@aws-sdk/client-sagemaker 3.596.0 → 3.600.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (81) hide show
  1. package/README.md +64 -0
  2. package/dist-cjs/index.js +523 -57
  3. package/dist-es/SageMaker.js +16 -0
  4. package/dist-es/commands/CreateMlflowTrackingServerCommand.js +24 -0
  5. package/dist-es/commands/CreatePresignedMlflowTrackingServerUrlCommand.js +24 -0
  6. package/dist-es/commands/DeleteMlflowTrackingServerCommand.js +24 -0
  7. package/dist-es/commands/DescribeMlflowTrackingServerCommand.js +24 -0
  8. package/dist-es/commands/ListMlflowTrackingServersCommand.js +24 -0
  9. package/dist-es/commands/StartMlflowTrackingServerCommand.js +24 -0
  10. package/dist-es/commands/StopMlflowTrackingServerCommand.js +24 -0
  11. package/dist-es/commands/UpdateMlflowTrackingServerCommand.js +24 -0
  12. package/dist-es/commands/index.js +8 -0
  13. package/dist-es/models/models_0.js +8 -11
  14. package/dist-es/models/models_1.js +16 -12
  15. package/dist-es/models/models_2.js +35 -11
  16. package/dist-es/models/models_3.js +16 -24
  17. package/dist-es/models/models_4.js +24 -0
  18. package/dist-es/pagination/ListMlflowTrackingServersPaginator.js +4 -0
  19. package/dist-es/pagination/index.js +1 -0
  20. package/dist-es/protocols/Aws_json1_1.js +261 -0
  21. package/dist-types/SageMaker.d.ts +57 -0
  22. package/dist-types/SageMakerClient.d.ts +10 -2
  23. package/dist-types/commands/CreateClusterCommand.d.ts +9 -1
  24. package/dist-types/commands/CreateMlflowTrackingServerCommand.d.ts +78 -0
  25. package/dist-types/commands/CreatePresignedMlflowTrackingServerUrlCommand.d.ts +66 -0
  26. package/dist-types/commands/DeleteMlflowTrackingServerCommand.d.ts +63 -0
  27. package/dist-types/commands/DeleteWorkforceCommand.d.ts +1 -1
  28. package/dist-types/commands/DescribeClusterCommand.d.ts +7 -0
  29. package/dist-types/commands/DescribeClusterNodeCommand.d.ts +7 -0
  30. package/dist-types/commands/DescribeMlflowTrackingServerCommand.d.ts +95 -0
  31. package/dist-types/commands/DescribeNotebookInstanceLifecycleConfigCommand.d.ts +1 -1
  32. package/dist-types/commands/DescribePipelineCommand.d.ts +1 -1
  33. package/dist-types/commands/DescribePipelineDefinitionForExecutionCommand.d.ts +1 -1
  34. package/dist-types/commands/DescribePipelineExecutionCommand.d.ts +1 -1
  35. package/dist-types/commands/DescribeWorkteamCommand.d.ts +1 -1
  36. package/dist-types/commands/ListMlflowTrackingServersCommand.d.ts +78 -0
  37. package/dist-types/commands/ListMonitoringAlertsCommand.d.ts +2 -1
  38. package/dist-types/commands/ListMonitoringExecutionsCommand.d.ts +1 -1
  39. package/dist-types/commands/ListMonitoringSchedulesCommand.d.ts +1 -1
  40. package/dist-types/commands/ListNotebookInstanceLifecycleConfigsCommand.d.ts +1 -1
  41. package/dist-types/commands/StartMlflowTrackingServerCommand.d.ts +67 -0
  42. package/dist-types/commands/StopMlflowTrackingServerCommand.d.ts +67 -0
  43. package/dist-types/commands/UpdateClusterCommand.d.ts +7 -0
  44. package/dist-types/commands/UpdateMlflowTrackingServerCommand.d.ts +75 -0
  45. package/dist-types/commands/index.d.ts +8 -0
  46. package/dist-types/models/models_0.d.ts +85 -407
  47. package/dist-types/models/models_1.d.ts +507 -137
