@aws-sdk/client-sagemaker 3.623.0 → 3.629.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (39) hide show
  1. package/dist-cjs/index.js +102 -81
  2. package/dist-es/commands/DescribeModelCardCommand.js +1 -1
  3. package/dist-es/models/models_1.js +1 -4
  4. package/dist-es/models/models_2.js +4 -4
  5. package/dist-es/models/models_3.js +5 -6
  6. package/dist-es/models/models_4.js +6 -0
  7. package/dist-es/protocols/Aws_json1_1.js +19 -0
  8. package/dist-types/commands/CreateAutoMLJobCommand.d.ts +12 -0
  9. package/dist-types/commands/CreateAutoMLJobV2Command.d.ts +21 -1
  10. package/dist-types/commands/CreateClusterCommand.d.ts +1 -2
  11. package/dist-types/commands/CreateDomainCommand.d.ts +5 -1
  12. package/dist-types/commands/CreateProcessingJobCommand.d.ts +1 -1
  13. package/dist-types/commands/CreateUserProfileCommand.d.ts +5 -1
  14. package/dist-types/commands/DescribeAutoMLJobV2Command.d.ts +5 -0
  15. package/dist-types/commands/DescribeDomainCommand.d.ts +5 -1
  16. package/dist-types/commands/DescribeModelCardCommand.d.ts +2 -1
  17. package/dist-types/commands/DescribeModelCardExportJobCommand.d.ts +1 -2
  18. package/dist-types/commands/DescribeProcessingJobCommand.d.ts +1 -1
  19. package/dist-types/commands/DescribeUserProfileCommand.d.ts +5 -1
  20. package/dist-types/commands/ListModelExplainabilityJobDefinitionsCommand.d.ts +1 -1
  21. package/dist-types/commands/SearchCommand.d.ts +1 -1
  22. package/dist-types/commands/UpdateDomainCommand.d.ts +5 -1
  23. package/dist-types/commands/UpdateUserProfileCommand.d.ts +5 -1
  24. package/dist-types/models/models_0.d.ts +92 -169
  25. package/dist-types/models/models_1.d.ts +182 -105
  26. package/dist-types/models/models_2.d.ts +112 -135
  27. package/dist-types/models/models_3.d.ts +132 -80
  28. package/dist-types/models/models_4.d.ts +81 -1
  29. package/dist-types/ts3.4/commands/CreateAutoMLJobV2Command.d.ts +1 -1
  30. package/dist-types/ts3.4/commands/CreateClusterCommand.d.ts +4 -2
  31. package/dist-types/ts3.4/commands/DescribeModelCardCommand.d.ts +2 -4
  32. package/dist-types/ts3.4/commands/DescribeModelCardExportJobCommand.d.ts +4 -2
  33. package/dist-types/ts3.4/commands/ListModelExplainabilityJobDefinitionsCommand.d.ts +1 -1
  34. package/dist-types/ts3.4/models/models_0.d.ts +11 -21
  35. package/dist-types/ts3.4/models/models_1.d.ts +32 -25
  36. package/dist-types/ts3.4/models/models_2.d.ts +32 -27
  37. package/dist-types/ts3.4/models/models_3.d.ts +24 -23
  38. package/dist-types/ts3.4/models/models_4.d.ts +22 -1
  39. package/package.json +5 -5
@@ -1,6 +1,6 @@
1
1
  import { Command as $Command } from "@smithy/smithy-client";
2
2
  import { MetadataBearer as __MetadataBearer } from "@smithy/types";
3
- import { ListModelExplainabilityJobDefinitionsRequest, ListModelExplainabilityJobDefinitionsResponse } from "../models/models_3";
3
+ import { ListModelExplainabilityJobDefinitionsRequest, ListModelExplainabilityJobDefinitionsResponse } from "../models/models_4";
4
4
  import { SageMakerClientResolvedConfig, ServiceInputTypes, ServiceOutputTypes } from "../SageMakerClient";
5
5
  /**
6
6
  * @public
@@ -710,7 +710,7 @@ declare const SearchCommand_base: {
710
710
  * // OutputName: "STRING_VALUE", // required
711
711
  * // S3Output: { // ProcessingS3Output
712
712
  * // S3Uri: "STRING_VALUE", // required
713
- * // LocalPath: "STRING_VALUE", // required
713
+ * // LocalPath: "STRING_VALUE",
714
714
  * // S3UploadMode: "Continuous" || "EndOfJob", // required
715
715
  * // },
716
716
  * // FeatureStoreOutput: { // ProcessingFeatureStoreOutput
@@ -140,6 +140,10 @@ declare const UpdateDomainCommand_base: {
140
140
  * GenerativeAiSettings: { // GenerativeAiSettings
141
141
  * AmazonBedrockRoleArn: "STRING_VALUE",
142
142
  * },
143
+ * EmrServerlessSettings: { // EmrServerlessSettings
144
+ * ExecutionRoleArn: "STRING_VALUE",
