@aws-sdk/client-sagemaker 3.164.0 → 3.167.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (30) hide show
  1. package/CHANGELOG.md +33 -0
  2. package/dist-cjs/commands/DescribeFlowDefinitionCommand.js +1 -2
  3. package/dist-cjs/commands/ListNotebookInstancesCommand.js +1 -2
  4. package/dist-cjs/models/models_0.js +8 -7
  5. package/dist-cjs/models/models_1.js +12 -11
  6. package/dist-cjs/models/models_2.js +12 -12
  7. package/dist-cjs/models/models_3.js +13 -4
  8. package/dist-cjs/protocols/Aws_json1_1.js +60 -0
  9. package/dist-es/commands/DescribeFlowDefinitionCommand.js +1 -2
  10. package/dist-es/commands/ListNotebookInstancesCommand.js +1 -2
  11. package/dist-es/models/models_0.js +6 -5
  12. package/dist-es/models/models_1.js +5 -1
  13. package/dist-es/models/models_2.js +3 -6
  14. package/dist-es/models/models_3.js +6 -0
  15. package/dist-es/protocols/Aws_json1_1.js +61 -5
  16. package/dist-types/SageMaker.d.ts +6 -0
  17. package/dist-types/commands/CreateTrainingJobCommand.d.ts +6 -0
  18. package/dist-types/commands/DescribeFlowDefinitionCommand.d.ts +1 -2
  19. package/dist-types/commands/ListNotebookInstancesCommand.d.ts +1 -2
  20. package/dist-types/models/models_0.d.ts +52 -10
  21. package/dist-types/models/models_1.d.ts +11 -11
  22. package/dist-types/models/models_2.d.ts +105 -80
  23. package/dist-types/models/models_3.d.ts +85 -1
  24. package/dist-types/ts3.4/commands/DescribeFlowDefinitionCommand.d.ts +1 -2
  25. package/dist-types/ts3.4/commands/ListNotebookInstancesCommand.d.ts +1 -2
  26. package/dist-types/ts3.4/models/models_0.d.ts +13 -4
  27. package/dist-types/ts3.4/models/models_1.d.ts +5 -7
  28. package/dist-types/ts3.4/models/models_2.d.ts +44 -34
  29. package/dist-types/ts3.4/models/models_3.d.ts +37 -1
  30. package/package.json +3 -3
@@ -254,6 +254,7 @@ export var ResourceType;
254
254
  ResourceType["EXPERIMENT_TRIAL_COMPONENT"] = "ExperimentTrialComponent";
255
255
  ResourceType["FEATURE_GROUP"] = "FeatureGroup";
256
256
  ResourceType["FEATURE_METADATA"] = "FeatureMetadata";
257
+ ResourceType["HYPER_PARAMETER_TUNING_JOB"] = "HyperParameterTuningJob";
257
258
  ResourceType["MODEL_PACKAGE"] = "ModelPackage";
258
259
  ResourceType["MODEL_PACKAGE_GROUP"] = "ModelPackageGroup";
259
260
  ResourceType["PIPELINE"] = "Pipeline";
@@ -443,11 +444,7 @@ export var NotebookInstanceSortKey;
443
444
  NotebookInstanceSortKey["NAME"] = "Name";
444
445
  NotebookInstanceSortKey["STATUS"] = "Status";
445
446
  })(NotebookInstanceSortKey || (NotebookInstanceSortKey = {}));
446
- export var NotebookInstanceSortOrder;
447
- (function (NotebookInstanceSortOrder) {
448
- NotebookInstanceSortOrder["ASCENDING"] = "Ascending";
449
- NotebookInstanceSortOrder["DESCENDING"] = "Descending";
450
- })(NotebookInstanceSortOrder || (NotebookInstanceSortOrder = {}));
447
+ export var DescribeFlowDefinitionRequestFilterSensitiveLog = function (obj) { return (__assign({}, obj)); };
451
448
  export var DescribeFlowDefinitionResponseFilterSensitiveLog = function (obj) { return (__assign({}, obj)); };
452
449
  export var DescribeHumanTaskUiRequestFilterSensitiveLog = function (obj) { return (__assign({}, obj)); };
453
450
  export var UiTemplateInfoFilterSensitiveLog = function (obj) { return (__assign({}, obj)); };
@@ -591,6 +588,7 @@ export var PropertyNameSuggestionFilterSensitiveLog = function (obj) { return (_
591
588
  export var GetSearchSuggestionsResponseFilterSensitiveLog = function (obj) { return (__assign({}, obj)); };
592
589
  export var GitConfigForUpdateFilterSensitiveLog = function (obj) { return (__assign({}, obj)); };
593
590
  export var HumanTaskUiSummaryFilterSensitiveLog = function (obj) { return (__assign({}, obj)); };
591
+ export var HyperParameterTuningJobSearchEntityFilterSensitiveLog = function (obj) { return (__assign({}, obj)); };
594
592
  export var HyperParameterTuningJobSummaryFilterSensitiveLog = function (obj) { return (__assign({}, obj)); };
595
593
  export var ImageFilterSensitiveLog = function (obj) { return (__assign({}, obj)); };
596
594
  export var ImageVersionFilterSensitiveLog = function (obj) { return (__assign({}, obj)); };
@@ -689,4 +687,3 @@ export var ListMonitoringSchedulesResponseFilterSensitiveLog = function (obj) {
689
687
  export var ListNotebookInstanceLifecycleConfigsInputFilterSensitiveLog = function (obj) { return (__assign({}, obj)); };
690
688
  export var NotebookInstanceLifecycleConfigSummaryFilterSensitiveLog = function (obj) { return (__assign({}, obj)); };
691
689
  export var ListNotebookInstanceLifecycleConfigsOutputFilterSensitiveLog = function (obj) { return (__assign({}, obj)); };
692
- export var ListNotebookInstancesInputFilterSensitiveLog = function (obj) { return (__assign({}, obj)); };
@@ -1,5 +1,10 @@
1
1
  import { __assign, __read } from "tslib";
2
2
  import { OidcConfigFilterSensitiveLog, TrialComponentParameterValueFilterSensitiveLog, } from "./models_1";
3
+ export var NotebookInstanceSortOrder;
4
+ (function (NotebookInstanceSortOrder) {
5
+ NotebookInstanceSortOrder["ASCENDING"] = "Ascending";
6
+ NotebookInstanceSortOrder["DESCENDING"] = "Descending";
7
+ })(NotebookInstanceSortOrder || (NotebookInstanceSortOrder = {}));
3
8
  export var SortPipelineExecutionsBy;
4
9
  (function (SortPipelineExecutionsBy) {
5
10
  SortPipelineExecutionsBy["CREATION_TIME"] = "CreationTime";
@@ -78,6 +83,7 @@ export var VariantPropertyType;
78
83
