@aws-sdk/client-sagemaker 3.231.0 → 3.232.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (77) hide show
  1. package/dist-cjs/commands/DescribeAppCommand.js +2 -1
  2. package/dist-cjs/commands/ListCodeRepositoriesCommand.js +1 -2
  3. package/dist-cjs/commands/UpdateImageCommand.js +2 -1
  4. package/dist-cjs/endpoint/ruleset.js +0 -9
  5. package/dist-cjs/models/models_1.js +10 -10
  6. package/dist-cjs/models/models_2.js +9 -9
  7. package/dist-cjs/models/models_3.js +10 -10
  8. package/dist-cjs/models/models_4.js +5 -1
  9. package/dist-cjs/protocols/Aws_json1_1.js +58 -0
  10. package/dist-es/commands/DescribeAppCommand.js +2 -1
  11. package/dist-es/commands/ListCodeRepositoriesCommand.js +1 -2
  12. package/dist-es/commands/UpdateImageCommand.js +2 -1
  13. package/dist-es/endpoint/ruleset.js +0 -9
  14. package/dist-es/models/models_1.js +3 -3
  15. package/dist-es/models/models_2.js +3 -3
  16. package/dist-es/models/models_3.js +3 -3
  17. package/dist-es/models/models_4.js +3 -0
  18. package/dist-es/protocols/Aws_json1_1.js +58 -0
  19. package/dist-types/SageMaker.d.ts +166 -181
  20. package/dist-types/SageMakerClient.d.ts +4 -4
  21. package/dist-types/commands/AddTagsCommand.d.ts +5 -5
  22. package/dist-types/commands/CreateCodeRepositoryCommand.d.ts +1 -1
  23. package/dist-types/commands/CreateCompilationJobCommand.d.ts +9 -9
  24. package/dist-types/commands/CreateDomainCommand.d.ts +0 -2
  25. package/dist-types/commands/CreateEndpointCommand.d.ts +22 -24
  26. package/dist-types/commands/CreateEndpointConfigCommand.d.ts +6 -6
  27. package/dist-types/commands/CreateHyperParameterTuningJobCommand.d.ts +3 -3
  28. package/dist-types/commands/CreateInferenceExperimentCommand.d.ts +2 -2
  29. package/dist-types/commands/CreateLabelingJobCommand.d.ts +9 -9
  30. package/dist-types/commands/CreateModelCommand.d.ts +5 -5
  31. package/dist-types/commands/CreateModelPackageCommand.d.ts +7 -7
  32. package/dist-types/commands/CreateNotebookInstanceCommand.d.ts +10 -12
  33. package/dist-types/commands/CreateNotebookInstanceLifecycleConfigCommand.d.ts +5 -5
  34. package/dist-types/commands/CreatePresignedNotebookInstanceUrlCommand.d.ts +4 -4
  35. package/dist-types/commands/CreateTrainingJobCommand.d.ts +20 -21
  36. package/dist-types/commands/CreateTransformJobCommand.d.ts +9 -9
  37. package/dist-types/commands/CreateWorkforceCommand.d.ts +1 -4
  38. package/dist-types/commands/CreateWorkteamCommand.d.ts +1 -1
  39. package/dist-types/commands/DeleteEndpointCommand.d.ts +2 -2
  40. package/dist-types/commands/DeleteEndpointConfigCommand.d.ts +1 -1
  41. package/dist-types/commands/DeleteInferenceExperimentCommand.d.ts +1 -1
  42. package/dist-types/commands/DeleteModelPackageCommand.d.ts +1 -1
  43. package/dist-types/commands/DeleteNotebookInstanceCommand.d.ts +2 -2
  44. package/dist-types/commands/DeleteTagsCommand.d.ts +5 -5
  45. package/dist-types/commands/DeleteWorkforceCommand.d.ts +1 -2
  46. package/dist-types/commands/DescribeAppCommand.d.ts +2 -1
  47. package/dist-types/commands/DescribeCompilationJobCommand.d.ts +1 -1
  48. package/dist-types/commands/DescribeModelPackageCommand.d.ts +1 -1
  49. package/dist-types/commands/DescribeNotebookInstanceLifecycleConfigCommand.d.ts +1 -1
  50. package/dist-types/commands/DescribeTrainingJobCommand.d.ts +1 -1
  51. package/dist-types/commands/DescribeWorkforceCommand.d.ts +2 -2
  52. package/dist-types/commands/ListCodeRepositoriesCommand.d.ts +1 -2
  53. package/dist-types/commands/ListCompilationJobsCommand.d.ts +1 -1
  54. package/dist-types/commands/ListTrainingJobsCommand.d.ts +2 -2
  55. package/dist-types/commands/StopCompilationJobCommand.d.ts +2 -2
  56. package/dist-types/commands/StopHyperParameterTuningJobCommand.d.ts +1 -1
  57. package/dist-types/commands/StopNotebookInstanceCommand.d.ts +1 -1
  58. package/dist-types/commands/StopPipelineExecutionCommand.d.ts +0 -2
  59. package/dist-types/commands/StopTrainingJobCommand.d.ts +1 -1
  60. package/dist-types/commands/StopTransformJobCommand.d.ts +1 -1
  61. package/dist-types/commands/UpdateEndpointCommand.d.ts +3 -3
  62. package/dist-types/commands/UpdateImageCommand.d.ts +2 -1
  63. package/dist-types/commands/UpdateProjectCommand.d.ts +2 -2
  64. package/dist-types/commands/UpdateWorkforceCommand.d.ts +10 -12
  65. package/dist-types/models/models_0.d.ts +698 -706
  66. package/dist-types/models/models_1.d.ts +1112 -1191
  67. package/dist-types/models/models_2.d.ts +377 -336
  68. package/dist-types/models/models_3.d.ts +151 -112
  69. package/dist-types/models/models_4.d.ts +26 -11
  70. package/dist-types/ts3.4/commands/DescribeAppCommand.d.ts +2 -1
  71. package/dist-types/ts3.4/commands/ListCodeRepositoriesCommand.d.ts +4 -2
  72. package/dist-types/ts3.4/commands/UpdateImageCommand.d.ts +2 -1
  73. package/dist-types/ts3.4/models/models_1.d.ts +8 -19
  74. package/dist-types/ts3.4/models/models_2.d.ts +19 -16
  75. package/dist-types/ts3.4/models/models_3.d.ts +16 -6
  76. package/dist-types/ts3.4/models/models_4.d.ts +6 -0
  77. package/package.json +1 -1
@@ -300,16 +300,16 @@ import { UpdateWorkteamCommandInput, UpdateWorkteamCommandOutput } from "./comma
300
300
  import { SageMakerClient } from "./SageMakerClient";
301
301
  /**
302
302
  * <p>Provides APIs for creating and managing SageMaker resources. </p>
303
- * <p>Other Resources:</p>
304
- * <ul>
303
+ * <p>Other Resources:</p>
304
+ * <ul>
305
305
  * <li>
306
- * <p>
306
+ * <p>
307
307
  * <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html#first-time-user">SageMaker Developer
308
308
  * Guide</a>
309
309
  * </p>
310
310
  * </li>
311
311
  * <li>
312
- * <p>
312
+ * <p>
313
313
  * <a href="https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/Welcome.html">Amazon Augmented AI
314
314
  * Runtime API Reference</a>
315
315
  * </p>
@@ -332,9 +332,9 @@ export declare class SageMaker extends SageMakerClient {
332
332
  * tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform
333
333
  * jobs, models, labeling jobs, work teams, endpoint configurations, and
334
334
  * endpoints.</p>
335
- * <p>Each tag consists of a key and an optional value. Tag keys must be unique per
335
+ * <p>Each tag consists of a key and an optional value. Tag keys must be unique per
336
336
  * resource. For more information about tags, see For more information, see <a href="https://aws.amazon.com/answers/account-management/aws-tagging-strategies/">Amazon Web Services Tagging Strategies</a>.</p>
337
- * <note>
337
+ * <note>
338
338
  * <p>Tags that you add to a hyperparameter tuning job by calling this API are also
339
339
  * added to any training jobs that the hyperparameter tuning job launches after you
340
340
  * call this API, but not to training jobs that the hyperparameter tuning job launched
@@ -343,8 +343,8 @@ export declare class SageMaker extends SageMakerClient {
343
343
  * hyperparameter tuning job launches, add the tags when you first create the tuning
344
344
  * job by specifying them in the <code>Tags</code> parameter of <a>CreateHyperParameterTuningJob</a>
345
345
  * </p>
346
- * </note>
347
- * <note>
346
+ * </note>
347
+ * <note>
348
348
  * <p>Tags that you add to a SageMaker Studio Domain or User Profile by calling this API
349
349
  * are also added to any Apps that the Domain or User Profile launches after you call
350
350
  * this API, but not to Apps that the Domain or User Profile launched before you called
@@ -352,7 +352,7 @@ export declare class SageMaker extends SageMakerClient {
352
352
  * also added to all Apps that the Domain or User Profile launches, add the tags when
353
353
  * you first create the Domain or User Profile by specifying them in the
354
354
  * <code>Tags</code> parameter of <a>CreateDomain</a> or <a>CreateUserProfile</a>.</p>
355
- * </note>
355
+ * </note>
356
356
  */
357
357
  addTags(args: AddTagsCommandInput, options?: __HttpHandlerOptions): Promise<AddTagsCommandOutput>;
358
358
  addTags(args: AddTagsCommandInput, cb: (err: any, data?: AddTagsCommandOutput) => void): void;
@@ -427,7 +427,7 @@ export declare class SageMaker extends SageMakerClient {
427
427
  * notebooks you create. The Git repository is a resource in your SageMaker account, so it can
428
428
  * be associated with more than one notebook instance, and it persists independently from
429
429
  * the lifecycle of any notebook instances it is associated with.</p>
430
- * <p>The repository can be hosted either in <a href="https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html">Amazon Web Services CodeCommit</a>
430
+ * <p>The repository can be hosted either in <a href="https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html">Amazon Web Services CodeCommit</a>
431
431
  * or in any other Git repository.</p>
432
432
  */
433
433
  createCodeRepository(args: CreateCodeRepositoryCommandInput, options?: __HttpHandlerOptions): Promise<CreateCodeRepositoryCommandOutput>;
@@ -436,34 +436,34 @@ export declare class SageMaker extends SageMakerClient {
436
436
  /**
437
437
  * <p>Starts a model compilation job. After the model has been compiled, Amazon SageMaker saves the
438
438
  * resulting model artifacts to an Amazon Simple Storage Service (Amazon S3) bucket that you specify. </p>
439
- * <p>If
439
+ * <p>If
440
440
  * you choose to host your model using Amazon SageMaker hosting services, you can use the resulting
