@aj-archipelago/cortex 1.1.31 → 1.1.33

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/config.js CHANGED
@@ -154,6 +154,36 @@ var config = convict({
154
154
  "maxReturnTokens": 4096,
155
155
  "supportsStreaming": true
156
156
  },
157
+ "oai-o1-mini": {
158
+ "type": "OPENAI-REASONING",
159
+ "url": "https://api.openai.com/v1/chat/completions",
160
+ "headers": {
161
+ "Authorization": "Bearer {{OPENAI_API_KEY}}",
162
+ "Content-Type": "application/json"
163
+ },
164
+ "params": {
165
+ "model": "o1-mini"
166
+ },
167
+ "requestsPerSecond": 10,
168
+ "maxTokenLength": 128000,
169
+ "maxReturnTokens": 65536,
170
+ "supportsStreaming": false
171
+ },
172
+ "oai-o1-preview": {
173
+ "type": "OPENAI-REASONING",
174
+ "url": "https://api.openai.com/v1/chat/completions",
175
+ "headers": {
176
+ "Authorization": "Bearer {{OPENAI_API_KEY}}",
177
+ "Content-Type": "application/json"
178
+ },
179
+ "params": {
180
+ "model": "o1-preview"
181
+ },
182
+ "requestsPerSecond": 10,
183
+ "maxTokenLength": 128000,
184
+ "maxReturnTokens": 32768,
185
+ "supportsStreaming": false
186
+ },
157
187
  "azure-bing": {
158
188
  "type": "AZURE-BING",
159
189
  "url": "https://api.bing.microsoft.com/v7.0/search",
@@ -0,0 +1,8 @@
1
+ .git*
2
+ .vscode
3
+ __azurite_db*__.json
4
+ __blobstorage__
5
+ __queuestorage__
6
+ local.settings.json
7
+ test
8
+ .venv
@@ -0,0 +1,10 @@
1
+ FROM python:3.9-slim
2
+
3
+ WORKDIR /app
4
+
5
+ COPY requirements.txt .
6
+ RUN pip install --no-cache-dir -r requirements.txt
7
+
8
+ COPY . .
9
+
10
+ CMD ["python", "main.py"]
@@ -0,0 +1,5 @@
1
+ [
2
+ {
3
+ "model": "claude-3.5-sonnet"
4
+ }
5
+ ]
@@ -0,0 +1,29 @@
1
+ import azure.functions as func
2
+ import logging
3
+ import json
4
+ from azure.storage.queue import QueueClient
5
+ import os
6
+ import redis
7
+ from myautogen import process_message
8
+
9
+ app = func.FunctionApp()
10
+
11
+ connection_string = os.environ["AZURE_STORAGE_CONNECTION_STRING"]
12
+ queue_name = os.environ.get("QUEUE_NAME", "autogen-message-queue")
13
+ queue_client = QueueClient.from_connection_string(connection_string, queue_name)
14
+
15
+ redis_client = redis.from_url(os.environ['REDIS_CONNECTION_STRING'])
16
+ channel = 'requestProgress'
17
+
18
+
19
+ @app.queue_trigger(arg_name="msg", queue_name=queue_name, connection="AZURE_STORAGE_CONNECTION_STRING")
20
+ def queue_trigger(msg: func.QueueMessage):
21
+ logging.info(f"Queue trigger Message ID: {msg.id}")
22
+ try:
23
+ message_data = json.loads(msg.get_body().decode('utf-8'))
24
+ if "requestId" not in message_data:
25
+ message_data['requestId'] = msg.id
26
+ process_message(message_data, msg)
27
+
28
+ except Exception as e:
29
+ logging.error(f"Error processing message: {str(e)}")
@@ -0,0 +1,15 @@
1
+ {
2
+ "version": "2.0",
3
+ "logging": {
4
+ "applicationInsights": {
5
+ "samplingSettings": {
6
+ "isEnabled": true,
7
+ "excludedTypes": "Request"
8
+ }
9
+ }
10
+ },
11
+ "extensionBundle": {
12
+ "id": "Microsoft.Azure.Functions.ExtensionBundle",
13
+ "version": "[4.*, 5.0.0)"
14
+ }
15
+ }
@@ -0,0 +1,38 @@
1
+ import os
2
+ from azure.storage.queue import QueueClient
3
+ import base64
4
+ import json
5
+ from myautogen import process_message
6
+ import time
7
+
8
+ def main():
9
+ print("Starting message processing loop")
10
+ connection_string = os.environ["AZURE_STORAGE_CONNECTION_STRING"]
11
+ queue_name = os.environ.get("QUEUE_NAME", "autogen-message-queue")
12
+
13
+ queue_client = QueueClient.from_connection_string(connection_string, queue_name)
14
+
15
+ attempts = 0
16
+ max_attempts = 100
17
+
18
+
19
+ while attempts < max_attempts:
20
+ messages = queue_client.receive_messages(messages_per_page=1)
21
+
22
+ if messages:
23
+ for message in messages:
24
+ decoded_content = base64.b64decode(message.content).decode('utf-8')
25
+ message_data = json.loads(decoded_content)
26
+ if "requestId" not in message_data:
27
+ message_data['requestId'] = message.id
28
+ process_message(message_data, message)
29
+ queue_client.delete_message(message)
30
+ attempts = 0 # Reset attempts if a message was processed
31
+ else:
32
+ attempts += 1
33
+ time.sleep(1) # Wait for 1 second before checking again
34
+
35
+ print("No messages received after 100 attempts. Exiting.")
36
+
37
+ if __name__ == "__main__":
38
+ main()
@@ -0,0 +1,228 @@
1
+ import azure.functions as func
2
+ import logging
3
+ import json
4
+ import autogen
5
+ from autogen import AssistantAgent, UserProxyAgent, config_list_from_json, register_function
6
+ from azure.storage.queue import QueueClient
7
+ import os
8
+ import tempfile
9
+ import redis
10
+ from dotenv import load_dotenv
11
+ import requests
12
+ import pathlib
13
+ import pymongo
14
+ import logging
15
+ from datetime import datetime, timezone
16
+ from tools.sasfileuploader import autogen_sas_uploader
17
+ import shutil
18
+ load_dotenv()
19
+
20
+ DEFAULT_SUMMARY_PROMPT = "Summarize the takeaway from the conversation. Do not add any introductory phrases."
21
+ try:
22
+ with open("prompt_summary.txt", "r") as file:
23
+ summary_prompt = file.read() or DEFAULT_SUMMARY_PROMPT
24
+ except FileNotFoundError:
25
+ summary_prompt = DEFAULT_SUMMARY_PROMPT
26
+
27
+
28
+ def store_in_mongo(data):
29
+ try:
30
+ if 'MONGO_URI' in os.environ:
31
+ client = pymongo.MongoClient(os.environ['MONGO_URI'])
32
+ collection = client.get_default_database()[os.environ.get('MONGO_COLLECTION_NAME', 'autogenruns')]
33
+ collection.insert_one(data)
34
+ else:
35
+ logging.warning("MONGO_URI not found in environment variables")
36
+ except Exception as e:
37
+ logging.error(f"An error occurred while storing data in MongoDB: {str(e)}")
38
+
39
+ app = func.FunctionApp()
40
+
41
+ connection_string = os.environ["AZURE_STORAGE_CONNECTION_STRING"]
42
+ queue_name = os.environ.get("QUEUE_NAME", "autogen-message-queue")
43
+ queue_client = QueueClient.from_connection_string(connection_string, queue_name)
44
+
45
+ redis_client = redis.from_url(os.environ['REDIS_CONNECTION_STRING'])
46
+ channel = 'requestProgress'
47
+
48
+ def connect_redis():
49
+ if not redis_client.ping():
50
