xnd 0.2.0dev6 → 0.2.0dev7
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/README.md +2 -0
- data/Rakefile +1 -1
- data/ext/ruby_xnd/GPATH +0 -0
- data/ext/ruby_xnd/GRTAGS +0 -0
- data/ext/ruby_xnd/GTAGS +0 -0
- data/ext/ruby_xnd/extconf.rb +8 -5
- data/ext/ruby_xnd/gc_guard.c +53 -2
- data/ext/ruby_xnd/gc_guard.h +8 -2
- data/ext/ruby_xnd/include/overflow.h +147 -0
- data/ext/ruby_xnd/include/ruby_xnd.h +62 -0
- data/ext/ruby_xnd/include/xnd.h +590 -0
- data/ext/ruby_xnd/lib/libxnd.a +0 -0
- data/ext/ruby_xnd/lib/libxnd.so +1 -0
- data/ext/ruby_xnd/lib/libxnd.so.0 +1 -0
- data/ext/ruby_xnd/lib/libxnd.so.0.2.0dev3 +0 -0
- data/ext/ruby_xnd/ruby_xnd.c +556 -47
- data/ext/ruby_xnd/ruby_xnd.h +2 -1
- data/ext/ruby_xnd/xnd/Makefile +80 -0
- data/ext/ruby_xnd/xnd/config.h +26 -0
- data/ext/ruby_xnd/xnd/config.h.in +3 -0
- data/ext/ruby_xnd/xnd/config.log +421 -0
- data/ext/ruby_xnd/xnd/config.status +1023 -0
- data/ext/ruby_xnd/xnd/configure +376 -8
- data/ext/ruby_xnd/xnd/configure.ac +48 -7
- data/ext/ruby_xnd/xnd/doc/xnd/index.rst +3 -1
- data/ext/ruby_xnd/xnd/doc/xnd/{types.rst → xnd.rst} +3 -18
- data/ext/ruby_xnd/xnd/libxnd/Makefile +142 -0
- data/ext/ruby_xnd/xnd/libxnd/Makefile.in +43 -3
- data/ext/ruby_xnd/xnd/libxnd/Makefile.vc +19 -3
- data/ext/ruby_xnd/xnd/libxnd/bitmaps.c +42 -3
- data/ext/ruby_xnd/xnd/libxnd/bitmaps.o +0 -0
- data/ext/ruby_xnd/xnd/libxnd/bounds.c +366 -0
- data/ext/ruby_xnd/xnd/libxnd/bounds.o +0 -0
- data/ext/ruby_xnd/xnd/libxnd/contrib.h +98 -0
- data/ext/ruby_xnd/xnd/libxnd/contrib/bfloat16.h +213 -0
- data/ext/ruby_xnd/xnd/libxnd/copy.c +155 -4
- data/ext/ruby_xnd/xnd/libxnd/copy.o +0 -0
- data/ext/ruby_xnd/xnd/libxnd/cuda/cuda_memory.cu +121 -0
- data/ext/ruby_xnd/xnd/libxnd/cuda/cuda_memory.h +58 -0
- data/ext/ruby_xnd/xnd/libxnd/equal.c +195 -7
- data/ext/ruby_xnd/xnd/libxnd/equal.o +0 -0
- data/ext/ruby_xnd/xnd/libxnd/inline.h +32 -0
- data/ext/ruby_xnd/xnd/libxnd/libxnd.a +0 -0
- data/ext/ruby_xnd/xnd/libxnd/libxnd.so +1 -0
- data/ext/ruby_xnd/xnd/libxnd/libxnd.so.0 +1 -0
- data/ext/ruby_xnd/xnd/libxnd/libxnd.so.0.2.0dev3 +0 -0
- data/ext/ruby_xnd/xnd/libxnd/shape.c +207 -0
- data/ext/ruby_xnd/xnd/libxnd/shape.o +0 -0
- data/ext/ruby_xnd/xnd/libxnd/split.c +2 -2
- data/ext/ruby_xnd/xnd/libxnd/split.o +0 -0
- data/ext/ruby_xnd/xnd/libxnd/tests/Makefile +39 -0
- data/ext/ruby_xnd/xnd/libxnd/xnd.c +613 -91
- data/ext/ruby_xnd/xnd/libxnd/xnd.h +145 -4
- data/ext/ruby_xnd/xnd/libxnd/xnd.o +0 -0
- data/ext/ruby_xnd/xnd/python/test_xnd.py +1125 -50
- data/ext/ruby_xnd/xnd/python/xnd/__init__.py +609 -124
- data/ext/ruby_xnd/xnd/python/xnd/_version.py +1 -0
- data/ext/ruby_xnd/xnd/python/xnd/_xnd.c +1652 -101
- data/ext/ruby_xnd/xnd/python/xnd/libxnd.a +0 -0
- data/ext/ruby_xnd/xnd/python/xnd/libxnd.so +1 -0
- data/ext/ruby_xnd/xnd/python/xnd/libxnd.so.0 +1 -0
- data/ext/ruby_xnd/xnd/python/xnd/libxnd.so.0.2.0dev3 +0 -0
- data/ext/ruby_xnd/xnd/python/xnd/pyxnd.h +1 -1
- data/ext/ruby_xnd/xnd/python/xnd/util.h +25 -0
- data/ext/ruby_xnd/xnd/python/xnd/xnd.h +590 -0
- data/ext/ruby_xnd/xnd/python/xnd_randvalue.py +106 -6
- data/ext/ruby_xnd/xnd/python/xnd_support.py +4 -0
- data/ext/ruby_xnd/xnd/setup.py +46 -4
- data/lib/ruby_xnd.so +0 -0
- data/lib/xnd.rb +39 -3
- data/lib/xnd/version.rb +2 -2
- data/xnd.gemspec +2 -1
- metadata +58 -5
@@ -43,14 +43,14 @@ data.
