@auxot/worker-cli 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/dist/index.js ADDED
@@ -0,0 +1,341 @@
1
+ #!/usr/bin/env node
2
+ /**
3
+ * Auxot GPU Worker CLI
4
+ *
5
+ * Connects local GPU resources (via llama.cpp) to the Auxot platform.
6
+ *
7
+ * Usage:
8
+ * auxot-worker --gpu-key gpu.xxx.yyy [--llama-url http://localhost:8000] [--auxot-url https://auxot.com]
9
+ */
10
+ import { getOrCreateGpuId } from './gpu-id.js';
11
+ import { discoverCapabilities } from './capabilities.js';
12
+ import { WebSocketConnection } from './websocket.js';
13
+ import { processJob } from './llama.js';
14
+ import { setDebugLevel } from './debug.js';
15
+ import { spawnLlamaCpp, waitForLlamaReady } from './llama-process.js';
16
+ import { ensureModelDownloaded } from './model-resolver.js';
17
+ import { ensureLlamaBinary } from './llama-binary.js';
18
+ // Parse command line arguments
19
+ const args = process.argv.slice(2);
20
+ const config = {
21
+ gpuKey: process.env.AUXOT_GPU_KEY || '',
22
+ llamaUrl: process.env.AUXOT_LLAMA_URL || 'http://localhost:9002',
23
+ auxotUrl: process.env.AUXOT_URL || 'http://auxot.localhost:9000',
24
+ debugLevel: 0,
25
+ };
26
+ for (let i = 0; i < args.length; i++) {
27
+ const arg = args[i];
28
+ if (arg === '--gpu-key' && i + 1 < args.length) {
29
+ config.gpuKey = args[++i];
30
+ }
31
+ else if (arg === '--llama-url' && i + 1 < args.length) {
32
+ config.llamaUrl = args[++i];
33
+ }
34
+ else if (arg === '--auxot-url' && i + 1 < args.length) {
35
+ config.auxotUrl = args[++i];
36
+ }
37
+ else if (arg === '--debug') {
38
+ // Check if next arg is a number (debug level)
39
+ if (i + 1 < args.length && /^[12]$/.test(args[i + 1])) {
40
+ config.debugLevel = parseInt(args[++i], 10);
41
+ }
42
+ else {
43
+ config.debugLevel = 1; // Default to level 1
44
+ }
45
+ }
46
+ else if (arg === '--help' || arg === '-h') {
47
+ console.log(`
48
+ Auxot GPU Worker CLI
49
+
50
+ Usage:
51
+ auxot-worker [options]
52
+
53
+ Options:
54
+ --gpu-key <key> GPU authentication key (format: gpu.xxx.yyy)
55
+ (or set AUXOT_GPU_KEY env var)
56
+ --llama-url <url> llama.cpp server URL (default: http://localhost:8000)
57
+ (or set AUXOT_LLAMA_URL env var)
58
+ --auxot-url <url> Auxot platform URL (default: https://auxot.com)
59
+ (or set AUXOT_URL env var)
60
+ --debug [level] Enable debug logging (level 1 or 2, default: 1)
61
+ Level 1: WebSocket messages (CLI <-> server)
62
+ Level 2: Level 1 + llama.cpp messages
63
+ --help, -h Show this help message
64
+
65
+ Environment Variables:
66
+ AUXOT_GPU_KEY GPU authentication key (overridden by --gpu-key)
67
+ AUXOT_LLAMA_URL llama.cpp server URL (overridden by --llama-url)
68
+ AUXOT_URL Auxot platform URL (overridden by --auxot-url)
69
+ `.trim());
70
+ process.exit(0);
71
+ }
72
+ }
73
+ // Validate required arguments
74
+ if (!config.gpuKey) {
75
+ console.error('Error: GPU key is required');
76
+ console.error('Set AUXOT_GPU_KEY environment variable or use --gpu-key flag');
77
+ console.error('Run with --help for usage information');
78
+ process.exit(1);
79
+ }
80
+ if (!config.gpuKey.startsWith('gpu.')) {
81
+ console.error('Error: GPU key must start with "gpu."');
82
+ process.exit(1);
83
+ }
84
+ async function main() {
85
+ // Set debug level before any operations
86
+ setDebugLevel(config.debugLevel);
87
+ console.log('Auxot GPU Worker CLI');
88
+ console.log('====================');
89
+ if (config.debugLevel > 0) {
90
