@aws-sdk/client-sagemaker 3.78.0 → 3.79.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +11 -0
- package/README.md +2 -2
- package/dist-cjs/commands/CreateImageVersionCommand.js +2 -1
- package/dist-cjs/commands/DescribeLabelingJobCommand.js +2 -1
- package/dist-cjs/commands/DescribeLineageGroupCommand.js +1 -2
- package/dist-cjs/commands/ListTrainingJobsCommand.js +1 -2
- package/dist-cjs/models/models_0.js +16 -17
- package/dist-cjs/models/models_1.js +18 -18
- package/dist-cjs/models/models_2.js +18 -18
- package/dist-cjs/models/models_3.js +15 -3
- package/dist-cjs/protocols/Aws_json1_1.js +20 -0
- package/dist-es/commands/CreateImageVersionCommand.js +2 -1
- package/dist-es/commands/DescribeLabelingJobCommand.js +2 -1
- package/dist-es/commands/DescribeLineageGroupCommand.js +1 -2
- package/dist-es/commands/ListTrainingJobsCommand.js +1 -2
- package/dist-es/models/models_0.js +9 -8
- package/dist-es/models/models_1.js +8 -8
- package/dist-es/models/models_2.js +8 -8
- package/dist-es/models/models_3.js +8 -0
- package/dist-es/protocols/Aws_json1_1.js +18 -2
- package/dist-types/SageMaker.d.ts +78 -73
- package/dist-types/SageMakerClient.d.ts +2 -2
- package/dist-types/commands/AddTagsCommand.d.ts +1 -1
- package/dist-types/commands/CreateAlgorithmCommand.d.ts +1 -1
- package/dist-types/commands/CreateCodeRepositoryCommand.d.ts +2 -2
- package/dist-types/commands/CreateEndpointCommand.d.ts +7 -7
- package/dist-types/commands/CreateEndpointConfigCommand.d.ts +5 -5
- package/dist-types/commands/CreateImageCommand.d.ts +1 -1
- package/dist-types/commands/CreateImageVersionCommand.d.ts +3 -2
- package/dist-types/commands/CreateModelCommand.d.ts +6 -8
- package/dist-types/commands/CreateModelPackageCommand.d.ts +4 -4
- package/dist-types/commands/CreateNotebookInstanceCommand.d.ts +13 -13
- package/dist-types/commands/CreatePresignedNotebookInstanceUrlCommand.d.ts +2 -2
- package/dist-types/commands/CreateTrainingJobCommand.d.ts +8 -8
- package/dist-types/commands/DeleteEndpointCommand.d.ts +9 -2
- package/dist-types/commands/DeleteModelCommand.d.ts +1 -1
- package/dist-types/commands/DeleteModelPackageCommand.d.ts +2 -2
- package/dist-types/commands/DeleteNotebookInstanceCommand.d.ts +2 -2
- package/dist-types/commands/DeleteTagsCommand.d.ts +1 -1
- package/dist-types/commands/DescribeLabelingJobCommand.d.ts +2 -1
- package/dist-types/commands/DescribeLineageGroupCommand.d.ts +1 -2
- package/dist-types/commands/ListNotebookInstancesCommand.d.ts +1 -1
- package/dist-types/commands/ListTagsCommand.d.ts +1 -1
- package/dist-types/commands/ListTrainingJobsCommand.d.ts +1 -2
- package/dist-types/commands/StartNotebookInstanceCommand.d.ts +1 -1
- package/dist-types/commands/StopNotebookInstanceCommand.d.ts +2 -2
- package/dist-types/commands/StopTrainingJobCommand.d.ts +3 -3
- package/dist-types/commands/UpdateEndpointCommand.d.ts +1 -1
- package/dist-types/commands/UpdateEndpointWeightsAndCapacitiesCommand.d.ts +1 -1
- package/dist-types/models/models_0.d.ts +143 -126
- package/dist-types/models/models_1.d.ts +88 -231
- package/dist-types/models/models_2.d.ts +215 -163
- package/dist-types/models/models_3.d.ts +116 -30
- package/dist-types/ts3.4/commands/CreateImageVersionCommand.d.ts +2 -1
- package/dist-types/ts3.4/commands/DescribeLabelingJobCommand.d.ts +2 -1
- package/dist-types/ts3.4/commands/DescribeLineageGroupCommand.d.ts +1 -2
- package/dist-types/ts3.4/commands/ListTrainingJobsCommand.d.ts +1 -2
- package/dist-types/ts3.4/models/models_0.d.ts +17 -17
- package/dist-types/ts3.4/models/models_1.d.ts +18 -51
- package/dist-types/ts3.4/models/models_2.d.ts +51 -46
- package/dist-types/ts3.4/models/models_3.d.ts +46 -1
- package/package.json +8 -8
|
@@ -1,5 +1,13 @@
|
|
|
1
1
|
import { __assign, __read } from "tslib";
|
|
2
2
|
import { OidcConfig, TrialComponentParameterValue, } from "./models_1";
|
|
3
|
+
export var ListTrainingJobsRequest;
|
|
4
|
+
(function (ListTrainingJobsRequest) {
|
|
5
|
+
ListTrainingJobsRequest.filterSensitiveLog = function (obj) { return (__assign({}, obj)); };
|
|
6
|
+
})(ListTrainingJobsRequest || (ListTrainingJobsRequest = {}));
|
|
7
|
+
export var TrainingJobSummary;
|
|
8
|
+
(function (TrainingJobSummary) {
|
|
9
|
+
TrainingJobSummary.filterSensitiveLog = function (obj) { return (__assign({}, obj)); };
|
|
10
|
+
})(TrainingJobSummary || (TrainingJobSummary = {}));
|
|
3
11
|
export var ListTrainingJobsResponse;
|
|
4
12
|
(function (ListTrainingJobsResponse) {
|
|
5
13
|
ListTrainingJobsResponse.filterSensitiveLog = function (obj) { return (__assign({}, obj)); };
|
|
@@ -15311,7 +15311,7 @@ var serializeAws_json1_1AttributeNames = function (input, context) {
|
|
|
15311
15311
|
});
|
|
15312
15312
|
};
|
|
15313
15313
|
var serializeAws_json1_1AutoMLChannel = function (input, context) {
|
|
15314
|
-
return __assign(__assign(__assign(__assign({}, (input.CompressionType !== undefined &&
|
|
15314
|
+
return __assign(__assign(__assign(__assign(__assign({}, (input.ChannelType !== undefined && input.ChannelType !== null && { ChannelType: input.ChannelType })), (input.CompressionType !== undefined &&
|
|
15315
15315
|
input.CompressionType !== null && { CompressionType: input.CompressionType })), (input.ContentType !== undefined && input.ContentType !== null && { ContentType: input.ContentType })), (input.DataSource !== undefined &&
|
|
15316
15316
|
input.DataSource !== null && { DataSource: serializeAws_json1_1AutoMLDataSource(input.DataSource, context) })), (input.TargetAttributeName !== undefined &&
|
|
15317
15317
|
input.TargetAttributeName !== null && { TargetAttributeName: input.TargetAttributeName }));
|
|
@@ -15322,6 +15322,10 @@ var serializeAws_json1_1AutoMLDataSource = function (input, context) {
|
|
|
15322
15322
|
S3DataSource: serializeAws_json1_1AutoMLS3DataSource(input.S3DataSource, context),
|
|
15323
15323
|
}));
|
|
15324
15324
|
};
|
|
15325
|
+
var serializeAws_json1_1AutoMLDataSplitConfig = function (input, context) {
|
|
15326
|
+
