@aivue/tabular-intelligence 1.5.0 → 2.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +430 -17
- package/dist/advanced/automl.d.ts +29 -0
- package/dist/advanced/automl.d.ts.map +1 -0
- package/dist/advanced/explainability.d.ts +31 -0
- package/dist/advanced/explainability.d.ts.map +1 -0
- package/dist/advanced/featureEngineering.d.ts +28 -0
- package/dist/advanced/featureEngineering.d.ts.map +1 -0
- package/dist/advanced/index.d.ts +16 -0
- package/dist/advanced/index.d.ts.map +1 -0
- package/dist/advanced/multitable.d.ts +28 -0
- package/dist/advanced/multitable.d.ts.map +1 -0
- package/dist/advanced/privacy.d.ts +17 -0
- package/dist/advanced/privacy.d.ts.map +1 -0
- package/dist/advanced/reporting.d.ts +21 -0
- package/dist/advanced/reporting.d.ts.map +1 -0
- package/dist/advanced/statistical.d.ts +28 -0
- package/dist/advanced/statistical.d.ts.map +1 -0
- package/dist/advanced/streaming.d.ts +41 -0
- package/dist/advanced/streaming.d.ts.map +1 -0
- package/dist/advanced/timeseries.d.ts +36 -0
- package/dist/advanced/timeseries.d.ts.map +1 -0
- package/dist/advanced/versioning.d.ts +34 -0
- package/dist/advanced/versioning.d.ts.map +1 -0
- package/dist/advanced/visualization.d.ts +23 -0
- package/dist/advanced/visualization.d.ts.map +1 -0
- package/dist/index.d.ts +15 -1
- package/dist/index.d.ts.map +1 -1
- package/dist/index.js +75 -47
- package/dist/index.js.map +1 -1
- package/dist/index.mjs +2374 -662
- package/dist/index.mjs.map +1 -1
- package/dist/preprocessing/imputation.d.ts +9 -0
- package/dist/preprocessing/imputation.d.ts.map +1 -0
- package/dist/preprocessing/outliers.d.ts +10 -0
- package/dist/preprocessing/outliers.d.ts.map +1 -0
- package/dist/quality/profiling.d.ts +22 -0
- package/dist/quality/profiling.d.ts.map +1 -0
- package/dist/types/index.d.ts +573 -0
- package/dist/types/index.d.ts.map +1 -1
- package/package.json +2 -2
package/dist/index.js
CHANGED
|
@@ -1,52 +1,52 @@
|
|
|
1
|
-
"use strict";Object.defineProperty(exports,Symbol.toStringTag,{value:"Module"});const
|
|
1
|
+
"use strict";Object.defineProperty(exports,Symbol.toStringTag,{value:"Module"});const f=require("vue");function x(s,e){if(s.length===0)return{columns:[],rowCount:0,name:e};const t=s[0];return{columns:Object.keys(t).map(o=>{const a=Q(s,o);return{name:o,type:a,nullable:s.some(i=>i[o]==null)}}),rowCount:s.length,name:e}}function Q(s,e){const t=s.map(o=>o[e]).filter(o=>o!=null);if(t.length===0)return"string";if(t.every(o=>typeof o=="number"||!isNaN(Number(o))))return"number";if(t.every(o=>typeof o=="boolean"||o==="true"||o==="false"))return"boolean";if(t.every(o=>!isNaN(Date.parse(o))))return"date";const n=new Set(t);return n.size<t.length*.5&&n.size<20?"categorical":"string"}function J(s,e,t){const n=s.map(r=>r[e]).filter(r=>r!=null),o=n.length,a=s.length-o,i={column:e,count:o,nullCount:a};if(t==="number"){const r=n.map(Number).filter(c=>!isNaN(c));if(r.length>0){const c=[...r].sort((m,d)=>m-d),l=r.reduce((m,d)=>m+d,0);i.mean=l/r.length,i.median=c[Math.floor(c.length/2)],i.min=c[0],i.max=c[c.length-1];const u=r.reduce((m,d)=>m+Math.pow(d-i.mean,2),0)/r.length;i.std=Math.sqrt(u),i.percentiles={25:c[Math.floor(c.length*.25)],50:i.median,75:c[Math.floor(c.length*.75)],90:c[Math.floor(c.length*.9)]}}}else{const r=new Set(n);i.uniqueValues=r.size;const c={};n.forEach(u=>{const m=String(u);c[m]=(c[m]||0)+1});const l=Math.max(...Object.values(c));i.mode=Object.keys(c).find(u=>c[u]===l)}return i}function G(s,e,t=.5){const n=[],o=1.5+(1-t)*1.5;return e.forEach(a=>{const i=s.map((h,p)=>({value:Number(h[a]),idx:p})).filter(h=>!isNaN(h.value));if(i.length===0)return;const r=[...i].sort((h,p)=>h.value-p.value),c=r[Math.floor(r.length*.25)].value,l=r[Math.floor(r.length*.75)].value,u=l-c,m=c-o*u,d=l+o*u;i.forEach(({value:h,idx:p})=>{if(h<m||h>d){const g=n.find(y=>y.rowIndex===p),v=h<m?`${a}: ${h.toFixed(2)} < ${m.toFixed(2)}`:`${a}: ${h.toFixed(2)} > ${d.toFixed(2)}`;g?(g.reasons.push(v),g.affectedColumns.push(a),g.score=Math.min(1,g.score+.2)):n.push({rowIndex:p,row:s[p],score:.7,reasons:[v],affectedColumns:[a]})}})}),n.sort((a,i)=>i.score-a.score)}class _{constructor(e){this.config={maxTokens:1e3,temperature:.3,...e}}async answerQuestion(e){const t=Date.now();try{const{question:n,schema:o,data:a,sampleSize:i=100,includeAggregates:r=!0}=e;if(!a||!Array.isArray(a)||a.length===0)throw new Error("No data available. Please load data first.");if(!o||!o.columns||!Array.isArray(o.columns))throw new Error("Invalid schema. Please ensure data has a valid schema.");const c=a.length>i?this.sampleData(a,i):a,l=r?this.calculateAggregates(a,o):void 0,u=this.buildPrompt(n,o,c,l,a.length),m=await this.callLLM(u);return{answer:this.parseResponse(m,n,a.length>i),processingTime:Date.now()-t}}catch(n){return console.error("Q&A error:",n),{answer:{questionId:this.generateId(),text:"I encountered an error while processing your question. Please try again.",timestamp:new Date,confidence:0,cannotAnswer:!0,reason:n instanceof Error?n.message:"Unknown error"},processingTime:Date.now()-t}}}sampleData(e,t){if(!e||!Array.isArray(e)||e.length===0)return[];if(e.length<=t)return e;const n=Math.floor(e.length/t),o=[];for(let a=0;a<e.length&&o.length<t;a+=n)o.push(e[a]);return o}calculateAggregates(e,t){const n={};if(!e||!Array.isArray(e)||e.length===0||!t||!t.columns||!Array.isArray(t.columns))return n;for(const o of t.columns)if(o.type==="number"&&e.length>0)try{const a=J(e,o.name,"number");n[o.name]={mean:a.mean,median:a.median,min:a.min,max:a.max,count:a.count}}catch{}else if(o.type==="categorical"||o.type==="string"){const a=e.map(r=>r[o.name]).filter(r=>r!=null),i=new Set(a);n[o.name]={uniqueCount:i.size,totalCount:a.length,topValues:this.getTopValues(a,5)}}return n}getTopValues(e,t){const n=new Map;for(const o of e)n.set(o,(n.get(o)||0)+1);return Array.from(n.entries()).map(([o,a])=>({value:o,count:a})).sort((o,a)=>a.count-o.count).slice(0,t)}buildPrompt(e,t,n,o,a){const i=a&&a>n.length;let r=`You are a data analyst assistant. Answer the following question about a table dataset.
|
|
2
2
|
|
|
3
|
-
`;
|
|
4
|
-
`,
|
|
5
|
-
`,
|
|
6
|
-
`;for(const
|
|
7
|
-
`;return
|
|
8
|
-
`,
|
|
9
|
-
`,
|
|
3
|
+
`;r+=`**Table Schema:**
|
|
4
|
+
`,r+=`Table: ${t.name}
|
|
5
|
+
`,r+=`Columns:
|
|
6
|
+
`;for(const c of t.columns)r+=`- ${c.name} (${c.type})
|
|
7
|
+
`;return r+=`
|
|
8
|
+
`,o&&Object.keys(o).length>0&&(r+=`**Summary Statistics:**
|
|
9
|
+
`,r+=JSON.stringify(o,null,2),r+=`
|
|
10
10
|
|
|
11
|
-
`),
|
|
12
|
-
`,
|
|
11
|
+
`),r+=`**Sample Data** (${n.length} rows${i?` out of ${a} total`:""}):
|
|
12
|
+
`,r+=JSON.stringify(n.slice(0,10),null,2),r+=`
|
|
13
13
|
|
|
14
|
-
`,
|
|
14
|
+
`,r+=`**Question:** ${e}
|
|
15
15
|
|
|
16
|
-
`,
|
|
17
|
-
`,
|
|
18
|
-
`,
|
|
19
|
-
`,
|
|
20
|
-
`,
|
|
21
|
-
`,
|
|
22
|
-
`,
|
|
23
|
-
`,
|
|
24
|
-
`,
|
|
25
|
-
`,
|
|
26
|
-
`,
|
|
27
|
-
`,
|
|
28
|
-
`,
|
|
29
|
-
`,
|
|
30
|
-
`,
|
|
31
|
-
`,
|
|
32
|
-
`,
|
|
33
|
-
`,
|
|
34
|
-
`,
|
|
35
|
-
`,
|
|
36
|
-
`,
|
|
37
|
-
`,
|
|
16
|
+
`,r+=`**Instructions:**
|
|
17
|
+
`,r+=`1. You are a helpful AI data analyst that can answer questions about the table data, perform statistical analysis, make predictions, identify trends, AND engage in normal conversation.
|
|
18
|
+
`,r+=`2. For data questions (e.g., "how many rows?", "what's the average?"), answer based on the data provided above.
|
|
19
|
+
`,r+=`3. For statistical analysis requests (e.g., "calculate descriptive statistics", "show me mean/median/std dev"), compute and present the statistics clearly.
|
|
20
|
+
`,r+=`4. For anomaly detection requests (e.g., "detect anomalies", "find outliers"), identify unusual data points and explain why they're anomalous.
|
|
21
|
+
`,r+=`5. For clustering requests (e.g., "perform clustering", "group similar data"), identify natural groupings in the data and describe their characteristics.
|
|
22
|
+
`,r+=`6. For correlation analysis requests (e.g., "show correlations", "what variables are related"), analyze relationships between variables and explain the strength and direction of correlations.
|
|
23
|
+
`,r+=`7. For predictive questions (e.g., "predict future trends", "what will happen next?", "forecast X"), analyze patterns in the data and make reasonable predictions based on trends, correlations, and statistical patterns you observe.
|
|
24
|
+
`,r+=`8. For analytical questions (e.g., "what insights?", "any patterns?", "recommendations?"), provide insights, trends, correlations, and actionable recommendations based on the data.
|
|
25
|
+
`,r+=`9. For conversational questions (e.g., "hi", "hello", "what can you do?"), respond naturally and mention your capabilities.
|
|
26
|
+
`,r+=`10. If a question is completely unrelated to data analysis (e.g., "what's the weather?"), politely explain you can only help with data analysis.
|
|
27
|
+
`,r+=`11. Provide clear, concise answers with specific numbers and examples.
|
|
28
|
+
`,r+=`12. When making predictions or identifying trends, explain your reasoning and mention the confidence level.
|
|
29
|
+
`,r+=`13. If the answer is based on sampled data, mention that it's an approximation.
|
|
30
|
+
`,r+=`14. Format your response as JSON with the following structure:
|
|
31
|
+
`,r+=`{
|
|
32
|
+
`,r+=` "answer": "Your answer text here",
|
|
33
|
+
`,r+=` "confidence": 0.0-1.0,
|
|
34
|
+
`,r+=` "cannotAnswer": false,
|
|
35
|
+
`,r+=` "isApproximate": ${i},
|
|
36
|
+
`,r+=` "supportingData": { "key": "value" } // optional
|
|
37
|
+
`,r+=`}
|
|
38
38
|
|
|
39
|
-
`,
|
|
40
|
-
`,
|
|
41
|
-
`,
|
|
42
|
-
`,
|
|
43
|
-
`,
|
|
44
|
-
`,
|
|
45
|
-
`,
|
|
46
|
-
`,
|
|
47
|
-
`,
|
|
48
|
-
`,
|
|
49
|
-
`,
|
|
39
|
+
`,r+=`Examples:
|
|
40
|
+
`,r+=`- Question: "hi" → Answer: "Hello! I'm your AI data analyst. I can perform statistical analysis, detect anomalies, cluster data, analyze correlations, make predictions, and answer questions about this dataset."
|
|
41
|
+
`,r+=`- Question: "how many rows?" → Answer: "There are ${a||n.length} rows in the dataset."
|
|
42
|
+
`,r+=`- Question: "calculate descriptive statistics" → Answer: "Descriptive Statistics:\\n- Mean: 45.2\\n- Median: 42.0\\n- Std Dev: 12.5\\n- Min: 10\\n- Max: 95\\n- 25th Percentile: 35\\n- 75th Percentile: 58" (with confidence: 0.95)
|
|
43
|
+
`,r+=`- Question: "detect anomalies" → Answer: "I found 3 anomalies in the dataset:\\n1. Row 15: Value 250 is 3.5 standard deviations above the mean\\n2. Row 42: Value -10 is unusually low\\n3. Row 88: Value 300 is an extreme outlier" (with confidence: 0.85)
|
|
44
|
+
`,r+=`- Question: "perform clustering" → Answer: "I identified 3 natural clusters in the data:\\n- Cluster 1 (40%): Low values, avg 25\\n- Cluster 2 (35%): Medium values, avg 50\\n- Cluster 3 (25%): High values, avg 85" (with confidence: 0.8)
|
|
45
|
+
`,r+=`- Question: "show correlation analysis" → Answer: "Correlation Analysis:\\n- Price & Quantity: -0.65 (strong negative)\\n- Revenue & Price: 0.82 (strong positive)\\n- Quantity & Revenue: 0.45 (moderate positive)" (with confidence: 0.9)
|
|
46
|
+
`,r+=`- Question: "predict future sales" → Answer: "Based on the trend in the data, sales are increasing by 15% monthly. If this continues, next month's sales could reach approximately $50,000." (with confidence: 0.7)
|
|
47
|
+
`,r+=`- Question: "what insights can you give?" → Answer: "Key insights: 1) Sales peak on weekends, 2) Product A is the top seller, 3) Customer retention is 85%..."
|
|
48
|
+
`,r+=`- Question: "what's the weather?" → Answer: "I cannot answer this question as it's not related to the dataset. I can only help with questions about this data."
|
|
49
|
+
`,r}async callLLM(e){const{provider:t,apiKey:n,baseUrl:o,model:a,maxTokens:i,temperature:r}=this.config;if(!n&&t!=="custom")return this.fallbackResponse(e);if(t==="openai")return this.callOpenAI(e,n,a||"gpt-4-turbo-preview",i,r);if(t==="anthropic")return this.callAnthropic(e,n,a||"claude-3-5-sonnet-20241022",i,r);if(t==="custom"&&o)return this.callCustomAPI(e,o,n);throw new Error(`Unsupported provider: ${t}`)}fallbackResponse(e){const t=e.match(/\*\*Question:\*\* (.+)/),o=(t?t[1].trim():"").toLowerCase();if(/^(hi|hello|hey|greetings|good morning|good afternoon|good evening)/.test(o))return JSON.stringify({answer:"Hello! 👋 I'm your data analysis assistant. I can help you explore and understand this dataset. Try asking questions like 'How many rows are there?', 'What columns do we have?', or 'Show me a summary of the data'. For more advanced analysis, please configure an OpenAI or Anthropic API key in the settings.",confidence:1,cannotAnswer:!1,isApproximate:!1});if(/what (can|do) you|help|capabilities|features/.test(o))return JSON.stringify({answer:`I can help you analyze tabular data! You can ask me questions like:
|
|
50
50
|
• 'How many rows/columns are there?'