+ console.log(`Debug Level: ${config.debugLevel}`);
91
+ }
92
+ console.log();
93
+ try {
94
+ // 1. Get GPU ID
95
+ console.log('[1/4] Loading GPU ID...');
96
+ const gpuId = await getOrCreateGpuId();
97
+ console.log(`GPU ID: ${gpuId}`);
98
+ console.log();
99
+ // 2. Connect to WebSocket server (server will send policy)
100
+ console.log('[2/4] Connecting to Auxot platform...');
101
+ const wsUrl = config.auxotUrl.replace(/^http/, 'ws').replace(/^https/, 'wss');
102
+ // Create connection with placeholder capabilities (will be updated after spawning llama.cpp)
103
+ const placeholderCapabilities = {
104
+ model: 'pending',
105
+ ctx_size: 0,
106
+ backend: 'cpu', // Placeholder - will be updated after discovery
107
+ };
108
+ const wsConnection = new WebSocketConnection(config.gpuKey, placeholderCapabilities);
109
+ // Track llama.cpp process for cleanup
110
+ let llamaProcess = null;
111
+ // Track active jobs with abort controllers for cancellation
112
+ const activeJobs = new Map();
113
+ // Register job handler BEFORE connecting to avoid race condition
114
+ wsConnection.onJob(async (job) => {
115
+ // Create AbortController for this job
116
+ const abortController = new AbortController();
117
+ activeJobs.set(job.job_id, abortController);
118
+ try {
119
+ // Get current capabilities from WebSocket connection (updated after policy callback)
120
+ const currentCapabilities = wsConnection.getCapabilities();
121
+ const result = await processJob(job, 'http://127.0.0.1:9002', // Always use local llama.cpp (spawned by worker-cli)
122
+ currentCapabilities, // Pass capabilities for max_tokens_default
123
+ abortController.signal, // Pass abort signal
124
+ (token) => {
125
+ // Stream token to server
126
+ wsConnection.sendToken(job.job_id, token);
127
+ });
128
+ // Check if job was cancelled
129
+ const wasCancelled = abortController.signal.aborted;
130
+ // Send completion with stats (including partial response if cancelled)
131
+ wsConnection.sendComplete(job.job_id, result.fullResponse, result.durationMs, result.inputTokens, result.outputTokens, result.tool_calls);
132
+ if (wasCancelled) {
133
+ console.log(`✓ Job ${job.job_id} cancelled - sent partial response`);
134
+ // Also send error to mark job as cancelled in database
135
+ wsConnection.sendError(job.job_id, 'Job cancelled by user');
136
+ }
137
+ else {
138
+ console.log(`✓ Job ${job.job_id} completed successfully`);
139
+ }
140
+ }
141
+ catch (error) {
142
+ console.error(`✗ Job ${job.job_id} failed:`, error);
143
+ // Send error for actual errors (not cancellation)
144
+ wsConnection.sendError(job.job_id, error instanceof Error ? error.message : 'Unknown error');
145
+ }
146
+ finally {
147
+ // Clean up abort controller
148
+ activeJobs.delete(job.job_id);
149
+ }
150
+ });
151
+ // Register policy callback (called when policy is received from server)
152
+ wsConnection.onPolicy(async (policy) => {
153
+ console.log('[3/4] Setting up llama.cpp...');
154
+ console.log(` Policy: ${policy.model_name} (${policy.quantization})`);
155
+ console.log(` Context size: ${policy.context_size}`);
156
+ console.log(` Max parallelism: ${policy.max_parallelism}`);
157
+ try {
158
+ // 1. Download model if needed
159
+ console.log(' Downloading/checking model...');
160
+ const modelPath = await ensureModelDownloaded(policy);
161
+ if (!modelPath) {
162
+ throw new Error(`Model not found in registry: ${policy.model_name} (${policy.quantization})`);
163
+ }
164
