@aleph-ai/tinyaleph 1.3.0 → 1.4.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +423 -12
- package/backends/cryptographic/index.js +455 -2
- package/core/beacon.js +735 -0
- package/core/crt-homology.js +1004 -0
- package/core/enochian-vocabulary.js +910 -0
- package/core/enochian.js +744 -0
- package/core/errors.js +587 -0
- package/core/hilbert.js +651 -1
- package/core/index.js +86 -1
- package/core/lambda.js +284 -33
- package/core/logger.js +350 -0
- package/core/prime.js +136 -1
- package/core/quaternion-semantics.js +623 -0
- package/core/reduction.js +391 -1
- package/core/rformer-crt.js +892 -0
- package/core/topology.js +655 -0
- package/docs/README.md +54 -0
- package/docs/design/PYTHON_PORT_DESIGN.md +1400 -0
- package/docs/reference/07-topology.md +257 -0
- package/docs/reference/08-observer.md +421 -0
- package/docs/reference/09-crt-homology.md +369 -0
- package/modular.js +231 -3
- package/package.json +1 -1
|
@@ -0,0 +1,1400 @@
|
|
|
1
|
+
# ResoAleph: Unified Python Library Design
|
|
2
|
+
|
|
3
|
+
## Prime Resonance Computing Framework
|
|
4
|
+
|
|
5
|
+
A comprehensive Python port unifying TinyAleph and ResoLang into a powerful, flexible, and scalable library for prime-resonant semantic computing, hypercomplex algebra, and quantum-inspired dynamics.
|
|
6
|
+
|
|
7
|
+
---
|
|
8
|
+
|
|
9
|
+
## 1. Executive Summary
|
|
10
|
+
|
|
11
|
+
### 1.1 Vision
|
|
12
|
+
|
|
13
|
+
**ResoAleph** is a unified Python library that combines:
|
|
14
|
+
- **TinyAleph's** prime Hilbert space mathematics, hypercomplex algebra, and Kuramoto dynamics
|
|
15
|
+
- **ResoLang's** Prime Resonance Network protocols, quaternionic entanglement, and holographic memory
|
|
16
|
+
|
|
17
|
+
The result is a powerful framework for:
|
|
18
|
+
- Quantum-inspired symbolic computing
|
|
19
|
+
- Prime-based semantic encoding
|
|
20
|
+
- Hypercomplex neural network primitives
|
|
21
|
+
- Distributed entanglement networks
|
|
22
|
+
- Entropy-minimizing reasoning systems
|
|
23
|
+
|
|
24
|
+
### 1.2 Shared Concepts Between TinyAleph and ResoLang
|
|
25
|
+
|
|
26
|
+
Both libraries share these core mathematical foundations:
|
|
27
|
+
|
|
28
|
+
| Concept | TinyAleph | ResoLang | Unified Python |
|
|
29
|
+
|---------|-----------|----------|----------------|
|
|
30
|
+
| **Complex Numbers** | `Complex` class in `hilbert.js` | `Complex` in `types.ts` | `resoaleph.core.Complex` |
|
|
31
|
+
| **Quaternions** | `Quaternion` in `rformer.js` | `Quaternion` in `quaternion.ts` | `resoaleph.core.Quaternion` |
|
|
32
|
+
| **Prime States** | `PrimeState` in `hilbert.js` | `PrimeState` in `prime-state.ts` | `resoaleph.hilbert.PrimeState` |
|
|
33
|
+
| **Entropy** | Shannon entropy functions | Entropy evolution | `resoaleph.physics.entropy` |
|
|
34
|
+
| **Resonance** | Golden ratio calculator | Resonance field | `resoaleph.resonance` |
|
|
35
|
+
| **Memory Fields** | Holographic encoding | Resonant fragments | `resoaleph.resonance.fragment` |
|
|
36
|
+
| **Network Nodes** | Entangled nodes | Entangled nodes | `resoaleph.network.node` |
|
|
37
|
+
| **Collapse** | Born measurement | Collapse operator | `resoaleph.hilbert.measurement` |
|
|
38
|
+
|
|
39
|
+
### 1.3 Design Principles
|
|
40
|
+
|
|
41
|
+
1. **Mathematical Rigor** - Faithful implementation of theoretical foundations
|
|
42
|
+
2. **Pythonic API** - Clean, intuitive interfaces following PEP standards
|
|
43
|
+
3. **Performance** - GPU acceleration via JAX/CuPy, vectorized operations via NumPy
|
|
44
|
+
4. **Extensibility** - Plugin architecture for custom backends and operators
|
|
45
|
+
5. **Type Safety** - Full type hints with Pydantic validation
|
|
46
|
+
6. **Scalability** - Distributed computing support via Ray/Dask
|
|
47
|
+
|
|
48
|
+
---
|
|
49
|
+
|
|
50
|
+
## 2. Architecture Overview
|
|
51
|
+
|
|
52
|
+
```
|
|
53
|
+
resoaleph/
|
|
54
|
+
├── core/ # Mathematical foundations
|
|
55
|
+
│ ├── __init__.py
|
|
56
|
+
│ ├── complex.py # Complex number operations
|
|
57
|
+
│ ├── quaternion.py # Quaternion algebra (Hamilton)
|
|
58
|
+
│ ├── hypercomplex.py # Cayley-Dickson construction (2^n dimensions)
|
|
59
|
+
│ ├── primes.py # Prime number utilities & generators
|
|
60
|
+
│ ├── number_fields.py # Gaussian, Eisenstein integers
|
|
61
|
+
│ └── constants.py # PHI, DELTA_S, etc.
|
|
62
|
+
│
|
|
63
|
+
├── hilbert/ # Prime Hilbert Space
|
|
64
|
+
│ ├── __init__.py
|
|
65
|
+
│ ├── state.py # PrimeState class
|
|
66
|
+
│ ├── operators.py # P̂, F̂, R̂, Ĉ operators
|
|
67
|
+
│ ├── evolution.py # Entropy-driven evolution
|
|
68
|
+
│ ├── measurement.py # Born measurement, collapse
|
|
69
|
+
│ └── extended_ops.py # Möbius, Euler totient operators
|
|
70
|
+
│
|
|
71
|
+
├── physics/ # Synchronization & dynamics
|
|
72
|
+
│ ├── __init__.py
|
|
73
|
+
│ ├── oscillator.py # Base oscillator classes
|
|
74
|
+
│ ├── kuramoto.py # Kuramoto model variants
|
|
75
|
+
│ ├── entropy.py # Shannon, state, coherence entropy
|
|
76
|
+
│ ├── lyapunov.py # Stability analysis
|
|
77
|
+
│ ├── collapse.py # State collapse dynamics
|
|
78
|
+
│ └── z_ladder.py # Primeon Z-ladder evolution
|
|
79
|
+
│
|
|
80
|
+
├── resonance/ # Resonance computing
|
|
81
|
+
│ ├── __init__.py
|
|
82
|
+
│ ├── fragment.py # ResonantFragment holographic memory
|
|
83
|
+
│ ├── field.py # QuaternionicResonanceField
|
|
84
|
+
│ ├── operators.py # Tensor, collapse, phase ops
|
|
85
|
+
│ ├── calculator.py # Golden ratio resonance
|
|
86
|
+
│ ├── patterns.py # Semantic pattern detection
|
|
87
|
+
│ └── wavelets.py # Fibonacci wavelet analysis
|
|
88
|
+
│
|
|
89
|
+
├── network/ # Prime Resonance Network
|
|
90
|
+
│ ├── __init__.py
|
|
91
|
+
│ ├── identity.py # PrimeResonanceIdentity (PRI)
|
|
92
|
+
│ ├── node.py # EntangledNode
|
|
93
|
+
│ ├── entanglement.py # Entanglement protocols
|
|
94
|
+
│ ├── teleportation.py # Memory teleportation
|
|
95
|
+
│ ├── routing.py # Resonance routing
|
|
96
|
+
│ └── protocols.py # EIP, MTP, RRP protocols
|
|
97
|
+
│
|
|
98
|
+
├── ml/ # Machine learning primitives
|
|
99
|
+
│ ├── __init__.py
|
|
100
|
+
│ ├── sparse_state.py # SparsePrimeState (H_Q = H_P ⊗ ℍ)
|
|
101
|
+
│ ├── attention.py # Resonant attention mechanisms
|
|
102
|
+
│ ├── composition.py # Hamilton product composition
|
|
103
|
+
│ ├── halting.py # Coherence-gated halting (ACT)
|
|
104
|
+
│ ├── collapse_head.py # 64-codebook entropy collapse
|
|
105
|
+
│ ├── graph_memory.py # PRGraphMemory
|
|
106
|
+
│ └── layers/ # Neural network layers
|
|
107
|
+
│ ├── __init__.py
|
|
108
|
+
│ ├── attention.py # ResonantMultiHeadAttention
|
|
109
|
+
│ ├── ffn.py # PrimeFFN
|
|
110
|
+
│ ├── norm.py # PrimeLayerNorm
|
|
111
|
+
│ ├── encoding.py # PositionalPrimeEncoding
|
|
112
|
+
│ ├── block.py # ResoFormerBlock
