@aws-sdk/client-sagemaker 3.78.0 → 3.79.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (62) hide show
  1. package/CHANGELOG.md +11 -0
  2. package/README.md +2 -2
  3. package/dist-cjs/commands/CreateImageVersionCommand.js +2 -1
  4. package/dist-cjs/commands/DescribeLabelingJobCommand.js +2 -1
  5. package/dist-cjs/commands/DescribeLineageGroupCommand.js +1 -2
  6. package/dist-cjs/commands/ListTrainingJobsCommand.js +1 -2
  7. package/dist-cjs/models/models_0.js +16 -17
  8. package/dist-cjs/models/models_1.js +18 -18
  9. package/dist-cjs/models/models_2.js +18 -18
  10. package/dist-cjs/models/models_3.js +15 -3
  11. package/dist-cjs/protocols/Aws_json1_1.js +20 -0
  12. package/dist-es/commands/CreateImageVersionCommand.js +2 -1
  13. package/dist-es/commands/DescribeLabelingJobCommand.js +2 -1
  14. package/dist-es/commands/DescribeLineageGroupCommand.js +1 -2
  15. package/dist-es/commands/ListTrainingJobsCommand.js +1 -2
  16. package/dist-es/models/models_0.js +9 -8
  17. package/dist-es/models/models_1.js +8 -8
  18. package/dist-es/models/models_2.js +8 -8
  19. package/dist-es/models/models_3.js +8 -0
  20. package/dist-es/protocols/Aws_json1_1.js +18 -2
  21. package/dist-types/SageMaker.d.ts +78 -73
  22. package/dist-types/SageMakerClient.d.ts +2 -2
  23. package/dist-types/commands/AddTagsCommand.d.ts +1 -1
  24. package/dist-types/commands/CreateAlgorithmCommand.d.ts +1 -1
  25. package/dist-types/commands/CreateCodeRepositoryCommand.d.ts +2 -2
  26. package/dist-types/commands/CreateEndpointCommand.d.ts +7 -7
  27. package/dist-types/commands/CreateEndpointConfigCommand.d.ts +5 -5
  28. package/dist-types/commands/CreateImageCommand.d.ts +1 -1
  29. package/dist-types/commands/CreateImageVersionCommand.d.ts +3 -2
  30. package/dist-types/commands/CreateModelCommand.d.ts +6 -8
  31. package/dist-types/commands/CreateModelPackageCommand.d.ts +4 -4
  32. package/dist-types/commands/CreateNotebookInstanceCommand.d.ts +13 -13
  33. package/dist-types/commands/CreatePresignedNotebookInstanceUrlCommand.d.ts +2 -2
  34. package/dist-types/commands/CreateTrainingJobCommand.d.ts +8 -8
  35. package/dist-types/commands/DeleteEndpointCommand.d.ts +9 -2
  36. package/dist-types/commands/DeleteModelCommand.d.ts +1 -1
  37. package/dist-types/commands/DeleteModelPackageCommand.d.ts +2 -2
  38. package/dist-types/commands/DeleteNotebookInstanceCommand.d.ts +2 -2
  39. package/dist-types/commands/DeleteTagsCommand.d.ts +1 -1
  40. package/dist-types/commands/DescribeLabelingJobCommand.d.ts +2 -1
  41. package/dist-types/commands/DescribeLineageGroupCommand.d.ts +1 -2
  42. package/dist-types/commands/ListNotebookInstancesCommand.d.ts +1 -1
  43. package/dist-types/commands/ListTagsCommand.d.ts +1 -1
  44. package/dist-types/commands/ListTrainingJobsCommand.d.ts +1 -2
  45. package/dist-types/commands/StartNotebookInstanceCommand.d.ts +1 -1
  46. package/dist-types/commands/StopNotebookInstanceCommand.d.ts +2 -2
  47. package/dist-types/commands/StopTrainingJobCommand.d.ts +3 -3
  48. package/dist-types/commands/UpdateEndpointCommand.d.ts +1 -1
  49. package/dist-types/commands/UpdateEndpointWeightsAndCapacitiesCommand.d.ts +1 -1
  50. package/dist-types/models/models_0.d.ts +143 -126
  51. package/dist-types/models/models_1.d.ts +88 -231
  52. package/dist-types/models/models_2.d.ts +215 -163
  53. package/dist-types/models/models_3.d.ts +116 -30
  54. package/dist-types/ts3.4/commands/CreateImageVersionCommand.d.ts +2 -1
  55. package/dist-types/ts3.4/commands/DescribeLabelingJobCommand.d.ts +2 -1
  56. package/dist-types/ts3.4/commands/DescribeLineageGroupCommand.d.ts +1 -2
  57. package/dist-types/ts3.4/commands/ListTrainingJobsCommand.d.ts +1 -2
  58. package/dist-types/ts3.4/models/models_0.d.ts +17 -17
  59. package/dist-types/ts3.4/models/models_1.d.ts +18 -51
  60. package/dist-types/ts3.4/models/models_2.d.ts +51 -46
  61. package/dist-types/ts3.4/models/models_3.d.ts +46 -1
  62. package/package.json +8 -8
@@ -1,5 +1,13 @@
1
1
  import { __assign, __read } from "tslib";
2
2
  import { OidcConfig, TrialComponentParameterValue, } from "./models_1";
3
+ export var ListTrainingJobsRequest;
4
+ (function (ListTrainingJobsRequest) {
5
+ ListTrainingJobsRequest.filterSensitiveLog = function (obj) { return (__assign({}, obj)); };
6
+ })(ListTrainingJobsRequest || (ListTrainingJobsRequest = {}));
7
+ export var TrainingJobSummary;
8
+ (function (TrainingJobSummary) {
9
+ TrainingJobSummary.filterSensitiveLog = function (obj) { return (__assign({}, obj)); };
10
+ })(TrainingJobSummary || (TrainingJobSummary = {}));
3
11
  export var ListTrainingJobsResponse;
4
12
  (function (ListTrainingJobsResponse) {
5
13
  ListTrainingJobsResponse.filterSensitiveLog = function (obj) { return (__assign({}, obj)); };
@@ -15311,7 +15311,7 @@ var serializeAws_json1_1AttributeNames = function (input, context) {
15311
15311
  });
15312
15312
  };
15313
15313
  var serializeAws_json1_1AutoMLChannel = function (input, context) {
15314
- return __assign(__assign(__assign(__assign({}, (input.CompressionType !== undefined &&
15314
+ return __assign(__assign(__assign(__assign(__assign({}, (input.ChannelType !== undefined && input.ChannelType !== null && { ChannelType: input.ChannelType })), (input.CompressionType !== undefined &&
15315
15315
  input.CompressionType !== null && { CompressionType: input.CompressionType })), (input.ContentType !== undefined && input.ContentType !== null && { ContentType: input.ContentType })), (input.DataSource !== undefined &&
15316
15316
  input.DataSource !== null && { DataSource: serializeAws_json1_1AutoMLDataSource(input.DataSource, context) })), (input.TargetAttributeName !== undefined &&
15317
15317
  input.TargetAttributeName !== null && { TargetAttributeName: input.TargetAttributeName }));
@@ -15322,6 +15322,10 @@ var serializeAws_json1_1AutoMLDataSource = function (input, context) {
15322
15322
  S3DataSource: serializeAws_json1_1AutoMLS3DataSource(input.S3DataSource, context),
15323
15323
  }));
15324
15324
  };
15325
+ var serializeAws_json1_1AutoMLDataSplitConfig = function (input, context) {
15326
+ return __assign({}, (input.ValidationFraction !== undefined &&
15327
+ input.ValidationFraction !== null && { ValidationFraction: __serializeFloat(input.ValidationFraction) }));
15328
+ };
15325
15329
  var serializeAws_json1_1AutoMLInputDataConfig = function (input, context) {
15326
15330
  return input
15327
15331
  .filter(function (e) { return e != null; })
@@ -15342,9 +15346,12 @@ var serializeAws_json1_1AutoMLJobCompletionCriteria = function (input, context)
15342
15346