|
|
43
43
|
Importing PEP-3118 buffers is supported.
|
44
44
|
"""
|
45
45
|
|
46
|
+
from ._version import __version__
|
46
47
|
|
47
48
|
# Ensure that libndtypes is loaded and initialized.
|
48
49
|
from ndtypes import ndt, instantiate, MAX_DIM
|
49
|
-
from ._xnd import Xnd, XndEllipsis
|
50
|
-
from itertools import accumulate
|
50
|
+
from ._xnd import Xnd, XndEllipsis, data_shapes, _typeof
|
51
51
|
from .contrib.pretty import pretty
|
52
52
|
|
53
|
-
__all__ = ['xnd', '
|
53
|
+
__all__ = ['xnd', 'array', 'XndEllipsis', 'typeof']
|
54
54
|
|
55
55
|
|
56
56
|
# ======================================================================
|
@@ -99,7 +99,7 @@ class xnd(Xnd):
|
|
99
99
|
"""
|
100
100
|
|
101
101
|
def __new__(cls, value, *, type=None, dtype=None, levels=None,
|
102
|
-
typedef=None, dtypedef=None):
|
102
|
+
typedef=None, dtypedef=None, device=None):
|
103
103
|
if (type, dtype, levels, typedef, dtypedef).count(None) < 2:
|
104
104
|
raise TypeError(
|
105
105
|
"the 'type', 'dtype', 'levels' and 'typedef' arguments are "
|
@@ -124,7 +124,13 @@ class xnd(Xnd):
|
|
124
124
|
type = typeof(value, dtype=dtype)
|
125
125
|
else:
|
126
126
|
type = typeof(value)
|
127
|
-
|
127
|
+
|
128
|
+
if device is not None:
|
129
|
+
name, no = device.split(":")
|
130
|
+
no = -1 if no == "managed" else int(no)
|
131
|
+
device = (name, no)
|
132
|
+
|
133
|
+
return super().__new__(cls, type=type, value=value, device=device)
|
128
134
|
|
129
135
|
def __repr__(self):
|
130
136
|
value = self.short_value(maxshape=10)
|
@@ -134,157 +140,636 @@ class xnd(Xnd):
|
|
134
140
|
fmt = fmt.replace("\n", "\n ")
|
135
141
|
return "xnd%s" % fmt
|
136
142
|
|
143
|
+
def __reduce__(self):
|
144
|
+
b = self.serialize()
|
145
|
+
return (xnd.deserialize, (b,))
|
146
|
+
|
147
|
+
def copy_contiguous(self, dtype=None):
|
148
|
+
if isinstance(dtype, str):
|
149
|
+
dtype = ndt(dtype)
|
150
|
+
return super().copy_contiguous(dtype=dtype)
|
151
|
+
|
152
|
+
def reshape(self, *args, order=None):
|
153
|
+
return super()._reshape(args, order=order)
|
154
|
+
|
155
|
+
def serialize(self):
|
156
|
+
if not self.type.is_c_contiguous() and \
|
157
|
+
not self.type.is_f_contiguous() and \
|
158
|
+
not self.type.is_var_contiguous():
|
159
|
+
self = self.copy_contiguous()
|
160
|
+
return self._serialize()
|
161
|
+
|
137
162
|
@classmethod
|
138
|
-
def
|
163
|
+
def empty(cls, type=None, device=None):
|
164
|
+
if device is not None:
|
165
|
+
name, no = device.split(":")
|
166
|
+
no = -1 if no == "managed" else no
|
167
|
+
device = (name, int(no))
|
168
|
+
|
169
|
+
return super(xnd, cls).empty(type, device)
|
170
|
+
|
171
|
+
@classmethod
|
172
|
+
def from_buffer_and_type(cls, obj=None, type=None):
|
139
173
|
"""Return an xnd object that obtains memory from 'obj' via the
|
140
|
-
buffer protocol.