|
|
113
|
+
│ └── transformer.py # Full ResoFormer model
|
|
114
|
+
│
|
|
115
|
+
├── observer/ # Sentient Observer architecture
|
|
116
|
+
│ ├── __init__.py
|
|
117
|
+
│ ├── smf.py # Sedenion Memory Field
|
|
118
|
+
│ ├── prsc.py # Prime Resonance Semantic Coherence
|
|
119
|
+
│ ├── temporal.py # Temporal layer & moments
|
|
120
|
+
│ ├── entanglement.py # Entanglement layer
|
|
121
|
+
│ ├── agency.py # Agency, attention, goals
|
|
122
|
+
│ ├── boundary.py # Self/environment distinction
|
|
123
|
+
│ ├── safety.py # Ethical constraints
|
|
124
|
+
│ └── hqe.py # Holographic Quantum Encoding
|
|
125
|
+
│
|
|
126
|
+
├── backends/ # Domain-specific backends
|
|
127
|
+
│ ├── __init__.py
|
|
128
|
+
│ ├── interface.py # Backend base class
|
|
129
|
+
│ ├── semantic.py # NLP, concept mapping
|
|
130
|
+
│ ├── cryptographic.py # Hashing, key derivation
|
|
131
|
+
│ ├── scientific.py # Quantum simulation
|
|
132
|
+
│ └── bioinformatics.py # DNA/protein computing
|
|
133
|
+
│
|
|
134
|
+
├── symbolic/ # Symbolic computation
|
|
135
|
+
│ ├── __init__.py
|
|
136
|
+
│ ├── types.py # Noun, Adj, Sentence types
|
|
137
|
+
│ ├── reduction.py # Reduction semantics
|
|
138
|
+
│ ├── lambda_calc.py # Lambda calculus translation
|
|
139
|
+
│ └── enochian.py # Enochian packet layer
|
|
140
|
+
│
|
|
141
|
+
├── runtime/ # Execution runtime
|
|
142
|
+
│ ├── __init__.py
|
|
143
|
+
│ ├── engine.py # AlephEngine
|
|
144
|
+
│ ├── risa.py # RISA instruction engine
|
|
145
|
+
│ ├── processor.py # Instruction processor
|
|
146
|
+
│ └── context.py # Execution context
|
|
147
|
+
│
|
|
148
|
+
├── utils/ # Utilities
|
|
149
|
+
│ ├── __init__.py
|
|
150
|
+
│ ├── serialization.py # JSON builders
|
|
151
|
+
│ ├── validation.py # Pydantic validators
|
|
152
|
+
│ ├── logging.py # Structured logging
|
|
153
|
+
│ ├── metrics.py # Prometheus-compatible metrics
|
|
154
|
+
│ └── profiling.py # Performance profiling
|
|
155
|
+
│
|
|
156
|
+
└── distributed/ # Distributed computing
|
|
157
|
+
├── __init__.py
|
|
158
|
+
├── transport.py # WebSocket, SSE, polling
|
|
159
|
+
├── coordinator.py # Network coordination
|
|
160
|
+
└── ray_backend.py # Ray integration
|
|
161
|
+
```
|
|
162
|
+
|
|
163
|
+
---
|
|
164
|
+
|
|
165
|
+
## 3. Third-Party Dependencies
|
|
166
|
+
|
|
167
|
+
### 3.1 Core Scientific Computing (Required)
|
|
168
|
+
|
|
169
|
+
```toml
|
|
170
|
+
[project]
|
|
171
|
+
name = "resoaleph"
|
|
172
|
+
version = "0.1.0"
|
|
173
|
+
requires-python = ">=3.10"
|
|
174
|
+
|
|
175
|
+
dependencies = [
|
|
176
|
+
# Core numerical computing
|
|
177
|
+
"numpy>=1.24.0",
|
|
178
|
+
"scipy>=1.11.0",
|
|
179
|
+
"sympy>=1.12",
|
|
180
|
+
|
|
181
|
+
# Type safety & validation
|
|
182
|
+
"pydantic>=2.5.0",
|
|
183
|
+
"typing-extensions>=4.8.0",
|
|
184
|
+
|
|
185
|
+
# Async & concurrency
|
|
186
|
+
"aiohttp>=3.9.0",
|
|
187
|
+
|
|
188
|
+
# Serialization
|
|
189
|
+
"msgpack>=1.0.7",
|
|
190
|
+
"orjson>=3.9.10",
|
|
191
|
+
|
|
192
|
+
# Logging & monitoring
|
|
193
|
+
"structlog>=23.2.0",
|
|
194
|
+
]
|
|
195
|
+
```
|
|
196
|
+
|
|
197
|
+
### 3.2 GPU Acceleration (Optional)
|
|
198
|
+
|
|
199
|
+
```toml
|
|
200
|
+
[project.optional-dependencies]
|
|
201
|
+
gpu = [
|
|
202
|
+
"jax>=0.4.20",
|
|
203
|
+
"jaxlib>=0.4.20",
|
|
204
|
+
]
|
|
205
|
+
|
|
206
|
+
cuda = [
|
|
207
|
+
"cupy>=12.0.0",
|
|
208
|
+
]
|
|
209
|
+
```
|
|
210
|
+
|
|
211
|
+
### 3.3 Machine Learning (Optional)
|
|
212
|
+
|
|
213
|
+
```toml
|
|
214
|
+
ml = [
|
|
215
|
+
"torch>=2.1.0",
|
|
216
|
+
"einops>=0.7.0",
|
|
217
|
+
"transformers>=4.35.0",
|
|
218
|
+
]
|
|
219
|
+
```
|
|
220
|
+
|
|
221
|
+
### 3.4 Distributed Computing (Optional)
|
|
222
|
+
|
|
223
|
+
```toml
|
|
224
|
+
distributed = [
|
|
225
|
+
"ray>=2.8.0",
|
|
226
|
+
"dask>=2023.11.0",
|
|
227
|
+
"websockets>=12.0",
|
|
228
|
+
]
|
|
229
|
+
```
|
|
230
|
+
|
|
231
|
+
### 3.5 Visualization (Optional)
|
|
232
|
+
|
|
233
|
+
```toml
|
|
234
|
+
viz = [
|
|
235
|
+
"matplotlib>=3.8.0",
|
|
236
|
+
"plotly>=5.18.0",
|
|
237
|
+
"networkx>=3.2",
|
|
238
|
+
]
|
|
239
|
+
```
|
|
240
|
+
|
|
241
|
+
### 3.6 Development Dependencies
|
|
242
|
+
|
|
243
|
+
```toml
|
|
244
|
+
[project.optional-dependencies]
|
|
245
|
+
dev = [
|
|
246
|
+
"pytest>=7.4.0",
|
|
247
|
+
"pytest-asyncio>=0.21.0",
|
|
248
|
+
"pytest-benchmark>=4.0.0",
|
|
249
|
+
"hypothesis>=6.88.0",
|
|
250
|
+
"mypy>=1.7.0",
|
|
251
|
+
"ruff>=0.1.6",
|
|
252
|
+
"black>=23.11.0",
|
|
253
|
+
]
|
|
254
|
+
```
|
|
255
|
+
|
|
256
|
+
---
|
|
257
|
+
|
|
258
|
+
## 4. Core Module Designs
|
|
259
|
+
|
|
260
|
+
### 4.1 Complex Numbers (`core/complex.py`)
|
|
261
|
+
|
|
262
|
+
```python
|
|
263
|
+
"""
|
|
264
|
+
Complex number operations with full operator overloading.
|
|
265
|
+
"""
|
|
266
|
+
from __future__ import annotations
|
|
267
|
+
import numpy as np
|
|
268
|
+
from pydantic import BaseModel, Field
|
|
269
|
+
|
|
270
|
+
|
|
271
|
+
class Complex(BaseModel):
|
|
272
|
+
"""Complex number with full arithmetic operations."""
|
|
273
|
+
re: float = Field(default=0.0)
|
|
274
|
+
im: float = Field(default=0.0)
|
|
275
|
+
|
|
276
|
+
@classmethod
|
|
277
|
+
def from_polar(cls, r: float, theta: float) -> Complex:
|
|
278
|
+
return cls(re=r * np.cos(theta), im=r * np.sin(theta))
|
|
279
|
+
|
|
280
|
+
@classmethod
|
|
281
|
+
def zero(cls) -> Complex:
|
|
282
|
+
return cls(re=0.0, im=0.0)
|
|
283
|
+
|
|
284
|
+
@classmethod
|
|
285
|
+
def one(cls) -> Complex:
|
|
286
|
+
return cls(re=1.0, im=0.0)
|
|
287
|
+
|
|
288
|
+
def __add__(self, other: Complex) -> Complex:
|
|
289
|
+
return Complex(re=self.re + other.re, im=self.im + other.im)
|
|
290
|
+
|
|
291
|
+
def __mul__(self, other: Complex | float) -> Complex:
|
|
292
|
+
if isinstance(other, (int, float)):
|
|
293
|
+
return Complex(re=self.re * other, im=self.im * other)
|
|
294
|
+
return Complex(
|
|
295
|
+
re=self.re * other.re - self.im * other.im,
|
|
296
|
+
im=self.re * other.im + self.im * other.re
|
|
297
|
+
)
|
|
298
|
+
|
|
299
|
+
def conj(self) -> Complex:
|
|
300
|
+
return Complex(re=self.re, im=-self.im)
|
|
301
|
+
|
|
302
|
+
def norm2(self) -> float:
|
|
303
|
+
return self.re ** 2 + self.im ** 2
|
|
304
|
+
|
|
305
|
+
def norm(self) -> float:
|
|
306
|
+
return np.sqrt(self.norm2())
|
|
307
|
+
|
|
308
|
+
def phase(self) -> float:
|
|
309
|
+
return np.arctan2(self.im, self.re)
|
|
310
|
+
|
|
311
|
+
def exp(self) -> Complex:
|
|
312
|
+
ea = np.exp(self.re)
|
|
313
|
+
return Complex(re=ea * np.cos(self.im), im=ea * np.sin(self.im))
|
|
314
|
+
```
|
|
315
|
+
|
|
316
|
+
### 4.2 Quaternion Algebra (`core/quaternion.py`)
|
|
317
|
+
|
|
318
|
+
```python
|
|
319
|
+
"""
|
|
320
|
+
Hamilton quaternion algebra with full operations.