return __assign({}, (input.ValidationFraction !== undefined &&
|
|
15327
|
+
input.ValidationFraction !== null && { ValidationFraction: __serializeFloat(input.ValidationFraction) }));
|
|
15328
|
+
};
|
|
15325
15329
|
var serializeAws_json1_1AutoMLInputDataConfig = function (input, context) {
|
|
15326
15330
|
return input
|
|
15327
15331
|
.filter(function (e) { return e != null; })
|
|
@@ -15342,9 +15346,12 @@ var serializeAws_json1_1AutoMLJobCompletionCriteria = function (input, context)
|
|
|
15342
15346
|
}));
|
|
15343
15347
|
};
|
|
15344
15348
|
var serializeAws_json1_1AutoMLJobConfig = function (input, context) {
|
|
15345
|
-
return __assign(__assign({}, (input.CompletionCriteria !== undefined &&
|
|
15349
|
+
return __assign(__assign(__assign({}, (input.CompletionCriteria !== undefined &&
|
|
15346
15350
|
input.CompletionCriteria !== null && {
|
|
15347
15351
|
CompletionCriteria: serializeAws_json1_1AutoMLJobCompletionCriteria(input.CompletionCriteria, context),
|
|
15352
|
+
})), (input.DataSplitConfig !== undefined &&
|
|
15353
|
+
input.DataSplitConfig !== null && {
|
|
15354
|
+
DataSplitConfig: serializeAws_json1_1AutoMLDataSplitConfig(input.DataSplitConfig, context),
|
|
15348
15355
|
})), (input.SecurityConfig !== undefined &&
|
|
15349
15356
|
input.SecurityConfig !== null && {
|
|
15350
15357
|
SecurityConfig: serializeAws_json1_1AutoMLSecurityConfig(input.SecurityConfig, context),
|
|
@@ -20061,6 +20068,7 @@ var deserializeAws_json1_1AutoMLCandidateStep = function (output, context) {
|
|
|
20061
20068
|
};
|
|
20062
20069
|
var deserializeAws_json1_1AutoMLChannel = function (output, context) {
|
|
20063
20070
|
return {
|
|
20071
|
+
ChannelType: __expectString(output.ChannelType),
|
|
20064
20072
|
CompressionType: __expectString(output.CompressionType),
|
|
20065
20073
|
ContentType: __expectString(output.ContentType),
|
|
20066
20074
|
DataSource: output.DataSource !== undefined && output.DataSource !== null
|
|
@@ -20096,6 +20104,11 @@ var deserializeAws_json1_1AutoMLDataSource = function (output, context) {
|
|
|
20096
20104
|
: undefined,
|
|
20097
20105
|
};
|
|
20098
20106
|
};
|
|
20107
|
+
var deserializeAws_json1_1AutoMLDataSplitConfig = function (output, context) {
|
|
20108
|
+
return {
|
|
20109
|
+
ValidationFraction: __limitedParseFloat32(output.ValidationFraction),
|
|
20110
|
+
};
|
|
20111
|
+
};
|
|
20099
20112
|
var deserializeAws_json1_1AutoMLInputDataConfig = function (output, context) {
|
|
20100
20113
|
var retVal = (output || [])
|
|
20101
20114
|
.filter(function (e) { return e != null; })
|
|
@@ -20125,6 +20138,9 @@ var deserializeAws_json1_1AutoMLJobConfig = function (output, context) {
|
|
|
20125
20138
|
CompletionCriteria: output.CompletionCriteria !== undefined && output.CompletionCriteria !== null
|
|
20126
20139
|
? deserializeAws_json1_1AutoMLJobCompletionCriteria(output.CompletionCriteria, context)
|
|
20127
20140
|
: undefined,
|
|
20141
|
+
DataSplitConfig: output.DataSplitConfig !== undefined && output.DataSplitConfig !== null
|
|
20142
|
+
? deserializeAws_json1_1AutoMLDataSplitConfig(output.DataSplitConfig, context)
|
|
20143
|
+
: undefined,
|
|
20128
20144
|
SecurityConfig: output.SecurityConfig !== undefined && output.SecurityConfig !== null
|
|
20129
20145
|
? deserializeAws_json1_1AutoMLSecurityConfig(output.SecurityConfig, context)
|
|
20130
20146
|
: undefined,
|
|
@@ -252,12 +252,12 @@ import { UpdateWorkforceCommandInput, UpdateWorkforceCommandOutput } from "./com
|
|
|
252
252
|
import { UpdateWorkteamCommandInput, UpdateWorkteamCommandOutput } from "./commands/UpdateWorkteamCommand";
|
|
253
253
|
import { SageMakerClient } from "./SageMakerClient";
|
|
254
254
|
/**
|
|
255
|
-
* <p>Provides APIs for creating and managing
|
|
255
|
+
* <p>Provides APIs for creating and managing SageMaker resources. </p>
|
|
256
256
|
* <p>Other Resources:</p>
|
|
257
257
|
* <ul>
|
|
258
258
|
* <li>
|
|
259
259
|
* <p>
|
|
260
|
-
* <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html#first-time-user">
|
|
260
|
+
* <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html#first-time-user">SageMaker Developer
|
|
261
261
|
* Guide</a>
|
|
262
262
|
* </p>
|
|
263
263
|
* </li>
|
|
@@ -281,7 +281,7 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
281
281
|
addAssociation(args: AddAssociationCommandInput, cb: (err: any, data?: AddAssociationCommandOutput) => void): void;
|
|
282
282
|
addAssociation(args: AddAssociationCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: AddAssociationCommandOutput) => void): void;
|
|
283
283
|
/**
|
|
284
|
-
* <p>Adds or overwrites one or more tags for the specified
|
|
284
|
+
* <p>Adds or overwrites one or more tags for the specified SageMaker resource. You can add
|
|
285
285
|
* tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform
|
|
286
286
|
* jobs, models, labeling jobs, work teams, endpoint configurations, and
|
|
287
287
|
* endpoints.</p>
|
|
@@ -335,7 +335,7 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
335
335
|
createAction(args: CreateActionCommandInput, cb: (err: any, data?: CreateActionCommandOutput) => void): void;
|
|
336
336
|
createAction(args: CreateActionCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: CreateActionCommandOutput) => void): void;
|
|
337
337
|
/**
|
|
338
|
-
* <p>Create a machine learning algorithm that you can use in
|
|
338
|
+
* <p>Create a machine learning algorithm that you can use in SageMaker and list in the Amazon Web Services
|
|
339
339
|
* Marketplace.</p>
|
|
340
340
|
*/
|
|
341
341
|
createAlgorithm(args: CreateAlgorithmCommandInput, options?: __HttpHandlerOptions): Promise<CreateAlgorithmCommandOutput>;
|
|
@@ -378,9 +378,9 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
378
378
|
createAutoMLJob(args: CreateAutoMLJobCommandInput, cb: (err: any, data?: CreateAutoMLJobCommandOutput) => void): void;
|
|
379
379
|
createAutoMLJob(args: CreateAutoMLJobCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: CreateAutoMLJobCommandOutput) => void): void;
|
|
380
380
|
/**
|
