@aws-sdk/client-machine-learning 3.956.0 → 3.958.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/dist-cjs/index.js CHANGED
@@ -445,486 +445,519 @@ const _sm = "smithy.ts.sdk.synthetic.com.amazonaws.machinelearning";
445
445
  const n0 = "com.amazonaws.machinelearning";
446
446
  var RDSDatabasePassword = [0, n0, _RDSDP, 8, 0];
447
447
  var RedshiftDatabasePassword = [0, n0, _RDP, 8, 0];
448
- var AddTagsInput$ = [3, n0, _ATI, 0, [_T, _RI, _RT], [() => TagList, 0, 0]];
449
- var AddTagsOutput$ = [3, n0, _ATO, 0, [_RI, _RT], [0, 0]];
450
- var BatchPrediction$ = [
451
- 3,
452
- n0,
453
- _BP,
448
+ var AddTagsInput$ = [3, n0, _ATI,
449
+ 0,
450
+ [_T, _RI, _RT],
451
+ [() => TagList, 0, 0]
452
+ ];
453
+ var AddTagsOutput$ = [3, n0, _ATO,
454
+ 0,
455
+ [_RI, _RT],
456
+ [0, 0]
457
+ ];
458
+ var BatchPrediction$ = [3, n0, _BP,
454
459
  0,
455
460
  [_BPI, _MLMI, _BPDSI, _IDLS, _CBIU, _CA, _LUA, _N, _S, _OU, _M, _CT, _FA, _SA, _TRC, _IRC],
456
- [0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 1, 4, 4, 1, 1],
461
+ [0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 1, 4, 4, 1, 1]
457
462
  ];
458
- var CreateBatchPredictionInput$ = [
459
- 3,
460
- n0,
461
- _CBPI,
463
+ var CreateBatchPredictionInput$ = [3, n0, _CBPI,
462
464
  0,
463
465
  [_BPI, _BPN, _MLMI, _BPDSI, _OU],
464
- [0, 0, 0, 0, 0],
466
+ [0, 0, 0, 0, 0]
465
467
  ];
466
- var CreateBatchPredictionOutput$ = [3, n0, _CBPO, 0, [_BPI], [0]];
467
- var CreateDataSourceFromRDSInput$ = [
468
- 3,
469
- n0,
470
- _CDSFRDSI,
468
+ var CreateBatchPredictionOutput$ = [3, n0, _CBPO,
469
+ 0,
470
+ [_BPI],
471
+ [0]
472
+ ];
473
+ var CreateDataSourceFromRDSInput$ = [3, n0, _CDSFRDSI,
471
474
  0,
472
475
  [_DSI, _DSN, _RDSD, _RARN, _CS],
473
- [0, 0, [() => RDSDataSpec$, 0], 0, 2],
476
+ [0, 0, [() => RDSDataSpec$, 0], 0, 2]
477
+ ];
478
+ var CreateDataSourceFromRDSOutput$ = [3, n0, _CDSFRDSO,
479
+ 0,
480
+ [_DSI],
481
+ [0]
474
482
  ];
475
- var CreateDataSourceFromRDSOutput$ = [3, n0, _CDSFRDSO, 0, [_DSI], [0]];
476
- var CreateDataSourceFromRedshiftInput$ = [
477
- 3,
478
- n0,
479
- _CDSFRI,
483
+ var CreateDataSourceFromRedshiftInput$ = [3, n0, _CDSFRI,
480
484
  0,
481
485
  [_DSI, _DSN, _DS, _RARN, _CS],
482
- [0, 0, [() => RedshiftDataSpec$, 0], 0, 2],
486
+ [0, 0, [() => RedshiftDataSpec$, 0], 0, 2]
483
487
  ];
484
- var CreateDataSourceFromRedshiftOutput$ = [3, n0, _CDSFRO, 0, [_DSI], [0]];
485
- var CreateDataSourceFromS3Input$ = [
486
- 3,
487
- n0,
488
- _CDSFSI,
488
+ var CreateDataSourceFromRedshiftOutput$ = [3, n0, _CDSFRO,
489
+ 0,
490
+ [_DSI],
491
+ [0]
492
+ ];
493
+ var CreateDataSourceFromS3Input$ = [3, n0, _CDSFSI,
489
494
  0,
490
495
  [_DSI, _DSN, _DS, _CS],
491
- [0, 0, () => S3DataSpec$, 2],
496
+ [0, 0, () => S3DataSpec$, 2]
497
+ ];
498
+ var CreateDataSourceFromS3Output$ = [3, n0, _CDSFSO,
499
+ 0,
500
+ [_DSI],
501
+ [0]
502
+ ];
503
+ var CreateEvaluationInput$ = [3, n0, _CEI,
504
+ 0,
505
+ [_EI, _EN, _MLMI, _EDSI],
506
+ [0, 0, 0, 0]
507
+ ];
508
+ var CreateEvaluationOutput$ = [3, n0, _CEO,
509
+ 0,
510
+ [_EI],
511
+ [0]
492
512
  ];
493
- var CreateDataSourceFromS3Output$ = [3, n0, _CDSFSO, 0, [_DSI], [0]];
494
- var CreateEvaluationInput$ = [3, n0, _CEI, 0, [_EI, _EN, _MLMI, _EDSI], [0, 0, 0, 0]];
495
- var CreateEvaluationOutput$ = [3, n0, _CEO, 0, [_EI], [0]];
496
- var CreateMLModelInput$ = [
497
- 3,
498
- n0,
499
- _CMLMI,
513
+ var CreateMLModelInput$ = [3, n0, _CMLMI,
500
514
  0,
501
515
  [_MLMI, _MLMN, _MLMT, _P, _TDSI, _R, _RU],
502
- [0, 0, 0, 128 | 0, 0, 0, 0],
516
+ [0, 0, 0, 128 | 0, 0, 0, 0]
503
517
  ];
504
- var CreateMLModelOutput$ = [3, n0, _CMLMO, 0, [_MLMI], [0]];
505
- var CreateRealtimeEndpointInput$ = [3, n0, _CREI, 0, [_MLMI], [0]];
506
- var CreateRealtimeEndpointOutput$ = [
507
- 3,
508
- n0,
509
- _CREO,
518
+ var CreateMLModelOutput$ = [3, n0, _CMLMO,
519
+ 0,
520
+ [_MLMI],
521
+ [0]
522
+ ];
523
+ var CreateRealtimeEndpointInput$ = [3, n0, _CREI,
524
+ 0,
525
+ [_MLMI],
526
+ [0]
527
+ ];
528
+ var CreateRealtimeEndpointOutput$ = [3, n0, _CREO,
510
529
  0,
511
530
  [_MLMI, _REI],
512
- [0, () => RealtimeEndpointInfo$],
531
+ [0, () => RealtimeEndpointInfo$]
513
532
  ];
514
- var DataSource$ = [
515
- 3,
516
- n0,
517
- _DSa,
533
+ var DataSource$ = [3, n0, _DSa,
518
534
  0,
519
535
  [_DSI, _DLS, _DR, _CBIU, _CA, _LUA, _DSIB, _NOF, _N, _S, _M, _RM, _RDSM, _RARN, _CS, _CT, _FA, _SA],
520
- [0, 0, 0, 0, 4, 4, 1, 1, 0, 0, 0, () => RedshiftMetadata$, () => RDSMetadata$, 0, 2, 1, 4, 4],
521
- ];
522
- var DeleteBatchPredictionInput$ = [3, n0, _DBPI, 0, [_BPI], [0]];
