@aws-sdk/client-sagemaker 3.504.0 → 3.507.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (36) hide show
  1. package/dist-cjs/endpoint/ruleset.js +3 -3
  2. package/dist-cjs/index.js +446 -6173
  3. package/dist-es/endpoint/ruleset.js +3 -3
  4. package/dist-es/protocols/Aws_json1_1.js +384 -6111
  5. package/dist-types/commands/CreateAppImageConfigCommand.d.ts +2 -2
  6. package/dist-types/commands/CreateCodeRepositoryCommand.d.ts +5 -5
  7. package/dist-types/commands/CreateCompilationJobCommand.d.ts +1 -2
  8. package/dist-types/commands/CreateDomainCommand.d.ts +3 -0
  9. package/dist-types/commands/CreateImageCommand.d.ts +1 -1
  10. package/dist-types/commands/CreateImageVersionCommand.d.ts +1 -1
  11. package/dist-types/commands/CreateNotebookInstanceCommand.d.ts +17 -17
  12. package/dist-types/commands/CreateNotebookInstanceLifecycleConfigCommand.d.ts +9 -9
  13. package/dist-types/commands/CreatePresignedDomainUrlCommand.d.ts +1 -1
  14. package/dist-types/commands/CreateSpaceCommand.d.ts +1 -1
  15. package/dist-types/commands/CreateUserProfileCommand.d.ts +4 -1
  16. package/dist-types/commands/DeleteNotebookInstanceCommand.d.ts +3 -3
  17. package/dist-types/commands/DescribeDomainCommand.d.ts +3 -0
  18. package/dist-types/commands/DescribeNotebookInstanceLifecycleConfigCommand.d.ts +1 -1
  19. package/dist-types/commands/DescribeStudioLifecycleConfigCommand.d.ts +1 -2
  20. package/dist-types/commands/DescribeUserProfileCommand.d.ts +3 -0
  21. package/dist-types/commands/ListAppImageConfigsCommand.d.ts +2 -2
  22. package/dist-types/commands/UpdateDomainCommand.d.ts +3 -0
  23. package/dist-types/commands/UpdateUserProfileCommand.d.ts +3 -0
  24. package/dist-types/models/models_0.d.ts +49 -105
  25. package/dist-types/models/models_1.d.ts +161 -117
  26. package/dist-types/models/models_2.d.ts +50 -27
  27. package/dist-types/models/models_3.d.ts +51 -52
  28. package/dist-types/models/models_4.d.ts +37 -26
  29. package/dist-types/ts3.4/commands/CreateCompilationJobCommand.d.ts +4 -2
  30. package/dist-types/ts3.4/commands/DescribeStudioLifecycleConfigCommand.d.ts +4 -2
  31. package/dist-types/ts3.4/models/models_0.d.ts +4 -10
  32. package/dist-types/ts3.4/models/models_1.d.ts +13 -7
  33. package/dist-types/ts3.4/models/models_2.d.ts +7 -4
  34. package/dist-types/ts3.4/models/models_3.d.ts +4 -4
  35. package/dist-types/ts3.4/models/models_4.d.ts +4 -2
  36. package/package.json +3 -3
@@ -27,8 +27,8 @@ declare const CreateAppImageConfigCommand_base: {
27
27
  /**
28
28
  * @public
29
29
  * <p>Creates a configuration for running a SageMaker image as a KernelGateway app. The
30
- * configuration specifies the Amazon Elastic File System (EFS) storage volume on the image, and a list of the
31
- * kernels in the image.</p>
30
+ * configuration specifies the Amazon Elastic File System storage volume on the image, and a list of the
31
+ * kernels in the image.</p>
32
32
  * @example
33
33
  * Use a bare-bones client and the command you need to make an API call.
34
34
  * ```javascript
@@ -27,12 +27,12 @@ declare const CreateCodeRepositoryCommand_base: {
27
27
  /**
28
28
  * @public
29
29
  * <p>Creates a Git repository as a resource in your SageMaker account. You can associate the
30
- * repository with notebook instances so that you can use Git source control for the
31
- * notebooks you create. The Git repository is a resource in your SageMaker account, so it can
32
- * be associated with more than one notebook instance, and it persists independently from
33
- * the lifecycle of any notebook instances it is associated with.</p>
30
+ * repository with notebook instances so that you can use Git source control for the
31
+ * notebooks you create. The Git repository is a resource in your SageMaker account, so it can
32
+ * be associated with more than one notebook instance, and it persists independently from
33
+ * the lifecycle of any notebook instances it is associated with.</p>
34
34
  * <p>The repository can be hosted either in <a href="https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html">Amazon Web Services CodeCommit</a>
35
- * or in any other Git repository.</p>
35
+ * or in any other Git repository.</p>
36
36
  * @example
37
37
  * Use a bare-bones client and the command you need to make an API call.
