@aleph-ai/tinyaleph 1.2.0 → 1.3.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +187 -2
- package/backends/bioinformatics/binding.js +503 -0
- package/backends/bioinformatics/dna-computing.js +664 -0
- package/backends/bioinformatics/encoding.js +339 -0
- package/backends/bioinformatics/folding.js +454 -0
- package/backends/bioinformatics/genetic-code.js +269 -0
- package/backends/bioinformatics/index.js +522 -0
- package/backends/bioinformatics/transcription.js +221 -0
- package/backends/bioinformatics/translation.js +264 -0
- package/backends/index.js +25 -1
- package/core/compound.js +532 -0
- package/core/hilbert.js +454 -1
- package/core/index.js +106 -12
- package/core/inference.js +605 -0
- package/core/resonance.js +245 -616
- package/core/symbols/archetypes.js +478 -0
- package/core/symbols/base.js +302 -0
- package/core/symbols/elements.js +487 -0
- package/core/symbols/hieroglyphs.js +303 -0
- package/core/symbols/iching.js +471 -0
- package/core/symbols/index.js +77 -0
- package/core/symbols/tarot.js +211 -0
- package/core/symbols.js +22 -0
- package/docs/design/BIOINFORMATICS_BACKEND_DESIGN.md +493 -0
- package/docs/guide/06-symbolic-ai.md +370 -0
- package/docs/guide/README.md +2 -1
- package/docs/reference/05-symbolic-ai.md +570 -0
- package/docs/reference/06-bioinformatics.md +546 -0
- package/docs/reference/README.md +32 -2
- package/docs/theory/11-prgraph-memory.md +559 -0
- package/docs/theory/12-resonant-attention.md +661 -0
- package/modular.js +33 -1
- package/package.json +1 -1
- package/physics/index.js +16 -0
- package/physics/kuramoto-coupled-ladder.js +603 -0
|
@@ -0,0 +1,493 @@
|
|
|
1
|
+
# Bioinformatics Backend Design for TinyAleph
|
|
2
|
+
|
|
3
|
+
## Executive Summary
|
|
4
|
+
|
|
5
|
+
This document specifies a bioinformatics computation backend for tinyaleph that leverages the library's prime-resonance architecture to model biological systems. The design treats DNA as a prime-encoded information channel, molecular processes as entropy-minimizing transforms, and protein dynamics as coupled oscillator systems.
|
|
6
|
+
|
|
7
|
+
**Core Thesis**: Biological computation follows the same prime-resonance principles as the tinyaleph framework:
|
|
8
|
+
- Genetic information encodes as prime signatures (4 nucleotides, 20 amino acids → prime basis)
|
|
9
|
+
- Central Dogma (DNA → RNA → Protein) maps to prime-preserving transform operators
|
|
10
|
+
- Molecular dynamics (folding, binding) emerge from Kuramoto-like oscillator synchronization
|
|
11
|
+
- Biological fitness maximization equals entropy minimization in the prime Hilbert space
|
|
12
|
+
|
|
13
|
+
---
|
|
14
|
+
|
|
15
|
+
## 1. Architecture Overview
|
|
16
|
+
|
|
17
|
+
```
|
|
18
|
+
┌─────────────────────────────────────────────────────────────────────┐
|
|
19
|
+
│ BioinformaticsBackend │
|
|
20
|
+
│ ┌──────────────┐ ┌──────────────┐ ┌────────────────────────────┐ │
|
|
21
|
+
│ │ DNA Encoder │ │ Transform │ │ Molecular Dynamics │ │
|
|
22
|
+
│ │ (4 primes) │◄─┤ Pipeline │◄─┤ (Kuramoto Coupling) │ │
|
|
23
|
+
│ └──────────────┘ └──────────────┘ └────────────────────────────┘ │
