@agentica/core 0.9.0-dev.20250302 → 0.9.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (46) hide show
  1. package/LICENSE +21 -21
  2. package/README.md +419 -419
  3. package/package.json +1 -1
  4. package/prompts/cancel.md +4 -4
  5. package/prompts/common.md +2 -2
  6. package/prompts/describe.md +6 -6
  7. package/prompts/execute.md +6 -6
  8. package/prompts/initialize.md +2 -2
  9. package/prompts/select.md +6 -6
  10. package/src/Agentica.ts +323 -323
  11. package/src/chatgpt/ChatGptAgent.ts +75 -75
  12. package/src/chatgpt/ChatGptCallFunctionAgent.ts +448 -448
  13. package/src/chatgpt/ChatGptCancelFunctionAgent.ts +287 -287
  14. package/src/chatgpt/ChatGptDescribeFunctionAgent.ts +52 -52
  15. package/src/chatgpt/ChatGptHistoryDecoder.ts +88 -88
  16. package/src/chatgpt/ChatGptInitializeFunctionAgent.ts +88 -88
  17. package/src/chatgpt/ChatGptSelectFunctionAgent.ts +319 -319
  18. package/src/functional/createHttpLlmApplication.ts +63 -63
  19. package/src/index.ts +19 -19
  20. package/src/internal/AgenticaConstant.ts +4 -4
  21. package/src/internal/AgenticaDefaultPrompt.ts +43 -43
  22. package/src/internal/AgenticaOperationComposer.ts +87 -87
  23. package/src/internal/AgenticaPromptFactory.ts +32 -32
  24. package/src/internal/AgenticaPromptTransformer.ts +86 -86
  25. package/src/internal/AgenticaTokenUsageAggregator.ts +115 -115
  26. package/src/internal/MathUtil.ts +3 -3
  27. package/src/internal/Singleton.ts +22 -22
  28. package/src/internal/__map_take.ts +15 -15
  29. package/src/structures/IAgenticaConfig.ts +123 -123
  30. package/src/structures/IAgenticaContext.ts +129 -129
  31. package/src/structures/IAgenticaController.ts +132 -132
  32. package/src/structures/IAgenticaEvent.ts +229 -229
  33. package/src/structures/IAgenticaExecutor.ts +156 -156
  34. package/src/structures/IAgenticaOperation.ts +64 -64
  35. package/src/structures/IAgenticaOperationCollection.ts +52 -52
  36. package/src/structures/IAgenticaOperationSelection.ts +69 -69
  37. package/src/structures/IAgenticaPrompt.ts +178 -178
  38. package/src/structures/IAgenticaProps.ts +70 -70
  39. package/src/structures/IAgenticaProvider.ts +39 -39
  40. package/src/structures/IAgenticaSystemPrompt.ts +124 -124
  41. package/src/structures/IAgenticaTokenUsage.ts +107 -107
  42. package/src/structures/internal/__IChatCancelFunctionsApplication.ts +23 -23
  43. package/src/structures/internal/__IChatFunctionReference.ts +21 -21
  44. package/src/structures/internal/__IChatInitialApplication.ts +15 -15
  45. package/src/structures/internal/__IChatSelectFunctionsApplication.ts +24 -24
  46. package/src/typings/AgenticaSource.ts +6 -6
package/README.md CHANGED
@@ -1,419 +1,419 @@
1
- # `@agentica/core`
2
- ![agentica-conceptual-diagram](https://github.com/user-attachments/assets/d7ebbd1f-04d3-4b0d-9e2a-234e29dd6c57)
3
-
4
- [![GitHub license](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/wrtnlabs/agentica/blob/master/LICENSE)
5
- [![npm version](https://img.shields.io/npm/v/@agentica/core.svg)](https://www.npmjs.com/package/@agentica/core)
6
- [![Downloads](https://img.shields.io/npm/dm/@agentica/core.svg)](https://www.npmjs.com/package/@agentica/core)
7
- [![Build Status](https://github.com/wrtnlabs/agentica/workflows/build/badge.svg)](https://github.com/wrtnlabs/agentica/actions?query=workflow%3Abuild)
8
-
9
- The simplest **Agentic AI** library, specialized in **LLM Function Calling**.
10
-
11
- Don't compose complicate agent graph or workflow, but just deliver **Swagger/OpenAPI** documents or **TypeScript class** types linearly to the `@agentica/core`. Then `@agentica/core` will do everything with the function calling.
12
-
13
- Look at the below demonstration, and feel how `@agentica/core` is easy and powerful.
14
-
15
- ```typescript
16
- import { Agentica } from "@agentica/core";
17
- import typia from "typia";
18
-
19
- const agent = new Agentica({
20
- controllers: [
21
- await fetch(
22
- "https://shopping-be.wrtn.ai/editor/swagger.json",
23
- ).then(r => r.json()),
24
- typia.llm.application<ShoppingCounselor>(),
25
- typia.llm.application<ShoppingPolicy>(),
26
- typia.llm.application<ShoppingSearchRag>(),
27
- ],
28
- });
29
- await agent.conversate("I wanna buy MacBook Pro");
30
- ```
31
-
32
- > https://github.com/user-attachments/assets/01604b53-aca4-41cb-91aa-3faf63549ea6
33
- >
34
- > Demonstration video of Shopping AI Chatbot
35
-
36
-
37
-
38
-
39
- ## How to Use
40
- ### Setup
41
- ```bash
42
- npm install @agentica/core @samchon/openapi typia
43
- npx typia setup
44
- ```
45
-
46
- Install not only `@agentica/core`, but also [`@samchon/openapi`](https://github.com/samchon/openapi) and [`typia`](https://github.com/samchon/typia).
47
-
48
- `@samchon/openapi` is an OpenAPI specification library which can convert Swagger/OpenAPI document to LLM function calling schema. And `typia` is a transformer (compiler) library which can compose LLM function calling schema from a TypeScript class type.