|
|
321
|
+
"""
|
|
322
|
+
from __future__ import annotations
|
|
323
|
+
import numpy as np
|
|
324
|
+
from pydantic import BaseModel, Field
|
|
325
|
+
from typing import Tuple
|
|
326
|
+
|
|
327
|
+
|
|
328
|
+
class Quaternion(BaseModel):
|
|
329
|
+
"""Hamilton quaternion: q = w + xi + yj + zk"""
|
|
330
|
+
w: float = Field(default=1.0)
|
|
331
|
+
x: float = Field(default=0.0)
|
|
332
|
+
y: float = Field(default=0.0)
|
|
333
|
+
z: float = Field(default=0.0)
|
|
334
|
+
|
|
335
|
+
@classmethod
|
|
336
|
+
def from_axis_angle(cls, axis: Tuple[float, float, float], angle: float) -> Quaternion:
|
|
337
|
+
ax, ay, az = axis
|
|
338
|
+
norm = np.sqrt(ax*ax + ay*ay + az*az)
|
|
339
|
+
if norm < 1e-10:
|
|
340
|
+
return cls()
|
|
341
|
+
half_angle = angle / 2
|
|
342
|
+
s = np.sin(half_angle) / norm
|
|
343
|
+
return cls(w=np.cos(half_angle), x=ax*s, y=ay*s, z=az*s)
|
|
344
|
+
|
|
345
|
+
def __mul__(self, other: Quaternion | float) -> Quaternion:
|
|
346
|
+
if isinstance(other, (int, float)):
|
|
347
|
+
return Quaternion(w=self.w*other, x=self.x*other, y=self.y*other, z=self.z*other)
|
|
348
|
+
# Hamilton product
|
|
349
|
+
return Quaternion(
|
|
350
|
+
w=self.w*other.w - self.x*other.x - self.y*other.y - self.z*other.z,
|
|
351
|
+
x=self.w*other.x + self.x*other.w + self.y*other.z - self.z*other.y,
|
|
352
|
+
y=self.w*other.y - self.x*other.z + self.y*other.w + self.z*other.x,
|
|
353
|
+
z=self.w*other.z + self.x*other.y - self.y*other.x + self.z*other.w
|
|
354
|
+
)
|
|
355
|
+
|
|
356
|
+
def conj(self) -> Quaternion:
|
|
357
|
+
return Quaternion(w=self.w, x=-self.x, y=-self.y, z=-self.z)
|
|
358
|
+
|
|
359
|
+
def norm(self) -> float:
|
|
360
|
+
return np.sqrt(self.w**2 + self.x**2 + self.y**2 + self.z**2)
|
|
361
|
+
|
|
362
|
+
def normalize(self) -> Quaternion:
|
|
363
|
+
n = self.norm()
|
|
364
|
+
return self * (1/n) if n > 1e-10 else Quaternion()
|
|
365
|
+
|
|
366
|
+
def commutator(self, other: Quaternion) -> Quaternion:
|
|
367
|
+
"""[q1, q2] = q1*q2 - q2*q1 (non-commutativity measure)"""
|
|
368
|
+
return self * other + (other * self) * (-1)
|
|
369
|
+
|
|
370
|
+
def slerp(self, other: Quaternion, t: float) -> Quaternion:
|
|
371
|
+
"""Spherical linear interpolation."""
|
|
372
|
+
dot = self.w*other.w + self.x*other.x + self.y*other.y + self.z*other.z
|
|
373
|
+
q2 = other if dot >= 0 else Quaternion(w=-other.w, x=-other.x, y=-other.y, z=-other.z)
|
|
374
|
+
dot = abs(dot)
|
|
375
|
+
|
|
376
|
+
if dot > 0.9995:
|
|
377
|
+
# Linear interpolation for close quaternions
|
|
378
|
+
result = Quaternion(
|
|
379
|
+
w=self.w + t*(q2.w - self.w),
|
|
380
|
+
x=self.x + t*(q2.x - self.x),
|
|
381
|
+
y=self.y + t*(q2.y - self.y),
|
|
382
|
+
z=self.z + t*(q2.z - self.z)
|
|
383
|
+
)
|
|
384
|
+
return result.normalize()
|
|
385
|
+
|
|
386
|
+
theta = np.arccos(dot)
|
|
387
|
+
sin_theta = np.sin(theta)
|
|
388
|
+
s1 = np.sin((1 - t) * theta) / sin_theta
|
|
389
|
+
s2 = np.sin(t * theta) / sin_theta
|
|
390
|
+
|
|
391
|
+
return Quaternion(
|
|
392
|
+
w=s1*self.w + s2*q2.w,
|
|
393
|
+
x=s1*self.x + s2*q2.x,
|
|
394
|
+
y=s1*self.y + s2*q2.y,
|
|
395
|
+
z=s1*self.z + s2*q2.z
|
|
396
|
+
)
|
|
397
|
+
```
|
|
398
|
+
|
|
399
|
+
### 4.3 Hypercomplex Algebra (`core/hypercomplex.py`)
|
|
400
|
+
|
|
401
|
+
```python
|
|
402
|
+
"""
|
|
403
|
+
Generic Cayley-Dickson construction for 2^n dimensional algebras.
|
|
404
|
+
"""
|
|
405
|
+
from __future__ import annotations
|
|
406
|
+
import numpy as np
|
|
407
|
+
from numpy.typing import NDArray
|
|
408
|
+
from functools import lru_cache
|
|
409
|
+
|
|
410
|
+
|
|
411
|
+
class Hypercomplex:
|
|
412
|
+
"""Cayley-Dickson algebra of dimension 2^n."""
|
|
413
|
+
|
|
414
|
+
def __init__(self, dim: int, components: NDArray | None = None):
|
|
415
|
+
if not (dim > 0 and (dim & (dim - 1)) == 0):
|
|
416
|
+
raise ValueError("Dimension must be power of 2")
|
|
417
|
+
self.dim = dim
|
|
418
|
+
self.c = components if components is not None else np.zeros(dim)
|
|
419
|
+
|
|
420
|
+
@staticmethod
|
|
421
|
+
@lru_cache(maxsize=128)
|
|
422
|
+
def _multiply_indices(dim: int, i: int, j: int) -> tuple[int, int]:
|
|
423
|
+
"""Get (result_index, sign) for e_i * e_j."""
|
|
424
|
+
if i == 0: return (j, 1)
|
|
425
|
+
if j == 0: return (i, 1)
|
|
426
|
+
if i == j: return (0, -1)
|
|
427
|
+
|
|
428
|
+
half = dim // 2
|
|
429
|
+
if i < half and j < half:
|
|
430
|
+
return Hypercomplex._multiply_indices(half, i, j)
|
|
431
|
+
elif i < half:
|
|
432
|
+
k, s = Hypercomplex._multiply_indices(half, i, j - half)
|
|
433
|
+
return (k + half, s)
|
|
434
|
+
elif j < half:
|
|
435
|
+
k, s = Hypercomplex._multiply_indices(half, i - half, j)
|
|
436
|
+
return (k + half, s)
|
|
437
|
+
else:
|
|
438
|
+
k, s = Hypercomplex._multiply_indices(half, j - half, i - half)
|
|
439
|
+
return (k, -s)
|
|
440
|
+
|
|
441
|
+
def __mul__(self, other: Hypercomplex | float) -> Hypercomplex:
|
|
442
|
+
if isinstance(other, (int, float)):
|
|
443
|
+
return Hypercomplex(self.dim, self.c * other)
|
|
444
|
+
result = np.zeros(self.dim)
|
|
445
|
+
for i in range(self.dim):
|
|
446
|
+
for j in range(self.dim):
|
|
447
|
+
k, s = self._multiply_indices(self.dim, i, j)
|
|
448
|
+
result[k] += s * self.c[i] * other.c[j]
|
|
449
|
+
return Hypercomplex(self.dim, result)
|
|
450
|
+
|
|
451
|
+
def conj(self) -> Hypercomplex:
|
|
452
|
+
result = np.zeros(self.dim)
|
|
453
|
+
result[0] = self.c[0]
|
|
454
|
+
result[1:] = -self.c[1:]
|
|
455
|
+
return Hypercomplex(self.dim, result)
|
|
456
|
+
|
|
457
|
+
def norm(self) -> float:
|
|
458
|
+
return float(np.sqrt(np.dot(self.c, self.c)))
|
|
459
|
+
|
|
460
|
+
def entropy(self) -> float:
|
|
461
|
+
n = self.norm()
|
|
462
|
+
if n < 1e-10: return 0.0
|
|
463
|
+
probs = (self.c / n) ** 2
|
|
464
|
+
probs = probs[probs > 1e-10]
|
|
465
|
+
return float(-np.sum(probs * np.log2(probs)))
|
|
466
|
+
```
|
|
467
|
+
|
|
468
|
+
### 4.4 Prime State (`hilbert/state.py`)
|
|
469
|
+
|
|
470
|
+
```python
|
|
471
|
+
"""
|
|
472
|
+
Prime Hilbert Space: HP = {|ψ⟩ = Σ αp|p⟩ : Σ|αp|² = 1}
|
|
473
|
+
"""
|
|
474
|
+
from __future__ import annotations
|
|
475
|
+
import numpy as np
|
|
476
|
+
from typing import Dict, List, Tuple
|
|
477
|
+
from sympy import factorint, isprime
|
|
478
|
+
from ..core.complex import Complex
|
|
479
|
+
|
|
480
|
+
|
|
481
|
+
def first_n_primes(n: int) -> List[int]:
|
|
482
|
+
primes = []
|
|
483
|
+
p = 2
|
|
484
|
+
while len(primes) < n:
|
|
485
|
+
if isprime(p):
|
|
486
|
+
primes.append(p)
|
|
487
|
+
p += 1
|
|
488
|
+
return primes
|
|
489
|
+
|
|
490
|
+
|
|
491
|
+
class PrimeState:
|
|
492
|
+
"""Quantum state in Prime Hilbert space."""
