@aws-sdk/client-sagemaker 3.583.0 → 3.588.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (36) hide show
  1. package/dist-cjs/index.js +1358 -1303
  2. package/dist-es/commands/CreateModelPackageCommand.js +2 -1
  3. package/dist-es/commands/DescribeModelPackageCommand.js +2 -1
  4. package/dist-es/commands/UpdateModelPackageCommand.js +2 -1
  5. package/dist-es/models/models_0.js +6 -0
  6. package/dist-es/models/models_1.js +8 -6
  7. package/dist-es/models/models_2.js +11 -0
  8. package/dist-es/models/models_4.js +10 -0
  9. package/dist-es/protocols/Aws_json1_1.js +193 -175
  10. package/dist-types/commands/CreateAutoMLJobCommand.d.ts +1 -1
  11. package/dist-types/commands/CreateAutoMLJobV2Command.d.ts +12 -3
  12. package/dist-types/commands/CreateModelPackageCommand.d.ts +7 -0
  13. package/dist-types/commands/CreateStudioLifecycleConfigCommand.d.ts +1 -2
  14. package/dist-types/commands/DescribeAutoMLJobCommand.d.ts +1 -1
  15. package/dist-types/commands/DescribeAutoMLJobV2Command.d.ts +12 -3
  16. package/dist-types/commands/DescribeModelPackageCommand.d.ts +12 -0
  17. package/dist-types/commands/DescribeProcessingJobCommand.d.ts +2 -1
  18. package/dist-types/commands/DescribeProjectCommand.d.ts +1 -2
  19. package/dist-types/commands/ListNotebookInstancesCommand.d.ts +2 -1
  20. package/dist-types/commands/SearchCommand.d.ts +7 -0
  21. package/dist-types/commands/UpdateModelPackageCommand.d.ts +4 -0
  22. package/dist-types/models/models_0.d.ts +182 -99
  23. package/dist-types/models/models_1.d.ts +78 -36
  24. package/dist-types/models/models_2.d.ts +68 -133
  25. package/dist-types/models/models_3.d.ts +131 -93
  26. package/dist-types/models/models_4.d.ts +131 -4
  27. package/dist-types/ts3.4/commands/CreateStudioLifecycleConfigCommand.d.ts +4 -2
  28. package/dist-types/ts3.4/commands/DescribeProcessingJobCommand.d.ts +2 -4
  29. package/dist-types/ts3.4/commands/DescribeProjectCommand.d.ts +4 -2
  30. package/dist-types/ts3.4/commands/ListNotebookInstancesCommand.d.ts +2 -4
  31. package/dist-types/ts3.4/models/models_0.d.ts +7 -0
  32. package/dist-types/ts3.4/models/models_1.d.ts +15 -14
  33. package/dist-types/ts3.4/models/models_2.d.ts +21 -32
  34. package/dist-types/ts3.4/models/models_3.d.ts +34 -18
  35. package/dist-types/ts3.4/models/models_4.d.ts +27 -1
  36. package/package.json +18 -18
@@ -92,7 +92,7 @@ declare const CreateAutoMLJobCommand_base: {
92
92
  * AlgorithmsConfig: [ // AutoMLAlgorithmsConfig
93
93
  * { // AutoMLAlgorithmConfig
94
94
  * AutoMLAlgorithms: [ // AutoMLAlgorithms // required
95
- * "xgboost" || "linear-learner" || "mlp" || "lightgbm" || "catboost" || "randomforest" || "extra-trees" || "nn-torch" || "fastai",
95
+ * "xgboost" || "linear-learner" || "mlp" || "lightgbm" || "catboost" || "randomforest" || "extra-trees" || "nn-torch" || "fastai" || "cnn-qr" || "deepar" || "prophet" || "npts" || "arima" || "ets",
96
96
  * ],
97
97
  * },
98
98
  * ],
@@ -119,13 +119,22 @@ declare const CreateAutoMLJobV2Command_base: {
119
119
  * CountryCode: "STRING_VALUE",
120
120
  * },
121
121
  * ],
122
- * },
123
- * TabularJobConfig: { // TabularJobConfig
124
122
  * CandidateGenerationConfig: { // CandidateGenerationConfig
125
123
  * AlgorithmsConfig: [ // AutoMLAlgorithmsConfig
126
124
  * { // AutoMLAlgorithmConfig
127
125
  * AutoMLAlgorithms: [ // AutoMLAlgorithms // required
128
- * "xgboost" || "linear-learner" || "mlp" || "lightgbm" || "catboost" || "randomforest" || "extra-trees" || "nn-torch" || "fastai",
126
+ * "xgboost" || "linear-learner" || "mlp" || "lightgbm" || "catboost" || "randomforest" || "extra-trees" || "nn-torch" || "fastai" || "cnn-qr" || "deepar" || "prophet" || "npts" || "arima" || "ets",
127
+ * ],
128
+ * },
129
+ * ],
130
+ * },
131
+ * },
132
+ * TabularJobConfig: { // TabularJobConfig
133
+ * CandidateGenerationConfig: {
134
+ * AlgorithmsConfig: [
135
+ * {
136
