@aws-sdk/client-sagemaker 3.435.0 → 3.437.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (30) hide show
  1. package/dist-cjs/models/models_0.js +12 -0
  2. package/dist-cjs/models/models_2.js +1 -5
  3. package/dist-cjs/models/models_3.js +6 -2
  4. package/dist-cjs/runtimeConfig.js +2 -0
  5. package/dist-cjs/runtimeConfig.shared.js +15 -13
  6. package/dist-es/models/models_0.js +12 -0
  7. package/dist-es/models/models_2.js +0 -4
  8. package/dist-es/models/models_3.js +4 -0
  9. package/dist-es/runtimeConfig.js +2 -0
  10. package/dist-es/runtimeConfig.shared.js +15 -13
  11. package/dist-types/commands/CreateAutoMLJobCommand.d.ts +2 -1
  12. package/dist-types/commands/CreateAutoMLJobV2Command.d.ts +10 -1
  13. package/dist-types/commands/CreateDataQualityJobDefinitionCommand.d.ts +1 -2
  14. package/dist-types/commands/DeleteContextCommand.d.ts +1 -1
  15. package/dist-types/commands/DescribeAutoMLJobCommand.d.ts +1 -1
  16. package/dist-types/commands/DescribeAutoMLJobV2Command.d.ts +14 -7
  17. package/dist-types/commands/ListCandidatesForAutoMLJobCommand.d.ts +1 -1
  18. package/dist-types/models/models_0.d.ts +206 -119
  19. package/dist-types/models/models_1.d.ts +82 -27
  20. package/dist-types/models/models_2.d.ts +23 -85
  21. package/dist-types/models/models_3.d.ts +85 -220
  22. package/dist-types/models/models_4.d.ts +221 -4
  23. package/dist-types/ts3.4/commands/CreateDataQualityJobDefinitionCommand.d.ts +4 -2
  24. package/dist-types/ts3.4/commands/DeleteContextCommand.d.ts +1 -1
  25. package/dist-types/ts3.4/models/models_0.d.ts +41 -15
  26. package/dist-types/ts3.4/models/models_1.d.ts +18 -7
  27. package/dist-types/ts3.4/models/models_2.d.ts +7 -21
  28. package/dist-types/ts3.4/models/models_3.d.ts +23 -40
  29. package/dist-types/ts3.4/models/models_4.d.ts +41 -3
  30. package/package.json +5 -5
@@ -220,7 +220,8 @@ export interface AdditionalS3DataSource {
220
220
  /**
221
221
  * @public
222
222
  * <p>The type of compression used for an additional data source used in inference or
223
- * training. Specify <code>None</code> if your additional data source is not compressed.</p>
223
+ * training. Specify <code>None</code> if your additional data source is not
224
+ * compressed.</p>
224
225
  */
225
226
  CompressionType?: CompressionType;
226
227
  }
@@ -4459,12 +4460,19 @@ export declare const AutoMLMetricExtendedEnum: {
4459
4460
  readonly MAPE: "MAPE";
4460
4461
  readonly MASE: "MASE";
4461
4462
  readonly MSE: "MSE";
4463
+ readonly PERPLEXITY: "Perplexity";
4462
4464
  readonly PRECISION: "Precision";
4463
4465
  readonly PRECISION_MACRO: "PrecisionMacro";
4464
4466
  readonly R2: "R2";
4465
4467
  readonly RECALL: "Recall";
4466
4468
  readonly RECALL_MACRO: "RecallMacro";
4467
4469
  readonly RMSE: "RMSE";
4470
+ readonly ROUGE1: "Rouge1";
4471
+ readonly ROUGE2: "Rouge2";
4472
+ readonly ROUGEL: "RougeL";
4473
+ readonly ROUGEL_SUM: "RougeLSum";
4474
+ readonly TRAINING_LOSS: "TrainingLoss";
4475
+ readonly VALIDATION_LOSS: "ValidationLoss";
4468
4476
  readonly WAPE: "WAPE";