|
|
493
|
+
|
|
494
|
+
def __init__(self, primes: List[int] | None = None):
|
|
495
|
+
self.primes = primes or first_n_primes(25)
|
|
496
|
+
self.amplitudes: Dict[int, Complex] = {p: Complex.zero() for p in self.primes}
|
|
497
|
+
|
|
498
|
+
@classmethod
|
|
499
|
+
def basis(cls, p: int) -> PrimeState:
|
|
500
|
+
state = cls()
|
|
501
|
+
if p in state.amplitudes:
|
|
502
|
+
state.amplitudes[p] = Complex.one()
|
|
503
|
+
return state
|
|
504
|
+
|
|
505
|
+
@classmethod
|
|
506
|
+
def uniform(cls) -> PrimeState:
|
|
507
|
+
state = cls()
|
|
508
|
+
n = len(state.primes)
|
|
509
|
+
amp = Complex(re=1/np.sqrt(n), im=0)
|
|
510
|
+
for p in state.primes:
|
|
511
|
+
state.amplitudes[p] = amp
|
|
512
|
+
return state
|
|
513
|
+
|
|
514
|
+
@classmethod
|
|
515
|
+
def composite(cls, n: int) -> PrimeState:
|
|
516
|
+
state = cls()
|
|
517
|
+
factors = factorint(n)
|
|
518
|
+
total = sum(factors.values())
|
|
519
|
+
for p, exp in factors.items():
|
|
520
|
+
if p in state.amplitudes:
|
|
521
|
+
state.amplitudes[p] = Complex(re=exp/total, im=0)
|
|
522
|
+
return state.normalize()
|
|
523
|
+
|
|
524
|
+
def get(self, p: int) -> Complex:
|
|
525
|
+
return self.amplitudes.get(p, Complex.zero())
|
|
526
|
+
|
|
527
|
+
def norm(self) -> float:
|
|
528
|
+
return np.sqrt(sum(self.get(p).norm2() for p in self.primes))
|
|
529
|
+
|
|
530
|
+
def normalize(self) -> PrimeState:
|
|
531
|
+
n = self.norm()
|
|
532
|
+
if n < 1e-10: return self
|
|
533
|
+
for p in self.primes:
|
|
534
|
+
self.amplitudes[p] = self.amplitudes[p] * (1/n)
|
|
535
|
+
return self
|
|
536
|
+
|
|
537
|
+
def entropy(self) -> float:
|
|
538
|
+
n2 = self.norm() ** 2
|
|
539
|
+
if n2 < 1e-10: return 0.0
|
|
540
|
+
h = 0.0
|
|
541
|
+
for p in self.primes:
|
|
542
|
+
prob = self.get(p).norm2() / n2
|
|
543
|
+
if prob > 1e-10:
|
|
544
|
+
h -= prob * np.log2(prob)
|
|
545
|
+
return h
|
|
546
|
+
|
|
547
|
+
def measure(self) -> Tuple[int, float]:
|
|
548
|
+
"""Born measurement."""
|
|
549
|
+
n2 = self.norm() ** 2
|
|
550
|
+
r = np.random.random() * n2
|
|
551
|
+
cumulative = 0.0
|
|
552
|
+
for p in self.primes:
|
|
553
|
+
prob = self.get(p).norm2()
|
|
554
|
+
cumulative += prob
|
|
555
|
+
if r < cumulative:
|
|
556
|
+
return (p, prob / n2)
|
|
557
|
+
return (self.primes[-1], self.get(self.primes[-1]).norm2() / n2)
|
|
558
|
+
```
|
|
559
|
+
|
|
560
|
+
### 4.5 Kuramoto Model (`physics/kuramoto.py`)
|
|
561
|
+
|
|
562
|
+
```python
|
|
563
|
+
"""
|
|
564
|
+
Kuramoto coupled oscillator model.
|
|
565
|
+
"""
|
|
566
|
+
from __future__ import annotations
|
|
567
|
+
import numpy as np
|
|
568
|
+
from numpy.typing import NDArray
|
|
569
|
+
from dataclasses import dataclass
|
|
570
|
+
|
|
571
|
+
|
|
572
|
+
@dataclass
|
|
573
|
+
class KuramotoModel:
|
|
574
|
+
"""dθ_i/dt = ω_i + (K/N) Σ sin(θ_j - θ_i)"""
|
|
575
|
+
|
|
576
|
+
n_oscillators: int
|
|
577
|
+
coupling: float = 1.0
|
|
578
|
+
frequencies: NDArray | None = None
|
|
579
|
+
phases: NDArray | None = None
|
|
580
|
+
|
|
581
|
+
def __post_init__(self):
|
|
582
|
+
if self.frequencies is None:
|
|
583
|
+
self.frequencies = np.random.normal(0, 1, self.n_oscillators)
|
|
584
|
+
if self.phases is None:
|
|
585
|
+
self.phases = np.random.uniform(0, 2*np.pi, self.n_oscillators)
|
|
586
|
+
|
|
587
|
+
def step(self, dt: float):
|
|
588
|
+
phase_diff = self.phases[:, np.newaxis] - self.phases[np.newaxis, :]
|
|
589
|
+
coupling_term = np.mean(np.sin(phase_diff), axis=1)
|
|
590
|
+
self.phases += (self.frequencies + self.coupling * coupling_term) * dt
|
|
591
|
+
self.phases %= 2 * np.pi
|
|
592
|
+
|
|
593
|
+
def order_parameter(self) -> complex:
|
|
594
|
+
return np.mean(np.exp(1j * self.phases))
|
|
595
|
+
|
|
596
|
+
def synchronization(self) -> float:
|
|
597
|
+
return abs(self.order_parameter())
|
|
598
|
+
```
|
|
599
|
+
|
|
600
|
+
### 4.6 Resonant Fragment (`resonance/fragment.py`)
|
|
601
|
+
|
|
602
|
+
```python
|
|
603
|
+
"""
|
|
604
|
+
Holographic memory fragment from ResoLang.
|
|
605
|
+
"""
|
|
606
|
+
from __future__ import annotations
|
|
607
|
+
import numpy as np
|
|
608
|
+
from typing import Dict, Tuple
|
|
609
|
+
from sympy import isprime
|
|
610
|
+
|
|
611
|
+
|
|
612
|
+
class ResonantFragment:
|
|
613
|
+
"""Holographic memory field with prime coefficients."""
|
|
614
|
+
|
|
615
|
+
def __init__(
|
|
616
|
+
self,
|
|
617
|
+
coeffs: Dict[int, float] | None = None,
|
|
618
|
+
center: Tuple[float, float] = (0.0, 0.0),
|
|
619
|
+
entropy: float = 0.0
|
|
620
|
+
):
|
|
621
|
+
self.coeffs = coeffs or {}
|
|
622
|
+
self.center = center
|
|
623
|
+
self.entropy = entropy
|
|
624
|
+
|
|
625
|
+
@classmethod
|
|
626
|
+
def encode(cls, pattern: str, spatial_entropy: float = 0.5) -> ResonantFragment:
|
|
627
|
+
"""Encode string pattern into holographic memory."""
|
|
628
|
+
coeffs = {}
|
|
629
|
+
prime = 2
|
|
630
|
+
|
|
631
|
+
for i, char in enumerate(pattern):
|
|
632
|
+
while not isprime(prime):
|
|
633
|
+
prime += 1
|
|
634
|
+
|
|
635
|
+
# Holographic encoding: A_p * e^(-S) * e^(ipθ)
|
|
636
|
+
base_amp = ord(char) / 255.0
|
|
637
|
+
spatial_factor = np.exp(-spatial_entropy)
|
|
638
|
+
phase_factor = np.cos(prime * np.pi / 4)
|
|
639
|
+
coeffs[prime] = base_amp * spatial_factor * phase_factor
|
|
640
|
+
prime += 1
|
|
641
|
+
|
|
642
|
+
# Normalize
|
|
643
|
+
total = np.sqrt(sum(a**2 for a in coeffs.values()))
|
|
644
|
+
if total > 0:
|
|
645
|
+
coeffs = {k: v/total for k, v in coeffs.items()}
|
|
646
|
+
|
|
647
|
+
# Compute Shannon entropy
|
|
648
|
+
entropy = 0.0
|
|
649
|
+
for amp in coeffs.values():
|
|
650
|
+
p = amp ** 2
|
|
651
|
+
if p > 0:
|
|
652
|
+
entropy -= p * np.log(p)
|
|
653
|
+
|
|
654
|
+
center = (len(pattern) / 2.0, total / len(pattern))
|
|
655
|
+
return cls(coeffs, center, entropy)
|
|
656
|
+
|
|
657
|
+
def tensor(self, other: ResonantFragment) -> ResonantFragment:
|
|
658
|
+
"""Tensor product: field interaction."""
