@aws-sdk/client-sagemaker 3.876.0 → 3.879.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (36) hide show
  1. package/dist-cjs/index.js +44 -15
  2. package/dist-es/models/models_0.js +13 -14
  3. package/dist-es/models/models_1.js +14 -4
  4. package/dist-es/models/models_2.js +4 -0
  5. package/dist-es/models/models_3.js +0 -5
  6. package/dist-es/models/models_4.js +5 -4
  7. package/dist-es/models/models_5.js +4 -0
  8. package/dist-es/protocols/Aws_json1_1.js +10 -0
  9. package/dist-types/commands/CreateClusterCommand.d.ts +5 -0
  10. package/dist-types/commands/CreateModelCommand.d.ts +1 -1
  11. package/dist-types/commands/DescribeClusterCommand.d.ts +7 -0
  12. package/dist-types/commands/DescribeCodeRepositoryCommand.d.ts +1 -1
  13. package/dist-types/commands/DescribeCompilationJobCommand.d.ts +1 -2
  14. package/dist-types/commands/GetSearchSuggestionsCommand.d.ts +2 -1
  15. package/dist-types/commands/ListUserProfilesCommand.d.ts +1 -1
  16. package/dist-types/commands/ListWorkforcesCommand.d.ts +1 -2
  17. package/dist-types/commands/UpdateClusterCommand.d.ts +5 -0
  18. package/dist-types/models/models_0.d.ts +79 -186
  19. package/dist-types/models/models_1.d.ts +197 -100
  20. package/dist-types/models/models_2.d.ts +111 -74
  21. package/dist-types/models/models_3.d.ts +75 -119
  22. package/dist-types/models/models_4.d.ts +119 -126
  23. package/dist-types/models/models_5.d.ts +138 -5
  24. package/dist-types/ts3.4/commands/CreateModelCommand.d.ts +1 -1
  25. package/dist-types/ts3.4/commands/DescribeCodeRepositoryCommand.d.ts +1 -1
  26. package/dist-types/ts3.4/commands/DescribeCompilationJobCommand.d.ts +4 -2
  27. package/dist-types/ts3.4/commands/GetSearchSuggestionsCommand.d.ts +2 -4
  28. package/dist-types/ts3.4/commands/ListUserProfilesCommand.d.ts +1 -1
  29. package/dist-types/ts3.4/commands/ListWorkforcesCommand.d.ts +4 -2
  30. package/dist-types/ts3.4/models/models_0.d.ts +29 -52
  31. package/dist-types/ts3.4/models/models_1.d.ts +60 -29
  32. package/dist-types/ts3.4/models/models_2.d.ts +33 -23
  33. package/dist-types/ts3.4/models/models_3.d.ts +23 -36
  34. package/dist-types/ts3.4/models/models_4.d.ts +33 -36
  35. package/dist-types/ts3.4/models/models_5.d.ts +41 -4
  36. package/package.json +12 -12
@@ -1,6 +1,192 @@
1
1
  import { AutomaticJsonStringConversion as __AutomaticJsonStringConversion, ExceptionOptionType as __ExceptionOptionType } from "@smithy/smithy-client";
2
- import { ActionSource, ActionStatus, ActivationState, AdditionalModelDataSource, AdditionalS3DataSource, AlgorithmValidationSpecification, AmazonQSettings, AnnotationConsolidationConfig, AppInstanceType, AppLifecycleManagement, AppNetworkAccessType, AppSecurityGroupManagement, AppType, ArtifactSource, AsyncInferenceConfig, AuthMode, AuthorizedUrl, AutoMLChannel, AutoMLComputeConfig, AutoMLDataSplitConfig, AutoMLJobChannel, AutoMLJobConfig, AutoMLJobObjective, AutoMLOutputDataConfig, AutoMLProblemTypeConfig, AutoMLSecurityConfig, AutoMountHomeEFS, AutoParameter, AutoRollbackConfig, Autotune, AwsManagedHumanLoopRequestSource, BatchTransformInput, BestObjectiveNotImproving, BlueGreenUpdatePolicy, CanvasAppSettings, CapacityReservationPreference, CapacitySize, CaptureContentTypeHeader, CaptureOption, CategoricalParameter, CategoricalParameterRange, CategoricalParameterRangeSpecification, Channel, ChannelSpecification, CheckpointConfig, ClarifyExplainerConfig, ClusterInstanceGroupSpecification, ClusterInstanceType, ClusterNodeProvisioningMode, ClusterNodeRecovery, ClusterOrchestrator, ClusterRestrictedInstanceGroupSpecification, CodeEditorAppImageConfig, FeatureStatus, InferenceSpecification, JupyterLabAppImageConfig, KernelGatewayImageConfig, MetricDefinition, ModelDataSource, OutputDataConfig, ProblemType, ProcessingS3DataDistributionType, ProcessingS3InputMode, ProductionVariantInstanceType, ResourceConfig, ResourceSpec, SchedulerResourceStatus, StoppingCondition, Tag, TrainingInputMode, TrainingInstanceType, VpcConfig } from "./models_0";
2
