@aws-sdk/client-sagemaker 3.805.0 → 3.808.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (231) hide show
  1. package/README.md +1 -16
  2. package/dist-cjs/index.js +26 -26
  3. package/dist-cjs/runtimeConfig.js +6 -6
  4. package/dist-es/runtimeConfig.js +6 -6
  5. package/dist-es/waiters/waitForEndpointDeleted.js +2 -2
  6. package/dist-es/waiters/waitForEndpointInService.js +2 -2
  7. package/dist-es/waiters/waitForImageCreated.js +2 -2
  8. package/dist-es/waiters/waitForImageDeleted.js +2 -2
  9. package/dist-es/waiters/waitForImageUpdated.js +2 -2
  10. package/dist-es/waiters/waitForImageVersionCreated.js +2 -2
  11. package/dist-es/waiters/waitForImageVersionDeleted.js +2 -2
  12. package/dist-es/waiters/waitForNotebookInstanceDeleted.js +2 -2
  13. package/dist-es/waiters/waitForNotebookInstanceInService.js +2 -2
  14. package/dist-es/waiters/waitForNotebookInstanceStopped.js +2 -2
  15. package/dist-es/waiters/waitForProcessingJobCompletedOrStopped.js +2 -2
  16. package/dist-es/waiters/waitForTrainingJobCompletedOrStopped.js +2 -2
  17. package/dist-es/waiters/waitForTransformJobCompletedOrStopped.js +2 -2
  18. package/dist-types/SageMaker.d.ts +1 -16
  19. package/dist-types/SageMakerClient.d.ts +1 -16
  20. package/dist-types/commands/AddAssociationCommand.d.ts +2 -7
  21. package/dist-types/commands/AddTagsCommand.d.ts +1 -26
  22. package/dist-types/commands/AssociateTrialComponentCommand.d.ts +2 -4
  23. package/dist-types/commands/BatchDeleteClusterNodesCommand.d.ts +1 -17
  24. package/dist-types/commands/CreateActionCommand.d.ts +2 -7
  25. package/dist-types/commands/CreateAppCommand.d.ts +2 -6
  26. package/dist-types/commands/CreateAppImageConfigCommand.d.ts +1 -3
  27. package/dist-types/commands/CreateArtifactCommand.d.ts +2 -7
  28. package/dist-types/commands/CreateAutoMLJobCommand.d.ts +2 -26
  29. package/dist-types/commands/CreateAutoMLJobV2Command.d.ts +2 -33
  30. package/dist-types/commands/CreateClusterCommand.d.ts +2 -6
  31. package/dist-types/commands/CreateClusterSchedulerConfigCommand.d.ts +3 -7
  32. package/dist-types/commands/CreateCodeRepositoryCommand.d.ts +1 -7
  33. package/dist-types/commands/CreateCompilationJobCommand.d.ts +2 -33
  34. package/dist-types/commands/CreateComputeQuotaCommand.d.ts +3 -7
  35. package/dist-types/commands/CreateContextCommand.d.ts +2 -7
  36. package/dist-types/commands/CreateDataQualityJobDefinitionCommand.d.ts +2 -5
  37. package/dist-types/commands/CreateDeviceFleetCommand.d.ts +1 -2
  38. package/dist-types/commands/CreateDomainCommand.d.ts +2 -46
  39. package/dist-types/commands/CreateEdgeDeploymentPlanCommand.d.ts +2 -4
  40. package/dist-types/commands/CreateEdgeDeploymentStageCommand.d.ts +1 -2
  41. package/dist-types/commands/CreateEdgePackagingJobCommand.d.ts +1 -2
  42. package/dist-types/commands/CreateEndpointCommand.d.ts +2 -77
  43. package/dist-types/commands/CreateEndpointConfigCommand.d.ts +2 -33
  44. package/dist-types/commands/CreateExperimentCommand.d.ts +2 -22
  45. package/dist-types/commands/CreateFeatureGroupCommand.d.ts +2 -20
  46. package/dist-types/commands/CreateFlowDefinitionCommand.d.ts +1 -2
  47. package/dist-types/commands/CreateHubCommand.d.ts +1 -2
  48. package/dist-types/commands/CreateHubContentReferenceCommand.d.ts +1 -2
  49. package/dist-types/commands/CreateHumanTaskUiCommand.d.ts +1 -2
  50. package/dist-types/commands/CreateHyperParameterTuningJobCommand.d.ts +2 -18
  51. package/dist-types/commands/CreateImageCommand.d.ts +2 -5
  52. package/dist-types/commands/CreateImageVersionCommand.d.ts +2 -4
  53. package/dist-types/commands/CreateInferenceComponentCommand.d.ts +2 -10
  54. package/dist-types/commands/CreateInferenceExperimentCommand.d.ts +2 -17
  55. package/dist-types/commands/CreateInferenceRecommendationsJobCommand.d.ts +2 -4
  56. package/dist-types/commands/CreateLabelingJobCommand.d.ts +2 -40
  57. package/dist-types/commands/CreateMlflowTrackingServerCommand.d.ts +2 -5
  58. package/dist-types/commands/CreateModelBiasJobDefinitionCommand.d.ts +1 -2
  59. package/dist-types/commands/CreateModelCardCommand.d.ts +3 -6
  60. package/dist-types/commands/CreateModelCardExportJobCommand.d.ts +2 -4
  61. package/dist-types/commands/CreateModelCommand.d.ts +2 -19
  62. package/dist-types/commands/CreateModelExplainabilityJobDefinitionCommand.d.ts +1 -2
  63. package/dist-types/commands/CreateModelPackageCommand.d.ts +3 -24
  64. package/dist-types/commands/CreateModelPackageGroupCommand.d.ts +1 -2
  65. package/dist-types/commands/CreateModelQualityJobDefinitionCommand.d.ts +2 -5
  66. package/dist-types/commands/CreateMonitoringScheduleCommand.d.ts +2 -4
  67. package/dist-types/commands/CreateNotebookInstanceCommand.d.ts +2 -38
  68. package/dist-types/commands/CreateNotebookInstanceLifecycleConfigCommand.d.ts +2 -16
  69. package/dist-types/commands/CreateOptimizationJobCommand.d.ts +2 -8
  70. package/dist-types/commands/CreatePartnerAppCommand.d.ts +2 -4
  71. package/dist-types/commands/CreatePipelineCommand.d.ts +2 -4
  72. package/dist-types/commands/CreatePresignedDomainUrlCommand.d.ts +1 -26
  73. package/dist-types/commands/CreatePresignedMlflowTrackingServerUrlCommand.d.ts +1 -2
  74. package/dist-types/commands/CreatePresignedNotebookInstanceUrlCommand.d.ts +1 -18
  75. package/dist-types/commands/CreateProcessingJobCommand.d.ts +1 -2
  76. package/dist-types/commands/CreateProjectCommand.d.ts +2 -4
  77. package/dist-types/commands/CreateSpaceCommand.d.ts +1 -2
  78. package/dist-types/commands/CreateTrainingJobCommand.d.ts +2 -88
  79. package/dist-types/commands/CreateTrainingPlanCommand.d.ts +2 -63
  80. package/dist-types/commands/CreateTransformJobCommand.d.ts +2 -37
  81. package/dist-types/commands/CreateTrialCommand.d.ts +2 -13
  82. package/dist-types/commands/CreateTrialComponentCommand.d.ts +2 -12
  83. package/dist-types/commands/CreateUserProfileCommand.d.ts +2 -9
  84. package/dist-types/commands/CreateWorkforceCommand.d.ts +1 -18
  85. package/dist-types/commands/CreateWorkteamCommand.d.ts +2 -6
  86. package/dist-types/commands/DeleteAlgorithmCommand.d.ts +1 -2
  87. package/dist-types/commands/DeleteArtifactCommand.d.ts +1 -2
  88. package/dist-types/commands/DeleteClusterCommand.d.ts +1 -2