+ try:
51
+ redis_client.ping()
52
+ except redis.ConnectionError as e:
53
+ logging.error(f"Error reconnecting to Redis: {e}")
54
+ return False
55
+ return True
56
+
57
+ def publish_request_progress(data):
58
+ if connect_redis():
59
+ try:
60
+ message = json.dumps(data)
61
+ logging.info(f"Publishing message {message} to channel {channel}")
62
+ redis_client.publish(channel, message)
63
+ except Exception as e:
64
+ logging.error(f"Error publishing message: {e}")
65
+
66
+
67
+ def get_given_system_message():
68
+ env_context = os.environ.get("ENV_SYSTEM_MESSAGE_CONTEXT")
69
+
70
+ if not env_context:
71
+ return read_local_file("prompt.txt")
72
+
73
+ if env_context.startswith(("http://", "https://")):
74
+ return fetch_from_url(env_context)
75
+
76
+ if pathlib.Path(env_context).suffix:
77
+ return read_local_file(env_context)
78
+
79
+ return env_context
80
+
81
+ def read_local_file(filename):
82
+ try:
83
+ with open(filename, "r") as file:
84
+ return file.read()
85
+ except FileNotFoundError:
86
+ logging.error(f"{filename} not found")
87
+ return ""
88
+
89
+ def fetch_from_url(url):
90
+ try:
91
+ response = requests.get(url)
92
+ response.raise_for_status()
93
+ return response.text
94
+ except requests.RequestException as e:
95
+ logging.error(f"Error fetching from URL: {e}")
96
+ return ""
97
+
98
+ def process_message(message_data, original_request_message):
99
+ logging.info(f"Processing Message: {message_data}")
100
+ try:
101
+ started_at = datetime.now()
102
+ message = message_data['message']
103
+ request_id = message_data.get('requestId') or msg.id
104
+
105
+ config_list = config_list_from_json(env_or_file="OAI_CONFIG_LIST")
106
+ base_url = os.environ.get("CORTEX_API_BASE_URL")
107
+ api_key = os.environ.get("CORTEX_API_KEY")
108
+ llm_config = {"config_list": config_list, "base_url": base_url, "api_key": api_key, "cache_seed": None, "timeout": 600}
109
+
110
+ with tempfile.TemporaryDirectory() as temp_dir:
111
+ #copy /tools directory to temp_dir
112
+ shutil.copytree(os.path.join(os.getcwd(), "tools"), temp_dir, dirs_exist_ok=True)
113
+
114
+ code_executor = autogen.coding.LocalCommandLineCodeExecutor(work_dir=temp_dir)
115
+
116
+ message_count = 0
117
+ total_messages = 20 * 2
118
+ all_messages = []
119
+
120
+ def is_termination_msg(m):
121
+ content = m.get("content", "")
122
+ if message_count == 0:
123
+ return False
124
+ return (m.get("role") == "assistant" and not content.strip()) or \
125
+ content.rstrip().endswith("TERMINATE") or \
126
+ "first message must use the" in content.lower() or \
127
+ len(content.strip()) == 0
128
+
129
+ system_message_given = get_given_system_message()
130
+ system_message_assistant = AssistantAgent.DEFAULT_SYSTEM_MESSAGE
131
+
132
+ if system_message_given:
133
+ system_message_assistant = system_message_given
134
+ else:
135
+ print("No extra system message given for assistant")
136
+
137
+ assistant = AssistantAgent("assistant",
138
+ llm_config=llm_config,
139
+ system_message=system_message_assistant,
140
+ code_execution_config={"executor": code_executor},
141
+ is_termination_msg=is_termination_msg,
142
+ )
143
+
144
+ user_proxy = UserProxyAgent(
145
+ "user_proxy",
146
+ llm_config=llm_config,
147
+ system_message=system_message_given,
148
+ code_execution_config={"executor": code_executor},
149
+ human_input_mode="NEVER",
150
+ max_consecutive_auto_reply=20,
151
+ )
152
+
153
+ # description = "Upload a file to Azure Blob Storage and get URL back with a SAS token. Requires AZURE_STORAGE_CONNECTION_STRING and AZURE_BLOB_CONTAINER environment variables. Input: file_path (str). Output: SAS URL (str) or error message."
154
+
155
+ # register_function(
156
+ # autogen_sas_uploader,
157
+ # caller=assistant,
158
+ # executor=user_proxy,
159
+ # name="autogen_sas_uploader",
160
+ # description=description,
161
+ # )
162
+
163
+ # register_function(
164
+ # autogen_sas_uploader,
165
+ # caller=user_proxy,
166
+ # executor=assistant,
167
+ # name="autogen_sas_uploader",
168
+ # description=description,
169
+ # )
170
+
171
+ original_assistant_send = assistant.send
172
+ original_user_proxy_send = user_proxy.send
173
+
174
+ def logged_send(sender, original_send, message, recipient, request_reply=None, silent=True):
175
+ nonlocal message_count, all_messages
176
+ if not message:
177
+ return
178
+ logging.info(f"Message from {sender.name} to {recipient.name}: {message}")
179
+ message_count += 1
180
+ progress = min(message_count / total_messages, 1)
181
+ all_messages.append({"sender": sender.name, "message": message})
182
+ publish_request_progress({
183
+ "requestId": request_id,
184
+ "progress": progress,
185
+ "info": message
186
+ })
187
+ return original_send(message, recipient, request_reply, silent)
188
+
189
+ assistant.send = lambda message, recipient, request_reply=None, silent=False: logged_send(assistant, original_assistant_send, message, recipient, request_reply, silent)
190
+ user_proxy.send = lambda message, recipient, request_reply=None, silent=False: logged_send(user_proxy, original_user_proxy_send, message, recipient, request_reply, silent)
191
+
192
+ #summary_method="reflection_with_llm", "last_msg"
193
+ chat_result = user_proxy.initiate_chat(assistant, message=message, summary_method="reflection_with_llm", summary_args={"summary_role": "user", "summary_prompt": summary_prompt})
194
+
195
+ msg = ""
196
+ try:
197
+ msg = all_messages[-1 if all_messages[-2]["message"] else -3]["message"]
198
+ logging.info(f"####Final message: {msg}")
199
+ except Exception as e:
200
+ logging.error(f"Error getting final message: {e}")
201
+ msg = f"Finished, with errors 🤖 ... {e}"
202
+
203
+ msg = chat_result.summary if chat_result.summary else msg
204
+
205
+ finalData = {
206
+ "requestId": request_id,
207
+ "requestMessage": message_data.get("message"),
208
+ "progress": 1,
209
+ "data": msg,
210
+ "contextId": message_data.get("contextId"),
211
+ "conversation": all_messages,
212
+ "createdAt": datetime.now(timezone.utc).isoformat(),
213