|
141
|
-
|
142
|
-
|
174
|
+
buffer protocol. 'obj' must be a simple writable buffer with
|
175
|
+
format 'B'. The xnd object uses the provided type, which must
|
176
|
+
have the same data size as 'obj'.
|
143
177
|
"""
|
144
178
|
if isinstance(type, str):
|
145
179
|
type = ndt(type)
|
146
|
-
return
|
180
|
+
return super().from_buffer_and_type(obj, type)
|
181
|
+
|
182
|
+
def typeof(v, dtype=None):
|
183
|
+
if isinstance(dtype, str):
|
184
|
+
dtype = ndt(dtype)
|
185
|
+
return _typeof(v, dtype=dtype, shortcut=True)
|
147
186
|
|
148
187
|
|
149
188
|
# ======================================================================
|
150
|
-
#
|
189
|
+
# array object
|
151
190
|
# ======================================================================
|
152
191
|
|
153
|
-
def
|
154
|
-
|
192
|
+
def _convert_smallest(v, device=None):
|
193
|
+
"""Inefficient hack to make dask work (this needs to be in _typeof)."""
|
194
|
+
try:
|
195
|
+
return array.from_buffer(v)
|
196
|
+
except (TypeError, BufferError):
|
197
|
+
pass
|
198
|
+
x = array(v, device=device)
|
199
|
+
if x.type.hidden_dtype == ndt("int64"):
|
200
|
+
for dtype in ("int8", "int16", "int32"):
|
201
|
+
try:
|
202
|
+
return array(v, dtype=dtype, device=device)
|
203
|
+
except:
|
204
|
+
continue
|
205
|
+
return x
|
206
|
+
|
207
|
+
class array(xnd):
|
208
|
+
"""Extended array type that relies on gumath for the array functions."""
|
209
|
+
|
210
|
+
_functions = None
|
211
|
+
_cuda = None
|
212
|
+
_np = None
|
213
|
+
|
214
|
+
@property
|
215
|
+
def shape(self):
|
216
|
+
return self.type.shape
|
217
|
+
|
218
|
+
@property
|
219
|
+
def strides(self):
|
220
|
+
return self.type.strides
|
221
|
+
|
222
|
+
@property
|
223
|
+
def T(self):
|
224
|
+
return self.transpose()
|
225
|
+
|
226
|
+
def tolist(self):
|
227
|
+
return self.value
|
228
|
+
|
229
|
+
def _get_module(self):
|
230
|
+
if self.device == "cuda:managed":
|
231
|
+
if array._cuda is None:
|
232
|
+
import gumath.cuda
|
233
|
+
array._cuda = gumath.cuda
|
234
|
+
return array._cuda
|
235
|
+
else:
|
236
|
+
if array._functions is None:
|
237
|
+
import gumath.functions
|
238
|
+
array._functions = gumath.functions
|
239
|
+
return array._functions
|
240
|
+
|
241
|
+
def _get_numpy(self):
|
242
|
+
if array._np is None:
|
243
|
+
import numpy
|
244
|
+
array._np = numpy
|
245
|
+
return array._np
|
246
|
+
|
247
|
+
def _convert(self, other, raiseit=False):
|
248
|
+
if isinstance(other, array):
|
249
|
+
if other.device != self.device:
|
250
|
+
raise NotImplementedError("arrays must be on the same device")
|
251
|
+
return other
|
252
|
+
try:
|
253
|
+
return _convert_smallest(other, device=self.device)
|
254
|
+
except TypeError:
|
255
|
+
if raiseit:
|
256
|
+
raise TypeError("unable to convert %s to array" % other)
|
257
|
+
return NotImplemented
|
258
|
+
|
259
|
+
def _call_unary(self, name, out=None):
|
260
|
+
m = self._get_module()
|
261
|
+
return getattr(m, name)(self, out=out, cls=array)
|
262
|
+
|
263
|
+
def _call_binary(self, name, other, out=None, raiseit=False):
|
264
|
+
other = self._convert(other, raiseit)
|
265
|
+
m = self._get_module()
|
266
|
+
return getattr(m, name)(self, other, out=out, cls=array)
|
267
|
+
|
268
|
+
def _call_binary_np(self, name, other, out=None, raiseit=False):
|
269
|
+
"""redirect unimplemented binary methods"""
|
270
|
+
np = self._get_numpy()
|
271
|
+
other = self._convert(other, raiseit)
|
272
|
+
x = getattr(np, name)(self, other, out=out)
|
273
|
+
if out is not None:
|
274
|
+
return out
|
275
|
+
return array.from_buffer(x)
|
276
|
+
|
277
