@aws-sdk/client-sagemaker 3.937.0 → 3.938.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (50) hide show
  1. package/dist-cjs/index.js +227 -45
  2. package/dist-es/models/enums.js +21 -0
  3. package/dist-es/schemas/schemas_0.js +203 -45
  4. package/dist-types/commands/CreateClusterCommand.d.ts +17 -0
  5. package/dist-types/commands/CreateOptimizationJobCommand.d.ts +15 -1
  6. package/dist-types/commands/CreateTrainingJobCommand.d.ts +2 -1
  7. package/dist-types/commands/CreateTrainingPlanCommand.d.ts +1 -1
  8. package/dist-types/commands/CreateTransformJobCommand.d.ts +1 -1
  9. package/dist-types/commands/CreateTrialCommand.d.ts +1 -1
  10. package/dist-types/commands/DescribeClusterCommand.d.ts +30 -0
  11. package/dist-types/commands/DescribeClusterEventCommand.d.ts +1 -0
  12. package/dist-types/commands/DescribeClusterNodeCommand.d.ts +23 -0
  13. package/dist-types/commands/DescribeOptimizationJobCommand.d.ts +15 -1
  14. package/dist-types/commands/DescribeTrainingPlanCommand.d.ts +1 -1
  15. package/dist-types/commands/DescribeTransformJobCommand.d.ts +1 -1
  16. package/dist-types/commands/DescribeTrialCommand.d.ts +1 -1
  17. package/dist-types/commands/DescribeTrialComponentCommand.d.ts +1 -2
  18. package/dist-types/commands/ListOptimizationJobsCommand.d.ts +2 -1
  19. package/dist-types/commands/ListTrainingPlansCommand.d.ts +2 -1
  20. package/dist-types/commands/ListTransformJobsCommand.d.ts +1 -1
  21. package/dist-types/commands/ListTrialComponentsCommand.d.ts +1 -1
  22. package/dist-types/commands/ListTrialsCommand.d.ts +1 -1
  23. package/dist-types/commands/UpdateClusterCommand.d.ts +17 -0
  24. package/dist-types/models/enums.d.ts +61 -0
  25. package/dist-types/models/models_0.d.ts +168 -163
  26. package/dist-types/models/models_1.d.ts +239 -226
  27. package/dist-types/models/models_2.d.ts +231 -436
  28. package/dist-types/models/models_3.d.ts +4027 -3937
  29. package/dist-types/models/models_4.d.ts +352 -4
  30. package/dist-types/schemas/schemas_0.d.ts +13 -0
  31. package/dist-types/ts3.4/commands/CreateTrainingJobCommand.d.ts +2 -4
  32. package/dist-types/ts3.4/commands/CreateTrainingPlanCommand.d.ts +1 -1
  33. package/dist-types/ts3.4/commands/CreateTransformJobCommand.d.ts +1 -1
  34. package/dist-types/ts3.4/commands/CreateTrialCommand.d.ts +1 -1
  35. package/dist-types/ts3.4/commands/DescribeTrainingPlanCommand.d.ts +1 -1
  36. package/dist-types/ts3.4/commands/DescribeTransformJobCommand.d.ts +1 -1
  37. package/dist-types/ts3.4/commands/DescribeTrialCommand.d.ts +1 -1
  38. package/dist-types/ts3.4/commands/DescribeTrialComponentCommand.d.ts +4 -2
  39. package/dist-types/ts3.4/commands/ListTrainingPlansCommand.d.ts +2 -4
  40. package/dist-types/ts3.4/commands/ListTransformJobsCommand.d.ts +1 -1
  41. package/dist-types/ts3.4/commands/ListTrialComponentsCommand.d.ts +1 -1
  42. package/dist-types/ts3.4/commands/ListTrialsCommand.d.ts +1 -1
  43. package/dist-types/ts3.4/models/enums.d.ts +31 -0
  44. package/dist-types/ts3.4/models/models_0.d.ts +42 -40
  45. package/dist-types/ts3.4/models/models_1.d.ts +69 -64
  46. package/dist-types/ts3.4/models/models_2.d.ts +59 -105
  47. package/dist-types/ts3.4/models/models_3.d.ts +109 -85
  48. package/dist-types/ts3.4/models/models_4.d.ts +88 -5
  49. package/dist-types/ts3.4/schemas/schemas_0.d.ts +13 -0
  50. package/package.json +1 -1
@@ -1,6 +1,168 @@
1
1
  import { AutomaticJsonStringConversion as __AutomaticJsonStringConversion } from "@smithy/smithy-client";
2
- import { _InstanceType, AppInstanceType, AppNetworkAccessType, AppSecurityGroupManagement, AppType, AuthMode, AutoMountHomeEFS, AwsManagedHumanLoopRequestSource, BatchStrategy, CapacityReservationPreference, CollectionType, ContentClassifier, DataDistributionType, DeviceSubsetType, DirectInternetAccess, EdgePresetDeploymentType, ExecutionRoleIdentityConfig, FailureHandlingPolicy, FeatureStatus, FeatureType, FlatInvocations, HubContentType, HyperParameterScalingType, HyperParameterTuningAllocationStrategy, HyperParameterTuningJobStrategyType, HyperParameterTuningJobWarmStartType, InferenceExecutionMode, InferenceExperimentType, InputMode, IPAddressType, JobType, JoinSource, ManagedInstanceScalingStatus, MetricPublishFrequencyInSeconds, MlTools, ModelApprovalStatus, ModelCardStatus, ModelInfrastructureType, MonitoringProblemType, MonitoringType, NotebookInstanceAcceleratorType, NotebookOutputOption, OptimizationJobDeploymentInstanceType, PartnerAppAuthType, PartnerAppType, ProcessingInstanceType, ProcessingS3CompressionType, ProcessingS3DataDistributionType, ProcessingS3DataType, ProcessingS3InputMode, ProcessingS3UploadMode, Processor, ProductionVariantAcceleratorType, ProductionVariantInferenceAmiVersion, ProductionVariantInstanceType, RecommendationJobSupportedEndpointType, RecommendationJobType, RedshiftResultCompressionType, RedshiftResultFormat, RootAccess, RoutingStrategy, RStudioServerProAccessStatus, RStudioServerProUserGroup, SageMakerImageName, SharingType, SkipModelValidation, StorageType, StudioLifecycleConfigAppType, StudioWebPortal, TableFormat, TagPropagation, ThroughputMode, TrackingServerSize, TrafficType, TrainingInputMode, TrainingInstanceType, TrainingJobEarlyStoppingType, TtlDurationUnit, VendorGuidance } from "./enums";
3
- import { AdditionalInferenceSpecificationDefinition, AlgorithmSpecification, AmazonQSettings, AnnotationConsolidationConfig, AppLifecycleManagement, AppSpecification, AsyncInferenceConfig, AthenaDatasetDefinition, AuthorizedUrl, AutoParameter, AutoRollbackConfig, Autotune, BatchDataCaptureConfig, BatchTransformInput, BestObjectiveNotImproving, Bias, BlueGreenUpdatePolicy, CanvasAppSettings, CapacitySize, CaptureContentTypeHeader, CaptureOption, CategoricalParameter, CategoricalParameterRange, CfnCreateTemplateProvider, Channel, CheckpointConfig, ClarifyExplainerConfig, CodeEditorAppSettings, CodeRepository, CollectionConfig, CollectionConfiguration, ContainerDefinition, ContinuousParameterRange, ConvergenceDetected, CustomImage, DataQualityAppSpecification, DataQualityBaselineConfig, DataQualityJobInput, EndpointInput, HyperParameterTuningJobObjective, InferenceSpecification, MetadataProperties, MetricDefinition, MetricsSource, ModelDataSource, MonitoringConstraintsResource, MonitoringOutputConfig, MonitoringResources, MonitoringStatisticsResource, OutputDataConfig, ResourceConfig, ResourceSpec, StoppingCondition, Tag, TransformInput, TransformJobDefinition, TransformOutput, TransformResources, VpcConfig } from "./models_0";
2
+ import { _InstanceType, AppInstanceType, AppNetworkAccessType, AppSecurityGroupManagement, AppType, AuthMode, AutoMountHomeEFS, AwsManagedHumanLoopRequestSource, CapacityReservationPreference, CollectionType, ContentClassifier, DataDistributionType, DeviceSubsetType, DirectInternetAccess, EdgePresetDeploymentType, ExecutionRoleIdentityConfig, FailureHandlingPolicy, FeatureStatus, FeatureType, FlatInvocations, HubContentType, HyperParameterScalingType, HyperParameterTuningAllocationStrategy, HyperParameterTuningJobStrategyType, HyperParameterTuningJobWarmStartType, InferenceExecutionMode, InferenceExperimentType, InputMode, IPAddressType, JobType, ManagedInstanceScalingStatus, MetricPublishFrequencyInSeconds, MlTools, ModelApprovalStatus, ModelCardStatus, ModelInfrastructureType, ModelSpeculativeDecodingS3DataType, ModelSpeculativeDecodingTechnique, MonitoringProblemType, MonitoringType, NotebookInstanceAcceleratorType, NotebookOutputOption, OptimizationJobDeploymentInstanceType, PartnerAppAuthType, PartnerAppType, ProcessingInstanceType, ProcessingS3CompressionType, ProcessingS3DataDistributionType, ProcessingS3DataType, ProcessingS3InputMode, ProcessingS3UploadMode, Processor, ProductionVariantAcceleratorType, ProductionVariantInferenceAmiVersion, ProductionVariantInstanceType, RecommendationJobSupportedEndpointType, RecommendationJobType, RedshiftResultCompressionType, RedshiftResultFormat, RootAccess, RoutingStrategy, RStudioServerProAccessStatus, RStudioServerProUserGroup, SageMakerImageName, SharingType, SkipModelValidation, StorageType, StudioLifecycleConfigAppType, StudioWebPortal, TableFormat, TagPropagation, ThroughputMode, TrackingServerSize, TrafficType, TrainingInputMode, TrainingInstanceType, TrainingJobEarlyStoppingType, TtlDurationUnit, VendorGuidance } from "./enums";
3
+ import { AdditionalInferenceSpecificationDefinition, AlgorithmSpecification, AmazonQSettings, AnnotationConsolidationConfig, AppLifecycleManagement, AppSpecification, AsyncInferenceConfig, AthenaDatasetDefinition, AuthorizedUrl, AutoParameter, AutoRollbackConfig, Autotune, BatchTransformInput, BestObjectiveNotImproving, Bias, BlueGreenUpdatePolicy, CanvasAppSettings, CapacitySize, CaptureContentTypeHeader, CaptureOption, CategoricalParameter, CategoricalParameterRange, CfnCreateTemplateProvider, Channel, CheckpointConfig, ClarifyExplainerConfig, CodeEditorAppSettings, CodeRepository, CollectionConfig, CollectionConfiguration, ContainerDefinition, ContinuousParameterRange, ConvergenceDetected, CustomImage, DataQualityAppSpecification, DataQualityBaselineConfig, HyperParameterTuningJobObjective, InferenceSpecification, MetadataProperties, MetricDefinition, MetricsSource, ModelDataSource, MonitoringConstraintsResource, MonitoringStatisticsResource, OutputDataConfig, ResourceConfig, ResourceSpec, StoppingCondition, Tag, TransformJobDefinition, VpcConfig } from "./models_0";
