@aivue/tabular-intelligence 1.5.1 โ†’ 2.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (40) hide show
  1. package/README.md +430 -17
  2. package/dist/advanced/automl.d.ts +29 -0
  3. package/dist/advanced/automl.d.ts.map +1 -0
  4. package/dist/advanced/explainability.d.ts +31 -0
  5. package/dist/advanced/explainability.d.ts.map +1 -0
  6. package/dist/advanced/featureEngineering.d.ts +28 -0
  7. package/dist/advanced/featureEngineering.d.ts.map +1 -0
  8. package/dist/advanced/index.d.ts +16 -0
  9. package/dist/advanced/index.d.ts.map +1 -0
  10. package/dist/advanced/multitable.d.ts +28 -0
  11. package/dist/advanced/multitable.d.ts.map +1 -0
  12. package/dist/advanced/privacy.d.ts +17 -0
  13. package/dist/advanced/privacy.d.ts.map +1 -0
  14. package/dist/advanced/reporting.d.ts +21 -0
  15. package/dist/advanced/reporting.d.ts.map +1 -0
  16. package/dist/advanced/statistical.d.ts +28 -0
  17. package/dist/advanced/statistical.d.ts.map +1 -0
  18. package/dist/advanced/streaming.d.ts +41 -0
  19. package/dist/advanced/streaming.d.ts.map +1 -0
  20. package/dist/advanced/timeseries.d.ts +36 -0
  21. package/dist/advanced/timeseries.d.ts.map +1 -0
  22. package/dist/advanced/versioning.d.ts +34 -0
  23. package/dist/advanced/versioning.d.ts.map +1 -0
  24. package/dist/advanced/visualization.d.ts +23 -0
  25. package/dist/advanced/visualization.d.ts.map +1 -0
  26. package/dist/index.d.ts +15 -1
  27. package/dist/index.d.ts.map +1 -1
  28. package/dist/index.js +75 -47
  29. package/dist/index.js.map +1 -1
  30. package/dist/index.mjs +2374 -662
  31. package/dist/index.mjs.map +1 -1
  32. package/dist/preprocessing/imputation.d.ts +9 -0
  33. package/dist/preprocessing/imputation.d.ts.map +1 -0
  34. package/dist/preprocessing/outliers.d.ts +10 -0
  35. package/dist/preprocessing/outliers.d.ts.map +1 -0
  36. package/dist/quality/profiling.d.ts +22 -0
  37. package/dist/quality/profiling.d.ts.map +1 -0
  38. package/dist/types/index.d.ts +573 -0
  39. package/dist/types/index.d.ts.map +1 -1
  40. package/package.json +2 -2
package/README.md CHANGED
@@ -1,25 +1,48 @@
1
1
  # @aivue/tabular-intelligence
2
2
 
3
- > Tabular Foundation Model (TFM) integration for structured data analysis in Vue.js
3
+ > **The Most Comprehensive Tabular Data Analysis Package for Vue.js**
4
+ > Advanced AI, ML, Statistical Analysis, and Data Science capabilities in one powerful package
4
5
 
5
6
  [![npm version](https://img.shields.io/npm/v/@aivue/tabular-intelligence.svg)](https://www.npmjs.com/package/@aivue/tabular-intelligence)
6
7
  [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
7
-
8
- ## ๐ŸŽฏ Features
9
-
10
- - ๐Ÿ”Œ **Generic TFM Client** - Connect to any HTTP-based Tabular Foundation Model API
11
- - ๐Ÿ’ฌ **Natural Language Q&A** - Ask questions about your data in plain English
12
- - ๐Ÿ“ฎ **Postman Collection Integration** - Import Postman collections and query API data with AI
13
- - ๐Ÿ“Š **Descriptive Statistics** - Mean, median, mode, std dev, percentiles, distributions
14
- - ๐Ÿšจ **Anomaly Detection** - Statistical and ML-based outlier detection
15
- - ๐ŸŽฏ **Segmentation & Clustering** - K-means, DBSCAN, hierarchical clustering
16
- - ๐Ÿ”ฎ **Predictions** - Time series forecasting and predictive modeling
17
- - ๐Ÿ“ˆ **Correlation Analysis** - Pearson correlation matrices and significance testing
18
- - ๐Ÿค– **AI Summaries** - Generate intelligent summaries of your data
19
- - ๐ŸŒ **Table Extraction** - Extract data from HTML tables or Vue data grids
20
- - ๐Ÿ”„ **Local Fallback** - Built-in statistical analysis when API is unavailable
21
- - ๐ŸŽจ **Vue Integration** - Reactive composables for seamless Vue.js integration
22
- - ๐Ÿ“ฆ **Smart DataTable Ready** - Designed to work with @aivue/smart-datatable
8
+ [![Downloads](https://img.shields.io/npm/dm/@aivue/tabular-intelligence.svg)](https://www.npmjs.com/package/@aivue/tabular-intelligence)
9
+
10
+ ## ๐Ÿš€ What's New in v2.0
11
+
12
+ **Tabular Intelligence is now a complete data science toolkit!** We've added 15+ advanced features that make it completely different from @aivue/smart-datatable:
13
+
14
+ - ๐Ÿ“Š **Data Quality Profiling** - Comprehensive data quality assessment and profiling
15
+ - ๐Ÿงน **Smart Data Cleaning** - Intelligent missing value imputation and outlier handling
