@ai.ntellect/core 0.1.97 ā 0.1.98
Sign up to get free protection for your applications and to get access to all the features.
- package/dist/agent/index.d.ts +20 -4
- package/dist/agent/index.js +28 -46
- package/dist/llm/evaluator/context.d.ts +8 -6
- package/dist/llm/evaluator/context.js +25 -32
- package/dist/llm/evaluator/index.d.ts +4 -2
- package/dist/llm/evaluator/index.js +58 -27
- package/dist/llm/orchestrator/context.d.ts +7 -6
- package/dist/llm/orchestrator/context.js +14 -17
- package/dist/llm/orchestrator/index.d.ts +21 -4
- package/dist/llm/orchestrator/index.js +79 -20
- package/dist/llm/synthesizer/context.d.ts +12 -7
- package/dist/llm/synthesizer/context.js +51 -34
- package/dist/llm/synthesizer/index.d.ts +7 -5
- package/dist/llm/synthesizer/index.js +63 -16
- package/dist/memory/cache.d.ts +2 -2
- package/dist/memory/cache.js +35 -21
- package/dist/memory/persistent.js +20 -18
- package/dist/services/queue.js +19 -10
- package/dist/test.d.ts +45 -0
- package/dist/test.js +106 -5
- package/dist/types.d.ts +8 -1
- package/dist/utils/inject-actions.js +7 -1
- package/llm/orchestrator/context.ts +1 -1
- package/llm/synthesizer/index.ts +1 -1
- package/package.json +1 -1
package/dist/agent/index.d.ts
CHANGED
@@ -1,10 +1,26 @@
|
|
1
1
|
import { Orchestrator } from "../llm/orchestrator";
|
2
2
|
import { CacheMemory } from "../memory/cache";
|
3
3
|
import { PersistentMemory } from "../memory/persistent";
|
4
|
-
import { AgentEvent, User } from "../types";
|
4
|
+
import { ActionSchema, AgentEvent, QueueResult, User } from "../types";
|
5
|
+
export type State = {
|
6
|
+
behavior: {
|
7
|
+
role: string;
|
8
|
+
language: string;
|
9
|
+
guidelines: {
|
10
|
+
important: string[];
|
11
|
+
warnings: string[];
|
12
|
+
steps?: string[];
|
13
|
+
};
|
14
|
+
};
|
15
|
+
userRequest: string;
|
16
|
+
actions: ActionSchema[];
|
17
|
+
results: QueueResult[];
|
18
|
+
examplesMessages?: {
|
19
|
+
role: string;
|
20
|
+
content: string;
|
21
|
+
}[];
|
22
|
+
};
|
5
23
|
export declare class Agent {
|
6
|
-
private readonly SIMILARITY_THRESHOLD;
|
7
|
-
private readonly MAX_RESULTS;
|
8
24
|
private readonly actionHandler;
|
9
25
|
private readonly user;
|
10
26
|
private readonly orchestrator;
|
@@ -22,7 +38,7 @@ export declare class Agent {
|
|
22
38
|
stream: boolean;
|
23
39
|
maxEvaluatorIteration: number;
|
24
40
|
});
|
25
|
-
process(prompt: string,
|
41
|
+
process(prompt: string, events: AgentEvent): Promise<any>;
|
26
42
|
private handleActions;
|
27
43
|
private handleActionResults;
|
28
44
|
private transformActions;
|
package/dist/agent/index.js
CHANGED
@@ -9,8 +9,6 @@ const sanitize_results_1 = require("../utils/sanitize-results");
|
|
9
9
|
const ActionHandler_1 = require("./handlers/ActionHandler");
|
10
10
|
class Agent {
|
11
11
|
constructor({ user, orchestrator, persistentMemory, cacheMemory, stream, maxEvaluatorIteration = 1, }) {
|
12
|
-
this.SIMILARITY_THRESHOLD = 95;
|
13
|
-
this.MAX_RESULTS = 1;
|
14
12
|
this.evaluatorIteration = 0;
|
15
13
|
this.accumulatedResults = [];
|
16
14
|
this.user = user;
|
@@ -22,37 +20,25 @@ class Agent {
|
|
22
20
|
this.actionHandler = new ActionHandler_1.ActionHandler();
|
23
21
|
this.accumulatedResults = [];
|
24
22
|
}
|
25
|
-
async process(prompt,
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