  VariantPropertyType["DesiredInstanceCount"] = "DesiredInstanceCount";
79
84
  VariantPropertyType["DesiredWeight"] = "DesiredWeight";
80
85
  })(VariantPropertyType || (VariantPropertyType = {}));
86
+ export var ListNotebookInstancesInputFilterSensitiveLog = function (obj) { return (__assign({}, obj)); };
81
87
  export var NotebookInstanceSummaryFilterSensitiveLog = function (obj) { return (__assign({}, obj)); };
82
88
  export var ListNotebookInstancesOutputFilterSensitiveLog = function (obj) { return (__assign({}, obj)); };
83
89
  export var ListPipelineExecutionsRequestFilterSensitiveLog = function (obj) { return (__assign({}, obj)); };
@@ -15822,13 +15822,13 @@ var serializeAws_json1_1AutoMLJobCompletionCriteria = function (input, context)
15822
15822
  }));
15823
15823
  };
15824
15824
  var serializeAws_json1_1AutoMLJobConfig = function (input, context) {
15825
- return __assign(__assign(__assign(__assign({}, (input.CandidateGenerationConfig != null && {
15825
+ return __assign(__assign(__assign(__assign(__assign({}, (input.CandidateGenerationConfig != null && {
15826
15826
  CandidateGenerationConfig: serializeAws_json1_1AutoMLCandidateGenerationConfig(input.CandidateGenerationConfig, context),
15827
15827
  })), (input.CompletionCriteria != null && {
15828
15828
  CompletionCriteria: serializeAws_json1_1AutoMLJobCompletionCriteria(input.CompletionCriteria, context),
15829
15829
  })), (input.DataSplitConfig != null && {
15830
15830
  DataSplitConfig: serializeAws_json1_1AutoMLDataSplitConfig(input.DataSplitConfig, context),
15831
- })), (input.SecurityConfig != null && {
15831
+ })), (input.Mode != null && { Mode: input.Mode })), (input.SecurityConfig != null && {
15832
15832
  SecurityConfig: serializeAws_json1_1AutoMLSecurityConfig(input.SecurityConfig, context),
15833
15833
  }));
15834
15834
  };
@@ -18303,11 +18303,15 @@ var serializeAws_json1_1ProcessingStoppingCondition = function (input, context)
18303
18303
  return __assign({}, (input.MaxRuntimeInSeconds != null && { MaxRuntimeInSeconds: input.MaxRuntimeInSeconds }));
18304
18304
  };
18305
18305
  var serializeAws_json1_1ProductionVariant = function (input, context) {
18306
- return __assign(__assign(__assign(__assign(__assign(__assign(__assign(__assign({}, (input.AcceleratorType != null && { AcceleratorType: input.AcceleratorType })), (input.CoreDumpConfig != null && {
18306
+ return __assign(__assign(__assign(__assign(__assign(__assign(__assign(__assign(__assign(__assign(__assign({}, (input.AcceleratorType != null && { AcceleratorType: input.AcceleratorType })), (input.ContainerStartupHealthCheckTimeoutInSeconds != null && {
18307
+ ContainerStartupHealthCheckTimeoutInSeconds: input.ContainerStartupHealthCheckTimeoutInSeconds,
18308
+ })), (input.CoreDumpConfig != null && {
18307
18309
  CoreDumpConfig: serializeAws_json1_1ProductionVariantCoreDumpConfig(input.CoreDumpConfig, context),
18308
- })), (input.InitialInstanceCount != null && { InitialInstanceCount: input.InitialInstanceCount })), (input.InitialVariantWeight != null && { InitialVariantWeight: __serializeFloat(input.InitialVariantWeight) })), (input.InstanceType != null && { InstanceType: input.InstanceType })), (input.ModelName != null && { ModelName: input.ModelName })), (input.ServerlessConfig != null && {
18310
+ })), (input.InitialInstanceCount != null && { InitialInstanceCount: input.InitialInstanceCount })), (input.InitialVariantWeight != null && { InitialVariantWeight: __serializeFloat(input.InitialVariantWeight) })), (input.InstanceType != null && { InstanceType: input.InstanceType })), (input.ModelDataDownloadTimeoutInSeconds != null && {
18311
+ ModelDataDownloadTimeoutInSeconds: input.ModelDataDownloadTimeoutInSeconds,
18312
+ })), (input.ModelName != null && { ModelName: input.ModelName })), (input.ServerlessConfig != null && {
18309
18313
  ServerlessConfig: serializeAws_json1_1ProductionVariantServerlessConfig(input.ServerlessConfig, context),
18310
- })), (input.VariantName != null && { VariantName: input.VariantName }));
18314
+ })), (input.VariantName != null && { VariantName: input.VariantName })), (input.VolumeSizeInGB != null && { VolumeSizeInGB: input.VolumeSizeInGB }));
18311
18315
  };
18312
18316
  var serializeAws_json1_1ProductionVariantCoreDumpConfig = function (input, context) {
18313
18317
  return __assign(__assign({}, (input.DestinationS3Uri != null && { DestinationS3Uri: input.DestinationS3Uri })), (input.KmsKeyId != null && { KmsKeyId: input.KmsKeyId }));
@@ -19658,6 +19662,7 @@ var deserializeAws_json1_1AutoMLJobConfig = function (output, context) {
19658
19662
  DataSplitConfig: output.DataSplitConfig != null
19659
19663
  ? deserializeAws_json1_1AutoMLDataSplitConfig(output.DataSplitConfig, context)
19660
19664
  : undefined,
19665
+ Mode: __expectString(output.Mode),
19661
19666
  SecurityConfig: output.SecurityConfig != null
19662
19667
  ? deserializeAws_json1_1AutoMLSecurityConfig(output.SecurityConfig, context)
19663
19668
  : undefined,
@@ -23158,6 +23163,48 @@ var deserializeAws_json1_1HyperParameterTuningJobObjectives = function (output,
23158
23163
  });
23159
23164
  return retVal;
23160
23165
  };
23166
+ var deserializeAws_json1_1HyperParameterTuningJobSearchEntity = function (output, context) {
23167
+ return {
23168
+ BestTrainingJob: output.BestTrainingJob != null
23169
+ ? deserializeAws_json1_1HyperParameterTrainingJobSummary(output.BestTrainingJob, context)
23170
+ : undefined,
23171
+ CreationTime: output.CreationTime != null