|
381
|
-
* <p>Creates a Git repository as a resource in your
|
|
381
|
+
* <p>Creates a Git repository as a resource in your SageMaker account. You can associate the
|
|
382
382
|
* repository with notebook instances so that you can use Git source control for the
|
|
383
|
-
* notebooks you create. The Git repository is a resource in your
|
|
383
|
+
* notebooks you create. The Git repository is a resource in your SageMaker account, so it can
|
|
384
384
|
* be associated with more than one notebook instance, and it persists independently from
|
|
385
385
|
* the lifecycle of any notebook instances it is associated with.</p>
|
|
386
386
|
* <p>The repository can be hosted either in <a href="https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html">Amazon Web Services CodeCommit</a> or in any
|
|
@@ -508,11 +508,11 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
508
508
|
createEdgePackagingJob(args: CreateEdgePackagingJobCommandInput, cb: (err: any, data?: CreateEdgePackagingJobCommandOutput) => void): void;
|
|
509
509
|
createEdgePackagingJob(args: CreateEdgePackagingJobCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: CreateEdgePackagingJobCommandOutput) => void): void;
|
|
510
510
|
/**
|
|
511
|
-
* <p>Creates an endpoint using the endpoint configuration specified in the request.
|
|
511
|
+
* <p>Creates an endpoint using the endpoint configuration specified in the request. SageMaker
|
|
512
512
|
* uses the endpoint to provision resources and deploy models. You create the endpoint
|
|
513
513
|
* configuration with the <a>CreateEndpointConfig</a> API. </p>
|
|
514
|
-
* <p> Use this API to deploy models using
|
|
515
|
-
* <p>For an example that calls this method when deploying a model to
|
|
514
|
+
* <p> Use this API to deploy models using SageMaker hosting services. </p>
|
|
515
|
+
* <p>For an example that calls this method when deploying a model to SageMaker hosting services,
|
|
516
516
|
* see the <a href="https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-fundamentals/create-endpoint/create_endpoint.ipynb">Create Endpoint example notebook.</a>
|
|
517
517
|
* </p>
|
|
518
518
|
* <note>
|
|
@@ -522,7 +522,7 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
522
522
|
* create a new <code>EndpointConfig</code>.</p>
|
|
523
523
|
* </note>
|
|
524
524
|
* <p>The endpoint name must be unique within an Amazon Web Services Region in your Amazon Web Services account. </p>
|
|
525
|
-
* <p>When it receives the request,
|
|
525
|
+
* <p>When it receives the request, SageMaker creates the endpoint, launches the resources (ML
|
|
526
526
|
* compute instances), and deploys the model(s) on them. </p>
|
|
527
527
|
*
|
|
528
528
|
* <note>
|
|
@@ -537,13 +537,13 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
537
537
|
* response should return the latest data. So retry logic is recommended to handle
|
|
538
538
|
* these possible issues. We also recommend that customers call <a>DescribeEndpointConfig</a> before calling <a>CreateEndpoint</a> to minimize the potential impact of a DynamoDB eventually consistent read.</p>
|
|
539
539
|
* </note>
|
|
540
|
-
* <p>When
|
|
540
|
+
* <p>When SageMaker receives the request, it sets the endpoint status to
|
|
541
541
|
* <code>Creating</code>. After it creates the endpoint, it sets the status to
|
|
542
|
-
* <code>InService</code>.
|
|
542
|
+
* <code>InService</code>. SageMaker can then process incoming requests for inferences. To
|
|
543
543
|
* check the status of an endpoint, use the <a>DescribeEndpoint</a>
|
|
544
544
|
* API.</p>
|
|
545
545
|
* <p>If any of the models hosted at this endpoint get model data from an Amazon S3 location,
|
|
546
|
-
*
|
|
546
|
+
* SageMaker uses Amazon Web Services Security Token Service to download model artifacts from the S3 path you
|
|
547
547
|
* provided. Amazon Web Services STS is activated in your IAM user account by default. If you previously
|
|
548
548
|
* deactivated Amazon Web Services STS for a region, you need to reactivate Amazon Web Services STS for that region. For
|
|
549
549
|
* more information, see <a href="https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html">Activating and
|
|
@@ -590,22 +590,22 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
590
590
|
createEndpoint(args: CreateEndpointCommandInput, cb: (err: any, data?: CreateEndpointCommandOutput) => void): void;
|
|
591
591
|
createEndpoint(args: CreateEndpointCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: CreateEndpointCommandOutput) => void): void;
|
|
592
592
|
/**
|
|
593
|
-
* <p>Creates an endpoint configuration that
|
|
593
|
+
* <p>Creates an endpoint configuration that SageMaker hosting services uses to deploy models. In
|
|
594
594
|
* the configuration, you identify one or more models, created using the
|
|
595
|
-
* <code>CreateModel</code> API, to deploy and the resources that you want
|
|
595
|
+
* <code>CreateModel</code> API, to deploy and the resources that you want SageMaker to
|
|
596
596
|
* provision. Then you call the <a>CreateEndpoint</a> API.</p>
|
|
597
597
|
* <note>
|
|
598
|
-
* <p> Use this API if you want to use
|
|
598
|
+
* <p> Use this API if you want to use SageMaker hosting services to deploy models into
|
|
599
599
|
* production. </p>
|
|
600
600
|
* </note>
|
|
601
601
|
* <p>In the request, you define a <code>ProductionVariant</code>, for each model that you
|
|
602
602
|
* want to deploy. Each <code>ProductionVariant</code> parameter also describes the
|
|
603
|
-
* resources that you want
|
|
603
|
+
* resources that you want SageMaker to provision. This includes the number and type of ML
|
|
604
604
|
* compute instances to deploy. </p>
|
|
605
605
|
* <p>If you are hosting multiple models, you also assign a <code>VariantWeight</code> to
|
|
606
606
|
* specify how much traffic you want to allocate to each model. For example, suppose that
|
|
607
607
|
* you want to host two models, A and B, and you assign traffic weight 2 for model A and 1
|
|
608
|
-
* for model B.
