@aws-sdk/client-sagemaker 3.231.0 → 3.232.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist-cjs/commands/DescribeAppCommand.js +2 -1
- package/dist-cjs/commands/ListCodeRepositoriesCommand.js +1 -2
- package/dist-cjs/commands/UpdateImageCommand.js +2 -1
- package/dist-cjs/endpoint/ruleset.js +0 -9
- package/dist-cjs/models/models_1.js +10 -10
- package/dist-cjs/models/models_2.js +9 -9
- package/dist-cjs/models/models_3.js +10 -10
- package/dist-cjs/models/models_4.js +5 -1
- package/dist-cjs/protocols/Aws_json1_1.js +58 -0
- package/dist-es/commands/DescribeAppCommand.js +2 -1
- package/dist-es/commands/ListCodeRepositoriesCommand.js +1 -2
- package/dist-es/commands/UpdateImageCommand.js +2 -1
- package/dist-es/endpoint/ruleset.js +0 -9
- package/dist-es/models/models_1.js +3 -3
- package/dist-es/models/models_2.js +3 -3
- package/dist-es/models/models_3.js +3 -3
- package/dist-es/models/models_4.js +3 -0
- package/dist-es/protocols/Aws_json1_1.js +58 -0
- package/dist-types/SageMaker.d.ts +166 -181
- package/dist-types/SageMakerClient.d.ts +4 -4
- package/dist-types/commands/AddTagsCommand.d.ts +5 -5
- package/dist-types/commands/CreateCodeRepositoryCommand.d.ts +1 -1
- package/dist-types/commands/CreateCompilationJobCommand.d.ts +9 -9
- package/dist-types/commands/CreateDomainCommand.d.ts +0 -2
- package/dist-types/commands/CreateEndpointCommand.d.ts +22 -24
- package/dist-types/commands/CreateEndpointConfigCommand.d.ts +6 -6
- package/dist-types/commands/CreateHyperParameterTuningJobCommand.d.ts +3 -3
- package/dist-types/commands/CreateInferenceExperimentCommand.d.ts +2 -2
- package/dist-types/commands/CreateLabelingJobCommand.d.ts +9 -9
- package/dist-types/commands/CreateModelCommand.d.ts +5 -5
- package/dist-types/commands/CreateModelPackageCommand.d.ts +7 -7
- package/dist-types/commands/CreateNotebookInstanceCommand.d.ts +10 -12
- package/dist-types/commands/CreateNotebookInstanceLifecycleConfigCommand.d.ts +5 -5
- package/dist-types/commands/CreatePresignedNotebookInstanceUrlCommand.d.ts +4 -4
- package/dist-types/commands/CreateTrainingJobCommand.d.ts +20 -21
- package/dist-types/commands/CreateTransformJobCommand.d.ts +9 -9
- package/dist-types/commands/CreateWorkforceCommand.d.ts +1 -4
- package/dist-types/commands/CreateWorkteamCommand.d.ts +1 -1
- package/dist-types/commands/DeleteEndpointCommand.d.ts +2 -2
- package/dist-types/commands/DeleteEndpointConfigCommand.d.ts +1 -1
- package/dist-types/commands/DeleteInferenceExperimentCommand.d.ts +1 -1
- package/dist-types/commands/DeleteModelPackageCommand.d.ts +1 -1
- package/dist-types/commands/DeleteNotebookInstanceCommand.d.ts +2 -2
- package/dist-types/commands/DeleteTagsCommand.d.ts +5 -5
- package/dist-types/commands/DeleteWorkforceCommand.d.ts +1 -2
- package/dist-types/commands/DescribeAppCommand.d.ts +2 -1
- package/dist-types/commands/DescribeCompilationJobCommand.d.ts +1 -1
- package/dist-types/commands/DescribeModelPackageCommand.d.ts +1 -1
- package/dist-types/commands/DescribeNotebookInstanceLifecycleConfigCommand.d.ts +1 -1
- package/dist-types/commands/DescribeTrainingJobCommand.d.ts +1 -1
- package/dist-types/commands/DescribeWorkforceCommand.d.ts +2 -2
- package/dist-types/commands/ListCodeRepositoriesCommand.d.ts +1 -2
- package/dist-types/commands/ListCompilationJobsCommand.d.ts +1 -1
- package/dist-types/commands/ListTrainingJobsCommand.d.ts +2 -2
- package/dist-types/commands/StopCompilationJobCommand.d.ts +2 -2
- package/dist-types/commands/StopHyperParameterTuningJobCommand.d.ts +1 -1
- package/dist-types/commands/StopNotebookInstanceCommand.d.ts +1 -1
- package/dist-types/commands/StopPipelineExecutionCommand.d.ts +0 -2
- package/dist-types/commands/StopTrainingJobCommand.d.ts +1 -1
- package/dist-types/commands/StopTransformJobCommand.d.ts +1 -1
- package/dist-types/commands/UpdateEndpointCommand.d.ts +3 -3
- package/dist-types/commands/UpdateImageCommand.d.ts +2 -1
- package/dist-types/commands/UpdateProjectCommand.d.ts +2 -2
- package/dist-types/commands/UpdateWorkforceCommand.d.ts +10 -12
- package/dist-types/models/models_0.d.ts +698 -706
- package/dist-types/models/models_1.d.ts +1112 -1191
- package/dist-types/models/models_2.d.ts +377 -336
- package/dist-types/models/models_3.d.ts +151 -112
- package/dist-types/models/models_4.d.ts +26 -11
- package/dist-types/ts3.4/commands/DescribeAppCommand.d.ts +2 -1
- package/dist-types/ts3.4/commands/ListCodeRepositoriesCommand.d.ts +4 -2
- package/dist-types/ts3.4/commands/UpdateImageCommand.d.ts +2 -1
- package/dist-types/ts3.4/models/models_1.d.ts +8 -19
- package/dist-types/ts3.4/models/models_2.d.ts +19 -16
- package/dist-types/ts3.4/models/models_3.d.ts +16 -6
- package/dist-types/ts3.4/models/models_4.d.ts +6 -0
- package/package.json +1 -1
|
@@ -300,16 +300,16 @@ import { UpdateWorkteamCommandInput, UpdateWorkteamCommandOutput } from "./comma
|
|
|
300
300
|
import { SageMakerClient } from "./SageMakerClient";
|
|
301
301
|
/**
|
|
302
302
|
* <p>Provides APIs for creating and managing SageMaker resources. </p>
|
|
303
|
-
*
|
|
304
|
-
*
|
|
303
|
+
* <p>Other Resources:</p>
|
|
304
|
+
* <ul>
|
|
305
305
|
* <li>
|
|
306
|
-
*
|
|
306
|
+
* <p>
|
|
307
307
|
* <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html#first-time-user">SageMaker Developer
|
|
308
308
|
* Guide</a>
|
|
309
309
|
* </p>
|
|
310
310
|
* </li>
|
|
311
311
|
* <li>
|
|
312
|
-
*
|
|
312
|
+
* <p>
|
|
313
313
|
* <a href="https://docs.aws.amazon.com/augmented-ai/2019-11-07/APIReference/Welcome.html">Amazon Augmented AI
|
|
314
314
|
* Runtime API Reference</a>
|
|
315
315
|
* </p>
|
|
@@ -332,9 +332,9 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
332
332
|
* tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform
|
|
333
333
|
* jobs, models, labeling jobs, work teams, endpoint configurations, and
|
|
334
334
|
* endpoints.</p>
|
|
335
|
-
*
|
|
335
|
+
* <p>Each tag consists of a key and an optional value. Tag keys must be unique per
|
|
336
336
|
* resource. For more information about tags, see For more information, see <a href="https://aws.amazon.com/answers/account-management/aws-tagging-strategies/">Amazon Web Services Tagging Strategies</a>.</p>
|
|
337
|
-
*
|
|
337
|
+
* <note>
|
|
338
338
|
* <p>Tags that you add to a hyperparameter tuning job by calling this API are also
|
|
339
339
|
* added to any training jobs that the hyperparameter tuning job launches after you
|
|
340
340
|
* call this API, but not to training jobs that the hyperparameter tuning job launched
|
|
@@ -343,8 +343,8 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
343
343
|
* hyperparameter tuning job launches, add the tags when you first create the tuning
|
|
344
344
|
* job by specifying them in the <code>Tags</code> parameter of <a>CreateHyperParameterTuningJob</a>
|
|
345
345
|
* </p>
|
|
346
|
-
*
|
|
347
|
-
*
|
|
346
|
+
* </note>
|
|
347
|
+
* <note>
|
|
348
348
|
* <p>Tags that you add to a SageMaker Studio Domain or User Profile by calling this API
|
|
349
349
|
* are also added to any Apps that the Domain or User Profile launches after you call
|
|
350
350
|
* this API, but not to Apps that the Domain or User Profile launched before you called
|
|
@@ -352,7 +352,7 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
352
352
|
* also added to all Apps that the Domain or User Profile launches, add the tags when
|
|
353
353
|
* you first create the Domain or User Profile by specifying them in the
|
|
354
354
|
* <code>Tags</code> parameter of <a>CreateDomain</a> or <a>CreateUserProfile</a>.</p>
|
|
355
|
-
*
|
|
355
|
+
* </note>
|
|
356
356
|
*/
|
|
357
357
|
addTags(args: AddTagsCommandInput, options?: __HttpHandlerOptions): Promise<AddTagsCommandOutput>;
|
|
358
358
|
addTags(args: AddTagsCommandInput, cb: (err: any, data?: AddTagsCommandOutput) => void): void;
|
|
@@ -427,7 +427,7 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
427
427
|
* notebooks you create. The Git repository is a resource in your SageMaker account, so it can
|
|
428
428
|
* be associated with more than one notebook instance, and it persists independently from
|
|
429
429
|
* the lifecycle of any notebook instances it is associated with.</p>
|
|
430
|
-
*
|
|
430
|
+
* <p>The repository can be hosted either in <a href="https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html">Amazon Web Services CodeCommit</a>
|
|
431
431
|
* or in any other Git repository.</p>
|
|
432
432
|
*/
|
|
433
433
|
createCodeRepository(args: CreateCodeRepositoryCommandInput, options?: __HttpHandlerOptions): Promise<CreateCodeRepositoryCommandOutput>;
|
|
@@ -436,34 +436,34 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
436
436
|
/**
|
|
437
437
|
* <p>Starts a model compilation job. After the model has been compiled, Amazon SageMaker saves the
|
|
438
438
|
* resulting model artifacts to an Amazon Simple Storage Service (Amazon S3) bucket that you specify. </p>
|
|
439
|
-
*
|
|
439
|
+
* <p>If
|
|
440
440
|
* you choose to host your model using Amazon SageMaker hosting services, you can use the resulting
|
|
441
441