|
|
24
|
+
│ │ │ │ │
|
|
25
|
+
│ ┌──────────────┐ ┌──────────────┐ ┌────────────────────────────┐ │
|
|
26
|
+
│ │ RNA Encoder │ │ Codon Table │ │ Folding Energy Landscape │ │
|
|
27
|
+
│ │ (4 primes) │ │ (64 primes) │ │ (Entropy Surface) │ │
|
|
28
|
+
│ └──────────────┘ └──────────────┘ └────────────────────────────┘ │
|
|
29
|
+
│ │ │ │ │
|
|
30
|
+
│ ┌──────────────┐ ┌──────────────┐ ┌────────────────────────────┐ │
|
|
31
|
+
│ │ Protein │ │ Mutation │ │ Binding Affinity │ │
|
|
32
|
+
│ │ Encoder │ │ Operators │ │ (Resonance Scoring) │ │
|
|
33
|
+
│ │ (20 primes) │ │ │ │ │ │
|
|
34
|
+
│ └──────────────┘ └──────────────┘ └────────────────────────────┘ │
|
|
35
|
+
└─────────────────────────────────────────────────────────────────────┘
|
|
36
|
+
│
|
|
37
|
+
┌────────────────────┼────────────────────┐
|
|
38
|
+
▼ ▼ ▼
|
|
39
|
+
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
|
|
40
|
+
│ core/prime.js │ │ physics/kuramoto│ │ core/hilbert.js │
|
|
41
|
+
│ │ │ │ │ │
|
|
42
|
+
│ • Prime encoding│ │ • Oscillator │ │ • PrimeState │
|
|
43
|
+
│ • Factorization │ │ dynamics │ │ • Complex amps │
|
|
44
|
+
│ • Resonance │ │ • Coupling │ │ • Entropy │
|
|
45
|
+
└─────────────────┘ └─────────────────┘ └─────────────────┘
|
|
46
|
+
```
|
|
47
|
+
|
|
48
|
+
### Integration with Existing Modules
|
|
49
|
+
|
|
50
|
+
| TinyAleph Module | Bioinformatics Use |
|
|
51
|
+
|------------------|-------------------|
|
|
52
|
+
| `core/prime.js` | Nucleotide/amino acid prime mapping |
|
|
53
|
+
| `core/hilbert.js` | Sequence states in prime Hilbert space |
|
|
54
|
+
| `core/resonance.js` | Binding affinity via golden ratio |
|
|
55
|
+
| `physics/kuramoto.js` | Protein folding dynamics |
|
|
56
|
+
| `physics/entropy.js` | Fitness/stability metrics |
|
|
57
|
+
| `physics/sync-models.js` | Multi-domain protein coupling |
|
|
58
|
+
|
|
59
|
+
---
|
|
60
|
+
|
|
61
|
+
## 2. Prime Encoding Schemes
|
|
62
|
+
|
|
63
|
+
### 2.1 Nucleotide Prime Basis
|
|
64
|
+
|
|
65
|
+
```javascript
|
|
66
|
+
const NUCLEOTIDE_PRIMES = {
|
|
67
|
+
'A': 7, // Adenine (purine)
|
|
68
|
+
'T': 2, // Thymine (pyrimidine)
|
|
69
|
+
'G': 11, // Guanine (purine)
|
|
70
|
+
'C': 3, // Cytosine (pyrimidine)
|
|
71
|
+
'U': 5, // Uracil (RNA)
|
|
72
|
+
};
|
|
73
|
+
|
|
74
|
+
// Watson-Crick pairing: complementary bases have same prime product
|
|
75
|
+
// A-T: 7*2 = 14, G-C: 11*3 = 33
|
|
76
|
+
```
|
|
77
|
+
|
|
78
|
+
### 2.2 Amino Acid Prime Basis
|
|
79
|
+
|
|
80
|
+
```javascript
|
|
81
|
+
const AMINO_ACID_PRIMES = {
|
|
82
|
+
// Hydrophobic (small primes)
|
|
83
|
+
'G': 23, 'A': 29, 'V': 31, 'L': 37, 'I': 41, 'M': 43,
|
|
84
|
+
// Aromatic
|
|
85
|
+
'F': 47, 'W': 53, 'Y': 59,
|
|
86
|
+
// Polar
|
|
87
|
+
'S': 61, 'T': 67, 'C': 71, 'N': 73, 'Q': 79,
|
|
88
|
+
// Charged
|
|
89
|
+
'K': 83, 'R': 89, 'H': 97, 'D': 101, 'E': 103,
|
|
90
|
+
// Special
|
|
91
|
+
'P': 107, '*': 109
|
|
92
|
+
};
|
|
93
|
+
```
|
|
94
|
+
|
|
95
|
+
---
|
|
96
|
+
|
|
97
|
+
## 3. Biological Transform Operators
|
|
98
|
+
|
|
99
|
+
### 3.1 Central Dogma Pipeline
|
|
100
|
+
|
|
101
|
+