|
+
__array_priority__ = 1000
|
278
|
+
|
279
|
+
@property
|
280
|
+
def __array_interface__(self):
|
281
|
+
shape = self.shape
|
282
|
+
typestr = ndt.to_format(self.dtype)
|
283
|
+
return dict(shape=shape, typestr=typestr, version=3)
|
284
|
+
|
285
|
+
def __array__(self, dtype=None):
|
286
|
+
if dtype is not None:
|
287
|
+
np = self._get_numpy()
|
288
|
+
x = np.array([], dtype=dtype)
|
289
|
+
t = ndt.from_format(memoryview(x).format)
|
290
|
+
return self.copy(dtype=t)
|
291
|
+
return self
|
292
|
+
|
293
|
+
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
|
294
|
+
np = self._get_numpy()
|
295
|
+
|
296
|
+
def conv_args(t):
|
297
|
+
if isinstance(t, tuple):
|
298
|
+
return tuple(conv_args(v) for v in t)
|
299
|
+
if isinstance(t, list):
|
300
|
+
return list(conv_args(v) for v in t)
|
301
|
+
elif isinstance(t, array):
|
302
|
+
return np.array(t, copy=False)
|
303
|
+
elif isinstance(t, np.ndarray):
|
304
|
+
return t
|
305
|
+
else:
|
306
|
+
raise NotImplementedError
|
307
|
+
|
308
|
+
np_self = np.array(self, copy=False)
|
309
|
+
try:
|
310
|
+
np_inputs = conv_args(inputs)
|
311
|
+
except NotImplementedError:
|
312
|
+
return NotImplemented
|
313
|
+
|
314
|
+
np_kwargs = kwargs.copy()
|
315
|
+
out = np_kwargs.pop("out", None)
|
316
|
+
if out is not None:
|
317
|
+
try:
|
318
|
+
np_out = conv_args(out)
|
319
|
+
except NotImplementedError:
|
320
|
+
return NotImplemented
|
321
|
+
np_kwargs["out"] = np_out
|
322
|
+
|
323
|
+
np_res = np_self.__array_ufunc__(ufunc, method, *np_inputs, **np_kwargs)
|
324
|
+
if np_res is NotImplemented:
|
325
|
+
return NotImplemented
|
326
|
+
|
327
|
+
if out is None:
|
328
|
+
if isinstance(np_res, tuple):
|
329
|
+
out = tuple(array.from_buffer(v) for v in np_res)
|
330
|
+
elif isinstance(np_res, list):
|
331
|
+
out = list(array.from_buffer(v) for v in np_res)
|
332
|
+
else:
|
333
|
+
out = array.from_buffer(np_res)
|
155
334
|
|
156
|
-
|
157
|
-
for x in lst:
|
158
|
-
if x is not None:
|
159
|
-
return _typeof(x)
|
160
|
-
return "float64"
|
335
|
+
return out
|
161
336
|
|
162
|
-
def
|
163
|
-
|
164
|
-
supported. In general, types need to be explicitly specified when
|
165
|
-
creating xnd objects.
|
166
|
-
"""
|
167
|
-
if isinstance(value, list):
|
168
|
-
data, shapes = data_shapes(value)
|
169
|
-
opt = None in data
|
337
|
+
def __array_function__(self, func, types, args, kwargs):
|
338
|
+
np = self._get_numpy()
|
170
339
|
|
171
|
-
|
172
|
-
if
|
173
|
-
|
340
|
+
def conv_types(t):
|
341
|
+
if isinstance(t, tuple):
|
342
|
+
return tuple(conv_types(v) for v in t)
|
343
|
+
if isinstance(t, list):
|
344
|
+
return list(conv_types(v) for v in t)
|
345
|
+
elif issubclass(t, (array, np.ndarray)):
|
346
|
+
return np.ndarray
|
347
|
+
else:
|
348
|
+
raise NotImplementedError
|
349
|
+
|
350
|
+
def conv_args(t, allow_ndarray=True):
|
351
|
+
if isinstance(t, tuple):
|
352
|
+
return tuple(conv_args(v) for v in t)
|
353
|
+
if isinstance(t, list):
|
354
|
+
return list(conv_args(v) for v in t)
|
355
|
+
elif isinstance(t, array):
|
356
|
+
return np.array(t, copy=False)
|
357
|
+
elif isinstance(t, np.ndarray):
|
358
|
+
return t if allow_ndarray else NotImplemented
|
174
359
|
else:
|
175
|
-
|
176
|
-
|
177
|
-
|
178
|
-
|
179
|
-
|
180
|
-
|
360
|
+
return t
|
361
|
+
|
362
|
+
def conv_res(t):
|
363
|
+
if isinstance(t, tuple):
|
364
|
+
return tuple(conv_res(v) for v in t)
|
365
|
+
if isinstance(t, list):
|
366
|
+
return list(conv_res(v) for v in t)
|
367
|
+
elif isinstance(t, np.ndarray):
|
368
|
+
return array.from_buffer(t)
|
369
|
+
else:
|
370
|