+ console.log(` ✓ Model ready: ${modelPath}`);
165
+ // 2. Ensure llama.cpp binary is available
166
+ console.log(' Downloading/checking llama.cpp binary...');
167
+ const binaryPath = await ensureLlamaBinary();
168
+ console.log(` ✓ Binary ready: ${binaryPath}`);
169
+ // 3. Determine GPU layers (use all layers for GPU acceleration)
170
+ // For 14B models, we typically want all layers on GPU for best performance
171
+ // Setting to a high number (9999) will use all available layers
172
+ const gpuLayers = 9999; // Use all layers on GPU for maximum performance
173
+ // 3. Spawn llama.cpp process
174
+ console.log(' Spawning llama.cpp process...');
175
+ llamaProcess = await spawnLlamaCpp({
176
+ binaryPath,
177
+ modelPath,
178
+ contextSize: policy.context_size,
179
+ parallelism: policy.max_parallelism,
180
+ port: 9002,
181
+ host: '127.0.0.1',
182
+ gpuLayers, // Enable GPU acceleration
183
+ });
184
+ // Register crash handler for auto-restart
185
+ const setupCrashHandler = (proc) => {
186
+ proc.onCrash(async (code, signal) => {
187
+ console.error(`\n[llama.cpp] Process crashed (code: ${code}, signal: ${signal})`);
188
+ console.log('[llama.cpp] Attempting to restart...');
189
+ try {
190
+ // Wait a bit before restarting to avoid rapid restart loops
191
+ await new Promise(resolve => setTimeout(resolve, 2000));
192
+ // Restart the process
193
+ if (llamaProcess) {
194
+ const restarted = await llamaProcess.restart();
195
+ llamaProcess = restarted;
196
+ // Re-register crash handler on new process
197
+ setupCrashHandler(restarted);
198
+ }
199
+ // Wait for it to be ready
200
+ await waitForLlamaReady('http://127.0.0.1:9002');
201
+ console.log('[llama.cpp] ✓ Restarted successfully');
202
+ // Re-discover capabilities and update server
203
+ const capabilities = await discoverCapabilities('http://127.0.0.1:9002');
204
+ wsConnection.updateCapabilities(capabilities);
205
+ wsConnection.sendConfig(capabilities);
206
+ console.log('[llama.cpp] ✓ Capabilities updated after restart');
207
+ }
208
+ catch (restartError) {
209
+ console.error('[llama.cpp] ✗ Failed to restart:', restartError);
210
+ console.error('[llama.cpp] Worker will continue but may not process jobs correctly');
211
+ }
212
+ });
213
+ };
214
+ setupCrashHandler(llamaProcess);
215
+ // 4. Wait for llama.cpp to be ready
216
+ console.log(' Waiting for llama.cpp to be ready...');
217
+ await waitForLlamaReady('http://127.0.0.1:9002');
218
+ console.log(' ✓ llama.cpp is ready');
219
+ // 5. Warm up the model (ensure it's loaded and ready)
220
+ console.log(' Warming up model...');
221
+ try {
222
+ // Send a minimal prompt to ensure model is loaded
223
+ const warmupResponse = await fetch('http://127.0.0.1:9002/v1/chat/completions', {
224
+ method: 'POST',
225
+ headers: { 'Content-Type': 'application/json' },
226
+ body: JSON.stringify({
227
+ model: 'placeholder', // Will use default model
228
+ messages: [{ role: 'user', content: 'Hi' }],
229
+ max_tokens: 1, // Just 1 token to warm up
230
+ stream: false,
231
+ }),
232
+ });
233
+ if (warmupResponse.ok) {
234
+ await warmupResponse.json(); // Consume response
235
+ console.log(' ✓ Model warmed up');
236
+ }
237
+ }
238
+ catch (error) {
239
+ console.warn(' ⚠ Model warm-up failed (non-fatal):', error);
240
+ }
241
+ // 6. Discover actual capabilities
242
+ console.log(' Discovering capabilities...');
243
+ const capabilities = await discoverCapabilities('http://127.0.0.1:9002');