145
+ * Status: "ENABLED" || "DISABLED",
146
+ * },
143
147
  * },
144
148
  * CodeEditorAppSettings: { // CodeEditorAppSettings
145
149
  * DefaultResourceSpec: {
@@ -208,7 +212,7 @@ declare const UpdateDomainCommand_base: {
208
212
  * ],
209
213
  * StudioWebPortalSettings: { // StudioWebPortalSettings
210
214
  * HiddenMlTools: [ // HiddenMlToolsList
211
- * "DataWrangler" || "FeatureStore" || "EmrClusters" || "AutoMl" || "Experiments" || "Training" || "ModelEvaluation" || "Pipelines" || "Models" || "JumpStart" || "InferenceRecommender" || "Endpoints" || "Projects",
215
+ * "DataWrangler" || "FeatureStore" || "EmrClusters" || "AutoMl" || "Experiments" || "Training" || "ModelEvaluation" || "Pipelines" || "Models" || "JumpStart" || "InferenceRecommender" || "Endpoints" || "Projects" || "InferenceOptimization",
212
216
  * ],
213
217
  * HiddenAppTypes: [ // HiddenAppTypesList
214
218
  * "JupyterServer" || "KernelGateway" || "DetailedProfiler" || "TensorBoard" || "CodeEditor" || "JupyterLab" || "RStudioServerPro" || "RSessionGateway" || "Canvas",
@@ -141,6 +141,10 @@ declare const UpdateUserProfileCommand_base: {
141
141
  * GenerativeAiSettings: { // GenerativeAiSettings
142
142
  * AmazonBedrockRoleArn: "STRING_VALUE",
143
143
  * },
144
+ * EmrServerlessSettings: { // EmrServerlessSettings
145
+ * ExecutionRoleArn: "STRING_VALUE",
146
+ * Status: "ENABLED" || "DISABLED",
147
+ * },
144
148
  * },
145
149
  * CodeEditorAppSettings: { // CodeEditorAppSettings
146
150
  * DefaultResourceSpec: {
@@ -209,7 +213,7 @@ declare const UpdateUserProfileCommand_base: {
209
213
  * ],
210
214
  * StudioWebPortalSettings: { // StudioWebPortalSettings
211
215
  * HiddenMlTools: [ // HiddenMlToolsList
212
- * "DataWrangler" || "FeatureStore" || "EmrClusters" || "AutoMl" || "Experiments" || "Training" || "ModelEvaluation" || "Pipelines" || "Models" || "JumpStart" || "InferenceRecommender" || "Endpoints" || "Projects",
216
+ * "DataWrangler" || "FeatureStore" || "EmrClusters" || "AutoMl" || "Experiments" || "Training" || "ModelEvaluation" || "Pipelines" || "Models" || "JumpStart" || "InferenceRecommender" || "Endpoints" || "Projects" || "InferenceOptimization",
213
217
  * ],
214
218
  * HiddenAppTypes: [ // HiddenAppTypesList
215
219
  * "JupyterServer" || "KernelGateway" || "DetailedProfiler" || "TensorBoard" || "CodeEditor" || "JupyterLab" || "RStudioServerPro" || "RSessionGateway" || "Canvas",
@@ -4913,7 +4913,8 @@ export interface AutoMLAlgorithmConfig {
4913
4913
  * <ul>
4914
4914
  * <li>
4915
4915
  * <p>
4916
- * <b>For the tabular problem type <code>TabularJobConfig</code>:</b>
4916
+ * <b>For the tabular problem type
4917
+ * <code>TabularJobConfig</code>:</b>
4917
4918
  * </p>
4918
4919
  * <note>
4919
4920
  * <p>Selected algorithms must belong to the list corresponding to the training mode
@@ -4968,7 +4969,8 @@ export interface AutoMLAlgorithmConfig {
4968
4969
  * </li>
4969
4970
  * <li>
4970
4971
  * <p>
4971
- * <b>For the time-series forecasting problem type <code>TimeSeriesForecastingJobConfig</code>:</b>
4972
+ * <b>For the time-series forecasting problem type
4973
+ * <code>TimeSeriesForecastingJobConfig</code>:</b>
4972
4974
  * </p>
4973
4975
  * <ul>
4974
4976
  * <li>
@@ -5396,15 +5398,17 @@ export interface AutoMLCandidateGenerationConfig {
5396
5398
  */
5397
5399
  FeatureSpecificationS3Uri?: string;
5398
5400
  /**
5399
- * <p>Stores the configuration information for the selection of algorithms trained on tabular data.</p>
5401
+ * <p>Stores the configuration information for the selection of algorithms trained on tabular
5402
+ * data.</p>
5400
5403
  * <p>The list of available algorithms to choose from depends on the training mode set in
5401
- * <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TabularJobConfig.html">
5404
+ * <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TabularJobConfig.html">
