@aws-sdk/client-glue 3.709.0 → 3.712.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/dist-cjs/index.js CHANGED
@@ -122,6 +122,7 @@ __export(src_exports, {
122
122
  DataFormat: () => DataFormat,
123
123
  DataOperation: () => DataOperation,
124
124
  DataQualityAnalyzerResultFilterSensitiveLog: () => DataQualityAnalyzerResultFilterSensitiveLog,
125
+ DataQualityEncryptionMode: () => DataQualityEncryptionMode,
125
126
  DataQualityModelStatus: () => DataQualityModelStatus,
126
127
  DataQualityObservationFilterSensitiveLog: () => DataQualityObservationFilterSensitiveLog,
127
128
  DataQualityResultFilterSensitiveLog: () => DataQualityResultFilterSensitiveLog,
@@ -1749,6 +1750,10 @@ var CloudWatchEncryptionMode = {
1749
1750
  DISABLED: "DISABLED",
1750
1751
  SSEKMS: "SSE-KMS"
1751
1752
  };
1753
+ var DataQualityEncryptionMode = {
1754
+ DISABLED: "DISABLED",
1755
+ SSEKMS: "SSE-KMS"
1756
+ };
1752
1757
  var JobBookmarksEncryptionMode = {
1753
1758
  CSEKMS: "CSE-KMS",
1754
1759
  DISABLED: "DISABLED"
@@ -1973,14 +1978,6 @@ var ExecutionStatus = {
1973
1978
  FAILED: "FAILED",
1974
1979
  STARTED: "STARTED"
1975
1980
  };
1976
- var ScheduleType = {
1977
- AUTO: "AUTO",
1978
- CRON: "CRON"
1979
- };
1980
- var SettingSource = {
1981
- CATALOG: "CATALOG",
1982
- TABLE: "TABLE"
1983
- };
1984
1981
  var ConnectionInputFilterSensitiveLog = /* @__PURE__ */ __name((obj) => ({
1985
1982
  ...obj,
1986
1983
  ...obj.AuthenticationConfiguration && {
@@ -1994,6 +1991,14 @@ var CreateConnectionRequestFilterSensitiveLog = /* @__PURE__ */ __name((obj) =>
1994
1991
 
1995
1992
  // src/models/models_2.ts
1996
1993
 
1994
+ var ScheduleType = {
1995
+ AUTO: "AUTO",
1996
+ CRON: "CRON"
1997
+ };
1998
+ var SettingSource = {
1999
+ CATALOG: "CATALOG",
2000
+ TABLE: "TABLE"
2001
+ };
1997
2002
  var DatabaseAttributes = {
1998
2003
  NAME: "NAME"
1999
2004
  };
@@ -2185,10 +2190,6 @@ var Comparator = {
2185
2190
  LESS_THAN: "LESS_THAN",
2186
2191
  LESS_THAN_EQUALS: "LESS_THAN_EQUALS"
2187
2192
  };
2188
- var Sort = {
2189
- ASCENDING: "ASC",
2190
- DESCENDING: "DESC"
2191
- };
2192
2193
  var GetDataQualityResultResponseFilterSensitiveLog = /* @__PURE__ */ __name((obj) => ({
2193
2194
  ...obj,
2194
2195
  ...obj.RuleResults && { RuleResults: obj.RuleResults.map((item) => DataQualityRuleResultFilterSensitiveLog(item)) },
@@ -2214,6 +2215,10 @@ var ListDataQualityStatisticsResponseFilterSensitiveLog = /* @__PURE__ */ __name
2214
2215
 
2215
2216
  // src/models/models_3.ts
2216
2217
 
2218
+ var Sort = {
2219
+ ASCENDING: "ASC",
2220
+ DESCENDING: "DESC"
2221
+ };
2217
2222
  var _IllegalBlueprintStateException = class _IllegalBlueprintStateException extends GlueServiceException {
2218
2223
  /**
2219
2224
  * @internal
@@ -15225,6 +15230,7 @@ var paginateSearchTables = (0, import_core.createPaginator)(GlueClient, SearchTa
15225
15230
  SchemaVersionStatus,
15226
15231
  Language,
15227
15232
  CloudWatchEncryptionMode,
15233
+ DataQualityEncryptionMode,
15228
15234
  JobBookmarksEncryptionMode,
15229
15235
  S3EncryptionMode,
15230
15236
  SessionStatus,
@@ -15247,10 +15253,10 @@ var paginateSearchTables = (0, import_core.createPaginator)(GlueClient, SearchTa
15247
15253
  ComputationType,
15248
15254
  ColumnStatisticsState,
15249
15255
  ExecutionStatus,
15250
- ScheduleType,
15251
- SettingSource,
15252
15256
  ConnectionInputFilterSensitiveLog,
15253
15257
  CreateConnectionRequestFilterSensitiveLog,
15258
+ ScheduleType,
15259
+ SettingSource,
15254
15260
  DatabaseAttributes,
15255
15261
  ResourceShareType,
15256
15262
  CatalogEncryptionMode,
@@ -15279,11 +15285,11 @@ var paginateSearchTables = (0, import_core.createPaginator)(GlueClient, SearchTa
15279
15285
  ConcurrentRunsExceededException,
15280
15286
  IllegalWorkflowStateException,
15281
15287
  Comparator,
15282
- Sort,
15283
15288
  GetDataQualityResultResponseFilterSensitiveLog,
15284
15289
  GetEntityRecordsResponseFilterSensitiveLog,
15285
15290
  StatisticSummaryFilterSensitiveLog,
15286
15291
  ListDataQualityStatisticsResponseFilterSensitiveLog,
15292
+ Sort,
15287
15293
  IllegalBlueprintStateException,
15288
15294
  NoScheduleException,
15289
