@ai-lighthouse/cli 1.0.1 โ 1.0.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/index.js +2573 -12
- package/package.json +10 -4
- package/.ai-lighthouse/audit_example.com_2025-12-15T12-10-43.json +0 -183
- package/.ai-lighthouse/audit_fayeed.dev_2026-01-07T19-32-28.html +0 -743
- package/.ai-lighthouse/audit_fayeed.dev_2026-01-07T19-33-02.html +0 -757
- package/.ai-lighthouse/audit_github.com_2025-12-15T11-53-21.json +0 -168
- package/.ai-lighthouse/audit_github.com_2025-12-15T12-04-06.json +0 -168
- package/.ai-lighthouse/audit_github.com_2025-12-15T12-05-10.json +0 -168
- package/.ai-lighthouse/audit_github.com_2025-12-15T12-09-45.json +0 -168
- package/.ai-lighthouse/audit_github.com_2025-12-15T12-11-07.json +0 -168
- package/.ai-lighthouse/audit_github.com_2025-12-15T12-13-28.json +0 -168
- package/.ai-lighthouse/audit_github.com_2025-12-15T12-14-59.json +0 -205
- package/.ai-lighthouse/audit_github.com_2025-12-15T12-18-07.json +0 -205
- package/.ai-lighthouse/audit_github.com_2025-12-15T12-18-44.json +0 -205
- package/.ai-lighthouse/audit_github.com_2025-12-15T12-21-38.json +0 -205
- package/.ai-lighthouse/audit_github.com_2025-12-15T12-22-21.json +0 -205
- package/.ai-lighthouse/audit_github.com_2025-12-15T12-22-46.json +0 -205
- package/.ai-lighthouse/audit_github.com_2025-12-15T12-23-18.json +0 -205
- package/.ai-lighthouse/audit_github.com_2025-12-15T12-24-43.json +0 -205
- package/.ai-lighthouse/audit_github.com_2025-12-17T12-15-08.json +0 -168
- package/.ai-lighthouse/audit_github.com_2025-12-17T12-15-57.json +0 -168
- package/.ai-lighthouse/audit_github.com_2025-12-17T12-17-11.json +0 -168
- package/.ai-lighthouse/audit_github.com_2025-12-17T12-22-17.json +0 -168
- package/.ai-lighthouse/audit_github.com_2025-12-17T12-22-42.json +0 -168
- package/.ai-lighthouse/audit_github.com_2025-12-17T12-23-56.json +0 -168
- package/.ai-lighthouse/audit_github.com_2025-12-17T12-25-24.json +0 -168
- package/.ai-lighthouse/audit_github.com_2025-12-17T12-25-40.json +0 -168
- package/.ai-lighthouse/audit_github.com_2025-12-17T12-27-02.json +0 -168
- package/.ai-lighthouse/audit_github.com_2025-12-17T12-27-20.json +0 -168
- package/.ai-lighthouse/audit_github.com_2025-12-17T12-29-56.json +0 -168
- package/.ai-lighthouse/audit_github.com_2025-12-17T12-32-27.json +0 -168
- package/.ai-lighthouse/audit_github.com_2025-12-17T12-33-00.json +0 -168
- package/.ai-lighthouse/audit_github.com_2025-12-17T12-34-49.json +0 -168
- package/.ai-lighthouse/audit_stripe.com_2025-12-15T12-11-31.json +0 -168
- package/.ai-lighthouse/audit_stripe.com_2025-12-15T12-11-45.json +0 -168
- package/.ai-lighthouse/audit_tailwindcss.com_2025-12-15T12-12-01.json +0 -169
- package/.ai-lighthouse/crawl_example.com_2025-12-15T12-03-08.json +0 -24
- package/.ai-lighthouse/crawl_example.com_2025-12-15T12-03-23.json +0 -24
- package/.ai-lighthouse/crawl_github.com_2025-12-15T11-41-34.json +0 -21
- package/.ai-lighthouse/crawl_github.com_2025-12-15T11-42-09.json +0 -21
- package/.ai-lighthouse/crawl_github.com_2025-12-15T11-42-45.json +0 -21
- package/.ai-lighthouse/crawl_github.com_2025-12-15T11-43-02.json +0 -21
- package/.ai-lighthouse/crawl_github.com_2025-12-15T11-43-26.json +0 -21
- package/.ai-lighthouse/crawl_github.com_2025-12-15T11-47-46.json +0 -906
- package/.ai-lighthouse/crawl_github.com_2025-12-15T11-50-27.json +0 -906
- package/.ai-lighthouse/crawl_github.com_2025-12-15T11-52-59.json +0 -906
- package/.ai-lighthouse/crawl_github.com_2025-12-15T12-03-33.json +0 -28
- package/CLI_UI_README.md +0 -211
- package/EXAMPLES.md +0 -87
- package/IMPLEMENTATION.md +0 -215
- package/USAGE.md +0 -264
- package/WIZARD_GUIDE.md +0 -340
- package/bin/cli.js +0 -2
- package/dist/commands/audit-interactive.d.ts +0 -2
- package/dist/commands/audit-interactive.js +0 -106
- package/dist/commands/audit-wizard.d.ts +0 -2
- package/dist/commands/audit-wizard.js +0 -110
- package/dist/commands/audit.d.ts +0 -2
- package/dist/commands/audit.js +0 -940
- package/dist/commands/crawl.d.ts +0 -2
- package/dist/commands/crawl.js +0 -267
- package/dist/commands/report.d.ts +0 -2
- package/dist/commands/report.js +0 -304
- package/dist/index.d.ts +0 -1
- package/dist/ui/AuditReportUI.d.ts +0 -10
- package/dist/ui/AuditReportUI.js +0 -76
- package/dist/ui/SetupWizard.d.ts +0 -18
- package/dist/ui/SetupWizard.js +0 -179
- package/dist/ui/components/AIUnderstandingSection.d.ts +0 -6
- package/dist/ui/components/AIUnderstandingSection.js +0 -87
- package/dist/ui/components/HallucinationSection.d.ts +0 -6
- package/dist/ui/components/HallucinationSection.js +0 -84
- package/dist/ui/components/IssuesSection.d.ts +0 -6
- package/dist/ui/components/IssuesSection.js +0 -84
- package/dist/ui/components/MessageAlignmentSection.d.ts +0 -6
- package/dist/ui/components/MessageAlignmentSection.js +0 -108
- package/dist/ui/components/OverviewSection.d.ts +0 -6
- package/dist/ui/components/OverviewSection.js +0 -107
- package/dist/ui/components/ScoreDisplay.d.ts +0 -8
