@aws-sdk/client-glue 3.371.0 → 3.375.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -10730,6 +10730,7 @@ const se_CrawlerTargets = (input, context) => {
10730
10730
  CatalogTargets: smithy_client_1._json,
10731
10731
  DeltaTargets: smithy_client_1._json,
10732
10732
  DynamoDBTargets: (_) => se_DynamoDBTargetList(_, context),
10733
+ HudiTargets: smithy_client_1._json,
10733
10734
  IcebergTargets: smithy_client_1._json,
10734
10735
  JdbcTargets: smithy_client_1._json,
10735
10736
  MongoDBTargets: smithy_client_1._json,
@@ -11698,6 +11699,7 @@ const de_CrawlerTargets = (output, context) => {
11698
11699
  CatalogTargets: smithy_client_1._json,
11699
11700
  DeltaTargets: smithy_client_1._json,
11700
11701
  DynamoDBTargets: (_) => de_DynamoDBTargetList(_, context),
11702
+ HudiTargets: smithy_client_1._json,
11701
11703
  IcebergTargets: smithy_client_1._json,
11702
11704
  JdbcTargets: smithy_client_1._json,
11703
11705
  MongoDBTargets: smithy_client_1._json,
@@ -10315,6 +10315,7 @@ const se_CrawlerTargets = (input, context) => {
10315
10315
  CatalogTargets: _json,
10316
10316
  DeltaTargets: _json,
10317
10317
  DynamoDBTargets: (_) => se_DynamoDBTargetList(_, context),
10318
+ HudiTargets: _json,
10318
10319
  IcebergTargets: _json,
10319
10320
  JdbcTargets: _json,
10320
10321
  MongoDBTargets: _json,
@@ -11283,6 +11284,7 @@ const de_CrawlerTargets = (output, context) => {
11283
11284
  CatalogTargets: _json,
11284
11285
  DeltaTargets: _json,
11285
11286
  DynamoDBTargets: (_) => de_DynamoDBTargetList(_, context),
11287
+ HudiTargets: _json,
11286
11288
  IcebergTargets: _json,
11287
11289
  JdbcTargets: _json,
11288
11290
  MongoDBTargets: _json,
@@ -114,6 +114,14 @@ export interface BatchGetCrawlersCommandOutput extends BatchGetCrawlersResponse,
114
114
  * // MaximumTraversalDepth: Number("int"),
115
115
  * // },
116
116
  * // ],
117
+ * // HudiTargets: [ // HudiTargetList
118
+ * // { // HudiTarget
119
+ * // Paths: "<PathList>",
120
+ * // ConnectionName: "STRING_VALUE",
121
+ * // Exclusions: "<PathList>",
122
+ * // MaximumTraversalDepth: Number("int"),
123
+ * // },
124
+ * // ],
117
125
  * // },
118
126
  * // DatabaseName: "STRING_VALUE",
119
127
  * // Description: "STRING_VALUE",
@@ -109,6 +109,14 @@ export interface CreateCrawlerCommandOutput extends CreateCrawlerResponse, __Met
109
109
  * MaximumTraversalDepth: Number("int"),
110
110
  * },
111
111
  * ],
112
+ * HudiTargets: [ // HudiTargetList
113
+ * { // HudiTarget
114
+ * Paths: "<PathList>",
115
+ * ConnectionName: "STRING_VALUE",
116
+ * Exclusions: "<PathList>",
117
+ * MaximumTraversalDepth: Number("int"),
118
+ * },
119
+ * ],
112
120
  * },
113
121
  * Schedule: "STRING_VALUE",
114
122
  * Classifiers: [ // ClassifierNameList
@@ -111,6 +111,14 @@ export interface GetCrawlerCommandOutput extends GetCrawlerResponse, __MetadataB
111
111
  * // MaximumTraversalDepth: Number("int"),
112
112
  * // },
113
113
  * // ],
114
+ * // HudiTargets: [ // HudiTargetList
115
+ * // { // HudiTarget
116
+ * // Paths: "<PathList>",
117
+ * // ConnectionName: "STRING_VALUE",
118
+ * // Exclusions: "<PathList>",
119
+ * // MaximumTraversalDepth: Number("int"),
120
+ * // },
121
+ * // ],
114
122
  * // },
115
123
  * // DatabaseName: "STRING_VALUE",
116
124
  * // Description: "STRING_VALUE",
@@ -114,6 +114,14 @@ export interface GetCrawlersCommandOutput extends GetCrawlersResponse, __Metadat
114
114
  * // MaximumTraversalDepth: Number("int"),
115
115
  * // },
116
116
  * // ],
117
+ * // HudiTargets: [ // HudiTargetList
118
+ * // { // HudiTarget
119
+ * // Paths: "<PathList>",
120
+ * // ConnectionName: "STRING_VALUE",
121
+ * // Exclusions: "<PathList>",
122
+ * // MaximumTraversalDepth: Number("int"),
123
+ * // },
124
+ * // ],
117
125
  * // },
118
126
  * // DatabaseName: "STRING_VALUE",
119
127
  * // Description: "STRING_VALUE",
@@ -2,8 +2,7 @@ import { EndpointParameterInstructions } from "@smithy/middleware-endpoint";
2
2
  import { Command as $Command } from "@smithy/smithy-client";
3
3
  import { Handler, HttpHandlerOptions as __HttpHandlerOptions, MetadataBearer as __MetadataBearer, MiddlewareStack } from "@smithy/types";
4
4
  import { GlueClientResolvedConfig, ServiceInputTypes, ServiceOutputTypes } from "../GlueClient";