|
|
659
|
+
new_coeffs = dict(self.coeffs)
|
|
660
|
+
for p, amp in other.coeffs.items():
|
|
661
|
+
new_coeffs[p] = new_coeffs.get(p, 0) + amp
|
|
662
|
+
|
|
663
|
+
# Normalize
|
|
664
|
+
total = np.sqrt(sum(a**2 for a in new_coeffs.values()))
|
|
665
|
+
if total > 0:
|
|
666
|
+
new_coeffs = {k: v/total for k, v in new_coeffs.items()}
|
|
667
|
+
|
|
668
|
+
# New center (weighted average)
|
|
669
|
+
total_entropy = self.entropy + other.entropy
|
|
670
|
+
if total_entropy > 0:
|
|
671
|
+
w1 = self.entropy / total_entropy
|
|
672
|
+
w2 = other.entropy / total_entropy
|
|
673
|
+
else:
|
|
674
|
+
w1 = w2 = 0.5
|
|
675
|
+
|
|
676
|
+
center = (
|
|
677
|
+
self.center[0] * w1 + other.center[0] * w2,
|
|
678
|
+
self.center[1] * w1 + other.center[1] * w2
|
|
679
|
+
)
|
|
680
|
+
|
|
681
|
+
return ResonantFragment(new_coeffs, center, self.entropy + other.entropy)
|
|
682
|
+
|
|
683
|
+
def collapse(self) -> ResonantFragment:
|
|
684
|
+
"""Probabilistic collapse to single prime."""
|
|
685
|
+
if not self.coeffs:
|
|
686
|
+
return self
|
|
687
|
+
|
|
688
|
+
probs = {p: a**2 for p, a in self.coeffs.items()}
|
|
689
|
+
total = sum(probs.values())
|
|
690
|
+
|
|
691
|
+
r = np.random.random() * total
|
|
692
|
+
cumulative = 0.0
|
|
693
|
+
selected = list(self.coeffs.keys())[0]
|
|
694
|
+
|
|
695
|
+
for p, prob in probs.items():
|
|
696
|
+
cumulative += prob
|
|
697
|
+
if r < cumulative:
|
|
698
|
+
selected = p
|
|
699
|
+
break
|
|
700
|
+
|
|
701
|
+
return ResonantFragment({selected: 1.0}, self.center, 0.0)
|
|
702
|
+
```
|
|
703
|
+
|
|
704
|
+
### 4.7 Prime Resonance Identity (`network/identity.py`)
|
|
705
|
+
|
|
706
|
+
```python
|
|
707
|
+
"""
|
|
708
|
+
Prime Resonance Identity (PRI) for network nodes.
|
|
709
|
+
"""
|
|
710
|
+
from __future__ import annotations
|
|
711
|
+
import numpy as np
|
|
712
|
+
from dataclasses import dataclass
|
|
713
|
+
from typing import Tuple
|
|
714
|
+
|
|
715
|
+
|
|
716
|
+
@dataclass
|
|
717
|
+
class PrimeResonanceIdentity:
|
|
718
|
+
"""
|
|
719
|
+
PRI = (P_G, P_E, P_Q)
|
|
720
|
+
- P_G: Gaussian prime
|
|
721
|
+
- P_E: Eisenstein prime
|
|
722
|
+
- P_Q: Quaternionic prime
|
|
723
|
+
"""
|
|
724
|
+
gaussian: int
|
|
725
|
+
eisenstein: int
|
|
726
|
+
quaternionic: int
|
|
727
|
+
|
|
728
|
+
@classmethod
|
|
729
|
+
def random(cls) -> PrimeResonanceIdentity:
|
|
730
|
+
primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]
|
|
731
|
+
return cls(
|
|
732
|
+
gaussian=np.random.choice(primes),
|
|
733
|
+
eisenstein=np.random.choice(primes),
|
|
734
|
+
quaternionic=np.random.choice(primes)
|
|
735
|
+
)
|
|
736
|
+
|
|
737
|
+
@classmethod
|
|
738
|
+
def from_seed(cls, seed: int) -> PrimeResonanceIdentity:
|
|
739
|
+
rng = np.random.default_rng(seed)
|
|
740
|
+
primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]
|
|
741
|
+
return cls(
|
|
742
|
+
gaussian=int(rng.choice(primes)),
|
|
743
|
+
eisenstein=int(rng.choice(primes)),
|
|
744
|
+
quaternionic=int(rng.choice(primes))
|
|
745
|
+
)
|
|
746
|
+
|
|
747
|
+
@property
|
|
748
|
+
def signature(self) -> Tuple[int, int, int]:
|
|
749
|
+
return (self.gaussian, self.eisenstein, self.quaternionic)
|
|
750
|
+
|
|
751
|
+
@property
|
|
752
|
+
def hash(self) -> int:
|
|
753
|
+
return (self.gaussian * self.eisenstein * self.quaternionic) % 1000000007
|
|
754
|
+
|
|
755
|
+
def entanglement_strength(self, other: PrimeResonanceIdentity) -> float:
|
|
756
|
+
"""Compute entanglement strength based on shared primes."""
|
|
757
|
+
sig1 = set(self.signature)
|
|
758
|
+
sig2 = set(other.signature)
|
|
759
|
+
shared = len(sig1 & sig2)
|
|
760
|
+
total = len(sig1 | sig2)
|
|
761
|
+
return (2 * shared) / total if total > 0 else 0.0
|
|
762
|
+
|
|
763
|
+
|
|
764
|
+
@dataclass
|
|
765
|
+
class EntangledNode:
|
|
766
|
+
"""Network node with entanglement capabilities."""
|
|
767
|
+
pri: PrimeResonanceIdentity
|
|
768
|
+
coherence: float = 1.0
|
|
769
|
+
entropy: float = 0.0
|
|
770
|
+
|
|
771
|
+
def can_entangle(self, other: EntangledNode, threshold: float = 0.3) -> bool:
|
|
772
|
+
strength = self.pri.entanglement_strength(other.pri)
|
|
773
|
+
return strength >= threshold
|
|
774
|
+
|
|
775
|
+
def phase_difference(self, other: EntangledNode) -> float:
|
|
776
|
+
"""Phase difference based on signature primes."""
|
|
777
|
+
s1 = self.pri.gaussian + self.pri.eisenstein
|
|
778
|
+
s2 = other.pri.gaussian + other.pri.eisenstein
|
|
779
|
+
return np.abs(np.sin((s1 - s2) * np.pi / 13))
|
|
780
|
+
```
|
|
781
|
+
|
|
782
|
+
---
|
|
783
|
+
|
|
784
|
+
## 5. Machine Learning Primitives
|
|
785
|
+
|
|
786
|
+
### 5.1 Sparse Prime State (`ml/sparse_state.py`)
|
|
787
|
+
|
|
788
|
+
```python
|
|
789
|
+
"""
|
|
790
|
+
SparsePrimeState: H_Q = H_P ⊗ ℍ (Prime Hilbert space tensor quaternions)
|
|
791
|
+
"""
|
|
792
|
+
from __future__ import annotations
|
|
793
|
+
import numpy as np
|
|
794
|
+
from numpy.typing import NDArray
|
|
795
|
+
from typing import Dict, List, Optional
|
|
796
|
+
from ..core.quaternion import Quaternion
|
|
797
|
+
|
|
798
|
+
|
|
799
|
+
class SparsePrimeState:
|
|
800
|
+
"""Sparse representation of prime-quaternion tensor state."""
|
|
801
|
+
|
|
802
|
+
def __init__(
|
|
803
|
+
self,
|
|
804
|
+
primes: List[int],
|
|
805
|
+
quaternions: Dict[int, Quaternion] | None = None
|
|
806
|
+
):
|
|
807
|
+
self.primes = primes
|
|
808
|
+
self.quaternions = quaternions or {}
|
|
809
|
+
self._entropy_cache: Optional[float] = None
|
|
810
|
+
|
|
811
|
+
@classmethod
|
|
812
|
+
def from_embedding(cls, embedding: NDArray, primes: List[int]) -> SparsePrimeState:
|
|
813
|
+
"""Create from dense embedding vector."""
|
|
814
|
+
state = cls(primes)
|
|
815
|
+
dim = len(embedding) // 4
|
|
816
|
+
|
|
817
|
+
for i, p in enumerate(primes[:dim]):
|
|
818
|
+
idx = i * 4
|
|
819
|
+
state.quaternions[p] = Quaternion(
|
|
820
|
+
w=float(embedding[idx]),
|
|
821
|
+
x=float(embedding[idx + 1]),
|
|
822
|
+
y=float(embedding[idx + 2]),
|
|
823
|
+
z=float(embedding[idx + 3])
|
|
824
|
+
)
|
|
825
|
+
|
|
826
|
+
return state
|
|
827
|
+
|
|
828
|
+
def to_dense(self, dim: int) -> NDArray:
|
|
829
|
+
"""Convert to dense vector."""
|
|
830
|
+
result = np.zeros(dim * 4)
|
|
831
|
+
for i, p in enumerate(self.primes[:dim]):
|
|
832
|
+
if p in self.quaternions:
|
|
833
|
+
q = self.quaternions[p]
|
|
834
|
+
idx = i * 4
|
|
835
|
+
result[idx:idx+4] = [q.w, q.x, q.y, q.z]
|
|
836
|
+
return result
|
|
837
|
+
|
|
838
|
+
def hamilton_compose(self, other: SparsePrimeState) -> SparsePrimeState:
|
|
839
|
+
"""Quaternionic composition via Hamilton product."""
|
|
840
|
+
result = SparsePrimeState(list(set(self.primes) | set(other.primes)))
|
|
841
|
+
|
|
842
|
+
for p in result.primes:
|
|
843
|
+
q1 = self.quaternions.get(p, Quaternion())
|
|
844
|
+
q2 = other.quaternions.get(p, Quaternion())
|
|
845
|
+
result.quaternions[p] = q1 * q2
|
|
846
|
+
|
|
847
|
+
return result
|
|
848
|
+
|
|
849
|
+
def coherence(self) -> float:
|
|
850
|
+
"""Measure quaternionic coherence."""