```
|
|
102
|
+
DNA ──[Transcription]──► RNA ──[Translation]──► Protein ──[Folding]──► Structure
|
|
103
|
+
│ │ │ │
|
|
104
|
+
▼ ▼ ▼ ▼
|
|
105
|
+
[2,3,7,11] [3,5,7,11] [23-109 range] [Phase array]
|
|
106
|
+
```
|
|
107
|
+
|
|
108
|
+
### 3.2 Transform Summary
|
|
109
|
+
|
|
110
|
+
| Transform | Input | Output | Entropy Change |
|
|
111
|
+
|-----------|-------|--------|----------------|
|
|
112
|
+
| Transcription | DNA primes | RNA primes | +0.01×len |
|
|
113
|
+
| Translation | RNA primes | Protein primes | -codons×log₂(3) |
|
|
114
|
+
| Folding | Protein primes | Phase array | →0 (minimized) |
|
|
115
|
+
| Binding | 2 molecules | Affinity score | -ΔG/RT |
|
|
116
|
+
|
|
117
|
+
---
|
|
118
|
+
|
|
119
|
+
## 4. Molecular Dynamics via Oscillator Coupling
|
|
120
|
+
|
|
121
|
+
### 4.1 Protein Folding as Kuramoto Synchronization
|
|
122
|
+
|
|
123
|
+
Each amino acid residue becomes an oscillator with:
|
|
124
|
+
- **Natural frequency**: `f(p) = 1 + log(p)/10` (from prime value)
|
|
125
|
+
- **Coupling**: Contact propensity matrix based on:
|
|
126
|
+
- Prime resonance (golden ratio proximity)
|
|
127
|
+
- Hydrophobicity (smaller primes attract)
|
|
128
|
+
- Electrostatics (charged primes repel/attract)
|
|
129
|
+
|
|
130
|
+
**Folded state** = High order parameter (synchronized oscillators)
|
|
131
|
+
|
|
132
|
+
### 4.2 Binding as Multi-System Coupling
|
|
133
|
+
|
|
134
|
+
Protein-ligand binding uses `MultiSystemCoupling`:
|
|
135
|
+
- Receptor and ligand as separate oscillator banks
|
|
136
|
+
- Cross-coupling from pairwise prime resonance
|
|
137
|
+
- Docking score from inter-system coherence
|
|
138
|
+
|
|
139
|
+
---
|
|
140
|
+
|
|
141
|
+
## 5. BioinformaticsBackend Class
|
|
142
|
+
|
|
143
|
+
### 5.1 Interface Implementation
|
|
144
|
+
|
|
145
|
+
```javascript
|
|
146
|
+
class BioinformaticsBackend extends Backend {
|
|
147
|
+
// Required by Backend interface
|
|
148
|
+
encode(input) // Sequence string → prime array
|
|
149
|
+
decode(primes) // Prime array → sequence string
|
|
150
|
+
primesToState(primes) // Primes → Hypercomplex state
|
|
151
|
+
primesToFrequencies(primes)// Primes → oscillator frequencies
|
|
152
|
+
applyTransform(primes, t) // Apply biological transform
|
|
153
|
+
getTransforms() // List available transforms
|
|
154
|
+
getPrimes() // Get biological prime set
|
|
155
|
+
|
|
156
|
+
// Bioinformatics-specific methods
|
|
157
|
+
transcribe(dna) // DNA → RNA
|
|
158
|
+
translate(rna) // RNA → Protein
|
|
159
|
+
express(dna) // DNA → Protein (full pipeline)
|
|
160
|
+
fold(protein) // Protein → 3D structure
|
|
161
|
+
mutate(seq, mutation) // Apply mutation
|
|
162
|
+
align(seq1, seq2) // Sequence alignment
|
|
163
|
+
bindingAffinity(mol1, mol2)// Compute binding score
|
|
164
|
+
}
|
|
165
|
+
```
|
|
166
|
+
|
|
167
|
+
### 5.2 Transform Registry
|
|
168
|
+
|
|
169
|
+
```javascript
|
|
170
|
+
const BIOINFORMATICS_TRANSFORMS = [
|
|
171
|
+
{ type: 'transcription', name: 'DNA→RNA' },
|
|
172
|
+
{ type: 'translation', name: 'RNA→Protein' },
|
|
173
|
+
{ type: 'complement', name: 'DNA complement' },