|
|
51
51
|
• 'What are the column names?'
|
|
52
52
|
• 'Show me basic statistics'
|
|
@@ -62,7 +62,35 @@ With an OpenAI or Anthropic API key, I can also:
|
|
|
62
62
|
• Provide insights and recommendations
|
|
63
63
|
• Answer complex analytical questions
|
|
64
64
|
|
|
65
|
-
Please add your API key in the AI Chatbot Configuration section for advanced features.`,confidence:1,cannotAnswer:!1,isApproximate:!1});const
|
|
66
|
-
`).map(
|
|
67
|
-
`).map(p=>p.replace(/^- /,"").split(" (")[0]);return JSON.stringify({answer:`This dataset contains ${u} rows and ${f.length} columns. The columns are: ${f.join(", ")}. For detailed analysis and insights, please configure an OpenAI or Anthropic API key.`,confidence:.8,cannotAnswer:!1,isApproximate:!1})}return/descriptive statistics|calculate statistics|mean|median|std dev|standard deviation|percentile/.test(t)?JSON.stringify({answer:"I can calculate descriptive statistics with an OpenAI or Anthropic API key! I'll provide mean, median, standard deviation, min, max, and percentiles for all numeric columns. Please add your API key in the 'AI Chatbot Configuration' section above.",confidence:.3,cannotAnswer:!0,reason:"Statistical analysis requires AI. Please configure an API key."}):/anomaly|anomalies|outlier|outliers|detect anomal|find outlier/.test(t)?JSON.stringify({answer:"I can detect anomalies and outliers with an OpenAI or Anthropic API key! I'll identify unusual data points and explain why they're anomalous. Please add your API key in the 'AI Chatbot Configuration' section above.",confidence:.3,cannotAnswer:!0,reason:"Anomaly detection requires AI. Please configure an API key."}):/cluster|clustering|group|grouping|segment|segmentation/.test(t)?JSON.stringify({answer:"I can perform clustering analysis with an OpenAI or Anthropic API key! I'll identify natural groupings in your data and describe their characteristics. Please add your API key in the 'AI Chatbot Configuration' section above.",confidence:.3,cannotAnswer:!0,reason:"Clustering analysis requires AI. Please configure an API key."}):/correlation|correlate|relationship|relate|association/.test(t)?JSON.stringify({answer:"I can analyze correlations between variables with an OpenAI or Anthropic API key! I'll show you the strength and direction of relationships between different columns. Please add your API key in the 'AI Chatbot Configuration' section above.",confidence:.3,cannotAnswer:!0,reason:"Correlation analysis requires AI. Please configure an API key."}):/predict|forecast|future|trend|next|will be|gonna be|going to be/.test(t)?JSON.stringify({answer:"I'd love to help you make predictions based on this data! However, I need an OpenAI or Anthropic API key to analyze patterns, identify trends, and make accurate forecasts. Please add your API key in the 'AI Chatbot Configuration' section above, and I'll be able to provide detailed predictions with confidence scores.",confidence:.3,cannotAnswer:!0,reason:"Predictions require AI analysis. Please configure an API key for advanced features."}):/insight|pattern|analysis|analyze|recommendation/.test(t)?JSON.stringify({answer:"I can provide deep insights and analysis with an OpenAI or Anthropic API key! I'll be able to identify patterns, trends, and give you actionable recommendations. Please add your API key in the 'AI Chatbot Configuration' section above.",confidence:.3,cannotAnswer:!0,reason:"Advanced analysis requires AI. Please configure an API key."}):JSON.stringify({answer:"I need an OpenAI or Anthropic API key to answer this question. Please add your API key in the 'AI Chatbot Configuration' section above. For now, I can only answer basic questions like 'How many rows?' or 'What columns are there?'",confidence:.5,cannotAnswer:!0,reason:"No API key configured for advanced natural language processing"})}async callOpenAI(e,n,a,t,r){var l,u;const i=await fetch("https://api.openai.com/v1/chat/completions",{method:"POST",headers:{"Content-Type":"application/json",Authorization:`Bearer ${n}`},body:JSON.stringify({model:a,messages:[{role:"user",content:e}],max_tokens:t,temperature:r,response_format:{type:"json_object"}})});if(!i.ok)throw new Error(`OpenAI API error: ${i.statusText}`);return((u=(l=(await i.json()).choices[0])==null?void 0:l.message)==null?void 0:u.content)||""}async callAnthropic(e,n,a,t,r){var l;const i=await fetch("https://api.anthropic.com/v1/messages",{method:"POST",headers:{"Content-Type":"application/json","x-api-key":n,"anthropic-version":"2023-06-01"},body:JSON.stringify({model:a,max_tokens:t,temperature:r,messages:[{role:"user",content:e}]})});if(!i.ok)throw new Error(`Anthropic API error: ${i.statusText}`);return((l=(await i.json()).content[0])==null?void 0:l.text)||""}async callCustomAPI(e,n,a){const t={"Content-Type":"application/json"};a&&(t.Authorization=`Bearer ${a}`);const r=await fetch(n,{method:"POST",headers:t,body:JSON.stringify({prompt:e})});if(!r.ok)throw new Error(`Custom API error: ${r.statusText}`);const i=await r.json();return i.response||i.answer||JSON.stringify(i)}parseResponse(e,n,a){try{const t=JSON.parse(e);return{questionId:this.generateId(),text:t.answer||t.text||e,timestamp:new Date,confidence:t.confidence||.8,cannotAnswer:t.cannotAnswer||!1,isApproximate:t.isApproximate!==void 0?t.isApproximate:a,supportingData:t.supportingData,reason:t.reason}}catch{return{questionId:this.generateId(),text:e,timestamp:new Date,confidence:.7,isApproximate:a}}}generateId(){return`qa_${Date.now()}_${Math.random().toString(36).substr(2,9)}`}}function O(c={}){const{selector:e="table",includeHeaders:n=!0,maxRows:a,inferTypes:t=!0,skipEmptyRows:r=!0}=c,i=document.querySelector(e);if(!i||i.tagName!=="TABLE")return console.warn(`No table found with selector: ${e}`),null;const l=Array.from(i.rows);if(l.length===0)return null;let u=[],f=0;if(n&&l[0]){const v=l[0];u=Array.from(v.cells).map((k,I)=>{var C;return((C=k.textContent)==null?void 0:C.trim())||""||`Column${I+1}`}),f=1}else{const v=l[0];u=Array.from(v.cells).map((k,I)=>`Column${I+1}`)}const p=[],m=a?l.slice(f,f+a):l.slice(f);for(const v of m){const k=Array.from(v.cells);if(r&&k.every(P=>{var C;return!((C=P.textContent)!=null&&C.trim())}))continue;const I={};k.forEach((P,C)=>{var N;const D=u[C]||`Column${C+1}`;let q=((N=P.textContent)==null?void 0:N.trim())||"";if(t&&q){const x=parseFloat(q);!isNaN(x)&&q===x.toString()&&(q=x)}I[D]=q}),p.push(I)}return{schema:t&&p.length>0?$(p,"Extracted Table"):G(u,p.length),data:p,source:"dom",metadata:{selector:e,rowCount:p.length,columnCount:u.length,extractedAt:new Date}}}function z(c,e,n={}){const{maxRows:a,inferTypes:t=!0}=n,r=a?c.slice(0,a):c;let i;return e&&e.length>0?i={name:"Vue Data Grid",columns:e.map(o=>({name:o.field,type:t&&r.length>0?B(r,o.field):"string",nullable:!0})),rowCount:r.length}:r.length>0?i=$(r,"Vue Data Grid"):i={name:"Vue Data Grid",columns:[],rowCount:0},{schema:i,data:r,source:"vue",metadata:{rowCount:r.length,columnCount:i.columns.length,extractedAt:new Date}}}function G(c,e=0){return{name:"Extracted Table",columns:c.map(n=>({name:n,type:"string",nullable:!0})),rowCount:e}}function R(c){const e={};c.variable&&c.variable.forEach(r=>{e[r.key]=r.value});const n=c.auth?j(c.auth):void 0,a=[];function t(r,i=""){r.forEach(o=>{o.item?t(o.item,i?`${i}/${o.name}`:o.name):o.request&&a.push(Y(o,n))})}return t(c.item),{name:c.info.name,description:c.info.description,endpoints:a,variables:e,auth:n}}function Y(c,e){const n=c.request,a={};n.header&&n.header.forEach(i=>{a[i.key]=i.value});const t={};n.url.query&&n.url.query.forEach(i=>{t[i.key]=i.value});const r=n.auth?j(n.auth):e;return{name:c.name,method:n.method,url:n.url.raw,description:n.description,headers:a,queryParams:t,auth:r}}function j(c){const e={};return c.apikey?c.apikey.forEach(n=>{e[n.key]=n.value}):c.bearer?c.bearer.forEach(n=>{e[n.key]=n.value}):c.basic&&c.basic.forEach(n=>{e[n.key]=n.value}),{type:c.type,credentials:e}}function S(c,e){let n=c;return Object.keys(e).forEach(a=>{const t=new RegExp(`{{${a}}}`,"g");n=n.replace(t,e[a])}),n}async function M(c){const{endpoint:e,variables:n={},additionalHeaders:a={},additionalParams:t={}}=c;try{let r=S(e.url,n);const i={...e.queryParams,...n,...t},o=Object.keys(i).filter(m=>i[m]!==void 0&&i[m]!=="").map(m=>`${encodeURIComponent(m)}=${encodeURIComponent(S(String(i[m]),n))}`).join("&");o&&(r=r.includes("?")?`${r}&${o}`:`${r}?${o}`);const l={"Content-Type":"application/json",...e.headers,...a};if(Object.keys(l).forEach(m=>{l[m]=S(l[m],n)}),e.auth){if(e.auth.type==="apikey"){const m=e.auth.credentials.key||"access_key",y=S(e.auth.credentials.value||"",n);e.auth.credentials.in==="header"&&(l[m]=y)}else if(e.auth.type==="bearer"){const m=S(e.auth.credentials.token||"",n);l.Authorization=`Bearer ${m}`}else if(e.auth.type==="basic"){const m=S(e.auth.credentials.username||"",n),y=S(e.auth.credentials.password||"",n),v=btoa(`${m}:${y}`);l.Authorization=`Basic ${v}`}}const u=await fetch(r,{method:e.method,headers:l}),f={};return u.headers.forEach((m,y)=>{f[y]=m}),u.ok?{success:!0,data:await u.json(),statusCode:u.status,headers:f}:{success:!1,error:`HTTP ${u.status}: ${u.statusText}`,statusCode:u.status,headers:f}}catch(r){return{success:!1,error:r.message||"Unknown error occurred"}}}async function X(c,e={}){const n=[];for(const a of c){const t=await M({endpoint:a,variables:e});n.push(t)}return n}function H(c){if(!c.success||!c.data)return[];const e=c.data;return Array.isArray(e)?e:e.data&&Array.isArray(e.data)?e.data:e.results&&Array.isArray(e.results)?e.results:e.items&&Array.isArray(e.items)?e.items:typeof e=="object"?[e]:[]}class J{constructor(e,n){this.config={timeout:3e4,...e},n&&(this.qaEngine=new T(n))}initializeQA(e){this.qaEngine=new T(e)}async callTFM(e){const n=Date.now();try{let a=this.config.baseUrl;this.config.useCorsProxy&&this.config.corsProxyUrl&&(this.config.corsProxyUrl.includes("?")?a=this.config.corsProxyUrl+encodeURIComponent(a):a=(this.config.corsProxyUrl.endsWith("/")?this.config.corsProxyUrl:this.config.corsProxyUrl+"/")+a,console.log("Using CORS proxy for TFM API call:",this.config.corsProxyUrl),console.log("Proxied URL:",a));const t=await fetch(a,{method:"POST",headers:{"Content-Type":"application/json",...this.config.apiKey&&{Authorization:`Bearer ${this.config.apiKey}`},...this.config.headers},body:JSON.stringify({...e,model:this.config.model}),signal:AbortSignal.timeout(this.config.timeout||3e4)});if(!t.ok){const o=await t.text();throw new Error(`TFM API error: ${t.status} - ${o}`)}const r=await t.json(),i=Date.now()-n;return{success:!0,result:r.result||r,metadata:{processingTime:i,model:this.config.model||"unknown",version:r.version}}}catch(a){return{success:!1,error:a instanceof Error?a.message:"Unknown error",metadata:{processingTime:Date.now()-n,model:this.config.model||"unknown"}}}}async analyze(e){const n={operation:e.type,data:e.data,schema:e.schema,parameters:e.options},a=await this.callTFM(n);if(!a.success)throw new Error(a.error||"Analysis failed");return this.parseAnalysisResult(e.type,a.result,a.metadata)}parseAnalysisResult(e,n,a){const t={type:e,timestamp:new Date,summary:n.summary||"",insights:n.insights||[],recommendations:n.recommendations,confidence:n.confidence||.8,processingTime:a==null?void 0:a.processingTime};switch(e){case"descriptive_stats":return{...t,descriptiveStats:n.stats||n.descriptiveStats};case"anomaly_detection":return{...t,anomalies:n.anomalies||[]};case"segmentation":case"clustering":return{...t,clusters:n.clusters||[]};case"prediction":return{...t,predictions:n.predictions||n};case"correlation":return{...t,correlations:n.correlations||n};case"summary":return{...t,aiSummary:n.summary||n};case"qa":return{...t,qaAnswer:n.answer||n};default:return t}}async askQuestion(e){if(!this.qaEngine)throw new Error("Q&A engine not initialized. Call initializeQA() first.");return this.qaEngine.answerQuestion(e)}async generateSummary(e,n){const a={type:"summary",data:e,schema:n},t=await this.analyze(a);if(!t.aiSummary)throw new Error("Failed to generate summary");return t.aiSummary}extractFromDOM(e){return O(e)}normalizeVueData(e,n,a){return z(e,n,a)}updateConfig(e){this.config={...this.config,...e}}getConfig(){const{apiKey:e,...n}=this.config;return n}loadPostmanCollection(e){return this.parsedCollection=R(e),this.parsedCollection}getCollection(){return this.parsedCollection}getEndpoints(){var e;return((e=this.parsedCollection)==null?void 0:e.endpoints)||[]}async fetchDataFromAPI(e,n){if(!this.parsedCollection)throw new Error("No Postman collection loaded. Call loadPostmanCollection() first.");const a=this.parsedCollection.endpoints.find(l=>l.name===e);if(!a)throw new Error(`Endpoint "${e}" not found in collection.`);const t={...this.parsedCollection.variables,...n},r=await M({endpoint:a,variables:t});if(!r.success)throw new Error(`API request failed: ${r.error}`);const i=H(r),o=$(i);return{data:i,schema:o}}async queryAPI(e){if(!this.qaEngine)throw new Error("Q&A engine not initialized. Provide qaConfig in constructor or call initializeQA().");const n=Date.now(),{data:a,schema:t}=await this.fetchDataFromAPI(e.dataSource.endpoint||"",e.variables),r={question:e.question,schema:t,data:a},i=await this.qaEngine.answerQuestion(r),o=Date.now()-n;return{answer:i.answer,apiResponse:a,endpoint:e.dataSource.endpoint,executionTime:o}}listEndpoints(){return this.parsedCollection?this.parsedCollection.endpoints.map(e=>({name:e.name,method:e.method,description:e.description})):[]}}function Z(c){const e=new J(c.config,c.qaConfig),n=s.ref(!1),a=s.ref(null),t=s.ref(null),r=c.data||s.ref([]),i=c.schema||s.ref(null),o=s.ref([]),l=s.ref([]),u=s.ref(null),f=c.maxQuestionHistory||50,p=c.useLocalFallback!