38
38
  * ```javascript
@@ -1,7 +1,6 @@
1
1
  import { Command as $Command } from "@smithy/smithy-client";
2
2
  import { MetadataBearer as __MetadataBearer } from "@smithy/types";
3
- import { CreateCompilationJobRequest } from "../models/models_0";
4
- import { CreateCompilationJobResponse } from "../models/models_1";
3
+ import { CreateCompilationJobRequest, CreateCompilationJobResponse } from "../models/models_1";
5
4
  import { SageMakerClientResolvedConfig, ServiceInputTypes, ServiceOutputTypes } from "../SageMakerClient";
6
5
  /**
7
6
  * @public
@@ -180,6 +180,9 @@ declare const CreateDomainCommand_base: {
180
180
  * KendraSettings: { // KendraSettings
181
181
  * Status: "ENABLED" || "DISABLED",
182
182
  * },
183
+ * GenerativeAiSettings: { // GenerativeAiSettings
184
+ * AmazonBedrockRoleArn: "STRING_VALUE",
185
+ * },
183
186
  * },
184
187
  * CodeEditorAppSettings: { // CodeEditorAppSettings
185
188
  * DefaultResourceSpec: {
@@ -27,7 +27,7 @@ declare const CreateImageCommand_base: {
27
27
  /**
28
28
  * @public
29
29
  * <p>Creates a custom SageMaker image. A SageMaker image is a set of image versions. Each image
30
- * version represents a container image stored in Amazon Elastic Container Registry (ECR). For more information, see
30
+ * version represents a container image stored in Amazon ECR. For more information, see
31
31
  * <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/studio-byoi.html">Bring your own SageMaker image</a>.</p>
32
32
  * @example
33
33
  * Use a bare-bones client and the command you need to make an API call.
@@ -27,7 +27,7 @@ declare const CreateImageVersionCommand_base: {
27
27
  /**
28
28
  * @public
29
29
  * <p>Creates a version of the SageMaker image specified by <code>ImageName</code>. The version
30
- * represents the Amazon Elastic Container Registry (ECR) container image specified by <code>BaseImage</code>.</p>
30
+ * represents the Amazon ECR container image specified by <code>BaseImage</code>.</p>
31
31
  * @example
32
32
  * Use a bare-bones client and the command you need to make an API call.
33
33
  * ```javascript
@@ -27,13 +27,13 @@ declare const CreateNotebookInstanceCommand_base: {
27
27
  /**
28
28
  * @public
29
29
  * <p>Creates an SageMaker notebook instance. A notebook instance is a machine learning (ML)
30
- * compute instance running on a Jupyter notebook. </p>
30
+ * compute instance running on a Jupyter notebook. </p>
31
31
  * <p>In a <code>CreateNotebookInstance</code> request, specify the type of ML compute
32
- * instance that you want to run. SageMaker launches the instance, installs common libraries
33
- * that you can use to explore datasets for model training, and attaches an ML storage
34
- * volume to the notebook instance. </p>
32
+ * instance that you want to run. SageMaker launches the instance, installs common libraries
33
+ * that you can use to explore datasets for model training, and attaches an ML storage
34
+ * volume to the notebook instance. </p>
35
35
  * <p>SageMaker also provides a set of example notebooks. Each notebook demonstrates how to
36
- * use SageMaker with a specific algorithm or with a machine learning framework. </p>
36
+ * use SageMaker with a specific algorithm or with a machine learning framework. </p>
37
37
  * <p>After receiving the request, SageMaker does the following:</p>
38
38
  * <ol>
39
39
  * <li>
@@ -41,25 +41,25 @@ declare const CreateNotebookInstanceCommand_base: {
41
41
  * </li>
42
42
  * <li>
43
43
  * <p>(Option) If you specified <code>SubnetId</code>, SageMaker creates a network
44
- * interface in your own VPC, which is inferred from the subnet ID that you provide
45
- * in the input. When creating this network interface, SageMaker attaches the security
46
- * group that you specified in the request to the network interface that it creates
47
- * in your VPC.</p>
44
+ * interface in your own VPC, which is inferred from the subnet ID that you provide
45
+ * in the input. When creating this network interface, SageMaker attaches the security
46
+ * group that you specified in the request to the network interface that it creates
47
+ * in your VPC.</p>
48
48
  * </li>
49
49
  * <li>
50
50
  * <p>Launches an EC2 instance of the type specified in the request in the SageMaker
51
- * VPC. If you specified <code>SubnetId</code> of your VPC, SageMaker specifies both
52
- * network interfaces when launching this instance. This enables inbound traffic
53
- * from your own VPC to the notebook instance, assuming that the security groups
54
- * allow it.</p>
51
+ * VPC. If you specified <code>SubnetId</code> of your VPC, SageMaker specifies both
52
+ * network interfaces when launching this instance. This enables inbound traffic
53
+ * from your own VPC to the notebook instance, assuming that the security groups
54
+ * allow it.</p>
55
55
  * </li>
56
56
  * </ol>
57
57
  * <p>After creating the notebook instance, SageMaker returns its Amazon Resource Name (ARN).