  48. package/dist-types/models/models_2.d.ts +295 -318
  49. package/dist-types/models/models_3.d.ts +460 -512
  50. package/dist-types/models/models_4.d.ts +576 -3
  51. package/dist-types/pagination/ListMlflowTrackingServersPaginator.d.ts +7 -0
  52. package/dist-types/pagination/index.d.ts +1 -0
  53. package/dist-types/protocols/Aws_json1_1.d.ts +72 -0
  54. package/dist-types/ts3.4/SageMaker.d.ts +143 -0
  55. package/dist-types/ts3.4/SageMakerClient.d.ts +48 -0
  56. package/dist-types/ts3.4/commands/CreateMlflowTrackingServerCommand.d.ts +40 -0
  57. package/dist-types/ts3.4/commands/CreatePresignedMlflowTrackingServerUrlCommand.d.ts +40 -0
  58. package/dist-types/ts3.4/commands/DeleteMlflowTrackingServerCommand.d.ts +40 -0
  59. package/dist-types/ts3.4/commands/DescribeMlflowTrackingServerCommand.d.ts +40 -0
  60. package/dist-types/ts3.4/commands/DescribeNotebookInstanceLifecycleConfigCommand.d.ts +1 -1
  61. package/dist-types/ts3.4/commands/DescribePipelineCommand.d.ts +1 -1
  62. package/dist-types/ts3.4/commands/DescribePipelineDefinitionForExecutionCommand.d.ts +1 -1
  63. package/dist-types/ts3.4/commands/DescribePipelineExecutionCommand.d.ts +1 -1
  64. package/dist-types/ts3.4/commands/ListMlflowTrackingServersCommand.d.ts +40 -0
  65. package/dist-types/ts3.4/commands/ListMonitoringAlertsCommand.d.ts +2 -4
  66. package/dist-types/ts3.4/commands/ListMonitoringExecutionsCommand.d.ts +1 -1
  67. package/dist-types/ts3.4/commands/ListMonitoringSchedulesCommand.d.ts +1 -1
  68. package/dist-types/ts3.4/commands/ListNotebookInstanceLifecycleConfigsCommand.d.ts +1 -1
  69. package/dist-types/ts3.4/commands/StartMlflowTrackingServerCommand.d.ts +40 -0
  70. package/dist-types/ts3.4/commands/StopMlflowTrackingServerCommand.d.ts +40 -0
  71. package/dist-types/ts3.4/commands/UpdateMlflowTrackingServerCommand.d.ts +40 -0
  72. package/dist-types/ts3.4/commands/index.d.ts +8 -0
  73. package/dist-types/ts3.4/models/models_0.d.ts +27 -18
  74. package/dist-types/ts3.4/models/models_1.d.ts +46 -47
  75. package/dist-types/ts3.4/models/models_2.d.ts +105 -85
  76. package/dist-types/ts3.4/models/models_3.d.ts +116 -127
  77. package/dist-types/ts3.4/models/models_4.d.ts +156 -9
  78. package/dist-types/ts3.4/pagination/ListMlflowTrackingServersPaginator.d.ts +11 -0
  79. package/dist-types/ts3.4/pagination/index.d.ts +1 -0
  80. package/dist-types/ts3.4/protocols/Aws_json1_1.d.ts +96 -0
  81. package/package.json +38 -38
@@ -8230,6 +8230,55 @@ export interface ClarifyExplainerConfig {
8230
8230
  */
8231
8231
  ShapConfig: ClarifyShapConfig | undefined;
8232
8232
  }
8233
+ /**
8234
+ * <p>Defines the configuration for attaching an additional Amazon Elastic Block Store (EBS)
8235
+ * volume to each instance of the SageMaker HyperPod cluster instance group.</p>
8236
+ * @public
8237
+ */
8238
+ export interface ClusterEbsVolumeConfig {
8239
+ /**
8240
+ * <p>The size in gigabytes (GB) of the additional EBS volume to be attached to the instances
8241
+ * in the SageMaker HyperPod cluster instance group. The additional EBS volume is attached to each
8242
+ * instance within the SageMaker HyperPod cluster instance group and mounted to
8243
+ * <code>/opt/sagemaker</code>.</p>
8244
+ * @public
8245
+ */
8246
+ VolumeSizeInGB: number | undefined;
