@aws-sdk/client-sagemaker 3.799.0 → 3.801.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (48) hide show
  1. package/dist-cjs/index.js +79 -34
  2. package/dist-es/models/models_0.js +4 -10
  3. package/dist-es/models/models_1.js +10 -6
  4. package/dist-es/models/models_2.js +6 -12
  5. package/dist-es/models/models_3.js +12 -8
  6. package/dist-es/models/models_4.js +8 -0
  7. package/dist-es/protocols/Aws_json1_1.js +41 -0
  8. package/dist-types/commands/CreateClusterCommand.d.ts +21 -0
  9. package/dist-types/commands/CreateHyperParameterTuningJobCommand.d.ts +5 -4
  10. package/dist-types/commands/CreateMonitoringScheduleCommand.d.ts +1 -2
  11. package/dist-types/commands/CreateTrainingJobCommand.d.ts +12 -4
  12. package/dist-types/commands/DescribeClusterCommand.d.ts +21 -0
  13. package/dist-types/commands/DescribeClusterNodeCommand.d.ts +1 -0
  14. package/dist-types/commands/DescribeHubContentCommand.d.ts +1 -1
  15. package/dist-types/commands/DescribeHumanTaskUiCommand.d.ts +1 -2
  16. package/dist-types/commands/ListClusterNodesCommand.d.ts +1 -0
  17. package/dist-types/commands/ListComputeQuotasCommand.d.ts +1 -1
  18. package/dist-types/commands/ListContextsCommand.d.ts +1 -1
  19. package/dist-types/commands/StopInferenceRecommendationsJobCommand.d.ts +1 -1
  20. package/dist-types/commands/StopLabelingJobCommand.d.ts +1 -1
  21. package/dist-types/commands/StopMlflowTrackingServerCommand.d.ts +1 -1
  22. package/dist-types/commands/StopMonitoringScheduleCommand.d.ts +1 -1
  23. package/dist-types/commands/StopNotebookInstanceCommand.d.ts +1 -1
  24. package/dist-types/commands/UpdateClusterCommand.d.ts +21 -0
  25. package/dist-types/commands/UpdateClusterSoftwareCommand.d.ts +23 -0
  26. package/dist-types/models/models_0.d.ts +114 -263
  27. package/dist-types/models/models_1.d.ts +264 -249
  28. package/dist-types/models/models_2.d.ts +283 -191
  29. package/dist-types/models/models_3.d.ts +195 -160
  30. package/dist-types/models/models_4.d.ts +161 -64
  31. package/dist-types/models/models_5.d.ts +85 -4
  32. package/dist-types/ts3.4/commands/CreateMonitoringScheduleCommand.d.ts +4 -2
  33. package/dist-types/ts3.4/commands/DescribeHubContentCommand.d.ts +1 -1
  34. package/dist-types/ts3.4/commands/DescribeHumanTaskUiCommand.d.ts +4 -2
  35. package/dist-types/ts3.4/commands/ListComputeQuotasCommand.d.ts +1 -1
  36. package/dist-types/ts3.4/commands/ListContextsCommand.d.ts +1 -1
  37. package/dist-types/ts3.4/commands/StopInferenceRecommendationsJobCommand.d.ts +1 -1
  38. package/dist-types/ts3.4/commands/StopLabelingJobCommand.d.ts +1 -1
  39. package/dist-types/ts3.4/commands/StopMlflowTrackingServerCommand.d.ts +1 -1
  40. package/dist-types/ts3.4/commands/StopMonitoringScheduleCommand.d.ts +1 -1
  41. package/dist-types/ts3.4/commands/StopNotebookInstanceCommand.d.ts +1 -1
  42. package/dist-types/ts3.4/models/models_0.d.ts +30 -46
  43. package/dist-types/ts3.4/models/models_1.d.ts +50 -45
  44. package/dist-types/ts3.4/models/models_2.d.ts +44 -53
  45. package/dist-types/ts3.4/models/models_3.d.ts +55 -49
  46. package/dist-types/ts3.4/models/models_4.d.ts +49 -23
  47. package/dist-types/ts3.4/models/models_5.d.ts +28 -2
  48. package/package.json +1 -1
@@ -1,6 +1,269 @@
1
1
  import { AutomaticJsonStringConversion as __AutomaticJsonStringConversion, ExceptionOptionType as __ExceptionOptionType } from "@smithy/smithy-client";
2