- package/dist/ui/components/ScoreDisplay.js +0 -41
- package/dist/ui/components/TechnicalSection.d.ts +0 -7
- package/dist/ui/components/TechnicalSection.js +0 -110
- package/dist/utils/comprehensive-formatter.d.ts +0 -5
- package/dist/utils/comprehensive-formatter.js +0 -370
- package/src/commands/audit-interactive.ts +0 -149
- package/src/commands/audit-wizard.ts +0 -137
- package/src/commands/audit.ts +0 -1012
- package/src/commands/crawl.ts +0 -307
- package/src/commands/report.ts +0 -321
- package/src/index.ts +0 -22
- package/src/ui/AuditReportUI.tsx +0 -151
- package/src/ui/SetupWizard.tsx +0 -294
- package/src/ui/components/AIUnderstandingSection.tsx +0 -183
- package/src/ui/components/HallucinationSection.tsx +0 -172
- package/src/ui/components/IssuesSection.tsx +0 -140
- package/src/ui/components/MessageAlignmentSection.tsx +0 -203
- package/src/ui/components/OverviewSection.tsx +0 -157
- package/src/ui/components/ScoreDisplay.tsx +0 -58
- package/src/ui/components/TechnicalSection.tsx +0 -200
- package/src/utils/comprehensive-formatter.ts +0 -455
- package/test.sh +0 -31
- package/tsconfig.json +0 -25
|
@@ -1,107 +0,0 @@
|
|
|
1
|
-
import React from 'react';
|
|
2
|
-
import { Box, Text } from 'ink';
|
|
3
|
-
export const OverviewSection = ({ aiReadiness }) => {
|
|
4
|
-
const getStatusColor = (status) => {
|
|
5
|
-
if (status === 'excellent')
|
|
6
|
-
return 'green';
|
|
7
|
-
if (status === 'good')
|
|
8
|
-
return 'blue';
|
|
9
|
-
if (status === 'needs-work')
|
|
10
|
-
return 'yellow';
|
|
11
|
-
return 'red';
|
|
12
|
-
};
|
|
13
|
-
const renderProgressBar = (score, width = 20) => {
|
|
14
|
-
const filled = Math.round((score / 100) * width);
|
|
15
|
-
const empty = width - filled;
|
|
16
|
-
const color = score >= 80 ? 'green' : score >= 60 ? 'yellow' : 'red';
|
|
17
|
-
return (React.createElement(Text, { color: color },
|
|
18
|
-
'โ'.repeat(filled),
|
|
19
|
-
React.createElement(Text, { dimColor: true }, 'โ'.repeat(empty)),
|
|
20
|
-
` ${Math.round(score)}%`));
|
|
21
|
-
};
|
|
22
|
-
return (React.createElement(Box, { flexDirection: "column", paddingY: 1 },
|
|
23
|
-
React.createElement(Box, { flexDirection: "column", borderStyle: "round", borderColor: "cyan", paddingX: 2, paddingY: 1, marginBottom: 1 },
|
|
24
|
-
React.createElement(Text, { bold: true, color: "cyan" }, "\uD83E\uDD16 AI Agent Perspective"),
|
|
25
|
-
React.createElement(Box, { marginTop: 1, flexDirection: "column" },
|
|
26
|
-
React.createElement(Box, null,
|
|
27
|
-
React.createElement(Text, null,
|
|
28
|
-
aiReadiness.aiPerspective?.canUnderstand ? 'โ
' : 'โ',
|
|
29
|
-
" Can Understand",
|
|
30
|
-
aiReadiness.aiPerspective?.canExtract ? 'โ
' : 'โ',
|
|
31
|
-
" Can Extract")),
|
|
32
|
-
React.createElement(Box, null,
|
|
33
|
-
React.createElement(Text, null,
|
|
34
|
-
aiReadiness.aiPerspective?.canIndex ? 'โ
' : 'โ',
|
|
35
|
-
" Can Index",
|
|
36
|
-
aiReadiness.aiPerspective?.canAnswer ? 'โ
' : 'โ',
|
|
37
|
-
" Can Answer")),
|
|
38
|
-
React.createElement(Box, { marginTop: 1 },
|
|
39
|
-
React.createElement(Text, { dimColor: true },
|
|
40
|
-
"Confidence: ",
|
|
41
|
-
Math.round((aiReadiness.aiPerspective?.confidence || 0) * 100),
|
|
42
|
-
"%"))),
|
|
43
|
-
aiReadiness.aiPerspective?.mainBlockers && aiReadiness.aiPerspective.mainBlockers.length > 0 && (React.createElement(Box, { marginTop: 1, flexDirection: "column" },
|
|
44
|
-
React.createElement(Text, { bold: true, color: "red" }, "Main Blockers:"),
|
|
45
|
-
aiReadiness.aiPerspective.mainBlockers.map((blocker, idx) => (React.createElement(Text, { key: idx, color: "red" },
|
|
46
|
-
"\u2022 ",
|
|
47
|
-
blocker)))))),
|
|
48
|
-
React.createElement(Box, { flexDirection: "column", marginTop: 1 },
|
|
49
|
-
React.createElement(Text, { bold: true, underline: true }, "\uD83C\uDFAF Dimension Scores"),
|
|
50
|
-
Object.entries(aiReadiness.dimensions || {}).map(([key, dim]) => (React.createElement(Box, { key: key, flexDirection: "column", marginTop: 1 },
|
|
51
|
-
React.createElement(Box, { justifyContent: "space-between" },
|
|
52
|
-
React.createElement(Text, { bold: true, color: getStatusColor(dim.status) },
|
|
53
|
-
getDimensionIcon(key),
|
|
54
|
-
" ",
|
|
55
|
-
formatDimensionName(key)),
|
|
56
|
-
React.createElement(Text, { color: getStatusColor(dim.status) },
|
|
57
|
-
Math.round(dim.score),
|
|
58
|
-
"/100")),
|
|
59
|
-
React.createElement(Box, { marginTop: 0.5 }, renderProgressBar(dim.score)),
|
|
60
|
-
dim.recommendation && (React.createElement(Box, { marginTop: 0.5 },
|
|
61
|
-
React.createElement(Text, { dimColor: true },
|
|
62
|
-
"\u2192 ",
|
|
63
|
-
dim.recommendation))))))),
|
|
64
|
-
aiReadiness.quickWins && aiReadiness.quickWins.length > 0 && (React.createElement(Box, { flexDirection: "column", borderStyle: "round", borderColor: "yellow", paddingX: 2, paddingY: 1, marginTop: 1 },
|
|
65
|
-
React.createElement(Text, { bold: true, color: "yellow" }, "\u26A1 Quick Wins (High Impact, Low Effort)"),