+
try:
|
371
|
+
return array.from_buffer(memoryview(t))
|
372
|
+
except TypeError:
|
373
|
+
return t
|
374
|
+
|
375
|
+
np_self = np.array(self, copy=False)
|
376
|
+
try:
|
377
|
+
np_types = conv_types(types)
|
378
|
+
except NotImplementedError:
|
379
|
+
return NotImplemented
|
380
|
+
|
381
|
+
try:
|
382
|
+
np_args = conv_args(args)
|
383
|
+
except NotImplementedError:
|
384
|
+
return NotImplemented
|
385
|
+
|
386
|
+
np_kwargs = kwargs.copy()
|
387
|
+
out = np_kwargs.pop("out", None)
|
388
|
+
if out is not None:
|
389
|
+
try:
|
390
|
+
np_out = conv_args(out, allow_ndarray=False)
|
391
|
+
except NotImplementedError:
|
392
|
+
return NotImplemented
|
393
|
+
np_kwargs["out"] = np_out
|
394
|
+
|
395
|
+
np_res = np_self.__array_function__(func, np_types, np_args, np_kwargs)
|
396
|
+
if np_res is NotImplemented:
|
397
|
+
return NotImplemented
|
398
|
+
|
399
|
+
if out is None:
|
400
|
+
return conv_res(np_res)
|
401
|
+
else:
|
402
|
+
return out
|
181
403
|
|
182
|
-
|
183
|
-
|
404
|
+
def __repr__(self):
|
405
|
+
value = self.short_value(maxshape=10)
|
406
|
+
fmt = pretty((value, "@type='%s'@" % self.type), max_width=120)
|
407
|
+
fmt = fmt.replace('"@', "")
|
408
|
+
fmt = fmt.replace('@"', "")
|
409
|
+
fmt = fmt.replace("\n", "\n ")
|
410
|
+
return "array%s" % fmt
|
184
411
|
|
185
|
-
|
186
|
-
|
187
|
-
for lst in shapes:
|
188
|
-
opt = None in lst
|
189
|
-
lst = [0 if x is None else x for x in lst]
|
190
|
-
t = add_dim(opt=opt, shapes=lst, typ=t, use_var=var)
|
412
|
+
def __copy__(self):
|
413
|
+
return self.copy()
|
191
414
|
|
192
|
-
|
415
|
+
def __deepcopy__(self, memo):
|
416
|
+
return self.copy()
|
193
417
|
|
194
|
-
|
195
|
-
|
418
|
+
def __bool__(self):
|
419
|
+
np = self._get_numpy()
|
420
|
+
return bool(np.array(self, copy=False))
|
196
421
|
|
197
|
-
|
198
|
-
return
|
422
|
+
def __neg__(self):
|
423
|
+
return self._call_unary("negative")
|
199
424
|
|
200
|
-
|
201
|
-
|
202
|
-
return "{" + ", ".join(["%s: %s" % (k, _typeof(v)) for k, v in value.items()]) + "}"
|
203
|
-
raise ValueError("all dict keys must be strings")
|
425
|
+
def __pos__(self):
|
426
|
+
return self.copy()
|
204
427
|
|
205
|
-
|
206
|
-
return
|
428
|
+
def __abs__(self):
|
429
|
+
return self._call_unary("abs")
|
207
430
|
|
208
|
-
|
209
|
-
return
|
431
|
+
def __invert__(self):
|
432
|
+
return self._call_unary("invert")
|
210
433
|
|
211
|
-
|
212
|
-
|
434
|
+
def __complex__(self):
|
435
|
+
np = self._get_numpy()
|
436
|
+
return complex(np.array(self, copy=False))
|
213
437
|
|
214
|
-
|
215
|
-
|
438
|
+
def __int__(self):
|
439
|
+
np = self._get_numpy()
|
440
|
+
return int(np.array(self, copy=False))
|
216
441
|
|
217
|
-
|
218
|
-
|
442
|
+
def __oct__(self):
|
443
|
+
np = self._get_numpy()
|
444
|
+
return oct(np.array(self, copy=False))
|
219
445
|
|
220
|
-
|
221
|
-
|
446
|
+
def __hex__(self):
|
447
|
+
np = self._get_numpy()
|
448
|
+
return hex(np.array(self, copy=False))
|
222
449
|
|
223
|
-
|
224
|
-
|
450
|
+
def __float__(self):
|
451
|
+
np = self._get_numpy()
|
452
|
+
return float(np.array(self, copy=False))
|
225
453
|
|
454
|
+
def __index__(self):
|
455
|
+
np = self._get_numpy()
|
456
|
+
return np.array(self, copy=False).__index__()
|
226
457
|
|
227
|
-
def
|
228
|
-
|
229
|
-
|
230
|
-
|
231
|
-
|
232
|
-
|
233
|
-
return
|
234
|
-
|
235
|
-
|
236
|
-
|
237
|
-
|
238
|
-
|
239
|
-
|
240
|
-
|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
|
245
|
-
|
246
|
-
|
247
|
-
|
248
|
-
|
249
|
-
|
250
|
-
|
251
|
-
|
252
|
-
|
253
|
-
|
254
|
-
|
255
|
-
|
256
|
-
|
257
|
-
|
258