|
|
174
|
+
{ type: 'reverse_complement', name: 'Reverse complement' },
|
|
175
|
+
{ type: 'fold', name: 'Protein folding' },
|
|
176
|
+
{ type: 'mutation', mutationType: 'point', name: 'Point mutation' },
|
|
177
|
+
{ type: 'mutation', mutationType: 'insertion', name: 'Insertion' },
|
|
178
|
+
{ type: 'mutation', mutationType: 'deletion', name: 'Deletion' },
|
|
179
|
+
];
|
|
180
|
+
```
|
|
181
|
+
|
|
182
|
+
---
|
|
183
|
+
|
|
184
|
+
## 6. Usage Examples
|
|
185
|
+
|
|
186
|
+
### 6.1 Basic Usage
|
|
187
|
+
|
|
188
|
+
```javascript
|
|
189
|
+
const { createEngine, BioinformaticsBackend } = require('@aleph-ai/tinyaleph');
|
|
190
|
+
|
|
191
|
+
// Create bioinformatics engine
|
|
192
|
+
const config = { dimension: 32 };
|
|
193
|
+
const engine = createEngine('bioinformatics', config);
|
|
194
|
+
|
|
195
|
+
// Encode and process DNA sequence
|
|
196
|
+
const result = engine.run('ATGCGATCGATCG');
|
|
197
|
+
|
|
198
|
+
console.log('Input primes:', result.inputPrimes);
|
|
199
|
+
console.log('Entropy:', result.entropy);
|
|
200
|
+
console.log('Coherence:', result.coherence);
|
|
201
|
+
```
|
|
202
|
+
|
|
203
|
+
### 6.2 Gene Expression
|
|
204
|
+
|
|
205
|
+
```javascript
|
|
206
|
+
const backend = new BioinformaticsBackend();
|
|
207
|
+
|
|
208
|
+
// DNA sequence
|
|
209
|
+
const dna = backend.encode('ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGA');
|
|
210
|
+
|
|
211
|
+
// Express gene
|
|
212
|
+
const rna = backend.transcribe(dna);
|
|
213
|
+
const protein = backend.translate(rna);
|
|
214
|
+
|
|
215
|
+
console.log('DNA primes:', dna);
|
|
216
|
+
console.log('RNA primes:', rna);
|
|
217
|
+
console.log('Protein primes:', protein);
|
|
218
|
+
console.log('Protein sequence:', backend.decode(protein));
|
|
219
|
+
```
|
|
220
|
+
|
|
221
|
+
### 6.3 Protein Folding
|
|
222
|
+
|
|
223
|
+
```javascript
|
|
224
|
+
const backend = new BioinformaticsBackend();
|
|
225
|
+
|
|
226
|
+
// Encode protein
|
|
227
|
+
const proteinPrimes = backend.encode('MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSH');
|
|
228
|
+
|
|
229
|
+
// Fold protein
|
|
230
|
+
const foldResult = backend.fold(proteinPrimes);
|
|
231
|
+
|
|
232
|
+
console.log('Order parameter:', foldResult.orderParameter);
|
|
233
|
+
console.log('Secondary structure:', foldResult.structure.map(s => s.secondaryStructure));
|
|
234
|
+
console.log('Contacts:', foldResult.contacts.length);
|
|
235
|
+
console.log('Free energy:', foldResult.foldingFreeEnergy);
|
|
236
|
+
```
|
|
237
|
+
|
|
238
|
+
### 6.4 Binding Affinity Screening
|
|
239
|
+
|
|
240
|
+
```javascript
|
|
241
|
+
const backend = new BioinformaticsBackend();
|
|
242
|
+
const calculator = new BindingAffinityCalculator();
|
|
243
|
+
|
|
244
|
+
// Target protein
|
|
245
|
+
const target = backend.encode('MKTAYIAKQRQISFVKSHFSRQLEERLGLIEVQAPILSRVGDGTQDNLSGAEKAVQVKVKALPDAQFEVVHSLAKWKRQQIA');
|
|
246
|
+
|
|
247
|
+
// Ligand library
|
|
248
|
+
const ligands = [
|
|
249
|
+
{ id: 'aspirin', primes: backend.encode('CCOC1=CC=CC=C1OC') },
|
|
250
|
+
{ id: 'caffeine', primes: backend.encode('CN1C=NC2=C1C=NC=N2') },