+ import { ActionSource, ActionStatus, ActivationState, AdditionalModelDataSource, AdditionalS3DataSource, AlgorithmValidationSpecification, AmazonQSettings, AnnotationConsolidationConfig, AppInstanceType, AppLifecycleManagement, AppNetworkAccessType, AppSecurityGroupManagement, AppType, ArtifactSource, AsyncInferenceConfig, AuthMode, AuthorizedUrl, AutoMLChannel, AutoMLComputeConfig, AutoMLDataSplitConfig, AutoMLJobChannel, AutoMLJobConfig, AutoMLJobObjective, AutoMLOutputDataConfig, AutoMLProblemTypeConfig, AutoMLSecurityConfig, AutoMountHomeEFS, AutoParameter, AutoRollbackConfig, Autotune, AwsManagedHumanLoopRequestSource, BatchTransformInput, BestObjectiveNotImproving, BlueGreenUpdatePolicy, CanvasAppSettings, CapacityReservationPreference, CapacitySize, CaptureContentTypeHeader, CaptureOption, CategoricalParameter, CategoricalParameterRange, CategoricalParameterRangeSpecification, Channel, ChannelSpecification, CheckpointConfig, ClarifyExplainerConfig, ClusterAutoScalingConfig, ClusterInstanceGroupSpecification, ClusterInstanceStorageConfig, ClusterInstanceType, ClusterNodeProvisioningMode, ClusterNodeRecovery, ClusterOrchestrator, CodeEditorAppImageConfig, DeepHealthCheckType, FeatureStatus, FSxLustreConfig, InferenceSpecification, InstanceGroupStatus, JupyterLabAppImageConfig, KernelGatewayImageConfig, MetricDefinition, ModelDataSource, OutputDataConfig, ProblemType, ProcessingS3DataDistributionType, ProcessingS3InputMode, ProductionVariantInstanceType, ResourceConfig, ResourceSpec, ScheduledUpdateConfig, StoppingCondition, Tag, TrainingInputMode, TrainingInstanceType, VpcConfig } from "./models_0";
3
3
  import { SageMakerServiceException as __BaseException } from "./SageMakerServiceException";
4
+ /**
5
+ * <p>The configuration details for the restricted instance groups (RIG) environment.</p>
6
+ * @public
7
+ */
8
+ export interface EnvironmentConfigDetails {
9
+ /**
10
+ * <p>Configuration settings for an Amazon FSx for Lustre file system to be used with the cluster.</p>
11
+ * @public
12
+ */
13
+ FSxLustreConfig?: FSxLustreConfig | undefined;
14
+ /**
15
+ * <p>The Amazon S3 path where output data from the restricted instance group (RIG) environment will be stored.</p>
16
+ * @public
17
+ */
18
+ S3OutputPath?: string | undefined;
19
+ }
20
+ /**
21
+ * <p>The instance group details of the restricted instance group (RIG).</p>
22
+ * @public
23
+ */
24
+ export interface ClusterRestrictedInstanceGroupDetails {
25
+ /**
26
+ * <p>The number of instances that are currently in the restricted instance group of a SageMaker HyperPod cluster.</p>
27
+ * @public
28
+ */
29
+ CurrentCount?: number | undefined;
30
+ /**
31
+ * <p>The number of instances you specified to add to the restricted instance group of a SageMaker HyperPod cluster.</p>
32
+ * @public
33
+ */
34
+ TargetCount?: number | undefined;
35
+ /**
36
+ * <p>The name of the restricted instance group of a SageMaker HyperPod cluster.</p>
37
+ * @public
38
+ */
39
+ InstanceGroupName?: string | undefined;
40
+ /**
41
+ * <p>The instance type of the restricted instance group of a SageMaker HyperPod cluster.</p>
42
+ * @public
43
+ */
44
+ InstanceType?: ClusterInstanceType | undefined;
45
+ /**
46
+ * <p>The execution role for the restricted instance group to assume.</p>
47
+ * @public
48
+ */
49
+ ExecutionRole?: string | undefined;
50
+ /**
51
+ * <p>The number you specified to <code>TreadsPerCore</code> in <code>CreateCluster</code> for enabling or disabling multithreading. For instance types that support multithreading, you can specify 1 for disabling multithreading and 2 for enabling multithreading. For more information, see the reference table of <a href="https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/cpu-options-supported-instances-values.html">CPU cores and threads per CPU core per instance type</a> in the <i>Amazon Elastic Compute Cloud User Guide</i>.</p>
52
+ * @public
53
+ */
54
+ ThreadsPerCore?: number | undefined;
55
+ /**
56
+ * <p>The additional storage configurations for the instances in the SageMaker HyperPod cluster restricted instance group.</p>
57
+ * @public