8247
+ }
8248
+ /**
8249
+ * <p>Defines the configuration for attaching additional storage to the instances in the
8250
+ * SageMaker HyperPod cluster instance group.</p>
8251
+ * @public
8252
+ */
8253
+ export type ClusterInstanceStorageConfig = ClusterInstanceStorageConfig.EbsVolumeConfigMember | ClusterInstanceStorageConfig.$UnknownMember;
8254
+ /**
8255
+ * @public
8256
+ */
8257
+ export declare namespace ClusterInstanceStorageConfig {
8258
+ /**
8259
+ * <p>Defines the configuration for attaching additional Amazon Elastic Block Store (EBS)
8260
+ * volumes to the instances in the SageMaker HyperPod cluster instance group. The additional EBS volume is
8261
+ * attached to each instance within the SageMaker HyperPod cluster instance group and mounted to
8262
+ * <code>/opt/sagemaker</code>.</p>
8263
+ * @public
8264
+ */
8265
+ interface EbsVolumeConfigMember {
8266
+ EbsVolumeConfig: ClusterEbsVolumeConfig;
8267
+ $unknown?: never;
8268
+ }
8269
+ /**
8270
+ * @public
8271
+ */
8272
+ interface $UnknownMember {
8273
+ EbsVolumeConfig?: never;
8274
+ $unknown: [string, any];
8275
+ }
8276
+ interface Visitor<T> {
8277
+ EbsVolumeConfig: (value: ClusterEbsVolumeConfig) => T;
8278
+ _: (name: string, value: any) => T;
8279
+ }
8280
+ const visit: <T>(value: ClusterInstanceStorageConfig, visitor: Visitor<T>) => T;
8281
+ }
8233
8282
  /**
8234
8283
  * @public
8235
8284
  * @enum
@@ -8308,13 +8357,14 @@ export interface ClusterLifeCycleConfig {
8308
8357
  */
8309
8358
  export interface ClusterInstanceGroupDetails {
8310
8359
  /**
8311
- * <p>The number of instances that are currently in the instance group of a
8312
- * SageMaker HyperPod cluster.</p>
8360
+ * <p>The number of instances that are currently in the instance group of a SageMaker HyperPod
8361
+ * cluster.</p>
8313
8362
  * @public
8314
8363
  */
8315
8364
  CurrentCount?: number;
8316
8365
  /**
8317
- * <p>The number of instances you specified to add to the instance group of a SageMaker HyperPod cluster.</p>
8366
+ * <p>The number of instances you specified to add to the instance group of a SageMaker HyperPod
8367
+ * cluster.</p>
8318
8368
  * @public
8319
8369
  */
8320
8370
  TargetCount?: number;
@@ -8342,11 +8392,18 @@ export interface ClusterInstanceGroupDetails {
8342
8392
  * <p>The number you specified to <code>TreadsPerCore</code> in <code>CreateCluster</code> for
8343
8393
  * enabling or disabling multithreading. For instance types that support multithreading, you
8344
8394
  * can specify 1 for disabling multithreading and 2 for enabling multithreading. For more
8345
- * information, see the reference table of <a href="https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/cpu-options-supported-instances-values.html">CPU cores and threads per CPU core per instance type</a> in the <i>Amazon Elastic Compute Cloud
8346
- * User Guide</i>.</p>
8395
+ * information, see the reference table of <a href="https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/cpu-options-supported-instances-values.html">CPU cores and
8396
+ * threads per CPU core per instance type</a> in the <i>Amazon Elastic Compute Cloud User
8397
+ * Guide</i>.</p>
8347
8398
  * @public
8348
8399
  */
8349
8400
  ThreadsPerCore?: number;
8401
+ /**
8402
