@aws-sdk/client-sagemaker 3.76.0 → 3.80.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (182) hide show
  1. package/CHANGELOG.md +31 -0
  2. package/README.md +2 -2
  3. package/dist-cjs/commands/CreateImageVersionCommand.js +2 -1
  4. package/dist-cjs/commands/DescribeLabelingJobCommand.js +2 -1
  5. package/dist-cjs/commands/DescribeLineageGroupCommand.js +3 -3
  6. package/dist-cjs/commands/DescribeModelCommand.js +1 -2
  7. package/dist-cjs/commands/ListTrainingJobsCommand.js +3 -3
  8. package/dist-cjs/models/models_0.js +16 -17
  9. package/dist-cjs/models/models_1.js +30 -30
  10. package/dist-cjs/models/models_2.js +30 -31
  11. package/dist-cjs/models/models_3.js +28 -3
  12. package/dist-cjs/pagination/ListActionsPaginator.js +2 -1
  13. package/dist-cjs/pagination/ListAlgorithmsPaginator.js +2 -1
  14. package/dist-cjs/pagination/ListAppImageConfigsPaginator.js +2 -1
  15. package/dist-cjs/pagination/ListAppsPaginator.js +2 -1
  16. package/dist-cjs/pagination/ListArtifactsPaginator.js +2 -1
  17. package/dist-cjs/pagination/ListAssociationsPaginator.js +2 -1
  18. package/dist-cjs/pagination/ListAutoMLJobsPaginator.js +2 -1
  19. package/dist-cjs/pagination/ListCandidatesForAutoMLJobPaginator.js +2 -1
  20. package/dist-cjs/pagination/ListCodeRepositoriesPaginator.js +2 -1
  21. package/dist-cjs/pagination/ListCompilationJobsPaginator.js +2 -1
  22. package/dist-cjs/pagination/ListContextsPaginator.js +2 -1
  23. package/dist-cjs/pagination/ListDataQualityJobDefinitionsPaginator.js +2 -1
  24. package/dist-cjs/pagination/ListDeviceFleetsPaginator.js +2 -1
  25. package/dist-cjs/pagination/ListDevicesPaginator.js +2 -1
  26. package/dist-cjs/pagination/ListDomainsPaginator.js +2 -1
  27. package/dist-cjs/pagination/ListEdgePackagingJobsPaginator.js +2 -1
  28. package/dist-cjs/pagination/ListEndpointConfigsPaginator.js +2 -1
  29. package/dist-cjs/pagination/ListEndpointsPaginator.js +2 -1
  30. package/dist-cjs/pagination/ListExperimentsPaginator.js +2 -1
  31. package/dist-cjs/pagination/ListFlowDefinitionsPaginator.js +2 -1
  32. package/dist-cjs/pagination/ListHumanTaskUisPaginator.js +2 -1
  33. package/dist-cjs/pagination/ListHyperParameterTuningJobsPaginator.js +2 -1
  34. package/dist-cjs/pagination/ListImageVersionsPaginator.js +2 -1
  35. package/dist-cjs/pagination/ListImagesPaginator.js +2 -1
  36. package/dist-cjs/pagination/ListInferenceRecommendationsJobsPaginator.js +2 -1
  37. package/dist-cjs/pagination/ListLabelingJobsForWorkteamPaginator.js +2 -1
  38. package/dist-cjs/pagination/ListLabelingJobsPaginator.js +2 -1
  39. package/dist-cjs/pagination/ListLineageGroupsPaginator.js +2 -1
  40. package/dist-cjs/pagination/ListModelBiasJobDefinitionsPaginator.js +2 -1
  41. package/dist-cjs/pagination/ListModelExplainabilityJobDefinitionsPaginator.js +2 -1
  42. package/dist-cjs/pagination/ListModelMetadataPaginator.js +2 -1
  43. package/dist-cjs/pagination/ListModelPackageGroupsPaginator.js +2 -1
  44. package/dist-cjs/pagination/ListModelPackagesPaginator.js +2 -1
  45. package/dist-cjs/pagination/ListModelQualityJobDefinitionsPaginator.js +2 -1
  46. package/dist-cjs/pagination/ListModelsPaginator.js +2 -1
  47. package/dist-cjs/pagination/ListMonitoringExecutionsPaginator.js +2 -1
  48. package/dist-cjs/pagination/ListMonitoringSchedulesPaginator.js +2 -1
  49. package/dist-cjs/pagination/ListNotebookInstanceLifecycleConfigsPaginator.js +2 -1
  50. package/dist-cjs/pagination/ListNotebookInstancesPaginator.js +2 -1
  51. package/dist-cjs/pagination/ListPipelineExecutionStepsPaginator.js +2 -1
  52. package/dist-cjs/pagination/ListPipelineExecutionsPaginator.js +2 -1
  53. package/dist-cjs/pagination/ListPipelineParametersForExecutionPaginator.js +2 -1
  54. package/dist-cjs/pagination/ListPipelinesPaginator.js +2 -1
  55. package/dist-cjs/pagination/ListProcessingJobsPaginator.js +2 -1
  56. package/dist-cjs/pagination/ListProjectsPaginator.js +2 -1
  57. package/dist-cjs/pagination/ListStudioLifecycleConfigsPaginator.js +2 -1
  58. package/dist-cjs/pagination/ListSubscribedWorkteamsPaginator.js +2 -1
  59. package/dist-cjs/pagination/ListTagsPaginator.js +2 -1
  60. package/dist-cjs/pagination/ListTrainingJobsForHyperParameterTuningJobPaginator.js +2 -1
  61. package/dist-cjs/pagination/ListTrainingJobsPaginator.js +2 -1
  62. package/dist-cjs/pagination/ListTransformJobsPaginator.js +2 -1
  63. package/dist-cjs/pagination/ListTrialComponentsPaginator.js +2 -1
  64. package/dist-cjs/pagination/ListTrialsPaginator.js +2 -1
  65. package/dist-cjs/pagination/ListUserProfilesPaginator.js +2 -1
  66. package/dist-cjs/pagination/ListWorkforcesPaginator.js +2 -1
  67. package/dist-cjs/pagination/ListWorkteamsPaginator.js +2 -1
  68. package/dist-cjs/pagination/QueryLineagePaginator.js +2 -1
  69. package/dist-cjs/pagination/SearchPaginator.js +2 -1
  70. package/dist-cjs/protocols/Aws_json1_1.js +41 -0
  71. package/dist-es/commands/CreateImageVersionCommand.js +2 -1
  72. package/dist-es/commands/DescribeLabelingJobCommand.js +2 -1
  73. package/dist-es/commands/DescribeLineageGroupCommand.js +1 -1
  74. package/dist-es/commands/DescribeModelCommand.js +1 -2
  75. package/dist-es/commands/ListTrainingJobsCommand.js +1 -1
  76. package/dist-es/models/models_0.js +9 -8
  77. package/dist-es/models/models_1.js +16 -16
  78. package/dist-es/models/models_2.js +16 -19
  79. package/dist-es/models/models_3.js +19 -0
  80. package/dist-es/pagination/ListActionsPaginator.js +3 -2
  81. package/dist-es/pagination/ListAlgorithmsPaginator.js +3 -2
  82. package/dist-es/pagination/ListAppImageConfigsPaginator.js +3 -2
  83. package/dist-es/pagination/ListAppsPaginator.js +3 -2
  84. package/dist-es/pagination/ListArtifactsPaginator.js +3 -2
  85. package/dist-es/pagination/ListAssociationsPaginator.js +3 -2
  86. package/dist-es/pagination/ListAutoMLJobsPaginator.js +3 -2
  87. package/dist-es/pagination/ListCandidatesForAutoMLJobPaginator.js +3 -2
  88. package/dist-es/pagination/ListCodeRepositoriesPaginator.js +3 -2
  89. package/dist-es/pagination/ListCompilationJobsPaginator.js +3 -2
  90. package/dist-es/pagination/ListContextsPaginator.js +3 -2
  91. package/dist-es/pagination/ListDataQualityJobDefinitionsPaginator.js +3 -2
  92. package/dist-es/pagination/ListDeviceFleetsPaginator.js +3 -2
  93. package/dist-es/pagination/ListDevicesPaginator.js +3 -2
  94. package/dist-es/pagination/ListDomainsPaginator.js +3 -2
  95. package/dist-es/pagination/ListEdgePackagingJobsPaginator.js +3 -2
  96. package/dist-es/pagination/ListEndpointConfigsPaginator.js +3 -2
  97. package/dist-es/pagination/ListEndpointsPaginator.js +3 -2
  98. package/dist-es/pagination/ListExperimentsPaginator.js +3 -2
  99. package/dist-es/pagination/ListFlowDefinitionsPaginator.js +3 -2
  100. package/dist-es/pagination/ListHumanTaskUisPaginator.js +3 -2
  101. package/dist-es/pagination/ListHyperParameterTuningJobsPaginator.js +3 -2
  102. package/dist-es/pagination/ListImageVersionsPaginator.js +3 -2
  103. package/dist-es/pagination/ListImagesPaginator.js +3 -2
