@aivue/tabular-intelligence 1.0.0 â 1.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +132 -0
- package/dist/composables/useTabularIntelligence.d.ts +13 -1
- package/dist/composables/useTabularIntelligence.d.ts.map +1 -1
- package/dist/core/TabularIntelligence.d.ts +28 -2
- package/dist/core/TabularIntelligence.d.ts.map +1 -1
- package/dist/index.d.ts +6 -1
- package/dist/index.d.ts.map +1 -1
- package/dist/index.js +30 -1
- package/dist/index.js.map +1 -1
- package/dist/index.mjs +804 -185
- package/dist/index.mjs.map +1 -1
- package/dist/tabular-intelligence.css +1 -0
- package/dist/types/index.d.ts +82 -1
- package/dist/types/index.d.ts.map +1 -1
- package/dist/utils/qaEngine.d.ts +61 -0
- package/dist/utils/qaEngine.d.ts.map +1 -0
- package/dist/utils/tableExtractor.d.ts +14 -0
- package/dist/utils/tableExtractor.d.ts.map +1 -0
- package/package.json +1 -1
package/README.md
CHANGED
|
@@ -8,15 +8,29 @@
|
|
|
8
8
|
## đ¯ Features
|
|
9
9
|
|
|
10
10
|
- đ **Generic TFM Client** - Connect to any HTTP-based Tabular Foundation Model API
|
|
11
|
+
- đŦ **Natural Language Q&A** - Ask questions about your data in plain English
|
|
11
12
|
- đ **Descriptive Statistics** - Mean, median, mode, std dev, percentiles, distributions
|
|
12
13
|
- đ¨ **Anomaly Detection** - Statistical and ML-based outlier detection
|
|
13
14
|
- đ¯ **Segmentation & Clustering** - K-means, DBSCAN, hierarchical clustering
|
|
14
15
|
- đŽ **Predictions** - Time series forecasting and predictive modeling
|
|
15
16
|
- đ **Correlation Analysis** - Pearson correlation matrices and significance testing
|
|
17
|
+
- đ¤ **AI Summaries** - Generate intelligent summaries of your data
|
|
18
|
+
- đ **Table Extraction** - Extract data from HTML tables or Vue data grids
|
|
16
19
|
- đ **Local Fallback** - Built-in statistical analysis when API is unavailable
|
|
17
20
|
- đ¨ **Vue Integration** - Reactive composables for seamless Vue.js integration
|
|
18
21
|
- đĻ **Smart DataTable Ready** - Designed to work with @aivue/smart-datatable
|
|
19
22
|
|
|
23
|
+
### đŦ Q&A Capabilities
|
|
24
|
+
|
|
25
|
+
**Ask any question about your Vue tables â AI answers directly from your data.**
|
|
26
|
+
|
|
27
|
+
- "Which region had the highest revenue last quarter?"
|
|
28
|
+
- "How many customers churned with tenure < 6 months?"
|
|
29
|
+
- "What is the average order value for India vs US?"
|
|
30
|
+
- "Show me products with price > $100 and quantity < 10"
|
|
31
|
+
|
|
32
|
+
The AI analyzes your table data and provides natural language answers with supporting statistics and data.
|
|
33
|
+
|
|
20
34
|
## đĻ Installation
|
|
21
35
|
|
|
22
36
|
```bash
|
|
@@ -96,6 +110,111 @@ async function analyzeData() {
|
|
|
96
110
|
</script>
|
|
97
111
|
```
|
|
98
112
|
|
|
113
|
+
## đŦ Q&A Usage
|
|
114
|
+
|
|
115
|
+
### Setup Q&A
|
|
116
|
+
|
|
117
|
+
```typescript
|
|
118
|
+
import { useTabularIntelligence, QuestionInput, AnswerDisplay, QuestionHistory } from '@aivue/tabular-intelligence';
|
|
119
|
+
|
|
120
|
+
const {
|
|
121
|
+
askQuestion,
|
|
122
|
+
generateSummary,
|
|
123
|
+
questionHistory,
|
|
124
|
+
lastAnswer,
|
|
125
|
+
clearHistory,
|
|
126
|
+
} = useTabularIntelligence({
|
|
127
|
+
config: {
|
|
128
|
+
provider: 'local',
|
|
129
|
+
baseUrl: 'https://api.example.com/tfm',
|
|
130
|
+
},
|
|
131
|
+
data: tableData,
|
|
132
|
+
qaConfig: {
|
|
133
|
+
provider: 'openai',
|
|
134
|
+
apiKey: 'sk-...',
|
|
135
|
+
model: 'gpt-4-turbo-preview',
|
|
136
|
+
},
|
|
137
|
+
});
|
|
138
|
+
|
|
139
|
+
// Ask a question
|
|
140
|
+
const answer = await askQuestion('What is the average price by category?');
|
|
141
|
+
|
|
142
|
+
// Generate AI summary
|
|
143
|
+
const summary = await generateSummary();
|
|
144
|
+
```
|
|
145
|
+
|
|
146
|
+
### Q&A Components
|
|
147
|
+
|
|
148
|
+
```vue
|
|
149
|
+
<template>
|
|
150
|
+
<div>
|
|
151
|
+
<!-- Question Input -->
|
|
152
|
+
<QuestionInput
|
|
153
|
+
:loading="loading"
|
|
154
|
+
@submit="handleQuestion"
|
|
155
|
+
/>
|
|
156
|
+
|
|
157
|
+
<!-- Latest Answer -->
|
|
158
|
+
<AnswerDisplay
|
|
159
|
+
v-if="lastAnswer"
|
|
160
|
+
:answer="lastAnswer"
|
|
161
|
+
/>
|
|
162
|
+
|
|
163
|
+
<!-- Question History -->
|
|
164
|
+
<QuestionHistory
|
|
165
|
+
:questions="questionHistory"
|
|
166
|
+
@clear="clearHistory"
|
|
167
|
+
@select="handleSelectQuestion"
|
|
168
|
+
/>
|
|
169
|
+
</div>
|
|
170
|
+
</template>
|
|
171
|
+
|
|
172
|
+
<script setup>
|
|
173
|
+
import { QuestionInput, AnswerDisplay, QuestionHistory, useTabularIntelligence } from '@aivue/tabular-intelligence';
|
|
174
|
+
|
|
175
|
+
const { askQuestion, questionHistory, lastAnswer, clearHistory } = useTabularIntelligence({
|
|
176
|
+
config: { provider: 'local' },
|
|
177
|
+
data: tableData,
|
|
178
|
+
qaConfig: {
|
|
179
|
+
provider: 'openai',
|
|
180
|
+
apiKey: import.meta.env.VITE_OPENAI_API_KEY,
|
|
181
|
+
},
|
|
182
|
+
});
|
|
183
|
+
|
|
184
|
+
async function handleQuestion(question) {
|
|
185
|
+
await askQuestion(question);
|
|
186
|
+
}
|
|
187
|
+
|
|
188
|
+
function handleSelectQuestion(question) {
|
|
189
|
+
console.log('Selected:', question);
|
|
190
|
+
}
|
|
191
|
+
</script>
|
|
192
|
+
```
|
|
193
|
+
|
|
194
|
+
### Table Extraction
|
|
195
|
+
|
|
196
|
+
Extract data from HTML tables or Vue data grids:
|
|
197
|
+
|
|
198
|
+
```typescript
|
|
199
|
+
// Extract from DOM
|
|
200
|
+
const extracted = intelligence.extractFromDOM({
|
|
201
|
+
selector: 'table.my-table',
|
|
202
|
+
includeHeaders: true,
|
|
203
|
+
maxRows: 1000,
|
|
204
|
+
inferTypes: true,
|
|
205
|
+
});
|
|
206
|
+
|
|
207
|
+
// Load from Vue data grid
|
|
208
|
+
intelligence.loadFromVueGrid(
|
|
209
|
+
gridData,
|
|
210
|
+
[
|
|
211
|
+
{ field: 'name', header: 'Product Name' },
|
|
212
|
+
{ field: 'price', header: 'Price' },
|
|
213
|
+
],
|
|
214
|
+
{ inferTypes: true }
|
|
215
|
+
);
|
|
216
|
+
```
|
|
217
|
+
|
|
99
218
|
## đ API Reference
|
|
100
219
|
|
|
101
220
|
### `useTabularIntelligence(options)`
|
|
@@ -107,6 +226,8 @@ Main composable for tabular intelligence.
