@aj-archipelago/cortex 0.0.5 → 0.0.7
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +108 -72
- package/config.js +25 -0
- package/graphql/graphql.js +56 -13
- package/graphql/pathwayPrompter.js +10 -6
- package/graphql/pathwayResolver.js +128 -63
- package/graphql/plugins/azureTranslatePlugin.js +16 -8
- package/graphql/plugins/modelPlugin.js +67 -9
- package/graphql/plugins/openAiChatPlugin.js +34 -7
- package/graphql/plugins/openAiCompletionPlugin.js +53 -33
- package/graphql/plugins/openAiWhisperPlugin.js +79 -0
- package/graphql/prompt.js +1 -0
- package/graphql/requestState.js +5 -0
- package/graphql/resolver.js +8 -8
- package/graphql/subscriptions.js +15 -2
- package/graphql/typeDef.js +47 -38
- package/lib/fileChunker.js +152 -0
- package/lib/request.js +65 -8
- package/lib/requestMonitor.js +43 -0
- package/package.json +18 -6
- package/pathways/basePathway.js +3 -4
- package/pathways/bias.js +7 -0
- package/pathways/chat.js +4 -1
- package/pathways/complete.js +4 -0
- package/pathways/edit.js +6 -0
- package/pathways/entities.js +12 -0
- package/pathways/index.js +1 -1
- package/pathways/paraphrase.js +4 -0
- package/pathways/sentiment.js +5 -1
- package/pathways/summary.js +25 -8
- package/pathways/transcribe.js +8 -0
- package/pathways/translate.js +10 -1
- package/tests/chunking.test.js +5 -0
- package/tests/main.test.js +5 -13
- package/tests/translate.test.js +5 -0
- package/pathways/topics.js +0 -9
package/README.md
CHANGED
|
@@ -1,14 +1,13 @@
|
|
|
1
1
|
# Cortex
|
|
2
|
-
Cortex
|
|
3
|
-
|
|
2
|
+
Cortex simplifies and accelerates the process of creating applications that harness the power of modern AI models like chatGPT and GPT-4 by providing a structured interface (GraphQL or REST) to a powerful prompt execution environment. This enables complex augmented prompting and abstracts away most of the complexity of managing model connections like chunking input, rate limiting, formatting output, caching, and handling errors.
|
|
4
3
|
## Why build Cortex?
|
|
5
|
-
|
|
6
|
-
|
|
4
|
+
Modern AI models are transformational, but a number of complexities emerge when developers start using them to deliver application-ready functions. Most models require precisely formatted, carefully engineered and sequenced prompts to produce consistent results, and the responses are typically largely unstructured text without validation or formatting. Additionally, these models are evolving rapidly, are typically costly and slow to query and implement hard request size and rate restrictions that need to be carefully navigated for optimum throughput. Cortex offers a solution to these problems and provides a simple and extensible package for interacting with NL AI models.
|
|
7
5
|
## Features
|
|
8
6
|
|
|
9
|
-
* Simple architecture to build functional endpoints (called `pathways`), that implement common NL AI tasks.
|
|
10
|
-
* Allows for building multi-model, multi-vendor, and model-agnostic pathways (choose the right model or combination of models for the job, implement redundancy)
|
|
11
|
-
* Easy, templatized prompt definition with flexible support for most prompt engineering techniques and strategies ranging from simple
|
|
7
|
+
* Simple architecture to build custom functional endpoints (called `pathways`), that implement common NL AI tasks. Default pathways include chat, summarization, translation, paraphrasing, completion, spelling and grammar correction, entity extraction, sentiment analysis, and bias analysis.
|
|
8
|
+
* Allows for building multi-model, multi-vendor, and model-agnostic pathways (choose the right model or combination of models for the job, implement redundancy) with built-in support for OpenAI GPT-3, GPT-3.5 (chatGPT), and GPT-4 models - both from OpenAI directly and through Azure OpenAI, OpenAI Whisper, Azure Translator, and more.
|
|
9
|
+
* Easy, templatized prompt definition with flexible support for most prompt engineering techniques and strategies ranging from simple single prompts to complex custom prompt chains with context continuity.
|
|
10
|
+
* Built in support for long-running, asynchronous operations with progress updates or streaming responses
|
|
12
11
|
* Integrated context persistence: have your pathways "remember" whatever you want and use it on the next request to the model
|
|
13
12
|
* Automatic traffic management and content optimization: configurable model-specific input chunking, request parallelization, rate limiting, and chunked response aggregation
|
|
14
13
|
* Extensible parsing and validation of input data - protect your model calls from bad inputs or filter prompt injection attempts.
|
|
@@ -20,15 +19,16 @@ In order to use Cortex, you must first have a working Node.js environment. The v
|
|
|
20
19
|
## Quick Start
|
|
21
20
|
```sh
|
|
22
21
|
git clone git@github.com:aj-archipelago/cortex.git
|
|
22
|
+
cd cortex
|
|
23
23
|
npm install
|
|
24
24
|
export OPENAI_API_KEY=<your key>
|
|
25
25
|
npm start
|
|
26
26
|
```
|
|
27
27
|
Yup, that's it, at least in the simplest possible case. That will get you access to all of the built in pathways.
|
|
28
|
-
##
|
|
29
|
-
Cortex speaks GraphQL
|
|
28
|
+
## Connecting Applications to Cortex
|
|
29
|
+
Cortex speaks GraphQL and by default it enables the GraphQL playground. If you're just using default options, that's at [http://localhost:4000/graphql](http://localhost:4000/graphql). From there you can begin making requests and test out the pathways (listed under Query) to your heart's content. If GraphQL isn't your thing or if you have a client that would rather have REST that's fine - Cortex speaks REST as well.