  104. package/dist-es/pagination/ListInferenceRecommendationsJobsPaginator.js +3 -2
  105. package/dist-es/pagination/ListLabelingJobsForWorkteamPaginator.js +3 -2
  106. package/dist-es/pagination/ListLabelingJobsPaginator.js +3 -2
  107. package/dist-es/pagination/ListLineageGroupsPaginator.js +3 -2
  108. package/dist-es/pagination/ListModelBiasJobDefinitionsPaginator.js +3 -2
  109. package/dist-es/pagination/ListModelExplainabilityJobDefinitionsPaginator.js +3 -2
  110. package/dist-es/pagination/ListModelMetadataPaginator.js +3 -2
  111. package/dist-es/pagination/ListModelPackageGroupsPaginator.js +3 -2
  112. package/dist-es/pagination/ListModelPackagesPaginator.js +3 -2
  113. package/dist-es/pagination/ListModelQualityJobDefinitionsPaginator.js +3 -2
  114. package/dist-es/pagination/ListModelsPaginator.js +3 -2
  115. package/dist-es/pagination/ListMonitoringExecutionsPaginator.js +3 -2
  116. package/dist-es/pagination/ListMonitoringSchedulesPaginator.js +3 -2
  117. package/dist-es/pagination/ListNotebookInstanceLifecycleConfigsPaginator.js +3 -2
  118. package/dist-es/pagination/ListNotebookInstancesPaginator.js +3 -2
  119. package/dist-es/pagination/ListPipelineExecutionStepsPaginator.js +3 -2
  120. package/dist-es/pagination/ListPipelineExecutionsPaginator.js +3 -2
  121. package/dist-es/pagination/ListPipelineParametersForExecutionPaginator.js +3 -2
  122. package/dist-es/pagination/ListPipelinesPaginator.js +3 -2
  123. package/dist-es/pagination/ListProcessingJobsPaginator.js +3 -2
  124. package/dist-es/pagination/ListProjectsPaginator.js +3 -2
  125. package/dist-es/pagination/ListStudioLifecycleConfigsPaginator.js +3 -2
  126. package/dist-es/pagination/ListSubscribedWorkteamsPaginator.js +3 -2
  127. package/dist-es/pagination/ListTagsPaginator.js +3 -2
  128. package/dist-es/pagination/ListTrainingJobsForHyperParameterTuningJobPaginator.js +3 -2
  129. package/dist-es/pagination/ListTrainingJobsPaginator.js +3 -2
  130. package/dist-es/pagination/ListTransformJobsPaginator.js +3 -2
  131. package/dist-es/pagination/ListTrialComponentsPaginator.js +3 -2
  132. package/dist-es/pagination/ListTrialsPaginator.js +3 -2
  133. package/dist-es/pagination/ListUserProfilesPaginator.js +3 -2
  134. package/dist-es/pagination/ListWorkforcesPaginator.js +3 -2
  135. package/dist-es/pagination/ListWorkteamsPaginator.js +3 -2
  136. package/dist-es/pagination/QueryLineagePaginator.js +3 -2
  137. package/dist-es/pagination/SearchPaginator.js +3 -2
  138. package/dist-es/protocols/Aws_json1_1.js +36 -6
  139. package/dist-types/SageMaker.d.ts +78 -73
  140. package/dist-types/SageMakerClient.d.ts +2 -2
  141. package/dist-types/commands/AddTagsCommand.d.ts +1 -1
  142. package/dist-types/commands/CreateAlgorithmCommand.d.ts +1 -1
  143. package/dist-types/commands/CreateCodeRepositoryCommand.d.ts +2 -2
  144. package/dist-types/commands/CreateEndpointCommand.d.ts +7 -7
  145. package/dist-types/commands/CreateEndpointConfigCommand.d.ts +5 -5
  146. package/dist-types/commands/CreateImageCommand.d.ts +1 -1
  147. package/dist-types/commands/CreateImageVersionCommand.d.ts +3 -2
  148. package/dist-types/commands/CreateModelCommand.d.ts +6 -8
  149. package/dist-types/commands/CreateModelPackageCommand.d.ts +4 -4
  150. package/dist-types/commands/CreateNotebookInstanceCommand.d.ts +13 -13
  151. package/dist-types/commands/CreatePresignedNotebookInstanceUrlCommand.d.ts +2 -2
  152. package/dist-types/commands/CreateTrainingJobCommand.d.ts +8 -8
  153. package/dist-types/commands/DeleteEndpointCommand.d.ts +9 -2
  154. package/dist-types/commands/DeleteModelCommand.d.ts +1 -1
  155. package/dist-types/commands/DeleteModelPackageCommand.d.ts +2 -2
  156. package/dist-types/commands/DeleteNotebookInstanceCommand.d.ts +2 -2
  157. package/dist-types/commands/DeleteTagsCommand.d.ts +1 -1
  158. package/dist-types/commands/DescribeLabelingJobCommand.d.ts +2 -1
  159. package/dist-types/commands/DescribeLineageGroupCommand.d.ts +1 -1
  160. package/dist-types/commands/DescribeModelCommand.d.ts +1 -2
  161. package/dist-types/commands/ListNotebookInstancesCommand.d.ts +1 -1
  162. package/dist-types/commands/ListTagsCommand.d.ts +1 -1
  163. package/dist-types/commands/ListTrainingJobsCommand.d.ts +1 -1
  164. package/dist-types/commands/StartNotebookInstanceCommand.d.ts +1 -1
  165. package/dist-types/commands/StopNotebookInstanceCommand.d.ts +2 -2
  166. package/dist-types/commands/StopTrainingJobCommand.d.ts +3 -3
  167. package/dist-types/commands/UpdateEndpointCommand.d.ts +1 -1
  168. package/dist-types/commands/UpdateEndpointWeightsAndCapacitiesCommand.d.ts +1 -1
  169. package/dist-types/models/models_0.d.ts +143 -126
  170. package/dist-types/models/models_1.d.ts +205 -285
  171. package/dist-types/models/models_2.d.ts +269 -187
  172. package/dist-types/models/models_3.d.ts +139 -29
  173. package/dist-types/ts3.4/commands/CreateImageVersionCommand.d.ts +2 -1
  174. package/dist-types/ts3.4/commands/DescribeLabelingJobCommand.d.ts +2 -1
  175. package/dist-types/ts3.4/commands/DescribeLineageGroupCommand.d.ts +1 -1
  176. package/dist-types/ts3.4/commands/DescribeModelCommand.d.ts +1 -2
  177. package/dist-types/ts3.4/commands/ListTrainingJobsCommand.d.ts +1 -1
  178. package/dist-types/ts3.4/models/models_0.d.ts +17 -17
  179. package/dist-types/ts3.4/models/models_1.d.ts +42 -81
  180. package/dist-types/ts3.4/models/models_2.d.ts +81 -62
  181. package/dist-types/ts3.4/models/models_3.d.ts +62 -1
  182. package/package.json +26 -26
@@ -135,7 +135,7 @@ export declare namespace AddAssociationResponse {
135
135
  const filterSensitiveLog: (obj: AddAssociationResponse) => any;
136
136
  }
137
137
  /**
138
- * <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many
138
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
139
139
  * training jobs created. </p>
140
140
  */
141
141
  export declare class ResourceLimitExceeded extends __BaseException {
@@ -184,9 +184,9 @@ export interface ModelPackageContainerDefinition {
184
184
  ContainerHostname?: string;
185
185
  /**
186
186
  * <p>The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.</p>
187
- * <p>If you are using your own custom algorithm instead of an algorithm provided by Amazon SageMaker,
188
- * the inference code must meet Amazon SageMaker requirements. Amazon SageMaker supports both
189
- * <code>registry/repository[:tag]</code> and <code>registry/repository[@digest]</code>
187
+ * <p>If you are using your own custom algorithm instead of an algorithm provided by SageMaker,
188
+ * the inference code must meet SageMaker requirements. SageMaker supports both
189
+ * <code>registry/repository[:tag]</code> and <code>registry/repository[@digest]</code>
190
190
  * image path formats. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html">Using Your Own Algorithms with Amazon
191
191
  * SageMaker</a>.</p>
192
192
  */
@@ -199,7 +199,7 @@ export interface ModelPackageContainerDefinition {
199
199
  /**
200
200
  * <p>The Amazon S3 path where the model artifacts, which result from model training, are stored.