523
- var DeleteBatchPredictionOutput$ = [3, n0, _DBPO, 0, [_BPI], [0]];
524
- var DeleteDataSourceInput$ = [3, n0, _DDSI, 0, [_DSI], [0]];
525
- var DeleteDataSourceOutput$ = [3, n0, _DDSO, 0, [_DSI], [0]];
526
- var DeleteEvaluationInput$ = [3, n0, _DEI, 0, [_EI], [0]];
527
- var DeleteEvaluationOutput$ = [3, n0, _DEO, 0, [_EI], [0]];
528
- var DeleteMLModelInput$ = [3, n0, _DMLMI, 0, [_MLMI], [0]];
529
- var DeleteMLModelOutput$ = [3, n0, _DMLMO, 0, [_MLMI], [0]];
530
- var DeleteRealtimeEndpointInput$ = [3, n0, _DREI, 0, [_MLMI], [0]];
531
- var DeleteRealtimeEndpointOutput$ = [
532
- 3,
533
- n0,
534
- _DREO,
536
+ [0, 0, 0, 0, 4, 4, 1, 1, 0, 0, 0, () => RedshiftMetadata$, () => RDSMetadata$, 0, 2, 1, 4, 4]
537
+ ];
538
+ var DeleteBatchPredictionInput$ = [3, n0, _DBPI,
539
+ 0,
540
+ [_BPI],
541
+ [0]
542
+ ];
543
+ var DeleteBatchPredictionOutput$ = [3, n0, _DBPO,
544
+ 0,
545
+ [_BPI],
546
+ [0]
547
+ ];
548
+ var DeleteDataSourceInput$ = [3, n0, _DDSI,
549
+ 0,
550
+ [_DSI],
551
+ [0]
552
+ ];
553
+ var DeleteDataSourceOutput$ = [3, n0, _DDSO,
554
+ 0,
555
+ [_DSI],
556
+ [0]
557
+ ];
558
+ var DeleteEvaluationInput$ = [3, n0, _DEI,
559
+ 0,
560
+ [_EI],
561
+ [0]
562
+ ];
563
+ var DeleteEvaluationOutput$ = [3, n0, _DEO,
564
+ 0,
565
+ [_EI],
566
+ [0]
567
+ ];
568
+ var DeleteMLModelInput$ = [3, n0, _DMLMI,
569
+ 0,
570
+ [_MLMI],
571
+ [0]
572
+ ];
573
+ var DeleteMLModelOutput$ = [3, n0, _DMLMO,
574
+ 0,
575
+ [_MLMI],
576
+ [0]
577
+ ];
578
+ var DeleteRealtimeEndpointInput$ = [3, n0, _DREI,
579
+ 0,
580
+ [_MLMI],
581
+ [0]
582
+ ];
583
+ var DeleteRealtimeEndpointOutput$ = [3, n0, _DREO,
535
584
  0,
536
585
  [_MLMI, _REI],
537
- [0, () => RealtimeEndpointInfo$],
586
+ [0, () => RealtimeEndpointInfo$]
587
+ ];
588
+ var DeleteTagsInput$ = [3, n0, _DTI,
589
+ 0,
590
+ [_TK, _RI, _RT],
591
+ [64 | 0, 0, 0]
538
592
  ];
539
- var DeleteTagsInput$ = [3, n0, _DTI, 0, [_TK, _RI, _RT], [64 | 0, 0, 0]];
540
- var DeleteTagsOutput$ = [3, n0, _DTO, 0, [_RI, _RT], [0, 0]];
541
- var DescribeBatchPredictionsInput$ = [
542
- 3,
543
- n0,
544
- _DBPIe,
593
+ var DeleteTagsOutput$ = [3, n0, _DTO,
594
+ 0,
595
+ [_RI, _RT],
596
+ [0, 0]
597
+ ];
598
+ var DescribeBatchPredictionsInput$ = [3, n0, _DBPIe,
545
599
  0,
546
600
  [_FV, _EQ, _GT, _LT, _GE, _LE, _NE, _Pr, _SO, _NT, _L],
547
- [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
601
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
548
602
  ];
549
- var DescribeBatchPredictionsOutput$ = [
550
- 3,
551
- n0,
552
- _DBPOe,
603
+ var DescribeBatchPredictionsOutput$ = [3, n0, _DBPOe,
553
604
  0,
554
605
  [_Re, _NT],
555
- [() => BatchPredictions, 0],
606
+ [() => BatchPredictions, 0]
556
607
  ];
557
- var DescribeDataSourcesInput$ = [
558
- 3,
559
- n0,
560
- _DDSIe,
608
+ var DescribeDataSourcesInput$ = [3, n0, _DDSIe,
561
609
  0,
562
610
  [_FV, _EQ, _GT, _LT, _GE, _LE, _NE, _Pr, _SO, _NT, _L],
563
- [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
611
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
612
+ ];
613
+ var DescribeDataSourcesOutput$ = [3, n0, _DDSOe,
614
+ 0,
615
+ [_Re, _NT],
616
+ [() => DataSources, 0]
564
617
  ];
565
- var DescribeDataSourcesOutput$ = [3, n0, _DDSOe, 0, [_Re, _NT], [() => DataSources, 0]];
566
- var DescribeEvaluationsInput$ = [
567
- 3,
568
- n0,
569
- _DEIe,
618
+ var DescribeEvaluationsInput$ = [3, n0, _DEIe,
570
619
  0,
571
620
  [_FV, _EQ, _GT, _LT, _GE, _LE, _NE, _Pr, _SO, _NT, _L],
572
- [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
621
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
622
+ ];
623
+ var DescribeEvaluationsOutput$ = [3, n0, _DEOe,
624
+ 0,
625
+ [_Re, _NT],
626
+ [() => Evaluations, 0]
573
627
  ];
574
- var DescribeEvaluationsOutput$ = [3, n0, _DEOe, 0, [_Re, _NT], [() => Evaluations, 0]];
575
- var DescribeMLModelsInput$ = [
576
- 3,
577
- n0,
578
- _DMLMIe,
628
+ var DescribeMLModelsInput$ = [3, n0, _DMLMIe,
579
629
  0,
580
630
  [_FV, _EQ, _GT, _LT, _GE, _LE, _NE, _Pr, _SO, _NT, _L],
581
- [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
631
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
582
632
  ];
583
- var DescribeMLModelsOutput$ = [3, n0, _DMLMOe, 0, [_Re, _NT], [() => MLModels, 0]];
584
- var DescribeTagsInput$ = [3, n0, _DTIe, 0, [_RI, _RT], [0, 0]];
585
- var DescribeTagsOutput$ = [3, n0, _DTOe, 0, [_RI, _RT, _T], [0, 0, () => TagList]];
586
- var Evaluation$ = [
587
- 3,
588
- n0,
589
- _E,
633
+ var DescribeMLModelsOutput$ = [3, n0, _DMLMOe,
634
+ 0,
635
+ [_Re, _NT],
636
+ [() => MLModels, 0]
637
+ ];
638
