tss 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,23 @@
1
+ require 'bundler/gem_tasks'
2
+ require 'rake/testtask'
3
+
4
+ Rake::TestTask.new(:test) do |t|
5
+ t.libs << 'test'
6
+ t.libs << 'lib'
7
+ t.test_files = FileList['test/**/*_test.rb']
8
+ end
9
+
10
+ Rake::TestTask.new(:bench) do |t|
11
+ t.libs << 'test'
12
+ t.libs << 'lib'
13
+ t.test_files = FileList['test/**/*_benchmark.rb']
14
+ end
15
+
16
+ # a long running brute force burn-in test
17
+ Rake::TestTask.new(:burn) do |t|
18
+ t.libs << 'test'
19
+ t.libs << 'lib'
20
+ t.test_files = FileList['test/**/*_brute.rb']
21
+ end
22
+
23
+ task default: :test
@@ -0,0 +1,14 @@
1
+ #!/usr/bin/env ruby
2
+
3
+ require 'bundler/setup'
4
+ require 'tss'
5
+
6
+ # You can add fixtures and/or initialization code here to make experimenting
7
+ # with your gem easier. You can also use a different console, if you like.
8
+
9
+ # (If you use this, don't forget to add pry to your Gemfile!)
10
+ require 'pry'
11
+ Pry.start
12
+
13
+ require 'irb'
14
+ IRB.start
@@ -0,0 +1,8 @@
1
+ #!/usr/bin/env bash
2
+ set -euo pipefail
3
+ IFS=$'\n\t'
4
+ set -vx
5
+
6
+ bundle install
7
+
8
+ # Do any other automated setup that you need to do here
data/bin/tss ADDED
@@ -0,0 +1,7 @@
1
+ #!/usr/bin/env ruby
2
+ # encoding: utf-8
3
+
4
+ require 'tss'
5
+ require 'tss/cli'
6
+
7
+ TSS::CLI.start
@@ -0,0 +1,21 @@
1
+ -----BEGIN CERTIFICATE-----
2
+ MIIDYDCCAkigAwIBAgIBATANBgkqhkiG9w0BAQUFADA7MQ4wDAYDVQQDDAVnbGVu
3
+ bjEVMBMGCgmSJomT8ixkARkWBXJlbXBlMRIwEAYKCZImiZPyLGQBGRYCdXMwHhcN
4
+ MTYwNDExMDI0NTU0WhcNMTcwNDExMDI0NTU0WjA7MQ4wDAYDVQQDDAVnbGVubjEV
5
+ MBMGCgmSJomT8ixkARkWBXJlbXBlMRIwEAYKCZImiZPyLGQBGRYCdXMwggEiMA0G
6
+ CSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDZqTH5Jf+D/W2B4BIiL49CpHa86rK/
7
+ oT+v3xZwuEE92lJea+ygn3IAsidVTW47AKE6Lt3UqUkGQGKxsqH/Dhir08BqjLlD
8
+ gBUozGZpM3B6uWZnD6QXLbOmZeGVDnwB/QDfzaawN1i3smlYxYT+KNLjl80aN3we
9
+ /cHAWG7JG47AF/S91mYcg1WgZnDgZt9+RyVR1AsfYbM+SidOSoXEOHPCbuUxLKJb
10
+ gj5ieCFhm5GNWEugvgiX/ruas+VHV0fF3fzjYlU2fZPTuQyB4UD5FWX4UqdsBf3w
11
+ jB94TDBsJ3FVGPbggEhLGKd8pbQmBIOqXolGaqhs7dnuf5imu5mAXHC1AgMBAAGj
12
+ bzBtMAkGA1UdEwQCMAAwCwYDVR0PBAQDAgSwMB0GA1UdDgQWBBRfxEyosUbKjfFa
13
+ j+gae2CcT3aFCTAZBgNVHREEEjAQgQ5nbGVubkByZW1wZS51czAZBgNVHRIEEjAQ
14
+ gQ5nbGVubkByZW1wZS51czANBgkqhkiG9w0BAQUFAAOCAQEAzgK20+MNOknR9Kx6
15
+ RisI3DsioCADjGldxY+INrwoTfPDVmNm4GdTYC+V+/BvxJw1RqHjEbuXSg0iibQC
16
+ 4vN+th0Km7dnas/td1i+EKfGencfyQyecIaG9l3kbCkCWnldRtZ+BS5EfP2ML2u8
17
+ fyCtze/Piovu8IwXL1W5kGZMnvzLmWxdqI3VPUou40n8F+EiMMLgd53kpzjtNOau
18
+ 4W+mqVGOwlEGVSgI5+0SIsD8pvc62PlPWTv0kn1bcufKKCZmoVmpfbe3j4JpBInq
19
+ zieXiXZSAojfFx9g91fKdIrlPbInHU/BaCxXSLBwvOM0drE+c2ue9X8gB55XAhzX
20
+ 37oBiw==
21
+ -----END CERTIFICATE-----
@@ -0,0 +1,1417 @@
1
+ <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
2
+ <html lang="en"><head><title>Threshold Secret Sharing</title>
3
+ <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
4
+ <meta name="description" content="Threshold Secret Sharing">
5
+ <meta name="keywords" content="Cryptography">
6
+ <meta name="generator" content="xml2rfc v1.35 (http://xml.resource.org/)">
7
+ <meta name="viewport" content="width=600;" />
8
+ <style type='text/css'><!--
9
+ body {
10
+ font-family: verdana, charcoal, helvetica, arial, sans-serif;
11
+ font-size: 85%;
12
+ max-width: 40em;
13
+ color: #000; background-color: #FFF;
14
+ margin: 2em;
15
+ }
16
+ h1, h2, h3, h4, h5, h6 {
17
+ font-family: helvetica, monaco, "MS Sans Serif", arial, sans-serif;
18
+ font-weight: bold; font-style: normal;
19
+ }
20
+ h1 { color: #900; background-color: transparent; text-align: right; }
21
+ h3 { color: #333; background-color: transparent; }
22
+
23
+ td.RFCbug {
24
+ font-size: x-small; text-decoration: none;
25
+ width: 30px; height: 30px; padding-top: 2px;
26
+ text-align: justify; vertical-align: middle;
27
+ background-color: #000;
28
+ }
29
+ td.RFCbug span.RFC {
30
+ font-family: monaco, charcoal, geneva, "MS Sans Serif", helvetica, verdana, sans-serif;
31
+ font-weight: bold; color: #666;
32
+ }
33
+ td.RFCbug span.hotText {
34
+ font-family: charcoal, monaco, geneva, "MS Sans Serif", helvetica, verdana, sans-serif;
35
+ font-weight: normal; text-align: center; color: #FFF;
36
+ }
37
+
38
+ table.TOCbug { width: 30px; height: 15px; }
39
+ td.TOCbug {
40
+ text-align: center; width: 30px; height: 15px;
41
+ color: #FFF; background-color: #900;
42
+ }
43
+ td.TOCbug a {
44
+ font-family: monaco, charcoal, geneva, "MS Sans Serif", helvetica, sans-serif;
45
+ font-weight: bold; font-size: x-small; text-decoration: none;
46
+ color: #FFF; background-color: transparent;
47
+ }
48
+
49
+ td.header {
50
+ font-family: arial, helvetica, sans-serif; font-size: x-small;
51
+ vertical-align: top; width: 33%;
52
+ color: #FFF; background-color: #666;
53
+ }
54
+ td.author { font-weight: bold; font-size: x-small; margin-left: 4em; }
55
+ td.author-text { font-size: x-small; }
56
+
57
+ /* info code from SantaKlauss at http://www.madaboutstyle.com/tooltip2.html */
58
+ a.info {
59
+ /* This is the key. */
60
+ position: relative;
61
+ z-index: 24;
62
+ text-decoration: none;
63
+ }
64
+ a.info:hover {
65
+ z-index: 25;
66
+ color: #FFF; background-color: #900;
67
+ }
68
+ a.info span { display: none; }
69
+ a.info:hover span.info {
70
+ /* The span will display just on :hover state. */
71
+ display: block;
72
+ position: absolute;
73
+ font-size: smaller;
74
+ top: 2em; left: -5em; width: 15em;
75
+ padding: 2px; border: 1px solid #333;
76
+ color: #900; background-color: #EEE;
77
+ text-align: left;
78
+ }
79
+
80
+ a { font-weight: bold; }
81
+ a:link { color: #900; background-color: transparent; }
82
+ a:visited { color: #633; background-color: transparent; }
83
+ a:active { color: #633; background-color: transparent; }
84
+
85
+ p { margin-left: 2em; margin-right: 2em; }
86
+ p.copyright { font-size: x-small; }
87
+ p.toc { font-size: 85%;
88
+ max-width: 40em;
89
+ font-weight: bold; margin-left: 3em; }
90
+ table.toc { margin: 0 0 0 3em; padding: 0; border: 0; vertical-align: text-top; }
91
+ td.toc { font-size: 85%;
92
+ max-width: 40em;
93
+ font-weight: bold; vertical-align: text-top; }
94
+
95
+ ol.text { margin-left: 2em; margin-right: 2em; }
96
+ ul.text { margin-left: 2em; margin-right: 2em; }
97
+ li { margin-left: 3em; }
98
+
99
+ /* RFC-2629 <spanx>s and <artwork>s. */
100
+ em { font-style: italic; }
101
+ strong { font-weight: bold; }
102
+ dfn { font-weight: bold; font-style: normal; }
103
+ cite { font-weight: normal; font-style: normal; }
104
+ tt { color: #036; }
105
+ tt, pre, pre dfn, pre em, pre cite, pre span {
106
+ font-family: "Courier New", Courier, monospace; font-size: small;
107
+ }
108
+ pre {
109
+ text-align: left; padding: 4px;
110
+ color: #000; background-color: #CCC;
111
+ }
112
+ pre dfn { color: #900; }
113
+ pre em { color: #66F; background-color: #FFC; font-weight: normal; }
114
+ pre .key { color: #33C; font-weight: bold; }
115
+ pre .id { color: #900; }
116
+ pre .str { color: #000; background-color: #CFF; }
117
+ pre .val { color: #066; }
118
+ pre .rep { color: #909; }
119
+ pre .oth { color: #000; background-color: #FCF; }
120
+ pre .err { background-color: #FCC; }
121
+
122
+ /* RFC-2629 <texttable>s. */
123
+ table.all, table.full, table.headers, table.none {
124
+ font-size: 85%;
125
+ max-width: 40em;
126
+ text-align: center; border-width: 2px;
127
+ vertical-align: top; border-collapse: collapse;
128
+ }
129
+ table.all, table.full { border-style: solid; border-color: black; }
130
+ table.headers, table.none { border-style: none; }
131
+ th {
132
+ font-weight: bold; border-color: black;
133
+ border-width: 2px 2px 3px 2px;
134
+ }
135
+ table.all th, table.full th { border-style: solid; }
136
+ table.headers th { border-style: none none solid none; }
137
+ table.none th { border-style: none; }
138
+ table.all td {
139
+ border-style: solid; border-color: #333;
140
+ border-width: 1px 2px;
141
+ }
142
+ table.full td, table.headers td, table.none td { border-style: none; }
143
+
144
+ hr { height: 1px; }
145
+ hr.insert {
146
+ width: 80%; border-style: none; border-width: 0;
147
+ color: #CCC; background-color: #CCC;
148
+ }
149
+ --></style>
150
+ </head>
151
+ <body>
152
+ <table summary="layout" cellpadding="0" cellspacing="2" class="TOCbug" align="right"><tr><td class="TOCbug"><a href="#toc">&nbsp;TOC&nbsp;</a></td></tr></table>
153
+ <table summary="layout" width="66%" border="0" cellpadding="0" cellspacing="0"><tr><td><table summary="layout" width="100%" border="0" cellpadding="2" cellspacing="1">
154
+ <tr><td class="header">Network Working Group</td><td class="header">D. McGrew</td></tr>
155
+ <tr><td class="header">Internet-Draft</td><td class="header">Cisco Systems, Inc.</td></tr>
156
+ <tr><td class="header">Intended status: Informational</td><td class="header">P. Patnala</td></tr>
157
+ <tr><td class="header">Expires: September 4, 2010</td><td class="header">Consultant</td></tr>
158
+ <tr><td class="header">&nbsp;</td><td class="header">A. Hoenes</td></tr>
159
+ <tr><td class="header">&nbsp;</td><td class="header">TR-Sys</td></tr>
160
+ <tr><td class="header">&nbsp;</td><td class="header">March 03, 2010</td></tr>
161
+ </table></td></tr></table>
162
+ <h1><br />Threshold Secret Sharing<br />draft-mcgrew-tss-03.txt</h1>
163
+
164
+ <h3>Abstract</h3>
165
+
166
+ <p>
167
+ Threshold Secret Sharing (TSS) provides a way to generate N
168
+ shares from a value, so that any M of those shares can be used
169
+ to reconstruct the original value, but any M-1 shares provide
170
+ no information about that value. This method can provide
171
+ shared access control on key material and other secrets that
172
+ must be strongly protected.