201
201
  * This path must point to a single <code>gzip</code> compressed tar archive
202
- * (<code>.tar.gz</code> suffix).</p>
202
+ * (<code>.tar.gz</code> suffix).</p>
203
203
  * <note>
204
204
  * <p>The model artifacts must be in an S3 bucket that is in the same region as the
205
205
  * model package.</p>
@@ -438,7 +438,7 @@ export declare namespace AddTagsInput {
438
438
  }
439
439
  export interface AddTagsOutput {
440
440
  /**
441
- * <p>A list of tags associated with the Amazon SageMaker resource.</p>
441
+ * <p>A list of tags associated with the SageMaker resource.</p>
442
442
  */
443
443
  Tags?: Tag[];
444
444
  }
@@ -489,7 +489,7 @@ export declare enum AlgorithmSortBy {
489
489
  /**
490
490
  * <p>Specifies a metric that the training algorithm
491
491
  * writes
492
- * to <code>stderr</code> or <code>stdout</code>. Amazon SageMakerhyperparameter
492
+ * to <code>stderr</code> or <code>stdout</code>. SageMakerhyperparameter
493
493
  * tuning captures
494
494
  * all
495
495
  * defined metrics.
@@ -524,7 +524,7 @@ export declare enum TrainingInputMode {
524
524
  /**
525
525
  * <p>Specifies the training algorithm to use in a <a>CreateTrainingJob</a>
526
526
  * request.</p>
527
- * <p>For more information about algorithms provided by Amazon SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. For
527
+ * <p>For more information about algorithms provided by SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. For
528
528
  * information about using your own algorithms, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html">Using Your Own Algorithms with Amazon
529
529
  * SageMaker</a>. </p>
530
530
  */
@@ -533,7 +533,7 @@ export interface AlgorithmSpecification {
533
533
  * <p>The registry path of the Docker image
534
534
  * that contains the training algorithm.
535
535
  * For information about docker registry paths for built-in algorithms, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html">Algorithms
536
- * Provided by Amazon SageMaker: Common Parameters</a>. Amazon SageMaker supports both
536
+ * Provided by Amazon SageMaker: Common Parameters</a>. SageMaker supports both
537
537
  * <code>registry/repository[:tag]</code> and <code>registry/repository[@digest]</code>
538
538
  * image path formats. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html">Using Your Own Algorithms with Amazon
539
539
  * SageMaker</a>.</p>
@@ -587,7 +587,7 @@ export interface AlgorithmSpecification {
587
587
  TrainingInputMode: TrainingInputMode | string | undefined;
588
588
  /**
589
589
  * <p>A list of metric definition objects. Each object specifies the metric name and regular
590
- * expressions used to parse algorithm logs. Amazon SageMaker publishes each metric to Amazon CloudWatch.</p>
590
+ * expressions used to parse algorithm logs. SageMaker publishes each metric to Amazon CloudWatch.</p>
591
591
  */
592
592
  MetricDefinitions?: MetricDefinition[];
593
593
  /**
@@ -596,10 +596,10 @@ export interface AlgorithmSpecification {
596
596
  * following cases:</p>
597
597
  * <ul>
598
598
  * <li>
599
- * <p>You use one of the Amazon SageMaker built-in algorithms</p>
599
+ * <p>You use one of the SageMaker built-in algorithms</p>
600
600
  * </li>
601
601
  * <li>
602
- * <p>You use one of the following <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/pre-built-containers-frameworks-deep-learning.html">Prebuilt Amazon SageMaker Docker Images</a>:</p>
602
+ * <p>You use one of the following <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/pre-built-containers-frameworks-deep-learning.html">Prebuilt SageMaker Docker Images</a>:</p>
603
603
  * <ul>
604
604
  * <li>
605
605
  * <p>Tensorflow (version >= 1.15)</p>
@@ -768,9 +768,9 @@ export declare enum S3DataType {
768
768
  export interface S3DataSource {
769
769
  /**
770
770
  * <p>If you choose <code>S3Prefix</code>, <code>S3Uri</code> identifies a key name prefix.
771
- * Amazon SageMaker uses all objects that match the specified key name prefix for model training. </p>
771
+ * SageMaker uses all objects that match the specified key name prefix for model training. </p>
772
772
  * <p>If you choose <code>ManifestFile</code>, <code>S3Uri</code> identifies an object that
773
- * is a manifest file containing a list of object keys that you want Amazon SageMaker to use for model
773
+ * is a manifest file containing a list of object keys that you want SageMaker to use for model
774
774
  * training. </p>
775
775
  * <p>If you choose <code>AugmentedManifestFile</code>, S3Uri identifies an object that is
776
776
  * an augmented manifest file in JSON lines format. This file contains the data you want to
@@ -832,16 +832,16 @@ export interface S3DataSource {
832
832
  * </p>
833
833
  * <p>The complete set of <code>S3Uri</code> in this manifest is the input data
834
834
  * for the channel for this data source. The object that each <code>S3Uri</code>
835
- * points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on
835
+ * points to must be readable by the IAM role that SageMaker uses to perform tasks on
836
836
  * your behalf. </p>
837
837
  * </li>
838
838
  * </ul>
839
839
  */
840
840
  S3Uri: string | undefined;
841
841
  /**
842
- * <p>If you want Amazon SageMaker to replicate the entire dataset on each ML compute instance that
842
+ * <p>If you want SageMaker to replicate the entire dataset on each ML compute instance that
843
843
  * is launched for model training, specify <code>FullyReplicated</code>. </p>
844
- * <p>If you want Amazon SageMaker to replicate a subset of data on each ML compute instance that is
844
+ * <p>If you want SageMaker to replicate a subset of data on each ML compute instance that is
845
845
  * launched for model training, specify <code>ShardedByS3Key</code>. If there are
846
846
  * <i>n</i> ML compute instances launched for a training job, each
847
847
  * instance gets approximately 1/<i>n</i> of the number of S3 objects. In
@@ -944,7 +944,7 @@ export interface Channel {
944
944
  /**
945
945
  * <p></p>
946
946
  * <p>Specify RecordIO as the value when input data is in raw format but the training
947
- * algorithm requires the RecordIO format. In this case, Amazon SageMaker wraps each individual S3
947
+ * algorithm requires the RecordIO format. In this case, SageMaker wraps each individual S3
948
948
  * object in a RecordIO record. If the input data is already in RecordIO format, you don't
949
949
  * need to set this attribute. For more information, see <a href="https://mxnet.apache.org/api/architecture/note_data_loading#data-format">Create
950
950
  * a Dataset Using RecordIO</a>. </p>
@@ -953,7 +953,7 @@ export interface Channel {
953
953
  RecordWrapperType?: RecordWrapper | string;
954
954
  /**
955
955
  * <p>(Optional) The input mode to use for the data channel in a training job. If you don't
956
- * set a value for <code>InputMode</code>, Amazon SageMaker uses the value set for
956
+ * set a value for <code>InputMode</code>, SageMaker uses the value set for
957
957
  * <code>TrainingInputMode</code>. Use this parameter to override the
958
958
  * <code>TrainingInputMode</code> setting in a <a>AlgorithmSpecification</a>
