/JQlTWFehVpatWrrCvMvFsF/FjCiIC4UYROhd2yXsV5yFcp7wivI/E1GrWtSP8Pz0Ffh3nw2oNO3wjUTX1kH7z+h+WE9lFzdbgu2aSef7rRAenCzu/7oThq23TYdsFjRRs0Vlg+/EWue2pdar1bP6Tv3bIdOWPhHodNmT9j+h4zps2fsRBeUVGjIF7JhI8I+gVtCb5bOwj9X4b+x6uZowg9uTCp1XX4EhWMS915waxUj7A5nzgNI+I0JHAoVkr4HDUOPhe00otfzwFX5eBKb496FXmgT8CVXph3T++IVz03Nq7I1ytgBhlUz/hdEqb13KgGJ1acxhFxGhM4cfeDxqg8kPVxvZnekYL5hznGydWvx9ajMcP2a51+AOjXE0L066AyBm1KKyPKiDnJT9eeSFfYu0dlIXCC7h6VhcQJU54gnHyWR+ui7jrCNpgUYNdIpGtUDl17IV3UHQ3KB7HNpqsTMP/OATgjI+KMDInjqjzDI+IMD4nTKCJOIwKHusKIOn5QNufi24WIb6mHW2FevINFp98W8O0xiG/h6tb/ej2PZsSBuvDLCvzaczVqT+phmqD21OkbgPZcF6I9qboZFVAeuNLm19bUw4YJQlfQbhJcDzA9NabEuKJaP4wfQP1pZIsh3tYN5UEPDKoAN25rf/ZWAcpmLNi+d79hcglgybyFfqur9SAosB+nF+h/nE/ZlkRpdiYwVMD+Mxqlw+2uz2P9YWzKlTZXPMV1Y33KKUQ4roP5d/bR5bcDSLcPXmn6i2dw2B1A1ENsQfMB3O9wukKiDLUF3V9nCdo+WObRAWXW6c8NKPPIHGXG83dq7oi5CacrJMpQLOjdaniXIozDr+s09SeY39XY2QTh+I1pV6AxjdrVB3d96Y/24BX43xtV5LsajWnUXDDu8vvt5oXlgh8g8ru2SRI6VZgM4mH6W3juPpIryvgOSj/CflW+21CbUmUPalOd/lvQpneGaNOg/kHtQg/igmEB6alrxTIifdC8UbcPvKMcvn0S74TxUag/jWwx9Iet8w3qIXJYPtv5htb7NigQtD/XfAPnC5pv4LR+fQ/PAUah87nmG5RNfmmjzDdG+5RTiHDjA8yv02n/LEP2Z0WokNW2DAN2aFugz5ch24cDG3FfpNJTcwyoH/Owzp8UdN1MBfEw/TNgLvFUdstvqi2a+tgnRLi2gPldjVVNEU4ZIw7UhZ8ogO2KPypkuh4N8wete4+OiEM9URPG11WY6x1zzYneMxw/8Z13nf7vYPz8EI2f1JOnpvfGcPlhW4e59xLUr8P2U2o+kEW6TJ9Kg/n95nFJwnYVJoP4Sum9CVXEpyV3p3av6P4Xcc63e5g+DvWXEHjarjQRF2ZX2KfpAY99fsNZTydQfm0LPhdm7ShLpI82/xLjqV1hcMeKCtBHRqE4uCtM20DtCrOcr40PU39Qf4ZIPx2kM2kLStdoS116Jxd1jZ0vTvJbe9H8hOcOtb2+H/YJYOopz6AnRjGn4TJizlEhK+jwOwpan67/WgQW3gmr09YH5X42W9lWv3uESZ/yBD0dlhD+dYMxqKfD+ojKto0MYRu1HgR1lPnYqXRQ9xCx35o+UTmMsIfCaRMRpw2BEzQm4aPGweeC7ke2QTh+86YO9SvyQD7xuz8y2zvi+12bwbxpG08n9QQ+vueKd+9BTlABc6DOnxL0uibmE52+G+hX+Iltan14NtDp52dhnxLS6Xuh+Uwc60y4TElRlVtVGOtTJr/1YlwHo4j0UwPSU/eboF9hzg56EaEu230NK2zYCflxrvL7rfnf3qBCZ39DneN9dI6tX6FzYEDfgB+5xPVD1Rnu/zA/3oFLvbisGNlp6IehXwil9adF1TLbrKdR6wNUvVAvt8P3Z2FcmH0aQR/y7B/SLsYXQmkTm6J0o31MSxB6E0jw+aboHLUkB3UrN9/eGw60m8P3BHZH+gcAHYXEOezmML9OR+EkI+IkCZwgXd0JXTr9QCJ9kkjP6BraxFYo3dQA07DeXK7RCp3zcw0dChFmQlR9ZwtuGmxjKaGjX0CZColzuKn7EVgUTo+IOD0IHDxLOArNEiC+AVuux6/a1Dqg7jJL3WGZX+unnhHRdlGf6Aqz6rHt3ceev0uHw3ZLoPzaFnwOd0nqKpL6dH3E1ac11KoHfG+TCtTKGLXqoW2gVj2GW9oXpv6gfmqVGq96hG0LStdoS1161QO+WjaoL7vijDhwgnRRKyE6va6blKDvFGFO0umXgasn/GVNqr4Fca5AVOUj/CpuqKvAx3YKW4iq9Qbz63QxcmKRKSemRdUy28yGqf5B1Qt+RxzMi3cAq4DfjWF6R6C664K+iV9ZreOpo8bB5zAO7Ku4DcoYcaC/hvFzWxyoC+++xSuH1DEsDrVjJ+IYPJJabdOBuiOD/YJ6tpl6HxWuf7jKMhzFwV2zO4DfOBSi/2E9KD5+IVuhF6fTgdqRh8cl06dMqJ1M1F13uNp4aX0a0+99dPgurU5/PliluaK+fxnxNRG1cgfLOBnh6fTXOli5+1/ycRs/rtOuQi9OpwPVxnjuRd2JoHbq63JQfI1fGw45diSKg+M33uEPuWwaSIf5lLqLgFdEBxK2U/OmfiFwguZN/QiciHMj44//4tVLql7C+pi2WfnYkBA+hsdObBuuozDzbm2D310LzHM6/bMBdy10GrgCfwTQif0AYgikQ4XJyAad/iXEfZbXmST34TER1qFOFxE39Cq11p9GthjibZ2X57pLDZf8wn/kF/ZAinFxephWEHGF6Fx/lG4U+t/mk+GWbyYehUctGExHLdiaOFCsAe/dm3wyHLYHfhsLZJExABu363ACR9tPvRURP09CvZFX130uPGpVALM+lU/9vyORh/OKB9cjh64Y9oQ1DMs4Wn9aROonWxmH2h9E7Uug+o7fs4mQExIoDuJQ+9kpXQOYdKkwsUZXja4aXTW68qArzJUhHKfws5GQB3dF9pneqIb5g26It4mI04bAKSHy2Y7JmQCbqat7XG+m+/Jg/rBfVOjSgMakVrBU0FdkeEXpNLCC1a1BZZupq3kVqD1DsB20Dpy3GNig4wzmF6VqDrxjtgIH1yu8QxlmHjLbO+I9z7DslC+EbaMdURvhrxDhvHhPo06/HLTRzt5vqg3C7Bui9lDifpgi0kN9SZR+V88meFcuzBeedH6/VddWPnhDAN7P6JooBr9rSPkd5Bnsd9RKF8VnQXwB+x7eKwa5B9+JpfbqBe1j1flTgm4DrS+J0o8n2hz7nd8zT7hddfrdQ7arrss42hXWFW5X6i439TxgkB9Qd+SpcWAXpGsXQhe1bzVsX9b6cN86IKBdKf6CduJ21ekPDtmu8PlVrUfHRW1XWFe4Xan5B7VfMsgP4Pig64Ra0R+E4spAHF4ppfgb+kGYNoft48ffhxNtjueOmBfCjC9wZVG/P9RbWdxj4dz5M7ylRYFC0FKg+t9v72kDIr9AeRPoHP4QBkWfQQvqGttvIwumT53+KKLKg+hXhTBbqGFzx7E4rfWnRVWXtVkqykVreKkoqJvBuGrgqir4PQ2RIPILpCtBnFOB2tYcNAuk2I1yMTxq+c0ItD68N+u4gJEj1z3GMG/poGZEVPnxGx1hvjIfHDiiQTfCI5pOvyHkiAbvW2o9Oi7qiAbrCI9o1MpC0JO31FMx1GppBqWHdU+NaNj/w85O8WwMzz7wlVWQv1DlDaofyr+o99JT9/KDroLh/goVOK+CYXmwLwS1rQp+b3OB6WF746sRuO8CrzzBvuT3BB3ECesLcLWjC7oihm3VLwRm0MoM9cQg3gN0CeACv7ezhb3i1+kvJ/glqAxBs9WgVRDK1+H4gfcEubqDivcEUW+dofb94D1B40Acvsfv980kHPAYDesh7L437A9ar4nPQ1+6FO01g9O+LgiTmmLBc9jnYX6djsJJRsRJEjhBuroQunR6ao4T82NN2sQOKN3UANOw3gQSfL4DOldIpIWBaqZ+PnYLEa6ZqEUDrAtu/dkTpMEv84HDQVeky/QmAMyPp6Tarrc9Gi0m8A3o67Sgbdlat+X2+dMSSJ8Q9JWX35ZqaBe1lT/MI0y3Xzqx7vP39dv6CE7YrXo6fRmRviuRPuLW0pOpaRUcDlSAtLIrigv7CFOZpX1h6g/qp7a0TwfpTNqC0rWnpS79CBNcuMI39OLmGHzJ9QExzXJtix72Pw2Y8uVaTMQ3YKHtQTdNcblM+bJfSJxuEXG6EThx35zthnD8bsj9iC4bB4I4ajp2uHfENz+uAS98+BldflBLJQlBjz9wjFQB91d8cwanGeZj37+Bf+LturjMsJyUzbsCDIF0qDAZ2aDTF3p1FJFTye26kPMxh+Fx2RI39Iqo1u/6MTqz7br4NiGsFagVnkuIyqWHcbkWPvErn2y261rOEow/WI4vNuFFI2xNHKgLQzirMNmuC9sDf3QX3k8YB7Bxu5YRONr+AiL9MKSrjMin6z4XHjXLwS8MoPKp//sSeTgfhAza1G+ri9r6G3GRJPRnKPBrGi37yVbGoRaUgj7BQb0yktpCg68WbV9BqH7bvoKQ0jWcSZcKE2t01eiq0VXtdIV5mBKOB/hzc9S2iQSKg/YFXVHC/EELqpmIOBkCp4TIZzv2ZQJsDvNpB9MXJFCf5Mj1GsmJDWlMv9dI4is8nf48cIW3Z8PKNlNXeCpQV9OwHbQOnLcY2KDjDMbxutQNQViv+IYgdRMCptdbhYO2AFG+ELaNDkFtFLRdENqD99BsBG001ftNbQjAr4DMtRfkCJRelzHstlidfqZnU65tsQN98PxWJSb44B0B8Bxsi61P+R3kmTDb7Cg+C+ILao8P9UIVvM0O1jGel5pumaW22QVtmdXpjyH8AY9F2Df87KPqjXmbXZmPGfWI/ALlTaBz9Xx0aT3qHFzkCLPNjno6AVPECqLKg5pMhZptdv912+z8HnxIEPkF0pUgzqlAbbOjXgkTpoqpqrLdoL2JcOkghqVmWEEzAeqeQ9DHA6lZz0AfHGrjuAp4RNPp/xRyRGOaSZEjGqwjPKKFXTnR6XNtxcFdjdqSFnRlE7Yb4m0mlJ9SM7Vc21fCPNhCvV6FunrAL8KH+YJm1fBjjSpwzqqjPGxmugURb6uEQyJ+BSYcjvCL7alZVFhfgFdP+Moq18MwfveeIQdAHbO9I76PdAPBAVpnmQguWxi+KwNp8CucqFfvUK9BCtr2qdNF9McSyh9h+cNc5cH0pn016CG0oIclyxBOLr8J2gIH713+iO67Qpx2CJPyE6ouMkR+nY7CSUbEoV6BFKSrHaErqL1j3gKnTWyJ0k0NMA3rTSDB51uic4VEWhioZhrgY7cQ4ZqJcmcKp19EnH4hcTpFxOlE4FTZ4sJz+351mBtmlt/xWp1A+oSgr6a0fmo3sbYrTcSF2Tr3VWavB2d/f/HlCZRf24LPhdlt34lIr+sK3pw2qKtyamiCN5pVgHQ0BsXB4UXbQG2dG2tpX5j6g/ozRHq8dS5sW1C6Rlvq0lvnqG9kueIMvHXuKzCFwlvn4rbF9WYO/MbGcSC96Rsb4WYOkzc2wjrF3zcyfWOjtiHsGxt1+t9Am+MtYDpP2Dc2wm/EYVwVJvvYUOAtn0TcGEFuAcOXh37vicO2UnUe9CZrnS5iGYz9GG+dhLyPN8nAJ1nwNvEJIK4/itsNxOFp9+4gDt/YgTdsy1DcJBAH/QgHqr/Bp2oebFqhF6cTCBO2Pd48BXlH1yG1ZNUZ/IZx2lZ8DvsMzB+0vXZYRJxhBA61dAfnWzE+vhB6RRt/ZcXyazJbV7SD3q3xH8O8I74hCvNSN478tuxCnM4EjqldMXxgqRtK5/fRjQShN4EEn++Gzvldhun/Kdcv87FbiHCuD/O77mK5dpb3aERj+r3aCH92VaefBT5f2Qv8Dnrgf4ioHAdxhiL7qX0gEZ+OCk0BWn8a2WJLAWHvJ5vtlMYvGYW1ArXCc0E9Ad+7wrcVd0b5THZKa1xqTY16UUzQvRqcD9aFIM4VEOmDBqT+yPbCgPxQB8yHPSaBzsPeNpjAxjsmhnq9Sk04fkWTZAoL1keuXQE4DbZBpx8JbPjG535e0qdcuDfjAR761nQf/AMBy4z1YTFB4OPywREm5WOv36tDdgN1EPRZJ/wsLT4H6wDm9fsfpt0JlQX+T/niYJR+UI6y4/bX6fcOaP/+hA3aLhVG57ABp9nJx4b9CRsI1hw6d94Snzv0eC6BWQ63Em6J/oQev6BrQ3ms9l5cO7h3YBz9P+UBquSe2oqp2ewZC/12J+ARoZ8PZoGgQ4mgbVMhXxtO+tvhBW44geWz3XDi10tz4UTccOI3aFNkgfMLlDdBnFNBufMm7y7h/9r0Gevy29q4n3fEg9R8QFA/+wySBT46JyEbqCs0ajVIp6duoAe96djvm7J+2LAuw7wjJ8jWXBtM8Pd6oH2jDG3d07GtAwhbI65eGK/K4RU0uCqHV9DgqhxesYOrcmUoDq7K4dXssKty+LIV9gH8aMAeIG4Q+I0DtWKn6131y8FtK/TidPC3H6eE3QQAOQRfdlM+FfSW1NFAVyGhY3/vmETpTwvgI+pOUVA/yPW+Lfw+O1iGsSgO5oNvqda6BUoXcVMK+S4yWB68KQXejSkk0uO6GU+kh30Ob5KCfW40ioPcgleJqfcHKts71K+cjuOLL9Rb+Scie0Yy4kBdkxEOHNvgctZlPv0K9hOYd653xHceHwQXl1eiJSxqsx9+DOca0M8Wt/PPjzdnURuXgr7LF1ROWH/7+5TzJmDn2OyW3zFuTsyYvg+S4pig90EG9VNYJxlRtU/iOQ81f4J1muuOJ24zrQ/fbbyHWESgHiXDXxgqM7TdZvPke94DENQ7I6M+2kx9PQnrKvCxfy5KD18vQGHj9Non4AIVxc9JlP5J0FbL2tE6BWED1UYaL+WTfiyyQad/lvCXIB6A/j8G6dTpXwA68YuBcuns7aPz5YC5BtVPg97tmWs8xfMJWI/jURy0HY+L4wA+btOTET7UA30N44oAe6lHFYPsxeONjvsKjFfvod0LcG5hwNWFQW21LWFv2LYaHlA+rEvnS4qq/hjUR2B9fNqI1llkqPMLYkyn5irTgP6vQszzIVdjXqauc+E8h5ob4Mc6tY7vif5IjfVaV7SxPvGO6eO9ueqG60EEFaagOOqRbe6x9LZ6lfUGvQ9X/W6L7Aia46nf23m/MQ8XNt5ypHiYqsOgOs/1vm28uwm2xxgUR/msa390+f5p7I/U+EH5Y5i1tbD+CN8/fQWa21HvyqY4GtuTa86Nd+Vpjk/5pMecr9M3A36M5z0TCBuCrhN2I9JPIGwuRTbAvBgb9ktYJ/ghQf1/G6JfxrjmQT4kCOsN+39QHamA63R3Ij2sK10nGZQe1i/l/xNQHLWOFNRnw/YNnVfVw2rE1ZzrcxRX6/TbBXA1VbYgro5rfS6Iq+P01eq6Pgd9Nez63MIQc4GgB1Rz3YPA/EW9G58ah/EDuabfHYD5RwbgNIqI04jAiXMNEmJScxtcHtO1EJh/FCrPKMbyUDbj3cgqwDXV3RtX5PHjNpgXj3c6/eGNK/Lt4f2mdsEHPUAd5LtlorKdudaQ9gTlFyKOOacoyvecE88r4XiJ75dTTxtA34Njp04jkI1x1Bfnw+tU/cI+oesAP1kF/ZBaf8UPr1N1GXYeAp9yGVsvt/1BL27I5R/4QwfV6B5d3ucA2BdM79FhvoQ4FF/iNob8CnXge1Y6/dKAuSPlB0F+k+uaDm/Mhb6Bn1ah1vlj5JBq7TdjUBy17hjWbzCHQD6HY7Qev4PWyBKi8jgJ/RmmL/TRMxLpSaDztcF5mK8nKjOeI2HdvVB6Xc6UT3qtD89FTglYSxidw4btkQ1jctgwGtmg0/+JsCGo/lUImhNGfCo9mUD6tD3wHNSfFrR/ZEWokMD1p/EoP1AB92WqP1H3SoI4kOrnlK6dGXXhJzMt22ssxW06UPu88HUF5LFJKA6u80wGOnAoRP/D8ii/XtGuQi9Oh22F7QXv52IfG03kHU3ozld/GG2HF9gfqGsA0/6A77H/0fuD375HFapDf4Dtpe2m6kiFrAgXwvQXyzdhtAvbX7R+rv5C+R7VXyK+iSSrLsVqi8pcpcKBQB91HwO2F1f7UWtc+Wo/yzcLBLYfdQ3P2X5wfmHSftTaH35HrOnaH8zvau2vHsKB14Jw7e9ltPZHXZvCvHjtT6f/GKz9vYbW/kzX92Jcrys03Z8YtAdBBdP75/i+Q9j1Jzy2Uy9VC7v+BF962sNn/UnXqwpziby4bydE1fUnaIdOj/fE4TR4/9rWvTngWuobn/tm1P41aD/22a8D1lPi3r8G6xnvB/Ob02vdQlSdM+jy6TiTcYHqE7A8uE9Q9+JhetN78djv4T3lMUgX7l/CR1eQrSMj2IrbEbYV3jeg00K/hPZjv9zalzxfzLVvQNd5HO0ftJ5G1WnQelquOsXXNEF7CoLW03KtnWNOHEHYAMdEan2zDGFS4wPFExSn43Uj7Zf1Qfvjvbpwfw91H3mCj85GhE8FlaGMKEPYMS7ouYYxAflgvywmsLL6x+/BQevT/lGLwMLjjE7bCtTTs1nalgS2J0eI8Zosm0D6hPifuiZry3FNRs3z4Bx4G9QfqD4G8x7pHXEf696kIl9XH51C0P026LlCaM+mTGW9cd1Ppvpu0BwG32ek9uBrG+D+bOreE947pdPvAPpm0LNMPPcnE99S4yKcF+JxMWgOqAJui6B5FKyTjKg6ZuK1b8q/YFv7vTXUb48mfg5Bpx8E2iDoUzF43B5haLvfvgQYh/sG7se5Pgrgt++WuvZVv/V+bdzvRwWMrdRaQRk4Z7rnHT9PSN2HotYw9D5Cqr/AZ9Z1+XRc1PuyLvfC4BfBBz0XCJ8BCOJeeK28AHEv9dwAbFu/5wepZ1XV71beb/z84P4B/sW9rxA/uxN27Ub3/RjXbhrke+1Gt22YtRvIhXjNrwzEwedHJiH/osZJmLeD9xuPk0cE+Mv4gDKqYDpGaXuo6+EJKA7mw75EXQ9qG3Yj6gHahd/NotMvCDlfYLqOLqP8E177Yv8M2k+vAm6LiUR6uMce76OH790Yh3RR61uwTjF3Uc90TCD042c6VgTMF+D4tBuyfYyh7WWE7VR/g33qh9Itv6nrfDxnHROAifPCsSflk97v+nMDUV+Yz6j1JPW7PdKp058QwAfUmDoUnDPdN4bvo8B6wfvGqOuO+ObzYki+943p9g+z39B031hY/4c+9C7yfzieD0GYQfNYnBfi+Pm/376tcwP8P+i6XP1ugXTq9Ocbrn0F+X+uOULQHCnoHqPmmxjn58PzPT/H/h80P4f8G+b5yLD+D33omdLKeqnnb2Fe/cUf/PztjYb+FeX5W21PmOdvYT68PkPNXXE7+o0z+DpFp78z5HyLaR9ww3zzOb5vQc1vg/gz6D4pxZ/UeIn58+GQ6zNB76cIY3sZYTvV32CfuguNN/DaF483uT6Ih5/h1/3ab7zBrzXX6Z8NGG/gtRm1HoTHG53+BcPr9aDxJtf1Ol4Pot4nQV3LB12vM70LqlHcz/rkWivT7R/mQ5XU82nYDyBOWP+HPnSZ5//R6nXxqQlgi9ZdSKRMoqNO84nnk2mAr4/JEHa89uAPL904pveR+Os3Kug2UvdsVPu/j/wfvkZZ1yV8/TBewyxEtlH5EsgGnL6ASK/1lhBxSVAG2zpqeeeMZwa98dkbuerIVv/G3sn6m/YbPyou/c/U+vz7xx+aeXJc+j8o3n14wU0nto1L/1++n9B3dbMOX5v4qPYFuHdX59P3MeuC8wZcGPp111p/GtliiLf1Pm1dhIfLZ/cpijrgN64VqBWe8+ul2jLhkw4zhAqjiXyC0K3idctl0PmsCBXqaa+oR0TqOOhldVBcAxAHWxOHQsJ+bbPy0k/RTiBB6NKYsD3qo7hSENcAYON2rUvgaOwCIn0p0lWXyKfrPhdeIZGvDtKRQOfhLK2QwE6i9E2973ipuv2uiahUzjqi8v/Q/6YjG6lRRficw+XAT3pgXBWKRSQmqB+WebT+tKDrOytCha3MU4LwcPnsmAeP+RqlHtKq08C0MNQDlgmfdFSLTiDy4aDzlfjoVKFYVPVUg1ouCduq+lwa2WLbqoUID5cP7/ux9No6QV6EdQpBMx+sD8hQKR9dOm8Spe/hMUVGVGWqiQiDYjF4TtePYqsuTSvj6bj+TSvS9PR+lwra/+HvAgK7gMDOEPkxE8F5+mQUVwTi8PuhUwFxtQLiilFZYFwa5JuK4moTOpV965pWTof7OXUUomofUgHXOdXGkNnwNQzlY9gn/XTtiXTB/KVIVyaHrklIF8yv82rfKCTylRA4mM/gsy4G/b1uWD7T+tPIFls+q4fwcPkwn9W3wytJoPwQD+rEz+00IOK0Lv3ZmJSPLp03idLvjvisAbAJ81kDwl54DvLZWNTnYN3a9jnqGSrdPvjaXQW4r3OvppXLkgFxFD8e4R2TKP0VgI/3RXwM/U/bWCro9oK/Kb+rF1B+qg/EXc+YhxOMODBuKsKkfA72Sd1Oup4pn9f5GoI43HexP8P0UAelX+vI5YOzmtJlo3wQYiVR+pOBD84OmBNgH4T+mUBxCVQWmI7yT9hmR6D02u4UkR7qS6L0C8BVGF5/1/lhXUG78LMOOv3RQCdef6f4l7oqCfJFiq+pOm2AdNUhdMHy4HtAVJ3C/lkHlV+nP5aoUzyuw/zUnG8aioNr9SUoLgXi6qK4WiCuFMXBOR+ef8J1P8z3tUEc9JF1aD6ty7PRO18saL/PinCB+to75ki4pl+M4qBvpVAcrMPaKA7iFaE42C5pFAfbWrdDbRGOi1TA46FOf1pA/6L4k5pP6fSNiPSQs3X6UlG1T+H3NcJ8uF/i9zfC397jXpXqAdp1uHdMovRngXoIut+t7Yp4P62Eup/WGCTA99PAotbWcsH0uC2aEumbgDS6TjIoPcV1FG/COsVcR81lGxH68Vz24gCug1zZGNmeMLSdukdF9WvYp2YFzBXxeFs/ABPnhTgpYTaPuDZgvKXmx9AuPN7q9DcE8AFVl0HjLcUfDYhyUXXaEMX5XVdp3VhnxP5Zl+qfsPy4fwaVVQVbrqTeOYuv72HfwP5PrSOE9X/oQ/r6y/Ye3p8e6DHq64lftrG5hwfXhXQ+Pf5brmzfC+3XgVqj0PrTyBZDvK1rFNS8EZaPac31ngTKD/GoOzER74kW4vUk3DbQT/3WbHXeJEr/KlqLCFrrgmtweP2DWp+D5wrypIvqo7AedZuofvg0qgvqLlMY36ZshO2F5621GXGgLn19Tfm7kqwIFXrjewZaB9QN/cbAt/cJyxVaf1pE6kuJIB+j7j9QfU/nzYiqPrYApMvlfxCH0rWxmupazqhrNaOudYy6OOurnFHXGkZdKxh1zWHUxVnGtdXUrqWMujj7I2c7LmPUVc6oawOjLs525PTVExh1cfrXekZdJzHq4vT76so5nGXcxKjrKEZdmxl1cdYX59yE07+q67yQ0++r61xuMaOuVYy6/ghzuerq95xzk5oxzUxXdZ3LVVcu5JzLcXIhZzty1ld1nX/NZ9S1mVEXZ30dy6iLs29z9iHO+uIchzj7UHWte07+4lyXq65rQ5z+xTn3ra5zzOo4dqjfJUy6VNjsHUt9dMPfQfdeKZwEYTN1nxTev8f3RAXQE/FpydDfVNL608gWQ7xEUPtQ91bxnmmYN0PE4bYy3bcNdSUZdeG9JJTfUPf9TOurDkjrPZ03bMbURTPHzZ0pUEii/4f7mLg3SjfJx7RCQm8CCT6/NzpXSKSFuqkuWcvHbiHCdUmYvyQAJ46uj/8v8v4Peiwrhtvf08LSwH/L7e+FIF3U4eBERl2cy6+cU6rqeqnKWUbO24DVdUm+ui5fHMeo64/gEzXL1fmre8764lzu4Swj56Vqdb3dxrl8wen3Kxl1VdelXE6fqJl//W9wNOdYewyjrj8CF25m1MXJOUsYdR3PqKu6Lplyjmk1S8xmuv4It4Y5+1B13VZUM3b8b4wdNbfS8+cTNWsK+Ssj53bz6no9xFn35Yy6qut6Iec8p4Yn8jefqOGJ/NV9OaMuTp7Y7B1j3AaSSiB92k54DuqvzttAVMCP39tu3fij6YrxlaG7hPWxfL0ylHo5vM6bQXEqLALpcFwhca4gQNdiRl3ljLpWMepazqhrGaOuOYy6NjLqWsuoi7OMSxl1cZZxNaOudYy6jmfUxelfnP2R0784uZDTrjWMujj9/o/gEysZdXH61wZGXZxl5Kz7Yxl1cfr9ekZdNTzxv8ETnGU8iVEX53yiutb9JkZdNX3ITNcxjLpq+lD+6r6cURfnNfJm7xj0CYuIn1wJ/clFrT+NbDHESwTVC7VuRn3iRefNEHF+r37X8Srkq86K7PAC6wyWz6bOVJjuHal6SYS3cyn1Omdc5/BVzAZ1MC5snWv9aVG1DmzqPOzrp3XZGxG2ZFCcCkeDdDiukDhXEKBrLaOujYy6ljPqmsOoayWjrsWMujYw6uKsL84yctlF8VR18dX1jLo4+zanT6xh1FXDXzX8FWcZOet+KaMuTr8/nlEXZ9+urv2Rk6Or61jL2Y7LGHX9EcahP0IZOe3i5NXqOm7Pq6Z2cdbXiYy6yhl1cc5NquuYVtMf81fG6jpu/xGu0zh9Ygmjrurq9+sYdVXXtY4TGHXFwdH6XWdwDQt/Vtz03hHMXz8ApygiThGBU0LkS3jHiGv/dRNIn7YTnoP606JqmbnW/ql60eVrZIdXEsavoD34s7a4bpXoT9L6fSpW502i9Le22HLMoHQqTEQYjQl7qU/nKn+5wdOLfUGFrAgVdsD3WLQtUC+sE4M2KA3rY1p/WkRq80RQHVJcosvehLAlQ8T5+QPEaULgZIi4iTW6anTV6GLRFYL/Cp5uePCi1IUHTevRue7wb5s1OH31oAdOWjWoc3fqc+aY/yAHGPBR6FcSa/1pEYlvE0F1So0huuxNCVsyKE6F6SAdjiskzhX46KK41FaXCpO9Y4RxMInb2iBvppiwKRsqq+ir8zbzThi2eVrnb26Xv7bO3wKczAbn2fpaW523JZG34fbi5bZv913SrcmOc3c7es3be161otEFXT/ONPtq0YCjf35jrs7bisjrE3TX2eq3aRA51TuqedFXXmG0b7UGcYUor/qtfSuJ0k9tWZHv2xaVsWGfxnxRAM4btEX3sHyh9aeRLbZ8UYDwcPkwXxQStmRQnAr4ucJCAqeQwKF0rWXUdTyjrjWMupYx6prDqOsERl2LGXWtYtRVzqirurYjp69y9kdOu5Yy6lrOqGsDoy5OnziWURenT6xn1MVZX5z8xWnXRkZdnO3IaVd1HTs425Gz7jn7NmcZNzHqOopR12ZGXX+EcZuzb8cx1ur7NPB6rA6KKwRxtVFcEsQVIPuShH3JAPtg/qRPPlyOMM/bpFDerAgVQj9vo/VzPW+TQni4fPhasxZhS4aIg3Xo1z4JAsfULsbPUun4bijdaB/TEoTeBBJ8vhs6R1UF1F2K4inXxy7jV7UZn/wqlATglBD5tGvWBjZmQTz+dFZWVLUxG2AjzK/TUTiJiDgJAgfropapVNjPOyZR+iO8ZSpVhp+bVNbZjrCPait9vj2Rvh1Io+2h6kbnLSGwEz5HjSNEsA9BG1IIpz0jTnuQJolwOjDidABp6iCcjow4HUGa2iCf+r8TiIN+pu3YhrBDDzudwXmDYSD0LRGtP41sMcTbOux0Rni4fJh7uhC2ZFCcCvh2VhcCpwuB40pXiahaftyWsKxxtKXWnxaRfCcRVC+wfLgtuxK2ZFCcCjNAOhxXSJwr8NGly8WlS/fTiO3VFdcHDDpuW6C7M4qDc4lJKK47iJsMdOBQiP6H5VHj14p2FXpxOmwr5C9td6mo6mOQO/y4gPKfDJFfp9NjsLbzAnCr6NyWle1sDXRPRmVoA+Jwn21LxCn9XdpULiv0BzwPMuUQmF+no3DqRsSpS+BgXUmgqxjoOhTEw/T3e/Wu+wnuj1kRKszEfUHrgLq7WeoOy5lafwmBp+1KE3HJELYkH77g3tsP/373hKjarwuJc3iO2J1IT33qVNdVD5DfoK6mwq9KC4St4+BlXzcUBy9VtQ3Kv7tlK9vX3dK+MPUH9WeI9ENBOpO2oHQdyqQL9jcOXSlLXfVF1TFJ92mKk0oRjiknwfw6XQmRL+Fz1Dj4nN88DWJS87Sp3lH58eMtK/LAeoDXijAv5kidfvu2Ffme8nRSY6a2MSLfdafmBzroOMgP0AYcqLmDtkv165faVejF6TAmbIMeKA6OG9uhOOiLPb3fQfVnO+egrj8onK4RcboSOK7bHPe17UBcVxTXE8TBtsAhl6/MbF+hF6fDtsL61naXiqp1hB81MOXMeoStEceoHri+YaDqG8/5YX1D+3Cg6lvbrOr7SoP6hnWqbSsVVesBP3JBzUvguaBHLnS6iHOW7XCdwkDVKX61Vi8QB+sBB6q+4RznXYP6hnWqbSsWVX3DoB564rIKAheWtTuK2x6kPwzF9QZxk4EOHKg60uVRddSwQ4VenA7bCv1B2035JOZ9U5+E+bsH4HSNiNOVwMH/F3n/dwLx+jo0idK2APOKjLenkxoH9hGV46B/dQK4DVpVLjv0FVzHvUTVsvcKKDvMj9sS4nSNiNM1JE6c5ekSUB7T+TG1jkbhdI6I0zkAB8bh8dZ07lOPsJnC6RYRp1tInKKIOEUETsQ1w16Yq2HAXE2NZ71BnOl4BtcF37Wcr2nbIq4JGdcDnkfBMQuPZ31A3GSgAweqjnR5TMcz6A/Qbmh7UtDjyz4oXqcf7HG28oFd0RgA5zwaW6VbiHg+7nXbMPdDLH0k9P0QrZ/rfgh1byHofkg3whaKq/AjOlHWgJKMuvDaRHXo0/h+CFefNrkfEkefPsDrnxHrutJj4wLpqun71avvqzAUpIvaX7dj1FXT98P3/bBjbwLF+XHEvihep18Cxv1j0LgP/bsnwL4KjfvQftz3Ta8ftiHKG7SOn6++bzknD+z7VL38r4z7eG3Kcn3aeG0K+xBcm8J9P8raFFyfNun71DpD1D59Ohr3LeuaHPe1rurU9y3LF7rva/1cfZ/qR0F9vzthS0ZU9Qc87puuK0Kc7Rh1aR+P2F7G6/PYh+B8Afd9yAuTgQ4c4ur7PVEcdZ8Qjr1YB8SIWM+hX/2D+4XlGBzYL6h9dnVExXqzt41/5IyFuy+aOnvWtLEzliwomzN99ynzF86aMrts+vT5MxYsgEZDILiRCcbDgNPo3343MIM6DCzMaO9I3YzsjnRtl0PXnkhXUEfumUPXJKQL5od54f9Foqqd+mZDQQg9uHNSdu2F7IIdHQ+c2+fQdSjSBfPji+/eOXTNRLpgfpgX/l8kqtqJ6ytIj5Idcth1GLKrD8i/A9LVN4euWUgXzN8X6doxQJf63QzpgvlhXvh/kahqJ66vID1KdsphV3Nk144gbiekq1+ALhUOR7pg/n5I1845dB2BdMH8MC/8v0hUtRPXV5AeJf1z2DUb2bUzyN8fxcF6xt8oMd1cDfPjDSbUYIiPGgefC7phht/p2J8RB+qaCvKpuF1Afsit1ERIY+jBfwA4H8ekWOtPI1sM8bYO/gMQHi4fnhQPJGzJEHH4BuBAAmcggUPp6s6oaxdUHngBADcPfoEWegaAOOriQY/fSZS+ENzk/xot4EBf6R+ijAMIPJ1+V+//FJEe6kui9N97NqlJ9I/eg3AZwqaBPrbg8RT7iU6jQjHCjquPaP1pUbX9bfrIrgjPz9902QcRtmSIODiXgnEQZxCBQ+nqxahrACqPXx8pbF0Z07aPfNGmIl/K01md+kgdz6YofQTOoUqIc7iPWPps6D6i9aeRLbZ9hGoLWD7cR3YlbMkQcXD+7NcXdyVwKF07MOoK20daoD7SB8SF6SM6/Yugj7RGfQTWEe4j1PVKHwJPp9dtliLSQ31JlL59yD6yg48t6jecN5eIqvbjPmLps6H7iNafFlX9x6aPUNd7sHy4j/QjbMkQcfCaCddjIXGuIEBXmGuusLr6oPL49ZHtmfrI3aCP7FAN+8jOhn2Esj2Oay9qfQG+T9yvjijfzRD5d0BxXQmcXD4ytDVtj5+P6Ov3JEp/JfCREQE+gjdaQJvxDRfTa+ltCJwwC8uW/FMUlu+0fq6F5VxrZZjv+hK2ZERV7sQP/VO8Ss09/lt0qd/63cJB46BpP8+Iqn60DcLpy4gDy+NizUiFqQgHr0lSx7A4UNdkhOPHWzMQb+0E4ije0ut7SZT+bMBbh3k6i1Eaw346QNs+gIik1nt2QHFwPtwXxcHrSdz2g0EcnLvgQN3002VVY+gRHSr04nS4HJDbB6K4GDg39ByzhnN5dNVcL1TuS/h6AcbBbzNgXiskzhUE6OrDqEvfy4jYXmy8pgLesADX0CYDHThQ3KXLY7phgeIu3E9wOji+UPcNKbsShB7cn3Qcdf9Pf9OAusfYGGGY9vnGhL1h1tGgfxn4UGHYPq/1c62jUf0naB1tJ8KWDBGH176o+7I7ETiULnxdD6+V8z1+9rHDCxw/qe/AcPiXXzv0DcDrZ4dXoPGo+959CDz1oF9KVG1Dv/vz1H1t2F5+fR5ij/aOtvsdoK49ka6+PmXwawNq/Sdoj0ISxd3vzdH/88251pXT6H0lt4A0N3m/Kc6Hax33onR4j4oKEa8LQvc9rT+NbLHte1Q7wPJB36wlgn0EtpHfnqXtibJgn+2VwybssxQW1aZwDxduU7jRFa6FPhiQrieRjopT/8M9dHizs077CFirXNOhchkhLt7nZrr5eDvCFlcPYofZ5AzrKo41N/xisqibnLdFeH71gveywLy4bVTA12zU3khq38h/iy71W39XS9cN9TK7MO1K4VAv5Ip7/1QYP7fFoda7gvZH2eJAXZO9o+6bkGvjvD7cFsXBdS/clnDdC9f/YBCHX5JVBuJMH/rX9aC4en2INbGIG9Wrff11B79xoOoPPkhQU3+V9z/iwFl/sJ0M6s/4YTRcf3Deh+sPzmFx/cH5Gxw3cKDqSJfVdN0a+pguk3oQQ78Et+JBjLEzluw9Zfas6VMWzpo7Z9KMoxbNWLAQf/YAjwB45NnWx2r8WQY/q1UoQHH4Uw0TiXQwlBD5NEbEV2yFvrLR+qnXxdrMyqhZCfUIJ/ZsmDdDxMGvw+IeUUicKwjQ1ZlRl/abiD3d+NEz/ArguB49g73ZZCWXerRbx8FXXk9DcW1APvzqzbYgTuunXnkNsTPgN4xToZA4h9s6Q2BSOF7VVPlKbJlnWzFKZ+gfA8NcwVneURsYliv8ZvPQLuruXpjXTv/UcHCP/zvv27MSoipfB93d0+mpq8EMkT7ijKZ/CcAQouqoqwJ8rL0rioOv4YKzCfzaacur8f5h6g/qp3YWTAfpTNqCujLrbKlLv94ZrhLovqP7X2sQ1x7FwX6GdzG1I2xoF1CebQgbSoh8uD+2B+fjGLu1/rSIxC1bx+72CM+vXiiO13mp1/ThV0aYcjDU1ZpRlx5rIrZXZ1wfMFArmNiHqKdjqZWZyUAHDtTYrctjOnbDOsYrlTX9Kv5+tQ1hC64zFYaCdDiukDgXVP+dGHVp/4nYXtvg+oCB4iDsQ9ROaqrPTQY6cIirX+HXjGnbi4i0We93EqVdAHbKnYnmwDC/dxFOfpatI4qDvt4axbUnbEogDLgbA/o9/jydTr/Us1vV5dgsrbPARydsUyEq92VdjmKAq+MMfPBeZdeO2QocWGcq4NeyUv0Gpsfz1qBPj8E6oMYv3GfbEbo6gHP6Dh5VX9rGOOoL2oDrq1MOm3F9UfUL60HXAcVLbZCuNoQuWIdB9aVtjKO+oA24vjrmsBnXF1W/8LN/ug4yompdtkW6qPqC/XE0Sq/zp4j0UF8SpT8DcAJ+egTyGm7rLKEbcmMC6YDlSBPlKEFxMK/S+1WLynqpJ4ioHSc6PfUGBLi7BM+94C4HnTfibplqtTOaWqGHZcaBGpt1PYRdoU8gHK0X1r8K2Ce6EDZSu+B3CKlXp8+126cghN1wRwj2ob6E3dRun64+ONRuSxVme0e8m/9G0Jf152cpPtXYEfm0lOJTWEeYT6k+S+0ODNtn8c5y+LQb3qkM61hjUv4Fd0UNNXjaj9qFRu24wb6X8kmv9VXZAUbwdZA/Uzu7bf0ZliGqP8P6wk/V6fSPufXnunH7M/VWlKCnceGT/n1QHOXPCVGVw0z5Fe4M2z7i065B/q/L5uf/+GlXnf61AP+n6pfa9arTB73pIZf/D0RxMF9XHxw/Psf+r9O/G9L/NXYc/g/rCPt/2DeY6PTU20OoNylQbw8J8v+BCIfL/1sYvDVk1wBMnBeWzc//tb4kSv9tgP9T9RvUHoOJ9NROD6r8g1EcNf/EOND/YX1h/9fp/xnS/zV2HP4/GCTA/l8G4gqJ9Li+hxDpy0Aa/FafISAOvxUL1vFghEPxYFj/r/S2nYhvzQnyf+qtOTC931tzir0LV8r/qT5I7dIMy0dB/j8IxVG7pzAO9H9YX9j/dfoMKGuQ/2+tG6BHx0X1f1hH2P8Hg7hCIj2u7zIi/WCQBr+xB/aNIP8fhHC4/P8L9Ga1BEjXAGEmCEx4Dq/h4/yULrg/ajL4PQ3Ew/T6k7J6nQLWv4EfjC8BeQTQAXVb+th4WFYdCtE5qL/EB0+FNBEXZv/D/f3uGXv+v/rUTaD82hZ8DvtxEZG+AZFe11UK2Z4VocJYqq/Dz3oJUbXsMA72V20Dtf+hyNK+MPUH9WeI9Hinfdi2qC8q+wL2dyXUPpVahC6dnnplNdwbgvckQQ7Cr9KnnoYJ2s8SkbtTFHfD8oT5RGvQp+Z7EOnh/jtdNxmUHtYT3uUPMRMoLcSB920wd/u9Wl1/plvVy/tNKueBa5SY1+Abwg3qvyAsr2n9aWSLId7W+911ER4un25HtbtXc5S3u3fc3CnTh06Zt2DR7Bl4d20d8BvXCtQKzyVE5dLDODyS4HQj0f+jiXyC0K3idctl0PmsCBXqaa+oR0TqOPie4jooDo7ksDVxoFbQtc3KSz9FMzxB6NKYsD3w+4xLQVwDgI3btS6Bo7ELiPSlSFddIp+u+1x4hUS+OkhHMZEvq398cuJZKzPXnHpettuTP6RGbv7ikO9GF/V77cnlze9f9eun35yObRaEzbgd66C01FHbjs/hXSV1GXVlCF26buCHUw18vnFYttL60yJSH9vKVvUQHi4fLnt9whbq3eGYg+oTOPUJHEpXAaOuQiZdKkys0VWjq0ZXja7/cl06Do73GRQHx0/8ngzIz/ijdgWEfQUB9sH8eOyh5rh63IW8bnLHPOy4i1c4LFdyto67hQjPr14izqW3rqhkCDysUwU89w4aM1M+unTeJEr/V281LIPSqYD9mpqXwHO6ftSV5Z/aVradWiUL085Qb0ZULbuOc+33tUG+qd5Rlfv8tjQmXNWGefGqtk7fKluR76K2lW2mVo1UKEXnsA8JQa+SxbHDBZYRr6pQfg/Tz/aO1BNvSRQHy1MblCcC/zSiuA228XWojZMgjvIrvBNpa/psRb4bPZ2UH8PrMZhf5MDT6XX9p4j0UF8Spb+NuItE2VfHBw/WB7UyjfHuCnknB/KwENZ+25jyW9ifsN9CHy0k0uNroiA/p3wZ+nkK6aK4C/oB3rWn86cE3QZaXxKlfyTgzmGQn1PtqtM/HrJdmfiIbFdYV7hdUyCOqlvcrpQfwPbC4whs81pIF3WXBLZ1mHaF9ml9uF1fCmhXaoyixhA8Rr0asl11XcbRrrCuwrQrNd7r9LWI9LBd8R0a2JbFSBfF0bCtw7QrLA/maJ3+g4B2teXhj6sBD8P5Im5Xqs/A9LhdKT+g6jYjqrZ5GsXh9VeIY8rR1LgcxNE6/XdEm+NrQswLfvZR9abKqJ+Q9e6C7LFw7vwZ3m0QgULQbQv1u9THjEZEfhGgC+YJKhK8NYCrXGOlBL28jqtcp/+FqHJchdieMJfIll0m9I00rZ/rEjnX1BNfJgV1M2qIwe2UC4fRVVUY6WNGgsgvcujS/6vRX8+aYXPjWX3QTADnVaJni2FnAjp97eyWIzVi5Loyw4wSdKcC2kOVvx6Kg/nq+OCEnaHo9PWzFWUNGsk0dhwjGawjPJJRK4XUiopO34BID++k4BkKvOuKux+s43oIJ1c3x/sLKD+lrpQp/wqaaefyL+2b1FVpkH8FrYow+UJpvn1B1w3lC0EratgXqCEWcgL2hdoEDl4ZUwHPtuFR59F6VSgm0us4+KwkbC8B7EmCfFBXLZRPp++b3XLU0xc4i9T5MwQ+nD0KH7vhuQKUPk2kTxPpVf1sl62wmbITj1+wrIVEejj9gen7ZyswB3i/8f45iKfOjQlIl/A5UjZDe4LqqJBIr7FrE+l1HNzRAPskTAPrC+pKg3iYflR2y1G3CWxv2C8xPryKFD52+43HWFchcQ76Tll2y+80OKd1mU4NVcD7N+E5iF1bVH5+WR/D7Em9oW/3/nX33aa8PsrPpb/ug7fu9u4/522TSz+1Xw6OY6b+7XfnQYXp3jHiPtkCnR+uWojw+RPUCmkC2VZsZ9vvYeoJ6k8Leg6YFaHC1ssZzM24fPiOX9oO799qTK0tqs5RYFvCuoM4tZANtS1toOY6GhPynEA4Cv/uDpVtsLyM/HdEH/6NWh2a6h1Vux2ardAL6w5eN1CX60mU/ohsRb5Z3m/q+QY4ZygVVfsX5gRd3wVEWrwyDP+nViPxJbP2mZRPWVOorDr9UdktR4X3TRNaJ6w/aFeBj86FQOfPSKfpXZQ6RHpqRb1UVO07dVA+aDucQ+BzVPskUFpogwrTCZv8/k8TevxsKCb0UHeo08hWajUb9hs8by8kcGCfgmNexOWrImosEcgefAcMxsGyHQTS4VCI/oc2Kx0TsxV6cTpsD9WXOMd+fb4InMe4eP0qhdLia0poY5T5N56fUM/M6P9rBdifQHqSRL4SQfc36hjW3gRhb5w7U1Q42DtGHPNa5tqNcFa2Qq/fmEfNOfCYd162It/fvN+5xjwdh+d9KhwCzmFOx/MoqEMFvGyvOTIF9MM0xahMOv1F2S1HOLZRHKJ1qbJfkq2MXQzigsaRJEr/YLYi3+Xe71JRtb50fVLjl9+YU4TSqjAd2aHTXp+tyHNN1h8LXhf7lfE/O1WydDpoA0yHddiOa9T8CvfdMPMras2rOAAD87Hf2K19o06O+NpE2QRxroBIX+xTXkFgp3Pope5eU/yO74AmiDjMPbC8YdeNIW9pTqP6S0JULldtVK7igHIliHy4n0PbawXYTtUf5A/bNYj17/3+yonLmn8V1xrHwHOP2VjS95rr4tJ/VZ3nhtx1bvHBJmsoup1TCEv/hvUNz8O5x2QQD9O/lt1yjLhGIXB5KN4Iuj7Da6/Y/kk+9n+X3XJUvvVWtjIedX1C9Rm/8bcopC06/fvZLcdc99PgmoXWo+MM6jxJ3UOBvBZmhx61dq7T57q21HVC3TMLsysF1ime0+g6Sgn6+h7fv9Xpv8puOVK7Pyhu1nGw7JgXCwlcai1ysndUaWq32/I74vy2FjWP0KFE+PM/9gdYRupeFJ7fwLbE9xdgoK4h4XsC6rSr0IvT6UDxA+6v1LpK0HyR6ndaf3Xrd9r3qR2R2N/C+rDffI7Cg/UAx2rtw35r+rBPw2uu0nYV+mC9U/sTVMB8qtN3aleRr773m9rFj/2B4glsixA0D4W5li8h8ul2oe4jmKz9wPaFdsJzUH9aROKXBOZbjYfbCK/1W84TkniMhXhUO9QTdJ1S9wPwtSK13hN0nRTEJ1T/w32TWkegxpCg6zmNDdfMw8yb/Pb++K1ndG1XkW8Q6lsU1wa1W9D7UIK4D9pK1T3ev0Jd++vfdQJwKLtKiPR1AuyCnIzf/YGf+g8qQ9iximmOWGT69BFVL0F73HK9kQH3EertCaZjG967Q43xuca2QT5jFCwHtSOd2roJxzc99sHxMoFsgRjw+v8IUTm97ZNJI4ENuXa9qzCb0JkgMISoWi+TkQ063VhgwzMdtvwOuh8Q8T1SdaHv6ECNm1o/9d4vm3GTuq6h9uxFvA4oCfJTar5DrcPgvq77g981Frwmh+n39doWP+mhAn4qlppXUOOFsm2PdpVtj+ueDORdyB8qwHnsQYgjqCe8YF78tKpOP7VdRb7JaKylfLO2COYM6h499g+/+9x+T8ocGsAZ1Pwd2jXbR+csoBPf56b8gmo/7KswPbWXgJoz4XUoistifDKLfCcmLL9fv9T2+PUZnZ6ak1H3nDIoPTVeQlvw+lmQL6oQdM8c9h3dr2zXUHfptKlZy0ePKolrjbYo2fLM7DWTx5ms0VJz7wKkF9Y3vietwhjvGGYvmeX1ZehvquHry6h7ycJeX1JrWvh6CfYPPN5QfYfaT+xKF9XfcVtaXkuHXivA+wItfSdhyk/UGiReW4Xcheuf4jXqmu6/RRfs/0FrSGHalcIJmgfGNZfC+1JqMeJAXVMRDr63Sx3D4kBdkxFOkrDhP/cx21XohW3sN0fyu2d0X7uKfJe3q5xG234lSHOL97sYYAth3JfT1Lq1DtT9Aey31FoJfjcq5R/w+r8YxcE3LU4H6XAoRP/DelB4Yb4jRdWl5b7dalWXYetLl1XpPCJEfeF9Z7BM8HolqB9AXNwPHgQ+/jzqW9QaItWf9flc9y2D9hTpvBH3k9fBbQsD1bbYJ2DbYp+Aj4xjn4DP8eH+BZ9dw3NjGCh/gfvdw/av5304UmNgjsTXD9Q+J8i91D0pvOdJhYj7cduFGVeg/jSyxRAv8HFyWD68tmQ5R88mUH6IF7RuEmY/it8bO/zuS3zgtS2e06gwBWGEvZencN9uV9n2OJ5Hgu0Txh8t2yu0P+K1zqj+SPlHkD9arnVmw7QvxYtxrHV+j/wRzkmxP5qsdX6N/DGu+Tm+X0jVKdSlObiUyA/3T+D6ViErwoUw988tr4n/v72rj63suOpz33t+fs/22mtnUxAt9CWLUiglUosiCgpKIq/X2c1ukuaj+a7j3X3xWt1db3a9m02KRCQIQlWjpATKl0CABFSCCqEWqKr2D1JaCQpN1YiIohUIKEgEVaLQIiQqoDfcY//882/mzv14z28Tj2Td5ztnzpwzc2bmzMw550aPDd4TV70/V3tiNRdV9JXroa8cjr2HAV+er1yezXzz2s0yWI+ymU/T6ezJ+5Z7r90s1yaceXJ4T/bclcOodEXKYWjeRJrXsqeSBfZvUzrJAG3Brqn7bN945bMJ5DvkHxQ7vjgi8u74CqbX5Tx/XU3z/DzM89/vwemclsN7s6eKUWNllT6Zpp6LSzG6eMkz8Wg55PuUqrp4nv9qTfZ6PeWbnyaUQ59dHtvztnNo5nle2dOp+Sp0h4sylKY653nkh+f52DWN9xXId8gGNSaitzo/QDl9jHCp+1p17sf3O6qf8ExQzQHK74nbzmdnYW3HZweL2dyj7A1i522Dj71TVzaT7JOH5UKyanCDkNVh+oWw/OL5Nt/lKl86JVe4Nl0XscYMQr4euALkK6TzvhHlS50h58lXE/o55POQeJ7ObdcBnPPP62lie4FB3AuregZ1X3uC6lHn/Cn/52ksK39yLMtj0+CfAx30IuHMszVjvUPtq7gc0xWqq1GyroanrpAdm/J9GILfSjtGZhD/IP1W1LxbxK6I2xbzsJ4YWyCWmaq4Ys4TYnHF2FjG4uJ7D+RZ6YSq7Gl4x+2v4jfhmOC9qcG/AHN5TPwm5HfNg/MjAT2g7rtqtl0NxW/yxU5QZXm+UGuo/T8FtHM97Pvii9eEeJTux/EGVDviPBrjzxPbjlNUTp2r+MryXBqKt+DzE3ICL/u4tAPlOlQn1vM84fHt1X3jP/Z+Htft8wH9aQC+H+M41yD9+A7xD9v3Q92Xs1+U0tESkRda43Zx1YdrVHxQPku6bJ4Pip3psA/Kl0E//nzJ/bPyWeF9Ks7LobMOPJ80ehFnz0WlcbUXRX5YX8qzqVnJnmr/mFCeumdX+o/lof6Tdz/D61tIz1X9oPYVIf/4Ad6RjY+y/wv7dw/D/+WzBdfHovNNrIzxuA7tGRNBV0U7n04MX4i/6/TY6rmolBQde8quiP2lQjZHsfZAdfpR7uKqD1doDchbt79Fa2wCeaF1p0Xwyf7Ncv+b4YyNO8njyjdfhcZFaM9VdE1Sc2uR2GbYdsjbyezJ5/XdrO1wnz7Ada6z0+uctYla53i/ofQDtW6h3H5LrFtNt71vd/0ed/0ed/0ed/0ed/0ey9Uzyn6PN+7fxIt97Luv47XZ4O8Dveam/VthjPZbAOZI9rsDdTtXeCzv+j267W256/e4HY75QHmr0+/xQZDxkzS2dv0et+ZdKX6PJz1zpNXBc2Ss3+ONsJ/h2NDqbNnqR187R/BpehTyEf5xmidK6k8yNrThqnj301b6hCV1fpNQnroPV/obn++qcRUrU8ZrStfLETIVE8+yLfgIxbocRjzLNB0nmnFvyGcGaQrdNVjZKrF9fvwvzv3O/8z+7j+PSvz1Z2mMldwT7Vj89d+G9evD+7fWp8bdIOOvfyTyvAfnHsNjeUXOFHbaDpLH5CjEX/8N6IOdjL/+GRpXJe8orvj460XWF/bXwDzln7Abf31rHsowr4nNQH0+OxqT4Qm31X/ducJt1kgAr8vKGk04hlAfd27rGQHHQyzp27bRhuq7VThPdaleg39p/1Y86q5XnVcavPoOcFPUq74ZPVkQV4dwjVfAhfLG8OMl6VK42M+uK3CpdSvtuxdBZsvqaD+z+pZ///jNNzxb5jvDKD94bvUK7clUTFMs6/smwddA3/kK6TvqDmT3mwSF69v9JoHbfneq1thh7OGw7kF/k+DrMLbGv3cr/0r/CPVb6B5195sEfv5C+ltN+6bdbxJAHup7JvOhdQHnPz43VGMM1z6j/+Jq/4mlM2vr/X/IOEADcueKT9h8CF+s/NMvdBhhofLuhYoXGUnHbe+0IgqtNfbtUJ5pSZMyprMy6aD4Hvj9dijPE1roMqDiYnhH1cAVoYnD8tQAsDzlEJyW/+7G5ntfeyhjpYrtsTbq7WFwzxF9mPc85PEE/2HIY2Pgn4U83LzzglxGvkr2x4E551e87DlfDvfGPHYAXvZcXLKyC+Xqblr5g+XKN6z8YrnyLSt/K5RPXPG2O1Sq/mSj/Q67UvVvlL+tVP2b5Y9AeeeK83+0XP1jtqH9PhjXOJYNp3o6t31DliabA4cdkFQ5IfAmQeFSzlNKoWoNuZ46jfOH7XymNp7cRgqX2miHDuR36xnteipetHeMlrwgTjFG4iH4TkH4POOKmM1/CP9kQfipgvB7CsJPR8KzYYzhSJPJAhrGlLlMSIgWfIf4u0RL0TmPDXmwHuNlthzubiwvhr/rKrVdUpHejfl/zm2ll9vX8M8QPNOOsApXmkymJuH9hfXVU6vrTy7212//9knC+YYHJTYrVs3w/NtSx4On6baLA5dlVZJthNQUhe87nvddz/sJz/tJz/spz/s9nvfTTqd5+v82+v/WADwuCXvd9pTQH78f1P9uiHXVQavJpPqdBGBi/CtLqu3RsSnxTk/R23NRaWNqalJ9zB8fzZRUhXsJlcf61JaA78hUPym7F2XTxXcXp7KniikQmodC90zpuFzJfk+7sFz52l2pBupsm9tIbTsr9ld0nA7DP+xtq5IPvmtTNjJF+3WQuNJ0YERxlR0HIbpC82eMvKl6io6LsvUgLluz1ZEGqnU+eQ4daWB5n2044kLVbz5A125cueJ+mzyeqvhavpFwVZUjjvmZJhtz6Tr7qx6a0YYB9yymK7cI/rlks9yvZ+8GGPuq9LeAhnX8WNH+thezViA9ajyyPYGKJajiq7F9+ceyp5JTXttiZT6l7aPZ7xhfnqJHgcrnR8lcmnouLsXM9yWv96JjwrBvd9X5XvVXaL6P8e0OyR7WE+tD3RpBXGk6MKK4Dg+ArjqvgtQYNZkr6vPVpLzQ/Fd0PcbyeNXOeUX2gnnr8Usemn3rMe/LDf4mWI+/nL0Lxc9J3Nb2dE6fYbBerMx9ErddVhSug4SrGaArL3bVAuFSshWSA8S1SLjUGhkaW4jrKOFStrJWJuT3nD45dpCKmxqLi6/hxgWuUNzDxG3nNXTmNeMp76unVbGelqinI+pJ/3ouKh1UY79A+WXlY16g/KqVnyxX/pSVnypXvm/l95Qrf8LKT5cr37PyM+XKr6vrvwLl19QVVoHyK1Z+rlz5M7Z2XAUvWbb3wfsC69LVOCYsKf3T8HeJloL1beif+6g+5o/1z6sFLTMij8f41aKeq0U9CtdYjbgmasQ1WSOuqRpx7akR13SNuGZqxLV3RHmcrRFXnTJRZ9vX2V51ju066ZqrEVedslpnP5p8vd70TNuLGey7s4yOh8+ei0pviokTWTJ+0ZuQJktq/Tf8ypefz1o5VkzPhdPp/e+88fce/uY1CZU3WvhdjMma0iWUHlygrfYp1warW7k2TFAezjn2Dl0blJ5fhL6Y9kP8MwKez6Ni+2LW6Xk1TXz2geNHxYDqUJ5yCeF7UBz7fHeZ/vbd3aW/bQ+M/p6833dO77/5HEp9g6VoW86I8r59vu98CP1xEX4x2Sz3ocTPV8x5RzeS9q4HV0vQnqbbiHaDP5rRm/bX9eQepdoWz3vmnZ9XbtvJHFx8fqXGluGaysHF51dYnvWwPTm4+PwKy7NuPp2Di8+vsDzrOzMBXDi+pkX5GcoLyU3Rc1wlzyEf57L1TETWE/I1xnNm56rF5H4nudRg//D8jDaQIXuIGQF/xG3WY+Ud4RgEP52C/Kixy/zw2mLlnRt8/4Ri+aixhfALxA/q6ax/ID/dAfIT6p+8eXqR+FFz6yj1T16spaMBfqYC/Ixi/+BcrvjZE+BnFPsncdtjIyA/05Tni1NqelRo/UD9xuZUpRfjvd9L2W+lZ8xE8BnSLdU8wXeJP5fxlbb5wYbmMVaHM/hfAJymw4XWyrJrcmg/geUSz9Pq4Xch2y22aVSxC8v2F5b37cUtXz2tnjx+QvGrcZzh3fVvkfxPQl5oTmwRfLuxWe6jGc6Qvq7upQrMJbPG16zItDw8j+P4Xpia9D/Slcr6IZizGI7rxD6YozzcH1xFeajv2x1JzN5O7StUfxk8xolTc6rhaxH8H8PYv0zziYqBqmJj857wU2I+YTqRr5CrpHILmxZ8qTbl83dVN7bzvKfuttP8TxP/Bv8ngTa18mMefrhNDf5PA22q2ijUpsptb1bwpfaZfBbOdadpXuDiutseeMPXIvgvBNrUYMY8/Ix5cH4x0KZXEV95bRq6O0V6pt32dtwXKMdnBIo/ReseUXdCf6GxlaaDVM7qaTstu9x3Bv/Xou/UmRS3Uei8D+vl+wWkQ/HFepDB/y3Q+Xe0NgxAbx5XejPSOebhy+hheD4XwH4P7TunB8hPlX0nnwsMed8p+QnFiAvFyk4Tnwuoc0XFD+pWdfPTKchP6FwA+RnCuc34MM8FQvvoms4Fxod5LjBHeQnksS056tG+fTLmoS+LOkPneV2dx6vvwhi89YVP18V7P4SfzIhVOoTaH6l4jbw/mgac13t0PeQrpEOE9FOkR7Up62xIe2ju5xjbJWW3rWQX+WfZzdPFi+4DOC4mrn2+u1VuX9+ch3MEy7+SU95/p4l9+fBpZQxvmjoC3vKQHuyvNOG5UVPg4m+EGPzb4NwnTWjjjfMB189xuhXd6kwoEbia4h36KPUamzRXk9dLLyRU55jb2h+O8LcI/gcbW2nF+TPGvuJvPvfNVz5x+F2n8+KLl8X/1c6dC40//NBb8/Cr/m5SGf4uC8M3IB/hb4Czox8mfZp9yOzdQgAu8TwVzUhPSNaaAt7qnhDwlofzBPuw4frTFLi6nvrmaQziuMHYvlw/rqfOQ7fPVodxNcU7HIM3ktyX9L1JrG7lP6Rkq8pY2PO5T97x9/919rqYWP4xoQ87butaXpD3aH/ZnYpBUdGvqpdQeaxP+ZWGYl4YLhUTJSae+3103lBXTJS7SE4G5YuH806ePA7bf7uqPCr5CMnjsP23x0We4bI51+e/jWsmwq+QPKJeyPKo4j+obwqktB0jeayyboZ8L/msLc8XcD57Kr/CUDjnNPVcXOL5A3FU9AWPHhs75Qtu/JUNDZ7a2ky47WPvEODz2X/x9zNLzgdvVf1fhIc8P95Lnntyn52m8cFj989Bn/2AB6dzehywfaLyY1V9+RqDLi6F7tIr2qRHjwPD33WVxt3GOMg7I+ZxUNJOe8s48H2T0GdT6rOlVTSjnCtZ6FLekG0Vr6nblid0Bhn6JkmMnSnKop2t746vqHRFjq+8ef5XaE5W31cLzfMG/0mY53+NcOIaqeSQ7b1VfUqfTVPPxaWYvcCw9Z2qewE1vkN7gTr0HZSjGH2H7cVCYcjVPN8QuJRezGfB3LbODWaeR358+x2jh9vDF28O+Vb7CW4H5Y+U0P9IA8op+0c0BS7lo9SgPNVPEy7c7+oejPUBnIdCe0WD/3Tgbil23jb42O84KzuqScpTfoYDvLeWsuo7f02cvk9U55kGn/etNpZfvDPieyekBW0UfHKl1q1YW+WQfCl9k+XriwXlS+0/Y+WLfXBi5Suk874R5Qt5DMkX7nEvVbyr+tL4v37jC59feX5Qd1Ufv+EdP7rn/uuezsNvfkEr/fWl5QvrJ5eeWF0/0z9//vrsfYfKFNVFOoL++PJPP9NhhIXKu2dMt6lCv5UpUX5jfB+A8kp/5TUUy6Rj6Sr4jTFweB5TazjreSV5Wah4R3Ozmm9QT3DOf06fJnXP8Zpfefa7Yl8vVGyfm+ecv3837sKy/9W+KyE+StJxC441S2q/Ye+6rtoYSQif1cf82e90jrU4GZufG7nl27PPff8/+SCRiPhmeI/5mBiG4Rg+pLxOwPuRNzbJniNtbOI2aa5obPJMQnUWNjYhWosusLHGJtbmxy6snjqxdPr8ytKxU2vH3/+N7PUOr69PVVxfn6q4Jlxb8Z51Q3zx85gqNnKT4LgMTjO3AsytHphDAHPIA3MYYA57YPCbPrd5YI4AzBEPzFGAOeqBuR1gbvfA3AEwd3hg7gSYOz0w7wGY93hg7gKYuzwwdwPM3R6YewDmHg/MvQBzrwfmvQDzXg/MfQBznwfmfoC53wPzAMA84IF5EGAe9MA8BDAPeWAeBpiHPTCPAMwjHpj3Acz7PDBLALPkgXkUYB71wCwDzLIH5hjAHPPAHAeY4x6YEwBzwgPTB5i+B+YxgHnMA7MCMCsA0wSYkwBzkmA6bru6UmC+XKxqhxSyzaloUxJ9Tm74u67S2rOht6qzR2VTrvYvCeWpuMxq/2K/U3VuHuC4b/mMFfXpFcpD9eck4MdP0fvmUOML63du+96xZFuvVpS7vaFze9X2fMYV0/ZpehLgato3r1Zsu1nbV6qzd+urUd+e4D1CmkZxe3IQaDac84CvjF5+oFz5vVZ+oVz5jc++HyxX/mY7r/jL7EVVPT3GnqykrdJs7LqxU9+Sqnh/vDeh8lifupNQfjTYtumfjcu2B5cvrp7pWXV+EyUt9wjRjm2beJ6Gl9/x2T/y7rtvLmrP8CSUO0k48+7d2Qfc2qQt4BEf3zWdyp4pfy97cPr48uF8HMqtZb/V2D0IcE84zX/iwm0ay3/DQ+sFt8n/Kx5akR6klfVYloUPBODGBBzLk3Nal1wgeGXzrGhiu8mfcJu8v+zBie2PdM0TPLc/wzANBv+TQMMrhLMNbcDzi4N2UHNjmnouKiVVbVeUjVkSX76qDVdH3TOifH2Q6EJ9Vo0t7iuDfx7KPZv9VvGieQ1RtiMTTvujJp6nc3HztIqDY/RNQxnmO008rvZCvU3CoeBN92wBPMZM5DnI4H8xe6bt9pXst4pThH36y566lZ800sp1fwzKsW841s3xfLCdWS+YFrRgOx8gWgz+N91mO1x2m+3g3Na+t7qrHf+72dfiiUA93L8x8SURnu0LQvFCsU1UfM0pysM25tg9yu5B2aWo8YhzwQcj6J8WZQ1exWVCeP4upsH/QfZU69As0KfGVMuD84+g3CfcVv5VPL8U7kVP3ch/U/Bj8BxDieF9MZQ+5fz87xX843UR69gG/xnAedlDJ/Kl5lR7r+IYzQm+pt32duG4a9j2yNuLARwcC8Dqm3BaJiaJVszD+pF3NbZnBa2hvp4V9XBf/1n2xL5WaxfHrFT04bjnMT4lcOG6UfHq9KkEaDHcTQHpuzq17+2Nqp/+oG2r3vzp/pduuvzq5UHhH2u9+Zd6v//okddzHIN/zJ6p7P1T9pvParG+9N1/BOASz1PRjPTYu1GPY/D17DnKcQxezX7vRByD78h+L6+vLx8/uXSqf2ZpfW3T3MK+P7zD5hanK5pbnK54lTBXl7kFmiqEzC185g1NgDkCMEc8MD7zBoTxmTcgjM+8AWF85g0I4zNvQBifeQPC+MwbEMZn3oAwPvMGhPGZNyCMz7wBYXzmDQjjM29AGJ95A8L4zBsQxmfekOZXvC6/rY5rSxwjhsO5ytfl0dcer7fr8ncBHPdt6Lr8IcrD5f1hwP9j8JuP6odkav1IxXl+76BMra3tK5paP1KxffaGTK1ZNXVOq3Q7fSV+Y/Yc5SvxG4DmK/xKvFnxSrxh5RfLld+4kr+1XPkZK3+oXPlpK3+4VPlkw4Xhq9mbQYdpSqieQYXf4Tm7pBlCy2juAB18pMv4078u0NgkHAqe9QXG362HH8f84NWIcrVVV3Euvr5EXcUVoLfDV6Q/nT3TvmZTXTxm5DZME5uGTxFNDBNjVoDbZr5GMXjUQ14lnMrlUcm4vc8LfcsuosjDtKdulFH1iSfrQz6q7bm4xLSjzM2I+vgaaoXw2BEX9rMK/2vwe0W9KuQ7H9lbvWm/fS373XHb27JAW/SMJnU9GPpkhsGfhnLvz35zuBUcvyncWXiPuCedHvt7AninI/D6rjwXiSeDvwDlzlPdbQ9Plzx14xVEJ8BT28PTJYBzTu9z6rjm/DeiB3U7vubM+3Rm2Tlixm2X5VCooQ7Vk4h61FUmz59tD7zh4/nzp7Jn2m5jyVb6xkT59J2tEypcBpfB863QuqH2piGzDtS51dx+iPg1+L+Ccs8STivvm7Nxr8C8lpmz8ai/6cGpePh5wmNjF9s4EXhYVrBe1Hl4zm5TvThnh2QtTWrfmqaei0ssF4ijYj90sY0sqfMgDjmalKsvGHIUaWD9uuR5V8cXZgj3MyoMjpKZZg7N89kzFHKqKXAzXMVzku/kNp6IqBd59/F3kPhDXG0q52tHxNsU9CENBzz0dVx4roiVsYUAP2NUbqwkP1huwkNfx+W3W0z/LAb4qdI/vvbmUEXq/E/pOci3c/XqOaHQWXmm93bGokyweN0reQY5FqKF59Q0qbYdp3KqbbkvY+eCinNPO5a/BvHXDPDnO6/NG3vKBDFx2/kNjfGK/T0+qv3Nc5Ea6zE6rY+fCeJH4QrJBfOj+ovnxzSp+QbXjTTVOd8kAMBtlKcvmEzy552Q39AZp5nbcLsxLO4hQnS0CN5Mk/FcKXRHNIj2RTnj9lXrIcKzfqNcbPgMLk0qdCKHVVT2CyyrWA+297zbyqOSf9zvVTTdO50ALYa7KSB9pnv/kj2v9E/sDNq0bpCmbxb6Je27/8x+55m+tRI/XOJ5KpqRHns36qZvjQzBKJu+/bfbysMwTd8GbSb7tuz3+fW1c/2l1TNL/Uv94xfWV9fOLB1fPn6yv7R2bvn4qf7SE+eWz57tn/uRDHyHTe0WO4ywUPnNSBkll8BmXaZ2qO6GTO0OQFm+Yg9FF6y4TVioyGdS8ZqyGaNCIP6q19ZY17BNqviLS0plUbjaBXENsk+wrbBPDMbyQuZKsaZiPYBjGWdTMVzyDgKOH4Df78h+VzQrXKw45tyc86ubrJ44p5f1nTZ/env2HGXzp/1As5m//BDg88m4inqpjgNwO1thvDWMlpagRV2LpmrMW7LfZ8+tXlxe79+dru6HzizY2j6fLu1cEcoPyl/D+dcn5EfhaEJ5lWoIFrmYUN1Ft03vzp6D3jaZOcGJ1XP94+urF1N162L/3Dqa9KTpasBTRqfaV678Fll3RAviZd3PFajDEvYVJ95a8bhn3bFA/YmPDiWf5hm4D95Ze3xX9sS+XO+v9M8tPX5hbX21f2adqS1p+LRhmFgyBoHsVdwYTXKF2bMlyiWe/xv0DMEmAbxTIs9wWm8gvROUt9kb62tL55ZPrF6yMYlRQqzGIq2IkTxKlN8Ym2V1LtWLqAPwfgFbmfUYo6VkVI2JkA7SFfUyjJKsBv3fovfNCFglWZandI2YoxKlmygp5XZHeVO4WG9i+ajaR3OiTqPt/wB0gqtynU4KAA==",
6316
- "debug_symbols": "tb3briQ9cqX5LnVdF06jHUi9ijAQqtWaRgEFqaFDAwOh332CRtKW7cwKbt8R8d8oP/2VacudpK1wJ83J//7T//yX//Ff/+uf/vqv/++//cef/uEf//tP/+Pf//q3v/31f/3T3/7tn//yn3/9t399/Nf//tM1/k/hP/1DIav/989/KuP/7/T4///8p17nHzz/kPmHzj9s/tHmH93/KNe1/izrT1p/1vUnrz9l/anrT1t/tvXnildWvLLilRWvrHhlxSsrXlnxyopXVryy4tGKRyserXi04tGKRyserXi04tGKRyteXfHqildXvLri1RWvrnh1xasrXl3x6orHKx6veLzi8YrHKx6veLzi8YrHKx6veLLiyYonK56sePKIV8efsv7U9aetPx/xdPzZ5596rT8f8fr4c8Qbf1HrBt4gG3SDbRhXyQP6Ars2lA20oW7gDbJBN9iGHdlGZHlAuzaUDSPyuPlWN/CGR2Ry0A22oW3oC/q1oWygDXUDb9iR+47cd+SRQjSaZSTRABpZNKFsoA11A2+QDbrBNrQNO3LZkcuOXHbksiOXHbnsyGVHLjty2ZHLjkw7Mu3ItCPTjjyyi2SAbNANtqFt6AtGjk0oG2hD3bAj1x257sh1R647ct2ReUfmHZl3ZN6ReUfmHZl3ZN6ReUfmHVl2ZNmRZUeWHVl2ZNmRZUeWHVl2ZNmRdUfWHVl3ZN2RdUfWHVl3ZN2RdUfWHdl2ZNuRbUe2Hdl2ZNuRbUe2Hdl2ZNuR247cduS2I7cdeeQgtQGyQTfYhrahL/AcdCgbaEPdsCP3HbnvyCMHaxnQNvQJdeRg1QFlA22oG3iDbNANtqFt6AvKjlx25LIjl+UbtfAG2aAbbEPbsByp0rWhbKANOzLtyLQjjxysfYBtaBv6gpGDE8oG2lA38AbZsCPXHbnuyCMH+XrAyMEJZQNtqBt4g2zQDbahbdiRZUeWHXnkINcBdQNvGJFtgG6wDW1DXzBycELZQBvqBt6wI+uOrDuy7si6I9uObDuy7ci2I9uObDuy7ci2I9uObDty25Hbjtx25LYjtx257chtR247ctuR247cd+S+I/cdue/IfUfuO3LfkfuO3HfkviLzdW0oG2hD3cAbZINusA1tw45cduSyI5cduezIZUcuO3LZkcuOXHbksiPTjkw7Mu3ItCPTjkw7Mu3ItCPTjkw7ct2R645cd+S6I9cdue7IdUeuO3LdkeuOzDsy78i8I/OOzDsy78i8I/OOzDsy78iyI8uOLDuy7MiyI+8c5J2DvHOQPQf7gL7Ac9ChbKANdQNvkA26wTbsyLoj245sO7LtyLYj245sO7LtyLYj245sO3LbkduO3HbktiO3HbntyG1Hbjty25Hbjtx35L4j9x2578h9R+47ct+R+47cd+S+Ist1bSgbaEPdwBtkg26wDW3Djlx25LIjlx257MhlRy47ctmRy45cduSyI9OOTDsy7ci0I9OOTDsy7ci0I9OOTDty3ZHrjlx35Loj1x257sh1R647ct2R647MOzLvyLwj847MOzLvyLwj847MOzLvyLIjy44sO7LsyLIjy44sO7LsyDsHZeeg7ByUnYOyc1B2DsrOQdk5KDsHZeeg7ByUnYOyc1B2DsrOQdk5KDsHZeeg7ByUnYOyc1B2DsrOQdk5KDsHZeeg7ByUkYNCA3SDbWgb+oKRgxPKBtpQN/CGHbnvyH1H7jtyX5H1ujaUDbShbuANskE32Ia2YUceOSh1QNlAG0ZkGcAbZINusA1tQ18wcnBC2UAbdmTakWlHph2ZdmTakWlHrjty3ZHrjlx35Loj1x257sh1R647ct2ReUfmHZl3ZN6ReUfmHZl3ZN6RRw6KDugLRg5OGJFtAG2oG0bkPkA26IZHZB395fMxDn2Bz8jwgLKBNtQNvEE26Abb0Db0BbYj245sO/LIQR3XPHJwgmzQDbahbegLRg5OKBtow47cduS2I48c1DbANrQNfcHIwQllA22oG3iDbNiR+47cd+S+Itt1bSgbaEPdwBtkg26wDW3Djlx25LIjlx257MhlRy47ctmRy45cduSyI9OOTDsy7ci0I9OOTDsy7ci0I9OOTDty3ZHrjlx35Loj1x257sh1R647ct2R647MOzLvyLwj847MOzLvyLwj847MOzLvyLIjy44sO7LsyLIjy44sO7LsyLIjy46sO7LuyLoj646sO7LuyLoj646sO7LuyLYj245sO7LtyLYj245sO7LtyLYj2448ctDKgLKBNtQNvEE26Abb0Db0BX1H7jty35H7jtx35L4j9x2578h9R+4rcruuDWUDbagbeINs0A22oW3YkcuOXHbksiOXHbnsyGVHLjty2ZHLjlx2ZNqRaUemHZl2ZNqRaUemHZl2ZNqRaUeuO3LdkeuOXHfkuiPXHbnuyHVHrjty3ZF5R+YdmXdk3pF5R+YdmXdk3pF5R+YdWXZk2ZFlR5YdWXZk2ZFlR5YdWXZk2ZF1R9YdWXdk3ZF1R9YdWXdk3ZF1R9Yd2XZk25FtR7Yd2XZk25FtR7Yd2XZk25F3Dradg23nYNs52HYOtp2Dbedg2znYdg62nYNt52DbOdh2Dradg23nYNs52HYOtp2Dbedg2znYdw72nYN952DfOdh3Dvadg33nYN852HcO9p2Dfedg3znYdw72nYN952DfOdh3Dvadg33nYN852HcO9p2Dfedg3znYdw72nYN952DfOdh3Dvadg33nYN852HcO9p2Dfedg3znYdw72nYN952DfOdh3Dvadg33nYN852HcO9p2D3XOQB9iGtqEv8Bx0KBtoQ93AG2TDjiw7suzInoMyVoavDWUDbagbeINs0A22oW3YkW1Hth3ZdmTbkW1Hth3ZdmTbkW1Hth257chtR247ctuR247cduS2I7cdue3IbUfuO3LfkfuO3HfkviP3HbnvyH1H7jtyX5Efq+xXUAmioBrEQRKkQRbUgkKjhEYJjRIaJTRKaJTQKKFRQsPT0pz6Jk/MSQ+NdjlRUA3iIAnSIAtqQX3TSNFFoVFDo4ZGDY0aGjU0amjU0KihwaHBocGhwaHBocGhwaHBocGhwaEhoSGhIaEhoSGhIaEhoSGhIaEhoaGhoaGhoaGhoaGhoaGhoaGhoaGhYaFhoWGhYaFhoWGhYaFhoWGhYaHRQqOFRguNFhotNFpotNBoodFCo4VGD40eGj00emj00Oih0UOjh0YPjb41vJxmUQmioBrEQRKkQRbUgkKjhEYJjRIaJTRKaJTQKKFRQqOERgkNCo3I8xJ5XiLPS+R5iTwvkecl8rxEnpfI8xJ5XiLPS+R5iTwvkecl8rxEnpfI8xJ5XiLPS+R5iTwvkecl8rxEnpfI8xJ5XiLPS+R5iTwvkecl8rxEnpfI8xJ5XiLPS+R5iTwvkecl8rxEnpfI8xJ5XiLPS+R5iTwvkecl8rxEnpfI8xJ5XiLPS+R5iTwvkecl8rxEnpfI8xJ5XiLPS+R5iTwvkecl8rxEnpfI8xJ5XiLPS+R5iTwvkecl8rxEnpfI8xJ5XiLPS+R5iTwvkecl8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwizynynCLPKfKcIs8p8pwiz72KqJGTBllQC+qbPM8nlSAKqkEcFBo9NHpo9NDoW8OLihaVIAqqQRwkQRpkQS0oNEpolNAooVFCo4RGCY0SGiU0SmiU0KDQoNCg0KDQoNCg0KDQoNCg0KDQqKFRQ6OGRg2NGho1NGpo1NCooVFDg0ODQ4NDg0ODQ4NDg0ODQ4NDg0NDQkNCQ0JDQkNCQ0JDQkNCQ0JDQkNDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDw0LDQsNCw0LDQsNCw/O8OllQC+qbPM8nlSAKqkEcJEGh0UKjhUYLjR4aPTR6aPTQ6KHRQ6OHRg+NHhp9a3jh0qISREE1iIMkSIMsqAWFRgmNEholNEpolNAooVFCo4RGCY0SGhQaFBoUGhQaFBoUGhQaFBoUGhQaNTRqaNTQqKFRQ6OGRg2NGho1NGpocGhwaHBocGhwaHBocGhwaHBocGhIaHieixMF1aCh0ZwkSIMsqAX1TZ7nk0oQBdWg0NDQ0NDQ0NDQ0NCw0LDQsNCw0LDQsNCw0LDQsNCw0Gih0UKjhUYLjRYaLTRaaLTQaKHRQqOHRg+NHho9NHpo9NDoodFDo4dG3xpeHLWoBFFQDeIgCdIgC2pBoVFCo4RGCY0SGiU0SmiU0CihUUKjhAaFBoUGhQaFBoUGhQaFBoUGhQaFRg2NGho1NGpo1NCooVFDo4ZGDY0aGhwaHBocGhwaHBocGhwaHBocGhwaEhoSGhIaEhqR5xJ5LpHnEnkukecSeS6R5xJ5LpHnEnkukecSeS6R5xJ5LpHnEnkukecSeS6R5xJ5LpHnEnkukecSeS6R5xJ5LpHnEnkukecSeS6R5xJ5LpHnEnkukecSeS6R5xJ5LpHnEnkukecSeS6R5xJ5LpHnEnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5rpHnGnmukecaea6R5xp5bpHnFnlukecWeW6R5xZ5bpHnFnlukecWeW6R5xZ5bpHnFnlukecWeW6R5xZ5bpHnFnlukecWeW6R5xZ5bpHnFnlukecWeW6R5xZ5bpHnFnlukecWeW6R5xZ5bpHnFnlukecWeW6R5xZ5bpHnFnlukecWeW6R514T1otTC+qbRp4vKkEUVIM4SII0KDQkNCQ0Rp53cipBFFSDOEiCNMiCWlDfZKFhoWGhYaFhoWGhYaFhoWGhYaHRQqOFRguNFhotNFpotNBoodFCo4VGD40eGj00emj00Oih0UOjh0YPjb41vJBsUQmioBrEQRKkQRbUgkKjhEYJjRIaJTRKaJTQKKFRQqOERgkNCo2R552dKKgGDQ11kiANsqAW1DeNPF9UgiioBoVGDY0aGjU0amjU0ODQ4NDg0ODQ4NDg0ODQ4NDg0ODQkNCQ0JDQkNCQ0JDQkNCQ0JDQkNDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0LDQsNCw0LDQsNCw0LDQsNCw0LDQaKHRQqOFRguNFhotNFpotNBoodFCo4dGD40eGj00emj00Oih0UOjh0bfGl6stqgEUVAN4iAJ0iALakGhUUKjhEYJjRIaJTRKaJTQKKFRQqOEBoUGhQaFBoVG5HmPPO+R5z3yvEee98jzHnneI8975HmPPO+R5z3yvEee98jzHnneI8975HmPPO+R5z3yvEee98jzHnneI8975HmPPO+R5z3yvEee98jzHnneI8975HmPPO+R5z3yvEee98jzHnneI8975HmPPO+R5z3yvEee98jzHnneI8975HmPPO+R5z3yvEee98jzHnneI8975HmPPO+R5z3yvEee98jzHnneI8975HmPPO+R5z3yvEee98jzHnneI8975HmPPO+R533nOV07z+naeU7XznO6dp7TtfOcrp3ndO08p2vnOV07z+m6QqOERgmNEholNEpolNAooVFCo4RGCQ0KDQoNCg0KDQoNCg0KDQoNCg0KjRoaNTRqaNTQqKFRQ6OGRg2NGho1NDg0ODQ4NDg0ODQ4NDg0ODQ4NDg0JDQkNCQ0JDQkNCQ0JDQkNCQ0JDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NCw0LDQsNCw0LDQsNCw0LDQsNCw0Wmi00Gih0UKjhUYLjRYaLTRaaLTQ6KHRQ6OHhud5d+IgCdIgC2pBfZHXwy0qQRRUg4aGOEmQBllQC+qbPM8nlSAKqkGhUUKjhEYJjRIaJTQoNCg0KDQoNCg0KDQoNCg0KDQoNGpo1NCooVFDo4ZGDY0aGjU0amjU0ODQ4NDg0ODQ4NDg0ODQ4NDg0ODQkNCQ0JDQkNCQ0JDQGHn+GAyOBmzAHjhyfWMBErACGShAqCnUFGq+3VW5BvqGVwtLYL/mRlTktWZl4RArc7MlASrQgA3YN3p52cYCJGAFMlCACjRgA0KtQK1ArUCtQK1ArUCtQK1ArUCtQI2gRlAjqBHUCGoENYIaQY2gRlCrUKtQq1CrUKtQq1CrUKtQq1CrUGOoMdQYagw1hhpDjaHmW8QVdWzAHuh7xS0sQAK6mjkyUIAKNGAD9kBPt4UFSECoebqV5ihAV+uOBmzAHjjTbWIBEnCoETkyUIBDjdjRgA041Miv1/ecW1iABKxABg4134XKi9Y2GrABh1r1K3PTWFiAHlccPa4PAveHOv+rRxgt6WVpGwuQgBXIQI/bHRVowAbsge4PCwuQgBXIQKi5P4wdncjr1DYOtbGZE3ml2kL3h4UFSMAKHGrMjgJUoAEbsAe6PywsQAJWINTcH1gcFehq6tiAPdD9YeFQE28H94eFFchAASpwqElxbMAe6P6wsAAJWIEMFKACoeb+MHajIK9oW+j+sNBb0oec+8PCCmxAj+C96dkt3jqe0mOTBfKitI0KNGADjmDqF+kpvbAACViBDBxq6nfhKb3QgA3YAz2lFxYgASuQgVDzxwP1dvDHg4UN6Gpj9Hm12sYCdDV1dDVzdLXuKEAFGrABe6AnupFjBTJQgAq0QM/C8VEZeUHZxiFhfr2eb9YcK5CBAlSgBXpemF+v58XCBuyBnhcLC5CAFchAAUJNoCZQE6gp1BRq/gs5Kp/Jq7seawSOI8KoSSOv71rov4ULR4Tm3e3ZsrACGShABXpc7wBPhuYd4MnQ/Mo8GRYK0CN4U3syLGzAHujJsLAAh1r3O/ZkWDjUut+8J8NCBY64Y8mEvFDrMTnpWIF+veboEdhRgQZsQI872sELtjYWoKupYwUyEGoFagVqBWr++zbRf9/axAIkYAUyUIBtd6FXZs0u9NKs2Vlem7WRgbL7wsuzNhqwAaM3vURrY9n95kVaG+vuLC/T2ijAFl3o+Tb7TdCbnm+zCz3fZkMJ2lfQvoL29XybnSXoTUVver7NzlL0pqI3FWoKNYWaQk3Rm54M3ZvEk2FhAz4u5/ESN9A3PF1YgASsQAYKUIEGbAP9cnwbYkeve9pYgASsQFdrjgJUoAFdrTv2QN+ceOFQ83dir4HaWIFDzd+PdW6ROlGBBhxqZQwYnRujVkcCViADPa44elx19Ljm2IA90LcrXuhqfse+ZfHCCmTgUCO/N9+x2N86vPiJfO9kr36itb3vkPANbL3+aSMBK5CBAlSgq3mr+z7GC4da9cvxvYwXFiABK5CBAlSgARsQago1hZpCTaGmUFOoKdQUago13/HYX6O8OGpjARKwAhkoQI/rneX7HU/0HY8XFiABK5CBAlSgAaHWoNah1qHWodah1qHWodah1qHWodZDza4LWIAErEAGClCBBmxAqBWoFagVqBWoFagVqBWoFagVqBWoEdQIagQ1ghpBjaBGUCOoEdQIahVqFWoVahVqFWoVahVqFWoVahVqDDWGGkONocZQY6gx1BhqDDWGmkBNoCZQE6gJ1ARqAjWBmkBNoKZQU6gp1BRqCjWFmkJNoaZQU6gZ1AxqBjWDmkHNoGZQM6jBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CU2vYQdK5CBuh3RpoFMbMAw3XZdwAIkYAUyUIAKNGADQq1ArUCtQK1ArUCtQK1ArUCtQK1AjaBGUCOoEdQIagQ1ghpBjaBGUKtQq1CrUKtQq1CrUKtQq1CrUKtQY6gx1BhqDDWGGkONocZQY6gx1ARqAjWBmkBNoCZQE6gJ1ARqAjWFmkJNoaZQU6gp1BRqCjWFGh47Gh47Gh47Gh47Gh47Gh47Gh47mkHNoGZQM6g1qDWoNag1qDWoNag1qDWoNag1qHWodah1qHWodah1qMFLGrykwUsavKTDSzq8pE8vMccKZKCrdUcFGtDVmmMPnF4ysQAJWIFDjclRgAocauzX616ysAe6lywsQAIONZ9B9sqvjQJ0NXE0YAP2QHcNn0z2wi5ibyj3h4UG9AjeUO4PE90fFo7r9XnlPo9UmViBDBxqPhXc59EqEw3YAudxKt588/iU6ihABfr1uoTn/MIe6Dm/sAAJWIGu5o06D1WZqEADNmAPnMerTCxAAlYg1AxqBjWDmkHNoNag1qA2j13x7vbs9tlxr+TaaMAG7IGe3QsLkIAVyECodah1qHWo9a1Wva5rYwESsAIZKEAFGrABoVagVqBWoFagVqBWoFagVqBWoFagRlAjqBHUCGoENYIaQY2gRlAjqFWoVahVqFWoVahVqFWoVahVqFWoMdQYagw1hhpDjaHGUGOoMdQYagI1gZpATaAmUBOoCdQEagI1gZpCTaGmUFOoKdQUago1hZpCTaFmUDOoGdQMagY1g5pBzaBmUDOoNag1qDWoNag1qDWoNag1qDWoNah1qHWodahNLzFHBgpQgQZswL6xTC+ZWIAEHGp6OTJQgK7WHA3YgD1wesnEAiRgBTJQgFArUHMvGUt81cvJFrqXLKzAEWGsQ1YvFdvoEdSxB7o/LCxAAlbguF7zJnF/WKhAAw41c2H3h4nuDwuHmvn1uj8srEBXq44CVKABXY0dXc2v153AvI/dCRYyUIAetzuOuM3vwp2g+eW4EzRXcydYWIAEHGrNL8edYKEAFehqfr2e/s0vx9O/ec97+ne/HE//7hKe/gsZKEAFGrABh1r3a/D0X0gxjBpGlOf8QgEq0IAYqQ0jtWOkes4vhFqHWodah1qHmud89zbznF/YN86DFLs5FiABK5CBAlSgARuwBxaoFah5zo+y1DqPWFzIQAEq0IAN2AM95xcWINQIagQ1gpr7w1hhquuwRRk4nxQmFiABK5CBAlSgARsQagw1hhpDjaHGUGOoMdQYagw1hppATaAmUBOoCdQEagI1gZpATaCmUFOoKdQUago1hZpCTaGmUFOoGdQMagY1g5pBzaBmUDOoGdQMag1qDWoNag1qDWoNag1qDWoNag1qHWodah1qHWodah1qHWodah1qPdTqdQELkIAVyEABKtCADQi1ArUCtQK1ArUCtQK1ArUCtQK1AjWCGkGNoEZQI6gR1AhqBDWCGrykwksqvKTCSyq8pMJLKrykwksqvKTCSyq8pMJLKrykwksqvKTCSyq8pMJLKrykwksqvKTCSyq8pMJLKrykwksqvKTCSyq8pMJLKrykwksqvKTCSyq8pMJLKrykwksqvKTCSyq8pMJLKrykwksqvKTCSyq8pMJLKrykwksqvKTCSyq8pMJLKrykwksqvKTCSyq8pMJLKrykwksqvKTCSyq8pMJLKrykwksqvKTCSyq8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpf4RnF11K1UL/XbWIEMFKACDdiAPXB4yUaoMdQYagw1hhpDjaHGUGOoCdRihrPy9JKJrlYcGShABRqwAXugulp1LEACuho7MlCAruZXpgZsQO83Dza9ZGIBErACGShABRqwBbprjKnr6kWIG/0ufMA0BgpQgQZswB7Yvc3MsQAJ6GrNkYECdDW/Mj92emED+sz0COb7ym0sQAJWIAMFqEADtkA/fHoUW1UvTdxYgeMuRrFV9dLEjQocdzEqrKqXJm4cbTaKraqXJm4swKE2KqyqlyZuZKAAFWjABnS1MSZ9f7mNBUjACmSgrLrBugoWxXEXANZZsLiwAAlYgQwUoK4Kwepby21swB7oxcRtYgESsAIZKEAFGrAFKnpe0fOKnlf0vKLnFT2v6HlFzyt63tDzhp439Lyh5w09b+h5Q88bet7Q84aeb+j5hp5v6PmGnm/o+Yaeb+j5hp7v6PmOnu/o+Y6e7+j5jp7v6PmOnu/o+R4977WWs4e81nIjASuQgQJUoAGj572qso6KxupVlRsrkIHeF/OfKdCADejlvWMQ6CxHnliABKxABgpQgRY4s9scC5CAFchAASrQgA3YAxlqDDWGGkPNf/3JL9J//Rcq0IAN2AP915+81UfObyRgBbqat7r/+i9UoKs1x6FWp0QP9F//hQVIwApkoAAVONRGiVD1AsuNrjYyywssNxYgAV3NL92dYKEAFWjABuyB7gQLXc17yJ1goat567gTLBSgAg3oEsMcvdZyYwESsAKHBHuT+IPAQgUasAH7Rq+1rOPjtOq1lhsJWIEMFKACDdiAPbBAza1iFBFUr7XcWIGuJo4CVKCrmaOrNUdXG63jtZYbC5CAFchAL9JwakF906yIcipBtMkzeFQdVC923MhAr/l20iALakF9k08DTPKIE0cz+JO7ly7W+R9bUN80H8WdShAF1SAOkiAX8fvyNFw4VMS7yNNwoqfhQr9M7yJPLV9q8yrEjT7d7OQBvAs9sxYWIAErkHeTtGjOFs3ZojlbNGeL5vREmo3oKTMb0VPGF8C8unCj36pfqaeMo1cXVl+w8+pCnkRBNYiDJEiDRkRfMfNaweorDl4r6AnipYKLJGj86/n3LKgF9U1+Pv2kEuQiHsbH/cLR7+N7vOolghsV6Jc5etPL/qqv0HnZ38ZxnX4b/ls4G8Z/CxcasAE97OhNr/rbWIAUDT4zaSIDocZQY6gx1BhqAjWBmkBNoCZQE6gJ1ARqAjXPvok+q+YBNAa1F/1trEAGSqD/TqlH8GRaaEB/S3Xqm+Z8l1MJoqAaxEESpEEWFBotNHpo9NDooeG/Ub7+6iV4GwU4bsbXVL0Eb+NoRF/X9RK8iV6Ct7EACViBDHQ1dVSgAV2NHXug/0YtdDVzJGAF+qKrkwRpkAW1oL7J89Em+pV2x3GlvibsBXUbG7AH+iOrLxr7jmobCViBDPSlTicXq44GbEAXGz3qtXcbC9DFvC08Sxe6mN+aZ+lCBfr4dWpBfdNMUacSREEe0RvLc85XrL3qro7P96pX3W0sQAKOK/X3Mq+62yhABRrQ1Zz6Jv/Zm+SN4kRBNYiDJEiDXMSHnD92LuyB/jO40C/TG98fJRf6qHZqQX2TP1L2iQVIQG8Rvw9P14X+q+XN2xU4fnl8ns9r6tjn47ymjsfkHntNHY8ZJ77m7+NEAlYgAwWoQAO6mjm6WhtYXK07DrUxgcBePcdj1oC9em6jAg3YgD3Qf0IXejByFKACDdiAPbBeQA/mDVX9n7FjA/ZAvoDj3vwuR8otqkEcJEEaZEEtqG8a2bYoNCQ0JDQkNCQ0JDQkNCQ0JDQ0NDQ0NDQ0NDQ0NDQ0NDQ0RrKxj4SRbItqEAdJkAZZUAvqm8ZP56LQaKHRQqOFRguNFhotNFpotNDoodFDo4dGD40eGj00emj0reEFYjyebtkLxLj4f/XEGB95speC8XhBYa/e4vEbzb7310YB+iOmRxjDWjzAGNWL+qYxpheVIAqqQRwkQRoUGjU0fKyPH0n22iweD1DstVnilzhG9iILakF90xjZi0oQBdUgDgoNCQ0JDQkNCQ0NDQ0NDY0xssc7D3t51iIJGhre0mNkL2qbfIyPFzH2wiuu3sE+oqs3kw/phQZswB7ow3phARKwAhkItQa1BjUf3tVHlo/viT7AFxYgASuQgQJUoAGh1kPNa7A2FiABK3B0Q3eSIA2yoBbUNxWPyI5+peL4+Nfj1Y29oGpRC3r86/GOx15NtagEUVAN4iC/8TEWvGSKx7MCe8nURgL6Lfpl+g/MQgEq0IAN2AP9Z2dhARIQagw1/+lhv3T/7VlowKHG3g/+8zPRf3/Ym9V/gNib1X+B3N68ZGojA13Nhf1XaOFQGzMt7CVTLC480lVdYaTrohJEQTWIgzyid+Z42GPxi/bk9Bz3AqiNFTiu1NPcC6A2KtCALdCT0/Pfi5pYvHc9Decg9DRcaMAG7IGehgsLkIAVONTUG87TcKECh9ocmJ6GC/tGL2raONQ8AbyoaWMFjuY1JwnSoJFI6tSC+qbxu7aoBFHQ6MLmxEES5PdTHQ3YgD2QCOgtwo4K9Aji2IA9cGSteYOMpF1EQTWIgyRIgyyoBfVNHBocGhwaHBocGhwaHBocGhwaHBoSGhIaEhoSGhIaEhqem7NrPDcXNqC3l/eOPyUuLEB/MrocK9Cfjbx3/FFxoQIN2ID+EObd59m80B/DvM/m86Rf2Xyg9BE5nygnCtDV/CLnQ+XEBhxN6Arj93dRCaKgGsRBHnHkphcUcfPb9jxu3rKexwsrkIHjSpvftufxQgM2YN/oBUXeFryPimYvJ+I2/6NrmSMDH1HnP9+nUjDvnWyZ9062zHsnW/Y6IB6zAex1QBsbsAf6u9jCAiSgv0EURwYK0PZV+U62k/om38mWnUoQBXnwiQwUoL+hqKMB/T3I79V/Wyf6b+vCMvcuZt47VzPvnauZ987VzHvnaua9czXz3rmaee9czbx3rmbeO1czS2hIaEhoSGhIaEhoSGhIaEhoaGhoaGhoaGhoaMxXOh8u851uogG9xbxDPU8nep4u9JfH7kjACmTgeL67fPSOPJXLx4HvYj3/9xbUN40slcuHxEjTjQSsQAYKUIEGbMAe2KHWodah5lta+437ltaTJEiDLKgF9UVe6rOoBFFQDeIgv5/qqEADNmAPLBewAAlYgQx0NXZUoAXSBfQI6ugRzFGACjSgX6/fm7+/TvQX2IUFSMAKZKAAFWhAqFWoMdQYagw1hhq7WncU4FDzGSmv8tnYgEPNZ5m8ymdjARKwAhkoQAW6mneWvwIv7IH+ErzQ1cSRgBXIQAG6mt+8vwsvbMAeaBewAF3NG8oqkIECVKABG7AHuicsLECouSeMfbXYa382CtAnO7wl3RN8IsYrgjb6nIoPcPeEhT6r4q3jnrCwAhkoQAUasAH7Rq8I2liABKxABgpQgQZsQKgVqBWoFagVqBWoFagVqBWoFagVqBHUCGoENYIaQY2gRlAjqBHUCGoVahVqFWpzPkwdGShABY6qJJ/H1rlt98QeOLftnliABKxABgrQ72KYo1cEic+2eUXQRr/e7shAASrQgA3YA90JfCrLq3xWkyju2HN+YQP2QM95nwHzKp+NBKxA9KZBzdCbht409KahNxt603N+XoPn/EL0ZkNves7Pa/CcX2hAqDWodagh5xU5r8h5Rc5rx9jpaMmOluxoSc95vwYv+NlYgKFmyHlDzhty3pDzhpw35Lwh523mvDoWIAErkIHekuSoQG/J6tiAPdBzfqHfmwfznF9YgQwUoAIN2ICuNhLHK4E2xgD3HdXEJ+V8R7WNAlRgDA3fUW0jOovRWYzOYgJWIDqL0VmMzmJ0FqOzGJ0lF7AAMTQ8/X2yzwuQNhpwxGVvB09/n/fzGqSNBUjACmSgABVogRYPhr5L2kYCelwfD24KCz2u35CbwkID+l14d7spTHRTWOh34T3vprCwAhkoQAUasAF7oJvCQqj50bN+E3707CQNGi/hfgd+9OykvsjLlsSnRr1saSMBfUGkODJQgDoPPOW2D6Dltg+g5bYPoOW2D6Dltg+g5bYPoOW2D6Dltg+g5bYPoOVWQqOERgmNEhoUGhQaFBoUGhQaFBoUGhQaFBoUGjU0/DfdJ4G9CGpjBXqDsaMAfRGpOhqwAX0daYwpr4La6Gou7Km+0NW6IwMFOF4IvaP2ebTc9nm03PZ5tNz2ebTc9nm07JVO4hO9XtMkOv/ruFKfsfWapoWezgsLcFypT4y2ueo1kYECVKCrmWMD9kBP8oUFSEBX8ybyJF8oQAUasAF7oCf5wgIkINQ8ydWb3pN8oQJ9Vc9b0pPcvKE8ySd6kvvEpBdRbRxqPgnoZVQbGShABRqwAftGL6PaWIAErEAGClCBBmxAqBWoFagVqBWoFagVqBWoFagVqBWoEdQIagQ1ghpBjaBGUCOoEdQIav7L73OkXni1kYAVOJ6/r/nPBKhAAzZgD/Sn/YUFSEC/C3X06zXHHug/7D4l7RVVGwlYgQwUoAI97hjgXlO1mkRxx57zCwWowNG+PrHsNVUbe6Dn/EL0pkHN0JuG3jT0pqE3Db1p6E3P+Xk5Db3Z0JsNvdlwb57zPr3uhVgbh9oormMvxNrYgD3Qc95/kb0WayMBK5CBAlSgAV3NB4Hn/EC5ZqJ3R5cwxwpkoAB1dYB4AdbGBuyB5QIWIAF3Z8kViS5XJLpckehyRaLLFYkuVyS6XJHockWii1doyfipFq/Q2qhAvwtvB0/p7lfmKT3RU3phARKwAhkoQAV63DLQf9YXFiABPS45MlCACtw/zeKVXBt7oCf6wgIkYAUyUIBtrv6IV29N0itoLF75CBmpv6gG+fXPvyhABY5lRh+XI+8X9U2e9X1iARKwzvUo8QqvRRKkQRbUgvqmke6LShAFhUYLjRYaLTRaaLTQaKHRQ6OHRg+NHho9NHpo9NDw7O7etJ7dC/tG33HMl+XEdxzb6C3WHSuQgWM9fCyNiO84ttGADdgDfeF9YQEScKy9j3UW8R3HNgpQga5WHRuwB3q9zMICdDV2rEAGjnYkJw2yoBbUN/lT/qQSREE1iINCo4ZGDY0aGjU0ODQ4NDg0ODQ4NDg02BvNe5YN2IA9UC5gARKwAr3RmqMAFehq6tiAPdCLaYp3vVfTLCSgAEcxst+Pl0xP8n/k3WYErEAGClCB4xKLX+1I9Y09sF1AV/MEaASswKFGfrUj4zcq0Au8fPi2BuyBI+03DjXy2xyJr+TX2z2uN39XoAEb0OOOPPcKNx3zsuIVbjpmmsQr3HTM/YhXuG1koACHmre6F7ltbMAe6Hk+6tzES9501LmJby2mYw5MfGsxrX45ntzsEp7cCw3YgD3Qk3thAXohll+DJ/fCGES+n9hGAzZgD6wX0CX8hioBK9Crvfw2qwAVaMAG7IF8AQuQgBUINYaapzl7d3uaL2zAHuhpvrAACViBDBQg1ARqAjWB2qyZ856fBXLe87NCbqIAFehxu2MD9kC7gGVVuMgsp1tYgQwUoAIN2AI952UiASuQgQJU4Lhe8eHpeSw+JrtHqI4MFKBH8MHl2b1wtIN4d3t2O3rh3Ea/XnUkYAUyUIAKNKCrmWMP9OxeWIAErEBexW7i5XKzHbxcbmO0ju/7pWOmSnzfr40ErEAG+l10RwUasAG9BtDVPLsXFqCXAVbHCmTgUJs35Nm90IBecHg5upp3i2e3eqN6dqu3jmf3wgr0uH5vnscLG7AHeh6r35tnrA8uL6PbKEAFtkDd9aIy6+QWVuCuIpVZJ7dQgQZswB44q14nFiABvYTT28x/mhcasAHHzZt3lv80LyxAAvpdeL/NWtiJAlSgARuwB/YLWIBevewNNYvPJ/pdePt68i5swL7Rq+V0zNuJl8ttJGAFMlCAXpndHA3YgD2wXMACJGAFMlCAfhfs2AM9eRcWoN+FOFYgAwXodzHRgA3YA2c1+8QCJGAFel+oowEbsAd6mi4sQH/7dapBHCRBGmRB62sM4TmbNmhOpjmVIAqqQX7lE/0avf39x3RhAfq9F8cKZKAAFWjABuyBnrsLCxBqBjWDmkHNoGZQM6gZ1GbudscKZKAAR+v4j7QXym1swB7oj9ULC5CAFehV3345/nO8UIEGdDVPY89oR6+X21iAtDtLZkZPZKAAFWjABozx4EVzG/0uqiMDBeh3wY5+F+LYgD3QM3qh34U6ErACGehq3XGo+RyVl9JtbMAe6D/HCwuQgBXIQAFCzfO8+216ni/sgZ7nCwuQgBXIQAG6mjm6mt+x/0gv7IH+I72wAAlYgQwUoAKh5jNtlw8un2qb6HNtCwuQgBXIQAEqcMy3+du+l9Jt7IF2AQuQgBXIQFfzQWsKNGAD9kAvgl9YgAT0agYnDpIgDbKgtql7RG/Z7t8hXI4CHE5G8y8YsAH7Ri+M21iABKxABvpnFMXRv6Mgxx5YLmABErACGeh3UR0VaMAGdLUxyr0EbmMBErACGShAVxNHV1PHBuyB82uXiQVIwLr7QisDBahAAzZgD5zfvUwsQF7fycvcKmuhAj1uc2zAEdfneHyrrI0FOO7CJ3a8MG4jA8ddkHfAyPaNBmzAHujZTt46nu0LCViBDBSgAi3Q89rnjub2Vz797iVw5tNIXgK3sQH9ynwoe64uHFfmU05eArexAseV+SOAl8BtVKABG7AHjl/4ja7mw74TsAIZKEAF2r5jL3azURAmXuy2kYAV6HHZUYAKNGBbG0/I3N1qou8csrAACViBDBSgt45fuufxRM/jhQXod6GOFchAAeraYES8rG1jA/ZA31VkYQESsAK9dczRgA3odzEGl9eybSxAvwsP5h+rLfTPoLxJ/HO1hQocaj5r6LVsG3ug5/HCAiRgBboaOQpQgQZswB7oW474BMHcUsunI+aeWj4rMDfVWqhAAzZgD/S58oVl7UUkXuG2sQIZ6Gp+ZXPToIkGbMAe6FtwLSxAAlbgiOszP17LZuw55Nm9sAd6di8sQAJWoPeFJ5ln90IFGnDchc+DrO25Bs7tuRYWIAErkIECVKDfxcg3r2rbWIB+F+pYgQz0uzBHBfpdNMcG7IGe8z456gVuGwlYgQwUoAKHms9nep3bxh7ov90LC5CA3mZ+QzV63ovaZr95UdvG6HkvattYgASswOj5xgJUoAGj5+fWXhMFPS/oeUHPC3pe0POCnhf0/EjT4sehixepBbfEHTyGfvefUa/wWjiG/sYCJGAFjg+w/CfXK7w2KtCADdg3eoXXxgIkYAUycKj5T7lXeG004FDzn2ev8FroX3ouHGr+M+oVXt1/Jb3Cq/uPlVd4df9J8AqvjQo0YAP2wJEQ3UeKV3htJGAFMlCACjRgA/bACrUKtQq16nH93qoCLdCrMd0CfLerja7mN+QFmRO9InNhARKwAv3emqNfg3ehf7W50IAN2AP9y82FBUjACmQg1BRqCjWFmkLNoDZ+rLr7iddndTcRr89ajWroC0NfNI9AjgVIwApkoABdbaIBh5pMiR7oGbvQr9eHsmehr9F4zdVGv16/C8/C0S3q+19tLEACelx1ZKAAdXW3evnVxgaEWoFagVqBmmfhRM8WmViBHOgDfDxDqNc7bWTguMixPqJe77TRgOMix+OPehXUwvE70MeDg17zq+eJBBxqY41Gr/nh80QBKtCADdgD5+fP7FiABKxABgpwd7d6GZQPWvU6qNVDnjgLCYiOVXSsomM9cRaiYxUdqz3QLmBZ2aJeDrWxAhkoQAUasAF7oKeI+pV5iixswB7oKbKwAAlYgQwUINQ61DrUeqh5kdPGAiRgBTLQ1cRRgQZswB7o6bSwAAlYgQyEWoFagVqBWoEaQY2gRlAjqBHUCGoENYIaQY2gVqFWoVahVqFWoVahVqFWoVahVqHGUGOoMdQYagw1hhpDjaHGUGOoCdQEagI1gZpATaAmUBOoCdQEago1hZpCTaGmUFOoKdQUago1hZpBzaBmUDOoGdQMagY1g5pBzaDWoNag1qDWoNag1qDWoNag1qDWoNah1qHWodah1qHWodah1qHWodZDja4LWIAErEAGClCBBmxAqMFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQtNLzNHVmiMDBahAAzZg31inl0wsQAJW4FAbVS3qZVsbFehq3bEBe6B7ySgYUS/b2kjAoTYqHtTLtvqoPFDf+myjAg3YgD3QvWRhARKwAqFGUCOoEdQIagS1CrUKtQq1CrUKtQq1CrUKtQq1CjWGGkONocZQY6gx1BhqDDWGGkNNoCZQE6gJ1ARqAjWBmkBNoCZQU6gp1BRqCjWFmkJNoaZQU6gp1AxqBjWDmkHNoGZQM6gZ1AxqBrUGtQa1BrUGtQa1BrUGtQa1BrUGtQ61DrUOtQ61DrUOtQ61DrUOtR5qXkW2sQAJWIEMFKACDdiAUCtQK1ArUCtQg5cwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJTC/pjgo0YAP2wOklEwuQgBXIQKgR1AhqBDWC2vQScSxAAlYgAwWoQAM2YA9kqDHUGGoMNYYaQ42hxlBjqDHUBGoCNYGaQE2gJlATqAnUBGoCNYWaQk2hplBTqCnUFGoKNYWaQs2gZlAzqBnUDGoGNYOaQc2gZlBrUGtQa1BrUGtQa1BrUGtQa1BrUOtQ61DrUOtQ61DrUOtQ61DrUOuhptcFLEACViADBahAAzYg1ArUCtQK1ArUCtQK1ArUCtQK1ArUCGoENYIaQY2gRlAjqBHUCGoENXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZd4zVwf1dXqNXMbK5CBAlSgAYfaKH1Wr5lb6F6ysAAJWIEMdDVzVKABG7AHupcsLEACViADoWZQM6gZ1AxqDWoNag1qDWoNag1qDWoNag1qDWodah1qHWodah1qHWodah1qHWo91Oy6gAVIwApkoAAVaMAGhFqBWoFagVqBWoFagVqBWoFagVqBGkGNoEZQI6gR1AhqBDWCGkGNoFahVqFWoVahVqFWoVahVqFWoVahxlBjqDHUGGoMNYYaQ42hxlBjqAnUBGoCNYGaQE2gJlATqAnUBGoKNYWaQk2hplCDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7S4CUNXtLgJQ1e0uAlDV7ilX99fBSjXvm3sQKH2jidTr3yb6MCh9r43kS98m9jD3QvWViABKxABgpQgVCrUKtQm1tZjY9TtM29rBZT4pqYE0tiTWyJW+IOlqQrSVeSriRdSbqSdCXpStKVpCtJV5OuJl1Nupp0Nelq0tWkq0lXk64mXUu6lnRt6rJzTcyJJbEmtsQtcQe3K3FJnHRb0p1vKD5S57uIX+V8F5nYN87ixoUFSMAKZKAAFWjABoRagVqBWoFagVqBWoFagVqBWoFagRpBjaBGUCOoEdQIagQ1ghpBjaBWoVahVqFWoVahVqFWoVahVqFWocZQY6gx1BhqDDWGGkONocZQY6gJ1ARqAjWBmkBNoCZQE6gJ1ARqCjWFmkJNoaZQU6gp1BRqCjWFmkHNoGZQM6gZ1AxqBjWDmkHNoNag1qDWoNag1qDWoNag1qDWoNag1qHWodah1qdtiDMnlsSa2BK3xH2zeaVm8LSr5kyJa+Kpq86SWMGxUGtXLNTaFQu1NusxFzJQgB5tfNBmvh9ecEvsdzE+NTTfEi+4JPa7GF8Qmpd7BnNiSayJLXFL3MH1SlwSJ92adOdOmOPDQrvmVpjjoEq75l6Yiy1xS9zB8yFicUlMiWtiTpx050NE8Z6dDxGLW+IOng8Ri0tiSlwTc2JJnHTnQwR5f82HiMUdPB8iFpfElLgm5sSS2HXJR/t8iFjcwPPHn3wkzx//xZZ4LwTYFUsqdsWSil2xpGJXLKnYFUsqdsWSil2xpGJXLKnYFUsqdjWoNah1qHWodah1qHWodah1qHWodajFkoqVWFKxEksqVmJJxUosqViJJRUrsaRiJZZUbJagjgUGmyWoC3tguYAFSMDZSR5tmsL4gMTKNAXyvzNNYXFJTIlrYk4siTWxJW6Jk25NujXp1qRbk27d84E260wXKtCADdgD5/zExAIkYAVCjaE2jWB86mJlGsHilriDpxEsLokpcU28ZyFt1psuVOAU9YuZLrC4g6cLLC6JKXFNzIm9Q8dHOVamCyy2xC1xB89XicUlMSWuif1m/b7nxMVEBRqwAXtgTFyYV5I+AouzJW6JO7hfiUviebHqXBNzYkmsiS2xv9V6m7o9OM6q0oUFSMAKnIrmLIk1sb9GV8cG7IFl3mZzLokpcU3MiSWxJrbE3rzsFzxNZfI0lcUlMSWuiTmxJNbErst+X9Mk2BthmsRiTjzj+HWuXbQnW+KWuIPXTtqTS2JKXBNz4qQ7DUP8+qdhLG6JO3gaxuKSmBLXxJzYdcXbZz45LLbELfHU9baanrG4JJ66fi/TMxZzYkmsiS1xS9zB0zMWl8RJd3qG+j3O6YfFklgTW+KWuIPn9MPiknjGZ+f59/0apl0sLon9OkfhpdG0i8WcWBJrYkvcEvfgOt87FpfElNh1x7uP1WkaiyWxJrbELXEHT99YXBK77tj0y+r0jcWcWBJP3eZsiVviqev3Mn1jcUlMiWtiTiyJNbElbomT7nwYaX6P82FkMSWuiTmxJNbElriBp580b5/pJ4trYk4siTXxjC/OLbHf19ilyer0k8VT15wp8dT1vph+snjqevtMP1nsumMbCqvTTxa7rv941ekni123+71PP1nsuv47VaefLHbd7vc4/WTx1PV7nH6yeOr6PU4/WTx1/R6nnyyeun6P008WT12/x+kni4duufwe3U82d2e/R/eTzXt23GbN6cIKZKAAFTgVvZVaS9zBfSp6C7gjbabENTEnlsSa2BK3xD3YC1CDS+IZX51nHHOecZpzB5crcUlMiXH9Xl4aLIk1sSVuidP1U7p+StdPlDjpUtIlwz3WC/dY0/XXdP21JubEkjhdf03XX9P113T9nK6f0/Vzun5O18/p+jm1GyddTrpy4R6l4h4lXb+k6xdNbIlTv0u6fk3Xr+n6NV2/puvXdP2arl/T9Wu6fk3tpknXkq5V3KMp7tHS9Vu6fkvjtqVx21K/t9Tvbcbvzpw4FmqMmya2xA0889rn8Xjmr8/X8czf4tc/83exJfbr9/krnvnrLDN/F5fElLgm5sSSWBNb4pY46ZakO/N97BZmMvN9cU3MiSWxJrbELXEHz3xfnHQp6dKM35xnnO7cwTPfF5fElLgm5sSSWBNbYtcd+8CbzHyfPPN9cUlMiWtiTiyJNbElTro8dcevsEwfWFwSU+KamBNLYk1siVvipDv9wecPZfrDYkpcE3NiSayJLXFL7Lo+9SLTHxa7rs+IeDHog719sBBqgoVQEyyEmmAh1AQLoSZYCDXBQqgJFkJNsBBqgoVQk5Z0W9J1Pyl1sia2xC1xB8/nh8UlMSWuiTnx1PXcmf6z2BK3xD1Yp/8snn+/O7fEHTx9Y3FJTIn9Osd+X6bTNybPfPfZA535vrgmnn/fr2f6wGJN7NcpM2ZL3MHTH/xNXKc/LKbENTEnlsSa2BK3xB3MSZeTLifd6Q/sbTX9YbEk1sSWuCXu4OkPi0tiSpx0JelOfxh7q5hOf1hsiVviDp7+sLgkpsQ1MSdOupp0Nelq0tWka0nXkq4lXUu6lnQt6VrStaRrSdeSbku6Lem2pNuSbku60x98tkenPyy2xC1xB09/WFwSU+KamBNPXXWeut7v0x8Wt8Q92KY/LC6JKXFNzIklsSZ23bF/jNn0mcUdPH1mcUlMiWtiTizgKBY3i2JxsygWN4ticbPpPT7bZNN7FmtiS9wSd/D0nsUlMSWuiZNuTbo16dakW5NuTbqcdDnpctLlpMtJd3rP2IbHjLHeaGyJW+Kp6zy9Z3FJTIlrYk4siTWxJW6Jk+70Hp/5s+k9iylxTcyJJbEmtsQtsev6rJtN71lcEruu1wLY9J7FnFgSa2JL3BJ38PSexSVx0p3eMz4nN5ves1gSa2JL3BJ38PSexSXx1DVnSayJZ3zP++kxiz2+rxu16TGLS2KP70t9bXrMYk4siTWxJW6JO3h6zOKSOOmWpFuSbkm6JemWpFuSbkm6lHQp6VLSpaRLSZeS7vQln8Vs05cWt8QdPH1pcUnsFsiOM2R1tsQt8Qzpf39azuKSmBLXxJxYEmtiS9wSJ91pLT7BOus/i0+qzvrPzZJYE1vilriDp7X46/2s/9xMiWtiTiyJNbGBDdM6s86z+OTvrPPcXBNz4nlfzVkTW+KWuIOnhSwuied0icdvNTEnlsSa2BK3xB3cr8SY7mk93de0kMWa2BKn++q4r35diUtiSlwTc2LcV780sSVuiXFfvVyJS2JKXBNr3HsvuK++rGJyBy+rmJzui9J9UbovSvdFklgTW+J0X5TuK02n9pruq6b7qum+KidO7VlTe65pU793TvfFJTElronTfXG6L073xem+uCVO40TSOJF0X5LuK02zdkn3Jem+JN2XpHEiqT0ltWd8mWI9vkyxHl+mWJ+m4Ss3fZrGYkvcEnfwNJPFJTElrok5cdK1pGtJ15KuJd2WdFvSbUm3Jd2WdKeZ+IpUn2ay2BK3xLNUyTturv4uLokpcU3MiSWxJrbNbVaUlrGa1WZF6eaamBNLYk0870WdW+IOngayuCSmxDUxJ5bEmjjpTmMZK21t1p4unsayeOp2Z0o8dGnMfbdZe7pZnKuzJjZndm6JO9iNZXNJTIlrYk4siTVx0q1JtyZdTrqcdDnpctLlpMtJl5MuJ11Oupx0JelK0pWkK0lXkq4kXUm6knQl6UrS1aSrSVeTriZdTbqadDXpatLVpKtJ15KuJV1LujZ1PUeME0tiTTx1faxaS9zB7UpcElPimpgTS2JNnHRb0m1JtyfdnnR70u1JtyfdnnT7jD/8x0tVH9ydKbHHGetPzatVgyWxJrbELXEHlxmzOKOvfQfU1f6zVHVzB9OV2K951Iu3Waq6uSbmxBhjhZJu8pCSPKQkDynJQ0rykLI8xK+n1sScWBIrrmd6yOKWOOkmDynJQ0rykJI8pCQPKclDCmNsF07tzKmdObXz9JB5PZLaWVI7Jw8pyUNK8pCSPKQkDynJQ0rykKKpf5eHTE7trKmdNfXv9JDFqZ2Th5TkISV5SEkeUpKHlOQhxdL9Wrrf5CEleUix1M6W2tlSO08PGacxtTI9ZPFsZ48/PWQxJ5bE837N2RK3xB08PWRxSUyJa+Kp614xPWSxIZennxT3jd6DveQ1uCTGWKKrJubEklgTW+KWGH06K183l8SUuCbmxJJYE2MszQpXGoc+tVnhupkSe/zxTUWbFa5Efp3TixZrYkvcEnfw9KLFJTGB5/is3s5zfC7WxK7Ffm1zfC7u4Dk+F5fElLgm5sSSWBMn3ZZ0W9Kd4439XuYYG1W/bVZGzv8+KyNpHPLRZmUkjbW6NisjN9fEnFgSa2JLPK9NnTt4jqvFU9ecp25znrrd2XXHGmGblZHzXmZl5GbcY11jyeOvsTS5JubEklgTW+KWuIPXWJo8df1e1ljye5m/a4s5sSSeun6/83dtcUvcwfN3bXFJTIlrYo9ZvQ3nb9NYm2+zipGqj4f5e1S9Defv0WJJrIk7eP6+VB9L8/dl8Yzj42H+jlRvq/m7UL2t5u/CYk48db19Vt5NtsQN8Wfezf8+825xSUyJK9ph5t1iSayJ0/1O/5/3OP1/MdqBZ46MCuzGM0fGWlqbtX2bW+IOnjmy2OOPIx/arOGjUWndZg3fZk1siVtijz/W2Nqs4dtcElPimpgTS+KpW50tcUvcwTNfFpfElLgmnlrenjNHFlvilriDZ44sLokpcU3MiZMuJ92ZR2Mtq/F89lvcwTO/FpfElLiiXyT1qaQ+ldSnM7/GaQtt1vDR2GW5zRq+zZa4JZ7X5mNpPqctLokpcU3MiSWxJp66Ps5nPi7u4JmPi0tiSlwTC+535qD5+J85OHnm4LzHmYOLKXFN7Pdi3p7zGWyxJvZ7MR/b83lscY84s/5vc0lMiWtiTiyJNbElbomTbklaM/dHbUqb9XybLXFLPL1l3Mus59tcElNiv/5Ri9Bk5v5iSayJLXFL3MEz9xeXxJQ46dakW5NuTbo16dakO/N9nCfUZj0fjRNm2qzho1FX0WYN3+aWuINnLi8uiSnxvGbvl5nLiyWxJjZcz3yPW9zB8z1ucUlMiWvidI/THyaPnG2eLl5W13yUe1VdM2+okbAbe+BI140FSMAKZKAAFQi15mreK60H9gtYgASsQAYKUIEGhFoPNS+f2+hq5EjACmSgABVowAbsgeUCQq1ArXjc0Vm+S2Ib6/TN6+42ErACGShABRqwAXtgdQlzJGAFMlCACjRgA/ZAvoAu0Rw9WHdUoAFHsFFP0LxebuFIxY0FSMAKZKAAFWhASMyMmmNjZtRiSayJLXFL3MHzF3dxSUyJk64lXUu6lnQt6VrSnb+4czDNX9zFJTElrok5sSTWxJa4JU66Pen2pNuTbk+6PemuX2UfnutXefLU9cGxfpUn9+BZ9ba5JKbENTEn9vg+BmYVG41qjTar2DZ7nFHK0GYV22ZOLIk1sSVuiTt4/iqP8ohm81d5MSWeuurMiSWxJrbELXEHz1/lsaLZZuXbZtft3ibzV3kxJ5bEmtgSt8QdPJ/Cu7ftfNoe37S1Wcm2ecbxe5+/0Is7eP5CLy6JKXFNzImnrrfD/IVebImnrrfJ/IWePH+hF5fElLgm5sSSeOo2ZwNPr/BVvVmltrkm5sQjZr28bd0rNlvilrg7e/u7V2wuiSlxTcyJJbEmnvG9H/uVuCSmxDN+debEklgTz/vy3OktcQ+eVWqbS2JKXBNz4kfM7pPMc3vCib5fyMJRmzpKI9rcnnBhBY5SAV8qmtsTLlSgxx29Pbcc9CWjueXgwhHBF33mloM+Tzy3HFxoA8mxAXugbz/mU+Jzy8GFBKxABgpQgQZswB7IUGOoMdQYagw132jM5+G9eGxjD/SNxhYWIAEr0ON6D/kGIAsV6GreQ77R2MIe6BuN+bS915F1n6n3MrKNruY95OUgCwU41HwC2yvINg41n8r2/QO7zzR7WdnGoUbeJL7R2MIKHE8tnu5eLbaxB/pz+8ICJGAFMlCACoRag1qDWodah1qHWodah1qHWoea7/Hh1jT3GXQXmfsMLmSgpxM5KtCADdgDZ/JOLECPWx0FqEADelx27IFesL6wAAlYgQwUoAbWaFSv4tpIcQ2esQsRrCJYTcEMiEuvuHTGpTMunXHpjEtnqDHUGGoMNYYaQ02gJlATqAnUPGNpIrrQE3KUs7dZnzXHg2KUKEaJJ+RCBRqwASFhGCWGUeIJubACGYgxaRiT80XaR/V8kXY1vEh3vEh3vEh3vEh3vEh3vEj31oDx2t77BSxAqOFFuuNFuuNFuuNFuuNFuuNFuseLdL/iRbpfVwESsAIZKMD9It2veJHuV7xI9ytepPsVL9L9ihfpfsWLdPeSq40MFCDUCtTmS7c47hfpfsWLdL/iRbpf8SLdr3iR7l4ftbEACViBDNwv0v2KF+l+xYt0v+JFul/xIt29EmojASuQgQK09f7dvb7J37S7lzdtJOB+ke5XvEj3K16k+xUv0v2KF+nudU0be6BewAIkICQUN68ewS/HLmABEtB/ZjyCMVCACjRgA/bA+RM6sQAJCLUGtQa1BrUGtQa1+RNaBs6f0IneqBO9UX14euot7Bt9k7yNBehNUh29s9hRgQZswB7oSTbeNbtvh7eRgBXIQAEq0NXUsQF7oKfewgIkYAUy0CXM0YAN2AM9NxcWIAErkIEChFqFmqfpqEnuXm600NN0YQESsAI5Wp3RWYzOYnTWHNXex3P8eh/P8TuxB87xO9HHr/fFHL8TK5CBAlSgARvQ1fzK5vidWIAErEAGCtDi3nysj7fu7nUuG2nfkFe5bGSgAP3SzdGADeiXPjrAy1s2lohQoFagVqBWoOZjfaEBGzC6xYtdNkKNpsT//fOfHrL//ScfHmOR3geHg2zQDbahbegL3NgdygbasCPLjiw7suzIsiPLjiw7su7IuiPrjqw7su7IuiPrjqw7su7IuiPbjmw7shu77xZQN/AG2aAbbEPb0Bd4IjiUDTty25Hbjtx25LYjtx257chtR+47ct+R+47cd+S+I/tQHwUB7u8OtqFt6AumsU8qQRRUgzhIgjTIglpQaJTQKKFRQqOERgmNEholNEpolNAooUGhQaFBoUGhQaFBoUGhQaHh7j5KL6a5O7m3TypBFFSDXEMGSZAGuUYb1IKGxtgAYTr6pBJEQTWIgyRIgyyoBYWGhIaEhoSGhMbMz3HNno6jiMtrPBdRUA3iIAnSIAtqQX2ThYaFhoWGhYaFhoWGp+coRJs/V5NaUN/kKTqpBFFQDeIgCQqNFhotNFpo9NDoodFDo4dGD40eGj00emj00PCsHSVnXqG5qARRUA2yTZ6Do/Ru/vaMgrn50zOpBnGQBGmQBbWgvslzcFJoUGhQaFBoUGhQaFBoUGhQaNTQqKFRQ6OGRg2NGho1NGpo1NCoocGhwaHBocGhwaHBocGhwaHBocGhIaEhoSGhIaEhoSGhIaEhoSGhIaGhoaGhoaGhoaGhoaGhoaGhoaGhoWGhYaFhoWGhYaFhoWGhYaFhoWGh0UKjhUYLjRYaLTRaaLTQmFlrg1pQ3zSz1qkEUZBrtEEcJEEaZEEtqC+qM2udShAF1SAOkiANsqAWFBolNEpolO0bla6gEkRBNcivoA+yoBbUN3k2joIfr0VdREEj3ijv8SrURRKkQRbUgvomz8ZJJYiCQoNDg0ODQ4NDg0ODQ0NCw7NxlPTUmY08qAZxkARpkAW1oL5Jr6ASFBoaGhoaGhoaGhoaGhoaGhYaFhoWGhYaFhoWGhYaFhoWGhYaLTRaaLTQaKHRQqOFRguNFhotNFpo9NDoodFDo4dGD40ekeez7SPjeT7bOpUgHzk8qAb5yPH/VYI0aD+v8dWC+ibPt1GW5VWziyhoP0tx4SAJ0iAL2s9rXiXbRgGX18K2UdbrlbBtFOl6HewiC2pBfdPMUKcSREE1iIOGxij+9frXRRbUgobGKBb1utdFJWhojJJdr3hdxEGhwaHBocGhwaEhoSGhIaEhoSGh4Rk6/54GWVALCg0NDQ0NDQ0NDQ0Nz9BRqOt1sYssKO7DM9TJM3RSCaIg1xgjxzN0kmuMceAZOsmCXGOMDc9QJ8/QSSWIgmoQB0mQBllQaLTQ6KHRQ6OHRg+NHho9NHpo9NDoodG3hte9LipBFFSDOEiCNMiCWlBolNAooVFCo4SG5+8oP/ZK2EVtZahXu/p48VrXRSWIgmoQB0mQrnHl1a2LWlDfNHN6XNXMaScKqkEcJEEaZEFtU4uaL2kGbMAoNJN+AQuQgBXIQAFCrUOtQ62Hml4XsACjxkuvCmSgABVowAaMorK5g+HCAoRagVqBWoFagVqB2qzFGssxOkuxHCkqyeb2hwsJWIEMFKACo3Rt7mPoVWZzu0IvLJu7FS6MMrG5V+HCKBKbOxUuLEACViADp9q441ldNdGAURs2NyicOCurJhYgASuQgVPNBiowSsJUGjAKwnTVUzkWIAErkIEz7mi+WWk5ppJXoeXEqANbZZYTGShABRqwAaPwbNVXjinqVV45kYBR/LVqKycKUIEGbMAoN1tVlRPLLhJbNZUTZ7DuB8sBG7BvtFUW5bOvBUjACoxSr7k34EIFGrABo7psFlQuLEDepV+zanKhAg3YdtnXrJicSBewAKO0a1ZLLmSgABVowAZctWSP+fk65ueHjo33kqEyoW7gDbJBHR7/lse/bf4X6pxqnqAbbEPb0BeMfp9QNtCGumFH7jty35H7jtx35L4j+1TzIo+9p5VtPGb7tPIiDbIgD6drutjGj65PFy+SIN00G6qtKd9FEqRBrtHXlO+ivqleQeOax0OaT9va+MH2KVobP8k+HWvjCzKfjl2kQUNjPBL6dOyivmnY3qIS5PFkTcLaeBD0T/AX9U16BZUg2lc1HGwRB0mQBllQC+qb7AryeLYmYRdJkAZ5vLYmV208LPnk6iIOkiANsqAWNK5lFLX45OqiEjTi2Z5ItVF44hOpNh4RfCJ1tkuP9uu7/XwidVEJ8mvWRx7JyCNzIZnrRBPqBt4gG3TDkPUtENuGvqBdGzyyzXWiCf6v2kpMrxXvC+ad95WYDuNfeR1D3cAbxvW0nZhtJ2bbidl2YrZIzBaJOYmCPHoka9trOzZ+yX0dx5qnnit4Snk8T6QSREE1iIMkSIMsaFzy+PGdienkiTmpBFHQiDx+o30FZpFHoZ223ROTgmoQB0mQBllQC/KrilQeP5ozlSdRUA3iIAnSIAtyjbZT3slTfvyszrWY8aM512Imjaf/8YM312Imjaf/a6d8Gz9bcy1m/ObMtZhLVspP8rfUUVQ812IuT2rXaMsG2igYnmsxk4bGqByeazEl1mJKrMUUt5C+yd9SJ5UgCqpBQ2PU7c61mEka5Bq87KKNitu5FlN02cWiEuQa4478LXVU2M61mFFKO9di6FoWssiChgbFWsyoop1rMRRrMaOCcK7FTBoao35wFhCQG4xrjHllf0udZEEtqG/yt9RJJcgjt71mM0mCNMgj971mM6lv8vfVSSWIgmoQB7lGf9ijegmB/6aWWTAwwTa0Df57Wv7v49/87d/++S//+dd/+9d/+s9//5d/Gf9+/4f/+NM//ON//+l//+Xf/+Vf//NP//Cv//W3v/35T//nL3/7L/9L//G///Kv/ud//uXfH//royv+5V//5+PPR8D/969/+5dB//fP+NfX83/6WIKR9a8fazAWAR7PGndDPGZoywrxmIQlhChfr4IOIeq+iNoFAR4/OjcDaNlt8Hi1iwCPVYIvAfh5gIel7QgPr2pPQ8ipHcZoXu1g9WmIU1P6FOsM0Vp/2pR26FD/gHh26GPFASEqfwnR3u2N4210RLja09sohxiidXfIAxFD+tcQ5dSn42dh9anQ0xCHceXPJR6hVcZ9CN+O4JPXM4KW5xHu3oY9v41TY9q1U/SB/WkIPRnFePpZRsHlaQh7uykOI5P83LV5EY/3oojB9DVEP1zEeA6fF9Ht6UXQoTEfwrqH92BcxmNN8P6tlLHJyroVKc9uhQ5DyyetZpZdTwOcc6xrDItSn/Up8fumd4rBvr+Ux3is4xx+QPTo3xRJklrj8YDwNcZhfErbPfKYJ00Rrh8MDTjfONuvPB0adBiindseo13SlTyWUb/EqKffdbsiUx5zMhHjJ71iO+Ef61P2tFfqYYQWX1CczdGLphjyNUY9xHjM+cP/HgtVKcrXZ5TK74+PKu+Oj/O96KVxGY/Z1+f3cvqJ97MTlnWkp4SHpXyN0d4eH/0TNniOcjdjuLyfMUzvtsi5dzvjIbLnZ6dfepdPjlpsB3lg7t1fYsjpl4H3MHvM/idXtl/a4+Co4mexzh+HkjLmtxin6+ha4yfqOlzHYaSqxnU8lhXsaYxjzyhhrD4WdOxpz8jBU5VihDzWkvR5jMNI5XJtR+RC9FIM8XPmVs8Qv3Yvte4Yj9e3Q3vw6fGBezyi64sxfKZyPYIYvRaj4en2Ma/z3FOPI8SuFiPk8dj//EraH/oL8ViNiZE6DoB/eh16eg4pXrM1ozzmhK4nbqblD/VD88/K1r10ed4zWv/QNn24YTyGjG3Fnl/HycuqtXix7vlKvr46qL7bpser4JjpIObr6VUcn8ospggeM33t6VOZHn63SWqP18Evefs1hh1GKbd4d+D2JYbejiEc1yHc6/MY9P6zob09Ss8t2mJsKJXXekUrYpx65TBG2c9aX79QX55Q+QfX0fC7T/L8Og5eWmoPQ+Yvo/TrdVg/zWTFL2WtzZ7HOF0HJ0Muz2O0k5fWwpg80Zfa9LEMjtf99lrW1iumkh5XZE9jtNObVKcYIA/u/ZmLna6jSIt+OYz1dvLSyzCB8uV38usESDu8SY0zJVeMcWTeSzHGXnExrSXleYz+vgP16490oMcjoUWvmL02wmq8iVWm/jRGr+/OPx+vguNFrGqeBP/1Kg6/tCW9MtSa+7Xej9E5xujVrucx7PRWadGkj7QpcPX6690cXMyP65wvyOnZttbrfr5JPGU/fmaej/NyXccGiR+oK5npb3PZBzOtMQfM1/MZ3HKdlosk+kX1up5P4F6nx8rLtw3aUxdUn0479PMDXTxWSn8+RMp1mpli2vcjkub3f1308ZPE3u4be79v2if6pn+ib87z46J4wX265nF6xMUqFpvK85Ww0xLS4xEqfvkfqwbPM+8YxA/NmUGo0iEIv7+iVuTtJbVTiLtranfv5LCodrtJub7YL4U5ghweH8px3eHm6nWh8v5Szvl2ROMJU4+3U09DJF4fxom8z+3sGMQLTmaQx0v/IYh8YAlZ319D1rcHPH1g6ZTeXjstp3Wpx3CPQfZoUQwyLS/2yiF5z8MjpqbHkaqvjbFWOvo2v2//GuS4NCUcz3eWJsl/feA9512POZ3H9PbhN6Lq+6P9tDh1c7TX9+sEbt/Jq/beY32dr0ufNyl/oAaF3y9C4ferULj80U0qeD682mu/mHyVmKC6+NQvp7X+m+VF3D7Qt/39vu3v9217v2/PLfruw7JcsTj+WMQ9lI2dFoPUDzhaC1v1YMly+IHxnWr3y8P13JHP7WFoj/Zim96s2zqtSRFHqz7eNfl5jP7+SD+tSd0c6acQN0f67Ts5jPRji2Jm+tGi+loMiXe6x1JKfd6ip7f+HjPT0rW/GKPynRjnEXavNFDb+6OjvT06TqtJN4vyip3m+m9V5R2v4uaj+mk96uajup2ctMRikpbUrb89qt8Poi8G4VibV07Lpr8Hsbf75XgvqEQp7dV7oRhi+sj8V4NEuij1V7umRvmG5un+34K009rp4/crJtoeXJ/P1x3D/KCm9hjG4tf/wVpeDtMxe9jSg+oPw9ytbSunBaa7xW2lvV3vd74Oo441BDpcx+0g/dUg0T0PlNeCPNYp0pC72inMsZO7odTmSg9YPx0racK6pQfXn4YpJYU5pOP9X/Tnb0f9uLaKObznv2HnJ+hb5eml9w+8LB6D+Kf4M8hox2dB6DrWU8WyJhk/L7a/6O3ncLrqu09axxD3nrTotGJ18xmHTgtWdz/lsPenI+/3ih165Tg6FP7c+KUYo1w4bqbbqzGut2NUPGrV9Pr8sxiKCpH2PMZpjefm+9E3MW69H53vhTHIWNv7MV4cY9X3L1kx2vO+PX0+VdJzmtEp604X4l/Bzgt5/Ew8vZDTatXdzj3H+EDnWsG9HBL39KnN43kzVgBGicqLjdpjIbEdRtlpnene8j2dPqIqPUq7Hv7x/NXkeB0c82+chsdvb6/n3+xYiOSa13d+9MPPjAsp9dUgMUKYT08Ptby/wkunQujbK7zH2+l1d7CUiw63I5+4Hf2Db0dKBJHHEsrhdtq7z7rHy+AYrvLwoueXwadqkxLpm0rv6JdP+Ynfrvo/X0W8gufk/f0q6ulGYoaVKZUi6f0Q/vaDNyG5XgvSBa9TPT3s/iwIPoMoeSXxJ40asyzcT13b/tAQY2IE78ytPL+V9omeaZ/omfZ+z5wzV9NDxJc9G36Q/lribrRYezVIPN89runFnzzleBbRL6WEPwpSY05ExZ5XAZG0D/xGnNZ7PvIboRJl4o+VzcPtnL6neixLXZE70tNj3g+uxGqJX5rKpyup789E6PuVgKRvVwIeQ9yciVB7fybiuPR0bybi/EnEzZkIfb+q8ZvRcW8m4hTj7kzENzGut2PcfNG0uyuk8lqb3p0ROce4NyNy+pbp7kvzOca9l+bjvfAV44Pp6YoxtfJHX8e9mZnbMV7MubszM00+MDNj8oEBIn9wx9ycVTl+VHV3VuV8IfdmVfrbH6z4bslvz6r08u6syncPMVhgfQwWfvbYffwqKo2QEaS9EuTmK+J3N3PvOo7bU0T1rl16mD+QU4k4xfQBnj/qj15kelqEvOSlt6HHP+wIQs/ehupF779SHYN85PX/bovUT7SIfqJF9N0WOS+ao/a291ZeXHnvMSH6CHKoAej1IyvvpzCKzaW0WXn6OnUKgVcy7WSvhYjvd7TL0xDnQpyo8tR6vVxXFD9UjyCHap7jRxE9qrUs38zPPrzp8eBuvT8PUk/b4z3uNaZ3jJ8+RNTyftVqpberVo8h7r2j1uNOf/feUSu9XRFYj5v93XxHvd8rz5+Xz6MDn2Y8pkvq8561tx9Tv7mOW5/M1tNHVfeeDuvpoyo1xRZZ7XnNz/E67j0d1m+257wwTNtLTUoF30OX50/+9fRF1d0mlfcfuI/XcXMZ8/yFWexy0Up7vp3v+TPme18iHHd/vfURQeXrfTs+LU/dtONTiJt2fPtO7LUGvfkNwXFDhlufENTjJn/33ve/iXHvE4K3Pxo8fgF9uw75vH/r3frhb6LcLB8+7gJ7s9z2foz+Yox7xbbnXT7vPvGf2/Vuqe3xWu6PlPO+pTcLbc9RPnJH90dt/8SoPe7EenPU3o/RX4xxb9Qev3i9P2rPI+VuZfft7defP1rpu1Uqxy2hr1g4fDwP5NXHXzZjPH3dVKljHaM8m0A8h0Bt15dt3X4N8YEpptNDpuLz8C/7hf7aGB84dqLaBw6eoLcnmE7vUxpb7WkuPvp19/RThHgy01SpTz/ZBV6usFNJ1Uu/7QJ/3DqA8HCXNg76bafw0+LU3U3yztun3tum85vN0+lKd/N8s+B62vPvZs4eQ9zL2fb2GD29kJFhz0CzZ/P9p/fCe6P8GOHWKD9vGHJvlJ/3w785ys+rUjdH+fG8mvi2kx6cLqTejyHRpiRyiHHMFD8fb7VIu55vvFy7vp0pxxD3MuW0KHUzU+43x5fa55/sZc+oA0mLhfRyjPZ+jFyU+pM99Q37P1t7vg89X8dDNWIGlSndzO9BTr/3FJMxNafMD4PUWGGnqq8GwZMHVftAkFSB/aNDAq5Yc9Crlxc7J+1O0/v1ag/HOgzXcmjXm0cvXF1fahGpPbYOyQce/Bbj7lEU7ZA25f0v/bgcLfFC/RTp4UJOk0wSRw2Y5C9Cfn0jPB6N1uDNeRnl1+s4bY7d004E+QOKX2Kcp7suxiTGlXeWbD9p1tiy58uGv7836zFIT7VtzwfJ+fSFgrkHpcOPL59eyW694H5zHRFiXEc7XIceJx/ihb+kEmr7+mx1PCfEh/K0ES7Pr+N4TkiN6Qv5up/zT874gBVp09diYJVszDc/f7A69gzHvhkP5pej4Cwp5dM5MO3dd4BjhFvvAN+c8JGqSvr1rPyBTx9Q9RLz7r08fdI8h8CZOJ2ovfSaW2Mb1Qdbf61nLa3JmJR+eF59e3LqHOLW4zvz25NTP2gOer1RsTWl1BeTzvB69mC9Dl2j73eNvt81f+yb1dfmsOvlrrEUpTyNcqpuvedkxwj3ZjOOp/OUeBN58MGTWd6e2jmGeLghfmNMn36Y9k0QS+eF2NMP074Lkk5OsvaSrzbCY8hjgepwktSpDuIzZydRPCNSLk777eykuzEKvRZDGKdda3kpxuP6Y6fd68tL0S9nylzvz9gfTz4qEjuYUsv5/4MYNXbHkZq/GfglBp8+oLppzMcQ94xZ+7vGfG6MeNsVzt8L/NoYp93/9IpiCL2+nJ70a5DD77/g68lyPX2zO18GqkHLl72Lf3IvJfbIfbwXlVeDxETz2D/v5SDxUWp58ZSv2yeFvf17aW//Xh5PK7s5+38+8eze7D+3D8z+23F7rqie5utw2Bi/vzrF769O8furU8dPQLHb72Pt+rUT4Cp2YX7EeH7yEX9zHNWtVWnuH/iNOxbXx2GHmp5ffr8M+sS9fGDjlONXTyUsudCXjUbqLxdyevjA1GGyMPvBiVSKDRyavngi1c3EP59qpXh/+bK732+nWp3Pxkqfo1neYfOHUfBlfj6m5ycnbD1mZLGrRa7B+uWMrfOVtJLO+qqv3k9DhZu0VET9syhfP/W7nkaRS/7wMF/KwuvzE8zOQbDmRZSv5EdBqsaLZv4O+7d+Pr/LxJoIl+dny0l5vwr5mxj3Dh48B7n5RPLNldx7JJHygbMpz+eg3fv0SMr7J6nI+0XRxxD3at3v38mh1v18stytz3XkA3v1nY+Ww5eY+uUTyN+OljtVUWJHWcvf/PwoyN0vds5BWqyraDvtvP3NSXl5k+q82iw/CVMYpxg9XMVeDhMn5Y6Qh09Dz80bn0aoMb3aR9j1p12HHclPG8ze/AToOh50e+urqnOMe19VyftfVcknvqqSD3xVde7aeEB69DK9mDnlqql4n+urQx6HIT/YXk7AgkrP8uXrzF9PIz0/9OGLd+lpGe23pzWmd9/IzyFuvZEL8x8a4t5L/TcP4z1t+5U/q/jBodv3XoSFP7CdmvAHtlM7Hrot0SCP5ZHnW10eD90ucUhsq8SvxZCoPG1Czzd3FanvjvTzZcQjeJPDyX0i8nbCHUPcyxaxd7OlHU+YvHeY+mni6d4k7THCrUna4wzazVei8yzczTei0/rs/Tei6/03In3/JFXRt09SPYa4+UZ0+05Ob0TX+29Ex/Wqu29E9Ik3IvrEGxF94o2IPvFGVD/zRlQ/80ZUP/NGRJ94I6JPvBG9vQvZMXtuvxFd778Rtfr2G1HjD7wRtfp+k9In3ojqZ96I6mfeiOpH3ohOzwISTxNfPhz5ydNELIArP1/y1bef/o97bt19+u/8/tP/acW3UmwxVfP5d7+u+B5jWKwa1/6lWPx+DL7Cyx7p83zlWfr75+Z+E+PmFPwxyN0p+POV3Hvg1OsDVQHHr2c5ldAVe9o3pxik2OQ6nyf4oxgSyU+PX82nMfQ4+X0z8/R4TtXd9+5ji8QzJ9mlh7vp5wmiO7uYH7cRYMW3Dfb8nGct7x+npuX949S0vH2c2jHEvXcS/cBHVlrePk5NyweOU7vfK3bolfePUzvGuLmJ+Xcxrrdj3NvEXE/biN3cxPx8Hfc2Mf8mxq1NzJXe37Pqmxi33p3P93JvE3M9bQ7zmeu4tYn5/Rgv5tzNTcz1/IHWvU3MvxnsNwdI/YM75t4m5lqPp9Te28T8mwu5tYm51re3qdTjtnk333WP13HvXfe7Z5hbm5jrcW/om5uH6/vnXH17M/euQ289TNWL6PkLVX33RflcG33nRfn8fUcclf3APPn/g29EFN+ZaK+vxWjxmSnlF9SffWdChj55fi98OhDm7scqxyD3Nto+h7i10fY3Ie5stH3sFYtMebwyXK/17JcY/GIMQox6GGH69peq5xC3VvxU6Q8NcdMDj+2pf/fTv5/1SXo57i86R76OV2O0eHZ54KsxsCv1Mcbbbq5vu/k3H5fHj30nevH79Cj5feCzyajjt/q3WuL8tf+dljjuoGAlvl2yL98O/GAXhhaze18qy38WA5vKtP7ibhBNcB2v7krR4nXlEe7VXSkK3hLo5fboiHHol9N6mMQrD4vVD8R4bbcQ1tiGgVX4xRgt3hLsNMZOMSy+fuQmh+/azzVG8chieQ7p15orbadv/SVG+6Nx+Ony0XdXEpvSSDtcST/u4I5vFzVN39SfXEePRXqt9XAdp5X+Gk8/Vls5BDmtmmKXrVT9Rb8sNB6HSMPLaD9soKCnbzBuD5HTXn23h8g3V3JziLS3h8j5Ou4NETutq98dInY8y/7tISI4uUnywU2/DhE7rSALNXxin3/u2i8x+Fh4gYX1vIvrT+5F49cuv8T9fi/6gXuxP/ZecNDxA1/7tZMaFTG/7FrwgxiE6yD5QAwtL8Zo2IHhul6MYfEkQ+3VNo1aCamHfDnHqIjBh62Gj9vBxleUlMsDft3K1crbO1KcQ9x6sbXTPn8fCHFzt6FTe1bseFLt+da4Ru/uR3G8Csbbdd5D5ver4PcdjORtBztvNkzYiZ/k6b2cYwiObtHn7VH7eTObe7sen4Lcm9s7h7g1t/dNiDtze8ddtW+9pZ/35b7zln7cv/7WNZx3wL81Z3I69+LmKY/nGPcOeax6PPby7uEZxzA3x+cxxL3xeQ5xZ3yez665ewrIN1E+cOrM3TFyjnFzjMhnxoi8P0bk/TEib4+R82ZcMceXft3E7gbAETGSdgV/PHDfvgKK5bMHpm//+v0Qvjn2DMFpP9CfhNBYsxJN+zT/KITYuyEsRsRjduC1tuiY6fySZ6+GkBdDRKfm41h/EELxgYde9NJVKMdzvbK8FuJS7PGuLzWnUsxxKpWXOlWxZ67m7wZ+EqLGnsrKqc721Rt5NUSsNCmlN4MfhYgztr8eXPyTELFS/vXY4p80Z/wUPVDf7pHr+ei046ZqlVGJ8bim18YGx0epL4+Ne+84xw1dcCjLqAR/Kdce/5DT0UPyYpAqKGyvpi8GwTbGX7Z2/FGQVJQuXz7n+lGQ1CZsh5F2rI8vmGR98GGk2XEDP8bhsg9u9pEwvb4ahmIG+8HSX26bKJV/cD6C8Lcwp0fTcSBCJHNt7dUwH/CEx0ihNPTqi0NPLgy9/ID4oyB6odhM6cUr0YorUabXgliDMeRqix8Fadh6+rGmXF8NgtvJq9G/jZTTFMjd2a3TatQnnB8r/ONTj1dbJAcp16tBrhTkxaHW0ydNncsngrRXg+A3qIt8oE1eDdIVOy926x8I0vTVIKkOt9MH2uTFIHrB18bbzgeCUH37dh5BXvzBaJoOb2v24u3gw0S9jD8Q5LWX4BGkpCCvJaAW/P5pKfSJIP3F28EHTlpI32+Tl4OU2hBErk8EsVeD4HiffETf623yapASq6kPfjV3vgTp/IHb6fJikJpyR1788VLFj5fqiz8Zml7lVF+6ndZiwviB6SmJ6/0QURnSr7SZza8h/NHw6VSrUCovSYV/2u4HkYtxzF+uhPwtyKFG5TF1gy8d05XoT64j9juRkjfC+tHN4CXw8XJxCvL2AT2tvr8H1flW8P0YXad+OX2XY5I+Yhd5vlvK8VrU4sN+/fIp/K/XclrQo3TgIH6Bf/k2+JvLiIJbNbHXhoi22N9eW/6WTW+/nzyWaeLEsistnP8g/7+ESDMwv+X/6YOpjwQpraajddqLHWPY1yefz/ezjqnomPQU8FsQud7v3WOQD2SvYgv1sTD4ohHd29av2vte1o8DBJsttHqdPORoRagNfbDZq2EMs8KPmXB+NUxL5/3l9dqfhonFh2KdX78pJKHlL7p+GoYshZHnYeQzbXP69KbFw2fLxxjr9YPfQCr4OaeD4Z8/RLrzu6NvlyedQ9xa2v8mxJtL+1SwWUl+zfq1ovkcIj4aLLk46Cch8GUrXf1piHY8RgkPvvV6MUTsE6Dpd+InN5LPcUjzxz8JoTHd+vUr3x+EsFgVJ6uvdSrFkjblNdifhKjxgPholfLaVeBr5Xq91JzM8arKXw4J7LdfD3HYWCnpYegHF1EK5pryUWM/CVFxKk3tr12FUF7iey2EYsK59dduBPt4V3rtRipj6UpeuxHF3ldqr10FPgd7/My/NDhL2tM8f6X3gxAWX9Qa6ysBUrmcvNYOV6of1OeDu3X+I9O0x/NJp9caInK0m7zZkq8FeCyExicXkidO7wcQBMjznbcDKCYYcqHvDwLc+djreAstyvQei2uvBECRnrQXAvRYpe9flpHpdgC8gctrAaLYsX+pdaT7KVmQkoVfCkFR3/eYw+9vh7D2Uogar+4lP0O8GuJLccEPQgh+b/Iehz/pkRgUD5Ok10JEDf4jRH07hL14FdiCulz2Ygg8UF2vjYvCeKD6UtjwWogvc/4/CBGJWui6XgxREeK1AY69KArRSzciOJnggS/ZPrY9yKcj3A5AHD99xOXpjmSd3j/arNPbR5sdQ9zbNPP+nTzf9O748hXThJS/VP5BBCF8CVafbu7Y6/F9+tbmjt/EuLVn3v3reB7jOD4bvq3j8vwq3j4k4hji5tiqh8/xb27I2uvxMJQ7G7L245Z7V8tnGcjzCcV+/CKM8awk12Ej9dOJTvdWKs+tiioBKvJ0SrGfjnS6NSl5btTCOF/1wfXQqOe+ufkx1zdhuqVN9wu/GiZtvXnlHbN/GCadyHuZlpfD9PS5XH58+dG4tZit7KZ0GLe3g/RXg3S893Z5Lcj97+W+G3g3v0W8bdVP9xTtp/OiTGPfE3tukZ/43LV/4nvXfjo+6wd9I28veJxD3Frw+CbEmwsexSQtFeYTGr6W+vTzfnp3fjDOE38xm9tZn17FMQSnPWvrSyEsNsUq+QO839vieBjYvVME+unEqLunCBzXkGK/EqL8lemvN3P8UkoNM7Jq5fkB8ucgqe4wn9r+a5DjwwCnjW/r4XZOpftN8ZFm2gSq6/0YX777qi/G0Hg6Uk1T5b/FOG0j1SLEl31rrx9chuEyzJ7fSjuN1BpfvNT81deYC7kfhKMS5DG1dApy2vLs5jZhxyYxZK9J+pj4tyY5nmYaO/mm8oJfz0Vsp3FqURX+mLLNxVO/XsapMuYyZEz+ToV/MFINZT6PZ4DyvD1Op9XgY5fypfKJf3kCOZ2xiGNzJG0I/FuI/omh2j8xVPsfPlRxSswjee1p1xyXmTQGGluph7s5HrOIc+84ufsv82399EEUdWx8f6XvkOiXiuPej1soYXmc8xdR9de7+cDR899cCWP6LnfwL1fyeP68jsPk1naDjyjl3QWgY+9UitPiav7k7dfeeVzIaZO+K3YWkPyVSrn9TMOoa3u8zPdXnvEYT1acs+bXEOMt4f2HvEeUD5wV9d3TVTTreLp69iZSruPhBDef0c5R7h7CzZ9ok9PDosSLFcmXHXJ/7eTTaU8F03ql9XpIv3MUVIZ2PkaRT1jB6eCoewvq38S4taL93d3c27/0EeUw2u5uYFqu005N93YwPY/ZEtPQla7rMNxOe/c9VhVQ6JZ3x/j9duonBspxB79bA+X8chFHJ+hhEe74inPzfPBjiFsHhH/3snbhZa2+/5bU6ssvOLe69psgd1Ov0idSr769v/Tx3QKV5enp9ZdPO47vFS0dL/zg9ESgP3kruNu//RP92z/Tvx+xVn7fWo+vfXgRzlVw/Ov50aflLMbDONf89d5vb9OncRK/4vm48r9zIfwJh+ePPArwBx4F+AOPAvyRRwH+yHiVP3a89igSyJs+/D5M5LQ6X/DClmtgfjZeUUdzlXK6ktOAvVpaxe2nZv3IgJUPDFj5wICVjwxY+ciA1esP/QEtOH25WD852+loKOoxQUB5Ye7vRDkdsnd1nPSdD89h/cG11Ctctn45iPH3a5FPePVpO9r7Q1/t/aF/jHFz6J/v5u7QP61t3R/69vbBE9+MFJQ81tJPJnk6DJFxhCD3Wl8dtfiMr5Idr0U+Ydj2kVFrHxi19oFRax8Zte0jo7a9PWrPs+1p17x8TsAvL9ajXOQwZjm+Lul5Twz+QQyJmpC8hPHDGNiK4ssn8T+JofiaPZ958HIMeTWGYv+HV9tDoz305fawuBd7uT1yjFfbI9cMvdoeFu1hL7cHdjtoL7dHjvFqe7T4oqvZy9eB78Xbq9fRY2Os/nJ75BgvX0dDQdjz8XFcqzNsd/1AO6zVHY+NZBRj5K8Wfn2WKKfFLcM+UkbUTlGO67H2d3z5seb2g9sxwj4jTC+2iUWJnFqrLwbB6abaDrW33y1f3nuMOMa49T3HdzHuPYqcF3RvPoqU8onJ11Lennx9xDjND9zcp+AR5bih6p2NCr6JcWungm/u5uZmBd9EubnZwHnB/YoHtMeKEj1fcC/0ifqBQu8n4DnGveT55m7uJs9pZet+8pxOp7r7HH+sqRB0caoz/ztdfCohKFE4+3iblWc1FY8gxwKtGG0lL/3/chrcI0g/rbTFel8+LfBHIRr2pWqvhojyvev5VXxTpkLY7O/LU+cv13Fa2mKJeibO00dvBOnPgtwu3cnHFv4+zOqx3gX12Vzb4XZOZ2Zd6UCOLzvk/RrkNFZL2t2/yNU+EibPkOtP3sWxCcmx8u30yNfliuGWapJ/XTqc3+c+fTGIR62Wv7Gvv8W49zKeNxr45eHzEePtB9hvriM2npC8H+vvMfQTNs/2/jMSt088I50WuO4+Ix1j3HxGOt7NzR2Ivoly+xnpVKNy1b/v078lzmmJq8bLH6fb+XUyrZxWhCqOdM/fWWj9wb0UHMZV6/FePnCC+SPK2+dTf3cld5/V9BNzrkXfn3O9/fEJP//45HEhx0rAW7uIflOZdfM19Fwjdrt3PmKxan9o73ytTqZT7/QPLJ0U+8grl33glcs+8MplH3nlso+8cpn8sQOlRrPWKuXpQDkGYbyac9655vfRdqpL/EyUe9+gfhPj1keo38W48xXqN/MmN7dH/G4O5+bzyTdzfXe2b/kuxp2tw76ZhTWcEtRensqN70AfL8eHzQKO35KV+Cj+kUTPP0gr5VSTFHeTivB+rdU8F/PeOXT59PEHxT4O/OWXov6ycFFOJZZfpkv46e4pjyCnh4F7m/M8gpyc9dYOKucY97ZQ+cHN2OlmTs3aY/qn9F4PQU4Pr/d2tvnuSuJtmvKy0q9B6DTXXyNj+Hq+J8zY5Orkq/e+RTtHubtK9s213FwS+ibK3TWhc5S7S3Z0/Ijr6ml3jZ6PgZIfxslb96Tv434Y5zGzEh8clS8HV/40Dj7IfMSUU5zy/krid1Hu/f6cs4ljTzdOW/39HZc6FSlinz3K++z9yBvS5wKUTxX+zRtOq1V3veH0HVbBadGl5/3ntfzgSm626zc9fO8x5btRe9W0OxK/nI1zdmPFKfZ6NhZsDz0mgJ7GuY5D7s7mYoXoWDhyZ3exR4zzJ2rx6vPlXvT2l7NV4wvRqvlsRWv3Q2j6uLO8H0JeC4GNxTQfG/aDEDhlp1p+uf5BCBwf+LCD19rCLHrE8gnnr4Z4rVNbzF3WXGH1oxAxV1Ebv9apLX47H9hfvIoYF01f7NTY4e2BL13FY70A+/bk38sfhPhSyFCfhih03HyMsKs85SmKnxyaECdhkNprtxJLoDSORXkpRAzxxyzAS1kyphIwN1FfDHEhBL8dguqLzYnpEWqvXUVFW0h/+ype61SOJMlrtz+ZCkAAeinAvf2XDgHufd18CnDr2+ZTgJir1vTw96MreHdC5taGESeTwvb44xDetPJ9+xrGAaQRIm0q8pMQLWp5HvjaVfik85pzyBtf3w9BV4wo+vL8/IOrQNF2+fIo/5MQHbtmlJduJO8jXvprV1FxsDmnqoqfhOB0lGpaMP81xOPH8TTR//55OxWnsVZ7rTWwZ11hKm836IshrrSLbj4S1ur9dMdeN8KvHeQg2ORR2mvHBijhpN4qb4fg58cGFDp+HkUxPyh5X6by63OenQvG8fqe3uvuP+eNnSHjZl48DyJtRmxyvR3icKREoUYfaNLzZzxvN2m+GXttoBthZ9f6Wq+kQw4blbdDHK7i0aDtE73S/9BeaYKbkdcOgUlzzr3q2yG4HZr0tGZzu0lPi0cfaNJ8M/pa4ndMd/fyUq8Qvhl/PDq9lm6t/f3dwn4UAo+R/cWrMNQYvXjGEDZzfuBrJ9ooFkTsxRNtFM2Zt8j9QYjHC9aFN6y8Kc8vdSd+du/T2VdsB5/XWO8/sxDFgbP0ZdH598s47ihpKI9InwvYb0EONlqJcFhyesn4Pchpq8BRoRhPUDX/WP9a0FPL3VmqHOXX5+tayvsP+t9EufusX0t9+1n/m2apUUJNj6nVl14Ei6JljwP/uMB0UcMBEV8OxrYfhUFN+Nh+pz4Lc5yK1Jj6ejA/T6LzSxCOLXu8wtRXgow9f3cGSVpbkl/HyelrKL6imvtxTalcovwa5FSkQIIvGB7tc+ie0+JSjcpWLqnSUF69nVRD8vvtHHczvnHCxPk6ao8pOS52uo6jz6Z6/VrTzJz8di2nL5PvVk5W+sQuQbW+vUvQI0Y5mfXNurp62jbw7rm/30S5eWJu8dZ7FuXeOa/nGHePei319HHV7Z+Nm7dj8mon3/ws4xHl9Hxw8xzgUk+rT3e752aMY5ucj+C528X8iSeDY8PePB35G7fGYxfnRbnfXPL0edXDjLDamj73/O1n8PR1VWuxiXZr+Q3Ufm2V47dEmDh/rI/l7b7qD6JUxv7zuRzzh1E0vuWrlhb5fo8ip8rhW0cdlHraQ/DuWQdzcvnw7HbriNUfRDmcsvpNlJtHnP4gyuGU0+/u6N6hr99GQYHR4S35uzu6d+jqt1Funbv6TZSbhyT/IIq93C43j0r+QRQ6tu4pG28eGlLqR7bfq6cPru4/U56Wte4+Ux6/uLr9TGnXJ54pj1FuP1OezmK4+9ByPM/h9gPH8Suluw8cN2/n+Px07GTsyEB59/S/czv2ke5pH+ie9oE2accX1Uiel9v19rN6o088qx938rrZrq1+YtifDs66PeyPjXL7OVvO35Dtp7jTzuX1tOx1d+fy85Xc3Lq8nja4v70drk/Hvv8L1j+x/1Xt7+9/VTt/IgmPu4jcTsLTRi93k7DrJ5Kwtw8k4bFRPpKEN7dj5+OHnDe3Y/8mCW/ux86nrYluf6POp00Gb2chn9bFbmchn76yuJmFfFwau5uFfLUPZCGfFsduZuExxu0s5NOS1t0sPDfK7Sw8TosYYVpEDlM0XI4ng/USYb5+qm6/hjmt59498OU8A/YYkbE3V0kvL7/PgJ2C0IWtY9Kj4OtBUpHOz4KUmItgevl2GJvpcP749pcgfNwq8GZdCp8Wx27WpXxzJRoL95LL/F4PkreO+VmQ+IRB8kvUz4JIjNgHvno7+NhH8tecpf1knEgJ189VnL+Pk1M1F4rXv8wR/TKNzfVcaIwl1Lxv2u9RTsUDjxlwlP58rSn9WRxLtXKW94z4Pc7pe0Es/7dir0YxrKa26zq2zXGHPE3b1eeV+5/eU8ysv3NPLWzB8o4Jb0TJu4P8sLexIXhpeSvu3+OcFqiaxAeRLX9I8neinB6U8U1kt4tfjYIP2B8PQi9fSyq5+qZd7kZ5/Y5ajLve9GWHSA3z4HNmH+MYthDrpvpynI4KoeuiVx3r8W/xMdh19VP7yLHYD6dFPrjJKc7xdS9WvTpVezXK7Vy4HaWUj0R5+Y5u54J8JBfkI9l9HjGGr2IebXR6Ajidw/VYeIvipVIupZfj+OZyK05pb8RJ+9K+FSftAVLqy+1sV+wKW6xcn4rTX46TFnAf7/0finN8gjzHITiX0dGRfxCnvX5fldNXH3a97OzYkfTBx2el0y6E40ucyIvHD5a8HMewKGx2dJ8fxDF9Iw7a2Y79ZfKBt93TCVe333bPd9TSyGnSXm6Zlnr8y24O/SclRixRrct2Pa+05Xas3tJ0QHDaQf3r3inH78Tjc0Huqe7+t1pqbsezvaME5vGeiaS024XHgo2KJaf137mO04LF40EL6zja6vM5tNMyW43piIeJ4FLkdkG3lqhx+roV/Lib/+fx//7ln//67//0t3/757/851//7V//Y/zLImPEjLnkooPGz1uxoBbUN9Hl9Gg2KkHk9Lh8qkHs9Oggco3RQuQaw5LJglqQa4wX23oFucbY/75SUA3iINcYW2tUDbIg1xiDpfZNfAWVIAqqQRwkQRpkQaHBoSGhIaEhoSGhIaEhoSGhIaEhoSGhoaGhoaGhoaGhoaGhoaGhoaGhoaFhoWGhYaFhoWGhYaFhoWGhYaFhodFCo4VGC40WGi00Wmi00Gih0UKjhUYPjR4aPTR6aPTQ6KHRQ6OHRg+NHhqPpzlgARKwAl1oPHo8cnTg+FV72CvQgA3YA8sFLEACutr45uTx7Ap0tVEpVGbiTzSgq3XHHjiTf+JQ4/FRW/H05+JYgew41NwBFqqjDTRHD9aAPdBtYGEBErACGShABUKtQq1CjaHGUGOoMdQYagw1hhpDjaHGUBOoCdQEagI1gZpATaAmUBOoCdQUago1hZpCTaGmUFOoKdQUago1g5pBzaBmUDOoGdQMagY1g5pBrUGtQa1BrUGtQa1BrUGtQa1BrUGtQ61DrUOtQ61DrUOtQ61DrUOthxpdF7AACViBDBSgAg3YgFArUCtQK1ArUCtQK1ArUCtQK1ArUCOoEdQIagQ1ghpBjaAGLyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUEL6nwkgovqfCSCi+p8JIKL6nwkgovqfCSCi+p8JIKL6nwkgovqfCSCi+p8JIKL6nwkgovqfCSCi+p8JIKL6nwkgovqfCSCi+p8JIKL6nwkgovqfCSCi+p8JIKL6nwkgovqfCSCi+p8JIKL6nwkgovqfCSCi+p8JIKL6nwkgovqfCSCi+p8JIKL6nwkgovqfCSCi+p8JIKL6nwkgovqfCSCi+p8JIKL6nwkgovqfCSCi+p8JIKL6nwkgovqfCSCi+p8JIKL6nwkgovqfCSCi+p8JIKL6nwkgovqfCSCi+p8JIKL6nwkgovqfCSCi+p8JIKL6nwkgovqfCSCi9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJTa9ZGxjZtNLJvbA6SUTC5CAFchAASoQagY1g1qDWoNag1qDWoNag1qDWoNag1qDWodah1qHWodah1qHWodah1qHWg+1dl3AqSYDCViBU00HClCBBmzAHhGml0yE2vQS/7vTSyZCrUCtQK1ArUCtQI2gRlAj3Bvh3ghqBDWCGkGNoDa9xHF6ycQCxL1VqE0vmShABRoQahVqDDWGGkON0ZKMe2PcG+PeGGrTSyaiJQUtKWhJgZpATaAmUBOoCVpScG+Ce1Pcm0JN0W+KllS0pKIlFWoKNYWaQs2gZmhJw70Z7s1wbwY1Q78ZWtLQkoaWbFBrUGtQa1BrUGtoyYZ7a7i3hntrUOvot46W7GjJjpbsUOtQ61DrUOtQ69GS/bqABUjAUOsXAwWoQAM2RIBagVqBGrykw0s6vKTDSzq8pBeolQaMluzwkg4v6QQ1ghq8pMNLOrykw0s6vKTDSzq8pFeoVQKiJeElHV7SK9Qq1OAlHV7S4SUdXtLhJR1e0uElnaHG6Dd4SYeXdHhJF6gJ1OAlHV7S4SUdXtLhJR1e0uElXaCm6Dd4SYeXdHhJV6gp1OAlHV7S4SUdXtLhJR1e0uEl3aBm6Dd4SYeXdHhJN6gZ1OAlHV7S4SUdXtLhJR1e0uElvUGtod/gJR1e0uElvUOtQw1e0uElHV7S4SUdXtLhJeWCmYxzt7fegylxTcyJJbGmOJa4JU66JenCVx5MiWtiTpx0iya2xC1xB1PSpaRLSZeSLiVduMyD0/1Sul9K90tJt16JUzvX1M41tXNNujXp1qRbk25NujW1M6f75XS/nO6Xky6n/uXUzpzamVM7c9LlpCtJV5KuJF1J7SzpfiXdr6T7laQrqX8ltbOmdtbUzpp0Nelq0tWkq0lXUztrul9N92vpfi3pWupfS+1sqZ0ttbMlXUu6lnQt6bak21I7t3S/Ld1vS/fbkm5L/dtSO7fUzi21c0+6Pen2pNuTbk+6PbVzT/fb0/32dL8duuW6EpfElLgmhm7B21Qpya9K8quS/KokvyrJr0ryq5L8qpSkWzixJNbEljjplqSb/KokvyrJr0ryq5L8qiS/KsmvVt3t1KWWOLVz8quS/KrUpFuTbvKrkvyqJL8qya9K8quS/KokvyqcdDn1b/KrkvyqJL8qnHQ56Sa/KsmvSvKrkvyqJL8qya9K8qtVkzt1JfVv8quS/KokvyqadDXpJr8qya9K8quS/KokvyrJr0ryq1WhO3Ut9W/yq5L8qiS/KpZ0LekmvyrJr0ryq5L8qiS/KsmvSvKrVa87dVvq3+RXJflVSX5VWtJtSTf5VUl+VZJfleRXJflVSX5Vkl+t6t2p21P/Jr+i5FeU/IrwulYo+RWl5ytKz1eU/IrwzlZWIe/ipJv8ipJfUfIrSs9Xq5x37L1fVj1v9Rr+6VeLLXFL3MHTrxaXxJS4JubEU9c/DZh+tXjq+nVOv1rc8XemXy0u+DvTrxbX9Hc48dTtzkl3+tXipDv9ajIn3elXi5Pu9KvFSZfT/U6/mtfASXf61eKkO/1qcdKdfrU46U6/Wpx0Jd3v9Kt5DZJ0JbWzJl1N7axJV1M7a9KdfrU46Wq63+lX8xo06VpqZ0u6ltrZkq6ldrakO/1qcdK1dL/Tr+Y1tKTbUju3pNtSO7ek21I7t6Tb0nhuSbel+51+Na+hJ92e2rkn3Z7auSfdntq5J92exnOH7ioSXlziGlaZ8PrvNTF0V6XwYk1/xxK39Hcwnle58Pw7pSQmXMP0q/E9X1klw4slsSa2xC1xB0+/Wuy6/l3WKh1eXBNzYkmsiS1xS9zB068WJ93pV+LXM/1qMSd23bGhQVmFxOOj6bIqiRe3xB08/Wqx647TAsoqJx57PpdVT7yYE0tiTWyJW+IOnn5lrjX9yuZ/p8Q1MSeWxJrYErfEHTz9avHU9XE1/WpxTcyJJbEmtsQtcQdPv1qcdC3pWtK1pGtJ15KuJV1LupZ0W9JtSbcl3ZZ0W9JtSbcl3ZZ0W9JtSbcn3Z50e9LtSbcn3Z50e9LtSbcn3Q7dVYi8uCSmxDUxJ5bEmtgSt8SuO3aOKbMk2b+0L6smuY2P6f/PX/79r3/5H3/7l//40z/89/j8+r/+9Z/3p9aP//c//7//vf+X//Hvf/3b3/76v/7pf//7v/3zv/zP//r3fxmfZY//7U+Xf5b9+L//WPTPVMZn22X99398rJ/pnx/LZfr/+H/8xz7273pMsNvj/6/+v1d5/O8s438f/0AeCz5/lsfyzfgPxf+G2ojQR1zacUXL42+VFUX48f9JiRhCj//XdoTHsvyfH4vw49/X8e/Hv6D+59r33+frz48LePzPvMM/nvj+/HgKWuEfF2C2//LYZfHxsLqDP55DH/+vjn8t8a8fAR/PHfvirj87z3/9eGB9PNbFv378Zjyezsa/1n1pj0dLpriVx409go+P4f9/",