173
+
174
+ </p>
175
+ <p> This note defines a threshold secret sharing method based on
176
+ polynomial interpolation in GF(256) and a format for the
177
+ storage and transmission of shares. It also provides usage
178
+ guidance, describes how to test an implementation, and
179
+ supplies test cases.
180
+
181
+ </p>
182
+ <h3>Status of this Memo</h3>
183
+ <p>
184
+ This Internet-Draft is submitted to IETF in full
185
+ conformance with the provisions of BCP&nbsp;78 and BCP&nbsp;79.</p>
186
+ <p>
187
+ Internet-Drafts are working documents of the Internet Engineering
188
+ Task Force (IETF), its areas, and its working groups.
189
+ Note that other groups may also distribute working documents as
190
+ Internet-Drafts.</p>
191
+ <p>
192
+ Internet-Drafts are draft documents valid for a maximum of six months
193
+ and may be updated, replaced, or obsoleted by other documents at any time.
194
+ It is inappropriate to use Internet-Drafts as reference material or to cite
195
+ them other than as &ldquo;work in progress.&rdquo;</p>
196
+ <p>
197
+ The list of current Internet-Drafts can be accessed at
198
+ <a href='http://www.ietf.org/ietf/1id-abstracts.txt'>http://www.ietf.org/ietf/1id-abstracts.txt</a>.</p>
199
+ <p>
200
+ The list of Internet-Draft Shadow Directories can be accessed at
201
+ <a href='http://www.ietf.org/shadow.html'>http://www.ietf.org/shadow.html</a>.</p>
202
+ <p>
203
+ This Internet-Draft will expire on September 4, 2010.</p>
204
+
205
+ <h3>Copyright Notice</h3>
206
+ <p>
207
+ Copyright (c) 2010 IETF Trust and the persons identified as the
208
+ document authors. All rights reserved.</p>
209
+ <p>
210
+ This document is subject to BCP 78 and the IETF Trust's Legal
211
+ Provisions Relating to IETF Documents
212
+ (http://trustee.ietf.org/license-info) in effect on the date of
213
+ publication of this document. Please review these documents
214
+ carefully, as they describe your rights and restrictions with respect
215
+ to this document. Code Components extracted from this document must
216
+ include Simplified BSD License text as described in Section 4.e of
217
+ the Trust Legal Provisions and are provided without warranty as
218
+ described in the BSD License.</p>
219
+ <a name="toc"></a><br /><hr />
220
+ <h3>Table of Contents</h3>
221
+ <p class="toc">
222
+ <a href="#anchor1">1.</a>&nbsp;
223
+ Introduction<br />
224
+ &nbsp;&nbsp;&nbsp;&nbsp;<a href="#anchor2">1.1.</a>&nbsp;
225
+ Conventions Used In This Document<br />
226
+ <a href="#anchor3">2.</a>&nbsp;
227
+ Operations<br />
228
+ &nbsp;&nbsp;&nbsp;&nbsp;<a href="#anchor4">2.1.</a>&nbsp;
229
+ Create Shares<br />
230
+ &nbsp;&nbsp;&nbsp;&nbsp;<a href="#anchor5">2.2.</a>&nbsp;
231
+ Reconstruct Secret<br />
232
+ <a href="#anchor6">3.</a>&nbsp;
233
+ Polynomial Interpolation over GF(256)<br />
234
+ &nbsp;&nbsp;&nbsp;&nbsp;<a href="#anchor7">3.1.</a>&nbsp;
235
+ Field Representation<br />
236
+ &nbsp;&nbsp;&nbsp;&nbsp;<a href="#anchor8">3.2.</a>&nbsp;
237
+ Share Generation<br />
238
+ &nbsp;&nbsp;&nbsp;&nbsp;<a href="#anchor9">3.3.</a>&nbsp;
239
+ Secret Reconstruction<br />
240
+ <a href="#anchor10">4.</a>&nbsp;
241
+ Robust Threshold Secret Sharing<br />
242
+ &nbsp;&nbsp;&nbsp;&nbsp;<a href="#anchor11">4.1.</a>&nbsp;
243
+ RTSS Data Format<br />
244
+ <a href="#anchor12">5.</a>&nbsp;
245
+ Error Correction and Data Recovery<br />
246
+ &nbsp;&nbsp;&nbsp;&nbsp;<a href="#anchor13">5.1.</a>&nbsp;
247
+ Data Recovery<br />
248
+ &nbsp;&nbsp;&nbsp;&nbsp;<a href="#anchor14">5.2.</a>&nbsp;
249
+ Error Correction<br />
250
+ &nbsp;&nbsp;&nbsp;&nbsp;<a href="#anchor15">5.3.</a>&nbsp;
251
+ A Repetition Code<br />
252
+ <a href="#anchor16">6.</a>&nbsp;
253
+ Format<br />
254
+ <a href="#anchor17">7.</a>&nbsp;
255
+ Design and Rationale<br />
256
+ <a href="#testing">8.</a>&nbsp;
257
+ Testing<br />
258
+ <a href="#CASES">9.</a>&nbsp;
259
+ Test Cases<br />
260
+ <a href="#anchor18">10.</a>&nbsp;
261
+ Security Considerations<br />
262
+ <a href="#anchor19">11.</a>&nbsp;
263
+ IANA Considerations<br />
264
+ <a href="#anchor20">12.</a>&nbsp;
265
+ Acknowledgements<br />
266
+ <a href="#rfc.references1">13.</a>&nbsp;
267
+ References<br />
268
+ &nbsp;&nbsp;&nbsp;&nbsp;<a href="#rfc.references1">13.1.</a>&nbsp;
269
+ Normative References<br />
270
+ &nbsp;&nbsp;&nbsp;&nbsp;<a href="#rfc.references2">13.2.</a>&nbsp;
271
+ Informative References<br />
272
+ <a href="#anchor23">Appendix&nbsp;A.</a>&nbsp;
273
+ Mathematical Background<br />
274
+ <a href="#rfc.authors">&#167;</a>&nbsp;
275
+ Authors' Addresses<br />
276
+ </p>
277
+ <br clear="all" />
278
+
279
+ <a name="anchor1"></a><br /><hr />
280
+ <table summary="layout" cellpadding="0" cellspacing="2" class="TOCbug" align="right"><tr><td class="TOCbug"><a href="#toc">&nbsp;TOC&nbsp;</a></td></tr></table>
281
+ <a name="rfc.section.1"></a><h3>1.&nbsp;
282
+ Introduction</h3>
283
+
284
+ <p>
285
+ Threshold secret sharing (TSS) provides a way to generate N shares
286
+ from a value, so that any M of those shares can be used to
287
+ reconstruct the original value, but any M-1 shares provide no
288
+ information about that value. This method does not rely on any
289
+ assumptions about the complexity of solving a particular
290
+ computational problem (such as factoring); it is
291
+ information-theoretically secure. Each share is slightly longer than
292
+ the original secret.
293
+
294
+ </p>
295
+ <p>
296
+ In the context of secret sharing, the word "share" means a part of
297
+ something, and "sharing" means the act of breaking up into parts.
298
+ Readers may be confused if they think of "sharing" as meaning "giving
299
+ to or possessing with others".
