@aleph-ai/tinyaleph 1.4.0 → 1.4.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,1400 @@
1
+ # ResoAleph: Unified Python Library Design
2
+
3
+ ## Prime Resonance Computing Framework
4
+
5
+ A comprehensive Python port unifying TinyAleph and ResoLang into a powerful, flexible, and scalable library for prime-resonant semantic computing, hypercomplex algebra, and quantum-inspired dynamics.
6
+
7
+ ---
8
+
9
+ ## 1. Executive Summary
10
+
11
+ ### 1.1 Vision
12
+
13
+ **ResoAleph** is a unified Python library that combines:
14
+ - **TinyAleph's** prime Hilbert space mathematics, hypercomplex algebra, and Kuramoto dynamics
15
+ - **ResoLang's** Prime Resonance Network protocols, quaternionic entanglement, and holographic memory
16
+
17
+ The result is a powerful framework for:
18
+ - Quantum-inspired symbolic computing
19
+ - Prime-based semantic encoding
20
+ - Hypercomplex neural network primitives
21
+ - Distributed entanglement networks
22
+ - Entropy-minimizing reasoning systems
23
+
24
+ ### 1.2 Shared Concepts Between TinyAleph and ResoLang
25
+
26
+ Both libraries share these core mathematical foundations:
27
+
28
+ | Concept | TinyAleph | ResoLang | Unified Python |
29
+ |---------|-----------|----------|----------------|
30
+ | **Complex Numbers** | `Complex` class in `hilbert.js` | `Complex` in `types.ts` | `resoaleph.core.Complex` |
31
+ | **Quaternions** | `Quaternion` in `rformer.js` | `Quaternion` in `quaternion.ts` | `resoaleph.core.Quaternion` |
32
+ | **Prime States** | `PrimeState` in `hilbert.js` | `PrimeState` in `prime-state.ts` | `resoaleph.hilbert.PrimeState` |
33
+ | **Entropy** | Shannon entropy functions | Entropy evolution | `resoaleph.physics.entropy` |
34
+ | **Resonance** | Golden ratio calculator | Resonance field | `resoaleph.resonance` |
35
+ | **Memory Fields** | Holographic encoding | Resonant fragments | `resoaleph.resonance.fragment` |
36
+ | **Network Nodes** | Entangled nodes | Entangled nodes | `resoaleph.network.node` |
37
+ | **Collapse** | Born measurement | Collapse operator | `resoaleph.hilbert.measurement` |
38
+
39
+ ### 1.3 Design Principles
40
+
41
+ 1. **Mathematical Rigor** - Faithful implementation of theoretical foundations
42
+ 2. **Pythonic API** - Clean, intuitive interfaces following PEP standards
43
+ 3. **Performance** - GPU acceleration via JAX/CuPy, vectorized operations via NumPy
44
+ 4. **Extensibility** - Plugin architecture for custom backends and operators
45
+ 5. **Type Safety** - Full type hints with Pydantic validation
46
+ 6. **Scalability** - Distributed computing support via Ray/Dask
47
+
48
+ ---
49
+
50
+ ## 2. Architecture Overview
51
+
52
+ ```
53
+ resoaleph/
54
+ ├── core/ # Mathematical foundations
55
+ │ ├── __init__.py
56
+ │ ├── complex.py # Complex number operations
57
+ │ ├── quaternion.py # Quaternion algebra (Hamilton)
58
+ │ ├── hypercomplex.py # Cayley-Dickson construction (2^n dimensions)
59
+ │ ├── primes.py # Prime number utilities & generators
60
+ │ ├── number_fields.py # Gaussian, Eisenstein integers
61
+ │ └── constants.py # PHI, DELTA_S, etc.
62
+
63
+ ├── hilbert/ # Prime Hilbert Space
64
+ │ ├── __init__.py
65
+ │ ├── state.py # PrimeState class
66
+ │ ├── operators.py # P̂, F̂, R̂, Ĉ operators
67
+ │ ├── evolution.py # Entropy-driven evolution
68
+ │ ├── measurement.py # Born measurement, collapse
69
+ │ └── extended_ops.py # Möbius, Euler totient operators
70
+
71
+ ├── physics/ # Synchronization & dynamics
72
+ │ ├── __init__.py
73
+ │ ├── oscillator.py # Base oscillator classes
74
+ │ ├── kuramoto.py # Kuramoto model variants
75
+ │ ├── entropy.py # Shannon, state, coherence entropy
76
+ │ ├── lyapunov.py # Stability analysis
77
+ │ ├── collapse.py # State collapse dynamics
78
+ │ └── z_ladder.py # Primeon Z-ladder evolution
79
+
80
+ ├── resonance/ # Resonance computing
81
+ │ ├── __init__.py
82
+ │ ├── fragment.py # ResonantFragment holographic memory
83
+ │ ├── field.py # QuaternionicResonanceField
84
+ │ ├── operators.py # Tensor, collapse, phase ops
85
+ │ ├── calculator.py # Golden ratio resonance
86
+ │ ├── patterns.py # Semantic pattern detection
87
+ │ └── wavelets.py # Fibonacci wavelet analysis
88
+
89
+ ├── network/ # Prime Resonance Network
90
+ │ ├── __init__.py
91
+ │ ├── identity.py # PrimeResonanceIdentity (PRI)
92
+ │ ├── node.py # EntangledNode
93
+ │ ├── entanglement.py # Entanglement protocols
94
+ │ ├── teleportation.py # Memory teleportation
95
+ │ ├── routing.py # Resonance routing
96
+ │ └── protocols.py # EIP, MTP, RRP protocols
97
+
98
+ ├── ml/ # Machine learning primitives
99
+ │ ├── __init__.py
100
+ │ ├── sparse_state.py # SparsePrimeState (H_Q = H_P ⊗ ℍ)
101
+ │ ├── attention.py # Resonant attention mechanisms
102
+ │ ├── composition.py # Hamilton product composition
103
+ │ ├── halting.py # Coherence-gated halting (ACT)
104
+ │ ├── collapse_head.py # 64-codebook entropy collapse
105
+ │ ├── graph_memory.py # PRGraphMemory
106
+ │ └── layers/ # Neural network layers
107
+ │ ├── __init__.py
108
+ │ ├── attention.py # ResonantMultiHeadAttention
109
+ │ ├── ffn.py # PrimeFFN
110
+ │ ├── norm.py # PrimeLayerNorm
111
+ │ ├── encoding.py # PositionalPrimeEncoding
112
+ │ ├── block.py # ResoFormerBlock
113
+ │ └── transformer.py # Full ResoFormer model
114
+
115
+ ├── observer/ # Sentient Observer architecture
116
+ │ ├── __init__.py
117