5
- import { GetUnfilteredTableMetadataRequest } from "../models/models_1";
6
- import { GetUnfilteredTableMetadataResponse } from "../models/models_2";
5
+ import { GetUnfilteredTableMetadataRequest, GetUnfilteredTableMetadataResponse } from "../models/models_2";
7
6
  /**
8
7
  * @public
9
8
  */
@@ -109,6 +109,14 @@ export interface UpdateCrawlerCommandOutput extends UpdateCrawlerResponse, __Met
109
109
  * MaximumTraversalDepth: Number("int"),
110
110
  * },
111
111
  * ],
112
+ * HudiTargets: [ // HudiTargetList
113
+ * { // HudiTarget
114
+ * Paths: "<PathList>",
115
+ * ConnectionName: "STRING_VALUE",
116
+ * Exclusions: "<PathList>",
117
+ * MaximumTraversalDepth: Number("int"),
118
+ * },
119
+ * ],
112
120
  * },
113
121
  * Schedule: "STRING_VALUE",
114
122
  * Classifiers: [ // ClassifierNameList
@@ -1370,6 +1370,30 @@ export interface DynamoDBTarget {
1370
1370
  */
1371
1371
  scanRate?: number;
1372
1372
  }
1373
+ /**
1374
+ * @public
1375
+ * <p>Specifies an Apache Hudi data source.</p>
1376
+ */
1377
+ export interface HudiTarget {
1378
+ /**
1379
+ * <p>An array of Amazon S3 location strings for Hudi, each indicating the root folder with which the metadata files for a Hudi table resides. The Hudi folder may be located in a child folder of the root folder.</p>
1380
+ * <p>The crawler will scan all folders underneath a path for a Hudi folder.</p>
1381
+ */
1382
+ Paths?: string[];
1383
+ /**
1384
+ * <p>The name of the connection to use to connect to the Hudi target. If your Hudi files are stored in buckets that require VPC authorization, you can set their connection properties here.</p>
1385
+ */
1386
+ ConnectionName?: string;
1387
+ /**
1388
+ * <p>A list of glob patterns used to exclude from the crawl.
1389
+ * For more information, see <a href="https://docs.aws.amazon.com/glue/latest/dg/add-crawler.html">Catalog Tables with a Crawler</a>.</p>
1390
+ */
1391
+ Exclusions?: string[];
1392
+ /**
1393
+ * <p>The maximum depth of Amazon S3 paths that the crawler can traverse to discover the Hudi metadata folder in your Amazon S3 path. Used to limit the crawler run time.</p>
1394
+ */
1395
+ MaximumTraversalDepth?: number;
1396
+ }
1373
1397
  /**
1374
1398
  * @public
1375
1399
  * <p>Specifies an Apache Iceberg data source where Iceberg tables are stored in Amazon S3.</p>
@@ -1512,6 +1536,10 @@ export interface CrawlerTargets {
1512
1536
  * <p>Specifies Apache Iceberg data store targets.</p>
1513
1537
  */
1514
1538
  IcebergTargets?: IcebergTarget[];
1539
+ /**
1540
+ * <p>Specifies Apache Hudi data store targets.</p>
1541
+ */
1542
+ HudiTargets?: HudiTarget[];
1515
1543
  }
1516
1544
  /**
1517
1545
  * @public
@@ -5278,24 +5306,25 @@ export interface JobRun {
5278
5306
  MaxCapacity?: number;
5279
5307
  /**
5280
5308
  * <p>The type of predefined worker that is allocated when a job runs. Accepts a value of
5281
- * Standard, G.1X, G.2X, or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.</p>
5309
+ * G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.</p>
5282
5310
  * <ul>
5283
5311
  * <li>
5284
- * <p>For the <code>Standard</code> worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB disk, and 2 executors per worker.</p>
5312
+ * <p>For the <code>G.1X</code> worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
5285
5313
  * </li>
5286
5314
  * <li>
5287
- * <p>For the <code>G.1X</code> worker type, each worker maps to 1 DPU (4 vCPU, 16 GB of memory, 64 GB disk), and provides 1 executor per worker. We recommend this worker type for memory-intensive jobs.</p>
5315
+ * <p>For the <code>G.2X</code> worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
5288
5316
  * </li>
5289
5317
  * <li>
5290
- * <p>For the <code>G.2X</code> worker type, each worker maps to 2 DPU (8 vCPU, 32 GB of memory, 128 GB disk), and provides 1 executor per worker. We recommend this worker type for memory-intensive jobs.</p>
5318
+ * <p>For the <code>G.4X</code> worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).</p>
5319
+ * </li>
5320
+ * <li>
5321
+ * <p>For the <code>G.8X</code> worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the <code>G.4X</code> worker type.</p>
5291
5322
  * </li>
5292
5323
  * <li>
5293
