@aws-sdk/client-sagemaker 3.322.0 → 3.325.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
|
@@ -43,6 +43,7 @@ export interface CreateAutoMLJobCommandOutput extends CreateAutoMLJobResponse, _
|
|
|
43
43
|
* TargetAttributeName: "STRING_VALUE", // required
|
|
44
44
|
* ContentType: "STRING_VALUE",
|
|
45
45
|
* ChannelType: "training" || "validation",
|
|
46
|
+
* SampleWeightAttributeName: "STRING_VALUE",
|
|
46
47
|
* },
|
|
47
48
|
* ],
|
|
48
49
|
* OutputDataConfig: { // AutoMLOutputDataConfig
|
|
@@ -4042,7 +4042,7 @@ export interface AutoMLAlgorithmConfig {
|
|
|
4042
4042
|
* job. </p>
|
|
4043
4043
|
* <note>
|
|
4044
4044
|
* <p>Selected algorithms must belong to the list corresponding to the training mode set in
|
|
4045
|
-
*
|
|
4045
|
+
* <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobConfig.html#sagemaker-Type-AutoMLJobConfig-Mode">AutoMLJobConfig.Mode</a> (<code>ENSEMBLING</code> or
|
|
4046
4046
|
* <code>HYPERPARAMETER_TUNING</code>). Choose a minimum of 1 algorithm. </p>
|
|
4047
4047
|
* </note>
|
|
4048
4048
|
* <ul>
|
|
@@ -4308,23 +4308,23 @@ export type AutoMLProcessingUnit = (typeof AutoMLProcessingUnit)[keyof typeof Au
|
|
|
4308
4308
|
* @public
|
|
4309
4309
|
* <p>A list of container definitions that describe the different containers that make up an
|
|
4310
4310
|
* AutoML candidate. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html">
|
|
4311
|
-
*
|
|
4311
|
+
* ContainerDefinition</a>.</p>
|
|
4312
4312
|
*/
|
|
4313
4313
|
export interface AutoMLContainerDefinition {
|
|
4314
4314
|
/**
|
|
4315
4315
|
* <p>The Amazon Elastic Container Registry (Amazon ECR) path of the container. For more
|
|
4316
4316
|
* information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html">
|
|
4317
|
-
*
|
|
4317
|
+
* ContainerDefinition</a>.</p>
|
|
4318
4318
|
*/
|
|
4319
4319
|
Image: string | undefined;
|
|
4320
4320
|
/**
|
|
4321
|
-
* <p>The location of the model artifacts. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html">
|
|
4321
|
+
* <p>The location of the model artifacts. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html">
|
|
4322
|
+
* ContainerDefinition</a>.</p>
|
|
4322
4323
|
*/
|
|
4323
4324
|
ModelDataUrl: string | undefined;
|
|
4324
4325
|
/**
|
|
4325
|
-
* <p>The environment variables to set in the container. For more information, see
|
|
4326
|
-
*
|
|
4327
|
-
* ContainerDefinition</a>.</p>
|
|
4326
|
+
* <p>The environment variables to set in the container. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html">
|
|
4327
|
+
* ContainerDefinition</a>.</p>
|
|
4328
4328
|
*/
|
|
4329
4329
|
Environment?: Record<string, string>;
|
|
4330
4330
|
}
|
|
@@ -4459,7 +4459,7 @@ export interface AutoMLCandidateGenerationConfig {
|
|
|
4459
4459
|
* </li>
|
|
4460
4460
|
* </ul>
|
|
4461
4461
|
* <p>For the list of all algorithms per training mode, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html">
|
|
4462
|
-
*
|
|
4462
|
+
* AutoMLAlgorithmConfig</a>.</p>
|
|
4463
4463
|
* <p>For more information on each algorithm, see the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support">Algorithm support</a> section in Autopilot developer guide.</p>
|
|
4464
4464
|
*/
|
|
4465
4465
|
AlgorithmsConfig?: AutoMLAlgorithmConfig[];
|
|