5402
5405
  * <code>TabularJobConfig.Mode</code>
5403
5406
  * </a>.</p>
5404
5407
  * <ul>
5405
5408
  * <li>
5406
5409
  * <p>
5407
- * <code>AlgorithmsConfig</code> should not be set if the training mode is set on <code>AUTO</code>.</p>
5410
+ * <code>AlgorithmsConfig</code> should not be set if the training mode is set on
5411
+ * <code>AUTO</code>.</p>
5408
5412
  * </li>
5409
5413
  * <li>
5410
5414
  * <p>When <code>AlgorithmsConfig</code> is provided, one <code>AutoMLAlgorithms</code>
@@ -5415,12 +5419,12 @@ export interface AutoMLCandidateGenerationConfig {
5415
5419
  * </li>
5416
5420
  * <li>
5417
5421
  * <p>When <code>AlgorithmsConfig</code> is not provided,
5418
- * <code>CandidateGenerationConfig</code> uses the full set of algorithms for the
5422
+ * <code>CandidateGenerationConfig</code> uses the full set of algorithms for the
5419
5423
  * given training mode.</p>
5420
5424
  * </li>
5421
5425
  * </ul>
5422
5426
  * <p>For the list of all algorithms per problem type and training mode, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html">
5423
- * AutoMLAlgorithmConfig</a>.</p>
5427
+ * AutoMLAlgorithmConfig</a>.</p>
5424
5428
  * <p>For more information on each algorithm, see the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support">Algorithm support</a> section in Autopilot developer guide.</p>
5425
5429
  * @public
5426
5430
  */
@@ -5583,6 +5587,52 @@ export interface AutoMLChannel {
5583
5587
  */
5584
5588
  SampleWeightAttributeName?: string;
5585
5589
  }
5590
+ /**
5591
+ * <note>
5592
+ * <p>This data type is intended for use exclusively by SageMaker Canvas and cannot be used in
5593
+ * other contexts at the moment.</p>
5594
+ * </note>
5595
+ * <p>Specifies the compute configuration for the EMR Serverless job.</p>
5596
+ * @public
5597
+ */
5598
+ export interface EmrServerlessComputeConfig {
5599
+ /**
5600
+ * <p>The ARN of the IAM role granting the AutoML job V2 the necessary
5601
+ * permissions access policies to list, connect to, or manage EMR Serverless jobs. For
5602
+ * detailed information about the required permissions of this role, see "How to configure
5603
+ * AutoML to initiate a remote job on EMR Serverless for large datasets" in <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html">Create a regression or classification job for tabular data using the AutoML API</a>
5604
+ * or <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-create-experiment-timeseries-forecasting.html#timeseries-forecasting-api-optional-params">Create an AutoML job for time-series forecasting using the API</a>.</p>
5605
+ * @public
5606
+ */
5607
+ ExecutionRoleARN: string | undefined;
5608
+ }
5609
+ /**
5610
+ * <note>
5611
+ * <p>This data type is intended for use exclusively by SageMaker Canvas and cannot be used in
5612
+ * other contexts at the moment.</p>
5613
+ * </note>
5614
+ * <p>Specifies the compute configuration for an AutoML job V2.</p>
5615
+ * @public
5616
+ */
5617
+ export interface AutoMLComputeConfig {
5618
+ /**
5619
+ * <p>The configuration for using <a href="https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/emr-serverless.html"> EMR Serverless</a>
5620
+ * to run the AutoML job V2.</p>
5621
+ * <p>To allow your AutoML job V2 to automatically initiate a remote job on EMR Serverless
5622
+ * when additional compute resources are needed to process large datasets, you need to provide
5623
+ * an <code>EmrServerlessComputeConfig</code> object, which includes an
5624
+ * <code>ExecutionRoleARN</code> attribute, to the <code>AutoMLComputeConfig</code> of the
5625
+ * AutoML job V2 input request.</p>
5626
+ * <p>By seamlessly transitioning to EMR Serverless when required, the AutoML job can handle
5627
+ * datasets that would otherwise exceed the initially provisioned resources, without any
5628
+ * manual intervention from you. </p>
5629