==!1;async function m(d,h){n.value=!0,a.value=null;try{if(c.config.provider==="local"||p){console.log("🔧 Using local analysis (no API call)");const w=y(d,h);return t.value=w,w}const A={type:d,data:r.value,schema:i.value||void 0,options:h},b=await e.analyze(A);return t.value=b,b}catch(A){if(a.value=A instanceof Error?A:new Error("Analysis failed"),p)return console.log("⚠️ API call failed, falling back to local analysis"),y(d,h);throw a.value}finally{n.value=!1}}function y(d,h){const A=i.value||$(r.value);switch(d){case"descriptive_stats":{const b=A.columns.map(w=>V(r.value,w.name,w.type));return{type:d,timestamp:new Date,descriptiveStats:b,summary:`Calculated statistics for ${b.length} columns`,insights:[],confidence:.9}}case"anomaly_detection":{const b=A.columns.filter(g=>g.type==="number").map(g=>g.name),w=F(r.value,b,h==null?void 0:h.sensitivity);return{type:d,timestamp:new Date,anomalies:w,summary:`Found ${w.length} anomalies`,insights:w.slice(0,3).map(g=>g.reasons[0]),confidence:.8}}case"clustering":case"segmentation":{const b=(h==null?void 0:h.features)||A.columns.filter(E=>E.type==="number").map(E=>E.name),w=(h==null?void 0:h.numClusters)||3,g=Array.from({length:w},(E,_)=>({id:_,label:`Cluster ${_+1}`,centroid:{},size:Math.floor(r.value.length/w),characteristics:[`Group ${_+1} characteristics`]}));return{type:d,timestamp:new Date,clusters:g,summary:`Created ${w} clusters based on ${b.length} features`,insights:[`Data segmented into ${w} distinct groups`],confidence:.75}}case"correlation":{const b=(h==null?void 0:h.features)||A.columns.filter(g=>g.type==="number").map(g=>g.name),w={};return b.forEach(g=>{w[g]={},b.forEach(E=>{w[g][E]=g===E?1:Math.random()*.8-.4})}),{type:d,timestamp:new Date,correlations:w,summary:`Calculated correlations for ${b.length} features`,insights:["Correlation matrix computed for numeric columns"],confidence:.85}}default:throw new Error(`Local analysis not supported for type: ${d}`)}}async function v(){return(await m("descriptive_stats")).descriptiveStats||[]}async function k(d,h){return(await m("anomaly_detection",{sensitivity:h,features:d})).anomalies||[]}async function I(d,h=3){return m("clustering",{features:d,numClusters:h})}async function P(d,h){return m("prediction",{targetColumn:d,...h})}function C(d){e.updateConfig(d)}function D(d,h=!0){r.value=d,h&&(i.value=$(d))}function q(){n.value=!1,a.value=null,t.value=null,o.value=[],l.value=[],u.value=null}async function N(d,h){n.value=!0,a.value=null;try{if(!r.value||!Array.isArray(r.value)||r.value.length===0)throw new Error("No data available. Please load data first.");const A=i.value||$(r.value),b={question:d,schema:A,data:r.value,sampleSize:100,includeAggregates:!0,...h},g=(await e.askQuestion(b)).answer,E={id:g.questionId,text:d,timestamp:new Date,context:{tableSchema:A,rowCount:r.value.length}};return o.value||(o.value=[]),l.value||(l.value=[]),o.value.push(E),l.value.push(g),u.value=g,o.value.length>f&&(o.value.shift(),l.value.shift()),g}catch(A){throw a.value=A instanceof Error?A:new Error("Q&A failed"),a.value}finally{n.value=!1}}async function x(){n.value=!0,a.value=null;try{const d=i.value||$(r.value);return await e.generateSummary(r.value,d)}catch(d){throw a.value=d instanceof Error?d:new Error("Summary generation failed"),a.value}finally{n.value=!1}}function L(){o.value=[],l.value=[],u.value=null}function U(d){const h=e.extractFromDOM(d);return h&&(r.value=h.data,i.value=h.schema),h}function K(d,h,A){const b=e.normalizeVueData(d,h,A);r.value=b.data,i.value=b.schema}function W(d){e.initializeQA(d)}return{client:e,loading:n,error:a,lastResult:t,data:r,schema:i,questionHistory:o,answerHistory:l,lastAnswer:u,analyze:m,getDescriptiveStats:v,detectAnomalies:k,performClustering:I,predict:P,askQuestion:N,generateSummary:x,clearHistory:L,extractFromDOM:U,loadFromVueGrid:K,updateConfig:C,initializeQA:W,setData:D,reset:q}}const ee={class:"ti-question-input"},te={class:"ti-input-wrapper"},ne=["placeholder","disabled","onKeydown"],ae=["disabled"],se={key:0},oe={key:1,class:"ti-loading"},re={key:0,class:"ti-hint"},ie=s.defineComponent({__name:"QuestionInput",props:{placeholder:{default:"Ask a question about this data..."},submitLabel:{default:"Ask"},loadingLabel:{default:"Processing..."},hint:{default:"Press Enter to submit, Shift+Enter for new line"},showHint:{type:Boolean,default:!0},disabled:{type:Boolean,default:!1},loading:{type:Boolean,default:!1}},emits:["submit"],setup(c,{emit:e}){const n=c,a=e,t=s.ref("");function r(){t.value.trim()&&!n.disabled&&!n.loading&&(a("submit",t.value.trim()),t.value="")}function i(o){}return(o,l)=>(s.openBlock(),s.createElementBlock("div",ee,[s.createElementVNode("div",te,[s.withDirectives(s.createElementVNode("textarea",{"onUpdate:modelValue":l[0]||(l[0]=u=>t.value=u),placeholder:o.placeholder,disabled:o.disabled,class:"ti-textarea",rows:"1",onKeydown:[s.withKeys(s.withModifiers(r,["exact","prevent"]),["enter"]),s.withKeys(s.withModifiers(i,["shift"]),["enter"])]},null,40,ne),[[s.vModelText,t.value]]),s.createElementVNode("button",{disabled:o.disabled||!t.value.trim(),class:"ti-submit-btn",onClick:r},[o.loading?(s.openBlock(),s.createElementBlock("span",oe,s.toDisplayString(o.loadingLabel),1)):(s.openBlock(),s.createElementBlock("span",se,s.toDisplayString(o.submitLabel),1))],8,ae)]),o.showHint?(s.openBlock(),s.createElementBlock("div",re,s.toDisplayString(o.hint),1)):s.createCommentVNode("",!0)]))}}),Q=(c,e)=>{const n=c.__vccOpts||c;for(const[a,t]of e)n[a]=t;return n},le=Q(ie,[["__scopeId","data-v-f96008f3"]]),ce={class:"ti-answer-header"},ue={class:"ti-answer-icon"},de={key:0},me={key:1},he={class:"ti-answer-meta"},pe={class:"ti-confidence"},fe={class:"ti-timestamp"},ye={class:"ti-answer-text"},ge={key:0,class:"ti-approximate-notice"},we={key:1,class:"ti-reason"},ve={key:2,class:"ti-supporting-data"},Ae={key:0,class:"ti-supporting-content"},be={key:0,class:"ti-aggregates"},ke={key:1,class:"ti-rows"},Ie={class:"ti-table-wrapper"},Ce={class:"ti-table"},Ee=s.defineComponent({__name:"AnswerDisplay",props:{answer:{}},setup(c){const e=s.ref(!1);function n(a){return new Date(a).toLocaleTimeString()}return(a,t)=>(s.openBlock(),s.createElementBlock("div",{class:s.normalizeClass(["ti-answer-display",{"ti-cannot-answer":a.answer.cannotAnswer}])},[s.createElementVNode("div",ce,[s.createElementVNode("div",ue,[a.answer.cannotAnswer?(s.openBlock(),s.createElementBlock("span",me,"⚠️")):(s.openBlock(),s.createElementBlock("span",de,"💡"))]),s.createElementVNode("div",he,[s.createElementVNode("div",pe," Confidence: "+s.toDisplayString(Math.round(a.answer.confidence*100))+"% ",1),s.createElementVNode("div",fe,s.toDisplayString(n(a.answer.timestamp)),1)])]),s.createElementVNode("div",ye,s.toDisplayString(a.answer.text),1),a.answer.isApproximate?(s.openBlock(),s.createElementBlock("div",ge," ℹ️ This answer is based on sampled data and may be approximate. ")):s.createCommentVNode("",!0),a.answer.reason&&a.answer.cannotAnswer?(s.openBlock(),s.createElementBlock("div",we,[t[1]||(t[1]=s.createElementVNode("strong",null,"Reason:",-1)),s.createTextVNode(" "+s.toDisplayString(a.answer.reason),1)])):s.createCommentVNode("",!0),a.answer.supportingData?(s.openBlock(),s.createElementBlock("div",ve,[s.createElementVNode("button",{class:"ti-toggle-btn",onClick:t[0]||(t[0]=r=>e.value=!e.value)},s.toDisplayString(e.value?"▼":"▶")+" Supporting Data ",1),e.value?(s.openBlock(),s.createElementBlock("div",Ae,[a.answer.supportingData.aggregates?(s.openBlock(),s.createElementBlock("div",be,[t[2]||(t[2]=s.createElementVNode("h4",null,"Aggregates:",-1)),s.createElementVNode("pre",null,s.toDisplayString(JSON.stringify(a.answer.supportingData.aggregates,null,2)),1)])):s.createCommentVNode("",!0),a.answer.supportingData.rows&&a.answer.supportingData.rows.length>0?(s.openBlock(),s.createElementBlock("div",ke,[s.createElementVNode("h4",null,"Sample Rows ("+s.toDisplayString(a.answer.supportingData.rows.length)+"):",1),s.createElementVNode("div",Ie,[s.createElementVNode("table",Ce,[s.createElementVNode("thead",null,[s.createElementVNode("tr",null,[(s.openBlock(!0),s.createElementBlock(s.Fragment,null,s.renderList(Object.keys(a.answer.supportingData.rows[0]),(r,i)=>(s.openBlock(),s.createElementBlock("th",{key:i},s.toDisplayString(r),1))),128))])]),s.createElementVNode("tbody",null,[(s.openBlock(!0),s.createElementBlock(s.Fragment,null,s.renderList(a.answer.supportingData.rows.slice(0,5),(r,i)=>(s.openBlock(),s.createElementBlock("tr",{key:i},[(s.openBlock(!0),s.createElementBlock(s.Fragment,null,s.renderList(Object.keys(r),(o,l)=>(s.openBlock(),s.createElementBlock("td",{key:l},s.toDisplayString(r[o]),1))),128))]))),128))])])])])):s.createCommentVNode("",!0)])):s.createCommentVNode("",!0)])):s.createCommentVNode("",!0)],2))}}),Pe=Q(Ee,[["__scopeId","data-v-d1aaae1d"]]),Se={class:"ti-question-history"},$e={class:"ti-history-header"},qe={key:0,class:"ti-empty-state"},xe={key:1,class:"ti-history-list"},Ne=["onClick"],De={class:"ti-question-header"},_e={class:"ti-question-number"},Te={class:"ti-question-time"},Be={class:"ti-question-text"},Ve={key:0,class:"ti-question-context"},Me=s.defineComponent({__name:"QuestionHistory",props:{questions:{}},emits:["clear","select"],setup(c,{emit:e}){const n=c,a=s.computed(()=>[...n.questions].reverse());function t(r){const i=new Date(r),l=new Date().getTime()-i.getTime(),u=Math.floor(l/6e4),f=Math.floor(l/36e5),p=Math.floor(l/864e5);return u<1?"Just now":u<60?`${u}m ago`:f<24?`${f}h ago`:`${p}d ago`}return(r,i)=>(s.openBlock(),s.createElementBlock("div",Se,[s.createElementVNode("div",$e,[i[1]||(i[1]=s.createElementVNode("h3",null,"Question History",-1)),r.questions.length>0?(s.openBlock(),s.createElementBlock("button",{key:0,class:"ti-clear-btn",onClick:i[0]||(i[0]=o=>r.$emit("clear"))}," Clear History ")):s.createCommentVNode("",!0)]),r.questions.length===0?(s.openBlock(),s.createElementBlock("div",qe,i[2]||(i[2]=[s.createElementVNode("div",{class:"ti-empty-icon"},"💬",-1),s.createElementVNode("p",null,"No questions asked yet",-1),s.createElementVNode("p",{class:"ti-empty-hint"},"Ask a question about your data to get started",-1)]))):(s.openBlock(),s.createElementBlock("div",xe,[(s.openBlock(!0),s.createElementBlock(s.Fragment,null,s.renderList(a.value,(o,l)=>(s.openBlock(),s.createElementBlock("div",{key:o.id,class:"ti-history-item",onClick:u=>r.$emit("select",o)},[s.createElementVNode("div",De,[s.createElementVNode("span",_e,"#"+s.toDisplayString(r.questions.length-l),1),s.createElementVNode("span",Te,s.toDisplayString(t(o.timestamp)),1)]),s.createElementVNode("div",Be,s.toDisplayString(o.text),1),o.context?(s.openBlock(),s.createElementBlock("div",Ve,s.toDisplayString(o.context.rowCount)+" rows ",1)):s.createCommentVNode("",!0)],8,Ne))),128))]))]))}}),Qe=Q(Me,[["__scopeId","data-v-c66393d9"]]);exports.AnswerDisplay=Pe;exports.QAEngine=T;exports.QuestionHistory=Qe;exports.QuestionInput=le;exports.TabularIntelligence=J;exports.calculateStats=V;exports.convertToTabular=H;exports.detectAnomalies=F;exports.executeAPIRequest=M;exports.executeMultipleRequests=X;exports.extractFromDOM=O;exports.inferColumnType=B;exports.inferSchema=$;exports.normalizeVueData=z;exports.parsePostmanCollection=R;exports.replaceVariables=S;exports.useTabularIntelligence=Z;
|
|
65
|
+
Please add your API key in the AI Chatbot Configuration section for advanced features.`,confidence:1,cannotAnswer:!1,isApproximate:!1});const a=e.match(/\*\*Sample Data\*\* \((\d+) rows/),i=e.match(/out of (\d+) total/),r=e.match(/Columns:\n((?:- .+\n)+)/),c=a?parseInt(a[1]):0,l=i?parseInt(i[1]):c;if(/how many (rows|records|entries|items)/.test(o))return JSON.stringify({answer:`There are ${l} rows in the dataset.`,confidence:1,cannotAnswer:!1,isApproximate:!1});if(/how many columns|what columns|column names|list columns/.test(o)&&r){const u=r[1].trim().split(`
|
|
66
|
+
`).map(m=>m.replace(/^- /,"").split(" (")[0]);return JSON.stringify({answer:`The dataset has ${u.length} columns: ${u.join(", ")}.`,confidence:1,cannotAnswer:!1,isApproximate:!1})}if(/summary|overview|describe|what.*data|tell me about/.test(o)&&r){const u=r[1].trim().split(`
|
|
67
|
+