+ * AutoMLAlgorithms: [ // required
137
+ * "xgboost" || "linear-learner" || "mlp" || "lightgbm" || "catboost" || "randomforest" || "extra-trees" || "nn-torch" || "fastai" || "cnn-qr" || "deepar" || "prophet" || "npts" || "arima" || "ets",
129
138
  * ],
130
139
  * },
131
140
  * ],
@@ -298,6 +298,13 @@ declare const CreateModelPackageCommand_base: {
298
298
  * ],
299
299
  * SkipModelValidation: "All" || "None",
300
300
  * SourceUri: "STRING_VALUE",
301
+ * SecurityConfig: { // ModelPackageSecurityConfig
302
+ * KmsKeyId: "STRING_VALUE", // required
303
+ * },
304
+ * ModelCard: { // ModelPackageModelCard
305
+ * ModelCardContent: "STRING_VALUE",
306
+ * ModelCardStatus: "Draft" || "PendingReview" || "Approved" || "Archived",
307
+ * },
301
308
  * };
302
309
  * const command = new CreateModelPackageCommand(input);
303
310
  * const response = await client.send(command);
@@ -1,7 +1,6 @@
1
1
  import { Command as $Command } from "@smithy/smithy-client";
2
2
  import { MetadataBearer as __MetadataBearer } from "@smithy/types";
3
- import { CreateStudioLifecycleConfigRequest } from "../models/models_1";
4
- import { CreateStudioLifecycleConfigResponse } from "../models/models_2";
3
+ import { CreateStudioLifecycleConfigRequest, CreateStudioLifecycleConfigResponse } from "../models/models_2";
5
4
  import { SageMakerClientResolvedConfig, ServiceInputTypes, ServiceOutputTypes } from "../SageMakerClient";
6
5
  /**
7
6
  * @public
@@ -92,7 +92,7 @@ declare const DescribeAutoMLJobCommand_base: {
92
92
  * // AlgorithmsConfig: [ // AutoMLAlgorithmsConfig
93
93
  * // { // AutoMLAlgorithmConfig
94
94
  * // AutoMLAlgorithms: [ // AutoMLAlgorithms // required
95
- * // "xgboost" || "linear-learner" || "mlp" || "lightgbm" || "catboost" || "randomforest" || "extra-trees" || "nn-torch" || "fastai",
95
+ * // "xgboost" || "linear-learner" || "mlp" || "lightgbm" || "catboost" || "randomforest" || "extra-trees" || "nn-torch" || "fastai" || "cnn-qr" || "deepar" || "prophet" || "npts" || "arima" || "ets",
96
96
  * // ],
97
97
  * // },
98
98
  * // ],
@@ -115,13 +115,22 @@ declare const DescribeAutoMLJobV2Command_base: {
115
115
  * // CountryCode: "STRING_VALUE",
116
116
  * // },
117
117
  * // ],
118
- * // },
119
- * // TabularJobConfig: { // TabularJobConfig
120
118
  * // CandidateGenerationConfig: { // CandidateGenerationConfig
121
119
  * // AlgorithmsConfig: [ // AutoMLAlgorithmsConfig
122
120
  * // { // AutoMLAlgorithmConfig
123
121
  * // AutoMLAlgorithms: [ // AutoMLAlgorithms // required
124
- * // "xgboost" || "linear-learner" || "mlp" || "lightgbm" || "catboost" || "randomforest" || "extra-trees" || "nn-torch" || "fastai",
122
+ * // "xgboost" || "linear-learner" || "mlp" || "lightgbm" || "catboost" || "randomforest" || "extra-trees" || "nn-torch" || "fastai" || "cnn-qr" || "deepar" || "prophet" || "npts" || "arima" || "ets",
123
+ * // ],
124
+ * // },
125
+ * // ],
126
+ * // },
127
+ * // },
128
+ * // TabularJobConfig: { // TabularJobConfig
129
+ * // CandidateGenerationConfig: {
130
+ * // AlgorithmsConfig: [
131
+ * // {
132
+ * // AutoMLAlgorithms: [ // required
133
+ * // "xgboost" || "linear-learner" || "mlp" || "lightgbm" || "catboost" || "randomforest" || "extra-trees" || "nn-torch" || "fastai" || "cnn-qr" || "deepar" || "prophet" || "npts" || "arima" || "ets",
125
134
  * // ],
126
135
  * // },
127
136
  * // ],
@@ -28,6 +28,11 @@ declare const DescribeModelPackageCommand_base: {
28
28
  /**
29
29
  * <p>Returns a description of the specified model package, which is used to create SageMaker
30
30
  * models or list them on Amazon Web Services Marketplace.</p>
31
+ * <important>
32
+ * <p>If you provided a KMS Key ID when you created your model package,
33
+ * you will see the <a href="https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html">KMS
34
+ * Decrypt</a> API call in your CloudTrail logs when you use this API.</p>
35
+ * </important>
31
36