|
|
251
|
+
{ id: 'glucose', primes: backend.encode('OC1OC(CO)C(O)C(O)C1O') }
|
|
252
|
+
];
|
|
253
|
+
|
|
254
|
+
// Screen
|
|
255
|
+
const results = calculator.screenLibrary(target, ligands);
|
|
256
|
+
console.log('Top binder:', results[0].id, 'affinity:', results[0].affinity);
|
|
257
|
+
```
|
|
258
|
+
|
|
259
|
+
### 6.5 Mutation Analysis
|
|
260
|
+
|
|
261
|
+
```javascript
|
|
262
|
+
const backend = new BioinformaticsBackend();
|
|
263
|
+
const mutator = new PointMutationOperator();
|
|
264
|
+
|
|
265
|
+
// Original sequence
|
|
266
|
+
const original = backend.encode('ATGGCCATTGTAATG');
|
|
267
|
+
|
|
268
|
+
// Apply mutation at position 3
|
|
269
|
+
const mutated = mutator.apply(original, 3, NUCLEOTIDE_PRIMES['T']);
|
|
270
|
+
|
|
271
|
+
// Classify effect
|
|
272
|
+
const effect = mutator.classify(original, mutated, 3);
|
|
273
|
+
console.log('Mutation effect:', effect); // 'synonymous', 'missense', or 'nonsense'
|
|
274
|
+
```
|
|
275
|
+
|
|
276
|
+
### 6.6 Sequence Alignment via Oscillator Sync
|
|
277
|
+
|
|
278
|
+
```javascript
|
|
279
|
+
const backend = new BioinformaticsBackend();
|
|
280
|
+
|
|
281
|
+
const seq1 = backend.encode('MVLSPADKTNVKAAW');
|
|
282
|
+
const seq2 = backend.encode('MVHLTPEEKSAVTAL');
|
|
283
|
+
|
|
284
|
+
const alignment = backend.align(seq1, seq2);
|
|
285
|
+
|
|
286
|
+
console.log('Alignment coherence:', alignment.coherence);
|
|
287
|
+
console.log('Phase alignment:', alignment.alignment);
|
|
288
|
+
```
|
|
289
|
+
|
|
290
|
+
---
|
|
291
|
+
|
|
292
|
+
## 7. Integration with AlephEngine
|
|
293
|
+
|
|
294
|
+
### 7.1 Engine Configuration
|
|
295
|
+
|
|
296
|
+
```javascript
|
|
297
|
+
function createEngine(backendType, config = {}) {
|
|
298
|
+
let backend;
|
|
299
|
+
|
|
300
|
+
switch (backendType.toLowerCase()) {
|
|
301
|
+
case 'bioinformatics':
|
|
302
|
+
case 'bio':
|
|
303
|
+
case 'dna':
|
|
304
|
+
backend = new BioinformaticsBackend(config);
|
|
305
|
+
break;
|
|
306
|
+
// ... existing backends
|
|
307
|
+
}
|
|
308
|
+
|
|
309
|
+
return new AlephEngine(backend, config.engineOptions || {});
|
|
310
|
+
}
|
|
311
|
+
```
|
|
312
|
+
|
|
313
|
+
### 7.2 Field-Based Biological Computation
|
|
314
|
+
|
|
315
|
+
The AlephEngine's field-based computation naturally models biological processes:
|
|
316
|
+
|
|
317
|
+
1. **Excitation**: Input sequence excites oscillators (encode)
|
|
318
|
+
2. **Evolution**: Kuramoto dynamics simulate molecular behavior
|
|
319
|
+
3. **Sampling**: Coherent frames capture stable conformations
|
|
320
|
+
4. **Decoding**: Convert oscillator state back to biological output
|
|
321
|
+
|
|
322
|
+
This parallels how biological systems:
|
|
323
|
+
- Store information in molecular structure
|
|
324
|
+
- Evolve through thermodynamic processes
|
|
325
|
+
- Settle into stable energy minima
|
|
326
|
+
- Express functional outputs
|
|
327
|
+
|
|
328
|
+
---
|
|
329
|
+
|
|
330
|
+
## 8. Advanced Features
|
|
331
|
+
|
|
332
|
+
### 8.1 Phylogenetic Analysis via Entanglement Graph
|
|
333
|
+
|
|
334
|
+
```javascript
|
|
335
|
+
