@aws-sdk/client-sagemaker 3.937.0 → 3.939.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (50) hide show
  1. package/dist-cjs/index.js +227 -45
  2. package/dist-es/models/enums.js +21 -0
  3. package/dist-es/schemas/schemas_0.js +203 -45
  4. package/dist-types/commands/CreateClusterCommand.d.ts +17 -0
  5. package/dist-types/commands/CreateOptimizationJobCommand.d.ts +15 -1
  6. package/dist-types/commands/CreateTrainingJobCommand.d.ts +2 -1
  7. package/dist-types/commands/CreateTrainingPlanCommand.d.ts +1 -1
  8. package/dist-types/commands/CreateTransformJobCommand.d.ts +1 -1
  9. package/dist-types/commands/CreateTrialCommand.d.ts +1 -1
  10. package/dist-types/commands/DescribeClusterCommand.d.ts +30 -0
  11. package/dist-types/commands/DescribeClusterEventCommand.d.ts +1 -0
  12. package/dist-types/commands/DescribeClusterNodeCommand.d.ts +23 -0
  13. package/dist-types/commands/DescribeOptimizationJobCommand.d.ts +15 -1
  14. package/dist-types/commands/DescribeTrainingPlanCommand.d.ts +1 -1
  15. package/dist-types/commands/DescribeTransformJobCommand.d.ts +1 -1
  16. package/dist-types/commands/DescribeTrialCommand.d.ts +1 -1
  17. package/dist-types/commands/DescribeTrialComponentCommand.d.ts +1 -2
  18. package/dist-types/commands/ListOptimizationJobsCommand.d.ts +2 -1
  19. package/dist-types/commands/ListTrainingPlansCommand.d.ts +2 -1
  20. package/dist-types/commands/ListTransformJobsCommand.d.ts +1 -1
  21. package/dist-types/commands/ListTrialComponentsCommand.d.ts +1 -1
  22. package/dist-types/commands/ListTrialsCommand.d.ts +1 -1
  23. package/dist-types/commands/UpdateClusterCommand.d.ts +17 -0
  24. package/dist-types/models/enums.d.ts +61 -0
  25. package/dist-types/models/models_0.d.ts +168 -163
  26. package/dist-types/models/models_1.d.ts +239 -226
  27. package/dist-types/models/models_2.d.ts +231 -436
  28. package/dist-types/models/models_3.d.ts +4027 -3937
  29. package/dist-types/models/models_4.d.ts +352 -4
  30. package/dist-types/schemas/schemas_0.d.ts +13 -0
  31. package/dist-types/ts3.4/commands/CreateTrainingJobCommand.d.ts +2 -4
  32. package/dist-types/ts3.4/commands/CreateTrainingPlanCommand.d.ts +1 -1
  33. package/dist-types/ts3.4/commands/CreateTransformJobCommand.d.ts +1 -1
  34. package/dist-types/ts3.4/commands/CreateTrialCommand.d.ts +1 -1
  35. package/dist-types/ts3.4/commands/DescribeTrainingPlanCommand.d.ts +1 -1
  36. package/dist-types/ts3.4/commands/DescribeTransformJobCommand.d.ts +1 -1
  37. package/dist-types/ts3.4/commands/DescribeTrialCommand.d.ts +1 -1
  38. package/dist-types/ts3.4/commands/DescribeTrialComponentCommand.d.ts +4 -2
  39. package/dist-types/ts3.4/commands/ListTrainingPlansCommand.d.ts +2 -4
  40. package/dist-types/ts3.4/commands/ListTransformJobsCommand.d.ts +1 -1
  41. package/dist-types/ts3.4/commands/ListTrialComponentsCommand.d.ts +1 -1
  42. package/dist-types/ts3.4/commands/ListTrialsCommand.d.ts +1 -1
  43. package/dist-types/ts3.4/models/enums.d.ts +31 -0
  44. package/dist-types/ts3.4/models/models_0.d.ts +42 -40
  45. package/dist-types/ts3.4/models/models_1.d.ts +69 -64
  46. package/dist-types/ts3.4/models/models_2.d.ts +59 -105
  47. package/dist-types/ts3.4/models/models_3.d.ts +109 -85
  48. package/dist-types/ts3.4/models/models_4.d.ts +88 -5
  49. package/dist-types/ts3.4/schemas/schemas_0.d.ts +13 -0
  50. package/package.json +2 -2
@@ -1,6 +1,229 @@
1
- import { _InstanceType, ActionStatus, ActivationState, AlgorithmStatus, AppNetworkAccessType, AppSecurityGroupManagement, AppStatus, AppType, AuthMode, AutoMLJobSecondaryStatus, AutoMLJobStatus, AutoMLProblemTypeConfigName, BatchStrategy, CapacityReservationPreference, CaptureStatus, ClusterNodeProvisioningMode, ClusterNodeRecovery, ClusterStatus, CompilationJobStatus, DetailedModelPackageStatus, DirectInternetAccess, DomainStatus, EdgePackagingJobStatus, EdgePresetDeploymentStatus, EdgePresetDeploymentType, EnabledOrDisabled, EndpointStatus, ExecutionStatus, FeatureGroupStatus, FeatureStatus, FeatureType, FlowDefinitionStatus, HubContentStatus, HubContentSupportStatus, HubContentType, HubStatus, HumanTaskUiStatus, HyperParameterTuningJobObjectiveType, HyperParameterTuningJobStatus, ImageStatus, ImageVersionStatus, InferenceComponentCapacitySizeType, InferenceComponentStatus, InferenceExperimentStatus, InferenceExperimentType, IPAddressType, IsTrackingServerActive, JobType, LabelingJobStatus, LastUpdateStatusValue, ModelApprovalStatus, ModelCardExportJobStatus, ModelCardProcessingStatus, ModelCardStatus, ModelPackageGroupStatus, ModelPackageStatus, ModelVariantStatus, MonitoringType, NotebookInstanceAcceleratorType, NotebookInstanceStatus, ObjectiveStatus, OfflineStoreStatusValue, OptimizationJobDeploymentInstanceType, OptimizationJobStatus, PartnerAppAuthType, PartnerAppStatus, PartnerAppType, PipelineExecutionStatus, PipelineStatus, ProblemType, ProcessingJobStatus, Processor, ProductionVariantAcceleratorType, ProductionVariantInstanceType, ProfilingStatus, ProjectStatus, RecommendationJobStatus, RecommendationJobType, RecommendationStatus, ReservedCapacityInstanceType, ReservedCapacityStatus, ReservedCapacityType, RetentionType, RootAccess, RuleEvaluationStatus, SageMakerResourceName, SchedulerResourceStatus, ScheduleStatus, SecondaryStatus, SkipModelValidation, SpaceStatus, StageStatus, Statistic, StudioLifecycleConfigAppType, TagPropagation, ThroughputMode, TrackingServerMaintenanceStatus, TrackingServerSize, TrackingServerStatus, TrainingJobStatus, TrainingPlanStatus, TransformJobStatus, TrialComponentPrimaryStatus, VariantStatus, VendorGuidance, WarmPoolResourceStatus, WorkforceIpAddressType } from "./enums";
2