  * <p>To create models in SageMaker, buyers can subscribe to model packages listed on Amazon Web Services
32
37
  * Marketplace.</p>
33
38
  * @example
@@ -322,6 +327,13 @@ declare const DescribeModelPackageCommand_base: {
322
327
  * // ],
323
328
  * // SkipModelValidation: "All" || "None",
324
329
  * // SourceUri: "STRING_VALUE",
330
+ * // SecurityConfig: { // ModelPackageSecurityConfig
331
+ * // KmsKeyId: "STRING_VALUE", // required
332
+ * // },
333
+ * // ModelCard: { // ModelPackageModelCard
334
+ * // ModelCardContent: "STRING_VALUE",
335
+ * // ModelCardStatus: "Draft" || "PendingReview" || "Approved" || "Archived",
336
+ * // },
325
337
  * // };
326
338
  *
327
339
  * ```
@@ -1,6 +1,7 @@
1
1
  import { Command as $Command } from "@smithy/smithy-client";
2
2
  import { MetadataBearer as __MetadataBearer } from "@smithy/types";
3
- import { DescribeProcessingJobRequest, DescribeProcessingJobResponse } from "../models/models_2";
3
+ import { DescribeProcessingJobRequest } from "../models/models_2";
4
+ import { DescribeProcessingJobResponse } from "../models/models_3";
4
5
  import { SageMakerClientResolvedConfig, ServiceInputTypes, ServiceOutputTypes } from "../SageMakerClient";
5
6
  /**
6
7
  * @public
@@ -1,7 +1,6 @@
1
1
  import { Command as $Command } from "@smithy/smithy-client";
2
2
  import { MetadataBearer as __MetadataBearer } from "@smithy/types";
3
- import { DescribeProjectInput } from "../models/models_2";
4
- import { DescribeProjectOutput } from "../models/models_3";
3
+ import { DescribeProjectInput, DescribeProjectOutput } from "../models/models_3";
5
4
  import { SageMakerClientResolvedConfig, ServiceInputTypes, ServiceOutputTypes } from "../SageMakerClient";
6
5
  /**
7
6
  * @public
@@ -1,6 +1,7 @@
1
1
  import { Command as $Command } from "@smithy/smithy-client";
2
2
  import { MetadataBearer as __MetadataBearer } from "@smithy/types";
3
- import { ListNotebookInstancesInput, ListNotebookInstancesOutput } from "../models/models_3";
3
+ import { ListNotebookInstancesInput } from "../models/models_3";
4
+ import { ListNotebookInstancesOutput } from "../models/models_4";
4
5
  import { SageMakerClientResolvedConfig, ServiceInputTypes, ServiceOutputTypes } from "../SageMakerClient";
5
6
  /**
6
7
  * @public
@@ -1304,6 +1304,13 @@ declare const SearchCommand_base: {
1304
1304
  * // },
1305
1305
  * // ],
1306
1306
  * // SourceUri: "STRING_VALUE",
1307
+ * // SecurityConfig: { // ModelPackageSecurityConfig
1308
+ * // KmsKeyId: "STRING_VALUE", // required
1309
+ * // },
1310
+ * // ModelCard: { // ModelPackageModelCard
1311
+ * // ModelCardContent: "STRING_VALUE",
1312
+ * // ModelCardStatus: "Draft" || "PendingReview" || "Approved" || "Archived",
1313
+ * // },
1307
1314
  * // Tags: "<TagList>",
1308
1315
  * // CustomerMetadataProperties: { // CustomerMetadataMap
1309
1316
  * // "<keys>": "STRING_VALUE",
@@ -142,6 +142,10 @@ declare const UpdateModelPackageCommand_base: {
142
142
  * ],
143
143
  * },
144
144
  * SourceUri: "STRING_VALUE",
145
+ * ModelCard: { // ModelPackageModelCard
146
+ * ModelCardContent: "STRING_VALUE",
147
+ * ModelCardStatus: "Draft" || "PendingReview" || "Approved" || "Archived",
148
+ * },
145
149
  * };
146
150
  * const command = new UpdateModelPackageCommand(input);
147
151
  * const response = await client.send(command);
@@ -4802,13 +4802,19 @@ export type AuthMode = (typeof AuthMode)[keyof typeof AuthMode];
4802
4802
  * @enum
4803
4803
  */
4804
4804
  export declare const AutoMLAlgorithm: {
4805
+ readonly ARIMA: "arima";
4805
4806
  readonly CATBOOST: "catboost";
4807
+ readonly CNN_QR: "cnn-qr";
4808
+ readonly DEEPAR: "deepar";
4809
+ readonly ETS: "ets";
4806
4810
  readonly EXTRA_TREES: "extra-trees";
4807
4811
  readonly FASTAI: "fastai";
4808
4812
  readonly LIGHTGBM: "lightgbm";
4809
4813
  readonly LINEAR_LEARNER: "linear-learner";
4810
4814
  readonly MLP: "mlp";
4811
4815
  readonly NN_TORCH: "nn-torch";