|
* model artifacts as part of the model. You can also use the artifacts with
|
|
442
442
|
* Amazon Web Services
|
|
443
443
|
* IoT Greengrass. In that case, deploy them as an ML
|
|
444
444
|
* resource.</p>
|
|
445
|
-
*
|
|
446
|
-
*
|
|
445
|
+
* <p>In the request body, you provide the following:</p>
|
|
446
|
+
* <ul>
|
|
447
447
|
* <li>
|
|
448
|
-
*
|
|
448
|
+
* <p>A name for the compilation job</p>
|
|
449
449
|
* </li>
|
|
450
450
|
* <li>
|
|
451
|
-
*
|
|
451
|
+
* <p> Information about the input model artifacts </p>
|
|
452
452
|
* </li>
|
|
453
453
|
* <li>
|
|
454
|
-
*
|
|
454
|
+
* <p>The output location for the compiled model and the device (target) that the
|
|
455
455
|
* model runs on </p>
|
|
456
456
|
* </li>
|
|
457
457
|
* <li>
|
|
458
|
-
*
|
|
458
|
+
* <p>The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker assumes to perform
|
|
459
459
|
* the model compilation job. </p>
|
|
460
460
|
* </li>
|
|
461
461
|
* </ul>
|
|
462
|
-
*
|
|
462
|
+
* <p>You can also provide a <code>Tag</code> to track the model compilation job's resource
|
|
463
463
|
* use and costs. The response body contains the
|
|
464
464
|
* <code>CompilationJobArn</code>
|
|
465
465
|
* for the compiled job.</p>
|
|
466
|
-
*
|
|
466
|
+
* <p>To stop a model compilation job, use <a>StopCompilationJob</a>. To get
|
|
467
467
|
* information about a particular model compilation job, use <a>DescribeCompilationJob</a>. To get information about multiple model
|
|
468
468
|
* compilation jobs, use <a>ListCompilationJobs</a>.</p>
|
|
469
469
|
*/
|
|
@@ -498,7 +498,6 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
498
498
|
* Amazon Elastic File System (EFS) volume, a list of authorized users, and a variety of security, application,
|
|
499
499
|
* policy, and Amazon Virtual Private Cloud (VPC) configurations. An Amazon Web Services account is limited to one domain per region.
|
|
500
500
|
* Users within a domain can share notebook files and other artifacts with each other.</p>
|
|
501
|
-
*
|
|
502
501
|
* <p>
|
|
503
502
|
* <b>EFS storage</b>
|
|
504
503
|
* </p>
|
|
@@ -510,7 +509,6 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
510
509
|
* customer managed key. For more information, see
|
|
511
510
|
* <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/encryption-at-rest.html">Protect Data at
|
|
512
511
|
* Rest Using Encryption</a>.</p>
|
|
513
|
-
*
|
|
514
512
|
* <p>
|
|
515
513
|
* <b>VPC configuration</b>
|
|
516
514
|
* </p>
|
|
@@ -567,22 +565,21 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
567
565
|
* <p>Creates an endpoint using the endpoint configuration specified in the request. SageMaker
|
|
568
566
|
* uses the endpoint to provision resources and deploy models. You create the endpoint
|
|
569
567
|
* configuration with the <a>CreateEndpointConfig</a> API. </p>
|
|
570
|
-
*
|
|
571
|
-
*
|
|
568
|
+
* <p> Use this API to deploy models using SageMaker hosting services. </p>
|
|
569
|
+
* <p>For an example that calls this method when deploying a model to SageMaker hosting services,
|
|
572
570
|
* see the <a href="https://github.com/aws/amazon-sagemaker-examples/blob/master/sagemaker-fundamentals/create-endpoint/create_endpoint.ipynb">Create Endpoint example notebook.</a>
|
|
573
571
|
* </p>
|
|
574
|
-
*
|
|
572
|
+
* <note>
|
|
575
573
|
* <p> You must not delete an <code>EndpointConfig</code> that is in use by an endpoint
|
|
576
574
|
* that is live or while the <code>UpdateEndpoint</code> or <code>CreateEndpoint</code>
|
|
577
575
|
* operations are being performed on the endpoint. To update an endpoint, you must
|
|
578
576
|
* create a new <code>EndpointConfig</code>.</p>
|
|
579
|
-
*
|
|
580
|
-
*
|
|
577
|
+
* </note>
|
|
578
|
+
* <p>The endpoint name must be unique within an Amazon Web Services Region in your
|
|
581
579
|
* Amazon Web Services account. </p>
|
|
582
|
-
*
|
|
580
|
+
* <p>When it receives the request, SageMaker creates the endpoint, launches the resources (ML
|
|
583
581
|
* compute instances), and deploys the model(s) on them. </p>
|
|
584
|
-
*
|
|
585
|
-
* <note>
|
|
582
|
+
* <note>
|
|
586
583
|
* <p>When you call <a>CreateEndpoint</a>, a load call is made to DynamoDB to
|
|
587
584
|
* verify that your endpoint configuration exists. When you read data from a DynamoDB
|
|
588
585
|
* table supporting <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadConsistency.html">
|
|
@@ -593,13 +590,13 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
593
590
|
* causes a validation error. If you repeat your read request after a short time, the
|
|
594
591
|
* response should return the latest data. So retry logic is recommended to handle
|
|
595
592
|
* these possible issues. We also recommend that customers call <a>DescribeEndpointConfig</a> before calling <a>CreateEndpoint</a> to minimize the potential impact of a DynamoDB eventually consistent read.</p>
|
|
596
|
-
*
|
|
597
|
-
*
|
|
593
|
+
* </note>
|
|
594
|
+
* <p>When SageMaker receives the request, it sets the endpoint status to
|
|
598
595
|
* <code>Creating</code>. After it creates the endpoint, it sets the status to
|
|
599
596
|
* <code>InService</code>. SageMaker can then process incoming requests for inferences. To
|
|
600
597
|
* check the status of an endpoint, use the <a>DescribeEndpoint</a>
|
|
601
598
|
* API.</p>
|
|
602
|
-
*
|
|
599
|
+
* <p>If any of the models hosted at this endpoint get model data from an Amazon S3 location,
|
|
603
600
|
* SageMaker uses Amazon Web Services Security Token Service to download model artifacts from the
|
|
604
601
|
* S3 path you provided. Amazon Web Services STS is activated in your IAM user account by
|
|
605
602
|
* default. If you previously deactivated Amazon Web Services STS for a region, you need to
|
|
@@ -607,42 +604,41 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
607
604
|
* Deactivating Amazon Web Services STS in an Amazon Web Services Region</a> in the
|
|
608
605
|
* <i>Amazon Web Services Identity and Access Management User
|
|
609
606
|
* Guide</i>.</p>
|
|
610
|
-
*
|
|
607
|
+
* <note>
|
|
611
608
|
* <p> To add the IAM role policies for using this API operation, go to the <a href="https://console.aws.amazon.com/iam/">IAM console</a>, and choose
|
|
612
609
|
* Roles in the left navigation pane. Search the IAM role that you want to grant
|
|
613
610
|
* access to use the <a>CreateEndpoint</a> and <a>CreateEndpointConfig</a> API operations, add the following policies to
|
|
614
611
|
* the role. </p>
|
|
615
612
|
* <ul>
|
|
616
613
|
* <li>
|
|
617
|
-
*
|
|
614
|
+
* <p>Option 1: For a full SageMaker access, search and attach the
|
|
618
615
|
* <code>AmazonSageMakerFullAccess</code> policy.</p>
|
|
619
|
-
*
|
|
616
|
+
* </li>
|
|
620
617
|
* <li>
|
|
621
|
-
*
|
|
618
|
+
* <p>Option 2: For granting a limited access to an IAM role, paste the
|
|
622
619
|
* following Action elements manually into the JSON file of the IAM role: </p>
|
|
623
|
-
*
|
|
620
|
+
* <p>
|
|
624
621
|
* <code>"Action": ["sagemaker:CreateEndpoint",
|
|
625
622
|
* "sagemaker:CreateEndpointConfig"]</code>
|
|
626
623
|
* </p>
|
|
627
|
-
*
|
|
624
|
+
* <p>
|
|
628
625
|
* <code>"Resource": [</code>
|
|
629
626
|
* </p>
|
|
630
|
-
*
|
|
627
|
+
* <p>
|
|
631
628
|
* <code>"arn:aws:sagemaker:region:account-id:endpoint/endpointName"</code>
|
|
632
629
|
* </p>
|
|
633
|
-
*
|
|
630
|
+
* <p>
|
|
634
631
|
* <code>"arn:aws:sagemaker:region:account-id:endpoint-config/endpointConfigName"</code>
|
|
635
632
|
* </p>
|
|
636
|
-
*
|
|
633
|
+
* <p>
|
|
637
634
|
* <code>]</code>
|
|
638
635
|
* </p>
|
|
639
|
-
*
|
|
636
|
+
* <p>For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/api-permissions-reference.html">SageMaker API
|
|
640
637
|
* Permissions: Actions, Permissions, and Resources
|
|
641
638
|
* Reference</a>.</p>
|
|
642
|
-
*
|
|
639
|
+
* </li>
|
|
643
640
|
* </ul>
|
|
644
|
-
*
|
|
645
|
-
* </note>
|
|
641
|
+
* </note>
|
|
646
642
|
*/
|
|
647
643
|
createEndpoint(args: CreateEndpointCommandInput, options?: __HttpHandlerOptions): Promise<CreateEndpointCommandOutput>;
|
|
648
644
|
createEndpoint(args: CreateEndpointCommandInput, cb: (err: any, data?: CreateEndpointCommandOutput) => void): void;
|
|
@@ -652,20 +648,20 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
652
648
|
* the configuration, you identify one or more models, created using the
|
|
653
649
|
* <code>CreateModel</code> API, to deploy and the resources that you want SageMaker to
|
|
654
650
|
* provision. Then you call the <a>CreateEndpoint</a> API.</p>
|
|
655
|
-
*
|
|
651
|
+
* <note>
|
|
656
652
|
* <p> Use this API if you want to use SageMaker hosting services to deploy models into
|
|
657
653
|
* production. </p>
|
|
658
|
-
*
|
|
659
|
-
*
|
|
654
|
+
* </note>
|
|
655
|
+
* <p>In the request, you define a <code>ProductionVariant</code>, for each model that you
|
|
660
656
|
* want to deploy. Each <code>ProductionVariant</code> parameter also describes the
|
|
661
657
|
* resources that you want SageMaker to provision. This includes the number and type of ML