- import { ActionSource, AdditionalInferenceSpecificationDefinition, AlgorithmSpecification, AlgorithmStatusDetails, AlgorithmValidationSpecification, AppSpecification, ArtifactSource, AsyncInferenceConfig, AutoMLCandidate, AutoMLChannel, AutoMLComputeConfig, AutoMLDataSplitConfig, AutoMLJobArtifacts, AutoMLJobChannel, AutoMLJobCompletionCriteria, AutoMLJobConfig, AutoMLJobObjective, AutoMLOutputDataConfig, AutoMLPartialFailureReason, AutoMLProblemTypeConfig, AutoMLResolvedAttributes, AutoMLSecurityConfig, AutoRollbackConfig, Autotune, AvailableUpgrade, BatchDataCaptureConfig, CfnTemplateProviderDetail, Channel, CheckpointConfig, ClusterAutoScalingConfigOutput, ClusterEventDetail, ClusterInstanceGroupDetails, ClusterNodeDetails, ClusterOrchestrator, ClusterRestrictedInstanceGroupDetails, ClusterTieredStorageConfig, CodeEditorAppImageConfig, CognitoConfig, CognitoMemberDefinition, ComputeQuotaConfig, ComputeQuotaTarget, ContainerDefinition, ContextSource, DataQualityAppSpecification, DataQualityBaselineConfig, DataQualityJobInput, GitConfig, InferenceSpecification, InputConfig, JupyterLabAppImageConfig, KernelGatewayImageConfig, MetadataProperties, ModelDeployConfig, MonitoringOutputConfig, MonitoringResources, NeoVpcConfig, OutputConfig, OutputDataConfig, ResourceConfig, ResourceSpec, SchedulerConfig, StoppingCondition, Tag, TrainingSpecification, TransformInput, TransformOutput, TransformResources, UserContext, VpcConfig } from "./models_0";
3
- import { DataCaptureConfig, DataProcessing, DebugHookConfig, DebugRuleConfiguration, DefaultSpaceSettings, DeploymentConfig, DeviceSelectionConfig, DomainSettings, DriftCheckBaselines, EdgeDeploymentConfig, EdgeDeploymentModelConfig, EdgeOutputConfig, EndpointInfo, ExperimentConfig, ExplainerConfig, FeatureDefinition, FlowDefinitionOutputConfig, HubS3StorageConfig, HumanLoopActivationConfig, HumanLoopConfig, HumanLoopRequestSource, HumanTaskConfig, HyperParameterTrainingJobDefinition, HyperParameterTuningJobConfig, HyperParameterTuningJobWarmStartConfig, InferenceComponentComputeResourceRequirements, InferenceComponentStartupParameters, InferenceExecutionConfig, InferenceExperimentDataStorageConfig, InferenceExperimentSchedule, InfraCheckConfig, InstanceMetadataServiceConfiguration, LabelingJobAlgorithmsConfig, LabelingJobInputConfig, LabelingJobOutputConfig, LabelingJobStoppingConditions, MetricsConfig, ModelBiasAppSpecification, ModelBiasBaselineConfig, ModelBiasJobInput, ModelCardExportOutputConfig, ModelCardSecurityConfig, ModelClientConfig, ModelExplainabilityAppSpecification, ModelExplainabilityBaselineConfig, ModelExplainabilityJobInput, ModelInfrastructureConfig, ModelLifeCycle, ModelMetrics, ModelPackageModelCard, ModelPackageSecurityConfig, ModelPackageValidationSpecification, ModelQualityAppSpecification, ModelQualityBaselineConfig, ModelQualityJobInput, MonitoringNetworkConfig, MonitoringScheduleConfig, MonitoringStoppingCondition, NetworkConfig, NotebookInstanceLifecycleHook, OfflineStoreConfig, OnlineStoreConfig, OptimizationConfig, OptimizationJobModelSource, OptimizationJobOutputConfig, OptimizationVpcConfig, OwnershipSettings, ParallelismConfiguration, PartnerAppConfig, PartnerAppMaintenanceConfig, ProcessingInput, ProcessingOutputConfig, ProcessingResources, ProcessingStoppingCondition, ProductionVariant, ProductionVariantManagedInstanceScaling, ProductionVariantRoutingConfig, ProductionVariantServerlessConfig, ProfilerConfig, ProfilerRuleConfiguration, RecommendationJobInputConfig, RecommendationJobStoppingConditions, RemoteDebugConfig, RetryStrategy, ServiceCatalogProvisioningDetails, ShadowModeConfig, SourceAlgorithmSpecification, SpaceSettings, SpaceSharingSettings, TensorBoardOutputConfig, TrialComponentArtifact, UserSettings } from "./models_1";
1
+ import { _InstanceType, ActionStatus, ActivationState, AlgorithmStatus, AppNetworkAccessType, AppSecurityGroupManagement, AppStatus, AppType, AuthMode, AutoMLJobSecondaryStatus, AutoMLJobStatus, AutoMLProblemTypeConfigName, BatchStrategy, CapacityReservationPreference, CaptureStatus, ClusterNodeProvisioningMode, ClusterNodeRecovery, ClusterStatus, CompilationJobStatus, DetailedModelPackageStatus, DirectInternetAccess, DomainStatus, EdgePackagingJobStatus, EdgePresetDeploymentStatus, EdgePresetDeploymentType, EnabledOrDisabled, EndpointStatus, ExecutionStatus, FeatureGroupStatus, FeatureStatus, FeatureType, FlowDefinitionStatus, HubContentStatus, HubContentSupportStatus, HubContentType, HubStatus, HumanTaskUiStatus, HyperParameterTuningJobObjectiveType, HyperParameterTuningJobStatus, ImageStatus, ImageVersionStatus, InferenceComponentCapacitySizeType, InferenceComponentStatus, InferenceExperimentStatus, InferenceExperimentType, IPAddressType, IsTrackingServerActive, JobType, JoinSource, LabelingJobStatus, LastUpdateStatusValue, ModelApprovalStatus, ModelCardExportJobStatus, ModelCardProcessingStatus, ModelCardStatus, ModelPackageGroupStatus, ModelPackageStatus, ModelVariantStatus, MonitoringType, NotebookInstanceAcceleratorType, NotebookInstanceStatus, ObjectiveStatus, OfflineStoreStatusValue, OptimizationJobDeploymentInstanceType, OptimizationJobStatus, PartnerAppAuthType, PartnerAppStatus, PartnerAppType, PipelineExecutionStatus, PipelineStatus, ProblemType, ProcessingJobStatus, Processor, ProductionVariantAcceleratorType, ProductionVariantInstanceType, ProfilingStatus, ProjectStatus, RecommendationJobStatus, RecommendationJobType, RecommendationStatus, ReservedCapacityInstanceType, ReservedCapacityStatus, ReservedCapacityType, RetentionType, RootAccess, RuleEvaluationStatus, SchedulerResourceStatus, ScheduleStatus, SecondaryStatus, SkipModelValidation, SpaceStatus, StageStatus, Statistic, StudioLifecycleConfigAppType, TagPropagation, ThroughputMode, TrackingServerMaintenanceStatus, TrackingServerSize, TrackingServerStatus, TrainingJobStatus, TrialComponentPrimaryStatus, VariantStatus, VendorGuidance, WarmPoolResourceStatus, WorkforceIpAddressType } from "./enums";