}
|
35
|
-
if (similarActions.length > 0) {
|
36
|
-
actions = queue_item_transformer_1.QueueItemTransformer.transformActionsToQueueItems(similarActions[0].data);
|
37
|
-
isSimilar = true;
|
38
|
-
}
|
39
|
-
}
|
40
|
-
if (!actions?.length && !isSimilar) {
|
41
|
-
console.log("No similar actions found in cache for query: ", prompt);
|
42
|
-
console.log("Requesting orchestrator for actions..");
|
43
|
-
const request = await this.orchestrator.process(contextualizedPrompt);
|
44
|
-
events.onMessage?.(request);
|
45
|
-
actions = request.actions;
|
23
|
+
async process(prompt, events) {
|
24
|
+
console.log("Requesting orchestrator for actions..");
|
25
|
+
const request = await this.orchestrator.process(prompt, this.accumulatedResults);
|
26
|
+
events.onMessage?.(request);
|
27
|
+
const isOnChainAction = request.actions.some((action) => action.type === "on-chain");
|
28
|
+
if (isOnChainAction) {
|
29
|
+
return {
|
30
|
+
data: this.accumulatedResults,
|
31
|
+
initialPrompt: prompt,
|
32
|
+
};
|
46
33
|
}
|
47
|
-
return actions
|
34
|
+
return request.actions.length > 0
|
48
35
|
? this.handleActions({
|
49
36
|
initialPrompt: prompt,
|
50
|
-
|
51
|
-
actions: actions,
|
37
|
+
actions: request.actions,
|
52
38
|
}, events)
|
53
39
|
: undefined;
|
54
40
|
}
|
55
|
-
async handleActions({ initialPrompt,
|
41
|
+
async handleActions({ initialPrompt, actions, }, events) {
|
56
42
|
const queueItems = this.transformActions(actions);
|
57
43
|
const actionsResult = await this.actionHandler.executeActions(queueItems, this.orchestrator.tools, {
|
58
44
|
onQueueStart: events.onQueueStart,
|
@@ -74,23 +60,16 @@ class Agent {
|
|
74
60
|
const evaluator = new evaluator_1.Evaluator(this.orchestrator.tools, this.persistentMemory);
|
75
61
|
console.log("Accumulated results:");
|
76
62
|
console.dir(this.accumulatedResults, { depth: null });
|
77
|
-
const sanitizedResults =
|
78
|
-
const evaluation = await evaluator.process(initialPrompt,
|
63
|
+
// const sanitizedResults = ResultSanitizer.sanitize(this.accumulatedResults);
|
64
|
+
const evaluation = await evaluator.process(initialPrompt, this.accumulatedResults);
|
79
65
|
events.onMessage?.(evaluation);
|
80
66
|
if (evaluation.isNextActionNeeded) {
|
81
67
|
this.evaluatorIteration++;
|
82
68
|
return this.handleActions({
|
83
|
-
initialPrompt:
|
84
|
-
contextualizedPrompt: initialPrompt,
|
69
|
+
initialPrompt: initialPrompt,
|
85
70
|
actions: evaluation.nextActionsNeeded,
|
86
71
|
}, events);
|
87
72
|
}
|
88
|
-
if (!this.actionHandler.hasNonPrepareActions(this.accumulatedResults)) {
|
89
|
-
return {
|
90
|
-
data: this.accumulatedResults,
|
91
|
-
initialPrompt,
|
92
|
-
};
|
93
|
-
}
|
94
73
|
return this.handleActionResults({
|
95
74
|
data: this.accumulatedResults,
|
96
75
|
initialPrompt,
|
@@ -101,19 +80,22 @@ class Agent {
|
|
101
80
|
const sanitizedResults = sanitize_results_1.ResultSanitizer.sanitize(this.accumulatedResults);
|
102
81
|
const summaryData = JSON.stringify({
|
103
82
|
result: sanitizedResults,
|
104
|
-
initialPrompt: actionsResult.initialPrompt,
|
105
83
|
});
|
106
84
|
this.accumulatedResults = [];
|
107
85
|
this.evaluatorIteration = 0;
|
108
|
-
|
109
|
-
|
110
|
-
|
111
|
-
|
112
|
-
|
113
|
-
|
86
|
+
for (const action of actionsResult.data) {
|
87
|
+