244
+ // 7. Update WebSocket connection with real capabilities
245
+ wsConnection.updateCapabilities(capabilities);
246
+ // 8. Send config message to server for validation (this advertises presence)
247
+ wsConnection.sendConfig(capabilities);
248
+ console.log(' ✓ Capabilities discovered and sent to server');
249
+ }
250
+ catch (error) {
251
+ console.error(' ✗ Failed to setup llama.cpp:', error);
252
+ // Clean up process if spawned
253
+ if (llamaProcess) {
254
+ try {
255
+ llamaProcess.stop();
256
+ }
257
+ catch (cleanupError) {
258
+ // Ignore cleanup errors
259
+ }
260
+ }
261
+ throw error;
262
+ }
263
+ });
264
+ // Register config ack callback (called when server validates our config)
265
+ wsConnection.onConfigAck((success, error) => {
266
+ if (!success) {
267
+ console.error(' ✗ Server rejected configuration:', error);
268
+ // Stop reconnection and exit on config validation failure
269
+ wsConnection.close();
270
+ if (llamaProcess) {
271
+ try {
272
+ llamaProcess.stop();
273
+ }
274
+ catch (cleanupError) {
275
+ // Ignore cleanup errors
276
+ }
277
+ }
278
+ process.exit(1);
279
+ }
280
+ console.log(' ✓ Configuration validated by server');
281
+ });
282
+ // Register cancel handler
283
+ wsConnection.onCancel((cancelMessage) => {
284
+ console.log(`\n=== Cancelling job ${cancelMessage.job_id} ===`);
285
+ const abortController = activeJobs.get(cancelMessage.job_id);
286
+ if (abortController) {
287
+ abortController.abort();
288
+ console.log(`Sent abort signal to job ${cancelMessage.job_id}`);
289
+ }
290
+ else {
291
+ console.log(`Job ${cancelMessage.job_id} not found in active jobs (may have already completed)`);
292
+ }
293
+ });
294
+ try {
295
+ await wsConnection.connect(wsUrl);
296
+ console.log();
297
+ }
298
+ catch (error) {
299
+ // Connection failed - could be authentication or policy validation error
300
+ const errorMsg = error instanceof Error ? error.message : 'Unknown error';
301
+ if (errorMsg.includes('Policy validation failed') || errorMsg.includes('policy')) {
302
+ console.error('\n✗ Policy validation failed. Please configure your llama.cpp server to match the GPU key policy.');
303
+ console.error(' See error details above for specific mismatches.');
304
+ }
305
+ else if (errorMsg.includes('GPU key policy not configured')) {
306
+ console.error('\n✗ GPU key policy is not configured.');
307
+ console.error(' Please configure the policy in the web UI before connecting workers.');
308
+ }
309
+ else {
310
+ console.error('\n✗ Connection failed:', errorMsg);
311
+ }
312
+ process.exit(1);
313
+ }
314
+ // 4. Start processing jobs
315
+ console.log('[4/4] Ready to process jobs');
316
+ console.log('Waiting for work assignments...');
317
+ console.log('Press Ctrl+C to stop');
318
+ console.log();
319
+ // Handle graceful shutdown
320
+ const shutdown = () => {
321
+ console.log('\nShutting down...');
322
+ if (llamaProcess) {
323
+ try {
324
+ llamaProcess.stop();
325
+ }
326
+ catch (error) {
327
+ console.error('Error stopping llama.cpp:', error);
328
+ }
329
+ }
330
+ wsConnection.close();
331
+ process.exit(0);
332
+ };
333
+ process.on('SIGINT', shutdown);
334
+ process.on('SIGTERM', shutdown);
335
+ }
336
+ catch (error) {
337
+ console.error('Fatal error:', error);
338
+ process.exit(1);
339
+ }
340
+ }
341
+ main();
@@ -0,0 +1,287 @@
1
+ /**
2
+ * llama.cpp Binary Downloader
3
+ *
4
+ * Downloads and manages llama.cpp server binary from GitHub releases.