58
- * You can't change the name of a notebook instance after you create it.</p>
58
+ * You can't change the name of a notebook instance after you create it.</p>
59
59
  * <p>After SageMaker creates the notebook instance, you can connect to the Jupyter server and
60
- * work in Jupyter notebooks. For example, you can write code to explore a dataset that you
61
- * can use for model training, train a model, host models by creating SageMaker endpoints, and
62
- * validate hosted models. </p>
60
+ * work in Jupyter notebooks. For example, you can write code to explore a dataset that you
61
+ * can use for model training, train a model, host models by creating SageMaker endpoints, and
62
+ * validate hosted models. </p>
63
63
  * <p>For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html">How It Works</a>. </p>
64
64
  * @example
65
65
  * Use a bare-bones client and the command you need to make an API call.
@@ -27,19 +27,19 @@ declare const CreateNotebookInstanceLifecycleConfigCommand_base: {
27
27
  /**
28
28
  * @public
29
29
  * <p>Creates a lifecycle configuration that you can associate with a notebook instance. A
30
- * <i>lifecycle configuration</i> is a collection of shell scripts that
31
- * run when you create or start a notebook instance.</p>
30
+ * <i>lifecycle configuration</i> is a collection of shell scripts that
31
+ * run when you create or start a notebook instance.</p>
32
32
  * <p>Each lifecycle configuration script has a limit of 16384 characters.</p>
33
33
  * <p>The value of the <code>$PATH</code> environment variable that is available to both
34
- * scripts is <code>/sbin:bin:/usr/sbin:/usr/bin</code>.</p>
35
- * <p>View CloudWatch Logs for notebook instance lifecycle configurations in log group
36
- * <code>/aws/sagemaker/NotebookInstances</code> in log stream
37
- * <code>[notebook-instance-name]/[LifecycleConfigHook]</code>.</p>
34
+ * scripts is <code>/sbin:bin:/usr/sbin:/usr/bin</code>.</p>
35
+ * <p>View Amazon CloudWatch Logs for notebook instance lifecycle configurations in log group
36
+ * <code>/aws/sagemaker/NotebookInstances</code> in log stream
37
+ * <code>[notebook-instance-name]/[LifecycleConfigHook]</code>.</p>
38
38
  * <p>Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs
39
- * for longer than 5 minutes, it fails and the notebook instance is not created or
40
- * started.</p>
39
+ * for longer than 5 minutes, it fails and the notebook instance is not created or
40
+ * started.</p>
41
41
  * <p>For information about notebook instance lifestyle configurations, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html">Step
42
- * 2.1: (Optional) Customize a Notebook Instance</a>.</p>
42
+ * 2.1: (Optional) Customize a Notebook Instance</a>.</p>
43
43
  * @example
44
44
  * Use a bare-bones client and the command you need to make an API call.
45
45
  * ```javascript
@@ -28,7 +28,7 @@ declare const CreatePresignedDomainUrlCommand_base: {
28
28
  * @public
29
29
  * <p>Creates a URL for a specified UserProfile in a Domain. When accessed in a web browser,
30
30
  * the user will be automatically signed in to the domain, and granted access to all of
31
- * the Apps and files associated with the Domain's Amazon Elastic File System (EFS) volume.
31
+ * the Apps and files associated with the Domain's Amazon Elastic File System volume.
32
32
  * This operation can only be called when the authentication mode equals IAM.
33
33
  * </p>
34
34
  * <p>The IAM role or user passed to this API defines the permissions to access the app. Once
@@ -26,7 +26,7 @@ declare const CreateSpaceCommand_base: {
26
26
  };
27
27
  /**
28
28
  * @public
29
- * <p>Creates a space used for real time collaboration in a Domain.</p>
29
+ * <p>Creates a space used for real time collaboration in a domain.</p>
30
30
  * @example
31
31
  * Use a bare-bones client and the command you need to make an API call.
