@ai-sdk/amazon-bedrock 3.1.0-beta.1 → 3.1.0-beta.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/CHANGELOG.md CHANGED
@@ -1,5 +1,17 @@
1
1
  # @ai-sdk/amazon-bedrock
2
2
 
3
+ ## 3.1.0-beta.2
4
+
5
+ ### Patch Changes
6
+
7
+ - 0c4822d: feat: `EmbeddingModelV3`
8
+ - 1cad0ab: feat: add provider version to user-agent header
9
+ - Updated dependencies [0c4822d]
10
+ - Updated dependencies [1cad0ab]
11
+ - @ai-sdk/provider@2.1.0-beta.1
12
+ - @ai-sdk/anthropic@2.1.0-beta.2
13
+ - @ai-sdk/provider-utils@3.1.0-beta.2
14
+
3
15
  ## 3.1.0-beta.1
4
16
 
5
17
  ### Patch Changes
package/dist/index.d.mts CHANGED
@@ -1,4 +1,4 @@
1
- import { ProviderV2, LanguageModelV2, EmbeddingModelV2, ImageModelV2 } from '@ai-sdk/provider';
1
+ import { ProviderV2, LanguageModelV2, EmbeddingModelV3, ImageModelV2 } from '@ai-sdk/provider';
2
2
  import { FetchFunction } from '@ai-sdk/provider-utils';
3
3
  import { anthropicTools } from '@ai-sdk/anthropic/internal';
4
4
  import { z } from 'zod/v4';
@@ -94,7 +94,7 @@ interface AmazonBedrockProviderSettings {
94
94
  interface AmazonBedrockProvider extends ProviderV2 {
95
95
  (modelId: BedrockChatModelId): LanguageModelV2;
96
96
  languageModel(modelId: BedrockChatModelId): LanguageModelV2;
97
- embedding(modelId: BedrockEmbeddingModelId): EmbeddingModelV2<string>;
97
+ embedding(modelId: BedrockEmbeddingModelId): EmbeddingModelV3<string>;
98
98
  /**
99
99
  Creates a model for image generation.
100
100
  */
package/dist/index.d.ts CHANGED
@@ -1,4 +1,4 @@
1
- import { ProviderV2, LanguageModelV2, EmbeddingModelV2, ImageModelV2 } from '@ai-sdk/provider';
1
+ import { ProviderV2, LanguageModelV2, EmbeddingModelV3, ImageModelV2 } from '@ai-sdk/provider';
2
2
  import { FetchFunction } from '@ai-sdk/provider-utils';
3
3
  import { anthropicTools } from '@ai-sdk/anthropic/internal';
4
4
  import { z } from 'zod/v4';
@@ -94,7 +94,7 @@ interface AmazonBedrockProviderSettings {
94
94
  interface AmazonBedrockProvider extends ProviderV2 {
95
95
  (modelId: BedrockChatModelId): LanguageModelV2;
96
96
  languageModel(modelId: BedrockChatModelId): LanguageModelV2;
97
- embedding(modelId: BedrockEmbeddingModelId): EmbeddingModelV2<string>;
97
+ embedding(modelId: BedrockEmbeddingModelId): EmbeddingModelV3<string>;
98
98
  /**
99
99
  Creates a model for image generation.
100
100
  */
package/dist/index.js CHANGED
@@ -28,6 +28,11 @@ module.exports = __toCommonJS(src_exports);
28
28
 
29
29
  // src/bedrock-provider.ts
30
30
  var import_provider_utils8 = require("@ai-sdk/provider-utils");
31
+
32
+ // src/version.ts
33
+ var VERSION = true ? "3.1.0-beta.2" : "0.0.0-test";
34
+
35
+ // src/bedrock-provider.ts
31
36
  var import_internal2 = require("@ai-sdk/anthropic/internal");
32
37
 