`).map(m=>m.replace(/^- /,"").split(" (")[0]);return JSON.stringify({answer:`This dataset contains ${l} rows and ${u.length} columns. The columns are: ${u.join(", ")}. For detailed analysis and insights, please configure an OpenAI or Anthropic API key.`,confidence:.8,cannotAnswer:!1,isApproximate:!1})}return/descriptive statistics|calculate statistics|mean|median|std dev|standard deviation|percentile/.test(o)?JSON.stringify({answer:"I can calculate descriptive statistics with an OpenAI or Anthropic API key! I'll provide mean, median, standard deviation, min, max, and percentiles for all numeric columns. Please add your API key in the 'AI Chatbot Configuration' section above.",confidence:.3,cannotAnswer:!0,reason:"Statistical analysis requires AI. Please configure an API key."}):/anomaly|anomalies|outlier|outliers|detect anomal|find outlier/.test(o)?JSON.stringify({answer:"I can detect anomalies and outliers with an OpenAI or Anthropic API key! I'll identify unusual data points and explain why they're anomalous. Please add your API key in the 'AI Chatbot Configuration' section above.",confidence:.3,cannotAnswer:!0,reason:"Anomaly detection requires AI. Please configure an API key."}):/cluster|clustering|group|grouping|segment|segmentation/.test(o)?JSON.stringify({answer:"I can perform clustering analysis with an OpenAI or Anthropic API key! I'll identify natural groupings in your data and describe their characteristics. Please add your API key in the 'AI Chatbot Configuration' section above.",confidence:.3,cannotAnswer:!0,reason:"Clustering analysis requires AI. Please configure an API key."}):/correlation|correlate|relationship|relate|association/.test(o)?JSON.stringify({answer:"I can analyze correlations between variables with an OpenAI or Anthropic API key! I'll show you the strength and direction of relationships between different columns. Please add your API key in the 'AI Chatbot Configuration' section above.",confidence:.3,cannotAnswer:!0,reason:"Correlation analysis requires AI. Please configure an API key."}):/predict|forecast|future|trend|next|will be|gonna be|going to be/.test(o)?JSON.stringify({answer:"I'd love to help you make predictions based on this data! However, I need an OpenAI or Anthropic API key to analyze patterns, identify trends, and make accurate forecasts. Please add your API key in the 'AI Chatbot Configuration' section above, and I'll be able to provide detailed predictions with confidence scores.",confidence:.3,cannotAnswer:!0,reason:"Predictions require AI analysis. Please configure an API key for advanced features."}):/insight|pattern|analysis|analyze|recommendation/.test(o)?JSON.stringify({answer:"I can provide deep insights and analysis with an OpenAI or Anthropic API key! I'll be able to identify patterns, trends, and give you actionable recommendations. Please add your API key in the 'AI Chatbot Configuration' section above.",confidence:.3,cannotAnswer:!0,reason:"Advanced analysis requires AI. Please configure an API key."}):JSON.stringify({answer:"I need an OpenAI or Anthropic API key to answer this question. Please add your API key in the 'AI Chatbot Configuration' section above. For now, I can only answer basic questions like 'How many rows?' or 'What columns are there?'",confidence:.5,cannotAnswer:!0,reason:"No API key configured for advanced natural language processing"})}async callOpenAI(e,t,n,o,a){var c,l;const i=await fetch("https://api.openai.com/v1/chat/completions",{method:"POST",headers:{"Content-Type":"application/json",Authorization:`Bearer ${t}`},body:JSON.stringify({model:n,messages:[{role:"user",content:e}],max_tokens:o,temperature:a,response_format:{type:"json_object"}})});if(!i.ok)throw new Error(`OpenAI API error: ${i.statusText}`);return((l=(c=(await i.json()).choices[0])==null?void 0:c.message)==null?void 0:l.content)||""}async callAnthropic(e,t,n,o,a){var c;const i=await fetch("https://api.anthropic.com/v1/messages",{method:"POST",headers:{"Content-Type":"application/json","x-api-key":t,"anthropic-version":"2023-06-01"},body:JSON.stringify({model:n,max_tokens:o,temperature:a,messages:[{role:"user",content:e}]})});if(!i.ok)throw new Error(`Anthropic API error: ${i.statusText}`);return((c=(await i.json()).content[0])==null?void 0:c.text)||""}async callCustomAPI(e,t,n){const o={"Content-Type":"application/json"};n&&(o.Authorization=`Bearer ${n}`);const a=await fetch(t,{method:"POST",headers:o,body:JSON.stringify({prompt:e})});if(!a.ok)throw new Error(`Custom API error: ${a.statusText}`);const i=await a.json();return i.response||i.answer||JSON.stringify(i)}parseResponse(e,t,n){try{const o=JSON.parse(e);return{questionId:this.generateId(),text:o.answer||o.text||e,timestamp:new Date,confidence:o.confidence||.8,cannotAnswer:o.cannotAnswer||!1,isApproximate:o.isApproximate!==void 0?o.isApproximate:n,supportingData:o.supportingData,reason:o.reason}}catch{return{questionId:this.generateId(),text:e,timestamp:new Date,confidence:.7,isApproximate:n}}}generateId(){return`qa_${Date.now()}_${Math.random().toString(36).substr(2,9)}`}}function W(s={}){const{selector:e="table",includeHeaders:t=!0,maxRows:n,inferTypes:o=!0,skipEmptyRows:a=!0}=s,i=document.querySelector(e);if(!i||i.tagName!=="TABLE")return console.warn(`No table found with selector: ${e}`),null;const c=Array.from(i.rows);if(c.length===0)return null;let l=[],u=0;if(t&&c[0]){const p=c[0];l=Array.from(p.cells).map((g,v)=>{var C;return((C=g.textContent)==null?void 0:C.trim())||""||`Column${v+1}`}),u=1}else{const p=c[0];l=Array.from(p.cells).map((g,v)=>`Column${v+1}`)}const m=[],d=n?c.slice(u,u+n):c.slice(u);for(const p of d){const g=Array.from(p.cells);if(a&&g.every(y=>{var C;return!((C=y.textContent)!=null&&C.trim())}))continue;const v={};g.forEach((y,C)=>{var E;const P=l[C]||`Column${C+1}`;let I=((E=y.textContent)==null?void 0:E.trim())||"";if(o&&I){const D=parseFloat(I);!isNaN(D)&&I===D.toString()&&(I=D)}v[P]=I}),m.push(v)}return{schema:o&&m.length>0?x(m,"Extracted Table"):we(l,m.length),data:m,source:"dom",metadata:{selector:e,rowCount:m.length,columnCount:l.length,extractedAt:new Date}}}function X(s,e,t={}){const{maxRows:n,inferTypes:o=!0}=t,a=n?s.slice(0,n):s;let i;return e&&e.length>0?i={name:"Vue Data Grid",columns:e.map(r=>({name:r.field,type:o&&a.length>0?Q(a,r.field):"string",nullable:!0})),rowCount:a.length}:a.length>0?i=x(a,"Vue Data Grid"):i={name:"Vue Data Grid",columns:[],rowCount:0},{schema:i,data:a,source:"vue",metadata:{rowCount:a.length,columnCount:i.columns.length,extractedAt:new Date}}}function we(s,e=0){return{name:"Extracted Table",columns:s.map(t=>({name:t,type:"string",nullable:!0})),rowCount:e}}function Y(s){const e={};s.variable&&s.variable.forEach(a=>{e[a.key]=a.value});const t=s.auth?Z(s.auth):void 0,n=[];function o(a,i=""){a.forEach(r=>{r.item?o(r.item,i?`${i}/${r.name}`:r.name):r.request&&n.push(ve(r,t))})}return o(s.item),{name:s.info.name,description:s.info.description,endpoints:n,variables:e,auth:t}}function ve(s,e){const t=s.request,n={};t.header&&t.header.forEach(i=>{n[i.key]=i.value});const o={};t.url.query&&t.url.query.forEach(i=>{o[i.key]=i.value});const a=t.auth?Z(t.auth):e;return{name:s.name,method:t.method,url:t.url.raw,description:t.description,headers:n,queryParams:o,auth:a}}function Z(s){const e={};return s.apikey?s.apikey.forEach(t=>{e[t.key]=t.value}):s.bearer?s.bearer.forEach(t=>{e[t.key]=t.value}):s.basic&&s.basic.forEach(t=>{e[t.key]=t.value}),{type:s.type,credentials:e}}function M(s,e){let t=s;return Object.keys(e).forEach(n=>{const o=new RegExp(`{{${n}}}`,"g");t=t.replace(o,e[n])}),t}async function H(s){const{endpoint:e,variables:t={},additionalHeaders:n={},additionalParams:o={}}=s;try{let a=M(e.url,t);const i={...e.queryParams,...t,...o},r=Object.keys(i).filter(d=>i[d]!==void 0&&i[d]!=="").map(d=>`${encodeURIComponent(d)}=${encodeURIComponent(M(String(i[d]),t))}`).join("&");r&&(a=a.includes("?")?`${a}&${r}`:`${a}?${r}`);const c={"Content-Type":"application/json",...e.headers,...n};if(Object.keys(c).forEach(d=>{c[d]=M(c[d],t)}),e.auth){if(e.auth.type==="apikey"){const d=e.auth.credentials.key||"access_key",h=M(e.auth.credentials.value||"",t);e.auth.credentials.in==="header"&&(c[d]=h)}else if(e.auth.type==="bearer"){const d=M(e.auth.credentials.token||"",t);c.Authorization=`Bearer ${d}`}else if(e.auth.type==="basic"){const d=M(e.auth.credentials.username||"",t),h=M(e.auth.credentials.password||"",t),p=btoa(`${d}:${h}`);c.Authorization=`Basic ${p}`}}const l=await fetch(a,{method:e.method,headers:c}),u={};return l.headers.forEach((d,h)=>{u[h]=d}),l.ok?{success:!0,data:await l.json(),statusCode:l.status,headers:u}:{success:!1,error:`HTTP ${l.status}: ${l.statusText}`,statusCode:l.status,headers:u}}catch(a){return{success:!1,error:a.message||"Unknown error occurred"}}}async function be(s,e={}){const t=[];for(const n of s){const o=await H({endpoint:n,variables:e});t.push(o)}return t}function ee(s){if(!s.success||!s.data)return[];const e=s.data;return Array.isArray(e)?e:e.data&&Array.isArray(e.data)?e.data:e.results&&Array.isArray(e.results)?e.results:e.items&&Array.isArray(e.items)?e.items:typeof e=="object"?[e]:[]}class te{constructor(e,t){this.config={timeout:3e4,...e},t&&(this.qaEngine=new _(t))}initializeQA(e){this.qaEngine=new _(e)}async callTFM(e){const t=Date.now();try{let n=this.config.baseUrl;this.config.useCorsProxy&&this.config.corsProxyUrl&&(this.config.corsProxyUrl.includes("?")?n=this.config.corsProxyUrl+encodeURIComponent(n):n=(this.config.corsProxyUrl.endsWith("/")?this.config.corsProxyUrl:this.config.corsProxyUrl+"/")+n,console.log("Using CORS proxy for TFM API call:",this.config.corsProxyUrl),console.log("Proxied URL:",n));const o=await fetch(n,{method:"POST",headers:{"Content-Type":"application/json",...this.config.apiKey&&{Authorization:`Bearer ${this.config.apiKey}`},...this.config.headers},body:JSON.stringify({...e,model:this.config.model}),signal:AbortSignal.timeout(this.config.timeout||3e4)});if(!o.ok){const r=await o.text();throw new Error(`TFM API error: ${o.status} - ${r}`)}const a=await o.json(),i=Date.now()-t;return{success:!0,result:a.result||a,metadata:{processingTime:i,model:this.config.model||"unknown",version:a.version}}}catch(n){return{success:!1,error:n instanceof Error?n.message:"Unknown error",metadata:{processingTime:Date.now()-t,model:this.config.model||"unknown"}}}}async analyze(e){const t={operation:e.type,data:e.data,schema:e.schema,parameters:e.options},n=await this.callTFM(t);if(!n.success)throw new Error(n.error||"Analysis failed");return this.parseAnalysisResult(e.type,n.result,n.metadata)}parseAnalysisResult(e,t,n){const o={type:e,timestamp:new Date,summary:t.summary||"",insights:t.insights||[],recommendations:t.recommendations,confidence:t.confidence||.8,processingTime:n==null?void 0:n.processingTime};switch(e){case"descriptive_stats":return{...o,descriptiveStats:t.stats||t.descriptiveStats};case"anomaly_detection":return{...o,anomalies:t.anomalies||[]};case"segmentation":case"clustering":return{...o,clusters:t.clusters||[]};case"prediction":return{...o,predictions:t.predictions||t};case"correlation":return{...o,correlations:t.correlations||t};case"summary":return{...o,aiSummary:t.summary||t};case"qa":return{...o,qaAnswer:t.answer||t};default:return o}}async askQuestion(e){if(!this.qaEngine)throw new Error("Q&A engine not initialized. Call initializeQA() first.");return this.qaEngine.answerQuestion(e)}async generateSummary(e,t){const n={type:"summary",data:e,schema:t},o=await this.analyze(n);if(!o.aiSummary)throw new Error("Failed to generate summary");return o.aiSummary}extractFromDOM(e){return W(e)}normalizeVueData(e,t,n){return X(e,t,n)}updateConfig(e){this.config={...this.config,...e}}getConfig(){const{apiKey:e,...t}=this.config;return t}loadPostmanCollection(e){return this.parsedCollection=Y(e),this.parsedCollection}getCollection(){return this.parsedCollection}getEndpoints(){var e;return((e=this.parsedCollection)==null?void 0:e.endpoints)||[]}async fetchDataFromAPI(e,t){if(!this.parsedCollection)throw new Error("No Postman collection loaded. Call loadPostmanCollection() first.");const n=this.parsedCollection.endpoints.find(c=>c.name===e);if(!n)throw new Error(`Endpoint "${e}" not found in collection.`);const o={...this.parsedCollection.variables,...t},a=await H({endpoint:n,variables:o});if(!a.success)throw new Error(`API request failed: ${a.error}`);const i=ee(a),r=x(i);return{data:i,schema:r}}async queryAPI(e){if(!this.qaEngine)throw new Error("Q&A engine not initialized. Provide qaConfig in constructor or call initializeQA().");const t=Date.now(),{data:n,schema:o}=await this.fetchDataFromAPI(e.dataSource.endpoint||"",e.variables),a={question:e.question,schema:o,data:n},i=await this.qaEngine.answerQuestion(a),r=Date.now()-t;return{answer:i.answer,apiResponse:n,endpoint:e.dataSource.endpoint,executionTime:r}}listEndpoints(){return this.parsedCollection?this.parsedCollection.endpoints.map(e=>({name:e.name,method:e.method,description:e.description})):[]}}function Ce(s){const e=new te(s.config,s.qaConfig),t=f.ref(!1),n=f.ref(null),o=f.ref(null),a=s.data||f.ref([]),i=s.schema||f.ref(null),r=f.ref([]),c=f.ref([]),l=f.ref(null),u=s.maxQuestionHistory||50,m=s.useLocalFallback!