|
|
|
107
226
|
- `data?: Ref<any[]>` - Reactive data array
|
|
108
227
|
- `schema?: Ref<TableSchema>` - Optional table schema
|
|
109
228
|
- `useLocalFallback?: boolean` - Enable local analysis fallback (default: true)
|
|
229
|
+
- `qaConfig?: QAEngineConfig` - Q&A engine configuration (optional)
|
|
230
|
+
- `maxQuestionHistory?: number` - Maximum questions to keep in history (default: 50)
|
|
110
231
|
|
|
111
232
|
**Returns:**
|
|
112
233
|
- `client: TabularIntelligence` - Core TFM client instance
|
|
@@ -115,12 +236,21 @@ Main composable for tabular intelligence.
|
|
|
115
236
|
- `lastResult: Ref<AnalysisResult | null>` - Last analysis result
|
|
116
237
|
- `data: Ref<any[]>` - Data array
|
|
117
238
|
- `schema: Ref<TableSchema | null>` - Inferred or provided schema
|
|
239
|
+
- `questionHistory: Ref<Question[]>` - Q&A question history
|
|
240
|
+
- `answerHistory: Ref<Answer[]>` - Q&A answer history
|
|
241
|
+
- `lastAnswer: Ref<Answer | null>` - Last Q&A answer
|
|
118
242
|
- `analyze(type, options)` - Generic analysis method
|
|
119
243
|
- `getDescriptiveStats()` - Get descriptive statistics
|
|
120
244
|
- `detectAnomalies(columns?, sensitivity?)` - Detect anomalies
|
|
121
245
|
- `performClustering(features, numClusters?)` - Perform clustering
|
|
122
246
|
- `predict(targetColumn, options?)` - Make predictions
|
|
247
|
+
- `askQuestion(question, options?)` - Ask a question about the data
|
|
248
|
+
- `generateSummary()` - Generate AI summary of the data
|
|
249
|
+
- `clearHistory()` - Clear Q&A history
|
|
250
|
+
- `extractFromDOM(options?)` - Extract table from DOM
|
|
251
|
+
- `loadFromVueGrid(data, columns?, options?)` - Load data from Vue grid
|
|
123
252
|
- `updateConfig(config)` - Update TFM configuration
|
|
253
|
+
- `initializeQA(qaConfig)` - Initialize Q&A engine
|
|
124
254
|
- `setData(data, autoInferSchema?)` - Set new data
|
|
125
255
|
- `reset()` - Reset state
|
|
126
256
|
|
|
@@ -134,6 +264,8 @@ type AnalysisType =
|
|
|
134
264
|
| 'clustering' // K-means, DBSCAN, etc.
|
|
135
265
|
| 'prediction' // Forecasting
|
|
136
266
|
| 'correlation' // Correlation analysis
|
|
267
|
+
| 'summary' // AI-generated summary
|
|
268
|
+
| 'qa' // Question answering
|
|
137
269
|
| 'trend_analysis' // Trend detection
|
|
138
270
|
| 'outlier_detection'; // Statistical outliers
|
|
139
271
|
```
|
|
@@ -1,11 +1,14 @@
|
|
|
1
1
|
import { Ref } from 'vue';
|
|
2
2
|
import { TabularIntelligence } from '../core/TabularIntelligence';
|
|
3
|
-
import { TFMConfig, AnalysisResult, AnalysisType, TableSchema, DescriptiveStats, Anomaly } from '../types';
|
|
3
|
+
import { TFMConfig, AnalysisResult, AnalysisType, TableSchema, DescriptiveStats, Anomaly, Question, Answer, QARequest, AISummary, TableExtractionOptions, ExtractedTable } from '../types';
|
|
4
|
+
import { QAEngineConfig } from '../utils/qaEngine';
|
|
4
5
|
export interface UseTabularIntelligenceOptions {
|
|
5
6
|
config: TFMConfig;
|
|
6
7
|
data?: Ref<any[]>;
|
|
7
8
|
schema?: Ref<TableSchema>;
|
|
8
9
|
useLocalFallback?: boolean;
|
|
10
|
+
qaConfig?: QAEngineConfig;
|
|
11
|
+
maxQuestionHistory?: number;
|
|
9
12
|
}
|
|
10
13
|
export interface UseTabularIntelligenceReturn {
|
|
11
14
|
client: TabularIntelligence;
|
|
@@ -14,12 +17,21 @@ export interface UseTabularIntelligenceReturn {
|
|
|
14
17
|
lastResult: Ref<AnalysisResult | null>;
|
|
15
18
|
data: Ref<any[]>;
|
|
16
19
|
schema: Ref<TableSchema | null>;
|
|
20
|
+
questionHistory: Ref<Question[]>;
|
|
21
|
+
answerHistory: Ref<Answer[]>;
|
|
22
|
+
lastAnswer: Ref<Answer | null>;
|
|
17
23
|
analyze: (type: AnalysisType, options?: any) => Promise<AnalysisResult>;
|
|
18
24
|
getDescriptiveStats: () => Promise<DescriptiveStats[]>;
|
|
19
25
|
detectAnomalies: (columns?: string[], sensitivity?: number) => Promise<Anomaly[]>;
|
|
20
26
|
performClustering: (features: string[], numClusters?: number) => Promise<AnalysisResult>;
|
|
21
27
|
predict: (targetColumn: string, options?: any) => Promise<AnalysisResult>;
|
|
28
|
+
askQuestion: (question: string, options?: Partial<QARequest>) => Promise<Answer>;
|
|
29
|
+
generateSummary: () => Promise<AISummary>;
|
|
30
|
+
clearHistory: () => void;
|
|
31
|
+
extractFromDOM: (options?: TableExtractionOptions) => ExtractedTable | null;
|
|
32
|
+
loadFromVueGrid: (gridData: any[], columns?: any[], options?: TableExtractionOptions) => void;