4469
4477
  };
4470
4478
  /**
@@ -5030,6 +5038,11 @@ export interface AutoMLJobChannel {
5030
5038
  * <code>x-application/vnd.amazon+parquet</code>. The default value is
5031
5039
  * <code>text/csv;header=present</code>.</p>
5032
5040
  * </li>
5041
+ * <li>
5042
+ * <p>For text generation (LLMs fine-tuning): <code>text/csv;header=present</code> or
5043
+ * <code>x-application/vnd.amazon+parquet</code>. The default value is
5044
+ * <code>text/csv;header=present</code>.</p>
5045
+ * </li>
5033
5046
  * </ul>
5034
5047
  */
5035
5048
  ContentType?: string;
@@ -5056,8 +5069,9 @@ export interface AutoMLJobCompletionCriteria {
5056
5069
  /**
5057
5070
  * @public
5058
5071
  * <p>The maximum number of times a training job is allowed to run.</p>
5059
- * <p>For text and image classification, as well as time-series forecasting problem types, the
5060
- * supported value is 1. For tabular problem types, the maximum value is 750.</p>
5072
+ * <p>For text and image classification, time-series forecasting, as well as text generation
5073
+ * (LLMs fine-tuning) problem types, the supported value is 1. For tabular problem types, the
5074
+ * maximum value is 750.</p>
5061
5075
  */
5062
5076
  MaxCandidates?: number;
5063
5077
  /**
@@ -5186,7 +5200,7 @@ export interface AutoMLJobConfig {
5186
5200
  }
5187
5201
  /**
5188
5202
  * @public
5189
- * <p>Specifies a metric to minimize or maximize as the objective of a job.</p>
5203
+ * <p>Specifies a metric to minimize or maximize as the objective of an AutoML job.</p>
5190
5204
  */
5191
5205
  export interface AutoMLJobObjective {
5192
5206
  /**
@@ -5195,33 +5209,94 @@ export interface AutoMLJobObjective {
5195
5209
  * learning system. During training, the model's parameters are updated iteratively to
5196
5210
  * optimize its performance based on the feedback provided by the objective metric when
5197
5211
  * evaluating the model on the validation dataset.</p>
5198
- * <p>For the list of all available metrics supported by Autopilot, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html#autopilot-metrics">Autopilot
5199
- * metrics</a>.</p>
5200
- * <p>If you do not specify a metric explicitly, the default behavior is to automatically
5201
- * use:</p>
5212
+ * <p>The list of available metrics supported by Autopilot and the default metric applied when you
5213
+ * do not specify a metric name explicitly depend on the problem type.</p>
5202
5214
  * <ul>
5203
5215
  * <li>
5204
5216
  * <p>For tabular problem types:</p>
5205
5217
  * <ul>
5206
5218
  * <li>
5207
- * <p>Regression: <code>MSE</code>.</p>
5219
+ * <p>List of available metrics: </p>
5220
+ * <ul>
5221
+ * <li>
5222
+ * <p> Regression: <code>InferenceLatency</code>, <code>MAE</code>,
5223
+ * <code>MSE</code>, <code>R2</code>, <code>RMSE</code>
5224
+ * </p>
5225
+ * </li>
5226
+ * <li>
5227
+ * <p> Binary classification: <code>Accuracy</code>, <code>AUC</code>,
5228
+ * <code>BalancedAccuracy</code>, <code>F1</code>,
5229
+ * <code>InferenceLatency</code>, <code>LogLoss</code>,
5230
+ * <code>Precision</code>, <code>Recall</code>