+ * <p>EMR Serverless is available for the tabular and time series problem types. We
5630
+ * recommend setting up this option for tabular datasets larger than 5 GB and time series
5631
+ * datasets larger than 30 GB.</p>
5632
+ * @public
5633
+ */
5634
+ EmrServerlessComputeConfig?: EmrServerlessComputeConfig;
5635
+ }
5586
5636
  /**
5587
5637
  * <p>This structure specifies how to split the data into train and validation
5588
5638
  * datasets.</p>
@@ -6049,7 +6099,7 @@ export interface AutoMLOutputDataConfig {
6049
6099
  */
6050
6100
  KmsKeyId?: string;
6051
6101
  /**
6052
- * <p>The Amazon S3 output path. Must be 128 characters or less.</p>
6102
+ * <p>The Amazon S3 output path. Must be 512 characters or less.</p>
6053
6103
  * @public
6054
6104
  */
6055
6105
  S3OutputPath: string | undefined;
@@ -6083,9 +6133,9 @@ export interface CandidateGenerationConfig {
6083
6133
  * <ul>
6084
6134
  * <li>
6085
6135
  * <p>
6086
- * <b>For the tabular problem type <code>TabularJobConfig</code>,</b>
6087
- * the list of available algorithms to choose from depends on the training mode set
6088
- * in <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobConfig.html">
6136
+ * <b>For the tabular problem type
6137
+ * <code>TabularJobConfig</code>,</b> the list of available algorithms to
6138
+ * choose from depends on the training mode set in <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobConfig.html">
6089
6139
  * <code>AutoMLJobConfig.Mode</code>
6090
6140
  * </a>.</p>
6091
6141
  * <ul>
@@ -6114,11 +6164,13 @@ export interface CandidateGenerationConfig {
6114
6164
  * </li>
6115
6165
  * <li>
6116
6166
  * <p>
6117
- * <b>For the time-series forecasting problem type <code>TimeSeriesForecastingJobConfig</code>,</b>
6118
- * choose your algorithms from the list provided in
6119
- * <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html">
6167
+ * <b>For the time-series forecasting problem type
6168
+ * <code>TimeSeriesForecastingJobConfig</code>,</b> choose your algorithms
6169
+ * from the list provided in <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html">
6120
6170
  * AlgorithmConfig</a>.</p>
6121
- * <p>For more information on each algorithm, see the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/timeseries-forecasting-algorithms.html">Algorithms support for time-series forecasting</a> section in the Autopilot developer guide.</p>
6171
+ * <p>For more information on each algorithm, see the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/timeseries-forecasting-algorithms.html">Algorithms
6172
+ * support for time-series forecasting</a> section in the Autopilot developer
6173
+ * guide.</p>
6122
6174
  * <ul>
6123
6175
  * <li>
6124
6176
  * <p>When <code>AlgorithmsConfig</code> is provided, one
@@ -7555,6 +7607,26 @@ export interface DirectDeploySettings {
7555
7607
  */
7556
7608
  Status?: FeatureStatus;
7557
7609
  }
7610
+ /**
7611
+ * <p>The settings for running Amazon EMR Serverless jobs in SageMaker Canvas.</p>
7612
+ * @public
7613
+ */
7614
+ export interface EmrServerlessSettings {
7615
+ /**
7616
+ * <p>The Amazon Resource Name (ARN) of the Amazon Web Services IAM role that is assumed for
7617
+ * running Amazon EMR Serverless jobs in SageMaker Canvas. This role should have the necessary
7618
+ * permissions to read and write data attached and a trust relationship with
7619
+ * EMR Serverless.</p>
7620
+ * @public
7621
+ */
7622
+ ExecutionRoleArn?: string;
7623
+ /**
7624
+ * <p>Describes whether Amazon EMR Serverless job capabilities are enabled or disabled in the SageMaker
7625
+ * Canvas application.</p>
7626
+ * @public
7627
+ */
7628
+ Status?: FeatureStatus;
7629
+ }
7558
7630
  /**
7559
7631
  * <p>The generative AI settings for the SageMaker Canvas application.</p>
7560
7632
  * <p>Configure these settings for Canvas users starting chats with generative AI foundation models.