+ * <p>The additional storage configurations for the instances in the SageMaker HyperPod cluster instance
8403
+ * group.</p>
8404
+ * @public
8405
+ */
8406
+ InstanceStorageConfigs?: ClusterInstanceStorageConfig[];
8350
8407
  }
8351
8408
  /**
8352
8409
  * <p>The specifications of an instance group that you need to define.</p>
@@ -8354,7 +8411,8 @@ export interface ClusterInstanceGroupDetails {
8354
8411
  */
8355
8412
  export interface ClusterInstanceGroupSpecification {
8356
8413
  /**
8357
- * <p>Specifies the number of instances to add to the instance group of a SageMaker HyperPod cluster.</p>
8414
+ * <p>Specifies the number of instances to add to the instance group of a SageMaker HyperPod
8415
+ * cluster.</p>
8358
8416
  * @public
8359
8417
  */
8360
8418
  InstanceCount: number | undefined;
@@ -8379,15 +8437,22 @@ export interface ClusterInstanceGroupSpecification {
8379
8437
  */
8380
8438
  ExecutionRole: string | undefined;
8381
8439
  /**
8382
- * <p>Specifies the value for <b>Threads per core</b>. For instance types that
8383
- * support multithreading, you can specify <code>1</code> for disabling multithreading and
8384
- * <code>2</code> for enabling multithreading. For instance types that doesn't support
8385
- * multithreading, specify <code>1</code>. For more information, see the reference table of
8386
- * <a href="https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/cpu-options-supported-instances-values.html">CPU cores and threads per CPU core per instance type</a> in the <i>Amazon Elastic Compute Cloud
8387
- * User Guide</i>.</p>
8440
+ * <p>Specifies the value for <b>Threads per core</b>. For instance
8441
+ * types that support multithreading, you can specify <code>1</code> for disabling
8442
+ * multithreading and <code>2</code> for enabling multithreading. For instance types that
8443
+ * doesn't support multithreading, specify <code>1</code>. For more information, see the
8444
+ * reference table of <a href="https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/cpu-options-supported-instances-values.html">CPU cores and
8445
+ * threads per CPU core per instance type</a> in the <i>Amazon Elastic Compute Cloud User
8446
+ * Guide</i>.</p>
8388
8447
  * @public
8389
8448
  */
8390
8449
  ThreadsPerCore?: number;
8450
+ /**
8451
+ * <p>Specifies the additional storage configurations for the instances in the SageMaker HyperPod cluster
8452
+ * instance group.</p>
8453
+ * @public
8454
+ */
8455
+ InstanceStorageConfigs?: ClusterInstanceStorageConfig[];
8391
8456
  }
8392
8457
  /**
8393
8458
  * <p>Specifies the placement details for the node in the SageMaker HyperPod cluster, including the
@@ -8480,6 +8545,12 @@ export interface ClusterNodeDetails {
8480
8545
  * @public
8481
8546
  */
8482
8547
  ThreadsPerCore?: number;
8548
+ /**
8549
+ * <p>The configurations of additional storage specified to the instance group where the
8550
+ * instance (node) is launched.</p>
8551
+ * @public
8552
+ */
8553
+ InstanceStorageConfigs?: ClusterInstanceStorageConfig[];
8483
8554
  /**
8484
8555
  * <p>The private primary IP address of the SageMaker HyperPod cluster node.</p>
8485
8556
  * @public
@@ -10246,7 +10317,8 @@ export interface CreateClusterRequest {
10246
10317