+ "insertionTime": original_request_message.insertion_time.astimezone(timezone.utc).isoformat() if original_request_message else None,
214
+ "startedAt": started_at.astimezone(timezone.utc).isoformat(),
215
+ }
216
+
217
+ # Final message to indicate completion
218
+ publish_request_progress(finalData)
219
+ store_in_mongo(finalData)
220
+
221
+ except Exception as e:
222
+ logging.error(f"Error processing message: {str(e)}")
223
+ if request_id:
224
+ publish_request_progress({
225
+ "requestId": request_id,
226
+ "progress": 1,
227
+ "error": str(e)
228
+ })
File without changes
@@ -0,0 +1,28 @@
1
+ Provide a detailed summary of the conversation, including key points, decisions, and action items, and so on.
2
+ Do not add any introductory phrases.
3
+ Avoid expressing gratitude or using pleasantries.
4
+ Maintain a professional and direct tone throughout responses.
5
+ Include most recent meaningful messages from the conversation in the summary.
6
+ You must include all your uploaded URLs, and url of your uploaded final code URL.
7
+ Reply must be in markdown format, including images and videos as UI can show markdown directly to user in a nice way, so make sure to include all visuals, you may do as follows:
8
+ For images: ![Alt Text](IMAGE_URL)
9
+ For videos: <video src="VIDEO_URL" controls></video>
10
+ For urls: [Link Text](URL)
11
+ Your reply will be only thing that finally gets to surface so make sure it is complete.
12
+ Do not mention words like "Summary of the conversation", "Response", "Task", "The conversation" or so as it doesn't makes sense.
13
+ Also no need for "Request", user already know its request and task.
14
+ Be as detailed as possible without being annoying.
15
+ Start with the result as that is the most important part, do not mention "Result" as user already know its result.
16
+ No need to say information about generated SAS urls just include them, only include the latest versions of same file.
17
+ No need to say none of this as user already 'll be aware as has got the result:
18
+ - Code executed successfully, producing correct result ...
19
+ - File uploaded to Azure Blob Storage with unique timestamp ...
20
+ - SAS URL generated for file access, valid for ...
21
+ - File accessibility verified ...
22
+ - Code execution details ...
23
+ - Current date and time ...
24
+ - Script executed twice due to debugging environment ...
25
+ - Verification code ...
26
+ - Issues encountered and resolved: ...
27
+
28
+
@@ -0,0 +1,8 @@
1
+ azure-storage-queue
2
+ azure-functions
3
+ pyautogen
4
+ redis
5
+ pymongo
6
+ requests
7
+ azure-storage-blob
8
+ mysql-connector-python
@@ -0,0 +1,66 @@
1
+ import os
2
+ import sys
3
+ from datetime import datetime, timedelta
4
+ from typing import Annotated
5
+ from pydantic import BaseModel, Field
6
+
7
+ def install_azure_storage_blob():
8
+ import subprocess
9
+ subprocess.check_call([sys.executable, "-m", "pip", "install", "azure-storage-blob"])
10
+
11
+ try:
12
+ from azure.storage.blob import BlobServiceClient, BlobClient, generate_blob_sas, BlobSasPermissions
13
+ except ImportError:
14
+ install_azure_storage_blob()
15
+ from azure.storage.blob import BlobServiceClient, BlobClient, generate_blob_sas, BlobSasPermissions
16
+
17
+ class SasUploaderInput(BaseModel):
18
+ file_path: Annotated[str, Field(description="Path to the file to upload")]
19
+ container_name: Annotated[str, Field(description="Azure Blob container name")]
20
+ blob_name: Annotated[str, Field(description="Name for the blob in Azure storage")]
21
+
22
+ def autogen_sas_uploader(file_path: str) -> str:
23
+ """
24
+ Upload a file to Azure Blob Storage and generate a SAS URL.
25
+
26
+ This function uploads the specified file to Azure Blob Storage using the container name
27
+ from the AZURE_BLOB_CONTAINER environment variable. It then generates and returns a
28
+ Shared Access Signature (SAS) URL for the uploaded blob.
29
+
30
+ Args:
31
+ file_path (str): Path to the local file to be uploaded.
32
+
33
+ Returns:
34
+ str: SAS URL of the uploaded blob if successful, or an error message if the upload fails.
35
+
36
+ Note:
37
+ - Requires AZURE_STORAGE_CONNECTION_STRING and AZURE_BLOB_CONTAINER environment variables.
38
+ - The blob name in Azure will be the same as the input file name.
39
+ """
40
+ connect_str = os.environ.get('AZURE_STORAGE_CONNECTION_STRING')
41
+ container_name = os.environ.get('AZURE_BLOB_CONTAINER')
42
+
43
+ if not connect_str or not container_name:
44
+ return "Error: AZURE_STORAGE_CONNECTION_STRING or AZURE_BLOB_CONTAINER not set."
45
+
46
+ blob_service_client = BlobServiceClient.from_connection_string(connect_str)
47
+ blob_client = blob_service_client.get_blob_client(container=container_name, blob=file_path)
48
+
49
+ try:
50
+ with open(file_path, "rb") as data:
51
+ blob_client.upload_blob(data, overwrite=True)
52
+
53
+ sas_token = generate_blob_sas(
54
+ account_name=blob_service_client.account_name,
55
+ container_name=container_name,
56
+ blob_name=file_path,
57
+ account_key=blob_service_client.credential.account_key,
58
+ permission=BlobSasPermissions(read=True),
59
+ expiry=datetime.utcnow() + timedelta(days=30)
60
+ )
61
+
62
+ sas_url = f"https://{blob_service_client.account_name}.blob.core.windows.net/{container_name}/{file_path}?{sas_token}"
63
+ return sas_url
64
+ except Exception as e:
65
+ return f"Error uploading file: {str(e)}"
66
+
@@ -86,9 +86,16 @@ async function splitMediaFile(inputPath, chunkDurationInSeconds = 500) {
86
86
  // Extract the original file name from the URL
87
87
  const urlObj = new URL(inputPath);
88
88
  const originalFileName = path.basename(urlObj.pathname);
89
+ const maxLength = 200; // Set the maximum length for the filename
90
+ let truncatedFileName = originalFileName;
91
+ if (originalFileName.length > maxLength) {
92
+ const extension = path.extname(originalFileName); // Preserve the file extension
93
+ const basename = path.basename(originalFileName, extension); // Get the filename without the extension
94
+ truncatedFileName = basename.substring(0, maxLength) + extension; // Truncate the filename and append the extension
95
+ }
89
96
 