58
+ */
59
+ InstanceStorageConfigs?: ClusterInstanceStorageConfig[] | undefined;
60
+ /**
61
+ * <p>A flag indicating whether deep health checks should be performed when the cluster's restricted instance group is created or updated.</p>
62
+ * @public
63
+ */
64
+ OnStartDeepHealthChecks?: DeepHealthCheckType[] | undefined;
65
+ /**
66
+ * <p>The current status of the cluster's restricted instance group.</p> <ul> <li> <p> <code>InService</code>: The restricted instance group is active and healthy.</p> </li> <li> <p> <code>Creating</code>: The restricted instance group is being provisioned.</p> </li> <li> <p> <code>Updating</code>: The restricted instance group is being updated.</p> </li> <li> <p> <code>Failed</code>: The restricted instance group has failed to provision or is no longer healthy.</p> </li> <li> <p> <code>Degraded</code>: The restricted instance group is degraded, meaning that some instances have failed to provision or are no longer healthy.</p> </li> <li> <p> <code>Deleting</code>: The restricted instance group is being deleted.</p> </li> </ul>
67
+ * @public
68
+ */
69
+ Status?: InstanceGroupStatus | undefined;
70
+ /**
71
+ * <p>The Amazon Resource Name (ARN) of the training plan to filter clusters by. For more information about reserving GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see <code> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingPlan.html">CreateTrainingPlan</a> </code>.</p>
72
+ * @public
73
+ */
74
+ TrainingPlanArn?: string | undefined;
75
+ /**
76
+ * <p>The current status of the training plan associated with this cluster restricted instance group.</p>
77
+ * @public
78
+ */
79
+ TrainingPlanStatus?: string | undefined;
80
+ /**
81
+ * <p>Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs, hosted models, and compute resources have access to. You can control access to and from your resources by configuring a VPC. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html">Give SageMaker Access to Resources in your Amazon VPC</a>. </p>
82
+ * @public
83
+ */
84
+ OverrideVpcConfig?: VpcConfig | undefined;
85
+ /**
86
+ * <p>The configuration object of the schedule that SageMaker follows when updating the AMI.</p>
87
+ * @public
88
+ */
89
+ ScheduledUpdateConfig?: ScheduledUpdateConfig | undefined;
90
+ /**
91
+ * <p>The configuration for the restricted instance groups (RIG) environment.</p>
92
+ * @public
93
+ */
94
+ EnvironmentConfig?: EnvironmentConfigDetails | undefined;
95
+ }
96
+ /**
97
+ * <p>The configuration for the restricted instance groups (RIG) environment.</p>
98
+ * @public
99
+ */
100
+ export interface EnvironmentConfig {
101
+ /**
102
+ * <p>Configuration settings for an Amazon FSx for Lustre file system to be used with the cluster.</p>
103
+ * @public
104
+ */
105
+ FSxLustreConfig?: FSxLustreConfig | undefined;
106
+ }
107
+ /**
108
+ * <p>The specifications of a restricted instance group that you need to define.</p>
109
+ * @public
110
+ */
111
+ export interface ClusterRestrictedInstanceGroupSpecification {
112
+ /**
113
+ * <p>Specifies the number of instances to add to the restricted instance group of a SageMaker HyperPod cluster.</p>
114
+ * @public
115
+ */
116
+ InstanceCount: number | undefined;
117
+ /**
118
+ * <p>Specifies the name of the restricted instance group.</p>
119
+ * @public
120
+ */
121
+ InstanceGroupName: string | undefined;
122
+ /**
123
+ * <p>Specifies the instance type of the restricted instance group.</p>
124
+ * @public
125
+ */
126
+ InstanceType: ClusterInstanceType | undefined;
127
+ /**
128
+ * <p>Specifies an IAM execution role to be assumed by the restricted instance group.</p>
129
+ * @public
130
+ */
131
+ ExecutionRole: string | undefined;
132
+ /**
133
+ * <p>The number you specified to <code>TreadsPerCore</code> in <code>CreateCluster</code> for enabling or disabling multithreading. For instance types that support multithreading, you can specify 1 for disabling multithreading and 2 for enabling multithreading. For more information, see the reference table of <a href="https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/cpu-options-supported-instances-values.html">CPU cores and threads per CPU core per instance type</a> in the <i>Amazon Elastic Compute Cloud User Guide</i>.</p>
