@aws-sdk/client-sagemaker 3.234.0 → 3.235.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,378 +1,7 @@
1
1
  "use strict";
2
2
  Object.defineProperty(exports, "__esModule", { value: true });
3
3
  exports.ruleSet = void 0;
4
- exports.ruleSet = {
5
- version: "1.0",
6
- parameters: {
7
- Region: {
8
- builtIn: "AWS::Region",
9
- required: true,
10
- documentation: "The AWS region used to dispatch the request.",
11
- type: "String",
12
- },
13
- UseDualStack: {
14
- builtIn: "AWS::UseDualStack",
15
- required: true,
16
- default: false,
17
- documentation: "When true, use the dual-stack endpoint. If the configured endpoint does not support dual-stack, dispatching the request MAY return an error.",
18
- type: "Boolean",
19
- },
20
- UseFIPS: {
21
- builtIn: "AWS::UseFIPS",
22
- required: true,
23
- default: false,
24
- documentation: "When true, send this request to the FIPS-compliant regional endpoint. If the configured endpoint does not have a FIPS compliant endpoint, dispatching the request will return an error.",
25
- type: "Boolean",
26
- },
27
- Endpoint: {
28
- builtIn: "SDK::Endpoint",
29
- required: false,
30
- documentation: "Override the endpoint used to send this request",
31
- type: "String",
32
- },
33
- },
34
- rules: [
35
- {
36
- conditions: [
37
- {
38
- fn: "aws.partition",
39
- argv: [
40
- {
41
- ref: "Region",
42
- },
43
- ],
44
- assign: "PartitionResult",
45
- },
46
- ],
47
- type: "tree",
48
- rules: [
49
- {
50
- conditions: [
51
- {
52
- fn: "isSet",
53
- argv: [
54
- {
55
- ref: "Endpoint",
56
- },
57
- ],
58
- },
59
- ],
60
- type: "tree",
61
- rules: [
62
- {
63
- conditions: [
64
- {
65
- fn: "booleanEquals",
66
- argv: [
67
- {
68
- ref: "UseFIPS",
69
- },
70
- true,
71
- ],
72
- },
73
- ],
74
- error: "Invalid Configuration: FIPS and custom endpoint are not supported",
75
- type: "error",
76
- },
77
- {
78
- conditions: [],
79
- type: "tree",
80
- rules: [
81
- {
82
- conditions: [
83
- {
84
- fn: "booleanEquals",
85
- argv: [
86
- {
87
- ref: "UseDualStack",
88
- },
89
- true,
90
- ],
91
- },
92
- ],
93
- error: "Invalid Configuration: Dualstack and custom endpoint are not supported",
94
- type: "error",
95
- },
96
- {
97
- conditions: [],
98
- endpoint: {
99
- url: {
100
- ref: "Endpoint",
101
- },
102
- properties: {},
103
- headers: {},
104
- },
105
- type: "endpoint",
106
- },
107
- ],
108
- },
109
- ],
110
- },
111
- {
112
- conditions: [
113
- {
114
- fn: "booleanEquals",
115
- argv: [
116
- {
117
- ref: "UseFIPS",
118
- },
119
- true,
120
- ],
121
- },
122
- {
123
- fn: "booleanEquals",
124
- argv: [
125
- {
126
- ref: "UseDualStack",
127
- },
128
- true,
129
- ],
130
- },
131
- ],
132
- type: "tree",
133
- rules: [
134
- {
135
- conditions: [
136
- {
137
- fn: "booleanEquals",
138
- argv: [
139
- true,
140
- {
141
- fn: "getAttr",
142
- argv: [
143
- {
144
- ref: "PartitionResult",
145
- },
146
- "supportsFIPS",
147
- ],
148
- },
149
- ],
150
- },
151
- {
152
- fn: "booleanEquals",
153
- argv: [
154
- true,
155
- {
156
- fn: "getAttr",
157
- argv: [
158
- {
159
- ref: "PartitionResult",
160
- },
161
- "supportsDualStack",
162
- ],
163
- },
164
- ],
165
- },
166
- ],
167
- type: "tree",
168
- rules: [
169
- {
170
- conditions: [],
171
- endpoint: {
172
- url: "https://api.sagemaker-fips.{Region}.{PartitionResult#dualStackDnsSuffix}",
173
- properties: {},
174
- headers: {},
175
- },
176
- type: "endpoint",
177
- },
178
- ],
179
- },
180
- {
181
- conditions: [],
182
- error: "FIPS and DualStack are enabled, but this partition does not support one or both",
183
- type: "error",
184
- },
185
- ],
186
- },
187
- {
188
- conditions: [
189
- {
190
- fn: "booleanEquals",
191
- argv: [
192
- {
193
- ref: "UseFIPS",
194
- },
195
- true,
196
- ],
197
- },
198
- ],
199
- type: "tree",
200
- rules: [
201
- {
202
- conditions: [
203
- {
204
- fn: "booleanEquals",
205
- argv: [
206
- true,
207
- {
208
- fn: "getAttr",
209
- argv: [
210
- {
211
- ref: "PartitionResult",
212
- },
213
- "supportsFIPS",
214
- ],
215
- },
216
- ],
217
- },
218
- ],
219
- type: "tree",
220
- rules: [
221
- {
222
- conditions: [],
223
- type: "tree",
224
- rules: [
225
- {
226
- conditions: [
227
- {
228
- fn: "stringEquals",
229
- argv: [
230
- "aws",
231
- {
232
- fn: "getAttr",
233
- argv: [
234
- {
235
- ref: "PartitionResult",
236
- },
237
- "name",
238
- ],
239
- },
240
- ],
241
- },
242
- ],
243
- endpoint: {
244
- url: "https://api-fips.sagemaker.{Region}.{PartitionResult#dnsSuffix}",
245
- properties: {},
246
- headers: {},
247
- },
248
- type: "endpoint",
249
- },
250
- {
251
- conditions: [
252
- {
253
- fn: "stringEquals",
254
- argv: [
255
- {
256
- ref: "Region",
257
- },
258
- "us-gov-west-1-secondary",
259
- ],
260
- },
261
- ],
262
- endpoint: {
263
- url: "https://api.sagemaker.us-gov-west-1.amazonaws.com",
264
- properties: {},
265
- headers: {},
266
- },
267
- type: "endpoint",