|
|
66
|
-
aiReadiness.quickWins.slice(0, 5).map((win, idx) => (React.createElement(Box, { key: idx, flexDirection: "column", marginTop: 1 },
|
|
67
|
-
React.createElement(Text, { bold: true },
|
|
68
|
-
idx + 1,
|
|
69
|
-
". ",
|
|
70
|
-
win.issue),
|
|
71
|
-
React.createElement(Text, { dimColor: true },
|
|
72
|
-
"Impact: ",
|
|
73
|
-
win.impact,
|
|
74
|
-
" \u2022 Effort: ",
|
|
75
|
-
win.effort),
|
|
76
|
-
React.createElement(Text, { color: "cyan" },
|
|
77
|
-
"\u2192 ",
|
|
78
|
-
win.fix))))))));
|
|
79
|
-
};
|
|
80
|
-
function getDimensionIcon(key) {
|
|
81
|
-
const icons = {
|
|
82
|
-
technical: 'โ๏ธ',
|
|
83
|
-
contentQuality: '๐',
|
|
84
|
-
crawlability: '๐ท๏ธ',
|
|
85
|
-
discoverability: '๐',
|
|
86
|
-
knowledge: '๐ง ',
|
|
87
|
-
extractability: '๐',
|
|
88
|
-
comprehensibility: '๐ก',
|
|
89
|
-
trustworthiness: 'โ
',
|
|
90
|
-
accessibility: 'โฟ',
|
|
91
|
-
};
|
|
92
|
-
return icons[key] || '๐';
|
|
93
|
-
}
|
|
94
|
-
function formatDimensionName(key) {
|
|
95
|
-
const names = {
|
|
96
|
-
technical: 'Technical',
|
|
97
|
-
contentQuality: 'Content Quality',
|
|
98
|
-
crawlability: 'Crawlability',
|
|
99
|
-
discoverability: 'Discoverability',
|
|
100
|
-
knowledge: 'Knowledge',
|
|
101
|
-
extractability: 'Extractability',
|
|
102
|
-
comprehensibility: 'Comprehensibility',
|
|
103
|
-
trustworthiness: 'Trustworthiness',
|
|
104
|
-
accessibility: 'Accessibility',
|
|
105
|
-
};
|
|
106
|
-
return names[key] || key;
|
|
107
|
-
}
|
|
@@ -1,41 +0,0 @@
|
|
|
1
|
-
import React from 'react';
|
|
2
|
-
import { Box, Text } from 'ink';
|
|
3
|
-
import Gradient from 'ink-gradient';
|
|
4
|
-
import BigText from 'ink-big-text';
|
|
5
|
-
export const ScoreDisplay = ({ score, grade, url }) => {
|
|
6
|
-
const getGradeColor = (grade) => {
|
|
7
|
-
if (grade.startsWith('A'))
|
|
8
|
-
return 'green';
|
|
9
|
-
if (grade.startsWith('B'))
|
|
10
|
-
return 'blue';
|
|
11
|
-
if (grade.startsWith('C'))
|
|
12
|
-
return 'yellow';
|
|
13
|
-
return 'red';
|
|
14
|
-
};
|
|
15
|
-
const getScoreMessage = (score) => {
|
|
16
|
-
if (score >= 90)
|
|
17
|
-
return { status: 'Excellent', message: 'Your site is AI-ready!', color: 'green' };
|
|
18
|
-
if (score >= 80)
|
|
19
|
-
return { status: 'Good', message: 'Your site works well with AI', color: 'blue' };
|
|
20
|
-
if (score >= 70)
|
|
21
|
-
return { status: 'Fair', message: 'Room for improvement', color: 'yellow' };
|
|
22
|
-
if (score >= 60)
|
|
23
|
-
return { status: 'Poor', message: 'Needs significant work', color: 'yellow' };
|
|
24
|
-
return { status: 'Critical', message: 'Major issues detected', color: 'red' };
|
|
25
|
-
};
|
|
26
|
-
const { status, message, color } = getScoreMessage(score);
|
|
27
|
-
return (React.createElement(Box, { flexDirection: "column", paddingY: 1 },
|
|
28
|
-
React.createElement(Box, { marginBottom: 1 },
|
|
29
|
-
React.createElement(Gradient, { name: "rainbow" },
|
|
30
|
-
React.createElement(BigText, { text: `${score}`, font: "block" }))),
|
|
31
|
-
React.createElement(Box, { marginBottom: 1 },
|
|
32
|
-
React.createElement(Text, { bold: true, color: getGradeColor(grade) },
|
|
33
|
-
"Grade: ",
|
|
34
|
-
grade,
|
|
35
|
-
" \u2022 ",
|
|
36
|
-
status)),
|
|
37
|
-
React.createElement(Box, { marginBottom: 1 },
|
|
38
|
-
React.createElement(Text, { dimColor: true }, url)),
|
|
39
|
-
React.createElement(Box, { borderStyle: "round", borderColor: color, paddingX: 2, paddingY: 1 },
|
|
40
|
-
React.createElement(Text, { color: color }, message))));
|
|
41
|
-
};
|
|
@@ -1,110 +0,0 @@
|
|
|
1
|
-
import React from 'react';
|
|
2
|
-
import { Box, Text } from 'ink';
|
|
3
|
-
export const TechnicalSection = ({ result, scoring }) => {
|
|
4
|
-
const renderProgressBar = (score, width = 20) => {
|
|
5
|
-
const filled = Math.round((score / 100) * width);
|
|
6
|
-
const empty = width - filled;
|
|
7
|
-
const color = score >= 80 ? 'green' : score >= 60 ? 'yellow' : 'red';
|
|
8
|
-
return (React.createElement(Text, { color: color },
|
|
9
|
-
'โ'.repeat(filled),
|
|
10
|
-
React.createElement(Text, { dimColor: true }, 'โ'.repeat(empty)),
|
|
11
|
-
` ${Math.round(score)}%`));
|
|
12
|
-
};
|
|
13
|
-
return (React.createElement(Box, { flexDirection: "column", paddingY: 1 },
|
|
14
|
-
React.createElement(Box, { flexDirection: "column", borderStyle: "round", borderColor: "blue", paddingX: 2, paddingY: 1, marginBottom: 1 },
|
|
15
|
-
React.createElement(Text, { bold: true, color: "blue" }, "\uD83D\uDCCA Category Scores"),
|
|
16
|
-
React.createElement(Box, { marginTop: 1, flexDirection: "column" },
|
|
17
|
-
scoring?.crawlability !== undefined && (React.createElement(Box, { flexDirection: "column", marginTop: 0.5 },
|
|
18
|
-
React.createElement(Box, { justifyContent: "space-between" },
|
|
19
|
-
React.createElement(Text, { bold: true }, "\uD83D\uDD77\uFE0F Crawlability"),
|
|
20
|
-
React.createElement(Text, null,
|
|
21
|
-