- import { ActionSource, ActionStatus, ActivationState, AdditionalInferenceSpecificationDefinition, AdditionalS3DataSource, AlgorithmValidationSpecification, AmazonQSettings, AnnotationConsolidationConfig, AppInstanceType, AppLifecycleManagement, AppNetworkAccessType, AppSecurityGroupManagement, AppType, ArtifactSource, AsyncInferenceConfig, AuthMode, AutoMLChannel, AutoMLComputeConfig, AutoMLDataSplitConfig, AutoMLJobChannel, AutoMLJobConfig, AutoMLJobObjective, AutoMLOutputDataConfig, AutoMLProblemTypeConfig, AutoMLSecurityConfig, AutoMountHomeEFS, AutoParameter, AutoRollbackConfig, Autotune, AwsManagedHumanLoopRequestSource, BatchTransformInput, BestObjectiveNotImproving, Bias, BlueGreenUpdatePolicy, CanvasAppSettings, CapacitySize, CaptureContentTypeHeader, CaptureOption, CategoricalParameter, CategoricalParameterRange, CategoricalParameterRangeSpecification, Channel, ChannelSpecification, CheckpointConfig, ClarifyExplainerConfig, ClusterInstanceGroupSpecification, ClusterNodeRecovery, ClusterOrchestrator, CodeEditorAppImageConfig, CodeEditorAppSettings, CodeRepository, CollectionConfig, CollectionType, CompleteOnConvergence, ComputeQuotaConfig, ComputeQuotaTarget, ContainerDefinition, ContentClassifier, ContextSource, ContinuousParameterRange, CustomImage, FeatureStatus, GitConfig, HyperParameterScalingType, InferenceSpecification, JupyterLabAppImageConfig, KernelGatewayImageConfig, MetricDefinition, MetricsSource, ModelApprovalStatus, ModelDataSource, OutputDataConfig, ProblemType, ProcessingS3DataDistributionType, ProcessingS3InputMode, ProductionVariantInstanceType, ResourceConfig, ResourceSpec, StoppingCondition, Tag, TargetDevice, TargetPlatformAccelerator, TargetPlatformArch, TargetPlatformOs, TrainingInputMode, TrainingInstanceType, TransformJobDefinition, VpcConfig } from "./models_0";
2
+ import { ActionSource, ActionStatus, ActivationState, AdditionalInferenceSpecificationDefinition, AdditionalModelDataSource, AdditionalS3DataSource, AlgorithmValidationSpecification, AmazonQSettings, AnnotationConsolidationConfig, AppInstanceType, AppLifecycleManagement, AppNetworkAccessType, AppSecurityGroupManagement, AppType, ArtifactSource, AsyncInferenceConfig, AuthMode, AutoMLChannel, AutoMLComputeConfig, AutoMLDataSplitConfig, AutoMLJobChannel, AutoMLJobConfig, AutoMLJobObjective, AutoMLOutputDataConfig, AutoMLProblemTypeConfig, AutoMLSecurityConfig, AutoMountHomeEFS, AutoParameter, AutoRollbackConfig, Autotune, AwsManagedHumanLoopRequestSource, BatchTransformInput, BestObjectiveNotImproving, Bias, BlueGreenUpdatePolicy, CanvasAppSettings, CapacitySize, CaptureContentTypeHeader, CaptureOption, CategoricalParameter, CategoricalParameterRange, CategoricalParameterRangeSpecification, Channel, ChannelSpecification, CheckpointConfig, ClarifyExplainerConfig, ClusterInstanceGroupSpecification, ClusterNodeRecovery, ClusterOrchestrator, CodeEditorAppImageConfig, CodeEditorAppSettings, CodeRepository, CollectionConfig, CollectionType, CompleteOnConvergence, ComputeQuotaConfig, ComputeQuotaTarget, ContainerMode, CustomImage, FeatureStatus, GitConfig, ImageConfig, InferenceSpecification, JupyterLabAppImageConfig, KernelGatewayImageConfig, MetricDefinition, MetricsSource, ModelApprovalStatus, ModelDataSource, MultiModelConfig, OutputDataConfig, ProblemType, ProcessingS3DataDistributionType, ProcessingS3InputMode, ProductionVariantInstanceType, ResourceConfig, ResourceSpec, StoppingCondition, Tag, TargetDevice, TargetPlatformAccelerator, TargetPlatformArch, TargetPlatformOs, TrainingInputMode, TrainingInstanceType, TransformJobDefinition, VpcConfig } from "./models_0";