4
+ /**
5
+ * <p>Input object for the endpoint</p>
6
+ * @public
7
+ */
8
+ export interface EndpointInput {
9
+ /**
10
+ * <p>An endpoint in customer's account which has enabled <code>DataCaptureConfig</code> enabled.</p>
11
+ * @public
12
+ */
13
+ EndpointName: string | undefined;
14
+ /**
15
+ * <p>Path to the filesystem where the endpoint data is available to the container.</p>
16
+ * @public
17
+ */
18
+ LocalPath: string | undefined;
19
+ /**
20
+ * <p>Whether the <code>Pipe</code> or <code>File</code> is used as the input mode for transferring data for the monitoring job. <code>Pipe</code> mode is recommended for large datasets. <code>File</code> mode is useful for small files that fit in memory. Defaults to <code>File</code>.</p>
21
+ * @public
22
+ */
23
+ S3InputMode?: ProcessingS3InputMode | undefined;
24
+ /**
25
+ * <p>Whether input data distributed in Amazon S3 is fully replicated or sharded by an Amazon S3 key. Defaults to <code>FullyReplicated</code> </p>
26
+ * @public
27
+ */
28
+ S3DataDistributionType?: ProcessingS3DataDistributionType | undefined;
29
+ /**
30
+ * <p>The attributes of the input data that are the input features.</p>
31
+ * @public
32
+ */
33
+ FeaturesAttribute?: string | undefined;
34
+ /**
35
+ * <p>The attribute of the input data that represents the ground truth label.</p>
36
+ * @public
37
+ */
38
+ InferenceAttribute?: string | undefined;
39
+ /**
40
+ * <p>In a classification problem, the attribute that represents the class probability.</p>
41
+ * @public
42
+ */
43
+ ProbabilityAttribute?: string | undefined;
44
+ /**
45
+ * <p>The threshold for the class probability to be evaluated as a positive result.</p>
46
+ * @public
47
+ */
48
+ ProbabilityThresholdAttribute?: number | undefined;
49
+ /**
50
+ * <p>If specified, monitoring jobs substract this time from the start time. For information about using offsets for scheduling monitoring jobs, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-model-quality-schedule.html">Schedule Model Quality Monitoring Jobs</a>.</p>
51
+ * @public
52
+ */
53
+ StartTimeOffset?: string | undefined;
54
+ /**
55
+ * <p>If specified, monitoring jobs substract this time from the end time. For information about using offsets for scheduling monitoring jobs, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-model-quality-schedule.html">Schedule Model Quality Monitoring Jobs</a>.</p>
56
+ * @public
57
+ */
58
+ EndTimeOffset?: string | undefined;
59
+ /**
60
+ * <p>The attributes of the input data to exclude from the analysis.</p>
61
+ * @public
62
+ */
63
+ ExcludeFeaturesAttribute?: string | undefined;
64
+ }
65
+ /**
66
+ * <p>The input for the data quality monitoring job. Currently endpoints are supported for input.</p>
67
+ * @public
68
+ */
69
+ export interface DataQualityJobInput {
70
+ /**
71
+ * <p>Input object for the endpoint</p>
72
+ * @public
73
+ */
74
+ EndpointInput?: EndpointInput | undefined;
75
+ /**
76
+ * <p>Input object for the batch transform job.</p>
77
+ * @public
78
+ */
79
+ BatchTransformInput?: BatchTransformInput | undefined;
80
+ }
81
+ /**
82
+ * <p>Information about where and how you want to store the results of a monitoring job.</p>
83
+ * @public
84
+ */
85
+ export interface MonitoringS3Output {
86
+ /**
87
+ * <p>A URI that identifies the Amazon S3 storage location where Amazon SageMaker AI saves the results of a monitoring job.</p>
88
+ * @public
89
+ */
90
+ S3Uri: string | undefined;
91
+ /**
92
+ * <p>The local path to the Amazon S3 storage location where Amazon SageMaker AI saves the results of a monitoring job. LocalPath is an absolute path for the output data.</p>
93
+ * @public
94
+ */
95
+ LocalPath: string | undefined;
96
+ /**
97
+ * <p>Whether to upload the results of the monitoring job continuously or after the job completes.</p>
98
+ * @public
99
+ */
100
+ S3UploadMode?: ProcessingS3UploadMode | undefined;
101
+ }
102
+ /**
103
+ * <p>The output object for a monitoring job.</p>
104
+ * @public
105
+ */
106
+ export interface MonitoringOutput {
107
+ /**
108
+ * <p>The Amazon S3 storage location where the results of a monitoring job are saved.</p>
109
+ * @public
110
+ */
111
+ S3Output: MonitoringS3Output | undefined;
112
+ }
113
+ /**
114
+ * <p>The output configuration for monitoring jobs.</p>
115
+ * @public