5
+ *
6
+ * Features:
7
+ * - Downloads fixed version for compatibility
8
+ * - Platform-specific binaries with GPU acceleration
9
+ * - Extracts binaries from archives
10
+ * - Caches binary in ~/.auxot/llama-server/{platform}-{arch}/
11
+ * - Works offline after first download
12
+ *
13
+ * GPU Support:
14
+ * - macOS: Metal GPU acceleration (built into binaries)
15
+ * - Linux: Vulkan GPU acceleration
16
+ * - Windows: CUDA GPU acceleration (NVIDIA GPUs)
17
+ */
18
+ import { existsSync, chmodSync, statSync } from 'node:fs';
19
+ import { mkdir, unlink } from 'node:fs/promises';
20
+ import { join } from 'node:path';
21
+ import { homedir } from 'os';
22
+ import { platform, arch } from 'os';
23
+ import { createWriteStream } from 'node:fs';
24
+ import { exec } from 'child_process';
25
+ import { promisify } from 'util';
26
+ import { detectGpuBackend } from './gpu-detection.js';
27
+ const execAsync = promisify(exec);
28
+ // Pin llama.cpp version for compatibility
29
+ // Update this when we want to upgrade to a new version
30
+ const LLAMA_CPP_VERSION = 'b7716'; // Latest stable as of implementation (confirmed via GitHub API)
31
+ const LLAMA_CPP_REPO = 'ggml-org/llama.cpp'; // Repository is ggml-org, not ggerganov
32
+ /**
33
+ * Get platform-specific archive name based on detected GPU hardware
34
+ *
35
+ * GPU variants:
36
+ * - macOS: Metal GPU acceleration (built into standard binaries)
37
+ * - Linux: Vulkan GPU acceleration (AMD/NVIDIA) or CPU fallback
38
+ * - Windows: CUDA 12.4 GPU acceleration (NVIDIA) or CPU fallback
39
+ */
40
+ async function getArchiveName() {
41
+ const os = platform();
42
+ const architecture = arch();
43
+ const gpuDetection = await detectGpuBackend();
44
+ // Log warning if CPU fallback is used
45
+ if (gpuDetection.warning) {
46
+ console.warn(` ⚠ ${gpuDetection.warning}`);
47
+ }
48
+ // Map Node.js platform/arch to llama.cpp archive names
49
+ if (os === 'darwin') {
50
+ // macOS: Metal GPU acceleration is built into the binaries
51
+ if (architecture === 'arm64') {
52
+ return { archiveName: `llama-${LLAMA_CPP_VERSION}-bin-macos-arm64.tar.gz`, warning: gpuDetection.warning };
53
+ }
54
+ else {
55
+ return { archiveName: `llama-${LLAMA_CPP_VERSION}-bin-macos-x64.tar.gz`, warning: gpuDetection.warning };
56
+ }
57
+ }
58
+ else if (os === 'linux') {
59
+ if (architecture === 'arm64' || architecture === 'aarch64') {
60
+ throw new Error(`Linux ARM64 binaries not available - please use x64 or build from source`);
61
+ }
62
+ else if (architecture === 's390x') {
63
+ // s390x only has CPU variant
64
+ return { archiveName: `llama-${LLAMA_CPP_VERSION}-bin-ubuntu-s390x.tar.gz`, warning: gpuDetection.warning };
65
+ }
66
+ else {
67
+ // Linux: Use Vulkan for GPU acceleration, CPU as fallback
68
+ if (gpuDetection.backend === 'cpu') {
69
+ return { archiveName: `llama-${LLAMA_CPP_VERSION}-bin-ubuntu-x64.tar.gz`, warning: gpuDetection.warning };
70
+ }
71
+ else {
72
+ return { archiveName: `llama-${LLAMA_CPP_VERSION}-bin-ubuntu-vulkan-x64.tar.gz`, warning: gpuDetection.warning };
73
+ }
74
+ }
75
+ }
76
+ else if (os === 'win32') {
77
+ if (architecture === 'arm64') {
78
+ // Windows ARM64 only has CPU variant
79
+ return { archiveName: `llama-${LLAMA_CPP_VERSION}-bin-win-cpu-arm64.zip`, warning: gpuDetection.warning };
80
+ }
81
+ else {
82
+ // Windows: Use CUDA for GPU acceleration (NVIDIA), CPU as fallback
83
+ if (gpuDetection.backend === 'cpu') {
84
+ return { archiveName: `llama-${LLAMA_CPP_VERSION}-bin-win-cpu-x64.zip`, warning: gpuDetection.warning };
85
+ }
86
+ else {
87