32
32
  * ```javascript
@@ -31,7 +31,7 @@ declare const CreateUserProfileCommand_base: {
31
31
  * user-oriented features. This entity is created when a user onboards to a domain. If an
32
32
  * administrator invites a person by email or imports them from IAM Identity Center, a user profile is
33
33
  * automatically created. A user profile is the primary holder of settings for an individual
34
- * user and has a reference to the user's private Amazon Elastic File System (EFS) home directory.
34
+ * user and has a reference to the user's private Amazon Elastic File System home directory.
35
35
  * </p>
36
36
  * @example
37
37
  * Use a bare-bones client and the command you need to make an API call.
@@ -151,6 +151,9 @@ declare const CreateUserProfileCommand_base: {
151
151
  * KendraSettings: { // KendraSettings
152
152
  * Status: "ENABLED" || "DISABLED",
153
153
  * },
154
+ * GenerativeAiSettings: { // GenerativeAiSettings
155
+ * AmazonBedrockRoleArn: "STRING_VALUE",
156
+ * },
154
157
  * },
155
158
  * CodeEditorAppSettings: { // CodeEditorAppSettings
156
159
  * DefaultResourceSpec: {
@@ -27,11 +27,11 @@ declare const DeleteNotebookInstanceCommand_base: {
27
27
  /**
28
28
  * @public
29
29
  * <p> Deletes an SageMaker notebook instance. Before you can delete a notebook instance, you
30
- * must call the <code>StopNotebookInstance</code> API. </p>
30
+ * must call the <code>StopNotebookInstance</code> API. </p>
31
31
  * <important>
32
32
  * <p>When you delete a notebook instance, you lose all of your data. SageMaker removes
33
- * the ML compute instance, and deletes the ML storage volume and the network interface
34
- * associated with the notebook instance. </p>
33
+ * the ML compute instance, and deletes the ML storage volume and the network interface
34
+ * associated with the notebook instance. </p>
35
35
  * </important>
36
36
  * @example
37
37
  * Use a bare-bones client and the command you need to make an API call.
@@ -152,6 +152,9 @@ declare const DescribeDomainCommand_base: {
152
152
  * // KendraSettings: { // KendraSettings
153
153
  * // Status: "ENABLED" || "DISABLED",
154
154
  * // },
155
+ * // GenerativeAiSettings: { // GenerativeAiSettings
156
+ * // AmazonBedrockRoleArn: "STRING_VALUE",
157
+ * // },
155
158
  * // },
156
159
  * // CodeEditorAppSettings: { // CodeEditorAppSettings
157
160
  * // DefaultResourceSpec: {
@@ -28,7 +28,7 @@ declare const DescribeNotebookInstanceLifecycleConfigCommand_base: {
28
28
  * @public
29
29
  * <p>Returns a description of a notebook instance lifecycle configuration.</p>
30
30
  * <p>For information about notebook instance lifestyle configurations, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html">Step
31
- * 2.1: (Optional) Customize a Notebook Instance</a>.</p>
31
+ * 2.1: (Optional) Customize a Notebook Instance</a>.</p>
32
32
  * @example
33
33
  * Use a bare-bones client and the command you need to make an API call.
34
34
  * ```javascript
@@ -1,7 +1,6 @@
1
1
  import { Command as $Command } from "@smithy/smithy-client";
2
2
  import { MetadataBearer as __MetadataBearer } from "@smithy/types";
3
- import { DescribeStudioLifecycleConfigRequest } from "../models/models_2";
4
- import { DescribeStudioLifecycleConfigResponse } from "../models/models_3";
3
+ import { DescribeStudioLifecycleConfigRequest, DescribeStudioLifecycleConfigResponse } from "../models/models_3";
5
4
  import { SageMakerClientResolvedConfig, ServiceInputTypes, ServiceOutputTypes } from "../SageMakerClient";
6
5
  /**
7
6
  * @public
@@ -151,6 +151,9 @@ declare const DescribeUserProfileCommand_base: {
151
151
  * // KendraSettings: { // KendraSettings
152
152
  * // Status: "ENABLED" || "DISABLED",
153
153
  * // },
154
+ * // GenerativeAiSettings: { // GenerativeAiSettings
155
+ * // AmazonBedrockRoleArn: "STRING_VALUE",
156
+ * // },
154
157
  * // },
155
158
  * // CodeEditorAppSettings: { // CodeEditorAppSettings
156
159
  * // DefaultResourceSpec: {
@@ -27,8 +27,8 @@ declare const ListAppImageConfigsCommand_base: {
27
27
  /**
28
28
  * @public
29
29
  * <p>Lists the AppImageConfigs in your account and their properties. The list can be
30
- * filtered by creation time or modified time, and whether the AppImageConfig name contains
31
- * a specified string.</p>
30
+ * filtered by creation time or modified time, and whether the AppImageConfig name contains
31
+ * a specified string.</p>
32
32
  * @example
33
33
  * Use a bare-bones client and the command you need to make an API call.