  89. package/dist-types/commands/DeleteCompilationJobCommand.d.ts +1 -8
  90. package/dist-types/commands/DeleteDomainCommand.d.ts +1 -4
  91. package/dist-types/commands/DeleteEdgeDeploymentPlanCommand.d.ts +1 -2
  92. package/dist-types/commands/DeleteEdgeDeploymentStageCommand.d.ts +1 -2
  93. package/dist-types/commands/DeleteEndpointCommand.d.ts +1 -11
  94. package/dist-types/commands/DeleteEndpointConfigCommand.d.ts +1 -9
  95. package/dist-types/commands/DeleteExperimentCommand.d.ts +1 -3
  96. package/dist-types/commands/DeleteFeatureGroupCommand.d.ts +1 -8
  97. package/dist-types/commands/DeleteHumanTaskUiCommand.d.ts +1 -5
  98. package/dist-types/commands/DeleteHyperParameterTuningJobCommand.d.ts +1 -4
  99. package/dist-types/commands/DeleteImageCommand.d.ts +1 -2
  100. package/dist-types/commands/DeleteImageVersionCommand.d.ts +1 -2
  101. package/dist-types/commands/DeleteInferenceExperimentCommand.d.ts +2 -9
  102. package/dist-types/commands/DeleteModelCardCommand.d.ts +1 -2
  103. package/dist-types/commands/DeleteModelCommand.d.ts +1 -4
  104. package/dist-types/commands/DeleteModelPackageCommand.d.ts +2 -6
  105. package/dist-types/commands/DeleteModelPackageGroupCommand.d.ts +1 -2
  106. package/dist-types/commands/DeleteMonitoringScheduleCommand.d.ts +1 -2
  107. package/dist-types/commands/DeleteNotebookInstanceCommand.d.ts +1 -6
  108. package/dist-types/commands/DeletePartnerAppCommand.d.ts +1 -2
  109. package/dist-types/commands/DeletePipelineCommand.d.ts +2 -6
  110. package/dist-types/commands/DeleteProjectCommand.d.ts +1 -2
  111. package/dist-types/commands/DeleteStudioLifecycleConfigCommand.d.ts +1 -4
  112. package/dist-types/commands/DeleteTagsCommand.d.ts +1 -12
  113. package/dist-types/commands/DeleteTrialCommand.d.ts +1 -3
  114. package/dist-types/commands/DeleteTrialComponentCommand.d.ts +1 -3
  115. package/dist-types/commands/DeleteUserProfileCommand.d.ts +1 -2
  116. package/dist-types/commands/DeleteWorkforceCommand.d.ts +1 -12
  117. package/dist-types/commands/DeleteWorkteamCommand.d.ts +1 -2
  118. package/dist-types/commands/DescribeAutoMLJobCommand.d.ts +1 -5
  119. package/dist-types/commands/DescribeAutoMLJobV2Command.d.ts +1 -2
  120. package/dist-types/commands/DescribeClusterNodeCommand.d.ts +1 -2
  121. package/dist-types/commands/DescribeClusterSchedulerConfigCommand.d.ts +1 -3
  122. package/dist-types/commands/DescribeCompilationJobCommand.d.ts +1 -3
  123. package/dist-types/commands/DescribeEndpointConfigCommand.d.ts +1 -2
  124. package/dist-types/commands/DescribeFeatureGroupCommand.d.ts +1 -3
  125. package/dist-types/commands/DescribeHyperParameterTuningJobCommand.d.ts +1 -3
  126. package/dist-types/commands/DescribeInferenceRecommendationsJobCommand.d.ts +1 -2
  127. package/dist-types/commands/DescribeLineageGroupCommand.d.ts +1 -3
  128. package/dist-types/commands/DescribeModelCommand.d.ts +1 -2
  129. package/dist-types/commands/DescribeModelPackageCommand.d.ts +1 -8
  130. package/dist-types/commands/DescribeNotebookInstanceLifecycleConfigCommand.d.ts +1 -3
  131. package/dist-types/commands/DescribeSubscribedWorkteamCommand.d.ts +1 -2
  132. package/dist-types/commands/DescribeTrainingJobCommand.d.ts +1 -7
  133. package/dist-types/commands/DescribeUserProfileCommand.d.ts +1 -2
  134. package/dist-types/commands/DescribeWorkforceCommand.d.ts +1 -6
  135. package/dist-types/commands/DescribeWorkteamCommand.d.ts +1 -3
  136. package/dist-types/commands/DisableSagemakerServicecatalogPortfolioCommand.d.ts +1 -2
  137. package/dist-types/commands/DisassociateTrialComponentCommand.d.ts +1 -6
  138. package/dist-types/commands/EnableSagemakerServicecatalogPortfolioCommand.d.ts +1 -2
  139. package/dist-types/commands/GetModelPackageGroupPolicyCommand.d.ts +1 -4
  140. package/dist-types/commands/GetSagemakerServicecatalogPortfolioStatusCommand.d.ts +1 -2
  141. package/dist-types/commands/GetScalingConfigurationRecommendationCommand.d.ts +1 -2
  142. package/dist-types/commands/GetSearchSuggestionsCommand.d.ts +1 -4
  143. package/dist-types/commands/ImportHubContentCommand.d.ts +1 -2
  144. package/dist-types/commands/ListAppImageConfigsCommand.d.ts +1 -3
  145. package/dist-types/commands/ListClusterNodesCommand.d.ts +1 -2
  146. package/dist-types/commands/ListCompilationJobsCommand.d.ts +1 -3
  147. package/dist-types/commands/ListExperimentsCommand.d.ts +1 -3
  148. package/dist-types/commands/ListHyperParameterTuningJobsCommand.d.ts +1 -3
  149. package/dist-types/commands/ListImageVersionsCommand.d.ts +1 -2
  150. package/dist-types/commands/ListImagesCommand.d.ts +1 -2
  151. package/dist-types/commands/ListInferenceRecommendationsJobStepsCommand.d.ts +1 -2
  152. package/dist-types/commands/ListLineageGroupsCommand.d.ts +1 -3
  153. package/dist-types/commands/ListModelMetadataCommand.d.ts +1 -2
  154. package/dist-types/commands/ListNotebookInstancesCommand.d.ts +1 -2
  155. package/dist-types/commands/ListResourceCatalogsCommand.d.ts +1 -2
  156. package/dist-types/commands/ListStageDevicesCommand.d.ts +1 -2
  157. package/dist-types/commands/ListStudioLifecycleConfigsCommand.d.ts +1 -2
  158. package/dist-types/commands/ListSubscribedWorkteamsCommand.d.ts +1 -3
  159. package/dist-types/commands/ListTrainingJobsCommand.d.ts +1 -22
  160. package/dist-types/commands/ListTrainingJobsForHyperParameterTuningJobCommand.d.ts +1 -2
  161. package/dist-types/commands/ListTrialComponentsCommand.d.ts +1 -20
  162. package/dist-types/commands/ListTrialsCommand.d.ts +1 -5
  163. package/dist-types/commands/ListWorkforcesCommand.d.ts +1 -2
  164. package/dist-types/commands/ListWorkteamsCommand.d.ts +1 -3
  165. package/dist-types/commands/PutModelPackageGroupPolicyCommand.d.ts +2 -6
  166. package/dist-types/commands/QueryLineageCommand.d.ts +1 -3
  167. package/dist-types/commands/RegisterDevicesCommand.d.ts +1 -2
  168. package/dist-types/commands/RetryPipelineExecutionCommand.d.ts +2 -4
  169. package/dist-types/commands/SearchCommand.d.ts +1 -10
  170. package/dist-types/commands/SearchTrainingPlanOfferingsCommand.d.ts +2 -17
  171. package/dist-types/commands/SendPipelineExecutionStepFailureCommand.d.ts +3 -7
  172. package/dist-types/commands/SendPipelineExecutionStepSuccessCommand.d.ts +3 -7