268
- },
269
- {
270
- conditions: [
271
- {
272
- fn: "stringEquals",
273
- argv: [
274
- "aws-us-gov",
275
- {
276
- fn: "getAttr",
277
- argv: [
278
- {
279
- ref: "PartitionResult",
280
- },
281
- "name",
282
- ],
283
- },
284
- ],
285
- },
286
- ],
287
- endpoint: {
288
- url: "https://api-fips.sagemaker.{Region}.{PartitionResult#dnsSuffix}",
289
- properties: {},
290
- headers: {},
291
- },
292
- type: "endpoint",
293
- },
294
- {
295
- conditions: [],
296
- endpoint: {
297
- url: "https://api.sagemaker-fips.{Region}.{PartitionResult#dnsSuffix}",
298
- properties: {},
299
- headers: {},
300
- },
301
- type: "endpoint",
302
- },
303
- ],
304
- },
305
- ],
306
- },
307
- {
308
- conditions: [],
309
- error: "FIPS is enabled but this partition does not support FIPS",
310
- type: "error",
311
- },
312
- ],
313
- },
314
- {
315
- conditions: [
316
- {
317
- fn: "booleanEquals",
318
- argv: [
319
- {
320
- ref: "UseDualStack",
321
- },
322
- true,
323
- ],
324
- },
325
- ],
326
- type: "tree",
327
- rules: [
328
- {
329
- conditions: [
330
- {
331
- fn: "booleanEquals",
332
- argv: [
333
- true,
334
- {
335
- fn: "getAttr",
336
- argv: [
337
- {
338
- ref: "PartitionResult",
339
- },
340
- "supportsDualStack",
341
- ],
342
- },
343
- ],
344
- },
345
- ],
346
- type: "tree",
347
- rules: [
348
- {
349
- conditions: [],
350
- endpoint: {
351
- url: "https://api.sagemaker.{Region}.{PartitionResult#dualStackDnsSuffix}",
352
- properties: {},
353
- headers: {},
354
- },
355
- type: "endpoint",
356
- },
357
- ],
358
- },
359
- {
360
- conditions: [],
361
- error: "DualStack is enabled but this partition does not support DualStack",
362
- type: "error",
363
- },
364
- ],
365
- },
366
- {
367
- conditions: [],
368
- endpoint: {
369
- url: "https://api.sagemaker.{Region}.{PartitionResult#dnsSuffix}",
370
- properties: {},
371
- headers: {},
372
- },
373
- type: "endpoint",
374
- },
375
- ],
376
- },
377
- ],
378
- };
4
+ const v = "fn", w = "argv", x = "ref";
5
+ const a = true, b = false, c = "String", d = "Boolean", e = "PartitionResult", f = "tree", g = "error", h = "endpoint", i = "stringEquals", j = { [x]: "Region" }, k = { [x]: "Endpoint" }, l = { [v]: "booleanEquals", [w]: [{ [x]: "UseFIPS" }, true] }, m = { [v]: "booleanEquals", [w]: [{ [x]: "UseDualStack" }, true] }, n = {}, o = { [v]: "booleanEquals", [w]: [true, { [v]: "getAttr", [w]: [{ [x]: e }, "supportsFIPS"] }] }, p = { [v]: "booleanEquals", [w]: [true, { [v]: "getAttr", [w]: [{ [x]: e }, "supportsDualStack"] }] }, q = { [v]: "getAttr", [w]: [{ [x]: e }, "name"] }, r = { "url": "https://api-fips.sagemaker.{Region}.{PartitionResult#dnsSuffix}", "properties": {}, "headers": {} }, s = [l], t = [], u = [m];
6
+ const _data = { version: "1.0", parameters: { Region: { builtIn: "AWS::Region", required: a, documentation: "The AWS region used to dispatch the request.", type: c }, UseDualStack: { builtIn: "AWS::UseDualStack", required: a, default: b, documentation: "When true, use the dual-stack endpoint. If the configured endpoint does not support dual-stack, dispatching the request MAY return an error.", type: d }, UseFIPS: { builtIn: "AWS::UseFIPS", required: a, default: b, documentation: "When true, send this request to the FIPS-compliant regional endpoint. If the configured endpoint does not have a FIPS compliant endpoint, dispatching the request will return an error.", type: d }, Endpoint: { builtIn: "SDK::Endpoint", required: b, documentation: "Override the endpoint used to send this request", type: c } }, rules: [{ conditions: [{ [v]: "aws.partition", [w]: [j], assign: e }], type: f, rules: [{ conditions: [{ [v]: "isSet", [w]: [k] }], type: f, rules: [{ conditions: s, error: "Invalid Configuration: FIPS and custom endpoint are not supported", type: g }, { conditions: t, type: f, rules: [{ conditions: u, error: "Invalid Configuration: Dualstack and custom endpoint are not supported", type: g }, { conditions: t, endpoint: { url: k, properties: n, headers: n }, type: h }] }] }, { conditions: [l, m], type: f, rules: [{ conditions: [o, p], type: f, rules: [{ conditions: t, endpoint: { url: "https://api.sagemaker-fips.{Region}.{PartitionResult#dualStackDnsSuffix}", properties: n, headers: n }, type: h }] }, { conditions: t, error: "FIPS and DualStack are enabled, but this partition does not support one or both", type: g }] }, { conditions: s, type: f, rules: [{ conditions: [o], type: f, rules: [{ conditions: t, type: f, rules: [{ conditions: [{ [v]: i, [w]: ["aws", q] }], endpoint: r, type: h }, { conditions: [{ [v]: i, [w]: [j, "us-gov-west-1-secondary"] }], endpoint: { url: "https://api.sagemaker.us-gov-west-1.amazonaws.com", properties: n, headers: n }, type: h }, { conditions: [{ [v]: i, [w]: ["aws-us-gov", q] }], endpoint: r, type: h }, { conditions: t, endpoint: { url: "https://api.sagemaker-fips.{Region}.{PartitionResult#dnsSuffix}", properties: n, headers: n }, type: h }] }] }, { conditions: t, error: "FIPS is enabled but this partition does not support FIPS", type: g }] }, { conditions: u, type: f, rules: [{ conditions: [p], type: f, rules: [{ conditions: t, endpoint: { url: "https://api.sagemaker.{Region}.{PartitionResult#dualStackDnsSuffix}", properties: n, headers: n }, type: h }] }, { conditions: t, error: "DualStack is enabled but this partition does not support DualStack", type: g }] }, { conditions: t, endpoint: { url: "https://api.sagemaker.{Region}.{PartitionResult#dnsSuffix}", properties: n, headers: n }, type: h }] }] };