23172
+ ? __expectNonNull(__parseEpochTimestamp(__expectNumber(output.CreationTime)))
23173
+ : undefined,
23174
+ FailureReason: __expectString(output.FailureReason),
23175
+ HyperParameterTuningEndTime: output.HyperParameterTuningEndTime != null
23176
+ ? __expectNonNull(__parseEpochTimestamp(__expectNumber(output.HyperParameterTuningEndTime)))
23177
+ : undefined,
23178
+ HyperParameterTuningJobArn: __expectString(output.HyperParameterTuningJobArn),
23179
+ HyperParameterTuningJobConfig: output.HyperParameterTuningJobConfig != null
23180
+ ? deserializeAws_json1_1HyperParameterTuningJobConfig(output.HyperParameterTuningJobConfig, context)
23181
+ : undefined,
23182
+ HyperParameterTuningJobName: __expectString(output.HyperParameterTuningJobName),
23183
+ HyperParameterTuningJobStatus: __expectString(output.HyperParameterTuningJobStatus),
23184
+ LastModifiedTime: output.LastModifiedTime != null
23185
+ ? __expectNonNull(__parseEpochTimestamp(__expectNumber(output.LastModifiedTime)))
23186
+ : undefined,
23187
+ ObjectiveStatusCounters: output.ObjectiveStatusCounters != null
23188
+ ? deserializeAws_json1_1ObjectiveStatusCounters(output.ObjectiveStatusCounters, context)
23189
+ : undefined,
23190
+ OverallBestTrainingJob: output.OverallBestTrainingJob != null
23191
+ ? deserializeAws_json1_1HyperParameterTrainingJobSummary(output.OverallBestTrainingJob, context)
23192
+ : undefined,
23193
+ Tags: output.Tags != null ? deserializeAws_json1_1TagList(output.Tags, context) : undefined,
23194
+ TrainingJobDefinition: output.TrainingJobDefinition != null
23195
+ ? deserializeAws_json1_1HyperParameterTrainingJobDefinition(output.TrainingJobDefinition, context)
23196
+ : undefined,
23197
+ TrainingJobDefinitions: output.TrainingJobDefinitions != null
23198
+ ? deserializeAws_json1_1HyperParameterTrainingJobDefinitions(output.TrainingJobDefinitions, context)
23199
+ : undefined,
23200
+ TrainingJobStatusCounters: output.TrainingJobStatusCounters != null
23201
+ ? deserializeAws_json1_1TrainingJobStatusCounters(output.TrainingJobStatusCounters, context)
23202
+ : undefined,
23203
+ WarmStartConfig: output.WarmStartConfig != null
23204
+ ? deserializeAws_json1_1HyperParameterTuningJobWarmStartConfig(output.WarmStartConfig, context)
23205
+ : undefined,
23206
+ };
23207
+ };
23161
23208
  var deserializeAws_json1_1HyperParameterTuningJobSummaries = function (output, context) {
23162
23209
  var retVal = (output || [])
23163
23210
  .filter(function (e) { return e != null; })
@@ -25629,17 +25676,20 @@ var deserializeAws_json1_1ProcessingStoppingCondition = function (output, contex
25629
25676
  var deserializeAws_json1_1ProductionVariant = function (output, context) {
25630
25677
  return {
25631
25678
  AcceleratorType: __expectString(output.AcceleratorType),
25679
+ ContainerStartupHealthCheckTimeoutInSeconds: __expectInt32(output.ContainerStartupHealthCheckTimeoutInSeconds),
25632
25680
  CoreDumpConfig: output.CoreDumpConfig != null
25633
25681
  ? deserializeAws_json1_1ProductionVariantCoreDumpConfig(output.CoreDumpConfig, context)
25634
25682
  : undefined,
25635
25683
  InitialInstanceCount: __expectInt32(output.InitialInstanceCount),
25636
25684
  InitialVariantWeight: __limitedParseFloat32(output.InitialVariantWeight),
25637
25685
  InstanceType: __expectString(output.InstanceType),
25686
+ ModelDataDownloadTimeoutInSeconds: __expectInt32(output.ModelDataDownloadTimeoutInSeconds),
25638
25687
  ModelName: __expectString(output.ModelName),
25639
25688
  ServerlessConfig: output.ServerlessConfig != null
25640
25689
  ? deserializeAws_json1_1ProductionVariantServerlessConfig(output.ServerlessConfig, context)
25641
25690
  : undefined,
25642
25691
  VariantName: __expectString(output.VariantName),
25692
+ VolumeSizeInGB: __expectInt32(output.VolumeSizeInGB),
25643
25693
  };
25644
25694
  };
25645
25695
  var deserializeAws_json1_1ProductionVariantCoreDumpConfig = function (output, context) {
@@ -26174,6 +26224,9 @@ var deserializeAws_json1_1SearchRecord = function (output, context) {
26174
26224
  FeatureMetadata: output.FeatureMetadata != null
26175
26225
  ? deserializeAws_json1_1FeatureMetadata(output.FeatureMetadata, context)
26176
26226
  : undefined,
26227
+ HyperParameterTuningJob: output.HyperParameterTuningJob != null
26228
+ ? deserializeAws_json1_1HyperParameterTuningJobSearchEntity(output.HyperParameterTuningJob, context)
26229
+ : undefined,
26177
26230
  ModelPackage: output.ModelPackage != null ? deserializeAws_json1_1ModelPackage(output.ModelPackage, context) : undefined,
26178
26231
  ModelPackageGroup: output.ModelPackageGroup != null
26179
26232
  ? deserializeAws_json1_1ModelPackageGroup(output.ModelPackageGroup, context)
@@ -27383,6 +27436,9 @@ var loadRestJsonErrorCode = function (output, data) {
27383
27436
  if (typeof cleanValue === "number") {
27384
27437
  cleanValue = cleanValue.toString();
27385
27438
  }
27439
+ if (cleanValue.indexOf(",") >= 0) {
27440
+ cleanValue = cleanValue.split(",")[0];
27441
+ }
27386
27442
  if (cleanValue.indexOf(":") >= 0) {
27387
27443
  cleanValue = cleanValue.split(":")[0];
27388
27444
  }
@@ -1009,6 +1009,12 @@ export declare class SageMaker extends SageMakerClient {
1009
1009
  * enable the estimation of model parameters during training. Hyperparameters can
1010
1010
  * be tuned to optimize this learning process. For a list of hyperparameters for
1011
1011