|
|
851
|
+
if not self.quaternions:
|
|
852
|
+
return 0.0
|
|
853
|
+
|
|
854
|
+
norms = [q.norm() for q in self.quaternions.values()]
|
|
855
|
+
total = sum(norms)
|
|
856
|
+
if total < 1e-10:
|
|
857
|
+
return 0.0
|
|
858
|
+
|
|
859
|
+
weights = [n / total for n in norms]
|
|
860
|
+
avg_w = sum(w * q.w for w, q in zip(weights, self.quaternions.values()))
|
|
861
|
+
|
|
862
|
+
return abs(avg_w)
|
|
863
|
+
|
|
864
|
+
def entropy(self) -> float:
|
|
865
|
+
"""State entropy."""
|
|
866
|
+
if self._entropy_cache is not None:
|
|
867
|
+
return self._entropy_cache
|
|
868
|
+
|
|
869
|
+
norms = [q.norm() ** 2 for q in self.quaternions.values()]
|
|
870
|
+
total = sum(norms)
|
|
871
|
+
if total < 1e-10:
|
|
872
|
+
return 0.0
|
|
873
|
+
|
|
874
|
+
probs = [n / total for n in norms]
|
|
875
|
+
entropy = -sum(p * np.log(p + 1e-10) for p in probs if p > 0)
|
|
876
|
+
self._entropy_cache = entropy
|
|
877
|
+
return entropy
|
|
878
|
+
```
|
|
879
|
+
|
|
880
|
+
### 5.2 Resonant Attention (`ml/attention.py`)
|
|
881
|
+
|
|
882
|
+
```python
|
|
883
|
+
"""
|
|
884
|
+
Resonant attention mechanism with phase interference.
|
|
885
|
+
"""
|
|
886
|
+
from __future__ import annotations
|
|
887
|
+
import numpy as np
|
|
888
|
+
from numpy.typing import NDArray
|
|
889
|
+
from typing import Tuple
|
|
890
|
+
|
|
891
|
+
|
|
892
|
+
def golden_ratio() -> float:
|
|
893
|
+
return (1 + np.sqrt(5)) / 2
|
|
894
|
+
|
|
895
|
+
|
|
896
|
+
def resonant_attention(
|
|
897
|
+
Q: NDArray,
|
|
898
|
+
K: NDArray,
|
|
899
|
+
V: NDArray,
|
|
900
|
+
prime_weights: NDArray,
|
|
901
|
+
temperature: float = 1.0
|
|
902
|
+
) -> Tuple[NDArray, NDArray]:
|
|
903
|
+
"""
|
|
904
|
+
Phase-interference attention:
|
|
905
|
+
A(Q, K) = softmax(QK^T / sqrt(d) + Phi_resonance)
|
|
906
|
+
"""
|
|
907
|
+
d_k = Q.shape[-1]
|
|
908
|
+
|
|
909
|
+
# Standard attention scores
|
|
910
|
+
scores = np.matmul(Q, np.swapaxes(K, -1, -2)) / np.sqrt(d_k)
|
|
911
|
+
|
|
912
|
+
# Phase interference term
|
|
913
|
+
phi = golden_ratio()
|
|
914
|
+
seq_len = Q.shape[-2]
|
|
915
|
+
positions = np.arange(seq_len)
|
|
916
|
+
phase_matrix = np.outer(positions, positions) * phi
|
|
917
|
+
phase_term = np.cos(phase_matrix) * 0.1
|
|
918
|
+
|
|
919
|
+
# Prime weight modulation
|
|
920
|
+
prime_mod = np.outer(prime_weights[:seq_len], prime_weights[:seq_len])
|
|
921
|
+
|
|
922
|
+
# Combined attention
|
|
923
|
+
scores = scores + phase_term + prime_mod * 0.05
|
|
924
|
+
scores = scores / temperature
|
|
925
|
+
|
|
926
|
+
# Softmax
|
|
927
|
+
exp_scores = np.exp(scores - np.max(scores, axis=-1, keepdims=True))
|
|
928
|
+
attention = exp_scores / np.sum(exp_scores, axis=-1, keepdims=True)
|
|
929
|
+
|
|
930
|
+
# Output
|
|
931
|
+
output = np.matmul(attention, V)
|
|
932
|
+
|
|
933
|
+
return output, attention
|
|
934
|
+
```
|
|
935
|
+
|
|
936
|
+
---
|
|
937
|
+
|
|
938
|
+
## 6. Observer Architecture
|
|
939
|
+
|
|
940
|
+
### 6.1 Sedenion Memory Field (`observer/smf.py`)
|
|
941
|
+
|
|
942
|
+
```python
|
|
943
|
+
"""
|
|
944
|
+
Sedenion Memory Field for 16-dimensional holographic memory.
|
|
945
|
+
"""
|
|
946
|
+
from __future__ import annotations
|
|
947
|
+
import numpy as np
|
|
948
|
+
from numpy.typing import NDArray
|
|
949
|
+
from dataclasses import dataclass
|
|
950
|
+
from typing import List, Optional
|
|
951
|
+
from ..core.hypercomplex import Hypercomplex
|
|
952
|
+
|
|
953
|
+
|
|
954
|
+
@dataclass
|
|
955
|
+
class MemoryMoment:
|
|
956
|
+
"""Single moment in SMF."""
|
|
957
|
+
sedenion: Hypercomplex
|
|
958
|
+
timestamp: float
|
|
959
|
+
entropy: float
|
|
960
|
+
coherence: float
|
|
961
|
+
|
|
962
|
+
|
|
963
|
+
class SedenionMemoryField:
|
|
964
|
+
"""16-dimensional holographic memory using sedenions."""
|
|
965
|
+
|
|
966
|
+
DIM = 16
|
|
967
|
+
|
|
968
|
+
def __init__(self, decay_rate: float = 0.01, max_moments: int = 1000):
|
|
969
|
+
self.decay_rate = decay_rate
|
|
970
|
+
self.max_moments = max_moments
|
|
971
|
+
self.moments: List[MemoryMoment] = []
|
|
972
|
+
self.current_time = 0.0
|
|
973
|
+
|
|
974
|
+
def encode(self, content: str, importance: float = 1.0) -> MemoryMoment:
|
|
975
|
+
"""Encode content into sedenion memory."""
|
|
976
|
+
components = np.zeros(self.DIM)
|
|
977
|
+
for i, char in enumerate(content[:self.DIM]):
|
|
978
|
+
components[i] = (ord(char) - 64) / 64.0 * importance
|
|
979
|
+
|
|
980
|
+
norm = np.linalg.norm(components)
|
|
981
|
+
if norm > 0:
|
|
982
|
+
components = components / norm
|
|
983
|
+
|
|
984
|
+
sedenion = Hypercomplex(self.DIM, components)
|
|
985
|
+
entropy = sedenion.entropy()
|
|
986
|
+
coherence = 1.0 / (1.0 + entropy)
|
|
987
|
+
|
|
988
|
+
moment = MemoryMoment(
|
|
989
|
+
sedenion=sedenion,
|
|
990
|
+
timestamp=self.current_time,
|
|
991
|
+
entropy=entropy,
|
|
992
|
+
coherence=coherence
|
|
993
|
+
)
|
|
994
|
+
|
|
995
|
+
self.moments.append(moment)
|
|
996
|
+
self._prune_old_memories()
|
|
997
|
+
|
|
998
|
+
return moment
|
|
999
|
+
|
|
1000
|
+
def recall(self, query: str, top_k: int = 5) -> List[MemoryMoment]:
|
|
1001
|
+
"""Recall memories similar to query."""
|
|
1002
|
+
query_sed = self._string_to_sedenion(query)
|
|
1003
|
+
|
|
1004
|
+
similarities = []
|
|
1005
|
+
for moment in self.moments:
|
|
1006
|
+
sim = np.dot(query_sed.c, moment.sedenion.c)
|
|
1007
|
+
age = self.current_time - moment.timestamp
|
|
1008
|
+
decay = np.exp(-self.decay_rate * age)
|
|
1009
|
+
boosted_sim = sim * decay * moment.coherence
|
|
1010
|
+
similarities.append((boosted_sim, moment))
|
|
1011
|
+
|
|
1012
|
+
similarities.sort(key=lambda x: -x[0])
|
|
1013
|
+
return [m for _, m in similarities[:top_k]]
|
|
1014
|
+
|
|
1015
|
+
def _string_to_sedenion(self, s: str) -> Hypercomplex:
|
|
1016
|
+
components = np.zeros(self.DIM)
|
|
1017
|
+
for i, char in enumerate(s[:self.DIM]):
|
|
1018
|
+
components[i] = (ord(char) - 64) / 64.0
|
|
1019
|
+
norm = np.linalg.norm(components)
|
|
1020
|
+
if norm > 0:
|
|
1021
|
+
components = components / norm
|
|
1022
|
+
return Hypercomplex(self.DIM, components)
|
|
1023
|
+
|
|
1024
|
+
def _prune_old_memories(self):
|
|
1025
|
+
if len(self.moments) > self.max_moments:
|
|
1026
|
+
self.moments.sort(key=lambda m: (-m.coherence, -m.timestamp))
|
|
1027
|
+
self.moments = self.moments[:self.max_moments]
|
|
1028
|
+
|
|
1029
|
+
def step(self, dt: float = 1.0):
|
|
1030
|
+
"""Advance time."""
|
|
1031
|
+
self.current_time += dt
|
|
1032
|
+
```
|
|
1033
|
+
|
|
1034
|
+
### 6.2 Prime Resonance Semantic Coherence (`observer/prsc.py`)
|
|
1035
|
+
|
|
1036
|
+
```python
|
|
1037
|
+
"""
|
|
1038
|
+
PRSC: Prime Resonance Semantic Coherence layer.