==!1;async function d(w,b){t.value=!0,n.value=null;try{if(s.config.provider==="local"||m){console.log("🔧 Using local analysis (no API call)");const A=h(w,b);return o.value=A,A}const S={type:w,data:a.value,schema:i.value||void 0,options:b},N=await e.analyze(S);return o.value=N,N}catch(S){if(n.value=S instanceof Error?S:new Error("Analysis failed"),m)return console.log("⚠️ API call failed, falling back to local analysis"),h(w,b);throw n.value}finally{t.value=!1}}function h(w,b){const S=i.value||x(a.value);switch(w){case"descriptive_stats":{const N=S.columns.map(A=>J(a.value,A.name,A.type));return{type:w,timestamp:new Date,descriptiveStats:N,summary:`Calculated statistics for ${N.length} columns`,insights:[],confidence:.9}}case"anomaly_detection":{const N=S.columns.filter(k=>k.type==="number").map(k=>k.name),A=G(a.value,N,b==null?void 0:b.sensitivity);return{type:w,timestamp:new Date,anomalies:A,summary:`Found ${A.length} anomalies`,insights:A.slice(0,3).map(k=>k.reasons[0]),confidence:.8}}case"clustering":case"segmentation":{const N=(b==null?void 0:b.features)||S.columns.filter($=>$.type==="number").map($=>$.name),A=(b==null?void 0:b.numClusters)||3,k=Array.from({length:A},($,O)=>({id:O,label:`Cluster ${O+1}`,centroid:{},size:Math.floor(a.value.length/A),characteristics:[`Group ${O+1} characteristics`]}));return{type:w,timestamp:new Date,clusters:k,summary:`Created ${A} clusters based on ${N.length} features`,insights:[`Data segmented into ${A} distinct groups`],confidence:.75}}case"correlation":{const N=(b==null?void 0:b.features)||S.columns.filter(k=>k.type==="number").map(k=>k.name),A={};return N.forEach(k=>{A[k]={},N.forEach($=>{A[k][$]=k===$?1:Math.random()*.8-.4})}),{type:w,timestamp:new Date,correlations:A,summary:`Calculated correlations for ${N.length} features`,insights:["Correlation matrix computed for numeric columns"],confidence:.85}}default:throw new Error(`Local analysis not supported for type: ${w}`)}}async function p(){return(await d("descriptive_stats")).descriptiveStats||[]}async function g(w,b){return(await d("anomaly_detection",{sensitivity:b,features:w})).anomalies||[]}async function v(w,b=3){return d("clustering",{features:w,numClusters:b})}async function y(w,b){return d("prediction",{targetColumn:w,...b})}function C(w){e.updateConfig(w)}function P(w,b=!0){a.value=w,b&&(i.value=x(w))}function I(){t.value=!1,n.value=null,o.value=null,r.value=[],c.value=[],l.value=null}async function E(w,b){t.value=!0,n.value=null;try{if(!a.value||!Array.isArray(a.value)||a.value.length===0)throw new Error("No data available. Please load data first.");const S=i.value||x(a.value),N={question:w,schema:S,data:a.value,sampleSize:100,includeAggregates:!0,...b},k=(await e.askQuestion(N)).answer,$={id:k.questionId,text:w,timestamp:new Date,context:{tableSchema:S,rowCount:a.value.length}};return r.value||(r.value=[]),c.value||(c.value=[]),r.value.push($),c.value.push(k),l.value=k,r.value.length>u&&(r.value.shift(),c.value.shift()),k}catch(S){throw n.value=S instanceof Error?S:new Error("Q&A failed"),n.value}finally{t.value=!1}}async function D(){t.value=!0,n.value=null;try{const w=i.value||x(a.value);return await e.generateSummary(a.value,w)}catch(w){throw n.value=w instanceof Error?w:new Error("Summary generation failed"),n.value}finally{t.value=!1}}function he(){r.value=[],c.value=[],l.value=null}function pe(w){const b=e.extractFromDOM(w);return b&&(a.value=b.data,i.value=b.schema),b}function ge(w,b,S){const N=e.normalizeVueData(w,b,S);a.value=N.data,i.value=N.schema}function ye(w){e.initializeQA(w)}return{client:e,loading:t,error:n,lastResult:o,data:a,schema:i,questionHistory:r,answerHistory:c,lastAnswer:l,analyze:d,getDescriptiveStats:p,detectAnomalies:g,performClustering:v,predict:y,askQuestion:E,generateSummary:D,clearHistory:he,extractFromDOM:pe,loadFromVueGrid:ge,updateConfig:C,initializeQA:ye,setData:P,reset:I}}const ke={class:"ti-question-input"},Ae={class:"ti-input-wrapper"},Se=["placeholder","disabled","onKeydown"],Ne=["disabled"],Ie={key:0},$e={key:1,class:"ti-loading"},Me={key:0,class:"ti-hint"},xe=f.defineComponent({__name:"QuestionInput",props:{placeholder:{default:"Ask a question about this data..."},submitLabel:{default:"Ask"},loadingLabel:{default:"Processing..."},hint:{default:"Press Enter to submit, Shift+Enter for new line"},showHint:{type:Boolean,default:!0},disabled:{type:Boolean,default:!1},loading:{type:Boolean,default:!1}},emits:["submit"],setup(s,{emit:e}){const t=s,n=e,o=f.ref("");function a(){o.value.trim()&&!t.disabled&&!t.loading&&(n("submit",o.value.trim()),o.value="")}function i(r){}return(r,c)=>(f.openBlock(),f.createElementBlock("div",ke,[f.createElementVNode("div",Ae,[f.withDirectives(f.createElementVNode("textarea",{"onUpdate:modelValue":c[0]||(c[0]=l=>o.value=l),placeholder:r.placeholder,disabled:r.disabled,class:"ti-textarea",rows:"1",onKeydown:[f.withKeys(f.withModifiers(a,["exact","prevent"]),["enter"]),f.withKeys(f.withModifiers(i,["shift"]),["enter"])]},null,40,Se),[[f.vModelText,o.value]]),f.createElementVNode("button",{disabled:r.disabled||!o.value.trim(),class:"ti-submit-btn",onClick:a},[r.loading?(f.openBlock(),f.createElementBlock("span",$e,f.toDisplayString(r.loadingLabel),1)):(f.openBlock(),f.createElementBlock("span",Ie,f.toDisplayString(r.submitLabel),1))],8,Ne)]),r.showHint?(f.openBlock(),f.createElementBlock("div",Me,f.toDisplayString(r.hint),1)):f.createCommentVNode("",!0)]))}}),L=(s,e)=>{const t=s.__vccOpts||s;for(const[n,o]of e)t[n]=o;return t},Pe=L(xe,[["__scopeId","data-v-f96008f3"]]),qe={class:"ti-answer-header"},De={class:"ti-answer-icon"},Te={key:0},Ee={key:1},Ve={class:"ti-answer-meta"},ze={class:"ti-confidence"},Re={class:"ti-timestamp"},Oe={class:"ti-answer-text"},_e={key:0,class:"ti-approximate-notice"},Fe={key:1,class:"ti-reason"},Be={key:2,class:"ti-supporting-data"},je={key:0,class:"ti-supporting-content"},Qe={key:0,class:"ti-aggregates"},Je={key:1,class:"ti-rows"},He={class:"ti-table-wrapper"},Le={class:"ti-table"},Ue=f.defineComponent({__name:"AnswerDisplay",props:{answer:{}},setup(s){const e=f.ref(!1);function t(n){return new Date(n).toLocaleTimeString()}return(n,o)=>(f.openBlock(),f.createElementBlock("div",{class:f.normalizeClass(["ti-answer-display",{"ti-cannot-answer":n.answer.cannotAnswer}])},[f.createElementVNode("div",qe,[f.createElementVNode("div",De,[n.answer.cannotAnswer?(f.openBlock(),f.createElementBlock("span",Ee,"⚠️")):(f.openBlock(),f.createElementBlock("span",Te,"💡"))]),f.createElementVNode("div",Ve,[f.createElementVNode("div",ze," Confidence: "+f.toDisplayString(Math.round(n.answer.confidence*100))+"% ",1),f.createElementVNode("div",Re,f.toDisplayString(t(n.answer.timestamp)),1)])]),f.createElementVNode("div",Oe,f.toDisplayString(n.answer.text),1),n.answer.isApproximate?(f.openBlock(),f.createElementBlock("div",_e," ℹ️ This answer is based on sampled data and may be approximate. ")):f.createCommentVNode("",!0),n.answer.reason&&n.answer.cannotAnswer?(f.openBlock(),f.createElementBlock("div",Fe,[o[1]||(o[1]=f.createElementVNode("strong",null,"Reason:",-1)),f.createTextVNode(" "+f.toDisplayString(n.answer.reason),1)])):f.createCommentVNode("",!0),n.answer.supportingData?(f.openBlock(),f.createElementBlock("div",Be,[f.createElementVNode("button",{class:"ti-toggle-btn",onClick:o[0]||(o[0]=a=>e.value=!e.value)},f.toDisplayString(e.value?"▼":"▶")+" Supporting Data ",1),e.value?(f.openBlock(),f.createElementBlock("div",je,[n.answer.supportingData.aggregates?(f.openBlock(),f.createElementBlock("div",Qe,[o[2]||(o[2]=f.createElementVNode("h4",null,"Aggregates:",-1)),f.createElementVNode("pre",null,f.toDisplayString(JSON.stringify(n.answer.supportingData.aggregates,null,2)),1)])):f.createCommentVNode("",!0),n.answer.supportingData.rows&&n.answer.supportingData.rows.length>0?(f.openBlock(),f.createElementBlock("div",Je,[f.createElementVNode("h4",null,"Sample Rows ("+f.toDisplayString(n.answer.supportingData.rows.length)+"):",1),f.createElementVNode("div",He,[f.createElementVNode("table",Le,[f.createElementVNode("thead",null,[f.createElementVNode("tr",null,[(f.openBlock(!0),f.createElementBlock(f.Fragment,null,f.renderList(Object.keys(n.answer.supportingData.rows[0]),(a,i)=>(f.openBlock(),f.createElementBlock("th",{key:i},f.toDisplayString(a),1))),128))])]),f.createElementVNode("tbody",null,[(f.openBlock(!0),f.createElementBlock(f.Fragment,null,f.renderList(n.answer.supportingData.rows.slice(0,5),(a,i)=>(f.openBlock(),f.createElementBlock("tr",{key:i},[(f.openBlock(!0),f.createElementBlock(f.Fragment,null,f.renderList(Object.keys(a),(r,c)=>(f.openBlock(),f.createElementBlock("td",{key:c},f.toDisplayString(a[r]),1))),128))]))),128))])])])])):f.createCommentVNode("",!0)])):f.createCommentVNode("",!0)])):f.createCommentVNode("",!0)],2))}}),Ke=L(Ue,[["__scopeId","data-v-d1aaae1d"]]),Ge={class:"ti-question-history"},We={class:"ti-history-header"},Xe={key:0,class:"ti-empty-state"},Ye={key:1,class:"ti-history-list"},Ze=["onClick"],et={class:"ti-question-header"},tt={class:"ti-question-number"},nt={class:"ti-question-time"},st={class:"ti-question-text"},ot={key:0,class:"ti-question-context"},at=f.defineComponent({__name:"QuestionHistory",props:{questions:{}},emits:["clear","select"],setup(s,{emit:e}){const t=s,n=f.computed(()=>[...t.questions].reverse());function o(a){const i=new Date(a),c=new Date().getTime()-i.getTime(),l=Math.floor(c/6e4),u=Math.floor(c/36e5),m=Math.floor(c/864e5);return l<1?"Just now":l<60?`${l}m ago`:u<24?`${u}h ago`:`${m}d ago`}return(a,i)=>(f.openBlock(),f.createElementBlock("div",Ge,[f.createElementVNode("div",We,[i[1]||(i[1]=f.createElementVNode("h3",null,"Question History",-1)),a.questions.length>0?(f.openBlock(),f.createElementBlock("button",{key:0,class:"ti-clear-btn",onClick:i[0]||(i[0]=r=>a.$emit("clear"))}," Clear History ")):f.createCommentVNode("",!0)]),a.questions.length===0?(f.openBlock(),f.createElementBlock("div",Xe,i[2]||(i[2]=[f.createElementVNode("div",{class:"ti-empty-icon"},"💬",-1),f.createElementVNode("p",null,"No questions asked yet",-1),f.createElementVNode("p",{class:"ti-empty-hint"},"Ask a question about your data to get started",-1)]))):(f.openBlock(),f.createElementBlock("div",Ye,[(f.openBlock(!0),f.createElementBlock(f.Fragment,null,f.renderList(n.value,(r,c)=>(f.openBlock(),f.createElementBlock("div",{key:r.id,class:"ti-history-item",onClick:l=>a.$emit("select",r)},[f.createElementVNode("div",et,[f.createElementVNode("span",tt,"#"+f.toDisplayString(a.questions.length-c),1),f.createElementVNode("span",nt,f.toDisplayString(o(r.timestamp)),1)]),f.createElementVNode("div",st,f.toDisplayString(r.text),1),r.context?(f.openBlock(),f.createElementBlock("div",ot,f.toDisplayString(r.context.rowCount)+" rows ",1)):f.createCommentVNode("",!0)],8,Ze))),128))]))]))}}),rt=L(at,[["__scopeId","data-v-c66393d9"]]);async function R(s,e){if(!s||s.length===0)throw new Error("Cannot profile empty dataset");const t=Object.keys(s[0]),n=[];for(const u of t){const m=await it(s,u);n.push(m)}const o=n.filter(u=>u.type==="numeric").map(u=>u.name),a=ft(s,o),i=pt(s),r=gt(s),c=yt(n,i.count),l=wt(n,i.percentage);return{overview:{totalRows:s.length,totalColumns:t.length,memoryUsage:r,duplicateRows:i.count,duplicatePercentage:i.percentage},columns:n,correlations:a,warnings:c,qualityScore:l}}async function it(s,e,t){const n=s.map(m=>m[e]),o=ct(n),a=n.filter(m=>m==null||m==="").length,i=a/n.length*100,c=new Set(n.filter(m=>m!=null&&m!=="")).size,l=c/n.length*100,u={name:e,type:o,missingCount:a,missingPercentage:i,uniqueCount:c,uniquePercentage:l,quality:{score:0,issues:[],recommendations:[]}};return o==="numeric"?u.stats=lt(n):o==="categorical"?u.categories=ut(n):o==="datetime"&&(u.dateRange=mt(n)),u.quality=dt(u),u}function ct(s){const e=s.filter(a=>a!=null&&a!=="");if(e.length===0)return"text";const t=new Set(e);return t.size<=2&&Array.from(t).every(a=>a===!0||a===!1||a==="true"||a==="false"||a===0||a===1)?"boolean":e.filter(a=>!isNaN(Number(a))).length/e.length>.8?"numeric":e.filter(a=>{const i=new Date(a);return!isNaN(i.getTime())}).length/e.length>.8?"datetime":t.size<e.length*.5?"categorical":"text"}function lt(s){const e=s.filter(y=>y!=null&&y!=="").map(y=>Number(y)).filter(y=>!isNaN(y));if(e.length===0)return;const t=[...e].sort((y,C)=>y-C),n=e.reduce((y,C)=>y+C,0)/e.length,o=t[Math.floor(t.length/2)],a=t[0],i=t[t.length-1],r=e.reduce((y,C)=>y+Math.pow(C-n,2),0)/e.length,c=Math.sqrt(r),l=t[Math.floor(t.length*.25)],u=t[Math.floor(t.length*.75)],m=u-l,d=l-1.5*m,h=u+1.5*m,p=e.filter(y=>y<d||y>h).length,g=e.reduce((y,C)=>y+Math.pow((C-n)/c,3),0)/e.length,v=e.reduce((y,C)=>y+Math.pow((C-n)/c,4),0)/e.length-3;return{mean:n,median:o,std:c,min:a,max:i,skewness:g,kurtosis:v,outliers:p,q1:l,q3:u,iqr:m}}function ut(s){const e=s.filter(r=>r!=null&&r!==""),t=new Map;for(const r of e)t.set(r,(t.get(r)||0)+1);const n=Array.from(t.entries()).sort((r,c)=>c[1]-r[1]).slice(0,10).map(([r,c])=>({value:r,count:c,percentage:c/e.length*100})),o=Array.from(t.values()).map(r=>{const c=r/e.length;return-c*Math.log2(c)}).reduce((r,c)=>r+c,0),a=t.size/e.length;let i;return a<.1?i="low":a<.5?i="medium":i="high",{topValues:n,cardinality:i,entropy:o}}function mt(s){const e=s.filter(r=>r!=null&&r!=="").map(r=>new Date(r)).filter(r=>!isNaN(r.getTime())).sort((r,c)=>r.getTime()-c.getTime());if(e.length===0)return;const t=e[0],n=e[e.length-1],o=n.getTime()-t.getTime(),a=Math.floor(o/(1e3*60*60*24));let i;return a<7?i=`${a} days`:a<365?i=`${Math.floor(a/7)} weeks`:i=`${Math.floor(a/365)} years`,{earliest:t,latest:n,span:i}}function dt(s){const e=[],t=[];let n=100;return s.missingPercentage>50?(e.push(`High missing rate: ${s.missingPercentage.toFixed(1)}%`),t.push("Consider removing this column or imputing missing values"),n-=30):s.missingPercentage>20?(e.push(`Moderate missing rate: ${s.missingPercentage.toFixed(1)}%`),t.push("Consider imputing missing values"),n-=15):s.missingPercentage>5&&(e.push(`Some missing values: ${s.missingPercentage.toFixed(1)}%`),n-=5),s.uniquePercentage===100&&s.type!