@ai.ntellect/core 0.6.0 → 0.6.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/create-llm-to-select-multiple-graph copy.ts +243 -0
- package/create-llm-to-select-multiple-graph.ts +148 -0
- package/graph/controller.ts +4 -0
- package/graph/engine.ts +244 -163
- package/index copy.ts +81 -0
- package/package.json +1 -1
- package/test/graph/engine.test.ts +27 -44
- package/tsconfig.json +1 -1
- package/types/index.ts +11 -3
- package/utils/setup-graphs.ts +45 -0
- package/utils/stringifiy-zod-schema.ts +45 -0
- package/utils/generate-object.js +0 -111
- package/utils/header-builder.js +0 -34
- package/utils/inject-actions.js +0 -16
- package/utils/queue-item-transformer.js +0 -24
- package/utils/sanitize-results.js +0 -60
- package/utils/schema-generator.js +0 -46
- package/utils/schema-generator.ts +0 -73
- package/utils/state-manager.js +0 -20
- package/utils/state-manager.ts +0 -30
@@ -0,0 +1,243 @@
|
|
1
|
+
import { openai } from "@ai-sdk/openai";
|
2
|
+
import { streamObject } from "ai";
|
3
|
+
import { parseEther } from "ethers";
|
4
|
+
import { z } from "zod";
|
5
|
+
import { GraphEngine } from "./graph/engine";
|
6
|
+
import { networkConfigs } from "./index copy";
|
7
|
+
import { Action, GraphDefinition, SharedState } from "./types";
|
8
|
+
import { setupGraphsWithActions } from "./utils/setup-graphs";
|
9
|
+
import { stringifyZodSchema } from "./utils/stringifiy-zod-schema";
|
10
|
+
// ---- I. Create a simple workflow ----
|
11
|
+
// 1. Define the context
|
12
|
+
type MainContext = {
|
13
|
+
messages: string;
|
14
|
+
reasoning?: boolean;
|
15
|
+
actions?: Action[];
|
16
|
+
};
|
17
|
+
|
18
|
+
type ContextA = {
|
19
|
+
to: string;
|
20
|
+
value: string;
|
21
|
+
chain: {
|
22
|
+
id: number;
|
23
|
+
rpc: string;
|
24
|
+
};
|
25
|
+
type: string;
|
26
|
+
};
|
27
|
+
|
28
|
+
type ContextB = {
|
29
|
+
messages: string;
|
30
|
+
};
|
31
|
+
|
32
|
+
// // 2. Define the graph
|
33
|
+
|
34
|
+
// ---- II. Create an LLM to select the
|
35
|
+
|
36
|
+
// 2. Define the graph with a name
|
37
|
+
const graphDefinitionA: GraphDefinition<ContextA> = {
|
38
|
+
name: "prepare-evm-transaction", // Assign a name to match the workflow
|
39
|
+
entryNode: "prepare-evm-transaction",
|
40
|
+
nodes: {
|
41
|
+
"prepare-evm-transaction": {
|
42
|
+
name: "prepare-evm-transaction",
|
43
|
+
description: "Prepare a transaction for the user to sign.",
|
44
|
+
schema: z.object({
|
45
|
+
to: z.string(),
|
46
|
+
value: z
|
47
|
+
.string()
|
48
|
+
.describe("Ask the user for the amount to send, if not specified"),
|
49
|
+
chain: z
|
50
|
+
.string()
|
51
|
+
.describe(
|
52
|
+
"Examples networks: ethereum, arbitrum, base. IMPORTANT: You must respect the network name."