|
|
22
33
|
updateConfig: (config: Partial<TFMConfig>) => void;
|
|
34
|
+
initializeQA: (qaConfig: QAEngineConfig) => void;
|
|
23
35
|
setData: (newData: any[], autoInferSchema?: boolean) => void;
|
|
24
36
|
reset: () => void;
|
|
25
37
|
}
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"useTabularIntelligence.d.ts","sourceRoot":"","sources":["../../src/composables/useTabularIntelligence.ts"],"names":[],"mappings":"AAAA;;GAEG;AAEH,OAAO,EAAiB,GAAG,EAAE,MAAM,KAAK,CAAC;AACzC,OAAO,EAAE,mBAAmB,EAAE,MAAM,6BAA6B,CAAC;AAClE,OAAO,KAAK,EACV,SAAS,EAET,cAAc,EACd,YAAY,EACZ,WAAW,EACX,gBAAgB,EAChB,OAAO,EACR,MAAM,UAAU,CAAC;
|
|
1
|
+
{"version":3,"file":"useTabularIntelligence.d.ts","sourceRoot":"","sources":["../../src/composables/useTabularIntelligence.ts"],"names":[],"mappings":"AAAA;;GAEG;AAEH,OAAO,EAAiB,GAAG,EAAE,MAAM,KAAK,CAAC;AACzC,OAAO,EAAE,mBAAmB,EAAE,MAAM,6BAA6B,CAAC;AAClE,OAAO,KAAK,EACV,SAAS,EAET,cAAc,EACd,YAAY,EACZ,WAAW,EACX,gBAAgB,EAChB,OAAO,EACP,QAAQ,EACR,MAAM,EACN,SAAS,EAET,SAAS,EACT,sBAAsB,EACtB,cAAc,EACf,MAAM,UAAU,CAAC;AAElB,OAAO,KAAK,EAAE,cAAc,EAAE,MAAM,mBAAmB,CAAC;AAExD,MAAM,WAAW,6BAA6B;IAC5C,MAAM,EAAE,SAAS,CAAC;IAClB,IAAI,CAAC,EAAE,GAAG,CAAC,GAAG,EAAE,CAAC,CAAC;IAClB,MAAM,CAAC,EAAE,GAAG,CAAC,WAAW,CAAC,CAAC;IAC1B,gBAAgB,CAAC,EAAE,OAAO,CAAC;IAC3B,QAAQ,CAAC,EAAE,cAAc,CAAC;IAC1B,kBAAkB,CAAC,EAAE,MAAM,CAAC;CAC7B;AAED,MAAM,WAAW,4BAA4B;IAE3C,MAAM,EAAE,mBAAmB,CAAC;IAG5B,OAAO,EAAE,GAAG,CAAC,OAAO,CAAC,CAAC;IACtB,KAAK,EAAE,GAAG,CAAC,KAAK,GAAG,IAAI,CAAC,CAAC;IACzB,UAAU,EAAE,GAAG,CAAC,cAAc,GAAG,IAAI,CAAC,CAAC;IAGvC,IAAI,EAAE,GAAG,CAAC,GAAG,EAAE,CAAC,CAAC;IACjB,MAAM,EAAE,GAAG,CAAC,WAAW,GAAG,IAAI,CAAC,CAAC;IAGhC,eAAe,EAAE,GAAG,CAAC,QAAQ,EAAE,CAAC,CAAC;IACjC,aAAa,EAAE,GAAG,CAAC,MAAM,EAAE,CAAC,CAAC;IAC7B,UAAU,EAAE,GAAG,CAAC,MAAM,GAAG,IAAI,CAAC,CAAC;IAG/B,OAAO,EAAE,CAAC,IAAI,EAAE,YAAY,EAAE,OAAO,CAAC,EAAE,GAAG,KAAK,OAAO,CAAC,cAAc,CAAC,CAAC;IACxE,mBAAmB,EAAE,MAAM,OAAO,CAAC,gBAAgB,EAAE,CAAC,CAAC;IACvD,eAAe,EAAE,CAAC,OAAO,CAAC,EAAE,MAAM,EAAE,EAAE,WAAW,CAAC,EAAE,MAAM,KAAK,OAAO,CAAC,OAAO,EAAE,CAAC,CAAC;IAClF,iBAAiB,EAAE,CAAC,QAAQ,EAAE,MAAM,EAAE,EAAE,WAAW,CAAC,EAAE,MAAM,KAAK,OAAO,CAAC,cAAc,CAAC,CAAC;IACzF,OAAO,EAAE,CAAC,YAAY,EAAE,MAAM,EAAE,OAAO,CAAC,EAAE,GAAG,KAAK,OAAO,CAAC,cAAc,CAAC,CAAC;IAG1E,WAAW,EAAE,CAAC,QAAQ,EAAE,MAAM,EAAE,OAAO,CAAC,EAAE,OAAO,CAAC,SAAS,CAAC,KAAK,OAAO,CAAC,MAAM,CAAC,CAAC;IACjF,eAAe,EAAE,MAAM,OAAO,CAAC,SAAS,CAAC,CAAC;IAC1C,YAAY,EAAE,MAAM,IAAI,CAAC;IAGzB,cAAc,EAAE,CAAC,OAAO,CAAC,EAAE,sBAAsB,KAAK,cAAc,GAAG,IAAI,CAAC;IAC5E,eAAe,EAAE,CAAC,QAAQ,EAAE,GAAG,EAAE,EAAE,OAAO,CAAC,EAAE,GAAG,EAAE,EAAE,OAAO,CAAC,EAAE,sBAAsB,KAAK,IAAI,CAAC;IAG9F,YAAY,EAAE,CAAC,MAAM,EAAE,OAAO,CAAC,SAAS,CAAC,KAAK,IAAI,CAAC;IACnD,YAAY,EAAE,CAAC,QAAQ,EAAE,cAAc,KAAK,IAAI,CAAC;IACjD,OAAO,EAAE,CAAC,OAAO,EAAE,GAAG,EAAE,EAAE,eAAe,CAAC,EAAE,OAAO,KAAK,IAAI,CAAC;IAC7D,KAAK,EAAE,MAAM,IAAI,CAAC;CACnB;AAED,wBAAgB,sBAAsB,CACpC,OAAO,EAAE,6BAA6B,GACrC,4BAA4B,CAqS9B"}
|
|
@@ -1,7 +1,13 @@
|
|
|
1
|
-
import { TFMConfig, AnalysisRequest, AnalysisResult } from '../types';
|
|
1
|
+
import { TFMConfig, AnalysisRequest, AnalysisResult, TableSchema, QARequest, QAResponse, AISummary, TableExtractionOptions, ExtractedTable } from '../types';
|
|
2
|
+
import { QAEngineConfig } from '../utils/qaEngine';
|
|
2
3
|
export declare class TabularIntelligence {
|
|
3
4
|
private config;
|
|
4
|
-
|
|
5
|
+
private qaEngine?;
|
|
6
|
+
constructor(config: TFMConfig, qaConfig?: QAEngineConfig);
|
|
7
|
+
/**
|
|
8
|
+
* Initialize or update Q&A engine
|
|
9
|
+
*/
|
|
10
|
+
initializeQA(qaConfig: QAEngineConfig): void;
|
|
5
11
|
/**
|
|
6
12
|
* Generic API call to TFM endpoint
|
|
7
13
|
*/
|
|
@@ -14,6 +20,26 @@ export declare class TabularIntelligence {
|
|
|
14
20
|
* Parse TFM response into structured AnalysisResult
|
|
15
21
|
*/
|
|
16
22
|
private parseAnalysisResult;
|
|
23
|
+
/**
|
|
24
|
+
* Ask a question about the data (Q&A)
|
|
25
|
+
*/
|
|
26
|
+
askQuestion(request: QARequest): Promise<QAResponse>;
|
|
27
|
+
/**
|
|
28
|
+
* Generate AI summary of table data
|
|
29
|
+
*/
|
|
30
|
+
generateSummary(data: any[], schema: TableSchema): Promise<AISummary>;
|
|
31
|
+
/**
|
|
32
|
+
* Extract table from DOM
|
|
33
|
+
*/
|
|
34
|
+
extractFromDOM(options?: TableExtractionOptions): ExtractedTable | null;
|
|
35
|
+
/**
|
|
36
|
+
* Normalize Vue data grid data
|
|
37
|
+
*/
|
|
38
|
+