49
-
50
- By the way, as `typia` is a transformer library analyzing TypeScript source code in the compilation level, it needs additional setup command `npx typia setup`. Also, if you're not using non-standard TypeScript compiler (not `tsc`) or developing the agent in the frontend environment, you have to setup [`@ryoppippi/unplugin-typia`](https://typia.io/docs/setup/#unplugin-typia) too.
51
-
52
- ### Chat with Backend Server
53
- ```typescript
54
- import { IHttpLlmApplication } from "@samchon/openapi";
55
- import { Agentica, createHttpApplication } from "@agentica/core";
56
- import OpenAI from "openai";
57
- import { IValidation } from "typia";
58
-
59
- const main = async (): Promise<void> => {
60
- // LOAD SWAGGER DOCUMENT, AND CONVERT TO LLM APPLICATION SCHEMA
61
- const application: IValidation<IHttpLlmApplication<"chatgpt">> =
62
- createHttpApplication({
63
- model: "chatgpt",
64
- document: OpenApi.convert(
65
- await fetch("https://shopping-be.wrtn.ai/editor/swagger.json").then(
66
- (r) => r.json()
67
- )
68
- ),
69
- });
70
- if (application.success === false) {
71
- console.error(application.errors);
72
- throw new Error("Type error on the target swagger document");
73
- }
74
-
75
- // CREATE AN AGENT WITH THE APPLICATION
76
- const agent: Agentica<"chatgpt"> = new Agentica({
77
- model: "chatgpt",
78
- provider: {
79
- model: "gpt-4o-mini",
80
- api: new OpenAI({
81
- apiKey: "YOUR_OPENAI_API_KEY",
82
- }),
83
- },
84
- controllers: [
85
- {
86
- protocol: "http",
87
- name: "shopping",
88
- application: application.data,
89
- connection: {
90
- host: "https://shopping-be.wrtn.ai",
91
- },
92
- },
93
- ],
94
- config: {
95
- locale: "en-US",
96
- },
97
- });
98
-
99
- // ADD EVENT LISTENERS
100
- agent.on("select", async (select) => {
101
- console.log("selected function", select.operation.function.name);
102
- });
103
- agent.on("execute", async (execute) => {
104
- consoe.log("execute function", {
105
- function: execute.operation.function.name,
106
- arguments: execute.arguments,
107
- value: execute.value,
108
- });
109
- });
110
-
111
- // CONVERSATE TO AI CHATBOT
112
- await agent.conversate("What you can do?");
113
- };
114
- main().catch(console.error);
115
- ```
116
-
117
- Just load your swagger document, and put it into the `@agentica/core`.
118
-
119
- Then you can start conversation with your backend server, and the API functions of the backend server would be automatically called. AI chatbot will analyze your conversation texts, and executes proper API functions by the LLM (Large Language Model) function calling feature.
120
-
121
- From now on, every backend developer is also an AI developer.
122
-
123
- ### Chat with TypeScript Class
124
- ```typescript
125
- import { Agentica } from "@agentica/core";
126
- import typia, { tags } from "typia";
127
- import OpenAI from "openai";
128
-
129
- class BbsArticleService {
130
- /**
131
- * Create a new article.
132
- *
133
- * Writes a new article and archives it into the DB.
134
- *
135
- * @param props Properties of create function
136
- * @returns Newly created article
137
- */
138
- public async create(props: {
139
- /**
140
- * Information of the article to create
141
- */
142
- input: IBbsArticle.ICreate;
143
- }): Promise<IBbsArticle>;
144
-
145
- /**
146
- * Update an article.
147
- *
148
- * Updates an article with new content.
149
- *
150
- * @param props Properties of update function
151
- * @param input New content to update
152
- */
153
- public async update(props: {
154
- /**
155
- * Target article's {@link IBbsArticle.id}.
156
- */
157
- id: string & tags.Format<"uuid">;
158
-
159
- /**
160
- * New content to update.
161
- */
162
- input: IBbsArticle.IUpdate;
163
- }): Promise<void>;
164
- }
165
-
166
- const main = async (): Promise<void> => {
167
- const api: OpenAI = new OpenAI({
168
- apiKey: "YOUR_OPENAI_API_KEY",
169
- });
170
- const agent: Agentica<"chatgpt"> = new Agentica({
171
- model: "chatgpt",
172
- provider: {
173
- model: "gpt-4o-mini",
174
- api: new OpenAI({
175
- apiKey: "YOUR_OPENAI_API_KEY",
176
- }),
177
- },
178
- controllers: [
179
- {
180
- protocol: "class",
181
- name: "vectorStore",
182
- application: typia.llm.applicationOfValidate<
183
- BbsArticleService,
184
- "chatgpt"
185
- >(),
186
- execute: new BbsArticleService(),
187
- },
188
- ],
189
- });
190
- await agent.conversate("I wanna write an article.");
191
- };
192
- main().catch(console.error);
193
- ```
194
-
195
- You also can chat with a TypeScript class.
196
-
197
- Just deliver the TypeScript type to the `@agentica/core`, and start conversation. Then `@agentica/core` will call the proper class functions by analyzing your conversation texts with LLM function calling feature.
198
-
199
- From now on, every TypeScript classes you've developed can be the AI chatbot.
200
-
201
- ### Multi Agent Orchestration
202
- ```typescript
203
- import { Agentica } from "@agentica/core";
204
- import typia from "typia";
205
- import OpenAI from "openai";
206
-
207
- class OpenAIVectorStoreAgent {
208
- /**
209
- * Retrieve Vector DB with RAG.
210
- *
211
- * @param props Properties of Vector DB retrievelance
212
- */
213
- public query(props: {
214
- /**
215
- * Keywords to look up.