300
+
301
+ </p>
302
+ <p>
303
+ TSS is especially useful whenever there is a need to ensure the
304
+ availability of a secret, yet there is a simultaneous need to reduce
305
+ the risk of compromise of the secret. By dividing the secret into
306
+ multiple shares, and distributing each share to a different trusted
307
+ entity, TSS reduces that risk while providing for the availability of
308
+ the secret. At the time that the secret is divided into shares, the
309
+ threshold defining a number of shares that are needed to reconstruct
310
+ the secret is set.
311
+
312
+ </p>
313
+ <p>
314
+ TSS can be applied to any secret key, such as one used
315
+ to encrypt data at rest, or to any private key, such as the signing
316
+ key used by a certificate authority. It can be used to create
317
+ a "backup" copy of a key, to protect against the loss or corruption
318
+ of an "active" copy of the key. Alternatively, TSS can be applied
319
+ to a key, and then the original key can be deleted, as a means
320
+ of enforcing shared access control on that key.
321
+
322
+ </p>
323
+ <a name="anchor2"></a><br /><hr />
324
+ <table summary="layout" cellpadding="0" cellspacing="2" class="TOCbug" align="right"><tr><td class="TOCbug"><a href="#toc">&nbsp;TOC&nbsp;</a></td></tr></table>
325
+ <a name="rfc.section.1.1"></a><h3>1.1.&nbsp;
326
+ Conventions Used In This Document</h3>
327
+
328
+ <p>The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
329
+ "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
330
+ document are to be interpreted as described in <a class='info' href='#RFC2119'>[RFC2119]<span> (</span><span class='info'>Bradner, S., &ldquo;Key words for use in RFCs to Indicate Requirement Levels,&rdquo; March&nbsp;1997.</span><span>)</span></a>.
331
+ </p>
332
+ <a name="anchor3"></a><br /><hr />
333
+ <table summary="layout" cellpadding="0" cellspacing="2" class="TOCbug" align="right"><tr><td class="TOCbug"><a href="#toc">&nbsp;TOC&nbsp;</a></td></tr></table>
334
+ <a name="rfc.section.2"></a><h3>2.&nbsp;
335
+ Operations</h3>
336
+
337
+ <p>
338
+ A threshold secret sharing system provides two operations: one that
339
+ creates a set of shares given a secret, and one that reconstructs the
340
+ secret, given a set of shares. This section defines the inputs and
341
+ outputs of these operations. The following sections describe the
342
+ details of TSS based on a polynomial interpolation in GF(256).
343
+
344
+ </p>
345
+ <a name="anchor4"></a><br /><hr />
346
+ <table summary="layout" cellpadding="0" cellspacing="2" class="TOCbug" align="right"><tr><td class="TOCbug"><a href="#toc">&nbsp;TOC&nbsp;</a></td></tr></table>
347
+ <a name="rfc.section.2.1"></a><h3>2.1.&nbsp;
348
+ Create Shares</h3>
349
+
350
+ <p>
351
+ This operation takes an octet string S, whose length is L octets,
352
+ and a threshold parameter M, and generates a set of N shares, any M
353
+ of which can be used to reconstruct the secret.
354
+
355
+ </p>
356
+ <p>
357
+ The secret S is treated as an unstructured sequence of octets. It
358
+ is not expected to be null-terminated. The number of octets in the
359
+ secret may be anywhere from zero up to 65,534 (that is, two less than 2^16).
360
+
361
+ </p>
362
+ <p>
363
+ The threshold parameter M is the number of shares that will be needed to
364
+ reconstruct the secret. This value may be any number between one
365
+ and 255, inclusive.
366
+
367
+ </p>
368
+ <p>
369
+ The number of shares N that will be generated MUST be
370
+ between the threshold value M and 255, inclusive. The upper limit
371
+ is particular to the TSS algorithm specified in this document.
372
+
373
+ </p>
374
+ <p>
375
+ If the operation can not be completed successfully, then an error
376
+ code should be returned.
377
+
378
+ </p>
379
+ <a name="anchor5"></a><br /><hr />
380
+ <table summary="layout" cellpadding="0" cellspacing="2" class="TOCbug" align="right"><tr><td class="TOCbug"><a href="#toc">&nbsp;TOC&nbsp;</a></td></tr></table>
381
+ <a name="rfc.section.2.2"></a><h3>2.2.&nbsp;
382
+ Reconstruct Secret</h3>
383
+
384
+ <p>
385
+ The reconstruct operation reconstructs the secret from a set of shares.
386
+
387
+ </p>
388
+ <p>
389
+ The number of shares N must be provided as a parameter.
390
+
391
+ </p>
392
+ <p>
393
+ The only other parameter is the list of shares themselves.
394
+ The shares should be treated as unstructured octet strings.
395
+
396
+ </p>
397
+ <p>
398
+ If the operation could be completed successfully, then the secret
399
+ value will be returned.
400
+
401
+ </p>
402
+ <p>
403
+ If the operation can not be completed successfully, then an error
404
+ code should be returned.
405
+
406
+ </p>
407
+ <a name="anchor6"></a><br /><hr />
408
+ <table summary="layout" cellpadding="0" cellspacing="2" class="TOCbug" align="right"><tr><td class="TOCbug"><a href="#toc">&nbsp;TOC&nbsp;</a></td></tr></table>
409
+ <a name="rfc.section.3"></a><h3>3.&nbsp;
410
+ Polynomial Interpolation over GF(256)</h3>
411
+
412
+ <p>
413
+ A finite field is a set of elements with associated addition,
414
+ multiplication, subtraction, and division operations. Each of those
415
+ operations acts on elements in the field, and returns an element in
416
+ the field. This specification uses the field GF(256), and each
417
+ element is represented as a single octet. There are many possible
418
+ ways to represent a finite field; below we define the field arithmetic
419
+ operations as having inputs and outputs that are octets. This fixes a
420
+ particular representation, without explicitly defining it, and it
421
+ avoids the issue of the bit-representation of octets. In this
422
+ representation, the zero field element is the zero octet, and
423
+ the unity field element is 0x01 (hexadecimal).
424
+
425
+ </p>
426
+ <a name="anchor7"></a><br /><hr />
427
+ <table summary="layout" cellpadding="0" cellspacing="2" class="TOCbug" align="right"><tr><td class="TOCbug"><a href="#toc">&nbsp;TOC&nbsp;</a></td></tr></table>
428
+ <a name="rfc.section.3.1"></a><h3>3.1.&nbsp;
429
+ Field Representation</h3>
430
+
431
+ <p>
432
+ Each element of the field GF(256) is represented as an octet. In the
433
+ following, each octet is represented as a hexadecimal number with a
434
+ leading "0x", as in ANSI/ISO C. The representation of the finite
435
+ field that we use is defined in terms of the addition, subtraction,
436
+ multiplication, and division operations. We define these operations
437
+ as taking two octets as input and returning a single octet as output.
438
+ In order to distinguish GF(256) arithmetic from integer arithmetic,
439
+ we denote addition and multiplication in GF(256) as
440
+ (+) and (*), respectively. We also refer to the summation and
441
+ product operations in GF(256) as GF_SUM and GF_PRODUCT, respectively.
442
+
443
+ </p>
444
+ <p>
445
+ The multiplication in GF(256) and its inverse operation (division)
446
+ are defined in terms of two tables, the EXP table
447
+ (<a class='info' href='#exp'>Figure&nbsp;1<span> (</span><span class='info'>The EXP table. The elements are to be read from top to bottom and left to right. For example, EXP[0] is 0x01, EXP[8] is 0x1a, and so on. Note that the EXP[255] entry is present only as a placeholder, and is not actually used in any computation.</span><span>)</span></a>) and the LOG table (<a class='info' href='#log'>Figure&nbsp;2<span> (</span><span class='info'>The LOG table. The elements are to be read from top to bottom and left to right. For example, LOG[1] is 0, LOG[8] is 75, and so on. Note that the LOG[0] entry is present only as a placeholder, and is not actually used in any computation.</span><span>)</span></a>), which
448
+ define the exponential function and the logarithmic function,
449
+ respectively. The ith elements of these tables are denoted as EXP[i]
450
+ and LOG[i]. LOG takes a non-zero field element as
451
+ input, and returns an integer, and EXP takes an integer and returns a
452
+ field element.
453
+
454
+ </p>
455
+ <p>
456
+ The addition operation returns the bitwise exclusive-or of its
457
+ operands. The subtraction operation is identical, because the field
458
+ has characteristic two.
459
+
460
+ </p>
461
+ <p>
462
+ The multiplication operation takes two elements X and Y as input and
463
+ proceeds as follows. If either X or Y is equal to 0x00, then the
464
+ operation returns 0x00. Otherwise, the value EXP[ (LOG[X] + LOG[Y]) modulo
465
+ 255] is returned.
466
+
467
+ </p>
468
+ <p>
469
+ The division operation takes a dividend X and a divisor Y as input and
470
+ computes X divided by Y as follows. If X is equal to 0x00, then the
471
+ operation returns 0x00. If Y is equal to 0x00, then the input is invalid, and
472
+ an error condition occurs. Otherwise, the value EXP[ (LOG[X] - LOG[Y]) modulo
473
+ 255] is returned.
474
+
475
+ </p>
476
+ <p>
477
+ The operation of raising a field element X to a power i, where i is a
478
+ positive integer, is denoted as X^i, and it consists of multiplying X
479
+ by itself i times.