|
|
1039
|
+
"""
|
|
1040
|
+
from __future__ import annotations
|
|
1041
|
+
import numpy as np
|
|
1042
|
+
from dataclasses import dataclass
|
|
1043
|
+
from typing import List, Dict, Tuple
|
|
1044
|
+
from ..hilbert.state import PrimeState
|
|
1045
|
+
from ..core.complex import Complex
|
|
1046
|
+
|
|
1047
|
+
|
|
1048
|
+
@dataclass
|
|
1049
|
+
class SemanticBinding:
|
|
1050
|
+
"""Binding between prime state and semantic concept."""
|
|
1051
|
+
prime_state: PrimeState
|
|
1052
|
+
concept: str
|
|
1053
|
+
strength: float
|
|
1054
|
+
coherence: float
|
|
1055
|
+
|
|
1056
|
+
|
|
1057
|
+
class PRSC:
|
|
1058
|
+
"""Prime Resonance Semantic Coherence."""
|
|
1059
|
+
|
|
1060
|
+
def __init__(self, coherence_threshold: float = 0.7):
|
|
1061
|
+
self.bindings: Dict[str, SemanticBinding] = {}
|
|
1062
|
+
self.coherence_threshold = coherence_threshold
|
|
1063
|
+
self.global_coherence = 1.0
|
|
1064
|
+
|
|
1065
|
+
def bind(self, concept: str, state: PrimeState) -> SemanticBinding:
|
|
1066
|
+
"""Bind concept to prime state."""
|
|
1067
|
+
coherence = self._compute_coherence(state)
|
|
1068
|
+
binding = SemanticBinding(
|
|
1069
|
+
prime_state=state,
|
|
1070
|
+
concept=concept,
|
|
1071
|
+
strength=1.0,
|
|
1072
|
+
coherence=coherence
|
|
1073
|
+
)
|
|
1074
|
+
self.bindings[concept] = binding
|
|
1075
|
+
self._update_global_coherence()
|
|
1076
|
+
return binding
|
|
1077
|
+
|
|
1078
|
+
def compose(self, concepts: List[str]) -> PrimeState:
|
|
1079
|
+
"""Compose multiple concepts into unified state."""
|
|
1080
|
+
if not concepts:
|
|
1081
|
+
return PrimeState.uniform()
|
|
1082
|
+
|
|
1083
|
+
result = self.bindings.get(concepts[0])
|
|
1084
|
+
if not result:
|
|
1085
|
+
return PrimeState.uniform()
|
|
1086
|
+
|
|
1087
|
+
state = PrimeState()
|
|
1088
|
+
for p, amp in result.prime_state.amplitudes.items():
|
|
1089
|
+
state.amplitudes[p] = amp
|
|
1090
|
+
|
|
1091
|
+
for concept in concepts[1:]:
|
|
1092
|
+
binding = self.bindings.get(concept)
|
|
1093
|
+
if binding:
|
|
1094
|
+
for p, amp in binding.prime_state.amplitudes.items():
|
|
1095
|
+
current = state.get(p)
|
|
1096
|
+
new_amp = Complex(
|
|
1097
|
+
re=current.re + amp.re * binding.strength,
|
|
1098
|
+
im=current.im + amp.im * binding.strength
|
|
1099
|
+
)
|
|
1100
|
+
state.amplitudes[p] = new_amp
|
|
1101
|
+
|
|
1102
|
+
return state.normalize()
|
|
1103
|
+
|
|
1104
|
+
def _compute_coherence(self, state: PrimeState) -> float:
|
|
1105
|
+
entropy = state.entropy()
|
|
1106
|
+
max_entropy = np.log2(len(state.primes))
|
|
1107
|
+
return 1.0 - (entropy / max_entropy) if max_entropy > 0 else 1.0
|
|
1108
|
+
|
|
1109
|
+
def _update_global_coherence(self):
|
|
1110
|
+
if not self.bindings:
|
|
1111
|
+
self.global_coherence = 1.0
|
|
1112
|
+
return
|
|
1113
|
+
coherences = [b.coherence for b in self.bindings.values()]
|
|
1114
|
+
self.global_coherence = np.mean(coherences)
|
|
1115
|
+
```
|
|
1116
|
+
|
|
1117
|
+
---
|
|
1118
|
+
|
|
1119
|
+
## 7. Runtime Engine (`runtime/engine.py`)
|
|
1120
|
+
|
|
1121
|
+
```python
|
|
1122
|
+
"""
|
|
1123
|
+
Main execution engine for ResoAleph.
|
|
1124
|
+
"""
|
|
1125
|
+
from __future__ import annotations
|
|
1126
|
+
import asyncio
|
|
1127
|
+
from typing import Any, Dict, List, Optional, Callable
|
|
1128
|
+
from dataclasses import dataclass, field
|
|
1129
|
+
from ..hilbert.state import PrimeState
|
|
1130
|
+
from ..observer.smf import SedenionMemoryField
|
|
1131
|
+
from ..observer.prsc import PRSC
|
|
1132
|
+
|
|
1133
|
+
|
|
1134
|
+
@dataclass
|
|
1135
|
+
class EngineConfig:
|
|
1136
|
+
"""Engine configuration."""
|
|
1137
|
+
coherence_threshold: float = 0.7
|
|
1138
|
+
entropy_threshold: float = 2.0
|
|
1139
|
+
max_iterations: int = 100
|
|
1140
|
+
memory_decay: float = 0.01
|
|
1141
|
+
|
|
1142
|
+
|
|
1143
|
+
@dataclass
|
|
1144
|
+
class EngineState:
|
|
1145
|
+
"""Current engine state."""
|
|
1146
|
+
iteration: int = 0
|
|
1147
|
+
coherence: float = 1.0
|
|
1148
|
+
entropy: float = 0.0
|
|
1149
|
+
halted: bool = False
|
|
1150
|
+
prime_state: Optional[PrimeState] = None
|
|
1151
|
+
|
|
1152
|
+
|
|
1153
|
+
class AlephEngine:
|
|
1154
|
+
"""Main execution engine for prime resonance computing."""
|
|
1155
|
+
|
|
1156
|
+
def __init__(self, config: Optional[EngineConfig] = None):
|
|
1157
|
+
self.config = config or EngineConfig()
|
|
1158
|
+
self.state = EngineState()
|
|
1159
|
+
self.smf = SedenionMemoryField(decay_rate=self.config.memory_decay)
|
|
1160
|
+
self.prsc = PRSC(coherence_threshold=self.config.coherence_threshold)
|
|
1161
|
+
self.hooks: Dict[str, List[Callable]] = {
|
|
1162
|
+
'pre_step': [], 'post_step': [], 'on_halt': [], 'on_collapse': []
|
|
1163
|
+
}
|
|
1164
|
+
|
|
1165
|
+
def register_hook(self, event: str, callback: Callable):
|
|
1166
|
+
if event in self.hooks:
|
|
1167
|
+
self.hooks[event].append(callback)
|
|
1168
|
+
|
|
1169
|
+
async def step(self) -> EngineState:
|
|
1170
|
+
for cb in self.hooks.get('pre_step', []):
|
|
1171
|
+
cb(self, state=self.state)
|
|
1172
|
+
|
|
1173
|
+
if self.state.coherence < self.config.coherence_threshold:
|
|
1174
|
+
self.state.halted = True
|
|
1175
|
+
return self.state
|
|
1176
|
+
|
|
1177
|
+
if self.state.entropy > self.config.entropy_threshold:
|
|
1178
|
+
self.state.halted = True
|
|
1179
|
+
return self.state
|
|
1180
|
+
|
|
1181
|
+
if self.state.iteration >= self.config.max_iterations:
|
|
1182
|
+
self.state.halted = True
|
|
1183
|
+
return self.state
|
|
1184
|
+
|
|
1185
|
+
if self.state.prime_state:
|
|
1186
|
+
self.state.entropy = self.state.prime_state.entropy()
|
|
1187
|
+
|
|
1188
|
+
self.smf.step()
|
|
1189
|
+
self.state.coherence = self.prsc.global_coherence
|
|
1190
|
+
self.state.iteration += 1
|
|
1191
|
+
|
|
1192
|
+
for cb in self.hooks.get('post_step', []):
|
|
1193
|
+
cb(self, state=self.state)
|
|
1194
|
+
|
|
1195
|
+
return self.state
|
|
1196
|
+
|
|
1197
|
+
async def run(self, initial_state: Optional[PrimeState] = None) -> EngineState:
|
|
1198
|
+
self.state = EngineState(prime_state=initial_state or PrimeState.uniform())
|
|
1199
|
+
while not self.state.halted:
|
|
1200
|
+
await self.step()
|
|
1201
|
+
return self.state
|
|
1202
|
+
|
|
1203
|
+
def bind_concept(self, concept: str, state: PrimeState):
|
|
1204
|
+
return self.prsc.bind(concept, state)
|
|
1205
|
+
|
|
1206
|
+
def compose_concepts(self, concepts: List[str]) -> PrimeState:
|
|
1207
|
+
return self.prsc.compose(concepts)
|
|
1208
|
+
```
|
|
1209
|
+
|
|
1210
|
+
---
|
|
1211
|
+
|
|
1212
|
+
## 8. Usage Examples
|
|
1213
|
+
|
|
1214
|
+
### 8.1 Basic Prime State Operations
|
|
1215
|
+
|
|
1216
|
+
```python
|
|
1217
|
+
from resoaleph.hilbert import PrimeState
|
|
1218
|
+
|
|
1219
|
+
# Create uniform superposition
|
|
1220
|
+
state = PrimeState.uniform()
|
|
1221
|