16
+ - ๐Ÿ”ง **Feature Engineering** - Automated feature generation and selection
17
+ - โฐ **Time Series Analysis** - Forecasting, trend detection, seasonality analysis
18
+ - ๐Ÿค– **AutoML** - Automated model selection and hyperparameter tuning
19
+ - ๐Ÿ” **Model Explainability** - SHAP values, feature importance, counterfactuals
20
+ - ๐Ÿ“ˆ **Statistical Testing** - A/B testing, hypothesis testing, significance tests
21
+ - ๐Ÿ“Š **Visualization Recommendations** - Smart chart suggestions based on data
22
+ - ๐Ÿ”— **Multi-Table Analysis** - Table joins, relationship detection, cross-table queries
23
+ - ๐Ÿ“ **Auto Reporting** - Generate comprehensive insights and reports
24
+ - ๐Ÿ”’ **Privacy & Compliance** - PII detection, anonymization, GDPR/CCPA compliance
25
+ - ๐Ÿ“ฆ **Data Versioning** - Snapshots, lineage tracking, transformation pipelines
26
+ - ๐ŸŒŠ **Streaming Data** - Real-time data processing and monitoring
27
+ - ๐ŸŽฏ **Smart Sampling** - Intelligent data sampling strategies
28
+
29
+ ## ๐ŸŽฏ Core Features
30
+
31
+ ### ๐Ÿ”Œ Foundation & Integration
32
+ - **Generic TFM Client** - Connect to any HTTP-based Tabular Foundation Model API
33
+ - **Natural Language Q&A** - Ask questions about your data in plain English
34
+ - **Postman Collection Integration** - Import Postman collections and query API data with AI
35
+ - **Table Extraction** - Extract data from HTML tables or Vue data grids
36
+ - **Local Fallback** - Built-in statistical analysis when API is unavailable
37
+ - **Vue Integration** - Reactive composables for seamless Vue.js integration
38
+
39
+ ### ๐Ÿ“Š Statistical Analysis
40
+ - **Descriptive Statistics** - Mean, median, mode, std dev, percentiles, distributions
41
+ - **Anomaly Detection** - Statistical and ML-based outlier detection
42
+ - **Segmentation & Clustering** - K-means, DBSCAN, hierarchical clustering
43
+ - **Predictions** - Time series forecasting and predictive modeling
44
+ - **Correlation Analysis** - Pearson correlation matrices and significance testing
45
+ - **AI Summaries** - Generate intelligent summaries of your data
23
46
 
24
47
  ### ๐Ÿ’ฌ Q&A Capabilities
25
48
 
@@ -261,6 +284,396 @@ intelligence.loadFromVueGrid(
261
284
  );
262
285
  ```
263
286
 
287
+ ## ๐Ÿš€ Advanced Features
288
+
289
+ ### ๐Ÿ“Š Data Quality Profiling
290
+
291
+ Comprehensive data quality assessment and profiling:
292
+
293
+ ```typescript
294
+ import { profileData, assessDataQuality, detectDataIssues, suggestCleaningSteps } from '@aivue/tabular-intelligence';
295
+
296
+ // Profile your data
297
+ const profile = await profileData(data, {
298
+ includeDistributions: true,
299
+ detectDataTypes: true,
300
+ findPatterns: true
301
+ });
302
+
303
+ // Assess data quality
304
+ const qualityReport = await assessDataQuality(data);
305
+ console.log('Quality Score:', qualityReport.overallScore); // 0-100
306
+
307
+ // Detect specific issues
308
+ const issues = await detectDataIssues(data);
309
+ // Returns: missing values, outliers, duplicates, type mismatches, etc.
310
+
311
+ // Get cleaning recommendations
312
+ const recommendations = await suggestCleaningSteps(data);
313
+ // Returns prioritized list of cleaning actions
314
+ ```
315
+
316
+ ### ๐Ÿงน Smart Data Cleaning
317
+
318
+ Intelligent missing value imputation and outlier handling:
319
+
320
+ ```typescript
321
+ import { imputeMissingValues, handleOutliers } from '@aivue/tabular-intelligence';
322
+
323
+ // Impute missing values
324
+ const imputationResult = await imputeMissingValues(data, {
325
+ strategy: 'knn', // 'mean' | 'median' | 'mode' | 'knn' | 'iterative' | 'ai'
326
+ columns: ['age', 'income']
327
+ });
328
+
329
+ // Handle outliers
330
+ const outlierResult = await handleOutliers(data, {
331
+ method: 'cap', // 'remove' | 'cap' | 'transform'
332
+ strategy: 'iqr', // 'iqr' | 'zscore' | 'isolation_forest'
333
+ columns: ['price', 'quantity']
334
+ });
335
+ ```
336
+
337
+ ### ๐Ÿ”ง Feature Engineering
338
+
339
+ Automated feature generation and selection:
340
+
341
+ ```typescript
342
+ import { autoGenerateFeatures, analyzeFeatureImportance, selectBestFeatures } from '@aivue/tabular-intelligence';
343
+
344
+ // Auto-generate features
345
+ const engineeringResult = await autoGenerateFeatures(data, {
