wukong 0.1.4 → 1.4.0
Sign up to get free protection for your applications and to get access to all the features.
- data/INSTALL.textile +89 -0
- data/README.textile +41 -74
- data/docpages/INSTALL.textile +94 -0
- data/{doc → docpages}/LICENSE.textile +0 -0
- data/{doc → docpages}/README-wulign.textile +6 -0
- data/docpages/UsingWukong-part1-get_ready.textile +17 -0
- data/{doc/overview.textile → docpages/UsingWukong-part2-ThinkingBigData.textile} +8 -24
- data/{doc → docpages}/UsingWukong-part3-parsing.textile +8 -2
- data/docpages/_config.yml +39 -0
- data/{doc/tips.textile → docpages/bigdata-tips.textile} +71 -44
- data/{doc → docpages}/code/api_response_example.txt +0 -0
- data/{doc → docpages}/code/parser_skeleton.rb +0 -0
- data/{doc/intro_to_map_reduce → docpages/diagrams}/MapReduceDiagram.graffle +0 -0
- data/docpages/favicon.ico +0 -0
- data/docpages/gem.css +16 -0
- data/docpages/hadoop-tips.textile +83 -0
- data/docpages/index.textile +90 -0
- data/docpages/intro.textile +8 -0
- data/docpages/moreinfo.textile +174 -0
- data/docpages/news.html +24 -0
- data/{doc → docpages}/pig/PigLatinExpressionsList.txt +0 -0
- data/{doc → docpages}/pig/PigLatinReferenceManual.html +0 -0
- data/{doc → docpages}/pig/PigLatinReferenceManual.txt +0 -0
- data/docpages/tutorial.textile +283 -0
- data/docpages/usage.textile +195 -0
- data/docpages/wutils.textile +263 -0
- data/wukong.gemspec +80 -50
- metadata +87 -54
- data/doc/INSTALL.textile +0 -41
- data/doc/README-tutorial.textile +0 -163
- data/doc/README-wutils.textile +0 -128
- data/doc/TODO.textile +0 -61
- data/doc/UsingWukong-part1-setup.textile +0 -2
- data/doc/UsingWukong-part2-scraping.textile +0 -2
- data/doc/hadoop-nfs.textile +0 -51
- data/doc/hadoop-setup.textile +0 -29
- data/doc/index.textile +0 -124
- data/doc/links.textile +0 -42
- data/doc/usage.textile +0 -102
- data/doc/utils.textile +0 -48
- data/examples/and_pig/sample_queries.rb +0 -128
- data/lib/wukong/and_pig.rb +0 -62
- data/lib/wukong/and_pig/README.textile +0 -12
- data/lib/wukong/and_pig/as.rb +0 -37
- data/lib/wukong/and_pig/data_types.rb +0 -30
- data/lib/wukong/and_pig/functions.rb +0 -50
- data/lib/wukong/and_pig/generate.rb +0 -85
- data/lib/wukong/and_pig/generate/variable_inflections.rb +0 -82
- data/lib/wukong/and_pig/junk.rb +0 -51
- data/lib/wukong/and_pig/operators.rb +0 -8
- data/lib/wukong/and_pig/operators/compound.rb +0 -29
- data/lib/wukong/and_pig/operators/evaluators.rb +0 -7
- data/lib/wukong/and_pig/operators/execution.rb +0 -15
- data/lib/wukong/and_pig/operators/file_methods.rb +0 -29
- data/lib/wukong/and_pig/operators/foreach.rb +0 -98
- data/lib/wukong/and_pig/operators/groupies.rb +0 -212
- data/lib/wukong/and_pig/operators/load_store.rb +0 -65
- data/lib/wukong/and_pig/operators/meta.rb +0 -42
- data/lib/wukong/and_pig/operators/relational.rb +0 -129
- data/lib/wukong/and_pig/pig_struct.rb +0 -48
- data/lib/wukong/and_pig/pig_var.rb +0 -95
- data/lib/wukong/and_pig/symbol.rb +0 -29
- data/lib/wukong/and_pig/utils.rb +0 -0
@@ -1,5 +1,21 @@
|
|
1
|
+
---
|
2
|
+
layout: default
|
3
|
+
title: mrflip.github.com/wukong - Lessons Learned working with Big Data
|
4
|
+
collapse: false
|
5
|
+
---
|
1
6
|
|
2
|
-
|
7
|
+
h2. Random Thoughts on Big Data
|
8
|
+
|
9
|
+
Stuff changes when you cross the 100GB barrier. Here are random musings on why it might make sense to
|
10
|
+
|
11
|
+
* Sort everything
|
12
|
+
* Don't do any error handling
|
13
|
+
* Catch errors and emit them along with your data
|
14
|
+
* Make everything ASCII
|
15
|
+
* Abandon integer keys
|
16
|
+
* Use bash as your data-analysis IDE.
|
17
|
+
|
18
|
+
h2(#dropacid). Drop ACID, explore Big Data
|
3
19
|
|
4
20
|
The traditional "ACID quartet":http://en.wikipedia.org/wiki/ACID for relational databases can be re-interpreted in a Big Data context:
|
5
21
|
|
@@ -18,7 +34,7 @@ Finally, where possible leave things in sort order by some appropriate index. Cl
|
|
18
34
|
|
19
35
|
Note: for files that will live on the DFS, you should usually *not* do a total sort,
|
20
36
|
|
21
|
-
|
37
|
+
h2. If it's not broken, it's wrong
|
22
38
|
|
23
39
|
Something that goes wrong one in a five million times will crop up hundreds of times in a billion-record collection.