34
34
  * ```javascript
@@ -136,6 +136,9 @@ declare const UpdateDomainCommand_base: {
136
136
  * KendraSettings: { // KendraSettings
137
137
  * Status: "ENABLED" || "DISABLED",
138
138
  * },
139
+ * GenerativeAiSettings: { // GenerativeAiSettings
140
+ * AmazonBedrockRoleArn: "STRING_VALUE",
141
+ * },
139
142
  * },
140
143
  * CodeEditorAppSettings: { // CodeEditorAppSettings
141
144
  * DefaultResourceSpec: {
@@ -137,6 +137,9 @@ declare const UpdateUserProfileCommand_base: {
137
137
  * KendraSettings: { // KendraSettings
138
138
  * Status: "ENABLED" || "DISABLED",
139
139
  * },
140
+ * GenerativeAiSettings: { // GenerativeAiSettings
141
+ * AmazonBedrockRoleArn: "STRING_VALUE",
142
+ * },
140
143
  * },
141
144
  * CodeEditorAppSettings: { // CodeEditorAppSettings
142
145
  * DefaultResourceSpec: {
@@ -3747,7 +3747,7 @@ export type AppInstanceType = (typeof AppInstanceType)[keyof typeof AppInstanceT
3747
3747
  /**
3748
3748
  * @public
3749
3749
  * <p>Specifies the ARN's of a SageMaker image and SageMaker image version, and the instance type that
3750
- * the version runs on.</p>
3750
+ * the version runs on.</p>
3751
3751
  */
3752
3752
  export interface ResourceSpec {
3753
3753
  /**
@@ -3772,7 +3772,7 @@ export interface ResourceSpec {
3772
3772
  * <p>
3773
3773
  * <b>JupyterServer apps</b> only support the <code>system</code> value.</p>
3774
3774
  * <p>For <b>KernelGateway apps</b>, the <code>system</code>
3775
- * value is translated to <code>ml.t3.medium</code>. KernelGateway apps also support all other values for available
3775
+ * value is translated to <code>ml.t3.medium</code>. KernelGateway apps also support all other values for available
3776
3776
  * instance types.</p>
3777
3777
  * </note>
3778
3778
  */
@@ -3841,7 +3841,7 @@ export interface AppDetails {
3841
3841
  /**
3842
3842
  * @public
3843
3843
  * <p>Specifies the ARN's of a SageMaker image and SageMaker image version, and the instance type that
3844
- * the version runs on.</p>
3844
+ * the version runs on.</p>
3845
3845
  */
3846
3846
  ResourceSpec?: ResourceSpec;
3847
3847
  }
@@ -3868,13 +3868,13 @@ export interface ContainerConfig {
3868
3868
  }
3869
3869
  /**
3870
3870
  * @public
3871
- * <p>The Amazon Elastic File System (EFS) storage configuration for a SageMaker image.</p>
3871
+ * <p>The Amazon Elastic File System storage configuration for a SageMaker image.</p>
3872
3872
  */
3873
3873
  export interface FileSystemConfig {
3874
3874
  /**
3875
3875
  * @public
3876
3876
  * <p>The path within the image to mount the user's EFS home directory. The directory
3877
- * should be empty. If not specified, defaults to <i>/home/sagemaker-user</i>.</p>
3877
+ * should be empty. If not specified, defaults to <i>/home/sagemaker-user</i>.</p>
3878
3878
  */
3879
3879
  MountPath?: string;
3880
3880
  /**
@@ -3895,7 +3895,7 @@ export interface FileSystemConfig {
3895
3895
  export interface JupyterLabAppImageConfig {
3896
3896
  /**
3897
3897
  * @public
3898
- * <p>The Amazon Elastic File System (EFS) storage configuration for a SageMaker image.</p>
3898