346
+ targetColumn: 'sales',
347
+ maxFeatures: 50,
348
+ includeInteractions: true,
349
+ includePolynomials: true,
350
+ includeAggregations: true
351
+ });
352
+
353
+ // Analyze feature importance
354
+ const importance = await analyzeFeatureImportance(data, 'sales');
355
+
356
+ // Select best features
357
+ const selection = await selectBestFeatures(data, {
358
+ targetColumn: 'sales',
359
+ k: 10, // Select top 10 features
360
+ method: 'correlation'
361
+ });
362
+ ```
363
+
364
+ ### โฐ Time Series Analysis
365
+
366
+ Forecasting, trend detection, and seasonality analysis:
367
+
368
+ ```typescript
369
+ import { forecastTimeSeries, detectTrends, detectSeasonality, detectChangePoints } from '@aivue/tabular-intelligence';
370
+
371
+ // Forecast time series
372
+ const forecast = await forecastTimeSeries(data, {
373
+ dateColumn: 'date',
374
+ valueColumn: 'sales',
375
+ horizon: 30, // Forecast 30 periods ahead
376
+ method: 'exponential_smoothing', // 'arima' | 'prophet' | 'exponential_smoothing' | 'lstm'
377
+ seasonality: 'auto',
378
+ confidence: 0.95
379
+ });
380
+
381
+ // Detect trends
382
+ const trends = await detectTrends(data, {
383
+ dateColumn: 'date',
384
+ valueColumn: 'sales'
385
+ });
386
+
387
+ // Detect seasonality
388
+ const seasonality = await detectSeasonality(data, {
389
+ dateColumn: 'date',
390
+ valueColumn: 'sales'
391
+ });
392
+
393
+ // Detect change points
394
+ const changePoints = await detectChangePoints(data, {
395
+ dateColumn: 'date',
396
+ valueColumn: 'sales',
397
+ sensitivity: 0.8
398
+ });
399
+ ```
400
+
401
+ ### ๐Ÿค– AutoML
402
+
403
+ Automated model selection and hyperparameter tuning:
404
+
405
+ ```typescript
406
+ import { autoTrain, compareModels, tuneHyperparameters } from '@aivue/tabular-intelligence';
407
+
408
+ // Auto-train best model
409
+ const autoMLResult = await autoTrain(data, {
410
+ targetColumn: 'churn',
411
+ taskType: 'classification', // 'classification' | 'regression'
412
+ metric: 'accuracy',
413
+ timeLimit: 300, // 5 minutes
414
+ models: ['linear', 'tree', 'ensemble', 'neural']
415
+ });
416
+
417
+ // Compare multiple models
418
+ const comparison = await compareModels(data, {
419
+ targetColumn: 'price',
420
+ taskType: 'regression',
421
+ models: ['linear', 'tree', 'ensemble'],
422
+ crossValidation: 5
423
+ });
424
+
425
+ // Tune hyperparameters
426
+ const tuningResult = await tuneHyperparameters(data, {
427
+ targetColumn: 'sales',
428
+ model: 'ensemble',
429
+ parameterGrid: {
430
+ n_estimators: [50, 100, 200],
431
+ max_depth: [5, 10, 15]
432
+ }
433
+ });
434
+ ```
435
+
436
+ ### ๐Ÿ” Model Explainability
437
+
438
+ SHAP values, feature importance, and counterfactuals:
439
+
440
+ ```typescript
441
+ import { explainPrediction, getFeatureImportance, getPartialDependence, generateCounterfactuals } from '@aivue/tabular-intelligence';
442
+
443
+ // Explain a specific prediction
444
+ const explanation = await explainPrediction(data, {
445
+ rowIndex: 0,
446
+ targetColumn: 'churn',
447
+ model: 'ensemble'
448
+ });
449
+
450
+ // Get feature importance
451
+ const importance = await getFeatureImportance(data, 'churn');
452
+
453
+ // Get partial dependence plot
454
+ const pdp = await getPartialDependence(data, {
455
+ feature: 'age',
456
+ targetColumn: 'churn'
457
+ });
458
+
459
+ // Generate counterfactuals
460
+ const counterfactuals = await generateCounterfactuals(data, {
461
+ rowIndex: 0,
462
+ desiredOutcome: 0, // Want churn = 0
463
+ targetColumn: 'churn',
464
+ maxChanges: 3
465
+ });
466
+ ```
467
+
468
+ ### ๐Ÿ“ˆ Statistical Testing & A/B Testing
469
+
470
+ Hypothesis testing and significance tests:
471
+
472
+ ```typescript
473
+ import { analyzeABTest, testSignificance, calculateSampleSize } from '@aivue/tabular-intelligence';
474
+
475
+ // Analyze A/B test
476
+ const abTestResult = await analyzeABTest({
477
+ controlGroup: controlData,
478
+ treatmentGroup: treatmentData,
479
+ metric: 'conversion_rate',
480
+ confidenceLevel: 0.95
481
+ });
482
+
483
+ // Test statistical significance
484
+ const significanceTest = await testSignificance({
485
+ test: 'ttest', // 'ttest' | 'chi2' | 'anova' | 'mann_whitney' | 'kruskal_wallis'
486
+ groups: [group1, group2],
487
+ metric: 'revenue',
488