90
- // Use the original file name when saving the downloaded file
91
- const downloadPath = path.join(uniqueOutputPath, originalFileName);
97
+ // Use the original-truncated file name when saving the downloaded file
98
+ const downloadPath = path.join(uniqueOutputPath, truncatedFileName);
92
99
  await downloadFile(inputPath, downloadPath);
93
100
  inputPath = downloadPath;
94
101
  }
@@ -1,6 +1,10 @@
1
1
  // pathwayTools.js
2
2
  import { encode, decode } from '../lib/encodeCache.js';
3
3
  import { config } from '../config.js';
4
+ import { publishRequestProgress } from "../lib/redisSubscription.js";
5
+ import { getSemanticChunks } from "../server/chunker.js";
6
+ import logger from '../lib/logger.js';
7
+ import { requestState } from '../server/requestState.js';
4
8
 
5
9
  // callPathway - call a pathway from another pathway
6
10
  const callPathway = async (pathwayName, inArgs, pathwayResolver) => {
@@ -12,14 +16,26 @@ const callPathway = async (pathwayName, inArgs, pathwayResolver) => {
12
16
  if (!pathway) {
13
17
  throw new Error(`Pathway ${pathwayName} not found`);
14
18
  }
15
- const requestState = {};
19
+
16
20
  const parent = {};
17
- const data = await pathway.rootResolver(parent, args, { config, pathway, requestState } );
18
-
19
- // Merge the results into the pathwayResolver if it was provided
20
- if (pathwayResolver) {
21
- pathwayResolver.mergeResults(data);
21
+ let rootRequestId = pathwayResolver?.rootRequestId || pathwayResolver?.requestId;
22
+
23
+ let data = await pathway.rootResolver(parent, {...args, rootRequestId}, { config, pathway, requestState } );
24
+
25
+ if (args.async || args.stream) {
26
+ const { result: requestId } = data;
27
+
28
+ // Fire the resolver for the async requestProgress
29
+ logger.info(`Callpathway starting async requestProgress, requestId: ${requestId}`);
30
+ const { resolver, args } = requestState[requestId];
31
+ requestState[requestId].useRedis = false;
32
+ requestState[requestId].started = true;
33
+
34
+ data = resolver && await resolver(args);
22
35
  }
36
+
37
+ // Update pathwayResolver with new data if available
38
+ pathwayResolver?.mergeResults(data);
23
39
 