|
|
662
658
|
* compute instances to deploy. </p>
|
|
663
|
-
*
|
|
659
|
+
* <p>If you are hosting multiple models, you also assign a <code>VariantWeight</code> to
|
|
664
660
|
* specify how much traffic you want to allocate to each model. For example, suppose that
|
|
665
661
|
* you want to host two models, A and B, and you assign traffic weight 2 for model A and 1
|
|
666
662
|
* for model B. SageMaker distributes two-thirds of the traffic to Model A, and one-third to
|
|
667
663
|
* model B. </p>
|
|
668
|
-
*
|
|
664
|
+
* <note>
|
|
669
665
|
* <p>When you call <a>CreateEndpoint</a>, a load call is made to DynamoDB to
|
|
670
666
|
* verify that your endpoint configuration exists. When you read data from a DynamoDB
|
|
671
667
|
* table supporting <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadConsistency.html">
|
|
@@ -676,7 +672,7 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
676
672
|
* causes a validation error. If you repeat your read request after a short time, the
|
|
677
673
|
* response should return the latest data. So retry logic is recommended to handle
|
|
678
674
|
* these possible issues. We also recommend that customers call <a>DescribeEndpointConfig</a> before calling <a>CreateEndpoint</a> to minimize the potential impact of a DynamoDB eventually consistent read.</p>
|
|
679
|
-
*
|
|
675
|
+
* </note>
|
|
680
676
|
*/
|
|
681
677
|
createEndpointConfig(args: CreateEndpointConfigCommandInput, options?: __HttpHandlerOptions): Promise<CreateEndpointConfigCommandOutput>;
|
|
682
678
|
createEndpointConfig(args: CreateEndpointConfigCommandInput, cb: (err: any, data?: CreateEndpointConfigCommandOutput) => void): void;
|
|
@@ -745,16 +741,16 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
745
741
|
* and values for hyperparameters within ranges that you specify. It then chooses the
|
|
746
742
|
* hyperparameter values that result in a model that performs the best, as measured by an
|
|
747
743
|
* objective metric that you choose.</p>
|
|
748
|
-
*
|
|
744
|
+
* <p>A hyperparameter tuning job automatically creates Amazon SageMaker experiments, trials, and
|
|
749
745
|
* trial components for each training job that it runs. You can view these entities in
|
|
750
746
|
* Amazon SageMaker Studio. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/experiments-view-compare.html#experiments-view">View
|
|
751
747
|
* Experiments, Trials, and Trial Components</a>.</p>
|
|
752
|
-
*
|
|
748
|
+
* <important>
|
|
753
749
|
* <p>Do not include any security-sensitive information including account access IDs,
|
|
754
750
|
* secrets or tokens in any hyperparameter field. If the use of security-sensitive
|
|
755
751
|
* credentials are detected, SageMaker will reject your training job request and return an
|
|
756
752
|
* exception error.</p>
|
|
757
|
-
*
|
|
753
|
+
* </important>
|
|
758
754
|
*/
|
|
759
755
|
createHyperParameterTuningJob(args: CreateHyperParameterTuningJobCommandInput, options?: __HttpHandlerOptions): Promise<CreateHyperParameterTuningJobCommandOutput>;
|
|
760
756
|
createHyperParameterTuningJob(args: CreateHyperParameterTuningJobCommandInput, cb: (err: any, data?: CreateHyperParameterTuningJobCommandOutput) => void): void;
|
|
@@ -779,8 +775,8 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
779
775
|
* Creates an inference experiment using the configurations specified in the request.
|
|
780
776
|
* </p>
|
|
781
777
|
* <p>
|
|
782
|
-
* Use this API to schedule an experiment to compare model variants on a Amazon SageMaker inference endpoint. For
|
|
783
|
-
* information about inference experiments, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/shadow-tests.html">Shadow tests</a>.
|
|
778
|
+
* Use this API to setup and schedule an experiment to compare model variants on a Amazon SageMaker inference endpoint. For
|
|
779
|
+
* more information about inference experiments, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/shadow-tests.html">Shadow tests</a>.
|
|
784
780
|
* </p>
|
|
785
781
|
* <p>
|
|
786
782
|
* Amazon SageMaker begins your experiment at the scheduled time and routes traffic to your endpoint's model variants based
|
|
@@ -804,34 +800,34 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
804
800
|
/**
|
|
805
801
|
* <p>Creates a job that uses workers to label the data objects in your input dataset. You
|
|
806
802
|
* can use the labeled data to train machine learning models. </p>
|
|
807
|
-
*
|
|
808
|
-
*
|
|
803
|
+
* <p>You can select your workforce from one of three providers:</p>
|
|
804
|
+
* <ul>
|
|
809
805
|
* <li>
|
|
810
|
-
*
|
|
806
|
+
* <p>A private workforce that you create. It can include employees, contractors,
|
|
811
807
|
* and outside experts. Use a private workforce when want the data to stay within
|
|
812
808
|
* your organization or when a specific set of skills is required.</p>
|
|
813
809
|
* </li>
|
|
814
810
|
* <li>
|
|
815
|
-
*
|
|
811
|
+
* <p>One or more vendors that you select from the Amazon Web Services Marketplace. Vendors provide
|
|
816
812
|
* expertise in specific areas. </p>
|
|
817
813
|
* </li>
|
|
818
814
|
* <li>
|
|
819
|
-
*
|
|
815
|
+
* <p>The Amazon Mechanical Turk workforce. This is the largest workforce, but it
|
|
820
816
|
* should only be used for public data or data that has been stripped of any
|
|
821
817
|
* personally identifiable information.</p>
|
|
822
818
|
* </li>
|
|
823
819
|
* </ul>
|
|
824
|
-
*
|
|
820
|
+
* <p>You can also use <i>automated data labeling</i> to reduce the number of
|
|
825
821
|
* data objects that need to be labeled by a human. Automated data labeling uses
|
|
826
822
|
* <i>active learning</i> to determine if a data object can be labeled by
|
|
827
823
|
* machine or if it needs to be sent to a human worker. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-automated-labeling.html">Using
|
|
828
824
|
* Automated Data Labeling</a>.</p>
|
|
829
|
-
*
|
|
825
|
+
* <p>The data objects to be labeled are contained in an Amazon S3 bucket. You create a
|
|
830
826
|
* <i>manifest file</i> that describes the location of each object. For
|
|
831
827
|
* more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-data.html">Using Input and Output Data</a>.</p>
|
|
832
|
-
*
|
|
828
|
+
* <p>The output can be used as the manifest file for another labeling job or as training
|
|
833
829
|
* data for your machine learning models.</p>
|
|
834
|
-
*
|
|
830
|
+
* <p>You can use this operation to create a static labeling job or a streaming labeling
|
|
835
831
|
* job. A static labeling job stops if all data objects in the input manifest file
|
|
836
832
|
* identified in <code>ManifestS3Uri</code> have been labeled. A streaming labeling job
|
|
837
833
|
* runs perpetually until it is manually stopped, or remains idle for 10 days. You can send
|
|
@@ -849,19 +845,19 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
849
845
|
* container. For the primary container, you specify the Docker image that
|
|
850
846
|
* contains inference code, artifacts (from prior training), and a custom environment map
|
|
851
847
|
* that the inference code uses when you deploy the model for predictions.</p>
|
|
852
|
-
*
|
|
848
|
+
* <p>Use this API to create a model if you want to use SageMaker hosting services or run a batch
|
|
853
849
|
* transform job.</p>
|
|
854
|
-
*
|
|
850
|
+
* <p>To host your model, you create an endpoint configuration with the
|
|
855
851
|
* <code>CreateEndpointConfig</code> API, and then create an endpoint with the
|
|
856
852
|
* <code>CreateEndpoint</code> API. SageMaker then deploys all of the containers that you
|
|
857
853
|
* defined for the model in the hosting environment. </p>
|
|
858
|
-
*
|
|
854
|
+
* <p>For an example that calls this method when deploying a model to SageMaker hosting services,
|
|
859
855
|
* see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/realtime-endpoints-deployment.html#realtime-endpoints-deployment-create-model">Create a Model (Amazon Web Services SDK for Python (Boto 3)).</a>
|
|
860
856
|
* </p>
|
|
861
|
-
*
|
|
857
|
+
* <p>To run a batch transform using your model, you start a job with the
|
|
862
858
|
* <code>CreateTransformJob</code> API. SageMaker uses your model and your dataset to get
|
|
863
859
|
* inferences which are then saved to a specified S3 location.</p>
|
|
864
|
-
*
|
|
860
|
+
* <p>In the request, you also provide an IAM role that SageMaker can assume to access model
|
|
865
861
|
* artifacts and docker image for deployment on ML compute hosting instances or for batch
|
|
866
862
|
* transform jobs. In addition, you also use the IAM role to manage permissions the
|
|
867
863
|
* inference code needs. For example, if the inference code access any other Amazon Web Services resources, you grant necessary permissions via this role.</p>
|
|
@@ -898,23 +894,23 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
898
894
|
* <p>Creates a model package that you can use to create SageMaker models or list on Amazon Web Services
|
|
899
895
|