216
- *
217
- * Put all the keywords you want to look up. However, keywords
218
- * should only be included in the core, and all ambiguous things
219
- * should be excluded to achieve accurate results.
220
- */
221
- keywords: string;
222
- }): Promise<IVectorStoreQueryResult>;
223
- }
224
-
225
- const main = async (): Promise<void> => {
226
- const api: OpenAI = new OpenAI({
227
- apiKey: "YOUR_OPENAI_API_KEY",
228
- });
229
- const agent: Agentica<"chatgpt"> = new Agentica({
230
- model: "chatgpt",
231
- provider: {
232
- model: "gpt-4o-mini",
233
- api: new OpenAI({
234
- apiKey: "YOUR_OPENAI_API_KEY",
235
- }),
236
- },
237
- controllers: [
238
- {
239
- protocol: "class",
240
- name: "vectorStore",
241
- application: typia.llm.applicationOfValidate<
242
- OpenAIVectorStoreAgent,
243
- "chatgpt"
244
- >(),
245
- execute: new OpenAIVectorStoreAgent({
246
- api,
247
- id: "YOUR_OPENAI_VECTOR_STORE_ID",
248
- }),
249
- },
250
- ],
251
- });
252
- await agent.conversate("I wanna research economic articles");
253
- };
254
- main().catch(console.error);
255
- ```
256
-
257
- In the `@agentica/core`, you can implement multi-agent orchestration super easily.
258
-
259
- Just develop a TypeScript class which contains agent feature like Vector Store, and just deliver the TypeScript class type to the `@agentica/core` like above. The `@agentica/core` will centralize and realize the multi-agent orchestration by LLM function calling strategy to the TypeScript class.
260
-
261
-
262
-
263
-
264
- ## Principles
265
- ### Agent Strategy
266
- ```mermaid
267
- sequenceDiagram
268
- actor User
269
- actor Agent
270
- participant Selector
271
- participant Caller
272
- participant Describer
273
- activate User
274
- User-->>Agent: Conversate:<br/>user says
275
- activate Agent
276
- Agent->>Selector: Deliver conversation text
277
- activate Selector
278
- deactivate User
279
- Note over Selector: Select or remove candidate functions
280
- alt No candidate
281
- Selector->>Agent: Talk like plain ChatGPT
282
- deactivate Selector
283
- Agent->>User: Conversate:<br/>agent says
284
- activate User
285
- deactivate User
286
- end
287
- deactivate Agent
288
- loop Candidate functions exist
289
- activate Agent
290
- Agent->>Caller: Deliver conversation text
291
- activate Caller
292
- alt Contexts are enough
293
- Note over Caller: Call fulfilled functions
294
- Caller->>Describer: Function call histories
295
- deactivate Caller
296
- activate Describer
297
- Describer->>Agent: Describe function calls
298
- deactivate Describer
299
- Agent->>User: Conversate:<br/>agent describes
300
- activate User
301
- deactivate User
302
- else Contexts are not enough
303
- break
304
- Caller->>Agent: Request more information
305
- end
306
- Agent->>User: Conversate:<br/>agent requests
307
- activate User
308
- deactivate User
309
- end
310
- deactivate Agent
311
- end
312
- ```
313
-
314
- When user says, `@agentica/core` delivers the conversation text to the `selector` agent, and let the `selector` agent to find (or cancel) candidate functions from the context. If the `selector` agent could not find any candidate function to call and there is not any candidate function previously selected either, the `selector` agent will work just like a plain ChatGPT.
315
-
316
- And `@agentica/core` enters to a loop statement until the candidate functions to be empty. In the loop statement, `caller` agent tries to LLM function calling by analyzing the user's conversation text. If context is enough to compose arguments of candidate functions, the `caller` agent actually calls the target functions, and let `decriber` agent to explain the function calling results. Otherwise the context is not enough to compose arguments, `caller` agent requests more information to user.
317
-
318
- Such LLM (Large Language Model) function calling strategy separating `selector`, `caller`, and `describer` is the key logic of `@agentica/core`.
319
-
320
- ### Validation Feedback
321
- ```typescript
322
- import { FunctionCall } from "pseudo";
323
- import { ILlmFunctionOfValidate, IValidation } from "typia";
324
-
325
- export const correctFunctionCall = (p: {
326
- call: FunctionCall;
327
- functions: Array<ILlmFunctionOfValidate<"chatgpt">>;
328
- retry: (reason: string, errors?: IValidation.IError[]) => Promise<unknown>;
329
- }): Promise<unknown> => {
330
- // FIND FUNCTION
331
- const func: ILlmFunctionOfValidate<"chatgpt"> | undefined =
332
- p.functions.find((f) => f.name === p.call.name);
333
- if (func === undefined) {
334
- // never happened in my experience
335
- return p.retry(
336
- "Unable to find the matched function name. Try it again.",
337
- );
338
- }
339
-
340
- // VALIDATE
341
- const result: IValidation<unknown> = func.validate(p.call.arguments);
342
- if (result.success === false) {
343
- // 1st trial: 50% (gpt-4o-mini in shopping mall chatbot)
344
- // 2nd trial with validation feedback: 99%
345
- // 3nd trial with validation feedback again: never have failed
346
- return p.retry(
347
- "Type errors are detected. Correct it through validation errors",
348
- {
349
- errors: result.errors,
350
- },
351
- );
352
- }
353
- return result.data;
354
- }
355
- ```
356
-
357
- Is LLM function calling perfect?
358
-
359
- The answer is not, and LLM (Large Language Model) providers like OpenAI take a lot of type level mistakes when composing the arguments of the target function to call. Even though an LLM function calling schema has defined an `Array<string>` type, LLM often fills it just by a `string` typed value.