@@ -7721,6 +7793,11 @@ export interface CanvasAppSettings {
7721
7793
  * @public
7722
7794
  */
7723
7795
  GenerativeAiSettings?: GenerativeAiSettings;
7796
+ /**
7797
+ * <p>The settings for running Amazon EMR Serverless data processing jobs in SageMaker Canvas.</p>
7798
+ * @public
7799
+ */
7800
+ EmrServerlessSettings?: EmrServerlessSettings;
7724
7801
  }
7725
7802
  /**
7726
7803
  * <p>Configuration specifying how to treat different headers. If no headers are specified
@@ -10247,157 +10324,3 @@ export interface CreateAutoMLJobResponse {
10247
10324
  */
10248
10325
  AutoMLJobArn: string | undefined;
10249
10326
  }
10250
- /**
10251
- * @public
10252
- */
10253
- export interface CreateAutoMLJobV2Request {
10254
- /**
10255
- * <p>Identifies an Autopilot job. The name must be unique to your account and is case
10256
- * insensitive.</p>
10257
- * @public
10258
- */
10259
- AutoMLJobName: string | undefined;
10260
- /**
10261
- * <p>An array of channel objects describing the input data and their location. Each channel
10262
- * is a named input source. Similar to the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig">InputDataConfig</a> attribute in the <code>CreateAutoMLJob</code> input parameters.
10263
- * The supported formats depend on the problem type:</p>
10264
- * <ul>
10265
- * <li>
10266
- * <p>For tabular problem types: <code>S3Prefix</code>,
10267
- * <code>ManifestFile</code>.</p>
10268
- * </li>
10269
- * <li>
10270
- * <p>For image classification: <code>S3Prefix</code>, <code>ManifestFile</code>,
10271
- * <code>AugmentedManifestFile</code>.</p>
10272
- * </li>
10273
- * <li>
10274
- * <p>For text classification: <code>S3Prefix</code>.</p>
10275
- * </li>
10276
- * <li>
10277
- * <p>For time-series forecasting: <code>S3Prefix</code>.</p>
10278
- * </li>
10279
- * <li>
10280
- * <p>For text generation (LLMs fine-tuning): <code>S3Prefix</code>.</p>
10281
- * </li>
10282
- * </ul>
10283
- * @public
10284
- */
10285
- AutoMLJobInputDataConfig: AutoMLJobChannel[] | undefined;
10286
- /**
10287
- * <p>Provides information about encryption and the Amazon S3 output path needed to
10288
- * store artifacts from an AutoML job.</p>
10289
- * @public
10290
- */
10291
- OutputDataConfig: AutoMLOutputDataConfig | undefined;
10292
- /**
10293
- * <p>Defines the configuration settings of one of the supported problem types.</p>
10294
- * @public
10295
- */
10296
- AutoMLProblemTypeConfig: AutoMLProblemTypeConfig | undefined;
10297
- /**
10298
- * <p>The ARN of the role that is used to access the data.</p>
10299
- * @public
10300
- */
10301
- RoleArn: string | undefined;
10302
- /**
10303
- * <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services
10304
- * resources in different ways, such as by purpose, owner, or environment. For more
10305
- * information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web ServicesResources</a>. Tag keys must be unique per
10306
- * resource.</p>
10307
- * @public
10308
- */
10309
- Tags?: Tag[];
10310
- /**
10311
- * <p>The security configuration for traffic encryption or Amazon VPC settings.</p>
10312
- * @public
10313
- */
10314
- SecurityConfig?: AutoMLSecurityConfig;
10315
- /**
10316
- * <p>Specifies a metric to minimize or maximize as the objective of a job. If not specified,
10317
- * the default objective metric depends on the problem type. For the list of default values
10318
- * per problem type, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html">AutoMLJobObjective</a>.</p>
10319
- * <note>
10320
- * <ul>
10321
- * <li>
10322
- * <p>For tabular problem types: You must either provide both the
10323
- * <code>AutoMLJobObjective</code> and indicate the type of supervised learning
10324
- * problem in <code>AutoMLProblemTypeConfig</code>
10325
- * (<code>TabularJobConfig.ProblemType</code>), or none at all.</p>
10326
- * </li>
10327
- * <li>
10328
- * <p>For text generation problem types (LLMs fine-tuning):
10329
- * Fine-tuning language models in Autopilot does not
10330
- * require setting the <code>AutoMLJobObjective</code> field. Autopilot fine-tunes LLMs
10331
- * without requiring multiple candidates to be trained and evaluated.