  * <p>Custom tags for managing the SageMaker HyperPod cluster as an Amazon Web Services resource. You can
10247
10318
  * add tags to your cluster in the same way you add them in other Amazon Web Services services
10248
10319
  * that support tagging. To learn more about tagging Amazon Web Services resources in general,
10249
- * see <a href="https://docs.aws.amazon.com/tag-editor/latest/userguide/tagging.html">Tagging Amazon Web Services Resources User Guide</a>.</p>
10320
+ * see <a href="https://docs.aws.amazon.com/tag-editor/latest/userguide/tagging.html">Tagging
10321
+ * Amazon Web Services Resources User Guide</a>.</p>
10250
10322
  * @public
10251
10323
  */
10252
10324
  Tags?: Tag[];
@@ -10295,397 +10367,3 @@ export interface CreateCodeRepositoryOutput {
10295
10367
  */
10296
10368
  CodeRepositoryArn: string | undefined;
10297
10369
  }
10298
- /**
10299
- * @public
10300
- * @enum
10301
- */
10302
- export declare const Framework: {
10303
- readonly DARKNET: "DARKNET";
10304
- readonly KERAS: "KERAS";
10305
- readonly MXNET: "MXNET";
10306
- readonly ONNX: "ONNX";
10307
- readonly PYTORCH: "PYTORCH";
10308
- readonly SKLEARN: "SKLEARN";
10309
- readonly TENSORFLOW: "TENSORFLOW";
10310
- readonly TFLITE: "TFLITE";
10311
- readonly XGBOOST: "XGBOOST";
10312
- };
10313
- /**
10314
- * @public
10315
- */
10316
- export type Framework = (typeof Framework)[keyof typeof Framework];
10317
- /**
10318
- * <p>Contains information about the location of input model artifacts, the name and
10319
- * shape
10320
- * of the expected data inputs, and the framework in which the model was trained.</p>
10321
- * @public
10322
- */
10323
- export interface InputConfig {
10324
- /**
10325
- * <p>The S3 path where the model artifacts, which result from model training, are stored.
10326
- * This path must point to a single gzip compressed tar archive (.tar.gz suffix).</p>
10327
- * @public
10328
- */
10329
- S3Uri: string | undefined;
10330
- /**
10331
- * <p>Specifies the name and shape of the expected data inputs for your trained model with a
10332
- * JSON dictionary form. The data inputs are <code>Framework</code> specific. </p>
10333
- * <ul>
10334
- * <li>
10335
- * <p>
10336
- * <code>TensorFlow</code>: You must specify the name and shape (NHWC format) of
10337
- * the expected data inputs using a dictionary format for your trained model. The
10338
- * dictionary formats required for the console and CLI are different.</p>
10339
- * <ul>
10340
- * <li>
10341
- * <p>Examples for one input:</p>
10342
- * <ul>
10343
- * <li>
10344
- * <p>If using the console,
10345
- * <code>\{"input":[1,1024,1024,3]\}</code>
10346
- * </p>
10347
- * </li>
10348
- * <li>
10349
- * <p>If using the CLI,
10350
- * <code>\{\"input\":[1,1024,1024,3]\}</code>
10351
- * </p>
10352
- * </li>
10353
- * </ul>
10354
- * </li>
10355
- * <li>
10356
- * <p>Examples for two inputs:</p>
10357
- * <ul>
10358
- * <li>
10359
- * <p>If using the console, <code>\{"data1": [1,28,28,1],
10360
- * "data2":[1,28,28,1]\}</code>
10361
- * </p>
10362
- * </li>
10363
- * <li>
10364
- * <p>If using the CLI, <code>\{\"data1\": [1,28,28,1],
10365
- * \"data2\":[1,28,28,1]\}</code>
10366
- * </p>
10367
- * </li>
10368
- * </ul>
10369
- * </li>
10370
- * </ul>
10371
- * </li>
10372
- * <li>
10373
- * <p>
10374
