whispercpp 1.2.0.2 → 1.3.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (9) hide show
  1. checksums.yaml +4 -4
  2. data/Rakefile +3 -92
  3. data/ext/extconf.rb +9 -0
  4. data/ext/ggml.c +18380 -5241
  5. data/ext/ggml.h +2156 -502
  6. data/ext/ruby_whisper.cpp +13 -47
  7. data/ext/whisper.cpp +4182 -1787
  8. data/ext/whisper.h +334 -65
  9. metadata +3 -3
data/ext/ggml.h CHANGED
@@ -58,14 +58,15 @@
58
58
  // {
59
59
  // ...
60
60
  //
61
- // struct ggml_cgraph gf = ggml_build_forward(f);
61
+ // struct ggml_cgraph * gf = ggml_new_graph(ctx);
62
+ // ggml_build_forward_expand(gf, f);
62
63
  //
63
64
  // // set the input variable and parameter values
64
65
  // ggml_set_f32(x, 2.0f);
65
66
  // ggml_set_f32(a, 3.0f);
66
67
  // ggml_set_f32(b, 4.0f);
67
68
  //
68
- // ggml_graph_compute(ctx0, &gf);
69
+ // ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
69
70
  //
70
71
  // printf("f = %f\n", ggml_get_f32_1d(f, 0));
71
72
  //
@@ -130,13 +131,16 @@
130
131
  // The data of the tensor is accessed via the "data" pointer. For example:
131
132
  //
132
133
  // {
133
- // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 2, 3);
134
+ // const int nx = 2;
135
+ // const int ny = 3;
134
136
  //
135
- // // a[1, 2] = 1.0f;
136
- // *(float *) ((char *) a->data + 2*a->nb[1] + 1*a->nb[0]) = 1.0f;
137
+ // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
137
138
  //
138
- // // a[2, 0] = 2.0f;
139
- // *(float *) ((char *) a->data + 0*a->nb[1] + 2*a->nb[0]) = 2.0f;
139
+ // for (int y = 0; y < ny; y++) {
140
+ // for (int x = 0; x < nx; x++) {
141
+ // *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
142
+ // }
143
+ // }
140
144
  //
141
145
  // ...
142
146
  // }
@@ -169,579 +173,2229 @@
169
173
  //
170
174
  //
171
175
 
172
- #ifdef __cplusplus
173
- extern "C" {
176
+ #ifdef GGML_SHARED
177
+ # if defined(_WIN32) && !defined(__MINGW32__)
178
+ # ifdef GGML_BUILD
179
+ # define GGML_API __declspec(dllexport)
180
+ # else
181
+ # define GGML_API __declspec(dllimport)
182
+ # endif
183
+ # else
184
+ # define GGML_API __attribute__ ((visibility ("default")))
185
+ # endif
186
+ #else
187
+ # define GGML_API
188
+ #endif
189
+
190
+ #ifdef GGML_MULTIPLATFORM
191
+ # if defined(_WIN32)
192
+ # define GGML_CALL
193
+ # else
194
+ # define GGML_CALL __attribute__((__ms_abi__))
195
+ # endif
196
+ #else
197
+ # define GGML_CALL
198
+ #endif
199
+
200
+ // TODO: support for clang
201
+ #ifdef __GNUC__
202
+ # define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
203
+ #elif defined(_MSC_VER)
204
+ # define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
205
+ #else
206
+ # define GGML_DEPRECATED(func, hint) func
207
+ #endif
208
+
209
+ #ifndef __GNUC__
210
+ # define GGML_ATTRIBUTE_FORMAT(...)
211
+ #elif defined(__MINGW32__)
212
+ # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
213
+ #else
214
+ # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
174
215
  #endif
175
216
 
176
- #include <stdint.h>
177
- #include <stddef.h>
178
217
  #include <stdbool.h>
218
+ #include <stddef.h>
219
+ #include <stdint.h>
220
+ #include <stdio.h>
221
+
222
+ #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
223
+ #define GGML_FILE_VERSION 1
179
224
 
180
- #define GGML_MAX_DIMS 4
181
- #define GGML_MAX_NODES 4096
182
- #define GGML_MAX_PARAMS 16
183
- #define GGML_MAX_CONTEXTS 64
184
- #define GGML_MAX_OPT 4
225
+ #define GGML_QNT_VERSION 2 // bump this on quantization format changes
226
+ #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
185
227
 
186
- #ifdef __ARM_NEON
187
- // we use the built-in 16-bit float type
188
- typedef __fp16 ggml_fp16_t;
228
+ #define GGML_MAX_DIMS 4
229
+ #define GGML_MAX_PARAMS 2048
230
+ #define GGML_MAX_CONTEXTS 64
231
+ #define GGML_MAX_SRC 10
232
+ #ifndef GGML_MAX_NAME
233
+ #define GGML_MAX_NAME 64
234
+ #endif
235
+ #define GGML_MAX_OP_PARAMS 64
236
+ #define GGML_DEFAULT_N_THREADS 4
237
+ #define GGML_DEFAULT_GRAPH_SIZE 2048
238
+ #if UINTPTR_MAX == 0xFFFFFFFF
239
+ #define GGML_MEM_ALIGN 4
189
240
  #else
190
- typedef uint16_t ggml_fp16_t;
241
+ #define GGML_MEM_ALIGN 16
191
242
  #endif
192
243
 
193
- // convert FP16 <-> FP32
194
- float ggml_fp16_to_fp32(ggml_fp16_t x);
195
- ggml_fp16_t ggml_fp32_to_fp16(float x);
196
-
197
- struct ggml_object;
198
- struct ggml_context;
199
-
200
- enum ggml_type {
201
- GGML_TYPE_I8,
202
- GGML_TYPE_I16,
203
- GGML_TYPE_I32,
204
- GGML_TYPE_F16,
205
- GGML_TYPE_F32,
206
- GGML_TYPE_COUNT,
207
- };
208
-
209
- // available tensor operations:
210
- enum ggml_op {
211
- GGML_OP_NONE = 0,
212
-
213
- GGML_OP_DUP,
214
- GGML_OP_ADD,
215
- GGML_OP_SUB,
216
- GGML_OP_MUL,
217
- GGML_OP_DIV,
218
- GGML_OP_SQR,
219
- GGML_OP_SQRT,
220
- GGML_OP_SUM,
221
- GGML_OP_MEAN,
222
- GGML_OP_REPEAT,
223
- GGML_OP_ABS,
224
- GGML_OP_SGN,
225
- GGML_OP_NEG,
226
- GGML_OP_STEP,
227
- GGML_OP_RELU,
228
- GGML_OP_GELU,
229
- GGML_OP_NORM, // normalize
230
-
231
- GGML_OP_MUL_MAT,
232
-
233
- GGML_OP_SCALE,
234
- GGML_OP_CPY,
235
- GGML_OP_RESHAPE,
236
- GGML_OP_VIEW,
237
- GGML_OP_PERMUTE,
238
- GGML_OP_TRANSPOSE,
239
- GGML_OP_GET_ROWS,
240
- GGML_OP_DIAG_MASK_INF,
241
- GGML_OP_SOFT_MAX,
242
- GGML_OP_ROPE,
243
- GGML_OP_CONV_1D_1S,
244
- GGML_OP_CONV_1D_2S,
245
-
246
- GGML_OP_FLASH_ATTN,
247
- GGML_OP_FLASH_FF,
248
-
249
- GGML_OP_COUNT,
250
- };
251
-
252
- // n-dimensional tensor
253
- struct ggml_tensor {
254
- enum ggml_type type;
255
-
256
- int n_dims;
257
- int ne[GGML_MAX_DIMS]; // number of elements
258
- size_t nb[GGML_MAX_DIMS]; // stride in bytes:
259
- // nb[0] = sizeof(type)
260
- // nb[1] = nb[0] * ne[0] + padding
261
- // nb[i] = nb[i-1] * ne[i-1]
262
-
263
- // compute data
264
- enum ggml_op op;
265
-
266
- bool is_param;
267
-
268
- struct ggml_tensor * grad;
269
- struct ggml_tensor * src0;
270
- struct ggml_tensor * src1;
271
- struct ggml_tensor * opt[GGML_MAX_OPT];
272
-
273
- // thread scheduling
274
- int n_tasks;
275
-
276
- // performance
277
- int perf_runs;
278
- int64_t perf_cycles;
279
- int64_t perf_time_us;
280
-
281
- void * data;
282
- char padding[8];
283
- };
284
-
285
- // computation graph
286
- struct ggml_cgraph {
287
- int n_nodes;
288
- int n_leafs;
289
- int n_threads;
290
-
291
- size_t work_size;
292
- struct ggml_tensor * work;
293
-
294
- struct ggml_tensor * nodes[GGML_MAX_NODES];
295
- struct ggml_tensor * grads[GGML_MAX_NODES];
296
- struct ggml_tensor * leafs[GGML_MAX_NODES];
297
-
298
- // performance
299
- int perf_runs;
300
- int64_t perf_cycles;
301
- int64_t perf_time_us;
302
- };
303
-
304
- // scratch buffer
305
- struct ggml_scratch {
306
- size_t offs;
307
- size_t size;
308
- void * data;
309
- };
310
-
311
- struct ggml_init_params {
312
- // memory pool
313
- size_t mem_size; // bytes
314
- void * mem_buffer; // if NULL, memory will be allocated internally
315
- };
316
-
317
- void ggml_time_init(void); // call this once at the beginning of the program
318
- int64_t ggml_time_ms(void);
319
- int64_t ggml_time_us(void);
320
- int64_t ggml_cycles(void);
321
- int64_t ggml_cycles_per_ms(void);
322
-
323
- void ggml_print_object (const struct ggml_object * obj);
324
- void ggml_print_objects(const struct ggml_context * ctx);
325
-
326
- int ggml_nelements(const struct ggml_tensor * tensor);
327
- size_t ggml_nbytes (const struct ggml_tensor * tensor);
328
-
329
- size_t ggml_type_size (enum ggml_type type);
330
- size_t ggml_element_size(const struct ggml_tensor * tensor);
331
-
332
- struct ggml_context * ggml_init(struct ggml_init_params params);
333
- void ggml_free(struct ggml_context * ctx);
334
-
335
- size_t ggml_used_mem(const struct ggml_context * ctx);
336
-
337
- size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch);
338
-
339
- struct ggml_tensor * ggml_new_tensor(
340
- struct ggml_context * ctx,
341
- enum ggml_type type,
342
- int n_dims,
343
- const int *ne);
244
+ #define GGML_EXIT_SUCCESS 0
245
+ #define GGML_EXIT_ABORTED 1
344
246
 
345
- struct ggml_tensor * ggml_new_tensor_1d(
346
- struct ggml_context * ctx,
347
- enum ggml_type type,
348
- int ne0);
247
+ #define GGUF_MAGIC "GGUF"
349
248
 
350
- struct ggml_tensor * ggml_new_tensor_2d(
351
- struct ggml_context * ctx,
352
- enum ggml_type type,
353
- int ne0,
354
- int ne1);
249
+ #define GGUF_VERSION 3
355
250
 
356
- struct ggml_tensor * ggml_new_tensor_3d(
357
- struct ggml_context * ctx,
358
- enum ggml_type type,
359
- int ne0,
360
- int ne1,
361
- int ne2);
251
+ #define GGUF_DEFAULT_ALIGNMENT 32
362
252
 
363
- struct ggml_tensor * ggml_new_tensor_4d(
364
- struct ggml_context * ctx,
365
- enum ggml_type type,
366
- int ne0,
367
- int ne1,
368
- int ne2,
369
- int ne3);
253
+ #define GGML_UNUSED(x) (void)(x)
370
254
 
371
- struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
372
- struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
255
+ #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
373
256
 
374
- struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
375
- struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
257
+ #define GGML_ASSERT(x) \
258
+ do { \
259
+ if (!(x)) { \
260
+ fflush(stdout); \
261
+ fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
262
+ ggml_print_backtrace(); \
263
+ abort(); \
264
+ } \
265
+ } while (0)
376
266
 
377
- struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
378
- struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
379
- struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
267
+ #ifndef NDEBUG
268
+ #define GGML_UNREACHABLE() GGML_ASSERT(!"statement should not be reached")
269
+ #elif defined(__GNUC__)
270
+ #define GGML_UNREACHABLE() __builtin_unreachable()
271
+ #elif defined(_MSC_VER)
272
+ #define GGML_UNREACHABLE() __assume(0)
273
+ #else
274
+ #define GGML_UNREACHABLE() ((void) 0)
275
+ #endif
380
276
 