6317
- "verification_key": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEZRAAAAAAAAAAAAAAAAAAAAkBuv5B0kfFWYQ8i5yB7jHEoAAAAAAAAAAAAAAAAAAAAAAA9CA4NwbH4gyMGzuKiw1AAAAAAAAAAAAAAAAAAAADAplnqeqLYFHAR9R7cPrTHSAAAAAAAAAAAAAAAAAAAAAAAsHT6UYqaOf2f76AwRATIAAAAAAAAAAAAAAAAAAAB5ELqhxKWIgkzlECQNFQ/fUQAAAAAAAAAAAAAAAAAAAAAAGSo0Zl8X2mEQUhbCxtzZAAAAAAAAAAAAAAAAAAAA92/qykB/K0wJde6e3jMH7Q0AAAAAAAAAAAAAAAAAAAAAABsROeFqcRS0GYxfQAqCGQAAAAAAAAAAAAAAAAAAAOsUeNvGOvoFCcoQ0Q27F6luAAAAAAAAAAAAAAAAAAAAAAAaaS+L8ihTeEJzqyRLsmkAAAAAAAAAAAAAAAAAAAC8cgbO+pKQxyNG29ocp/SbPwAAAAAAAAAAAAAAAAAAAAAAHoadrJu4P39MaHy9FTQLAAAAAAAAAAAAAAAAAAAAhQ8Qa7lhcwBCDvt35qAqe2wAAAAAAAAAAAAAAAAAAAAAABLUg8pSm0P2f+Gdawcd5wAAAAAAAAAAAAAAAAAAAIjkFiG3gUDl/rl+yadlfaX3AAAAAAAAAAAAAAAAAAAAAAAd6whtfhr2THq0NFp13ooAAAAAAAAAAAAAAAAAAADG7q1UhH7NKMfe3gqEy9J4rQAAAAAAAAAAAAAAAAAAAAAADACv7fq6zPxkhRaQhU22AAAAAAAAAAAAAAAAAAAA+WxioskMnpCSv/iQPfXJo/cAAAAAAAAAAAAAAAAAAAAAABWGe4xitaex4kJhgYrkNwAAAAAAAAAAAAAAAAAAAAfBSD6GPjTQMeoFT5FIeZfgAAAAAAAAAAAAAAAAAAAAAAAqDUUgmTUqPEstiNXvohIAAAAAAAAAAAAAAAAAAADvzRrBiAW6cuC+UcOBy8bOgQAAAAAAAAAAAAAAAAAAAAAAF+eXwSvLEOkqC6Afst/aAAAAAAAAAAAAAAAAAAAAIjx7zf4ErK3TUbUjPHWvo0EAAAAAAAAAAAAAAAAAAAAAABJB8o1i6Ip9b013Xwim2AAAAAAAAAAAAAAAAAAAANbtA9MMEnI01SmAvBq147tMAAAAAAAAAAAAAAAAAAAAAAAB4gue2VkVG3TYKDAdd9gAAAAAAAAAAAAAAAAAAADNIw/PBFJbYTr8g/bVa2i+jgAAAAAAAAAAAAAAAAAAAAAAL9BbptnijKBcoVYkIOBRAAAAAAAAAAAAAAAAAAAAUUrABQY+rJ3nLeU4QbYveeYAAAAAAAAAAAAAAAAAAAAAADBI7AjctBOHPq2qdNcd3wAAAAAAAAAAAAAAAAAAAJL+vrpI1F6+3jnnGIj3fXyeAAAAAAAAAAAAAAAAAAAAAAAL4T7aJgCUW74sW2WDWOYAAAAAAAAAAAAAAAAAAAAWimxRRJ85FBOqaRDlD9pWlgAAAAAAAAAAAAAAAAAAAAAAJNzAXCLE2SLUVLygiEd+AAAAAAAAAAAAAAAAAAAAfXS7x3D0nWhTWn8xuWm5beQAAAAAAAAAAAAAAAAAAAAAAAuk6Uf1WHN7wPIWZzLojgAAAAAAAAAAAAAAAAAAAC0lf5gssiT3OuL6GaE5iyfEAAAAAAAAAAAAAAAAAAAAAAAYALfwEdm4kpbG/HnhR+EAAAAAAAAAAAAAAAAAAAD823syZBzNWnGGjnzT1yMg5AAAAAAAAAAAAAAAAAAAAAAAATDBDUq0HRHSx0+PInBuAAAAAAAAAAAAAAAAAAAAbGP6UV+RTMDMVJE9AtswcMAAAAAAAAAAAAAAAAAAAAAAAC8fAcvKUFeoLDHLV9S0EgAAAAAAAAAAAAAAAAAAAGe0oQbMrVQR1VbkoHgcm739AAAAAAAAAAAAAAAAAAAAAAArQLRMLCl3kOpg5C5K2eYAAAAAAAAAAAAAAAAAAAAv+6bb/lp1zRwVb689n/4qfAAAAAAAAAAAAAAAAAAAAAAAH5SEoGNIWNNCTi3dQ9XdAAAAAAAAAAAAAAAAAAAAuVgLx2uLmeImv9wN0Xa8dzkAAAAAAAAAAAAAAAAAAAAAACd8TVyIPuVCM/wlV3dLaQAAAAAAAAAAAAAAAAAAAMwhl4N5FX7AogVPWe2nuPdUAAAAAAAAAAAAAAAAAAAAAAAJG/d1q1aVxULw3bQLdSMAAAAAAAAAAAAAAAAAAABGRemkcKpNNoOGI7UGcSj0kgAAAAAAAAAAAAAAAAAAAAAAIvx/MplqeTV1/KROXDTHAAAAAAAAAAAAAAAAAAAARNHT2BPgCDH6z3JnPxGbBZoAAAAAAAAAAAAAAAAAAAAAABCEjOQhFsdcI9SKgV36cAAAAAAAAAAAAAAAAAAAABCpqE66cjtGKUSauYShtpoVAAAAAAAAAAAAAAAAAAAAAAAkGkHugGftiO42Q9cKoHQAAAAAAAAAAAAAAAAAAACLxf1k1wDsSX7c4UqAYYqYOQAAAAAAAAAAAAAAAAAAAAAABrlgpMBJHiWZutBLRtmLAAAAAAAAAAAAAAAAAAAAVLHtwI27mAKezVOB3VNH2fAAAAAAAAAAAAAAAAAAAAAAAAKeqQnvCq6a1GAS/ojAOgAAAAAAAAAAAAAAAAAAAMmBRgUyoRk8r19xFRqvXpalAAAAAAAAAAAAAAAAAAAAAAAvLHNHlakzQ6NQxbAGJaYAAAAAAAAAAAAAAAAAAADAdQgJo9vXd7Oc+BiWeUJj1wAAAAAAAAAAAAAAAAAAAAAAAXEGSo3Ki0xTYkbHU1tHAAAAAAAAAAAAAAAAAAAAZSroq/7DUMve+uBKOFe6zdEAAAAAAAAAAAAAAAAAAAAAACrdj/Cu4J0lBDE/kJILlAAAAAAAAAAAAAAAAAAAAG3WY2Q4MM8LpRHUWTqA0qTtAAAAAAAAAAAAAAAAAAAAAAAnZ2sfCcUonjZ0XQUiHA4AAAAAAAAAAAAAAAAAAAB4htssZq9nJtOQmtqWZBX4rwAAAAAAAAAAAAAAAAAAAAAACXzGLXDKHEs5VZ1nNU0nAAAAAAAAAAAAAAAAAAAA4NcOHgP81RgVtODuopdMNgIAAAAAAAAAAAAAAAAAAAAAAA8AWAgJnT3d57ARrDK6PgAAAAAAAAAAAAAAAAAAAA1zHm/3NdnY0S8hoYLJoICzAAAAAAAAAAAAAAAAAAAAAAADxVYHQ5cUlzSZNvAvc74AAAAAAAAAAAAAAAAAAABWAVmyH1gmtTzn+BlBw2LFEgAAAAAAAAAAAAAAAAAAAAAAK4jtYK9iwPpyrIDEjWSoAAAAAAAAAAAAAAAAAAAAArIU2ZQ74/zxstkkIQ6uUaYAAAAAAAAAAAAAAAAAAAAAACKdYF1l+s9bFOFQ2qfZBAAAAAAAAAAAAAAAAAAAAKzXm72Vdfs+rvXKkMOPajSpAAAAAAAAAAAAAAAAAAAAAAAuORzEjID439RRLrLBlkcAAAAAAAAAAAAAAAAAAACQlqNirAFdsXruTSdiRDwVgAAAAAAAAAAAAAAAAAAAAAAAKm499xOR9CUh/xbxNtYLAAAAAAAAAAAAAAAAAAAAxpuhNV4vQWdcu6RCgdt0cWkAAAAAAAAAAAAAAAAAAAAAAAFpcW1SuTmjzhGtSo2IEAAAAAAAAAAAAAAAAAAAABVWsOMM7wiIXFrcwzOhLN8tAAAAAAAAAAAAAAAAAAAAAAAlLrrazX48VcNgFGgO7PkAAAAAAAAAAAAAAAAAAADTtRcUlSCvcjpdNdVIYB77VAAAAAAAAAAAAAAAAAAAAAAAFSFZsRrMvOTuABKL4QvvAAAAAAAAAAAAAAAAAAAAjuxRdViL8IFjF5vgoLfl8uQAAAAAAAAAAAAAAAAAAAAAACIszaZtiatzwH2fUzZq1gAAAAAAAAAAAAAAAAAAAOAmJiHfwsL9rIHKrt4JQDIsAAAAAAAAAAAAAAAAAAAAAAApL+mwxqrUsimVRwD5ZcYAAAAAAAAAAAAAAAAAAADx2n2JJrz17IkXfYDOR0Po8AAAAAAAAAAAAAAAAAAAAAAAG8IK2JXUVD74AbBhdSWwAAAAAAAAAAAAAAAAAAAAYzlvW+172TOYgWkUUUh2/24AAAAAAAAAAAAAAAAAAAAAAAluEyPOah2X7RDy126vxgAAAAAAAAAAAAAAAAAAAIfLBtleqZSVTXrrCN7f9vVgAAAAAAAAAAAAAAAAAAAAAAAtnxbJ0Gm56dgjGnxhXRQAAAAAAAAAAAAAAAAAAACM5UlxB5fRrvSHh/2ngTwxAQAAAAAAAAAAAAAAAAAAAAAAHVDH93R+VZoDDBT4Ag2aAAAAAAAAAAAAAAAAAAAAsa5dmATPGopi6epL4rZqLXYAAAAAAAAAAAAAAAAAAAAAACiS/dumBD9h36AnqHwl6gAAAAAAAAAAAAAAAAAAAA96+783Idykyau8tIFzHa8YAAAAAAAAAAAAAAAAAAAAAAAjxfcRf3orhGigOWSKNkUAAAAAAAAAAAAAAAAAAADwnCJCRUREW/Cfhs4k57yjMQAAAAAAAAAAAAAAAAAAAAAAEBv2dCir+02VxaBxZLcpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbxPkSjPPvdYPadWG551jHtwAAAAAAAAAAAAAAAAAAAAAAFvKTBsOL3oaG6QnVNPKOAAAAAAAAAAAAAAAAAAAAhSOaUov46J3cQ1qy+HTZKewAAAAAAAAAAAAAAAAAAAAAACCwpx8VvkIOMXw62YdhegAAAAAAAAAAAAAAAAAAAGvMegX/lalrKJQkxfczZw2WAAAAAAAAAAAAAAAAAAAAAAAAxDcm91tv2g3iLODg36sAAAAAAAAAAAAAAAAAAAAdCgnXF47JO614WPluZPC0jQAAAAAAAAAAAAAAAAAAAAAAL5tuC04sAZaN5cMkgqp9AAAAAAAAAAAAAAAAAAAAXdsR09mZ0q/lSNdpuQW9QoYAAAAAAAAAAAAAAAAAAAAAACfZ/bajT7bsP7B7gj4icQAAAAAAAAAAAAAAAAAAAK8Q9yBpJk5QR1r8hBZKdMqfAAAAAAAAAAAAAAAAAAAAAAAMIAnvhJBhS4qotnpGypU="
6315
+ "bytecode": "H4sIAAAAAAAA/+xdB5wURdav2Z0ddmDZIecwJAEBQRBFBGHJWcSciSKKgAQlCSsZA5jOO089PXPOOZ0555xzzn6m09Pzqzq62LdvX/d0Vb+u2Tu3fr+3PdtV9f6vql79q7q6ujshtoQm3vHoGfNnHbrkkHnzZx09ZeGMQ6YsWnjYMbMWrq8lxKfFW1IkpBR6xwIpWXROH+Hv+kS6hlIGo3PKinJ0rilxrhWhrzVxrg1xri1xLktgtCPOtSfOdSDOdfR0JkWIkPCOWe/Ya/qE+e9uf17XWycOv/m44/Y9qEufT0YtuW3eKUPf/eG0b2T88YUVaXOE7lFwTgiPE6k8J+bGKYC6S0RFxar/VX2oYyfv/xO8/5Vene4k+XuTlM1STi6klWdFuOI1NCjbKWHrMLF7OXQglW+wiGZnRxHezlPDt3UC2knlw+2fS1+hgZ1JUUEuVRQZ4ibCp60IyoBagscAk7QQ77RCqMEQUGU29aTTDLzj9MLwrbnVKGFWhtMLzfOdbsBm1aGR/xSlkf9kUUF/Mmy4SoAifN4zwjfEdjb6VTjdwslNMP7saGj8S26cIqgbD41neH7wZ+/Ywjv/FzA0nil//1XKWVLORkNjIbI3V/FaGqQ908DfzrGsb1P7Oxmk/auB/X8zsJ9qx3O89vubdzzLO54N2vFc+fs8KX+Xcr53vkDQJKZDVoQzKQVs0XkukBgXSrlIysVSLpFyqZTLpFwu5QopV0q5SsrVUq6Rcq2U66RcL+UGKTdKuUnKzVJukXKrlNuk3C7lDil3SrlLyt1S/iHlHin3SrmvsLIt98v/H5DyoJSHpDws5REpj0p5TMrjUp6Q8qSUp6Q8LeUZKc9KeU7K81JekPKilJekvCzlFSmvSnlNyutS3pDyppS3pLwt5R0p70p5z3Oy973jB97xQ+/4kZ4r6aOquGJ07kLi3EXEuYuJc5cQ5y4lzl1GnLucOHcFce5K4txVxLmriXPXEOeuJc5dR5y7njh3A3HuRuLcTcS5m4lztxDnbiXO3Uacu504dwdx7k7i3F3EubuJc/8gzt1DnLuXOHcfce5+4twDxLkHiXMPEeceJs49Qpx7lDj3GHHuceLcE8S5J4lzTxHnnibOPUOce5Y49xxx7nni3AvEuReJcy8R514mzr1CnHuVOPcace514twbxLk3iXNvEefeJs69Q5x7lzj3HnHuQ+8cDHiylmtATYC0OUJCEXLItJUzGtr0cXicBPwni46VY6uGCyrhBCe+sLJNgYkvQvYHJb4YlzUg8SVV6sU/8aVV69A38WVEffslvpxqG5/EV5DtSCe+km5zMvFVPv5BJb7az5eIxNf4+l3VxNf6+2iVxNcF+DNOfH2Q76PENwT2k8qJbwzuU5US35Sj/8HEN+fqqyDxLTn7dUXiW3NzwNbEt4XgC5349jDc4iW+IxQPbUl8ZzjO+k/iu0Lym0p8d1guTGyZ34RKKxPfY8Cx9xaG5+5PHI0Rn+bGqQV14wtBNcYkPHvVUV8IKb063Wfy9+dSvpDyZWFl5e2QvT60tjXcbzDWPGAw1jxoMNY8ZDDWPGww1jxiMNY8ajDWPGYw1jxuMNY8YTDWPGkw1jxlMNY8bTDWPGMw1jxrMNY8ZzDWPG8w1rxgMNa8aDDWvGQw1rxsMNa8YjDWvGow1rxmMNa8bjDWvGEw1rxpMNa8ZTDWvG0w1rxjMNa8a5D2M4Nx6SvLcUnTfjZc8sR7BvZ/bmD/147sf9/A/i8M7P/GwH5qvP7KG5+/9o7feMcvwXj9rfz9f1K+k/I9Gq9Nb2J8a1C2HwzqjCrbD15Z/s87fucdvwdl+1H+/knKP6X8XMh7Z+3DkGX9+vff/w3xfimMAKgymyxWKPBfDCr6XwYNaFuGfxWaTVxVGf7laIL8a3icZBSc33LjFELd2Pl/9epQy4/e/78B5/+3/P174ZaMiWRFXmhnjlDt26sgGRqnkKpHlV8dP/LK+G+iHgvlj6SUIikptKXKlCBPNehftcKXrdKmGJ0vCc5VyWBo97mGA5E+DvZ+F0tj0lJqS6kjpURKXSmlUjJS6kmpL6WBlIZSGklpLKWJlKZSmklpLqWFlJZSWklpLaWNlLaqvFLaSWkvpYOUjlI6SdlGSmcpXaR0lbKtlG5SukvpIWU7KT2l9JKyvZTeUvpI2UFKXyk7StlJSj8pO0vpL2UXKQOkDJSyq5RBUgZLKZMyRMpQKcOkDJcyQsrIpNcYatW5QERvjOKkXecSRjiJSraO8hx/tN4CpT1LRfyIzqlEeInddEoFC5mDbRKjkuF71WjLyjO9RWBi0xhoU47EsJ7HeHVvMq0xsTuMLTqMTUYAVJmrUGmOjGMN6HGcQWPYlmFckujJOTKOM3RGU6YY7dklzPKxslU6D2w1wSvzbpitJhBstRsDW6UN2GqCgTPu5oitTGyaaMlWE2NgqwmWbLV7MgLg7hZstbsBW02Kma1UGSZZsNWkmNlqN88uYZaPla1q54Gt9vTKvBdmqz0JttqLga1qG7DVngbOuJcjtjKxaW9Ltto7Brba05Kt9klGANzHgq32MWCrfWNmK1WGfS3Yat+Y2Wovzy5hlo+Vrerkga3298p8AGar/Qm2OoCBreoYsNX+Bs54gCO2MrHpQEu2OjAGttrfkq0OSkYAPMiCrQ4yYKuDY2YrVYaDLdjq4JjZ6gDPLmGWj5WtSvLAVpO9Mk/BbDWZYKspDGxVYsBWkw2ccYojtjKxaaolW02Nga0mW7LVtGQEwGkWbDXNgK2mx8xWqgzTLdhqesxsNcWzS5jlY2Wrunlgq0O9Ms/EbHUowVYzGdiqrgFbHWrgjDMdsZWJTYdZstVhMbDVoZZsNSsZAXCWBVvNMmCrw2NmK1WGwy3Y6vCY2WqmZ5cwy8fKVqV5YKvZXpmPxGw1m2CrIxnYqtSArWYbOOORjtjKxKY5lmw1Jwa2mm3JVnOTEQDnWrDVXAO2mhczW6kyzLNgq3kxs9WRnl3CLB8rW2XywFbzvTIvwGw1n2CrBQxslTFgq/kGzrjAEVuZ2LTQkq0WxsBW8y3ZalEyAuAiC7ZaZMBWR8fMVqoMR1uw1dExs9UCzy5hlo+Vrerlga0We2VegtlqMcFWSxjYqp4BWy02cMYljtjKxKallmy1NAa2WmzJVsuSEQCXWbDVMgO2Wh4zW6kyLLdgq+Uxs9USzy5hlo+Vrernga1WeGVeidlqBcFWKxnYqr4BW60wcMaVjtjKxKZyS7Yqj4GtVliy1XHJCIDHWbDVcQZstSpmtlJlWGXBVqtiZquVnl3CLB8rWzXIA1ut8cq8FrPVGoKt1jKwVQMDtlpj4IxrHbGViU3rLNlqXQxstcaSrdYnIwCut2Cr9QZstSFmtlJl2GDBVhtiZqu1nl3CLB8rWzXMA1sd75X5BMxWxxNsdQIDWzU0YKvjDZzxBEdsZWLTiZZsdWIMbHW8JVudlIwAeJIFW51kwFabYmYrVYZNFmy1KWa2OsGzS5jlY2WrRnlgq5O9Mp+C2epkgq1OYWCrRgZsdbKBM57iiK1MbDrVkq1OjYGtTrZkq9OSEQBPs2Cr0wzY6vSY2UqV4XQLtjo9ZrY6xbNLmOVjZavGeWCrM7wy/xmz1RkEW/2Zga0aG7DVGQbO+GdHbGVi018s2eovMbDVGZZsdWYyAuCZFmx1pgFb/TVmtlJl+KsFW/01Zrb6s2eXMMvHylZN8sBWZ3tlPgez1dkEW53DwFZNDNjqbANnPMcRW5nY9DdLtvpbDGx1tiVbnZuMAHiuBVuda8BW58XMVqoM51mw1Xkxs9U5nl3CLB8rWzXNA1ud75X5AsxW5xNsdQEDWzU1YKvzDZzxAkdsZWLThZZsdWEMbHW+JVtdlIwAeJEFW11kwFYXx8xWqgwXW7DVxTGz1QWeXcIsHytbNcsDW13qlfkyzFaXEmx1GQNbNTNgq0sNnPEyR2xlYtPllmx1eQxsdaklW12RjAB4hQVbXWHAVlfGzFaqDFdasNWVMbPVZZ5dwiwfK1s1zwNbXe2V+RrMVlcTbHUNA1s1N2Crqw2c8RpHbGVi07WWbHVtDGx1tSVbXZeMAHidBVtdZ8BW18fMVqoM11uw1fUxs9U1nl3CLB8rW7XIA1vd6JX5JsxWNxJsdRMDW7UwYKsbDZzxJkdsZWLTzZZsdXMMbHWjJVvdkowAeIsFW91iwFa3xsxWqgy3WrDVrTGz1U2eXcIsHytbtcwDW93ulfkOzFa3E2x1BwNbtTRgq9sNnPEOR2xlYtOdlmx1ZwxsdbslW92VjAB4lwVb3WXAVnfHzFaqDHdbsNXdMbPVHZ5dwiwfK1u1ygNb3eOV+V7MVvcQbHUvA1u1MmCrewyc8V5HbGVi032WbHVfDGx1jyVb3Z+MAHi/BVvdb8BWD8TMVqoMD1iw1QMxs9W9nl3CLB8rW7XOA1s95JX5YcxWDxFs9TADW7U2YKuHDJzxYUdsZWLTI5Zs9UgMbPWQJVs9mowA+KgFWz1qwFaPxcxWqgyPWbDVYzGz1cOeXcIsHytbtckDWz3hlflJzFZPEGz1JANbtTFgqycMnPFJR2xlYtNTlmz1VAxs9YQlWz2djAD4tAVbPW3AVs/EzFaqDM9YsNUzMbPVk55dwiwfK1u1zQNbPeeV+XnMVs8RbPU8A1u1NWCr5wyc8XlHbGVi0wuWbPVCDGz1nCVbvZiMAPiiBVu9aMBWL8XMVqoML1mw1Usxs9Xznl3CLB8rW2XzwFaveGV+FbPVKwRbvcrAVlkDtnrFwBlfdcRWJja9ZslWr8XAVq9YstXryQiAr1uw1esGbPVGzGylyvCGBVu9ETNbverZJczysbJVuzyw1Vtemd/GbPUWwVZvM7BVOwO2esvAGd92xFYmNr1jyVbvxMBWb1my1bvJCIDvWrDVuwZs9V7MbKXK8J4FW70XM1u97dklzPKxslX7PLDVB16ZP8Rs9QHBVh8ysFV7A7b6wMAZP3TEViY2fWTJVh/FwFYfWLLVx8kIgB9bsNXHBmz1ScxspcrwiQVbfRIzW33o2SXM8rGyVYc8sNVnXpk/x2z1GcFWnzOwVQcDtvrMwBk/d8RWJjZ9YclWX8TAVp9ZstWXyQiAX1qw1ZcGbPVVzGylyvCVBVt9FTNbfe7ZJczysbJVxzyw1Tdemb/FbPUNwVbfMrBVRwO2+sbAGb91xFYmNv2fJVv9Xwxs9Y0lW32XjAD4nQVbfWfAVt/HzFaqDN9bsNX3MbPVt55dwiwfK1t1ygNb/eiV+SfMVj8SbPUTA1t1MmCrHw2c8SdHbGVi0z8t2eqfMbDVj5Zs9XMyAuDPFmz1swFb/RIzW6ky/GLBVr/EzFY/eXYJs3ysbLVNHtjqV6/Mv2G2+pVgq98Y2GobA7b61cAZf3PEViY2/duSrf4dA1v9aslWvycjAP5uwVa/G7CVKIqXrf7TO4rM2QraFa4gSH+O5L95dgmzfKxs1TkPbFXglbmwSFTuMSoCs5VKFJWtOhuwVYGBMxYW2VWeKVuZ2JQssmOrZBE/WxUY2qJDUVEEQJXZlK2KwjdkIhUzW6kypCzYKhUzWxV6dgmzfKxs1SUPbFXslTmN2aqYYKs0A1t1MWCrYgNnTDtiKxObaluyVe0Y2KrYkq3qFEUArGPBVnUM2KokZrZSZSixYKuSmNkq7dklzPKxslXXPLBVqVfmDGarUoKtMgxs1dWArUoNnDHjiK1MbKpnyVb1YmCrUku2ql8UAbC+BVvVN2CrBjGzlSpDAwu2ahAzW2U8u4RZPla22jYPbNXIK3NjzFaNCLZqzMBW2xqwVSMDZ2zsiK1MbGpiyVZNYmCrRpZs1bQoAmBTC7ZqasBWzWJmK1WGZhZs1Sxmtmrs2SXM8rGyVbc8sFULr8wtMVu1INiqJQNbdTNgqxYGztjSEVuZ2NTKkq1axcBWLSzZqnVRBMDWFmzV2oCt2sTMVqoMbSzYqk3MbNXSs0uY5WNlq+55YKusV+Z2mK2yBFu1Y2Cr7gZslTVwxnaO2MrEpvaWbNU+BrbKWrJVh6IIgB0s2KqDAVt1jJmtVBk6WrBVx5jZqp1nlzDLx8pWPfLAVtt4Ze6M2Wobgq06M7BVDwO22sbAGTs7YisTm7pYslWXGNhqG0u26loUAbCrBVt1NWCrbWNmK1WGbS3YatuY2aqzZ5cwy8fKVtvlga26e2XugdmqO8FWPRjYajsDtupu4Iw9HLGViU3bWbLVdjGwVXdLtupZFAGwpwVb9TRgq14xs5UqQy8LtuoVM1v18OwSZvlY2apnHtiqt1fmPpitehNs1YeBrXoasFVvA2fs44itTGzawZKtdoiBrXpbslXfogiAfS3Yqq8BW+0YM1upMuxowVY7xsxWfTy7hFk+VrbqlQe26ueVeWfMVv0IttqZga16GbBVPwNn3NkRW5nY1N+SrfrHwFb9LNlql6IIgLtYsNUuBmw1IGa2UmUYYMFWA2Jmq509u4RZPla22j4PbLWrV+ZBmK12JdhqEANbbW/AVrsaOOMgR2xlYtNgS7YaHANb7WrJVmVFEQDLLNiqzICthsTMVqoMQyzYakjMbDXIs0uY5WNlq955YKthXpmHY7YaRrDVcAa26m3AVsMMnHG4I7YysWmEJVuNiIGthlmy1ciiCIAjLdhqpAFbjYqZrVQZRlmw1aiY2Wq4Z5cwy8fKVn3ywFZjvDKPxWw1hmCrsQxs1ceArcYYOONYR2xlYtM4S7YaFwNbjbFkq/FFEQDHW7DVeAO2mhAzW6kyTLBgqwkxs9VYzy5hlo+VrXbIA1tN9Mq8O2ariQRb7c7AVjsYsNVEA2fc3RFbmdg0yZKtJsXAVhMt2WqPogiAe1iw1R4GbLVnzGylyrCnBVvtGTNb7e7ZJczysbJV3zyw1d5emffBbLU3wVb7MLBVXwO22tvAGfdxxFYmNu1ryVb7xsBWe1uy1X5FEQD3s2Cr/QzYav+Y2UqVYX8Ltto/Zrbax7NLmOVjZasd88BWB3plPgiz1YEEWx3EwFY7GrDVgQbOeJAjtjKx6WBLtjo4BrY60JKtDimKAHiIBVsdYsBWk2NmK1WGyRZsNTlmtjrIs0uY5WNlq53ywFZTvTJPw2w1lWCraQxstZMBW001cMZpjtjKxKbplmw1PQa2mmrJVjOKIgDOsGCrGQZsdWjMbKXKcKgFWx0aM1tN8+wSZvlY2apfHtjqMK/MszBbHUaw1SwGtupnwFaHGTjjLEdsZWLT4ZZsdXgMbHWYJVsdURQB8AgLtjrCgK1mx8xWqgyzLdhqdsxsNcuzS5jlY2WrnfPAVnO8Ms/FbDWHYKu5DGy1swFbzTFwxrmO2MrEpnmWbDUvBraaY8lWRxVFADzKgq2OMmCr+TGzlSrDfAu2mh8zW8317BJm+VjZqn8e2GqhV+ZFmK0WEmy1iIGt+huw1UIDZ1zkiK1MbDrakq2OjoGtFlqy1TFFEQCPsWCrYwzYanHMbKXKsNiCrRbHzFaLPLuEWT5WttolD2y11CvzMsxWSwm2WsbAVrsYsNVSA2dc5oitTGxabslWy2Ngq6WWbHVsUQTAYy3Y6lgDtloRM1upMqywYKsVMbPVMs8uYZaPla0G5IGtyr0yH4fZqpxgq+MY2GqAAVuVGzjjcY7YysSmVZZstSoGtiq3ZKvVRREAV1uw1WoDtloTM1upMqyxYKs1MbPVcZ5dwiwfK1sNzANbrfPKvB6z1TqCrdYzsNVAA7ZaZ+CM6x2xlYlNGyzZakMMbLXOkq02FkUA3GjBVhsN2Or4mNlKleF4C7Y6Pma2Wu/ZJczysbLVrnlgqxO9Mp+E2epEgq1OYmCrXQ3Y6kQDZzzJEVuZ2LTJkq02xcBWJ1qy1eaiCICbLdhqswFbnRwzW6kynGzBVifHzFYneXYJs3ysbDUoD2x1qlfm0zBbnUqw1WkMbDXIgK1ONXDG0xyxlYlNp1uy1ekxsNWplmz1p6IIgH+yYKs/GbDVGTGzlSrDGRZsdUbMbHWaZ5cwy8fKVoPzwFZ/8cp8JmarvxBsdSYDWw02YKu/GDjjmY7YysSmv1qy1V9jYKu/WLLVWUURAM+yYKuzDNjq7JjZSpXhbAu2OjtmtjrTs0uY5WNlq7I8sNXfvDKfi9nqbwRbncvAVmUGbPU3A2c81xFbmdh0niVbnRcDW/3Nkq3+XhQB8O8WbPV3A7Y6P2a2UmU434Ktzo+Zrc717BJm+VjZakge2OpCr8wXYba6kGCrixjYaogBW11o4IwXOWIrE5sutmSri2Ngqwst2eqSogiAl1iw1SUGbHVpzGylynCpBVtdGjNbXeTZJczysbLV0Dyw1eVema/AbHU5wVZXMLDVUAO2utzAGa9wxFYmNl1pyVZXxsBWl1uy1VVFEQCvsmCrqwzY6uqY2UqV4WoLtro6Zra6wrNLmOVjZatheWCra70yX4fZ6lqCra5jYKthBmx1rYEzXueIrUxsut6Sra6Pga2utWSrG4oiAN5gwVY3GLDVjTGzlSrDjRZsdWPMbHWdZ5cwy8fKVsPzwFY3e2W+BbPVzQRb3cLAVsMN2OpmA2e8xRFbmdh0qyVb3RoDW91syVa3FUUAvM2CrW4zYKvbY2YrVYbbLdjq9pjZ6hbPLmGWj5WtRuSBre70ynwXZqs7Cba6i4GtRhiw1Z0GzniXI7YyseluS7a6Owa2utOSrf5RFAHwHxZs9Q8DtronZrZSZbjHgq3uiZmt7vLsEmb5WNlqZB7Y6j6vzPdjtrqPYKv7GdhqpAFb3WfgjPc7YisTmx6wZKsHYmCr+yzZ6sGiCIAPWrDVgwZs9VDMbKXK8JAFWz0UM1vd79klzPL9x6HSoqLTRrHh3EIXbEUny4owIbG1TAmQ5xFZb49KeUzK41KekPKklKekPC3lGSnPSnlOyvNSXpDyopSXpLws5RUpr0p5TcrrUt6Q8qaUt6S8LeUdKe9KeU/K+1I+kPKhlI+kfIxZ9hGPUeG5R4lzjxHnHifOPUGce5I49xRx7mni3DPEuWeJc88R554nzr1AnHuROPcSce5l4twrxLlXiXOvEedeJ869QZx7kzj3FnHubeLcO8S5d4lz7xHn3ifOfUCc+5A49xFx7mNi9G7nHbMiVKjU6XOR5yMhyVmN9I+GTisSj4VNK+19PFzaU9Wg90SotN//Z4B8Mkzad7YMpk+FSDvEG3ifzp32ZD1IP5Mz7dytA/qzudLeWjH4P5cj7WIwUXg+OO1IOKl4ITDtx5UmIC8Gpe1debLyUkDazmhi87J/2gPxJOgV37T7VJkwveqXtrzq5Oo1n7TlxETsdTrtTdSk7Q0y7TBygvcmlXY3ejL4FpH2Fp+J49tV03bxm2S+UyXtub4T0ndx2l7+k9f3UNp3Aia671dOe1TQpPiDSmnHB06gP4RppwVPtj8CaXvmmJh/bDCxNLl6yBEq4ebg8mch3id+Vw9hAD8pMrs8U+CfhK+gxKchC+V39RCmDJ8WmV11qDJ8atjIXOsPBs71DHUyK0LBVLL1M89BPscz48+8ioPnPmdYfzDw5MRnBg7yuWHlmTaOcorPDJ1J2fVZnhjjo/D1fA7E+8KWMRTgF+aMcc4XBozxZcyMocrwpTljnPNlnhjjo/C4Z1MnsyIUTCVbv/Ic5GvMGF8RjPE1A2MYeHLiKwMH+dqy8kxXLE1s+sagM2z9Y2DLp56DV1kUzIFlMlR/a9AZqDLkSq7q6FsLJv42T0z8YXj/vQHi/Z8tEyvA/zNn4hv+z8D5vouZiVUZvjNn4hu+i+h8YTrQtzF3oO8Ny6CDKTGZtOEPBr7BOcJ9GB73eupkVoSCqWTrj17H+wmPcD8SI9xPDCOcAUMkfjRotJ8sK8/UkUxs+mfEES5XHtV5frAYHX6OedRS5f7ZgV06mLbhzwZt+EvMbehHsmHIOWzafxkSGtds4IPwfX0zxPvVdjagAH81nw1s/tWggn6LeTagyvCb+Wxg828xzwZUR/hXUbyd7d+GnU0HU5tM2vD3PM0GPgiPu4k6mRWhYCrbmvLOpkTlkV9F4NmAShR1NmDAEAllQ5i033i2hbShUuWZOpKJTQUpM+c2dRjVeX63GHULw9tVYZwIb5cqd2Eqfrt0MG3DQoM2TMbchn4kmyufCckWGdQr52zg/fB9PQvxUqkIgCqz4WwgmzJo5FoGzmNbhlqGnUeVoVbETh2mIxSl4u1sxYadTQdTm0zaMG1gE+ds4P3ws4G21MmsCAVTydbaXserg2cDtYnZQB2G2YABQyRqGzRanZRd5Zk6kolNJTGPJKrzpC1G3boxzwZUues6sEsH0zasa9CGpTG3oR/J5spnQrKZPM0G3gvf15+BePVsZwMKsJ75bOCZegaNXD/m2YAqQ33z2cAz9WOeDaiOkEnF29kaOJoNmLRhwzzNBt4LPxt4mjqZFaFgKtnayOt4jfFsoBExG2jMMBswYIhEI4NGa5yyqzxTRzKxqUnMI4nqPA0tRt2mMc8GVLmbOrBLB9M2bGrQhs1ibkM/ks2Vz4Rkm+dpNvBu+L4+BeK1sJ0NKMAW5rOBKS0MGrllzLMBVYaW5rOBKS1jng2ojtA8FW9na+VoNmDShq3zNBt4N/xsYDJ1MitCwVSytY3X8dri2UAbYjbQlmE2YMAQiTYGjdY2ZVd5po5kYlM25pFEdZ7WFqNuu5hnA6rc7RzYpYNpG7YzaMP2MbehH8nmymdCsh3yNBt4J3xffwXidbSdDSjAjuazgVc6GjRyp5hnA6oMncxnA690ink2oDpCh1S8nW0bR7MBkzbsnKfZwDvhZwMvUyezIhRMJVu7eB2vK54NdCFmA10ZZgMGDJHoYtBoXVN2lWfqSCY2bRvzSKI6T2eLUbdbzLMBVe5uDuzSwbQNuxm0YfeY29CPZHPlMyHZHnmaDbwdvq+Phnjb2c4GFOB25rOB0dsZNHLPmGcDqgw9zWcDo3vGPBtQHaFHKt7O1svRbMCkDbfP02zg7fCzgVHUyawIBVPJ1t5ex+uDZwO9idlAH4bZgAFDJHobNFqflF3lmTqSiU07xDySqM6zvcWo2zfm2YAqd18Hdulg2oZ9Ddpwx5jb0I9kc+UzIdmd8jQbeCt8X78O4vWznQ0owH7ms4Hr+hk08s4xzwZUGXY2nw1ct3PMswHVEXZKxdvZ+juaDZi04S55mg28FX42cC11MitCwVSydYDX8Qbi2cAAYjYwkGE2YMAQiQEGjTYwZVd5po5kYtOuMY8kqvPsYjHqDop5NqDKPciBXTqYtuEggzYcHHMb+pFsrnwmJFuWp9nAm+H7+p0Qb4jtbEABDjGfDdw5xKCRh8Y8G1BlGGo+G7hzaMyzAdURylLxdrZhjmYDJm04PE+zgTfDzwbuoE5mRSiYSraO8DreSDwbGEHMBkYyzAYMGCIxwqDRRqbsKs/UkUxsGhXzSKI6z3CLUXd0zLMBVe7RDuzSwbQNRxu04ZiY29CPZHPlMyHZsXmaDbwRvq+PhXjjbGcDCnCc+Wxg7DiDRh4f82xAlWG8+Wxg7PiYZwOqI4xNxdvZJjiaDZi04W55mg28EX42MIY6mRWhYCrZOtHreLvj2cBEYjawO8NswIAhEhMNGm33lF3lmTqSiU2TYh5JVOfZzWLU3SPm2YAq9x4O7NLBtA33MGjDPWNuQz+SzZXPhGT3ytNs4PXwfb0c4u1tOxtQgHubzwbK9zZo5H1ing2oMuxjPhso3yfm2YDqCHul4u1s+zqaDZi04X55mg28Hn42sJI6mRWhYCrZur/X8Q7As4H9idnAAQyzAQOGSOxv0GgHpOwqz9SRTGw6MOaRRHWe/SxG3YNing2och/kwC4dTNvwIIM2PDjmNvQj2Vz5TEj2kDzNBl6znA1Mtp0NKMDJFrOByQaNPCXm2YAqwxSL2cCUmGcDqiMckoq3s011NBswacNpeZoNvJaH2cB0r+PNwLOB6cRsYAbDbMCAIRLTDRpthqPZgIlNh8Y8kqjOM81i1J0Z82xAlXumA7t0MG3DmQZteFjMbehHsrnymZDsrDzNBl4N39cvg3iH284GFODh5rOByw43aOQjYp4NqDIcYT4buOyImGcDqiPMSsXb2WY7mg2YtOGReZoNvBp+NnApdTIrQsFUsnWO1/Hm4tnAHGI2MJdhNmDAEIk5Bo02N2VXeaaOZGLTvJhHEtV5jrQYdY+KeTagyn2UA7t0MG3DowzacH7MbehHsrnymZDsgjzNBl4J39cvhHgLbWcDCnCh+WzgwoUGjbwo5tmAKsMi89nAhYting2ojrAgFW9nO9rRbMCkDY/J02zglfCzgQuok1kRCqaSrYu9jrcEzwYWE7OBJQyzAQOGSCw2aLQlKbvKM3UkE5uWxjySqM5zjMWouyzm2YAq9zIHdulg2obLDNpwecxt6EeyufKZkOyxeZoNvBy+r78K8VbYzgYU4Arz2cCrKwwaeWXMswFVhpXms4FXV8Y8G1Ad4dhUvJ2t3NFswKQNj8vTbODl8LOBV6iTWREKppKtq7yOtxrPBlYRs4HVDLMBA4ZIrDJotNUpu8ozdSQTm9bEPJKoznOcxai7NubZgCr3Wgd26WDahmsN2nBdzG3oR7K58pmQ7Po8zQZeCt/Xn4J4G2xnAwpwg/ls4KkNBo28MebZgCrDRvPZwFMbY54NqI6wPhVvZzve0WzApA1PyNNs4KXws4EnqZNZEQqmkq0neh3vJDwbOJGYDZzEMBswYIjEiQaNdlLKrvJMHcnEpk0xjySq85xgMepujnk2oMq92YFdOpi24WaDNjw55jb0I9lc+UxI9pQ8zQZeDN/Xm0O8U21nAwrwVPPZQPNTDRr5tJhnA6oMp5nPBpqfFvNsQHWEU1LxdrbTHc0GTNrwT3maDbwYfjbQjDqZFaFgKtl6htfx/oxnA2cQs4E/M8wGDBgicYZBo/05ZVd5po5kYtNfYh5JVOf5k8Woe2bMswFV7jMd2KWDaRueadCGf425Df1INlc+E5I9K0+zgRfC9/XbIN7ZtrMBBXi2+WzgtrMNGvmcmGcDqgznmM8Gbjsn5tmA6ghnpeLtbH9zNBswacNz8zQbeCH8bOBW6mRWhIKpZOt5Xsf7O54NnEfMBv7OMBswYIjEeQaN9veUXeWZOpKJTefHPJKoznOuxah7QcyzAVXuCxzYpYNpG15g0IYXxtyGfiSbK58JyV6Up9nA8+H7+gaId7HtbEABXmw+G9hwsUEjXxLzbECV4RLz2cCGS2KeDaiOcFEq3s52qaPZgEkbXpan2cDz4WcD66mTWREKppKtl3sd7wo8G7icmA1cwTAbMGCIxOUGjXZFyq7yTB3JxKYrYx5JVOe5zGLUvSrm2YAq91UO7NLBtA2vMmjDq2NuQz+SzZXPhGSvydNs4LnwfX0UxLvWdjagAK81nw2Mutagka+LeTagynCd+Wxg1HUxzwZUR7gmFW9nu97RbMCkDW/I02zgufCzgZHUyawIBVPJ1hu9jncTng3cSMwGbmKYDRgwROJGg0a7KWVXeaaOZGLTzTGPJKrz3GAx6t4S82xAlfsWB3bpYNqGtxi04a0xt6EfyebKZ0Kyt+VpNvBs+L5+CsS73XY2oABvN58NnHK7QSPfEfNsQJXhDvPZwCl3xDwbUB3htlS8ne1OR7MBkza8K0+zgWfDzwZOpk5mRSiYSrbe7XW8f+DZwN3EbOAfDLMBA4ZI3G3QaP9I2VWeqSOZ2HRPzCOJ6jx3WYy698Y8G1DlvteBXTqYtuG9Bm14X8xt6EeyufKZkOz9eZoNPBO+r8+DeA/YzgYU4APms4F5Dxg08oMxzwZUGR40nw3MezDm2YDqCPen4u1sDzmaDZi04cN5mg08E342MJc6mRWhYCrZ+ojX8R7Fs4FHiNnAowyzAQOGSDxi0GiPpuwqz9SRTGx6LOaRRHWehy1G3cdjng2ocj/uwC4dTNvwcYM2fCLmNvQj2Vz5TEj2yTzNBp4O39fvhnhP2c4GFOBT5rOBu58yaOSnY54NqDI8bT4buPvpmGcDqiM8mYq3sz3jaDZg0obP5mk28HT42cBd1MmsCAVTydbnvI73PJ4NPEfMBp5nmA0YMETiOYNGez5lV3mmjmRi0wsxjySq8zxrMeq+GPNsQJX7RQd26WDahi8atOFLMbehH8nmymdCsi/naTbwVPi+noV4r9jOBhTgK+azgewrBo38asyzAVWGV81nA9lXY54NqI7wcirezvaao9mASRu+nqfZwFPhZwNtqZNZEQqmkq1veB3vTTwbeIOYDbzJMBswYIjEGwaN9mbKrvJMHcnEprdiHklU53ndYtR9O+bZgCr32w7s0sG0Dd82aMN3Ym5DP5LNlc+EZN/N02zgyfB9vQTivWc7G1CA75nPBkreM2jk92OeDagyvG8+Gyh5P+bZgOoI76bi7WwfOJoNmLThh3maDTwZfjZQhzqZFaFgKtn6kdfxPsazgY+I2cDHDLMBA4ZIfGTQaB+n7CrP1JFMbPok5pFEdZ4PLUbdT2OeDahyf+rALh1M2/BTgzb8LOY29CPZXPlMSPbzPM0Gngjf1+dAvC9sZwMK8Avz2cCcLwwa+cuYZwOqDF+azwbmfBnzbEB1hM9T8Xa2rxzNBkza8Os8zQaeCD8bOJI6mRWhYCrZ+o3X8b7Fs4FviNnAtwyzAQOGSHxj0Gjfpuwqz9SRTGz6v5hHEtV5vrYYdb+LeTagyv2dA7t0MG3D7wza8PuY29CPZHPlMyHZH/I0G3g8fF+vD/F+tJ0NKMAfzWcD9X80aOSfYp4NqDL8ZD4bqP9TzLMB1RF+SMXb2f7paDZg0oY/52k28Hj42UA96mRWhIKpZOsvXsf7F54N/ELMBv7FMBswYIjELwaN9q+UXeWZOpKJTb/GPJKozvOzxaj7W8yzAVXu3xzYpYNpG/5m0Ib/jrkN/Ug2Vz4Tkv09T7OBx8ITWmW8WhEAVWbTfIla8Y7wyq5ErYoTWRE+mHYi5bC/p+LtFAW13IzaJu1SWCtaRw1T5kKLNuTsUI9adqikbYdSgEmLDlUUc4dSdhUxdahcyVXDF9Wyc5hsOAxWJ3mkyKCDgYwpWydRgCqzae9OGfTYWjE7lCpDLYtGrlUrmvOFcaJatcynBwUG9VUcsQy5kqu6LbbsrDqY+laxQfnTEUeOXHn8RuRc+UxG5Noxt6Gqo9oWA4FJOyQ9KQQ2ZrFCQ/yPi8z9zRTjIwcYHzrA+MABxvsOMN5zgPGuA4x3HGC87QDjLQcYbzrAeMMBxusOMF5zgPGqA4xXHGC87ADjJQcYLzrAeMEBxvMOMJ5zgPGsA4xnHGA87QDjKQcYTzrAeMIBxuMOMB5zgPGoA4xHLDBgyEZIlhXhgr5mVGXT963qyGuqEil1pZRKyUipJ6W+lAZSGkppJKWxlCZSmkppJqW5lBbedXhLvdqk7+3V8S7U4LkS4lxd4lwpcS5DnKtHnKtPnGtAnGtJXOCa3nsMf6GWEB8brKK1Mrj4hmWi8pktEiQq6chlZ2tLO1sz1L3BBWyitUGZ2liWqQ1D3bcxsLOtpZ1tGere4MI+0dagTFnLMmUj171I1InJThhM6/k9A35534Bf2lnWczsGH29nUM/tLe1sz+DjBgsyifYGZepgWaYODHXfwcDOjpZ2dmSoe4OFqkRHgzJ1sixTJwZ+KYnJThhM6/ktA35524BftrGs520YfHwbg3rubGlnZwYfN1hgTHQ2KFMXyzJ1Yaj7LgZ2drW0sytD3RssvCa6GpRpW8sybcvAL3VjshMG03p+zYBfXjfgl26W9dyNwce7GdRzd0s7uzP4uMGCeaK7QZl6WJapB0Pd9zCwcztLO7djqHuDGwmJ7QzK1NOyTD0Z+KU0JjthMK3nlwz45WUDfullWc+9GHy8l0E9b29p5/YMPm5wAyixvUGZeluWqTdD3fc2sLOPpZ19GOre4MZYoo9BmXawLNMODPySiclOGKJ8vSpHUvG8Ab/0taznvgw+3tegnne0tHNHBh83uKGZ2NGgTDtZlmknhrrfycDOfpZ29mOoe4MbvYl+BmXa2bJMOzPwS72Y7IQhylvuciQVTxvwS3/Leu7P4OP9Dep5F0s7d2HwcYMb9IldDMo0wLJMAxjqfoCBnQMt7RzIUPcGGxcSAw3KtKtlmXZl4Jf6MdkJg2k9P2bAL48b8Msgy3oexODjgwzqebClnYMZfNxgw0lisEGZyizLVMZQ92UGdg6xtHMIQ90bbMRJDDEo01DLMg1l4JcGMdmJbTaxqaEjnEaOcBo7wmniCKepI5xmjnCaO8JpYYCjHjBST4nDh4zqRcSvY1FOU4wSBxh1HWCUOsDIOMCo5wCjvgOMBpZ9NCxGuWU+W7yafLHkbRchb1b7JOTaYdLvhksZIWWklFFSRksZI2WslHFSxkuZIGU3KROl7C5lkpQ9aonKE7ZhnhPDc8OJcyOIcyOJc6OIc6OJc2OIc2OJc5OIc3t45zjfIDUuQmcOi6NsgrbuWWvLcS/cKCoi6tuixoWcRX8t0+5pMOPey9HMxBXOeEc4Exzh7OYIZ6IjnN0d4YTtL/MqVP8nmL5ewWDGmxhmWXZTmwxmyInhjmwymFEnRjiyyWAGnhjpyCaDGXtilCObDGb4idGObDK4IkiMcWSTwRVEYiyTTUEY6s8kA5v2CDvH+P33RBUgEb6e9g5pUzk20BBnn5A4h6c/mhkFZ9+QOHfMvHptFJz9QuIMmPPd/Cg4+4fEuWi3H/pHwTkgJM7upZNWRsE5MCTOWUWHnRgF56CQOG1Xv3pFFJyDQ+Ic8M6TzZXuuh6GmquoY4l3rOsdS71jxjvW8471vWMD77i3dzyhMNxxUq2KCzx13Mc77usd9/OO+3vHA7zjgd7xIO+oynuIlMlSpkiZKmWalOlSZkg5tNaWi8e0qLiuCqrfHCFxiIOLR7HFZMu8ia1lSgBFM6Xdh0mZJeVwfBE607sIhecOI87NIs4dXqvqBWyRkcGVKzWXg880GIgOC51WJGYZXEQfbuAEnM43+b/U+Y6Qds+WcqSUOdj5jiCcajZx7kji3BwG55ts4HxHGDjfbAPnO9LA+ebkyfmm/Jc631xp9zwpR0mZj51vLuFU84hzRxHn5jM43xQD55tr4HzzDJzvKAPnm58n55v6X+p8C6TdC6UsknI0dr4FhFMtJM4tIs4dzeB8Uw2cb4GB8y00cL5FBs53dJ6cb9p/qfMdI+1eLGWJlKXY+Y4hnGoxcW4JcW4pg/NNM3C+Ywycb7GB8y0xcL6leXK+6f+lzrdM2r1cyrFSVmDnW0Y41XLi3LHEuRUMzjfdwPmWGTjfcgPnO9bA+Vbkyflm/Jc630ppd7mU46Ssws63knCqcuLcccS5VQzON8PA+VYaOF+5gfMdZ+B8q/LkfIf+lzrfamn3GilrpazDzreacKo1xLm1xLl1DM53qIHzrTZwvjUGzrfWwPnWGTiBqiP9ha4LvHXGC73jRd7xYu94iXe81Dte5h0v945XeMcrveNV3vFq73iNd7zWO17nHa/3jjd4xxu9403e8WbveIt3vNU73uYdb/eOd3jHO73jXd7xbu/4D+94j3e81zve5x3v944PeMcHveND3vFh7/iId3zUOz7mHR/3jk94xye941Pe8Wnv+Ix3fNY7Pucdn/eOL3jHF73jS97xZe/4ind81Tu+5h1f945veMc3veNb3vFt7/iOd3zXO77nHUcntxx38457eccDvOMU7zjTOx7pHRd4xyXecaV3XOsdT/COp3jHP3vHc7zjBd7xMu94jXe8yTve4R3v9Y4Pe8cnvePz3vFV7/i2d/zQO37uHb/1jj95x9+8Y2HRlmPaO2a8Y2Pv2NI7tvOOnb1jD+/Yxzvu7B0Hecfh3nGsd9zdO+7jHQ/yjtO84yzvONc7LvKOy7zjcd5xvXc8yTue5h3P9I7neseLvOMV3vE673iLd7zLO97vHQ/37g/M8o6HeceZ3nGOdzzSO872jkd4x/ne8SjvOM87zvWOR3vHRd5xoXdc4B2Xescl3nGxdzzGO67wjsd6x+XecZl3XOUdj/OO5d5xpXdc5x3Xesc13nG1d/xY9oP1avABIeEdsyJUSKw3GCvU4Ke4tzBAYVaEw00AW210jHztyQVBeWvfXd6y+T9fHNGj2dwjfjmj5YGTFhbXPe2CXfdJTfhiQtEpP75MKjW94Q/T5giJbcKnjWRTQoS3qbNwY1OBCG9TF2Fnk6njdxVm7ayD6eNP2xrgnFTopuzdQNpOFz21z8P9Hnv/hJ1eGrPu84HixX+80/+jJr37DzwtPfyzOelto+B0F27K00Pw+HEunO1E+LY8xbAtTW35Uer/V2F4e1TawqQ5Tk8RHuPHQjft0MvAplMd9anthRuc3sINTh/hBmcH4Qanr3CDs6Nwg7OTcIPTT7jB2Vm4wekv3ODsItzgDBBucAYKNzi7Cjc4g4QbnMHCDU6ZcIMzRLjBGSrc4AwTbnCGCzc4I4QbnJHCDc4o4QZntHCDM0a4wRkr3OCME25wxgs3OBOEG5zdhN36gynOROGmPLsLNziThBucPYQbnD2FG5y9hBucvYUbnH2EG5x9hRuc/YQbnP2FG5wDhBucA4UbnIOEG5yDhRucQ4QbnMnCDc4U4QZnqnCDM024wZku3ODMEG5wDhVucGYKNziHCTc4s4QbnMOFG5wjhBuc2cINzpHCDc4c4QZnrnCDM0+4wTlKuMGZL9zgLBBucBYKNziLhBuco4UbnGOEG5zFwg3OEuEGZ6lwg7NMuMFZLtzgHCvc4KwQbnBWCjc45cINznHCDc4q4QZntXCDs0a4wVkr3OCsE25w1gs3OBuEG5yNwg3O8cINzgnCDc6Jwg3OScINzibhBmezcINzsnCDc4pwg3OqcINzmnCDc7pwg/Mn4QbnDOEG58/CDc5fhBucM4UbnL8KNzhnCTc4Zws3OOcINzh/E25wzhVucM4TbnD+LtzgnC/c4Fwg3OBcKNzgXCTc4Fws3OBcItzgXCrc4Fwm3OBcLtzgXCHc4Fwp3OBcJdzgXC3c4Fwj3OBcK9zgXCfc4Fwv3ODcINzg3Cjc4Nwk3ODcLNzg3CLc4Nwq3ODcJtzg3C7c4Nwh3ODcKdzg3CXc4Nwt3OD8Q7jBuUe4wblXuMG5T7jBuV+4wXlAuMF5ULjBeUi4wXlYuMF5RLjBeVS4wXlMuMF5XLjBeUK4wXlSuMF5SrjBeVq4wXlGuMF5VrjBeU64wXleuMF5QbjBeVG4wXlJuMF5WbjBeUW4wXlVuMF5TbjBeV24wXlDuMF5U7jBeUu4wXlbuMF5R7jBeVe4wXlPuMF5X7jB+UC4wflQuMH5SLjB+Vi4wflEuMH5VLjB+Uy4wflcuMH5QrjB+VK4wflKuMH5WrjB+Ua4wflWuMH5P+EG5zvhBud74QbnB+EG50fhBucn4Qbnn8INzs/CDc4vwg3Ov4QbnF+FG5zfhBucfws3OL8LNzgqQ8i0KKMZTsIRToEjnEJHOElHOEWOcFKOcGo5wil2hJN2hFPbEU4dRzgljnDqOsIpdYSTcYRTzxFOfUc4DRzhNHSE08gRTmNHOE0c4TR1hNPMEU5zRzgtHOG0dITTyhFOa0c4bRzhtHWEk3WE084RTntHOB0c4XR0hNPJEc42jnA6O8Lp4ginqyOcbR3hdHOE090RTg9HONs5wunpCKeXI5ztHeH0doTTxxHODo5w+jrC2dERzk6OcPo5wtnZEU5/Rzi7OMIZ4AhnoCOcXR3hDHKEM9gRTpkjnCGOcIY6whnmCGe4I5wRjnBGOsIZ5QhntCOcMY5wxjrCGecIZ7wjnAmOcHZzhDPREc7ujnAmOcLZwxHOno5w9nKEs7cjnH0c4ezrCGc/Rzj7O8I5wBHOgY5wDnKEc7AjnEMc4Ux2hDPFEc5URzjTHOFMd4QzwxHOoY5wZjrCOcwRzixHOIc7wjnCEc5sRzhHOsKZ4whnriOceY5wjnKEM98RzgJHOAsd4SxyhHO0I5xjHOEsdoSzxBHOUkc4yxzhLHeEc6wjnBWOcFY6wil3hHOcI5xVjnBWO8JZ4whnrSOcdY5w1jvC2eAIZ6MjnOMd4ZzgCOdERzgnOcLZ5AhnsyOckx3hnOII51RHOKc5wjndEc6fHOGc4Qjnz45w/uII50xHOH91hHOWI5yzHeGc4wjnb45wznWEc54jnL87wjnfEc4FjnAudIRzkSOcix3hXOII51JHOJc5wrncEc4VjnCudIRzlSOcqx3hXOMI51pHONc5wrneEc4NjnBudIRzkyOcmx3h3OII51ZHOLc5wrndEc4djnDudIRzlyOcux3h/MMRzj2OcO51hHOfI5z7HeE84AjnQUc4DznCedgRziOOcB51hPOYI5zHHeE84QjnSUc4TznCedoRzjOOcJ51hPOcI5znHeG84AjnRUc4LznCedkRziuOcF51hPOaI5zXHeG84QjnTUc4bznCedsRzjuOcN51hPOeI5z3HeF84AjnQ0c4HznC+dgRzieOcD51hPOZI5zPHeF84QjnS0c4XznC+doRzjeOcL51hPN/jnC+c4TzvSOcHxzh/OgI5ydHOP90hPOzI5xfHOH8yxHOr45wfnOE829HOL87whEFbnASjnAKHOEUOsJJOsIpcoSTcoRTyxFOsSOctCOc2o5w6jjCKXGEU9cRTqkjnIwjnHqOcOo7wmngCKehI5xGjnAaO8Jp4ginqSOcZo5wmjvCaeEIp6UjnFaOcFo7wmnjCKetI5ysI5x2jnDaO8Lp4AinoyOcTo5wtnGE09kRThdHOF0d4WzrCKebI5zujnB6OMLZzhFOT0c4vRzhbO8Ip7cjnD6OcHZwhNPXEc6OjnB2coTTzxHOzo5w+jvC2cURzgBHOAMd4ezqCGeQI5zBjnDKHOEMcYQz1BHOMEc4wx3hjHCEM9IRzihHOKMd4YxxhDPWEc44RzjjHeFMcISzmyOciY5wdneEM8kRzh6OcPZ0hLOXI5y9HeHs4whnX0c4+znC2d8RzgGOcA50hHOQI5yDHeEc4ghnsiOcKY5wpjrCmeYIZ7ojnBmOcA51hDPTEc5hjnBmOcI53BHOEY5wZjvCOdIRzhxHOHMd4cxzhHOUI5z5jnAWOMJZ6AhnkSOcox3hHOMIZ7EjnCWOcJY6wlnmCGe5I5xjHeGscISz0hFOuSOc4xzhrHKEs9oRzhpHOGsd4axzhLPeEc4GRzgbHeEc7wjnBEc4JzrCOckRziZHOJsd4ZzsCOcURzinOsI5zRHO6Y5w/uQI5wxHOH92hPMXRzhnOsL5qyOcsxzhnO0I5xxHOH9zhHOuI5zzHOH83RHO+Y5wLnCEc6EjnIsc4VzsCOcSRziXOsK5zBHO5Y5wrnCEc6UjnKsc4VztCOcaRzjXOsK5zhHO9Y5wbnCEc6MjnJsc4dzsCOcWRzi3OsK5zRHO7Y5w7nCEc6cjnLsc4dztCOcfjnDucYRzryOc+xzh3O8I5wFHOA86wnnIEc7DjnAecYTzqCOcxxzhPO4I5wlHOE86wnnKEc7TjnCecYTzrCOc5xzhPO8I5wVHOC86wnnJEc7LjnBecYTzqiOc1xzhvO4I5w1HOG86wnnLEc7bjnDecYTzriOc9xzhvO8I5wNHOB86wvnIEc7HjnA+cYTzqSOczxzhfO4I5wtHOF86wvnKEc7XjnC+cYTzrSOc/3OE850jnO8d4fzgCOdHRzg/OcL5pyOcnx3h/OII51+OcH51hPObI5x/O8L53RGOKHSDk3CEU+AIp9ARTtIRTpEjnJQjnFqOcIod4aQd4dR2hFPHEU6JI5y6jnBKHeFkHOHUc4RT3xFOA0c4DR3hNHKE09gRThNHOE0d4TRzhNPcEU4LRzgtHeG0coTT2hFOG0c4bR3hZB3htHOE094RTgdHOB0d4XRyhLONI5zOjnC6OMLp6ghnW0c43RzhdHeE08MRznaOcHo6wunlCGd7Rzi9HeH0cYSzgyOcvo5wdnSEs5MjnH6OcHZ2hNPfEc4ujnAGOMIZ6AhnV0c4gxzhDHaEU+YIZ4gjnKGOcIY5whnuCGeEI5yRjnBGOcIZ7QhnjCOcsY5wxjnCGe8IZ4IjnN0c4Ux0hLO7I5xJjnD2cISzpyOcvRzh7O0IZx9HOPs6wtnPEc7+jnAOcIRzoCOcgxzhHOwI5xBHOJMd4UxxhDPVEc40RzjTHeHMcIRzqCOcmZY4BQin1/QJ89/d/ryut04cfvNxx+17UJc+n4xactu8U4a++8Np38j4jiK8TYcx2ZQLZ1ZhePtrJd3UU1KEt/9wR21XJMLbdIQjm1IivE2zHdlUS4S36UhHNhWL8DbNcWRTWoS3aa4jm2qL8DbNc2RTHRHepqMc2VQiwts035FNdUV4mxY4sqlUhLdpoSObMiK8TYsc2VRPhLfpaEc21RfhbTrGkU0NRHibFjuyqaEIb9MSRzY1EuFtWurIpsYivE3LHNnURIS3abkjm5qK8DYd68imZiK8TSsc2dRchLdppSObWojwNpU7sqmlCG/TcY5saiXC27TKkU2tRXibVjuyqY0Ib9MaRza1FeFtWuvIpqwIb9M6Rza1E+FtWu/IpvYivE0bHNnUQYS3aaOBTYViyzqgWhNVYRspnaV0kdJVyrZSuknpLqWHlO2k9FT2StleSm8pfaTsIKWvlB2l7CSln5SdpfSXsouUAVIGStlVyiApg6WUSRkiZaiUYVKGSxkhZaSUUVJGSxkjZayUcVLGS5kgZTcpE6XsLmWSlD2k7CllLyl7S9lHyr5S9pOyv5QDpBwo5SApB0s5RMpkKVOkTJUyTZVfygwph0qZKeUwKbOkHC7lCCmzpRwpZY6UuVLmSTlKynwpC6QslLJIytFSjpGyWMoSKUulLJOyXMqxUlZIWSmlXMpxUlZJWS1ljZS1UtZJWS9lg5SNUo6XcoKUE6WcJGWTlM1STpZyipRTpZwm5XQpf5JyhpQ/S/mLlDOl/FXKWVLOlnKOlL9JOVfKeVL+LuV8KRdIuVDKRVIulnKJlEulXCblcilXSLlSylVSrpZyjZRrpVwn5XopN0i5UcpNUm6WcouUW6XcJuV2KXdIuVPKXVLulvIPKfdIuVfKfVLul/KAlAelPCTlYSmPSHlUymNSHpfyhJQnpTwl5Wkpz0h5VspzUp6X8oKUF6W8JOVlKa9IeVXKa1Jel/KGlDelvCXlbSnvSHlXyntS3pfygZQPpXwk5WMpn0j5VMpnUj6X8oWUL6V8JeVrKapPfivl/6R8J+V7KT9I+VHKT1L+KeVnKb9I+ZeUX6X8JuXfUn6XojpdQkqBlEIpSSlFUlJSakkplpKWUltKHSklUupKKZWSkVJPSn0pDaQ0lNJISmMpTaQ0ldJMSnMpLaS0lNJKSmspbaS0lZKV0k5KeykdpHSU0knKNlI6S+kipauUbaV0k9JdSg8p20npKaWXlO2l9JbSR8oOUvpK2VHKTlL6SdlZSn8pu0gZIGWglF2lDJIyWEqZlCFShkoZJmW4lBFSRkoZJWW0lDFSxkoZJ2W8lAlSdpMyUcruUiZJ2UPKnlL2krK3lH2k7CtlPyn7SzlAyoFSDpJysJRDpEyWMkXKVCnTpEyXMkPKoVJmSjlMyiwph0s5QspsKUdKmSNlrpR5Uo6SMl/KAikLpSyScrSUY6QslrJEylIpy6Qsl3KslBVSVkopl3KclFVSVktZI2WtlHVS1kvZIGWjlOOlnCDlRCknSdkkZbOUk6WcIuVUKadJOV3Kn6ScIeXPUv4i5Uwpf5VylpSzpZwj5W9SzpVynpS/SzlfygVSLpRykZSLpVwi5VIpl0m5XMoVUq6UcpWUq6VcI+VaKddJuV7KDVJulHKTlJul3CLlVim3Sbldyh1S7pRyl5S7pfxDyj1S7pVyn5T7pTwg5UEpD0l5WMojUh6V8piUx6U8IeVJKU9JeVrKM1KelfKclOelvCDlRSkvSXlZyitSXpXympTXpbwh5U0pb0l5W8o7Ut6V8p6U96V8IOVDKR9J+VjKJ1I+lfKZlM+lfCHlSylfSflayjdSvpXyf1K+k/K9lB+k/CjlJyn/lPKzlF+k/EvKr1J+k/JvKb9LUROAhJQCKYVSklKKpKSk1JJSLCUtpbaUOlJKpNSVUiolI6WelPpSGkhpKKWRlMZSmkhpKqWZlOZSWkhpKaWVlNZS2khpq94DI6WdlPZSOkjpKKWTlG2kdJbSRUpXKdtK6Salu5QeUraT0lNKLynbS+ktpY+UHaT0lbKjlJ2k9JOys5T+UnaRMkDKQCm7ShkkZbCUMilDpAyVMkzKcCkjpIyUMkrKaCljpIyVMk7KeCkTpOwmZaKU3aVMkrKHlD2l7CVlbyn7SNlXyn5S9pdygJQDpRwk5WAph0iZLGWKlKlSpkmZLmWGlEOlzJRymJRZUg6XcoSU2VKOlDJHylwp86QcJWW+lAVSFkpZJOVoKeo79eob8ur77urb6+q76Oqb5ep74upb3+o73Oob2er71erb0uq7z+qbzOp7yepbxuo7w+obwOr7vOrbueq7tuqbs+p7sOpbreo7quobp+r7o+rboOq7neqbmup7l+pblOo7keobjur7iurbh+q7hOqbgep7fupbe+o7eOobder7cerbbuq7a+qbaOp7ZepbYuo7X+obXOr7WOrbVeq7UuqbT+p7TOpbSeo7RuobQ+r7P+rbPOq7OeqbNup7M+pbMOo7LeobKur7JurbI+q7IOqbHep7GupbF+o7FOobEer7DerbCuq7B+qbBOp7Aepd/uo9++od+Or99Ord8eq97uqd6+p96Opd5eo94uod3+r92+rd2Oq91eqd0up9z+pdzOo9yeodxur9wurdv+q9vOqduep9tupds+o9sOodrer9qerdpuq9o+qdoOp9nepdmuo9l+odlOr9kOrdjeq9iuqdh+p9hOpdgeo9fuode+r9d+rddOq9ceqdbup9a+pdaOo9ZeodYur9XurdW+q9WOqdVep9UupdT+o9TGrird5fpN4tpN77o97Jo96Xo95lo94zo94Bo97Pot6dot5rot45ot4Hot7Vod6jod5xod4/od4Nod7boN6poN53oN5FoN4ToJ7hV8/Xq2ff1XPp6plx9Ty3etb6P89BS1HPD6tne9Vzt+qZWPW8qnqWVD3nqZ7BVM9HqmcX1XOF6pk/9TyeelZOPcemnjFTz3+pZ7PUc1PqmSb1vJF6Fkg9p6OeoVHPt6hnT9RzIeqZDfU8hXrWQT2HoJ4RUPv31d56te9d7UlX+8XVXm61z1rtgVb7k9XeYbWvV+25Vfth1V5VtY9U7fFU+y/V3ki1b1HtKVT7/dRePLVPTu1hU/vL1N4vtS9L7ZlS+5nUXiO1D0jt0VH7Z9TeFrXvRF3/qP0aai+F2ueg9hWoe/7qvrm6T63uC6v7sOq+p7rPqO7rqfto6r6Vuk+k7suo+yDqvoNa51fr6modW60bq3VatS6q1iHVup9aZ1PrWmodSa3bqHUStS6h1gHUdbe6zlXXleo6TrmKuibTwRs6/nPdpu7/q/vt6v62up+s7t+q+6Xq/qS6H6juv6n7Xer+krqfo+6fqPsV6v6AWo9X699qvVmt76r1VLV+qdYL1fqcWg9T609qvUetr+j1jHZiy/VxB7Fln0YnUTXsBH439o4nz3zo8e8/r/UMTNc0IK6Zd3zolQNbdWjc/BUYd5h3PH238R1b/jx2NYw7NkCn8nkV2qaGvzSp2/2vw7jHkv75nvDixk2+Jntmy2QRjHsqIN8zAfmeC8j3YkDcywE6Xw3I93pAvjcD8r0TEPdegM4PAvJ9FJDvk4B8nwfEfRmg8+uAfN8G5PsuIN+PAXH/DND5S0C+XwPy/TsgX6LIP66wyF9nUUC+WgH50gH5SgLiSgN01gvI1yAgX6OAfE0D4poH6GwZkK91QL62Afn29uL2r3tWyUWNvvgLjDswIG5qQNxhAXFzAuIWBsQtDYgrD4hb5cUl39jYY9iE3Tbq87W9YxfvOGXBghnzFx4ybe6R86YsnDV19oxD5s6fMk0ejp4xf8GsuXMOOWb+lHnzZsxv4qUv9o4F3lGNf4rGsyJUSBSDfOb5y4cVY4VG+cV/8ieELf6W8usx3yZ/ShsC8kNbtF41f6gDftdF+Jb2D4tqf4MAm3XbDAXpsyJUKFR+qcpZzzuhyt7R+71o4azZsxYuKfuPqw7d6qm7/cdR997ip1hhAv0/1Od8bWB3EqQJXyeLh2md3nTmP3PAQiJlEh11Gj0nSwN8fQyzp/S1B3946cYxvY+sj/KroNumNsCZPmvBtLmyfx8yZ8Yxhxw5Y8GCKTNnLKjt1XaeO/ipETv4qREdPFEM8ljk39rBTwH5sS0qlIjKHQnmqeXF698HeL8jdv5Tq2vn13mHUXm/X/DyxY+fdMMDly685KIz6r9W98w63WuvXLv265ZftfrrN2sv0HmHA5sSIjR2SucfQWHvekvh/odd98vcOiNXX3PMa69OWFS31ZT72m64aP8HT2n76SHrdN6RVN5PTjxrZeaaU8/Ldnvyh9TIzV8c8t3oon6vPbm8+f2rfv30m9N03lFU3uf2//XNGzOnLV180m3L+nVpOOXK017+9rOHH7868927Vx31cl+ddzQos00fHQPyG2xe39rWY+3yb8UfZ5e/QOcfD/IblL+ezj8BnMzqH8ddeOmbZSc92ev9X2sfP37KmsV9Tnh+ny+XNruk04eHX9Xqyvo6725U3vcWDj1lYdMjd/yy+OmTtv97y9Zvf3/JjR//uGRGvy8+/uTmdt/pvBOpvDmCzrs7kbdZ7847z/vLM43e6NL+9cH3XLnd6c2/7zjgjVtH/f2bXx79J8g7yTsa1tfW+t7DLn9S59/TLv9WftgL5Dfo41v9bW+7/Fvx97HLv7X+9gX5Dco/WOffD5zMBufZOqzovPvbYZfq/AeEx9ahSOc90Ao7sdX2g2jsxOr2C/6cPikx/r5VPW4sqX3fp2XnDhn65ONrjm+bufJcnfdgIu+2A9LfXHT8irXinUs+3/TjtncO7lG/TVn97V4466WWc+Yf0PwbnfeQrZYY1VkrnX8yyI9sDww6/xSQ38DftuafCvKbXuSoMA3kF8K8v00HJ7MiVNiad4Z53q397FCtTBiVe6u/zrTLv3UucZhd/lo6/yy7/MU6/+F2+evo/EfY5S/R+Wfb5a+r8x9pl7+tzj8H5DfoN1mdf64d/tb88+zwe+j8R9nl76Xzz7fLv73Ov8Auf5nOv9Au/3Cdf5Fd/hE6/9F2+Sfo/MfY5T9E519sl3+Kzr/ELv9UnX+pXf5pOv8yu/zTdf7ldvln6PzH2uU/VOdfYZd/ps6/0i7/YTp/uV3+WTr/cXb5j9D5V9nln63zr7bLf6TOv8Yu/xydf61d/rk6/zq7/PN0/vV2+efr/Bvs8i/Q+Tfa5V+o8x9vl3+Rzn+CXf6jdf4T7fIv1vlPssu/ROffZJd/mc6/2S7/sTr/yeBkVoQJCaEXwN/37rRQa3UGtkzU64uFlVAq67Zb8P7PvtVK+oSovF4qkP40ssUQL5FA+jQeLp+uK132IsKWDBGH67iIwCkicDJE3HJGXesZdR3LqGstoy7OMq5m1FXOqGsNo64VjLrmMOrirHvOPrShmupazKiL0yc4657Tv5Yx6ipn1MXpE0sZda1l1HUCo67qOj7qOaeeO8C5RsLnqHHwOY2TRrps5z1UuZIEXlD6woD0qZD61aaMjPfb25QxbMbURTPHzZ0pUEii/4f7mNgKpZsaYBrWm0CCz7dC5wqJtDCo4ul9Tl7xRsxYOO2wPafMnDljuizkApwDaxrmcx5PSGEaPRlPIUuzIlQoCOOUUH8a2WLrlJTTUJ1N1WoD77dXq+PmTpk+dMq8BYtmzyiAqkVly3GtQK3wHNWmCWCZCEg3DP0/msgnCN0qXrdcMTqfFaFCWntFmojUcbWRbhhXB8TB1sShkLBf26wuOT9tUqEXp8P2wPaojeJqgbg6ABu3a4rA0fYXEOlrIV0pIp/Okwuv0Ccf/B106Rymt+lyqJAhMDR2jKzQqLqzgi5fLTu8hgmUH+JBndoeXdfFRJzWpfthykcX3CcI0z/kHTMonQoTEUYxYS88p+tH1dm9yHZYt9hPotQj1Kftgueg/rSI5JeJoHaD5cN+YsmxDcLUO7QHczKuW8h7KR9dOm8SpX/eO2ZEVd7HfpIm7IXnoJ88hWyHdYv9xLIey8L6idafFpH8MhHUbrB82E/SdniDw9Q7tIcan2HdwjEw5aNL502i9O94xwxKpwL2k9qEvfAc9BP9gFWxj71ZESocQ81bsJ/heUtWhAqtwvqZ1p8Wkdo9EVSPVH+j5l46b4aIw5dadQicOgROhohbz6hrLaOupYy6ljPq2lBNdZUz6lrDqGsFo645jLpWMeri9PvqWF9B45CpLhXKGXVtZNS1klEXp69ylnExo67q2rc3Meo6ilHXZu+I53lavwrFomrfM702gfq0nfAc1J9GttjOdah6oeaMunwldnj1Eyg/xIM6tT26rusScVpXqfd/ykeXzptE6bt6FZpB6VTAc+q6hL3wHJxTd/T0lhL24vUFU3+E+XEdwXzYH6O0F9Sn7YTnoP60iOT/iSD/oOpFl6+uHV69MO0L7dF1XUrEaV36dkjKR5fOm0Tpd0b+WApswv5YStgLz0F/3CFR2XZYt9hPLOtxeFg/0frTIpJfJoLaDZYP+0mpHd6wMPUO7dF1nSHitC79XHPKR5fOm0TpRyA/yQCbsJ9kCHvhOegnZchPYN1iP7Grx8S3Yf1E60+LSH6ZCGo3ir91+TJWeIlvwtQ7tEfXdT0iTuvSz3CnfHTpvEmUfg/kJ/WATVMQRj3CXngO+skE5CewbrGf2NXjf145WUmftgueg/rTIlL/TgS1G8Wrunz17PDKwtQ7tEfXdX0iTuvSd1RTPrp03iRKPxn5SX1gE+aT+oS98Bz0kwM8vaWEvXj9PCxPZYj8Oh3lc0qyIlTYk2pTg/xH4TbSOqBtDcB5A3/ZPmx/0PrToqq/2PSHBgjPr7112RsStmSIONxGDQmchgROhohbyahrOaOuOYy6ljLqWsWoazGjrnJGXasZdXH6xDJGXccw6trApIvizyh2rWfUtZFRF2ff3sSoi5MLyxl1rWHUxdmOmxl1cfpEOaMurr6tAmcZOX1iLaOu6soTnHb9EeZMNWNa/uqesz8ey6iLs4wnVlO7OOcTnGXUY62+VoTXlgnvWCyq9j2D69ZdE0ifthOeg/rTyBZDvERQvcDy4evkRoQtGSIOXyc3InAaETgZIm4lo67ljLrmMOriLGM5o641jLo2MurirPtNjLpq2tFM12ZGXZw+sYxR11pGXZz8tYFRF2fdc/oqZ91XV/7i9FVO/1rNqIuzHTn9i7MPcfrXekZdixl1cZaxus7lOMvIOZ+oru1YXedyJzLqqq7znHJGXTXzif+NPsTJE5x2cfmX+l2PSZcKxzPq4qx7zjmAHmvxvi+tX4WIa2DtEkifthOeg/rTompbcq2BUXvIdPka2eFlw7QDtEfXdWMiTuvS7/hI+ejSeZMo/d5eoTIonQpTEEZjwl54Du6d2t37p5SwN+q9CJgf1xHMh/3Rsr0Kw/qj1p8Wkfw/EeQfVL1Q/qHzZog4XP9h2zVIV6ng59Z6RHlKiHy4naF9BvUe+lkB+G2jCH6VCKp/ql50+ZrY4dXDXAHxoE5tj67rpkSc1qW/oZny0aXzJlH6+Yh3mgKbpiCMpoS98BzknSMR71B9wtbvKT79X8MpIfLh/mXpf0Vh+5fWnxaR+nMiyN+peqH8XefNEHG4/sP66X+jLu1/TQJwgniFwoH5m9TgRMIpIfLhfgvbNXw/SrwTtt9q/WkRiScSQX5L1YsuXzMrvMTbeCyDeFCntkfXdXMiTutq4f2f8tGl8yZR+r+jcbE5sGkKwmhO2AvPwXHx7ILKtsO6xX5iV48iE9ZPtP60iOKXFX5CtRvFb7p8ze3wSsPUO7RH13ULIk7raun9n/LRpfMmUfqrkZ+0ADbhZ15aEPbCc9BPLvP+KfaxNytChXepujbIf16xqFp3Bvm76vwt7fLfqvO3sst/s87f2i7/cTp/G7v8++r8be3yH1SM0hvm76Lzt7PL30fnb2+X/xOdv4Nd/lE6f0e7/Lfp/J3s8p+i829jl3+ozt/ZLv8POn8Xu/yn6fxd7fJ/o/N3A/lN1th0/h52+Qu1vd3hScImrV9z/bYgfcLnqHXhOI2VRrpsx0XKdmgfnld2B3iwjH66uhvqKibibNqkm/AvF9RfEmALtlMF/K4V2zKrsIxR19GMutYz6VK/mzHpUmE+o13NGXW1YNTVklFXAZMuFRYy2tWKUVfraqqrDaOutoy6soy62jHqas+oqwOTLhVOYrSrI5MuFdYx2tWJUdc2jLq4xg71uzOjri6Muroy6VJhSjXVpT9fHnG9YHTE9YL+EdcLxkdcL9gj4nrByIjrBcMiXu+PKyHSJ7wjdS1vMG/Xr9vZqk8I+vpH608jWwzxtl7/tEN4uHz4vk97wpYMEYd9vD2B057AyRBxaxh1ncCoazGjrlWMusoZdS1j1DWHUddqRl3LGXVtqKa6OH11BaMurrqnxsXq4qvljLo2Muqqrv3xeEZdnH2outb9SkZdnDzBOdZycjRn3XPWV3X1r1WMujjbkbPu/wg8sYlJl/rdgkmXCgsZ7WpZDXWpsIDRrlZMulTgqnsVjqmGdqnfbRh1FTDpUoHLJ1Q4mkmX+t2aSZcKnO3IaReXr1ZnLsww6VKBk78425HTrupYXypw+mpbJl0qcI4dXPylwmZGXZzzr2MZdZUz6uKck69i1MW59qjn93oduw2IS3jHiGv4pQmkT9sJz0H9aWSLIV7gGj4sn64Xar+gAV7dMO0A7dF13YGI07r0PeGUjy6dN4nS/8Or2AxKpwLe29uBsBee0/Wj9vbeXljZdli32E8s6zH0ty61/rSI5JeJoHaD5dP1QLWbzpsh4grAb5P6ptpuPaOutYy6ljLqWs6oa0M11VXOqGsNo64VjLrmMOpax6iLsw+VM+o6gVHXYkZdGxl1cfZtTv/i7EOcvPpHqPvVjLo4OVpzoX7+Es5nkgjHdO4N8+t0EZ9XmRTxeZW9Iz6vspueF3UCJxPekXqWxGCOdlwC6ROCnhNq/WlkiyHe1jlhZ4SHy4fnhF0IWzJEHN7/04XA6ULgZIi4NYy6TmDUtZhR1ypGXeWMupYx6prDqGsdo671jLrKGXVVV1/dyKhrOaMuTv/i5Jy1jLr+CHW/mlEXZxk3VFNdnH17BaMurrpXv5sz6VKB01er6xyAU1fNuF0zbv+3jB0143bNuF0zbv9v1n119dXjGXVx1hcn53DW/UpGXZx9iHPcrq4cXV3nE5xl5Jz7crYjZ93/EXhiE5OuhKi6RyGKrvaMurjWydXvDky6VFjAaFeGSZcKCxl1HcOo62gmXep3R0Zd/+t1r363YNTVklFXKyZdKnDW1zaMurh8VQXOPlRd/b66lvF/nQs57VKhZuz47x87VFjEpEv95tzzwFVf6ndbRl2tGXVxjbUqcI6PXPWlQnUcO1TYzKiL85rvWEZd5Yy6ONcBVjHq4tyfs0FsCXqvF9wblvCOxaJqf1E4WREqdE8gfcLLD89B/WlkiyFeIqheYPl0veiydyVsyRBxmA+7EjhdCZwMEVfOqGsDo66ljLrWMuo6gVHXckZd66upXcsYdc1h1LWJUddRjLo2M+rirK81jLo4++NGRl2cfs/JhZzteCyjLk7O4fSJ1Yy6OOt+cTW1ax2jLk6fKGfUxTluc7bjRkZdnPzF6V+c/bG6cjSnLk7/WsGoC39jGl7fJLxjMcqXEEbXTh0TSJ+2E56D+tPIFkO8RFC9UNewuuzdCFsyRBy+B0x9I6UbgZMh4tYz6lrLqGspo67ljLo2VFNd5Yy61jDqWsGoaw6jrnWMuhYz6uLsjxsZdZUz6uKsr1WMujj9i7MPcfIqp09w8mp17duc/bGcUdcJjLo4++Mfwb9WM+rinAPg9yDA+TJ+D4LpnB3m1+lKiHwJ71iM7EsIozn0KQmkT9sJz0H9aVG1zDZzdqr+qXox+d6g+s35/bw1jLpOYNS1mFHXKkZd5Yy6OL/1OIdRF9d3xFTg+m6kCuWMuqqrr25k1LWcURenf3FyzlpGXX+Eul/NqIuzjBuqqS7Ovr2CURdX3avfXN+9VYHTV6vrHIBTV3UdtznrnnMOwMnR5Yy6qquv1ozb+RvTaubkZrpq5uT586+aeWH+/Ks6zgtV4Kyv6uqrxzPq4qwvTs7hrPuVjLo4+xDn2FFdObq6jmmcZeSc+3K2I2fd/xF4YhOTroSoukcpil0LGO1qz6grw6iL8/4QZ321ZdKlwjGMuo5m0qV+d2TUxeUTKixk1MVV95x9m7s/cvUh9bsDky4VOPvjH8G/WjDqasmoqxWTLhU462sbRl1cXKgCJ0dXV7+vrmX8Xx9rOe1SoWZu8t8/dqiwiEkX53xCBa76Ur+55uTqd2tGXVxjrQqc4yPnNUx1HDtU2Myoi3NN4VhGXeWMujjXmVYx6uLcX4jfgwL3tia8Y7Go2l8UTlaECiUJpE/bCc9B/WlkiyFeIqheqH3Sunw97PDqJFB+iAd1ant0XW9HxGldPb3/Uz66dN4kSv9Oassxg9KpgL8VvB1hLzyn60d9K/j1VGXbYd1iP7Gsx9Zh/UTrT4tIfpkIajeq/1DtpvNmiDi8BhK2vqm2W8+oay2jrqWMupYz6tpQTXWVM+paw6hrBaOuOYy61jHq4uxD5Yy6TmDUtZhR10ZGXZx9m9O/OO3ibEdOuzh5gtMnONtxNaMuTr7Hz9vBuRF+3i5o/kjhwPw6XQmRL+Edi0XVOYrBfGltAunTdsJzUH9aVC2zzfyMqn+qXnTZexK2ZIg4vHbTk8DpSeBkiLg1jLpOYNS1mFHXKkZd5Yy6ljHqmsOoax2jrvWMusoZdVVXX93IqGs5oy5O/+K0i7MdOe3i5FVOn+Bsx9WMujjrfkM11cXJEysYdXHVvfrdnEmXCpy+Wl3nE5y6auYANXOAOHm1Zg5QMweomQPUzAFy6eKsr+rqq8cz6uKsr+rKEysZdXH2oeo6dlTXuW919S/OeTRnO3LW/R+BJzYx6UqIqvsYouhqz6iLa/1e/e7ApEuFBYx2ZZh0qbCQUdcx1dAu7nbkrK+jmXRx+wRXO6rfLRh1tWTU1YpJlwqc9bUNo66OTLpUqK6+WtMf81fG6uhfKtSMQzV+j+MWMelSvzn3iHD6V1tGXa0ZdXGN2ypwjrVc9aVCdeyPKmxm1MV5LXoso65yRl2c6xOrGHVx7mfCz/cUgLiEd9T7AjPgvMLJilAhmUD6tJ3wHNSfRrYY4m3dF5hBeLh8+rcuezPClgyKUwE/J9OMwGlG4LjSRbWXkqwIFfbC9aF1QN1w/4FB2zQL6wtaf1pUbRsbX2iO8PzqVZe9BWFLhojDddyCwGlB4GSIuDWMuo6rpnatZdKlfhcz6eIu4xxGXasZdW1g1LWCURdnfW1k1HUSo651jLqWM+rirPtyRl3LGHVxlnETo66jGHVt9o56/IJzH6axu67t2G05bwwcu2H5dL3o8rWwwysJ0w7QHl3XLYk4rUuvLad8dOm8SZR+iTe4ZVA6FfCcsSVhLzyn60c9p73Q01tK2NsG6aXqvTmhN0Pk1+mKiXxZ/eP7BS9f/PhJNzxw6cJLLjqj/mt1z6zTvfbKtWu/bvlVq79+s/bCiO25j87f0i5/Q52/lV3+Bjp/W7v89XX+9nb5h+n8Hezyl+n8HcHJbKisFbbbPUuW+Ebn7wnyF4TOL4p1/l52+XfU+be3y7+Tzt8b5Dco/9s6fx9wNusdO750e62fLt+cvP6Vb+Ye88O2pz028qS7rxhw6pM9di3f4/0zvhqv8+5A5M0RdtF5+1J5d72lcP/Drvtlbp2Rq6855rVXJyyq22rKfW03XLT/g6e0/fSQ9TrvjlTe5/b/9c0bM6ctXXzSbcv6dWk45crTXv72s4cfvzrz3btXHfXyjoqbNiFu2knXhqg8zijp5/1fBOKmgjQ6bxKln1Vake9UDy/M2kchsiUrQoXmYcdMfY5r7aMQ4eHy4evdJGFLBsWpgOc/SQInSeBQujYz6prDqGsdo67ljLrWMOpaxqirnFEXZxlXMOqqrv61mFHXekZdGxl1lTPq4qyvVYy6OP2Lsw+tZdTF6ROcvIrvgcA4PA8oAucNxuWCsPMArT8t6HE5K0KFrfOAIoTnVy91pDTwfi9aOGv2rIVLxs2dMn3olHkLFs2egWdGeDYGawVqhecSonLpYVwhOofTjUD/jybyCUK3itctVwedz4pQobP2is5EpI7rgnTDOL8vaONQSNivba4l5dMmFXpxOmwPbI8uKC4N4roCbNyuRQSOtr+ASJ9GuoqIfDpPLrw/ck+k2knnzRBxuC+GnfnbMIRedfMYYtiMqYtmjps7U6CQRP8P9zGxGUo32se0BKE3gQSfxzcvC0UwBQVdBIZxGSGqDjJQ11SEUzPI/C8NMlpfGsRRNaF16iUOWKa0Tz7cqfG5AiJ9EdJVROTDZEzlhzpgPmxbsaha1qz+cdyFl75ZdtKTvd7/tfbx46esWdznhOf3+XJps0s6fXj4Va2ubKCwfiz2rxdMWLqeinKUL4nSbweWfn7x8JRHNvXiPY8csmj2EZNmLJw/a8bRMyS3LRAo5HKjCej/3Yh8VCgRVZsaE4NlRw1NDFp/WtCukhWhwlZioGblsHx2xIAdAs+quIlhN/S/zewTj9hZESoYzz7xLKIrwtW/caAIRttsOvuE7YFnn7Cj4tknbNckgYMJD6bHhEeRJyY8P7yaIXpLqLkOBKHmOpCwP+7rQJyvSFTtuXi412k7eYZE7LGiPsiHbawZs7eEmjEbhJoxm7A/7jGbYhLMEnFe4kNsfM9Yhaz+8d7CoacsbHrkjl8WP33S9n9v2frt7y+58eMfl8zo98XHn9zc7vuIrLF3RLbbS+Ub7DmRvhiD/QD3Yz0y+d2H13mTKP2IdEW+Yd5vFdfJi/cYZe8ps2dNn7JwxvA5Ry2asWjG9AlzF85YUDZn+vCjZ8xZaHxpNhL9P4rIR4XaQF9joL8QFVIFvIbl9cGtG8BwGlxBOv0YL0J15G+8k5TTaXtKUH4dr4J2iqbI9qwIFUIPRVp/GtliOxQ1RXi4fHZDEXRnXCtQKzyX76HIcsum8VCURnFwKIKtiQM1FGmbTYci2B54KIKPgeChCLZrUwJH219ApG+GdDUl8uGhyA+vkMiHpxIJdB6uZTUmsPFa1lTADt818a+HxsK/HqA92M4YHwHaJyyb5OsRIDM2gZ4CUfZGWnUamBaGvYFlwicd1XpJIh8OusaSyOZlYBCejQZ9WK7ayB7K2+E5PEmC+XU6CqdWRJxaBI725Dog32QUVxIQVxforI3i6oF8+P5OfRA3EcU1ADprobiGATobETpV27WoXaFPSUeQjvJ0fBeiPbAH5oX/F6G0Kkz3jkmUdhPwq3LkV7AXY78yffgR5m8m/HFqRcSpReDg0UqFySiuOVFW/IChCridqc3+Oq4NUS4dlw3Q2Y7Qqdqnfu3K6XD7q6AZvxM4b3JREpbxtf40ssWW8TshPFw+/OBIZzu8vRIoP8SDOrU91MwL1q0SPbtJ+ejSeZMo/Vlef8ugdCrgB0e6EPbCc/DBkTPSlW2HdZvwOWq9+BzuX7Dsun00DuSbqcCe89KVywJ5qlBU5TV9QYy5qiW4K3gB4iqYH7cd1U9sy9+RKGOpqFo3KfDbz787BeCkAsoTV3umEA7kWdie16D27AziMEer3/qhnCRKnwTteT1qT6ovUvWMxyXTeq5N4MRdz3h86cKIA3XBxR0l2yJduJ51O+l6hleU26J88IOueBG0EOWB6aEOSr/WkcsH70/TZfPzQY2VROk/rVuR7yFLH+yC4uBYAcdFaAesB5gev+BO25nySe9XrifBVeePTSrr1PlhXcG2wPyr0z8DdP7chLYTlguOB3gxkvKHbYlyUXXaTeTGhvU82gc7JYJ9MYnSv0zUKR4XYH6qH5UiW7rmsB33b5hfpysh8kXlEcrmXH3yHcM+2cH7jX33OdAn30d9MshHoM34OsK0nmsROHHXM75G6MaIA3XhcYH6WCGsZ91Oup67g7geKB98iBR/zLkQ5YHpoQ5Kf9hx4fs0XTY/H9RYSZT+FuCDPwVcFwf5YDcUB+sUjwu5+LADSq/tTong8TaJ0v87YFyg+ivkWjwubMWrXaETjwvUh9uDxoWgD3jnqtMeSFd7QhesZzwuUHUKy98elV+nLwblDxoXdH5qPWIaioPrEZ1RHHzIHs9Z4QP0eEUerkfgtZEsiMN81w7EQR/B6xF1AspTAnTg9T64bodf2FAPxLVAcXC7R0sUB9ft2qC4hiAui+Iagbh2oKx63Q7fHG3tnY94347cuhK0LprwOQoRbjyAW6sSCKcpIw7UNQLhNGPEwS/3hDgtCJyIL5wIfZ9V60+Lqn3XZp2MeoEI9eIZszsj+FUosFagVngO1jSOi/M+q9bXBsRRNYFXzmGZ2vjkg3UhiHMFRPqWSJffK2YKffCoFoX5sMck0Hm/+5FaRxKl3xGMVr+i0ZrCgvWBR0xtu9+OCWyDTt8f2PBNE1pn0qdcLXx0jq9dUR8Da9M6BaGTKlcbVC5sA34VkE5fRswEClEabA91Tte/IPLi/ymfaYzSZ3OUB7eTTj8yoJ2aEzbAPjk6hw04TRsfG8YSNhDsNnTuvCUeuwkUqGfR4P+45vF92+aEHr+ga0N5ofZIapdBCyJfc0IPtkmVXM9Rtj7aN3vGwhk+ZcfMnfDBLBB0wPNRIaqOoZZjWugxVOtPC9rzsiJUSGCW03i4fHiTZ0vClgwRB9sX+1EQjmpTPSf12nSPhXPn+zVp2ME1QZiF84scunBTtwPn49zclEBxcMkFTyPhJSAkNRxwuWF5FLn8brDxCdYpvsyC7okvpWBX2RbFQVfqhuIg4XdHcVkQpy+BS0XV9oKXWTBOhULiHJ5iw/ztAnAaRMRpQOBQt8axb8JbgHHQkNafFpH6wlYaopYnqHrBtzFhXmqZAW9E0/78BZggHY0u3dPQQO8Y8SmcHcPWq9afRrbY1msdhIfLh+u1hLAlg+JUwN+iKCFwSggcStdaRl3HM+paw6hrGaOuOYy6OMvI2Y6cZVzKqIuzjKsZda1j1LWKUddyRl0bGXWVM+ri9AnO/sjZhzh9grO+VjDq2sCoi7Puj2XUxVn36xl1cdYXJxcuZtTFWV/VlQs564uTc/4IcyZOn+Act7nqXv0uZtKlQjmjLs66X8moi9PvOcvIyROccwDO+trEqGuzd9RrTHAdoh3Coa756wTgwPx1Quii1g+CytiOSM/4Vj5tYl+UbrSPaQlCbwIJPt8XnSsk0kLd8HH0Eu98DE+o9E4gfULQy0r5ekJFl53aPZwh4vCno4OeTIE4GSJuLaOu1Yy61jHqWsWoazmjro2MusoZdXH6xBpGXXMYdXH6BGd9rWDUxVlfxzLq4qyv4xl1cfrqMkZdf4R2XM+oi7O+OMehxYy6OOuruo5DnPXFyfec/sXJOZz9kdMnOOdMXHWvfhcz6VKhnFEXZ92vZNTF6fecZeTkieo6/9rEqGuzd6SeTG2HcEyfjob5O4XQRV0PB5WxHZGecZlEm7g9Sjfax7QEoTeBBJ/fHp3LtUyCd+Uc6K3lRNxhRz5AonWVIkz1G+42g3FChFupg/lLAnDqRsSpGxInExEnQ+CUEPkSPkeNg88FrexnEE47Rhyoa6p31PUGl8KwH1AvJOoYgAPzd/TRpR9RUOEIkAZva9f9NUnoVGEyiIfp53t9qJaU+7wnjnSdtgf5pwJ7FtYJthXmhbbil5KcCR4UPcbTSdWzbnfKDzqiuHYELqUT9y3TtqtL2BCkC7ZXPZRet0XKJ73Wh9vuONB2+IFUnd/Pfzr62AD9Bz6SMNnHhrUW/rO+TrCt2H/qIWydfhnwn+OR/8A6DvKfeigO+o+uI4oz8U5dU85sQNhH4QS98Av7kekLv+oROK53qzdAcfAh8IYoDu5Wb4Ti4MPGeAzqDuLwQ7LwwWf8kCx8IL8eiusJ4mBfwqEQ/Q/rVvWZB0GfwekEwoRtH/SAMn6wHj60ix/2bIhsxeewz8D8DX10wcfPIIdMBfEw/Tle4VU/vqxO5XLBlwHqOon48EyfBNInBH0bDD8808gOL/DhGVg+fBusHWELxVOtwW8YB3HaETjUfKecUdcGRl1LGXWtZdR1AqOu5Yy61ldTu5Yx6prDqGsTo66jGHVtZtTFWV9rGHVx9seNjLo4/Z6TCznb8VhGXZztyMlfnPW1jlHXYkZdnPXF2YfKGXVx1tcqRl01vJo/XuWqe/W7mEmXCuWMujjrfiWjLk6/5ywjJ0+sYNRVXeer8xl16fmqXnuA1+h47YG6Hm4RgAPzt/DJp37DNYeg+wMRn34vTCB92h54DurP19PvnQhbMkQcrEMYB3GCbnlCXWFe6EGtfQT5BlVGxlue2sTeKN0kH9MKCL0JJPh8b3TO75an1q27EVx6wredYDUGVS1126lRAE69iDj1QuLUjYhTNyROg4g4DULiNIuI04zA0V2Z+m6KWjbtU0JjwlsqcLkW35LT6eeApdgdSyqXEd6WqIPKDx8Ewe9ehN+PwdQLb70bUGHoF49o/WlR1SdtqLc+wsPlg7QU/h2CuAfgDQk4PUwriLhCdA7fhK+D8tm8Q7ABiKNqAr9DEJapgU8+WBeCOFdApK+PdNUn8mnbCwPyQx0wH/aYBDrv9w5BrSOJ0o/yGkPd/MHvEKSwYH3gzTfadr/3wmEbdPpxwAb8brr6IA9VLtybG6D/oW9N98GfAlhmYgmNLwh8XD7Ian7v56uPbNDp9wR1gN832JDIL3zO4ZGhIYprGJA2jcpCfT8P+iJ+N2GjHGXH7a/THxDQ/nUJG4K+/IltwGnSPjYcQtgQ7d2EmOVwK+GWqEvo8Qu6NpTHau/FtYN7B8bR/1MeEPXdhCU+mAWCDiWCtk2FYhFprAw9Nmv9aUF7XlaECgnMnhoPlw9fFtUnbMkQcX69NBdOxHcT+g3aFFng/ALlTRDnVIAPntZcauTG+SNcamBd1CWECvt6R0zs5YDY8ScNGgE7KJ17IhuoVQBqR5NO345I34Ioo65LuErRLgQ2rEs8ELY3tJVaXYErUS2QrdC+Toa2TnJsayPC1oi7dox3luFdYHBnGd4FBneWNUFxcGcZ3gUGd5Z1RHFwZ1k7FAd3luFL/J4grj6K6wXisuA3DngsgPWu+uXgthV6cTr4249TYJ8djWyEk2fIIXqJohjohjhZESps9QPqoljrhtMNAx+bBm3SgZq66HNpZIsh3tapSyHCw+XDU5ckYUsGxamwAKTDcYXEuYIAXXMYda1j1LWYUdd6Rl0bGXWVM+rirK9VjLo4/WsNo661jLo4fWI5ky6dn8uuDYy6OH1iKaMuTp9YzaiLk1c5+zaXr6pQXXmV0yfWMOri7EOcPsFZXysYdXHW1zJGXeXV1K6acTt/9cU5X+XkaM45wPGMujj5q7r6RDmjLs7+yFlGzmsYzjKexKirhlf/N/iLsx2XMOrirK9yRl2cvlpd54XHMuri7I+cYy1nO1bX+eq8amoXJ6+uZNRVzqirunI0p12cdV9deYJzTv5HuK7lHLdPqKZ2cV7XcrYjZ3/kvIbhXPfl1MXpE7gPJbz/YZrJ4Pc0EA/T67cGRbxXPB3fi9U6oO4iS90JpE+IynYKpL+EwNN2pX3isiI4bLzu/rPGffnopwmUX9uCz+E9IykiPXVPW9dVLZDfoK6mlgAMgbB1XBLEFaE4WC/aBnXslq1sX8rSvjD1B/VniPQTQTqTtqgvKvsC9He9Vwe+OQi/iSrohZjUSympJ810er03J+WTXutLovTHef0VbtQuRWnU77o+eNA+eC5ob18XH11+byhr62P7emA73gvXlbCP2kaq029LpId7mrQ9VN1sK2hsWB7Ynkeg8uj0JxHlofqf9qlioEfHGfSdugpnx2wFDq432H9y1ZEKuE67EelhXek6yaD0sH51HHw8qiuKawfi8N69NoQNcH8e3l8F/Q6+OW99iDcoVqd+fW7Ift3SBw/aF9SvYX6Tfq3C4T62X2TYr1sS9lWnfn1FyH6tfaqmX+fu1x0JG8L2a52XettqDxCn9cJ93B2830mU/vYAn91OVLUV1jmu355EerinFb+1Eu6F7YniYD785kK4F7YbsqEXUQ/QLrw/Xae/D9TD2OyW35Sva7si+noZ5eu9QALs6/Ct2IVEetwWvYn024M0uk4yKD1uF/g/1AXrFO9513WUItJDfUmU/kmC+7V9kPt6Idu7GdrejLCdepsm7FPfo+dhIG90RJjdAjApftb7xVM+6bW+JEr/MlFfmBthP4D1VIR06vSvBfCBxoXlgtyFfZCq++5Euag67YHioO3aF6j+qdNF7J9DqP4Jy4/7Z1BZVcB1Q3Er9F3d/hlRlQ+3RXGwb3RHONQYGdb/oQ+9k6b1+o03rbzf2L++CPAvqt9QH20I8kfoJ3i8gf7VHcXBfJ1QHKxTPFekxl2YHl8D6vTfhxxvmPy5AeXP0GexPwf5pwqmY7+uk4yoOh5gPqR8FrY1Hm90HaUE3QZaXxKl/z1gvIHzth7I9i6Gttv0t/vReAO/qIHHmy4BmDgv5Au/8Ubrw9cD6dItR2q86Qxsx9df1Hij05cAnWGumYLGm1zXTNoeqk63RXHQdu0LVP/U6SL2z4b5vvbB4w3kQ3xdBPtGV4RDrROE9X/oQ9eg8QZfN0Fd0C+C/BH2G91O2B/bBvhjUD9TAdc55b/Qr7Q9lD/iax5oe5A/Ml2L7035Iyw/9segsqpgu76REVV9Ncgf8fjMdb19nuePet0fPottUK/Gz6smUBys5xEoDtYRbB8cCtH/sDyq3X9Haz2C0KUx0yAOf30AvpugK4qD6yfboji45t4NxcFn+rujOPh6hh4oDr/mQwXdlpZv8A/9SgutP41sMcTb+lxormdvdV8ze92U39sJEkgrPAc9FMcVonM43QT0v83rpuArgKiawK+bgmVq7JMP1oUgzhUQ6RshXX5vfSj0waNalHp9kNZB5YOjGswTpgc0RvqzIlQI/a5LrZ+rB+Rqd+2ruuxNCFsyRBz2a+r9lE0IHEpXmBfE+PXaCC+ISaD/G/mYUUDkFwG6YJ6gIsGuE+atXNR7j5Io/X7EhUdQfhVKiHPY7S3dMDTxa/1pUdUlbNye+iwPLB92+0aELRkRTFG4DYNwGF1VhQk+ZlAjisihC/dkylXh3ojRPtgpIj3lqjr9TMJVdZUXEPmVzh+LK2MPBuk09k7C39YyZCtOsxOyVac/Etj6DbIVuvNg73cJyq/jVdBdagiyPStChdBdSutPI1tsu9QQhIfLZzeX2gn8xrUCtcJzQV6cq+cMQ/+bzKV0yw1D57MiVBiuvWI4EanjRgDdO6G4kSAOtiYO1FWLtll58KcGVy2wPfBV1FAQNxJg43YdQuBo+wuI9EORriFEPl33ufAKiXw7IR0JdB6uhAwmsJMo/VrADt818a+HwUL41oP+vzlhJ65vHa9CRJ/cNyybaP1pUbXtbdhkGMLD5bNjE+gpEGUfpFWngWlh2AdYJnzSUa3XgsiHg66xJLL5b54XKe/b7P0uFVW9N4XsgTYE8XKGyK/TUTi1IuLUInC0J/cD+SajuJ1F1bLquP4g31QUtwuIm4jiBhDl0nEDA3TuGqBzEBGn2q5DpnI6yEYJn6MKhcQ5XKdDCFt120EGwGuOVG8bFoAD8+t0JUS+qOWhbKbmTrqs//nCZWlFHjiaQtaGfqz3jiVR+ieaVOS7EvW34SC/tpGqZ9wXTes5ReDEXc+4T41gxIG6poL0SkYhXbiedTvpeoaznVEoH5yzw3RwRjAKnB9NYFP6tY5cPnhXKV02Px/UWEmU/jrgg/dY+uAIFAdnkHg81HbAeoDp8V5RbWfKJ71fuR4OuLYbQuSnbC9BtowIsF0F7IswP565xuHzEDOX/zyD/GckiKP8p733O4nS/xX4z/PIf+AMLY7yB/VrOJPDK8tUv6P4A+eDfbQ0hA2jCJszRH6droTIF9U3KJtz+ca7yDdGgzjKNzp4v5Mo/WrgGx8g34D8qW2k6hnPAU3ruRaBE3c94/ndGEYcqAuPb+OQLlzPup10PY8FceNQvvEgDqaD49s4cH48gU3pDzu+/VBKl83PBzVWEqU/DPjgPwOuaYJ8cAyKg3UKuRe3T1AbJJDdKZ/0Y1C5dPrfA/b3UP11DNCJuVynL8hU6MT7KTQuLBd1tRzki2OJclF1Ok7kxob1PNoHOyXo8vv5ShqUH9epzl/kUx5cpzp9SUCdUnUUVKdUHxtHlKuUKPN4pGsooQvWc5g6heUfisqv0zck6pSatwxFtsO5A55DUvMwmB7vL6L6GDU3wX2seYDtQauScG1hGoqDawvDUVx/EIevxXYBcSNRHFxbKENxA0EcHv92BXF4b80gEAd9X68tJFFZt/HOR7y3UOXDWVAXVb8Jn6MQ4cbTfiBNAuHEsW5C4QxlxIG6gq7Z8B1v03UDmD8IZ+eIODsTOFiX5mQV4JxI96ckSt8P9OsJ2co6hxP27QzOjQ4oK+7PUJduM90/IPfFce9N608jWwzxEkGcC8uHb2ePJGzJEHF+bQpxqNvZpnYxfmVUm9gSpRvtY1qC0JtAgs+3ROcKibRQt6uul0+c2hFxahM4cS911kY4ZSAfvNyZlKnIA13Y73IHP6qi0+8NLnf28nRSlzt+3Q76GrzVgX1b4/ltY+jvY9/+gHrxd+v6E2VuG2DzcICBcVWY7GPDIWiqYknF5FQFL4XCKV0/FAenHrBtYJwQFXUBz2GfKyNwsC6/YVLXK57SHWo4TELfHh1Q1uEoDvIrrgcKh6J3qh6CcOpExKlD4AQN+7ZcQtmMLyVUgFyyAHHJCBBHTWn0pWESpR8GuOToAC7B4yOeamB+9Rsn/bhkmI99ywK4hJoajg+wGV4CYlwVJvvYUI64BN8KyopwgeISfGsC8h9+VY7pWAjzuxoL6yKcuG/7Ucv90G9hnMbB54L4BV+G+/XHTRkak+qPeFyrhAP64ymoP3LcqvPrE0KEu901nMDx4yAVgsYgnf7MgDEo19Q/6FLNz76koPvUFFFRZj9dgjin08PxDy9fjERpRwSkxXZD3+7o/dZchG8pZ0WoMFr782giEt/SgDbpOLiMuDtIh0Mh+h/arNp792yFXpwO2wPrYYyPTqrPT0dpty6FE3rx7SLYj3F9TfSxAbexCgd4R9zfb81U6L8ajTNwfDRo2zHULSkdcPvhusOBaj9tl2q/8myFXpwOY8J6HoviIK9ORnFlIB9sj/vyVF/4mh+GfNTXNBSXq750nC5vAZFP/04ivI+Bvz6I9O0MsLD/41cjwtszOL8KkxG+Tv8oGCsez275XSqqjq/4CQqom5of43GugY9dVDkhT45Cduu0HyBfxbdbsyJUKNNtPA7ZBHWPt9SdQPqEoJcdtf4SAm/rbTYiLhnCljk/TekzJbX00QTKr23B5/BS4QQifQMiva6r3UB+g7oaSD3qrbF1HPTt8SiuCMRpG6jXmU6wtC9M/UH9GSL9DJDOpC0yBE4Zo64Rlrr0a1ap26mYc1WYjOKosV+1Y5H3DDTFQ/WRraY8BPOb8BCe6+q0BZ6tEeePO1DzQMxD4yx1h+Uhrb9E+LdrmogLw0OH/Vo2775Jz7dOiKp8W0icC3Mbvz6RPmI/70XxEOYayEPjUBzkIW0DxUOWY0qvMPUH9WeI9JiHwrZFhsApY9Q1wlKX5iFqDk7xEJ7fjSbKA3moyppCvYo0tepV1hVm3q0CfixhREDcKEKnwm5Zr+I85KuUd4TXkfgajdpWpP+H56Cvwzx47UGnbwTqpj6yD17/w3JC+6i5OlyXbFLPP93ogHRh5/f9UBy1bTpsu+Cxog0aKywf/iLXPbUutd6tH9L3btmOnLFwj8OmzJ8xfY8Z0+bPWAivqKhREK9kwkcE/YK2BN+tHYT+L0P/49XMUYSeXJjU6jp8iQrGpe68YFaqR9icT5yGEXEaEjgUKyV8jhoHnwta6cWv54CrcnClt0e9ijzQJ+BKL8w7yTviVc+NjSvy9QqYQQbVM36XhGk9N6rBiRWncUScxgRO3P2gMSoPZH1cb6Z3pGD+YY5xcvXrsfVozLD9WqcfAPr1hBD9OqiMQZvSyogyYk7y0zUJ6Qp796gsBE7Q3aOykDhhyhOEk8/yaF3UXUfYBnsG2DUS6RqVQ9ceSBd1R4PyQWyz6eoEzL9zAM7IiDgjQ+K4Ks/wiDjDQ+I0iojTiMChrjCijh+Uzbn4diHiW+rhVpgX72DR6bcFfHsM4lu4uvW/Xs+jGXGgLvyyAr/2XI3ak3qYJqg9dfoGoD3XhWhPqm5GBZQHPyRDtTX1sGGC0BW0mwTXA0xPjSkxrqjWD+MHUH8a2WKIt3VDedADgyrAjdvan71VgLIZC7bv3W+YXAJYMm+h3+pqPQgK7MfpBfof51O2JVGanQkMIar6z2iUDre7Po/1h7EpV9pc8RTXjfUppxDhuA7m39lHl98OIN0+eKXpL57BYXcAUQ+xBc0HcL/D6QqJMtQWdH+dJWj7YJlHB5RZpz83oMwjc5QZz9+puSPmJpyukChDsaB3q+FdijAOv67T1J9gfldjZxOE4zemXYHGNGpXH9z1pT/ag1fgf29Uke9qNKZRc8G4y++3mxeWC36AyO/aJknoVGEyiIfpb+G5+0iuKOM7KP0I+1X5bkNtSpU9qE11+m9Bm94Zok2D+ge1Cz2IC4YFpKeuFcuI9EHzRt0+8I5y+PZJvBPGR6H+NLLF0B+2zjeoh8hh+WznG1rv26BA0P5c8w2cL2i+gdP69T08BxiFzueab1A2+aWNMt8Y7VNOIcKNDzC/Tqf9swzZnxWhQlbbMgzYoW2BPl+GbB8ObMR9kUpPzTGgfszDOn9S0HUzFcTD9M+AucRT2S2/qbZo6mOfEOHaAuZ3NVY1RThljDhQF36iALYr/qiQ6Xo0zB+07j06Ig71RE0YX1dhrnfMNSd6z3D8xHfedfq/g/HzQzR+Uk+emt4bw+WHbR3m3ktQvw7bT6n5QBbpMn0qDeb3m8clCdtVmAziK6X3JlQRn5acSO1e0f0v4pxvYpg+DvWXEHjarjQRF2ZX2KfpAY99fsNZTydQfm0LPhdm7ShLpI82/xLjqV1hcMeKCtBHRqE4uCtM20DtCrOcr40PU39Qf4ZIPx2kM2kLStdoS116Jxd1jZ0vTvJbe9H8hOcOtb2+H/YJYOopz6AnRjGn4TJizlEhK+jwOwpan67/WgQW3gmr09YH5X42W9lWv3uESZ/yBD0dlhD+dYMxqKfD+ojKto0MYRu1HgR1lPnYqXRQ9xCx35o+UTmMsIfCaRMRpw2BEzQm4aPGweeC7ke2QTh+86YO9SvyQD7xuz8y2zvi+12bwbxpG08n9QQ+vueKd+9BTlABc6DOnxL0uibmE52+G+hX+Iltan14NtDp52dhnxLS6Xuh+Uwc60y4TElRlVtVGCPoMvmtF+M6GEWknxqQnrrfBP0Kc3bQiwh12e5rWGHDTsiPc5V/rI/O2xtU6OxvqNPvPsLY+hU6Bwb0DfiRS1w/VJ3h/g/z4x241IvLipGdhn4Y+oVQWn9aVC2zzXoatT5A1Qv1cjt8fxbGhdmnEfQhz/4h7WJ8IZQ2sSlKN9rHtAShN4EEn2+KzlFLclC3cvPtveFAuzl8T2B3pH8A0FFInMNuDvPrdBROMiJOksAJ0tWd0KXTDyTSJ4n0jK6hTWyF0k0NMA3rzeUardA5P9fQoRBhJkTVd7bgpsE2lhI6+gWUqZA4h5u6H4FF4fSIiNODwMGzhKPQLAHiG7DlevyqTa0D6i6z1B2W+bV+6hkRbRf1ia4wqx7b3n3s+bt0OGy3BMqvbcHncJekriKpT9dHXH1aQ616wPc2qUCtjFGrHtoGatVjuKV9YeoP6qdWqfGqR9i2oHSNttSlVz3gq2WD+rIrzogDJ0gXtRKi0+u6SQn6ThHmJJ1+Gbh6wl/WpOpbEOcKRFU+2s87lhK6Cnxsp7CFqFpvML9OFyMnFplyYlpULbPNbJjqH1S94HfEwbx4B7AK8LlCP74MuiNQ3XVB38SvrNbx1FHj4HMYB/ZV3AZljDjQX8P4uS0O1IV33+KVQ+oYFofasRNxDB5JrbbpQN2RwX5BPdtMvY8K1z/clTgcxcFdszuA3zgUov9hPSg+fiFboRen04HakYfHJdOnTKidTNRdd7jaeGl9GtPvfXT4Lq1Ofz5Ypbmivn8Z8TURtXIHyzgZ4en01zpYuftf8nEbP67TrkIvTqcD1cZ47kXdiaB26utyUHyNXxsOOXYkioPjN97hD7lsGkiH+ZS6i4BXRAcStlPzpn4hcILmTf0InIhzI+OP/+LVS6pewvqYtln52JAQPobHTmwbrqMw825tg99dC8xzOv2zAXctdBq4An8E0In9AGIIpEOFycgGnf4lxH2W15kk9+ExEdahThcRN/QqtdafRrYY4m2dl+e6Sw2X/MJ/5Bf2QIpxcXqYVhBxhehcf5RuFPrf5pPhlm8mHoVHLRhMRy3YmjhQrAHv3Zt8Mhy2B34bC2SRMQAbt+twAkfbT70VET9PQr2RV9d9LjxqVQCzPpVP/b8jkYfzigfXI4euGPaENQzLOFp/WkTqJ1sZh9ofRO1LoPqO37OJkBMSKA7iUPvZKV0DmHSpMLFGV42uGl01uvKgK8yVIRyn8LORkAd3RfaZ3qiG+YNuiLeJiNOGwCkh8tmOyZkAm6mre1xvpvvyYP6wX1To0oDGpFawVNBXZHhF6TSwgtWtQWWbqat5Fag9Q7AdtA6ctxjYoOMM5helag68Y7YCB9crvEMZZh4y2zviPc+w7JQvhG2jHVEb4a8Q4bx4T6NOvxy00c7eb6oNwuwbovZQ4n6YItJDfUmUflfPJnhXLswXnnR+v1XXVj54QwDez+iaKAa/a0j5HeQZ7HfUShfFZ0F8Afse3isGuQffiaX26gXtY9X5U4JuA60vidKPJ9oc+53fM0+4XXX6iSHbVddlHO0K6wq3K3WXm3oeMMgPqDvy1DiwC9K1C6GL2rcati9rfbhvHRDQrhR/QTtxu+r0B4dsV/j8qtaj46K2K6wr3K7U/IPaLxnkB3B80HVCregPQnFlIA6vlFL8Df0gTJvD9vHj78OJNsdzR8wLYcYXuLKo3x/qrSzusXDu/Bne0qJAIWgpUP3vt/e0AZFfoLwJdA5/CIOiz6AFdY3tt5EF06dOfxRR5UH0q0KYLdSwueNYnNb606Kqy9osFeWiNbxUFNTNYFw1cFUV/J6GSBD5BdKVIM6pQG1rDpoFUuxGuRgetfxmBFof3pt1XMDIkeseY5i3dFAzIqr8+I2OMF+ZDw4c0aAb4RFNp98QckSD9y21Hh0XdUSDdYRHNGplIejJW+qpGGq1NIPSw7qnRjTs/2Fnp3g2hmcf+MoqyF+o8gbVD+Vf1HvpqXv5QVfBcH+FCpxXwbA82BeC2lYFv7e5wPSwvfHVCNx3gVeeYF/ye4IO4oT1Bbja0QVdEcO26hcCM2hlhnpiEO8BugRwgd/b2cJe8ev0lxP8ElSGoNlq0CoI5etw/MB7glzdQcV7gqi3zlD7fvCeoHEgDt/j9/tmEg54jIb1EHbfG/YHrdfE56EvXYr2msFpXxeESU2x4Dns8zC/TkfhJCPiJAmcIF1dCF06PTXHifmxJm1iB5RuaoBpWG8CCT7fAZ0rJNLCQDVTPx+7hQjXTNSiAdYFt/5MAmnwy3zgcNAV6TK9CQDz4ymptuttj0aLCXwD+jotaFu21m25ff60BNInBH3l5belGtpFbeUP8wjT7ZfuXvf5+/ptfQQn7FY9nb6MSN+VSB9xa+nJ1LQKDgcqQFrZFcWFfYSpzNK+MPUH9VNb2qeDdCZtQemaZKlLP8IEF67wDb24OQZfcn1ATLNc26KH/U8Dpny5FhPxDVhoe9BNU1wuU77sFxKnW0ScbgRO3DdnuyEcvxtyP6LLxoEgjpqOHe4d8c2Pa8ALH35Glx/UUklC0OMPHCNVwP0V35zBaYb52Pdv4J94uy4uMywnZfOuAEMgHSpMRjbo9IVeHUXkVHK7LuR8zGF4XLbEDb0iqvW7fozObLsuvk0IawVqhecSonLpYVyuhU/8yieb7bqWswTjD5bji0140QhbEwfqwhDOKky268L2wB/dhfcTxgFs3K5lBI62v4BIPwzpKiPy6brPhUfNcvALA6h86v++RB7OByGDNvXb6qK2/kZcJAn9GQr8mkbLfrKVcagFpaBPcFCvjKS20OCrRdtXEKrftq8gpHQNZ9KlwsQaXTW6anRVO11hHqaE4wH+3By1bSKB4qB9QVeUMH/QgmomIk6GwCkh8tmOfZkAm8N82sH0BQnUJzlyvUZy94Y0pt9rJPEVnk5/HrjC27NhZZupKzwVqKtp2A5aB85bDGzQcQbjeF3qhiCsV3xDkLoJAdPrrcJBW4AoXwjbRoegNgraLgjtwXtoNoI2mur9pjYE4FdA5toLcgRKr8sYdlusTj/TsynXttiBPnh+qxLjffCOAHgOtsXWp/wO8kyYbXYUnwXxBbXHh3qhCt5mB+sYz0tNt8xS2+yCtszq9McQ/oDHIuwbfvZR9ca8za7Mx4x6RH6B8ibQuXo+urQedQ4ucoTZZkc9nYApYgVR5UFNpkLNNrv/um12fg8+JIj8AulKEOdUoLbZUa+ECVPFVFXZbtDeRLh0EMNSM6ygmQB1zyHo44HUrGegDw61cVwFPKLp9H8KOaIxzaTIEQ3WER7Rwq6c6PS5tuLgrkZtSQu6sgnbDfE2E8pPqZlaru0rYR5soV6vQl094Bfhw3xBs2r4sUYVOGfVUR42M92CiLdVwiERvwITDkf4xfbULCqsL8CrJ3xllethGL97z5ADoI7Z3hHfR7qB4ACts0wEly0M35WBNPgVTtSrd6jXIAVt+9TpIvpjCeWPsPxhrvJgetO+GvQQWtDDkmUIJ5ffBG2Bg/cuf0T3XSFOO4RJ+QlVFxkiv05H4SQj4lCvQArS1Y7QFdTeMW+B0ya2ROmmBpiG9SaQ4PMt0blCIi0MVDMN8LFbiHDNRLkzhdMvIk6/kDidIuJ0InCqbHHhuX2/OswNM8vveK1OIH1C0FdTWj+1m1jblSbiwmyd+yqz14Ozv7/48gTKr23B58Lstu9EpNd1BW9OG9RVOTU0wRvNKkA6GoPi4PCibaC2zo21tC9M/UH9GSI93joXti0oXaMtdemtc9Q3slxxBt469xWYQuGtc3Hb4nozB35j4ziQ3vSNjXAzh8kbG2GdQttwHVFbwLDfaRvCvrFRp/8NtDneAqbzhH1jI/xGHMZVYbKPDQXe8knEjRHkFjB8eej3njhsK1XnQW+y1ukilsHYj/HWScj7eJMMfJIFbxOfAOL6o7jdQByedsObsvjGzu4grgzFwcs+6Ec4UP0NPlXzYNMKvTidQJiw7fHmKcg7ug6pJavO4DeM07bic9hnYP6g7bXDIuIMI3CopTs434rx8YXQK9r4KyuWX5PZuqId9G6N/xjmHfENUZiXunHkt2UX4nQmcEztiuEDS91QOr+PbiQIvQkk+Hw3dM7vMkz/T7l+mY/dQoRzfZjfdRfLtbO8RyMa0+/VRvizqzr9LPD5yl7gd9AD/0NE5TiIMxTZT+0Difh0VGgK0PrTyBZbCgh7P9lspzR+ySisFagVngvqCfjeFb6tuDPKZ7JTWuNSa2rUi2KC7tXgfLAuBHGugEgfNCD1R7YXBuSHOmA+7DEJdB72tsEENt4xMdTrVWrC8SuaJFNYsD5y7QrAabANOv1IYMM3Pvfzkj7lwr0ZD/DQt6b74B8IWGasD4sJAh+XD44wKR97/V4dshuog6DPOuFnafE5WAcwr9//MO1OqCzwf8oXB6P0g3KUHbe/Tr93QPv3J2zQdqkwOocNOM1OPjbsT9hAsObQufOW+Nyhx3MJzHK4lXBL9Cf0+AVdG8pjtffi2sG9A+Po/ykPUCX31FZMzWbPWOi3OwGPCP18MAsEHUoEbZsK+dpw0t8OL3DDCSyf7YYTv16aCyfihhO/QZsiC5xfoLwJ4pwKyp03eXcJ/9emz1iX39bGfb0jHqTmA4L62WeQLPDRuSeygbpCo1aDdHrqBnrQm479vinrhw3rMsw7coJszbXBBH+vB9o3ytDWSY5tHUDYGnH1wnhVDq+gwVU5vIIGV+Xwih1clStDcXBVDq9mh12Vw5etsK3wowF7gLhB4DcO1IqdrnfVLwe3rdCL08HffpwSdhMA5BB82U35VNBbUkcDXYWEjv29YxKlPy2Aj6g7RUH9INf7tvD77GAZxqI4mA++pVrrFihdxE0p5LvIYHnwphR4N6aQSI/rZjyRHvY5vEkK9rnRKA5yC14lpt4fqGzvUL9yOo4vvlBv5Z+I7BnJiAN1TUY4cGyDy1mX+fQr2E9g3rneEd95fBBcXF6JlrCozX74MZxrQD9b3M4/P96cRW1cCvouX1A5Yf3t71POm4CdY7Nbfse4OTFj+j5IimOC3gcZ1E9hnWRE1T6J5zzU/AnWaa47nrjNtD58t/EeYhGBepQMf2GozNB2m82T73kPQFDvjIz6aDP19SSsq8DH/rkoPXy9AIWN02ufgAtUFD8nUfonQVsta0frFIQNVBtpvJRP+rHIBp3+WcJfgngA+v8YpFOnfwHoxC8GyqWzt4/OlwPmGlQ/DXq3Z67xFM8nYD2OR3HQdjwujgP4uE1PRvhQD/Q1jCsC7KUeVQyyF483Ou4rMF69h3YvwLmFAVcXBrXVtoS9YdtqeED5sC6dLymq+mNQH4H18WkjWmeRoc4viDGdmqtMA/q/CjHPh1yNeZm6zoXzHGpugB/r1Dq+J/ojNdZrXdHG+sQ7po/35qobrgcRVJiC4qhHtrnH0tvqVdYb9D5c9bstsiNojqd+b+f9xjxc2HjLkeJhqg6D6jzX+7bx7ibYHmNQHOWzrv3R5funsT9S4wflj2HW1sL6I3z/9BVobke9K5viaGxPrjk33pWnOT7lkx5zvk7fDPgxnvdMIGwIuk7YjUg/gbC5FNkA82Js2C9hneCHBHX6NkS/jHHNg3xIENYb9v+gOlIB1+lEIj2sK10nGZQe1i/l/xNQHLWOFNRnw/YNnVfVw2rE1ZzrcxRX6/TbBXA1VbYgro5rfS6Iq+P01eq6Pgd9Nez63MIQc4GgB1Rz3YPA/EW9G58ah/EDuabfHYD5RwbgNIqI04jAiXMNEmJScxtcHtO1EJh/FCrPKMbyUDbj3cgqwDXViY0r8vhxG8yLxzud/vDGFfn28H5Tu+CDHqAO8t0yUdnOXGtIk0D5hYhjzimK8j3nxPNKOF7i++XU0wbQ9+DYqdMIZGMc9cX58DpVv7BP6DrAT1ZBP6TWX/HD61Rdhp2HwKdcxtbLbX/Qixty+Qf+0EE1ukeX9zkA9gXTe3SYLyEOxZe4jSG/Qh34npVOvzRg7kj5QZDf5LqmwxtzoW/gp1Wodf4YOaRa+80YFEetO4b1G8whkM/hGK3H76A1soSoPE5Cf4bpC330jER6Euh8bXAe5uuJyoznSFh3L5RelzPlk17rw3ORUwLWEkbnsGF7ZMOYHDaMRjbo9H8ibAiqfxWC5oQRn0pPJpA+bQ88B/WnBe0fWREqJHD9aTzKD1TAfZnqT9S9kiAOpPo5pWtnRl34yUzL9hpLcZsO1D4vfF0BeWxPFAfXeSYDHTgUov9heZRfr2hXoRenw7bC9oL3c7GPjSbyjiZ056s/jLbDC+wP1DWAaX/A99j/6P3Bb9+jCtWhP8D20nZTdaRCVoQLYfqL5Zsw2oXtL1o/V3+hfI/qLxHfRJJVl2K1RWWuUuFAoI+6jwHbi6v9qDWufLWf5ZsFAtuPuobnbD84vzBpP2rtD78j1nTtD+Z3tfZXD+HAa0G49vcyWvujrk1hXrz2p9N/DNb+XkNrf6brezGu1xWa7k8M2oOggun9c3zfIez6Ex7bqZeqhV1/gi897eGz/qTrVYW5RF7ctxOi6voTtEOnx3vicBq8f23r3hxwLfWNz30zav8atB/77NcB6ylx71+D9Yz3g/nN6bVuIarOGXT5dJzJuED1CVge3Ceoe/Ewvem9eOz38J7yGKQL9y8h/L+X7GfryAi24naEbYX3Dei00C+h/dgvt/Ylzxdz7RvQ5Y6j/YPW06g6DVpPy1Wn+JomaE9B0HparrVzzIkjCBvgmEitb5YhTGp8oHiC4nS8bqT9sj5of7xXF+7voe4jj/fR2YjwqaAylBFlCDvGBT3XMCYgH+yXxQRWVv/4PThofdo/ahFYeJzRaVuBeno2S9uSwPbkCDFek2UTSJ8Q/1PXZG05rsmoeR6cA2+D+gPVx2DeI70j7mPdm1Tk6+qjUwi63wY9Vwjt2ZSprDeu+8lU3w2aw+D7jNQefG0D3J9N3XvCe6d0+h1A3wx6lonn/mTiW2pchPNCPC4GzQFVwG0RNI+CdZIRVcdMvPZN+Rdsa7+3hvrt0cTPIej0g0AbBH0qBo/bIwxt99uXAONw38D9ONdHAfz23VLXvuq33q+N+/2ogLGVWisoA+dM97zj5wmp+1DUGobeR0j1F/jMui6fjot6X9blXhj8Ivig5wLhMwBB3AuvlRcg7qWeG4Bt6/f8IPWsqvrdyvuNnx/cP8C/uPcV4md3wq7d6L4f49pNg3yv3ei2DbN2A7kQr/mVgTj4/Mgk5F/UOAnzdvB+43HyiAB/GR9QRhVMxyhtD3U9PAHFwXzYl6jrQW3DbkQ9QLvwu1l0+gUh5wtM19FllH/Ca1/sn0H76VXAbbE7kR7uscf76OF7N8YhXdT6FqxTzF3UMx0TCP34mY4VAfMFOD7thmwfY2h7GWE71d9gn/qhdMtv6jofz1nHBGDivHDsSfmk97v+3EDUF+Yzaj1J/W6PdOr0JwTwATWmDgXnTPeN4fsosF7wvjHquiO++bwYku99Y7r9w+w3NN03Ftb/oQ+9i/wfjudDEGbQPBbnhTh+/u+3b+vcAP8Pui5Xv1sgnTr9+YZrX0H+n2uOEDRHCrrHqPkmxvn58HzPz7H/B83PIf+GeT4yrP9DH3qmtLJe6vlbmFd/8Qc/f3ujoX9Fef5W2xPm+VuYD6/PUHNX3I5+4wy+TtHp7ww532LaB9ww33yO71tQ89sg/gy6T0rxJzVeYv58OOT6TND7KcLYXkbYTvU32KfuQuMNvPbF402uD+LhZ/h1v/Ybb/BrzXX6ZwPGG3htRq0H4fFGp3/B8Ho9aLzJdb2O14Oo90lQ1/JB1+tM74JqFPezPrnWynT7h/lQJfV8GvYDiBPW/6EPXeb5f7R6XXxqAtiidRcSKZPoqNN84vlkGuDrYzKEHa89+MNLN47pfST++o0Kuo3UPRvV/u8j/4evUdZ1CV8/jNcwC5FtVL4EsgGnLyDSa70lRFwSlMG2jlreOeOZQW989kauOrLVv7F3sv6m/caPikv/M7U+//7xh2aeHJf+D4onDi+46cS2cen/y/cT+q5u1uFrEx/VvgD37up8+j5mXXDegAtDv+5a608jWwzxtt6nrYvwcPnsPkVRB/zGtQK1wnN+vVRbJnzSYYZQYTSRTxC6VbxuuQw6nxWhQj3tFfWISB0HvawOimsA4mBr4lBI2K9tVl76KdoJJAhdGhO2R30UVwriGgBs3K51CRyNXUCkL0W66hL5dN3nwisk8tVBOhLoPJylFRLYSZS+qfcdL1W33zURlcpZR1T+H/rfdGQjNaoIn3O4HPhJD4yrQrGIxAT1wzKP1p8WdH1nRaiwlXlKEB4unx3z4DFfo9RDWnUamBaGesAy4ZOOatHxRD4cdL4SH50qFIuqnmpQyyVhW1WfSyNbbFu1EOHh8uF9P5ZeWyfIi7BOIWjmg/UBGSrlo0vnTaL0PTymyIiqTDURYVAsBs/p+lFs1aVpZTwd179pRZqe3u9SQfs//F1AYBcQ2BkiP2YiOE+fjOKKQBx+P3QqIK5WQFwxKguMS4N8U1FcbUKnsm9d08rpcD+njkJU7UMq4Dqn2hgyG76GoXwM+6SfrklIF8xfinRlcujaE+mC+XVe7RuFRL4SAgfzGXzWxaC/1w3LZ1p/Gtliy2f1EB4uH+az+nZ4JQmUH+JBnfi5nQZEnNalPxuT8tGl8yZR+omIzxoAmzCfNSDshecgn41FfQ7WrW2fo56h0u2Dr91VgPs692pauSwZEEfx4xHeMYnSXwH4eF/Ex9D/tI2lgm4v+Jvyu3oB5af6QNz1jHk4wYgD46YiTMrnYJ/U7aTrmfJ5na8hiMN9F/szTA91UPq1jlw+OKspXTbKByFWEqU/Gfjg7IA5AfZB6J8JFJdAZYHpKP+EbXYESq/tThHpob4kSr8AXIXh9XedH9YVtAs/66DTHw104vV3in+pq5IgX6T4mqrTBkhXHUIXLA++B0TVKeyfdVD5dfpjiTrF4zrMT835pqE4uFZfguJSIK4uiqsF4kpRHJzz4fknXPfDfF8bxEEfWYfm07o8G73zxYL2+6wIF6ivvWOOhGv6xSgO+lYKxcE6rI3iIF4RioPtkkZxsK11O9QW4bhIBTwe6vSnBfQvij+p+ZRO34hIDzlbpy8VVfsUfl8jzIf7JX5/I/ztPe5VqR6gXYd7xyRKfxaoh6D73dquiPfTSqj7aY1BAnw/DSxqbS0XTI/boimRvglIo+skg9JTXEfxJqxTzHXUXLYRoR/PZS8O4DrIlY2R7QlD26l7VFS/hn1qVsBcEY+39QMwcV6IkxJm84hrA8Zban4M7cLjrU5/QwAfUHUZNN5S/NGAKBdVpw1RnN91ldaNdUbsn3Wp/gnLj/tnUFlVsOVK6p2z+Poe9g3s/9Q6Qlj/hz6kr79s7+H96YEeo77e/cs2Nvfw4LqQzqfHf8uV7Xuh/TpQaxRafxrZYoi3dY2CmjfC8jGtud6TQPkhHnUnJuI90UK8noTbBvqp35qtzptE6V9FaxFBa11wDQ6vf1Drc/BcQZ50UX0U1qNuE9UPn0Z1Qd1lCuPblI2wvfC8tTYjDtSlr68pf1eSFaFCb3zPQOuAuqHfGPj2PmG5QutPi0h9KRHkY9T9B6rv6bwZUdXHFoB0ufwP4lC6NlZTXcsZda1m1LWOURdnfZUz6lrDqGsFo645jLo4y7i2mtq1lFEXZ3/kbMdljLrKGXVtYNTF2Y6cvnoCoy5O/1rPqOskRl2cfl9dOYezjJsYdR3FqGszoy7O+uKcm3D6V3WdF3L6fXWdyy1m1LWKUdcfYS5XXf2ec25SM6aZ6aquc7nqyoWcczlOLuRsR876qq7zr/mMujYz6uKsr2MZdXH2bc4+xFlfnOMQZx+qrnXPyV+c63LVdW2I0784577VdY5ZHccO9buESZcKm71jqY9u+Dvo3iuFkyBspu6Twvv3+J6oAHoiPi0Z+ptKWn8a2WKIlwhqH+reKt4zDfNmiDjcVqb7tqGuJKMuvJeE8hvqvp9pfdUBab2n84bNmLpo5ri5MwUKSfT/cB8T90bp9vQxrZDQm0CCz++NzhUSaaFuqkvW8rFbiHBdEuYvCcCJo+vj/4u8/4Mey4rh9ve0sDTw33L7eyFIF3U4OJFRF+fyK+eUqrpeqnKWkfM2YHVdkq+uyxfHMer6I/hEzXJ1/uqes744l3s4y8h5qVpdb7dxLl9w+v1KRl3VdSmX0ydq5l//GxzNOdYew6jrj8CFmxl1cXLOEkZdxzPqqq5LppxjWs0Ss5muP8KtYc4+VF23FdWMHf8bY0fNrfT8+UTNmkL+ysi53by6Xg9x1n05o67qul7IOc+p4Yn8zSdqeCJ/dV/OqIuTJzZ7xxi3gaQSSJ+2E56D+qvzNhAV8OP3tls3/mi6Ynxl6C5hfSxfrwylXg6v82ZQnAqLQDocV0icKwjQtZhRVzmjrlWMupYz6lrGqGsOo66NjLrWMuriLONSRl2cZVzNqGsdo67jGXVx+hdnf+T0L04u5LRrDaMuTr//I/jESkZdnP61gVEXZxk56/5YRl2cfr+eUVcNT/xv8ARnGU9i1MU5n6iudb+JUVdNHzLTdQyjrpo+lL+6L2fUxXmNvNk7Bn3CIuInV0J/clHrTyNbDPESQfVCrZtRn3jReTNEnN+r33W8CvmqsyI7vMA6g+WzqTMVpntHql4S4e1cSr3OGdc5fBWzQR2MC1vnWn9aVK0DmzoP+/ppXfZGhC0ZFKfC0SAdjiskzhUE6FrLqGsjo67ljLrmMOpayahrMaOuDYy6OOuLs4xcdlE8VV18dT2jLs6+zekTaxh11fBXDX/FWUbOul/KqIvT749n1MXZt6trf+Tk6Oo61nK24zJGXX+EceiPUEZOuzh5tbqO2/OqqV2c9XUio65yRl2cc5PqOqbV9Mf8lbG6jtt/hOs0Tp9Ywqiruvr9OkZd1XWt4wRGXXFwtH7XGVzDwp8VN713BPPXD8ApiohTROCUEPkS3jHi2n/dBNKn7YTnoP60qFpmrrV/ql50+RrZ4ZWE8StoD/6sLa5bJfqTtH6fitV5kyj9rS22HDMonQp473tjwl7q07nKX27w9GJfUCErQoUd8D0WbQvUC+vEoA1Kw/qY1p8Wkdo8EVSHFJfosjchbMkQcX7+AHGaEDgZIm5ija4aXTW6WHSF4L+CpxsevCh14UHTenSuO/zbZg1OXz3ogZNWDercnfqcOeY/yAEGfBT6lcRaf1pE4ttEUJ1SY4gue1PClgyKU2E6SIfjColzBT66KC611aXCZO8YYRxM4rY2yJspJmzKhsoq+uq8zbwThm2e1vmb2+WvrfO3ACezwXm2vtZW521J5G24vXi57dt9l3RrsuPc3Y5e8/aeV61odEHXjzPNvlo04Oif35ir87Yi8voE3XW2+m0aRE71jmpe9JVXGO1brUFcIcqrfmvfSqL0U1tW5Pu2RWVs2KcxXxSA8wZt0T0sX2j9aWSLLV8UIDxcPswXhYQtGRSnAn6usJDAKSRwKF1rGXUdz6hrDaOuZYy65jDqOoFR12JGXasYdZUz6qqu7cjpq5z9kdOupYy6ljPq2sCoi9MnjmXUxekT6xl1cdYXJ39x2rWRURdnO3LaVV3HDs525Kx7zr7NWcZNjLqOYtS1mVHXH2Hc5uzbcYy1+j4NvB6rg+IKQVxtFJcEcQXIviRhXzLAPpg/6ZMPlyPM8zYplDcrQoXQz9to/VzP26QQHi4fvtasRdiSIeJgHfq1T4LAMbWL8bNUOr4bSjfax7QEoTeBBJ/vhs5RVQF1l6J4yvWxy/hVbcYnvwolATglRD7tmrWBjVkQjz+dlRVVbcwG2Ajz63QUTiIiToLAwbqoZSoV9vWOSZT+CG+ZSpXh5yaVdbYj7KPaSp9vT6RvB9Joe6i60XlLCOyEz1HjCBHsQ9CGFMJpz4jTHqRJIpwOjDgdQJo6CKcjI05HkKY2yKf+7wTioJ9pO7Yh7NDDTmdw3mAYCH1LROtPI1sM8bYOO50RHi4f5p4uhC0ZFKcCvp3VhcDpQuC40lUiqpYftyUsaxxtqfWnRSTfSQTVCywfbsuuhC0ZFKfCDJAOxxUS5wp8dOlycenS/TRie3XF9QGDjtsW6O6M4uBcYk8U1x3ETQY6cChE/8PyqPFrRbsKvTgdthXyl7a7VFT1McgdflxA+U+GyK/T6TFY23kBuFV0bsvKdrYGuiejMrQBcbjPtiXilP4ubSqXFfoDngeZcgjMr9NROHUj4tQlcLCuJNBVDHQdCuJh+vu9etf9BPfHrAgVZuK+oHVA3d0sdYflTK2/hMDTdqWJuGQIW5IPX3Dv7Yd/PzEhqvbrQuIcniN2J9JTnzrVddUD5Deoq6nwq9ICYes4eNnXDcXBS1Vtg/LvbtnK9nW3tC9M/UH9GSL9UJDOpC0oXYcy6YL9jUNXylJXfVF1TNJ9muKkUoRjykkwv05XQuRL+Bw1Dj7nN0+DmNQ8bap3VH78eMuKPLAe4LUizIs5Uqffvm1Fvqc8ndSYqW2MyHfdqfmBDjoO8gO0AQdq7qDtUv36pXYVenE6jAnboAeKg+PGdigO+mJP73dQ/dnOOajrDwqna0ScrgSO6zbHfW07ENcVxfUEcbAtcMjlKzPbV+jF6bCtsL613aWiah3hRw1MObMeYWvEMaoHrm8YqPrGc35Y39A+HKj61jar+r7SoL5hnWrbSkXVesCPXFDzEngu6JELnS7inGU7XKcwUHWKX63VC8TBesCBqm84x3nXoL5hnWrbikVV3zCoh564rILAhWXtjuK2B+kPQ3G9QdxkoAMHqo50eVQdNexQoRenw7ZCf9B2Uz6Jed/UJ2H+7gE4XSPidCVw8P9F3v+dQLy+Dk2itC3AvCLj7emkxoG9ReU46F+dAG6DVpXLDn0F13EvUbXsvQLKDvPjtoQ4XSPidA2JE2d5ugSUx3R+TK2jUTidI+J0DsCBcXi8NZ371CNspnC6RcTpFhKnKCJOEYETcc2wF+ZqGDBXU+NZbxBnOp7BdcF3Ledr2raIa0LG9YDnUXDMwuNZHxA3GejAgaojXR7T8Qz6A7Qb2p4U9PiyN4rX6Qd7nK18YFc0BsA5j8ZW6RYino973TbM/RBLHwl9P0Tr57ofQt1bCLof0o2wheIq/IhOlDWgJKMuvDZRHfo0vh/C1adN7ofE0acP8PpnxLqu9Ni4QLpq+n716vsqDAXpovbX7Rh11fT98H0/7NibQHF+HLEPitfpl4Bx/xg07kP/7gmwr0LjPrQf933T64dtiPIGrePnq+9bzskD+z5VL/8r4z5em7JcnzZem8I+BNemcN+PsjYF16dN+j61zhC1T5+Oxn3LuibHfa2rOvV9y/KF7vtaP1ffp/pRUN/vTtiSEVX9AY/7puuKEGc7Rl3axyO2l/H6PPYhOF/AfR/ywmSgA4e4+n5PFEfdJ4RjL9YBMSLWc+hX/+B+YTkGB/YLap9dHVGx3uxt4x85Y+HERVNnz5o2dsaSBWVzpk+cMn/hrCmzy6ZPnz9jwQJoNASCG5lgPAw4jf7tdwMzqMPAwoz2jtTNyO5I13Y5dE1CuoI6cs8cuvZEumB+mBf+XySq2qlvNhSE0IM7J2XXHsgu2NHxwLl9Dl2HIl0wP7747p1D10ykC+aHeeH/RaKqnbi+gvQo2SGHXYchu/qA/DsgXX1z6JqFdMH8fZGuHQN0qd/NkC6YH+aF/xeJqnbi+grSo2SnHHY1R3btCOJ2Qrr6BehS4XCkC+bvh3TtnEPXEUgXzA/zwv+LRFU7cX0F6VHSP4dds5FdO4P8/VEcrGf8jRLTzdUwP95gQg2G+Khx8LmgG2b4nY79GXGgrqkgn4rbBeSH3EpNhDSGHvwHgPNxTIq1/jSyxRBv6+A/AOHh8uFJ8UDClgwRh28ADiRwBhI4lK7ujLp2QeWBFwBw8+AXaKFnAIijLh70+J1E6QvBTf6v0QIO9JX+Ico4gMDT6Xf1/k8R6aG+JEr/vWeTmkT/6D0IlyFsGuhjCx5PsZ/oNCoUI+y4+ojWnxZV29+mj+yK8Pz8TZd9EGFLhoiDcykYB3EGETiUrl6Mugag8vj1kcLWlTFt+8gXbSrypTyd1amP1PFsitJH4ByqhDiH+4ilz4buI1p/Gtli20eotoDlw31kV8KWDBEH589+fXFXAofStQOjrrB9pAXqI31AXJg+otO/CPpIa9RHYB3hPkJdr/Qh8HR63WYpIj3Ul0Tp24fsIzv42KJ+w3lziahqP+4jlj4buo9o/WlR1X9s+gh1vQfLh/tIP8KWDBEHr5lwPRYS5woCdIW55gqrqw8qj18f2Z6pj9wN+sgO1bCP7GzYRyjb47j2otYX4PvE/eqI8t0MkX8HFNeVwMnlI0Nb0/b4+Yi+fk+i9FcCHxkR4CN4owW0Gd9wMb2W3obACbOwbMk/RWH5TuvnWljOtVaG+a4vYUtGVOVO/NA/xavU3OO/RZf6rd8tHDQOmvbzjKjqR9sgnL6MOLA8LtaMVJiKcPCaJHUMiwN1TUY4frw1A/HWTiCO4i29vpdE6c8GvHWYp7MYpTHspwO07QOISGq9ZwcUB+fDfVEcvJ7EbT8YxMG5Cw7UTT9dVjWGHtGhQi9Oh8sBuX0giouBc0PPMWs4l0dXzfVC5b6ErxdgHPw2A+a1QuJcQYCuPoy69L2MiO3Fxmsq4A0LcA1tMtCBA8VdujymGxYo7sL9BKeD4wt135CyK0Howf1Jx1H3//Q3Dah7jI0Rhmmfb0zYG2YdDfqXgQ8Vhu3zWj/XOhrVf4LW0XYibMkQcXjti7ovuxOBQ+nC1/XwWjnf42cfO7zA8ZP6DgyHf/m1Q98AvH52eAUaj7rv3YfAUw/6pUTVNvS7P0/d14bt5dfnIfZo72i73wHqwntz+vqUwa8NqPWfoD0KSRR3vzdH/88351pXTqP3ldwC0tzk/aY4H6513IvS4T0qKkS8Lgjd97T+NLLFtu9R7QDLB32zlgj2EdhGfnuWtifKgn22Vw6bsM9SWFSbwj1cuE3hRle4FvpgQLqeRDoqTv0P99Dhzc467SNgrXJNh8plhLh4n5vp5uPtCFtcPYgdZpMzrKs41tzwi8mibnLeFuH51QveywLz4rZRAV+zUXsjqX0j/y261G/9XS1dN9TL7MK0K4VDvZAr7v1TYfzcFoda7wraH2WLA3VN9o66b0KujfP6cFsUB9e9cFvCdS9c/4NBHH5JVhmIM33oX9eD4ur1IdbEIm5Ur/b11x38xoGqP/ggQU39Vd7/iANn/cF2Mqg/44fRcP3BeR+uPziHxfUH529w3MCBqiNdVtN1a+hjukzqQQz9EtyKBzHGzliy95TZs6ZPWThr7pxJM45aNGPBQvzZAzwC4JFnWx+r8WcZ/KxWoQDF4U81TCTSwVBC5NMYEV+xFfrKRuunXhdrMyujZiXUI5zYs2HeDBEHvw6Le0Qhca4gQFdnRl3abyL2dONHz/ArgON69Az2ZpOVXOrRbh0HX3k9DcW1Afnwqzfbgjitn3rlNcTOgN8wToVC4hxu6wyBSeF4VVPlK7Flnm3FKJ2hfwwMcwVneUdtYFiu8JvNQ7uou3thXjv9U8PBPf7vvG/PSoiqfB10d0+np64GM0T6iDOa/iUAQ4iqo64K8LH2rigOvoYLzibwa6ctr8b7h6k/qJ/aWTAdpDNpC+rKrLOlLv16Z7hKoPuO7n+tQVx7FAf7Gd7F1I6woV1AebYhbCgh8uH+2B6cj2Ps1vrTIhK3bB272yM8v3qhOF7npV7Th18ZYcrBUFdrRl16rInYXp1xfcBArWBiH6KejqVWZiYDHThQY7cuj+nYDesYr1TW9Kv4+9U2hC24zlQYCtLhuELiXFD9d2LUpf0nYnttg+sDBoqDsA9RO6mpPjcZ6MAhrn6FXzOmbS8i0ma930mUdgHYKXcmmgPD/N5FOPlZto4oDvp6axTXnrApgTDgbgzo9/jzdDr9Us9uVZdjs7TOAh+dsE2FqNyXdTmKAa6OM/DBe5VdO2YrcGCdqYBfy0r1G5gez1uDPj0G64Aav3CfbUfo6gDO6Tt4VH1pG+OoL2gDrq9OOWzG9UXVL6wHXQcUL7VButoQumAdBtWXtjGO+oI24PrqmMNmXF9U/cLP/uk6yIiqddkW6aLqC/bH0Si9zp8i0kN9SZT+DMAJ+OkRyGu4rbOEbsiNCaQDliNNlKMExcG8Su9XLSrrpZ4gonac6PTUGxDg7hI894K7HHTeiLtlqtXOaGqFHpYZB2ps1vUQdoU+gXC0Xlj/KmCf6ELYSO2C3yGkXp0+126fghB2wx0h2If6EnZTu326+uBQuy1VmO0d8W7+G0Ff1p+fpfhUY0fk01KKT2EdYT6l+iy1OzBsn8U7y+HTbninMqxjjUn5F9wVNdTgaT9qFxq14wb7XsonvdZXZQcYwddB/kzt7Lb1Z1iGqP4M6ws/VafTP+bWn+vG7c/UW1GCnsaFT/r3QXGUPydEVQ4z5Ve4M2z7iE+7Bvm/Lpuf/+OnXXX61wL8n6pfaterTh/0podc/j8QxcF8XX1w/Pgc+79O/25I/9fYcfg/rCPs/2HfYKLTU28Pod6kQL09JMj/ByIcLv9vYfDWkF0DMHFeWDY//9f6kij9twH+T9VvUHsMJtJTOz2o8g9GcdT8E+NA/4f1hf1fp/9nSP/X2HH4/2CQAPt/GYgrJNLj+h5CpC8DafBbfYaAOPxWLFjHgxEOxYNh/b/S23YivjUnyP+pt+bA9H5vzSn2Llwp/6f6ILVLMywfBfn/IBRH7Z7COND/YX1h/9fpM6CsQf6/tW6AHh0X1f9hHWH/HwziCon0uL7LiPSDQRr8xh7YN4L8fxDC4fL/L9Cb1RIgXQOEmSAw4Tm8ho/zU7rg/qjJ4Pc0EA/T60/K6nUKWP8GfjC+BOQRQAfUbelj42FZdShE56D+Eh88FdJEXJj9D/f3u2fs+f/qUzeB8mtb8Dnsx0VE+gZEel1XKWR7VoQKY6m+Dj/rJUTVssM42F+1DdT+hyJL+8LUH9SfIdLjnfZh26K+qOwL2N+VUPtUahG6dHrqldVwbwjekwQ5CL9Kn3oaJmg/S0TuTlHcDcsT5hOtQZ+a70Gkh/vvdN1kUHpYT3iXP8RMoLQQB963wdzt92p1/ZluVS/vN6mcB65RYl6Dbwg3qP+CsLym9aeRLYZ4W+9310V4uHy6HdXuXs1R3u7ecXOnTB86Zd6CRbNn4N21dcBvXCtQKzyXEJVLD+PwSILTjUT/jybyCUK3itctl0HnsyJUqKe9oh4RqePge4rroDg4ksPWxIFaQdc2Ky/9FM3wBKFLY8L2wO8zLgVxDQA2bte6BI7GLiDSlyJddYl8uu5z4RUS+eogHcVEvqz+8cmJZ63MXHPqedluT/6QGrn5i0O+G13U77Unlze/f9Wvn35zOrZZEDbjdqyD0lJHbTs+h3eV1GXUlSF06bqBH0418PnGYdlK60+LSH1sK1vVQ3i4fLjs9QlbqHeHYw6qT+DUJ3AoXQWMugqZdKkwsUZXja4aXTW6/st16Tg43mdQHBw/8XsyID/jj9oVEPYVBNgH8+Oxh5rj6nEX8rrJHfOw4y5e4bBcydk67hYiPL96iTiX3rqikiHwsE4V8Nw7aMxM+ejSeZMo/V+91bAMSqcC9mtqXgLP6fpRV5Z/alvZdmqVLEw7Q70ZUbXsOs6139cG+aZ6R1Xu89vSmHBVG+bFq9o6fatsRb6L2la2mVo1UqEUncM+JAS9ShbHDhdYRryqQvk9TD/bO1JPvCVRHCxPbVCeCPzTiOI22MbXoTZOgjjKr/BOpK3psxX5bvR0Un4Mr8dgfpEDT6fX9Z8i0kN9SZT+NuIuEmVfHR88WB/UyjTGuyvknRzIw0JY+21jym9hf8J+C320kEiPr4mC/JzyZejnKaSL4i7oB3jXns6fEnQbaH1JlP6RgDuHQX5OtatO/3jIdmXiI7JdYV3hdk2BOKpucbtSfgDbC48jsM1rIV3UXRLY1mHaFdqn9eF2fSmgXakxihpD8Bj1ash21XUZR7vCugrTrtR4r9PXItLDdsV3aGBbFiNdFEfDtg7TrrA8mKN1+g8C2tWWhz+uBjwM54u4Xak+A9PjdqX8gKrbjKja5mkUh9dfIY4pR1PjchBH6/TfEW2OrwkxL/jZR9WbKqN+Qta7C7LHwrnzZ3i3QQQKQbct1O9SHzMaEflFgC6YJ6hI8NYArnKNlRL08jqucp3+F6LKcRVie8JcIlt2mdA30rR+rkvkXFNPfJkU1M2oIQa3Uy4cRldVYaSPGQkiv8ihS/+vRn89a4bNjWf1QTMBnFeJni2GnQno9LWzW47UiJHrygwzStCdCmgPVf56KA7mq+ODE3aGotPXz1aUNWgk09hxjGSwjvBIRq0UUisqOn0DIj28k4JnKPCuK+5+sI7rIZxc3RzvL6D8lLpSpvwraKady7+0b1JXpUH+FbQqwuQLpfn2BV03lC8ErahhX6CGWMgJ2BdqEzh4ZUwFPNuGR51H61WhmEiv4+CzkrC9BLAnCfJBXbVQPp2+b3bLUU9f4CxS588Q+HD2KHzshucKUPo0kT5NpFf1s122wmbKTjx+wbIWEunh9Aem75+twBzg/cb75yCeOjcmIF3C50jZDO0JqqNCIr3Grk2k13FwRwPskzANrC+oKw3iYfpR2S1H3SawvWG/xPjwKlL42O03HmNdhcQ56Dtl2S2/0+Cc1mU6NVQB79+E5yB2bVH5+WV9DLMn9Ya+3fvX3Xeb8vooP5f+ug/eutu7/5y3TS791H45OI6Z+rffnQcVpnvHiPtkC3R+uGohwudPUCukCWRbsZ1tv4epJ6g/Leg5YFaEClsvZzA34/LhO35pO7x/qzG1tqg6R4FtCesO4tRCNtS2tIGa62hMyHMC4Sj8uztUtsHyMvLfEX34N2p1aKp3VO12aLZCL6w7eN1AXa4nUfojshX5Znm/qecb4JyhVFTtX5gTdH0XEGnxyjD8n1qNxJfM2mdSPmVNobLq9EdltxwV3jdNaJ2w/qBdBT46FwKdPyOdpndR6hDpqRX1UlG179RB+aDtcA6Bz1Htk0BpoQ0qTCds8vs/Tejxs6GY0EPdoU4jW6nVbNhv8Ly9kMCBfQqOeRGXr4qosUQge/AdMBgHy3YQSIdDIfof2qx07J6t0IvTYXuovsQ59uvzReA8xsXrVymUFl9TQhujzL/x/IR6Zkb/XyvA/gTSkyTylQi6v1HHsPYmCHvj3JmiwsHeMeKY1zLXboSzshV6/cY8as6Bx7zzshX5/ub9zjXm6Tg871PhEHAOczqeR0EdKuBle82RKaAfpilGZdLpL8puOcKxjeIQrUuV/ZJsZexiEBc0jiRR+gezFfku936Xiqr1peuTGr/8xpwilFaF6cgOnfb6bEWea7L+WPC62K+M/9mpkqXTQRtgOqzDdlyj5le474aZX1FrXsUBGJiP/cZu7Rt1csTXJsomiHMFRPpin/IKAjudQy9195rid3wHNEHEYe6B5Q27bgx5S3Ma1V8SonK5aqNyFQeUK0Hkw/0c2l4rwHaq/iB/2K5BrH/v91dOXNb8q7jWOAaee8zGkr7XXBeX/qvqPDfkrnOLDzZZQ9HtnEJY+jesb3gezj0mg3iY/rXslmPENQqBy0PxRtD1GV57xfbv6WP/d9ktR+Vbb2Ur41HXJ1Sf8Rt/i0LaotO/n91yzHU/Da5ZaD06zqDOk9Q9FMhrYXboUWvnOn2ua0tdJ9Q9szC7UmCd4jmNrqOUoK/v8f1bnf6r7JYjtfuD4mYdB8uOebGQwKXWIid7R5WmdrstvyPOb2tR8wgdSoQ//2N/gGWk7kXh+Q1sS3x/AQbqGhK+J6BOuwq9OJ0OFD/g/kqtqwTNF6l+p/VXt36nfZ/aEYn9LawP+83nKDxYD3Cs1j7st6YP+zS85iptV6EP1ju1P0EFzKc6fad2Ffnqe7+pXfzYHyiewLYIQfNQmGv5EiKfbhfqPoLJ2g9sX2gnPAf1p0UkfklgvtV4uI3wWr/lPCGJx1iIR7VDPUHXKXU/AF8rUus9QddJQXxC9T/cN6l1BGoMCbqe09hwzTzMvMlv74/fekbXdhX5BqG+RXFtULsFvQ8liPugrVTd4/0r1LW//l0nAIeyq4RIXyfALsjJ+N0f+Kn/oDKEHauY5ohFpk8fUfUStMct1xsZcB+h3p5gOrbhvTvUGJ9rbBvkM0bBclA70qmtm3B802MfHC8TyBaIAa//jxCV09s+mTQS2JBr17sKswmdCQJDiKr1MhnZoNONBTY802HL76D7ARHfI1UX+o4O1Lip9VPv/bIZN6nrGmrPXsTrgJIgP6XmO9Q6DO7ruj/4XWPBa3KYfl+vbfGTHirgp2KpeQU1Xijb9mhX2fa47slA3oX8oQKcxx6EOIJ6wgvmxU+r6vRT21Xkm4zGWso3a4tgzqDu0WP/8LvP7fekzKEBnEHN36Fds310zgI68X1uyi+o9sO+CtNTewmoORNeh6K4LMYns8h3YsLy+/VLbY9fn9HpqTkZdc8pg9JT4yW0Ba+fBfmiCkH3zGHf0f3Kdg11l06bmrV89KiSuNZoi5Itz8xeM3mcyRotNfcuQHphfeN70irs5x3D7CWzvL4M/U01fH0ZdS9Z2OtLak0LXy/B/oHHG6rvUPuJXemi+jtuS8tr6dBrBXhfoKXvJEz5iVqDxGurkLtw/VO8Rl3T/bfogv0/aA0pTLtSOEHzwLjmUnhfSi1GHKhrKsLB93apY1gcqGsywkkSNvznPma7Cr2wjf3mSH73jO5rV5Hv8naV02jbrwRpbvF+FwNsIYz7cppat9aBuj+A/ZZaK8HvRqX8A17/F6M4+KbF6SAdDoXof1gPCi/Md6SourTct1ut6jJsfemyKp1HhKgvvO8MlglerwT1A4iL+8GDwMefR32LWkOk+rM+n+u+ZdCeIp034n7yOrhtYaDaFvsEbFvsE/CRcewT8Dk+3L/gs2t4bgwD5S9wv3vY/vW8D0dqDMyR+PqB2ucEuZe6J4X3PKkQcT9uuzDjCtSfRrYY4gU+Tg7Lh9eWLOfo2QTKD/GC1k3C7Efxe2OH332JD7y2xXMaFaYgjLD38hTu2+0q2x7H80iwfcL4o2V7hfZHvNYZ1R8p/wjyR8u1zmyY9qV4MY61zu+RP8I5KfZHk7XOr5E/xjU/x/cLqTqFujQHlxL54f4JXN8qZEW48P/tXX1sZcdVn/ve8/N7ttdeO5uCaKEvWZRCKZFaFFFQUBJ5bWc3u0maNM13HWf3xWt1d53sejebFIlIEISqRkkJlC+BAAmoBBVCLVBV7R+ktBIUmqoREUUrEFCQCKpEoUVIVNDe9B77559/M3fux3t+m3gk6z7fOXPmnJkzM2dmzjk35v685J44emzwnrjq/bnaE6u5qKKvXA995XDsPQD48nzl8mzmm1dvlcF6lM18mk5nT9633HX1Vrk24cyTwzuy554cRqXLUg5D8ybSvJ49lSywf5vSSQZoC3ZV3Wf7xiufTSDfIf+g2PHFEZH3xlcwvSbn+WtqmufnYZ7/QQ9O57Qc3pk9VYwaK6v0yTT1XFyK0cVLnolHyyHfp1TVxfP8V2uy1+sp3/w0oRz67PLYnredQzPP88qeTs1XoTtclKE01TnPIz88z8euabyvQL5DNqgxEb3V+QHK6SOES93XqnM/vt9R/YRngmoOUH5P3HY+OwtrOz47WMrmHmVvEDtvG3zsnbqymWSfPCwXklWDG4SsDtMvhOUXz7f5Llf50im5wrXpmog1ZhDyde9lIF8hnff1KF/qDDlPvprQzyGfh8TzdG6nDuCcf15PE9sLDOJeWNUzqPvaE1SPOudP+T9HY1n5k2NZHpsG/yzooBcIZ56tGesdal/F5ZiuUF2NknU1PHWF7NiU78MQ/FbaMTKD+Afpt6Lm3SJ2Rdy2mIf1xNgCscxUxRVznhCLK8bGMhYX33sgz0onVGVPwztufxW/CccE700N/nmYy2PiNyG/6x6cHw7oAXXfVbPtaih+ky92girL84VaQ+3/KaCd62HfF1+8JsSjdD+ON6DaEefRGH+e2HaconLqXMVXlufSULwFn5+QE3jZx6UdKNehOrGe5wiPb6/uG/+x9/O4bp8L6E8D8P0Yx7kG6cd3iH/Yvh/qvpz9opSOloi80Bq3h6s+XKPig/IZ0mXzfFDsTId9UL4E+vHnSu6flc8K71NxXg6ddeD5pNGLOHsuKo2rvSjyw/pSnk3NavZU+8eE8tQ9u9J/LA/1n7z7GV7fQnqu6ge1rwj5xw/wjmx8lP1f2L97GP4vnym4Phadb2JljMd1aM+YCLoq2vl0YvhC/F2nx1bPRaWk6NhTdkXsLxWyOYq1B6rTj3IPV324QmtA3rr9TVpjE8gLrTstgk8ObpX7/wxnbNxJHle++So0LkJ7rqJrkppbi8Q2w7ZD3k5mTz6v72Zth/v0Aa5znd1e56xN1DrH+w2lH6h1C+X2m2Ldarqdfbvn97jn97jn97jn97jn91iunlH2e7z+4BZe7GPffR2vzQZ/N+g1NxzcDmO03wQwR7PfHajbucJjec/v0e1syz2/x51wzAfKW51+j/eBjJ+ksbXn97g973LxezzpmSOtDp4jY/0er4f9DMeGVmfLVj/62jmCT9NDkI/wj9E8UVJ/krGhDVfFu5+20icsqfObhPLUfbjS3/h8V42rWJkyXlO6XoqQqZh4lm3BRyjW5TDiWabpONGMe0M+M0hT6K7BylaJ7fOTf3X29/5v9vf/dVTirz9DY6zknmjX4q//LqxfHzq4vT417gYZf/3Dkec9OPcYHssrcqaw23aQPCZHIf76b0Ef7Gb89U/TuCp5R3HZx18vsr6wvwbmKf+Evfjr2/NQhnlNbAbq89nRmAxPuO3+684VbrNGAnhdVtZowjGE+rhz288IOB5iSd+2zTZU363CeapL9Rr8iwe341F3veq80uDVd4Cbol71zejJgrg6hGu8Ai6UN4YfL0mXwsV+dl2BS61bad+9ADJbVkf7ubU3/efHbrzumTLfGUb5wXOrl2lPpmKaYlnfNwm+CvrOl0nfUXcge98kKFzf3jcJ3M67U7XGDmMPh3UP+psEX4OxNf792/lX+keo30L3qHvfJPDzF9Lfato37X2TAPJQ3zOZD60LOP/xuaEaY7j2Gf0X1vqPL59Z3+j/U8YBGpA7V3zC5kP4YuWfer7DCAuVd89XvMhIOm5npxVRaK2xb4XyTEualDGdlUkHxffB77dCeZ7QQpcBFRfD26oGrghNHJanBoDlKYfgtPz3Nrbe+9pDGStVbI/1UW8Pg3uW6MO85yCPJ/gPQR4bA/885OHmnRfkMvJVsj8OzTm/4mXP+XK4N+exQ/Cy5+KSlV0oV3fDyi+WK9+y8kvlyjet/M1QPnHF2+5wqfqTzfY74krVv1n+llL1b5U/CuWdK87/sXL1j9mG9gdgXONYNpzq6dzODVmabA4cdkBS5YTAmwSFSzlPKYWqNeR66jTOH7bzmdp4chspXGqjHTqQ36tntOupeNHeMVrygjjFGImH4DsF4fOMK2I2/yH8kwXhpwrC7ysIPx0Jz4YxhiNNJgtoGFPmMiEhWvAd4u8SLUXnPDbkwXqMl9lyuLuxvBj+rqvUdklFejfn/zm3nV5uX8M/Q/BMO8IqXGkymZqE9+c31k6tbTyx1N+49dsnCecaHpTYrFg1w/NvSx0PnqbbKQ5cllVJthFSUxS+73jedz3vJzzvJz3vpzzv93neTzud5un/W+j/mwPwuCTsdztTQn/8flD/uyHWVQetJpPqdxKAifGvLKm2R8emxDs9RW/PRaXNqalJ9TF/fDRTUhXuJVQe61NbAr4jU/2k7F6UTRffXZzKniqmQGgeCt0zpeNyNfs97cJy5Wt3pRqos21uI7XtrNhf0XE6DP+wt61KPviuTdnIFO3XQeJK06ERxVV2HIToCs2fMfKm6ik6LsrWg7hszVZHGqjW+eQ5dKSB5X224YgLVb/5AF17ceWK+23yeKria/l6wlVVjjjmZ5pszKXr7K97aEYbBtyzmK7cIvhnk61yv5m9G2Dsq9LfAhrW8WNF+9tezFqB9KjxyPYEKpagiq/G9uUfzZ5KTnlti5X5lLaPZL9jfHmKHgUqnx8lc2nqubgUM9+XvN6LjgnDvt1V53vVX6H5Psa3OyR7WE+sD3VrBHGl6dCI4joyALrqvApSY9RkrqjPV5PyQvNf0fUYy+NVO+cV2Qvmrccvemj2rce8Lzf4G2A9/lL2LhQ/J3Hb29M5fYbBerEy90ncTllRuBYIVzNAV17sqiXCpWQrJAeIa5FwqTUyNLYQ1zHCpWxlrUzI7zl9cuwgFTc1Fhdfw40LXKG4h4nbyWvozGvGU95XT6tiPS1RT0fUk/71XFRaVGO/QPkV5WNeoPyalZ8sV/6UlZ8qV75v5feVK3/Cyk+XK9+z8jPlym+o678C5dfVFVaB8qtWfq5c+TO2dlwBL1m2D8D7AuvSlTgmLCn90/B3iZaC9W3qnweoPuaP9c8rBS0zIo/H+JWinitFPQrXWI24JmrENVkjrqkace2rEdd0jbhmasS1f0R5nK0RV50yUWfb19ledY7tOumaqxFXnbJaZz+afL3W9EzbixnsO7OMjofPnotKb4iJE1kyftEbkCZLav03/MqXn89aOVZMz4XT6YNvv/4PHvjGVQmVN1r4XYzJmtIllB5coK0OKNcGq1u5NkxQHs459g5dG5SeX4S+mPZD/DMCns+jYvti1ul5NU189oHjR8WA6lCecgnhe1Ac+3x3mf723d2lv20PjP6evN93Tu+/+RxKfYOlaFvOiPK+fb7vfAj9cRF+Kdkq98HEz1fMeUc3kvauB1dL0J6mW4h2gz+W0Zv217XkHqXaFs975p2fV27byRxcfH6lxpbhmsrBxedXWJ71sH05uPj8Csuzbj6dg4vPr7A86zszAVw4vqZF+RnKC8lN0XNcJc8hH+ey9UxE1hPyNcZzZueqxeR+O7nUYP/w/Iw2kCF7iBkBf9Rt1WPlHeEYBD+dgvyoscv88Npi5Z0bfP+EYvmosYXwS8QP6umsfyA/3QHyE+qfvHl6kfhRc+so9U9erKVjAX6mAvyMYv/gXK742RfgZxT7J3E7YyMgP9OU54tTanpUaP1A/cbmVKUX473fi9lvpWfMRPAZ0i3VPMF3ib+Q8ZW2+WJD8xirwxn8LwFO0+FCa2XZNTm0n8Byiedp9fC7kO0W2zSq2IVl+wvL+/bilq+eVk8eP6H41TjO8O76d0j+JyEvNCe2CL7d2Cr3kQxnSF9X91IF5pJZ42tWZFoensdxfC9MTfof6Upl/TDMWQzHdWIfzFEe7g+uoDzU9+2OJGZvp/YVqr8MHuPEqTnV8LUI/k9h7F+i+UTFQFWxsXlP+EkxnzCdyFfIVVK5hU0LvlSb8vm7qhvbed5Td9tp/qeJf4P/s0CbWvkxDz/cpgb/54E2VW0UalPltjcr+FL7TD4L57rTNC9wcd1tD7zhaxH85wNtajBjHn7GPDi/EGjTK4ivvDYN3Z0iPdNuZzseCJTjMwLFn6J1n6g7ob/Q2ErTApWzetpOyy73ncH/reg7dSbFbRQ678N6+X4B6VB8sR5k8H8PdP4DrQ0D0JvHld6MdI55+DJ6GJ7PBbDfQ/vO6QHyU2XfyecCQ953Sn5CMeJCsbLTxOcC6lxR8YO6Vd38dAryEzoXQH6GcG4zPsxzgdA+uqZzgfFhngvMUV4CeWxLjnq0b5+MeejLos7QeV5X5/HquzAGb33h03Xx3g/hJzNilQ6h9kcqXiPvj6YB57UeXQ/5CukQIf0U6VFtyjob0h6a+znGdknZbSvZRf5ZdvN08aL7AI6LiWuf726V29c35+EcwfKv5JT332liXz58WhnDm6aOgLc8pAf7K014btQUuPgbIQb/Fjj3SRPaeON8wPVznG5FtzoTSgSupniHPkq9xhbN1eT14vMJ1TnmtveHI/wtgv/hxnZacf6Msa/4u89+4+WPH3nH6bz44mXxf6Vz+0Ljjz/45jz8qr+bVIa/y8LwDchH+Ovg7OhHSZ9mHzJ7txCASzxPRTPSE5K1poC3uicEvOXhPME+bLj+NAWurqe+eRqDOG4wti/Xj+up89Dts9VhXE3xDsfg9ST3JX1vEqtb+Q8p2aoyFvZ99hO3/eP/PHpNTCz/mNCHHbd9LS/Ie7S/7G7FoKjoV9VLqDzWp/xKQzEvDJeKiRITz/1uOm+oKybKHSQng/LFw3knTx6H7b9dVR6VfITkcdj+2+Miz3DZnOvz38Y1E+FXSR5RL2R5VPEf1DcFUtoeJnmssm6GfC/5rC3PF3A+eyq/wlA45zT1XFzi+QNxVPQFjx4bu+ULbvyVDQ2e2tpMuJ1j7zDg89l/8fczS84Hb1b9X4SHPD/ei557cp+dpvHBY/cvQZ99vwenc3oc2FlmyI9V9eWrDLq4FLpLr2iTHj0ODH/XVRp3m+Mg74yYx0FJO+1t48D3TUKfTanPllbRjHKuZKFLeUO2Vbyqblue0Blk6JskMXamKItss7s3voLpshxfefP8r9GcrL6vFprnDf4TMM//BuHENVLJIdt7q/qUPpumnotLMXuBYes7VfcCanyH9gJ16DsoRzH6DtuLhcKQq3m+IXApvZjPgrltnRvMPI/8+PY7Rg+3hy/eHPKt9hPcDsofKaH/kQaUU/aPaApcykepQXmqnyZcuN/VPRjrAzgPhfaKBv+pwN1S7Lxt8LHfcVZ2VJOUp/wMB3hvLWXVd/6aOH2fqM4zDT7vW20sv3hnxPdOSAvaKPjkSq1bsbbKIflS+ibL1xcKypfaf8bKF/vgxMpXSOd9PcoX8hiSL9zjXqx4V/XF8X//+uc/t/rcoO6qPnbd23583z3XPJWH3/yCVvsbyyvnN04uP762caZ/7ty12fsOlSmqi3QE/fHln3q6wwgLlXdPm25ThX4rU6L85vg+BOWV/sprKJZJx9IV8Btj4PA8ptZw1vNK8rJQ8Y7mRjXfoJ7gnP+cPk3qnuNVv/Lsd8W+XqjYPjfOOX//bt6FZf+rfVdCfJSk4yYca5bUfsPedV21MZIQPquP+bPf6RxrcTK2Pjdy07dnn7u/M/kgkYj4RniP+ZgYhuEYPqS8TsD7kTc2yZ4jbWzitmiuaGzydEJ1FjY2IVqLLrCxxibW5g+fXzt1Yvn0udXlh0+tH3/f17PXu7y+PllxfX2y4ppwdcV71k3xxc9jqtjITYLjMjjN3AwwN3tgDgPMYQ/MEYA54oHBb/rc4oE5CjBHPTDHAOaYB+ZWgLnVA3MbwNzmgbkdYG73wLwLYN7lgbkDYO7wwNwJMHd6YN4NMO/2wNwFMHd5YN4DMO/xwNwNMHd7YO4BmHs8MPcCzL0emPsA5j4PzP0Ac78H5gGAecAD8yDAPOiBeS/AvNcDswwwyx6YhwDmIQ/MCsCseGAeBpiHPTDHAea4B+YEwJzwwPQBpu+BeQRgHvHArALMKsA0AeYkwJwkmI7bqa4UmC+XqtohhWxzKtqURJ+TG/6uq7T2bOqt6uxR2ZSr/UtCeSous9q/2O9UnZsHOO5bPmNFfXqV8lD9OQn48VP0vjnU+ML6ndu5dyzZ1msV5W5/6NxetT2fccW0fZqeALia9s1rFdtu1vaV6uzd+mrUtyd4j5CmUdyeLALNhnMe8JXRyw+VK7/fyi+UK7/52fjFcuVvtPOKv85eVNXTY+zJStoqzcauG7v1LamK98f7EyqP9ak7CeVHg22b/tm4bHtw+eLqmZ5V5zdR0nIPEu3YtonnaXj5HZ/9I+++++ai9gxPQLmThDPv3n2R4K1N2gIe8fFd06nsmfL3kgenjy8fzseg3Hr2W43dRYB73Gn+Exdu01j+Gx5az7st/l/20Ir0IK2sx7IsvD8ANybgWJ6c07rkAsErm2dFE9tN/pTb4v0lD05sf6RrnuC5/RmGaTD4nwYaXiacbWgDnl8ctIOaG9PUc1EpqWq7omzMkvjyVW24OuqeEeXrA0QX6rNqbHFfGfxzUO6Z7LeKF81riLIdmXDaHzXxPJ2Lm6dVHByjbxrKMN9p4nG1H+ptEg4Fb7pnC+AxZiLPQQb/y9kzbbcvZ79VnCLs01/11K38pJFWrvujUI59w7FujueD7cx6wbSgBdv5ENFi8L/tttrhkttqB+e2973VXe34382+Gk8E6uH+jYkvifBsXxCKF4ptouJrTlEetjHH7lF2D8ouRY1HnAs+EEH/tChr8CouE8LzdzEN/o+yp1qHZoE+NaZaHpx/AuU+7rbzr+L5pXAveOpG/puCH4PnGEoM74uh9Enn53+/4B+vi1jHNvhPA85LHjqRLzWn2nsVx2hO8DXtdrYLx13DtkfeXgjg4FgAVt+E0zIxSbRiHtaPvKuxPStoDfX1rKiH+/ovsif2tVq7OGalog/HPY/xKYEL142KV6dPJkCL4W4KSN/VqX1vb1T99AdtW/XGT/W/eMOlVy4NCv9Y642/0vvDh46+luMY/HP2TGXvX7LffFaL9aXv/isAl3ieimakx96NehyDr2XPUY5j8Er2ezfiGHxX9ntlY2Pl+MnlU/0zyxvrW+YW9v3hXTa3OF3R3OJ0xauEubrMLdBUIWRu4TNvaALMUYA56oHxmTcgjM+8AWF85g0I4zNvQBifeQPC+MwbEMZn3oAwPvMGhPGZNyCMz7wBYXzmDQjjM29AGJ95A8L4zBsQxmfegDA+84Y0v+J1+S11XFviGDEczlW+Lo++9nitXZe/A+C4b0PX5fdTHi7vDwD+n4DffFQ/JFPrByvO8/sHZWptbV/R1PrBiu2zP2Rqzaqpc1ql2+0r8euz5yhfiV8HNF/mV+KNilfim1fqS+XKN638zeXKz1j5w+XKT1v5I6XKJ5suDF/J3gw6TFNC9Qwq/A7P2SXNEFpGcwfo4CNdxp/+dYHGJuFQ8KwvMP5uPfw45gevRpSrrbqKc/H1JeoqrgC9Hb4i/dnsmfY1m+riMSO3YZp43Z8imhgmxqwAt818jWLwqIe8QjiVy6OScXufF/qWXUSRh2lP3Sij6hNP1od8VNtzcYlpR5mbEfXxNdQq4bEjLuxnFf7X4PeLelXIdz6yt3rTfvtq9rvjdrZlgbboGU3qejD0yQyDPw3l3pf95nArOH5TuEfhPeKedHrs7wvgnY7A67vyXCSeDP48lDtHdbc9PF301I1XEJ0AT20PTxcBzjm9z6njmvM/iB7U7fiaM+/TmWXniBm3U5ZDoYY6VE8i6lFXmTx/tj3who/nz5/Jnmm7jSXb6RsT5dN3tk6ocBlcBs+3QuuG2puGzDpQ51Zz+2Hi1+D/Bso9QzitvG/Oxr0C81pmzsaj/qYHp+LhFwmPjV1s40TgYVnBelHn4Tm7TfXinB2StTSpfWuaei4usVwgjor90MU2sqTOgzjkaFKuvmDIUaSB9euS510dX5gh3M+oMDhKZpo5NM9nz1DIqabAzXAVz0m+m9t4IqJe5N3H3wLxh7jaVM7Xjoi3KehDGg556Ou48FwRK2NLAX7GqNxYSX6w3ISHvo7Lb7eY/lkM8FOlf3ztzaGK1Pmf0nOQb+fq1XNCobPyTO/tjEWZYPG6V/IMcixEC8+paVJtO07lVNtyX8bOBRXnnnYsfw3irxngz3demzf2lAli4nbyGxrjFft7fFT7m+ciNdZjdFofPxPEj8IVkgvmR/UXz49pUvMNrhtpqnO+SQCA2yhPXzCZ5M87Ib+hM04zt+F2Y1jcQ4ToaBG8mSbjuVLojmgQ7Ytyxu2r1kOEZ/1GudjwGVyaVOhEDquo7BdYVrEebO95t51HJf+436tounc6AVoMd1NA+kz3/i17Xu6f2Bm0ad0gTd8s9Evad/+d/c4zfWslfrjE81Q0Iz32btRN3xoZglE2fftft52HYZq+DdpM9i3Z73Mb62f7y2tnlvsX+8fPb6ytn1k+vnL8ZH95/ezK8VP95cfPrjz6aP/sj2Xgu2xqt9RhhIXKb0XKKLkENusytUN1N2RqdwjK8hV7KLpgxW3CQkU+k4rXlM0YFQLxV722xrqGbVLFX1xSKovC1S6Ia5B9gm2FfWIwlhcyV4o1FesBHMs4m4rhkrcIOH4Ifr8t+13RrHCp4phzc86vbrJ64pxe1nfb/Omt2XOUzZ8OAs1m/vIjgM8n4yrqpToOwO1shfHWMFpaghZ1LZqqMW/Kfj96du3Cykb/znR1P3xmwdb2+XRp54pQflD+Gs6/PiE/CkcTyqtUQ7DIpYTqLrptemf2HPS2ycwJTqyd7R/fWLuQqlsX+mc30KQnTVcCnjI61YFy5bfJuiNaEC/rfq5AHZawrzjx1orHPeuOBepPfHQo+TTPwAPwztrje7In9uVGf7V/dvmx8+sba/0zG0xtScOnTcPGkjEIZK/ixmiSK8yeLVEu8fzfoGcINgngnRJ5htN6A+mdoLyt3thYXz67cmLtoo1JjBJiNRZpRYzkUaL85tgsq3OpXkQdgPcL2MqsxxgtJaNqTIR0kK6ol2GUZDXo/xa9b0bAKsmyPKVrxByVKN1ESSm3O8qbwsV6E8tH1T6aE3Uabd8CdOYL/Z1OCgA=",
6316
+ "debug_symbols": "tb3briU9bqX7LnVdFyGKB9GvYmwY1W7vRgEFu+FDAxtGv/ueQUkczMxaylhzrf/G+fmvTI4ISRwzQmJI//2n//kv/+O//tc//fVf/99/+48//cM//vef/se///Vvf/vr//qnv/3bP//lP//6b//6+q///afr/j+N//QPjaz/3z//qd3/v9Pr///zn7zPP3j+IfMPnX/Y/GPMPzz+aNe1/mzrT1p/9vUnrz9l/anrT1t/jvXnitdWvLbitRWvrXhtxWsrXlvx2orXVry24tGKRyserXi04tGKRyserXi04tGKRyteX/H6itdXvL7i9RWvr3h9xesrXl/x+orHKx6veLzi8YrHKx6veLzi8YrHKx6veLLiyYonK56sePKK1+8/Zf2p609bf77i6f2nzz/1Wn++4vn95x3v/ovaN/AG2aAbbMN9lXyDL7BrQ9tAG/oG3iAbdINt2JHtjiwvGNeGtuGOfN/86Bt4wysyBegG2zA2+AK/NrQNtKFv4A07su/IviPfKUR3s9xJdAPdWTShbaANfQNvkA26wTaMDTty25Hbjtx25LYjtx257chtR247ctuR245MOzLtyLQj0458ZxfJDbJBN9iGscEX3Dk2oW2gDX3Djtx35L4j9x2578h9R+YdmXdk3pF5R+YdmXdk3pF5R+YdmXdk2ZFlR5YdWXZk2ZFlR5YdWXZk2ZFlR9YdWXdk3ZF1R9YdWXdk3ZF1R9YdWXdk25FtR7Yd2XZk25FtR7Yd2XZk25FtRx478tiRx448duQ7B2ncIBt0g20YG3xB5GBA20Ab+oYd2Xdk35HvHOzthrHBJ/Q7B7ve0DbQhr6BN8gG3WAbxgZf0HbktiO3Hbkt3+iNN8gG3WAbxoblSJ2uDW0DbdiRaUemHfnOwe432IaxwRfcOTihbaANfQNvkA07ct+R+4585yBfL7hzcELbQBv6Bt4gG3SDbRgbdmTZkWVHvnOQ+w19A2+4I9sNusE2jA2+4M7BCW0DbegbeMOOrDuy7si6I+uObDuy7ci2I9uObDuy7ci2I9uObDuy7chjRx478tiRx448duSxI48deezIY0ceO7LvyL4j+47sO7LvyL4j+47sO7LvyL4i83VtaBtoQ9/AG2SDbrANY8OO3HbktiO3HbntyG1Hbjty25Hbjtx25LYj045MOzLtyLQj045MOzLtyLQj045MO3LfkfuO3HfkviP3HbnvyH1H7jty35H7jsw7Mu/IvCPzjsw7Mu/IvCPzjsw7Mu/IsiPLjiw7suzIsiPvHOSdg7xzkCMH/QZfEDkY0DbQhr6BN8gG3WAbdmTdkW1Hth3ZdmTbkW1Hth3ZdmTbkW1Hth157MhjRx478tiRx448duSxI48deezIY0f2Hdl3ZN+RfUf2Hdl3ZN+RfUf2HdlXZLmuDW0DbegbeINs0A22YWzYkduO3HbktiO3HbntyG1Hbjty25Hbjtx2ZNqRaUemHZl2ZNqRaUemHZl2ZNqRaUfuO3LfkfuO3HfkviP3HbnvyH1H7jty35F5R+YdmXdk3pF5R+YdmXdk3pF5R+YdWXZk2ZFlR5YdWXZk2ZFlR5Ydeeeg7ByUnYOyc1B2DsrOQdk5KDsHZeeg7ByUnYOyc1B2DsrOQdk5KDsHZeeg7ByUnYOyc1B2DsrOQdk5KDsHZeeg7ByUnYNy56DQDbrBNowNvuDOwQltA23oG3jDjuw7su/IviP7iqzXtaFtoA19A2+QDbrBNowNO/Kdg9JvaBtowx1ZbuANskE32IaxwRfcOTihbaANOzLtyLQj045MOzLtyLQj9x2578h9R+47ct+R+47cd+S+I/cdue/IvCPzjsw7Mu/IvCPzjsw7Mu/Idw6K3uAL7hyccEe2G2hD33BH9htkg254Rda7v2I+JsAXxIwM39A20Ia+gTfIBt1gG8YGX2A7su3ItiPfOaj3Nd85OEE26AbbMDb4gjsHJ7QNtGFHHjvy2JHvHNRxg20YG3zBnYMT2gba0DfwBtmwI/uO7Duyr8h2XRvaBtrQN/AG2aAbbMPYsCO3HbntyG1Hbjty25Hbjtx25LYjtx257ci0I9OOTDsy7ci0I9OOTDsy7ci0I9OO3HfkviP3HbnvyH1H7jty35H7jtx35L4j847MOzLvyLwj847MOzLvyLwj847MO7LsyLIjy44sO7LsyLIjy44sO7LsyLIj646sO7LuyLoj646sO7LuyLoj646sO7LtyLYj245sO7LtyLYj245sO7LtyLYj3zlo7Ya2gTb0DbxBNugG2zA2+ALfkX1H9h3Zd2TfkX1H9h3Zd2TfkX1FHte1oW2gDX0Db5ANusE2jA07ctuR247cduS2I7cdue3IbUduO3LbkduOTDsy7ci0I9OOTDsy7ci0I9OOTDsy7ch9R+47ct+R+47cd+S+I/cdue/IfUfuOzLvyLwj847MOzLvyLwj847MOzLvyLwjy44sO7LsyLIjy44sO7LsyLIjy44sO7LuyLoj646sO7LuyLoj646sO7LuyLoj245sO7LtyLYj245sO7LtyLYj245sO/LOwbFzcOwcHDsHx87BsXNw7BwcOwfHzsGxc3DsHBw7B8fOwbFzcOwcHDsHx87BsXNw7BwcOwd956DvHPSdg75z0HcO+s5B3znoOwd956DvHPSdg75z0HcO+s5B3znoOwd956DvHPSdg75z0HcO+s5B3znoOwd956DvHPSdg75z0HcO+s5B3znoOwd956DvHPSdg75z0HcO+s5B3znoOwd956DvHPSdg75z0HcO+s5BjxzkG2zD2OALIgcD2gba0DfwBtmwI8uOLDty5KDcK8PXhraBNvQNvEE26AbbMDbsyLYj245sO7LtyLYj245sO7LtyLYj2448duSxI48deezIY0ceO/LYkceOPHbksSP7juw7su/IviP7juw7su/IviP7juwr8muV/UpqSZTUkzhJkjTJkkZSarTUaKnRUqOlRkuNlhotNVpqRFpakG+KxJz00hhXECX1JE6SJE2ypJHkm+4UXZQaPTV6avTU6KnRU6OnRk+NnhqcGpwanBqcGpwanBqcGpwanBqcGpIakhqSGpIakhqSGpIakhqSGpIamhqaGpoamhqaGpoamhqaGpoamhqWGpYalhqWGpYalhqWGpYalhqWGiM1RmqM1BipMVJjpMZIjZEaIzVGanhqeGp4anhqeGp4anhqeGp4avjWiHKaRS2JknoSJ0mSJlnSSEqNlhotNVpqtNRoqdFSo6VGS42WGi01KDUyz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPKfMc8o8p8xzyjynzHPKPI8qokFBmmRJI8k3RZ5PakmU1JM4KTU8NTw1PDV8a0RR0aKWREk9iZMkSZMsaSSlRkuNlhotNVpqtNRoqdFSo6VGS42WGpQalBqUGpQalBqUGpQalBqUGpQaPTV6avTU6KnRU6OnRk+Nnho9NXpqcGpwanBqcGpwanBqcGpwanBqcGpIakhqSGpIakhqSGpIakhqSGpIamhqaGpoamhqaGpoamhqaGpoamhqWGpYalhqWGpYalhqRJ73IEsaSb4p8nxSS6KknsRJkpQaIzVGaozU8NTw1PDU8NTw1PDU8NTw1PDU8K0RhUuLWhIl9SROkiRNsqSRlBotNVpqtNRoqdFSo6VGS42WGi01WmpQalBqUGpQalBqUGpQalBqUGpQavTU6KnRU6OnRk+Nnho9NXpq9NToqcGpwanBqcGpwanBqcGpwanBqcGpIakReS5BlNSTbo0RJEmaZEkjyTdFnk9qSZTUk1JDU0NTQ1NDU0NTw1LDUsNSw1LDUsNSw1LDUsNSw1JjpMZIjZEaIzVGaozUGKkxUmOkxkgNTw1PDU8NTw1PDU8NTw1PDU8N3xpRHLWoJVFST+IkSdIkSxpJqdFSo6VGS42WGi01Wmq01Gip0VKjpQalBqUGpQalBqUGpQalBqUGpQalRk+Nnho9NXpq9NToqdFTo6dGT42eGpwanBqcGpwanBqcGpwanBqcGpwakhqSGpIakhqZ55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5Lpnnknmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5rpnnmnmumeeaea6Z55p5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z55Z5bpnnlnlumeeWeW6Z51ET5i1oJPmmO88XtSRK6kmcJEmalBqSGpIad547BbUkSupJnCRJmmRJI8k3WWpYalhqWGpYalhqWGpYalhqWGqM1BipMVJjpMZIjZEaIzVGaozUGKnhqeGp4anhqeGp4anhqeGp4anhWyMKyRa1JErqSZwkSZpkSSMpNVpqtNRoqdFSo6VGS42WGi01Wmq01KDUuPPcOYiSetKtoUGSpEmWNJJ8053ni1oSJfWk1Oip0VOjp0ZPjZ4anBqcGpwanBqcGpwanBqcGpwanBqSGpIakhqSGpIakhqSGpIakhqSGpoamhqaGpoamhqaGpoamhqaGpoalhqWGpYalhqWGpYalhqWGpYalhojNUZqjNQYqTFSY6TGSI2RGiM1Rmp4anhqeGp4anhqeGp4anhqeGr41ohitUUtiZJ6EidJkiZZ0khKjZYaLTVaarTUaKnRUqOlRkuNlhotNSg1KDUoNSg1Ms8989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzzz3z3DPPPfPcM88989wzz33nOV07z+naeU7XznO6dp7TtfOcrp3ndO08p2vnOV07z+m6UqOlRkuNlhotNVpqtNRoqdFSo6VGSw1KDUoNSg1KDUoNSg1KDUoNSg1KjZ4aPTV6avTU6KnRU6OnRk+Nnho9NTg1ODU4NTg1ODU4NTg1ODU4NTg1JDUkNSQ1JDUkNSQ1JDUkNSQ1JDU0NTQ1NDU0NTQ1NDU0NTQ1NDU0NSw1LDUsNSw1LDUsNSw1LDUsNSw1RmqM1BipMVJjpMZIjZEaIzVGaozU8NTw1PDUiDz3IE6SJE2ypJHki6IeblFLoqSedGtIkCRpkiWNJN8UeT6pJVFST0qNlhotNVpqtNRoqUGpQalBqUGpQalBqUGpQalBqUGp0VOjp0ZPjZ4aPTV6avTU6KnRU6OnBqcGpwanBqcGpwanBqcGpwanBqeGpIakhqSGpIakhqTGneevwRBowAH0xDvXNzYgATuQgQKEmkJNoRbbXbXrxtjwamFL9GtuREVRa9YW3mJtbrYkQAUacAB9Y5SXbWxAAnYgAwWoQAMOINQa1BrUGtQa1BrUGtQa1BrUGtQa1AhqBDWCGkGNoEZQI6gR1AhqBLUOtQ61DrUOtQ61DrUOtQ61DrUONYYaQ42hxlBjqDHUGGqxRVzTwAH0xNgrbmEDEjDULJCBAlSgAQfQEyPdFjYgAaEW6dZGoABDzQMNOICeONNtYgMS8FYjCmSgAG814kADDuCtRnG9sefcwgYkYAcy8FaLXaiiaG2jAQfwVutxZWEaCxsw4kpgxI1BEP7Q53+NCHdLRlnaxgYkYAcyMOJ6oAINOICeGP6wsAEJ2IEMhFr4w72jE0Wd2sZb7d7MiaJSbWH4w8IGJGAH3mrMgQJUoAEH0BPDHxY2IAE7EGrhDyyBCgw1DRxATwx/WHirSbRD+MPCDmSgABV4q0kLHEBPDH9Y2IAE7EAGClCBUAt/uHejoKhoWxj+sDBaMoZc+MPCDhzAiBC9Gdkt0TqR0vcmCxRFaRsVaMABvINpXGSk9MIGJGAHMvBW07iLSOmFBhxAT4yUXtiABOxABkItHg802iEeDxYOYKjdoy+q1TY2YKhpYKhZYKh5oAAVaMAB9MRIdKPADmSgABVoiZGF90dlFAVlG28Ji+uNfLMR2IEMFKACLTHywuJ6Iy8WDqAnRl4sbEACdiADBQg1gZpATaCmUFOoxS/kXflMUd31WiMIvCPcNWkU9V0L47dw4R1hRHdHtizsQAYKUIERNzogkmFEB0QyjLiySIaFAowI0dSRDAsH0BMjGRY24K3mcceRDAtvNY+bj2RYqMA77r1kQlGo9ZqcDOzAuF4LjAgcqEADDmDEvdshCrY2NmCoaWAHMhBqDWoNag1q8fs2MX7fxsQGJGAHMlCAY3dhVGbNLozSrNlZUZu1kYGy+yLKszYacACzN6NEa2Pb/RZFWhv77qwo09oowJFdGPk2+03Qm5Fvswsj32ZDCdpX0L6C9o18m50l6E1Fb0a+zc5S9KaiNxVqCjWFmkJN0ZuRDB5NEsmwcABfl/N6ibsxNjxd2IAE7EAGClCBBhw3xuXENsSBUfe0sQEJ2IGhNgIFqEADhpoHemJsTrzwVot34qiB2tiBt1q8H+vcInWiAg14q7V7wOjcGLUHErADGRhxJTDiamDEtcAB9MTYrnhhqMUdx5bFCzuQgbcaxb3FjsXx1hHFTxR7J0f1E63tfW+J2MA26p82ErADGShABYZatHrsY7zwVutxObGX8cIGJGAHMlCACjTgAEJNoaZQU6gp1BRqCjWFmkJNoRY7HsdrVBRHbWxAAnYgAwUYcaOzYr/jibHj8cIGJGAHMlCACjQg1AbUHGoONYeaQ82h5lBzqDnUHGqeanZdwAYkYAcyUIAKNOAAQq1BrUGtQa1BrUGtQa1BrUGtQa1BjaBGUCOoEdQIagQ1ghpBjaBGUOtQ61DrUOtQ61DrUOtQ61DrUOtQY6gx1BhqDDWGGkONocZQY6gx1ARqAjWBmkBNoCZQE6gJ1ARqAjWFmkJNoaZQU6gp1BRqCjWFmkLNoGZQM6gZ1AxqBjWDmkENXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi+x6SUc2IEM1O2INg1k4gCm6Y7rAjYgATuQgQJUoAEHEGoNag1qDWoNag1qDWoNag1qDWoNagQ1ghpBjaBGUCOoEdQIagQ1glqHWodah1qHWodah1qHWodah1qHGkONocZQY6gx1BhqDDWGGkONoSZQE6gJ1ARqAjWBmkBNoCZQE6gp1BRqCjWFmkJNoaZQU6gp1PDYMfDYMfDYMfDYMfDYMfDYMfDYMQxqBjWDmkFtQG1AbUBtQG1AbUBtQG1AbUBtQM2h5lBzqDnUHGoONXjJgJcMeMmAlzi8xOElPr3EAjuQgaHmgQo0YKiNQE+cXjKxAQnYgbcaU6AAFXircVxveMlCTwwvWdiABLzVYgY5Kr82CjDUJNCAA+iJ4RoxmRyFXcTRUOEPCw0YEaKhwh8mhj8svK835pV9HqkysQMZeKvFVLDPo1UmGnAkzuNUovnm8Sk9UIAKjOsNicj5hZ4YOb+wAQnYgaEWjToPVZmoQAMOoCfO41UmNiABOxBqBjWDmkHNoGZQG1AbUJvHrkR3R3bH7HhUcm004AB6YmT3wgYkYAcyEGoONYeaQ823Wo+6ro0NSMAOZKAAFWjAAYRag1qDWoNag1qDWoNag1qDWoNagxpBjaBGUCOoEdQIagQ1ghpBjaDWodah1qHWodah1qHWodah1qHWocZQY6gx1BhqDDWGGkONocZQY6gJ1ARqAjWBmkBNoCZQE6gJ1ARqCjWFmkJNoaZQU6gp1BRqCjWFmkHNoGZQM6gZ1AxqBjWDmkHNoDagNqA2oDagNqA2oDagNqA2oDag5lBzqDnUppdYIAMFqEADDqBvbNNLJjYgAW81vQIZKMBQG4EGHEBPnF4ysQEJ2IEMFCDUGtTCS+4lvh7lZAvDSxZ24B3hXofsUSq2MSJooCeGPyxsQAJ24H29Fk0S/rBQgQa81SyEwx8mhj8svNUsrjf8YWEHhloPFKACDRhqHBhqcb3hBBZ9HE6wkIECjLgeeMcdcRfhBCMuJ5xghFo4wcIGJOCtNuJywgkWClCBoRbXG+k/4nIi/Uf0fKS/x+VE+ntIRPovZKAAFWjAAbzVPK4h0n8h5TAaGFGR8wsFqEADYqQOjFTHSI2cXwg1h5pDzaHmUIuc92izyPmFvnEepOgW2IAE7EAGClCBBhxAT2xQa1CLnL/LUvs8YnEhAwWoQAMOoCdGzi9sQKgR1AhqBLXwh3uFqa/DFuXG+aQwsQEJ2IEMFKACDTiAUGOoMdQYagw1hhpDjaHGUGOoMdQEagI1gZpATaAmUBOoCdQEagI1hZpCTaGmUFOoKdQUago1hZpCzaBmUDOoGdQMagY1g5pBzaBmUBtQG1AbUBtQG1AbUBtQG1AbUBtQc6g51BxqDjWHmkPNoeZQc6h5qvXrAjYgATuQgQJUoAEHEGoNag1qDWoNag1qDWoNag1qDWoNagQ1ghpBjaBGUCOoEdQIagQ1eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHhJh5d0eEmHl3R4SYeXdHgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML4mN4vpdt9Kj1G9jBzJQgAo04AB64u0lG6HGUGOoMdQYagw1hhpDjaEmUMsZzs7TSyaGWgtkoAAVaMAB9EQNtR7YgAQMNQ5koABDLa5MDTiA0W8RbHrJxAYkYAcyUIAKNOBIDNe4p657FCFujLuIATMYKEAFGnAAPdGjzSywAQkYaiOQgQIMtbiyOHZ64QDGzPQdLPaV29iABOxABgpQgQYciXH49F1s1aM0cWMH3ndxF1v1KE3cqMD7Lu4Kqx6liRvvNruLrXqUJm5swFvtrrDqUZq4kYECVKABBzDU7jEZ+8ttbEACdiADZdUN9lWwKIG7ALDPgsWFDUjADmSgAHVVCPbYWm7jAHpiFBOPiQ1IwA5koAAVaMCRqOh5Rc8rel7R84qeV/S8oucVPa/oeUPPG3re0POGnjf0vKHnDT1v6HlDzxt6fqDnB3p+oOcHen6g5wd6fqDnB3re0fOOnnf0vKPnHT3v6HlHzzt63tHznj0ftZazh6LWciMBO5CBAlSgAbPno6qy3xWNPaoqN3YgA6Mv5j9ToAEHMMp770Ggsxx5YgMSsAMZKEAFWuLMbgtsQAJ2IAMFqEADDqAnMtQYagw1hlr8+lNcZPz6L1SgAQfQE+PXn6LV75zfSMAODLVo9fj1X6jAUBuBt1qfEp4Yv/4LG5CAHchAASrwVrtLhHoUWG4MtTuzosByYwMSMNTi0sMJFgpQgQYcQE8MJ1gYatFD4QQLQy1aJ5xgoQAVaMCQuM0xai03NiABO/CW4GiSeBBYqEADDqBvjFrLfn+c1qPWciMBO5CBAlSgAQfQExvUwiruIoIetZYbOzDUJFCACgw1Cwy1ERhqd+tEreXGBiRgBzIwijSCRpJvmhVRQS2JNkUG31UHPYodNzIwar6DNMmSRpJvimmASRFx4t0M8eQepYt9/seR5Jvmo3hQS6KknsRJkhQicV+RhgtvFYkuijScGGm4MC4zuihSK5baogpxY0w3B0WA6MLIrIUNSMAO5N0kI5tzZHOObM6RzTmyOSORZiNGysxGjJSJBbCoLtwYtxpXGikTGNWFPRbsorqQJ1FST+IkSdKkO2KsmEWtYI8Vh6gVjASJUsFFknT/6/n3LGkk+aY4n35SSwqRCBPjfuHd7/f3eD1KBDcqMC7z7s0o++uxQhdlfxvv64zbiN/C2TDxW7jQgAMYYe/ejKq/jQ1I2eAzkyYyEGoMNYYaQ42hJlATqAnUBGoCNYGaQE2gJlCL7JsYs2oRQHNQR9Hfxg5koCTG75RGhEimhQaMt9Qg3zTnu4JaEiX1JE6SJE2ypNQYqeGp4anhqRG/UbH+GiV4GwV430ysqUYJ3sa7EWNdN0rwJkYJ3sYGJGAHMjDUNFCBBgw1DvTE+I1aGGoWSMAOjEXXIEnSJEsaSb4p8tEmxpV64H2lsSYcBXUbB9AT45E1Fo1jR7WNBOxABsZSZ1CI9UADDmCI3T0atXcbGzDEoi0iSxeGWNxaZOlCBcb4DRpJvmmmaFBLoqSIGI0VORcr1lF11+/P93pU3W1sQALeVxrvZVF1t1GACjRgqAX5pvjZmxSNEkRJPYmTJEmTQiSGXDx2LvTE+BlcGJcZjR+PkgtjVAeNJN8Uj5Q+sQEJGC0S9xHpujB+taJ5XYH3L0/M80VNHcd8XNTU8T25x1FTx/eME1/z93EiATuQgQJUoAFDzQJDbdzYQs0Db7V7AoGjeo7vWQOO6rmNCjTgAHpi/IQujGAUKEAFGnAAPbFfwAgWDdXjn3HgAHoiX8D73uIu75Rb1JM4SZI0yZJGkm+6s21RakhqSGpIakhqSGpIakhqSGpoamhqaGpoamhqaGpoamhq3MnGMRLuZFvUkzhJkjTJkkaSb7p/OhelxkiNkRojNUZqjNQYqTFSY6SGp4anhqeGp4anhqeGp4ZvjSgQ4/vplqNAjFv810iM+yNPjlIwvl9QOKq3+P6N5tj7a6MA4xEzItzDWiLAPaoX+aZ7TC9qSZTUkzhJkjQpNXpqxFi/fyQ5arP4foDiqM2SuMR7ZC+ypJHkm+6RvaglUVJP4qTUkNSQ1JDUkNTQ1NDU0NS4R/b9zsNRnrVIkm6NaOl7ZC8am2KM3y9iHIVX3KODY0T3aKYY0gsNOICeGMN6YQMSsAMZCLUBtQG1GN49RlaM74kxwBc2IAE7kIECVKABoeapFjVYGxuQgB14d4MHSZImWdJI8k0tInJgXKkEvv71/erGUVC1aCS9/vX9jsdRTbWoJVFST+KkuPF7LETJFN/PChwlUxsJGLcYlxk/MAsFqEADDqAnxs/OwgYkINQYavHTw3Hp8duz0IC3Gkc/xM/PxPj94WjW+AHiaNb4BQp7i5KpjQwMtRCOX6GFt9o908JRMsUSwne6aijc6bqoJVFST+KkiBideT/sscRFR3JGjkcB1MYOvK800jwKoDYq0IAjMZIz8j+KmliidyMN5yCMNFxowAH0xEjDhQ1IwA681TQaLtJwoQJvtTkwIw0X+sYoatp4q0UCRFHTxg68m9eCJEmT7kTSoJHkm+7ftUUtiZLuLhxBnCRJcT890IAD6IlEwGgRDlRgRJDAAfTEO2stGuRO2kWU1JM4SZI0yZJGkm/i1ODU4NTg1ODU4NTg1ODU4NTg1JDUkNSQ1JDUkNSQ1IjcnF0TublwAKO9onfiKXFhA8aT0RXYgfFsFL0Tj4oLFWjAAYyHsOi+yOaF8RgWfTafJ+PK5gNljMj5RDlRgKEWFzkfKicO4N2EoXD//i5qSZTUkzgpIt65GQVFPOK2I49HtGzk8cIOZOB9pSNuO/J4oQEH0DdGQVG0Be+jojnKiXjM/xhaFsjAV9T5z/epFMx7J1vmvZMt897JlqMOiO/ZAI46oI0D6InxLrawAQkYbxAtkIECtH1VsZPtJN8UO9lyUEuipAg+kYECjDcUDTRgvAfFvcZv68T4bV3Y5t7FzHvnaua9czXz3rmaee9czbx3rmbeO1cz752rmffO1cx752pmSQ1JDUkNSQ1JDUkNSQ1JDUkNTQ1NDU0NTQ1NjflKF8NlvtNNNGC0WHRo5OnEyNOF8fLogQTsQAbez3dXjN47T+WKcRC7WM//fST5pjtL5YohcafpRgJ2IAMFqEADDqAnOtQcag612NI6bjy2tJ4kSZpkSSPJF0Wpz6KWREk9iZPifnqgAg04gJ7YLmADErADGRhqHKhAS6QLGBE0MCJYoAAVaMC43ri3eH+dGC+wCxuQgB3IQAEq0IBQ61BjqDHUGGoMNQ41DxTgrRYzUlHls3EAb7WYZYoqn40NSMAOZKAAFRhq0VnxCrzQE+MleGGoSSABO5CBAgy1uPl4F144gJ5oF7ABQy0ayjqQgQJUoAEH0BPDExY2INTCE+59tThqfzYKMCY7oiXDE2IiJiqCNsacSgzw8ISFMasSrROesLADGShABRpwAH1jVARtbEACdiADBahAAw4g1BrUGtQa1BrUGtQa1BrUGtQa1BrUCGoENYIaQY2gRlAjqBHUCGoEtQ61DrUOtTkfpoEMFKAC76qkmMfWuW33RE+c23ZPbEACdiADBRh3cZtjVARJzLZFRdDGuF4PZKAAFWjAAfTEcIKYyooqn9UkijuOnF84gJ4YOR8zYFHls5GAHYjeNKgZetPQm4beNPTmQG9Gzs9riJxfiN4c6M3I+XkNkfMLDQi1ATWHGnJekfOKnFfkvDrGjqMlHS3paMnI+biGKPjZ2ICpZsh5Q84bct6Q84acN+S8Iedt5rwGNiABO5CB0ZIUqMBoyR44gJ4YOb8w7i2CRc4v7EAGClCBBhzAULsTJyqBNuYAjx3VJCblYke1jQJUYA6N2FFtIzqL0VmMzmICdiA6i9FZjM5idBajsxidJRewATE0Iv1jsi8KkDYa8I7L0Q6R/jHvFzVIGxuQgB3IQAEq0BItHwxjl7SNBIy4MR7CFBZG3LihMIWFBoy7iO4OU5gYprAw7iJ6PkxhYQcyUIAKNOAAemKYwkKoxdGzcRNx9OwkTbpfwuMO4ujZSb4oypYkpkajbGkjAWNBpAUyUIA6DzzlsQ+g5bEPoOWxD6DlsQ+g5bEPoOWxD6DlsQ+g5bEPoOWxD6Dl0VKjpUZLjZYalBqUGpQalBqUGpQalBqUGpQalBo9NeI3PSaBowhqYwdGg3GgAGMRqQcacABjHekeU1EFtTHUQjhSfWGoeSADBXi/EEZH7fNoeezzaHns82h57PNoeezzaDkqnSQmeqOmSXT+1/tKY8Y2apoWRjovbMD7SmNidMxVr4kMFKACQ80CB9ATI8kXNiABQy2aKJJ8oQAVaMAB9MRI8oUNSECoRZJrNH0k+UIFxqpetGQkuUVDRZJPjCSPickootp4q8UkYJRRbWSgABVowAH0jVFGtbEBCdiBDBSgAg04gFBrUGtQa1BrUGtQa1BrUGtQa1BrUCOoEdQIagQ1ghpBjaBGUCOoEdTilz/mSKPwaiMBO/B+/r7mPxOgAg04gJ4YT/sLG5CAcRcaGNdrgZ4YP+wxJR0VVRsJ2IEMFKACI+49wKOmajWJ4o4j5xcKUIF3+8bEctRUbfTEyPmF6E2DmqE3Db1p6E1Dbxp609CbkfPzcgZ6c6A3B3pz4N4i52N6PQqxNt5qd3EdRyHWxgH0xMj5+EWOWqyNBOxABgpQgQYMtRgEkfM3yjUT3QNDwgI7kIEC1NUBEgVYGwfQE9sFbEAC7s6SKxNdrkx0uTLR5cpElysTXa5MdLky0eXKRJeo0JL7p1qiQmujAuMuoh0ipT2uLFJ6YqT0wgYkYAcyUIAKjLjtxvhZX9iABIy4FMhAASpw/zRLVHJt9MRI9IUNSMAOZKAAx1z9kajemqRX0r14FSPkTv1FPSmuf/5FASrwXmaMcXnn/SLfFFnvExuQgH2uR0lUeC2SJE2ypJHkm+50X9SSKCk1RmqM1BipMVJjpMZIDU8NTw1PDU8NTw1PDU+NyG6Ppo3sXugbY8exWJaT2HFsY7SYB3YgA+/18HtpRGLHsY0GHEBPjIX3hQ1IwHvt/V5nkdhxbKMAFRhqPXAAPTHqZRY2YKhxYAcy8G5HCtIkSxpJvime8ie1JErqSZyUGj01emr01OipwanBqcGpwanBqcGpwdFo0bNswAH0RLmADUjADoxGG4ECVGCoaeAAemIU07To+qimWUhAAd7FyHE/UTI9Kf5RdJsRsAMZKEAF3pfY4mrvVN/oieMChlokwCBgB95qFFd7Z/xGBUaBVwzfMYCeeKf9xluN4jbvxFeK6/WIG83vCjTgAEbcO8+jwk3veVmJCje9Z5okKtz0nvuRqHDbyEAB3mrR6lHktnEAPTHy/K5zkyh507vOTWJrMb3nwCS2FtMelxPJzSERyb3QgAPoiZHcCxswCrHiGiK5F+Ygiv3ENhpwAD2xX8CQiBvqBOzAqPaK2+wCVKABB9AT+QI2IAE7EGoMtUhzju6ONF84gJ4Yab6wAQnYgQwUINQEagI1gdqsmYuenwVy0fOzQm6iABUYcT1wAD3RLmBbFS4yy+kWdiADBahAA47EyHmZSMAOZKAAFXhfr8TwjDyWGJMeEXogAwUYEWJwRXYvvNtBorsjuwOjcG5jXK8GErADGShABRow1CzQEyO7FzYgATuQV7GbRLncbIcol9uYrRP7fuk9UyWx79dGAnYgA+MuPFCBBhzAqAEMtcjuhQ0YZYA9sAMZeKvNG4rsXmjAKDi8AkMtuiWyW6NRI7s1Wieye2EHRty4t8jjhQPoiZHHGvcWGRuDK8roNgpQgSNRd72ozDq5hR24q0hl1sktVKABB9ATZ9XrxAYkYJRwRpvFT/NCAw7gffMWnRU/zQsbkIBxF9FvsxZ2ogAVaMAB9ES/gA0Y1cvRULP4fGLcRbRvJO/CAfSNUS2n97ydRLncRgJ2IAMFGJXZI9CAA+iJ7QI2IAE7kIECjLvgQE+M5F3YgHEXEtiBDBRg3MVEAw6gJ85q9okNSMAOjL7QQAMOoCdGmi5swHj7DepJnCRJmmRJ62sM4TmbdtOcTAtqSZTUk+LKJ8Y1RvvHj+nCBox7b4EdyEABKtCAA+iJkbsLGxBqBjWDmkHNoGZQM6gZ1GbuemAHMlCAd+vEj3QUym0cQE+Mx+qFDUjADoyq77ic+DleqEADhlqkcWR0YNTLbWxA2p0lM6MnMlCACjTgAOZ4iKK5jXEXPZCBAoy74MC4CwkcQE+MjF4Yd6GBBOxABoaaB95qMUcVpXQbB9AT4+d4YQMSsAMZKECoRZ573Gbk+UJPjDxf2IAE7EAGCjDULDDU4o7jR3qhJ8aP9MIGJGAHMlCACoRazLRdMbhiqm1izLUtbEACdiADBajAe74t3vajlG6jJ9oFbEACdiADQy0GrSnQgAPoiVEEv7ABCRjVDEGcJEmaZEljk0fEaFmP7xCuQAHeTkbzLxhwAH1jFMZtbEACdiAD4zOKFhjfUVCgJ7YL2IAE7EAGxl30QAUacABD7R7lUQK3sQEJ2IEMFGCoSWCoaeAAeuL82mViAxKw777QzkABKtCAA+iJ87uXiQ3I6zt5mVtlLVRgxB2BA3jHjTme2CprYwPedxETO1EYt5GB911QdMCd7RsNOICeGNlO0TqR7QsJ2IEMFKACLTHyOuaO5vZXMf0eJXAW00hRArdxAOPKYihHri68ryymnKIEbmMH3lcWjwBRArdRgQYcQE+8f+E3hloMeydgBzJQgAq0fcdR7GZ3QZhEsdtGAnZgxOVAASrQgGNtPCFzd6uJsXPIwgYkYAcyUIDROnHpkccTI48XNmDchQZ2IAMFqGuDEYmyto0D6Imxq8jCBiRgB0brWKABBzDu4h5cUcu2sQHjLiJYfKy2MD6DiiaJz9UWKvBWi1nDqGXb6ImRxwsbkIAdGGoUKEAFGnAAPTG2HIkJgrmlVkxHzD21YlZgbqq1UIEGHEBPjLnyhW3tRSRR4baxAxkYanFlc9OgiQYcQE+MLbgWNiABO/COGzM/UctmHDkU2b3QEyO7FzYgATsw+iKSLLJ7oQINeN9FzIOs7blunNtzLWxAAnYgAwWowLiLO9+iqm1jA8ZdaGAHMjDuwgIVGHcxAgfQEyPnY3I0Ctw2ErADGShABd5qMZ8ZdW4bPTF+uxc2IAGjzeKGevZ8FLXNfouito3Z81HUtrEBCdiB2fODBahAA2bPz629Jgp6XtDzgp4X9Lyg5wU9L+j5O01bHIcuUaSWPAo7+B76Hj+jUeG18B76GxuQgB14f4AVP7lR4bVRgQYcQN8YFV4bG5CAHcjAWy1+yqPCa6MBb7X4eY4Kr4XxpefCWy1+RqPCy+NXMiq8PH6sosLL4ychKrw2KtCAA+iJd0J4jJSo8NpIwA5koAAVaMAB9MQOtQ61DrUecePeugItMaoxwwJit6uNoRY3FAWZE6Mic2EDErAD495GYFxDdGF8tbnQgAPoifHl5sIGJGAHMhBqCjWFmkJNoWZQu3+sPPwk6rM8TCTqs1ajGvrC0BcjIlBgAxKwAxkowFCbaMBbTaaEJ0bGLozrjaEcWRhrNFFztTGuN+4isvDuFo39rzY2IAEjrgYyUIC6uluj/GrjAEKtQa1BrUEtsnBiZItM7EBOjAF+P0No1DttZOB9kff6iEa900YD3hd5P/5oVEEtvH8H/H5w0Gt+9TyRgLfavUaj1/zweaIAFWjAAfTE+fkzBzYgATuQgQLc3a1RBhWDVqMOavVQJM5CAqJjFR2r6NhInIXoWEXHqifaBWwrWzTKoTZ2IAMFqEADDqAnRopoXFmkyMIB9MRIkYUNSMAOZKAAoeZQc6h5qkWR08YGJGAHMjDUJFCBBhxAT4x0WtiABOxABkKtQa1BrUGtQY2gRlAjqBHUCGoENYIaQY2gRlDrUOtQ61DrUOtQ61DrUOtQ61DrUGOoMdQYagw1hhpDjaHGUGOoMdQEagI1gZpATaAmUBOoCdQEagI1hZpCTaGmUFOoKdQUago1hZpCzaBmUDOoGdQMagY1g5pBzaBmUBtQG1AbUBtQG1AbUBtQG1AbUBtQc6g51BxqDjWHmkPNoeZQc6h5qtF1ARuQgB3IQAEq0IADCDV4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBS2h6iQWG2ghkoAAVaMAB9I19esnEBiRgB95qd1WLRtnWRgWGmgcOoCeGl9wFIxplWxsJeKvdFQ8aZVt+Vx5obH22UYEGHEBPDC9Z2IAE7ECoEdQIagQ1ghpBrUOtQ61DrUOtQ61DrUOtQ61DrUONocZQY6gx1BhqDDWGGkONocZQE6gJ1ARqAjWBmkBNoCZQE6gJ1BRqCjWFmkJNoaZQU6gp1BRqCjWDmkHNoGZQM6gZ1AxqBjWDmkFtQG1AbUBtQG1AbUBtQG1AbUBtQM2h5lBzqDnUHGoONYeaQ82h5qkWVWQbG5CAHchAASrQgAMItQa1BrUGtQY1eAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZfI9BIPVKABB9ATp5dMbEACdiADoUZQI6gR1Ahq00sksAEJ2IEMFKACDTiAnshQY6gx1BhqDDWGGkONocZQY6gJ1ARqAjWBmkBNoCZQE6gJ1ARqCjWFmkJNoaZQU6gp1BRqCjWFmkHNoGZQM6gZ1AxqBjWDmkHNoDagNqA2oDagNqA2oDagNqA2oDag5lBzqDnUHGoONYeaQ82h5lDzVNPrAjYgATuQgQJUoAEHEGoNag1qDWoNag1qDWoNag1qDWoNagQ1ghpBjaBGUCOoEdQIagQ1ghq8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLombO7+pqjZq5jR3IQAEq0IC32l36rFEztzC8ZGEDErADGRhqFqhAAw6gJ4aXLGxAAnYgA6FmUDOoGdQMagNqA2oDagNqA2oDagNqA2oDagNqDjWHmkPNoeZQc6g51BxqDjVPNbsuYAMSsAMZKEAFGnAAodag1qDWoNag1qDWoNag1qDWoNagRlAjqBHUCGoENYIaQY2gRlAjqHWodah1qHWodah1qHWodah1qHWoMdQYagw1hhpDjaHGUGOoMdQYagI1gZpATaAmUBOoCdQEagI1gZpCTaGmUFOoKdTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4yYCXDHjJgJcMeMmAlwx4yYCXDHjJgJcMeMmAlwx4yYCXDHjJgJcMeMmAlwx4yYCXDHjJgJdE5Z/fH8VoVP5t7MBb7T6dTqPyb6MCb7X7exONyr+NnhhesrABCdiBDBSgAqHWodahNreyuj9O0TH3slpMhXthLiyFtbAVHoUdLEVXiq4UXSm6UnSl6ErRlaIrRVeKrhZdLbpadLXoatHVoqtFV4uuFl0tulZ0reja1OXgXpgLS2EtbIVHYQePq3ArXHRH0Z1vKDFS57tIXOV8F5noG2dx48IGJGAHMlCACjTgAEKtQa1BrUGtQa1BrUGtQa1BrUGtQY2gRlAjqBHUCGoENYIaQY2gRlDrUOtQ61DrUOtQ61DrUOtQ61DrUGOoMdQYagw1hhpDjaHGUGOoMdQEagI1gZpATaAmUBOoCdQEagI1hZpCTaGmUFOoKdQUago1hZpCzaBmUDOoGdQMagY1g5pBzaBmUBtQG1AbUBtQG1AbUBtQG1AbUBtQc6g51BxqPm1DgrmwFNbCVngU9s0WlZrJ065GMBXuhaeuBkthBedCrV25UGtXLtTarMdcyEABRrT7gzaL/fCSR+G4i/tTQ4st8ZJb4biL+wtCi3LPZC4shbWwFR6FHdyvwq1w0e1Fd+6EeX9YaNfcCvM+qNKuuRfmYis8Cjt4PkQsboWpcC/MhYvufIho0bPzIWLxKOzg+RCxuBWmwr0wF5bCRXc+RFD013yIWOzg+RCxuBWmwr0wF5bCoUsx2udDxOIBnj/+FCN5/vgvtsJ7IcCuXFKxK5dU7MolFbtyScWuXFKxK5dU7MolFbtyScWuXFKxa0BtQM2h5lBzqDnUHGoONYeaQ82hlksq1nJJxVouqVjLJRVruaRiLZdUrOWSirVcUrFZgnovMNgsQV3oie0CNiABZydFtGkK9wck1qYpUPydaQqLW2Eq3AtzYSmsha3wKFx0e9HtRbcX3V50+54PtFlnulCBBhxAT5zzExMbkIAdCDWG2jSC+1MXa9MIFo/CDp5GsLgVpsK98J6FtFlvulCBUzQuZrrAYgdPF1jcClPhXpgLR4feH+VYmy6w2AqPwg6erxKLW2Eq3AvHzcZ9z4mLiQo04AB6Yk5cWFSSvgJLsBUehR3sV+FWeF6sBvfCXFgKa2ErHG+10aZhD4GzqnRhAxKwA6eiBUthLRyv0T1wAD2xzdscwa0wFe6FubAU1sJWOJqX44KnqUyeprK4FabCvTAXlsJaOHQ57muaBEcjTJNYzIVnnLjOtYv2ZCs8Cjt47aQ9uRWmwr0wFy660zAkrn8axuJR2MHTMBa3wlS4F+bCoSvRPvPJYbEVHoWnbrTV9IzFrfDUjXuZnrGYC0thLWyFR2EHT89Y3AoX3ekZGvc4px8WS2EtbIVHYQfP6YfFrfCMz8Hz78c1TLtY3ArHdd6Fl0bTLhZzYSmsha3wKOzJfb53LG6FqXDo3u8+1qdpLJbCWtgKj8IOnr6xuBUO3XvTL+vTNxZzYSk8dUewFR6Fp27cy/SNxa0wFe6FubAU1sJWeBQuuvNhZMQ9zoeRxVS4F+bCUlgLW+EBnn4yon2mnyzuhbmwFNbCM74Ej8JxX/cuTdannyyeuhZMhadu9MX0k8VTN9pn+sni0L23obA+/WRx6MaPV59+sjh0Pe59+sni0I3fqT79ZHHoetzj9JPFUzfucfrJ4qkb9zj9ZPHUjXucfrJ46sY9Tj9ZPHXjHqefLL512xX3GH6y2YPjHsNPNu/ZcZs1pws7kIECVOBUjFYao7CDfSpGC4QjbabCvTAXlsJa2AqPwp4cBajJrfCMr8EzjgXPOCPYwe0q3ApTYVx/lJcmS2EtbIVH4XL9VK6fyvUTFS66VHTJcI/9wj32cv29XH/vhbmwFC7X38v193L9vVw/l+vncv1crp/L9XO5fi7txkWXi65cuEfpuEcp1y/l+kULW+HS71KuX8v1a7l+Ldev5fq1XL+W69dy/VquX0u7adG1omsd92iKe7Ry/Vau38q4HWXcjtLvo/T7mPE9mAvnQo3x0MJWeIBnXsc8Hs/8jfk6nvnb4vpn/i62wnH9MX/FM3+DZebv4laYCvfCXFgKa2ErPAoX3VZ0Z77fu4WZzHxf3AtzYSmsha3wKOzgme+Liy4VXZrxR/CM48EOnvm+uBWmwr0wF5bCWtgKh+69D7zJzPfJM98Xt8JUuBfmwlJYC1vhostT9/4VlukDi1thKtwLc2EprIWt8ChcdKc/xPyhTH9YTIV7YS4shbWwFR6FQzemXmT6w+LQjRmRKAZ9cbQPFkJNsBBqgoVQEyyEmmAh1AQLoSZYCDXBQqgJFkJNsBBqMoruKLrhJ61P1sJWeBR28Hx+WNwKU+FemAtP3cid6T+LrfAo7Mk6/Wfx/PsePAo7ePrG4laYCsd13vt9mU7fmDzzPWYPdOb74l54/v24nukDi7VwXKfMmKOwg6c/xJu4Tn9YTIV7YS4shbWwFR6FHcxFl4suF93pDxxtNf1hsRTWwlZ4FHbw9IfFrTAVLrpSdKc/3HurmE5/WGyFR2EHT39Y3ApT4V6YCxddLbpadLXoatG1omtF14quFV0rulZ0reha0bWia0V3FN1RdEfRHUV3FN3pDzHbo9MfFlvhUdjB0x8Wt8JUuBfmwlNXg6du9Pv0h8WjsCfb9IfFrTAV7oW5sBTWwqF77x9jNn1msYOnzyxuhalwL8yFBZzF4mZZLG6WxeJmWSxuNr0nZptses9iLWyFR2EHT+9Z3ApT4V646Pai24tuL7q96Paiy0WXiy4XXS66XHSn99zb8Jgx1huNrfAoPHWDp/csboWpcC/MhaWwFrbCo3DRnd4TM382vWcxFe6FubAU1sJWeBQO3Zh1s+k9i1vh0I1aAJves5gLS2EtbIVHYQdP71ncChfd6T335+Rm03sWS2EtbIVHYQdP71ncCk9dC5bCWnjGj7yfHrM44se60Zges7gVjvix1DemxyzmwlJYC1vhUdjB02MWt8JFtxXdVnRb0W1FtxXdVnRb0aWiS0WXii4VXSq6VHSnL8Us5pi+tHgUdvD0pcWtcFggB86QPdgKj8IzZPz9aTmLW2Eq3AtzYSmsha3wKFx0p7XEBOus/2wxqTrrPzdLYS1shUdhB09ridf7Wf+5mQr3wlxYCmthAxumdWadZ4vJ31nnubkX5sLzvkawFrbCo7CDp4UsboXndEnEH70wF5bCWtgKj8IO9qswpnuGl/uaFrJYC1vhcl+O+/LrKtwKU+FemAvjvvzSwlZ4FMZ9ebsKt8JUuBfWvHdvuC9fVjHZwcsqJpf7onJfVO6Lyn2RFNbCVrjcF5X7KtOp3st99XJfvdxX58KlPXtpzzVtGvfO5b64FabCvXC5Ly73xeW+uNwXj8JlnEgZJ1LuS8p9lWlWl3JfUu5Lyn1JGSdS2lNKe+aXKeb5ZYp5fpliPk0jVm58msZiKzwKO3iayeJWmAr3wly46FrRtaJrRdeK7ii6o+iOojuK7ii600xiRcqnmSy2wqPwLFWKjpurv4tbYSrcC3NhKayFbfOYFaXtXs0as6J0cy/MhaWwFp73osGjsIOngSxuhalwL8yFpbAWLrrTWO6VtjFrTxdPY1k8dT2YCt+6dM99j1l7ulmCe7AWtmAOHoUdHMayuRWmwr0wF5bCWrjo9qLbiy4XXS66XHS56HLR5aLLRZeLLhddLrpSdKXoStGVoitFV4quFF0pulJ0pehq0dWiq0VXi64WXS26WnS16GrR1aJrRdeKrhVdm7qRI8aFpbAWnroxVm0UdvC4CrfCVLgX5sJSWAsX3VF0R9H1outF14uuF10vul50fca//SdKVV/swVQ44tzrTyOqVZOlsBa2wqOwg9uM2YLR17ED6mr/Waq62cF0FY5rvuvFxyxV3dwLc2GMsUZFt3hIKx7Sioe04iGteEhbHhLX03thLiyFFdczPWTxKFx0i4e04iGteEgrHtKKh7TiIY0xthuXdubSzlzaeXrIvB4p7SylnYuHtOIhrXhIKx7Sioe04iGteEjT0r/LQyaXdtbSzlr6d3rI4tLOxUNa8ZBWPKQVD2nFQ1rxkGblfq3cb/GQVjykWWlnK+1spZ2nh9ynMY02PWTxbOeIPz1kMReWwvN+LdgKj8IOnh6yuBWmwr3w1A2vmB6y2JDL009a+IZ7cpS8JrfCGEt09cJcWAprYSs8CqNPZ+Xr5laYCvfCXFgKa2GMpVnhSvehT2NWuG6mwhH//qZizApXorjO6UWLtbAVHoUdPL1ocStM4Dk+e7TzHJ+LtXBocVzbHJ+LHTzH5+JWmAr3wlxYCmvhojuK7ii6c7xx3MscY3fV75iVkfO/z8pIug/5GLMyku61ujErIzf3wlxYCmthKzyvTYMdPMfV4qlrwVN3BE9dDw7de41wzMrIeS+zMnIz7rGvsRTx11ia3AtzYSmsha3wKOzgNZYmT924lzWW4l7m79piLiyFp27c7/xdWzwKO3j+ri1uhalwLxwxe7Th/G261+bHrGKkHuNh/h71aMP5e7RYCmthB8/flx5jaf6+LJ5xYjzM35EebTV/F3q01fxdWMyFp260z8q7yVZ4IP7Mu/nfZ94tboWpcEc7zLxbLIW1cLnf6f/zHqf/L0Y78MyRuwJ78MyRey1tzNq+zaOwg2eOLI7495EPY9bw0V1pPWYN32YtbIVH4Yh/r7GNWcO3uRWmwr0wF5bCU7cHW+FR2MEzXxa3wlS4F55a0Z4zRxZb4VHYwTNHFrfCVLgX5sJFl4vuzKN7LWvwfPZb7OCZX4tbYSrc0S9S+lRKn0rp05lf92kLY9bw0b3L8pg1fJut8Cg8ry3G0nxOW9wKU+FemAtLYS08dWOcz3xc7OCZj4tbYSrcCwvud+agxfifOTh55uC8x5mDi6lwLxz3YtGe8xlssRaOe7EY2/N5bLFnnFn/t7kVpsK9MBeWwlrYCo/CRbcVrZn7d23KmPV8m63wKDy95b6XWc+3uRWmwnH9dy3CkJn7i6WwFrbCo7CDZ+4vboWpcNHtRbcX3V50e9HtRXfm+32e0Jj1fHSfMDNmDR/ddRVj1vBtHoUdPHN5cStMhec1R7/MXF4shbWw4Xrme9xiB8/3uMWtMBXuhcs9Tn+YfOfsiHSJsroRozyq6oZFQ90Ju9ET73Td2IAE7EAGClCBUBuhFr0yPNEvYAMSsAMZKEAFGhBqnmpRPrcx1CiQgB3IQAEq0IAD6IntAkKtQa1F3LuzYpfEca/Tj6i720jADmSgABVowAH0xB4SFkjADmSgABVowAH0RL6AITECI5gHKtCAd7C7nmBEvdzCOxU3NiABO5CBAlSgASExM2qOjZlRi6WwFrbCo7CD5y/u4laYChddK7pWdK3oWtG1ojt/cedgmr+4i1thKtwLc2EprIWt8ChcdL3oetH1outF14vu+lWO4bl+lSdP3Rgc61d5sifPqrfNrTAV7oW5cMSPMTCr2Oiu1hizim1zxLlLGcasYtvMhaWwFrbCo7CD56/yXR4xbP4qL6bCU1eDubAU1sJWeBR28PxVvlc0x6x82xy6Hm0yf5UXc2EprIWt8Cjs4PkU7tG282n7/qZtzEq2zTNO3Pv8hV7s4PkLvbgVpsK9MBeeutEO8xd6sRWeutEm8xd68vyFXtwKU+FemAtL4ak7gg08vSJW9WaV2uZemAvfMfsVbRtesdkKj8IeHO0fXrG5FabCvTAXlsJaeMaPfvSrcCtMhWf8HsyFpbAWnvcVueOjsCfPKrXNrTAV7oW58CumxyTz3J5wYuwXsvCuTb1LI8bcnnBhB96lArFUNLcnXKjAiHv39txyMJaM5paDC+8IsegztxyMeeK55eBCu5ECB9ATY/uxmBKfWw4uJGAHMlCACjTgAHoiQ42hxlBjqDHUYqOxmIeP4rGNnhgbjS1sQAJ2YMSNHooNQBYqMNSih2KjsYWeGBuNxbR91JF5zNRHGdnGUIseinKQhQK81WICOyrINt5qMZUd+wd6zDRHWdnGW42iSWKjsYUdeD+1RLpHtdhGT4zn9oUNSMAOZKAAFQi1AbUBNYeaQ82h5lBzqDnUHGqxx0dY09xnMFxk7jO4kIGRThSoQAMOoCfO5J3YgBG3BwpQgQaMuBzoiVGwvrABCdiBDBSgJvZs1Kji2kh5DZGxCxGsI1gvwQyIS++4dMalMy6dcemMS2eoMdQYagw1hhpDTaAmUBOoCdQiY2kiujAS8i5nH7M+a44HxShRjJJIyIUKNOAAQsIwSgyjJBJyYQcyEGPSMCbni3SM6vkiHWp4kXa8SDtepB0v0o4XaceLtI8BzNd29wvYgFDDi7TjRdrxIu14kXa8SDtepD1fpP3KF2m/rgYkYAcyUID7RdqvfJH2K1+k/coXab/yRdqvfJH2K1+kPUquNjJQgFBrUJsv3RK4X6T9yhdpv/JF2q98kfYrX6Q96qM2NiABO5CB+0Xar3yR9itfpP3KF2m/8kXaoxJqIwE7kIECtPX+7VHfFG/aHuVNGwm4X6T9yhdpv/JF2q98kfYrX6Q96po2eqJewAYkICQUN68RIS7HLmADEjB+ZiKCMVCACjTgAHri/Amd2IAEhNqA2oDagNqA2oDa/AltN86f0InRqBOjUWN4Ruot9I2xSd7GBowm6YHRWRyoQAMOoCdGkt3vmh7b4W0kYAcyUIAKDDUNHEBPjNRb2IAE7EAGhoQFGnAAPTFyc2EDErADGShAqHWoRZreNcke5UYLI00XNiABO5Cz1RmdxegsRmfNUR19PMdv9PEcvxM9cY7fiTF+oy/m+J3YgQwUoAINOIChFlc2x+/EBiRgBzJQgJb3FmP9fuv2qHPZSPuGosplIwMFGJdugQYcwLj0uwOivGVjywgNag1qDWoNajHWFxpwALNbothlI9RoSvzfP//pJfvff4rhcS/Sx+AIkA26wTaMDb4gjD2gbaANO7LsyLIjy44sO7LsyLIj646sO7LuyLoj646sO7LuyLoj646sO7LtyLYjh7HHbgF9A2+QDbrBNowNviASIaBt2JHHjjx25LEjjx157MhjRx47su/IviP7juw7su/IMdTvgoDw9wDbMDb4gmnsk1oSJfUkTpIkTbKkkZQaLTVaarTUaKnRUqOlRkuNlhotNVpqUGpQalBqUGpQalBqUGpQaoS736UX09yDwtsntSRK6kmhITdJkiaFxrhpJN0a9wYI09EntSRK6kmcJEmaZEkjKTUkNSQ1JDUkNWZ+3tcc6XgXcUWN5yJK6kmcJEmaZEkjyTdZalhqWGpYalhqWGpEet6FaPPnatJI8k2RopNaEiX1JE6SpNQYqTFSY6SGp4anhqeGp4anhqeGp4anhqdGZO1dchYVmotaEiX1JNsUOXiX3s3fnrtgbv70TOpJnCRJmmRJI8k3RQ5OSg1KDUoNSg1KDUoNSg1KDUqNnho9NXpq9NToqdFTo6dGT42eGj01ODU4NTg1ODU4NTg1ODU4NTg1ODUkNSQ1JDUkNSQ1JDUkNSQ1JDUkNTQ1NDU0NTQ1NDU0NTQ1NDU0NTQ1LDUsNSw1LDUsNSw1LDUsNSw1LDVGaozUGKkxUmOkxkiNkRoza+2mkeSbZtYGtSRKCo1xEydJkiZZ0kjyRX1mbVBLoqSexEmSpEmWNJJSo6VGS422faPTldSSKKknxRX4TZY0knxTZONd8BO1qIso6Y53l/dEFeoiSdIkSxpJvimycVJLoqTU4NTg1ODU4NTg1ODUkNSIbLxLevrMRr6pJ3GSJGmSJY0k36RXUktKDU0NTQ1NDU0NTQ1NDU0NSw1LDUsNSw1LDUsNSw1LDUsNS42RGiM1RmqM1BipMVJjpMZIjZEaIzU8NTw1PDU8NTw1PCPPZ9tXxvN8tg1qSTFy+KaeFCMn/ldJ0qT9vMbXSPJNkW93WVZUzS6ipP0sxY2TJEmTLGk/r0WV7LgLuKIWdtxlvVEJO+4i3aiDXWRJI8k3zQwNakmU1JM46da4i3+j/nWRJY2kW+MuFo2610Ut6da4S3aj4nURJ6UGpwanBqcGp4akhqSGpIakhqRGZOj8e5pkSSMpNTQ1NDU0NTQ1NDUiQ+9C3aiLXWRJeR+RoUGRoZNaEiWFxj1yIkMnhcY9DiJDJ1lSaNxjIzI0KDJ0UkuipJ7ESZKkSZaUGiM1PDU8NTw1PDU8NTw1PDU8NTw1fGtE3euilkRJPYmTJEmTLGkkpUZLjZYaLTVaakT+3uXHUQm7aKwMjWrXGC9R67qoJVFST+IkSdI1rqK6ddFI8k0zp++rmjkdREk9iZMkSZMsaWwaWfMlw4ADmIVm4hewAQnYgQwUINQcag41TzW9LmADZo2XXh3IQAEq0IADmEVlcwfDhQ0ItQa1BrUGtQa1BrVZi3Uvx+gsxQqkrCSb2x8uJGAHMlCACszStbmPYVSZze0Ko7Bs7la4MMvE5l6FC7NIbO5UuLABCdiBDJxq9x3P6qqJBszasLlB4cRZWTWxAQnYgQycanajArMkTGUAsyBMVz1VYAMSsAMZOOPezTcrLe+p5FVoOTHrwFaZ5UQGClCBBhzALDxb9ZX3FPUqr5xIwCz+WrWVEwWoQAMOYJabrarKiW0Xia2ayokzmMfBcsAB9I22yqJi9rUBCdiBWeo19wZcqEADDmBWl82CyoUNyLv0a1ZNLlSgAccu+5oVkxPpAjZglnbNasmFDBSgAg04gKuW7DU/3+/5+VvH7veSW2VC38AbZIMGvP4t3/92xF/oc6p5gm6wDWODL7j7fULbQBv6hh3Zd2TfkX1H9h3Zd+SYal4Usfe0st2P2TGtvEiTLCnC6ZoutvtHN6aLF0mSbpoNNdaU7yJJ0qTQ8DXlu8g39Svpvub7IS2mbe3+wY4pWrt/kmM61u4vyGI6dpEm3Rr3I2FMxy7yTbftLWpJEU/WJKzdD4LxCf4i36RXUkuifVW3gy3iJEnSJEsaSb7JrqSIZ2sSdpEkaVLEG2ty1e6HpZhcXcRJkqRJljSS7mu5i1picnVRS7rj2Z5ItbvwJCZS7X5EiInU2S6e7ee7/WIidVFLimvWVx7JnUcWQjLXiSb0DbxBNuiGWza2QBwbfMG4NkRkm+tEE+JfjZWYUSvuC+ad+0rMgPtfRR1D38Ab7usZOzHHTsyxE3PsxByZmCMTcxIlRfRM1rHXduz+JY91HBuReqEQKRXxIpFaEiX1JE6SJE2ypPuS7x/fmZhBkZiTWhIl3ZHv3+hYgVkUUWinrUdiUlJP4iRJ0iRLGklxVZnK94/mTOVJlNSTOEmSNMmSQmPslA+KlL9/VudazP2jOddiJt1P//cP3lyLmXQ//V875cf9szXXYu7fnLkWc8lK+UnxlnoXFc+1mCuSOjTGsoFxFwzPtZhJt8ZdOTzXYlquxbRci2lhIb4p3lIntSRK6km3xl23O9diJmlSaPCyi3FX3M61mKbLLha1pNC47yjeUu8K27kWc5fSzrUYupaFLLKkW4NyLeauop1rMZRrMXcF4VyLmXRr3PWDs4CAwmBC455XjrfUSZY0knxTvKVOakkReew1m0mSpEkR2feazSTfFO+rk1oSJfUkTgoNf9mjRglB/Ka2WTAwwTaMDfF72v7v69/87d/++S//+dd/+9d/+s9//5d/uf/9/g//8ad/+Mf//tP//su//8u//uef/uFf/+tvf/vzn/7PX/72X/GX/uN//+Vf48///Mu/v/7XV1f8y7/+z9efr4D/71//9i83/d8/419fH//T1xKMrH/9WoOxDPB61nga4jVD21aI1yQsIUT78SroEKLvi+guCPD60XkYQNtug9erXQZ4rRL8EIA/DvCytB3h5VXjwxByaod7NK92sP5hiFNTxhTrDDGGf9iUdujQ+IB4duhrxQEhOv8QYny1N4634YhwjQ9vox1iiPbdIS9EDPEfQ7RTn94/C6tPhT4McRhX8VwSEUZn3Ifw4wgxeT0jaPs4wtPbsI9v49SYdu0UfaF/GEJPRnE//Syj4PZhCPtyUxxGJsW5a/MiXu9FGYPpxxB+uIj7OXxehNuHF0GHxvQ4RC5C3PWjyHPy5zfS7i1W1o1I++hG6DCwYspq5tj1YYBzhrnmoGj9ox4l/rrlnWJw7C4VMV6rOIefDz26N2WKlNZ4PR78GOMwOmXsHnnNkpYI1/OB0VsOjNdC4ocDgw7D03ns8elSruO1XPpDjH76Tbcrs+Q1H5MxPtMntpP9tTZlH/ZJP4zPFouJs0+8aYkhP8bohxiv+X5432uRqkT58fmk89dHR5evjo7zveileRmvmdeP7+X08x7nJizjKE8IL0P5Mcb48vjwr1vgMcbDbOH29Wxh+mprnHvWGQ+PXp+ZfupZPnlpsx3khbVnf4ohp98E3kPsNetf/Hj81B4HL5U4g3X+LLSSLb/EOF2Ha88fp+twHYdRqprX8VpOsA9jHHtGY7un2TOvhRz7sGfk4KdKOUJea0j6cYzDSOV2bTfkRvRWDInz5VbPEL93L73vGK/XtkN78OnBgT0fzfXNGDFDuR4+jN6LMfBU+5rP+dhPjyPErpEj5PW4//GVjD/01+G1CpMj9T74/cPr0EPv3sd77O69jwG4PnAzbX+oH1p8TrbuxeXjntH+h7bpyw3zEeTeTuzj6zh5WbeRL9Rer+THVwbVr7bp8So4ZziI+frwKo5PZJZTA68ZvvHhE5kefrVJuudr4A95+2MMO4xSHvnWwOOHGPo4hnBeh7D3j2PQ158L7cuj9NyiI8eGUnuvV7QjxqlXDmOU44z19Qv1w9Mpf+I6Bn73ST6+joOXtu5pyPzDKP3xOsxPM1j5S9n7sI9jnK6DiyG3j2OMk5f2xpg00bfa9LX8jRf98V7W9iunkF5XZB/GGKe3KKccIC92/8jFTtfRZGS/HMb6OHnpZZg6+eF38sepj3F4i7rPklwx7qPy3opx7xGX01nSPo7hX3cgv/5IB3o9Elr2itl7I6znm1hn8g9jeP/qvPPxKjhfxLrWye+fr+LwS9vKK0PvtV/78xjOOUavcX0c4zC+fORzh3t5uu0//cL5wcPikM4ZojzZvlLvebZJPmO/fmQ+HuXtuo7NkT9PV7HSX2awD1bac+aXr4/nbdt1etOPswnmZZBxaY+flyVOD5VXbBY0x8eL+4eTDn5+nMuHSvGPB0i7TnNSTHuUiZRZ/Z+XeuL8sC/3jX29b8Z39I1/R9+c58VF8Xr74UrH6QEXa1dsKh+vf50Wjl4PUPm7/1ot+DjzjkHiqJwZhDodgvDX19GafHkh7RTi6Ura0zs5LKU9blLub/ZLY84gh4eHdlpveLpm3ah9fQnnfDui+Xypx9vppyGSLw/3Obwf29kxSJSZzCCvV/5DEPmGhWP9+sqxfnnA0zcsmNKXV0zbaUXqNdxzkL1atNhyf7NXDsl7Hh45MX0fpPreGBvN0bf1bfvnIMdFKeF8zbUyRf7z4+457zxndF6T24ffiK5fH+2nZamHo71/vTrg8Z28a++e6+p8Xfpxk/I3VJ7w10tP+Ou1J9z+6CYVPB9e471fTL5aTk9dfOqX0xr/w6IiHt/Qt/71vvWv9+34et+eW/SrD8ty5bL4awn3UCx2WgrSONZoLWv1gyXL4Qcm9qfdLw/Xx458bg9De4w32/RhtdZpRYo4W/X1rskfx/Cvj/TTitTDkX4K8XCkP76Tw0g/tijmpV8tqu/FkHyney2k9I9b9PTW7zkvLa7+ZozOT2KcR9izgkAdXx8d48uj47SW9LAYr9lppv9RNd7xKh4+qp9Wox4+qtvJSVsuJWkr3frLo/rzIPpmEM6VeeWyaPprEPtyvxzvBXUobbx7L5RDTF+Z/26QTBclf7drehZvaJ3s/yXIoNPcdL4BeR1pv5bAnoI8rqM9BWk5B3LvoflmEMpnS6+zZJ8L8rCerZ0WlZ4WtLXx5fq+83UYOVYO6HAdj4P4u0HSFl8o7wV5rU5gUef1CnIKc+xi31nsXF4fPjnYGINN9N0guVb2CnJIwOe/4B+/DflxJRVzdh//Zp2fmB+VoTf3b3g5PAaJD+5nkE4fv6bSdayeyo55LWN8XFR/0Zefu+nqX32yOoZ49mRFpxWqh880dFqgevrBhn19+vF5r9ihV46jQ+HMg9+KcRcH5824vRvj+nKMjkerXn6+PxdDUQ8yPo5xWtN5+D70mxiP3ofO98IYZKzj6zHeHGOd8keq8/i4b08fSb2mPEox6inrThcS37rOC3n9THx4IafVqaede47xDZ1rDfdySNzTRzWvJfSc8b8LUt5sVM+Fw3EYZad1pWfL9XT6WKp5FnK9/OPjV5HjdXDOt3EZHr+8rZ5/s3PhkXtdz/nUDz8zLqT1d4PkCGE+PT309vUVXTqVPT9e0T3ejvfdwdIuOtyOfMft6B98O9IyiLyWTA63M776rHu8DM7hKi8v+vgy+FRd0jJ9S6Ed/fTBPvGXa/zPV5ET7jV5f72KfrqRnFFlKqVH+jxEu0Z+z/Jiud4L4vlL9eLysPu5IPjoodWVw880an7cx37q2vGHhnj9UDnelkf7+FbGd/TM+I6eGV/vmXPmanmI+GFnhk+kv7a8G2023g2Sz3eva3rzJ085n0X0h9LBTwXp+ZWwin1c9UMyvuE34rS+8y2/ESpZFP5ayTzczunrqdcy1JW5I14e8z5xJdazGNI6n66kf30mQr9e+Uf65cq/Y4iHMxFqX5+JOC41PZuJOH8A8XAmQr9exfib0fFsJuIU4+lMxG9iXF+O8fBF056uiMp7bfp0RuQc49mMyOnLpacvzecYz16aj/fCV44Ppg9XiGm0P/o6ns3MPI7xZs49nZkZ8g0zMybfMEDkD+6Yh7Mqx0+ons6qnC/k2ayKf/kDldgT+cuzKt6+Oqvyu4eYjq1KXPijx+7jN1BlhNxBxjtBHr4i/u5mnl3HcTOKrNa1Sw/zB3IqCaecPsDzR//Ui4z38iIjb70Nvf6hIwh99DbUj2shD1+pjkG+5fX/aYv072gR/Y4W0a+2yHm5HLW27qO9uebuOSH6CnJY/ff+LWvupzCKbaR0WPvwdeoUAq9k6mTvhcjvddTlwxDnwpus6tR+vV1HlD9UryCH6p3jRxCe1VlWb+ZzH9p4Prib+8dB+mkbvNe95vSO8YcPEb19vUq105erVI8hnr2j9uOOfs/eUTt9uQKwHzf1e/iO+rxXPn5ePo8OfIrxmi7pH/esffkx9TfX8egT2X76iOrZ02E/fUR1/77ty+DDJ7LH63j2dNh/swnnhWE63mpSavj+uX385N9PX1A9bVL5+gP38ToeLmOevyjLPS1GGx9v2nv+bPnZlwfHPV4ffTTQ+fq6HZ+Wpx7a8SnEQzt+fCf2XoM+/GbguAHDo08G+nFLv2fv+7+J8eyTgS9/JHjcYfVh3fExxsOK4WOMhwXDx/0vH5bYPo/hb8Z4VmBL/h3P+uf9c5+V1x7v5ukIOcV4WFx73t30G+7l6Uj1r4/U4y6rD0fq8xj+ZoxnI/X4PevzkXps1Yc13I83VP/4MUq/WpFy3Oj5yqH++u2vK40/PVOevlzq5FizaB9NFp5DoI7rhw3bfg7xDdNJpwdKxaffP+wE+nNjfMNBEt2+4SgJ+vJk0undSXMTPa2FRj/viH6KkE9hWqry6TM7u8uVE3xSKpV+2dn9uC0A4UGubAr0y/7fp4Wop9vfnTdGfbYB52+2RKer3M3H2wD3025+D3P2GOJZzo4vj9HTyxcZdgM0+2hu//QO+GyUHyM8GuXnzUCejfLzLvcPR/l5BerhKD+eQJPfbdKLy4X05zEk25REDjGOmRIn3q0WGdfHWyp31y9nyjHEs0w5LUA9zJTnzfFDnfNndqln1HyUhUF6O8b4eoxagPqZ3fINOzvb+HiHeb6OR2XkoyBTuZlfg5x+7yknXnpNmU8G6bmaTl3fDYInD+r2DUFKtfWntv+/cn1BL29vdk7Zecb9ereHc82Fezu068NDFS7Xt1pEuue2IPUog19iPD1kYhzSpn39qz5uR0u8UCtFeriQ04SS5CECJvXrj/FTjONhZwPeXJdMfr6O07bXXnYZqB9L/BTjuJlfu3KV4cV118jxmWbN7Xh+2Mr312Y9BvFSx/bxIDmfq9BykDSlw48vn17JHr3g/uY6MsR9HeNwHXqceshJg1bKpe3HZ6vjCSAxlKeNcPv4Oo4ngPScvJAfd2r+zOkdsCId+l4MrIjdc8sfP1gde4ZzT4wX89tRcEKU8umEl/HVd4BjhEfvAL85u6NUkPj1UakDnz6W8pZz7K8pQ3srBE67caLx1mtuzy1SX2z+Xs9aWX8xaX54Xv3y5NQ5xKPHd+YvT059ojno/UbFtpPS30w6w+vZi/U6dI1+vWv0613zx75Z/dgcdr3dNVaitA+jnCpZnznZMcKz2YzjuTst30RefPBkli9P7RxDvNwQvzGmH36E9psgVk4CsQ8/QvtdkHImko23fHUQHkNGP50Rdap5+J5TkSifEakWov1yKtLTGI3eiyGM86u1vRXjdf25i+71w0vRT6fFXF+fsT+eadQkdyelUfP/EzF6rvdJr98H/BSDTx9LPTTmY4hnxqz+VWM+N0a+7QrXbwN+bozTzn56ZeGDXj+ci/RzkMPvv+BLyXZ9+GZ3vgxUfrYf9iX+zL203P/29V7U3g2SE81al6U/GyQ/QG1vnt/1+AywL/9e2pd/L4/nkD2c/T+fZfZs9p/HN8z+23ErrqyU5utwjBh/fXWKv746xV9fnTp+7omdfF9r1++d7daxw/IrxsdnGvFvDpp6tCrN/g2/ccdC+jzGUMvzy6+XQd9xL9+wScrxC6eWltzoh01F+k8Xcnr4wNRhsTD7xFlTis0ahr531tTTxD+eV2V5EJmPeuZv+0QMnAzpo24++7kYWb01avn6J87Nes3FYu+K8jv588lZx+vwC+d30Zv34oqveWrJ9yditNeMdPbtdZWzQ3+OIqc1nW8K80Phd//4TLJzEKx0EZWXus8F6Zqvl/VL61/6+PwGkysh3D4+K07a1+uMfxPj2UGC5yAPn0N+cyXPHkSkfcNZk+eTzZ59XCTt62ejyNfLno8hnlWzP7+TQzX7+ay4Rx/kyDfsxnc+LE5zl+QXlmLSXw6LO+6SjBITq781nwny9Juc85VIRyWovn/2Xdm0yesas34mTGOcS/RyFXs7TJ58e4c8fPx5nc9cQPPWpfdPNS9jHrEuEP0axE7vAo8+8rmOB9c++m7qHOPZd1Py9e+m5Du+m5Jv+G7q3LW5uPvq5f5m5rSrl4/Iub875HG48Yvt7QRsqO9sP35/eX3iwRFuf11lg69fHtaYvvoafg7x6DVcmP/QEM/e5M8NOvBJfJkz/7k9B3/13Vf4G3ZLE/6G3dKOJ2hLOvNrReTjnSyPJ2i3PCV5dOL3Yki+ZQ2hj/duFelfHefny8jn7yGHg/hE5MvpdgzxLFfEvpor43hg5LOT0U9zTc/mZY8RHs3LHifNHr4PnSfeHr4OnZZkn78OXV9/HdKvH4wq+uWDUY8hHr4OPb6T0+vQ9fXXoeMS1dPXIfqO1yH6jtch+o7XIfqO16H+Pa9D/Xteh/r3vA7Rd7wO0Xe8Dn15k7Fj9jx+Hbq+/jo0+pdfhwZ/w+vQ6F9vUvqO16H+Pa9D/Xteh/q3vA6dngUknyZ++FbkM08Tueat/PEqr3756f+4pdbTp3/nrz/9nxZ5O+UOUr0eZ/fzIu8xhuVCcfcf6sOfx+Arn4te6fPxYrP414/B/U2Mh/PvxyBP59/PV/LsgVOvbygEOH4wy6VqrtmHfXOKQYo9rFX1vRiSyU9q/GEMPc58P8w8PR5D9fS9+9gi+cxJdunhbo4vNs82KT/uHMCKzxns42ObtX39tDRtXz8tTduXT0s7hnj2TqLf8F2Vti+flqbtG05Le94rduiVr5+WdozxcI/y38W4vhzj2R7letol7OEe5efreLZH+W9iPNqjXOnrW1L9Jsajd+fzvTzbo1xPu8F8z3U82qP8eYw3c+7hHuV6/ibr2R7lvxnsDwdI/4M75tke5dqPJTjP9ij/zYU82qNc+5d3odTjrngP33WP1/HsXfd3zzCP9ijX49bPD/cG168fY/Xbm3l2HfroYapfRB+/UPWvviify6GfvCifP+nAdKaMOvn/ic9CFJ+WqPf3Yoz8spTqC+rnPi0hQ598fC98Ou/l6fcpxyDP9tE+h3i0j/ZvQjzZR/vYK5aZck9Zv9ezP8TgN2MQYvTDCNMvf5x6DvFoxU+V/tAQDz3w2J76d7/2+1yflJdjf9M56nW8G2Pks8sL342BTaePMb7s5vplN//N9+QNu2nSm5+kZ73vCz+ajDp+nv+oJc4f+D9pieOmCdbycyX74XOBT2y8MHJ277WY0N6MgX1khr+5AcQQXMe7G1GMfF15hXt3I4qGtwR6uz0cMQ79cloPk3zlYbH+DTHe2yCENXdeYBV+M8bItwQ7jbFTDMsPHnnI4VP2Y42R5o+KWV3u/KnmKpa/P27VHO2vxuEPl49+dyWWV0KHK/HjBu34XFHL9E3/xHVgkd6spN2v13H4rTac/WlCcghyWjXFxlqlZ+79Qh4PkYGXUT/smaCnDzAeD5HT9nyPh8hvruThEBlfHiLH63g4ROy0rv50iNjxqPovDxHBwUxSz2X6eYjYaQVZaOCr+vpzN36KcXptMdr38lpCGh/FON+L5q9dfYn79V70G+7F/th7wTnGL3zv1056VsT8tFHBJ2IQrqNu1P52DG1vxhjYdOG63oxh+SRD4902zVoJ6Yd8OcfoiMGH3YWPO8Dm55NUywN+3r3V2pc3oTiHePRia6et/b4hxMMNhk7t2bHJSbePd8M1+uoWFMerYLxd121jfr0K/rqDkXzZwc77CxNqDEk+vJdzDMHJLPpxe3Q/71/zbKPjU5Bnc3vnEI/m9n4T4snc3nEj7Udv6eetuJ+8pR+3rH90DedN7x/NmZwOunh4iOM5xrMzHLseT7V8elrGMczD8XkM8Wx8nkM8GZ/nY3+eHftxjvENh8s8HB/nGA/Hh3zP+JCvjw/5+viQL4+P895bOb9XftnEngbAiTBSNgF/PWw/vgLKpbMXli8BvD8OEXthzxBctv/8TAjN9SrRsi3zp0KIfTWE5YgQo/fawjHL+UOevRtC3gyRnVpPWv1ECL1yVzi96K2rUM5nemV5L8Sl2NJd32pOpZzfVGpvdapii1yt3wx8JkTPj0GVS43tuzfybohcZVIqbwWfCpHHZ/94JvFnQuQq+Y8nEn+mOfOn6IX65R65Ph6ddtxDrTOqMF7X9N7Y4Pwg9e2x8ez95riTC85guavA38q11z/kctKQvBmkC4rau+mbQbBr8Q87OX4qSClIlx8+5fpUkNImbIeRdqyNbx0jrfXDSLPjfn2Mc2NfPOxbwnh/Nwzl7PWLxd9uG2w01Xo9b/CXMKdH0/v8g0zmPsa7Yb7BE14jhcrQ628OPbkw9OoD4qeC6IVCM6U3r0Q7rkSZ3gtiA8ZQKy0+FWRgp+nXenJ/Nwhup65E/zJSTtMfT2e2TitR3+H8WN2/P/N4t0VqkHa9G+QqQd4cal4+Z3Ju3xFkvBsEv0Eu8g1t8m4QzxKlF5t/Q5Ch7wYpNbhO39AmbwbRC752v+18QxDqX76dV5A3fzCGlrPahr15O/goUS/jbwjy3kvwHaSVIO8loDb8/mlr9B1B/M3bwcdN2ki/3iZvB2l9IIhc3xHE3g2C03zqiXzvt8m7QVqupL743dz5IYjzN9yOy5tBeskdefPHSxU/Xqpv/mRoeZVTfet2xsgJ4xeWpyT+RIisCvGrbGTzc4h4NPxwqlWolJaUoj8dz4PIxTjVr1ZB/hLkUJ/ymrrBV47lSvQz15H7gkirm2B96mbwEvh6uTgF+fJ5PKN/ff+p863g2zG6Tv1y/ibHylNj3SH4p6Wa47Wo5Uf9+sNn8D9fy2kxj8r5gvgF/um74N9cRi5dqYm9N0R05Hb2Oup3bPr4/eS1TJNLaFdZNP9E/v8QoszA/JL/p4+lviVIG72cpDPe7Jg8w1KtHsf3uY7p6JjyFPBLELm+3rvHIN+QvS/xgZvhN43o2ZZ+3b7uZScPeb3Q40nR+slD/PwggUMsW7GAT4ZpHc/yrb4Hfy4MlScSqo81nwvTG54Yu71/U1KeXnW8H6Y+evrHYeR72ub02c3Ih89RTy3WT/iKUMPPOR0M//wR0pPfHf1yadI5xKOl/d+E+OLSPjVsVFJfs36uZj6HyA8GWy0M+kwIfNVKZVPfn0OM46lJePDt15shstRdy+/EZ26kHuBQ5o8/E0JzuvXHL3w/EcJyVZysv9eplEvaVNdgPxOi5wPiq1Xae1eBL5X79VZzMuerKv9wJqA/fj3E2WKt/rZ84iJaw1xTPVnsMyE6DtHs/t5VCNUlvvdCKF4dhr93I/mW+/rVfu9GOmPpSt67EcW+V2rvXQU+BWvmbw3O5miL+oXeJ0JYfk1rrO8EKOVy8l47XLm288Px7r84r/MfmaaedSdO7zUEjiQy+WJLvhfgtRCan1tInTh9HkAQoM53Pg6gmGCoRb6fCPDkQ6/jLYws03strr0TAEV6Mt4I4Diq64dlZH4cAG/g8l6ALHb0H2od+XlKNqRk47dCUNb3vebw/cshbLwVouere6vPEO+G+KG44BMhBL83dX/Dz/SI4JCxH0o/PhGCcfSF9i+HsDevAttPt8veDIEHquu9cdEYD1Q/FDa8F+KHOf9PhMhEbXRdb4boCPHeAMc+FI3orRsRnErwwrdsH1se1JMRHgcgzp8+4vbhbmROXz/TzOnLZ5odQzzbMPP5nXy84d3x5SunCX/YUf0TEYTwFVj/cGNH78f36UcbO/4mxqP98p5fx8cxjuNz4Ls6bh9fxZcPiDiGeDi2+uloqWebsXo/HoTyZDNWP2235z03jfFuH08n+vFbMMaTklyHLdSZvrpOeW5T1AhQkw8nFP10lNOjKclzkw7HIbNuhyY9Pv0++4zrN52bkxXOfbwZ5BpYDvfrzSAt3/O9zrx8sk0aXgk6vTlWsWLipnQYq4+D+LtBHG+6Lu8Fef6F3G+a9tmXh4+t+cP9Q12O++DsEGYfW+J3fNrq3/Ftq4t8S8/Ilxc4ziEeLXD8JsQXFziaYRXN6nr4T8cG+HnvvCc/EeeJvpy9ddYPr+IYgsv+tP2tEJYbYLX6wd2vbXE8+OvZiQF+Oh3q6YkBxzWj3JuEqH5V+vPNHL+MUrvKOnb7+Hz4c5BSZ2gqHwY5/vxz2eS2H27nVKo/FB9llg2fXJ/H+OE7r/5mDM3nIdUyNf5LjNOWUSND/LBH7fWJyzBchtnHtzJOI7XnFy69fuV1z308D8JZ+fGaSjoFOW1v9nBLsGOTGLLXpHw8/EuTHM8tzV17y4FfP5+BOE7j1LIK/DVFW4ulfr6MUyXMZciY+l0Kf6Y9UNbzegZoH7fH6WQafNzSfqh04p+eQE7nKeKIHCmb//4Swr9jqPp3DFX/w4cqToR5Ja992DXHZSXNgcbW+uFujkcq4ow7Lu7uP4340wdQ5Njk/irfHZH/ZO9+3C4Jy+Fcv4DqP4+Sbzhj/jdXwpiuqxPJ/ZdD7q7jMHm0teArSvvqgs+xdzrlyXC9fuL2c++8LuS0Id+VOwlI/SqlPX6mYcvfXrbu7zzjMZ6suGbNzyHut4SvP+S9onzDuVC/e7riXp6uPnoTadflX39GO0d5etw2f0ebnB4WBceRyg+74f7cyaeTnQirhHR1O6RfO57hm2tKdI1jFPkOKzgdEvVsAf03MR6tYP/mbh7uVfqK4qdntWeblbbrtC/Ts91Kz2O25e10uq7DcKPjab6GgwXqfN6vt9O/Y6Acd+t7NFDOLxd5TIIeFt2OrzgPzwI/hnh0GPjvXtYuvKz1r78ljf72C86jrj0HeZx6nb4j9fqX95I+vls4TqxFq/70KcfxvWJQywX78ZooKV8MfOat4Gn/+nf0r39P/36LtfLXrfX42ocX4Vr1xj8/Rp8WsBgP49zr13q/vE2fxkk+UYw6ufjrhfB3ODx/y6MAf8OjAH/DowB/y6MAf8t4lT92vHoWBdRNHn4dJnJajW94Yas1L58br6ibuVo7XclpwJZy/V5fqH9t1m8ZsPINA1a+YcDKtwxY+ZYBq9cf+gPacNJyMz852+kYKPKcIKC6MPd3opwO1Lscp3rXg3JYP3Etr4GaT+M/HLr467XId3j1aevZ50Nf7etD/xjj4dA/3s3joW/Xdwx9+/IhE78ZKShx7M1PJnk6+JBxXCB77++OWny218mO1yLfYdj2LaPWvmHU2jeMWvuWUTu+ZdSOL4/a82x72SWvngnw02z76zpOY5bzaxKve2DwJ2JI1oTUEsxPxsDWEz98Av+ZGIqv1+v5Bm/HkHdjKPZ7eLc9NNtD324Py3uxt9ujxni3PWrN0LvtYdke9nZ7YHeD8XZ71BjvtsfIL7iGvX0d+D58vHsdfqHi7/qGGG9fx0BB2Mfj47xWB2t/YTus1Z2CUMOhNXWztJ+CtHYdzz7HVJTJMcpxPdb+ji/33j5xOz3ns36obP9Um7yWeRDk0CbnKxG8FIgemuQ3y5fPHiOOMR59v/G7GM8eRY4Luk8fRVr7jsnX1r48+fqKcZofeLgvwX34/aFlH21M8JsYj3Ym+M3dPNyc4DdRHm4ucF5wv/IB7bWiRB8vuDf6jvqBRl9PwHOMZ8lzvpvHyXNa2XqePKeTqJ4+xx9rKgRdXKrM/04Xn0oIWhbOvt5m5aOaileQY4FWjrZWl/5/OvntFcRPK2253ldPBvxUiIF9qMa7IXKMXB9fxW/KVAib+/3w1PnTdZyWtliynonryuMXgvhHQR6X7tQjCn8dZv1Y74L67PrByq+3czof6yoHcPywI97PQU5jtZXd/Jtc41vC1Bly/cy7ODYdOVa+nR75XK4cbqUm+eelw/k97ocvBjmTNepHST+XmzV+9jJeNxboPw8U/vID7G+uIzeakLr/6q8x9Dtsnu3rz0g8vuMZ6bTA9fQZ6Rjj4TPS8W4e7jj0myiPn5FONSpX//s+/UvinJa4OueALbfz82RaO60IdRzfXr+z0P6Je2k4fKv34718w2nlLXbO++qzmnzDeeWt6XfMuTb9+pzr449P+OOPT14XcpoieLZr6G8qsx6+hh5rxJ73zrdYrNof2js/VifTqXf8G5ZOmn3LK5d9wyuXfcMrl33LK5d9yyuXyR87UHo2a+/SPhwoxyCMV3OuO9X8OtpOdYnfE+XZN6i/ifHoI9TfxXjyFepv5k0ebof4uzmch88nv5nre7Jdy+9iPNkq7DyByrmE8pqF7W/OwnI+1hPXXQ9+DnL8lqzlJ/Gvf/fxB2mtnWqSsqypWMnPtZrnYt4nByyfPv6glln3wy9F/2nhop1KLH+YLuEPd0t5BTk9DDzbjOcV5OSsj3ZMOcd4tmXKJ27GTjdzalbP6Z/m3g9BTg+vz3ay+d2VMD78KBMVPweh01x/z4zh6+M9YO5NrQ65+/BbtN9EebhKdo7ydEnoN9fydE3oHOXpkh0dP+K6vOzM6fXYJ/1kHOz59mJ9N85rZiW/wWo/HFT52Tj4IPMVU05x2tdXEn8T5eHvzzmbOPdw47K1399xqVORIvbVo7qv3qe84fULkilZTxH+xRtOq1VPveH0HVbD6dDN6yb6P807nK/kYbv+poefPab8btReHR9z1Lfsz47+ci7A67H1/Wxs2A76ngD6MM51HHJPNhNrRMfCkSe7ib1inD9Ry1efH+/l8RaEr7+aX75rPUNiXM9DaPm4s309hLwXAluJaf0i8xMhcKpOt/py/YkQOC7wZQfvtYXli3W3eqL5uyHe69SRc5e9Vlh9KkTOVfTB73XqyN/OF/qbV5HjYuibnZp7nr/wrat4rRdg3556NPsnQvxQyNA/DNGIj/umYhd5qlMUnzkkIWvoSe29W8klULp9960QOcRfswBvZck9lYC5if5miAsh+MshqL/ZnJgeofHeVXS0hfiXr+K9TuVMkrp2+5mpAASgtwI823/pEODZ182nAI++bT4FyGMdtTz8feoKvjoh82jDiJNJYTv8+9Dd8uxJj0NoLka+lm/8rRADZ0gNee8qHN8bXXWj6+ch6MoRRT88P3/iKlC0fW+G916I7NI22ls3UvcNb/7eVXQcZM4XvxWCy9GpZcH85xCvH8fTRP/Xz9fpOH2123utgT3rGlP7coO+GeLK2df7OzM0hX3iKFrsdSP83sENgk0eZbx3TIASznrr8uUQ/PExAY2On0dRlrtJ3Zfpp0e0RsdZdWzPplbe654/5907Q+bNvHn+g/U0YZPryyEOR0g0GvQNTXr+jOfLTVpvxt4b6EbY2bW/1ysDZX+D2pdDHK7i1aDjO3rF/9BeGYKbkfcOfSlzzt71yyF4HJr0tGbzuElPi0ff0KT1ZvS9xHdMd3t7q1cI34y/Hp3eS7eBh5bhb6YbVsCGv3kVhhqjN88UwmbOL3zvBBvFgoi9eYINlr5a3SL3M6e2DFTRjLIW2F7vaz8M8X4dZsgHNoOva6yfeGYZeL8Y9UvIXy/Djsso+X5QD9iwX4KM03rxw3qefn3H3hW9fXnvivtUqz9/vdqjn76nenr65G+u5WFN6ysKn5Lv2aGJryiHMfvszMJzjKfHFrY4zfmLrz+/aZSvHwPZ8MXq601bD0lIxzcYgr1e9ViWnzYL+12Y8vHBxaXY/qcwx9nZhhivOWP78JaOL3VaDhu1cob2J4Lc2yDvOW8pTSvXz01yWoe8ssCdr1oO034Oclqyo/J6SOKn7jmVpGb2cCvFl/Lu7ZSyml9v5+SzTw7dOF9H95yl5GaH6+jHOoDyCUPvZbJSfr6W/h070/XTN1HPf3w6f/3Hp8t3/Pgcv6x6/ONzjPLw0OBXlPH1n43jh1WPfzZOa0+PfzYe3o7Ju538+Ff99EXT81/107dVT7vnYYxjm5xifKKLv+PJ4NiwD58MfuPWWC/luk75i0seNw8cOBhglC9gf/kZlIPVjpH7io9RX8rt51aR425shs30r7oDWv9ElM7Ykr9WqH4yiubnjd3KuuffiXL6vP/R6Q+vGKca5ofHP9xHph+f3R6dMvuJKIeDZn8T5eEpr5+Icjjo9Xd39Ozc299GQc3VYeLgd3f07NzZ30Z5dPTsb6I8PCf6E1Hs7XZ5eFr0J6LQsXVP2fjwHJV7j7PveKY8fSr1/JnydBDD02fK016Cz58pT58oPX+mPEZ5/Ex52n3v6UOL6Xc8cNjXV2If387x+enYydikguqG8r9GOW0l+Lx7TstdT7vnYYxzm9DxRTWT5+12ffysfvrU6fmz+rBvaFf7jmF/WvV6POyPjfL4Ofv4FPdsM/fu37CZ+/lKHu7m3v07dnPv/h3bSXf/jm+xu399u4vu4zuS0P0bkpBPH408TMJjjMdJyBd9QxIeG+VbkvDhDvV8WhN7ukP9b5Lw4Rb1fFwXe/rZPn/Lwhh/y8IYf8PCGH/LYhQfF8YeZ+Fpo8GnWXg8ROtxFh4/dnqYhedGeZ6Fp+cdI0yLyGGKJl6TPp5cwfz+6z3p+vDwmleY7zgD5zwD9srT3K6slZeXX2fAjp9oX9hNpzwKvh+k1C19LkjLuQimt2+Hsb8Q1++RfwrCdNwg81mpDp8Wxx6W6vzmSpRyj7Ba+fh+kLqbzueCpNdKfYn6XBDJEfvCd28H3z/dFScfBjmPE8mzBrkWtv4yTk5rY6We/4c5op8tpR/nDgaWletWcr9GORUPvGbAUQ31Y5nt5+JYKR+0+sH4r3EOTwmjYfPtZu9GMbjtuK5j2/hx0b3s4K9Mb99Tzqx/5Z5G2oLVTSS+EKVumPLJ3sYe6W3U3cl/jXNaoBqS34iO+m3N34lyelDGZ6JuF78bBd/0vx6E3r6WUoX2m3Z5GuX9Oxo57nzo2w5RGubF58w+xjHsquam+nYcz7H3WjOgdx3r9W/xfdx1+al9TvsSNsUBmi8ecopzfN3LVS+nbu9GeZwLj6O09i1R3r6jx7kg35IL8i3ZfR4xhg+FXm10egI4blPYULzU2qX0dpzYb2/FaeMLccpWvV+KU7ZFaf3tdrYrdzRp1q7viuNvxykLuK/3/m+Kc3yCPMchOJfR0ZE/EWe8f1+dy4cwdr3t7Nik9cXHZ6XTRob3x0mZF68fLHk7jmFR2OzoPp+IY/qFOGhnO/aX+Te87Z6O63r8tnu+o1FGzpDxdsuM0uM/bHDh/VMvibndI9v1caUtj2P1lpYzk8tXEY+/q2BvOPCODx808GlJ6WUMFzY3q9vb/zJ3Nb7huwge3zL9O75l+te/YfrXv+O7CPbv+C7iN/2MVLyXzPTQz+fhgk0j1MqXYr+EOS239ewi7nW3w8d19695J/+780734P9/Xv/vX/75r//+T3/7t3/+y3/+9d/+9T/uf9nkTuz7W6SmN90zus2SRpJvouume6GGWhIFvZqSehIHvfKZQuP+vaTQuD/9JEsaSaFxf+zWr6TQuPe07JTUkzgpNG5H7JpkSaFxP4F238RXUkuipJ7ESZKkSZaUGpwakhqSGpIakhqSGpIakhqSGpIakhqaGpoamhqaGpoamhqaGpoamhqaGpYalhqWGpYalhqWGpYalhqWGpYaIzVGaozUGKkxUmOkxkiNkRojNUZqeGp4anhqeGp4anhqeGp4anhqeGq8HrqBDUjADpxCfGMo3Qn8+hUEGnAAPbFdwAYkYKjdrv56xQCG2v0NbpuJP9GAtxpfgZ4Yyb+wBd7OEenPLbADbzW+l5JaOMBCDWw3WmAEG0BPDBtY2IAE7EAGClCBUOtQ61BjqDHUGGoMNYYaQ42hxlBjqDHUBGoCNYGaQE2gJlATqAnUBGoCNYWaQk2hplBTqCnUFGoKNYWaQs2gZlAzqBnUDGoGNYOaQc2gZlAbUBtQG1AbUBtQG1AbUBtQG1AbUHOoOdQcag41h5pDzaHmUHOoearRdQEbkIAdyEABKtCAAwi1BrUGtQa1BrUGtQa1BrUGtQa1BjWCGkGNoEZQI6gR1Ahq8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8BKClxC8hOAlBC8heAnBSwheQvASgpcQvITgJQQvIXgJwUsIXkLwEoKXELyE4CUELyF4CcFLCF5C8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fCSDi/p8JIOL+nwkg4v6fAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvYXgJw0sYXsLwEoaXMLyE4SUML2F4CcNLGF7C8BKGlzC8hOElDC9heAnDSxhewvAShpcwvIThJQwvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoGXCLxE4CUCLxF4icBLBF4i8BKBlwi8ROAlAi8ReInASwReIvASgZcIvETgJQIvEXiJwEsEXiLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKL1F4icJLFF6i8BKFlyi8ROElCi9ReInCSxReovAShZcovEThJQovUXiJwksUXqLwEoWXKLxE4SUKLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLwEoOXGLzE4CUGLzF4icFLDF5i8BKDlxi8xOAlBi8xeInBSwxeYvASg5cYvMTgJQYvMXiJwUsMXmLLS+zGAfTE5SWBDUjADmSgABUINYOaQW1AbUBtQG1AbUBtQG1AbUBtQG1AzaHmUHOoOdQcag41h5pDzaHmqTauCzjV/EYCdmCo3cUPY3rJRAUacAA9IywvCYTa9JL4u9NLJkKtQa1BrUGtQa1BjaBGUCPcG+HeCGoENYIaQY2gNr0kcHrJxAbEvXWoLS8JFKACDQi1DjWGGkONocZoSca9Me6NcW8MteUlgWhJQUsKWlKgJlATqAnUBGqClhTcm+DeFPemUFP0m6IlFS2paEmFmkJNoaZQM6gZWtJwb4Z7M9ybQc3Qb4aWNLSkoSUH1AbUBtQG1AbUBlpy4N4G7m3g3gbUHP3maElHSzpa0qHmUHOoOdQcap4t6dcFbEACpppfDBSgAg04EAFqDWoNavASh5c4vMThJQ4v8Qa1NoDZkg4vcXiJE9QIavASh5c4vMThJQ4vcXiJw0u8Q60TEC0JL3F4iXeodajBSxxe4vASh5c4vMThJQ4vcYYao9/gJQ4vcXiJC9QEavASh5c4vMThJQ4vcXiJw0tcoKboN3iJw0scXuIKNYUavMThJQ4vcXiJw0scXuLwEjeoGfoNXuLwEoeXuEHNoAYvcXiJw0scXuLwEoeXOLzEB9QG+g1e4vASh5e4Q82hBi9xeInDSxxe4vASh5e0C2Zynxi/9V5MhXthLiyFtcSxwqNw0W1FF77yYircC3Photu0sBUehR1MRZeKLhVdKrpUdOEyLy73S+V+qdwvFd1+FS7t3Es799LOvej2otuLbi+6vej20s5c7pfL/XK5Xy66XPqXSztzaWcu7cxFl4uuFF0pulJ0pbSzlPuVcr9S7leKrpT+ldLOWtpZSztr0dWiq0VXi64WXS3trOV+tdyvlfu1omulf620s5V2ttLOVnSt6FrRtaI7iu4o7TzK/Y5yv6Pc7yi6o/TvKO08SjuP0s5edL3oetH1outF10s7e7lfL/fr5X4duu26CrfCVLgXhm7D21Rrxa9a8atW/KoVv2rFr1rxq1b8qrWi27iwFNbCVrjotqJb/KoVv2rFr1rxq1b8qhW/asWvdt3trBMehUs7F79qxa9aL7q96Ba/asWvWvGrVvyqFb9qxa9a8atdhRu6XPq3+FUrftWKXzUuulx0i1+14let+FUrftWKX7XiV6341a7JDV0p/Vv8qhW/asWvmhZdLbrFr1rxq1b8qhW/asWvWvGrVvxqV+iGrpX+LX7Vil+14lfNiq4V3eJXrfhVK37Vil+14let+FUrfrXrdUN3lP4tftWKX7XiV20U3VF0i1+14let+FUrftWKX7XiV6341a7eDV0v/Vv8iopfUfErwutao+JXVJ6vqDxfUfErwjtb24W8k4tu8SsqfkXFr6g8X61y3nt3gLbqeXvU8K+Xt8lWeBR28PKrya0wFe6FuXDocnwaMP1qcehyXOf0q8WOvzP9anHD35l+tbiXv8OFp24PLrrTrxYX3elXk7noTr9aXHSnXy0uulzud/rVvAYuutOvFhfd6VeLi+70q8VFd/rV4qIr5X6nX81rkKIrpZ216GppZy26WtpZi+70q8VFV8v9Tr+a16BF10o7W9G10s5WdK20sxXd6VeLi66V+51+Na9hFN1R2nkU3VHaeRTdUdp5FN1RxvMouqPc7/SreQ1edL20sxddL+3sRddLO3vR9TKeHbqrSHhxy2tYZcLrv/fC0F2Vwou1/B0rPMrfwXhe5cLz77RWmHAN06/u7/naKhleLIW1sBUehR08/Wpx6MZ3Wat0eHEvzIWlsBa2wqOwg6dfLS66068krmf61WIuPHU9OHTvb2HbqiRePAo7ePrV4tC9971tq5z43pqorXrixVxYCmthKzwKO3j6lYXW9Cub/50K98JcWAprYSs8Cjt4+tXi0B0xrqZfLe6FubAU1sJWeBR28PSrxUXXiq4VXSu6VnSt6FrRtaJrRXcU3VF0R9EdRXcU3VF0R9EdRXcU3VF0veh60fWi60XXi64XXS+6XnS96Dp0VyHy4laYCvfCXFgKa2ErPApPXbl5fnZ5b4jQVk1y7Abxf/7y73/9y//427/8x5/+4b/vz6//61//eX9q/fp///P/+9/7f/kf//7Xv/3tr//rn/73v//bP//L//yvf/+X+7Ps+3/70xWfZb/+7z82/TO1+7Pttv77P77Wz/TPr+Uy/X/iP/6j39usvSbY7fX/9/jfu7z+d5b7f7//gbwWfP4sr+Wb+z+0+BtqdwS/49KOK9pef6utKPKyXpGWMYRe/6/tCK9l+T+/FuHvf9/vf3//i9czZ/f991+G/rqA1//MO/zrie/Pr6egFf51AWb7L9+bYb4eVnfw13Po6//V+19L/utXwNdzx76468/B81/T+PPrsS7/dbfX/xu3pvvSXo+0THkrrxt7Bb8/hv//AQ==",