|
|
608
|
+
* for model B. SageMaker distributes two-thirds of the traffic to Model A, and one-third to
|
|
609
609
|
* model B. </p>
|
|
610
610
|
* <note>
|
|
611
611
|
* <p>When you call <a>CreateEndpoint</a>, a load call is made to DynamoDB to
|
|
@@ -687,7 +687,7 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
687
687
|
createHyperParameterTuningJob(args: CreateHyperParameterTuningJobCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: CreateHyperParameterTuningJobCommandOutput) => void): void;
|
|
688
688
|
/**
|
|
689
689
|
* <p>Creates a custom SageMaker image. A SageMaker image is a set of image versions. Each image
|
|
690
|
-
* version represents a container image stored in Amazon Container Registry (ECR). For more information, see
|
|
690
|
+
* version represents a container image stored in Amazon Elastic Container Registry (ECR). For more information, see
|
|
691
691
|
* <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/studio-byoi.html">Bring your own SageMaker image</a>.</p>
|
|
692
692
|
*/
|
|
693
693
|
createImage(args: CreateImageCommandInput, options?: __HttpHandlerOptions): Promise<CreateImageCommandOutput>;
|
|
@@ -695,7 +695,7 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
695
695
|
createImage(args: CreateImageCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: CreateImageCommandOutput) => void): void;
|
|
696
696
|
/**
|
|
697
697
|
* <p>Creates a version of the SageMaker image specified by <code>ImageName</code>. The version
|
|
698
|
-
* represents the Amazon Container Registry (ECR) container image specified by <code>BaseImage</code>.</p>
|
|
698
|
+
* represents the Amazon Elastic Container Registry (ECR) container image specified by <code>BaseImage</code>.</p>
|
|
699
699
|
*/
|
|
700
700
|
createImageVersion(args: CreateImageVersionCommandInput, options?: __HttpHandlerOptions): Promise<CreateImageVersionCommandOutput>;
|
|
701
701
|
createImageVersion(args: CreateImageVersionCommandInput, cb: (err: any, data?: CreateImageVersionCommandOutput) => void): void;
|
|
@@ -751,27 +751,25 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
751
751
|
createLabelingJob(args: CreateLabelingJobCommandInput, cb: (err: any, data?: CreateLabelingJobCommandOutput) => void): void;
|
|
752
752
|
createLabelingJob(args: CreateLabelingJobCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: CreateLabelingJobCommandOutput) => void): void;
|
|
753
753
|
/**
|
|
754
|
-
* <p>Creates a model in
|
|
754
|
+
* <p>Creates a model in SageMaker. In the request, you name the model and describe a primary
|
|
755
755
|
* container. For the primary container, you specify the Docker image that
|
|
756
756
|
* contains inference code, artifacts (from prior training), and a custom environment map
|
|
757
757
|
* that the inference code uses when you deploy the model for predictions.</p>
|
|
758
|
-
* <p>Use this API to create a model if you want to use
|
|
758
|
+
* <p>Use this API to create a model if you want to use SageMaker hosting services or run a batch
|
|
759
759
|
* transform job.</p>
|
|
760
760
|
* <p>To host your model, you create an endpoint configuration with the
|
|
761
761
|
* <code>CreateEndpointConfig</code> API, and then create an endpoint with the
|
|
762
|
-
* <code>CreateEndpoint</code> API.
|
|
762
|
+
* <code>CreateEndpoint</code> API. SageMaker then deploys all of the containers that you
|
|
763
763
|
* defined for the model in the hosting environment. </p>
|
|
764
|
-
* <p>For an example that calls this method when deploying a model to
|
|
764
|
+
* <p>For an example that calls this method when deploying a model to SageMaker hosting services,
|
|
765
765
|
* see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/ex1-deploy-model.html#ex1-deploy-model-boto">Deploy the
|
|
766
766
|
* Model to Amazon SageMaker Hosting Services (Amazon Web Services SDK for Python (Boto
|
|
767
767
|
* 3)).</a>
|
|
768
768
|
* </p>
|
|
769
769
|
* <p>To run a batch transform using your model, you start a job with the
|
|
770
|
-
* <code>CreateTransformJob</code> API.
|
|
770
|
+
* <code>CreateTransformJob</code> API. SageMaker uses your model and your dataset to get
|
|
771
771
|
* inferences which are then saved to a specified S3 location.</p>
|
|
772
|
-
* <p>In the
|
|
773
|
-
* <code>PrimaryContainer</code> parameter.</p>
|
|
774
|
-
* <p>In the request, you also provide an IAM role that Amazon SageMaker can assume to access model
|
|
772
|
+
* <p>In the request, you also provide an IAM role that SageMaker can assume to access model
|
|
775
773
|
* artifacts and docker image for deployment on ML compute hosting instances or for batch
|
|
776
774
|
* transform jobs. In addition, you also use the IAM role to manage permissions the
|
|
777
775
|
* inference code needs. For example, if the inference code access any other Amazon Web Services resources,
|
|
@@ -793,14 +791,14 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
793
791
|
createModelExplainabilityJobDefinition(args: CreateModelExplainabilityJobDefinitionCommandInput, cb: (err: any, data?: CreateModelExplainabilityJobDefinitionCommandOutput) => void): void;
|
|
794
792
|
createModelExplainabilityJobDefinition(args: CreateModelExplainabilityJobDefinitionCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: CreateModelExplainabilityJobDefinitionCommandOutput) => void): void;
|
|
795
793
|
/**
|
|
796
|
-
* <p>Creates a model package that you can use to create
|
|
794
|
+
* <p>Creates a model package that you can use to create SageMaker models or list on Amazon Web Services
|
|
797
795
|
* Marketplace, or a versioned model that is part of a model group. Buyers can subscribe to
|
|
798
|
-
* model packages listed on Amazon Web Services Marketplace to create models in
|
|
796
|
+
* model packages listed on Amazon Web Services Marketplace to create models in SageMaker.</p>
|
|
799
797
|
* <p>To create a model package by specifying a Docker container that contains your
|
|
800
798
|
* inference code and the Amazon S3 location of your model artifacts, provide values for
|
|
801
|
-
*
|
|
799
|
+
* <code>InferenceSpecification</code>. To create a model from an algorithm resource
|
|
802
800
|
* that you created or subscribed to in Amazon Web Services Marketplace, provide a value for
|
|
803
|
-
*
|
|
801
|
+
* <code>SourceAlgorithmSpecification</code>.</p>
|
|
804
802
|
* <note>
|
|
805
803
|
* <p>There are two types of model packages:</p>
|
|
806
804
|
* <ul>
|
|
@@ -838,41 +836,41 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
838
836
|
createMonitoringSchedule(args: CreateMonitoringScheduleCommandInput, cb: (err: any, data?: CreateMonitoringScheduleCommandOutput) => void): void;
|
|
839
837
|
createMonitoringSchedule(args: CreateMonitoringScheduleCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: CreateMonitoringScheduleCommandOutput) => void): void;
|
|
840
838
|
/**
|
|
841
|
-
* <p>Creates an
|
|
839
|
+
* <p>Creates an SageMaker notebook instance. A notebook instance is a machine learning (ML)
|
|
842
840
|
* compute instance running on a Jupyter notebook. </p>
|
|
843
841
|
* <p>In a <code>CreateNotebookInstance</code> request, specify the type of ML compute
|
|
844
|
-
* instance that you want to run.
