@199-bio/engram 0.4.0 → 0.4.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1 +1 @@
1
- {"version":3,"file":"index.d.ts","sourceRoot":"","sources":["../../src/graph/index.ts"],"names":[],"mappings":"AAAA,cAAc,gBAAgB,CAAC;AAC/B,cAAc,sBAAsB,CAAC"}
1
+ {"version":3,"file":"index.d.ts","sourceRoot":"","sources":["../../src/graph/index.ts"],"names":[],"mappings":"AAAA,cAAc,sBAAsB,CAAC"}
@@ -1 +1 @@
1
- {"version":3,"file":"knowledge-graph.d.ts","sourceRoot":"","sources":["../../src/graph/knowledge-graph.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAEH,OAAO,EACL,cAAc,EACd,MAAM,EACN,WAAW,EACX,QAAQ,EACT,MAAM,wBAAwB,CAAC;AAGhC,MAAM,WAAW,iBAAkB,SAAQ,MAAM;IAC/C,YAAY,EAAE,WAAW,EAAE,CAAC;IAC5B,aAAa,EAAE,KAAK,CAAC,QAAQ,GAAG;QAAE,YAAY,EAAE,MAAM,CAAA;KAAE,CAAC,CAAC;IAC1D,WAAW,EAAE,KAAK,CAAC,QAAQ,GAAG;QAAE,YAAY,EAAE,MAAM,CAAA;KAAE,CAAC,CAAC;CACzD;AAED,MAAM,WAAW,cAAc;IAC7B,UAAU,EAAE,MAAM,CAAC;IACnB,QAAQ,EAAE,MAAM,EAAE,CAAC;IACnB,SAAS,EAAE,QAAQ,EAAE,CAAC;IACtB,YAAY,EAAE,WAAW,EAAE,CAAC;CAC7B;AAED,qBAAa,cAAc;IACb,OAAO,CAAC,EAAE;gBAAF,EAAE,EAAE,cAAc;IAItC;;OAEG;IACH,iBAAiB,CACf,IAAI,EAAE,MAAM,EACZ,IAAI,GAAE,MAAM,CAAC,MAAM,CAAY,GAC9B,MAAM;IAMT;;OAEG;IACH,gBAAgB,CAAC,QAAQ,EAAE,MAAM,GAAG,iBAAiB,GAAG,IAAI;IAoC5D;;OAEG;IACH,YAAY,CAAC,KAAK,EAAE,MAAM,EAAE,IAAI,CAAC,EAAE,MAAM,CAAC,MAAM,CAAC,GAAG,MAAM,EAAE;IAI5D;;OAEG;IACH,YAAY,CAAC,IAAI,CAAC,EAAE,MAAM,CAAC,MAAM,CAAC,EAAE,KAAK,GAAE,MAAY,GAAG,MAAM,EAAE;IAMlE;;OAEG;IACH,cAAc,CACZ,cAAc,EAAE,MAAM,EACtB,OAAO,EAAE,MAAM,EACf,cAAc,CAAC,EAAE,MAAM,EACvB,UAAU,GAAE,MAAY,GACvB,WAAW;IAWd;;OAEG;IACH,eAAe,CAAC,cAAc,EAAE,MAAM,GAAG,WAAW,EAAE;IAWtD;;OAEG;IACH,MAAM,CACJ,YAAY,EAAE,MAAM,EACpB,UAAU,EAAE,MAAM,EAClB,IAAI,EAAE,MAAM,EACZ,UAAU,CAAC,EAAE,MAAM,CAAC,MAAM,EAAE,OAAO,CAAC,GACnC,QAAQ;IAgBX;;OAEG;IACH,YAAY,CACV,cAAc,EAAE,MAAM,EACtB,SAAS,GAAE,MAAM,GAAG,IAAI,GAAG,MAAe,GACzC,QAAQ,EAAE;IAWb;;OAEG;IACH,QAAQ,CACN,cAAc,EAAE,MAAM,EACtB,KAAK,GAAE,MAAU,EACjB,aAAa,CAAC,EAAE,MAAM,EAAE,GACvB,cAAc,GAAG,IAAI;IAgBxB;;OAEG;IACH,eAAe,CACb,IAAI,EAAE,MAAM,EACZ,cAAc,CAAC,EAAE,MAAM,GACtB;QAAE,QAAQ,EAAE,MAAM,EAAE,CAAC;QAAC,YAAY,EAAE,WAAW,EAAE,CAAA;KAAE;IAyCtD;;OAEG;IACH,oBAAoB,CAClB,cAAc,EAAE,MAAM,EACtB,KAAK,GAAE,MAAU,GAChB,MAAM,EAAE;CAcZ"}
1
+ {"version":3,"file":"knowledge-graph.d.ts","sourceRoot":"","sources":["../../src/graph/knowledge-graph.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAEH,OAAO,EACL,cAAc,EACd,MAAM,EACN,WAAW,EACX,QAAQ,EACT,MAAM,wBAAwB,CAAC;AAEhC,MAAM,WAAW,iBAAkB,SAAQ,MAAM;IAC/C,YAAY,EAAE,WAAW,EAAE,CAAC;IAC5B,aAAa,EAAE,KAAK,CAAC,QAAQ,GAAG;QAAE,YAAY,EAAE,MAAM,CAAA;KAAE,CAAC,CAAC;IAC1D,WAAW,EAAE,KAAK,CAAC,QAAQ,GAAG;QAAE,YAAY,EAAE,MAAM,CAAA;KAAE,CAAC,CAAC;CACzD;AAED,MAAM,WAAW,cAAc;IAC7B,UAAU,EAAE,MAAM,CAAC;IACnB,QAAQ,EAAE,MAAM,EAAE,CAAC;IACnB,SAAS,EAAE,QAAQ,EAAE,CAAC;IACtB,YAAY,EAAE,WAAW,EAAE,CAAC;CAC7B;AAED,qBAAa,cAAc;IACb,OAAO,CAAC,EAAE;gBAAF,EAAE,EAAE,cAAc;IAItC;;OAEG;IACH,iBAAiB,CACf,IAAI,EAAE,MAAM,EACZ,IAAI,GAAE,MAAM,CAAC,MAAM,CAAY,GAC9B,MAAM;IAMT;;OAEG;IACH,gBAAgB,CAAC,QAAQ,EAAE,MAAM,GAAG,iBAAiB,GAAG,IAAI;IAoC5D;;OAEG;IACH,YAAY,CAAC,KAAK,EAAE,MAAM,EAAE,IAAI,CAAC,EAAE,MAAM,CAAC,MAAM,CAAC,GAAG,MAAM,EAAE;IAI5D;;OAEG;IACH,YAAY,CAAC,IAAI,CAAC,EAAE,MAAM,CAAC,MAAM,CAAC,EAAE,KAAK,GAAE,MAAY,GAAG,MAAM,EAAE;IAMlE;;OAEG;IACH,cAAc,CACZ,cAAc,EAAE,MAAM,EACtB,OAAO,EAAE,MAAM,EACf,cAAc,CAAC,EAAE,MAAM,EACvB,UAAU,GAAE,MAAY,GACvB,WAAW;IAWd;;OAEG;IACH,eAAe,CAAC,cAAc,EAAE,MAAM,GAAG,WAAW,EAAE;IAWtD;;OAEG;IACH,MAAM,CACJ,YAAY,EAAE,MAAM,EACpB,UAAU,EAAE,MAAM,EAClB,IAAI,EAAE,MAAM,EACZ,UAAU,CAAC,EAAE,MAAM,CAAC,MAAM,EAAE,OAAO,CAAC,GACnC,QAAQ;IAgBX;;OAEG;IACH,YAAY,CACV,cAAc,EAAE,MAAM,EACtB,SAAS,GAAE,MAAM,GAAG,IAAI,GAAG,MAAe,GACzC,QAAQ,EAAE;IAWb;;OAEG;IACH,QAAQ,CACN,cAAc,EAAE,MAAM,EACtB,KAAK,GAAE,MAAU,EACjB,aAAa,CAAC,EAAE,MAAM,EAAE,GACvB,cAAc,GAAG,IAAI;IAcxB;;OAEG;IACH,oBAAoB,CAClB,cAAc,EAAE,MAAM,EACtB,KAAK,GAAE,MAAU,GAChB,MAAM,EAAE;CAcZ"}
package/dist/index.js CHANGED
@@ -42,7 +42,7 @@ async function initialize() {
42
42
  // ============ MCP Server ============
43
43
  const server = new Server({
44
44
  name: "engram",
45
- version: "0.4.0",
45
+ version: "0.4.1",
46
46
  }, {
47
47
  capabilities: {
48
48
  tools: {},
@@ -53,26 +53,46 @@ const server = new Server({
53
53
  const TOOLS = [
54
54
  {
55
55
  name: "remember",
56
- description: "PRIMARY STORAGE TOOL. Use this for ALL new information - conversations, facts, observations, notes. Automatically extracts people, organizations, and places as entities and creates relationships. Do NOT also call create_entity/observe/relate - remember handles entity extraction automatically. Only use remember once per piece of information.",
56
+ description: "Store information with entities and relationships. Extract key people, organizations, and places from the content and pass them as entities. Include relationships between entities when mentioned (e.g., 'works_at', 'lives_in', 'knows').",
57
57
  inputSchema: {
58
58
  type: "object",
59
59
  properties: {
60
60
  content: {
61
61
  type: "string",
62