381
- int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
382
- void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
277
+ // used to copy the number of elements and stride in bytes of tensors into local variables.
278
+ // main purpose is to reduce code duplication and improve readability.
279
+ //
280
+ // example:
281
+ //
282
+ // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
283
+ // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
284
+ //
285
+ #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
286
+ const type prefix##0 = (pointer)->array[0]; \
287
+ GGML_UNUSED(prefix##0);
288
+ #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
289
+ GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
290
+ const type prefix##1 = (pointer)->array[1]; \
291
+ GGML_UNUSED(prefix##1);
292
+ #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
293
+ GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
294
+ const type prefix##2 = (pointer)->array[2]; \
295
+ GGML_UNUSED(prefix##2);
296
+ #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
297
+ GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
298
+ const type prefix##3 = (pointer)->array[3]; \
299
+ GGML_UNUSED(prefix##3);
300
+
301
+ #define GGML_TENSOR_UNARY_OP_LOCALS \
302
+ GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
303
+ GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
304
+ GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
305
+ GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
306
+
307
+ #define GGML_TENSOR_BINARY_OP_LOCALS \
308
+ GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
309
+ GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
310
+ GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
311
+ GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
312
+ GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
313
+ GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
383
314
 
384
- float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
385
- void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
315
+ #ifdef __cplusplus
316
+ extern "C" {
317
+ #endif
386
318
 
387
- void * ggml_get_data (const struct ggml_tensor * tensor);
388
- float * ggml_get_data_f32(const struct ggml_tensor * tensor);
319
+ enum ggml_status {
320
+ GGML_STATUS_ALLOC_FAILED = -2,
321
+ GGML_STATUS_FAILED = -1,
322
+ GGML_STATUS_SUCCESS = 0,
323
+ GGML_STATUS_ABORTED = 1,
324
+ };
325
+
326
+ // get ggml_status name string
327
+ GGML_API GGML_CALL const char * ggml_status_to_string(enum ggml_status status);
328
+
329
+ typedef uint16_t ggml_fp16_t;
330
+
331
+ // convert FP16 <-> FP32
332
+ GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
333
+ GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
334
+
335
+ GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n);
336
+ GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n);
337
+
338
+ struct ggml_object;
339
+ struct ggml_context;
340
+
341
+ // NOTE: always add types at the end of the enum to keep backward compatibility
342
+ enum ggml_type {
343
+ GGML_TYPE_F32 = 0,
344
+ GGML_TYPE_F16 = 1,
345
+ GGML_TYPE_Q4_0 = 2,
346
+ GGML_TYPE_Q4_1 = 3,
347
+ // GGML_TYPE_Q4_2 = 4, support has been removed
348
+ // GGML_TYPE_Q4_3 = 5, support has been removed
349
+ GGML_TYPE_Q5_0 = 6,
350
+ GGML_TYPE_Q5_1 = 7,
351
+ GGML_TYPE_Q8_0 = 8,
352
+ GGML_TYPE_Q8_1 = 9,
353
+ GGML_TYPE_Q2_K = 10,
354
+ GGML_TYPE_Q3_K = 11,
355
+ GGML_TYPE_Q4_K = 12,
356
+ GGML_TYPE_Q5_K = 13,
357
+ GGML_TYPE_Q6_K = 14,
358
+ GGML_TYPE_Q8_K = 15,
359
+ GGML_TYPE_IQ2_XXS = 16,
360
+ GGML_TYPE_IQ2_XS = 17,
361
+ GGML_TYPE_IQ3_XXS = 18,
362
+ GGML_TYPE_IQ1_S = 19,
363
+ GGML_TYPE_IQ4_NL = 20,
364
+ GGML_TYPE_IQ3_S = 21,
365
+ GGML_TYPE_IQ2_S = 22,
366
+ GGML_TYPE_IQ4_XS = 23,
367
+ GGML_TYPE_I8 = 24,
368
+ GGML_TYPE_I16 = 25,
369
+ GGML_TYPE_I32 = 26,
370
+ GGML_TYPE_I64 = 27,
371
+ GGML_TYPE_F64 = 28,
372
+ GGML_TYPE_IQ1_M = 29,
373
+ GGML_TYPE_COUNT,
374
+ };
375
+
376
+ // precision
377
+ enum ggml_prec {
378
+ GGML_PREC_DEFAULT,
379
+ GGML_PREC_F32,
380
+ };
381
+
382
+ enum ggml_backend_type {
383
+ GGML_BACKEND_TYPE_CPU = 0,
384
+ GGML_BACKEND_TYPE_GPU = 10,
385
+ GGML_BACKEND_TYPE_GPU_SPLIT = 20,
386
+ };
387
+
388
+ // model file types
389
+ enum ggml_ftype {
390
+ GGML_FTYPE_UNKNOWN = -1,
391
+ GGML_FTYPE_ALL_F32 = 0,
392
+ GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
393
+ GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
394
+ GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
395
+ GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
396
+ GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
397
+ GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
398
+ GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
399
+ GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
400
+ GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
401
+ GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
402
+ GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
403
+ GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
404
+ GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
405
+ GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
406
+ GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
407
+ GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors
408
+ GGML_FTYPE_MOSTLY_IQ4_NL = 19, // except 1d tensors
409
+ GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors
410
+ GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
411
+ GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
412
+ GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
413
+ };
414
+
415
+ // available tensor operations:
416
+ enum ggml_op {
417
+ GGML_OP_NONE = 0,
418
+
419
+ GGML_OP_DUP,
420
+ GGML_OP_ADD,
421
+ GGML_OP_ADD1,
422
+ GGML_OP_ACC,
423
+ GGML_OP_SUB,
424
+ GGML_OP_MUL,
425
+ GGML_OP_DIV,
426
+ GGML_OP_SQR,
427
+ GGML_OP_SQRT,
428
+ GGML_OP_LOG,
429
+ GGML_OP_SUM,
430
+ GGML_OP_SUM_ROWS,
431
+ GGML_OP_MEAN,
432
+ GGML_OP_ARGMAX,
433
+ GGML_OP_REPEAT,
434
+ GGML_OP_REPEAT_BACK,
435
+ GGML_OP_CONCAT,
436
+ GGML_OP_SILU_BACK,
437
+ GGML_OP_NORM, // normalize
438
+ GGML_OP_RMS_NORM,
439
+ GGML_OP_RMS_NORM_BACK,
440
+ GGML_OP_GROUP_NORM,
441
+
442
+ GGML_OP_MUL_MAT,
443
+ GGML_OP_MUL_MAT_ID,
444
+ GGML_OP_OUT_PROD,
445
+
446
+ GGML_OP_SCALE,
447
+ GGML_OP_SET,
448
+ GGML_OP_CPY,
449
+ GGML_OP_CONT,
450
+ GGML_OP_RESHAPE,
451
+ GGML_OP_VIEW,
452
+ GGML_OP_PERMUTE,
453
+ GGML_OP_TRANSPOSE,
454
+ GGML_OP_GET_ROWS,
455
+ GGML_OP_GET_ROWS_BACK,
456
+ GGML_OP_DIAG,
457
+ GGML_OP_DIAG_MASK_INF,
458
+ GGML_OP_DIAG_MASK_ZERO,
459
+ GGML_OP_SOFT_MAX,
460
+ GGML_OP_SOFT_MAX_BACK,
461
+ GGML_OP_ROPE,
462
+ GGML_OP_ROPE_BACK,
463
+ GGML_OP_ALIBI,
464
+ GGML_OP_CLAMP,
465
+ GGML_OP_CONV_TRANSPOSE_1D,
466
+ GGML_OP_IM2COL,
467
+ GGML_OP_CONV_TRANSPOSE_2D,
468
+ GGML_OP_POOL_1D,
469
+ GGML_OP_POOL_2D,
470
+ GGML_OP_UPSCALE, // nearest interpolate
471
+ GGML_OP_PAD,
472
+ GGML_OP_ARANGE,
473
+ GGML_OP_TIMESTEP_EMBEDDING,
474
+ GGML_OP_ARGSORT,
475
+ GGML_OP_LEAKY_RELU,
476
+
477
+ GGML_OP_FLASH_ATTN,
478
+ GGML_OP_FLASH_FF,
479
+ GGML_OP_FLASH_ATTN_BACK,
480
+ GGML_OP_SSM_CONV,
481
+ GGML_OP_SSM_SCAN,
482
+ GGML_OP_WIN_PART,
483
+ GGML_OP_WIN_UNPART,
484
+ GGML_OP_GET_REL_POS,
485
+ GGML_OP_ADD_REL_POS,
486
+
487
+ GGML_OP_UNARY,
488
+
489
+ GGML_OP_MAP_UNARY,
490
+ GGML_OP_MAP_BINARY,
491
+
492
+ GGML_OP_MAP_CUSTOM1_F32,
493
+ GGML_OP_MAP_CUSTOM2_F32,
494
+ GGML_OP_MAP_CUSTOM3_F32,
495
+
496
+ GGML_OP_MAP_CUSTOM1,
497
+ GGML_OP_MAP_CUSTOM2,
498
+ GGML_OP_MAP_CUSTOM3,
499
+
500
+ GGML_OP_CROSS_ENTROPY_LOSS,
501
+ GGML_OP_CROSS_ENTROPY_LOSS_BACK,
502
+
503
+ GGML_OP_COUNT,
504
+ };
505
+
506
+ enum ggml_unary_op {
507
+ GGML_UNARY_OP_ABS,
508
+ GGML_UNARY_OP_SGN,
509
+ GGML_UNARY_OP_NEG,
510
+ GGML_UNARY_OP_STEP,
511
+ GGML_UNARY_OP_TANH,
512
+ GGML_UNARY_OP_ELU,
513
+ GGML_UNARY_OP_RELU,
514
+ GGML_UNARY_OP_GELU,
515
+ GGML_UNARY_OP_GELU_QUICK,
516
+ GGML_UNARY_OP_SILU,
517
+ GGML_UNARY_OP_HARDSWISH,
518
+ GGML_UNARY_OP_HARDSIGMOID,
519
+
520
+ GGML_UNARY_OP_COUNT,
521
+ };
522
+
523
+ enum ggml_object_type {
524
+ GGML_OBJECT_TYPE_TENSOR,
525
+ GGML_OBJECT_TYPE_GRAPH,
526
+ GGML_OBJECT_TYPE_WORK_BUFFER
527
+ };
528
+
529
+ enum ggml_log_level {
530
+ GGML_LOG_LEVEL_ERROR = 2,
531
+ GGML_LOG_LEVEL_WARN = 3,
532
+ GGML_LOG_LEVEL_INFO = 4,
533
+ GGML_LOG_LEVEL_DEBUG = 5
534
+ };
535
+
536
+ enum ggml_tensor_flag {
537
+ GGML_TENSOR_FLAG_INPUT = 1,
538
+ GGML_TENSOR_FLAG_OUTPUT = 2,
539
+ GGML_TENSOR_FLAG_PARAM = 4,
540
+ };
541
+
542
+ // ggml object
543
+ struct ggml_object {
544
+ size_t offs;
545
+ size_t size;
546
+
547
+ struct ggml_object * next;
548
+
549
+ enum ggml_object_type type;
550
+
551
+ char padding[4];
552
+ };
553
+
554
+ static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
555
+
556
+ // n-dimensional tensor
557
+ struct ggml_tensor {
558
+ enum ggml_type type;
559
+ enum ggml_backend_type backend;
560
+
561
+ struct ggml_backend_buffer * buffer;
562
+
563
+ int64_t ne[GGML_MAX_DIMS]; // number of elements
564
+ size_t nb[GGML_MAX_DIMS]; // stride in bytes:
565
+ // nb[0] = ggml_type_size(type)
566
+ // nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
567
+ // nb[i] = nb[i-1] * ne[i-1]
568
+
569
+ // compute data
570
+ enum ggml_op op;
571
+
572
+ // op params - allocated as int32_t for alignment
573
+ int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
574
+
575
+ int32_t flags;
576
+
577
+ struct ggml_tensor * grad;
578
+ struct ggml_tensor * src[GGML_MAX_SRC];
579
+
580
+ // performance
581
+ int perf_runs;
582
+ int64_t perf_cycles;
583
+ int64_t perf_time_us;
389
584
 
390
- //
391
- // operations on tensors with backpropagation
392
- //
585
+ struct ggml_tensor * view_src;
586
+ size_t view_offs;
587
+
588
+ void * data;
589
+
590
+ char name[GGML_MAX_NAME];
591
+
592
+ void * extra; // extra things e.g. for ggml-cuda.cu
593
+
594
+ char padding[8];
595
+ };
596
+
597
+ static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
598
+
599
+ // Abort callback
600
+ // If not NULL, called before ggml computation
601
+ // If it returns true, the computation is aborted
602
+ typedef bool (*ggml_abort_callback)(void * data);
603
+
604
+ // the compute plan that needs to be prepared for ggml_graph_compute()
605
+ // since https://github.com/ggerganov/ggml/issues/287
606
+ struct ggml_cplan {
607
+ size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
608
+ uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
609
+
610
+ int n_threads;
611
+
612
+ // abort ggml_graph_compute when true
613
+ ggml_abort_callback abort_callback;
614
+ void * abort_callback_data;
615
+ };
393
616
 
394
- struct ggml_tensor * ggml_dup(
395
- struct ggml_context * ctx,
396
- struct ggml_tensor * a);
617
+ enum ggml_cgraph_eval_order {
618
+ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0,
619
+ GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT,
620
+ GGML_CGRAPH_EVAL_ORDER_COUNT
621
+ };
397
622
 
398
- struct ggml_tensor * ggml_add(
399
- struct ggml_context * ctx,
400
- struct ggml_tensor * a,
401
- struct ggml_tensor * b);
623
+ struct ggml_hash_set {
624
+ size_t size;
625
+ struct ggml_tensor ** keys;
626
+ };
402
627
 