24
40
  return data?.result;
25
41
  };
@@ -32,4 +48,33 @@ const gpt3Decode = (text) => {
32
48
  return decode(text);
33
49
  }
34
50
 
35
- export { callPathway, gpt3Encode, gpt3Decode };
51
+ const say = async (requestId, message, maxMessageLength = Infinity) => {
52
+ try {
53
+ const chunks = getSemanticChunks(message, maxMessageLength);
54
+
55
+ for (let chunk of chunks) {
56
+ await publishRequestProgress({
57
+ requestId,
58
+ progress: 0.5,
59
+ data: chunk
60
+ });
61
+ }
62
+
63
+ await publishRequestProgress({
64
+ requestId,
65
+ progress: 0.5,
66
+ data: " ... "
67
+ });
68
+
69
+ await publishRequestProgress({
70
+ requestId,
71
+ progress: 0.5,
72
+ data: "\n\n"
73
+ });
74
+
75
+ } catch (error) {
76
+ logger.error(`Say error: ${error.message}`);
77
+ }
78
+ };
79
+
80
+ export { callPathway, gpt3Encode, gpt3Decode, say };
@@ -236,7 +236,7 @@ const makeRequest = async (cortexRequest) => {
236
236
  promises.push(selectedEndpoint.limiter.schedule({expiration: pathway.timeout * 1000 + 1000, id: `${requestId}_${uuidv4()}`},() => requestWithMonitor(selectedEndpoint, url, data, axiosConfigObj)));
237
237
  } else {
238
238
  if (streamRequested) {
239
- logger.info(`>>> [${requestId}] ${model} does not support streaming - sending non-streaming request`);
239
+ logger.info(`>>> [${requestId}] ${model.name || 'This model'} does not support streaming - sending non-streaming request`);
240
240
  axiosConfigObj.params.stream = false;
241
241
  data.stream = false;
242
242
  }
package/lib/util.js CHANGED
@@ -2,7 +2,6 @@ import logger from "./logger.js";
2
2
  import stream from 'stream';
3
3
  import subsrt from 'subsrt';
4
4
  import os from 'os';
5
- import path from 'path';
6
5
  import http from 'http';
7
6
  import https from 'https';
8
7
  import { URL } from 'url';
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@aj-archipelago/cortex",
3
- "version": "1.1.31",
3
+ "version": "1.1.33",
4
4
  "description": "Cortex is a GraphQL API for AI. It provides a simple, extensible interface for using AI services from OpenAI, Azure and others.",
5
5
  "private": false,
6
6
  "repository": {
@@ -1,4 +1,5 @@
1
1
  import { Prompt } from '../../server/prompt.js';
2
+ // eslint-disable-next-line import/no-extraneous-dependencies
2
3
  import * as Diff from "diff";
3
4
 
4
5
  const prompt = new Prompt({
@@ -1,5 +1,6 @@
1
1
  import { Prompt } from '../server/prompt.js';
2
2
  import * as chrono from 'chrono-node';
3
+ // eslint-disable-next-line import/no-extraneous-dependencies
3
4
  import dayjs from 'dayjs';
4
5
 
5
6
  const getLastOccurrenceOfMonth = (month) => {
package/server/chunker.js CHANGED
@@ -217,6 +217,11 @@ const semanticTruncate = (text, maxLength) => {
217
217
  : truncatedText + "...";
218
218
  };
219
219
 