- description: "The information to store - can be a conversation snippet, fact, observation, or note",
63
- },
64
- source: {
65
- type: "string",
66
- description: "Source of the memory (e.g., 'conversation', 'note', 'import')",
67
- default: "conversation",
62
+ description: "The information to store",
68
63
  },
69
64
  importance: {
70
65
  type: "number",
71
- description: "Importance score from 0 to 1 (higher = more important). Use 0.7+ for key facts, 0.3- for casual mentions",
66
+ description: "0-1 score. Use 0.8+ for key facts (names, preferences, important events), 0.5 for general info, 0.3- for trivial mentions",
72
67
  minimum: 0,
73
68
  maximum: 1,
74
69
  default: 0.5,
75
70
  },
71
+ entities: {
72
+ type: "array",
73
+ description: "Key entities mentioned (people, organizations, places). Only include clear, specific named entities.",
74
+ items: {
75
+ type: "object",
76
+ properties: {
77
+ name: { type: "string", description: "Entity name (e.g., 'Boris Djordjevic', 'Google', 'Paris')" },
78
+ type: { type: "string", enum: ["person", "organization", "place"], description: "Entity type" },
79
+ },
80
+ required: ["name", "type"],
81
+ },
82
+ },
83
+ relationships: {
84
+ type: "array",
85
+ description: "Relationships between entities mentioned in the content",
86
+ items: {
87
+ type: "object",
88
+ properties: {
89
+ from: { type: "string", description: "Source entity name" },
90
+ to: { type: "string", description: "Target entity name" },
91
+ type: { type: "string", description: "Relationship type (e.g., 'works_at', 'lives_in', 'sibling_of', 'knows')" },
92
+ },
93
+ required: ["from", "to", "type"],
94
+ },
95
+ },
76
96
  },
77
97
  required: ["content"],
78
98
  },
@@ -168,13 +188,33 @@ server.setRequestHandler(CallToolRequestSchema, async (request) => {
168
188
  try {
169
189
  switch (name) {
170
190
  case "remember": {
171
- const { content, source = "conversation", importance = 0.5 } = args;
191
+ const { content, source = "conversation", importance = 0.5, entities: providedEntities = [], relationships: providedRelationships = [], } = args;
172
192
  // Create memory
173
193
  const memory = db.createMemory(content, source, importance);
174
194
  // Index for semantic search
175
195
  await search.indexMemory(memory);
176
- // Extract and store entities/relationships
177
- const { entities, observations } = graph.extractAndStore(content, memory.id);
196
+ // Store Claude-provided entities and link to memory
197
+ const storedEntities = [];
198
+ for (const ent of providedEntities) {
199
+ const entity = graph.getOrCreateEntity(ent.name, ent.type);
200
+ storedEntities.push(entity.name);
201
+ // Create observation linking entity to this memory
202
+ db.addObservation(entity.id, content, memory.id, 1.0);
203
+ }
204
+ // Store Claude-provided relationships
205
+ const storedRelations = [];
206
+ for (const rel of providedRelationships) {
207
+ try {
208
+ // Ensure both entities exist (create if not provided explicitly)
209
+ const fromEntity = graph.getOrCreateEntity(rel.from, "person");
210
+ const toEntity = graph.getOrCreateEntity(rel.to, "person");
211
+ graph.relate(fromEntity.name, toEntity.name, rel.type);
212
+ storedRelations.push(`${rel.from} -[${rel.type}]-> ${rel.to}`);
213
+ }
214
+ catch {
215
+ // Skip invalid relationships
216
+ }
217
+ }
178
218
  return {
179
219
  content: [
180
220
  {
@@ -182,8 +222,8 @@ server.setRequestHandler(CallToolRequestSchema, async (request) => {
182
222
  text: JSON.stringify({
183
223
  success: true,
184
224
  memory_id: memory.id,
185
- entities_extracted: entities.map((e) => e.name),
186
- observations_created: observations.length,
225
+ entities_stored: storedEntities,
226
+ relationships_stored: storedRelations,
187
227
  }, null, 2),
188
228
  },
189
229
  ],
@@ -1 +1 @@
1
- {"version":3,"file":"hybrid.d.ts","sourceRoot":"","sources":["../../src/retrieval/hybrid.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAEH,OAAO,EAAE,cAAc,EAAE,MAAM,EAAE,MAAM,wBAAwB,CAAC;AAChE,OAAO,EAAE,cAAc,EAAE,MAAM,6BAA6B,CAAC;AAC7D,OAAO,EAAE,gBAAgB,EAAE,eAAe,EAA0B,MAAM,cAAc,CAAC;AAGzF,MAAM,WAAW,kBAAkB;IACjC,MAAM,EAAE,MAAM,CAAC;IACf,KAAK,EAAE,MAAM,CAAC;IACd,OAAO,EAAE;QACP,IAAI,CAAC,EAAE,MAAM,CAAC;QACd,QAAQ,CAAC,EAAE,MAAM,CAAC;QAClB,KAAK,CAAC,EAAE,MAAM,CAAC;KAChB,CAAC;CACH;AAED,qBAAa,YAAY;IAErB,OAAO,CAAC,EAAE;IACV,OAAO,CAAC,KAAK;IACb,OAAO,CAAC,SAAS;gBAFT,EAAE,EAAE,cAAc,EAClB,KAAK,EAAE,cAAc,EACrB,SAAS,EAAE,gBAAgB,GAAG,eAAe;IAGvD;;;;;OAKG;IACG,MAAM,CACV,KAAK,EAAE,MAAM,EACb,OAAO,GAAE;QACP,KAAK,CAAC,EAAE,MAAM,CAAC;QACf,YAAY,CAAC,EAAE,OAAO,CAAC;QACvB,UAAU,CAAC,EAAE,MAAM,CAAC;QACpB,cAAc,CAAC,EAAE,MAAM,CAAC;QACxB,WAAW,CAAC,EAAE,MAAM,CAAC;QACrB,YAAY,CAAC,EAAE,OAAO,CAAC;KACnB,GACL,OAAO,CAAC,kBAAkB,EAAE,CAAC;IAqHhC;;OAEG;YACW,UAAU;IASxB;;OAEG;YACW,cAAc;IAS5B;;OAEG;YACW,WAAW;IAezB;;OAEG;IACG,WAAW,CAAC,MAAM,EAAE,MAAM,GAAG,OAAO,CAAC,IAAI,CAAC;IAOhD;;OAEG;IACG,YAAY,IAAI,OAAO,CAAC;QAAE,KAAK,EAAE,MAAM,CAAA;KAAE,CAAC;IAYhD;;OAEG;IACG,eAAe,CAAC,QAAQ,EAAE,MAAM,GAAG,OAAO,CAAC,IAAI,CAAC;CAGvD"}