+ │ ├── smf.py # Sedenion Memory Field
118
+ │ ├── prsc.py # Prime Resonance Semantic Coherence
119
+ │ ├── temporal.py # Temporal layer & moments
120
+ │ ├── entanglement.py # Entanglement layer
121
+ │ ├── agency.py # Agency, attention, goals
122
+ │ ├── boundary.py # Self/environment distinction
123
+ │ ├── safety.py # Ethical constraints
124
+ │ └── hqe.py # Holographic Quantum Encoding
125
+
126
+ ├── backends/ # Domain-specific backends
127
+ │ ├── __init__.py
128
+ │ ├── interface.py # Backend base class
129
+ │ ├── semantic.py # NLP, concept mapping
130
+ │ ├── cryptographic.py # Hashing, key derivation
131
+ │ ├── scientific.py # Quantum simulation
132
+ │ └── bioinformatics.py # DNA/protein computing
133
+
134
+ ├── symbolic/ # Symbolic computation
135
+ │ ├── __init__.py
136
+ │ ├── types.py # Noun, Adj, Sentence types
137
+ │ ├── reduction.py # Reduction semantics
138
+ │ ├── lambda_calc.py # Lambda calculus translation
139
+ │ └── enochian.py # Enochian packet layer
140
+
141
+ ├── runtime/ # Execution runtime
142
+ │ ├── __init__.py
143
+ │ ├── engine.py # AlephEngine
144
+ │ ├── risa.py # RISA instruction engine
145
+ │ ├── processor.py # Instruction processor
146
+ │ └── context.py # Execution context
147
+
148
+ ├── utils/ # Utilities
149
+ │ ├── __init__.py
150
+ │ ├── serialization.py # JSON builders
151
+ │ ├── validation.py # Pydantic validators
152
+ │ ├── logging.py # Structured logging
153
+ │ ├── metrics.py # Prometheus-compatible metrics
154
+ │ └── profiling.py # Performance profiling
155
+
156
+ └── distributed/ # Distributed computing
157
+ ├── __init__.py
158
+ ├── transport.py # WebSocket, SSE, polling
159
+ ├── coordinator.py # Network coordination
160
+ └── ray_backend.py # Ray integration
161
+ ```
162
+
163
+ ---
164
+
165
+ ## 3. Third-Party Dependencies
166
+
167
+ ### 3.1 Core Scientific Computing (Required)
168
+
169
+ ```toml
170
+ [project]
171
+ name = "resoaleph"
172
+ version = "0.1.0"
173
+ requires-python = ">=3.10"
174
+
175
+ dependencies = [
176
+ # Core numerical computing
177
+ "numpy>=1.24.0",
178
+ "scipy>=1.11.0",
179
+ "sympy>=1.12",
180
+
181
+ # Type safety & validation
182
+ "pydantic>=2.5.0",
183
+ "typing-extensions>=4.8.0",
184
+
185
+ # Async & concurrency
186
+ "aiohttp>=3.9.0",
187
+
188
+ # Serialization
189
+ "msgpack>=1.0.7",
190
+ "orjson>=3.9.10",
191
+
192
+ # Logging & monitoring
193
+ "structlog>=23.2.0",
194
+ ]
195
+ ```
196
+
197
+ ### 3.2 GPU Acceleration (Optional)
198
+
199
+ ```toml
200
+ [project.optional-dependencies]
201
+ gpu = [
202
+ "jax>=0.4.20",
203
+ "jaxlib>=0.4.20",
204
+ ]
205
+
206
+ cuda = [
207
+ "cupy>=12.0.0",
208
+ ]
209
+ ```
210
+
211
+ ### 3.3 Machine Learning (Optional)
212
+
213
+ ```toml
214
+ ml = [
215
+ "torch>=2.1.0",
216
+ "einops>=0.7.0",
217
+ "transformers>=4.35.0",
218
+ ]
219
+ ```
220
+
221
+ ### 3.4 Distributed Computing (Optional)
222
+
223
+ ```toml
224
+ distributed = [
225
+ "ray>=2.8.0",
226
+ "dask>=2023.11.0",
227
+ "websockets>=12.0",
228
+ ]
229
+ ```
230
+
231
+ ### 3.5 Visualization (Optional)
232
+
233
+ ```toml
234
+ viz = [
235
+ "matplotlib>=3.8.0",
236
+ "plotly>=5.18.0",
237
+ "networkx>=3.2",
238
+ ]
239
+ ```
240
+
241
+ ### 3.6 Development Dependencies
242
+
243
+ ```toml
244
+ [project.optional-dependencies]
245
+ dev = [
246
+ "pytest>=7.4.0",
247
+ "pytest-asyncio>=0.21.0",
248
+ "pytest-benchmark>=4.0.0",
249
+ "hypothesis>=6.88.0",
250
+ "mypy>=1.7.0",
251
+ "ruff>=0.1.6",
252
+ "black>=23.11.0",
253
+ ]
254
+ ```
255
+
256
+ ---
257
+
258
+ ## 4. Core Module Designs
259
+
260
+ ### 4.1 Complex Numbers (`core/complex.py`)
261
+
262
+ ```python
263
+ """
264
+ Complex number operations with full operator overloading.
265
+ """
266
+ from __future__ import annotations
267
+ import numpy as np
268
+ from pydantic import BaseModel, Field
269
+
270
+
271
+ class Complex(BaseModel):
272
+ """Complex number with full arithmetic operations."""
273
+ re: float = Field(default=0.0)
274
+ im: float = Field(default=0.0)
275
+
276
+ @classmethod
277
+ def from_polar(cls, r: float, theta: float) -> Complex:
278
+ return cls(re=r * np.cos(theta), im=r * np.sin(theta))
279
+
280
+ @classmethod
281
+ def zero(cls) -> Complex:
282
+ return cls(re=0.0, im=0.0)
283
+
284
+ @classmethod
285
+ def one(cls) -> Complex:
286
+ return cls(re=1.0, im=0.0)
287
+
288
+ def __add__(self, other: Complex) -> Complex:
289
+ return Complex(re=self.re + other.re, im=self.im + other.im)
290
+
291
+ def __mul__(self, other: Complex | float) -> Complex:
292
+ if isinstance(other, (int, float)):
293
+ return Complex(re=self.re * other, im=self.im * other)
294
+ return Complex(
295
+ re=self.re * other.re - self.im * other.im,
296
+ im=self.re * other.im + self.im * other.re
297
+ )
298
+
299
+ def conj(self) -> Complex:
300
+ return Complex(re=self.re, im=-self.im)
301
+
302
+ def norm2(self) -> float:
303
+ return self.re ** 2 + self.im ** 2
304
+
305
+ def norm(self) -> float:
306
+ return np.sqrt(self.norm2())
307
+
308
+ def phase(self) -> float:
309
+ return np.arctan2(self.im, self.re)
310
+
311
+ def exp(self) -> Complex:
312
+ ea = np.exp(self.re)
313
+ return Complex(re=ea * np.cos(self.im), im=ea * np.sin(self.im))
314
+ ```
315
+
316
+ ### 4.2 Quaternion Algebra (`core/quaternion.py`)
317
+
318
+ ```python
319
+ """
320
+ Hamilton quaternion algebra with full operations.