959
959
  * request when you have a channel that needs a different input mode from the training
@@ -994,7 +994,7 @@ export declare namespace Channel {
994
994
  */
995
995
  export interface OutputDataConfig {
996
996
  /**
997
- * <p>The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using
997
+ * <p>The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the model artifacts at rest using
998
998
  * Amazon S3 server-side encryption. The <code>KmsKeyId</code> can be any of the following
999
999
  * formats: </p>
1000
1000
  * <ul>
@@ -1024,9 +1024,9 @@ export interface OutputDataConfig {
1024
1024
  * </li>
1025
1025
  * </ul>
1026
1026
  *
1027
- * <p>If you use a KMS key ID or an alias of your KMS key, the Amazon SageMaker execution role must
1027
+ * <p>If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must
1028
1028
  * include permissions to call <code>kms:Encrypt</code>. If you don't provide a KMS key ID,
1029
- * Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. Amazon SageMaker uses server-side
1029
+ * SageMaker uses the default KMS key for Amazon S3 for your role's account. SageMaker uses server-side
1030
1030
  * encryption with KMS-managed keys for <code>OutputDataConfig</code>. If you use a bucket
1031
1031
  * policy with an <code>s3:PutObject</code> permission that only allows objects with
1032
1032
  * server-side encryption, set the condition key of
@@ -1043,7 +1043,7 @@ export interface OutputDataConfig {
1043
1043
  */
1044
1044
  KmsKeyId?: string;
1045
1045
  /**
1046
- * <p>Identifies the S3 path where you want Amazon SageMaker to store the model artifacts. For
1046
+ * <p>Identifies the S3 path where you want SageMaker to store the model artifacts. For
1047
1047
  * example, <code>s3://bucket-name/key-name-prefix</code>. </p>
1048
1048
  */
1049
1049
  S3OutputPath: string | undefined;
@@ -1125,12 +1125,12 @@ export interface ResourceConfig {
1125
1125
  * <code>TrainingInputMode</code> in the algorithm specification. </p>
1126
1126
  * <p>You must specify sufficient ML storage for your scenario. </p>
1127
1127
  * <note>
1128
- * <p> Amazon SageMaker supports only the General Purpose SSD (gp2) ML storage volume type.
1128
+ * <p> SageMaker supports only the General Purpose SSD (gp2) ML storage volume type.
1129
1129
  * </p>
1130
1130
  * </note>
1131
1131
  * <note>
1132
1132
  * <p>Certain Nitro-based instances include local storage with a fixed total size,
1133
- * dependent on the instance type. When using these instances for training, Amazon SageMaker mounts
1133
+ * dependent on the instance type. When using these instances for training, SageMaker mounts
1134
1134
  * the local instance storage instead of Amazon EBS gp2 storage. You can't request a
1135
1135
  * <code>VolumeSizeInGB</code> greater than the total size of the local instance
1136
1136
  * storage.</p>
@@ -1140,7 +1140,7 @@ export interface ResourceConfig {
1140
1140
  */
1141
1141
  VolumeSizeInGB: number | undefined;
1142
1142
  /**
1143
- * <p>The Amazon Web Services KMS key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML
1143
+ * <p>The Amazon Web Services KMS key that SageMaker uses to encrypt data on the storage volume attached to the ML
1144
1144
  * compute instance(s) that run the training job.</p>
1145
1145
  * <note>
1146
1146
  * <p>Certain Nitro-based instances include local storage, dependent on the instance
@@ -1178,12 +1178,12 @@ export declare namespace ResourceConfig {
1178
1178
  /**
1179
1179
  * <p>Specifies a limit to how long a model training job or model compilation job
1180
1180
  * can run. It also specifies how long a managed spot training
1181
- * job has to complete. When the job reaches the time limit, Amazon SageMaker ends the training or
1181
+ * job has to complete. When the job reaches the time limit, SageMaker ends the training or
1182
1182
  * compilation job. Use this API to cap model training costs.</p>
1183
- * <p>To stop a training job, Amazon SageMaker sends the algorithm the <code>SIGTERM</code> signal, which delays
1183
+ * <p>To stop a training job, SageMaker sends the algorithm the <code>SIGTERM</code> signal, which delays
1184
1184
  * job termination for 120 seconds. Algorithms can use this 120-second window to save the
1185
1185
  * model artifacts, so the results of training are not lost. </p>
1186
- * <p>The training algorithms provided by Amazon SageMaker automatically save the intermediate results
1186
+ * <p>The training algorithms provided by SageMaker automatically save the intermediate results
1187
1187
  * of a model training job when possible. This attempt to save artifacts is only a best
1188
1188
  * effort case as model might not be in a state from which it can be saved. For example, if
1189
1189
  * training has just started, the model might not be ready to save. When saved, this
@@ -1198,10 +1198,10 @@ export declare namespace ResourceConfig {
1198
1198
  export interface StoppingCondition {
1199
1199
  /**
1200
1200
  * <p>The maximum length of time, in seconds, that a training or compilation job can run.</p>
1201
- * <p>For compilation jobs, if the job does not complete during this time, you will
1202
- * receive a <code>TimeOut</code> error. We recommend starting with 900 seconds and increase as
1201
+ * <p>For compilation jobs, if the job does not complete during this time, a <code>TimeOut</code> error
1202
+ * is generated. We recommend starting with 900 seconds and increasing as
1203
1203
  * necessary based on your model.</p>
1204
- * <p>For all other jobs, if the job does not complete during this time, Amazon SageMaker ends the job. When
1204
+ * <p>For all other jobs, if the job does not complete during this time, SageMaker ends the job. When
1205
1205
  * <code>RetryStrategy</code> is specified in the job request,
1206
1206
  * <code>MaxRuntimeInSeconds</code> specifies the maximum time for all of the attempts
1207
1207
  * in total, not each individual attempt. The default value is 1 day. The maximum value is 28 days.</p>
@@ -1212,7 +1212,7 @@ export interface StoppingCondition {
1212
1212
  * complete. It is the amount of time spent waiting for Spot capacity plus the amount of
1213
1213
  * time the job can run. It must be equal to or greater than
1214
1214
  * <code>MaxRuntimeInSeconds</code>. If the job does not complete during this time,
1215
- * Amazon SageMaker ends the job.</p>
1215
+ * SageMaker ends the job.</p>
1216
1216
  * <p>When <code>RetryStrategy</code> is specified in the job request,
1217
1217
  * <code>MaxWaitTimeInSeconds</code> specifies the maximum time for all of the attempts
1218
1218
  * in total, not each individual attempt.</p>
@@ -1281,7 +1281,7 @@ export interface TrainingJobDefinition {
1281
1281
  */
1282
1282
  InputDataConfig: Channel[] | undefined;
1283
1283
  /**
1284
- * <p>the path to the S3 bucket where you want to store model artifacts. Amazon SageMaker creates
1284
+ * <p>the path to the S3 bucket where you want to store model artifacts. SageMaker creates
1285
1285
  * subfolders for the artifacts.</p>
1286
1286
  */
1287
1287
  OutputDataConfig: OutputDataConfig | undefined;