15295
  SchedulerRunningException,
@@ -334,6 +334,10 @@ export const CloudWatchEncryptionMode = {
334
334
  DISABLED: "DISABLED",
335
335
  SSEKMS: "SSE-KMS",
336
336
  };
337
+ export const DataQualityEncryptionMode = {
338
+ DISABLED: "DISABLED",
339
+ SSEKMS: "SSE-KMS",
340
+ };
337
341
  export const JobBookmarksEncryptionMode = {
338
342
  CSEKMS: "CSE-KMS",
339
343
  DISABLED: "DISABLED",
@@ -523,14 +527,6 @@ export const ExecutionStatus = {
523
527
  FAILED: "FAILED",
524
528
  STARTED: "STARTED",
525
529
  };
526
- export const ScheduleType = {
527
- AUTO: "AUTO",
528
- CRON: "CRON",
529
- };
530
- export const SettingSource = {
531
- CATALOG: "CATALOG",
532
- TABLE: "TABLE",
533
- };
534
530
  export const ConnectionInputFilterSensitiveLog = (obj) => ({
535
531
  ...obj,
536
532
  ...(obj.AuthenticationConfiguration && {
@@ -1,6 +1,14 @@
1
1
  import { SENSITIVE_STRING } from "@smithy/smithy-client";
2
2
  import { GlueServiceException as __BaseException } from "./GlueServiceException";
3
3
  import { DataQualityAnalyzerResultFilterSensitiveLog, DataQualityObservationFilterSensitiveLog, DataQualityRuleResultFilterSensitiveLog, } from "./models_0";
4
+ export const ScheduleType = {
5
+ AUTO: "AUTO",
6
+ CRON: "CRON",
7
+ };
8
+ export const SettingSource = {
9
+ CATALOG: "CATALOG",
10
+ TABLE: "TABLE",
11
+ };
4
12
  export const DatabaseAttributes = {
5
13
  NAME: "NAME",
6
14
  };
@@ -177,10 +185,6 @@ export const Comparator = {
177
185
  LESS_THAN: "LESS_THAN",
178
186
  LESS_THAN_EQUALS: "LESS_THAN_EQUALS",
179
187
  };
180
- export const Sort = {
181
- ASCENDING: "ASC",
182
- DESCENDING: "DESC",
183
- };
184
188
  export const GetDataQualityResultResponseFilterSensitiveLog = (obj) => ({
185
189
  ...obj,
186
190
  ...(obj.RuleResults && { RuleResults: obj.RuleResults.map((item) => DataQualityRuleResultFilterSensitiveLog(item)) }),
@@ -2,6 +2,10 @@ import { SENSITIVE_STRING } from "@smithy/smithy-client";
2
2
  import { GlueServiceException as __BaseException } from "./GlueServiceException";
3
3
  import { AuthenticationConfigurationInputFilterSensitiveLog, } from "./models_0";
4
4
  import { ConnectionInputFilterSensitiveLog, } from "./models_1";
5
+ export const Sort = {
6
+ ASCENDING: "ASC",
7
+ DESCENDING: "DESC",
8
+ };
5
9
  export class IllegalBlueprintStateException extends __BaseException {
6
10
  constructor(opts) {
7
11
  super({
@@ -51,6 +51,10 @@ declare const CreateSecurityConfigurationCommand_base: {
51
51
  * JobBookmarksEncryptionMode: "DISABLED" || "CSE-KMS",
52
52
  * KmsKeyArn: "STRING_VALUE",
53
53
  * },
54
+ * DataQualityEncryption: { // DataQualityEncryption
55
+ * DataQualityEncryptionMode: "DISABLED" || "SSE-KMS",
56
+ * KmsKeyArn: "STRING_VALUE",
57
+ * },
54
58
  * },
55
59
  * };
56
60
  * const command = new CreateSecurityConfigurationCommand(input);
@@ -28,6 +28,7 @@ declare const CreateTriggerCommand_base: {
28
28
  };
29
29
  /**
30
30
  * <p>Creates a new trigger.</p>
31
+ * <p>Job arguments may be logged. Do not pass plaintext secrets as arguments. Retrieve secrets from a Glue Connection, Amazon Web Services Secrets Manager or other secret management mechanism if you intend to keep them within the Job.</p>
31
32
  * @example
32
33
  * Use a bare-bones client and the command you need to make an API call.
33
34
  * ```javascript
@@ -27,7 +27,7 @@ declare const GetJobRunCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Retrieves the metadata for a given job run. Job run history is accessible for 90 days for your workflow and job run.</p>
30
+ * <p>Retrieves the metadata for a given job run. Job run history is accessible for 365 days for your workflow and job run.</p>
31
31
  * @example
32
32
  * Use a bare-bones client and the command you need to make an API call.
33
33
  * ```javascript
@@ -28,6 +28,8 @@ declare const GetJobRunsCommand_base: {
28
28
  };
29
29
  /**
30
30
  * <p>Retrieves metadata for all runs of a given job definition.</p>
31
+ * <p>
32
+ * <code>GetJobRuns</code> returns the job runs in chronological order, with the newest jobs returned first.</p>
31
33
  * @example
32
34
  * Use a bare-bones client and the command you need to make an API call.