  * each training algorithm provided by SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. </p>
1012
+ * <important>
1013
+ * <p>You must not include any security-sensitive information, such as
1014
+ * account access IDs, secrets, and tokens, in the dictionary for configuring
1015
+ * hyperparameters. SageMaker rejects the training job request and returns an
1016
+ * exception error for detected credentials, if such user input is found.</p>
1017
+ * </important>
1012
1018
  * </li>
1013
1019
  * <li>
1014
1020
  * <p>
@@ -28,6 +28,12 @@ export interface CreateTrainingJobCommandOutput extends CreateTrainingJobRespons
28
28
  * enable the estimation of model parameters during training. Hyperparameters can
29
29
  * be tuned to optimize this learning process. For a list of hyperparameters for
30
30
  * each training algorithm provided by SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. </p>
31
+ * <important>
32
+ * <p>You must not include any security-sensitive information, such as
33
+ * account access IDs, secrets, and tokens, in the dictionary for configuring
34
+ * hyperparameters. SageMaker rejects the training job request and returns an
35
+ * exception error for detected credentials, if such user input is found.</p>
36
+ * </important>
31
37
  * </li>
32
38
  * <li>
33
39
  * <p>
@@ -1,7 +1,6 @@
1
1
  import { Command as $Command } from "@aws-sdk/smithy-client";
2
2
  import { Handler, HttpHandlerOptions as __HttpHandlerOptions, MetadataBearer as __MetadataBearer, MiddlewareStack } from "@aws-sdk/types";
3
- import { DescribeFlowDefinitionRequest } from "../models/models_1";
4
- import { DescribeFlowDefinitionResponse } from "../models/models_2";
3
+ import { DescribeFlowDefinitionRequest, DescribeFlowDefinitionResponse } from "../models/models_2";
5
4
  import { SageMakerClientResolvedConfig, ServiceInputTypes, ServiceOutputTypes } from "../SageMakerClient";
6
5
  export interface DescribeFlowDefinitionCommandInput extends DescribeFlowDefinitionRequest {
7
6
  }
@@ -1,7 +1,6 @@
1
1
  import { Command as $Command } from "@aws-sdk/smithy-client";
2
2
  import { Handler, HttpHandlerOptions as __HttpHandlerOptions, MetadataBearer as __MetadataBearer, MiddlewareStack } from "@aws-sdk/types";
3
- import { ListNotebookInstancesInput } from "../models/models_2";
4
- import { ListNotebookInstancesOutput } from "../models/models_3";
3
+ import { ListNotebookInstancesInput, ListNotebookInstancesOutput } from "../models/models_3";
5
4
  import { SageMakerClientResolvedConfig, ServiceInputTypes, ServiceOutputTypes } from "../SageMakerClient";
6
5
  export interface ListNotebookInstancesCommandInput extends ListNotebookInstancesInput {
7
6
  }
@@ -1123,9 +1123,9 @@ export interface StoppingCondition {
1123
1123
  * <code>MaxRuntimeInSeconds</code> specifies the maximum time for all of the attempts
1124
1124
  * in total, not each individual attempt. The default value is 1 day. The maximum value is
1125
1125
  * 28 days.</p>
1126
- * <p>The maximum time that a <code>TrainingJob</code> can run in total, including any time spent
1127
- * publishing metrics or archiving and uploading models after it has been stopped, is 30
1128
- * days.</p>
1126
+ * <p>The maximum time that a <code>TrainingJob</code> can run in total, including any time
1127
+ * spent publishing metrics or archiving and uploading models after it has been stopped, is
1128
+ * 30 days.</p>
1129
1129
  */
1130
1130
  MaxRuntimeInSeconds?: number;
1131
1131
  /**
@@ -3783,7 +3783,8 @@ export interface AutoMLS3DataSource {
3783
3783
  * <p>The data type.</p>
3784
3784
  * <p>A ManifestFile should have the format shown below:</p>
3785
3785
  * <p>
3786
- * <code>[ {"prefix": "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"}, </code>
3786
+ * <code>[ {"prefix": "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"},
3787
+ * </code>
3787
3788
  * </p>
3788
3789
  * <p>
3789
3790
  * <code>"DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1",</code>
@@ -3890,8 +3891,9 @@ export interface AutoMLJobCompletionCriteria {
3890
3891
  */
3891
3892
  MaxCandidates?: number;
3892
3893
  /**
3893
- * <p>The maximum time, in seconds, that each training job executed inside hyperparameter tuning is allowed to run as part of a
3894
- * hyperparameter tuning job. For more information, see the used by the action.</p>
3894
+ * <p>The maximum time, in seconds, that each training job executed inside hyperparameter
3895
+ * tuning is allowed to run as part of a hyperparameter tuning job. For more information, see
3896
+ * the used by the action.</p>
3895
3897
  */
3896
3898
  MaxRuntimePerTrainingJobInSeconds?: number;
3897
3899
  /**
@@ -3903,6 +3905,11 @@ export interface AutoMLJobCompletionCriteria {
3903
3905
  */
3904
3906
  MaxAutoMLJobRuntimeInSeconds?: number;
3905
3907
  }
3908
+ export declare enum AutoMLMode {
3909
+ AUTO = "AUTO",
3910
+ ENSEMBLING = "ENSEMBLING",
3911
+ HYPERPARAMETER_TUNING = "HYPERPARAMETER_TUNING"
3912
+ }
3906
3913
  /**
3907
3914
  * <p>Specifies a VPC that your training jobs and hosted models have access to. Control
3908
3915
  * access to and from your training and model containers by configuring the VPC. For more
@@ -3961,6 +3968,25 @@ export interface AutoMLJobConfig {
3961
3968
  * <p>The configuration for generating a candidate for an AutoML job (optional). </p>
3962
3969
  */
3963
3970
  CandidateGenerationConfig?: AutoMLCandidateGenerationConfig;
3971
+ /**
3972
+ * <p>The method that Autopilot uses to train the data. You can either specify the mode manually