|
24
40
|
|
@@ -26,38 +42,6 @@ h3. Error is not normally distributed
|
|
26
42
|
|
27
43
|
What's more, errors introduced will not in general be normally distributed and their impact may not decrease with increasing data size.
|
28
44
|
|
29
|
-
h3. Encode once, and carefully.
|
30
|
-
|
31
|
-
Encoding violates idempotence. Data brought in from elsewhere *must* be considered unparsable, ill-formatted and rife with illegal characters.
|
32
|
-
|
33
|
-
* Immediately fix a copy of the original data with as minimal encoding as possible.
|
34
|
-
* Follow this with a separate parse stage to emit perfectly well-formed, tab-separated / newline delimited data
|
35
|
-
* In this parse stage, encode the data to 7-bits, free of internal tabs, backslashes, carriage return/line feed or control characters. You want your encoding scheme to be
|
36
|
-
** perfectly reversible
|
37
|
-
** widely implemented
|
38
|
-
** easily parseable
|
39
|
-
** recognizable: incoming data that is mostly inoffensive (a json record, or each line of a document such as this one) should be minimally altered from its original. This lets you do rough exploration with sort/cut/grep and friends.
|
40
|
-
** !! Involve **NO QUOTING**, only escaping. I can write a simple regexp to decode entities such as %10, \n or . This regexp will behave harmlessly with ill-formed data (eg %%10 or &&; or \ at end of line) and is robust against data being split or interpolated. Schemes such as "quoting: it's bad", %Q{quoting: "just say no"} or <notextile><notextile>tagged markup</notextile></notextile> require a recursive parser. An extra or missing quote mark is almost impossible to backtrack. And av
|
41
|
-
|
42
|
-
In the absence of some lightweight, mostly-transparent, ASCII-compatible *AND* idempotent encoding scheme lurking in a back closet of some algorithms book -- how to handle the initial lousy payload coming off the wire?
|
43
|
-
|
44
|
-
* For data that is *mostly* text in a western language, you'll do well wiht XML encoding (with <notextile>[\n\r\t\\]</notextile> forced to encode as entities)
|
45
|
-
* URL encoding isn't as recognizable, but is also safe. Use this for things like URIs and filenames, or if you want to be /really/ paranoid about escaping.
|
46
|
-
* For binary data, Binhex is efficient enough and every toolkit can handle it. There are more data-efficient ascii-compatible encoding schemes but it's not worth the hassle for the 10% or whatever gain in size.
|
47
|
-
* If your payload itself is XML data, consider using \0 (nul) between records, with a fixed number of tab-separated metadata fields leading the XML data, which can then include tabs, newlines, or whatever the hell it wants. No changes are made to the data apart from a quick gsub to remove any (highly illegal) \0 in the XML data itself. A later parse round will convert it to structured hadoop-able data. Ex:
|
48
|
-
|
49
|
-
{% highlight html %}
|
50
|
-
feed_request 20090809101112 200 OK <?xml version='1.0' encoding='utf-8' ?>
|
51
|
-
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
52
|
-
<html lang='en' xml:lang='en' xmlns='http://www.w3.org/1999/xhtml'>
|
53
|
-
<head>
|
54
|
-
<title>infochimps.org — Find Any Dataset in the World</title>
|
55
|
-
{% endhighlight %}
|
56
|
-
|
57
|
-
p. Many of the command line utilities (@cat@, @grep@, etc.) will accept nul-delimited files.
|
58
|
-
|
59
|
-
You may be tempted to use XML around your XML so you can XML while you XML, but this is ultimately only done right by parsing or scrubbing the inputm and at that point you should just translate directly to a reasonable tab/newline format. (Even if that format is tsv-compatible JSON).
|
60
|
-
|
61
45
|
h3. Do your exception handling in-band
|
62
46
|
|
63
47
|
A large, heavily-used cluster will want to have ganglia or "scribe":http://www.cloudera.com/blog/2008/11/02/configuring-and-using-scribe-for-hadoop-log-collection/ or the like collecting and managing log data. "Splunk":http://www.splunk.com/ is a compelling option I haven't myself used, but it is "broadly endorsed.":http://www.igvita.com/2008/10/22/distributed-logging-syslog-ng-splunk/
|
@@ -66,14 +50,7 @@ However, it's worth considering another extremely efficient, simple and powerful
|
|
66
50
|
|
67
51
|
Wukong gives you a BadRecord class -- just rescue errors, pass the full or partial contents of the offending input. and emit the BadRecord instance in-band. They'll be serialized out along with the rest, and at your preference can be made to reduce to a single instance. Do analysis on them at your leisure; by default, any StructStreamer will silently discard *inbound* BadRecords -- they won't survive past the current generation.
|
68
52
|
|
69
|
-
|
70
|
-
|
71
|
-
%{ highlight sh %}
|
72
|
-
cat /data/foo.tsv | ruby -ne 'puts $_.chomp.scan(/text="([^"]+)"/).join("\t")'
|
73
|
-
{% endhighlight %}
|
74
|
-
|
75
|
-
|
76
|
-
h3. Keys
|
53
|
+
h2(#keys). Keys
|
77
54
|
|
78
55
|
* Artificial key: assigned externally, key is not a function of the object's intrinsic values. A social security number is an artificial key. Artificial
|
79
56
|
|
@@ -91,7 +68,6 @@ h4. Natural keys are right for big data
|
|
91
68
|
|
92
69
|
Synthetic keys suck. They demand locality or a central keymaster.