- * <p>For the <code>G.025X</code> worker type, each worker maps to 0.25 DPU (2 vCPU, 4 GB of memory, 64 GB disk), and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 streaming jobs.</p>
5324
+ * <p>For the <code>G.025X</code> worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 streaming jobs.</p>
5294
5325
  * </li>
5295
5326
  * <li>
5296
- * <p>For the <code>Z.2X</code> worker type, each worker maps to 2 M-DPU (8vCPU, 64 GB of m
5297
- * emory, 128 GB disk), and provides up to 8 Ray workers (one per vCPU) based on the
5298
- * autoscaler.</p>
5327
+ * <p>For the <code>Z.2X</code> worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.</p>
5299
5328
  * </li>
5300
5329
  * </ul>
5301
5330
  */
@@ -6927,25 +6956,3 @@ export declare const MLUserDataEncryptionModeString: {
6927
6956
  * @public
6928
6957
  */
6929
6958
  export type MLUserDataEncryptionModeString = (typeof MLUserDataEncryptionModeString)[keyof typeof MLUserDataEncryptionModeString];
6930
- /**
6931
- * @public
6932
- * <p>The encryption-at-rest settings of the transform that apply to accessing user data.</p>
6933
- */
6934
- export interface MLUserDataEncryption {
6935
- /**
6936
- * <p>The encryption mode applied to user data. Valid values are:</p>
6937
- * <ul>
6938
- * <li>
6939
- * <p>DISABLED: encryption is disabled</p>
6940
- * </li>
6941
- * <li>
6942
- * <p>SSEKMS: use of server-side encryption with Key Management Service (SSE-KMS) for user data stored in Amazon S3.</p>
6943
- * </li>
6944
- * </ul>
6945
- */
6946
- MlUserDataEncryptionMode: MLUserDataEncryptionModeString | string | undefined;
6947
- /**
6948
- * <p>The ID for the customer-provided KMS key.</p>
6949
- */
6950
- KmsKeyId?: string;
6951
- }
@@ -1,6 +1,28 @@
1
1
  import { ExceptionOptionType as __ExceptionOptionType } from "@smithy/smithy-client";
2
2
  import { GlueServiceException as __BaseException } from "./GlueServiceException";
3
- import { Action, AuditContext, Blueprint, Column, ConnectionsList, ConnectionType, Crawler, CsvHeaderOption, DatabaseIdentifier, DataFormat, DataQualityRuleResult, DataQualityTargetTable, DataSource, DevEndpoint, ErrorDetail, EventBatchingCondition, FederatedDatabase, GlueTable, JobRun, MLUserDataEncryption, Partition, PartitionInput, PartitionValueList, PhysicalConnectionRequirements, Predicate, PrincipalPermissions, SchemaId, StorageDescriptor, TaskStatusType, TransformParameters, TransformType, Trigger, TriggerType, WorkerType } from "./models_0";
3
+ import { Action, AuditContext, Blueprint, Column, ConnectionsList, ConnectionType, Crawler, CsvHeaderOption, DatabaseIdentifier, DataFormat, DataQualityRuleResult, DataQualityTargetTable, DataSource, DevEndpoint, ErrorDetail, EventBatchingCondition, FederatedDatabase, GlueTable, JobRun, MLUserDataEncryptionModeString, Partition, PartitionInput, PartitionValueList, PhysicalConnectionRequirements, Predicate, PrincipalPermissions, SchemaId, StorageDescriptor, TaskStatusType, TransformParameters, TransformType, Trigger, TriggerType, WorkerType } from "./models_0";
4
+ /**
5
+ * @public
6
+ * <p>The encryption-at-rest settings of the transform that apply to accessing user data.</p>
7
+ */
8
+ export interface MLUserDataEncryption {
9
+ /**
10
+ * <p>The encryption mode applied to user data. Valid values are:</p>
11
+ * <ul>
12
+ * <li>
13
+ * <p>DISABLED: encryption is disabled</p>
14
+ * </li>
15
+ * <li>
16
+ * <p>SSEKMS: use of server-side encryption with Key Management Service (SSE-KMS) for user data stored in Amazon S3.</p>
17
+ * </li>
18
+ * </ul>
19
+ */
20
+ MlUserDataEncryptionMode: MLUserDataEncryptionModeString | string | undefined;
21
+ /**
22
+ * <p>The ID for the customer-provided KMS key.</p>
23
+ */
24
+ KmsKeyId?: string;
25
+ }
4
26
  /**
5
27
  * @public
6
28
  * <p>The encryption-at-rest settings of the transform that apply to accessing user data. Machine learning transforms can access user data encrypted in Amazon S3 using KMS.</p>
@@ -728,19 +750,23 @@ export interface CreateSessionRequest {
728
750
  */
729
751
  NumberOfWorkers?: number;
730
752
  /**
731
- * <p>The type of predefined worker that is allocated to use for the session. Accepts a value of Standard, G.1X, G.2X, or G.025X.</p>
753
+ * <p>The type of predefined worker that is allocated when a job runs. Accepts a value of
754