33
35
  * ```javascript
@@ -58,6 +58,10 @@ declare const GetSecurityConfigurationCommand_base: {
58
58
  * // JobBookmarksEncryptionMode: "DISABLED" || "CSE-KMS",
59
59
  * // KmsKeyArn: "STRING_VALUE",
60
60
  * // },
61
+ * // DataQualityEncryption: { // DataQualityEncryption
62
+ * // DataQualityEncryptionMode: "DISABLED" || "SSE-KMS",
63
+ * // KmsKeyArn: "STRING_VALUE",
64
+ * // },
61
65
  * // },
62
66
  * // },
63
67
  * // };
@@ -60,6 +60,10 @@ declare const GetSecurityConfigurationsCommand_base: {
60
60
  * // JobBookmarksEncryptionMode: "DISABLED" || "CSE-KMS",
61
61
  * // KmsKeyArn: "STRING_VALUE",
62
62
  * // },
63
+ * // DataQualityEncryption: { // DataQualityEncryption
64
+ * // DataQualityEncryptionMode: "DISABLED" || "SSE-KMS",
65
+ * // KmsKeyArn: "STRING_VALUE",
66
+ * // },
63
67
  * // },
64
68
  * // },
65
69
  * // ],
@@ -28,6 +28,7 @@ declare const UpdateTriggerCommand_base: {
28
28
  };
29
29
  /**
30
30
  * <p>Updates a trigger definition.</p>
31
+ * <p>Job arguments may be logged. Do not pass plaintext secrets as arguments. Retrieve secrets from a Glue Connection, Amazon Web Services Secrets Manager or other secret management mechanism if you intend to keep them within the Job.</p>
31
32
  * @example
32
33
  * Use a bare-bones client and the command you need to make an API call.
33
34
  * ```javascript
@@ -7601,22 +7601,22 @@ export interface JobRun {
7601
7601
  * G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.</p>
7602
7602
  * <ul>
7603
7603
  * <li>
7604
- * <p>For the <code>G.1X</code> worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
7604
+ * <p>For the <code>G.1X</code> worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 94GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
7605
7605
  * </li>
7606
7606
  * <li>
7607
- * <p>For the <code>G.2X</code> worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
7607
+ * <p>For the <code>G.2X</code> worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 138GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
7608
7608
  * </li>
7609
7609
  * <li>
7610
- * <p>For the <code>G.4X</code> worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).</p>
7610
+ * <p>For the <code>G.4X</code> worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).</p>
7611
7611
  * </li>
7612
7612
  * <li>
7613
- * <p>For the <code>G.8X</code> worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the <code>G.4X</code> worker type.</p>
7613
+ * <p>For the <code>G.8X</code> worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the <code>G.4X</code> worker type.</p>
7614
7614
  * </li>
7615
7615
  * <li>
7616
- * <p>For the <code>G.025X</code> worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 streaming jobs.</p>
7616
+ * <p>For the <code>G.025X</code> worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk, and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 or later streaming jobs.</p>
7617
7617
  * </li>
7618
7618
  * <li>
7619
- * <p>For the <code>Z.2X</code> worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.</p>
7619
+ * <p>For the <code>Z.2X</code> worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk, and provides up to 8 Ray workers based on the autoscaler.</p>
7620
7620
  * </li>
7621
7621
  * </ul>
7622
7622
  * @public
@@ -3002,6 +3002,35 @@ export interface CloudWatchEncryption {
3002
3002
  */
3003
3003
  KmsKeyArn?: string | undefined;
3004
3004
  }
3005
+ /**
3006
+ * @public
3007
+ * @enum
3008
+ */
3009
+ export declare const DataQualityEncryptionMode: {
3010
+ readonly DISABLED: "DISABLED";
3011
+ readonly SSEKMS: "SSE-KMS";
3012
+ };
3013
+ /**
3014
+ * @public
3015
+ */
3016
+ export type DataQualityEncryptionMode = (typeof DataQualityEncryptionMode)[keyof typeof DataQualityEncryptionMode];
3017
+ /**
3018
+ * <p>Specifies how Data Quality assets in your account should be encrypted.</p>
3019
+ * @public
3020
+ */
3021
+ export interface DataQualityEncryption {
3022
+ /**
3023
+ * <p>The encryption mode to use for encrypting Data Quality assets. These assets include data quality rulesets, results, statistics, anomaly detection models and observations.</p>
3024
+ * <p>Valid values are <code>SSEKMS</code> for encryption using a customer-managed KMS key, or <code>DISABLED</code>.</p>
3025
+ * @public
3026
+ */
3027
+ DataQualityEncryptionMode?: DataQualityEncryptionMode | undefined;
3028
+ /**
3029
+ * <p>The Amazon Resource Name (ARN) of the KMS key to be used to encrypt the data.</p>
3030
+ * @public
3031
+ */
3032
+ KmsKeyArn?: string | undefined;
3033
+ }
3005
3034
  /**
3006
3035
  * @public
3007
3036
  * @enum
@@ -3079,6 +3108,11 @@ export interface EncryptionConfiguration {
3079
3108
  * @public
3080
3109
  */
3081
3110
  JobBookmarksEncryption?: JobBookmarksEncryption | undefined;
3111
+ /**
3112
+ * <p>The encryption configuration for Glue Data Quality assets.</p>
3113
+ * @public
3114
+ */
3115
+ DataQualityEncryption?: DataQualityEncryption | undefined;
3082
3116
  }
3083
3117
  /**
3084
3118