6317
+ "verification_key": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEZRAAAAAAAAAAAAAAAAAAAAkBuv5B0kfFWYQ8i5yB7jHEoAAAAAAAAAAAAAAAAAAAAAAA9CA4NwbH4gyMGzuKiw1AAAAAAAAAAAAAAAAAAAADAplnqeqLYFHAR9R7cPrTHSAAAAAAAAAAAAAAAAAAAAAAAsHT6UYqaOf2f76AwRATIAAAAAAAAAAAAAAAAAAAB5ELqhxKWIgkzlECQNFQ/fUQAAAAAAAAAAAAAAAAAAAAAAGSo0Zl8X2mEQUhbCxtzZAAAAAAAAAAAAAAAAAAAA92/qykB/K0wJde6e3jMH7Q0AAAAAAAAAAAAAAAAAAAAAABsROeFqcRS0GYxfQAqCGQAAAAAAAAAAAAAAAAAAAOsUeNvGOvoFCcoQ0Q27F6luAAAAAAAAAAAAAAAAAAAAAAAaaS+L8ihTeEJzqyRLsmkAAAAAAAAAAAAAAAAAAAC8cgbO+pKQxyNG29ocp/SbPwAAAAAAAAAAAAAAAAAAAAAAHoadrJu4P39MaHy9FTQLAAAAAAAAAAAAAAAAAAAAhQ8Qa7lhcwBCDvt35qAqe2wAAAAAAAAAAAAAAAAAAAAAABLUg8pSm0P2f+Gdawcd5wAAAAAAAAAAAAAAAAAAAIjkFiG3gUDl/rl+yadlfaX3AAAAAAAAAAAAAAAAAAAAAAAd6whtfhr2THq0NFp13ooAAAAAAAAAAAAAAAAAAADG7q1UhH7NKMfe3gqEy9J4rQAAAAAAAAAAAAAAAAAAAAAADACv7fq6zPxkhRaQhU22AAAAAAAAAAAAAAAAAAAA+WxioskMnpCSv/iQPfXJo/cAAAAAAAAAAAAAAAAAAAAAABWGe4xitaex4kJhgYrkNwAAAAAAAAAAAAAAAAAAAAfBSD6GPjTQMeoFT5FIeZfgAAAAAAAAAAAAAAAAAAAAAAAqDUUgmTUqPEstiNXvohIAAAAAAAAAAAAAAAAAAADvzRrBiAW6cuC+UcOBy8bOgQAAAAAAAAAAAAAAAAAAAAAAF+eXwSvLEOkqC6Afst/aAAAAAAAAAAAAAAAAAAAAIjx7zf4ErK3TUbUjPHWvo0EAAAAAAAAAAAAAAAAAAAAAABJB8o1i6Ip9b013Xwim2AAAAAAAAAAAAAAAAAAAANbtA9MMEnI01SmAvBq147tMAAAAAAAAAAAAAAAAAAAAAAAB4gue2VkVG3TYKDAdd9gAAAAAAAAAAAAAAAAAAADNIw/PBFJbYTr8g/bVa2i+jgAAAAAAAAAAAAAAAAAAAAAAL9BbptnijKBcoVYkIOBRAAAAAAAAAAAAAAAAAAAAUUrABQY+rJ3nLeU4QbYveeYAAAAAAAAAAAAAAAAAAAAAADBI7AjctBOHPq2qdNcd3wAAAAAAAAAAAAAAAAAAAJL+vrpI1F6+3jnnGIj3fXyeAAAAAAAAAAAAAAAAAAAAAAAL4T7aJgCUW74sW2WDWOYAAAAAAAAAAAAAAAAAAAAWimxRRJ85FBOqaRDlD9pWlgAAAAAAAAAAAAAAAAAAAAAAJNzAXCLE2SLUVLygiEd+AAAAAAAAAAAAAAAAAAAAfXS7x3D0nWhTWn8xuWm5beQAAAAAAAAAAAAAAAAAAAAAAAuk6Uf1WHN7wPIWZzLojgAAAAAAAAAAAAAAAAAAAC0lf5gssiT3OuL6GaE5iyfEAAAAAAAAAAAAAAAAAAAAAAAYALfwEdm4kpbG/HnhR+EAAAAAAAAAAAAAAAAAAAD823syZBzNWnGGjnzT1yMg5AAAAAAAAAAAAAAAAAAAAAAAATDBDUq0HRHSx0+PInBuAAAAAAAAAAAAAAAAAAAAbGP6UV+RTMDMVJE9AtswcMAAAAAAAAAAAAAAAAAAAAAAAC8fAcvKUFeoLDHLV9S0EgAAAAAAAAAAAAAAAAAAAGe0oQbMrVQR1VbkoHgcm739AAAAAAAAAAAAAAAAAAAAAAArQLRMLCl3kOpg5C5K2eYAAAAAAAAAAAAAAAAAAAAv+6bb/lp1zRwVb689n/4qfAAAAAAAAAAAAAAAAAAAAAAAH5SEoGNIWNNCTi3dQ9XdAAAAAAAAAAAAAAAAAAAAuVgLx2uLmeImv9wN0Xa8dzkAAAAAAAAAAAAAAAAAAAAAACd8TVyIPuVCM/wlV3dLaQAAAAAAAAAAAAAAAAAAAMwhl4N5FX7AogVPWe2nuPdUAAAAAAAAAAAAAAAAAAAAAAAJG/d1q1aVxULw3bQLdSMAAAAAAAAAAAAAAAAAAABGRemkcKpNNoOGI7UGcSj0kgAAAAAAAAAAAAAAAAAAAAAAIvx/MplqeTV1/KROXDTHAAAAAAAAAAAAAAAAAAAARNHT2BPgCDH6z3JnPxGbBZoAAAAAAAAAAAAAAAAAAAAAABCEjOQhFsdcI9SKgV36cAAAAAAAAAAAAAAAAAAAABCpqE66cjtGKUSauYShtpoVAAAAAAAAAAAAAAAAAAAAAAAkGkHugGftiO42Q9cKoHQAAAAAAAAAAAAAAAAAAACLxf1k1wDsSX7c4UqAYYqYOQAAAAAAAAAAAAAAAAAAAAAABrlgpMBJHiWZutBLRtmLAAAAAAAAAAAAAAAAAAAAVLHtwI27mAKezVOB3VNH2fAAAAAAAAAAAAAAAAAAAAAAAAKeqQnvCq6a1GAS/ojAOgAAAAAAAAAAAAAAAAAAAMmBRgUyoRk8r19xFRqvXpalAAAAAAAAAAAAAAAAAAAAAAAvLHNHlakzQ6NQxbAGJaYAAAAAAAAAAAAAAAAAAADAdQgJo9vXd7Oc+BiWeUJj1wAAAAAAAAAAAAAAAAAAAAAAAXEGSo3Ki0xTYkbHU1tHAAAAAAAAAAAAAAAAAAAAZSroq/7DUMve+uBKOFe6zdEAAAAAAAAAAAAAAAAAAAAAACrdj/Cu4J0lBDE/kJILlAAAAAAAAAAAAAAAAAAAAG3WY2Q4MM8LpRHUWTqA0qTtAAAAAAAAAAAAAAAAAAAAAAAnZ2sfCcUonjZ0XQUiHA4AAAAAAAAAAAAAAAAAAAB4htssZq9nJtOQmtqWZBX4rwAAAAAAAAAAAAAAAAAAAAAACXzGLXDKHEs5VZ1nNU0nAAAAAAAAAAAAAAAAAAAA4NcOHgP81RgVtODuopdMNgIAAAAAAAAAAAAAAAAAAAAAAA8AWAgJnT3d57ARrDK6PgAAAAAAAAAAAAAAAAAAAA1zHm/3NdnY0S8hoYLJoICzAAAAAAAAAAAAAAAAAAAAAAADxVYHQ5cUlzSZNvAvc74AAAAAAAAAAAAAAAAAAABWAVmyH1gmtTzn+BlBw2LFEgAAAAAAAAAAAAAAAAAAAAAAK4jtYK9iwPpyrIDEjWSoAAAAAAAAAAAAAAAAAAAAArIU2ZQ74/zxstkkIQ6uUaYAAAAAAAAAAAAAAAAAAAAAACKdYF1l+s9bFOFQ2qfZBAAAAAAAAAAAAAAAAAAAAKzXm72Vdfs+rvXKkMOPajSpAAAAAAAAAAAAAAAAAAAAAAAuORzEjID439RRLrLBlkcAAAAAAAAAAAAAAAAAAACQlqNirAFdsXruTSdiRDwVgAAAAAAAAAAAAAAAAAAAAAAAKm499xOR9CUh/xbxNtYLAAAAAAAAAAAAAAAAAAAAxpuhNV4vQWdcu6RCgdt0cWkAAAAAAAAAAAAAAAAAAAAAAAFpcW1SuTmjzhGtSo2IEAAAAAAAAAAAAAAAAAAAABVWsOMM7wiIXFrcwzOhLN8tAAAAAAAAAAAAAAAAAAAAAAAlLrrazX48VcNgFGgO7PkAAAAAAAAAAAAAAAAAAADTtRcUlSCvcjpdNdVIYB77VAAAAAAAAAAAAAAAAAAAAAAAFSFZsRrMvOTuABKL4QvvAAAAAAAAAAAAAAAAAAAAjuxRdViL8IFjF5vgoLfl8uQAAAAAAAAAAAAAAAAAAAAAACIszaZtiatzwH2fUzZq1gAAAAAAAAAAAAAAAAAAAOAmJiHfwsL9rIHKrt4JQDIsAAAAAAAAAAAAAAAAAAAAAAApL+mwxqrUsimVRwD5ZcYAAAAAAAAAAAAAAAAAAADx2n2JJrz17IkXfYDOR0Po8AAAAAAAAAAAAAAAAAAAAAAAG8IK2JXUVD74AbBhdSWwAAAAAAAAAAAAAAAAAAAAYzlvW+172TOYgWkUUUh2/24AAAAAAAAAAAAAAAAAAAAAAAluEyPOah2X7RDy126vxgAAAAAAAAAAAAAAAAAAAIfLBtleqZSVTXrrCN7f9vVgAAAAAAAAAAAAAAAAAAAAAAAtnxbJ0Gm56dgjGnxhXRQAAAAAAAAAAAAAAAAAAACM5UlxB5fRrvSHh/2ngTwxAQAAAAAAAAAAAAAAAAAAAAAAHVDH93R+VZoDDBT4Ag2aAAAAAAAAAAAAAAAAAAAAsa5dmATPGopi6epL4rZqLXYAAAAAAAAAAAAAAAAAAAAAACiS/dumBD9h36AnqHwl6gAAAAAAAAAAAAAAAAAAAA96+783Idykyau8tIFzHa8YAAAAAAAAAAAAAAAAAAAAAAAjxfcRf3orhGigOWSKNkUAAAAAAAAAAAAAAAAAAADwnCJCRUREW/Cfhs4k57yjMQAAAAAAAAAAAAAAAAAAAAAAEBv2dCir+02VxaBxZLcpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbxPkSjPPvdYPadWG551jHtwAAAAAAAAAAAAAAAAAAAAAAFvKTBsOL3oaG6QnVNPKOAAAAAAAAAAAAAAAAAAAAhSOaUov46J3cQ1qy+HTZKewAAAAAAAAAAAAAAAAAAAAAACCwpx8VvkIOMXw62YdhegAAAAAAAAAAAAAAAAAAAGvMegX/lalrKJQkxfczZw2WAAAAAAAAAAAAAAAAAAAAAAAAxDcm91tv2g3iLODg36sAAAAAAAAAAAAAAAAAAAAdCgnXF47JO614WPluZPC0jQAAAAAAAAAAAAAAAAAAAAAAL5tuC04sAZaN5cMkgqp9AAAAAAAAAAAAAAAAAAAAhGizfhDghN678/BvPdVyeZAAAAAAAAAAAAAAAAAAAAAAABP8MEXsXcism66kuZ6hugAAAAAAAAAAAAAAAAAAALSFZmQJ4zJievrMBCtdWDUYAAAAAAAAAAAAAAAAAAAAAAATHr6UQ9MIxtY9B5E67mY="
6318
6318
  },
6319
6319
  {
6320
6320
  "name": "public_dispatch",
@@ -6695,7 +6695,7 @@
6695
6695
  },
6696
6696
  "105": {
6697
6697
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/macros/functions/utils.nr",
6698
- "source": "use crate::macros::{\n functions::{\n auth_registry::AUTHORIZE_ONCE_REGISTRY, call_interface_stubs::stub_fn, stub_registry,\n },\n notes::NOTES,\n utils::{\n add_to_hasher, fn_has_authorize_once, fn_has_noinitcheck, get_fn_visibility,\n is_fn_contract_library_method, is_fn_initializer, is_fn_internal, is_fn_private,\n is_fn_public, is_fn_test, is_fn_utility, is_fn_view, modify_fn_body, module_has_initializer,\n module_has_storage,\n },\n};\nuse std::meta::{ctstring::AsCtString, type_of};\n\npub(crate) comptime fn transform_private(f: FunctionDefinition) {\n let fn_stub = stub_fn(f);\n stub_registry::register(f.module(), fn_stub);\n\n let module_has_initializer = module_has_initializer(f.module());\n let module_has_storage = module_has_storage(f.module());\n\n // Private functions undergo a lot of transformations from their Aztec.nr form into a circuit that can be fed to the\n // Private Kernel Circuit.\n // First we change the function signature so that it also receives `PrivateContextInputs`, which contain information\n // about the execution context (e.g. the caller).\n let original_params = f.parameters();\n f.set_parameters(&[(\n quote { inputs },\n quote { crate::context::inputs::private_context_inputs::PrivateContextInputs }.as_type(),\n )]\n .append(original_params));\n\n let mut body = f.body().as_block().unwrap();\n\n // The original params are hashed and passed to the `context` object, so that the kernel can verify we've received\n // the correct values.\n // TODO: Optimize args_hasher for small number of arguments\n let args_hasher_name = quote { args_hasher };\n let args_hasher = original_params.fold(\n quote {\n let mut $args_hasher_name = dep::aztec::hash::ArgsHasher::new();\n },\n |args_hasher, param: (Quoted, Type)| {\n let (name, typ) = param;\n let appended_arg = add_to_hasher(args_hasher_name, name, typ);\n quote {\n $args_hasher\n $appended_arg\n }\n },\n );\n\n let context_creation = quote {\n let mut context = dep::aztec::context::private_context::PrivateContext::new(inputs, dep::aztec::protocol_types::traits::Hash::hash($args_hasher_name));\n };\n\n // Modifications introduced by the different marker attributes.\n let internal_check = if is_fn_internal(f) {\n create_internal_check(f)\n } else {\n quote {}\n };\n\n let view_check = if is_fn_view(f) {\n create_view_check(f)\n } else {\n quote {}\n };\n\n let (assert_initializer, mark_as_initialized) = if is_fn_initializer(f) {\n (create_assert_correct_initializer_args(f), create_mark_as_initialized(f))\n } else {\n (quote {}, quote {})\n };\n\n let storage_init = if module_has_storage {\n quote {\n // Some functions don't access storage, but it'd be quite difficult to only inject this variable if it is\n // referenced. We instead ignore 'unused variable' warnings for it.\n #[allow(unused_variables)]\n let storage = Storage::init(&mut context);\n }\n } else {\n quote {}\n };\n\n // Initialization checks are not included in contracts that don't have initializers.\n let init_check = if module_has_initializer & !is_fn_initializer(f) & !fn_has_noinitcheck(f) {\n create_init_check(f)\n } else {\n quote {}\n };\n\n // All private functions perform message discovery, since they may need to access notes. This is slightly\n // inefficient and could be improved by only doing it once we actually attempt to read any. Note that the message\n // discovery call syncs private events as well. We do not sync those here if there are no notes because we don't\n // have an API that would access events from private functions.\n let message_discovery_call = if NOTES.len() > 0 {\n create_message_discovery_call()\n } else {\n quote {}\n };\n\n // Inject the authwit check if the function is marked with #[authorize_once].\n let authorize_once_check = if fn_has_authorize_once(f) {\n create_authorize_once_check(f)\n } else {\n quote {}\n };\n\n // Finally, we need to change the return type to be `PrivateCircuitPublicInputs`, which is what the Private Kernel\n // circuit expects.\n let return_value_var_name = quote { macro__returned__values };\n\n let return_value_type = f.return_type();\n let return_value = if body.len() == 0 {\n quote {}\n } else if return_value_type != type_of(()) {\n // The original return value is passed to a second args hasher which the context receives.\n let (body_without_return, last_body_expr) = body.pop_back();\n let return_value = last_body_expr.quoted();\n let return_value_assignment =\n quote { let $return_value_var_name: $return_value_type = $return_value; };\n let return_hasher_name = quote { return_hasher };\n let return_value_into_hasher =\n add_to_hasher(return_hasher_name, return_value_var_name, return_value_type);\n\n body = body_without_return;\n\n quote {\n let mut $return_hasher_name = dep::aztec::hash::ArgsHasher::new();\n $return_value_assignment\n $return_value_into_hasher\n context.set_return_hash($return_hasher_name);\n }\n } else {\n let (body_without_return, last_body_expr) = body.pop_back();\n if !last_body_expr.has_semicolon()\n & last_body_expr.as_for().is_none()\n & last_body_expr.as_assert().is_none()\n & last_body_expr.as_for_range().is_none()\n & last_body_expr.as_assert_eq().is_none()\n & last_body_expr.as_let().is_none() {\n let unused_return_value_name = f\"_{return_value_var_name}\".quoted_contents();\n body = body_without_return.push_back(\n quote { let $unused_return_value_name = $last_body_expr; }.as_expr().unwrap(),\n );\n }\n quote {}\n };\n\n let context_finish = quote { context.finish() };\n\n // A quote to be injected at the beginning of the function body.\n let to_prepend = quote {\n dep::aztec::oracle::version::assert_compatible_oracle_version();\n $args_hasher\n $context_creation\n $assert_initializer\n $init_check\n $internal_check\n $view_check\n $storage_init\n $message_discovery_call\n $authorize_once_check\n };\n\n let to_append = quote {\n $return_value\n $mark_as_initialized\n $context_finish\n };\n let modified_body = modify_fn_body(body, to_prepend, to_append);\n f.set_body(modified_body);\n f.set_return_type(\n quote { dep::protocol_types::abis::private_circuit_public_inputs::PrivateCircuitPublicInputs }\n .as_type(),\n );\n f.set_return_data();\n}\n\npub(crate) comptime fn transform_public(f: FunctionDefinition) {\n let fn_stub = stub_fn(f);\n stub_registry::register(f.module(), fn_stub);\n\n let module_has_initializer = module_has_initializer(f.module());\n let module_has_storage = module_has_storage(f.module());\n\n // Public functions undergo a lot of transformations from their Aztec.nr form.\n let original_params = f.parameters();\n\n let args_len_quote = if original_params.len() == 0 {\n // If the function has no parameters, we set the args_len to 0.\n quote { 0 }\n } else {\n // The following will give us <type_of_struct_member_1 as Serialize>::N + <type_of_struct_member_2 as Serialize>::N + ...\n original_params\n .map(|(_, param_type): (Quoted, Type)| {\n quote {\n <$param_type as $crate::protocol_types::traits::Serialize>::N\n }\n })\n .join(quote {+})\n };\n\n // Unlike in the private case, in public the `context` does not need to receive the hash of the original params.\n let context_creation = quote {\n let mut context = dep::aztec::context::public_context::PublicContext::new(|| {\n // We start from 1 because we skip the selector for the dispatch function.\n let serialized_args : [Field; $args_len_quote] = dep::aztec::context::public_context::calldata_copy(1, $args_len_quote);\n dep::aztec::hash::hash_args_array(serialized_args)\n });\n };\n\n // Modifications introduced by the different marker attributes.\n let internal_check = if is_fn_internal(f) {\n create_internal_check(f)\n } else {\n quote {}\n };\n\n let view_check = if is_fn_view(f) {\n create_view_check(f)\n } else {\n quote {}\n };\n\n let (assert_initializer, mark_as_initialized) = if is_fn_initializer(f) {\n (create_assert_correct_initializer_args(f), create_mark_as_initialized(f))\n } else {\n (quote {}, quote {})\n };\n\n let storage_init = if module_has_storage {\n // Some functions don't access storage, but it'd be quite difficult to only inject this variable if it is\n // referenced. We instead ignore 'unused variable' warnings for it.\n quote {\n #[allow(unused_variables)]\n let storage = Storage::init(&mut context);\n }\n } else {\n quote {}\n };\n\n // Initialization checks are not included in contracts that don't have initializers.\n let init_check = if module_has_initializer & !fn_has_noinitcheck(f) & !is_fn_initializer(f) {\n create_init_check(f)\n } else {\n quote {}\n };\n\n // Inject the authwit check if the function is marked with #[authorize_once].\n let authorize_once_check = if fn_has_authorize_once(f) {\n create_authorize_once_check(f)\n } else {\n quote {}\n };\n\n let to_prepend = quote {\n $context_creation\n $assert_initializer\n $init_check\n $internal_check\n $view_check\n $storage_init\n $authorize_once_check\n };\n\n let to_append = quote {\n $mark_as_initialized\n };\n\n let body = f.body().as_block().unwrap();\n let modified_body = modify_fn_body(body, to_prepend, to_append);\n f.set_body(modified_body);\n\n // All public functions are automatically made unconstrained, even if they were not marked as such. This is because\n // instead of compiling into a circuit, they will compile to bytecode that will be later transpiled into AVM\n // bytecode.\n f.set_unconstrained(true);\n f.set_return_public(true);\n}\n\npub(crate) comptime fn transform_utility(f: FunctionDefinition) {\n let fn_stub = stub_fn(f);\n stub_registry::register(f.module(), fn_stub);\n\n // Create utility context\n let context_creation =\n quote { let mut context = dep::aztec::context::utility_context::UtilityContext::new(); };\n\n // Initialize Storage if module has storage\n let storage_init = if module_has_storage(f.module()) {\n quote {\n // Some functions don't access storage, but it'd be quite difficult to only inject this variable if it is\n // referenced. We instead ignore 'unused variable' warnings for it.\n #[allow(unused_variables)]\n let storage = Storage::init(context);\n }\n } else {\n quote {}\n };\n\n // All utility functions perform message discovery, since they may need to access private notes that would be\n // found during this process or they may be used to sync private events from TypeScript\n // (`sync_private_state` function gets invoked by PXE::getPrivateEvents function).\n let message_discovery_call = create_message_discovery_call();\n\n // A quote to be injected at the beginning of the function body.\n let to_prepend = quote {\n dep::aztec::oracle::version::assert_compatible_oracle_version();\n $context_creation\n $storage_init\n $message_discovery_call\n };\n let body = f.body().as_block().unwrap();\n let modified_body = modify_fn_body(body, to_prepend, quote {});\n f.set_body(modified_body);\n\n f.set_return_public(true);\n}\n\ncomptime fn create_internal_check(f: FunctionDefinition) -> Quoted {\n let name = f.name();\n let assertion_message = f\"Function {name} can only be called internally\";\n quote { assert(context.msg_sender().unwrap() == context.this_address(), $assertion_message); }\n}\n\ncomptime fn create_view_check(f: FunctionDefinition) -> Quoted {\n let name = f.name();\n let assertion_message = f\"Function {name} can only be called statically\";\n if is_fn_private(f) {\n // Here `context` is of type context::PrivateContext\n quote { assert(context.inputs.call_context.is_static_call, $assertion_message); }\n } else {\n // Here `context` is of type context::PublicContext\n quote { assert(context.is_static_call(), $assertion_message); }\n }\n}\n\ncomptime fn create_assert_correct_initializer_args(f: FunctionDefinition) -> Quoted {\n let fn_visibility = get_fn_visibility(f);\n f\"dep::aztec::macros::functions::initialization_utils::assert_initialization_matches_address_preimage_{fn_visibility}(context);\"\n .quoted_contents()\n}\n\ncomptime fn create_mark_as_initialized(f: FunctionDefinition) -> Quoted {\n let fn_visibility = get_fn_visibility(f);\n f\"dep::aztec::macros::functions::initialization_utils::mark_as_initialized_{fn_visibility}(&mut context);\"\n .quoted_contents()\n}\n\ncomptime fn create_init_check(f: FunctionDefinition) -> Quoted {\n let fn_visibility = get_fn_visibility(f);\n f\"dep::aztec::macros::functions::initialization_utils::assert_is_initialized_{fn_visibility}(&mut context);\"\n .quoted_contents()\n}\n\n/// Injects a call to `aztec::messages::discovery::discover_new_messages`, causing for new notes to be added to PXE and made\n/// available for the current execution.\npub(crate) comptime fn create_message_discovery_call() -> Quoted {\n quote {\n /// Safety: message discovery returns nothing and is performed solely for its side-effects. It is therefore\n /// always safe to call.\n unsafe {\n dep::aztec::messages::discovery::discover_new_messages(\n context.this_address(),\n _compute_note_hash_and_nullifier,\n );\n };\n }\n}\n\n/// Injects an authwit verification check of the form:\n/// ```\n/// if (!from.eq(context.msg_sender().unwrap())) {\n/// assert_current_call_valid_authwit::<N>(&mut context, from);\n/// } else {\n/// assert(authwit_nonce, \"Invalid authwit nonce. When 'from' and 'msg_sender' are the same, authwit_nonce must be zero\");\n/// }\n/// ```\n/// where `from` and `authwit_nonce` are the names of the parameters that are expected to be present in the function definition.\n/// This check is injected by the `#[authorize_once(\"from_arg_name\", \"nonce_arg_name\")]`, which allows the user to define\n/// which parameters to use.\npub(crate) comptime fn create_authorize_once_check(f: FunctionDefinition) -> Quoted {\n let maybe_authorize_once_args = AUTHORIZE_ONCE_REGISTRY.get(f);\n let authorize_once_args = if maybe_authorize_once_args.is_some() {\n maybe_authorize_once_args.unwrap()\n } else {\n // We need to for authorize_once to have already executed so that we can retrieve its params - this depends on\n // the order in which the attributes are applied.\n panic(\n f\"Functions marked with #[authorize_once] must have the #[private] or #[public] attribute placed last\",\n )\n };\n\n let (from_arg_name, nonce_arg_name) = authorize_once_args;\n let name: Quoted = f.name();\n\n let from_arg_candidates =\n f.parameters().filter(|(name, _)| name == f\"{from_arg_name}\".quoted_contents());\n let (from_arg_name_quoted, from_arg_type) = if from_arg_candidates.len() == 1 {\n from_arg_candidates[0]\n } else {\n panic(\n f\"Function {name} does not have a {from_arg_name} parameter. Please specify which one to use in #[authorize_once(\\\"...\\\", \\\"authwit_nonce\\\")]\",\n )\n };\n if from_arg_type\n != quote { dep::protocol_types::address::aztec_address::AztecAddress }.as_type() {\n panic(\n f\"Argument {from_arg_name_quoted} in function {name} must be of type AztecAddress, but is of type {from_arg_type}\",\n )\n }\n\n let nonce_arg_candidates =\n f.parameters().filter(|(name, _)| name == f\"{nonce_arg_name}\".quoted_contents());\n let (nonce_arg_name_quoted, nonce_arg_type) = if nonce_arg_candidates.len() == 1 {\n nonce_arg_candidates[0]\n } else {\n panic(\n f\"Function {name} does not have a {nonce_arg_name}. Please specify which one to use in #[authorize_once(\\\"from\\\", \\\"...\\\")]\",\n )\n };\n if nonce_arg_type != quote { Field }.as_type() {\n panic(\n f\"Argument {nonce_arg_name_quoted} in function {name} must be of type Field, but is of type {nonce_arg_type}\",\n );\n }\n\n let nonce_check_quote = f\"{nonce_arg_name_quoted} == 0\".quoted_contents();\n\n let fn_call = if is_fn_private(f) {\n // At this point, the original args of the fn have already been altered by the macro\n // to include PrivateContextInputs, so we need to adjust the args_len accordingly.\n let args_len = f.parameters().len() - 1;\n quote { dep::aztec::authwit::auth::assert_current_call_valid_authwit::<$args_len> }\n } else {\n quote { dep::aztec::authwit::auth::assert_current_call_valid_authwit_public }\n };\n let invalid_nonce_message = f\"Invalid authwit nonce. When '{from_arg_name}' and 'msg_sender' are the same, '{nonce_arg_name}' must be zero\"\n .as_ctstring()\n .as_quoted_str();\n quote { \n if (!$from_arg_name_quoted.eq(context.msg_sender().unwrap())) {\n $fn_call(&mut context, $from_arg_name_quoted);\n } else {\n assert($nonce_check_quote, $invalid_nonce_message);\n }\n }\n}\n\n/// Checks if each function in the module is marked with either #[private], #[public], #[utility],\n/// #[contract_library_method], or #[test]. Non-macroified functions are not allowed in contracts.\npub(crate) comptime fn check_each_fn_macroified(m: Module) {\n for f in m.functions() {\n let name = f.name();\n if !is_fn_private(f)\n & !is_fn_public(f)\n & !is_fn_utility(f)\n & !is_fn_contract_library_method(f)\n & !is_fn_test(f) {\n panic(\n f\"Function {name} must be marked as either #[private], #[public], #[utility], #[contract_library_method], or #[test]\",\n );\n }\n }\n}\n"
6698
+ "source": "use crate::macros::{\n functions::{\n auth_registry::AUTHORIZE_ONCE_REGISTRY, call_interface_stubs::stub_fn, stub_registry,\n },\n notes::NOTES,\n utils::{\n fn_has_authorize_once, fn_has_noinitcheck, get_fn_visibility, is_fn_contract_library_method,\n is_fn_initializer, is_fn_internal, is_fn_private, is_fn_public, is_fn_test, is_fn_utility,\n is_fn_view, modify_fn_body, module_has_initializer, module_has_storage,\n },\n};\nuse dep::protocol_types::meta::utils::derive_serialization_quotes;\nuse std::meta::{ctstring::AsCtString, type_of};\n\npub(crate) comptime fn transform_private(f: FunctionDefinition) {\n let fn_stub = stub_fn(f);\n stub_registry::register(f.module(), fn_stub);\n\n let module_has_initializer = module_has_initializer(f.module());\n let module_has_storage = module_has_storage(f.module());\n\n // Private functions undergo a lot of transformations from their Aztec.nr form into a circuit that can be fed to the\n // Private Kernel Circuit.\n // First we change the function signature so that it also receives `PrivateContextInputs`, which contain information\n // about the execution context (e.g. the caller).\n let original_params = f.parameters();\n f.set_parameters(&[(\n quote { inputs },\n quote { crate::context::inputs::private_context_inputs::PrivateContextInputs }.as_type(),\n )]\n .append(original_params));\n\n let mut body = f.body().as_block().unwrap();\n\n // The original params are hashed and passed to the `context` object, so that the kernel can verify we've received\n // the correct values.\n let (args_serialization, _, serialized_args_name) =\n derive_serialization_quotes(original_params, false);\n\n let context_creation = quote {\n $args_serialization\n let args_hash = dep::aztec::hash::hash_args_array($serialized_args_name);\n let mut context = dep::aztec::context::private_context::PrivateContext::new(inputs, args_hash);\n };\n\n // Modifications introduced by the different marker attributes.\n let internal_check = if is_fn_internal(f) {\n create_internal_check(f)\n } else {\n quote {}\n };\n\n let view_check = if is_fn_view(f) {\n create_view_check(f)\n } else {\n quote {}\n };\n\n let (assert_initializer, mark_as_initialized) = if is_fn_initializer(f) {\n (create_assert_correct_initializer_args(f), create_mark_as_initialized(f))\n } else {\n (quote {}, quote {})\n };\n\n let storage_init = if module_has_storage {\n quote {\n // Some functions don't access storage, but it'd be quite difficult to only inject this variable if it is\n // referenced. We instead ignore 'unused variable' warnings for it.\n #[allow(unused_variables)]\n let storage = Storage::init(&mut context);\n }\n } else {\n quote {}\n };\n\n // Initialization checks are not included in contracts that don't have initializers.\n let init_check = if module_has_initializer & !is_fn_initializer(f) & !fn_has_noinitcheck(f) {\n create_init_check(f)\n } else {\n quote {}\n };\n\n // All private functions perform message discovery, since they may need to access notes. This is slightly\n // inefficient and could be improved by only doing it once we actually attempt to read any. Note that the message\n // discovery call syncs private events as well. We do not sync those here if there are no notes because we don't\n // have an API that would access events from private functions.\n let message_discovery_call = if NOTES.len() > 0 {\n create_message_discovery_call()\n } else {\n quote {}\n };\n\n // Inject the authwit check if the function is marked with #[authorize_once].\n let authorize_once_check = if fn_has_authorize_once(f) {\n create_authorize_once_check(f)\n } else {\n quote {}\n };\n\n // Finally, we need to change the return type to be `PrivateCircuitPublicInputs`, which is what the Private Kernel\n // circuit expects.\n let return_value_var_name = quote { macro__returned__values };\n\n let return_value_type = f.return_type();\n let return_value = if body.len() == 0 {\n quote {}\n } else if return_value_type != type_of(()) {\n // The original return value is serialized and hashed before being passed to the context.\n let (body_without_return, last_body_expr) = body.pop_back();\n let return_value = last_body_expr.quoted();\n let return_value_assignment =\n quote { let $return_value_var_name: $return_value_type = $return_value; };\n\n let (return_serialization, _, serialized_return_name) =\n derive_serialization_quotes([(return_value_var_name, return_value_type)], false);\n\n body = body_without_return;\n\n quote {\n $return_value_assignment\n $return_serialization\n context.set_return_hash($serialized_return_name);\n }\n } else {\n let (body_without_return, last_body_expr) = body.pop_back();\n if !last_body_expr.has_semicolon()\n & last_body_expr.as_for().is_none()\n & last_body_expr.as_assert().is_none()\n & last_body_expr.as_for_range().is_none()\n & last_body_expr.as_assert_eq().is_none()\n & last_body_expr.as_let().is_none() {\n let unused_return_value_name = f\"_{return_value_var_name}\".quoted_contents();\n body = body_without_return.push_back(\n quote { let $unused_return_value_name = $last_body_expr; }.as_expr().unwrap(),\n );\n }\n quote {}\n };\n\n let context_finish = quote { context.finish() };\n\n // A quote to be injected at the beginning of the function body.\n let to_prepend = quote {\n dep::aztec::oracle::version::assert_compatible_oracle_version();\n $context_creation\n $assert_initializer\n $init_check\n $internal_check\n $view_check\n $storage_init\n $message_discovery_call\n $authorize_once_check\n };\n\n let to_append = quote {\n $return_value\n $mark_as_initialized\n $context_finish\n };\n let modified_body = modify_fn_body(body, to_prepend, to_append);\n f.set_body(modified_body);\n f.set_return_type(\n quote { dep::protocol_types::abis::private_circuit_public_inputs::PrivateCircuitPublicInputs }\n .as_type(),\n );\n f.set_return_data();\n}\n\npub(crate) comptime fn transform_public(f: FunctionDefinition) {\n let fn_stub = stub_fn(f);\n stub_registry::register(f.module(), fn_stub);\n\n let module_has_initializer = module_has_initializer(f.module());\n let module_has_storage = module_has_storage(f.module());\n\n // Public functions undergo a lot of transformations from their Aztec.nr form.\n let original_params = f.parameters();\n\n let args_len_quote = if original_params.len() == 0 {\n // If the function has no parameters, we set the args_len to 0.\n quote { 0 }\n } else {\n // The following will give us <type_of_struct_member_1 as Serialize>::N + <type_of_struct_member_2 as Serialize>::N + ...\n original_params\n .map(|(_, param_type): (Quoted, Type)| {\n quote {\n <$param_type as $crate::protocol_types::traits::Serialize>::N\n }\n })\n .join(quote {+})\n };\n\n // Unlike in the private case, in public the `context` does not need to receive the hash of the original params.\n let context_creation = quote {\n let mut context = dep::aztec::context::public_context::PublicContext::new(|| {\n // We start from 1 because we skip the selector for the dispatch function.\n let serialized_args : [Field; $args_len_quote] = dep::aztec::context::public_context::calldata_copy(1, $args_len_quote);\n dep::aztec::hash::hash_args_array(serialized_args)\n });\n };\n\n // Modifications introduced by the different marker attributes.\n let internal_check = if is_fn_internal(f) {\n create_internal_check(f)\n } else {\n quote {}\n };\n\n let view_check = if is_fn_view(f) {\n create_view_check(f)\n } else {\n quote {}\n };\n\n let (assert_initializer, mark_as_initialized) = if is_fn_initializer(f) {\n (create_assert_correct_initializer_args(f), create_mark_as_initialized(f))\n } else {\n (quote {}, quote {})\n };\n\n let storage_init = if module_has_storage {\n // Some functions don't access storage, but it'd be quite difficult to only inject this variable if it is\n // referenced. We instead ignore 'unused variable' warnings for it.\n quote {\n #[allow(unused_variables)]\n let storage = Storage::init(&mut context);\n }\n } else {\n quote {}\n };\n\n // Initialization checks are not included in contracts that don't have initializers.\n let init_check = if module_has_initializer & !fn_has_noinitcheck(f) & !is_fn_initializer(f) {\n create_init_check(f)\n } else {\n quote {}\n };\n\n // Inject the authwit check if the function is marked with #[authorize_once].\n let authorize_once_check = if fn_has_authorize_once(f) {\n create_authorize_once_check(f)\n } else {\n quote {}\n };\n\n let to_prepend = quote {\n $context_creation\n $assert_initializer\n $init_check\n $internal_check\n $view_check\n $storage_init\n $authorize_once_check\n };\n\n let to_append = quote {\n $mark_as_initialized\n };\n\n let body = f.body().as_block().unwrap();\n let modified_body = modify_fn_body(body, to_prepend, to_append);\n f.set_body(modified_body);\n\n // All public functions are automatically made unconstrained, even if they were not marked as such. This is because\n // instead of compiling into a circuit, they will compile to bytecode that will be later transpiled into AVM\n // bytecode.\n f.set_unconstrained(true);\n f.set_return_public(true);\n}\n\npub(crate) comptime fn transform_utility(f: FunctionDefinition) {\n let fn_stub = stub_fn(f);\n stub_registry::register(f.module(), fn_stub);\n\n // Create utility context\n let context_creation =\n quote { let mut context = dep::aztec::context::utility_context::UtilityContext::new(); };\n\n // Initialize Storage if module has storage\n let storage_init = if module_has_storage(f.module()) {\n quote {\n // Some functions don't access storage, but it'd be quite difficult to only inject this variable if it is\n // referenced. We instead ignore 'unused variable' warnings for it.\n #[allow(unused_variables)]\n let storage = Storage::init(context);\n }\n } else {\n quote {}\n };\n\n // All utility functions perform message discovery, since they may need to access private notes that would be\n // found during this process or they may be used to sync private events from TypeScript\n // (`sync_private_state` function gets invoked by PXE::getPrivateEvents function).\n let message_discovery_call = create_message_discovery_call();\n\n // A quote to be injected at the beginning of the function body.\n let to_prepend = quote {\n dep::aztec::oracle::version::assert_compatible_oracle_version();\n $context_creation\n $storage_init\n $message_discovery_call\n };\n let body = f.body().as_block().unwrap();\n let modified_body = modify_fn_body(body, to_prepend, quote {});\n f.set_body(modified_body);\n\n f.set_return_public(true);\n}\n\ncomptime fn create_internal_check(f: FunctionDefinition) -> Quoted {\n let name = f.name();\n let assertion_message = f\"Function {name} can only be called internally\";\n quote { assert(context.msg_sender().unwrap() == context.this_address(), $assertion_message); }\n}\n\ncomptime fn create_view_check(f: FunctionDefinition) -> Quoted {\n let name = f.name();\n let assertion_message = f\"Function {name} can only be called statically\";\n if is_fn_private(f) {\n // Here `context` is of type context::PrivateContext\n quote { assert(context.inputs.call_context.is_static_call, $assertion_message); }\n } else {\n // Here `context` is of type context::PublicContext\n quote { assert(context.is_static_call(), $assertion_message); }\n }\n}\n\ncomptime fn create_assert_correct_initializer_args(f: FunctionDefinition) -> Quoted {\n let fn_visibility = get_fn_visibility(f);\n f\"dep::aztec::macros::functions::initialization_utils::assert_initialization_matches_address_preimage_{fn_visibility}(context);\"\n .quoted_contents()\n}\n\ncomptime fn create_mark_as_initialized(f: FunctionDefinition) -> Quoted {\n let fn_visibility = get_fn_visibility(f);\n f\"dep::aztec::macros::functions::initialization_utils::mark_as_initialized_{fn_visibility}(&mut context);\"\n .quoted_contents()\n}\n\ncomptime fn create_init_check(f: FunctionDefinition) -> Quoted {\n let fn_visibility = get_fn_visibility(f);\n f\"dep::aztec::macros::functions::initialization_utils::assert_is_initialized_{fn_visibility}(&mut context);\"\n .quoted_contents()\n}\n\n/// Injects a call to `aztec::messages::discovery::discover_new_messages`, causing for new notes to be added to PXE and made\n/// available for the current execution.\npub(crate) comptime fn create_message_discovery_call() -> Quoted {\n quote {\n /// Safety: message discovery returns nothing and is performed solely for its side-effects. It is therefore\n /// always safe to call.\n unsafe {\n dep::aztec::messages::discovery::discover_new_messages(\n context.this_address(),\n _compute_note_hash_and_nullifier,\n );\n };\n }\n}\n\n/// Injects an authwit verification check of the form:\n/// ```\n/// if (!from.eq(context.msg_sender().unwrap())) {\n/// assert_current_call_valid_authwit::<N>(&mut context, from);\n/// } else {\n/// assert(authwit_nonce, \"Invalid authwit nonce. When 'from' and 'msg_sender' are the same, authwit_nonce must be zero\");\n/// }\n/// ```\n/// where `from` and `authwit_nonce` are the names of the parameters that are expected to be present in the function definition.\n/// This check is injected by the `#[authorize_once(\"from_arg_name\", \"nonce_arg_name\")]`, which allows the user to define\n/// which parameters to use.\npub(crate) comptime fn create_authorize_once_check(f: FunctionDefinition) -> Quoted {\n let maybe_authorize_once_args = AUTHORIZE_ONCE_REGISTRY.get(f);\n let authorize_once_args = if maybe_authorize_once_args.is_some() {\n maybe_authorize_once_args.unwrap()\n } else {\n // We need to for authorize_once to have already executed so that we can retrieve its params - this depends on\n // the order in which the attributes are applied.\n panic(\n f\"Functions marked with #[authorize_once] must have the #[private] or #[public] attribute placed last\",\n )\n };\n\n let (from_arg_name, nonce_arg_name) = authorize_once_args;\n let name: Quoted = f.name();\n\n let from_arg_candidates =\n f.parameters().filter(|(name, _)| name == f\"{from_arg_name}\".quoted_contents());\n let (from_arg_name_quoted, from_arg_type) = if from_arg_candidates.len() == 1 {\n from_arg_candidates[0]\n } else {\n panic(\n f\"Function {name} does not have a {from_arg_name} parameter. Please specify which one to use in #[authorize_once(\\\"...\\\", \\\"authwit_nonce\\\")]\",\n )\n };\n if from_arg_type\n != quote { dep::protocol_types::address::aztec_address::AztecAddress }.as_type() {\n panic(\n f\"Argument {from_arg_name_quoted} in function {name} must be of type AztecAddress, but is of type {from_arg_type}\",\n )\n }\n\n let nonce_arg_candidates =\n f.parameters().filter(|(name, _)| name == f\"{nonce_arg_name}\".quoted_contents());\n let (nonce_arg_name_quoted, nonce_arg_type) = if nonce_arg_candidates.len() == 1 {\n nonce_arg_candidates[0]\n } else {\n panic(\n f\"Function {name} does not have a {nonce_arg_name}. Please specify which one to use in #[authorize_once(\\\"from\\\", \\\"...\\\")]\",\n )\n };\n if nonce_arg_type != quote { Field }.as_type() {\n panic(\n f\"Argument {nonce_arg_name_quoted} in function {name} must be of type Field, but is of type {nonce_arg_type}\",\n );\n }\n\n let nonce_check_quote = f\"{nonce_arg_name_quoted} == 0\".quoted_contents();\n\n let fn_call = if is_fn_private(f) {\n // At this point, the original args of the fn have already been altered by the macro\n // to include PrivateContextInputs, so we need to adjust the args_len accordingly.\n let args_len = f.parameters().len() - 1;\n quote { dep::aztec::authwit::auth::assert_current_call_valid_authwit::<$args_len> }\n } else {\n quote { dep::aztec::authwit::auth::assert_current_call_valid_authwit_public }\n };\n let invalid_nonce_message = f\"Invalid authwit nonce. When '{from_arg_name}' and 'msg_sender' are the same, '{nonce_arg_name}' must be zero\"\n .as_ctstring()\n .as_quoted_str();\n quote { \n if (!$from_arg_name_quoted.eq(context.msg_sender().unwrap())) {\n $fn_call(&mut context, $from_arg_name_quoted);\n } else {\n assert($nonce_check_quote, $invalid_nonce_message);\n }\n }\n}\n\n/// Checks if each function in the module is marked with either #[private], #[public], #[utility],\n/// #[contract_library_method], or #[test]. Non-macroified functions are not allowed in contracts.\npub(crate) comptime fn check_each_fn_macroified(m: Module) {\n for f in m.functions() {\n let name = f.name();\n if !is_fn_private(f)\n & !is_fn_public(f)\n & !is_fn_utility(f)\n & !is_fn_contract_library_method(f)\n & !is_fn_test(f) {\n panic(\n f\"Function {name} must be marked as either #[private], #[public], #[utility], #[contract_library_method], or #[test]\",\n );\n }\n }\n}\n"
6699
6699
  },
6700
6700
  "107": {
6701
6701
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/macros/notes.nr",
@@ -6905,51 +6905,55 @@
6905
6905
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/debug_log.nr",
6906
6906
  "source": "// TODO: Expose other wrapped functions than debug (info, warn)\n// ['silent', 'fatal', 'error', 'warn', 'info', 'verbose', 'debug', 'trace']\n\npub global SILENT_LOG_LEVEL: u8 = 0;\npub global FATAL_LOG_LEVEL: u8 = 1;\npub global ERROR_LOG_LEVEL: u8 = 2;\npub global WARN_LOG_LEVEL: u8 = 3;\npub global INFO_LOG_LEVEL: u8 = 4;\npub global VERBOSE_LOG_LEVEL: u8 = 5;\npub global DEBUG_LOG_LEVEL: u8 = 6;\npub global TRACE_LOG_LEVEL: u8 = 7;\n\n/// Utility function to console.log data in the acir simulator.\n/// Example:\n/// debug_log(\"blah blah this is a debug string\");\npub fn debug_log<let N: u32>(msg: str<N>) {\n debug_log_format(msg, []);\n}\n\n/// Same as debug_log, but allows to customize the log level.\n/// Consider changing just to 'log'\npub fn debug_log_with_level<let N: u32>(log_level: u8, msg: str<N>) {\n debug_log_format_with_level(log_level, msg, []);\n}\n\n/// Utility function to console.log data in the acir simulator. This variant receives a format string in which the\n/// `${k}` tokens will be replaced with the k-eth value in the `args` array.\n/// Examples:\n/// debug_log_format(\"get_2(slot:{0}) =>\\n\\t0:{1}\\n\\t1:{2}\", [storage_slot, note0_hash, note1_hash]);\n/// debug_log_format(\"whole array: {}\", [e1, e2, e3, e4]);\npub fn debug_log_format<let M: u32, let N: u32>(msg: str<M>, args: [Field; N]) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe\n // to call.\n unsafe { debug_log_array_oracle_wrapper(DEBUG_LOG_LEVEL, msg, args) };\n}\n\n/// Same as debug_log_format, but allows to customize the log level.\n/// Consider changing just to 'log_format'\npub fn debug_log_format_with_level<let M: u32, let N: u32>(\n log_level: u8,\n msg: str<M>,\n args: [Field; N],\n) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe\n // to call.\n unsafe { debug_log_array_oracle_wrapper(log_level, msg, args) };\n}\n\n/// Utility function to console.log data in the acir simulator. This variant receives a format string in which the\n/// `${k}` tokens will be replaced with the k-eth value in the `args` slice.\n/// Examples:\n/// debug_log_format(\"get_2(slot:{0}) =>\\n\\t0:{1}\\n\\t1:{2}\", [storage_slot, note0_hash, note1_hash]);\n/// debug_log_format(\"whole slice: {}\", [e1, e2, e3, e4]);\npub fn debug_log_format_slice<let M: u32>(log_level: u8, msg: str<M>, args: [Field]) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe\n // to call.\n unsafe { debug_log_slice_oracle_wrapper(log_level, msg, args) };\n}\n\n// We provide two versions of the debug log oracle: one that takes args as a slice and another one that takes args as an array.\n// We do this since conversion from array to slice generates overhead in public functions, since opcodes need to be emitted for the conversion.\n// By exposing the two flavors, we avoid conversions since the AVM is able to handle both arrays an slices in this oracle.\n\nunconstrained fn debug_log_slice_oracle_wrapper<let M: u32>(\n log_level: u8,\n msg: str<M>,\n args: [Field],\n) {\n debug_log_slice_oracle(log_level, msg, args);\n}\n\n// WARNING: sometimes when using debug logs the ACVM errors with: `thrown: \"solver opcode resolution error: cannot solve opcode: expression has too many unknowns x155\"`\n#[oracle(utilityDebugLog)]\nunconstrained fn debug_log_slice_oracle<let M: u32>(log_level: u8, msg: str<M>, args: [Field]) {}\n\nunconstrained fn debug_log_array_oracle_wrapper<let M: u32, let N: u32>(\n log_level: u8,\n msg: str<M>,\n args: [Field; N],\n) {\n debug_log_array_oracle(log_level, msg, N, args);\n}\n\n#[oracle(utilityDebugLog)]\nunconstrained fn debug_log_array_oracle<let M: u32, let N: u32>(\n log_level: u8,\n msg: str<M>,\n length: u32,\n args: [Field; N],\n) {}\n"
6907
6907
  },
6908
- "315": {
6908
+ "316": {
6909
6909
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/hash.nr",
6910
- "source": "use crate::{\n abis::{\n contract_class_function_leaf_preimage::ContractClassFunctionLeafPreimage,\n function_selector::FunctionSelector,\n note_hash::NoteHash,\n nullifier::Nullifier,\n private_log::{PrivateLog, PrivateLogData},\n },\n address::{AztecAddress, EthAddress},\n constants::{\n CONTRACT_CLASS_LOG_SIZE_IN_FIELDS, FUNCTION_TREE_HEIGHT, GENERATOR_INDEX__NOTE_HASH_NONCE,\n GENERATOR_INDEX__OUTER_NULLIFIER, GENERATOR_INDEX__SILOED_NOTE_HASH,\n GENERATOR_INDEX__UNIQUE_NOTE_HASH, TWO_POW_64,\n },\n merkle_tree::root_from_sibling_path,\n messaging::l2_to_l1_message::L2ToL1Message,\n poseidon2::Poseidon2Sponge,\n side_effect::{Counted, Scoped},\n traits::{FromField, Hash, ToField},\n utils::field::{field_from_bytes, field_from_bytes_32_trunc},\n};\nuse std::embedded_curve_ops::EmbeddedCurveScalar;\n\npub fn sha256_to_field<let N: u32>(bytes_to_hash: [u8; N]) -> Field {\n let sha256_hashed = sha256::digest(bytes_to_hash);\n let hash_in_a_field = field_from_bytes_32_trunc(sha256_hashed);\n\n hash_in_a_field\n}\n\npub fn private_functions_root_from_siblings(\n selector: FunctionSelector,\n vk_hash: Field,\n function_leaf_index: Field,\n function_leaf_sibling_path: [Field; FUNCTION_TREE_HEIGHT],\n) -> Field {\n let function_leaf_preimage = ContractClassFunctionLeafPreimage { selector, vk_hash };\n let function_leaf = function_leaf_preimage.hash();\n root_from_sibling_path(\n function_leaf,\n function_leaf_index,\n function_leaf_sibling_path,\n )\n}\n\npub fn compute_note_hash_nonce(first_nullifier_in_tx: Field, note_index_in_tx: u32) -> Field {\n // Hashing the first nullifier with note index in tx is guaranteed to be unique (because all nullifiers are also\n // unique).\n poseidon2_hash_with_separator(\n [first_nullifier_in_tx, note_index_in_tx as Field],\n GENERATOR_INDEX__NOTE_HASH_NONCE,\n )\n}\n\npub fn compute_unique_note_hash(note_nonce: Field, siloed_note_hash: Field) -> Field {\n let inputs = [note_nonce, siloed_note_hash];\n poseidon2_hash_with_separator(inputs, GENERATOR_INDEX__UNIQUE_NOTE_HASH)\n}\n\npub fn compute_nonce_and_unique_note_hash(\n siloed_note_hash: Field,\n first_nullifier: Field,\n note_index_in_tx: u32,\n) -> Field {\n let note_nonce = compute_note_hash_nonce(first_nullifier, note_index_in_tx);\n compute_unique_note_hash(note_nonce, siloed_note_hash)\n}\n\npub fn compute_siloed_note_hash(app: AztecAddress, note_hash: Field) -> Field {\n poseidon2_hash_with_separator(\n [app.to_field(), note_hash],\n GENERATOR_INDEX__SILOED_NOTE_HASH,\n )\n}\n\n/// Computes unique note hashes from siloed note hashes\npub fn compute_unique_siloed_note_hash(\n siloed_note_hash: Field,\n first_nullifier: Field,\n note_index_in_tx: u32,\n) -> Field {\n if siloed_note_hash == 0 {\n 0\n } else {\n compute_nonce_and_unique_note_hash(siloed_note_hash, first_nullifier, note_index_in_tx)\n }\n}\n\n/// Siloing in the context of Aztec refers to the process of hashing a note hash with a contract address (this way\n/// the note hash is scoped to a specific contract). This is used to prevent intermingling of notes between contracts.\npub fn silo_note_hash(note_hash: Scoped<Counted<NoteHash>>) -> Field {\n if note_hash.contract_address.is_zero() {\n 0\n } else {\n compute_siloed_note_hash(note_hash.contract_address, note_hash.innermost())\n }\n}\n\npub fn compute_siloed_nullifier(app: AztecAddress, nullifier: Field) -> Field {\n poseidon2_hash_with_separator(\n [app.to_field(), nullifier],\n GENERATOR_INDEX__OUTER_NULLIFIER,\n )\n}\n\npub fn silo_nullifier(nullifier: Scoped<Counted<Nullifier>>) -> Field {\n let value = nullifier.innermost().value;\n // Q: shouldn't we be checking whether the _whole_ nullifier is empty?\n // A: We don't have to. The init and inner circuits add contract address to non-empty nullifiers.\n // So we know we should silo it if the contract address is not empty.\n if nullifier.contract_address.is_zero() {\n value // Return `value` instead of 0 because an already-siloed nullifier's contract address is zero.\n } else {\n compute_siloed_nullifier(nullifier.contract_address, value)\n }\n}\n\npub fn compute_siloed_private_log_field(contract_address: AztecAddress, field: Field) -> Field {\n poseidon2_hash([contract_address.to_field(), field])\n}\n\npub fn silo_private_log(private_log: Scoped<Counted<PrivateLogData>>) -> PrivateLog {\n let log = private_log.innermost().log;\n if private_log.contract_address.is_zero() {\n log\n } else {\n let mut fields = log.fields;\n fields[0] = compute_siloed_private_log_field(private_log.contract_address, fields[0]);\n PrivateLog::new(fields, log.length)\n }\n}\n\npub fn compute_contract_class_log_hash(log: [Field; CONTRACT_CLASS_LOG_SIZE_IN_FIELDS]) -> Field {\n poseidon2_hash(log)\n}\n\npub fn compute_app_secret_key(\n master_secret_key: EmbeddedCurveScalar,\n app_address: AztecAddress,\n app_secret_generator: Field,\n) -> Field {\n poseidon2_hash_with_separator(\n [master_secret_key.hi, master_secret_key.lo, app_address.to_field()],\n app_secret_generator,\n )\n}\n\npub fn merkle_hash(left: Field, right: Field) -> Field {\n poseidon2_hash([left, right])\n}\n\npub fn compute_l2_to_l1_hash(\n contract_address: AztecAddress,\n recipient: EthAddress,\n content: Field,\n rollup_version_id: Field,\n chain_id: Field,\n) -> Field {\n let contract_address_bytes: [u8; 32] = contract_address.to_field().to_be_bytes();\n let recipient_bytes: [u8; 20] = recipient.to_be_bytes();\n let content_bytes: [u8; 32] = content.to_be_bytes();\n let rollup_version_id_bytes: [u8; 32] = rollup_version_id.to_be_bytes();\n let chain_id_bytes: [u8; 32] = chain_id.to_be_bytes();\n\n let mut bytes: [u8; 148] = std::mem::zeroed();\n for i in 0..32 {\n bytes[i] = contract_address_bytes[i];\n bytes[i + 32] = rollup_version_id_bytes[i];\n // 64 - 84 are for recipient.\n bytes[i + 84] = chain_id_bytes[i];\n bytes[i + 116] = content_bytes[i];\n }\n\n for i in 0..20 {\n bytes[64 + i] = recipient_bytes[i];\n }\n\n sha256_to_field(bytes)\n}\n\npub fn silo_l2_to_l1_message(\n msg: Scoped<L2ToL1Message>,\n rollup_version_id: Field,\n chain_id: Field,\n) -> Field {\n if msg.contract_address.is_zero() {\n 0\n } else {\n compute_l2_to_l1_hash(\n msg.contract_address,\n msg.inner.recipient,\n msg.inner.content,\n rollup_version_id,\n chain_id,\n )\n }\n}\n\n/// Computes sha256 hash of 2 input fields.\n///\n/// @returns A truncated field (i.e., the first byte is always 0).\npub fn accumulate_sha256(v0: Field, v1: Field) -> Field {\n // Concatenate two fields into 32 x 2 = 64 bytes\n let v0_as_bytes: [u8; 32] = v0.to_be_bytes();\n let v1_as_bytes: [u8; 32] = v1.to_be_bytes();\n let hash_input_flattened = v0_as_bytes.concat(v1_as_bytes);\n\n sha256_to_field(hash_input_flattened)\n}\n\n#[inline_always]\npub fn pedersen_hash<let N: u32>(inputs: [Field; N], hash_index: u32) -> Field {\n std::hash::pedersen_hash_with_separator(inputs, hash_index)\n}\n\npub fn poseidon2_hash<let N: u32>(inputs: [Field; N]) -> Field {\n poseidon::poseidon2::Poseidon2::hash(inputs, N)\n}\n\n#[no_predicates]\npub fn poseidon2_hash_with_separator<let N: u32, T>(inputs: [Field; N], separator: T) -> Field\nwhere\n T: ToField,\n{\n let inputs_with_separator = [separator.to_field()].concat(inputs);\n poseidon2_hash(inputs_with_separator)\n}\n\n// Performs a fixed length hash with a subarray of the given input.\n// Useful for SpongeBlob in which we absorb M things and want to check it vs a hash of M elts of an N-len array.\n// Using stdlib poseidon, this will always absorb an extra 1 as a 'variable' hash, and not match spongeblob.squeeze()\n// or any ts implementation. Also checks that any remaining elts not hashed are empty.\n#[no_predicates]\npub fn poseidon2_hash_subarray<let N: u32>(input: [Field; N], in_len: u32) -> Field {\n let mut sponge = poseidon2_absorb_chunks(input, in_len, false);\n sponge.squeeze()\n}\n\n// NB the below is the same as poseidon::poseidon2::Poseidon2::hash(), but replacing a range check with a bit check,\n// and absorbing in chunks of 3 below.\n#[no_predicates]\npub fn poseidon2_cheaper_variable_hash<let N: u32>(input: [Field; N], in_len: u32) -> Field {\n let mut sponge = poseidon2_absorb_chunks(input, in_len, true);\n // In the case where the hash preimage is variable-length, we append `1` to the end of the input, to distinguish\n // from fixed-length hashes. (the combination of this additional field element + the hash IV ensures\n // fixed-length and variable-length hashes do not collide)\n if in_len != N {\n sponge.absorb(1);\n }\n sponge.squeeze()\n}\n\n// The below fn reduces gates of a conditional poseidon2 hash by approx 3x (thank you ~* Giant Brain Dev @IlyasRidhuan *~ for the idea)\n// Why? Because when we call stdlib poseidon, we call absorb for each item. When absorbing is conditional, it seems the compiler does not know\n// what cache_size will be when calling absorb, so it assigns the permutation gates for /each i/ rather than /every 3rd i/, which is actually required.\n// The below code forces the compiler to:\n// - absorb normally up to 2 times to set cache_size to 1\n// - absorb in chunks of 3 to ensure perm. only happens every 3rd absorb\n// - absorb normally up to 2 times to add any remaining values to the hash\n// In fixed len hashes, the compiler is able to tell that it will only need to perform the permutation every 3 absorbs.\n// NB: it also replaces unnecessary range checks (i < thing) with a bit check (&= i != thing), which alone reduces the gates of a var. hash by half.\n\n#[no_predicates]\nfn poseidon2_absorb_chunks<let N: u32>(\n input: [Field; N],\n in_len: u32,\n variable: bool,\n) -> Poseidon2Sponge {\n let iv: Field = (in_len as Field) * TWO_POW_64;\n let mut sponge = Poseidon2Sponge::new(iv);\n // Even though shift is always 1 here, if we input in_len = 0 we get an underflow\n // since we cannot isolate computation branches. The below is just to avoid that.\n let shift = if in_len == 0 { 0 } else { 1 };\n if in_len != 0 {\n // cache_size = 0, init absorb\n sponge.cache[0] = input[0];\n sponge.cache_size = 1;\n // shift = num elts already added to make cache_size 1 = 1 for a fresh sponge\n // M = max_chunks = (N - 1 - (N - 1) % 3) / 3: (must be written as a fn of N to compile)\n // max_remainder = (N - 1) % 3;\n // max_chunks = (N - 1 - max_remainder) / 3;\n sponge = poseidon2_absorb_chunks_loop::<N, (N - 1 - (N - 1) % 3) / 3>(\n sponge,\n input,\n in_len,\n variable,\n shift,\n );\n }\n sponge\n}\n\n// NB: If it's not required to check that the non-absorbed elts of 'input' are 0s, set skip_0_check=true\n#[no_predicates]\npub fn poseidon2_absorb_chunks_existing_sponge<let N: u32>(\n in_sponge: Poseidon2Sponge,\n input: [Field; N],\n in_len: u32,\n skip_0_check: bool,\n) -> Poseidon2Sponge {\n let mut sponge = in_sponge;\n // 'shift' is to account for already added inputs\n let mut shift = 0;\n // 'stop' is to avoid an underflow when inputting in_len = 0\n let mut stop = false;\n for i in 0..3 {\n if shift == in_len {\n stop = true;\n }\n if (sponge.cache_size != 1) & (!stop) {\n sponge.absorb(input[i]);\n shift += 1;\n }\n }\n sponge = if stop {\n sponge\n } else {\n // max_chunks = (N - (N % 3)) / 3;\n poseidon2_absorb_chunks_loop::<N, (N - (N % 3)) / 3>(\n sponge,\n input,\n in_len,\n skip_0_check,\n shift,\n )\n };\n sponge\n}\n\n// The below is the loop to absorb elts into a poseidon sponge in chunks of 3\n// shift - the num of elts already absorbed to ensure the sponge's cache_size = 1\n// M - the max number of chunks required to absorb N things (must be comptime to compile)\n// NB: The 0 checks ('Found non-zero field...') are messy, but having a separate loop over N to check\n// for 0s costs 3N gates. Current approach is approx 2N gates.\n#[no_predicates]\nfn poseidon2_absorb_chunks_loop<let N: u32, let M: u32>(\n in_sponge: Poseidon2Sponge,\n input: [Field; N],\n in_len: u32,\n variable: bool,\n shift: u32,\n) -> Poseidon2Sponge {\n assert(in_len <= N, \"Given in_len to absorb is larger than the input array len\");\n // When we have an existing sponge, we may have a shift of 0, and the final 'k+2' below = N\n // The below avoids an overflow\n let skip_last = 3 * M == N;\n // Writing in_sponge: &mut does not compile\n let mut sponge = in_sponge;\n let mut should_add = true;\n // The num of things left over after absorbing in 3s\n let remainder = (in_len - shift) % 3;\n // The num of chunks of 3 to absorb (maximum M)\n let chunks = (in_len - shift - remainder) / 3;\n for i in 0..M {\n // Now we loop through cache size = 1 -> 3\n should_add &= i != chunks;\n // This is the index at the start of the chunk (for readability)\n let k = 3 * i + shift;\n if should_add {\n // cache_size = 1, 2 => just assign\n sponge.cache[1] = input[k];\n sponge.cache[2] = input[k + 1];\n // cache_size = 3 => duplex + perm\n for j in 0..3 {\n sponge.state[j] += sponge.cache[j];\n }\n sponge.state = std::hash::poseidon2_permutation(sponge.state, 4);\n sponge.cache[0] = input[k + 2];\n // cache_size is now 1 again, repeat loop\n } else if (!variable) & (i != chunks) {\n // if we are hashing a fixed len array which is a subarray, we check the remaining elts are 0\n // NB: we don't check at i == chunks, because that chunk contains elts to be absorbed or checked below\n let last_0 = if (i == M - 1) & (skip_last) {\n 0\n } else {\n input[k + 2]\n };\n let all_0 = (input[k] == 0) & (input[k + 1] == 0) & (last_0 == 0);\n assert(all_0, \"Found non-zero field after breakpoint\");\n }\n }\n // we have 'remainder' num of items left to absorb\n should_add = true;\n // below is to avoid overflows (i.e. if inlen is close to N)\n let mut should_check = !variable;\n for i in 0..3 {\n should_add &= i != remainder;\n should_check &= in_len - remainder + i != N;\n if should_add {\n // we want to absorb the final 'remainder' items\n sponge.absorb(input[in_len - remainder + i]);\n } else if should_check {\n assert_eq(input[in_len - remainder + i], 0, \"Found non-zero field after breakpoint\");\n }\n }\n sponge\n}\n\npub fn poseidon2_hash_with_separator_slice<T>(inputs: [Field], separator: T) -> Field\nwhere\n T: ToField,\n{\n let in_len = inputs.len() + 1;\n let iv: Field = (in_len as Field) * TWO_POW_64;\n let mut sponge = Poseidon2Sponge::new(iv);\n sponge.absorb(separator.to_field());\n\n for i in 0..inputs.len() {\n sponge.absorb(inputs[i]);\n }\n\n sponge.squeeze()\n}\n\n// This function is unconstrained because it is intended to be used in unconstrained context only as\n// in constrained contexts it would be too inefficient.\npub unconstrained fn poseidon2_hash_with_separator_bounded_vec<let N: u32, T>(\n inputs: BoundedVec<Field, N>,\n separator: T,\n) -> Field\nwhere\n T: ToField,\n{\n let in_len = inputs.len() + 1;\n let iv: Field = (in_len as Field) * TWO_POW_64;\n let mut sponge = Poseidon2Sponge::new(iv);\n sponge.absorb(separator.to_field());\n\n for i in 0..inputs.len() {\n sponge.absorb(inputs.get(i));\n }\n\n sponge.squeeze()\n}\n\n#[no_predicates]\npub fn poseidon2_hash_bytes<let N: u32>(inputs: [u8; N]) -> Field {\n let mut fields = [0; (N + 30) / 31];\n let mut field_index = 0;\n let mut current_field = [0; 31];\n for i in 0..inputs.len() {\n let index = i % 31;\n current_field[index] = inputs[i];\n if index == 30 {\n fields[field_index] = field_from_bytes(current_field, false);\n current_field = [0; 31];\n field_index += 1;\n }\n }\n if field_index != fields.len() {\n fields[field_index] = field_from_bytes(current_field, false);\n }\n poseidon2_hash(fields)\n}\n\n#[test]\nfn poseidon_chunks_matches_fixed() {\n let in_len = 501;\n let mut input: [Field; 4096] = [0; 4096];\n let mut fixed_input = [3; 501];\n assert(in_len == fixed_input.len()); // sanity check\n for i in 0..in_len {\n input[i] = 3;\n }\n let sub_chunk_hash = poseidon2_hash_subarray(input, in_len);\n let fixed_len_hash = poseidon::poseidon2::Poseidon2::hash(fixed_input, fixed_input.len());\n assert(sub_chunk_hash == fixed_len_hash);\n}\n\n#[test]\nfn poseidon_chunks_matches_variable() {\n let in_len = 501;\n let mut input: [Field; 4096] = [0; 4096];\n for i in 0..in_len {\n input[i] = 3;\n }\n let variable_chunk_hash = poseidon2_cheaper_variable_hash(input, in_len);\n let variable_len_hash = poseidon::poseidon2::Poseidon2::hash(input, in_len);\n assert(variable_chunk_hash == variable_len_hash);\n}\n\n#[test]\nfn existing_sponge_poseidon_chunks_matches_fixed() {\n let in_len = 501;\n let mut input: [Field; 4096] = [0; 4096];\n let mut fixed_input = [3; 501];\n assert(in_len == fixed_input.len()); // sanity check\n for i in 0..in_len {\n input[i] = 3;\n }\n // absorb 250 of the 501 things\n let empty_sponge = Poseidon2Sponge::new((in_len as Field) * TWO_POW_64);\n let first_sponge = poseidon2_absorb_chunks_existing_sponge(empty_sponge, input, 250, true);\n // now absorb the final 251 (since they are all 3s, im being lazy and not making a new array)\n let mut final_sponge = poseidon2_absorb_chunks_existing_sponge(first_sponge, input, 251, true);\n let fixed_len_hash = Poseidon2Sponge::hash(fixed_input, fixed_input.len());\n assert(final_sponge.squeeze() == fixed_len_hash);\n}\n\n#[test]\nfn poseidon_chunks_empty_inputs() {\n let in_len = 0;\n let mut input: [Field; 4096] = [0; 4096];\n let mut constructed_empty_sponge = poseidon2_absorb_chunks(input, in_len, true);\n let mut first_sponge =\n poseidon2_absorb_chunks_existing_sponge(constructed_empty_sponge, input, in_len, true);\n assert(first_sponge.squeeze() == constructed_empty_sponge.squeeze());\n}\n\n#[test]\nfn smoke_sha256_to_field() {\n let full_buffer = [\n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,\n 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,\n 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,\n 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93,\n 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112,\n 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130,\n 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,\n 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159,\n ];\n let result = sha256_to_field(full_buffer);\n\n assert(result == 0x448ebbc9e1a31220a2f3830c18eef61b9bd070e5084b7fa2a359fe729184c7);\n\n // to show correctness of the current ver (truncate one byte) vs old ver (mod full bytes):\n let result_bytes = sha256::digest(full_buffer);\n let truncated_field = crate::utils::field::field_from_bytes_32_trunc(result_bytes);\n assert(truncated_field == result);\n let mod_res = result + (result_bytes[31] as Field);\n assert(mod_res == 0x448ebbc9e1a31220a2f3830c18eef61b9bd070e5084b7fa2a359fe729184e0);\n}\n\n#[test]\nfn compute_l2_l1_hash() {\n // All zeroes\n let hash_result =\n compute_l2_to_l1_hash(AztecAddress::from_field(0), EthAddress::zero(), 0, 0, 0);\n assert(hash_result == 0x3b18c58c739716e76429634a61375c45b3b5cd470c22ab6d3e14cee23dd992);\n\n // Non-zero case\n let hash_result = compute_l2_to_l1_hash(\n AztecAddress::from_field(1),\n EthAddress::from_field(3),\n 5,\n 2,\n 4,\n );\n assert(hash_result == 0xaab2a5828156782b12a1dc6f336e2bc627eb1b9514b02d511f66296990c050);\n}\n\n#[test]\nfn silo_l2_to_l1_message_matches_typescript() {\n let version = 4;\n let chainId = 5;\n\n let hash = silo_l2_to_l1_message(\n L2ToL1Message { recipient: EthAddress::from_field(1), content: 2 }.scope(\n AztecAddress::from_field(3),\n ),\n version,\n chainId,\n );\n\n // The following value was generated by `yarn-project/stdlib/src/hash/hash.test.ts`\n let hash_from_typescript = 0x0081edf209e087ad31b3fd24263698723d57190bd1d6e9fe056fc0c0a68ee661;\n\n assert_eq(hash, hash_from_typescript);\n}\n\n#[test]\nunconstrained fn poseidon2_hash_with_separator_bounded_vec_matches_non_bounded_vec_version() {\n let inputs = BoundedVec::<Field, 4>::from_array([1, 2, 3]);\n let separator = 42;\n\n // Hash using bounded vec version\n let bounded_result = poseidon2_hash_with_separator_bounded_vec(inputs, separator);\n\n // Hash using regular version\n let regular_result = poseidon2_hash_with_separator([1, 2, 3], separator);\n\n // Results should match\n assert_eq(bounded_result, regular_result);\n}\n"
6910