@@ -1292,9 +1292,9 @@ export interface TrainingJobDefinition {
1292
1292
  ResourceConfig: ResourceConfig | undefined;
1293
1293
  /**
1294
1294
  * <p>Specifies a limit to how long a model training job can run. It also specifies how long
1295
- * a managed Spot training job has to complete. When the job reaches the time limit, Amazon SageMaker
1295
+ * a managed Spot training job has to complete. When the job reaches the time limit, SageMaker
1296
1296
  * ends the training job. Use this API to cap model training costs.</p>
1297
- * <p>To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job
1297
+ * <p>To stop a job, SageMaker sends the algorithm the SIGTERM signal, which delays job
1298
1298
  * termination for 120 seconds. Algorithms can use this 120-second window to save the model
1299
1299
  * artifacts.</p>
1300
1300
  */
@@ -1674,7 +1674,7 @@ export declare namespace TransformJobDefinition {
1674
1674
  const filterSensitiveLog: (obj: TransformJobDefinition) => any;
1675
1675
  }
1676
1676
  /**
1677
- * <p>Defines a training job and a batch transform job that Amazon SageMaker runs to validate your
1677
+ * <p>Defines a training job and a batch transform job that SageMaker runs to validate your
1678
1678
  * algorithm.</p>
1679
1679
  * <p>The data provided in the validation profile is made available to your buyers on Amazon Web Services
1680
1680
  * Marketplace.</p>
@@ -1687,12 +1687,12 @@ export interface AlgorithmValidationProfile {
1687
1687
  ProfileName: string | undefined;
1688
1688
  /**
1689
1689
  * <p>The <code>TrainingJobDefinition</code> object that describes the training job that
1690
- * Amazon SageMaker runs to validate your algorithm.</p>
1690
+ * SageMaker runs to validate your algorithm.</p>
1691
1691
  */
1692
1692
  TrainingJobDefinition: TrainingJobDefinition | undefined;
1693
1693
  /**
1694
1694
  * <p>The <code>TransformJobDefinition</code> object that describes the transform job that
1695
- * Amazon SageMaker runs to validate your algorithm.</p>
1695
+ * SageMaker runs to validate your algorithm.</p>
1696
1696
  */
1697
1697
  TransformJobDefinition?: TransformJobDefinition;
1698
1698
  }
@@ -1703,17 +1703,17 @@ export declare namespace AlgorithmValidationProfile {
1703
1703
  const filterSensitiveLog: (obj: AlgorithmValidationProfile) => any;
1704
1704
  }
1705
1705
  /**
1706
- * <p>Specifies configurations for one or more training jobs that Amazon SageMaker runs to test the
1706
+ * <p>Specifies configurations for one or more training jobs that SageMaker runs to test the
1707
1707
  * algorithm.</p>
1708
1708
  */
1709
1709
  export interface AlgorithmValidationSpecification {
1710
1710
  /**
1711
- * <p>The IAM roles that Amazon SageMaker uses to run the training jobs.</p>
1711
+ * <p>The IAM roles that SageMaker uses to run the training jobs.</p>
1712
1712
  */
1713
1713
  ValidationRole: string | undefined;
1714
1714
  /**
1715
1715
  * <p>An array of <code>AlgorithmValidationProfile</code> objects, each of which specifies a
1716
- * training job and batch transform job that Amazon SageMaker runs to validate your algorithm.</p>
1716
+ * training job and batch transform job that SageMaker runs to validate your algorithm.</p>
1717
1717
  */
1718
1718
  ValidationProfiles: AlgorithmValidationProfile[] | undefined;
1719
1719
  }
@@ -3650,13 +3650,13 @@ export declare namespace AssociationSummary {
3650
3650
  const filterSensitiveLog: (obj: AssociationSummary) => any;
3651
3651
  }
3652
3652
  /**
3653
- * <p>Configures the behavior of the client used by Amazon SageMaker to interact with the
3653
+ * <p>Configures the behavior of the client used by SageMaker to interact with the
3654
3654
  * model container during asynchronous inference.</p>
3655
3655
  */
3656
3656
  export interface AsyncInferenceClientConfig {
3657
3657
  /**
3658
3658
  * <p>The maximum number of concurrent requests sent by the SageMaker client to the
3659
- * model container. If no value is provided, Amazon SageMaker will choose an optimal value for you.</p>
3659
+ * model container. If no value is provided, SageMaker chooses an optimal value.</p>
3660
3660
  */
3661
3661
  MaxConcurrentInvocationsPerInstance?: number;
3662
3662
  }
@@ -3693,7 +3693,7 @@ export declare namespace AsyncInferenceNotificationConfig {
3693
3693
  export interface AsyncInferenceOutputConfig {
3694
3694
  /**
3695
3695
  * <p>The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that
3696
- * Amazon SageMaker uses to encrypt the asynchronous inference output in Amazon S3.</p>
3696
+ * SageMaker uses to encrypt the asynchronous inference output in Amazon S3.</p>
3697
3697
  * <p></p>
3698
3698
  */
3699
3699
  KmsKeyId?: string;
@@ -3717,7 +3717,7 @@ export declare namespace AsyncInferenceOutputConfig {
3717
3717
  */
3718
3718
  export interface AsyncInferenceConfig {
3719
3719
  /**
3720
- * <p>Configures the behavior of the client used by Amazon SageMaker to interact
3720
+ * <p>Configures the behavior of the client used by SageMaker to interact
3721
3721
  * with the model container during asynchronous inference.</p>
3722
3722
  */
3723
3723
  ClientConfig?: AsyncInferenceClientConfig;
@@ -3802,8 +3802,7 @@ export interface CandidateArtifactLocations {
3802
3802
  */
3803
3803
  Explainability: string | undefined;
3804
3804
  /**
3805
- * <p>The Amazon S3 prefix to the model insight artifacts generated for the AutoML
3806
- * candidate.</p>
3805
+ * <p>The Amazon S3 prefix to the model insight artifacts generated for the AutoML candidate.</p>
3807
3806
  */
3808
3807
  ModelInsights?: string;
3809
3808
  }
@@ -4018,6 +4017,10 @@ export declare namespace AutoMLCandidate {
4018
4017
  */
4019
4018
  const filterSensitiveLog: (obj: AutoMLCandidate) => any;
4020
4019
  }
4020
+ export declare enum AutoMLChannelType {
4021
+ TRAINING = "training",
4022
+ VALIDATION = "validation"
4023
+ }
4021
4024
  export declare enum AutoMLS3DataType {
4022
4025
  MANIFEST_FILE = "ManifestFile",
4023
4026
  S3_PREFIX = "S3Prefix"
@@ -4060,8 +4063,13 @@ export declare namespace AutoMLDataSource {
4060
4063
  const filterSensitiveLog: (obj: AutoMLDataSource) => any;
4061
4064
  }
4062
4065
  /**
4063
- * <p>A channel is a named input source that training algorithms can consume. For more
4064
- * information, see .</p>
4066
+ * <p>A channel is a named input source that training algorithms can consume. The
4067
+ * validation dataset size is limited to less than 2 GB. The training dataset size must be
4068
+ * less than 100 GB. For more information, see .</p>
4069
+ * <note>
4070
+ * <p>A validation dataset must contain the same headers as the training dataset.</p>
4071
+ * </note>
4072
+ * <p></p>
4065
4073
  */
4066
4074
  export interface AutoMLChannel {
4067
4075
  /**
@@ -4080,10 +4088,16 @@ export interface AutoMLChannel {
4080
4088
  TargetAttributeName: string | undefined;
4081
4089
  /**
4082
4090
  * <p>The content type of the data from the input source. You can use
4083
- * <code>text/csv;header=present</code> or <code>x-application/vnd.amazon+parquet</code>.
4091
+ * <code>text/csv;header=present</code> or <code>x-application/vnd.amazon+parquet</code>.