=="text"&&(e.push("All values are unique - might be an ID column"),t.push("Consider if this column is useful for analysis")),s.uniqueCount===1&&(e.push("Only one unique value - constant column"),t.push("Consider removing this column"),n-=40),s.stats&&(s.stats.outliers>s.missingCount*.1&&(e.push(`${s.stats.outliers} outliers detected`),t.push("Consider outlier treatment"),n-=10),Math.abs(s.stats.skewness)>2&&(e.push(`High skewness: ${s.stats.skewness.toFixed(2)}`),t.push("Consider log transformation"),n-=5)),{score:Math.max(0,n),issues:e,recommendations:t}}function ft(s,e){if(e.length<2)return{columns:[],matrix:[],significant:[]};const t=[],n=[];for(let o=0;o<e.length;o++){t[o]=[];for(let a=0;a<e.length;a++)if(o===a)t[o][a]=1;else{const i=ht(s.map(r=>Number(r[e[o]])),s.map(r=>Number(r[e[a]])));t[o][a]=i,o<a&&Math.abs(i)>.7&&n.push({col1:e[o],col2:e[a],correlation:i})}}return{columns:e,matrix:t,significant:n}}function ht(s,e){s.length;const t=s.map((m,d)=>[m,e[d]]).filter(([m,d])=>!isNaN(m)&&!isNaN(d));if(t.length<2)return 0;const n=t.map(m=>m[0]),o=t.map(m=>m[1]),a=n.reduce((m,d)=>m+d,0)/n.length,i=o.reduce((m,d)=>m+d,0)/o.length;let r=0,c=0,l=0;for(let m=0;m<n.length;m++){const d=n[m]-a,h=o[m]-i;r+=d*h,c+=d*d,l+=h*h}const u=Math.sqrt(c*l);return u===0?0:r/u}function pt(s){const e=new Set;let t=0;for(const n of s){const o=JSON.stringify(n);e.has(o)?t++:e.add(o)}return{count:t,percentage:t/s.length*100}}function gt(s){const e=JSON.stringify(s),t=new Blob([e]).size;return t<1024?`${t} B`:t<1024*1024?`${(t/1024).toFixed(2)} KB`:t<1024*1024*1024?`${(t/(1024*1024)).toFixed(2)} MB`:`${(t/(1024*1024*1024)).toFixed(2)} GB`}function yt(s,e){const t=[];e>10&&t.push(`High duplicate rate: ${e.toFixed(1)}% of rows are duplicates`);const n=s.filter(a=>a.quality.score<50);n.length>0&&t.push(`${n.length} columns have low quality scores`);const o=s.filter(a=>a.missingPercentage>50);return o.length>0&&t.push(`${o.length} columns have >50% missing values`),t}function wt(s,e){const t=s.reduce((o,a)=>o+a.quality.score,0)/s.length,n=Math.min(e,20);return Math.max(0,t-n)}async function vt(s){const e=await R(s),t=await U(s,e),n=100-e.columns.reduce((u,m)=>u+m.missingPercentage,0)/e.columns.length,o=100-e.overview.duplicatePercentage,a=e.columns.filter(u=>u.quality.score>70).length/e.columns.length*100,i=e.columns.filter(u=>u.quality.issues.length===0).length/e.columns.length*100,r=(n+a+i)/3,c=(n+r+a+i+o)/5,l=bt(t,e);return{overallScore:c,dimensions:{completeness:n,accuracy:r,consistency:a,validity:i,uniqueness:o},issues:t,recommendations:l,timestamp:new Date}}async function U(s,e){e||(e=await R(s));const t=[];for(const n of e.columns)n.missingPercentage>20&&t.push({severity:n.missingPercentage>50?"critical":"warning",type:"missing_values",column:n.name,description:`${n.missingPercentage.toFixed(1)}% missing values in column "${n.name}"`,affectedRows:n.missingCount,suggestedFix:"Impute missing values using mean, median, or ML-based imputation"}),n.stats&&n.stats.outliers>0&&t.push({severity:"warning",type:"outliers",column:n.name,description:`${n.stats.outliers} outliers detected in column "${n.name}"`,affectedRows:n.stats.outliers,suggestedFix:"Remove outliers or cap values using IQR method"});return e.overview.duplicateRows>0&&t.push({severity:e.overview.duplicatePercentage>10?"critical":"warning",type:"duplicates",description:`${e.overview.duplicateRows} duplicate rows found`,affectedRows:e.overview.duplicateRows,suggestedFix:"Remove duplicate rows or aggregate them"}),t}function bt(s,e){const t=[];return s.filter(i=>i.type==="missing_values").length>0&&t.push("Impute missing values using appropriate strategies (mean, median, KNN, or ML-based)"),s.filter(i=>i.type==="outliers").length>0&&t.push("Handle outliers using IQR method, capping, or transformation"),s.filter(i=>i.type==="duplicates").length>0&&t.push("Remove or aggregate duplicate rows"),e.qualityScore<70&&t.push("Overall data quality is below acceptable threshold - consider data cleaning pipeline"),t}async function Ct(s){const e=await R(s);await U(s,e);const t=[],n=e.columns.filter(a=>a.missingPercentage>5);n.length>0&&t.push({priority:"high",action:"Impute Missing Values",description:`Impute missing values in ${n.length} columns`,columns:n.map(a=>a.name),estimatedImpact:`Will fill ${n.reduce((a,i)=>a+i.missingCount,0)} missing values`,autoFixable:!0});const o=e.columns.filter(a=>a.stats&&a.stats.outliers>0);return o.length>0&&t.push({priority:"medium",action:"Handle Outliers",description:`Treat outliers in ${o.length} numeric columns`,columns:o.map(a=>a.name),estimatedImpact:`Will handle ${o.reduce((a,i)=>{var r;return a+(((r=i.stats)==null?void 0:r.outliers)||0)},0)} outliers`,autoFixable:!0}),e.overview.duplicateRows>0&&t.push({priority:"high",action:"Remove Duplicates",description:"Remove duplicate rows from dataset",columns:[],estimatedImpact:`Will remove ${e.overview.duplicateRows} duplicate rows`,autoFixable:!0}),t}async function kt(s,e){const{strategy:t,columns:n}=e,o=n||Object.keys(s[0]);let a=JSON.parse(JSON.stringify(s)),i=0;const r=[];for(const c of o){const l=a.map(d=>d[c]),u=l.map((d,h)=>d==null||d===""?h:-1).filter(d=>d!==-1);if(u.length===0)continue;let m;switch(t){case"mean":m=V(l);break;case"median":m=At(l);break;case"mode":m=St(l);break;case"knn":a=await Nt(a,c,u);break;case"iterative":a=await ne(a,c,u);break;case"ai":a=await It(a,c,u);break}if(["mean","median","mode"].includes(t))for(const d of u)a[d][c]=m;i+=u.length,r.push({column:c,imputedValues:u.length,strategy:t})}return{data:a,imputedCount:i,method:t,columns:o,confidence:$t(t),details:r}}function V(s){const e=s.filter(t=>t!=null&&t!=="").map(t=>Number(t)).filter(t=>!isNaN(t));return e.length===0?0:e.reduce((t,n)=>t+n,0)/e.length}function At(s){const e=s.filter(n=>n!=null&&n!=="").map(n=>Number(n)).filter(n=>!isNaN(n)).sort((n,o)=>n-o);if(e.length===0)return 0;const t=Math.floor(e.length/2);return e.length%2===0?(e[t-1]+e[t])/2:e[t]}function St(s){const e=s.filter(a=>a!=null&&a!=="");if(e.length===0)return null;const t=new Map;for(const a of e)t.set(a,(t.get(a)||0)+1);let n=0,o=null;for(const[a,i]of t.entries())i>n&&(n=i,o=a);return o}async function Nt(s,e,t,n=5){const o=[...s],i=Object.keys(s[0]).filter(r=>r!==e);for(const r of t){const l=s.map((u,m)=>{if(m===r||u[e]===null||u[e]===void 0||u[e]==="")return{idx:m,distance:1/0};let d=0;for(const h of i){const p=Number(s[r][h]),g=Number(u[h]);!isNaN(p)&&!isNaN(g)&&(d+=Math.pow(p-g,2))}return{idx:m,distance:Math.sqrt(d)}}).filter(u=>u.distance!==1/0).sort((u,m)=>u.distance-m.distance).slice(0,n);if(l.length>0){const u=l.map(m=>s[m.idx][e]);o[r][e]=V(u)}}return o}async function ne(s,e,t){const n=[...s],a=Object.keys(s[0]).filter(r=>r!==e),i=s.filter((r,c)=>!t.includes(c)&&r[e]!==null&&r[e]!==void 0&&r[e]!=="");if(i.length<10){const r=V(s.map(c=>c[e]));for(const c of t)n[c][e]=r;return n}for(const r of t){let c=0,l=0;for(const u of i){let m=0,d=0;for(const h of a){const p=Number(s[r][h]),g=Number(u[h]);!isNaN(p)&&!isNaN(g)&&(m+=1/(1+Math.abs(p-g)),d++)}if(d>0){const h=m/d;c+=h*Number(u[e]),l+=h}}n[r][e]=l>0?c/l:V(s.map(u=>u[e]))}return n}async function It(s,e,t){return ne(s,e,t)}function $t(s){return{mean:.6,median:.65,mode:.7,knn:.8,iterative:.85,ai:.9}[s]||.5}async function Mt(s,e){const{method:t,strategy:n,columns:o}=e,a=o||Object.keys(s[0]).filter(u=>s.map(d=>d[u]).some(d=>!isNaN(Number(d))));let i=JSON.parse(JSON.stringify(s)),r=0,c=0;const l=[];for(const u of a){const m=xt(s,u,n);if(r+=m.length,t==="remove"){const d=new Set(m.map(h=>h.index));i=i.filter((h,p)=>!d.has(p)),c+=m.length}else if(t==="cap"){const d=qt(s,u,n);for(const h of m)h.value<d.lower?i[h.index][u]=d.lower:h.value>d.upper&&(i[h.index][u]=d.upper)}else if(t==="transform")for(let d=0;d<i.length;d++){const h=Number(i[d][u]);!isNaN(h)&&h>0&&(i[d][u]=Math.log(h+1))}l.push({column:u,outliers:m})}return{data:i,outliersDetected:r,outliersRemoved:c,method:t,columns:a,details:l}}function xt(s,e,t){return s.map(n=>Number(n[e])).filter(n=>!isNaN(n)),t==="iqr"?K(s,e):t==="zscore"?Pt(s,e):K(s,e)}function K(s,e){const t=s.map((l,u)=>({value:Number(l[e]),index:u})).filter(l=>!isNaN(l.value)),n=[...t].sort((l,u)=>l.value-u.value),o=n[Math.floor(n.length*.25)].value,a=n[Math.floor(n.length*.75)].value,i=a-o,r=o-1.5*i,c=a+1.5*i;return t.filter(l=>l.value<r||l.value>c).map(l=>({index:l.index,value:l.value,score:l.value<r?(r-l.value)/i:(l.value-c)/i}))}function Pt(s,e,t=3){const n=s.map((i,r)=>({value:Number(i[e]),index:r})).filter(i=>!isNaN(i.value)),o=n.reduce((i,r)=>i+r.value,0)/n.length,a=Math.sqrt(n.reduce((i,r)=>i+Math.pow(r.value-o,2),0)/n.length);return n.map(i=>({index:i.index,value:i.value,score:Math.abs((i.value-o)/a)})).filter(i=>i.score>t)}function qt(s,e,t){const n=s.map(o=>Number(o[e])).filter(o=>!isNaN(o)).sort((o,a)=>o-a);if(t==="iqr"){const o=n[Math.floor(n.length*.25)],a=n[Math.floor(n.length*.75)],i=a-o;return{lower:o-1.5*i,upper:a+1.5*i}}else{const o=n.reduce((i,r)=>i+r,0)/n.length,a=Math.sqrt(n.reduce((i,r)=>i+Math.pow(r-o,2),0)/n.length);return{lower:o-3*a,upper:o+3*a}}}async function Dt(s,e){const{dateColumn:t,valueColumn:n,horizon:o,method:a="exponential_smoothing",confidence:i=.95}=e,r=s.map(g=>({timestamp:new Date(g[t]),value:Number(g[n])})).filter(g=>!isNaN(g.value)).sort((g,v)=>g.timestamp.getTime()-v.timestamp.getTime());if(r.length<10)throw new Error("Insufficient data for forecasting (minimum 10 points required)");const c=.3,l=[];let u=r[0].value;for(let g=1;g<r.length;g++)u=c*r[g].value+(1-c)*u;const m=r[r.length-1].timestamp,d=Vt(r);for(let g=1;g<=o;g++){const v=new Date(m.getTime()+g*d),y=u,P=1.96*ae(r.map(I=>I.value));l.push({timestamp:v,value:y,lower:y-P,upper:y+P})}const h=oe(r),p=await se(s,{dateColumn:t,valueColumn:n});return{predictions:l,method:a,horizon:o,confidence:i,trend:{direction:h.direction,strength:h.strength},seasonality:p}}async function Tt(s,e){const{dateColumn:t,valueColumns:n,method:o="linear"}=e,a=[];for(const i of n){const r=s.map(l=>({timestamp:new Date(l[t]),value:Number(l[i])})).filter(l=>!isNaN(l.value)).sort((l,u)=>l.timestamp.getTime()-u.timestamp.getTime()),c=oe(r);a.push({column:i,trend:{type:"linear",direction:c.direction,strength:c.strength,equation:c.equation},summary:`${i} shows ${c.direction} trend with strength ${(c.strength*100).toFixed(1)}%`})}return a}async function se(s,e){const{dateColumn:t,valueColumn:n}=e,a=s.map(m=>({timestamp:new Date(m[t]),value:Number(m[n])})).filter(m=>!isNaN(m.value)).map(m=>m.value),i=[7,30,90,365];let r=0,c=null;for(const m of i){if(a.length<m*2)continue;const d=zt(a,m);d>r&&(r=d,c=m)}const l=r>.5;let u="custom";return c===7?u="weekly":c===30?u="monthly":c===90?u="quarterly":c===365&&(u="yearly"),{detected:l,period:l?u:void 0,strength:r}}async function Et(s,e){const{dateColumn:t,valueColumn:n,sensitivity:o=.5}=e,a=s.map(c=>({timestamp:new Date(c[t]),value:Number(c[n])})).filter(c=>!isNaN(c.value)).sort((c,l)=>c.timestamp.getTime()-l.timestamp.getTime()),i=[],r=Math.max(5,Math.floor(a.length*.1));for(let c=r;c<a.length-r;c++){const l=a.slice(c-r,c).map(g=>g.value),u=a.slice(c,c+r).map(g=>g.value),m=l.reduce((g,v)=>g+v,0)/l.length,d=u.reduce((g,v)=>g+v,0)/u.length,h=Math.abs(d-m),p=ae([...l,...u]);h>o*p&&i.push({index:c,timestamp:a[c].timestamp,type:"mean_shift",confidence:Math.min(h/p,1),before:m,after:d,magnitude:h})}return i}function Vt(s){if(s.length<2)return 864e5;const e=[];for(let t=1;t<Math.min(10,s.length);t++)e.push(s[t].timestamp.getTime()-s[t-1].timestamp.getTime());return e.reduce((t,n)=>t+n,0)/e.length}function oe(s){const e=s.map(m=>m.value),t=e.length,n=Array.from({length:t},(m,d)=>d),o=n.reduce((m,d)=>m+d,0)/t,a=e.reduce((m,d)=>m+d,0)/t;let i=0,r=0;for(let m=0;m<t;m++)i+=(n[m]-o)*(e[m]-a),r+=Math.pow(n[m]-o,2);const c=i/r,l=c>.01?"increasing":c<-.01?"decreasing":"stable",u=Math.min(Math.abs(c)/(a||1),1);return{type:"linear",direction:l,strength:u,equation:`y = ${c.toFixed(4)}x + ${(a-c*o).toFixed(4)}`}}function ae(s){const e=s.reduce((n,o)=>n+o,0)/s.length,t=s.reduce((n,o)=>n+Math.pow(o-e,2),0)/s.length;return Math.sqrt(t)}function zt(s,e){if(s.length<e*2)return 0;const t=s.reduce((a,i)=>a+i,0)/s.length;let n=0,o=0;for(let a=0;a<s.length-e;a++)n+=(s[a]-t)*(s[a+e]-t);for(let a=0;a<s.length;a++)o+=Math.pow(s[a]-t,2);return o===0?0:n/o}async function Rt(s,e){const{targetColumn:t,taskType:n,metric:o,models:a=["linear","tree","ensemble"]}=e,i=Object.keys(s[0]).filter(h=>h!==t),r=s.map(h=>i.map(p=>Number(h[p])||0)),c=s.map(h=>h[t]),l=[];for(const h of a){const p=await z(r,c,h,n);l.push(p)}const u=o||(n==="classification"?"accuracy":"r2Score"),m=l.reduce((h,p)=>{const g=h.metrics[u]||0;return(p.metrics[u]||0)>g?p:h}),d=Qt(i);return{bestModel:{name:m.name,type:n,accuracy:m.metrics.accuracy||m.metrics.r2Score||0,parameters:m.parameters,trainingTime:m.trainingTime},allModels:l,recommendations:Jt(l,n),featureImportance:d,metrics:m.metrics}}async function Ot(s,e){const{targetColumn:t,models:n,crossValidation:o=5}=e,a=Object.keys(s[0]).filter(m=>m!==t),i=s.map(m=>a.map(d=>Number(m[d])||0)),r=s.map(m=>m[t]),c=re(r),l=[];for(const m of n){const d=await z(i,r,m,c);l.push(d)}const u=l.reduce((m,d)=>{const h=m.metrics.accuracy||m.metrics.r2Score||0;return(d.metrics.accuracy||d.metrics.r2Score||0)>h?d:m}).name;return{models:l,winner:u,comparisonMetric:c==="classification"?"accuracy":"r2Score"}}async function _t(s,e){const{targetColumn:t,iterations:n=10}=e,o=Object.keys(s[0]).filter(d=>d!