@aws-sdk/client-sagemaker 3.322.0 → 3.325.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -43,6 +43,7 @@ export interface CreateAutoMLJobCommandOutput extends CreateAutoMLJobResponse, _
43
43
  * TargetAttributeName: "STRING_VALUE", // required
44
44
  * ContentType: "STRING_VALUE",
45
45
  * ChannelType: "training" || "validation",
46
+ * SampleWeightAttributeName: "STRING_VALUE",
46
47
  * },
47
48
  * ],
48
49
  * OutputDataConfig: { // AutoMLOutputDataConfig
@@ -4042,7 +4042,7 @@ export interface AutoMLAlgorithmConfig {
4042
4042
  * job. </p>
4043
4043
  * <note>
4044
4044
  * <p>Selected algorithms must belong to the list corresponding to the training mode set in
4045
- * <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobConfig.html#sagemaker-Type-AutoMLJobConfig-Mode">AutoMLJobConfig.Mode</a> (<code>ENSEMBLING</code> or
4045
+ * <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobConfig.html#sagemaker-Type-AutoMLJobConfig-Mode">AutoMLJobConfig.Mode</a> (<code>ENSEMBLING</code> or
4046
4046
  * <code>HYPERPARAMETER_TUNING</code>). Choose a minimum of 1 algorithm. </p>
4047
4047
  * </note>
4048
4048
  * <ul>
@@ -4308,23 +4308,23 @@ export type AutoMLProcessingUnit = (typeof AutoMLProcessingUnit)[keyof typeof Au
4308
4308
  * @public
4309
4309
  * <p>A list of container definitions that describe the different containers that make up an
4310
4310
  * AutoML candidate. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html">
4311
- * ContainerDefinition</a>.</p>
4311
+ * ContainerDefinition</a>.</p>
4312
4312
  */
4313
4313
  export interface AutoMLContainerDefinition {
4314
4314
  /**
4315
4315
  * <p>The Amazon Elastic Container Registry (Amazon ECR) path of the container. For more
4316
4316
  * information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html">
4317
- * ContainerDefinition</a>.</p>
4317
+ * ContainerDefinition</a>.</p>
4318
4318
  */
4319
4319
  Image: string | undefined;
4320
4320
  /**
4321
- * <p>The location of the model artifacts. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html"> ContainerDefinition</a>.</p>
4321
+ * <p>The location of the model artifacts. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html">
4322
+ * ContainerDefinition</a>.</p>
4322
4323
  */
4323
4324
  ModelDataUrl: string | undefined;
4324
4325
  /**
4325
- * <p>The environment variables to set in the container. For more information, see
4326
- * <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html">
4327
- * ContainerDefinition</a>.</p>
4326
+ * <p>The environment variables to set in the container. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html">
4327
+ * ContainerDefinition</a>.</p>
4328
4328
  */
4329
4329
  Environment?: Record<string, string>;
4330
4330
  }
@@ -4459,7 +4459,7 @@ export interface AutoMLCandidateGenerationConfig {
4459
4459
  * </li>
4460
4460
  * </ul>
4461
4461
  * <p>For the list of all algorithms per training mode, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html">
4462
- * AutoMLAlgorithmConfig</a>.</p>
4462
+ * AutoMLAlgorithmConfig</a>.</p>
4463
4463
  * <p>For more information on each algorithm, see the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support">Algorithm support</a> section in Autopilot developer guide.</p>
4464
4464
  */
4465
4465
  AlgorithmsConfig?: AutoMLAlgorithmConfig[];
@@ -4599,6 +4599,20 @@ export interface AutoMLChannel {
4599
4599
  * specifying training and validation channel types, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-data-sources-training-or-validation">How to specify training and validation datasets</a>.</p>
4600
4600
  */
4601
4601
  ChannelType?: AutoMLChannelType | string;
4602
+ /**
4603
+ * <p>If specified, this column name indicates which column of the dataset should be treated
4604
+ * as sample weights for use by the objective metric during the training, evaluation, and
4605
+ * the selection of the best model. This column
4606
+ * is not considered as a predictive feature. For more information on Autopilot metrics,
4607
+ * see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html">Metrics and validation</a>.</p>
4608
+ * <p>Sample weights should be numeric, non-negative, with larger values
4609
+ * indicating which rows are more important than others. Data points that have invalid or no
4610
+ * weight value are excluded.</p>
4611
+ * <p>Support for sample weights
4612
+ * is available in <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html">Ensembling</a>