4816
+ readonly NPTS: "npts";
4817
+ readonly PROPHET: "prophet";
4812
4818
  readonly RANDOMFOREST: "randomforest";
4813
4819
  readonly XGBOOST: "xgboost";
4814
4820
  };
@@ -4817,60 +4823,97 @@ export declare const AutoMLAlgorithm: {
4817
4823
  */
4818
4824
  export type AutoMLAlgorithm = (typeof AutoMLAlgorithm)[keyof typeof AutoMLAlgorithm];
4819
4825
  /**
4820
- * <p>The collection of algorithms run on a dataset for training the model candidates of an
4821
- * Autopilot job.</p>
4826
+ * <p>The selection of algorithms trained on your dataset to generate the model candidates for
4827
+ * an Autopilot job.</p>
4822
4828
  * @public
4823
4829
  */
4824
4830
  export interface AutoMLAlgorithmConfig {
4825
4831
  /**
4826
- * <p>The selection of algorithms run on a dataset to train the model candidates of an Autopilot
4827
- * job. </p>
4828
- * <note>
4829
- * <p>Selected algorithms must belong to the list corresponding to the training mode set in
4830
- * <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobConfig.html#sagemaker-Type-AutoMLJobConfig-Mode">AutoMLJobConfig.Mode</a> (<code>ENSEMBLING</code> or
4831
- * <code>HYPERPARAMETER_TUNING</code>). Choose a minimum of 1 algorithm. </p>
4832
- * </note>
4832
+ * <p>The selection of algorithms trained on your dataset to generate the model candidates for
4833
+ * an Autopilot job.</p>
4833
4834
  * <ul>
4834
4835
  * <li>
4835
- * <p>In <code>ENSEMBLING</code> mode:</p>
4836
+ * <p>
4837
+ * <b>For the tabular problem type <code>TabularJobConfig</code>:</b>
4838
+ * </p>
4839
+ * <note>
4840
+ * <p>Selected algorithms must belong to the list corresponding to the training mode
4841
+ * set in <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobConfig.html#sagemaker-Type-AutoMLJobConfig-Mode">AutoMLJobConfig.Mode</a> (<code>ENSEMBLING</code> or
4842
+ * <code>HYPERPARAMETER_TUNING</code>). Choose a minimum of 1 algorithm.</p>
4843
+ * </note>
4836
4844
  * <ul>
4837
4845
  * <li>
4838
- * <p>"catboost"</p>
4839
- * </li>
4840
- * <li>
4841
- * <p>"extra-trees"</p>
4842
- * </li>
4843
- * <li>
4844
- * <p>"fastai"</p>
4845
- * </li>
4846
- * <li>
4847
- * <p>"lightgbm"</p>
4848
- * </li>
4849
- * <li>
4850
- * <p>"linear-learner"</p>
4851
- * </li>
4852
- * <li>
4853
- * <p>"nn-torch"</p>
4854
- * </li>
4855
- * <li>
4856
- * <p>"randomforest"</p>
4846
+ * <p>In <code>ENSEMBLING</code> mode:</p>
4847
+ * <ul>
4848
+ * <li>
4849
+ * <p>"catboost"</p>
4850
+ * </li>
4851
+ * <li>
4852
+ * <p>"extra-trees"</p>
4853
+ * </li>
4854
+ * <li>
4855
+ * <p>"fastai"</p>
4856
+ * </li>
4857
+ * <li>
4858
+ * <p>"lightgbm"</p>
4859
+ * </li>
4860
+ * <li>
4861
+ * <p>"linear-learner"</p>
4862
+ * </li>
4863
+ * <li>
4864
+ * <p>"nn-torch"</p>
4865
+ * </li>
4866
+ * <li>
4867
+ * <p>"randomforest"</p>
4868
+ * </li>
4869
+ * <li>
4870
+ * <p>"xgboost"</p>
4871
+ * </li>
4872
+ * </ul>
4857
4873
  * </li>
4858
4874
  * <li>
4859
- * <p>"xgboost"</p>
4875
+ * <p>In <code>HYPERPARAMETER_TUNING</code> mode:</p>
4876
+ * <ul>
4877
+ * <li>
4878
+ * <p>"linear-learner"</p>
4879
+ * </li>
4880
+ * <li>
4881
+ * <p>"mlp"</p>
4882
+ * </li>
4883
+ * <li>
4884
+ * <p>"xgboost"</p>
4885
+ * </li>
4886
+ * </ul>
4860
4887
  * </li>
4861
4888
  * </ul>
4862
4889
  * </li>
4863
4890
  * <li>
4864
- * <p>In <code>HYPERPARAMETER_TUNING</code> mode:</p>
4891
+ * <p>
4892
+ * <b>For the time-series forecasting problem type <code>TimeSeriesForecastingJobConfig</code>:</b>
4893
+ * </p>
4865
4894
  * <ul>
4866
4895
  * <li>
4867
- * <p>"linear-learner"</p>
4868
- * </li>
4869
- * <li>
4870
- * <p>"mlp"</p>
4871
- * </li>
4872
- * <li>
4873
- * <p>"xgboost"</p>
4896
+ * <p>Choose your algorithms from this list.</p>
4897
+ * <ul>
4898
+ * <li>
4899
+ * <p>"cnn-qr"</p>
4900
+ * </li>
4901
+ * <li>
4902
+ * <p>"deepar"</p>
4903
+ * </li>
4904
+ * <li>
4905
+ * <p>"prophet"</p>
4906
+ * </li>
4907
+ * <li>
4908
+ * <p>"arima"</p>