  }));
15343
15347
  };
15344
15348
  var serializeAws_json1_1AutoMLJobConfig = function (input, context) {
15345
- return __assign(__assign({}, (input.CompletionCriteria !== undefined &&
15349
+ return __assign(__assign(__assign({}, (input.CompletionCriteria !== undefined &&
15346
15350
  input.CompletionCriteria !== null && {
15347
15351
  CompletionCriteria: serializeAws_json1_1AutoMLJobCompletionCriteria(input.CompletionCriteria, context),
15352
+ })), (input.DataSplitConfig !== undefined &&
15353
+ input.DataSplitConfig !== null && {
15354
+ DataSplitConfig: serializeAws_json1_1AutoMLDataSplitConfig(input.DataSplitConfig, context),
15348
15355
  })), (input.SecurityConfig !== undefined &&
15349
15356
  input.SecurityConfig !== null && {
15350
15357
  SecurityConfig: serializeAws_json1_1AutoMLSecurityConfig(input.SecurityConfig, context),
@@ -20061,6 +20068,7 @@ var deserializeAws_json1_1AutoMLCandidateStep = function (output, context) {
20061
20068
  };
20062
20069
  var deserializeAws_json1_1AutoMLChannel = function (output, context) {
20063
20070
  return {
20071
+ ChannelType: __expectString(output.ChannelType),
20064
20072
  CompressionType: __expectString(output.CompressionType),
20065
20073
  ContentType: __expectString(output.ContentType),
20066
20074
  DataSource: output.DataSource !== undefined && output.DataSource !== null
@@ -20096,6 +20104,11 @@ var deserializeAws_json1_1AutoMLDataSource = function (output, context) {
20096
20104
  : undefined,
20097
20105
  };
20098
20106
  };
20107
+ var deserializeAws_json1_1AutoMLDataSplitConfig = function (output, context) {
20108
+ return {
20109
+ ValidationFraction: __limitedParseFloat32(output.ValidationFraction),
20110
+ };
20111
+ };
20099
20112
  var deserializeAws_json1_1AutoMLInputDataConfig = function (output, context) {
20100
20113
  var retVal = (output || [])
20101
20114
  .filter(function (e) { return e != null; })
@@ -20125,6 +20138,9 @@ var deserializeAws_json1_1AutoMLJobConfig = function (output, context) {
20125
20138
  CompletionCriteria: output.CompletionCriteria !== undefined && output.CompletionCriteria !== null
20126
20139
  ? deserializeAws_json1_1AutoMLJobCompletionCriteria(output.CompletionCriteria, context)
20127
20140
  : undefined,
20141
+ DataSplitConfig: output.DataSplitConfig !== undefined && output.DataSplitConfig !== null
20142
+ ? deserializeAws_json1_1AutoMLDataSplitConfig(output.DataSplitConfig, context)
20143
+ : undefined,
20128
20144
  SecurityConfig: output.SecurityConfig !== undefined && output.SecurityConfig !== null
20129
20145
  ? deserializeAws_json1_1AutoMLSecurityConfig(output.SecurityConfig, context)
20130
20146
  : undefined,
@@ -252,12 +252,12 @@ import { UpdateWorkforceCommandInput, UpdateWorkforceCommandOutput } from "./com
252
252
  import { UpdateWorkteamCommandInput, UpdateWorkteamCommandOutput } from "./commands/UpdateWorkteamCommand";
253
253
  import { SageMakerClient } from "./SageMakerClient";
254
254
  /**
255
- * <p>Provides APIs for creating and managing Amazon SageMaker resources. </p>
255
+ * <p>Provides APIs for creating and managing SageMaker resources. </p>
256
256
  * <p>Other Resources:</p>
257
257
  * <ul>
258
258
  * <li>
259
259
  * <p>
260
- * <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html#first-time-user">Amazon SageMaker Developer
260
+ * <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html#first-time-user">SageMaker Developer
261
261
  * Guide</a>
262
262
  * </p>
263
263
  * </li>
@@ -281,7 +281,7 @@ export declare class SageMaker extends SageMakerClient {
281
281
  addAssociation(args: AddAssociationCommandInput, cb: (err: any, data?: AddAssociationCommandOutput) => void): void;
282
282
  addAssociation(args: AddAssociationCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: AddAssociationCommandOutput) => void): void;
283
283
  /**
284
- * <p>Adds or overwrites one or more tags for the specified Amazon SageMaker resource. You can add
284
+ * <p>Adds or overwrites one or more tags for the specified SageMaker resource. You can add
285
285
  * tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform
286
286
  * jobs, models, labeling jobs, work teams, endpoint configurations, and
287
287
  * endpoints.</p>
@@ -335,7 +335,7 @@ export declare class SageMaker extends SageMakerClient {
335
335
  createAction(args: CreateActionCommandInput, cb: (err: any, data?: CreateActionCommandOutput) => void): void;
336
336
  createAction(args: CreateActionCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: CreateActionCommandOutput) => void): void;
337
337
  /**
338
- * <p>Create a machine learning algorithm that you can use in Amazon SageMaker and list in the Amazon Web Services
338
+ * <p>Create a machine learning algorithm that you can use in SageMaker and list in the Amazon Web Services
339
339
  * Marketplace.</p>
340
340
  */
341
341
  createAlgorithm(args: CreateAlgorithmCommandInput, options?: __HttpHandlerOptions): Promise<CreateAlgorithmCommandOutput>;
@@ -378,9 +378,9 @@ export declare class SageMaker extends SageMakerClient {
378
378
  createAutoMLJob(args: CreateAutoMLJobCommandInput, cb: (err: any, data?: CreateAutoMLJobCommandOutput) => void): void;
379
379
  createAutoMLJob(args: CreateAutoMLJobCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: CreateAutoMLJobCommandOutput) => void): void;
380
380
  /**
381
- * <p>Creates a Git repository as a resource in your Amazon SageMaker account. You can associate the
381
+ * <p>Creates a Git repository as a resource in your SageMaker account. You can associate the
382
382
  * repository with notebook instances so that you can use Git source control for the
383
- * notebooks you create. The Git repository is a resource in your Amazon SageMaker account, so it can
383
+ * notebooks you create. The Git repository is a resource in your SageMaker account, so it can
384
384
  * be associated with more than one notebook instance, and it persists independently from
385
385
  * the lifecycle of any notebook instances it is associated with.</p>
386
386
  * <p>The repository can be hosted either in <a href="https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html">Amazon Web Services CodeCommit</a> or in any
@@ -508,11 +508,11 @@ export declare class SageMaker extends SageMakerClient {
508
508
  createEdgePackagingJob(args: CreateEdgePackagingJobCommandInput, cb: (err: any, data?: CreateEdgePackagingJobCommandOutput) => void): void;
509
509
  createEdgePackagingJob(args: CreateEdgePackagingJobCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: CreateEdgePackagingJobCommandOutput) => void): void;