1
+ {"version":3,"file":"hybrid.d.ts","sourceRoot":"","sources":["../../src/retrieval/hybrid.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAEH,OAAO,EAAE,cAAc,EAAE,MAAM,EAAE,MAAM,wBAAwB,CAAC;AAChE,OAAO,EAAE,cAAc,EAAE,MAAM,6BAA6B,CAAC;AAC7D,OAAO,EAAE,gBAAgB,EAAE,eAAe,EAA0B,MAAM,cAAc,CAAC;AAEzF,MAAM,WAAW,kBAAkB;IACjC,MAAM,EAAE,MAAM,CAAC;IACf,KAAK,EAAE,MAAM,CAAC;IACd,OAAO,EAAE;QACP,IAAI,CAAC,EAAE,MAAM,CAAC;QACd,QAAQ,CAAC,EAAE,MAAM,CAAC;QAClB,KAAK,CAAC,EAAE,MAAM,CAAC;KAChB,CAAC;CACH;AAED,qBAAa,YAAY;IAErB,OAAO,CAAC,EAAE;IACV,OAAO,CAAC,KAAK;IACb,OAAO,CAAC,SAAS;gBAFT,EAAE,EAAE,cAAc,EAClB,KAAK,EAAE,cAAc,EACrB,SAAS,EAAE,gBAAgB,GAAG,eAAe;IAGvD;;;;;OAKG;IACG,MAAM,CACV,KAAK,EAAE,MAAM,EACb,OAAO,GAAE;QACP,KAAK,CAAC,EAAE,MAAM,CAAC;QACf,YAAY,CAAC,EAAE,OAAO,CAAC;QACvB,UAAU,CAAC,EAAE,MAAM,CAAC;QACpB,cAAc,CAAC,EAAE,MAAM,CAAC;QACxB,WAAW,CAAC,EAAE,MAAM,CAAC;QACrB,YAAY,CAAC,EAAE,OAAO,CAAC;KACnB,GACL,OAAO,CAAC,kBAAkB,EAAE,CAAC;IAqHhC;;OAEG;YACW,UAAU;IASxB;;OAEG;YACW,cAAc;IAS5B;;OAEG;YACW,WAAW;IAmBzB;;OAEG;IACG,WAAW,CAAC,MAAM,EAAE,MAAM,GAAG,OAAO,CAAC,IAAI,CAAC;IAOhD;;OAEG;IACG,YAAY,IAAI,OAAO,CAAC;QAAE,KAAK,EAAE,MAAM,CAAA;KAAE,CAAC;IAYhD;;OAEG;IACG,eAAe,CAAC,QAAQ,EAAE,MAAM,GAAG,OAAO,CAAC,IAAI,CAAC;CAGvD"}
@@ -1 +1 @@
1
- {"version":3,"file":"server.d.ts","sourceRoot":"","sources":["../../src/web/server.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAMH,OAAO,EAAE,cAAc,EAAE,MAAM,wBAAwB,CAAC;AACxD,OAAO,EAAE,cAAc,EAAE,MAAM,6BAA6B,CAAC;AAC7D,OAAO,EAAE,YAAY,EAAE,MAAM,wBAAwB,CAAC;AAiBtD,UAAU,gBAAgB;IACxB,EAAE,EAAE,cAAc,CAAC;IACnB,KAAK,EAAE,cAAc,CAAC;IACtB,MAAM,EAAE,YAAY,CAAC;IACrB,IAAI,CAAC,EAAE,MAAM,CAAC;CACf;AAED,qBAAa,eAAe;IAC1B,OAAO,CAAC,MAAM,CAA4B;IAC1C,OAAO,CAAC,EAAE,CAAiB;IAC3B,OAAO,CAAC,KAAK,CAAiB;IAC9B,OAAO,CAAC,MAAM,CAAe;IAC7B,OAAO,CAAC,IAAI,CAAS;gBAET,OAAO,EAAE,gBAAgB;IAO/B,KAAK,IAAI,OAAO,CAAC,MAAM,CAAC;IAkB9B,IAAI,IAAI,IAAI;YAOE,aAAa;YA+Bb,SAAS;YAyKT,WAAW;IAgCzB,OAAO,CAAC,SAAS;CAclB"}
1
+ {"version":3,"file":"server.d.ts","sourceRoot":"","sources":["../../src/web/server.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAMH,OAAO,EAAE,cAAc,EAAE,MAAM,wBAAwB,CAAC;AACxD,OAAO,EAAE,cAAc,EAAE,MAAM,6BAA6B,CAAC;AAC7D,OAAO,EAAE,YAAY,EAAE,MAAM,wBAAwB,CAAC;AAiBtD,UAAU,gBAAgB;IACxB,EAAE,EAAE,cAAc,CAAC;IACnB,KAAK,EAAE,cAAc,CAAC;IACtB,MAAM,EAAE,YAAY,CAAC;IACrB,IAAI,CAAC,EAAE,MAAM,CAAC;CACf;AAED,qBAAa,eAAe;IAC1B,OAAO,CAAC,MAAM,CAA4B;IAC1C,OAAO,CAAC,EAAE,CAAiB;IAC3B,OAAO,CAAC,KAAK,CAAiB;IAC9B,OAAO,CAAC,MAAM,CAAe;IAC7B,OAAO,CAAC,IAAI,CAAS;gBAET,OAAO,EAAE,gBAAgB;IAO/B,KAAK,IAAI,OAAO,CAAC,MAAM,CAAC;IAkB9B,IAAI,IAAI,IAAI;YAOE,aAAa;YA+Bb,SAAS;YAwKT,WAAW;IAgCzB,OAAO,CAAC,SAAS;CAclB"}
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@199-bio/engram",
3
- "version": "0.4.0",
3
+ "version": "0.4.1",
4
4
  "description": "Give Claude a perfect memory. Local-first MCP server with hybrid search.",
5
5
  "type": "module",
6
6
  "main": "dist/index.js",
@@ -1,2 +1 @@
1
- export * from "./extractor.js";
2
1
  export * from "./knowledge-graph.js";
@@ -9,7 +9,6 @@ import {
9
9
  Observation,
10
10
  Relation,
11
11
  } from "../storage/database.js";
12
- import { entityExtractor, ExtractedEntity } from "./extractor.js";
13
12
 
14
13
  export interface EntityWithDetails extends Entity {
15
14
  observations: Observation[];
@@ -191,55 +190,6 @@ export class KnowledgeGraph {
191
190
  };
192
191
  }
193
192
 
194
- // ============ Auto-extraction ============
195
-
196
- /**
197
- * Extract entities from text and add them to the graph
198
- */
199
- extractAndStore(
200
- text: string,
201
- sourceMemoryId?: string
202
- ): { entities: Entity[]; observations: Observation[] } {
203
- const extracted = entityExtractor.extractAll(text);
204
- const entities: Entity[] = [];
205
- const observations: Observation[] = [];
206
-
207
- for (const ext of extracted) {
208
- // Only store high-confidence extractions
209
- if (ext.confidence < 0.5) continue;
210
-
211
- // Get or create entity
212
- const entity = this.getOrCreateEntity(ext.name, ext.type);
213
- entities.push(entity);
214
-
215
- // Create observation linking this entity to the memory content
216
- const obs = this.db.addObservation(
217
- entity.id,
218
- text,
219
- sourceMemoryId || null,
220
- ext.confidence
221
- );
222
- observations.push(obs);
223
- }
224
-
225
- // Extract and create relationships
226
- const relationships = entityExtractor.extractRelationships(text);
227
- for (const rel of relationships) {
228
- try {
229
- // Ensure both entities exist
230
- const fromEntity = this.getOrCreateEntity(rel.subject, "person");
231
- const toEntity = this.getOrCreateEntity(rel.object, "person");
232
-
233
- // Create the relation
234
- this.db.createRelation(fromEntity.id, toEntity.id, rel.relation);
235
- } catch {
236
- // Silently ignore relation creation failures
237
- }
238
- }
239
-
240
- return { entities, observations };
241
- }
242
-
243
193
  /**
244
194