+ return { archiveName: `llama-${LLAMA_CPP_VERSION}-bin-win-cuda-12.4-x64.zip`, warning: gpuDetection.warning };
88
+ }
89
+ }
90
+ }
91
+ throw new Error(`Unsupported platform: ${os} ${architecture}`);
92
+ }
93
+ /**
94
+ * Get cache directory for llama.cpp binary
95
+ */
96
+ function getCacheDir() {
97
+ const os = platform();
98
+ const architecture = arch();
99
+ const cacheDir = process.env.AUXOT_LLAMA_CACHE_DIR || join(homedir(), '.auxot', 'llama-server');
100
+ return join(cacheDir, `${os}-${architecture}`);
101
+ }
102
+ /**
103
+ * Get cached binary path
104
+ * Binary is extracted to: {cacheDir}/llama-{VERSION}/llama-server
105
+ */
106
+ function getBinaryPath() {
107
+ const cacheDir = getCacheDir();
108
+ return join(cacheDir, `llama-${LLAMA_CPP_VERSION}`, 'llama-server');
109
+ }
110
+ /**
111
+ * Download and extract llama.cpp binary from GitHub releases
112
+ */
113
+ export async function downloadLlamaBinary(onProgress) {
114
+ const { archiveName, warning } = await getArchiveName();
115
+ const binaryPath = getBinaryPath();
116
+ const cacheDir = getCacheDir();
117
+ const archivePath = join(cacheDir, archiveName);
118
+ // Log warning if CPU fallback is used
119
+ if (warning) {
120
+ console.warn(` ⚠ ${warning}`);
121
+ }
122
+ // Check if binary already exists
123
+ if (existsSync(binaryPath)) {
124
+ const stats = statSync(binaryPath);
125
+ if (stats.size > 0) {
126
+ console.log(` ✓ llama.cpp binary already cached (${formatBytes(stats.size)})`);
127
+ return binaryPath;
128
+ }
129
+ }
130
+ // Create cache directory if it doesn't exist
131
+ if (!existsSync(cacheDir)) {
132
+ await mkdir(cacheDir, { recursive: true });
133
+ }
134
+ // Build GitHub release download URL
135
+ // Format: https://github.com/{repo}/releases/download/{tag}/{asset}
136
+ const downloadUrl = `https://github.com/${LLAMA_CPP_REPO}/releases/download/${LLAMA_CPP_VERSION}/${archiveName}`;
137
+ console.log(` Downloading llama.cpp binary...`);
138
+ console.log(` Version: ${LLAMA_CPP_VERSION}`);
139
+ console.log(` Platform: ${platform()}-${arch()}`);
140
+ console.log(` Archive: ${archiveName}`);
141
+ // Download archive
142
+ const response = await fetch(downloadUrl);
143
+ if (!response.ok) {
144
+ if (response.status === 404) {
145
+ throw new Error(`Archive not found for platform ${platform()}-${arch()}. Available binaries may not exist for this platform.`);
146
+ }
147
+ throw new Error(`Download failed: ${response.status} ${response.statusText}`);
148
+ }
149
+ const contentLength = response.headers.get('content-length');
150
+ const totalSize = contentLength ? parseInt(contentLength, 10) : 0;
151
+ // Stream response to file
152
+ const reader = response.body?.getReader();
153
+ if (!reader) {
154
+ throw new Error('Response body is not readable');
155
+ }
156
+ const fileStream = createWriteStream(archivePath);
157
+ let downloadedBytes = 0;
158
+ try {
159
+ // Download archive
160
+ while (true) {
161
+ const { done, value } = await reader.read();
162
+ if (done) {
163
+ break;
164
+ }
165
+ fileStream.write(value);
166
+ downloadedBytes += value.length;
167
+ // Report progress
168
+ if (onProgress) {
169
+ onProgress(downloadedBytes, totalSize);
170
+ }
171
+ else if (totalSize > 0) {
172
+ // Simple progress log every 1MB
173
+ if (downloadedBytes % (1024 * 1024) < value.length) {
174
+ const percent = ((downloadedBytes / totalSize) * 100).toFixed(1);
175
+ process.stdout.write(`\r Progress: ${percent}% (${formatBytes(downloadedBytes)} / ${formatBytes(totalSize)})`);
176
+ }
177
+ }
178
+ }
179
+ fileStream.end();
180
+ // Wait for file stream to finish
181