134
+ * @public
135
+ */
136
+ ThreadsPerCore?: number | undefined;
137
+ /**
138
+ * <p>Specifies the additional storage configurations for the instances in the SageMaker HyperPod cluster restricted instance group.</p>
139
+ * @public
140
+ */
141
+ InstanceStorageConfigs?: ClusterInstanceStorageConfig[] | undefined;
142
+ /**
143
+ * <p>A flag indicating whether deep health checks should be performed when the cluster restricted instance group is created or updated.</p>
144
+ * @public
145
+ */
146
+ OnStartDeepHealthChecks?: DeepHealthCheckType[] | undefined;
147
+ /**
148
+ * <p>The Amazon Resource Name (ARN) of the training plan to filter clusters by. For more information about reserving GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see <code> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingPlan.html">CreateTrainingPlan</a> </code>.</p>
149
+ * @public
150
+ */
151
+ TrainingPlanArn?: string | undefined;
152
+ /**
153
+ * <p>Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs, hosted models, and compute resources have access to. You can control access to and from your resources by configuring a VPC. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html">Give SageMaker Access to Resources in your Amazon VPC</a>. </p>
154
+ * @public
155
+ */
156
+ OverrideVpcConfig?: VpcConfig | undefined;
157
+ /**
158
+ * <p>The configuration object of the schedule that SageMaker follows when updating the AMI.</p>
159
+ * @public
160
+ */
161
+ ScheduledUpdateConfig?: ScheduledUpdateConfig | undefined;
162
+ /**
163
+ * <p>The configuration for the restricted instance groups (RIG) environment.</p>
164
+ * @public
165
+ */
166
+ EnvironmentConfig: EnvironmentConfig | undefined;
167
+ }
168
+ /**
169
+ * @public
170
+ * @enum
171
+ */
172
+ export declare const SchedulerResourceStatus: {
173
+ readonly CREATED: "Created";
174
+ readonly CREATE_FAILED: "CreateFailed";
175
+ readonly CREATE_ROLLBACK_FAILED: "CreateRollbackFailed";
176
+ readonly CREATING: "Creating";
177
+ readonly DELETED: "Deleted";
178
+ readonly DELETE_FAILED: "DeleteFailed";
179
+ readonly DELETE_ROLLBACK_FAILED: "DeleteRollbackFailed";
180
+ readonly DELETING: "Deleting";
181
+ readonly UPDATED: "Updated";
182
+ readonly UPDATE_FAILED: "UpdateFailed";
183
+ readonly UPDATE_ROLLBACK_FAILED: "UpdateRollbackFailed";
184
+ readonly UPDATING: "Updating";
185
+ };
186
+ /**
187
+ * @public
188
+ */
189
+ export type SchedulerResourceStatus = (typeof SchedulerResourceStatus)[keyof typeof SchedulerResourceStatus];
4
190
  /**
5
191
  * <p>Summary of the cluster policy.</p>
6
192
  * @public
@@ -1658,6 +1844,16 @@ export interface CreateClusterRequest {
1658
1844
  * @public
1659
1845
  */
1660
1846
  NodeProvisioningMode?: ClusterNodeProvisioningMode | undefined;
1847
+ /**
1848
+ * <p>The Amazon Resource Name (ARN) of the IAM role that HyperPod assumes to perform cluster autoscaling operations. This role must have permissions for <code>sagemaker:BatchAddClusterNodes</code> and <code>sagemaker:BatchDeleteClusterNodes</code>. This is only required when autoscaling is enabled and when HyperPod is performing autoscaling operations.</p>
1849
+ * @public
1850
+ */
1851
+ ClusterRole?: string | undefined;
1852
+ /**
1853
+ * <p>The autoscaling configuration for the cluster. Enables automatic scaling of cluster nodes based on workload demand using a Karpenter-based system.</p>
1854
+ * @public
1855
+ */
1856
+ AutoScaling?: ClusterAutoScalingConfig | undefined;
1661
1857
  }
1662
1858
  /**
1663
1859
  * @public
@@ -6788,102 +6984,3 @@ export interface CreateMlflowTrackingServerResponse {
6788
6984
  */
6789
6985
  TrackingServerArn?: string | undefined;
6790
6986
  }
6791
- /**
6792
- * @public
6793
- * @enum
6794
- */
6795
- export declare const InferenceExecutionMode: {
6796
- readonly DIRECT: "Direct";
6797
- readonly SERIAL: "Serial";
6798
- };
6799