403
- struct ggml_tensor * ggml_sub(
404
- struct ggml_context * ctx,
405
- struct ggml_tensor * a,
406
- struct ggml_tensor * b);
628
+ // computation graph
629
+ struct ggml_cgraph {
630
+ int size;
631
+ int n_nodes;
632
+ int n_leafs;
407
633
 
408
- struct ggml_tensor * ggml_mul(
409
- struct ggml_context * ctx,
410
- struct ggml_tensor * a,
411
- struct ggml_tensor * b);
634
+ struct ggml_tensor ** nodes;
635
+ struct ggml_tensor ** grads;
636
+ struct ggml_tensor ** leafs;
412
637
 
413
- struct ggml_tensor * ggml_div(
414
- struct ggml_context * ctx,
415
- struct ggml_tensor * a,
416
- struct ggml_tensor * b);
638
+ struct ggml_hash_set visited_hash_table;
417
639
 
418
- struct ggml_tensor * ggml_sqr(
419
- struct ggml_context * ctx,
420
- struct ggml_tensor * a);
640
+ enum ggml_cgraph_eval_order order;
421
641
 
422
- struct ggml_tensor * ggml_sqrt(
423
- struct ggml_context * ctx,
424
- struct ggml_tensor * a);
642
+ // performance
643
+ int perf_runs;
644
+ int64_t perf_cycles;
645
+ int64_t perf_time_us;
646
+ };
425
647
 
426
- // return scalar
427
- // TODO: compute sum along rows
428
- struct ggml_tensor * ggml_sum(
429
- struct ggml_context * ctx,
430
- struct ggml_tensor * a);
648
+ // scratch buffer
649
+ struct ggml_scratch {
650
+ size_t offs;
651
+ size_t size;
652
+ void * data;
653
+ };
431
654
 
432
- // mean along rows
433
- struct ggml_tensor * ggml_mean(
434
- struct ggml_context * ctx,
435
- struct ggml_tensor * a);
655
+ struct ggml_init_params {
656
+ // memory pool
657
+ size_t mem_size; // bytes
658
+ void * mem_buffer; // if NULL, memory will be allocated internally
659
+ bool no_alloc; // don't allocate memory for the tensor data
660
+ };
436
661
 
437
- // if a is the same shape as b, and a is not parameter, return a
438
- // otherwise, return a new tensor: repeat(a) to fit in b
439
- struct ggml_tensor * ggml_repeat(
440
- struct ggml_context * ctx,
441
- struct ggml_tensor * a,
442
- struct ggml_tensor * b);
443
662
 
444
- struct ggml_tensor * ggml_abs(
445
- struct ggml_context * ctx,
446
- struct ggml_tensor * a);
663
+ // compute types
447
664
 
448
- struct ggml_tensor * ggml_sgn(
449
- struct ggml_context * ctx,
450
- struct ggml_tensor * a);
665
+ // NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
666
+ // This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
667
+ enum ggml_task_type {
668
+ GGML_TASK_TYPE_INIT = 0,
669
+ GGML_TASK_TYPE_COMPUTE,
670
+ GGML_TASK_TYPE_FINALIZE,
671
+ };
451
672
 
452
- struct ggml_tensor * ggml_neg(
453
- struct ggml_context * ctx,
454
- struct ggml_tensor * a);
673
+ struct ggml_compute_params {
674
+ enum ggml_task_type type;
455
675
 
456
- struct ggml_tensor * ggml_step(
457
- struct ggml_context * ctx,
458
- struct ggml_tensor * a);
676
+ // ith = thread index, nth = number of threads
677
+ int ith, nth;
678
+
679
+ // work buffer for all threads
680
+ size_t wsize;
681
+ void * wdata;
682
+ };
459
683
 
460
- struct ggml_tensor * ggml_relu(
461
- struct ggml_context * ctx,
462
- struct ggml_tensor * a);
684
+ // numa strategies
685
+ enum ggml_numa_strategy {
686
+ GGML_NUMA_STRATEGY_DISABLED = 0,
687
+ GGML_NUMA_STRATEGY_DISTRIBUTE = 1,
688
+ GGML_NUMA_STRATEGY_ISOLATE = 2,
689
+ GGML_NUMA_STRATEGY_NUMACTL = 3,
690
+ GGML_NUMA_STRATEGY_MIRROR = 4,
691
+ GGML_NUMA_STRATEGY_COUNT
692
+ };
463
693
 
464
- // TODO: double-check this computation is correct
465
- struct ggml_tensor * ggml_gelu(
466
- struct ggml_context * ctx,
467
- struct ggml_tensor * a);
694
+ //
695
+ // GUID
696
+ //
468
697
 
469
- // normalize along rows
470
- // TODO: eps is hardcoded to 1e-5 for now
471
- struct ggml_tensor * ggml_norm(
472
- struct ggml_context * ctx,
473
- struct ggml_tensor * a);
698
+ // GUID types
699
+ typedef uint8_t ggml_guid[16];
700
+ typedef ggml_guid * ggml_guid_t;
474
701
 
475
- // A: m rows, n columns
476
- // B: p rows, n columns (i.e. we transpose it internally)
477
- // result is m columns, p rows
478
- struct ggml_tensor * ggml_mul_mat(
479
- struct ggml_context * ctx,
480
- struct ggml_tensor * a,
481
- struct ggml_tensor * b);
702
+ GGML_API bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b);
482
703
 
483
- //
484
- // operations on tensors without backpropagation
485
- //
704
+ // misc
486
705
 
487
- // in-place, returns view(a)
488
- struct ggml_tensor * ggml_scale(
489
- struct ggml_context * ctx,
490
- struct ggml_tensor * a,
491
- struct ggml_tensor * b);
706
+ GGML_API void ggml_time_init(void); // call this once at the beginning of the program
707
+ GGML_API int64_t ggml_time_ms(void);
708
+ GGML_API int64_t ggml_time_us(void);
709
+ GGML_API int64_t ggml_cycles(void);
710
+ GGML_API int64_t ggml_cycles_per_ms(void);
492
711
 
493
- // a -> b, return view(b)
494
- struct ggml_tensor * ggml_cpy(
495
- struct ggml_context * ctx,
496
- struct ggml_tensor * a,
497
- struct ggml_tensor * b);
712
+ GGML_API void ggml_print_backtrace(void);
498
713
 
499
- // return view(a), b specifies the new shape
500
- // TODO: when we start computing gradient, make a copy instead of view
501
- struct ggml_tensor * ggml_reshape(
502
- struct ggml_context * ctx,
503
- struct ggml_tensor * a,
504
- struct ggml_tensor * b);
714
+ // accepts a UTF-8 path, even on Windows
715
+ GGML_API FILE * ggml_fopen(const char * fname, const char * mode);
505
716
 
506
- // return view(a)
507
- // TODO: when we start computing gradient, make a copy instead of view
508
- struct ggml_tensor * ggml_reshape_2d(
509
- struct ggml_context * ctx,
510
- struct ggml_tensor * a,
511
- int ne0,
512
- int ne1);
717
+ GGML_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
718
+ GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
513
719
 
514
- // return view(a)
515
- // TODO: when we start computing gradient, make a copy instead of view
516
- struct ggml_tensor * ggml_reshape_3d(
517
- struct ggml_context * ctx,
518
- struct ggml_tensor * a,
519
- int ne0,
520
- int ne1,
521
- int ne2);
720
+ GGML_API void ggml_print_object (const struct ggml_object * obj);
721
+ GGML_API void ggml_print_objects(const struct ggml_context * ctx);
522
722
 
523
- // offset in bytes
524
- struct ggml_tensor * ggml_view_1d(
525
- struct ggml_context * ctx,
526
- struct ggml_tensor * a,
527
- int ne0,
528
- size_t offset);
723
+ GGML_API GGML_CALL int64_t ggml_nelements (const struct ggml_tensor * tensor);
724
+ GGML_API GGML_CALL int64_t ggml_nrows (const struct ggml_tensor * tensor);
725
+ GGML_API GGML_CALL size_t ggml_nbytes (const struct ggml_tensor * tensor);
726
+ GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
529
727
 
530
- struct ggml_tensor * ggml_view_2d(
531
- struct ggml_context * ctx,
532
- struct ggml_tensor * a,
533
- int ne0,
534
- int ne1,
535
- size_t nb1, // row stride in bytes
536
- size_t offset);
728
+ GGML_API GGML_CALL int ggml_blck_size(enum ggml_type type);
729
+ GGML_API GGML_CALL size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
730
+ GGML_API GGML_CALL size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
537
731
 
538
- struct ggml_tensor * ggml_permute(
539
- struct ggml_context * ctx,
540
- struct ggml_tensor * a,
541
- int axis0,
542
- int axis1,
543
- int axis2,
544
- int axis3);
732
+ GGML_DEPRECATED(
733
+ GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
734
+ "use ggml_row_size() instead");
545
735
 
546
- // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
547
- struct ggml_tensor * ggml_transpose(
548
- struct ggml_context * ctx,
549
- struct ggml_tensor * a);
736
+ GGML_API GGML_CALL const char * ggml_type_name(enum ggml_type type);
737
+ GGML_API GGML_CALL const char * ggml_op_name (enum ggml_op op);
738
+ GGML_API const char * ggml_op_symbol(enum ggml_op op);
550
739
 
551
- struct ggml_tensor * ggml_get_rows(
552
- struct ggml_context * ctx,
553
- struct ggml_tensor * a,
554
- struct ggml_tensor * b);
740
+ GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
741
+ GGML_API GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
555
742
 
556
- // set elements above the diagonal to -INF
557
- // in-place, returns view(a)
558
- struct ggml_tensor * ggml_diag_mask_inf(
559
- struct ggml_context * ctx,
560
- struct ggml_tensor * a,
561
- int n_past);
743
+ GGML_API GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor);
562
744
 
563
- // in-place, returns view(a)
564
- struct ggml_tensor * ggml_soft_max(
565
- struct ggml_context * ctx,
566
- struct ggml_tensor * a);
745
+ GGML_API GGML_CALL bool ggml_is_quantized(enum ggml_type type);
567
746
 
568
- // rotary position embedding
569
- // in-place, returns view(a)
570
- // if mode == 1, skip n_past elements
571
- // TODO: avoid creating a new tensor every time
572
- struct ggml_tensor * ggml_rope(
573
- struct ggml_context * ctx,
574
- struct ggml_tensor * a,
575
- int n_past,
576
- int n_dims,
577
- int mode);
578
-
579
- // padding = 1
580
- // TODO: we don't support extra parameters for now
581
- // that's why we are hard-coding the stride, padding, and dilation
582
- // not great ..
583
- struct ggml_tensor * ggml_conv_1d_1s(
584
- struct ggml_context * ctx,
585
- struct ggml_tensor * a,
586
- struct ggml_tensor * b);
747
+ // TODO: temporary until model loading of ggml examples is refactored
748
+ GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
587
749
 
588
- struct ggml_tensor * ggml_conv_1d_2s(
589
- struct ggml_context * ctx,
590
- struct ggml_tensor * a,
591
- struct ggml_tensor * b);
750
+ GGML_API GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor);
751
+ GGML_API GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor);
752
+ GGML_API GGML_CALL bool ggml_is_permuted (const struct ggml_tensor * tensor);
753
+ GGML_API GGML_CALL bool ggml_is_empty (const struct ggml_tensor * tensor);
754
+ GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
755
+ GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
756
+ GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
757
+ GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
758
+ GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
592
759
 
593
- struct ggml_tensor * ggml_flash_attn(
594
- struct ggml_context * ctx,
595
- struct ggml_tensor * q,
596
- struct ggml_tensor * k,
597
- struct ggml_tensor * v,
598
- bool masked);
760
+ GGML_API bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
599
761
 
600
- struct ggml_tensor * ggml_flash_ff(
601
- struct ggml_context * ctx,
602
- struct ggml_tensor * a,
603
- struct ggml_tensor * b0,
604
- struct ggml_tensor * b1,
605
- struct ggml_tensor * c0,
606
- struct ggml_tensor * c1);
762
+ // use this to compute the memory overhead of a tensor
763
+ GGML_API size_t ggml_tensor_overhead(void);
607
764
 
608
- //
609
- // automatic differentiation
610
- //
765
+ // main
611
766
 
612
- void ggml_set_param(
613
- struct ggml_context * ctx,
614
- struct ggml_tensor * tensor);
767
+ GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
768
+ GGML_API void ggml_free(struct ggml_context * ctx);
615
769
 
616
- void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
770
+ GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
617
771
 
618
- struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
619
- struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
772
+ GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
773
+ GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
774
+ GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
620
775
 
621
- void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph);
622
- void ggml_graph_reset (struct ggml_cgraph * cgraph);
776
+ GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
777
+ GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
778
+ GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
623
779
 
624
- // print info and performance information for the graph
625
- void ggml_graph_print(const struct ggml_cgraph * cgraph);
780
+ GGML_API struct ggml_tensor * ggml_new_tensor(
781
+ struct ggml_context * ctx,
782
+ enum ggml_type type,
783
+ int n_dims,
784
+ const int64_t *ne);
626
785
 