  * @public
@@ -3195,19 +3229,19 @@ export interface CreateSessionRequest {
3195
3229
  * G.1X, G.2X, G.4X, or G.8X for Spark jobs. Accepts the value Z.2X for Ray notebooks.</p>
3196
3230
  * <ul>
3197
3231
  * <li>
3198
- * <p>For the <code>G.1X</code> worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
3232
+ * <p>For the <code>G.1X</code> worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 94GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
3199
3233
  * </li>
3200
3234
  * <li>
3201
- * <p>For the <code>G.2X</code> worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
3235
+ * <p>For the <code>G.2X</code> worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 138GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
3202
3236
  * </li>
3203
3237
  * <li>
3204
- * <p>For the <code>G.4X</code> worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).</p>
3238
+ * <p>For the <code>G.4X</code> worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).</p>
3205
3239
  * </li>
3206
3240
  * <li>
3207
- * <p>For the <code>G.8X</code> worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the <code>G.4X</code> worker type.</p>
3241
+ * <p>For the <code>G.8X</code> worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the <code>G.4X</code> worker type.</p>
3208
3242
  * </li>
3209
3243
  * <li>
3210
- * <p>For the <code>Z.2X</code> worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.</p>
3244
+ * <p>For the <code>Z.2X</code> worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk, and provides up to 8 Ray workers based on the autoscaler.</p>
3211
3245
  * </li>
3212
3246
  * </ul>
3213
3247
  * @public
@@ -3965,6 +3999,7 @@ export interface CreateWorkflowRequest {
3965
3999
  Description?: string | undefined;
3966
4000
  /**
3967
4001
  * <p>A collection of properties to be used as part of each execution of the workflow.</p>
4002
+ * <p>Run properties may be logged. Do not pass plaintext secrets as properties. Retrieve secrets from a Glue Connection, Amazon Web Services Secrets Manager or other secret management mechanism if you intend to use them within the workflow run.</p>
3968
4003
  * @public
3969
4004
  */
3970
4005
  DefaultRunProperties?: Record<string, string> | undefined;
@@ -6806,30 +6841,6 @@ export interface ExecutionAttempt {
6806
6841
  */
6807
6842
  ErrorMessage?: string | undefined;
6808
6843
  }
6809
- /**
6810
- * @public
6811
- * @enum
6812
- */
6813
- export declare const ScheduleType: {
6814
- readonly AUTO: "AUTO";
6815
- readonly CRON: "CRON";
6816
- };
6817
- /**
6818
- * @public
6819
- */
6820
- export type ScheduleType = (typeof ScheduleType)[keyof typeof ScheduleType];
6821
- /**
6822
- * @public
6823
- * @enum
6824
- */
6825
- export declare const SettingSource: {
6826
- readonly CATALOG: "CATALOG";
6827
- readonly TABLE: "TABLE";
6828
- };
6829
- /**
6830
- * @public
6831
- */
6832
- export type SettingSource = (typeof SettingSource)[keyof typeof SettingSource];
6833
6844
  /**
6834
6845
  * @internal
6835
6846
  */
@@ -2,7 +2,31 @@ import { ExceptionOptionType as __ExceptionOptionType } from "@smithy/smithy-cli
2
2
  import { DocumentType as __DocumentType } from "@smithy/types";
3
3
  import { GlueServiceException as __BaseException } from "./GlueServiceException";
4
4
  import { AuditContext, AuthenticationConfiguration, Crawler, CustomEntityType, DataQualityAnalyzerResult, DataQualityObservation, DataQualityRuleResult, DataSource, DevEndpoint, ErrorDetail, GlueTable, InclusionAnnotationValue, JobRun, Partition, PartitionValueList, Schedule, SchemaId, StatisticAnnotation, TableOptimizer, TableOptimizerRun, TableOptimizerType, TimestampedInclusionAnnotation, Trigger, WorkerType, Workflow, WorkflowRun } from "./models_0";
5
- import { Capabilities, CodeGenEdge, CodeGenNode, CodeGenNodeArg, Compatibility, ComputeEnvironment, ConnectionPropertyKey, ConnectionStatus, ConnectionType, DatabaseIdentifier, DataFormat, DataQualityTargetTable, EncryptionConfiguration, ExecutionAttempt, FederatedDatabase, IntegrationError, IntegrationStatus, Language, Permission, PhysicalConnectionRequirements, PrincipalPermissions, PrincipalType, ProfileConfiguration, RegistryId, RegistryStatus, ResourceUri, ScheduleType, SchemaStatus, SchemaVersionStatus, Session, SettingSource, SourceProcessingProperties, SourceTableConfig, Tag, TargetProcessingProperties, TargetTableConfig, TaskStatusType, TransformEncryption, TransformParameters, TransformType, ViewDialect } from "./models_1";
5
+ import { Capabilities, CodeGenEdge, CodeGenNode, CodeGenNodeArg, Compatibility, ComputeEnvironment, ConnectionPropertyKey, ConnectionStatus, ConnectionType, DatabaseIdentifier, DataFormat, DataQualityTargetTable, EncryptionConfiguration, ExecutionAttempt, FederatedDatabase, IntegrationError, IntegrationStatus, Language, Permission, PhysicalConnectionRequirements, PrincipalPermissions, PrincipalType, ProfileConfiguration, RegistryId, RegistryStatus, ResourceUri, SchemaStatus, SchemaVersionStatus, Session, SourceProcessingProperties, SourceTableConfig, Tag, TargetProcessingProperties, TargetTableConfig, TaskStatusType, TransformEncryption, TransformParameters, TransformType, ViewDialect } from "./models_1";