321
+ """
322
+ from __future__ import annotations
323
+ import numpy as np
324
+ from pydantic import BaseModel, Field
325
+ from typing import Tuple
326
+
327
+
328
+ class Quaternion(BaseModel):
329
+ """Hamilton quaternion: q = w + xi + yj + zk"""
330
+ w: float = Field(default=1.0)
331
+ x: float = Field(default=0.0)
332
+ y: float = Field(default=0.0)
333
+ z: float = Field(default=0.0)
334
+
335
+ @classmethod
336
+ def from_axis_angle(cls, axis: Tuple[float, float, float], angle: float) -> Quaternion:
337
+ ax, ay, az = axis
338
+ norm = np.sqrt(ax*ax + ay*ay + az*az)
339
+ if norm < 1e-10:
340
+ return cls()
341
+ half_angle = angle / 2
342
+ s = np.sin(half_angle) / norm
343
+ return cls(w=np.cos(half_angle), x=ax*s, y=ay*s, z=az*s)
344
+
345
+ def __mul__(self, other: Quaternion | float) -> Quaternion:
346
+ if isinstance(other, (int, float)):
347
+ return Quaternion(w=self.w*other, x=self.x*other, y=self.y*other, z=self.z*other)
348
+ # Hamilton product
349
+ return Quaternion(
350
+ w=self.w*other.w - self.x*other.x - self.y*other.y - self.z*other.z,
351
+ x=self.w*other.x + self.x*other.w + self.y*other.z - self.z*other.y,
352
+ y=self.w*other.y - self.x*other.z + self.y*other.w + self.z*other.x,
353
+ z=self.w*other.z + self.x*other.y - self.y*other.x + self.z*other.w
354
+ )
355
+
356
+ def conj(self) -> Quaternion:
357
+ return Quaternion(w=self.w, x=-self.x, y=-self.y, z=-self.z)
358
+
359
+ def norm(self) -> float:
360
+ return np.sqrt(self.w**2 + self.x**2 + self.y**2 + self.z**2)
361
+
362
+ def normalize(self) -> Quaternion:
363
+ n = self.norm()
364
+ return self * (1/n) if n > 1e-10 else Quaternion()
365
+
366
+ def commutator(self, other: Quaternion) -> Quaternion:
367
+ """[q1, q2] = q1*q2 - q2*q1 (non-commutativity measure)"""
368
+ return self * other + (other * self) * (-1)
369
+
370
+ def slerp(self, other: Quaternion, t: float) -> Quaternion:
371
+ """Spherical linear interpolation."""
372
+ dot = self.w*other.w + self.x*other.x + self.y*other.y + self.z*other.z
373
+ q2 = other if dot >= 0 else Quaternion(w=-other.w, x=-other.x, y=-other.y, z=-other.z)
374
+ dot = abs(dot)
375
+
376
+ if dot > 0.9995:
377
+ # Linear interpolation for close quaternions
378
+ result = Quaternion(
379
+ w=self.w + t*(q2.w - self.w),
380
+ x=self.x + t*(q2.x - self.x),
381
+ y=self.y + t*(q2.y - self.y),
382
+ z=self.z + t*(q2.z - self.z)
383
+ )
384
+ return result.normalize()
385
+
386
+ theta = np.arccos(dot)
387
+ sin_theta = np.sin(theta)
388
+ s1 = np.sin((1 - t) * theta) / sin_theta
389
+ s2 = np.sin(t * theta) / sin_theta
390
+
391
+ return Quaternion(
392
+ w=s1*self.w + s2*q2.w,
393
+ x=s1*self.x + s2*q2.x,
394
+ y=s1*self.y + s2*q2.y,
395
+ z=s1*self.z + s2*q2.z
396
+ )
397
+ ```
398
+
399
+ ### 4.3 Hypercomplex Algebra (`core/hypercomplex.py`)
400
+
401
+ ```python
402
+ """
403
+ Generic Cayley-Dickson construction for 2^n dimensional algebras.
404
+ """
405
+ from __future__ import annotations
406
+ import numpy as np
407
+ from numpy.typing import NDArray
408
+ from functools import lru_cache
409
+
410
+
411
+ class Hypercomplex:
412
+ """Cayley-Dickson algebra of dimension 2^n."""
413
+
414
+ def __init__(self, dim: int, components: NDArray | None = None):
415
+ if not (dim > 0 and (dim & (dim - 1)) == 0):
416
+ raise ValueError("Dimension must be power of 2")
417
+ self.dim = dim
418
+ self.c = components if components is not None else np.zeros(dim)
419
+
420
+ @staticmethod
421
+ @lru_cache(maxsize=128)
422
+ def _multiply_indices(dim: int, i: int, j: int) -> tuple[int, int]:
423
+ """Get (result_index, sign) for e_i * e_j."""
424
+ if i == 0: return (j, 1)
425
+ if j == 0: return (i, 1)
426
+ if i == j: return (0, -1)
427
+
428
+ half = dim // 2
429
+ if i < half and j < half:
430
+ return Hypercomplex._multiply_indices(half, i, j)
431
+ elif i < half:
432
+ k, s = Hypercomplex._multiply_indices(half, i, j - half)
433
+ return (k + half, s)
434
+ elif j < half:
435
+ k, s = Hypercomplex._multiply_indices(half, i - half, j)
436
+ return (k + half, s)
437
+ else:
438
+ k, s = Hypercomplex._multiply_indices(half, j - half, i - half)
439
+ return (k, -s)
440
+
441
+ def __mul__(self, other: Hypercomplex | float) -> Hypercomplex:
442
+ if isinstance(other, (int, float)):
443
+ return Hypercomplex(self.dim, self.c * other)
444
+ result = np.zeros(self.dim)
445
+ for i in range(self.dim):
446
+ for j in range(self.dim):
447
+ k, s = self._multiply_indices(self.dim, i, j)
448
+ result[k] += s * self.c[i] * other.c[j]
449
+ return Hypercomplex(self.dim, result)
450
+
451
+ def conj(self) -> Hypercomplex:
452
+ result = np.zeros(self.dim)
453
+ result[0] = self.c[0]
454
+ result[1:] = -self.c[1:]
455
+ return Hypercomplex(self.dim, result)
456
+
457
+ def norm(self) -> float:
458
+ return float(np.sqrt(np.dot(self.c, self.c)))
459
+
460
+ def entropy(self) -> float:
461
+ n = self.norm()
462
+ if n < 1e-10: return 0.0
463
+ probs = (self.c / n) ** 2
464
+ probs = probs[probs > 1e-10]
465
+ return float(-np.sum(probs * np.log2(probs)))
466
+ ```
467
+
468
+ ### 4.4 Prime State (`hilbert/state.py`)
469
+
470
+ ```python
471
+ """
472
+ Prime Hilbert Space: HP = {|ψ⟩ = Σ αp|p⟩ : Σ|αp|² = 1}
473
+ """
474
+ from __future__ import annotations
475
+ import numpy as np
476
+ from typing import Dict, List, Tuple
477
+ from sympy import factorint, isprime
478
+ from ..core.complex import Complex
479
+
480
+
481
+ def first_n_primes(n: int) -> List[int]:
482
+ primes = []
483
+ p = 2
484
+ while len(primes) < n:
485
+ if isprime(p):
486
+ primes.append(p)
487
+ p += 1
488
+ return primes
489
+
490
+
491
+ class PrimeState:
492
+ """Quantum state in Prime Hilbert space."""