|
93
70
|
|
94
|
-
|
95
71
|
* Use the natural key
|
96
72
|
* Hash the natural key. This has some drawbacks
|
97
73
|
|
@@ -112,5 +88,56 @@ How do you get a unique prefix?
|
|
112
88
|
fact that uniqueness was achieved. Use the birthday party formula to find out
|
113
89
|
how often this will happen. (In practice, almost never.)
|
114
90
|
|
91
|
+
You can consider your fields are one of three types:
|
92
|
+
|
93
|
+
* Key
|
94
|
+
** natural: a unique username, a URL, the MD5 hash of a URL
|
95
|
+
** synthetic: an integer generated by some central keymaster
|
96
|
+
* Mutable:
|
97
|
+
** eg A user’s ‘bio’ section.
|
98
|
+
* Immutable:
|
99
|
+
** A user’s created_at date is immutable: it doesn’t help identify the person but it will never change.
|
100
|
+
|
101
|
+
The meaning of a key depends on its semantics. Is a URL a key?
|
102
|
+
|
103
|
+
* A location: (compare: "The head of household residing at 742 Evergreen Terr, Springfield USA")
|
104
|
+
* An entity handle (URI): (compare: "Homer J Simpson (aka Max Power)")
|
105
|
+
* An observation of that entity: Many URLs are handles to a __stream__ -- http://twitter.com/mrflip names the resource "mrflip's twitter stream", but loading that page offers only the last 20 entries in that stream. (compare: "The collection of all words spoken by the residents of 742 Evergreen Terr, Springfield USA")
|
106
|
+
|
107
|
+
h2(#bashide). The command line is an IDE
|
108
|
+
|
109
|
+
{% highlight sh %}
|
110
|
+
cat /data/foo.tsv | ruby -ne 'puts $_.chomp.scan(/text="([^"]+)"/).join("\t")'
|
111
|
+
{% endhighlight %}
|
112
|
+
|
113
|
+
h2(#encoding). Encode once, and carefully.
|
114
|
+
|
115
|
+
Encoding violates idempotence. Data brought in from elsewhere *must* be considered unparsable, ill-formatted and rife with illegal characters.
|
116
|
+
|
117
|
+
* Immediately fix a copy of the original data with as minimal encoding as possible.
|
118
|
+
* Follow this with a separate parse stage to emit perfectly well-formed, tab-separated / newline delimited data
|
119
|
+
* In this parse stage, encode the data to 7-bits, free of internal tabs, backslashes, carriage return/line feed or control characters. You want your encoding scheme to be
|
120
|
+
** perfectly reversible
|
121
|
+
** widely implemented
|
122
|
+
** easily parseable
|
123
|
+
** recognizable: incoming data that is mostly inoffensive (a json record, or each line of a document such as this one) should be minimally altered from its original. This lets you do rough exploration with sort/cut/grep and friends.
|
124
|
+
** !! Involve **NO QUOTING**, only escaping. I can write a simple regexp to decode entities such as %10, \n or . This regexp will behave harmlessly with ill-formed data (eg %%10 or &&; or \ at end of line) and is robust against data being split or interpolated. Schemes such as "quoting: it's bad", %Q{quoting: "just say no"} or <notextile><notextile>tagged markup</notextile></notextile> require a recursive parser. An extra or missing quote mark is almost impossible to backtrack. And av
|
125
|
+
|
126
|
+
In the absence of some lightweight, mostly-transparent, ASCII-compatible *AND* idempotent encoding scheme lurking in a back closet of some algorithms book -- how to handle the initial lousy payload coming off the wire?
|
127
|
+
|
128
|
+
* For data that is *mostly* text in a western language, you'll do well wiht XML encoding (with <notextile>[\n\r\t\\]</notextile> forced to encode as entities)
|
129
|
+
* URL encoding isn't as recognizable, but is also safe. Use this for things like URIs and filenames, or if you want to be /really/ paranoid about escaping.
|
130
|
+
* For binary data, Binhex is efficient enough and every toolkit can handle it. There are more data-efficient ascii-compatible encoding schemes but it's not worth the hassle for the 10% or whatever gain in size.
|
131
|
+
* If your payload itself is XML data, consider using \0 (nul) between records, with a fixed number of tab-separated metadata fields leading the XML data, which can then include tabs, newlines, or whatever the hell it wants. No changes are made to the data apart from a quick gsub to remove any (highly illegal) \0 in the XML data itself. A later parse round will convert it to structured hadoop-able data. Ex:
|
132
|
+
|
133
|
+
{% highlight html %}
|
134
|
+
feed_request 20090809101112 200 OK <?xml version='1.0' encoding='utf-8' ?>
|
135
|
+
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
136
|
+
<html lang='en' xml:lang='en' xmlns='http://www.w3.org/1999/xhtml'>
|
137
|
+
<head>
|
138
|
+
<title>infochimps.org — Find Any Dataset in the World</title>
|
139
|
+
{% endhighlight %}
|
140
|
+
|
141
|
+
p. Many of the command line utilities (@cat@, @grep@, etc.) will accept nul-delimited files.