+ * G.1X, G.2X, G.4X, or G.8X for Spark jobs. Accepts the value Z.2X for Ray notebooks.</p>
732
755
  * <ul>
733
756
  * <li>
734
- * <p>For the <code>Standard</code> worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB disk, and 2 executors per worker.</p>
757
+ * <p>For the <code>G.1X</code> worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
735
758
  * </li>
736
759
  * <li>
737
- * <p>For the <code>G.1X</code> worker type, each worker maps to 1 DPU (4 vCPU, 16 GB of memory, 64 GB disk), and provides 1 executor per worker. We recommend this worker type for memory-intensive jobs.</p>
760
+ * <p>For the <code>G.2X</code> worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
738
761
  * </li>
739
762
  * <li>
740
- * <p>For the <code>G.2X</code> worker type, each worker maps to 2 DPU (8 vCPU, 32 GB of memory, 128 GB disk), and provides 1 executor per worker. We recommend this worker type for memory-intensive jobs.</p>
763
+ * <p>For the <code>G.4X</code> worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).</p>
741
764
  * </li>
742
765
  * <li>
743
- * <p>For the <code>G.025X</code> worker type, each worker maps to 0.25 DPU (2 vCPU, 4 GB of memory, 64 GB disk), and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 streaming jobs.</p>
766
+ * <p>For the <code>G.8X</code> worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the <code>G.4X</code> worker type.</p>
767
+ * </li>
768
+ * <li>
769
+ * <p>For the <code>Z.2X</code> worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.</p>
744
770
  * </li>
745
771
  * </ul>
746
772
  */
@@ -6191,28 +6217,3 @@ export interface GetUnfilteredPartitionsMetadataResponse {
6191
6217
  */
6192
6218
  NextToken?: string;
6193
6219
  }
6194
- /**
6195
- * @public
6196
- */
6197
- export interface GetUnfilteredTableMetadataRequest {
6198
- /**
6199
- * <p>The catalog ID where the table resides.</p>
6200
- */
6201
- CatalogId: string | undefined;
6202
- /**
6203
- * <p>(Required) Specifies the name of a database that contains the table.</p>
6204
- */
6205
- DatabaseName: string | undefined;
6206
- /**
6207
- * <p>(Required) Specifies the name of a table for which you are requesting metadata.</p>
6208
- */
6209
- Name: string | undefined;
6210
- /**
6211
- * <p>A structure containing Lake Formation audit context information.</p>
6212
- */
6213
- AuditContext?: AuditContext;
6214
- /**
6215
- * <p>(Required) A list of supported permission types. </p>
6216
- */
6217
- SupportedPermissionTypes: (PermissionType | string)[] | undefined;
6218
- }
@@ -1,7 +1,32 @@
1
1
  import { ExceptionOptionType as __ExceptionOptionType } from "@smithy/smithy-client";
2
2
  import { GlueServiceException as __BaseException } from "./GlueServiceException";
3
- import { Action, Aggregate, AmazonRedshiftSource, AmazonRedshiftTarget, AthenaConnectorSource, BasicCatalogTarget, CatalogDeltaSource, CatalogHudiSource, CatalogKafkaSource, CatalogKinesisSource, CatalogSource, ConnectionInput, ConnectionsList, CrawlerTargets, CsvHeaderOption, CustomCode, CustomEntityType, DatabaseInput, DataQualityTargetTable, DataSource, DirectJDBCSource, DirectKafkaSource, DirectKinesisSource, DropDuplicates, DropFields, DropNullFields, DynamicTransform, DynamoDBCatalogSource, ErrorDetail, EvaluateDataQuality, EvaluateDataQualityMultiFrame, EventBatchingCondition, ExecutionClass, ExecutionProperty, FillMissingValues, Filter, GovernedCatalogSource, GovernedCatalogTarget, JDBCConnectorSource, JDBCConnectorTarget, JobCommand, Join, LakeFormationConfiguration, LineageConfiguration, Merge, MicrosoftSQLServerCatalogSource, MicrosoftSQLServerCatalogTarget, MySQLCatalogSource, MySQLCatalogTarget, NotificationProperty, OracleSQLCatalogSource, OracleSQLCatalogTarget, PartitionInput, PIIDetection, PostgreSQLCatalogSource, PostgreSQLCatalogTarget, Predicate, RecrawlPolicy, RedshiftSource, RedshiftTarget, RelationalCatalogSource, RenameField, S3CatalogDeltaSource, S3CatalogHudiSource, S3CatalogSource, S3CatalogTarget, S3CsvSource, S3DeltaCatalogTarget, S3DeltaDirectTarget, S3DeltaSource, S3DirectTarget, S3GlueParquetTarget, S3HudiCatalogTarget, S3HudiDirectTarget, S3HudiSource, S3JsonSource, S3ParquetSource, SchemaChangePolicy, SchemaId, SelectFields, SelectFromCollection, SourceControlAuthStrategy, SourceControlDetails, SourceControlProvider, SparkConnectorSource, SparkConnectorTarget, SparkSQL, Spigot, SplitFields, TaskStatusType, TransformParameters, Trigger, Union, WorkerType, Workflow, WorkflowRun } from "./models_0";