220
+ const getSingleTokenChunks = (text) => {
221
+ if (text === '') return [''];
222
+ return encode(text).map(token => decode([token]));
223
+ }
224
+
220
225
  export {
221
- getSemanticChunks, semanticTruncate, getLastNToken, getFirstNToken, determineTextFormat
226
+ getSemanticChunks, semanticTruncate, getLastNToken, getFirstNToken, determineTextFormat, getSingleTokenChunks
222
227
  };
@@ -17,6 +17,7 @@ import OpenAiEmbeddingsPlugin from './plugins/openAiEmbeddingsPlugin.js';
17
17
  import OpenAIImagePlugin from './plugins/openAiImagePlugin.js';
18
18
  import OpenAIDallE3Plugin from './plugins/openAiDallE3Plugin.js';
19
19
  import OpenAIVisionPlugin from './plugins/openAiVisionPlugin.js';
20
+ import OpenAIReasoningPlugin from './plugins/openAiReasoningPlugin.js';
20
21
  import GeminiChatPlugin from './plugins/geminiChatPlugin.js';
21
22
  import GeminiVisionPlugin from './plugins/geminiVisionPlugin.js';
22
23
  import Gemini15ChatPlugin from './plugins/gemini15ChatPlugin.js';
@@ -82,6 +83,9 @@ class ModelExecutor {
82
83
  case 'OPENAI-VISION':
83
84
  plugin = new OpenAIVisionPlugin(pathway, model);
84
85
  break;
86
+ case 'OPENAI-REASONING':
87
+ plugin = new OpenAIReasoningPlugin(pathway, model);
88
+ break;
85
89
  case 'GEMINI-CHAT':
86
90
  plugin = new GeminiChatPlugin(pathway, model);
87
91
  break;
@@ -27,6 +27,7 @@ class PathwayResolver {
27
27
  this.warnings = [];
28
28
  this.errors = [];
29
29
  this.requestId = uuidv4();
30
+ this.rootRequestId = null;
30
31
  this.responseParser = new PathwayResponseParser(pathway);
31
32
  this.tool = null;
32
33
  this.modelName = [
@@ -84,7 +85,7 @@ class PathwayResolver {
84
85
  catch (error) {
85
86
  if (!args.async) {
86
87
  publishRequestProgress({
87
- requestId: this.requestId,
88
+ requestId: this.rootRequestId || this.requestId,
88
89
  progress: 1,
89
90
  data: '[DONE]',
90
91
  });
@@ -100,9 +101,9 @@ class PathwayResolver {
100
101
  // some models don't support progress updates
101
102
  if (!modelTypesExcludedFromProgressUpdates.includes(this.model.type)) {
102
103
  await publishRequestProgress({
103
- requestId: this.requestId,
104
+ requestId: this.rootRequestId || this.requestId,
104
105
  progress: completedCount / totalCount,
105
- data: JSON.stringify(responseData),
106
+ data: typeof responseData === 'string' ? responseData : JSON.stringify(responseData),
106
107
  });
107
108
  }
108
109
  // If the response is an object, it's a streaming response
@@ -113,7 +114,7 @@ class PathwayResolver {
113
114
 
114
115
  const onParse = (event) => {
115
116
  let requestProgress = {
116
- requestId: this.requestId
117
+ requestId: this.rootRequestId || this.requestId
117
118
  };
118
119
 
119
120
  logger.debug(`Received event: ${event.type}`);
@@ -138,8 +139,10 @@ class PathwayResolver {
138
139
 
139
140
  try {
140
141
  if (!streamEnded && requestProgress.data) {
141
- //logger.info(`Publishing stream message to requestId ${this.requestId}: ${message}`);
142
- publishRequestProgress(requestProgress);
142
+ if (!(this.rootRequestId && requestProgress.progress === 1)) {
143
+ logger.debug(`Publishing stream message to requestId ${this.requestId}: ${requestProgress.data}`);
144
+ publishRequestProgress(requestProgress);
145
+ }
143
146
  streamEnded = requestProgress.progress === 1;
144
147
  }
145
148
  } catch (error) {
@@ -195,6 +198,7 @@ class PathwayResolver {
195
198
  if (!requestState[this.requestId]) {
196
199
  requestState[this.requestId] = {}
197
200
  }
201
+ this.rootRequestId = args.rootRequestId ?? null;
198
202
  requestState[this.requestId] = { ...requestState[this.requestId], args, resolver: this.asyncResolve.bind(this) };
199
203
  return this.requestId;
200
204
  }
@@ -0,0 +1,61 @@
1
+ import OpenAIChatPlugin from './openAiChatPlugin.js';
2
+
3
+ class OpenAIReasoningPlugin extends OpenAIChatPlugin {
4
+
5
+ tryParseMessages(messages) {
6
+ let newMessages = [];
7
+
8
+ for (const message of messages) {
9
+ if (message.role === 'user' || message.role === 'assistant') {
10
+ newMessages.push({
11
+ role: message.role,
12
+ content: this.parseContent(message.content)
13
+ });
14
+ }
15
+ // System messages are simply ignored
16
+ }
17
+
18
+ messages.length = 0;
19
+ messages.push(...newMessages);
20
+ }
21
+
22
+ parseContent(content) {
23
+ if (typeof content === 'string') {
24
+ return [{ type: 'text', text: content }];
25
+ }
26
+ if (Array.isArray(content)) {
27
+ return content.map(item => {
28
+ if (typeof item === 'string') {
29
+ return { type: 'text', text: item };
30
+ }
31
+ const { type, text } = item;
32
+ return { type, text: text || '' };
33
+ });
34
+ }
35
+ return [];
36
+ }
37
+
38
+ getRequestParameters(text, parameters, prompt) {
39
+ const requestParameters = super.getRequestParameters(text, parameters, prompt);
40
+
41
+ this.tryParseMessages(requestParameters.messages);
42
+
43
+ const modelMaxReturnTokens = this.getModelMaxReturnTokens();
44
+ const maxTokensPrompt = this.promptParameters.max_tokens;
45
+ const maxTokensModel = this.getModelMaxTokenLength() * (1 - this.getPromptTokenRatio());
46
+
47
+ const maxTokens = maxTokensPrompt || maxTokensModel;
48
+
49
+ requestParameters.max_completion_tokens = maxTokens ? Math.min(maxTokens, modelMaxReturnTokens) : modelMaxReturnTokens;
50
+ requestParameters.temperature = 1;
51
+
52
+ if (this.promptParameters.json) {
53
+ //requestParameters.response_format = { type: "json_object", }
54
+ }
55
+
56
+ return requestParameters;
57
+ }
58
+
59
+ }
60
+
61
+ export default OpenAIReasoningPlugin;
package/server/rest.js CHANGED
@@ -5,7 +5,20 @@ import pubsub from './pubsub.js';
5
5
  import { requestState } from './requestState.js';
6
6
  import { v4 as uuidv4 } from 'uuid';
7
7
  import logger from '../lib/logger.js';
8
-
8
+ import { getSingleTokenChunks } from './chunker.js';
9
+
10
+ const chunkTextIntoTokens = (() => {
11
+ let partialToken = '';
12
+ return (text, isLast = false, useSingleTokenStream = false) => {
13
+ const tokens = useSingleTokenStream ? getSingleTokenChunks(partialToken + text) : [text];
14
+ if (isLast) {
15
+ partialToken = '';
16
+ return tokens;
17
+ }
18
+ partialToken = useSingleTokenStream ? tokens.pop() : '';
19
+ return tokens;
20
+ };
21
+ })();
9
22
 