|
115
142
|
|
116
|
-
|
143
|
+
You may be tempted to use XML around your XML so you can XML while you XML. Ultimately, you'll find this can only be done right by doing a full parse of the input -- and at that point you should just translate directly to a reasonable tab/newline format. (Even if that format is tsv-compatible JSON).
|
File without changes
|
File without changes
|
File without changes
|
Binary file
|
data/docpages/gem.css
ADDED
@@ -0,0 +1,16 @@
|
|
1
|
+
#header a { color: #00a; }
|
2
|
+
hr { border-color: #66a ; }
|
3
|
+
h2 { border-color: #acc ; }
|
4
|
+
h1 { border-color: #acc ; }
|
5
|
+
.download { border-color: #acc ; }
|
6
|
+
#footer { border-color: #a0e0e8 ; }
|
7
|
+
|
8
|
+
#header a { margin-left:0.125em; margin-right:0.125em; }
|
9
|
+
h1.gemheader {
|
10
|
+
margin: -30px 0 0.5em -65px ;
|
11
|
+
text-indent: 65px ;
|
12
|
+
height: 90px ;
|
13
|
+
padding: 50px 0 10px 0px;
|
14
|
+
background: url('/images/wukong.png') no-repeat 0px 0px ;
|
15
|
+
}
|
16
|
+
.quiet { font-size: 0.85em ; color: #777 ; font-style: italic }
|
@@ -0,0 +1,83 @@
|
|
1
|
+
---
|
2
|
+
layout: default
|
3
|
+
title: mrflip.github.com/wukong - NFS on Hadoop FTW
|
4
|
+
collapse: false
|
5
|
+
---
|
6
|
+
|
7
|
+
h2. Hadoop Config Tips
|
8
|
+
|
9
|
+
h3(#hadoopnfs). Setup NFS within the cluster
|
10
|
+
|
11
|
+
If you're lazy, I recommend setting up NFS -- it makes dispatching simple config and script files much easier. (And if you're not lazy, what the hell are you doing using Wukong?). Be careful though -- used unwisely, a swarm of NFS requests will mount a devastatingly effective denial of service attack on your poor old master node.
|
12
|
+
|
13
|
+
Installing NFS to share files along the cluster gives the following conveniences:
|
14
|
+
* You don't have to bundle everything up with each run: any path in ~coder/ will refer back via NFS to the filesystem on master.
|
15
|
+
* The user can now passwordless ssh among the nodes, since there's only one shared home directory and since we included the user's own public key in the authorized_keys2 file. This lets you easily rsync files among the nodes.
|
16
|
+
|
17
|
+
First, you need to take note of the _internal_ name for your master, perhaps something like @domU-xx-xx-xx-xx-xx-xx.compute-1.internal@.
|
18
|
+
|
19
|
+
As root, on the master (change @compute-1.internal@ to match your setup):
|
20
|
+
|
21
|
+
<pre>
|
22
|
+
apt-get install nfs-kernel-server
|
23
|
+
echo "/home *.compute-1.internal(rw)" >> /etc/exports ;
|
24
|
+
/etc/init.d/nfs-kernel-server stop ;
|
25
|
+
</pre>
|
26
|
+
|
27
|
+
(The @*.compute-1.internal@ part limits host access, but you should take a look at the security settings of both EC2 and the built-in portmapper as well.)
|
28
|
+
|
29
|
+
Next, set up a regular user account on the *master only*. In this case our user will be named 'chimpy':
|
30
|
+
|
31
|
+
<pre>
|
32
|
+
visudo # uncomment the last line, to allow group sudo to sudo
|
33
|
+
groupadd admin
|
34
|
+
adduser chimpy
|
35
|
+
usermod -a -G sudo,admin chimpy
|
36
|
+
su chimpy # now you are the new user
|
37
|
+
ssh-keygen -t rsa # accept all the defaults
|
38
|
+
cat ~/.ssh/id_rsa.pub # can paste this public key into your github, etc
|
39
|
+
cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys2
|
40
|
+
</pre>
|
41
|
+
|
42
|
+
Then on each slave (replacing domU-xx-... by the internal name for the master node):
|
43
|
+
|
44
|
+
<pre>
|
45
|
+
apt-get install nfs-common ;
|
46
|
+
echo "domU-xx-xx-xx-xx-xx-xx.compute-1.internal:/home /mnt/home nfs rw 0 0" >> /etc/fstab
|
47
|
+
/etc/init.d/nfs-common restart
|
48
|
+
mkdir /mnt/home
|
49
|
+
mount /mnt/home
|
50
|
+
ln -s /mnt/home/chimpy /home/chimpy
|
51
|
+
</pre>
|
52
|
+
|
53
|
+
You should now be in business.
|
54
|
+
|
55
|
+
Performance tradeoffs should be small as long as you're just sending code files and gems around. *Don't* write out log entries or data to NFS partitions, or you'll effectively perform a denial-of-service attack on the master node.
|
56
|
+
|
57
|
+
* http://nfs.sourceforge.net/nfs-howto/ar01s03.html
|
58
|
+
* The "Setting up an NFS Server HOWTO":http://nfs.sourceforge.net/nfs-howto/index.html was an immense help, and I recommend reading it carefully.