+ alpha: 0.05
489
+ });
490
+
491
+ // Calculate required sample size
492
+ const sampleSize = await calculateSampleSize({
493
+ effect: 0.2, // Effect size
494
+ power: 0.8,
495
+ alpha: 0.05
496
+ });
497
+ ```
498
+
499
+ ### ๐Ÿ“Š Visualization Recommendations
500
+
501
+ Smart chart suggestions based on your data:
502
+
503
+ ```typescript
504
+ import { recommendVisualizations, generateChartSpec, detectPatterns } from '@aivue/tabular-intelligence';
505
+
506
+ // Get visualization recommendations
507
+ const recommendations = await recommendVisualizations(data, {
508
+ columns: ['date', 'sales', 'category'],
509
+ purpose: 'exploration' // 'exploration' | 'presentation' | 'analysis'
510
+ });
511
+
512
+ // Generate chart specification
513
+ const chartSpec = await generateChartSpec({
514
+ type: 'line',
515
+ xColumn: 'date',
516
+ yColumn: 'sales',
517
+ groupBy: 'category',
518
+ data
519
+ });
520
+
521
+ // Detect patterns in charts
522
+ const patterns = await detectPatterns('line', data);
523
+ ```
524
+
525
+ ### ๐Ÿ”— Multi-Table Analysis
526
+
527
+ Table joins, relationship detection, and cross-table queries:
528
+
529
+ ```typescript
530
+ import { joinTables, detectRelationships, analyzeCrossTables, inferDatabaseSchema } from '@aivue/tabular-intelligence';
531
+
532
+ // Join two tables
533
+ const joined = await joinTables({
534
+ leftTable: customers,
535
+ rightTable: orders,
536
+ leftKey: 'customer_id',
537
+ rightKey: 'customer_id',
538
+ joinType: 'inner' // 'inner' | 'left' | 'right' | 'outer'
539
+ });
540
+
541
+ // Detect relationships between tables
542
+ const relationships = await detectRelationships({
543
+ customers: customersData,
544
+ orders: ordersData,
545
+ products: productsData
546
+ });
547
+
548
+ // Analyze across multiple tables
549
+ const crossTableAnalysis = await analyzeCrossTables({
550
+ tables: { customers, orders, products },
551
+ relationships,
552
+ question: 'What is the total revenue by customer segment?'
553
+ });
554
+
555
+ // Infer database schema
556
+ const schema = await inferDatabaseSchema({
557
+ customers: customersData,
558
+ orders: ordersData
559
+ });
560
+ ```
561
+
562
+ ### ๐Ÿ“ Auto Reporting & Insights
563
+
564
+ Generate comprehensive reports and insights:
565
+
566
+ ```typescript
567
+ import { generateReport, generateExecutiveSummary, generateInsights } from '@aivue/tabular-intelligence';
568
+
569
+ // Generate comprehensive report
570
+ const report = await generateReport(data, {
571
+ format: 'markdown', // 'markdown' | 'html' | 'pdf' | 'json'
572
+ sections: ['summary', 'stats', 'anomalies', 'trends', 'recommendations'],
573
+ includeCharts: true
574
+ });
575
+
576
+ // Generate executive summary
577
+ const summary = await generateExecutiveSummary(data);
578
+
579
+ // Generate automated insights
580
+ const insights = await generateInsights(data, {
581
+ maxInsights: 10,
582
+ priority: 'high'
583
+ });
584
+ ```
585
+
586
+ ### ๐Ÿ”’ Privacy & Compliance
587
+
588
+ PII detection, anonymization, and compliance checking:
589
+
590
+ ```typescript
591
+ import { detectPII, anonymizeData, checkCompliance } from '@aivue/tabular-intelligence';
592
+
593
+ // Detect PII
594
+ const piiDetection = await detectPII(data);
595
+ console.log('PII Columns:', piiDetection.piiColumns);
596
+ console.log('Risk Level:', piiDetection.riskLevel);
597
+
598
+ // Anonymize data
599
+ const anonymized = await anonymizeData(data, {
600
+ method: 'hashing', // 'masking' | 'hashing' | 'generalization' | 'differential_privacy' | 'tokenization'
601
+ columns: ['email', 'phone', 'ssn']
602
+ });
603
+
604
+ // Check compliance
605
+ const complianceReport = await checkCompliance(data, 'GDPR'); // 'GDPR' | 'CCPA' | 'HIPAA' | 'SOC2'
606
+ console.log('Compliant:', complianceReport.compliant);
607
+ console.log('Score:', complianceReport.score);
608
+ ```
609
+
610
+ ### ๐Ÿ“ฆ Data Versioning & Pipelines
611
+
612
+ Snapshots, lineage tracking, and transformation pipelines:
613
+
614
+ ```typescript
615
+ import { createSnapshot, compareSnapshots, createPipeline, executePipeline } from '@aivue/tabular-intelligence';
616
+
617
+ // Create data snapshot
618
+ const snapshot1 = await createSnapshot(data, 'Before Cleaning');
619
+
620
+ // ... perform transformations ...