627
- // dump the graph into a file using the dot format
628
- void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
786
+ GGML_API struct ggml_tensor * ggml_new_tensor_1d(
787
+ struct ggml_context * ctx,
788
+ enum ggml_type type,
789
+ int64_t ne0);
629
790
 
630
- //
631
- // optimization
632
- //
791
+ GGML_API struct ggml_tensor * ggml_new_tensor_2d(
792
+ struct ggml_context * ctx,
793
+ enum ggml_type type,
794
+ int64_t ne0,
795
+ int64_t ne1);
633
796
 
634
- // optimization methods
635
- enum ggml_opt_type {
636
- GGML_OPT_ADAM,
637
- GGML_OPT_LBFGS,
638
- };
797
+ GGML_API struct ggml_tensor * ggml_new_tensor_3d(
798
+ struct ggml_context * ctx,
799
+ enum ggml_type type,
800
+ int64_t ne0,
801
+ int64_t ne1,
802
+ int64_t ne2);
639
803
 
640
- // linesearch methods
641
- enum ggml_linesearch {
642
- GGML_LINESEARCH_DEFAULT = 1,
804
+ GGML_API struct ggml_tensor * ggml_new_tensor_4d(
805
+ struct ggml_context * ctx,
806
+ enum ggml_type type,
807
+ int64_t ne0,
808
+ int64_t ne1,
809
+ int64_t ne2,
810
+ int64_t ne3);
643
811
 
644
- GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
645
- GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
646
- GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
647
- };
812
+ GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
813
+ GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
648
814
 
649
- // optimization return values
650
- enum ggml_opt_result {
651
- GGML_OPT_OK = 0,
652
- GGML_OPT_DID_NOT_CONVERGE,
653
- GGML_OPT_NO_CONTEXT,
654
- GGML_OPT_INVALID_WOLFE,
655
- GGML_OPT_FAIL,
815
+ GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
816
+ GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
656
817
 
657
- GGML_LINESEARCH_FAIL = -128,
658
- GGML_LINESEARCH_MINIMUM_STEP,
659
- GGML_LINESEARCH_MAXIMUM_STEP,
660
- GGML_LINESEARCH_MAXIMUM_ITERATIONS,
661
- GGML_LINESEARCH_INVALID_PARAMETERS,
662
- };
818
+ // Context tensor enumeration and lookup
819
+ GGML_API struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx);
820
+ GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
821
+ GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
663
822
 
664
- // optimization parameters
665
- //
666
- // see ggml.c (ggml_opt_default_params) for default values
667
- //
668
- struct ggml_opt_params {
669
- enum ggml_opt_type type;
823
+ GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
824
+ GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
825
+ GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
826
+
827
+ // Converts a flat index into coordinates
828
+ GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
829
+
830
+ GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
831
+ GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
832
+
833
+ GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
834
+ GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
835
+
836
+ GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
837
+ GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
838
+
839
+ GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
840
+ GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
841
+
842
+ GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
843
+ GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
670
844
 
671
- int n_threads;
845
+ GGML_API GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
846
+
847
+ GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
848
+ GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
849
+ GGML_ATTRIBUTE_FORMAT(2, 3)
850
+ GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
672
851
 
673
- // delta-based convergence test
674
852
  //
675
- // if past == 0 - disabled
676
- // if past > 0:
677
- // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
853
+ // operations on tensors with backpropagation
678
854
  //
679
- int past;
680
- float delta;
681
855
 