  173. package/dist-types/commands/StartInferenceExperimentCommand.d.ts +1 -2
  174. package/dist-types/commands/StartMlflowTrackingServerCommand.d.ts +1 -2
  175. package/dist-types/commands/StartMonitoringScheduleCommand.d.ts +1 -5
  176. package/dist-types/commands/StartNotebookInstanceCommand.d.ts +2 -6
  177. package/dist-types/commands/StartPipelineExecutionCommand.d.ts +2 -4
  178. package/dist-types/commands/StopCompilationJobCommand.d.ts +1 -7
  179. package/dist-types/commands/StopHyperParameterTuningJobCommand.d.ts +1 -7
  180. package/dist-types/commands/StopInferenceExperimentCommand.d.ts +1 -2
  181. package/dist-types/commands/StopLabelingJobCommand.d.ts +1 -2
  182. package/dist-types/commands/StopMlflowTrackingServerCommand.d.ts +1 -2
  183. package/dist-types/commands/StopNotebookInstanceCommand.d.ts +1 -8
  184. package/dist-types/commands/StopPipelineExecutionCommand.d.ts +2 -25
  185. package/dist-types/commands/StopTrainingJobCommand.d.ts +1 -7
  186. package/dist-types/commands/StopTransformJobCommand.d.ts +1 -6
  187. package/dist-types/commands/UpdateActionCommand.d.ts +1 -2
  188. package/dist-types/commands/UpdateArtifactCommand.d.ts +1 -2
  189. package/dist-types/commands/UpdateClusterCommand.d.ts +2 -4
  190. package/dist-types/commands/UpdateClusterSchedulerConfigCommand.d.ts +2 -4
  191. package/dist-types/commands/UpdateClusterSoftwareCommand.d.ts +2 -9
  192. package/dist-types/commands/UpdateCodeRepositoryCommand.d.ts +1 -2
  193. package/dist-types/commands/UpdateComputeQuotaCommand.d.ts +2 -4
  194. package/dist-types/commands/UpdateContextCommand.d.ts +1 -2
  195. package/dist-types/commands/UpdateDomainCommand.d.ts +1 -2
  196. package/dist-types/commands/UpdateEndpointCommand.d.ts +2 -22
  197. package/dist-types/commands/UpdateEndpointWeightsAndCapacitiesCommand.d.ts +2 -7
  198. package/dist-types/commands/UpdateExperimentCommand.d.ts +2 -4
  199. package/dist-types/commands/UpdateFeatureGroupCommand.d.ts +2 -17
  200. package/dist-types/commands/UpdateHubContentCommand.d.ts +1 -36
  201. package/dist-types/commands/UpdateHubContentReferenceCommand.d.ts +1 -14
  202. package/dist-types/commands/UpdateImageCommand.d.ts +1 -2
  203. package/dist-types/commands/UpdateInferenceComponentCommand.d.ts +1 -2
  204. package/dist-types/commands/UpdateInferenceComponentRuntimeConfigCommand.d.ts +1 -2
  205. package/dist-types/commands/UpdateInferenceExperimentCommand.d.ts +2 -7
  206. package/dist-types/commands/UpdateMlflowTrackingServerCommand.d.ts +2 -4
  207. package/dist-types/commands/UpdateModelCardCommand.d.ts +3 -8
  208. package/dist-types/commands/UpdateModelPackageCommand.d.ts +1 -2
  209. package/dist-types/commands/UpdateMonitoringAlertCommand.d.ts +1 -2
  210. package/dist-types/commands/UpdateMonitoringScheduleCommand.d.ts +1 -2
  211. package/dist-types/commands/UpdateNotebookInstanceCommand.d.ts +2 -5
  212. package/dist-types/commands/UpdateNotebookInstanceLifecycleConfigCommand.d.ts +1 -2
  213. package/dist-types/commands/UpdatePartnerAppCommand.d.ts +2 -3
  214. package/dist-types/commands/UpdatePipelineCommand.d.ts +1 -2
  215. package/dist-types/commands/UpdatePipelineExecutionCommand.d.ts +1 -2
  216. package/dist-types/commands/UpdateProjectCommand.d.ts +2 -10
  217. package/dist-types/commands/UpdateSpaceCommand.d.ts +2 -6
  218. package/dist-types/commands/UpdateTrainingJobCommand.d.ts +2 -4
  219. package/dist-types/commands/UpdateTrialCommand.d.ts +1 -2
  220. package/dist-types/commands/UpdateTrialComponentCommand.d.ts +1 -2
  221. package/dist-types/commands/UpdateUserProfileCommand.d.ts +1 -2
  222. package/dist-types/commands/UpdateWorkforceCommand.d.ts +2 -28
  223. package/dist-types/commands/UpdateWorkteamCommand.d.ts +1 -2
  224. package/dist-types/index.d.ts +1 -16
  225. package/dist-types/models/models_0.d.ts +370 -4018
  226. package/dist-types/models/models_1.d.ts +532 -5722
  227. package/dist-types/models/models_2.d.ts +328 -1436
  228. package/dist-types/models/models_3.d.ts +364 -2021
  229. package/dist-types/models/models_4.d.ts +462 -1693
  230. package/dist-types/models/models_5.d.ts +90 -441
  231. package/package.json +15 -15
@@ -27,23 +27,7 @@ declare const CreateModelCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Creates a model in SageMaker. In the request, you name the model and describe a primary
31
- * container. For the primary container, you specify the Docker image that
32
- * contains inference code, artifacts (from prior training), and a custom environment map
33
- * that the inference code uses when you deploy the model for predictions.</p>
34
- * <p>Use this API to create a model if you want to use SageMaker hosting services or run a batch
35
- * transform job.</p>
36
- * <p>To host your model, you create an endpoint configuration with the
37
- * <code>CreateEndpointConfig</code> API, and then create an endpoint with the
38
- * <code>CreateEndpoint</code> API. SageMaker then deploys all of the containers that you
39
- * defined for the model in the hosting environment. </p>
40
- * <p>To run a batch transform using your model, you start a job with the
41
- * <code>CreateTransformJob</code> API. SageMaker uses your model and your dataset to get
42
- * inferences which are then saved to a specified S3 location.</p>
43
- * <p>In the request, you also provide an IAM role that SageMaker can assume to access model
44
- * artifacts and docker image for deployment on ML compute hosting instances or for batch
45
- * transform jobs. In addition, you also use the IAM role to manage permissions the
46
- * inference code needs. For example, if the inference code access any other Amazon Web Services resources, you grant necessary permissions via this role.</p>
30
+ * <p>Creates a model in SageMaker. In the request, you name the model and describe a primary container. For the primary container, you specify the Docker image that contains inference code, artifacts (from prior training), and a custom environment map that the inference code uses when you deploy the model for predictions.</p> <p>Use this API to create a model if you want to use SageMaker hosting services or run a batch transform job.</p> <p>To host your model, you create an endpoint configuration with the <code>CreateEndpointConfig</code> API, and then create an endpoint with the <code>CreateEndpoint</code> API. SageMaker then deploys all of the containers that you defined for the model in the hosting environment. </p> <p>To run a batch transform using your model, you start a job with the <code>CreateTransformJob</code> API. SageMaker uses your model and your dataset to get inferences which are then saved to a specified S3 location.</p> <p>In the request, you also provide an IAM role that SageMaker can assume to access model artifacts and docker image for deployment on ML compute hosting instances or for batch transform jobs. In addition, you also use the IAM role to manage permissions the inference code needs. For example, if the inference code access any other Amazon Web Services resources, you grant necessary permissions via this role.</p>
47
31
  * @example
48
32
  * Use a bare-bones client and the command you need to make an API call.
49
33
  * ```javascript
@@ -186,8 +170,7 @@ declare const CreateModelCommand_base: {
186
170
  * @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
187
171
  *
188
172
  * @throws {@link ResourceLimitExceeded} (client fault)
189
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
190
- * training jobs created. </p>
173
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
191
174
  *
192
175
  * @throws {@link SageMakerServiceException}
193
176
  * <p>Base exception class for all service exceptions from SageMaker service.</p>
@@ -147,8 +147,7 @@ declare const CreateModelExplainabilityJobDefinitionCommand_base: {
147
147
  * <p>Resource being accessed is in use.</p>
148
148
  *
149
149
  * @throws {@link ResourceLimitExceeded} (client fault)
150
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
151
- * training jobs created. </p>
150
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
152
151
  *
153
152
  * @throws {@link SageMakerServiceException}
154
153
  * <p>Base exception class for all service exceptions from SageMaker service.</p>
@@ -27,26 +27,7 @@ declare const CreateModelPackageCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Creates a model package that you can use to create SageMaker models or list on Amazon Web Services Marketplace, or a versioned model that is part of a model group. Buyers
31
- * can subscribe to model packages listed on Amazon Web Services Marketplace to create
32
- * models in SageMaker.</p>
33
- * <p>To create a model package by specifying a Docker container that contains your
34
- * inference code and the Amazon S3 location of your model artifacts, provide values for
35
- * <code>InferenceSpecification</code>. To create a model from an algorithm resource
36
- * that you created or subscribed to in Amazon Web Services Marketplace, provide a value for
37
- * <code>SourceAlgorithmSpecification</code>.</p>
38
- * <note>
39
- * <p>There are two types of model packages:</p>
40
- * <ul>
41
- * <li>
42
- * <p>Versioned - a model that is part of a model group in the model
43
- * registry.</p>
44
- * </li>
45
- * <li>
46
- * <p>Unversioned - a model package that is not part of a model group.</p>
47
- * </li>
48
- * </ul>
49
- * </note>
30
+ * <p>Creates a model package that you can use to create SageMaker models or list on Amazon Web Services Marketplace, or a versioned model that is part of a model group. Buyers can subscribe to model packages listed on Amazon Web Services Marketplace to create models in SageMaker.</p> <p>To create a model package by specifying a Docker container that contains your inference code and the Amazon S3 location of your model artifacts, provide values for <code>InferenceSpecification</code>. To create a model from an algorithm resource that you created or subscribed to in Amazon Web Services Marketplace, provide a value for <code>SourceAlgorithmSpecification</code>.</p> <note> <p>There are two types of model packages:</p> <ul> <li> <p>Versioned - a model that is part of a model group in the model registry.</p> </li> <li> <p>Unversioned - a model package that is not part of a model group.</p> </li> </ul> </note>
50
31
  * @example
51
32
  * Use a bare-bones client and the command you need to make an API call.
52
33
  * ```javascript
@@ -351,12 +332,10 @@ declare const CreateModelPackageCommand_base: {
351
332
  * @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
352
333
  *
353
334
  * @throws {@link ConflictException} (client fault)
354
- * <p>There was a conflict when you attempted to modify a SageMaker entity such as an
355
- * <code>Experiment</code> or <code>Artifact</code>.</p>
335
+ * <p>There was a conflict when you attempted to modify a SageMaker entity such as an <code>Experiment</code> or <code>Artifact</code>.</p>
356
336
  *
357
337
  * @throws {@link ResourceLimitExceeded} (client fault)
358
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
359
- * training jobs created. </p>
338
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
360
339
  *
361
340
  * @throws {@link SageMakerServiceException}
362
341
  * <p>Base exception class for all service exceptions from SageMaker service.</p>
@@ -59,8 +59,7 @@ declare const CreateModelPackageGroupCommand_base: {
59
59
  * @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
60
60
  *
61
61
  * @throws {@link ResourceLimitExceeded} (client fault)
62
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
63
- * training jobs created. </p>
62
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
64
63
  *
65
64
  * @throws {@link SageMakerServiceException}
66
65
  * <p>Base exception class for all service exceptions from SageMaker service.</p>
@@ -27,9 +27,7 @@ declare const CreateModelQualityJobDefinitionCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Creates a definition for a job that monitors model quality and drift. For information
31
- * about model monitor, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html">Amazon SageMaker AI Model
32
- * Monitor</a>.</p>
30
+ * <p>Creates a definition for a job that monitors model quality and drift. For information about model monitor, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html">Amazon SageMaker AI Model Monitor</a>.</p>
33
31
  * @example
34
32
  * Use a bare-bones client and the command you need to make an API call.