5231
+ * </p>
5232
+ * </li>
5233
+ * <li>
5234
+ * <p> Multiclass classification: <code>Accuracy</code>,
5235
+ * <code>BalancedAccuracy</code>, <code>F1macro</code>,
5236
+ * <code>InferenceLatency</code>, <code>LogLoss</code>,
5237
+ * <code>PrecisionMacro</code>, <code>RecallMacro</code>
5238
+ * </p>
5239
+ * </li>
5240
+ * </ul>
5241
+ * <p>For a description of each metric, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html#autopilot-metrics">Autopilot metrics for classification and regression</a>.</p>
5208
5242
  * </li>
5209
5243
  * <li>
5210
- * <p>Binary classification: <code>F1</code>.</p>
5244
+ * <p>Default objective metrics:</p>
5245
+ * <ul>
5246
+ * <li>
5247
+ * <p>Regression: <code>MSE</code>.</p>
5248
+ * </li>
5249
+ * <li>
5250
+ * <p>Binary classification: <code>F1</code>.</p>
5251
+ * </li>
5252
+ * <li>
5253
+ * <p>Multiclass classification: <code>Accuracy</code>.</p>
5254
+ * </li>
5255
+ * </ul>
5211
5256
  * </li>
5257
+ * </ul>
5258
+ * </li>
5259
+ * <li>
5260
+ * <p>For image or text classification problem types:</p>
5261
+ * <ul>
5212
5262
  * <li>
5213
- * <p>Multiclass classification: <code>Accuracy</code>.</p>
5263
+ * <p>List of available metrics: <code>Accuracy</code>
5264
+ * </p>
5265
+ * <p>For a description of each metric, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/text-classification-data-format-and-metric.html">Autopilot metrics for text and image classification</a>.</p>
5266
+ * </li>
5267
+ * <li>
5268
+ * <p>Default objective metrics: <code>Accuracy</code>
5269
+ * </p>
5214
5270
  * </li>
5215
5271
  * </ul>
5216
5272
  * </li>
5217
5273
  * <li>
5218
- * <p>For image or text classification problem types: <code>Accuracy</code>
5219
- * </p>
5274
+ * <p>For time-series forecasting problem types:</p>
5275
+ * <ul>
5276
+ * <li>
5277
+ * <p>List of available metrics: <code>RMSE</code>, <code>wQL</code>,
5278
+ * <code>Average wQL</code>, <code>MASE</code>, <code>MAPE</code>,
5279
+ * <code>WAPE</code>
5280
+ * </p>
5281
+ * <p>For a description of each metric, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/timeseries-objective-metric.html">Autopilot metrics for
5282
+ * time-series forecasting</a>.</p>
5283
+ * </li>
5284
+ * <li>
5285
+ * <p>Default objective metrics: <code>AverageWeightedQuantileLoss</code>
5286
+ * </p>
5287
+ * </li>
5288
+ * </ul>
5220
5289
  * </li>
5221
5290
  * <li>
5222
- * <p>For time-series forecasting problem types:
5223
- * <code>AverageWeightedQuantileLoss</code>
5224
- * </p>
5291
+ * <p>For text generation problem types (LLMs fine-tuning):
5292
+ * Fine-tuning language models in Autopilot does not
5293
+ * require setting the <code>AutoMLJobObjective</code> field. Autopilot fine-tunes LLMs
5294
+ * without requiring multiple candidates to be trained and evaluated.
5295
+ * Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a
5296
+ * default objective metric, the cross-entropy loss. After fine-tuning a language model,
5297
+ * you can evaluate the quality of its generated text using different metrics.