4909
+ * </li>
4910
+ * <li>
4911
+ * <p>"npts"</p>
4912
+ * </li>
4913
+ * <li>
4914
+ * <p>"ets"</p>
4915
+ * </li>
4916
+ * </ul>
4874
4917
  * </li>
4875
4918
  * </ul>
4876
4919
  * </li>
@@ -4891,13 +4934,15 @@ export interface CandidateArtifactLocations {
4891
4934
  */
4892
4935
  Explainability: string | undefined;
4893
4936
  /**
4894
- * <p>The Amazon S3 prefix to the model insight artifacts generated for the AutoML candidate.</p>
4937
+ * <p>The Amazon S3 prefix to the model insight artifacts generated for the AutoML
4938
+ * candidate.</p>
4895
4939
  * @public
4896
4940
  */
4897
4941
  ModelInsights?: string;
4898
4942
  /**
4899
- * <p>The Amazon S3 prefix to the accuracy metrics and the inference results observed over the
4900
- * testing window. Available only for the time-series forecasting problem type.</p>
4943
+ * <p>The Amazon S3 prefix to the accuracy metrics and the inference results observed
4944
+ * over the testing window. Available only for the time-series forecasting problem
4945
+ * type.</p>
4901
4946
  * @public
4902
4947
  */
4903
4948
  BacktestResults?: string;
@@ -5242,9 +5287,9 @@ export interface AutoMLCandidate {
5242
5287
  */
5243
5288
  export interface AutoMLCandidateGenerationConfig {
5244
5289
  /**
5245
- * <p>A URL to the Amazon S3 data source containing selected features from the input data source to
5246
- * run an Autopilot job. You can input <code>FeatureAttributeNames</code> (optional) in JSON
5247
- * format as shown below: </p>
5290
+ * <p>A URL to the Amazon S3 data source containing selected features from the input
5291
+ * data source to run an Autopilot job. You can input <code>FeatureAttributeNames</code>
5292
+ * (optional) in JSON format as shown below: </p>
5248
5293
  * <p>
5249
5294
  * <code>\{ "FeatureAttributeNames":["col1", "col2", ...] \}</code>.</p>
5250
5295
  * <p>You can also specify the data type of the feature (optional) in the format shown
@@ -5272,33 +5317,31 @@ export interface AutoMLCandidateGenerationConfig {
5272
5317
  */
5273
5318
  FeatureSpecificationS3Uri?: string;
5274
5319
  /**
5275
- * <p>Stores the configuration information for the selection of algorithms used to train the
5276
- * model candidates.</p>
5320
+ * <p>Stores the configuration information for the selection of algorithms trained on tabular data.</p>
5277
5321
  * <p>The list of available algorithms to choose from depends on the training mode set in
5278
- * <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobConfig.html">
5279
- * <code>AutoMLJobConfig.Mode</code>
5322
+ * <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TabularJobConfig.html">
5323
+ * <code>TabularJobConfig.Mode</code>
5280
5324
  * </a>.</p>
5281
5325
  * <ul>
5282
5326
  * <li>
5283
5327
  * <p>
5284
- * <code>AlgorithmsConfig</code> should not be set in <code>AUTO</code> training
5285
- * mode.</p>
5328
+ * <code>AlgorithmsConfig</code> should not be set if the training mode is set on <code>AUTO</code>.</p>
5286
5329
  * </li>
5287
5330
  * <li>
5288
5331
  * <p>When <code>AlgorithmsConfig</code> is provided, one <code>AutoMLAlgorithms</code>
5289
5332
  * attribute must be set and one only.</p>
5290
5333
  * <p>If the list of algorithms provided as values for <code>AutoMLAlgorithms</code> is
5291
- * empty, <code>AutoMLCandidateGenerationConfig</code> uses the full set of algorithms
5292
- * for the given training mode.</p>
5334
+ * empty, <code>CandidateGenerationConfig</code> uses the full set of algorithms for the
5335
+ * given training mode.</p>
5293
5336
  * </li>
5294
5337
  * <li>
5295
5338
  * <p>When <code>AlgorithmsConfig</code> is not provided,
5296
- * <code>AutoMLCandidateGenerationConfig</code> uses the full set of algorithms for
5297
- * the given training mode.</p>
5339
+ * <code>CandidateGenerationConfig</code> uses the full set of algorithms for the
5340
+ * given training mode.</p>
5298
5341
  * </li>
5299
5342