510
510
  /**
511
- * <p>Creates an endpoint using the endpoint configuration specified in the request. Amazon SageMaker
511
+ * <p>Creates an endpoint using the endpoint configuration specified in the request. SageMaker
512
512
  * uses the endpoint to provision resources and deploy models. You create the endpoint
513
513
  * configuration with the <a>CreateEndpointConfig</a> API. </p>
514
- * <p> Use this API to deploy models using Amazon SageMaker hosting services. </p>
515
- * <p>For an example that calls this method when deploying a model to Amazon SageMaker hosting services,
514
+ * <p> Use this API to deploy models using SageMaker hosting services. </p>
515
+ * <p>For an example that calls this method when deploying a model to SageMaker hosting services,
516
516
  * see the <a href="https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-fundamentals/create-endpoint/create_endpoint.ipynb">Create Endpoint example notebook.</a>
517
517
  * </p>
518
518
  * <note>
@@ -522,7 +522,7 @@ export declare class SageMaker extends SageMakerClient {
522
522
  * create a new <code>EndpointConfig</code>.</p>
523
523
  * </note>
524
524
  * <p>The endpoint name must be unique within an Amazon Web Services Region in your Amazon Web Services account. </p>
525
- * <p>When it receives the request, Amazon SageMaker creates the endpoint, launches the resources (ML
525
+ * <p>When it receives the request, SageMaker creates the endpoint, launches the resources (ML
526
526
  * compute instances), and deploys the model(s) on them. </p>
527
527
  *
528
528
  * <note>
@@ -537,13 +537,13 @@ export declare class SageMaker extends SageMakerClient {
537
537
  * response should return the latest data. So retry logic is recommended to handle
538
538
  * these possible issues. We also recommend that customers call <a>DescribeEndpointConfig</a> before calling <a>CreateEndpoint</a> to minimize the potential impact of a DynamoDB eventually consistent read.</p>
539
539
  * </note>
540
- * <p>When Amazon SageMaker receives the request, it sets the endpoint status to
540
+ * <p>When SageMaker receives the request, it sets the endpoint status to
541
541
  * <code>Creating</code>. After it creates the endpoint, it sets the status to
542
- * <code>InService</code>. Amazon SageMaker can then process incoming requests for inferences. To
542
+ * <code>InService</code>. SageMaker can then process incoming requests for inferences. To
543
543
  * check the status of an endpoint, use the <a>DescribeEndpoint</a>
544
544
  * API.</p>
545
545
  * <p>If any of the models hosted at this endpoint get model data from an Amazon S3 location,
546
- * Amazon SageMaker uses Amazon Web Services Security Token Service to download model artifacts from the S3 path you
546
+ * SageMaker uses Amazon Web Services Security Token Service to download model artifacts from the S3 path you
547
547
  * provided. Amazon Web Services STS is activated in your IAM user account by default. If you previously
548
548
  * deactivated Amazon Web Services STS for a region, you need to reactivate Amazon Web Services STS for that region. For
549
549
  * more information, see <a href="https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html">Activating and
@@ -590,22 +590,22 @@ export declare class SageMaker extends SageMakerClient {
590
590
  createEndpoint(args: CreateEndpointCommandInput, cb: (err: any, data?: CreateEndpointCommandOutput) => void): void;
591
591
  createEndpoint(args: CreateEndpointCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: CreateEndpointCommandOutput) => void): void;
592
592
  /**
593
- * <p>Creates an endpoint configuration that Amazon SageMaker hosting services uses to deploy models. In
593
+ * <p>Creates an endpoint configuration that SageMaker hosting services uses to deploy models. In
594
594
  * the configuration, you identify one or more models, created using the
595
- * <code>CreateModel</code> API, to deploy and the resources that you want Amazon SageMaker to
595
+ * <code>CreateModel</code> API, to deploy and the resources that you want SageMaker to
596
596
  * provision. Then you call the <a>CreateEndpoint</a> API.</p>
597
597
  * <note>
598
- * <p> Use this API if you want to use Amazon SageMaker hosting services to deploy models into
598
+ * <p> Use this API if you want to use SageMaker hosting services to deploy models into
599
599
  * production. </p>
600
600
  * </note>
601
601
  * <p>In the request, you define a <code>ProductionVariant</code>, for each model that you
602
602
  * want to deploy. Each <code>ProductionVariant</code> parameter also describes the
603
- * resources that you want Amazon SageMaker to provision. This includes the number and type of ML
603
+ * resources that you want SageMaker to provision. This includes the number and type of ML
604
604
  * compute instances to deploy. </p>
605
605
  * <p>If you are hosting multiple models, you also assign a <code>VariantWeight</code> to
606
606
  * specify how much traffic you want to allocate to each model. For example, suppose that
607
607
  * you want to host two models, A and B, and you assign traffic weight 2 for model A and 1
608
- * for model B. Amazon SageMaker distributes two-thirds of the traffic to Model A, and one-third to
608
+ * for model B. SageMaker distributes two-thirds of the traffic to Model A, and one-third to
609
609
  * model B. </p>
610
610
  * <note>
611
611
  * <p>When you call <a>CreateEndpoint</a>, a load call is made to DynamoDB to
@@ -687,7 +687,7 @@ export declare class SageMaker extends SageMakerClient {
687
687
  createHyperParameterTuningJob(args: CreateHyperParameterTuningJobCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: CreateHyperParameterTuningJobCommandOutput) => void): void;
688
688
  /**
689
689
  * <p>Creates a custom SageMaker image. A SageMaker image is a set of image versions. Each image
690
- * version represents a container image stored in Amazon Container Registry (ECR). For more information, see
690
+ * version represents a container image stored in Amazon Elastic Container Registry (ECR). For more information, see
691
691
  * <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/studio-byoi.html">Bring your own SageMaker image</a>.</p>
692
692
  */
693
693
  createImage(args: CreateImageCommandInput, options?: __HttpHandlerOptions): Promise<CreateImageCommandOutput>;
@@ -695,7 +695,7 @@ export declare class SageMaker extends SageMakerClient {
695
695
  createImage(args: CreateImageCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: CreateImageCommandOutput) => void): void;
696
696
  /**
697
697