7
+ exports.ruleSet = _data;
@@ -481,9 +481,17 @@ var AutoMLMetricEnum;
481
481
  (function (AutoMLMetricEnum) {
482
482
  AutoMLMetricEnum["ACCURACY"] = "Accuracy";
483
483
  AutoMLMetricEnum["AUC"] = "AUC";
484
+ AutoMLMetricEnum["BALANCED_ACCURACY"] = "BalancedAccuracy";
484
485
  AutoMLMetricEnum["F1"] = "F1";
485
486
  AutoMLMetricEnum["F1_MACRO"] = "F1macro";
487
+ AutoMLMetricEnum["MAE"] = "MAE";
486
488
  AutoMLMetricEnum["MSE"] = "MSE";
489
+ AutoMLMetricEnum["PRECISION"] = "Precision";
490
+ AutoMLMetricEnum["PRECISION_MACRO"] = "PrecisionMacro";
491
+ AutoMLMetricEnum["R2"] = "R2";
492
+ AutoMLMetricEnum["RECALL"] = "Recall";
493
+ AutoMLMetricEnum["RECALL_MACRO"] = "RecallMacro";
494
+ AutoMLMetricEnum["RMSE"] = "RMSE";
487
495
  })(AutoMLMetricEnum = exports.AutoMLMetricEnum || (exports.AutoMLMetricEnum = {}));
488
496
  var MetricSetSource;
489
497
  (function (MetricSetSource) {
@@ -1,375 +1,4 @@
1
- export const ruleSet = {
2
- version: "1.0",
3
- parameters: {
4
- Region: {
5
- builtIn: "AWS::Region",
6
- required: true,
7
- documentation: "The AWS region used to dispatch the request.",
8
- type: "String",
9
- },
10
- UseDualStack: {
11
- builtIn: "AWS::UseDualStack",
12
- required: true,
13
- default: false,
14
- documentation: "When true, use the dual-stack endpoint. If the configured endpoint does not support dual-stack, dispatching the request MAY return an error.",
15
- type: "Boolean",
16
- },
17
- UseFIPS: {
18
- builtIn: "AWS::UseFIPS",
19
- required: true,
20
- default: false,
21
- documentation: "When true, send this request to the FIPS-compliant regional endpoint. If the configured endpoint does not have a FIPS compliant endpoint, dispatching the request will return an error.",
22
- type: "Boolean",
23
- },
24
- Endpoint: {
25
- builtIn: "SDK::Endpoint",
26
- required: false,
27
- documentation: "Override the endpoint used to send this request",
28
- type: "String",
29
- },
30
- },
31
- rules: [
32
- {
33
- conditions: [
34
- {
35
- fn: "aws.partition",
36
- argv: [
37
- {
38
- ref: "Region",
39
- },
40
- ],
41
- assign: "PartitionResult",
42
- },
43
- ],
44
- type: "tree",
45
- rules: [
46
- {
47
- conditions: [
48
- {
49
- fn: "isSet",
50
- argv: [
51
- {
52
- ref: "Endpoint",
53
- },
54
- ],
55
- },
56
- ],
57
- type: "tree",
58
- rules: [
59
- {
60
- conditions: [
61
- {
62
- fn: "booleanEquals",
63
- argv: [
64
- {
65
- ref: "UseFIPS",
66
- },
67
- true,
68
- ],
69
- },
70
- ],
71
- error: "Invalid Configuration: FIPS and custom endpoint are not supported",
72
- type: "error",
73
- },
74
- {
75
- conditions: [],
76
- type: "tree",
77
- rules: [
78
- {
79
- conditions: [
80
- {
81
- fn: "booleanEquals",
82
- argv: [
83
- {
84
- ref: "UseDualStack",
85
- },
86
- true,
87
- ],
88
- },
89
- ],
90
- error: "Invalid Configuration: Dualstack and custom endpoint are not supported",
91
- type: "error",
92
- },
93
- {
94
- conditions: [],
95
- endpoint: {
96
- url: {
97
- ref: "Endpoint",
98
- },
99
- properties: {},
100
- headers: {},
101
- },
102
- type: "endpoint",
103
- },
104
- ],
105
- },
106
- ],
107
- },
108
- {
109
- conditions: [
110
- {
111
- fn: "booleanEquals",
112
- argv: [
113
- {
114
- ref: "UseFIPS",
115
- },
116
- true,
117
- ],
118
- },
119
- {
120
- fn: "booleanEquals",
121
- argv: [
122
- {
123
- ref: "UseDualStack",
124
- },
125
- true,
126
- ],
127
- },
128
- ],
129
- type: "tree",
130
- rules: [
131
- {
132
- conditions: [
133
- {
134
- fn: "booleanEquals",
135
- argv: [
136
- true,
137
- {
138
- fn: "getAttr",
139
- argv: [
140
- {
141
- ref: "PartitionResult",
142
- },
143
- "supportsFIPS",
144
- ],
145
- },
146
- ],
147
- },
148
- {
149
- fn: "booleanEquals",
150
- argv: [
151
- true,
152
- {
153
- fn: "getAttr",
154
- argv: [
155
- {
156
- ref: "PartitionResult",
157
- },
158
- "supportsDualStack",
159
- ],
160
- },
161
- ],
162
- },
163
- ],
164
- type: "tree",
165
- rules: [
166
- {
167
- conditions: [],
168
- endpoint: {
169
- url: "https://api.sagemaker-fips.{Region}.{PartitionResult#dualStackDnsSuffix}",
170
- properties: {},
171
- headers: {},
172
- },
173
- type: "endpoint",
174
- },
175
- ],
176
- },
177
- {
178
- conditions: [],
179
- error: "FIPS and DualStack are enabled, but this partition does not support one or both",
180
- type: "error",