5298
+ * For a list of the available metrics, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/llms-finetuning-models.html">Metrics for
5299
+ * fine-tuning LLMs in Autopilot</a>.</p>
5225
5300
  * </li>
5226
5301
  * </ul>
5227
5302
  */
@@ -5362,8 +5437,8 @@ export interface AutoMLOutputDataConfig {
5362
5437
  }
5363
5438
  /**
5364
5439
  * @public
5365
- * <p>Stores the configuration information for the image classification problem of an AutoML
5366
- * job V2.</p>
5440
+ * <p>The collection of settings used by an AutoML job V2 for the image classification problem
5441
+ * type.</p>
5367
5442
  */
5368
5443
  export interface ImageClassificationJobConfig {
5369
5444
  /**
@@ -5427,8 +5502,7 @@ export declare const ProblemType: {
5427
5502
  export type ProblemType = (typeof ProblemType)[keyof typeof ProblemType];
5428
5503
  /**
5429
5504
  * @public
5430
- * <p>The collection of settings used by an AutoML job V2 for the <code>TABULAR</code> problem
5431
- * type.</p>
5505
+ * <p>The collection of settings used by an AutoML job V2 for the tabular problem type.</p>
5432
5506
  */
5433
5507
  export interface TabularJobConfig {
5434
5508
  /**
@@ -5532,8 +5606,8 @@ export interface TabularJobConfig {
5532
5606
  }
5533
5607
  /**
5534
5608
  * @public
5535
- * <p>Stores the configuration information for the text classification problem of an AutoML job
5536
- * V2.</p>
5609
+ * <p>The collection of settings used by an AutoML job V2 for the text classification problem
5610
+ * type.</p>
5537
5611
  */
5538
5612
  export interface TextClassificationJobConfig {
5539
5613
  /**
@@ -5555,6 +5629,32 @@ export interface TextClassificationJobConfig {
5555
5629
  */
5556
5630
  TargetLabelColumn: string | undefined;
5557
5631
  }
5632
+ /**
5633
+ * @public
5634
+ * <p>The collection of settings used by an AutoML job V2 for the text generation problem
5635
+ * type.</p>
5636
+ * <note>
5637
+ * <p>The text generation models that support fine-tuning in Autopilot are currently accessible
5638
+ * exclusively in regions supported by Canvas. Refer to the documentation of Canvas for the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/canvas.html">full list of its supported
5639
+ * Regions</a>.</p>
5640
+ * </note>
5641
+ */
5642
+ export interface TextGenerationJobConfig {
5643
+ /**
5644
+ * @public
5645
+ * <p>How long a job is allowed to run, or how many candidates a job is allowed to
5646
+ * generate.</p>
5647
+ */
5648
+ CompletionCriteria?: AutoMLJobCompletionCriteria;
5649
+ /**
5650
+ * @public
5651
+ * <p>The name of the base model to fine-tune. Autopilot supports fine-tuning a variety of large
5652
+ * language models. For information on the list of supported models, see <a href="https://docs.aws.amazon.com/sagemaker/src/AWSIronmanApiDoc/build/server-root/sagemaker/latest/dg/llms-finetuning-models.html#llms-finetuning-supported-llms">Text generation models supporting fine-tuning in Autopilot</a>. If no
5653
+ * <code>BaseModelName</code> is provided, the default model used is Falcon-7B-Instruct.
5654
+ * </p>
5655
+ */
5656
+ BaseModelName?: string;
5657
+ }
5558
5658
  /**
5559
5659
  * @public
5560
5660
  * <p>Stores the holiday featurization attributes applicable to each item of time-series
@@ -5783,7 +5883,7 @@ export interface TimeSeriesForecastingJobConfig {
5783
5883
  * <p>A collection of settings specific to the problem type used to configure an AutoML job V2.
5784
5884
  * There must be one and only one config of the following type.</p>
5785
5885
  */
5786
- export type AutoMLProblemTypeConfig = AutoMLProblemTypeConfig.ImageClassificationJobConfigMember | AutoMLProblemTypeConfig.TabularJobConfigMember | AutoMLProblemTypeConfig.TextClassificationJobConfigMember | AutoMLProblemTypeConfig.TimeSeriesForecastingJobConfigMember | AutoMLProblemTypeConfig.$UnknownMember;