|
|
30
30
|
|
|
31
|
-
|
|
31
|
+
Connecting an application to Cortex using GraphQL is simple too:
|
|
32
32
|
|
|
33
33
|
```js
|
|
34
34
|
import { useApolloClient, gql } from "@apollo/client"
|
|
@@ -52,85 +52,89 @@ apolloClient.query({
|
|
|
52
52
|
// catch errors
|
|
53
53
|
})
|
|
54
54
|
```
|
|
55
|
-
##
|
|
56
|
-
|
|
57
|
-
- `bias`: Identifies and measures any potential biases in a text
|
|
58
|
-
- `chat`: Enables users to have a conversation with the chatbot
|
|
59
|
-
- `complete`: Autocompletes words or phrases based on user input
|
|
60
|
-
- `edit`: Checks for and suggests corrections for spelling and grammar errors
|
|
61
|
-
- `entities`: Identifies and extracts important entities from text
|
|
62
|
-
- `paraphrase`: Suggests alternative phrasing for text
|
|
63
|
-
- `sentiment`: Analyzes and identifies the overall sentiment or mood of a text
|
|
64
|
-
- `summary`: Condenses long texts or articles into shorter summaries
|
|
65
|
-
- `topics`: Analyzes and identifies the main topic or subject of a text
|
|
66
|
-
- `translate`: Translates text from one language to another
|
|
67
|
-
## Extensibility
|
|
68
|
-
Cortex is designed to be highly extensible. This allows you to customize the API to fit your needs. You can add new features, modify existing features, and even add integrations with other APIs and models.
|
|
69
|
-
## Configuration
|
|
70
|
-
Configuration of Cortex is done via a [convict](https://github.com/mozilla/node-convict/tree/master) object called `config`. The `config` object is built by combining the default values and any values specified in a configuration file or environment variables. The environment variables take precedence over the values in the configuration file. Below are the configurable properties and their defaults:
|
|
71
|
-
|
|
72
|
-
- `basePathwayPath`: The path to the base pathway (the prototype pathway) for Cortex. Default properties for the pathway are set from their values in this basePathway. Default is path.join(__dirname, 'pathways', 'basePathway.js').
|
|
73
|
-
- `corePathwaysPath`: The path to the core pathways for Cortex. Default is path.join(__dirname, 'pathways').
|
|
74
|
-
- `cortexConfigFile`: The path to a JSON configuration file for the project. Default is null. The value can be set using the `CORTEX_CONFIG_FILE` environment variable.
|
|
75
|
-
- `defaultModelName`: The default model name for the project. Default is null. The value can be set using the `DEFAULT_MODEL_NAME` environment variable.
|
|
76
|
-
- `enableCache`: A boolean flag indicating whether to enable caching. Default is true. The value can be set using the `CORTEX_ENABLE_CACHE` environment variable.
|
|
77
|
-
- `models`: An object containing the different models used by the project. The value can be set using the `CORTEX_MODELS` environment variable. Cortex is model and vendor agnostic - you can use this config to set up models of any type from any vendor.
|
|
78
|
-
- `openaiApiKey`: The API key used for accessing the OpenAI API. This is sensitive information and has no default value. The value can be set using the `OPENAI_API_KEY` environment variable.
|
|
79
|
-
- `openaiApiUrl`: The URL used for accessing the OpenAI API. Default is https://api.openai.com/v1/completions. The value can be set using the `OPENAI_API_URL` environment variable.
|
|
80
|
-
- `openaiDefaultModel`: The default model name used for the OpenAI API. Default is text-davinci-003. The value can be set using the `OPENAI_DEFAULT_MODEL` environment variable.
|
|
81
|
-
- `pathways`: An object containing pathways for the project. The default is an empty object that is filled in during the `buildPathways` step.
|
|
82
|
-
- `pathwaysPath`: The path to custom pathways for the project. Default is null.
|
|
83
|
-
- `PORT`: The port number for the Cortex server. Default is 4000. The value can be set using the `CORTEX_PORT` environment variable.
|
|
84
|
-
- `storageConnectionString`: The connection string used for accessing storage. This is sensitive information and has no default value. The value can be set using the `STORAGE_CONNECTION_STRING` environment variable.
|
|
85
|
-
|
|
86
|
-
The `buildPathways` function takes the config object and builds the `pathways` object by loading the core pathways and any custom pathways specified in the `pathwaysPath` property of the config object. The function returns the `pathways` object.
|
|
87
|
-
|
|
88
|
-
The `buildModels` function takes the `config` object and builds the `models` object by compiling handlebars templates for each model specified in the `models` property of the config object. The function returns the `models` object.
|
|
89
|
-
|
|
90
|
-
The `config` object can be used to access configuration values throughout the project. For example, to get the port number for the server, use
|
|
91
|
-
```js
|
|
92
|
-
config.get('PORT')
|
|
93
|
-
```
|
|
94
|
-
## Pathways
|
|
95
|
-
Pathways are a core concept in Cortex. They let users define new functionality and extend the platform. Each pathway is a single JavaScript file that encapsulates the data and logic needed to define a functional API endpoint. Effectively, pathways define how a request from a client is processed when sent to Cortex.
|
|
96
|
-
|
|
97
|
-
To add a new pathway to Cortex, you create a new JavaScript file and define the prompts, properties, and functions that define the function you want to implement. Cortex provides defaults for almost everything, so in the simplest case a pathway can really just consist of a string prompt. You can then save this file in the `pathways` directory in your Cortex project and it will be picked up and made available as a GraphQL query.