|
59
|
+
|
60
|
+
h3(#awstools). Tools for EC2 and S3 Management
|
61
|
+
|
62
|
+
* http://s3sync.net/wiki
|
63
|
+
* http://jets3t.s3.amazonaws.com/applications/applications.html#uploader
|
64
|
+
* "ElasticFox"
|
65
|
+
* "S3Fox (S3 Organizer)":
|
66
|
+
* "FoxyProxy":
|
67
|
+
|
68
|
+
|
69
|
+
h3. Random EC2 notes
|
70
|
+
|
71
|
+
* "How to Mount EBS volume at launch":http://clouddevelopertips.blogspot.com/2009/08/mount-ebs-volume-created-from-snapshot.html
|
72
|
+
|
73
|
+
* The Cloudera AMIs and distribution include BZip2 support. This means that if you have input files with a .bz2 extension, they will be naturally un-bzipped and streamed. (Note that there is a non-trivial penalty for doing so: each bzip'ed file must go, in whole, to a single mapper; and the CPU load for un-bzipping is sizeable.)
|
74
|
+
|
75
|
+
* To _produce_ bzip2 files, specify the @--compress_output=@ flag. If you have the BZip2 patches installed, you can give @--compress_output=bz2@; everyone should be able to use @--compress_output=gz@.
|
76
|
+
|
77
|
+
* For excellent performance you can patch your install for "Parallel LZO Splitting":http://www.cloudera.com/blog/2009/06/24/parallel-lzo-splittable-compression-for-hadoop/
|
78
|
+
|
79
|
+
* If you're using XFS, consider setting the nobarrier option
|
80
|
+
/dev/sdf /mnt/data2 xfs noatime,nodiratime,nobarrier 0 0
|
81
|
+
|
82
|
+
* The first write to any disk location is about 5x slower than later writes. Explanation, and how to pre-soften a volume, here: http://docs.amazonwebservices.com/AWSEC2/latest/DeveloperGuide/index.html?instance-storage.html
|
83
|
+
|
@@ -0,0 +1,90 @@
|
|
1
|
+
---
|
2
|
+
layout: default
|
3
|
+
title: mrflip.github.com/wukong
|
4
|
+
collapse: true
|
5
|
+
---
|
6
|
+
h1(gemheader). wukong %(small):: hadoop made easy%
|
7
|
+
|
8
|
+
p(description). {{ site.description }}
|
9
|
+
|
10
|
+
Treat your dataset like a
|
11
|
+
* stream of lines when it's efficient to process by lines
|
12
|
+
* stream of field arrays when it's efficient to deal directly with fields
|
13
|
+
* stream of lightweight objects when it's efficient to deal with objects
|
14
|
+
|
15
|
+
Wukong is friends with "Hadoop":http://hadoop.apache.org/core the elephant, "Pig":http://hadoop.apache.org/pig/ the query language, and the @cat@ on your command line.
|
16
|
+
|
17
|
+
Send Wukong questions to the "Infinite Monkeywrench mailing list":http://groups.google.com/group/infochimps-code
|
18
|
+
|
19
|
+
<notextile><div class="toggle"></notextile>
|
20
|
+
|
21
|
+
h2. Documentation index
|
22
|
+
|
23
|
+
* "Install and set up wukong":INSTALL.html
|
24
|
+
** "Get the code":INSTALL.html#getcode
|
25
|
+
** "Setup":INSTALL.html#setup
|
26
|
+
** "Installing and Running Wukong with Hadoop":INSTALL.html#gethadoop
|
27
|
+
** "Installing and Running Wukong with Datamapper, ActiveRecord, the command-line and more":INSTALL.html#others
|
28
|
+
|
29
|
+
* "Tutorial":tutorial.html
|
30
|
+
** "Count Words":tutorial.html#wordcount
|
31
|
+
** "Structured data":tutorial.html#structstream
|
32
|
+
** "Accumulators":tutorial.html#accumulators including a UniqByLastReducer and a GroupBy reducer.
|
33
|
+
|
34
|
+
* "Usage notes":usage.html
|
35
|
+
** "How to run a Wukong script":usage.html#running
|
36
|
+
** "How to test your scripts":usage.html#testing
|
37
|
+
** "Wukong Plays nicely with others":usage.html#playnice
|
38
|
+
** "Schema export":usage.html#schema_export to Pig and SQL
|
39
|
+
** "Using wukong with internal streaming":usage.html#stayinruby
|
40
|
+
** "Using wukong to Batch-Process ActiveRecord Objects":usage.html#activerecord
|
41
|
+
|
42
|
+
* "Wutils":wutils.html -- command-line utilies for working with data from the command line
|
43
|
+
** "Overview of wutils":wutils.html#wutils -- command listing
|
44
|
+
** "Stupid command-line tricks":wutils.html#cmdlinetricks using the wutils
|
45
|
+
** "wu-lign":wutils.html#wulign -- present a tab-separated file as aligned columns
|
46
|
+
** Dear Lazyweb, please build us a "tab-oriented version of the Textutils library":wutils.html#wutilsinc
|
47
|
+
|
48
|
+
* Links and tips for "configuring and working with hadoop":hadoop-tips.html
|
49
|
+
* Some opinionated "thoughts on working with big data,":bigdata-tips.html on why you should drop acid, treat exceptions as records, and happily embrace variable-length strings as primary keys.