493
+
494
+ def __init__(self, primes: List[int] | None = None):
495
+ self.primes = primes or first_n_primes(25)
496
+ self.amplitudes: Dict[int, Complex] = {p: Complex.zero() for p in self.primes}
497
+
498
+ @classmethod
499
+ def basis(cls, p: int) -> PrimeState:
500
+ state = cls()
501
+ if p in state.amplitudes:
502
+ state.amplitudes[p] = Complex.one()
503
+ return state
504
+
505
+ @classmethod
506
+ def uniform(cls) -> PrimeState:
507
+ state = cls()
508
+ n = len(state.primes)
509
+ amp = Complex(re=1/np.sqrt(n), im=0)
510
+ for p in state.primes:
511
+ state.amplitudes[p] = amp
512
+ return state
513
+
514
+ @classmethod
515
+ def composite(cls, n: int) -> PrimeState:
516
+ state = cls()
517
+ factors = factorint(n)
518
+ total = sum(factors.values())
519
+ for p, exp in factors.items():
520
+ if p in state.amplitudes:
521
+ state.amplitudes[p] = Complex(re=exp/total, im=0)
522
+ return state.normalize()
523
+
524
+ def get(self, p: int) -> Complex:
525
+ return self.amplitudes.get(p, Complex.zero())
526
+
527
+ def norm(self) -> float:
528
+ return np.sqrt(sum(self.get(p).norm2() for p in self.primes))
529
+
530
+ def normalize(self) -> PrimeState:
531
+ n = self.norm()
532
+ if n < 1e-10: return self
533
+ for p in self.primes:
534
+ self.amplitudes[p] = self.amplitudes[p] * (1/n)
535
+ return self
536
+
537
+ def entropy(self) -> float:
538
+ n2 = self.norm() ** 2
539
+ if n2 < 1e-10: return 0.0
540
+ h = 0.0
541
+ for p in self.primes:
542
+ prob = self.get(p).norm2() / n2
543
+ if prob > 1e-10:
544
+ h -= prob * np.log2(prob)
545
+ return h
546
+
547
+ def measure(self) -> Tuple[int, float]:
548
+ """Born measurement."""
549
+ n2 = self.norm() ** 2
550
+ r = np.random.random() * n2
551
+ cumulative = 0.0
552
+ for p in self.primes:
553
+ prob = self.get(p).norm2()
554
+ cumulative += prob
555
+ if r < cumulative:
556
+ return (p, prob / n2)
557
+ return (self.primes[-1], self.get(self.primes[-1]).norm2() / n2)
558
+ ```
559
+
560
+ ### 4.5 Kuramoto Model (`physics/kuramoto.py`)
561
+
562
+ ```python
563
+ """
564
+ Kuramoto coupled oscillator model.
565
+ """
566
+ from __future__ import annotations
567
+ import numpy as np
568
+ from numpy.typing import NDArray
569
+ from dataclasses import dataclass
570
+
571
+
572
+ @dataclass
573
+ class KuramotoModel:
574
+ """dθ_i/dt = ω_i + (K/N) Σ sin(θ_j - θ_i)"""
575
+
576
+ n_oscillators: int
577
+ coupling: float = 1.0
578
+ frequencies: NDArray | None = None
579
+ phases: NDArray | None = None
580
+
581
+ def __post_init__(self):
582
+ if self.frequencies is None:
583
+ self.frequencies = np.random.normal(0, 1, self.n_oscillators)
584
+ if self.phases is None:
585
+ self.phases = np.random.uniform(0, 2*np.pi, self.n_oscillators)
586
+
587
+ def step(self, dt: float):
588
+ phase_diff = self.phases[:, np.newaxis] - self.phases[np.newaxis, :]
589
+ coupling_term = np.mean(np.sin(phase_diff), axis=1)
590
+ self.phases += (self.frequencies + self.coupling * coupling_term) * dt
591
+ self.phases %= 2 * np.pi
592
+
593
+ def order_parameter(self) -> complex:
594
+ return np.mean(np.exp(1j * self.phases))
595
+
596
+ def synchronization(self) -> float:
597
+ return abs(self.order_parameter())
598
+ ```
599
+
600
+ ### 4.6 Resonant Fragment (`resonance/fragment.py`)
601
+
602
+ ```python
603
+ """
604
+ Holographic memory fragment from ResoLang.
605
+ """
606
+ from __future__ import annotations
607
+ import numpy as np
608
+ from typing import Dict, Tuple
609
+ from sympy import isprime
610
+
611
+
612
+ class ResonantFragment:
613
+ """Holographic memory field with prime coefficients."""
614
+
615
+ def __init__(
616
+ self,
617
+ coeffs: Dict[int, float] | None = None,
618
+ center: Tuple[float, float] = (0.0, 0.0),
619
+ entropy: float = 0.0
620
+ ):
621
+ self.coeffs = coeffs or {}
622
+ self.center = center
623
+ self.entropy = entropy
624
+
625
+ @classmethod
626
+ def encode(cls, pattern: str, spatial_entropy: float = 0.5) -> ResonantFragment:
627
+ """Encode string pattern into holographic memory."""
628
+ coeffs = {}
629
+ prime = 2
630
+
631
+ for i, char in enumerate(pattern):
632
+ while not isprime(prime):
633
+ prime += 1
634
+
635
+ # Holographic encoding: A_p * e^(-S) * e^(ipθ)
636
+ base_amp = ord(char) / 255.0
637
+ spatial_factor = np.exp(-spatial_entropy)
638
+ phase_factor = np.cos(prime * np.pi / 4)
639
+ coeffs[prime] = base_amp * spatial_factor * phase_factor
640
+ prime += 1
641
+
642
+ # Normalize
643
+ total = np.sqrt(sum(a**2 for a in coeffs.values()))
644
+ if total > 0:
645
+ coeffs = {k: v/total for k, v in coeffs.items()}
646
+
647
+ # Compute Shannon entropy
648
+ entropy = 0.0
649
+ for amp in coeffs.values():
650
+ p = amp ** 2
651
+ if p > 0:
652
+ entropy -= p * np.log(p)
653
+
654
+ center = (len(pattern) / 2.0, total / len(pattern))
655
+ return cls(coeffs, center, entropy)
656
+
657
+ def tensor(self, other: ResonantFragment) -> ResonantFragment:
658
+ """Tensor product: field interaction."""