5886
+ export type AutoMLProblemTypeConfig = AutoMLProblemTypeConfig.ImageClassificationJobConfigMember | AutoMLProblemTypeConfig.TabularJobConfigMember | AutoMLProblemTypeConfig.TextClassificationJobConfigMember | AutoMLProblemTypeConfig.TextGenerationJobConfigMember | AutoMLProblemTypeConfig.TimeSeriesForecastingJobConfigMember | AutoMLProblemTypeConfig.$UnknownMember;
5787
5887
  /**
5788
5888
  * @public
5789
5889
  */
@@ -5798,6 +5898,7 @@ export declare namespace AutoMLProblemTypeConfig {
5798
5898
  TextClassificationJobConfig?: never;
5799
5899
  TabularJobConfig?: never;
5800
5900
  TimeSeriesForecastingJobConfig?: never;
5901
+ TextGenerationJobConfig?: never;
5801
5902
  $unknown?: never;
5802
5903
  }
5803
5904
  /**
@@ -5810,11 +5911,12 @@ export declare namespace AutoMLProblemTypeConfig {
5810
5911
  TextClassificationJobConfig: TextClassificationJobConfig;
5811
5912
  TabularJobConfig?: never;
5812
5913
  TimeSeriesForecastingJobConfig?: never;
5914
+ TextGenerationJobConfig?: never;
5813
5915
  $unknown?: never;
5814
5916
  }
5815
5917
  /**
5816
5918
  * @public
5817
- * <p>Settings used to configure an AutoML job V2 for a tabular problem type (regression,
5919
+ * <p>Settings used to configure an AutoML job V2 for the tabular problem type (regression,
5818
5920
  * classification).</p>
5819
5921
  */
5820
5922
  interface TabularJobConfigMember {
@@ -5822,11 +5924,12 @@ export declare namespace AutoMLProblemTypeConfig {
5822
5924
  TextClassificationJobConfig?: never;
5823
5925
  TabularJobConfig: TabularJobConfig;
5824
5926
  TimeSeriesForecastingJobConfig?: never;
5927
+ TextGenerationJobConfig?: never;
5825
5928
  $unknown?: never;
5826
5929
  }
5827
5930
  /**
5828
5931
  * @public
5829
- * <p>Settings used to configure an AutoML job V2 for a time-series forecasting problem
5932
+ * <p>Settings used to configure an AutoML job V2 for the time-series forecasting problem
5830
5933
  * type.</p>
5831
5934
  */
5832
5935
  interface TimeSeriesForecastingJobConfigMember {
@@ -5834,6 +5937,25 @@ export declare namespace AutoMLProblemTypeConfig {
5834
5937
  TextClassificationJobConfig?: never;
5835
5938
  TabularJobConfig?: never;
5836
5939
  TimeSeriesForecastingJobConfig: TimeSeriesForecastingJobConfig;
5940
+ TextGenerationJobConfig?: never;
5941
+ $unknown?: never;
5942
+ }
5943
+ /**
5944
+ * @public
5945
+ * <p>Settings used to configure an AutoML job V2 for the text generation (LLMs fine-tuning)
5946
+ * problem type.</p>
5947
+ * <note>
5948
+ * <p>The text generation models that support fine-tuning in Autopilot are currently accessible
5949
+ * exclusively in regions supported by Canvas. Refer to the documentation of Canvas for the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/canvas.html">full list of its supported
5950
+ * Regions</a>.</p>
5951
+ * </note>
5952
+ */
5953
+ interface TextGenerationJobConfigMember {
5954
+ ImageClassificationJobConfig?: never;
5955
+ TextClassificationJobConfig?: never;
5956
+ TabularJobConfig?: never;
5957
+ TimeSeriesForecastingJobConfig?: never;
5958
+ TextGenerationJobConfig: TextGenerationJobConfig;
5837
5959
  $unknown?: never;
5838
5960
  }
5839
5961
  /**
@@ -5844,6 +5966,7 @@ export declare namespace AutoMLProblemTypeConfig {
5844
5966
  TextClassificationJobConfig?: never;
5845
5967
  TabularJobConfig?: never;
5846
5968
  TimeSeriesForecastingJobConfig?: never;
5969
+ TextGenerationJobConfig?: never;
5847
5970
  $unknown: [string, any];
5848
5971
  }
5849
5972
  interface Visitor<T> {
@@ -5851,6 +5974,7 @@ export declare namespace AutoMLProblemTypeConfig {
5851
5974
  TextClassificationJobConfig: (value: TextClassificationJobConfig) => T;
5852
