@aws-sdk/client-sagemaker 3.405.0 → 3.408.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -13409,6 +13409,7 @@ const de_DescribeCompilationJobResponse = (output, context) => {
13409
13409
  CompilationJobStatus: smithy_client_1.expectString,
13410
13410
  CompilationStartTime: (_) => (0, smithy_client_1.expectNonNull)((0, smithy_client_1.parseEpochTimestamp)((0, smithy_client_1.expectNumber)(_))),
13411
13411
  CreationTime: (_) => (0, smithy_client_1.expectNonNull)((0, smithy_client_1.parseEpochTimestamp)((0, smithy_client_1.expectNumber)(_))),
13412
+ DerivedInformation: smithy_client_1._json,
13412
13413
  FailureReason: smithy_client_1.expectString,
13413
13414
  InferenceImage: smithy_client_1.expectString,
13414
13415
  InputConfig: smithy_client_1._json,
@@ -12786,6 +12786,7 @@ const de_DescribeCompilationJobResponse = (output, context) => {
12786
12786
  CompilationJobStatus: __expectString,
12787
12787
  CompilationStartTime: (_) => __expectNonNull(__parseEpochTimestamp(__expectNumber(_))),
12788
12788
  CreationTime: (_) => __expectNonNull(__parseEpochTimestamp(__expectNumber(_))),
12789
+ DerivedInformation: _json,
12789
12790
  FailureReason: __expectString,
12790
12791
  InferenceImage: __expectString,
12791
12792
  InputConfig: _json,
@@ -28,8 +28,7 @@ export interface CreateCompilationJobCommandOutput extends CreateCompilationJobR
28
28
  * <p>If
29
29
  * you choose to host your model using Amazon SageMaker hosting services, you can use the resulting
30
30
  * model artifacts as part of the model. You can also use the artifacts with
31
- * Amazon Web Services
32
- * IoT Greengrass. In that case, deploy them as an ML
31
+ * Amazon Web Services IoT Greengrass. In that case, deploy them as an ML
33
32
  * resource.</p>
34
33
  * <p>In the request body, you provide the following:</p>
35
34
  * <ul>
@@ -52,9 +51,9 @@ export interface CreateCompilationJobCommandOutput extends CreateCompilationJobR
52
51
  * use and costs. The response body contains the
53
52
  * <code>CompilationJobArn</code>
54
53
  * for the compiled job.</p>
55
- * <p>To stop a model compilation job, use <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StopCompilationJob.html">StopCompilationJob</a>. To get
56
- * information about a particular model compilation job, use <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeCompilationJob.html">DescribeCompilationJob</a>. To get information about multiple model
57
- * compilation jobs, use <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListCompilationJobs.html">ListCompilationJobs</a>.</p>
54
+ * <p>To stop a model compilation job, use <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StopCompilationJob.html">StopCompilationJob</a>. To get information about a particular model compilation
55
+ * job, use <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeCompilationJob.html">DescribeCompilationJob</a>. To get information about multiple model compilation
56
+ * jobs, use <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListCompilationJobs.html">ListCompilationJobs</a>.</p>
58
57
  * @example
59
58
  * Use a bare-bones client and the command you need to make an API call.
60
59
  * ```javascript
@@ -67,7 +66,7 @@ export interface CreateCompilationJobCommandOutput extends CreateCompilationJobR
67
66
  * ModelPackageVersionArn: "STRING_VALUE",
68
67
  * InputConfig: { // InputConfig
69
68
  * S3Uri: "STRING_VALUE", // required
70
- * DataInputConfig: "STRING_VALUE", // required
69
+ * DataInputConfig: "STRING_VALUE",
71
70
  * Framework: "TENSORFLOW" || "KERAS" || "MXNET" || "ONNX" || "PYTORCH" || "XGBOOST" || "TFLITE" || "DARKNET" || "SKLEARN", // required
72
71
  * FrameworkVersion: "STRING_VALUE",
73
72
  * },
@@ -23,7 +23,8 @@ export interface CreateEdgeDeploymentPlanCommandOutput extends CreateEdgeDeploym
23
23
  }
24
24
  /**
25
25
  * @public
26
- * <p>Creates an edge deployment plan, consisting of multiple stages. Each stage may have a different deployment configuration and devices.</p>
26
+ * <p>Creates an edge deployment plan, consisting of multiple stages. Each stage may have a
27
+ * different deployment configuration and devices.</p>
27
28
  * @example
28
29
  * Use a bare-bones client and the command you need to make an API call.