6
+ /**
7
+ * @public
8
+ * @enum
9
+ */
10
+ export declare const ScheduleType: {
11
+ readonly AUTO: "AUTO";
12
+ readonly CRON: "CRON";
13
+ };
14
+ /**
15
+ * @public
16
+ */
17
+ export type ScheduleType = (typeof ScheduleType)[keyof typeof ScheduleType];
18
+ /**
19
+ * @public
20
+ * @enum
21
+ */
22
+ export declare const SettingSource: {
23
+ readonly CATALOG: "CATALOG";
24
+ readonly TABLE: "TABLE";
25
+ };
26
+ /**
27
+ * @public
28
+ */
29
+ export type SettingSource = (typeof SettingSource)[keyof typeof SettingSource];
6
30
  /**
7
31
  * <p>The settings for a column statistics task.</p>
8
32
  * @public
@@ -7069,6 +7093,7 @@ export interface PutWorkflowRunPropertiesRequest {
7069
7093
  RunId: string | undefined;
7070
7094
  /**
7071
7095
  * <p>The properties to put for the specified run.</p>
7096
+ * <p>Run properties may be logged. Do not pass plaintext secrets as properties. Retrieve secrets from a Glue Connection, Amazon Web Services Secrets Manager or other secret management mechanism if you intend to use them within the workflow run.</p>
7072
7097
  * @public
7073
7098
  */
7074
7099
  RunProperties: Record<string, string> | undefined;
@@ -7443,34 +7468,6 @@ export interface PropertyPredicate {
7443
7468
  */
7444
7469
  Comparator?: Comparator | undefined;
7445
7470
  }
7446
- /**
7447
- * @public
7448
- * @enum
7449
- */
7450
- export declare const Sort: {
7451
- readonly ASCENDING: "ASC";
7452
- readonly DESCENDING: "DESC";
7453
- };
7454
- /**
7455
- * @public
7456
- */
7457
- export type Sort = (typeof Sort)[keyof typeof Sort];
7458
- /**
7459
- * <p>Specifies a field to sort by and a sort order.</p>
7460
- * @public
7461
- */
7462
- export interface SortCriterion {
7463
- /**
7464
- * <p>The name of the field on which to sort.</p>
7465
- * @public
7466
- */
7467
- FieldName?: string | undefined;
7468
- /**
7469
- * <p>An ascending or descending sort.</p>
7470
- * @public
7471
- */
7472
- Sort?: Sort | undefined;
7473
- }
7474
7471
  /**
7475
7472
  * @internal
7476
7473
  */
@@ -2,7 +2,35 @@ import { ExceptionOptionType as __ExceptionOptionType } from "@smithy/smithy-cli
2
2
  import { GlueServiceException as __BaseException } from "./GlueServiceException";
3
3
  import { Action, Aggregate, AmazonRedshiftSource, AmazonRedshiftTarget, AthenaConnectorSource, AuthenticationConfigurationInput, BasicCatalogTarget, CatalogDeltaSource, CatalogHudiSource, CatalogKafkaSource, CatalogKinesisSource, CatalogSource, Column, ConnectionsList, ConnectorDataSource, ConnectorDataTarget, CrawlerTargets, CustomCode, DataSource, DirectJDBCSource, DirectKafkaSource, DirectKinesisSource, DropDuplicates, DropFields, DropNullFields, DynamicTransform, DynamoDBCatalogSource, ErrorDetail, EvaluateDataQuality, EvaluateDataQualityMultiFrame, EventBatchingCondition, ExecutionClass, ExecutionProperty, FillMissingValues, Filter, GovernedCatalogSource, GovernedCatalogTarget, JDBCConnectorSource, JDBCConnectorTarget, JobCommand, JobMode, Join, LakeFormationConfiguration, LineageConfiguration, Merge, MicrosoftSQLServerCatalogSource, MicrosoftSQLServerCatalogTarget, MySQLCatalogSource, MySQLCatalogTarget, NotificationProperty, OracleSQLCatalogSource, OracleSQLCatalogTarget, PartitionInput, PIIDetection, PostgreSQLCatalogSource, PostgreSQLCatalogTarget, Predicate, Recipe, RecrawlPolicy, RedshiftSource, RedshiftTarget, RelationalCatalogSource, RenameField, S3CatalogDeltaSource, S3CatalogHudiSource, S3CatalogSource, S3CatalogTarget, S3CsvSource, S3DeltaCatalogTarget, S3DeltaDirectTarget, S3DeltaSource, S3DirectTarget, S3GlueParquetTarget, S3HudiCatalogTarget, S3HudiDirectTarget, S3HudiSource, S3JsonSource, S3ParquetSource, SchemaChangePolicy, SchemaId, SelectFields, SelectFromCollection, SnowflakeSource, SnowflakeTarget, SourceControlAuthStrategy, SourceControlDetails, SourceControlProvider, SparkConnectorSource, SparkConnectorTarget, SparkSQL, Spigot, SplitFields, StorageDescriptor, TableOptimizerConfiguration, TableOptimizerType, Trigger, Union, WorkerType } from "./models_0";
4
4
  import { CatalogInput, ColumnStatistics, Compatibility, ConnectionInput, ConnectionPropertyKey, ConnectionType, CsvHeaderOption, CsvSerdeOption, DatabaseInput, Permission, ProfileConfiguration, RegistryId, SourceProcessingProperties, SourceTableConfig, TableIdentifier, TableInput, TargetProcessingProperties, TargetTableConfig, TransformParameters, UserDefinedFunctionInput } from "./models_1";
5
- import { ColumnRowFilter, DataQualityEvaluationRunAdditionalRunOptions, FederatedTable, PropertyPredicate, ResourceAction, ResourceShareType, ResourceState, SchemaVersionNumber, SortCriterion, ViewDefinition, ViewValidation } from "./models_2";
5
+ import { ColumnRowFilter, DataQualityEvaluationRunAdditionalRunOptions, FederatedTable, PropertyPredicate, ResourceAction, ResourceShareType, ResourceState, SchemaVersionNumber, ViewDefinition, ViewValidation } from "./models_2";