480
+
481
+ </p><br /><hr class="insert" />
482
+ <a name="exp"></a>
483
+ <div style='display: table; width: 0; margin-left: 3em; margin-right: auto'><pre>
484
+ 0x01, 0x03, 0x05, 0x0f, 0x11, 0x33, 0x55, 0xff,
485
+ 0x1a, 0x2e, 0x72, 0x96, 0xa1, 0xf8, 0x13, 0x35,
486
+ 0x5f, 0xe1, 0x38, 0x48, 0xd8, 0x73, 0x95, 0xa4,
487
+ 0xf7, 0x02, 0x06, 0x0a, 0x1e, 0x22, 0x66, 0xaa,
488
+ 0xe5, 0x34, 0x5c, 0xe4, 0x37, 0x59, 0xeb, 0x26,
489
+ 0x6a, 0xbe, 0xd9, 0x70, 0x90, 0xab, 0xe6, 0x31,
490
+ 0x53, 0xf5, 0x04, 0x0c, 0x14, 0x3c, 0x44, 0xcc,
491
+ 0x4f, 0xd1, 0x68, 0xb8, 0xd3, 0x6e, 0xb2, 0xcd,
492
+ 0x4c, 0xd4, 0x67, 0xa9, 0xe0, 0x3b, 0x4d, 0xd7,
493
+ 0x62, 0xa6, 0xf1, 0x08, 0x18, 0x28, 0x78, 0x88,
494
+ 0x83, 0x9e, 0xb9, 0xd0, 0x6b, 0xbd, 0xdc, 0x7f,
495
+ 0x81, 0x98, 0xb3, 0xce, 0x49, 0xdb, 0x76, 0x9a,
496
+ 0xb5, 0xc4, 0x57, 0xf9, 0x10, 0x30, 0x50, 0xf0,
497
+ 0x0b, 0x1d, 0x27, 0x69, 0xbb, 0xd6, 0x61, 0xa3,
498
+ 0xfe, 0x19, 0x2b, 0x7d, 0x87, 0x92, 0xad, 0xec,
499
+ 0x2f, 0x71, 0x93, 0xae, 0xe9, 0x20, 0x60, 0xa0,
500
+ 0xfb, 0x16, 0x3a, 0x4e, 0xd2, 0x6d, 0xb7, 0xc2,
501
+ 0x5d, 0xe7, 0x32, 0x56, 0xfa, 0x15, 0x3f, 0x41,
502
+ 0xc3, 0x5e, 0xe2, 0x3d, 0x47, 0xc9, 0x40, 0xc0,
503
+ 0x5b, 0xed, 0x2c, 0x74, 0x9c, 0xbf, 0xda, 0x75,
504
+ 0x9f, 0xba, 0xd5, 0x64, 0xac, 0xef, 0x2a, 0x7e,
505
+ 0x82, 0x9d, 0xbc, 0xdf, 0x7a, 0x8e, 0x89, 0x80,
506
+ 0x9b, 0xb6, 0xc1, 0x58, 0xe8, 0x23, 0x65, 0xaf,
507
+ 0xea, 0x25, 0x6f, 0xb1, 0xc8, 0x43, 0xc5, 0x54,
508
+ 0xfc, 0x1f, 0x21, 0x63, 0xa5, 0xf4, 0x07, 0x09,
509
+ 0x1b, 0x2d, 0x77, 0x99, 0xb0, 0xcb, 0x46, 0xca,
510
+ 0x45, 0xcf, 0x4a, 0xde, 0x79, 0x8b, 0x86, 0x91,
511
+ 0xa8, 0xe3, 0x3e, 0x42, 0xc6, 0x51, 0xf3, 0x0e,
512
+ 0x12, 0x36, 0x5a, 0xee, 0x29, 0x7b, 0x8d, 0x8c,
513
+ 0x8f, 0x8a, 0x85, 0x94, 0xa7, 0xf2, 0x0d, 0x17,
514
+ 0x39, 0x4b, 0xdd, 0x7c, 0x84, 0x97, 0xa2, 0xfd,
515
+ 0x1c, 0x24, 0x6c, 0xb4, 0xc7, 0x52, 0xf6, 0x00
516
+ </pre></div><table border="0" cellpadding="0" cellspacing="2" align="center"><tr><td align="center"><font face="monaco, MS Sans Serif" size="1"><b>&nbsp;Figure&nbsp;1: The EXP table. The elements are to be read from top to bottom and left to right. For example, EXP[0] is 0x01, EXP[8] is 0x1a, and so on. Note that the EXP[255] entry is present only as a placeholder, and is not actually used in any computation.&nbsp;</b></font><br /></td></tr></table><hr class="insert" />
517
+ <br /><hr class="insert" />
518
+ <a name="log"></a>
519
+ <div style='display: table; width: 0; margin-left: 3em; margin-right: auto'><pre>
520
+ 0, 0, 25, 1, 50, 2, 26, 198,
521
+ 75, 199, 27, 104, 51, 238, 223, 3,
522
+ 100, 4, 224, 14, 52, 141, 129, 239,
523
+ 76, 113, 8, 200, 248, 105, 28, 193,
524
+ 125, 194, 29, 181, 249, 185, 39, 106,
525
+ 77, 228, 166, 114, 154, 201, 9, 120,
526
+ 101, 47, 138, 5, 33, 15, 225, 36,
527
+ 18, 240, 130, 69, 53, 147, 218, 142,
528
+ 150, 143, 219, 189, 54, 208, 206, 148,
529
+ 19, 92, 210, 241, 64, 70, 131, 56,
530
+ 102, 221, 253, 48, 191, 6, 139, 98,
531
+ 179, 37, 226, 152, 34, 136, 145, 16,
532
+ 126, 110, 72, 195, 163, 182, 30, 66,
533
+ 58, 107, 40, 84, 250, 133, 61, 186,
534
+ 43, 121, 10, 21, 155, 159, 94, 202,
535
+ 78, 212, 172, 229, 243, 115, 167, 87,
536
+ 175, 88, 168, 80, 244, 234, 214, 116,
537
+ 79, 174, 233, 213, 231, 230, 173, 232,
538
+ 44, 215, 117, 122, 235, 22, 11, 245,
539
+ 89, 203, 95, 176, 156, 169, 81, 160,
540
+ 127, 12, 246, 111, 23, 196, 73, 236,
541
+ 216, 67, 31, 45, 164, 118, 123, 183,
542
+ 204, 187, 62, 90, 251, 96, 177, 134,
543
+ 59, 82, 161, 108, 170, 85, 41, 157,
544
+ 151, 178, 135, 144, 97, 190, 220, 252,
545
+ 188, 149, 207, 205, 55, 63, 91, 209,
546
+ 83, 57, 132, 60, 65, 162, 109, 71,
547
+ 20, 42, 158, 93, 86, 242, 211, 171,
548
+ 68, 17, 146, 217, 35, 32, 46, 137,
549
+ 180, 124, 184, 38, 119, 153, 227, 165,
550
+ 103, 74, 237, 222, 197, 49, 254, 24,
551
+ 13, 99, 140, 128, 192, 247, 112, 7
552
+ </pre></div><table border="0" cellpadding="0" cellspacing="2" align="center"><tr><td align="center"><font face="monaco, MS Sans Serif" size="1"><b>&nbsp;Figure&nbsp;2: The LOG table.
553
+ The elements are to be read from top to bottom and left to right. For
554
+ example, LOG[1] is 0, LOG[8] is 75, and so on. Note that the LOG[0]
555
+ entry is present only as a placeholder, and is not actually used in
556
+ any computation.&nbsp;</b></font><br /></td></tr></table><hr class="insert" />
557
+
558
+ <a name="anchor8"></a><br /><hr />
559
+ <table summary="layout" cellpadding="0" cellspacing="2" class="TOCbug" align="right"><tr><td class="TOCbug"><a href="#toc">&nbsp;TOC&nbsp;</a></td></tr></table>
560
+ <a name="rfc.section.3.2"></a><h3>3.2.&nbsp;
561
+ Share Generation</h3>
562
+
563
+ <p>
564
+ We first define how to share a single octet.
565
+
566
+ </p>
567
+ <p>
568
+ The function f takes as input a single octet X that is not equal to
569
+ 0x00, and an array A of M octets, and returns a single octet. It is
570
+ defined as
571
+ </p>
572
+ <div style='display: table; width: 0; margin-left: 3em; margin-right: auto'><pre>
573
+ f(X, A) = GF_SUM A[i] (*) X^i
574
+ i=0,M-1
575
+ </pre></div><p>
576
+
577
+ Because the GF_SUM summation takes place over GF(256), each addition uses the
578
+ exclusive-or operation, and not integer addition. Note that the
579
+ successive values of X^i used in the computation of the function f can
580
+ be computed by multiplying a value by X once for each term in the
581
+ summation.
582
+
583
+ </p>
584
+ <p>
585
+ To create N shares from a secret, with a threshold of M, the following
586
+ procedure, or any equivalent method, is used:
587
+ </p>
588
+ <blockquote class="text">
589
+ <p>
590
+ For each share, a distinct Share Index is generated. Each Share Index is an octet
591
+ other than the all-zero octet. All of the Share Indexes used during a share
592
+ generation process MUST be distinct.
593
+
594
+ </p>
595
+ <p>
596
+ Each share is initialized to the Share Index associated with that
597
+ share.
598
+
599
+ </p>
600
+ <p>
601
+ For each octet of the secret, the following steps are performed.
602
+ An array A of M octets is created, in which the array element
603
+ A[0] contains the octet of the secret, and the array elements A[1],
604
+ ..., A[M-1] contain octets that are selected independently and
605
+ uniformly at random. For each share, the value of f(X,A) is
606
+ computed, where X is the Share Index of the share, and the resulting
607
+ octet is appended to the share.
608
+
609
+ </p>
610
+ </blockquote><p>
611
+ After the procedure is done, each share contains one more octet
612
+ than does the secret. The share format can be illustrated as
613
+ </p>
614
+ <div style='display: table; width: 0; margin-left: 3em; margin-right: auto'><pre>
615
+ +---------+---------+---------+---------+---------+
616
+ | X | f(X,A) | f(X,B) | f(X,C) | ... |
617
+ +---------+---------+---------+---------+---------+
618
+ </pre></div><p>
619
+
620
+ where X is the Share Index of the share, and A, B, and C are arrays of M
621
+ octets; A[0] is equal to the first octet of the secret, B[0] is equal
622
+ to the second octet of the secret, and so on.
623
+
624
+ </p>
625
+ <a name="anchor9"></a><br /><hr />
626
+ <table summary="layout" cellpadding="0" cellspacing="2" class="TOCbug" align="right"><tr><td class="TOCbug"><a href="#toc">&nbsp;TOC&nbsp;</a></td></tr></table>
627
+ <a name="rfc.section.3.3"></a><h3>3.3.&nbsp;
628
+ Secret Reconstruction</h3>
629
+
630
+ <p>
631
+ We define the function L_i (for i from 0 to M-1, inclusive) that takes
632
+ as input an array U of M pairwise distinct octets, and is defined as
633
+ </p>
634
+ <div style='display: table; width: 0; margin-left: 3em; margin-right: auto'><pre>
635
+ U[j]
636
+ L_i(U) = GF_PRODUCT -------------
637
+ j=0,M-1, j!=i U[j] (+) U[i]
638
+ </pre></div><p>
639
+
640
+ Here the product runs over all of the values of j from 0 to M-1,
641
+ excluding the value i. (This function is equal to ith Lagrange
642
+ function, evaluated at zero.) Note that the denominator in the above
643
+ expression is never equal to zero because U[i] is not equal to U[j]
644
+ whenever i is not equal to j.