// Use PrimeEntanglementGraph for sequence relationships
|
|
336
|
+
const graph = new PrimeEntanglementGraph(allSequencePrimes);
|
|
337
|
+
|
|
338
|
+
// Record co-evolution
|
|
339
|
+
for (const [seq1, seq2] of sequencePairs) {
|
|
340
|
+
const primes1 = backend.encode(seq1);
|
|
341
|
+
const primes2 = backend.encode(seq2);
|
|
342
|
+
const similarity = backend.similarity(primes1, primes2);
|
|
343
|
+
graph.observe(primes1, primes2, similarity);
|
|
344
|
+
}
|
|
345
|
+
|
|
346
|
+
// Build phylogenetic tree
|
|
347
|
+
const tree = graph.toAdjacencyMatrix(sequencePrimes);
|
|
348
|
+
```
|
|
349
|
+
|
|
350
|
+
### 8.2 Evolutionary Dynamics
|
|
351
|
+
|
|
352
|
+
```javascript
|
|
353
|
+
// Model evolution as entropy-driven process
|
|
354
|
+
const evolution = new EntropyDrivenEvolution(
|
|
355
|
+
PrimeState.fromPrimes(genomePrimes),
|
|
356
|
+
{
|
|
357
|
+
lambda: 0.01, // Mutation rate
|
|
358
|
+
rStable: 0.9 // Fitness threshold
|
|
359
|
+
}
|
|
360
|
+
);
|
|
361
|
+
|
|
362
|
+
// Evolve population
|
|
363
|
+
const result = evolution.evolveUntilCollapse(10000);
|
|
364
|
+
console.log('Generations:', result.steps);
|
|
365
|
+
console.log('Final fitness:', result.probability);
|
|
366
|
+
```
|
|
367
|
+
|
|
368
|
+
### 8.3 Multi-Domain Protein Dynamics
|
|
369
|
+
|
|
370
|
+
```javascript
|
|
371
|
+
// Use SmallWorldKuramoto for allosteric effects
|
|
372
|
+
const domain1 = proteinPrimes.slice(0, 100);
|
|
373
|
+
const domain2 = proteinPrimes.slice(100, 200);
|
|
374
|
+
const linker = proteinPrimes.slice(200, 220);
|
|
375
|
+
|
|
376
|
+
const multiDomain = new SmallWorldKuramoto(
|
|
377
|
+
[...domain1, ...linker, ...domain2].map(p => primeToFrequency(p)),
|
|
378
|
+
4, // neighbors
|
|
379
|
+
0.1, // rewiring probability
|
|
380
|
+
0.3 // coupling
|
|
381
|
+
);
|
|
382
|
+
|
|
383
|
+
// Simulate allostery
|
|
384
|
+
multiDomain.evolve(1000, 0.01);
|
|
385
|
+
const allostericCoupling = multiDomain.smallWorldCoefficient();
|
|
386
|
+
```
|
|
387
|
+
|
|
388
|
+
---
|
|
389
|
+
|
|
390
|
+
## 9. File Structure
|
|
391
|
+
|
|
392
|
+
```
|
|
393
|
+
backends/
|
|
394
|
+
└── bioinformatics/
|
|
395
|
+
├── index.js # Main BioinformaticsBackend class
|
|
396
|
+
├── encoding.js # Nucleotide/AA prime mappings
|
|
397
|
+
├── transcription.js # DNA → RNA operator
|
|
398
|
+
├── translation.js # RNA → Protein operator
|
|
399
|
+
├── mutation.js # Mutation operators
|
|
400
|
+
├── folding.js # Kuramoto-based folding
|
|
401
|
+
├── binding.js # Affinity calculator
|
|
402
|
+
├── alignment.js # Sequence alignment
|
|
403
|
+
└── genetic-code.js # Codon tables
|
|
404
|
+
```
|
|
405
|
+
|
|
406
|
+
---
|
|
407
|
+
|
|
408
|
+
## 10. Testing Strategy
|
|
409
|
+
|
|
410
|
+
```javascript
|
|
411
|
+
// Unit tests for encoding
|
|
412
|
+
test('nucleotide encoding', () => {
|
|
413
|
+
const backend = new BioinformaticsBackend();
|
|
414
|
+
expect(backend.encode('ATGC')).toEqual([7, 2, 11, 3]);
|
|
415
|
+
});
|
|
416
|
+
|
|
417
|
+
// Integration tests for expression
|
|
418
|
+
test('gene expression pipeline', () => {
|
|
419
|
+