3973
+ * or let Autopilot choose for you based on the dataset size by selecting <code>AUTO</code>. In
3974
+ * <code>AUTO</code> mode, Autopilot chooses <code>ENSEMBLING</code> for datasets smaller than
3975
+ * 100 MB, and <code>HYPERPARAMETER_TUNING</code> for larger ones.</p>
3976
+ * <p>The <code>ENSEMBLING</code> mode uses a multi-stack ensemble model to predict
3977
+ * classification and regression tasks directly from your dataset. This machine learning mode
3978
+ * combines several base models to produce an optimal predictive model. It then uses a
3979
+ * stacking ensemble method to combine predictions from contributing members. A multi-stack
3980
+ * ensemble model can provide better performance over a single model by combining the
3981
+ * predictive capabilities of multiple models. See <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-suppprt">Autopilot algorithm support</a> for a list of algorithms supported by
3982
+ * <code>ENSEMBLING</code> mode.</p>
3983
+ * <p>The <code>HYPERPARAMETER_TUNING</code> (HPO) mode uses the best hyperparameters to train
3984
+ * the best version of a model. HPO will automatically select an algorithm for the type of
3985
+ * problem you want to solve. Then HPO finds the best hyperparameters according to your
3986
+ * objective metric. See <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-suppprt">Autopilot algorithm support</a> for a list of algorithms supported by
3987
+ * <code>HYPERPARAMETER_TUNING</code> mode.</p>
3988
+ */
3989
+ Mode?: AutoMLMode | string;
3964
3990
  }
3965
3991
  /**
3966
3992
  * <p>Specifies a metric to minimize or maximize as the objective of a job.</p>
@@ -7681,6 +7707,26 @@ export interface ProductionVariant {
7681
7707
  * <p>The serverless configuration for an endpoint. Specifies a serverless endpoint configuration instead of an instance-based endpoint configuration.</p>
7682
7708
  */
7683
7709
  ServerlessConfig?: ProductionVariantServerlessConfig;
7710
+ /**
7711
+ * <p>The size, in GB, of the ML storage volume attached to individual
7712
+ * inference instance associated with the production variant. Currenly only
7713
+ * Amazon EBS gp2 storage volumes are supported.</p>
7714
+ */
7715
+ VolumeSizeInGB?: number;
7716
+ /**
7717
+ * <p>The timeout value, in seconds, to download and extract the
7718
+ * model that you want to host from Amazon S3 to the individual inference instance associated with
7719
+ * this production variant.</p>
7720
+ */
7721
+ ModelDataDownloadTimeoutInSeconds?: number;
7722
+ /**
7723
+ * <p>The timeout value, in seconds, for your inference container
7724
+ * to pass health check by SageMaker Hosting. For more information about health
7725
+ * check, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-inference-code.html#your-algorithms-inference-algo-ping-requests">How
7726
+ * Your Container Should Respond to Health Check (Ping)
7727
+ * Requests</a>.</p>
7728
+ */
7729
+ ContainerStartupHealthCheckTimeoutInSeconds?: number;
7684
7730
  }
7685
7731
  export interface CreateEndpointConfigInput {
7686
7732
  /**
@@ -9004,10 +9050,6 @@ export declare enum HyperParameterTuningJobStrategyType {
9004
9050
  BAYESIAN = "Bayesian",
9005
9051
  RANDOM = "Random"
9006
9052
  }
9007
- export declare enum TrainingJobEarlyStoppingType {
9008
- AUTO = "Auto",
9009
- OFF = "Off"
9010
- }
9011
9053
  /**
9012
9054
  * @internal
9013
9055
  */
@@ -1,4 +1,8 @@
1
- import { ActionSource, ActionStatus, AdditionalInferenceSpecificationDefinition, AlgorithmSpecification, AlgorithmStatus, AlgorithmStatusDetails, AlgorithmValidationSpecification, AnnotationConsolidationConfig, AppNetworkAccessType, AppSecurityGroupManagement, AppSpecification, AppStatus, AppType, ArtifactSource, AsyncInferenceConfig, AthenaDatasetDefinition, AuthMode, AutoMLCandidate, AutoMLChannel, AutoMLJobArtifacts, AutoMLJobCompletionCriteria, AutoMLJobConfig, AutoMLJobObjective, AutoMLJobSecondaryStatus, AutoMLJobStatus, AutoMLOutputDataConfig, AutoMLPartialFailureReason, BatchStrategy, Bias, CaptureStatus, CategoricalParameter, Channel, CheckpointConfig, CognitoConfig, CognitoMemberDefinition, CollectionConfiguration, CompilationJobStatus, ContainerDefinition, ContentClassifier, ContextSource, DataCaptureConfig, DataQualityAppSpecification, DataQualityBaselineConfig, DataQualityJobInput, DeploymentConfig, DeviceSelectionConfig, DomainSettings, EdgeDeploymentConfig, EdgeDeploymentModelConfig, EdgeOutputConfig, EdgePresetDeploymentType, EndpointInput, FeatureDefinition, FeatureType, GitConfig, HyperParameterTuningJobObjective, HyperParameterTuningJobStrategyType, InferenceSpecification, InputConfig, KernelGatewayImageConfig, MetadataProperties, MetricDefinition, MetricsSource, ModelApprovalStatus, ModelDeployConfig, MonitoringConstraintsResource, MonitoringNetworkConfig, MonitoringOutputConfig, MonitoringResources, MonitoringStatisticsResource, MonitoringStoppingCondition, NeoVpcConfig, OfflineStoreConfig, OnlineStoreConfig, OutputConfig, OutputDataConfig, ParameterRanges, ProblemType, ProcessingInstanceType, ProcessingS3DataDistributionType, ProcessingS3InputMode, ProcessingS3UploadMode, ProductionVariant, ProductionVariantAcceleratorType, ProductionVariantInstanceType, ProductionVariantServerlessConfig, PublicWorkforceTaskPrice, ResourceConfig, ResourceLimits, ResourceSpec, StoppingCondition, Tag, TrainingInputMode, TrainingInstanceType, TrainingJobEarlyStoppingType, TrainingSpecification, TransformInput, TransformJobDefinition, TransformOutput, TransformResources, UserContext, UserSettings, VpcConfig } from "./models_0";