645
+
646
+ </p>
647
+ <p>
648
+ We denote the interpolation function as I. This function takes as
649
+ input two arrays U and V, each consisting of M
650
+ octets, and returns a single octet; it is defined as
651
+ </p>
652
+ <div style='display: table; width: 0; margin-left: 3em; margin-right: auto'><pre>
653
+ I(U, V) = GF_SUM L_i(U) (*) V[i].
654
+ i=0,M-1
655
+ </pre></div><p>
656
+
657
+ To reconstruct a secret from a set of shares, the following
658
+ procedure, or any equivalent method, is used:
659
+ </p>
660
+ <blockquote class="text">
661
+ <p>
662
+ If the number of shares provided as input to the secret
663
+ reconstruction operation is greater than the threshold M, then M
664
+ of those shares are selected for use in the operation. The method
665
+ used to select the shares can be arbitrary.
666
+
667
+ </p>
668
+ <p>
669
+ If the shares are not equal length, then the input
670
+ is inconsistent. An error should be reported,
671
+ and processing must halt.
672
+
673
+ </p>
674
+ <p>
675
+ The output string is initialized to the empty (zero-length)
676
+ octet string.
677
+
678
+ </p>
679
+ <p>
680
+ The octet array U is formed by setting U[i] equal to
681
+ the first octet of the ith share. (Note that the
682
+ ordering of the shares is arbitrary, but must
683
+ be consistent throughout this algorithm.)
684
+
685
+ </p>
686
+ <p>
687
+ The initial octet is stripped from each share.
688
+
689
+ </p>
690
+ <p>
691
+ If any two elements of the array U have the same value,
692
+ then an error condition has occurred; this fact should
693
+ be reported, then the procedure must halt.
694
+
695
+ </p>
696
+ <p>
697
+ For each octet of the shares, the following steps are performed.
698
+ An array V of M octets is created, in which the array element
699
+ V[i] contains the octet from the ith share.
700
+ The value of I(U, V) is computed, then appended
701
+ to the output string.
702
+
703
+ </p>
704
+ <p>
705
+ The output string is returned.
706
+
707
+ </p>
708
+ </blockquote><p>
709
+ After the procedure is done, the string that is returned contains one
710
+ fewer octet than do the shares.
711
+
712
+ </p>
713
+ <a name="anchor10"></a><br /><hr />
714
+ <table summary="layout" cellpadding="0" cellspacing="2" class="TOCbug" align="right"><tr><td class="TOCbug"><a href="#toc">&nbsp;TOC&nbsp;</a></td></tr></table>
715
+ <a name="rfc.section.4"></a><h3>4.&nbsp;
716
+ Robust Threshold Secret Sharing</h3>
717
+
718
+ <p>
719
+ A robust TSS system, or RTSS, is one that provides security even when
720
+ one or more of the shares that are provided to the reconstruction
721
+ algorithm may be crafted by a malicious adversary. In addition, an
722
+ RTSS system will detect unintentional corruption of the shares.
723
+
724
+ </p>
725
+ <p>
726
+ We provide robustness by adding a pre-processing step to the TSS share
727
+ generation step, and a post-processing step to the TSS secret
728
+ reconstruction step. The pre-processing consists of taking the secret
729
+ S, then appending a hash H(S) to it. The post-processing step
730
+ consists of verifying that the reconstructed secret has the form S ||
731
+ H(S), where the symbol || denotes the concatenation operation. The
732
+ hash function must be collision-resistant; all RTSS implementations
733
+ MUST support the SHA-256 hash algorithm <a class='info' href='#SHS'>[SHS]<span> (</span><span class='info'>, &ldquo;FIPS 180-3: Secure Hash Standard,,&rdquo; 2008.</span><span>)</span></a>.
734
+
735
+ </p>
736
+ <p>
737
+ If the robust reconstruction operation fails, and the number of shares
738
+ that are available is greater than the threshold, then the operation
739
+ MAY be tried on a different set of shares.
740
+
741
+ </p>
742
+ <p>
743
+ An RTSS system can perform an additional operation that verifies
744
+ the validity of a set of shares. This operation has
745
+ the same inputs as the Reconstruct operation. Its output
746
+ consists of an indication whether or not the secret could
747
+ be reconstructed, but the secret itself is not returned.
748
+ This operation may be useful in a situation in where the availability
749
+ of a secret must be verified, for example, as part of an audit.
750
+
751
+ </p>
752
+ <a name="anchor11"></a><br /><hr />
753
+ <table summary="layout" cellpadding="0" cellspacing="2" class="TOCbug" align="right"><tr><td class="TOCbug"><a href="#toc">&nbsp;TOC&nbsp;</a></td></tr></table>
754
+ <a name="rfc.section.4.1"></a><h3>4.1.&nbsp;
755
+ RTSS Data Format</h3>
756
+
757
+ <p>
758
+ We use a data format with the following fields, in order:
759
+ </p>
760
+ <blockquote class="text"><dl>
761
+ <dt>Identifier.</dt>
762
+ <dd>
763
+ This field contains 16 octets. It identifies the secret with
764
+ which a share is associated. All of the shares associated with a
765
+ particular secret MUST use the same value Identifier. When a
766
+ secret is reconstructed, the Identifier fields of each of the
767
+ shares used as input MUST have the same value. The value
768
+ of the Identifier should be chosen so that it is unique, but
769
+ the details on how it is chosen are out of scope of this document.
770
+
771
+ </dd>
772
+ <dt>Hash Algorithm Identifier.</dt>
773
+ <dd>
774
+ This field contains a single octet that indicates the hash
775
+ function used in the RTSS processing, if any. A value of zero
776
+ indicates that no hash algorithm was used, no hash was
777
+ appended to the secret, and no RTSS check should be performed
778
+ after the reconstruction of the secret. Other
779
+ values are defined in the table below.
780
+
781
+ </dd>
782
+ <dt>Threshold.</dt>
783
+ <dd>
784
+ This field contains a single octet that indicates the number of
785
+ shares required to reconstruct the secret. This field MUST be
786
+ checked during the reconstruction process, and that process MUST
787
+ halt and return an error if the number of shares available is
788
+ fewer than the value indicated in this field.
789
+
790
+ </dd>
791
+ <dt>Share Length.</dt>
792
+ <dd>
793
+ This field is two octets long. It contains the
794
+ number of octets in the Share Data field, represented
795
+ as an unsigned integer in network byte order.
796
+
797
+ </dd>
798
+ <dt>Share Data.</dt>
799
+ <dd>
800
+ This field has a length that is a variable number
801
+ of octets. It contains the actual share data.
802
+
803
+ </dd>
804
+ </dl></blockquote><p>
805
+ This format is illustrated in <a class='info' href='#ShareFormat'>Figure&nbsp;3<span> (</span><span class='info'>Share Format. </span><span>)</span></a>.
806
+ <br /><hr class="insert" />
807
+ <a name="ShareFormat"></a>
808
+ </p>
809
+ <div style='display: table; width: 0; margin-left: 3em; margin-right: auto'><pre>
810
+ 0 1 2 3
811
+ 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
812
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
813
+ | |
814
+ | Identifier |
815
+ | |
816
+ | |
817
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
818
+ | Hash Alg. Id. | Threshold | Share Length |
819
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
820
+ : :
821
+ : Share Data :
822
+ : :
823
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
824
+ </pre></div><p>
825
+ <table border="0" cellpadding="0" cellspacing="2" align="center"><tr><td align="center"><font face="monaco, MS Sans Serif" size="1"><b>&nbsp;Figure&nbsp;3: Share Format. &nbsp;</b></font><br /></td></tr></table><hr class="insert" />
826
+
827
+
828
+
829
+ </p>
830
+ <p>
831
+ The correspondence between the Hash Algorithm Identifier field and
832
+ the hash algorithm used in RTSS is defined by the table below.
833
+ Each hash function outputs a fixed number of octets; the length
834
+ of the output of each hash is indicated in the table.
835
+
836
+ </p><table class="full" align="center" border="0" cellpadding="2" cellspacing="2">
837
+ <col align="left"><col align="right"><col align="right">
838
+ <tr><th align="left">Hash Algorithm</th><th align="right">Hash Algorithm Identifier</th><th align="right">Length (octets)</th></tr>
839
+ <tr>
840
+ <td align="left">NULL_HASH </td>
841
+ <td align="right"> 0 </td>
842
+ <td align="right"> 0 </td>
843
+ </tr>
844
+ <tr>
845
+ <td align="left">SHA-1 <a class='info' href='#SHS'>[SHS]<span> (</span><span class='info'>, &ldquo;FIPS 180-3: Secure Hash Standard,,&rdquo; 2008.</span><span>)</span></a> </td>
846
+ <td align="right">1 </td>
847
+ <td align="right">20 </td>
848
+ </tr>
849
+ <tr>
850
+ <td align="left">SHA-256 <a class='info' href='#SHS'>[SHS]<span> (</span><span class='info'>, &ldquo;FIPS 180-3: Secure Hash Standard,,&rdquo; 2008.</span><span>)</span></a> </td>
851
+ <td align="right">2 </td>
852
+ <td align="right">32 </td>
853
+ </tr>
854
+ <tr>
855
+ <td align="left">RESERVED </td>
856
+ <td align="right">3-127 </td>
857
+ <td align="right"> not applicable </td>
858
+ </tr>
859
+ <tr>
860
+ <td align="left">Vendor specific </td>
861
+ <td align="right">128-255 </td>
862
+ <td align="right"> not applicable </td>
863
+ </tr>
864
+ </table>
865
+ <br clear="all" />
866
+
867
+ <a name="anchor12"></a><br /><hr />
868
+ <table summary="layout" cellpadding="0" cellspacing="2" class="TOCbug" align="right"><tr><td class="TOCbug"><a href="#toc">&nbsp;TOC&nbsp;</a></td></tr></table>
869
+ <a name="rfc.section.5"></a><h3>5.&nbsp;
870
+ Error Correction and Data Recovery</h3>
871
+
872
+ <p>
873
+ TSS and RTSS are suitable for the protection of long-term key
874
+ material. In such applications, it is highly desirable to provide
875
+ protection against the accidental corruption of the shares.