+ var DescribeTagsInput$ = [3, n0, _DTIe,
639
+ 0,
640
+ [_RI, _RT],
641
+ [0, 0]
642
+ ];
643
+ var DescribeTagsOutput$ = [3, n0, _DTOe,
644
+ 0,
645
+ [_RI, _RT, _T],
646
+ [0, 0, () => TagList]
647
+ ];
648
+ var Evaluation$ = [3, n0, _E,
590
649
  0,
591
650
  [_EI, _MLMI, _EDSI, _IDLS, _CBIU, _CA, _LUA, _N, _S, _PM, _M, _CT, _FA, _SA],
592
- [0, 0, 0, 0, 0, 4, 4, 0, 0, () => PerformanceMetrics$, 0, 1, 4, 4],
651
+ [0, 0, 0, 0, 0, 4, 4, 0, 0, () => PerformanceMetrics$, 0, 1, 4, 4]
652
+ ];
653
+ var GetBatchPredictionInput$ = [3, n0, _GBPI,
654
+ 0,
655
+ [_BPI],
656
+ [0]
593
657
  ];
594
- var GetBatchPredictionInput$ = [3, n0, _GBPI, 0, [_BPI], [0]];
595
- var GetBatchPredictionOutput$ = [
596
- 3,
597
- n0,
598
- _GBPO,
658
+ var GetBatchPredictionOutput$ = [3, n0, _GBPO,
599
659
  0,
600
660
  [_BPI, _MLMI, _BPDSI, _IDLS, _CBIU, _CA, _LUA, _N, _S, _OU, _LU, _M, _CT, _FA, _SA, _TRC, _IRC],
601
- [0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 1, 4, 4, 1, 1],
661
+ [0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 1, 4, 4, 1, 1]
662
+ ];
663
+ var GetDataSourceInput$ = [3, n0, _GDSI,
664
+ 0,
665
+ [_DSI, _V],
666
+ [0, 2]
602
667
  ];
603
- var GetDataSourceInput$ = [3, n0, _GDSI, 0, [_DSI, _V], [0, 2]];
604
- var GetDataSourceOutput$ = [
605
- 3,
606
- n0,
607
- _GDSO,
668
+ var GetDataSourceOutput$ = [3, n0, _GDSO,
608
669
  0,
609
670
  [_DSI, _DLS, _DR, _CBIU, _CA, _LUA, _DSIB, _NOF, _N, _S, _LU, _M, _RM, _RDSM, _RARN, _CS, _CT, _FA, _SA, _DSS],
610
- [0, 0, 0, 0, 4, 4, 1, 1, 0, 0, 0, 0, () => RedshiftMetadata$, () => RDSMetadata$, 0, 2, 1, 4, 4, 0],
671
+ [0, 0, 0, 0, 4, 4, 1, 1, 0, 0, 0, 0, () => RedshiftMetadata$, () => RDSMetadata$, 0, 2, 1, 4, 4, 0]
672
+ ];
673
+ var GetEvaluationInput$ = [3, n0, _GEI,
674
+ 0,
675
+ [_EI],
676
+ [0]
611
677
  ];
612
- var GetEvaluationInput$ = [3, n0, _GEI, 0, [_EI], [0]];
613
- var GetEvaluationOutput$ = [
614
- 3,
615
- n0,
616
- _GEO,
678
+ var GetEvaluationOutput$ = [3, n0, _GEO,
617
679
  0,
618
680
  [_EI, _MLMI, _EDSI, _IDLS, _CBIU, _CA, _LUA, _N, _S, _PM, _LU, _M, _CT, _FA, _SA],
619
- [0, 0, 0, 0, 0, 4, 4, 0, 0, () => PerformanceMetrics$, 0, 0, 1, 4, 4],
681
+ [0, 0, 0, 0, 0, 4, 4, 0, 0, () => PerformanceMetrics$, 0, 0, 1, 4, 4]
682
+ ];
683
+ var GetMLModelInput$ = [3, n0, _GMLMI,
684
+ 0,
685
+ [_MLMI, _V],
686
+ [0, 2]
620
687
  ];
621
- var GetMLModelInput$ = [3, n0, _GMLMI, 0, [_MLMI, _V], [0, 2]];
622
- var GetMLModelOutput$ = [
623
- 3,
624
- n0,
625
- _GMLMO,
688
+ var GetMLModelOutput$ = [3, n0, _GMLMO,
626
689
  0,
627
690
  [_MLMI, _TDSI, _CBIU, _CA, _LUA, _N, _S, _SIB, _EIn, _TP, _IDLS, _MLMT, _ST, _STLUA, _LU, _M, _CT, _FA, _SA, _R, _Sc],
628
- [0, 0, 0, 4, 4, 0, 0, 1, () => RealtimeEndpointInfo$, 128 | 0, 0, 0, 1, 4, 0, 0, 1, 4, 4, 0, 0],
691
+ [0, 0, 0, 4, 4, 0, 0, 1, () => RealtimeEndpointInfo$, 128 | 0, 0, 0, 1, 4, 0, 0, 1, 4, 4, 0, 0]
629
692
  ];
630
- var IdempotentParameterMismatchException$ = [
631
- -3,
632
- n0,
633
- _IPME,
693
+ var IdempotentParameterMismatchException$ = [-3, n0, _IPME,
634
694
  { [_e]: _c, [_hE]: 400 },
635
695
  [_m, _co],
636
- [0, 1],
696
+ [0, 1]
637
697
  ];
638
698
  schema.TypeRegistry.for(n0).registerError(IdempotentParameterMismatchException$, IdempotentParameterMismatchException);
639
- var InternalServerException$ = [-3, n0, _ISE, { [_e]: _s, [_hE]: 500 }, [_m, _co], [0, 1]];
699
+ var InternalServerException$ = [-3, n0, _ISE,
700
+ { [_e]: _s, [_hE]: 500 },
701
+ [_m, _co],
702
+ [0, 1]
703
+ ];
640
704
  schema.TypeRegistry.for(n0).registerError(InternalServerException$, InternalServerException);
641
- var InvalidInputException$ = [-3, n0, _IIE, { [_e]: _c, [_hE]: 400 }, [_m, _co], [0, 1]];
705
+ var InvalidInputException$ = [-3, n0, _IIE,
706
+ { [_e]: _c, [_hE]: 400 },
707
+ [_m, _co],
708
+ [0, 1]
709
+ ];
642
710
  schema.TypeRegistry.for(n0).registerError(InvalidInputException$, InvalidInputException);
643
- var InvalidTagException$ = [-3, n0, _ITE, { [_e]: _c }, [_m], [0]];
711
+ var InvalidTagException$ = [-3, n0, _ITE,
712
+ { [_e]: _c },
713
+ [_m],
714
+ [0]
715
+ ];
644
716
  schema.TypeRegistry.for(n0).registerError(InvalidTagException$, InvalidTagException);
645
- var LimitExceededException$ = [-3, n0, _LEE, { [_e]: _c, [_hE]: 417 }, [_m, _co], [0, 1]];
717
+ var LimitExceededException$ = [-3, n0, _LEE,
718
+ { [_e]: _c, [_hE]: 417 },
719
+ [_m, _co],
720
+ [0, 1]
721
+ ];
646
722
  schema.TypeRegistry.for(n0).registerError(LimitExceededException$, LimitExceededException);
647
- var MLModel$ = [
648
- 3,
649
- n0,
650
- _MLM,
723
+ var MLModel$ = [3, n0, _MLM,