621
+
622
+ const snapshot2 = await createSnapshot(cleanedData, 'After Cleaning');
623
+
624
+ // Compare snapshots
625
+ const diff = await compareSnapshots(snapshot1.id, snapshot2.id);
626
+
627
+ // Create transformation pipeline
628
+ const pipeline = await createPipeline([
629
+ { operation: 'impute_missing', params: { strategy: 'mean' } },
630
+ { operation: 'handle_outliers', params: { method: 'cap' } },
631
+ { operation: 'normalize', params: { method: 'minmax' } }
632
+ ]);
633
+
634
+ // Execute pipeline
635
+ const result = await executePipeline(pipeline, data);
636
+ ```
637
+
638
+ ### ๐ŸŒŠ Streaming & Real-time Data
639
+
640
+ Real-time data processing and monitoring:
641
+
642
+ ```typescript
643
+ import { connectStream, detectStreamingAnomalies, calculateWindowedAggregations, smartSample } from '@aivue/tabular-intelligence';
644
+
645
+ // Connect to streaming source
646
+ const stream = await connectStream({
647
+ source: 'websocket', // 'websocket' | 'sse' | 'polling'
648
+ url: 'wss://api.example.com/stream',
649
+ updateInterval: 1000
650
+ });
651
+
652
+ // Detect anomalies in real-time
653
+ const anomalies = await detectStreamingAnomalies(streamData, {
654
+ columns: ['temperature', 'pressure'],
655
+ threshold: 3,
656
+ method: 'statistical'
657
+ });
658
+
659
+ // Calculate windowed aggregations
660
+ const aggregations = await calculateWindowedAggregations(streamData, {
661
+ windowType: 'tumbling', // 'tumbling' | 'sliding' | 'session'
662
+ windowSize: 100,
663
+ aggregations: [
664
+ { column: 'value', function: 'avg', alias: 'avg_value' },
665
+ { column: 'value', function: 'max', alias: 'max_value' }
666
+ ]
667
+ });
668
+
669
+ // Smart sampling
670
+ const sample = await smartSample(largeDataset, {
671
+ size: 1000,
672
+ method: 'stratified', // 'random' | 'stratified' | 'systematic' | 'cluster'
673
+ preserveDistribution: true
674
+ });
675
+ ```
676
+
264
677
  ## ๐Ÿ“– API Reference
265
678
 
266
679
  ### `useTabularIntelligence(options)`
@@ -0,0 +1,29 @@
1
+ import { AutoMLResult, ModelComparison, TuningResult } from '../types';
2
+ /**
3
+ * Auto train and select best model
4
+ */
5
+ export declare function autoTrain(data: any[], options: {
6
+ targetColumn: string;
7
+ taskType: 'classification' | 'regression';
8
+ metric?: string;
9
+ timeLimit?: number;
10
+ models?: Array<'linear' | 'tree' | 'ensemble' | 'neural'>;
11
+ }): Promise<AutoMLResult>;
12
+ /**
13
+ * Compare multiple models
14
+ */
15
+ export declare function compareModels(data: any[], options: {
16
+ targetColumn: string;
17
+ models: string[];
18
+ crossValidation?: number;
19
+ }): Promise<ModelComparison>;
20
+ /**
21
+ * Tune hyperparameters
22
+ */
23
+ export declare function tuneHyperparameters(data: any[], options: {
24
+ model: string;
25
+ targetColumn: string;
26
+ searchSpace?: any;
27
+ iterations?: number;
28
+ }): Promise<TuningResult>;
29
+ //# sourceMappingURL=automl.d.ts.map
@@ -0,0 +1 @@
1
+ {"version":3,"file":"automl.d.ts","sourceRoot":"","sources":["../../src/advanced/automl.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAEH,OAAO,KAAK,EACV,YAAY,EAEZ,eAAe,EACf,YAAY,EAEb,MAAM,UAAU,CAAC;AAElB;;GAEG;AACH,wBAAsB,SAAS,CAC7B,IAAI,EAAE,GAAG,EAAE,EACX,OAAO,EAAE;IACP,YAAY,EAAE,MAAM,CAAC;IACrB,QAAQ,EAAE,gBAAgB,GAAG,YAAY,CAAC;IAC1C,MAAM,CAAC,EAAE,MAAM,CAAC;IAChB,SAAS,CAAC,EAAE,MAAM,CAAC;IACnB,MAAM,CAAC,EAAE,KAAK,CAAC,QAAQ,GAAG,MAAM,GAAG,UAAU,GAAG,QAAQ,CAAC,CAAC;CAC3D,GACA,OAAO,CAAC,YAAY,CAAC,CAyCvB;AAED;;GAEG;AACH,wBAAsB,aAAa,CACjC,IAAI,EAAE,GAAG,EAAE,EACX,OAAO,EAAE;IACP,YAAY,EAAE,MAAM,CAAC;IACrB,MAAM,EAAE,MAAM,EAAE,CAAC;IACjB,eAAe,CAAC,EAAE,MAAM,CAAC;CAC1B,GACA,OAAO,CAAC,eAAe,CAAC,CA0B1B;AAED;;GAEG;AACH,wBAAsB,mBAAmB,CACvC,IAAI,EAAE,GAAG,EAAE,EACX,OAAO,EAAE;IACP,KAAK,EAAE,MAAM,CAAC;IACd,YAAY,EAAE,MAAM,CAAC;IACrB,WAAW,CAAC,EAAE,GAAG,CAAC;IAClB,UAAU,CAAC,EAAE,MAAM,CAAC;CACrB,GACA,OAAO,CAAC,YAAY,CAAC,CAoCvB"}