360
-
361
- Therefore, when developing an LLM function calling agent, the validation feedback process is essentially required. If LLM takes a type level mistake on arguments composition, the agent must feedback the most detailed validation errors, and let the LLM to retry the function calling referencing the validation errors.
362
-
363
- About the validation feedback, `@agentica/core` is utilizing [`typia.validate<T>()`](https://typia.io/docs/validators/validate) and [`typia.llm.applicationOfValidate<Class, Model>()`](https://typia.io/docs/llm/application/#applicationofvalidate) functions. They construct validation logic by analyzing TypeScript source codes and types in the compilation level, so that detailed and accurate than any other validators like below.
364
-
365
- Such validation feedback strategy and combination with `typia` runtime validator, `@agentica/core` has achieved the most ideal LLM function calling. In my experience, when using OpenAI's `gpt-4o-mini` model, it tends to construct invalid function calling arguments at the first trial about 50% of the time. By the way, if correct it through validation feedback with `typia`, success rate soars to 99%. And I've never had a failure when trying validation feedback twice.
366
-
367
- Components | `typia` | `TypeBox` | `ajv` | `io-ts` | `zod` | `C.V.`
368
- -------------------------|--------|-----------|-------|---------|-------|------------------
369
- **Easy to use** | ✅ | ❌ | ❌ | ❌ | ❌ | ❌
370
- [Object (simple)](https://github.com/samchon/typia/blob/master/test/src/structures/ObjectSimple.ts) | ✔ | ✔ | ✔ | ✔ | ✔ | ✔
371
- [Object (hierarchical)](https://github.com/samchon/typia/blob/master/test/src/structures/ObjectHierarchical.ts) | ✔ | ✔ | ✔ | ✔ | ✔ | ✔
372
- [Object (recursive)](https://github.com/samchon/typia/blob/master/test/src/structures/ObjectRecursive.ts) | ✔ | ❌ | ✔ | ✔ | ✔ | ✔ | ✔
373
- [Object (union, implicit)](https://github.com/samchon/typia/blob/master/test/src/structures/ObjectUnionImplicit.ts) | ✅ | ❌ | ❌ | ❌ | ❌ | ❌
374
- [Object (union, explicit)](https://github.com/samchon/typia/blob/master/test/src/structures/ObjectUnionExplicit.ts) | ✔ | ✔ | ✔ | ✔ | ✔ | ❌
375
- [Object (additional tags)](https://github.com/samchon/typia/#comment-tags) | ✔ | ✔ | ✔ | ✔ | ✔ | ✔
376
- [Object (template literal types)](https://github.com/samchon/typia/blob/master/test/src/structures/TemplateUnion.ts) | ✔ | ✔ | ✔ | ❌ | ❌ | ❌
377
- [Object (dynamic properties)](https://github.com/samchon/typia/blob/master/test/src/structures/DynamicTemplate.ts) | ✔ | ✔ | ✔ | ❌ | ❌ | ❌
378
- [Array (rest tuple)](https://github.com/samchon/typia/blob/master/test/src/structures/TupleRestAtomic.ts) | ✅ | ❌ | ❌ | ❌ | ❌ | ❌
379
- [Array (hierarchical)](https://github.com/samchon/typia/blob/master/test/src/structures/ArrayHierarchical.ts) | ✔ | ✔ | ✔ | ✔ | ✔ | ✔
380
- [Array (recursive)](https://github.com/samchon/typia/blob/master/test/src/structures/ArrayRecursive.ts) | ✔ | ✔ | ✔ | ✔ | ✔ | ❌
381
- [Array (recursive, union)](https://github.com/samchon/typia/blob/master/test/src/structures/ArrayRecursiveUnionExplicit.ts) | ✔ | ✔ | ❌ | ✔ | ✔ | ❌
382
- [Array (R+U, implicit)](https://github.com/samchon/typia/blob/master/test/src/structures/ArrayRecursiveUnionImplicit.ts) | ✅ | ❌ | ❌ | ❌ | ❌ | ❌
383
- [Array (repeated)](https://github.com/samchon/typia/blob/master/test/src/structures/ArrayRepeatedNullable.ts) | ✅ | ❌ | ❌ | ❌ | ❌ | ❌
384
- [Array (repeated, union)](https://github.com/samchon/typia/blob/master/test/src/structures/ArrayRepeatedUnionWithTuple.ts) | ✅ | ❌ | ❌ | ❌ | ❌ | ❌
385
- [**Ultimate Union Type**](https://github.com/samchon/typia/blob/master/test/src/structures/UltimateUnion.ts) | ✅ | ❌ | ❌ | ❌ | ❌ | ❌
386
-
387
- > `C.V.` means `class-validator`
388
-
389
- ### OpenAPI Specification
390
- ```mermaid
391
- flowchart
392
- subgraph "OpenAPI Specification"
393
- v20("Swagger v2.0") --upgrades--> emended[["OpenAPI v3.1 (emended)"]]
394
- v30("OpenAPI v3.0") --upgrades--> emended
395
- v31("OpenAPI v3.1") --emends--> emended
396
- end
397
- subgraph "OpenAPI Generator"
398
- emended --normalizes--> migration[["Migration Schema"]]
399
- migration --"Artificial Intelligence"--> lfc{{"LLM Function Calling"}}
400
- lfc --"OpenAI"--> chatgpt("ChatGPT")
401
- lfc --"Anthropic"--> claude("Claude")
402
- lfc --"Google"--> gemini("Gemini")
403
- lfc --"Meta"--> llama("Llama")
404
- end
405
- ```
406
-
407
- `@agentica/core` obtains LLM function calling schemas from both Swagger/OpenAPI documents and TypeScript class types. The TypeScript class type can be converted to LLM function calling schema by [`typia.llm.applicationOfValidate<Class, Model>()`](https://typia.io/docs/llm/application#applicationofvalidate) function. Then how about OpenAPI document? How Swagger document can be LLM function calling schema.