|
|
842
|
+
* instance that you want to run. SageMaker launches the instance, installs common libraries
|
|
845
843
|
* that you can use to explore datasets for model training, and attaches an ML storage
|
|
846
844
|
* volume to the notebook instance. </p>
|
|
847
|
-
* <p>
|
|
848
|
-
* use
|
|
849
|
-
* <p>After receiving the request,
|
|
845
|
+
* <p>SageMaker also provides a set of example notebooks. Each notebook demonstrates how to
|
|
846
|
+
* use SageMaker with a specific algorithm or with a machine learning framework. </p>
|
|
847
|
+
* <p>After receiving the request, SageMaker does the following:</p>
|
|
850
848
|
* <ol>
|
|
851
849
|
* <li>
|
|
852
|
-
* <p>Creates a network interface in the
|
|
850
|
+
* <p>Creates a network interface in the SageMaker VPC.</p>
|
|
853
851
|
* </li>
|
|
854
852
|
* <li>
|
|
855
|
-
* <p>(Option) If you specified <code>SubnetId</code>,
|
|
853
|
+
* <p>(Option) If you specified <code>SubnetId</code>, SageMaker creates a network
|
|
856
854
|
* interface in your own VPC, which is inferred from the subnet ID that you provide
|
|
857
|
-
* in the input. When creating this network interface,
|
|
855
|
+
* in the input. When creating this network interface, SageMaker attaches the security
|
|
858
856
|
* group that you specified in the request to the network interface that it creates
|
|
859
857
|
* in your VPC.</p>
|
|
860
858
|
*
|
|
861
859
|
* </li>
|
|
862
860
|
* <li>
|
|
863
|
-
* <p>Launches an EC2 instance of the type specified in the request in the
|
|
864
|
-
* VPC. If you specified <code>SubnetId</code> of your VPC,
|
|
861
|
+
* <p>Launches an EC2 instance of the type specified in the request in the SageMaker
|
|
862
|
+
* VPC. If you specified <code>SubnetId</code> of your VPC, SageMaker specifies both
|
|
865
863
|
* network interfaces when launching this instance. This enables inbound traffic
|
|
866
864
|
* from your own VPC to the notebook instance, assuming that the security groups
|
|
867
865
|
* allow it.</p>
|
|
868
866
|
* </li>
|
|
869
867
|
* </ol>
|
|
870
868
|
*
|
|
871
|
-
* <p>After creating the notebook instance,
|
|
869
|
+
* <p>After creating the notebook instance, SageMaker returns its Amazon Resource Name (ARN).
|
|
872
870
|
* You can't change the name of a notebook instance after you create it.</p>
|
|
873
|
-
* <p>After
|
|
871
|
+
* <p>After SageMaker creates the notebook instance, you can connect to the Jupyter server and
|
|
874
872
|
* work in Jupyter notebooks. For example, you can write code to explore a dataset that you
|
|
875
|
-
* can use for model training, train a model, host models by creating
|
|
873
|
+
* can use for model training, train a model, host models by creating SageMaker endpoints, and
|
|
876
874
|
* validate hosted models. </p>
|
|
877
875
|
* <p>For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html">How It Works</a>. </p>
|
|
878
876
|
*/
|
|
@@ -928,8 +926,8 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
928
926
|
createPresignedDomainUrl(args: CreatePresignedDomainUrlCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: CreatePresignedDomainUrlCommandOutput) => void): void;
|
|
929
927
|
/**
|
|
930
928
|
* <p>Returns a URL that you can use to connect to the Jupyter server from a notebook
|
|
931
|
-
* instance. In the
|
|
932
|
-
* instance,
|
|
929
|
+
* instance. In the SageMaker console, when you choose <code>Open</code> next to a notebook
|
|
930
|
+
* instance, SageMaker opens a new tab showing the Jupyter server home page from the notebook
|
|
933
931
|
* instance. The console uses this API to get the URL and show the page.</p>
|
|
934
932
|
* <p> The IAM role or user used to call this API defines the permissions to access the
|
|
935
933
|
* notebook instance. Once the presigned URL is created, no additional permission is
|
|
@@ -969,11 +967,11 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
969
967
|
createStudioLifecycleConfig(args: CreateStudioLifecycleConfigCommandInput, cb: (err: any, data?: CreateStudioLifecycleConfigCommandOutput) => void): void;
|
|
970
968
|
createStudioLifecycleConfig(args: CreateStudioLifecycleConfigCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: CreateStudioLifecycleConfigCommandOutput) => void): void;
|
|
971
969
|
/**
|
|
972
|
-
* <p>Starts a model training job. After training completes,
|
|
970
|
+
* <p>Starts a model training job. After training completes, SageMaker saves the resulting
|
|
973
971
|
* model artifacts to an Amazon S3 location that you specify. </p>
|
|
974
|
-
* <p>If you choose to host your model using
|
|
972
|
+
* <p>If you choose to host your model using SageMaker hosting services, you can use the
|
|
975
973
|
* resulting model artifacts as part of the model. You can also use the artifacts in a
|
|
976
|
-
* machine learning service other than
|
|
974
|
+
* machine learning service other than SageMaker, provided that you know how to use them for
|
|
977
975
|
* inference.
|
|
978
976
|
* </p>
|
|
979
977
|
* <p>In the request body, you provide the following: </p>
|
|
@@ -989,7 +987,7 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
989
987
|
* <code>HyperParameters</code> - Specify these algorithm-specific parameters to
|
|
990
988
|
* enable the estimation of model parameters during training. Hyperparameters can
|
|
991
989
|
* be tuned to optimize this learning process. For a list of hyperparameters for
|
|
992
|
-
* each training algorithm provided by
|
|
990
|
+
* each training algorithm provided by SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. </p>
|
|
993
991
|
* </li>
|
|
994
992
|
* <li>
|
|
995
993
|
* <p>
|
|
@@ -999,7 +997,7 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
999
997
|
* <li>
|
|
1000
998
|
* <p>
|
|
1001
999
|
* <code>OutputDataConfig</code> - Identifies the Amazon S3 bucket where you want
|
|
1002
|
-
*
|
|
1000
|
+
* SageMaker to save the results of model training. </p>
|
|
1003
1001
|
* </li>
|
|
1004
1002
|
* <li>
|
|
1005
1003
|
* <p>
|
|
@@ -1017,10 +1015,10 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
1017
1015
|
* </li>
|
|
1018
1016
|
* <li>
|
|
1019
1017
|
* <p>
|
|
1020
|
-
* <code>RoleArn</code> - The Amazon Resource Name (ARN) that
|
|
1018
|
+
* <code>RoleArn</code> - The Amazon Resource Name (ARN) that SageMaker assumes to perform tasks on
|
|
1021
1019
|
* your behalf during model training.