|
53
|
+
),
|
54
|
+
}),
|
55
|
+
execute: async (params, state) => {
|
56
|
+
console.log("💰 Prepare transaction", { params, state });
|
57
|
+
const networkConfig = networkConfigs[params.chain.toLowerCase()];
|
58
|
+
|
59
|
+
if (!networkConfig) {
|
60
|
+
throw new Error(`Network ${params.chain} not found`);
|
61
|
+
}
|
62
|
+
|
63
|
+
return {
|
64
|
+
to: params.to,
|
65
|
+
value: parseEther(params.value).toString(),
|
66
|
+
chain: {
|
67
|
+
id: networkConfig.id || 0,
|
68
|
+
rpc: networkConfig.rpc,
|
69
|
+
},
|
70
|
+
type: "transfer",
|
71
|
+
};
|
72
|
+
},
|
73
|
+
},
|
74
|
+
},
|
75
|
+
};
|
76
|
+
|
77
|
+
const graphDefinitionB: GraphDefinition<ContextB> = {
|
78
|
+
name: "security-analysis",
|
79
|
+
entryNode: "security-analysis",
|
80
|
+
nodes: {
|
81
|
+
"security-analysis": {
|
82
|
+
name: "security-analysis",
|
83
|
+
description: "Get news",
|
84
|
+
execute: async () => {
|
85
|
+
return { messages: "Hello, world!" };
|
86
|
+
},
|
87
|
+
relationships: [{ name: "end" }],
|
88
|
+
},
|
89
|
+
end: {
|
90
|
+
name: "end",
|
91
|
+
description: "End the graph",
|
92
|
+
execute: async () => {
|
93
|
+
return {
|
94
|
+
messages:
|
95
|
+
"Here the security analysis of Bitcoin: Bitcoin is a good investment",
|
96
|
+
};
|
97
|
+
},
|
98
|
+
},
|
99
|
+
},
|
100
|
+
};
|
101
|
+
// 3. Define the initial state
|
102
|
+
const initialState: SharedState<MainContext> = {
|
103
|
+
messages: "",
|
104
|
+
reasoning: true,
|
105
|
+
};
|
106
|
+
type CombinedContext = ContextA | ContextB;
|
107
|
+
|
108
|
+
const graphMaps: GraphDefinition<CombinedContext>[] = [
|
109
|
+
graphDefinitionA as GraphDefinition<CombinedContext>,
|
110
|
+
graphDefinitionB as GraphDefinition<CombinedContext>,
|
111
|
+
// Add other graphs
|
112
|
+
];
|
113
|
+
|
114
|
+
// ---- II. Create a node with LLM
|
115
|
+
(async () => {
|
116
|
+
const prompt = "je veux envoyer 0.0001 eth à 0x123 sur ethereum";
|
117
|
+
// Dynamically extract start nodes from each graph definition in graphMaps
|
118
|
+
|
119
|
+
const reasoningGraphDefinition: GraphDefinition<MainContext> = {
|
120
|
+
name: "reasoning",
|
121
|
+
entryNode: "reasoning",
|
122
|
+
nodes: {
|
123
|
+
reasoning: {
|
124
|
+
name: "reasoning",
|
125
|
+
description: "Reasoning",
|
126
|
+
execute: async (params, state) => {
|
127
|
+
console.log("Reasoning", { params, state });
|
128
|
+
const startNodesSchema = graphMaps.map(
|
129
|
+
(graphDefinition) =>
|
130
|
+
graphDefinition.nodes[graphDefinition.entryNode]
|
131
|
+
);
|
132
|
+
|
133
|
+
// Pass the start nodes into stringifyZodSchema
|
134
|
+
|
135
|
+
const system = `You are a wallet assistant. Don't reuse the same workflow multiple times.
|
136
|
+
Here the available workflows and parameters:
|
137
|
+
workflows:${stringifyZodSchema(startNodesSchema)}`;
|
138
|
+
console.log(system);
|
139
|
+
|
140
|
+
const llm = await streamObject({
|
141
|
+
model: openai("gpt-4o"),
|
142
|
+
prompt,
|
143
|
+
schema: z.object({
|
144
|
+
actions: z.array(
|
145
|
+
z.object({
|
146
|
+
name: z.string(),
|
147
|
+
parameters: z.array(
|
148
|
+
z.object({
|
149
|
+
name: z.string(),
|
150
|
+
value: z.any(),
|
151
|
+
})
|
152
|
+
),
|
153
|
+
})
|
154
|
+
),
|
155
|
+
response: z.string(),
|
156
|
+
}),
|
157
|
+
system,
|
158
|
+
});
|
159
|
+
console.dir(llm.object, { depth: null });
|
160
|
+
|
161
|
+
for await (const chunk of llm.partialObjectStream) {
|
162
|
+
if (chunk.response) {
|
163
|
+
// console.log(chunk.response);
|
164
|
+
}
|
165
|
+
}
|
166
|
+
|
167
|
+
const actions = (await llm.object).actions;
|
168
|
+
console.log({ actions });
|
169
|
+
|
170
|
+
const selectedWorkflows = (await llm.object).actions as Action[];
|
171
|
+
return {
|
172
|
+
messages: "Hello, world!",
|
173
|
+
actions: selectedWorkflows,
|
174
|
+
};
|
175
|
+
},
|
176
|
+
condition: (state) => {
|
177
|
+
return state.reasoning === true;
|
178
|
+
},
|
179
|
+
relationships: [{ name: "actions" }],
|
180
|
+
},
|
181
|
+
actions: {
|
182
|
+
name: "actions",
|
183
|
+
description: "Actions",
|
184
|
+
execute: async (parameters, state) => {
|
185
|
+
if (!state.actions) {
|
186
|
+
throw new Error("No actions found");
|
187
|
+
}
|
188
|
+
const baseStateMapping: Record<
|
189
|
+
string,
|
190
|
+
SharedState<CombinedContext>
|
191
|
+
> = {
|
192
|
+