29
30
  * ```javascript
@@ -23,7 +23,8 @@ export interface DeleteEdgeDeploymentPlanCommandOutput extends __MetadataBearer
23
23
  }
24
24
  /**
25
25
  * @public
26
- * <p>Deletes an edge deployment plan if (and only if) all the stages in the plan are inactive or there are no stages in the plan.</p>
26
+ * <p>Deletes an edge deployment plan if (and only if) all the stages in the plan are
27
+ * inactive or there are no stages in the plan.</p>
27
28
  * @example
28
29
  * Use a bare-bones client and the command you need to make an API call.
29
30
  * ```javascript
@@ -23,7 +23,8 @@ export interface DeleteEdgeDeploymentStageCommandOutput extends __MetadataBearer
23
23
  }
24
24
  /**
25
25
  * @public
26
- * <p>Delete a stage in an edge deployment plan if (and only if) the stage is inactive.</p>
26
+ * <p>Delete a stage in an edge deployment plan if (and only if) the stage is
27
+ * inactive.</p>
27
28
  * @example
28
29
  * Use a bare-bones client and the command you need to make an API call.
29
30
  * ```javascript
@@ -24,8 +24,8 @@ export interface DescribeCompilationJobCommandOutput extends DescribeCompilation
24
24
  /**
25
25
  * @public
26
26
  * <p>Returns information about a model compilation job.</p>
27
- * <p>To create a model compilation job, use <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateCompilationJob.html">CreateCompilationJob</a>. To get
28
- * information about multiple model compilation jobs, use <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListCompilationJobs.html">ListCompilationJobs</a>.</p>
27
+ * <p>To create a model compilation job, use <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateCompilationJob.html">CreateCompilationJob</a>. To get information about multiple model compilation
28
+ * jobs, use <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListCompilationJobs.html">ListCompilationJobs</a>.</p>
29
29
  * @example
30
30
  * Use a bare-bones client and the command you need to make an API call.
31
31
  * ```javascript
@@ -61,7 +61,7 @@ export interface DescribeCompilationJobCommandOutput extends DescribeCompilation
61
61
  * // RoleArn: "STRING_VALUE", // required
62
62
  * // InputConfig: { // InputConfig
63
63
  * // S3Uri: "STRING_VALUE", // required
64
- * // DataInputConfig: "STRING_VALUE", // required
64
+ * // DataInputConfig: "STRING_VALUE",
65
65
  * // Framework: "TENSORFLOW" || "KERAS" || "MXNET" || "ONNX" || "PYTORCH" || "XGBOOST" || "TFLITE" || "DARKNET" || "SKLEARN", // required
66
66
  * // FrameworkVersion: "STRING_VALUE",
67
67
  * // },
@@ -84,6 +84,9 @@ export interface DescribeCompilationJobCommandOutput extends DescribeCompilation
84
84
  * // "STRING_VALUE",
85
85
  * // ],
86
86
  * // },
87
+ * // DerivedInformation: { // DerivedInformation
88
+ * // DerivedDataInputConfig: "STRING_VALUE",
89
+ * // },
87
90
  * // };
88
91
  *
89
92
  * ```
@@ -24,8 +24,8 @@ export interface ListCompilationJobsCommandOutput extends ListCompilationJobsRes
24
24
  /**
25
25
  * @public
26
26
  * <p>Lists model compilation jobs that satisfy various filters.</p>
27
- * <p>To create a model compilation job, use <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateCompilationJob.html">CreateCompilationJob</a>. To get
28
- * information about a particular model compilation job you have created, use <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeCompilationJob.html">DescribeCompilationJob</a>.</p>
27
+ * <p>To create a model compilation job, use <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateCompilationJob.html">CreateCompilationJob</a>. To get information about a particular model
28
+ * compilation job you have created, use <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeCompilationJob.html">DescribeCompilationJob</a>.</p>
29
29
  * @example
30
30
  * Use a bare-bones client and the command you need to make an API call.
31
31
  * ```javascript
@@ -23,7 +23,8 @@ export interface ListStageDevicesCommandOutput extends ListStageDevicesResponse,
23
23
  }
24
24
  /**
25
25
  * @public
26
- * <p>Lists devices allocated to the stage, containing detailed device information and deployment status.</p>
26
+ * <p>Lists devices allocated to the stage, containing detailed device information and
27
+ * deployment status.</p>
27
28
  * @example
28
29
  * Use a bare-bones client and the command you need to make an API call.