3
3
  import { SageMakerServiceException as __BaseException } from "./SageMakerServiceException";
4
+ /**
5
+ * <p>Describes the container, as part of model definition.</p>
6
+ * @public
7
+ */
8
+ export interface ContainerDefinition {
9
+ /**
10
+ * <p>This parameter is ignored for models that contain only a
11
+ * <code>PrimaryContainer</code>.</p>
12
+ * <p>When a <code>ContainerDefinition</code> is part of an inference pipeline, the value of
13
+ * the parameter uniquely identifies the container for the purposes of logging and metrics.
14
+ * For information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/inference-pipeline-logs-metrics.html">Use Logs and Metrics
15
+ * to Monitor an Inference Pipeline</a>. If you don't specify a value for this
16
+ * parameter for a <code>ContainerDefinition</code> that is part of an inference pipeline,
17
+ * a unique name is automatically assigned based on the position of the
18
+ * <code>ContainerDefinition</code> in the pipeline. If you specify a value for the
19
+ * <code>ContainerHostName</code> for any <code>ContainerDefinition</code> that is part
20
+ * of an inference pipeline, you must specify a value for the
21
+ * <code>ContainerHostName</code> parameter of every <code>ContainerDefinition</code>
22
+ * in that pipeline.</p>
23
+ * @public
24
+ */
25
+ ContainerHostname?: string | undefined;
26
+ /**
27
+ * <p>The path where inference code is stored. This can be either in Amazon EC2 Container Registry or in a
28
+ * Docker registry that is accessible from the same VPC that you configure for your
29
+ * endpoint. If you are using your own custom algorithm instead of an algorithm provided by
30
+ * SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both
31
+ * <code>registry/repository[:tag]</code> and <code>registry/repository[@digest]</code>
32
+ * image path formats. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html">Using Your Own Algorithms with
33
+ * Amazon SageMaker</a>. </p>
34
+ * <note>
35
+ * <p>The model artifacts in an Amazon S3 bucket and the Docker image for inference container
36
+ * in Amazon EC2 Container Registry must be in the same region as the model or endpoint you are
37
+ * creating.</p>
38
+ * </note>
39
+ * @public
40
+ */
41
+ Image?: string | undefined;
42
+ /**
43
+ * <p>Specifies whether the model container is in Amazon ECR or a private Docker registry
44
+ * accessible from your Amazon Virtual Private Cloud (VPC). For information about storing containers in a
45
+ * private Docker registry, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-containers-inference-private.html">Use a
46
+ * Private Docker Registry for Real-Time Inference Containers</a>. </p>
47
+ * <note>
48
+ * <p>The model artifacts in an Amazon S3 bucket and the Docker image for inference container
49
+ * in Amazon EC2 Container Registry must be in the same region as the model or endpoint you are
50
+ * creating.</p>
51
+ * </note>
52
+ * @public
53
+ */
54
+ ImageConfig?: ImageConfig | undefined;
55
+ /**
56
+ * <p>Whether the container hosts a single model or multiple models.</p>
57
+ * @public
58
+ */
59
+ Mode?: ContainerMode | undefined;
60
+ /**
61
+ * <p>The S3 path where the model artifacts, which result from model training, are stored.