Math.round(scoring.crawlability),
|
|
22
|
-
"/100")),
|
|
23
|
-
React.createElement(Box, { marginTop: 0.5 }, renderProgressBar(scoring.crawlability)))),
|
|
24
|
-
scoring?.structure !== undefined && (React.createElement(Box, { flexDirection: "column", marginTop: 1 },
|
|
25
|
-
React.createElement(Box, { justifyContent: "space-between" },
|
|
26
|
-
React.createElement(Text, { bold: true }, "\uD83D\uDCD0 Structure"),
|
|
27
|
-
React.createElement(Text, null,
|
|
28
|
-
Math.round(scoring.structure),
|
|
29
|
-
"/100")),
|
|
30
|
-
React.createElement(Box, { marginTop: 0.5 }, renderProgressBar(scoring.structure)))),
|
|
31
|
-
scoring?.schema_coverage !== undefined && (React.createElement(Box, { flexDirection: "column", marginTop: 1 },
|
|
32
|
-
React.createElement(Box, { justifyContent: "space-between" },
|
|
33
|
-
React.createElement(Text, { bold: true }, "\uD83C\uDFF7\uFE0F Schema Coverage"),
|
|
34
|
-
React.createElement(Text, null,
|
|
35
|
-
Math.round(scoring.schema_coverage),
|
|
36
|
-
"/100")),
|
|
37
|
-
React.createElement(Box, { marginTop: 0.5 }, renderProgressBar(scoring.schema_coverage)))),
|
|
38
|
-
scoring?.content_clarity !== undefined && (React.createElement(Box, { flexDirection: "column", marginTop: 1 },
|
|
39
|
-
React.createElement(Box, { justifyContent: "space-between" },
|
|
40
|
-
React.createElement(Text, { bold: true }, "\uD83D\uDCDD Content Clarity"),
|
|
41
|
-
React.createElement(Text, null,
|
|
42
|
-
Math.round(scoring.content_clarity),
|
|
43
|
-
"/100")),
|
|
44
|
-
React.createElement(Box, { marginTop: 0.5 }, renderProgressBar(scoring.content_clarity)))))),
|
|
45
|
-
result.chunking && Object.keys(result.chunking).length > 0 ? (React.createElement(Box, { flexDirection: "column", borderStyle: "round", borderColor: "green", paddingX: 2, paddingY: 1, marginBottom: 1 },
|
|
46
|
-
React.createElement(Text, { bold: true, color: "green" }, "\uD83D\uDCC4 Content Chunking Analysis"),
|
|
47
|
-
React.createElement(Box, { marginTop: 1, flexDirection: "column" },
|
|
48
|
-
React.createElement(Text, null,
|
|
49
|
-
React.createElement(Text, { bold: true }, "Strategy:"),
|
|
50
|
-
" ",
|
|
51
|
-
result.chunking.chunkingStrategy),
|
|
52
|
-
React.createElement(Text, null,
|
|
53
|
-
React.createElement(Text, { bold: true }, "Total Chunks:"),
|
|
54
|
-
" ",
|
|
55
|
-
result.chunking.totalChunks),
|
|
56
|
-
React.createElement(Text, null,
|
|
57
|
-
React.createElement(Text, { bold: true }, "Avg Tokens/Chunk:"),
|
|
58
|
-
" ",
|
|
59
|
-
result.chunking.averageTokensPerChunk),
|
|
60
|
-
React.createElement(Text, null,
|
|
61
|
-
React.createElement(Text, { bold: true }, "Avg Noise Ratio:"),
|
|
62
|
-
" ",
|
|
63
|
-
(result.chunking.averageNoiseRatio * 100).toFixed(1),
|
|
64
|
-
"%")),
|
|
65
|
-
result.chunking.chunkingStrategy === 'heading-based' && (React.createElement(Box, { marginTop: 1 },
|
|
66
|
-
React.createElement(Text, { color: "green" }, "\u2713 Heading-based chunking is ideal for AI comprehension"))),
|
|
67
|
-
result.chunking.chunkingStrategy === 'paragraph-based' && (React.createElement(Box, { marginTop: 1 },
|
|
68
|
-
React.createElement(Text, { color: "yellow" }, "\u26A0 Consider adding headings for better semantic structure"))))) : (React.createElement(Box, { flexDirection: "column", borderStyle: "round", borderColor: "gray", paddingX: 2, paddingY: 1, marginBottom: 1 },
|
|
69
|
-
React.createElement(Text, { dimColor: true }, "\uD83D\uDCA1 Enable chunking analysis with --enable-chunking to see how your content is divided for AI processing"))),
|
|
70
|
-
result.extractability && Object.keys(result.extractability).length > 0 ? (React.createElement(Box, { flexDirection: "column", borderStyle: "round", borderColor: "yellow", paddingX: 2, paddingY: 1, marginBottom: 1 },
|
|
71
|
-
React.createElement(Text, { bold: true, color: "yellow" }, "\uD83D\uDD04 Extractability Analysis"),
|
|
72
|
-
React.createElement(Box, { marginTop: 1, flexDirection: "column" },
|
|
73
|
-
React.createElement(Text, null,
|
|
74
|
-
React.createElement(Text, { bold: true }, "Overall Score:"),
|
|
75
|
-
" ",
|
|
76
|
-
result.extractability.score.extractabilityScore,
|
|
77
|
-
"/100"),
|
|
78
|
-
React.createElement(Text, null,
|
|
79
|
-
React.createElement(Text, { bold: true }, "Server-Rendered:"),
|
|
80
|
-
" ",
|
|
81
|
-
result.extractability.score.serverRenderedPercent,
|
|
82
|
-
"%")),
|
|
83
|
-
React.createElement(Box, { marginTop: 1, flexDirection: "column" },
|
|
84
|
-
React.createElement(Text, { bold: true, underline: true }, "Content Type Extractability:"),
|
|
85
|
-
Object.entries(result.extractability.contentTypes).map(([type, data]) => {
|
|
86
|
-
const percentage = data.percentage;
|
|
87
|
-
const color = percentage >= 80 ? 'green' : percentage >= 50 ? 'yellow' : 'red';
|
|
88
|
-
return (React.createElement(Box, { key: type, marginTop: 0.5 },
|
|
89
|
-
React.createElement(Text, null,
|
|
90
|
-
React.createElement(Text, { bold: true },