4613
+ * mode only.</p>
4614
+ */
4615
+ SampleWeightAttributeName?: string;
4602
4616
  }
4603
4617
  /**
4604
4618
  * @public
@@ -4636,9 +4650,8 @@ export interface AutoMLJobArtifacts {
4636
4650
  * @public
4637
4651
  * <p>A channel is a named input source that training algorithms can consume. This channel is
4638
4652
  * used for the non tabular training data of an AutoML job using the V2 API. For tabular
4639
- * training data, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLChannel.html">
4640
- * AutoMLChannel</a>. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Channel.html">
4641
- * Channel</a>.</p>
4653
+ * training data, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLChannel.html"> AutoMLChannel</a>. For
4654
+ * more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Channel.html"> Channel</a>.</p>
4642
4655
  */
4643
4656
  export interface AutoMLJobChannel {
4644
4657
  /**
@@ -4691,7 +4704,8 @@ export interface AutoMLJobCompletionCriteria {
4691
4704
  /**
4692
4705
  * <p>The maximum time, in seconds, that each training job executed inside hyperparameter
4693
4706
  * tuning is allowed to run as part of a hyperparameter tuning job. For more information, see
4694
- * the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StoppingCondition.html">StoppingCondition</a> used by the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html">CreateHyperParameterTuningJob</a> action.</p>
4707
+ * the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StoppingCondition.html">StoppingCondition</a>
4708
+ * used by the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html">CreateHyperParameterTuningJob</a> action.</p>
4695
4709
  * <p>For V2 jobs (jobs created by calling <code>CreateAutoMLJobV2</code>), this field
4696
4710
  * controls the runtime of the job candidate.</p>
4697
4711
  */
@@ -4808,154 +4822,11 @@ export interface AutoMLJobConfig {
4808
4822
  export interface AutoMLJobObjective {
4809
4823
  /**
4810
4824
  * <p>The name of the objective metric used to measure the predictive quality of a machine
4811
- * learning system. This metric is optimized during training to provide the best estimate for
4812
- * model parameter values from data.</p>
4813
- * <p>Here are the options:</p>
4814
- * <dl>
4815
- * <dt>Accuracy</dt>
4816
- * <dd>
4817
- * <p>The ratio of the number of correctly classified items to the total number of
4818
- * (correctly and incorrectly) classified items. It is used for both binary and
4819
- * multiclass classification. Accuracy measures how close the predicted class values
4820
- * are to the actual values. Values for accuracy metrics vary between zero (0) and
4821
- * one (1). A value of 1 indicates perfect accuracy, and 0 indicates perfect
4822
- * inaccuracy.</p>
4823
- * </dd>
4824
- * <dt>AUC</dt>
4825
- * <dd>
4826
- * <p>The area under the curve (AUC) metric is used to compare and evaluate binary
4827
- * classification by algorithms that return probabilities, such as logistic
4828
- * regression. To map the probabilities into classifications, these are compared
4829
- * against a threshold value. </p>
4830
- * <p>The relevant curve is the receiver operating characteristic curve (ROC curve).
4831
- * The ROC curve plots the true positive rate (TPR) of predictions (or recall)
4832
- * against the false positive rate (FPR) as a function of the threshold value, above
4833
- * which a prediction is considered positive. Increasing the threshold results in
4834
- * fewer false positives, but more false negatives. </p>
4835
- * <p>AUC is the area under this ROC curve. Therefore, AUC provides an aggregated
4836
- * measure of the model performance across all possible classification thresholds.
4837
- * AUC scores vary between 0 and 1. A score of 1 indicates perfect accuracy, and a
4838
- * score of one half (0.5) indicates that the prediction is not better than a random
4839
- * classifier. </p>
4840
- * </dd>
4841
- * <dt>BalancedAccuracy</dt>
4842
- * <dd>
4843
- * <p>
4844
- * <code>BalancedAccuracy</code> is a metric that measures the ratio of accurate
4845
- * predictions to all predictions. This ratio is calculated after normalizing true
4846
- * positives (TP) and true negatives (TN) by the total number of positive (P) and
4847
- * negative (N) values. It is used in both binary and multiclass classification and
4848
- * is defined as follows: 0.5*((TP/P)+(TN/N)), with values ranging from 0 to 1.