62
+ * This path must point to a single gzip compressed tar archive (.tar.gz suffix). The S3
63
+ * path is required for SageMaker built-in algorithms, but not if you use your own algorithms.
64
+ * For more information on built-in algorithms, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html">Common
65
+ * Parameters</a>. </p>
66
+ * <note>
67
+ * <p>The model artifacts must be in an S3 bucket that is in the same region as the
68
+ * model or endpoint you are creating.</p>
69
+ * </note>
70
+ * <p>If you provide a value for this parameter, SageMaker uses Amazon Web Services Security Token
71
+ * Service to download model artifacts from the S3 path you provide. Amazon Web Services STS
72
+ * is activated in your Amazon Web Services account by default. If you previously
73
+ * deactivated Amazon Web Services STS for a region, you need to reactivate Amazon Web Services STS for that region. For more information, see <a href="https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html">Activating and
74
+ * Deactivating Amazon Web Services STS in an Amazon Web Services Region</a> in the
75
+ * <i>Amazon Web Services Identity and Access Management User
76
+ * Guide</i>.</p>
77
+ * <important>
78
+ * <p>If you use a built-in algorithm to create a model, SageMaker requires that you provide
79
+ * a S3 path to the model artifacts in <code>ModelDataUrl</code>.</p>
80
+ * </important>
81
+ * @public
82
+ */
83
+ ModelDataUrl?: string | undefined;
84
+ /**
85
+ * <p>Specifies the location of ML model data to deploy.</p>
86
+ * <note>
87
+ * <p>Currently you cannot use <code>ModelDataSource</code> in conjunction with SageMaker
88
+ * batch transform, SageMaker serverless endpoints, SageMaker multi-model endpoints, and SageMaker
89
+ * Marketplace.</p>
90
+ * </note>
91
+ * @public
92
+ */
93
+ ModelDataSource?: ModelDataSource | undefined;
94
+ /**
95
+ * <p>Data sources that are available to your model in addition to the one that you specify for <code>ModelDataSource</code> when you use the <code>CreateModel</code> action.</p>
96
+ * @public
97
+ */
98
+ AdditionalModelDataSources?: AdditionalModelDataSource[] | undefined;
99
+ /**
100
+ * <p>The environment variables to set in the Docker container. Don't include any
101
+ * sensitive data in your environment variables.</p>
102
+ * <p>The maximum length of each key and value in the <code>Environment</code> map is
103
+ * 1024 bytes. The maximum length of all keys and values in the map, combined, is 32 KB. If
104
+ * you pass multiple containers to a <code>CreateModel</code> request, then the maximum
105
+ * length of all of their maps, combined, is also 32 KB.</p>
106
+ * @public
107
+ */
108
+ Environment?: Record<string, string> | undefined;
109
+ /**
110
+ * <p>The name or Amazon Resource Name (ARN) of the model package to use to create the
111
+ * model.</p>
112
+ * @public
113
+ */
114
+ ModelPackageName?: string | undefined;
115
+ /**
116
+ * <p>The inference specification name in the model package version.</p>
117
+ * @public
118
+ */
119
+ InferenceSpecificationName?: string | undefined;
120
+ /**
121
+ * <p>Specifies additional configuration for multi-model endpoints.</p>
122
+ * @public
123
+ */
124
+ MultiModelConfig?: MultiModelConfig | undefined;
125
+ }
126
+ /**
127
+ * @public
128
+ * @enum
129
+ */
130
+ export declare const ContentClassifier: {
131
+ readonly FREE_OF_ADULT_CONTENT: "FreeOfAdultContent";
132
+ readonly FREE_OF_PERSONALLY_IDENTIFIABLE_INFORMATION: "FreeOfPersonallyIdentifiableInformation";
133
+ };
134
+ /**
135
+ * @public
136
+ */
137