normalizeVueData(data: any[], columns?: Array<{
|
|
39
|
+
field: string;
|
|
40
|
+
header?: string;
|
|
41
|
+
label?: string;
|
|
42
|
+
}>, options?: TableExtractionOptions): ExtractedTable;
|
|
17
43
|
/**
|
|
18
44
|
* Update configuration
|
|
19
45
|
*/
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"TabularIntelligence.d.ts","sourceRoot":"","sources":["../../src/core/TabularIntelligence.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAEH,OAAO,KAAK,EACV,SAAS,EAGT,eAAe,EACf,cAAc,
|
|
1
|
+
{"version":3,"file":"TabularIntelligence.d.ts","sourceRoot":"","sources":["../../src/core/TabularIntelligence.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAEH,OAAO,KAAK,EACV,SAAS,EAGT,eAAe,EACf,cAAc,EAEd,WAAW,EAMX,SAAS,EACT,UAAU,EACV,SAAS,EACT,sBAAsB,EACtB,cAAc,EACf,MAAM,UAAU,CAAC;AAClB,OAAO,EAAY,KAAK,cAAc,EAAE,MAAM,mBAAmB,CAAC;AAGlE,qBAAa,mBAAmB;IAC9B,OAAO,CAAC,MAAM,CAAY;IAC1B,OAAO,CAAC,QAAQ,CAAC,CAAW;gBAEhB,MAAM,EAAE,SAAS,EAAE,QAAQ,CAAC,EAAE,cAAc;IAYxD;;OAEG;IACH,YAAY,CAAC,QAAQ,EAAE,cAAc,GAAG,IAAI;IAI5C;;OAEG;YACW,OAAO;IA+CrB;;OAEG;IACG,OAAO,CAAC,OAAO,EAAE,eAAe,GAAG,OAAO,CAAC,cAAc,CAAC;IAkBhE;;OAEG;IACH,OAAO,CAAC,mBAAmB;IAgE3B;;OAEG;IACG,WAAW,CAAC,OAAO,EAAE,SAAS,GAAG,OAAO,CAAC,UAAU,CAAC;IAQ1D;;OAEG;IACG,eAAe,CAAC,IAAI,EAAE,GAAG,EAAE,EAAE,MAAM,EAAE,WAAW,GAAG,OAAO,CAAC,SAAS,CAAC;IAgB3E;;OAEG;IACH,cAAc,CAAC,OAAO,CAAC,EAAE,sBAAsB,GAAG,cAAc,GAAG,IAAI;IAIvE;;OAEG;IACH,gBAAgB,CACd,IAAI,EAAE,GAAG,EAAE,EACX,OAAO,CAAC,EAAE,KAAK,CAAC;QAAE,KAAK,EAAE,MAAM,CAAC;QAAC,MAAM,CAAC,EAAE,MAAM,CAAC;QAAC,KAAK,CAAC,EAAE,MAAM,CAAA;KAAE,CAAC,EACnE,OAAO,CAAC,EAAE,sBAAsB,GAC/B,cAAc;IAIjB;;OAEG;IACH,YAAY,CAAC,MAAM,EAAE,OAAO,CAAC,SAAS,CAAC,GAAG,IAAI;IAI9C;;OAEG;IACH,SAAS,IAAI,IAAI,CAAC,SAAS,EAAE,QAAQ,CAAC;CAIvC"}
|
package/dist/index.d.ts
CHANGED
|
@@ -5,6 +5,11 @@
|
|
|
5
5
|
export { TabularIntelligence } from './core/TabularIntelligence';
|
|
6
6
|
export { useTabularIntelligence } from './composables/useTabularIntelligence';
|
|
7
7
|
export type { UseTabularIntelligenceOptions, UseTabularIntelligenceReturn } from './composables/useTabularIntelligence';
|
|
8
|
+
export { default as QuestionInput } from './components/QuestionInput.vue';
|
|
9
|
+
export { default as AnswerDisplay } from './components/AnswerDisplay.vue';
|
|
10
|
+
export { default as QuestionHistory } from './components/QuestionHistory.vue';
|
|
8
11
|
export { inferSchema, inferColumnType, calculateStats, detectAnomalies } from './utils/helpers';
|
|
9
|
-
export
|
|
12
|
+
export { QAEngine, type QAEngineConfig } from './utils/qaEngine';
|
|
13
|
+
export { extractFromDOM, normalizeVueData } from './utils/tableExtractor';
|
|
14
|
+
export type { TFMProvider, TFMConfig, TableColumn, TableSchema, AnalysisType, AnalysisRequest, AnalysisOptions, AnalysisResult, DescriptiveStats, Anomaly, Cluster, Prediction, CorrelationMatrix, TFMRequest, TFMResponse, Question, Answer, QARequest, QAResponse, QAHistory, TableExtractionOptions, ExtractedTable, AISummary, } from './types';
|
|
10
15
|
//# sourceMappingURL=index.d.ts.map
|
package/dist/index.d.ts.map
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"index.d.ts","sourceRoot":"","sources":["../src/index.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAGH,OAAO,EAAE,mBAAmB,EAAE,MAAM,4BAA4B,CAAC;AAGjE,OAAO,EAAE,sBAAsB,EAAE,MAAM,sCAAsC,CAAC;AAC9E,YAAY,EAAE,6BAA6B,EAAE,4BAA4B,EAAE,MAAM,sCAAsC,CAAC;AAGxH,OAAO,EAAE,WAAW,EAAE,eAAe,EAAE,cAAc,EAAE,eAAe,EAAE,MAAM,iBAAiB,CAAC;
|
|
1
|
+
{"version":3,"file":"index.d.ts","sourceRoot":"","sources":["../src/index.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAGH,OAAO,EAAE,mBAAmB,EAAE,MAAM,4BAA4B,CAAC;AAGjE,OAAO,EAAE,sBAAsB,EAAE,MAAM,sCAAsC,CAAC;AAC9E,YAAY,EAAE,6BAA6B,EAAE,4BAA4B,EAAE,MAAM,sCAAsC,CAAC;AAGxH,OAAO,EAAE,OAAO,IAAI,aAAa,EAAE,MAAM,gCAAgC,CAAC;AAC1E,OAAO,EAAE,OAAO,IAAI,aAAa,EAAE,MAAM,gCAAgC,CAAC;AAC1E,OAAO,EAAE,OAAO,IAAI,eAAe,EAAE,MAAM,kCAAkC,CAAC;AAG9E,OAAO,EAAE,WAAW,EAAE,eAAe,EAAE,cAAc,EAAE,eAAe,EAAE,MAAM,iBAAiB,CAAC;AAChG,OAAO,EAAE,QAAQ,EAAE,KAAK,cAAc,EAAE,MAAM,kBAAkB,CAAC;AACjE,OAAO,EAAE,cAAc,EAAE,gBAAgB,EAAE,MAAM,wBAAwB,CAAC;AAG1E,YAAY,EACV,WAAW,EACX,SAAS,EACT,WAAW,EACX,WAAW,EACX,YAAY,EACZ,eAAe,EACf,eAAe,EACf,cAAc,EACd,gBAAgB,EAChB,OAAO,EACP,OAAO,EACP,UAAU,EACV,iBAAiB,EACjB,UAAU,EACV,WAAW,EACX,QAAQ,EACR,MAAM,EACN,SAAS,EACT,UAAU,EACV,SAAS,EACT,sBAAsB,EACtB,cAAc,EACd,SAAS,GACV,MAAM,SAAS,CAAC"}
|
package/dist/index.js
CHANGED
|
@@ -1,2 +1,31 @@