181
- },
182
- ],
183
- },
184
- {
185
- conditions: [
186
- {
187
- fn: "booleanEquals",
188
- argv: [
189
- {
190
- ref: "UseFIPS",
191
- },
192
- true,
193
- ],
194
- },
195
- ],
196
- type: "tree",
197
- rules: [
198
- {
199
- conditions: [
200
- {
201
- fn: "booleanEquals",
202
- argv: [
203
- true,
204
- {
205
- fn: "getAttr",
206
- argv: [
207
- {
208
- ref: "PartitionResult",
209
- },
210
- "supportsFIPS",
211
- ],
212
- },
213
- ],
214
- },
215
- ],
216
- type: "tree",
217
- rules: [
218
- {
219
- conditions: [],
220
- type: "tree",
221
- rules: [
222
- {
223
- conditions: [
224
- {
225
- fn: "stringEquals",
226
- argv: [
227
- "aws",
228
- {
229
- fn: "getAttr",
230
- argv: [
231
- {
232
- ref: "PartitionResult",
233
- },
234
- "name",
235
- ],
236
- },
237
- ],
238
- },
239
- ],
240
- endpoint: {
241
- url: "https://api-fips.sagemaker.{Region}.{PartitionResult#dnsSuffix}",
242
- properties: {},
243
- headers: {},
244
- },
245
- type: "endpoint",
246
- },
247
- {
248
- conditions: [
249
- {
250
- fn: "stringEquals",
251
- argv: [
252
- {
253
- ref: "Region",
254
- },
255
- "us-gov-west-1-secondary",
256
- ],
257
- },
258
- ],
259
- endpoint: {
260
- url: "https://api.sagemaker.us-gov-west-1.amazonaws.com",
261
- properties: {},
262
- headers: {},
263
- },
264
- type: "endpoint",
265
- },
266
- {
267
- conditions: [
268
- {
269
- fn: "stringEquals",
270
- argv: [
271
- "aws-us-gov",
272
- {
273
- fn: "getAttr",
274
- argv: [
275
- {
276
- ref: "PartitionResult",
277
- },
278
- "name",
279
- ],
280
- },
281
- ],
282
- },
283
- ],
284
- endpoint: {
285
- url: "https://api-fips.sagemaker.{Region}.{PartitionResult#dnsSuffix}",
286
- properties: {},
287
- headers: {},
288
- },
289
- type: "endpoint",
290
- },
291
- {
292
- conditions: [],
293
- endpoint: {
294
- url: "https://api.sagemaker-fips.{Region}.{PartitionResult#dnsSuffix}",
295
- properties: {},
296
- headers: {},
297
- },
298
- type: "endpoint",
299
- },
300
- ],
301
- },
302
- ],
303
- },
304
- {
305
- conditions: [],
306
- error: "FIPS is enabled but this partition does not support FIPS",
307
- type: "error",
308
- },
309
- ],
310
- },
311
- {
312
- conditions: [
313
- {
314
- fn: "booleanEquals",
315
- argv: [
316
- {
317
- ref: "UseDualStack",
318
- },
319
- true,
320
- ],
321
- },
322
- ],
323
- type: "tree",
324
- rules: [
325
- {
326
- conditions: [
327
- {
328
- fn: "booleanEquals",
329
- argv: [
330
- true,
331
- {
332
- fn: "getAttr",
333
- argv: [
334
- {
335
- ref: "PartitionResult",
336
- },
337
- "supportsDualStack",
338
- ],
339
- },
340
- ],
341
- },
342
- ],
343
- type: "tree",
344
- rules: [
345
- {
346
- conditions: [],
347
- endpoint: {
348
- url: "https://api.sagemaker.{Region}.{PartitionResult#dualStackDnsSuffix}",
349
- properties: {},
350
- headers: {},
351
- },
352
- type: "endpoint",
353
- },
354
- ],
355
- },
356
- {
357
- conditions: [],
358
- error: "DualStack is enabled but this partition does not support DualStack",
359
- type: "error",
360
- },
361
- ],
362
- },
363
- {
364
- conditions: [],
365
- endpoint: {
366
- url: "https://api.sagemaker.{Region}.{PartitionResult#dnsSuffix}",
367
- properties: {},
368
- headers: {},
369
- },
370
- type: "endpoint",
371
- },
372
- ],
373
- },
374
- ],
375
- };
1
+ const v = "fn", w = "argv", x = "ref";
2
+ const a = true, b = false, c = "String", d = "Boolean", e = "PartitionResult", f = "tree", g = "error", h = "endpoint", i = "stringEquals", j = { [x]: "Region" }, k = { [x]: "Endpoint" }, l = { [v]: "booleanEquals", [w]: [{ [x]: "UseFIPS" }, true] }, m = { [v]: "booleanEquals", [w]: [{ [x]: "UseDualStack" }, true] }, n = {}, o = { [v]: "booleanEquals", [w]: [true, { [v]: "getAttr", [w]: [{ [x]: e }, "supportsFIPS"] }] }, p = { [v]: "booleanEquals", [w]: [true, { [v]: "getAttr", [w]: [{ [x]: e }, "supportsDualStack"] }] }, q = { [v]: "getAttr", [w]: [{ [x]: e }, "name"] }, r = { "url": "https://api-fips.sagemaker.{Region}.{PartitionResult#dnsSuffix}", "properties": {}, "headers": {} }, s = [l], t = [], u = [m];
3
+ const _data = { version: "1.0", parameters: { Region: { builtIn: "AWS::Region", required: a, documentation: "The AWS region used to dispatch the request.", type: c }, UseDualStack: { builtIn: "AWS::UseDualStack", required: a, default: b, documentation: "When true, use the dual-stack endpoint. If the configured endpoint does not support dual-stack, dispatching the request MAY return an error.", type: d }, UseFIPS: { builtIn: "AWS::UseFIPS", required: a, default: b, documentation: "When true, send this request to the FIPS-compliant regional endpoint. If the configured endpoint does not have a FIPS compliant endpoint, dispatching the request will return an error.", type: d }, Endpoint: { builtIn: "SDK::Endpoint", required: b, documentation: "Override the endpoint used to send this request", type: c } }, rules: [{ conditions: [{ [v]: "aws.partition", [w]: [j], assign: e }], type: f, rules: [{ conditions: [{ [v]: "isSet", [w]: [k] }], type: f, rules: [{ conditions: s, error: "Invalid Configuration: FIPS and custom endpoint are not supported", type: g }, { conditions: t, type: f, rules: [{ conditions: u, error: "Invalid Configuration: Dualstack and custom endpoint are not supported", type: g }, { conditions: t, endpoint: { url: k, properties: n, headers: n }, type: h }] }] }, { conditions: [l, m], type: f, rules: [{ conditions: [o, p], type: f, rules: [{ conditions: t, endpoint: { url: "https://api.sagemaker-fips.