2
+ import { ActionSource, AdditionalInferenceSpecificationDefinition, AlgorithmSpecification, AlgorithmStatusDetails, AlgorithmValidationSpecification, AppSpecification, ArtifactSource, AsyncInferenceConfig, AutoMLCandidate, AutoMLChannel, AutoMLComputeConfig, AutoMLDataSplitConfig, AutoMLJobArtifacts, AutoMLJobChannel, AutoMLJobCompletionCriteria, AutoMLJobConfig, AutoMLJobObjective, AutoMLOutputDataConfig, AutoMLPartialFailureReason, AutoMLProblemTypeConfig, AutoMLResolvedAttributes, AutoMLSecurityConfig, AutoRollbackConfig, Autotune, AvailableUpgrade, BatchDataCaptureConfig, CfnTemplateProviderDetail, Channel, CheckpointConfig, ClusterAutoScalingConfigOutput, ClusterEventDetail, ClusterInstanceGroupDetails, ClusterNodeDetails, ClusterOrchestrator, ClusterRestrictedInstanceGroupDetails, ClusterTieredStorageConfig, CodeEditorAppImageConfig, CognitoConfig, CognitoMemberDefinition, ComputeQuotaConfig, ComputeQuotaTarget, ContainerDefinition, ContextSource, DataQualityAppSpecification, DataQualityBaselineConfig, GitConfig, InferenceSpecification, InputConfig, JupyterLabAppImageConfig, KernelGatewayImageConfig, MetadataProperties, ModelDeployConfig, NeoVpcConfig, OutputConfig, OutputDataConfig, ResourceConfig, ResourceSpec, SchedulerConfig, StoppingCondition, Tag, TrainingSpecification, TransformInput, TransformOutput, TransformResources, UserContext, VpcConfig } from "./models_0";
3
+ import { DataCaptureConfig, DataQualityJobInput, DebugHookConfig, DebugRuleConfiguration, DefaultSpaceSettings, DeploymentConfig, DeviceSelectionConfig, DomainSettings, DriftCheckBaselines, EdgeDeploymentConfig, EdgeDeploymentModelConfig, EdgeOutputConfig, EndpointInfo, ExperimentConfig, ExplainerConfig, FeatureDefinition, FlowDefinitionOutputConfig, HubS3StorageConfig, HumanLoopActivationConfig, HumanLoopConfig, HumanLoopRequestSource, HumanTaskConfig, HyperParameterTrainingJobDefinition, HyperParameterTuningJobConfig, HyperParameterTuningJobWarmStartConfig, InferenceComponentComputeResourceRequirements, InferenceComponentStartupParameters, InferenceExecutionConfig, InferenceExperimentDataStorageConfig, InferenceExperimentSchedule, InfraCheckConfig, InstanceMetadataServiceConfiguration, LabelingJobAlgorithmsConfig, LabelingJobInputConfig, LabelingJobOutputConfig, LabelingJobStoppingConditions, MetricsConfig, ModelBiasAppSpecification, ModelBiasBaselineConfig, ModelBiasJobInput, ModelCardExportOutputConfig, ModelCardSecurityConfig, ModelExplainabilityAppSpecification, ModelExplainabilityBaselineConfig, ModelExplainabilityJobInput, ModelInfrastructureConfig, ModelLifeCycle, ModelMetrics, ModelPackageModelCard, ModelPackageSecurityConfig, ModelPackageValidationSpecification, ModelQualityAppSpecification, ModelQualityBaselineConfig, ModelQualityJobInput, MonitoringNetworkConfig, MonitoringOutputConfig, MonitoringResources, MonitoringScheduleConfig, MonitoringStoppingCondition, NetworkConfig, NotebookInstanceLifecycleHook, OfflineStoreConfig, OnlineStoreConfig, OptimizationConfig, OptimizationJobModelSource, OptimizationJobOutputConfig, OptimizationVpcConfig, OwnershipSettings, ParallelismConfiguration, PartnerAppConfig, PartnerAppMaintenanceConfig, ProcessingInput, ProcessingOutputConfig, ProcessingResources, ProcessingStoppingCondition, ProductionVariant, ProductionVariantManagedInstanceScaling, ProductionVariantRoutingConfig, ProductionVariantServerlessConfig, ProfilerConfig, ProfilerRuleConfiguration, RecommendationJobInputConfig, RecommendationJobStoppingConditions, RemoteDebugConfig, RetryStrategy, ServiceCatalogProvisioningDetails, ShadowModeConfig, SourceAlgorithmSpecification, SpaceSettings, SpaceSharingSettings, TensorBoardOutputConfig, UserSettings } from "./models_1";
4
+ /**
5
+ * @public
6
+ */
7
+ export interface CreateTrainingJobResponse {
8
+ /**
9
+ * <p>The Amazon Resource Name (ARN) of the training job.</p>
10
+ * @public
11
+ */
12
+ TrainingJobArn: string | undefined;
13
+ }
14
+ /**
15
+ * @public
16
+ */
17
+ export interface CreateTrainingPlanRequest {
18
+ /**
19
+ * <p>The name of the training plan to create.</p>
20
+ * @public
21
+ */
22
+ TrainingPlanName: string | undefined;
23
+ /**
24
+ * <p>The unique identifier of the training plan offering to use for creating this plan.</p>
25
+ * @public
26
+ */
27
+ TrainingPlanOfferingId: string | undefined;
28
+ /**
29
+ * <p>Number of spare instances to reserve per UltraServer for enhanced resiliency. Default is 1.</p>
30
+ * @public
31
+ */
32
+ SpareInstanceCountPerUltraServer?: number | undefined;
33
+ /**
34
+ * <p>An array of key-value pairs to apply to this training plan.</p>
35
+ * @public
36
+ */
37
+ Tags?: Tag[] | undefined;
38
+ }
39
+ /**
40
+ * @public
41
+ */
42
+ export interface CreateTrainingPlanResponse {
43
+ /**
44
+ * <p>The Amazon Resource Name (ARN); of the created training plan.</p>
45
+ * @public
46
+ */
47
+ TrainingPlanArn: string | undefined;
48
+ }
49
+ /**
50
+ * <p>The data structure used to specify the data to be used for inference in a batch transform job and to associate the data that is relevant to the prediction results in the output. The input filter provided allows you to exclude input data that is not needed for inference in a batch transform job. The output filter provided allows you to include input data relevant to interpreting the predictions in the output from the job. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html">Associate Prediction Results with their Corresponding Input Records</a>.</p>