29
30
  * ```javascript
@@ -26,9 +26,10 @@ export interface StopCompilationJobCommandOutput extends __MetadataBearer {
26
26
  * <p>Stops a model compilation job.</p>
27
27
  * <p> To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal. This gracefully shuts the
28
28
  * job down. If the job hasn't stopped, it sends the SIGKILL signal.</p>
29
- * <p>When it receives a <code>StopCompilationJob</code> request, Amazon SageMaker changes the <code>CompilationJobStatus</code> of the job to
30
- * <code>Stopping</code>. After Amazon SageMaker stops the job, it sets the <code>CompilationJobStatus</code> to <code>Stopped</code>.
31
- * </p>
29
+ * <p>When it receives a <code>StopCompilationJob</code> request, Amazon SageMaker changes the
30
+ * <code>CompilationJobStatus</code> of the job to <code>Stopping</code>. After Amazon
31
+ * SageMaker stops the job, it sets the <code>CompilationJobStatus</code> to
32
+ * <code>Stopped</code>. </p>
32
33
  * @example
33
34
  * Use a bare-bones client and the command you need to make an API call.
34
35
  * ```javascript
@@ -9045,8 +9045,7 @@ export interface InputConfig {
9045
9045
  /**
9046
9046
  * @public
9047
9047
  * <p>Specifies the name and shape of the expected data inputs for your trained model with a
9048
- * JSON dictionary form. The data inputs are <code>Framework</code>
9049
- * specific. </p>
9048
+ * JSON dictionary form. The data inputs are <code>Framework</code> specific. </p>
9050
9049
  * <ul>
9051
9050
  * <li>
9052
9051
  * <p>
@@ -9129,9 +9128,9 @@ export interface InputConfig {
9129
9128
  * </li>
9130
9129
  * <li>
9131
9130
  * <p>
9132
- * <code>MXNET/ONNX/DARKNET</code>: You must specify the name and shape (NCHW format) of
9133
- * the expected data inputs in order using a dictionary format for your trained
9134
- * model. The dictionary formats required for the console and CLI are
9131
+ * <code>MXNET/ONNX/DARKNET</code>: You must specify the name and shape (NCHW
9132
+ * format) of the expected data inputs in order using a dictionary format for your
9133
+ * trained model. The dictionary formats required for the console and CLI are
9135
9134
  * different.</p>
9136
9135
  * <ul>
9137
9136
  * <li>
@@ -9227,44 +9226,51 @@ export interface InputConfig {
9227
9226
  * <ul>
9228
9227
  * <li>
9229
9228
  * <p>
9230
- * <code>shape</code>: Input shape, for example <code>\{"input_1": \{"shape": [1,224,224,3]\}\}</code>.
9231
- * In addition to static input shapes, CoreML converter supports Flexible input shapes:</p>
9229
+ * <code>shape</code>: Input shape, for example <code>\{"input_1": \{"shape":
9230
+ * [1,224,224,3]\}\}</code>. In addition to static input shapes, CoreML converter
9231
+ * supports Flexible input shapes:</p>
9232
9232
  * <ul>
9233
9233
  * <li>
9234
- * <p>Range Dimension. You can use the Range Dimension feature if you know the input shape
9235
- * will be within some specific interval in that dimension,
9236
- * for example: <code>\{"input_1": \{"shape": ["1..10", 224, 224, 3]\}\}</code>
9234
+ * <p>Range Dimension. You can use the Range Dimension feature if you know
9235
+ * the input shape will be within some specific interval in that dimension,
9236
+ * for example: <code>\{"input_1": \{"shape": ["1..10", 224, 224,
9237
+ * 3]\}\}</code>
9237
9238
  * </p>
9238
9239
  * </li>
9239
9240
  * <li>
9240
- * <p>Enumerated shapes. Sometimes, the models are trained to work only on a select
9241
- * set of inputs. You can enumerate all supported input shapes,
9242
- * for example: <code>\{"input_1": \{"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]\}\}</code>
9241
+ * <p>Enumerated shapes. Sometimes, the models are trained to work only on a
9242
+ * select set of inputs. You can enumerate all supported input shapes, for
9243
+ * example: <code>\{"input_1": \{"shape": [[1, 224, 224, 3], [1, 160, 160,
9244
+ * 3]]\}\}</code>
9243
9245
  * </p>
9244
9246
  * </li>
9245
9247
  * </ul>
9246
9248
  * </li>
9247
9249
  * <li>
9248
9250
  * <p>
9249
- * <code>default_shape</code>: Default input shape. You can set a default shape during
9250
- * conversion for both Range Dimension and Enumerated Shapes. For example
9251
- * <code>\{"input_1": \{"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]\}\}</code>
9251
+ * <code>default_shape</code>: Default input shape. You can set a default shape
9252
+ * during conversion for both Range Dimension and Enumerated Shapes. For example
9253
+ * <code>\{"input_1": \{"shape": ["1..10", 224, 224, 3], "default_shape": [1,
9254
+ * 224, 224, 3]\}\}</code>
9252
9255
  * </p>
9253
9256
  * </li>
9254
9257
  * <li>
9255
9258
  * <p>
9256
- * <code>type</code>: Input type. Allowed values: <code>Image</code> and <code>Tensor</code>.