@@ -4599,6 +4599,20 @@ export interface AutoMLChannel {
|
|
|
4599
4599
|
* specifying training and validation channel types, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-data-sources-training-or-validation">How to specify training and validation datasets</a>.</p>
|
|
4600
4600
|
*/
|
|
4601
4601
|
ChannelType?: AutoMLChannelType | string;
|
|
4602
|
+
/**
|
|
4603
|
+
* <p>If specified, this column name indicates which column of the dataset should be treated
|
|
4604
|
+
* as sample weights for use by the objective metric during the training, evaluation, and
|
|
4605
|
+
* the selection of the best model. This column
|
|
4606
|
+
* is not considered as a predictive feature. For more information on Autopilot metrics,
|
|
4607
|
+
* see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html">Metrics and validation</a>.</p>
|
|
4608
|
+
* <p>Sample weights should be numeric, non-negative, with larger values
|
|
4609
|
+
* indicating which rows are more important than others. Data points that have invalid or no
|
|
4610
|
+
* weight value are excluded.</p>
|
|
4611
|
+
* <p>Support for sample weights
|
|
4612
|
+
* is available in <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html">Ensembling</a>
|
|
4613
|
+
* mode only.</p>
|
|
4614
|
+
*/
|
|
4615
|
+
SampleWeightAttributeName?: string;
|
|
4602
4616
|
}
|
|
4603
4617
|
/**
|
|
4604
4618
|
* @public
|
|
@@ -4636,9 +4650,8 @@ export interface AutoMLJobArtifacts {
|
|
|
4636
4650
|
* @public
|
|
4637
4651
|
* <p>A channel is a named input source that training algorithms can consume. This channel is
|
|
4638
4652
|
* used for the non tabular training data of an AutoML job using the V2 API. For tabular
|
|
4639
|
-
* training data, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLChannel.html">
|
|
4640
|
-
*
|
|
4641
|
-
* Channel</a>.</p>
|
|
4653
|
+
* training data, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLChannel.html"> AutoMLChannel</a>. For
|
|
4654
|
+
* more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Channel.html"> Channel</a>.</p>
|
|
4642
4655
|
*/
|
|
4643
4656
|
export interface AutoMLJobChannel {
|
|
4644
4657
|
/**
|
|
@@ -4691,7 +4704,8 @@ export interface AutoMLJobCompletionCriteria {
|
|
|
4691
4704
|
/**
|
|
4692
4705
|
* <p>The maximum time, in seconds, that each training job executed inside hyperparameter
|
|
4693
4706
|
* tuning is allowed to run as part of a hyperparameter tuning job. For more information, see
|
|
4694
|
-
* the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StoppingCondition.html">StoppingCondition</a>
|
|
4707
|
+
* the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StoppingCondition.html">StoppingCondition</a>
|
|
4708
|
+
* used by the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html">CreateHyperParameterTuningJob</a> action.</p>
|
|
4695
4709
|
* <p>For V2 jobs (jobs created by calling <code>CreateAutoMLJobV2</code>), this field
|
|
4696
4710
|
* controls the runtime of the job candidate.</p>
|
|
4697
4711
|
*/
|
|
@@ -4808,154 +4822,11 @@ export interface AutoMLJobConfig {
|
|
|
4808
4822
|
export interface AutoMLJobObjective {
|
|
4809
4823
|
/**
|
|
4810
4824
|
* <p>The name of the objective metric used to measure the predictive quality of a machine
|
|
4811
|
-
* learning system.