651
724
  0,
652
725
  [_MLMI, _TDSI, _CBIU, _CA, _LUA, _N, _S, _SIB, _EIn, _TP, _IDLS, _A, _MLMT, _ST, _STLUA, _M, _CT, _FA, _SA],
653
- [0, 0, 0, 4, 4, 0, 0, 1, () => RealtimeEndpointInfo$, 128 | 0, 0, 0, 0, 1, 4, 0, 1, 4, 4],
726
+ [0, 0, 0, 4, 4, 0, 0, 1, () => RealtimeEndpointInfo$, 128 | 0, 0, 0, 0, 1, 4, 0, 1, 4, 4]
727
+ ];
728
+ var PerformanceMetrics$ = [3, n0, _PM,
729
+ 0,
730
+ [_Pro],
731
+ [128 | 0]
732
+ ];
733
+ var PredictInput$ = [3, n0, _PI,
734
+ 0,
735
+ [_MLMI, _Rec, _PE],
736
+ [0, 128 | 0, 0]
737
+ ];
738
+ var Prediction$ = [3, n0, _Pre,
739
+ 0,
740
+ [_pL, _pV, _pS, _d],
741
+ [0, 1, 128 | 1, 128 | 0]
742
+ ];
743
+ var PredictorNotMountedException$ = [-3, n0, _PNME,
744
+ { [_e]: _c, [_hE]: 400 },
745
+ [_m],
746
+ [0]
654
747
  ];
655
- var PerformanceMetrics$ = [3, n0, _PM, 0, [_Pro], [128 | 0]];
656
- var PredictInput$ = [3, n0, _PI, 0, [_MLMI, _Rec, _PE], [0, 128 | 0, 0]];
657
- var Prediction$ = [3, n0, _Pre, 0, [_pL, _pV, _pS, _d], [0, 1, 128 | 1, 128 | 0]];
658
- var PredictorNotMountedException$ = [-3, n0, _PNME, { [_e]: _c, [_hE]: 400 }, [_m], [0]];
659
748
  schema.TypeRegistry.for(n0).registerError(PredictorNotMountedException$, PredictorNotMountedException);
660
- var PredictOutput$ = [3, n0, _PO, 0, [_Pre], [() => Prediction$]];
661
- var RDSDatabase$ = [3, n0, _RDSDa, 0, [_II, _DN], [0, 0]];
662
- var RDSDatabaseCredentials$ = [
663
- 3,
664
- n0,
665
- _RDSDC,
749
+ var PredictOutput$ = [3, n0, _PO,
750
+ 0,
751
+ [_Pre],
752
+ [() => Prediction$]
753
+ ];
754
+ var RDSDatabase$ = [3, n0, _RDSDa,
755
+ 0,
756
+ [_II, _DN],
757
+ [0, 0]
758
+ ];
759
+ var RDSDatabaseCredentials$ = [3, n0, _RDSDC,
666
760
  0,
667
761
  [_U, _Pa],
668
- [0, [() => RDSDatabasePassword, 0]],
762
+ [0, [() => RDSDatabasePassword, 0]]
669
763
  ];
670
- var RDSDataSpec$ = [
671
- 3,
672
- n0,
673
- _RDSDS,
764
+ var RDSDataSpec$ = [3, n0, _RDSDS,
674
765
  0,
675
766
  [_DI, _SSQ, _DC, _SSL, _DR, _DSat, _DSU, _RR, _SR, _SI, _SGI],
676
- [() => RDSDatabase$, 0, [() => RDSDatabaseCredentials$, 0], 0, 0, 0, 0, 0, 0, 0, 64 | 0],
767
+ [() => RDSDatabase$, 0, [() => RDSDatabaseCredentials$, 0], 0, 0, 0, 0, 0, 0, 0, 64 | 0]
677
768
  ];
678
- var RDSMetadata$ = [
679
- 3,
680
- n0,
681
- _RDSM,
769
+ var RDSMetadata$ = [3, n0, _RDSM,
682
770
  0,
683
771
  [_D, _DUN, _SSQ, _RR, _SR, _DPI],
684
- [() => RDSDatabase$, 0, 0, 0, 0, 0],
772
+ [() => RDSDatabase$, 0, 0, 0, 0, 0]
773
+ ];
774
+ var RealtimeEndpointInfo$ = [3, n0, _REI,
775
+ 0,
776
+ [_PRPS, _CA, _EU, _ES],
777
+ [1, 4, 0, 0]
778
+ ];
779
+ var RedshiftDatabase$ = [3, n0, _RD,
780
+ 0,
781
+ [_DN, _CI],
782
+ [0, 0]
685
783
  ];
686
- var RealtimeEndpointInfo$ = [3, n0, _REI, 0, [_PRPS, _CA, _EU, _ES], [1, 4, 0, 0]];
687
- var RedshiftDatabase$ = [3, n0, _RD, 0, [_DN, _CI], [0, 0]];
688
- var RedshiftDatabaseCredentials$ = [
689
- 3,
690
- n0,
691
- _RDC,
784
+ var RedshiftDatabaseCredentials$ = [3, n0, _RDC,
692
785
  0,
693
786
  [_U, _Pa],
694
- [0, [() => RedshiftDatabasePassword, 0]],
787
+ [0, [() => RedshiftDatabasePassword, 0]]
695
788
  ];
696
- var RedshiftDataSpec$ = [
697
- 3,
698
- n0,
699
- _RDS,
789
+ var RedshiftDataSpec$ = [3, n0, _RDS,
700
790
  0,
701
791
  [_DI, _SSQ, _DC, _SSL, _DR, _DSat, _DSU],
702
- [() => RedshiftDatabase$, 0, [() => RedshiftDatabaseCredentials$, 0], 0, 0, 0, 0],
792
+ [() => RedshiftDatabase$, 0, [() => RedshiftDatabaseCredentials$, 0], 0, 0, 0, 0]
703
793
  ];
704
- var RedshiftMetadata$ = [
705
- 3,
706
- n0,
707
- _RM,
794
+ var RedshiftMetadata$ = [3, n0, _RM,
708
795
  0,
709
796
  [_RD, _DUN, _SSQ],
710
- [() => RedshiftDatabase$, 0, 0],
797
+ [() => RedshiftDatabase$, 0, 0]
711
798
  ];
712
- var ResourceNotFoundException$ = [-3, n0, _RNFE, { [_e]: _c, [_hE]: 404 }, [_m, _co], [0, 1]];
713
- schema.TypeRegistry.for(n0).registerError(ResourceNotFoundException$, ResourceNotFoundException);
714
- var S3DataSpec$ = [3, n0, _SDS, 0, [_DLS, _DR, _DSat, _DSLS], [0, 0, 0, 0]];
715
- var Tag$ = [3, n0, _Ta, 0, [_K, _Va], [0, 0]];
716
- var TagLimitExceededException$ = [-3, n0, _TLEE, { [_e]: _c }, [_m], [0]];
717
- schema.TypeRegistry.for(n0).registerError(TagLimitExceededException$, TagLimitExceededException);
718
- var UpdateBatchPredictionInput$ = [3, n0, _UBPI, 0, [_BPI, _BPN], [0, 0]];
719
- var UpdateBatchPredictionOutput$ = [3, n0, _UBPO, 0, [_BPI], [0]];
720
- var UpdateDataSourceInput$ = [3, n0, _UDSI, 0, [_DSI, _DSN], [0, 0]];
721
- var UpdateDataSourceOutput$ = [3, n0, _UDSO, 0, [_DSI], [0]];
722
- var UpdateEvaluationInput$ = [3, n0, _UEI, 0, [_EI, _EN], [0, 0]];
723