  * </ul>
5300
- * <p>For the list of all algorithms per training mode, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html">
5301
- * AutoMLAlgorithmConfig</a>.</p>
5343
+ * <p>For the list of all algorithms per problem type and training mode, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html">
5344
+ * AutoMLAlgorithmConfig</a>.</p>
5302
5345
  * <p>For more information on each algorithm, see the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support">Algorithm support</a> section in Autopilot developer guide.</p>
5303
5346
  * @public
5304
5347
  */
@@ -5339,8 +5382,8 @@ export interface AutoMLS3DataSource {
5339
5382
  * <ul>
5340
5383
  * <li>
5341
5384
  * <p>If you choose <code>S3Prefix</code>, <code>S3Uri</code> identifies a key name
5342
- * prefix. SageMaker uses all objects that match the specified key name prefix for model
5343
- * training.</p>
5385
+ * prefix. SageMaker uses all objects that match the specified key name prefix
5386
+ * for model training.</p>
5344
5387
  * <p>The <code>S3Prefix</code> should have the following format:</p>
5345
5388
  * <p>
5346
5389
  * <code>s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER-OR-FILE</code>
@@ -5348,8 +5391,7 @@ export interface AutoMLS3DataSource {
5348
5391
  * </li>
5349
5392
  * <li>
5350
5393
  * <p>If you choose <code>ManifestFile</code>, <code>S3Uri</code> identifies an object
5351
- * that is a manifest file containing a list of object keys that you want SageMaker to use
5352
- * for model training.</p>
5394
+ * that is a manifest file containing a list of object keys that you want SageMaker to use for model training.</p>
5353
5395
  * <p>A <code>ManifestFile</code> should have the format shown below:</p>
5354
5396
  * <p>
5355
5397
  * <code>[ \{"prefix":
@@ -5387,8 +5429,8 @@ export interface AutoMLS3DataSource {
5387
5429
  */
5388
5430
  S3DataType: AutoMLS3DataType | undefined;
5389
5431
  /**
5390
- * <p>The URL to the Amazon S3 data source. The Uri refers to the Amazon S3 prefix or ManifestFile
5391
- * depending on the data type.</p>
5432
+ * <p>The URL to the Amazon S3 data source. The Uri refers to the Amazon S3
5433
+ * prefix or ManifestFile depending on the data type.</p>
5392
5434
  * @public
5393
5435
  */
5394
5436
  S3Uri: string | undefined;
@@ -5718,14 +5760,14 @@ export interface AutoMLJobObjective {
5718
5760
  * <p>List of available metrics: </p>
5719
5761
  * <ul>
5720
5762
  * <li>
5721
- * <p> Regression: <code>MAE</code>,
5722
- * <code>MSE</code>, <code>R2</code>, <code>RMSE</code>
5763
+ * <p> Regression: <code>MAE</code>, <code>MSE</code>, <code>R2</code>,
5764
+ * <code>RMSE</code>
5723
5765
  * </p>
5724
5766
  * </li>
5725
5767
  * <li>
5726
5768
  * <p> Binary classification: <code>Accuracy</code>, <code>AUC</code>,
5727
5769
  * <code>BalancedAccuracy</code>, <code>F1</code>,
5728
- * <code>Precision</code>, <code>Recall</code>
5770
+ * <code>Precision</code>, <code>Recall</code>
5729
5771
  * </p>
5730
5772
  * </li>
5731
5773
  * <li>
@@ -5953,34 +5995,68 @@ export interface ImageClassificationJobConfig {
5953
5995
  */
5954
5996
  export interface CandidateGenerationConfig {
5955
5997
  /**
5956
- * <p>Stores the configuration information for the selection of algorithms used to train model
5957
- * candidates on tabular data.</p>
5958
- * <p>The list of available algorithms to choose from depends on the training mode set in
5959
- * <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TabularJobConfig.html">
5960
- * <code>TabularJobConfig.Mode</code>
5961
- * </a>.</p>
5998
+ * <p>Your Autopilot job trains a default set of algorithms on your dataset. For tabular and
5999
+ * time-series data, you can customize the algorithm list by selecting a subset of algorithms
6000
+ * for your problem type.</p>
6001
+ * <p>
6002
+ * <code>AlgorithmsConfig</code> stores the customized selection of algorithms to train on
6003
+ * your data.</p>