659
+ new_coeffs = dict(self.coeffs)
660
+ for p, amp in other.coeffs.items():
661
+ new_coeffs[p] = new_coeffs.get(p, 0) + amp
662
+
663
+ # Normalize
664
+ total = np.sqrt(sum(a**2 for a in new_coeffs.values()))
665
+ if total > 0:
666
+ new_coeffs = {k: v/total for k, v in new_coeffs.items()}
667
+
668
+ # New center (weighted average)
669
+ total_entropy = self.entropy + other.entropy
670
+ if total_entropy > 0:
671
+ w1 = self.entropy / total_entropy
672
+ w2 = other.entropy / total_entropy
673
+ else:
674
+ w1 = w2 = 0.5
675
+
676
+ center = (
677
+ self.center[0] * w1 + other.center[0] * w2,
678
+ self.center[1] * w1 + other.center[1] * w2
679
+ )
680
+
681
+ return ResonantFragment(new_coeffs, center, self.entropy + other.entropy)
682
+
683
+ def collapse(self) -> ResonantFragment:
684
+ """Probabilistic collapse to single prime."""
685
+ if not self.coeffs:
686
+ return self
687
+
688
+ probs = {p: a**2 for p, a in self.coeffs.items()}
689
+ total = sum(probs.values())
690
+
691
+ r = np.random.random() * total
692
+ cumulative = 0.0
693
+ selected = list(self.coeffs.keys())[0]
694
+
695
+ for p, prob in probs.items():
696
+ cumulative += prob
697
+ if r < cumulative:
698
+ selected = p
699
+ break
700
+
701
+ return ResonantFragment({selected: 1.0}, self.center, 0.0)
702
+ ```
703
+
704
+ ### 4.7 Prime Resonance Identity (`network/identity.py`)
705
+
706
+ ```python
707
+ """
708
+ Prime Resonance Identity (PRI) for network nodes.
709
+ """
710
+ from __future__ import annotations
711
+ import numpy as np
712
+ from dataclasses import dataclass
713
+ from typing import Tuple
714
+
715
+
716
+ @dataclass
717
+ class PrimeResonanceIdentity:
718
+ """
719
+ PRI = (P_G, P_E, P_Q)
720
+ - P_G: Gaussian prime
721
+ - P_E: Eisenstein prime
722
+ - P_Q: Quaternionic prime
723
+ """
724
+ gaussian: int
725
+ eisenstein: int
726
+ quaternionic: int
727
+
728
+ @classmethod
729
+ def random(cls) -> PrimeResonanceIdentity:
730
+ primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]
731
+ return cls(
732
+ gaussian=np.random.choice(primes),
733
+ eisenstein=np.random.choice(primes),
734
+ quaternionic=np.random.choice(primes)
735
+ )
736
+
737
+ @classmethod
738
+ def from_seed(cls, seed: int) -> PrimeResonanceIdentity:
739
+ rng = np.random.default_rng(seed)
740
+ primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]
741
+ return cls(
742
+ gaussian=int(rng.choice(primes)),
743
+ eisenstein=int(rng.choice(primes)),
744
+ quaternionic=int(rng.choice(primes))
745
+ )
746
+
747
+ @property
748
+ def signature(self) -> Tuple[int, int, int]:
749
+ return (self.gaussian, self.eisenstein, self.quaternionic)
750
+
751
+ @property
752
+ def hash(self) -> int:
753
+ return (self.gaussian * self.eisenstein * self.quaternionic) % 1000000007
754
+
755
+ def entanglement_strength(self, other: PrimeResonanceIdentity) -> float:
756
+ """Compute entanglement strength based on shared primes."""
757
+ sig1 = set(self.signature)
758
+ sig2 = set(other.signature)
759
+ shared = len(sig1 & sig2)
760
+ total = len(sig1 | sig2)
761
+ return (2 * shared) / total if total > 0 else 0.0
762
+
763
+
764
+ @dataclass
765
+ class EntangledNode:
766
+ """Network node with entanglement capabilities."""
767
+ pri: PrimeResonanceIdentity
768
+ coherence: float = 1.0
769
+ entropy: float = 0.0
770
+
771
+ def can_entangle(self, other: EntangledNode, threshold: float = 0.3) -> bool:
772
+ strength = self.pri.entanglement_strength(other.pri)
773
+ return strength >= threshold
774
+
775
+ def phase_difference(self, other: EntangledNode) -> float:
776
+ """Phase difference based on signature primes."""
777
+ s1 = self.pri.gaussian + self.pri.eisenstein
778
+ s2 = other.pri.gaussian + other.pri.eisenstein
779
+ return np.abs(np.sin((s1 - s2) * np.pi / 13))
780
+ ```
781
+
782
+ ---
783
+
784
+ ## 5. Machine Learning Primitives
785
+
786
+ ### 5.1 Sparse Prime State (`ml/sparse_state.py`)
787
+
788
+ ```python
789
+ """
790
+ SparsePrimeState: H_Q = H_P ⊗ ℍ (Prime Hilbert space tensor quaternions)
791
+ """
792
+ from __future__ import annotations
793
+ import numpy as np
794
+ from numpy.typing import NDArray
795
+ from typing import Dict, List, Optional
796
+ from ..core.quaternion import Quaternion
797
+
798
+
799
+ class SparsePrimeState:
800
+ """Sparse representation of prime-quaternion tensor state."""
801
+
802
+ def __init__(
803
+ self,
804
+ primes: List[int],
805
+ quaternions: Dict[int, Quaternion] | None = None
806
+ ):
807
+ self.primes = primes
808
+ self.quaternions = quaternions or {}
809
+ self._entropy_cache: Optional[float] = None
810
+
811
+ @classmethod
812
+ def from_embedding(cls, embedding: NDArray, primes: List[int]) -> SparsePrimeState:
813
+ """Create from dense embedding vector."""
814
+ state = cls(primes)
815
+ dim = len(embedding) // 4
816
+
817
+ for i, p in enumerate(primes[:dim]):
818
+ idx = i * 4
819
+ state.quaternions[p] = Quaternion(
820
+ w=float(embedding[idx]),
821
+ x=float(embedding[idx + 1]),
822
+ y=float(embedding[idx + 2]),
823
+ z=float(embedding[idx + 3])
824
+ )
825
+
826
+ return state
827
+
828
+ def to_dense(self, dim: int) -> NDArray:
829
+ """Convert to dense vector."""
830
+ result = np.zeros(dim * 4)
831
+ for i, p in enumerate(self.primes[:dim]):
832
+ if p in self.quaternions:
833
+ q = self.quaternions[p]
834
+ idx = i * 4
835
+ result[idx:idx+4] = [q.w, q.x, q.y, q.z]
836
+ return result
837
+
838
+ def hamilton_compose(self, other: SparsePrimeState) -> SparsePrimeState:
839
+ """Quaternionic composition via Hamilton product."""
840
+ result = SparsePrimeState(list(set(self.primes) | set(other.primes)))
841
+
842
+ for p in result.primes:
843
+ q1 = self.quaternions.get(p, Quaternion())
844
+ q2 = other.quaternions.get(p, Quaternion())
845
+ result.quaternions[p] = q1 * q2
846
+
847
+ return result
848
+
849
+ def coherence(self) -> float:
850
+ """Measure quaternionic coherence."""
851
+ if not self.quaternions:
852
+ return 0.0
853
+
854
+ norms = [q.norm() for q in self.quaternions.values()]
855
+ total = sum(norms)
856
+ if total < 1e-10:
857
+ return 0.0
858
+
859
+ weights = [n / total for n in norms]
860
+ avg_w = sum(w * q.w for w, q in zip(weights, self.quaternions.values()))
861
+
862
+ return abs(avg_w)
863
+
864
+ def entropy(self) -> float:
865
+ """State entropy."""