6
+ /**
7
+ * @public
8
+ * @enum
9
+ */
10
+ export declare const Sort: {
11
+ readonly ASCENDING: "ASC";
12
+ readonly DESCENDING: "DESC";
13
+ };
14
+ /**
15
+ * @public
16
+ */
17
+ export type Sort = (typeof Sort)[keyof typeof Sort];
18
+ /**
19
+ * <p>Specifies a field to sort by and a sort order.</p>
20
+ * @public
21
+ */
22
+ export interface SortCriterion {
23
+ /**
24
+ * <p>The name of the field on which to sort.</p>
25
+ * @public
26
+ */
27
+ FieldName?: string | undefined;
28
+ /**
29
+ * <p>An ascending or descending sort.</p>
30
+ * @public
31
+ */
32
+ Sort?: Sort | undefined;
33
+ }
6
34
  /**
7
35
  * @public
8
36
  */
@@ -500,22 +528,22 @@ export interface StartJobRunRequest {
500
528
  * G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.</p>
501
529
  * <ul>
502
530
  * <li>
503
- * <p>For the <code>G.1X</code> worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
531
+ * <p>For the <code>G.1X</code> worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 94GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
504
532
  * </li>
505
533
  * <li>
506
- * <p>For the <code>G.2X</code> worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
534
+ * <p>For the <code>G.2X</code> worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 138GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
507
535
  * </li>
508
536
  * <li>
509
- * <p>For the <code>G.4X</code> worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).</p>
537
+ * <p>For the <code>G.4X</code> worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).</p>
510
538
  * </li>
511
539
  * <li>
512
- * <p>For the <code>G.8X</code> worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the <code>G.4X</code> worker type.</p>
540
+ * <p>For the <code>G.8X</code> worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the <code>G.4X</code> worker type.</p>
513
541
  * </li>
514
542
  * <li>
515
- * <p>For the <code>G.025X</code> worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 streaming jobs.</p>
543
+ * <p>For the <code>G.025X</code> worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk, and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 or later streaming jobs.</p>
516
544
  * </li>
517
545
  * <li>
518
- * <p>For the <code>Z.2X</code> worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.</p>
546
+ * <p>For the <code>Z.2X</code> worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk, and provides up to 8 Ray workers based on the autoscaler.</p>
519
547
  * </li>
520
548
  * </ul>
521
549
  * @public
@@ -638,6 +666,7 @@ export interface StartWorkflowRunRequest {
638
666
  Name: string | undefined;
639
667
  /**
640
668
  * <p>The workflow run properties for the new workflow run.</p>
669
+ * <p>Run properties may be logged. Do not pass plaintext secrets as properties. Retrieve secrets from a Glue Connection, Amazon Web Services Secrets Manager or other secret management mechanism if you intend to use them within the workflow run.</p>
641
670
  * @public
642
671
  */
643
672
  RunProperties?: Record<string, string> | undefined;
@@ -2303,6 +2332,7 @@ export interface UpdateWorkflowRequest {
2303
2332
  Description?: string | undefined;
2304
2333
  /**
2305
2334
  * <p>A collection of properties to be used as part of each execution of the workflow.</p>
2335
+ * <p>Run properties may be logged. Do not pass plaintext secrets as properties. Retrieve secrets from a Glue Connection, Amazon Web Services Secrets Manager or other secret management mechanism if you intend to use them within the workflow run.</p>
2306
2336
  * @public
2307
2337
  */
2308
2338
  DefaultRunProperties?: Record<string, string> | undefined;
@@ -3289,22 +3319,22 @@ export interface CreateJobRequest {
3289
3319
  * G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.</p>
3290
3320
  * <ul>
3291
3321
  * <li>
3292
- * <p>For the <code>G.1X</code> worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
3322
+ * <p>For the <code>G.1X</code> worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 94GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
3293
3323
  * </li>
3294
3324
  * <li>
3295
- * <p>For the <code>G.2X</code> worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
3325
+ * <p>For the <code>G.2X</code> worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 138GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
3296
3326
  * </li>
3297
3327
  * <li>
3298
- * <p>For the <code>G.4X</code> worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).</p>
3328
+ * <p>For the <code>G.4X</code> worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).</p>
3299
3329
  * </li>
3300
3330
  * <li>
3301
- * <p>For the <code>G.8X</code> worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the <code>G.4X</code> worker type.</p>
3331
+ * <p>For the <code>G.8X</code> worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the <code>G.4X</code> worker type.</p>