|
|
91
|
-
type.charAt(0).toUpperCase() + type.slice(1),
|
|
92
|
-
":"),
|
|
93
|
-
' ',
|
|
94
|
-
React.createElement(Text, { color: color },
|
|
95
|
-
percentage,
|
|
96
|
-
"%"),
|
|
97
|
-
' ',
|
|
98
|
-
React.createElement(Text, { dimColor: true },
|
|
99
|
-
"(",
|
|
100
|
-
data.extractable,
|
|
101
|
-
"/",
|
|
102
|
-
data.total,
|
|
103
|
-
")"))));
|
|
104
|
-
})),
|
|
105
|
-
result.extractability.score.extractabilityScore >= 80 && (React.createElement(Box, { marginTop: 1 },
|
|
106
|
-
React.createElement(Text, { color: "green" }, "\u2713 Good extractability - AI can easily read your content"))),
|
|
107
|
-
result.extractability.score.extractabilityScore < 50 && (React.createElement(Box, { marginTop: 1 },
|
|
108
|
-
React.createElement(Text, { color: "red" }, "\u26A0 Low extractability - Consider server-side rendering"))))) : (React.createElement(Box, { flexDirection: "column", borderStyle: "round", borderColor: "gray", paddingX: 2, paddingY: 1, marginBottom: 1 },
|
|
109
|
-
React.createElement(Text, { dimColor: true }, "\uD83D\uDCA1 Enable extractability analysis with --enable-extractability to see how well AI can extract your content")))));
|
|
110
|
-
};
|
|
@@ -1,370 +0,0 @@
|
|
|
1
|
-
import chalk from 'chalk';
|
|
2
|
-
/**
|
|
3
|
-
* Comprehensive CLI formatter that displays all data shown on the website
|
|
4
|
-
*/
|
|
5
|
-
export function formatComprehensiveReport(result, aiReadiness) {
|
|
6
|
-
const sections = [];
|
|
7
|
-
// LLM/AI Understanding Section
|
|
8
|
-
if (result.llm) {
|
|
9
|
-
sections.push(formatLLMSection(result.llm));
|
|
10
|
-
}
|
|
11
|
-
// Chunking Section
|
|
12
|
-
if (result.chunking) {
|
|
13
|
-
sections.push(formatChunkingSection(result.chunking));
|
|
14
|
-
}
|
|
15
|
-
// Extractability Section
|
|
16
|
-
if (result.extractability) {
|
|
17
|
-
sections.push(formatExtractabilitySection(result.extractability));
|
|
18
|
-
}
|
|
19
|
-
// Hallucination Risk Section
|
|
20
|
-
if (result.hallucinationReport) {
|
|
21
|
-
sections.push(formatHallucinationSection(result.hallucinationReport));
|
|
22
|
-
}
|
|
23
|
-
// Mirror Report Section
|
|
24
|
-
if (result.mirrorReport) {
|
|
25
|
-
sections.push(formatMirrorReportSection(result.mirrorReport));
|
|
26
|
-
}
|
|
27
|
-
// Dimension Scores
|
|
28
|
-
if (aiReadiness?.dimensions) {
|
|
29
|
-
sections.push(formatDimensionsSection(aiReadiness.dimensions));
|
|
30
|
-
}
|
|
31
|
-
// Quick Wins
|
|
32
|
-
if (aiReadiness?.quickWins && aiReadiness.quickWins.length > 0) {
|
|
33
|
-
sections.push(formatQuickWinsSection(aiReadiness.quickWins));
|
|
34
|
-
}
|
|
35
|
-
return sections.join('\n\n');
|
|
36
|
-
}
|
|
37
|
-
function formatLLMSection(llm) {
|
|
38
|
-
const lines = [];
|
|
39
|
-
lines.push(chalk.bold.blue('๐ AI Understanding Analysis'));
|
|
40
|
-
lines.push('โ'.repeat(70));
|
|
41
|
-
if (llm.summary) {
|
|
42
|
-
lines.push(chalk.bold('Summary:'));
|
|
43
|
-
lines.push(` ${llm.summary}`);
|
|
44
|
-
lines.push('');
|
|
45
|
-
}
|
|
46
|
-
if (llm.pageType) {
|
|
47
|
-
lines.push(chalk.bold('Inferred Page Type:'));
|
|
48
|
-
lines.push(` ${chalk.magenta.bold(llm.pageType)}`);
|
|
49
|
-
if (llm.pageTypeInsights && llm.pageTypeInsights.length > 0) {
|
|
50
|
-
lines.push('');
|
|
51
|
-
lines.push(chalk.bold('๐ก AI-Generated Insights:'));
|
|
52
|
-
llm.pageTypeInsights.forEach((insight) => {
|
|
53
|
-
lines.push(` ${chalk.cyan('โข')} ${insight}`);
|
|
54
|
-
});
|
|
55
|
-
}
|
|
56
|
-
lines.push('');
|
|
57
|
-
}
|
|
58
|
-
if (llm.keyTopics && llm.keyTopics.length > 0) {
|
|
59
|
-
lines.push(chalk.bold('Key Topics:'));
|
|
60
|
-
lines.push(` ${llm.keyTopics.map((t) => chalk.blue(t)).join(', ')}`);
|
|
61
|
-
lines.push('');
|
|
62
|
-
}
|
|
63
|
-
const metadata = [];
|
|
64
|
-
if (llm.readingLevel) {
|
|
65
|
-
metadata.push(`Reading Level: ${llm.readingLevel.description}`);
|
|
66
|
-
}
|
|
67
|
-
if (llm.sentiment) {
|
|
68
|
-
metadata.push(`Sentiment: ${llm.sentiment}`);
|
|
69
|
-
}
|
|
70
|
-
if (llm.technicalDepth) {
|
|
71
|
-
metadata.push(`Technical Depth: ${llm.technicalDepth}`);
|
|
72
|
-
}
|
|
73
|
-
if (metadata.length > 0) {
|
|
74
|
-
lines.push(chalk.bold('Metadata:'));
|
|
75
|
-
metadata.forEach(m => lines.push(` ${m}`));
|
|
76
|
-
lines.push('');
|
|
77
|
-
}
|
|
78
|
-
if (llm.topEntities && llm.topEntities.length > 0) {
|
|
79
|
-
lines.push(chalk.bold('๐ Key Entities:'));
|
|
80
|
-
llm.topEntities.slice(0, 5).forEach((entity) => {
|
|
81
|
-
const relevance = entity.relevance ? ` - ${Math.round(entity.relevance * 100)}% relevance` : '';
|
|
82
|
-
lines.push(` ${chalk.cyan('โข')} ${chalk.bold(entity.name)} ${chalk.dim(`(${entity.type})${relevance}`)}`);
|
|
83
|
-
});
|
|
84
|
-
lines.push('');
|
|
85
|
-
}
|
|
86
|
-
if (llm.questions && llm.questions.length > 0) {
|
|
87
|
-
lines.push(chalk.bold('โ Questions AI Can Answer:'));
|
|
88
|
-
llm.questions.slice(0, 5).forEach((q, idx) => {
|
|
89
|
-