408
-
409
- The secret is on the above diagram.
410
-
411
- In the OpenAPI specification, there are three versions with different definitions. And even in the same version, there are too much ambiguous and duplicated expressions. To resolve these problems, [`@samchon/openapi`](https://github.com/samchon/openapi) is transforming every OpenAPI documents to v3.1 emended specification. The `@samchon/openapi`'s emended v3.1 specification has removed every ambiguous and duplicated expressions for clarity.
412
-
413
- With the v3.1 emended OpenAPI document, `@samchon/openapi` converts it to a migration schema that is near to the function structure. And as the last step, the migration schema will be transformed to a specific LLM provider's function calling schema. LLM function calling schemas are composed like this way.
414
-
415
- > **Why do not directly convert, but intermediate?**
416
- >
417
- > If directly convert from each version of OpenAPI specification to specific LLM's function calling schema, I have to make much more converters increased by cartesian product. In current models, number of converters would be 12 = 3 x 4.
418
- >
419
- > However, if define intermediate schema, number of converters are shrunk to plus operation. In current models, I just need to develop only (7 = 3 + 4) converters, and this is the reason why I've defined intermediate specification. This way is economic.
1
+ # `@agentica/core`
2
+ ![agentica-conceptual-diagram](https://github.com/user-attachments/assets/d7ebbd1f-04d3-4b0d-9e2a-234e29dd6c57)
3
+
4
+ [![GitHub license](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/wrtnlabs/agentica/blob/master/LICENSE)
5
+ [![npm version](https://img.shields.io/npm/v/@agentica/core.svg)](https://www.npmjs.com/package/@agentica/core)
6
+ [![Downloads](https://img.shields.io/npm/dm/@agentica/core.svg)](https://www.npmjs.com/package/@agentica/core)
7
+ [![Build Status](https://github.com/wrtnlabs/agentica/workflows/build/badge.svg)](https://github.com/wrtnlabs/agentica/actions?query=workflow%3Abuild)
8
+
9
+ The simplest **Agentic AI** library, specialized in **LLM Function Calling**.
10
+
11
+ Don't compose complicate agent graph or workflow, but just deliver **Swagger/OpenAPI** documents or **TypeScript class** types linearly to the `@agentica/core`. Then `@agentica/core` will do everything with the function calling.
12
+
13
+ Look at the below demonstration, and feel how `@agentica/core` is easy and powerful.
14
+
15
+ ```typescript
16
+ import { Agentica } from "@agentica/core";
17
+ import typia from "typia";
18
+
19
+ const agent = new Agentica({
20
+ controllers: [
21
+ await fetch(
22
+ "https://shopping-be.wrtn.ai/editor/swagger.json",
23
+ ).then(r => r.json()),
24
+ typia.llm.application<ShoppingCounselor>(),
25
+ typia.llm.application<ShoppingPolicy>(),
26
+ typia.llm.application<ShoppingSearchRag>(),
27
+ ],
28
+ });
29
+ await agent.conversate("I wanna buy MacBook Pro");
30
+ ```
31
+
32
+ > https://github.com/user-attachments/assets/01604b53-aca4-41cb-91aa-3faf63549ea6
33
+ >
34
+ > Demonstration video of Shopping AI Chatbot
35
+
36
+
37
+
38
+
39
+ ## How to Use
40
+ ### Setup
41
+ ```bash
42
+ npm install @agentica/core @samchon/openapi typia
43
+ npx typia setup
44
+ ```
45
+
46
+ Install not only `@agentica/core`, but also [`@samchon/openapi`](https://github.com/samchon/openapi) and [`typia`](https://github.com/samchon/typia).
47
+
48
+ `@samchon/openapi` is an OpenAPI specification library which can convert Swagger/OpenAPI document to LLM function calling schema. And `typia` is a transformer (compiler) library which can compose LLM function calling schema from a TypeScript class type.
49
+
50
+ By the way, as `typia` is a transformer library analyzing TypeScript source code in the compilation level, it needs additional setup command `npx typia setup`. Also, if you're not using non-standard TypeScript compiler (not `tsc`) or developing the agent in the frontend environment, you have to setup [`@ryoppippi/unplugin-typia`](https://typia.io/docs/setup/#unplugin-typia) too.
51
+
52
+ ### Chat with Backend Server
53
+ ```typescript
54
+ import { IHttpLlmApplication } from "@samchon/openapi";
55
+ import { Agentica, createHttpApplication } from "@agentica/core";
56
+ import OpenAI from "openai";
57
+ import { IValidation } from "typia";
58
+
59
+ const main = async (): Promise<void> => {
60
+ // LOAD SWAGGER DOCUMENT, AND CONVERT TO LLM APPLICATION SCHEMA
61
+ const application: IValidation<IHttpLlmApplication<"chatgpt">> =
62
+ createHttpApplication({
63
+ model: "chatgpt",
64
+ document: OpenApi.convert(
65
+ await fetch("https://shopping-be.wrtn.ai/editor/swagger.json").then(
66
+ (r) => r.json()
67
+ )
68
+ ),
69
+ });
70
+ if (application.success === false) {
71
+ console.error(application.errors);
72
+ throw new Error("Type error on the target swagger document");
73
+ }
74
+
75
+ // CREATE AN AGENT WITH THE APPLICATION
76
+ const agent: Agentica<"chatgpt"> = new Agentica({
77
+ model: "chatgpt",
78
+ provider: {
79
+ model: "gpt-4o-mini",
80
+ api: new OpenAI({
81
+ apiKey: "YOUR_OPENAI_API_KEY",
82
+ }),
83
+ },
84
+ controllers: [
85
+ {
86
+ protocol: "http",
87
+ name: "shopping",
88
+ application: application.data,
89
+ connection: {
90
+ host: "https://shopping-be.wrtn.ai",
91
+ },
92
+ },
93
+ ],
94
+ config: {
95
+ locale: "en-US",
96
+ },
97
+ });
98
+
99
+ // ADD EVENT LISTENERS
100
+ agent.on("select", async (select) => {
101
+ console.log("selected function", select.operation.function.name);
102
+ });
103
+ agent.on("execute", async (execute) => {
104
+ consoe.log("execute function", {
105
+ function: execute.operation.function.name,
106
+ arguments: execute.arguments,
107
+ value: execute.value,
108
+ });
109
+ });
110
+
111
+ // CONVERSATE TO AI CHATBOT
112
+ await agent.conversate("What you can do?");
113
+ };
114
+ main().catch(console.error);
115
+ ```
116
+
117
+ Just load your swagger document, and put it into the `@agentica/core`.