if (!action.error) {
|
88
|
+
await this.cacheMemory?.createMemory({
|
89
|
+
content: actionsResult.initialPrompt,
|
90
|
+
data: action.result,
|
91
|
+
scope: types_1.MemoryScope.GLOBAL,
|
92
|
+
type: types_1.MemoryType.ACTION,
|
93
|
+
});
|
94
|
+
}
|
95
|
+
}
|
114
96
|
return this.stream
|
115
|
-
? (await synthesizer.streamProcess(summaryData)).toDataStreamResponse()
|
116
|
-
: await synthesizer.process(
|
97
|
+
? (await synthesizer.streamProcess(actionsResult.initialPrompt, summaryData)).toDataStreamResponse()
|
98
|
+
: await synthesizer.process(actionsResult.initialPrompt, this.accumulatedResults);
|
117
99
|
}
|
118
100
|
transformActions(actions) {
|
119
101
|
let predefinedActions = queue_item_transformer_1.QueueItemTransformer.transformActionsToQueueItems(actions) || [];
|
@@ -1,9 +1,11 @@
|
|
1
|
-
import { ActionSchema } from "../../types";
|
2
1
|
export declare const evaluatorContext: {
|
3
|
-
|
4
|
-
|
5
|
-
|
6
|
-
|
2
|
+
behavior: {
|
3
|
+
language: string;
|
4
|
+
role: string;
|
5
|
+
guidelines: {
|
6
|
+
important: string[];
|
7
|
+
warnings: string[];
|
8
|
+
steps: string[];
|
9
|
+
};
|
7
10
|
};
|
8
|
-
compose: (goal: string, results: string, tools: ActionSchema[]) => string;
|
9
11
|
};
|
@@ -1,38 +1,31 @@
|
|
1
1
|
"use strict";
|
2
2
|
Object.defineProperty(exports, "__esModule", { value: true });
|
3
3
|
exports.evaluatorContext = void 0;
|
4
|
-
const inject_actions_1 = require("../../utils/inject-actions");
|
5
4
|
exports.evaluatorContext = {
|
6
|
-
|
7
|
-
|
8
|
-
|
9
|
-
|
10
|
-
|
11
|
-
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
1. Success status with explanation (no action needed)
|
32
|
-
2. Next actions needed (if any)
|
33
|
-
3. Why you are doing the next actions or why you are not doing them
|
34
|
-
4. Extract relevant information to remember
|
35
|
-
5. For each facts, generate a memoryType (3 memory types: episodic, semantic, procedural)
|
36
|
-
`;
|
5
|
+
behavior: {
|
6
|
+
language: "user_language",
|
7
|
+
role: "Your role is to verify if the goal has been achieved and make a response or suggest next actions.",
|
8
|
+
guidelines: {
|
9
|
+
important: [
|
10
|
+
"Verify if all required actions were executed successfully.",
|
11
|
+
"Check if the results align with the initial goal.",
|
12
|
+
"Identify and extract additional relevant information naturally during the process. Examples:",
|
13
|
+
" - Link a token symbol (e.g., 'USDC') to its address (e.g., '0xA0b8...6EB48').",
|
14
|
+
" - Associate a wallet address (e.g., '0x1234...abcd') to a user-friendly name (e.g., 'Work Wallet').",
|
15
|
+
" - Map a token address (e.g., '0x6B17...71d0F') back to its symbol or name (e.g., 'DAI').",
|
16
|
+
"Store these facts in memory with their type (episodic, semantic, or procedural).",
|
17
|
+
],
|
18
|
+
warnings: [
|
19
|
+
"NEVER modify the results directly.",
|
20
|
+
"NEVER make assumptions about missing data.",
|
21
|
+
"NEVER repeat actions already completed unless explicitly required.",
|
22
|
+
],
|
23
|
+
steps: [
|
24
|
+
"Verify success: Confirm if the goal has been fully or partially achieved. If partially, describe what's missing.",
|
25
|
+
"Recommend next actions: Clearly state what needs to be done next (if applicable) and why.",
|
26
|
+