35
33
  * ```javascript
@@ -160,8 +158,7 @@ declare const CreateModelQualityJobDefinitionCommand_base: {
160
158
  * <p>Resource being accessed is in use.</p>
161
159
  *
162
160
  * @throws {@link ResourceLimitExceeded} (client fault)
163
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
164
- * training jobs created. </p>
161
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
165
162
  *
166
163
  * @throws {@link SageMakerServiceException}
167
164
  * <p>Base exception class for all service exceptions from SageMaker service.</p>
@@ -27,8 +27,7 @@ declare const CreateMonitoringScheduleCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Creates a schedule that regularly starts Amazon SageMaker AI Processing Jobs to
31
- * monitor the data captured for an Amazon SageMaker AI Endpoint.</p>
30
+ * <p>Creates a schedule that regularly starts Amazon SageMaker AI Processing Jobs to monitor the data captured for an Amazon SageMaker AI Endpoint.</p>
32
31
  * @example
33
32
  * Use a bare-bones client and the command you need to make an API call.
34
33
  * ```javascript
@@ -171,8 +170,7 @@ declare const CreateMonitoringScheduleCommand_base: {
171
170
  * <p>Resource being accessed is in use.</p>
172
171
  *
173
172
  * @throws {@link ResourceLimitExceeded} (client fault)
174
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
175
- * training jobs created. </p>
173
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
176
174
  *
177
175
  * @throws {@link SageMakerServiceException}
178
176
  * <p>Base exception class for all service exceptions from SageMaker service.</p>
@@ -27,42 +27,7 @@ declare const CreateNotebookInstanceCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Creates an SageMaker AI notebook instance. A notebook instance is a machine
31
- * learning (ML) compute instance running on a Jupyter notebook. </p>
32
- * <p>In a <code>CreateNotebookInstance</code> request, specify the type of ML compute
33
- * instance that you want to run. SageMaker AI launches the instance, installs common
34
- * libraries that you can use to explore datasets for model training, and attaches an ML
35
- * storage volume to the notebook instance. </p>
36
- * <p>SageMaker AI also provides a set of example notebooks. Each notebook
37
- * demonstrates how to use SageMaker AI with a specific algorithm or with a machine
38
- * learning framework. </p>
39
- * <p>After receiving the request, SageMaker AI does the following:</p>
40
- * <ol>
41
- * <li>
42
- * <p>Creates a network interface in the SageMaker AI VPC.</p>
43
- * </li>
44
- * <li>
45
- * <p>(Option) If you specified <code>SubnetId</code>, SageMaker AI creates
46
- * a network interface in your own VPC, which is inferred from the subnet ID that
47
- * you provide in the input. When creating this network interface, SageMaker AI attaches the security group that you specified in the request to the network
48
- * interface that it creates in your VPC.</p>
49
- * </li>
50
- * <li>
51
- * <p>Launches an EC2 instance of the type specified in the request in the
52
- * SageMaker AI VPC. If you specified <code>SubnetId</code> of your VPC,
53
- * SageMaker AI specifies both network interfaces when launching this
54
- * instance. This enables inbound traffic from your own VPC to the notebook
55
- * instance, assuming that the security groups allow it.</p>
56
- * </li>
57
- * </ol>
58
- * <p>After creating the notebook instance, SageMaker AI returns its Amazon Resource
59
- * Name (ARN). You can't change the name of a notebook instance after you create
60
- * it.</p>
61
- * <p>After SageMaker AI creates the notebook instance, you can connect to the
62
- * Jupyter server and work in Jupyter notebooks. For example, you can write code to explore
63
- * a dataset that you can use for model training, train a model, host models by creating
64
- * SageMaker AI endpoints, and validate hosted models. </p>
65
- * <p>For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html">How It Works</a>. </p>
30
+ * <p>Creates an SageMaker AI notebook instance. A notebook instance is a machine learning (ML) compute instance running on a Jupyter notebook. </p> <p>In a <code>CreateNotebookInstance</code> request, specify the type of ML compute instance that you want to run. SageMaker AI launches the instance, installs common libraries that you can use to explore datasets for model training, and attaches an ML storage volume to the notebook instance. </p> <p>SageMaker AI also provides a set of example notebooks. Each notebook demonstrates how to use SageMaker AI with a specific algorithm or with a machine learning framework. </p> <p>After receiving the request, SageMaker AI does the following:</p> <ol> <li> <p>Creates a network interface in the SageMaker AI VPC.</p> </li> <li> <p>(Option) If you specified <code>SubnetId</code>, SageMaker AI creates a network interface in your own VPC, which is inferred from the subnet ID that you provide in the input. When creating this network interface, SageMaker AI attaches the security group that you specified in the request to the network interface that it creates in your VPC.</p> </li> <li> <p>Launches an EC2 instance of the type specified in the request in the SageMaker AI VPC. If you specified <code>SubnetId</code> of your VPC, SageMaker AI specifies both network interfaces when launching this instance. This enables inbound traffic from your own VPC to the notebook instance, assuming that the security groups allow it.</p> </li> </ol> <p>After creating the notebook instance, SageMaker AI returns its Amazon Resource Name (ARN). You can't change the name of a notebook instance after you create it.</p> <p>After SageMaker AI creates the notebook instance, you can connect to the Jupyter server and work in Jupyter notebooks. For example, you can write code to explore a dataset that you can use for model training, train a model, host models by creating SageMaker AI endpoints, and validate hosted models. </p> <p>For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html">How It Works</a>. </p>
66
31
  * @example
67
32
  * Use a bare-bones client and the command you need to make an API call.