4084
4092
  * The default value is <code>text/csv;header=present</code>.</p>
4085
4093
  */
4086
4094
  ContentType?: string;
4095
+ /**
4096
+ * <p>The channel type (optional) is an enum string. The default value is
4097
+ * <code>training</code>. Channels for training and validation must share the same
4098
+ * <code>ContentType</code> and <code>TargetAttributeName</code>.</p>
4099
+ */
4100
+ ChannelType?: AutoMLChannelType | string;
4087
4101
  }
4088
4102
  export declare namespace AutoMLChannel {
4089
4103
  /**
@@ -4091,6 +4105,25 @@ export declare namespace AutoMLChannel {
4091
4105
  */
4092
4106
  const filterSensitiveLog: (obj: AutoMLChannel) => any;
4093
4107
  }
4108
+ /**
4109
+ * <p>This structure specifies how to split the data into train and test datasets. The
4110
+ * validation and training datasets must contain the same headers. The validation dataset must
4111
+ * be less than 2 GB in size.</p>
4112
+ */
4113
+ export interface AutoMLDataSplitConfig {
4114
+ /**
4115
+ * <p>The validation fraction (optional) is a float that specifies the portion of the training
4116
+ * dataset to be used for validation. The default value is 0.2, and values can range from 0 to
4117
+ * 1. We recommend setting this value to be less than 0.5.</p>
4118
+ */
4119
+ ValidationFraction?: number;
4120
+ }
4121
+ export declare namespace AutoMLDataSplitConfig {
4122
+ /**
4123
+ * @internal
4124
+ */
4125
+ const filterSensitiveLog: (obj: AutoMLDataSplitConfig) => any;
4126
+ }
4094
4127
  /**
4095
4128
  * <p>The artifacts that are generated during an AutoML job.</p>
4096
4129
  */
@@ -4200,6 +4233,11 @@ export interface AutoMLJobConfig {
4200
4233
  * <p>The security configuration for traffic encryption or Amazon VPC settings.</p>
4201
4234
  */
4202
4235
  SecurityConfig?: AutoMLSecurityConfig;
4236
+ /**
4237
+ * <p>The configuration for splitting the input training dataset.</p>
4238
+ * <p>Type: AutoMLDataSplitConfig</p>
4239
+ */
4240
+ DataSplitConfig?: AutoMLDataSplitConfig;
4203
4241
  }
4204
4242
  export declare namespace AutoMLJobConfig {
4205
4243
  /**
@@ -4646,7 +4684,7 @@ export interface CapacitySize {
4646
4684
  * <li>
4647
4685
  * <p>
4648
4686
  * <code>CAPACITY_PERCENT</code>: The endpoint activates based on
4649
- * the specified percentage of capacity.</p>
4687
+ * the specified percentage of capacity.</p>
4650
4688
  * </li>
4651
4689
  * </ul>
4652
4690
  */
@@ -4704,7 +4742,7 @@ export interface TrafficRoutingConfig {
4704
4742
  WaitIntervalInSeconds: number | undefined;
4705
4743
  /**
4706
4744
  * <p>Batch size for the first step to turn on traffic on the new endpoint fleet. <code>Value</code> must be less than
4707
- * or equal to 50% of the variant's total instance count.</p>
4745
+ * or equal to 50% of the variant's total instance count.</p>
4708
4746
  */
4709
4747
  CanarySize?: CapacitySize;
4710
4748
  /**
@@ -4740,7 +4778,7 @@ export interface BlueGreenUpdatePolicy {
4740
4778
  TerminationWaitInSeconds?: number;
4741
4779
  /**
4742
4780
  * <p>Maximum execution timeout for the deployment. Note that the timeout value should be larger
4743
- * than the total waiting time specified in <code>TerminationWaitInSeconds</code> and <code>WaitIntervalInSeconds</code>.</p>
4781
+ * than the total waiting time specified in <code>TerminationWaitInSeconds</code> and <code>WaitIntervalInSeconds</code>.</p>
4744
4782
  */
4745
4783
  MaximumExecutionTimeoutInSeconds?: number;
4746
4784
  }
@@ -4959,7 +4997,7 @@ export declare namespace ChannelSpecification {
4959
4997
  */
4960
4998
  export interface CheckpointConfig {
4961
4999
  /**
4962
- * <p>Identifies the S3 path where you want Amazon SageMaker to store checkpoints. For example,
5000
+ * <p>Identifies the S3 path where you want SageMaker to store checkpoints. For example,
4963
5001
  * <code>s3://bucket-name/key-name-prefix</code>.</p>
4964
5002
  */
4965
5003
  S3Uri: string | undefined;
@@ -4977,8 +5015,8 @@ export declare namespace CheckpointConfig {
4977
5015
  }
4978
5016
  /**
4979
5017
  * <p>The container for the metadata for the ClarifyCheck step. For more information,
4980
- * see the topic on <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-clarify-check">ClarifyCheck step</a> in the <i>Amazon SageMaker Developer Guide</i>.
4981
- * </p>
5018
+ * see the topic on <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-clarify-check">ClarifyCheck step</a> in the <i>Amazon SageMaker Developer Guide</i>.
5019
+ * </p>
4982
5020
  */
4983
5021
  export interface ClarifyCheckStepMetadata {
4984
5022
  /**
@@ -5007,14 +5045,14 @@ export interface ClarifyCheckStepMetadata {
5007
5045
  CheckJobArn?: string;
5008
5046
  /**
5009
5047
  * <p>This flag indicates if the drift check against the previous baseline will be skipped or not.
5010
- * If it is set to <code>False</code>, the previous baseline of the configured check type must be available.</p>
5048
+ * If it is set to <code>False</code>, the previous baseline of the configured check type must be available.</p>
5011
5049
  */
5012
5050
  SkipCheck?: boolean;
5013
5051
  /**
5014
5052
  * <p>This flag indicates if a newly calculated baseline can be accessed through step properties
5015
- * <code>BaselineUsedForDriftCheckConstraints</code> and <code>BaselineUsedForDriftCheckStatistics</code>.
5016
- * If it is set to <code>False</code>, the previous baseline of the configured check type must also be available.
5017
- * These can be accessed through the <code>BaselineUsedForDriftCheckConstraints</code> property. </p>
5053
+ * <code>BaselineUsedForDriftCheckConstraints</code> and <code>BaselineUsedForDriftCheckStatistics</code>.
5054
+ * If it is set to <code>False</code>, the previous baseline of the configured check type must also be available.
5055
+ * These can be accessed through the <code>BaselineUsedForDriftCheckConstraints</code> property. </p>
5018
5056
  */
5019
5057
  RegisterNewBaseline?: boolean;
5020
5058
  }
@@ -5436,7 +5474,7 @@ export interface ContainerDefinition {
5436
5474
  * <p>The path where inference code is stored. This can be either in Amazon EC2 Container Registry or in a
5437
5475
  * Docker registry that is accessible from the same VPC that you configure for your
5438
5476
  * endpoint. If you are using your own custom algorithm instead of an algorithm provided by
5439
- * Amazon SageMaker, the inference code must meet Amazon SageMaker requirements. Amazon SageMaker supports both
5477
+ * SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both
5440
5478
  * <code>registry/repository[:tag]</code> and <code>registry/repository[@digest]</code>
5441
5479
  * image path formats. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html">Using Your Own Algorithms with Amazon
5442
5480
  * SageMaker</a>
@@ -5458,21 +5496,21 @@ export interface ContainerDefinition {
5458
5496
  /**
5459
5497
  * <p>The S3 path where the model artifacts, which result from model training, are stored.
5460
5498
  * This path must point to a single gzip compressed tar archive (.tar.gz suffix). The S3
5461
- * path is required for Amazon SageMaker built-in algorithms, but not if you use your own algorithms.
5499
+ * path is required for SageMaker built-in algorithms, but not if you use your own algorithms.