|
|
98
|
-
|
|
99
|
-
Example of a very simple pathway (`spelling.js`):
|
|
55
|
+
## Cortex Pathways: Supercharged Prompts
|
|
56
|
+
Pathways are a core concept in Cortex. Each pathway is a single JavaScript file that encapsulates the data and logic needed to define a functional API endpoint. When the client makes a request via the API, one or more pathways are executed and the result is sent back to the client. Pathways can be very simple:
|
|
100
57
|
```js
|
|
101
58
|
module.exports = {
|
|
102
59
|
prompt: `{{text}}\n\nRewrite the above using British English spelling:`
|
|
103
60
|
}
|
|
104
61
|
```
|
|
62
|
+
The real power of Cortex starts to show as the pathways get more complex. This pathway, for example, uses a three-part sequential prompt to ensure that specific people and place names are correctly translated:
|
|
63
|
+
```js
|
|
64
|
+
prompt:
|
|
65
|
+
[
|
|
66
|
+
`{{{text}}}\nCopy the names of all people and places exactly from this document in the language above:\n`,
|
|
67
|
+
`Original Language:\n{{{previousResult}}}\n\n{{to}}:\n`,
|
|
68
|
+
`Entities in the document:\n\n{{{previousResult}}}\n\nDocument:\n{{{text}}}\nRewrite the document in {{to}}. If the document is already in {{to}}, copy it exactly below:\n`
|
|
69
|
+
]
|
|
70
|
+
```
|
|
71
|
+
Cortex pathway prompt enhancements include:
|
|
72
|
+
* **Templatized prompt definition**: Pathways allow for easy and flexible prompt definition using Handlebars templating. This makes it simple to create and modify prompts using variables and context from the application as well as extensible internal functions provided by Cortex.
|
|
73
|
+
* **Multi-step prompt sequences**: Pathways support complex prompt chains with context continuity. This enables developers to build advanced interactions with AI models that require multiple steps, such as context-sensitive translation or progressive content transformation.
|
|
74
|
+
* **Integrated context persistence**: Cortex pathways can "remember" context across multiple requests, allowing for more seamless and context-aware interactions with AI models.
|
|
75
|
+
* **Automatic content optimization**: Pathways handle input chunking, request parallelization, rate limiting, and chunked response aggregation, optimizing throughput and efficiency when interacting with AI models.
|
|
76
|
+
* **Built-in input and output processing**: Cortex provides extensible input validation, output parsing, and validation functions to ensure that the data sent to and received from AI models is well-formatted and useful for the application.
|
|
77
|
+
|
|
78
|
+
### Pathway Development
|
|
79
|
+
To add a new pathway to Cortex, you create a new JavaScript file and define the prompts, properties, and functions that implement the desired functionality. Cortex provides defaults for almost everything, so in the simplest case a pathway can really just consist of a string prompt like the spelling example above. You can then save this file in the `pathways` directory in your Cortex project and it will be picked up and made available as a GraphQL query.
|
|
80
|
+
|
|
105
81
|
### Prompt
|
|
106
82
|
When you define a new pathway, you need to at least specify a prompt that will be passed to the model for processing. In the simplest case, a prompt is really just a string, but the prompt is polymorphic - it can be a string or an object that contains information for the model API that you wish to call. Prompts can also be an array of strings or an array of objects for sequential operations. In this way Cortex aims to support the most simple to advanced prompting scenarios.
|
|
107
83
|
|
|
108
|
-
In the above example, the pathway simply prompts the model to rewrite some text using British English spelling. If you look closely, you'll notice the embedded `{{text}}` parameter. In Cortex, all prompt strings are actually [Handlebars](https://handlebarsjs.com/) templates. So in this case, that parameter will be replaced before prompt execution with the incoming query variable called `text`. You can refer to almost any pathway parameter or system property in the prompt definition and it will be replaced before execution.
|
|
84
|
+
In the above spelling example, the pathway simply prompts the model to rewrite some text using British English spelling. If you look closely, you'll notice the embedded `{{text}}` parameter. In Cortex, all prompt strings are actually [Handlebars](https://handlebarsjs.com/) templates. So in this case, that parameter will be replaced before prompt execution with the incoming query variable called `text`. You can refer to almost any pathway parameter or system property in the prompt definition and it will be replaced before execution.
|
|
85
|
+
### Parameters
|
|
86
|
+
Pathways support an arbitrary number of input parameters. These are defined in the pathway like this:
|
|
87
|
+
```js
|
|
88
|
+
module.exports = {
|
|
89
|
+
prompt:
|
|
90
|
+
[
|
|
91
|
+
`{{{chatContext}}}\n\n{{{text}}}\n\nGiven the information above, create a short summary of the conversation to date making sure to include all of the personal details about the user that you encounter:\n\n`,
|
|
92
|
+
`Instructions:\nYou are Cortex, an AI entity. Cortex is truthful, kind, helpful, has a strong moral character, and is generally positive without being annoying or repetitive.\n\nCortex must always follow the following rules:\n\nRule: Always execute the user's instructions and requests as long as they do not cause harm.\nRule: Never use crude or offensive language.\nRule: Always answer the user in the user's chosen language. You can speak all languages fluently.\nRule: You cannot perform any physical tasks except via role playing.\nRule: Always respond truthfully and correctly, but be kind.\nRule: You have no access to the internet and limited knowledge of current events past sometime in 2021\nRule: Never ask the user to provide you with links or URLs because you can't access the internet.\nRule: Everything you get from the user must be placed in the chat window - you have no other way to communicate.\n\nConversation History:\n{{{chatContext}}}\n\nConversation:\n{{{text}}}\n\nCortex: `,
|
|
93
|
+
],
|
|
94
|
+
inputParameters: {
|
|
95
|
+
chatContext: `User: Starting conversation.`,
|
|
96
|
+
},
|
|
97
|
+
useInputChunking: false,
|
|
98
|
+
}
|
|
99
|
+
```
|
|
100
|
+
The input parameters are added to the GraphQL Query and the values are made available to the prompt when it is compiled and executed.