"prepare-evm-transaction": initialState,
|
193
|
+
// Add other workflows and their base states as needed
|
194
|
+
};
|
195
|
+
|
196
|
+
const {
|
197
|
+
initialStates,
|
198
|
+
graphs: selectedGraphs,
|
199
|
+
startNodes,
|
200
|
+
} = setupGraphsWithActions(
|
201
|
+
state.actions,
|
202
|
+
baseStateMapping,
|
203
|
+
graphMaps
|
204
|
+
);
|
205
|
+
|
206
|
+
// Execute graphs with dynamically determined initial states
|
207
|
+
const results =
|
208
|
+
await GraphEngine.executeGraphsInSequence<CombinedContext>(
|
209
|
+
selectedGraphs,
|
210
|
+
startNodes,
|
211
|
+
initialStates,
|
212
|
+
(graph) => {
|
213
|
+
console.log(`Graph ${graph.name} updated`, graph.getState());
|
214
|
+
},
|
215
|
+
(error, nodeName, state) => {
|
216
|
+
console.error(`Erreur dans ${nodeName}`, error, state);
|
217
|
+
}
|
218
|
+
);
|
219
|
+
|
220
|
+
console.log({ results });
|
221
|
+
|
222
|
+
return {
|
223
|
+
messages: "Hello, world!",
|
224
|
+
results,
|
225
|
+
};
|
226
|
+
},
|
227
|
+
condition: (state) => {
|
228
|
+
if (
|
229
|
+
state.reasoning === true &&
|
230
|
+
state.actions &&
|
231
|
+
state.actions.length > 0
|
232
|
+
) {
|
233
|
+
return true;
|
234
|
+
}
|
235
|
+
return false;
|
236
|
+
},
|
237
|
+
},
|
238
|
+
},
|
239
|
+
};
|
240
|
+
|
241
|
+
const reasoningGraph = new GraphEngine(reasoningGraphDefinition);
|
242
|
+
await reasoningGraph.execute(initialState, "reasoning");
|
243
|
+
})();
|
@@ -0,0 +1,148 @@
|
|
1
|
+
import { openai } from "@ai-sdk/openai";
|
2
|
+
import { streamObject } from "ai";
|
3
|
+
import { z } from "zod";
|
4
|
+
import { GraphEngine } from "./graph/engine";
|
5
|
+
import { Action, GraphDefinition, Node, SharedState } from "./types";
|
6
|
+
import { setupGraphsWithActions } from "./utils/setup-graphs";
|
7
|
+
import { stringifyZodSchema } from "./utils/stringifiy-zod-schema";
|
8
|
+
|
9
|
+
// ---- I. Create a simple workflow ----
|
10
|
+
// 1. Define the context
|
11
|
+
type Context = {
|
12
|
+
messages: string;
|
13
|
+
};
|
14
|
+
|
15
|
+
// // 2. Define the graph
|
16
|
+
|
17
|
+
// ---- II. Create an LLM to select the
|
18
|
+
|
19
|
+
// 2. Define the graph with a name
|
20
|
+
const graphDefinitionA: GraphDefinition<Context> = {
|
21
|
+
name: "get-news", // Assign a name to match the workflow
|
22
|
+
entryNode: "get-news",
|
23
|
+
nodes: {
|
24
|
+
"get-news": {
|
25
|
+
name: "get-news",
|
26
|
+
description: "Get news",
|
27
|
+
schema: z.object({
|
28
|
+
query: z.string(),
|
29
|
+
}),
|
30
|
+
execute: async () => {
|
31
|
+
return { messages: "Hello, world!" };
|
32
|
+
},
|
33
|
+
relationships: [{ name: "end" }],
|
34
|
+
},
|
35
|
+
end: {
|
36
|
+
name: "end",
|
37
|
+
description: "End the graph",
|
38
|
+
execute: async () => {
|
39
|
+
return { messages: "Goodbye, world!" };
|
40
|
+
},
|
41
|
+
},
|
42
|
+
},
|
43
|
+
};
|
44
|
+
|
45
|
+
const graphDefinitionB: GraphDefinition<Context> = {
|
46
|
+
name: "security-analysis",
|
47
|
+
entryNode: "security-analysis",
|
48
|
+
nodes: {
|
49
|
+
"security-analysis": {
|
50
|
+
name: "security-analysis",
|
51
|
+
description: "Get news",
|
52
|
+
execute: async () => {
|
53
|
+
return { messages: "Hello, world!" };
|
54
|
+
},
|
55
|
+
relationships: [{ name: "end" }],
|
56
|
+
},
|
57
|
+
end: {
|
58
|
+
name: "end",
|
59
|
+
description: "End the graph",
|
60
|
+
execute: async () => {
|
61
|
+
return { messages: "Goodbye, world!" };
|
62
|
+
},
|
63
|
+
},
|
64
|
+
},
|
65
|
+
};
|
66
|
+
// 3. Define the initial state
|
67
|
+
const initialState: SharedState<Context> = {
|
68
|
+
messages: "",
|
69
|
+
};
|
70
|
+
|
71
|
+
// 3. Define the initial state
|
72
|
+
const initialStateB: SharedState<Context> = {
|
73
|
+
messages: "",
|
74
|
+
};
|
75
|
+
const graphMaps = [graphDefinitionA, graphDefinitionB];
|
76
|
+
|
77
|
+
// ---- II. Create a node with LLM
|
78
|
+
(async () => {
|
79
|
+
const prompt =
|
80
|
+
"Salut quelles sont les news sur bitcoin ? et fais une analyse de sécurité";
|
81
|
+
// Dynamically extract start nodes from each graph definition in graphMaps
|
82
|
+
const startNodesSchema = graphMaps.map(
|
83
|
+
(graphDefinition) => graphDefinition.nodes[graphDefinition.entryNode]
|
84
|
+
);
|
85
|
+
|
86
|
+
// Pass the start nodes into stringifyZodSchema
|
87
|
+
const system = `You can select multiple workflows.