51
+ * @public
52
+ */
53
+ export interface DataProcessing {
54
+ /**
55
+ * <p>A <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html#data-processing-operators">JSONPath</a> expression used to select a portion of the input data to pass to the algorithm. Use the <code>InputFilter</code> parameter to exclude fields, such as an ID column, from the input. If you want SageMaker to pass the entire input dataset to the algorithm, accept the default value <code>$</code>.</p> <p>Examples: <code>"$"</code>, <code>"$[1:]"</code>, <code>"$.features"</code> </p>
56
+ * @public
57
+ */
58
+ InputFilter?: string | undefined;
59
+ /**
60
+ * <p>A <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html#data-processing-operators">JSONPath</a> expression used to select a portion of the joined dataset to save in the output file for a batch transform job. If you want SageMaker to store the entire input dataset in the output file, leave the default value, <code>$</code>. If you specify indexes that aren't within the dimension size of the joined dataset, you get an error.</p> <p>Examples: <code>"$"</code>, <code>"$[0,5:]"</code>, <code>"$['id','SageMakerOutput']"</code> </p>
61
+ * @public
62
+ */
63
+ OutputFilter?: string | undefined;
64
+ /**
65
+ * <p>Specifies the source of the data to join with the transformed data. The valid values are <code>None</code> and <code>Input</code>. The default value is <code>None</code>, which specifies not to join the input with the transformed data. If you want the batch transform job to join the original input data with the transformed data, set <code>JoinSource</code> to <code>Input</code>. You can specify <code>OutputFilter</code> as an additional filter to select a portion of the joined dataset and store it in the output file.</p> <p>For JSON or JSONLines objects, such as a JSON array, SageMaker adds the transformed data to the input JSON object in an attribute called <code>SageMakerOutput</code>. The joined result for JSON must be a key-value pair object. If the input is not a key-value pair object, SageMaker creates a new JSON file. In the new JSON file, and the input data is stored under the <code>SageMakerInput</code> key and the results are stored in <code>SageMakerOutput</code>.</p> <p>For CSV data, SageMaker takes each row as a JSON array and joins the transformed data with the input by appending each transformed row to the end of the input. The joined data has the original input data followed by the transformed data and the output is a CSV file.</p> <p>For information on how joining in applied, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html#batch-transform-data-processing-workflow">Workflow for Associating Inferences with Input Records</a>.</p>
66
+ * @public
67
+ */
68
+ JoinSource?: JoinSource | undefined;
69
+ }
70
+ /**
71
+ * <p>Configures the timeout and maximum number of retries for processing a transform job invocation.</p>
72
+ * @public
73
+ */
74
+ export interface ModelClientConfig {
75
+ /**
76
+ * <p>The timeout value in seconds for an invocation request. The default value is 600.</p>
77
+ * @public
78
+ */
79
+ InvocationsTimeoutInSeconds?: number | undefined;
80
+ /**
81
+ * <p>The maximum number of retries when invocation requests are failing. The default value is 3.</p>
82
+ * @public
83
+ */
84
+ InvocationsMaxRetries?: number | undefined;
85
+ }
86
+ /**
87
+ * @public
88
+ */
89
+ export interface CreateTransformJobRequest {
90
+ /**
91
+ * <p>The name of the transform job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account. </p>
92
+ * @public
93
+ */
94
+ TransformJobName: string | undefined;
95
+ /**
96
+ * <p>The name of the model that you want to use for the transform job. <code>ModelName</code> must be the name of an existing Amazon SageMaker model within an Amazon Web Services Region in an Amazon Web Services account.</p>
97
+ * @public
98
+ */
99
+ ModelName: string | undefined;
100
+ /**
101
+ * <p>The maximum number of parallel requests that can be sent to each instance in a transform job. If <code>MaxConcurrentTransforms</code> is set to <code>0</code> or left unset, Amazon SageMaker checks the optional execution-parameters to determine the settings for your chosen algorithm. If the execution-parameters endpoint is not enabled, the default value is <code>1</code>. For more information on execution-parameters, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-batch-code.html#your-algorithms-batch-code-how-containe-serves-requests">How Containers Serve Requests</a>. For built-in algorithms, you don't need to set a value for <code>MaxConcurrentTransforms</code>.</p>
102
+ * @public
103
+ */
104
+ MaxConcurrentTransforms?: number | undefined;
105
+ /**
106
+ * <p>Configures the timeout and maximum number of retries for processing a transform job invocation.</p>
107
+ * @public
108
+ */
109
+ ModelClientConfig?: ModelClientConfig | undefined;
110
+ /**
111
+ * <p>The maximum allowed size of the payload, in MB. A <i>payload</i> is the data portion of a record (without metadata). The value in <code>MaxPayloadInMB</code> must be greater than, or equal to, the size of a single record. To estimate the size of a record in MB, divide the size of your dataset by the number of records. To ensure that the records fit within the maximum payload size, we recommend using a slightly larger value. The default value is <code>6</code> MB. </p> <p>The value of <code>MaxPayloadInMB</code> cannot be greater than 100 MB. If you specify the <code>MaxConcurrentTransforms</code> parameter, the value of <code>(MaxConcurrentTransforms * MaxPayloadInMB)</code> also cannot exceed 100 MB.</p> <p>For cases where the payload might be arbitrarily large and is transmitted using HTTP chunked encoding, set the value to <code>0</code>. This feature works only in supported algorithms. Currently, Amazon SageMaker built-in algorithms do not support HTTP chunked encoding.</p>