|
|
4812
|
-
*
|
|
4813
|
-
*
|
|
4814
|
-
* <
|
|
4815
|
-
*
|
|
4816
|
-
* <dd>
|
|
4817
|
-
* <p>The ratio of the number of correctly classified items to the total number of
|
|
4818
|
-
* (correctly and incorrectly) classified items. It is used for both binary and
|
|
4819
|
-
* multiclass classification. Accuracy measures how close the predicted class values
|
|
4820
|
-
* are to the actual values. Values for accuracy metrics vary between zero (0) and
|
|
4821
|
-
* one (1). A value of 1 indicates perfect accuracy, and 0 indicates perfect
|
|
4822
|
-
* inaccuracy.</p>
|
|
4823
|
-
* </dd>
|
|
4824
|
-
* <dt>AUC</dt>
|
|
4825
|
-
* <dd>
|
|
4826
|
-
* <p>The area under the curve (AUC) metric is used to compare and evaluate binary
|
|
4827
|
-
* classification by algorithms that return probabilities, such as logistic
|
|
4828
|
-
* regression. To map the probabilities into classifications, these are compared
|
|
4829
|
-
* against a threshold value. </p>
|
|
4830
|
-
* <p>The relevant curve is the receiver operating characteristic curve (ROC curve).
|
|
4831
|
-
* The ROC curve plots the true positive rate (TPR) of predictions (or recall)
|
|
4832
|
-
* against the false positive rate (FPR) as a function of the threshold value, above
|
|
4833
|
-
* which a prediction is considered positive. Increasing the threshold results in
|
|
4834
|
-
* fewer false positives, but more false negatives. </p>
|
|
4835
|
-
* <p>AUC is the area under this ROC curve. Therefore, AUC provides an aggregated
|
|
4836
|
-
* measure of the model performance across all possible classification thresholds.
|
|
4837
|
-
* AUC scores vary between 0 and 1. A score of 1 indicates perfect accuracy, and a
|
|
4838
|
-
* score of one half (0.5) indicates that the prediction is not better than a random
|
|
4839
|
-
* classifier. </p>
|
|
4840
|
-
* </dd>
|
|
4841
|
-
* <dt>BalancedAccuracy</dt>
|
|
4842
|
-
* <dd>
|
|
4843
|
-
* <p>
|
|
4844
|
-
* <code>BalancedAccuracy</code> is a metric that measures the ratio of accurate
|
|
4845
|
-
* predictions to all predictions. This ratio is calculated after normalizing true
|
|
4846
|
-
* positives (TP) and true negatives (TN) by the total number of positive (P) and
|
|
4847
|
-
* negative (N) values. It is used in both binary and multiclass classification and
|
|
4848
|
-
* is defined as follows: 0.5*((TP/P)+(TN/N)), with values ranging from 0 to 1.
|
|
4849
|
-
* <code>BalancedAccuracy</code> gives a better measure of accuracy when the
|
|
4850
|
-
* number of positives or negatives differ greatly from each other in an imbalanced
|
|
4851
|
-
* dataset. For example, when only 1% of email is spam. </p>
|
|
4852
|
-
* </dd>
|
|
4853
|
-
* <dt>F1</dt>
|
|
4854
|
-
* <dd>
|
|
4855
|
-
* <p>The <code>F1</code> score is the harmonic mean of the precision and recall,
|
|
4856
|
-
* defined as follows: F1 = 2 * (precision * recall) / (precision + recall). It is
|
|
4857
|
-
* used for binary classification into classes traditionally referred to as positive
|
|
4858
|
-
* and negative. Predictions are said to be true when they match their actual
|
|
4859
|
-
* (correct) class, and false when they do not. </p>
|
|
4860
|
-
* <p>Precision is the ratio of the true positive predictions to all positive
|
|
4861
|
-
* predictions, and it includes the false positives in a dataset. Precision measures
|
|
4862
|
-
* the quality of the prediction when it predicts the positive class. </p>
|
|
4863
|
-
* <p>Recall (or sensitivity) is the ratio of the true positive predictions to all
|
|
4864
|
-
* actual positive instances. Recall measures how completely a model predicts the
|
|
4865
|
-
* actual class members in a dataset. </p>
|
|
4866
|
-
* <p>F1 scores vary between 0 and 1. A score of 1 indicates the best possible
|
|
4867
|
-
* performance, and 0 indicates the worst.</p>
|
|
4868
|
-
* </dd>
|
|
4869
|
-
* <dt>F1macro</dt>
|
|
4870
|
-
* <dd>
|
|
4871
|
-
* <p>The <code>F1macro</code> score applies F1 scoring to multiclass classification
|
|
4872
|
-
* problems. It does this by calculating the precision and recall, and then taking
|
|
4873
|
-
* their harmonic mean to calculate the F1 score for each class. Lastly, the F1macro
|
|
4874
|
-
* averages the individual scores to obtain the <code>F1macro</code> score.