441
441
  * model artifacts as part of the model. You can also use the artifacts with
442
442
  * Amazon Web Services
443
443
  * IoT Greengrass. In that case, deploy them as an ML
444
444
  * resource.</p>
445
- * <p>In the request body, you provide the following:</p>
446
- * <ul>
445
+ * <p>In the request body, you provide the following:</p>
446
+ * <ul>
447
447
  * <li>
448
- * <p>A name for the compilation job</p>
448
+ * <p>A name for the compilation job</p>
449
449
  * </li>
450
450
  * <li>
451
- * <p> Information about the input model artifacts </p>
451
+ * <p> Information about the input model artifacts </p>
452
452
  * </li>
453
453
  * <li>
454
- * <p>The output location for the compiled model and the device (target) that the
454
+ * <p>The output location for the compiled model and the device (target) that the
455
455
  * model runs on </p>
456
456
  * </li>
457
457
  * <li>
458
- * <p>The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker assumes to perform
458
+ * <p>The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker assumes to perform
459
459
  * the model compilation job. </p>
460
460
  * </li>
461
461
  * </ul>
462
- * <p>You can also provide a <code>Tag</code> to track the model compilation job's resource
462
+ * <p>You can also provide a <code>Tag</code> to track the model compilation job's resource
463
463
  * use and costs. The response body contains the
464
464
  * <code>CompilationJobArn</code>
465
465
  * for the compiled job.</p>
466
- * <p>To stop a model compilation job, use <a>StopCompilationJob</a>. To get
466
+ * <p>To stop a model compilation job, use <a>StopCompilationJob</a>. To get
467
467
  * information about a particular model compilation job, use <a>DescribeCompilationJob</a>. To get information about multiple model
468
468
  * compilation jobs, use <a>ListCompilationJobs</a>.</p>
469
469
  */
@@ -498,7 +498,6 @@ export declare class SageMaker extends SageMakerClient {
498
498
  * Amazon Elastic File System (EFS) volume, a list of authorized users, and a variety of security, application,
499
499
  * policy, and Amazon Virtual Private Cloud (VPC) configurations. An Amazon Web Services account is limited to one domain per region.
500
500
  * Users within a domain can share notebook files and other artifacts with each other.</p>
501
- *
502
501
  * <p>
503
502
  * <b>EFS storage</b>
504
503
  * </p>
@@ -510,7 +509,6 @@ export declare class SageMaker extends SageMakerClient {
510
509
  * customer managed key. For more information, see
511
510
  * <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/encryption-at-rest.html">Protect Data at
512
511
  * Rest Using Encryption</a>.</p>
513
- *
514
512
  * <p>
515
513
  * <b>VPC configuration</b>
516
514
  * </p>
@@ -567,22 +565,21 @@ export declare class SageMaker extends SageMakerClient {
567
565
  * <p>Creates an endpoint using the endpoint configuration specified in the request. SageMaker
568
566
  * uses the endpoint to provision resources and deploy models. You create the endpoint
569
567
  * configuration with the <a>CreateEndpointConfig</a> API. </p>
570
- * <p> Use this API to deploy models using SageMaker hosting services. </p>
571
- * <p>For an example that calls this method when deploying a model to SageMaker hosting services,
568
+ * <p> Use this API to deploy models using SageMaker hosting services. </p>
569
+ * <p>For an example that calls this method when deploying a model to SageMaker hosting services,
572
570
  * see the <a href="https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-fundamentals/create-endpoint/create_endpoint.ipynb">Create Endpoint example notebook.</a>
573
571
  * </p>
574
- * <note>
572
+ * <note>
575
573
  * <p> You must not delete an <code>EndpointConfig</code> that is in use by an endpoint
576
574
  * that is live or while the <code>UpdateEndpoint</code> or <code>CreateEndpoint</code>
577
575
  * operations are being performed on the endpoint. To update an endpoint, you must
578
576
  * create a new <code>EndpointConfig</code>.</p>
579
- * </note>
580
- * <p>The endpoint name must be unique within an Amazon Web Services Region in your
577
+ * </note>
578
+ * <p>The endpoint name must be unique within an Amazon Web Services Region in your
581
579
  * Amazon Web Services account. </p>
582
- * <p>When it receives the request, SageMaker creates the endpoint, launches the resources (ML
580
+ * <p>When it receives the request, SageMaker creates the endpoint, launches the resources (ML
583
581
  * compute instances), and deploys the model(s) on them. </p>
584
- *
585
- * <note>
582
+ * <note>
586
583
  * <p>When you call <a>CreateEndpoint</a>, a load call is made to DynamoDB to
587
584
  * verify that your endpoint configuration exists. When you read data from a DynamoDB
588
585
  * table supporting <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadConsistency.html">
@@ -593,13 +590,13 @@ export declare class SageMaker extends SageMakerClient {
593
590
  * causes a validation error. If you repeat your read request after a short time, the
594
591
  * response should return the latest data. So retry logic is recommended to handle
595
592
  * these possible issues. We also recommend that customers call <a>DescribeEndpointConfig</a> before calling <a>CreateEndpoint</a> to minimize the potential impact of a DynamoDB eventually consistent read.</p>
596
- * </note>
597
- * <p>When SageMaker receives the request, it sets the endpoint status to
593
+ * </note>
594
+ * <p>When SageMaker receives the request, it sets the endpoint status to
598
595
  * <code>Creating</code>. After it creates the endpoint, it sets the status to
599
596
  * <code>InService</code>. SageMaker can then process incoming requests for inferences. To
600
597
  * check the status of an endpoint, use the <a>DescribeEndpoint</a>
601
598
  * API.</p>
602
- * <p>If any of the models hosted at this endpoint get model data from an Amazon S3 location,
599
+ * <p>If any of the models hosted at this endpoint get model data from an Amazon S3 location,
603
600
  * SageMaker uses Amazon Web Services Security Token Service to download model artifacts from the
604
601
  * S3 path you provided. Amazon Web Services STS is activated in your IAM user account by
605
602
  * default. If you previously deactivated Amazon Web Services STS for a region, you need to
@@ -607,42 +604,41 @@ export declare class SageMaker extends SageMakerClient {
607
604
  * Deactivating Amazon Web Services STS in an Amazon Web Services Region</a> in the
608
605
  * <i>Amazon Web Services Identity and Access Management User
609
606
  * Guide</i>.</p>
610
- * <note>
607
+ * <note>
611
608
  * <p> To add the IAM role policies for using this API operation, go to the <a href="https://console.aws.amazon.com/iam/">IAM console</a>, and choose
612
609
  * Roles in the left navigation pane. Search the IAM role that you want to grant
613
610
  * access to use the <a>CreateEndpoint</a> and <a>CreateEndpointConfig</a> API operations, add the following policies to
614
611
  * the role. </p>
615
612
  * <ul>
616
613
  * <li>
617
- * <p>Option 1: For a full SageMaker access, search and attach the
614
+ * <p>Option 1: For a full SageMaker access, search and attach the
618
615
  * <code>AmazonSageMakerFullAccess</code> policy.</p>
619
- * </li>
616
+ * </li>
620
617
  * <li>
621
- * <p>Option 2: For granting a limited access to an IAM role, paste the
618
+ * <p>Option 2: For granting a limited access to an IAM role, paste the
622
619
  * following Action elements manually into the JSON file of the IAM role: </p>
623
- * <p>
620
+ * <p>
624
621
  * <code>"Action": ["sagemaker:CreateEndpoint",
625
622
  * "sagemaker:CreateEndpointConfig"]</code>
626
623
  * </p>
627
- * <p>
624
+ * <p>
628
625
  * <code>"Resource": [</code>
629
626
  * </p>
630
- * <p>
627
+ * <p>
631
628
  * <code>"arn:aws:sagemaker:region:account-id:endpoint/endpointName"</code>
632
629
  * </p>
633
- * <p>
630
+ * <p>
634
631
  * <code>"arn:aws:sagemaker:region:account-id:endpoint-config/endpointConfigName"</code>
635
632
  * </p>
636
- * <p>
633
+ * <p>
637
634
  * <code>]</code>
638
635
  * </p>
639
- * <p>For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/api-permissions-reference.html">SageMaker API
636
+ * <p>For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/api-permissions-reference.html">SageMaker API
640
637
  * Permissions: Actions, Permissions, and Resources
641
638
  * Reference</a>.</p>
642
- * </li>
639
+ * </li>
643
640
  * </ul>
644
- *
645
- * </note>
641
+ * </note>
646
642
  */
647
643
  createEndpoint(args: CreateEndpointCommandInput, options?: __HttpHandlerOptions): Promise<CreateEndpointCommandOutput>;
648
644
  createEndpoint(args: CreateEndpointCommandInput, cb: (err: any, data?: CreateEndpointCommandOutput) => void): void;
@@ -652,20 +648,20 @@ export declare class SageMaker extends SageMakerClient {
652
648
  * the configuration, you identify one or more models, created using the
653
649
  * <code>CreateModel</code> API, to deploy and the resources that you want SageMaker to
654
650
  * provision. Then you call the <a>CreateEndpoint</a> API.</p>
655
- * <note>
651
+ * <note>
656
652
  * <p> Use this API if you want to use SageMaker hosting services to deploy models into
657
653
  * production. </p>
658
- * </note>