3302
3332
  * </li>
3303
3333
  * <li>
3304
- * <p>For the <code>G.025X</code> worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 streaming jobs.</p>
3334
+ * <p>For the <code>G.025X</code> worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk, and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 or later streaming jobs.</p>
3305
3335
  * </li>
3306
3336
  * <li>
3307
- * <p>For the <code>Z.2X</code> worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.</p>
3337
+ * <p>For the <code>Z.2X</code> worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk, and provides up to 8 Ray workers based on the autoscaler.</p>
3308
3338
  * </li>
3309
3339
  * </ul>
3310
3340
  * @public
@@ -3508,22 +3538,22 @@ export interface Job {
3508
3538
  * G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.</p>
3509
3539
  * <ul>
3510
3540
  * <li>
3511
- * <p>For the <code>G.1X</code> worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
3541
+ * <p>For the <code>G.1X</code> worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 94GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
3512
3542
  * </li>
3513
3543
  * <li>
3514
- * <p>For the <code>G.2X</code> worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
3544
+ * <p>For the <code>G.2X</code> worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 138GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
3515
3545
  * </li>
3516
3546
  * <li>
3517
- * <p>For the <code>G.4X</code> worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).</p>
3547
+ * <p>For the <code>G.4X</code> worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).</p>
3518
3548
  * </li>
3519
3549
  * <li>
3520
- * <p>For the <code>G.8X</code> worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the <code>G.4X</code> worker type.</p>
3550
+ * <p>For the <code>G.8X</code> worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the <code>G.4X</code> worker type.</p>
3521
3551
  * </li>
3522
3552
  * <li>
3523
- * <p>For the <code>G.025X</code> worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 streaming jobs.</p>
3553
+ * <p>For the <code>G.025X</code> worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk, and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 or later streaming jobs.</p>
3524
3554
  * </li>
3525
3555
  * <li>
3526
- * <p>For the <code>Z.2X</code> worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.</p>
3556
+ * <p>For the <code>Z.2X</code> worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk, and provides up to 8 Ray workers based on the autoscaler.</p>
3527
3557
  * </li>
3528
3558
  * </ul>
3529
3559
  * @public
@@ -3731,22 +3761,22 @@ export interface JobUpdate {
3731
3761
  * G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.</p>
3732
3762
  * <ul>
3733
3763
  * <li>
3734
- * <p>For the <code>G.1X</code> worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
3764
+ * <p>For the <code>G.1X</code> worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 94GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
3735
3765
  * </li>
3736
3766
  * <li>
3737
- * <p>For the <code>G.2X</code> worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
3767
+ * <p>For the <code>G.2X</code> worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 138GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
3738
3768
  * </li>
3739
3769
  * <li>
3740
- * <p>For the <code>G.4X</code> worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).</p>
3770
+ * <p>For the <code>G.4X</code> worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).</p>
3741
3771
  * </li>
3742
3772
  * <li>
3743
- * <p>For the <code>G.8X</code> worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the <code>G.4X</code> worker type.</p>
3773
+ * <p>For the <code>G.8X</code> worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the <code>G.4X</code> worker type.</p>
3744
3774
  * </li>
3745
3775
  * <li>
3746
- * <p>For the <code>G.025X</code> worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 streaming jobs.</p>
3776
+ * <p>For the <code>G.025X</code> worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk, and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 or later streaming jobs.</p>
3747
3777
  * </li>
3748
3778
  * <li>
3749
- * <p>For the <code>Z.2X</code> worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.</p>
3779
+ * <p>For the <code>Z.2X</code> worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk, and provides up to 8 Ray workers based on the autoscaler.</p>
3750
3780
  * </li>
3751
3781
  * </ul>
3752
3782
  * @public
@@ -828,6 +828,16 @@ export interface CloudWatchEncryption {
828
828
  CloudWatchEncryptionMode?: CloudWatchEncryptionMode | undefined;
829
829
  KmsKeyArn?: string | undefined;
830
830
  }
831
+ export declare const DataQualityEncryptionMode: {
832
+ readonly DISABLED: "DISABLED";
833
+ readonly SSEKMS: "SSE-KMS";
834
+ };
835
+ export type DataQualityEncryptionMode =
836
+ (typeof DataQualityEncryptionMode)[keyof typeof DataQualityEncryptionMode];