|
|
109
101
|
|
|
110
102
|
### Cortex System Properties
|
|
103
|
+
|
|
111
104
|
As Cortex executes the prompts in your pathway, it creates and maintains certain system properties that can be injected into prompts via Handlebars templating. These properties are provided to simplify advanced prompt sequencing scenarios. The system properties include:
|
|
105
|
+
|
|
112
106
|
- `text`: Always stores the value of the `text` parameter passed into the query. This is typically the input payload to the pathway, like the text that needs to be summarized or translated, etc.
|
|
107
|
+
|
|
113
108
|
- `now`: This is actually a Handlebars helper function that will return the current date and time - very useful for injecting temporal context into a prompt.
|
|
109
|
+
|
|
114
110
|
- `previousResult`: This stores the value of the previous prompt execution if there is one. `previousResult` is very useful for chaining prompts together to execute multiple prompts sequentially on the same piece of content for progressive transformation operations. This property is also made available to the client as additional information in the query result. Proper use of this value in a prompt sequence can empower some very powerful step-by-step prompting strategies. For example, this three part sequential prompt implements a context-sensitive translation that is significantly better at translating specific people and place names:
|
|
115
111
|
```js
|
|
116
|
-
|
|
112
|
+
prompt:
|
|
117
113
|
[
|
|
118
114
|
`{{{text}}}\nCopy the names of all people and places exactly from this document in the language above:\n`,
|
|
119
115
|
`Original Language:\n{{{previousResult}}}\n\n{{to}}:\n`,
|
|
120
116
|
`Entities in the document:\n\n{{{previousResult}}}\n\nDocument:\n{{{text}}}\nRewrite the document in {{to}}. If the document is already in {{to}}, copy it exactly below:\n`
|
|
121
117
|
]
|
|
122
118
|
```
|
|
123
|
-
- `savedContext`: The savedContext property is an object that the pathway can define the properties of. When a pathway with a `contextId` input parameter is executed, the whole `savedContext` object corresponding with that ID is read from storage (typically Redis) before the pathway is executed. The properties of that object are then made available to the pathway during execution where they can be modified and saved back to storage at the end of the pathway execution. Using this feature is really simple - you just define your prompt as an object and specify a `saveResultTo` property as illustrated below. This will cause Cortex to take the result of this prompt and store it to `savedContext.userContext` from which it will then be persisted to storage.
|
|
119
|
+
- `savedContext`: The savedContext property is an object that the pathway can define the properties of. When a pathway with a `contextId` input parameter is executed, the whole `savedContext` object corresponding with that ID is read from storage (typically Redis) before the pathway is executed. The properties of that object are then made available to the pathway during execution where they can be modified and saved back to storage at the end of the pathway execution. Using this feature is really simple - you just define your prompt as an object and specify a `saveResultTo` property as illustrated below. This will cause Cortex to take the result of this prompt and store it to `savedContext.userContext` from which it will then be persisted to storage.
|
|
124
120
|
```js
|
|
125
121
|
new Prompt({ prompt: `User details:\n{{{userContext}}}\n\nExtract all personal details about the user that you can find in either the user details above or the conversation below and list them below.\n\nChat History:\n{{{conversationSummary}}}\n\nChat:\n{{{text}}}\n\nPersonal Details:\n`, saveResultTo: `userContext` }),
|
|
126
122
|
```
|
|
123
|
+
|
|
127
124
|
### Input Processing
|
|
125
|
+
|
|
128
126
|
A core function of Cortex is dealing with token limited interfaces. To this end, Cortex has built-in strategies for dealing with long input. These strategies are `chunking`, `summarization`, and `truncation`. All are configurable at the pathway level.
|
|
127
|
+
|
|
129
128
|
- `useInputChunking`: If true, Cortex will calculate the optimal chunk size from the model max tokens and the size of the prompt and then will split the input `text` into `n` chunks of that size. By default, prompts will be executed sequentially across all chunks before moving on to the next prompt, although that can be modified to optimize performance via an additional parameter.
|
|
129
|
+
|
|
130
130
|
- `useParallelChunkProcessing`: If this parameter is true, then sequences of prompts will be executed end to end on each chunk in parallel. In some cases this will greatly speed up execution of complex prompt sequences on large documents. Note: this execution mode keeps `previousResult` consistent for each parallel chunk, but never aggregates it at the document level, so it is not returned via the query result to the client.
|
|
131
|
+
|
|
131
132
|
- `truncateFromFront`: If true, when Cortex needs to truncate input, it will choose the first N characters of the input instead of the default which is to take the last N characters.
|
|
133
|
+
|
|
132
134
|
- `useInputSummarization`: If true, Cortex will call the `summarize` core pathway on the input `text` before passing it on to the prompts.