- var UpdateEvaluationOutput$ = [3, n0, _UEO, 0, [_EI], [0]];
724
- var UpdateMLModelInput$ = [3, n0, _UMLMI, 0, [_MLMI, _MLMN, _ST], [0, 0, 1]];
725
- var UpdateMLModelOutput$ = [3, n0, _UMLMO, 0, [_MLMI], [0]];
726
- var MachineLearningServiceException$ = [
727
- -3,
728
- _sm,
729
- "MachineLearningServiceException",
730
- 0,
731
- [],
732
- [],
799
+ var ResourceNotFoundException$ = [-3, n0, _RNFE,
800
+ { [_e]: _c, [_hE]: 404 },
801
+ [_m, _co],
802
+ [0, 1]
733
803
  ];
734
- schema.TypeRegistry.for(_sm).registerError(MachineLearningServiceException$, MachineLearningServiceException);
735
- var BatchPredictions = [1, n0, _BPa, 0, () => BatchPrediction$];
736
- var DataSources = [1, n0, _DSata, 0, () => DataSource$];
737
- var Evaluations = [1, n0, _Ev, 0, () => Evaluation$];
738
- var MLModels = [1, n0, _MLMo, 0, () => MLModel$];
739
- var TagList = [1, n0, _TL, 0, () => Tag$];
740
- var AddTags$ = [9, n0, _AT, 0, () => AddTagsInput$, () => AddTagsOutput$];
741
- var CreateBatchPrediction$ = [
742
- 9,
743
- n0,
744
- _CBP,
745
- 0,
746
- () => CreateBatchPredictionInput$,
747
- () => CreateBatchPredictionOutput$,
748
- ];
749
- var CreateDataSourceFromRDS$ = [
750
- 9,
751
- n0,
752
- _CDSFRDS,
753
- 0,
754
- () => CreateDataSourceFromRDSInput$,
755
- () => CreateDataSourceFromRDSOutput$,
756
- ];
757
- var CreateDataSourceFromRedshift$ = [
758
- 9,
759
- n0,
760
- _CDSFR,
761
- 0,
762
- () => CreateDataSourceFromRedshiftInput$,
763
- () => CreateDataSourceFromRedshiftOutput$,
764
- ];
765
- var CreateDataSourceFromS3$ = [
766
- 9,
767
- n0,
768
- _CDSFS,
769
- 0,
770
- () => CreateDataSourceFromS3Input$,
771
- () => CreateDataSourceFromS3Output$,
772
- ];
773
- var CreateEvaluation$ = [
774
- 9,
775
- n0,
776
- _CE,
777
- 0,
778
- () => CreateEvaluationInput$,
779
- () => CreateEvaluationOutput$,
780
- ];
781
- var CreateMLModel$ = [
782
- 9,
783
- n0,
784
- _CMLM,
785
- 0,
786
- () => CreateMLModelInput$,
787
- () => CreateMLModelOutput$,
788
- ];
789
- var CreateRealtimeEndpoint$ = [
790
- 9,
791
- n0,
792
- _CRE,
793
- 0,
794
- () => CreateRealtimeEndpointInput$,
795
- () => CreateRealtimeEndpointOutput$,
796
- ];
797
- var DeleteBatchPrediction$ = [
798
- 9,
799
- n0,
800
- _DBP,
801
- 0,
802
- () => DeleteBatchPredictionInput$,
803
- () => DeleteBatchPredictionOutput$,
804
- ];
805
- var DeleteDataSource$ = [
806
- 9,
807
- n0,
808
- _DDS,
809
- 0,
810
- () => DeleteDataSourceInput$,
811
- () => DeleteDataSourceOutput$,
812
- ];
813
- var DeleteEvaluation$ = [
814
- 9,
815
- n0,
816
- _DE,
817
- 0,
818
- () => DeleteEvaluationInput$,
819
- () => DeleteEvaluationOutput$,
820
- ];
821
- var DeleteMLModel$ = [
822
- 9,
823
- n0,
824
- _DMLM,
825
- 0,
826
- () => DeleteMLModelInput$,
827
- () => DeleteMLModelOutput$,
828
- ];
829
- var DeleteRealtimeEndpoint$ = [
830
- 9,
831
- n0,
832
- _DRE,
833
- 0,
834
- () => DeleteRealtimeEndpointInput$,
835
- () => DeleteRealtimeEndpointOutput$,
836
- ];
837
- var DeleteTags$ = [9, n0, _DT, 0, () => DeleteTagsInput$, () => DeleteTagsOutput$];
838
- var DescribeBatchPredictions$ = [
839
- 9,
840
- n0,
841
- _DBPe,
804
+ schema.TypeRegistry.for(n0).registerError(ResourceNotFoundException$, ResourceNotFoundException);
805
+ var S3DataSpec$ = [3, n0, _SDS,
842
806
  0,
843
- () => DescribeBatchPredictionsInput$,
844
- () => DescribeBatchPredictionsOutput$,
807
+ [_DLS, _DR, _DSat, _DSLS],
808
+ [0, 0, 0, 0]
845
809
  ];
846
- var DescribeDataSources$ = [
847
- 9,
848
- n0,
849
- _DDSe,
810
+ var Tag$ = [3, n0, _Ta,
850
811
  0,
851
- () => DescribeDataSourcesInput$,
852
- () => DescribeDataSourcesOutput$,
812
+ [_K, _Va],
813
+ [0, 0]
853
814
  ];
854
- var DescribeEvaluations$ = [
855
- 9,
856
- n0,
857
- _DEe,
858
- 0,
859
- () => DescribeEvaluationsInput$,
860
- () => DescribeEvaluationsOutput$,
815
+ var TagLimitExceededException$ = [-3, n0, _TLEE,
816
+ { [_e]: _c },
817
+ [_m],
818
+ [0]
861
819
  ];
862
- var DescribeMLModels$ = [
863
- 9,
864
- n0,
865
- _DMLMe,
820
+ schema.TypeRegistry.for(n0).registerError(TagLimitExceededException$, TagLimitExceededException);
821
+ var UpdateBatchPredictionInput$ = [3, n0, _UBPI,
866
822
  0,
867
- () => DescribeMLModelsInput$,
868
- () => DescribeMLModelsOutput$,
823
+ [_BPI, _BPN],
824
+ [0, 0]
869
825
  ];
870
- var DescribeTags$ = [9, n0, _DTe, 0, () => DescribeTagsInput$, () => DescribeTagsOutput$];
871
- var GetBatchPrediction$ = [
872
- 9,
873
- n0,
874
- _GBP,
826
+ var UpdateBatchPredictionOutput$ = [3, n0, _UBPO,
875
827
  0,
876
- () => GetBatchPredictionInput$,
877
- () => GetBatchPredictionOutput$,
828
+ [_BPI],