+ "source": "mod poseidon2_chunks;\n\nuse crate::{\n abis::{\n contract_class_function_leaf_preimage::ContractClassFunctionLeafPreimage,\n function_selector::FunctionSelector,\n note_hash::NoteHash,\n nullifier::Nullifier,\n private_log::{PrivateLog, PrivateLogData},\n },\n address::{AztecAddress, EthAddress},\n constants::{\n CONTRACT_CLASS_LOG_SIZE_IN_FIELDS, FUNCTION_TREE_HEIGHT, GENERATOR_INDEX__NOTE_HASH_NONCE,\n GENERATOR_INDEX__OUTER_NULLIFIER, GENERATOR_INDEX__SILOED_NOTE_HASH,\n GENERATOR_INDEX__UNIQUE_NOTE_HASH, TWO_POW_64,\n },\n merkle_tree::root_from_sibling_path,\n messaging::l2_to_l1_message::L2ToL1Message,\n poseidon2::Poseidon2Sponge,\n side_effect::{Counted, Scoped},\n traits::{FromField, Hash, ToField},\n utils::field::{field_from_bytes, field_from_bytes_32_trunc},\n};\n\npub use poseidon2_chunks::poseidon2_absorb_in_chunks_existing_sponge;\nuse poseidon2_chunks::poseidon2_absorb_in_chunks;\nuse std::embedded_curve_ops::EmbeddedCurveScalar;\n\npub fn sha256_to_field<let N: u32>(bytes_to_hash: [u8; N]) -> Field {\n let sha256_hashed = sha256::digest(bytes_to_hash);\n let hash_in_a_field = field_from_bytes_32_trunc(sha256_hashed);\n\n hash_in_a_field\n}\n\npub fn private_functions_root_from_siblings(\n selector: FunctionSelector,\n vk_hash: Field,\n function_leaf_index: Field,\n function_leaf_sibling_path: [Field; FUNCTION_TREE_HEIGHT],\n) -> Field {\n let function_leaf_preimage = ContractClassFunctionLeafPreimage { selector, vk_hash };\n let function_leaf = function_leaf_preimage.hash();\n root_from_sibling_path(\n function_leaf,\n function_leaf_index,\n function_leaf_sibling_path,\n )\n}\n\npub fn compute_note_hash_nonce(first_nullifier_in_tx: Field, note_index_in_tx: u32) -> Field {\n // Hashing the first nullifier with note index in tx is guaranteed to be unique (because all nullifiers are also\n // unique).\n poseidon2_hash_with_separator(\n [first_nullifier_in_tx, note_index_in_tx as Field],\n GENERATOR_INDEX__NOTE_HASH_NONCE,\n )\n}\n\npub fn compute_unique_note_hash(note_nonce: Field, siloed_note_hash: Field) -> Field {\n let inputs = [note_nonce, siloed_note_hash];\n poseidon2_hash_with_separator(inputs, GENERATOR_INDEX__UNIQUE_NOTE_HASH)\n}\n\npub fn compute_nonce_and_unique_note_hash(\n siloed_note_hash: Field,\n first_nullifier: Field,\n note_index_in_tx: u32,\n) -> Field {\n let note_nonce = compute_note_hash_nonce(first_nullifier, note_index_in_tx);\n compute_unique_note_hash(note_nonce, siloed_note_hash)\n}\n\npub fn compute_siloed_note_hash(app: AztecAddress, note_hash: Field) -> Field {\n poseidon2_hash_with_separator(\n [app.to_field(), note_hash],\n GENERATOR_INDEX__SILOED_NOTE_HASH,\n )\n}\n\n/// Computes unique note hashes from siloed note hashes\npub fn compute_unique_siloed_note_hash(\n siloed_note_hash: Field,\n first_nullifier: Field,\n note_index_in_tx: u32,\n) -> Field {\n if siloed_note_hash == 0 {\n 0\n } else {\n compute_nonce_and_unique_note_hash(siloed_note_hash, first_nullifier, note_index_in_tx)\n }\n}\n\n/// Siloing in the context of Aztec refers to the process of hashing a note hash with a contract address (this way\n/// the note hash is scoped to a specific contract). This is used to prevent intermingling of notes between contracts.\npub fn silo_note_hash(note_hash: Scoped<Counted<NoteHash>>) -> Field {\n if note_hash.contract_address.is_zero() {\n 0\n } else {\n compute_siloed_note_hash(note_hash.contract_address, note_hash.innermost())\n }\n}\n\npub fn compute_siloed_nullifier(app: AztecAddress, nullifier: Field) -> Field {\n poseidon2_hash_with_separator(\n [app.to_field(), nullifier],\n GENERATOR_INDEX__OUTER_NULLIFIER,\n )\n}\n\npub fn silo_nullifier(nullifier: Scoped<Counted<Nullifier>>) -> Field {\n let value = nullifier.innermost().value;\n // Q: shouldn't we be checking whether the _whole_ nullifier is empty?\n // A: We don't have to. The init and inner circuits add contract address to non-empty nullifiers.\n // So we know we should silo it if the contract address is not empty.\n if nullifier.contract_address.is_zero() {\n value // Return `value` instead of 0 because an already-siloed nullifier's contract address is zero.\n } else {\n compute_siloed_nullifier(nullifier.contract_address, value)\n }\n}\n\npub fn compute_siloed_private_log_field(contract_address: AztecAddress, field: Field) -> Field {\n poseidon2_hash([contract_address.to_field(), field])\n}\n\npub fn silo_private_log(private_log: Scoped<Counted<PrivateLogData>>) -> PrivateLog {\n let log = private_log.innermost().log;\n if private_log.contract_address.is_zero() {\n log\n } else {\n let mut fields = log.fields;\n fields[0] = compute_siloed_private_log_field(private_log.contract_address, fields[0]);\n PrivateLog::new(fields, log.length)\n }\n}\n\npub fn compute_contract_class_log_hash(log: [Field; CONTRACT_CLASS_LOG_SIZE_IN_FIELDS]) -> Field {\n poseidon2_hash(log)\n}\n\npub fn compute_app_secret_key(\n master_secret_key: EmbeddedCurveScalar,\n app_address: AztecAddress,\n app_secret_generator: Field,\n) -> Field {\n poseidon2_hash_with_separator(\n [master_secret_key.hi, master_secret_key.lo, app_address.to_field()],\n app_secret_generator,\n )\n}\n\npub fn merkle_hash(left: Field, right: Field) -> Field {\n poseidon2_hash([left, right])\n}\n\npub fn compute_l2_to_l1_hash(\n contract_address: AztecAddress,\n recipient: EthAddress,\n content: Field,\n rollup_version_id: Field,\n chain_id: Field,\n) -> Field {\n let contract_address_bytes: [u8; 32] = contract_address.to_field().to_be_bytes();\n let recipient_bytes: [u8; 20] = recipient.to_be_bytes();\n let content_bytes: [u8; 32] = content.to_be_bytes();\n let rollup_version_id_bytes: [u8; 32] = rollup_version_id.to_be_bytes();\n let chain_id_bytes: [u8; 32] = chain_id.to_be_bytes();\n\n let mut bytes: [u8; 148] = std::mem::zeroed();\n for i in 0..32 {\n bytes[i] = contract_address_bytes[i];\n bytes[i + 32] = rollup_version_id_bytes[i];\n // 64 - 84 are for recipient.\n bytes[i + 84] = chain_id_bytes[i];\n bytes[i + 116] = content_bytes[i];\n }\n\n for i in 0..20 {\n bytes[64 + i] = recipient_bytes[i];\n }\n\n sha256_to_field(bytes)\n}\n\npub fn silo_l2_to_l1_message(\n msg: Scoped<L2ToL1Message>,\n rollup_version_id: Field,\n chain_id: Field,\n) -> Field {\n if msg.contract_address.is_zero() {\n 0\n } else {\n compute_l2_to_l1_hash(\n msg.contract_address,\n msg.inner.recipient,\n msg.inner.content,\n rollup_version_id,\n chain_id,\n )\n }\n}\n\n/// Computes sha256 hash of 2 input fields.\n///\n/// @returns A truncated field (i.e., the first byte is always 0).\npub fn accumulate_sha256(v0: Field, v1: Field) -> Field {\n // Concatenate two fields into 32 x 2 = 64 bytes\n let v0_as_bytes: [u8; 32] = v0.to_be_bytes();\n let v1_as_bytes: [u8; 32] = v1.to_be_bytes();\n let hash_input_flattened = v0_as_bytes.concat(v1_as_bytes);\n\n sha256_to_field(hash_input_flattened)\n}\n\n#[inline_always]\npub fn pedersen_hash<let N: u32>(inputs: [Field; N], hash_index: u32) -> Field {\n std::hash::pedersen_hash_with_separator(inputs, hash_index)\n}\n\npub fn poseidon2_hash<let N: u32>(inputs: [Field; N]) -> Field {\n poseidon::poseidon2::Poseidon2::hash(inputs, N)\n}\n\n#[no_predicates]\npub fn poseidon2_hash_with_separator<let N: u32, T>(inputs: [Field; N], separator: T) -> Field\nwhere\n T: ToField,\n{\n let inputs_with_separator = [separator.to_field()].concat(inputs);\n poseidon2_hash(inputs_with_separator)\n}\n\n// Performs a fixed length hash with a subarray of the given input.\n// Useful for SpongeBlob in which we absorb M things and want to check it vs a hash of M elts of an N-len array.\n// Using stdlib poseidon, this will always absorb an extra 1 as a 'variable' hash, and not match spongeblob.squeeze()\n// or any ts implementation. Also checks that any remaining elts not hashed are empty.\n#[no_predicates]\npub fn poseidon2_hash_subarray<let N: u32>(input: [Field; N], in_len: u32) -> Field {\n let mut sponge = poseidon2_absorb_in_chunks(input, in_len, false);\n sponge.squeeze()\n}\n\n// NB the below is the same as poseidon::poseidon2::Poseidon2::hash(), but replacing a range check with a bit check,\n// and absorbing in chunks of 3 below.\n#[no_predicates]\npub fn poseidon2_cheaper_variable_hash<let N: u32>(input: [Field; N], in_len: u32) -> Field {\n let mut sponge = poseidon2_absorb_in_chunks(input, in_len, true);\n // In the case where the hash preimage is variable-length, we append `1` to the end of the input, to distinguish\n // from fixed-length hashes. (the combination of this additional field element + the hash IV ensures\n // fixed-length and variable-length hashes do not collide)\n if in_len != N {\n sponge.absorb(1);\n }\n sponge.squeeze()\n}\n\npub fn poseidon2_hash_with_separator_slice<T>(inputs: [Field], separator: T) -> Field\nwhere\n T: ToField,\n{\n let in_len = inputs.len() + 1;\n let iv: Field = (in_len as Field) * TWO_POW_64;\n let mut sponge = Poseidon2Sponge::new(iv);\n sponge.absorb(separator.to_field());\n\n for i in 0..inputs.len() {\n sponge.absorb(inputs[i]);\n }\n\n sponge.squeeze()\n}\n\n// This function is unconstrained because it is intended to be used in unconstrained context only as\n// in constrained contexts it would be too inefficient.\npub unconstrained fn poseidon2_hash_with_separator_bounded_vec<let N: u32, T>(\n inputs: BoundedVec<Field, N>,\n separator: T,\n) -> Field\nwhere\n T: ToField,\n{\n let in_len = inputs.len() + 1;\n let iv: Field = (in_len as Field) * TWO_POW_64;\n let mut sponge = Poseidon2Sponge::new(iv);\n sponge.absorb(separator.to_field());\n\n for i in 0..inputs.len() {\n sponge.absorb(inputs.get(i));\n }\n\n sponge.squeeze()\n}\n\n#[no_predicates]\npub fn poseidon2_hash_bytes<let N: u32>(inputs: [u8; N]) -> Field {\n let mut fields = [0; (N + 30) / 31];\n let mut field_index = 0;\n let mut current_field = [0; 31];\n for i in 0..inputs.len() {\n let index = i % 31;\n current_field[index] = inputs[i];\n if index == 30 {\n fields[field_index] = field_from_bytes(current_field, false);\n current_field = [0; 31];\n field_index += 1;\n }\n }\n if field_index != fields.len() {\n fields[field_index] = field_from_bytes(current_field, false);\n }\n poseidon2_hash(fields)\n}\n\n#[test]\nfn poseidon_chunks_matches_fixed() {\n let in_len = 501;\n let mut input: [Field; 4096] = [0; 4096];\n let mut fixed_input = [3; 501];\n assert(in_len == fixed_input.len()); // sanity check\n for i in 0..in_len {\n input[i] = 3;\n }\n let sub_chunk_hash = poseidon2_hash_subarray(input, in_len);\n let fixed_len_hash = poseidon::poseidon2::Poseidon2::hash(fixed_input, fixed_input.len());\n assert(sub_chunk_hash == fixed_len_hash);\n}\n\n#[test]\nfn poseidon_chunks_matches_variable() {\n let in_len = 501;\n let mut input: [Field; 4096] = [0; 4096];\n for i in 0..in_len {\n input[i] = 3;\n }\n let variable_chunk_hash = poseidon2_cheaper_variable_hash(input, in_len);\n let variable_len_hash = poseidon::poseidon2::Poseidon2::hash(input, in_len);\n assert(variable_chunk_hash == variable_len_hash);\n}\n\n#[test]\nfn smoke_sha256_to_field() {\n let full_buffer = [\n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,\n 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,\n 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,\n 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93,\n 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112,\n 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130,\n 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,\n 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159,\n ];\n let result = sha256_to_field(full_buffer);\n\n assert(result == 0x448ebbc9e1a31220a2f3830c18eef61b9bd070e5084b7fa2a359fe729184c7);\n\n // to show correctness of the current ver (truncate one byte) vs old ver (mod full bytes):\n let result_bytes = sha256::digest(full_buffer);\n let truncated_field = crate::utils::field::field_from_bytes_32_trunc(result_bytes);\n assert(truncated_field == result);\n let mod_res = result + (result_bytes[31] as Field);\n assert(mod_res == 0x448ebbc9e1a31220a2f3830c18eef61b9bd070e5084b7fa2a359fe729184e0);\n}\n\n#[test]\nfn compute_l2_l1_hash() {\n // All zeroes\n let hash_result =\n compute_l2_to_l1_hash(AztecAddress::from_field(0), EthAddress::zero(), 0, 0, 0);\n assert(hash_result == 0x3b18c58c739716e76429634a61375c45b3b5cd470c22ab6d3e14cee23dd992);\n\n // Non-zero case\n let hash_result = compute_l2_to_l1_hash(\n AztecAddress::from_field(1),\n EthAddress::from_field(3),\n 5,\n 2,\n 4,\n );\n assert(hash_result == 0xaab2a5828156782b12a1dc6f336e2bc627eb1b9514b02d511f66296990c050);\n}\n\n#[test]\nfn silo_l2_to_l1_message_matches_typescript() {\n let version = 4;\n let chainId = 5;\n\n let hash = silo_l2_to_l1_message(\n L2ToL1Message { recipient: EthAddress::from_field(1), content: 2 }.scope(\n AztecAddress::from_field(3),\n ),\n version,\n chainId,\n );\n\n // The following value was generated by `yarn-project/stdlib/src/hash/hash.test.ts`\n let hash_from_typescript = 0x0081edf209e087ad31b3fd24263698723d57190bd1d6e9fe056fc0c0a68ee661;\n\n assert_eq(hash, hash_from_typescript);\n}\n\n#[test]\nunconstrained fn poseidon2_hash_with_separator_bounded_vec_matches_non_bounded_vec_version() {\n let inputs = BoundedVec::<Field, 4>::from_array([1, 2, 3]);\n let separator = 42;\n\n // Hash using bounded vec version\n let bounded_result = poseidon2_hash_with_separator_bounded_vec(inputs, separator);\n\n // Hash using regular version\n let regular_result = poseidon2_hash_with_separator([1, 2, 3], separator);\n\n // Results should match\n assert_eq(bounded_result, regular_result);\n}\n"
6911
6911
  },
6912
- "328": {
6912
+ "329": {
6913
6913
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/meta/mod.nr",
6914
- "source": "/// Generates the generic parameter declarations for a struct's trait implementation.\n///\n/// This function takes a struct type definition and generates the generic parameter declarations\n/// that go after the `impl` keyword. For example, given a struct with generics `N: u32` and `T`,\n/// it generates `<let N: u32, T>`.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate generic declarations for\n///\n/// # Returns\n/// A quoted code block containing the generic parameter declarations, or an empty quote if the struct\n/// has no generic parameters\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Container<T, let N: u32> {\n/// items: [T; N],\n/// count: u32\n/// }\n/// ```\n///\n/// This function generates:\n/// ```\n/// <let N: u32, T>\n/// ```\ncomptime fn get_generics_declarations(s: TypeDefinition) -> Quoted {\n let generics = s.generics();\n\n if generics.len() > 0 {\n let generics_declarations_items = generics\n .map(|(name, maybe_integer_typ)| {\n // The second item in the generics tuple is an Option of an integer type that is Some only if\n // the generic is numeric.\n if maybe_integer_typ.is_some() {\n // The generic is numeric, so we return a quote defined as e.g. \"let N: u32\"\n let integer_type = maybe_integer_typ.unwrap();\n quote {let $name: $integer_type}\n } else {\n // The generic is not numeric, so we return a quote containing the name of the generic (e.g. \"T\")\n quote {$name}\n }\n })\n .join(quote {,});\n quote {<$generics_declarations_items>}\n } else {\n // The struct doesn't have any generics defined, so we just return an empty quote.\n quote {}\n }\n}\n\n/// Generates the `where` clause for a trait implementation that constrains non-numeric generic type parameters.\n///\n/// This function takes a struct type definition and a trait name, and generates a `where` clause that\n/// requires all non-numeric generic type parameters to implement the specified trait.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate the where clause for\n/// - `trait_name`: The name of the trait that non-numeric generic parameters must implement\n///\n/// # Returns\n/// A quoted code block containing the where clause, or an empty quote if the struct has no non-numeric\n/// generic parameters\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Container<T, let N: u32> {\n/// items: [T; N],\n/// count: u32\n/// }\n/// ```\n///\n/// And trait name \"Serialize\", this function generates:\n/// ```\n/// where T: Serialize\n/// ```\ncomptime fn get_where_trait_clause(s: TypeDefinition, trait_name: Quoted) -> Quoted {\n let generics = s.generics();\n\n // The second item in the generics tuple is an Option of an integer type that is Some only if the generic is\n // numeric.\n let non_numeric_generics =\n generics.filter(|(_, maybe_integer_typ)| maybe_integer_typ.is_none());\n\n if non_numeric_generics.len() > 0 {\n let non_numeric_generics_declarations =\n non_numeric_generics.map(|(name, _)| quote {$name: $trait_name}).join(quote {,});\n quote {where $non_numeric_generics_declarations}\n } else {\n // There are no non-numeric generics, so we return an empty quote.\n quote {}\n }\n}\n\n/// Generates a `Serialize` trait implementation for a struct type.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A quoted code block containing the trait implementation\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Log<N> {\n/// fields: [Field; N],\n/// length: u32\n/// }\n/// ```\n///\n/// This function generates code equivalent to:\n/// ```\n/// impl<let N: u32> Serialize for Log<N> {\n/// let N: u32 = <[Field; N] as Serialize>::N + <u32 as Serialize>::N;\n///\n/// #[inline_always]\n/// fn serialize(self) -> [Field; Self::N] {\n/// let mut result = [0; _];\n/// let mut offset = 0;\n///\n/// let serialized_member = Serialize::serialize(self.fields);\n/// let serialized_member_len = <[Field; N] as Serialize>::N;\n/// for i in 0..serialized_member_len {\n/// result[i + offset] = serialized_member[i];\n/// }\n/// offset += serialized_member_len;\n///\n/// let serialized_member = Serialize::serialize(self.length);\n/// let serialized_member_len = <u32 as Serialize>::N;\n/// for i in 0..serialized_member_len {\n/// result[i + offset] = serialized_member[i];\n/// }\n/// offset += serialized_member_len;\n///\n/// result\n/// }\n/// }\n/// ```\npub comptime fn derive_serialize(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n let params = nested_struct.0.fields(nested_struct.1);\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Serialize` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_serialize_clause = get_where_trait_clause(s, quote {Serialize});\n\n // The following will give us <type_of_struct_member_1 as Serialize>::N + <type_of_struct_member_2 as Serialize>::N + ...\n let right_hand_side_of_definition_of_n = params\n .map(|(_, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n <$param_type as $crate::traits::Serialize>::N\n }\n })\n .join(quote {+});\n\n // For structs containing a single member, we can enhance performance by directly returning the serialized member,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let function_body = if params.len() > 1 {\n // For multiple struct members, generate serialization code that:\n // 1. Serializes each member\n // 2. Copies the serialized fields into the result array at the correct offset\n // 3. Updates the offset for the next member\n let serialization_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let serialized_member = $crate::traits::Serialize::serialize(self.$param_name);\n let serialized_member_len = <$param_type as $crate::traits::Serialize>::N;\n for i in 0..serialized_member_len {\n result[i + offset] = serialized_member[i];\n }\n offset += serialized_member_len;\n }\n })\n .join(quote {});\n\n quote {\n let mut result = [0; _];\n let mut offset = 0;\n\n $serialization_of_struct_members\n\n result\n }\n } else {\n let param_name = params[0].0;\n quote {\n $crate::traits::Serialize::serialize(self.$param_name)\n }\n };\n\n quote {\n impl$generics_declarations $crate::traits::Serialize for $typ\n $where_serialize_clause\n {\n let N: u32 = $right_hand_side_of_definition_of_n;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n $function_body\n }\n }\n }\n}\n\n/// Generates a `Deserialize` trait implementation for a given struct `s`.\n///\n/// # Arguments\n/// * `s` - The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A `Quoted` block containing the generated trait implementation\n///\n/// # Requirements\n/// Each struct member type must implement the `Deserialize` trait (it gets used in the generated code).\n///\n/// # Example\n/// For a struct like:\n/// ```\n/// struct MyStruct {\n/// x: AztecAddress,\n/// y: Field,\n/// }\n/// ```\n///\n/// This generates:\n/// ```\n/// impl Deserialize for MyStruct {\n/// let N: u32 = <AztecAddress as Deserialize>::N + <Field as Deserialize>::N;\n///\n/// fn deserialize(serialized: [Field; Self::N]) -> Self {\n/// let mut offset = 0;\n/// let mut member_fields = [0; <AztecAddress as Deserialize>::N];\n/// for i in 0..<AztecAddress as Deserialize>::N {\n/// member_fields[i] = serialized[i + offset];\n/// }\n/// let x = <AztecAddress as Deserialize>::deserialize(member_fields);\n/// offset += <AztecAddress as Deserialize>::N;\n///\n/// let mut member_fields = [0; <Field as Deserialize>::N];\n/// for i in 0..<Field as Deserialize>::N {\n/// member_fields[i] = serialized[i + offset];\n/// }\n/// let y = <Field as Deserialize>::deserialize(member_fields);\n/// offset += <Field as Deserialize>::N;\n///\n/// Self { x, y }\n/// }\n/// }\n/// ```\npub(crate) comptime fn derive_deserialize(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n let params = nested_struct.0.fields(nested_struct.1);\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Deserialize` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_deserialize_clause = get_where_trait_clause(s, quote {Deserialize});\n\n // The following will give us <type_of_struct_member_1 as Deserialize>::N + <type_of_struct_member_2 as Deserialize>::N + ...\n let right_hand_side_of_definition_of_n = params\n .map(|(_, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n <$param_type as $crate::traits::Deserialize>::N\n }\n })\n .join(quote {+});\n\n // For structs containing a single member, we can enhance performance by directly deserializing the input array,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let function_body = if params.len() > 1 {\n // This generates deserialization code for each struct member and concatenates them together.\n let deserialization_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let mut member_fields = [0; <$param_type as Deserialize>::N];\n for i in 0..<$param_type as Deserialize>::N {\n member_fields[i] = serialized[i + offset];\n }\n let $param_name = <$param_type as Deserialize>::deserialize(member_fields);\n offset += <$param_type as Deserialize>::N;\n }\n })\n .join(quote {});\n\n // We join the struct member names with a comma to be used in the `Self { ... }` syntax\n // This will give us e.g. `a, b, c` for a struct with three fields named `a`, `b`, and `c`.\n let struct_members = params\n .map(|(param_name, _, _): (Quoted, Type, Quoted)| quote { $param_name })\n .join(quote {,});\n\n quote {\n let mut offset = 0;\n\n $deserialization_of_struct_members\n\n Self { $struct_members }\n }\n } else {\n let param_name = params[0].0;\n quote {\n Self { $param_name: $crate::traits::Deserialize::deserialize(serialized) }\n }\n };\n\n quote {\n impl$generics_declarations $crate::traits::Deserialize for $typ\n $where_deserialize_clause\n {\n let N: u32 = $right_hand_side_of_definition_of_n;\n\n #[inline_always]\n fn deserialize(serialized: [Field; Self::N]) -> Self {\n $function_body\n }\n }\n }\n}\n\n/// Generates a `Packable` trait implementation for a given struct `s`.\n///\n/// # Arguments\n/// * `s` - The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A `Quoted` block containing the generated trait implementation\n///\n/// # Requirements\n/// Each struct member type must implement the `Packable` trait (it gets used in the generated code).\n///\n/// # Example\n/// For a struct like:\n/// ```\n/// struct MyStruct {\n/// x: AztecAddress,\n/// y: Field,\n/// }\n/// ```\n///\n/// This generates:\n/// ```\n/// impl Packable for MyStruct {\n/// let N: u32 = 2;\n///\n/// fn pack(self) -> [Field; 2] {\n/// let mut result: [Field; 2] = [0_Field; 2];\n/// let mut offset: u32 = 0_u32;\n/// let packed_member: [Field; 1] = self.x.pack();\n/// let packed_member_len: u32 = <Field as Packable>::N;\n/// for i in 0_u32..packed_member_len {\n/// {\n/// result[i + offset] = packed_member[i];\n/// }\n/// }\n/// offset = offset + packed_member_len;\n/// let packed_member: [Field; 1] = self.y.pack();\n/// let packed_member_len: u32 = <Field as Packable>::N;\n/// for i in 0_u32..packed_member_len {\n/// {\n/// result[i + offset] = packed_member[i];\n/// }\n/// }\n/// offset = offset + packed_member_len;\n/// result\n/// }\n///\n/// fn unpack(packed: [Field; 2]) -> Self {\n/// let mut offset: u32 = 0_u32;\n/// let mut member_fields: [Field; 1] = [0_Field; 1];\n/// for i in 0_u32..<AztecAddress as Packable>::N {\n/// member_fields[i] = packed[i + offset];\n/// }\n/// let x: AztecAddress = <AztecAddress as Packable>::unpack(member_fields);\n/// offset = offset + <AztecAddress as Packable>::N;\n/// let mut member_fields: [Field; 1] = [0_Field; 1];\n/// for i in 0_u32..<Field as Packable>::N {\n/// member_fields[i] = packed[i + offset];\n/// }\n/// let y: Field = <Field as Packable>::unpack(member_fields);\n/// offset = offset + <Field as Packable>::N;\n/// Self { x: x, y: y }\n/// }\n/// }\n/// ```\npub comptime fn derive_packable(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n let params = nested_struct.0.fields(nested_struct.1);\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Packable` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_packable_clause = get_where_trait_clause(s, quote {Packable});\n\n // The following will give us <type_of_struct_member_1 as Packable>::N + <type_of_struct_member_2 as Packable>::N + ...\n let right_hand_side_of_definition_of_n = params\n .map(|(_, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n <$param_type as $crate::traits::Packable>::N\n }\n })\n .join(quote {+});\n\n // For structs containing a single member, we can enhance performance by directly returning the packed member,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let pack_function_body = if params.len() > 1 {\n // For multiple struct members, generate packing code that:\n // 1. Packs each member\n // 2. Copies the packed fields into the result array at the correct offset\n // 3. Updates the offset for the next member\n let packing_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let packed_member = $crate::traits::Packable::pack(self.$param_name);\n let packed_member_len = <$param_type as $crate::traits::Packable>::N;\n for i in 0..packed_member_len {\n result[i + offset] = packed_member[i];\n }\n offset += packed_member_len;\n }\n })\n .join(quote {});\n\n quote {\n let mut result = [0; Self::N];\n let mut offset = 0;\n\n $packing_of_struct_members\n\n result\n }\n } else {\n let param_name = params[0].0;\n quote {\n $crate::traits::Packable::pack(self.$param_name)\n }\n };\n\n // For structs containing a single member, we can enhance performance by directly unpacking the input array,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let unpack_function_body = if params.len() > 1 {\n // For multiple struct members, generate unpacking code that:\n // 1. Unpacks each member\n // 2. Copies packed fields into member array at correct offset\n // 3. Updates offset for next member\n let unpacking_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let mut member_fields = [0; <$param_type as $crate::traits::Packable>::N];\n for i in 0..<$param_type as $crate::traits::Packable>::N {\n member_fields[i] = packed[i + offset];\n }\n let $param_name = <$param_type as $crate::traits::Packable>::unpack(member_fields);\n offset += <$param_type as $crate::traits::Packable>::N;\n }\n })\n .join(quote {});\n\n // We join the struct member names with a comma to be used in the `Self { ... }` syntax\n let struct_members = params\n .map(|(param_name, _, _): (Quoted, Type, Quoted)| quote { $param_name })\n .join(quote {,});\n\n quote {\n let mut offset = 0;\n $unpacking_of_struct_members\n Self { $struct_members }\n }\n } else {\n let param_name = params[0].0;\n quote {\n Self { $param_name: $crate::traits::Packable::unpack(packed) }\n }\n };\n\n quote {\n impl$generics_declarations $crate::traits::Packable for $typ\n $where_packable_clause\n {\n let N: u32 = $right_hand_side_of_definition_of_n;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n $pack_function_body\n }\n\n #[inline_always]\n fn unpack(packed: [Field; Self::N]) -> Self {\n $unpack_function_body\n }\n }\n }\n}\n\nmod test {\n use crate::traits::{Deserialize, Packable, Serialize};\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct Smol {\n a: Field,\n b: Field,\n }\n\n #[derive(Deserialize, Eq, Serialize)]\n pub struct HasArray {\n a: [Field; 2],\n b: bool,\n }\n\n #[derive(Deserialize, Eq, Serialize)]\n pub struct Fancier {\n a: Smol,\n b: [Field; 2],\n c: [u8; 3],\n d: str<16>,\n }\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct HasArrayWithGenerics<T, let N: u32> {\n pub fields: [T; N],\n pub length: u32,\n }\n\n #[test]\n fn serde_on_smol() {\n let smol = Smol { a: 1, b: 2 };\n let serialized = smol.serialize();\n assert(serialized == [1, 2], serialized);\n let deserialized = Smol::deserialize(serialized);\n assert(deserialized == smol);\n\n // None of the struct members implements the `Packable` trait so the packed and serialized data should be the same\n let packed = smol.pack();\n assert_eq(packed, serialized, \"Packed does not match serialized\");\n }\n\n #[test]\n fn serde_on_has_array() {\n let has_array = HasArray { a: [1, 2], b: true };\n let serialized = has_array.serialize();\n assert(serialized == [1, 2, 1], serialized);\n let deserialized = HasArray::deserialize(serialized);\n assert(deserialized == has_array);\n }\n\n #[test]\n fn serde_on_fancier() {\n let fancier =\n Fancier { a: Smol { a: 1, b: 2 }, b: [0, 1], c: [1, 2, 3], d: \"metaprogramming!\" };\n let serialized = fancier.serialize();\n assert(\n serialized\n == [\n 1, 2, 0, 1, 1, 2, 3, 0x6d, 0x65, 0x74, 0x61, 0x70, 0x72, 0x6f, 0x67, 0x72, 0x61,\n 0x6d, 0x6d, 0x69, 0x6e, 0x67, 0x21,\n ],\n serialized,\n );\n let deserialized = Fancier::deserialize(serialized);\n assert(deserialized == fancier);\n }\n\n #[test]\n fn serde_on_contains_array_with_generics() {\n let struct_with_array_of_generics = HasArrayWithGenerics { fields: [1, 2, 3], length: 3 };\n let serialized = struct_with_array_of_generics.serialize();\n assert(serialized == [1, 2, 3, 3], serialized);\n let deserialized = HasArrayWithGenerics::deserialize(serialized);\n assert(deserialized == struct_with_array_of_generics);\n }\n\n #[test]\n fn packable_on_contains_array_with_generics() {\n let struct_with_array_of_generics = HasArrayWithGenerics { fields: [1, 2, 3], length: 3 };\n let packed = struct_with_array_of_generics.pack();\n assert(packed == [1, 2, 3, 3], packed);\n\n let unpacked = HasArrayWithGenerics::unpack(packed);\n assert(unpacked == struct_with_array_of_generics);\n }\n\n}\n"
6914
+ "source": "use utils::derive_serialization_quotes;\n\npub mod utils;\n\n/// Generates the generic parameter declarations for a struct's trait implementation.\n///\n/// This function takes a struct type definition and generates the generic parameter declarations\n/// that go after the `impl` keyword. For example, given a struct with generics `N: u32` and `T`,\n/// it generates `<let N: u32, T>`.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate generic declarations for\n///\n/// # Returns\n/// A quoted code block containing the generic parameter declarations, or an empty quote if the struct\n/// has no generic parameters\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Container<T, let N: u32> {\n/// items: [T; N],\n/// count: u32\n/// }\n/// ```\n///\n/// This function generates:\n/// ```\n/// <let N: u32, T>\n/// ```\ncomptime fn get_generics_declarations(s: TypeDefinition) -> Quoted {\n let generics = s.generics();\n\n if generics.len() > 0 {\n let generics_declarations_items = generics\n .map(|(name, maybe_integer_typ)| {\n // The second item in the generics tuple is an Option of an integer type that is Some only if\n // the generic is numeric.\n if maybe_integer_typ.is_some() {\n // The generic is numeric, so we return a quote defined as e.g. \"let N: u32\"\n let integer_type = maybe_integer_typ.unwrap();\n quote {let $name: $integer_type}\n } else {\n // The generic is not numeric, so we return a quote containing the name of the generic (e.g. \"T\")\n quote {$name}\n }\n })\n .join(quote {,});\n quote {<$generics_declarations_items>}\n } else {\n // The struct doesn't have any generics defined, so we just return an empty quote.\n quote {}\n }\n}\n\n/// Generates the `where` clause for a trait implementation that constrains non-numeric generic type parameters.\n///\n/// This function takes a struct type definition and a trait name, and generates a `where` clause that\n/// requires all non-numeric generic type parameters to implement the specified trait.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate the where clause for\n/// - `trait_name`: The name of the trait that non-numeric generic parameters must implement\n///\n/// # Returns\n/// A quoted code block containing the where clause, or an empty quote if the struct has no non-numeric\n/// generic parameters\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Container<T, let N: u32> {\n/// items: [T; N],\n/// count: u32\n/// }\n/// ```\n///\n/// And trait name \"Serialize\", this function generates:\n/// ```\n/// where T: Serialize\n/// ```\ncomptime fn get_where_trait_clause(s: TypeDefinition, trait_name: Quoted) -> Quoted {\n let generics = s.generics();\n\n // The second item in the generics tuple is an Option of an integer type that is Some only if the generic is\n // numeric.\n let non_numeric_generics =\n generics.filter(|(_, maybe_integer_typ)| maybe_integer_typ.is_none());\n\n if non_numeric_generics.len() > 0 {\n let non_numeric_generics_declarations =\n non_numeric_generics.map(|(name, _)| quote {$name: $trait_name}).join(quote {,});\n quote {where $non_numeric_generics_declarations}\n } else {\n // There are no non-numeric generics, so we return an empty quote.\n quote {}\n }\n}\n\n/// Generates a `Serialize` trait implementation for a struct type.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A quoted code block containing the trait implementation\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Log<N> {\n/// fields: [Field; N],\n/// length: u32\n/// }\n/// ```\n///\n/// This function generates code equivalent to:\n/// ```\n/// impl<let N: u32> Serialize for Log<N> {\n/// let N: u32 = <[Field; N] as Serialize>::N + <u32 as Serialize>::N;\n///\n/// #[inline_always]\n/// fn serialize(self) -> [Field; Self::N] {\n/// let mut serialized_params = [0; _];\n/// let mut offset = 0;\n///\n/// let serialized_member = Serialize::serialize(self.fields);\n/// let serialized_member_len = <[Field; N] as Serialize>::N;\n/// for i in 0..serialized_member_len {\n/// serialized_params[i + offset] = serialized_member[i];\n/// }\n/// offset += serialized_member_len;\n///\n/// let serialized_member = Serialize::serialize(self.length);\n/// let serialized_member_len = <u32 as Serialize>::N;\n/// for i in 0..serialized_member_len {\n/// serialized_params[i + offset] = serialized_member[i];\n/// }\n/// offset += serialized_member_len;\n///\n/// serialized_params\n/// }\n/// }\n/// ```\npub comptime fn derive_serialize(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n\n // We care only about the name and type so we drop the last item of the tuple\n let params = nested_struct.0.fields(nested_struct.1).map(|(name, typ, _)| (name, typ));\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Serialize` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_serialize_clause = get_where_trait_clause(s, quote {Serialize});\n\n let (function_body, params_len_quote, serialized_params_name) =\n derive_serialization_quotes(params, true);\n\n quote {\n impl$generics_declarations $crate::traits::Serialize for $typ\n $where_serialize_clause\n {\n let N: u32 = $params_len_quote;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n $function_body\n\n $serialized_params_name\n }\n }\n }\n}\n\n/// Generates a `Deserialize` trait implementation for a given struct `s`.\n///\n/// # Arguments\n/// * `s` - The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A `Quoted` block containing the generated trait implementation\n///\n/// # Requirements\n/// Each struct member type must implement the `Deserialize` trait (it gets used in the generated code).\n///\n/// # Example\n/// For a struct like:\n/// ```\n/// struct MyStruct {\n/// x: AztecAddress,\n/// y: Field,\n/// }\n/// ```\n///\n/// This generates:\n/// ```\n/// impl Deserialize for MyStruct {\n/// let N: u32 = <AztecAddress as Deserialize>::N + <Field as Deserialize>::N;\n///\n/// fn deserialize(serialized: [Field; Self::N]) -> Self {\n/// let mut offset = 0;\n/// let mut member_fields = [0; <AztecAddress as Deserialize>::N];\n/// for i in 0..<AztecAddress as Deserialize>::N {\n/// member_fields[i] = serialized[i + offset];\n/// }\n/// let x = <AztecAddress as Deserialize>::deserialize(member_fields);\n/// offset += <AztecAddress as Deserialize>::N;\n///\n/// let mut member_fields = [0; <Field as Deserialize>::N];\n/// for i in 0..<Field as Deserialize>::N {\n/// member_fields[i] = serialized[i + offset];\n/// }\n/// let y = <Field as Deserialize>::deserialize(member_fields);\n/// offset += <Field as Deserialize>::N;\n///\n/// Self { x, y }\n/// }\n/// }\n/// ```\npub(crate) comptime fn derive_deserialize(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n let params = nested_struct.0.fields(nested_struct.1);\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Deserialize` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_deserialize_clause = get_where_trait_clause(s, quote {Deserialize});\n\n // The following will give us <type_of_struct_member_1 as Deserialize>::N + <type_of_struct_member_2 as Deserialize>::N + ...\n let right_hand_side_of_definition_of_n = params\n .map(|(_, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n <$param_type as $crate::traits::Deserialize>::N\n }\n })\n .join(quote {+});\n\n // For structs containing a single member, we can enhance performance by directly deserializing the input array,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let function_body = if params.len() > 1 {\n // This generates deserialization code for each struct member and concatenates them together.\n let deserialization_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let mut member_fields = [0; <$param_type as Deserialize>::N];\n for i in 0..<$param_type as Deserialize>::N {\n member_fields[i] = serialized[i + offset];\n }\n let $param_name = <$param_type as Deserialize>::deserialize(member_fields);\n offset += <$param_type as Deserialize>::N;\n }\n })\n .join(quote {});\n\n // We join the struct member names with a comma to be used in the `Self { ... }` syntax\n // This will give us e.g. `a, b, c` for a struct with three fields named `a`, `b`, and `c`.\n let struct_members = params\n .map(|(param_name, _, _): (Quoted, Type, Quoted)| quote { $param_name })\n .join(quote {,});\n\n quote {\n let mut offset = 0;\n\n $deserialization_of_struct_members\n\n Self { $struct_members }\n }\n } else {\n let param_name = params[0].0;\n quote {\n Self { $param_name: $crate::traits::Deserialize::deserialize(serialized) }\n }\n };\n\n quote {\n impl$generics_declarations $crate::traits::Deserialize for $typ\n $where_deserialize_clause\n {\n let N: u32 = $right_hand_side_of_definition_of_n;\n\n #[inline_always]\n fn deserialize(serialized: [Field; Self::N]) -> Self {\n $function_body\n }\n }\n }\n}\n\n/// Generates a `Packable` trait implementation for a given struct `s`.\n///\n/// # Arguments\n/// * `s` - The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A `Quoted` block containing the generated trait implementation\n///\n/// # Requirements\n/// Each struct member type must implement the `Packable` trait (it gets used in the generated code).\n///\n/// # Example\n/// For a struct like:\n/// ```\n/// struct MyStruct {\n/// x: AztecAddress,\n/// y: Field,\n/// }\n/// ```\n///\n/// This generates:\n/// ```\n/// impl Packable for MyStruct {\n/// let N: u32 = 2;\n///\n/// fn pack(self) -> [Field; 2] {\n/// let mut result: [Field; 2] = [0_Field; 2];\n/// let mut offset: u32 = 0_u32;\n/// let packed_member: [Field; 1] = self.x.pack();\n/// let packed_member_len: u32 = <Field as Packable>::N;\n/// for i in 0_u32..packed_member_len {\n/// {\n/// result[i + offset] = packed_member[i];\n/// }\n/// }\n/// offset = offset + packed_member_len;\n/// let packed_member: [Field; 1] = self.y.pack();\n/// let packed_member_len: u32 = <Field as Packable>::N;\n/// for i in 0_u32..packed_member_len {\n/// {\n/// result[i + offset] = packed_member[i];\n/// }\n/// }\n/// offset = offset + packed_member_len;\n/// result\n/// }\n///\n/// fn unpack(packed: [Field; 2]) -> Self {\n/// let mut offset: u32 = 0_u32;\n/// let mut member_fields: [Field; 1] = [0_Field; 1];\n/// for i in 0_u32..<AztecAddress as Packable>::N {\n/// member_fields[i] = packed[i + offset];\n/// }\n/// let x: AztecAddress = <AztecAddress as Packable>::unpack(member_fields);\n/// offset = offset + <AztecAddress as Packable>::N;\n/// let mut member_fields: [Field; 1] = [0_Field; 1];\n/// for i in 0_u32..<Field as Packable>::N {\n/// member_fields[i] = packed[i + offset];\n/// }\n/// let y: Field = <Field as Packable>::unpack(member_fields);\n/// offset = offset + <Field as Packable>::N;\n/// Self { x: x, y: y }\n/// }\n/// }\n/// ```\npub comptime fn derive_packable(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n let params = nested_struct.0.fields(nested_struct.1);\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Packable` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_packable_clause = get_where_trait_clause(s, quote {Packable});\n\n // The following will give us <type_of_struct_member_1 as Packable>::N + <type_of_struct_member_2 as Packable>::N + ...\n let right_hand_side_of_definition_of_n = params\n .map(|(_, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n <$param_type as $crate::traits::Packable>::N\n }\n })\n .join(quote {+});\n\n // For structs containing a single member, we can enhance performance by directly returning the packed member,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let pack_function_body = if params.len() > 1 {\n // For multiple struct members, generate packing code that:\n // 1. Packs each member\n // 2. Copies the packed fields into the result array at the correct offset\n // 3. Updates the offset for the next member\n let packing_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let packed_member = $crate::traits::Packable::pack(self.$param_name);\n let packed_member_len = <$param_type as $crate::traits::Packable>::N;\n for i in 0..packed_member_len {\n result[i + offset] = packed_member[i];\n }\n offset += packed_member_len;\n }\n })\n .join(quote {});\n\n quote {\n let mut result = [0; Self::N];\n let mut offset = 0;\n\n $packing_of_struct_members\n\n result\n }\n } else {\n let param_name = params[0].0;\n quote {\n $crate::traits::Packable::pack(self.$param_name)\n }\n };\n\n // For structs containing a single member, we can enhance performance by directly unpacking the input array,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let unpack_function_body = if params.len() > 1 {\n // For multiple struct members, generate unpacking code that:\n // 1. Unpacks each member\n // 2. Copies packed fields into member array at correct offset\n // 3. Updates offset for next member\n let unpacking_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let mut member_fields = [0; <$param_type as $crate::traits::Packable>::N];\n for i in 0..<$param_type as $crate::traits::Packable>::N {\n member_fields[i] = packed[i + offset];\n }\n let $param_name = <$param_type as $crate::traits::Packable>::unpack(member_fields);\n offset += <$param_type as $crate::traits::Packable>::N;\n }\n })\n .join(quote {});\n\n // We join the struct member names with a comma to be used in the `Self { ... }` syntax\n let struct_members = params\n .map(|(param_name, _, _): (Quoted, Type, Quoted)| quote { $param_name })\n .join(quote {,});\n\n quote {\n let mut offset = 0;\n $unpacking_of_struct_members\n Self { $struct_members }\n }\n } else {\n let param_name = params[0].0;\n quote {\n Self { $param_name: $crate::traits::Packable::unpack(packed) }\n }\n };\n\n quote {\n impl$generics_declarations $crate::traits::Packable for $typ\n $where_packable_clause\n {\n let N: u32 = $right_hand_side_of_definition_of_n;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n $pack_function_body\n }\n\n #[inline_always]\n fn unpack(packed: [Field; Self::N]) -> Self {\n $unpack_function_body\n }\n }\n }\n}\n\nmod test {\n use crate::traits::{Deserialize, Packable, Serialize};\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct Smol {\n a: Field,\n b: Field,\n }\n\n #[derive(Deserialize, Eq, Serialize)]\n pub struct HasArray {\n a: [Field; 2],\n b: bool,\n }\n\n #[derive(Deserialize, Eq, Serialize)]\n pub struct Fancier {\n a: Smol,\n b: [Field; 2],\n c: [u8; 3],\n d: str<16>,\n }\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct HasArrayWithGenerics<T, let N: u32> {\n pub fields: [T; N],\n pub length: u32,\n }\n\n #[test]\n fn serde_on_smol() {\n let smol = Smol { a: 1, b: 2 };\n let serialized = smol.serialize();\n assert(serialized == [1, 2], serialized);\n let deserialized = Smol::deserialize(serialized);\n assert(deserialized == smol);\n\n // None of the struct members implements the `Packable` trait so the packed and serialized data should be the same\n let packed = smol.pack();\n assert_eq(packed, serialized, \"Packed does not match serialized\");\n }\n\n #[test]\n fn serde_on_has_array() {\n let has_array = HasArray { a: [1, 2], b: true };\n let serialized = has_array.serialize();\n assert(serialized == [1, 2, 1], serialized);\n let deserialized = HasArray::deserialize(serialized);\n assert(deserialized == has_array);\n }\n\n #[test]\n fn serde_on_fancier() {\n let fancier =\n Fancier { a: Smol { a: 1, b: 2 }, b: [0, 1], c: [1, 2, 3], d: \"metaprogramming!\" };\n let serialized = fancier.serialize();\n assert(\n serialized\n == [\n 1, 2, 0, 1, 1, 2, 3, 0x6d, 0x65, 0x74, 0x61, 0x70, 0x72, 0x6f, 0x67, 0x72, 0x61,\n 0x6d, 0x6d, 0x69, 0x6e, 0x67, 0x21,\n ],\n serialized,\n );\n let deserialized = Fancier::deserialize(serialized);\n assert(deserialized == fancier);\n }\n\n #[test]\n fn serde_on_contains_array_with_generics() {\n let struct_with_array_of_generics = HasArrayWithGenerics { fields: [1, 2, 3], length: 3 };\n let serialized = struct_with_array_of_generics.serialize();\n assert(serialized == [1, 2, 3, 3], serialized);\n let deserialized = HasArrayWithGenerics::deserialize(serialized);\n assert(deserialized == struct_with_array_of_generics);\n }\n\n #[test]\n fn packable_on_contains_array_with_generics() {\n let struct_with_array_of_generics = HasArrayWithGenerics { fields: [1, 2, 3], length: 3 };\n let packed = struct_with_array_of_generics.pack();\n assert(packed == [1, 2, 3, 3], packed);\n\n let unpacked = HasArrayWithGenerics::unpack(packed);\n assert(unpacked == struct_with_array_of_generics);\n }\n\n}\n"
6915
6915
  },
6916
- "329": {
6916
+ "330": {
6917
+ "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/meta/utils.nr",
6918
+ "source": "/// Generates serialization code for a list of parameters and the total length of the serialized array\n///\n/// # Parameters\n/// - `params`: A list of (name, type) tuples to serialize\n/// - `use_self_prefix`: If true, parameters are accessed as `self.$param_name` (for struct members).\n/// If false, parameters are accessed directly as `$param_name` (for function parameters).\n///\n/// # Returns\n/// A tuple containing:\n/// - Quoted code that serializes the parameters into an array named `serialized_params`\n/// - Quoted code that evaluates to the total length of the serialized array\n/// - Quoted code containing the name of the serialized array\npub comptime fn derive_serialization_quotes(\n params: [(Quoted, Type)],\n use_self_prefix: bool,\n) -> (Quoted, Quoted, Quoted) {\n let prefix_quote = if use_self_prefix {\n quote { self. }\n } else {\n quote {}\n };\n\n let params_len_quote = get_params_len_quote(params);\n let serialized_params_name = quote { serialized_params };\n\n let body = if params.len() == 0 {\n quote {\n let $serialized_params_name: [Field; 0] = [];\n }\n } else if params.len() == 1 {\n // When we have only a single parameter on the input, we can enhance performance by directly returning\n // the serialized member, bypassing the need for loop-based array construction. While this optimization yields\n // significant benefits in Brillig where the loops are expected to not be optimized, it is not relevant in ACIR\n // where the loops are expected to be optimized away.\n\n let param_name = params[0].0;\n quote {\n let $serialized_params_name = $crate::traits::Serialize::serialize($prefix_quote$param_name);\n }\n } else {\n // For multiple struct members, generate serialization code that:\n // 1. Serializes each member\n // 2. Copies the serialized fields into the serialize array at the correct offset\n // 3. Updates the offset for the next member\n let serialization_of_struct_members = params\n .map(|(param_name, param_type): (Quoted, Type)| {\n quote {\n let serialized_member = $crate::traits::Serialize::serialize($prefix_quote$param_name);\n let serialized_member_len = <$param_type as $crate::traits::Serialize>::N;\n for i in 0..serialized_member_len {\n $serialized_params_name[i + offset] = serialized_member[i];\n }\n offset += serialized_member_len;\n }\n })\n .join(quote {});\n\n quote {\n let mut $serialized_params_name = [0; $params_len_quote];\n let mut offset = 0;\n\n $serialization_of_struct_members\n }\n };\n\n (body, params_len_quote, serialized_params_name)\n}\n\n/// Generates a quoted expression that computes the total serialized length of function parameters.\n///\n/// # Parameters\n/// * `params` - An array of tuples where each tuple contains a quoted parameter name and its Type. The type needs\n/// to implement the Serialize trait.\n///\n/// # Returns\n/// A quoted expression that evaluates to:\n/// * `0` if there are no parameters\n/// * `(<type1 as Serialize>::N + <type2 as Serialize>::N + ...)` for one or more parameters\npub comptime fn get_params_len_quote(params: [(Quoted, Type)]) -> Quoted {\n if params.len() == 0 {\n quote { 0 }\n } else {\n let params_quote_without_parentheses = params\n .map(|(_, param_type): (Quoted, Type)| {\n quote {\n <$param_type as $crate::traits::Serialize>::N\n }\n })\n .join(quote {+});\n quote { ($params_quote_without_parentheses) }\n }\n}\n"
6919
+ },
6920
+ "331": {
6917
6921
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/point.nr",
6918
6922
  "source": "pub use dep::std::embedded_curve_ops::EmbeddedCurvePoint as Point;\nuse crate::{hash::poseidon2_hash, traits::{Deserialize, Empty, Hash, Packable, Serialize}};\n\npub global POINT_LENGTH: u32 = 3;\n\n// Note: Not deriving this because it's not supported to call derive_serialize on a \"remote\" struct (and it will never\n// be supported).\nimpl Serialize for Point {\n let N: u32 = POINT_LENGTH;\n\n fn serialize(self: Self) -> [Field; Self::N] {\n [self.x, self.y, self.is_infinite as Field]\n }\n}\n\nimpl Hash for Point {\n fn hash(self) -> Field {\n poseidon2_hash(self.serialize())\n }\n}\n\nimpl Empty for Point {\n /// Note: Does not return a valid point on curve - instead represents an empty/\"unpopulated\" point struct (e.g.\n /// empty/unpopulated value in an array of points).\n fn empty() -> Self {\n Point { x: 0, y: 0, is_infinite: false }\n }\n}\n\nimpl Deserialize for Point {\n let N: u32 = POINT_LENGTH;\n\n fn deserialize(serialized: [Field; Self::N]) -> Self {\n Point { x: serialized[0], y: serialized[1], is_infinite: serialized[2] != 0 }\n }\n}\n\n// TODO(#11356): use compact representation here.\nimpl Packable for Point {\n let N: u32 = POINT_LENGTH;\n\n fn pack(self) -> [Field; Self::N] {\n self.serialize()\n }\n\n fn unpack(packed: [Field; Self::N]) -> Self {\n Self::deserialize(packed)\n }\n}\n"
6919
6923
  },
6920
- "330": {
6924
+ "332": {
6921
6925
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/poseidon2.nr",
6922
6926
  "source": "use crate::constants::TWO_POW_64;\nuse crate::traits::{Deserialize, Serialize};\nuse std::meta::derive;\n// NB: This is a clone of noir/noir-repo/noir_stdlib/src/hash/poseidon2.nr\n// It exists as we sometimes need to perform custom absorption, but the stdlib version\n// has a private absorb() method (it's also designed to just be a hasher)\n// Can be removed when standalone noir poseidon lib exists: See noir#6679\n\ncomptime global RATE: u32 = 3;\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct Poseidon2Sponge {\n pub cache: [Field; 3],\n pub state: [Field; 4],\n pub cache_size: u32,\n pub squeeze_mode: bool, // 0 => absorb, 1 => squeeze\n}\n\nimpl Poseidon2Sponge {\n #[no_predicates]\n pub fn hash<let N: u32>(input: [Field; N], message_size: u32) -> Field {\n Poseidon2Sponge::hash_internal(input, message_size, message_size != N)\n }\n\n pub(crate) fn new(iv: Field) -> Poseidon2Sponge {\n let mut result =\n Poseidon2Sponge { cache: [0; 3], state: [0; 4], cache_size: 0, squeeze_mode: false };\n result.state[RATE] = iv;\n result\n }\n\n fn perform_duplex(&mut self) {\n // add the cache into sponge state\n for i in 0..RATE {\n // We effectively zero-pad the cache by only adding to the state\n // cache that is less than the specified `cache_size`\n if i < self.cache_size {\n self.state[i] += self.cache[i];\n }\n }\n self.state = std::hash::poseidon2_permutation(self.state, 4);\n }\n\n pub fn absorb(&mut self, input: Field) {\n assert(!self.squeeze_mode);\n if self.cache_size == RATE {\n // If we're absorbing, and the cache is full, apply the sponge permutation to compress the cache\n self.perform_duplex();\n self.cache[0] = input;\n self.cache_size = 1;\n } else {\n // If we're absorbing, and the cache is not full, add the input into the cache\n self.cache[self.cache_size] = input;\n self.cache_size += 1;\n }\n }\n\n pub fn squeeze(&mut self) -> Field {\n assert(!self.squeeze_mode);\n // If we're in absorb mode, apply sponge permutation to compress the cache.\n self.perform_duplex();\n self.squeeze_mode = true;\n\n // Pop one item off the top of the permutation and return it.\n self.state[0]\n }\n\n fn hash_internal<let N: u32>(\n input: [Field; N],\n in_len: u32,\n is_variable_length: bool,\n ) -> Field {\n let iv: Field = (in_len as Field) * TWO_POW_64;\n let mut sponge = Poseidon2Sponge::new(iv);\n for i in 0..input.len() {\n if i < in_len {\n sponge.absorb(input[i]);\n }\n }\n\n // In the case where the hash preimage is variable-length, we append `1` to the end of the input, to distinguish\n // from fixed-length hashes. (the combination of this additional field element + the hash IV ensures\n // fixed-length and variable-length hashes do not collide)\n if is_variable_length {\n sponge.absorb(1);\n }\n sponge.squeeze()\n }\n}\n"
6923
6927
  },
6924
- "337": {
6928
+ "339": {
6925
6929
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/public_keys.nr",
6926
6930
  "source": "use crate::{\n address::public_keys_hash::PublicKeysHash,\n constants::{\n DEFAULT_IVPK_M_X, DEFAULT_IVPK_M_Y, DEFAULT_NPK_M_X, DEFAULT_NPK_M_Y, DEFAULT_OVPK_M_X,\n DEFAULT_OVPK_M_Y, DEFAULT_TPK_M_X, DEFAULT_TPK_M_Y, GENERATOR_INDEX__PUBLIC_KEYS_HASH,\n },\n hash::poseidon2_hash_with_separator,\n traits::{Deserialize, Hash, Serialize},\n};\n\nuse dep::std::embedded_curve_ops::EmbeddedCurvePoint as Point;\nuse std::{default::Default, meta::derive};\n\npub trait ToPoint {\n fn to_point(self) -> Point;\n}\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct NpkM {\n pub inner: Point,\n}\n\nimpl ToPoint for NpkM {\n fn to_point(self) -> Point {\n self.inner\n }\n}\n\n// Note: If we store npk_m_hash directly we can remove this trait implementation. See #8091\nimpl Hash for NpkM {\n fn hash(self) -> Field {\n self.inner.hash()\n }\n}\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct IvpkM {\n pub inner: Point,\n}\n\nimpl ToPoint for IvpkM {\n fn to_point(self) -> Point {\n self.inner\n }\n}\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct OvpkM {\n pub inner: Point,\n}\n\nimpl Hash for OvpkM {\n fn hash(self) -> Field {\n self.inner.hash()\n }\n}\n\nimpl ToPoint for OvpkM {\n fn to_point(self) -> Point {\n self.inner\n }\n}\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct TpkM {\n pub inner: Point,\n}\n\nimpl ToPoint for TpkM {\n fn to_point(self) -> Point {\n self.inner\n }\n}\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct PublicKeys {\n pub npk_m: NpkM,\n pub ivpk_m: IvpkM,\n pub ovpk_m: OvpkM,\n pub tpk_m: TpkM,\n}\n\nimpl Default for PublicKeys {\n fn default() -> Self {\n PublicKeys {\n npk_m: NpkM {\n inner: Point { x: DEFAULT_NPK_M_X, y: DEFAULT_NPK_M_Y, is_infinite: false },\n },\n ivpk_m: IvpkM {\n inner: Point { x: DEFAULT_IVPK_M_X, y: DEFAULT_IVPK_M_Y, is_infinite: false },\n },\n ovpk_m: OvpkM {\n inner: Point { x: DEFAULT_OVPK_M_X, y: DEFAULT_OVPK_M_Y, is_infinite: false },\n },\n tpk_m: TpkM {\n inner: Point { x: DEFAULT_TPK_M_X, y: DEFAULT_TPK_M_Y, is_infinite: false },\n },\n }\n }\n}\n\nimpl PublicKeys {\n pub fn hash(self) -> PublicKeysHash {\n PublicKeysHash::from_field(poseidon2_hash_with_separator(\n self.serialize(),\n GENERATOR_INDEX__PUBLIC_KEYS_HASH as Field,\n ))\n }\n}\n\npub struct AddressPoint {\n pub inner: Point,\n}\n\nimpl ToPoint for AddressPoint {\n fn to_point(self) -> Point {\n self.inner\n }\n}\n\nmod test {\n use crate::{\n point::POINT_LENGTH,\n public_keys::{IvpkM, NpkM, OvpkM, PublicKeys, TpkM},\n traits::{Deserialize, Serialize},\n };\n use dep::std::embedded_curve_ops::EmbeddedCurvePoint as Point;\n\n #[test]\n unconstrained fn compute_public_keys_hash() {\n let keys = PublicKeys {\n npk_m: NpkM { inner: Point { x: 1, y: 2, is_infinite: false } },\n ivpk_m: IvpkM { inner: Point { x: 3, y: 4, is_infinite: false } },\n ovpk_m: OvpkM { inner: Point { x: 5, y: 6, is_infinite: false } },\n tpk_m: TpkM { inner: Point { x: 7, y: 8, is_infinite: false } },\n };\n\n let actual = keys.hash();\n let expected_public_keys_hash =\n 0x0fecd9a32db731fec1fded1b9ff957a1625c069245a3613a2538bd527068b0ad;\n\n assert(actual.to_field() == expected_public_keys_hash);\n }\n\n #[test]\n unconstrained fn compute_default_hash() {\n let keys = PublicKeys::default();\n\n let actual = keys.hash();\n let test_data_default_hash =\n 0x1d3bf1fb93ae0e9cda83b203dd91c3bfb492a9aecf30ec90e1057eced0f0e62d;\n\n assert(actual.to_field() == test_data_default_hash);\n }\n\n #[test]\n unconstrained fn serde() {\n let keys = PublicKeys {\n npk_m: NpkM { inner: Point { x: 1, y: 2, is_infinite: false } },\n ivpk_m: IvpkM { inner: Point { x: 3, y: 4, is_infinite: false } },\n ovpk_m: OvpkM { inner: Point { x: 5, y: 6, is_infinite: false } },\n tpk_m: TpkM { inner: Point { x: 7, y: 8, is_infinite: false } },\n };\n\n // We use the PUBLIC_KEYS_LENGTH constant to ensure that there is a match between the derived trait\n let serialized: [Field; POINT_LENGTH * 4] = keys.serialize();\n let deserialized = PublicKeys::deserialize(serialized);\n\n assert_eq(keys, deserialized);\n }\n}\n"
6927
6931
  },
6928
- "358": {
6932
+ "360": {
6929
6933
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/traits.nr",
6930
6934
  "source": "use crate::meta::{derive_deserialize, derive_packable, derive_serialize};\nuse crate::utils::field::field_from_bytes;\n\n// Trait: is_empty\n//\n// The general is_empty trait checks if a data type is is empty,\n// and it defines empty for the basic data types as 0.\n//\n// If a Field is equal to zero, then it is regarded as zero.\n// We will go with this definition for now, however it can be problematic\n// if a value can actually be zero. In a future refactor, we can\n// use the optional type for safety. Doing it now would lead to a worse devex\n// and would make it harder to sync up with the cpp code.\n// Preferred over Default trait to convey intent, as default doesn't necessarily mean empty.\npub trait Empty: Eq {\n fn empty() -> Self;\n\n fn is_empty(self) -> bool {\n self.eq(Self::empty())\n }\n\n // Requires this Noir fix: https://github.com/noir-lang/noir/issues/9002\n // fn assert_not_empty<let U: u32>(self, msg: str<U>) { // This msg version was failing with weird compiler errors.\n // // We provide a default impl but it's likely inefficient.\n // // The reason we include this function is because there's a lot of\n // // opportunity for optimisation on a per-struct basis.\n // // You only need to show one element is not empty to know that the whole thing\n // // is not empty.\n // // If you know an element of your struct which should always be nonempty,\n // // you can write an impl that solely checks that that element is nonempty.\n // assert(!self.is_empty(), msg);\n // }\n\n // This default impl is overwritten by types like arrays, because there's a much\n // more efficient approach.\n fn assert_empty<let S: u32>(self, msg: str<S>) {\n assert(self.is_empty(), msg);\n }\n}\n\nimpl Empty for Field {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\n\nimpl Empty for u1 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u8 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u16 {\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u32 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u64 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u128 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\n\nimpl<T, let N: u32> Empty for [T; N]\nwhere\n T: Empty,\n{\n #[inline_always]\n fn empty() -> Self {\n [T::empty(); N]\n }\n\n fn is_empty(self) -> bool {\n self.all(|elem| elem.is_empty())\n }\n\n fn assert_empty<let S: u32>(self, msg: str<S>) -> () {\n self.for_each(|elem| elem.assert_empty(msg))\n }\n}\n\nimpl<T> Empty for [T]\nwhere\n T: Empty,\n{\n #[inline_always]\n fn empty() -> Self {\n [T::empty()]\n }\n\n fn is_empty(self) -> bool {\n self.all(|elem| elem.is_empty())\n }\n\n fn assert_empty<let S: u32>(self, msg: str<S>) -> () {\n self.for_each(|elem| elem.assert_empty(msg))\n }\n}\nimpl<A, B> Empty for (A, B)\nwhere\n A: Empty,\n B: Empty,\n{\n #[inline_always]\n fn empty() -> Self {\n (A::empty(), B::empty())\n }\n}\n\nimpl<T> Empty for Option<T>\nwhere\n T: Eq,\n{\n #[inline_always]\n fn empty() -> Self {\n Option::none()\n }\n}\n\n// pub fn is_empty<T>(item: T) -> bool\n// where\n// T: Empty,\n// {\n// item.eq(T::empty())\n// }\n\n// pub fn is_empty_array<T, let N: u32>(array: [T; N]) -> bool\n// where\n// T: Empty,\n// {\n// array.all(|elem| is_empty(elem))\n// }\n\n// pub fn assert_empty<T>(item: T) -> ()\n// where\n// T: Empty,\n// {\n// assert(item.eq(T::empty()))\n// }\n\n// pub fn assert_empty_array<T, let N: u32>(array: [T; N]) -> ()\n// where\n// T: Empty,\n// {\n// // A cheaper option than `is_empty_array` for if you don't need to gracefully\n// // handle a bool result.\n// // Avoids the `&` operator of `is_empty_array`'s `.all()` call.\n// for i in 0..N {\n// assert(is_empty(array[i]));\n// }\n// }\n\npub trait Hash {\n fn hash(self) -> Field;\n}\n\npub trait ToField {\n fn to_field(self) -> Field;\n}\n\nimpl ToField for Field {\n #[inline_always]\n fn to_field(self) -> Field {\n self\n }\n}\n\nimpl ToField for bool {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u1 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u8 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u16 {\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u32 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u64 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u128 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl<let N: u32> ToField for str<N> {\n #[inline_always]\n fn to_field(self) -> Field {\n assert(N < 32, \"String doesn't fit in a field, consider using Serialize instead\");\n field_from_bytes(self.as_bytes(), true)\n }\n}\n\npub trait FromField {\n fn from_field(value: Field) -> Self;\n}\n\nimpl FromField for Field {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value\n }\n}\n\nimpl FromField for bool {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value != 0\n }\n}\nimpl FromField for u1 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u1\n }\n}\nimpl FromField for u8 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u8\n }\n}\nimpl FromField for u16 {\n fn from_field(value: Field) -> Self {\n value as u16\n }\n}\nimpl FromField for u32 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u32\n }\n}\nimpl FromField for u64 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u64\n }\n}\nimpl FromField for u128 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u128\n }\n}\n\n// docs:start:serialize\n/// Trait for serializing Noir types into arrays of Fields.\n///\n/// An implementation of the Serialize trait has to follow Noir's intrinsic serialization (each member of a struct\n/// converted directly into one or more Fields without any packing or compression). This trait (and Deserialize) are\n/// typically used to communicate between Noir and TypeScript (via oracles and function arguments).\n///\n/// # On Following Noir's Intrinsic Serialization\n/// When calling a Noir function from TypeScript (TS), first the function arguments are serialized into an array\n/// of fields. This array is then included in the initial witness. Noir's intrinsic serialization is then used\n/// to deserialize the arguments from the witness. When the same Noir function is called from Noir this Serialize trait\n/// is used instead of the serialization in TS. For this reason we need to have a match between TS serialization,\n/// Noir's intrinsic serialization and the implementation of this trait. If there is a mismatch, the function calls\n/// fail with an arguments hash mismatch error message.\n///\n/// # Associated Constants\n/// * `N` - The length of the output Field array, known at compile time\n///\n/// # Example\n/// ```\n/// impl<let N: u32> Serialize for str<N> {\n/// let N: u32 = N;\n///\n/// fn serialize(self) -> [Field; Self::N] {\n/// let bytes = self.as_bytes();\n/// let mut fields = [0; Self::N];\n/// for i in 0..bytes.len() {\n/// fields[i] = bytes[i] as Field; // Each byte gets its own Field\n/// }\n/// fields\n/// }\n/// }\n/// ```\n#[derive_via(derive_serialize)]\npub trait Serialize {\n let N: u32;\n\n fn serialize(self) -> [Field; N];\n}\n// docs:end:serialize\n\nimpl<let M: u32> Serialize for str<M> {\n let N: u32 = M;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let bytes = self.as_bytes();\n let mut fields = [0; Self::N];\n for i in 0..bytes.len() {\n fields[i] = bytes[i] as Field;\n }\n fields\n }\n}\n\n/// Implementation of Deserialize for BoundedVec.\n///\n/// This implementation deserializes a BoundedVec from an array of Fields. The array contains:\n/// 1. The serialized items, each taking up T::N Fields\n/// 2. The length of the BoundedVec as the last Field\n///\n/// # Type Parameters\n/// * `T` - The type of items stored in the BoundedVec, must implement Deserialize\n/// * `M` - The maximum length of the BoundedVec\n///\n/// # Fields Array Layout\n/// [item1_field1, item1_field2, ..., item2_field1, item2_field2, ..., length]\n/// Where:\n/// - itemN_fieldM: The M-th Field of the N-th item (T::N Fields per item)\n/// - length: The number of items in the BoundedVec (1 Field)\n///\n/// Total length N = T::N * M + 1, where:\n/// - T::N is the number of Fields needed to deserialize one item\n/// - M is the maximum length of the BoundedVec\n/// - +1 is for storing the length\n///\n/// # Note\n/// Not deriving this because it's not supported to call derive_deserialize on a \"remote\" struct (and it will never\n/// be supported).\nimpl<T, let M: u32> Deserialize for BoundedVec<T, M>\nwhere\n T: Deserialize,\n{\n let N: u32 = <T as Deserialize>::N * M + 1;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n let mut new_bounded_vec: BoundedVec<T, M> = BoundedVec::new();\n\n // Length is stored in the last field as we need to match intrinsic Noir serialization and the `len` struct\n // field is after `storage` struct field (see `bounded_vec.nr` in noir-stdlib)\n let len = fields[<T as Deserialize>::N * M] as u32;\n\n for i in 0..len {\n let mut nested_fields = [0; <T as Deserialize>::N];\n for j in 0..<T as Deserialize>::N {\n nested_fields[j] = fields[i * <T as Deserialize>::N + j];\n }\n\n let item = T::deserialize(nested_fields);\n new_bounded_vec.push(item);\n }\n\n new_bounded_vec\n }\n}\n\n// This may cause issues if used as program input, because noir disallows empty arrays for program input.\n// I think this is okay because I don't foresee a unit type being used as input. But leaving this comment as a hint\n// if someone does run into this in the future.\nimpl Deserialize for () {\n let N: u32 = 0;\n\n fn deserialize(_fields: [Field; Self::N]) -> Self {\n ()\n }\n}\n\n// Note: Not deriving this because it's not supported to call derive_serialize on a \"remote\" struct (and it will never\n// be supported).\nimpl<T, let M: u32> Serialize for BoundedVec<T, M>\nwhere\n T: Serialize,\n{\n let N: u32 = <T as Serialize>::N * M + 1; // +1 for the length of the BoundedVec\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let mut fields = [0; Self::N];\n\n let storage = self.storage();\n\n for i in 0..M {\n let serialized_item = storage[i].serialize();\n\n for j in 0..<T as Serialize>::N {\n fields[i * <T as Serialize>::N + j] = serialized_item[j];\n }\n }\n\n // Length is stored in the last field as we need to match intrinsic Noir serialization and the `len` struct\n // field is after `storage` struct field (see `bounded_vec.nr` in noir-stdlib)\n fields[<T as Serialize>::N * M] = self.len() as Field;\n\n fields\n }\n}\n\n// docs:start:deserialize\n/// Trait for deserializing Noir types from arrays of Fields.\n///\n/// An implementation of the Deserialize trait has to follow Noir's intrinsic serialization (each member of a struct\n/// converted directly into one or more Fields without any packing or compression). This trait is typically used when\n/// deserializing return values from function calls in Noir. Since the same function could be called from TypeScript\n/// (TS), in which case the TS deserialization would get used, we need to have a match between the 2.\n///\n/// # Associated Constants\n/// * `N` - The length of the input Field array, known at compile time\n///\n/// # Example\n/// ```\n/// impl<let M: u32> Deserialize for str<M> {\n/// let N: u32 = M;\n///\n/// #[inline_always]\n/// fn deserialize(fields: [Field; Self::N]) -> Self {\n/// str::<Self::N>::from(fields.map(|value| value as u8))\n/// }\n/// }\n/// ```\n#[derive_via(derive_deserialize)]\npub trait Deserialize {\n let N: u32;\n\n fn deserialize(fields: [Field; N]) -> Self;\n}\n// docs:end:deserialize\n\nimpl<let M: u32> Deserialize for str<M> {\n let N: u32 = M;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n str::<Self::N>::from(fields.map(|value| value as u8))\n }\n}\n\n/// Trait for efficiently packing and unpacking Noir types into and from arrays of Fields.\n///\n/// The `Packable` trait allows types to be serialized and deserialized with a focus on minimizing the size of\n/// the resulting Field array. This trait is used when storage efficiency is critical (e.g. when storing data\n/// in the contract's public storage).\n///\n/// # Associated Constants\n/// * `N` - The length of the Field array, known at compile time\n#[derive_via(derive_packable)]\npub trait Packable {\n let N: u32;\n\n /// Packs the current value into a compact array of `Field` elements.\n fn pack(self) -> [Field; N];\n\n /// Unpacks a compact array of `Field` elements into the original value.\n fn unpack(fields: [Field; N]) -> Self;\n}\n\n#[test]\nunconstrained fn bounded_vec_serialization() {\n // Test empty BoundedVec\n let empty_vec: BoundedVec<Field, 3> = BoundedVec::from_array([]);\n let serialized = empty_vec.serialize();\n let deserialized = BoundedVec::<Field, 3>::deserialize(serialized);\n assert_eq(empty_vec, deserialized);\n assert_eq(deserialized.len(), 0);\n\n // Test partially filled BoundedVec\n let partial_vec: BoundedVec<[u32; 2], 3> = BoundedVec::from_array([[1, 2]]);\n let serialized = partial_vec.serialize();\n let deserialized = BoundedVec::<[u32; 2], 3>::deserialize(serialized);\n assert_eq(partial_vec, deserialized);\n assert_eq(deserialized.len(), 1);\n assert_eq(deserialized.get(0), [1, 2]);\n\n // Test full BoundedVec\n let full_vec: BoundedVec<[u32; 2], 3> = BoundedVec::from_array([[1, 2], [3, 4], [5, 6]]);\n let serialized = full_vec.serialize();\n let deserialized = BoundedVec::<[u32; 2], 3>::deserialize(serialized);\n assert_eq(full_vec, deserialized);\n assert_eq(deserialized.len(), 3);\n assert_eq(deserialized.get(0), [1, 2]);\n assert_eq(deserialized.get(1), [3, 4]);\n assert_eq(deserialized.get(2), [5, 6]);\n}\n"
6931
6935
  },
6932
- "360": {
6936
+ "362": {
6933
6937
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/type_packing.nr",