|
-
if
|
259
|
-
|
260
|
-
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
|
266
|
-
|
267
|
-
|
268
|
-
|
269
|
-
|
270
|
-
|
271
|
-
|
272
|
-
|
273
|
-
|
274
|
-
|
275
|
-
|
458
|
+
def __floor__(self):
|
459
|
+
np = self._get_numpy()
|
460
|
+
return np.array(self, copy=False).__floor__()
|
461
|
+
|
462
|
+
def __ceil__(self):
|
463
|
+
np = self._get_numpy()
|
464
|
+
return np.array(self, copy=False).__ceil__()
|
465
|
+
|
466
|
+
def __eq__(self, other):
|
467
|
+
other = self._convert(other)
|
468
|
+
if other is NotImplemented:
|
469
|
+
return other
|
470
|
+
|
471
|
+
return self._call_binary("equal", other)
|
472
|
+
|
473
|
+
def __ne__(self, other):
|
474
|
+
other = self._convert(other)
|
475
|
+
if other is NotImplemented:
|
476
|
+
return other
|
477
|
+
|
478
|
+
return self._call_binary("not_equal", other)
|
479
|
+
|
480
|
+
def __lt__(self, other):
|
481
|
+
other = self._convert(other)
|
482
|
+
if other is NotImplemented:
|
483
|
+
return other
|
484
|
+
|
485
|
+
return self._call_binary("less", other)
|
486
|
+
|
487
|
+
def __le__(self, other):
|
488
|
+
other = self._convert(other)
|
489
|
+
if other is NotImplemented:
|
490
|
+
return other
|
491
|
+
|
492
|
+
return self._call_binary("less_equal", other)
|
493
|
+
|
494
|
+
def __ge__(self, other):
|
495
|
+
other = self._convert(other)
|
496
|
+
if other is NotImplemented:
|
497
|
+
return other
|
498
|
+
|
499
|
+
return self._call_binary("greater_equal", other)
|
500
|
+
|
501
|
+
def __gt__(self, other):
|
502
|
+
other = self._convert(other)
|
503
|
+
if other is NotImplemented:
|
504
|
+
return other
|
505
|
+
|
506
|
+
return self._call_binary("greater", other)
|
507
|
+
|
508
|
+
def __add__(self, other):
|
509
|
+
return self._call_binary("add", other)
|
510
|
+
|
511
|
+
def __radd__(self, other):
|
512
|
+
other = self._convert(other)
|
513
|
+
if other is NotImplemented:
|
514
|
+
return other
|
515
|
+
|
516
|
+
return other._call_binary("add", self)
|
517
|
+
|
518
|
+
def __sub__(self, other):
|
519
|
+
return self._call_binary("subtract", other)
|
520
|
+
|
521
|
+
def __rsub__(self, other):
|
522
|
+
other = self._convert(other)
|
523
|
+
if other is NotImplemented:
|
524
|
+
return other
|
525
|
+
|
526
|
+
return other._call_binary("subtract", self)
|
527
|
+
|
528
|
+
def __mul__(self, other):
|
529
|
+
return self._call_binary("multiply", other)
|
530
|
+
|
531
|
+
def __rmul__(self, other):
|
532
|
+
other = self._convert(other)
|
533
|
+
if other is NotImplemented:
|
534
|
+
return other
|
535
|
+
|
536
|
+
return other._call_binary("multiply", self)
|
537
|
+
|
538
|
+
def __matmul__(self, other):
|
539
|
+
return self._call_binary_np("matmul", other)
|
540
|
+
|
541
|
+
def __rmatmul__(self, other):
|
542
|
+
other = self._convert(other)
|
543
|
+
if other is NotImplemented:
|
544
|
+
return other
|
545
|
+
|
546
|
+
return other._call_binary_np("matmul", self)
|
547
|
+
|
548
|
+
def __truediv__(self, other):
|
549
|
+
return self._call_binary("divide", other)
|
550
|
+
|
551
|
+
def __rtruediv__(self, other):
|
552
|
+
other = self._convert(other)
|
553
|
+
if other is NotImplemented:
|
554
|
+
return other
|
555
|
+
|
556
|
+
return other._call_binary("divide", self)
|
557
|
+
|
558
|
+
def __floordiv__(self, other):
|
559
|
+
return self._call_binary("floor_divide", other)
|
560
|
+
|
561
|
+
def __rfloordiv__(self, other):
|
562
|
+
other = self._convert(other)
|
563
|
+
if other is NotImplemented:
|
564
|
+
return other
|
565
|
+
|
566
|
+
return other._call_binary("floor_divide", self)
|
567
|
+
|
568
|
+
def __mod__(self, other):