682
- // maximum number of iterations without improvement
856
+ GGML_API struct ggml_tensor * ggml_dup(
857
+ struct ggml_context * ctx,
858
+ struct ggml_tensor * a);
859
+
860
+ // in-place, returns view(a)
861
+ GGML_API struct ggml_tensor * ggml_dup_inplace(
862
+ struct ggml_context * ctx,
863
+ struct ggml_tensor * a);
864
+
865
+ GGML_API struct ggml_tensor * ggml_add(
866
+ struct ggml_context * ctx,
867
+ struct ggml_tensor * a,
868
+ struct ggml_tensor * b);
869
+
870
+ GGML_API struct ggml_tensor * ggml_add_inplace(
871
+ struct ggml_context * ctx,
872
+ struct ggml_tensor * a,
873
+ struct ggml_tensor * b);
874
+
875
+ GGML_API struct ggml_tensor * ggml_add_cast(
876
+ struct ggml_context * ctx,
877
+ struct ggml_tensor * a,
878
+ struct ggml_tensor * b,
879
+ enum ggml_type type);
880
+
881
+ GGML_API struct ggml_tensor * ggml_add1(
882
+ struct ggml_context * ctx,
883
+ struct ggml_tensor * a,
884
+ struct ggml_tensor * b);
885
+
886
+ GGML_API struct ggml_tensor * ggml_add1_inplace(
887
+ struct ggml_context * ctx,
888
+ struct ggml_tensor * a,
889
+ struct ggml_tensor * b);
890
+
891
+ // dst = a
892
+ // view(dst, nb1, nb2, nb3, offset) += b
893
+ // return dst
894
+ GGML_API struct ggml_tensor * ggml_acc(
895
+ struct ggml_context * ctx,
896
+ struct ggml_tensor * a,
897
+ struct ggml_tensor * b,
898
+ size_t nb1,
899
+ size_t nb2,
900
+ size_t nb3,
901
+ size_t offset);
902
+
903
+ GGML_API struct ggml_tensor * ggml_acc_inplace(
904
+ struct ggml_context * ctx,
905
+ struct ggml_tensor * a,
906
+ struct ggml_tensor * b,
907
+ size_t nb1,
908
+ size_t nb2,
909
+ size_t nb3,
910
+ size_t offset);
911
+
912
+ GGML_API struct ggml_tensor * ggml_sub(
913
+ struct ggml_context * ctx,
914
+ struct ggml_tensor * a,
915
+ struct ggml_tensor * b);
916
+
917
+ GGML_API struct ggml_tensor * ggml_sub_inplace(
918
+ struct ggml_context * ctx,
919
+ struct ggml_tensor * a,
920
+ struct ggml_tensor * b);
921
+
922
+ GGML_API struct ggml_tensor * ggml_mul(
923
+ struct ggml_context * ctx,
924
+ struct ggml_tensor * a,
925
+ struct ggml_tensor * b);
926
+
927
+ GGML_API struct ggml_tensor * ggml_mul_inplace(
928
+ struct ggml_context * ctx,
929
+ struct ggml_tensor * a,
930
+ struct ggml_tensor * b);
931
+
932
+ GGML_API struct ggml_tensor * ggml_div(
933
+ struct ggml_context * ctx,
934
+ struct ggml_tensor * a,
935
+ struct ggml_tensor * b);
936
+
937
+ GGML_API struct ggml_tensor * ggml_div_inplace(
938
+ struct ggml_context * ctx,
939
+ struct ggml_tensor * a,
940
+ struct ggml_tensor * b);
941
+
942
+ GGML_API struct ggml_tensor * ggml_sqr(
943
+ struct ggml_context * ctx,
944
+ struct ggml_tensor * a);
945
+
946
+ GGML_API struct ggml_tensor * ggml_sqr_inplace(
947
+ struct ggml_context * ctx,
948
+ struct ggml_tensor * a);
949
+
950
+ GGML_API struct ggml_tensor * ggml_sqrt(
951
+ struct ggml_context * ctx,
952
+ struct ggml_tensor * a);
953
+
954
+ GGML_API struct ggml_tensor * ggml_sqrt_inplace(
955
+ struct ggml_context * ctx,
956
+ struct ggml_tensor * a);
957
+
958
+ GGML_API struct ggml_tensor * ggml_log(
959
+ struct ggml_context * ctx,
960
+ struct ggml_tensor * a);
961
+
962
+ GGML_API struct ggml_tensor * ggml_log_inplace(
963
+ struct ggml_context * ctx,
964
+ struct ggml_tensor * a);
965
+
966
+ // return scalar
967
+ GGML_API struct ggml_tensor * ggml_sum(
968
+ struct ggml_context * ctx,
969
+ struct ggml_tensor * a);
970
+
971
+ // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
972
+ GGML_API struct ggml_tensor * ggml_sum_rows(
973
+ struct ggml_context * ctx,
974
+ struct ggml_tensor * a);
975
+
976
+ // mean along rows
977
+ GGML_API struct ggml_tensor * ggml_mean(
978
+ struct ggml_context * ctx,
979
+ struct ggml_tensor * a);
980
+
981
+ // argmax along rows
982
+ GGML_API struct ggml_tensor * ggml_argmax(
983
+ struct ggml_context * ctx,
984
+ struct ggml_tensor * a);
985
+
986
+ // if a is the same shape as b, and a is not parameter, return a
987
+ // otherwise, return a new tensor: repeat(a) to fit in b
988
+ GGML_API struct ggml_tensor * ggml_repeat(
989
+ struct ggml_context * ctx,
990
+ struct ggml_tensor * a,
991
+ struct ggml_tensor * b);
992
+
993
+ // sums repetitions in a into shape of b
994
+ GGML_API struct ggml_tensor * ggml_repeat_back(
995
+ struct ggml_context * ctx,
996
+ struct ggml_tensor * a,
997
+ struct ggml_tensor * b);
998
+
999
+ // concat a and b on dim 2
1000
+ // used in stable-diffusion
1001
+ GGML_API struct ggml_tensor * ggml_concat(
1002
+ struct ggml_context * ctx,
1003
+ struct ggml_tensor * a,
1004
+ struct ggml_tensor * b);
1005
+
1006
+ GGML_API struct ggml_tensor * ggml_abs(
1007
+ struct ggml_context * ctx,
1008
+ struct ggml_tensor * a);
1009
+
1010
+ GGML_API struct ggml_tensor * ggml_abs_inplace(
1011
+ struct ggml_context * ctx,
1012
+ struct ggml_tensor * a);
1013
+
1014
+ GGML_API struct ggml_tensor * ggml_sgn(
1015
+ struct ggml_context * ctx,
1016
+ struct ggml_tensor * a);
1017
+
1018
+ GGML_API struct ggml_tensor * ggml_sgn_inplace(
1019
+ struct ggml_context * ctx,
1020
+ struct ggml_tensor * a);
1021
+
1022
+ GGML_API struct ggml_tensor * ggml_neg(
1023
+ struct ggml_context * ctx,
1024
+ struct ggml_tensor * a);
1025
+
1026
+ GGML_API struct ggml_tensor * ggml_neg_inplace(
1027
+ struct ggml_context * ctx,
1028
+ struct ggml_tensor * a);
1029
+
1030
+ GGML_API struct ggml_tensor * ggml_step(
1031
+ struct ggml_context * ctx,
1032
+ struct ggml_tensor * a);
1033
+
1034
+ GGML_API struct ggml_tensor * ggml_step_inplace(
1035
+ struct ggml_context * ctx,
1036
+ struct ggml_tensor * a);
1037
+
1038
+ GGML_API struct ggml_tensor * ggml_tanh(
1039
+ struct ggml_context * ctx,
1040
+ struct ggml_tensor * a);
1041
+
1042
+ GGML_API struct ggml_tensor * ggml_tanh_inplace(
1043
+ struct ggml_context * ctx,
1044
+ struct ggml_tensor * a);
1045
+
1046
+ GGML_API struct ggml_tensor * ggml_elu(
1047
+ struct ggml_context * ctx,
1048
+ struct ggml_tensor * a);
1049
+
1050
+ GGML_API struct ggml_tensor * ggml_elu_inplace(
1051
+ struct ggml_context * ctx,
1052
+ struct ggml_tensor * a);
1053
+
1054
+ GGML_API struct ggml_tensor * ggml_relu(
1055
+ struct ggml_context * ctx,
1056
+ struct ggml_tensor * a);
1057
+
1058
+ GGML_API struct ggml_tensor * ggml_leaky_relu(
1059
+ struct ggml_context * ctx,
1060
+ struct ggml_tensor * a, float negative_slope, bool inplace);
1061
+
1062
+ GGML_API struct ggml_tensor * ggml_relu_inplace(
1063
+ struct ggml_context * ctx,
1064
+ struct ggml_tensor * a);
1065
+
1066
+ GGML_API struct ggml_tensor * ggml_gelu(
1067
+ struct ggml_context * ctx,
1068
+ struct ggml_tensor * a);
1069
+
1070
+ GGML_API struct ggml_tensor * ggml_gelu_inplace(
1071
+ struct ggml_context * ctx,
1072
+ struct ggml_tensor * a);
1073
+
1074
+ GGML_API struct ggml_tensor * ggml_gelu_quick(
1075
+ struct ggml_context * ctx,
1076
+ struct ggml_tensor * a);
1077
+
1078
+ GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
1079
+ struct ggml_context * ctx,
1080
+ struct ggml_tensor * a);
1081
+
1082
+ GGML_API struct ggml_tensor * ggml_silu(
1083
+ struct ggml_context * ctx,
1084
+ struct ggml_tensor * a);
1085
+
1086
+ GGML_API struct ggml_tensor * ggml_silu_inplace(
1087
+ struct ggml_context * ctx,
1088
+ struct ggml_tensor * a);
1089
+
1090
+ // a - x
1091
+ // b - dy
1092
+ GGML_API struct ggml_tensor * ggml_silu_back(
1093
+ struct ggml_context * ctx,
1094
+ struct ggml_tensor * a,
1095
+ struct ggml_tensor * b);
1096
+
1097
+ // hardswish(x) = x * relu6(x + 3) / 6
1098
+ GGML_API struct ggml_tensor * ggml_hardswish(
1099
+ struct ggml_context * ctx,
1100
+ struct ggml_tensor * a);
1101
+
1102
+ // hardsigmoid(x) = relu6(x + 3) / 6
1103
+ GGML_API struct ggml_tensor * ggml_hardsigmoid(
1104
+ struct ggml_context * ctx,
1105
+ struct ggml_tensor * a);
1106
+
1107
+ // normalize along rows
1108
+ GGML_API struct ggml_tensor * ggml_norm(
1109
+ struct ggml_context * ctx,
1110
+ struct ggml_tensor * a,
1111
+ float eps);
1112
+
1113
+ GGML_API struct ggml_tensor * ggml_norm_inplace(
1114
+ struct ggml_context * ctx,
1115
+ struct ggml_tensor * a,
1116
+ float eps);
1117
+
1118
+ GGML_API struct ggml_tensor * ggml_rms_norm(
1119
+ struct ggml_context * ctx,
1120
+ struct ggml_tensor * a,
1121
+ float eps);
1122
+
1123
+ GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
1124
+ struct ggml_context * ctx,
1125
+ struct ggml_tensor * a,
1126
+ float eps);
1127
+
1128
+ // group normalize along ne0*ne1*n_groups
1129
+ // used in stable-diffusion
1130
+ // TODO: eps is hardcoded to 1e-6 for now
1131
+ GGML_API struct ggml_tensor * ggml_group_norm(
1132
+ struct ggml_context * ctx,
1133
+ struct ggml_tensor * a,
1134
+ int n_groups);
1135
+
1136
+ GGML_API struct ggml_tensor * ggml_group_norm_inplace(
1137
+ struct ggml_context * ctx,
1138
+ struct ggml_tensor * a,
1139
+ int n_groups);
1140
+
1141
+ // a - x
1142
+ // b - dy
1143
+ GGML_API struct ggml_tensor * ggml_rms_norm_back(
1144
+ struct ggml_context * ctx,
1145
+ struct ggml_tensor * a,
1146
+ struct ggml_tensor * b,
1147
+ float eps);
1148
+
1149
+ // A: k columns, n rows => [ne03, ne02, n, k]
1150
+ // B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
1151
+ // result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
1152
+ GGML_API struct ggml_tensor * ggml_mul_mat(
1153
+ struct ggml_context * ctx,
1154
+ struct ggml_tensor * a,
1155
+ struct ggml_tensor * b);
1156
+
1157
+ // change the precision of a matrix multiplication
1158
+ // set to GGML_PREC_F32 for higher precision (useful for phi-2)
1159
+ GGML_API void ggml_mul_mat_set_prec(
1160
+ struct ggml_tensor * a,
1161
+ enum ggml_prec prec);
1162
+
1163
+ // indirect matrix multiplication
1164
+ // ggml_mul_mat_id(ctx, as, ids, id, b) ~= ggml_mul_mat(as[ids[id]], b)
1165
+ GGML_API struct ggml_tensor * ggml_mul_mat_id(
1166
+ struct ggml_context * ctx,
1167
+ struct ggml_tensor * as,
1168
+ struct ggml_tensor * ids,
1169
+ int id,
1170
+ struct ggml_tensor * b);
1171
+
1172
+ // A: m columns, n rows,
1173
+ // B: p columns, n rows,
1174
+ // result is m columns, p rows
1175
+ GGML_API struct ggml_tensor * ggml_out_prod(
1176
+ struct ggml_context * ctx,
1177
+ struct ggml_tensor * a,
1178
+ struct ggml_tensor * b);
1179
+
683
1180
  //
684
- // if 0 - disabled
685
- // if > 0:
686
- // assume convergence if no cost improvement in this number of iterations
1181
+ // operations on tensors without backpropagation
687
1182
  //
688
- int max_no_improvement;
689
-
690
- bool print_forward_graph;
691
- bool print_backward_graph;
692
-
693
- // ADAM parameters
694
- struct {
695
- int n_iter;
696
-
697
- float alpha; // learning rate
698
- float beta1;
699
- float beta2;
700
- float eps; // epsilon for numerical stability
701
- float eps_f; // epsilon for convergence test
702
- float eps_g; // epsilon for convergence test
703
- } adam;
704
-
705
- // LBFGS parameters
706
- struct {
707
- int m; // number of corrections to approximate the inv. Hessian
708
- int n_iter;
709
- int max_linesearch;
710
-
711
- float eps; // convergence tolerance
712
- float ftol; // line search tolerance
713
- float wolfe;
714
- float min_step;
715
- float max_step;
716
-
717
- enum ggml_linesearch linesearch;
718
- } lbfgs;
719
- };
720
-
721
- struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
722
-
723
- // optimize the function defined by the tensor f
724
- enum ggml_opt_result ggml_opt(
1183
+
1184
+ GGML_API struct ggml_tensor * ggml_scale(
1185
+ struct ggml_context * ctx,
1186
+ struct ggml_tensor * a,
1187
+ float s);
1188