|
|
|
1
|
-
"use strict";Object.defineProperty(exports,Symbol.toStringTag,{value:"Module"});const
|
|
1
|
+
"use strict";Object.defineProperty(exports,Symbol.toStringTag,{value:"Module"});const e=require("vue");function _(c,o){if(c.length===0)return{columns:[],rowCount:0,name:o};const a=c[0];return{columns:Object.keys(a).map(n=>{const s=T(c,n);return{name:n,type:s,nullable:c.some(i=>i[n]==null)}}),rowCount:c.length,name:o}}function T(c,o){const a=c.map(n=>n[o]).filter(n=>n!=null);if(a.length===0)return"string";if(a.every(n=>typeof n=="number"||!isNaN(Number(n))))return"number";if(a.every(n=>typeof n=="boolean"||n==="true"||n==="false"))return"boolean";if(a.every(n=>!isNaN(Date.parse(n))))return"date";const t=new Set(a);return t.size<a.length*.5&&t.size<20?"categorical":"string"}function x(c,o,a){const t=c.map(r=>r[o]).filter(r=>r!=null),n=t.length,s=c.length-n,i={column:o,count:n,nullCount:s};if(a==="number"){const r=t.map(Number).filter(l=>!isNaN(l));if(r.length>0){const l=[...r].sort((d,f)=>d-f),m=r.reduce((d,f)=>d+f,0);i.mean=m/r.length,i.median=l[Math.floor(l.length/2)],i.min=l[0],i.max=l[l.length-1];const h=r.reduce((d,f)=>d+Math.pow(f-i.mean,2),0)/r.length;i.std=Math.sqrt(h),i.percentiles={25:l[Math.floor(l.length*.25)],50:i.median,75:l[Math.floor(l.length*.75)],90:l[Math.floor(l.length*.9)]}}}else{const r=new Set(t);i.uniqueValues=r.size;const l={};t.forEach(h=>{const d=String(h);l[d]=(l[d]||0)+1});const m=Math.max(...Object.values(l));i.mode=Object.keys(l).find(h=>l[h]===m)}return i}function I(c,o,a=.5){const t=[],n=1.5+(1-a)*1.5;return o.forEach(s=>{const i=c.map((y,w)=>({value:Number(y[s]),idx:w})).filter(y=>!isNaN(y.value));if(i.length===0)return;const r=[...i].sort((y,w)=>y.value-w.value),l=r[Math.floor(r.length*.25)].value,m=r[Math.floor(r.length*.75)].value,h=m-l,d=l-n*h,f=m+n*h;i.forEach(({value:y,idx:w})=>{if(y<d||y>f){const v=t.find(A=>A.rowIndex===w),b=y<d?`${s}: ${y.toFixed(2)} < ${d.toFixed(2)}`:`${s}: ${y.toFixed(2)} > ${f.toFixed(2)}`;v?(v.reasons.push(b),v.affectedColumns.push(s),v.score=Math.min(1,v.score+.2)):t.push({rowIndex:w,row:c[w],score:.7,reasons:[b],affectedColumns:[s]})}})}),t.sort((s,i)=>i.score-s.score)}class V{constructor(o){this.config={maxTokens:1e3,temperature:.3,...o}}async answerQuestion(o){const a=Date.now();try{const{question:t,schema:n,data:s=[],sampleSize:i=100,includeAggregates:r=!0}=o,l=s.length>i?this.sampleData(s,i):s,m=r?this.calculateAggregates(s,n):void 0,h=this.buildPrompt(t,n,l,m,s.length),d=await this.callLLM(h);return{answer:this.parseResponse(d,t,s.length>i),processingTime:Date.now()-a}}catch(t){return console.error("Q&A error:",t),{answer:{questionId:this.generateId(),text:"I encountered an error while processing your question. Please try again.",timestamp:new Date,confidence:0,cannotAnswer:!0,reason:t instanceof Error?t.message:"Unknown error"},processingTime:Date.now()-a}}}sampleData(o,a){if(o.length<=a)return o;const t=Math.floor(o.length/a),n=[];for(let s=0;s<o.length&&n.length<a;s+=t)n.push(o[s]);return n}calculateAggregates(o,a){const t={};for(const n of a.columns)if(n.type==="number"&&o.length>0)try{const s=x(o,n.name,"number");t[n.name]={mean:s.mean,median:s.median,min:s.min,max:s.max,count:s.count}}catch{}else if(n.type==="categorical"||n.type==="string"){const s=o.map(r=>r[n.name]).filter(r=>r!=null),i=new Set(s);t[n.name]={uniqueCount:i.size,totalCount:s.length,topValues:this.getTopValues(s,5)}}return t}getTopValues(o,a){const t=new Map;for(const n of o)t.set(n,(t.get(n)||0)+1);return Array.from(t.entries()).map(([n,s])=>({value:n,count:s})).sort((n,s)=>s.count-n.count).slice(0,a)}buildPrompt(o,a,t,n,s){const i=s&&s>t.length;let r=`You are a data analyst assistant. Answer the following question about a table dataset.
|
|
2
|
+
|
|
3
|
+
`;r+=`**Table Schema:**
|
|
4
|
+
`,r+=`Table: ${a.name}
|
|
5
|
+
`,r+=`Columns:
|
|
6
|
+
`;for(const l of a.columns)r+=`- ${l.name} (${l.type})
|
|
7
|
+
`;return r+=`
|
|
8
|
+
`,n&&Object.keys(n).length>0&&(r+=`**Summary Statistics:**
|
|
9
|
+
`,r+=JSON.stringify(n,null,2),r+=`
|
|
10
|
+
|
|
11
|
+
`),r+=`**Sample Data** (${t.length} rows${i?` out of ${s} total`:""}):
|
|
12
|
+
`,r+=JSON.stringify(t.slice(0,10),null,2),r+=`
|
|
13
|
+
|
|
14
|
+
`,r+=`**Question:** ${o}
|
|
15
|
+
|
|
16
|
+
`,r+=`**Instructions:**
|
|
17
|
+
`,r+=`1. Answer ONLY based on the data provided above.