  * <p>Creates a version of the SageMaker image specified by <code>ImageName</code>. The version
698
- * represents the Amazon Container Registry (ECR) container image specified by <code>BaseImage</code>.</p>
698
+ * represents the Amazon Elastic Container Registry (ECR) container image specified by <code>BaseImage</code>.</p>
699
699
  */
700
700
  createImageVersion(args: CreateImageVersionCommandInput, options?: __HttpHandlerOptions): Promise<CreateImageVersionCommandOutput>;
701
701
  createImageVersion(args: CreateImageVersionCommandInput, cb: (err: any, data?: CreateImageVersionCommandOutput) => void): void;
@@ -751,27 +751,25 @@ export declare class SageMaker extends SageMakerClient {
751
751
  createLabelingJob(args: CreateLabelingJobCommandInput, cb: (err: any, data?: CreateLabelingJobCommandOutput) => void): void;
752
752
  createLabelingJob(args: CreateLabelingJobCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: CreateLabelingJobCommandOutput) => void): void;
753
753
  /**
754
- * <p>Creates a model in Amazon SageMaker. In the request, you name the model and describe a primary
754
+ * <p>Creates a model in SageMaker. In the request, you name the model and describe a primary
755
755
  * container. For the primary container, you specify the Docker image that
756
756
  * contains inference code, artifacts (from prior training), and a custom environment map
757
757
  * that the inference code uses when you deploy the model for predictions.</p>
758
- * <p>Use this API to create a model if you want to use Amazon SageMaker hosting services or run a batch
758
+ * <p>Use this API to create a model if you want to use SageMaker hosting services or run a batch
759
759
  * transform job.</p>
760
760
  * <p>To host your model, you create an endpoint configuration with the
761
761
  * <code>CreateEndpointConfig</code> API, and then create an endpoint with the
762
- * <code>CreateEndpoint</code> API. Amazon SageMaker then deploys all of the containers that you
762
+ * <code>CreateEndpoint</code> API. SageMaker then deploys all of the containers that you
763
763
  * defined for the model in the hosting environment. </p>
764
- * <p>For an example that calls this method when deploying a model to Amazon SageMaker hosting services,
764
+ * <p>For an example that calls this method when deploying a model to SageMaker hosting services,
765
765
  * see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/ex1-deploy-model.html#ex1-deploy-model-boto">Deploy the
766
766
  * Model to Amazon SageMaker Hosting Services (Amazon Web Services SDK for Python (Boto
767
767
  * 3)).</a>
768
768
  * </p>
769
769
  * <p>To run a batch transform using your model, you start a job with the
770
- * <code>CreateTransformJob</code> API. Amazon SageMaker uses your model and your dataset to get
770
+ * <code>CreateTransformJob</code> API. SageMaker uses your model and your dataset to get
771
771
  * inferences which are then saved to a specified S3 location.</p>
772
- * <p>In the <code>CreateModel</code> request, you must define a container with the
773
- * <code>PrimaryContainer</code> parameter.</p>
774
- * <p>In the request, you also provide an IAM role that Amazon SageMaker can assume to access model
772
+ * <p>In the request, you also provide an IAM role that SageMaker can assume to access model
775
773
  * artifacts and docker image for deployment on ML compute hosting instances or for batch
776
774
  * transform jobs. In addition, you also use the IAM role to manage permissions the
777
775
  * inference code needs. For example, if the inference code access any other Amazon Web Services resources,
@@ -793,14 +791,14 @@ export declare class SageMaker extends SageMakerClient {
793
791
  createModelExplainabilityJobDefinition(args: CreateModelExplainabilityJobDefinitionCommandInput, cb: (err: any, data?: CreateModelExplainabilityJobDefinitionCommandOutput) => void): void;
794
792
  createModelExplainabilityJobDefinition(args: CreateModelExplainabilityJobDefinitionCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: CreateModelExplainabilityJobDefinitionCommandOutput) => void): void;
795
793
  /**
796
- * <p>Creates a model package that you can use to create Amazon SageMaker models or list on Amazon Web Services
794
+ * <p>Creates a model package that you can use to create SageMaker models or list on Amazon Web Services
797
795
  * Marketplace, or a versioned model that is part of a model group. Buyers can subscribe to
798
- * model packages listed on Amazon Web Services Marketplace to create models in Amazon SageMaker.</p>
796
+ * model packages listed on Amazon Web Services Marketplace to create models in SageMaker.</p>
799
797
  * <p>To create a model package by specifying a Docker container that contains your
800
798
  * inference code and the Amazon S3 location of your model artifacts, provide values for
801
- * <code>InferenceSpecification</code>. To create a model from an algorithm resource
799
+ * <code>InferenceSpecification</code>. To create a model from an algorithm resource
802
800
  * that you created or subscribed to in Amazon Web Services Marketplace, provide a value for
803
- * <code>SourceAlgorithmSpecification</code>.</p>
801
+ * <code>SourceAlgorithmSpecification</code>.</p>
804
802
  * <note>
805
803
  * <p>There are two types of model packages:</p>
806
804
  * <ul>
@@ -838,41 +836,41 @@ export declare class SageMaker extends SageMakerClient {
838
836
  createMonitoringSchedule(args: CreateMonitoringScheduleCommandInput, cb: (err: any, data?: CreateMonitoringScheduleCommandOutput) => void): void;
839
837
  createMonitoringSchedule(args: CreateMonitoringScheduleCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: CreateMonitoringScheduleCommandOutput) => void): void;
840
838
  /**
841
- * <p>Creates an Amazon SageMaker notebook instance. A notebook instance is a machine learning (ML)
839
+ * <p>Creates an SageMaker notebook instance. A notebook instance is a machine learning (ML)
842
840
  * compute instance running on a Jupyter notebook. </p>
843
841
  * <p>In a <code>CreateNotebookInstance</code> request, specify the type of ML compute
844
- * instance that you want to run. Amazon SageMaker launches the instance, installs common libraries
842
+ * instance that you want to run. SageMaker launches the instance, installs common libraries
845
843
  * that you can use to explore datasets for model training, and attaches an ML storage
846
844
  * volume to the notebook instance. </p>
847
- * <p>Amazon SageMaker also provides a set of example notebooks. Each notebook demonstrates how to
848