- /**
6800
- * @public
6801
- */
6802
- export type InferenceExecutionMode = (typeof InferenceExecutionMode)[keyof typeof InferenceExecutionMode];
6803
- /**
6804
- * <p>Specifies details about how containers in a multi-container endpoint are run.</p>
6805
- * @public
6806
- */
6807
- export interface InferenceExecutionConfig {
6808
- /**
6809
- * <p>How containers in a multi-container are run. The following values are valid.</p> <ul> <li> <p> <code>SERIAL</code> - Containers run as a serial pipeline.</p> </li> <li> <p> <code>DIRECT</code> - Only the individual container that you specify is run.</p> </li> </ul>
6810
- * @public
6811
- */
6812
- Mode: InferenceExecutionMode | undefined;
6813
- }
6814
- /**
6815
- * @public
6816
- */
6817
- export interface CreateModelInput {
6818
- /**
6819
- * <p>The name of the new model.</p>
6820
- * @public
6821
- */
6822
- ModelName: string | undefined;
6823
- /**
6824
- * <p>The location of the primary docker image containing inference code, associated artifacts, and custom environment map that the inference code uses when the model is deployed for predictions. </p>
6825
- * @public
6826
- */
6827
- PrimaryContainer?: ContainerDefinition | undefined;
6828
- /**
6829
- * <p>Specifies the containers in the inference pipeline.</p>
6830
- * @public
6831
- */
6832
- Containers?: ContainerDefinition[] | undefined;
6833
- /**
6834
- * <p>Specifies details of how containers in a multi-container endpoint are called.</p>
6835
- * @public
6836
- */
6837
- InferenceExecutionConfig?: InferenceExecutionConfig | undefined;
6838
- /**
6839
- * <p>The Amazon Resource Name (ARN) of the IAM role that SageMaker can assume to access model artifacts and docker image for deployment on ML compute instances or for batch transform jobs. Deploying on ML compute instances is part of model hosting. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html">SageMaker Roles</a>. </p> <note> <p>To be able to pass this role to SageMaker, the caller of this API must have the <code>iam:PassRole</code> permission.</p> </note>
6840
- * @public
6841
- */
6842
- ExecutionRoleArn?: string | undefined;
6843
- /**
6844
- * <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web Services Resources</a>.</p>
6845
- * @public
6846
- */
6847
- Tags?: Tag[] | undefined;
6848
- /**
6849
- * <p>A <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html">VpcConfig</a> object that specifies the VPC that you want your model to connect to. Control access to and from your model container by configuring the VPC. <code>VpcConfig</code> is used in hosting services and in batch transform. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/host-vpc.html">Protect Endpoints by Using an Amazon Virtual Private Cloud</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/batch-vpc.html">Protect Data in Batch Transform Jobs by Using an Amazon Virtual Private Cloud</a>.</p>
6850
- * @public
6851
- */
6852
- VpcConfig?: VpcConfig | undefined;
6853
- /**
6854
- * <p>Isolates the model container. No inbound or outbound network calls can be made to or from the model container.</p>
6855
- * @public
6856
- */
6857
- EnableNetworkIsolation?: boolean | undefined;
6858
- }
6859
- /**
6860
- * @public
6861
- */
6862
- export interface CreateModelOutput {
6863
- /**
6864
- * <p>The ARN of the model created in SageMaker.</p>
6865
- * @public
6866
- */
6867
- ModelArn: string | undefined;
6868
- }
6869
- /**
6870
- * <p>Docker container image configuration object for the model bias job.</p>
6871
- * @public
6872
- */
6873
- export interface ModelBiasAppSpecification {
6874
- /**
6875
- * <p>The container image to be run by the model bias job.</p>
6876
- * @public
6877
- */
6878
- ImageUri: string | undefined;
6879
- /**
6880
- * <p>JSON formatted S3 file that defines bias parameters. For more information on this JSON configuration file, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-config-json-monitor-bias-parameters.html">Configure bias parameters</a>.</p>
6881
- * @public
6882
- */
6883
- ConfigUri: string | undefined;
6884
- /**
6885