+
1189
+ // in-place, returns view(a)
1190
+ GGML_API struct ggml_tensor * ggml_scale_inplace(
1191
+ struct ggml_context * ctx,
1192
+ struct ggml_tensor * a,
1193
+ float s);
1194
+
1195
+ // b -> view(a,offset,nb1,nb2,3), return modified a
1196
+ GGML_API struct ggml_tensor * ggml_set(
1197
+ struct ggml_context * ctx,
1198
+ struct ggml_tensor * a,
1199
+ struct ggml_tensor * b,
1200
+ size_t nb1,
1201
+ size_t nb2,
1202
+ size_t nb3,
1203
+ size_t offset);
1204
+
1205
+ // b -> view(a,offset,nb1,nb2,3), return view(a)
1206
+ GGML_API struct ggml_tensor * ggml_set_inplace(
1207
+ struct ggml_context * ctx,
1208
+ struct ggml_tensor * a,
1209
+ struct ggml_tensor * b,
1210
+ size_t nb1,
1211
+ size_t nb2,
1212
+ size_t nb3,
1213
+ size_t offset);
1214
+
1215
+ GGML_API struct ggml_tensor * ggml_set_1d(
1216
+ struct ggml_context * ctx,
1217
+ struct ggml_tensor * a,
1218
+ struct ggml_tensor * b,
1219
+ size_t offset);
1220
+
1221
+ GGML_API struct ggml_tensor * ggml_set_1d_inplace(
1222
+ struct ggml_context * ctx,
1223
+ struct ggml_tensor * a,
1224
+ struct ggml_tensor * b,
1225
+ size_t offset);
1226
+
1227
+ // b -> view(a,offset,nb1,nb2,3), return modified a
1228
+ GGML_API struct ggml_tensor * ggml_set_2d(
1229
+ struct ggml_context * ctx,
1230
+ struct ggml_tensor * a,
1231
+ struct ggml_tensor * b,
1232
+ size_t nb1,
1233
+ size_t offset);
1234
+
1235
+ // b -> view(a,offset,nb1,nb2,3), return view(a)
1236
+ GGML_API struct ggml_tensor * ggml_set_2d_inplace(
1237
+ struct ggml_context * ctx,
1238
+ struct ggml_tensor * a,
1239
+ struct ggml_tensor * b,
1240
+ size_t nb1,
1241
+ size_t offset);
1242
+
1243
+ // a -> b, return view(b)
1244
+ GGML_API struct ggml_tensor * ggml_cpy(
1245
+ struct ggml_context * ctx,
1246
+ struct ggml_tensor * a,
1247
+ struct ggml_tensor * b);
1248
+
1249
+ GGML_API struct ggml_tensor * ggml_cast(
1250
+ struct ggml_context * ctx,
1251
+ struct ggml_tensor * a,
1252
+ enum ggml_type type);
1253
+
1254
+ // make contiguous
1255
+ GGML_API struct ggml_tensor * ggml_cont(
1256
+ struct ggml_context * ctx,
1257
+ struct ggml_tensor * a);
1258
+
1259
+ // make contiguous, with new shape
1260
+ GGML_API struct ggml_tensor * ggml_cont_1d(
1261
+ struct ggml_context * ctx,
1262
+ struct ggml_tensor * a,
1263
+ int64_t ne0);
1264
+
1265
+ GGML_API struct ggml_tensor * ggml_cont_2d(
1266
+ struct ggml_context * ctx,
1267
+ struct ggml_tensor * a,
1268
+ int64_t ne0,
1269
+ int64_t ne1);
1270
+
1271
+ GGML_API struct ggml_tensor * ggml_cont_3d(
1272
+ struct ggml_context * ctx,
1273
+ struct ggml_tensor * a,
1274
+ int64_t ne0,
1275
+ int64_t ne1,
1276
+ int64_t ne2);
1277
+
1278
+ GGML_API struct ggml_tensor * ggml_cont_4d(
1279
+ struct ggml_context * ctx,
1280
+ struct ggml_tensor * a,
1281
+ int64_t ne0,
1282
+ int64_t ne1,
1283
+ int64_t ne2,
1284
+ int64_t ne3);
1285
+
1286
+ // return view(a), b specifies the new shape
1287
+ // TODO: when we start computing gradient, make a copy instead of view
1288
+ GGML_API struct ggml_tensor * ggml_reshape(
1289
+ struct ggml_context * ctx,
1290
+ struct ggml_tensor * a,
1291
+ struct ggml_tensor * b);
1292
+
1293
+ // return view(a)
1294
+ // TODO: when we start computing gradient, make a copy instead of view
1295
+ GGML_API struct ggml_tensor * ggml_reshape_1d(
1296
+ struct ggml_context * ctx,
1297
+ struct ggml_tensor * a,
1298
+ int64_t ne0);
1299
+
1300
+ GGML_API struct ggml_tensor * ggml_reshape_2d(
1301
+ struct ggml_context * ctx,
1302
+ struct ggml_tensor * a,
1303
+ int64_t ne0,
1304
+ int64_t ne1);
1305
+
1306
+ // return view(a)
1307
+ // TODO: when we start computing gradient, make a copy instead of view
1308
+ GGML_API struct ggml_tensor * ggml_reshape_3d(
1309
+ struct ggml_context * ctx,
1310
+ struct ggml_tensor * a,
1311
+ int64_t ne0,
1312
+ int64_t ne1,
1313
+ int64_t ne2);
1314
+
1315
+ GGML_API struct ggml_tensor * ggml_reshape_4d(
1316
+ struct ggml_context * ctx,
1317
+ struct ggml_tensor * a,
1318
+ int64_t ne0,
1319
+ int64_t ne1,
1320
+ int64_t ne2,
1321
+ int64_t ne3);
1322
+
1323
+ // offset in bytes
1324
+ GGML_API struct ggml_tensor * ggml_view_1d(
1325
+ struct ggml_context * ctx,
1326
+ struct ggml_tensor * a,
1327
+ int64_t ne0,
1328
+ size_t offset);
1329
+
1330
+ GGML_API struct ggml_tensor * ggml_view_2d(
1331
+ struct ggml_context * ctx,
1332
+ struct ggml_tensor * a,
1333
+ int64_t ne0,
1334
+ int64_t ne1,
1335
+ size_t nb1, // row stride in bytes
1336
+ size_t offset);
1337
+
1338
+ GGML_API struct ggml_tensor * ggml_view_3d(
1339
+ struct ggml_context * ctx,
1340
+ struct ggml_tensor * a,
1341
+ int64_t ne0,
1342
+ int64_t ne1,
1343
+ int64_t ne2,
1344
+ size_t nb1, // row stride in bytes
1345
+ size_t nb2, // slice stride in bytes
1346
+ size_t offset);
1347
+
1348
+ GGML_API struct ggml_tensor * ggml_view_4d(
1349
+ struct ggml_context * ctx,
1350
+ struct ggml_tensor * a,
1351
+ int64_t ne0,
1352
+ int64_t ne1,
1353
+ int64_t ne2,
1354
+ int64_t ne3,
1355
+ size_t nb1, // row stride in bytes
1356
+ size_t nb2, // slice stride in bytes
1357
+ size_t nb3,
1358
+ size_t offset);
1359
+
1360
+ GGML_API struct ggml_tensor * ggml_permute(
1361
+ struct ggml_context * ctx,
1362
+ struct ggml_tensor * a,
1363
+ int axis0,
1364
+ int axis1,
1365
+ int axis2,
1366
+ int axis3);
1367
+
1368
+ // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
1369
+ GGML_API struct ggml_tensor * ggml_transpose(
1370
+ struct ggml_context * ctx,
1371
+ struct ggml_tensor * a);
1372
+
1373
+ // supports 3D: a->ne[2] == b->ne[1]
1374
+ GGML_API struct ggml_tensor * ggml_get_rows(
1375
+ struct ggml_context * ctx,
1376
+ struct ggml_tensor * a,
1377
+ struct ggml_tensor * b);
1378
+
1379
+ GGML_API struct ggml_tensor * ggml_get_rows_back(
1380
+ struct ggml_context * ctx,
1381
+ struct ggml_tensor * a,
1382
+ struct ggml_tensor * b,
1383
+ struct ggml_tensor * c);
1384
+
1385
+ GGML_API struct ggml_tensor * ggml_diag(
1386
+ struct ggml_context * ctx,
1387
+ struct ggml_tensor * a);
1388
+
1389
+ // set elements above the diagonal to -INF
1390
+ GGML_API struct ggml_tensor * ggml_diag_mask_inf(
1391
+ struct ggml_context * ctx,
1392
+ struct ggml_tensor * a,
1393
+ int n_past);
1394
+
1395
+ // in-place, returns view(a)
1396
+ GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
1397
+ struct ggml_context * ctx,
1398
+ struct ggml_tensor * a,
1399
+ int n_past);
1400
+
1401
+ // set elements above the diagonal to 0
1402
+ GGML_API struct ggml_tensor * ggml_diag_mask_zero(
1403
+ struct ggml_context * ctx,
1404
+ struct ggml_tensor * a,
1405
+ int n_past);
1406
+
1407
+ // in-place, returns view(a)
1408
+ GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
1409
+ struct ggml_context * ctx,
1410
+ struct ggml_tensor * a,
1411
+ int n_past);
1412
+
1413
+ GGML_API struct ggml_tensor * ggml_soft_max(
1414
+ struct ggml_context * ctx,
1415
+ struct ggml_tensor * a);
1416
+
1417
+ // in-place, returns view(a)
1418
+ GGML_API struct ggml_tensor * ggml_soft_max_inplace(
1419
+ struct ggml_context * ctx,
1420
+ struct ggml_tensor * a);
1421
+
1422
+ // fused soft_max(a*scale + mask + pos[i]*(ALiBi slope))
1423
+ // mask is optional
1424
+ // pos is required when max_bias > 0.0f
1425
+ // max_bias = 0.0f for no ALiBi
1426
+ GGML_API struct ggml_tensor * ggml_soft_max_ext(
1427
+ struct ggml_context * ctx,
1428
+ struct ggml_tensor * a,
1429
+ struct ggml_tensor * mask,
1430
+ struct ggml_tensor * pos,
1431
+ float scale,
1432
+ float max_bias);
1433
+
1434
+ GGML_API struct ggml_tensor * ggml_soft_max_back(
1435
+ struct ggml_context * ctx,
1436
+ struct ggml_tensor * a,
1437
+ struct ggml_tensor * b);
1438
+
1439
+ // in-place, returns view(a)
1440
+ GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
1441
+ struct ggml_context * ctx,
1442
+ struct ggml_tensor * a,
1443
+ struct ggml_tensor * b);
1444
+
1445
+ // rotary position embedding
1446
+ // if mode & 1 == 1, skip n_past elements (DEPRECATED)
1447
+ // if mode & 2 == 1, GPT-NeoX style
1448
+ // if mode & 4 == 1, ChatGLM style
1449
+ //
1450
+ // b is an int32 vector with size a->ne[2], it contains the positions
1451
+ GGML_API struct ggml_tensor * ggml_rope(
1452
+ struct ggml_context * ctx,
1453
+ struct ggml_tensor * a,
1454
+ struct ggml_tensor * b,
1455
+ int n_dims,
1456
+ int mode,
1457
+ int n_ctx);
1458
+
1459
+ // in-place, returns view(a)
1460
+ GGML_API struct ggml_tensor * ggml_rope_inplace(
1461
+ struct ggml_context * ctx,
1462
+ struct ggml_tensor * a,
1463
+ struct ggml_tensor * b,
1464
+ int n_dims,
1465
+ int mode,
1466
+ int n_ctx);
1467
+
1468
+ // custom RoPE
1469
+ GGML_API struct ggml_tensor * ggml_rope_custom(
1470
+ struct ggml_context * ctx,
1471
+ struct ggml_tensor * a,
1472
+ struct ggml_tensor * b,
1473
+ int n_dims,
1474
+ int mode,
1475
+ int n_ctx,
1476
+ int n_orig_ctx,
1477
+ float freq_base,
1478
+ float freq_scale,
1479
+ float ext_factor,
1480
+ float attn_factor,
1481
+ float beta_fast,
1482
+ float beta_slow);
1483
+
1484
+ // in-place, returns view(a)
1485
+ GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
1486
+ struct ggml_context * ctx,
1487
+ struct ggml_tensor * a,
1488
+ struct ggml_tensor * b,
1489
+ int n_dims,
1490
+ int mode,
1491
+ int n_ctx,
1492
+ int n_orig_ctx,
1493
+ float freq_base,
1494
+ float freq_scale,
1495
+ float ext_factor,
1496
+ float attn_factor,
1497
+ float beta_fast,
1498
+ float beta_slow);
1499
+
1500
+ // compute correction dims for YaRN RoPE scaling
1501
+ GGML_CALL void ggml_rope_yarn_corr_dims(
1502
+ int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]);
1503
+
1504
+ // xPos RoPE, in-place, returns view(a)
1505
+ GGML_API struct ggml_tensor * ggml_rope_xpos_inplace(
1506
+ struct ggml_context * ctx,
1507
+ struct ggml_tensor * a,
1508
+ struct ggml_tensor * b,
1509
+ int n_dims,
1510
+ float base,
1511
+ bool down);
1512
+
1513
+ // rotary position embedding backward, i.e compute dx from dy
1514
+ // a - dy
1515
+ GGML_API struct ggml_tensor * ggml_rope_back(
1516
+ struct ggml_context * ctx,
1517
+ struct ggml_tensor * a,
1518
+ struct ggml_tensor * b,
1519
+ int n_dims,
1520
+ int mode,
1521
+ int n_ctx,
1522
+ int n_orig_ctx,
1523
+ float freq_base,
1524
+ float freq_scale,
1525
+ float ext_factor,
1526
+ float attn_factor,
1527
+ float beta_fast,
1528
+ float beta_slow,
1529
+ float xpos_base,
1530
+ bool xpos_down);
1531
+
1532
+ // alibi position embedding
1533
+ // in-place, returns view(a)
1534
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_alibi(
1535
+ struct ggml_context * ctx,
1536
+ struct ggml_tensor * a,
1537
+ int n_past,
1538
+ int n_head,
1539
+ float bias_max),
1540
+ "use ggml_soft_max_ext instead (will be removed in Mar 2024)");
1541
+
1542
+ // clamp
1543
+ // in-place, returns view(a)
1544
+ GGML_API struct ggml_tensor * ggml_clamp(
1545
+ struct ggml_context * ctx,
1546
+ struct ggml_tensor * a,
1547
+ float min,
1548
+ float max);
1549
+
1550
+ GGML_API struct ggml_tensor * ggml_im2col(
1551
+ struct ggml_context * ctx,
1552
+ struct ggml_tensor * a,
1553
+ struct ggml_tensor * b,
1554
+ int s0,
1555
+ int s1,
1556
+ int p0,
1557
+ int p1,
1558
+ int d0,
1559
+ int d1,
1560
+ bool is_2D,
1561
+ enum ggml_type dst_type);
1562
+
1563
+ GGML_API struct ggml_tensor * ggml_conv_depthwise_2d(
1564
+ struct ggml_context * ctx,
1565
+ struct ggml_tensor * a,
1566
+ struct ggml_tensor * b,
1567
+ int s0,
1568
+ int s1,
1569
+ int p0,
1570
+ int p1,
1571
+ int d0,
1572
+ int d1);
1573
+
1574
+ GGML_API struct ggml_tensor * ggml_conv_1d(
1575