+ * <p>The Amazon Elastic File System storage configuration for a SageMaker image.</p>
3899
3899
  */
3900
3900
  FileSystemConfig?: FileSystemConfig;
3901
3901
  /**
@@ -3923,7 +3923,7 @@ export interface KernelSpec {
3923
3923
  /**
3924
3924
  * @public
3925
3925
  * <p>The configuration for the file system and kernels in a SageMaker image running as a
3926
- * KernelGateway app.</p>
3926
+ * KernelGateway app.</p>
3927
3927
  */
3928
3928
  export interface KernelGatewayImageConfig {
3929
3929
  /**
@@ -3933,7 +3933,7 @@ export interface KernelGatewayImageConfig {
3933
3933
  KernelSpecs: KernelSpec[] | undefined;
3934
3934
  /**
3935
3935
  * @public
3936
- * <p>The Amazon Elastic File System (EFS) storage configuration for a SageMaker image.</p>
3936
+ * <p>The Amazon Elastic File System storage configuration for a SageMaker image.</p>
3937
3937
  */
3938
3938
  FileSystemConfig?: FileSystemConfig;
3939
3939
  }
@@ -3944,7 +3944,7 @@ export interface KernelGatewayImageConfig {
3944
3944
  export interface AppImageConfigDetails {
3945
3945
  /**
3946
3946
  * @public
3947
- * <p>The Amazon Resource Name (ARN) of the AppImageConfig.</p>
3947
+ * <p>The ARN of the AppImageConfig.</p>
3948
3948
  */
3949
3949
  AppImageConfigArn?: string;
3950
3950
  /**
@@ -5574,7 +5574,7 @@ export interface AutoMLJobSummary {
5574
5574
  export interface AutoMLOutputDataConfig {
5575
5575
  /**
5576
5576
  * @public
5577
- * <p>The Key Management Service (KMS) encryption key ID.</p>
5577
+ * <p>The Key Management Service encryption key ID.</p>
5578
5578
  */
5579
5579
  KmsKeyId?: string;
5580
5580
  /**
@@ -5724,7 +5724,7 @@ export interface TabularJobConfig {
5724
5724
  * @public
5725
5725
  * <p>The type of supervised learning problem available for the model candidates of the AutoML
5726
5726
  * job V2. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types">
5727
- * Amazon SageMaker Autopilot problem types</a>.</p>
5727
+ * SageMaker Autopilot problem types</a>.</p>
5728
5728
  * <note>
5729
5729
  * <p>You must either specify the type of supervised learning problem in
5730
5730
  * <code>ProblemType</code> and provide the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-AutoMLJobObjective">AutoMLJobObjective</a> metric, or none at all.</p>
@@ -6236,7 +6236,7 @@ export interface TabularResolvedAttributes {
6236
6236
  * <p>The type of supervised learning problem available for the model candidates of the AutoML
6237
6237
  * job V2 (Binary Classification, Multiclass Classification, Regression). For more
6238
6238
  * information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types">
6239
- * Amazon SageMaker Autopilot problem types</a>.</p>
6239
+ * SageMaker Autopilot problem types</a>.</p>
6240
6240
  */
6241
6241
  ProblemType?: ProblemType;
6242
6242
  }
@@ -7085,6 +7085,22 @@ export interface DirectDeploySettings {
7085
7085
  */
7086
7086
  Status?: FeatureStatus;
7087
7087
  }
7088
+ /**
7089
+ * @public
7090
+ * <p>The generative AI settings for the SageMaker Canvas application.</p>
7091
+ * <p>Configure these settings for Canvas users starting chats with generative AI foundation models.