5975
  TabularJobConfig: (value: TabularJobConfig) => T;
5853
5976
  TimeSeriesForecastingJobConfig: (value: TimeSeriesForecastingJobConfig) => T;
5977
+ TextGenerationJobConfig: (value: TextGenerationJobConfig) => T;
5854
5978
  _: (name: string, value: any) => T;
5855
5979
  }
5856
5980
  const visit: <T>(value: AutoMLProblemTypeConfig, visitor: Visitor<T>) => T;
@@ -5863,6 +5987,7 @@ export declare const AutoMLProblemTypeConfigName: {
5863
5987
  readonly IMAGE_CLASSIFICATION: "ImageClassification";
5864
5988
  readonly TABULAR: "Tabular";
5865
5989
  readonly TEXT_CLASSIFICATION: "TextClassification";
5990
+ readonly TEXT_GENERATION: "TextGeneration";
5866
5991
  readonly TIMESERIES_FORECASTING: "TimeSeriesForecasting";
5867
5992
  };
5868
5993
  /**
@@ -5871,7 +5996,7 @@ export declare const AutoMLProblemTypeConfigName: {
5871
5996
  export type AutoMLProblemTypeConfigName = (typeof AutoMLProblemTypeConfigName)[keyof typeof AutoMLProblemTypeConfigName];
5872
5997
  /**
5873
5998
  * @public
5874
- * <p>The resolved attributes specific to the <code>TABULAR</code> problem type.</p>
5999
+ * <p>The resolved attributes specific to the tabular problem type.</p>
5875
6000
  */
5876
6001
  export interface TabularResolvedAttributes {
5877
6002
  /**
@@ -5885,19 +6010,40 @@ export interface TabularResolvedAttributes {
5885
6010
  }
5886
6011
  /**
5887
6012
  * @public
5888
- * <p>The resolved attributes specific to the problem type of an AutoML job V2.</p>
6013
+ * <p>The resolved attributes specific to the text generation problem type.</p>
6014
+ */
6015
+ export interface TextGenerationResolvedAttributes {
6016
+ /**
6017
+ * @public
6018
+ * <p>The name of the base model to fine-tune.</p>
6019
+ */
6020
+ BaseModelName?: string;
6021
+ }
6022
+ /**
6023
+ * @public
6024
+ * <p>Stores resolved attributes specific to the problem type of an AutoML job V2.</p>
5889
6025
  */
5890
- export type AutoMLProblemTypeResolvedAttributes = AutoMLProblemTypeResolvedAttributes.TabularResolvedAttributesMember | AutoMLProblemTypeResolvedAttributes.$UnknownMember;
6026
+ export type AutoMLProblemTypeResolvedAttributes = AutoMLProblemTypeResolvedAttributes.TabularResolvedAttributesMember | AutoMLProblemTypeResolvedAttributes.TextGenerationResolvedAttributesMember | AutoMLProblemTypeResolvedAttributes.$UnknownMember;
5891
6027
  /**
5892
6028
  * @public
5893
6029
  */
5894
6030
  export declare namespace AutoMLProblemTypeResolvedAttributes {
5895
6031
  /**
5896
6032
  * @public
5897
- * <p>Defines the resolved attributes for the <code>TABULAR</code> problem type.</p>
6033
+ * <p>The resolved attributes for the tabular problem type.</p>
5898
6034
  */
5899
6035
  interface TabularResolvedAttributesMember {
5900
6036
  TabularResolvedAttributes: TabularResolvedAttributes;
6037
+ TextGenerationResolvedAttributes?: never;
6038
+ $unknown?: never;
6039
+ }
6040
+ /**
6041
+ * @public
6042
+ * <p>The resolved attributes for the text generation problem type.</p>
6043
+ */
6044
+ interface TextGenerationResolvedAttributesMember {
6045
+ TabularResolvedAttributes?: never;
6046
+ TextGenerationResolvedAttributes: TextGenerationResolvedAttributes;
5901
6047
  $unknown?: never;
5902
6048
  }
5903
6049
  /**
@@ -5905,10 +6051,12 @@ export declare namespace AutoMLProblemTypeResolvedAttributes {
5905
6051
  */
5906
6052
  interface $UnknownMember {
5907
6053
  TabularResolvedAttributes?: never;
6054
+ TextGenerationResolvedAttributes?: never;
5908
6055
  $unknown: [string, any];
5909
6056
  }
5910
6057
  interface Visitor<T> {
5911
6058
  TabularResolvedAttributes: (value: TabularResolvedAttributes) => T;
6059
+ TextGenerationResolvedAttributes: (value: TextGenerationResolvedAttributes) => T;
5912
6060
  _: (name: string, value: any) => T;