5462
5500
  * For more information on built-in algorithms, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html">Common
5463
5501
  * Parameters</a>. </p>
5464
5502
  * <note>
5465
5503
  * <p>The model artifacts must be in an S3 bucket that is in the same region as the
5466
5504
  * model or endpoint you are creating.</p>
5467
5505
  * </note>
5468
- * <p>If you provide a value for this parameter, Amazon SageMaker uses Amazon Web Services Security Token Service to
5506
+ * <p>If you provide a value for this parameter, SageMaker uses Amazon Web Services Security Token Service to
5469
5507
  * download model artifacts from the S3 path you provide. Amazon Web Services STS is activated in your
5470
5508
  * IAM user account by default. If you previously deactivated Amazon Web Services STS for a region, you
5471
5509
  * need to reactivate Amazon Web Services STS for that region. For more information, see <a href="https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html">Activating and
5472
5510
  * Deactivating Amazon Web Services STS in an Amazon Web Services Region</a> in the <i>Amazon Web Services Identity and Access Management User
5473
5511
  * Guide</i>.</p>
5474
5512
  * <important>
5475
- * <p>If you use a built-in algorithm to create a model, Amazon SageMaker requires that you provide
5513
+ * <p>If you use a built-in algorithm to create a model, SageMaker requires that you provide
5476
5514
  * a S3 path to the model artifacts in <code>ModelDataUrl</code>.</p>
5477
5515
  * </important>
5478
5516
  */
@@ -5600,7 +5638,7 @@ export interface ContinuousParameterRange {
5600
5638
  * <dl>
5601
5639
  * <dt>Auto</dt>
5602
5640
  * <dd>
5603
- * <p>Amazon SageMaker hyperparameter tuning chooses the best scale for the
5641
+ * <p>SageMaker hyperparameter tuning chooses the best scale for the
5604
5642
  * hyperparameter.</p>
5605
5643
  * </dd>
5606
5644
  * <dt>Linear</dt>
@@ -5969,8 +6007,8 @@ export interface CreateAlgorithmInput {
5969
6007
  */
5970
6008
  InferenceSpecification?: InferenceSpecification;
5971
6009
  /**
5972
- * <p>Specifies configurations for one or more training jobs and that Amazon SageMaker runs to test the
5973
- * algorithm's training code and, optionally, one or more batch transform jobs that Amazon SageMaker
6010
+ * <p>Specifies configurations for one or more training jobs and that SageMaker runs to test the
6011
+ * algorithm's training code and, optionally, one or more batch transform jobs that SageMaker
5974
6012
  * runs to test the algorithm's inference code.</p>
5975
6013
  */
5976
6014
  ValidationSpecification?: AlgorithmValidationSpecification;
@@ -6019,6 +6057,9 @@ export interface ResourceSpec {
6019
6057
  SageMakerImageVersionArn?: string;
6020
6058
  /**
6021
6059
  * <p>The instance type that the image version runs on.</p>
6060
+ * <note>
6061
+ * <p>JupyterServer Apps only support the <code>system</code> value. KernelGateway Apps do not support the <code>system</code> value, but support all other values for available instance types.</p>
6062
+ * </note>
6022
6063
  */
6023
6064
  InstanceType?: AppInstanceType | string;
6024
6065
  /**
@@ -7765,11 +7806,14 @@ export declare namespace CreateDeviceFleetRequest {
7765
7806
  */
7766
7807
  export interface JupyterServerAppSettings {
7767
7808
  /**
7768
- * <p>The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterServer app.</p>
7809
+ * <p>The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterServer app. If you use the <code>LifecycleConfigArns</code> parameter, then this parameter is also required.</p>
7769
7810
  */
7770
7811
  DefaultResourceSpec?: ResourceSpec;
7771
7812
  /**
7772
- * <p> The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp.</p>
7813
+ * <p> The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp. If you use this parameter, the <code>DefaultResourceSpec</code> parameter is also required.</p>
7814
+ * <note>
7815
+ * <p>To remove a Lifecycle Config, you must set <code>LifecycleConfigArns</code> to an empty list.</p>
7816
+ * </note>
7773
7817
  */
7774
7818
  LifecycleConfigArns?: string[];
7775
7819
  }
@@ -7809,6 +7853,11 @@ export declare namespace CustomImage {
7809
7853
  export interface KernelGatewayAppSettings {
7810
7854
  /**
7811
7855
  * <p>The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the KernelGateway app.</p>
7856
+ * <note>
7857
+ * <p>The Amazon SageMaker Studio UI does not use the default instance type value set here. The default
7858
+ * instance type set here is used when Apps are created using the Amazon Web Services Command Line Interface or Amazon Web Services CloudFormation
7859
+ * and the instance type parameter value is not passed.</p>
7860
+ * </note>
7812
7861
  */
7813
7862
  DefaultResourceSpec?: ResourceSpec;
7814
7863
  /**
@@ -7817,6 +7866,9 @@ export interface KernelGatewayAppSettings {
7817
7866
  CustomImages?: CustomImage[];
7818
7867
  /**
7819
7868
  * <p> The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain.</p>
7869
+ * <note>
7870
+ * <p>To remove a Lifecycle Config, you must set <code>LifecycleConfigArns</code> to an empty list.</p>
7871
+ * </note>
7820
7872
  */
7821
7873
  LifecycleConfigArns?: string[];
7822
7874
  }
@@ -8271,7 +8323,7 @@ export interface ProductionVariantCoreDumpConfig {
8271
8323
  */
8272
8324
  DestinationS3Uri: string | undefined;
8273
8325
  /**
8274
- * <p>The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt the core dump data at rest using
8326
+ * <p>The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that SageMaker uses to encrypt the core dump data at rest using
8275
8327
  * Amazon S3 server-side encryption. The <code>KmsKeyId</code> can be any of the following
8276
8328
  * formats: </p>
8277
8329
  * <ul>
@@ -8301,9 +8353,9 @@ export interface ProductionVariantCoreDumpConfig {
8301
8353
  * </li>
8302
8354
  * </ul>
8303
8355
  *
8304
- * <p>If you use a KMS key ID or an alias of your KMS key, the Amazon SageMaker execution role must
8356
+ * <p>If you use a KMS key ID or an alias of your KMS key, the SageMaker execution role must
8305
8357
  * include permissions to call <code>kms:Encrypt</code>. If you don't provide a KMS key ID,
8306
- * Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. Amazon SageMaker uses server-side
8358
+ * SageMaker uses the default KMS key for Amazon S3 for your role's account. SageMaker uses server-side
8307
8359
  * encryption with KMS-managed keys for <code>OutputDataConfig</code>. If you use a bucket
8308
8360
  * policy with an <code>s3:PutObject</code> permission that only allows objects with
8309
8361
  * server-side encryption, set the condition key of
@@ -8325,10 +8377,7 @@ export declare namespace ProductionVariantCoreDumpConfig {
8325
8377
  const filterSensitiveLog: (obj: ProductionVariantCoreDumpConfig) => any;
8326
8378
  }
8327
8379
  /**
8328
- * <important>
8329
- * <p>Serverless Inference is in preview release for Amazon SageMaker and is subject to change. We do not recommend using this feature in production environments.</p>
8330
- * </important>
8331
- * <p>Specifies the serverless configuration for an endpoint variant.</p>
8380
+ * <p>Specifies the serverless configuration for an endpoint variant.</p>
8332
8381
  */
8333
8382
  export interface ProductionVariantServerlessConfig {
8334
8383
  /**
@@ -8348,7 +8397,7 @@ export declare namespace ProductionVariantServerlessConfig {
8348
8397
  }
8349
8398
  /**
8350
8399
  * <p>Identifies a model that you want to host and the resources chosen to deploy for
8351
- * hosting it. If you are deploying multiple models, tell Amazon SageMaker how to distribute traffic
8400
+ * hosting it. If you are deploying multiple models, tell SageMaker how to distribute traffic
8352
8401
  * among the models by specifying variant weights. </p>
8353
8402
  */
8354
8403
  export interface ProductionVariant {
@@ -8391,9 +8440,6 @@ export interface ProductionVariant {
8391
8440
  CoreDumpConfig?: ProductionVariantCoreDumpConfig;
8392
8441
  /**
8393
8442
  * <p>The serverless configuration for an endpoint. Specifies a serverless endpoint configuration instead of an instance-based endpoint configuration.</p>
8394
- * <note>
8395
- * <p>Serverless Inference is in preview release for Amazon SageMaker and is subject to change. We do not recommend using this feature in production environments.</p>
8396
- * </note>
8397
8443
  */
8398
8444
  ServerlessConfig?: ProductionVariantServerlessConfig;
8399
8445
  }
@@ -8425,7 +8471,7 @@ export interface CreateEndpointConfigInput {
8425
8471
  */
8426
8472
  Tags?: Tag[];
8427
8473
  /**
8428
- * <p>The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that Amazon SageMaker uses to encrypt data on
8474
+ * <p>The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that SageMaker uses to encrypt data on
8429
8475
  * the storage volume attached to the ML compute instance that hosts the endpoint.</p>
8430
8476
  * <p>The KmsKeyId can be any of the following formats: </p>
8431
8477
  * <ul>
@@ -9795,7 +9841,7 @@ export interface IntegerParameterRange {
9795
9841
  * <dl>
9796
9842
  * <dt>Auto</dt>
9797
9843
  * <dd>
9798
- * <p>Amazon SageMaker hyperparameter tuning chooses the best scale for the
9844
+ * <p>SageMaker hyperparameter tuning chooses the best scale for the
9799
9845
  * hyperparameter.</p>
9800
9846
  * </dd>
9801
9847
  * <dt>Linear</dt>
@@ -9949,7 +9995,7 @@ export interface HyperParameterTuningJobConfig {
9949
9995
  * </dd>
9950
9996
  * <dt>AUTO</dt>
9951
9997
  * <dd>
9952
- * <p>Amazon SageMaker stops training jobs launched by the hyperparameter tuning job when
9998
+ * <p>SageMaker stops training jobs launched by the hyperparameter tuning job when
9953
9999
  * they are unlikely to perform better than previously completed training jobs.