@@ -0,0 +1,31 @@
1
+ import { SHAPExplanation, PartialDependencePlot, Counterfactual, FeatureImportance } from '../types';
2
+ /**
3
+ * Explain prediction using SHAP values
4
+ */
5
+ export declare function explainPrediction(data: any[], options: {
6
+ rowIndex: number;
7
+ model?: string;
8
+ targetColumn: string;
9
+ }): Promise<SHAPExplanation>;
10
+ /**
11
+ * Get feature importance
12
+ */
13
+ export declare function getFeatureImportance(data: any[], targetColumn: string, model?: string): Promise<FeatureImportance[]>;
14
+ /**
15
+ * Get partial dependence plot data
16
+ */
17
+ export declare function getPartialDependence(data: any[], options: {
18
+ feature: string;
19
+ targetColumn: string;
20
+ model?: string;
21
+ }): Promise<PartialDependencePlot>;
22
+ /**
23
+ * Generate counterfactual explanations
24
+ */
25
+ export declare function generateCounterfactuals(data: any[], options: {
26
+ rowIndex: number;
27
+ desiredOutcome: any;
28
+ targetColumn: string;
29
+ maxChanges?: number;
30
+ }): Promise<Counterfactual[]>;
31
+ //# sourceMappingURL=explainability.d.ts.map
@@ -0,0 +1 @@
1
+ {"version":3,"file":"explainability.d.ts","sourceRoot":"","sources":["../../src/advanced/explainability.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAEH,OAAO,KAAK,EACV,eAAe,EACf,qBAAqB,EACrB,cAAc,EACd,iBAAiB,EAClB,MAAM,UAAU,CAAC;AAElB;;GAEG;AACH,wBAAsB,iBAAiB,CACrC,IAAI,EAAE,GAAG,EAAE,EACX,OAAO,EAAE;IACP,QAAQ,EAAE,MAAM,CAAC;IACjB,KAAK,CAAC,EAAE,MAAM,CAAC;IACf,YAAY,EAAE,MAAM,CAAC;CACtB,GACA,OAAO,CAAC,eAAe,CAAC,CAsC1B;AAED;;GAEG;AACH,wBAAsB,oBAAoB,CACxC,IAAI,EAAE,GAAG,EAAE,EACX,YAAY,EAAE,MAAM,EACpB,KAAK,CAAC,EAAE,MAAM,GACb,OAAO,CAAC,iBAAiB,EAAE,CAAC,CAU9B;AAED;;GAEG;AACH,wBAAsB,oBAAoB,CACxC,IAAI,EAAE,GAAG,EAAE,EACX,OAAO,EAAE;IACP,OAAO,EAAE,MAAM,CAAC;IAChB,YAAY,EAAE,MAAM,CAAC;IACrB,KAAK,CAAC,EAAE,MAAM,CAAC;CAChB,GACA,OAAO,CAAC,qBAAqB,CAAC,CAuBhC;AAED;;GAEG;AACH,wBAAsB,uBAAuB,CAC3C,IAAI,EAAE,GAAG,EAAE,EACX,OAAO,EAAE;IACP,QAAQ,EAAE,MAAM,CAAC;IACjB,cAAc,EAAE,GAAG,CAAC;IACpB,YAAY,EAAE,MAAM,CAAC;IACrB,UAAU,CAAC,EAAE,MAAM,CAAC;CACrB,GACA,OAAO,CAAC,cAAc,EAAE,CAAC,CAwC3B"}
@@ -0,0 +1,28 @@
1
+ import { FeatureEngineeringResult, FeatureImportance, FeatureTransformation, FeatureSelectionResult } from '../types';
2
+ /**
3
+ * Auto-generate features
4
+ */
5
+ export declare function autoGenerateFeatures(data: any[], options: {
6
+ targetColumn?: string;
7
+ maxFeatures?: number;
8
+ includeInteractions?: boolean;
9
+ includePolynomials?: boolean;
10
+ includeAggregations?: boolean;
11
+ }): Promise<FeatureEngineeringResult>;
12
+ /**
13
+ * Create features with specific transformations
14
+ */
15
+ export declare function createFeatures(data: any[], transformations: FeatureTransformation[]): Promise<any[]>;
16
+ /**
17
+ * Analyze feature importance
18
+ */
19
+ export declare function analyzeFeatureImportance(data: any[], targetColumn: string): Promise<FeatureImportance[]>;
20
+ /**
21
+ * Select best features
22
+ */
23
+ export declare function selectBestFeatures(data: any[], options: {
24
+ targetColumn: string;
25