const difficulty = chalk.dim(`[${q.difficulty.toUpperCase()}]`);
|
|
90
|
-
lines.push(` ${idx + 1}. ${difficulty} ${q.question}`);
|
|
91
|
-
});
|
|
92
|
-
lines.push('');
|
|
93
|
-
}
|
|
94
|
-
if (llm.suggestedFAQ && llm.suggestedFAQ.length > 0) {
|
|
95
|
-
lines.push(chalk.bold('๐ก Suggested FAQs:'));
|
|
96
|
-
llm.suggestedFAQ
|
|
97
|
-
.filter((f) => f.importance === 'high')
|
|
98
|
-
.slice(0, 3)
|
|
99
|
-
.forEach((faq, idx) => {
|
|
100
|
-
lines.push(` ${idx + 1}. Q: ${chalk.yellow(faq.question)}`);
|
|
101
|
-
lines.push(` A: ${chalk.dim(faq.suggestedAnswer)}`);
|
|
102
|
-
});
|
|
103
|
-
}
|
|
104
|
-
return lines.join('\n');
|
|
105
|
-
}
|
|
106
|
-
function formatChunkingSection(chunking) {
|
|
107
|
-
const lines = [];
|
|
108
|
-
lines.push(chalk.bold.green('๐ Content Chunking Analysis'));
|
|
109
|
-
lines.push('โ'.repeat(70));
|
|
110
|
-
const grid = [
|
|
111
|
-
['Strategy', chunking.chunkingStrategy],
|
|
112
|
-
['Total Chunks', chunking.totalChunks.toString()],
|
|
113
|
-
['Avg Tokens/Chunk', chunking.averageTokensPerChunk.toString()],
|
|
114
|
-
['Avg Noise Ratio', `${(chunking.averageNoiseRatio * 100).toFixed(1)}%`],
|
|
115
|
-
];
|
|
116
|
-
grid.forEach(([label, value]) => {
|
|
117
|
-
lines.push(` ${chalk.bold(label + ':').padEnd(25)} ${chalk.cyan(value)}`);
|
|
118
|
-
});
|
|
119
|
-
if (chunking.chunkingStrategy === 'heading-based') {
|
|
120
|
-
lines.push('');
|
|
121
|
-
lines.push(chalk.green(' โ Heading-based chunking is ideal for AI comprehension'));
|
|
122
|
-
}
|
|
123
|
-
else if (chunking.chunkingStrategy === 'paragraph-based') {
|
|
124
|
-
lines.push('');
|
|
125
|
-
lines.push(chalk.yellow(' โ Consider adding headings for better semantic structure'));
|
|
126
|
-
}
|
|
127
|
-
if (chunking.chunks && chunking.chunks.length > 0) {
|
|
128
|
-
lines.push('');
|
|
129
|
-
lines.push(chalk.bold('Chunk Distribution:'));
|
|
130
|
-
// Show token distribution
|
|
131
|
-
const tokenCounts = chunking.chunks.map((c) => c.tokenCount);
|
|
132
|
-
const min = Math.min(...tokenCounts);
|
|
133
|
-
const max = Math.max(...tokenCounts);
|
|
134
|
-
const avg = tokenCounts.reduce((a, b) => a + b, 0) / tokenCounts.length;
|
|
135
|
-
lines.push(` Min Tokens: ${min}, Max Tokens: ${max}, Avg: ${avg.toFixed(0)}`);
|
|
136
|
-
// Show noise distribution
|
|
137
|
-
const noiseRatios = chunking.chunks.map((c) => c.noiseRatio);
|
|
138
|
-
const avgNoise = noiseRatios.reduce((a, b) => a + b, 0) / noiseRatios.length;
|
|
139
|
-
lines.push(` Avg Noise per Chunk: ${(avgNoise * 100).toFixed(1)}%`);
|
|
140
|
-
}
|
|
141
|
-
return lines.join('\n');
|
|
142
|
-
}
|
|
143
|
-
function formatExtractabilitySection(extractability) {
|
|
144
|
-
const lines = [];
|
|
145
|
-
lines.push(chalk.bold.yellow('๐ Extractability Analysis'));
|
|
146
|
-
lines.push('โ'.repeat(70));
|
|
147
|
-
const grid = [
|
|
148
|
-
['Overall Score', `${extractability.score.extractabilityScore}/100`],
|
|
149
|
-
['Server-Rendered', `${extractability.score.serverRenderedPercent}%`],
|
|
150
|
-
];
|
|
151
|
-
grid.forEach(([label, value]) => {
|
|
152
|
-
lines.push(` ${chalk.bold(label + ':').padEnd(25)} ${chalk.cyan(value)}`);
|
|
153
|
-
});
|
|
154
|
-
lines.push('');
|
|
155
|
-
lines.push(chalk.bold('Content Type Extractability:'));
|
|
156
|
-
Object.entries(extractability.contentTypes).forEach(([type, data]) => {
|
|
157
|
-
const percentage = data.percentage;
|
|
158
|
-
const color = percentage >= 80 ? chalk.green : percentage >= 50 ? chalk.yellow : chalk.red;
|
|
159
|
-
lines.push(` ${chalk.bold(type.charAt(0).toUpperCase() + type.slice(1) + ':').padEnd(15)} ${color(`${percentage}%`)} (${data.extractable}/${data.total})`);
|
|
160
|
-
});
|
|
161
|
-
const overallScore = extractability.score.extractabilityScore;
|
|
162
|
-
if (overallScore >= 80) {
|
|
163
|
-
lines.push('');
|
|
164
|
-
lines.push(chalk.green(' โ Good extractability - AI can easily read your content'));
|
|
165
|
-
}
|
|
166
|
-
else if (overallScore < 50) {
|
|
167
|
-
lines.push('');
|
|
168
|
-
lines.push(chalk.red(' โ Low extractability - Consider server-side rendering'));
|
|
169
|
-
}
|
|
170
|
-
return lines.join('\n');
|
|
171
|
-
}
|
|
172
|
-
function formatHallucinationSection(report) {
|
|
173
|
-
const lines = [];
|
|
174
|
-
lines.push(chalk.bold.red('โ ๏ธ Hallucination Risk Assessment'));
|
|
175
|
-
lines.push('โ'.repeat(70));
|
|
176
|
-
const riskScore = report.hallucinationRiskScore;
|
|
177
|
-
const riskColor = riskScore >= 70 ? chalk.red : riskScore >= 40 ? chalk.yellow : chalk.green;
|
|
178
|
-
lines.push(` ${chalk.bold('Risk Score:')} ${riskColor.bold(`${riskScore}/100`)}`);
|
|
179
|
-
if (report.factCheckSummary) {
|
|
180
|
-
lines.push('');
|
|
181
|
-
lines.push(chalk.bold('Fact Check Summary:'));
|
|
182
|
-
const summary = report.factCheckSummary;
|
|
183
|
-
lines.push(` Total Facts: ${chalk.cyan(summary.totalFacts)}`);
|
|
184
|
-
lines.push(` Verified: ${chalk.green(summary.verifiedFacts)}`);