829
+ [0]
878
830
  ];
879
- var GetDataSource$ = [
880
- 9,
881
- n0,
882
- _GDS,
831
+ var UpdateDataSourceInput$ = [3, n0, _UDSI,
883
832
  0,
884
- () => GetDataSourceInput$,
885
- () => GetDataSourceOutput$,
833
+ [_DSI, _DSN],
834
+ [0, 0]
886
835
  ];
887
- var GetEvaluation$ = [
888
- 9,
889
- n0,
890
- _GEe,
836
+ var UpdateDataSourceOutput$ = [3, n0, _UDSO,
891
837
  0,
892
- () => GetEvaluationInput$,
893
- () => GetEvaluationOutput$,
838
+ [_DSI],
839
+ [0]
894
840
  ];
895
- var GetMLModel$ = [9, n0, _GMLM, 0, () => GetMLModelInput$, () => GetMLModelOutput$];
896
- var Predict$ = [9, n0, _Pred, 0, () => PredictInput$, () => PredictOutput$];
897
- var UpdateBatchPrediction$ = [
898
- 9,
899
- n0,
900
- _UBP,
841
+ var UpdateEvaluationInput$ = [3, n0, _UEI,
901
842
  0,
902
- () => UpdateBatchPredictionInput$,
903
- () => UpdateBatchPredictionOutput$,
843
+ [_EI, _EN],
844
+ [0, 0]
904
845
  ];
905
- var UpdateDataSource$ = [
906
- 9,
907
- n0,
908
- _UDS,
846
+ var UpdateEvaluationOutput$ = [3, n0, _UEO,
909
847
  0,
910
- () => UpdateDataSourceInput$,
911
- () => UpdateDataSourceOutput$,
848
+ [_EI],
849
+ [0]
912
850
  ];
913
- var UpdateEvaluation$ = [
914
- 9,
915
- n0,
916
- _UE,
851
+ var UpdateMLModelInput$ = [3, n0, _UMLMI,
917
852
  0,
918
- () => UpdateEvaluationInput$,
919
- () => UpdateEvaluationOutput$,
853
+ [_MLMI, _MLMN, _ST],
854
+ [0, 0, 1]
920
855
  ];
921
- var UpdateMLModel$ = [
922
- 9,
923
- n0,
924
- _UMLM,
856
+ var UpdateMLModelOutput$ = [3, n0, _UMLMO,
925
857
  0,
926
- () => UpdateMLModelInput$,
927
- () => UpdateMLModelOutput$,
858
+ [_MLMI],
859
+ [0]
860
+ ];
861
+ var MachineLearningServiceException$ = [-3, _sm, "MachineLearningServiceException", 0, [], []];
862
+ schema.TypeRegistry.for(_sm).registerError(MachineLearningServiceException$, MachineLearningServiceException);
863
+ var BatchPredictions = [1, n0, _BPa,
864
+ 0, () => BatchPrediction$
865
+ ];
866
+ var DataSources = [1, n0, _DSata,
867
+ 0, () => DataSource$
868
+ ];
869
+ var Evaluations = [1, n0, _Ev,
870
+ 0, () => Evaluation$
871
+ ];
872
+ var MLModels = [1, n0, _MLMo,
873
+ 0, () => MLModel$
874
+ ];
875
+ var TagList = [1, n0, _TL,
876
+ 0, () => Tag$
877
+ ];
878
+ var AddTags$ = [9, n0, _AT,
879
+ 0, () => AddTagsInput$, () => AddTagsOutput$
880
+ ];
881
+ var CreateBatchPrediction$ = [9, n0, _CBP,
882
+ 0, () => CreateBatchPredictionInput$, () => CreateBatchPredictionOutput$
883
+ ];
884
+ var CreateDataSourceFromRDS$ = [9, n0, _CDSFRDS,
885
+ 0, () => CreateDataSourceFromRDSInput$, () => CreateDataSourceFromRDSOutput$
886
+ ];
887
+ var CreateDataSourceFromRedshift$ = [9, n0, _CDSFR,
888
+ 0, () => CreateDataSourceFromRedshiftInput$, () => CreateDataSourceFromRedshiftOutput$
889
+ ];
890
+ var CreateDataSourceFromS3$ = [9, n0, _CDSFS,
891
+ 0, () => CreateDataSourceFromS3Input$, () => CreateDataSourceFromS3Output$
892
+ ];
893
+ var CreateEvaluation$ = [9, n0, _CE,
894
+ 0, () => CreateEvaluationInput$, () => CreateEvaluationOutput$
895
+ ];
896
+ var CreateMLModel$ = [9, n0, _CMLM,
897
+ 0, () => CreateMLModelInput$, () => CreateMLModelOutput$
898
+ ];
899
+ var CreateRealtimeEndpoint$ = [9, n0, _CRE,
900
+ 0, () => CreateRealtimeEndpointInput$, () => CreateRealtimeEndpointOutput$
901
+ ];
902
+ var DeleteBatchPrediction$ = [9, n0, _DBP,
903
+ 0, () => DeleteBatchPredictionInput$, () => DeleteBatchPredictionOutput$
904
+ ];
905
+ var DeleteDataSource$ = [9, n0, _DDS,
906
+ 0, () => DeleteDataSourceInput$, () => DeleteDataSourceOutput$
907
+ ];
908
+ var DeleteEvaluation$ = [9, n0, _DE,
909
+ 0, () => DeleteEvaluationInput$, () => DeleteEvaluationOutput$
910
+ ];
911
+ var DeleteMLModel$ = [9, n0, _DMLM,
912
+ 0, () => DeleteMLModelInput$, () => DeleteMLModelOutput$
913
+ ];
914
+ var DeleteRealtimeEndpoint$ = [9, n0, _DRE,
915
+ 0, () => DeleteRealtimeEndpointInput$, () => DeleteRealtimeEndpointOutput$
916
+ ];
917
+ var DeleteTags$ = [9, n0, _DT,
918
+ 0, () => DeleteTagsInput$, () => DeleteTagsOutput$
919
+ ];
920
+ var DescribeBatchPredictions$ = [9, n0, _DBPe,
921
+ 0, () => DescribeBatchPredictionsInput$, () => DescribeBatchPredictionsOutput$
922
+ ];
923
+ var DescribeDataSources$ = [9, n0, _DDSe,
924
+ 0, () => DescribeDataSourcesInput$, () => DescribeDataSourcesOutput$
925
+ ];
926
+ var DescribeEvaluations$ = [9, n0, _DEe,
927
+ 0, () => DescribeEvaluationsInput$, () => DescribeEvaluationsOutput$
928
+ ];
929
+ var DescribeMLModels$ = [9, n0, _DMLMe,
930
+ 0, () => DescribeMLModelsInput$, () => DescribeMLModelsOutput$
931
+ ];
932
+ var DescribeTags$ = [9, n0, _DTe,
933