|
569
|
+
return self._call_binary("remainder", other)
|
570
|
+
|
571
|
+
def __rmod__(self, other):
|
572
|
+
other = self._convert(other)
|
573
|
+
if other is NotImplemented:
|
574
|
+
return other
|
575
|
+
|
576
|
+
return other._call_binary("remainder", self)
|
577
|
+
|
578
|
+
def __divmod__(self, other):
|
579
|
+
return self._call_binary("divmod", other)
|
580
|
+
|
581
|
+
def __rdivmod__(self, other):
|
582
|
+
other = self._convert(other)
|
583
|
+
if other is NotImplemented:
|
584
|
+
return other
|
585
|
+
|
586
|
+
return other._call_binary("divmod", self)
|
587
|
+
|
588
|
+
def __pow__(self, other):
|
589
|
+
return self._call_binary("power", other)
|
590
|
+
|
591
|
+
def __rpow__(self, other):
|
592
|
+
other = self._convert(other)
|
593
|
+
if other is NotImplemented:
|
594
|
+
return other
|
595
|
+
|
596
|
+
return other._call_binary("power", self)
|
597
|
+
|
598
|
+
def __lshift__(self, other):
|
599
|
+
return self._call_binary_np("left_shift", other)
|
600
|
+
|
601
|
+
def __rlshift__(self, other):
|
602
|
+
other = self._convert(other)
|
603
|
+
if other is NotImplemented:
|
604
|
+
return other
|
605
|
+
|
606
|
+
return other._call_binary_np("left_shift", self)
|
607
|
+
|
608
|
+
def __rshift__(self, other):
|
609
|
+
return self._call_binary_np("right_shift", other)
|
610
|
+
|
611
|
+
def __rrshift__(self, other):
|
612
|
+
other = self._convert(other)
|
613
|
+
if other is NotImplemented:
|
614
|
+
return other
|
615
|
+
|
616
|
+
return other._call_binary_np("right_shift", self)
|
617
|
+
|
618
|
+
def __and__(self, other):
|
619
|
+
return self._call_binary("bitwise_and", other)
|
620
|
+
|
621
|
+
def __rand__(self, other):
|
622
|
+
other = self._convert(other)
|
623
|
+
if other is NotImplemented:
|
624
|
+
return other
|
625
|
+
|
626
|
+
return other._call_binary("bitwise_and", self)
|
627
|
+
|
628
|
+
def __or__(self, other):
|
629
|
+
return self._call_binary("bitwise_or", other)
|
630
|
+
|
631
|
+
def __ror__(self, other):
|
632
|
+
other = self._convert(other)
|
633
|
+
if other is NotImplemented:
|
634
|
+
return other
|
635
|
+
|
636
|
+
return other._call_binary("bitwise_or", self)
|
637
|
+
|
638
|
+
def __xor__(self, other):
|
639
|
+
return self._call_binary("bitwise_xor", other)
|
640
|
+
|
641
|
+
def __rxor__(self, other):
|
642
|
+
other = self._convert(other)
|
643
|
+
if other is NotImplemented:
|
644
|
+
return other
|
645
|
+
|
646
|
+
return other._call_binary("bitwise_xor", self)
|
647
|
+
|
648
|
+
def __iadd__(self, other):
|
649
|
+
return self._call_binary("add", other, out=self)
|
650
|
+
|
651
|
+
def __isub__(self, other):
|
652
|
+
return self._call_binary("subtract", other, out=self)
|
653
|
+
|
654
|
+
def __imul__(self, other):
|
655
|
+
return self._call_binary("multiply", other, out=self)
|
656
|
+
|
657
|
+
def __imatmul__(self, other):
|
658
|
+
return self._call_binary_np("matmul", other, out=self)
|
659
|
+
|
660
|
+
def __itruediv__(self, other):
|
661
|
+
return self._call_binary("divide", other, out=self)
|
662
|
+
|
663
|
+
def __ifloordiv__(self, other):
|
664
|
+
return self._call_binary("floor_divide", other, out=self)
|
665
|
+
|
666
|
+
def __imod__(self, other):
|
667
|
+
return self._call_binary("remainder", other, out=self)
|
668
|
+
|
669
|
+
def __ipow__(self, other):
|
670
|
+
return self._call_binary("power", other, out=self)
|
671
|
+
|
672
|
+
def __ilshift__(self, other):
|
673
|
+
return self._call_binary_np("left_shift", other, out=self)
|
674
|
+
|
675
|
+
def __irshift__(self, other):
|
676
|
+
return self._call_binary_np("right_shift", other, out=self)