|
|
18
|
+
`,r+=`2. If the question cannot be answered from the available data, clearly state "I cannot answer this question from the available data" and explain why.
|
|
19
|
+
`,r+=`3. Provide a clear, concise answer.
|
|
20
|
+
`,r+=`4. Include specific numbers or examples from the data when relevant.
|
|
21
|
+
`,r+=`5. If the answer is based on sampled data, mention that it's an approximation.
|
|
22
|
+
`,r+=`6. Format your response as JSON with the following structure:
|
|
23
|
+
`,r+=`{
|
|
24
|
+
`,r+=` "answer": "Your answer text here",
|
|
25
|
+
`,r+=` "confidence": 0.0-1.0,
|
|
26
|
+
`,r+=` "cannotAnswer": false,
|
|
27
|
+
`,r+=` "isApproximate": ${i},
|
|
28
|
+
`,r+=` "supportingData": { "key": "value" } // optional
|
|
29
|
+
`,r+=`}
|
|
30
|
+
`,r}async callLLM(o){const{provider:a,apiKey:t,baseUrl:n,model:s,maxTokens:i,temperature:r}=this.config;if(a==="openai")return this.callOpenAI(o,t,s||"gpt-4-turbo-preview",i,r);if(a==="anthropic")return this.callAnthropic(o,t,s||"claude-3-5-sonnet-20241022",i,r);if(a==="custom"&&n)return this.callCustomAPI(o,n,t);throw new Error(`Unsupported provider: ${a}`)}async callOpenAI(o,a,t,n,s){var l,m;const i=await fetch("https://api.openai.com/v1/chat/completions",{method:"POST",headers:{"Content-Type":"application/json",Authorization:`Bearer ${a}`},body:JSON.stringify({model:t,messages:[{role:"user",content:o}],max_tokens:n,temperature:s,response_format:{type:"json_object"}})});if(!i.ok)throw new Error(`OpenAI API error: ${i.statusText}`);return((m=(l=(await i.json()).choices[0])==null?void 0:l.message)==null?void 0:m.content)||""}async callAnthropic(o,a,t,n,s){var l;const i=await fetch("https://api.anthropic.com/v1/messages",{method:"POST",headers:{"Content-Type":"application/json","x-api-key":a,"anthropic-version":"2023-06-01"},body:JSON.stringify({model:t,max_tokens:n,temperature:s,messages:[{role:"user",content:o}]})});if(!i.ok)throw new Error(`Anthropic API error: ${i.statusText}`);return((l=(await i.json()).content[0])==null?void 0:l.text)||""}async callCustomAPI(o,a,t){const n={"Content-Type":"application/json"};t&&(n.Authorization=`Bearer ${t}`);const s=await fetch(a,{method:"POST",headers:n,body:JSON.stringify({prompt:o})});if(!s.ok)throw new Error(`Custom API error: ${s.statusText}`);const i=await s.json();return i.response||i.answer||JSON.stringify(i)}parseResponse(o,a,t){try{const n=JSON.parse(o);return{questionId:this.generateId(),text:n.answer||n.text||o,timestamp:new Date,confidence:n.confidence||.8,cannotAnswer:n.cannotAnswer||!1,isApproximate:n.isApproximate!==void 0?n.isApproximate:t,supportingData:n.supportingData,reason:n.reason}}catch{return{questionId:this.generateId(),text:o,timestamp:new Date,confidence:.7,isApproximate:t}}}generateId(){return`qa_${Date.now()}_${Math.random().toString(36).substr(2,9)}`}}function M(c={}){const{selector:o="table",includeHeaders:a=!0,maxRows:t,inferTypes:n=!0,skipEmptyRows:s=!0}=c,i=document.querySelector(o);if(!i||i.tagName!=="TABLE")return console.warn(`No table found with selector: ${o}`),null;const l=Array.from(i.rows);if(l.length===0)return null;let m=[],h=0;if(a&&l[0]){const w=l[0];m=Array.from(w.cells).map((v,b)=>{var E;return((E=v.textContent)==null?void 0:E.trim())||""||`Column${b+1}`}),h=1}else{const w=l[0];m=Array.from(w.cells).map((v,b)=>`Column${b+1}`)}const d=[],f=t?l.slice(h,h+t):l.slice(h);for(const w of f){const v=Array.from(w.cells);if(s&&v.every(A=>{var E;return!((E=A.textContent)!=null&&E.trim())}))continue;const b={};v.forEach((A,E)=>{var C;const $=m[E]||`Column${E+1}`;let D=((C=A.textContent)==null?void 0:C.trim())||"";if(n&&D){const B=parseFloat(D);!isNaN(B)&&D===B.toString()&&(D=B)}b[$]=D}),d.push(b)}return{schema:n&&d.length>0?_(d,"Extracted Table"):H(m,d.length),data:d,source:"dom",metadata:{selector:o,rowCount:d.length,columnCount:m.length,extractedAt:new Date}}}function O(c,o,a={}){const{maxRows:t,inferTypes:n=!0}=a,s=t?c.slice(0,t):c;let i;return o&&o.length>0?i={name:"Vue Data Grid",columns:o.map(r=>({name:r.field,type:n&&s.length>0?T(s,r.field):"string",nullable:!0})),rowCount:s.length}:s.length>0?i=_(s,"Vue Data Grid"):i={name:"Vue Data Grid",columns:[],rowCount:0},{schema:i,data:s,source:"vue",metadata:{rowCount:s.length,columnCount:i.columns.length,extractedAt:new Date}}}function H(c,o=0){return{name:"Extracted Table",columns:c.map(a=>({name:a,type:"string",nullable:!0})),rowCount:o}}class Q{constructor(o,a){this.config={timeout:3e4,...o},a&&(this.qaEngine=new V(a))}initializeQA(o){this.qaEngine=new V(o)}async callTFM(o){const a=Date.now();try{const t=await fetch(this.config.baseUrl,{method:"POST",headers:{"Content-Type":"application/json",...this.config.apiKey&&{Authorization:`Bearer ${this.config.apiKey}`},...this.config.headers},body:JSON.stringify({...o,model:this.config.model}),signal:AbortSignal.timeout(this.config.timeout||3e4)});if(!t.ok){const i=await t.text();throw new Error(`TFM API error: ${t.status} - ${i}`)}const n=await t.json(),s=Date.now()-a;return{success:!0,result:n.result||n,metadata:{processingTime:s,model:this.config.model||"unknown",version:n.version}}}catch(t){return{success:!1,error:t instanceof Error?t.message:"Unknown error",metadata:{processingTime:Date.now()-a,model:this.config.model||"unknown"}}}}async analyze(o){const a={operation:o.type,data:o.data,schema:o.schema,parameters:o.options},t=await this.callTFM(a);if(!t.success)throw new Error(t.error||"Analysis failed");return this.parseAnalysisResult(o.type,t.result,t.metadata)}parseAnalysisResult(o,a,t){const n={type:o,timestamp:new