4849
- * <code>BalancedAccuracy</code> gives a better measure of accuracy when the
4850
- * number of positives or negatives differ greatly from each other in an imbalanced
4851
- * dataset. For example, when only 1% of email is spam. </p>
4852
- * </dd>
4853
- * <dt>F1</dt>
4854
- * <dd>
4855
- * <p>The <code>F1</code> score is the harmonic mean of the precision and recall,
4856
- * defined as follows: F1 = 2 * (precision * recall) / (precision + recall). It is
4857
- * used for binary classification into classes traditionally referred to as positive
4858
- * and negative. Predictions are said to be true when they match their actual
4859
- * (correct) class, and false when they do not. </p>
4860
- * <p>Precision is the ratio of the true positive predictions to all positive
4861
- * predictions, and it includes the false positives in a dataset. Precision measures
4862
- * the quality of the prediction when it predicts the positive class. </p>
4863
- * <p>Recall (or sensitivity) is the ratio of the true positive predictions to all
4864
- * actual positive instances. Recall measures how completely a model predicts the
4865
- * actual class members in a dataset. </p>
4866
- * <p>F1 scores vary between 0 and 1. A score of 1 indicates the best possible
4867
- * performance, and 0 indicates the worst.</p>
4868
- * </dd>
4869
- * <dt>F1macro</dt>
4870
- * <dd>
4871
- * <p>The <code>F1macro</code> score applies F1 scoring to multiclass classification
4872
- * problems. It does this by calculating the precision and recall, and then taking
4873
- * their harmonic mean to calculate the F1 score for each class. Lastly, the F1macro
4874
- * averages the individual scores to obtain the <code>F1macro</code> score.
4875
- * <code>F1macro</code> scores vary between 0 and 1. A score of 1 indicates the
4876
- * best possible performance, and 0 indicates the worst.</p>
4877
- * </dd>
4878
- * <dt>MAE</dt>
4879
- * <dd>
4880
- * <p>The mean absolute error (MAE) is a measure of how different the predicted and
4881
- * actual values are, when they're averaged over all values. MAE is commonly used in
4882
- * regression analysis to understand model prediction error. If there is linear
4883
- * regression, MAE represents the average distance from a predicted line to the
4884
- * actual value. MAE is defined as the sum of absolute errors divided by the number
4885
- * of observations. Values range from 0 to infinity, with smaller numbers indicating
4886
- * a better model fit to the data.</p>
4887
- * </dd>
4888
- * <dt>MSE</dt>
4889
- * <dd>
4890
- * <p>The mean squared error (MSE) is the average of the squared differences between
4891
- * the predicted and actual values. It is used for regression. MSE values are always
4892
- * positive. The better a model is at predicting the actual values, the smaller the
4893
- * MSE value is</p>
4894
- * </dd>
4895
- * <dt>Precision</dt>
4896
- * <dd>
4897
- * <p>Precision measures how well an algorithm predicts the true positives (TP) out
4898
- * of all of the positives that it identifies. It is defined as follows: Precision =
4899
- * TP/(TP+FP), with values ranging from zero (0) to one (1), and is used in binary
4900
- * classification. Precision is an important metric when the cost of a false positive
4901
- * is high. For example, the cost of a false positive is very high if an airplane
4902
- * safety system is falsely deemed safe to fly. A false positive (FP) reflects a
4903
- * positive prediction that is actually negative in the data.</p>
4904
- * </dd>
4905
- * <dt>PrecisionMacro</dt>
4906
- * <dd>
4907
- * <p>The precision macro computes precision for multiclass classification problems.
4908
- * It does this by calculating precision for each class and averaging scores to
4909
- * obtain precision for several classes. <code>PrecisionMacro</code> scores range
4910
- * from zero (0) to one (1). Higher scores reflect the model's ability to predict
4911
- * true positives (TP) out of all of the positives that it identifies, averaged
4912
- * across multiple classes.</p>
4913
- * </dd>
4914
- * <dt>R2</dt>
4915
- * <dd>
4916
- * <p>R2, also known as the coefficient of determination, is used in regression to
4917
- * quantify how much a model can explain the variance of a dependent variable. Values
4918
- * range from one (1) to negative one (-1). Higher numbers indicate a higher fraction
4919
- * of explained variability. <code>R2</code> values close to zero (0) indicate that
4920
- * very little of the dependent variable can be explained by the model. Negative
4921
- * values indicate a poor fit and that the model is outperformed by a constant
4922
- * function. For linear regression, this is a horizontal line.</p>
4923
- * </dd>
4924
- * <dt>Recall</dt>
4925
- * <dd>
4926
- * <p>Recall measures how well an algorithm correctly predicts all of the true
4927
- * positives (TP) in a dataset. A true positive is a positive prediction that is also
4928
- * an actual positive value in the data. Recall is defined as follows: Recall =
4929
- * TP/(TP+FN), with values ranging from 0 to 1. Higher scores reflect a better
4930
- * ability of the model to predict true positives (TP) in the data, and is used in
4931
- * binary classification. </p>
4932
- * <p>Recall is important when testing for cancer because it's used to find all of
4933
- * the true positives. A false positive (FP) reflects a positive prediction that is
4934
- * actually negative in the data. It is often insufficient to measure only recall,
4935
- * because predicting every output as a true positive yield a perfect recall
4936
- * score.</p>
4937
- * </dd>
4938
- * <dt>RecallMacro</dt>
4939
- * <dd>
4940
- * <p>The RecallMacro computes recall for multiclass classification problems by
4941
- * calculating recall for each class and averaging scores to obtain recall for
4942
- * several classes. RecallMacro scores range from 0 to 1. Higher scores reflect the
4943
- * model's ability to predict true positives (TP) in a dataset. Whereas, a true
4944
- * positive reflects a positive prediction that is also an actual positive value in
4945
- * the data. It is often insufficient to measure only recall, because predicting
4946
- * every output as a true positive yields a perfect recall score.</p>
4947
- * </dd>
4948
- * <dt>RMSE</dt>
4949
- * <dd>
4950
- * <p>Root mean squared error (RMSE) measures the square root of the squared
4951
- * difference between predicted and actual values, and it's averaged over all values.