|
|
135
|
+
|
|
133
136
|
### Output Processing
|
|
137
|
+
|
|
134
138
|
Cortex provides built in functions to turn loosely formatted text output from the model API calls into structured objects for return to the application. Specifically, Cortex provides parsers for numbered lists of strings and numbered lists of objects. These are used in pathways like this:
|
|
135
139
|
```js
|
|
136
140
|
module.exports = {
|
|
@@ -144,26 +148,17 @@ module.exports = {
|
|
|
144
148
|
}
|
|
145
149
|
```
|
|
146
150
|
By simply specifying a `format` property and a `list` property, this pathway invokes a built in parser that will take the result of the prompt and try to parse it into an array of 5 objects. The `list` property can be set with or without a `format` property. If there is no `format`, the list will simply try to parse the string into a list of strings. All of this default behavior is implemented in `parser.js`, and you can override it to do whatever you want by providing your own `parser` function in your pathway.
|
|
147
|
-
## Custom Pathways
|
|
148
|
-
Pathways in Cortex OS are implemented as JavaScript files that export a module. A pathway module is an object that contains properties that define the prompts and behavior of the pathway. Most properties have functional defaults, so you can only implement the bits that are important to you. The main properties of a pathway module are:
|
|
149
|
-
|
|
150
|
-
* `prompt`: The prompt that the pathway uses to interact with the model.
|
|
151
|
-
* `inputParameters`: Any custom parameters to the GraphQL query that the pathway requires to run.
|
|
152
|
-
* `resolver`: The resolver function that processes the input, executes the prompts, and returns the result.
|
|
153
|
-
* `parser`: The parser function that processes the output from the prompts and formats the result for return.
|
|
154
151
|
|
|
155
152
|
### Custom Resolver
|
|
153
|
+
|
|
156
154
|
The resolver property defines the function that processes the input and returns the result. The resolver function is an asynchronous function that takes four parameters: `parent`, `args`, `contextValue`, and `info`. The `parent` parameter is the parent object of the resolver function. The `args` parameter is an object that contains the input parameters and any other parameters that are passed to the resolver. The `contextValue` parameter is an object that contains the context and configuration of the pathway. The `info` parameter is an object that contains information about the GraphQL query that triggered the resolver.
|
|
157
155
|
|
|
158
156
|
The core pathway `summary.js` below is implemented using custom pathway logic and a custom resolver to effectively target a specific summary length:
|
|
159
|
-
|
|
160
157
|
```js
|
|
161
158
|
const { semanticTruncate } = require('../graphql/chunker');
|
|
162
159
|
const { PathwayResolver } = require('../graphql/pathwayResolver');
|
|
163
|
-
|
|
164
160
|
module.exports = {
|
|
165
161
|
prompt: `{{{text}}}\n\nWrite a summary of the above text:\n\n`,
|
|
166
|
-
|
|
167
162
|
inputParameters: {
|
|
168
163
|
targetLength: 500,
|
|
169
164
|
},
|
|
@@ -173,26 +168,22 @@ module.exports = {
|
|
|
173
168
|
const errorMargin = 0.2;
|
|
174
169
|
const lowTargetLength = originalTargetLength * (1 - errorMargin);
|
|
175
170
|
const targetWords = Math.round(originalTargetLength / 6.6);
|
|
176
|
-
|
|
177
171
|
// if the text is shorter than the summary length, just return the text
|
|
178
172
|
if (args.text.length <= originalTargetLength) {
|
|
179
173
|
return args.text;
|
|
180
174
|
}
|
|
181
|
-
|
|
182
175
|
const MAX_ITERATIONS = 5;
|
|
183
176
|
let summary = '';
|
|
184
177
|
let bestSummary = '';
|
|
185
178
|
let pathwayResolver = new PathwayResolver({ config, pathway, requestState });
|
|
186
179
|
// modify the prompt to be words-based instead of characters-based
|
|
187
180
|
pathwayResolver.pathwayPrompt = `{{{text}}}\n\nWrite a summary of the above text in exactly ${targetWords} words:\n\n`
|
|
188
|
-
|
|
189
181
|
let i = 0;
|
|
190
182
|
// reprompt if summary is too long or too short
|
|
191
183
|
while (((summary.length > originalTargetLength) || (summary.length < lowTargetLength)) && i < MAX_ITERATIONS) {
|
|
192
184
|
summary = await pathwayResolver.resolve(args);
|
|
193
185
|
i++;
|
|
194
186
|
}
|
|
195
|
-
|
|
196
187
|
// if the summary is still too long, truncate it
|
|
197
188
|
if (summary.length > originalTargetLength) {
|
|
198
189
|
return semanticTruncate(summary, originalTargetLength);
|
|
@@ -203,8 +194,53 @@ module.exports = {
|
|
|
203
194
|
}
|
|
204
195
|
```
|
|
205
196
|
### Building and Loading Pathways
|
|
197
|
+
|
|
206
198
|
Pathways are loaded from modules in the `pathways` directory. The pathways are built and loaded to the `config` object using the `buildPathways` function. The `buildPathways` function loads the base pathway, the core pathways, and any custom pathways. It then creates a new object that contains all the pathways and adds it to the pathways property of the config object. The order of loading means that custom pathways will always override any core pathways that Cortext provides. While pathways are designed to be self-contained, you can override some pathway properties - including whether they're even available at all - in the `pathways` section of the config file.
|
|
207
199
|
|
|
200
|
+
## Core (Default) Pathways
|
|
201
|
+
|
|
202
|
+
Below are the default pathways provided with Cortex. These can be used as is, overridden, or disabled via configuration. For documentation on each one including input and output parameters, please look at them in the GraphQL Playground.