* Marketplace, or a versioned model that is part of a model group. Buyers can subscribe to
|
|
900
896
|
* model packages listed on Amazon Web Services Marketplace to create models in SageMaker.</p>
|
|
901
|
-
*
|
|
897
|
+
* <p>To create a model package by specifying a Docker container that contains your
|
|
902
898
|
* inference code and the Amazon S3 location of your model artifacts, provide values for
|
|
903
899
|
* <code>InferenceSpecification</code>. To create a model from an algorithm resource
|
|
904
900
|
* that you created or subscribed to in Amazon Web Services Marketplace, provide a value for
|
|
905
901
|
* <code>SourceAlgorithmSpecification</code>.</p>
|
|
906
|
-
*
|
|
902
|
+
* <note>
|
|
907
903
|
* <p>There are two types of model packages:</p>
|
|
908
904
|
* <ul>
|
|
909
905
|
* <li>
|
|
910
|
-
*
|
|
906
|
+
* <p>Versioned - a model that is part of a model group in the model
|
|
911
907
|
* registry.</p>
|
|
912
|
-
*
|
|
908
|
+
* </li>
|
|
913
909
|
* <li>
|
|
914
|
-
*
|
|
915
|
-
*
|
|
910
|
+
* <p>Unversioned - a model package that is not part of a model group.</p>
|
|
911
|
+
* </li>
|
|
916
912
|
* </ul>
|
|
917
|
-
*
|
|
913
|
+
* </note>
|
|
918
914
|
*/
|
|
919
915
|
createModelPackage(args: CreateModelPackageCommandInput, options?: __HttpHandlerOptions): Promise<CreateModelPackageCommandOutput>;
|
|
920
916
|
createModelPackage(args: CreateModelPackageCommandInput, cb: (err: any, data?: CreateModelPackageCommandOutput) => void): void;
|
|
@@ -942,41 +938,39 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
942
938
|
/**
|
|
943
939
|
* <p>Creates an SageMaker notebook instance. A notebook instance is a machine learning (ML)
|
|
944
940
|
* compute instance running on a Jupyter notebook. </p>
|
|
945
|
-
*
|
|
941
|
+
* <p>In a <code>CreateNotebookInstance</code> request, specify the type of ML compute
|
|
946
942
|
* instance that you want to run. SageMaker launches the instance, installs common libraries
|
|
947
943
|
* that you can use to explore datasets for model training, and attaches an ML storage
|
|
948
944
|
* volume to the notebook instance. </p>
|
|
949
|
-
*
|
|
945
|
+
* <p>SageMaker also provides a set of example notebooks. Each notebook demonstrates how to
|
|
950
946
|
* use SageMaker with a specific algorithm or with a machine learning framework. </p>
|
|
951
|
-
*
|
|
952
|
-
*
|
|
947
|
+
* <p>After receiving the request, SageMaker does the following:</p>
|
|
948
|
+
* <ol>
|
|
953
949
|
* <li>
|
|
954
|
-
*
|
|
950
|
+
* <p>Creates a network interface in the SageMaker VPC.</p>
|
|
955
951
|
* </li>
|
|
956
952
|
* <li>
|
|
957
|
-
*
|
|
953
|
+
* <p>(Option) If you specified <code>SubnetId</code>, SageMaker creates a network
|
|
958
954
|
* interface in your own VPC, which is inferred from the subnet ID that you provide
|
|
959
955
|
* in the input. When creating this network interface, SageMaker attaches the security
|
|
960
956
|
* group that you specified in the request to the network interface that it creates
|
|
961
957
|
* in your VPC.</p>
|
|
962
|
-
*
|
|
963
958
|
* </li>
|
|
964
959
|
* <li>
|
|
965
|
-
*
|
|
960
|
+
* <p>Launches an EC2 instance of the type specified in the request in the SageMaker
|
|
966
961
|
* VPC. If you specified <code>SubnetId</code> of your VPC, SageMaker specifies both
|
|
967
962
|
* network interfaces when launching this instance. This enables inbound traffic
|
|
968
963
|
* from your own VPC to the notebook instance, assuming that the security groups
|
|
969
964
|
* allow it.</p>
|
|
970
965
|
* </li>
|
|
971
966
|
* </ol>
|
|
972
|
-
*
|
|
973
|
-
* <p>After creating the notebook instance, SageMaker returns its Amazon Resource Name (ARN).
|
|
967
|
+
* <p>After creating the notebook instance, SageMaker returns its Amazon Resource Name (ARN).
|
|
974
968
|
* You can't change the name of a notebook instance after you create it.</p>
|
|
975
|
-
*
|
|
969
|
+
* <p>After SageMaker creates the notebook instance, you can connect to the Jupyter server and
|
|
976
970
|
* work in Jupyter notebooks. For example, you can write code to explore a dataset that you
|
|
977
971
|
* can use for model training, train a model, host models by creating SageMaker endpoints, and
|
|
978
972
|
* validate hosted models. </p>
|
|
979
|
-
*
|
|
973
|
+
* <p>For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html">How It Works</a>. </p>
|
|
980
974
|
*/
|
|
981
975
|
createNotebookInstance(args: CreateNotebookInstanceCommandInput, options?: __HttpHandlerOptions): Promise<CreateNotebookInstanceCommandOutput>;
|
|
982
976
|
createNotebookInstance(args: CreateNotebookInstanceCommandInput, cb: (err: any, data?: CreateNotebookInstanceCommandOutput) => void): void;
|
|
@@ -985,16 +979,16 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
985
979
|
* <p>Creates a lifecycle configuration that you can associate with a notebook instance. A
|
|
986
980
|
* <i>lifecycle configuration</i> is a collection of shell scripts that
|
|
987
981
|
* run when you create or start a notebook instance.</p>
|
|
988
|
-
*
|
|
989
|
-
*
|
|
982
|
+
* <p>Each lifecycle configuration script has a limit of 16384 characters.</p>
|
|
983
|
+
* <p>The value of the <code>$PATH</code> environment variable that is available to both
|
|
990
984
|
* scripts is <code>/sbin:bin:/usr/sbin:/usr/bin</code>.</p>
|
|
991
|
-
*
|
|
985
|
+
* <p>View CloudWatch Logs for notebook instance lifecycle configurations in log group
|
|
992
986
|
* <code>/aws/sagemaker/NotebookInstances</code> in log stream
|
|
993
987
|
* <code>[notebook-instance-name]/[LifecycleConfigHook]</code>.</p>
|
|
994
|
-
*
|
|
988
|
+
* <p>Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs
|
|
995
989
|
* for longer than 5 minutes, it fails and the notebook instance is not created or
|
|
996
990
|
* started.</p>
|
|
997
|
-
*
|
|
991
|
+
* <p>For information about notebook instance lifestyle configurations, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html">Step
|
|
998
992
|
* 2.1: (Optional) Customize a Notebook Instance</a>.</p>
|
|
999
993
|
*/
|
|
1000
994
|
createNotebookInstanceLifecycleConfig(args: CreateNotebookInstanceLifecycleConfigCommandInput, options?: __HttpHandlerOptions): Promise<CreateNotebookInstanceLifecycleConfigCommandOutput>;
|
|
@@ -1033,20 +1027,20 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
1033
1027
|
* instance. In the SageMaker console, when you choose <code>Open</code> next to a notebook
|
|
1034
1028
|
* instance, SageMaker opens a new tab showing the Jupyter server home page from the notebook
|
|
1035
1029
|
* instance. The console uses this API to get the URL and show the page.</p>
|
|
1036
|
-
*
|
|
1030
|
+
* <p> The IAM role or user used to call this API defines the permissions to access the
|
|
1037
1031
|
* notebook instance. Once the presigned URL is created, no additional permission is
|
|
1038
1032
|
* required to access this URL. IAM authorization policies for this API are also enforced
|
|
1039
1033
|
* for every HTTP request and WebSocket frame that attempts to connect to the notebook
|
|
1040
1034
|
* instance.</p>
|
|
1041
|
-
*
|
|
1035
|
+
* <p>You can restrict access to this API and to the URL that it returns to a list of IP
|
|
1042
1036
|
* addresses that you specify. Use the <code>NotIpAddress</code> condition operator and the
|
|
1043
1037
|
* <code>aws:SourceIP</code> condition context key to specify the list of IP addresses
|
|
1044
1038
|
* that you want to have access to the notebook instance. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/security_iam_id-based-policy-examples.html#nbi-ip-filter">Limit Access to a Notebook Instance by IP Address</a>.</p>
|
|
1045
|
-
*
|
|
1039
|
+
* <note>
|
|
1046
1040
|
* <p>The URL that you get from a call to <a>CreatePresignedNotebookInstanceUrl</a> is valid only for 5 minutes. If
|
|
1047
1041
|
* you try to use the URL after the 5-minute limit expires, you are directed to the
|
|
1048
1042
|
* Amazon Web Services console sign-in page.</p>
|
|
1049
|
-
*
|
|
1043
|
+
* </note>
|
|
1050
1044
|
*/
|
|
1051
1045
|
createPresignedNotebookInstanceUrl(args: CreatePresignedNotebookInstanceUrlCommandInput, options?: __HttpHandlerOptions): Promise<CreatePresignedNotebookInstanceUrlCommandOutput>;
|
|
1052
1046
|
createPresignedNotebookInstanceUrl(args: CreatePresignedNotebookInstanceUrlCommandInput, cb: (err: any, data?: CreatePresignedNotebookInstanceUrlCommandOutput) => void): void;
|
|
@@ -1079,58 +1073,57 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
1079
1073
|
/**
|
|
1080
1074
|
* <p>Starts a model training job. After training completes, SageMaker saves the resulting
|
|
1081
1075
|
* model artifacts to an Amazon S3 location that you specify. </p>
|
|
1082
|
-
*
|
|
1076
|
+
* <p>If you choose to host your model using SageMaker hosting services, you can use the
|
|
1083
1077
|
* resulting model artifacts as part of the model. You can also use the artifacts in a
|
|
1084
1078
|
* machine learning service other than SageMaker, provided that you know how to use them for
|
|
1085
1079
|
* inference.