7092
+ * For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-fm-chat.html">
7093
+ * Use generative AI with foundation models</a>.</p>
7094
+ */
7095
+ export interface GenerativeAiSettings {
7096
+ /**
7097
+ * @public
7098
+ * <p>The ARN of an Amazon Web Services IAM role that allows fine-tuning of large language models (LLMs) in
7099
+ * Amazon Bedrock. The IAM role should have Amazon S3 read and write permissions, as well as a trust relationship that
7100
+ * establishes <code>bedrock.amazonaws.com</code> as a service principal.</p>
7101
+ */
7102
+ AmazonBedrockRoleArn?: string;
7103
+ }
7088
7104
  /**
7089
7105
  * @public
7090
7106
  * @enum
@@ -7230,6 +7246,11 @@ export interface CanvasAppSettings {
7230
7246
  * <p>The settings for document querying.</p>
7231
7247
  */
7232
7248
  KendraSettings?: KendraSettings;
7249
+ /**
7250
+ * @public
7251
+ * <p>The generative AI settings for the SageMaker Canvas application.</p>
7252
+ */
7253
+ GenerativeAiSettings?: GenerativeAiSettings;
7233
7254
  }
7234
7255
  /**
7235
7256
  * @public
@@ -8129,7 +8150,7 @@ export interface CodeEditorAppSettings {
8129
8150
  /**
8130
8151
  * @public
8131
8152
  * <p>Specifies the ARN's of a SageMaker image and SageMaker image version, and the instance type that
8132
- * the version runs on.</p>
8153
+ * the version runs on.</p>
8133
8154
  */
8134
8155
  DefaultResourceSpec?: ResourceSpec;
8135
8156
  /**
@@ -8616,7 +8637,7 @@ export interface RepositoryAuthConfig {
8616
8637
  /**
8617
8638
  * @public
8618
8639
  * <p>Specifies whether the model container is in Amazon ECR or a private Docker registry
8619
- * accessible from your Amazon Virtual Private Cloud (VPC).</p>
8640
+ * accessible from your Amazon Virtual Private Cloud (VPC).</p>
8620
8641
  */
8621
8642
  export interface ImageConfig {
8622
8643
  /**
@@ -8630,7 +8651,7 @@ export interface ImageConfig {
8630
8651
  * <li>
8631
8652
  * <p>
8632
8653
  * <code>Vpc</code> - The model image is hosted in a private Docker registry in
8633
- * your VPC.</p>
8654
+ * your VPC.</p>
8634
8655
  * </li>
8635
8656
  * </ul>
8636
8657
  */
@@ -8638,10 +8659,10 @@ export interface ImageConfig {
8638
8659
  /**
8639
8660
  * @public
8640
8661
  * <p>(Optional) Specifies an authentication configuration for the private docker registry
8641
- * where your model image is hosted. Specify a value for this property only if you
8642
- * specified <code>Vpc</code> as the value for the <code>RepositoryAccessMode</code> field,
8643
- * and the private Docker registry where the model image is hosted requires
8644
- * authentication.</p>
8662
+ * where your model image is hosted. Specify a value for this property only if you
8663
+ * specified <code>Vpc</code> as the value for the <code>RepositoryAccessMode</code> field,
8664
+ * and the private Docker registry where the model image is hosted requires
8665
+ * authentication.</p>
8645
8666
  */
8646
8667
  RepositoryAuthConfig?: RepositoryAuthConfig;
8647
8668
  }
@@ -9493,7 +9514,7 @@ export interface CreateAppRequest {
9493
9514
  /**
9494
9515
  * @public
9495
9516
  * <p>The name of the space. If this value is not set, then <code>UserProfileName</code>
9496
- * must be set.</p>
9517
+ * must be set.</p>
9497
9518
  */
9498
9519
  SpaceName?: string;
9499
9520
  /**
@@ -9563,8 +9584,8 @@ export interface CreateAppImageConfigRequest {
9563
9584
  /**
9564
9585
  * @public
9565
9586
  * <p>The KernelGatewayImageConfig. You can only specify one image kernel in the
9566
- * AppImageConfig API. This kernel will be shown to users before the
9567
- * image starts. Once the image runs, all kernels are visible in JupyterLab.</p>
9587
+ * AppImageConfig API. This kernel will be shown to users before the
9588
+ * image starts. Once the image runs, all kernels are visible in JupyterLab.</p>
9568
9589
  */
9569
9590
  KernelGatewayImageConfig?: KernelGatewayImageConfig;
9570
9591
  /**
@@ -9579,7 +9600,7 @@ export interface CreateAppImageConfigRequest {
9579
9600
  export interface CreateAppImageConfigResponse {
9580
9601
  /**
9581
9602
  * @public
9582
- * <p>The Amazon Resource Name (ARN) of the AppImageConfig.</p>
9603
+ * <p>The ARN of the AppImageConfig.</p>
9583
9604
  */
9584
9605
  AppImageConfigArn?: string;
9585
9606
  }
@@ -9685,7 +9706,7 @@ export interface CreateAutoMLJobRequest {
9685
9706
  * @public
9686
9707
  * <p>Defines the type of supervised learning problem available for the candidates. For more
9687
9708
  * information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types">
9688
- * Amazon SageMaker Autopilot problem types</a>.</p>
9709
+ * SageMaker Autopilot problem types</a>.</p>
9689
9710
  */
9690
9711
  ProblemType?: ProblemType;
9691
9712
  /**
@@ -9905,20 +9926,20 @@ export interface CreateCodeRepositoryInput {