  * Find memories related to an entity by traversing the graph
245
195
  */
package/src/index.ts CHANGED
@@ -60,7 +60,7 @@ async function initialize(): Promise<void> {
60
60
  const server = new Server(
61
61
  {
62
62
  name: "engram",
63
- version: "0.4.0",
63
+ version: "0.4.1",
64
64
  },
65
65
  {
66
66
  capabilities: {
@@ -75,26 +75,46 @@ const TOOLS = [
75
75
  {
76
76
  name: "remember",
77
77
  description:
78
- "PRIMARY STORAGE TOOL. Use this for ALL new information - conversations, facts, observations, notes. Automatically extracts people, organizations, and places as entities and creates relationships. Do NOT also call create_entity/observe/relate - remember handles entity extraction automatically. Only use remember once per piece of information.",
78
+ "Store information with entities and relationships. Extract key people, organizations, and places from the content and pass them as entities. Include relationships between entities when mentioned (e.g., 'works_at', 'lives_in', 'knows').",
79
79
  inputSchema: {
80
80
  type: "object" as const,
81
81
  properties: {
82
82
  content: {
83
83
  type: "string",
84
- description: "The information to store - can be a conversation snippet, fact, observation, or note",
85
- },
86
- source: {
87
- type: "string",
88
- description: "Source of the memory (e.g., 'conversation', 'note', 'import')",
89
- default: "conversation",
84
+ description: "The information to store",
90
85
  },
91
86
  importance: {
92
87
  type: "number",
93
- description: "Importance score from 0 to 1 (higher = more important). Use 0.7+ for key facts, 0.3- for casual mentions",
88
+ description: "0-1 score. Use 0.8+ for key facts (names, preferences, important events), 0.5 for general info, 0.3- for trivial mentions",
94
89
  minimum: 0,
95
90
  maximum: 1,
96
91
  default: 0.5,
97
92
  },
93
+ entities: {
94
+ type: "array",
95
+ description: "Key entities mentioned (people, organizations, places). Only include clear, specific named entities.",
96
+ items: {
97
+ type: "object",
98
+ properties: {
99
+ name: { type: "string", description: "Entity name (e.g., 'Boris Djordjevic', 'Google', 'Paris')" },
100
+ type: { type: "string", enum: ["person", "organization", "place"], description: "Entity type" },
101
+ },
102
+ required: ["name", "type"],
103
+ },
104
+ },
105
+ relationships: {
106
+ type: "array",
107
+ description: "Relationships between entities mentioned in the content",
108
+ items: {
109
+ type: "object",
110
+ properties: {
111
+ from: { type: "string", description: "Source entity name" },
112
+ to: { type: "string", description: "Target entity name" },
113
+ type: { type: "string", description: "Relationship type (e.g., 'works_at', 'lives_in', 'sibling_of', 'knows')" },
114
+ },
115
+ required: ["from", "to", "type"],
116
+ },
117
+ },
98
118
  },
99
119
  required: ["content"],
100
120
  },
@@ -194,10 +214,18 @@ server.setRequestHandler(CallToolRequestSchema, async (request) => {
194
214
  try {
195
215
  switch (name) {
196
216
  case "remember": {
197
- const { content, source = "conversation", importance = 0.5 } = args as {
217
+ const {
218
+ content,
219
+ source = "conversation",
220
+ importance = 0.5,
221
+ entities: providedEntities = [],
222
+ relationships: providedRelationships = [],
223
+ } = args as {
198
224
  content: string;
199
225
  source?: string;
200
226
  importance?: number;
227
+ entities?: Array<{ name: string; type: "person" | "organization" | "place" }>;
228
+ relationships?: Array<{ from: string; to: string; type: string }>;
201
229
  };
202
230
 
203
231
  // Create memory
@@ -206,8 +234,28 @@ server.setRequestHandler(CallToolRequestSchema, async (request) => {
206
234
  // Index for semantic search
207
235
  await search.indexMemory(memory);
208
236
 
209
- // Extract and store entities/relationships
210
- const { entities, observations } = graph.extractAndStore(content, memory.id);
237
+ // Store Claude-provided entities and link to memory
238
+ const storedEntities: string[] = [];
239
+ for (const ent of providedEntities) {
240
+ const entity = graph.getOrCreateEntity(ent.name, ent.type);
241
+ storedEntities.push(entity.name);
242
+ // Create observation linking entity to this memory
243
+ db.addObservation(entity.id, content, memory.id, 1.0);
244
+ }
245
+
246
+ // Store Claude-provided relationships
247
+ const storedRelations: string[] = [];
248
+ for (const rel of providedRelationships) {
249
+ try {
250
+ // Ensure both entities exist (create if not provided explicitly)
251
+ const fromEntity = graph.getOrCreateEntity(rel.from, "person");
252
+ const toEntity = graph.getOrCreateEntity(rel.to, "person");
253
+ graph.relate(fromEntity.name, toEntity.name, rel.type);
254
+ storedRelations.push(`${rel.from} -[${rel.type}]-> ${rel.to}`);
255
+ } catch {
256
+ // Skip invalid relationships
257
+ }
258
+ }
211
259
 
212
260
  return {
213
261
  content: [
@@ -216,8 +264,8 @@ server.setRequestHandler(CallToolRequestSchema, async (request) => {