- * use Amazon SageMaker with a specific algorithm or with a machine learning framework. </p>
849
- * <p>After receiving the request, Amazon SageMaker does the following:</p>
845
+ * <p>SageMaker also provides a set of example notebooks. Each notebook demonstrates how to
846
+ * use SageMaker with a specific algorithm or with a machine learning framework. </p>
847
+ * <p>After receiving the request, SageMaker does the following:</p>
850
848
  * <ol>
851
849
  * <li>
852
- * <p>Creates a network interface in the Amazon SageMaker VPC.</p>
850
+ * <p>Creates a network interface in the SageMaker VPC.</p>
853
851
  * </li>
854
852
  * <li>
855
- * <p>(Option) If you specified <code>SubnetId</code>, Amazon SageMaker creates a network
853
+ * <p>(Option) If you specified <code>SubnetId</code>, SageMaker creates a network
856
854
  * interface in your own VPC, which is inferred from the subnet ID that you provide
857
- * in the input. When creating this network interface, Amazon SageMaker attaches the security
855
+ * in the input. When creating this network interface, SageMaker attaches the security
858
856
  * group that you specified in the request to the network interface that it creates
859
857
  * in your VPC.</p>
860
858
  *
861
859
  * </li>
862
860
  * <li>
863
- * <p>Launches an EC2 instance of the type specified in the request in the Amazon SageMaker
864
- * VPC. If you specified <code>SubnetId</code> of your VPC, Amazon SageMaker specifies both
861
+ * <p>Launches an EC2 instance of the type specified in the request in the SageMaker
862
+ * VPC. If you specified <code>SubnetId</code> of your VPC, SageMaker specifies both
865
863
  * network interfaces when launching this instance. This enables inbound traffic
866
864
  * from your own VPC to the notebook instance, assuming that the security groups
867
865
  * allow it.</p>
868
866
  * </li>
869
867
  * </ol>
870
868
  *
871
- * <p>After creating the notebook instance, Amazon SageMaker returns its Amazon Resource Name (ARN).
869
+ * <p>After creating the notebook instance, SageMaker returns its Amazon Resource Name (ARN).
872
870
  * You can't change the name of a notebook instance after you create it.</p>
873
- * <p>After Amazon SageMaker creates the notebook instance, you can connect to the Jupyter server and
871
+ * <p>After SageMaker creates the notebook instance, you can connect to the Jupyter server and
874
872
  * work in Jupyter notebooks. For example, you can write code to explore a dataset that you
875
- * can use for model training, train a model, host models by creating Amazon SageMaker endpoints, and
873
+ * can use for model training, train a model, host models by creating SageMaker endpoints, and
876
874
  * validate hosted models. </p>
877
875
  * <p>For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html">How It Works</a>. </p>
878
876
  */
@@ -928,8 +926,8 @@ export declare class SageMaker extends SageMakerClient {
928
926
  createPresignedDomainUrl(args: CreatePresignedDomainUrlCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: CreatePresignedDomainUrlCommandOutput) => void): void;
929
927
  /**
930
928
  * <p>Returns a URL that you can use to connect to the Jupyter server from a notebook
931
- * instance. In the Amazon SageMaker console, when you choose <code>Open</code> next to a notebook
932
- * instance, Amazon SageMaker opens a new tab showing the Jupyter server home page from the notebook
929
+ * instance. In the SageMaker console, when you choose <code>Open</code> next to a notebook
930
+ * instance, SageMaker opens a new tab showing the Jupyter server home page from the notebook
933
931
  * instance. The console uses this API to get the URL and show the page.</p>
934
932
  * <p> The IAM role or user used to call this API defines the permissions to access the
935
933
  * notebook instance. Once the presigned URL is created, no additional permission is
@@ -969,11 +967,11 @@ export declare class SageMaker extends SageMakerClient {
969
967
  createStudioLifecycleConfig(args: CreateStudioLifecycleConfigCommandInput, cb: (err: any, data?: CreateStudioLifecycleConfigCommandOutput) => void): void;
970
968
  createStudioLifecycleConfig(args: CreateStudioLifecycleConfigCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: CreateStudioLifecycleConfigCommandOutput) => void): void;
971
969
  /**
972
- * <p>Starts a model training job. After training completes, Amazon SageMaker saves the resulting
970
+ * <p>Starts a model training job. After training completes, SageMaker saves the resulting
973
971
  * model artifacts to an Amazon S3 location that you specify. </p>
974
- * <p>If you choose to host your model using Amazon SageMaker hosting services, you can use the
972
+ * <p>If you choose to host your model using SageMaker hosting services, you can use the
975
973
  * resulting model artifacts as part of the model. You can also use the artifacts in a
976
- * machine learning service other than Amazon SageMaker, provided that you know how to use them for
974
+ * machine learning service other than SageMaker, provided that you know how to use them for
977
975
  * inference.
978
976
  * </p>
979
977
  * <p>In the request body, you provide the following: </p>
@@ -989,7 +987,7 @@ export declare class SageMaker extends SageMakerClient {
989
987
  * <code>HyperParameters</code> - Specify these algorithm-specific parameters to
990
988
  * enable the estimation of model parameters during training. Hyperparameters can
991
989
  * be tuned to optimize this learning process. For a list of hyperparameters for
992
- * each training algorithm provided by Amazon SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. </p>
990
+ * each training algorithm provided by SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. </p>
993
991
  * </li>
994
992
  * <li>
995
993
  * <p>
@@ -999,7 +997,7 @@ export declare class SageMaker extends SageMakerClient {
999
997
  * <li>
1000
998
  * <p>
1001
999
  * <code>OutputDataConfig</code> - Identifies the Amazon S3 bucket where you want
1002
- * Amazon SageMaker to save the results of model training. </p>
1000
+ * SageMaker to save the results of model training. </p>
1003
1001
  * </li>
1004
1002
  * <li>
1005
1003
  * <p>
@@ -1017,10 +1015,10 @@ export declare class SageMaker extends SageMakerClient {
1017
1015
  * </li>
1018
1016
  * <li>
1019
1017
  * <p>
1020
- * <code>RoleArn</code> - The Amazon Resource Name (ARN) that Amazon SageMaker assumes to perform tasks on
1018
+ * <code>RoleArn</code> - The Amazon Resource Name (ARN) that SageMaker assumes to perform tasks on
1021
1019
  * your behalf during model training.