9257
- * By default, the converter generates an ML Model with inputs of type Tensor (MultiArray).
9258
- * User can set input type to be Image. Image input type requires additional input parameters
9259
- * such as <code>bias</code> and <code>scale</code>.</p>
9259
+ * <code>type</code>: Input type. Allowed values: <code>Image</code> and
9260
+ * <code>Tensor</code>. By default, the converter generates an ML Model with
9261
+ * inputs of type Tensor (MultiArray). User can set input type to be Image. Image
9262
+ * input type requires additional input parameters such as <code>bias</code> and
9263
+ * <code>scale</code>.</p>
9260
9264
  * </li>
9261
9265
  * <li>
9262
9266
  * <p>
9263
- * <code>bias</code>: If the input type is an Image, you need to provide the bias vector.</p>
9267
+ * <code>bias</code>: If the input type is an Image, you need to provide the bias
9268
+ * vector.</p>
9264
9269
  * </li>
9265
9270
  * <li>
9266
9271
  * <p>
9267
- * <code>scale</code>: If the input type is an Image, you need to provide a scale factor.</p>
9272
+ * <code>scale</code>: If the input type is an Image, you need to provide a scale
9273
+ * factor.</p>
9268
9274
  * </li>
9269
9275
  * </ul>
9270
9276
  * <p>CoreML <code>ClassifierConfig</code> parameters can be specified using <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html">OutputConfig</a>
@@ -9276,8 +9282,8 @@ export interface InputConfig {
9276
9282
  * <ul>
9277
9283
  * <li>
9278
9284
  * <p>
9279
- * <code>"DataInputConfig": \{"input_1": \{"shape": [[1,224,224,3], [1,160,160,3]], "default_shape":
9280
- * [1,224,224,3]\}\}</code>
9285
+ * <code>"DataInputConfig": \{"input_1": \{"shape": [[1,224,224,3],
9286
+ * [1,160,160,3]], "default_shape": [1,224,224,3]\}\}</code>
9281
9287
  * </p>
9282
9288
  * </li>
9283
9289
  * </ul>
@@ -9287,8 +9293,8 @@ export interface InputConfig {
9287
9293
  * <ul>
9288
9294
  * <li>
9289
9295
  * <p>
9290
- * <code>"DataInputConfig": [\{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape":
9291
- * [1,3,224,224]\}]</code>
9296
+ * <code>"DataInputConfig": [\{"shape": [[1,3,224,224], [1,3,160,160]],
9297
+ * "default_shape": [1,3,224,224]\}]</code>
9292
9298
  * </p>
9293
9299
  * </li>
9294
9300
  * </ul>
@@ -9298,13 +9304,15 @@ export interface InputConfig {
9298
9304
  * <ul>
9299
9305
  * <li>
9300
9306
  * <p>
9301
- * <code>"DataInputConfig": \{"input_1": \{"shape": [[1,224,224,3], [1,160,160,3]], "default_shape":
9302
- * [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255\}\}</code>
9307
+ * <code>"DataInputConfig": \{"input_1": \{"shape": [[1,224,224,3],
9308
+ * [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image",
9309
+ * "bias": [-1,-1,-1], "scale": 0.007843137255\}\}</code>
9303
9310
  * </p>
9304
9311
  * </li>
9305
9312
  * <li>
9306
9313
  * <p>
9307
- * <code>"CompilerOptions": \{"class_labels": "imagenet_labels_1000.txt"\}</code>
9314
+ * <code>"CompilerOptions": \{"class_labels":
9315
+ * "imagenet_labels_1000.txt"\}</code>
9308
9316
  * </p>
9309
9317
  * </li>
9310
9318
  * </ul>
@@ -9314,30 +9322,32 @@ export interface InputConfig {
9314
9322
  * <ul>
9315
9323
  * <li>
9316
9324
  * <p>
9317
- * <code>"DataInputConfig": [\{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape":
9318
- * [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255\}]</code>
9325
+ * <code>"DataInputConfig": [\{"shape": [[1,3,224,224], [1,3,160,160]],
9326
+ * "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1],
9327
+ * "scale": 0.007843137255\}]</code>
9319
9328
  * </p>
9320
9329
  * </li>
9321
9330
  * <li>
9322
9331
  * <p>
9323
- * <code>"CompilerOptions": \{"class_labels": "imagenet_labels_1000.txt"\}</code>
9332
+ * <code>"CompilerOptions": \{"class_labels":
9333