216
264
  text: JSON.stringify({
217
265
  success: true,
218
266
  memory_id: memory.id,
219
- entities_extracted: entities.map((e) => e.name),
220
- observations_created: observations.length,
267
+ entities_stored: storedEntities,
268
+ relationships_stored: storedRelations,
221
269
  }, null, 2),
222
270
  },
223
271
  ],
@@ -6,7 +6,6 @@
6
6
  import { EngramDatabase, Memory } from "../storage/database.js";
7
7
  import { KnowledgeGraph } from "../graph/knowledge-graph.js";
8
8
  import { ColBERTRetriever, SimpleRetriever, SearchResult, Document } from "./colbert.js";
9
- import { entityExtractor } from "../graph/extractor.js";
10
9
 
11
10
  export interface HybridSearchResult {
12
11
  memory: Memory;
@@ -183,15 +182,19 @@ export class HybridSearch {
183
182
  }
184
183
 
185
184
  /**
186
- * Graph-based search: find entities in query, traverse graph
185
+ * Graph-based search: find known entities in query, traverse graph
187
186
  */
188
187
  private async searchGraph(query: string): Promise<string[]> {
189
- // Extract entities from query
190
- const entities = entityExtractor.extractAll(query);
188
+ // Find known entities whose names appear in the query
189
+ const queryLower = query.toLowerCase();
190
+ const allEntities = this.graph.listEntities(undefined, 500);
191
+ const matchedEntities = allEntities.filter(e =>
192
+ queryLower.includes(e.name.toLowerCase())
193
+ );
191
194
 
192
195
  const memoryIds = new Set<string>();
193
196
 
194
- for (const entity of entities) {
197
+ for (const entity of matchedEntities) {
195
198
  // Find related memory IDs through graph traversal
196
199
  const relatedIds = this.graph.findRelatedMemoryIds(entity.name, 2);
197
200
  relatedIds.forEach(id => memoryIds.add(id));
package/src/web/server.ts CHANGED
@@ -147,9 +147,8 @@ export class EngramWebServer {
147
147
  const { content, source, importance } = body as any;
148
148
  const memory = this.db.createMemory(content, source || "web", importance || 0.5);
149
149
  await this.search.indexMemory(memory);
150
- const { entities, observations } = this.graph.extractAndStore(content, memory.id);
151
150
  res.writeHead(201);
152
- res.end(JSON.stringify({ memory, entities_extracted: entities.length, observations_created: observations.length }));
151
+ res.end(JSON.stringify({ memory }));
153
152
  return;
154
153
  }
155
154
 
@@ -1,489 +0,0 @@
1
- /**
2
- * Entity extraction from text using heuristics
3
- * No external APIs - pure local processing
4
- */
5
-
6
- export interface ExtractedEntity {
7
- name: string;
8
- type: "person" | "place" | "concept" | "event" | "organization";
9
- confidence: number;
10
- span: { start: number; end: number };
11
- }
12
-
13
- // Common words that look like names but aren't (including verbs, adjectives, common nouns)
14
- const STOPWORDS = new Set([
15
- // Articles, conjunctions, prepositions
16
- "the", "a", "an", "and", "or", "but", "in", "on", "at", "to", "for",
17
- "of", "with", "by", "from", "as", "is", "was", "are", "were", "been",
18
- "be", "have", "has", "had", "do", "does", "did", "will", "would",
19
- "could", "should", "may", "might", "must", "shall", "can", "need",
20
- // Pronouns
21
- "this", "that", "these", "those", "i", "you", "he", "she", "it",
22
- "we", "they", "what", "which", "who", "whom", "whose", "where",
23
- "when", "why", "how", "all", "each", "every", "both", "few", "more",
24
- "most", "other", "some", "such", "no", "not", "only", "same", "so",
25
- "than", "too", "very", "just", "also", "now", "here", "there", "then",
26
- // Conjunctions
27
- "if", "because", "while", "although", "though", "after", "before",
28
- "since", "until", "unless", "however", "therefore", "thus", "hence",
29
- // Days and months
30
- "monday", "tuesday", "wednesday", "thursday", "friday", "saturday", "sunday",
31
- "january", "february", "march", "april", "may", "june", "july",
32
- "august", "september", "october", "november", "december",
33
- // Time words
34
- "today", "tomorrow", "yesterday", "morning", "afternoon", "evening", "night",
35
- // Common verbs (often capitalized at sentence start)
36
- "said", "says", "told", "asked", "replied", "answered", "mentioned",
37
- "think", "know", "believe", "feel", "want", "need", "like", "love",
38
- "crashed", "gets", "getting", "got", "planning", "planned", "plans",
39
- "working", "worked", "works", "going", "went", "gone", "coming", "came",
40
- "looking", "looked", "looks", "trying", "tried", "tries", "using", "used",
41
- "making", "made", "makes", "taking", "took", "takes", "giving", "gave",
42
- "seeing", "saw", "seen", "being", "having", "doing", "saying", "getting",
43
- "finding", "found", "keeping", "kept", "letting", "let", "putting", "put",
44
- "running", "ran", "calling", "called", "moving", "moved", "living", "lived",
45
- "starting", "started", "seems", "seemed", "showing", "showed", "hearing",
46