{Region}.{PartitionResult#dualStackDnsSuffix}", properties: n, headers: n }, type: h }] }, { conditions: t, error: "FIPS and DualStack are enabled, but this partition does not support one or both", type: g }] }, { conditions: s, type: f, rules: [{ conditions: [o], type: f, rules: [{ conditions: t, type: f, rules: [{ conditions: [{ [v]: i, [w]: ["aws", q] }], endpoint: r, type: h }, { conditions: [{ [v]: i, [w]: [j, "us-gov-west-1-secondary"] }], endpoint: { url: "https://api.sagemaker.us-gov-west-1.amazonaws.com", properties: n, headers: n }, type: h }, { conditions: [{ [v]: i, [w]: ["aws-us-gov", q] }], endpoint: r, type: h }, { conditions: t, endpoint: { url: "https://api.sagemaker-fips.{Region}.{PartitionResult#dnsSuffix}", properties: n, headers: n }, type: h }] }] }, { conditions: t, error: "FIPS is enabled but this partition does not support FIPS", type: g }] }, { conditions: u, type: f, rules: [{ conditions: [p], type: f, rules: [{ conditions: t, endpoint: { url: "https://api.sagemaker.{Region}.{PartitionResult#dualStackDnsSuffix}", properties: n, headers: n }, type: h }] }, { conditions: t, error: "DualStack is enabled but this partition does not support DualStack", type: g }] }, { conditions: t, endpoint: { url: "https://api.sagemaker.{Region}.{PartitionResult#dnsSuffix}", properties: n, headers: n }, type: h }] }] };
4
+ export const ruleSet = _data;
@@ -471,9 +471,17 @@ export var AutoMLMetricEnum;
471
471
  (function (AutoMLMetricEnum) {
472
472
  AutoMLMetricEnum["ACCURACY"] = "Accuracy";
473
473
  AutoMLMetricEnum["AUC"] = "AUC";
474
+ AutoMLMetricEnum["BALANCED_ACCURACY"] = "BalancedAccuracy";
474
475
  AutoMLMetricEnum["F1"] = "F1";
475
476
  AutoMLMetricEnum["F1_MACRO"] = "F1macro";
477
+ AutoMLMetricEnum["MAE"] = "MAE";
476
478
  AutoMLMetricEnum["MSE"] = "MSE";
479
+ AutoMLMetricEnum["PRECISION"] = "Precision";
480
+ AutoMLMetricEnum["PRECISION_MACRO"] = "PrecisionMacro";
481
+ AutoMLMetricEnum["R2"] = "R2";
482
+ AutoMLMetricEnum["RECALL"] = "Recall";
483
+ AutoMLMetricEnum["RECALL_MACRO"] = "RecallMacro";
484
+ AutoMLMetricEnum["RMSE"] = "RMSE";
477
485
  })(AutoMLMetricEnum || (AutoMLMetricEnum = {}));
478
486
  export var MetricSetSource;
479
487
  (function (MetricSetSource) {
@@ -680,10 +680,14 @@ export declare class SageMaker extends SageMakerClient {
680
680
  createEndpointConfig(args: CreateEndpointConfigCommandInput, cb: (err: any, data?: CreateEndpointConfigCommandOutput) => void): void;
681
681
  createEndpointConfig(args: CreateEndpointConfigCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: CreateEndpointConfigCommandOutput) => void): void;
682
682
  /**
683
- * <p>Creates an SageMaker <i>experiment</i>. An experiment is a collection of
683
+ * <p>Creates a SageMaker <i>experiment</i>. An experiment is a collection of
684
684
  * <i>trials</i> that are observed, compared and evaluated as a group. A trial is
685
685
  * a set of steps, called <i>trial components</i>, that produce a machine learning
686
686
  * model.</p>
687
+ * <note>
688
+ * <p>In the Studio UI, trials are referred to as <i>run groups</i> and trial
689
+ * components are referred to as <i>runs</i>.</p>
690
+ * </note>
687
691
  * <p>The goal of an experiment is to determine the components that produce the best model.
688
692
  * Multiple trials are performed, each one isolating and measuring the impact of a change to one
689
693
  * or more inputs, while keeping the remaining inputs constant.</p>
@@ -8,10 +8,14 @@ export interface CreateExperimentCommandInput extends CreateExperimentRequest {
8
8
  export interface CreateExperimentCommandOutput extends CreateExperimentResponse, __MetadataBearer {
9
9
  }
10
10
  /**
11
- * <p>Creates an SageMaker <i>experiment</i>. An experiment is a collection of
11
+ * <p>Creates a SageMaker <i>experiment</i>. An experiment is a collection of
12
12
  * <i>trials</i> that are observed, compared and evaluated as a group. A trial is
13
13
  * a set of steps, called <i>trial components</i>, that produce a machine learning
14
14
  * model.</p>
15
+ * <note>
16
+ * <p>In the Studio UI, trials are referred to as <i>run groups</i> and trial
17
+ * components are referred to as <i>runs</i>.</p>
18
+ * </note>
15
19
  * <p>The goal of an experiment is to determine the components that produce the best model.