|
50
|
+
* Wukong is licensed under the "Apache License":LICENSE.html (same as Hadoop)
|
51
|
+
|
52
|
+
* "More info":moreinfo.html
|
53
|
+
** "Why is it called Wukong?":moreinfo.html#name
|
54
|
+
** "Don't Use Wukong, use this instead":moreinfo.html#whateverdude
|
55
|
+
** "Further Reading and useful links":moreinfo.html#links
|
56
|
+
** "Note on Patches/Pull Requests":moreinfo.html#patches
|
57
|
+
** "What's up with Wukong::AndPig?":moreinfo.html#andpig
|
58
|
+
** "Map/Reduce Algorithms":moreinfo.html#algorithms
|
59
|
+
** "TODOs":moreinfo.html#TODO
|
60
|
+
|
61
|
+
* Work in progress: an intro to data processing with wukong:
|
62
|
+
** "Part 1, Get Ready":UsingWukong-part1-getready.html
|
63
|
+
** "Part 2, Thinking Big Data":UsingWukong-part2-ThinkingBigData.html
|
64
|
+
** "Part 3, Parsing":UsingWukong-part3-parsing.html
|
65
|
+
|
66
|
+
<notextile></div></notextile>
|
67
|
+
|
68
|
+
{% include intro.textile %}
|
69
|
+
|
70
|
+
<notextile><div class="toggle"></notextile>
|
71
|
+
|
72
|
+
h2. Credits
|
73
|
+
|
74
|
+
Wukong was written by "Philip (flip) Kromer":http://mrflip.com (flip@infochimps.org) for the "infochimps project":http://infochimps.org
|
75
|
+
|
76
|
+
Patches submitted by:
|
77
|
+
* gemified by Ben Woosley (ben.woosley@gmail.com)
|
78
|
+
* ruby interpreter path fix by "Yuichiro MASUI":http://github.com/masuidrive - masui@masuidrive.jp - http://blog.masuidrive.jp/
|
79
|
+
|
80
|
+
Thanks to:
|
81
|
+
* "Brad Heintz":http://www.bradheintz.com/no1thing/talks/ for his early feedback
|
82
|
+
* "Phil Ripperger":http://blog.pdatasolutions.com for his "wukong in the Amazon AWS cloud":http://blog.pdatasolutions.com/post/191978092/ruby-on-hadoop-quickstart tutorial.
|
83
|
+
|
84
|
+
<notextile><div class="toggle"></notextile>
|
85
|
+
|
86
|
+
h2. Help!
|
87
|
+
|
88
|
+
Send Wukong questions to the "Infinite Monkeywrench mailing list":http://groups.google.com/group/infochimps-code
|
89
|
+
|
90
|
+
<notextile></div></notextile>
|
@@ -0,0 +1,174 @@
|
|
1
|
+
---
|
2
|
+
layout: default
|
3
|
+
title: mrflip.github.com/wukong - TODO
|
4
|
+
collapse: false
|
5
|
+
---
|
6
|
+
|
7
|
+
|
8
|
+
h1(gemheader). Wukong More Info
|
9
|
+
|
10
|
+
** "Why is it called Wukong?":#name
|
11
|
+
** "Don't Use Wukong, use this instead":#whateverdude
|
12
|
+
** "Further Reading and useful links":#links
|
13
|
+
** "Note on Patches/Pull Requests":#patches
|
14
|
+
** "What's up with Wukong::AndPig?":#andpig
|
15
|
+
** "Map/Reduce Algorithms":#algorithms
|
16
|
+
** "TODOs":#TODO
|
17
|
+
|
18
|
+
|
19
|
+
<notextile><div class="toggle"></notextile>
|
20
|
+
|
21
|
+
h2(#name). Why is it called Wukong?
|
22
|
+
|
23
|
+
Hadoop, as you may know, is "named after a stuffed elephant.":http://en.wikipedia.org/wiki/Hadoop Since Wukong was started by the "infochimps":http://infochimps.org team, we needed a simian analog. A Monkey King who journeyed to the land of the Elephant seems to fit the bill:
|
24
|
+
|
25
|
+
bq. Sun Wukong (孙悟空), known in the West as the Monkey King, is the main character in the classical Chinese epic novel Journey to the West. In the novel, he accompanies the monk Xuanzang on the journey to retrieve Buddhist sutras from India.
|
26
|
+
|
27
|
+
bq. Sun Wukong possesses incredible strength, being able to lift his 13,500 jīn (8,100 kg) Ruyi Jingu Bang with ease. He also has superb speed, traveling 108,000 li (54,000 kilometers) in one somersault. Sun knows 72 transformations, which allows him to transform into various animals and objects; he is, however, shown with slight problems transforming into other people, since he is unable to complete the transformation of his tail. He is a skilled fighter, capable of holding his own against the best generals of heaven. Each of his hairs possesses magical properties, and is capable of transforming into a clone of the Monkey King himself, or various weapons, animals, and other objects. He also knows various spells in order to command wind, part water, conjure protective circles against demons, freeze humans, demons, and gods alike. -- ["Sun Wukong's Wikipedia entry":http://en.wikipedia.org/wiki/Wukong]
|
28
|
+
|
29
|
+
The "Jaime Hewlett / Damon Albarn short":http://news.bbc.co.uk/sport1/hi/olympics/monkey that the BBC made for their 2008 Olympics coverage gives the general idea.