Date,summary:a.summary||"",insights:a.insights||[],recommendations:a.recommendations,confidence:a.confidence||.8,processingTime:t==null?void 0:t.processingTime};switch(o){case"descriptive_stats":return{...n,descriptiveStats:a.stats||a.descriptiveStats};case"anomaly_detection":return{...n,anomalies:a.anomalies||[]};case"segmentation":case"clustering":return{...n,clusters:a.clusters||[]};case"prediction":return{...n,predictions:a.predictions||a};case"correlation":return{...n,correlations:a.correlations||a};case"summary":return{...n,aiSummary:a.summary||a};case"qa":return{...n,qaAnswer:a.answer||a};default:return n}}async askQuestion(o){if(!this.qaEngine)throw new Error("Q&A engine not initialized. Call initializeQA() first.");return this.qaEngine.answerQuestion(o)}async generateSummary(o,a){const t={type:"summary",data:o,schema:a},n=await this.analyze(t);if(!n.aiSummary)throw new Error("Failed to generate summary");return n.aiSummary}extractFromDOM(o){return M(o)}normalizeVueData(o,a,t){return O(o,a,t)}updateConfig(o){this.config={...this.config,...o}}getConfig(){const{apiKey:o,...a}=this.config;return a}}function R(c){const o=new Q(c.config,c.qaConfig),a=e.ref(!1),t=e.ref(null),n=e.ref(null),s=c.data||e.ref([]),i=c.schema||e.ref(null),r=e.ref([]),l=e.ref([]),m=e.ref(null),h=c.maxQuestionHistory||50,d=c.useLocalFallback!==!1;async function f(u,p){a.value=!0,t.value=null;try{const g={type:u,data:s.value,schema:i.value||void 0,options:p},k=await o.analyze(g);return n.value=k,k}catch(g){if(t.value=g instanceof Error?g:new Error("Analysis failed"),d)return y(u,p);throw t.value}finally{a.value=!1}}function y(u,p){const g=i.value||_(s.value);switch(u){case"descriptive_stats":{const k=g.columns.map(N=>x(s.value,N.name,N.type));return{type:u,timestamp:new Date,descriptiveStats:k,summary:`Calculated statistics for ${k.length} columns`,insights:[],confidence:.9}}case"anomaly_detection":{const k=g.columns.filter(S=>S.type==="number").map(S=>S.name),N=I(s.value,k,p==null?void 0:p.sensitivity);return{type:u,timestamp:new Date,anomalies:N,summary:`Found ${N.length} anomalies`,insights:N.slice(0,3).map(S=>S.reasons[0]),confidence:.8}}default:throw new Error(`Local analysis not supported for type: ${u}`)}}async function w(){return(await f("descriptive_stats")).descriptiveStats||[]}async function v(u,p){return(await f("anomaly_detection",{sensitivity:p,features:u})).anomalies||[]}async function b(u,p=3){return f("clustering",{features:u,numClusters:p})}async function A(u,p){return f("prediction",{targetColumn:u,...p})}function E(u){o.updateConfig(u)}function $(u,p=!0){s.value=u,p&&(i.value=_(u))}function D(){a.value=!1,t.value=null,n.value=null,r.value=[],l.value=[],m.value=null}async function C(u,p){a.value=!0,t.value=null;try{const g=i.value||_(s.value),k={question:u,schema:g,data:s.value,sampleSize:100,includeAggregates:!0,...p},S=(await o.askQuestion(k)).answer,P={id:S.questionId,text:u,timestamp:new Date,context:{tableSchema:g,rowCount:s.value.length}};return r.value.push(P),l.value.push(S),m.value=S,r.value.length>h&&(r.value.shift(),l.value.shift()),S}catch(g){throw t.value=g instanceof Error?g:new Error("Q&A failed"),t.value}finally{a.value=!1}}async function B(){a.value=!0,t.value=null;try{const u=i.value||_(s.value);return await o.generateSummary(s.value,u)}catch(u){throw t.value=u instanceof Error?u:new Error("Summary generation failed"),t.value}finally{a.value=!1}}function F(){r.value=[],l.value=[],m.value=null}function z(u){const p=o.extractFromDOM(u);return p&&(s.value=p.data,i.value=p.schema),p}function L(u,p,g){const k=o.normalizeVueData(u,p,g);s.value=k.data,i.value=k.schema}function j(u){o.initializeQA(u)}return{client:o,loading:a,error:t,lastResult:n,data:s,schema:i,questionHistory:r,answerHistory:l,lastAnswer:m,analyze:f,getDescriptiveStats:w,detectAnomalies:v,performClustering:b,predict:A,askQuestion:C,generateSummary:B,clearHistory:F,extractFromDOM:z,loadFromVueGrid:L,updateConfig:E,initializeQA:j,setData:$,reset:D}}const J={class:"ti-question-input"},K={class:"ti-input-wrapper"},U=["placeholder","disabled","onKeydown"],G=["disabled"],Y={key:0},W={key:1,class:"ti-loading"},X={key:0,class:"ti-hint"},Z=e.defineComponent({__name:"QuestionInput",props:{placeholder:{default:"Ask a question about this data..."},submitLabel:{default:"Ask"},loadingLabel:{default:"Processing..."},hint:{default:"Press Enter to submit, Shift+Enter for new line"},showHint:{type:Boolean,default:!0},disabled:{type:Boolean,default:!1},loading:{type:Boolean,default:!1}},emits:["submit"],setup(c,{emit:o}){const a=c,t=o,n=e.ref("");function s(){n.value.trim()&&!a.disabled&&!a.loading&&(t("submit",n.value.trim()),n.value="")}function i(r){}return(r,l)=>(e.openBlock(),e.createElementBlock("div",J,[e.createElementVNode("div",K,[e.withDirectives(e.createElementVNode("textarea",{"onUpdate:modelValue":l[0]||(l[0]=m=>n.value=m),placeholder:r.placeholder,disabled:r.disabled,class:"ti-textarea",rows:"2",onKeydown:[e.withKeys(e.withModifiers(s,["exact","prevent"]),["enter"]),e.withKeys(e.withModifiers(i,["shift"]),["enter"])]},null,40,U),[[e.vModelText,n.value]]),e.createElementVNode("button",{disabled:r.disabled||!n.value.trim(),class:"ti-submit-btn",onClick:s},[r.loading?(e.openBlock(),e.createElementBlock("span",W,e.toDisplayString(r.loadingLabel),1)):(e.openBlock(),e.createElementBlock("span",Y,e.toDisplayString(r.submitLabel),1))],8,G)]),r.showHint?(e.openBlock(),e.createElementBlock("div",X,e.toDisplayString(r.hint),1)):e.createCommentVNode("",!0)]))}}),q=(c,o)=>{const a=c.