1
+ import { ActionSource, ActionStatus, AdditionalInferenceSpecificationDefinition, AlgorithmSpecification, AlgorithmStatus, AlgorithmStatusDetails, AlgorithmValidationSpecification, AnnotationConsolidationConfig, AppNetworkAccessType, AppSecurityGroupManagement, AppSpecification, AppStatus, AppType, ArtifactSource, AsyncInferenceConfig, AthenaDatasetDefinition, AuthMode, AutoMLCandidate, AutoMLChannel, AutoMLJobArtifacts, AutoMLJobCompletionCriteria, AutoMLJobConfig, AutoMLJobObjective, AutoMLJobSecondaryStatus, AutoMLJobStatus, AutoMLOutputDataConfig, AutoMLPartialFailureReason, BatchStrategy, Bias, CaptureStatus, CategoricalParameter, Channel, CheckpointConfig, CognitoConfig, CognitoMemberDefinition, CollectionConfiguration, CompilationJobStatus, ContainerDefinition, ContentClassifier, ContextSource, DataCaptureConfig, DataQualityAppSpecification, DataQualityBaselineConfig, DataQualityJobInput, DeploymentConfig, DeviceSelectionConfig, DomainSettings, EdgeDeploymentConfig, EdgeDeploymentModelConfig, EdgeOutputConfig, EdgePresetDeploymentType, EndpointInput, FeatureDefinition, FeatureType, GitConfig, HyperParameterTuningJobObjective, HyperParameterTuningJobStrategyType, InferenceSpecification, InputConfig, KernelGatewayImageConfig, MetadataProperties, MetricDefinition, MetricsSource, ModelApprovalStatus, ModelDeployConfig, MonitoringConstraintsResource, MonitoringNetworkConfig, MonitoringOutputConfig, MonitoringResources, MonitoringStatisticsResource, MonitoringStoppingCondition, NeoVpcConfig, OfflineStoreConfig, OnlineStoreConfig, OutputConfig, OutputDataConfig, ParameterRanges, ProblemType, ProcessingInstanceType, ProcessingS3DataDistributionType, ProcessingS3InputMode, ProcessingS3UploadMode, ProductionVariant, ProductionVariantAcceleratorType, ProductionVariantInstanceType, ProductionVariantServerlessConfig, PublicWorkforceTaskPrice, ResourceConfig, ResourceLimits, ResourceSpec, StoppingCondition, Tag, TrainingInputMode, TrainingInstanceType, TrainingSpecification, TransformInput, TransformJobDefinition, TransformOutput, TransformResources, UserContext, UserSettings, VpcConfig } from "./models_0";
2
+ export declare enum TrainingJobEarlyStoppingType {
3
+ AUTO = "Auto",
4
+ OFF = "Off"
5
+ }
2
6
  /**
3
7
  * <p>The job completion criteria.</p>
4
8
  */
@@ -5093,6 +5097,12 @@ export interface CreateTrainingJobRequest {
5093
5097
  * <p>You can specify a maximum of 100 hyperparameters. Each hyperparameter is a
5094
5098
  * key-value pair. Each key and value is limited to 256 characters, as specified by the
5095
5099
  * <code>Length Constraint</code>. </p>
5100
+ * <important>
5101
+ * <p>You must not include any security-sensitive information, such as
5102
+ * account access IDs, secrets, and tokens, in the dictionary for configuring
5103
+ * hyperparameters. SageMaker rejects the training job request and returns an
5104
+ * exception error for detected credentials, if such user input is found.</p>
5105
+ * </important>
5096
5106
  */
5097
5107
  HyperParameters?: Record<string, string>;
5098
5108
  /**
@@ -8077,12 +8087,6 @@ export interface DescribeFeatureMetadataResponse {
8077
8087
  */
8078
8088
  Parameters?: FeatureParameter[];
8079
8089
  }
8080
- export interface DescribeFlowDefinitionRequest {
8081
- /**
8082
- * <p>The name of the flow definition.</p>
8083
- */
8084
- FlowDefinitionName: string | undefined;
8085
- }
8086
8090
  /**
8087
8091
  * @internal
8088
8092
  */
@@ -9155,7 +9159,3 @@ export declare const FeatureParameterFilterSensitiveLog: (obj: FeatureParameter)
9155
9159
  * @internal
9156
9160
  */
9157
9161
  export declare const DescribeFeatureMetadataResponseFilterSensitiveLog: (obj: DescribeFeatureMetadataResponse) => any;
9158
- /**
9159
- * @internal
9160
- */
9161
- export declare const DescribeFlowDefinitionRequestFilterSensitiveLog: (obj: DescribeFlowDefinitionRequest) => any;
@@ -1,5 +1,11 @@
1
1
  import { ActionSummary, AdditionalInferenceSpecificationDefinition, AgentVersion, AlgorithmSortBy, AlgorithmSpecification, AlgorithmSummary, AppDetails, AppImageConfigDetails, AppImageConfigSortKey, AppSortKey, AppSpecification, ArtifactSummary, AssociationEdgeType, AssociationSummary, AutoMLCandidate, AutoMLJobStatus, AutoMLJobSummary, AutoMLSortBy, AutoMLSortOrder, BatchStrategy, CandidateSortBy, CandidateStatus, Channel, CheckpointConfig, CodeRepositorySortBy, CodeRepositorySortOrder, CodeRepositorySummary, CognitoConfig, CompilationJobStatus, CompilationJobSummary, ContainerDefinition, ContextSummary, EdgeOutputConfig, ExecutionRoleIdentityConfig, FeatureDefinition, FeatureType, FlowDefinitionOutputConfig, HumanLoopActivationConfig, HumanLoopConfig, HumanLoopRequestSource, HyperParameterTuningJobObjectiveType, HyperParameterTuningJobStrategyType, InferenceSpecification, MetadataProperties, ModelApprovalStatus, ModelPackageStatus, MonitoringNetworkConfig, MonitoringOutputConfig, MonitoringResources, MonitoringStoppingCondition, ObjectiveStatus, OfflineStoreConfig, OnlineStoreConfig, OutputDataConfig, OutputParameter, ProductionVariantInstanceType, ResourceConfig, ResourceLimits, ResourceSpec, StoppingCondition, Tag, TransformInput, TransformOutput, TransformResources, UserContext, UserSettings, VpcConfig } from "./models_0";
2
2