|
|
1086
1080
|
* </p>
|
|
1087
|
-
*
|
|
1088
|
-
*
|
|
1081
|
+
* <p>In the request body, you provide the following: </p>
|
|
1082
|
+
* <ul>
|
|
1089
1083
|
* <li>
|
|
1090
|
-
*
|
|
1084
|
+
* <p>
|
|
1091
1085
|
* <code>AlgorithmSpecification</code> - Identifies the training algorithm to
|
|
1092
1086
|
* use.
|
|
1093
1087
|
* </p>
|
|
1094
1088
|
* </li>
|
|
1095
1089
|
* <li>
|
|
1096
|
-
*
|
|
1097
|
-
*
|
|
1090
|
+
* <p>
|
|
1091
|
+
* <code>HyperParameters</code> - Specify these algorithm-specific parameters to
|
|
1098
1092
|
* enable the estimation of model parameters during training. Hyperparameters can
|
|
1099
1093
|
* be tuned to optimize this learning process. For a list of hyperparameters for
|
|
1100
1094
|
* each training algorithm provided by SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. </p>
|
|
1101
|
-
*
|
|
1102
|
-
*
|
|
1095
|
+
* <important>
|
|
1096
|
+
* <p>Do not include any security-sensitive information including account access
|
|
1103
1097
|
* IDs, secrets or tokens in any hyperparameter field. If the use of
|
|
1104
1098
|
* security-sensitive credentials are detected, SageMaker will reject your training
|
|
1105
1099
|
* job request and return an exception error.</p>
|
|
1106
|
-
*
|
|
1100
|
+
* </important>
|
|
1107
1101
|
* </li>
|
|
1108
1102
|
* <li>
|
|
1109
|
-
*
|
|
1110
|
-
* <code>InputDataConfig</code> - Describes the input required by the training
|
|
1111
|
-
* EFS, or FSx location where it is stored.</p>
|
|
1103
|
+
* <p>
|
|
1104
|
+
* <code>InputDataConfig</code> - Describes the input required by the training
|
|
1105
|
+
* job and the Amazon S3, EFS, or FSx location where it is stored.</p>
|
|
1112
1106
|
* </li>
|
|
1113
1107
|
* <li>
|
|
1114
|
-
*
|
|
1108
|
+
* <p>
|
|
1115
1109
|
* <code>OutputDataConfig</code> - Identifies the Amazon S3 bucket where you want
|
|
1116
1110
|
* SageMaker to save the results of model training. </p>
|
|
1117
1111
|
* </li>
|
|
1118
1112
|
* <li>
|
|
1119
|
-
*
|
|
1113
|
+
* <p>
|
|
1120
1114
|
* <code>ResourceConfig</code> - Identifies the resources, ML compute
|
|
1121
1115
|
* instances, and ML storage volumes to deploy for model training. In distributed
|
|
1122
1116
|
* training, you specify more than one instance. </p>
|
|
1123
|
-
*
|
|
1124
1117
|
* </li>
|
|
1125
1118
|
* <li>
|
|
1126
|
-
*
|
|
1119
|
+
* <p>
|
|
1127
1120
|
* <code>EnableManagedSpotTraining</code> - Optimize the cost of training machine
|
|
1128
1121
|
* learning models by up to 80% by using Amazon EC2 Spot instances. For more
|
|
1129
1122
|
* information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html">Managed Spot
|
|
1130
1123
|
* Training</a>. </p>
|
|
1131
1124
|
* </li>
|
|
1132
1125
|
* <li>
|
|
1133
|
-
*
|
|
1126
|
+
* <p>
|
|
1134
1127
|
* <code>RoleArn</code> - The Amazon Resource Name (ARN) that SageMaker assumes to perform tasks on
|
|
1135
1128
|
* your behalf during model training.
|
|
1136
1129
|
*
|
|
@@ -1138,24 +1131,24 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
1138
1131
|
* complete model training. </p>
|
|
1139
1132
|
* </li>
|
|
1140
1133
|
* <li>
|
|
1141
|
-
*
|
|
1134
|
+
* <p>
|
|
1142
1135
|
* <code>StoppingCondition</code> - To help cap training costs, use
|
|
1143
1136
|
* <code>MaxRuntimeInSeconds</code> to set a time limit for training. Use
|
|
1144
1137
|
* <code>MaxWaitTimeInSeconds</code> to specify how long a managed spot
|
|
1145
1138
|
* training job has to complete. </p>
|
|
1146
1139
|
* </li>
|
|
1147
1140
|
* <li>
|
|
1148
|
-
*
|
|
1141
|
+
* <p>
|
|
1149
1142
|
* <code>Environment</code> - The environment variables to set in the Docker
|
|
1150
1143
|
* container.</p>
|
|
1151
1144
|
* </li>
|
|
1152
1145
|
* <li>
|
|
1153
|
-
*
|
|
1146
|
+
* <p>
|
|
1154
1147
|
* <code>RetryStrategy</code> - The number of times to retry the job when the job
|
|
1155
1148
|
* fails due to an <code>InternalServerError</code>.</p>
|
|
1156
1149
|
* </li>
|
|
1157
1150
|
* </ul>
|
|
1158
|
-
*
|
|
1151
|
+
* <p> For more information about SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html">How It Works</a>. </p>
|
|
1159
1152
|
*/
|
|
1160
1153
|
createTrainingJob(args: CreateTrainingJobCommandInput, options?: __HttpHandlerOptions): Promise<CreateTrainingJobCommandOutput>;
|
|
1161
1154
|
createTrainingJob(args: CreateTrainingJobCommandInput, cb: (err: any, data?: CreateTrainingJobCommandOutput) => void): void;
|
|
@@ -1163,38 +1156,38 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
1163
1156
|
/**
|
|
1164
1157
|
* <p>Starts a transform job. A transform job uses a trained model to get inferences on a
|
|
1165
1158
|
* dataset and saves these results to an Amazon S3 location that you specify.</p>
|
|
1166
|
-
*
|
|
1159
|
+
* <p>To perform batch transformations, you create a transform job and use the data that you
|
|
1167
1160
|
* have readily available.</p>
|
|
1168
|
-
*
|
|
1169
|
-
*
|
|
1161
|
+
* <p>In the request body, you provide the following:</p>
|
|
1162
|
+
* <ul>
|
|
1170
1163
|
* <li>
|
|
1171
|
-
*
|
|
1164
|
+
* <p>
|
|
1172
1165
|
* <code>TransformJobName</code> - Identifies the transform job. The name must be
|
|
1173
1166
|
* unique within an Amazon Web Services Region in an Amazon Web Services account.</p>
|
|
1174
1167
|
* </li>
|
|
1175
1168
|
* <li>
|
|
1176
|
-
*
|
|
1169
|
+
* <p>
|
|
1177
1170
|
* <code>ModelName</code> - Identifies the model to use. <code>ModelName</code>
|
|
1178
1171
|
* must be the name of an existing Amazon SageMaker model in the same Amazon Web Services Region and Amazon Web Services
|
|
1179
1172
|
* account. For information on creating a model, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html">CreateModel</a>.</p>
|
|
1180
1173
|
* </li>
|
|
1181
1174
|
* <li>
|
|
1182
|
-
*
|
|
1175
|
+
* <p>
|
|
1183
1176
|
* <code>TransformInput</code> - Describes the dataset to be transformed and the
|
|
1184
1177
|
* Amazon S3 location where it is stored.</p>
|
|
1185
1178
|
* </li>
|
|
1186
1179
|
* <li>
|
|
1187
|
-
*
|
|
1180
|
+
* <p>
|
|
1188
1181
|
* <code>TransformOutput</code> - Identifies the Amazon S3 location where you want
|
|
1189
1182
|
* Amazon SageMaker to save the results from the transform job.</p>
|
|
1190
1183
|
* </li>
|
|
1191
1184
|
* <li>
|
|
1192
|
-
*
|
|
1185
|
+
* <p>
|
|
1193
1186
|
* <code>TransformResources</code> - Identifies the ML compute instances for the
|
|
1194
1187
|
* transform job.</p>
|
|
1195
1188
|
* </li>
|
|
1196
1189
|
* </ul>
|
|
1197
|
-
*
|
|
1190
|
+
* <p>For more information about how batch transformation works, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html">Batch
|
|
1198
1191
|
* Transform</a>.</p>
|
|
1199
1192
|
*/
|
|
1200
1193
|
createTransformJob(args: CreateTransformJobCommandInput, options?: __HttpHandlerOptions): Promise<CreateTransformJobCommandOutput>;
|
|
@@ -1247,19 +1240,16 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
1247
1240
|
* <p>Use this operation to create a workforce. This operation will return an error
|
|
1248
1241
|
* if a workforce already exists in the Amazon Web Services Region that you specify. You can only
|
|
1249
1242
|
* create one workforce in each Amazon Web Services Region per Amazon Web Services account.</p>
|
|
1250
|
-
*
|
|
1251
|
-
* <p>If you want to create a new workforce in an Amazon Web Services Region where
|
|
1243
|
+
* <p>If you want to create a new workforce in an Amazon Web Services Region where
|
|
1252
1244
|
* a workforce already exists, use the API
|
|
1253
1245
|
* operation to delete the existing workforce and then use <code>CreateWorkforce</code>
|
|
1254
1246
|
* to create a new workforce.</p>
|
|
1255
|
-
*
|
|
1256
1247
|
* <p>To create a private workforce using Amazon Cognito, you must specify a Cognito user pool
|
|
1257
1248
|
* in <code>CognitoConfig</code>.