- * <code>KERAS</code>: You must specify the name and shape (NCHW format) of
10375
- * expected data inputs using a dictionary format for your trained model. Note that
10376
- * while Keras model artifacts should be uploaded in NHWC (channel-last) format,
10377
- * <code>DataInputConfig</code> should be specified in NCHW (channel-first)
10378
- * format. The dictionary formats required for the console and CLI are
10379
- * different.</p>
10380
- * <ul>
10381
- * <li>
10382
- * <p>Examples for one input:</p>
10383
- * <ul>
10384
- * <li>
10385
- * <p>If using the console,
10386
- * <code>\{"input_1":[1,3,224,224]\}</code>
10387
- * </p>
10388
- * </li>
10389
- * <li>
10390
- * <p>If using the CLI,
10391
- * <code>\{\"input_1\":[1,3,224,224]\}</code>
10392
- * </p>
10393
- * </li>
10394
- * </ul>
10395
- * </li>
10396
- * <li>
10397
- * <p>Examples for two inputs:</p>
10398
- * <ul>
10399
- * <li>
10400
- * <p>If using the console, <code>\{"input_1": [1,3,224,224],
10401
- * "input_2":[1,3,224,224]\} </code>
10402
- * </p>
10403
- * </li>
10404
- * <li>
10405
- * <p>If using the CLI, <code>\{\"input_1\": [1,3,224,224],
10406
- * \"input_2\":[1,3,224,224]\}</code>
10407
- * </p>
10408
- * </li>
10409
- * </ul>
10410
- * </li>
10411
- * </ul>
10412
- * </li>
10413
- * <li>
10414
- * <p>
10415
- * <code>MXNET/ONNX/DARKNET</code>: You must specify the name and shape (NCHW
10416
- * format) of the expected data inputs in order using a dictionary format for your
10417
- * trained model. The dictionary formats required for the console and CLI are
10418
- * different.</p>
10419
- * <ul>
10420
- * <li>
10421
- * <p>Examples for one input:</p>
10422
- * <ul>
10423
- * <li>
10424
- * <p>If using the console,
10425
- * <code>\{"data":[1,3,1024,1024]\}</code>
10426
- * </p>
10427
- * </li>
10428
- * <li>
10429
- * <p>If using the CLI,
10430
- * <code>\{\"data\":[1,3,1024,1024]\}</code>
10431
- * </p>
10432
- * </li>
10433
- * </ul>
10434
- * </li>
10435
- * <li>
10436
- * <p>Examples for two inputs:</p>
10437
- * <ul>
10438
- * <li>
10439
- * <p>If using the console, <code>\{"var1": [1,1,28,28],
10440
- * "var2":[1,1,28,28]\} </code>
10441
- * </p>
10442
- * </li>
10443
- * <li>
10444
- * <p>If using the CLI, <code>\{\"var1\": [1,1,28,28],
10445
- * \"var2\":[1,1,28,28]\}</code>
10446
- * </p>
10447
- * </li>
10448
- * </ul>
10449
- * </li>
10450
- * </ul>
10451
- * </li>
10452
- * <li>
10453
- * <p>
10454
- * <code>PyTorch</code>: You can either specify the name and shape (NCHW format)
10455
- * of expected data inputs in order using a dictionary format for your trained
10456
- * model or you can specify the shape only using a list format. The dictionary
10457
- * formats required for the console and CLI are different. The list formats for the
10458
- * console and CLI are the same.</p>
10459
- * <ul>
10460
- * <li>
10461
- * <p>Examples for one input in dictionary format:</p>
10462
- * <ul>
10463
- * <li>
10464
- * <p>If using the console,
10465
- * <code>\{"input0":[1,3,224,224]\}</code>
10466
- * </p>
10467
- * </li>
10468
- * <li>
10469
- * <p>If using the CLI,
10470
- * <code>\{\"input0\":[1,3,224,224]\}</code>
10471
- * </p>
10472
- * </li>
10473
- * </ul>
10474
- * </li>
10475
- * <li>
10476
- * <p>Example for one input in list format:
10477