68
33
  * ```javascript
@@ -115,8 +80,7 @@ declare const CreateNotebookInstanceCommand_base: {
115
80
  * @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
116
81
  *
117
82
  * @throws {@link ResourceLimitExceeded} (client fault)
118
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
119
- * training jobs created. </p>
83
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
120
84
  *
121
85
  * @throws {@link SageMakerServiceException}
122
86
  * <p>Base exception class for all service exceptions from SageMaker service.</p>
@@ -27,20 +27,7 @@ declare const CreateNotebookInstanceLifecycleConfigCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Creates a lifecycle configuration that you can associate with a notebook instance. A
31
- * <i>lifecycle configuration</i> is a collection of shell scripts that
32
- * run when you create or start a notebook instance.</p>
33
- * <p>Each lifecycle configuration script has a limit of 16384 characters.</p>
34
- * <p>The value of the <code>$PATH</code> environment variable that is available to both
35
- * scripts is <code>/sbin:bin:/usr/sbin:/usr/bin</code>.</p>
36
- * <p>View Amazon CloudWatch Logs for notebook instance lifecycle configurations in log
37
- * group <code>/aws/sagemaker/NotebookInstances</code> in log stream
38
- * <code>[notebook-instance-name]/[LifecycleConfigHook]</code>.</p>
39
- * <p>Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs
40
- * for longer than 5 minutes, it fails and the notebook instance is not created or
41
- * started.</p>
42
- * <p>For information about notebook instance lifestyle configurations, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html">Step
43
- * 2.1: (Optional) Customize a Notebook Instance</a>.</p>
30
+ * <p>Creates a lifecycle configuration that you can associate with a notebook instance. A <i>lifecycle configuration</i> is a collection of shell scripts that run when you create or start a notebook instance.</p> <p>Each lifecycle configuration script has a limit of 16384 characters.</p> <p>The value of the <code>$PATH</code> environment variable that is available to both scripts is <code>/sbin:bin:/usr/sbin:/usr/bin</code>.</p> <p>View Amazon CloudWatch Logs for notebook instance lifecycle configurations in log group <code>/aws/sagemaker/NotebookInstances</code> in log stream <code>[notebook-instance-name]/[LifecycleConfigHook]</code>.</p> <p>Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs for longer than 5 minutes, it fails and the notebook instance is not created or started.</p> <p>For information about notebook instance lifestyle configurations, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html">Step 2.1: (Optional) Customize a Notebook Instance</a>.</p>
44
31
  * @example
45
32
  * Use a bare-bones client and the command you need to make an API call.
46
33
  * ```javascript
@@ -81,8 +68,7 @@ declare const CreateNotebookInstanceLifecycleConfigCommand_base: {
81
68
  * @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
82
69
  *
83
70
  * @throws {@link ResourceLimitExceeded} (client fault)
84
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
85
- * training jobs created. </p>
71
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
86
72
  *
87
73
  * @throws {@link SageMakerServiceException}
88
74
  * <p>Base exception class for all service exceptions from SageMaker service.</p>
@@ -27,12 +27,7 @@ declare const CreateOptimizationJobCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Creates a job that optimizes a model for inference performance. To create the job, you
31
- * provide the location of a source model, and you provide the settings for the optimization
32
- * techniques that you want the job to apply. When the job completes successfully, SageMaker
33
- * uploads the new optimized model to the output destination that you specify.</p>
34
- * <p>For more information about how to use this action, and about the supported optimization
35
- * techniques, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-optimize.html">Optimize model inference with Amazon SageMaker</a>.</p>
30
+ * <p>Creates a job that optimizes a model for inference performance. To create the job, you provide the location of a source model, and you provide the settings for the optimization techniques that you want the job to apply. When the job completes successfully, SageMaker uploads the new optimized model to the output destination that you specify.</p> <p>For more information about how to use this action, and about the supported optimization techniques, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-optimize.html">Optimize model inference with Amazon SageMaker</a>.</p>
36
31
  * @example
37
32
  * Use a bare-bones client and the command you need to make an API call.
38
33
  * ```javascript
@@ -118,8 +113,7 @@ declare const CreateOptimizationJobCommand_base: {
118
113
  * <p>Resource being accessed is in use.</p>
119
114
  *
120
115
  * @throws {@link ResourceLimitExceeded} (client fault)
121
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
122
- * training jobs created. </p>
116
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
123
117
  *
124
118
  * @throws {@link SageMakerServiceException}
125
119
  * <p>Base exception class for all service exceptions from SageMaker service.</p>
@@ -76,12 +76,10 @@ declare const CreatePartnerAppCommand_base: {
76
76
  * @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
77
77
  *
78
78
  * @throws {@link ConflictException} (client fault)
79
- * <p>There was a conflict when you attempted to modify a SageMaker entity such as an
80
- * <code>Experiment</code> or <code>Artifact</code>.</p>
79
+ * <p>There was a conflict when you attempted to modify a SageMaker entity such as an <code>Experiment</code> or <code>Artifact</code>.</p>
81
80
  *
82
81
  * @throws {@link ResourceLimitExceeded} (client fault)
83
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
84
- * training jobs created. </p>
82
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
85
83
  *
86
84
  * @throws {@link SageMakerServiceException}
87
85
  * <p>Base exception class for all service exceptions from SageMaker service.</p>
@@ -71,12 +71,10 @@ declare const CreatePipelineCommand_base: {
71
71
  * @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
72
72
  *
73
73
  * @throws {@link ConflictException} (client fault)
74
- * <p>There was a conflict when you attempted to modify a SageMaker entity such as an
75
- * <code>Experiment</code> or <code>Artifact</code>.</p>
74
+ * <p>There was a conflict when you attempted to modify a SageMaker entity such as an <code>Experiment</code> or <code>Artifact</code>.</p>
76
75
  *
77
76
  * @throws {@link ResourceLimitExceeded} (client fault)
78
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
79
- * training jobs created. </p>
77
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
80
78
  *
81
79
  * @throws {@link ResourceNotFound} (client fault)
82
80
  * <p>Resource being access is not found.</p>
@@ -27,32 +27,7 @@ declare const CreatePresignedDomainUrlCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Creates a URL for a specified UserProfile in a Domain. When accessed in a web browser, the
31
- * user will be automatically signed in to the domain, and granted access to all of the Apps and
32
- * files associated with the Domain's Amazon Elastic File System volume. This operation can only be
33
- * called when the authentication mode equals IAM. </p>
34
- * <p>The IAM role or user passed to this API defines the permissions to access
35
- * the app. Once the presigned URL is created, no additional permission is required to access
36
- * this URL. IAM authorization policies for this API are also enforced for every
37
- * HTTP request and WebSocket frame that attempts to connect to the app.</p>
38
- * <p>You can restrict access to this API and to the URL that it returns to a list of IP
39
- * addresses, Amazon VPCs or Amazon VPC Endpoints that you specify. For more
40
- * information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/studio-interface-endpoint.html">Connect to Amazon SageMaker AI
41
- * Studio Through an Interface VPC Endpoint</a> .</p>
42
- * <note>
43
- * <ul>
44
- * <li>
45
- * <p>The URL that you get from a call to <code>CreatePresignedDomainUrl</code> has a
46
- * default timeout of 5 minutes. You can configure this value using
47
- * <code>ExpiresInSeconds</code>. If you try to use the URL after the timeout limit
48
- * expires, you are directed to the Amazon Web Services console sign-in page.</p>
49
- * </li>
50
- * <li>
51
- * <p>The JupyterLab session default expiration time is 12 hours. You can configure this
52
- * value using SessionExpirationDurationInSeconds.</p>
53
- * </li>
54
- * </ul>
55
- * </note>
30
+ * <p>Creates a URL for a specified UserProfile in a Domain. When accessed in a web browser, the user will be automatically signed in to the domain, and granted access to all of the Apps and files associated with the Domain's Amazon Elastic File System volume. This operation can only be called when the authentication mode equals IAM. </p> <p>The IAM role or user passed to this API defines the permissions to access the app. Once the presigned URL is created, no additional permission is required to access this URL. IAM authorization policies for this API are also enforced for every HTTP request and WebSocket frame that attempts to connect to the app.</p> <p>You can restrict access to this API and to the URL that it returns to a list of IP addresses, Amazon VPCs or Amazon VPC Endpoints that you specify. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/studio-interface-endpoint.html">Connect to Amazon SageMaker AI Studio Through an Interface VPC Endpoint</a> .</p> <note> <ul> <li> <p>The URL that you get from a call to <code>CreatePresignedDomainUrl</code> has a default timeout of 5 minutes. You can configure this value using <code>ExpiresInSeconds</code>. If you try to use the URL after the timeout limit expires, you are directed to the Amazon Web Services console sign-in page.</p> </li> <li> <p>The JupyterLab session default expiration time is 12 hours. You can configure this value using SessionExpirationDurationInSeconds.</p> </li> </ul> </note>
56
31
  * @example
57
32
  * Use a bare-bones client and the command you need to make an API call.