"Store key facts: Store any relevant information in memory with their type (episodic, semantic, or procedural).",
|
27
|
+
"Be clear, concise, and prioritize storing key facts that may help improve future interactions.",
|
28
|
+
],
|
29
|
+
},
|
37
30
|
},
|
38
31
|
};
|
@@ -1,9 +1,11 @@
|
|
1
|
+
import { State } from "../../agent";
|
1
2
|
import { PersistentMemory } from "../../memory/persistent";
|
2
|
-
import { ActionSchema } from "../../types";
|
3
|
+
import { ActionSchema, QueueResult } from "../../types";
|
3
4
|
export declare class Evaluator {
|
4
5
|
private readonly model;
|
5
6
|
tools: ActionSchema[];
|
6
7
|
private memory;
|
7
8
|
constructor(tools: ActionSchema[], memory: PersistentMemory);
|
8
|
-
|
9
|
+
composeContext(state: State): string;
|
10
|
+
process(prompt: string, results: QueueResult[]): Promise<any>;
|
9
11
|
}
|
@@ -5,6 +5,7 @@ const openai_1 = require("@ai-sdk/openai");
|
|
5
5
|
const ai_1 = require("ai");
|
6
6
|
const zod_1 = require("zod");
|
7
7
|
const types_1 = require("../../types");
|
8
|
+
const inject_actions_1 = require("../../utils/inject-actions");
|
8
9
|
const context_1 = require("./context");
|
9
10
|
class Evaluator {
|
10
11
|
constructor(tools, memory) {
|
@@ -12,24 +13,56 @@ class Evaluator {
|
|
12
13
|
this.tools = tools;
|
13
14
|
this.memory = memory;
|
14
15
|
}
|
15
|
-
|
16
|
+
composeContext(state) {
|
17
|
+
const { behavior, userRequest, actions, results } = state;
|
18
|
+
const { role, language, guidelines } = behavior;
|
19
|
+
const { important, warnings, steps } = guidelines;
|
20
|
+
const context = `
|
21
|
+
# ROLE: ${role}
|
22
|
+
# LANGUAGE: ${language}
|
23
|
+
# IMPORTANT: ${important.join("\n")}
|
24
|
+
# NEVER: ${warnings.join("\n")}
|
25
|
+
# USER_REQUEST: ${userRequest}
|
26
|
+
# ACTIONS AVAILABLE: ${(0, inject_actions_1.injectActions)(actions)}
|
27
|
+
# CURRENT_RESULTS: ${results.map((r) => r.result).join(", ")}
|
28
|
+
# STEPS: ${steps?.join("\n") || ""}
|
29
|
+
`;
|
30
|
+
return context;
|
31
|
+
}
|
32
|
+
async process(prompt, results) {
|
16
33
|
try {
|
34
|
+
const context = this.composeContext({
|
35
|
+
behavior: context_1.evaluatorContext.behavior,
|
36
|
+
userRequest: prompt,
|
37
|
+
actions: this.tools,
|
38
|
+
results: results,
|
39
|
+
});
|
40
|
+
console.log("\nš Evaluator processing");
|
41
|
+
console.log("Goal:", prompt);
|
42
|
+
console.log("Results to evaluate:", JSON.stringify(results, null, 2));
|
17
43
|
const response = await (0, ai_1.generateObject)({
|
18
44
|
model: this.model,
|
19
45
|
schema: zod_1.z.object({
|
20
46
|
isRemindNeeded: zod_1.z.boolean(),
|
21
|
-
|
47
|
+
importantToRemembers: zod_1.z.array(zod_1.z.object({
|
22
48
|
memoryType: zod_1.z.string(),
|
23
49
|
content: zod_1.z.string(),
|
24
50
|
data: zod_1.z.string(),
|
25
51
|
})),
|
26
52
|
response: zod_1.z.string(),
|
27
53
|
isNextActionNeeded: zod_1.z.boolean(),
|
28
|
-
nextActionsNeeded:
|
54
|
+
nextActionsNeeded: zod_1.z.array(zod_1.z.object({
|
55
|
+
name: zod_1.z.string(),
|
56
|
+
parameters: zod_1.z.array(zod_1.z.object({
|
57
|
+
name: zod_1.z.string(),
|
58
|
+
value: zod_1.z.any(),
|
59
|
+
})),
|
60
|
+
})),
|
29
61
|
why: zod_1.z.string(),
|
30
62
|
}),
|
31
63
|
prompt: prompt,
|
32
|
-
system:
|
64
|
+
system: context,
|
65
|
+
temperature: 0,
|
33
66
|
});
|
34
67
|
const validatedResponse = {
|
35