116
+ */
117
+ export interface MonitoringOutputConfig {
118
+ /**
119
+ * <p>Monitoring outputs for monitoring jobs. This is where the output of the periodic monitoring jobs is uploaded.</p>
120
+ * @public
121
+ */
122
+ MonitoringOutputs: MonitoringOutput[] | undefined;
123
+ /**
124
+ * <p>The Key Management Service (KMS) key that Amazon SageMaker AI uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.</p>
125
+ * @public
126
+ */
127
+ KmsKeyId?: string | undefined;
128
+ }
129
+ /**
130
+ * <p>Configuration for the cluster used to run model monitoring jobs.</p>
131
+ * @public
132
+ */
133
+ export interface MonitoringClusterConfig {
134
+ /**
135
+ * <p>The number of ML compute instances to use in the model monitoring job. For distributed processing jobs, specify a value greater than 1. The default value is 1.</p>
136
+ * @public
137
+ */
138
+ InstanceCount: number | undefined;
139
+ /**
140
+ * <p>The ML compute instance type for the processing job.</p>
141
+ * @public
142
+ */
143
+ InstanceType: ProcessingInstanceType | undefined;
144
+ /**
145
+ * <p>The size of the ML storage volume, in gigabytes, that you want to provision. You must specify sufficient ML storage for your scenario.</p>
146
+ * @public
147
+ */
148
+ VolumeSizeInGB: number | undefined;
149
+ /**
150
+ * <p>The Key Management Service (KMS) key that Amazon SageMaker AI uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.</p>
151
+ * @public
152
+ */
153
+ VolumeKmsKeyId?: string | undefined;
154
+ }
155
+ /**
156
+ * <p>Identifies the resources to deploy for a monitoring job.</p>
157
+ * @public
158
+ */
159
+ export interface MonitoringResources {
160
+ /**
161
+ * <p>The configuration for the cluster resources used to run the processing job.</p>
162
+ * @public
163
+ */
164
+ ClusterConfig: MonitoringClusterConfig | undefined;
165
+ }
4
166
  /**
5
167
  * <p>The networking configuration for the monitoring job.</p>
6
168
  * @public
@@ -5180,6 +5342,17 @@ export interface OptimizationJobModelSourceS3 {
5180
5342
  */
5181
5343
  ModelAccessConfig?: OptimizationModelAccessConfig | undefined;
5182
5344
  }
5345
+ /**
5346
+ * <p>A SageMaker model to use as the source or destination for an optimization job.</p>
5347
+ * @public
5348
+ */
5349
+ export interface OptimizationSageMakerModel {
5350
+ /**
5351
+ * <p>The name of a SageMaker model.</p>
5352
+ * @public
5353
+ */
5354
+ ModelName?: string | undefined;
5355
+ }
5183
5356
  /**
5184
5357
  * <p>The location of the source model to optimize with an optimization job.</p>
5185
5358
  * @public
@@ -5190,6 +5363,11 @@ export interface OptimizationJobModelSource {
5190
5363
  * @public
5191
5364
  */
5192
5365
  S3?: OptimizationJobModelSourceS3 | undefined;
5366
+ /**
5367
+ * <p>The name of an existing SageMaker model to optimize with an optimization job.</p>
5368
+ * @public
5369
+ */
5370
+ SageMakerModel?: OptimizationSageMakerModel | undefined;
5193
5371
  }
5194
5372
  /**
5195
5373
  * <p>Settings for the model compilation technique that's applied by a model optimization job.</p>
@@ -5239,11 +5417,43 @@ export interface ModelShardingConfig {
5239
5417
  */
5240
5418
  OverrideEnvironment?: Record<string, string> | undefined;
5241
5419
  }
5420
+ /**
5421
+ * <p>Contains information about the training data source for speculative decoding.</p>
5422
+ * @public
5423
+ */
5424
+ export interface ModelSpeculativeDecodingTrainingDataSource {
5425
+ /**
5426
+ * <p>The Amazon S3 URI that points to the training data for speculative decoding.</p>
5427
+ * @public
5428
+ */
5429
+ S3Uri: string | undefined;
5430
+ /**
5431
+ * <p>The type of data stored in the Amazon S3 location. Valid values are <code>S3Prefix</code> or <code>ManifestFile</code>.</p>
5432
+ * @public
5433
+ */
5434
+ S3DataType: ModelSpeculativeDecodingS3DataType | undefined;
5435
+ }
5436
+ /**
5437
+ * <p>Settings for the model speculative decoding technique that's applied by a model optimization job.</p>
5438
+ * @public
5439
+ */
5440
+ export interface ModelSpeculativeDecodingConfig {
5441
+ /**
5442
+ * <p>The speculative decoding technique to apply during model optimization.</p>
5443
+ * @public
5444
+ */
5445
+ Technique: ModelSpeculativeDecodingTechnique | undefined;
5446
+ /**
5447
+ * <p>The location of the training data to use for speculative decoding. The data must be formatted as ShareGPT, OpenAI Completions or OpenAI Chat Completions. The input can also be unencrypted captured data from a SageMaker endpoint as long as the endpoint uses one of the above formats.</p>
5448
+ * @public
5449
+ */