const backend = new BioinformaticsBackend();
|
|
420
|
+
const dna = backend.encode('ATGTTT'); // Met-Phe
|
|
421
|
+
const protein = backend.express(dna);
|
|
422
|
+
expect(backend.decode(protein)).toBe('MF');
|
|
423
|
+
});
|
|
424
|
+
|
|
425
|
+
// Folding convergence test
|
|
426
|
+
test('folding converges', () => {
|
|
427
|
+
const backend = new BioinformaticsBackend();
|
|
428
|
+
const protein = backend.encode('MVLSPADKTNVKAAW');
|
|
429
|
+
const result = backend.fold(protein);
|
|
430
|
+
expect(result.orderParameter).toBeGreaterThan(0.8);
|
|
431
|
+
});
|
|
432
|
+
```
|
|
433
|
+
|
|
434
|
+
---
|
|
435
|
+
|
|
436
|
+
## 11. Performance Considerations
|
|
437
|
+
|
|
438
|
+
| Operation | Complexity | Notes |
|
|
439
|
+
|-----------|------------|-------|
|
|
440
|
+
| Encoding | O(n) | Linear in sequence length |
|
|
441
|
+
| Transcription | O(n) | Simple substitution |
|
|
442
|
+
| Translation | O(n) | Codon lookup |
|
|
443
|
+
| Folding | O(n²×s) | n residues, s steps |
|
|
444
|
+
| Binding | O(m×n) | m×n pairwise interactions |
|
|
445
|
+
| Alignment | O(m×n×s) | Multi-system coupling |
|
|
446
|
+
|
|
447
|
+
For long sequences (>1000 residues), consider:
|
|
448
|
+
- Sparse contact matrices
|
|
449
|
+
- Hierarchical folding (domains first)
|
|
450
|
+
- GPU acceleration for Kuramoto integration
|
|
451
|
+
|
|
452
|
+
---
|
|
453
|
+
|
|
454
|
+
## 12. Future Extensions
|
|
455
|
+
|
|
456
|
+
### 12.1 CRISPR Editing Simulation
|
|
457
|
+
Model guide RNA binding and Cas9 cleavage using resonance scoring.
|
|
458
|
+
|
|
459
|
+
### 12.2 Metabolic Networks
|
|
460
|
+
Extend to metabolic pathways as coupled reaction oscillators.
|
|
461
|
+
|
|
462
|
+
### 12.3 Epigenetics
|
|
463
|
+
Add methylation states as phase modifications to nucleotide oscillators.
|
|
464
|
+
|
|
465
|
+
### 12.4 Drug Design
|
|
466
|
+
Use inverse folding to design sequences with target binding properties.
|
|
467
|
+
|
|
468
|
+
---
|
|
469
|
+
|
|
470
|
+
## 13. Summary
|
|
471
|
+
|
|
472
|
+
The BioinformaticsBackend provides a novel computational model for biological systems based on tinyaleph's prime-resonance framework:
|
|
473
|
+
|
|
474
|
+
| Biological Concept | Prime-Resonance Analog |
|
|
475
|
+
|--------------------|------------------------|
|
|
476
|
+
| Genetic information | Prime signatures |
|
|
477
|
+
| Base pairing | Prime product symmetry |
|
|
478
|
+
| Gene expression | Entropy-reducing transforms |
|
|
479
|
+
| Protein folding | Oscillator synchronization |
|
|
480
|
+
| Molecular binding | Golden ratio resonance |
|
|
481
|
+
| Evolution | Entropy-driven dynamics |
|
|
482
|
+
|
|
483
|
+
This approach offers:
|
|
484
|
+
1. **Unified framework** for sequence, structure, and dynamics
|
|
485
|
+
2. **Physical grounding** via oscillator physics
|
|
486
|
+
3. **Information-theoretic** metrics for biological function
|
|
487
|
+
4. **Seamless integration** with existing tinyaleph infrastructure
|
|
488
|
+
|
|
489
|
+
---
|
|
490
|
+
|
|
491
|
+
*Design document version 1.0*
|
|
492
|
+
*Author: TinyAleph Architecture Team*
|
|
493
|
+
*Date: 2026-01-08*
|