68
|
...response.object,
|
@@ -39,44 +72,42 @@ class Evaluator {
|
|
39
72
|
})),
|
40
73
|
};
|
41
74
|
if (validatedResponse.isRemindNeeded) {
|
42
|
-
|
43
|
-
|
75
|
+
console.log("\nš Processing important memories to store", validatedResponse);
|
76
|
+
for (const item of validatedResponse.importantToRemembers) {
|
77
|
+
console.log("\nš Processing memory item:");
|
78
|
+
console.log("Type:", item.memoryType);
|
79
|
+
console.log("Content:", item.content);
|
44
80
|
const memories = await this.memory.searchSimilarQueries(item.content, {
|
45
81
|
similarityThreshold: 95,
|
46
82
|
});
|
47
83
|
if (memories.length > 0) {
|
48
|
-
console.log("Similar
|
49
|
-
memories,
|
50
|
-
});
|
84
|
+
console.log("š Similar memory already exists - skipping");
|
51
85
|
continue;
|
52
86
|
}
|
53
|
-
|
54
|
-
|
55
|
-
|
56
|
-
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
data: item.data,
|
63
|
-
scope: types_1.MemoryScope.GLOBAL,
|
64
|
-
createdAt: new Date(),
|
65
|
-
});
|
66
|
-
}
|
87
|
+
console.log("āØ Storing new memory");
|
88
|
+
await this.memory.createMemory({
|
89
|
+
id: crypto.randomUUID(),
|
90
|
+
purpose: item.memoryType,
|
91
|
+
query: item.content,
|
92
|
+
data: item.data,
|
93
|
+
scope: types_1.MemoryScope.GLOBAL,
|
94
|
+
createdAt: new Date(),
|
95
|
+
});
|
67
96
|
}
|
68
97
|
}
|
69
|
-
console.log("
|
70
|
-
console.
|
98
|
+
console.log("\nā
Evaluation completed");
|
99
|
+
console.log("ā".repeat(50));
|
100
|
+
console.log("Results:", JSON.stringify(validatedResponse, null, 2));
|
71
101
|
return validatedResponse;
|
72
102
|
}
|
73
103
|
catch (error) {
|
104
|
+
console.error("\nā Evaluator error:", error.message);
|
74
105
|
if (error) {
|
75
106
|
console.log("Evaluator error");
|
76
107
|
console.dir(error.value, { depth: null });
|
77
108
|
console.error(error.message);
|
78
|
-
if (error.value.
|
79
|
-
for (const item of error.value.
|
109
|
+
if (error.value.importantToRemembers.length > 0) {
|
110
|
+
for (const item of error.value.importantToRemembers) {
|
80
111
|
// Check if the item is already in the memory
|
81
112
|
const memories = await this.memory.searchSimilarQueries(item.content);
|
82
113
|
if (memories.length === 0) {
|
@@ -1,9 +1,10 @@
|
|
1
|
-
import { ActionSchema } from "../../types";
|
2
1
|
export declare const orchestratorContext: {
|
3
|
-
|
4
|
-
|
5
|
-
|
6
|
-
|
2
|
+
behavior: {
|
3
|
+
language: string;
|
4
|
+
role: string;
|
5
|
+
guidelines: {
|
6
|
+
important: string[];
|
7
|
+
warnings: never[];
|
8
|
+
};
|
7
9
|
};
|
8
|
-
compose: (tools: ActionSchema[]) => string;
|
9
10
|
};
|
@@ -1,23 +1,20 @@
|
|
1
1
|
"use strict";
|
2
2
|
Object.defineProperty(exports, "__esModule", { value: true });
|
3
3
|
exports.orchestratorContext = void 0;
|
4
|
-
const inject_actions_1 = require("../../utils/inject-actions");
|
5
4
|
exports.orchestratorContext = {
|
6
|
-
|
7
|
-
|
8
|
-
|
9
|
-
|
10
|
-
|
11
|
-
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
The actions are: ${(0, inject_actions_1.injectActions)(tools)}
|
21
|
-
`;
|
5
|
+
behavior: {
|
6
|
+
language: "user_language",
|
7
|
+
role: "You are the orchestrator agent. Your role is to determine what actions are needed to achieve the user goal.",
|
8
|
+
guidelines: {
|
9
|
+
important: [
|
10
|
+
"If there is no action to do, you must answer in the 'answer' field.",