5450
+ TrainingDataSource?: ModelSpeculativeDecodingTrainingDataSource | undefined;
5451
+ }
5242
5452
  /**
5243
5453
  * <p>Settings for an optimization technique that you apply with a model optimization job.</p>
5244
5454
  * @public
5245
5455
  */
5246
- export type OptimizationConfig = OptimizationConfig.ModelCompilationConfigMember | OptimizationConfig.ModelQuantizationConfigMember | OptimizationConfig.ModelShardingConfigMember | OptimizationConfig.$UnknownMember;
5456
+ export type OptimizationConfig = OptimizationConfig.ModelCompilationConfigMember | OptimizationConfig.ModelQuantizationConfigMember | OptimizationConfig.ModelShardingConfigMember | OptimizationConfig.ModelSpeculativeDecodingConfigMember | OptimizationConfig.$UnknownMember;
5247
5457
  /**
5248
5458
  * @public
5249
5459
  */
@@ -5256,6 +5466,7 @@ export declare namespace OptimizationConfig {
5256
5466
  ModelQuantizationConfig: ModelQuantizationConfig;
5257
5467
  ModelCompilationConfig?: never;
5258
5468
  ModelShardingConfig?: never;
5469
+ ModelSpeculativeDecodingConfig?: never;
5259
5470
  $unknown?: never;
5260
5471
  }
5261
5472
  /**
@@ -5266,6 +5477,7 @@ export declare namespace OptimizationConfig {
5266
5477
  ModelQuantizationConfig?: never;
5267
5478
  ModelCompilationConfig: ModelCompilationConfig;
5268
5479
  ModelShardingConfig?: never;
5480
+ ModelSpeculativeDecodingConfig?: never;
5269
5481
  $unknown?: never;
5270
5482
  }
5271
5483
  /**
@@ -5276,6 +5488,18 @@ export declare namespace OptimizationConfig {
5276
5488
  ModelQuantizationConfig?: never;
5277
5489
  ModelCompilationConfig?: never;
5278
5490
  ModelShardingConfig: ModelShardingConfig;
5491
+ ModelSpeculativeDecodingConfig?: never;
5492
+ $unknown?: never;
5493
+ }
5494
+ /**
5495
+ * <p>Settings for the model speculative decoding technique that's applied by a model optimization job.</p>
5496
+ * @public
5497
+ */
5498
+ interface ModelSpeculativeDecodingConfigMember {
5499
+ ModelQuantizationConfig?: never;
5500
+ ModelCompilationConfig?: never;
5501
+ ModelShardingConfig?: never;
5502
+ ModelSpeculativeDecodingConfig: ModelSpeculativeDecodingConfig;
5279
5503
  $unknown?: never;
5280
5504
  }
5281
5505
  /**
@@ -5285,6 +5509,7 @@ export declare namespace OptimizationConfig {
5285
5509
  ModelQuantizationConfig?: never;
5286
5510
  ModelCompilationConfig?: never;
5287
5511
  ModelShardingConfig?: never;
5512
+ ModelSpeculativeDecodingConfig?: never;
5288
5513
  $unknown: [string, any];
5289
5514
  }
5290
5515
  /**
@@ -5295,6 +5520,7 @@ export declare namespace OptimizationConfig {
5295
5520
  ModelQuantizationConfig: (value: ModelQuantizationConfig) => T;
5296
5521
  ModelCompilationConfig: (value: ModelCompilationConfig) => T;
5297
5522
  ModelShardingConfig: (value: ModelShardingConfig) => T;
5523
+ ModelSpeculativeDecodingConfig: (value: ModelSpeculativeDecodingConfig) => T;
5298
5524
  _: (name: string, value: any) => T;
5299
5525
  }
5300
5526
  }
@@ -5313,6 +5539,11 @@ export interface OptimizationJobOutputConfig {
5313
5539
  * @public
5314
5540
  */
5315
5541
  S3OutputLocation: string | undefined;
5542
+ /**
5543
+ * <p>The name of a SageMaker model to use as the output destination for an optimization job.</p>
5544
+ * @public
5545
+ */
5546
+ SageMakerModel?: OptimizationSageMakerModel | undefined;
5316
5547
  }
5317
5548
  /**
5318
5549
  * <p>A VPC in Amazon VPC that's accessible to an optimized that you create with an optimization job. You can control access to and from your resources by configuring a VPC. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html">Give SageMaker Access to Resources in your Amazon VPC</a>. </p>
@@ -5354,6 +5585,11 @@ export interface CreateOptimizationJobRequest {
5354
5585
  * @public
5355
5586
  */
5356
5587
  DeploymentInstanceType: OptimizationJobDeploymentInstanceType | undefined;
5588
+ /**
5589
+ * <p>The maximum number of instances to use for the optimization job.</p>
5590
+ * @public
5591
+ */
5592
+ MaxInstanceCount?: number | undefined;
5357
5593
  /**
5358
5594
  * <p>The environment variables to set in the model container.</p>
5359
5595
  * @public
@@ -6849,226 +7085,3 @@ export interface CreateTrainingJobRequest {
6849
7085
  */
6850
7086
  SessionChainingConfig?: SessionChainingConfig | undefined;
6851
7087
  }
6852
- /**
6853
- * @public
6854
- */
6855
- export interface CreateTrainingJobResponse {
6856
- /**
6857
- * <p>The Amazon Resource Name (ARN) of the training job.</p>
6858
- * @public
6859
- */
6860
- TrainingJobArn: string | undefined;
6861
- }
6862
- /**
6863
- * @public
6864
- */