__vccOpts||c;for(const[t,n]of o)a[t]=n;return a},ee=q(Z,[["__scopeId","data-v-90db5921"]]),te={class:"ti-answer-header"},ne={class:"ti-answer-icon"},oe={key:0},se={key:1},ae={class:"ti-answer-meta"},re={class:"ti-confidence"},ie={class:"ti-timestamp"},le={class:"ti-answer-text"},ce={key:0,class:"ti-approximate-notice"},ue={key:1,class:"ti-reason"},me={key:2,class:"ti-supporting-data"},de={key:0,class:"ti-supporting-content"},pe={key:0,class:"ti-aggregates"},he={key:1,class:"ti-rows"},fe={class:"ti-table-wrapper"},ge={class:"ti-table"},we=e.defineComponent({__name:"AnswerDisplay",props:{answer:{}},setup(c){const o=e.ref(!1);function a(t){return new Date(t).toLocaleTimeString()}return(t,n)=>(e.openBlock(),e.createElementBlock("div",{class:e.normalizeClass(["ti-answer-display",{"ti-cannot-answer":t.answer.cannotAnswer}])},[e.createElementVNode("div",te,[e.createElementVNode("div",ne,[t.answer.cannotAnswer?(e.openBlock(),e.createElementBlock("span",se,"â ī¸")):(e.openBlock(),e.createElementBlock("span",oe,"đĄ"))]),e.createElementVNode("div",ae,[e.createElementVNode("div",re," Confidence: "+e.toDisplayString(Math.round(t.answer.confidence*100))+"% ",1),e.createElementVNode("div",ie,e.toDisplayString(a(t.answer.timestamp)),1)])]),e.createElementVNode("div",le,e.toDisplayString(t.answer.text),1),t.answer.isApproximate?(e.openBlock(),e.createElementBlock("div",ce," âšī¸ This answer is based on sampled data and may be approximate. ")):e.createCommentVNode("",!0),t.answer.reason&&t.answer.cannotAnswer?(e.openBlock(),e.createElementBlock("div",ue,[n[1]||(n[1]=e.createElementVNode("strong",null,"Reason:",-1)),e.createTextVNode(" "+e.toDisplayString(t.answer.reason),1)])):e.createCommentVNode("",!0),t.answer.supportingData?(e.openBlock(),e.createElementBlock("div",me,[e.createElementVNode("button",{class:"ti-toggle-btn",onClick:n[0]||(n[0]=s=>o.value=!o.value)},e.toDisplayString(o.value?"âŧ":"âļ")+" Supporting Data ",1),o.value?(e.openBlock(),e.createElementBlock("div",de,[t.answer.supportingData.aggregates?(e.openBlock(),e.createElementBlock("div",pe,[n[2]||(n[2]=e.createElementVNode("h4",null,"Aggregates:",-1)),e.createElementVNode("pre",null,e.toDisplayString(JSON.stringify(t.answer.supportingData.aggregates,null,2)),1)])):e.createCommentVNode("",!0),t.answer.supportingData.rows&&t.answer.supportingData.rows.length>0?(e.openBlock(),e.createElementBlock("div",he,[e.createElementVNode("h4",null,"Sample Rows ("+e.toDisplayString(t.answer.supportingData.rows.length)+"):",1),e.createElementVNode("div",fe,[e.createElementVNode("table",ge,[e.createElementVNode("thead",null,[e.createElementVNode("tr",null,[(e.openBlock(!0),e.createElementBlock(e.Fragment,null,e.renderList(Object.keys(t.answer.supportingData.rows[0]),(s,i)=>(e.openBlock(),e.createElementBlock("th",{key:i},e.toDisplayString(s),1))),128))])]),e.createElementVNode("tbody",null,[(e.openBlock(!0),e.createElementBlock(e.Fragment,null,e.renderList(t.answer.supportingData.rows.slice(0,5),(s,i)=>(e.openBlock(),e.createElementBlock("tr",{key:i},[(e.openBlock(!0),e.createElementBlock(e.Fragment,null,e.renderList(Object.keys(s),(r,l)=>(e.openBlock(),e.createElementBlock("td",{key:l},e.toDisplayString(s[r]),1))),128))]))),128))])])])])):e.createCommentVNode("",!0)])):e.createCommentVNode("",!0)])):e.createCommentVNode("",!0)],2))}}),ye=q(we,[["__scopeId","data-v-d1aaae1d"]]),ve={class:"ti-question-history"},ke={class:"ti-history-header"},be={key:0,class:"ti-empty-state"},Ee={key:1,class:"ti-history-list"},Se=["onClick"],Ae={class:"ti-question-header"},De={class:"ti-question-number"},Ne={class:"ti-question-time"},_e={class:"ti-question-text"},Be={key:0,class:"ti-question-context"},Ce=e.defineComponent({__name:"QuestionHistory",props:{questions:{}},emits:["clear","select"],setup(c,{emit:o}){const a=c,t=e.computed(()=>[...a.questions].reverse());function n(s){const i=new Date(s),l=new Date().getTime()-i.getTime(),m=Math.floor(l/6e4),h=Math.floor(l/36e5),d=Math.floor(l/864e5);return m<1?"Just now":m<60?`${m}m ago`:h<24?`${h}h ago`:`${d}d ago`}return(s,i)=>(e.openBlock(),e.createElementBlock("div",ve,[e.createElementVNode("div",ke,[i[1]||(i[1]=e.createElementVNode("h3",null,"Question History",-1)),s.questions.length>0?(e.openBlock(),e.createElementBlock("button",{key:0,class:"ti-clear-btn",onClick:i[0]||(i[0]=r=>s.$emit("clear"))}," Clear History ")):e.createCommentVNode("",!0)]),s.questions.length===0?(e.openBlock(),e.createElementBlock("div",be,i[2]||(i[2]=[e.createElementVNode("div",{class:"ti-empty-icon"},"đŦ",-1),e.createElementVNode("p",null,"No questions asked yet",-1),e.createElementVNode("p",{class:"ti-empty-hint"},"Ask a question about your data to get started",-1)]))):(e.openBlock(),e.createElementBlock("div",Ee,[(e.openBlock(!0),e.createElementBlock(e.Fragment,null,e.renderList(t.value,(r,l)=>(e.openBlock(),e.createElementBlock("div",{key:r.id,class:"ti-history-item",onClick:m=>s.$emit("select",r)},[e.createElementVNode("div",Ae,[e.createElementVNode("span",De,"#"+e.toDisplayString(s.questions.length-l),1),e.createElementVNode("span",Ne,e.toDisplayString(n(r.timestamp)),1)]),e.createElementVNode("div",_e,e.toDisplayString(r.text),1),r.context?(e.openBlock(),e.createElementBlock("div",Be,e.toDisplayString(r.context.rowCount)+" rows ",1)):e.createCommentVNode("",!0)],8,Se))),128))]))]))}}),$e=q(Ce,[["__scopeId","data-v-c66393d9"]]);exports.AnswerDisplay=ye;exports.QAEngine=V;exports.QuestionHistory=$e;exports.QuestionInput=ee;exports.TabularIntelligence=Q;exports.calculateStats=x;exports.detectAnomalies=I;exports.extractFromDOM=M;exports.inferColumnType=T;exports.inferSchema=_;exports.normalizeVueData=O;exports.useTabularIntelligence=R;
|
|
2
31
|
//# sourceMappingURL=index.js.map
|