4
- import { ColumnStatistics, Compatibility, DataCatalogEncryptionSettings, DataQualityEvaluationRunAdditionalRunOptions, JobBookmarkEntry, PrincipalType, RegistryId, RegistryStatus, ResourceShareType, ResourceUri, SchemaStatus, SchemaVersionNumber, SchemaVersionStatus, Session, Statement, Table, TableInput, TransformFilterCriteria, TransformSortCriteria, UserDefinedFunctionInput } from "./models_1";
3
+ import { Action, Aggregate, AmazonRedshiftSource, AmazonRedshiftTarget, AthenaConnectorSource, AuditContext, BasicCatalogTarget, CatalogDeltaSource, CatalogHudiSource, CatalogKafkaSource, CatalogKinesisSource, CatalogSource, ConnectionInput, ConnectionsList, CrawlerTargets, CsvHeaderOption, CustomCode, CustomEntityType, DatabaseInput, DataQualityTargetTable, DataSource, DirectJDBCSource, DirectKafkaSource, DirectKinesisSource, DropDuplicates, DropFields, DropNullFields, DynamicTransform, DynamoDBCatalogSource, ErrorDetail, EvaluateDataQuality, EvaluateDataQualityMultiFrame, EventBatchingCondition, ExecutionClass, ExecutionProperty, FillMissingValues, Filter, GovernedCatalogSource, GovernedCatalogTarget, JDBCConnectorSource, JDBCConnectorTarget, JobCommand, Join, LakeFormationConfiguration, LineageConfiguration, Merge, MicrosoftSQLServerCatalogSource, MicrosoftSQLServerCatalogTarget, MySQLCatalogSource, MySQLCatalogTarget, NotificationProperty, OracleSQLCatalogSource, OracleSQLCatalogTarget, PartitionInput, PIIDetection, PostgreSQLCatalogSource, PostgreSQLCatalogTarget, Predicate, RecrawlPolicy, RedshiftSource, RedshiftTarget, RelationalCatalogSource, RenameField, S3CatalogDeltaSource, S3CatalogHudiSource, S3CatalogSource, S3CatalogTarget, S3CsvSource, S3DeltaCatalogTarget, S3DeltaDirectTarget, S3DeltaSource, S3DirectTarget, S3GlueParquetTarget, S3HudiCatalogTarget, S3HudiDirectTarget, S3HudiSource, S3JsonSource, S3ParquetSource, SchemaChangePolicy, SchemaId, SelectFields, SelectFromCollection, SourceControlAuthStrategy, SourceControlDetails, SourceControlProvider, SparkConnectorSource, SparkConnectorTarget, SparkSQL, Spigot, SplitFields, TaskStatusType, TransformParameters, Trigger, Union, WorkerType, Workflow, WorkflowRun } from "./models_0";
4
+ import { ColumnStatistics, Compatibility, DataCatalogEncryptionSettings, DataQualityEvaluationRunAdditionalRunOptions, JobBookmarkEntry, PermissionType, PrincipalType, RegistryId, RegistryStatus, ResourceShareType, ResourceUri, SchemaStatus, SchemaVersionNumber, SchemaVersionStatus, Session, Statement, Table, TableInput, TransformFilterCriteria, TransformSortCriteria, UserDefinedFunctionInput } from "./models_1";
5
+ /**
6
+ * @public
7
+ */
8
+ export interface GetUnfilteredTableMetadataRequest {
9
+ /**
10
+ * <p>The catalog ID where the table resides.</p>
11
+ */
12
+ CatalogId: string | undefined;
13
+ /**
14
+ * <p>(Required) Specifies the name of a database that contains the table.</p>
15
+ */
16
+ DatabaseName: string | undefined;
17
+ /**
18
+ * <p>(Required) Specifies the name of a table for which you are requesting metadata.</p>
19
+ */
20
+ Name: string | undefined;
21
+ /**
22
+ * <p>A structure containing Lake Formation audit context information.</p>
23
+ */
24
+ AuditContext?: AuditContext;
25
+ /**
26
+ * <p>(Required) A list of supported permission types. </p>
27
+ */
28
+ SupportedPermissionTypes: (PermissionType | string)[] | undefined;
29
+ }
5
30
  /**
6
31
  * @public
7
32
  * <p>A filter that uses both column-level and row-level filtering.</p>
@@ -2190,24 +2215,25 @@ export interface StartJobRunRequest {
2190
2215
  NotificationProperty?: NotificationProperty;
2191
2216
  /**
2192
2217
  * <p>The type of predefined worker that is allocated when a job runs. Accepts a value of
2193
- * Standard, G.1X, G.2X, or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.</p>
2218
+ * G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.</p>
2194
2219
  * <ul>
2195
2220
  * <li>
2196
- * <p>For the <code>Standard</code> worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB disk, and 2 executors per worker.</p>
2221
+ * <p>For the <code>G.1X</code> worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