659
- * <p>In the request, you define a <code>ProductionVariant</code>, for each model that you
654
+ * </note>
655
+ * <p>In the request, you define a <code>ProductionVariant</code>, for each model that you
660
656
  * want to deploy. Each <code>ProductionVariant</code> parameter also describes the
661
657
  * resources that you want SageMaker to provision. This includes the number and type of ML
662
658
  * compute instances to deploy. </p>
663
- * <p>If you are hosting multiple models, you also assign a <code>VariantWeight</code> to
659
+ * <p>If you are hosting multiple models, you also assign a <code>VariantWeight</code> to
664
660
  * specify how much traffic you want to allocate to each model. For example, suppose that
665
661
  * you want to host two models, A and B, and you assign traffic weight 2 for model A and 1
666
662
  * for model B. SageMaker distributes two-thirds of the traffic to Model A, and one-third to
667
663
  * model B. </p>
668
- * <note>
664
+ * <note>
669
665
  * <p>When you call <a>CreateEndpoint</a>, a load call is made to DynamoDB to
670
666
  * verify that your endpoint configuration exists. When you read data from a DynamoDB
671
667
  * table supporting <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadConsistency.html">
@@ -676,7 +672,7 @@ export declare class SageMaker extends SageMakerClient {
676
672
  * causes a validation error. If you repeat your read request after a short time, the
677
673
  * response should return the latest data. So retry logic is recommended to handle
678
674
  * these possible issues. We also recommend that customers call <a>DescribeEndpointConfig</a> before calling <a>CreateEndpoint</a> to minimize the potential impact of a DynamoDB eventually consistent read.</p>
679
- * </note>
675
+ * </note>
680
676
  */
681
677
  createEndpointConfig(args: CreateEndpointConfigCommandInput, options?: __HttpHandlerOptions): Promise<CreateEndpointConfigCommandOutput>;
682
678
  createEndpointConfig(args: CreateEndpointConfigCommandInput, cb: (err: any, data?: CreateEndpointConfigCommandOutput) => void): void;
@@ -745,16 +741,16 @@ export declare class SageMaker extends SageMakerClient {
745
741
  * and values for hyperparameters within ranges that you specify. It then chooses the
746
742
  * hyperparameter values that result in a model that performs the best, as measured by an
747
743
  * objective metric that you choose.</p>
748
- * <p>A hyperparameter tuning job automatically creates Amazon SageMaker experiments, trials, and
744
+ * <p>A hyperparameter tuning job automatically creates Amazon SageMaker experiments, trials, and
749
745
  * trial components for each training job that it runs. You can view these entities in
750
746
  * Amazon SageMaker Studio. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/experiments-view-compare.html#experiments-view">View
751
747
  * Experiments, Trials, and Trial Components</a>.</p>
752
- * <important>
748
+ * <important>
753
749
  * <p>Do not include any security-sensitive information including account access IDs,
754
750
  * secrets or tokens in any hyperparameter field. If the use of security-sensitive
755
751
  * credentials are detected, SageMaker will reject your training job request and return an
756
752
  * exception error.</p>
757
- * </important>
753
+ * </important>
758
754
  */
759
755
  createHyperParameterTuningJob(args: CreateHyperParameterTuningJobCommandInput, options?: __HttpHandlerOptions): Promise<CreateHyperParameterTuningJobCommandOutput>;
760
756
  createHyperParameterTuningJob(args: CreateHyperParameterTuningJobCommandInput, cb: (err: any, data?: CreateHyperParameterTuningJobCommandOutput) => void): void;
@@ -779,8 +775,8 @@ export declare class SageMaker extends SageMakerClient {
779
775
  * Creates an inference experiment using the configurations specified in the request.
780
776
  * </p>
781
777
  * <p>
782
- * Use this API to schedule an experiment to compare model variants on a Amazon SageMaker inference endpoint. For more
783
- * information about inference experiments, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/shadow-tests.html">Shadow tests</a>.
778
+ * Use this API to setup and schedule an experiment to compare model variants on a Amazon SageMaker inference endpoint. For
779
+ * more information about inference experiments, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/shadow-tests.html">Shadow tests</a>.
784
780
  * </p>
785
781
  * <p>
786
782
  * Amazon SageMaker begins your experiment at the scheduled time and routes traffic to your endpoint's model variants based
@@ -804,34 +800,34 @@ export declare class SageMaker extends SageMakerClient {
804
800
  /**
805
801
  * <p>Creates a job that uses workers to label the data objects in your input dataset. You
806
802
  * can use the labeled data to train machine learning models. </p>
807
- * <p>You can select your workforce from one of three providers:</p>
808
- * <ul>
803
+ * <p>You can select your workforce from one of three providers:</p>
804
+ * <ul>
809
805
  * <li>
810
- * <p>A private workforce that you create. It can include employees, contractors,
806
+ * <p>A private workforce that you create. It can include employees, contractors,
811
807
  * and outside experts. Use a private workforce when want the data to stay within
812
808
  * your organization or when a specific set of skills is required.</p>
813
809
  * </li>
814
810
  * <li>
815
- * <p>One or more vendors that you select from the Amazon Web Services Marketplace. Vendors provide
811
+ * <p>One or more vendors that you select from the Amazon Web Services Marketplace. Vendors provide
816
812
  * expertise in specific areas. </p>
817
813
  * </li>
818
814
  * <li>
819
- * <p>The Amazon Mechanical Turk workforce. This is the largest workforce, but it
815
+ * <p>The Amazon Mechanical Turk workforce. This is the largest workforce, but it
820
816
  * should only be used for public data or data that has been stripped of any
821
817
  * personally identifiable information.</p>
822
818
  * </li>
823
819
  * </ul>
824
- * <p>You can also use <i>automated data labeling</i> to reduce the number of
820
+ * <p>You can also use <i>automated data labeling</i> to reduce the number of
825
821
  * data objects that need to be labeled by a human. Automated data labeling uses
826
822
  * <i>active learning</i> to determine if a data object can be labeled by
827
823
  * machine or if it needs to be sent to a human worker. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-automated-labeling.html">Using
828
824
  * Automated Data Labeling</a>.</p>
829
- * <p>The data objects to be labeled are contained in an Amazon S3 bucket. You create a
825
+ * <p>The data objects to be labeled are contained in an Amazon S3 bucket. You create a
830
826
  * <i>manifest file</i> that describes the location of each object. For
831
827
  * more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-data.html">Using Input and Output Data</a>.</p>
832
- * <p>The output can be used as the manifest file for another labeling job or as training
828
+ * <p>The output can be used as the manifest file for another labeling job or as training
833
829
  * data for your machine learning models.</p>
834
- * <p>You can use this operation to create a static labeling job or a streaming labeling
830
+ * <p>You can use this operation to create a static labeling job or a streaming labeling
835
831
  * job. A static labeling job stops if all data objects in the input manifest file
836
832
  * identified in <code>ManifestS3Uri</code> have been labeled. A streaming labeling job
837
833
  * runs perpetually until it is manually stopped, or remains idle for 10 days. You can send
@@ -849,19 +845,19 @@ export declare class SageMaker extends SageMakerClient {
849
845
  * container. For the primary container, you specify the Docker image that
850
846
  * contains inference code, artifacts (from prior training), and a custom environment map
851
847
  * that the inference code uses when you deploy the model for predictions.</p>
852
- * <p>Use this API to create a model if you want to use SageMaker hosting services or run a batch
848
+ * <p>Use this API to create a model if you want to use SageMaker hosting services or run a batch
853
849
  * transform job.</p>
854
- * <p>To host your model, you create an endpoint configuration with the
850
+ * <p>To host your model, you create an endpoint configuration with the
855
851
  * <code>CreateEndpointConfig</code> API, and then create an endpoint with the
856
852
  * <code>CreateEndpoint</code> API. SageMaker then deploys all of the containers that you
857
853
  * defined for the model in the hosting environment. </p>
858
- * <p>For an example that calls this method when deploying a model to SageMaker hosting services,
854
+ * <p>For an example that calls this method when deploying a model to SageMaker hosting services,
859
855
  * see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/realtime-endpoints-deployment.html#realtime-endpoints-deployment-create-model">Create a Model (Amazon Web Services SDK for Python (Boto 3)).</a>
860
856
  * </p>
861
- * <p>To run a batch transform using your model, you start a job with the
857
+ * <p>To run a batch transform using your model, you start a job with the
862
858
  * <code>CreateTransformJob</code> API. SageMaker uses your model and your dataset to get