+ * "imagenet_labels_1000.txt"\}</code>
9324
9334
  * </p>
9325
9335
  * </li>
9326
9336
  * </ul>
9327
9337
  * </li>
9328
9338
  * </ul>
9329
- * <p>Depending on the model format, <code>DataInputConfig</code> requires the following parameters for
9330
- * <code>ml_eia2</code>
9339
+ * <p>Depending on the model format, <code>DataInputConfig</code> requires the following
9340
+ * parameters for <code>ml_eia2</code>
9331
9341
  * <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-TargetDevice">OutputConfig:TargetDevice</a>.</p>
9332
9342
  * <ul>
9333
9343
  * <li>
9334
9344
  * <p>For TensorFlow models saved in the SavedModel format, specify the input names
9335
- * from <code>signature_def_key</code> and the input model shapes for <code>DataInputConfig</code>.
9336
- * Specify the <code>signature_def_key</code> in
9337
- * <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions">
9345
+ * from <code>signature_def_key</code> and the input model shapes for
9346
+ * <code>DataInputConfig</code>. Specify the <code>signature_def_key</code> in
9347
+ * <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions">
9338
9348
  * <code>OutputConfig:CompilerOptions</code>
9339
- * </a> if
9340
- * the model does not use TensorFlow's default signature def key. For example:</p>
9349
+ * </a> if the model does not
9350
+ * use TensorFlow's default signature def key. For example:</p>
9341
9351
  * <ul>
9342
9352
  * <li>
9343
9353
  * <p>
@@ -9346,34 +9356,37 @@ export interface InputConfig {
9346
9356
  * </li>
9347
9357
  * <li>
9348
9358
  * <p>
9349
- * <code>"CompilerOptions": \{"signature_def_key": "serving_custom"\}</code>
9359
+ * <code>"CompilerOptions": \{"signature_def_key":
9360
+ * "serving_custom"\}</code>
9350
9361
  * </p>
9351
9362
  * </li>
9352
9363
  * </ul>
9353
9364
  * </li>
9354
9365
  * <li>
9355
- * <p>For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes
9356
- * in <code>DataInputConfig</code> and the output tensor names for <code>output_names</code> in
9357
- * <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions">
9366
+ * <p>For TensorFlow models saved as a frozen graph, specify the input tensor names
9367
+ * and shapes in <code>DataInputConfig</code> and the output tensor names for
9368
+ * <code>output_names</code> in <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions">
9358
9369
  * <code>OutputConfig:CompilerOptions</code>
9359
- * </a>.
9360
- * For example:</p>
9370
+ * </a>. For
9371
+ * example:</p>
9361
9372
  * <ul>
9362
9373
  * <li>
9363
9374
  * <p>
9364
- * <code>"DataInputConfig": \{"input_tensor:0": [1, 224, 224, 3]\}</code>
9375
+ * <code>"DataInputConfig": \{"input_tensor:0": [1, 224, 224,
9376
+ * 3]\}</code>
9365
9377
  * </p>
9366
9378
  * </li>
9367
9379
  * <li>
9368
9380
  * <p>
9369
- * <code>"CompilerOptions": \{"output_names": ["output_tensor:0"]\}</code>
9381
+ * <code>"CompilerOptions": \{"output_names":
9382
+ * ["output_tensor:0"]\}</code>
9370
9383
  * </p>
9371
9384
  * </li>
9372
9385
  * </ul>
9373
9386
  * </li>
9374
9387
  * </ul>
9375
9388
  */
9376
- DataInputConfig: string | undefined;
9389
+ DataInputConfig?: string;
9377
9390
  /**
9378
9391
  * @public
9379
9392
  * <p>Identifies the framework in which the model was trained. For example:
@@ -9382,11 +9395,12 @@ export interface InputConfig {
9382
9395
  Framework: Framework | string | undefined;
9383
9396
  /**
9384
9397
  * @public
9385
- * <p>Specifies the framework version to use. This API field is only supported for the MXNet,
9386
- * PyTorch, TensorFlow and TensorFlow Lite frameworks.</p>
9387
- * <p>For information about framework versions supported for cloud targets and edge devices, see
9388
- * <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-cloud.html">Cloud Supported Instance Types and Frameworks</a> and