9905
9926
  /**
9906
9927
  * @public
9907
9928
  * <p>The name of the Git repository. The name must have 1 to 63 characters. Valid
9908
- * characters are a-z, A-Z, 0-9, and - (hyphen).</p>
9929
+ * characters are a-z, A-Z, 0-9, and - (hyphen).</p>
9909
9930
  */
9910
9931
  CodeRepositoryName: string | undefined;
9911
9932
  /**
9912
9933
  * @public
9913
9934
  * <p>Specifies details about the repository, including the URL where the repository is
9914
- * located, the default branch, and credentials to use to access the repository.</p>
9935
+ * located, the default branch, and credentials to use to access the repository.</p>
9915
9936
  */
9916
9937
  GitConfig: GitConfig | undefined;
9917
9938
  /**
9918
9939
  * @public
9919
9940
  * <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services
9920
- * resources in different ways, for example, by purpose, owner, or environment. For more
9921
- * information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web Services Resources</a>.</p>
9941
+ * resources in different ways, for example, by purpose, owner, or environment. For more
9942
+ * information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web Services Resources</a>.</p>
9922
9943
  */
9923
9944
  Tags?: Tag[];
9924
9945
  }
@@ -10704,80 +10725,3 @@ export interface NeoVpcConfig {
10704
10725
  */
10705
10726
  Subnets: string[] | undefined;
10706
10727
  }
10707
- /**
10708
- * @public
10709
- */
10710
- export interface CreateCompilationJobRequest {
10711
- /**
10712
- * @public
10713
- * <p>A name for the model compilation job. The name must be unique within the Amazon Web Services Region and within your Amazon Web Services account. </p>
10714
- */
10715
- CompilationJobName: string | undefined;
10716
- /**
10717
- * @public
10718
- * <p>The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to perform tasks on
10719
- * your behalf. </p>
10720
- * <p>During model compilation, Amazon SageMaker needs your permission to:</p>
10721
- * <ul>
10722
- * <li>
10723
- * <p>Read input data from an S3 bucket</p>
10724
- * </li>
10725
- * <li>
10726
- * <p>Write model artifacts to an S3 bucket</p>
10727
- * </li>
10728
- * <li>
10729
- * <p>Write logs to Amazon CloudWatch Logs</p>
10730
- * </li>
10731
- * <li>
10732
- * <p>Publish metrics to Amazon CloudWatch</p>
10733
- * </li>
10734
- * </ul>
10735
- * <p>You grant permissions for all of these tasks to an IAM role. To pass this role to
10736
- * Amazon SageMaker, the caller of this API must have the <code>iam:PassRole</code> permission. For
10737
- * more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html">Amazon SageMaker
10738
- * Roles.</a>
10739
- * </p>
10740
- */
10741
- RoleArn: string | undefined;
10742
- /**
10743
- * @public
10744
- * <p>The Amazon Resource Name (ARN) of a versioned model package. Provide either a
10745
- * <code>ModelPackageVersionArn</code> or an <code>InputConfig</code> object in the
10746
- * request syntax. The presence of both objects in the <code>CreateCompilationJob</code>
10747
- * request will return an exception.</p>
10748
- */
10749
- ModelPackageVersionArn?: string;
10750
- /**
10751
- * @public
10752
- * <p>Provides information about the location of input model artifacts, the name and shape
10753
- * of the expected data inputs, and the framework in which the model was trained.</p>
10754
- */
10755
- InputConfig?: InputConfig;
10756
- /**
10757
- * @public
10758
- * <p>Provides information about the output location for the compiled model and the target
10759
- * device the model runs on.</p>
10760
- */
10761
- OutputConfig: OutputConfig | undefined;
10762
- /**
10763
- * @public
10764
- * <p>A <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html">VpcConfig</a> object that specifies the VPC that you want your compilation job
10765
- * to connect to. Control access to your models by configuring the VPC. For more
10766
- * information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/neo-vpc.html">Protect Compilation Jobs by Using an Amazon Virtual Private Cloud</a>.</p>
10767
- */
10768
- VpcConfig?: NeoVpcConfig;
10769
- /**
10770
- * @public
10771
- * <p>Specifies a limit to how long a model compilation job can run. When the job reaches
10772
- * the time limit, Amazon SageMaker ends the compilation job. Use this API to cap model training
10773
- * costs.</p>
10774
- */
10775
- StoppingCondition: StoppingCondition | undefined;
10776
- /**
10777
- * @public
10778
- * <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services
10779
- * resources in different ways, for example, by purpose, owner, or environment. For more
10780
- * information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web Services Resources</a>.</p>
10781
- */
10782
- Tags?: Tag[];
10783
- }