|
88
|
+
Here the available workflows and parameters:
|
89
|
+
workflows:${stringifyZodSchema(startNodesSchema)}`;
|
90
|
+
console.log(system);
|
91
|
+
|
92
|
+
const llm = await streamObject({
|
93
|
+
model: openai("gpt-4o"),
|
94
|
+
prompt,
|
95
|
+
schema: z.object({
|
96
|
+
actions: z.array(
|
97
|
+
z.object({
|
98
|
+
name: z.string(),
|
99
|
+
parameters: z.array(
|
100
|
+
z.object({
|
101
|
+
name: z.string(),
|
102
|
+
value: z.any(),
|
103
|
+
})
|
104
|
+
),
|
105
|
+
})
|
106
|
+
),
|
107
|
+
response: z.string(),
|
108
|
+
}),
|
109
|
+
system,
|
110
|
+
});
|
111
|
+
|
112
|
+
for await (const chunk of llm.partialObjectStream) {
|
113
|
+
if (chunk.response) {
|
114
|
+
console.log(chunk.response);
|
115
|
+
}
|
116
|
+
}
|
117
|
+
|
118
|
+
const actions = (await llm.object).actions;
|
119
|
+
console.log(actions);
|
120
|
+
|
121
|
+
const selectedWorkflows = (await llm.object).actions as Action[];
|
122
|
+
console.dir(llm.object, { depth: null });
|
123
|
+
// Define the base states
|
124
|
+
const baseStateMapping: Record<string, SharedState<Context>> = {
|
125
|
+
"get-news": initialState,
|
126
|
+
"security-analysis": initialStateB,
|
127
|
+
// Add other workflows and their base states as needed
|
128
|
+
};
|
129
|
+
|
130
|
+
const {
|
131
|
+
initialStates,
|
132
|
+
graphs: selectedGraphs,
|
133
|
+
startNodes,
|
134
|
+
} = setupGraphsWithActions(selectedWorkflows, baseStateMapping, graphMaps);
|
135
|
+
|
136
|
+
// Execute graphs with dynamically determined initial states
|
137
|
+
GraphEngine.executeGraphsInParallel<Context>(
|
138
|
+
selectedGraphs,
|
139
|
+
startNodes,
|
140
|
+
initialStates,
|
141
|
+
(graph) => {
|
142
|
+
console.log(`Graph ${graph.name} updated`, graph.getState());
|
143
|
+
},
|
144
|
+
(error, nodeName, state) => {
|
145
|
+
console.error(`Erreur dans ${nodeName}`, error, state);
|
146
|
+
}
|
147
|
+
);
|
148
|
+
})();
|
package/graph/controller.ts
CHANGED
@@ -34,6 +34,8 @@ export class GraphController<T> {
|
|
34
34
|
autoDetectCycles: true,
|
35
35
|
});
|
36
36
|
|
37
|
+
console.log("graph", graph);
|
38
|
+
|
37
39
|
// Construct the initial state from action parameters.
|
38
40
|
const initialState = {
|
39
41
|
context: action.parameters.reduce(
|
@@ -45,6 +47,8 @@ export class GraphController<T> {
|
|
45
47
|
),
|
46
48
|
};
|
47
49
|
|
50
|
+
console.log("initialState", initialState);
|
51
|
+
|
48
52
|
// Execute the graph starting from the defined entry node.
|
49
53
|
await graph.execute(initialState, graphDefinition.entryNode);
|
50
54
|
|