9389
- * <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-devices-edge-frameworks.html">Edge Supported Frameworks</a>.</p>
9398
+ * <p>Specifies the framework version to use. This API field is only supported for the
9399
+ * MXNet, PyTorch, TensorFlow and TensorFlow Lite frameworks.</p>
9400
+ * <p>For information about framework versions supported for cloud targets and edge devices,
9401
+ * see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-cloud.html">Cloud
9402
+ * Supported Instance Types and Frameworks</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-devices-edge-frameworks.html">Edge Supported
9403
+ * Frameworks</a>.</p>
9390
9404
  */
9391
9405
  FrameworkVersion?: string;
9392
9406
  }
@@ -9409,7 +9423,7 @@ export interface TargetPlatform {
9409
9423
  * <p>
9410
9424
  * <code>ANDROID</code>: Android operating systems. Android API level can be
9411
9425
  * specified using the <code>ANDROID_PLATFORM</code> compiler option. For example,
9412
- * <code>"CompilerOptions": \{'ANDROID_PLATFORM': 28\}</code>
9426
+ * <code>"CompilerOptions": \{'ANDROID_PLATFORM': 28\}</code>
9413
9427
  * </p>
9414
9428
  * </li>
9415
9429
  * </ul>
@@ -9450,7 +9464,7 @@ export interface TargetPlatform {
9450
9464
  * <li>
9451
9465
  * <p>
9452
9466
  * <code>NVIDIA</code>: Nvidia graphics processing unit. It also requires
9453
- * <code>gpu-code</code>, <code>trt-ver</code>, <code>cuda-ver</code> compiler
9467
+ * <code>gpu-code</code>, <code>trt-ver</code>, <code>cuda-ver</code> compiler
9454
9468
  * options</p>
9455
9469
  * </li>
9456
9470
  * <li>
@@ -9486,8 +9500,8 @@ export interface OutputConfig {
9486
9500
  * @public
9487
9501
  * <p>Identifies the target device or the machine learning instance that you want to run
9488
9502
  * your model on after the compilation has completed. Alternatively, you can specify OS,
9489
- * architecture, and accelerator using <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TargetPlatform.html">TargetPlatform</a> fields. It can be
9490
- * used instead of <code>TargetPlatform</code>.</p>
9503
+ * architecture, and accelerator using <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TargetPlatform.html">TargetPlatform</a>
9504
+ * fields. It can be used instead of <code>TargetPlatform</code>.</p>
9491
9505
  * <note>
9492
9506
  * <p>Currently <code>ml_trn1</code> is available only in US East (N. Virginia) Region,
9493
9507
  * and <code>ml_inf2</code> is available only in US East (Ohio) Region.</p>
@@ -9572,13 +9586,14 @@ export interface OutputConfig {
9572
9586
  * <li>
9573
9587
  * <p>
9574
9588
  * <code>DTYPE</code>: Specifies the data type for the input. When compiling for
9575
- * <code>ml_*</code> (except for <code>ml_inf</code>) instances using PyTorch
9589
+ * <code>ml_*</code> (except for <code>ml_inf</code>) instances using PyTorch
9576
9590
  * framework, provide the data type (dtype) of the model's input.
9577
9591
  * <code>"float32"</code> is used if <code>"DTYPE"</code> is not specified.
9578
9592
  * Options for data type are:</p>
9579
9593
  * <ul>
9580
9594
  * <li>
9581
- * <p>float32: Use either <code>"float"</code> or <code>"float32"</code>.</p>
9595
+ * <p>float32: Use either <code>"float"</code> or
9596
+ * <code>"float32"</code>.</p>
9582
9597
  * </li>
9583
9598
  * <li>
9584
9599
  * <p>int64: Use either <code>"int64"</code> or <code>"long"</code>.</p>
@@ -9664,13 +9679,9 @@ export interface OutputConfig {
9664
9679
  * <li>
9665
9680
  * <p>
9666
9681
  * <code>INFERENTIA</code>: Compilation for target ml_inf1 uses compiler options
9667
- * passed in as a JSON string. For example,
9668
- * <code>"CompilerOptions": "\"--verbose 1 --num-neuroncores 2 -O2\""</code>.