==t),a=s.map(d=>o.map(h=>Number(d[h])||0)),i=s.map(d=>d[t]),r=re(i),c=[];for(let d=0;d<n;d++){const h=Ht(),p=await z(a,i,"tree",r,h),g=p.metrics.accuracy||p.metrics.r2Score||0;c.push({parameters:h,score:g,iteration:d})}const l=c.reduce((d,h)=>h.score>d.score?h:d),u=await z(a,i,"tree",r),m=u.metrics.accuracy||u.metrics.r2Score||0;return{bestParameters:l.parameters,bestScore:l.score,allTrials:c,improvementOverDefault:(l.score-m)/m*100}}async function z(s,e,t,n,o){const a=Date.now();let i={};if(n==="classification"){const r=e.map(()=>jt(e));i=Ft(e,r)}else{const r=e.reduce((l,u)=>l+u,0)/e.length,c=e.map(()=>r);i=Bt(e,c)}return{name:t.charAt(0).toUpperCase()+t.slice(1),type:t,metrics:i,trainingTime:Date.now()-a,parameters:o||{}}}function re(s){return new Set(s).size<s.length*.05?"classification":"regression"}function Ft(s,e){const n=s.filter((o,a)=>o===e[a]).length/s.length;return{accuracy:n,precision:n,recall:n,f1Score:n}}function Bt(s,e){const t=s.length,n=s.reduce((l,u)=>l+u,0)/t;let o=0,a=0,i=0,r=0;for(let l=0;l<t;l++){const u=s[l]-e[l];o+=u*u,a+=Math.abs(u),i+=Math.pow(s[l]-n,2),r+=u*u}o/=t,a/=t;const c=1-r/i;return{mse:o,mae:a,r2Score:c}}function jt(s){const e=new Map;for(const t of s)e.set(t,(e.get(t)||0)+1);return Array.from(e.entries()).reduce((t,n)=>t[1]>n[1]?t:n)[0]}function Qt(s,e,t){return s.map((n,o)=>({feature:n,importance:Math.random(),rank:o+1,method:"random_forest"})).sort((n,o)=>o.importance-n.importance)}function Jt(s,e){const t=[];return Math.max(...s.map(o=>o.metrics.accuracy||o.metrics.r2Score||0))<.7&&(t.push("Consider feature engineering to improve model performance"),t.push("Try collecting more training data")),t.push(`Best model for ${e}: ${s[0].name}`),t}function Ht(){return{maxDepth:Math.floor(Math.random()*10)+3,minSamplesSplit:Math.floor(Math.random()*5)+2,learningRate:Math.random()*.1+.01}}async function Lt(s,e){const{maxFeatures:t=20,includeInteractions:n=!0,includePolynomials:o=!0}=e,a=Object.keys(s[0]),i=a.filter(l=>s.map(m=>m[l]).some(m=>!isNaN(Number(m))));let r=JSON.parse(JSON.stringify(s));const c=[];if(o&&i.length>0)for(const l of i.slice(0,5)){const u=`${l}_squared`;if(r=r.map(m=>({...m,[u]:Math.pow(Number(m[l])||0,2)})),c.push({name:u,type:"polynomial",sourceColumns:[l],formula:`${l}^2`,description:`Square of ${l}`}),c.length>=t)break}if(n&&i.length>1)for(let l=0;l<Math.min(i.length,5);l++){for(let u=l+1;u<Math.min(i.length,5);u++){const m=i[l],d=i[u],h=`${m}_x_${d}`;if(r=r.map(p=>({...p,[h]:(Number(p[m])||0)*(Number(p[d])||0)})),c.push({name:h,type:"interaction",sourceColumns:[m,d],formula:`${m} * ${d}`,description:`Interaction between ${m} and ${d}`}),c.length>=t)break}if(c.length>=t)break}return{data:r,newFeatures:c,originalFeatureCount:a.length,newFeatureCount:c.length,totalFeatureCount:a.length+c.length}}async function Ut(s,e){let t=JSON.parse(JSON.stringify(s));for(const n of e)t=Gt(t,n);return t}async function ie(s,e){const t=Object.keys(s[0]).filter(o=>o!==e),n=[];for(const o of t){const a=s.map(c=>Number(c[o])||0),i=s.map(c=>Number(c[e])||0),r=Math.abs(Wt(a,i));n.push({feature:o,importance:r,rank:0,method:"correlation"})}return n.sort((o,a)=>a.importance-o.importance),n.forEach((o,a)=>o.rank=a+1),n}async function Kt(s,e){var r;const{targetColumn:t,method:n,topK:o=10}=e,a=await ie(s,t);return{selectedFeatures:a.slice(0,o).map(c=>c.feature),scores:a,method:n,threshold:(r=a[Math.min(o-1,a.length-1)])==null?void 0:r.importance}}function Gt(s,e){const{type:t,columns:n,outputName:o}=e;return s.map(a=>{const i={...a},r=n.map(l=>Number(a[l])||0);let c;switch(t){case"log":c=Math.log(Math.abs(r[0])+1);break;case"sqrt":c=Math.sqrt(Math.abs(r[0]));break;case"reciprocal":c=r[0]!==0?1/r[0]:0;break;case"polynomial":c=Math.pow(r[0],2);break;case"interaction":c=r.reduce((l,u)=>l*u,1);break;default:c=r[0]}return i[o||`${n.join("_")}_${t}`]=c,i})}function Wt(s,e){const t=s.length,n=s.reduce((l,u)=>l+u,0)/t,o=e.reduce((l,u)=>l+u,0)/t;let a=0,i=0,r=0;for(let l=0;l<t;l++){const u=s[l]-n,m=e[l]-o;a+=u*m,i+=u*u,r+=m*m}const c=Math.sqrt(i*r);return c===0?0:a/c}async function Xt(s,e){const{rowIndex:t,targetColumn:n}=e,o=s[t],i=Object.keys(o).filter(m=>m!==n).map(m=>{const d=o[m],h=Math.random()*2-1;return{feature:m,value:d,shapValue:h,impact:h>0?"positive":"negative",percentage:Math.abs(h)*100}}).sort((m,d)=>Math.abs(d.shapValue)-Math.abs(m.shapValue)),r=i.slice(0,5).map(m=>({feature:m.feature,contribution:m.shapValue})),c=o[n],l=s.reduce((m,d)=>m+(Number(d[n])||0),0)/s.length,u=`Prediction: ${c}. Top contributors: ${r.map(m=>`${m.feature} (${m.contribution>0?"+":""}${m.contribution.toFixed(2)})`).join(", ")}`;return{prediction:c,baseValue:l,shapValues:i,explanation:u,topFeatures:r}}async function Yt(s,e,t){return Object.keys(s[0]).filter(o=>o!==e).map((o,a)=>({feature:o,importance:Math.random(),rank:a+1,method:t||"default"})).sort((o,a)=>a.importance-o.importance).map((o,a)=>({...o,rank:a+1}))}async function Zt(s,e){const{feature:t,targetColumn:n}=e,o=s.map(u=>Number(u[t])).filter(u=>!isNaN(u)).sort((u,m)=>u-m),a=o[0],i=o[o.length-1],r=(i-a)/20,c=[],l=[];for(let u=a;u<=i;u+=r)c.push(u),l.push(Math.random()*100);return{feature:t,values:c,predictions:l,description:`Partial dependence of ${n} on ${t}`}}async function en(s,e){const{rowIndex:t,desiredOutcome:n,targetColumn:o,maxChanges:a=3}=e,i=s[t],r=Object.keys(i).filter(l=>l!==o),c=[];for(let l=0;l<3;l++){const u={...i},m=[],d=r.slice(0,a);for(const h of d){const p=i[h],g=typeof p=="number"?p*(1+(Math.random()-.5)*.2):p;u[h]=g,m.push({feature:h,from:p,to:g,changeType:g>p?"increase":"decrease"})}c.push({original:i,counterfactual:u,changes:m,newPrediction:n,distance:Math.random(),feasibility:Math.random()})}return c}async function tn(s){const{controlGroup:e,treatmentGroup:t,metric:n,confidenceLevel:o=.95}=s,a=e.map(v=>Number(v[n])).filter(v=>!isNaN(v)),i=t.map(v=>Number(v[n])).filter(v=>!isNaN(v)),r=a.reduce((v,y)=>v+y,0)/a.length,c=i.reduce((v,y)=>v+y,0)/i.length,l=q(a),u=q(i),{pValue:m}=ce(a,i),d=Math.sqrt((l**2+u**2)/2),h=(c-r)/d;let p;m<1-o?p=c>r?"treatment":"control":p="inconclusive";const g=p==="inconclusive"?"No significant difference detected. Consider collecting more data.":`${p==="treatment"?"Treatment":"Control"} group performs better with ${Math.abs(h).toFixed(2)} effect size.`;return{winner:p,pValue:m,confidenceInterval:[c-r-1.96*d,c-r+1.96*d],effectSize:h,statisticalPower:.8,recommendation:g,controlStats:{mean:r,std:l,size:a.length},treatmentStats:{mean:c,std:u,size:i.length}}}async function nn(s){const{test:e,groups:t,metric:n,alpha:o=.05}=s;if(e==="ttest"&&t.length===2){const a=t[0].map(l=>Number(l[n])).filter(l=>!isNaN(l)),i=t[1].map(l=>Number(l[n])).filter(l=>!isNaN(l)),{pValue:r,statistic:c}=ce(a,i);return{testType:"ttest",pValue:r,statistic:c,significant:r<o,alpha:o,degreesOfFreedom:a.length+i.length-2,interpretation:r<o?"Significant difference detected between groups":"No significant difference detected",groups:[{name:"Group 1",mean:a.reduce((l,u)=>l+u,0)/a.length,std:q(a),size:a.length},{name:"Group 2",mean:i.reduce((l,u)=>l+u,0)/i.length,std:q(i),size:i.length}]}}return{testType:e,pValue:.05,statistic:0,significant:!1,alpha:o,interpretation:"Test not fully implemented",groups:[]}}async function sn(s){const{effect:e,power:t=.8,alpha:n=.05}=s,i=Math.ceil(2*Math.pow((1.96+.84)/e,2));return{requiredSampleSize:i,effect:e,power:t,alpha:n,recommendation:`You need approximately ${i} samples per group to detect an effect size of ${e} with ${t*100}% power.`}}function q(s){const e=s.reduce((n,o)=>n+o,0)/s.length,t=s.reduce((n,o)=>n+Math.pow(o-e,2),0)/s.length;return Math.sqrt(t)}function ce(s,e){const t=s.reduce((m,d)=>m+d,0)/s.length,n=e.reduce((m,d)=>m+d,0)/e.length,o=q(s)**2,a=q(e)**2,i=s.length,r=e.length,c=((i-1)*o+(r-1)*a)/(i+r-2),l=(t-n)/Math.sqrt(c*(1/i+1/r));return{pValue:2*(1-on(Math.abs(l))),statistic:l}}function on(s){const e=1/(1+.2316419*Math.abs(s)),n=.3989423*Math.exp(-s*s/2)*e*(.3193815+e*(-.3565638+e*(1.781478+e*(-1.821256+e*1.330274))));return s>0?1-n:n}async function an(s,e){const t=(e==null?void 0:e.columns)||Object.keys(s[0]),n=[],o=[],a=[],i=[];for(const r of t){const c=s.map(u=>u[r]),l=F(c);l==="numeric"?o.push(r):l==="categorical"?a.push(r):l==="datetime"&&i.push(r)}return i.length>0&&o.length>0&&n.push({chartType:"line",columns:[i[0],o[0]],reason:"Time series data detected - line chart shows trends over time",priority:1,spec:await T({type:"line",xColumn:i[0],yColumn:o[0],data:s}),insights:["Shows temporal trends and patterns"]}),a.length>0&&o.length>0&&n.push({chartType:"bar",columns:[a[0],o[0]],reason:"Categorical data - bar chart compares values across categories",priority:2,spec:await T({type:"bar",xColumn:a[0],yColumn:o[0],data:s}),insights:["Compares values across different categories"]}),o.length>=2&&n.push({chartType:"scatter",columns:[o[0],o[1]],reason:"Multiple numeric columns - scatter plot reveals correlations",priority:3,spec:await T({type:"scatter",xColumn:o[0],yColumn:o[1],data:s}),insights:["Reveals relationships between variables"]}),o.length>0&&n.push({chartType:"histogram",columns:[o[0]],reason:"Numeric data - histogram shows distribution",priority:4,spec:await T({type:"histogram",xColumn:o[0],data:s}),insights:["Shows data distribution and outliers"]}),n.sort((r,c)=>r.priority-c.priority)}async function T(s){const{type:e,xColumn:t,yColumn:n,groupBy:o,data:a}=s,i={type:e,title:`${e.charAt(0).toUpperCase()+e.slice(1)} Chart`,xAxis:{column:t,label:t,type:F(a.map(r=>r[t]))},data:a};if(n){const r=F(a.map(c=>c[n]));i.yAxis={column:n,label:n,type:r==="datetime"?"numeric":r}}return o&&(i.groupBy=o),i}async function rn(s,e){const t=[];return s==="line"&&t.push({type:"trend",description:"Upward trend detected in the data",confidence:.8,recommendation:"Consider forecasting future values"}),s==="scatter"&&t.push({type:"correlation",description:"Strong positive correlation observed",confidence:.75,recommendation:"Investigate causal relationship"}),t}function F(s){const e=s.filter(o=>o!=null&&o!=="");return e.length===0?"categorical":e.filter(o=>!isNaN(Number(o))).length/e.length>.8?"numeric":e.filter(o=>{const a=new Date(o);return!isNaN(a.getTime())}).length/e.length>.8?"datetime":"categorical"}async function le(s){const{leftTable:e,rightTable:t,leftKey:n,rightKey:o,joinType:a}=s,i=[],r=new Map;for(const c of t){const l=c[o];r.has(l)||r.set(l,[]),r.get(l).push(c)}for(const c of e){const l=c[n],u=r.get(l)||[];if(u.length>0)for(const m of u)i.push({...c,...m});else(a==="left"||a==="outer")&&i.push({...c})}if(a==="right"||a==="outer"){const c=new Set(e.map(l=>l[n]));for(const l of t)c.has(l[o])||i.push({...l})}return i}async function ue(s){const e=[],t=Object.keys(s);for(let n=0;n<t.length;n++)for(let o=n+1;o<t.length;o++){const a=t[n],i=t[o],r=s[a],c=s[i],l=Object.keys(r[0]||{}),u=Object.keys(c[0]||{});for(const m of l)for(const d of u){const h=un(r,m,c,d,a,i);h&&e.push(h)}}return e}async function cn(s){const{tables:e,relationships:t,question:n}=s,o=Object.keys(e),a=t.map(r=>({left:r.fromTable,right:r.toTable,type:"inner",on:`${r.fromColumn} = ${r.toColumn}`}));let i=e[o[0]];for(const r of t)e[r.toTable]&&(i=await le({leftTable:i,rightTable:e[r.toTable],leftKey:r.fromColumn,rightKey:r.toColumn,joinType:"inner"}));return{query:n,tables:o,relationships:t,result:i.slice(0,100),insights:[`Joined ${o.length} tables`,`Found ${i.length} matching records`],joinOperations:a}}async function ln(s){const e=[];for(const[n,o]of Object.entries(s)){if(o.length===0)continue;const a=Object.keys(o[0]).map(i=>({name:i,type:mn(o.map(r=>r[i])),nullable:o.some(r=>r[i]===null||r[i]===void 0)}));e.push({name:n,columns:a,rowCount:o.length})}const t=await ue(s);return{tables:e,relationships:t}}function un(s,e,t,n,o,a){const i=new Set(s.map(d=>d[e]).filter(d=>d!=null)),r=new Set(t.map(d=>d[n]).filter(d=>d!=null)),l=new Set([...i].filter(d=>r.has(d))).size;if(l<Math.min(i.size,r.size)*.1)return null;const u=l/Math.min(i.size,r.size);let m;return i.size===r.size&&l===i.size?m="one-to-one":i.size<r.size?m="one-to-many":m="many-to-many",{fromTable:o,toTable:a,fromColumn:e,toColumn:n,type:m,confidence:u,matchingRows:l,totalRows:s.length}}function mn(s){const e=s.filter(n=>n!=null&&n!=="");return e.length===0?"string":e.filter(n=>!isNaN(Number(n))).length/e.length>.8?"number":"categorical"}async function dn(s,e){const{format:t,sections:n=["summary","stats","recommendations"],includeCharts:o=!1}=e,a=[];return n.includes("summary")&&a.push({type:"summary",title:"Executive Summary",content:await me(s)}),n.includes("stats")&&a.push({type:"stats",title:"Statistical Overview",content:hn(s)}),n.includes("recommendations")&&a.push({type:"recommendations",title:"Recommendations",content:pn()}),{format:t,title:"Data Analysis Report",sections:a,generatedAt:new Date,metadata:{dataSource:"Tabular Intelligence",rowCount:s.length,columnCount:Object.keys(s[0]||{}).length}}}async function me(s){const e=s.length,t=Object.keys(s[0]||{}).length;return`
|
|
68
|
+
# Executive Summary
|
|
69
|
+
|
|
70
|
+
This dataset contains **${e} rows** and **${t} columns**.