2197
2222
  * </li>
2198
2223
  * <li>
2199
- * <p>For the <code>G.1X</code> worker type, each worker maps to 1 DPU (4 vCPU, 16 GB of memory, 64 GB disk), and provides 1 executor per worker. We recommend this worker type for memory-intensive jobs.</p>
2224
+ * <p>For the <code>G.2X</code> worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
2200
2225
  * </li>
2201
2226
  * <li>
2202
- * <p>For the <code>G.2X</code> worker type, each worker maps to 2 DPU (8 vCPU, 32 GB of memory, 128 GB disk), and provides 1 executor per worker. We recommend this worker type for memory-intensive jobs.</p>
2227
+ * <p>For the <code>G.4X</code> worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).</p>
2203
2228
  * </li>
2204
2229
  * <li>
2205
- * <p>For the <code>G.025X</code> worker type, each worker maps to 0.25 DPU (2 vCPU, 4 GB of memory, 64 GB disk), and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 streaming jobs.</p>
2230
+ * <p>For the <code>G.8X</code> worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the <code>G.4X</code> worker type.</p>
2206
2231
  * </li>
2207
2232
  * <li>
2208
- * <p>For the <code>Z.2X</code> worker type, each worker maps to 2 DPU (8vCPU, 64 GB of m
2209
- * emory, 128 GB disk), and provides up to 8 Ray workers (one per vCPU) based on the
2210
- * autoscaler.</p>
2233
+ * <p>For the <code>G.025X</code> worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 streaming jobs.</p>
2234
+ * </li>
2235
+ * <li>
2236
+ * <p>For the <code>Z.2X</code> worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.</p>
2211
2237
  * </li>
2212
2238
  * </ul>
2213
2239
  */
@@ -3936,24 +3962,25 @@ export interface CreateJobRequest {
3936
3962
  NumberOfWorkers?: number;
3937
3963
  /**
3938
3964
  * <p>The type of predefined worker that is allocated when a job runs. Accepts a value of
3939
- * Standard, G.1X, G.2X, or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.</p>
3965
+ * G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.</p>
3940
3966
  * <ul>
3941
3967
  * <li>
3942
- * <p>For the <code>Standard</code> worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB disk, and 2 executors per worker.</p>
3968
+ * <p>For the <code>G.1X</code> worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
3969
+ * </li>
3970
+ * <li>
3971
+ * <p>For the <code>G.2X</code> worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
3943
3972
  * </li>
3944
3973
  * <li>
3945
- * <p>For the <code>G.1X</code> worker type, each worker maps to 1 DPU (4 vCPU, 16 GB of memory, 64 GB disk), and provides 1 executor per worker. We recommend this worker type for memory-intensive jobs.</p>
3974
+ * <p>For the <code>G.4X</code> worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).</p>
3946
3975
  * </li>
3947
3976
  * <li>
3948
- * <p>For the <code>G.2X</code> worker type, each worker maps to 2 DPU (8 vCPU, 32 GB of memory, 128 GB disk), and provides 1 executor per worker. We recommend this worker type for memory-intensive jobs.</p>
3977
+ * <p>For the <code>G.8X</code> worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the <code>G.4X</code> worker type.</p>
3949
3978
  * </li>
3950
3979
  * <li>
3951
- * <p>For the <code>G.025X</code> worker type, each worker maps to 0.25 DPU (2 vCPU, 4 GB of memory, 64 GB disk), and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 streaming jobs.</p>
3980
+ * <p>For the <code>G.025X</code> worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 streaming jobs.</p>
3952
3981
  * </li>
3953
3982
  * <li>
3954
- * <p>For the <code>Z.2X</code> worker type, each worker maps to 2 M-DPU (8vCPU, 64 GB of m
3955
- * emory, 128 GB disk), and provides up to 8 Ray workers based on the
3956
- * autoscaler.</p>
3983
+ * <p>For the <code>Z.2X</code> worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.</p>
3957
3984
  * </li>
3958
3985
  * </ul>
3959
3986
  */
@@ -4084,29 +4111,25 @@ export interface Job {
4084
4111
  MaxCapacity?: number;
4085
4112
  /**
4086
4113
  * <p>The type of predefined worker that is allocated when a job runs. Accepts a value of
4087
- * Standard, G.1X, G.2X, G.4X, G.8X, or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.</p>
4114
+ * G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.</p>
4088
4115
  * <ul>