866
+ if self._entropy_cache is not None:
867
+ return self._entropy_cache
868
+
869
+ norms = [q.norm() ** 2 for q in self.quaternions.values()]
870
+ total = sum(norms)
871
+ if total < 1e-10:
872
+ return 0.0
873
+
874
+ probs = [n / total for n in norms]
875
+ entropy = -sum(p * np.log(p + 1e-10) for p in probs if p > 0)
876
+ self._entropy_cache = entropy
877
+ return entropy
878
+ ```
879
+
880
+ ### 5.2 Resonant Attention (`ml/attention.py`)
881
+
882
+ ```python
883
+ """
884
+ Resonant attention mechanism with phase interference.
885
+ """
886
+ from __future__ import annotations
887
+ import numpy as np
888
+ from numpy.typing import NDArray
889
+ from typing import Tuple
890
+
891
+
892
+ def golden_ratio() -> float:
893
+ return (1 + np.sqrt(5)) / 2
894
+
895
+
896
+ def resonant_attention(
897
+ Q: NDArray,
898
+ K: NDArray,
899
+ V: NDArray,
900
+ prime_weights: NDArray,
901
+ temperature: float = 1.0
902
+ ) -> Tuple[NDArray, NDArray]:
903
+ """
904
+ Phase-interference attention:
905
+ A(Q, K) = softmax(QK^T / sqrt(d) + Phi_resonance)
906
+ """
907
+ d_k = Q.shape[-1]
908
+
909
+ # Standard attention scores
910
+ scores = np.matmul(Q, np.swapaxes(K, -1, -2)) / np.sqrt(d_k)
911
+
912
+ # Phase interference term
913
+ phi = golden_ratio()
914
+ seq_len = Q.shape[-2]
915
+ positions = np.arange(seq_len)
916
+ phase_matrix = np.outer(positions, positions) * phi
917
+ phase_term = np.cos(phase_matrix) * 0.1
918
+
919
+ # Prime weight modulation
920
+ prime_mod = np.outer(prime_weights[:seq_len], prime_weights[:seq_len])
921
+
922
+ # Combined attention
923
+ scores = scores + phase_term + prime_mod * 0.05
924
+ scores = scores / temperature
925
+
926
+ # Softmax
927
+ exp_scores = np.exp(scores - np.max(scores, axis=-1, keepdims=True))
928
+ attention = exp_scores / np.sum(exp_scores, axis=-1, keepdims=True)
929
+
930
+ # Output
931
+ output = np.matmul(attention, V)
932
+
933
+ return output, attention
934
+ ```
935
+
936
+ ---
937
+
938
+ ## 6. Observer Architecture
939
+
940
+ ### 6.1 Sedenion Memory Field (`observer/smf.py`)
941
+
942
+ ```python
943
+ """
944
+ Sedenion Memory Field for 16-dimensional holographic memory.
945
+ """
946
+ from __future__ import annotations
947
+ import numpy as np
948
+ from numpy.typing import NDArray
949
+ from dataclasses import dataclass
950
+ from typing import List, Optional
951
+ from ..core.hypercomplex import Hypercomplex
952
+
953
+
954
+ @dataclass
955
+ class MemoryMoment:
956
+ """Single moment in SMF."""
957
+ sedenion: Hypercomplex
958
+ timestamp: float
959
+ entropy: float
960
+ coherence: float
961
+
962
+
963
+ class SedenionMemoryField:
964
+ """16-dimensional holographic memory using sedenions."""
965
+
966
+ DIM = 16
967
+
968
+ def __init__(self, decay_rate: float = 0.01, max_moments: int = 1000):
969
+ self.decay_rate = decay_rate
970
+ self.max_moments = max_moments
971
+ self.moments: List[MemoryMoment] = []
972
+ self.current_time = 0.0
973
+
974
+ def encode(self, content: str, importance: float = 1.0) -> MemoryMoment:
975
+ """Encode content into sedenion memory."""
976
+ components = np.zeros(self.DIM)
977
+ for i, char in enumerate(content[:self.DIM]):
978
+ components[i] = (ord(char) - 64) / 64.0 * importance
979
+
980
+ norm = np.linalg.norm(components)
981
+ if norm > 0:
982
+ components = components / norm
983
+
984
+ sedenion = Hypercomplex(self.DIM, components)
985
+ entropy = sedenion.entropy()
986
+ coherence = 1.0 / (1.0 + entropy)
987
+
988
+ moment = MemoryMoment(
989
+ sedenion=sedenion,
990
+ timestamp=self.current_time,
991
+ entropy=entropy,
992
+ coherence=coherence
993
+ )
994
+
995
+ self.moments.append(moment)
996
+ self._prune_old_memories()
997
+
998
+ return moment
999
+
1000
+ def recall(self, query: str, top_k: int = 5) -> List[MemoryMoment]:
1001
+ """Recall memories similar to query."""
1002
+ query_sed = self._string_to_sedenion(query)
1003
+
1004
+ similarities = []
1005
+ for moment in self.moments:
1006
+ sim = np.dot(query_sed.c, moment.sedenion.c)
1007
+ age = self.current_time - moment.timestamp
1008
+ decay = np.exp(-self.decay_rate * age)
1009
+ boosted_sim = sim * decay * moment.coherence
1010
+ similarities.append((boosted_sim, moment))
1011
+
1012
+ similarities.sort(key=lambda x: -x[0])
1013
+ return [m for _, m in similarities[:top_k]]
1014
+
1015
+ def _string_to_sedenion(self, s: str) -> Hypercomplex:
1016
+ components = np.zeros(self.DIM)
1017
+ for i, char in enumerate(s[:self.DIM]):
1018
+ components[i] = (ord(char) - 64) / 64.0
1019
+ norm = np.linalg.norm(components)
1020
+ if norm > 0:
1021
+ components = components / norm
1022
+ return Hypercomplex(self.DIM, components)
1023
+
1024
+ def _prune_old_memories(self):
1025
+ if len(self.moments) > self.max_moments:
1026
+ self.moments.sort(key=lambda m: (-m.coherence, -m.timestamp))
1027
+ self.moments = self.moments[:self.max_moments]
1028
+
1029
+ def step(self, dt: float = 1.0):
1030
+ """Advance time."""
1031
+ self.current_time += dt
1032
+ ```
1033
+
1034
+ ### 6.2 Prime Resonance Semantic Coherence (`observer/prsc.py`)
1035
+
1036
+ ```python
1037
+ """
1038
+ PRSC: Prime Resonance Semantic Coherence layer.
1039
+ """
1040
+ from __future__ import annotations
1041
+ import numpy as np
1042
+ from dataclasses import dataclass
1043
+ from typing import List, Dict, Tuple
1044
+ from ..hilbert.state import PrimeState
1045
+ from ..core.complex import Complex
1046
+
1047
+
1048
+ @dataclass
1049
+ class SemanticBinding:
1050
+ """Binding between prime state and semantic concept."""