10
23
  const processRestRequest = async (server, req, pathway, name, parameterMap = {}) => {
11
24
  const fieldVariableDefs = pathway.typeDef(pathway).restDefinition || [];
@@ -50,7 +63,8 @@ const processRestRequest = async (server, req, pathway, name, parameterMap = {})
50
63
  return resultText;
51
64
  };
52
65
 
53
- const processIncomingStream = (requestId, res, jsonResponse) => {
66
+ const processIncomingStream = (requestId, res, jsonResponse, pathway) => {
67
+ const useSingleTokenStream = pathway.useSingleTokenStream || false;
54
68
 
55
69
  const startStream = (res) => {
56
70
  // Set the headers for streaming
@@ -61,6 +75,14 @@ const processIncomingStream = (requestId, res, jsonResponse) => {
61
75
  }
62
76
 
63
77
  const finishStream = (res, jsonResponse) => {
78
+ // Send the last partial token if it exists
79
+ const lastTokens = chunkTextIntoTokens('', true, useSingleTokenStream);
80
+ if (lastTokens.length > 0) {
81
+ lastTokens.forEach(token => {
82
+ fillJsonResponse(jsonResponse, token, null);
83
+ sendStreamData(jsonResponse);
84
+ });
85
+ }
64
86
 
65
87
  // If we haven't sent the stop message yet, do it now
66
88
  if (jsonResponse.choices?.[0]?.finish_reason !== "stop") {
@@ -85,11 +107,11 @@ const processIncomingStream = (requestId, res, jsonResponse) => {
85
107
  }
86
108
 
87
109
  const sendStreamData = (data) => {
88
- logger.debug(`REST SEND: data: ${JSON.stringify(data)}`);
89
110
  const dataString = (data==='[DONE]') ? data : JSON.stringify(data);
90
111
 
91
112
  if (!res.writableEnded) {
92
113
  res.write(`data: ${dataString}\n\n`);
114
+ logger.debug(`REST SEND: data: ${dataString}`);
93
115
  }
94
116
  }
95
117
 
@@ -115,63 +137,68 @@ const processIncomingStream = (requestId, res, jsonResponse) => {
115
137
  if (subscription) {
116
138
  try {
117
139
  const subPromiseResult = await subscription;
118
- if (subPromiseResult) {
119
- pubsub.unsubscribe(subPromiseResult);
120
- }
140
+ subPromiseResult && pubsub.unsubscribe(subPromiseResult);
121
141
  } catch (error) {
122
142
  logger.error(`Error unsubscribing from pubsub: ${error}`);
123
143
  }
124
144
  }
125
145
  }
126
146
 
127
- if (data.requestProgress.requestId === requestId) {
128
- logger.debug(`REQUEST_PROGRESS received progress: ${data.requestProgress.progress}, data: ${data.requestProgress.data}`);
129
-
130
- const progress = data.requestProgress.progress;
131
- const progressData = data.requestProgress.data;
147
+ if (data.requestProgress.requestId !== requestId) return;
132
148
 
133
- try {
134
- const messageJson = JSON.parse(progressData);
135
- if (messageJson.error) {
136
- logger.error(`Stream error REST: ${messageJson?.error?.message || 'unknown error'}`);
137
- safeUnsubscribe();
138
- finishStream(res, jsonResponse);
139
- return;
140
- } else if (messageJson.choices) {
141
- const { text, delta, finish_reason } = messageJson.choices[0];
149
+ logger.debug(`REQUEST_PROGRESS received progress: ${data.requestProgress.progress}, data: ${data.requestProgress.data}`);
150
+
151
+ const { progress, data: progressData } = data.requestProgress;
142
152
 
143
- if (messageJson.object === 'text_completion') {
144
- fillJsonResponse(jsonResponse, text, finish_reason);
145
- } else {
146
- fillJsonResponse(jsonResponse, delta.content, finish_reason);
147
- }
148
- } else if (messageJson.candidates) {
149
- const { content, finishReason } = messageJson.candidates[0];
150
- fillJsonResponse(jsonResponse, content.parts[0].text, finishReason);
151
- } else if (messageJson.content) {
152
- const text = messageJson.content?.[0]?.text || '';
153
- const finishReason = messageJson.stop_reason;
154
- fillJsonResponse(jsonResponse, text, finishReason);
155
- } else {
156
- fillJsonResponse(jsonResponse, messageJson, null);
157
- }
158
- } catch (error) {
159
- //logger.info(`progressData not JSON: ${progressData}`);
160
- fillJsonResponse(jsonResponse, progressData, "stop");
161
- }
162
- if (progress === 1 && progressData.trim() === "[DONE]") {
153
+ try {
154
+ const messageJson = JSON.parse(progressData);
155
+ if (messageJson.error) {
156
+ logger.error(`Stream error REST: ${messageJson?.error?.message || 'unknown error'}`);
163
157
  safeUnsubscribe();
164
158
  finishStream(res, jsonResponse);
165
159
  return;
166
160
  }
167
161
 