- "playing", "played", "standing", "stood", "understanding", "understood",
47
- "turning", "turned", "following", "followed", "watching", "watched",
48
- "adding", "added", "changing", "changed", "writing", "wrote", "reading",
49
- "learning", "learned", "growing", "grew", "opening", "opened", "walking",
50
- "winning", "won", "offering", "offered", "remembering", "remembered",
51
- "considering", "considered", "appearing", "appeared", "buying", "bought",
52
- "waiting", "waited", "serving", "served", "dying", "died", "sending", "sent",
53
- "building", "built", "staying", "stayed", "falling", "fell", "cutting", "cut",
54
- "reaching", "reached", "killing", "killed", "raising", "raised", "passing",
55
- "selling", "sold", "deciding", "decided", "returning", "returned",
56
- // Common adjectives (often capitalized at sentence start)
57
- "good", "bad", "great", "small", "large", "big", "little", "old", "young",
58
- "new", "first", "last", "long", "short", "high", "low", "right", "wrong",
59
- "next", "early", "late", "hard", "easy", "clear", "full", "empty", "ready",
60
- "sure", "open", "closed", "free", "busy", "hot", "cold", "warm", "cool",
61
- "fast", "slow", "strong", "weak", "deep", "wide", "near", "far", "dark",
62
- "light", "heavy", "simple", "complex", "real", "true", "false", "best",
63
- "worst", "happy", "sad", "angry", "afraid", "sorry", "glad", "nice",
64
- "fine", "okay", "different", "similar", "same", "special", "important",
65
- "interesting", "beautiful", "wonderful", "terrible", "amazing", "awesome",
66
- // Common nouns (sentence starters)
67
- "people", "time", "year", "years", "way", "day", "days", "man", "woman",
68
- "child", "children", "world", "life", "hand", "part", "place", "case",
69
- "week", "weeks", "company", "system", "program", "question", "work",
70
- "government", "number", "point", "home", "water", "room", "mother",
71
- "area", "money", "story", "fact", "month", "months", "lot", "right",
72
- "study", "book", "books", "eye", "eyes", "job", "word", "words",
73
- "business", "issue", "issues", "side", "kind", "head", "house", "service",
74
- "friend", "friends", "power", "hour", "hours", "game", "line", "end",
75
- "member", "members", "law", "car", "city", "community", "name", "names",
76
- "team", "minute", "minutes", "idea", "ideas", "body", "information",
77
- "back", "parent", "parents", "face", "others", "level", "office", "door",
78
- "health", "person", "art", "war", "history", "party", "result", "change",
79
- "reason", "research", "girl", "guy", "moment", "air", "teacher", "force",
80
- ]);
81
-
82
- // Common titles that precede names
83
- const TITLES = ["mr", "mrs", "ms", "miss", "dr", "prof", "sir", "lady", "lord"];
84
-
85
- // Organization suffixes and keywords
86
- const ORG_SUFFIXES = [
87
- "inc", "inc.", "corp", "corp.", "corporation", "llc", "llp", "ltd", "ltd.",
88
- "limited", "co", "co.", "company", "companies", "group", "holdings",
89
- "partners", "partnership", "associates", "foundation", "institute",
90
- "university", "college", "school", "hospital", "clinic", "bank",
91
- "capital", "ventures", "labs", "laboratory", "laboratories",
92
- "technologies", "tech", "software", "systems", "solutions", "services",
93
- "industries", "international", "global", "worldwide", "enterprises",
94
- ];
95
-
96
- // Well-known organizations (case-insensitive matching)
97
- // Note: Avoid short words that could match common English words (e.g., "WHO")
98
- const KNOWN_ORGANIZATIONS = new Set([
99
- "goldman sachs", "morgan stanley", "jp morgan", "jpmorgan", "citibank",
100
- "bank of america", "wells fargo", "barclays", "deutsche bank", "hsbc",
101
- "credit suisse", "ubs", "blackrock", "blackstone", "kkr", "carlyle",
102
- "apollo global", "bridgewater", "citadel", "two sigma", "renaissance technologies",
103
- "google", "alphabet", "microsoft", "apple", "amazon", "meta", "facebook",
104
- "netflix", "tesla", "nvidia", "intel", "amd", "ibm", "oracle", "salesforce",
105
- "adobe", "spotify", "uber", "lyft", "airbnb", "stripe", "square", "paypal",
106
- "twitter", "x corp", "linkedin", "snapchat", "tiktok", "bytedance",
107
- "openai", "anthropic", "deepmind", "cohere", "stability ai", "midjourney",
108
- "199 biotechnologies", "199 bio",
109
- "harvard university", "stanford university", "yale university", "princeton university",
110
- "columbia university", "oxford university", "cambridge university",
111
- "mit", "caltech", "nyu", "ucla", "usc", "berkeley",
112
- "fbi", "cia", "nsa", "nasa", "fda", "sec", "fcc", "epa", "doj",
113
- "united nations", "world bank", "imf", "nato", "european union",
114
- "red cross", "unicef", "greenpeace", "amnesty international",
115
- "new york times", "washington post", "wall street journal", "bbc", "cnn",
116
- "nbc", "abc news", "cbs news", "fox news", "reuters", "associated press", "bloomberg",
117
- ]);
118
-
119
- // Words that look like names but aren't (nationalities, religions, etc.)