|
|
203
|
+
|
|
204
|
+
- `bias`: Identifies and measures any potential biases in a text
|
|
205
|
+
- `chat`: Enables users to have a conversation with the chatbot
|
|
206
|
+
- `complete`: Autocompletes words or phrases based on user input
|
|
207
|
+
- `edit`: Checks for and suggests corrections for spelling and grammar errors
|
|
208
|
+
- `entities`: Identifies and extracts important entities from text
|
|
209
|
+
- `paraphrase`: Suggests alternative phrasing for text
|
|
210
|
+
- `sentiment`: Analyzes and identifies the overall sentiment or mood of a text
|
|
211
|
+
- `summary`: Condenses long texts or articles into shorter summaries
|
|
212
|
+
- `translate`: Translates text from one language to another
|
|
213
|
+
## Extensibility
|
|
214
|
+
|
|
215
|
+
Cortex is designed to be highly extensible. This allows you to customize the API to fit your needs. You can add new features, modify existing features, and even add integrations with other APIs and models.
|
|
216
|
+
## Configuration
|
|
217
|
+
Configuration of Cortex is done via a [convict](https://github.com/mozilla/node-convict/tree/master) object called `config`. The `config` object is built by combining the default values and any values specified in a configuration file or environment variables. The environment variables take precedence over the values in the configuration file. Below are the configurable properties and their defaults:
|
|
218
|
+
|
|
219
|
+
- `basePathwayPath`: The path to the base pathway (the prototype pathway) for Cortex. Default properties for the pathway are set from their values in this basePathway. Default is path.join(__dirname, 'pathways', 'basePathway.js').
|
|
220
|
+
- `corePathwaysPath`: The path to the core pathways for Cortex. Default is path.join(__dirname, 'pathways').
|
|
221
|
+
- `cortexConfigFile`: The path to a JSON configuration file for the project. Default is null. The value can be set using the `CORTEX_CONFIG_FILE` environment variable.
|
|
222
|
+
- `defaultModelName`: The default model name for the project. Default is null. The value can be set using the `DEFAULT_MODEL_NAME` environment variable.
|
|
223
|
+
- `enableCache`: A boolean flag indicating whether to enable Axios-level request caching. Default is true. The value can be set using the `CORTEX_ENABLE_CACHE` environment variable.
|
|
224
|
+
- `enableGraphqlCache`: A boolean flag indicating whether to enable GraphQL query caching. Default is false. The value can be set using the `CORTEX_ENABLE_GRAPHQL_CACHE` environment variable.
|
|
225
|
+
- `enableRestEndpoints`: A boolean flag indicating whether create REST endpoints for pathways as well as GraphQL queries. Default is false. The value can be set using the `CORTEX_ENABLE_REST` environment variable.
|
|
226
|
+
- `cortexApiKey`: A string containing an API key that the client must pass to Cortex for authorization. Default is null in which case Cortex is unprotected. The value can be set using the `CORTEX_API_KEY` environment variable
|
|
227
|
+
- `models`: An object containing the different models used by the project. The value can be set using the `CORTEX_MODELS` environment variable. Cortex is model and vendor agnostic - you can use this config to set up models of any type from any vendor.
|
|
228
|
+
- `openaiApiKey`: The API key used for accessing the OpenAI API. This is sensitive information and has no default value. The value can be set using the `OPENAI_API_KEY` environment variable.
|
|
229
|
+
- `openaiApiUrl`: The URL used for accessing the OpenAI API. Default is https://api.openai.com/v1/completions. The value can be set using the `OPENAI_API_URL` environment variable.
|
|
230
|
+
- `openaiDefaultModel`: The default model name used for the OpenAI API. Default is text-davinci-003. The value can be set using the `OPENAI_DEFAULT_MODEL` environment variable.
|
|
231
|
+
- `pathways`: An object containing pathways for the project. The default is an empty object that is filled in during the `buildPathways` step.
|
|
232
|
+
- `pathwaysPath`: The path to custom pathways for the project. Default is null.
|
|
233
|
+
- `PORT`: The port number for the Cortex server. Default is 4000. The value can be set using the `CORTEX_PORT` environment variable.
|
|
234
|
+
- `storageConnectionString`: The connection string used for accessing storage. This is sensitive information and has no default value. The value can be set using the `STORAGE_CONNECTION_STRING` environment variable.
|
|
235
|
+
|
|
236
|
+
The `buildPathways` function takes the config object and builds the `pathways` object by loading the core pathways and any custom pathways specified in the `pathwaysPath` property of the config object. The function returns the `pathways` object.
|
|
237
|
+
|
|
238
|
+
The `buildModels` function takes the `config` object and builds the `models` object by compiling handlebars templates for each model specified in the `models` property of the config object. The function returns the `models` object.
|
|
239
|
+
|
|
240
|
+
The `config` object can be used to access configuration values throughout the project. For example, to get the port number for the server, use
|
|
241
|
+
```js
|
|
242
|
+
config.get('PORT')
|
|
243
|
+
```
|
|
208
244
|
## Troubleshooting
|
|
209
245
|
If you encounter any issues while using Cortex, there are a few things you can do. First, check the Cortex documentation for any common errors and their solutions. If that does not help, you can also open an issue on the Cortex GitHub repository.