+ struct ggml_context * ctx,
1576
+ struct ggml_tensor * a,
1577
+ struct ggml_tensor * b,
1578
+ int s0, // stride
1579
+ int p0, // padding
1580
+ int d0); // dilation
1581
+
1582
+ // conv_1d with padding = half
1583
+ // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
1584
+ GGML_API struct ggml_tensor* ggml_conv_1d_ph(
1585
+ struct ggml_context * ctx,
1586
+ struct ggml_tensor * a,
1587
+ struct ggml_tensor * b,
1588
+ int s,
1589
+ int d);
1590
+
1591
+ GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
1592
+ struct ggml_context * ctx,
1593
+ struct ggml_tensor * a,
1594
+ struct ggml_tensor * b,
1595
+ int s0,
1596
+ int p0,
1597
+ int d0);
1598
+
1599
+ GGML_API struct ggml_tensor * ggml_conv_2d(
1600
+ struct ggml_context * ctx,
1601
+ struct ggml_tensor * a,
1602
+ struct ggml_tensor * b,
1603
+ int s0,
1604
+ int s1,
1605
+ int p0,
1606
+ int p1,
1607
+ int d0,
1608
+ int d1);
1609
+
1610
+
1611
+ // kernel size is a->ne[0] x a->ne[1]
1612
+ // stride is equal to kernel size
1613
+ // padding is zero
1614
+ // example:
1615
+ // a: 16 16 3 768
1616
+ // b: 1024 1024 3 1
1617
+ // res: 64 64 768 1
1618
+ // used in sam
1619
+ GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
1620
+ struct ggml_context * ctx,
1621
+ struct ggml_tensor * a,
1622
+ struct ggml_tensor * b);
1623
+
1624
+ // kernel size is a->ne[0] x a->ne[1]
1625
+ // stride is 1
1626
+ // padding is half
1627
+ // example:
1628
+ // a: 3 3 256 256
1629
+ // b: 64 64 256 1
1630
+ // res: 64 64 256 1
1631
+ // used in sam
1632
+ GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
1633
+ struct ggml_context * ctx,
1634
+ struct ggml_tensor * a,
1635
+ struct ggml_tensor * b);
1636
+
1637
+ GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
1638
+ struct ggml_context * ctx,
1639
+ struct ggml_tensor * a,
1640
+ struct ggml_tensor * b,
1641
+ int stride);
1642
+
1643
+ enum ggml_op_pool {
1644
+ GGML_OP_POOL_MAX,
1645
+ GGML_OP_POOL_AVG,
1646
+ GGML_OP_POOL_COUNT,
1647
+ };
1648
+
1649
+ GGML_API struct ggml_tensor * ggml_pool_1d(
1650
+ struct ggml_context * ctx,
1651
+ struct ggml_tensor * a,
1652
+ enum ggml_op_pool op,
1653
+ int k0, // kernel size
1654
+ int s0, // stride
1655
+ int p0); // padding
1656
+
1657
+ // the result will have 2*p0 padding for the first dimension
1658
+ // and 2*p1 padding for the second dimension
1659
+ GGML_API struct ggml_tensor * ggml_pool_2d(
1660
+ struct ggml_context * ctx,
1661
+ struct ggml_tensor * a,
1662
+ enum ggml_op_pool op,
1663
+ int k0,
1664
+ int k1,
1665
+ int s0,
1666
+ int s1,
1667
+ float p0,
1668
+ float p1);
1669
+
1670
+ // nearest interpolate
1671
+ // used in stable-diffusion
1672
+ GGML_API struct ggml_tensor * ggml_upscale(
1673
+ struct ggml_context * ctx,
1674
+ struct ggml_tensor * a,
1675
+ int scale_factor);
1676
+
1677
+ // pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
1678
+ GGML_API struct ggml_tensor * ggml_pad(
1679
+ struct ggml_context * ctx,
1680
+ struct ggml_tensor * a,
1681
+ int p0,
1682
+ int p1,
1683
+ int p2,
1684
+ int p3);
1685
+
1686
+ // Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
1687
+ // timesteps: [N,]
1688
+ // return: [N, dim]
1689
+ GGML_API struct ggml_tensor * ggml_timestep_embedding(
1690
+ struct ggml_context * ctx,
1691
+ struct ggml_tensor * timesteps,
1692
+ int dim,
1693
+ int max_period);
1694
+
1695
+ // sort rows
1696
+ enum ggml_sort_order {
1697
+ GGML_SORT_ORDER_ASC,
1698
+ GGML_SORT_ORDER_DESC,
1699
+ };
1700
+
1701
+ GGML_API struct ggml_tensor * ggml_argsort(
1702
+ struct ggml_context * ctx,
1703
+ struct ggml_tensor * a,
1704
+ enum ggml_sort_order order);
1705
+
1706
+ GGML_API struct ggml_tensor * ggml_arange(
1707
+ struct ggml_context * ctx,
1708
+ float start,
1709
+ float stop,
1710
+ float step);
1711
+
1712
+ // top k elements per row
1713
+ GGML_API struct ggml_tensor * ggml_top_k(
1714
+ struct ggml_context * ctx,
1715
+ struct ggml_tensor * a,
1716
+ int k);
1717
+
1718
+ GGML_API struct ggml_tensor * ggml_flash_attn(
1719
+ struct ggml_context * ctx,
1720
+ struct ggml_tensor * q,
1721
+ struct ggml_tensor * k,
1722
+ struct ggml_tensor * v,
1723
+ bool masked);
1724
+
1725
+ GGML_API struct ggml_tensor * ggml_flash_attn_back(
1726
+ struct ggml_context * ctx,
1727
+ struct ggml_tensor * q,
1728
+ struct ggml_tensor * k,
1729
+ struct ggml_tensor * v,
1730
+ struct ggml_tensor * d,
1731
+ bool masked);
1732
+
1733
+ GGML_API struct ggml_tensor * ggml_flash_ff(
1734
+ struct ggml_context * ctx,
1735
+ struct ggml_tensor * a,
1736
+ struct ggml_tensor * b0,
1737
+ struct ggml_tensor * b1,
1738
+ struct ggml_tensor * c0,
1739
+ struct ggml_tensor * c1);
1740
+
1741
+ GGML_API struct ggml_tensor * ggml_ssm_conv(
1742
+ struct ggml_context * ctx,
1743
+ struct ggml_tensor * s,
1744
+ struct ggml_tensor * x,
1745
+ struct ggml_tensor * c,
1746
+ struct ggml_tensor * sq);
1747
+
1748
+ GGML_API struct ggml_tensor * ggml_ssm_scan(
1749
+ struct ggml_context * ctx,
1750
+ struct ggml_tensor * s,
1751
+ struct ggml_tensor * x,
1752
+ struct ggml_tensor * dt,
1753
+ struct ggml_tensor * A,
1754
+ struct ggml_tensor * B,
1755
+ struct ggml_tensor * C,
1756
+ struct ggml_tensor * sq);
1757
+
1758
+ // partition into non-overlapping windows with padding if needed
1759
+ // example:
1760
+ // a: 768 64 64 1
1761
+ // w: 14
1762
+ // res: 768 14 14 25
1763
+ // used in sam
1764
+ GGML_API struct ggml_tensor * ggml_win_part(
1765
+ struct ggml_context * ctx,
1766
+ struct ggml_tensor * a,
1767
+ int w);
1768
+
1769
+ // reverse of ggml_win_part
1770
+ // used in sam
1771
+ GGML_API struct ggml_tensor * ggml_win_unpart(
1772
+ struct ggml_context * ctx,
1773
+ struct ggml_tensor * a,
1774
+ int w0,
1775
+ int h0,
1776
+ int w);
1777
+
1778
+ GGML_API struct ggml_tensor * ggml_unary(
1779
+ struct ggml_context * ctx,
1780
+ struct ggml_tensor * a,
1781
+ enum ggml_unary_op op);
1782
+
1783
+ GGML_API struct ggml_tensor * ggml_unary_inplace(
725
1784
  struct ggml_context * ctx,
726
- struct ggml_opt_params params,
727
- struct ggml_tensor * f);
1785
+ struct ggml_tensor * a,
1786
+ enum ggml_unary_op op);
1787
+
1788
+ // used in sam
1789
+ GGML_API struct ggml_tensor * ggml_get_rel_pos(
1790
+ struct ggml_context * ctx,
1791
+ struct ggml_tensor * a,
1792
+ int qh,
1793
+ int kh);
1794
+
1795
+ // used in sam
1796
+ GGML_API struct ggml_tensor * ggml_add_rel_pos(
1797
+ struct ggml_context * ctx,
1798
+ struct ggml_tensor * a,
1799
+ struct ggml_tensor * pw,
1800
+ struct ggml_tensor * ph);
1801
+
1802
+ GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
1803
+ struct ggml_context * ctx,
1804
+ struct ggml_tensor * a,
1805
+ struct ggml_tensor * pw,
1806
+ struct ggml_tensor * ph);
1807
+
1808
+ // custom operators
1809
+
1810
+ typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
1811
+ typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
1812
+
1813
+ typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
1814
+ typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
1815
+ typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
1816
+
1817
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
1818
+ struct ggml_context * ctx,
1819
+ struct ggml_tensor * a,
1820
+ ggml_unary_op_f32_t fun),
1821
+ "use ggml_map_custom1 instead");
1822
+
1823
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
1824
+ struct ggml_context * ctx,
1825
+ struct ggml_tensor * a,
1826
+ ggml_unary_op_f32_t fun),
1827
+ "use ggml_map_custom1_inplace instead");
1828
+
1829
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
1830
+ struct ggml_context * ctx,
1831
+ struct ggml_tensor * a,
1832
+ struct ggml_tensor * b,
1833
+ ggml_binary_op_f32_t fun),
1834
+ "use ggml_map_custom2 instead");
1835
+
1836
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
1837
+ struct ggml_context * ctx,
1838
+ struct ggml_tensor * a,
1839
+ struct ggml_tensor * b,
1840
+ ggml_binary_op_f32_t fun),
1841
+ "use ggml_map_custom2_inplace instead");
1842
+
1843
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
1844
+ struct ggml_context * ctx,
1845
+ struct ggml_tensor * a,
1846
+ ggml_custom1_op_f32_t fun),
1847
+ "use ggml_map_custom1 instead");
1848
+
1849
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
1850
+ struct ggml_context * ctx,
1851
+ struct ggml_tensor * a,
1852
+ ggml_custom1_op_f32_t fun),
1853
+ "use ggml_map_custom1_inplace instead");
1854
+
1855
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
1856
+ struct ggml_context * ctx,
1857
+ struct ggml_tensor * a,
1858
+ struct ggml_tensor * b,
1859
+ ggml_custom2_op_f32_t fun),
1860
+ "use ggml_map_custom2 instead");
1861
+
1862
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
1863
+ struct ggml_context * ctx,
1864
+ struct ggml_tensor * a,
1865
+ struct ggml_tensor * b,
1866
+ ggml_custom2_op_f32_t fun),
1867
+ "use ggml_map_custom2_inplace instead");
1868
+
1869
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
1870
+ struct ggml_context * ctx,
1871
+ struct ggml_tensor * a,
1872
+ struct ggml_tensor * b,
1873
+ struct ggml_tensor * c,
1874
+ ggml_custom3_op_f32_t fun),
1875
+ "use ggml_map_custom3 instead");
1876
+
1877
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
1878
+ struct ggml_context * ctx,
1879
+ struct ggml_tensor * a,
1880
+ struct ggml_tensor * b,
1881
+ struct ggml_tensor * c,
1882
+ ggml_custom3_op_f32_t fun),
1883
+ "use ggml_map_custom3_inplace instead");
1884
+
1885
+ // custom operators v2
1886
+
1887
+ typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
1888
+ typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
1889
+ typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
1890
+
1891
+ #define GGML_N_TASKS_MAX -1
1892
+
1893
+ GGML_API struct ggml_tensor * ggml_map_custom1(
1894
+ struct ggml_context * ctx,
1895
+ struct ggml_tensor * a,
1896
+ ggml_custom1_op_t fun,
1897
+ int n_tasks,
1898
+ void * userdata);
1899
+
1900
+ GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
1901
+ struct ggml_context * ctx,
1902
+ struct ggml_tensor * a,
1903
+ ggml_custom1_op_t fun,
1904
+ int n_tasks,
1905
+ void * userdata);
1906
+
1907
+ GGML_API struct ggml_tensor * ggml_map_custom2(
1908
+ struct ggml_context * ctx,
1909
+ struct ggml_tensor * a,
1910
+ struct ggml_tensor * b,
1911
+ ggml_custom2_op_t fun,
1912
+ int n_tasks,
1913
+ void * userdata);
1914
+
1915
+ GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
1916
+ struct ggml_context * ctx,
1917
+ struct ggml_tensor * a,
1918
+ struct ggml_tensor * b,
1919
+ ggml_custom2_op_t fun,
1920
+ int n_tasks,
1921
+ void * userdata);
1922
+
1923
+ GGML_API struct ggml_tensor * ggml_map_custom3(
1924
+ struct ggml_context * ctx,
1925
+ struct ggml_tensor * a,
1926
+ struct ggml_tensor * b,
1927
+ struct ggml_tensor * c,
1928
+ ggml_custom3_op_t fun,
1929
+ int n_tasks,
1930
+ void * userdata);
1931
+
1932
+ GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
1933
+ struct ggml_context * ctx,
1934
+ struct ggml_tensor * a,
1935
+ struct ggml_tensor * b,
1936
+ struct ggml_tensor * c,
1937
+ ggml_custom3_op_t fun,
1938
+ int n_tasks,
1939
+ void * userdata);
1940
+
1941
+ // loss function
1942
+
1943
+ GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
1944
+ struct ggml_context * ctx,
1945
+ struct ggml_tensor * a,
1946
+ struct ggml_tensor * b);
1947
+
1948
+ GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
1949
+ struct ggml_context * ctx,
1950
+ struct ggml_tensor * a,
1951
+ struct ggml_tensor * b,
1952
+ struct ggml_tensor * c);
728
1953
 