876
+ This section defines data formats that can be used
877
+ to protect shares. These formats are optional extensions
878
+ to the basic TSS and RTSS systems.
879
+
880
+ </p>
881
+ <a name="anchor13"></a><br /><hr />
882
+ <table summary="layout" cellpadding="0" cellspacing="2" class="TOCbug" align="right"><tr><td class="TOCbug"><a href="#toc">&nbsp;TOC&nbsp;</a></td></tr></table>
883
+ <a name="rfc.section.5.1"></a><h3>5.1.&nbsp;
884
+ Data Recovery</h3>
885
+
886
+ <p>
887
+ To protect against the corruption of the filesystem that is holding
888
+ the shares, a "magic number" can be used as the initial part of the
889
+ share data format <a class='info' href='#FILESIG'>[FILESIG]<span> (</span><span class='info'>Kessler, G., &ldquo;File Signatures Table,&rdquo; 2007.</span><span>)</span></a>. A magic number is a
890
+ constant data string that is chosen arbitrarily, but which is unlikely
891
+ to appear in other contexts, and thus can be used to recognize a data
892
+ format when it appears in an arbitrary data stream. The use of a
893
+ magic number in the data format for a share greatly simplifies the
894
+ task of finding a share after a filesystem has been corrupted.
895
+
896
+ </p>
897
+ <p>
898
+ The 8-octet magic number f628f91b52023d11 (hexadecimal) SHOULD be
899
+ used. The number was selected randomly from a uniform distribution.
900
+
901
+ </p>
902
+ <a name="anchor14"></a><br /><hr />
903
+ <table summary="layout" cellpadding="0" cellspacing="2" class="TOCbug" align="right"><tr><td class="TOCbug"><a href="#toc">&nbsp;TOC&nbsp;</a></td></tr></table>
904
+ <a name="rfc.section.5.2"></a><h3>5.2.&nbsp;
905
+ Error Correction</h3>
906
+
907
+ <p>
908
+ To protect against data corruption in the underlying media, an
909
+ error-correcting code (ECC) can be used. An ECC system consists of an
910
+ encoding function, which maps the data to a codeword, and a decoding
911
+ function, which maps a (possibly corrupted) codeword to the data. The
912
+ simplest such code is a repetition code, in which multiple copies of
913
+ the data are stored. In this specification, all ECCs must be
914
+ systematic, that is, the data must appear as the initial bytes of the
915
+ codeword. This property allows an implementation of the ECC to avoid
916
+ the implementation of the full decoding algorithm.
917
+
918
+ </p>
919
+ <p>
920
+ We use a data format that incorporates the following fields, in order:
921
+ </p>
922
+ <blockquote class="text"><dl>
923
+ <dt>Encoding Type.</dt>
924
+ <dd>
925
+ This field is four octets long. It contains an unsigned integer
926
+ in network byte order that denotes the type of the encoding, i.e.
927
+ the algorithm that was used during the encoding process.
928
+
929
+ </dd>
930
+ <dt>Data Length.</dt>
931
+ <dd>
932
+ This field is four octets long. It contains an unsigned integer
933
+ in network byte order that denotes the number of octets
934
+ in the Data field.
935
+
936
+ </dd>
937
+ <dt>Redundancy Length.</dt>
938
+ <dd>
939
+ This field is four octets long. It contains an unsigned integer
940
+ in network byte order that denotes the number of octets
941
+ in the Redundancy field.
942
+
943
+ </dd>
944
+ <dt>Data.</dt>
945
+ <dd>
946
+ This field has a length that is a variable number of octets, which
947
+ is indicated by the Data Length field. It
948
+ contains the data that is intended to be conveyed by the code. If
949
+ no data corruption has occurred, then this field will contain the
950
+ data that was originally encoded.
951
+
952
+ </dd>
953
+ <dt>Redundancy.</dt>
954
+ <dd>
955
+ This field has a length that is a variable number of octets, which
956
+ is indicated by the Redundancy Length field. It
957
+ contains information that can be used to check whether or not
958
+ there are any errors in the Data field, and to correct some
959
+ errors that may have occurred.
960
+
961
+ </dd>
962
+ </dl></blockquote><p>
963
+ This format is illustrated in <a class='info' href='#ECF'>Figure&nbsp;4<span> (</span><span class='info'>Error Correction Format. </span><span>)</span></a>.
964
+ <br /><hr class="insert" />
965
+ <a name="ECF"></a>
966
+ </p>
967
+ <div style='display: table; width: 0; margin-left: 3em; margin-right: auto'><pre>
968
+ +--------------------------------+
969
+ | Encoding Type |
970
+ | (4 octets) |
971
+ +--------------------------------+
972
+ | Data Length |
973
+ | (4 octets) |
974
+ +--------------------------------+
975
+ | Redundancy Length |
976
+ | (4 octets) |
977
+ +--------------------------------+
978
+ | |
979
+ ~ Data ~
980
+ | (variable number of octets) |
981
+ | |
982
+ +--------------------------------+
983
+ | |
984
+ ~ Redundancy ~
985
+ | (variable number of octets) |
986
+ | |
987
+ +--------------------------------+
988
+ </pre></div><p>
989
+ <table border="0" cellpadding="0" cellspacing="2" align="center"><tr><td align="center"><font face="monaco, MS Sans Serif" size="1"><b>&nbsp;Figure&nbsp;4: Error Correction Format. &nbsp;</b></font><br /></td></tr></table><hr class="insert" />
990
+
991
+
992
+ </p>
993
+ <p>
994
+ If a code has a free parameter, the value of that parameter
995
+ MUST be inferable from the values of the Data Length
996
+ and Redundancy Length fields.
997
+
998
+ </p>
999
+ <a name="anchor15"></a><br /><hr />
1000
+ <table summary="layout" cellpadding="0" cellspacing="2" class="TOCbug" align="right"><tr><td class="TOCbug"><a href="#toc">&nbsp;TOC&nbsp;</a></td></tr></table>
1001
+ <a name="rfc.section.5.3"></a><h3>5.3.&nbsp;
1002
+ A Repetition Code</h3>
1003
+
1004
+ <p>
1005
+ This section defines a format for a repetition code, which is a
1006
+ particular error correcting code that is conceptually simple and easy
1007
+ to implement.
1008
+
1009
+ </p>
1010
+ <p>
1011
+ The value of the Encoding Type field is equal to 0000001 (hexadecimal).
1012
+
1013
+ </p>
1014
+ <p>
1015
+ The Redundancy field contains R copies of the Data field, where R is
1016
+ an even number.
1017
+ The Redundancy Length is equal to the Data Length times R. The
1018
+ value of R MAY be equal to zero, in which case no error
1019
+ detection or correction is possible (but implementation is
1020
+ simple). The value of R SHOULD be at least two.
1021
+
1022
+ </p>
1023
+ <p>
1024
+ For example, if the data that is encoded is equal to 68656c6c6f (hexadecimal),
1025
+ then the ECF data with R=2 would be
1026
+ </p>
1027
+ <div style='display: table; width: 0; margin-left: 3em; margin-right: auto'><pre>
1028
+ &lt;- ET -&gt;&lt;- DL -&gt;&lt;- RL -&gt;&lt;- Data -&gt;&lt;--- Redundancy ---&gt;
1029
+ 00000001000000050000000a68656c6c6f68656c6c6f68656c6c6f
1030
+ </pre></div><p>
1031
+
1032
+
1033
+ </p>
1034
+ <p>
1035
+ To check the Data field for errors, that field should be compared
1036
+ with each of its copies in the redundancy field.
1037
+
1038
+ </p>
1039
+ <p>
1040
+ The Repetition Code can be decoded by using majority-logic decoding.
1041
+ Considering both the Data and Redundancy fields, there are R+1
1042
+ (possibly corrupted) copies of the original data, where R+1 is an odd
1043
+ number. The decoding process independently considers each octet of
1044
+ the Data field, and the corresponding octets of the copies that appear in
1045
+ the Redundancy field. That is, the ith octet of the Data, plus octets
1046
+ i, L+i, 2L+i, ... , RL+i, are analyzed independent from all other
1047
+ octets, where L is the value of the Data Length field. The
1048
+ following algorithm is applied to these octets.
1049
+ The binary representation of each octet is
1050
+ considered. For each bit in that representation, if more
1051
+ of the copies have a "1" in that position than have a "0"
1052
+ in that position, then that position is decoded to the value "1";
1053
+ otherwise, it is decoded to "0". This process is repeated
1054
+ for all of the bit position. After all of the bits in the
1055
+ octet have been decoded, the value of the ith octet
1056
+ in the output of the decoding algorithm is computed, using
1057
+ the same binary representation as before.
1058
+
1059
+ </p>
1060
+ <p>
1061
+ For example, if the data that was encoded in the previous
1062
+ example was corrupted to the value
1063
+ </p>
1064
+ <div style='display: table; width: 0; margin-left: 3em; margin-right: auto'><pre>
1065
+ &lt;- ET -&gt;&lt;- DL -&gt;&lt;- RL -&gt;&lt;- Data -&gt;&lt;--- Redundancy ---&gt;
1066
+ 00000001000000050000000a68656c6c2f68656c6cef68656c6c6f
1067
+ ** ** **
1068
+ </pre></div><p>
1069
+
1070
+ then decoding would proceed as follows. The fifth octet of the Data
1071
+ field is equal to 2f, while the fifth and tenth octets of the
1072
+ Redundancy field are equal to ef and 6f, respectively. Using a bit
1073
+ representation with the most significant bit on the left, the octets
1074
+ and the "majority" octet are as follows:
1075
+ </p>
1076
+ <div style='display: table; width: 0; margin-left: 3em; margin-right: auto'><pre>
1077
+ hex binary
1078
+ octet from Data 2f 00101111
1079
+ octet from first copy ef 11101111
1080
+ octet from second copy 6f 01101111
1081
+ ----------------------------------------
1082
+ majority 6f 01101111
1083
+ </pre></div><p>
1084
+
1085
+ Thus the fifth octet in the output of the decoding algorithm
1086
+ will be 6f.