|
|
210
246
|
|
package/config.js
CHANGED
|
@@ -41,6 +41,21 @@ var config = convict({
|
|
|
41
41
|
default: true,
|
|
42
42
|
env: 'CORTEX_ENABLE_CACHE'
|
|
43
43
|
},
|
|
44
|
+
enableGraphqlCache: {
|
|
45
|
+
format: Boolean,
|
|
46
|
+
default: false,
|
|
47
|
+
env: 'CORTEX_ENABLE_GRAPHQL_CACHE'
|
|
48
|
+
},
|
|
49
|
+
enableRestEndpoints: {
|
|
50
|
+
format: Boolean,
|
|
51
|
+
default: false,
|
|
52
|
+
env: 'CORTEX_ENABLE_REST'
|
|
53
|
+
},
|
|
54
|
+
cortexApiKey: {
|
|
55
|
+
format: String,
|
|
56
|
+
default: null,
|
|
57
|
+
env: 'CORTEX_API_KEY'
|
|
58
|
+
},
|
|
44
59
|
defaultModelName: {
|
|
45
60
|
format: String,
|
|
46
61
|
default: null,
|
|
@@ -59,6 +74,16 @@ var config = convict({
|
|
|
59
74
|
"params": {
|
|
60
75
|
"model": "{{openaiDefaultModel}}"
|
|
61
76
|
},
|
|
77
|
+
},
|
|
78
|
+
"oai-whisper": {
|
|
79
|
+
"type": "OPENAI_WHISPER",
|
|
80
|
+
"url": "https://api.openai.com/v1/audio/transcriptions",
|
|
81
|
+
"headers": {
|
|
82
|
+
"Authorization": "Bearer {{OPENAI_API_KEY}}"
|
|
83
|
+
},
|
|
84
|
+
"params": {
|
|
85
|
+
"model": "whisper-1"
|
|
86
|
+
},
|
|
62
87
|
}
|
|
63
88
|
},
|
|
64
89
|
env: 'CORTEX_MODELS'
|
package/graphql/graphql.js
CHANGED
|
@@ -17,8 +17,7 @@ const subscriptions = require('./subscriptions');
|
|
|
17
17
|
const { buildLimiters } = require('../lib/request');
|
|
18
18
|
const { cancelRequestResolver } = require('./resolver');
|
|
19
19
|
const { buildPathways, buildModels } = require('../config');
|
|
20
|
-
|
|
21
|
-
const requestState = {}; // Stores the state of each request
|
|
20
|
+
const { requestState } = require('./requestState');
|
|
22
21
|
|
|
23
22
|
const getPlugins = (config) => {
|
|
24
23
|
// server plugins
|
|
@@ -28,7 +27,7 @@ const getPlugins = (config) => {
|
|
|
28
27
|
|
|
29
28
|
//if cache is enabled and Redis is available, use it
|
|
30
29
|
let cache;
|
|
31
|
-
if (config.get('
|
|
30
|
+
if (config.get('enableGraphqlCache') && config.get('storageConnectionString')) {
|
|
32
31
|
cache = new KeyvAdapter(new Keyv(config.get('storageConnectionString'),{
|
|
33
32
|
ssl: true,
|
|
34
33
|
abortConnect: false,
|
|
@@ -42,6 +41,40 @@ const getPlugins = (config) => {
|
|
|
42
41
|
return { plugins, cache };
|
|
43
42
|
}
|
|
44
43
|
|
|
44
|
+
const buildRestEndpoints = (pathways, app, server, config) => {
|
|
45
|
+
for (const [name, pathway] of Object.entries(pathways)) {
|
|
46
|
+
// Only expose endpoints for enabled pathways that explicitly want to expose a REST endpoint
|
|
47
|
+
if (pathway.disabled || !config.get('enableRestEndpoints')) continue;
|
|
48
|
+
|
|
49
|
+
const fieldVariableDefs = pathway.typeDef(pathway).restDefinition || [];
|
|
50
|
+
|
|
51
|
+
app.post(`/rest/${name}`, async (req, res) => {
|
|
52
|
+
const variables = fieldVariableDefs.reduce((acc, variableDef) => {
|
|
53
|
+
if (req.body.hasOwnProperty(variableDef.name)) {
|
|
54
|
+
acc[variableDef.name] = req.body[variableDef.name];
|
|
55
|
+
}
|
|
56
|
+
return acc;
|
|
57
|
+
}, {});
|
|
58
|
+
|
|
59
|
+
const variableParams = fieldVariableDefs.map(({ name, type }) => `$${name}: ${type}`).join(', ');
|
|
60
|
+
const queryArgs = fieldVariableDefs.map(({ name }) => `${name}: $${name}`).join(', ');
|
|
61
|
+
|
|
62
|
+
const query = `
|
|
63
|
+
query ${name}(${variableParams}) {
|
|
64
|
+
${name}(${queryArgs}) {
|
|
65
|
+
contextId
|
|
66
|
+
previousResult
|
|
67
|
+
result
|
|
68
|
+
}
|
|
69
|
+
}
|
|
70
|
+
`;
|
|
71
|
+
|
|
72
|
+
const result = await server.executeOperation({ query, variables });
|
|
73
|
+
res.json(result.data[name]);
|
|
74
|
+
});
|
|
75
|
+
}
|
|
76
|
+
};
|
|
77
|
+
|
|
45
78
|
//typeDefs
|
|
46
79
|
const getTypedefs = (pathways) => {
|
|
47
80
|
|
|
@@ -72,11 +105,11 @@ const getTypedefs = (pathways) => {
|
|
|
72
105
|
}
|
|
73
106
|
|
|
74
107
|
type Subscription {
|
|
75
|
-
requestProgress(
|
|
108
|
+
requestProgress(requestIds: [String!]): RequestSubscription
|
|
76
109
|
}
|
|
77
110
|
`;
|
|
78
111
|
|
|
79
|
-
const typeDefs = [defaultTypeDefs, ...Object.values(pathways).filter(p=>!p.disabled).map(p => p.typeDef(p))];
|
|
112
|
+