|
11
|
+
"If some parameters are not clear or missing, don't add the action, YOU MUST ask the user for them.",
|
12
|
+
"ALWAYS use the same language as user request. (If it's English, use English, if it's French, use French, etc.)",
|
13
|
+
"For ON-CHAIN actions, just use the useful actions.",
|
14
|
+
"For QUESTIONS or ANALYSIS, you CAN search in memory and internal knowledge base.",
|
15
|
+
"NEVER repeat same actions if the user doesn't ask for it.",
|
16
|
+
],
|
17
|
+
warnings: [],
|
18
|
+
},
|
22
19
|
},
|
23
20
|
};
|
@@ -1,9 +1,26 @@
|
|
1
|
+
import { State } from "../../agent";
|
2
|
+
import { CacheMemory } from "../../memory/cache";
|
1
3
|
import { PersistentMemory } from "../../memory/persistent";
|
2
|
-
import { ActionSchema,
|
3
|
-
export declare class Orchestrator
|
4
|
+
import { ActionSchema, QueueResult } from "../../types";
|
5
|
+
export declare class Orchestrator {
|
4
6
|
private readonly model;
|
5
7
|
tools: ActionSchema[];
|
6
8
|
private memory;
|
7
|
-
|
8
|
-
|
9
|
+
private id;
|
10
|
+
constructor(id: string, tools: ActionSchema[], memory: {
|
11
|
+
persistent: PersistentMemory;
|
12
|
+
cache: CacheMemory;
|
13
|
+
});
|
14
|
+
composeContext(state: State): string;
|
15
|
+
process(prompt: string, results: QueueResult[]): Promise<{
|
16
|
+
actions: {
|
17
|
+
name: string;
|
18
|
+
type: string;
|
19
|
+
parameters: {
|
20
|
+
name: string;
|
21
|
+
value: any;
|
22
|
+
}[];
|
23
|
+
}[];
|
24
|
+
answer: string;
|
25
|
+
}>;
|
9
26
|
}
|
@@ -5,24 +5,42 @@ const openai_1 = require("@ai-sdk/openai");
|
|
5
5
|
const ai_1 = require("ai");
|
6
6
|
const zod_1 = require("zod");
|
7
7
|
const types_1 = require("../../types");
|
8
|
+
const inject_actions_1 = require("../../utils/inject-actions");
|
8
9
|
const context_1 = require("./context");
|
9
10
|
class Orchestrator {
|
10
|
-
constructor(tools, memory) {
|
11
|
+
constructor(id, tools, memory) {
|
11
12
|
this.model = (0, openai_1.openai)("gpt-4o");
|
13
|
+
this.id = id;
|
12
14
|
this.memory = memory;
|
13
15
|
this.tools = [
|
14
16
|
...tools,
|
15
17
|
{
|
16
|
-
name: "
|
18
|
+
name: "search_internal_knowledge_base",
|
17
19
|
description: "Search for relevant information in the internal knowledge base",
|
18
20
|
parameters: zod_1.z.object({
|
19
21
|
query: zod_1.z.string(),
|
20
22
|
}),
|
21
23
|
execute: async ({ query }) => {
|
22
|
-
const
|
23
|
-
similarityThreshold:
|
24
|
+
const persistentMemories = await this.memory.persistent.searchSimilarQueries(query, {
|
25
|
+
similarityThreshold: 70,
|
24
26
|
});
|
25
|
-
return
|
27
|
+
return persistentMemories;
|
28
|
+
},
|
29
|
+
},
|
30
|
+
{
|
31
|
+
name: "search_cache_memory",
|
32
|
+
description: "Search for relevant information in the cache",
|
33
|
+
parameters: zod_1.z.object({
|
34
|
+
query: zod_1.z.string(),
|
35
|
+
}),
|
36
|
+
execute: async ({ query }) => {
|
37
|
+
const cacheMemories = await this.memory.cache.findSimilarQueries(query, {
|
38
|
+
similarityThreshold: 70,
|
39
|
+
maxResults: 1,
|
40
|
+
userId: this.id,
|
41
|
+
scope: types_1.MemoryScope.GLOBAL,
|
42
|
+
});
|
43
|
+
return cacheMemories;
|
26
44
|
},
|
27
45
|
},
|
28
46
|
{
|
@@ -37,7 +55,7 @@ class Orchestrator {
|
|
37
55
|
whyStored: zod_1.z.string(),
|
38
56
|
}),
|
39
57
|