- * <p>Sets the environment variables in the Docker container.</p>
6886
- * @public
6887
- */
6888
- Environment?: Record<string, string> | undefined;
6889
- }
@@ -1,5 +1,104 @@
1
- import { ActionSource, ActionStatus, AdditionalInferenceSpecificationDefinition, AlgorithmSpecification, AlgorithmStatus, AlgorithmStatusDetails, AlgorithmValidationSpecification, AppSpecification, AppStatus, AppType, ArtifactSource, AthenaDatasetDefinition, AutoMLCandidate, AutoMLChannel, AutoMLComputeConfig, AutoMLDataSplitConfig, AutoMLJobArtifacts, AutoMLJobChannel, AutoMLJobCompletionCriteria, AutoMLJobConfig, AutoMLJobObjective, AutoMLJobSecondaryStatus, AutoMLJobStatus, AutoMLOutputDataConfig, AutoMLPartialFailureReason, AutoMLProblemTypeConfig, AutoMLProblemTypeConfigName, AutoMLResolvedAttributes, AutoMLSecurityConfig, BatchDataCaptureConfig, BatchStrategy, BatchTransformInput, Bias, CaptureStatus, CfnCreateTemplateProvider, Channel, CheckpointConfig, ClusterEventDetail, ClusterInstanceGroupDetails, ClusterNodeDetails, ClusterNodeProvisioningMode, ClusterNodeRecovery, ClusterOrchestrator, ClusterRestrictedInstanceGroupDetails, CodeEditorAppImageConfig, FeatureStatus, InferenceSpecification, JupyterLabAppImageConfig, KernelGatewayImageConfig, MetricsSource, ModelApprovalStatus, ModelDataSource, OutputDataConfig, ProblemType, ProcessingS3DataDistributionType, ProcessingS3InputMode, ProductionVariantInstanceType, ResourceConfig, ResourceSpec, SchedulerResourceStatus, StoppingCondition, Tag, TransformInput, TransformJobDefinition, TransformOutput, TransformResources, UserContext, VpcConfig } from "./models_0";
2
- import { _InstanceType, ClusterStatus, CodeRepository, CognitoConfig, CognitoMemberDefinition, CollectionConfiguration, DeviceSelectionConfig, EdgeDeploymentConfig, EndpointInput, GitConfig, HubContentType, JupyterServerAppSettings, KernelGatewayAppSettings, MetadataProperties, ModelBiasAppSpecification, ModelDeployConfig, MonitoringConstraintsResource, MonitoringNetworkConfig, MonitoringOutputConfig, MonitoringResources, MonitoringStatisticsResource, MonitoringStoppingCondition, ProcessingInstanceType, ProcessingS3UploadMode, RetryStrategy, SchedulerConfig, TrainingSpecification, UserSettings } from "./models_1";
1
+ import { ActionSource, ActionStatus, AdditionalInferenceSpecificationDefinition, AlgorithmSpecification, AlgorithmStatus, AlgorithmStatusDetails, AlgorithmValidationSpecification, AppSpecification, AppStatus, AppType, ArtifactSource, AthenaDatasetDefinition, AutoMLCandidate, AutoMLChannel, AutoMLComputeConfig, AutoMLDataSplitConfig, AutoMLJobArtifacts, AutoMLJobChannel, AutoMLJobCompletionCriteria, AutoMLJobConfig, AutoMLJobObjective, AutoMLJobSecondaryStatus, AutoMLJobStatus, AutoMLOutputDataConfig, AutoMLPartialFailureReason, AutoMLProblemTypeConfig, AutoMLProblemTypeConfigName, AutoMLResolvedAttributes, AutoMLSecurityConfig, BatchDataCaptureConfig, BatchStrategy, BatchTransformInput, Bias, CaptureStatus, CfnCreateTemplateProvider, Channel, CheckpointConfig, ClusterAutoScalingConfigOutput, ClusterEventDetail, ClusterInstanceGroupDetails, ClusterNodeDetails, ClusterNodeProvisioningMode, ClusterNodeRecovery, ClusterOrchestrator, CodeEditorAppImageConfig, FeatureStatus, InferenceSpecification, JupyterLabAppImageConfig, KernelGatewayImageConfig, MetricsSource, ModelApprovalStatus, ModelDataSource, OutputDataConfig, ProblemType, ProcessingS3DataDistributionType, ProcessingS3InputMode, ProductionVariantInstanceType, ResourceConfig, ResourceSpec, StoppingCondition, Tag, TransformInput, TransformJobDefinition, TransformOutput, TransformResources, UserContext, VpcConfig } from "./models_0";
2
+ import { _InstanceType, ClusterRestrictedInstanceGroupDetails, ClusterStatus, CodeRepository, CognitoConfig, CognitoMemberDefinition, CollectionConfiguration, ContainerDefinition, DeviceSelectionConfig, EdgeDeploymentConfig, EndpointInput, HubContentType, JupyterServerAppSettings, KernelGatewayAppSettings, MetadataProperties, ModelDeployConfig, MonitoringConstraintsResource, MonitoringNetworkConfig, MonitoringOutputConfig, MonitoringResources, MonitoringStatisticsResource, MonitoringStoppingCondition, ProcessingInstanceType, ProcessingS3UploadMode, RetryStrategy, SchedulerConfig, SchedulerResourceStatus, TrainingSpecification, UserSettings } from "./models_1";