16
20
  * Multiple trials are performed, each one isolating and measuring the impact of a change to one
17
21
  * or more inputs, while keeping the remaining inputs constant.</p>
@@ -3634,9 +3634,17 @@ export interface CandidateArtifactLocations {
3634
3634
  export declare enum AutoMLMetricEnum {
3635
3635
  ACCURACY = "Accuracy",
3636
3636
  AUC = "AUC",
3637
+ BALANCED_ACCURACY = "BalancedAccuracy",
3637
3638
  F1 = "F1",
3638
3639
  F1_MACRO = "F1macro",
3639
- MSE = "MSE"
3640
+ MAE = "MAE",
3641
+ MSE = "MSE",
3642
+ PRECISION = "Precision",
3643
+ PRECISION_MACRO = "PrecisionMacro",
3644
+ R2 = "R2",
3645
+ RECALL = "Recall",
3646
+ RECALL_MACRO = "RecallMacro",
3647
+ RMSE = "RMSE"
3640
3648
  }
3641
3649
  export declare enum MetricSetSource {
3642
3650
  TEST = "Test",
@@ -4089,67 +4097,151 @@ export interface AutoMLJobObjective {
4089
4097
  * learning system. This metric is optimized during training to provide the best estimate for
4090
4098
  * model parameter values from data.</p>
4091
4099
  * <p>Here are the options:</p>
4092
- * <ul>
4093
- * <li>
4094
- * <p>
4095
- * <code>MSE</code>: The mean squared error (MSE) is the average of the squared
4096
- * differences between the predicted and actual values. It is used for regression. MSE
4097
- * values are always positive: the better a model is at predicting the actual values,
4098
- * the smaller the MSE value is. When the data contains outliers, they tend to dominate
4099
- * the MSE, which might cause subpar prediction performance.</p>
4100
- * </li>
4101
- * <li>
4102
- * <p>
4103
- * <code>Accuracy</code>: The ratio of the number of correctly classified items to
4104
- * the total number of (correctly and incorrectly) classified items. It is used for
4105
- * binary and multiclass classification. It measures how close the predicted class
4106
- * values are to the actual values. Accuracy values vary between zero and one: one
4107
- * indicates perfect accuracy and zero indicates perfect inaccuracy.</p>
4108
- * </li>
4109
- * <li>
4110
- * <p>
4111
- * <code>F1</code>: The F1 score is the harmonic mean of the precision and recall. It
4112
- * is used for binary classification into classes traditionally referred to as positive
4113
- * and negative. Predictions are said to be true when they match their actual (correct)
4114
- * class and false when they do not. Precision is the ratio of the true positive
4115
- * predictions to all positive predictions (including the false positives) in a data set
4116
- * and measures the quality of the prediction when it predicts the positive class.
4117
- * Recall (or sensitivity) is the ratio of the true positive predictions to all actual
4118
- * positive instances and measures how completely a model predicts the actual class
4119
- * members in a data set. The standard F1 score weighs precision and recall equally. But
4120
- * which metric is paramount typically depends on specific aspects of a problem. F1
4121
- * scores vary between zero and one: one indicates the best possible performance and
4122
- * zero the worst.</p>
4123
- * </li>
4124
- * <li>
4125
- * <p>
4126
- * <code>AUC</code>: The area under the curve (AUC) metric is used to compare and
4127
- * evaluate binary classification by algorithms such as logistic regression that return
4128
- * probabilities. A threshold is needed to map the probabilities into classifications.
4129
- * The relevant curve is the receiver operating characteristic curve that plots the true
4130
- * positive rate (TPR) of predictions (or recall) against the false positive rate (FPR)
4131
- * as a function of the threshold value, above which a prediction is considered
4132
- * positive. Increasing the threshold results in fewer false positives but more false
4133
- * negatives. AUC is the area under this receiver operating characteristic curve and so
4134
- * provides an aggregated measure of the model performance across all possible
4135
- * classification thresholds. The AUC score can also be interpreted as the probability
4136
- * that a randomly selected positive data point is more likely to be predicted positive
4137
- * than a randomly selected negative example. AUC scores vary between zero and one: a
4138
- * score of one indicates perfect accuracy and a score of one half indicates that the
4139
- * prediction is not better than a random classifier. Values under one half predict less
4140
- * accurately than a random predictor. But such consistently bad predictors can simply
4141
- * be inverted to obtain better than random predictors.</p>
4142
- * </li>
4143
- * <li>
4100
+ * <dl>
4101
+ * <dt>Accuracy</dt>
4102
+ * <dd>
4103
+ * <p> The ratio of the number of correctly classified items to the total number of
4104
+ * (correctly and incorrectly) classified items. It is used for both binary and
4105
+ * multiclass classification. Accuracy measures how close the predicted class values
4106
+ * are to the actual values. Values for accuracy metrics vary between zero (0) and
4107
+ * one (1). A value of 1 indicates perfect accuracy, and 0 indicates perfect
4108
+ * inaccuracy.</p>
4109
+ * </dd>
4110
+ * <dt>AUC</dt>
4111
+ * <dd>
4112
+ * <p>The area under the curve (AUC) metric is used to compare and evaluate binary
4113
+ * classification by algorithms that return probabilities, such as logistic
4114
+ * regression. To map the probabilities into classifications, these are compared
4115
+ * against a threshold value. </p>
4116
+ * <p>The relevant curve is the receiver operating characteristic curve (ROC curve).
4117
+ * The ROC curve plots the true positive rate (TPR) of predictions (or recall)
4118
+ * against the false positive rate (FPR) as a function of the threshold value, above
4119
+ * which a prediction is considered positive. Increasing the threshold results in
4120
+ * fewer false positives, but more false negatives. </p>
4121
+ * <p>AUC is the area under this ROC curve. Therefore, AUC provides an aggregated
4122
+ * measure of the model performance across all possible classification thresholds.
4123
+ * AUC scores vary between 0 and 1. A score of 1 indicates perfect accuracy, and a
4124
+ * score of one half (0.5) indicates that the prediction is not better than a random
4125
+ * classifier. </p>
4126
+ * </dd>
4127
+ * <dt>BalancedAccuracy</dt>
4128
+ * <dd>
4144
4129
  * <p>
4145
- * <code>F1macro</code>: The F1macro score applies F1 scoring to multiclass
4146
- * classification. In this context, you have multiple classes to predict. You just
4147
- * calculate the precision and recall for each class as you did for the positive class
4148
- * in binary classification. Then, use these values to calculate the F1 score for each
4149
- * class and average them to obtain the F1macro score. F1macro scores vary between zero
4150
- * and one: one indicates the best possible performance and zero the worst.</p>
4151
- * </li>
4152
- * </ul>
4130
+ * <code>BalancedAccuracy</code> is a metric that measures the ratio of accurate
4131
+ * predictions to all predictions. This ratio is calculated after normalizing true
4132
+ * positives (TP) and true negatives (TN) by the total number of positive (P) and
4133
+ * negative (N) values. It is used in both binary and multiclass classification and
4134
+ * is defined as follows: 0.5*((TP/P)+(TN/N)), with values ranging from 0 to 1.