1051
+ prime_state: PrimeState
1052
+ concept: str
1053
+ strength: float
1054
+ coherence: float
1055
+
1056
+
1057
+ class PRSC:
1058
+ """Prime Resonance Semantic Coherence."""
1059
+
1060
+ def __init__(self, coherence_threshold: float = 0.7):
1061
+ self.bindings: Dict[str, SemanticBinding] = {}
1062
+ self.coherence_threshold = coherence_threshold
1063
+ self.global_coherence = 1.0
1064
+
1065
+ def bind(self, concept: str, state: PrimeState) -> SemanticBinding:
1066
+ """Bind concept to prime state."""
1067
+ coherence = self._compute_coherence(state)
1068
+ binding = SemanticBinding(
1069
+ prime_state=state,
1070
+ concept=concept,
1071
+ strength=1.0,
1072
+ coherence=coherence
1073
+ )
1074
+ self.bindings[concept] = binding
1075
+ self._update_global_coherence()
1076
+ return binding
1077
+
1078
+ def compose(self, concepts: List[str]) -> PrimeState:
1079
+ """Compose multiple concepts into unified state."""
1080
+ if not concepts:
1081
+ return PrimeState.uniform()
1082
+
1083
+ result = self.bindings.get(concepts[0])
1084
+ if not result:
1085
+ return PrimeState.uniform()
1086
+
1087
+ state = PrimeState()
1088
+ for p, amp in result.prime_state.amplitudes.items():
1089
+ state.amplitudes[p] = amp
1090
+
1091
+ for concept in concepts[1:]:
1092
+ binding = self.bindings.get(concept)
1093
+ if binding:
1094
+ for p, amp in binding.prime_state.amplitudes.items():
1095
+ current = state.get(p)
1096
+ new_amp = Complex(
1097
+ re=current.re + amp.re * binding.strength,
1098
+ im=current.im + amp.im * binding.strength
1099
+ )
1100
+ state.amplitudes[p] = new_amp
1101
+
1102
+ return state.normalize()
1103
+
1104
+ def _compute_coherence(self, state: PrimeState) -> float:
1105
+ entropy = state.entropy()
1106
+ max_entropy = np.log2(len(state.primes))
1107
+ return 1.0 - (entropy / max_entropy) if max_entropy > 0 else 1.0
1108
+
1109
+ def _update_global_coherence(self):
1110
+ if not self.bindings:
1111
+ self.global_coherence = 1.0
1112
+ return
1113
+ coherences = [b.coherence for b in self.bindings.values()]
1114
+ self.global_coherence = np.mean(coherences)
1115
+ ```
1116
+
1117
+ ---
1118
+
1119
+ ## 7. Runtime Engine (`runtime/engine.py`)
1120
+
1121
+ ```python
1122
+ """
1123
+ Main execution engine for ResoAleph.
1124
+ """
1125
+ from __future__ import annotations
1126
+ import asyncio
1127
+ from typing import Any, Dict, List, Optional, Callable
1128
+ from dataclasses import dataclass, field
1129
+ from ..hilbert.state import PrimeState
1130
+ from ..observer.smf import SedenionMemoryField
1131
+ from ..observer.prsc import PRSC
1132
+
1133
+
1134
+ @dataclass
1135
+ class EngineConfig:
1136
+ """Engine configuration."""
1137
+ coherence_threshold: float = 0.7
1138
+ entropy_threshold: float = 2.0
1139
+ max_iterations: int = 100
1140
+ memory_decay: float = 0.01
1141
+
1142
+
1143
+ @dataclass
1144
+ class EngineState:
1145
+ """Current engine state."""
1146
+ iteration: int = 0
1147
+ coherence: float = 1.0
1148
+ entropy: float = 0.0
1149
+ halted: bool = False
1150
+ prime_state: Optional[PrimeState] = None
1151
+
1152
+
1153
+ class AlephEngine:
1154
+ """Main execution engine for prime resonance computing."""
1155
+
1156
+ def __init__(self, config: Optional[EngineConfig] = None):
1157
+ self.config = config or EngineConfig()
1158
+ self.state = EngineState()
1159
+ self.smf = SedenionMemoryField(decay_rate=self.config.memory_decay)
1160
+ self.prsc = PRSC(coherence_threshold=self.config.coherence_threshold)
1161
+ self.hooks: Dict[str, List[Callable]] = {
1162
+ 'pre_step': [], 'post_step': [], 'on_halt': [], 'on_collapse': []
1163
+ }
1164
+
1165
+ def register_hook(self, event: str, callback: Callable):
1166
+ if event in self.hooks:
1167
+ self.hooks[event].append(callback)
1168
+
1169
+ async def step(self) -> EngineState:
1170
+ for cb in self.hooks.get('pre_step', []):
1171
+ cb(self, state=self.state)
1172
+
1173
+ if self.state.coherence < self.config.coherence_threshold:
1174
+ self.state.halted = True
1175
+ return self.state
1176
+
1177
+ if self.state.entropy > self.config.entropy_threshold:
1178
+ self.state.halted = True
1179
+ return self.state
1180
+
1181
+ if self.state.iteration >= self.config.max_iterations:
1182
+ self.state.halted = True
1183
+ return self.state
1184
+
1185
+ if self.state.prime_state:
1186
+ self.state.entropy = self.state.prime_state.entropy()
1187
+
1188
+ self.smf.step()
1189
+ self.state.coherence = self.prsc.global_coherence
1190
+ self.state.iteration += 1
1191
+
1192
+ for cb in self.hooks.get('post_step', []):
1193
+ cb(self, state=self.state)
1194
+
1195
+ return self.state
1196
+
1197
+ async def run(self, initial_state: Optional[PrimeState] = None) -> EngineState:
1198
+ self.state = EngineState(prime_state=initial_state or PrimeState.uniform())
1199
+ while not self.state.halted:
1200
+ await self.step()
1201
+ return self.state
1202
+
1203
+ def bind_concept(self, concept: str, state: PrimeState):
1204
+ return self.prsc.bind(concept, state)
1205
+
1206
+ def compose_concepts(self, concepts: List[str]) -> PrimeState:
1207
+ return self.prsc.compose(concepts)
1208
+ ```
1209
+
1210
+ ---
1211
+
1212
+ ## 8. Usage Examples
1213
+
1214
+ ### 8.1 Basic Prime State Operations
1215
+
1216
+ ```python
1217
+ from resoaleph.hilbert import PrimeState
1218
+
1219
+ # Create uniform superposition
1220
+ state = PrimeState.uniform()
1221
+ print(f"Entropy: {state.entropy():.4f}")
1222
+
1223
+ # Create from composite number
1224
+ state_120 = PrimeState.composite(120) # 2^3 * 3 * 5
1225
+ print(f"120 decomposition entropy: {state_120.entropy():.4f}")