10332
- * Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a
10333
- * default objective metric, the cross-entropy loss. After fine-tuning a language model,
10334
- * you can evaluate the quality of its generated text using different metrics.
10335
- * For a list of the available metrics, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-llms-finetuning-metrics.html">Metrics for
10336
- * fine-tuning LLMs in Autopilot</a>.</p>
10337
- * </li>
10338
- * </ul>
10339
- * </note>
10340
- * @public
10341
- */
10342
- AutoMLJobObjective?: AutoMLJobObjective;
10343
- /**
10344
- * <p>Specifies how to generate the endpoint name for an automatic one-click Autopilot model
10345
- * deployment.</p>
10346
- * @public
10347
- */
10348
- ModelDeployConfig?: ModelDeployConfig;
10349
- /**
10350
- * <p>This structure specifies how to split the data into train and validation
10351
- * datasets.</p>
10352
- * <p>The validation and training datasets must contain the same headers. For jobs created by
10353
- * calling <code>CreateAutoMLJob</code>, the validation dataset must be less than 2 GB in
10354
- * size.</p>
10355
- * <note>
10356
- * <p>This attribute must not be set for the time-series forecasting problem type, as Autopilot
10357
- * automatically splits the input dataset into training and validation sets.</p>
10358
- * </note>
10359
- * @public
10360
- */
10361
- DataSplitConfig?: AutoMLDataSplitConfig;
10362
- }
10363
- /**
10364
- * @public
10365
- */
10366
- export interface CreateAutoMLJobV2Response {
10367
- /**
10368
- * <p>The unique ARN assigned to the AutoMLJob when it is created.</p>
10369
- * @public
10370
- */
10371
- AutoMLJobArn: string | undefined;
10372
- }
10373
- /**
10374
- * @public
10375
- */
10376
- export interface CreateClusterRequest {
10377
- /**
10378
- * <p>The name for the new SageMaker HyperPod cluster.</p>
10379
- * @public
10380
- */
10381
- ClusterName: string | undefined;
10382
- /**
10383
- * <p>The instance groups to be created in the SageMaker HyperPod cluster.</p>
10384
- * @public
10385
- */
10386
- InstanceGroups: ClusterInstanceGroupSpecification[] | undefined;
10387
- /**
10388
- * <p>Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs, hosted models, and compute resources
10389
- * have access to. You can control access to and from your resources by configuring a VPC.
10390
- * For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html">Give SageMaker Access to Resources in your Amazon VPC</a>. </p>
10391
- * @public
10392
- */
10393
- VpcConfig?: VpcConfig;
10394
- /**
10395
- * <p>Custom tags for managing the SageMaker HyperPod cluster as an Amazon Web Services resource. You can
10396
- * add tags to your cluster in the same way you add them in other Amazon Web Services services
10397
- * that support tagging. To learn more about tagging Amazon Web Services resources in general,
10398
- * see <a href="https://docs.aws.amazon.com/tag-editor/latest/userguide/tagging.html">Tagging
10399
- * Amazon Web Services Resources User Guide</a>.</p>
10400
- * @public
10401
- */
10402
- Tags?: Tag[];
10403
- }