6934
6938
  "source": "use crate::traits::Packable;\n\nglobal BOOL_PACKED_LEN: u32 = 1;\nglobal U8_PACKED_LEN: u32 = 1;\nglobal U16_PACKED_LEN: u32 = 1;\nglobal U32_PACKED_LEN: u32 = 1;\nglobal U64_PACKED_LEN: u32 = 1;\nglobal U128_PACKED_LEN: u32 = 1;\nglobal FIELD_PACKED_LEN: u32 = 1;\nglobal I8_PACKED_LEN: u32 = 1;\nglobal I16_PACKED_LEN: u32 = 1;\nglobal I32_PACKED_LEN: u32 = 1;\nglobal I64_PACKED_LEN: u32 = 1;\n\nimpl Packable for bool {\n let N: u32 = BOOL_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> bool {\n (fields[0] as u1) != 0\n }\n}\n\nimpl Packable for u8 {\n let N: u32 = U8_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u8\n }\n}\n\nimpl Packable for u16 {\n let N: u32 = U16_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u16\n }\n}\n\nimpl Packable for u32 {\n let N: u32 = U32_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u32\n }\n}\n\nimpl Packable for u64 {\n let N: u32 = U64_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u64\n }\n}\n\nimpl Packable for u128 {\n let N: u32 = U128_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u128\n }\n}\n\nimpl Packable for Field {\n let N: u32 = FIELD_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0]\n }\n}\n\nimpl Packable for i8 {\n let N: u32 = I8_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as u8 as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u8 as i8\n }\n}\n\nimpl Packable for i16 {\n let N: u32 = I16_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as u16 as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u16 as i16\n }\n}\n\nimpl Packable for i32 {\n let N: u32 = I32_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as u32 as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u32 as i32\n }\n}\n\nimpl Packable for i64 {\n let N: u32 = I64_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as u64 as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u64 as i64\n }\n}\n\nimpl<T, let M: u32> Packable for [T; M]\nwhere\n T: Packable,\n{\n let N: u32 = M * <T as Packable>::N;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n let mut result: [Field; Self::N] = std::mem::zeroed();\n for i in 0..M {\n let serialized = self[i].pack();\n for j in 0..<T as Packable>::N {\n result[i * <T as Packable>::N + j] = serialized[j];\n }\n }\n result\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n let mut reader = crate::utils::reader::Reader::new(fields);\n let mut result: [T; M] = std::mem::zeroed();\n reader.read_struct_array::<T, <T as Packable>::N, M>(Packable::unpack, result)\n }\n}\n\n#[test]\nfn test_u16_packing() {\n let a: u16 = 10;\n assert_eq(a, u16::unpack(a.pack()));\n}\n\n#[test]\nfn test_i8_packing() {\n let a: i8 = -10;\n assert_eq(a, i8::unpack(a.pack()));\n}\n\n#[test]\nfn test_i16_packing() {\n let a: i16 = -10;\n assert_eq(a, i16::unpack(a.pack()));\n}\n\n#[test]\nfn test_i32_packing() {\n let a: i32 = -10;\n assert_eq(a, i32::unpack(a.pack()));\n}\n\n#[test]\nfn test_i64_packing() {\n let a: i64 = -10;\n assert_eq(a, i64::unpack(a.pack()));\n}\n"
6935
6939
  },
6936
- "361": {
6940
+ "363": {
6937
6941
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/type_serialization.nr",
6938
6942
  "source": "use crate::traits::{Deserialize, Serialize};\n\nglobal U1_SERIALIZED_LEN: u32 = 1;\nglobal BOOL_SERIALIZED_LEN: u32 = 1;\nglobal U8_SERIALIZED_LEN: u32 = 1;\nglobal U16_SERIALIZED_LEN: u32 = 1;\nglobal U32_SERIALIZED_LEN: u32 = 1;\nglobal U64_SERIALIZED_LEN: u32 = 1;\nglobal U128_SERIALIZED_LEN: u32 = 1;\nglobal FIELD_SERIALIZED_LEN: u32 = 1;\nglobal I8_SERIALIZED_LEN: u32 = 1;\nglobal I16_SERIALIZED_LEN: u32 = 1;\nglobal I32_SERIALIZED_LEN: u32 = 1;\nglobal I64_SERIALIZED_LEN: u32 = 1;\n\nimpl Serialize for bool {\n let N: u32 = BOOL_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for bool {\n let N: u32 = BOOL_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> bool {\n fields[0] != 0\n }\n}\n\nimpl Serialize for u1 {\n let N: u32 = U1_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u1 {\n let N: u32 = U1_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u1\n }\n}\n\nimpl Serialize for u8 {\n let N: u32 = U8_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u8 {\n let N: u32 = U8_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u8\n }\n}\n\nimpl Serialize for u16 {\n let N: u32 = U16_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u16 {\n let N: u32 = U16_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u16\n }\n}\n\nimpl Serialize for u32 {\n let N: u32 = U32_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u32 {\n let N: u32 = U32_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u32\n }\n}\n\nimpl Serialize for u64 {\n let N: u32 = U64_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u64 {\n let N: u32 = U64_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u64\n }\n}\n\nimpl Serialize for u128 {\n let N: u32 = U128_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u128 {\n let N: u32 = U128_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u128\n }\n}\n\nimpl Serialize for Field {\n let N: u32 = FIELD_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self]\n }\n}\n\nimpl Deserialize for Field {\n let N: u32 = FIELD_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0]\n }\n}\n\nimpl Serialize for i8 {\n let N: u32 = I8_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u8 as Field]\n }\n}\n\nimpl Deserialize for i8 {\n let N: u32 = I8_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u8 as i8\n }\n}\n\nimpl Serialize for i16 {\n let N: u32 = I16_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u16 as Field]\n }\n}\n\nimpl Deserialize for i16 {\n let N: u32 = I16_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u16 as i16\n }\n}\n\nimpl Serialize for i32 {\n let N: u32 = I32_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u32 as Field]\n }\n}\n\nimpl Deserialize for i32 {\n let N: u32 = I32_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u32 as i32\n }\n}\n\nimpl Serialize for i64 {\n let N: u32 = I64_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u64 as Field]\n }\n}\n\nimpl Deserialize for i64 {\n let N: u32 = I64_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u64 as i64\n }\n}\n\nimpl<T, let M: u32> Serialize for [T; M]\nwhere\n T: Serialize,\n{\n let N: u32 = <T as Serialize>::N * M;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let mut result: [Field; _] = std::mem::zeroed();\n for i in 0..M {\n let serialized_t = self[i].serialize();\n for j in 0..<T as Serialize>::N {\n result[i * <T as Serialize>::N + j] = serialized_t[j];\n }\n }\n result\n }\n}\n\nimpl<T, let M: u32> Deserialize for [T; M]\nwhere\n T: Deserialize,\n{\n let N: u32 = <T as Deserialize>::N * M;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n let mut reader = crate::utils::reader::Reader::new(fields);\n let mut result: [T; M] = std::mem::zeroed();\n reader.read_struct_array::<T, <T as Deserialize>::N, M>(Deserialize::deserialize, result)\n }\n}\n\nimpl<T> Serialize for Option<T>\nwhere\n T: Serialize,\n{\n let N: u32 = <T as Serialize>::N + 1;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let mut result: [Field; Self::N] = std::mem::zeroed();\n\n result[0] = if self.is_some() { 1 } else { 0 };\n\n let value_serialized = self.unwrap_unchecked().serialize();\n for i in 0..<T as Serialize>::N {\n result[1 + i] = value_serialized[i];\n }\n\n result\n }\n}\n\nimpl<T> Deserialize for Option<T>\nwhere\n T: Deserialize,\n{\n let N: u32 = <T as Deserialize>::N + 1;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n if fields[0] == 1 {\n let mut value_fields = [0; <T as Deserialize>::N];\n for i in 0..<T as Deserialize>::N {\n value_fields[i] = fields[1 + i];\n }\n\n Option::some(T::deserialize(value_fields))\n } else {\n Option::none()\n }\n }\n}\n\nmod test {\n use crate::traits::{Deserialize, Serialize};\n\n #[test]\n fn u16_serialization() {\n let a: u16 = 10;\n assert_eq(a, u16::deserialize(a.serialize()));\n }\n\n #[test]\n fn i8_serialization() {\n let a: i8 = -10;\n assert_eq(a, i8::deserialize(a.serialize()));\n }\n\n #[test]\n fn i16_serialization() {\n let a: i16 = -10;\n assert_eq(a, i16::deserialize(a.serialize()));\n }\n\n #[test]\n fn i32_serialization() {\n let a: i32 = -10;\n assert_eq(a, i32::deserialize(a.serialize()));\n }\n\n #[test]\n fn i64_serialization() {\n let a: i64 = -10;\n assert_eq(a, i64::deserialize(a.serialize()));\n }\n\n #[test]\n fn option_field_serialization() {\n let opt_some = Option::some(5);\n assert_eq(Option::<_>::deserialize(opt_some.serialize()), opt_some);\n\n let opt_none = Option::none();\n assert_eq(Option::<Field>::deserialize(opt_none.serialize()), opt_none);\n }\n\n #[test]\n fn option_array_serialization() {\n let opt_some = Option::some([2, 5]);\n assert_eq(Option::<_>::deserialize(opt_some.serialize()), opt_some);\n\n let opt_none = Option::none();\n assert_eq(Option::<Field>::deserialize(opt_none.serialize()), opt_none);\n }\n}\n"
6939
6943
  },
6940
- "378": {
6944
+ "380": {
6941
6945
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/utils/field.nr",
6942
6946
  "source": "global KNOWN_NON_RESIDUE: Field = 5; // This is a non-residue in Noir's native Field.\n\npub fn field_from_bytes<let N: u32>(bytes: [u8; N], big_endian: bool) -> Field {\n assert(bytes.len() < 32, \"field_from_bytes: N must be less than 32\");\n let mut as_field = 0;\n let mut offset = 1;\n for i in 0..N {\n let mut index = i;\n if big_endian {\n index = N - i - 1;\n }\n as_field += (bytes[index] as Field) * offset;\n offset *= 256;\n }\n\n as_field\n}\n\n// Convert a 32 byte array to a field element by truncating the final byte\npub fn field_from_bytes_32_trunc(bytes32: [u8; 32]) -> Field {\n // Convert it to a field element\n let mut v = 1;\n let mut high = 0 as Field;\n let mut low = 0 as Field;\n\n for i in 0..15 {\n // covers bytes 16..30 (31 is truncated and ignored)\n low = low + (bytes32[15 + 15 - i] as Field) * v;\n v = v * 256;\n // covers bytes 0..14\n high = high + (bytes32[14 - i] as Field) * v;\n }\n // covers byte 15\n low = low + (bytes32[15] as Field) * v;\n\n low + high * v\n}\n\n// TODO: This currently only exists to aid point compression in compress_to_blob_commitment().\n// Once compression is part of BigCurve it can either be removed or optimized to be used elsewhere.\npub fn byte_to_bits_be(byte: u8) -> [u1; 8] {\n let mut mut_byte = byte;\n let mut bits: [u1; 8] = [0; 8];\n for i in 0..8 {\n bits[7 - i] = (mut_byte & 1) as u1;\n mut_byte >>= 1;\n }\n bits\n}\n\n// TODO to radix returns u8, so we cannot use bigger radixes. It'd be ideal to use a radix of the maximum range-constrained integer noir supports\npub fn full_field_less_than(lhs: Field, rhs: Field) -> bool {\n lhs.lt(rhs)\n}\n\npub fn full_field_greater_than(lhs: Field, rhs: Field) -> bool {\n rhs.lt(lhs)\n}\n\npub fn min(f1: Field, f2: Field) -> Field {\n if f1.lt(f2) {\n f1\n } else {\n f2\n }\n}\n\nglobal C1: u32 = 28;\nglobal C3: Field = 40770029410420498293352137776570907027550720424234931066070132305055;\nglobal C5: Field = 19103219067921713944291392827692070036145651957329286315305642004821462161904;\n\npub fn pow(x: Field, y: Field) -> Field {\n let mut r = 1 as Field;\n let b: [u1; 254] = y.to_le_bits();\n\n for i in 0..254 {\n r *= r;\n r *= (b[254 - 1 - i] as Field) * x + (1 - b[254 - 1 - i] as Field);\n }\n\n r\n}\n\n/// Returns Option::some(sqrt) if there is a square root, and Option::none() if there isn't.\npub fn sqrt(x: Field) -> Option<Field> {\n // Safety: if the hint returns the square root of x, then we simply square it\n // check the result equals x. If x is not square, we return a value that\n // enables us to prove that fact (see the `else` clause below).\n let (is_sq, maybe_sqrt) = unsafe { __sqrt(x) };\n\n if is_sq {\n let sqrt = maybe_sqrt;\n validate_sqrt_hint(x, sqrt);\n Option::some(sqrt)\n } else {\n let not_sqrt_hint = maybe_sqrt;\n validate_not_sqrt_hint(x, not_sqrt_hint);\n Option::none()\n }\n}\n\n// Boolean indicating whether Field element is a square, i.e. whether there exists a y in Field s.t. x = y*y.\nunconstrained fn is_square(x: Field) -> bool {\n let v = pow(x, -1 / 2);\n v * (v - 1) == 0\n}\n\n// Tonelli-Shanks algorithm for computing the square root of a Field element.\n// Requires C1 = max{c: 2^c divides (p-1)}, where p is the order of Field\n// as well as C3 = (C2 - 1)/2, where C2 = (p-1)/(2^c1),\n// and C5 = ZETA^C2, where ZETA is a non-square element of Field.\n// These are pre-computed above as globals.\nunconstrained fn tonelli_shanks_sqrt(x: Field) -> Field {\n let mut z = pow(x, C3);\n let mut t = z * z * x;\n z *= x;\n let mut b = t;\n let mut c = C5;\n\n for i in 0..(C1 - 1) {\n for _j in 1..(C1 - i - 1) {\n b *= b;\n }\n\n z *= if b == 1 { 1 } else { c };\n\n c *= c;\n\n t *= if b == 1 { 1 } else { c };\n\n b = t;\n }\n\n z\n}\n\n// NB: this doesn't return an option, because in the case of there _not_ being a square root, we still want to return a field element that allows us to then assert in the _constrained_ sqrt function that there is no sqrt.\nunconstrained fn __sqrt(x: Field) -> (bool, Field) {\n let is_sq = is_square(x);\n if is_sq {\n let sqrt = tonelli_shanks_sqrt(x);\n (true, sqrt)\n } else {\n // Demonstrate that x is not a square (a.k.a. a \"quadratic non-residue\").\n // Facts:\n // The Legendre symbol (\"LS\") of x, is x^((p-1)/2) (mod p).\n // - If x is a square, LS(x) = 1\n // - If x is not a square, LS(x) = -1\n // - If x = 0, LS(x) = 0.\n //\n // Hence:\n // sq * sq = sq // 1 * 1 = 1\n // non-sq * non-sq = sq // -1 * -1 = 1\n // sq * non-sq = non-sq // -1 * 1 = -1\n //\n // See: https://en.wikipedia.org/wiki/Legendre_symbol\n let demo_x_not_square = x * KNOWN_NON_RESIDUE;\n let not_sqrt = tonelli_shanks_sqrt(demo_x_not_square);\n (false, not_sqrt)\n }\n}\n\nfn validate_sqrt_hint(x: Field, hint: Field) {\n assert(hint * hint == x, f\"The claimed_sqrt {hint} is not the sqrt of x {x}\");\n}\n\nfn validate_not_sqrt_hint(x: Field, hint: Field) {\n // We need this assertion, because x = 0 would pass the other assertions in this\n // function, and we don't want people to be able to prove that 0 is not square!\n assert(x != 0, \"0 has a square root; you cannot claim it is not square\");\n // Demonstrate that x is not a square (a.k.a. a \"quadratic non-residue\").\n //\n // Facts:\n // The Legendre symbol (\"LS\") of x, is x^((p-1)/2) (mod p).\n // - If x is a square, LS(x) = 1\n // - If x is not a square, LS(x) = -1\n // - If x = 0, LS(x) = 0.\n //\n // Hence:\n // 1. sq * sq = sq // 1 * 1 = 1\n // 2. non-sq * non-sq = sq // -1 * -1 = 1\n // 3. sq * non-sq = non-sq // -1 * 1 = -1\n //\n // See: https://en.wikipedia.org/wiki/Legendre_symbol\n //\n // We want to demonstrate that this below multiplication falls under bullet-point (2):\n let demo_x_not_square = x * KNOWN_NON_RESIDUE;\n // I.e. we want to demonstrate that `demo_x_not_square` has Legendre symbol 1\n // (i.e. that it is a square), so we prove that it is square below.\n // Why do we want to prove that it has LS 1?\n // Well, since it was computed with a known-non-residue, its squareness implies we're\n // in case 2 (something multiplied by a known-non-residue yielding a result which\n // has a LS of 1), which implies that x must be a non-square. The unconstrained\n // function gave us the sqrt of demo_x_not_square, so all we need to do is\n // assert its squareness:\n assert(\n hint * hint == demo_x_not_square,\n f\"The hint {hint} does not demonstrate that {x} is not a square\",\n );\n}\n\n#[test]\nunconstrained fn bytes_field_test() {\n // Tests correctness of field_from_bytes_32_trunc against existing methods\n // Bytes representing 0x543e0a6642ffeb8039296861765a53407bba62bd1c97ca43374de950bbe0a7\n let inputs = [\n 84, 62, 10, 102, 66, 255, 235, 128, 57, 41, 104, 97, 118, 90, 83, 64, 123, 186, 98, 189, 28,\n 151, 202, 67, 55, 77, 233, 80, 187, 224, 167,\n ];\n let field = field_from_bytes(inputs, true);\n let return_bytes: [u8; 31] = field.to_be_bytes();\n assert_eq(inputs, return_bytes);\n // 32 bytes - we remove the final byte, and check it matches the field\n let inputs2 = [\n 84, 62, 10, 102, 66, 255, 235, 128, 57, 41, 104, 97, 118, 90, 83, 64, 123, 186, 98, 189, 28,\n 151, 202, 67, 55, 77, 233, 80, 187, 224, 167, 158,\n ];\n let field2 = field_from_bytes_32_trunc(inputs2);\n let return_bytes2: [u8; 31] = field.to_be_bytes();\n\n assert_eq(return_bytes2, return_bytes);\n assert_eq(field2, field);\n}\n\n#[test]\nunconstrained fn max_field_test() {\n // Tests the hardcoded value in constants.nr vs underlying modulus\n // NB: We can't use 0-1 in constants.nr as it will be transpiled incorrectly to ts and sol constants files\n let max_value = crate::constants::MAX_FIELD_VALUE;\n assert_eq(max_value, 0 - 1);\n // modulus == 0 is tested elsewhere, so below is more of a sanity check\n let max_bytes: [u8; 32] = max_value.to_be_bytes();\n let mod_bytes = std::field::modulus_be_bytes();\n for i in 0..31 {\n assert_eq(max_bytes[i], mod_bytes[i]);\n }\n assert_eq(max_bytes[31], mod_bytes[31] - 1);\n}\n\n#[test]\nunconstrained fn sqrt_valid_test() {\n let x = 16; // examples: 16, 9, 25, 81\n let result = sqrt(x);\n assert(result.is_some());\n assert_eq(result.unwrap() * result.unwrap(), x);\n}\n\n#[test]\nunconstrained fn sqrt_invalid_test() {\n let x = KNOWN_NON_RESIDUE; // has no square root in the field\n let result = sqrt(x);\n assert(result.is_none());\n}\n"
6943
6947
  },
6944
- "382": {
6948
+ "384": {
6945
6949
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/utils/reader.nr",
6946
6950
  "source": "pub struct Reader<let N: u32> {\n data: [Field; N],\n offset: u32,\n}\n\nimpl<let N: u32> Reader<N> {\n pub fn new(data: [Field; N]) -> Self {\n Self { data, offset: 0 }\n }\n\n pub fn read(&mut self) -> Field {\n let result = self.data[self.offset];\n self.offset += 1;\n result\n }\n\n pub fn read_u32(&mut self) -> u32 {\n self.read() as u32\n }\n\n pub fn read_u64(&mut self) -> u64 {\n self.read() as u64\n }\n\n pub fn read_bool(&mut self) -> bool {\n self.read() != 0\n }\n\n pub fn read_array<let K: u32>(&mut self) -> [Field; K] {\n let mut result = [0; K];\n for i in 0..K {\n result[i] = self.data[self.offset + i];\n }\n self.offset += K;\n result\n }\n\n pub fn read_struct<T, let K: u32>(&mut self, deserialise: fn([Field; K]) -> T) -> T {\n let result = deserialise(self.read_array());\n result\n }\n\n pub fn read_struct_array<T, let K: u32, let C: u32>(\n &mut self,\n deserialise: fn([Field; K]) -> T,\n mut result: [T; C],\n ) -> [T; C] {\n for i in 0..C {\n result[i] = self.read_struct(deserialise);\n }\n result\n }\n\n pub fn finish(self) {\n assert_eq(self.offset, self.data.len(), \"Reader did not read all data\");\n }\n}\n"
6947
6951
  },
6948
- "391": {
6952
+ "393": {
6949
6953
  "path": "/home/aztec-dev/nargo/github.com/noir-lang/sha256/v0.2.0/src/sha256.nr",
6950
6954
  "source": "use std::hash::sha256_compression;\nuse std::runtime::is_unconstrained;\n\nuse constants::{\n BLOCK_BYTE_PTR, BLOCK_SIZE, HASH, INITIAL_STATE, INT_BLOCK, INT_BLOCK_SIZE, INT_SIZE,\n INT_SIZE_PTR, MSG_BLOCK, MSG_SIZE_PTR, STATE, TWO_POW_16, TWO_POW_24, TWO_POW_32, TWO_POW_8,\n};\n\npub(crate) mod constants;\nmod tests;\n\n// Implementation of SHA-256 mapping a byte array of variable length to\n// 32 bytes.\n\n// Deprecated in favour of `sha256_var`\n// docs:start:sha256\npub fn sha256<let N: u32>(input: [u8; N]) -> HASH\n// docs:end:sha256\n{\n digest(input)\n}\n\n// SHA-256 hash function\n#[no_predicates]\npub fn digest<let N: u32>(msg: [u8; N]) -> HASH {\n sha256_var(msg, N as u64)\n}\n\n// Variable size SHA-256 hash\npub fn sha256_var<let N: u32>(msg: [u8; N], message_size: u64) -> HASH {\n let message_size = message_size as u32;\n assert(message_size <= N);\n\n if std::runtime::is_unconstrained() {\n // Safety: SHA256 is running as an unconstrained function.\n unsafe {\n __sha256_var(msg, message_size)\n }\n } else {\n let (mut h, mut msg_block, mut msg_byte_ptr) =\n process_full_blocks(msg, message_size, INITIAL_STATE);\n\n finalize_sha256_blocks(msg, message_size, N, h, msg_block, msg_byte_ptr)\n }\n}\n\npub(crate) unconstrained fn __sha_var<let N: u32>(\n msg: [u8; N],\n message_size: u32,\n initial_state: STATE,\n) -> HASH {\n let num_full_blocks = message_size / BLOCK_SIZE;\n // Intermediate hash, starting with the canonical initial value\n let mut h: STATE = initial_state;\n // Pointer into msg_block on a 64 byte scale\n for i in 0..num_full_blocks {\n let (msg_block, _) = build_msg_block(msg, message_size, BLOCK_SIZE * i);\n h = sha256_compression(msg_block, h);\n }\n\n // Handle setup of the final msg block.\n // This case is only hit if the msg is less than the block size,\n // or our message cannot be evenly split into blocks.\n\n finalize_last_sha256_block(h, message_size, msg)\n}\n\n// Helper function to finalize the message block with padding and length\npub(crate) unconstrained fn finalize_last_sha256_block<let N: u32>(\n mut h: STATE,\n message_size: u32,\n msg: [u8; N],\n) -> HASH {\n let modulo = message_size % BLOCK_SIZE;\n let (mut msg_block, mut msg_byte_ptr): (INT_BLOCK, u32) = if modulo != 0 {\n let num_full_blocks = message_size / BLOCK_SIZE;\n let msg_start = BLOCK_SIZE * num_full_blocks;\n let (new_msg_block, new_msg_byte_ptr) = build_msg_block(msg, message_size, msg_start);\n (new_msg_block, new_msg_byte_ptr)\n } else {\n // If we had modulo == 0 then it means the last block was full,\n // and we can reset the pointer to zero to overwrite it.\n ([0; INT_BLOCK_SIZE], 0)\n };\n\n // Pad the rest such that we have a [u32; 2] block at the end representing the length\n // of the message, and a block of 1 0 ... 0 following the message (i.e. [1 << 7, 0, ..., 0]).\n // Here we rely on the fact that everything beyond the available input is set to 0.\n let index = msg_byte_ptr / INT_SIZE;\n msg_block[index] = set_item_byte_then_zeros(msg_block[index], msg_byte_ptr, 1 << 7);\n\n // If we don't have room to write the size, compress the block and reset it.\n let (h, mut msg_byte_ptr): (STATE, u32) = if msg_byte_ptr >= MSG_SIZE_PTR {\n // `attach_len_to_msg_block` will zero out everything after the `msg_byte_ptr`.\n (sha256_compression(msg_block, h), 0)\n } else {\n (h, msg_byte_ptr + 1)\n };\n msg_block = attach_len_to_msg_block(msg_block, msg_byte_ptr, message_size);\n\n hash_final_block(msg_block, h)\n}\n\n// Variable size SHA-256 hash\nunconstrained fn __sha256_var<let N: u32>(msg: [u8; N], message_size: u32) -> HASH {\n __sha_var(msg, message_size, INITIAL_STATE)\n}\n\npub(crate) fn process_full_blocks<let N: u32>(\n msg: [u8; N],\n message_size: u32,\n mut h: STATE,\n) -> (STATE, MSG_BLOCK, u32) {\n let mut msg_block: MSG_BLOCK = [0; INT_BLOCK_SIZE];\n let mut msg_byte_ptr = 0;\n let num_blocks = N / BLOCK_SIZE;\n for i in 0..num_blocks {\n let msg_start = BLOCK_SIZE * i;\n let (new_msg_block, new_msg_byte_ptr) =\n // Safety: separate verification function\n unsafe { build_msg_block(msg, message_size, msg_start) };\n\n if msg_start < message_size {\n msg_block = new_msg_block;\n }\n\n // Verify the block we are compressing was appropriately constructed\n let new_msg_byte_ptr = verify_msg_block(msg, message_size, msg_block, msg_start);\n if msg_start < message_size {\n msg_byte_ptr = new_msg_byte_ptr;\n }\n\n // If the block is filled, compress it.\n // An un-filled block is handled after this loop.\n if (msg_start < message_size) & (msg_byte_ptr == BLOCK_SIZE) {\n h = sha256_compression(msg_block, h);\n }\n }\n (h, msg_block, msg_byte_ptr)\n}\n\n// Take `BLOCK_SIZE` number of bytes from `msg` starting at `msg_start`.\n// Returns the block and the length that has been copied rather than padded with zeros.\npub(crate) unconstrained fn build_msg_block<let N: u32>(\n msg: [u8; N],\n message_size: u32,\n msg_start: u32,\n) -> (MSG_BLOCK, BLOCK_BYTE_PTR) {\n let mut msg_block: MSG_BLOCK = [0; INT_BLOCK_SIZE];\n\n // We insert `BLOCK_SIZE` bytes (or up to the end of the message)\n let block_input = if message_size < msg_start {\n // This function is sometimes called with `msg_start` past the end of the message.\n // In this case we return an empty block and zero pointer to signal that the result should be ignored.\n 0\n } else if message_size < msg_start + BLOCK_SIZE {\n message_size - msg_start\n } else {\n BLOCK_SIZE\n };\n\n // Figure out the number of items in the int array that we have to pack.\n // e.g. if the input is [0,1,2,3,4,5] then we need to pack it as 2 items: [0123, 4500]\n let int_input = (block_input + INT_SIZE - 1) / INT_SIZE;\n\n for i in 0..int_input {\n let mut msg_item: u32 = 0;\n // Always construct the integer as 4 bytes, even if it means going beyond the input.\n for j in 0..INT_SIZE {\n let k = i * INT_SIZE + j;\n let msg_byte = if k < block_input {\n msg[msg_start + k]\n } else {\n 0\n };\n msg_item = lshift8(msg_item, 1) + msg_byte as u32;\n }\n msg_block[i] = msg_item;\n }\n\n // Returning the index as if it was a 64 byte array.\n // We have to project it down to 16 items and bit shifting to get a byte back if we need it.\n (msg_block, block_input)\n}\n\n// Verify the block we are compressing was appropriately constructed by `build_msg_block`\n// and matches the input data. Returns the index of the first unset item.\n// If `message_size` is less than `msg_start` then this is called with the old non-empty block;\n// in that case we can skip verification, ie. no need to check that everything is zero.\nfn verify_msg_block<let N: u32>(\n msg: [u8; N],\n message_size: u32,\n msg_block: MSG_BLOCK,\n msg_start: u32,\n) -> BLOCK_BYTE_PTR {\n let mut msg_byte_ptr = 0;\n let mut msg_end = msg_start + BLOCK_SIZE;\n if msg_end > N {\n msg_end = N;\n }\n // We might have to go beyond the input to pad the fields.\n if msg_end % INT_SIZE != 0 {\n msg_end = msg_end + INT_SIZE - msg_end % INT_SIZE;\n }\n\n // Reconstructed packed item.\n let mut msg_item: u32 = 0;\n\n // Inclusive at the end so that we can compare the last item.\n let mut i: u32 = 0;\n for k in msg_start..=msg_end {\n if k % INT_SIZE == 0 {\n // If we consumed some input we can compare against the block.\n if (msg_start < message_size) & (k > msg_start) {\n assert_eq(msg_block[i], msg_item as u32);\n i = i + 1;\n msg_item = 0;\n }\n }\n // Shift the accumulator\n msg_item = lshift8(msg_item, 1);\n // If we have input to consume, add it at the rightmost position.\n if k < message_size & k < msg_end {\n msg_item = msg_item + msg[k] as u32;\n msg_byte_ptr = msg_byte_ptr + 1;\n }\n }\n\n msg_byte_ptr\n}\n\n// Verify the block we are compressing was appropriately padded with zeros by `build_msg_block`.\n// This is only relevant for the last, potentially partially filled block.\nfn verify_msg_block_padding(msg_block: MSG_BLOCK, msg_byte_ptr: BLOCK_BYTE_PTR) {\n // Check all the way to the end of the block.\n verify_msg_block_zeros(msg_block, msg_byte_ptr, INT_BLOCK_SIZE);\n}\n\n// Verify that a region of ints in the message block are (partially) zeroed,\n// up to an (exclusive) maximum which can either be the end of the block\n// or just where the size is to be written.\nfn verify_msg_block_zeros(\n msg_block: MSG_BLOCK,\n mut msg_byte_ptr: BLOCK_BYTE_PTR,\n max_int_byte_ptr: u32,\n) {\n // This variable is used to get around the compiler under-constrained check giving a warning.\n // We want to check against a constant zero, but if it does not come from the circuit inputs\n // or return values the compiler check will issue a warning.\n let zero = msg_block[0] - msg_block[0];\n\n // First integer which is supposed to be (partially) zero.\n let mut int_byte_ptr = msg_byte_ptr / INT_SIZE;\n\n // Check partial zeros.\n let modulo = msg_byte_ptr % INT_SIZE;\n if modulo != 0 {\n let zeros = INT_SIZE - modulo;\n let mask = if zeros == 3 {\n TWO_POW_24\n } else if zeros == 2 {\n TWO_POW_16\n } else {\n TWO_POW_8\n };\n assert_eq(msg_block[int_byte_ptr] % mask, zero);\n int_byte_ptr = int_byte_ptr + 1;\n }\n\n // Check the rest of the items.\n for i in 0..max_int_byte_ptr {\n if i >= int_byte_ptr {\n assert_eq(msg_block[i], zero);\n }\n }\n}\n\n// Verify that up to the byte pointer the two blocks are equal.\n// At the byte pointer the new block can be partially zeroed.\nfn verify_msg_block_equals_last(\n msg_block: MSG_BLOCK,\n last_block: MSG_BLOCK,\n mut msg_byte_ptr: BLOCK_BYTE_PTR,\n) {\n // msg_byte_ptr is the position at which they are no longer have to be the same.\n // First integer which is supposed to be (partially) zero contains that pointer.\n let mut int_byte_ptr = msg_byte_ptr / INT_SIZE;\n\n // Check partial zeros.\n let modulo = msg_byte_ptr % INT_SIZE;\n if modulo != 0 {\n // Reconstruct the partially zero item from the last block.\n let last_field = last_block[int_byte_ptr];\n let mut msg_item: u32 = 0;\n // Reset to where they are still equal.\n msg_byte_ptr = msg_byte_ptr - modulo;\n for i in 0..INT_SIZE {\n msg_item = lshift8(msg_item, 1);\n if i < modulo {\n msg_item = msg_item + get_item_byte(last_field, msg_byte_ptr) as u32;\n msg_byte_ptr = msg_byte_ptr + 1;\n }\n }\n assert_eq(msg_block[int_byte_ptr], msg_item);\n }\n\n for i in 0..INT_SIZE_PTR {\n if i < int_byte_ptr {\n assert_eq(msg_block[i], last_block[i]);\n }\n }\n}\n\n// Set the rightmost `zeros` number of bytes to 0.\n#[inline_always]\nfn set_item_zeros(item: u32, zeros: u32) -> u32 {\n lshift8(rshift8(item, zeros), zeros)\n}\n\n// Replace one byte in the item with a value, and set everything after it to zero.\nfn set_item_byte_then_zeros(msg_item: u32, msg_byte_ptr: BLOCK_BYTE_PTR, msg_byte: u8) -> u32 {\n let zeros = INT_SIZE - msg_byte_ptr % INT_SIZE;\n let zeroed_item = set_item_zeros(msg_item, zeros);\n let new_item = byte_into_item(msg_byte, msg_byte_ptr);\n zeroed_item + new_item\n}\n\n// Get a byte of a message item according to its overall position in the `BLOCK_SIZE` space.\nfn get_item_byte(mut msg_item: u32, msg_byte_ptr: BLOCK_BYTE_PTR) -> u8 {\n // How many times do we have to shift to the right to get to the position we want?\n let max_shifts = INT_SIZE - 1;\n let shifts = max_shifts - msg_byte_ptr % INT_SIZE;\n msg_item = rshift8(msg_item, shifts);\n // At this point the byte we want is in the rightmost position.\n msg_item as u8\n}\n\n// Project a byte into a position in a field based on the overall block pointer.\n// For example putting 1 into pointer 5 would be 100, because overall we would\n// have [____, 0100] with indexes [0123,4567].\n#[inline_always]\nfn byte_into_item(msg_byte: u8, msg_byte_ptr: BLOCK_BYTE_PTR) -> u32 {\n let mut msg_item = msg_byte as u32;\n // How many times do we have to shift to the left to get to the position we want?\n let max_shifts = INT_SIZE - 1;\n let shifts = max_shifts - msg_byte_ptr % INT_SIZE;\n lshift8(msg_item, shifts)\n}\n\n// Construct a field out of 4 bytes.\n#[inline_always]\nfn make_item(b0: u8, b1: u8, b2: u8, b3: u8) -> u32 {\n let mut item = b0 as u32;\n item = lshift8(item, 1) + b1 as u32;\n item = lshift8(item, 1) + b2 as u32;\n item = lshift8(item, 1) + b3 as u32;\n item\n}\n\n// Shift by 8 bits to the left between 0 and 4 times.\n// Checks `is_unconstrained()` to just use a bitshift if we're running in an unconstrained context,\n// otherwise multiplies by 256.\n#[inline_always]\nfn lshift8(item: u32, shifts: u32) -> u32 {\n if is_unconstrained() {\n // Brillig wouldn't shift 0<<4 without overflow.\n if shifts >= 4 {\n 0\n } else {\n item << (8 * shifts)\n }\n } else {\n // We can do a for loop up to INT_SIZE or an if-else.\n if shifts == 0 {\n item\n } else if shifts == 1 {\n item * TWO_POW_8\n } else if shifts == 2 {\n item * TWO_POW_16\n } else if shifts == 3 {\n item * TWO_POW_24\n } else {\n // Doesn't make sense, but it's most likely called on 0 anyway.\n 0\n }\n }\n}\n\n// Shift by 8 bits to the right between 0 and 4 times.\n// Checks `is_unconstrained()` to just use a bitshift if we're running in an unconstrained context,\n// otherwise divides by 256.\n#[inline_always]\nfn rshift8(item: u32, shifts: u32) -> u32 {\n if is_unconstrained() {\n if 8 * shifts >= 32 {\n 0\n } else {\n item >> (8 * shifts)\n }\n } else {\n // Division wouldn't work on `Field`.\n if shifts == 0 {\n item\n } else if shifts == 1 {\n item / TWO_POW_8\n } else if shifts == 2 {\n item / TWO_POW_16\n } else if shifts == 3 {\n item / TWO_POW_24\n } else {\n 0\n }\n }\n}\n\n// Zero out all bytes between the end of the message and where the length is appended,\n// then write the length into the last 8 bytes of the block.\nunconstrained fn attach_len_to_msg_block(\n mut msg_block: MSG_BLOCK,\n mut msg_byte_ptr: BLOCK_BYTE_PTR,\n message_size: u32,\n) -> MSG_BLOCK {\n // We assume that `msg_byte_ptr` is less than 57 because if not then it is reset to zero before calling this function.\n // In any case, fill blocks up with zeros until the last 64 bits (i.e. until msg_byte_ptr = 56).\n // There can be one item which has to be partially zeroed.\n let modulo = msg_byte_ptr % INT_SIZE;\n if modulo != 0 {\n // Index of the block in which we find the item we need to partially zero.\n let i = msg_byte_ptr / INT_SIZE;\n let zeros = INT_SIZE - modulo;\n msg_block[i] = set_item_zeros(msg_block[i], zeros);\n msg_byte_ptr = msg_byte_ptr + zeros;\n }\n\n // The rest can be zeroed without bit shifting anything.\n for i in (msg_byte_ptr / INT_SIZE)..INT_SIZE_PTR {\n msg_block[i] = 0;\n }\n\n // Set the last two 4 byte ints as the first/second half of the 8 bytes of the length.\n let len = 8 * message_size;\n let len_bytes: [u8; 8] = (len as Field).to_be_bytes();\n msg_block[INT_SIZE_PTR] = (len_bytes[0] as u32) << 24\n | (len_bytes[1] as u32) << 16\n | (len_bytes[2] as u32) << 8\n | (len_bytes[3] as u32);\n\n msg_block[INT_SIZE_PTR + 1] = (len_bytes[4] as u32) << 24\n | (len_bytes[5] as u32) << 16\n | (len_bytes[6] as u32) << 8\n | (len_bytes[7] as u32);\n\n msg_block\n}\n\n// Verify that the message length was correctly written by `attach_len_to_msg_block`,\n// and that everything between the byte pointer and the size pointer was zeroed,\n// and that everything before the byte pointer was untouched.\nfn verify_msg_len(\n msg_block: MSG_BLOCK,\n last_block: MSG_BLOCK,\n msg_byte_ptr: BLOCK_BYTE_PTR,\n message_size: u32,\n) {\n // Check zeros up to the size pointer.\n verify_msg_block_zeros(msg_block, msg_byte_ptr, INT_SIZE_PTR);\n\n // Check that up to the pointer we match the last block.\n verify_msg_block_equals_last(msg_block, last_block, msg_byte_ptr);\n\n // We verify the message length was inserted correctly by reversing the byte decomposition.\n std::static_assert(\n INT_SIZE_PTR + 2 == INT_BLOCK_SIZE,\n \"INT_SIZE_PTR + 2 must equal INT_BLOCK_SIZE\",\n );\n let reconstructed_len_hi = msg_block[INT_SIZE_PTR] as Field;\n let reconstructed_len_lo = msg_block[INT_SIZE_PTR + 1] as Field;\n\n let reconstructed_len: Field =\n reconstructed_len_hi * TWO_POW_32 as Field + reconstructed_len_lo;\n let len = 8 * (message_size as Field);\n assert_eq(reconstructed_len, len);\n}\n\n// Perform the final compression, then transform the `STATE` into `HASH`.\nfn hash_final_block(msg_block: MSG_BLOCK, mut state: STATE) -> HASH {\n let mut out_h: HASH = [0; 32]; // Digest as sequence of bytes\n // Hash final padded block\n state = sha256_compression(msg_block, state);\n\n // Return final hash as byte array\n for j in 0..8 {\n let h_bytes: [u8; 4] = (state[j] as Field).to_be_bytes();\n for k in 0..4 {\n out_h[4 * j + k] = h_bytes[k];\n }\n }\n\n out_h\n}\n\npub(crate) fn finalize_sha256_blocks<let N: u32>(\n msg: [u8; N],\n message_size: u32,\n total_len: u32,\n mut h: STATE,\n mut msg_block: MSG_BLOCK,\n mut msg_byte_ptr: u32,\n) -> HASH {\n let modulo = total_len % BLOCK_SIZE;\n // Handle setup of the final msg block.\n // This case is only hit if the msg is less than the block size,\n // or our message cannot be evenly split into blocks.\n if modulo != 0 {\n let num_blocks = total_len / BLOCK_SIZE;\n let msg_start = BLOCK_SIZE * num_blocks;\n let (new_msg_block, new_msg_byte_ptr) =\n // Safety: separate verification function\n unsafe { build_msg_block(msg, message_size, msg_start) };\n\n if msg_start < message_size {\n msg_block = new_msg_block;\n }\n\n let new_msg_byte_ptr = verify_msg_block(msg, message_size, msg_block, msg_start);\n if msg_start < message_size {\n msg_byte_ptr = new_msg_byte_ptr;\n verify_msg_block_padding(msg_block, msg_byte_ptr);\n }\n }\n\n // If we had modulo == 0 then it means the last block was full,\n // and we can reset the pointer to zero to overwrite it.\n if msg_byte_ptr == BLOCK_SIZE {\n msg_byte_ptr = 0;\n }\n\n // Pad the rest such that we have a [u32; 2] block at the end representing the length\n // of the message, and a block of 1 0 ... 0 following the message (i.e. [1 << 7, 0, ..., 0]).\n // Here we rely on the fact that everything beyond the available input is set to 0.\n let index = msg_byte_ptr / INT_SIZE;\n msg_block[index] = set_item_byte_then_zeros(msg_block[index], msg_byte_ptr, 1 << 7);\n\n msg_byte_ptr = msg_byte_ptr + 1;\n let last_block = msg_block;\n\n // If we don't have room to write the size, compress the block and reset it.\n if msg_byte_ptr > MSG_SIZE_PTR {\n h = sha256_compression(msg_block, h);\n\n // `attach_len_to_msg_block` will zero out everything after the `msg_byte_ptr`.\n msg_byte_ptr = 0;\n }\n\n // Safety: separate verification function\n msg_block = unsafe { attach_len_to_msg_block(msg_block, msg_byte_ptr, message_size) };\n\n verify_msg_len(msg_block, last_block, msg_byte_ptr, message_size);\n\n hash_final_block(msg_block, h)\n}\n\n/**\n * Given some state of a partially computed sha256 hash and part of the preimage, continue hashing\n * @notice used for complex/ recursive offloading of post-partial hashing\n *\n * @param N - the maximum length of the message to hash\n * @param h - the intermediate hash state\n * @param msg - the preimage to hash\n * @param message_size - the actual length of the preimage to hash\n * @return the intermediate hash state after compressing in msg to h\n */\npub fn partial_sha256_var_interstitial<let N: u32>(\n mut h: [u32; 8],\n msg: [u8; N],\n message_size: u32,\n) -> [u32; 8] {\n assert(message_size % BLOCK_SIZE == 0, \"Message size must be a multiple of the block size\");\n if std::runtime::is_unconstrained() {\n // Safety: running as an unconstrained function\n unsafe {\n __sha_partial_var_interstitial(h, msg, message_size)\n }\n } else {\n let (mut h, _, _) = process_full_blocks(msg, message_size, h);\n\n h\n }\n}\n\n/**\n * Given some state of a partially computed sha256 hash and remaining preimage, complete the hash\n * @notice used for traditional partial hashing\n *\n * @param N - the maximum length of the message to hash\n * @param h - the intermediate hash state\n * @param msg - the remaining preimage to hash\n * @param message_size - the size of the current chunk\n * @param real_message_size - the total size of the original preimage\n * @return finalized sha256 hash\n */\npub fn partial_sha256_var_end<let N: u32>(\n mut h: [u32; 8],\n msg: [u8; N],\n message_size: u32,\n real_message_size: u32,\n) -> [u8; 32] {\n assert(message_size % BLOCK_SIZE == 0, \"Message size must be a multiple of the block size\");\n if std::runtime::is_unconstrained() {\n // Safety: running as an unconstrained function\n unsafe {\n h = __sha_partial_var_interstitial(h, msg, message_size);\n\n // Handle setup of the final msg block.\n // This case is only hit if the msg is less than the block size,\n // or our message cannot be evenly split into blocks.\n\n finalize_last_sha256_block(h, real_message_size, msg)\n }\n } else {\n let (mut h, mut msg_block, mut msg_byte_ptr) = process_full_blocks(msg, message_size, h);\n finalize_sha256_blocks(msg, real_message_size, N, h, msg_block, msg_byte_ptr)\n }\n}\n\nunconstrained fn __sha_partial_var_interstitial<let N: u32>(\n mut h: [u32; 8],\n msg: [u8; N],\n message_size: u32,\n) -> [u32; 8] {\n let num_full_blocks = message_size / BLOCK_SIZE;\n // Intermediate hash, starting with the canonical initial value\n // Pointer into msg_block on a 64 byte scale\n for i in 0..num_full_blocks {\n let (msg_block, _) = build_msg_block(msg, message_size, BLOCK_SIZE * i);\n h = sha256_compression(msg_block, h);\n }\n h\n}\n\nmod equivalence_test {\n\n #[test]\n fn test_implementations_agree(msg: [u8; 100], message_size: u64) {\n let message_size = message_size % 100;\n // Safety: test function\n let unconstrained_sha = unsafe { super::__sha256_var(msg, message_size as u32) };\n let sha = super::sha256_var(msg, message_size);\n assert_eq(sha, unconstrained_sha);\n }\n}\n"
6951
6955
  },
6952
- "392": {
6956
+ "394": {
6953
6957
  "path": "/home/aztec-dev/aztec-packages/noir-projects/noir-contracts/contracts/libs/ecdsa_public_key_note/src/lib.nr",
6954
6958
  "source": "use aztec::{\n protocol_types::{address::AztecAddress, traits::{FromField, Packable, ToField}},\n macros::notes::note\n};\n\n\n// Stores an ECDSA public key composed of two 32-byte elements\n// TODO: Do we need to include a nonce, in case we want to read/nullify/recreate with the same pubkey value?\n#[note]\n#[derive(Eq)]\npub struct EcdsaPublicKeyNote {\n pub x: [u8; 32],\n pub y: [u8; 32],\n pub owner: AztecAddress,\n}\n\nimpl EcdsaPublicKeyNote {\n pub fn new(x: [u8; 32], y: [u8; 32], owner: AztecAddress) -> Self {\n EcdsaPublicKeyNote { x, y, owner }\n }\n}\n\nimpl Packable for EcdsaPublicKeyNote {\n let N: u32 = 5;\n\n // Cannot use the automatic packing since x and y don't fit. Pack the note as 5 fields where:\n // [0] = x[0..31] (upper bound excluded)\n // [1] = x[31]\n // [2] = y[0..31]\n // [3] = y[31]\n // [4] = owner\n fn pack(self) -> [Field; Self::N] {\n let mut x: Field = 0;\n let mut y: Field = 0;\n let mut mul: Field = 1;\n\n for i in 1..32 {\n let byte_x: Field = self.x[31 - i] as Field;\n x = x + (byte_x * mul);\n let byte_y: Field = self.y[31 - i] as Field;\n y = y + (byte_y * mul);\n mul *= 256;\n }\n\n let last_x = self.x[31] as Field;\n let last_y = self.y[31] as Field;\n\n [x, last_x, y, last_y, self.owner.to_field()]\n }\n\n // Cannot use the automatic unpacking for the aforementioned reasons\n fn unpack(packed_note: [Field; Self::N]) -> Self {\n let mut x: [u8; 32] = [0; 32];\n let mut y: [u8; 32] = [0; 32];\n\n let part_x:[u8; 32] = packed_note[0].to_be_bytes();\n for i in 0..31 {\n x[i] = part_x[i + 1];\n }\n x[31] = packed_note[1].to_be_bytes::<32>()[31];\n\n let part_y:[u8; 32] = packed_note[2].to_be_bytes();\n for i in 0..31 {\n y[i] = part_y[i + 1];\n }\n y[31] = packed_note[3].to_be_bytes::<32>()[31];\n\n EcdsaPublicKeyNote { x, y, owner: AztecAddress::from_field(packed_note[4]) }\n }\n}\n"
6955
6959
  },
@@ -6991,7 +6995,7 @@
6991
6995
  },
6992
6996
  "67": {
6993
6997
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/context/private_context.nr",
6994
- "source": "use crate::{\n context::{inputs::PrivateContextInputs, returns_hash::ReturnsHash},\n hash::{ArgsHasher, hash_args_array, hash_calldata_array},\n keys::constants::{NULLIFIER_INDEX, NUM_KEY_TYPES, OUTGOING_INDEX, sk_generators},\n messaging::process_l1_to_l2_message,\n oracle::{\n block_header::get_block_header_at,\n call_private_function::call_private_function_internal,\n enqueue_public_function_call::{\n notify_enqueued_public_function_call, notify_set_min_revertible_side_effect_counter,\n notify_set_public_teardown_function_call,\n },\n execution_cache,\n key_validation_request::get_key_validation_request,\n logs::notify_created_contract_class_log,\n notes::{notify_created_nullifier, notify_nullified_note},\n },\n};\nuse dep::protocol_types::{\n abis::{\n block_header::BlockHeader,\n call_context::CallContext,\n function_selector::FunctionSelector,\n gas_settings::GasSettings,\n log_hash::LogHash,\n note_hash::NoteHash,\n nullifier::Nullifier,\n private_call_request::PrivateCallRequest,\n private_circuit_public_inputs::PrivateCircuitPublicInputs,\n private_log::{PrivateLog, PrivateLogData},\n public_call_request::PublicCallRequest,\n validation_requests::{KeyValidationRequest, KeyValidationRequestAndGenerator},\n },\n address::{AztecAddress, EthAddress},\n constants::{\n CONTRACT_CLASS_LOG_SIZE_IN_FIELDS, MAX_CONTRACT_CLASS_LOGS_PER_CALL,\n MAX_ENQUEUED_CALLS_PER_CALL, MAX_INCLUDE_BY_TIMESTAMP_DURATION,\n MAX_KEY_VALIDATION_REQUESTS_PER_CALL, MAX_L2_TO_L1_MSGS_PER_CALL,\n MAX_NOTE_HASH_READ_REQUESTS_PER_CALL, MAX_NOTE_HASHES_PER_CALL,\n MAX_NULLIFIER_READ_REQUESTS_PER_CALL, MAX_NULLIFIERS_PER_CALL,\n MAX_PRIVATE_CALL_STACK_LENGTH_PER_CALL, MAX_PRIVATE_LOGS_PER_CALL,\n NULL_MSG_SENDER_CONTRACT_ADDRESS, PRIVATE_LOG_SIZE_IN_FIELDS,\n },\n hash::poseidon2_hash,\n messaging::l2_to_l1_message::L2ToL1Message,\n side_effect::Counted,\n traits::{Empty, Hash, ToField},\n utils::arrays::{ClaimedLengthArray, trimmed_array_length_hint},\n};\n\n/// # PrivateContext\n///\n/// The **main interface** between a #[private] function and the Aztec blockchain.\n///\n/// An instance of the PrivateContext is initialized automatically at the outset\n/// of every private function, within the #[private] macro, so you'll never\n/// need to consciously instantiate this yourself.\n///\n/// The instance is always named `context`, and it is always be available within\n/// the body of every #[private] function in your smart contract.\n///\n/// > For those used to \"vanilla\" Noir, it might be jarring to have access to\n/// > `context` without seeing a declaration `let context = PrivateContext::new(...)`\n/// > within the body of your function. This is just a consequence of using\n/// > macros to tidy-up verbose boilerplate. You can use `nargo expand` to\n/// > expand all macros, if you dare.\n///\n/// Typical usage for a smart contract developer will be to call getter\n/// methods of the PrivateContext.\n///\n/// _Pushing_ data and requests to the context is mostly handled within\n/// aztec-nr's own functions, so typically a smart contract developer won't\n/// need to call any setter methods directly.\n///\n/// > Advanced users might occasionally wish to push data to the context\n/// > directly for lower-level control. If you find yourself doing this, please\n/// > open an issue on GitHub to describe your use case: it might be that\n/// > new functionality should be added to aztec-nr.\n///\n/// ## Responsibilities\n/// - Exposes contextual data to a private function:\n/// - Data relating to how this private function was called.\n/// - msg_sender\n/// - this_address - (the contract address of the private function being\n/// executed)\n/// - See `CallContext` for more data.\n/// - Data relating to the transaction in which this private function is\n/// being executed.\n/// - chain_id\n/// - version\n/// - gas_settings\n/// - Provides state access:\n/// - Access to the \"Anchor block\" header.\n/// Recall, a private function cannot read from the \"current\" block header,\n/// but must read from some historical block header, because as soon as\n/// private function execution begins (asynchronously, on a user's device),\n/// the public state of the chain (the \"current state\") will have progressed\n/// forward. We call this reference the \"Anchor block\".\n/// See `BlockHeader`.\n/// - Enables consumption of L1->L2 messages.\n/// - Enables calls to functions of other smart contracts:\n/// - Private function calls\n/// - Enqueueing of public function call requests\n/// (Since public functions are executed at a later time, by a block\n/// proposer, we say they are \"enqueued\").\n/// - Writes data to the blockchain:\n/// - New notes\n/// - New nullifiers\n/// - Private logs (for sending encrypted note contents or encrypted events)\n/// - New L2->L1 messages.\n/// - Provides args to the private function (handled by the #[private] macro).\n/// - Returns the return values of this private function (handled by the\n/// #[private] macro).\n/// - Makes Key Validation Requests.\n/// - Private functions are not allowed to see master secret keys, because we\n/// do not trust them. They are instead given \"app-siloed\" secret keys with\n/// a claim that they relate to a master public key. They can then request\n/// validation of this claim, by making a \"key validation request\" to the\n/// protocol's kernel circuits (which _are_ allowed to see certain master\n/// secret keys).\n///\n/// ## Advanced Responsibilities\n///\n/// - Ultimately, the PrivateContext is responsible for constructing the\n/// PrivateCircuitPublicInputs of the private function being executed.\n/// All private functions on Aztec must have public inputs which adhere\n/// to the rigid layout of the PrivateCircuitPublicInputs, in order to be\n/// compatible with the protocol's kernel circuits.\n/// A well-known misnomer:\n/// - \"public inputs\" contain both inputs and outputs of this function.\n/// - By \"outputs\" we mean a lot more side-effects than just the\n/// \"return values\" of the function.\n/// - Most of the so-called \"public inputs\" are kept _private_, and never leak\n/// to the outside world, because they are 'swallowed' by the protocol's\n/// kernel circuits before the tx is sent to the network. Only the\n/// following are exposed to the outside world:\n/// - New note_hashes\n/// - New nullifiers\n/// - New private logs\n/// - New L2->L1 messages\n/// - New enqueued public function call requests\n/// All the above-listed arrays of side-effects can be padded by the\n/// user's wallet (through instructions to the kernel circuits, via the\n/// PXE) to obscure their true lengths.\n///\n/// ## Syntax Justification\n///\n/// Both user-defined functions _and_ most functions in aztec-nr need access to\n/// the PrivateContext instance to read/write data. This is why you'll see the\n/// arguably-ugly pervasiveness of the \"context\" throughout your smart contract\n/// and the aztec-nr library.\n/// For example, `&mut context` is prevalent. In some languages, you can access\n/// and mutate a global variable (such as a PrivateContext instance) from a\n/// function without polluting the function's parameters. With Noir, a function\n/// must explicitly pass control of a mutable variable to another function, by\n/// reference. Since many functions in aztec-nr need to be able to push new data\n/// to the PrivateContext, they need to be handed a mutable reference _to_ the\n/// context as a parameter.\n/// For example, `Context` is prevalent as a generic parameter, to give better\n/// type safety at compile time. Many `aztec-nr` functions don't make sense if\n/// they're called in a particular runtime (private, public or utility), and so\n/// are intentionally only implemented over certain\n/// [Private|Public|Utility]Context structs. This gives smart contract\n/// developers a much faster feedback loop if they're making a mistake, as an\n/// error will be thrown by the LSP or when they compile their contract.\n///\n#[derive(Eq)]\npub struct PrivateContext {\n // docs:start:private-context\n pub inputs: PrivateContextInputs,\n pub side_effect_counter: u32,\n\n pub min_revertible_side_effect_counter: u32,\n pub is_fee_payer: bool,\n\n pub args_hash: Field,\n pub return_hash: Field,\n\n pub include_by_timestamp: u64,\n\n pub note_hash_read_requests: BoundedVec<Counted<Field>, MAX_NOTE_HASH_READ_REQUESTS_PER_CALL>,\n pub nullifier_read_requests: BoundedVec<Counted<Field>, MAX_NULLIFIER_READ_REQUESTS_PER_CALL>,\n key_validation_requests_and_generators: BoundedVec<KeyValidationRequestAndGenerator, MAX_KEY_VALIDATION_REQUESTS_PER_CALL>,\n\n pub note_hashes: BoundedVec<Counted<NoteHash>, MAX_NOTE_HASHES_PER_CALL>,\n pub nullifiers: BoundedVec<Counted<Nullifier>, MAX_NULLIFIERS_PER_CALL>,\n\n pub private_call_requests: BoundedVec<PrivateCallRequest, MAX_PRIVATE_CALL_STACK_LENGTH_PER_CALL>,\n pub public_call_requests: BoundedVec<Counted<PublicCallRequest>, MAX_ENQUEUED_CALLS_PER_CALL>,\n pub public_teardown_call_request: PublicCallRequest,\n pub l2_to_l1_msgs: BoundedVec<Counted<L2ToL1Message>, MAX_L2_TO_L1_MSGS_PER_CALL>,\n // docs:end:private-context\n\n // Header of a block whose state is used during private execution (not the block the transaction is included in).\n pub anchor_block_header: BlockHeader,\n\n pub private_logs: BoundedVec<Counted<PrivateLogData>, MAX_PRIVATE_LOGS_PER_CALL>,\n pub contract_class_logs_hashes: BoundedVec<Counted<LogHash>, MAX_CONTRACT_CLASS_LOGS_PER_CALL>,\n\n // Contains the last key validation request for each key type. This is used to cache the last request and avoid\n // fetching the same request multiple times.\n // The index of the array corresponds to the key type (0 nullifier, 1 incoming, 2 outgoing, 3 tagging).\n pub last_key_validation_requests: [Option<KeyValidationRequest>; NUM_KEY_TYPES],\n}\n\nimpl PrivateContext {\n pub fn new(inputs: PrivateContextInputs, args_hash: Field) -> PrivateContext {\n let max_allowed_include_by_timestamp = inputs.anchor_block_header.global_variables.timestamp\n + MAX_INCLUDE_BY_TIMESTAMP_DURATION;\n PrivateContext {\n inputs,\n side_effect_counter: inputs.start_side_effect_counter + 1,\n min_revertible_side_effect_counter: 0,\n is_fee_payer: false,\n args_hash,\n return_hash: 0,\n include_by_timestamp: max_allowed_include_by_timestamp,\n note_hash_read_requests: BoundedVec::new(),\n nullifier_read_requests: BoundedVec::new(),\n key_validation_requests_and_generators: BoundedVec::new(),\n note_hashes: BoundedVec::new(),\n nullifiers: BoundedVec::new(),\n anchor_block_header: inputs.anchor_block_header,\n private_call_requests: BoundedVec::new(),\n public_call_requests: BoundedVec::new(),\n public_teardown_call_request: PublicCallRequest::empty(),\n l2_to_l1_msgs: BoundedVec::new(),\n private_logs: BoundedVec::new(),\n contract_class_logs_hashes: BoundedVec::new(),\n last_key_validation_requests: [Option::none(); NUM_KEY_TYPES],\n }\n }\n\n /// Returns the contract address that initiated this function call.\n ///\n /// This is similar to `msg.sender` in Solidity (hence the name).\n ///\n /// Important Note: Since Aztec doesn't have a concept of an EoA (\n /// Externally-owned Account), the msg_sender is \"null\" for the first\n /// function call of every transaction.\n /// The first function call of a tx is likely to be a call to the user's\n /// account contract, so this quirk will most often be handled by account\n /// contract developers.\n ///\n /// # Returns\n /// * `Option<AztecAddress>` - The address of the smart contract that called\n /// this function (be it an app contract or a user's account contract).\n /// Returns `Option<AztecAddress>::none` for the first function call of\n /// the tx. No other _private_ function calls in the tx will have a `none`\n /// msg_sender, but _public_ function calls might (see the PublicContext).\n ///\n pub fn msg_sender(self) -> Option<AztecAddress> {\n let maybe_msg_sender = self.inputs.call_context.msg_sender;\n if maybe_msg_sender == NULL_MSG_SENDER_CONTRACT_ADDRESS {\n Option::none()\n } else {\n Option::some(maybe_msg_sender)\n }\n }\n\n /// \"Unsafe\" versus calling `context.msg_sender()`, because it doesn't\n /// translate `NULL_MSG_SENDER_CONTRACT_ADDRESS` as\n /// `Option<AztecAddress>::none`.\n /// Used by some internal aztecnr functions.\n pub fn msg_sender_unsafe(self) -> AztecAddress {\n self.inputs.call_context.msg_sender\n }\n\n /// Returns the contract address of the current function being executed.\n ///\n /// This is equivalent to `address(this)` in Solidity (hence the name).\n /// Use this to identify the current contract's address, commonly needed for\n /// access control or when interacting with other contracts.\n ///\n /// # Returns\n /// * `AztecAddress` - The contract address of the current function being\n /// executed.\n ///\n pub fn this_address(self) -> AztecAddress {\n self.inputs.call_context.contract_address\n }\n\n /// Returns the chain ID of the current network.\n ///\n /// This is similar to `block.chainid` in Solidity. Returns the unique\n /// identifier for the blockchain network this transaction is executing on.\n ///\n /// Helps prevent cross-chain replay attacks. Useful if implementing\n /// multi-chain contract logic.\n ///\n /// # Returns\n /// * `Field` - The chain ID as a field element\n ///\n pub fn chain_id(self) -> Field {\n self.inputs.tx_context.chain_id\n }\n\n /// Returns the Aztec protocol version that this transaction is executing\n /// under. Different versions may have different rules, opcodes, or\n /// cryptographic primitives.\n ///\n /// This is similar to how Ethereum has different EVM versions.\n ///\n /// Useful for forward/backward compatibility checks\n ///\n /// Not to be confused with contract versions; this is the protocol version.\n ///\n /// # Returns\n /// * `Field` - The protocol version as a field element\n ///\n pub fn version(self) -> Field {\n self.inputs.tx_context.version\n }\n\n /// Returns the gas settings for the current transaction.\n ///\n /// This provides information about gas limits and pricing for the\n /// transaction, similar to `tx.gasprice` and gas limits in Ethereum.\n /// However, Aztec has a more sophisticated gas model with separate\n /// accounting for L2 computation and data availability (DA) costs.\n ///\n /// # Returns\n /// * `GasSettings` - Struct containing gas limits and fee information\n ///\n pub fn gas_settings(self) -> GasSettings {\n self.inputs.tx_context.gas_settings\n }\n\n /// Returns the function selector of the currently executing function.\n ///\n /// Low-level function: Ordinarily, smart contract developers will not need\n /// to access this.\n ///\n /// This is similar to `msg.sig` in Solidity, which returns the first 4\n /// bytes of the function signature. In Aztec, the selector uniquely\n /// identifies which function within the contract is being called.\n ///\n /// # Returns\n /// * `FunctionSelector` - The 4-byte function identifier\n ///\n /// # Advanced\n /// Only #[private] functions have a function selector as a protocol-\n /// enshrined concept. The function selectors of private functions are\n /// baked into the preimage of the contract address, and are used by the\n /// protocol's kernel circuits to identify each private function and ensure\n /// the correct one is being executed.\n ///\n /// Used internally for function dispatch and call verification.\n ///\n pub fn selector(self) -> FunctionSelector {\n self.inputs.call_context.function_selector\n }\n\n /// Returns the hash of the arguments passed to the current function.\n ///\n /// Very low-level function: You shouldn't need to call this. The #[private]\n /// macro calls this, and it makes the arguments neatly available to the\n /// body of your private function.\n ///\n /// # Returns\n /// * `Field` - Hash of the function arguments\n ///\n /// # Advanced\n /// * Arguments are hashed to reduce proof size and verification time\n /// * Enables efficient argument passing in recursive function calls\n /// * The hash can be used to retrieve the original arguments from the PXE.\n ///\n pub fn get_args_hash(self) -> Field {\n self.args_hash\n }\n\n /// Pushes a new note_hash to the Aztec blockchain's global Note Hash Tree\n /// (a state tree).\n ///\n /// A note_hash is a commitment to a piece of private state.\n ///\n /// Low-level function: Ordinarily, smart contract developers will not need\n /// to manually call this. Aztec-nr's state variables (see `../state_vars/`)\n /// are designed to understand when to create and push new note hashes.\n ///\n /// # Arguments\n /// * `note_hash` - The new note_hash.\n ///\n /// # Advanced\n /// From here, the protocol's kernel circuits will take over and insert the\n /// note_hash into the protocol's \"note hash tree\" (in the Base Rollup\n /// circuit).\n /// Before insertion, the protocol will:\n /// - \"Silo\" the `note_hash` with the contract address of this function,\n /// to yield a `siloed_note_hash`. This prevents state collisions\n /// between different smart contracts.\n /// - Ensure uniqueness of the `siloed_note_hash`, to prevent Faerie-Gold\n /// attacks, by hashing the `siloed_note_hash` with a unique value, to\n /// yield a `unique_siloed_note_hash` (see the protocol spec for more).\n ///\n /// In addition to calling this function, aztec-nr provides the contents\n /// of the newly-created note to the PXE, via the `notify_created_note`\n /// oracle.\n ///\n /// > Advanced users might occasionally wish to push data to the context\n /// > directly for lower-level control. If you find yourself doing this,\n /// > please open an issue on GitHub to describe your use case: it might be\n /// > that new functionality should be added to aztec-nr.\n ///\n pub fn push_note_hash(&mut self, note_hash: Field) {\n self.note_hashes.push(Counted::new(note_hash, self.next_counter()));\n }\n\n /// Pushes a new nullifier to the Aztec blockchain's global Nullifier Tree\n /// (a state tree).\n ///\n /// See also: `push_nullifier_for_note_hash`.\n ///\n /// Low-level function: Ordinarily, smart contract developers will not need\n /// to manually call this. Aztec-nr's state variables (see `../state_vars/`)\n /// are designed to understand when to create and push new nullifiers.\n ///\n /// A nullifier can only be emitted once. Duplicate nullifier insertions are\n /// rejected by the protocol.\n ///\n /// Generally, a nullifier is emitted to prevent an action from happening\n /// more than once, in such a way that the action cannot be linked (by an\n /// observer of the blockchain) to any earlier transactions.\n ///\n /// I.e. a nullifier is a random-looking, but deterministic record of a\n /// private, one-time action, which does not leak what action has been\n /// taken, and which preserves the property of \"tx unlinkability\".\n ///\n /// Usually, a nullifier will be emitted to \"spend\" a note (a piece of\n /// private state), without revealing which specific note is being spent.\n ///\n /// (Important: in such cases, use the below `push_nullifier_for_note_hash`).\n ///\n /// Sometimes, a nullifier might be emitted completely unrelated to any\n /// notes. Examples include initialization of a new contract; initialization\n /// of a PrivateMutable, or signalling in Semaphore-like applications.\n /// This `push_nullifier` function serves such use cases.\n ///\n /// # Arguments\n /// * `nullifier`\n ///\n /// # Advanced\n /// From here, the protocol's kernel circuits will take over and insert the\n /// nullifier into the protocol's \"nullifier tree\" (in the Base Rollup\n /// circuit).\n /// Before insertion, the protocol will:\n /// - \"Silo\" the `nullifier` with the contract address of this function,\n /// to yield a `siloed_nullifier`. This prevents state collisions\n /// between different smart contracts.\n /// - Ensure the `siloed_nullifier` is unique (the nullifier tree is an\n /// indexed merkle tree which supports efficient non-membership proofs).\n ///\n pub fn push_nullifier(&mut self, nullifier: Field) {\n notify_created_nullifier(nullifier);\n self.nullifiers.push(Nullifier { value: nullifier, note_hash: 0 }.count(self.next_counter()));\n }\n\n /// Pushes a nullifier that corresponds to a specific note hash.\n ///\n /// Low-level function: Ordinarily, smart contract developers will not need\n /// to manually call this. Aztec-nr's state variables (see `../state_vars/`)\n /// are designed to understand when to create and push new nullifiers.\n ///\n /// This is a specialized version of `push_nullifier` that links a nullifier\n /// to the specific note hash it's nullifying. This is the most common\n /// usage pattern for nullifiers.\n /// See `push_nullifier` for more explanation on nullifiers.\n ///\n /// # Arguments\n /// * `nullifier`\n /// * `nullified_note_hash` - The note hash of the note being nullified\n ///\n /// # Advanced\n /// Important: usage of this function doesn't mean that the world will _see_\n /// that this nullifier relates to the given nullified_note_hash (as that\n /// would violate \"tx unlinkability\"); it simply informs the user's PXE\n /// about the relationship (via `notify_nullified_note`). The PXE can then\n /// use this information to feed hints to the kernel circuits for\n /// \"squashing\" purposes: If a note is nullified during the same tx which\n /// created it, we can \"squash\" (delete) the note and nullifier (and any\n /// private logs associated with the note), to save on data emission costs.\n ///\n pub fn push_nullifier_for_note_hash(&mut self, nullifier: Field, nullified_note_hash: Field) {\n let nullifier_counter = self.next_counter();\n notify_nullified_note(nullifier, nullified_note_hash, nullifier_counter);\n self.nullifiers.push(Nullifier { value: nullifier, note_hash: nullified_note_hash }.count(\n nullifier_counter,\n ));\n }\n\n /// Returns the anchor block header - the historical block header that this\n /// private function is reading from.\n ///\n /// A private function CANNOT read from the \"current\" block header,\n /// but must read from some older block header, because as soon as\n /// private function execution begins (asynchronously, on a user's device),\n /// the public state of the chain (the \"current state\") will have progressed\n /// forward.\n ///\n /// # Returns\n /// * `BlockHeader` - The anchor block header.\n ///\n /// # Advanced\n /// * All private functions of a tx read from the same anchor block header.\n /// * The protocol asserts that the `include_by_timestamp` of every tx\n /// is at most 24 hours beyond the timestamp of the tx's chosen anchor\n /// block header. This enables the network's nodes to safely prune old txs\n /// from the mempool. Therefore, the chosen block header _must_ be one\n /// from within the last 24 hours.\n ///\n pub fn get_anchor_block_header(self) -> BlockHeader {\n self.anchor_block_header\n }\n\n /// Returns the header of any historical block at or before the anchor\n /// block.\n ///\n /// This enables private contracts to access information from even older\n /// blocks than the anchor block header.\n ///\n /// Useful for time-based contract logic that needs to compare against\n /// multiple historical points.\n ///\n /// # Arguments\n /// * `block_number` - The block number to retrieve (must be <= anchor\n /// block number)\n ///\n /// # Returns\n /// * `BlockHeader` - The header of the requested historical block\n ///\n /// # Advanced\n /// This function uses an oracle to fetch block header data from the user's\n /// PXE. Depending on how much blockchain data the user's PXE has been set\n /// up to store, this might require a query from the PXE to another Aztec\n /// node to get the data.\n /// > This is generally true of all oracle getters (see `../oracle`).\n ///\n /// Each block header gets hashed and stored as a leaf in the protocol's\n /// Archive Tree. In fact, the i-th block header gets stored at the i-th\n /// leaf index of the Archive Tree. Behind the scenes, this\n /// `get_block_header_at` function will add Archive Tree merkle-membership\n /// constraints (~3k) to your smart contract function's circuit, to prove\n /// existence of the block header in the Archive Tree.\n ///\n /// Note: we don't do any caching, so avoid making duplicate calls for the\n /// same block header, because each call will add duplicate constraints.\n ///\n /// Calling this function is more expensive (constraint-wise) than getting\n /// the anchor block header (via `get_block_header`). This is because the\n /// anchor block's merkle membership proof is handled by Aztec's protocol\n /// circuits, and is only performed once for the entire tx because all\n /// private functions of a tx share a common anchor block header. Therefore,\n /// the cost (constraint-wise) of calling `get_block_header` is effectively\n /// free.\n ///\n pub fn get_block_header_at(self, block_number: u32) -> BlockHeader {\n get_block_header_at(block_number, self)\n }\n\n /// Sets the hash of the return values for this private function.\n ///\n /// Very low-level function: this is called by the #[private] macro.\n ///\n /// # Arguments\n /// * `returns_hasher` - A hasher containing the return values to hash\n ///\n pub fn set_return_hash(&mut self, returns_hasher: ArgsHasher) {\n self.return_hash = returns_hasher.hash();\n execution_cache::store(returns_hasher.fields, self.return_hash);\n }\n\n /// Builds the PrivateCircuitPublicInputs for this private function, to\n /// ensure compatibility with the protocol's kernel circuits.\n ///\n /// Very low-level function: This function is automatically called by the\n /// #[private] macro.