1087
+
1088
+ </p>
1089
+ <a name="anchor16"></a><br /><hr />
1090
+ <table summary="layout" cellpadding="0" cellspacing="2" class="TOCbug" align="right"><tr><td class="TOCbug"><a href="#toc">&nbsp;TOC&nbsp;</a></td></tr></table>
1091
+ <a name="rfc.section.6"></a><h3>6.&nbsp;
1092
+ Format</h3>
1093
+
1094
+ <p>
1095
+ This section summarizes the order of processing for when secret
1096
+ sharing is performed using the facilities for robustness (RTSS), error
1097
+ correction (ECC), and data recovery (Magic Number), and clarifies the
1098
+ relationships between data formats. This processing can be viewed as
1099
+ a layered model, as illustrated in <a class='info' href='#model'>Figure&nbsp;5<span> (</span><span class='info'>The combined processing model.</span><span>)</span></a>. (Note that
1100
+ we have not adhered to a strictly layered model, for the sake of
1101
+ simplicity, since the format defined by RTSS is used after the shares
1102
+ are generated.)
1103
+
1104
+ </p>
1105
+ <p>
1106
+ When RTSS is used, it is applied to the secret before the
1107
+ sharing operation (and is removed from the secret after
1108
+ the reconstruction operation). The RTSS data format
1109
+ MUST be used.
1110
+
1111
+ </p>
1112
+ <p>
1113
+ When ECC is used, it is applied to the RTSS data after the sharing
1114
+ operation, so that the ECC Data field contains the entire RTSS Data
1115
+ Format.
1116
+
1117
+ </p>
1118
+ <p>
1119
+ When a Magic Number is used, it is added after the ECC
1120
+ formatting is done, and it is prepended to the Error
1121
+ Correction Format.
1122
+
1123
+ </p><br /><hr class="insert" />
1124
+ <a name="model"></a>
1125
+ <div style='display: table; width: 0; margin-left: 3em; margin-right: auto'><pre>
1126
+ Secret Secret
1127
+ | ^
1128
+ v |
1129
+ +------------------+ +------------------+
1130
+ | Append Hash | | Verify Hash |
1131
+ +------------------+ +------------------+
1132
+ | |
1133
+ +------------------+ +------------------+
1134
+ | Generate Shares | |Reconstruct Secret|
1135
+ +------------------+ +------------------+
1136
+ | |
1137
+ +------------------+ +------------------+
1138
+ | ECC Encoding | | ECC Decoding |
1139
+ +------------------+ +------------------+
1140
+ | |
1141
+ +------------------+ +------------------+
1142
+ | Add Magic Number | |Strip Magic Number|
1143
+ +------------------+ +------------------+
1144
+ | ^
1145
+ v |
1146
+ Shares ----------------&gt; Shares
1147
+ </pre></div><table border="0" cellpadding="0" cellspacing="2" align="center"><tr><td align="center"><font face="monaco, MS Sans Serif" size="1"><b>&nbsp;Figure&nbsp;5: The combined processing model.&nbsp;</b></font><br /></td></tr></table><hr class="insert" />
1148
+
1149
+ <a name="anchor17"></a><br /><hr />
1150
+ <table summary="layout" cellpadding="0" cellspacing="2" class="TOCbug" align="right"><tr><td class="TOCbug"><a href="#toc">&nbsp;TOC&nbsp;</a></td></tr></table>
1151
+ <a name="rfc.section.7"></a><h3>7.&nbsp;
1152
+ Design and Rationale</h3>
1153
+
1154
+ <p>
1155
+ In this implementation, the secret and the shares are octet
1156
+ strings. Each octet is treated as an element of the finite field
1157
+ GF(256). The share-generation algorithm is applied to each octet
1158
+ of the secret independently. Similarly, the octets are treated
1159
+ independently during the reconstruction of the secrets from the
1160
+ shares.
1161
+
1162
+ </p>
1163
+ <p>
1164
+ Shamir's original description treats the secret as a large integer
1165
+ modulo a large prime number <a class='info' href='#shamir'>[shamir]<span> (</span><span class='info'>Shamir, A., &ldquo;How to share a secret,&rdquo; 1979.</span><span>)</span></a>. The advantages
1166
+ of using a vector over GF(256) are that the computations are more
1167
+ efficient and the encoding is simpler. Multiplication and inversion
1168
+ over GF(256) can be done with two table lookups and two exors, using
1169
+ two fixed tables of 256 bytes each. One limitation of the GF(256)
1170
+ approach is that the number of shares that can be generated cannot
1171
+ be greater than 255; this limitation is unlikely to be important in
1172
+ practice, since fewer than ten shares are typically used.
1173
+
1174
+ </p>
1175
+ <p>
1176
+ The reconstruction of the secret is done using Lagrange
1177
+ interpolation polynomials. This method is simple and easily
1178
+ tested. For large thresholds, this method is less efficient than
1179
+ an optimal method would be. However, performance is still good,
1180
+ and it is expected that the reconstruction of the secret will not
1181
+ be a performance-critical operation.
1182
+
1183
+ </p>
1184
+ <a name="testing"></a><br /><hr />
1185
+ <table summary="layout" cellpadding="0" cellspacing="2" class="TOCbug" align="right"><tr><td class="TOCbug"><a href="#toc">&nbsp;TOC&nbsp;</a></td></tr></table>
1186
+ <a name="rfc.section.8"></a><h3>8.&nbsp;
1187
+ Testing</h3>
1188
+
1189
+ <p>
1190
+ As with every crypto algorithm, it is essential to test an
1191
+ implementation of TSS or RTSS for correctness. This section provides
1192
+ guidance for such testing.
1193
+
1194
+ </p>
1195
+ <p>
1196
+ The Secret Reconstruction algorithm can be tested using Known Answer
1197
+ Tests (KATs). Test cases are provided in <a class='info' href='#CASES'>Section&nbsp;9<span> (</span><span class='info'>Test Cases</span><span>)</span></a>.
1198
+
1199
+ </p>
1200
+ <p>
1201
+ The Share Generation algorithm cannot be directly tested using a KAT.
1202
+ It can be indirectly tested by generating secret values uniformly at
1203
+ random, then applying the Share Generation process to them to generate
1204
+ a set of shares, then applying the Share Reconstruction algorithm to
1205
+ the shares, then finally comparing the reconstructed secret to the
1206
+ original secret. Implementations SHOULD perform this test, using a
1207
+ variety of thresholds and secret lengths.
1208
+
1209
+ </p>
1210
+ <p>
1211
+ The Share Index (the initial octet of each share) can never be equal
1212
+ to zero. This property SHOULD be tested.
1213
+
1214
+ </p>
1215
+ <p>
1216
+ The random source must be tested to ensure that it has
1217
+ high min-entropy.
1218
+
1219
+ </p>
1220
+ <a name="CASES"></a><br /><hr />
1221
+ <table summary="layout" cellpadding="0" cellspacing="2" class="TOCbug" align="right"><tr><td class="TOCbug"><a href="#toc">&nbsp;TOC&nbsp;</a></td></tr></table>
1222
+ <a name="rfc.section.9"></a><h3>9.&nbsp;
1223
+ Test Cases</h3>
1224
+
1225
+ <p>
1226
+ This section provides test cases that can be used to validate an
1227
+ implementation of the Secret Reconstruction algorithm. All values are
1228
+ in hexadecimal.
1229
+
1230
+ </p>
1231
+ <p>
1232
+ </p>
1233
+ <blockquote class="text"><dl>
1234
+ <dt>algorithm -</dt>
1235
+ <dd>
1236
+ The algorithm used in the test case.
1237
+
1238
+ </dd>
1239
+ <dt>secret -</dt>
1240
+ <dd>
1241
+ The secret value to be split into shares.
1242
+
1243
+ </dd>
1244
+ <dt>threshold -</dt>
1245
+ <dd>
1246
+ The number of shares required to reconstruct a secret; above,
1247
+ this value is associated with the variable M.
1248
+
1249
+ </dd>
1250
+ <dt>num. shares -</dt>
1251
+ <dd>
1252
+ The number of shares included in the example; above,
1253
+ this value is associated with the variable N.
1254
+
1255
+ </dd>
1256
+ <dt>share index -</dt>
1257
+ <dd>
1258
+ A share index. Each test case has multiple distinct share values, and
1259
+ each share is associated with a distinct share index.
1260
+
1261
+ </dd>
1262
+ <dt>share -</dt>
1263
+ <dd>
1264
+ A share value, which corresponds to the share index value immediately above it.
1265
+
1266
+ </dd>
1267
+ </dl></blockquote><p>
1268
+
1269
+
1270
+ </p><div style='display: table; width: 0; margin-left: 3em; margin-right: auto'><pre>
1271
+ algorithm = TSS
1272
+ secret = 7465737400
1273
+ threshold (M) = 2
1274
+ num. shares (N) = 2
1275
+ share index = 1
1276
+ share = B9FA07E185
1277
+ share index = 2
1278
+ share = F5409B4511
1279
+ </pre></div>
1280
+ <a name="anchor18"></a><br /><hr />
1281
+ <table summary="layout" cellpadding="0" cellspacing="2" class="TOCbug" align="right"><tr><td class="TOCbug"><a href="#toc">&nbsp;TOC&nbsp;</a></td></tr></table>
1282
+ <a name="rfc.section.10"></a><h3>10.&nbsp;
1283
+ Security Considerations</h3>
1284
+
1285
+ <p>
1286
+ It is crucial for security that the source of randomness
1287
+ used in the share generation process by cryptographically
1288
+ strong; it MUST be suitable for generating cryptographic
1289
+ keys. <a class='info' href='#RFC4086'>[RFC4086]<span> (</span><span class='info'>Eastlake, D., Schiller, J., and S. Crocker, &ldquo;Randomness Requirements for Security,&rdquo; June&nbsp;2005.</span><span>)</span></a> provides guidance on
1290
+ the selection and implementation of random sources.