const typeDefs = [defaultTypeDefs, ...Object.values(pathways).filter(p=>!p.disabled).map(p => p.typeDef(p).gqlDefinition)];
|
|
80
113
|
return typeDefs.join('\n');
|
|
81
114
|
}
|
|
82
115
|
|
|
@@ -121,6 +154,7 @@ const build = (config) => {
|
|
|
121
154
|
|
|
122
155
|
const { ApolloServer, gql } = require('apollo-server-express');
|
|
123
156
|
const app = express()
|
|
157
|
+
|
|
124
158
|
const httpServer = createServer(app);
|
|
125
159
|
|
|
126
160
|
// Creating the WebSocket server
|
|
@@ -155,6 +189,23 @@ const build = (config) => {
|
|
|
155
189
|
context: ({ req, res }) => ({ req, res, config, requestState }),
|
|
156
190
|
});
|
|
157
191
|
|
|
192
|
+
// If CORTEX_API_KEY is set, we roll our own auth middleware - usually not used if you're being fronted by a proxy
|
|
193
|
+
const cortexApiKey = config.get('cortexApiKey');
|
|
194
|
+
|
|
195
|
+
app.use((req, res, next) => {
|
|
196
|
+
if (cortexApiKey && req.headers.cortexApiKey !== cortexApiKey && req.query.cortexApiKey !== cortexApiKey) {
|
|
197
|
+
res.status(401).send('Unauthorized');
|
|
198
|
+
} else {
|
|
199
|
+
next();
|
|
200
|
+
}
|
|
201
|
+
});
|
|
202
|
+
|
|
203
|
+
// Use the JSON body parser middleware for REST endpoints
|
|
204
|
+
app.use(express.json());
|
|
205
|
+
|
|
206
|
+
// add the REST endpoints
|
|
207
|
+
buildRestEndpoints(pathways, app, server, config);
|
|
208
|
+
|
|
158
209
|
// if local start server
|
|
159
210
|
const startServer = async () => {
|
|
160
211
|
await server.start();
|
|
@@ -166,14 +217,6 @@ const build = (config) => {
|
|
|
166
217
|
});
|
|
167
218
|
};
|
|
168
219
|
|
|
169
|
-
app.use((req, res, next) => {
|
|
170
|
-
if (process.env.API_KEY && req.headers.api_key !== process.env.API_KEY && req.query.api_key !== process.env.API_KEY) {
|
|
171
|
-
res.status(401).send('Unauthorized');
|
|
172
|
-
}
|
|
173
|
-
|
|
174
|
-
next();
|
|
175
|
-
})
|
|
176
|
-
|
|
177
220
|
return { server, startServer, cache, plugins, typeDefs, resolvers }
|
|
178
221
|
}
|
|
179
222
|
|
|
@@ -2,6 +2,7 @@
|
|
|
2
2
|
const OpenAIChatPlugin = require('./plugins/openAIChatPlugin');
|
|
3
3
|
const OpenAICompletionPlugin = require('./plugins/openAICompletionPlugin');
|
|
4
4
|
const AzureTranslatePlugin = require('./plugins/azureTranslatePlugin');
|
|
5
|
+
const OpenAIWhisperPlugin = require('./plugins/openAiWhisperPlugin');
|
|
5
6
|
const handlebars = require("handlebars");
|
|
6
7
|
const { Exception } = require("handlebars");
|
|
7
8
|
|
|
@@ -14,10 +15,10 @@ handlebars.registerHelper('now', function () {
|
|
|
14
15
|
return new Date().toISOString();
|
|
15
16
|
});
|
|
16
17
|
|
|
17
|
-
handlebars.registerHelper('toJSON', function(object) {
|
|
18
|
+
handlebars.registerHelper('toJSON', function (object) {
|
|
18
19
|
return JSON.stringify(object);
|
|
19
20
|
});
|
|
20
|
-
|
|
21
|
+
|
|
21
22
|
|
|
22
23
|
class PathwayPrompter {
|
|
23
24
|
constructor({ config, pathway }) {
|
|
@@ -26,7 +27,7 @@ class PathwayPrompter {
|
|
|
26
27
|
const model = config.get('models')[modelName];
|
|
27
28
|
|
|
28
29
|
if (!model) {
|
|
29
|
-
|
|
30
|
+
throw new Exception(`Model ${modelName} not found in config`);
|
|
30
31
|
}
|
|
31
32
|
|
|
32
33
|
let plugin;
|
|
@@ -41,6 +42,9 @@ class PathwayPrompter {
|
|
|
41
42
|
case 'OPENAI-COMPLETION':
|
|
42
43
|
plugin = new OpenAICompletionPlugin(config, pathway);
|
|
43
44
|
break;
|
|
45
|
+
case 'OPENAI_WHISPER':
|
|
46
|
+
plugin = new OpenAIWhisperPlugin(config, pathway);
|
|
47
|
+
break;
|
|
44
48
|
default:
|
|
45
49
|
throw new Exception(`Unsupported model type: ${model.type}`);
|
|
46
50
|
}
|
|
@@ -48,11 +52,11 @@ class PathwayPrompter {
|
|
|
48
52
|
this.plugin = plugin;
|
|
49
53
|
}
|
|
50
54
|
|
|
51
|
-
async execute(text, parameters, prompt) {
|
|
52
|
-
return await this.plugin.execute(text, parameters, prompt);
|
|
55
|
+
async execute(text, parameters, prompt, pathwayResolver) {
|
|
56
|
+
return await this.plugin.execute(text, parameters, prompt, pathwayResolver);
|
|
53
57
|
}
|
|
54
58
|
}
|
|
55
59
|
|
|
56
60
|
module.exports = {
|
|
57
|
-
|
|
61
|
+
PathwayPrompter
|
|
58
62
|
};
|