  import { _InstanceType, DataCaptureConfigSummary, DataProcessing, DebugHookConfig, DebugRuleConfiguration, DebugRuleEvaluationStatus, DirectInternetAccess, DomainStatus, DriftCheckBaselines, EdgePackagingJobStatus, EndpointStatus, ExperimentConfig, ExperimentSource, FeatureGroupStatus, FeatureParameter, HumanTaskConfig, HyperParameterTrainingJobDefinition, HyperParameterTuningJobConfig, HyperParameterTuningJobWarmStartConfig, InferenceExecutionConfig, InstanceMetadataServiceConfiguration, LabelingJobAlgorithmsConfig, LabelingJobInputConfig, LabelingJobOutputConfig, LabelingJobStoppingConditions, LastUpdateStatus, MemberDefinition, ModelArtifacts, ModelBiasAppSpecification, ModelBiasBaselineConfig, ModelBiasJobInput, ModelClientConfig, ModelExplainabilityAppSpecification, ModelExplainabilityBaselineConfig, ModelExplainabilityJobInput, ModelMetrics, ModelPackageValidationSpecification, ModelQualityAppSpecification, ModelQualityBaselineConfig, ModelQualityJobInput, MonitoringScheduleConfig, MonitoringType, NetworkConfig, NotebookInstanceAcceleratorType, NotebookInstanceLifecycleHook, NotificationConfiguration, OfflineStoreStatus, OfflineStoreStatusValue, ParallelismConfiguration, ProcessingInput, ProcessingOutputConfig, ProcessingResources, ProcessingStoppingCondition, ProductionVariantSummary, ProfilerConfig, ProfilerRuleConfiguration, RecommendationJobInputConfig, RecommendationJobStoppingConditions, RecommendationJobType, RetryStrategy, RootAccess, RuleEvaluationStatus, ServiceCatalogProvisioningDetails, SourceAlgorithmSpecification, SourceIpConfig, StudioLifecycleConfigAppType, TensorBoardOutputConfig, TrialComponentArtifact, TrialComponentParameterValue, TrialComponentStatus } from "./models_1";
3
+ export interface DescribeFlowDefinitionRequest {
4
+ /**
5
+ * <p>The name of the flow definition.</p>
6
+ */
7
+ FlowDefinitionName: string | undefined;
8
+ }
3
9
  export declare enum FlowDefinitionStatus {
4
10
  ACTIVE = "Active",
5
11
  DELETING = "Deleting",
@@ -4500,6 +4506,7 @@ export declare enum ResourceType {
4500
4506
  EXPERIMENT_TRIAL_COMPONENT = "ExperimentTrialComponent",
4501
4507
  FEATURE_GROUP = "FeatureGroup",
4502
4508
  FEATURE_METADATA = "FeatureMetadata",
4509
+ HYPER_PARAMETER_TUNING_JOB = "HyperParameterTuningJob",
4503
4510
  MODEL_PACKAGE = "ModelPackage",
4504
4511
  MODEL_PACKAGE_GROUP = "ModelPackageGroup",
4505
4512
  PIPELINE = "Pipeline",
@@ -4589,6 +4596,96 @@ export interface HumanTaskUiSummary {
4589
4596
  */
4590
4597
  CreationTime: Date | undefined;
4591
4598
  }
4599
+ /**
4600
+ * <p>An entity having characteristics over which a user can search for a hyperparameter
4601
+ * tuning job.</p>
4602
+ */
4603
+ export interface HyperParameterTuningJobSearchEntity {
4604
+ /**
4605
+ * <p>The name of a hyperparameter tuning job.</p>
4606
+ */
4607
+ HyperParameterTuningJobName?: string;
4608
+ /**
4609
+ * <p>The Amazon Resource Name (ARN) of a hyperparameter tuning job.</p>
4610
+ */
4611
+ HyperParameterTuningJobArn?: string;
4612
+ /**
4613
+ * <p>Configures a hyperparameter tuning job.</p>
4614
+ */
4615
+ HyperParameterTuningJobConfig?: HyperParameterTuningJobConfig;
4616
+ /**
4617
+ * <p>Defines
4618
+ * the training jobs launched by a hyperparameter tuning job.</p>
4619
+ */
4620
+ TrainingJobDefinition?: HyperParameterTrainingJobDefinition;
4621
+ /**
4622
+ * <p>The job definitions included in a hyperparameter tuning job.</p>
4623
+ */
4624
+ TrainingJobDefinitions?: HyperParameterTrainingJobDefinition[];
4625
+ /**
4626
+ * <p>The status of a hyperparameter tuning job.</p>
4627
+ */
4628
+ HyperParameterTuningJobStatus?: HyperParameterTuningJobStatus | string;
4629
+ /**
4630
+ * <p>The time that a hyperparameter tuning job was created.</p>
4631
+ */
4632
+ CreationTime?: Date;
4633
+ /**
4634
+ * <p>The time that a hyperparameter tuning job ended.</p>
4635
+ */
4636
+ HyperParameterTuningEndTime?: Date;
4637
+ /**
4638
+ * <p>The time that a hyperparameter tuning job was last modified.</p>
4639
+ */
4640
+ LastModifiedTime?: Date;
4641
+ /**
4642
+ * <p>The numbers of training jobs launched by a hyperparameter tuning job, categorized by
4643
+ * status.</p>
4644
+ */
4645
+ TrainingJobStatusCounters?: TrainingJobStatusCounters;
4646
+ /**
4647
+ * <p>Specifies the number of training jobs that this hyperparameter tuning job launched,
4648
+ * categorized by the status of their objective metric. The objective metric status shows
4649
+ * whether the
4650
+ * final
4651
+ * objective metric for the training job has been evaluated by the
4652
+ * tuning job and used in the hyperparameter tuning process.</p>
4653
+ */
4654
+ ObjectiveStatusCounters?: ObjectiveStatusCounters;
4655
+ /**
4656
+ * <p>The container for the summary information about a training job.</p>
4657
+ */
4658
+ BestTrainingJob?: HyperParameterTrainingJobSummary;
4659
+ /**
4660
+ * <p>The container for the summary information about a training job.</p>
4661
+ */
4662
+ OverallBestTrainingJob?: HyperParameterTrainingJobSummary;
4663
+ /**
4664
+ * <p>Specifies the configuration for a hyperparameter tuning job that uses one or more
4665
+ * previous hyperparameter tuning jobs as a starting point. The results of previous tuning
4666
+ * jobs are used to inform which combinations of hyperparameters to search over in the new
4667
+ * tuning job.</p>
4668
+ * <p>All training jobs launched by the new hyperparameter tuning job are evaluated by using
4669
+ * the objective metric, and the training job that performs the best is compared to the