4089
4116
  * <li>
4090
- * <p>For the <code>Standard</code> worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB disk, and 2 executors per worker.</p>
4091
- * </li>
4092
- * <li>
4093
- * <p>For the <code>G.1X</code> worker type, each worker maps to 1 DPU (4 vCPU, 16 GB of memory, 64 GB disk), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
4117
+ * <p>For the <code>G.1X</code> worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
4094
4118
  * </li>
4095
4119
  * <li>
4096
- * <p>For the <code>G.2X</code> worker type, each worker maps to 2 DPU (8 vCPU, 32 GB of memory, 128 GB disk), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
4120
+ * <p>For the <code>G.2X</code> worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
4097
4121
  * </li>
4098
4122
  * <li>
4099
- * <p>For the <code>G.4X</code> worker type, each worker maps to 4 DPU (16 vCPU, 64 GB of memory, 256 GB disk), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).</p>
4123
+ * <p>For the <code>G.4X</code> worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).</p>
4100
4124
  * </li>
4101
4125
  * <li>
4102
- * <p>For the <code>G.8X</code> worker type, each worker maps to 8 DPU (32 vCPU, 128 GB of memory, 512 GB disk), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the <code>G.4X</code> worker type.</p>
4126
+ * <p>For the <code>G.8X</code> worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the <code>G.4X</code> worker type.</p>
4103
4127
  * </li>
4104
4128
  * <li>
4105
- * <p>For the <code>G.025X</code> worker type, each worker maps to 0.25 DPU (2 vCPU, 4 GB of memory, 64 GB disk), and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 streaming jobs.</p>
4129
+ * <p>For the <code>G.025X</code> worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 streaming jobs.</p>
4106
4130
  * </li>
4107
4131
  * <li>
4108
- * <p>For the <code>Z.2X</code> worker type, each worker maps to 2 M-DPU (8vCPU, 64 GB of m
4109
- * emory, 128 GB disk), and provides a default of 8 Ray workers (1 per vCPU).</p>
4132
+ * <p>For the <code>Z.2X</code> worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.</p>
4110
4133
  * </li>
4111
4134
  * </ul>
4112
4135
  */
@@ -4252,24 +4275,25 @@ export interface JobUpdate {
4252
4275
  MaxCapacity?: number;
4253
4276
  /**
4254
4277
  * <p>The type of predefined worker that is allocated when a job runs. Accepts a value of
4255
- * Standard, G.1X, G.2X, or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.</p>
4278
+ * G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.</p>
4256
4279
  * <ul>
4257
4280
  * <li>
4258
- * <p>For the <code>Standard</code> worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB disk, and 2 executors per worker.</p>
4281
+ * <p>For the <code>G.1X</code> worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
4282
+ * </li>
4283
+ * <li>
4284
+ * <p>For the <code>G.2X</code> worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p>
4259
4285
  * </li>
4260
4286
  * <li>
4261
- * <p>For the <code>G.1X</code> worker type, each worker maps to 1 DPU (4 vCPU, 16 GB of memory, 64 GB disk), and provides 1 executor per worker. We recommend this worker type for memory-intensive jobs.</p>
4287
+ * <p>For the <code>G.4X</code> worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).</p>
4262
4288
  * </li>
4263
4289
  * <li>
4264
- * <p>For the <code>G.2X</code> worker type, each worker maps to 2 DPU (8 vCPU, 32 GB of memory, 128 GB disk), and provides 1 executor per worker. We recommend this worker type for memory-intensive jobs.</p>
4290
+ * <p>For the <code>G.8X</code> worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the <code>G.4X</code> worker type.</p>
4265
4291
  * </li>
4266
4292
  * <li>
4267
- * <p>For the <code>G.025X</code> worker type, each worker maps to 0.25 DPU (2 vCPU, 4 GB of memory, 64 GB disk), and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 streaming jobs.</p>
4293
+ * <p>For the <code>G.025X</code> worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 streaming jobs.</p>
4268
4294
  * </li>
4269
4295
  * <li>
4270
- * <p>For the <code>Z.2X</code> worker type, each worker maps to 2 M-DPU (8vCPU, 64 GB of m
4271
- * emory, 128 GB disk), and provides up to 8 Ray workers based on the
4272
- * autoscaler.</p>
4296