1022
1020
  *
1023
- * You must grant this role the necessary permissions so that Amazon SageMaker can successfully
1021
+ * You must grant this role the necessary permissions so that SageMaker can successfully
1024
1022
  * complete model training. </p>
1025
1023
  * </li>
1026
1024
  * <li>
@@ -1041,7 +1039,7 @@ export declare class SageMaker extends SageMakerClient {
1041
1039
  * fails due to an <code>InternalServerError</code>.</p>
1042
1040
  * </li>
1043
1041
  * </ul>
1044
- * <p> For more information about Amazon SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html">How It Works</a>. </p>
1042
+ * <p> For more information about SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html">How It Works</a>. </p>
1045
1043
  */
1046
1044
  createTrainingJob(args: CreateTrainingJobCommandInput, options?: __HttpHandlerOptions): Promise<CreateTrainingJobCommandOutput>;
1047
1045
  createTrainingJob(args: CreateTrainingJobCommandInput, cb: (err: any, data?: CreateTrainingJobCommandOutput) => void): void;
@@ -1236,10 +1234,17 @@ export declare class SageMaker extends SageMakerClient {
1236
1234
  deleteDomain(args: DeleteDomainCommandInput, cb: (err: any, data?: DeleteDomainCommandOutput) => void): void;
1237
1235
  deleteDomain(args: DeleteDomainCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: DeleteDomainCommandOutput) => void): void;
1238
1236
  /**
1239
- * <p>Deletes an endpoint. Amazon SageMaker frees up all of the resources that were deployed when the
1237
+ * <p>Deletes an endpoint. SageMaker frees up all of the resources that were deployed when the
1240
1238
  * endpoint was created. </p>
1241
- * <p>Amazon SageMaker retires any custom KMS key grants associated with the endpoint, meaning you don't
1239
+ * <p>SageMaker retires any custom KMS key grants associated with the endpoint, meaning you don't
1242
1240
  * need to use the <a href="http://docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html">RevokeGrant</a> API call.</p>
1241
+ * <p>When you delete your endpoint, SageMaker asynchronously deletes associated endpoint resources such as KMS key grants.
1242
+ * You might still see these resources in your account for a few minutes after deleting your endpoint.
1243
+ * Do not delete or revoke the permissions for your
1244
+ * <code>
1245
+ * <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html#sagemaker-CreateModel-request-ExecutionRoleArn">ExecutionRoleArn</a>
1246
+ * </code>,
1247
+ * otherwise SageMaker cannot delete these resources.</p>
1243
1248
  */
1244
1249
  deleteEndpoint(args: DeleteEndpointCommandInput, options?: __HttpHandlerOptions): Promise<DeleteEndpointCommandOutput>;
1245
1250
  deleteEndpoint(args: DeleteEndpointCommandInput, cb: (err: any, data?: DeleteEndpointCommandOutput) => void): void;
@@ -1309,7 +1314,7 @@ export declare class SageMaker extends SageMakerClient {
1309
1314
  deleteImageVersion(args: DeleteImageVersionCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: DeleteImageVersionCommandOutput) => void): void;
1310
1315
  /**
1311
1316
  * <p>Deletes a model. The <code>DeleteModel</code> API deletes only the model entry that
1312
- * was created in Amazon SageMaker when you called the <code>CreateModel</code> API. It does not
1317
+ * was created in SageMaker when you called the <code>CreateModel</code> API. It does not
1313
1318
  * delete model artifacts, inference code, or the IAM role that you specified when
1314
1319
  * creating the model. </p>
1315
1320
  */
@@ -1330,8 +1335,8 @@ export declare class SageMaker extends SageMakerClient {
1330
1335
  deleteModelExplainabilityJobDefinition(args: DeleteModelExplainabilityJobDefinitionCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: DeleteModelExplainabilityJobDefinitionCommandOutput) => void): void;
1331
1336
  /**
1332
1337
  * <p>Deletes a model package.</p>
1333
- * <p>A model package is used to create Amazon SageMaker models or list on Amazon Web Services Marketplace. Buyers can
1334
- * subscribe to model packages listed on Amazon Web Services Marketplace to create models in Amazon SageMaker.</p>
1338
+ * <p>A model package is used to create SageMaker models or list on Amazon Web Services Marketplace. Buyers can
1339
+ * subscribe to model packages listed on Amazon Web Services Marketplace to create models in SageMaker.</p>
1335
1340
  */
1336
1341
  deleteModelPackage(args: DeleteModelPackageCommandInput, options?: __HttpHandlerOptions): Promise<DeleteModelPackageCommandOutput>;
1337
1342
  deleteModelPackage(args: DeleteModelPackageCommandInput, cb: (err: any, data?: DeleteModelPackageCommandOutput) => void): void;
@@ -1362,10 +1367,10 @@ export declare class SageMaker extends SageMakerClient {
1362
1367
  deleteMonitoringSchedule(args: DeleteMonitoringScheduleCommandInput, cb: (err: any, data?: DeleteMonitoringScheduleCommandOutput) => void): void;
1363
1368
  deleteMonitoringSchedule(args: DeleteMonitoringScheduleCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: DeleteMonitoringScheduleCommandOutput) => void): void;
1364
1369
  /**
1365
- * <p> Deletes an Amazon SageMaker notebook instance. Before you can delete a notebook instance, you
1370
+ * <p> Deletes an SageMaker notebook instance. Before you can delete a notebook instance, you
1366
1371
  * must call the <code>StopNotebookInstance</code> API. </p>
1367
1372
  * <important>
1368
- * <p>When you delete a notebook instance, you lose all of your data. Amazon SageMaker removes
1373
+ * <p>When you delete a notebook instance, you lose all of your data. SageMaker removes
1369
1374
  * the ML compute instance, and deletes the ML storage volume and the network interface
1370
1375
  * associated with the notebook instance. </p>
1371
1376
  * </important>
@@ -1401,7 +1406,7 @@ export declare class SageMaker extends SageMakerClient {
1401
1406
  deleteStudioLifecycleConfig(args: DeleteStudioLifecycleConfigCommandInput, cb: (err: any, data?: DeleteStudioLifecycleConfigCommandOutput) => void): void;
1402
1407
  deleteStudioLifecycleConfig(args: DeleteStudioLifecycleConfigCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: DeleteStudioLifecycleConfigCommandOutput) => void): void;