120
- const NOT_PERSON_NAMES = new Set([
121
- "russian", "american", "british", "chinese", "japanese", "german", "french",
122
- "italian", "spanish", "indian", "brazilian", "mexican", "canadian", "australian",
123
- "muslim", "christian", "jewish", "hindu", "buddhist", "atheist", "catholic",
124
- "protestant", "orthodox", "sunni", "shia", "sikh", "jain",
125
- "asian", "european", "african", "latin", "caucasian", "middle eastern",
126
- ]);
127
-
128
- // Common places (US states, major cities, countries)
129
- const KNOWN_PLACES = new Set([
130
- "california", "new york", "texas", "florida", "washington", "massachusetts",
131
- "colorado", "illinois", "pennsylvania", "ohio", "georgia", "michigan",
132
- "san francisco", "los angeles", "seattle", "boston", "chicago", "miami",
133
- "london", "paris", "tokyo", "singapore", "hong kong", "dubai", "berlin",
134
- "sydney", "toronto", "vancouver", "amsterdam", "zurich", "geneva",
135
- "usa", "uk", "china", "japan", "germany", "france", "india", "canada",
136
- "australia", "brazil", "mexico", "russia", "spain", "italy", "switzerland",
137
- ]);
138
-
139
- // Relationship words that often precede person mentions
140
- const RELATION_WORDS = [
141
- "brother", "sister", "mother", "father", "mom", "dad", "mum",
142
- "son", "daughter", "wife", "husband", "partner", "boyfriend", "girlfriend",
143
- "uncle", "aunt", "cousin", "nephew", "niece", "grandmother", "grandfather",
144
- "grandma", "grandpa", "friend", "colleague", "boss", "ex", "fiancé", "fiancée",
145
- ];
146
-
147
- export class EntityExtractor {
148
- /**
149
- * Extract all entities from text
150
- */
151
- extractAll(text: string): ExtractedEntity[] {
152
- const entities: ExtractedEntity[] = [];
153
-
154
- // Extract organizations FIRST (higher priority)
155
- const orgs = this.extractOrganizations(text);
156
- entities.push(...orgs);
157
-
158
- // Track organization names to avoid re-extracting as persons
159
- const orgNames = new Set(orgs.map((o) => o.name.toLowerCase()));
160
-
161
- // Extract persons (excluding already-found orgs)
162
- const persons = this.extractPersons(text).filter(
163
- (p) => !orgNames.has(p.name.toLowerCase())
164
- );
165
- entities.push(...persons);
166
-
167
- // First: filter out entities with bad prefixes/suffixes
168
- const badSuffixes = ["managing", "as", "last", "and", "or", "the", "a", "an", "for", "with"];
169
- const badPrefixes = ["he", "she", "they", "my", "his", "her", "the", "a", "an", "joined"];
170
-
171
- const cleanEntities = entities.filter((entity) => {
172
- const words = entity.name.toLowerCase().split(/\s+/);
173
- const lastWord = words[words.length - 1];
174
- const firstWord = words[0];
175
- if (badSuffixes.includes(lastWord)) return false;
176
- if (badPrefixes.includes(firstWord)) return false;
177
- return true;
178
- });
179
-
180
- // Deduplicate by name, preferring higher confidence and orgs over persons
181
- const seen = new Map<string, ExtractedEntity>();
182
- for (const entity of cleanEntities) {
183
- const key = entity.name.toLowerCase();
184
- const existing = seen.get(key);
185
- if (!existing) {
186
- seen.set(key, entity);
187
- } else if (entity.type === "organization" && existing.type === "person") {
188
- // Prefer org over person
189
- seen.set(key, entity);
190
- } else if (entity.confidence > existing.confidence && entity.type === existing.type) {
191
- seen.set(key, entity);
192
- }
193
- }
194
-
195
- // Remove entities that are proper substrings of other entities with same type
196
- const result = Array.from(seen.values());
197
- return result.filter((entity) => {
198
- const key = entity.name.toLowerCase();
199
- for (const other of result) {
200
- const otherKey = other.name.toLowerCase();
201
- if (otherKey !== key && other.type === entity.type) {
202
- // If this entity is a prefix of another (longer) entity, keep the shorter one
203
- // unless the longer one has much higher confidence
204
- if (otherKey.startsWith(key + " ") && other.confidence > entity.confidence + 0.1) {
205
- return false;
206
- }
207
- }
208
- }
209
- return true;
210
- });
211
- }
212
-
213
- /**
214
- * Extract organizations from text
215
- */
216
- extractOrganizations(text: string): ExtractedEntity[] {
217
- const results: ExtractedEntity[] = [];
218
- const foundNames = new Set<string>();
219
-
220
- // Pattern 1: Check for known organizations
221
- for (const orgName of KNOWN_ORGANIZATIONS) {
222
- const pattern = new RegExp(`\\b${this.escapeRegex(orgName)}\\b`, "gi");
223
- let match;
224
- while ((match = pattern.exec(text)) !== null) {
225
- const name = match[0];
226
- const key = name.toLowerCase();
227
- if (!foundNames.has(key)) {
228
- foundNames.add(key);
229
- results.push({
230
- name,
231
- type: "organization",
232
- confidence: 0.95,
233
- span: { start: match.index, end: match.index + name.length },
234
- });
235
- }
236
- }
237
- }
238
-
239
- // Pattern 2: Capitalized word(s) followed by org suffixes
240
- // Allow single word + suffix (e.g., "Acme Corporation")
241
- // Use case-sensitive matching for proper nouns, handle suffix case separately
242
- const suffixPatternStr = ORG_SUFFIXES.map(s =>
243
- `${s.charAt(0).toUpperCase()}${s.slice(1)}|${s.toLowerCase()}`
244
- ).join("|");
245
- const suffixPattern = new RegExp(
246
- `(?:^|[^A-Za-z])([A-Z][a-z]+(?:\\s+[A-Z][a-z]+)*)\\s+(${suffixPatternStr})(?=\\s|,|\\.|\\)|$)`,
247
- "g"
248
- );
249
- let match;
250
- while ((match = suffixPattern.exec(text)) !== null) {
251
- const baseName = match[1].trim();
252
- const suffix = match[2].trim();
253
- const fullName = `${baseName} ${suffix}`;
254
- const key = fullName.toLowerCase();
255
-
256
- // Skip common adjective+suffix combos
257
- const firstWord = baseName.split(/\s+/)[0].toLowerCase();
258
- if (NOT_PERSON_NAMES.has(firstWord)) continue;
259
- // Skip single words that are not proper nouns
260
- if (STOPWORDS.has(firstWord)) continue;
261
-
262
- if (!foundNames.has(key)) {
263
- foundNames.add(key);
264
- results.push({
265
- name: fullName,
266
- type: "organization",
267
- confidence: 0.85,
268
- span: { start: match.index, end: match.index + fullName.length },
269
- });
270
- }
271
- }
272
-
273
- // Pattern 3: "works at/for X", "joined X" - only extract multi-word org names
274
- // Single-word orgs should be in KNOWN_ORGANIZATIONS
275
- // Use case-sensitive matching for proper nouns (no 'i' flag)
276