863
859
  * inferences which are then saved to a specified S3 location.</p>
864
- * <p>In the request, you also provide an IAM role that SageMaker can assume to access model
860
+ * <p>In the request, you also provide an IAM role that SageMaker can assume to access model
865
861
  * artifacts and docker image for deployment on ML compute hosting instances or for batch
866
862
  * transform jobs. In addition, you also use the IAM role to manage permissions the
867
863
  * inference code needs. For example, if the inference code access any other Amazon Web Services resources, you grant necessary permissions via this role.</p>
@@ -898,23 +894,23 @@ export declare class SageMaker extends SageMakerClient {
898
894
  * <p>Creates a model package that you can use to create SageMaker models or list on Amazon Web Services
899
895
  * Marketplace, or a versioned model that is part of a model group. Buyers can subscribe to
900
896
  * model packages listed on Amazon Web Services Marketplace to create models in SageMaker.</p>
901
- * <p>To create a model package by specifying a Docker container that contains your
897
+ * <p>To create a model package by specifying a Docker container that contains your
902
898
  * inference code and the Amazon S3 location of your model artifacts, provide values for
903
899
  * <code>InferenceSpecification</code>. To create a model from an algorithm resource
904
900
  * that you created or subscribed to in Amazon Web Services Marketplace, provide a value for
905
901
  * <code>SourceAlgorithmSpecification</code>.</p>
906
- * <note>
902
+ * <note>
907
903
  * <p>There are two types of model packages:</p>
908
904
  * <ul>
909
905
  * <li>
910
- * <p>Versioned - a model that is part of a model group in the model
906
+ * <p>Versioned - a model that is part of a model group in the model
911
907
  * registry.</p>
912
- * </li>
908
+ * </li>
913
909
  * <li>
914
- * <p>Unversioned - a model package that is not part of a model group.</p>
915
- * </li>
910
+ * <p>Unversioned - a model package that is not part of a model group.</p>
911
+ * </li>
916
912
  * </ul>
917
- * </note>
913
+ * </note>
918
914
  */
919
915
  createModelPackage(args: CreateModelPackageCommandInput, options?: __HttpHandlerOptions): Promise<CreateModelPackageCommandOutput>;
920
916
  createModelPackage(args: CreateModelPackageCommandInput, cb: (err: any, data?: CreateModelPackageCommandOutput) => void): void;
@@ -942,41 +938,39 @@ export declare class SageMaker extends SageMakerClient {
942
938
  /**
943
939
  * <p>Creates an SageMaker notebook instance. A notebook instance is a machine learning (ML)
944
940
  * compute instance running on a Jupyter notebook. </p>
945
- * <p>In a <code>CreateNotebookInstance</code> request, specify the type of ML compute
941
+ * <p>In a <code>CreateNotebookInstance</code> request, specify the type of ML compute
946
942
  * instance that you want to run. SageMaker launches the instance, installs common libraries
947
943
  * that you can use to explore datasets for model training, and attaches an ML storage
948
944
  * volume to the notebook instance. </p>
949
- * <p>SageMaker also provides a set of example notebooks. Each notebook demonstrates how to
945
+ * <p>SageMaker also provides a set of example notebooks. Each notebook demonstrates how to
950
946
  * use SageMaker with a specific algorithm or with a machine learning framework. </p>
951
- * <p>After receiving the request, SageMaker does the following:</p>
952
- * <ol>
947
+ * <p>After receiving the request, SageMaker does the following:</p>
948
+ * <ol>
953
949
  * <li>
954
- * <p>Creates a network interface in the SageMaker VPC.</p>
950
+ * <p>Creates a network interface in the SageMaker VPC.</p>
955
951
  * </li>
956
952
  * <li>
957
- * <p>(Option) If you specified <code>SubnetId</code>, SageMaker creates a network
953
+ * <p>(Option) If you specified <code>SubnetId</code>, SageMaker creates a network
958
954
  * interface in your own VPC, which is inferred from the subnet ID that you provide
959
955
  * in the input. When creating this network interface, SageMaker attaches the security
960
956
  * group that you specified in the request to the network interface that it creates
961
957
  * in your VPC.</p>
962
- *
963
958
  * </li>
964
959
  * <li>
965
- * <p>Launches an EC2 instance of the type specified in the request in the SageMaker
960
+ * <p>Launches an EC2 instance of the type specified in the request in the SageMaker
966
961
  * VPC. If you specified <code>SubnetId</code> of your VPC, SageMaker specifies both
967
962
  * network interfaces when launching this instance. This enables inbound traffic
968
963
  * from your own VPC to the notebook instance, assuming that the security groups
969
964
  * allow it.</p>
970
965
  * </li>
971
966
  * </ol>
972
- *
973
- * <p>After creating the notebook instance, SageMaker returns its Amazon Resource Name (ARN).
967
+ * <p>After creating the notebook instance, SageMaker returns its Amazon Resource Name (ARN).
974
968
  * You can't change the name of a notebook instance after you create it.</p>
975
- * <p>After SageMaker creates the notebook instance, you can connect to the Jupyter server and
969
+ * <p>After SageMaker creates the notebook instance, you can connect to the Jupyter server and
976
970
  * work in Jupyter notebooks. For example, you can write code to explore a dataset that you
977
971
  * can use for model training, train a model, host models by creating SageMaker endpoints, and
978
972
  * validate hosted models. </p>
979
- * <p>For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html">How It Works</a>. </p>
973
+ * <p>For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html">How It Works</a>. </p>
980
974
  */
981
975
  createNotebookInstance(args: CreateNotebookInstanceCommandInput, options?: __HttpHandlerOptions): Promise<CreateNotebookInstanceCommandOutput>;
982
976
  createNotebookInstance(args: CreateNotebookInstanceCommandInput, cb: (err: any, data?: CreateNotebookInstanceCommandOutput) => void): void;
@@ -985,16 +979,16 @@ export declare class SageMaker extends SageMakerClient {
985
979
  * <p>Creates a lifecycle configuration that you can associate with a notebook instance. A
986
980
  * <i>lifecycle configuration</i> is a collection of shell scripts that
987
981
  * run when you create or start a notebook instance.</p>
988
- * <p>Each lifecycle configuration script has a limit of 16384 characters.</p>
989
- * <p>The value of the <code>$PATH</code> environment variable that is available to both
982
+ * <p>Each lifecycle configuration script has a limit of 16384 characters.</p>
983
+ * <p>The value of the <code>$PATH</code> environment variable that is available to both
990
984
  * scripts is <code>/sbin:bin:/usr/sbin:/usr/bin</code>.</p>
991
- * <p>View CloudWatch Logs for notebook instance lifecycle configurations in log group
985
+ * <p>View CloudWatch Logs for notebook instance lifecycle configurations in log group
992
986
  * <code>/aws/sagemaker/NotebookInstances</code> in log stream
993
987
  * <code>[notebook-instance-name]/[LifecycleConfigHook]</code>.</p>
994
- * <p>Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs
988
+ * <p>Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs
995
989
  * for longer than 5 minutes, it fails and the notebook instance is not created or
996
990
  * started.</p>
997
- * <p>For information about notebook instance lifestyle configurations, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html">Step
991
+ * <p>For information about notebook instance lifestyle configurations, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html">Step
998
992
  * 2.1: (Optional) Customize a Notebook Instance</a>.</p>
999
993
  */
1000
994
  createNotebookInstanceLifecycleConfig(args: CreateNotebookInstanceLifecycleConfigCommandInput, options?: __HttpHandlerOptions): Promise<CreateNotebookInstanceLifecycleConfigCommandOutput>;
@@ -1033,20 +1027,20 @@ export declare class SageMaker extends SageMakerClient {
1033
1027
  * instance. In the SageMaker console, when you choose <code>Open</code> next to a notebook
1034
1028
  * instance, SageMaker opens a new tab showing the Jupyter server home page from the notebook
1035
1029
  * instance. The console uses this API to get the URL and show the page.</p>
1036
- * <p> The IAM role or user used to call this API defines the permissions to access the
1030
+ * <p> The IAM role or user used to call this API defines the permissions to access the
1037
1031
  * notebook instance. Once the presigned URL is created, no additional permission is
1038
1032
  * required to access this URL. IAM authorization policies for this API are also enforced
1039
1033
  * for every HTTP request and WebSocket frame that attempts to connect to the notebook
1040
1034
  * instance.</p>
1041
- * <p>You can restrict access to this API and to the URL that it returns to a list of IP
1035
+ * <p>You can restrict access to this API and to the URL that it returns to a list of IP
1042
1036
  * addresses that you specify. Use the <code>NotIpAddress</code> condition operator and the
1043
1037
  * <code>aws:SourceIP</code> condition context key to specify the list of IP addresses
1044
1038