5913
6061
  }
5914
6062
  const visit: <T>(value: AutoMLProblemTypeResolvedAttributes, visitor: Visitor<T>) => T;
@@ -5920,7 +6068,7 @@ export declare namespace AutoMLProblemTypeResolvedAttributes {
5920
6068
  export interface AutoMLResolvedAttributes {
5921
6069
  /**
5922
6070
  * @public
5923
- * <p>Specifies a metric to minimize or maximize as the objective of a job.</p>
6071
+ * <p>Specifies a metric to minimize or maximize as the objective of an AutoML job.</p>
5924
6072
  */
5925
6073
  AutoMLJobObjective?: AutoMLJobObjective;
5926
6074
  /**
@@ -8572,19 +8720,16 @@ export declare const HyperParameterTuningJobObjectiveType: {
8572
8720
  export type HyperParameterTuningJobObjectiveType = (typeof HyperParameterTuningJobObjectiveType)[keyof typeof HyperParameterTuningJobObjectiveType];
8573
8721
  /**
8574
8722
  * @public
8575
- * <p>Defines the objective metric for a hyperparameter tuning job.
8576
- * Hyperparameter
8577
- * tuning uses the value of this metric to evaluate the training jobs it launches, and
8578
- * returns the training job that results in either the highest or lowest value for this
8579
- * metric, depending on the value you specify for the <code>Type</code>
8580
- * parameter.</p>
8723
+ * <p>Defines the objective metric for a hyperparameter tuning job. Hyperparameter tuning
8724
+ * uses the value of this metric to evaluate the training jobs it launches, and returns the
8725
+ * training job that results in either the highest or lowest value for this metric,
8726
+ * depending on the value you specify for the <code>Type</code> parameter. If you want to
8727
+ * define a custom objective metric, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html">Define metrics and environment variables</a>.</p>
8581
8728
  */
8582
8729
  export interface HyperParameterTuningJobObjective {
8583
8730
  /**
8584
8731
  * @public
8585
- * <p>Whether to
8586
- * minimize
8587
- * or maximize the objective metric.</p>
8732
+ * <p>Whether to minimize or maximize the objective metric.</p>
8588
8733
  */
8589
8734
  Type: HyperParameterTuningJobObjectiveType | undefined;
8590
8735
  /**
@@ -9068,6 +9213,9 @@ export interface CreateAutoMLJobV2Request {
9068
9213
  * <li>
9069
9214
  * <p>For time-series forecasting: <code>S3Prefix</code>.</p>
9070
9215
  * </li>
9216
+ * <li>
9217
+ * <p>For text generation (LLMs fine-tuning): <code>S3Prefix</code>.</p>
9218
+ * </li>
9071
9219
  * </ul>
9072
9220
  */
9073
9221
  AutoMLJobInputDataConfig: AutoMLJobChannel[] | undefined;
@@ -9106,10 +9254,25 @@ export interface CreateAutoMLJobV2Request {
9106
9254
  * the default objective metric depends on the problem type. For the list of default values
9107
9255
  * per problem type, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html">AutoMLJobObjective</a>.</p>
9108
9256
  * <note>
9109
- * <p>For tabular problem types, you must either provide both the
9110
- * <code>AutoMLJobObjective</code> and indicate the type of supervised learning problem
9111
- * in <code>AutoMLProblemTypeConfig</code> (<code>TabularJobConfig.ProblemType</code>), or
9112
- * none at all.</p>
9257
+ * <ul>
9258
+ * <li>
9259
+ * <p>For tabular problem types: You must either provide both the
9260
+ * <code>AutoMLJobObjective</code> and indicate the type of supervised learning
9261
+ * problem in <code>AutoMLProblemTypeConfig</code>
9262
+ * (<code>TabularJobConfig.ProblemType</code>), or none at all.</p>
9263
+ * </li>
9264
+ * <li>
9265
+ * <p>For text generation problem types (LLMs fine-tuning):
9266
+ * Fine-tuning language models in Autopilot does not
9267
+ * require setting the <code>AutoMLJobObjective</code> field. Autopilot fine-tunes LLMs
9268
+ * without requiring multiple candidates to be trained and evaluated.