|
30
|
+
|
31
|
+
<notextile></div><div class="toggle"></notextile>
|
32
|
+
|
33
|
+
h2(#algorithms). Map/Reduce Algorithms
|
34
|
+
|
35
|
+
Example graph scripts:
|
36
|
+
|
37
|
+
* Multigraph
|
38
|
+
* Pagerank (done)
|
39
|
+
* Breadth-first search
|
40
|
+
* Triangle enumeration
|
41
|
+
* Clustering
|
42
|
+
|
43
|
+
h3. K-Nearest Neighbors
|
44
|
+
|
45
|
+
More example hadoop algorithms:
|
46
|
+
* Bigram counts: http://www.umiacs.umd.edu/~jimmylin/cloud9/docs/exercises/bigrams.html
|
47
|
+
* Inverted index construction: http://www.umiacs.umd.edu/~jimmylin/cloud9/docs/exercises/indexer.html
|
48
|
+
* Pagerank : http://www.umiacs.umd.edu/~jimmylin/cloud9/docs/exercises/pagerank.html
|
49
|
+
* SIPs, Median, classifiers and more : http://matpalm.com/
|
50
|
+
* Brad Heintz's "Distributed Computing with Ruby":http://www.bradheintz.com/no1thing/talks/ demonstrates Travelling Salesman in map/reduce.
|
51
|
+
|
52
|
+
* "Clustering billions of images with large scale nearest neighbor search":http://scholar.google.com/scholar?cluster=2473742255769621469&hl=en uses three map/reduce passes:
|
53
|
+
** Subsample to build a "spill tree" that roughly localizes each object
|
54
|
+
** Use the spill tree on the full dataset to group each object with its potential neighbors
|
55
|
+
** Calculate the metrics and emit only the k-nearest neighbors
|
56
|
+
|
57
|
+
Example example scripts (from http://www.cloudera.com/resources/learning-mapreduce):
|
58
|
+
|
59
|
+
1. Find the [number of] hits by 5 minute timeslot for a website given its access logs.
|
60
|
+
2. Find the pages with over 1 million hits in day for a website given its access logs.
|
61
|
+
3. Find the pages that link to each page in a collection of webpages.
|
62
|
+
4. Calculate the proportion of lines that match a given regular expression for a collection of documents.
|
63
|
+
5. Sort tabular data by a primary and secondary column.
|
64
|
+
6. Find the most popular pages for a website given its access logs.
|
65
|
+
|
66
|
+
<notextile></div><div class="toggle"></notextile>
|
67
|
+
|
68
|
+
h2(#whateverdude). Don't Use Wukong, use this instead
|
69
|
+
|
70
|
+
There are several worthy Hadoop|Streaming Frameworks:
|
71
|
+
|
72
|
+
* infochimps.org's "Wukong":http://github.com/mrflip/wukong -- ruby; object-oriented *and* record-oriented
|
73
|
+
* NYTimes' "MRToolkit":http://code.google.com/p/mrtoolkit/ -- ruby; much more log-oriented
|
74
|
+
* Freebase's "Happy":http://code.google.com/p/happy/ -- python; the most performant, as it can use Jython to make direct API calls.
|
75
|
+
* Last.fm's "Dumbo":http://wiki.github.com/klbostee/dumbo -- python
|
76
|
+
|
77
|
+
Most people use Wukong / one of the above (or straight Java Hadoop, poor souls) for heavy lifting, and several of the following hadoop tools for efficiency:
|
78
|
+
|
79
|
+
* Pig OR
|
80
|
+
* Hive -- hive is more SQL-ish, Pig is more elegant (in a brushed-metal kind of way). I greatly prefer Pig, because I hate SQL; you may feel differently.
|
81
|
+
* Sqoop
|
82
|
+
* Mahout
|
83
|
+
|
84
|
+
<notextile></div><div class="toggle"></notextile>
|
85
|
+
|
86
|
+
h2(#links). Further Reading and useful links:
|
87
|
+
|
88
|
+
* "Ruby Hadoop Quickstart":http://blog.pdatasolutions.com/post/191978092/ruby-on-hadoop-quickstart - dive right in with Wukong, Hadoop and the Amazon Elastic MapReduce cloud. Once you get bored with the command line, this is the fastest path to Wukong power.
|
89
|
+
* "Distributed Computing with Ruby":http://www.bradheintz.com/no1thing/talks/ has some raw ruby, some Wukong and some JRuby/Hadoop integration -- it demonstrates a Travelling Salesman in map/reduce. Cool!