|
|
1258
1249
|
* You can also create an Amazon Cognito workforce using the Amazon SageMaker console.
|
|
1259
1250
|
* For more information, see
|
|
1260
1251
|
* <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-create-private.html">
|
|
1261
1252
|
* Create a Private Workforce (Amazon Cognito)</a>.</p>
|
|
1262
|
-
*
|
|
1263
1253
|
* <p>To create a private workforce using your own OIDC Identity Provider (IdP), specify your IdP
|
|
1264
1254
|
* configuration in <code>OidcConfig</code>. Your OIDC IdP must support <i>groups</i>
|
|
1265
1255
|
* because groups are used by Ground Truth and Amazon A2I to create work teams.
|
|
@@ -1273,7 +1263,7 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
1273
1263
|
* <p>Creates a new work team for labeling your data. A work team is defined by one or more
|
|
1274
1264
|
* Amazon Cognito user pools. You must first create the user pools before you can create a work
|
|
1275
1265
|
* team.</p>
|
|
1276
|
-
*
|
|
1266
|
+
* <p>You cannot create more than 25 work teams in an account and region.</p>
|
|
1277
1267
|
*/
|
|
1278
1268
|
createWorkteam(args: CreateWorkteamCommandInput, options?: __HttpHandlerOptions): Promise<CreateWorkteamCommandOutput>;
|
|
1279
1269
|
createWorkteam(args: CreateWorkteamCommandInput, cb: (err: any, data?: CreateWorkteamCommandOutput) => void): void;
|
|
@@ -1364,9 +1354,9 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
1364
1354
|
/**
|
|
1365
1355
|
* <p>Deletes an endpoint. SageMaker frees up all of the resources that were deployed when the
|
|
1366
1356
|
* endpoint was created. </p>
|
|
1367
|
-
*
|
|
1357
|
+
* <p>SageMaker retires any custom KMS key grants associated with the endpoint, meaning you don't
|
|
1368
1358
|
* need to use the <a href="http://docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html">RevokeGrant</a> API call.</p>
|
|
1369
|
-
*
|
|
1359
|
+
* <p>When you delete your endpoint, SageMaker asynchronously deletes associated endpoint
|
|
1370
1360
|
* resources such as KMS key grants. You might still see these resources in your account
|
|
1371
1361
|
* for a few minutes after deleting your endpoint. Do not delete or revoke the permissions
|
|
1372
1362
|
* for your <code>
|
|
@@ -1381,7 +1371,7 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
1381
1371
|
* <p>Deletes an endpoint configuration. The <code>DeleteEndpointConfig</code> API
|
|
1382
1372
|
* deletes only the specified configuration. It does not delete endpoints created using the
|
|
1383
1373
|
* configuration. </p>
|
|
1384
|
-
*
|
|
1374
|
+
* <p>You must not delete an <code>EndpointConfig</code> in use by an endpoint that is
|
|
1385
1375
|
* live or while the <code>UpdateEndpoint</code> or <code>CreateEndpoint</code> operations
|
|
1386
1376
|
* are being performed on the endpoint. If you delete the <code>EndpointConfig</code> of an
|
|
1387
1377
|
* endpoint that is active or being created or updated you may lose visibility into the
|
|
@@ -1455,7 +1445,7 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
1455
1445
|
/**
|
|
1456
1446
|
* <p>Deletes an inference experiment.</p>
|
|
1457
1447
|
* <note>
|
|
1458
|
-
*
|
|
1448
|
+
* <p>
|
|
1459
1449
|
* This operation does not delete your endpoint, variants, or any underlying resources. This operation only
|
|
1460
1450
|
* deletes the metadata of your experiment.
|
|
1461
1451
|
* </p>
|
|
@@ -1493,7 +1483,7 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
1493
1483
|
deleteModelExplainabilityJobDefinition(args: DeleteModelExplainabilityJobDefinitionCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: DeleteModelExplainabilityJobDefinitionCommandOutput) => void): void;
|
|
1494
1484
|
/**
|
|
1495
1485
|
* <p>Deletes a model package.</p>
|
|
1496
|
-
*
|
|
1486
|
+
* <p>A model package is used to create SageMaker models or list on Amazon Web Services Marketplace. Buyers can
|
|
1497
1487
|
* subscribe to model packages listed on Amazon Web Services Marketplace to create models in SageMaker.</p>
|
|
1498
1488
|
*/
|
|
1499
1489
|
deleteModelPackage(args: DeleteModelPackageCommandInput, options?: __HttpHandlerOptions): Promise<DeleteModelPackageCommandOutput>;
|
|
@@ -1527,11 +1517,11 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
1527
1517
|
/**
|
|
1528
1518
|
* <p> Deletes an SageMaker notebook instance. Before you can delete a notebook instance, you
|
|
1529
1519
|
* must call the <code>StopNotebookInstance</code> API. </p>
|
|
1530
|
-
*
|
|
1520
|
+
* <important>
|
|
1531
1521
|
* <p>When you delete a notebook instance, you lose all of your data. SageMaker removes
|
|
1532
1522
|
* the ML compute instance, and deletes the ML storage volume and the network interface
|
|
1533
1523
|
* associated with the notebook instance. </p>
|
|
1534
|
-
*
|
|
1524
|
+
* </important>
|
|
1535
1525
|
*/
|
|
1536
1526
|
deleteNotebookInstance(args: DeleteNotebookInstanceCommandInput, options?: __HttpHandlerOptions): Promise<DeleteNotebookInstanceCommandOutput>;
|
|
1537
1527
|
deleteNotebookInstance(args: DeleteNotebookInstanceCommandInput, cb: (err: any, data?: DeleteNotebookInstanceCommandOutput) => void): void;
|
|
@@ -1571,17 +1561,17 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
1571
1561
|
deleteStudioLifecycleConfig(args: DeleteStudioLifecycleConfigCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: DeleteStudioLifecycleConfigCommandOutput) => void): void;
|
|
1572
1562
|
/**
|
|
1573
1563
|
* <p>Deletes the specified tags from an SageMaker resource.</p>
|
|
1574
|
-
*
|
|
1575
|
-
*
|
|
1564
|
+
* <p>To list a resource's tags, use the <code>ListTags</code> API. </p>
|
|
1565
|
+
* <note>
|
|
1576
1566
|
* <p>When you call this API to delete tags from a hyperparameter tuning job, the
|
|
1577
1567
|
* deleted tags are not removed from training jobs that the hyperparameter tuning job
|
|
1578
1568
|
* launched before you called this API.</p>
|
|
1579
|
-
*
|
|
1580
|
-
*
|
|
1569
|
+
* </note>
|
|
1570
|
+
* <note>
|
|
1581
1571
|
* <p>When you call this API to delete tags from a SageMaker Studio Domain or User
|
|
1582
1572
|
* Profile, the deleted tags are not removed from Apps that the SageMaker Studio Domain
|
|
1583
1573
|
* or User Profile launched before you called this API.</p>
|
|
1584
|
-
*
|
|
1574
|
+
* </note>
|
|
1585
1575
|
*/
|
|
1586
1576
|
deleteTags(args: DeleteTagsCommandInput, options?: __HttpHandlerOptions): Promise<DeleteTagsCommandOutput>;
|
|
1587
1577
|
deleteTags(args: DeleteTagsCommandInput, cb: (err: any, data?: DeleteTagsCommandOutput) => void): void;
|
|
@@ -1611,7 +1601,6 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
1611
1601
|
deleteUserProfile(args: DeleteUserProfileCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: DeleteUserProfileCommandOutput) => void): void;
|
|
1612
1602
|
/**
|
|
1613
1603
|
* <p>Use this operation to delete a workforce.</p>
|
|
1614
|
-
*
|
|
1615
1604
|
* <p>If you want to create a new workforce in an Amazon Web Services Region where
|
|
1616
1605
|
* a workforce already exists, use this operation to delete the
|
|
1617
1606
|
* existing workforce and then use
|
|
@@ -1622,7 +1611,7 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
1622
1611
|
* operation to delete all work teams before you delete the workforce.