- * <code>[[1,3,224,224]]</code>
10478
- * </p>
10479
- * </li>
10480
- * <li>
10481
- * <p>Examples for two inputs in dictionary format:</p>
10482
- * <ul>
10483
- * <li>
10484
- * <p>If using the console, <code>\{"input0":[1,3,224,224],
10485
- * "input1":[1,3,224,224]\}</code>
10486
- * </p>
10487
- * </li>
10488
- * <li>
10489
- * <p>If using the CLI, <code>\{\"input0\":[1,3,224,224],
10490
- * \"input1\":[1,3,224,224]\} </code>
10491
- * </p>
10492
- * </li>
10493
- * </ul>
10494
- * </li>
10495
- * <li>
10496
- * <p>Example for two inputs in list format: <code>[[1,3,224,224],
10497
- * [1,3,224,224]]</code>
10498
- * </p>
10499
- * </li>
10500
- * </ul>
10501
- * </li>
10502
- * <li>
10503
- * <p>
10504
- * <code>XGBOOST</code>: input data name and shape are not needed.</p>
10505
- * </li>
10506
- * </ul>
10507
- * <p>
10508
- * <code>DataInputConfig</code> supports the following parameters for <code>CoreML</code>
10509
- * <code>TargetDevice</code> (ML Model format):</p>
10510
- * <ul>
10511
- * <li>
10512
- * <p>
10513
- * <code>shape</code>: Input shape, for example <code>\{"input_1": \{"shape":
10514
- * [1,224,224,3]\}\}</code>. In addition to static input shapes, CoreML converter
10515
- * supports Flexible input shapes:</p>
10516
- * <ul>
10517
- * <li>
10518
- * <p>Range Dimension. You can use the Range Dimension feature if you know
10519
- * the input shape will be within some specific interval in that dimension,
10520
- * for example: <code>\{"input_1": \{"shape": ["1..10", 224, 224,
10521
- * 3]\}\}</code>
10522
- * </p>
10523
- * </li>
10524
- * <li>
10525
- * <p>Enumerated shapes. Sometimes, the models are trained to work only on a
10526
- * select set of inputs. You can enumerate all supported input shapes, for
10527
- * example: <code>\{"input_1": \{"shape": [[1, 224, 224, 3], [1, 160, 160,
10528
- * 3]]\}\}</code>
10529
- * </p>
10530
- * </li>
10531
- * </ul>
10532
- * </li>
10533
- * <li>
10534
- * <p>
10535
- * <code>default_shape</code>: Default input shape. You can set a default shape
10536
- * during conversion for both Range Dimension and Enumerated Shapes. For example
10537
- * <code>\{"input_1": \{"shape": ["1..10", 224, 224, 3], "default_shape": [1,
10538
- * 224, 224, 3]\}\}</code>
10539
- * </p>
10540
- * </li>
10541
- * <li>
10542
- * <p>
10543
- * <code>type</code>: Input type. Allowed values: <code>Image</code> and
10544
- * <code>Tensor</code>. By default, the converter generates an ML Model with
10545
- * inputs of type Tensor (MultiArray). User can set input type to be Image. Image
10546
- * input type requires additional input parameters such as <code>bias</code> and
10547
- * <code>scale</code>.</p>
10548
- * </li>
10549
- * <li>
10550
- * <p>
10551
- * <code>bias</code>: If the input type is an Image, you need to provide the bias
10552
- * vector.</p>
10553
- * </li>
10554
- * <li>
10555
- * <p>
10556
- * <code>scale</code>: If the input type is an Image, you need to provide a scale
10557
- * factor.</p>
10558
- * </li>
10559
- * </ul>
10560
- * <p>CoreML <code>ClassifierConfig</code> parameters can be specified using <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html">OutputConfig</a>
10561
- * <code>CompilerOptions</code>. CoreML converter supports Tensorflow and PyTorch models.