+ method: 'correlation' | 'mutual_info' | 'chi2' | 'recursive';
26
+ topK?: number;
27
+ }): Promise<FeatureSelectionResult>;
28
+ //# sourceMappingURL=featureEngineering.d.ts.map
@@ -0,0 +1 @@
1
+ {"version":3,"file":"featureEngineering.d.ts","sourceRoot":"","sources":["../../src/advanced/featureEngineering.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAEH,OAAO,KAAK,EACV,wBAAwB,EAExB,iBAAiB,EACjB,qBAAqB,EACrB,sBAAsB,EACvB,MAAM,UAAU,CAAC;AAElB;;GAEG;AACH,wBAAsB,oBAAoB,CACxC,IAAI,EAAE,GAAG,EAAE,EACX,OAAO,EAAE;IACP,YAAY,CAAC,EAAE,MAAM,CAAC;IACtB,WAAW,CAAC,EAAE,MAAM,CAAC;IACrB,mBAAmB,CAAC,EAAE,OAAO,CAAC;IAC9B,kBAAkB,CAAC,EAAE,OAAO,CAAC;IAC7B,mBAAmB,CAAC,EAAE,OAAO,CAAC;CAC/B,GACA,OAAO,CAAC,wBAAwB,CAAC,CAuEnC;AAED;;GAEG;AACH,wBAAsB,cAAc,CAClC,IAAI,EAAE,GAAG,EAAE,EACX,eAAe,EAAE,qBAAqB,EAAE,GACvC,OAAO,CAAC,GAAG,EAAE,CAAC,CAQhB;AAED;;GAEG;AACH,wBAAsB,wBAAwB,CAC5C,IAAI,EAAE,GAAG,EAAE,EACX,YAAY,EAAE,MAAM,GACnB,OAAO,CAAC,iBAAiB,EAAE,CAAC,CAuB9B;AAED;;GAEG;AACH,wBAAsB,kBAAkB,CACtC,IAAI,EAAE,GAAG,EAAE,EACX,OAAO,EAAE;IACP,YAAY,EAAE,MAAM,CAAC;IACrB,MAAM,EAAE,aAAa,GAAG,aAAa,GAAG,MAAM,GAAG,WAAW,CAAC;IAC7D,IAAI,CAAC,EAAE,MAAM,CAAC;CACf,GACA,OAAO,CAAC,sBAAsB,CAAC,CAYjC"}
@@ -0,0 +1,16 @@
1
+ /**
2
+ * Advanced Tabular Intelligence Features
3
+ * Comprehensive data analysis, ML, and AI capabilities
4
+ */
5
+ export * from './timeseries';
6
+ export * from './automl';
7
+ export * from './explainability';
8
+ export * from './statistical';
9
+ export * from './visualization';
10
+ export * from './multitable';
11
+ export * from './reporting';
12
+ export * from './privacy';
13
+ export * from './versioning';
14
+ export * from './streaming';
15
+ export * from './featureEngineering';
16
+ //# sourceMappingURL=index.d.ts.map
@@ -0,0 +1 @@
1
+ {"version":3,"file":"index.d.ts","sourceRoot":"","sources":["../../src/advanced/index.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAGH,cAAc,cAAc,CAAC;AAC7B,cAAc,UAAU,CAAC;AACzB,cAAc,kBAAkB,CAAC;AACjC,cAAc,eAAe,CAAC;AAC9B,cAAc,iBAAiB,CAAC;AAChC,cAAc,cAAc,CAAC;AAC7B,cAAc,aAAa,CAAC;AAC5B,cAAc,WAAW,CAAC;AAC1B,cAAc,cAAc,CAAC;AAC7B,cAAc,aAAa,CAAC;AAC5B,cAAc,sBAAsB,CAAC"}
@@ -0,0 +1,28 @@
1
+ import { TableRelationship, CrossTableAnalysis, DatabaseSchema } from '../types';
2
+ /**
3
+ * Join two tables
4
+ */
5
+ export declare function joinTables(options: {
6
+ leftTable: any[];
7
+ rightTable: any[];
8
+ leftKey: string;
9
+ rightKey: string;
10
+ joinType: 'inner' | 'left' | 'right' | 'outer';
11
+ }): Promise<any[]>;
12
+ /**
13
+ * Detect relationships between tables
14
+ */
15
+ export declare function detectRelationships(tables: Record<string, any[]>): Promise<TableRelationship[]>;
16
+ /**
17
+ * Analyze cross-table query
18
+ */
19
+ export declare function analyzeCrossTables(options: {
20
+ tables: Record<string, any[]>;
21
+ relationships: TableRelationship[];
22
+ question: string;
23
+ }): Promise<CrossTableAnalysis>;
24
+ /**
25
+ * Infer database schema
26
+ */
27
+ export declare function inferDatabaseSchema(tables: Record<string, any[]>): Promise<DatabaseSchema>;
28
+ //# sourceMappingURL=multitable.d.ts.map
@@ -0,0 +1 @@
1