|
90
|
+
|
91
|
+
* "Hadoop, The Definitive Guide":http://www.amazon.com/Hadoop-Definitive-Guide-Tom-White/dp/0596521979
|
92
|
+
|
93
|
+
* "Running Hadoop On Ubuntu Linux (Single-Node Cluster)":http://www.michael-noll.com/wiki/Running_Hadoop_On_Ubuntu_Linux_(Single-Node_Cluster) and "unning Hadoop On Ubuntu Linux (Multi-Node Cluster).":http://www.michael-noll.com/wiki/Running_Hadoop_On_Ubuntu_Linux_(Multi-Node_Cluster)
|
94
|
+
* "Running Hadoop MapReduce on Amazon EC2 and S3":http://developer.amazonwebservices.com/connect/entry.jspa?externalID=873
|
95
|
+
|
96
|
+
* "Hadoop Overview by Doug Cutting":http://video.google.com/videoplay?docid=-4912926263813234341 - the founder of the Hadoop project. (49m video)
|
97
|
+
|
98
|
+
* "Cluster Computing and Map|Reduce":http://www.youtube.com/results?search_query=cluster+computing+and+mapreduce
|
99
|
+
** "Lecture 1: Overview":http://www.youtube.com/watch?v=yjPBkvYh-ss
|
100
|
+
** "Lecture 2 (technical): Map|Reduce":http://www.youtube.com/watch?v=-vD6PUdf3Js
|
101
|
+
** "Lecture 3 (technical): GFS (Google File System)":http://www.youtube.com/watch?v=5Eib_H_zCEY
|
102
|
+
** "Lecture 4 (theoretical): Canopy Clustering":http://www.youtube.com/watch?v=1ZDybXl212Q
|
103
|
+
** "Lecture 5 (theoretical): Breadth-First Search":http://www.youtube.com/watch?v=BT-piFBP4fE
|
104
|
+
|
105
|
+
* "Cloudera Hadoop Training:":http://www.cloudera.com/hadoop-training
|
106
|
+
** "Thinking at Scale":http://www.cloudera.com/hadoop-training-thinking-at-scale
|
107
|
+
** "Mapreduce and HDFS":http://www.cloudera.com/hadoop-training-mapreduce-hdfs
|
108
|
+
** "A Tour of the Hadoop Ecosystem":http://www.cloudera.com/hadoop-training-ecosystem-tour
|
109
|
+
** "Programming with Hadoop":http://www.cloudera.com/hadoop-training-programming-with-hadoop
|
110
|
+
** "Hadoop and Hive: introduction":http://www.cloudera.com/hadoop-training-hive-introduction
|
111
|
+
** "Hadoop and Hive: tutorial":http://www.cloudera.com/hadoop-training-hive-tutorial
|
112
|
+
** "Hadoop and Pig: Introduction":http://www.cloudera.com/hadoop-training-pig-introduction
|
113
|
+
** "Hadoop and Pig: Tutorial":http://www.cloudera.com/hadoop-training-pig-tutorial
|
114
|
+
** "Mapreduce Algorithms":http://www.cloudera.com/hadoop-training-mapreduce-algorithms
|
115
|
+
** "Exercise: Getting started with Hadoop":http://www.cloudera.com/hadoop-training-exercise-getting-started-with-hadoop
|
116
|
+
** "Exercise: Writing mapreduce programs":http://www.cloudera.com/hadoop-training-exercise-writing-mapreduce-programs
|
117
|
+
** "Cloudera Blog":http://www.cloudera.com/blog/
|
118
|
+
|
119
|
+
* "Hadoop Wiki: Hadoop Streaming":http://wiki.apache.org/hadoop/HadoopStreaming
|
120
|
+
* "Hadoop Docs: Hadoop Streaming":http://hadoop.apache.org/common/docs/current/streaming.html
|
121
|
+
|
122
|
+
* A "dimwitted screed on Ruby, Hadoop and Starling":http://www.theregister.co.uk/2008/08/11/hadoop_dziuba/ seemingly written with jockstrap on head.
|
123
|
+
|
124
|
+
<notextile></div><div class="toggle"></notextile>
|
125
|
+
|
126
|
+
h2(#patches). Note on Patches/Pull Requests
|
127
|
+
|
128
|
+
* Fork the project.
|
129
|
+
* Make your feature addition or bug fix.
|
130
|
+
* Add tests for it. This is important so I don't break it in a future version unintentionally.
|
131
|
+
* Commit, do not mess with rakefile, version, or history. (if you want to have your own version, that is fine but bump version in a commit by itself I can ignore when I pull)
|
132
|
+
* Send me a pull request. Bonus points for topic branches.
|
133
|
+
|
134
|
+
<notextile></div><div class="toggle"></notextile>
|
135
|
+
|
136
|
+
h2(#andpig). What's up with Wukong::AndPig?
|
137
|
+
|
138
|
+
@Wukong::AndPig@ is a small library to more easily generate code for the "Pig":http://hadoop.apache.org/pig data analysis language. See its "README":http://github.com/mrflip/wukong/tree/master/lib/wukong/and_pig/README.textile for more.
|
139
|
+
|
140
|
+
It's **not really being worked on**, and you should probably **ignore it**.
|
141
|
+
|
142
|
+
<notextile></div><div class="toggle"></notextile>
|
143
|
+
|
144
|
+
h2(#todo). TODOs
|
145
|
+
|
146
|
+
Utility
|
147
|
+
|
148
|
+
* columnizing / reconstituting
|
149
|
+
|
150
|
+
* Set up with JRuby
|
151
|
+
* Allow for direct HDFS operations
|
152
|
+
* Make the dfs commands slightly less stupid
|
153
|
+
* add more standard options
|
154
|
+
* Allow for combiners
|
155
|
+
* JobStarter / JobSteps
|
156
|
+
* might as well take dumbo's command line args
|
157
|
+
|
158
|
+
BUGS:
|
159
|
+
|
160
|
+
* Can't do multiple input files in local mode
|
161
|
+
|
162
|
+
Patterns to implement:
|
163
|
+
|
164
|
+
* Stats reducer
|
165
|
+
** basic sum, avg, max, min, std.dev of a numeric field
|
166
|
+
** the "running standard deviation":http://www.johndcook.com/standard_deviation.html
|
167
|
+
|
168
|
+
* Efficient median (and other order statistics)
|
169
|
+
|
170
|
+
* Make StructRecordizer work generically with other reducers (spec. AccumulatingReducer)
|
171
|
+
|
172
|
+
Make wutils: tsv-oriented implementations of the coreutils (eg uniq, sort, cut, nl, wc, split, ls, df and du) to instrinsically accept and emit tab-separated records.
|
173
|
+
|
174
|
+
<notextile></div></notextile>
|