4670
+ * best training jobs from the parent tuning jobs. From these, the training job that
4671
+ * performs the best as measured by the objective metric is returned as the overall best
4672
+ * training job.</p>
4673
+ * <note>
4674
+ * <p>All training jobs launched by parent hyperparameter tuning jobs and the new
4675
+ * hyperparameter tuning jobs count against the limit of training jobs for the tuning
4676
+ * job.</p>
4677
+ * </note>
4678
+ */
4679
+ WarmStartConfig?: HyperParameterTuningJobWarmStartConfig;
4680
+ /**
4681
+ * <p>The error that was created when a hyperparameter tuning job failed.</p>
4682
+ */
4683
+ FailureReason?: string;
4684
+ /**
4685
+ * <p>The tags associated with a hyperparameter tuning job. For more information see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web Services resources</a>.</p>
4686
+ */
4687
+ Tags?: Tag[];
4688
+ }
4592
4689
  export declare enum HyperParameterTuningJobSortByOptions {
4593
4690
  CreationTime = "CreationTime",
4594
4691
  Name = "Name",
@@ -7296,82 +7393,10 @@ export declare enum NotebookInstanceSortKey {
7296
7393
  NAME = "Name",
7297
7394
  STATUS = "Status"
7298
7395
  }
7299
- export declare enum NotebookInstanceSortOrder {
7300
- ASCENDING = "Ascending",
7301
- DESCENDING = "Descending"
7302
- }
7303
- export interface ListNotebookInstancesInput {
7304
- /**
7305
- * <p> If the previous call to the <code>ListNotebookInstances</code> is truncated, the
7306
- * response includes a <code>NextToken</code>. You can use this token in your subsequent
7307
- * <code>ListNotebookInstances</code> request to fetch the next set of notebook
7308
- * instances. </p>
7309
- * <note>
7310
- * <p>You might specify a filter or a sort order in your request. When response is
7311
- * truncated, you must use the same values for the filer and sort order in the next
7312
- * request. </p>
7313
- * </note>
7314
- */
7315
- NextToken?: string;
7316
- /**
7317
- * <p>The maximum number of notebook instances to return.</p>
7318
- */
7319
- MaxResults?: number;
7320
- /**
7321
- * <p>The field to sort results by. The default is <code>Name</code>.</p>
7322
- */
7323
- SortBy?: NotebookInstanceSortKey | string;
7324
- /**
7325
- * <p>The sort order for results. </p>
7326
- */
7327
- SortOrder?: NotebookInstanceSortOrder | string;
7328
- /**
7329
- * <p>A string in the notebook instances' name. This filter returns only notebook
7330
- * instances whose name contains the specified string.</p>
7331
- */
7332
- NameContains?: string;
7333
- /**
7334
- * <p>A filter that returns only notebook instances that were created before the
7335
- * specified time (timestamp). </p>
7336
- */
7337
- CreationTimeBefore?: Date;
7338
- /**
7339
- * <p>A filter that returns only notebook instances that were created after the specified
7340
- * time (timestamp).</p>
7341
- */
7342
- CreationTimeAfter?: Date;
7343
- /**
7344
- * <p>A filter that returns only notebook instances that were modified before the
7345
- * specified time (timestamp).</p>
7346
- */
7347
- LastModifiedTimeBefore?: Date;
7348
- /**
7349
- * <p>A filter that returns only notebook instances that were modified after the
7350
- * specified time (timestamp).</p>
7351
- */
7352
- LastModifiedTimeAfter?: Date;
7353
- /**
7354
- * <p>A filter that returns only notebook instances with the specified status.</p>
7355
- */
7356
- StatusEquals?: NotebookInstanceStatus | string;
7357
- /**
7358
- * <p>A string in the name of a notebook instances lifecycle configuration associated with
7359
- * this notebook instance. This filter returns only notebook instances associated with a
7360
- * lifecycle configuration with a name that contains the specified string.</p>
7361
- */
7362
- NotebookInstanceLifecycleConfigNameContains?: string;
7363
- /**
7364
- * <p>A string in the name or URL of a Git repository associated with this notebook
7365
- * instance. This filter returns only notebook instances associated with a git repository
7366
- * with a name that contains the specified string.</p>
7367
- */
7368
- DefaultCodeRepositoryContains?: string;
7369
- /**
7370
- * <p>A filter that returns only notebook instances with associated with the specified git
7371
- * repository.</p>
7372
- */
7373
- AdditionalCodeRepositoryEquals?: string;
7374
- }
7396
+ /**
7397
+ * @internal
7398
+ */
7399
+ export declare const DescribeFlowDefinitionRequestFilterSensitiveLog: (obj: DescribeFlowDefinitionRequest) => any;
7375
7400
  /**
7376
7401
  * @internal
7377
7402
  */
@@ -7920,6 +7945,10 @@ export declare const GitConfigForUpdateFilterSensitiveLog: (obj: GitConfigForUpd
7920
7945
  * @internal
7921
7946
  */
7922
7947
  export declare const HumanTaskUiSummaryFilterSensitiveLog: (obj: HumanTaskUiSummary) => any;
7948
+ /**
7949
+ * @internal
7950
+ */
7951
+ export declare const HyperParameterTuningJobSearchEntityFilterSensitiveLog: (obj: HyperParameterTuningJobSearchEntity) => any;
7923
7952
  /**
7924
7953
  * @internal
7925
7954
  */
@@ -8312,7 +8341,3 @@ export declare const NotebookInstanceLifecycleConfigSummaryFilterSensitiveLog: (
8312
8341
  * @internal
8313
8342
  */
8314
8343
  export declare const ListNotebookInstanceLifecycleConfigsOutputFilterSensitiveLog: (obj: ListNotebookInstanceLifecycleConfigsOutput) => any;
8315
- /**
8316
- * @internal
8317
- */
8318
- export declare const ListNotebookInstancesInputFilterSensitiveLog: (obj: ListNotebookInstancesInput) => any;