3
+ /**
4
+ * @public
5
+ * @enum
6
+ */
7
+ export declare const InferenceExecutionMode: {
8
+ readonly DIRECT: "Direct";
9
+ readonly SERIAL: "Serial";
10
+ };
11
+ /**
12
+ * @public
13
+ */
14
+ export type InferenceExecutionMode = (typeof InferenceExecutionMode)[keyof typeof InferenceExecutionMode];
15
+ /**
16
+ * <p>Specifies details about how containers in a multi-container endpoint are run.</p>
17
+ * @public
18
+ */
19
+ export interface InferenceExecutionConfig {
20
+ /**
21
+ * <p>How containers in a multi-container are run. The following values are valid.</p> <ul> <li> <p> <code>SERIAL</code> - Containers run as a serial pipeline.</p> </li> <li> <p> <code>DIRECT</code> - Only the individual container that you specify is run.</p> </li> </ul>
22
+ * @public
23
+ */
24
+ Mode: InferenceExecutionMode | undefined;
25
+ }
26
+ /**
27
+ * @public
28
+ */
29
+ export interface CreateModelInput {
30
+ /**
31
+ * <p>The name of the new model.</p>
32
+ * @public
33
+ */
34
+ ModelName: string | undefined;
35
+ /**
36
+ * <p>The location of the primary docker image containing inference code, associated artifacts, and custom environment map that the inference code uses when the model is deployed for predictions. </p>
37
+ * @public
38
+ */
39
+ PrimaryContainer?: ContainerDefinition | undefined;
40
+ /**
41
+ * <p>Specifies the containers in the inference pipeline.</p>
42
+ * @public
43
+ */
44
+ Containers?: ContainerDefinition[] | undefined;
45
+ /**
46
+ * <p>Specifies details of how containers in a multi-container endpoint are called.</p>
47
+ * @public
48
+ */
49
+ InferenceExecutionConfig?: InferenceExecutionConfig | undefined;
50
+ /**
51
+ * <p>The Amazon Resource Name (ARN) of the IAM role that SageMaker can assume to access model artifacts and docker image for deployment on ML compute instances or for batch transform jobs. Deploying on ML compute instances is part of model hosting. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html">SageMaker Roles</a>. </p> <note> <p>To be able to pass this role to SageMaker, the caller of this API must have the <code>iam:PassRole</code> permission.</p> </note>
52
+ * @public
53
+ */
54
+ ExecutionRoleArn?: string | undefined;
55
+ /**
56
+ * <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web Services Resources</a>.</p>
57
+ * @public
58
+ */
59
+ Tags?: Tag[] | undefined;
60
+ /**
61
+ * <p>A <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html">VpcConfig</a> object that specifies the VPC that you want your model to connect to. Control access to and from your model container by configuring the VPC. <code>VpcConfig</code> is used in hosting services and in batch transform. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/host-vpc.html">Protect Endpoints by Using an Amazon Virtual Private Cloud</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/batch-vpc.html">Protect Data in Batch Transform Jobs by Using an Amazon Virtual Private Cloud</a>.</p>
62
+ * @public
63
+ */
64
+ VpcConfig?: VpcConfig | undefined;
65
+ /**
66
+ * <p>Isolates the model container. No inbound or outbound network calls can be made to or from the model container.</p>
67
+ * @public
68
+ */
69
+ EnableNetworkIsolation?: boolean | undefined;
70
+ }
71
+ /**
72
+ * @public
73
+ */
74
+ export interface CreateModelOutput {
75
+ /**
76
+ * <p>The ARN of the model created in SageMaker.</p>
77
+ * @public
78
+ */
79
+ ModelArn: string | undefined;
80
+ }
81
+ /**
82
+ * <p>Docker container image configuration object for the model bias job.</p>
83
+ * @public
84
+ */
85
+ export interface ModelBiasAppSpecification {
86
+ /**
87
+ * <p>The container image to be run by the model bias job.</p>
88
+ * @public
89
+ */
90
+ ImageUri: string | undefined;
91
+ /**
92