|
|
1022
1020
|
*
|
|
1023
|
-
* You must grant this role the necessary permissions so that
|
|
1021
|
+
* You must grant this role the necessary permissions so that SageMaker can successfully
|
|
1024
1022
|
* complete model training. </p>
|
|
1025
1023
|
* </li>
|
|
1026
1024
|
* <li>
|
|
@@ -1041,7 +1039,7 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
1041
1039
|
* fails due to an <code>InternalServerError</code>.</p>
|
|
1042
1040
|
* </li>
|
|
1043
1041
|
* </ul>
|
|
1044
|
-
* <p> For more information about
|
|
1042
|
+
* <p> For more information about SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html">How It Works</a>. </p>
|
|
1045
1043
|
*/
|
|
1046
1044
|
createTrainingJob(args: CreateTrainingJobCommandInput, options?: __HttpHandlerOptions): Promise<CreateTrainingJobCommandOutput>;
|
|
1047
1045
|
createTrainingJob(args: CreateTrainingJobCommandInput, cb: (err: any, data?: CreateTrainingJobCommandOutput) => void): void;
|
|
@@ -1236,10 +1234,17 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
1236
1234
|
deleteDomain(args: DeleteDomainCommandInput, cb: (err: any, data?: DeleteDomainCommandOutput) => void): void;
|
|
1237
1235
|
deleteDomain(args: DeleteDomainCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: DeleteDomainCommandOutput) => void): void;
|
|
1238
1236
|
/**
|
|
1239
|
-
* <p>Deletes an endpoint.
|
|
1237
|
+
* <p>Deletes an endpoint. SageMaker frees up all of the resources that were deployed when the
|
|
1240
1238
|
* endpoint was created. </p>
|
|
1241
|
-
* <p>
|
|
1239
|
+
* <p>SageMaker retires any custom KMS key grants associated with the endpoint, meaning you don't
|
|
1242
1240
|
* need to use the <a href="http://docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html">RevokeGrant</a> API call.</p>
|
|
1241
|
+
* <p>When you delete your endpoint, SageMaker asynchronously deletes associated endpoint resources such as KMS key grants.
|
|
1242
|
+
* You might still see these resources in your account for a few minutes after deleting your endpoint.
|
|
1243
|
+
* Do not delete or revoke the permissions for your
|
|
1244
|
+
* <code>
|
|
1245
|
+
* <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html#sagemaker-CreateModel-request-ExecutionRoleArn">ExecutionRoleArn</a>
|
|
1246
|
+
* </code>,
|
|
1247
|
+
* otherwise SageMaker cannot delete these resources.</p>
|
|
1243
1248
|
*/
|
|
1244
1249
|
deleteEndpoint(args: DeleteEndpointCommandInput, options?: __HttpHandlerOptions): Promise<DeleteEndpointCommandOutput>;
|
|
1245
1250
|
deleteEndpoint(args: DeleteEndpointCommandInput, cb: (err: any, data?: DeleteEndpointCommandOutput) => void): void;
|
|
@@ -1309,7 +1314,7 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
1309
1314
|
deleteImageVersion(args: DeleteImageVersionCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: DeleteImageVersionCommandOutput) => void): void;
|
|
1310
1315
|
/**
|
|
1311
1316
|
* <p>Deletes a model. The <code>DeleteModel</code> API deletes only the model entry that
|
|
1312
|
-
* was created in
|
|
1317
|
+
* was created in SageMaker when you called the <code>CreateModel</code> API. It does not
|
|
1313
1318
|
* delete model artifacts, inference code, or the IAM role that you specified when
|
|
1314
1319
|
* creating the model. </p>
|
|
1315
1320
|
*/
|
|
@@ -1330,8 +1335,8 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
1330
1335
|
deleteModelExplainabilityJobDefinition(args: DeleteModelExplainabilityJobDefinitionCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: DeleteModelExplainabilityJobDefinitionCommandOutput) => void): void;
|
|
1331
1336
|
/**
|
|
1332
1337
|
* <p>Deletes a model package.</p>
|
|
1333
|
-
* <p>A model package is used to create
|
|
1334
|
-
* subscribe to model packages listed on Amazon Web Services Marketplace to create models in
|
|
1338
|
+
* <p>A model package is used to create SageMaker models or list on Amazon Web Services Marketplace. Buyers can
|
|
1339
|
+
* subscribe to model packages listed on Amazon Web Services Marketplace to create models in SageMaker.</p>
|
|
1335
1340
|
*/
|
|
1336
1341
|
deleteModelPackage(args: DeleteModelPackageCommandInput, options?: __HttpHandlerOptions): Promise<DeleteModelPackageCommandOutput>;
|
|
1337
1342
|
deleteModelPackage(args: DeleteModelPackageCommandInput, cb: (err: any, data?: DeleteModelPackageCommandOutput) => void): void;
|
|
@@ -1362,10 +1367,10 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
1362
1367
|
deleteMonitoringSchedule(args: DeleteMonitoringScheduleCommandInput, cb: (err: any, data?: DeleteMonitoringScheduleCommandOutput) => void): void;
|
|
1363
1368
|
deleteMonitoringSchedule(args: DeleteMonitoringScheduleCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: DeleteMonitoringScheduleCommandOutput) => void): void;
|
|
1364
1369
|
/**
|
|
1365
|
-
* <p> Deletes an
|
|
1370
|
+
* <p> Deletes an SageMaker notebook instance. Before you can delete a notebook instance, you
|
|
1366
1371
|
* must call the <code>StopNotebookInstance</code> API. </p>
|
|
1367
1372
|
* <important>
|
|
1368
|
-
* <p>When you delete a notebook instance, you lose all of your data.