6865
- export interface CreateTrainingPlanRequest {
6866
- /**
6867
- * <p>The name of the training plan to create.</p>
6868
- * @public
6869
- */
6870
- TrainingPlanName: string | undefined;
6871
- /**
6872
- * <p>The unique identifier of the training plan offering to use for creating this plan.</p>
6873
- * @public
6874
- */
6875
- TrainingPlanOfferingId: string | undefined;
6876
- /**
6877
- * <p>Number of spare instances to reserve per UltraServer for enhanced resiliency. Default is 1.</p>
6878
- * @public
6879
- */
6880
- SpareInstanceCountPerUltraServer?: number | undefined;
6881
- /**
6882
- * <p>An array of key-value pairs to apply to this training plan.</p>
6883
- * @public
6884
- */
6885
- Tags?: Tag[] | undefined;
6886
- }
6887
- /**
6888
- * @public
6889
- */
6890
- export interface CreateTrainingPlanResponse {
6891
- /**
6892
- * <p>The Amazon Resource Name (ARN); of the created training plan.</p>
6893
- * @public
6894
- */
6895
- TrainingPlanArn: string | undefined;
6896
- }
6897
- /**
6898
- * <p>The data structure used to specify the data to be used for inference in a batch transform job and to associate the data that is relevant to the prediction results in the output. The input filter provided allows you to exclude input data that is not needed for inference in a batch transform job. The output filter provided allows you to include input data relevant to interpreting the predictions in the output from the job. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html">Associate Prediction Results with their Corresponding Input Records</a>.</p>
6899
- * @public
6900
- */
6901
- export interface DataProcessing {
6902
- /**
6903
- * <p>A <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html#data-processing-operators">JSONPath</a> expression used to select a portion of the input data to pass to the algorithm. Use the <code>InputFilter</code> parameter to exclude fields, such as an ID column, from the input. If you want SageMaker to pass the entire input dataset to the algorithm, accept the default value <code>$</code>.</p> <p>Examples: <code>"$"</code>, <code>"$[1:]"</code>, <code>"$.features"</code> </p>
6904
- * @public
6905
- */
6906
- InputFilter?: string | undefined;
6907
- /**
6908
- * <p>A <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html#data-processing-operators">JSONPath</a> expression used to select a portion of the joined dataset to save in the output file for a batch transform job. If you want SageMaker to store the entire input dataset in the output file, leave the default value, <code>$</code>. If you specify indexes that aren't within the dimension size of the joined dataset, you get an error.</p> <p>Examples: <code>"$"</code>, <code>"$[0,5:]"</code>, <code>"$['id','SageMakerOutput']"</code> </p>
6909
- * @public
6910
- */
6911
- OutputFilter?: string | undefined;
6912
- /**
6913
- * <p>Specifies the source of the data to join with the transformed data. The valid values are <code>None</code> and <code>Input</code>. The default value is <code>None</code>, which specifies not to join the input with the transformed data. If you want the batch transform job to join the original input data with the transformed data, set <code>JoinSource</code> to <code>Input</code>. You can specify <code>OutputFilter</code> as an additional filter to select a portion of the joined dataset and store it in the output file.</p> <p>For JSON or JSONLines objects, such as a JSON array, SageMaker adds the transformed data to the input JSON object in an attribute called <code>SageMakerOutput</code>. The joined result for JSON must be a key-value pair object. If the input is not a key-value pair object, SageMaker creates a new JSON file. In the new JSON file, and the input data is stored under the <code>SageMakerInput</code> key and the results are stored in <code>SageMakerOutput</code>.</p> <p>For CSV data, SageMaker takes each row as a JSON array and joins the transformed data with the input by appending each transformed row to the end of the input. The joined data has the original input data followed by the transformed data and the output is a CSV file.</p> <p>For information on how joining in applied, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html#batch-transform-data-processing-workflow">Workflow for Associating Inferences with Input Records</a>.</p>
6914
- * @public
6915
- */
6916
- JoinSource?: JoinSource | undefined;
6917
- }
6918
- /**
6919
- * <p>Configures the timeout and maximum number of retries for processing a transform job invocation.</p>
6920
- * @public
6921
- */
6922