112
+ * @public
113
+ */
114
+ MaxPayloadInMB?: number | undefined;
115
+ /**
116
+ * <p>Specifies the number of records to include in a mini-batch for an HTTP inference request. A <i>record</i> <i/> is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record. </p> <p>To enable the batch strategy, you must set the <code>SplitType</code> property to <code>Line</code>, <code>RecordIO</code>, or <code>TFRecord</code>.</p> <p>To use only one record when making an HTTP invocation request to a container, set <code>BatchStrategy</code> to <code>SingleRecord</code> and <code>SplitType</code> to <code>Line</code>.</p> <p>To fit as many records in a mini-batch as can fit within the <code>MaxPayloadInMB</code> limit, set <code>BatchStrategy</code> to <code>MultiRecord</code> and <code>SplitType</code> to <code>Line</code>.</p>
117
+ * @public
118
+ */
119
+ BatchStrategy?: BatchStrategy | undefined;
120
+ /**
121
+ * <p>The environment variables to set in the Docker container. Don't include any sensitive data in your environment variables. We support up to 16 key and values entries in the map.</p>
122
+ * @public
123
+ */
124
+ Environment?: Record<string, string> | undefined;
125
+ /**
126
+ * <p>Describes the input source and the way the transform job consumes it.</p>
127
+ * @public
128
+ */
129
+ TransformInput: TransformInput | undefined;
130
+ /**
131
+ * <p>Describes the results of the transform job.</p>
132
+ * @public
133
+ */
134
+ TransformOutput: TransformOutput | undefined;
135
+ /**
136
+ * <p>Configuration to control how SageMaker captures inference data.</p>
137
+ * @public
138
+ */
139
+ DataCaptureConfig?: BatchDataCaptureConfig | undefined;
140
+ /**
141
+ * <p>Describes the resources, including ML instance types and ML instance count, to use for the transform job.</p>
142
+ * @public
143
+ */
144
+ TransformResources: TransformResources | undefined;
145
+ /**
146
+ * <p>The data structure used to specify the data to be used for inference in a batch transform job and to associate the data that is relevant to the prediction results in the output. The input filter provided allows you to exclude input data that is not needed for inference in a batch transform job. The output filter provided allows you to include input data relevant to interpreting the predictions in the output from the job. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html">Associate Prediction Results with their Corresponding Input Records</a>.</p>
147
+ * @public
148
+ */
149
+ DataProcessing?: DataProcessing | undefined;
150
+ /**
151
+ * <p>(Optional) An array of key-value pairs. For more information, see <a href="https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what">Using Cost Allocation Tags</a> in the <i>Amazon Web Services Billing and Cost Management User Guide</i>.</p>
152
+ * @public
153
+ */
154
+ Tags?: Tag[] | undefined;
155
+ /**
156
+ * <p>Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:</p> <ul> <li> <p> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html">CreateProcessingJob</a> </p> </li> <li> <p> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html">CreateTrainingJob</a> </p> </li> <li> <p> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html">CreateTransformJob</a> </p> </li> </ul>
157
+ * @public
158
+ */
159
+ ExperimentConfig?: ExperimentConfig | undefined;
160
+ }
161
+ /**
162
+ * @public
163
+ */
164
+ export interface CreateTransformJobResponse {
165
+ /**
166
+ * <p>The Amazon Resource Name (ARN) of the transform job.</p>
167
+ * @public
168
+ */
169
+ TransformJobArn: string | undefined;
170
+ }
171
+ /**
172
+ * @public
173
+ */
174
+ export interface CreateTrialRequest {
175
+ /**
176
+ * <p>The name of the trial. The name must be unique in your Amazon Web Services account and is not case-sensitive.</p>
177
+ * @public
178
+ */
179
+ TrialName: string | undefined;
180
+ /**
181
+ * <p>The name of the trial as displayed. The name doesn't need to be unique. If <code>DisplayName</code> isn't specified, <code>TrialName</code> is displayed.</p>
182
+ * @public
183
+ */
184
+ DisplayName?: string | undefined;
185
+ /**
186
+ * <p>The name of the experiment to associate the trial with.</p>
187
+ * @public
188
+ */
189
+ ExperimentName: string | undefined;
190
+ /**
191
+ * <p>Metadata properties of the tracking entity, trial, or trial component.</p>
192
+ * @public
193
+ */
194
+ MetadataProperties?: MetadataProperties | undefined;
195
+ /**
196
+ * <p>A list of tags to associate with the trial. You can use <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html">Search</a> API to search on the tags.</p>
197
+ * @public
198
+ */
199
+ Tags?: Tag[] | undefined;
200
+ }
201
+ /**
202
+ * @public
203
+ */
204
+ export interface CreateTrialResponse {
205
+ /**
206
+ * <p>The Amazon Resource Name (ARN) of the trial.</p>
207
+ * @public
208
+ */
209
+ TrialArn?: string | undefined;
210
+ }
211
+ /**
212
+ * <p>Represents an input or output artifact of a trial component. You specify <code>TrialComponentArtifact</code> as part of the <code>InputArtifacts</code> and <code>OutputArtifacts</code> parameters in the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrialComponent.html">CreateTrialComponent</a> request.</p> <p>Examples of input artifacts are datasets, algorithms, hyperparameters, source code, and instance types. Examples of output artifacts are metrics, snapshots, logs, and images.</p>
213
+ * @public
214
+ */
215
+ export interface TrialComponentArtifact {