33
38
  // src/bedrock-chat-language-model.ts
@@ -1304,7 +1309,7 @@ var BedrockEmbeddingModel = class {
1304
1309
  constructor(modelId, config) {
1305
1310
  this.modelId = modelId;
1306
1311
  this.config = config;
1307
- this.specificationVersion = "v2";
1312
+ this.specificationVersion = "v3";
1308
1313
  this.provider = "amazon-bedrock";
1309
1314
  this.maxEmbeddingsPerCall = 1;
1310
1315
  this.supportsParallelCalls = true;
@@ -1488,11 +1493,6 @@ function convertHeadersToRecord(headers) {
1488
1493
  // src/bedrock-sigv4-fetch.ts
1489
1494
  var import_provider_utils7 = require("@ai-sdk/provider-utils");
1490
1495
  var import_aws4fetch = require("aws4fetch");
1491
-
1492
- // src/version.ts
1493
- var VERSION = true ? "3.1.0-beta.1" : "0.0.0-test";
1494
-
1495
- // src/bedrock-sigv4-fetch.ts
1496
1496
  function createSigV4FetchFunction(getCredentials, fetch = globalThis.fetch) {
1497
1497
  return async (input, init) => {
1498
1498
  var _a;
@@ -1640,15 +1640,17 @@ Original error: ${errorMessage}`
1640
1640
  })}.amazonaws.com`
1641
1641
  )) != null ? _b : `https://bedrock-runtime.us-east-1.amazonaws.com`;
1642
1642
  };
1643
- const createChatModel = (modelId) => {
1643
+ const getHeaders = () => {
1644
1644
  var _a;
1645
- return new BedrockChatLanguageModel(modelId, {
1646
- baseUrl: getBaseUrl,
1647
- headers: (_a = options.headers) != null ? _a : {},
1648
- fetch: fetchFunction,
1649
- generateId: import_provider_utils8.generateId
1650
- });
1645
+ const baseHeaders = (_a = options.headers) != null ? _a : {};
1646
+ return (0, import_provider_utils8.withUserAgentSuffix)(baseHeaders, `ai-sdk/amazon-bedrock/${VERSION}`);
1651
1647
  };
1648
+ const createChatModel = (modelId) => new BedrockChatLanguageModel(modelId, {
1649
+ baseUrl: getBaseUrl,
1650
+ headers: getHeaders,
1651
+ fetch: fetchFunction,
1652
+ generateId: import_provider_utils8.generateId
1653
+ });
1652
1654
  const provider = function(modelId) {
1653
1655
  if (new.target) {
1654
1656
  throw new Error(
@@ -1657,22 +1659,16 @@ Original error: ${errorMessage}`
1657
1659
  }
1658
1660
  return createChatModel(modelId);
1659
1661
  };
1660
- const createEmbeddingModel = (modelId) => {
1661
- var _a;
1662
- return new BedrockEmbeddingModel(modelId, {
1663
- baseUrl: getBaseUrl,
1664
- headers: (_a = options.headers) != null ? _a : {},
1665
- fetch: fetchFunction
1666
- });
1667
- };
1668
- const createImageModel = (modelId) => {
1669
- var _a;
1670
- return new BedrockImageModel(modelId, {
1671
- baseUrl: getBaseUrl,
1672
- headers: (_a = options.headers) != null ? _a : {},
1673
- fetch: fetchFunction
1674
- });
1675
- };
1662
+ const createEmbeddingModel = (modelId) => new BedrockEmbeddingModel(modelId, {
1663
+ baseUrl: getBaseUrl,
1664
+ headers: getHeaders,
1665
+ fetch: fetchFunction
1666
+ });
1667
+ const createImageModel = (modelId) => new BedrockImageModel(modelId, {
1668
+ baseUrl: getBaseUrl,
1669
+ headers: getHeaders,
1670
+ fetch: fetchFunction
1671
+ });
1676
1672
  provider.languageModel = createChatModel;
1677
1673
  provider.embedding = createEmbeddingModel;
1678
1674
  provider.textEmbedding = createEmbeddingModel;