+ * <p>JSON formatted S3 file that defines bias parameters. For more information on this JSON configuration file, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-config-json-monitor-bias-parameters.html">Configure bias parameters</a>.</p>
93
+ * @public
94
+ */
95
+ ConfigUri: string | undefined;
96
+ /**
97
+ * <p>Sets the environment variables in the Docker container.</p>
98
+ * @public
99
+ */
100
+ Environment?: Record<string, string> | undefined;
101
+ }
3
102
  /**
4
103
  * <p>The configuration for a baseline model bias job.</p>
5
104
  * @public
@@ -5803,6 +5902,16 @@ export interface DescribeClusterResponse {
5803
5902
  * @public
5804
5903
  */
5805
5904
  NodeProvisioningMode?: ClusterNodeProvisioningMode | undefined;
5905
+ /**
5906
+ * <p>The Amazon Resource Name (ARN) of the IAM role that HyperPod uses for cluster autoscaling operations.</p>
5907
+ * @public
5908
+ */
5909
+ ClusterRole?: string | undefined;
5910
+ /**
5911
+ * <p>The current autoscaling configuration and status for the autoscaler.</p>
5912
+ * @public
5913
+ */
5914
+ AutoScaling?: ClusterAutoScalingConfigOutput | undefined;
5806
5915
  }
5807
5916
  /**
5808
5917
  * @public
@@ -5944,78 +6053,6 @@ export interface DescribeClusterSchedulerConfigResponse {
5944
6053
  */
5945
6054
  LastModifiedBy?: UserContext | undefined;
5946
6055
  }
5947
- /**
5948
- * @public
5949
- */
5950
- export interface DescribeCodeRepositoryInput {
5951
- /**
5952
- * <p>The name of the Git repository to describe.</p>
5953
- * @public
5954
- */
5955
- CodeRepositoryName: string | undefined;
5956
- }
5957
- /**
5958
- * @public
5959
- */
5960
- export interface DescribeCodeRepositoryOutput {
5961
- /**
5962
- * <p>The name of the Git repository.</p>
5963
- * @public
5964
- */
5965
- CodeRepositoryName: string | undefined;
5966
- /**
5967
- * <p>The Amazon Resource Name (ARN) of the Git repository.</p>
5968
- * @public
5969
- */
5970
- CodeRepositoryArn: string | undefined;
5971
- /**
5972
- * <p>The date and time that the repository was created.</p>
5973
- * @public
5974
- */
5975
- CreationTime: Date | undefined;
5976
- /**
5977
- * <p>The date and time that the repository was last changed.</p>
5978
- * @public
5979
- */
5980
- LastModifiedTime: Date | undefined;
5981
- /**
5982
- * <p>Configuration details about the repository, including the URL where the repository is located, the default branch, and the Amazon Resource Name (ARN) of the Amazon Web Services Secrets Manager secret that contains the credentials used to access the repository.</p>
5983
- * @public
5984
- */
5985
- GitConfig?: GitConfig | undefined;
5986
- }
5987
- /**
5988
- * @public
5989
- */
5990
- export interface DescribeCompilationJobRequest {
5991
- /**
5992
- * <p>The name of the model compilation job that you want information about.</p>
5993
- * @public
5994
- */
5995
- CompilationJobName: string | undefined;
5996
- }
5997
- /**
5998
- * <p>Provides information about the location that is configured for storing model artifacts. </p> <p>Model artifacts are outputs that result from training a model. They typically consist of trained parameters, a model definition that describes how to compute inferences, and other metadata. A SageMaker container stores your trained model artifacts in the <code>/opt/ml/model</code> directory. After training has completed, by default, these artifacts are uploaded to your Amazon S3 bucket as compressed files.</p>
5999
- * @public
6000
- */
6001
- export interface ModelArtifacts {
6002
- /**
6003
- * <p>The path of the S3 object that contains the model artifacts. For example, <code>s3://bucket-name/keynameprefix/model.tar.gz</code>.</p>
6004
- * @public
6005
- */
6006
- S3ModelArtifacts: string | undefined;
6007
- }
6008
- /**
6009
- * <p>Provides information to verify the integrity of stored model artifacts. </p>
6010
- * @public
6011
- */
6012
- export interface ModelDigests {
6013
- /**
6014
- * <p>Provides a hash value that uniquely identifies the stored model artifacts.</p>
6015
- * @public
6016
- */
6017
- ArtifactDigest?: string | undefined;
6018
- }
6019
6056
  /**
6020
6057
  * @internal
6021
6058
  */