|
677
|
+
|
678
|
+
def __iand__(self, other):
|
679
|
+
return self._call_binary("bitwise_and", other, out=self)
|
680
|
+
|
681
|
+
def __ior__(self, other):
|
682
|
+
return self._call_binary("bitwise_or", other, out=self)
|
683
|
+
|
684
|
+
def __ixor__(self, other):
|
685
|
+
return self._call_binary("bitwise_xor", other, out=self)
|
686
|
+
|
687
|
+
def copy(self, out=None):
|
688
|
+
return self._call_unary("copy", out=out)
|
689
|
+
|
690
|
+
def acos(self, out=None):
|
691
|
+
return self._call_unary("acos", out=out)
|
692
|
+
|
693
|
+
def acosh(self, out=None):
|
694
|
+
return self._call_unary("acosh", out=out)
|
695
|
+
|
696
|
+
def asin(self, out=None):
|
697
|
+
return self._call_unary("asin", out=out)
|
698
|
+
|
699
|
+
def asinh(self, out=None):
|
700
|
+
return self._call_unary("asinh", out=out)
|
701
|
+
|
702
|
+
def atan(self, out=None):
|
703
|
+
return self._call_unary("atan", out=out)
|
704
|
+
|
705
|
+
def atanh(self, out=None):
|
706
|
+
return self._call_unary("atanh", out=out)
|
707
|
+
|
708
|
+
def cbrt(self, out=None):
|
709
|
+
return self._call_unary("cbrt", out=out)
|
710
|
+
|
711
|
+
def cos(self, out=None):
|
712
|
+
return self._call_unary("cos", out=out)
|
713
|
+
|
714
|
+
def cosh(self, out=None):
|
715
|
+
return self._call_unary("cosh", out=out)
|
716
|
+
|
717
|
+
def erf(self, out=None):
|
718
|
+
return self._call_unary("erf", out=out)
|
719
|
+
|
720
|
+
def erfc(self, out=None):
|
721
|
+
return self._call_unary("erfc", out=out)
|
722
|
+
|
723
|
+
def exp(self, out=None):
|
724
|
+
return self._call_unary("exp", out=out)
|
725
|
+
|
726
|
+
def exp2(self, out=None):
|
727
|
+
return self._call_unary("exp2", out=out)
|
728
|
+
|
729
|
+
def expm1(self, out=None):
|
730
|
+
return self._call_unary("expm1", out=out)
|
731
|
+
|
732
|
+
def fabs(self, out=None):
|
733
|
+
return self._call_unary("fabs", out=out)
|
734
|
+
|
735
|
+
def lgamma(self, out=None):
|
736
|
+
return self._call_unary("lgamma", out=out)
|
737
|
+
|
738
|
+
def log(self, out=None):
|
739
|
+
return self._call_unary("log", out=out)
|
740
|
+
|
741
|
+
def log10(self, out=None):
|
742
|
+
return self._call_unary("log10", out=out)
|
743
|
+
|
744
|
+
def log1p(self, out=None):
|
745
|
+
return self._call_unary("log1p", out=out)
|
746
|
+
|
747
|
+
def log2(self, out=None):
|
748
|
+
return self._call_unary("log2", out=out)
|
749
|
+
|
750
|
+
def logb(self, out=None):
|
751
|
+
return self._call_unary("logb", out=out)
|
752
|
+
|
753
|
+
def nearbyint(self, out=None):
|
754
|
+
return self._call_unary("nearbyint", out=out)
|
755
|
+
|
756
|
+
def sin(self, out=None):
|
757
|
+
return self._call_unary("sin", out=out)
|
276
758
|
|
277
|
-
|
278
|
-
|
279
|
-
pass # min_level is not set in this special case, hence the check.
|
280
|
-
elif min_level != max_level:
|
281
|
-
raise ValueError("unbalanced tree: min depth: %d max depth: %d" %
|
282
|
-
(min_level, max_level))
|
759
|
+
def sinh(self, out=None):
|
760
|
+
return self._call_unary("sinh", out=out)
|
283
761
|
|
284
|
-
|
285
|
-
|
762
|
+
def sqrt(self, out=None):
|
763
|
+
return self._call_unary("sqrt", out=out)
|
286
764
|
|
287
|
-
|
765
|
+
def tan(self, out=None):
|
766
|
+
return self._call_unary("tan", out=out)
|
288
767
|
|
768
|
+
def tanh(self, out=None):
|
769
|
+
return self._call_unary("tanh", out=out)
|
289
770
|
|
771
|
+
def tanh(self, out=None):
|
772
|
+
return self._call_unary("tgamma", out=out)
|
290
773
|
|
774
|
+
def equaln(self, other, out=None):
|
775
|
+
return self._call_binary("equaln", other, out=out, raiseit=True)
|