1226
+
1227
+ # Measure (Born collapse)
1228
+ prime, probability = state.measure()
1229
+ print(f"Measured prime {prime} with probability {probability:.4f}")
1230
+ ```
1231
+
1232
+ ### 8.2 Kuramoto Synchronization
1233
+
1234
+ ```python
1235
+ from resoaleph.physics import KuramotoModel
1236
+
1237
+ model = KuramotoModel(n_oscillators=100, coupling=2.0)
1238
+
1239
+ for _ in range(1000):
1240
+ model.step(dt=0.01)
1241
+
1242
+ sync = model.synchronization()
1243
+ print(f"Synchronization: {sync:.4f}")
1244
+ ```
1245
+
1246
+ ### 8.3 Holographic Memory
1247
+
1248
+ ```python
1249
+ from resoaleph.resonance import ResonantFragment
1250
+
1251
+ frag1 = ResonantFragment.encode("quantum computing", spatial_entropy=0.3)
1252
+ frag2 = ResonantFragment.encode("prime numbers", spatial_entropy=0.3)
1253
+
1254
+ combined = frag1.tensor(frag2)
1255
+ print(f"Combined entropy: {combined.entropy:.4f}")
1256
+
1257
+ collapsed = combined.collapse()
1258
+ print(f"Collapsed to prime: {list(collapsed.coeffs.keys())[0]}")
1259
+ ```
1260
+
1261
+ ### 8.4 Full Engine Workflow
1262
+
1263
+ ```python
1264
+ import asyncio
1265
+ from resoaleph.runtime import AlephEngine, EngineConfig
1266
+ from resoaleph.hilbert import PrimeState
1267
+
1268
+ async def main():
1269
+ config = EngineConfig(coherence_threshold=0.5, max_iterations=50)
1270
+ engine = AlephEngine(config)
1271
+
1272
+ engine.bind_concept("computation", PrimeState.composite(30))
1273
+ engine.bind_concept("meaning", PrimeState.composite(42))
1274
+
1275
+ composed = engine.compose_concepts(["computation", "meaning"])
1276
+ final_state = await engine.run(composed)
1277
+
1278
+ print(f"Final coherence: {final_state.coherence:.4f}")
1279
+ print(f"Iterations: {final_state.iteration}")
1280
+
1281
+ asyncio.run(main())
1282
+ ```
1283
+
1284
+ ---
1285
+
1286
+ ## 9. Performance Optimization
1287
+
1288
+ ### 9.1 NumPy Vectorization
1289
+
1290
+ All core operations use NumPy for vectorized computation:
1291
+
1292
+ ```python
1293
+ # Vectorized phase computation
1294
+ phases = np.exp(1j * np.array([p * theta for p in primes]))
1295
+
1296
+ # Vectorized norm computation
1297
+ norms = np.sqrt(np.sum(components ** 2, axis=-1))
1298
+ ```
1299
+
1300
+ ### 9.2 JAX GPU Acceleration
1301
+
1302
+ Optional JAX backend for GPU computation:
1303
+
1304
+ ```python
1305
+ import jax.numpy as jnp
1306
+ from jax import jit, vmap
1307
+
1308
+ @jit
1309
+ def kuramoto_step_gpu(phases, frequencies, coupling, dt):
1310
+ phase_diff = phases[:, None] - phases[None, :]
1311
+ coupling_term = jnp.mean(jnp.sin(phase_diff), axis=1)
1312
+ return (phases + (frequencies + coupling * coupling_term) * dt) % (2 * jnp.pi)
1313
+ ```
1314
+
1315
+ ### 9.3 Caching Strategy
1316
+
1317
+ ```python
1318
+ from functools import lru_cache
1319
+
1320
+ @lru_cache(maxsize=1024)
1321
+ def prime_factorization(n: int) -> Dict[int, int]:
1322
+ return dict(factorint(n))
1323
+ ```
1324
+
1325
+ ---
1326
+
1327
+ ## 10. Testing Strategy
1328
+
1329
+ ### 10.1 Unit Tests
1330
+
1331
+ ```python
1332
+ import pytest
1333
+ from resoaleph.hilbert import PrimeState
1334
+
1335
+ class TestPrimeState:
1336
+ def test_normalization(self):
1337
+ state = PrimeState.uniform()
1338
+ assert abs(state.norm() - 1.0) < 1e-10
1339
+
1340
+ def test_entropy_bounds(self):
1341
+ pure = PrimeState.basis(2)
1342
+ assert pure.entropy() < 0.1
1343
+
1344
+ uniform = PrimeState.uniform()
1345
+ assert uniform.entropy() > 2.0
1346
+ ```
1347
+
1348
+ ### 10.2 Property-Based Tests
1349
+
1350
+ ```python
1351
+ from hypothesis import given, strategies as st
1352
+ from resoaleph.core import Quaternion
1353
+
1354
+ @given(st.floats(-100, 100), st.floats(-100, 100),
1355
+ st.floats(-100, 100), st.floats(-100, 100))
1356
+ def test_quaternion_norm_non_negative(w, x, y, z):
1357
+ q = Quaternion(w=w, x=x, y=y, z=z)
1358
+ assert q.norm() >= 0
1359
+ ```
1360
+
1361
+ ---
1362
+
1363
+ ## 11. Roadmap
1364
+
1365
+ ### Phase 1: Core Implementation (Months 1-2)
1366
+ - [ ] Core mathematical primitives (complex, quaternion, hypercomplex)
1367
+ - [ ] Prime Hilbert space implementation
1368
+ - [ ] Kuramoto physics module
1369
+ - [ ] Basic resonant fragment
1370
+
1371
+ ### Phase 2: ML Primitives (Months 2-3)
1372
+ - [ ] SparsePrimeState
1373
+ - [ ] Resonant attention mechanism
1374
+ - [ ] Coherence-gated halting
1375
+ - [ ] PyTorch integration
1376
+
1377
+ ### Phase 3: Observer & Network (Months 3-4)
1378
+ - [ ] Sedenion Memory Field
1379
+ - [ ] PRSC layer
1380
+ - [ ] Entangled nodes
1381
+ - [ ] Network protocols
1382
+
1383
+ ### Phase 4: Production Hardening (Months 4-5)
1384
+ - [ ] GPU acceleration (JAX/CuPy)
1385
+ - [ ] Distributed computing (Ray)
1386
+ - [ ] Performance optimization
1387
+ - [ ] Documentation & examples
1388
+
1389
+ ---
1390
+
1391
+ ## 12. Conclusion
1392
+
1393
+ **ResoAleph** unifies the mathematical foundations of TinyAleph and ResoLang into a cohesive Python library that enables:
1394
+
1395
+ 1. **Prime-based semantic computing** - Encode meaning in prime factorization structures
1396
+ 2. **Hypercomplex neural networks** - Leverage quaternion/sedenion algebra for richer representations
1397
+ 3. **Entropy-driven reasoning** - Use thermodynamic principles to guide computation
1398
+ 4. **Distributed entanglement** - Build networks of resonantly-coupled nodes
1399
+
1400
+ The library leverages best-in-class Python libraries (NumPy, SciPy, SymPy, JAX, PyTorch) while maintaining a clean, type-safe API suitable for both research and production use.