  * that you want to have access to the notebook instance. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/security_iam_id-based-policy-examples.html#nbi-ip-filter">Limit Access to a Notebook Instance by IP Address</a>.</p>
1045
- * <note>
1039
+ * <note>
1046
1040
  * <p>The URL that you get from a call to <a>CreatePresignedNotebookInstanceUrl</a> is valid only for 5 minutes. If
1047
1041
  * you try to use the URL after the 5-minute limit expires, you are directed to the
1048
1042
  * Amazon Web Services console sign-in page.</p>
1049
- * </note>
1043
+ * </note>
1050
1044
  */
1051
1045
  createPresignedNotebookInstanceUrl(args: CreatePresignedNotebookInstanceUrlCommandInput, options?: __HttpHandlerOptions): Promise<CreatePresignedNotebookInstanceUrlCommandOutput>;
1052
1046
  createPresignedNotebookInstanceUrl(args: CreatePresignedNotebookInstanceUrlCommandInput, cb: (err: any, data?: CreatePresignedNotebookInstanceUrlCommandOutput) => void): void;
@@ -1079,58 +1073,57 @@ export declare class SageMaker extends SageMakerClient {
1079
1073
  /**
1080
1074
  * <p>Starts a model training job. After training completes, SageMaker saves the resulting
1081
1075
  * model artifacts to an Amazon S3 location that you specify. </p>
1082
- * <p>If you choose to host your model using SageMaker hosting services, you can use the
1076
+ * <p>If you choose to host your model using SageMaker hosting services, you can use the
1083
1077
  * resulting model artifacts as part of the model. You can also use the artifacts in a
1084
1078
  * machine learning service other than SageMaker, provided that you know how to use them for
1085
1079
  * inference.
1086
1080
  * </p>
1087
- * <p>In the request body, you provide the following: </p>
1088
- * <ul>
1081
+ * <p>In the request body, you provide the following: </p>
1082
+ * <ul>
1089
1083
  * <li>
1090
- * <p>
1084
+ * <p>
1091
1085
  * <code>AlgorithmSpecification</code> - Identifies the training algorithm to
1092
1086
  * use.
1093
1087
  * </p>
1094
1088
  * </li>
1095
1089
  * <li>
1096
- * <p>
1097
- * <code>HyperParameters</code> - Specify these algorithm-specific parameters to
1090
+ * <p>
1091
+ * <code>HyperParameters</code> - Specify these algorithm-specific parameters to
1098
1092
  * enable the estimation of model parameters during training. Hyperparameters can
1099
1093
  * be tuned to optimize this learning process. For a list of hyperparameters for
1100
1094
  * each training algorithm provided by SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. </p>
1101
- * <important>
1102
- * <p>Do not include any security-sensitive information including account access
1095
+ * <important>
1096
+ * <p>Do not include any security-sensitive information including account access
1103
1097
  * IDs, secrets or tokens in any hyperparameter field. If the use of
1104
1098
  * security-sensitive credentials are detected, SageMaker will reject your training
1105
1099
  * job request and return an exception error.</p>
1106
- * </important>
1100
+ * </important>
1107
1101
  * </li>
1108
1102
  * <li>
1109
- * <p>
1110
- * <code>InputDataConfig</code> - Describes the input required by the training job and the Amazon S3,
1111
- * EFS, or FSx location where it is stored.</p>
1103
+ * <p>
1104
+ * <code>InputDataConfig</code> - Describes the input required by the training
1105
+ * job and the Amazon S3, EFS, or FSx location where it is stored.</p>
1112
1106
  * </li>
1113
1107
  * <li>
1114
- * <p>
1108
+ * <p>
1115
1109
  * <code>OutputDataConfig</code> - Identifies the Amazon S3 bucket where you want
1116
1110
  * SageMaker to save the results of model training. </p>
1117
1111
  * </li>
1118
1112
  * <li>
1119
- * <p>
1113
+ * <p>
1120
1114
  * <code>ResourceConfig</code> - Identifies the resources, ML compute
1121
1115
  * instances, and ML storage volumes to deploy for model training. In distributed
1122
1116
  * training, you specify more than one instance. </p>
1123
- *
1124
1117
  * </li>
1125
1118
  * <li>
1126
- * <p>
1119
+ * <p>
1127
1120
  * <code>EnableManagedSpotTraining</code> - Optimize the cost of training machine
1128
1121
  * learning models by up to 80% by using Amazon EC2 Spot instances. For more
1129
1122
  * information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html">Managed Spot
1130
1123
  * Training</a>. </p>
1131
1124
  * </li>
1132
1125
  * <li>
1133
- * <p>
1126
+ * <p>
1134
1127
  * <code>RoleArn</code> - The Amazon Resource Name (ARN) that SageMaker assumes to perform tasks on
1135
1128
  * your behalf during model training.
1136
1129
  *
@@ -1138,24 +1131,24 @@ export declare class SageMaker extends SageMakerClient {
1138
1131
  * complete model training. </p>
1139
1132
  * </li>
1140
1133
  * <li>
1141
- * <p>
1134
+ * <p>
1142
1135
  * <code>StoppingCondition</code> - To help cap training costs, use
1143
1136
  * <code>MaxRuntimeInSeconds</code> to set a time limit for training. Use
1144
1137
  * <code>MaxWaitTimeInSeconds</code> to specify how long a managed spot
1145
1138
  * training job has to complete. </p>
1146
1139
  * </li>
1147
1140
  * <li>
1148
- * <p>
1141
+ * <p>
1149
1142
  * <code>Environment</code> - The environment variables to set in the Docker
1150
1143
  * container.</p>
1151
1144
  * </li>
1152
1145
  * <li>
1153
- * <p>
1146
+ * <p>
1154
1147
  * <code>RetryStrategy</code> - The number of times to retry the job when the job
1155
1148
  * fails due to an <code>InternalServerError</code>.</p>
1156
1149
  * </li>
1157
1150
  * </ul>
1158
- * <p> For more information about SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html">How It Works</a>. </p>
1151
+ * <p> For more information about SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html">How It Works</a>. </p>
1159
1152
  */
1160
1153
  createTrainingJob(args: CreateTrainingJobCommandInput, options?: __HttpHandlerOptions): Promise<CreateTrainingJobCommandOutput>;
1161
1154
  createTrainingJob(args: CreateTrainingJobCommandInput, cb: (err: any, data?: CreateTrainingJobCommandOutput) => void): void;
@@ -1163,38 +1156,38 @@ export declare class SageMaker extends SageMakerClient {
1163
1156
  /**
1164
1157
  * <p>Starts a transform job. A transform job uses a trained model to get inferences on a
1165
1158
  * dataset and saves these results to an Amazon S3 location that you specify.</p>
1166
- * <p>To perform batch transformations, you create a transform job and use the data that you
1159
+ * <p>To perform batch transformations, you create a transform job and use the data that you
1167
1160
  * have readily available.</p>
1168
- * <p>In the request body, you provide the following:</p>
1169
- * <ul>
1161
+ * <p>In the request body, you provide the following:</p>
1162
+ * <ul>
1170
1163
  * <li>
1171
- * <p>
1164
+ * <p>
1172
1165
  * <code>TransformJobName</code> - Identifies the transform job. The name must be
1173
1166
  * unique within an Amazon Web Services Region in an Amazon Web Services account.</p>
1174
1167
  * </li>
1175
1168
  * <li>
1176
- * <p>
1169
+ * <p>
1177
1170
  * <code>ModelName</code> - Identifies the model to use. <code>ModelName</code>
1178
1171
  * must be the name of an existing Amazon SageMaker model in the same Amazon Web Services Region and Amazon Web Services
1179
1172
  * account. For information on creating a model, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html">CreateModel</a>.</p>
1180
1173
  * </li>
1181
1174
  * <li>
1182
- * <p>
1175
+ * <p>
1183
1176
  * <code>TransformInput</code> - Describes the dataset to be transformed and the
1184
1177
  * Amazon S3 location where it is stored.</p>
1185
1178
  * </li>
1186
1179
  * <li>
1187
- * <p>
1180
+ * <p>
1188
1181
  * <code>TransformOutput</code> - Identifies the Amazon S3 location where you want
1189
1182
  * Amazon SageMaker to save the results from the transform job.</p>
1190
1183
  * </li>
1191
1184
  * <li>
1192
- * <p>
1185
+ * <p>
1193
1186
  * <code>TransformResources</code> - Identifies the ML compute instances for the
1194
1187
  * transform job.</p>
1195
1188
  * </li>
1196
1189
  * </ul>
1197
- * <p>For more information about how batch transformation works, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html">Batch
1190
+ * <p>For more information about how batch transformation works, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html">Batch
1198
1191
  * Transform</a>.</p>
1199
1192
  */
1200
1193
  createTransformJob(args: CreateTransformJobCommandInput, options?: __HttpHandlerOptions): Promise<CreateTransformJobCommandOutput>;
@@ -1247,19 +1240,16 @@ export declare class SageMaker extends SageMakerClient {
1247
1240
  * <p>Use this operation to create a workforce. This operation will return an error
1248
1241
  * if a workforce already exists in the Amazon Web Services Region that you specify. You can only
1249
1242
  * create one workforce in each Amazon Web Services Region per Amazon Web Services account.</p>
1250
- *
1251
- * <p>If you want to create a new workforce in an Amazon Web Services Region where
1243
+ * <p>If you want to create a new workforce in an Amazon Web Services Region where
1252
1244
  * a workforce already exists, use the API
1253
1245
  * operation to delete the existing workforce and then use <code>CreateWorkforce</code>
1254
1246
  * to create a new workforce.</p>
1255
- *
1256
1247
  * <p>To create a private workforce using Amazon Cognito, you must specify a Cognito user pool
1257
1248
  * in <code>CognitoConfig</code>.