168
- sendStreamData(jsonResponse);
162
+ let content = '';
163
+ if (messageJson.choices) {
164
+ const { text, delta } = messageJson.choices[0];
165
+ content = messageJson.object === 'text_completion' ? text : delta.content;
166
+ } else if (messageJson.candidates) {
167
+ content = messageJson.candidates[0].content.parts[0].text;
168
+ } else if (messageJson.content) {
169
+ content = messageJson.content?.[0]?.text || '';
170
+ } else {
171
+ content = messageJson;
172
+ }
169
173
 
170
- if (progress === 1) {
171
- safeUnsubscribe();
172
- finishStream(res, jsonResponse);
174
+ chunkTextIntoTokens(content, false, useSingleTokenStream).forEach(token => {
175
+ fillJsonResponse(jsonResponse, token, null);
176
+ sendStreamData(jsonResponse);
177
+ });
178
+ } catch (error) {
179
+ logger.debug(`progressData not JSON: ${progressData}`);
180
+ if (typeof progressData === 'string') {
181
+ if (progress === 1 && progressData.trim() === "[DONE]") {
182
+ fillJsonResponse(jsonResponse, progressData, "stop");
183
+ safeUnsubscribe();
184
+ finishStream(res, jsonResponse);
185
+ return;
186
+ }
187
+
188
+ chunkTextIntoTokens(progressData, false, useSingleTokenStream).forEach(token => {
189
+ fillJsonResponse(jsonResponse, token, null);
190
+ sendStreamData(jsonResponse);
191
+ });
192
+ } else {
193
+ fillJsonResponse(jsonResponse, progressData, "stop");
194
+ sendStreamData(jsonResponse);
173
195
  }
174
196
  }
197
+
198
+ if (progress === 1) {
199
+ safeUnsubscribe();
200
+ finishStream(res, jsonResponse);
201
+ }
175
202
  });
176
203
 
177
204
  // Fire the resolver for the async requestProgress
@@ -254,7 +281,7 @@ function buildRestEndpoints(pathways, app, server, config) {
254
281
  jsonResponse.choices[0].finish_reason = null;
255
282
  //jsonResponse.object = "text_completion.chunk";
256
283
 
257
- processIncomingStream(resultText, res, jsonResponse);
284
+ processIncomingStream(resultText, res, jsonResponse, pathway);
258
285
  } else {
259
286
  const requestId = uuidv4();
260
287
  jsonResponse.id = `cmpl-${requestId}`;
@@ -306,7 +333,7 @@ function buildRestEndpoints(pathways, app, server, config) {
306
333
  }
307
334
  jsonResponse.object = "chat.completion.chunk";
308
335
 
309
- processIncomingStream(resultText, res, jsonResponse);
336
+ processIncomingStream(resultText, res, jsonResponse, pathway);
310
337
  } else {
311
338
  const requestId = uuidv4();
312
339
  jsonResponse.id = `chatcmpl-${requestId}`;
@@ -346,4 +373,4 @@ function buildRestEndpoints(pathways, app, server, config) {
346
373
  }
347
374
  }
348
375
 
349
- export { buildRestEndpoints };
376
+ export { buildRestEndpoints };
@@ -1,5 +1,5 @@
1
1
  import test from 'ava';
2
- import { getSemanticChunks, determineTextFormat } from '../server/chunker.js';
2
+ import { getSemanticChunks, determineTextFormat, getSingleTokenChunks } from '../server/chunker.js';
3
3
  import { encode } from '../lib/encodeCache.js';
4
4
 
5
5
  const testText = `Lorem ipsum dolor sit amet, consectetur adipiscing elit. In id erat sem. Phasellus ac dapibus purus, in fermentum nunc. Mauris quis rutrum magna. Quisque rutrum, augue vel blandit posuere, augue magna convallis turpis, nec elementum augue mauris sit amet nunc. Aenean sit amet leo est. Nunc ante ex, blandit et felis ut, iaculis lacinia est. Phasellus dictum orci id libero ullamcorper tempor.
@@ -207,4 +207,18 @@ test('should return identical text that chunker was passed, given weird spaces a
207
207
  t.assert(chunks.every(chunk => encode(chunk).length <= maxChunkToken)); //check chunk size
208
208
  const recomposedText = chunks.reduce((acc, chunk) => acc + chunk, '');
209
209
  t.assert(recomposedText === testTextShortWeirdSpaces); //check recomposition
210
+ });
211
+
212
+ test('should correctly split text into single token chunks', t => {
213
+ const testString = 'Hello, world!';
214
+ const chunks = getSingleTokenChunks(testString);
215
+
216
+ // Check that each chunk is a single token
217
+ t.true(chunks.every(chunk => encode(chunk).length === 1));
218
+
219
+ // Check that joining the chunks recreates the original string
220
+ t.is(chunks.join(''), testString);
221
+
222
+ // Check specific tokens (this may need adjustment based on your tokenizer)
223
+ t.deepEqual(chunks, ['Hello', ',', ' world', '!']);
210
224
  });