9669
- * </p>
9670
- * <p>For information about supported compiler options, see
9671
- * <a href="https://awsdocs-neuron.readthedocs-hosted.com/en/latest/compiler/neuronx-cc/api-reference-guide/neuron-compiler-cli-reference-guide.html">
9672
- * Neuron Compiler CLI Reference Guide</a>.
9673
- * </p>
9682
+ * passed in as a JSON string. For example, <code>"CompilerOptions": "\"--verbose 1
9683
+ * --num-neuroncores 2 -O2\""</code>. </p>
9684
+ * <p>For information about supported compiler options, see <a href="https://awsdocs-neuron.readthedocs-hosted.com/en/latest/compiler/neuronx-cc/api-reference-guide/neuron-compiler-cli-reference-guide.html"> Neuron Compiler CLI Reference Guide</a>. </p>
9674
9685
  * </li>
9675
9686
  * <li>
9676
9687
  * <p>
@@ -9680,36 +9691,38 @@ export interface OutputConfig {
9680
9691
  * <li>
9681
9692
  * <p>
9682
9693
  * <code>class_labels</code>: Specifies the classification labels file
9683
- * name inside input tar.gz file. For example,
9684
- * <code>\{"class_labels": "imagenet_labels_1000.txt"\}</code>.
9685
- * Labels inside the txt file should be separated by newlines.</p>
9694
+ * name inside input tar.gz file. For example, <code>\{"class_labels":
9695
+ * "imagenet_labels_1000.txt"\}</code>. Labels inside the txt file
9696
+ * should be separated by newlines.</p>
9686
9697
  * </li>
9687
9698
  * </ul>
9688
9699
  * </li>
9689
9700
  * <li>
9690
9701
  * <p>
9691
- * <code>EIA</code>: Compilation for the Elastic Inference Accelerator supports the following
9692
- * compiler options:</p>
9702
+ * <code>EIA</code>: Compilation for the Elastic Inference Accelerator supports
9703
+ * the following compiler options:</p>
9693
9704
  * <ul>
9694
9705
  * <li>
9695
9706
  * <p>
9696
- * <code>precision_mode</code>: Specifies the precision of compiled artifacts. Supported values
9697
- * are <code>"FP16"</code> and <code>"FP32"</code>. Default is
9698
- * <code>"FP32"</code>.</p>
9707
+ * <code>precision_mode</code>: Specifies the precision of compiled
9708
+ * artifacts. Supported values are <code>"FP16"</code> and
9709
+ * <code>"FP32"</code>. Default is <code>"FP32"</code>.</p>
9699
9710
  * </li>
9700
9711
  * <li>
9701
9712
  * <p>
9702
- * <code>signature_def_key</code>: Specifies the signature to use for models in SavedModel
9703
- * format. Defaults is TensorFlow's default signature def key.</p>
9713
+ * <code>signature_def_key</code>: Specifies the signature to use for
9714
+ * models in SavedModel format. Defaults is TensorFlow's default signature
9715
+ * def key.</p>
9704
9716
  * </li>
9705
9717
  * <li>
9706
9718
  * <p>
9707
9719
  * <code>output_names</code>: Specifies a list of output tensor names for
9708
- * models in FrozenGraph format. Set at most one API field, either: <code>signature_def_key</code> or <code>output_names</code>.</p>
9720
+ * models in FrozenGraph format. Set at most one API field, either:
9721
+ * <code>signature_def_key</code> or <code>output_names</code>.</p>
9709
9722
  * </li>
9710
9723
  * </ul>
9711
- * <p>For example:
9712
- * <code>\{"precision_mode": "FP32", "output_names": ["output:0"]\}</code>
9724
+ * <p>For example: <code>\{"precision_mode": "FP32", "output_names":
9725
+ * ["output:0"]\}</code>
9713
9726
  * </p>
9714
9727
  * </li>
9715
9728
  * </ul>
@@ -9717,11 +9730,12 @@ export interface OutputConfig {
9717
9730
  CompilerOptions?: string;
9718
9731
  /**
9719
9732
  * @public
9720
- * <p>The Amazon Web Services Key Management Service key (Amazon Web Services KMS) that Amazon SageMaker uses to encrypt your output models with Amazon S3 server-side encryption
9721
- * after compilation job. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account.