+ export type ContentClassifier = (typeof ContentClassifier)[keyof typeof ContentClassifier];
138
+ /**
139
+ * <p>A structure describing the source of a context.</p>
140
+ * @public
141
+ */
142
+ export interface ContextSource {
143
+ /**
144
+ * <p>The URI of the source.</p>
145
+ * @public
146
+ */
147
+ SourceUri: string | undefined;
148
+ /**
149
+ * <p>The type of the source.</p>
150
+ * @public
151
+ */
152
+ SourceType?: string | undefined;
153
+ /**
154
+ * <p>The ID of the source.</p>
155
+ * @public
156
+ */
157
+ SourceId?: string | undefined;
158
+ }
159
+ /**
160
+ * <p>Lists a summary of the properties of a context. A context provides a logical grouping
161
+ * of other entities.</p>
162
+ * @public
163
+ */
164
+ export interface ContextSummary {
165
+ /**
166
+ * <p>The Amazon Resource Name (ARN) of the context.</p>
167
+ * @public
168
+ */
169
+ ContextArn?: string | undefined;
170
+ /**
171
+ * <p>The name of the context.</p>
172
+ * @public
173
+ */
174
+ ContextName?: string | undefined;
175
+ /**
176
+ * <p>The source of the context.</p>
177
+ * @public
178
+ */
179
+ Source?: ContextSource | undefined;
180
+ /**
181
+ * <p>The type of the context.</p>
182
+ * @public
183
+ */
184
+ ContextType?: string | undefined;
185
+ /**
186
+ * <p>When the context was created.</p>
187
+ * @public
188
+ */
189
+ CreationTime?: Date | undefined;
190
+ /**
191
+ * <p>When the context was last modified.</p>
192
+ * @public
193
+ */
194
+ LastModifiedTime?: Date | undefined;
195
+ }
196
+ /**
197
+ * @public
198
+ * @enum
199
+ */
200
+ export declare const HyperParameterScalingType: {
201
+ readonly AUTO: "Auto";
202
+ readonly LINEAR: "Linear";
203
+ readonly LOGARITHMIC: "Logarithmic";
204
+ readonly REVERSE_LOGARITHMIC: "ReverseLogarithmic";
205
+ };
206
+ /**
207
+ * @public
208
+ */
209
+ export type HyperParameterScalingType = (typeof HyperParameterScalingType)[keyof typeof HyperParameterScalingType];
210
+ /**
211
+ * <p>A list of continuous hyperparameters to tune.</p>
212
+ * @public
213
+ */
214
+ export interface ContinuousParameterRange {
215
+ /**
216
+ * <p>The name of the continuous hyperparameter to tune.</p>
217
+ * @public
218
+ */
219
+ Name: string | undefined;
220
+ /**
221
+ * <p>The minimum value for the hyperparameter.
222
+ * The
223
+ * tuning job uses floating-point values between this value and <code>MaxValue</code>for
224
+ * tuning.</p>
225
+ * @public
226
+ */
227
+ MinValue: string | undefined;
228
+ /**
229
+ * <p>The maximum value for the hyperparameter. The tuning job uses floating-point values
230
+ * between <code>MinValue</code> value and this value for tuning.</p>
231
+ * @public
232
+ */
233
+ MaxValue: string | undefined;
234
+ /**
235
+ * <p>The scale that hyperparameter tuning uses to search the hyperparameter range. For
236
+ * information about choosing a hyperparameter scale, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type">Hyperparameter Scaling</a>. One of the following values:</p>
237
+ * <dl>
238
+ * <dt>Auto</dt>
239
+ * <dd>
240
+ * <p>SageMaker hyperparameter tuning chooses the best scale for the
241
+ * hyperparameter.</p>
242
+ * </dd>
243
+ * <dt>Linear</dt>
244
+ * <dd>
245
+ * <p>Hyperparameter tuning searches the values in the hyperparameter range by
246
+ * using a linear scale.</p>
247
+ * </dd>
248
+ * <dt>Logarithmic</dt>
249
+ * <dd>
250
+ * <p>Hyperparameter tuning searches the values in the hyperparameter range by
251
+ * using a logarithmic scale.</p>
252
+ * <p>Logarithmic scaling works only for ranges that have only values greater
253