216
+ /**
217
+ * <p>The media type of the artifact, which indicates the type of data in the artifact file. The media type consists of a <i>type</i> and a <i>subtype</i> concatenated with a slash (/) character, for example, text/csv, image/jpeg, and s3/uri. The type specifies the category of the media. The subtype specifies the kind of data.</p>
218
+ * @public
219
+ */
220
+ MediaType?: string | undefined;
221
+ /**
222
+ * <p>The location of the artifact.</p>
223
+ * @public
224
+ */
225
+ Value: string | undefined;
226
+ }
4
227
  /**
5
228
  * <p>The value of a hyperparameter. Only one of <code>NumberValue</code> or <code>StringValue</code> can be specified.</p> <p>This object is specified in the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrialComponent.html">CreateTrialComponent</a> request.</p>
6
229
  * @public
@@ -6770,6 +6993,11 @@ export interface DescribeOptimizationJobResponse {
6770
6993
  * @public
6771
6994
  */
6772
6995
  DeploymentInstanceType: OptimizationJobDeploymentInstanceType | undefined;
6996
+ /**
6997
+ * <p>The maximum number of instances to use for the optimization job.</p>
6998
+ * @public
6999
+ */
7000
+ MaxInstanceCount?: number | undefined;
6773
7001
  /**
6774
7002
  * <p>Settings for each of the optimization techniques that the job applies.</p>
6775
7003
  * @public
@@ -8023,436 +8251,3 @@ export interface DescribeTrainingJobResponse {
8023
8251
  */
8024
8252
  InfraCheckConfig?: InfraCheckConfig | undefined;
8025
8253
  }
8026
- /**
8027
- * @public
8028
- */
8029
- export interface DescribeTrainingPlanRequest {
8030
- /**
8031
- * <p>The name of the training plan to describe.</p>
8032
- * @public
8033
- */
8034
- TrainingPlanName: string | undefined;
8035
- }
8036
- /**
8037
- * <p>Details of a reserved capacity for the training plan.</p> <p>For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see <code> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingPlan.html">CreateTrainingPlan</a> </code>.</p>
8038
- * @public
8039
- */
8040
- export interface ReservedCapacitySummary {
8041
- /**
8042
- * <p>The Amazon Resource Name (ARN); of the reserved capacity.</p>
8043
- * @public
8044
- */
8045
- ReservedCapacityArn: string | undefined;
8046
- /**
8047
- * <p>The type of reserved capacity.</p>
8048
- * @public
8049
- */
8050
- ReservedCapacityType?: ReservedCapacityType | undefined;
8051
- /**
8052
- * <p>The type of UltraServer included in this reserved capacity, such as ml.u-p6e-gb200x72.</p>
8053
- * @public
8054
- */
8055
- UltraServerType?: string | undefined;
8056
- /**
8057
- * <p>The number of UltraServers included in this reserved capacity.</p>
8058
- * @public
8059
- */
8060
- UltraServerCount?: number | undefined;
8061
- /**
8062
- * <p>The instance type for the reserved capacity.</p>
8063
- * @public
8064
- */
8065
- InstanceType: ReservedCapacityInstanceType | undefined;
8066
- /**
8067
- * <p>The total number of instances in the reserved capacity.</p>
8068
- * @public
8069
- */
8070
- TotalInstanceCount: number | undefined;
8071
- /**
8072
- * <p>The current status of the reserved capacity.</p>
8073
- * @public
8074
- */
8075
- Status: ReservedCapacityStatus | undefined;
8076
- /**
8077
- * <p>The availability zone for the reserved capacity.</p>
8078
- * @public
8079
- */
8080
- AvailabilityZone?: string | undefined;
8081
- /**
8082
- * <p>The number of whole hours in the total duration for this reserved capacity.</p>
8083
- * @public
8084
- */
8085
- DurationHours?: number | undefined;
8086
- /**
8087
- * <p>The additional minutes beyond whole hours in the total duration for this reserved capacity.</p>
8088
- * @public
8089
- */
8090
- DurationMinutes?: number | undefined;
8091
- /**
8092
- * <p>The start time of the reserved capacity.</p>
8093
- * @public
8094
- */
8095
- StartTime?: Date | undefined;
8096
- /**
8097
- * <p>The end time of the reserved capacity.</p>
8098
- * @public
8099
- */
8100
- EndTime?: Date | undefined;
8101
- }
8102
- /**
8103
- * @public
8104
- */
8105
- export interface DescribeTrainingPlanResponse {
8106
- /**
8107
- * <p>The Amazon Resource Name (ARN); of the training plan.</p>
8108
- * @public
8109
- */
8110
- TrainingPlanArn: string | undefined;
8111
- /**
8112
- * <p>The name of the training plan.</p>
8113
- * @public
8114
- */
8115
- TrainingPlanName: string | undefined;
8116
- /**
8117
- * <p>The current status of the training plan (e.g., Pending, Active, Expired). To see the complete list of status values available for a training plan, refer to the <code>Status</code> attribute within the <code> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TrainingPlanSummary.html">TrainingPlanSummary</a> </code> object.</p>
8118
- * @public
8119
- */
8120
- Status: TrainingPlanStatus | undefined;
8121
- /**
8122
- * <p>A message providing additional information about the current status of the training plan.</p>
8123
- * @public
8124
- */
8125
- StatusMessage?: string | undefined;
8126
- /**
8127
- * <p>The number of whole hours in the total duration for this training plan.</p>
8128
- * @public
8129
- */
8130
- DurationHours?: number | undefined;
8131
- /**
8132
- * <p>The additional minutes beyond whole hours in the total duration for this training plan.</p>
8133
- * @public
8134
- */
8135
- DurationMinutes?: number | undefined;
8136
- /**
8137
- * <p>The start time of the training plan.</p>
8138
- * @public
8139
- */
8140
- StartTime?: Date | undefined;
8141
- /**
8142
- * <p>The end time of the training plan.</p>
8143
- * @public
8144
- */
8145
- EndTime?: Date | undefined;
8146
- /**
8147
- * <p>The upfront fee for the training plan.</p>
8148
- * @public
8149
- */
8150
- UpfrontFee?: string | undefined;
8151
- /**
8152