|
|
185
|
-
lines.push(` Unverified: ${chalk.yellow(summary.unverifiedFacts)}`);
|
|
186
|
-
lines.push(` Contradictions: ${chalk.red(summary.contradictions)}`);
|
|
187
|
-
if (summary.ambiguities !== undefined) {
|
|
188
|
-
lines.push(` Ambiguities: ${chalk.yellow(summary.ambiguities)}`);
|
|
189
|
-
}
|
|
190
|
-
}
|
|
191
|
-
if (report.factCheckSummary && report.factCheckSummary.unverifiedFacts > 0) {
|
|
192
|
-
lines.push('');
|
|
193
|
-
lines.push(chalk.yellow('๐ก Tip: Add citations and links to verify claims and reduce AI hallucination risk'));
|
|
194
|
-
}
|
|
195
|
-
if (report.triggers && report.triggers.length > 0) {
|
|
196
|
-
const highSeverityTriggers = report.triggers.filter((t) => t.severity === 'high' || t.severity === 'critical');
|
|
197
|
-
if (highSeverityTriggers.length > 0) {
|
|
198
|
-
lines.push('');
|
|
199
|
-
lines.push(chalk.bold('๐จ High-Risk Triggers:'));
|
|
200
|
-
highSeverityTriggers.slice(0, 5).forEach((trigger, idx) => {
|
|
201
|
-
lines.push(` ${idx + 1}. ${chalk.red(`[${trigger.severity.toUpperCase()}]`)} ${trigger.type}`);
|
|
202
|
-
lines.push(` ${chalk.dim(trigger.description)}`);
|
|
203
|
-
if (trigger.confidence) {
|
|
204
|
-
lines.push(` ${chalk.dim(`Confidence: ${Math.round(trigger.confidence * 100)}%`)}`);
|
|
205
|
-
}
|
|
206
|
-
});
|
|
207
|
-
}
|
|
208
|
-
}
|
|
209
|
-
if (report.recommendations && report.recommendations.length > 0) {
|
|
210
|
-
lines.push('');
|
|
211
|
-
lines.push(chalk.bold('๐ก Recommendations:'));
|
|
212
|
-
report.recommendations.slice(0, 3).forEach((rec, idx) => {
|
|
213
|
-
lines.push(` ${idx + 1}. ${rec}`);
|
|
214
|
-
});
|
|
215
|
-
}
|
|
216
|
-
return lines.join('\n');
|
|
217
|
-
}
|
|
218
|
-
function formatMirrorReportSection(report) {
|
|
219
|
-
const lines = [];
|
|
220
|
-
lines.push(chalk.bold.magenta('๐ AI Misunderstanding Check'));
|
|
221
|
-
lines.push('โ'.repeat(70));
|
|
222
|
-
const alignmentColor = report.summary.alignmentScore >= 80 ? chalk.green :
|
|
223
|
-
report.summary.alignmentScore >= 60 ? chalk.yellow : chalk.red;
|
|
224
|
-
const clarityColor = report.summary.clarityScore >= 80 ? chalk.green :
|
|
225
|
-
report.summary.clarityScore >= 60 ? chalk.yellow : chalk.red;
|
|
226
|
-
lines.push(` ${chalk.bold('Alignment Score:').padEnd(25)} ${alignmentColor.bold(`${report.summary.alignmentScore}/100`)}`);
|
|
227
|
-
lines.push(` ${chalk.bold('Clarity Score:').padEnd(25)} ${clarityColor.bold(`${report.summary.clarityScore}/100`)}`);
|
|
228
|
-
lines.push(` ${chalk.bold('Critical Issues:').padEnd(25)} ${chalk.red(report.summary.critical)}`);
|
|
229
|
-
lines.push(` ${chalk.bold('Major Issues:').padEnd(25)} ${chalk.yellow(report.summary.major)}`);
|
|
230
|
-
// AI Interpretation - What AI Actually Understood
|
|
231
|
-
if (report.llmInterpretation) {
|
|
232
|
-
lines.push('');
|
|
233
|
-
lines.push(chalk.bold.blue('๐ค What AI Actually Understood'));
|
|
234
|
-
lines.push(chalk.dim(` (${Math.round(report.llmInterpretation.confidence * 100)}% confident)`));
|
|
235
|
-
if (report.llmInterpretation.productName) {
|
|
236
|
-
lines.push(` ${chalk.bold('Product:')} ${report.llmInterpretation.productName}`);
|
|
237
|
-
}
|
|
238
|
-
if (report.llmInterpretation.purpose) {
|
|
239
|
-
lines.push(` ${chalk.bold('Purpose:')} ${report.llmInterpretation.purpose}`);
|
|
240
|
-
}
|
|
241
|
-
if (report.llmInterpretation.valueProposition) {
|
|
242
|
-
lines.push(` ${chalk.bold.magenta('๐ Value:')} ${report.llmInterpretation.valueProposition}`);
|
|
243
|
-
}
|
|
244
|
-
if (report.llmInterpretation.keyBenefits && report.llmInterpretation.keyBenefits.length > 0) {
|
|
245
|
-
lines.push(` ${chalk.bold('Benefits:')}`);
|
|
246
|
-
report.llmInterpretation.keyBenefits.forEach((benefit) => {
|
|
247
|
-
lines.push(` โข ${benefit}`);
|
|
248
|
-
});
|
|
249
|
-
}
|
|
250
|
-
if (report.llmInterpretation.keyFeatures && report.llmInterpretation.keyFeatures.length > 0) {
|
|
251
|
-
lines.push(` ${chalk.bold('Features:')}`);
|
|
252
|
-
report.llmInterpretation.keyFeatures.slice(0, 3).forEach((feature) => {
|
|
253
|
-
lines.push(` โข ${feature}`);
|
|
254
|
-
});
|
|
255
|
-
}
|
|
256
|
-
if (report.llmInterpretation.targetAudience) {
|
|
257
|
-
lines.push(` ${chalk.bold('Audience:')} ${report.llmInterpretation.targetAudience}`);
|
|
258
|
-
}
|
|
259
|
-
}
|
|
260
|
-
if (report.mismatches && report.mismatches.length > 0) {
|
|
261
|
-
const priorityMismatches = report.mismatches.filter((m) => m.severity === 'critical' || m.severity === 'major');
|
|
262
|
-
if (priorityMismatches.length > 0) {
|
|
263
|
-
lines.push('');
|
|
264
|
-
lines.push(chalk.bold('Priority Mismatches:'));
|
|
265
|
-
priorityMismatches.slice(0, 5).forEach((mismatch, idx) => {
|
|
266
|
-
const icon = mismatch.severity === 'critical' ? '๐ด' : '๐ก';
|
|
267
|
-
lines.push(` ${icon} ${idx + 1}. ${chalk.bold(mismatch.field)}`);
|
|
268
|
-
lines.push(` ${chalk.dim(mismatch.description)}`);
|