+ * than 0.</p>
254
+ * </dd>
255
+ * <dt>ReverseLogarithmic</dt>
256
+ * <dd>
257
+ * <p>Hyperparameter tuning searches the values in the hyperparameter range by
258
+ * using a reverse logarithmic scale.</p>
259
+ * <p>Reverse logarithmic scaling works only for ranges that are entirely within
260
+ * the range 0<=x<1.0.</p>
261
+ * </dd>
262
+ * </dl>
263
+ * @public
264
+ */
265
+ ScalingType?: HyperParameterScalingType | undefined;
266
+ }
4
267
  /**
5
268
  * <p>Defines the possible values for a continuous hyperparameter.</p>
6
269
  * @public
@@ -11778,254 +12041,6 @@ export interface MonitoringInput {
11778
12041
  */
11779
12042
  BatchTransformInput?: BatchTransformInput | undefined;
11780
12043
  }
11781
- /**
11782
- * <p>Networking options for a job, such as network traffic encryption between containers,
11783
- * whether to allow inbound and outbound network calls to and from containers, and the VPC
11784
- * subnets and security groups to use for VPC-enabled jobs.</p>
11785
- * @public
11786
- */
11787
- export interface NetworkConfig {
11788
- /**
11789
- * <p>Whether to encrypt all communications between distributed processing jobs. Choose
11790
- * <code>True</code> to encrypt communications. Encryption provides greater security
11791
- * for distributed processing jobs, but the processing might take longer.</p>
11792
- * @public
11793
- */
11794
- EnableInterContainerTrafficEncryption?: boolean | undefined;
11795
- /**
11796
- * <p>Whether to allow inbound and outbound network calls to and from the containers used for
11797
- * the processing job.</p>
11798
- * @public
11799
- */
11800
- EnableNetworkIsolation?: boolean | undefined;
11801
- /**
11802
- * <p>Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs, hosted models, and compute resources
11803
- * have access to. You can control access to and from your resources by configuring a VPC.
11804
- * For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html">Give SageMaker Access to
11805
- * Resources in your Amazon VPC</a>. </p>
11806
- * @public
11807
- */
11808
- VpcConfig?: VpcConfig | undefined;
11809
- }
11810
- /**
11811
- * <p>Defines the monitoring job.</p>
11812
- * @public
11813
- */
11814
- export interface MonitoringJobDefinition {
11815
- /**
11816
- * <p>Baseline configuration used to validate that the data conforms to the specified
11817
- * constraints and statistics</p>
11818
- * @public
11819
- */
11820
- BaselineConfig?: MonitoringBaselineConfig | undefined;
11821
- /**
11822
- * <p>The array of inputs for the monitoring job. Currently we support monitoring an Amazon SageMaker AI Endpoint.</p>
11823
- * @public
11824
- */
11825
- MonitoringInputs: MonitoringInput[] | undefined;
11826
- /**
11827
- * <p>The array of outputs from the monitoring job to be uploaded to Amazon S3.</p>
11828
- * @public
11829
- */
11830
- MonitoringOutputConfig: MonitoringOutputConfig | undefined;
11831
- /**
11832
- * <p>Identifies the resources, ML compute instances, and ML storage volumes to deploy for a
11833
- * monitoring job. In distributed processing, you specify more than one instance.</p>
11834
- * @public
11835
- */
11836
- MonitoringResources: MonitoringResources | undefined;
11837
- /**
11838
- * <p>Configures the monitoring job to run a specified Docker container image.</p>
11839
- * @public
11840
- */
11841
- MonitoringAppSpecification: MonitoringAppSpecification | undefined;
11842
- /**
11843
- * <p>Specifies a time limit for how long the monitoring job is allowed to run.</p>
11844
- * @public
11845
- */
11846