5962
6004
  * <ul>
5963
6005
  * <li>
5964
6006
  * <p>
5965
- * <code>AlgorithmsConfig</code> should not be set in <code>AUTO</code> training
5966
- * mode.</p>
5967
- * </li>
5968
- * <li>
5969
- * <p>When <code>AlgorithmsConfig</code> is provided, one <code>AutoMLAlgorithms</code>
5970
- * attribute must be set and one only.</p>
5971
- * <p>If the list of algorithms provided as values for <code>AutoMLAlgorithms</code> is
5972
- * empty, <code>CandidateGenerationConfig</code> uses the full set of algorithms for the
5973
- * given training mode.</p>
6007
+ * <b>For the tabular problem type <code>TabularJobConfig</code>,</b>
6008
+ * the list of available algorithms to choose from depends on the training mode set
6009
+ * in <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobConfig.html">
6010
+ * <code>AutoMLJobConfig.Mode</code>
6011
+ * </a>.</p>
6012
+ * <ul>
6013
+ * <li>
6014
+ * <p>
6015
+ * <code>AlgorithmsConfig</code> should not be set when the training mode
6016
+ * <code>AutoMLJobConfig.Mode</code> is set to <code>AUTO</code>.</p>
6017
+ * </li>
6018
+ * <li>
6019
+ * <p>When <code>AlgorithmsConfig</code> is provided, one
6020
+ * <code>AutoMLAlgorithms</code> attribute must be set and one only.</p>
6021
+ * <p>If the list of algorithms provided as values for
6022
+ * <code>AutoMLAlgorithms</code> is empty,
6023
+ * <code>CandidateGenerationConfig</code> uses the full set of algorithms for
6024
+ * the given training mode.</p>
6025
+ * </li>
6026
+ * <li>
6027
+ * <p>When <code>AlgorithmsConfig</code> is not provided,
6028
+ * <code>CandidateGenerationConfig</code> uses the full set of algorithms for
6029
+ * the given training mode.</p>
6030
+ * </li>
6031
+ * </ul>
6032
+ * <p>For the list of all algorithms per training mode, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html">
6033
+ * AlgorithmConfig</a>.</p>
6034
+ * <p>For more information on each algorithm, see the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support">Algorithm support</a> section in the Autopilot developer guide.</p>
5974
6035
  * </li>
5975
6036
  * <li>
5976
- * <p>When <code>AlgorithmsConfig</code> is not provided,
5977
- * <code>CandidateGenerationConfig</code> uses the full set of algorithms for the
5978
- * given training mode.</p>
6037
+ * <p>
6038
+ * <b>For the time-series forecasting problem type <code>TimeSeriesForecastingJobConfig</code>,</b>
6039
+ * choose your algorithms from the list provided in
6040
+ * <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html">
6041
+ * AlgorithmConfig</a>.</p>
6042
+ * <p>For more information on each algorithm, see the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/timeseries-forecasting-algorithms.html">Algorithms support for time-series forecasting</a> section in the Autopilot developer guide.</p>
6043
+ * <ul>
6044
+ * <li>
6045
+ * <p>When <code>AlgorithmsConfig</code> is provided, one
6046
+ * <code>AutoMLAlgorithms</code> attribute must be set and one only.</p>
6047
+ * <p>If the list of algorithms provided as values for
6048
+ * <code>AutoMLAlgorithms</code> is empty,
6049
+ * <code>CandidateGenerationConfig</code> uses the full set of algorithms for
6050
+ * time-series forecasting.</p>
6051
+ * </li>
6052
+ * <li>
6053
+ * <p>When <code>AlgorithmsConfig</code> is not provided,
6054
+ * <code>CandidateGenerationConfig</code> uses the full set of algorithms for
6055
+ * time-series forecasting.</p>
6056
+ * </li>
6057
+ * </ul>
5979
6058
  * </li>
5980
6059
  * </ul>
5981
- * <p>For the list of all algorithms per problem type and training mode, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html">
5982
- * AutoMLAlgorithmConfig</a>.</p>
5983
- * <p>For more information on each algorithm, see the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support">Algorithm support</a> section in Autopilot developer guide.</p>
5984
6060
  * @public
5985
6061
  */
5986
6062
  AlgorithmsConfig?: AutoMLAlgorithmConfig[];