58
33
  * ```javascript
@@ -27,8 +27,7 @@ declare const CreatePresignedMlflowTrackingServerUrlCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Returns a presigned URL that you can use to connect to the MLflow UI attached to your
31
- * tracking server. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/mlflow-launch-ui.html">Launch the MLflow UI using a presigned URL</a>.</p>
30
+ * <p>Returns a presigned URL that you can use to connect to the MLflow UI attached to your tracking server. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/mlflow-launch-ui.html">Launch the MLflow UI using a presigned URL</a>.</p>
32
31
  * @example
33
32
  * Use a bare-bones client and the command you need to make an API call.
34
33
  * ```javascript
@@ -27,24 +27,7 @@ declare const CreatePresignedNotebookInstanceUrlCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Returns a URL that you can use to connect to the Jupyter server from a notebook
31
- * instance. In the SageMaker AI console, when you choose <code>Open</code> next to a
32
- * notebook instance, SageMaker AI opens a new tab showing the Jupyter server home
33
- * page from the notebook instance. The console uses this API to get the URL and show the
34
- * page.</p>
35
- * <p> The IAM role or user used to call this API defines the permissions to
36
- * access the notebook instance. Once the presigned URL is created, no additional
37
- * permission is required to access this URL. IAM authorization policies for
38
- * this API are also enforced for every HTTP request and WebSocket frame that attempts to
39
- * connect to the notebook instance.</p>
40
- * <p>You can restrict access to this API and to the URL that it returns to a list of IP
41
- * addresses that you specify. Use the <code>NotIpAddress</code> condition operator and the
42
- * <code>aws:SourceIP</code> condition context key to specify the list of IP addresses
43
- * that you want to have access to the notebook instance. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/security_iam_id-based-policy-examples.html#nbi-ip-filter">Limit Access to a Notebook Instance by IP Address</a>.</p>
44
- * <note>
45
- * <p>The URL that you get from a call to <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreatePresignedNotebookInstanceUrl.html">CreatePresignedNotebookInstanceUrl</a> is valid only for 5 minutes. If you
46
- * try to use the URL after the 5-minute limit expires, you are directed to the Amazon Web Services console sign-in page.</p>
47
- * </note>
30
+ * <p>Returns a URL that you can use to connect to the Jupyter server from a notebook instance. In the SageMaker AI console, when you choose <code>Open</code> next to a notebook instance, SageMaker AI opens a new tab showing the Jupyter server home page from the notebook instance. The console uses this API to get the URL and show the page.</p> <p> The IAM role or user used to call this API defines the permissions to access the notebook instance. Once the presigned URL is created, no additional permission is required to access this URL. IAM authorization policies for this API are also enforced for every HTTP request and WebSocket frame that attempts to connect to the notebook instance.</p> <p>You can restrict access to this API and to the URL that it returns to a list of IP addresses that you specify. Use the <code>NotIpAddress</code> condition operator and the <code>aws:SourceIP</code> condition context key to specify the list of IP addresses that you want to have access to the notebook instance. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/security_iam_id-based-policy-examples.html#nbi-ip-filter">Limit Access to a Notebook Instance by IP Address</a>.</p> <note> <p>The URL that you get from a call to <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreatePresignedNotebookInstanceUrl.html">CreatePresignedNotebookInstanceUrl</a> is valid only for 5 minutes. If you try to use the URL after the 5-minute limit expires, you are directed to the Amazon Web Services console sign-in page.</p> </note>
48
31
  * @example
49
32
  * Use a bare-bones client and the command you need to make an API call.
50
33
  * ```javascript
@@ -160,8 +160,7 @@ declare const CreateProcessingJobCommand_base: {
160
160
  * <p>Resource being accessed is in use.</p>
161
161
  *
162
162
  * @throws {@link ResourceLimitExceeded} (client fault)
163
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
164
- * training jobs created. </p>
163
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
165
164
  *
166
165
  * @throws {@link ResourceNotFound} (client fault)
167
166
  * <p>Resource being access is not found.</p>
@@ -27,8 +27,7 @@ declare const CreateProjectCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Creates a machine learning (ML) project that can contain one or more templates that set
31
- * up an ML pipeline from training to deploying an approved model.</p>
30
+ * <p>Creates a machine learning (ML) project that can contain one or more templates that set up an ML pipeline from training to deploying an approved model.</p>
32
31
  * @example
33
32
  * Use a bare-bones client and the command you need to make an API call.
34
33
  * ```javascript
@@ -72,8 +71,7 @@ declare const CreateProjectCommand_base: {
72
71
  * @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
73
72
  *
74
73
  * @throws {@link ResourceLimitExceeded} (client fault)
75
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
76
- * training jobs created. </p>
74
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
77
75
  *
78
76
  * @throws {@link SageMakerServiceException}
79
77
  * <p>Base exception class for all service exceptions from SageMaker service.</p>
@@ -157,8 +157,7 @@ declare const CreateSpaceCommand_base: {
157
157
  * <p>Resource being accessed is in use.</p>
158
158
  *
159
159
  * @throws {@link ResourceLimitExceeded} (client fault)
160
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
161
- * training jobs created. </p>
160
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
162
161
  *
163
162
  * @throws {@link SageMakerServiceException}
164
163
  * <p>Base exception class for all service exceptions from SageMaker service.</p>
@@ -27,92 +27,7 @@ declare const CreateTrainingJobCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Starts a model training job. After training completes, SageMaker saves the resulting
31
- * model artifacts to an Amazon S3 location that you specify. </p>
32
- * <p>If you choose to host your model using SageMaker hosting services, you can use the
33
- * resulting model artifacts as part of the model. You can also use the artifacts in a
34
- * machine learning service other than SageMaker, provided that you know how to use them for
35
- * inference.