4135
+ * <code>BalancedAccuracy</code> gives a better measure of accuracy when the
4136
+ * number of positives or negatives differ greatly from each other in an imbalanced
4137
+ * dataset. For example, when only 1% of email is spam. </p>
4138
+ * </dd>
4139
+ * <dt>F1</dt>
4140
+ * <dd>
4141
+ * <p>The <code>F1</code> score is the harmonic mean of the precision and recall,
4142
+ * defined as follows: F1 = 2 * (precision * recall) / (precision + recall). It is
4143
+ * used for binary classification into classes traditionally referred to as positive
4144
+ * and negative. Predictions are said to be true when they match their actual
4145
+ * (correct) class, and false when they do not. </p>
4146
+ * <p>Precision is the ratio of the true positive predictions to all positive
4147
+ * predictions, and it includes the false positives in a dataset. Precision measures
4148
+ * the quality of the prediction when it predicts the positive class. </p>
4149
+ * <p>Recall (or sensitivity) is the ratio of the true positive predictions to all
4150
+ * actual positive instances. Recall measures how completely a model predicts the
4151
+ * actual class members in a dataset. </p>
4152
+ * <p>F1 scores vary between 0 and 1. A score of 1 indicates the best possible
4153
+ * performance, and 0 indicates the worst.</p>
4154
+ * </dd>
4155
+ * <dt>F1macro</dt>
4156
+ * <dd>
4157
+ * <p>The <code>F1macro</code> score applies F1 scoring to multiclass classification
4158
+ * problems. It does this by calculating the precision and recall, and then taking
4159
+ * their harmonic mean to calculate the F1 score for each class. Lastly, the F1macro
4160
+ * averages the individual scores to obtain the <code>F1macro</code> score.
4161
+ * <code>F1macro</code> scores vary between 0 and 1. A score of 1 indicates the
4162
+ * best possible performance, and 0 indicates the worst.</p>
4163
+ * </dd>
4164
+ * <dt>MAE</dt>
4165
+ * <dd>
4166
+ * <p>The mean absolute error (MAE) is a measure of how different the predicted and
4167
+ * actual values are, when they're averaged over all values. MAE is commonly used in
4168
+ * regression analysis to understand model prediction error. If there is linear
4169
+ * regression, MAE represents the average distance from a predicted line to the
4170
+ * actual value. MAE is defined as the sum of absolute errors divided by the number
4171
+ * of observations. Values range from 0 to infinity, with smaller numbers indicating
4172
+ * a better model fit to the data.</p>
4173
+ * </dd>
4174
+ * <dt>MSE</dt>
4175
+ * <dd>
4176
+ * <p>The mean squared error (MSE) is the average of the squared differences between
4177
+ * the predicted and actual values. It is used for regression. MSE values are always
4178
+ * positive. The better a model is at predicting the actual values, the smaller the
4179
+ * MSE value is</p>
4180
+ * </dd>
4181
+ * <dt>Precision</dt>
4182
+ * <dd>
4183
+ * <p>Precision measures how well an algorithm predicts the true positives (TP) out
4184
+ * of all of the positives that it identifies. It is defined as follows: Precision =
4185
+ * TP/(TP+FP), with values ranging from zero (0) to one (1), and is used in binary
4186
+ * classification. Precision is an important metric when the cost of a false positive
4187
+ * is high. For example, the cost of a false positive is very high if an airplane
4188
+ * safety system is falsely deemed safe to fly. A false positive (FP) reflects a
4189
+ * positive prediction that is actually negative in the data.</p>
4190
+ * </dd>
4191
+ * <dt>PrecisionMacro</dt>
4192
+ * <dd>
4193
+ * <p>The precision macro computes precision for multiclass classification problems.
4194
+ * It does this by calculating precision for each class and averaging scores to
4195
+ * obtain precision for several classes. <code>PrecisionMacro</code> scores range
4196
+ * from zero (0) to one (1). Higher scores reflect the model's ability to predict
4197
+ * true positives (TP) out of all of the positives that it identifies, averaged
4198
+ * across multiple classes.</p>
4199
+ * </dd>
4200
+ * <dt>R2</dt>
4201
+ * <dd>
4202
+ * <p>R2, also known as the coefficient of determination, is used in regression to
4203
+ * quantify how much a model can explain the variance of a dependent variable. Values
4204
+ * range from one (1) to negative one (-1). Higher numbers indicate a higher fraction
4205
+ * of explained variability. <code>R2</code> values close to zero (0) indicate that
4206
+ * very little of the dependent variable can be explained by the model. Negative
4207
+ * values indicate a poor fit and that the model is outperformed by a constant
4208
+ * function. For linear regression, this is a horizontal line.</p>
4209
+ * </dd>
4210
+ * <dt>Recall</dt>
4211
+ * <dd>
4212
+ * <p>Recall measures how well an algorithm correctly predicts all of the true
4213
+ * positives (TP) in a dataset. A true positive is a positive prediction that is also
4214
+ * an actual positive value in the data. Recall is defined as follows: Recall =
4215
+ * TP/(TP+FN), with values ranging from 0 to 1. Higher scores reflect a better
4216
+ * ability of the model to predict true positives (TP) in the data, and is used in
4217
+ * binary classification. </p>
4218
+ * <p>Recall is important when testing for cancer because it's used to find all of
4219
+ * the true positives. A false positive (FP) reflects a positive prediction that is
4220
+ * actually negative in the data. It is often insufficient to measure only recall,
4221
+ * because predicting every output as a true positive will yield a perfect recall
4222
+ * score.</p>
4223
+ * </dd>
4224
+ * <dt>RecallMacro</dt>
4225
+ * <dd>
4226
+ * <p>The RecallMacro computes recall for multiclass classification problems by
4227
+ * calculating recall for each class and averaging scores to obtain recall for
4228
+ * several classes. RecallMacro scores range from 0 to 1. Higher scores reflect the
4229
+ * model's ability to predict true positives (TP) in a dataset. Whereas, a true
4230
+ * positive reflects a positive prediction that is also an actual positive value in
4231
+ * the data. It is often insufficient to measure only recall, because predicting
4232
+ * every output as a true positive will yield a perfect recall score.</p>
4233
+ * </dd>
4234
+ * <dt>RMSE</dt>
4235
+ * <dd>
4236
+ * <p>Root mean squared error (RMSE) measures the square root of the squared
4237
+ * difference between predicted and actual values, and it's averaged over all values.