1403
1408
  /**
1404
- * <p>Deletes the specified tags from an Amazon SageMaker resource.</p>
1409
+ * <p>Deletes the specified tags from an SageMaker resource.</p>
1405
1410
  * <p>To list a resource's tags, use the <code>ListTags</code> API. </p>
1406
1411
  * <note>
1407
1412
  * <p>When you call this API to delete tags from a hyperparameter tuning job, the
@@ -2103,7 +2108,7 @@ export declare class SageMaker extends SageMakerClient {
2103
2108
  listNotebookInstanceLifecycleConfigs(args: ListNotebookInstanceLifecycleConfigsCommandInput, cb: (err: any, data?: ListNotebookInstanceLifecycleConfigsCommandOutput) => void): void;
2104
2109
  listNotebookInstanceLifecycleConfigs(args: ListNotebookInstanceLifecycleConfigsCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: ListNotebookInstanceLifecycleConfigsCommandOutput) => void): void;
2105
2110
  /**
2106
- * <p>Returns a list of the Amazon SageMaker notebook instances in the requester's account in an Amazon Web Services
2111
+ * <p>Returns a list of the SageMaker notebook instances in the requester's account in an Amazon Web Services
2107
2112
  * Region. </p>
2108
2113
  */
2109
2114
  listNotebookInstances(args: ListNotebookInstancesCommandInput, options?: __HttpHandlerOptions): Promise<ListNotebookInstancesCommandOutput>;
@@ -2160,7 +2165,7 @@ export declare class SageMaker extends SageMakerClient {
2160
2165
  listSubscribedWorkteams(args: ListSubscribedWorkteamsCommandInput, cb: (err: any, data?: ListSubscribedWorkteamsCommandOutput) => void): void;
2161
2166
  listSubscribedWorkteams(args: ListSubscribedWorkteamsCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: ListSubscribedWorkteamsCommandOutput) => void): void;
2162
2167
  /**
2163
- * <p>Returns the tags for the specified Amazon SageMaker resource.</p>
2168
+ * <p>Returns the tags for the specified SageMaker resource.</p>
2164
2169
  */
2165
2170
  listTags(args: ListTagsCommandInput, options?: __HttpHandlerOptions): Promise<ListTagsCommandOutput>;
2166
2171
  listTags(args: ListTagsCommandInput, cb: (err: any, data?: ListTagsCommandOutput) => void): void;
@@ -2332,7 +2337,7 @@ export declare class SageMaker extends SageMakerClient {
2332
2337
  startMonitoringSchedule(args: StartMonitoringScheduleCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: StartMonitoringScheduleCommandOutput) => void): void;
2333
2338
  /**
2334
2339
  * <p>Launches an ML compute instance with the latest version of the libraries and
2335
- * attaches your ML storage volume. After configuring the notebook instance, Amazon SageMaker sets the
2340
+ * attaches your ML storage volume. After configuring the notebook instance, SageMaker sets the
2336
2341
  * notebook instance status to <code>InService</code>. A notebook instance's status must be
2337
2342
  * <code>InService</code> before you can connect to your Jupyter notebook. </p>
2338
2343
  */
@@ -2400,8 +2405,8 @@ export declare class SageMaker extends SageMakerClient {
2400
2405
  stopMonitoringSchedule(args: StopMonitoringScheduleCommandInput, cb: (err: any, data?: StopMonitoringScheduleCommandOutput) => void): void;
2401
2406
  stopMonitoringSchedule(args: StopMonitoringScheduleCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: StopMonitoringScheduleCommandOutput) => void): void;
2402
2407
  /**
2403
- * <p>Terminates the ML compute instance. Before terminating the instance, Amazon SageMaker
2404
- * disconnects the ML storage volume from it. Amazon SageMaker preserves the ML storage volume. Amazon SageMaker
2408
+ * <p>Terminates the ML compute instance. Before terminating the instance, SageMaker
2409
+ * disconnects the ML storage volume from it. SageMaker preserves the ML storage volume. SageMaker
2405
2410
  * stops charging you for the ML compute instance when you call
2406
2411
  * <code>StopNotebookInstance</code>.</p>
2407
2412
  * <p>To access data on the ML storage volume for a notebook instance that has been
@@ -2450,12 +2455,12 @@ export declare class SageMaker extends SageMakerClient {
2450
2455
  stopProcessingJob(args: StopProcessingJobCommandInput, cb: (err: any, data?: StopProcessingJobCommandOutput) => void): void;
2451
2456
  stopProcessingJob(args: StopProcessingJobCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: StopProcessingJobCommandOutput) => void): void;
2452
2457
  /**
2453
- * <p>Stops a training job. To stop a job, Amazon SageMaker sends the algorithm the
2458
+ * <p>Stops a training job. To stop a job, SageMaker sends the algorithm the
2454
2459
  * <code>SIGTERM</code> signal, which delays job termination for 120 seconds.
2455
2460
  * Algorithms might use this 120-second window to save the model artifacts, so the results
2456
2461
  * of the training is not lost. </p>
2457
- * <p>When it receives a <code>StopTrainingJob</code> request, Amazon SageMaker changes the status of
2458
- * the job to <code>Stopping</code>. After Amazon SageMaker stops the job, it sets the status to
2462
+ * <p>When it receives a <code>StopTrainingJob</code> request, SageMaker changes the status of
2463
+ * the job to <code>Stopping</code>. After SageMaker stops the job, it sets the status to
2459
2464
  * <code>Stopped</code>.</p>
2460
2465
  */
2461
2466
  stopTrainingJob(args: StopTrainingJobCommandInput, options?: __HttpHandlerOptions): Promise<StopTrainingJobCommandOutput>;
@@ -2524,7 +2529,7 @@ export declare class SageMaker extends SageMakerClient {
2524
2529
  * <p>Deploys the new <code>EndpointConfig</code> specified in the request, switches to
2525
2530
  * using newly created endpoint, and then deletes resources provisioned for the endpoint
2526
2531
  * using the previous <code>EndpointConfig</code> (there is no availability loss). </p>
2527
- * <p>When Amazon SageMaker receives the request, it sets the endpoint status to
2532
+ * <p>When SageMaker receives the request, it sets the endpoint status to
2528
2533
  * <code>Updating</code>. After updating the endpoint, it sets the status to
2529
2534
  * <code>InService</code>. To check the status of an endpoint, use the <a>DescribeEndpoint</a> API.