- StoppingCondition?: MonitoringStoppingCondition | undefined;
11847
- /**
11848
- * <p>Sets the environment variables in the Docker container.</p>
11849
- * @public
11850
- */
11851
- Environment?: Record<string, string> | undefined;
11852
- /**
11853
- * <p>Specifies networking options for an monitoring job.</p>
11854
- * @public
11855
- */
11856
- NetworkConfig?: NetworkConfig | undefined;
11857
- /**
11858
- * <p>The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI can
11859
- * assume to perform tasks on your behalf.</p>
11860
- * @public
11861
- */
11862
- RoleArn: string | undefined;
11863
- }
11864
- /**
11865
- * @public
11866
- * @enum
11867
- */
11868
- export declare const MonitoringType: {
11869
- readonly DATA_QUALITY: "DataQuality";
11870
- readonly MODEL_BIAS: "ModelBias";
11871
- readonly MODEL_EXPLAINABILITY: "ModelExplainability";
11872
- readonly MODEL_QUALITY: "ModelQuality";
11873
- };
11874
- /**
11875
- * @public
11876
- */
11877
- export type MonitoringType = (typeof MonitoringType)[keyof typeof MonitoringType];
11878
- /**
11879
- * <p>Configuration details about the monitoring schedule.</p>
11880
- * @public
11881
- */
11882
- export interface ScheduleConfig {
11883
- /**
11884
- * <p>A cron expression that describes details about the monitoring schedule.</p>
11885
- * <p>The supported cron expressions are:</p>
11886
- * <ul>
11887
- * <li>
11888
- * <p>If you want to set the job to start every hour, use the following:</p>
11889
- * <p>
11890
- * <code>Hourly: cron(0 * ? * * *)</code>
11891
- * </p>
11892
- * </li>
11893
- * <li>
11894
- * <p>If you want to start the job daily:</p>
11895
- * <p>
11896
- * <code>cron(0 [00-23] ? * * *)</code>
11897
- * </p>
11898
- * </li>
11899
- * <li>
11900
- * <p>If you want to run the job one time, immediately, use the following
11901
- * keyword:</p>
11902
- * <p>
11903
- * <code>NOW</code>
11904
- * </p>
11905
- * </li>
11906
- * </ul>
11907
- * <p>For example, the following are valid cron expressions:</p>
11908
- * <ul>
11909
- * <li>
11910
- * <p>Daily at noon UTC: <code>cron(0 12 ? * * *)</code>
11911
- * </p>
11912
- * </li>
11913
- * <li>
11914
- * <p>Daily at midnight UTC: <code>cron(0 0 ? * * *)</code>
11915
- * </p>
11916
- * </li>
11917
- * </ul>
11918
- * <p>To support running every 6, 12 hours, the following are also supported:</p>
11919
- * <p>
11920
- * <code>cron(0 [00-23]/[01-24] ? * * *)</code>
11921
- * </p>
11922
- * <p>For example, the following are valid cron expressions:</p>
11923
- * <ul>
11924
- * <li>
11925
- * <p>Every 12 hours, starting at 5pm UTC: <code>cron(0 17/12 ? * * *)</code>
11926
- * </p>
11927
- * </li>
11928
- * <li>
11929
- * <p>Every two hours starting at midnight: <code>cron(0 0/2 ? * * *)</code>
11930
- * </p>
11931
- * </li>
11932
- * </ul>
11933
- * <note>
11934
- * <ul>
11935
- * <li>
11936
- * <p>Even though the cron expression is set to start at 5PM UTC, note that there
11937
- * could be a delay of 0-20 minutes from the actual requested time to run the
11938
- * execution. </p>
11939
- * </li>
11940
- * <li>
11941
- * <p>We recommend that if you would like a daily schedule, you do not provide this
11942
- * parameter. Amazon SageMaker AI will pick a time for running every day.</p>
11943
- * </li>
11944
- * </ul>
11945
- * </note>
11946
- * <p>You can also specify the keyword <code>NOW</code> to run the monitoring job immediately,
11947
- * one time, without recurring.</p>
11948
- * @public
11949
- */
11950
- ScheduleExpression: string | undefined;
11951
- /**
11952
- * <p>Sets the start time for a monitoring job window. Express this time as an offset to the