4952
- * It is used in regression analysis to understand model prediction error. It's an
4953
- * important metric to indicate the presence of large model errors and outliers.
4954
- * Values range from zero (0) to infinity, with smaller numbers indicating a better
4955
- * model fit to the data. RMSE is dependent on scale, and should not be used to
4956
- * compare datasets of different sizes.</p>
4957
- * </dd>
4958
- * </dl>
4825
+ * learning system. During training, the model's parameters are updated iteratively to
4826
+ * optimize its performance based on the feedback provided by the objective metric when
4827
+ * evaluating the model on the validation dataset.</p>
4828
+ * <p>For the list of all available metrics supported by Autopilot, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html#autopilot-metrics">Autopilot
4829
+ * metrics</a>.</p>
4959
4830
  * <p>If you do not specify a metric explicitly, the default behavior is to automatically
4960
4831
  * use:</p>
4961
4832
  * <ul>
@@ -7584,9 +7455,9 @@ export interface CreateAutoMLJobRequest {
7584
7455
  AutoMLJobName: string | undefined;
7585
7456
  /**
7586
7457
  * <p>An array of channel objects that describes the input data and its location. Each channel
7587
- * is a named input source. Similar to <code>InputDataConfig</code> supported by <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html">HyperParameterTrainingJobDefinition</a>. Format(s) supported: CSV,
7588
- * Parquet. A minimum of 500 rows is required for the training dataset. There is not a minimum
7589
- * number of rows required for the validation dataset.</p>
7458
+ * is a named input source. Similar to <code>InputDataConfig</code> supported by <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html">HyperParameterTrainingJobDefinition</a>. Format(s) supported: CSV, Parquet. A
7459
+ * minimum of 500 rows is required for the training dataset. There is not a minimum number of
7460
+ * rows required for the validation dataset.</p>
7590
7461
  */
7591
7462
  InputDataConfig: AutoMLChannel[] | undefined;
7592
7463
  /**
@@ -7602,8 +7473,8 @@ export interface CreateAutoMLJobRequest {
7602
7473
  ProblemType?: ProblemType | string;
7603
7474
  /**
7604
7475
  * <p>Defines the objective metric used to measure the predictive quality of an AutoML job. You
7605
- * provide an <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html">AutoMLJobObjective$MetricName</a> and Autopilot infers whether to minimize or
7606
- * maximize it. For <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html">CreateAutoMLJobV2</a>, only <code>Accuracy</code> is supported.</p>
7476
+ * provide an <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html">AutoMLJobObjective$MetricName</a> and Autopilot infers whether to minimize or maximize
7477
+ * it. For <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html">CreateAutoMLJobV2</a>, only <code>Accuracy</code> is supported.</p>
7607
7478
  */
7608
7479
  AutoMLJobObjective?: AutoMLJobObjective;
7609
7480
  /**
@@ -7652,8 +7523,8 @@ export interface CreateAutoMLJobV2Request {
7652
7523
  AutoMLJobName: string | undefined;
7653
7524
  /**
7654
7525
  * <p>An array of channel objects describing the input data and their location. Each channel
7655
- * is a named input source. Similar to <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig">InputDataConfig</a> supported by <code>CreateAutoMLJob</code>. The