- export interface ModelClientConfig {
6923
- /**
6924
- * <p>The timeout value in seconds for an invocation request. The default value is 600.</p>
6925
- * @public
6926
- */
6927
- InvocationsTimeoutInSeconds?: number | undefined;
6928
- /**
6929
- * <p>The maximum number of retries when invocation requests are failing. The default value is 3.</p>
6930
- * @public
6931
- */
6932
- InvocationsMaxRetries?: number | undefined;
6933
- }
6934
- /**
6935
- * @public
6936
- */
6937
- export interface CreateTransformJobRequest {
6938
- /**
6939
- * <p>The name of the transform job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account. </p>
6940
- * @public
6941
- */
6942
- TransformJobName: string | undefined;
6943
- /**
6944
- * <p>The name of the model that you want to use for the transform job. <code>ModelName</code> must be the name of an existing Amazon SageMaker model within an Amazon Web Services Region in an Amazon Web Services account.</p>
6945
- * @public
6946
- */
6947
- ModelName: string | undefined;
6948
- /**
6949
- * <p>The maximum number of parallel requests that can be sent to each instance in a transform job. If <code>MaxConcurrentTransforms</code> is set to <code>0</code> or left unset, Amazon SageMaker checks the optional execution-parameters to determine the settings for your chosen algorithm. If the execution-parameters endpoint is not enabled, the default value is <code>1</code>. For more information on execution-parameters, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-batch-code.html#your-algorithms-batch-code-how-containe-serves-requests">How Containers Serve Requests</a>. For built-in algorithms, you don't need to set a value for <code>MaxConcurrentTransforms</code>.</p>
6950
- * @public
6951
- */
6952
- MaxConcurrentTransforms?: number | undefined;
6953
- /**
6954
- * <p>Configures the timeout and maximum number of retries for processing a transform job invocation.</p>
6955
- * @public
6956
- */
6957
- ModelClientConfig?: ModelClientConfig | undefined;
6958
- /**
6959
- * <p>The maximum allowed size of the payload, in MB. A <i>payload</i> is the data portion of a record (without metadata). The value in <code>MaxPayloadInMB</code> must be greater than, or equal to, the size of a single record. To estimate the size of a record in MB, divide the size of your dataset by the number of records. To ensure that the records fit within the maximum payload size, we recommend using a slightly larger value. The default value is <code>6</code> MB. </p> <p>The value of <code>MaxPayloadInMB</code> cannot be greater than 100 MB. If you specify the <code>MaxConcurrentTransforms</code> parameter, the value of <code>(MaxConcurrentTransforms * MaxPayloadInMB)</code> also cannot exceed 100 MB.</p> <p>For cases where the payload might be arbitrarily large and is transmitted using HTTP chunked encoding, set the value to <code>0</code>. This feature works only in supported algorithms. Currently, Amazon SageMaker built-in algorithms do not support HTTP chunked encoding.</p>
6960
- * @public
6961
- */
6962
- MaxPayloadInMB?: number | undefined;
6963
- /**
6964
- * <p>Specifies the number of records to include in a mini-batch for an HTTP inference request. A <i>record</i> <i/> is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record. </p> <p>To enable the batch strategy, you must set the <code>SplitType</code> property to <code>Line</code>, <code>RecordIO</code>, or <code>TFRecord</code>.</p> <p>To use only one record when making an HTTP invocation request to a container, set <code>BatchStrategy</code> to <code>SingleRecord</code> and <code>SplitType</code> to <code>Line</code>.</p> <p>To fit as many records in a mini-batch as can fit within the <code>MaxPayloadInMB</code> limit, set <code>BatchStrategy</code> to <code>MultiRecord</code> and <code>SplitType</code> to <code>Line</code>.</p>
6965
- * @public
6966
- */
6967
- BatchStrategy?: BatchStrategy | undefined;
6968
- /**
6969
- * <p>The environment variables to set in the Docker container. Don't include any sensitive data in your environment variables. We support up to 16 key and values entries in the map.</p>
6970
- * @public
6971
- */
6972
- Environment?: Record<string, string> | undefined;
6973
- /**
6974
- * <p>Describes the input source and the way the transform job consumes it.</p>
6975
- * @public
6976
- */
6977
- TransformInput: TransformInput | undefined;
6978
- /**
6979
- * <p>Describes the results of the transform job.</p>
6980
- * @public
6981
- */
6982
- TransformOutput: TransformOutput | undefined;
6983
- /**
6984