10562
- * CoreML conversion examples:</p>
10563
- * <ul>
10564
- * <li>
10565
- * <p>Tensor type input:</p>
10566
- * <ul>
10567
- * <li>
10568
- * <p>
10569
- * <code>"DataInputConfig": \{"input_1": \{"shape": [[1,224,224,3],
10570
- * [1,160,160,3]], "default_shape": [1,224,224,3]\}\}</code>
10571
- * </p>
10572
- * </li>
10573
- * </ul>
10574
- * </li>
10575
- * <li>
10576
- * <p>Tensor type input without input name (PyTorch):</p>
10577
- * <ul>
10578
- * <li>
10579
- * <p>
10580
- * <code>"DataInputConfig": [\{"shape": [[1,3,224,224], [1,3,160,160]],
10581
- * "default_shape": [1,3,224,224]\}]</code>
10582
- * </p>
10583
- * </li>
10584
- * </ul>
10585
- * </li>
10586
- * <li>
10587
- * <p>Image type input:</p>
10588
- * <ul>
10589
- * <li>
10590
- * <p>
10591
- * <code>"DataInputConfig": \{"input_1": \{"shape": [[1,224,224,3],
10592
- * [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image",
10593
- * "bias": [-1,-1,-1], "scale": 0.007843137255\}\}</code>
10594
- * </p>
10595
- * </li>
10596
- * <li>
10597
- * <p>
10598
- * <code>"CompilerOptions": \{"class_labels":
10599
- * "imagenet_labels_1000.txt"\}</code>
10600
- * </p>
10601
- * </li>
10602
- * </ul>
10603
- * </li>
10604
- * <li>
10605
- * <p>Image type input without input name (PyTorch):</p>
10606
- * <ul>
10607
- * <li>
10608
- * <p>
10609
- * <code>"DataInputConfig": [\{"shape": [[1,3,224,224], [1,3,160,160]],
10610
- * "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1],
10611
- * "scale": 0.007843137255\}]</code>
10612
- * </p>
10613
- * </li>
10614
- * <li>
10615
- * <p>
10616
- * <code>"CompilerOptions": \{"class_labels":
10617
- * "imagenet_labels_1000.txt"\}</code>
10618
- * </p>
10619
- * </li>
10620
- * </ul>
10621
- * </li>
10622
- * </ul>
10623
- * <p>Depending on the model format, <code>DataInputConfig</code> requires the following
10624
- * parameters for <code>ml_eia2</code>
10625
- * <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-TargetDevice">OutputConfig:TargetDevice</a>.</p>
10626
- * <ul>
10627
- * <li>
10628
- * <p>For TensorFlow models saved in the SavedModel format, specify the input names
10629
- * from <code>signature_def_key</code> and the input model shapes for
10630
- * <code>DataInputConfig</code>. Specify the <code>signature_def_key</code> in
10631
- * <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions">
10632
- * <code>OutputConfig:CompilerOptions</code>
10633
- * </a> if the model does not
10634
- * use TensorFlow's default signature def key. For example:</p>
10635
- * <ul>
10636
- * <li>
10637
- * <p>
10638
- * <code>"DataInputConfig": \{"inputs": [1, 224, 224, 3]\}</code>
10639
- * </p>
10640
- * </li>
10641
- * <li>
10642
- * <p>
10643
- * <code>"CompilerOptions": \{"signature_def_key":
10644
- * "serving_custom"\}</code>
10645
- * </p>
10646
- * </li>
10647
- * </ul>
10648
- * </li>
10649
- * <li>
10650
- * <p>For TensorFlow models saved as a frozen graph, specify the input tensor names
10651
- * and shapes in <code>DataInputConfig</code> and the output tensor names for
10652
- * <code>output_names</code> in <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions">
10653
- * <code>OutputConfig:CompilerOptions</code>
10654
- * </a>. For
10655
- * example:</p>
10656
- * <ul>
10657
- * <li>
10658
- * <p>
10659
- * <code>"DataInputConfig": \{"input_tensor:0": [1, 224, 224,
10660
- * 3]\}</code>
10661
- * </p>
10662
- * </li>
10663
- * <li>
10664
- * <p>
10665
- * <code>"CompilerOptions": \{"output_names":
10666
- * ["output_tensor:0"]\}</code>
10667
- * </p>
10668
- * </li>
10669
- * </ul>
10670
- * </li>
10671
- * </ul>
10672
- * @public
10673
- */
10674
- DataInputConfig?: string;
10675
- /**
10676
- * <p>Identifies the framework in which the model was trained. For example:
10677
- * TENSORFLOW.</p>
10678
- * @public
10679
- */
10680
- Framework: Framework | undefined;
10681
- /**
10682
- * <p>Specifies the framework version to use. This API field is only supported for the
10683
- * MXNet, PyTorch, TensorFlow and TensorFlow Lite frameworks.</p>
10684
- * <p>For information about framework versions supported for cloud targets and edge devices,
10685
- * see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-cloud.html">Cloud
10686
- * Supported Instance Types and Frameworks</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-devices-edge-frameworks.html">Edge Supported
10687
- * Frameworks</a>.</p>
10688
- * @public
10689
- */
10690
- FrameworkVersion?: string;
10691
- }