1258
1249
  * You can also create an Amazon Cognito workforce using the Amazon SageMaker console.
1259
1250
  * For more information, see
1260
1251
  * <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-create-private.html">
1261
1252
  * Create a Private Workforce (Amazon Cognito)</a>.</p>
1262
- *
1263
1253
  * <p>To create a private workforce using your own OIDC Identity Provider (IdP), specify your IdP
1264
1254
  * configuration in <code>OidcConfig</code>. Your OIDC IdP must support <i>groups</i>
1265
1255
  * because groups are used by Ground Truth and Amazon A2I to create work teams.
@@ -1273,7 +1263,7 @@ export declare class SageMaker extends SageMakerClient {
1273
1263
  * <p>Creates a new work team for labeling your data. A work team is defined by one or more
1274
1264
  * Amazon Cognito user pools. You must first create the user pools before you can create a work
1275
1265
  * team.</p>
1276
- * <p>You cannot create more than 25 work teams in an account and region.</p>
1266
+ * <p>You cannot create more than 25 work teams in an account and region.</p>
1277
1267
  */
1278
1268
  createWorkteam(args: CreateWorkteamCommandInput, options?: __HttpHandlerOptions): Promise<CreateWorkteamCommandOutput>;
1279
1269
  createWorkteam(args: CreateWorkteamCommandInput, cb: (err: any, data?: CreateWorkteamCommandOutput) => void): void;
@@ -1364,9 +1354,9 @@ export declare class SageMaker extends SageMakerClient {
1364
1354
  /**
1365
1355
  * <p>Deletes an endpoint. SageMaker frees up all of the resources that were deployed when the
1366
1356
  * endpoint was created. </p>
1367
- * <p>SageMaker retires any custom KMS key grants associated with the endpoint, meaning you don't
1357
+ * <p>SageMaker retires any custom KMS key grants associated with the endpoint, meaning you don't
1368
1358
  * need to use the <a href="http://docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html">RevokeGrant</a> API call.</p>
1369
- * <p>When you delete your endpoint, SageMaker asynchronously deletes associated endpoint
1359
+ * <p>When you delete your endpoint, SageMaker asynchronously deletes associated endpoint
1370
1360
  * resources such as KMS key grants. You might still see these resources in your account
1371
1361
  * for a few minutes after deleting your endpoint. Do not delete or revoke the permissions
1372
1362
  * for your <code>
@@ -1381,7 +1371,7 @@ export declare class SageMaker extends SageMakerClient {
1381
1371
  * <p>Deletes an endpoint configuration. The <code>DeleteEndpointConfig</code> API
1382
1372
  * deletes only the specified configuration. It does not delete endpoints created using the
1383
1373
  * configuration. </p>
1384
- * <p>You must not delete an <code>EndpointConfig</code> in use by an endpoint that is
1374
+ * <p>You must not delete an <code>EndpointConfig</code> in use by an endpoint that is
1385
1375
  * live or while the <code>UpdateEndpoint</code> or <code>CreateEndpoint</code> operations
1386
1376
  * are being performed on the endpoint. If you delete the <code>EndpointConfig</code> of an
1387
1377
  * endpoint that is active or being created or updated you may lose visibility into the
@@ -1455,7 +1445,7 @@ export declare class SageMaker extends SageMakerClient {
1455
1445
  /**
1456
1446
  * <p>Deletes an inference experiment.</p>
1457
1447
  * <note>
1458
- * <p>
1448
+ * <p>
1459
1449
  * This operation does not delete your endpoint, variants, or any underlying resources. This operation only
1460
1450
  * deletes the metadata of your experiment.
1461
1451
  * </p>
@@ -1493,7 +1483,7 @@ export declare class SageMaker extends SageMakerClient {
1493
1483
  deleteModelExplainabilityJobDefinition(args: DeleteModelExplainabilityJobDefinitionCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: DeleteModelExplainabilityJobDefinitionCommandOutput) => void): void;
1494
1484
  /**
1495
1485
  * <p>Deletes a model package.</p>
1496
- * <p>A model package is used to create SageMaker models or list on Amazon Web Services Marketplace. Buyers can
1486
+ * <p>A model package is used to create SageMaker models or list on Amazon Web Services Marketplace. Buyers can
1497
1487
  * subscribe to model packages listed on Amazon Web Services Marketplace to create models in SageMaker.</p>
1498
1488
  */
1499
1489
  deleteModelPackage(args: DeleteModelPackageCommandInput, options?: __HttpHandlerOptions): Promise<DeleteModelPackageCommandOutput>;
@@ -1527,11 +1517,11 @@ export declare class SageMaker extends SageMakerClient {
1527
1517
  /**
1528
1518
  * <p> Deletes an SageMaker notebook instance. Before you can delete a notebook instance, you
1529
1519
  * must call the <code>StopNotebookInstance</code> API. </p>
1530
- * <important>
1520
+ * <important>
1531
1521
  * <p>When you delete a notebook instance, you lose all of your data. SageMaker removes
1532
1522
  * the ML compute instance, and deletes the ML storage volume and the network interface
1533
1523
  * associated with the notebook instance. </p>
1534
- * </important>
1524
+ * </important>
1535
1525
  */
1536
1526
  deleteNotebookInstance(args: DeleteNotebookInstanceCommandInput, options?: __HttpHandlerOptions): Promise<DeleteNotebookInstanceCommandOutput>;
1537
1527
  deleteNotebookInstance(args: DeleteNotebookInstanceCommandInput, cb: (err: any, data?: DeleteNotebookInstanceCommandOutput) => void): void;
@@ -1571,17 +1561,17 @@ export declare class SageMaker extends SageMakerClient {
1571
1561
  deleteStudioLifecycleConfig(args: DeleteStudioLifecycleConfigCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: DeleteStudioLifecycleConfigCommandOutput) => void): void;
1572
1562
  /**
1573
1563
  * <p>Deletes the specified tags from an SageMaker resource.</p>
1574
- * <p>To list a resource's tags, use the <code>ListTags</code> API. </p>
1575
- * <note>
1564
+ * <p>To list a resource's tags, use the <code>ListTags</code> API. </p>
1565
+ * <note>
1576
1566
  * <p>When you call this API to delete tags from a hyperparameter tuning job, the
1577
1567
  * deleted tags are not removed from training jobs that the hyperparameter tuning job
1578
1568
  * launched before you called this API.</p>
1579
- * </note>
1580
- * <note>
1569
+ * </note>
1570
+ * <note>
1581
1571
  * <p>When you call this API to delete tags from a SageMaker Studio Domain or User
1582
1572
  * Profile, the deleted tags are not removed from Apps that the SageMaker Studio Domain
1583
1573
  * or User Profile launched before you called this API.</p>
1584
- * </note>
1574
+ * </note>
1585
1575
  */
1586
1576
  deleteTags(args: DeleteTagsCommandInput, options?: __HttpHandlerOptions): Promise<DeleteTagsCommandOutput>;
1587
1577
  deleteTags(args: DeleteTagsCommandInput, cb: (err: any, data?: DeleteTagsCommandOutput) => void): void;
@@ -1611,7 +1601,6 @@ export declare class SageMaker extends SageMakerClient {
1611
1601
  deleteUserProfile(args: DeleteUserProfileCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: DeleteUserProfileCommandOutput) => void): void;
1612
1602
  /**
1613
1603
  * <p>Use this operation to delete a workforce.</p>
1614
- *
1615
1604
  * <p>If you want to create a new workforce in an Amazon Web Services Region where
1616
1605
  * a workforce already exists, use this operation to delete the
1617
1606
  * existing workforce and then use
@@ -1622,7 +1611,7 @@ export declare class SageMaker extends SageMakerClient {
1622
1611
  * operation to delete all work teams before you delete the workforce.