- * <p>The currency code for the upfront fee (e.g., USD).</p>
8153
- * @public
8154
- */
8155
- CurrencyCode?: string | undefined;
8156
- /**
8157
- * <p>The total number of instances reserved in this training plan.</p>
8158
- * @public
8159
- */
8160
- TotalInstanceCount?: number | undefined;
8161
- /**
8162
- * <p>The number of instances currently available for use in this training plan.</p>
8163
- * @public
8164
- */
8165
- AvailableInstanceCount?: number | undefined;
8166
- /**
8167
- * <p>The number of instances currently in use from this training plan.</p>
8168
- * @public
8169
- */
8170
- InUseInstanceCount?: number | undefined;
8171
- /**
8172
- * <p>The number of instances in the training plan that are currently in an unhealthy state.</p>
8173
- * @public
8174
- */
8175
- UnhealthyInstanceCount?: number | undefined;
8176
- /**
8177
- * <p>The number of available spare instances in the training plan.</p>
8178
- * @public
8179
- */
8180
- AvailableSpareInstanceCount?: number | undefined;
8181
- /**
8182
- * <p>The total number of UltraServers reserved to this training plan.</p>
8183
- * @public
8184
- */
8185
- TotalUltraServerCount?: number | undefined;
8186
- /**
8187
- * <p>The target resources (e.g., SageMaker Training Jobs, SageMaker HyperPod, SageMaker Endpoints) that can use this training plan.</p> <p>Training plans are specific to their target resource.</p> <ul> <li> <p>A training plan designed for SageMaker training jobs can only be used to schedule and run training jobs.</p> </li> <li> <p>A training plan for HyperPod clusters can be used exclusively to provide compute resources to a cluster's instance group.</p> </li> <li> <p>A training plan for SageMaker endpoints can be used exclusively to provide compute resources to SageMaker endpoints for model deployment.</p> </li> </ul>
8188
- * @public
8189
- */
8190
- TargetResources?: SageMakerResourceName[] | undefined;
8191
- /**
8192
- * <p>The list of Reserved Capacity providing the underlying compute resources of the plan. </p>
8193
- * @public
8194
- */
8195
- ReservedCapacitySummaries?: ReservedCapacitySummary[] | undefined;
8196
- }
8197
- /**
8198
- * @public
8199
- */
8200
- export interface DescribeTransformJobRequest {
8201
- /**
8202
- * <p>The name of the transform job that you want to view details of.</p>
8203
- * @public
8204
- */
8205
- TransformJobName: string | undefined;
8206
- }
8207
- /**
8208
- * @public
8209
- */
8210
- export interface DescribeTransformJobResponse {
8211
- /**
8212
- * <p>The name of the transform job.</p>
8213
- * @public
8214
- */
8215
- TransformJobName: string | undefined;
8216
- /**
8217
- * <p>The Amazon Resource Name (ARN) of the transform job.</p>
8218
- * @public
8219
- */
8220
- TransformJobArn: string | undefined;
8221
- /**
8222
- * <p>The status of the transform job. If the transform job failed, the reason is returned in the <code>FailureReason</code> field.</p>
8223
- * @public
8224
- */
8225
- TransformJobStatus: TransformJobStatus | undefined;
8226
- /**
8227
- * <p>If the transform job failed, <code>FailureReason</code> describes why it failed. A transform job creates a log file, which includes error messages, and stores it as an Amazon S3 object. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/logging-cloudwatch.html">Log Amazon SageMaker Events with Amazon CloudWatch</a>.</p>
8228
- * @public
8229
- */
8230
- FailureReason?: string | undefined;
8231
- /**
8232
- * <p>The name of the model used in the transform job.</p>
8233
- * @public
8234
- */
8235
- ModelName: string | undefined;
8236
- /**
8237
- * <p>The maximum number of parallel requests on each instance node that can be launched in a transform job. The default value is 1.</p>
8238
- * @public
8239
- */
8240
- MaxConcurrentTransforms?: number | undefined;
8241
- /**
8242
- * <p>The timeout and maximum number of retries for processing a transform job invocation.</p>
8243
- * @public
8244
- */
8245
- ModelClientConfig?: ModelClientConfig | undefined;
8246
- /**
8247
- * <p>The maximum payload size, in MB, used in the transform job.</p>
8248
- * @public
8249
- */
8250
- MaxPayloadInMB?: number | undefined;
8251
- /**
8252
- * <p>Specifies the number of records to include in a mini-batch for an HTTP inference request. A <i>record</i> <i/> is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record. </p> <p>To enable the batch strategy, you must set <code>SplitType</code> to <code>Line</code>, <code>RecordIO</code>, or <code>TFRecord</code>.</p>
8253
- * @public
8254
- */
8255
- BatchStrategy?: BatchStrategy | undefined;
8256
- /**
8257
- * <p>The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.</p>
8258
- * @public
8259
- */
8260
- Environment?: Record<string, string> | undefined;
8261
- /**
8262
- * <p>Describes the dataset to be transformed and the Amazon S3 location where it is stored.</p>
8263
- * @public
8264
- */
8265
- TransformInput: TransformInput | undefined;
8266
- /**
8267
- * <p>Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.</p>
8268
- * @public
8269
- */
8270
- TransformOutput?: TransformOutput | undefined;
8271
- /**
8272
- * <p>Configuration to control how SageMaker captures inference data.</p>
8273
- * @public
8274
- */
8275
- DataCaptureConfig?: BatchDataCaptureConfig | undefined;
8276
- /**
8277
- * <p>Describes the resources, including ML instance types and ML instance count, to use for the transform job.</p>
8278
- * @public
8279
- */
8280
- TransformResources: TransformResources | undefined;
8281
- /**
8282
- * <p>A timestamp that shows when the transform Job was created.</p>
8283
- * @public
8284
- */
8285
- CreationTime: Date | undefined;
8286
- /**
8287