- const workPattern = /(?:works?\s+(?:at|for)|joined|employed\s+(?:at|by)|hired\s+by)\s+([A-Z][a-z]+(?:\s+[A-Z][a-z]+){1,2})(?=\s+[a-z]|\s*[,.]|\s*$)/g;
277
-
278
- while ((match = workPattern.exec(text)) !== null) {
279
- const name = match[1].trim();
280
- const key = name.toLowerCase();
281
- const words = name.split(/\s+/);
282
-
283
- // Skip if first word is a stopword or nationality/religion
284
- if (STOPWORDS.has(words[0].toLowerCase()) ||
285
- NOT_PERSON_NAMES.has(words[0].toLowerCase())) {
286
- continue;
287
- }
288
-
289
- if (!foundNames.has(key)) {
290
- foundNames.add(key);
291
- results.push({
292
- name,
293
- type: "organization",
294
- confidence: 0.7,
295
- span: { start: match.index, end: match.index + match[0].length },
296
- });
297
- }
298
- }
299
-
300
- return results;
301
- }
302
-
303
- /**
304
- * Escape special regex characters
305
- */
306
- private escapeRegex(str: string): string {
307
- return str.replace(/[.*+?^${}()|[\]\\]/g, "\\$&");
308
- }
309
-
310
- /**
311
- * Extract person names from text using heuristics
312
- */
313
- extractPersons(text: string): ExtractedEntity[] {
314
- const persons: ExtractedEntity[] = [];
315
-
316
- // Pattern 1: Capitalized words (potential names)
317
- persons.push(...this.extractCapitalizedNames(text));
318
-
319
- // Pattern 2: Possessive patterns ("X's brother", "my friend X")
320
- persons.push(...this.extractFromPossessives(text));
321
-
322
- // Pattern 3: Relation patterns ("her brother", "my mom")
323
- persons.push(...this.extractFromRelations(text));
324
-
325
- return persons;
326
- }
327
-
328
- /**
329
- * Extract capitalized words that look like names
330
- */
331
- private extractCapitalizedNames(text: string): ExtractedEntity[] {
332
- const results: ExtractedEntity[] = [];
333
-
334
- // Match capitalized words not at sentence start
335
- // This regex finds sequences of capitalized words
336
- const pattern = /(?<=[.!?]\s+|^)([A-Z][a-z]+(?:\s+[A-Z][a-z]+)*)|(?<=[a-z]\s)([A-Z][a-z]+(?:\s+[A-Z][a-z]+)*)/g;
337
-
338
- let match;
339
- while ((match = pattern.exec(text)) !== null) {
340
- const name = (match[1] || match[2]).trim();
341
- const words = name.split(/\s+/);
342
-
343
- // Filter out stopwords, nationality/religion words, places, and single common words
344
- const cleanWords = words.filter(
345
- (w) => !STOPWORDS.has(w.toLowerCase()) &&
346
- !NOT_PERSON_NAMES.has(w.toLowerCase()) &&
347
- !KNOWN_PLACES.has(w.toLowerCase()) &&
348
- w.length > 1
349
- );
350
-
351
- if (cleanWords.length === 0) continue;
352
-
353
- const cleanName = cleanWords.join(" ");
354
-
355
- // Skip if it's just a common word
356
- if (cleanWords.length === 1 && cleanWords[0].length < 4) continue;
357
-
358
- // Higher confidence for multi-word names
359
- const confidence = cleanWords.length >= 2 ? 0.8 : 0.5;
360
-
361
- results.push({
362
- name: cleanName,
363
- type: "person",
364
- confidence,
365
- span: { start: match.index, end: match.index + match[0].length },
366
- });
367
- }
368
-
369
- return results;
370
- }
371
-
372
- /**
373
- * Extract names from possessive patterns like "Sarah's brother"
374
- */
375
- private extractFromPossessives(text: string): ExtractedEntity[] {
376
- const results: ExtractedEntity[] = [];
377
-
378
- // Match "Name's something"
379
- const pattern = /([A-Z][a-z]+(?:\s+[A-Z][a-z]+)?)'s\s+(\w+)/g;
380
-
381
- let match;
382
- while ((match = pattern.exec(text)) !== null) {
383
- const name = match[1].trim();
384
- const following = match[2].toLowerCase();
385
-
386
- // Higher confidence if followed by a relationship word
387
- const isRelation = RELATION_WORDS.includes(following);
388
- const confidence = isRelation ? 0.95 : 0.7;
389
-
390
- if (!STOPWORDS.has(name.toLowerCase())) {
391
- results.push({
392
- name,
393
- type: "person",
394
- confidence,
395
- span: { start: match.index, end: match.index + name.length },
396
- });
397
- }
398
-
399
- // If followed by relationship word, the whole thing might reference another person
400
- // e.g., "Sarah's brother" - we create a derived entity
401
- if (isRelation) {
402
- results.push({
403
- name: `${name}'s ${following}`,
404
- type: "person",
405
- confidence: 0.6,
406
- span: { start: match.index, end: match.index + match[0].length },
407
- });
408
- }
409
- }
410
-
411
- return results;
412
- }
413
-
414
- /**
415
- * Extract from relationship patterns like "her brother", "my friend John"
416
- */
417
- private extractFromRelations(text: string): ExtractedEntity[] {
418
- const results: ExtractedEntity[] = [];
419
-
420
- // Pattern: possessive + relation word + optional name
421
- const pronouns = ["my", "his", "her", "their", "our"];
422
- const relationPattern = new RegExp(
423
- `(${pronouns.join("|")})\\s+(${RELATION_WORDS.join("|")})(?:\\s+([A-Z][a-z]+))?`,
424
- "gi"
425
- );
426
-
427
- let match;
428
- while ((match = relationPattern.exec(text)) !== null) {
429
- const pronoun = match[1];
430
- const relation = match[2];
431
- const name = match[3];
432
-
433
- if (name && !STOPWORDS.has(name.toLowerCase())) {
434
- // Explicit name mentioned
435
- results.push({
436
- name,
437
- type: "person",
438
- confidence: 0.9,
439
- span: {
440
- start: match.index + match[0].length - name.length,
441
- end: match.index + match[0].length,
442
- },
443
- });
444
- }
445
- }
446
-
447
- return results;
448
- }
449
-
450
- /**
451
- * Extract relationship mentions (not entities, but useful for graph)
452
- */
453
- extractRelationships(text: string): Array<{
454
- subject: string;
455
- relation: string;
456
- object: string;
457
- confidence: number;
458
- }> {
459
- const relationships: Array<{
460
- subject: string;
461
- relation: string;
462
- object: string;
463
- confidence: number;
464
- }> = [];
465
-
466
- // Pattern: "X's [relation]" implies relationship
467
- const possessivePattern = /([A-Z][a-z]+(?:\s+[A-Z][a-z]+)?)'s\s+(\w+)/g;
468
-
469
- let match;
470
- while ((match = possessivePattern.exec(text)) !== null) {
471
- const subject = match[1].trim();
472
- const relWord = match[2].toLowerCase();
473
-
474
- if (RELATION_WORDS.includes(relWord)) {
475
- relationships.push({
476
- subject,
477
- relation: relWord,
478
- object: `${subject}'s ${relWord}`, // placeholder name
479
- confidence: 0.7,
480
- });
481
- }
482
- }
483
-
484
- return relationships;
485
- }
486
- }
487
-
488
- // Singleton instance
489
- export const entityExtractor = new EntityExtractor();