837
+ export interface DataQualityEncryption {
838
+ DataQualityEncryptionMode?: DataQualityEncryptionMode | undefined;
839
+ KmsKeyArn?: string | undefined;
840
+ }
831
841
  export declare const JobBookmarksEncryptionMode: {
832
842
  readonly CSEKMS: "CSE-KMS";
833
843
  readonly DISABLED: "DISABLED";
@@ -853,6 +863,7 @@ export interface EncryptionConfiguration {
853
863
  S3Encryption?: S3Encryption[] | undefined;
854
864
  CloudWatchEncryption?: CloudWatchEncryption | undefined;
855
865
  JobBookmarksEncryption?: JobBookmarksEncryption | undefined;
866
+ DataQualityEncryption?: DataQualityEncryption | undefined;
856
867
  }
857
868
  export interface CreateSecurityConfigurationRequest {
858
869
  Name: string | undefined;
@@ -1790,16 +1801,6 @@ export interface ExecutionAttempt {
1790
1801
  ExecutionTimestamp?: Date | undefined;
1791
1802
  ErrorMessage?: string | undefined;
1792
1803
  }
1793
- export declare const ScheduleType: {
1794
- readonly AUTO: "AUTO";
1795
- readonly CRON: "CRON";
1796
- };
1797
- export type ScheduleType = (typeof ScheduleType)[keyof typeof ScheduleType];
1798
- export declare const SettingSource: {
1799
- readonly CATALOG: "CATALOG";
1800
- readonly TABLE: "TABLE";
1801
- };
1802
- export type SettingSource = (typeof SettingSource)[keyof typeof SettingSource];
1803
1804
  export declare const ConnectionInputFilterSensitiveLog: (
1804
1805
  obj: ConnectionInput
1805
1806
  ) => any;
@@ -56,11 +56,9 @@ import {
56
56
  RegistryId,
57
57
  RegistryStatus,
58
58
  ResourceUri,
59
- ScheduleType,
60
59
  SchemaStatus,
61
60
  SchemaVersionStatus,
62
61
  Session,
63
- SettingSource,
64
62
  SourceProcessingProperties,
65
63
  SourceTableConfig,
66
64
  Tag,
@@ -72,6 +70,16 @@ import {
72
70
  TransformType,
73
71
  ViewDialect,
74
72
  } from "./models_1";
73
+ export declare const ScheduleType: {
74
+ readonly AUTO: "AUTO";
75
+ readonly CRON: "CRON";
76
+ };
77
+ export type ScheduleType = (typeof ScheduleType)[keyof typeof ScheduleType];
78
+ export declare const SettingSource: {
79
+ readonly CATALOG: "CATALOG";
80
+ readonly TABLE: "TABLE";
81
+ };
82
+ export type SettingSource = (typeof SettingSource)[keyof typeof SettingSource];
75
83
  export interface ColumnStatisticsTaskSettings {
76
84
  DatabaseName?: string | undefined;
77
85
  TableName?: string | undefined;
@@ -1787,15 +1795,6 @@ export interface PropertyPredicate {
1787
1795
  Value?: string | undefined;
1788
1796
  Comparator?: Comparator | undefined;
1789
1797
  }
1790
- export declare const Sort: {
1791
- readonly ASCENDING: "ASC";
1792
- readonly DESCENDING: "DESC";
1793
- };
1794
- export type Sort = (typeof Sort)[keyof typeof Sort];
1795
- export interface SortCriterion {
1796
- FieldName?: string | undefined;
1797
- Sort?: Sort | undefined;
1798
- }
1799
1798
  export declare const GetDataQualityResultResponseFilterSensitiveLog: (
1800
1799
  obj: GetDataQualityResultResponse
1801
1800
  ) => any;
@@ -131,10 +131,18 @@ import {
131
131
  ResourceShareType,
132
132
  ResourceState,
133
133
  SchemaVersionNumber,
134
- SortCriterion,
135
134
  ViewDefinition,
136
135
  ViewValidation,
137
136
  } from "./models_2";
137
+ export declare const Sort: {
138
+ readonly ASCENDING: "ASC";
139
+ readonly DESCENDING: "DESC";
140
+ };
141
+ export type Sort = (typeof Sort)[keyof typeof Sort];
142
+ export interface SortCriterion {
143
+ FieldName?: string | undefined;
144
+ Sort?: Sort | undefined;
145
+ }
138
146
  export interface SearchTablesRequest {
139
147
  CatalogId?: string | undefined;
140
148
  NextToken?: string | undefined;
package/package.json CHANGED
@@ -1,7 +1,7 @@
1
1
  {
2
2
  "name": "@aws-sdk/client-glue",
3
3
  "description": "AWS SDK for JavaScript Glue Client for Node.js, Browser and React Native",
4
- "version": "3.709.0",
4
+ "version": "3.712.0",
5
5
  "scripts": {
6
6
  "build": "concurrently 'yarn:build:cjs' 'yarn:build:es' 'yarn:build:types'",
7
7
  "build:cjs": "node ../../scripts/compilation/inline client-glue",
@@ -20,10 +20,10 @@
20
20
  "dependencies": {
21
21
  "@aws-crypto/sha256-browser": "5.2.0",
22
22
  "@aws-crypto/sha256-js": "5.2.0",
23
- "@aws-sdk/client-sso-oidc": "3.709.0",
24
- "@aws-sdk/client-sts": "3.709.0",
23
+ "@aws-sdk/client-sso-oidc": "3.712.0",
24
+ "@aws-sdk/client-sts": "3.712.0",
25
25
  "@aws-sdk/core": "3.709.0",
26
- "@aws-sdk/credential-provider-node": "3.709.0",
26
+ "@aws-sdk/credential-provider-node": "3.712.0",
27
27
  "@aws-sdk/middleware-host-header": "3.709.0",
28
28
  "@aws-sdk/middleware-logger": "3.709.0",
29
29
  "@aws-sdk/middleware-recursion-detection": "3.709.0",
@@ -32,7 +32,7 @@
32
32
  "@aws-sdk/types": "3.709.0",
33
33
  "@aws-sdk/util-endpoints": "3.709.0",
34
34
  "@aws-sdk/util-user-agent-browser": "3.709.0",
35
- "@aws-sdk/util-user-agent-node": "3.709.0",
35
+ "@aws-sdk/util-user-agent-node": "3.712.0",
36
36
  "@smithy/config-resolver": "^3.0.13",
37
37
  "@smithy/core": "^2.5.5",
38
38
  "@smithy/fetch-http-handler": "^4.1.2",