9269
+ * Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a
9270
+ * default objective metric, the cross-entropy loss. After fine-tuning a language model,
9271
+ * you can evaluate the quality of its generated text using different metrics.
9272
+ * For a list of the available metrics, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/llms-finetuning-models.html">Metrics for
9273
+ * fine-tuning LLMs in Autopilot</a>.</p>
9274
+ * </li>
9275
+ * </ul>
9113
9276
  * </note>
9114
9277
  */
9115
9278
  AutoMLJobObjective?: AutoMLJobObjective;
@@ -10451,79 +10614,3 @@ export interface MonitoringNetworkConfig {
10451
10614
  */
10452
10615
  VpcConfig?: VpcConfig;
10453
10616
  }
10454
- /**
10455
- * @public
10456
- * <p>A time limit for how long the monitoring job is allowed to run before stopping.</p>
10457
- */
10458
- export interface MonitoringStoppingCondition {
10459
- /**
10460
- * @public
10461
- * <p>The maximum runtime allowed in seconds.</p>
10462
- * <note>
10463
- * <p>The <code>MaxRuntimeInSeconds</code> cannot exceed the frequency of the job. For data
10464
- * quality and model explainability, this can be up to 3600 seconds for an hourly schedule.
10465
- * For model bias and model quality hourly schedules, this can be up to 1800
10466
- * seconds.</p>
10467
- * </note>
10468
- */
10469
- MaxRuntimeInSeconds: number | undefined;
10470
- }
10471
- /**
10472
- * @public
10473
- */
10474
- export interface CreateDataQualityJobDefinitionRequest {
10475
- /**
10476
- * @public
10477
- * <p>The name for the monitoring job definition.</p>
10478
- */
10479
- JobDefinitionName: string | undefined;
10480
- /**
10481
- * @public
10482
- * <p>Configures the constraints and baselines for the monitoring job.</p>
10483
- */
10484
- DataQualityBaselineConfig?: DataQualityBaselineConfig;
10485
- /**
10486
- * @public
10487
- * <p>Specifies the container that runs the monitoring job.</p>
10488
- */
10489
- DataQualityAppSpecification: DataQualityAppSpecification | undefined;
10490
- /**
10491
- * @public
10492
- * <p>A list of inputs for the monitoring job. Currently endpoints are supported as monitoring
10493
- * inputs.</p>
10494
- */
10495
- DataQualityJobInput: DataQualityJobInput | undefined;
10496
- /**
10497
- * @public
10498
- * <p>The output configuration for monitoring jobs.</p>
10499
- */
10500
- DataQualityJobOutputConfig: MonitoringOutputConfig | undefined;
10501
- /**
10502
- * @public
10503
- * <p>Identifies the resources to deploy for a monitoring job.</p>
10504
- */
10505
- JobResources: MonitoringResources | undefined;
10506
- /**
10507
- * @public
10508
- * <p>Specifies networking configuration for the monitoring job.</p>
10509
- */
10510
- NetworkConfig?: MonitoringNetworkConfig;
10511
- /**
10512
- * @public
10513
- * <p>The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can
10514
- * assume to perform tasks on your behalf.</p>
10515
- */
10516
- RoleArn: string | undefined;
10517
- /**
10518
- * @public
10519
- * <p>A time limit for how long the monitoring job is allowed to run before stopping.</p>
10520
- */
10521
- StoppingCondition?: MonitoringStoppingCondition;
10522
- /**
10523
- * @public
10524
- * <p>(Optional) An array of key-value pairs. For more information, see
10525
- * <a href="https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-whatURL">
10526
- * Using Cost Allocation Tags</a> in the <i>Amazon Web Services Billing and Cost Management User Guide</i>.</p>
10527
- */
10528
- Tags?: Tag[];
10529
- }