118
+
119
+ Then you can start conversation with your backend server, and the API functions of the backend server would be automatically called. AI chatbot will analyze your conversation texts, and executes proper API functions by the LLM (Large Language Model) function calling feature.
120
+
121
+ From now on, every backend developer is also an AI developer.
122
+
123
+ ### Chat with TypeScript Class
124
+ ```typescript
125
+ import { Agentica } from "@agentica/core";
126
+ import typia, { tags } from "typia";
127
+ import OpenAI from "openai";
128
+
129
+ class BbsArticleService {
130
+ /**
131
+ * Create a new article.
132
+ *
133
+ * Writes a new article and archives it into the DB.
134
+ *
135
+ * @param props Properties of create function
136
+ * @returns Newly created article
137
+ */
138
+ public async create(props: {
139
+ /**
140
+ * Information of the article to create
141
+ */
142
+ input: IBbsArticle.ICreate;
143
+ }): Promise<IBbsArticle>;
144
+
145
+ /**
146
+ * Update an article.
147
+ *
148
+ * Updates an article with new content.
149
+ *
150
+ * @param props Properties of update function
151
+ * @param input New content to update
152
+ */
153
+ public async update(props: {
154
+ /**
155
+ * Target article's {@link IBbsArticle.id}.
156
+ */
157
+ id: string & tags.Format<"uuid">;
158
+
159
+ /**
160
+ * New content to update.
161
+ */
162
+ input: IBbsArticle.IUpdate;
163
+ }): Promise<void>;
164
+ }
165
+
166
+ const main = async (): Promise<void> => {
167
+ const api: OpenAI = new OpenAI({
168
+ apiKey: "YOUR_OPENAI_API_KEY",
169
+ });
170
+ const agent: Agentica<"chatgpt"> = new Agentica({
171
+ model: "chatgpt",
172
+ provider: {
173
+ model: "gpt-4o-mini",
174
+ api: new OpenAI({
175
+ apiKey: "YOUR_OPENAI_API_KEY",
176
+ }),
177
+ },
178
+ controllers: [
179
+ {
180
+ protocol: "class",
181
+ name: "vectorStore",
182
+ application: typia.llm.applicationOfValidate<
183
+ BbsArticleService,
184
+ "chatgpt"
185
+ >(),
186
+ execute: new BbsArticleService(),
187
+ },
188
+ ],
189
+ });
190
+ await agent.conversate("I wanna write an article.");
191
+ };
192
+ main().catch(console.error);
193
+ ```
194
+
195
+ You also can chat with a TypeScript class.
196
+
197
+ Just deliver the TypeScript type to the `@agentica/core`, and start conversation. Then `@agentica/core` will call the proper class functions by analyzing your conversation texts with LLM function calling feature.
198
+
199
+ From now on, every TypeScript classes you've developed can be the AI chatbot.
200
+
201
+ ### Multi Agent Orchestration
202
+ ```typescript
203
+ import { Agentica } from "@agentica/core";
204
+ import typia from "typia";
205
+ import OpenAI from "openai";
206
+
207
+ class OpenAIVectorStoreAgent {
208
+ /**
209
+ * Retrieve Vector DB with RAG.
210
+ *
211
+ * @param props Properties of Vector DB retrievelance
212
+ */
213
+ public query(props: {
214
+ /**
215
+ * Keywords to look up.
216
+ *
217
+ * Put all the keywords you want to look up. However, keywords
218
+ * should only be included in the core, and all ambiguous things
219
+ * should be excluded to achieve accurate results.
220
+ */
221
+ keywords: string;
222
+ }): Promise<IVectorStoreQueryResult>;
223
+ }
224
+
225
+ const main = async (): Promise<void> => {
226
+ const api: OpenAI = new OpenAI({
227
+ apiKey: "YOUR_OPENAI_API_KEY",
228
+ });
229
+ const agent: Agentica<"chatgpt"> = new Agentica({
230
+ model: "chatgpt",
231
+ provider: {
232
+ model: "gpt-4o-mini",
233
+ api: new OpenAI({
234
+ apiKey: "YOUR_OPENAI_API_KEY",
235
+ }),
236
+ },
237
+ controllers: [
238
+ {
239
+ protocol: "class",
240
+ name: "vectorStore",
241
+ application: typia.llm.applicationOfValidate<
242
+ OpenAIVectorStoreAgent,
243
+ "chatgpt"
244
+ >(),
245
+ execute: new OpenAIVectorStoreAgent({
246
+ api,
247
+ id: "YOUR_OPENAI_VECTOR_STORE_ID",
248
+ }),
249
+ },
250
+ ],
251
+ });
252
+ await agent.conversate("I wanna research economic articles");
253
+ };
254
+ main().catch(console.error);
255
+ ```
256
+
257
+ In the `@agentica/core`, you can implement multi-agent orchestration super easily.
258
+
259
+ Just develop a TypeScript class which contains agent feature like Vector Store, and just deliver the TypeScript class type to the `@agentica/core` like above. The `@agentica/core` will centralize and realize the multi-agent orchestration by LLM function calling strategy to the TypeScript class.