|
269
|
-
lines.push(` ${chalk.cyan('โ')} ${mismatch.recommendation}`);
|
|
270
|
-
});
|
|
271
|
-
}
|
|
272
|
-
}
|
|
273
|
-
if (report.recommendations && report.recommendations.length > 0) {
|
|
274
|
-
lines.push('');
|
|
275
|
-
lines.push(chalk.bold('๐ก Top Recommendations:'));
|
|
276
|
-
report.recommendations.slice(0, 3).forEach((rec, idx) => {
|
|
277
|
-
lines.push(` ${idx + 1}. ${rec}`);
|
|
278
|
-
});
|
|
279
|
-
}
|
|
280
|
-
return lines.join('\n');
|
|
281
|
-
}
|
|
282
|
-
function formatDimensionsSection(dimensions) {
|
|
283
|
-
const lines = [];
|
|
284
|
-
lines.push(chalk.bold.cyan('๐ฏ Dimension Analysis'));
|
|
285
|
-
lines.push('โ'.repeat(70));
|
|
286
|
-
const dimensionDescriptions = {
|
|
287
|
-
technical: 'โ๏ธ Technical',
|
|
288
|
-
contentQuality: '๐ Content Quality',
|
|
289
|
-
crawlability: '๐ท๏ธ Crawlability',
|
|
290
|
-
discoverability: '๐ Discoverability',
|
|
291
|
-
knowledge: '๐ง Knowledge',
|
|
292
|
-
extractability: '๐ Extractability',
|
|
293
|
-
comprehensibility: '๐ก Comprehensibility',
|
|
294
|
-
trustworthiness: 'โ
Trustworthiness',
|
|
295
|
-
accessibility: 'โฟ Accessibility',
|
|
296
|
-
};
|
|
297
|
-
Object.entries(dimensions).forEach(([key, dim]) => {
|
|
298
|
-
const name = dimensionDescriptions[key] || key;
|
|
299
|
-
const scoreColor = dim.score >= 90 ? chalk.green :
|
|
300
|
-
dim.score >= 75 ? chalk.yellow :
|
|
301
|
-
dim.score >= 60 ? chalk.hex('#FFA500') : chalk.red;
|
|
302
|
-
lines.push('');
|
|
303
|
-
lines.push(`${name}: ${scoreColor.bold(`${Math.round(dim.score)}/100`)} ${chalk.dim(`(${dim.status})`)}`);
|
|
304
|
-
if (dim.strengths && dim.strengths.length > 0) {
|
|
305
|
-
lines.push(` ${chalk.green('Strengths:')} ${dim.strengths.join(', ')}`);
|
|
306
|
-
}
|
|
307
|
-
if (dim.weaknesses && dim.weaknesses.length > 0) {
|
|
308
|
-
lines.push(` ${chalk.yellow('Weaknesses:')} ${dim.weaknesses.join(', ')}`);
|
|
309
|
-
}
|
|
310
|
-
if (dim.recommendation) {
|
|
311
|
-
lines.push(` ${chalk.cyan('โ')} ${dim.recommendation}`);
|
|
312
|
-
}
|
|
313
|
-
});
|
|
314
|
-
return lines.join('\n');
|
|
315
|
-
}
|
|
316
|
-
function formatQuickWinsSection(quickWins) {
|
|
317
|
-
const lines = [];
|
|
318
|
-
lines.push(chalk.bold.yellow('โก Quick Wins (High Impact, Low Effort)'));
|
|
319
|
-
lines.push('โ'.repeat(70));
|
|
320
|
-
quickWins.slice(0, 5).forEach((win, idx) => {
|
|
321
|
-
lines.push('');
|
|
322
|
-
lines.push(`${chalk.bold(`${idx + 1}.`)} ${chalk.yellow(win.issue)}`);
|
|
323
|
-
lines.push(` ${chalk.dim(`Impact: ${win.impact} ยท Effort: ${win.effort}`)}`);
|
|
324
|
-
lines.push(` ${chalk.cyan('โ')} ${win.fix}`);
|
|
325
|
-
});
|
|
326
|
-
return lines.join('\n');
|
|
327
|
-
}
|
|
328
|
-
export function formatDetailedIssues(issues) {
|
|
329
|
-
const lines = [];
|
|
330
|
-
lines.push(chalk.bold('โ ๏ธ All Issues'));
|
|
331
|
-
lines.push('โ'.repeat(70));
|
|
332
|
-
// Group by severity
|
|
333
|
-
const grouped = {
|
|
334
|
-
critical: issues.filter(i => i.severity === 'critical'),
|
|
335
|
-
high: issues.filter(i => i.severity === 'high'),
|
|
336
|
-
medium: issues.filter(i => i.severity === 'medium'),
|
|
337
|
-
low: issues.filter(i => i.severity === 'low'),
|
|
338
|
-
};
|
|
339
|
-
// Stats
|
|
340
|
-
lines.push('');
|
|
341
|
-
lines.push(chalk.bold('Issue Count by Severity:'));
|
|
342
|
-
lines.push(` Critical: ${chalk.red.bold(grouped.critical.length)}`);
|
|
343
|
-
lines.push(` High: ${chalk.yellow.bold(grouped.high.length)}`);
|
|
344
|
-
lines.push(` Medium: ${chalk.blue.bold(grouped.medium.length)}`);
|
|
345
|
-
lines.push(` Low: ${chalk.dim(grouped.low.length)}`);
|
|
346
|
-
// Show all issues by severity
|
|
347
|
-
for (const [severity, severityIssues] of Object.entries(grouped)) {
|
|
348
|
-
if (severityIssues.length === 0)
|
|
349
|
-
continue;
|
|
350
|
-
lines.push('');
|
|
351
|
-
lines.push(chalk.bold(`${severity.toUpperCase()} Issues:`));
|
|
352
|
-
severityIssues.forEach((issue, idx) => {
|
|
353
|
-
const icon = severity === 'critical' ? '๐ด' :
|
|
354
|
-
severity === 'high' ? '๐ ' :
|
|
355
|
-
severity === 'medium' ? '๐ก' : '๐ต';
|
|
356
|
-
lines.push('');
|
|
357
|
-
lines.push(`${icon} ${idx + 1}. ${chalk.bold(issue.message || issue.title)}`);
|
|
358
|
-
lines.push(` ${chalk.dim(`Category: ${issue.category} ยท Impact: ${issue.impact}`)}`);
|
|
359
|
-
if (issue.evidence) {
|
|
360
|
-
const evidenceText = typeof issue.evidence === 'string' ? issue.evidence : issue.evidence.join(', ');
|
|
361
|
-
lines.push(` ${chalk.dim(evidenceText.substring(0, 100))}${evidenceText.length > 100 ? '...' : ''}`);
|
|
362
|
-
}
|
|
363
|
-
if (issue.element) {
|
|
364
|
-
lines.push(` ${chalk.dim(issue.element.substring(0, 100))}${issue.element.length > 100 ? '...' : ''}`);
|
|
365
|
-
}
|
|
366
|
-
lines.push(` ${chalk.cyan('๐ก Fix:')} ${issue.suggested_fix || issue.remediation}`);
|
|
367
|
-
});
|
|
368
|
-
}
|
|
369
|
-
return lines.join('\n');
|
|
370
|
-
}
|