9722
- * For more information, see
9723
- * <a href="https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html">KMS-Managed Encryption
9724
- * Keys</a> in the <i>Amazon Simple Storage Service Developer Guide.</i>
9733
+ * <p>The Amazon Web Services Key Management Service key (Amazon Web Services KMS) that Amazon SageMaker
9734
+ * uses to encrypt your output models with Amazon S3 server-side encryption after compilation
9735
+ * job. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your
9736
+ * role's account. For more information, see <a href="https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html">KMS-Managed Encryption
9737
+ * Keys</a> in the <i>Amazon Simple Storage Service Developer
9738
+ * Guide.</i>
9725
9739
  * </p>
9726
9740
  * <p>The KmsKeyId can be any of the following formats: </p>
9727
9741
  * <ul>
@@ -9749,22 +9763,22 @@ export interface OutputConfig {
9749
9763
  }
9750
9764
  /**
9751
9765
  * @public
9752
- * <p>The <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html">VpcConfig</a> configuration object that specifies the VPC that you
9753
- * want the compilation jobs to connect to. For more information on
9754
- * controlling access to your Amazon S3 buckets used for compilation job, see
9755
- * <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/neo-vpc.html">Give Amazon SageMaker Compilation Jobs Access to Resources in Your Amazon VPC</a>.</p>
9766
+ * <p>The <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html">VpcConfig</a> configuration object that specifies the VPC that you want the
9767
+ * compilation jobs to connect to. For more information on controlling access to your Amazon S3
9768
+ * buckets used for compilation job, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/neo-vpc.html">Give Amazon SageMaker Compilation Jobs Access to
9769
+ * Resources in Your Amazon VPC</a>.</p>
9756
9770
  */
9757
9771
  export interface NeoVpcConfig {
9758
9772
  /**
9759
9773
  * @public
9760
- * <p>The VPC security group IDs. IDs have the form of <code>sg-xxxxxxxx</code>.
9761
- * Specify the security groups for the VPC that is specified in the <code>Subnets</code> field.</p>
9774
+ * <p>The VPC security group IDs. IDs have the form of <code>sg-xxxxxxxx</code>. Specify the
9775
+ * security groups for the VPC that is specified in the <code>Subnets</code> field.</p>
9762
9776
  */
9763
9777
  SecurityGroupIds: string[] | undefined;
9764
9778
  /**
9765
9779
  * @public
9766
- * <p>The ID of the subnets in the VPC that you want to connect the
9767
- * compilation job to for accessing the model in Amazon S3.</p>
9780
+ * <p>The ID of the subnets in the VPC that you want to connect the compilation job to for
9781
+ * accessing the model in Amazon S3.</p>
9768
9782
  */
9769
9783
  Subnets: string[] | undefined;
9770
9784
  }
@@ -9774,8 +9788,7 @@ export interface NeoVpcConfig {
9774
9788
  export interface CreateCompilationJobRequest {
9775
9789
  /**
9776
9790
  * @public
9777
- * <p>A name for the model compilation job. The name must be unique within the Amazon Web Services Region
9778
- * and within your Amazon Web Services account. </p>
9791
+ * <p>A name for the model compilation job. The name must be unique within the Amazon Web Services Region and within your Amazon Web Services account. </p>
9779
9792
  */
9780
9793
  CompilationJobName: string | undefined;
9781
9794
  /**
@@ -9826,10 +9839,9 @@ export interface CreateCompilationJobRequest {
9826
9839
  OutputConfig: OutputConfig | undefined;
9827
9840
  /**
9828
9841
  * @public
9829
- * <p>A <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html">VpcConfig</a> object that specifies the VPC that you want your
9830
- * compilation job to connect to. Control access to your models by
9831
- * configuring the VPC. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/neo-vpc.html">Protect Compilation Jobs by Using an Amazon
9832
- * Virtual Private Cloud</a>.</p>
9842
+ * <p>A <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html">VpcConfig</a> object that specifies the VPC that you want your compilation job
9843
+ * to connect to. Control access to your models by configuring the VPC. For more
9844
+ * information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/neo-vpc.html">Protect Compilation Jobs by Using an Amazon Virtual Private Cloud</a>.</p>
9833
9845
  */
9834
9846
  VpcConfig?: NeoVpcConfig;
9835
9847
  /**
@@ -9841,10 +9853,9 @@ export interface CreateCompilationJobRequest {
9841
9853
  StoppingCondition: StoppingCondition | undefined;
9842
9854
  /**
9843
9855
  * @public
9844
- * <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in
9845
- * different ways, for example, by purpose, owner, or environment. For more information,
9846
- * see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web Services
9847
- * Resources</a>.</p>
9856
+ * <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services
9857
+ * resources in different ways, for example, by purpose, owner, or environment. For more
9858
+ * information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web Services Resources</a>.</p>
9848
9859
  */
9849
9860
  Tags?: Tag[];
9850
9861
  }