|
|
4875
|
-
* <code>F1macro</code> scores vary between 0 and 1. A score of 1 indicates the
|
|
4876
|
-
* best possible performance, and 0 indicates the worst.</p>
|
|
4877
|
-
* </dd>
|
|
4878
|
-
* <dt>MAE</dt>
|
|
4879
|
-
* <dd>
|
|
4880
|
-
* <p>The mean absolute error (MAE) is a measure of how different the predicted and
|
|
4881
|
-
* actual values are, when they're averaged over all values. MAE is commonly used in
|
|
4882
|
-
* regression analysis to understand model prediction error. If there is linear
|
|
4883
|
-
* regression, MAE represents the average distance from a predicted line to the
|
|
4884
|
-
* actual value. MAE is defined as the sum of absolute errors divided by the number
|
|
4885
|
-
* of observations. Values range from 0 to infinity, with smaller numbers indicating
|
|
4886
|
-
* a better model fit to the data.</p>
|
|
4887
|
-
* </dd>
|
|
4888
|
-
* <dt>MSE</dt>
|
|
4889
|
-
* <dd>
|
|
4890
|
-
* <p>The mean squared error (MSE) is the average of the squared differences between
|
|
4891
|
-
* the predicted and actual values. It is used for regression. MSE values are always
|
|
4892
|
-
* positive. The better a model is at predicting the actual values, the smaller the
|
|
4893
|
-
* MSE value is</p>
|
|
4894
|
-
* </dd>
|
|
4895
|
-
* <dt>Precision</dt>
|
|
4896
|
-
* <dd>
|
|
4897
|
-
* <p>Precision measures how well an algorithm predicts the true positives (TP) out
|
|
4898
|
-
* of all of the positives that it identifies. It is defined as follows: Precision =
|
|
4899
|
-
* TP/(TP+FP), with values ranging from zero (0) to one (1), and is used in binary
|
|
4900
|
-
* classification. Precision is an important metric when the cost of a false positive
|
|
4901
|
-
* is high. For example, the cost of a false positive is very high if an airplane
|
|
4902
|
-
* safety system is falsely deemed safe to fly. A false positive (FP) reflects a
|
|
4903
|
-
* positive prediction that is actually negative in the data.</p>
|
|
4904
|
-
* </dd>
|
|
4905
|
-
* <dt>PrecisionMacro</dt>
|
|
4906
|
-
* <dd>
|
|
4907
|
-
* <p>The precision macro computes precision for multiclass classification problems.