36
- * </p>
37
- * <p>In the request body, you provide the following: </p>
38
- * <ul>
39
- * <li>
40
- * <p>
41
- * <code>AlgorithmSpecification</code> - Identifies the training algorithm to
42
- * use.
43
- * </p>
44
- * </li>
45
- * <li>
46
- * <p>
47
- * <code>HyperParameters</code> - Specify these algorithm-specific parameters to
48
- * enable the estimation of model parameters during training. Hyperparameters can
49
- * be tuned to optimize this learning process. For a list of hyperparameters for
50
- * each training algorithm provided by SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. </p>
51
- * <important>
52
- * <p>Do not include any security-sensitive information including account access IDs, secrets,
53
- * or tokens in any hyperparameter fields. As part of the shared responsibility
54
- * model, you are responsible for any potential exposure, unauthorized access, or compromise of
55
- * your sensitive data if caused by security-sensitive information included in the
56
- * request hyperparameter variable or plain text fields.</p>
57
- * </important>
58
- * </li>
59
- * <li>
60
- * <p>
61
- * <code>InputDataConfig</code> - Describes the input required by the training
62
- * job and the Amazon S3, EFS, or FSx location where it is stored.</p>
63
- * </li>
64
- * <li>
65
- * <p>
66
- * <code>OutputDataConfig</code> - Identifies the Amazon S3 bucket where you want
67
- * SageMaker to save the results of model training. </p>
68
- * </li>
69
- * <li>
70
- * <p>
71
- * <code>ResourceConfig</code> - Identifies the resources, ML compute
72
- * instances, and ML storage volumes to deploy for model training. In distributed
73
- * training, you specify more than one instance. </p>
74
- * </li>
75
- * <li>
76
- * <p>
77
- * <code>EnableManagedSpotTraining</code> - Optimize the cost of training machine
78
- * learning models by up to 80% by using Amazon EC2 Spot instances. For more
79
- * information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html">Managed Spot
80
- * Training</a>. </p>
81
- * </li>
82
- * <li>
83
- * <p>
84
- * <code>RoleArn</code> - The Amazon Resource Name (ARN) that SageMaker assumes to perform tasks on
85
- * your behalf during model training.
86
- *
87
- * You must grant this role the necessary permissions so that SageMaker can successfully
88
- * complete model training. </p>
89
- * </li>
90
- * <li>
91
- * <p>
92
- * <code>StoppingCondition</code> - To help cap training costs, use
93
- * <code>MaxRuntimeInSeconds</code> to set a time limit for training. Use
94
- * <code>MaxWaitTimeInSeconds</code> to specify how long a managed spot
95
- * training job has to complete. </p>
96
- * </li>
97
- * <li>
98
- * <p>
99
- * <code>Environment</code> - The environment variables to set in the Docker
100
- * container.</p>
101
- * <important>
102
- * <p>Do not include any security-sensitive information including account access IDs, secrets,
103
- * or tokens in any environment fields. As part of the shared responsibility model, you are
104
- * responsible for any potential exposure, unauthorized access, or compromise of your sensitive
105
- * data if caused by security-sensitive information included in the request environment variable
106
- * or plain text fields.</p>
107
- * </important>
108
- * </li>
109
- * <li>
110
- * <p>
111
- * <code>RetryStrategy</code> - The number of times to retry the job when the job
112
- * fails due to an <code>InternalServerError</code>.</p>
113
- * </li>
114
- * </ul>
115
- * <p> For more information about SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html">How It Works</a>. </p>
30
+ * <p>Starts a model training job. After training completes, SageMaker saves the resulting model artifacts to an Amazon S3 location that you specify. </p> <p>If you choose to host your model using SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts in a machine learning service other than SageMaker, provided that you know how to use them for inference. </p> <p>In the request body, you provide the following: </p> <ul> <li> <p> <code>AlgorithmSpecification</code> - Identifies the training algorithm to use. </p> </li> <li> <p> <code>HyperParameters</code> - Specify these algorithm-specific parameters to enable the estimation of model parameters during training. Hyperparameters can be tuned to optimize this learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. </p> <important> <p>Do not include any security-sensitive information including account access IDs, secrets, or tokens in any hyperparameter fields. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by security-sensitive information included in the request hyperparameter variable or plain text fields.</p> </important> </li> <li> <p> <code>InputDataConfig</code> - Describes the input required by the training job and the Amazon S3, EFS, or FSx location where it is stored.</p> </li> <li> <p> <code>OutputDataConfig</code> - Identifies the Amazon S3 bucket where you want SageMaker to save the results of model training. </p> </li> <li> <p> <code>ResourceConfig</code> - Identifies the resources, ML compute instances, and ML storage volumes to deploy for model training. In distributed training, you specify more than one instance. </p> </li> <li> <p> <code>EnableManagedSpotTraining</code> - Optimize the cost of training machine learning models by up to 80% by using Amazon EC2 Spot instances. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html">Managed Spot Training</a>. </p> </li> <li> <p> <code>RoleArn</code> - The Amazon Resource Name (ARN) that SageMaker assumes to perform tasks on your behalf during model training. You must grant this role the necessary permissions so that SageMaker can successfully complete model training. </p> </li> <li> <p> <code>StoppingCondition</code> - To help cap training costs, use <code>MaxRuntimeInSeconds</code> to set a time limit for training. Use <code>MaxWaitTimeInSeconds</code> to specify how long a managed spot training job has to complete. </p> </li> <li> <p> <code>Environment</code> - The environment variables to set in the Docker container.</p> <important> <p>Do not include any security-sensitive information including account access IDs, secrets, or tokens in any environment fields. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by security-sensitive information included in the request environment variable or plain text fields.</p> </important> </li> <li> <p> <code>RetryStrategy</code> - The number of times to retry the job when the job fails due to an <code>InternalServerError</code>.</p> </li> </ul> <p> For more information about SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html">How It Works</a>. </p>
116
31
  * @example
117
32
  * Use a bare-bones client and the command you need to make an API call.
118
33
  * ```javascript
@@ -325,8 +240,7 @@ declare const CreateTrainingJobCommand_base: {
325
240
  * <p>Resource being accessed is in use.</p>
326
241
  *
327
242
  * @throws {@link ResourceLimitExceeded} (client fault)
328
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
329
- * training jobs created. </p>
243
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
330
244
  *
331
245
  * @throws {@link ResourceNotFound} (client fault)
332
246
  * <p>Resource being access is not found.</p>