+ 0, () => DescribeTagsInput$, () => DescribeTagsOutput$
934
+ ];
935
+ var GetBatchPrediction$ = [9, n0, _GBP,
936
+ 0, () => GetBatchPredictionInput$, () => GetBatchPredictionOutput$
937
+ ];
938
+ var GetDataSource$ = [9, n0, _GDS,
939
+ 0, () => GetDataSourceInput$, () => GetDataSourceOutput$
940
+ ];
941
+ var GetEvaluation$ = [9, n0, _GEe,
942
+ 0, () => GetEvaluationInput$, () => GetEvaluationOutput$
943
+ ];
944
+ var GetMLModel$ = [9, n0, _GMLM,
945
+ 0, () => GetMLModelInput$, () => GetMLModelOutput$
946
+ ];
947
+ var Predict$ = [9, n0, _Pred,
948
+ 0, () => PredictInput$, () => PredictOutput$
949
+ ];
950
+ var UpdateBatchPrediction$ = [9, n0, _UBP,
951
+ 0, () => UpdateBatchPredictionInput$, () => UpdateBatchPredictionOutput$
952
+ ];
953
+ var UpdateDataSource$ = [9, n0, _UDS,
954
+ 0, () => UpdateDataSourceInput$, () => UpdateDataSourceOutput$
955
+ ];
956
+ var UpdateEvaluation$ = [9, n0, _UE,
957
+ 0, () => UpdateEvaluationInput$, () => UpdateEvaluationOutput$
958
+ ];
959
+ var UpdateMLModel$ = [9, n0, _UMLM,
960
+ 0, () => UpdateMLModelInput$, () => UpdateMLModelOutput$
928
961
  ];
929
962
 
930
963
  class AddTagsCommand extends smithyClient.Command
@@ -1207,7 +1240,10 @@ class PredictCommand extends smithyClient.Command
1207
1240
  .classBuilder()
1208
1241
  .ep(commonParams)
1209
1242
  .m(function (Command, cs, config, o) {
1210
- return [middlewareEndpoint.getEndpointPlugin(config, Command.getEndpointParameterInstructions()), middlewareSdkMachinelearning.getPredictEndpointPlugin(config)];
1243
+ return [
1244
+ middlewareEndpoint.getEndpointPlugin(config, Command.getEndpointParameterInstructions()),
1245
+ middlewareSdkMachinelearning.getPredictEndpointPlugin(config),
1246
+ ];
1211
1247
  })
1212
1248
  .s("AmazonML_20141212", "Predict", {})
1213
1249
  .n("MachineLearningClient", "PredictCommand")
@@ -1311,16 +1347,16 @@ const checkState$3 = async (client, input) => {
1311
1347
  const result = await client.send(new DescribeBatchPredictionsCommand(input));
1312
1348
  reason = result;
1313
1349
  try {
1314
- const returnComparator = () => {
1315
- const flat_1 = [].concat(...result.Results);
1316
- const projection_3 = flat_1.map((element_2) => {
1350
+ let returnComparator = () => {
1351
+ let flat_1 = [].concat(...result.Results);
1352
+ let projection_3 = flat_1.map((element_2) => {
1317
1353
  return element_2.Status;
1318
1354
  });
1319
1355
  return projection_3;
1320
1356
  };
1321
- let allStringEq_5 = returnComparator().length > 0;
1322
- for (const element_4 of returnComparator()) {
1323
- allStringEq_5 = allStringEq_5 && element_4 == "COMPLETED";
1357
+ let allStringEq_5 = (returnComparator().length > 0);
1358
+ for (let element_4 of returnComparator()) {
1359
+ allStringEq_5 = allStringEq_5 && (element_4 == "COMPLETED");
1324
1360
  }
1325
1361
  if (allStringEq_5) {
1326
1362
  return { state: utilWaiter.WaiterState.SUCCESS, reason };
@@ -1328,14 +1364,14 @@ const checkState$3 = async (client, input) => {
1328
1364
  }
1329
1365
  catch (e) { }
1330
1366
  try {
1331
- const returnComparator = () => {
1332
- const flat_1 = [].concat(...result.Results);
1333
- const projection_3 = flat_1.map((element_2) => {
1367
+ let returnComparator = () => {
1368
+ let flat_1 = [].concat(...result.Results);
1369
+ let projection_3 = flat_1.map((element_2) => {
1334
1370
  return element_2.Status;
1335
1371
  });
1336
1372
  return projection_3;
1337
1373
  };
1338
- for (const anyStringEq_4 of returnComparator()) {
1374
+ for (let anyStringEq_4 of returnComparator()) {
1339
1375
  if (anyStringEq_4 == "FAILED") {
1340
1376
  return { state: utilWaiter.WaiterState.FAILURE, reason };
1341
1377
  }
@@ -1364,16 +1400,16 @@ const checkState$2 = async (client, input) => {
1364
1400
  const result = await client.send(new DescribeDataSourcesCommand(input));
1365
1401
  reason = result;
1366
1402
  try {
1367
- const returnComparator = () => {
1368
- const flat_1 = [].concat(...result.Results);
1369
- const projection_3 = flat_1.map((element_2) => {
1403
+ let returnComparator = () => {
1404
+ let flat_1 = [].concat(...result.Results);
1405
+ let projection_3 = flat_1.map((element_2) => {
1370
1406
  return element_2.Status;
1371
1407
  });
1372
1408
  return projection_3;
1373
1409
  };
1374
- let allStringEq_5 = returnComparator().length > 0;
1375
- for (const element_4 of returnComparator()) {
1376
- allStringEq_5 = allStringEq_5 && element_4 == "COMPLETED";
1410
+ let allStringEq_5 = (returnComparator().length > 0);
1411
+ for (let element_4 of returnComparator()) {
1412