+ * <p>For the <code>Z.2X</code> worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.</p>
4273
4297
  * </li>
4274
4298
  * </ul>
4275
4299
  */
@@ -11,8 +11,10 @@ import {
11
11
  ServiceInputTypes,
12
12
  ServiceOutputTypes,
13
13
  } from "../GlueClient";
14
- import { GetUnfilteredTableMetadataRequest } from "../models/models_1";
15
- import { GetUnfilteredTableMetadataResponse } from "../models/models_2";
14
+ import {
15
+ GetUnfilteredTableMetadataRequest,
16
+ GetUnfilteredTableMetadataResponse,
17
+ } from "../models/models_2";
16
18
  export { __MetadataBearer, $Command };
17
19
  export interface GetUnfilteredTableMetadataCommandInput
18
20
  extends GetUnfilteredTableMetadataRequest {}
@@ -433,6 +433,12 @@ export interface DynamoDBTarget {
433
433
  scanAll?: boolean;
434
434
  scanRate?: number;
435
435
  }
436
+ export interface HudiTarget {
437
+ Paths?: string[];
438
+ ConnectionName?: string;
439
+ Exclusions?: string[];
440
+ MaximumTraversalDepth?: number;
441
+ }
436
442
  export interface IcebergTarget {
437
443
  Paths?: string[];
438
444
  ConnectionName?: string;
@@ -472,6 +478,7 @@ export interface CrawlerTargets {
472
478
  CatalogTargets?: CatalogTarget[];
473
479
  DeltaTargets?: DeltaTarget[];
474
480
  IcebergTargets?: IcebergTarget[];
481
+ HudiTargets?: HudiTarget[];
475
482
  }
476
483
  export interface Crawler {
477
484
  Name?: string;
@@ -2091,7 +2098,3 @@ export declare const MLUserDataEncryptionModeString: {
2091
2098
  };
2092
2099
  export type MLUserDataEncryptionModeString =
2093
2100
  (typeof MLUserDataEncryptionModeString)[keyof typeof MLUserDataEncryptionModeString];
2094
- export interface MLUserDataEncryption {
2095
- MlUserDataEncryptionMode: MLUserDataEncryptionModeString | string | undefined;
2096
- KmsKeyId?: string;
2097
- }
@@ -20,7 +20,7 @@ import {
20
20
  FederatedDatabase,
21
21
  GlueTable,
22
22
  JobRun,
23
- MLUserDataEncryption,
23
+ MLUserDataEncryptionModeString,
24
24
  Partition,
25
25
  PartitionInput,
26
26
  PartitionValueList,
@@ -36,6 +36,10 @@ import {
36
36
  TriggerType,
37
37
  WorkerType,
38
38
  } from "./models_0";
39
+ export interface MLUserDataEncryption {
40
+ MlUserDataEncryptionMode: MLUserDataEncryptionModeString | string | undefined;
41
+ KmsKeyId?: string;
42
+ }
39
43
  export interface TransformEncryption {
40
44
  MlUserDataEncryption?: MLUserDataEncryption;
41
45
  TaskRunSecurityConfigurationName?: string;
@@ -1648,10 +1652,3 @@ export interface GetUnfilteredPartitionsMetadataResponse {
1648
1652
  UnfilteredPartitions?: UnfilteredPartition[];
1649
1653
  NextToken?: string;
1650
1654
  }
1651
- export interface GetUnfilteredTableMetadataRequest {
1652
- CatalogId: string | undefined;
1653
- DatabaseName: string | undefined;
1654
- Name: string | undefined;
1655
- AuditContext?: AuditContext;
1656
- SupportedPermissionTypes: (PermissionType | string)[] | undefined;
1657
- }
@@ -6,6 +6,7 @@ import {
6
6
  AmazonRedshiftSource,
7
7
  AmazonRedshiftTarget,
8
8
  AthenaConnectorSource,
9
+ AuditContext,
9
10
  BasicCatalogTarget,
10
11
  CatalogDeltaSource,
11
12
  CatalogHudiSource,
@@ -104,6 +105,7 @@ import {
104
105
  DataCatalogEncryptionSettings,
105
106
  DataQualityEvaluationRunAdditionalRunOptions,
106
107
  JobBookmarkEntry,
108
+ PermissionType,
107
109
  PrincipalType,
108
110
  RegistryId,
109
111
  RegistryStatus,
@@ -120,6 +122,13 @@ import {
120
122
  TransformSortCriteria,
121
123
  UserDefinedFunctionInput,
122
124
  } from "./models_1";
125
+ export interface GetUnfilteredTableMetadataRequest {
126
+ CatalogId: string | undefined;
127
+ DatabaseName: string | undefined;
128
+ Name: string | undefined;
129
+ AuditContext?: AuditContext;
130
+ SupportedPermissionTypes: (PermissionType | string)[] | undefined;
131
+ }
123
132
  export interface ColumnRowFilter {
124
133
  ColumnName?: string;
125
134
  RowFilterExpression?: string;
package/package.json CHANGED
@@ -1,7 +1,7 @@
1
1
  {
2
2
  "name": "@aws-sdk/client-glue",
3
3
  "description": "AWS SDK for JavaScript Glue Client for Node.js, Browser and React Native",
4
- "version": "3.371.0",
4
+ "version": "3.375.0",
5
5
  "scripts": {
6
6
  "build": "concurrently 'yarn:build:cjs' 'yarn:build:es' 'yarn:build:types'",
7
7
  "build:cjs": "tsc -p tsconfig.cjs.json",