9954
10000
  * For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html">Stop Training Jobs Early</a>.</p>
9955
10001
  * </dd>
@@ -9977,7 +10023,7 @@ export interface HyperParameterAlgorithmSpecification {
9977
10023
  /**
9978
10024
  * <p> The registry path of the Docker image that contains the training algorithm. For
9979
10025
  * information about Docker registry paths for built-in algorithms, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html">Algorithms
9980
- * Provided by Amazon SageMaker: Common Parameters</a>. Amazon SageMaker supports both
10026
+ * Provided by Amazon SageMaker: Common Parameters</a>. SageMaker supports both
9981
10027
  * <code>registry/repository[:tag]</code> and <code>registry/repository[@digest]</code>
9982
10028
  * image path formats. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html">Using Your Own Algorithms with Amazon
9983
10029
  * SageMaker</a>.</p>
@@ -10143,27 +10189,26 @@ export interface HyperParameterTrainingJobDefinition {
10143
10189
  * including
10144
10190
  * the compute instances and storage volumes, to use for the training
10145
10191
  * jobs that the tuning job launches.</p>
10146
- * <p>Storage
10147
- * volumes store model artifacts and
10192
+ * <p>Storage volumes store model artifacts and
10148
10193
  * incremental
10149
10194
  * states. Training algorithms might also use storage volumes for
10150
10195
  * scratch
10151
- * space. If you want Amazon SageMaker to use the storage volume
10152
- * to store the training data, choose <code>File</code> as the
10153
- * <code>TrainingInputMode</code> in the algorithm specification. For distributed
10154
- * training algorithms, specify an instance count greater than 1.</p>
10196
+ * space. If you want SageMaker to use the storage volume to store the
10197
+ * training data, choose <code>File</code> as the <code>TrainingInputMode</code> in the
10198
+ * algorithm specification. For distributed training algorithms, specify an instance count
10199
+ * greater than 1.</p>
10155
10200
  */
10156
10201
  ResourceConfig: ResourceConfig | undefined;
10157
10202
  /**
10158
10203
  * <p>Specifies a limit to how long a model hyperparameter training job can run. It also
10159
10204
  * specifies how long a managed spot training job has to complete. When the job reaches the
10160
- * time limit, Amazon SageMaker ends the training job. Use this API to cap model training costs.</p>
10205
+ * time limit, SageMaker ends the training job. Use this API to cap model training costs.</p>
10161
10206
  */
10162
10207
  StoppingCondition: StoppingCondition | undefined;
10163
10208
  /**
10164
10209
  * <p>Isolates the training container. No inbound or outbound network calls can be made,
10165
10210
  * except for calls between peers within a training cluster for distributed training. If
10166
- * network isolation is used for training jobs that are configured to use a VPC, Amazon SageMaker
10211
+ * network isolation is used for training jobs that are configured to use a VPC, SageMaker
10167
10212
  * downloads and uploads customer data and model artifacts through the specified VPC, but
10168
10213
  * the training container does not have network access.</p>
10169
10214
  */
@@ -10302,10 +10347,9 @@ export interface CreateHyperParameterTuningJobRequest {
10302
10347
  HyperParameterTuningJobConfig: HyperParameterTuningJobConfig | undefined;
10303
10348
  /**
10304
10349
  * <p>The <a>HyperParameterTrainingJobDefinition</a> object that describes the
10305
- * training jobs that this tuning job launches,
10306
- * including
10307
- * static hyperparameters, input data configuration, output data configuration, resource
10308
- * configuration, and stopping condition.</p>
10350
+ * training jobs that this tuning job launches, including static hyperparameters, input
10351
+ * data configuration, output data configuration, resource configuration, and stopping
10352
+ * condition.</p>
10309
10353
  */
10310
10354
  TrainingJobDefinition?: HyperParameterTrainingJobDefinition;
10311
10355
  /**
@@ -10349,7 +10393,7 @@ export declare namespace CreateHyperParameterTuningJobRequest {
10349
10393
  }
10350
10394
  export interface CreateHyperParameterTuningJobResponse {
10351
10395
  /**
10352
- * <p>The Amazon Resource Name (ARN) of the tuning job. Amazon SageMaker assigns an ARN to a
10396
+ * <p>The Amazon Resource Name (ARN) of the tuning job. SageMaker assigns an ARN to a
10353
10397
  * hyperparameter tuning job when you create it.</p>
10354
10398
  */
10355
10399
  HyperParameterTuningJobArn: string | undefined;
@@ -10403,7 +10447,7 @@ export declare namespace CreateImageResponse {
10403
10447
  export interface CreateImageVersionRequest {
10404
10448
  /**
10405
10449
  * <p>The registry path of the container image to use as the starting point for this
10406
- * version. The path is an Amazon Container Registry (ECR) URI in the following format:</p>
10450
+ * version. The path is an Amazon Elastic Container Registry (ECR) URI in the following format:</p>
10407
10451
  * <p>
10408
10452
  * <code><acct-id>.dkr.ecr.<region>.amazonaws.com/<repo-name[:tag] or [@digest]></code>
10409
10453
  * </p>
@@ -10425,30 +10469,3 @@ export declare namespace CreateImageVersionRequest {
10425
10469
  */
10426
10470
  const filterSensitiveLog: (obj: CreateImageVersionRequest) => any;
10427
10471
  }
10428
- export interface CreateImageVersionResponse {
10429
- /**
10430
- * <p>The Amazon Resource Name (ARN) of the image version.</p>
10431
- */
10432
- ImageVersionArn?: string;
10433
- }
10434
- export declare namespace CreateImageVersionResponse {
10435
- /**
10436
- * @internal
10437
- */
10438
- const filterSensitiveLog: (obj: CreateImageVersionResponse) => any;
10439
- }
10440
- /**
10441
- * <p>Specifies the range of environment parameters</p>
10442
- */
10443
- export interface EnvironmentParameterRanges {
10444
- /**
10445
- * <p>Specified a list of parameters for each category.</p>
10446
- */
10447
- CategoricalParameterRanges?: CategoricalParameter[];
10448
- }
10449
- export declare namespace EnvironmentParameterRanges {
10450
- /**
10451
- * @internal
10452
- */
10453
- const filterSensitiveLog: (obj: EnvironmentParameterRanges) => any;
10454
- }