|
|
1373
|
+
* <p>When you delete a notebook instance, you lose all of your data. SageMaker removes
|
|
1369
1374
|
* the ML compute instance, and deletes the ML storage volume and the network interface
|
|
1370
1375
|
* associated with the notebook instance. </p>
|
|
1371
1376
|
* </important>
|
|
@@ -1401,7 +1406,7 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
1401
1406
|
deleteStudioLifecycleConfig(args: DeleteStudioLifecycleConfigCommandInput, cb: (err: any, data?: DeleteStudioLifecycleConfigCommandOutput) => void): void;
|
|
1402
1407
|
deleteStudioLifecycleConfig(args: DeleteStudioLifecycleConfigCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: DeleteStudioLifecycleConfigCommandOutput) => void): void;
|
|
1403
1408
|
/**
|
|
1404
|
-
* <p>Deletes the specified tags from an
|
|
1409
|
+
* <p>Deletes the specified tags from an SageMaker resource.</p>
|
|
1405
1410
|
* <p>To list a resource's tags, use the <code>ListTags</code> API. </p>
|
|
1406
1411
|
* <note>
|
|
1407
1412
|
* <p>When you call this API to delete tags from a hyperparameter tuning job, the
|
|
@@ -2103,7 +2108,7 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
2103
2108
|
listNotebookInstanceLifecycleConfigs(args: ListNotebookInstanceLifecycleConfigsCommandInput, cb: (err: any, data?: ListNotebookInstanceLifecycleConfigsCommandOutput) => void): void;
|
|
2104
2109
|
listNotebookInstanceLifecycleConfigs(args: ListNotebookInstanceLifecycleConfigsCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: ListNotebookInstanceLifecycleConfigsCommandOutput) => void): void;
|
|
2105
2110
|
/**
|
|
2106
|
-
* <p>Returns a list of the
|
|
2111
|
+
* <p>Returns a list of the SageMaker notebook instances in the requester's account in an Amazon Web Services
|
|
2107
2112
|
* Region. </p>
|
|
2108
2113
|
*/
|
|
2109
2114
|
listNotebookInstances(args: ListNotebookInstancesCommandInput, options?: __HttpHandlerOptions): Promise<ListNotebookInstancesCommandOutput>;
|
|
@@ -2160,7 +2165,7 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
2160
2165
|
listSubscribedWorkteams(args: ListSubscribedWorkteamsCommandInput, cb: (err: any, data?: ListSubscribedWorkteamsCommandOutput) => void): void;
|
|
2161
2166
|
listSubscribedWorkteams(args: ListSubscribedWorkteamsCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: ListSubscribedWorkteamsCommandOutput) => void): void;
|
|
2162
2167
|
/**
|
|
2163
|
-
* <p>Returns the tags for the specified
|
|
2168
|
+
* <p>Returns the tags for the specified SageMaker resource.</p>
|
|
2164
2169
|
*/
|
|
2165
2170
|
listTags(args: ListTagsCommandInput, options?: __HttpHandlerOptions): Promise<ListTagsCommandOutput>;
|
|
2166
2171
|
listTags(args: ListTagsCommandInput, cb: (err: any, data?: ListTagsCommandOutput) => void): void;
|
|
@@ -2332,7 +2337,7 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
2332
2337
|
startMonitoringSchedule(args: StartMonitoringScheduleCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: StartMonitoringScheduleCommandOutput) => void): void;
|
|
2333
2338
|
/**
|
|
2334
2339
|
* <p>Launches an ML compute instance with the latest version of the libraries and
|
|
2335
|
-
* attaches your ML storage volume. After configuring the notebook instance,
|
|
2340
|
+
* attaches your ML storage volume. After configuring the notebook instance, SageMaker sets the
|
|
2336
2341
|
* notebook instance status to <code>InService</code>. A notebook instance's status must be
|
|
2337
2342
|
* <code>InService</code> before you can connect to your Jupyter notebook. </p>
|
|
2338
2343
|
*/
|
|
@@ -2400,8 +2405,8 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
2400
2405
|
stopMonitoringSchedule(args: StopMonitoringScheduleCommandInput, cb: (err: any, data?: StopMonitoringScheduleCommandOutput) => void): void;
|
|
2401
2406
|
stopMonitoringSchedule(args: StopMonitoringScheduleCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: StopMonitoringScheduleCommandOutput) => void): void;
|
|
2402
2407
|
/**
|
|
2403
|
-
* <p>Terminates the ML compute instance. Before terminating the instance,
|
|
2404
|
-
* disconnects the ML storage volume from it.
|
|
2408
|
+
* <p>Terminates the ML compute instance. Before terminating the instance, SageMaker
|
|
2409
|
+
* disconnects the ML storage volume from it. SageMaker preserves the ML storage volume. SageMaker
|
|
2405
2410
|
* stops charging you for the ML compute instance when you call
|
|
2406
2411
|
* <code>StopNotebookInstance</code>.</p>
|
|
2407
2412
|
* <p>To access data on the ML storage volume for a notebook instance that has been
|
|
@@ -2450,12 +2455,12 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
2450
2455
|
stopProcessingJob(args: StopProcessingJobCommandInput, cb: (err: any, data?: StopProcessingJobCommandOutput) => void): void;
|
|
2451
2456
|
stopProcessingJob(args: StopProcessingJobCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: StopProcessingJobCommandOutput) => void): void;
|
|
2452
2457
|
/**
|
|
2453
|
-
* <p>Stops a training job. To stop a job,
|
|
2458
|
+
* <p>Stops a training job. To stop a job, SageMaker sends the algorithm the
|
|
2454
2459
|
* <code>SIGTERM</code> signal, which delays job termination for 120 seconds.
|
|
2455
2460
|
* Algorithms might use this 120-second window to save the model artifacts, so the results
|
|
2456
2461
|
* of the training is not lost. </p>
|
|
2457
|
-
* <p>When it receives a <code>StopTrainingJob</code> request,
|
|
2458
|
-
* the job to <code>Stopping</code>. After
|
|
2462
|
+
* <p>When it receives a <code>StopTrainingJob</code> request, SageMaker changes the status of
|
|
2463
|
+
* the job to <code>Stopping</code>. After SageMaker stops the job, it sets the status to
|
|
2459
2464
|
* <code>Stopped</code>.</p>
|
|
2460
2465
|
*/
|
|
2461
2466
|
stopTrainingJob(args: StopTrainingJobCommandInput, options?: __HttpHandlerOptions): Promise<StopTrainingJobCommandOutput>;
|
|
@@ -2524,7 +2529,7 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
2524
2529
|
* <p>Deploys the new <code>EndpointConfig</code> specified in the request, switches to
|
|
2525
2530
|
* using newly created endpoint, and then deletes resources provisioned for the endpoint
|
|
2526
2531
|
* using the previous <code>EndpointConfig</code> (there is no availability loss). </p>
|
|
2527
|
-
* <p>When
|
|
2532
|
+
* <p>When SageMaker receives the request, it sets the endpoint status to
|
|
2528
2533
|
* <code>Updating</code>. After updating the endpoint, it sets the status to
|
|
2529
2534
|
* <code>InService</code>. To check the status of an endpoint, use the <a>DescribeEndpoint</a> API.