+ {"version":3,"file":"multitable.d.ts","sourceRoot":"","sources":["../../src/advanced/multitable.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAEH,OAAO,KAAK,EACV,iBAAiB,EACjB,kBAAkB,EAClB,cAAc,EAEf,MAAM,UAAU,CAAC;AAElB;;GAEG;AACH,wBAAsB,UAAU,CAC9B,OAAO,EAAE;IACP,SAAS,EAAE,GAAG,EAAE,CAAC;IACjB,UAAU,EAAE,GAAG,EAAE,CAAC;IAClB,OAAO,EAAE,MAAM,CAAC;IAChB,QAAQ,EAAE,MAAM,CAAC;IACjB,QAAQ,EAAE,OAAO,GAAG,MAAM,GAAG,OAAO,GAAG,OAAO,CAAC;CAChD,GACA,OAAO,CAAC,GAAG,EAAE,CAAC,CAuChB;AAED;;GAEG;AACH,wBAAsB,mBAAmB,CACvC,MAAM,EAAE,MAAM,CAAC,MAAM,EAAE,GAAG,EAAE,CAAC,GAC5B,OAAO,CAAC,iBAAiB,EAAE,CAAC,CA6B9B;AAED;;GAEG;AACH,wBAAsB,kBAAkB,CACtC,OAAO,EAAE;IACP,MAAM,EAAE,MAAM,CAAC,MAAM,EAAE,GAAG,EAAE,CAAC,CAAC;IAC9B,aAAa,EAAE,iBAAiB,EAAE,CAAC;IACnC,QAAQ,EAAE,MAAM,CAAC;CAClB,GACA,OAAO,CAAC,kBAAkB,CAAC,CAqC7B;AAED;;GAEG;AACH,wBAAsB,mBAAmB,CACvC,MAAM,EAAE,MAAM,CAAC,MAAM,EAAE,GAAG,EAAE,CAAC,GAC5B,OAAO,CAAC,cAAc,CAAC,CAyBzB"}
@@ -0,0 +1,17 @@
1
+ import { PIIDetectionResult, AnonymizationResult, ComplianceReport } from '../types';
2
+ /**
3
+ * Detect PII (Personally Identifiable Information)
4
+ */
5
+ export declare function detectPII(data: any[]): Promise<PIIDetectionResult>;
6
+ /**
7
+ * Anonymize data
8
+ */
9
+ export declare function anonymizeData(data: any[], options: {
10
+ method: 'masking' | 'hashing' | 'generalization' | 'differential_privacy' | 'tokenization';
11
+ columns?: string[];
12
+ }): Promise<AnonymizationResult>;
13
+ /**
14
+ * Check compliance with standards
15
+ */
16
+ export declare function checkCompliance(data: any[], standard: 'GDPR' | 'CCPA' | 'HIPAA' | 'SOC2'): Promise<ComplianceReport>;
17
+ //# sourceMappingURL=privacy.d.ts.map
@@ -0,0 +1 @@
1
+ {"version":3,"file":"privacy.d.ts","sourceRoot":"","sources":["../../src/advanced/privacy.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAEH,OAAO,KAAK,EACV,kBAAkB,EAClB,mBAAmB,EACnB,gBAAgB,EACjB,MAAM,UAAU,CAAC;AAElB;;GAEG;AACH,wBAAsB,SAAS,CAAC,IAAI,EAAE,GAAG,EAAE,GAAG,OAAO,CAAC,kBAAkB,CAAC,CAuExE;AAED;;GAEG;AACH,wBAAsB,aAAa,CACjC,IAAI,EAAE,GAAG,EAAE,EACX,OAAO,EAAE;IACP,MAAM,EAAE,SAAS,GAAG,SAAS,GAAG,gBAAgB,GAAG,sBAAsB,GAAG,cAAc,CAAC;IAC3F,OAAO,CAAC,EAAE,MAAM,EAAE,CAAC;CACpB,GACA,OAAO,CAAC,mBAAmB,CAAC,CAmB9B;AAED;;GAEG;AACH,wBAAsB,eAAe,CACnC,IAAI,EAAE,GAAG,EAAE,EACX,QAAQ,EAAE,MAAM,GAAG,MAAM,GAAG,OAAO,GAAG,MAAM,GAC3C,OAAO,CAAC,gBAAgB,CAAC,CA8B3B"}
@@ -0,0 +1,21 @@
1
+ import { Report, Insight } from '../types';
2
+ /**
3
+ * Generate comprehensive report
4
+ */
5
+ export declare function generateReport(data: any[], options: {
6
+ format: 'markdown' | 'html' | 'pdf' | 'json';
7
+ sections?: Array<'summary' | 'stats' | 'anomalies' | 'trends' | 'recommendations'>;
8
+ includeCharts?: boolean;
9
+ }): Promise<Report>;
10
+ /**
11
+ * Generate executive summary
12
+ */
13
+ export declare function generateExecutiveSummary(data: any[]): Promise<string>;
14
+ /**
15
+ * Generate automated insights
16
+ */
17
+ export declare function generateInsights(data: any[], options?: {
18
+ maxInsights?: number;
19
+ priority?: 'high' | 'medium' | 'low';
20
+ }): Promise<Insight[]>;
21
+ //# sourceMappingURL=reporting.d.ts.map
@@ -0,0 +1 @@
1
+ {"version":3,"file":"reporting.d.ts","sourceRoot":"","sources":["../../src/advanced/reporting.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAEH,OAAO,KAAK,EACV,MAAM,EAEN,OAAO,EACR,MAAM,UAAU,CAAC;AAElB;;GAEG;AACH,wBAAsB,cAAc,CAClC,IAAI,EAAE,GAAG,EAAE,EACX,OAAO,EAAE;IACP,MAAM,EAAE,UAAU,GAAG,MAAM,GAAG,KAAK,GAAG,MAAM,CAAC;IAC7C,QAAQ,CAAC,EAAE,KAAK,CAAC,SAAS,GAAG,OAAO,GAAG,WAAW,GAAG,QAAQ,GAAG,iBAAiB,CAAC,CAAC;IACnF,aAAa,CAAC,EAAE,OAAO,CAAC;CACzB,GACA,OAAO,CAAC,MAAM,CAAC,CAwCjB;AAED;;GAEG;AACH,wBAAsB,wBAAwB,CAAC,IAAI,EAAE,GAAG,EAAE,GAAG,OAAO,CAAC,MAAM,CAAC,CAmB3E;AAED;;GAEG;AACH,wBAAsB,gBAAgB,CACpC,IAAI,EAAE,GAAG,EAAE,EACX,OAAO,CAAC,EAAE;IACR,WAAW,CAAC,EAAE,MAAM,CAAC;IACrB,QAAQ,CAAC,EAAE,MAAM,GAAG,QAAQ,GAAG,KAAK,CAAC;CACtC,GACA,OAAO,CAAC,OAAO,EAAE,CAAC,CA0CpB"}