1291
+
1292
+ </p>
1293
+ <p>
1294
+ A TSS implementation SHOULD be tested as described in
1295
+ <a class='info' href='#testing'>Section&nbsp;8<span> (</span><span class='info'>Testing</span><span>)</span></a>.
1296
+
1297
+ </p>
1298
+ <p>
1299
+ The confidentiality of the shares generated by TSS should be
1300
+ protected, since the exposure of too many shares will
1301
+ undermine the security of the system. Note that, in this
1302
+ regard, share values are more comparable to secret keys than
1303
+ to ciphertext.
1304
+
1305
+ </p>
1306
+ <a name="anchor19"></a><br /><hr />
1307
+ <table summary="layout" cellpadding="0" cellspacing="2" class="TOCbug" align="right"><tr><td class="TOCbug"><a href="#toc">&nbsp;TOC&nbsp;</a></td></tr></table>
1308
+ <a name="rfc.section.11"></a><h3>11.&nbsp;
1309
+ IANA Considerations</h3>
1310
+
1311
+ <p>
1312
+ This document has no actions for IANA.
1313
+
1314
+ </p>
1315
+ <a name="anchor20"></a><br /><hr />
1316
+ <table summary="layout" cellpadding="0" cellspacing="2" class="TOCbug" align="right"><tr><td class="TOCbug"><a href="#toc">&nbsp;TOC&nbsp;</a></td></tr></table>
1317
+ <a name="rfc.section.12"></a><h3>12.&nbsp;
1318
+ Acknowledgements</h3>
1319
+
1320
+ <p>
1321
+ Thanks to Brian Weis and Jack Lloyd for constructive feedback.
1322
+
1323
+ </p>
1324
+ <a name="rfc.references"></a><br /><hr />
1325
+ <table summary="layout" cellpadding="0" cellspacing="2" class="TOCbug" align="right"><tr><td class="TOCbug"><a href="#toc">&nbsp;TOC&nbsp;</a></td></tr></table>
1326
+ <a name="rfc.section.13"></a><h3>13.&nbsp;
1327
+ References</h3>
1328
+
1329
+ <a name="rfc.references1"></a><br /><hr />
1330
+ <table summary="layout" cellpadding="0" cellspacing="2" class="TOCbug" align="right"><tr><td class="TOCbug"><a href="#toc">&nbsp;TOC&nbsp;</a></td></tr></table>
1331
+ <h3>13.1.&nbsp;Normative References</h3>
1332
+ <table width="99%" border="0">
1333
+ <tr><td class="author-text" valign="top"><a name="RFC2119">[RFC2119]</a></td>
1334
+ <td class="author-text"><a href="mailto:sob@harvard.edu">Bradner, S.</a>, &ldquo;<a href="http://tools.ietf.org/html/rfc2119">Key words for use in RFCs to Indicate Requirement Levels</a>,&rdquo; BCP&nbsp;14, RFC&nbsp;2119, March&nbsp;1997 (<a href="http://www.rfc-editor.org/rfc/rfc2119.txt">TXT</a>, <a href="http://xml.resource.org/public/rfc/html/rfc2119.html">HTML</a>, <a href="http://xml.resource.org/public/rfc/xml/rfc2119.xml">XML</a>).</td></tr>
1335
+ <tr><td class="author-text" valign="top"><a name="RFC4086">[RFC4086]</a></td>
1336
+ <td class="author-text">Eastlake, D., Schiller, J., and S. Crocker, &ldquo;<a href="http://tools.ietf.org/html/rfc4086">Randomness Requirements for Security</a>,&rdquo; BCP&nbsp;106, RFC&nbsp;4086, June&nbsp;2005 (<a href="http://www.rfc-editor.org/rfc/rfc4086.txt">TXT</a>).</td></tr>
1337
+ <tr><td class="author-text" valign="top"><a name="SHS">[SHS]</a></td>
1338
+ <td class="author-text">&ldquo;FIPS 180-3: Secure Hash Standard,,&rdquo; Federal Information Processing Standard (FIPS)&nbsp;http://csrc.nist.gov/publications/fips/fips180-2/fips180-3.pdf, 2008.</td></tr>
1339
+ </table>
1340
+
1341
+ <a name="rfc.references2"></a><br /><hr />
1342
+ <table summary="layout" cellpadding="0" cellspacing="2" class="TOCbug" align="right"><tr><td class="TOCbug"><a href="#toc">&nbsp;TOC&nbsp;</a></td></tr></table>
1343
+ <h3>13.2.&nbsp;Informative References</h3>
1344
+ <table width="99%" border="0">
1345
+ <tr><td class="author-text" valign="top"><a name="FILESIG">[FILESIG]</a></td>
1346
+ <td class="author-text">Kessler, G., &ldquo;File Signatures Table,&rdquo; Web page&nbsp;http://www.garykessler.net/library/file_sigs.html, 2007.</td></tr>
1347
+ <tr><td class="author-text" valign="top"><a name="POLY">[POLY]</a></td>
1348
+ <td class="author-text">Seroussi, G., &ldquo;Table of Low-Weight Binary Irreducible Polynomials,&rdquo; Hewlett-Packard Computer Systems Laboratory Technical Report&nbsp;HPL-98-135, 1998.</td></tr>
1349
+ <tr><td class="author-text" valign="top"><a name="shamir">[shamir]</a></td>
1350
+ <td class="author-text">Shamir, A., &ldquo;How to share a secret,&rdquo; Communications of the ACM&nbsp;(22): 612-613, 1979.</td></tr>
1351
+ </table>
1352
+
1353
+ <a name="anchor23"></a><br /><hr />
1354
+ <table summary="layout" cellpadding="0" cellspacing="2" class="TOCbug" align="right"><tr><td class="TOCbug"><a href="#toc">&nbsp;TOC&nbsp;</a></td></tr></table>
1355
+ <a name="rfc.section.A"></a><h3>Appendix A.&nbsp;
1356
+ Mathematical Background</h3>
1357
+
1358
+ <p>
1359
+ In abstract algebra, a finite field is an algebraic structure
1360
+ for which the operations of addition, subtraction,
1361
+ multiplication and division are defined and satisfy certain
1362
+ axioms.
1363
+ </p>
1364
+ <p>
1365
+ The field GF(256) has exactly 256 elements in it. There is
1366
+ only one field with that number of elements, but there are
1367
+ many different ways in which the elements of the field can be
1368
+ represented. This document uses a polynomial representation
1369
+ in which the field polynomial is the unique irreducible
1370
+ polynomial with minimum weight of degree 8 over GF(2)
1371
+ <a class='info' href='#POLY'>[POLY]<span> (</span><span class='info'>Seroussi, G., &ldquo;Table of Low-Weight Binary Irreducible Polynomials,&rdquo; 1998.</span><span>)</span></a>, hence it is the 'canonical' choice for a
1372
+ polynomial base representation of GF(256). This field
1373
+ representation is also used by the Advanced Encryption
1374
+ Standard (AES).
1375
+
1376
+
1377
+ </p>
1378
+ <a name="rfc.authors"></a><br /><hr />
1379
+ <table summary="layout" cellpadding="0" cellspacing="2" class="TOCbug" align="right"><tr><td class="TOCbug"><a href="#toc">&nbsp;TOC&nbsp;</a></td></tr></table>
1380
+ <h3>Authors' Addresses</h3>
1381
+ <table width="99%" border="0" cellpadding="0" cellspacing="0">
1382
+ <tr><td class="author-text">&nbsp;</td>
1383
+ <td class="author-text">David A. McGrew</td></tr>
1384
+ <tr><td class="author-text">&nbsp;</td>
1385
+ <td class="author-text">Cisco Systems, Inc.</td></tr>
1386
+ <tr><td class="author-text">&nbsp;</td>
1387
+ <td class="author-text">510 McCarthy Blvd.</td></tr>
1388
+ <tr><td class="author-text">&nbsp;</td>
1389
+ <td class="author-text">Milpitas, CA 95035</td></tr>
1390
+ <tr><td class="author-text">&nbsp;</td>
1391
+ <td class="author-text">US</td></tr>
1392
+ <tr><td class="author" align="right">Email:&nbsp;</td>
1393
+ <td class="author-text"><a href="mailto:mcgrew@cisco.com">mcgrew@cisco.com</a></td></tr>
1394
+ <tr><td class="author" align="right">URI:&nbsp;</td>
1395
+ <td class="author-text"><a href="http://www.mindspring.com/~dmcgrew/dam.htm">http://www.mindspring.com/~dmcgrew/dam.htm</a></td></tr>
1396
+ <tr cellpadding="3"><td>&nbsp;</td><td>&nbsp;</td></tr>
1397
+ <tr><td class="author-text">&nbsp;</td>
1398
+ <td class="author-text">Praveen Patnala</td></tr>
1399
+ <tr><td class="author-text">&nbsp;</td>
1400
+ <td class="author-text">Consultant</td></tr>
1401
+ <tr><td class="author" align="right">Email:&nbsp;</td>
1402
+ <td class="author-text"><a href="mailto:praveenpatnala@yahoo.com">praveenpatnala@yahoo.com</a></td></tr>
1403
+ <tr cellpadding="3"><td>&nbsp;</td><td>&nbsp;</td></tr>
1404
+ <tr><td class="author-text">&nbsp;</td>
1405
+ <td class="author-text">Alfred Hoenes</td></tr>
1406
+ <tr><td class="author-text">&nbsp;</td>
1407
+ <td class="author-text">TR-Sys</td></tr>
1408
+ <tr><td class="author-text">&nbsp;</td>
1409
+ <td class="author-text">Gerlinger Str. 12</td></tr>
1410
+ <tr><td class="author-text">&nbsp;</td>
1411
+ <td class="author-text">Ditzingen D-71254</td></tr>
1412
+ <tr><td class="author-text">&nbsp;</td>
1413
+ <td class="author-text">Germany</td></tr>
1414
+ <tr><td class="author" align="right">Email:&nbsp;</td>
1415
+ <td class="author-text"><a href="mailto:ah@TR-Sys.de">ah@TR-Sys.de</a></td></tr>
1416
+ </table>
1417
+ </body></html>