\n pub fn finish(self) -> PrivateCircuitPublicInputs {\n PrivateCircuitPublicInputs {\n call_context: self.inputs.call_context,\n args_hash: self.args_hash,\n returns_hash: self.return_hash,\n min_revertible_side_effect_counter: self.min_revertible_side_effect_counter,\n is_fee_payer: self.is_fee_payer,\n include_by_timestamp: self.include_by_timestamp,\n note_hash_read_requests: ClaimedLengthArray::from_bounded_vec(\n self.note_hash_read_requests,\n ),\n nullifier_read_requests: ClaimedLengthArray::from_bounded_vec(\n self.nullifier_read_requests,\n ),\n key_validation_requests_and_generators: ClaimedLengthArray::from_bounded_vec(\n self.key_validation_requests_and_generators,\n ),\n note_hashes: ClaimedLengthArray::from_bounded_vec(self.note_hashes),\n nullifiers: ClaimedLengthArray::from_bounded_vec(self.nullifiers),\n private_call_requests: ClaimedLengthArray::from_bounded_vec(self.private_call_requests),\n public_call_requests: ClaimedLengthArray::from_bounded_vec(self.public_call_requests),\n public_teardown_call_request: self.public_teardown_call_request,\n l2_to_l1_msgs: ClaimedLengthArray::from_bounded_vec(self.l2_to_l1_msgs),\n start_side_effect_counter: self.inputs.start_side_effect_counter,\n end_side_effect_counter: self.side_effect_counter,\n private_logs: ClaimedLengthArray::from_bounded_vec(self.private_logs),\n contract_class_logs_hashes: ClaimedLengthArray::from_bounded_vec(\n self.contract_class_logs_hashes,\n ),\n anchor_block_header: self.anchor_block_header,\n tx_context: self.inputs.tx_context,\n }\n }\n\n /// Designates this contract as the fee payer for the transaction.\n ///\n /// Unlike Ethereum, where the transaction sender always pays fees, Aztec\n /// allows any contract to voluntarily pay transaction fees. This enables\n /// patterns like sponsored transactions or fee abstraction where users\n /// don't need to hold fee-juice themselves. (Fee juice is a fee-paying\n /// asset for Aztec).\n ///\n /// Only one contract per transaction can declare itself as the fee payer,\n /// and it must have sufficient fee-juice balance (>= the gas limits\n /// specified in the TxContext) by the time we reach the public setup phase\n /// of the tx.\n ///\n pub fn set_as_fee_payer(&mut self) {\n dep::protocol_types::debug_log::debug_log_format(\n \"Setting {0} as fee payer\",\n [self.this_address().to_field()],\n );\n self.is_fee_payer = true;\n }\n\n /// Declares the end of the \"setup phase\" of this tx.\n ///\n /// Only one function per tx can declare the end of the setup phase.\n ///\n /// Niche function: Only wallet developers and paymaster contract developers\n /// (aka Fee-payment contracts) will need to make use of this function.\n ///\n /// Aztec supports a three-phase execution model: setup, app logic, teardown.\n /// The phases exist to enable a fee payer to take on the risk of paying\n /// a transaction fee, safe in the knowledge that their payment (in whatever\n /// token or method the user chooses) will succeed, regardless of whether\n /// the app logic will succeed. The \"setup\" phase enables such a payment to\n /// be made, because the setup phase _cannot revert_: a reverting function\n /// within the setup phase would result in an invalid block which cannot\n /// be proven. Any side-effects generated during that phase are guaranteed\n /// to be inserted into Aztec's state trees (except for squashed notes &\n /// nullifiers, of course).\n ///\n /// Even though the end of the setup phase is declared within a private\n /// function, you might have noticed that _public_ functions can also\n /// execute within the setup phase. This is because any public function\n /// calls which were enqueued _within the setup phase_ by a private\n /// function are considered part of the setup phase.\n ///\n /// # Advanced\n /// * Sets the minimum revertible side effect counter of this tx to be the\n /// PrivateContext's _current_ side effect counter.\n ///\n pub fn end_setup(&mut self) {\n // dep::protocol_types::debug_log::debug_log_format(\n // \"Ending setup at counter {0}\",\n // [self.side_effect_counter as Field]\n // );\n self.min_revertible_side_effect_counter = self.side_effect_counter;\n notify_set_min_revertible_side_effect_counter(self.min_revertible_side_effect_counter);\n }\n\n /// Sets a deadline (an \"include-by timestamp\") for when this transaction\n /// must be included in a block.\n ///\n /// Other functions in this tx might call this setter with differing\n /// values for the include-by timestamp. To ensure that all functions'\n /// deadlines are met, the _minimum_ of all these include-by timestamps will\n /// be exposed when this tx is submitted to the network.\n ///\n /// If the transaction is not included in a block by its include-by\n /// timestamp, it becomes invalid and it will never be included.\n ///\n /// This expiry timestamp is publicly visible. See the \"Advanced\" section\n /// for privacy concerns.\n ///\n /// # Arguments\n /// * `include_by_timestamp` - Unix timestamp (seconds) deadline for inclusion.\n /// The include-by timestamp of this tx will be\n /// _at most_ the timestamp specified.\n ///\n /// # Advanced\n /// * If multiple functions set differing `include_by_timestamp`s, the\n /// kernel circuits will set it to be the _minimum_ of the two. This\n /// ensures the tx expiry requirements of all functions in the tx are met.\n /// * Rollup circuits will reject expired txs.\n /// * The protocol enforces that all transactions must be included within\n /// 24 hours of their chosen anchor block's timestamp, to enable safe\n /// mempool pruning.\n /// * The DelayedPublicMutable design makes heavy use of this functionality,\n /// to enable private functions to read public state.\n /// * A sophisticated Wallet should cleverly set an include-by timestamp\n /// to improve the privacy of the user and the network as a whole.\n /// For example, if a contract interaction sets include-by to some\n /// publicly-known value (e.g. the time when a contract upgrades), then\n /// the wallet might wish to set an even lower one to avoid revealing that\n /// this tx is interacting with said contract.\n /// Ideally, all wallets should standardise on an approach in order to\n /// provide users with a large anonymity set -- although the exact apprach\n /// will need to be discussed. Wallets that deviate from a standard might\n /// accidentally reveal which wallet each transaction originates from.\n ///\n // docs:start:include-by-timestamp\n pub fn set_include_by_timestamp(&mut self, include_by_timestamp: u64) {\n // docs:end:include-by-timestamp\n self.include_by_timestamp = std::cmp::min(self.include_by_timestamp, include_by_timestamp);\n }\n\n /// Makes a request to the protocol's kernel circuit to ensure a note_hash\n /// actually exists.\n ///\n /// \"Read requests\" are used to prove that a note hash exists without\n /// revealing which specific note was read.\n ///\n /// This can be used to prove existence of both settled notes (created in\n /// prior transactions) and transient notes (created in the current\n /// transaction).\n /// If you need to prove existence of a settled note _at a specific block\n /// number_, use `note_inclusion::prove_note_inclusion`.\n ///\n /// Low-level function. Ordinarily, smart contract developers will not need\n /// to call this directly. Aztec-nr's state variables (see `../state_vars/`)\n /// are designed to understand when to create and push new note_hash read\n /// requests.\n ///\n /// # Arguments\n /// * `note_hash` - The note hash to read and verify\n ///\n /// # Advanced\n /// In \"traditional\" circuits for non-Aztec privacy applications, the merkle\n /// membership proofs to check existence of a note are performed _within_\n /// the application circuit.\n ///\n /// All Aztec private functions have access to the following constraint\n /// optimisation:\n /// In cases where the note being read was created earlier in the same tx,\n /// the note wouldn't yet exist in the Note Hash Tree, so a hard-coded\n /// merkle membership check which then gets ignored would be a waste of\n /// constraints.\n /// Instead, we can send read requests for all notes to the protocol's\n /// kernel circuits, where we can conditionally assess which notes actually\n /// need merkle membership proofs, and select an appropriately-sized\n /// kernel circuit.\n ///\n /// For \"settled notes\" (which already existed in the Note Hash Tree of the\n /// anchor block (i.e. before the tx began)), the kernel does a merkle\n /// membership check.\n ///\n /// For \"pending notes\" (which were created earlier in _this_ tx), the\n /// kernel will check that the note existed _before_ this read request was\n /// made, by checking the side-effect counters of the note_hash and this\n /// read request.\n ///\n /// This approach improves latency between writes and reads:\n /// a function can read a note which was created earlier in the tx (rather\n /// than performing the read in a later tx, after waiting for the earlier tx\n /// to be included, to ensure the note is included in the tree).\n ///\n pub fn push_note_hash_read_request(&mut self, note_hash: Field) {\n let side_effect = Counted::new(note_hash, self.next_counter());\n self.note_hash_read_requests.push(side_effect);\n }\n\n /// Requests to read a specific nullifier from the nullifier tree.\n ///\n /// Nullifier read requests are used to prove that a nullifier exists without\n /// revealing which specific nullifier preimage was read.\n ///\n /// This can be used to prove existence of both settled nullifiers (created in\n /// prior transactions) and transient nullifiers (created in the current\n /// transaction).\n /// If you need to prove existence of a settled nullifier _at a specific block\n /// number_, use `nullifier_inclusion::prove_nullifier_inclusion`.\n ///\n /// Low-level function. Ordinarily, smart contract developers will not need\n /// to call this directly. Aztec-nr's state variables (see `../state_vars/`)\n /// are designed to understand when to create and push new nullifier read\n /// requests.\n ///\n /// # Arguments\n /// * `nullifier` - The nullifier to read and verify\n ///\n /// # Advanced\n /// This approach improves latency between writes and reads:\n /// a function can read a nullifier which was created earlier in the tx\n /// (rather than performing the read in a later tx, after waiting for the\n /// earlier tx to be included, to ensure the note is included in the tree).\n ///\n pub fn push_nullifier_read_request(&mut self, nullifier: Field) {\n let request = Counted::new(nullifier, self.next_counter());\n self.nullifier_read_requests.push(request);\n }\n\n /// Requests the app-siloed nullifier secret key (nsk_app) for the given\n /// (hashed) master nullifier public key (npk_m), from the user's PXE.\n ///\n /// Advanced function: Only needed if you're designing your own notes and/or\n /// nullifiers.\n ///\n /// Contracts are not allowed to compute nullifiers for other contracts, as\n /// that would let them read parts of their private state. Because of this,\n /// a contract is only given an \"app-siloed secret key\", which is\n /// constructed by hashing the user's master nullifier secret key with the\n /// contract's address.\n /// However, because contracts cannot be trusted with a user's master\n /// nullifier secret key (because we don't know which contracts are honest\n /// or malicious), the PXE refuses to provide any master secret keys to\n /// any app smart contract function. This means app functions are unable to\n /// prove that the derivation of an app-siloed nullifier secret key has been\n /// computed correctly. Instead, an app function can request to the kernel\n /// (via `request_nsk_app`) that it validates the siloed derivation, since\n /// the kernel has been vetted to not leak any master secret keys.\n ///\n /// A common nullification scheme is to inject a nullifier secret key into\n /// the preimage of a nullifier, to make the nullifier deterministic but\n /// random-looking. This function enables that flow.\n ///\n /// # Arguments\n /// * `npk_m_hash` - A hash of the master nullifier public key of the user\n /// whose PXE is executing this function.\n ///\n /// # Returns\n /// * The app-siloed nullifier secret key that corresponds to the given\n /// `npk_m_hash`.\n ///\n pub fn request_nsk_app(&mut self, npk_m_hash: Field) -> Field {\n self.request_sk_app(npk_m_hash, NULLIFIER_INDEX)\n }\n\n /// Requests the app-siloed nullifier secret key (nsk_app) for the given\n /// (hashed) master nullifier public key (npk_m), from the user's PXE.\n ///\n /// See `request_nsk_app` and `request_sk_app` for more info.\n ///\n /// The intention of the \"outgoing\" keypair is to provide a second secret\n /// key for all of a user's outgoing activity (i.e. for notes that a user\n /// creates, as opposed to notes that a user receives from others). The\n /// separation of incoming and outgoing data was a distinction made by\n /// zcash, with the intention of enabling a user to optionally share with a\n /// 3rd party a controlled view of only incoming or outgoing notes.\n /// Similar functionality of sharing select data can be achieved with\n /// offchain zero-knowledge proofs. It is up to an app developer whether\n /// they choose to make use of a user's outgoing keypair within their\n /// application logic, or instead simply use the same keypair (the address\n /// keypair (which is effectively the same as the \"incooming\" keypair)) for\n /// all incoming & outgoing messages to a user.\n ///\n /// Currently, all of the exposed encryption functions in aztec-nr ignore\n /// the outgoing viewing keys, and instead encrypt all note logs and event\n /// logs to a user's address public key.\n ///\n /// # Arguments\n /// * `ovpk_m_hash` - Hash of the outgoing viewing public key master\n ///\n /// # Returns\n /// * The application-specific outgoing viewing secret key\n ///\n pub fn request_ovsk_app(&mut self, ovpk_m_hash: Field) -> Field {\n self.request_sk_app(ovpk_m_hash, OUTGOING_INDEX)\n }\n\n /// Pushes a Key Validation Request to the kernel.\n ///\n /// Private functions are not allowed to see a user's master secret keys,\n /// because we do not trust them. They are instead given \"app-siloed\" secret\n /// keys with a claim that they relate to a master public key.\n /// They can then request validation of this claim, by making a \"key\n /// validation request\" to the protocol's kernel circuits (which _are_\n /// allowed to see certain master secret keys).\n ///\n /// When a Key Validation Request tuple of (sk_app, Pk_m, app_address) is\n /// submitted to the kernel, it will perform the following derivations\n /// to validate the relationship between the claimed sk_app and the user's\n /// Pk_m:\n ///\n /// (sk_m) ----> * G ----> Pk_m\n /// | |\n /// v We use the kernel to prove this\n /// h(sk_m, app_address) | sk_app-Pk_m relationship, because app\n /// | circuits must not be trusted to see sk_m.\n /// v |\n /// sk_app - - - - - - - - -\n ///\n /// The function is named \"request_\" instead of \"get_\" to remind the user\n /// that a Key Validation Request will be emitted to the kernel.\n ///\n fn request_sk_app(&mut self, pk_m_hash: Field, key_index: Field) -> Field {\n let cached_request = self.last_key_validation_requests[key_index as u32].unwrap_or(\n KeyValidationRequest::empty(),\n );\n\n if cached_request.pk_m.hash() == pk_m_hash {\n // We get a match so the cached request is the latest one\n cached_request.sk_app\n } else {\n // We didn't get a match meaning the cached result is stale\n // Typically we'd validate keys by showing that they are the preimage of `pk_m_hash`, but that'd require\n // the oracle returning the master secret keys, which could cause malicious contracts to leak it or learn\n // about secrets from other contracts. We therefore silo secret keys, and rely on the private kernel to\n // validate that we siloed secret key corresponds to correct siloing of the master secret key that hashes\n // to `pk_m_hash`.\n\n // Safety: Kernels verify that the key validation request is valid and below we verify that a request\n // for the correct public key has been received.\n let request = unsafe { get_key_validation_request(pk_m_hash, key_index) };\n assert_eq(request.pk_m.hash(), pk_m_hash, \"Obtained invalid key validation request\");\n\n self.key_validation_requests_and_generators.push(\n KeyValidationRequestAndGenerator {\n request,\n sk_app_generator: sk_generators[key_index as u32],\n },\n );\n self.last_key_validation_requests[key_index as u32] = Option::some(request);\n request.sk_app\n }\n }\n\n /// Sends an \"L2 -> L1 message\" from this function (Aztec, L2) to a smart\n /// contract on Ethereum (L1). L1 contracts which are designed to\n /// send/receive messages to/from Aztec are called \"Portal Contracts\".\n ///\n /// Common use cases include withdrawals, cross-chain asset transfers, and\n /// triggering L1 actions based on L2 state changes.\n ///\n /// The message will be inserted into an Aztec \"Outbox\" contract on L1,\n /// when this transaction's block is proposed to L1.\n /// Sending the message will not result in any immediate state changes in\n /// the target portal contract. The message will need to be manually\n /// consumed from the Outbox through a separate Ethereum transaction: a user\n /// will need to call a function of the portal contract -- a function\n /// specifically designed to make a call to the Outbox to consume the\n /// message.\n /// The message will only be available for consumption once the _epoch_\n /// proof has been submitted. Given that there are multiple Aztec blocks\n /// within an epoch, it might take some time for this epoch proof to be\n /// submitted -- especially if the block was near the start of an epoch.\n ///\n /// # Arguments\n /// * `recipient` - Ethereum address that will receive the message\n /// * `content` - Message content (32 bytes as a Field element).\n /// This content has a very specific layout.\n /// docs:start:context_message_portal\n pub fn message_portal(&mut self, recipient: EthAddress, content: Field) {\n let message = L2ToL1Message { recipient, content };\n self.l2_to_l1_msgs.push(message.count(self.next_counter()));\n }\n\n /// Consumes a message sent from Ethereum (L1) to Aztec (L2).\n ///\n /// Common use cases include token bridging, cross-chain governance, and\n /// triggering L2 actions based on L1 events.\n ///\n /// Use this function if you only want the message to ever be \"referred to\"\n /// once. Once consumed using this method, the message cannot be consumed\n /// again, because a nullifier is emitted.\n /// If your use case wants for the message to be read unlimited times, then\n /// you can always read any historic message from the L1-to-L2 messages tree;\n /// messages never technically get deleted from that tree.\n ///\n /// The message will first be inserted into an Aztec \"Inbox\" smart contract\n /// on L1.\n /// Sending the message will not result in any immediate state changes in\n /// the target L2 contract. The message will need to be manually\n /// consumed by the target contract through a separate Aztec transaction.\n /// The message will not be available for consumption immediately. Messages\n /// get copied over from the L1 Inbox to L2 by the next Proposer in batches.\n /// So you will need to wait until the messages are copied before you can\n /// consume them.\n ///\n /// # Arguments\n /// * `content` - The message content that was sent from L1\n /// * `secret` - Secret value used for message privacy (if needed)\n /// * `sender` - Ethereum address that sent the message\n /// * `leaf_index` - Index of the message in the L1-to-L2 message tree\n ///\n /// # Advanced\n /// Validates message existence in the L1-to-L2 message tree and nullifies\n /// the message to prevent double-consumption.\n ///\n pub fn consume_l1_to_l2_message(\n &mut self,\n content: Field,\n secret: Field,\n sender: EthAddress,\n leaf_index: Field,\n ) {\n let nullifier = process_l1_to_l2_message(\n self.anchor_block_header.state.l1_to_l2_message_tree.root,\n self.this_address(),\n sender,\n self.chain_id(),\n self.version(),\n content,\n secret,\n leaf_index,\n );\n\n // Push nullifier (and the \"commitment\" corresponding to this can be \"empty\")\n self.push_nullifier(nullifier)\n }\n\n /// Emits a private log (an array of Fields) that will be published to an\n /// Ethereum blob.\n ///\n /// Private logs are intended for the broadcasting of ciphertexts: that is,\n /// encrypted events or encrypted note contents.\n /// Since the data in the logs is meant to be _encrypted_, private_logs are\n /// broadcast to publicly-visible Ethereum blobs.\n /// The intended recipients of such encrypted messages can then discover and\n /// decrypt these encrypted logs using their viewing secret key.\n /// (See `../messages/discovery` for more details).\n ///\n /// Important note: This function DOES NOT _do_ any encryption of the input\n /// `log` fields. This function blindly publishes whatever input `log` data\n /// is fed into it, so the caller of this function should have already\n /// performed the encryption, and the `log` should be the result of that\n /// encryption.\n ///\n /// The protocol does not dictate what encryption scheme should be used:\n /// a smart contract developer can choose whatever encryption scheme they\n /// like.\n /// Aztec-nr includes some off-the-shelf encryption libraries that\n /// developers might wish to use, for convenience. These libraries not only\n /// encrypt a plaintext (to produce a ciphertext); they also prepend the\n /// ciphertext with a `tag` and `ephemeral public key` for easier message\n /// discovery. This is a very dense topic, and we will be writing more\n /// libraries and docs soon.\n ///\n /// > Currently, AES128 CBC encryption is the main scheme included in\n /// > aztec.nr.\n /// > We are currently making significant changes to the interfaces of the\n /// > encryption library.\n ///\n /// In some niche use cases, an app might be tempted to publish\n /// _un-encrypted_ data via a private log, because _public logs_ are not\n /// available to private functions. Be warned that emitting public data via\n /// private logs is strongly discouraged, and is considered a \"privacy\n /// anti-pattern\", because it reveals identifiable information about _which_\n /// function has been executed. A tx which leaks such information does not\n /// contribute to the privacy set of the network.\n ///\n /// * Unlike `emit_raw_note_log`, this log is not tied to any specific note\n ///\n /// # Arguments\n /// * `log` - The log data that will be publicly broadcast (so make sure\n /// it's already been encrypted before you call this function).\n /// Private logs are bounded in size (PRIVATE_LOG_SIZE_IN_FIELDS), to\n /// encourage all logs from all smart contracts look identical.\n /// * `length` - The actual length of the `log` (measured in number of\n /// Fields). Although the input log has a max size of\n /// PRIVATE_LOG_SIZE_IN_FIELDS, the latter values of the array might all\n /// be 0's for small logs. This `length` should reflect the trimmed length\n /// of the array. The protocol's kernel circuits can then append random\n /// fields as \"padding\" after the `length`, so that the logs of this\n /// smart contract look indistinguishable from (the same length as) the\n /// logs of all other applications. It's up to wallets how much padding\n /// to apply, so ideally all wallets should agree on standards for this.\n ///\n /// # Advanced\n ///\n pub fn emit_private_log(&mut self, log: [Field; PRIVATE_LOG_SIZE_IN_FIELDS], length: u32) {\n let counter = self.next_counter();\n let private_log = PrivateLogData { log: PrivateLog::new(log, length), note_hash_counter: 0 }\n .count(counter);\n self.private_logs.push(private_log);\n }\n\n // TODO: rename.\n /// Emits a private log that is explicitly tied to a newly-emitted note_hash,\n /// to convey to the kernel: \"this log relates to this note\".\n ///\n /// This linkage is important in case the note gets squashed (due to being\n /// read later in this same tx), since we can then squash the log as well.\n ///\n /// See `emit_private_log` for more info about private log emission.\n ///\n /// # Arguments\n /// * `log` - The log data as an array of Field elements\n /// * `length` - The actual length of the `log` (measured in number of\n /// Fields).\n /// * `note_hash_counter` - The side-effect counter that was assigned to the\n /// new note_hash when it was pushed to this\n // `PrivateContext`.\n ///\n /// Important: If your application logic requires the log to always be\n /// emitted regardless of note squashing, consider using `emit_private_log`\n /// instead, or emitting additional events.\n ///\n pub fn emit_raw_note_log(\n &mut self,\n log: [Field; PRIVATE_LOG_SIZE_IN_FIELDS],\n length: u32,\n note_hash_counter: u32,\n ) {\n let counter = self.next_counter();\n let private_log = PrivateLogData { log: PrivateLog::new(log, length), note_hash_counter };\n self.private_logs.push(private_log.count(counter));\n }\n\n pub fn emit_contract_class_log<let N: u32>(&mut self, log: [Field; N]) {\n let contract_address = self.this_address();\n let counter = self.next_counter();\n\n let log_to_emit: [Field; CONTRACT_CLASS_LOG_SIZE_IN_FIELDS] =\n log.concat([0; CONTRACT_CLASS_LOG_SIZE_IN_FIELDS - N]);\n // Note: the length is not always N, it is the number of fields we want to broadcast, omitting trailing zeros to save blob space.\n // Safety: The below length is constrained in the base rollup, which will make sure that all the fields beyond length are zero.\n // However, it won't be able to check that we didn't add extra padding (trailing zeroes)\n let length = unsafe { trimmed_array_length_hint(log_to_emit) };\n // We hash the entire padded log to ensure a user cannot pass a shorter length and so emit incorrect shorter bytecode.\n let log_hash = poseidon2_hash(log_to_emit);\n // Safety: the below only exists to broadcast the raw log, so we can provide it to the base rollup later to be constrained.\n unsafe {\n notify_created_contract_class_log(contract_address, log_to_emit, length, counter);\n }\n\n self.contract_class_logs_hashes.push(LogHash { value: log_hash, length: length }.count(\n counter,\n ));\n }\n\n /// Calls a private function on another contract (or the same contract).\n ///\n /// Very low-level function.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `args` - Array of arguments to pass to the called function\n ///\n /// # Returns\n /// * `ReturnsHash` - Hash of the called function's return values. Use\n /// `.get_preimage()` to extract the actual return values.\n ///\n /// This enables contracts to interact with each other while maintaining\n /// privacy. This \"composability\" of private contract functions is a key\n /// feature of the Aztec network.\n ///\n /// If a user's transaction includes multiple private function calls, then\n /// by the design of Aztec, the following information will remain private[1]:\n /// - The function selectors and contract addresses of all private function\n /// calls will remain private, so an observer of the public mempool will\n /// not be able to look at a tx and deduce which private functions have\n /// been executed.\n /// - The arguments and return values of all private function calls will\n /// remain private.\n /// - The person who initiated the tx will remain private.\n /// - The notes and nullifiers and private logs that are emitted by all\n /// private function calls will (if designed well) not leak any user\n /// secrets, nor leak which functions have been executed.\n ///\n /// [1] Caveats: Some of these privacy guarantees depend on how app\n /// developers design their smart contracts. Some actions _can_ leak\n /// information, such as:\n /// - Calling an internal public function.\n /// - Calling a public function and not setting msg_sender to Option::none\n /// (feature not built yet - see github).\n /// - Calling any public function will always leak details about the nature\n /// of the transaction, so devs should be careful in their contract\n /// designs. If it can be done in a private function, then that will give\n /// the best privacy.\n /// - Not padding the side-effects of a tx to some standardised, uniform\n /// size. The kernel circuits can take hints to pad side-effects, so a\n /// wallet should be able to request for a particular amount of padding.\n /// Wallets should ideally agree on some standard.\n /// - Padding should include:\n /// - Padding the lengths of note & nullifier arrays\n /// - Padding private logs with random fields, up to some standardised\n /// size.\n /// See also: https://docs.aztec.network/developers/reference/considerations/privacy_considerations\n ///\n /// # Advanced\n /// * The call is added to the private call stack and executed by kernel\n /// circuits after this function completes\n /// * The called function can modify its own contract's private state\n /// * Side effects from the called function are included in this transaction\n /// * The call inherits the current transaction's context and gas limits\n ///\n pub fn call_private_function<let ArgsCount: u32>(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n args: [Field; ArgsCount],\n ) -> ReturnsHash {\n let args_hash = hash_args_array(args);\n execution_cache::store(args, args_hash);\n self.call_private_function_with_args_hash(\n contract_address,\n function_selector,\n args_hash,\n false,\n )\n }\n\n /// Makes a read-only call to a private function on another contract.\n ///\n /// This is similar to Solidity's `staticcall`. The called function\n /// cannot modify state, emit L2->L2 messages, nor emit events. Any nested\n /// calls are constrained to also be staticcalls.\n ///\n /// See `call_private_function` for more general info on private function\n /// calls.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract to call\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `args` - Array of arguments to pass to the called function\n ///\n /// # Returns\n /// * `ReturnsHash` - Hash of the called function's return values. Use\n /// `.get_preimage()` to extract the actual return values.\n ///\n pub fn static_call_private_function<let ArgsCount: u32>(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n args: [Field; ArgsCount],\n ) -> ReturnsHash {\n let args_hash = hash_args_array(args);\n execution_cache::store(args, args_hash);\n self.call_private_function_with_args_hash(\n contract_address,\n function_selector,\n args_hash,\n true,\n )\n }\n\n /// Calls a private function that takes no arguments.\n ///\n /// This is a convenience function for calling private functions that don't\n /// require any input parameters. It's equivalent to `call_private_function`\n /// but slightly more efficient to use when no arguments are needed.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n ///\n /// # Returns\n /// * `ReturnsHash` - Hash of the called function's return values. Use\n /// `.get_preimage()` to extract the actual return values.\n ///\n pub fn call_private_function_no_args(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n ) -> ReturnsHash {\n self.call_private_function_with_args_hash(contract_address, function_selector, 0, false)\n }\n\n /// Makes a read-only call to a private function which takes no arguments.\n ///\n /// This combines the optimisation of `call_private_function_no_args` with\n /// the safety of `static_call_private_function`.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n ///\n /// # Returns\n /// * `ReturnsHash` - Hash of the called function's return values. Use\n /// `.get_preimage()` to extract the actual return values.\n ///\n pub fn static_call_private_function_no_args(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n ) -> ReturnsHash {\n self.call_private_function_with_args_hash(contract_address, function_selector, 0, true)\n }\n\n /// Low-level private function call.\n ///\n /// This is the underlying implementation used by all other private function\n /// call methods. Instead of taking raw arguments, it accepts a\n /// hash of the arguments.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `args_hash` - Pre-computed hash of the function arguments\n /// * `is_static_call` - Whether this should be a read-only call\n ///\n /// # Returns\n /// * `ReturnsHash` - Hash of the called function's return values\n ///\n pub fn call_private_function_with_args_hash(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n args_hash: Field,\n is_static_call: bool,\n ) -> ReturnsHash {\n let mut is_static_call = is_static_call | self.inputs.call_context.is_static_call;\n let start_side_effect_counter = self.side_effect_counter;\n\n // Safety: The oracle simulates the private call and returns the value of the side effects counter after\n // execution of the call (which means that end_side_effect_counter - start_side_effect_counter is\n // the number of side effects that took place), along with the hash of the return values. We validate these\n // by requesting a private kernel iteration in which the return values are constrained to hash\n // to `returns_hash` and the side effects counter to increment from start to end.\n let (end_side_effect_counter, returns_hash) = unsafe {\n call_private_function_internal(\n contract_address,\n function_selector,\n args_hash,\n start_side_effect_counter,\n is_static_call,\n )\n };\n\n self.private_call_requests.push(\n PrivateCallRequest {\n call_context: CallContext {\n msg_sender: self.this_address(),\n contract_address,\n function_selector,\n is_static_call,\n },\n args_hash,\n returns_hash,\n start_side_effect_counter,\n end_side_effect_counter,\n },\n );\n\n // TODO (fees) figure out why this crashes the prover and enable it\n // we need this in order to pay fees inside child call contexts\n // assert(\n // (item.public_inputs.min_revertible_side_effect_counter == 0 as u32)\n // | (item.public_inputs.min_revertible_side_effect_counter\n // > self.min_revertible_side_effect_counter)\n // );\n // if item.public_inputs.min_revertible_side_effect_counter\n // > self.min_revertible_side_effect_counter {\n // self.min_revertible_side_effect_counter = item.public_inputs.min_revertible_side_effect_counter;\n // }\n self.side_effect_counter = end_side_effect_counter + 1; // TODO: call `next_counter` instead, for consistency\n ReturnsHash::new(returns_hash)\n }\n\n /// Enqueues a call to a public function to be executed later.\n ///\n /// Unlike private functions which execute immediately on the user's device,\n /// public function calls are \"enqueued\" and executed some time later by a\n /// block proposer.\n ///\n /// This means a public function cannot return any values back to a private\n /// function, because by the time the public function is being executed,\n /// the private function which called it has already completed execution.\n /// (In fact, the private function has been executed and proven, along with\n /// all other private function calls of the user's tx. A single proof of the\n /// tx has been submitted to the Aztec network, and some time later a\n /// proposer has picked the tx up from the mempool and begun executing all\n /// of the enqueued public functions).\n ///\n /// # Privacy warning\n /// Enqueueing a public function call is an inherently leaky action.\n /// Many interesting applications will require some interaction with public\n /// state, but smart contract developers should try to use public function\n /// calls sparingly, and carefully.\n /// _Internal_ public function calls are especially leaky, because they\n /// completely leak which private contract made the call.\n /// See also: https://docs.aztec.network/developers/reference/considerations/privacy_considerations\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `args` - Array of arguments to pass to the public function\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n ///\n pub fn call_public_function<let ArgsCount: u32>(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n args: [Field; ArgsCount],\n hide_msg_sender: bool,\n ) {\n let calldata = [function_selector.to_field()].concat(args);\n let calldata_hash = hash_calldata_array(calldata);\n execution_cache::store(calldata, calldata_hash);\n self.call_public_function_with_calldata_hash(\n contract_address,\n calldata_hash,\n false,\n hide_msg_sender,\n )\n }\n\n /// Enqueues a read-only call to a public function.\n ///\n /// This is similar to Solidity's `staticcall`. The called function\n /// cannot modify state or emit events. Any nested calls are constrained to\n /// also be staticcalls.\n ///\n /// See also `call_public_function` for more important information about\n /// making private -> public function calls.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `args` - Array of arguments to pass to the public function\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n ///\n pub fn static_call_public_function<let ArgsCount: u32>(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n args: [Field; ArgsCount],\n hide_msg_sender: bool,\n ) {\n let calldata = [function_selector.to_field()].concat(args);\n let calldata_hash = hash_calldata_array(calldata);\n execution_cache::store(calldata, calldata_hash);\n self.call_public_function_with_calldata_hash(\n contract_address,\n calldata_hash,\n true,\n hide_msg_sender,\n )\n }\n\n /// Enqueues a call to a public function that takes no arguments.\n ///\n /// This is an optimisation for calling public functions that don't\n /// take any input parameters. It's otherwise equivalent to\n /// `call_public_function`.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n ///\n pub fn call_public_function_no_args(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n hide_msg_sender: bool,\n ) {\n let calldata_hash = hash_calldata_array([function_selector.to_field()]);\n self.call_public_function_with_calldata_hash(\n contract_address,\n calldata_hash,\n false,\n hide_msg_sender,\n )\n }\n\n /// Enqueues a read-only call to a public function with no arguments.\n ///\n /// This combines the optimisation of `call_public_function_no_args` with\n /// the safety of `static_call_public_function`.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n ///\n pub fn static_call_public_function_no_args(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n hide_msg_sender: bool,\n ) {\n let calldata_hash = hash_calldata_array([function_selector.to_field()]);\n self.call_public_function_with_calldata_hash(\n contract_address,\n calldata_hash,\n true,\n hide_msg_sender,\n )\n }\n\n /// Low-level public function call.\n ///\n /// This is the underlying implementation used by all other public function\n /// call methods. Instead of taking raw arguments, it accepts a\n /// hash of the arguments.\n ///\n /// Advanced function: Most developers should use `call_public_function`\n /// or `static_call_public_function` instead. This function is exposed for\n /// performance optimization and advanced use cases.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `calldata_hash` - Hash of the function calldata\n /// * `is_static_call` - Whether this should be a read-only call\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n ///\n pub fn call_public_function_with_calldata_hash(\n &mut self,\n contract_address: AztecAddress,\n calldata_hash: Field,\n is_static_call: bool,\n hide_msg_sender: bool,\n ) {\n let counter = self.next_counter();\n\n let mut is_static_call = is_static_call | self.inputs.call_context.is_static_call;\n\n notify_enqueued_public_function_call(\n contract_address,\n calldata_hash,\n counter,\n is_static_call,\n );\n\n let msg_sender = if hide_msg_sender {\n NULL_MSG_SENDER_CONTRACT_ADDRESS\n } else {\n self.this_address()\n };\n\n let call_request =\n PublicCallRequest { msg_sender, contract_address, is_static_call, calldata_hash };\n\n self.public_call_requests.push(Counted::new(call_request, counter));\n }\n\n /// Enqueues a public function call, and designates it to be the teardown\n /// function for this tx. Only one teardown function call can be made by a\n /// tx.\n ///\n /// Niche function: Only wallet developers and paymaster contract developers\n /// (aka Fee-payment contracts) will need to make use of this function.\n ///\n /// Aztec supports a three-phase execution model: setup, app logic, teardown.\n /// The phases exist to enable a fee payer to take on the risk of paying\n /// a transaction fee, safe in the knowledge that their payment (in whatever\n /// token or method the user chooses) will succeed, regardless of whether\n /// the app logic will succeed. The \"setup\" phase ensures the fee payer\n /// has sufficient balance to pay the proposer their fees.\n /// The teardown phase is primarily intended to: calculate exactly\n /// how much the user owes, based on gas consumption, and refund the user\n /// any change.\n ///\n /// Note: in some cases, the cost of refunding the user (i.e. DA costs of\n /// tx side-effects) might exceed the refund amount. For app logic with\n /// fairly stable and predictable gas consumption, a material refund amount\n /// is unlikely. For app logic with unpredictable gas consumption, a\n /// refund might be important to the user (e.g. if a hefty function reverts\n /// very early). Wallet/FPC/Paymaster developers should be mindful of this.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the teardown\n /// function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `args` - An array of fields to pass to the function.\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n pub fn set_public_teardown_function<let ArgsCount: u32>(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n args: [Field; ArgsCount],\n hide_msg_sender: bool,\n ) {\n let calldata = [function_selector.to_field()].concat(args);\n let calldata_hash = hash_calldata_array(calldata);\n execution_cache::store(calldata, calldata_hash);\n self.set_public_teardown_function_with_calldata_hash(\n contract_address,\n calldata_hash,\n false,\n hide_msg_sender,\n )\n }\n\n /// Low-level function to set the public teardown function.\n ///\n /// This is the underlying implementation for setting the teardown function\n /// call that will execute at the end of the transaction. Instead of taking\n /// raw arguments, it accepts a hash of the arguments.\n ///\n /// Advanced function: Most developers should use\n /// `set_public_teardown_function` instead.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the teardown\n /// function\n /// * `calldata_hash` - Hash of the function calldata\n /// * `is_static_call` - Whether this should be a read-only call\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n ///\n pub fn set_public_teardown_function_with_calldata_hash(\n &mut self,\n contract_address: AztecAddress,\n calldata_hash: Field,\n is_static_call: bool,\n hide_msg_sender: bool,\n ) {\n let counter = self.next_counter();\n\n let mut is_static_call = is_static_call | self.inputs.call_context.is_static_call;\n\n notify_set_public_teardown_function_call(\n contract_address,\n calldata_hash,\n counter,\n is_static_call,\n );\n\n let msg_sender = if hide_msg_sender {\n NULL_MSG_SENDER_CONTRACT_ADDRESS\n } else {\n self.this_address()\n };\n\n self.public_teardown_call_request =\n PublicCallRequest { msg_sender, contract_address, is_static_call, calldata_hash };\n }\n\n /// Increments the side-effect counter.\n ///\n /// Very low-level function.\n ///\n /// # Advanced\n ///\n /// Every side-effect of a private function is given a \"side-effect counter\",\n /// based on when it is created. This PrivateContext is in charge of\n /// assigning the counters.\n ///\n /// The reason we have side-effect counters is complicated. Consider this\n /// illustrative pseudocode of inter-contract function calls:\n /// ```\n /// contract A {\n /// let x = 5; // pseudocode for storage var x.\n /// fn a1 {\n /// read x; // value: 5, counter: 1.\n /// x = x + 1;\n /// write x; // value: 6, counter: 2.\n ///\n /// B.b(); // start_counter: 2, end_counter: 4\n ///\n /// read x; // value: 36, counter: 5.\n /// x = x + 1;\n /// write x; // value: 37, counter: 6.\n /// }\n ///\n /// fn a2 {\n /// read x; // value: 6, counter: 3.\n /// x = x * x;\n /// write x; // value: 36, counter: 4.\n /// }\n /// }\n ///\n /// contract B {\n /// fn b() {\n /// A.a2();\n /// }\n /// }\n /// ```\n ///\n /// Suppose a1 is the first function called. The comments show the execution\n /// counter of each side-effect, and what the new value of `x` is.\n ///\n /// These (private) functions are processed by Aztec's kernel circuits in an\n /// order that is different from execution order:\n /// All of A.a1 is proven before B.b is proven, before A.a2 is proven.\n /// So when we're in the 2nd execution frame of A.a1 (after the call to\n /// B.b), the circuit needs to justify why x went from being `6` to `36`.\n /// But the circuit doesn't know why, and given the order of proving, the\n /// kernel hasn't _seen_ a value of 36 get written yet.\n /// The kernel needs to track big arrays of all side-effects of all\n /// private functions in a tx. Then, as it recurses and processes B.b(), it\n /// will eventually see a value of 36 get written.\n ///\n /// Suppose side-effect counters weren't exposed:\n /// The kernel would only see this ordering (in order of proof verification):\n /// [ A.a1.read, A.a1.write, A.a1.read, A.a1.write, A.a2.read, A.a2.write ]\n /// [ 5, 6, 36, 37, 6, 36 ]\n /// The kernel wouldn't know _when_ B.b() was called within A.a1(), because\n /// it can't see what's going on within an app circuit. So the kernel\n /// wouldn't know that the ordering of reads and writes should actually be:\n /// [ A.a1.read, A.a1.write, A.a2.read, A.a2.write, A.a1.read, A.a1.write ]\n /// [ 5, 6, 6, 36, 36, 37 ]\n ///\n /// And so, we introduced side-effect counters: every private function must\n /// assign side-effect counters alongside every side-effect that it emits,\n /// and also expose to the kernel the counters that it started and ended\n /// with.\n /// This gives the kernel enough information to arrange all side-effects in\n /// the correct order.\n /// It can then catch (for example) if a function tries to read state\n /// before it has been written (e.g. if A.a2() maliciously tried to read\n /// a value of x=37) (e.g. if A.a1() maliciously tried to read x=6).\n ///\n /// If a malicious app contract _lies_ and does not count correctly:\n /// - It cannot lie about its start and end counters because the kernel\n /// will catch this.\n /// - It _could_ lie about its intermediate counters:\n /// - 1. It could not increment its side-effects correctly\n /// - 2. It could label its side-effects with counters outside of its\n /// start and end counters' range.\n /// The kernel will catch 2.\n /// The kernel will not catch 1., but this would only cause corruption\n /// to the private state of the malicious contract, and not any other\n /// contracts (because a contract can only modify its own state). If\n /// a \"good\" contract is given _read access_ to a maliciously-counting\n /// contract (via an external getter function, or by reading historic\n /// state from the archive tree directly), and they then make state\n /// changes to their _own_ state accordingly, that could be dangerous.\n /// Developers should be mindful not to trust the claimed innards of\n /// external contracts unless they have audited/vetted the contracts\n /// including vetting the side-effect counter incrementation.\n /// This is a similar paradigm to Ethereum smart contract development:\n /// you must vet external contracts that your contract relies upon, and\n /// you must not make any presumptions about their claimed behaviour.\n /// (Hopefully if a contract imports a version of aztec-nr, we will get\n /// contract verification tooling that can validate the authenticity\n /// of the imported aztec-nr package, and hence infer that the side-\n /// effect counting will be correct, without having to re-audit such logic\n /// for every contract).\n ///\n fn next_counter(&mut self) -> u32 {\n let counter = self.side_effect_counter;\n self.side_effect_counter += 1;\n counter\n }\n}\n\nimpl Empty for PrivateContext {\n fn empty() -> Self {\n PrivateContext {\n inputs: PrivateContextInputs::empty(),\n side_effect_counter: 0 as u32,\n min_revertible_side_effect_counter: 0 as u32,\n is_fee_payer: false,\n args_hash: 0,\n return_hash: 0,\n include_by_timestamp: 0,\n note_hash_read_requests: BoundedVec::new(),\n nullifier_read_requests: BoundedVec::new(),\n key_validation_requests_and_generators: BoundedVec::new(),\n note_hashes: BoundedVec::new(),\n nullifiers: BoundedVec::new(),\n private_call_requests: BoundedVec::new(),\n public_call_requests: BoundedVec::new(),\n public_teardown_call_request: PublicCallRequest::empty(),\n l2_to_l1_msgs: BoundedVec::new(),\n anchor_block_header: BlockHeader::empty(),\n private_logs: BoundedVec::new(),\n contract_class_logs_hashes: BoundedVec::new(),\n last_key_validation_requests: [Option::none(); NUM_KEY_TYPES],\n }\n }\n}\n"
6998
+ "source": "use crate::{\n context::{inputs::PrivateContextInputs, returns_hash::ReturnsHash},\n hash::{hash_args_array, hash_calldata_array},\n keys::constants::{NULLIFIER_INDEX, NUM_KEY_TYPES, OUTGOING_INDEX, sk_generators},\n messaging::process_l1_to_l2_message,\n oracle::{\n block_header::get_block_header_at,\n call_private_function::call_private_function_internal,\n enqueue_public_function_call::{\n notify_enqueued_public_function_call, notify_set_min_revertible_side_effect_counter,\n notify_set_public_teardown_function_call,\n },\n execution_cache,\n key_validation_request::get_key_validation_request,\n logs::notify_created_contract_class_log,\n notes::{notify_created_nullifier, notify_nullified_note},\n },\n};\nuse dep::protocol_types::{\n abis::{\n block_header::BlockHeader,\n call_context::CallContext,\n function_selector::FunctionSelector,\n gas_settings::GasSettings,\n log_hash::LogHash,\n note_hash::NoteHash,\n nullifier::Nullifier,\n private_call_request::PrivateCallRequest,\n private_circuit_public_inputs::PrivateCircuitPublicInputs,\n private_log::{PrivateLog, PrivateLogData},\n public_call_request::PublicCallRequest,\n validation_requests::{KeyValidationRequest, KeyValidationRequestAndGenerator},\n },\n address::{AztecAddress, EthAddress},\n constants::{\n CONTRACT_CLASS_LOG_SIZE_IN_FIELDS, MAX_CONTRACT_CLASS_LOGS_PER_CALL,\n MAX_ENQUEUED_CALLS_PER_CALL, MAX_INCLUDE_BY_TIMESTAMP_DURATION,\n MAX_KEY_VALIDATION_REQUESTS_PER_CALL, MAX_L2_TO_L1_MSGS_PER_CALL,\n MAX_NOTE_HASH_READ_REQUESTS_PER_CALL, MAX_NOTE_HASHES_PER_CALL,\n MAX_NULLIFIER_READ_REQUESTS_PER_CALL, MAX_NULLIFIERS_PER_CALL,\n MAX_PRIVATE_CALL_STACK_LENGTH_PER_CALL, MAX_PRIVATE_LOGS_PER_CALL,\n NULL_MSG_SENDER_CONTRACT_ADDRESS, PRIVATE_LOG_SIZE_IN_FIELDS,\n },\n hash::poseidon2_hash,\n messaging::l2_to_l1_message::L2ToL1Message,\n side_effect::Counted,\n traits::{Empty, Hash, ToField},\n utils::arrays::{ClaimedLengthArray, trimmed_array_length_hint},\n};\n\n/// # PrivateContext\n///\n/// The **main interface** between a #[private] function and the Aztec blockchain.\n///\n/// An instance of the PrivateContext is initialized automatically at the outset\n/// of every private function, within the #[private] macro, so you'll never\n/// need to consciously instantiate this yourself.\n///\n/// The instance is always named `context`, and it is always be available within\n/// the body of every #[private] function in your smart contract.\n///\n/// > For those used to \"vanilla\" Noir, it might be jarring to have access to\n/// > `context` without seeing a declaration `let context = PrivateContext::new(...)`\n/// > within the body of your function. This is just a consequence of using\n/// > macros to tidy-up verbose boilerplate. You can use `nargo expand` to\n/// > expand all macros, if you dare.\n///\n/// Typical usage for a smart contract developer will be to call getter\n/// methods of the PrivateContext.\n///\n/// _Pushing_ data and requests to the context is mostly handled within\n/// aztec-nr's own functions, so typically a smart contract developer won't\n/// need to call any setter methods directly.\n///\n/// > Advanced users might occasionally wish to push data to the context\n/// > directly for lower-level control. If you find yourself doing this, please\n/// > open an issue on GitHub to describe your use case: it might be that\n/// > new functionality should be added to aztec-nr.\n///\n/// ## Responsibilities\n/// - Exposes contextual data to a private function:\n/// - Data relating to how this private function was called.\n/// - msg_sender\n/// - this_address - (the contract address of the private function being\n/// executed)\n/// - See `CallContext` for more data.\n/// - Data relating to the transaction in which this private function is\n/// being executed.\n/// - chain_id\n/// - version\n/// - gas_settings\n/// - Provides state access:\n/// - Access to the \"Anchor block\" header.\n/// Recall, a private function cannot read from the \"current\" block header,\n/// but must read from some historical block header, because as soon as\n/// private function execution begins (asynchronously, on a user's device),\n/// the public state of the chain (the \"current state\") will have progressed\n/// forward. We call this reference the \"Anchor block\".\n/// See `BlockHeader`.\n/// - Enables consumption of L1->L2 messages.\n/// - Enables calls to functions of other smart contracts:\n/// - Private function calls\n/// - Enqueueing of public function call requests\n/// (Since public functions are executed at a later time, by a block\n/// proposer, we say they are \"enqueued\").\n/// - Writes data to the blockchain:\n/// - New notes\n/// - New nullifiers\n/// - Private logs (for sending encrypted note contents or encrypted events)\n/// - New L2->L1 messages.\n/// - Provides args to the private function (handled by the #[private] macro).\n/// - Returns the return values of this private function (handled by the\n/// #[private] macro).\n/// - Makes Key Validation Requests.\n/// - Private functions are not allowed to see master secret keys, because we\n/// do not trust them. They are instead given \"app-siloed\" secret keys with\n/// a claim that they relate to a master public key. They can then request\n/// validation of this claim, by making a \"key validation request\" to the\n/// protocol's kernel circuits (which _are_ allowed to see certain master\n/// secret keys).\n///\n/// ## Advanced Responsibilities\n///\n/// - Ultimately, the PrivateContext is responsible for constructing the\n/// PrivateCircuitPublicInputs of the private function being executed.\n/// All private functions on Aztec must have public inputs which adhere\n/// to the rigid layout of the PrivateCircuitPublicInputs, in order to be\n/// compatible with the protocol's kernel circuits.\n/// A well-known misnomer:\n/// - \"public inputs\" contain both inputs and outputs of this function.\n/// - By \"outputs\" we mean a lot more side-effects than just the\n/// \"return values\" of the function.\n/// - Most of the so-called \"public inputs\" are kept _private_, and never leak\n/// to the outside world, because they are 'swallowed' by the protocol's\n/// kernel circuits before the tx is sent to the network. Only the\n/// following are exposed to the outside world:\n/// - New note_hashes\n/// - New nullifiers\n/// - New private logs\n/// - New L2->L1 messages\n/// - New enqueued public function call requests\n/// All the above-listed arrays of side-effects can be padded by the\n/// user's wallet (through instructions to the kernel circuits, via the\n/// PXE) to obscure their true lengths.\n///\n/// ## Syntax Justification\n///\n/// Both user-defined functions _and_ most functions in aztec-nr need access to\n/// the PrivateContext instance to read/write data. This is why you'll see the\n/// arguably-ugly pervasiveness of the \"context\" throughout your smart contract\n/// and the aztec-nr library.\n/// For example, `&mut context` is prevalent. In some languages, you can access\n/// and mutate a global variable (such as a PrivateContext instance) from a\n/// function without polluting the function's parameters. With Noir, a function\n/// must explicitly pass control of a mutable variable to another function, by\n/// reference. Since many functions in aztec-nr need to be able to push new data\n/// to the PrivateContext, they need to be handed a mutable reference _to_ the\n/// context as a parameter.\n/// For example, `Context` is prevalent as a generic parameter, to give better\n/// type safety at compile time. Many `aztec-nr` functions don't make sense if\n/// they're called in a particular runtime (private, public or utility), and so\n/// are intentionally only implemented over certain\n/// [Private|Public|Utility]Context structs. This gives smart contract\n/// developers a much faster feedback loop if they're making a mistake, as an\n/// error will be thrown by the LSP or when they compile their contract.\n///\n#[derive(Eq)]\npub struct PrivateContext {\n // docs:start:private-context\n pub inputs: PrivateContextInputs,\n pub side_effect_counter: u32,\n\n pub min_revertible_side_effect_counter: u32,\n pub is_fee_payer: bool,\n\n pub args_hash: Field,\n pub return_hash: Field,\n\n pub include_by_timestamp: u64,\n\n pub note_hash_read_requests: BoundedVec<Counted<Field>, MAX_NOTE_HASH_READ_REQUESTS_PER_CALL>,\n pub nullifier_read_requests: BoundedVec<Counted<Field>, MAX_NULLIFIER_READ_REQUESTS_PER_CALL>,\n key_validation_requests_and_generators: BoundedVec<KeyValidationRequestAndGenerator, MAX_KEY_VALIDATION_REQUESTS_PER_CALL>,\n\n pub note_hashes: BoundedVec<Counted<NoteHash>, MAX_NOTE_HASHES_PER_CALL>,\n pub nullifiers: BoundedVec<Counted<Nullifier>, MAX_NULLIFIERS_PER_CALL>,\n\n pub private_call_requests: BoundedVec<PrivateCallRequest, MAX_PRIVATE_CALL_STACK_LENGTH_PER_CALL>,\n pub public_call_requests: BoundedVec<Counted<PublicCallRequest>, MAX_ENQUEUED_CALLS_PER_CALL>,\n pub public_teardown_call_request: PublicCallRequest,\n pub l2_to_l1_msgs: BoundedVec<Counted<L2ToL1Message>, MAX_L2_TO_L1_MSGS_PER_CALL>,\n // docs:end:private-context\n\n // Header of a block whose state is used during private execution (not the block the transaction is included in).\n pub anchor_block_header: BlockHeader,\n\n pub private_logs: BoundedVec<Counted<PrivateLogData>, MAX_PRIVATE_LOGS_PER_CALL>,\n pub contract_class_logs_hashes: BoundedVec<Counted<LogHash>, MAX_CONTRACT_CLASS_LOGS_PER_CALL>,\n\n // Contains the last key validation request for each key type. This is used to cache the last request and avoid\n // fetching the same request multiple times.\n // The index of the array corresponds to the key type (0 nullifier, 1 incoming, 2 outgoing, 3 tagging).\n pub last_key_validation_requests: [Option<KeyValidationRequest>; NUM_KEY_TYPES],\n}\n\nimpl PrivateContext {\n pub fn new(inputs: PrivateContextInputs, args_hash: Field) -> PrivateContext {\n let max_allowed_include_by_timestamp = inputs.anchor_block_header.global_variables.timestamp\n + MAX_INCLUDE_BY_TIMESTAMP_DURATION;\n PrivateContext {\n inputs,\n side_effect_counter: inputs.start_side_effect_counter + 1,\n min_revertible_side_effect_counter: 0,\n is_fee_payer: false,\n args_hash,\n return_hash: 0,\n include_by_timestamp: max_allowed_include_by_timestamp,\n note_hash_read_requests: BoundedVec::new(),\n nullifier_read_requests: BoundedVec::new(),\n key_validation_requests_and_generators: BoundedVec::new(),\n note_hashes: BoundedVec::new(),\n nullifiers: BoundedVec::new(),\n anchor_block_header: inputs.anchor_block_header,\n private_call_requests: BoundedVec::new(),\n public_call_requests: BoundedVec::new(),\n public_teardown_call_request: PublicCallRequest::empty(),\n l2_to_l1_msgs: BoundedVec::new(),\n private_logs: BoundedVec::new(),\n contract_class_logs_hashes: BoundedVec::new(),\n last_key_validation_requests: [Option::none(); NUM_KEY_TYPES],\n }\n }\n\n /// Returns the contract address that initiated this function call.\n ///\n /// This is similar to `msg.sender` in Solidity (hence the name).\n ///\n /// Important Note: Since Aztec doesn't have a concept of an EoA (\n /// Externally-owned Account), the msg_sender is \"null\" for the first\n /// function call of every transaction.\n /// The first function call of a tx is likely to be a call to the user's\n /// account contract, so this quirk will most often be handled by account\n /// contract developers.\n ///\n /// # Returns\n /// * `Option<AztecAddress>` - The address of the smart contract that called\n /// this function (be it an app contract or a user's account contract).\n /// Returns `Option<AztecAddress>::none` for the first function call of\n /// the tx. No other _private_ function calls in the tx will have a `none`\n /// msg_sender, but _public_ function calls might (see the PublicContext).\n ///\n pub fn msg_sender(self) -> Option<AztecAddress> {\n let maybe_msg_sender = self.inputs.call_context.msg_sender;\n if maybe_msg_sender == NULL_MSG_SENDER_CONTRACT_ADDRESS {\n Option::none()\n } else {\n Option::some(maybe_msg_sender)\n }\n }\n\n /// \"Unsafe\" versus calling `context.msg_sender()`, because it doesn't\n /// translate `NULL_MSG_SENDER_CONTRACT_ADDRESS` as\n /// `Option<AztecAddress>::none`.\n /// Used by some internal aztecnr functions.\n pub fn msg_sender_unsafe(self) -> AztecAddress {\n self.inputs.call_context.msg_sender\n }\n\n /// Returns the contract address of the current function being executed.\n ///\n /// This is equivalent to `address(this)` in Solidity (hence the name).\n /// Use this to identify the current contract's address, commonly needed for\n /// access control or when interacting with other contracts.\n ///\n /// # Returns\n /// * `AztecAddress` - The contract address of the current function being\n /// executed.\n ///\n pub fn this_address(self) -> AztecAddress {\n self.inputs.call_context.contract_address\n }\n\n /// Returns the chain ID of the current network.\n ///\n /// This is similar to `block.chainid` in Solidity. Returns the unique\n /// identifier for the blockchain network this transaction is executing on.\n ///\n /// Helps prevent cross-chain replay attacks. Useful if implementing\n /// multi-chain contract logic.\n ///\n /// # Returns\n /// * `Field` - The chain ID as a field element\n ///\n pub fn chain_id(self) -> Field {\n self.inputs.tx_context.chain_id\n }\n\n /// Returns the Aztec protocol version that this transaction is executing\n /// under. Different versions may have different rules, opcodes, or\n /// cryptographic primitives.\n ///\n /// This is similar to how Ethereum has different EVM versions.\n ///\n /// Useful for forward/backward compatibility checks\n ///\n /// Not to be confused with contract versions; this is the protocol version.\n ///\n /// # Returns\n /// * `Field` - The protocol version as a field element\n ///\n pub fn version(self) -> Field {\n self.inputs.tx_context.version\n }\n\n /// Returns the gas settings for the current transaction.\n ///\n /// This provides information about gas limits and pricing for the\n /// transaction, similar to `tx.gasprice` and gas limits in Ethereum.\n /// However, Aztec has a more sophisticated gas model with separate\n /// accounting for L2 computation and data availability (DA) costs.\n ///\n /// # Returns\n /// * `GasSettings` - Struct containing gas limits and fee information\n ///\n pub fn gas_settings(self) -> GasSettings {\n self.inputs.tx_context.gas_settings\n }\n\n /// Returns the function selector of the currently executing function.\n ///\n /// Low-level function: Ordinarily, smart contract developers will not need\n /// to access this.\n ///\n /// This is similar to `msg.sig` in Solidity, which returns the first 4\n /// bytes of the function signature. In Aztec, the selector uniquely\n /// identifies which function within the contract is being called.\n ///\n /// # Returns\n /// * `FunctionSelector` - The 4-byte function identifier\n ///\n /// # Advanced\n /// Only #[private] functions have a function selector as a protocol-\n /// enshrined concept. The function selectors of private functions are\n /// baked into the preimage of the contract address, and are used by the\n /// protocol's kernel circuits to identify each private function and ensure\n /// the correct one is being executed.\n ///\n /// Used internally for function dispatch and call verification.\n ///\n pub fn selector(self) -> FunctionSelector {\n self.inputs.call_context.function_selector\n }\n\n /// Returns the hash of the arguments passed to the current function.\n ///\n /// Very low-level function: You shouldn't need to call this. The #[private]\n /// macro calls this, and it makes the arguments neatly available to the\n /// body of your private function.\n ///\n /// # Returns\n /// * `Field` - Hash of the function arguments\n ///\n /// # Advanced\n /// * Arguments are hashed to reduce proof size and verification time\n /// * Enables efficient argument passing in recursive function calls\n /// * The hash can be used to retrieve the original arguments from the PXE.\n ///\n pub fn get_args_hash(self) -> Field {\n self.args_hash\n }\n\n /// Pushes a new note_hash to the Aztec blockchain's global Note Hash Tree\n /// (a state tree).\n ///\n /// A note_hash is a commitment to a piece of private state.\n ///\n /// Low-level function: Ordinarily, smart contract developers will not need\n /// to manually call this. Aztec-nr's state variables (see `../state_vars/`)\n /// are designed to understand when to create and push new note hashes.\n ///\n /// # Arguments\n /// * `note_hash` - The new note_hash.\n ///\n /// # Advanced\n /// From here, the protocol's kernel circuits will take over and insert the\n /// note_hash into the protocol's \"note hash tree\" (in the Base Rollup\n /// circuit).\n /// Before insertion, the protocol will:\n /// - \"Silo\" the `note_hash` with the contract address of this function,\n /// to yield a `siloed_note_hash`. This prevents state collisions\n /// between different smart contracts.\n /// - Ensure uniqueness of the `siloed_note_hash`, to prevent Faerie-Gold\n /// attacks, by hashing the `siloed_note_hash` with a unique value, to\n /// yield a `unique_siloed_note_hash` (see the protocol spec for more).\n ///\n /// In addition to calling this function, aztec-nr provides the contents\n /// of the newly-created note to the PXE, via the `notify_created_note`\n /// oracle.\n ///\n /// > Advanced users might occasionally wish to push data to the context\n /// > directly for lower-level control. If you find yourself doing this,\n /// > please open an issue on GitHub to describe your use case: it might be\n /// > that new functionality should be added to aztec-nr.\n ///\n pub fn push_note_hash(&mut self, note_hash: Field) {\n self.note_hashes.push(Counted::new(note_hash, self.next_counter()));\n }\n\n /// Pushes a new nullifier to the Aztec blockchain's global Nullifier Tree\n /// (a state tree).\n ///\n /// See also: `push_nullifier_for_note_hash`.\n ///\n /// Low-level function: Ordinarily, smart contract developers will not need\n /// to manually call this. Aztec-nr's state variables (see `../state_vars/`)\n /// are designed to understand when to create and push new nullifiers.\n ///\n /// A nullifier can only be emitted once. Duplicate nullifier insertions are\n /// rejected by the protocol.\n ///\n /// Generally, a nullifier is emitted to prevent an action from happening\n /// more than once, in such a way that the action cannot be linked (by an\n /// observer of the blockchain) to any earlier transactions.\n ///\n /// I.e. a nullifier is a random-looking, but deterministic record of a\n /// private, one-time action, which does not leak what action has been\n /// taken, and which preserves the property of \"tx unlinkability\".\n ///\n /// Usually, a nullifier will be emitted to \"spend\" a note (a piece of\n /// private state), without revealing which specific note is being spent.\n ///\n /// (Important: in such cases, use the below `push_nullifier_for_note_hash`).\n ///\n /// Sometimes, a nullifier might be emitted completely unrelated to any\n /// notes. Examples include initialization of a new contract; initialization\n /// of a PrivateMutable, or signalling in Semaphore-like applications.\n /// This `push_nullifier` function serves such use cases.