|
|
4908
|
-
* It does this by calculating precision for each class and averaging scores to
|
|
4909
|
-
* obtain precision for several classes. <code>PrecisionMacro</code> scores range
|
|
4910
|
-
* from zero (0) to one (1). Higher scores reflect the model's ability to predict
|
|
4911
|
-
* true positives (TP) out of all of the positives that it identifies, averaged
|
|
4912
|
-
* across multiple classes.</p>
|
|
4913
|
-
* </dd>
|
|
4914
|
-
* <dt>R2</dt>
|
|
4915
|
-
* <dd>
|
|
4916
|
-
* <p>R2, also known as the coefficient of determination, is used in regression to
|
|
4917
|
-
* quantify how much a model can explain the variance of a dependent variable. Values
|
|
4918
|
-
* range from one (1) to negative one (-1). Higher numbers indicate a higher fraction
|
|
4919
|
-
* of explained variability. <code>R2</code> values close to zero (0) indicate that
|
|
4920
|
-
* very little of the dependent variable can be explained by the model. Negative
|
|
4921
|
-
* values indicate a poor fit and that the model is outperformed by a constant
|
|
4922
|
-
* function. For linear regression, this is a horizontal line.</p>
|
|
4923
|
-
* </dd>
|
|
4924
|
-
* <dt>Recall</dt>
|
|
4925
|
-
* <dd>
|
|
4926
|
-
* <p>Recall measures how well an algorithm correctly predicts all of the true
|
|
4927
|
-
* positives (TP) in a dataset. A true positive is a positive prediction that is also
|
|
4928
|
-
* an actual positive value in the data. Recall is defined as follows: Recall =
|
|
4929
|
-
* TP/(TP+FN), with values ranging from 0 to 1. Higher scores reflect a better
|
|
4930
|
-
* ability of the model to predict true positives (TP) in the data, and is used in
|
|
4931
|
-
* binary classification. </p>
|
|
4932
|
-
* <p>Recall is important when testing for cancer because it's used to find all of
|
|
4933
|
-
* the true positives. A false positive (FP) reflects a positive prediction that is
|
|
4934
|
-
* actually negative in the data. It is often insufficient to measure only recall,
|
|
4935
|
-
* because predicting every output as a true positive yield a perfect recall
|
|
4936
|
-
* score.</p>
|
|
4937
|
-
* </dd>
|
|
4938
|
-
* <dt>RecallMacro</dt>
|
|
4939
|
-
* <dd>
|
|
4940
|
-
* <p>The RecallMacro computes recall for multiclass classification problems by
|
|
4941
|
-
* calculating recall for each class and averaging scores to obtain recall for
|
|
4942
|
-
* several classes. RecallMacro scores range from 0 to 1. Higher scores reflect the
|
|
4943
|
-
* model's ability to predict true positives (TP) in a dataset. Whereas, a true
|
|
4944
|
-
* positive reflects a positive prediction that is also an actual positive value in
|
|
4945
|
-
* the data. It is often insufficient to measure only recall, because predicting
|
|
4946
|
-
* every output as a true positive yields a perfect recall score.</p>
|
|
4947
|
-
* </dd>
|
|
4948
|
-
* <dt>RMSE</dt>
|
|
4949
|
-
* <dd>
|
|
4950
|
-
* <p>Root mean squared error (RMSE) measures the square root of the squared
|
|
4951
|
-
* difference between predicted and actual values, and it's averaged over all values.
|
|
4952
|
-
* It is used in regression analysis to understand model prediction error. It's an
|
|
4953
|
-
* important metric to indicate the presence of large model errors and outliers.