execute: async ({ query, purpose, data, scope, userId, }) => {
|
40
|
-
const memories = await this.memory.createMemory({
|
58
|
+
const memories = await this.memory.persistent.createMemory({
|
41
59
|
query,
|
42
60
|
purpose,
|
43
61
|
data,
|
@@ -51,38 +69,79 @@ class Orchestrator {
|
|
51
69
|
},
|
52
70
|
];
|
53
71
|
}
|
54
|
-
|
72
|
+
composeContext(state) {
|
73
|
+
const { behavior, userRequest, actions, results } = state;
|
74
|
+
const { role, language, guidelines } = behavior;
|
75
|
+
const { important, warnings } = guidelines;
|
76
|
+
const context = `
|
77
|
+
# ROLE: ${role}
|
78
|
+
# LANGUAGE: ${language}
|
79
|
+
# IMPORTANT: ${important.join("\n")}
|
80
|
+
# USER_REQUEST: ${userRequest}
|
81
|
+
# ACTIONS_AVAILABLES: ${(0, inject_actions_1.injectActions)(actions)} (NEVER REPEAT ACTIONS)
|
82
|
+
# CURRENT_RESULTS: ${results.map((r) => r.result).join(", ")}
|
83
|
+
`.trim();
|
84
|
+
return context;
|
85
|
+
}
|
86
|
+
async process(prompt, results) {
|
87
|
+
const state = this.composeContext({
|
88
|
+
behavior: context_1.orchestratorContext.behavior,
|
89
|
+
userRequest: prompt,
|
90
|
+
actions: this.tools,
|
91
|
+
results: results,
|
92
|
+
});
|
55
93
|
try {
|
94
|
+
console.log("\nš Orchestrator processing");
|
95
|
+
console.log("Prompt:", prompt);
|
56
96
|
const response = await (0, ai_1.generateObject)({
|
57
97
|
model: this.model,
|
58
98
|
schema: zod_1.z.object({
|
59
|
-
actions:
|
99
|
+
actions: zod_1.z.array(zod_1.z.object({
|
100
|
+
name: zod_1.z.string(),
|
101
|
+
type: zod_1.z.enum(["on-chain", "off-chain", "question", "analysis"]),
|
102
|
+
parameters: zod_1.z.array(zod_1.z.object({
|
103
|
+
name: zod_1.z.string(),
|
104
|
+
value: zod_1.z.any(),
|
105
|
+
})),
|
106
|
+
})),
|
60
107
|
answer: zod_1.z.string(),
|
61
108
|
}),
|
62
109
|
prompt: prompt,
|
63
|
-
system:
|
110
|
+
system: state,
|
111
|
+
temperature: 0,
|
64
112
|
});
|
65
113
|
const validatedResponse = {
|
66
114
|
...response.object,
|
67
115
|
actions: response.object.actions.map((action) => ({
|
68
116
|
...action,
|
69
|
-
parameters: action.parameters
|
117
|
+
parameters: Array.isArray(action.parameters)
|
118
|
+
? action.parameters.map((param) => ({
|
119
|
+
name: param.name,
|
120
|
+
value: param.value ?? null,
|
121
|
+
}))
|
122
|
+
: Object.entries(action.parameters || {}).map(([name, value]) => ({
|
123
|
+
name,
|
124
|
+
value: value ?? null,
|
125
|
+
})),
|
70
126
|
})),
|
71
127
|
};
|
72
|
-
console.log("
|
73
|
-
console.
|
128
|
+
console.log("\nā
Orchestration completed");
|
129
|
+
console.log("ā".repeat(50));
|
130
|
+
console.log("Actions determined:", validatedResponse.actions.map((a) => {
|
131
|
+
return `${a.name} (${a.type})`;
|
132
|
+
}));
|
133
|
+
if (validatedResponse.answer) {
|
134
|
+
console.log("Response:", validatedResponse.answer);
|
135
|
+
}
|
74
136
|
return validatedResponse;
|
75
137
|
}
|
76
138
|
catch (error) {
|
77
|
-
|
78
|
-
|
79
|
-
console.
|
80
|
-
|
81
|
-
return {
|
82
|
-
...error.value,
|
83
|
-
};
|
139
|
+
console.error("\nā Orchestrator error:", error.message);
|
140
|
+
if (error?.value) {
|
141
|
+
console.log("Partial response:", JSON.stringify(error.value, null, 2));
|
142
|
+
return { ...error.value };
|
84
143
|
}
|
85
|
-
|
144
|
+
throw error;
|
86
145
|
}
|
87
146
|
}
|
88
147
|
}
|