|
|
1623
1612
|
* If you try to delete a workforce that contains one or more work teams,
|
|
1624
1613
|
* you will recieve a <code>ResourceInUse</code> error.</p>
|
|
1625
|
-
*
|
|
1614
|
+
* </important>
|
|
1626
1615
|
*/
|
|
1627
1616
|
deleteWorkforce(args: DeleteWorkforceCommandInput, options?: __HttpHandlerOptions): Promise<DeleteWorkforceCommandOutput>;
|
|
1628
1617
|
deleteWorkforce(args: DeleteWorkforceCommandInput, cb: (err: any, data?: DeleteWorkforceCommandOutput) => void): void;
|
|
@@ -1683,7 +1672,7 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
1683
1672
|
describeCodeRepository(args: DescribeCodeRepositoryCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: DescribeCodeRepositoryCommandOutput) => void): void;
|
|
1684
1673
|
/**
|
|
1685
1674
|
* <p>Returns information about a model compilation job.</p>
|
|
1686
|
-
*
|
|
1675
|
+
* <p>To create a model compilation job, use <a>CreateCompilationJob</a>. To get
|
|
1687
1676
|
* information about multiple model compilation jobs, use <a>ListCompilationJobs</a>.</p>
|
|
1688
1677
|
*/
|
|
1689
1678
|
describeCompilationJob(args: DescribeCompilationJobCommandInput, options?: __HttpHandlerOptions): Promise<DescribeCompilationJobCommandOutput>;
|
|
@@ -1868,7 +1857,7 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
1868
1857
|
/**
|
|
1869
1858
|
* <p>Returns a description of the specified model package, which is used to create SageMaker
|
|
1870
1859
|
* models or list them on Amazon Web Services Marketplace.</p>
|
|
1871
|
-
*
|
|
1860
|
+
* <p>To create models in SageMaker, buyers can subscribe to model packages listed on Amazon Web Services
|
|
1872
1861
|
* Marketplace.</p>
|
|
1873
1862
|
*/
|
|
1874
1863
|
describeModelPackage(args: DescribeModelPackageCommandInput, options?: __HttpHandlerOptions): Promise<DescribeModelPackageCommandOutput>;
|
|
@@ -1900,7 +1889,7 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
1900
1889
|
describeNotebookInstance(args: DescribeNotebookInstanceCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: DescribeNotebookInstanceCommandOutput) => void): void;
|
|
1901
1890
|
/**
|
|
1902
1891
|
* <p>Returns a description of a notebook instance lifecycle configuration.</p>
|
|
1903
|
-
*
|
|
1892
|
+
* <p>For information about notebook instance lifestyle configurations, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html">Step
|
|
1904
1893
|
* 2.1: (Optional) Customize a Notebook Instance</a>.</p>
|
|
1905
1894
|
*/
|
|
1906
1895
|
describeNotebookInstanceLifecycleConfig(args: DescribeNotebookInstanceLifecycleConfigCommandInput, options?: __HttpHandlerOptions): Promise<DescribeNotebookInstanceLifecycleConfigCommandOutput>;
|
|
@@ -1957,7 +1946,7 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
1957
1946
|
describeSubscribedWorkteam(args: DescribeSubscribedWorkteamCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: DescribeSubscribedWorkteamCommandOutput) => void): void;
|
|
1958
1947
|
/**
|
|
1959
1948
|
* <p>Returns information about a training job. </p>
|
|
1960
|
-
*
|
|
1949
|
+
* <p>Some of the attributes below only appear if the training job successfully starts.
|
|
1961
1950
|
* If the training job fails, <code>TrainingJobStatus</code> is <code>Failed</code> and,
|
|
1962
1951
|
* depending on the <code>FailureReason</code>, attributes like
|
|
1963
1952
|
* <code>TrainingStartTime</code>, <code>TrainingTimeInSeconds</code>,
|
|
@@ -1995,9 +1984,9 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
1995
1984
|
* <p>Lists private workforce information, including workforce name, Amazon Resource Name
|
|
1996
1985
|
* (ARN), and, if applicable, allowed IP address ranges (<a href="https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html">CIDRs</a>). Allowable IP address
|
|
1997
1986
|
* ranges are the IP addresses that workers can use to access tasks. </p>
|
|
1998
|
-
*
|
|
1987
|
+
* <important>
|
|
1999
1988
|
* <p>This operation applies only to private workforces.</p>
|
|
2000
|
-
*
|
|
1989
|
+
* </important>
|
|
2001
1990
|
*/
|
|
2002
1991
|
describeWorkforce(args: DescribeWorkforceCommandInput, options?: __HttpHandlerOptions): Promise<DescribeWorkforceCommandOutput>;
|
|
2003
1992
|
describeWorkforce(args: DescribeWorkforceCommandInput, cb: (err: any, data?: DescribeWorkforceCommandOutput) => void): void;
|
|
@@ -2136,7 +2125,7 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
2136
2125
|
listCodeRepositories(args: ListCodeRepositoriesCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: ListCodeRepositoriesCommandOutput) => void): void;
|
|
2137
2126
|
/**
|
|
2138
2127
|
* <p>Lists model compilation jobs that satisfy various filters.</p>
|
|
2139
|
-
*
|
|
2128
|
+
* <p>To create a model compilation job, use <a>CreateCompilationJob</a>. To get
|
|
2140
2129
|
* information about a particular model compilation job you have created, use <a>DescribeCompilationJob</a>.</p>
|
|
2141
2130
|
*/
|
|
2142
2131
|
listCompilationJobs(args: ListCompilationJobsCommandInput, options?: __HttpHandlerOptions): Promise<ListCompilationJobsCommandOutput>;
|
|
@@ -2469,7 +2458,7 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
2469
2458
|
listTags(args: ListTagsCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: ListTagsCommandOutput) => void): void;
|
|
2470
2459
|
/**
|
|
2471
2460
|
* <p>Lists training jobs.</p>
|
|
2472
|
-
*
|
|
2461
|
+
* <note>
|
|
2473
2462
|
* <p>When <code>StatusEquals</code> and <code>MaxResults</code> are set at the same
|
|
2474
2463
|
* time, the <code>MaxResults</code> number of training jobs are first retrieved
|
|
2475
2464
|
* ignoring the <code>StatusEquals</code> parameter and then they are filtered by the
|
|
@@ -2489,7 +2478,7 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
2489
2478
|
* <code>aws sagemaker list-training-jobs --max-results 100 --status-equals
|
|
2490
2479
|
* InProgress</code>
|
|
2491
2480
|
* </p>
|
|
2492
|
-
*
|
|
2481
|
+
* </note>
|
|
2493
2482
|
*/
|
|
2494
2483
|
listTrainingJobs(args: ListTrainingJobsCommandInput, options?: __HttpHandlerOptions): Promise<ListTrainingJobsCommandOutput>;
|
|
2495
2484
|
listTrainingJobs(args: ListTrainingJobsCommandInput, cb: (err: any, data?: ListTrainingJobsCommandOutput) => void): void;
|
|
@@ -2668,9 +2657,9 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
2668
2657
|
stopAutoMLJob(args: StopAutoMLJobCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: StopAutoMLJobCommandOutput) => void): void;
|
|
2669
2658
|
/**
|
|
2670
2659
|
* <p>Stops a model compilation job.</p>
|
|
2671
|
-
*
|
|
2660
|
+
* <p> To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal. This gracefully shuts the
|
|
2672
2661
|
* job down. If the job hasn't stopped, it sends the SIGKILL signal.</p>
|
|
2673
|
-
*
|
|
2662
|
+
* <p>When it receives a <code>StopCompilationJob</code> request, Amazon SageMaker changes the <a>CompilationJobSummary$CompilationJobStatus</a> of the job to
|
|
2674
2663
|
* <code>Stopping</code>. After Amazon SageMaker stops the job, it sets the <a>CompilationJobSummary$CompilationJobStatus</a> to <code>Stopped</code>.
|
|
2675
2664
|
* </p>
|
|
2676
2665
|
*/
|
|
@@ -2692,7 +2681,7 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
2692
2681
|
/**
|
|
2693
2682
|
* <p>Stops a running hyperparameter tuning job and all running training jobs that the
|
|
2694
2683
|
* tuning job launched.</p>
|
|
2695
|
-
*
|
|
2684
|
+
* <p>All model artifacts output from the training jobs are stored in Amazon Simple Storage Service (Amazon S3). All
|
|
2696
2685
|
* data that the training jobs write to Amazon CloudWatch Logs are still available in CloudWatch. After the
|
|
2697
2686
|
* tuning job moves to the <code>Stopped</code> state, it releases all
|
|
2698
2687
|
* reserved
|
|
@@ -2731,7 +2720,7 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
2731
2720
|
* disconnects the ML storage volume from it. SageMaker preserves the ML storage volume. SageMaker
|
|
2732
2721
|
* stops charging you for the ML compute instance when you call
|
|
2733
2722
|
* <code>StopNotebookInstance</code>.</p>
|
|
2734
|
-
*
|
|
2723
|
+
* <p>To access data on the ML storage volume for a notebook instance that has been
|
|
2735
2724
|
* terminated, call the <code>StartNotebookInstance</code> API.