|
|
4954
|
-
* Values range from zero (0) to infinity, with smaller numbers indicating a better
|
|
4955
|
-
* model fit to the data. RMSE is dependent on scale, and should not be used to
|
|
4956
|
-
* compare datasets of different sizes.</p>
|
|
4957
|
-
* </dd>
|
|
4958
|
-
* </dl>
|
|
4825
|
+
* learning system. During training, the model's parameters are updated iteratively to
|
|
4826
|
+
* optimize its performance based on the feedback provided by the objective metric when
|
|
4827
|
+
* evaluating the model on the validation dataset.</p>
|
|
4828
|
+
* <p>For the list of all available metrics supported by Autopilot, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html#autopilot-metrics">Autopilot
|
|
4829
|
+
* metrics</a>.</p>
|
|
4959
4830
|
* <p>If you do not specify a metric explicitly, the default behavior is to automatically
|
|
4960
4831
|
* use:</p>
|
|
4961
4832
|
* <ul>
|
|
@@ -7584,9 +7455,9 @@ export interface CreateAutoMLJobRequest {
|
|
|
7584
7455
|
AutoMLJobName: string | undefined;
|
|
7585
7456
|
/**
|
|
7586
7457
|
* <p>An array of channel objects that describes the input data and its location. Each channel
|
|
7587
|
-
* is a named input source. Similar to <code>InputDataConfig</code> supported by <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html">HyperParameterTrainingJobDefinition</a>. Format(s) supported: CSV,
|
|
7588
|
-
*
|
|
7589
|
-
*
|
|
7458
|
+
* is a named input source. Similar to <code>InputDataConfig</code> supported by <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html">HyperParameterTrainingJobDefinition</a>. Format(s) supported: CSV, Parquet. A
|
|
7459
|
+
* minimum of 500 rows is required for the training dataset. There is not a minimum number of
|
|
7460
|
+
* rows required for the validation dataset.</p>
|
|
7590
7461
|
*/
|
|
7591
7462
|
InputDataConfig: AutoMLChannel[] | undefined;
|
|
7592
7463
|
/**
|
|
@@ -7602,8 +7473,8 @@ export interface CreateAutoMLJobRequest {
|
|
|
7602
7473
|
ProblemType?: ProblemType | string;
|
|
7603
7474
|
/**
|
|
7604
7475
|
* <p>Defines the objective metric used to measure the predictive quality of an AutoML job. You
|
|
7605
|
-
* provide an <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html">AutoMLJobObjective$MetricName</a> and Autopilot infers whether to minimize or
|
|
7606
|
-
*
|
|
7476
|
+
* provide an <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html">AutoMLJobObjective$MetricName</a> and Autopilot infers whether to minimize or maximize
|
|
7477
|
+
* it. For <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html">CreateAutoMLJobV2</a>, only <code>Accuracy</code> is supported.</p>
|
|
7607
7478
|
*/
|
|
7608
7479
|
AutoMLJobObjective?: AutoMLJobObjective;
|
|
7609
7480
|
/**
|
|
@@ -7652,8 +7523,8 @@ export interface CreateAutoMLJobV2Request {
|
|
|
7652
7523
|
AutoMLJobName: string | undefined;
|
|
7653
7524
|
/**
|
|
7654
7525
|
* <p>An array of channel objects describing the input data and their location. Each channel
|
|
7655
|
-
* is a named input source. Similar to <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig">InputDataConfig</a> supported by <code>CreateAutoMLJob</code>. The
|
|
7656
|
-
*
|
|
7526
|
+
* is a named input source. Similar to <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig">InputDataConfig</a> supported by <code>CreateAutoMLJob</code>. The supported
|
|
7527
|
+
* formats depend on the problem type:</p>
|
|
7657
7528
|
* <ul>
|
|
7658
7529
|
* <li>
|
|
7659
7530
|
* <p>ImageClassification: S3Prefix, <code>ManifestFile</code>,
|
|
@@ -978,6 +978,7 @@ export interface AutoMLChannel {
|
|
|
978
978
|
TargetAttributeName: string | undefined;
|
|
979
979
|
ContentType?: string;
|
|
980
980
|
ChannelType?: AutoMLChannelType | string;
|
|
981
|
+
SampleWeightAttributeName?: string;
|
|
981
982
|
}
|
|
982
983
|
export interface AutoMLDataSplitConfig {
|
|
983
984
|
ValidationFraction?: number;
|
package/package.json
CHANGED
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "@aws-sdk/client-sagemaker",
|
|
3
3
|
"description": "AWS SDK for JavaScript Sagemaker Client for Node.js, Browser and React Native",
|
|
4
|
-
"version": "3.
|
|
4
|
+
"version": "3.325.0",
|
|
5
5
|
"scripts": {
|
|
6
6
|
"build": "concurrently 'yarn:build:cjs' 'yarn:build:es' 'yarn:build:types'",
|
|
7
7
|
"build:cjs": "tsc -p tsconfig.cjs.json",
|
|
@@ -21,33 +21,33 @@
|
|
|
21
21
|
"dependencies": {
|
|
22
22
|
"@aws-crypto/sha256-browser": "3.0.0",
|
|
23
23
|
"@aws-crypto/sha256-js": "3.0.0",
|
|
24
|
-
"@aws-sdk/client-sts": "3.