- * <p>Configuration to control how SageMaker captures inference data.</p>
6985
- * @public
6986
- */
6987
- DataCaptureConfig?: BatchDataCaptureConfig | undefined;
6988
- /**
6989
- * <p>Describes the resources, including ML instance types and ML instance count, to use for the transform job.</p>
6990
- * @public
6991
- */
6992
- TransformResources: TransformResources | undefined;
6993
- /**
6994
- * <p>The data structure used to specify the data to be used for inference in a batch transform job and to associate the data that is relevant to the prediction results in the output. The input filter provided allows you to exclude input data that is not needed for inference in a batch transform job. The output filter provided allows you to include input data relevant to interpreting the predictions in the output from the job. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html">Associate Prediction Results with their Corresponding Input Records</a>.</p>
6995
- * @public
6996
- */
6997
- DataProcessing?: DataProcessing | undefined;
6998
- /**
6999
- * <p>(Optional) An array of key-value pairs. For more information, see <a href="https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what">Using Cost Allocation Tags</a> in the <i>Amazon Web Services Billing and Cost Management User Guide</i>.</p>
7000
- * @public
7001
- */
7002
- Tags?: Tag[] | undefined;
7003
- /**
7004
- * <p>Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:</p> <ul> <li> <p> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html">CreateProcessingJob</a> </p> </li> <li> <p> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html">CreateTrainingJob</a> </p> </li> <li> <p> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html">CreateTransformJob</a> </p> </li> </ul>
7005
- * @public
7006
- */
7007
- ExperimentConfig?: ExperimentConfig | undefined;
7008
- }
7009
- /**
7010
- * @public
7011
- */
7012
- export interface CreateTransformJobResponse {
7013
- /**
7014
- * <p>The Amazon Resource Name (ARN) of the transform job.</p>
7015
- * @public
7016
- */
7017
- TransformJobArn: string | undefined;
7018
- }
7019
- /**
7020
- * @public
7021
- */
7022
- export interface CreateTrialRequest {
7023
- /**
7024
- * <p>The name of the trial. The name must be unique in your Amazon Web Services account and is not case-sensitive.</p>
7025
- * @public
7026
- */
7027
- TrialName: string | undefined;
7028
- /**
7029
- * <p>The name of the trial as displayed. The name doesn't need to be unique. If <code>DisplayName</code> isn't specified, <code>TrialName</code> is displayed.</p>
7030
- * @public
7031
- */
7032
- DisplayName?: string | undefined;
7033
- /**
7034
- * <p>The name of the experiment to associate the trial with.</p>
7035
- * @public
7036
- */
7037
- ExperimentName: string | undefined;
7038
- /**
7039
- * <p>Metadata properties of the tracking entity, trial, or trial component.</p>
7040
- * @public
7041
- */
7042
- MetadataProperties?: MetadataProperties | undefined;
7043
- /**
7044
- * <p>A list of tags to associate with the trial. You can use <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html">Search</a> API to search on the tags.</p>
7045
- * @public
7046
- */
7047
- Tags?: Tag[] | undefined;
7048
- }
7049
- /**
7050
- * @public
7051
- */
7052
- export interface CreateTrialResponse {
7053
- /**
7054
- * <p>The Amazon Resource Name (ARN) of the trial.</p>
7055
- * @public
7056
- */
7057
- TrialArn?: string | undefined;
7058
- }
7059
- /**
7060
- * <p>Represents an input or output artifact of a trial component. You specify <code>TrialComponentArtifact</code> as part of the <code>InputArtifacts</code> and <code>OutputArtifacts</code> parameters in the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrialComponent.html">CreateTrialComponent</a> request.</p> <p>Examples of input artifacts are datasets, algorithms, hyperparameters, source code, and instance types. Examples of output artifacts are metrics, snapshots, logs, and images.</p>
7061
- * @public
7062
- */
7063
- export interface TrialComponentArtifact {
7064
- /**
7065
- * <p>The media type of the artifact, which indicates the type of data in the artifact file. The media type consists of a <i>type</i> and a <i>subtype</i> concatenated with a slash (/) character, for example, text/csv, image/jpeg, and s3/uri. The type specifies the category of the media. The subtype specifies the kind of data.</p>
7066
- * @public
7067
- */
7068
- MediaType?: string | undefined;
7069
- /**
7070
- * <p>The location of the artifact.</p>
7071
- * @public
7072
- */
7073
- Value: string | undefined;
7074
- }