4238
+ * It is used in regression analysis to understand model prediction error. It's an
4239
+ * important metric to indicate the presence of large model errors and outliers.
4240
+ * Values range from zero (0) to infinity, with smaller numbers indicating a better
4241
+ * model fit to the data. RMSE is dependent on scale, and should not be used to
4242
+ * compare datasets of different sizes.</p>
4243
+ * </dd>
4244
+ * </dl>
4153
4245
  * <p>If you do not specify a metric explicitly, the default behavior is to automatically
4154
4246
  * use:</p>
4155
4247
  * <ul>
@@ -1321,7 +1321,7 @@ export interface HyperParameterTuningJobConfig {
1321
1321
  /**
1322
1322
  * <p>The <a>ParameterRanges</a> object that specifies the ranges of
1323
1323
  * hyperparameters that this tuning job searches over to find the optimal configuration for
1324
- * the highest model performance against .your chosen objective metric. </p>
1324
+ * the highest model performance against your chosen objective metric. </p>
1325
1325
  */
1326
1326
  ParameterRanges?: ParameterRanges;
1327
1327
  /**
@@ -6175,7 +6175,7 @@ export interface CreatePresignedNotebookInstanceUrlOutput {
6175
6175
  */
6176
6176
  export interface ExperimentConfig {
6177
6177
  /**
6178
- * <p>The name of an existing experiment to associate the trial component with.</p>
6178
+ * <p>The name of an existing experiment to associate with the trial component.</p>
6179
6179
  */
6180
6180
  ExperimentName?: string;
6181
6181
  /**
@@ -6189,7 +6189,7 @@ export interface ExperimentConfig {
6189
6189
  */
6190
6190
  TrialComponentDisplayName?: string;
6191
6191
  /**
6192
- * <p>The name of the experiment run to associate the trial component with.</p>
6192
+ * <p>The name of the experiment run to associate with the trial component.</p>
6193
6193
  */
6194
6194
  RunName?: string;
6195
6195
  }
@@ -300,7 +300,9 @@ export interface DescribeAutoMLJobResponse {
300
300
  */
301
301
  PartialFailureReasons?: AutoMLPartialFailureReason[];
302
302
  /**
303
- * <p>Returns the job's best <code>AutoMLCandidate</code>.</p>
303
+ * <p>The best model candidate selected by SageMaker Autopilot using both the best objective metric and
304
+ * lowest <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html">InferenceLatency</a> for
305
+ * an experiment.</p>
304
306
  */
305
307
  BestCandidate?: AutoMLCandidate;
306
308
  /**
@@ -5464,7 +5466,8 @@ export interface DescribeTrialComponentResponse {
5464
5466
  */
5465
5467
  LineageGroupArn?: string;
5466
5468
  /**
5467
- * <p>A list of the Amazon Resource Name (ARN) and, if applicable, job type for multiple sources of an experiment run.</p>
5469
+ * <p>A list of ARNs and, if applicable, job types for multiple sources of an experiment
5470
+ * run.</p>
5468
5471
  */
5469
5472
  Sources?: TrialComponentSource[];
5470
5473
  }
@@ -734,9 +734,17 @@ export interface CandidateArtifactLocations {
734
734
  export declare enum AutoMLMetricEnum {
735
735
  ACCURACY = "Accuracy",
736
736
  AUC = "AUC",
737
+ BALANCED_ACCURACY = "BalancedAccuracy",
737
738
  F1 = "F1",
738
739
  F1_MACRO = "F1macro",
740
+ MAE = "MAE",
739
741
  MSE = "MSE",
742
+ PRECISION = "Precision",
743
+ PRECISION_MACRO = "PrecisionMacro",
744
+ R2 = "R2",
745
+ RECALL = "Recall",
746
+ RECALL_MACRO = "RecallMacro",
747
+ RMSE = "RMSE",
740
748
  }
741
749
  export declare enum MetricSetSource {
742
750
  TEST = "Test",
package/package.json CHANGED
@@ -1,7 +1,7 @@
1
1
  {
2
2
  "name": "@aws-sdk/client-sagemaker",
3
3
  "description": "AWS SDK for JavaScript Sagemaker Client for Node.js, Browser and React Native",
4
- "version": "3.234.0",
4
+ "version": "3.235.0",
5
5
  "scripts": {
6
6
  "build": "concurrently 'yarn:build:cjs' 'yarn:build:es' 'yarn:build:types'",
7
7
  "build:cjs": "tsc -p tsconfig.cjs.json",
@@ -19,9 +19,9 @@
19
19
  "dependencies": {
20
20
  "@aws-crypto/sha256-browser": "2.0.0",
21
21
  "@aws-crypto/sha256-js": "2.0.0",
22
- "@aws-sdk/client-sts": "3.234.0",
22
+ "@aws-sdk/client-sts": "3.235.0",
23
23
  "@aws-sdk/config-resolver": "3.234.0",
24
- "@aws-sdk/credential-provider-node": "3.234.0",
24
+ "@aws-sdk/credential-provider-node": "3.235.0",
25
25
  "@aws-sdk/fetch-http-handler": "3.226.0",
26
26
  "@aws-sdk/hash-node": "3.226.0",
27
27
  "@aws-sdk/invalid-dependency": "3.226.0",
@@ -30,7 +30,7 @@
30
30
  "@aws-sdk/middleware-host-header": "3.226.0",
31
31
  "@aws-sdk/middleware-logger": "3.226.0",
32
32
  "@aws-sdk/middleware-recursion-detection": "3.226.0",
33
- "@aws-sdk/middleware-retry": "3.229.0",
33
+ "@aws-sdk/middleware-retry": "3.235.0",
34
34
  "@aws-sdk/middleware-serde": "3.226.0",
35
35
  "@aws-sdk/middleware-signing": "3.226.0",
36
36
  "@aws-sdk/middleware-stack": "3.226.0",