- * <p>Indicates when the transform job starts on ML instances. You are billed for the time interval between this time and the value of <code>TransformEndTime</code>.</p>
8288
- * @public
8289
- */
8290
- TransformStartTime?: Date | undefined;
8291
- /**
8292
- * <p>Indicates when the transform job has been completed, or has stopped or failed. You are billed for the time interval between this time and the value of <code>TransformStartTime</code>.</p>
8293
- * @public
8294
- */
8295
- TransformEndTime?: Date | undefined;
8296
- /**
8297
- * <p>The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth labeling job that created the transform or training job.</p>
8298
- * @public
8299
- */
8300
- LabelingJobArn?: string | undefined;
8301
- /**
8302
- * <p>The Amazon Resource Name (ARN) of the AutoML transform job.</p>
8303
- * @public
8304
- */
8305
- AutoMLJobArn?: string | undefined;
8306
- /**
8307
- * <p>The data structure used to specify the data to be used for inference in a batch transform job and to associate the data that is relevant to the prediction results in the output. The input filter provided allows you to exclude input data that is not needed for inference in a batch transform job. The output filter provided allows you to include input data relevant to interpreting the predictions in the output from the job. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html">Associate Prediction Results with their Corresponding Input Records</a>.</p>
8308
- * @public
8309
- */
8310
- DataProcessing?: DataProcessing | undefined;
8311
- /**
8312
- * <p>Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:</p> <ul> <li> <p> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html">CreateProcessingJob</a> </p> </li> <li> <p> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html">CreateTrainingJob</a> </p> </li> <li> <p> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html">CreateTransformJob</a> </p> </li> </ul>
8313
- * @public
8314
- */
8315
- ExperimentConfig?: ExperimentConfig | undefined;
8316
- }
8317
- /**
8318
- * @public
8319
- */
8320
- export interface DescribeTrialRequest {
8321
- /**
8322
- * <p>The name of the trial to describe.</p>
8323
- * @public
8324
- */
8325
- TrialName: string | undefined;
8326
- }
8327
- /**
8328
- * <p>The source of the trial.</p>
8329
- * @public
8330
- */
8331
- export interface TrialSource {
8332
- /**
8333
- * <p>The Amazon Resource Name (ARN) of the source.</p>
8334
- * @public
8335
- */
8336
- SourceArn: string | undefined;
8337
- /**
8338
- * <p>The source job type.</p>
8339
- * @public
8340
- */
8341
- SourceType?: string | undefined;
8342
- }
8343
- /**
8344
- * @public
8345
- */
8346
- export interface DescribeTrialResponse {
8347
- /**
8348
- * <p>The name of the trial.</p>
8349
- * @public
8350
- */
8351
- TrialName?: string | undefined;
8352
- /**
8353
- * <p>The Amazon Resource Name (ARN) of the trial.</p>
8354
- * @public
8355
- */
8356
- TrialArn?: string | undefined;
8357
- /**
8358
- * <p>The name of the trial as displayed. If <code>DisplayName</code> isn't specified, <code>TrialName</code> is displayed.</p>
8359
- * @public
8360
- */
8361
- DisplayName?: string | undefined;
8362
- /**
8363
- * <p>The name of the experiment the trial is part of.</p>
8364
- * @public
8365
- */
8366
- ExperimentName?: string | undefined;
8367
- /**
8368
- * <p>The Amazon Resource Name (ARN) of the source and, optionally, the job type.</p>
8369
- * @public
8370
- */
8371
- Source?: TrialSource | undefined;
8372
- /**
8373
- * <p>When the trial was created.</p>
8374
- * @public
8375
- */
8376
- CreationTime?: Date | undefined;
8377
- /**
8378
- * <p>Who created the trial.</p>
8379
- * @public
8380
- */
8381
- CreatedBy?: UserContext | undefined;
8382
- /**
8383
- * <p>When the trial was last modified.</p>
8384
- * @public
8385
- */
8386
- LastModifiedTime?: Date | undefined;
8387
- /**
8388
- * <p>Who last modified the trial.</p>
8389
- * @public
8390
- */
8391
- LastModifiedBy?: UserContext | undefined;
8392
- /**
8393
- * <p>Metadata properties of the tracking entity, trial, or trial component.</p>
8394
- * @public
8395
- */
8396
- MetadataProperties?: MetadataProperties | undefined;
8397
- }
8398
- /**
8399
- * @public
8400
- */
8401
- export interface DescribeTrialComponentRequest {
8402
- /**
8403
- * <p>The name of the trial component to describe.</p>
8404
- * @public
8405
- */
8406
- TrialComponentName: string | undefined;
8407
- }
8408
- /**
8409
- * <p>A summary of the metrics of a trial component.</p>
8410
- * @public
8411
- */
8412
- export interface TrialComponentMetricSummary {
8413
- /**
8414
- * <p>The name of the metric.</p>
8415
- * @public
8416
- */
8417
- MetricName?: string | undefined;
8418
- /**
8419
- * <p>The Amazon Resource Name (ARN) of the source.</p>
8420
- * @public
8421
- */
8422
- SourceArn?: string | undefined;
8423
- /**
8424
- * <p>When the metric was last updated.</p>
8425
- * @public
8426
- */
8427
- TimeStamp?: Date | undefined;
8428
- /**
8429
- * <p>The maximum value of the metric.</p>
8430
- * @public
8431
- */
8432
- Max?: number | undefined;
8433
- /**
8434
- * <p>The minimum value of the metric.</p>
8435
- * @public
8436
- */
8437
- Min?: number | undefined;
8438
- /**
8439
- * <p>The most recent value of the metric.</p>
8440
- * @public
8441
- */
8442
- Last?: number | undefined;
8443
- /**
8444
- * <p>The number of samples used to generate the metric.</p>
8445
- * @public
8446
- */
8447
- Count?: number | undefined;
8448
- /**
8449
- * <p>The average value of the metric.</p>
8450
- * @public
8451
- */
8452
- Avg?: number | undefined;
8453
- /**
8454
- * <p>The standard deviation of the metric.</p>
8455
- * @public
8456
- */
8457
- StdDev?: number | undefined;
8458
- }