11953
- * times that you schedule your monitoring jobs to run. You schedule monitoring jobs with the
11954
- * <code>ScheduleExpression</code> parameter. Specify this offset in ISO 8601 duration
11955
- * format. For example, if you want to monitor the five hours of data in your dataset that
11956
- * precede the start of each monitoring job, you would specify: <code>"-PT5H"</code>.</p>
11957
- * <p>The start time that you specify must not precede the end time that you specify by more
11958
- * than 24 hours. You specify the end time with the <code>DataAnalysisEndTime</code>
11959
- * parameter.</p>
11960
- * <p>If you set <code>ScheduleExpression</code> to <code>NOW</code>, this parameter is
11961
- * required.</p>
11962
- * @public
11963
- */
11964
- DataAnalysisStartTime?: string | undefined;
11965
- /**
11966
- * <p>Sets the end time for a monitoring job window. Express this time as an offset to the
11967
- * times that you schedule your monitoring jobs to run. You schedule monitoring jobs with the
11968
- * <code>ScheduleExpression</code> parameter. Specify this offset in ISO 8601 duration
11969
- * format. For example, if you want to end the window one hour before the start of each
11970
- * monitoring job, you would specify: <code>"-PT1H"</code>.</p>
11971
- * <p>The end time that you specify must not follow the start time that you specify by more
11972
- * than 24 hours. You specify the start time with the <code>DataAnalysisStartTime</code>
11973
- * parameter.</p>
11974
- * <p>If you set <code>ScheduleExpression</code> to <code>NOW</code>, this parameter is
11975
- * required.</p>
11976
- * @public
11977
- */
11978
- DataAnalysisEndTime?: string | undefined;
11979
- }
11980
- /**
11981
- * <p>Configures the monitoring schedule and defines the monitoring job.</p>
11982
- * @public
11983
- */
11984
- export interface MonitoringScheduleConfig {
11985
- /**
11986
- * <p>Configures the monitoring schedule.</p>
11987
- * @public
11988
- */
11989
- ScheduleConfig?: ScheduleConfig | undefined;
11990
- /**
11991
- * <p>Defines the monitoring job.</p>
11992
- * @public
11993
- */
11994
- MonitoringJobDefinition?: MonitoringJobDefinition | undefined;
11995
- /**
11996
- * <p>The name of the monitoring job definition to schedule.</p>
11997
- * @public
11998
- */
11999
- MonitoringJobDefinitionName?: string | undefined;
12000
- /**
12001
- * <p>The type of the monitoring job definition to schedule.</p>
12002
- * @public
12003
- */
12004
- MonitoringType?: MonitoringType | undefined;
12005
- }
12006
- /**
12007
- * @public
12008
- */
12009
- export interface CreateMonitoringScheduleRequest {
12010
- /**
12011
- * <p>The name of the monitoring schedule. The name must be unique within an Amazon Web Services
12012
- * Region within an Amazon Web Services account.</p>
12013
- * @public
12014
- */
12015
- MonitoringScheduleName: string | undefined;
12016
- /**
12017
- * <p>The configuration object that specifies the monitoring schedule and defines the monitoring
12018
- * job.</p>
12019
- * @public
12020
- */
12021
- MonitoringScheduleConfig: MonitoringScheduleConfig | undefined;
12022
- /**
12023
- * <p>(Optional) An array of key-value pairs. For more information, see <a href=" https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-whatURL">Using Cost Allocation Tags</a> in the <i>Amazon Web Services Billing and Cost
12024
- * Management User Guide</i>.</p>
12025
- * @public
12026
- */
12027
- Tags?: Tag[] | undefined;
12028
- }
12029
12044
  /**
12030
12045
  * @internal
12031
12046
  */