7656
- * supported formats depend on the problem type:</p>
7526
+ * is a named input source. Similar to <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig">InputDataConfig</a> supported by <code>CreateAutoMLJob</code>. The supported
7527
+ * formats depend on the problem type:</p>
7657
7528
  * <ul>
7658
7529
  * <li>
7659
7530
  * <p>ImageClassification: S3Prefix, <code>ManifestFile</code>,
@@ -978,6 +978,7 @@ export interface AutoMLChannel {
978
978
  TargetAttributeName: string | undefined;
979
979
  ContentType?: string;
980
980
  ChannelType?: AutoMLChannelType | string;
981
+ SampleWeightAttributeName?: string;
981
982
  }
982
983
  export interface AutoMLDataSplitConfig {
983
984
  ValidationFraction?: number;
package/package.json CHANGED
@@ -1,7 +1,7 @@
1
1
  {
2
2
  "name": "@aws-sdk/client-sagemaker",
3
3
  "description": "AWS SDK for JavaScript Sagemaker Client for Node.js, Browser and React Native",
4
- "version": "3.322.0",
4
+ "version": "3.325.0",
5
5
  "scripts": {
6
6
  "build": "concurrently 'yarn:build:cjs' 'yarn:build:es' 'yarn:build:types'",
7
7
  "build:cjs": "tsc -p tsconfig.cjs.json",
@@ -21,33 +21,33 @@
21
21
  "dependencies": {
22
22
  "@aws-crypto/sha256-browser": "3.0.0",
23
23
  "@aws-crypto/sha256-js": "3.0.0",
24
- "@aws-sdk/client-sts": "3.321.1",
24
+ "@aws-sdk/client-sts": "3.325.0",
25
25
  "@aws-sdk/config-resolver": "3.310.0",
26
- "@aws-sdk/credential-provider-node": "3.321.1",
26
+ "@aws-sdk/credential-provider-node": "3.325.0",
27
27
  "@aws-sdk/fetch-http-handler": "3.310.0",
28
28
  "@aws-sdk/hash-node": "3.310.0",
29
29
  "@aws-sdk/invalid-dependency": "3.310.0",
30
- "@aws-sdk/middleware-content-length": "3.310.0",
31
- "@aws-sdk/middleware-endpoint": "3.310.0",
32
- "@aws-sdk/middleware-host-header": "3.310.0",
33
- "@aws-sdk/middleware-logger": "3.310.0",
34
- "@aws-sdk/middleware-recursion-detection": "3.310.0",
35
- "@aws-sdk/middleware-retry": "3.310.0",
36
- "@aws-sdk/middleware-serde": "3.310.0",
37
- "@aws-sdk/middleware-signing": "3.310.0",
38
- "@aws-sdk/middleware-stack": "3.310.0",
39
- "@aws-sdk/middleware-user-agent": "3.319.0",
30
+ "@aws-sdk/middleware-content-length": "3.325.0",
31
+ "@aws-sdk/middleware-endpoint": "3.325.0",
32
+ "@aws-sdk/middleware-host-header": "3.325.0",
33
+ "@aws-sdk/middleware-logger": "3.325.0",
34
+ "@aws-sdk/middleware-recursion-detection": "3.325.0",
35
+ "@aws-sdk/middleware-retry": "3.325.0",
36
+ "@aws-sdk/middleware-serde": "3.325.0",
37
+ "@aws-sdk/middleware-signing": "3.325.0",
38
+ "@aws-sdk/middleware-stack": "3.325.0",
39
+ "@aws-sdk/middleware-user-agent": "3.325.0",
40
40
  "@aws-sdk/node-config-provider": "3.310.0",
41
41
  "@aws-sdk/node-http-handler": "3.321.1",
42
42
  "@aws-sdk/protocol-http": "3.310.0",
43
- "@aws-sdk/smithy-client": "3.316.0",
43
+ "@aws-sdk/smithy-client": "3.325.0",
44
44
  "@aws-sdk/types": "3.310.0",
45
45
  "@aws-sdk/url-parser": "3.310.0",
46
46
  "@aws-sdk/util-base64": "3.310.0",
47
47
  "@aws-sdk/util-body-length-browser": "3.310.0",
48
48
  "@aws-sdk/util-body-length-node": "3.310.0",
49
- "@aws-sdk/util-defaults-mode-browser": "3.316.0",
50
- "@aws-sdk/util-defaults-mode-node": "3.316.0",
49
+ "@aws-sdk/util-defaults-mode-browser": "3.325.0",
50
+ "@aws-sdk/util-defaults-mode-node": "3.325.0",
51
51
  "@aws-sdk/util-endpoints": "3.319.0",
52
52
  "@aws-sdk/util-retry": "3.310.0",
53
53
  "@aws-sdk/util-user-agent-browser": "3.310.0",