729
- //
730
- // system info
731
- //
1954
+ //
1955
+ // automatic differentiation
1956
+ //
732
1957
 
733
- int ggml_cpu_has_avx(void);
734
- int ggml_cpu_has_avx2(void);
735
- int ggml_cpu_has_avx512(void);
736
- int ggml_cpu_has_fma(void);
737
- int ggml_cpu_has_neon(void);
738
- int ggml_cpu_has_arm_fma(void);
739
- int ggml_cpu_has_f16c(void);
740
- int ggml_cpu_has_fp16_va(void);
741
- int ggml_cpu_has_wasm_simd(void);
742
- int ggml_cpu_has_blas(void);
743
- int ggml_cpu_has_sse3(void);
744
- int ggml_cpu_has_vsx(void);
1958
+ GGML_API void ggml_set_param(
1959
+ struct ggml_context * ctx,
1960
+ struct ggml_tensor * tensor);
1961
+
1962
+
1963
+ GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
1964
+ GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
1965
+
1966
+ // graph allocation in a context
1967
+ GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
1968
+ GGML_API struct ggml_cgraph * ggml_new_graph_custom (struct ggml_context * ctx, size_t size, bool grads);
1969
+ GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
1970
+ GGML_API struct ggml_cgraph ggml_graph_view (struct ggml_cgraph * cgraph, int i0, int i1);
1971
+ GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
1972
+ GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // zero grads
1973
+ GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
1974
+
1975
+ GGML_API size_t ggml_graph_overhead(void);
1976
+ GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
1977
+
1978
+ // ggml_graph_plan() has to be called before ggml_graph_compute()
1979
+ // when plan.work_size > 0, caller must allocate memory for plan.work_data
1980
+ GGML_API struct ggml_cplan ggml_graph_plan (const struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
1981
+ GGML_API enum ggml_status ggml_graph_compute ( struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
1982
+ // same as ggml_graph_compute() but the work data is allocated as a part of the context
1983
+ // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
1984
+ GGML_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
1985
+
1986
+ GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
1987
+
1988
+ GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
1989
+ GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
1990
+
1991
+ // print info and performance information for the graph
1992
+ GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
1993
+
1994
+ // dump the graph into a file using the dot format
1995
+ GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
1996
+
1997
+ // build gradient checkpointing backward graph gb for gf using provided checkpoints
1998
+ // gb_tmp will contain original backward graph with rewritten backward process nodes,
1999
+ // but without the second forward pass nodes.
2000
+ GGML_API void ggml_build_backward_gradient_checkpointing(
2001
+ struct ggml_context * ctx,
2002
+ struct ggml_cgraph * gf,
2003
+ struct ggml_cgraph * gb,
2004
+ struct ggml_cgraph * gb_tmp,
2005
+ struct ggml_tensor * * checkpoints,
2006
+ int n_checkpoints);
2007
+ //
2008
+ // optimization
2009
+ //
2010
+
2011
+ // optimization methods
2012
+ enum ggml_opt_type {
2013
+ GGML_OPT_TYPE_ADAM,
2014
+ GGML_OPT_TYPE_LBFGS,
2015
+ };
2016
+
2017
+ // linesearch methods
2018
+ enum ggml_linesearch {
2019
+ GGML_LINESEARCH_DEFAULT = 1,
2020
+
2021
+ GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
2022
+ GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
2023
+ GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
2024
+ };
2025
+
2026
+ // optimization return values
2027
+ enum ggml_opt_result {
2028
+ GGML_OPT_RESULT_OK = 0,
2029
+ GGML_OPT_RESULT_DID_NOT_CONVERGE,
2030
+ GGML_OPT_RESULT_NO_CONTEXT,
2031
+ GGML_OPT_RESULT_INVALID_WOLFE,
2032
+ GGML_OPT_RESULT_FAIL,
2033
+ GGML_OPT_RESULT_CANCEL,
2034
+
2035
+ GGML_LINESEARCH_FAIL = -128,
2036
+ GGML_LINESEARCH_MINIMUM_STEP,
2037
+ GGML_LINESEARCH_MAXIMUM_STEP,
2038
+ GGML_LINESEARCH_MAXIMUM_ITERATIONS,
2039
+ GGML_LINESEARCH_INVALID_PARAMETERS,
2040
+ };
2041
+
2042
+ typedef void (*ggml_opt_callback)(void * data, int accum_step, float * sched, bool * cancel);
2043
+ typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
2044
+
2045
+ // optimization parameters
2046
+ //
2047
+ // see ggml.c (ggml_opt_default_params) for default values
2048
+ //
2049
+ struct ggml_opt_params {
2050
+ enum ggml_opt_type type;
2051
+
2052
+ size_t graph_size;
2053
+
2054
+ int n_threads;
2055
+
2056
+ // delta-based convergence test
2057
+ //
2058
+ // if past == 0 - disabled
2059
+ // if past > 0:
2060
+ // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
2061
+ //
2062
+ int past;
2063
+ float delta;
2064
+
2065
+ // maximum number of iterations without improvement
2066
+ //
2067
+ // if 0 - disabled
2068
+ // if > 0:
2069
+ // assume convergence if no cost improvement in this number of iterations
2070
+ //
2071
+ int max_no_improvement;
2072
+
2073
+ bool print_forward_graph;
2074
+ bool print_backward_graph;
2075
+
2076
+ int n_gradient_accumulation;
2077
+
2078
+ // ADAM parameters
2079
+ struct {
2080
+ int n_iter;
2081
+
2082
+ float sched; // schedule multiplier (fixed, decay or warmup)
2083
+ float decay; // weight decay for AdamW, use 0.0f to disable
2084
+ int decay_min_ndim; // minimum number of tensor dimension to apply weight decay
2085
+ float alpha; // learning rate
2086
+ float beta1;
2087
+ float beta2;
2088
+ float eps; // epsilon for numerical stability
2089
+ float eps_f; // epsilon for convergence test
2090
+ float eps_g; // epsilon for convergence test
2091
+ float gclip; // gradient clipping
2092
+ } adam;
2093
+
2094
+ // LBFGS parameters
2095
+ struct {
2096
+ int m; // number of corrections to approximate the inv. Hessian
2097
+ int n_iter;
2098
+ int max_linesearch;
2099
+
2100
+ float eps; // convergence tolerance
2101
+ float ftol; // line search tolerance
2102
+ float wolfe;
2103
+ float min_step;
2104
+ float max_step;
2105
+
2106
+ enum ggml_linesearch linesearch;
2107
+ } lbfgs;
2108
+ };
2109
+
2110
+ struct ggml_opt_context {
2111
+ struct ggml_context * ctx;
2112
+ struct ggml_opt_params params;
2113
+
2114
+ int iter;
2115
+ int64_t nx; // number of parameter elements
2116
+
2117
+ bool just_initialized;
2118
+
2119
+ float loss_before;
2120
+ float loss_after;
2121
+
2122
+ struct {
2123
+ struct ggml_tensor * g; // current gradient
2124
+ struct ggml_tensor * m; // first moment
2125
+ struct ggml_tensor * v; // second moment
2126
+ struct ggml_tensor * pf; // past function values
2127
+ float fx_best;
2128
+ float fx_prev;
2129
+ int n_no_improvement;
2130
+ } adam;
2131
+
2132
+ struct {
2133
+ struct ggml_tensor * x; // current parameters
2134
+ struct ggml_tensor * xp; // previous parameters
2135
+ struct ggml_tensor * g; // current gradient
2136
+ struct ggml_tensor * gp; // previous gradient
2137
+ struct ggml_tensor * d; // search direction
2138
+ struct ggml_tensor * pf; // past function values
2139
+ struct ggml_tensor * lmal; // the L-BFGS memory alpha
2140
+ struct ggml_tensor * lmys; // the L-BFGS memory ys
2141
+ struct ggml_tensor * lms; // the L-BFGS memory s
2142
+ struct ggml_tensor * lmy; // the L-BFGS memory y
2143
+ float fx_best;
2144
+ float step;
2145
+ int j;
2146
+ int k;
2147
+ int end;
2148
+ int n_no_improvement;
2149
+ } lbfgs;
2150
+ };
2151
+
2152
+ GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
2153
+
2154
+ // optimize the function defined by the tensor f
2155
+ GGML_API enum ggml_opt_result ggml_opt(
2156
+ struct ggml_context * ctx,
2157
+ struct ggml_opt_params params,
2158
+ struct ggml_tensor * f);
2159
+
2160
+ // initialize optimizer context
2161
+ GGML_API void ggml_opt_init(
2162
+ struct ggml_context * ctx,
2163
+ struct ggml_opt_context * opt,
2164
+ struct ggml_opt_params params,
2165
+ int64_t nx);
2166
+
2167
+ // continue optimizing the function defined by the tensor f
2168
+ GGML_API enum ggml_opt_result ggml_opt_resume(
2169
+ struct ggml_context * ctx,
2170
+ struct ggml_opt_context * opt,
2171
+ struct ggml_tensor * f);
2172
+
2173
+ // continue optimizing the function defined by the tensor f
2174
+ GGML_API enum ggml_opt_result ggml_opt_resume_g(
2175
+ struct ggml_context * ctx,
2176
+ struct ggml_opt_context * opt,
2177
+ struct ggml_tensor * f,
2178
+ struct ggml_cgraph * gf,
2179
+ struct ggml_cgraph * gb,
2180
+ ggml_opt_callback callback,
2181
+ void * callback_data);
2182
+
2183
+ //
2184
+ // tensor flags
2185
+ //
2186
+ GGML_API void ggml_set_input(struct ggml_tensor * tensor);
2187
+ GGML_API void ggml_set_output(struct ggml_tensor * tensor);
2188
+
2189
+ //
2190
+ // quantization
2191
+ //
2192
+
2193
+ // - ggml_quantize_init can be called multiple times with the same type
2194
+ // it will only initialize the quantization tables for the first call or after ggml_quantize_free
2195
+ // automatically called by ggml_quantize_chunk for convenience
2196
+ //
2197
+ // - ggml_quantize_free will free any memory allocated by ggml_quantize_init
2198
+ // call this at the end of the program to avoid memory leaks
2199
+ //
2200
+ // note: these are thread-safe
2201
+ //
2202
+ GGML_API void ggml_quantize_init(enum ggml_type type);
2203
+ GGML_API void ggml_quantize_free(void);
2204
+
2205
+ // some quantization type cannot be used without an importance matrix
2206
+ GGML_API bool ggml_quantize_requires_imatrix(enum ggml_type type);
2207
+
2208
+ // calls ggml_quantize_init internally (i.e. can allocate memory)
2209
+ GGML_API size_t ggml_quantize_chunk(
2210
+ enum ggml_type type,
2211
+ const float * src,
2212
+ void * dst,
2213
+ int64_t start,
2214
+ int64_t nrows,
2215
+ int64_t n_per_row,
2216
+ const float * imatrix);
2217
+
2218
+ //
2219
+ // gguf
2220
+ //
2221
+
2222
+ enum gguf_type {
2223
+ GGUF_TYPE_UINT8 = 0,
2224
+ GGUF_TYPE_INT8 = 1,
2225
+ GGUF_TYPE_UINT16 = 2,
2226
+ GGUF_TYPE_INT16 = 3,
2227
+ GGUF_TYPE_UINT32 = 4,
2228
+ GGUF_TYPE_INT32 = 5,
2229
+ GGUF_TYPE_FLOAT32 = 6,
2230
+ GGUF_TYPE_BOOL = 7,
2231
+ GGUF_TYPE_STRING = 8,
2232
+ GGUF_TYPE_ARRAY = 9,
2233
+ GGUF_TYPE_UINT64 = 10,
2234
+ GGUF_TYPE_INT64 = 11,
2235
+ GGUF_TYPE_FLOAT64 = 12,
2236
+ GGUF_TYPE_COUNT, // marks the end of the enum
2237
+ };
2238
+
2239
+ struct gguf_context;
2240
+
2241
+ struct gguf_init_params {
2242
+ bool no_alloc;
2243
+
2244
+ // if not NULL, create a ggml_context and allocate the tensor data in it
2245
+ struct ggml_context ** ctx;
2246
+ };
2247
+
2248
+ GGML_API struct gguf_context * gguf_init_empty(void);
2249
+ GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
2250
+ //GGML_API struct gguf_context * gguf_init_from_buffer(..);
2251
+
2252
+ GGML_API void gguf_free(struct gguf_context * ctx);
2253
+
2254
+ GGML_API const char * gguf_type_name(enum gguf_type type);
2255
+
2256
+ GGML_API int gguf_get_version (const struct gguf_context * ctx);
2257
+ GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
2258
+ GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
2259
+ GGML_API void * gguf_get_data (const struct gguf_context * ctx);
2260
+
2261
+ GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
2262
+ GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
2263
+ GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id);
2264
+
2265
+ GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id);
2266
+ GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id);
2267
+
2268
+ // will abort if the wrong type is used for the key
2269
+ GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id);
2270
+ GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id);
2271
+ GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id);
2272
+ GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id);
2273
+ GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id);
2274
+ GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id);
2275
+ GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id);
2276
+ GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id);
2277
+ GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id);
2278
+ GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
2279
+ GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
2280
+ GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
2281
+ GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id);
2282
+ GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
2283
+ GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
2284
+ GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
2285
+
2286
+ GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
2287
+ GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
2288
+ GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
2289
+ GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
2290
+ GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int i);
2291
+
2292
+ // overrides existing values or adds a new one
2293
+ GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
2294
+ GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
2295
+ GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
2296
+ GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
2297
+ GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
2298
+ GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
2299
+ GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
2300
+ GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
2301
+ GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
2302
+ GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
2303
+ GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
2304
+ GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
2305
+ GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
2306
+ GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
2307
+
2308
+ // set or add KV pairs from another context
2309
+ GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
2310
+
2311
+ // manage tensor info
2312
+ GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
2313
+ GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
2314
+ GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
2315
+
2316
+ // writing gguf files can be done in 2 ways:
2317
+ //
2318
+ // - write the entire gguf_context to a binary file in a single pass:
2319
+ //
2320
+ // gguf_write_to_file(ctx, fname);
2321
+ //
2322
+ // - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
2323
+ //
2324
+ // FILE * f = fopen(fname, "wb");
2325
+ // fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
2326
+ // fwrite(f, ...);
2327
+ // void * data = gguf_meta_get_meta_data(ctx);
2328
+ // fseek(f, 0, SEEK_SET);
2329
+ // fwrite(f, data, gguf_get_meta_size(ctx));
2330
+ // free(data);
2331
+ // fclose(f);
2332
+ //
2333
+
2334
+ // write the entire context to a binary file
2335
+ GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
2336
+
2337
+ // get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
2338
+ GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
2339
+ GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
2340
+
2341
+ //
2342
+ // system info
2343
+ //
2344
+
2345
+ GGML_API int ggml_cpu_has_avx (void);
2346
+ GGML_API int ggml_cpu_has_avx_vnni (void);
2347
+ GGML_API int ggml_cpu_has_avx2 (void);
2348
+ GGML_API int ggml_cpu_has_avx512 (void);
2349
+ GGML_API int ggml_cpu_has_avx512_vbmi(void);
2350
+ GGML_API int ggml_cpu_has_avx512_vnni(void);
2351
+ GGML_API int ggml_cpu_has_fma (void);
2352
+ GGML_API int ggml_cpu_has_neon (void);
2353
+ GGML_API int ggml_cpu_has_arm_fma (void);
2354
+ GGML_API int ggml_cpu_has_metal (void);
2355
+ GGML_API int ggml_cpu_has_f16c (void);
2356
+ GGML_API int ggml_cpu_has_fp16_va (void);
2357
+ GGML_API int ggml_cpu_has_wasm_simd (void);
2358
+ GGML_API int ggml_cpu_has_blas (void);
2359
+ GGML_API int ggml_cpu_has_cuda (void);
2360
+ GGML_API int ggml_cpu_has_clblast (void);
2361
+ GGML_API int ggml_cpu_has_vulkan (void);
2362
+ GGML_API int ggml_cpu_has_kompute (void);
2363
+ GGML_API int ggml_cpu_has_gpublas (void);
2364
+ GGML_API int ggml_cpu_has_sse3 (void);
2365
+ GGML_API int ggml_cpu_has_ssse3 (void);
2366
+ GGML_API int ggml_cpu_has_sycl (void);
2367
+ GGML_API int ggml_cpu_has_vsx (void);
2368
+ GGML_API int ggml_cpu_has_matmul_int8(void);
2369
+
2370
+ //
2371
+ // Internal types and functions exposed for tests and benchmarks
2372
+ //
2373
+
2374
+ #ifdef __cplusplus
2375
+ // restrict not standard in C++
2376
+ #define GGML_RESTRICT
2377
+ #else
2378
+ #define GGML_RESTRICT restrict
2379
+ #endif
2380
+ typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
2381
+ typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
2382
+ typedef void (*ggml_vec_dot_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, size_t bx,
2383
+ const void * GGML_RESTRICT y, size_t by, int nrc);
2384
+
2385
+ typedef struct {
2386
+ const char * type_name;
2387
+ int blck_size;
2388
+ size_t type_size;
2389
+ bool is_quantized;
2390
+ ggml_to_float_t to_float;
2391
+ ggml_from_float_t from_float;
2392
+ ggml_from_float_t from_float_reference;
2393
+ ggml_vec_dot_t vec_dot;
2394
+ enum ggml_type vec_dot_type;
2395
+ int64_t nrows; // number of rows to process simultaneously;
2396
+ } ggml_type_traits_t;
2397
+
2398
+ GGML_API ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);
745
2399
 
746
2400
  #ifdef __cplusplus
747
2401
  }