1623
1612
  * If you try to delete a workforce that contains one or more work teams,
1624
1613
  * you will recieve a <code>ResourceInUse</code> error.</p>
1625
- * </important>
1614
+ * </important>
1626
1615
  */
1627
1616
  deleteWorkforce(args: DeleteWorkforceCommandInput, options?: __HttpHandlerOptions): Promise<DeleteWorkforceCommandOutput>;
1628
1617
  deleteWorkforce(args: DeleteWorkforceCommandInput, cb: (err: any, data?: DeleteWorkforceCommandOutput) => void): void;
@@ -1683,7 +1672,7 @@ export declare class SageMaker extends SageMakerClient {
1683
1672
  describeCodeRepository(args: DescribeCodeRepositoryCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: DescribeCodeRepositoryCommandOutput) => void): void;
1684
1673
  /**
1685
1674
  * <p>Returns information about a model compilation job.</p>
1686
- * <p>To create a model compilation job, use <a>CreateCompilationJob</a>. To get
1675
+ * <p>To create a model compilation job, use <a>CreateCompilationJob</a>. To get
1687
1676
  * information about multiple model compilation jobs, use <a>ListCompilationJobs</a>.</p>
1688
1677
  */
1689
1678
  describeCompilationJob(args: DescribeCompilationJobCommandInput, options?: __HttpHandlerOptions): Promise<DescribeCompilationJobCommandOutput>;
@@ -1868,7 +1857,7 @@ export declare class SageMaker extends SageMakerClient {
1868
1857
  /**
1869
1858
  * <p>Returns a description of the specified model package, which is used to create SageMaker
1870
1859
  * models or list them on Amazon Web Services Marketplace.</p>
1871
- * <p>To create models in SageMaker, buyers can subscribe to model packages listed on Amazon Web Services
1860
+ * <p>To create models in SageMaker, buyers can subscribe to model packages listed on Amazon Web Services
1872
1861
  * Marketplace.</p>
1873
1862
  */
1874
1863
  describeModelPackage(args: DescribeModelPackageCommandInput, options?: __HttpHandlerOptions): Promise<DescribeModelPackageCommandOutput>;
@@ -1900,7 +1889,7 @@ export declare class SageMaker extends SageMakerClient {
1900
1889
  describeNotebookInstance(args: DescribeNotebookInstanceCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: DescribeNotebookInstanceCommandOutput) => void): void;
1901
1890
  /**
1902
1891
  * <p>Returns a description of a notebook instance lifecycle configuration.</p>
1903
- * <p>For information about notebook instance lifestyle configurations, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html">Step
1892
+ * <p>For information about notebook instance lifestyle configurations, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html">Step
1904
1893
  * 2.1: (Optional) Customize a Notebook Instance</a>.</p>
1905
1894
  */
1906
1895
  describeNotebookInstanceLifecycleConfig(args: DescribeNotebookInstanceLifecycleConfigCommandInput, options?: __HttpHandlerOptions): Promise<DescribeNotebookInstanceLifecycleConfigCommandOutput>;
@@ -1957,7 +1946,7 @@ export declare class SageMaker extends SageMakerClient {
1957
1946
  describeSubscribedWorkteam(args: DescribeSubscribedWorkteamCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: DescribeSubscribedWorkteamCommandOutput) => void): void;
1958
1947
  /**
1959
1948
  * <p>Returns information about a training job. </p>
1960
- * <p>Some of the attributes below only appear if the training job successfully starts.
1949
+ * <p>Some of the attributes below only appear if the training job successfully starts.
1961
1950
  * If the training job fails, <code>TrainingJobStatus</code> is <code>Failed</code> and,
1962
1951
  * depending on the <code>FailureReason</code>, attributes like
1963
1952
  * <code>TrainingStartTime</code>, <code>TrainingTimeInSeconds</code>,
@@ -1995,9 +1984,9 @@ export declare class SageMaker extends SageMakerClient {
1995
1984
  * <p>Lists private workforce information, including workforce name, Amazon Resource Name
1996
1985
  * (ARN), and, if applicable, allowed IP address ranges (<a href="https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html">CIDRs</a>). Allowable IP address
1997
1986
  * ranges are the IP addresses that workers can use to access tasks. </p>
1998
- * <important>
1987
+ * <important>
1999
1988
  * <p>This operation applies only to private workforces.</p>
2000
- * </important>
1989
+ * </important>
2001
1990
  */
2002
1991
  describeWorkforce(args: DescribeWorkforceCommandInput, options?: __HttpHandlerOptions): Promise<DescribeWorkforceCommandOutput>;
2003
1992
  describeWorkforce(args: DescribeWorkforceCommandInput, cb: (err: any, data?: DescribeWorkforceCommandOutput) => void): void;
@@ -2136,7 +2125,7 @@ export declare class SageMaker extends SageMakerClient {
2136
2125
  listCodeRepositories(args: ListCodeRepositoriesCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: ListCodeRepositoriesCommandOutput) => void): void;
2137
2126
  /**
2138
2127
  * <p>Lists model compilation jobs that satisfy various filters.</p>
2139
- * <p>To create a model compilation job, use <a>CreateCompilationJob</a>. To get
2128
+ * <p>To create a model compilation job, use <a>CreateCompilationJob</a>. To get
2140
2129
  * information about a particular model compilation job you have created, use <a>DescribeCompilationJob</a>.</p>
2141
2130
  */
2142
2131
  listCompilationJobs(args: ListCompilationJobsCommandInput, options?: __HttpHandlerOptions): Promise<ListCompilationJobsCommandOutput>;
@@ -2469,7 +2458,7 @@ export declare class SageMaker extends SageMakerClient {
2469
2458
  listTags(args: ListTagsCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: ListTagsCommandOutput) => void): void;
2470
2459
  /**
2471
2460
  * <p>Lists training jobs.</p>
2472
- * <note>
2461
+ * <note>
2473
2462
  * <p>When <code>StatusEquals</code> and <code>MaxResults</code> are set at the same
2474
2463
  * time, the <code>MaxResults</code> number of training jobs are first retrieved
2475
2464
  * ignoring the <code>StatusEquals</code> parameter and then they are filtered by the
@@ -2489,7 +2478,7 @@ export declare class SageMaker extends SageMakerClient {
2489
2478
  * <code>aws sagemaker list-training-jobs --max-results 100 --status-equals
2490
2479
  * InProgress</code>
2491
2480
  * </p>
2492
- * </note>
2481
+ * </note>
2493
2482
  */
2494
2483
  listTrainingJobs(args: ListTrainingJobsCommandInput, options?: __HttpHandlerOptions): Promise<ListTrainingJobsCommandOutput>;
2495
2484
  listTrainingJobs(args: ListTrainingJobsCommandInput, cb: (err: any, data?: ListTrainingJobsCommandOutput) => void): void;
@@ -2668,9 +2657,9 @@ export declare class SageMaker extends SageMakerClient {
2668
2657
  stopAutoMLJob(args: StopAutoMLJobCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: StopAutoMLJobCommandOutput) => void): void;
2669
2658
  /**
2670
2659
  * <p>Stops a model compilation job.</p>
2671
- * <p> To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal. This gracefully shuts the
2660
+ * <p> To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal. This gracefully shuts the
2672
2661
  * job down. If the job hasn't stopped, it sends the SIGKILL signal.</p>
2673
- * <p>When it receives a <code>StopCompilationJob</code> request, Amazon SageMaker changes the <a>CompilationJobSummary$CompilationJobStatus</a> of the job to
2662
+ * <p>When it receives a <code>StopCompilationJob</code> request, Amazon SageMaker changes the <a>CompilationJobSummary$CompilationJobStatus</a> of the job to
2674
2663
  * <code>Stopping</code>. After Amazon SageMaker stops the job, it sets the <a>CompilationJobSummary$CompilationJobStatus</a> to <code>Stopped</code>.