+
print(f"Entropy: {state.entropy():.4f}")
|
|
1222
|
+
|
|
1223
|
+
# Create from composite number
|
|
1224
|
+
state_120 = PrimeState.composite(120) # 2^3 * 3 * 5
|
|
1225
|
+
print(f"120 decomposition entropy: {state_120.entropy():.4f}")
|
|
1226
|
+
|
|
1227
|
+
# Measure (Born collapse)
|
|
1228
|
+
prime, probability = state.measure()
|
|
1229
|
+
print(f"Measured prime {prime} with probability {probability:.4f}")
|
|
1230
|
+
```
|
|
1231
|
+
|
|
1232
|
+
### 8.2 Kuramoto Synchronization
|
|
1233
|
+
|
|
1234
|
+
```python
|
|
1235
|
+
from resoaleph.physics import KuramotoModel
|
|
1236
|
+
|
|
1237
|
+
model = KuramotoModel(n_oscillators=100, coupling=2.0)
|
|
1238
|
+
|
|
1239
|
+
for _ in range(1000):
|
|
1240
|
+
model.step(dt=0.01)
|
|
1241
|
+
|
|
1242
|
+
sync = model.synchronization()
|
|
1243
|
+
print(f"Synchronization: {sync:.4f}")
|
|
1244
|
+
```
|
|
1245
|
+
|
|
1246
|
+
### 8.3 Holographic Memory
|
|
1247
|
+
|
|
1248
|
+
```python
|
|
1249
|
+
from resoaleph.resonance import ResonantFragment
|
|
1250
|
+
|
|
1251
|
+
frag1 = ResonantFragment.encode("quantum computing", spatial_entropy=0.3)
|
|
1252
|
+
frag2 = ResonantFragment.encode("prime numbers", spatial_entropy=0.3)
|
|
1253
|
+
|
|
1254
|
+
combined = frag1.tensor(frag2)
|
|
1255
|
+
print(f"Combined entropy: {combined.entropy:.4f}")
|
|
1256
|
+
|
|
1257
|
+
collapsed = combined.collapse()
|
|
1258
|
+
print(f"Collapsed to prime: {list(collapsed.coeffs.keys())[0]}")
|
|
1259
|
+
```
|
|
1260
|
+
|
|
1261
|
+
### 8.4 Full Engine Workflow
|
|
1262
|
+
|
|
1263
|
+
```python
|
|
1264
|
+
import asyncio
|
|
1265
|
+
from resoaleph.runtime import AlephEngine, EngineConfig
|
|
1266
|
+
from resoaleph.hilbert import PrimeState
|
|
1267
|
+
|
|
1268
|
+
async def main():
|
|
1269
|
+
config = EngineConfig(coherence_threshold=0.5, max_iterations=50)
|
|
1270
|
+
engine = AlephEngine(config)
|
|
1271
|
+
|
|
1272
|
+
engine.bind_concept("computation", PrimeState.composite(30))
|
|
1273
|
+
engine.bind_concept("meaning", PrimeState.composite(42))
|
|
1274
|
+
|
|
1275
|
+
composed = engine.compose_concepts(["computation", "meaning"])
|
|
1276
|
+
final_state = await engine.run(composed)
|
|
1277
|
+
|
|
1278
|
+
print(f"Final coherence: {final_state.coherence:.4f}")
|
|
1279
|
+
print(f"Iterations: {final_state.iteration}")
|
|
1280
|
+
|
|
1281
|
+
asyncio.run(main())
|
|
1282
|
+
```
|
|
1283
|
+
|
|
1284
|
+
---
|
|
1285
|
+
|
|
1286
|
+
## 9. Performance Optimization
|
|
1287
|
+
|
|
1288
|
+
### 9.1 NumPy Vectorization
|
|
1289
|
+
|
|
1290
|
+
All core operations use NumPy for vectorized computation:
|
|
1291
|
+
|
|
1292
|
+
```python
|
|
1293
|
+
# Vectorized phase computation
|
|
1294
|
+
phases = np.exp(1j * np.array([p * theta for p in primes]))
|
|
1295
|
+
|
|
1296
|
+
# Vectorized norm computation
|
|
1297
|
+
norms = np.sqrt(np.sum(components ** 2, axis=-1))
|
|
1298
|
+
```
|
|
1299
|
+
|
|
1300
|
+
### 9.2 JAX GPU Acceleration
|
|
1301
|
+
|
|
1302
|
+
Optional JAX backend for GPU computation:
|
|
1303
|
+
|
|
1304
|
+
```python
|
|
1305
|
+
import jax.numpy as jnp
|
|
1306
|
+
from jax import jit, vmap
|
|
1307
|
+
|
|
1308
|
+
@jit
|
|
1309
|
+
def kuramoto_step_gpu(phases, frequencies, coupling, dt):
|
|
1310
|
+
phase_diff = phases[:, None] - phases[None, :]
|
|
1311
|
+
coupling_term = jnp.mean(jnp.sin(phase_diff), axis=1)
|
|
1312
|
+
return (phases + (frequencies + coupling * coupling_term) * dt) % (2 * jnp.pi)
|
|
1313
|
+
```
|
|
1314
|
+
|
|
1315
|
+
### 9.3 Caching Strategy
|
|
1316
|
+
|
|
1317
|
+
```python
|
|
1318
|
+
from functools import lru_cache
|
|
1319
|
+
|
|
1320
|
+
@lru_cache(maxsize=1024)
|
|
1321
|
+
def prime_factorization(n: int) -> Dict[int, int]:
|
|
1322
|
+
return dict(factorint(n))
|
|
1323
|
+
```
|
|
1324
|
+
|
|
1325
|
+
---
|
|
1326
|
+
|
|
1327
|
+
## 10. Testing Strategy
|
|
1328
|
+
|
|
1329
|
+
### 10.1 Unit Tests
|
|
1330
|
+
|
|
1331
|
+
```python
|
|
1332
|
+
import pytest
|
|
1333
|
+
from resoaleph.hilbert import PrimeState
|
|
1334
|
+
|
|
1335
|
+
class TestPrimeState:
|
|
1336
|
+
def test_normalization(self):
|
|
1337
|
+
state = PrimeState.uniform()
|
|
1338
|
+
assert abs(state.norm() - 1.0) < 1e-10
|
|
1339
|
+
|
|
1340
|
+
def test_entropy_bounds(self):
|
|
1341
|
+
pure = PrimeState.basis(2)
|
|
1342
|
+
assert pure.entropy() < 0.1
|
|
1343
|
+
|
|
1344
|
+
uniform = PrimeState.uniform()
|
|
1345
|
+
assert uniform.entropy() > 2.0
|
|
1346
|
+
```
|
|
1347
|
+
|
|
1348
|
+
### 10.2 Property-Based Tests
|
|
1349
|
+
|
|
1350
|
+
```python
|
|
1351
|
+
from hypothesis import given, strategies as st
|
|
1352
|
+
from resoaleph.core import Quaternion
|
|
1353
|
+
|
|
1354
|
+
@given(st.floats(-100, 100), st.floats(-100, 100),
|
|
1355
|
+
st.floats(-100, 100), st.floats(-100, 100))
|
|
1356
|
+
def test_quaternion_norm_non_negative(w, x, y, z):
|
|
1357
|
+
q = Quaternion(w=w, x=x, y=y, z=z)
|
|
1358
|
+
assert q.norm() >= 0
|
|
1359
|
+
```
|
|
1360
|
+
|
|
1361
|
+
---
|
|
1362
|
+
|
|
1363
|
+
## 11. Roadmap
|
|
1364
|
+
|
|
1365
|
+
### Phase 1: Core Implementation (Months 1-2)
|
|
1366
|
+
- [ ] Core mathematical primitives (complex, quaternion, hypercomplex)
|
|
1367
|
+
- [ ] Prime Hilbert space implementation
|
|
1368
|
+
- [ ] Kuramoto physics module
|
|
1369
|
+
- [ ] Basic resonant fragment
|
|
1370
|
+
|
|
1371
|
+
### Phase 2: ML Primitives (Months 2-3)
|
|
1372
|
+
- [ ] SparsePrimeState
|
|
1373
|
+
- [ ] Resonant attention mechanism
|
|
1374
|
+
- [ ] Coherence-gated halting
|
|
1375
|
+
- [ ] PyTorch integration
|
|
1376
|
+
|
|
1377
|
+
### Phase 3: Observer & Network (Months 3-4)
|
|
1378
|
+
- [ ] Sedenion Memory Field
|
|
1379
|
+
- [ ] PRSC layer
|
|
1380
|
+
- [ ] Entangled nodes
|
|
1381
|
+
- [ ] Network protocols
|
|
1382
|
+
|
|
1383
|
+
### Phase 4: Production Hardening (Months 4-5)
|
|
1384
|
+
- [ ] GPU acceleration (JAX/CuPy)
|
|
1385
|
+
- [ ] Distributed computing (Ray)
|
|
1386
|
+
- [ ] Performance optimization
|
|
1387
|
+
- [ ] Documentation & examples
|
|
1388
|
+
|
|
1389
|
+
---
|
|
1390
|
+
|
|
1391
|
+
## 12. Conclusion
|
|
1392
|
+
|
|
1393
|
+
**ResoAleph** unifies the mathematical foundations of TinyAleph and ResoLang into a cohesive Python library that enables:
|
|
1394
|
+
|
|
1395
|
+
1. **Prime-based semantic computing** - Encode meaning in prime factorization structures
|
|
1396
|
+
2. **Hypercomplex neural networks** - Leverage quaternion/sedenion algebra for richer representations
|
|
1397
|
+
3. **Entropy-driven reasoning** - Use thermodynamic principles to guide computation
|
|
1398
|
+
4. **Distributed entanglement** - Build networks of resonantly-coupled nodes
|
|
1399
|
+
|
|
1400
|
+
The library leverages best-in-class Python libraries (NumPy, SciPy, SymPy, JAX, PyTorch) while maintaining a clean, type-safe API suitable for both research and production use.
|