+ allStringEq_5 = allStringEq_5 && (element_4 == "COMPLETED");
1377
1413
  }
1378
1414
  if (allStringEq_5) {
1379
1415
  return { state: utilWaiter.WaiterState.SUCCESS, reason };
@@ -1381,14 +1417,14 @@ const checkState$2 = async (client, input) => {
1381
1417
  }
1382
1418
  catch (e) { }
1383
1419
  try {
1384
- const returnComparator = () => {
1385
- const flat_1 = [].concat(...result.Results);
1386
- const projection_3 = flat_1.map((element_2) => {
1420
+ let returnComparator = () => {
1421
+ let flat_1 = [].concat(...result.Results);
1422
+ let projection_3 = flat_1.map((element_2) => {
1387
1423
  return element_2.Status;
1388
1424
  });
1389
1425
  return projection_3;
1390
1426
  };
1391
- for (const anyStringEq_4 of returnComparator()) {
1427
+ for (let anyStringEq_4 of returnComparator()) {
1392
1428
  if (anyStringEq_4 == "FAILED") {
1393
1429
  return { state: utilWaiter.WaiterState.FAILURE, reason };
1394
1430
  }
@@ -1417,16 +1453,16 @@ const checkState$1 = async (client, input) => {
1417
1453
  const result = await client.send(new DescribeEvaluationsCommand(input));
1418
1454
  reason = result;
1419
1455
  try {
1420
- const returnComparator = () => {
1421
- const flat_1 = [].concat(...result.Results);
1422
- const projection_3 = flat_1.map((element_2) => {
1456
+ let returnComparator = () => {
1457
+ let flat_1 = [].concat(...result.Results);
1458
+ let projection_3 = flat_1.map((element_2) => {
1423
1459
  return element_2.Status;
1424
1460
  });
1425
1461
  return projection_3;
1426
1462
  };
1427
- let allStringEq_5 = returnComparator().length > 0;
1428
- for (const element_4 of returnComparator()) {
1429
- allStringEq_5 = allStringEq_5 && element_4 == "COMPLETED";
1463
+ let allStringEq_5 = (returnComparator().length > 0);
1464
+ for (let element_4 of returnComparator()) {
1465
+ allStringEq_5 = allStringEq_5 && (element_4 == "COMPLETED");
1430
1466
  }
1431
1467
  if (allStringEq_5) {
1432
1468
  return { state: utilWaiter.WaiterState.SUCCESS, reason };
@@ -1434,14 +1470,14 @@ const checkState$1 = async (client, input) => {
1434
1470
  }
1435
1471
  catch (e) { }
1436
1472
  try {
1437
- const returnComparator = () => {
1438
- const flat_1 = [].concat(...result.Results);
1439
- const projection_3 = flat_1.map((element_2) => {
1473
+ let returnComparator = () => {
1474
+ let flat_1 = [].concat(...result.Results);
1475
+ let projection_3 = flat_1.map((element_2) => {
1440
1476
  return element_2.Status;
1441
1477
  });
1442
1478
  return projection_3;
1443
1479
  };
1444
- for (const anyStringEq_4 of returnComparator()) {
1480
+ for (let anyStringEq_4 of returnComparator()) {
1445
1481
  if (anyStringEq_4 == "FAILED") {
1446
1482
  return { state: utilWaiter.WaiterState.FAILURE, reason };
1447
1483
  }
@@ -1470,16 +1506,16 @@ const checkState = async (client, input) => {
1470
1506
  const result = await client.send(new DescribeMLModelsCommand(input));
1471
1507
  reason = result;
1472
1508
  try {
1473
- const returnComparator = () => {
1474
- const flat_1 = [].concat(...result.Results);
1475
- const projection_3 = flat_1.map((element_2) => {
1509
+ let returnComparator = () => {
1510
+ let flat_1 = [].concat(...result.Results);
1511
+ let projection_3 = flat_1.map((element_2) => {
1476
1512
  return element_2.Status;
1477
1513
  });
1478
1514
  return projection_3;
1479
1515
  };
1480
- let allStringEq_5 = returnComparator().length > 0;
1481
- for (const element_4 of returnComparator()) {
1482
- allStringEq_5 = allStringEq_5 && element_4 == "COMPLETED";
1516
+ let allStringEq_5 = (returnComparator().length > 0);
1517
+ for (let element_4 of returnComparator()) {
1518
+ allStringEq_5 = allStringEq_5 && (element_4 == "COMPLETED");
1483
1519
  }
1484
1520
  if (allStringEq_5) {
1485
1521
  return { state: utilWaiter.WaiterState.SUCCESS, reason };
@@ -1487,14 +1523,14 @@ const checkState = async (client, input) => {
1487
1523
  }
1488
1524
  catch (e) { }
1489
1525
  try {
1490
- const returnComparator = () => {
1491
- const flat_1 = [].concat(...result.Results);
1492
- const projection_3 = flat_1.map((element_2) => {
1526
+ let returnComparator = () => {
1527
+ let flat_1 = [].concat(...result.Results);
1528
+ let projection_3 = flat_1.map((element_2) => {
1493
1529
  return element_2.Status;
1494
1530
  });
1495
1531
  return projection_3;
1496
1532
  };
1497
- for (const anyStringEq_4 of returnComparator()) {
1533
+ for (let anyStringEq_4 of returnComparator()) {
1498
1534
  if (anyStringEq_4 == "FAILED") {
1499
1535
  return { state: utilWaiter.WaiterState.FAILURE, reason };
1500
1536
  }