260
+
261
+
262
+
263
+
264
+ ## Principles
265
+ ### Agent Strategy
266
+ ```mermaid
267
+ sequenceDiagram
268
+ actor User
269
+ actor Agent
270
+ participant Selector
271
+ participant Caller
272
+ participant Describer
273
+ activate User
274
+ User-->>Agent: Conversate:<br/>user says
275
+ activate Agent
276
+ Agent->>Selector: Deliver conversation text
277
+ activate Selector
278
+ deactivate User
279
+ Note over Selector: Select or remove candidate functions
280
+ alt No candidate
281
+ Selector->>Agent: Talk like plain ChatGPT
282
+ deactivate Selector
283
+ Agent->>User: Conversate:<br/>agent says
284
+ activate User
285
+ deactivate User
286
+ end
287
+ deactivate Agent
288
+ loop Candidate functions exist
289
+ activate Agent
290
+ Agent->>Caller: Deliver conversation text
291
+ activate Caller
292
+ alt Contexts are enough
293
+ Note over Caller: Call fulfilled functions
294
+ Caller->>Describer: Function call histories
295
+ deactivate Caller
296
+ activate Describer
297
+ Describer->>Agent: Describe function calls
298
+ deactivate Describer
299
+ Agent->>User: Conversate:<br/>agent describes
300
+ activate User
301
+ deactivate User
302
+ else Contexts are not enough
303
+ break
304
+ Caller->>Agent: Request more information
305
+ end
306
+ Agent->>User: Conversate:<br/>agent requests
307
+ activate User
308
+ deactivate User
309
+ end
310
+ deactivate Agent
311
+ end
312
+ ```
313
+
314
+ When user says, `@agentica/core` delivers the conversation text to the `selector` agent, and let the `selector` agent to find (or cancel) candidate functions from the context. If the `selector` agent could not find any candidate function to call and there is not any candidate function previously selected either, the `selector` agent will work just like a plain ChatGPT.
315
+
316
+ And `@agentica/core` enters to a loop statement until the candidate functions to be empty. In the loop statement, `caller` agent tries to LLM function calling by analyzing the user's conversation text. If context is enough to compose arguments of candidate functions, the `caller` agent actually calls the target functions, and let `decriber` agent to explain the function calling results. Otherwise the context is not enough to compose arguments, `caller` agent requests more information to user.
317
+
318
+ Such LLM (Large Language Model) function calling strategy separating `selector`, `caller`, and `describer` is the key logic of `@agentica/core`.
319
+
320
+ ### Validation Feedback
321
+ ```typescript
322
+ import { FunctionCall } from "pseudo";
323
+ import { ILlmFunctionOfValidate, IValidation } from "typia";
324
+
325
+ export const correctFunctionCall = (p: {
326
+ call: FunctionCall;
327
+ functions: Array<ILlmFunctionOfValidate<"chatgpt">>;
328
+ retry: (reason: string, errors?: IValidation.IError[]) => Promise<unknown>;
329
+ }): Promise<unknown> => {
330
+ // FIND FUNCTION
331
+ const func: ILlmFunctionOfValidate<"chatgpt"> | undefined =
332
+ p.functions.find((f) => f.name === p.call.name);
333
+ if (func === undefined) {
334
+ // never happened in my experience
335
+ return p.retry(
336
+ "Unable to find the matched function name. Try it again.",
337
+ );
338
+ }
339
+
340
+ // VALIDATE
341
+ const result: IValidation<unknown> = func.validate(p.call.arguments);
342
+ if (result.success === false) {
343
+ // 1st trial: 50% (gpt-4o-mini in shopping mall chatbot)
344
+ // 2nd trial with validation feedback: 99%
345
+ // 3nd trial with validation feedback again: never have failed
346
+ return p.retry(
347
+ "Type errors are detected. Correct it through validation errors",
348
+ {
349
+ errors: result.errors,
350
+ },
351
+ );
352
+ }
353
+ return result.data;
354
+ }
355
+ ```
356
+
357
+ Is LLM function calling perfect?
358
+
359
+ The answer is not, and LLM (Large Language Model) providers like OpenAI take a lot of type level mistakes when composing the arguments of the target function to call. Even though an LLM function calling schema has defined an `Array<string>` type, LLM often fills it just by a `string` typed value.
360
+
361
+ Therefore, when developing an LLM function calling agent, the validation feedback process is essentially required. If LLM takes a type level mistake on arguments composition, the agent must feedback the most detailed validation errors, and let the LLM to retry the function calling referencing the validation errors.
362
+
363
+ About the validation feedback, `@agentica/core` is utilizing [`typia.validate<T>()`](https://typia.io/docs/validators/validate) and [`typia.llm.applicationOfValidate<Class, Model>()`](https://typia.io/docs/llm/application/#applicationofvalidate) functions. They construct validation logic by analyzing TypeScript source codes and types in the compilation level, so that detailed and accurate than any other validators like below.
364
+
365
+ Such validation feedback strategy and combination with `typia` runtime validator, `@agentica/core` has achieved the most ideal LLM function calling. In my experience, when using OpenAI's `gpt-4o-mini` model, it tends to construct invalid function calling arguments at the first trial about 50% of the time. By the way, if correct it through validation feedback with `typia`, success rate soars to 99%. And I've never had a failure when trying validation feedback twice.