2530
2535
  *
@@ -2545,7 +2550,7 @@ export declare class SageMaker extends SageMakerClient {
2545
2550
  /**
2546
2551
  * <p>Updates variant weight of one or more variants associated with an existing
2547
2552
  * endpoint, or capacity of one variant associated with an existing endpoint. When it
2548
- * receives the request, Amazon SageMaker sets the endpoint status to <code>Updating</code>. After
2553
+ * receives the request, SageMaker sets the endpoint status to <code>Updating</code>. After
2549
2554
  * updating the endpoint, it sets the status to <code>InService</code>. To check the status
2550
2555
  * of an endpoint, use the <a>DescribeEndpoint</a> API. </p>
2551
2556
  */
@@ -377,12 +377,12 @@ declare type SageMakerClientResolvedConfigType = __SmithyResolvedConfiguration<_
377
377
  export interface SageMakerClientResolvedConfig extends SageMakerClientResolvedConfigType {
378
378
  }
379
379
  /**
380
- * <p>Provides APIs for creating and managing Amazon SageMaker resources. </p>
380
+ * <p>Provides APIs for creating and managing SageMaker resources. </p>
381
381
  * <p>Other Resources:</p>
382
382
  * <ul>
383
383
  * <li>
384
384
  * <p>
385
- * <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html#first-time-user">Amazon SageMaker Developer
385
+ * <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html#first-time-user">SageMaker Developer
386
386
  * Guide</a>
387
387
  * </p>
388
388
  * </li>
@@ -7,7 +7,7 @@ export interface AddTagsCommandInput extends AddTagsInput {
7
7
  export interface AddTagsCommandOutput extends AddTagsOutput, __MetadataBearer {
8
8
  }
9
9
  /**
10
- * <p>Adds or overwrites one or more tags for the specified Amazon SageMaker resource. You can add
10
+ * <p>Adds or overwrites one or more tags for the specified SageMaker resource. You can add
11
11
  * tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform
12
12
  * jobs, models, labeling jobs, work teams, endpoint configurations, and
13
13
  * endpoints.</p>
@@ -7,7 +7,7 @@ export interface CreateAlgorithmCommandInput extends CreateAlgorithmInput {
7
7
  export interface CreateAlgorithmCommandOutput extends CreateAlgorithmOutput, __MetadataBearer {
8
8
  }
9
9
  /**
10
- * <p>Create a machine learning algorithm that you can use in Amazon SageMaker and list in the Amazon Web Services
10
+ * <p>Create a machine learning algorithm that you can use in SageMaker and list in the Amazon Web Services
11
11
  * Marketplace.</p>
12
12
  * @example
13
13
  * Use a bare-bones client and the command you need to make an API call.
@@ -7,9 +7,9 @@ export interface CreateCodeRepositoryCommandInput extends CreateCodeRepositoryIn
7
7
  export interface CreateCodeRepositoryCommandOutput extends CreateCodeRepositoryOutput, __MetadataBearer {
8
8
  }
9
9
  /**
10
- * <p>Creates a Git repository as a resource in your Amazon SageMaker account. You can associate the
10
+ * <p>Creates a Git repository as a resource in your SageMaker account. You can associate the
11
11
  * repository with notebook instances so that you can use Git source control for the
12
- * notebooks you create. The Git repository is a resource in your Amazon SageMaker account, so it can
12
+ * notebooks you create. The Git repository is a resource in your SageMaker account, so it can
13
13
  * be associated with more than one notebook instance, and it persists independently from
14
14
  * the lifecycle of any notebook instances it is associated with.</p>
15
15
  * <p>The repository can be hosted either in <a href="https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html">Amazon Web Services CodeCommit</a> or in any
@@ -7,11 +7,11 @@ export interface CreateEndpointCommandInput extends CreateEndpointInput {
7
7
  export interface CreateEndpointCommandOutput extends CreateEndpointOutput, __MetadataBearer {
8
8
  }
9
9
  /**
10
- * <p>Creates an endpoint using the endpoint configuration specified in the request. Amazon SageMaker
10
+ * <p>Creates an endpoint using the endpoint configuration specified in the request. SageMaker
11
11
  * uses the endpoint to provision resources and deploy models. You create the endpoint
12
12
  * configuration with the <a>CreateEndpointConfig</a> API. </p>
13
- * <p> Use this API to deploy models using Amazon SageMaker hosting services. </p>
14
- * <p>For an example that calls this method when deploying a model to Amazon SageMaker hosting services,
13
+ * <p> Use this API to deploy models using SageMaker hosting services. </p>
14
+ * <p>For an example that calls this method when deploying a model to SageMaker hosting services,
15
15
  * see the <a href="https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-fundamentals/create-endpoint/create_endpoint.ipynb">Create Endpoint example notebook.</a>
16
16
  * </p>
17
17
  * <note>
@@ -21,7 +21,7 @@ export interface CreateEndpointCommandOutput extends CreateEndpointOutput, __Met
21
21
  * create a new <code>EndpointConfig</code>.</p>
22
22
  * </note>
23
23
  * <p>The endpoint name must be unique within an Amazon Web Services Region in your Amazon Web Services account. </p>
24
- * <p>When it receives the request, Amazon SageMaker creates the endpoint, launches the resources (ML
24
+ * <p>When it receives the request, SageMaker creates the endpoint, launches the resources (ML
25
25
  * compute instances), and deploys the model(s) on them. </p>
26
26
  *
27
27
  * <note>
@@ -36,13 +36,13 @@ export interface CreateEndpointCommandOutput extends CreateEndpointOutput, __Met
36
36
  * response should return the latest data. So retry logic is recommended to handle
37
37
  * these possible issues. We also recommend that customers call <a>DescribeEndpointConfig</a> before calling <a>CreateEndpoint</a> to minimize the potential impact of a DynamoDB eventually consistent read.</p>
38
38
  * </note>
39
- * <p>When Amazon SageMaker receives the request, it sets the endpoint status to
39
+ * <p>When SageMaker receives the request, it sets the endpoint status to
40
40
  * <code>Creating</code>. After it creates the endpoint, it sets the status to
41
- * <code>InService</code>. Amazon SageMaker can then process incoming requests for inferences. To
41
+ * <code>InService</code>. SageMaker can then process incoming requests for inferences. To
42
42
  * check the status of an endpoint, use the <a>DescribeEndpoint</a>
43
43
  * API.</p>
44
44
  * <p>If any of the models hosted at this endpoint get model data from an Amazon S3 location,
45
- * Amazon SageMaker uses Amazon Web Services Security Token Service to download model artifacts from the S3 path you
45
+ * SageMaker uses Amazon Web Services Security Token Service to download model artifacts from the S3 path you
46
46
  * provided. Amazon Web Services STS is activated in your IAM user account by default. If you previously
47
47
  * deactivated Amazon Web Services STS for a region, you need to reactivate Amazon Web Services STS for that region. For
48
48
  * more information, see <a href="https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html">Activating and