2675
2664
  * </p>
2676
2665
  */
@@ -2692,7 +2681,7 @@ export declare class SageMaker extends SageMakerClient {
2692
2681
  /**
2693
2682
  * <p>Stops a running hyperparameter tuning job and all running training jobs that the
2694
2683
  * tuning job launched.</p>
2695
- * <p>All model artifacts output from the training jobs are stored in Amazon Simple Storage Service (Amazon S3). All
2684
+ * <p>All model artifacts output from the training jobs are stored in Amazon Simple Storage Service (Amazon S3). All
2696
2685
  * data that the training jobs write to Amazon CloudWatch Logs are still available in CloudWatch. After the
2697
2686
  * tuning job moves to the <code>Stopped</code> state, it releases all
2698
2687
  * reserved
@@ -2731,7 +2720,7 @@ export declare class SageMaker extends SageMakerClient {
2731
2720
  * disconnects the ML storage volume from it. SageMaker preserves the ML storage volume. SageMaker
2732
2721
  * stops charging you for the ML compute instance when you call
2733
2722
  * <code>StopNotebookInstance</code>.</p>
2734
- * <p>To access data on the ML storage volume for a notebook instance that has been
2723
+ * <p>To access data on the ML storage volume for a notebook instance that has been
2735
2724
  * terminated, call the <code>StartNotebookInstance</code> API.
2736
2725
  * <code>StartNotebookInstance</code> launches another ML compute instance, configures
2737
2726
  * it, and attaches the preserved ML storage volume so you can continue your work.
@@ -2742,7 +2731,6 @@ export declare class SageMaker extends SageMakerClient {
2742
2731
  stopNotebookInstance(args: StopNotebookInstanceCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: StopNotebookInstanceCommandOutput) => void): void;
2743
2732
  /**
2744
2733
  * <p>Stops a pipeline execution.</p>
2745
- *
2746
2734
  * <p>
2747
2735
  * <b>Callback Step</b>
2748
2736
  * </p>
@@ -2756,7 +2744,6 @@ export declare class SageMaker extends SageMakerClient {
2756
2744
  * <code>SendPipelineExecutionStepSuccess</code> or
2757
2745
  * <code>SendPipelineExecutionStepFailure</code>.</p>
2758
2746
  * <p>Only when SageMaker Pipelines receives one of these calls will it stop the pipeline execution.</p>
2759
- *
2760
2747
  * <p>
2761
2748
  * <b>Lambda Step</b>
2762
2749
  * </p>
@@ -2781,7 +2768,7 @@ export declare class SageMaker extends SageMakerClient {
2781
2768
  * <code>SIGTERM</code> signal, which delays job termination for 120 seconds.
2782
2769
  * Algorithms might use this 120-second window to save the model artifacts, so the results
2783
2770
  * of the training is not lost. </p>
2784
- * <p>When it receives a <code>StopTrainingJob</code> request, SageMaker changes the status of
2771
+ * <p>When it receives a <code>StopTrainingJob</code> request, SageMaker changes the status of
2785
2772
  * the job to <code>Stopping</code>. After SageMaker stops the job, it sets the status to
2786
2773
  * <code>Stopped</code>.</p>
2787
2774
  */
@@ -2790,7 +2777,7 @@ export declare class SageMaker extends SageMakerClient {
2790
2777
  stopTrainingJob(args: StopTrainingJobCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: StopTrainingJobCommandOutput) => void): void;
2791
2778
  /**
2792
2779
  * <p>Stops a batch transform job.</p>
2793
- * <p>When Amazon SageMaker receives a <code>StopTransformJob</code> request, the status of the job
2780
+ * <p>When Amazon SageMaker receives a <code>StopTransformJob</code> request, the status of the job
2794
2781
  * changes to <code>Stopping</code>. After Amazon SageMaker
2795
2782
  * stops
2796
2783
  * the job, the status is set to <code>Stopped</code>. When you stop a batch transform job before
@@ -2851,12 +2838,12 @@ export declare class SageMaker extends SageMakerClient {
2851
2838
  * <p>Deploys the new <code>EndpointConfig</code> specified in the request, switches to
2852
2839
  * using newly created endpoint, and then deletes resources provisioned for the endpoint
2853
2840
  * using the previous <code>EndpointConfig</code> (there is no availability loss). </p>
2854
- * <p>When SageMaker receives the request, it sets the endpoint status to
2841
+ * <p>When SageMaker receives the request, it sets the endpoint status to
2855
2842
  * <code>Updating</code>. After updating the endpoint, it sets the status to
2856
2843
  * <code>InService</code>. To check the status of an endpoint, use the <a>DescribeEndpoint</a> API.
2857
2844
  *
2858
2845
  * </p>
2859
- * <note>
2846
+ * <note>
2860
2847
  * <p>You must not delete an <code>EndpointConfig</code> in use by an endpoint that is
2861
2848
  * live or while the <code>UpdateEndpoint</code> or <code>CreateEndpoint</code>
2862
2849
  * operations are being performed on the endpoint. To update an endpoint, you must
@@ -2864,7 +2851,7 @@ export declare class SageMaker extends SageMakerClient {
2864
2851
  * <p>If you delete the <code>EndpointConfig</code> of an endpoint that is active or
2865
2852
  * being created or updated you may lose visibility into the instance type the endpoint
2866
2853
  * is using. The endpoint must be deleted in order to stop incurring charges.</p>
2867
- * </note>
2854
+ * </note>
2868
2855
  */
2869
2856
  updateEndpoint(args: UpdateEndpointCommandInput, options?: __HttpHandlerOptions): Promise<UpdateEndpointCommandOutput>;
2870
2857
  updateEndpoint(args: UpdateEndpointCommandInput, cb: (err: any, data?: UpdateEndpointCommandOutput) => void): void;
@@ -2977,12 +2964,12 @@ export declare class SageMaker extends SageMakerClient {
2977
2964
  /**
2978
2965
  * <p>Updates a machine learning (ML) project that is created from a template that
2979
2966
  * sets up an ML pipeline from training to deploying an approved model.</p>
2980
- * <note>
2967
+ * <note>
2981
2968
  * <p>You must not update a project that is in use. If you update the
2982
2969
  * <code>ServiceCatalogProvisioningUpdateDetails</code> of a project that is active
2983
2970
  * or being created, or updated, you may lose resources already created by the
2984
2971
  * project.</p>
2985
- * </note>
2972
+ * </note>
2986
2973
  */
2987
2974
  updateProject(args: UpdateProjectCommandInput, options?: __HttpHandlerOptions): Promise<UpdateProjectCommandOutput>;
2988
2975
  updateProject(args: UpdateProjectCommandInput, cb: (err: any, data?: UpdateProjectCommandOutput) => void): void;
@@ -3022,31 +3009,29 @@ export declare class SageMaker extends SageMakerClient {
3022
3009
  * <p>Use this operation to update your workforce. You can use this operation to
3023
3010
  * require that workers use specific IP addresses to work on tasks
3024
3011
  * and to update your OpenID Connect (OIDC) Identity Provider (IdP) workforce configuration.</p>
3025
- * <p>The worker portal is now supported in VPC and public internet.</p>
3026
- *
3027
- *
3028
- * <p> Use <code>SourceIpConfig</code> to restrict worker access to tasks to a specific range of IP addresses.
3012
+ * <p>The worker portal is now supported in VPC and public internet.</p>
3013
+ * <p> Use <code>SourceIpConfig</code> to restrict worker access to tasks to a specific range of IP addresses.
3029
3014
  * You specify allowed IP addresses by creating a list of up to ten <a href="https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html">CIDRs</a>.
3030
3015
  * By default, a workforce isn't restricted to specific IP addresses. If you specify a
3031
3016
  * range of IP addresses, workers who attempt to access tasks using any IP address outside
3032
3017
  * the specified range are denied and get a <code>Not Found</code> error message on
3033
3018
  * the worker portal.</p>
3034
3019
  * <p>To restrict access to all the workers in public internet, add the <code>SourceIpConfig</code> CIDR value as "0.0.0.0/0".</p>
3035
- * <important>
3020
+ * <important>
3036
3021
  * <p>Amazon SageMaker does not support Source Ip restriction for worker portals in VPC.</p>
3037
- * </important>
3038
- * <p>Use <code>OidcConfig</code> to update the configuration of a workforce created using
3022
+ * </important>
3023
+ * <p>Use <code>OidcConfig</code> to update the configuration of a workforce created using
3039
3024
  * your own OIDC IdP. </p>
3040
- * <important>
3025
+ * <important>
3041
3026
  * <p>You can only update your OIDC IdP configuration when there are no work teams
3042
3027
  * associated with your workforce. You can delete work teams using the operation.</p>
3043
- * </important>
3044
- * <p>After restricting access to a range of IP addresses or updating your OIDC IdP configuration with this operation, you
3028
+ * </important>
3029
+ * <p>After restricting access to a range of IP addresses or updating your OIDC IdP configuration with this operation, you
3045
3030
  * can view details about your update workforce using the
3046
3031
  * operation.</p>
3047
- * <important>
3032
+ * <important>
3048
3033
  * <p>This operation only applies to private workforces.</p>
3049
- * </important>
3034
+ * </important>
3050
3035
  */
3051
3036
  updateWorkforce(args: UpdateWorkforceCommandInput, options?: __HttpHandlerOptions): Promise<UpdateWorkforceCommandOutput>;
3052
3037
  updateWorkforce(args: UpdateWorkforceCommandInput, cb: (err: any, data?: UpdateWorkforceCommandOutput) => void): void;