366
+
367
+ Components | `typia` | `TypeBox` | `ajv` | `io-ts` | `zod` | `C.V.`
368
+ -------------------------|--------|-----------|-------|---------|-------|------------------
369
+ **Easy to use** | ✅ | ❌ | ❌ | ❌ | ❌ | ❌
370
+ [Object (simple)](https://github.com/samchon/typia/blob/master/test/src/structures/ObjectSimple.ts) | ✔ | ✔ | ✔ | ✔ | ✔ | ✔
371
+ [Object (hierarchical)](https://github.com/samchon/typia/blob/master/test/src/structures/ObjectHierarchical.ts) | ✔ | ✔ | ✔ | ✔ | ✔ | ✔
372
+ [Object (recursive)](https://github.com/samchon/typia/blob/master/test/src/structures/ObjectRecursive.ts) | ✔ | ❌ | ✔ | ✔ | ✔ | ✔ | ✔
373
+ [Object (union, implicit)](https://github.com/samchon/typia/blob/master/test/src/structures/ObjectUnionImplicit.ts) | ✅ | ❌ | ❌ | ❌ | ❌ | ❌
374
+ [Object (union, explicit)](https://github.com/samchon/typia/blob/master/test/src/structures/ObjectUnionExplicit.ts) | ✔ | ✔ | ✔ | ✔ | ✔ | ❌
375
+ [Object (additional tags)](https://github.com/samchon/typia/#comment-tags) | ✔ | ✔ | ✔ | ✔ | ✔ | ✔
376
+ [Object (template literal types)](https://github.com/samchon/typia/blob/master/test/src/structures/TemplateUnion.ts) | ✔ | ✔ | ✔ | ❌ | ❌ | ❌
377
+ [Object (dynamic properties)](https://github.com/samchon/typia/blob/master/test/src/structures/DynamicTemplate.ts) | ✔ | ✔ | ✔ | ❌ | ❌ | ❌
378
+ [Array (rest tuple)](https://github.com/samchon/typia/blob/master/test/src/structures/TupleRestAtomic.ts) | ✅ | ❌ | ❌ | ❌ | ❌ | ❌
379
+ [Array (hierarchical)](https://github.com/samchon/typia/blob/master/test/src/structures/ArrayHierarchical.ts) | ✔ | ✔ | ✔ | ✔ | ✔ | ✔
380
+ [Array (recursive)](https://github.com/samchon/typia/blob/master/test/src/structures/ArrayRecursive.ts) | ✔ | ✔ | ✔ | ✔ | ✔ | ❌
381
+ [Array (recursive, union)](https://github.com/samchon/typia/blob/master/test/src/structures/ArrayRecursiveUnionExplicit.ts) | ✔ | ✔ | ❌ | ✔ | ✔ | ❌
382
+ [Array (R+U, implicit)](https://github.com/samchon/typia/blob/master/test/src/structures/ArrayRecursiveUnionImplicit.ts) | ✅ | ❌ | ❌ | ❌ | ❌ | ❌
383
+ [Array (repeated)](https://github.com/samchon/typia/blob/master/test/src/structures/ArrayRepeatedNullable.ts) | ✅ | ❌ | ❌ | ❌ | ❌ | ❌
384
+ [Array (repeated, union)](https://github.com/samchon/typia/blob/master/test/src/structures/ArrayRepeatedUnionWithTuple.ts) | ✅ | ❌ | ❌ | ❌ | ❌ | ❌
385
+ [**Ultimate Union Type**](https://github.com/samchon/typia/blob/master/test/src/structures/UltimateUnion.ts) | ✅ | ❌ | ❌ | ❌ | ❌ | ❌
386
+
387
+ > `C.V.` means `class-validator`
388
+
389
+ ### OpenAPI Specification
390
+ ```mermaid
391
+ flowchart
392
+ subgraph "OpenAPI Specification"
393
+ v20("Swagger v2.0") --upgrades--> emended[["OpenAPI v3.1 (emended)"]]
394
+ v30("OpenAPI v3.0") --upgrades--> emended
395
+ v31("OpenAPI v3.1") --emends--> emended
396
+ end
397
+ subgraph "OpenAPI Generator"
398
+ emended --normalizes--> migration[["Migration Schema"]]
399
+ migration --"Artificial Intelligence"--> lfc{{"LLM Function Calling"}}
400
+ lfc --"OpenAI"--> chatgpt("ChatGPT")
401
+ lfc --"Anthropic"--> claude("Claude")
402
+ lfc --"Google"--> gemini("Gemini")
403
+ lfc --"Meta"--> llama("Llama")
404
+ end
405
+ ```
406
+
407
+ `@agentica/core` obtains LLM function calling schemas from both Swagger/OpenAPI documents and TypeScript class types. The TypeScript class type can be converted to LLM function calling schema by [`typia.llm.applicationOfValidate<Class, Model>()`](https://typia.io/docs/llm/application#applicationofvalidate) function. Then how about OpenAPI document? How Swagger document can be LLM function calling schema.
408
+
409
+ The secret is on the above diagram.
410
+
411
+ In the OpenAPI specification, there are three versions with different definitions. And even in the same version, there are too much ambiguous and duplicated expressions. To resolve these problems, [`@samchon/openapi`](https://github.com/samchon/openapi) is transforming every OpenAPI documents to v3.1 emended specification. The `@samchon/openapi`'s emended v3.1 specification has removed every ambiguous and duplicated expressions for clarity.
412
+
413
+ With the v3.1 emended OpenAPI document, `@samchon/openapi` converts it to a migration schema that is near to the function structure. And as the last step, the migration schema will be transformed to a specific LLM provider's function calling schema. LLM function calling schemas are composed like this way.
414
+
415
+ > **Why do not directly convert, but intermediate?**
416
+ >
417
+ > If directly convert from each version of OpenAPI specification to specific LLM's function calling schema, I have to make much more converters increased by cartesian product. In current models, number of converters would be 12 = 3 x 4.
418
+ >
419
+ > However, if define intermediate schema, number of converters are shrunk to plus operation. In current models, I just need to develop only (7 = 3 + 4) converters, and this is the reason why I've defined intermediate specification. This way is economic.