|
|
24
|
+
"@aws-sdk/client-sts": "3.325.0",
|
|
25
25
|
"@aws-sdk/config-resolver": "3.310.0",
|
|
26
|
-
"@aws-sdk/credential-provider-node": "3.
|
|
26
|
+
"@aws-sdk/credential-provider-node": "3.325.0",
|
|
27
27
|
"@aws-sdk/fetch-http-handler": "3.310.0",
|
|
28
28
|
"@aws-sdk/hash-node": "3.310.0",
|
|
29
29
|
"@aws-sdk/invalid-dependency": "3.310.0",
|
|
30
|
-
"@aws-sdk/middleware-content-length": "3.
|
|
31
|
-
"@aws-sdk/middleware-endpoint": "3.
|
|
32
|
-
"@aws-sdk/middleware-host-header": "3.
|
|
33
|
-
"@aws-sdk/middleware-logger": "3.
|
|
34
|
-
"@aws-sdk/middleware-recursion-detection": "3.
|
|
35
|
-
"@aws-sdk/middleware-retry": "3.
|
|
36
|
-
"@aws-sdk/middleware-serde": "3.
|
|
37
|
-
"@aws-sdk/middleware-signing": "3.
|
|
38
|
-
"@aws-sdk/middleware-stack": "3.
|
|
39
|
-
"@aws-sdk/middleware-user-agent": "3.
|
|
30
|
+
"@aws-sdk/middleware-content-length": "3.325.0",
|
|
31
|
+
"@aws-sdk/middleware-endpoint": "3.325.0",
|
|
32
|
+
"@aws-sdk/middleware-host-header": "3.325.0",
|
|
33
|
+
"@aws-sdk/middleware-logger": "3.325.0",
|
|
34
|
+
"@aws-sdk/middleware-recursion-detection": "3.325.0",
|
|
35
|
+
"@aws-sdk/middleware-retry": "3.325.0",
|
|
36
|
+
"@aws-sdk/middleware-serde": "3.325.0",
|
|
37
|
+
"@aws-sdk/middleware-signing": "3.325.0",
|
|
38
|
+
"@aws-sdk/middleware-stack": "3.325.0",
|
|
39
|
+
"@aws-sdk/middleware-user-agent": "3.325.0",
|
|
40
40
|
"@aws-sdk/node-config-provider": "3.310.0",
|
|
41
41
|
"@aws-sdk/node-http-handler": "3.321.1",
|
|
42
42
|
"@aws-sdk/protocol-http": "3.310.0",
|
|
43
|
-
"@aws-sdk/smithy-client": "3.
|
|
43
|
+
"@aws-sdk/smithy-client": "3.325.0",
|
|
44
44
|
"@aws-sdk/types": "3.310.0",
|
|
45
45
|
"@aws-sdk/url-parser": "3.310.0",
|
|
46
46
|
"@aws-sdk/util-base64": "3.310.0",
|
|
47
47
|
"@aws-sdk/util-body-length-browser": "3.310.0",
|
|
48
48
|
"@aws-sdk/util-body-length-node": "3.310.0",
|
|
49
|
-
"@aws-sdk/util-defaults-mode-browser": "3.
|
|
50
|
-
"@aws-sdk/util-defaults-mode-node": "3.
|
|
49
|
+
"@aws-sdk/util-defaults-mode-browser": "3.325.0",
|
|
50
|
+
"@aws-sdk/util-defaults-mode-node": "3.325.0",
|
|
51
51
|
"@aws-sdk/util-endpoints": "3.319.0",
|
|
52
52
|
"@aws-sdk/util-retry": "3.310.0",
|
|
53
53
|
"@aws-sdk/util-user-agent-browser": "3.310.0",
|