|
|
2530
2535
|
*
|
|
@@ -2545,7 +2550,7 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
2545
2550
|
/**
|
|
2546
2551
|
* <p>Updates variant weight of one or more variants associated with an existing
|
|
2547
2552
|
* endpoint, or capacity of one variant associated with an existing endpoint. When it
|
|
2548
|
-
* receives the request,
|
|
2553
|
+
* receives the request, SageMaker sets the endpoint status to <code>Updating</code>. After
|
|
2549
2554
|
* updating the endpoint, it sets the status to <code>InService</code>. To check the status
|
|
2550
2555
|
* of an endpoint, use the <a>DescribeEndpoint</a> API. </p>
|
|
2551
2556
|
*/
|
|
@@ -377,12 +377,12 @@ declare type SageMakerClientResolvedConfigType = __SmithyResolvedConfiguration<_
|
|
|
377
377
|
export interface SageMakerClientResolvedConfig extends SageMakerClientResolvedConfigType {
|
|
378
378
|
}
|
|
379
379
|
/**
|
|
380
|
-
* <p>Provides APIs for creating and managing
|
|
380
|
+
* <p>Provides APIs for creating and managing SageMaker resources. </p>
|
|
381
381
|
* <p>Other Resources:</p>
|
|
382
382
|
* <ul>
|
|
383
383
|
* <li>
|
|
384
384
|
* <p>
|
|
385
|
-
* <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html#first-time-user">
|
|
385
|
+
* <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html#first-time-user">SageMaker Developer
|
|
386
386
|
* Guide</a>
|
|
387
387
|
* </p>
|
|
388
388
|
* </li>
|
|
@@ -7,7 +7,7 @@ export interface AddTagsCommandInput extends AddTagsInput {
|
|
|
7
7
|
export interface AddTagsCommandOutput extends AddTagsOutput, __MetadataBearer {
|
|
8
8
|
}
|
|
9
9
|
/**
|
|
10
|
-
* <p>Adds or overwrites one or more tags for the specified
|
|
10
|
+
* <p>Adds or overwrites one or more tags for the specified SageMaker resource. You can add
|
|
11
11
|
* tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform
|
|
12
12
|
* jobs, models, labeling jobs, work teams, endpoint configurations, and
|
|
13
13
|
* endpoints.</p>
|
|
@@ -7,7 +7,7 @@ export interface CreateAlgorithmCommandInput extends CreateAlgorithmInput {
|
|
|
7
7
|
export interface CreateAlgorithmCommandOutput extends CreateAlgorithmOutput, __MetadataBearer {
|
|
8
8
|
}
|
|
9
9
|
/**
|
|
10
|
-
* <p>Create a machine learning algorithm that you can use in
|
|
10
|
+
* <p>Create a machine learning algorithm that you can use in SageMaker and list in the Amazon Web Services
|
|
11
11
|
* Marketplace.</p>
|
|
12
12
|
* @example
|
|
13
13
|
* Use a bare-bones client and the command you need to make an API call.
|
|
@@ -7,9 +7,9 @@ export interface CreateCodeRepositoryCommandInput extends CreateCodeRepositoryIn
|
|
|
7
7
|
export interface CreateCodeRepositoryCommandOutput extends CreateCodeRepositoryOutput, __MetadataBearer {
|
|
8
8
|
}
|
|
9
9
|
/**
|
|
10
|
-
* <p>Creates a Git repository as a resource in your
|
|
10
|
+
* <p>Creates a Git repository as a resource in your SageMaker account. You can associate the
|
|
11
11
|
* repository with notebook instances so that you can use Git source control for the
|
|
12
|
-
* notebooks you create. The Git repository is a resource in your
|
|
12
|
+
* notebooks you create. The Git repository is a resource in your SageMaker account, so it can
|
|
13
13
|
* be associated with more than one notebook instance, and it persists independently from
|
|
14
14
|
* the lifecycle of any notebook instances it is associated with.</p>
|
|
15
15
|
* <p>The repository can be hosted either in <a href="https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html">Amazon Web Services CodeCommit</a> or in any
|
|
@@ -7,11 +7,11 @@ export interface CreateEndpointCommandInput extends CreateEndpointInput {
|
|
|
7
7
|
export interface CreateEndpointCommandOutput extends CreateEndpointOutput, __MetadataBearer {
|
|
8
8
|
}
|
|
9
9
|
/**
|
|
10
|
-
* <p>Creates an endpoint using the endpoint configuration specified in the request.
|
|
10
|
+
* <p>Creates an endpoint using the endpoint configuration specified in the request. SageMaker
|
|
11
11
|
* uses the endpoint to provision resources and deploy models. You create the endpoint
|
|
12
12
|
* configuration with the <a>CreateEndpointConfig</a> API. </p>
|
|
13
|
-
* <p> Use this API to deploy models using
|
|
14
|
-
* <p>For an example that calls this method when deploying a model to
|
|
13
|
+
* <p> Use this API to deploy models using SageMaker hosting services. </p>
|
|
14
|
+
* <p>For an example that calls this method when deploying a model to SageMaker hosting services,
|
|
15
15
|
* see the <a href="https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-fundamentals/create-endpoint/create_endpoint.ipynb">Create Endpoint example notebook.</a>
|
|
16
16
|
* </p>
|
|
17
17
|
* <note>
|
|
@@ -21,7 +21,7 @@ export interface CreateEndpointCommandOutput extends CreateEndpointOutput, __Met
|
|
|
21
21
|
* create a new <code>EndpointConfig</code>.</p>
|
|
22
22
|
* </note>
|
|
23
23
|
* <p>The endpoint name must be unique within an Amazon Web Services Region in your Amazon Web Services account. </p>
|
|
24
|
-
* <p>When it receives the request,
|
|
24
|
+
* <p>When it receives the request, SageMaker creates the endpoint, launches the resources (ML
|
|
25
25
|
* compute instances), and deploys the model(s) on them. </p>
|
|
26
26
|
*
|
|
27
27
|
* <note>
|
|
@@ -36,13 +36,13 @@ export interface CreateEndpointCommandOutput extends CreateEndpointOutput, __Met
|
|
|
36
36
|
* response should return the latest data. So retry logic is recommended to handle
|
|
37
37
|
* these possible issues. We also recommend that customers call <a>DescribeEndpointConfig</a> before calling <a>CreateEndpoint</a> to minimize the potential impact of a DynamoDB eventually consistent read.</p>
|
|
38
38
|
* </note>
|
|
39
|
-
* <p>When
|
|
39
|
+
* <p>When SageMaker receives the request, it sets the endpoint status to
|
|
40
40
|
* <code>Creating</code>. After it creates the endpoint, it sets the status to
|
|
41
|
-
* <code>InService</code>.
|
|
41
|
+
* <code>InService</code>. SageMaker can then process incoming requests for inferences. To
|
|
42
42
|
* check the status of an endpoint, use the <a>DescribeEndpoint</a>
|
|
43
43
|
* API.</p>
|
|
44
44
|
* <p>If any of the models hosted at this endpoint get model data from an Amazon S3 location,
|
|
45
|
-
*
|
|
45
|
+
* SageMaker uses Amazon Web Services Security Token Service to download model artifacts from the S3 path you
|
|
46
46
|
* provided. Amazon Web Services STS is activated in your IAM user account by default. If you previously
|
|
47
47
|
* deactivated Amazon Web Services STS for a region, you need to reactivate Amazon Web Services STS for that region. For
|
|
48
48
|
* more information, see <a href="https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html">Activating and
|