|
|
2736
2725
|
* <code>StartNotebookInstance</code> launches another ML compute instance, configures
|
|
2737
2726
|
* it, and attaches the preserved ML storage volume so you can continue your work.
|
|
@@ -2742,7 +2731,6 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
2742
2731
|
stopNotebookInstance(args: StopNotebookInstanceCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: StopNotebookInstanceCommandOutput) => void): void;
|
|
2743
2732
|
/**
|
|
2744
2733
|
* <p>Stops a pipeline execution.</p>
|
|
2745
|
-
*
|
|
2746
2734
|
* <p>
|
|
2747
2735
|
* <b>Callback Step</b>
|
|
2748
2736
|
* </p>
|
|
@@ -2756,7 +2744,6 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
2756
2744
|
* <code>SendPipelineExecutionStepSuccess</code> or
|
|
2757
2745
|
* <code>SendPipelineExecutionStepFailure</code>.</p>
|
|
2758
2746
|
* <p>Only when SageMaker Pipelines receives one of these calls will it stop the pipeline execution.</p>
|
|
2759
|
-
*
|
|
2760
2747
|
* <p>
|
|
2761
2748
|
* <b>Lambda Step</b>
|
|
2762
2749
|
* </p>
|
|
@@ -2781,7 +2768,7 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
2781
2768
|
* <code>SIGTERM</code> signal, which delays job termination for 120 seconds.
|
|
2782
2769
|
* Algorithms might use this 120-second window to save the model artifacts, so the results
|
|
2783
2770
|
* of the training is not lost. </p>
|
|
2784
|
-
*
|
|
2771
|
+
* <p>When it receives a <code>StopTrainingJob</code> request, SageMaker changes the status of
|
|
2785
2772
|
* the job to <code>Stopping</code>. After SageMaker stops the job, it sets the status to
|
|
2786
2773
|
* <code>Stopped</code>.</p>
|
|
2787
2774
|
*/
|
|
@@ -2790,7 +2777,7 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
2790
2777
|
stopTrainingJob(args: StopTrainingJobCommandInput, options: __HttpHandlerOptions, cb: (err: any, data?: StopTrainingJobCommandOutput) => void): void;
|
|
2791
2778
|
/**
|
|
2792
2779
|
* <p>Stops a batch transform job.</p>
|
|
2793
|
-
*
|
|
2780
|
+
* <p>When Amazon SageMaker receives a <code>StopTransformJob</code> request, the status of the job
|
|
2794
2781
|
* changes to <code>Stopping</code>. After Amazon SageMaker
|
|
2795
2782
|
* stops
|
|
2796
2783
|
* the job, the status is set to <code>Stopped</code>. When you stop a batch transform job before
|
|
@@ -2851,12 +2838,12 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
2851
2838
|
* <p>Deploys the new <code>EndpointConfig</code> specified in the request, switches to
|
|
2852
2839
|
* using newly created endpoint, and then deletes resources provisioned for the endpoint
|
|
2853
2840
|
* using the previous <code>EndpointConfig</code> (there is no availability loss). </p>
|
|
2854
|
-
*
|
|
2841
|
+
* <p>When SageMaker receives the request, it sets the endpoint status to
|
|
2855
2842
|
* <code>Updating</code>. After updating the endpoint, it sets the status to
|
|
2856
2843
|
* <code>InService</code>. To check the status of an endpoint, use the <a>DescribeEndpoint</a> API.
|
|
2857
2844
|
*
|
|
2858
2845
|
* </p>
|
|
2859
|
-
*
|
|
2846
|
+
* <note>
|
|
2860
2847
|
* <p>You must not delete an <code>EndpointConfig</code> in use by an endpoint that is
|
|
2861
2848
|
* live or while the <code>UpdateEndpoint</code> or <code>CreateEndpoint</code>
|
|
2862
2849
|
* operations are being performed on the endpoint. To update an endpoint, you must
|
|
@@ -2864,7 +2851,7 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
2864
2851
|
* <p>If you delete the <code>EndpointConfig</code> of an endpoint that is active or
|
|
2865
2852
|
* being created or updated you may lose visibility into the instance type the endpoint
|
|
2866
2853
|
* is using. The endpoint must be deleted in order to stop incurring charges.</p>
|
|
2867
|
-
*
|
|
2854
|
+
* </note>
|
|
2868
2855
|
*/
|
|
2869
2856
|
updateEndpoint(args: UpdateEndpointCommandInput, options?: __HttpHandlerOptions): Promise<UpdateEndpointCommandOutput>;
|
|
2870
2857
|
updateEndpoint(args: UpdateEndpointCommandInput, cb: (err: any, data?: UpdateEndpointCommandOutput) => void): void;
|
|
@@ -2977,12 +2964,12 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
2977
2964
|
/**
|
|
2978
2965
|
* <p>Updates a machine learning (ML) project that is created from a template that
|
|
2979
2966
|
* sets up an ML pipeline from training to deploying an approved model.</p>
|
|
2980
|
-
*
|
|
2967
|
+
* <note>
|
|
2981
2968
|
* <p>You must not update a project that is in use. If you update the
|
|
2982
2969
|
* <code>ServiceCatalogProvisioningUpdateDetails</code> of a project that is active
|
|
2983
2970
|
* or being created, or updated, you may lose resources already created by the
|
|
2984
2971
|
* project.</p>
|
|
2985
|
-
*
|
|
2972
|
+
* </note>
|
|
2986
2973
|
*/
|
|
2987
2974
|
updateProject(args: UpdateProjectCommandInput, options?: __HttpHandlerOptions): Promise<UpdateProjectCommandOutput>;
|
|
2988
2975
|
updateProject(args: UpdateProjectCommandInput, cb: (err: any, data?: UpdateProjectCommandOutput) => void): void;
|
|
@@ -3022,31 +3009,29 @@ export declare class SageMaker extends SageMakerClient {
|
|
|
3022
3009
|
* <p>Use this operation to update your workforce. You can use this operation to
|
|
3023
3010
|
* require that workers use specific IP addresses to work on tasks
|
|
3024
3011
|
* and to update your OpenID Connect (OIDC) Identity Provider (IdP) workforce configuration.</p>
|
|
3025
|
-
*
|
|
3026
|
-
*
|
|
3027
|
-
*
|
|
3028
|
-
* <p> Use <code>SourceIpConfig</code> to restrict worker access to tasks to a specific range of IP addresses.
|
|
3012
|
+
* <p>The worker portal is now supported in VPC and public internet.</p>
|
|
3013
|
+
* <p> Use <code>SourceIpConfig</code> to restrict worker access to tasks to a specific range of IP addresses.
|
|
3029
3014
|
* You specify allowed IP addresses by creating a list of up to ten <a href="https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html">CIDRs</a>.
|
|
3030
3015
|
* By default, a workforce isn't restricted to specific IP addresses. If you specify a
|
|
3031
3016
|
* range of IP addresses, workers who attempt to access tasks using any IP address outside
|
|
3032
3017
|
* the specified range are denied and get a <code>Not Found</code> error message on
|
|
3033
3018
|
* the worker portal.</p>
|
|
3034
3019
|
* <p>To restrict access to all the workers in public internet, add the <code>SourceIpConfig</code> CIDR value as "0.0.0.0/0".</p>
|
|
3035
|
-
*
|
|
3020
|
+
* <important>
|
|
3036
3021
|
* <p>Amazon SageMaker does not support Source Ip restriction for worker portals in VPC.</p>
|
|
3037
|
-
*
|
|
3038
|
-
*
|
|
3022
|
+
* </important>
|
|
3023
|
+
* <p>Use <code>OidcConfig</code> to update the configuration of a workforce created using
|
|
3039
3024
|
* your own OIDC IdP. </p>
|
|
3040
|
-
*
|
|
3025
|
+
* <important>
|
|
3041
3026
|
* <p>You can only update your OIDC IdP configuration when there are no work teams
|
|
3042
3027
|
* associated with your workforce. You can delete work teams using the operation.</p>
|
|
3043
|
-
*
|
|
3044
|
-
*
|
|
3028
|
+
* </important>
|
|
3029
|
+
* <p>After restricting access to a range of IP addresses or updating your OIDC IdP configuration with this operation, you
|
|
3045
3030
|
* can view details about your update workforce using the
|
|
3046
3031
|
* operation.</p>
|
|
3047
|
-
*
|
|
3032
|
+
* <important>
|
|
3048
3033
|
* <p>This operation only applies to private workforces.</p>
|
|
3049
|
-
*
|
|
3034
|
+
* </important>
|
|
3050
3035
|
*/
|
|
3051
3036
|
updateWorkforce(args: UpdateWorkforceCommandInput, options?: __HttpHandlerOptions): Promise<UpdateWorkforceCommandOutput>;
|
|
3052
3037
|
updateWorkforce(args: UpdateWorkforceCommandInput, cb: (err: any, data?: UpdateWorkforceCommandOutput) => void): void;
|