@@ -6015,9 +6091,9 @@ export interface TabularJobConfig {
6015
6091
  */
6016
6092
  CompletionCriteria?: AutoMLJobCompletionCriteria;
6017
6093
  /**
6018
- * <p>A URL to the Amazon S3 data source containing selected features from the input data source to
6019
- * run an Autopilot job V2. You can input <code>FeatureAttributeNames</code> (optional) in JSON
6020
- * format as shown below: </p>
6094
+ * <p>A URL to the Amazon S3 data source containing selected features from the input
6095
+ * data source to run an Autopilot job V2. You can input <code>FeatureAttributeNames</code>
6096
+ * (optional) in JSON format as shown below: </p>
6021
6097
  * <p>
6022
6098
  * <code>\{ "FeatureAttributeNames":["col1", "col2", ...] \}</code>.</p>
6023
6099
  * <p>You can also specify the data type of the feature (optional) in the format shown
@@ -6338,12 +6414,13 @@ export interface TimeSeriesTransformations {
6338
6414
  */
6339
6415
  export interface TimeSeriesForecastingJobConfig {
6340
6416
  /**
6341
- * <p>A URL to the Amazon S3 data source containing additional selected features that complement
6342
- * the target, itemID, timestamp, and grouped columns set in <code>TimeSeriesConfig</code>.
6343
- * When not provided, the AutoML job V2 includes all the columns from the original dataset
6344
- * that are not already declared in <code>TimeSeriesConfig</code>. If provided, the AutoML job
6345
- * V2 only considers these additional columns as a complement to the ones declared in
6346
- * <code>TimeSeriesConfig</code>.</p>
6417
+ * <p>A URL to the Amazon S3 data source containing additional selected features that
6418
+ * complement the target, itemID, timestamp, and grouped columns set in
6419
+ * <code>TimeSeriesConfig</code>. When not provided, the AutoML job V2 includes all the
6420
+ * columns from the original dataset that are not already declared in
6421
+ * <code>TimeSeriesConfig</code>. If provided, the AutoML job V2 only considers these
6422
+ * additional columns as a complement to the ones declared in
6423
+ * <code>TimeSeriesConfig</code>.</p>
6347
6424
  * <p>You can input <code>FeatureAttributeNames</code> (optional) in JSON format as shown
6348
6425
  * below: </p>
6349
6426
  * <p>
@@ -6432,6 +6509,12 @@ export interface TimeSeriesForecastingJobConfig {
6432
6509
  * @public
6433
6510
  */
6434
6511
  HolidayConfig?: HolidayConfigAttributes[];
6512
+ /**
6513
+ * <p>Stores the configuration information for how model candidates are generated using an
6514
+ * AutoML job V2.</p>
6515
+ * @public
6516
+ */
6517
+ CandidateGenerationConfig?: CandidateGenerationConfig;
6435
6518
  }
6436
6519
  /**
6437
6520
  * <p>A collection of settings specific to the problem type used to configure an AutoML job V2.
@@ -9923,8 +10006,8 @@ export interface CreateAutoMLJobRequest {
9923
10006
  */
9924
10007
  InputDataConfig: AutoMLChannel[] | undefined;
9925
10008
  /**
9926
- * <p>Provides information about encryption and the Amazon S3 output path needed to store artifacts
9927
- * from an AutoML job. Format(s) supported: CSV.</p>
10009
+ * <p>Provides information about encryption and the Amazon S3 output path needed to
10010
+ * store artifacts from an AutoML job. Format(s) supported: CSV.</p>
9928
10011
  * @public
9929
10012
  */
9930
10013
  OutputDataConfig: AutoMLOutputDataConfig | undefined;
@@ -10019,8 +10102,8 @@ export interface CreateAutoMLJobV2Request {
10019
10102
  */
10020
10103
  AutoMLJobInputDataConfig: AutoMLJobChannel[] | undefined;
10021
10104
  /**
10022
- * <p>Provides information about encryption and the Amazon S3 output path needed to store artifacts
10023
- * from an AutoML job.</p>
10105
+ * <p>Provides information about encryption and the Amazon S3 output path needed to
10106
+ * store artifacts from an AutoML job.</p>
10024
10107
  * @public
10025
10108
  */
10026
10109
  OutputDataConfig: AutoMLOutputDataConfig | undefined;