+ await new Promise((resolve, reject) => {
182
+ fileStream.on('finish', resolve);
183
+ fileStream.on('error', reject);
184
+ });
185
+ if (totalSize > 0 && downloadedBytes !== totalSize) {
186
+ throw new Error(`Download incomplete: ${downloadedBytes} bytes downloaded, expected ${totalSize}`);
187
+ }
188
+ if (onProgress) {
189
+ process.stdout.write('\r');
190
+ }
191
+ else {
192
+ process.stdout.write('\r');
193
+ }
194
+ console.log(` ✓ Archive downloaded (${formatBytes(downloadedBytes)})`);
195
+ console.log(` Extracting archive...`);
196
+ // Extract archive
197
+ const os = platform();
198
+ const extractDir = cacheDir;
199
+ try {
200
+ if (archiveName.endsWith('.tar.gz')) {
201
+ // Extract tar.gz (macOS/Linux)
202
+ await execAsync(`tar -xzf "${archivePath}" -C "${extractDir}"`, {
203
+ maxBuffer: 10 * 1024 * 1024, // 10MB buffer
204
+ });
205
+ }
206
+ else if (archiveName.endsWith('.zip')) {
207
+ // Extract zip (Windows)
208
+ // Use PowerShell Expand-Archive on Windows, or unzip on Unix-like systems (Git Bash, WSL)
209
+ if (os === 'win32') {
210
+ // PowerShell Expand-Archive (native Windows)
211
+ await execAsync(`powershell -Command "Expand-Archive -Path '${archivePath}' -DestinationPath '${extractDir}' -Force"`, {
212
+ maxBuffer: 10 * 1024 * 1024, // 10MB buffer
213
+ });
214
+ }
215
+ else {
216
+ // Use unzip (available on Unix-like systems, Git Bash, WSL)
217
+ await execAsync(`unzip -q "${archivePath}" -d "${extractDir}"`, {
218
+ maxBuffer: 10 * 1024 * 1024, // 10MB buffer
219
+ });
220
+ }
221
+ }
222
+ else {
223
+ throw new Error(`Unsupported archive format: ${archiveName}`);
224
+ }
225
+ // Clean up archive
226
+ await unlink(archivePath);
227
+ // Verify binary exists
228
+ if (!existsSync(binaryPath)) {
229
+ throw new Error(`Binary not found after extraction: ${binaryPath}`);
230
+ }
231
+ // Make binary executable (Unix-like systems)
232
+ if (os !== 'win32') {
233
+ chmodSync(binaryPath, 0o755);
234
+ }
235
+ console.log(` ✓ Extraction complete`);
236
+ console.log(` ✓ Binary cached at: ${binaryPath}`);
237
+ return binaryPath;
238
+ }
239
+ catch (extractError) {
240
+ // Clean up archive on error
241
+ if (existsSync(archivePath)) {
242
+ await unlink(archivePath).catch(() => { });
243
+ }
244
+ throw new Error(`Extraction failed: ${extractError instanceof Error ? extractError.message : String(extractError)}`);
245
+ }
246
+ }
247
+ catch (error) {
248
+ fileStream.destroy();
249
+ // Clean up partial download
250
+ if (existsSync(archivePath)) {
251
+ await unlink(archivePath).catch(() => { });
252
+ }
253
+ throw error;
254
+ }
255
+ }
256
+ /**
257
+ * Get llama.cpp binary path, downloading if necessary
258
+ */
259
+ export async function ensureLlamaBinary(onProgress) {
260
+ const binaryPath = getBinaryPath();
261
+ // Check if binary exists and is valid
262
+ if (existsSync(binaryPath)) {
263
+ const stats = statSync(binaryPath);
264
+ if (stats.size > 0) {
265
+ return binaryPath;
266
+ }
267
+ }
268
+ // Download and extract binary
269
+ return await downloadLlamaBinary(onProgress);
270
+ }
271
+ /**
272
+ * Get binary path without downloading (for checking if binary exists)
273
+ */
274
+ export function getLlamaBinaryPath() {
275
+ return getBinaryPath();
276
+ }
277
+ /**
278
+ * Format bytes to human-readable string
279
+ */
280
+ function formatBytes(bytes) {
281
+ if (bytes === 0)
282
+ return '0 B';
283
+ const k = 1024;
284
+ const sizes = ['B', 'KB', 'MB', 'GB'];
285
+ const i = Math.floor(Math.log(bytes) / Math.log(k));
286
+ return `${(bytes / Math.pow(k, i)).toFixed(1)} ${sizes[i]}`;
287
+ }