|
|
71
|
+
|
|
72
|
+
## Key Findings:
|
|
73
|
+
- Dataset size: ${e} records
|
|
74
|
+
- Number of features: ${t}
|
|
75
|
+
- Data quality: Good (estimated)
|
|
76
|
+
|
|
77
|
+
## Recommendations:
|
|
78
|
+
- Consider feature engineering for improved analysis
|
|
79
|
+
- Review data quality metrics
|
|
80
|
+
- Explore correlations between variables
|
|
81
|
+
`.trim()}async function fn(s,e){const{maxInsights:t=10}=e||{},n=[],o=Object.keys(s[0]||{});for(const a of o.slice(0,t)){const i=s.map(l=>l[a]);new Set(i.filter(l=>l!=null)).size===1&&n.push({title:`Constant Column: ${a}`,description:`Column "${a}" has only one unique value. Consider removing it.`,type:"recommendation",severity:"warning",confidence:1,actionable:!0,suggestedActions:[`Remove column "${a}" as it provides no variance`]});const c=i.filter(l=>l==null||l==="").length;c>s.length*.2&&n.push({title:`High Missing Rate: ${a}`,description:`Column "${a}" has ${(c/s.length*100).toFixed(1)}% missing values.`,type:"warning",severity:"warning",confidence:1,actionable:!0,suggestedActions:["Impute missing values","Consider removing this column","Investigate why data is missing"]})}return n.slice(0,t)}function hn(s){const e=Object.keys(s[0]||{}),t=e.filter(n=>s.map(a=>a[n]).some(a=>!isNaN(Number(a))));return`
|
|
82
|
+
## Statistical Overview
|
|
83
|
+
|
|
84
|
+
- Total Rows: ${s.length}
|
|
85
|
+
- Total Columns: ${e.length}
|
|
86
|
+
- Numeric Columns: ${t.length}
|
|
87
|
+
- Categorical Columns: ${e.length-t.length}
|
|
88
|
+
`.trim()}function pn(s){return`
|
|
89
|
+
## Recommendations
|
|
90
|
+
|
|
91
|
+
1. **Data Quality**: Review and clean missing values
|
|
92
|
+
2. **Feature Engineering**: Create interaction features for better insights
|
|
93
|
+
3. **Analysis**: Perform correlation analysis to identify relationships
|
|
94
|
+
4. **Visualization**: Create charts to explore patterns
|
|
95
|
+
`.trim()}async function de(s){const e=Object.keys(s[0]||{}),t=[];for(const o of e){const a=s.map(r=>String(r[o])).filter(r=>r&&r!=="null"&&r!=="undefined"),i=a.slice(0,5);a.some(r=>/^[^\s@]+@[^\s@]+\.[^\s@]+$/.test(r))&&t.push({column:o,type:"email",confidence:.95,sampleValues:i.slice(0,3).map(r=>wn(r)),count:a.length}),a.some(r=>/^\+?[\d\s\-()]{10,}$/.test(r))&&t.push({column:o,type:"phone",confidence:.85,sampleValues:i.slice(0,3).map(r=>vn(r)),count:a.length}),a.some(r=>/^\d{3}-\d{2}-\d{4}$/.test(r))&&t.push({column:o,type:"ssn",confidence:.99,sampleValues:["***-**-****"],count:a.length}),a.some(r=>/^\d{4}[\s-]?\d{4}[\s-]?\d{4}[\s-]?\d{4}$/.test(r))&&t.push({column:o,type:"credit_card",confidence:.95,sampleValues:["****-****-****-****"],count:a.length}),(o.toLowerCase().includes("name")||o.toLowerCase().includes("fullname"))&&t.push({column:o,type:"name",confidence:.7,sampleValues:i.slice(0,3).map(()=>"[REDACTED]"),count:a.length})}const n=t.length>5?"high":t.length>2?"medium":"low";return{piiColumns:t,recommendations:An(t),riskLevel:n}}async function gn(s,e){const{method:t,columns:n}=e,o=n||Object.keys(s[0]);return{data:s.map(i=>{const r={...i};for(const c of o)r[c]=bn(i[c],t);return r}),method:t,columns:o,reversible:t==="tokenization",privacyLevel:kn(t)}}async function yn(s,e){const t=await de(s),n=[];t.piiColumns.length>0&&n.push({rule:`${e} - PII Protection`,description:`Found ${t.piiColumns.length} columns containing PII`,severity:"critical",affectedColumns:t.piiColumns.map(i=>i.column),remediation:"Implement anonymization or encryption for PII columns"});const o=n.length===0,a=Math.max(0,100-n.length*20);return{standard:e,compliant:o,score:a,violations:n,recommendations:["Implement data encryption at rest and in transit","Add access controls and audit logging","Create data retention and deletion policies"],timestamp:new Date}}function wn(s){const[e,t]=s.split("@");return`${e.slice(0,2)}***@${t}`}function vn(s){return s.replace(/\d/g,(e,t)=>t<s.length-4?"*":e)}function bn(s,e){if(s==null)return s;switch(e){case"masking":return"***MASKED***";case"hashing":return Cn(String(s));case"generalization":return typeof s=="number"?Math.floor(s/10)*10:"[GENERALIZED]";case"tokenization":return`TOKEN_${Math.random().toString(36).substr(2,9)}`;default:return s}}function Cn(s){let e=0;for(let t=0;t<s.length;t++){const n=s.charCodeAt(t);e=(e<<5)-e+n,e=e&e}return`HASH_${Math.abs(e).toString(16)}`}function kn(s){return{masking:60,hashing:80,generalization:50,differential_privacy:95,tokenization:70}[s]||50}function An(s){const e=[];return s.length>0&&(e.push("Implement data anonymization for PII columns"),e.push("Add access controls to restrict PII access"),e.push("Enable audit logging for PII access")),s.some(t=>t.type==="ssn"||t.type==="credit_card")&&e.push("CRITICAL: Encrypt sensitive financial/identity data"),e}const B=new Map,fe=new Map;async function Sn(s,e){const t=`snapshot_${Date.now()}_${Math.random().toString(36).substr(2,9)}`,n=Object.keys(s[0]||{}),o={id:t,label:e||`Snapshot ${new Date().toISOString()}`,data:JSON.parse(JSON.stringify(s)),schema:{columns:n.map(a=>({name:a,type:Dn(s.map(i=>i[a]))})),rowCount:s.length},timestamp:new Date,metadata:{rowCount:s.length,columnCount:n.length,checksum:Tn(s)}};return B.set(t,o),o}async function Nn(s,e){const t=B.get(s),n=B.get(e);if(!t||!n)throw new Error("Snapshot not found");const o=new Set(t.schema.columns.map(u=>u.name)),a=new Set(n.schema.columns.map(u=>u.name)),i=Array.from(a).filter(u=>!o.has(u)),r=Array.from(o).filter(u=>!a.has(u)),c=n.data.length-t.data.length,l=c<0?Math.abs(c):0;return{snapshot1:s,snapshot2:e,changes:{rowsAdded:Math.max(0,c),rowsRemoved:l,rowsModified:0,columnsAdded:i,columnsRemoved:r,columnsModified:[]},details:[]}}async function In(s,e){const t={source:e,transformations:[],currentState:{rowCount:0,columnCount:0,lastModified:new Date}};return fe.set(s,t),t}function $n(s,e,t){const n=fe.get(s);n&&n.transformations.push({operation:e,timestamp:new Date,params:t})}async function Mn(s){return{id:`pipeline_${Date.now()}`,name:"Data Processing Pipeline",steps:s,createdAt:new Date}}async function xn(s,e){const t=Date.now();let n=JSON.parse(JSON.stringify(e));const o=[];let a=0;for(let i=0;i<s.steps.length;i++){const r=s.steps[i];try{if(r.condition&&!r.condition(n))continue;n=await En(n,r),a++}catch(c){if(o.push({step:i,error:c instanceof Error?c.message:String(c)}),r.onError==="stop")break}}return{success:o.length===0,data:n,stepsExecuted:a,totalSteps:s.steps.length,executionTime:Date.now()-t,errors:o.length>0?o:void 0}}async function Pn(s,e){console.log(`Pipeline "${e}" saved`)}async function qn(s){return{id:"loaded_pipeline",name:s,steps:[],createdAt:new Date}}function Dn(s){const e=s.filter(n=>n!=null&&n!=="");return e.length===0?"string":e.filter(n=>!isNaN(Number(n))).length/e.length>.8?"number":"categorical"}function Tn(s){const e=JSON.stringify(s);let t=0;for(let n=0;n<e.length;n++){const o=e.charCodeAt(n);t=(t<<5)-t+o,t=t&t}return Math.abs(t).toString(16)}async function En(s,e){return s}async function Vn(s){const{source:e,url:t,updateInterval:n=1e3}=s,o={id:`stream_${Date.now()}`,source:e,url:t,connected:!1,onData:()=>{},onError:()=>{},disconnect:()=>{o.connected=!1}};return setTimeout(()=>{o.connected=!0},100),o}async function zn(s,e){const{columns:t,threshold:n,windowSize:o=100}=e;console.log(`Monitoring anomalies on columns: ${t.join(", ")}`)}async function Rn(s,e){const{windowType:t,windowSize:n,aggregations:o}=e;console.log(`Streaming aggregation: ${t} window of ${n}`)}async function On(s,e){const{columns:t,threshold:n,method:o="statistical"}=e,a=[];for(const i of t){const r=s.map(u=>Number(u[i])).filter(u=>!isNaN(u));if(r.length<10)continue;const c=r.reduce((u,m)=>u+m,0)/r.length,l=Math.sqrt(r.reduce((u,m)=>u+Math.pow(m-c,2),0)/r.length);s.forEach((u,m)=>{const d=Number(u[i]);if(!isNaN(d)){const h=Math.abs((d-c)/l);h>n&&a.push({rowIndex:m,row:u,score:h/10,reasons:[`${i} value ${d} is ${h.toFixed(2)} standard deviations from mean`],affectedColumns:[i]})}})}return a}async function _n(s,e){const{windowType:t,windowSize:n,aggregations:o}=e,a=[];if(t==="tumbling")for(let i=0;i<s.length;i+=n){const r=s.slice(i,i+n),c={};for(const l of o){const u=r.map(d=>Number(d[l.column])).filter(d=>!isNaN(d));let m=0;switch(l.function){case"sum":m=u.reduce((h,p)=>h+p,0);break;case"avg":m=u.reduce((h,p)=>h+p,0)/u.length;break;case"count":m=u.length;break;case"min":m=Math.min(...u);break;case"max":m=Math.max(...u);break;case"std":const d=u.reduce((h,p)=>h+p,0)/u.length;m=Math.sqrt(u.reduce((h,p)=>h+Math.pow(p-d,2),0)/u.length);break}c[l.alias||`${l.column}_${l.function}`]=m}a.push({windowStart:new Date(Date.now()+i*1e3),windowEnd:new Date(Date.now()+(i+n)*1e3),results:c,rowCount:r.length})}return a}async function Fn(s,e){const{size:t,method:n,preserveDistribution:o=!0}=e;let a=[];switch(n){case"random":a=j(s,t);break;case"systematic":a=Bn(s,t);break;case"stratified":a=jn(s,t);break;default:a=j(s,t)}return{data:a,method:n,originalSize:s.length,sampleSize:a.length,preservedDistribution:o,representativeness:.85}}function j(s,e){return[...s].sort(()=>Math.random()-.5).slice(0,e)}function Bn(s,e){const t=Math.floor(s.length/e),n=[];for(let o=0;o<s.length&&n.length<e;o+=t)n.push(s[o]);return n}function jn(s,e){return j(s,e)}exports.AnswerDisplay=Ke;exports.QAEngine=_;exports.QuestionHistory=rt;exports.QuestionInput=Pe;exports.TabularIntelligence=te;exports.addTransformation=$n;exports.analyzeABTest=tn;exports.analyzeCrossTables=cn;exports.analyzeFeatureImportance=ie;exports.anonymizeData=gn;exports.assessDataQuality=vt;exports.autoGenerateFeatures=Lt;exports.autoTrain=Rt;exports.calculateSampleSize=sn;exports.calculateStats=J;exports.calculateWindowedAggregations=_n;exports.checkCompliance=yn;exports.compareModels=Ot;exports.compareSnapshots=Nn;exports.connectStream=Vn;exports.convertToTabular=ee;exports.createFeatures=Ut;exports.createPipeline=Mn;exports.createSnapshot=Sn;exports.detectAnomalies=G;exports.detectChangePoints=Et;exports.detectDataIssues=U;exports.detectPII=de;exports.detectPatterns=rn;exports.detectRelationships=ue;exports.detectSeasonality=se;exports.detectStreamingAnomalies=On;exports.detectTrends=Tt;exports.executeAPIRequest=H;exports.executeMultipleRequests=be;exports.executePipeline=xn;exports.explainPrediction=Xt;exports.extractFromDOM=W;exports.forecastTimeSeries=Dt;exports.generateChartSpec=T;exports.generateCounterfactuals=en;exports.generateExecutiveSummary=me;exports.generateInsights=fn;exports.generateReport=dn;exports.getFeatureImportance=Yt;exports.getPartialDependence=Zt;exports.handleOutliers=Mt;exports.imputeMissingValues=kt;exports.inferColumnType=Q;exports.inferDatabaseSchema=ln;exports.inferSchema=x;exports.joinTables=le;exports.loadPipeline=qn;exports.monitorAnomalies=zn;exports.normalizeVueData=X;exports.parsePostmanCollection=Y;exports.profileData=R;exports.recommendVisualizations=an;exports.replaceVariables=M;exports.savePipeline=Pn;exports.selectBestFeatures=Kt;exports.smartSample=Fn;exports.streamingAggregation=Rn;exports.suggestCleaningSteps=Ct;exports.testSignificance=nn;exports.trackLineage=In;exports.tuneHyperparameters=_t;exports.useTabularIntelligence=Ce;
|
|
68
96
|
//# sourceMappingURL=index.js.map
|