\n ///\n /// # Arguments\n /// * `nullifier`\n ///\n /// # Advanced\n /// From here, the protocol's kernel circuits will take over and insert the\n /// nullifier into the protocol's \"nullifier tree\" (in the Base Rollup\n /// circuit).\n /// Before insertion, the protocol will:\n /// - \"Silo\" the `nullifier` with the contract address of this function,\n /// to yield a `siloed_nullifier`. This prevents state collisions\n /// between different smart contracts.\n /// - Ensure the `siloed_nullifier` is unique (the nullifier tree is an\n /// indexed merkle tree which supports efficient non-membership proofs).\n ///\n pub fn push_nullifier(&mut self, nullifier: Field) {\n notify_created_nullifier(nullifier);\n self.nullifiers.push(Nullifier { value: nullifier, note_hash: 0 }.count(self.next_counter()));\n }\n\n /// Pushes a nullifier that corresponds to a specific note hash.\n ///\n /// Low-level function: Ordinarily, smart contract developers will not need\n /// to manually call this. Aztec-nr's state variables (see `../state_vars/`)\n /// are designed to understand when to create and push new nullifiers.\n ///\n /// This is a specialized version of `push_nullifier` that links a nullifier\n /// to the specific note hash it's nullifying. This is the most common\n /// usage pattern for nullifiers.\n /// See `push_nullifier` for more explanation on nullifiers.\n ///\n /// # Arguments\n /// * `nullifier`\n /// * `nullified_note_hash` - The note hash of the note being nullified\n ///\n /// # Advanced\n /// Important: usage of this function doesn't mean that the world will _see_\n /// that this nullifier relates to the given nullified_note_hash (as that\n /// would violate \"tx unlinkability\"); it simply informs the user's PXE\n /// about the relationship (via `notify_nullified_note`). The PXE can then\n /// use this information to feed hints to the kernel circuits for\n /// \"squashing\" purposes: If a note is nullified during the same tx which\n /// created it, we can \"squash\" (delete) the note and nullifier (and any\n /// private logs associated with the note), to save on data emission costs.\n ///\n pub fn push_nullifier_for_note_hash(&mut self, nullifier: Field, nullified_note_hash: Field) {\n let nullifier_counter = self.next_counter();\n notify_nullified_note(nullifier, nullified_note_hash, nullifier_counter);\n self.nullifiers.push(Nullifier { value: nullifier, note_hash: nullified_note_hash }.count(\n nullifier_counter,\n ));\n }\n\n /// Returns the anchor block header - the historical block header that this\n /// private function is reading from.\n ///\n /// A private function CANNOT read from the \"current\" block header,\n /// but must read from some older block header, because as soon as\n /// private function execution begins (asynchronously, on a user's device),\n /// the public state of the chain (the \"current state\") will have progressed\n /// forward.\n ///\n /// # Returns\n /// * `BlockHeader` - The anchor block header.\n ///\n /// # Advanced\n /// * All private functions of a tx read from the same anchor block header.\n /// * The protocol asserts that the `include_by_timestamp` of every tx\n /// is at most 24 hours beyond the timestamp of the tx's chosen anchor\n /// block header. This enables the network's nodes to safely prune old txs\n /// from the mempool. Therefore, the chosen block header _must_ be one\n /// from within the last 24 hours.\n ///\n pub fn get_anchor_block_header(self) -> BlockHeader {\n self.anchor_block_header\n }\n\n /// Returns the header of any historical block at or before the anchor\n /// block.\n ///\n /// This enables private contracts to access information from even older\n /// blocks than the anchor block header.\n ///\n /// Useful for time-based contract logic that needs to compare against\n /// multiple historical points.\n ///\n /// # Arguments\n /// * `block_number` - The block number to retrieve (must be <= anchor\n /// block number)\n ///\n /// # Returns\n /// * `BlockHeader` - The header of the requested historical block\n ///\n /// # Advanced\n /// This function uses an oracle to fetch block header data from the user's\n /// PXE. Depending on how much blockchain data the user's PXE has been set\n /// up to store, this might require a query from the PXE to another Aztec\n /// node to get the data.\n /// > This is generally true of all oracle getters (see `../oracle`).\n ///\n /// Each block header gets hashed and stored as a leaf in the protocol's\n /// Archive Tree. In fact, the i-th block header gets stored at the i-th\n /// leaf index of the Archive Tree. Behind the scenes, this\n /// `get_block_header_at` function will add Archive Tree merkle-membership\n /// constraints (~3k) to your smart contract function's circuit, to prove\n /// existence of the block header in the Archive Tree.\n ///\n /// Note: we don't do any caching, so avoid making duplicate calls for the\n /// same block header, because each call will add duplicate constraints.\n ///\n /// Calling this function is more expensive (constraint-wise) than getting\n /// the anchor block header (via `get_block_header`). This is because the\n /// anchor block's merkle membership proof is handled by Aztec's protocol\n /// circuits, and is only performed once for the entire tx because all\n /// private functions of a tx share a common anchor block header. Therefore,\n /// the cost (constraint-wise) of calling `get_block_header` is effectively\n /// free.\n ///\n pub fn get_block_header_at(self, block_number: u32) -> BlockHeader {\n get_block_header_at(block_number, self)\n }\n\n /// Sets the hash of the return values for this private function.\n ///\n /// Very low-level function: this is called by the #[private] macro.\n ///\n /// # Arguments\n /// * `serialized_return_values` - The serialized return values as a field array\n ///\n pub fn set_return_hash<let N: u32>(&mut self, serialized_return_values: [Field; N]) {\n let return_hash = hash_args_array(serialized_return_values);\n self.return_hash = return_hash;\n execution_cache::store(serialized_return_values, return_hash);\n }\n\n /// Builds the PrivateCircuitPublicInputs for this private function, to\n /// ensure compatibility with the protocol's kernel circuits.\n ///\n /// Very low-level function: This function is automatically called by the\n /// #[private] macro.\n pub fn finish(self) -> PrivateCircuitPublicInputs {\n PrivateCircuitPublicInputs {\n call_context: self.inputs.call_context,\n args_hash: self.args_hash,\n returns_hash: self.return_hash,\n min_revertible_side_effect_counter: self.min_revertible_side_effect_counter,\n is_fee_payer: self.is_fee_payer,\n include_by_timestamp: self.include_by_timestamp,\n note_hash_read_requests: ClaimedLengthArray::from_bounded_vec(\n self.note_hash_read_requests,\n ),\n nullifier_read_requests: ClaimedLengthArray::from_bounded_vec(\n self.nullifier_read_requests,\n ),\n key_validation_requests_and_generators: ClaimedLengthArray::from_bounded_vec(\n self.key_validation_requests_and_generators,\n ),\n note_hashes: ClaimedLengthArray::from_bounded_vec(self.note_hashes),\n nullifiers: ClaimedLengthArray::from_bounded_vec(self.nullifiers),\n private_call_requests: ClaimedLengthArray::from_bounded_vec(self.private_call_requests),\n public_call_requests: ClaimedLengthArray::from_bounded_vec(self.public_call_requests),\n public_teardown_call_request: self.public_teardown_call_request,\n l2_to_l1_msgs: ClaimedLengthArray::from_bounded_vec(self.l2_to_l1_msgs),\n start_side_effect_counter: self.inputs.start_side_effect_counter,\n end_side_effect_counter: self.side_effect_counter,\n private_logs: ClaimedLengthArray::from_bounded_vec(self.private_logs),\n contract_class_logs_hashes: ClaimedLengthArray::from_bounded_vec(\n self.contract_class_logs_hashes,\n ),\n anchor_block_header: self.anchor_block_header,\n tx_context: self.inputs.tx_context,\n }\n }\n\n /// Designates this contract as the fee payer for the transaction.\n ///\n /// Unlike Ethereum, where the transaction sender always pays fees, Aztec\n /// allows any contract to voluntarily pay transaction fees. This enables\n /// patterns like sponsored transactions or fee abstraction where users\n /// don't need to hold fee-juice themselves. (Fee juice is a fee-paying\n /// asset for Aztec).\n ///\n /// Only one contract per transaction can declare itself as the fee payer,\n /// and it must have sufficient fee-juice balance (>= the gas limits\n /// specified in the TxContext) by the time we reach the public setup phase\n /// of the tx.\n ///\n pub fn set_as_fee_payer(&mut self) {\n dep::protocol_types::debug_log::debug_log_format(\n \"Setting {0} as fee payer\",\n [self.this_address().to_field()],\n );\n self.is_fee_payer = true;\n }\n\n /// Declares the end of the \"setup phase\" of this tx.\n ///\n /// Only one function per tx can declare the end of the setup phase.\n ///\n /// Niche function: Only wallet developers and paymaster contract developers\n /// (aka Fee-payment contracts) will need to make use of this function.\n ///\n /// Aztec supports a three-phase execution model: setup, app logic, teardown.\n /// The phases exist to enable a fee payer to take on the risk of paying\n /// a transaction fee, safe in the knowledge that their payment (in whatever\n /// token or method the user chooses) will succeed, regardless of whether\n /// the app logic will succeed. The \"setup\" phase enables such a payment to\n /// be made, because the setup phase _cannot revert_: a reverting function\n /// within the setup phase would result in an invalid block which cannot\n /// be proven. Any side-effects generated during that phase are guaranteed\n /// to be inserted into Aztec's state trees (except for squashed notes &\n /// nullifiers, of course).\n ///\n /// Even though the end of the setup phase is declared within a private\n /// function, you might have noticed that _public_ functions can also\n /// execute within the setup phase. This is because any public function\n /// calls which were enqueued _within the setup phase_ by a private\n /// function are considered part of the setup phase.\n ///\n /// # Advanced\n /// * Sets the minimum revertible side effect counter of this tx to be the\n /// PrivateContext's _current_ side effect counter.\n ///\n pub fn end_setup(&mut self) {\n // dep::protocol_types::debug_log::debug_log_format(\n // \"Ending setup at counter {0}\",\n // [self.side_effect_counter as Field]\n // );\n self.min_revertible_side_effect_counter = self.side_effect_counter;\n notify_set_min_revertible_side_effect_counter(self.min_revertible_side_effect_counter);\n }\n\n /// Sets a deadline (an \"include-by timestamp\") for when this transaction\n /// must be included in a block.\n ///\n /// Other functions in this tx might call this setter with differing\n /// values for the include-by timestamp. To ensure that all functions'\n /// deadlines are met, the _minimum_ of all these include-by timestamps will\n /// be exposed when this tx is submitted to the network.\n ///\n /// If the transaction is not included in a block by its include-by\n /// timestamp, it becomes invalid and it will never be included.\n ///\n /// This expiry timestamp is publicly visible. See the \"Advanced\" section\n /// for privacy concerns.\n ///\n /// # Arguments\n /// * `include_by_timestamp` - Unix timestamp (seconds) deadline for inclusion.\n /// The include-by timestamp of this tx will be\n /// _at most_ the timestamp specified.\n ///\n /// # Advanced\n /// * If multiple functions set differing `include_by_timestamp`s, the\n /// kernel circuits will set it to be the _minimum_ of the two. This\n /// ensures the tx expiry requirements of all functions in the tx are met.\n /// * Rollup circuits will reject expired txs.\n /// * The protocol enforces that all transactions must be included within\n /// 24 hours of their chosen anchor block's timestamp, to enable safe\n /// mempool pruning.\n /// * The DelayedPublicMutable design makes heavy use of this functionality,\n /// to enable private functions to read public state.\n /// * A sophisticated Wallet should cleverly set an include-by timestamp\n /// to improve the privacy of the user and the network as a whole.\n /// For example, if a contract interaction sets include-by to some\n /// publicly-known value (e.g. the time when a contract upgrades), then\n /// the wallet might wish to set an even lower one to avoid revealing that\n /// this tx is interacting with said contract.\n /// Ideally, all wallets should standardise on an approach in order to\n /// provide users with a large anonymity set -- although the exact apprach\n /// will need to be discussed. Wallets that deviate from a standard might\n /// accidentally reveal which wallet each transaction originates from.\n ///\n // docs:start:include-by-timestamp\n pub fn set_include_by_timestamp(&mut self, include_by_timestamp: u64) {\n // docs:end:include-by-timestamp\n self.include_by_timestamp = std::cmp::min(self.include_by_timestamp, include_by_timestamp);\n }\n\n /// Makes a request to the protocol's kernel circuit to ensure a note_hash\n /// actually exists.\n ///\n /// \"Read requests\" are used to prove that a note hash exists without\n /// revealing which specific note was read.\n ///\n /// This can be used to prove existence of both settled notes (created in\n /// prior transactions) and transient notes (created in the current\n /// transaction).\n /// If you need to prove existence of a settled note _at a specific block\n /// number_, use `note_inclusion::prove_note_inclusion`.\n ///\n /// Low-level function. Ordinarily, smart contract developers will not need\n /// to call this directly. Aztec-nr's state variables (see `../state_vars/`)\n /// are designed to understand when to create and push new note_hash read\n /// requests.\n ///\n /// # Arguments\n /// * `note_hash` - The note hash to read and verify\n ///\n /// # Advanced\n /// In \"traditional\" circuits for non-Aztec privacy applications, the merkle\n /// membership proofs to check existence of a note are performed _within_\n /// the application circuit.\n ///\n /// All Aztec private functions have access to the following constraint\n /// optimisation:\n /// In cases where the note being read was created earlier in the same tx,\n /// the note wouldn't yet exist in the Note Hash Tree, so a hard-coded\n /// merkle membership check which then gets ignored would be a waste of\n /// constraints.\n /// Instead, we can send read requests for all notes to the protocol's\n /// kernel circuits, where we can conditionally assess which notes actually\n /// need merkle membership proofs, and select an appropriately-sized\n /// kernel circuit.\n ///\n /// For \"settled notes\" (which already existed in the Note Hash Tree of the\n /// anchor block (i.e. before the tx began)), the kernel does a merkle\n /// membership check.\n ///\n /// For \"pending notes\" (which were created earlier in _this_ tx), the\n /// kernel will check that the note existed _before_ this read request was\n /// made, by checking the side-effect counters of the note_hash and this\n /// read request.\n ///\n /// This approach improves latency between writes and reads:\n /// a function can read a note which was created earlier in the tx (rather\n /// than performing the read in a later tx, after waiting for the earlier tx\n /// to be included, to ensure the note is included in the tree).\n ///\n pub fn push_note_hash_read_request(&mut self, note_hash: Field) {\n let side_effect = Counted::new(note_hash, self.next_counter());\n self.note_hash_read_requests.push(side_effect);\n }\n\n /// Requests to read a specific nullifier from the nullifier tree.\n ///\n /// Nullifier read requests are used to prove that a nullifier exists without\n /// revealing which specific nullifier preimage was read.\n ///\n /// This can be used to prove existence of both settled nullifiers (created in\n /// prior transactions) and transient nullifiers (created in the current\n /// transaction).\n /// If you need to prove existence of a settled nullifier _at a specific block\n /// number_, use `nullifier_inclusion::prove_nullifier_inclusion`.\n ///\n /// Low-level function. Ordinarily, smart contract developers will not need\n /// to call this directly. Aztec-nr's state variables (see `../state_vars/`)\n /// are designed to understand when to create and push new nullifier read\n /// requests.\n ///\n /// # Arguments\n /// * `nullifier` - The nullifier to read and verify\n ///\n /// # Advanced\n /// This approach improves latency between writes and reads:\n /// a function can read a nullifier which was created earlier in the tx\n /// (rather than performing the read in a later tx, after waiting for the\n /// earlier tx to be included, to ensure the note is included in the tree).\n ///\n pub fn push_nullifier_read_request(&mut self, nullifier: Field) {\n let request = Counted::new(nullifier, self.next_counter());\n self.nullifier_read_requests.push(request);\n }\n\n /// Requests the app-siloed nullifier secret key (nsk_app) for the given\n /// (hashed) master nullifier public key (npk_m), from the user's PXE.\n ///\n /// Advanced function: Only needed if you're designing your own notes and/or\n /// nullifiers.\n ///\n /// Contracts are not allowed to compute nullifiers for other contracts, as\n /// that would let them read parts of their private state. Because of this,\n /// a contract is only given an \"app-siloed secret key\", which is\n /// constructed by hashing the user's master nullifier secret key with the\n /// contract's address.\n /// However, because contracts cannot be trusted with a user's master\n /// nullifier secret key (because we don't know which contracts are honest\n /// or malicious), the PXE refuses to provide any master secret keys to\n /// any app smart contract function. This means app functions are unable to\n /// prove that the derivation of an app-siloed nullifier secret key has been\n /// computed correctly. Instead, an app function can request to the kernel\n /// (via `request_nsk_app`) that it validates the siloed derivation, since\n /// the kernel has been vetted to not leak any master secret keys.\n ///\n /// A common nullification scheme is to inject a nullifier secret key into\n /// the preimage of a nullifier, to make the nullifier deterministic but\n /// random-looking. This function enables that flow.\n ///\n /// # Arguments\n /// * `npk_m_hash` - A hash of the master nullifier public key of the user\n /// whose PXE is executing this function.\n ///\n /// # Returns\n /// * The app-siloed nullifier secret key that corresponds to the given\n /// `npk_m_hash`.\n ///\n pub fn request_nsk_app(&mut self, npk_m_hash: Field) -> Field {\n self.request_sk_app(npk_m_hash, NULLIFIER_INDEX)\n }\n\n /// Requests the app-siloed nullifier secret key (nsk_app) for the given\n /// (hashed) master nullifier public key (npk_m), from the user's PXE.\n ///\n /// See `request_nsk_app` and `request_sk_app` for more info.\n ///\n /// The intention of the \"outgoing\" keypair is to provide a second secret\n /// key for all of a user's outgoing activity (i.e. for notes that a user\n /// creates, as opposed to notes that a user receives from others). The\n /// separation of incoming and outgoing data was a distinction made by\n /// zcash, with the intention of enabling a user to optionally share with a\n /// 3rd party a controlled view of only incoming or outgoing notes.\n /// Similar functionality of sharing select data can be achieved with\n /// offchain zero-knowledge proofs. It is up to an app developer whether\n /// they choose to make use of a user's outgoing keypair within their\n /// application logic, or instead simply use the same keypair (the address\n /// keypair (which is effectively the same as the \"incooming\" keypair)) for\n /// all incoming & outgoing messages to a user.\n ///\n /// Currently, all of the exposed encryption functions in aztec-nr ignore\n /// the outgoing viewing keys, and instead encrypt all note logs and event\n /// logs to a user's address public key.\n ///\n /// # Arguments\n /// * `ovpk_m_hash` - Hash of the outgoing viewing public key master\n ///\n /// # Returns\n /// * The application-specific outgoing viewing secret key\n ///\n pub fn request_ovsk_app(&mut self, ovpk_m_hash: Field) -> Field {\n self.request_sk_app(ovpk_m_hash, OUTGOING_INDEX)\n }\n\n /// Pushes a Key Validation Request to the kernel.\n ///\n /// Private functions are not allowed to see a user's master secret keys,\n /// because we do not trust them. They are instead given \"app-siloed\" secret\n /// keys with a claim that they relate to a master public key.\n /// They can then request validation of this claim, by making a \"key\n /// validation request\" to the protocol's kernel circuits (which _are_\n /// allowed to see certain master secret keys).\n ///\n /// When a Key Validation Request tuple of (sk_app, Pk_m, app_address) is\n /// submitted to the kernel, it will perform the following derivations\n /// to validate the relationship between the claimed sk_app and the user's\n /// Pk_m:\n ///\n /// (sk_m) ----> * G ----> Pk_m\n /// | |\n /// v We use the kernel to prove this\n /// h(sk_m, app_address) | sk_app-Pk_m relationship, because app\n /// | circuits must not be trusted to see sk_m.\n /// v |\n /// sk_app - - - - - - - - -\n ///\n /// The function is named \"request_\" instead of \"get_\" to remind the user\n /// that a Key Validation Request will be emitted to the kernel.\n ///\n fn request_sk_app(&mut self, pk_m_hash: Field, key_index: Field) -> Field {\n let cached_request = self.last_key_validation_requests[key_index as u32].unwrap_or(\n KeyValidationRequest::empty(),\n );\n\n if cached_request.pk_m.hash() == pk_m_hash {\n // We get a match so the cached request is the latest one\n cached_request.sk_app\n } else {\n // We didn't get a match meaning the cached result is stale\n // Typically we'd validate keys by showing that they are the preimage of `pk_m_hash`, but that'd require\n // the oracle returning the master secret keys, which could cause malicious contracts to leak it or learn\n // about secrets from other contracts. We therefore silo secret keys, and rely on the private kernel to\n // validate that we siloed secret key corresponds to correct siloing of the master secret key that hashes\n // to `pk_m_hash`.\n\n // Safety: Kernels verify that the key validation request is valid and below we verify that a request\n // for the correct public key has been received.\n let request = unsafe { get_key_validation_request(pk_m_hash, key_index) };\n assert_eq(request.pk_m.hash(), pk_m_hash, \"Obtained invalid key validation request\");\n\n self.key_validation_requests_and_generators.push(\n KeyValidationRequestAndGenerator {\n request,\n sk_app_generator: sk_generators[key_index as u32],\n },\n );\n self.last_key_validation_requests[key_index as u32] = Option::some(request);\n request.sk_app\n }\n }\n\n /// Sends an \"L2 -> L1 message\" from this function (Aztec, L2) to a smart\n /// contract on Ethereum (L1). L1 contracts which are designed to\n /// send/receive messages to/from Aztec are called \"Portal Contracts\".\n ///\n /// Common use cases include withdrawals, cross-chain asset transfers, and\n /// triggering L1 actions based on L2 state changes.\n ///\n /// The message will be inserted into an Aztec \"Outbox\" contract on L1,\n /// when this transaction's block is proposed to L1.\n /// Sending the message will not result in any immediate state changes in\n /// the target portal contract. The message will need to be manually\n /// consumed from the Outbox through a separate Ethereum transaction: a user\n /// will need to call a function of the portal contract -- a function\n /// specifically designed to make a call to the Outbox to consume the\n /// message.\n /// The message will only be available for consumption once the _epoch_\n /// proof has been submitted. Given that there are multiple Aztec blocks\n /// within an epoch, it might take some time for this epoch proof to be\n /// submitted -- especially if the block was near the start of an epoch.\n ///\n /// # Arguments\n /// * `recipient` - Ethereum address that will receive the message\n /// * `content` - Message content (32 bytes as a Field element).\n /// This content has a very specific layout.\n /// docs:start:context_message_portal\n pub fn message_portal(&mut self, recipient: EthAddress, content: Field) {\n let message = L2ToL1Message { recipient, content };\n self.l2_to_l1_msgs.push(message.count(self.next_counter()));\n }\n\n /// Consumes a message sent from Ethereum (L1) to Aztec (L2).\n ///\n /// Common use cases include token bridging, cross-chain governance, and\n /// triggering L2 actions based on L1 events.\n ///\n /// Use this function if you only want the message to ever be \"referred to\"\n /// once. Once consumed using this method, the message cannot be consumed\n /// again, because a nullifier is emitted.\n /// If your use case wants for the message to be read unlimited times, then\n /// you can always read any historic message from the L1-to-L2 messages tree;\n /// messages never technically get deleted from that tree.\n ///\n /// The message will first be inserted into an Aztec \"Inbox\" smart contract\n /// on L1.\n /// Sending the message will not result in any immediate state changes in\n /// the target L2 contract. The message will need to be manually\n /// consumed by the target contract through a separate Aztec transaction.\n /// The message will not be available for consumption immediately. Messages\n /// get copied over from the L1 Inbox to L2 by the next Proposer in batches.\n /// So you will need to wait until the messages are copied before you can\n /// consume them.\n ///\n /// # Arguments\n /// * `content` - The message content that was sent from L1\n /// * `secret` - Secret value used for message privacy (if needed)\n /// * `sender` - Ethereum address that sent the message\n /// * `leaf_index` - Index of the message in the L1-to-L2 message tree\n ///\n /// # Advanced\n /// Validates message existence in the L1-to-L2 message tree and nullifies\n /// the message to prevent double-consumption.\n ///\n pub fn consume_l1_to_l2_message(\n &mut self,\n content: Field,\n secret: Field,\n sender: EthAddress,\n leaf_index: Field,\n ) {\n let nullifier = process_l1_to_l2_message(\n self.anchor_block_header.state.l1_to_l2_message_tree.root,\n self.this_address(),\n sender,\n self.chain_id(),\n self.version(),\n content,\n secret,\n leaf_index,\n );\n\n // Push nullifier (and the \"commitment\" corresponding to this can be \"empty\")\n self.push_nullifier(nullifier)\n }\n\n /// Emits a private log (an array of Fields) that will be published to an\n /// Ethereum blob.\n ///\n /// Private logs are intended for the broadcasting of ciphertexts: that is,\n /// encrypted events or encrypted note contents.\n /// Since the data in the logs is meant to be _encrypted_, private_logs are\n /// broadcast to publicly-visible Ethereum blobs.\n /// The intended recipients of such encrypted messages can then discover and\n /// decrypt these encrypted logs using their viewing secret key.\n /// (See `../messages/discovery` for more details).\n ///\n /// Important note: This function DOES NOT _do_ any encryption of the input\n /// `log` fields. This function blindly publishes whatever input `log` data\n /// is fed into it, so the caller of this function should have already\n /// performed the encryption, and the `log` should be the result of that\n /// encryption.\n ///\n /// The protocol does not dictate what encryption scheme should be used:\n /// a smart contract developer can choose whatever encryption scheme they\n /// like.\n /// Aztec-nr includes some off-the-shelf encryption libraries that\n /// developers might wish to use, for convenience. These libraries not only\n /// encrypt a plaintext (to produce a ciphertext); they also prepend the\n /// ciphertext with a `tag` and `ephemeral public key` for easier message\n /// discovery. This is a very dense topic, and we will be writing more\n /// libraries and docs soon.\n ///\n /// > Currently, AES128 CBC encryption is the main scheme included in\n /// > aztec.nr.\n /// > We are currently making significant changes to the interfaces of the\n /// > encryption library.\n ///\n /// In some niche use cases, an app might be tempted to publish\n /// _un-encrypted_ data via a private log, because _public logs_ are not\n /// available to private functions. Be warned that emitting public data via\n /// private logs is strongly discouraged, and is considered a \"privacy\n /// anti-pattern\", because it reveals identifiable information about _which_\n /// function has been executed. A tx which leaks such information does not\n /// contribute to the privacy set of the network.\n ///\n /// * Unlike `emit_raw_note_log`, this log is not tied to any specific note\n ///\n /// # Arguments\n /// * `log` - The log data that will be publicly broadcast (so make sure\n /// it's already been encrypted before you call this function).\n /// Private logs are bounded in size (PRIVATE_LOG_SIZE_IN_FIELDS), to\n /// encourage all logs from all smart contracts look identical.\n /// * `length` - The actual length of the `log` (measured in number of\n /// Fields). Although the input log has a max size of\n /// PRIVATE_LOG_SIZE_IN_FIELDS, the latter values of the array might all\n /// be 0's for small logs. This `length` should reflect the trimmed length\n /// of the array. The protocol's kernel circuits can then append random\n /// fields as \"padding\" after the `length`, so that the logs of this\n /// smart contract look indistinguishable from (the same length as) the\n /// logs of all other applications. It's up to wallets how much padding\n /// to apply, so ideally all wallets should agree on standards for this.\n ///\n /// # Advanced\n ///\n pub fn emit_private_log(&mut self, log: [Field; PRIVATE_LOG_SIZE_IN_FIELDS], length: u32) {\n let counter = self.next_counter();\n let private_log = PrivateLogData { log: PrivateLog::new(log, length), note_hash_counter: 0 }\n .count(counter);\n self.private_logs.push(private_log);\n }\n\n // TODO: rename.\n /// Emits a private log that is explicitly tied to a newly-emitted note_hash,\n /// to convey to the kernel: \"this log relates to this note\".\n ///\n /// This linkage is important in case the note gets squashed (due to being\n /// read later in this same tx), since we can then squash the log as well.\n ///\n /// See `emit_private_log` for more info about private log emission.\n ///\n /// # Arguments\n /// * `log` - The log data as an array of Field elements\n /// * `length` - The actual length of the `log` (measured in number of\n /// Fields).\n /// * `note_hash_counter` - The side-effect counter that was assigned to the\n /// new note_hash when it was pushed to this\n // `PrivateContext`.\n ///\n /// Important: If your application logic requires the log to always be\n /// emitted regardless of note squashing, consider using `emit_private_log`\n /// instead, or emitting additional events.\n ///\n pub fn emit_raw_note_log(\n &mut self,\n log: [Field; PRIVATE_LOG_SIZE_IN_FIELDS],\n length: u32,\n note_hash_counter: u32,\n ) {\n let counter = self.next_counter();\n let private_log = PrivateLogData { log: PrivateLog::new(log, length), note_hash_counter };\n self.private_logs.push(private_log.count(counter));\n }\n\n pub fn emit_contract_class_log<let N: u32>(&mut self, log: [Field; N]) {\n let contract_address = self.this_address();\n let counter = self.next_counter();\n\n let log_to_emit: [Field; CONTRACT_CLASS_LOG_SIZE_IN_FIELDS] =\n log.concat([0; CONTRACT_CLASS_LOG_SIZE_IN_FIELDS - N]);\n // Note: the length is not always N, it is the number of fields we want to broadcast, omitting trailing zeros to save blob space.\n // Safety: The below length is constrained in the base rollup, which will make sure that all the fields beyond length are zero.\n // However, it won't be able to check that we didn't add extra padding (trailing zeroes)\n let length = unsafe { trimmed_array_length_hint(log_to_emit) };\n // We hash the entire padded log to ensure a user cannot pass a shorter length and so emit incorrect shorter bytecode.\n let log_hash = poseidon2_hash(log_to_emit);\n // Safety: the below only exists to broadcast the raw log, so we can provide it to the base rollup later to be constrained.\n unsafe {\n notify_created_contract_class_log(contract_address, log_to_emit, length, counter);\n }\n\n self.contract_class_logs_hashes.push(LogHash { value: log_hash, length: length }.count(\n counter,\n ));\n }\n\n /// Calls a private function on another contract (or the same contract).\n ///\n /// Very low-level function.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `args` - Array of arguments to pass to the called function\n ///\n /// # Returns\n /// * `ReturnsHash` - Hash of the called function's return values. Use\n /// `.get_preimage()` to extract the actual return values.\n ///\n /// This enables contracts to interact with each other while maintaining\n /// privacy. This \"composability\" of private contract functions is a key\n /// feature of the Aztec network.\n ///\n /// If a user's transaction includes multiple private function calls, then\n /// by the design of Aztec, the following information will remain private[1]:\n /// - The function selectors and contract addresses of all private function\n /// calls will remain private, so an observer of the public mempool will\n /// not be able to look at a tx and deduce which private functions have\n /// been executed.\n /// - The arguments and return values of all private function calls will\n /// remain private.\n /// - The person who initiated the tx will remain private.\n /// - The notes and nullifiers and private logs that are emitted by all\n /// private function calls will (if designed well) not leak any user\n /// secrets, nor leak which functions have been executed.\n ///\n /// [1] Caveats: Some of these privacy guarantees depend on how app\n /// developers design their smart contracts. Some actions _can_ leak\n /// information, such as:\n /// - Calling an internal public function.\n /// - Calling a public function and not setting msg_sender to Option::none\n /// (feature not built yet - see github).\n /// - Calling any public function will always leak details about the nature\n /// of the transaction, so devs should be careful in their contract\n /// designs. If it can be done in a private function, then that will give\n /// the best privacy.\n /// - Not padding the side-effects of a tx to some standardised, uniform\n /// size. The kernel circuits can take hints to pad side-effects, so a\n /// wallet should be able to request for a particular amount of padding.\n /// Wallets should ideally agree on some standard.\n /// - Padding should include:\n /// - Padding the lengths of note & nullifier arrays\n /// - Padding private logs with random fields, up to some standardised\n /// size.\n /// See also: https://docs.aztec.network/developers/reference/considerations/privacy_considerations\n ///\n /// # Advanced\n /// * The call is added to the private call stack and executed by kernel\n /// circuits after this function completes\n /// * The called function can modify its own contract's private state\n /// * Side effects from the called function are included in this transaction\n /// * The call inherits the current transaction's context and gas limits\n ///\n pub fn call_private_function<let ArgsCount: u32>(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n args: [Field; ArgsCount],\n ) -> ReturnsHash {\n let args_hash = hash_args_array(args);\n execution_cache::store(args, args_hash);\n self.call_private_function_with_args_hash(\n contract_address,\n function_selector,\n args_hash,\n false,\n )\n }\n\n /// Makes a read-only call to a private function on another contract.\n ///\n /// This is similar to Solidity's `staticcall`. The called function\n /// cannot modify state, emit L2->L2 messages, nor emit events. Any nested\n /// calls are constrained to also be staticcalls.\n ///\n /// See `call_private_function` for more general info on private function\n /// calls.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract to call\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `args` - Array of arguments to pass to the called function\n ///\n /// # Returns\n /// * `ReturnsHash` - Hash of the called function's return values. Use\n /// `.get_preimage()` to extract the actual return values.\n ///\n pub fn static_call_private_function<let ArgsCount: u32>(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n args: [Field; ArgsCount],\n ) -> ReturnsHash {\n let args_hash = hash_args_array(args);\n execution_cache::store(args, args_hash);\n self.call_private_function_with_args_hash(\n contract_address,\n function_selector,\n args_hash,\n true,\n )\n }\n\n /// Calls a private function that takes no arguments.\n ///\n /// This is a convenience function for calling private functions that don't\n /// require any input parameters. It's equivalent to `call_private_function`\n /// but slightly more efficient to use when no arguments are needed.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n ///\n /// # Returns\n /// * `ReturnsHash` - Hash of the called function's return values. Use\n /// `.get_preimage()` to extract the actual return values.\n ///\n pub fn call_private_function_no_args(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n ) -> ReturnsHash {\n self.call_private_function_with_args_hash(contract_address, function_selector, 0, false)\n }\n\n /// Makes a read-only call to a private function which takes no arguments.\n ///\n /// This combines the optimisation of `call_private_function_no_args` with\n /// the safety of `static_call_private_function`.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n ///\n /// # Returns\n /// * `ReturnsHash` - Hash of the called function's return values. Use\n /// `.get_preimage()` to extract the actual return values.\n ///\n pub fn static_call_private_function_no_args(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n ) -> ReturnsHash {\n self.call_private_function_with_args_hash(contract_address, function_selector, 0, true)\n }\n\n /// Low-level private function call.\n ///\n /// This is the underlying implementation used by all other private function\n /// call methods. Instead of taking raw arguments, it accepts a\n /// hash of the arguments.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `args_hash` - Pre-computed hash of the function arguments\n /// * `is_static_call` - Whether this should be a read-only call\n ///\n /// # Returns\n /// * `ReturnsHash` - Hash of the called function's return values\n ///\n pub fn call_private_function_with_args_hash(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n args_hash: Field,\n is_static_call: bool,\n ) -> ReturnsHash {\n let mut is_static_call = is_static_call | self.inputs.call_context.is_static_call;\n let start_side_effect_counter = self.side_effect_counter;\n\n // Safety: The oracle simulates the private call and returns the value of the side effects counter after\n // execution of the call (which means that end_side_effect_counter - start_side_effect_counter is\n // the number of side effects that took place), along with the hash of the return values. We validate these\n // by requesting a private kernel iteration in which the return values are constrained to hash\n // to `returns_hash` and the side effects counter to increment from start to end.\n let (end_side_effect_counter, returns_hash) = unsafe {\n call_private_function_internal(\n contract_address,\n function_selector,\n args_hash,\n start_side_effect_counter,\n is_static_call,\n )\n };\n\n self.private_call_requests.push(\n PrivateCallRequest {\n call_context: CallContext {\n msg_sender: self.this_address(),\n contract_address,\n function_selector,\n is_static_call,\n },\n args_hash,\n returns_hash,\n start_side_effect_counter,\n end_side_effect_counter,\n },\n );\n\n // TODO (fees) figure out why this crashes the prover and enable it\n // we need this in order to pay fees inside child call contexts\n // assert(\n // (item.public_inputs.min_revertible_side_effect_counter == 0 as u32)\n // | (item.public_inputs.min_revertible_side_effect_counter\n // > self.min_revertible_side_effect_counter)\n // );\n // if item.public_inputs.min_revertible_side_effect_counter\n // > self.min_revertible_side_effect_counter {\n // self.min_revertible_side_effect_counter = item.public_inputs.min_revertible_side_effect_counter;\n // }\n self.side_effect_counter = end_side_effect_counter + 1; // TODO: call `next_counter` instead, for consistency\n ReturnsHash::new(returns_hash)\n }\n\n /// Enqueues a call to a public function to be executed later.\n ///\n /// Unlike private functions which execute immediately on the user's device,\n /// public function calls are \"enqueued\" and executed some time later by a\n /// block proposer.\n ///\n /// This means a public function cannot return any values back to a private\n /// function, because by the time the public function is being executed,\n /// the private function which called it has already completed execution.\n /// (In fact, the private function has been executed and proven, along with\n /// all other private function calls of the user's tx. A single proof of the\n /// tx has been submitted to the Aztec network, and some time later a\n /// proposer has picked the tx up from the mempool and begun executing all\n /// of the enqueued public functions).\n ///\n /// # Privacy warning\n /// Enqueueing a public function call is an inherently leaky action.\n /// Many interesting applications will require some interaction with public\n /// state, but smart contract developers should try to use public function\n /// calls sparingly, and carefully.\n /// _Internal_ public function calls are especially leaky, because they\n /// completely leak which private contract made the call.\n /// See also: https://docs.aztec.network/developers/reference/considerations/privacy_considerations\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `args` - Array of arguments to pass to the public function\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n ///\n pub fn call_public_function<let ArgsCount: u32>(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n args: [Field; ArgsCount],\n hide_msg_sender: bool,\n ) {\n let calldata = [function_selector.to_field()].concat(args);\n let calldata_hash = hash_calldata_array(calldata);\n execution_cache::store(calldata, calldata_hash);\n self.call_public_function_with_calldata_hash(\n contract_address,\n calldata_hash,\n false,\n hide_msg_sender,\n )\n }\n\n /// Enqueues a read-only call to a public function.\n ///\n /// This is similar to Solidity's `staticcall`. The called function\n /// cannot modify state or emit events. Any nested calls are constrained to\n /// also be staticcalls.\n ///\n /// See also `call_public_function` for more important information about\n /// making private -> public function calls.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `args` - Array of arguments to pass to the public function\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n ///\n pub fn static_call_public_function<let ArgsCount: u32>(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n args: [Field; ArgsCount],\n hide_msg_sender: bool,\n ) {\n let calldata = [function_selector.to_field()].concat(args);\n let calldata_hash = hash_calldata_array(calldata);\n execution_cache::store(calldata, calldata_hash);\n self.call_public_function_with_calldata_hash(\n contract_address,\n calldata_hash,\n true,\n hide_msg_sender,\n )\n }\n\n /// Enqueues a call to a public function that takes no arguments.\n ///\n /// This is an optimisation for calling public functions that don't\n /// take any input parameters. It's otherwise equivalent to\n /// `call_public_function`.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n ///\n pub fn call_public_function_no_args(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n hide_msg_sender: bool,\n ) {\n let calldata_hash = hash_calldata_array([function_selector.to_field()]);\n self.call_public_function_with_calldata_hash(\n contract_address,\n calldata_hash,\n false,\n hide_msg_sender,\n )\n }\n\n /// Enqueues a read-only call to a public function with no arguments.\n ///\n /// This combines the optimisation of `call_public_function_no_args` with\n /// the safety of `static_call_public_function`.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n ///\n pub fn static_call_public_function_no_args(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n hide_msg_sender: bool,\n ) {\n let calldata_hash = hash_calldata_array([function_selector.to_field()]);\n self.call_public_function_with_calldata_hash(\n contract_address,\n calldata_hash,\n true,\n hide_msg_sender,\n )\n }\n\n /// Low-level public function call.\n ///\n /// This is the underlying implementation used by all other public function\n /// call methods. Instead of taking raw arguments, it accepts a\n /// hash of the arguments.\n ///\n /// Advanced function: Most developers should use `call_public_function`\n /// or `static_call_public_function` instead. This function is exposed for\n /// performance optimization and advanced use cases.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the function\n /// * `calldata_hash` - Hash of the function calldata\n /// * `is_static_call` - Whether this should be a read-only call\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n ///\n pub fn call_public_function_with_calldata_hash(\n &mut self,\n contract_address: AztecAddress,\n calldata_hash: Field,\n is_static_call: bool,\n hide_msg_sender: bool,\n ) {\n let counter = self.next_counter();\n\n let mut is_static_call = is_static_call | self.inputs.call_context.is_static_call;\n\n notify_enqueued_public_function_call(\n contract_address,\n calldata_hash,\n counter,\n is_static_call,\n );\n\n let msg_sender = if hide_msg_sender {\n NULL_MSG_SENDER_CONTRACT_ADDRESS\n } else {\n self.this_address()\n };\n\n let call_request =\n PublicCallRequest { msg_sender, contract_address, is_static_call, calldata_hash };\n\n self.public_call_requests.push(Counted::new(call_request, counter));\n }\n\n /// Enqueues a public function call, and designates it to be the teardown\n /// function for this tx. Only one teardown function call can be made by a\n /// tx.\n ///\n /// Niche function: Only wallet developers and paymaster contract developers\n /// (aka Fee-payment contracts) will need to make use of this function.\n ///\n /// Aztec supports a three-phase execution model: setup, app logic, teardown.\n /// The phases exist to enable a fee payer to take on the risk of paying\n /// a transaction fee, safe in the knowledge that their payment (in whatever\n /// token or method the user chooses) will succeed, regardless of whether\n /// the app logic will succeed. The \"setup\" phase ensures the fee payer\n /// has sufficient balance to pay the proposer their fees.\n /// The teardown phase is primarily intended to: calculate exactly\n /// how much the user owes, based on gas consumption, and refund the user\n /// any change.\n ///\n /// Note: in some cases, the cost of refunding the user (i.e. DA costs of\n /// tx side-effects) might exceed the refund amount. For app logic with\n /// fairly stable and predictable gas consumption, a material refund amount\n /// is unlikely. For app logic with unpredictable gas consumption, a\n /// refund might be important to the user (e.g. if a hefty function reverts\n /// very early). Wallet/FPC/Paymaster developers should be mindful of this.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the teardown\n /// function\n /// * `function_selector` - 4-byte identifier of the function to call\n /// * `args` - An array of fields to pass to the function.\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n pub fn set_public_teardown_function<let ArgsCount: u32>(\n &mut self,\n contract_address: AztecAddress,\n function_selector: FunctionSelector,\n args: [Field; ArgsCount],\n hide_msg_sender: bool,\n ) {\n let calldata = [function_selector.to_field()].concat(args);\n let calldata_hash = hash_calldata_array(calldata);\n execution_cache::store(calldata, calldata_hash);\n self.set_public_teardown_function_with_calldata_hash(\n contract_address,\n calldata_hash,\n false,\n hide_msg_sender,\n )\n }\n\n /// Low-level function to set the public teardown function.\n ///\n /// This is the underlying implementation for setting the teardown function\n /// call that will execute at the end of the transaction. Instead of taking\n /// raw arguments, it accepts a hash of the arguments.\n ///\n /// Advanced function: Most developers should use\n /// `set_public_teardown_function` instead.\n ///\n /// # Arguments\n /// * `contract_address` - Address of the contract containing the teardown\n /// function\n /// * `calldata_hash` - Hash of the function calldata\n /// * `is_static_call` - Whether this should be a read-only call\n /// * `hide_msg_sender` - the called function will see a \"null\" value for\n /// `msg_sender` if set to `true`\n ///\n pub fn set_public_teardown_function_with_calldata_hash(\n &mut self,\n contract_address: AztecAddress,\n calldata_hash: Field,\n is_static_call: bool,\n hide_msg_sender: bool,\n ) {\n let counter = self.next_counter();\n\n let mut is_static_call = is_static_call | self.inputs.call_context.is_static_call;\n\n notify_set_public_teardown_function_call(\n contract_address,\n calldata_hash,\n counter,\n is_static_call,\n );\n\n let msg_sender = if hide_msg_sender {\n NULL_MSG_SENDER_CONTRACT_ADDRESS\n } else {\n self.this_address()\n };\n\n self.public_teardown_call_request =\n PublicCallRequest { msg_sender, contract_address, is_static_call, calldata_hash };\n }\n\n /// Increments the side-effect counter.\n ///\n /// Very low-level function.\n ///\n /// # Advanced\n ///\n /// Every side-effect of a private function is given a \"side-effect counter\",\n /// based on when it is created. This PrivateContext is in charge of\n /// assigning the counters.\n ///\n /// The reason we have side-effect counters is complicated. Consider this\n /// illustrative pseudocode of inter-contract function calls:\n /// ```\n /// contract A {\n /// let x = 5; // pseudocode for storage var x.\n /// fn a1 {\n /// read x; // value: 5, counter: 1.\n /// x = x + 1;\n /// write x; // value: 6, counter: 2.\n ///\n /// B.b(); // start_counter: 2, end_counter: 4\n ///\n /// read x; // value: 36, counter: 5.\n /// x = x + 1;\n /// write x; // value: 37, counter: 6.\n /// }\n ///\n /// fn a2 {\n /// read x; // value: 6, counter: 3.\n /// x = x * x;\n /// write x; // value: 36, counter: 4.\n /// }\n /// }\n ///\n /// contract B {\n /// fn b() {\n /// A.a2();\n /// }\n /// }\n /// ```\n ///\n /// Suppose a1 is the first function called. The comments show the execution\n /// counter of each side-effect, and what the new value of `x` is.\n ///\n /// These (private) functions are processed by Aztec's kernel circuits in an\n /// order that is different from execution order:\n /// All of A.a1 is proven before B.b is proven, before A.a2 is proven.\n /// So when we're in the 2nd execution frame of A.a1 (after the call to\n /// B.b), the circuit needs to justify why x went from being `6` to `36`.\n /// But the circuit doesn't know why, and given the order of proving, the\n /// kernel hasn't _seen_ a value of 36 get written yet.\n /// The kernel needs to track big arrays of all side-effects of all\n /// private functions in a tx. Then, as it recurses and processes B.b(), it\n /// will eventually see a value of 36 get written.\n ///\n /// Suppose side-effect counters weren't exposed:\n /// The kernel would only see this ordering (in order of proof verification):\n /// [ A.a1.read, A.a1.write, A.a1.read, A.a1.write, A.a2.read, A.a2.write ]\n /// [ 5, 6, 36, 37, 6, 36 ]\n /// The kernel wouldn't know _when_ B.b() was called within A.a1(), because\n /// it can't see what's going on within an app circuit. So the kernel\n /// wouldn't know that the ordering of reads and writes should actually be:\n /// [ A.a1.read, A.a1.write, A.a2.read, A.a2.write, A.a1.read, A.a1.write ]\n /// [ 5, 6, 6, 36, 36, 37 ]\n ///\n /// And so, we introduced side-effect counters: every private function must\n /// assign side-effect counters alongside every side-effect that it emits,\n /// and also expose to the kernel the counters that it started and ended\n /// with.\n /// This gives the kernel enough information to arrange all side-effects in\n /// the correct order.\n /// It can then catch (for example) if a function tries to read state\n /// before it has been written (e.g. if A.a2() maliciously tried to read\n /// a value of x=37) (e.g. if A.a1() maliciously tried to read x=6).\n ///\n /// If a malicious app contract _lies_ and does not count correctly:\n /// - It cannot lie about its start and end counters because the kernel\n /// will catch this.\n /// - It _could_ lie about its intermediate counters:\n /// - 1. It could not increment its side-effects correctly\n /// - 2. It could label its side-effects with counters outside of its\n /// start and end counters' range.\n /// The kernel will catch 2.\n /// The kernel will not catch 1., but this would only cause corruption\n /// to the private state of the malicious contract, and not any other\n /// contracts (because a contract can only modify its own state). If\n /// a \"good\" contract is given _read access_ to a maliciously-counting\n /// contract (via an external getter function, or by reading historic\n /// state from the archive tree directly), and they then make state\n /// changes to their _own_ state accordingly, that could be dangerous.\n /// Developers should be mindful not to trust the claimed innards of\n /// external contracts unless they have audited/vetted the contracts\n /// including vetting the side-effect counter incrementation.\n /// This is a similar paradigm to Ethereum smart contract development:\n /// you must vet external contracts that your contract relies upon, and\n /// you must not make any presumptions about their claimed behaviour.\n /// (Hopefully if a contract imports a version of aztec-nr, we will get\n /// contract verification tooling that can validate the authenticity\n /// of the imported aztec-nr package, and hence infer that the side-\n /// effect counting will be correct, without having to re-audit such logic\n /// for every contract).\n ///\n fn next_counter(&mut self) -> u32 {\n let counter = self.side_effect_counter;\n self.side_effect_counter += 1;\n counter\n }\n}\n\nimpl Empty for PrivateContext {\n fn empty() -> Self {\n PrivateContext {\n inputs: PrivateContextInputs::empty(),\n side_effect_counter: 0 as u32,\n min_revertible_side_effect_counter: 0 as u32,\n is_fee_payer: false,\n args_hash: 0,\n return_hash: 0,\n include_by_timestamp: 0,\n note_hash_read_requests: BoundedVec::new(),\n nullifier_read_requests: BoundedVec::new(),\n key_validation_requests_and_generators: BoundedVec::new(),\n note_hashes: BoundedVec::new(),\n nullifiers: BoundedVec::new(),\n private_call_requests: BoundedVec::new(),\n public_call_requests: BoundedVec::new(),\n public_teardown_call_request: PublicCallRequest::empty(),\n l2_to_l1_msgs: BoundedVec::new(),\n anchor_block_header: BlockHeader::empty(),\n private_logs: BoundedVec::new(),\n contract_class_logs_hashes: BoundedVec::new(),\n last_key_validation_requests: [Option::none(); NUM_KEY_TYPES],\n }\n }\n}\n"
6995
6999
  },
6996
7000
  "70": {
6997
7001
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/context/utility_context.nr",
@@ -7003,7 +7007,7 @@
7003
7007
  },
7004
7008
  "75": {
7005
7009
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/hash.nr",
7006
- "source": "use dep::protocol_types::{\n address::{AztecAddress, EthAddress},\n constants::{\n GENERATOR_INDEX__FUNCTION_ARGS, GENERATOR_INDEX__MESSAGE_NULLIFIER,\n GENERATOR_INDEX__PUBLIC_BYTECODE, GENERATOR_INDEX__PUBLIC_CALLDATA,\n GENERATOR_INDEX__SECRET_HASH, MAX_PACKED_PUBLIC_BYTECODE_SIZE_IN_FIELDS,\n },\n hash::{\n poseidon2_hash_subarray, poseidon2_hash_with_separator, poseidon2_hash_with_separator_slice,\n sha256_to_field,\n },\n point::Point,\n traits::{Hash, ToField},\n};\n\npub use dep::protocol_types::hash::{compute_siloed_nullifier, pedersen_hash};\n\npub fn pedersen_commitment<let N: u32>(inputs: [Field; N], hash_index: u32) -> Point {\n std::hash::pedersen_commitment_with_separator(inputs, hash_index)\n}\n\npub fn compute_secret_hash(secret: Field) -> Field {\n poseidon2_hash_with_separator([secret], GENERATOR_INDEX__SECRET_HASH)\n}\n\npub fn compute_l1_to_l2_message_hash(\n sender: EthAddress,\n chain_id: Field,\n recipient: AztecAddress,\n version: Field,\n content: Field,\n secret_hash: Field,\n leaf_index: Field,\n) -> Field {\n let mut hash_bytes = [0 as u8; 224];\n let sender_bytes: [u8; 32] = sender.to_field().to_be_bytes();\n let chain_id_bytes: [u8; 32] = chain_id.to_be_bytes();\n let recipient_bytes: [u8; 32] = recipient.to_field().to_be_bytes();\n let version_bytes: [u8; 32] = version.to_be_bytes();\n let content_bytes: [u8; 32] = content.to_be_bytes();\n let secret_hash_bytes: [u8; 32] = secret_hash.to_be_bytes();\n let leaf_index_bytes: [u8; 32] = leaf_index.to_be_bytes();\n\n for i in 0..32 {\n hash_bytes[i] = sender_bytes[i];\n hash_bytes[i + 32] = chain_id_bytes[i];\n hash_bytes[i + 64] = recipient_bytes[i];\n hash_bytes[i + 96] = version_bytes[i];\n hash_bytes[i + 128] = content_bytes[i];\n hash_bytes[i + 160] = secret_hash_bytes[i];\n hash_bytes[i + 192] = leaf_index_bytes[i];\n }\n\n sha256_to_field(hash_bytes)\n}\n\n// The nullifier of a l1 to l2 message is the hash of the message salted with the secret\npub fn compute_l1_to_l2_message_nullifier(message_hash: Field, secret: Field) -> Field {\n poseidon2_hash_with_separator([message_hash, secret], GENERATOR_INDEX__MESSAGE_NULLIFIER)\n}\n\npub struct ArgsHasher {\n pub fields: [Field],\n}\n\nimpl Hash for ArgsHasher {\n fn hash(self) -> Field {\n hash_args(self.fields)\n }\n}\n\nimpl ArgsHasher {\n pub fn new() -> Self {\n Self { fields: [] }\n }\n\n pub fn add(&mut self, field: Field) {\n self.fields = self.fields.push_back(field);\n }\n\n pub fn add_multiple<let N: u32>(&mut self, fields: [Field; N]) {\n for i in 0..N {\n self.fields = self.fields.push_back(fields[i]);\n }\n }\n}\n\n// Computes the hash of input arguments or return values for private functions, or for authwit creation.\npub fn hash_args_array<let N: u32>(args: [Field; N]) -> Field {\n if args.len() == 0 {\n 0\n } else {\n poseidon2_hash_with_separator(args, GENERATOR_INDEX__FUNCTION_ARGS)\n }\n}\n\n// Same as `hash_args_array`, but takes a slice instead of an array.\npub fn hash_args(args: [Field]) -> Field {\n if args.len() == 0 {\n 0\n } else {\n poseidon2_hash_with_separator_slice(args, GENERATOR_INDEX__FUNCTION_ARGS)\n }\n}\n\n// Computes the hash of calldata for public functions.\npub fn hash_calldata_array<let N: u32>(calldata: [Field; N]) -> Field {\n poseidon2_hash_with_separator(calldata, GENERATOR_INDEX__PUBLIC_CALLDATA)\n}\n\n// Same as `hash_calldata_array`, but takes a slice instead of an array.\npub fn hash_calldata(calldata: [Field]) -> Field {\n poseidon2_hash_with_separator_slice(calldata, GENERATOR_INDEX__PUBLIC_CALLDATA)\n}\n\n/**\n * Computes the public bytecode commitment for a contract class.\n * The commitment is `hash([separator, ...bytecode])` where bytecode omits the length prefix present\n * in `packed_bytecode`.\n *\n * @param packed_bytecode - The packed bytecode of the contract class. 0th word is the length in bytes.\n * packed_bytecode is mutable so that we can avoid copying the array to construct one starting with\n * separator instead of length.\n * @returns The public bytecode commitment.\n */\npub fn compute_public_bytecode_commitment(\n mut packed_public_bytecode: [Field; MAX_PACKED_PUBLIC_BYTECODE_SIZE_IN_FIELDS],\n) -> Field {\n // First field element contains the length of the bytecode\n let bytecode_length_in_bytes: u32 = packed_public_bytecode[0] as u32;\n let bytecode_length_in_fields: u32 =\n (bytecode_length_in_bytes / 31) + (bytecode_length_in_bytes % 31 != 0) as u32;\n // Don't allow empty public bytecode.\n // AVM doesn't handle execution of contracts that exist with empty bytecode.\n assert(bytecode_length_in_fields != 0);\n assert(bytecode_length_in_fields < MAX_PACKED_PUBLIC_BYTECODE_SIZE_IN_FIELDS);\n\n // Packed_bytecode's 0th entry is the length. Replace it with separator before hashing.\n let separator = GENERATOR_INDEX__PUBLIC_BYTECODE.to_field();\n packed_public_bytecode[0] = separator;\n // +1 to length to account for the separator\n let nonzero_length = bytecode_length_in_fields + 1;\n\n poseidon2_hash_subarray(packed_public_bytecode, nonzero_length)\n // NOTE: we use poseidon2_hash_subarray here because we want to hash the bytecode only up to\n // its nonzero length. We do NOT want to include a `1` at the end to indicate \"variable length\",\n // and we want to enforce that all trailing elements are zero.\n}\n\n#[test]\nunconstrained fn compute_var_args_hash() {\n let mut input = ArgsHasher::new();\n for i in 0..100 {\n input.add(i as Field);\n }\n let hash = input.hash();\n dep::std::println(hash);\n // Used in yarn-project/stdlib test snapshots:\n assert(hash == 0x19b0d74feb06ebde19edd85a28986c97063e84b3b351a8b666c7cac963ce655f);\n}\n\n#[test]\nunconstrained fn compute_calldata_hash() {\n let mut input = [0; 100];\n for i in 0..input.len() {\n input[i] = i as Field;\n }\n let hash = hash_calldata_array(input);\n dep::std::println(hash);\n let hash_check = hash_calldata(input.as_slice());\n assert(hash == hash_check);\n // Used in cpp vm2 tests:\n assert(hash == 0x191383c9f8964afd3ea8879a03b7dda65d6724773966d18dcf80e452736fc1f3);\n}\n\n#[test]\nunconstrained fn public_bytecode_commitment() {\n let mut input = [0; MAX_PACKED_PUBLIC_BYTECODE_SIZE_IN_FIELDS];\n let len = 99;\n for i in 1..len + 1 {\n input[i] = i as Field;\n }\n input[0] = (len as Field) * 31;\n let hash = compute_public_bytecode_commitment(input);\n dep::std::println(hash);\n // Used in cpp vm2 tests:\n assert(hash == 0x16d621c3387156ef53754679e7b2c9be8f0bceeb44aa59a74991df3b0b42a0bf);\n}\n"
7010
+ "source": "use dep::protocol_types::{\n address::{AztecAddress, EthAddress},\n constants::{\n GENERATOR_INDEX__FUNCTION_ARGS, GENERATOR_INDEX__MESSAGE_NULLIFIER,\n GENERATOR_INDEX__PUBLIC_BYTECODE, GENERATOR_INDEX__PUBLIC_CALLDATA,\n GENERATOR_INDEX__SECRET_HASH, MAX_PACKED_PUBLIC_BYTECODE_SIZE_IN_FIELDS,\n },\n hash::{\n poseidon2_hash_subarray, poseidon2_hash_with_separator, poseidon2_hash_with_separator_slice,\n sha256_to_field,\n },\n point::Point,\n traits::ToField,\n};\n\npub use dep::protocol_types::hash::{compute_siloed_nullifier, pedersen_hash};\n\npub fn pedersen_commitment<let N: u32>(inputs: [Field; N], hash_index: u32) -> Point {\n std::hash::pedersen_commitment_with_separator(inputs, hash_index)\n}\n\npub fn compute_secret_hash(secret: Field) -> Field {\n poseidon2_hash_with_separator([secret], GENERATOR_INDEX__SECRET_HASH)\n}\n\npub fn compute_l1_to_l2_message_hash(\n sender: EthAddress,\n chain_id: Field,\n recipient: AztecAddress,\n version: Field,\n content: Field,\n secret_hash: Field,\n leaf_index: Field,\n) -> Field {\n let mut hash_bytes = [0 as u8; 224];\n let sender_bytes: [u8; 32] = sender.to_field().to_be_bytes();\n let chain_id_bytes: [u8; 32] = chain_id.to_be_bytes();\n let recipient_bytes: [u8; 32] = recipient.to_field().to_be_bytes();\n let version_bytes: [u8; 32] = version.to_be_bytes();\n let content_bytes: [u8; 32] = content.to_be_bytes();\n let secret_hash_bytes: [u8; 32] = secret_hash.to_be_bytes();\n let leaf_index_bytes: [u8; 32] = leaf_index.to_be_bytes();\n\n for i in 0..32 {\n hash_bytes[i] = sender_bytes[i];\n hash_bytes[i + 32] = chain_id_bytes[i];\n hash_bytes[i + 64] = recipient_bytes[i];\n hash_bytes[i + 96] = version_bytes[i];\n hash_bytes[i + 128] = content_bytes[i];\n hash_bytes[i + 160] = secret_hash_bytes[i];\n hash_bytes[i + 192] = leaf_index_bytes[i];\n }\n\n sha256_to_field(hash_bytes)\n}\n\n// The nullifier of a l1 to l2 message is the hash of the message salted with the secret\npub fn compute_l1_to_l2_message_nullifier(message_hash: Field, secret: Field) -> Field {\n poseidon2_hash_with_separator([message_hash, secret], GENERATOR_INDEX__MESSAGE_NULLIFIER)\n}\n\n// Computes the hash of input arguments or return values for private functions, or for authwit creation.\npub fn hash_args_array<let N: u32>(args: [Field; N]) -> Field {\n if args.len() == 0 {\n 0\n } else {\n poseidon2_hash_with_separator(args, GENERATOR_INDEX__FUNCTION_ARGS)\n }\n}\n\n// Same as `hash_args_array`, but takes a slice instead of an array.\npub fn hash_args(args: [Field]) -> Field {\n if args.len() == 0 {\n 0\n } else {\n poseidon2_hash_with_separator_slice(args, GENERATOR_INDEX__FUNCTION_ARGS)\n }\n}\n\n// Computes the hash of calldata for public functions.\npub fn hash_calldata_array<let N: u32>(calldata: [Field; N]) -> Field {\n poseidon2_hash_with_separator(calldata, GENERATOR_INDEX__PUBLIC_CALLDATA)\n}\n\n// Same as `hash_calldata_array`, but takes a slice instead of an array.\npub fn hash_calldata(calldata: [Field]) -> Field {\n poseidon2_hash_with_separator_slice(calldata, GENERATOR_INDEX__PUBLIC_CALLDATA)\n}\n\n/**\n * Computes the public bytecode commitment for a contract class.\n * The commitment is `hash([separator, ...bytecode])` where bytecode omits the length prefix present\n * in `packed_bytecode`.\n *\n * @param packed_bytecode - The packed bytecode of the contract class. 0th word is the length in bytes.\n * packed_bytecode is mutable so that we can avoid copying the array to construct one starting with\n * separator instead of length.\n * @returns The public bytecode commitment.\n */\npub fn compute_public_bytecode_commitment(\n mut packed_public_bytecode: [Field; MAX_PACKED_PUBLIC_BYTECODE_SIZE_IN_FIELDS],\n) -> Field {\n // First field element contains the length of the bytecode\n let bytecode_length_in_bytes: u32 = packed_public_bytecode[0] as u32;\n let bytecode_length_in_fields: u32 =\n (bytecode_length_in_bytes / 31) + (bytecode_length_in_bytes % 31 != 0) as u32;\n // Don't allow empty public bytecode.\n // AVM doesn't handle execution of contracts that exist with empty bytecode.\n assert(bytecode_length_in_fields != 0);\n assert(bytecode_length_in_fields < MAX_PACKED_PUBLIC_BYTECODE_SIZE_IN_FIELDS);\n\n // Packed_bytecode's 0th entry is the length. Replace it with separator before hashing.\n let separator = GENERATOR_INDEX__PUBLIC_BYTECODE.to_field();\n packed_public_bytecode[0] = separator;\n // +1 to length to account for the separator\n let nonzero_length = bytecode_length_in_fields + 1;\n\n poseidon2_hash_subarray(packed_public_bytecode, nonzero_length)\n // NOTE: we use poseidon2_hash_subarray here because we want to hash the bytecode only up to\n // its nonzero length. We do NOT want to include a `1` at the end to indicate \"variable length\",\n // and we want to enforce that all trailing elements are zero.\n}\n\n#[test]\nunconstrained fn compute_var_args_hash() {\n let mut input = [0; 100];\n for i in 0..100 {\n input[i] = i as Field;\n }\n let hash = hash_args_array(input);\n dep::std::println(hash);\n // Used in yarn-project/stdlib test snapshots:\n assert(hash == 0x19b0d74feb06ebde19edd85a28986c97063e84b3b351a8b666c7cac963ce655f);\n}\n\n#[test]\nunconstrained fn compute_calldata_hash() {\n let mut input = [0; 100];\n for i in 0..input.len() {\n input[i] = i as Field;\n }\n let hash = hash_calldata_array(input);\n dep::std::println(hash);\n let hash_check = hash_calldata(input.as_slice());\n assert(hash == hash_check);\n // Used in cpp vm2 tests:\n assert(hash == 0x191383c9f8964afd3ea8879a03b7dda65d6724773966d18dcf80e452736fc1f3);\n}\n\n#[test]\nunconstrained fn public_bytecode_commitment() {\n let mut input = [0; MAX_PACKED_PUBLIC_BYTECODE_SIZE_IN_FIELDS];\n let len = 99;\n for i in 1..len + 1 {\n input[i] = i as Field;\n }\n input[0] = (len as Field) * 31;\n let hash = compute_public_bytecode_commitment(input);\n dep::std::println(hash);\n // Used in cpp vm2 tests:\n assert(hash == 0x16d621c3387156ef53754679e7b2c9be8f0bceeb44aa59a74991df3b0b42a0bf);\n}\n"
7007
7011
  },
7008
7012
  "90": {
7009
7013
  "path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/keys/ecdh_shared_secret.nr",